diff --git a/Dockerfile b/Dockerfile index 90f3f3a..fa510d8 100644 --- a/Dockerfile +++ b/Dockerfile @@ -14,12 +14,12 @@ # limitations under the License. # ========================================================================= -FROM rocker/r-ver:3.6.3 +FROM rocker/r-ver:4.1.0 LABEL org.label-schema.license="Apache-2.0" \ org.label-schema.vcs-url="https://github.com/tmobile/r-tensorflow-api" \ org.label-schema.vendor="T-Mobile" \ - maintainer="Jacqueline Nolis (GitHub @jnolis)" + maintainer="Heather Nolis (GitHub @Nolistic)" # update some packages, including sodium and apache2, then clean RUN apt-get update \ @@ -41,14 +41,12 @@ RUN apt-get update \ libsm6 \ libxrender1 \ bzip2 \ - apache2 \ zlib1g-dev \ && apt-get clean \ && rm -rf /var/lib/apt/lists/ # install miniconda, and set the appropriate path variables. -# install Python 3.7 (Miniconda) and Tensorflow Python packages then set path variables. -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py37_4.8.2-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda && \ rm ~/miniconda.sh && \ /opt/conda/bin/conda clean -tipsy && \ @@ -58,8 +56,7 @@ RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py37_4.8.2-Linux ENV PATH /opt/conda/bin:$PATH # install tensorflow and h5py using the pip that links to miniconda (the default pip is for python 2.7) -RUN /opt/conda/bin/conda install tensorflow==2.0.0 h5py==2.10.0 && \ - /opt/conda/bin/conda clean -tipsy +RUN /opt/conda/bin/pip install tensorflow==2.6.0 h5py==3.1.0 # let R know the right version of python to use ENV RETICULATE_PYTHON /opt/conda/bin/python diff --git a/Dockerfile.https b/Dockerfile.https index 66407a3..cbedee7 100644 --- a/Dockerfile.https +++ b/Dockerfile.https @@ -14,12 +14,12 @@ # limitations under the License. # ========================================================================= -FROM rocker/r-ver:3.6.3 +FROM rocker/r-ver:4.1.0 LABEL org.label-schema.license="Apache-2.0" \ org.label-schema.vcs-url="https://github.com/tmobile/r-tensorflow-api" \ org.label-schema.vendor="T-Mobile" \ - maintainer="Jacqueline Nolis (GitHub @jnolis)" + maintainer="Heather Nolis (GitHub @Nolistic)" # update some packages, including sodium and apache2, then clean RUN apt-get update \ @@ -47,8 +47,7 @@ RUN apt-get update \ && rm -rf /var/lib/apt/lists/ # install miniconda, and set the appropriate path variables. -# install Python 3.7 (Miniconda) and Tensorflow Python packages then set path variables. -RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py37_4.8.2-Linux-x86_64.sh -O ~/miniconda.sh && \ +RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh -O ~/miniconda.sh && \ /bin/bash ~/miniconda.sh -b -p /opt/conda && \ rm ~/miniconda.sh && \ /opt/conda/bin/conda clean -tipsy && \ @@ -58,8 +57,7 @@ RUN wget --quiet https://repo.anaconda.com/miniconda/Miniconda3-py37_4.8.2-Linux ENV PATH /opt/conda/bin:$PATH # install tensorflow and h5py using the pip that links to miniconda (the default pip is for python 2.7) -RUN /opt/conda/bin/conda install tensorflow==2.0.0 h5py==2.10.0 && \ - /opt/conda/bin/conda clean -tipsy +RUN /opt/conda/bin/pip install tensorflow==2.6.0 h5py==3.1.0 # let R know the right version of python to use ENV RETICULATE_PYTHON /opt/conda/bin/python diff --git a/NEWS.md b/NEWS.md index d705d5e..162c6b4 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,9 @@ +# r-tensorflow-api v1.1.2 - 2021-09-16 +- Updated to R version 4.1.0 +- Upgraded to Python 3.9 and TensorFlow 2.6.0 +- Switched Python packages back to pip to get more recent versions unavailable on conda +- removed the apache2 dependency from the HTTP version + # r-tensorflow-api v1.1.1 - 2020-05-31 - Updated to R version 3.6.3 diff --git a/README.md b/README.md index f2d5406..89d806b 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ [![License](https://img.shields.io/badge/License-Apache%202.0-yellowgreen.svg)](LICENSE) -_(version 1.1.1)_ +_(version 1.1.2)_ This repository creates a production-ready docker image that uses R and the [keras](https://keras.rstudio.com/) and [plumber](https://github.com/trestletech/plumber) R packages to create a neural network powered REST API. The package keras provides the ability to create neural networks, while plumber allows it to run R as a web service. The docker container is designed to be: