Skip to content

FraidoonOmarzai/Comprehensive_AI_ML_RESOURCES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

91 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🌟 Comprehensive AI/ML ResourcesπŸ“š 🌟

Stars Badge Forks Badge License Badge Version

AI/ML Resources Logo

πŸš€ A Complete AI/ML Repository with in-depth coverage of Math, Python, Machine Learning, Deep Learning, NLP, Computer Vision, LLMs, and MLOps πŸš€


πŸ“‘ Table of Contents

Section Description
01. Math for AI and ML Math foundations for AI/ML like linear algebra, calculus, statistic and probability.
02. Python Python fundamentals, data structures, libraries, and more.
03. Machine Learning Core ML algorithms, models, techniques, and much more.
04. Deep Learning Dive into ANN, CNN, RNN, LSTM, and more.
05. NLP Natural Language Processing using ML and DL models, preprocessing techniques, tools in NLP, and more.
06. Computer Vision Introduction to CV, Object detection, GANs, image segmentation, and OpenCV.
07. Generative AI & LLMs Explore the world of Large Language Models and Generative AI.
08. MLOps Tools, courses, and resources for MLOps.

01. Math for AI and ML πŸ“

  1. Linear Algebra

    • Introduction, System of Equations, Matrix Operations, Eigenvalues & Eigenvectors, and more.
  2. Calculus

    • Limits, Derivatives, Chain Rules, Partial Derivatives, etc.
  3. Probability

    • Introduction to Probability, Bayes Theorem, Permutations, Probability Distribution, etc.
  4. Statistics

    • Central Tendency, Hypothesis Testing, Plots (Box, QQ, Violin), and more.

Math Courses:

Platform Links
πŸ§‘β€πŸ« Khan Academy Linear Algebra
πŸ§‘β€πŸ« MIT Linear Algebra
πŸ§‘β€πŸ« 3Blue1Brown Linear Algebra
πŸ§‘β€πŸ« 3Blue1Brown Calculas
πŸ§‘β€πŸ« Coursera Mathematics for Machine Learning and Data Science Specialization
πŸ§‘β€πŸ« YouTube Live Statistic (Krish Naik)

02. Python 🐍

  1. Python Basics

    • Variables, Data Types, Lists, Functions, OOP, Error Handling, etc.
  2. Data Structures & Algorithms

    • Arrays, Sorting, Searching, Linked Lists, Trees, Graphs, and more.
  3. NumPy | Pandas | Matplotlib | Seaborn

Python Courses:

Platform Links
🐍 Udemy Python Bootcamp (Jose)
🐍 Udemy Python for Data Science (Jose)

03. Machine Learning πŸ€–

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To ML 🌐 Notebook
2. Linear Regression 🌐 Notebook
3. Logistic Regression 🌐 Notebook
4. Decision Tree 🌐 Notebook
5. SVM 🌐 Notebook
6. Naive Bayes 🌐 Notebook
7. KNN 🌐 Notebook
8. k-means Clustering 🌐 Notebook
9. Hierarchical Clustering 🌐 Notebook
10. DBSCAN 🌐 Notebook
11. PCA 🌐 Notebook
12. LDA 🌐 Notebook
13. Ensemble Learning 🌐 Notebook
14. Random Forest 🌐 Notebook
15. Gradient Boost 🌐 Notebook
16. XGBoost Regression 🌐 Notebook
17. XGBoost Classification 🌐 Notebook
18. Adaboost 🌐 Notebook
19. Regression Metrics 🌐 Notebook
20. Classification Metrics 🌐 Notebook
21. Lasso And Ridge Regression 🌐 Notebook
22. Hyperparameter Tuning & Cross Validation 🌐 Notebook
23. ML Project Life-cycle 🌐 Notebook

ML Courses:

Platform Links
πŸ€– Coursera Machine Learning Specialization (Andrew Ng)

| πŸ€– YouTube | EDA Live (Krish Naik) | | πŸ€– YouTube | EDA Playlist (Krish Naik) |


04. Deep Learning 🧠

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To DL 🌐 Notebook
2. ANN 🌐 Notebook
3. Activation Functions 🌐 Notebook
4. Loss Functions 🌐 Notebook
5. Optimization 🌐 Notebook
6. Vanishing Explodings 🌐 Notebook
7. Overfit And Uderfit 🌐 Notebook
8. CNN 🌐 Notebook
9. CNN Architectures 🌐 Notebook
10. RNN 🌐 Notebook
11. LSTM And GRU 🌐 Notebook
12. BRNN 🌐 Notebook
13. Tensorflow And PyTorch 🌐 Notebook

DL Courses:

Platform Links
🧠 Coursera Deep Learning Specialization (Andrew Ng)
🧠 Udemy TensorFlow for Deep Learning Bootcamp
🧠 Udemy PyTorch for Deep Learning Bootcamp

05. Natural Language Processing (NLP) πŸ’¬

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To NLP 🌐 Notebook
2. Word Embeddings 🌐 Notebook
3. Word2vec 🌐 Notebook
4. Seq2Seq 🌐 Notebook
5. Transformers 🌐 Notebook
6. DL Models In NLP 🌐 Notebook

06. Computer Vision (CV) πŸ‘οΈ

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction To CV 🌐 Notebook
2. Object Detection 🌐 Notebook
3. OpenCV 🌐 Notebook
4. GAN 🌐 Notebook
5. Image Segmentation 🌐 Notebook

07. Generative AI & LLMs πŸ€–πŸ“

πŸ“‚ Topic πŸ“‘ Link to Notebook
1. Introduction to Generative AI & LLMs 🌐 Notebook
2. Retrieval-Augmented Generation (RAG) 🌐 Notebook

08. MLOps Resources βš™οΈ

  1. Github: Github |

  2. Docker: Docker Tutorial for Beginners (TechWorld with Nana) | End To End Machine Learning Project Implementation With Dockers (Krish Naik)

  3. MLFlow: MLflow in Machine Learning

  4. CI/CD: GitHub Actions Tutorial (TechWorld with Nana) | GitHub Actions (glich.stream)

  5. Kubernete: Kubernetes Tutorial for Beginners (TechWorld with Nana)

  6. AWS: AWS Cloud Practitioner (Udemy)

MLOps Courses:

Platform Links
βš™οΈ Coursera MLOps Specialization
βš™οΈ Udemy Machine Learning Specialty

🌟 Connect with Me


Repository created and maintained by Fraidoon Omarzai


If you find this repository helpful, don't forget to give it a ⭐!