@@ -18,6 +18,33 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
18
18
19
19
## Updates / Tasks
20
20
21
+ ### 2020-06-14
22
+ New model results, I've trained a D1 model with some WIP augmentation enhancements (not commited), just squeaking by official weights.
23
+
24
+ EfficientDet-D1:
25
+ ```
26
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393798
27
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.586831
28
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.420305
29
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191880
30
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455586
31
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.571316
32
+ ```
33
+
34
+ Also, [ Soyeb Nagori] ( https://github.com/soyebn ) trained an EffiCientDet-Lite0 config using this code and contributed the weights.
35
+ ```
36
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.319861
37
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.500062
38
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336777
39
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.111257
40
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.378062
41
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501938
42
+ ```
43
+
44
+ Unlike the other tf_ prefixed models this is not ported from (as of yet unreleased) TF official model, but it used
45
+ TF ported weights for the pretrained imagenet model that was the starting point, thus it uses SAME padding.
46
+
47
+
21
48
### 2020-06-12
22
49
23
50
* Additional experimental model configs based on MobileNetV2, MobileNetV3, MixNet, EfficientNet-Lite. Requires
@@ -40,12 +67,6 @@ My latest D0 run:
40
67
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
41
68
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
42
69
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
43
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.287121
44
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.441450
45
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467914
46
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.197697
47
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.552515
48
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.689297
49
70
```
50
71
51
72
TF ported D0 weights:
@@ -56,12 +77,6 @@ TF ported D0 weights:
56
77
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125278
57
78
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.386957
58
79
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528071
59
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288049
60
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.439918
61
- Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466877
62
- Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.193482
63
- Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549262
64
- Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686037
65
80
```
66
81
67
82
Pretrained weights added for this model ` efficientdet_d0 ` (Tensorflow port is ` tf_efficientdet_d0 ` )
@@ -138,9 +153,11 @@ If you are an organization is interested in sponsoring and any of this work, or
138
153
139
154
| Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
140
155
| --- | --- | :---: | :---: | :---: | :---: |
156
+ | lite0 | [ tf_efficientdet_lite0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth ) | 32.0 | TBD | N/A | N/A |
141
157
| D0 | [ efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth ) | 33.6 | TBD | 33.5 | 33.8 |
142
158
| D0 | [ tf_efficientdet_d0.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0-d92fd44f.pth ) | 33.6 | TBD | 33.5 | 33.8 |
143
159
| D1 | [ tf_efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1-4c7ebaf2.pth ) | 39.3 | TBD | 39.1 | 39.6 |
160
+ | D1 | [ efficientdet_d1.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth ) | 39.4 | TBD | 39.1 | 39.6 |
144
161
| D2 | [ tf_efficientdet_d2.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2-cb4ce77d.pth ) | 42.6 | 43.1 | 42.5 | 43 |
145
162
| D3 | [ tf_efficientdet_d3.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d3-b0ea2cbc.pth ) | 46.0 | TBD | 45.9 | 45.8 |
146
163
| D4 | [ tf_efficientdet_d4.pth] ( https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4-5b370b7a.pth ) | 49.1 | TBD | 49.0 | 49.4 |
0 commit comments