Closed
Description
Your current environment
The output of python collect_env.py
INFO 05-22 05:44:27 [__init__.py:248] Automatically detected platform cuda.
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.3 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : Could not collect
CMake version : version 3.31.4
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+cu126
Is debug build : False
CUDA used to build PyTorch : 12.6
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.9 (main, Feb 5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-5.15.0-25-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.1.105
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA H20
GPU 1: NVIDIA H20
GPU 2: NVIDIA H20
GPU 3: NVIDIA H20
GPU 4: NVIDIA H20
GPU 5: NVIDIA H20
GPU 6: NVIDIA H20
GPU 7: NVIDIA H20
Nvidia driver version : 550.127.08
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 224
On-line CPU(s) list: 0-223
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8480+
CPU family: 6
Model: 143
Thread(s) per core: 2
Core(s) per socket: 56
Socket(s): 2
Stepping: 8
Frequency boost: enabled
CPU max MHz: 2001.0000
CPU min MHz: 800.0000
BogoMIPS: 4000.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr avx512_fp16 flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 5.3 MiB (112 instances)
L1i cache: 3.5 MiB (112 instances)
L2 cache: 224 MiB (112 instances)
L3 cache: 210 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-55,112-167
NUMA node1 CPU(s): 56-111,168-223
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.6.4.1
[pip3] nvidia-cuda-cupti-cu12==12.6.80
[pip3] nvidia-cuda-nvrtc-cu12==12.6.77
[pip3] nvidia-cuda-runtime-cu12==12.6.77
[pip3] nvidia-cudnn-cu12==9.5.1.17
[pip3] nvidia-cufft-cu12==11.3.0.4
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.7.77
[pip3] nvidia-cusolver-cu12==11.7.1.2
[pip3] nvidia-cusparse-cu12==12.5.4.2
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.6.85
[pip3] nvidia-nvtx-cu12==12.6.77
[pip3] pyzmq==26.2.1
[pip3] torch==2.7.0
[pip3] torchaudio==2.7.0
[pip3] torchvision==0.22.0
[pip3] transformers==4.52.1
[pip3] triton==3.3.0
[pip3] tritonclient==2.55.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.9.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 NIC9 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NV18 NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE NODE PIX SYS SYS SYS SYS SYS SYS 0-55,112-167 0 N/A
GPU1 NV18 X NV18 NV18 NV18 NV18 NV18 NV18 NODE NODE PIX NODE SYS SYS SYS SYS SYS SYS 0-55,112-167 0 N/A
GPU2 NV18 NV18 X NV18 NV18 NV18 NV18 NV18 NODE PIX NODE NODE SYS SYS SYS SYS SYS SYS 0-55,112-167 0 N/A
GPU3 NV18 NV18 NV18 X NV18 NV18 NV18 NV18 PIX NODE NODE NODE SYS SYS SYS SYS SYS SYS 0-55,112-167 0 N/A
GPU4 NV18 NV18 NV18 NV18 X NV18 NV18 NV18 SYS SYS SYS SYS NODE PIX NODE NODE NODE NODE 56-111,168-223 1 N/A
GPU5 NV18 NV18 NV18 NV18 NV18 X NV18 NV18 SYS SYS SYS SYS PIX NODE NODE NODE NODE NODE 56-111,168-223 1 N/A
GPU6 NV18 NV18 NV18 NV18 NV18 NV18 X NV18 SYS SYS SYS SYS NODE NODE NODE NODE NODE PIX 56-111,168-223 1 N/A
GPU7 NV18 NV18 NV18 NV18 NV18 NV18 NV18 X SYS SYS SYS SYS NODE NODE NODE NODE PIX NODE 56-111,168-223 1 N/A
NIC0 NODE NODE NODE PIX SYS SYS SYS SYS X NODE NODE NODE SYS SYS SYS SYS SYS SYS
NIC1 NODE NODE PIX NODE SYS SYS SYS SYS NODE X NODE NODE SYS SYS SYS SYS SYS SYS
NIC2 NODE PIX NODE NODE SYS SYS SYS SYS NODE NODE X NODE SYS SYS SYS SYS SYS SYS
NIC3 PIX NODE NODE NODE SYS SYS SYS SYS NODE NODE NODE X SYS SYS SYS SYS SYS SYS
NIC4 SYS SYS SYS SYS NODE PIX NODE NODE SYS SYS SYS SYS X NODE NODE NODE NODE NODE
NIC5 SYS SYS SYS SYS PIX NODE NODE NODE SYS SYS SYS SYS NODE X NODE NODE NODE NODE
NIC6 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE X PIX NODE NODE
NIC7 SYS SYS SYS SYS NODE NODE NODE NODE SYS SYS SYS SYS NODE NODE PIX X NODE NODE
NIC8 SYS SYS SYS SYS NODE NODE NODE PIX SYS SYS SYS SYS NODE NODE NODE NODE X NODE
NIC9 SYS SYS SYS SYS NODE NODE PIX NODE SYS SYS SYS SYS NODE NODE NODE NODE NODE X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
NIC9: mlx5_9
==============================
Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
We basically run the data_parallel.py by
python3 data_parallel.py \
--model="path/to/weight" \
--enforce-eager \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=0 \
--master-addr=${addr} \
--master-port=13345
and the output are as follows:
root@glusterfs-05:workspace/codehub/vllm/examples/offline_inference# bash run_dp.sh
INFO 05-22 05:33:36 [__init__.py:248] Automatically detected platform cuda.
DP rank 1 needs to process 200 prompts
INFO 05-22 05:33:39 [__init__.py:30] Available plugins for group vllm.general_plugins:
INFO 05-22 05:33:39 [__init__.py:32] name=lora_filesystem_resolver, value=vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver
INFO 05-22 05:33:39 [__init__.py:34] all available plugins for group vllm.general_plugins will be loaded.
INFO 05-22 05:33:39 [__init__.py:36] set environment variable VLLM_PLUGINS to control which plugins to load.
INFO 05-22 05:33:39 [__init__.py:44] plugin lora_filesystem_resolver loaded.
INFO 05-22 05:33:47 [config.py:787] This model supports multiple tasks: {'classify', 'reward', 'score', 'embed', 'generate'}. Defaulting to 'generate'.
INFO 05-22 05:33:50 [config.py:1869] Defaulting to use mp for distributed inference
INFO 05-22 05:33:50 [config.py:2112] Chunked prefill is enabled with max_num_batched_tokens=16384.
WARNING 05-22 05:33:50 [cuda.py:87] To see benefits of async output processing, enable CUDA graph. Since, enforce-eager is enabled, async output processor cannot be used
(EngineCore_1 pid=14081) INFO 05-22 05:33:51 [core.py:431] Waiting for init message from front-end.
Process Process-1:
Traceback (most recent call last):
File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "workspace/codehub/vllm/examples/offline_inference/data_parallel.py", line 118, in main
llm = LLM(
^^^^
File "workspace/codehub/vllm/vllm/utils.py", line 1177, in inner
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/entrypoints/llm.py", line 250, in __init__
self.llm_engine = LLMEngine.from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/engine/llm_engine.py", line 511, in from_engine_args
return engine_cls.from_vllm_config(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/v1/engine/llm_engine.py", line 115, in from_vllm_config
return cls(vllm_config=vllm_config,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/v1/engine/llm_engine.py", line 92, in __init__
self.engine_core = EngineCoreClient.make_client(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/v1/engine/core_client.py", line 75, in make_client
return SyncMPClient(vllm_config, executor_class, log_stats)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "workspace/codehub/vllm/vllm/v1/engine/core_client.py", line 580, in __init__
super().__init__(
File "workspace/codehub/vllm/vllm/v1/engine/core_client.py", line 418, in __init__
self._wait_for_engine_startup(output_address, parallel_config)
File "workspace/codehub/vllm/vllm/v1/engine/core_client.py", line 495, in _wait_for_engine_startup
raise RuntimeError(f"Message from engine with unexpected data "
RuntimeError: Message from engine with unexpected data parallel rank: 1
After some debugging, we found that PR #15977 may have introduced this bug by adding the following code:
engine = next(
(e for e in self.core_engines if e.identity == eng_identity),
None)
Here, e.identity
is derived from local_dp_rank
in data_parallel.py (which should be b'\x00\x00
in both the master and worker nodes), while eng_identity
comes from dp_rank
(which will be b'\x00\x01
on the worker node).
We are working on fixing this. Is this issue already being addressed? Please let us know, thank you.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.