State-of-the art Automated Machine Learning python library for Tabular Data
- 
Binary Classification 
- 
Regression 
- 
Multiclass Classification (in progress...) 
The bigger, the better
From AutoML-Benchmark
- Automated Data Clean (Auto Clean)
- Automated Feature Engineering (Auto FE)
- Smart Hyperparameter Optimization (HPO)
- Feature Generation
- Feature Selection
- Models Selection
- Cross Validation
- Optimization Timelimit and EarlyStoping
- Save and Load (Predict new data)
pip install automl-alexClassifier:
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)Regression:
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)DataPrepare:
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)Simple Models Wrapper:
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
    timeout=600, # optimization time in seconds,
    )
predicts = model.predict_proba(X_test)More examples in the folder ./examples:
- 01_Quick_Start.ipynb  
- 02_Data_Cleaning_and_Encoding_(DataPrepare).ipynb  
- 03_Models.ipynb  
- 04_ModelsReview.ipynb  
- 05_BestSingleModel.ipynb  
- Production Docker template
It integrates many popular frameworks:
- scikit-learn
- XGBoost
- LightGBM
- CatBoost
- Optuna
- ...
- 
Categorical Features 
- 
Numerical Features 
- 
Binary Features 
- 
Text 
- 
Datetime 
- 
Timeseries 
- 
Image 
- With a large dataset, a lot of memory is required! Library creates many new features. If you have a large dataset with a large number of features (more than 100), you may need a lot of memory.
Works with optuna-dashboard
Run
$ optuna-dashboard sqlite:///db.sqlite3- 
Feature Generation 
- 
Save/Load and Predict on New Samples 
- 
Advanced Logging 
- 
Add opt Pruners 
- 
Docs Site 
- 
DL Encoders 
- 
Add More libs (NNs) 
- 
Multiclass Classification 
- 
Build pipelines 


