π A Complete AI/ML Repository with in-depth coverage of Math
, Python
, Machine Learning
, Deep Learning
, NLP
, Computer Vision
, LLMs
, and MLOps
π
Section | Description |
---|---|
01. Math for AI and ML | Math foundations for AI/ML like linear algebra, calculus, statistic and probability. |
02. Python | Python fundamentals, data structures, libraries, and more. |
03. Machine Learning | Core ML algorithms, models, techniques, and much more. |
04. Deep Learning | Dive into ANN, CNN, RNN, LSTM, and more. |
05. NLP | Natural Language Processing using ML and DL models, preprocessing techniques, tools in NLP, and more. |
06. Computer Vision | Introduction to CV, Object detection, GANs, image segmentation, and OpenCV. |
07. Generative AI & LLMs | Explore the world of Large Language Models and Generative AI. |
08. MLOps | Tools, courses, and resources for MLOps. |
-
- Introduction, System of Equations, Matrix Operations, Eigenvalues & Eigenvectors, and more.
-
- Limits, Derivatives, Chain Rules, Partial Derivatives, etc.
-
- Introduction to Probability, Bayes Theorem, Permutations, Probability Distribution, etc.
-
- Central Tendency, Hypothesis Testing, Plots (Box, QQ, Violin), and more.
Platform | Links |
---|---|
π§βπ« Khan Academy | Linear Algebra |
π§βπ« MIT | Linear Algebra |
π§βπ« 3Blue1Brown | Linear Algebra |
π§βπ« 3Blue1Brown | Calculas |
π§βπ« Coursera | Mathematics for Machine Learning and Data Science Specialization |
π§βπ« YouTube | Live Statistic (Krish Naik) |
-
- Variables, Data Types, Lists, Functions, OOP, Error Handling, etc.
-
- Arrays, Sorting, Searching, Linked Lists, Trees, Graphs, and more.
-
NumPy | Pandas | Matplotlib | Seaborn
Platform | Links |
---|---|
π Udemy | Python Bootcamp (Jose) |
π Udemy | Python for Data Science (Jose) |
π Topic | π Link to Notebook |
---|---|
1. Introduction To ML | π Notebook |
2. Linear Regression | π Notebook |
3. Logistic Regression | π Notebook |
4. Decision Tree | π Notebook |
5. SVM | π Notebook |
6. Naive Bayes | π Notebook |
7. KNN | π Notebook |
8. k-means Clustering | π Notebook |
9. Hierarchical Clustering | π Notebook |
10. DBSCAN | π Notebook |
11. PCA | π Notebook |
12. LDA | π Notebook |
13. Ensemble Learning | π Notebook |
14. Random Forest | π Notebook |
15. Gradient Boost | π Notebook |
16. XGBoost Regression | π Notebook |
17. XGBoost Classification | π Notebook |
18. Adaboost | π Notebook |
19. Regression Metrics | π Notebook |
20. Classification Metrics | π Notebook |
21. Lasso And Ridge Regression | π Notebook |
22. Hyperparameter Tuning & Cross Validation | π Notebook |
23. ML Project Life-cycle | π Notebook |
Platform | Links |
---|---|
π€ Coursera | Machine Learning Specialization (Andrew Ng) |
| π€ YouTube | EDA Live (Krish Naik) | | π€ YouTube | EDA Playlist (Krish Naik) |
π Topic | π Link to Notebook |
---|---|
1. Introduction To DL | π Notebook |
2. ANN | π Notebook |
3. Activation Functions | π Notebook |
4. Loss Functions | π Notebook |
5. Optimization | π Notebook |
6. Vanishing Explodings | π Notebook |
7. Overfit And Uderfit | π Notebook |
8. CNN | π Notebook |
9. CNN Architectures | π Notebook |
10. RNN | π Notebook |
11. LSTM And GRU | π Notebook |
12. BRNN | π Notebook |
13. Tensorflow And PyTorch | π Notebook |
Platform | Links |
---|---|
π§ Coursera | Deep Learning Specialization (Andrew Ng) |
π§ Udemy | TensorFlow for Deep Learning Bootcamp |
π§ Udemy | PyTorch for Deep Learning Bootcamp |
π Topic | π Link to Notebook |
---|---|
1. Introduction To NLP | π Notebook |
2. Word Embeddings | π Notebook |
3. Word2vec | π Notebook |
4. Seq2Seq | π Notebook |
5. Transformers | π Notebook |
6. DL Models In NLP | π Notebook |
π Topic | π Link to Notebook |
---|---|
1. Introduction To CV | π Notebook |
2. Object Detection | π Notebook |
3. OpenCV | π Notebook |
4. GAN | π Notebook |
5. Image Segmentation | π Notebook |
π Topic | π Link to Notebook |
---|---|
1. Introduction to Generative AI & LLMs | π Notebook |
2. Retrieval-Augmented Generation (RAG) | π Notebook |
-
Github: Github |
-
Docker: Docker Tutorial for Beginners (TechWorld with Nana) | End To End Machine Learning Project Implementation With Dockers (Krish Naik)
-
MLFlow: MLflow in Machine Learning
-
CI/CD: GitHub Actions Tutorial (TechWorld with Nana) | GitHub Actions (glich.stream)
-
Kubernete: Kubernetes Tutorial for Beginners (TechWorld with Nana)
Platform | Links |
---|---|
βοΈ Coursera | MLOps Specialization |
βοΈ Udemy | Machine Learning Specialty |
Repository created and maintained by Fraidoon Omarzai
If you find this repository helpful, don't forget to give it a β!