Skip to content

IMO 2005/5 #34

Answered by wangjiezhe
wangjiezhe asked this question in Q&A
Discussion options

You must be logged in to vote

考虑把 $AD$ 变为 $CB$ 的旋转位似变换 $T$,设变换的中心为 $M$,则 $M$ 是完全四边形 $ACBD$ 的密克点,因此 $M\in(ADP)$

因为 $\frac{AF}{AD}=\frac{CE}{CB}$,因此 $T$$AF$ 变为 $CE$。因此 $M$ 是完全四边形 $ACEF$ 的密克点,因此 $M\in(ZFR)$

考虑完全四边形 $APQF$,由上面两组共圆可知 $M$$APQF$ 的密克点,因此 $M\in(PQR)$,故 $M$ 即为所求的定点。

Replies: 2 comments

Comment options

You must be logged in to vote
0 replies
Answer selected by wangjiezhe
Comment options

You must be logged in to vote
0 replies
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
25M Medium, IMO 2/5 Miquel 定理 密克定理 旋转位似变换 Spiral similarity 外接圆的定点 Circumcircle fixed point Simson 定理 西姆松定理
1 participant