-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathapply_whisper.py
58 lines (48 loc) · 1.78 KB
/
apply_whisper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import whisper
import os
import folder_paths
import uuid
import torchaudio
class ApplyWhisperNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"audio": ("AUDIO",),
"model": (["base", "tiny", "small", "medium", "large"],),
}
}
RETURN_TYPES = ("STRING", "whisper_alignment", "whisper_alignment")
RETURN_NAMES = ("text", "segments_alignment", "words_alignment")
FUNCTION = "apply_whisper"
CATEGORY = "whisper"
def apply_whisper(self, audio, model):
# save audio bytes from VHS to file
temp_dir = folder_paths.get_temp_directory()
os.makedirs(temp_dir, exist_ok=True)
audio_save_path = os.path.join(temp_dir, f"{uuid.uuid1()}.wav")
torchaudio.save(audio_save_path, audio['waveform'].squeeze(
0), audio["sample_rate"])
# transribe using whisper
model = whisper.load_model(model)
result = model.transcribe(audio_save_path, word_timestamps=True)
segments = result['segments']
segments_alignment = []
words_alignment = []
for segment in segments:
# create segment alignments
segment_dict = {
'value': segment['text'].strip(),
'start': segment['start'],
'end': segment['end']
}
segments_alignment.append(segment_dict)
# create word alignments
for word in segment["words"]:
word_dict = {
'value': word["word"].strip(),
'start': word["start"],
'end': word['end']
}
words_alignment.append(word_dict)
return (result["text"].strip(), segments_alignment, words_alignment)