The code can only be used for non-commercial purposes. Please contact the authors if you want to use this code for business matters. If this repository is helpful for your research, please cite our paper:
@article{Li_Liu_Wang_Zhang_2025,
title={Destroy and Repair Using Hyper-Graphs for Routing},
volume={39},
number={17},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
author={Li, Ke and Liu, Fei and Wang, Zhenkun and Zhang, Qingfu},
year={2025},
pages={18341-18349}}
- python>=3.8
- Pytorch 1.12.1 or 1.13
- numpy==1.23.3
- matplotlib==3.5.2
- tqdm==4.64.1
- pytz==2022.1
-
training data
The same as that in LEHD.
you can download the data from
https://drive.google.com/drive/folders/1LptBUGVxQlCZeWVxmCzUOf9WPlsqOROR?usp=sharing
or
https://pan.baidu.com/s/12uxjol_5pAlnm0j4F6D_RQ?pwd=rzja -
finetuning data
https://drive.google.com/file/d/1aU1Kpqfy2bMgY1lYdQzjdBN87W3dzE9M/view?usp=sharing -
testing data
in ./TSP/data or ./CVRP/data
cd TSP
# for TSP100 etc
python test.py
# for TSPlib
python test_tsplib.py
cd TSP
python train.py
For CVRP, it's similar.
DRHG's code implementation is based on the code of POMO and LEHD. Thanks to them.