Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
import asyncio

import litellm
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import SimpleSpanProcessor

from openinference.instrumentation.litellm import LiteLLMInstrumentor

endpoint = "http://127.0.0.1:6006/v1/traces"
tracer_provider = TracerProvider()
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint)))
LiteLLMInstrumentor().instrument(tracer_provider=tracer_provider)


stream = True


def responses_image_input():
response = litellm.responses(
model="openai/gpt-4.1",
input=[
{
"role": "user",
"content": [
{"type": "input_text", "text": "what is in this image?"},
{
"type": "input_image",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
}
],
stream=stream,
)
print(list(response))


def responses_file_input():
response = litellm.responses(
model="openai/gpt-4.1",
input=[
{
"role": "user",
"content": [
{"type": "input_text", "text": "what is in this file?"},
{
"type": "input_file",
"file_url": "https://www.berkshirehathaway.com/letters/2024ltr.pdf",
},
],
}
],
stream=stream,
)
print(list(response))


def websearch_input():
response = litellm.responses(
model="openai/gpt-4.1",
tools=[{"type": "web_search_preview"}],
input="What was a positive news story from today?",
stream=stream,
)
print(list(response))


def function_call():
tools = [
{
"type": "function",
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location", "unit"],
},
}
]
response = litellm.responses(
model="openai/gpt-4.1",
tools=tools,
input="What is the weather like in Boston today?",
tool_choice="auto",
stream=stream,
)
print(list(response))


def reasoning_input():
response = litellm.responses(
model="openai/o3-mini",
input="How much wood would a woodchuck chuck?",
reasoning={"effort": "high"},
stream=stream,
)
print(list(response))


async def async_responses_image_input():
response = await litellm.aresponses(
model="openai/gpt-4.1",
input=[
{
"role": "user",
"content": [
{"type": "input_text", "text": "what is in this image?"},
{
"type": "input_image",
"image_url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
},
],
}
],
stream=stream,
)
print(list(response))


async def async_responses_file_input():
response = await litellm.aresponses(
model="openai/gpt-4.1",
input=[
{
"role": "user",
"content": [
{"type": "input_text", "text": "what is in this file?"},
{
"type": "input_file",
"file_url": "https://www.berkshirehathaway.com/letters/2024ltr.pdf",
},
],
}
],
stream=stream,
)
print(list(response))


async def async_websearch_input():
response = await litellm.aresponses(
model="openai/gpt-4.1",
tools=[{"type": "web_search_preview"}],
input="What was a positive news story from today?",
stream=stream,
)
print(list(response))


async def async_function_call():
tools = [
{
"type": "function",
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location", "unit"],
},
}
]
response = await litellm.aresponses(
model="openai/gpt-4.1",
tools=tools,
input="What is the weather like in Boston today?",
tool_choice="auto",
stream=stream,
)
print(list(response))


async def async_reasoning_input():
response = await litellm.aresponses(
model="openai/o3-mini",
input="How much wood would a woodchuck chuck?",
reasoning={"effort": "high"},
stream=stream,
)
print(list(response))


if __name__ == "__main__":
responses_image_input()
responses_file_input()
websearch_input()
function_call()
reasoning_input()
asyncio.run(async_responses_image_input())
asyncio.run(async_responses_file_input())
asyncio.run(async_websearch_input())
asyncio.run(async_function_call())
asyncio.run(async_reasoning_input())
Loading