@@ -18,6 +18,9 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
18
18
19
19
## Updates / Tasks
20
20
21
+ ### 2020-06-15
22
+ Add updated D7 weights from Tensorflow impl, 53.1 validation mAP here (53.4 in TF)
23
+
21
24
### 2020-06-14
22
25
New model results, I've trained a D1 model with some WIP augmentation enhancements (not commited), just squeaking by official weights.
23
26
@@ -154,16 +157,16 @@ If you are an organization is interested in sponsoring and any of this work, or
154
157
| Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
155
158
| --- | --- | :---: | :---: | :---: | :---: |
156
159
| lite0 | [ tf_efficientdet_lite0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth ) | 32.0 | TBD | N/A | N/A |
157
- | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth ) | 33.6 | TBD | 33.5 | 33.8 |
158
160
| D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0-d92fd44f.pth ) | 33.6 | TBD | 33.5 | 33.8 |
161
+ | D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth ) | 33.6 | TBD | 33.5 | 33.8 |
159
162
| D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1-4c7ebaf2.pth ) | 39.3 | TBD | 39.1 | 39.6 |
160
- | D1 | [ efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth ) | 39.4 | TBD | 39.1 | 39.6 |
163
+ | D1 | [ efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth ) | 39.4 | 39.5 | 39.1 | 39.6 |
161
164
| D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2-cb4ce77d.pth ) | 42.6 | 43.1 | 42.5 | 43 |
162
165
| D3 | [ tf_efficientdet_d3.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d3-b0ea2cbc.pth ) | 46.0 | TBD | 45.9 | 45.8 |
163
166
| D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4-5b370b7a.pth ) | 49.1 | TBD | 49.0 | 49.4 |
164
167
| D5 | [ tf_efficientdet_d5.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d5-ef44aea8.pth ) | 50.4 | TBD | 50.5 | 50.7 |
165
168
| D6 | [ tf_efficientdet_d6.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d6-51cb0132.pth ) | 51.2 | TBD | 51.3 | 51.7 |
166
- | D7 | [ tf_efficientdet_d7.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7-f05bf714 .pth ) | 51.8 | 52.1 | 52.1 | 52.2 |
169
+ | D7 | [ tf_efficientdet_d7.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d7_53-6d1d7a95 .pth ) | 53.1 | 53.4 | 53.4 | 53.7 |
167
170
168
171
169
172
## Usage
@@ -287,18 +290,18 @@ NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
287
290
288
291
##### EfficientDet-D7
289
292
```
290
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.521
291
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.714
292
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.563
293
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345
294
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.555
295
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.646
296
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.390
297
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.631
298
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.670
299
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.497
300
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.704
301
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.808
293
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.534
294
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.726
295
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.577
296
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.356
297
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.569
298
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.660
299
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.397
300
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.644
301
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682
302
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.508
303
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.718
304
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.818
302
305
```
303
306
304
307
#### VAL2017
@@ -417,16 +420,16 @@ NOTE: I've only tried submitting D2 and D7 to dev server for sanity check so far
417
420
418
421
##### EfficientDet-D7
419
422
```
420
- Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.518
421
- Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.711
422
- Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.558
423
- Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.368
424
- Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.564
425
- Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.655
426
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.386
427
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.627
428
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.665
429
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.505
430
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.704
431
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.801
423
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531256
424
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.724700
425
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.571787
426
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.368872
427
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.573938
428
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.668253
429
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.393620
430
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.637601
431
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.676987
432
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.524850
433
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.717553
434
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.806352
432
435
```
0 commit comments