Skip to content

Dibakar1/CNN-for-Noise-identification-and-denoising-Images

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CNN-for-Noise-identification-and-denoising-Images

9 types of noise is considered for the classification purpose. Our study shows that Blind Denoising is not very good technique from the quality point of view. We have done a detail study and a study report can be found here: https://figshare.com/articles/Blind_Denoising_and_FFDNet_Denoising/7744838

Denoised Images

@article{Sil2019, author = "Dibakar Sil", title = "{Blind Denoising and FFDNet Denoising}", year = "2019", month = "2", url = "https://figshare.com/articles/Blind_Denoising_and_FFDNet_Denoising/7744838", doi = "10.6084/m9.figshare.7744838.v1" }

About

A clean image, and it's noisy version, blind denoising and FFDNet denoised images.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published