A PyTorch-based Variational Autoencoder (VAE) designed to generate and reconstruct images from a custom dog image dataset. This project demonstrates training, generation, and interpolation of images using latent space representations.
- Deep convolutional VAE for RGB images
- Encoder and decoder architecture for 64x64 images
- Custom latent space dimension
- Binary Cross Entropy + KL Divergence loss function
- Image generation and reconstruction
- Latent space interpolation for smooth transitions
- Visualization of loss curves and generated outputs
- Reconstructed images (per epoch)
- Generated images from latent space
- Latent space interpolation grid
- Loss plots over epochs
- Python 3.8+
- PyTorch
- torchvision
- matplotlib
- numpy
Install dependencies:
pip install torch torchvision matplotlib numpy