Fully Open Framework for Democratized Multimodal Training
🤗 Models and Datasets | 🖥️ Demo | 📄 Technical Report | 📰 知乎
- 2025-09-30: Released the Offline Data Packing Guide.
- 2025-09-30: Released the LLaVA-OneVision-1.5 Technical Report.
- Introduction
- Models
- Datasets
- Results
- Quick Start with Hugging Face
- Evaluation
- Quick Start For Training
- Fully Reproducing Guide
- Citation
- Acknowledgement
LLaVA-OneVision-1.5 introduces a novel family of fully open-source Large Multimodal Models (LMMs) that achieves state-of-the-art performance with substantially lower cost through training on native resolution images.
- The model leads on multiple multimodal benchmarks and generally surpasses Qwen2.5-VL.
- Training on native-resolution images significantly improves its visual understanding.
- The pretraining corpus comprises large-scale, concept-balanced, diverse, and high-quality captions curated with strict filtering and quality control.
- The instruction-tuning dataset is comprehensive and covers a wide range of tasks.
- The end-to-end training cost is about $16,000 on A100 GPUs at roughly $0.60 per GPU-hour.
- The system is built on Megatron-LM with support for MoE, FP8, and long-sequence parallelism, and the codebase is optimized for cost-effective scaling.
- The project releases high-quality pretraining and SFT datasets along with the complete training framework, configurations, and recipes.
- It also provides detailed training logs and metrics to enable reproducibility and community adoption.
| Model | HF Link | Training Log |
|---|---|---|
| LLaVA-OneVision-1.5-4B-Instruct | 🤗 HF / 4B-Instruct | 📈 TensorBoard |
| LLaVA-OneVision-1.5-8B-Instruct | 🤗 HF / 8B-Instruct | 📈 TensorBoard |
| LLaVA-OneVision-1.5-4B-Base | 🤗 HF / 4B-Base | 📈 TensorBoard |
| LLaVA-OneVision-1.5-8B-Base | 🤗 HF / 8B-Base | 📈 TensorBoard |
(a) The vocabulary coverage proportion in the LLaVA-OneVision-1.5 Mid-Training dataset before and after concept balancing. (b) Distribution of data sources within the LLaVA-OneVision-1.5 Mid-Training dataset. (c) Distribution of data sources within the LLaVA-OneVision-1.5 Instruct dataset.
| Description | Link | Status |
|---|---|---|
| LLaVA-OneVision-1.5-Mid-Training-85M | 🤗HF / Mid-Training 85M | Uploading… |
| LLaVA-OneVision-1.5-Instruct | 🤗HF / Instruct-Data | Available |
All evaluations were conducted using lmms_eval.
from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM
from qwen_vl_utils import process_vision_info
model_path = "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct"
# default: Load the model on the available device(s)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True
)
# default processor
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
accelerate launch --num_processes=8 --main_process_port 12399 -m lmms_eval \
--model=llava_onevision1_5 \
--model_args=pretrained=lmms-lab/LLaVA-OneVision-1.5-8B-Instruct,attn_implementation=flash_attention_2,max_pixels=3240000 \
--tasks=mmmu_val,mmmu_pro_standard,mmbench_en_test,mmerealworld,mmerealworld_cn,ai2d,ai2d_no_mask,vstar_bench,chartqa,charxiv,docvqa_test,mathvista_testmini,mmstar,scienceqa \
--batch_size=1
We strongly recommend using the docker environment for a seamless experience. The following instructions are tailored for the A100 80GB GPU environment.
# Clone repository
git clone https://github.com/EvolvingLMMs-Lab/LLaVA-OneVision-1.5.git
cd LLaVA-OneVision-1.5
docker build -t llava_megatron:25.04 .
# Run container with -w to set working directory directly to the mounted volume
docker run -it --gpus all \
--ipc host --net host --privileged --cap-add IPC_LOCK \
--ulimit memlock=-1 --ulimit stack=67108864 --rm \
-v $(pwd):/workspace/LLaVA-OneVision-1.5 \
-w /workspace/LLaVA-OneVision-1.5 \
--name "llava_megatron_container" \
llava_megatron:25.04 /bin/bashYou have two options to get started with LLaVA-OneVision-1.5-stage-0:
Download our LLaVA-OneVision-1.5-4B-stage0 model directly from Hugging Face.
Alternatively, you can merge the initial weights from the original ViT and LLM:
python ds/merge_model.py \
--vit_path DeepGlint-AI/rice-vit-large-patch14-560 \
--llm_path Qwen/Qwen3-4B-Instruct-2507 \
--output LLaVA-OneVision-1.5-4B-stage0Note: When merging weights, the adapter component will be initialized with default values.
Convert the model from Hugging Face format to Megatron format:
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 bash examples/llava_ov_1_5/convert/convert_4b_hf_to_mcore.sh \
LLaVA-OneVision-1.5-4B-stage0 \
LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
1 1Download LLaVA from LLaVA-558K-Webdataset.
# ============================================================
# Required environment variables:
# AIAK_TRAINING_PATH Root directory of the AIAK-Training-LLM project
# DATA_PATH Directory with WebDataset shards (.tar) for pretraining
# TOKENIZER_PATH Hugging Face tokenizer directory
# CHECKPOINT_PATH Megatron-formatted checkpoint directory (e.g., mcore TP1/PP1)
# SAVE_CKPT_PATH Output directory for saving training checkpoints
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-558K-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=LLaVA-OneVision-1.5-4B-stage0_mcore_tp1_pp1 \
bash examples/llava_ov_1_5/quick_start/stage_1_alignment_llava_ov_4b.shDownload our lightweight packed subset from LLaVA-OneVision-1.5-Mid-Training-Quick-Start-3M-Webdataset.
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1_alignment_llava_ov_4b/iter_0002500/ \
stage_1_alignment_llava_ov_4b_release 1 1
# ============================================================
# Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-OneVision-1.5-Mid-Training-Webdataset-Quick-Start-3M \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1_alignment_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_1.5_mid_training_llava_ov_4b.shDownload LLaVA-NeXT-780k-webdataset at LLaVA-NeXT-780K Dataset.
# ============================================================
# Convert model to release format
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_release.sh \
stage_1.5_mid_training_llava_ov_4b/iter_0020000/ \
stage_1.5_mid_training_llava_ov_4b_release 1 1
# ============================================================
# # Launch
AIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
DATA_PATH=LLaVA-NeXT-780k-Webdataset \
TOKENIZER_PATH=LLaVA-OneVision-1.5-4B-stage0 \
CHECKPOINT_PATH=stage_1.5_mid_training_llava_ov_4b_release \
bash examples/llava_ov_1_5/quick_start/stage_2_instruct_llava_ov_4b.shAIAK_TRAINING_PATH=/workspace/LLaVA-OneVision-1.5 \
bash examples/llava_ov_1_5/convert/convert_4b_mcore_to_hf.sh \
stage_2_instruct_llava_ov_4b/iter_0003500 \
LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct \
1 1
# Copy non-model files (e.g., tokenizer config) to the new directory
find LLaVA-OneVision-1.5-4B-stage0/ -type f -not -iname '*safetensors*' -exec cp {} LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct/ ';'# pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git
CUDA_VISIBLE_DEVICES=4,5,6,7 accelerate launch \
--num_processes=4 --main_process_port 12399 -m lmms_eval --model=llava_onevision1_5 --batch_size=1 --tasks=mme \
--model_args=pretrained=/workspace/LLaVA-OneVision-1.5/LLaVA-OneVision-1.5-4B-3M-Mid-Training-780K-Instruct,max_pixels=3240000Tip
More detailed reproduction steps for the complete process will be provided after the dataset upload is completed.
To improve model training efficiency, we implement offline sample packing:
- Download the Mid-Training-85M Dataset
- Pack the data into WebDataset format, refer to Examples offlinepacking and Offline Padding-Free Data Packing
- Download the LLaVA-OneVision-1.5-Instruct-Data
- Convert the data into WebDataset format, refer to Conversion for Mixed Instruction Data
Q4 2025 Key Deliverables:
- Ultra-efficient MoE Training
- Full Video Input LLM
Thanks so much to all of our amazing contributors!
|
fdcp |
anxiangsir |
yiyexy |
wideyard |
Lornatang |
chengzheng345 |
Luodian |
killTheHostage |
|
mathCrazyy |
yunglechao |
RobitYadda |
If you find LLaVA-OneVision-1.5 useful in your research, please consider to cite the following related papers:
@inproceedings{LLaVA-OneVision-1.5,
title={LLaVA-OneVision-1.5: Fully Open Framework for Democratized Multimodal Training},
author={An, Xiang and Xie, Yin and Yang, Kaicheng and Zhang, Wenkang and Zhao, Xiuwei and Cheng, Zheng and Wang, Yirui and Xu, Songcen and Chen, Changrui and Wu, Chunsheng and Tan, Huajie and Li, Chunyuan and Yang, Jing and Yu, Jie and Wang, Xiyao and Qin, Bin and Wang, Yumeng and Yan, Zizhen and Feng, Ziyong and Liu, Ziwei and Li, Bo and Deng, Jiankang},
booktitle={arXiv},
year={2025}
}
@inproceedings{xie2025region,
title={Region-based Cluster Discrimination for Visual Representation Learning},
author={Xie, Yin and Yang, Kaicheng and An, Xiang and Wu, Kun and Zhao, Yongle and Deng, Weimo and Ran, Zimin and Wang, Yumeng and Feng, Ziyong and Miles, Roy and Elezi, Ismail and Deng, Jiankang},
booktitle={ICCV},
year={2025}
}
@article{lillava,
title={LLaVA-OneVision: Easy Visual Task Transfer},
author={Li, Bo and Zhang, Yuanhan and Guo, Dong and Zhang, Renrui and Li, Feng and Zhang, Hao and Zhang, Kaichen and Zhang, Peiyuan and Li, Yanwei and Liu, Ziwei and Li, Chunyuan},
journal={Transactions on Machine Learning Research}
year={2024}
}
We extend our sincere gratitude to AIAK team of the Baige AI computing platform from Baidu AI Cloud for providing the exceptional training framework. The outstanding capabilities of AIAK-Training-LLM and AIAK-Megatron have significantly accelerated our training process with remarkable efficiency. These cutting-edge frameworks have been instrumental in achieving our research goals. To get full AIAK support, you can contact Baidu Cloud.
We acknowledge the support of Synvo AI for contributing to the partial data annotation in this work, and also thank the maintainers and contributors of the following open-source projects, whose work greatly inspired and supported our research:
- LLaVA: Large Language-and-Vision Assistant — LLaVA
- LLaVA-NeXT: Next-generation multi-modal assistant — LLaVA-NeXT
- lmms-eval: A standardized evaluation framework for Large Multimodal Models — lmms-eval
- Megatron-LM: Efficient, scalable training for large language models — Megatron-LM
- Qwen2.5-VL: Strong vision-language foundation model — Qwen2.5-VL
- InternVL: Open-source large-scale vision-language foundation model — InternVL
- Qwen3: Next-generation Qwen LLM — Qwen
- MetaCLIP: Scalable contrastive pretraining — MetaCLIP
- FineVision: Open Data Is All You Need — FineVision

