Skip to content

ELMO Shortlist 2013/G3 #32

Answered by wangjiezhe
wangjiezhe asked this question in Q&A
Mar 24, 2024 · 4 comments · 3 replies
Discussion options

You must be logged in to vote

解法三:反演。

$A$ 作反演,则题目变为:

$D$$\triangle ABC$ 的外接圆上一点,且与 $A$ 在直线 $BC$ 的两侧。直线 $AB$$CD$ 交于 $E$$AC$$BD$ 交于 $F$。证明当 $D$ 移动时,直线 $EF$ 恒过一个定点,且这个点在 $BC$ 边对应的共轭中线所在的直线上。

$AD$$BC$ 交于 $G$,根据 Brocard 定理,$EF$$G$ 的极线。
$(ABC)$$B$$C$ 点的切线交于 $K$,则 $AK$$BC$ 边上的共轭中线,且 $G$$K$ 的极线 $BC$ 上。
根据 La Hire 定理,$K$ 也在 $G$ 的极线 $EF$ 上,因此 $EF$ 恒过定点 $K$

Replies: 4 comments 3 replies

Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
0 replies
Comment options

You must be logged in to vote
1 reply
@wangjiezhe
Comment options

wangjiezhe Mar 25, 2024
Maintainer Author

Answer selected by wangjiezhe
Comment options

You must be logged in to vote
2 replies
@wangjiezhe
Comment options

wangjiezhe Mar 24, 2024
Maintainer Author

@wangjiezhe
Comment options

wangjiezhe Mar 25, 2024
Maintainer Author

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Category
Q&A
Labels
重心坐标 Barycentric coordinates 反演 Inversion Ptolemy 定理 托勒密定理 Humpty 点 Brocard 定理 Miquel 定理 密克定理 Pascal 定理 帕斯卡定理 外接圆的定点 Circumcircle fixed point
1 participant