Skip to content

Commit 53002b4

Browse files
committed
Add pretrained weights for non tf efficientdet_d1 and tf_efficientdet_lite0
1 parent 5332cfa commit 53002b4

File tree

2 files changed

+34
-14
lines changed

2 files changed

+34
-14
lines changed

README.md

Lines changed: 29 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,33 @@ Aside from the default model configs, there is a lot of flexibility to facilitat
1818

1919
## Updates / Tasks
2020

21+
### 2020-06-14
22+
New model results, I've trained a D1 model with some WIP augmentation enhancements (not commited), just squeaking by official weights.
23+
24+
EfficientDet-D1:
25+
```
26+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.393798
27+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.586831
28+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.420305
29+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191880
30+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.455586
31+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.571316
32+
```
33+
34+
Also, [Soyeb Nagori](https://github.com/soyebn) trained an EffiCientDet-Lite0 config using this code and contributed the weights.
35+
```
36+
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.319861
37+
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.500062
38+
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.336777
39+
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.111257
40+
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.378062
41+
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.501938
42+
```
43+
44+
Unlike the other tf_ prefixed models this is not ported from (as of yet unreleased) TF official model, but it used
45+
TF ported weights for the pretrained imagenet model that was the starting point, thus it uses SAME padding.
46+
47+
2148
### 2020-06-12
2249

2350
* Additional experimental model configs based on MobileNetV2, MobileNetV3, MixNet, EfficientNet-Lite. Requires
@@ -40,12 +67,6 @@ My latest D0 run:
4067
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.123988
4168
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.395033
4269
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.521695
43-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.287121
44-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.441450
45-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.467914
46-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.197697
47-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.552515
48-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.689297
4970
```
5071

5172
TF ported D0 weights:
@@ -56,12 +77,6 @@ TF ported D0 weights:
5677
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.125278
5778
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.386957
5879
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.528071
59-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.288049
60-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.439918
61-
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.466877
62-
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.193482
63-
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.549262
64-
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.686037
6580
```
6681

6782
Pretrained weights added for this model `efficientdet_d0` (Tensorflow port is `tf_efficientdet_d0`)
@@ -138,9 +153,11 @@ If you are an organization is interested in sponsoring and any of this work, or
138153

139154
| Variant | Download | mAP (val2017) | mAP (test-dev2017) | mAP (TF official val2017) | mAP (TF official test-dev2017) |
140155
| --- | --- | :---: | :---: | :---: | :---: |
156+
| lite0 | [tf_efficientdet_lite0.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth) | 32.0 | TBD | N/A | N/A |
141157
| D0 | [efficientdet_d0.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d0-f3276ba8.pth) | 33.6 | TBD | 33.5 | 33.8 |
142158
| D0 | [tf_efficientdet_d0.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d0-d92fd44f.pth) | 33.6 | TBD | 33.5 | 33.8 |
143159
| D1 | [tf_efficientdet_d1.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d1-4c7ebaf2.pth) | 39.3 | TBD | 39.1 | 39.6 |
160+
| D1 | [efficientdet_d1.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth) | 39.4 | TBD | 39.1 | 39.6 |
144161
| D2 | [tf_efficientdet_d2.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d2-cb4ce77d.pth) | 42.6 | 43.1 | 42.5 | 43 |
145162
| D3 | [tf_efficientdet_d3.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d3-b0ea2cbc.pth) | 46.0 | TBD | 45.9 | 45.8 |
146163
| D4 | [tf_efficientdet_d4.pth](https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_d4-5b370b7a.pth) | 49.1 | TBD | 49.0 | 49.4 |

effdet/config/model_config.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ def default_detection_model_configs():
8585
pad_type='',
8686
redundant_bias=False,
8787
backbone_args=dict(drop_path_rate=0.2),
88-
url='', # no pretrained weights yet
88+
url='https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/efficientdet_d1-bb7e98fe.pth',
8989
),
9090
efficientdet_d2=dict(
9191
name='efficientdet_d2',
@@ -286,8 +286,11 @@ def default_detection_model_configs():
286286
fpn_cell_repeats=3,
287287
box_class_repeats=3,
288288
act_type='relu',
289+
redundant_bias=False,
289290
backbone_args=dict(drop_path_rate=0.1),
290-
url='', # no pretrained weights yet
291+
# unlike other tf_ models, this was not ported from tf automl impl, but trained from tf pretrained efficient lite
292+
# weights using this code, will likely replace if/when official det-lite weights are released
293+
url='https://github.com/rwightman/efficientdet-pytorch/releases/download/v0.1/tf_efficientdet_lite0-f5f303a9.pth',
291294
),
292295
tf_efficientdet_lite1=dict(
293296
name='tf_efficientdet_lite1',

0 commit comments

Comments
 (0)