-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgt_utils.py
234 lines (178 loc) · 5.91 KB
/
gt_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import networkx as nx
import numpy as np
from graph_tool import Graph, GraphView
from graph_tool.search import bfs_search, BFSVisitor, pbfs_search
from graph_tool.topology import label_components
def get_leaves(t):
"""for directed graph
"""
return np.nonzero((t.degree_property_map(deg='in').a == 1)
& (t.degree_property_map(deg='out').a == 0))[0]
def get_roots(t):
"""for undirected graph
"""
return np.nonzero((t.degree_property_map(deg='out').a > 0)
& (t.degree_property_map(deg='in').a == 0))[0]
def extract_edges(g):
return [(int(u), int(v)) for u, v in g.edges()]
def gt2nx(g, root, terminals, node_attrs=None, edge_attrs=None):
if g.is_directed():
gx = nx.DiGraph()
else:
gx = nx.Graph()
for v in set(terminals) | {root}:
gx.add_node(v)
if node_attrs is not None:
for name, node_attr in node_attrs.items():
gx.node[v][name] = node_attr[g.vertex(v)]
for e in g.edges():
u, v = int(e.source()), int(e.target())
gx.add_edge(u, v)
if edge_attrs is not None:
for name, edge_attr in edge_attrs.items():
gx[u][v][name] = edge_attr[e]
return gx
def filter_nodes_by_edges(t, edges):
vfilt = t.new_vertex_property('bool')
vfilt.a = False
nodes = {u for e in edges for u in e}
for n in nodes:
vfilt[n] = True
t.set_vertex_filter(vfilt)
return t
def edges2graph(g, edges):
tree = Graph(directed=True)
for _ in range(g.num_vertices()):
tree.add_vertex()
for u, v in edges:
tree.add_edge(int(u), int(v))
return filter_nodes_by_edges(tree, edges)
def bottom_up_traversal(t, vis=None, debug=False):
leaves = get_leaves(t)
s = list(leaves)
visited = set()
while len(s) > 0:
v = s.pop(0)
if vis:
vis.examine_vertex(t.vertex(v))
visited.add(v)
if debug:
print('visiting {}'.format(v))
for e in t.vertex(v).in_edges():
u = int(e.source())
if vis:
vis.tree_edge(e)
if u not in visited:
if debug:
print('pushing {}'.format(u))
s.append(u)
class EdgeCollectorVisitor(BFSVisitor):
def __init__(self):
self.edges = set()
def tree_edge(self, e):
s, t = int(e.source()), int(e.target())
self.edges.add((s, t))
def edges_to_directed_tree(g, root, edges):
t = Graph(directed=False)
for _ in range(g.num_vertices()):
t.add_vertex()
for u, v in edges:
t.add_edge(u, v)
vis = EdgeCollectorVisitor()
bfs_search(t, source=root, visitor=vis)
t.clear_edges()
t.set_directed(True)
for u, v in vis.edges:
t.add_edge(u, v)
return filter_nodes_by_edges(t, edges)
def is_arborescence(tree):
# is tree?
l, _ = label_components(GraphView(tree, directed=False))
if not np.all(np.array(l.a) == 0):
print('not connected')
print(np.array(l.a))
return False
in_degs = np.array([v.in_degree() for v in tree.vertices()])
if in_degs.max() > 1:
print('in_degree.max() > 1')
return False
if np.sum(in_degs == 1) != (tree.num_vertices() - 1):
print('should be: only root has no parent')
return False
roots = get_roots(tree)
assert len(roots) == 1, '>1 roots'
return True
def is_tree(tree):
# is tree?
l, _ = label_components(GraphView(tree, directed=False))
if not np.all(np.array(l.a) == 0):
print('not connected')
print(np.array(l.a))
return False
if tree.num_edges() != (tree.num_vertices() - 1):
print('n. edges != n. nodes - 1')
return False
return True
def remove_redundant_edges_by_bfs(g, root):
"""for undirected grap, remove redundant edges unvisited by BFS"""
vis = EdgeCollectorVisitor()
bfs_search(g, source=root, visitor=vis)
efilt = g.new_edge_property('bool')
efilt.a = False
for u, v in vis.edges:
try:
efilt[g.edge(u, v)] = True
except ValueError:
efilt[g.edge(v, u)] = True
g.set_edge_filter(efilt)
return g
class MyVisitor(BFSVisitor):
def __init__(self, pred, dist):
"""np.ndarray"""
self.pred = pred
self.dist = dist
def black_target(self, e):
s, t = int(e.source()), int(e.target())
if self.pred[t] == -1:
self.pred[t] = s
self.dist[t] = self.dist[s] + 1
def tree_edge(self, e):
s, t = int(e.source()), int(e.target())
self.pred[t] = s
self.dist[t] = self.dist[s] + 1
def init_visitor(g, root):
dist = np.ones(g.num_vertices()) * -1
dist[root] = 0
pred = np.ones(g.num_vertices(), dtype=int) * -1
vis = MyVisitor(pred, dist)
return vis
def extract_edges_from_pred(g, source, target, pred):
"""edges from target to source"""
edges = []
c = target
while c != source and pred[c] != -1:
edges.append((pred[c], c))
c = pred[c]
return edges
def build_minimum_tree(g, root, terminals, edges, directed=True):
"""remove redundant edges from `edges` so that root can reach each node in terminals
"""
# build the tree
t = Graph(directed=directed)
for _ in range(g.num_vertices()):
t.add_vertex()
for (u, v) in edges:
t.add_edge(u, v)
# mask out redundant edges
vis = init_visitor(t, root)
pbfs_search(t, source=root, terminals=list(terminals), visitor=vis)
minimum_edges = {e
for u in terminals
for e in extract_edges_from_pred(t, root, u, vis.pred)}
# print(minimum_edges)
efilt = t.new_edge_property('bool')
efilt.a = False
for u, v in minimum_edges:
efilt[u, v] = True
t.set_edge_filter(efilt)
return filter_nodes_by_edges(t, minimum_edges)