|
8 | 8 | */ |
9 | 9 | const Easing = { |
10 | 10 | Linear: { |
11 | | - None(k) { |
12 | | - return k; |
13 | | - }, |
| 11 | + None (k) { |
| 12 | + return k |
| 13 | + } |
14 | 14 | }, |
15 | 15 |
|
16 | 16 | Quadratic: { |
17 | | - In(k) { |
18 | | - return k * k; |
| 17 | + In (k) { |
| 18 | + return k * k |
19 | 19 | }, |
20 | 20 |
|
21 | | - Out(k) { |
22 | | - return k * (2 - k); |
| 21 | + Out (k) { |
| 22 | + return k * (2 - k) |
23 | 23 | }, |
24 | 24 |
|
25 | | - InOut(k) { |
| 25 | + InOut (k) { |
26 | 26 | if ((k *= 2) < 1) { |
27 | | - return 0.5 * k * k; |
| 27 | + return 0.5 * k * k |
28 | 28 | } |
29 | 29 |
|
30 | | - return -0.5 * (--k * (k - 2) - 1); |
31 | | - }, |
| 30 | + return -0.5 * (--k * (k - 2) - 1) |
| 31 | + } |
32 | 32 | }, |
33 | 33 |
|
34 | 34 | Cubic: { |
35 | | - In(k) { |
36 | | - return k * k * k; |
| 35 | + In (k) { |
| 36 | + return k * k * k |
37 | 37 | }, |
38 | 38 |
|
39 | | - Out(k) { |
40 | | - return --k * k * k + 1; |
| 39 | + Out (k) { |
| 40 | + return --k * k * k + 1 |
41 | 41 | }, |
42 | 42 |
|
43 | | - InOut(k) { |
| 43 | + InOut (k) { |
44 | 44 | if ((k *= 2) < 1) { |
45 | | - return 0.5 * k * k * k; |
| 45 | + return 0.5 * k * k * k |
46 | 46 | } |
47 | 47 |
|
48 | | - return 0.5 * ((k -= 2) * k * k + 2); |
49 | | - }, |
| 48 | + return 0.5 * ((k -= 2) * k * k + 2) |
| 49 | + } |
50 | 50 | }, |
51 | 51 |
|
52 | 52 | Quartic: { |
53 | | - In(k) { |
54 | | - return k * k * k * k; |
| 53 | + In (k) { |
| 54 | + return k * k * k * k |
55 | 55 | }, |
56 | 56 |
|
57 | | - Out(k) { |
58 | | - return 1 - --k * k * k * k; |
| 57 | + Out (k) { |
| 58 | + return 1 - --k * k * k * k |
59 | 59 | }, |
60 | 60 |
|
61 | | - InOut(k) { |
| 61 | + InOut (k) { |
62 | 62 | if ((k *= 2) < 1) { |
63 | | - return 0.5 * k * k * k * k; |
| 63 | + return 0.5 * k * k * k * k |
64 | 64 | } |
65 | 65 |
|
66 | | - return -0.5 * ((k -= 2) * k * k * k - 2); |
67 | | - }, |
| 66 | + return -0.5 * ((k -= 2) * k * k * k - 2) |
| 67 | + } |
68 | 68 | }, |
69 | 69 |
|
70 | 70 | Quintic: { |
71 | | - In(k) { |
72 | | - return k * k * k * k * k; |
| 71 | + In (k) { |
| 72 | + return k * k * k * k * k |
73 | 73 | }, |
74 | 74 |
|
75 | | - Out(k) { |
76 | | - return --k * k * k * k * k + 1; |
| 75 | + Out (k) { |
| 76 | + return --k * k * k * k * k + 1 |
77 | 77 | }, |
78 | 78 |
|
79 | | - InOut(k) { |
| 79 | + InOut (k) { |
80 | 80 | if ((k *= 2) < 1) { |
81 | | - return 0.5 * k * k * k * k * k; |
| 81 | + return 0.5 * k * k * k * k * k |
82 | 82 | } |
83 | 83 |
|
84 | | - return 0.5 * ((k -= 2) * k * k * k * k + 2); |
85 | | - }, |
| 84 | + return 0.5 * ((k -= 2) * k * k * k * k + 2) |
| 85 | + } |
86 | 86 | }, |
87 | 87 |
|
88 | 88 | Sinusoidal: { |
89 | | - In(k) { |
90 | | - return 1 - Math.cos(k * Math.PI / 2); |
| 89 | + In (k) { |
| 90 | + return 1 - Math.cos(k * Math.PI / 2) |
91 | 91 | }, |
92 | 92 |
|
93 | | - Out(k) { |
94 | | - return Math.sin(k * Math.PI / 2); |
| 93 | + Out (k) { |
| 94 | + return Math.sin(k * Math.PI / 2) |
95 | 95 | }, |
96 | 96 |
|
97 | | - InOut(k) { |
98 | | - return 0.5 * (1 - Math.cos(Math.PI * k)); |
99 | | - }, |
| 97 | + InOut (k) { |
| 98 | + return 0.5 * (1 - Math.cos(Math.PI * k)) |
| 99 | + } |
100 | 100 | }, |
101 | 101 |
|
102 | 102 | Exponential: { |
103 | | - In(k) { |
104 | | - return k === 0 ? 0 : Math.pow(1024, k - 1); |
| 103 | + In (k) { |
| 104 | + return k === 0 ? 0 : Math.pow(1024, k - 1) |
105 | 105 | }, |
106 | 106 |
|
107 | | - Out(k) { |
108 | | - return k === 1 ? 1 : 1 - Math.pow(2, -10 * k); |
| 107 | + Out (k) { |
| 108 | + return k === 1 ? 1 : 1 - Math.pow(2, -10 * k) |
109 | 109 | }, |
110 | 110 |
|
111 | | - InOut(k) { |
| 111 | + InOut (k) { |
112 | 112 | if (k === 0) { |
113 | | - return 0; |
| 113 | + return 0 |
114 | 114 | } |
115 | 115 |
|
116 | 116 | if (k === 1) { |
117 | | - return 1; |
| 117 | + return 1 |
118 | 118 | } |
119 | 119 |
|
120 | 120 | if ((k *= 2) < 1) { |
121 | | - return 0.5 * Math.pow(1024, k - 1); |
| 121 | + return 0.5 * Math.pow(1024, k - 1) |
122 | 122 | } |
123 | 123 |
|
124 | | - return 0.5 * (-Math.pow(2, -10 * (k - 1)) + 2); |
125 | | - }, |
| 124 | + return 0.5 * (-Math.pow(2, -10 * (k - 1)) + 2) |
| 125 | + } |
126 | 126 | }, |
127 | 127 |
|
128 | 128 | Circular: { |
129 | | - In(k) { |
130 | | - return 1 - Math.sqrt(1 - k * k); |
| 129 | + In (k) { |
| 130 | + return 1 - Math.sqrt(1 - k * k) |
131 | 131 | }, |
132 | 132 |
|
133 | | - Out(k) { |
134 | | - return Math.sqrt(1 - --k * k); |
| 133 | + Out (k) { |
| 134 | + return Math.sqrt(1 - --k * k) |
135 | 135 | }, |
136 | 136 |
|
137 | | - InOut(k) { |
| 137 | + InOut (k) { |
138 | 138 | if ((k *= 2) < 1) { |
139 | | - return -0.5 * (Math.sqrt(1 - k * k) - 1); |
| 139 | + return -0.5 * (Math.sqrt(1 - k * k) - 1) |
140 | 140 | } |
141 | 141 |
|
142 | | - return 0.5 * (Math.sqrt(1 - (k -= 2) * k) + 1); |
143 | | - }, |
| 142 | + return 0.5 * (Math.sqrt(1 - (k -= 2) * k) + 1) |
| 143 | + } |
144 | 144 | }, |
145 | 145 |
|
146 | 146 | Elastic: { |
147 | | - In(k) { |
| 147 | + In (k) { |
148 | 148 | if (k === 0) { |
149 | | - return 0; |
| 149 | + return 0 |
150 | 150 | } |
151 | 151 |
|
152 | 152 | if (k === 1) { |
153 | | - return 1; |
| 153 | + return 1 |
154 | 154 | } |
155 | 155 |
|
156 | | - return -Math.pow(2, 10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI); |
| 156 | + return -Math.pow(2, 10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI) |
157 | 157 | }, |
158 | 158 |
|
159 | | - Out(k) { |
| 159 | + Out (k) { |
160 | 160 | if (k === 0) { |
161 | | - return 0; |
| 161 | + return 0 |
162 | 162 | } |
163 | 163 |
|
164 | 164 | if (k === 1) { |
165 | | - return 1; |
| 165 | + return 1 |
166 | 166 | } |
167 | 167 |
|
168 | | - return Math.pow(2, -10 * k) * Math.sin((k - 0.1) * 5 * Math.PI) + 1; |
| 168 | + return Math.pow(2, -10 * k) * Math.sin((k - 0.1) * 5 * Math.PI) + 1 |
169 | 169 | }, |
170 | 170 |
|
171 | | - InOut(k) { |
| 171 | + InOut (k) { |
172 | 172 | if (k === 0) { |
173 | | - return 0; |
| 173 | + return 0 |
174 | 174 | } |
175 | 175 |
|
176 | 176 | if (k === 1) { |
177 | | - return 1; |
| 177 | + return 1 |
178 | 178 | } |
179 | 179 |
|
180 | | - k *= 2; |
| 180 | + k *= 2 |
181 | 181 |
|
182 | 182 | if (k < 1) { |
183 | 183 | return ( |
184 | 184 | -0.5 * Math.pow(2, 10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI) |
185 | | - ); |
| 185 | + ) |
186 | 186 | } |
187 | 187 |
|
188 | 188 | return ( |
189 | 189 | 0.5 * Math.pow(2, -10 * (k - 1)) * Math.sin((k - 1.1) * 5 * Math.PI) + 1 |
190 | | - ); |
191 | | - }, |
| 190 | + ) |
| 191 | + } |
192 | 192 | }, |
193 | 193 |
|
194 | 194 | Back: { |
195 | | - In(k) { |
196 | | - const s = 1.70158; |
| 195 | + In (k) { |
| 196 | + const s = 1.70158 |
197 | 197 |
|
198 | | - return k * k * ((s + 1) * k - s); |
| 198 | + return k * k * ((s + 1) * k - s) |
199 | 199 | }, |
200 | 200 |
|
201 | | - Out(k) { |
202 | | - const s = 1.70158; |
| 201 | + Out (k) { |
| 202 | + const s = 1.70158 |
203 | 203 |
|
204 | | - return --k * k * ((s + 1) * k + s) + 1; |
| 204 | + return --k * k * ((s + 1) * k + s) + 1 |
205 | 205 | }, |
206 | 206 |
|
207 | | - InOut(k) { |
208 | | - const s = 1.70158 * 1.525; |
| 207 | + InOut (k) { |
| 208 | + const s = 1.70158 * 1.525 |
209 | 209 |
|
210 | 210 | if ((k *= 2) < 1) { |
211 | | - return 0.5 * (k * k * ((s + 1) * k - s)); |
| 211 | + return 0.5 * (k * k * ((s + 1) * k - s)) |
212 | 212 | } |
213 | 213 |
|
214 | | - return 0.5 * ((k -= 2) * k * ((s + 1) * k + s) + 2); |
215 | | - }, |
| 214 | + return 0.5 * ((k -= 2) * k * ((s + 1) * k + s) + 2) |
| 215 | + } |
216 | 216 | }, |
217 | 217 |
|
218 | 218 | Bounce: { |
219 | | - In(k) { |
220 | | - return 1 - Easing.Bounce.Out(1 - k); |
| 219 | + In (k) { |
| 220 | + return 1 - Easing.Bounce.Out(1 - k) |
221 | 221 | }, |
222 | 222 |
|
223 | | - Out(k) { |
| 223 | + Out (k) { |
224 | 224 | if (k < 1 / 2.75) { |
225 | | - return 7.5625 * k * k; |
| 225 | + return 7.5625 * k * k |
226 | 226 | } else if (k < 2 / 2.75) { |
227 | | - return 7.5625 * (k -= 1.5 / 2.75) * k + 0.75; |
| 227 | + return 7.5625 * (k -= 1.5 / 2.75) * k + 0.75 |
228 | 228 | } else if (k < 2.5 / 2.75) { |
229 | | - return 7.5625 * (k -= 2.25 / 2.75) * k + 0.9375; |
| 229 | + return 7.5625 * (k -= 2.25 / 2.75) * k + 0.9375 |
230 | 230 | } else { |
231 | | - return 7.5625 * (k -= 2.625 / 2.75) * k + 0.984375; |
| 231 | + return 7.5625 * (k -= 2.625 / 2.75) * k + 0.984375 |
232 | 232 | } |
233 | 233 | }, |
234 | 234 |
|
235 | | - InOut(k) { |
| 235 | + InOut (k) { |
236 | 236 | if (k < 0.5) { |
237 | | - return Easing.Bounce.In(k * 2) * 0.5; |
| 237 | + return Easing.Bounce.In(k * 2) * 0.5 |
238 | 238 | } |
239 | 239 |
|
240 | | - return Easing.Bounce.Out(k * 2 - 1) * 0.5 + 0.5; |
| 240 | + return Easing.Bounce.Out(k * 2 - 1) * 0.5 + 0.5 |
241 | 241 | } |
242 | 242 | }, |
243 | 243 |
|
244 | 244 | Stepped: { |
245 | | - steps: steps => k => ((k * steps) | 0) / steps, |
246 | | - }, |
247 | | -}; |
| 245 | + steps: steps => k => ((k * steps) | 0) / steps |
| 246 | + } |
| 247 | +} |
248 | 248 |
|
249 | | -export default Easing; |
| 249 | +export default Easing |
0 commit comments