Skip to content
/ VAE Public

a PyTorch-based VAE to generate, reconstruct, and interpolate dog images using latent space representations.

Notifications You must be signed in to change notification settings

FaNa-AI/VAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 

Repository files navigation

VAE Image Generator (Dogs Dataset)

A PyTorch-based Variational Autoencoder (VAE) designed to generate and reconstruct images from a custom dog image dataset. This project demonstrates training, generation, and interpolation of images using latent space representations.


πŸš€ Features

  • Deep convolutional VAE for RGB images
  • Encoder and decoder architecture for 64x64 images
  • Custom latent space dimension
  • Binary Cross Entropy + KL Divergence loss function
  • Image generation and reconstruction
  • Latent space interpolation for smooth transitions
  • Visualization of loss curves and generated outputs

πŸ–Ό Example Outputs

  • Reconstructed images (per epoch)
  • Generated images from latent space
  • Latent space interpolation grid
  • Loss plots over epochs

πŸ›  Requirements

  • Python 3.8+
  • PyTorch
  • torchvision
  • matplotlib
  • numpy

Install dependencies:

pip install torch torchvision matplotlib numpy

About

a PyTorch-based VAE to generate, reconstruct, and interpolate dog images using latent space representations.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published