Skip to content

USA TST 2008/7 #33

Answered by wangjiezhe
wangjiezhe asked this question in Q&A
Mar 25, 2024 · 6 comments · 1 reply
Discussion options

You must be logged in to vote

解法四:密克定理。

$\triangle ABC$ 的外心为 $O$。根据 Miquel 定理,$(AQR)$$(BRP)$$(CPQ)$ 交于一点,设为 $N$。过 $B$$C$$(ABC)$ 的切线交于 $S$

先证:$B$$N$$O$$C$$S$ 共圆。

$$ \begin{aligned} \angle BNC &= \angle BNP + \angle PNC \\\ &= \angle BRP + \angle PQC \\\ &= 2\angle BAC \\\ &= \angle BOC \end{aligned} $$

因此 $BNOC$ 共圆。

由切线知 $\angle OBS=\angle OCS=90^\circ$,因此 $BOCS$ 共圆。

$(BNC)$$(AQR)$ 的第二个交点为 $X$,再证:$A$$X$$S$ 共线。

注意到 $\measuredangle AXN = \measuredangle AQN$

$$ \begin{aligned} \measuredangle NXS &= \measuredangle NCS \\\ &= \measuredangle NCP + \measuredangle PCS \\\ &= \measuredangle NQP + \measuredangle BAC \\\ &= \measuredangle NQP + \measuredangle PQC \end{aligned} $$

因此 $\measuredangle AXS = \me…

Replies: 6 comments 1 reply

Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
1 reply
@wangjiezhe
Comment options

wangjiezhe Mar 25, 2024
Maintainer Author

Comment options

You must be logged in to vote
0 replies
Answer selected by wangjiezhe
Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
0 replies
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
重心坐标 Barycentric coordinates 反演 Inversion Ptolemy 定理 托勒密定理 Miquel 定理 密克定理 Pascal 定理 帕斯卡定理 Dumpty 点 旋转位似变换 Spiral similarity 复数法 Complex numbers 外接圆的定点 Circumcircle fixed point
1 participant