This is the Pytorch implementation for the CMVAE
This code is written in Python. Dependencies include
- python >= 3.6
- pytorch = 1.4 or 1.7
- tqdm, wandb
- Download Omniglot data from here.
- Download pretrained features for Mini-ImageNet from here.
- Download pretrained features for CelebA from here.
- (Optional) If you want to train SimCLR from scratch, download images for ImageNet from here amd CelebA here
data directory should be look like this:
data/
├── omiglot/
  ├── train.npy
  ├── val.npy
  └── test.npy
  
├── mimgnet/
  ├── train_features.npy
  ├── val_features.npy
  └── test_features.npy
 
├── celeba/
  ├── train_features.npy
  ├── val_features.npy
  └── test_features.npy
    
└── imgnet or celeba_imgs/ -> (optional) if you want to train SimCLR from scratch
  ├── images/
    ├── n0210891500001298.jpg  
    ├── n0287152500001298.jpg 
	       ...
    └── n0236282200001298.jpg 
  ├── train.csv
  ├── val.csv
  └── test.csvTo reproduce Omniglot 5-way experiment for CMVAE, run the following code:
cd omniglot
python main.py --data-dir DATA DIRECTORY   --save-dir SAVE DIRECTORY  --way 5 --sample-size 200To reproduce Omniglot 20-way experiment for CMVAE, run the following code:
cd omniglot
python main.py --data-dir DATA DIRECTORY   --save-dir SAVE DIRECTORY   --way 20 --sample-size 300To reproduce Mini-ImageNet 5-way experiment for CMVAE, run the following code:
cd mimgnet
python main.py --data-dir DATA DIRECTORY   --save-dir SAVE DIRECTORY  To reproduce CelebA 5-way experiment for CMVAE, run the following code:
cd celeba
python main.py --data-dir DATA DIRECTORY   --save-dir SAVE DIRECTORY  (Optional) To reproduce SimCLR features for Mini-ImageNet, run the following code:
cd simclr
python main.py --data-dir DATA DIRECTORY  --save-dir SAVE DIRECTORY   --feature-save-dir FEATURE SAVE DIRECTORY  Our work and code benefit from two existing works, which we are very grateful.
Meta-GMVAE 
notears