-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_loader.py
41 lines (34 loc) · 1.78 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
import torch
from torchvision import datasets, transforms
def get_loader(args):
train_transforms = []
if args.dataset in ['fashionmnist', 'cifar10']:
train_transforms += [transforms.RandomHorizontalFlip()]
if args.n_channels == 1:
train_transforms += [transforms.Grayscale(1)]
train_transforms += [transforms.Resize([args.image_size, args.image_size]),
transforms.RandomCrop(args.image_size, padding=2, padding_mode='edge'),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])]
train_transforms = transforms.Compose(train_transforms)
if args.dataset == 'mnist':
train = datasets.MNIST(args.data_path, train=True, download=True, transform=train_transforms)
elif args.dataset == 'fashionmnist':
train = datasets.FashionMNIST(args.data_path, train=True, download=True, transform=train_transforms)
elif args.dataset == 'svhn':
train = datasets.SVHN(args.data_path, split='train', download=True, transform=train_transforms)
elif args.dataset == 'usps':
train = datasets.USPS(args.data_path, train=True, download=True, transform=train_transforms)
elif args.dataset == 'cifar10':
train = datasets.CIFAR10(args.data_path, train=True, download=True, transform=train_transforms)
else:
print("Unknown dataset")
exit(0)
# Define dataloaders
train_loader = torch.utils.data.DataLoader(dataset=train,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.n_workers,
drop_last=True)
return train_loader