diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..b5c8e95
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,3 @@
+
+consumer_complaints.csv
+.DS_Store
diff --git a/generate_report.py b/generate_report.py
new file mode 100644
index 0000000..8934a52
--- /dev/null
+++ b/generate_report.py
@@ -0,0 +1,194 @@
+from fpdf import FPDF
+
+pdf = FPDF()
+WIDTH = 210
+HEIGHT = 297
+X = 0
+Y = 0
+
+def set_letterhead(pdf: FPDF = pdf):
+ pdf.image("./resources/letterhead.png", -1, 0, WIDTH*1.1, HEIGHT*1.18)
+ pass
+
+def set_title_font(pdf: FPDF = pdf):
+ pdf.set_font('Arial', 'B', 22)
+
+def set_heading_1_font(pdf: FPDF = pdf):
+ pdf.set_font('Arial', 'B', 18)
+
+def set_heading_2_font(pdf: FPDF = pdf):
+ pdf.set_font('Arial', 'I', 14)
+
+def set_p_font(pdf: FPDF = pdf):
+ pdf.set_font('Arial', '', 11)
+
+def set_p_i_font(pdf: FPDF = pdf):
+ pdf.set_font('Arial', 'I', 11)
+
+def lb(size: float = 10):
+ global Y
+ Y += size
+ pdf.ln(size)
+
+
+### PAGE 1
+pdf.add_page()
+
+# Letterhead
+set_letterhead()
+
+# Title of report
+set_title_font()
+lb(12)
+pdf.write(5, f"Consumer Financial Complaints Report")
+lb(8)
+
+set_heading_2_font()
+pdf.write(5, "Anuj Singla")
+lb(7)
+
+set_p_font()
+pdf.write(5, "September 28th, 2022")
+lb(15)
+
+# Introduction
+set_heading_1_font()
+pdf.write(10, "Introduction")
+lb()
+
+set_p_font()
+pdf.write(5, ("As a new financial institution entering alpha, our mission is to optimize "
+ "the efficiency of every facet of our operations. Consumer complaints are "
+ "inevitable, but handling disputed resolutions can often become a costly and "
+ "time-consuming process. It is in our best interest to examine our clients' "
+ "backgrounds and prevent them from disputing claims by offering them sufficient "
+ "initial resolutions."))
+lb(15)
+
+# Data
+set_heading_1_font()
+pdf.write(10, "Data")
+lb()
+
+# Data visualization 1
+set_heading_2_font()
+pdf.write(10, "1) How does product affect dispute rate?")
+lb(35)
+
+image_width = WIDTH / 1.1 # Make image fit comfortbly on the page
+image_height = WIDTH / (1.1 * 1132 / 525) # Set height proportional to width and original pixel dimensions
+pdf.image("./resources/visualizations/product-disputes.png", 7, Y, image_width, image_height)
+lb(image_height / 1.4)
+
+set_p_font()
+pdf.write(5,"Mortgages are the most frequent complaint product and have the highest rate of disputes. "
+ "On the other hand, although credit reporting has a fairly large amount of complaints "
+ "(~15,000), it has a lower rate of disputes compared to the rest of the products.")
+lb(6)
+set_p_i_font()
+pdf.write(6, " - Why are mortgages disputed so frequently?\n"
+ " - Why is credit reporting disputed so rarely?\n"
+ " - Why do mortgages have over twice the amount of complaints as any other product?")
+
+
+### PAGE 2
+pdf.add_page()
+Y = 0
+
+# Letterhead
+set_letterhead()
+
+# Data visualization 2
+set_heading_2_font()
+pdf.write(10, "2) How does location affect dispute rate?")
+lb(20)
+
+pdf.image("./resources/visualizations/state-disputes.png", 7, Y, image_width, image_height)
+lb(image_height / 1.3)
+
+set_p_font()
+pdf.write(5, "Consumers in the west coast seem to be more likely to dispute their "
+ "complaint resolutions compared to the rest of the country, followed "
+ "by the east coast. The middle region of the country, highlighted by "
+ "New Mexico and South Dakota, have much lower dispute rates.")
+lb(6)
+set_p_i_font()
+pdf.write(6, " - Why does the west coast dispute their complaints so frequently?\n"
+ " - Why does the plains region generally have such low dispute rates?")
+lb(15)
+
+# Data visualization 3
+set_heading_2_font()
+pdf.write(10, "3) How does complaint submission method affect dispute rate?")
+lb(35)
+
+pdf.image("./resources/visualizations/submission-disputes.png", 7, Y, image_width, image_height)
+lb(image_height / 1.5)
+
+set_p_font()
+pdf.write(5, "Web submissions, which also happen to be the most common form of complaint "
+ "submission, have the highest dispute rate. On the other hand, postal mail "
+ "submissions, which are one of the least common methods for complaint submissions, "
+ "have the lowest dispute rates. Most notably, instant and non-verbal forms "
+ "of communication (web, fax, email) have higher dispute rates than slower, "
+ "non-anonymous methods of submission (referral, phone, postal mail).")
+lb(6)
+set_p_i_font()
+pdf.write(6, " - Do time-consuming submission methods create a barrier for consumers to dispute?")
+
+
+### PAGE 3
+pdf.add_page()
+Y = 0
+
+# Letterhead
+set_letterhead()
+
+# Data visualization 3
+set_heading_2_font()
+pdf.write(10, "4) Sentiment analysis on the most common issues")
+lb(25)
+
+image_width /= 2.15
+image_height /= 2.15
+
+pdf.image("./resources/visualizations/all-complaints-wc.png", 10, Y, image_width, image_height)
+pdf.image("./resources/visualizations/disputed-complaints-wc.png", 20+image_width, Y, image_width, image_height)
+lb(image_height / 1.4)
+
+set_p_i_font()
+pdf.cell(w=image_width, h=6, txt='WordCloud of All Issues', align='C')
+pdf.cell(w=image_width/9, h=6, txt='', align='C')
+pdf.cell(w=image_width, h=6, txt='WordCloud of Disputed Issues Only', align='C')
+lb(10)
+
+set_p_font()
+pdf.write(5, "A form of modification (loan, collection) is the most common issue found "
+"in sentiment analysis. Credit reports seem to be less common among disputes than all "
+"issues. However, servicing payments seems to be an issue that leads to greater disputes.")
+lb(6)
+
+set_p_i_font()
+pdf.write(6, " - Why is servicing payments more common among disputed issues?\n"
+ " - Why are credit reports less common among disputed issues?\n"
+ " - What makes loan and collection modification such common issues?")
+lb(15)
+
+# Introduction
+set_heading_1_font()
+pdf.write(10, "Conclusion")
+lb()
+
+set_p_font()
+pdf.write(5, "Further research and exploration is required to make any concrete conclusions. "
+ "However, these current data insights can orient us in the right direction."
+ "We must gather more data to answer the questions generated from such visualiaitons, "
+ "and in doing so, generate quality financial complaint resolutions for our consumers.")
+lb()
+
+set_p_i_font()
+pdf.write(5, "Note: Future hypotheses are located in the GitHub LaTeX file.")
+
+
+### EXPORT REPORT AS PDF
+pdf.output('report.pdf')
\ No newline at end of file
diff --git a/hypotheses.tex b/hypotheses.tex
new file mode 100644
index 0000000..a84e8c4
--- /dev/null
+++ b/hypotheses.tex
@@ -0,0 +1,43 @@
+\documentclass{report}
+\usepackage[utf8]{inputenc}
+
+\title{Financial Complaints Project Future Hypotheses}
+\author{Anuj Singla}
+\date{September 29th, 2022}
+
+\setcounter{secnumdepth}{3}
+
+\begin{document}
+
+\maketitle
+
+\chapter{Current Project}
+
+\section{Optimizing the ML Model}
+Only one scikit-learn Logistic Regression model was used and was biased toward classifying a complaint in the "non-dispute" category.
+\subsection{If an ensemble method such as XGBoost is optimized for the data set, then the model will make less biased predictions than the Logistic Regression model.}
+\subsection{If the data is balanced to include less non-disputes, then the ML classifier will train with less bias.}
+\subsection{If stronger feature analysis and engineering is performed on the data set, then the ML model will have greater performance with respect to consumer disputes.}
+
+\section{Data Insights}
+The following features were compared to consumer disputes: product, state, submission method, and issue.
+\subsection{If a product is more commonly used within a financial institution, then it will have more complaints.}
+\subsection{If a consumer is located in a state on the western coast of the United States, then they are more likely to dispute their resolution.}
+\subsection{If a consumer uses an online method of submitting their complaint, then they are more likely to dispute their resolution.}
+\subsection{If a consumer submits an issue for servicing payments, then they are more likely to dispute their resolution.}
+
+\section{Additional Dispute Prediction Project Implementations}
+\subsection{If sentiment analysis on issues is used as a feature in the ML Model, then the classifier will have stronger performance.}
+\subsection{If dimensionality reduction with principal component analysis (PCA) is used, then strong, new visualizations and insights can be drawn from the data.}
+
+
+\chapter{Additional Ideas}
+
+\section{Data Exploration}
+\subsection{Interactive map that highlights different zip codes and their attributes.}
+\subsection{Advanced sentiment analysis on product, sub-product, issue, and sub-issue.}
+
+\section{ML Prediction}
+\subsection{Predicting how the company will resolve the complaint}
+
+\end{document}
diff --git a/main.ipynb b/main.ipynb
new file mode 100644
index 0000000..81e7e0f
--- /dev/null
+++ b/main.ipynb
@@ -0,0 +1,1568 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Note: To see plotly data visualizations, please copy the GitHub file path and run in nbviewer.org\n",
+ "**Link: nbviewer.org/github/anujs1/data-oa/blob/main/main.ipynb**\n",
+ "\n",
+ "**If the above link doesn't work, try: https://nbviewer.org/github/anujs1/data-oa/blob/testing/main.ipynb**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Introduction"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In this notebook, I examine how we can use financial complaints to predict whether a consumer will dispute their resolution. Disputes can often be a time-consuming and expensive process with high opportunity costs, and building a model to predict when these disputes may occur will help financial institutions offer their best resolution in their first try and therefore save resources."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Initialize and Clean Data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Import libraries and disable warnings"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%pip install xgboost\n",
+ "%pip install plotly\n",
+ "%pip install wordcloud\n",
+ "\n",
+ "import plotly.express as px\n",
+ "import plotly.io as pio\n",
+ "import wordcloud as cloud\n",
+ "from sklearn.preprocessing import MinMaxScaler\n",
+ "from sklearn.impute import SimpleImputer\n",
+ "from sklearn.linear_model import LogisticRegression\n",
+ "from sklearn.tree import DecisionTreeClassifier\n",
+ "import xgboost as xgb\n",
+ "from sklearn.model_selection import train_test_split, StratifiedShuffleSplit\n",
+ "from sklearn.metrics import accuracy_score, plot_confusion_matrix, classification_report\n",
+ "import pandas as pd\n",
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "import warnings\n",
+ "warnings.filterwarnings('ignore')\n",
+ "\n",
+ "pio.renderers.default = 'notebook_connected'\n",
+ "\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Import data and view first five rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
date_received
\n",
+ "
product
\n",
+ "
sub_product
\n",
+ "
issue
\n",
+ "
sub_issue
\n",
+ "
consumer_complaint_narrative
\n",
+ "
company_public_response
\n",
+ "
company
\n",
+ "
state
\n",
+ "
zipcode
\n",
+ "
tags
\n",
+ "
consumer_consent_provided
\n",
+ "
submitted_via
\n",
+ "
date_sent_to_company
\n",
+ "
company_response_to_consumer
\n",
+ "
timely_response
\n",
+ "
consumer_disputed?
\n",
+ "
complaint_id
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
2013-08-30
\n",
+ "
Mortgage
\n",
+ "
Other mortgage
\n",
+ "
Loan modification,collection,foreclosure
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
U.S. Bancorp
\n",
+ "
CA
\n",
+ "
95993
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Referral
\n",
+ "
2013-09-03
\n",
+ "
Closed with explanation
\n",
+ "
Yes
\n",
+ "
Yes
\n",
+ "
511074
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
2013-08-30
\n",
+ "
Mortgage
\n",
+ "
Other mortgage
\n",
+ "
Loan servicing, payments, escrow account
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Wells Fargo & Company
\n",
+ "
CA
\n",
+ "
91104
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Referral
\n",
+ "
2013-09-03
\n",
+ "
Closed with explanation
\n",
+ "
Yes
\n",
+ "
Yes
\n",
+ "
511080
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
2013-08-30
\n",
+ "
Credit reporting
\n",
+ "
NaN
\n",
+ "
Incorrect information on credit report
\n",
+ "
Account status
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Wells Fargo & Company
\n",
+ "
NY
\n",
+ "
11764
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Postal mail
\n",
+ "
2013-09-18
\n",
+ "
Closed with explanation
\n",
+ "
Yes
\n",
+ "
No
\n",
+ "
510473
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
2013-08-30
\n",
+ "
Student loan
\n",
+ "
Non-federal student loan
\n",
+ "
Repaying your loan
\n",
+ "
Repaying your loan
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Navient Solutions, Inc.
\n",
+ "
MD
\n",
+ "
21402
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Email
\n",
+ "
2013-08-30
\n",
+ "
Closed with explanation
\n",
+ "
Yes
\n",
+ "
Yes
\n",
+ "
510326
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
2013-08-30
\n",
+ "
Debt collection
\n",
+ "
Credit card
\n",
+ "
False statements or representation
\n",
+ "
Attempted to collect wrong amount
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Resurgent Capital Services L.P.
\n",
+ "
GA
\n",
+ "
30106
\n",
+ "
NaN
\n",
+ "
NaN
\n",
+ "
Web
\n",
+ "
2013-08-30
\n",
+ "
Closed with explanation
\n",
+ "
Yes
\n",
+ "
Yes
\n",
+ "
511067
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date_received product sub_product \\\n",
+ "0 2013-08-30 Mortgage Other mortgage \n",
+ "1 2013-08-30 Mortgage Other mortgage \n",
+ "2 2013-08-30 Credit reporting NaN \n",
+ "3 2013-08-30 Student loan Non-federal student loan \n",
+ "4 2013-08-30 Debt collection Credit card \n",
+ "\n",
+ " issue \\\n",
+ "0 Loan modification,collection,foreclosure \n",
+ "1 Loan servicing, payments, escrow account \n",
+ "2 Incorrect information on credit report \n",
+ "3 Repaying your loan \n",
+ "4 False statements or representation \n",
+ "\n",
+ " sub_issue consumer_complaint_narrative \\\n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 Account status NaN \n",
+ "3 Repaying your loan NaN \n",
+ "4 Attempted to collect wrong amount NaN \n",
+ "\n",
+ " company_public_response company state zipcode tags \\\n",
+ "0 NaN U.S. Bancorp CA 95993 NaN \n",
+ "1 NaN Wells Fargo & Company CA 91104 NaN \n",
+ "2 NaN Wells Fargo & Company NY 11764 NaN \n",
+ "3 NaN Navient Solutions, Inc. MD 21402 NaN \n",
+ "4 NaN Resurgent Capital Services L.P. GA 30106 NaN \n",
+ "\n",
+ " consumer_consent_provided submitted_via date_sent_to_company \\\n",
+ "0 NaN Referral 2013-09-03 \n",
+ "1 NaN Referral 2013-09-03 \n",
+ "2 NaN Postal mail 2013-09-18 \n",
+ "3 NaN Email 2013-08-30 \n",
+ "4 NaN Web 2013-08-30 \n",
+ "\n",
+ " company_response_to_consumer timely_response consumer_disputed? \\\n",
+ "0 Closed with explanation Yes Yes \n",
+ "1 Closed with explanation Yes Yes \n",
+ "2 Closed with explanation Yes No \n",
+ "3 Closed with explanation Yes Yes \n",
+ "4 Closed with explanation Yes Yes \n",
+ "\n",
+ " complaint_id \n",
+ "0 511074 \n",
+ "1 511080 \n",
+ "2 510473 \n",
+ "3 510326 \n",
+ "4 511067 "
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = pd.read_csv('consumer_complaints.csv', parse_dates = ['date_received', 'date_sent_to_company'], low_memory = False)\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Before generating any insights, it is important to clean the data of any information that may hinder visualizations or conclusions."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "View the amount of empty rows for each individual column. Which features are too sparse to generate strong insights into consumer disptues?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "date_received 0\n",
+ "product 0\n",
+ "sub_product 158322\n",
+ "issue 0\n",
+ "sub_issue 343335\n",
+ "consumer_complaint_narrative 489151\n",
+ "company_public_response 470833\n",
+ "company 0\n",
+ "state 4887\n",
+ "zipcode 4505\n",
+ "tags 477998\n",
+ "consumer_consent_provided 432499\n",
+ "submitted_via 0\n",
+ "date_sent_to_company 0\n",
+ "company_response_to_consumer 0\n",
+ "timely_response 0\n",
+ "consumer_disputed? 0\n",
+ "complaint_id 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Some zipcodes are improperly formatted, such as '95XXX', and cannot be converted to integers. Replace these zipcodes with NaN, so that the entire column can be treated as a numerical feature and the true number of missing values are accounted for."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "There are 82069 improperly formatted or NaN zipcodes\n"
+ ]
+ }
+ ],
+ "source": [
+ "faulty_zipcodes = 0\n",
+ "for i in range(len(df['zipcode'])):\n",
+ " try:\n",
+ " int(df['zipcode'][i])\n",
+ " except:\n",
+ " faulty_zipcodes += 1 # Increment counter for improperly formatted zipcodes\n",
+ " df['zipcode'][i] = np.NaN # Set the improperly formatted zipcode to NaN\n",
+ "\n",
+ "print(f\"There are {faulty_zipcodes} improperly formatted or NaN zipcodes\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Find the features consisting of more than 10% NaN values. I set 10% to be our NaN threshold, as any more could lead to improperly imputed data that harms our insights and model performance."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "sub_product 0.284774\n",
+ "sub_issue 0.617557\n",
+ "consumer_complaint_narrative 0.879836\n",
+ "company_public_response 0.846887\n",
+ "zipcode 0.147618\n",
+ "tags 0.859775\n",
+ "consumer_consent_provided 0.777936\n",
+ "dtype: float64"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "drop_threshold = 0.10\n",
+ "cols_na_counts = df.isna().mean(axis=0) # Get the NaN counts for each column\n",
+ "cols_over_dt = cols_na_counts[cols_na_counts >= drop_threshold] # Filter the columns to only include those with > 10% NaN\n",
+ "cols_over_dt"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Drop features and reformat categorical features into numerical features so that they can be interpreted by a classification model.\n",
+ "\n",
+ "Drops due to unhelpfulness (if we use the ML model for our institution, these categories are either unhelpful or will create data leakage):\n",
+ "* complaint_id\n",
+ "* company\n",
+ "\n",
+ "Drops due to high NaN counts (> 10%):\n",
+ "* sub_product\n",
+ "* sub_issue\n",
+ "* consumer_complaint_narrative\n",
+ "* company_public_response\n",
+ "* zipcode\n",
+ "* tags\n",
+ "* consumer_consent_provided\n",
+ "\n",
+ "Data reformatted:\n",
+ "* Yes/No columns converted from str to int: 'No' -> 0 and 'Yes' -> 1\n",
+ "* company_response_to_consumer converted from str to int: 'Closed' -> 1, otherwise str -> 0\n",
+ "* date_received and date_sent_to_company converted from DateTime to int as its ordinal value"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# Drop data\n",
+ "col_drops = list(cols_over_dt.index) + ['company', 'complaint_id']\n",
+ "df = df.drop(col_drops, axis=1)\n",
+ "\n",
+ "# Reformat data\n",
+ "df = df.replace(['Yes', 'No'], [1, 0])\n",
+ "\n",
+ "# Change all types of closed cases to 1, unclosed cases to 0 (converts to numerical feature)\n",
+ "case_col = 'company_response_to_consumer'\n",
+ "df.loc[df[case_col].str.contains('Closed'), case_col] = 1\n",
+ "df.loc[df[case_col] != 1, case_col] = 0\n",
+ "\n",
+ "# Change all datetime objects to ordinal value of date (converts to numerical feature)\n",
+ "date_cols = ['date_received', 'date_sent_to_company']\n",
+ "for date_col in date_cols:\n",
+ " df[date_col] = df[date_col].apply(pd.Timestamp.toordinal)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Drop NaN rows for state column"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "date_received 0\n",
+ "product 0\n",
+ "issue 0\n",
+ "state 0\n",
+ "submitted_via 0\n",
+ "date_sent_to_company 0\n",
+ "company_response_to_consumer 0\n",
+ "timely_response 0\n",
+ "consumer_disputed? 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df = df.dropna(subset=['state'])\n",
+ "df.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#### Data Visualization"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Functions to create a new DataFrame containing the frequency values of a given feature, as well as the proportion of a given feature that was disputed. I created these functions to be modular and able to generate a DataFrame for any feature. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "dispute_category = ''\n",
+ "# Returns a new 'consumer_disputed?' column with the count of a given category that was disputed\n",
+ "def get_disputes(row):\n",
+ " return df[(df['consumer_disputed?'] == 1) & (df[dispute_category] == row[dispute_category])]['consumer_disputed?'].sum()\n",
+ "\n",
+ "# Returns a new DataFrame with the count of a given category that was disputed and not disputed in separate rows\n",
+ "def get_frequency_df(dispute_category: str, data: pd.DataFrame = df) -> pd.DataFrame:\n",
+ " cat_df = data[[dispute_category, 'issue', 'consumer_disputed?']].groupby([dispute_category]).count().reset_index()\n",
+ " cat_df['consumer_disputed?'] = cat_df.apply(get_disputes, axis=1)\n",
+ " cat_df['percent_disputes'] = cat_df.apply(lambda row: (row['consumer_disputed?'] / row['issue']) * 100, axis=1)\n",
+ " return cat_df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a scatterplot to frequency and dispute rate of each product"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "dispute_category = 'product'\n",
+ "product_df = get_frequency_df(dispute_category)\n",
+ "\n",
+ "fig = px.scatter(\n",
+ " product_df,\n",
+ " x='consumer_disputed?',\n",
+ " y='percent_disputes',\n",
+ " size='issue',\n",
+ " color=dispute_category,\n",
+ " title='Product vs Consumer Disputes',\n",
+ " labels={\n",
+ " 'consumer_disputed?': 'Consumer Disputes',\n",
+ " 'percent_disputes': 'Percent of Complaints Disputed',\n",
+ " 'product': 'Product',\n",
+ " 'issue': 'Total Complaints',\n",
+ " },\n",
+ " range_x=[0, 45000],\n",
+ " hover_name='product',\n",
+ ")\n",
+ "fig.show('notebook_connected')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It appears that mortgages are the most frequent complaint product, AND have the highest rate of disputes. On the other hand, although credit reporting has a fair amount of complaints (~15,000), it has a low rate of disputes compared to the rest of the products."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a cloropleth to visualize the states with the highest rates of disputed claims"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "dispute_category = 'state'\n",
+ "\n",
+ "state_abbr = [\n",
+ " 'AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA',\n",
+ " 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME',\n",
+ " 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM',\n",
+ " 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'RI', 'SC', 'SD', 'TN', 'TX',\n",
+ " 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY'\n",
+ "]\n",
+ "\n",
+ "# Filter the data set to only include US states\n",
+ "usa_df = df[df[dispute_category].isin(state_abbr)][[dispute_category, 'issue', 'consumer_disputed?']]\n",
+ "usa_df = get_frequency_df(dispute_category, usa_df)\n",
+ "\n",
+ "fig = px.choropleth(\n",
+ " usa_df,\n",
+ " locations=dispute_category,\n",
+ " locationmode=\"USA-states\",\n",
+ " scope=\"usa\",\n",
+ " color='percent_disputes',\n",
+ " color_continuous_scale=\"rdylgn_r\",\n",
+ " title='State vs Percentage of Consumer Disputes',\n",
+ " labels={\n",
+ " 'consumer_disputed?': 'Consumer Disputes',\n",
+ " 'percent_disputes': 'Percent of Complaints Disputed',\n",
+ " dispute_category: 'State',\n",
+ " },\n",
+ ")\n",
+ "fig.show('notebook_connected')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Consumers in the west coast seem to be more likely to dispute their complaint resolutions compared to the rest of the country, followed by the east coast. The middle region of the country, highlighted by New Mexico and South Dakota, have much lower dispute rates."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create bar graph to visualize proportions of each submition method that was disputed"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ " \n",
+ " "
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "
"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "dispute_category = 'submitted_via'\n",
+ "\n",
+ "sub_df = get_frequency_df(dispute_category)\n",
+ "\n",
+ "fig = px.bar(\n",
+ " sub_df,\n",
+ " x=dispute_category,\n",
+ " y='percent_disputes',\n",
+ " title='Submition Method vs Percentage of Consumer Disputes',\n",
+ " labels={\n",
+ " 'consumer_disputed?': 'Consumer Disputes',\n",
+ " 'percent_disputes': 'Percent of Complaints Disputed',\n",
+ " dispute_category: 'Submitted Via', \n",
+ " },\n",
+ " range_y=[13, 23]\n",
+ ")\n",
+ "fig.show('notebook_connected')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Web submissions, which also happen to be the most common form of complaint submission, have the highest dispute rate. On the other hand, postal mail submissions, which are one of the least common methods for complaint submissions, have the lowest dispute rates.\n",
+ "\n",
+ "A trend that I notice is that instant and non-verbal forms of communication (web, fax, email) have higher dispute rates than slower, non-anonymous methods of submission (referral, phone, postal mail). Could the attributes of the latter category create a barrier that discourages consumers from disputing the resolutions of their claims?"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Use NLP and sentiment analysis to create a word cloud that visualizes the most common issues within complaints"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(-0.5, 399.5, 199.5, -0.5)"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAEMCAYAAABZZbUfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xm2VXfC3/3yU8OlXPnOD05J2k0iigBAiwDBmfACXO5fl/utTEYX9vXOWBsbHhtbDJIKIASGmkGjSaHnpnOOVRXrnpyOHHv94/z1NNVXdU93T3dMyNUv/noo66qE/bZZ5+9117rt35LKKUUG9jABjawgQ1s4LsW2jvdgA1sYAMb2MAGNvDOYsMY2MAGNrCBDWzguxwbxsAGNrCBDWxgA9/l2DAGNrCBDWxgAxv4LseGMbCBDWxgAxvYwHc5NoyBDWxgAxvYwAa+y7FhDGxgAxvYwAY28F2ODWNgAxvYwAY2sIHvcmwYAxvYwAY2sIENfJdjwxjYwAY2sIENbOC7HMY73YDvBAQy4n8dfYU/OnVwzd/u7BvhH9/zOKamI4R4B1q3gT/vUMDnTh/kyQun8KOIf/ngR8haDtrbPN6Wdcv/2cvf5Hy9zK5CP39tzz3kLOdtbccGNrCBG48NY+AqIBDkLIfBVAY3DGmHAYfL83hRSG8ixUZxhw3cTHhRyPHKIs/NnkcTgplmnZRpoQn97W2IUrhRyItzk5yvl5FKMd9qbBgDG9jAnwNsGANXAU0Ibu0ZImlaNAOfqudyrl7Gi8J3umkb+C6AVBI3DGiHPrZu4EYB71R9sUhJWqGPF4UEMsLd+AY2sIE/F9gwBq4CmhDsLPSxs9CHUgpfRvz28f2UvPY73bQNfBcgYVhsyhbYUxwgUpLN2R4M7W32CgAIQcq02VMcIGmYbMoUmEgX3v52bOCqoJRCEaJUhCYshNigiG3g8tgwBjawge8A/PjOu/ixnXcB8E4zU/7Dwx/v/vudbssGLo9AVjhX+0OmGl/ljv5/Rs7e/U43aQPvYmwYAxvYwLscAkCId3zhXb7/BlH2rUGpiFC10YSBxpV37FKFLLZf5Fj5V+hPPsJg8r3k7F3XcC8FSNTbyGySykcqHyEMNOwrjhepIqKr7It3CyLZRiERwkAX9jvdnBuGDWPgbYRSikBKXpyb5FRtiUW3SSsI0IRgIJlmb3GALdkiA8nMZc8PleR4ZZFz9TKzzTqLbotW6GMIjZRp0ZtIsTlb5N7+MUxNW/UhKqWYadX5k7NHkEqxr2eQu/pH+fb0GU7Vlii7Lr4MsTSdsUyee/pHGU5lSZs3d8D7UchUs8bJ6iInKyWqfptASkxdJ2mYFCyH7fk+dhX6SJs2hrZ2wlBAKCMOLs3y+tIsi+0mbhgghCBvO+wpDHBLzyBFJ4G+zoSzHP75F688yaZskfv6x9iSKzLfbvD09FlmmjXaUYgGZCyb3YUBHh6awDFMlFI0Q59fPfgC9cDjA2Pb2VscoGAn1n1epRQvzE3y3Ow5dKGxs9DHh8Z3rDrmfL3Cbx57dQ0vxdYN/tYtD5CzbbSrnDhboc+FRrU7biqeS6QUpqaRMEyKTpJd+T72FgdImdaa8792/jgvzk8SRNGq32/P9/KJTXvI2ZcnEC66TV6Zn+LVhSnu7h/l4aFNvL44w6naEjPNOs3Ax9J1hpIZdhX62Z7vocdJXfZ6Nd/lcGmeU9UlZlo1GoGPvAx/YnO2yB19w9zeO3xV/fR2wZc1ZpvfIGfvJmNuQRfrj5OLkLSCC4Sy/rYu6teLRnCeqneYjLWNnLWLK/mP/KjMXOvPyNm7yJjbviMW1yV3P6FskrY2kbW2v9PNuWHYMAbeJkRK0goCXluc5k/OHuFIeZ6S18aPIgSQtxOc7itxz8AYd/QOM5GNY7ErPyMFTDVrPDF5goNLc1xoVil7LfxIogmBpen0JpLsKQxgCI07+0YwdX3VNUpemy+fO0Y79Kl4bRSKL5w5zOlaiYrXph2FKCWZyBQpuS0eGtrE7kI/CcO84X2ilCJSioOlOV5dmGL/4jTHSgu4UYgvQzShYes6WdPhtt4h+pNpEoaJcYk8hlKKmu9xsrbEV84d5YW5SUpuG7+zkCZNkzt6R6j6Lrf2DDKRKaBfYlAowI8ifuvYfu7sGyFr2li6zremT/O18yeYa9VphgGRkiQNk4+M7+KegVEc4n7xo4hvTZ/hcGmOpGFRsBOXNwaAp6fP8JlTB+hPprH0tfH/RuDx0vwkFc8lVJKK16YZ+KRMix/beScZy0Z7kw26Uoqq73KwNMdrC9O8ujDFqdoSbhgiUWgITF2nYCf4nomdbMkW1zUGztXLvDB7nkbgE8iIuXaDUEreO7KFx0e3XdEYqPkeryxM8XsnXqMVxATIb1w4wZHyAnOtOo3AJ1KS4VSWO3tHeHBogvcMbyFpmGsMWS8KeX72PE/PnOVY5/uRUtGOAiqeixsFQGys9TkpfBkxnslfuZPeZigUgawx2/wmlpYnZYzzZuwPQ6RACDRhX/ti+TY7cRSKVjDJfOvbmFqanLXzisf6ssxs60ksLU/a3Pw2tvT6oFBUvAP4UQVTS8GGMbCBa4UbhpysLvJPXnyC840KWcthMJlhIJnGi0KOlOf5zKkD7F+c4vHR7fzdWx/E0nRYMSFKpXhpbpI/OPkGZa9N0rDoT6YYTGZohwFTjSonq0scKc9zvLrIf3/sUxS1xLpuuqrnsn9him/PnuV8vcJEusCWbBGJ4ny9wsGlWQ6X5ii5bbKmw7Z8z03pl3rg8t8PvcCLc5O0w4D+RJrt+V5QUA1cltwWZ+olzjUq/NC2W1HJtdfwpeRQeY7/fugFnp4+S9FOMJzKkLZsIqk4UyvxJ+eOsH9xiu/dvJe/svtu8pdZqAFqgcvp2hJlr8V/fuNZiokkE9kCkVSUvTYL7Qa+DKGzIxVCYOsGjwxv4kRlkSPlOXbke9lT6F/T90oppJI8N3eeeuBxT3qUO/tG1rShP5Hmx3bexYLboOZ7PDNzloOluavu15g8Bm8szvCfDjzL4dIcSimylsOOQh+mplP3PRbcJmdrZeZaDQIp173WfQPj5CyHstem6rv8/snXqXjuVbcFIIgiTlQXeW3/DDPNOhnLZjiVI2EYnKwscbpa4kRlkQNLs4yl8tzSM7DqfIliulXjX7/2LaYaVXqcJHf0DrOz0Mdiu8WLc5OcrZfwpWRztsj3b7mFXYU+JjKFbn+Ail3YRKAkoEBoaBgIYa5K1Yxd3SGKKH7PQkMTZufYi8eFsolABwSKCKVi74kQesdNftGoiWQbSYgXLVH1jxKqFkFnty+EQMPqEP0ujhmBwNAzCDR0YaNr6xleCqU6bcaPrU0hiJR3Te9ozVWv2GcmmrjYF7FhHz9fK5ym7p8klG0CWQc0NKEjhIkurE6/tVGEuNECNe8oUSruC6lCRPf6F/tCKYkiJFJ+3A4hEOidNpidY+L+V0Tx+1AhmjCJLSKFVAFC6OjCQQitG6LQhYVcPk8pEKx4F3SupYhUC6lCGsEZgqhBKFv4UQ0gHhvC6NxveQwFK8aQjN+m0OKxhvGuC4lsGANvE15dmOK/HHiOk7UlPjy2g5+85X72FPsxO6zw2XaDf/7yN3l+9jyfPXWAgWSaH95xOyv39boQfHRiF34UMZbJs6vQR98Kl+pMq85Xzx/n3+z/Fq8uTPHS3CT3DozR46xdQWfbDRbcJgU7wW88/kPszPeRNEwkikbg8fe+9UVenp/iublzZC2bn7n9kRveJwr4yrljHC7Nk7FsPrF5D//wrvetCgO4UchUMzZytuZ6sNfZRT8zc4YvnDnMMzPneGBwnP/n/g8xlMxgaTqyszv+2Wf+hFcXpvnK+WMg4Gduu/zzzDTr/MHJNxhL5fm5ux7jB7bd2vVFBFJSCzzagU9qRfjE1nU+NrGL3z62n9cWptma7eGTm/es2ZiFUjLZrHKoNIchNLbne7mjb60bu8dJ8n1b9q4672Rl6ar6FWLDcaHd5Oee+yrz7Qbb8718z8RO/urue0iu8PK4UcjpWomsaa87TgBu7Rnk1p7B7s9PTZ2m4ftX3RaAdhTy/NwkRTvBz9/zOA8OTtCfSAPQDH3+2cvf5OnpM0w2KvzPoy/zbx766Kq+86OIXz/8ElONKnf3j/KJzXv41JZbun8/Xlnkc6cP8muHX6Lktvn+LbeQvsTL0QwnOVf7A5bar9AMJpG4WFovo5mPMJR8nLyzr3vsVOOrzDafjHeBskLCGGQi+4MMJN9L2pwAOuGe2b9N0bkTQySpeodZcJ9DwyRn72Uo9X6G0x/GFPE3eqj0b1lsP48bzhMpl9cW/lH3fo4+yHjm+9hR+AlWb+cFlp7rGAOJy4YUQlnjVPW3uVD/HIFs4BgD5KzdJIzBtxBYULTCC5yq/iYV7wDtcIZQtnH0HkbSH2U0/THS1qbu0S/P/Sw1/ziBrCBVwP6F/6v7t4J9OyPp72Fz7tMAHFz6Fyy1X8aLFoiUx/6Ff9g9NmmMMZb5JNvzf6P7OzeaY771LGdqv0UrmMLUsmStXQym3sN49lOAoOy9Qan9KlX/CJqwmWs+yXjm+3GMXlrhDBcaf0xf4iH2FH+GpDlCzT/Ka/M/z5bcj1Hy9lN238ANZzG1NKOZ72Nr/kcxRRyyDWSNl+b+XsfIaaGImG9/q9u+4dRHGE1/DwOp93R/N9t8irnWU5TcV3GjBQwtSdrYxHD6wwyk3kvSeHeFrzaMgbcBU80qbyzNsH9xmoKd4GfveJSxdK6rWqiUot9J8Tf33kvCMPn86UP8r6Ov8Kkt+3AMsUppzjFMvnfLXnRNwxSrOQEDiTS39Q7x2MgWvnTuKCeri+wu9F92ki/YCf72vgfZXejH1o14d6Igbdj8td33crb2NWaadU5Ur34RulaU3TahlIyks2zP9XYNgeXncnSDiUyBkVSu28aV8KKQb8+c5ZmZsxTsBL94z/sZTma7fAkNyNkOf2ffg/yTl77B0fI8T144zU/uvR9nnetBHJfeUxjg4eFNfGzT7tgQ6BD4TE2jYDvkLQddrDTUNLbletma6+F4ZYFz9TJHynPsLQ6uunYz9Hli8iSRlNw3NMa2XC/GOjuES9t1rd7eZujzByffoOS12JaLDZMf2XFHN9yzsn935HoRQqx6niu15XohgJ/Yez/39o/R66S6Yz9pWPzA1n3UfI+vT57gjaUZOtvb7rmRkry+MEMgI/YWB7mtZ2hVu7bkimzP95I2TWaaNUpeC8cwMDUdqSJ8WeLV+X+ALlL0Ju5lR/5vYupZWsEkttGHpceeL6lCphtf4Uz1t8jau9hV/Ls4xiAN/xTnan9IO5xjKPk+ehJ3d+891fgKSWOI3sS9TGT/Ar4sca7+WWaaT6BUxKbcDwGwI/8TbMn+CFX/GPvnf449xX9AwbkVQ0shMDD1DGvftMDWijw88tsYWhpjHWOgFUwz336Gc7XfZ0vuR8lY24iUR807ymT9cxja+hykq4EuHBy9yETmUzjGILqwqPknOFX5X+giwSDvI2PF7v3b+n6eULa5UP9jJhtfYHv+J+hx7kYIDV04GFq6e91dhb9DmGtS9t7g9YVfYk/Pz1K0b0fXHDRhrjq2EZxhrvlnnK9/ns25HyZtbiKQVUru65yrfQapwo5BoGhHs9T842zN/TgJY7ATrshScPZxW+8v8frCL1JNfwRDS3bed8Dxyq8ylv4k/YWH0YRJ3T/J6epvkjD66Es8SNIcwdTS3NH/zwmjFoeW/hWhajOe+X6Kzu0AGFoas9NmpRQV/yBna7+HY/Sxu/jTOHo/vqxRD06RMjdhabnrfic3C+9qYyCUEfXQJW8m3/KE1AhdBIKUYaOU4mR9juFkgZQR7+6UUhyqXmBzur/7uxuFc7UK5+oVFHBLcZCBZHrVwrY8EW/OFtmcLZCxbGaaNc7VS2zO9uAYRvc4AevGdQF0TSNtWAwk40HZCHxCFa17LEDStHh4aBO2bnQNjuUFdGuuiKUbtEKfmn9tLuGrhQBG0zlsXedCo8rzc+e5pWeQW4oDaJ22CCEwhd71oFyKyUaF6WaNQEq254qMZfKriJPLBs62fC9ZyyZSkqrf5kKjytZcz7qLrAI2Zwvc1T+6pq+FELG35pIThRAYWszTmGs3mGvV2b8wvcYYaIUBz86cQxITOCey+ZvCzveiiJfmJwmk5LbeIW7pGSRjrR3XQsS8gbcDmhA8NDRB0Ul2ORvLY3osnadgJwilpOy21uxmlaIjtgQJ3eh+E8swNR1LMzA0nVB5uGFIJBWmBpFqs9B6HjdcYmvuY/Qk7iKhD6FpFklzBIGJoaU694m40PgSKXOCvsT9nV1/iqQxTM0/QTM4z5L76ipjwBAOaXMLg6n3k9AHiJRL1T9Kwz9DPTjZPc7Wi5haFj8qAwLb6CFpjmJ2FmuxTqmYeGzoJIyBNX9bRjucZan9MhlrCwPJ92AbfSgVYOsFFtrPEanr1UMRmFqWwdTjGCLVMVp0EsYwk/Uv4EVLeNECGTZ3nq8fSwuw9DwCHUfvJWWOdUIJgpX5MLbeg6llaYczCASO3kvSHO0u0iv7ouweoB6cIm/vpT/xIKaW64RANNrhLLOtJxnLfDI+WCk0YdGbuA83nGe+9TSWnqXHuZOMtRNDswmiCqFsdfvX0froTdxLypxACJ2kMcxC+1kW2y+RNreQNEcADUcfQGo+uuagpMTR+0iZ4532ClZOCqFsEMg6SUZImmOkzU1EyiNljmNqWbR3IVHyhhoDUimqQYt25GNpBmYnnlQL2qQNm1BJQhWhFCQNGwG0Iz8mimkGkZK4UYCjm+hCw40CTjZmuTU/TtKwuyxwpRTtyKfst7A6k4BC0Qw9UoZDICNCFSIVpAwLDcHZ5iKGpjGR6iOpW8x7NXrsNIbQaIYezdDjRH2OwUT+hhsDs606860GpqaxLd+DdZk6BmnTptdJ0eMkOVVd4nyjwkg6h3PJa2qHAWW3TdlvU/c93CggkBKpFDPNGlONOI4Vymg5rL0GhogNh/FMft0FMWc76JoglBI/urxB8VaxI9/HpmyBA0uz7F+c4o/PHmG+3WAomaEvkSZvO9j65YfpVKMWk+ykxJMhT0yevOyxFc9FEbv6F90mW3JFLrfn7k+m2Zy9dkGdu/pHeHFukvl2g9cXZ/jhHSqeJoTAj0LKbouj5XlszWBnvo+hy2SOvBXEzxhxsrqEVJKtuR5GU+/sTkQAjm4yls6v+z7TpoWtG0jUuqqGQkDWchBCUA886v7qeHgr8GmFPqGUnTlB7xIsI+lS8Q5iamkKzm1krZ1oIm6DuWIHqpQkUh4V7yBbcn+JjLWdhBEbc6aeoeDcxoX6F2kEZ4mUh0ZsKNp6LxlrC1lrW3wsGVLGOO1wFj8qrXgGHQ3VjRULYr7CcluuF76s0AzOUkzcRcocX8UrSJubqPpHr/vay+mBbrRAGJxFqjg8pJQkVE1C2ewcJxAYSGRnIY/j4yt5BauvqyMu7Quxfl80g7M0/DMkjREq3uHu71vhFJFyqXlHkSqM6QxCxxBJksYounDQhNElJ9p6AUOkiJSHVEHnKhopc4KUOYFj9AJgiARZexdL7ZfwZaX7fCg95j50/tOEftl3Z2p5EsYgoWpTdt8glE0SxjBJY/hdKwB1g40ByYn6LCWvQdFOk9ItPBlyqj7HRKqXeujiRSGaEPTaGTShUfabmEInYyYIVMiiW2cwkSepW1SDFk/NHWHIyTOSLKLrHWMAmG5VON6YoWilyZoJ2qHPvFulP5GjFrRphT6aEPTZGTKGwyulM9iaSdZIkEwWMYSOJgSVoMWZxgILbo0Ft0Yob/zCV+kQr3ShMZTMXHEnmDKtrjGwvONdhupow5+plXh1YYqDS7OcqVdYchu0woAgivCiixKxCi4bL7R1nZx1+YXW1OJBH1/j5qQzCSHYXeznsdGtBFLyxuIM//voK/zxmcM8MryZBwcn2NczyGAyQ8q0uovqSsy1G7TDgGboc6g0x898+4+veE9DaBhCox2Gl3qiVyFt2lckGV4Od/WN0p9Mc6Iak+HcMOi65qu+y5l6mdl2nc2ZIpuzRYpXSKO7bihFKCVzrTqKOHxUvI5nuZHQRRxesXV93QJLhqZ1f78ejVEXGnuK/RyvLHKqVuJwaZ7RdA5D05AKztVKnK6VaAY+I+ksPYlk15ukCGmFU51dePqyE7giIpR1AlnHMfpXGQoASWMYgU4gawSyga0VAXCMPmx9NcFWExYCjVA1r7WrrhmRdPFllaQxAisWGSEMHGOAqn/sOq+s8KIlZpp/Ss0/Rjuc6xIe3XCGtNzcJUzeLCgUXlSh5p+k7p9kof38OkdpKGJyo4bR5VXEZD4NTVjoouNxEEaHLBiPMgE4Rv9qg0VoJI1hZqMq8npImAJy9k76kw8z13qKU9X/RdIcZSD5KP2JB3CMIQyS7zqD4IYaAwrFoldnZ3aIQSfHdLvCn80fZSLVy+nGPL6M2JLu57bCBJ+dfBEdjccH91INWrxSOkPRTrM3P8Kgk8fUDJa8OlvTA2xK963KqY6U5NuLx/i+0bvJmgmm2xUOVCb5ofH7+Oz5F6mGbTalenmwbwefm3yZT47exRa3iq0bjCSLCCG4r3crAEeqU8y0y3xy9G5+++wzN81l68s4hTBhmFeM/5qahqMbKKAZBKtyqCOl+OOzR/j3rz3NXKuBYxiMp/Pc2TtKfyJF0rTiVLKlWZ6ZPXfFNulCu+KO++3Ej+28i8dHtvHq4hS/d+INnps5y2dOHeCPTh2kL5HiA2Pb+T9uf5ScZa+Ja7dCn1BJHN2g10mxo9D7pvdbTvu70ru2dP2a0ymFEPQlUuwq9HGqusSC2+SF+UkeHtqEKXTO1yt8e/osAvjA+La4Ddd0h6tD1EnDW15Ubd1YN33x7YQQsWfgenPdLF3nr+6+h2dmzvP09BmOlxd4YW6SnfleltwWT8/EWhkZy+bv3/YIjr46NVEgul4ypdS67151mPOXw7JRLNBXpfgJYXUZ7e8s1j7TW2lXpFwOLf1LGv45RjMfY3vhJ0mZY2hYPD/7N7qhlZuL+J0kjRHGMp9gJP3hdY+ytGw8yDqhxdVY73cr7rDGoFneRl3fWF0OGWzK/hAj6e+hFVxgtvkkp6u/ydnq77Ep+xcYy3wvlv7u4g3clNXA0WI3f9pwGE/10o58tmeHOFmf5UxjnnrYJm8mMXWDg9VJpFIUrHhgJXQLrRNHVEDJbzDZWmIoUcDS4uZqCMaSPXxj9hADiRwJ3SJjJnhi9iAJw0ZB91iIY5XN0KMatJhxKwwnLrp/bc1AFxpPzB6gHfo3pQCMY+jYnQW+HQZX3GcHkaQdhghi1+ny4udFIZP1Kv/ilSep+i4fGt/Bxzbt5sGhCQwR76qEEJysLuJGwZsaA+82DKYyfDCxg0eGNnO2XuGbkyd5ZvYsR8vzfPbUQY6U5/l3D32M0XRulUaAoxvoIq4qee/AGL947/vf9F4CgWMYNy0F+66+ESYbVf70/HG+ev4Y9w+MY2o65xsVnpk9Cwg+PL7zsjoEbxWaEKsWf0+G+DLqaiJ8J0JDMJEp8O8e/ij/5cBzPDN7li+fO8JXzgsc3WAomeH7t9zC+0a28tDwZswVY0QTJilzEzPNr+PLGooIsc7Up2F2dvkFmv5ZctZOEsZQ9+91/yQKia0XMcT6pNw3R8wBiFMRO6l6bxGGlsTWe6j7Jztpd/HvpQpoBueu+x5KRSy2nmci+2n6Eg+QNjch0FAEtMM5bG29dGOt8z+6u+/LY7kv6KQDrtdOQcIYoBVO0govYOuXM/av72tWKJrBOVQ3bBCHQGr+CWyjF11cavDoxJ6I5TZfGYZIkrG2kTLHGc9+L/sXfp6qf5Sk+yJDqQ9cV5tvFm6oMaALnTsLm8hZSUzNoGCluLu4mUBGZMwEJa8BwJ7cKJqgM7CWre0YOTOJLuKYetZM8MGhffTamVWMa00Ibs2P0448ErqFoekMJwpIFYvvREpi6yaWZvBI304szeCO4iakkhTM1S93IJHH0ePY3/bMIHnrxlu7BTtJ3naIlGS6Wb+iwdEIfZbcmNwylMx2XZ3NwOdgaZaq7zKUzHDvwBj3DYytWVAEgpr/1vKL3wnoQkPXNSxNZ0euh5xlc8/AKK8tTvNbx/ZztLzAq4vT2LrBYOpinH0gkSFpWLhRyKLbJPsuKKe7M9/HjlwvX1XHeHHuAm4UUvVdJhtVyl6b8UyeiUwB5yZ5ZuKsB53+RIqFdpPFdouq574r+uZ6IYTAEIIX5yZZcJvsKQzwvVv20pdIYQiNpGFRdBL0J9Jr+lUXSQaSDzPV+BJT9T/BCxfIWjsxtCReVEIpH8cYwDH60LAYSn2AkvsahpbuLP69NINJZltP4hj9FJ07EUK7zo1D7La29SKl9iukzQls5SHQEJqJKa4cRlwPjjFAwbmNuebTLLZfJGVNIJVPzTtKzTsC6xATrwpCYOhZ2uE0XlTGkXVC2WCm+QRBVF93sRfo6FoSXXNYar9E3tqL6PAGNGGtCr3EPAEbSy+w5MYESFPLr+mLgnMbXlRiqf0SM80nyNl7EehEqoUfVYGIgnPHdT2iUpKqd5SF9nPk7N1owqLpn2Op/QqDqfeSMPpXdIcApWHqWbxokZL7GllrJ7HnwUQXNoaWiLMJvINEqo2hpbH1PAKLVjhDENVJ6AOxkNS7DDd0NtKEYDCR7/6s6xoDTi4W1UAwnCjEcfNEvhsfXP6g1vsAbM1gS3pgTaxYCEGfk0GqVEzl6KQoLTt2Vh47loqt10Ent+59UoZNUrfWPfdGYTiVZTCRIZCSk9VFfBlhKWNN7LQReCy2myx5LWzdYCyT6xoDfkf5TSlFj5NiOJWhN7F6QEVKUg88phrVG/4MbxeEECRNi81mkeFUloxl89zseZ6dPce5epk9hf5VxsBIOkfOikmjM806i26Top1cNy79dqHHSTGaztGXSDHdrDHdrFFyW0w1qigF+4qDZExrjQrijYIQAlPT2JItxqJNtRJTzRpj7zI1vmuBUopG4PPc7Hn8KOLW/iE+Mr5zzTewHnRhkbF20Jd4ADdaYKH9HPXgNLqwiZRLQh9E15I49CPQGUy+Dy8q0QjOEjZbGFoKP6qgoZO3byFv733Te14O8bvJ0Jt4gEZwlpnmNzD1HJaWJWPt6Mj3XhscvZ8e525K7VeZaz2F7fejCYNQNkmao7TDmetqq4ZOf+JBWuE0C+1naQSnUUS0w1mSxlA3Dn/p8yXNYfL2LdT901xofhld2CSMQdLmZkwrvepYS8vSm7iPhn+W6cbXMfUMppYna23H7KgXZqzt+FGFdjjLQvt5GsE5hNBRKkQhO7oP1+f9iNtQoOYfpx3OowjxwnlMPUOPcw+O3n/J8Ro5azehbFH1jnGh8SU0YZGxtpIyJzC0eHO2LCylVIihOQhMfFnB1otkrG0kjLVCY+80bnrQOGaZxhPzpnRfh4W5emG/8rmXh7aKLHPlY9/Kfd4qNmULbM4W0YXgYGmOmVad8bTezXNfluU9XS1xpl6i7nuMpXNMZAqr3L3LhpOtx+Q+qdRF0pVSVD2XC40qp6qlddvxboNSilYYoAuBoenomrbqPZhaTHLcnC3y7Ow5WmEsh7sSE+k8I+ksCd1krlXn1YVpHhqcIGGYFw3OzrFhFBEpiYKbIq+8jGWt/VuKg3zl/DEOLs0y26pzvlEhaZo8NDRx1XUFrrsNmsHd/aO8tjjDG0szbM4W2Vsc6ArxiBXGuOzUvDC19cl97wZIFAvtBkfKc4ykcmzKFMjbie67vVKrFRpBlGQ881eZb32Fqn+IkvsaihBbKzKU/sBFD6XQ6Us+QKQ85tvfZqn9Ir6sImWBrfmP0p98iJQ51r22rfdi6Xl0sdrrEkkLQRZLX5sGbOkFNmV/kOPlX2O2+VRnAR3D0DLkrF1EnQweRSyl/WawjR56tHtoBueZaX6dyN2PY/STs/cwnvkUp6t/iLiOEJEmLDZl/wInq7/BkvsSoXQxtAybM5/C1LJdRcR4IxZnEQghyFrbGUl/lDPV32Wy/kUMLUHRvgNDZMhYW1fdwzH6mMj+ACfKv8508wk0YZC2NmNqmc6um9jwSD6MqeWYrH+OkvsaoDC1NElzlIK9DxDowsbUsivInBqO3tsVbQKBY/RjaGmEMOLsA3T6kw8SyiZL7ZfwogV0LclI+nvoSdwdSw5fgv7kQ2jCYrrxp5yvfw5TSzOc+hCWlodOWMnQUrjhLHX/dId0GeHo/QwkH4lDLtbENb+Pm423lUF2o1P23i5c6g5c+fPKP638/Urjoz+RZl/PIA8OTfDE5En+3f6n+alLFAgX3Ca/dvhFnp89T4+T4Id33I5jXPQeLIvvABwvL3ChWaUR+GQ6k3s7DPjCmcP8ydkjLHmtG9sBNxF/OnmcXifFpmyRkVR21d8agce5eplnZs4CcS567hJXt20YPDq8hYrn8vkzh/ilF5/g3z78UXYX+smsUAhUwKnaErPNBkrAYyNbbupzDadzPDq8ma+cP8ZL85Ocr1djGWrT5v1j2y8r8ANrxxusv+9Z77jlcZcyTX5o2638wckDHOrIGAsBP7rjDkxN754bSknJa3OmVmJfz+AaXYX1XeFq1T+v1I4biahz39lWndO1JWZbdYZT2S6/6HKoeR5fPHaU7cUebun/G+yy1tfpWOmlHEi+h4FkrCYXSMnXTp5gILm1uzgvH3tX/79ecz7AbG03Kes2bukbWNM/unDI2/u4d/A/rduOUrvF/tlZIin58Lar0743RYatub/M1txfXvM3Ke/H0ZNd4uTVhzc0MtYO7uj75wDUggVm3ROMZh5kzj1FzhrA0dIoImrBIlmzH1SsITCQfJj+xENrrri2L5IU7Nu4d/CX123B8vGWVmAw9R4GVyj8XYrYa3NRldLSs9wz+B9XHXP/0H/r/rviHYqfUtjsKPwlLD1/hb64iJQ5TsocZyL7qXX/LoSgN3EPvYl7rup67xa8O+jk73L82fQZpps1GoFHKwyo+R6lzoJ7urbEv3z1KTKmTdq0SZomm7NFHhxcbfnd3jvEz972KHPNBk9NneLlhSkGk2kGEmkCJTm0NEc98NiUKfC+0a386I47WLlPzloODwyNszPfx+laiV9+41k+d/oQO/O9tIKQo5V5ar7LYCrLj++6i/919JW3tY+uB4q4It7+hWl8GZG1HPoTKQpWgkbod/UZ3CjkoaEJ3juyheF18uUfGpogY9kEMuJPzh7hr3zjDxlN5+h1UiQNk7LXZrbVoB64jKRyPDay9aYbA4OJNPcPjJO3HJ6dPUfZbZN3ktzeN3JZRchlnKotcay8wGy7QdP3aYUBz8+dx5UhAsGvHHiOvkT8bI5hkrMcPrZp9yrSnC40RtM5fum+D/BfDjzPscoC/3r/t/j1wy+xI9+LJjSagUfZazHbbHD/4Dj/6O7H1xgDz82d40KjRsVr44Zh5700CJXkVHWJ/3zg2W4mi6ObbMv1cE//6A0XMtIQbMkWee/IVp6ZOcsfnHyDz58+3DWWNSFImSYDiQx39o3wV3ffQ18iRdP3Oba0xKG5OW4bGOTE0hIV18UNQ0ayWbK2zaH5eVKWSdZ2aAUBD4+P89LUFBAbApPVKgutJtGKNN9IKU4sLXFofo6BdBoQzDcb1H2fvkSSmUYDIeB0ucymfB5LNzhZWsIxDAbSGVKmyaH5edK2RTERV9I8Uy6Tc2zuHh4haZrUPQ+pFMeXljiyME9PMomhacw24vv0JpIMptN4UcRso86WQpH5ZoNWEJC2LPpTKQxN4w8OHeKDW7eyq7ePnmQ89irBHNPto9haipSRJ1QeFX+evDWAqdn4kUvZn6bXHgcEjXCRRlgikD6NqMy8dwZHj13+i945DlWf4o7CRyhYw1grVBLn3TNUwzlsLU3W7EEB55qv02uNY2gWgXSphQv0WuOEyqcV1VAqImP2YgiLOfc0ST1HwRqiaN8k1/pNII1/J2LDGLgKfPX8MQ4szXYrrEVS0gxi9uliu8lXzh1D1+L8dUPTeO/wljXGgKUbTGTy/Pw9j/PFs4c50CmzO99qxHoIiRQfHN/Ovf1j3NE3vCbtTxDLBP+ju9/H588c5lhlgSW3xTMz52JSXTLNxzbt5paeAVKG9R1hDAjgfaPbAMHZWomy3+ZkdSnmGHfK6+4q9HFr7xCf2LyHvkT6MjnqOjtyvfzE3vvYme/j2zNnmGs1OFVdIlISUzNImiY78iPs6xla825uBjQhSFs29w2O8fT0WdwoZDiZ4Z7+0Td1xR8qzfOF04c4XSvF461TX2F5Mfrm1KmOqE6sXFl0kjw+tg1Ds7vmY0x2gnv7x3BuN9i/MM3+xWlOVUscWpoDEWsuOLrBjnwfDw9tXqPlD/DE5CleX5xmyW1121IP4kVqvt3kGxdOYup6TAAVgsdHt7GvZ/CGGwOhkjw9fZYztRKRUvQ6KYpOsitfHUmJG4XMtup8+dxRpps1fuqW+9me62U0m2U0l2Min+fQ/ByWrjOcyTCUyXChVsM2dMptl7lGE62jVDTfbFDzfHqSCR4YG+NLx1fn6gdRxHOT58nYNrONRhxqkTGBOZ4bFKPZHFuLPbw4dQE3CEhZFl4YohQ8OD7Oi1MX2N3XR28ySd33aQUB94yMYK/IdAml5LnJ86Rtm/lmc9V9WkHA4YV5hBAkDJOTpSVqnsc9IyMEkWSqVufBsTEG0mmGMhkydkdtFcWF1kEGne0kjRyh9JhxT9Bjj5AzB5h1T1L2Z7A0h0V/EilD+p3NJI08s+0TJLR0pwCPxBQOWaOfjNFDxujDEJd4loTCi1qYwiZSATPtE2xJ3YmlJ1nyJmlHdcaSt3CmsR9LS5A0sqSMAkk9x6HqU9hagkZUxgjNm2cMbADYMAauCrcUB8hZzpra8utBE4JNWY2Z5rdwowWGU49jahk0Eeet39k3gkSxK9/HQrtJKwzQhMZAIsWuQj+bc0UGk5k1MdBYBhfu7h8lUopb64MsuvH5jm4yms4ylq6Tt4/jRU1+bOde7u0fI39JedkeO8nHNu1iyW1dUZVOF4JPbt7DfQNj3fDEzcDd/aOkTYvZVoOq16bVKRNsajoZ06YvkWJbrod9PYNorM/tEMRla3cV+nE62QazrToN3+toEJhxlbxkhrFMnvF0ft1rWLrOj++6i0hJbusZQnsLTBLR2al+fNMextJ5QhkrAd7e++bFSYaTGe7qH73q8rsp08LQ1rZWdAyFu/pGGUhk2JIrcr5epe7HSoymppMyLHoTKW7vHSJprDUGdhfiAlaN4OoyVHYV+lYVmspZDnf3jyKlpOAk0C9Td1kTGvf0jxLIKFboXPE0zcDnTK3MH506gFSKR4Y2MZ7Jk7cT3XBLpBTtMGCu1eAr547y/Nx5HhvdykAyTdqyuv+LlMLWDYqJBBnbZqZRx48kXhTSCgKSpsnJUolSu00gJW5o0QrWpgOrzj2lUjiGQSQVQSQxNQ2pYjVQP4po+T5+GHWPtXQdTRPM1Ot4nRTihu+z0GzidwTZ6p5Hue1S8zzKrkukFEopbMNAqtX3iZTq1M6IeTBl16XgJKj7Hu0wIGPH2hyRVEgpoWOkSRXhygaGNIlURKQCUnoeR0+jC6NT/U9hCYcWLoF0UZ3/AunRjKo0wypJPYelJ0CIjoFwSU+pWGUwUB6tsEakQtpRHSE0QuUTqQBftolUQKR0TGGT1HPYWhJF3AZDGN1qhxu4edgwBq4CP7rzzms6fsl9g+OV/8mS+zo9zu0dhqneTY+6f2Cc+wfGr7kdQggcw+Q9l3Fxn6r+PlPNr+OGS/zfd/8atlZcpXIlhGAoleGv77n3Te9jCJ2fvOX+a27jtUCI2PW7JVu8IdczNI1t+V625d9ceGi9tti6wc/f8/gNaQtA0rD42KbdfGzT7ms6756BMe4ZGHvzA68SGctmd7Gf3cX+Nz+4A6UUoWry8U3DGNq2rmb8taLHSfLBse18cOzKsW9D0/jg+A4+OL5jzd/KXpunp8/wJ+eO8qmtt/Dp7bdxe+/wmmwMpRSLbpPz9TJPTp3mZHWRHfletmR6yDmxUZw0TRzDwDYMQFF3PWzTIGVZJIz4/0+XyxiaRsa2cQyDc5UKGcte5dExNMG2YpGm7zOUySCVYrbRXGXseGHETL3OUDqNZei0goC845C1bc5UyiQtCy+KqLguC60mScui6fu0hcCPIgIZUfO8zn0CBtJxcaeZeqN7n95OZc5ISbYUCrEcs65j6QYZ2+6Ma512EOBGEY4Zi57lrUFqwTyh9LD1FLaWwtQcBIKUnsc3B4gI6LHGMAIbT7YIlY+pJfBkA6UknmziSxdLczCEhSdb2CqFLlZqvBgk9RxSBQTKI28OMu+dpUeNomNgaQ5lf4as2QcoLC2BIUyE0OixxvBlu+N1uPEl1HVhkzRHu7UUvtsh1M1Q2fkux5L7Bicqv0HFO85DQ79M0hxepVh2s3Cq+vvMNJ/Ej2o8NPzLWFrhXSd5uYHvDEgVMtV4goX2S4yk389A8oF3rC37F6b5Z698g5fnp/jf7/8hbusZIncZwaaa7/KbR1/lPx14hu/dspePb9rNw0Obr3h9qS7Wj7g0RflyKcvQycSAblGtS7F8rrbCeyFW/HwtuNK5snOf9UipV2w/kksLCF3820UVvliWfFkP5nLHctm/SxUBAk1ol73u5a99+TZ+NyNeti+qJN4Iwu6GZ+AmoGjfwj0D/2+ngtb1S7BeKzZnP8Wm7Pd1K3dtYAPXC4VkrvUM7WjhLVS9uzEIZETFiytn2rqBdgV9hlBKzjUqSKXIms5VZTCtFa+98s/d3wuB9iZ7qZXnvhWz/ErnCq48w1whqfpN7npj5q211Riv5bobRsB6CGSLE7WvkjT7GHT2kTDeeih3Y9t4ExDX77bQNRshtBtitV0NtE5sLb7vlfW4N7CBy0GhUCqi5B0iUt5NKlN19UgYJqPpmN/y1NRpLjSqq2p2QKd4WbPGN6dO8dTUKXShsSPfx1j6zfXfV34ry/++3M9XOvfN/vZWvsm32ob1/i6usOMWK/671mOv1L7LXffNrr2B1QiVy5nGkzSCGaIr1NO4FtxUz0AQNWiGF6h6J2JNcBV0FkoHS8+TNbeQNIfXjUcGUYN2NE/VO4YbLSBVhC5sLD1P2pygYO8GsXagVL3jlL0jGFqSoeQjBLLBorsfL1oi6sh+mlqGweTDnUIRGl5UZrL+x5halqHUe7qlLC+FGy4y3XySUDUZT38cWy90ZEkj6sFZ5lrPESl31Tlbsj+IqaVZr4znMmJXXkDNP0MrnMYNFwlVE6UUunAw9QwJvZ+8vbtzrfiZQ9miEUwy23p61fV04bAl94NoWOtOAnX/LDX/JF5UYjzzMWr+aerBWfyoiiLEEA4JY5iivRdTz66p8qZQhLJBwz9P1T9OIBtIFawrT5qzdjCUevSyz341UEpS9g6x5L5O0dlHyhilEZyj6p8glG30jrxr2pyg4CwruIkV58fV1xrBJG60gB9VCFULpRSmlsIx+kgZo2TtbZ0zBVLFSmtTzScwtRSjqQ9h6uuXG24EF5hvPUeommzKfApNmNT8k5Tc1xlOv4+qd5xWOINAJ2kO05+4j7J3mJp3HEmArRfpde7C1ntWvS+lJO1wnop/JB4TshWTuvQMGXMzGWsTll5Y9Q00gvPU/FO0w1kmMt9L3T9NPTiHH1WQykfXEiSNIQr2Hiw9v+rd1v0zNIILtMN5vGgJN5wjUi2mGk9Q90+veubB5CPkrB1rxpcf1WgGF6j5p/BlFaVChNAvfvPWFpLGCIZ29dLIRSfBw0ObeH72PN+eOYsfRWzP95KzHExNw4tCyp7LVLPK4dIcJa/N+0e3sT3f8x0twbyBDayHSAW4UY2yf5ZRec9V1IC4Otw0YyCQDWrBKWab32ah/SKBrHcqggl0zcHWC4ymPoyp59YYA4FsUPNPseTuZ7b1DO1wFkmELiwcvZeCfQumniZlDMdKUismw4p3lDO1z2DpefL2TsruYS40vkornO5OpqaWpmDvwdDiVDUvKnGy+tvoIknW3rZmkoS46EcjOM/xym+gCBlMPNJVtlIoWsEMFxpfw48qRMrFlzWk8hlNfwBDS16WoBIbAhFV7yQzrT+j4h2lFc506oTH7n5Ly1Nw9pA2x1dpe0fKpRlMcr7+x0gVEcg6oWxh6Rk2ZT952RBFLTjNZOMrVLwj5O1dTDW/Sdk9hBstxguGsEhbm4GIvL2XhNG3+v1EdWrBaWaaf8aS+yqhbBPJNqFq4kd1FCGO3ouuJRlNfeCtGwNELLn7OVb+DSYyn6AncTsL7RdZbL+KL6sINBLGIL3OHThGEUfvXWN8Vf1jzLaepe6fwYuWCDokKENzSJnj9Di3Yek5HL2v02WSdjjLqervoaHT49yBriXWGRc+Nf94d1yMpj6Crtksua9zrPzr2EaR2eYzlDsCJzl7J0ljmJnmUyy0X8SPqiSMATRhMZR8T/d9SRUSyBrzreeZaT0V65rLRmf8ZuhxbmMw+TAFew+O0dM9r+6f5ULjT1lsv0zB3st08ynK3iHccIFIuR3p1M1I5VOwbyFpDnafpRGcZ6H9MhXvKO1wllC1kGHAfOs5ltz9q547bY6Ts7azcnz5UZ2af4LZ1rMstl/Gl3VkxwDXtQS2XmAs/RGsZOGajIEeO8l7h7fw1fPHOF+v8OVzR8nOOPQlUti6QSv0mW83aQYeSsW1IX5w6741Cp4AXtQgkE0C2SJSAQKBodlYWhpTS2Foq8MKy+p6blTBjxpIgk68Nq5nb2oJLD2LIWy0S8acVBGR8nGjCoFsd6vjCaGhYWDrGewVxnasyLmIL5skjAKmlsSPGrhRBalC4rnTxNLSJFcQ6pbnEDeq4EWxYR7fJ25fQi+id0h5oXSpBhewtSwJo4AuzM7c0aIeTGNoCZJ6EUtPdzgRIVX/PJaWxtazmNr1FdeKpE+g2viyQSi9VX1hCJuEUcQQzrocp/hbiM8NZAupothfIDQ0YWJrGRw9t+rcWNU1wJO1eH5Sfnye0NDQMbQElpbCXmHgx+f4eLKGHzWIVNjhaZiYmkPCKKJxsRqmVBHtqEw7LJE2+rH0teWx3ajafX8FawtCCPyoiSfrBLJJ3tpEOyrH41H6xHO+ia1nsbQUhmax/I21wzKBbHYMgTN4UZVmuEDZO40X1br3TOhFHCOPfo0VK2+aMbDYfpXJxleZanydvL2bodR70IRFKJu0wlmW3NdpWOeI5N3dc5a5jEvu65yrfYG51rdJGaMMpR9DFzatYIaaf4qT1d+mEZzltr6fI6H3r7v79aISs81nOFL+L/Q6d9GXuA9NmJ2CF692FnwTTejYep6+xL1caHyNRnCOlDGMc8kC6EUl6sFZ2uEcY5nvwdJz3Rcv0OlJ3Mqt+s/iRzUq3lEmG1+lEZx5035SRHhRiVfnf5FGeAFbz5OxtlKwdwGCZnCBenCOZjCFpa9W6DO1LH2Ju7ij7+cJohpTzW+w6L561TW4vajMwaX/SM0/SW/iTvL2TgQaFf8Is80/oxlMsj3/Y4ynP7ZKvnah/SLnG19mrvltRtMfpj95HyCpeieYan6DVjjNpuyn6HXuImNtuqq2XC2mW99g0X2ZQDYYSD6IJiyq3lFq/mkq3hGk8thV/MlOvfCL4+JC4+ssufvRRYKctZ2kOYRUIUvua5TdA1S8w0jls6vwNwAdTZg4Rj8DiQc4W/8cFe84ppZdYxi1wwXq/lncaImx9Icw9dQKdb8mJyu/RdqcIGttpRGcZ675bVAR9eAcPc6tNIMLVLyjHCv/OoPJR0DFbfajKjOtP+O1xX9ByhiJjQhzGIFGyX2D8/UvUnYPMpL+ADvyP7bG+PFlLX63wSmK9q0MJB9ACJOKd5jZ5tM0gvNszX6azdkf6PZTrHF/B1lrK5FyeX3xX+EYfQwmHyFvr86IyFs713x3C+0XmWx8hdnW0+SsnQynHuto5DdohjOU3QPU/XP0J66tkJZjmGzJ9fCfHvkkv3P8NfYvTnO+Xmb/YoVIKlKGRX8yzfbeYW7tGeLjm3czksqtItstL+rTrVe40HqBudYbNMI5dGFSsLcwnnqQ0dR9FKzNxIVnlqWsIzxZ50jl80w2n6cVLhB2DJyEUaDf2cfW7PvptXesWVi8qE7ZP82x6peYax/Ak/GEbWoOSb2HrZkPsi37wW68VxJysPKHTDaf59bCpxlK3M7Zxrc4VvsSzXAeDYOcNcZY6iHu6PlL3ftIQtpRmaOVL3Cu8TTNcDEusKRl6Xf2cnvPj5IxRzCwqQYX+MqFn2FL5nFuK/wwKbMfXzaZab3CN2Z+gYHEXm4t/AgT6YcARTNY4KsXfpZN6fewLftB+hPXV5ehEc4y236DyeZzlLxTtKMKALaWJm9NsK/4F+l39mLgrPGOtcIl5t3DnKk/xbx7CC+qogkDS0uRMgbYnHkvu3Of7KYfLpPrasEFTtb+lHn3EDX/Ap6sY2g2Sb2HPmcPo6n72JJ5rHtOhE81OM+p2hOca36bZriIhk7K6KPP2cOtxU+TNUdAxZlhgWxxuPxHHKj8Hg/2/TTjqYdImqu9yuebz3Ko/Fla4SKf3vIZdAzm3UOcrn+TqdaLfO/4/48j5c8x3X6Vmj9FpHxSZj/bsh9gIvUweWuiS2Q9U3+SC60XKPunaYaLABypfpGj1T+mSyREsK/waXbnP0l6haF/NbhpxkDZPUjFO0TKHOXR4V+LK1exLBuqUCqMXf+XWOKBrHKi8r9ph3OMpj/Ebb0/t+rcRnCWI6X/xlTzGww0H2Ig+SApc60YRdU7xolwkXsH/hU9zh1owlxxf8nKEqamlmY0/WGmGk8w33oBR+9bYwxU/OPMt19ECJ3R9IfX1PI2RIaifWv8by3FgvvSVRkDXlTqTNqn2ZT9JKPpD9Hj3Nl1/SpAqVjf4FJSoEDH1PL0OnHqYyOcpOafxI0W3vS+AJHyKHuHeXj4V8laW9FFAkFsiT8/97OdhfIgBXsP2Y6muCRk0X2VUvs1Cs4+7uz/x12CUH+iTE/idp6f/Vm8qISt53EuW3L0+uBHdQr2Ldza+w+wtBwCCFWbudYzHFz6T5ys/h6j6Q+TsbZgrFBC21v8Ox3jz0ITVnc/G8g2p2u/x6nq73K+/iV2Fv5692+O3sNE5hOcrX+e6eY3cfSeNcZAyX2DJfc1dGExlv4edGETLoeKRLyruL33/0ITJmfqf8ShpV9muvkk7xv9XVLmKAvtFzlb/zxzzWeJlIshkkTKo+of5eDSf6THuZU7+36BpDnU7WeF4o3Ff8Ns69vMtr5F3t61hu0vlU/JO8RDQ79CztqOoaU641/y/Oz/yZK7n7J3kB7/dnJ2nPaXt3eRt3eikPiyzuuL/wpLz9OXuIfh1GOXvIm1BviS+xpV/zgZc9MVvvkQ/Tp2lwIYSmb4mdse7vDRO5yBFWXn490il9GHULy0+Kucrn8DQzj02NvZlvswoWwz2XiO10u/w+nGUzzQ93fpdy5K2pa9M+wv/QaTzefYlH4PY6n7MYRDoJpUvHNcaL3ASPIeNGf1VFr2TnOi9jWOVr+AImJT+j1kzWGE0PGiGkveSSRht3dWwo0qnGl8izn3EHPt1xlPPYilZ2mFiyglsVZ4UhWSqeZLvFb6TRbcw4yl7mc8/RAaOs1wgXPNZ5i+8DIP9v8MQ4k7MIRD0dpOxT9D2Ik1B7LJvHsES0tR9s7QDuPaJhJJyY/bmTYHyZhvrpFxOSy4RzlR/QqurDOaup+k3hOP8+ACk83nmZ/+x3xw5P+lx96GuaIA0oJ7hNdLv81062WE0JlIPUzOGkMS0gwWaYbznX68iLiuxGG+OfMLhKpNzppgPP0gGXOIULosusfQhI5cUYJYEXG08gWOV79CNTjHWPIBtmbeT6R8qv55zjWf5nzz23xg+J9TsLdgvcWqg1KFtMIl/nT654hUQNHazEjybhSKs42n2L/0P6kHM2zLfICh5B0A9Dq7SBn9tKISleAsh8p/yOb0YwwmbsVZIaWctyew9TfnylyKm2YMxC5VGz8qUw9Ok7W2X5wclCIuabniS+5gvvUC7XCetDnOQPKR7gK4XEzI1gsMJB9gqvkEZe8QWWv7usaArRfoTdxNj3MburBXEFgUF3mT8e904dDj3IatFyl7hyg4e+nnvhWTr6Thn6XiHsHR+yg6t6xKFbxoyV60zq4GUoX4UYW59rM4Rh/DqfdTsG9Z5WqKJ1Ptkvusf99rZd7qIkF/8l6y5hYMkey62TSgz7mbqnccX9Zww8WuMeBHFQLZQAiDjDWB6OgnQGxUpY1YP6EdzhMp94aTGLPWVnqc2zuGQEzONEiSMTcxlHyUU7XfY9Hdj6UXuhXEgE4usQBWEzpNLUlC78PRe2kEkygky1U2deGQsTaTNbdR9g7SDO8nkrd1DVilIqr+cer+GRJ6P0XnllVGpoZJxtyCECZap4iKo/cRKZekMdgpeZrG1gooJEHUQDccGsE5ltw3iJTHaPojHV6AsWIMQ3/yXqr+cbxoiSX39TXGgC5s+hL3k7W2dngmnTGvBL3OndT8E/iyjhstkCM2BuLri04BlxXfiBBXlaJqiAQaJoFsUA9OdzgF+iXf/EW357Vg+dmvVNPhcgilT9k/w6n6E/TYO5hIP8xI8h4MYaOQjKcf5mjl81xovciB8u/z+NDebhs9WWfBPUavs5tbCz9Mwih2QoOSSPkEskXK6McQy2Mi9kAcr32FyeZzOHqee/v+Fr3ODnRhxXwUIiLpYV7ipl5GPK7Okzb7eWzoF0joBQR6J1SwOlNozj3IZOt56sE0e/Lfx+7892F1Qomh9NiceR9PzfwTjlX/GFD0O/so2BOcbXyrSzwLZJuyd5rx9EOcbzxDK1ykFSxh6Vkq/nl0EbvI12vr1WIkeQ9FeyuaMDC1JBoGCkk7LFGwtvDq0v9g0T1KQi+Ss5LdfjxQ/j0WvaP0ODvYV/g0PfZ2dGGiiOdPqYL4et1Qi6QVlni19D8IVZvbiz/OUPIO0kY/mjBRSELpddpxcX640HyBqdYrRMpnT/5T7Ml/f2eOjz08Jf80T8/+C94o/y63F3+UPmfPdffFMmKiruTe3p8iZ412PBuKsdT9fHPmF1lyT5A1RxhK3hELiNlbkNYE7aiE3o5DADlrhKHk7aS6pZYFujCvOUQAN9EYyFnbqVtnmGk9xYnKb1F0biVjbiZljnRipKtj/TEUNf8UUYcYN9X8OmXv4KojIuV1SnIqvKh02bQnQ0uTsTatQ05cZzIRAkNLk7d3U/YO0wqmaYfzJI3YzdIKZmkGU0TKpce5La5FfQMWuVC2aEfz+FGN/sQuEkb/umTKm5UVoIt4sdK1S2N1okNm04mUR6guFj7ShImGDigiuZosGU+QXve4tSlFbx22XuyMn4tucSE0TC1LuhOSaAZTq9q8jHpwlmYwjRstEMgakfRRhFS9E3hRKZ5sl1nqopMVoiXoS97NZOMrNPyzNMNJsta27n2awTQKRcHZs/bdCa3DK4ndzpowY/6IMmLvhNDQhIHWWUgksYytF5VoBhdQKmC+/RyN4FyH/3ERrXCadjiLQuJFS2ueVQiTbMc7cum7dYwehDCQncXsRiFv76YRTjLfep4Tld+ix7mdjLWZlDGCY/Rd5pu/+YiUy3z7IG5YoS+3m35nL5kVLlRLS5OzJphtH2DRPUag2pgkuu/H0pK4YZlGOIej57GNXFdYZ738+2a4QMU/i1Qhfc4uBhO3dWLaV/fsCkXa7KfH3k7B2rzK4L4UZe80Ze8MQmhsyryXrDna/TaUkth6hoK1mVowRcU/T6+9m6w5hhfVu/H7ULapBVNMpB/uhDPqNMMFLD1N3Z8iafRgaWvj4dcCW89i65k11zCEQ5+zG0UcDrg4HhWNYJ6SdxpTS9Hn7GEgsQ/nTXa8gWxTD2Yoeaco2tsYSOyjaG99U67DvHuIejCDrWfZlH6UtDHY7XNbz2FoNgVrM4vuMerBHHnrrdc2EWgMJG6haG8hoRe74QBLS5PSe/FkreulAbo8m1B53X/rwsLUkm/JUOte/y1f4TLI2TvwZY1mOMVC+yXq/hny9i5y9k5y1g6S5hAJvX9NRkA7midSAUE4z5JqU+KNda+fNIY7BMD1H0EXdkwGuwrE9xf0Ju6m6h+nGUxT9890jYGaf4pWOI0uTHoTd8U70hswqUWqjReVAUnSGH7btQGEMEgaA6w3QeuaHe+AOtb3MgyRxNKL6JpDM5ymGV7A1LKAwgsXKXtHAEHKHLlu1borwRAJzHVcdJqwsfVYydCX5Q5Z9SK5quIdicdhcBY3XCJSbvxshF1vB11BlIsQ6AwkH2C6+ST14BwV71jXGKj4R2lHc5hamh7nTi7tx2XvwsqfNWHCSlVIxIpyxvH9A1nHi8ooJCX3IBVx9DK9IXD0vjXlc5fbnTAG1jVadXHx3aoblJYEsTHgyyrtcK7T12co2HvJWTvJ2dtIGIPrfvM3G5HyWfSOx14fJakHM6sIVwBeVEUgYjJX1MQwnNgTqWUZSNzKucbTnGs8jRtVyJljOEaBhF7A0lJrvCaNYBY3qmDpKXqcnSSM/DW3OWeO0WNvf9MFuB5Mxwu3lqbP2bPKABdCw9JSFJ3tVOsXaIWLBKpFzhrtEhu9qIoX1WiHZYr2NlJGP4Fs0QjnydsT1ILpmBy3Tinfa4MilB5uNIcvmx3p4iguTtSJfwey3fF+xBuLejCNJ2v02jspWlve1BAA8GWTRjiLLxv0ObtJmwNXRXos++fwZZOcNUpvNyMphi4MbC1Lj7ODUu0rtMIlfNnoeoOuF0JoDCT2YWqJVamshnBwjCxtv0zwNmp83DRjIGH0M5J6nKK9jzO1zzDVfIILja8x2fgqtl5kU/aTbMl9GpPVu+xItgFJ1tpGX/IeTO3yAyCpD5Ds1I++FJow1sT1rwzBYPIBJhtfohVOsdR+jf5ELMdbcl+jGU5h6fkbqsQWs409QGBoiZuyk74SBBqmnuVadmu6ZlGwd1MPzjDfeo6Tld/qlOpU1LwTTDW/iallGE4+uoZ3cUPaLLR10zQ1oXffd6R8lFpOt5EEssbri/+SenAOR++h6NxK0b4Vx+jFEAkW3ZeZanyDRjC59n5o9CXujcMI/jlK7gHG0h8BBIvtl3HDRTLWZvouU650Pff6my2EUgVxiAWDscyHO2GC9bNRDJHoGq2X3mPZK/F2IWkOMqZ/mB7nds7U/oip5tc5X/8S8CUSeh/j2Y+zNfcXMUjcEM/a1UKqiGYwD8Brpf99xT4xNBtfNnEoADpZc5hbCz+ML+ucazzN6fqTJI0e+p29bM08zkDi1nixWWHgtMIFIuVj67kV7ttrg61nVsWBLwcvqhEpn6TRu6ZI0DJSRj+6MDtZFA3y1jgCQSOYwxQJ6sEMCkXOHKNgbcKTderBNFJJqv4kfdn3Y+npda99NVBKxgx47wznmt9i0T2OG8ULXSTj+gSxP0SygmFCK5pHKYmj53GuUlQnVC3aUQkQpM2hq65p0I5KCMDSMuu62IXQSBn9CDQ8WcGPahhXPb+tr9QhEKSMvnW/ba0bConWnniTcFN1BjRhkTJHuaXnp9ld/EmW3NeYaz3LTOspDpf+K15UYkv2L6xinOtaEoRG2hxnJPV+ctbOm9nEVUibm8lZ21lov8yi+xKSvwYoFtxXiKRPT+J2UsaN04zXhIGBAyjcaKlrFb+duJ7FYij1XhyjH6k8Ttc+w9n65zBEAlvvJWfv4J78PyNrbb3sAvZWEC+Ua9noiqhjSNJJUYrvHcgWp2ufoeqfYDD5MGPp7+mQ4VZ4o8K5K+pAaFgMJh9lqvl1qv4xasFpUsYw860X0IVJ3orTBW8UNGGhd9KshpKPkrf3rLv7vzLeGbEWTdikzQn29fx99hR/ikX3lQ7R8dscLv1X/KjM1twPr8vzuZlY5oLckv8UGWvksn0jhE5C7+mOXU2YZMwhHhv8BWrBFNOtV5luv8pU60VO1v+UsdT93F78MfoTe1jPM3Q90sPL7bg0VfFKT3e5Befi3+MWaZgkjB4SRpFWuIAipBWWyVkj2HqGHnsHF5rPU/HP4kd1WtECeWsTjpa9wvWvjIp/jiPVL3Cy+lUsPc3O3CfIW+PYehYhNNrhEt+c+SeXPV8IgXYdGyXtKngua3E1Elsdbs3VXE1JFJdf0E2ReEe+0/VwU42BlQQ3HYce53Zy1naGUu/hpbl/yHTzKUZS7yfDpu45WWsbC+0XaUcL1PzT5O1d6177ZrW1x7mLVjhHO5xlsf0KcQy3TMYcpzdx5w2N35tappsuVvNOxEI4HfLauxntcDbOFnGPsK/nZ+hP3BvzDogJYvGO9PJxzrcCLyrjRotrfh90eCbQCSF1MgkUIQ3/PEpJCvZestaWS/KRZYckuX4GxvIzDKUepeofo+odZ7rxTXL2TgLVoM+5h6Kz74Y+q6P3dDINXqLUIcka15nffb3oeqmUurr5cfm8bgpqTMztde4iZ+1kKPkeXpn/Raaa32Qs/T1vqzGgCZ2MOchsW5C3NzOcvBP7Moub6HrpLrptl/+SNgfZknmc8fSDtMMShyuf5VzjWSabz6ELi14nLrKUNPrQhYUvGzSCuetu99XMAwm9gCkSuFGZUHno6wiNNYJZIuVjaikSRg+CmIwW8wZil32vHbc9b08w2Xqeij9JyT8FQM4ax3oLMenJ5nMsuIdxjAIP9P80fc7uWPcAjUC2CS/hHi0/e8ro7xgLZVrhWl7MejBEkqTeQ8w/m7pqdb603k8zmMeLquv2o1KSRjCDQuJoeexOmrcujJgUqsJV2QnLCGUbN6xcVRuuFrEpcuPn1pvkl1aEstURzokhRPyR2XqBhDGIJkzCjoDERYgOqz9PK5xmof0SXlTp5m13r64UgWwSqWCFO/jGoGDvJmWOEsoWS+5rMatbuqTMsRtumCwr52WtbbSjeZba+2n659ccp5REqgipojV98U6gFc5RD84SKY+ctYO0OU7KHOuQQ+OJ8GaRHpvBBarecQLZ7PaFVBFuOM+S+yogyNk7OzwGiEMwcTW2uCzr6vFS8g5S808SvgmRLmWMkDYn0DWLJfdVyu4bKBWSMbd0My1uFJLGMHlrJ5owmG19m3Y4RyTXekOiDvnrxnuURIeUmYqJlqrVFYlZH/HONJTNbj8uS9DG3/wy6dMklM0r7pRuBnTh0O/cgkCj5J2kFS5h6+mO6M/F/1laqsuniMlcy99d2FEDNbH1NEm9l5w1wXDybiQB7bC0ioOQNUdI6AW8qMZc+yDtsHzTvtucNUHGHMaPmky3XlnVt1JFuFGNBfcIhpYgZfR34u6CrDWGLxsd/kSdvLUJEGTMISwthRdVWXCPYmtZHD3/lkoI+7JJKN1Y08HahK1lMbUkhuYQqYAF9yhruToaWXMUR8tRD6ZZ9I5f1aJq62ky5jCWlma2/Qb1YIZAvnncvcfZgaPnaUUlZluvrfpbpALaUZl59zAJvUjK6MPS0gi0TihH0AyXcKPV7av5U9SDGfwV6+CNgCaMLl/Bj+o37Pu/KZ4BpRQV7yheVMIx+jFEEl2zUEoSqTaNYJJIeSSMwTU6AxlzM3l7Nwvtlyl7B5hrfZuctbNDrlMdN3GbZjBNb+IuLD2PfgNtmpQ5QsoYQdOsrmqcrtmkzJF1XcHLAhexOlyEUhG+rHQJbG5YQhN2J60olmXVOoulEDqWnmUw+Qinar/HfPs5AIqyjqmlAA2pPALZRCDIWFswtUz3voqwo6oYoZQklI3OxCVphwtYmhe7G4nz63XtxhEUl0mXdf8UoWqhYXTipnFdBsfox9F7O6zXG2cY+LJKzT/NfPsFMsYEQhj4ssKSu5+qd5yUMdJJp4v5A5owSJvjCKFRD85S9Y53dAYEflRjtvmtDlvfWjf8sAxTj7NTqv4Rqt7xjhJglpQ5inOdceHLwdZ7yNrbyds7qXhHmGs/hy8r2HoPmjCQKiCULl60hKElyNt73hLT+1LEBXh0UsYYrXCWmn+KsncYS891x52j960SwVJKUfYO4Ud1HKNv1TcfqhZ1/wyR8jpE2ZtfwXMlDGHRn9hDxhxm0T2Ko8XZAJaWRRM6kQo6KnUBmjC7u+RYYa5E2T9NUu/F0OyO4mm84/NlKyaJataqxTJhFCna22iE8yx5J5lsPkevsxOjE+qRRITSRQidnDm6RvXwWlC0t1INzlP2z3Km/iSOlu3kmAtC2abkn6EWTDGYuI2CNYGpJZBKkjVHKXtnaAbzJI1e8vYEQByf13MdPZGjpMw+TC1xDSGLtVg2snzZoOZfYFm1NZAtqv55ltzjrJ0jBEmjl15nF7PtN1hwjzDZfIEeZ3unH+O1IFQ+mtDJW5ti3pBwSJsD9Dt7mG2/wXTzFSIVkDYGMDQbpSIC6QIKU0uStWIPVb+zlyXvBCXvFGcaf4bTIYfG6pNVlryT1INpJtIPkzbja4USsp2UwLJ/irTbhyEcdM0kkC6zrdeo+OduOBdsWaHQEA6VYJKKfw6IFTGVklh6GktLXfOccJPCBIpz9S8y23yalDlKxtqMpRdQKqAdzlHzTxDKJltyP7BKlEYIgamnmMh8AhBMNZ7gjcV/y0DqYWy9iFIhflSN3dTeYR4a+mUMLXldOZWXg6ElSZvjZMwJKu4RFJKCs4+UOXYZV63qCLy80ZlQPOr+KbyOlbjQfpFEMIChJTG0FGlzgpQxzPLgN7UsW7I/xHz7eZbc16n6J0m3xshYW9AwY019/xymnuG23v9P1xgAiR9VqfhHO16YNnX/TLdOwFzrWWy9gC5i6eekMUxSuzZFqvWglCRljpCzYqbzgdJ/6D7LMlve0XsYTr2f0fQHyVib1qTFvRWYWhovWuLg4r+nL3EPhpam5h+nHpwjUh4T2e+Nc/g7E+xyvr2p/RZzrWdxowVqwWl0LEreARrBOXRhk7E2U/Eux9qPkbO207DOMdd6nsBtM5B8kKRx9SSlq4WuWWTMCbbnfpxXF/8px8r/g5y1jbS1CUvL4ssqrWCaRnCOvL27My7eKtt7NYTQGUg+yLn6F5hqPEHVP0HO2tHVQ5jIfpwe/TZgORtTcbr6GRbdV0kZo526CUVkJxW45p8ilC1Gcj+EfRXEuBsJXbMoWJvZlv0AJ2pf43jtK8y6b9Bn78LQknhRlXo4jS9bFK2t9PbFMsuh8phzD/Lc/H9gMHEbGXMQS0ujgHZY6oYHeqzt5KyxTr8JBDpbMu9DEnG8+iWen/9lxjuLiEAj7Ej/WnqWO3v+Cmlt4LqfrcfZhi/rlLxTnK5/Ey+skrdjI7kVLjHZfAFTOGzLfoCBxL64jUDenOB49Cc0wjlsPd1RXozTjZN6T0ys9Y4znLzjLRkCEBssi95xplov81rpN9mUeZRIhVT9SerBDFKFaOirXN/L/bgr90lC5TLTepUXFn6FsfSDZMwBlIriLIiohKlleLD/p9GEjhDxbn1f4S9S8k5xuPpHTLVepsfZQcroI5Iu9WAahEbR3sptxR8BYDB5K7Vgkla4xOnaN3DDMkV7C6EKqPlTzLkHsbUMu/PfR9Yc7fZVf2IPaWOAufYBWuEiZe8sCaOHWjDFvHsYqQKSZi9+dOO8A7GEeh85a4zZ9uvowoxDOVqKUPkMOPvoc3ZjXyPp8yYZAxoDyQdQKqTiHWWq+XUi6WJoKSy9SMYcZ1fhpxhJvw+xThMK9j5S5ggjqfdxtvYFFlovEMgaQpiYWoaUMcjOwl8nZY5fB7HqzZGxttCXuJe51rMA9CfuJWtuXvdYRYQbLvDszN9d9+9Hyr/a/bepZdiW+2F25P9KV7RIoOMYfTw0/CtM1r7MQvslqv4xSu7rgIal58mYE91CNsuIlMdi+xVenP+5de97YOnfdv+ds3Yykfk42/I/ck39sB7a4Tyna7/PbPNpHL2PweTDGHqaWM4pIpQNFtv7OV75DbxokdH0h+hP3v+W77uM/sQD9CbuoB6cZbL+ZbxoCVPLkLW2M5x6jM3ZT7FylyEwyFnbubv/lzhb+zxl7yAl9wCaMCnat7Kv5/9AExZL7utvagxkre14iRJnap/FlxWGU++5abHv5aJZj1qjnK5+lpJ7gOnGE4SqhallSRqDDCYfoTdxD9ZNWFwFBjsLfx1TyzDffp6qd5yF9ovoIkHGmuikYnaOFaCUxlDqETRhUPGOrfjm09h6kYy1hT3Fv81w6vG3PWsmbqPG7cUfZyBxGxdaLzDTepXD1c8jlY+j58iYw/TYO9mceS/L48fQbLLmCOOpB5hzD3Ch+QKSEF1YJLQC/c4t7C18ioK1aY0xVrS3cZvRx1jqPo5Wvsh0+yW8Rr2TwZMiYwwwkX7kurX+VzwZQ4k7KFpbOVL9IqfrTzDjvoFSEY6eYzh5B7cXf4ysObLCaBX0OtuQKkITOgmjh5Qx0A3tpcwBMuYgtWCSHmsHGm/NmB9J3ouppUgbA5ypP8XzC7+CpaXpsbcxmryXbdkP8ZWpn1130zCQuIW02c98+yCnG9/kQus5vKgWh1i1LFlrhIn0I6sIwIZwGE7exYdH/y0nal9lrn2AM40nCWQDQyRJm/0MJe6kp1OYbLlPtme/h4HEbZyqP8Hp+hNcaL2EJgxSRh/jqQe4tfDDZK2RFeNXYIoU7x36xxyrfpG59hucqn+dSPkU7W3cXvxRpAqZcw8w2Xj+LfXhpUjoRR4b/AVeXvo1lrwTXGi9jFKShJ4nYw5fV+hAqJsSzFKE0o3Ln6ogJlYoum5krx3x3JNnGZ8YZmJLP+nM2gVddWJ1oWojld+J9S4XtNTRNZtmVXHy6Bwyktz7cOzai3fJcdzS0FLXRbySKiRSLkFUB8DUs1QWfXxXMjLes+rYbpGQyxDQVkFomCKJsaLy4PI1QHWfdWUFwOpSGyfhkE5lOnn7ohvPjJSHf0mcaj1owkTXEt0JK3437Y56V6bDXF/dnki5BLLeKYuc6Pbj64v/isX2fpLGEPt6fiZW9ruEaBNJl6dn/jqmlmM0/UG25//Sm/fNFSBVwKnq73Ks/BsMp97LWOaj5K0dhKqNQiLQOu10Vrzv1c8jlb9mLOnCxBBxn8YCPM04N5/1hZ6Uksy3X+TluX8ESN4z+hsdt7ex5rhQtQlkIy5+I1IIEbttl3k0yxUKI+UTSZdQtnCM3lXEy5WhoHhMRF2CqejUT4hDUBcVNiPpEioXqTxMLXuFd9tACB1jxbtd/Qyd+gqq2RmTYbffNAxMLX1JiO/iN7/cVpQCoa16P5e25+1GJH1C5XUL14BiuXiNJsxOwSGzKwAjCTvFcQKkWk59izkVujAxRVy8ar0U0phzEBKo1gp+k+juek0tgSHs7rlKqY4QULsTU7869/zFUGW78+6XiwAJdGHFWgiXjCtQtKNypxqstUoLIZQuQeddxgWcYgGmuP0R4k08fWFUIpRLmPogmkh3x3koPUIVFym6OCYsTC1BOyqjCwtDc9Z4emPeRhwai1jdjxoGhuZ0Mogu+eYJO2MyiDU1uuRshd45Z2WIZnkuD7vfUETsftc6BeOSa4jRy+cEnWJIMS9JdYobxd9V/I3H6Z/xPOARKpdQup3iR8aab8INK0SE6MJcV19h+b5+1CAi7HLnhBBYWnrVuLpa3CTPQEwcMlg7ybRbPuW5MudPVhmfGKa0WGdupoLb9in2ZgiDkHrNxbIMkikbTRfMXGhQ6EmTTFpEkWR2uszgSJFcPgkKPC9ESsnsVIXSYp1UxsFJWCjZprS0wOBwnlbTw3ZMir1pzp1awLINmg0Xw9BJpZ3OfcrkiymKvRly+XS3QmCz4bI036Td8hkaLXDs0BS+H5FK2aQyNqZpcP50i/7hPJom8NyARt2ltz9LGEQ0Gy6aJkilLSLpUiuXSGcT2LZBJBXzMxX6BnMkEhb1qhefO5BDCHjj5Rn6B3Ns3p4lX1gtKHK5ifzNYGhOJ6XxMm9PiMteu+od77i+Bjt6+Ws/DlNLd4pSXTTMbhTiD1rD1DOYXB3DOZ4UbXQuH5vVsS9bongZbrRIM7hApFwGkg9gapl1UxKF0DBFas1u0dDW9qkuLHTdWlOEarndArNTavvqoGsO+mXebSRdav4x8vY+DCNBJF18WaHkvkJf4sFVk0dXYlpcravx8t/89aLmHcXWe7EvU1L8eqBrFjpXF9YRQqBjol+Hznt8fsyfuZb7LZMZrw0SRYAuJErWsfU+NC0BKiKI5pBKootMTECWLhIPgUFCz3WUKD28cBJDy6GJFLrQ0XQbJTVCOY/SRlAywo+mcP3DJKxbsYyxdce+UgFStZGyhehUjIxkE6V8NEIsFIYRF5eLZBOpGvjREgl9NF4oowq+ctG1NJpIo/A74lhthGqRNEZRBB0xtBZSNTA6WjRBtABINJFA17LomCjRRCgXhMDUB5CqScN9HqVl0I0J0C7q1MTfmxHH3Lm6cb98zpXemUmClVnWhmZjYMMVxpXzJkJVy/d9s+OuBTc1tXB9qNhqk5JsLklpqYHvhei6xuSZRYSASEoy2QSaLpidrlBZatBsuiQSFpqmEUUKJRWWZaAbcVkSKRWTZxcxLYP2fB3D0HASFpNnF8nmk8zPVElnHLL5JJNnF0llbKRUpNMOhqkzM1WmstTsGAhabGisgNv2adZdpFScPTVPT18Wzw0oLTXiRT2SKKkoLTVot3x0U2fyzCIIkFKSTNrYtsn8XJUolDgJC7fls7hQo1pp4XkBjmOhlELTNJRUKBSlhTrJlP2uyCIAuoRFgX4Zd6+kHS0QKQ9DpG94PP2dgkJR989R8Y6ikAwkHuwwz9/ZNNBItvFlBaVCdC0dfwsqRKkg1uwgVroU6CgVUvdPYOl5DJFGCB0pXRrBKfoSD3SyAWISqqElCWUTSYiG0S3wFKkWhpZBF6vLOYeyRSBrgOp4QnT8qIyuOSwnLVlaAS9ajAVVOgp0hpaOd1ZRvSPNbHWu16Dun0DYBjY3ttjVnzco5RHKJfxwEjDQtRxSSsJoiSCaRRGQMPcgVYsgmkMIkyiqkrBuBSJCWSaMSgRMkbD2oFREJMsE0SxgYBqDKHzCaJ6W/waWMQ6MwDo6IgqJlA2CaAHb3IwA/PAcUrUBRRRVSCceJYqaBNEckawghIWlj+CHM4SyHBsSQpCwbiOSVYJwFqmaCOFgMUIkK53ftdBEAvRhgmiWMJojUi00YZGwbkXKOl54AaU8dC2NqfcjVRs3OIKpD2BoPW8xAPLnC2+7MZBI2gwM5RkcLjAwnOf8mQUSSZuJLX08+bUD5AspNm/rp28wR+BHfOuJw4yMFamUWiz4NXL5JA++dxeGoYOAKJSEkSTwI6YulHjfh/dx9OAUlXKT0fEePNdHAK2mhyJe1EuLdaJQMrG1j/7BPArFn/3pIUbGilTLLZqN1axyJxHryPt+RBhKKqUWDz22mzPH5zh1fBbd0PjgJ+7AMHRmp8uEkWTnLSN87YuvkS8kGd/cx8BQHtsxOXlslp17h+kbyHH6xCxnTy0wOJRnca5O4Ids3TnIzltGMXQNoQn6BnP09mfJ5m68tO/1wNJz+EEsOetGS/HuV8Wut7gISJvZ5jP4UYWss5XEZRQi3+1YLiISKwHGbs4ldz9L7mvYeoHB1COrilW9U1je2SsUjt7faWubSLZJmGNI5eJHJQQmurDw5AJl7zVsrZeUOYGhZ1gOqbTCC7SCc4SyRcIY6nhBmugigaUXcfQ+GsFpcvZeEsYQWsdroJSiHc7QDM4AGkljBE2YlN3XcIy+jsdBo8e5n6p3EEvPE8gGkWqTtXbgRxWawRl0kcLS8/F3Gs3ihrOkzE3vUM9+50CqNl5wjlr7CXLJDyCEIIhmaHmvATot/3X0dJ4gmsf1j5CwdtNoP42pDxHIBYJwEkMfoOk9j6H3gpJ44Sma3ivkEh9keXwsy1cLkYDLGMECnUjW8MJTJOQuND1N09sPhGhahpb3Kkn7TtzgJEF0AakCHHMLIGh6LyKEiVISLzyJZWwiCGdoei+hCEnb9wEaQThHw3sOgUHKvqdz7gsoFRHKJaRsYhmbcf3D+NEFdJFB11KdNitUR/VVvAu+33cT3gHPwGqkMg6lhTrlpTqFYjy5WLaJacbs0vHNvbQaHuObe4kiRbXS5Muff5U9+0axHZPzZxeo11xGxooUiileee5kfN3ObjqbS3Ly2AwyknilgOe/dYxWyyebT2JZBqalo5RifEt8n7FNPfT2r3bZLsxVmTy3yMJMldHxIo5jXixi4Zjki0m+/EevsGPPMFEkabc8XnrmBD29aZQCs3OfZdiOiaYJMtkEQyN52i2f7buHqFfbzM1UuHB+iW27htixe5hGzWVhtkqxN83AUP7teSlXwGj6Q5ytfZ651jM8NzPFcOoxTC1NqNq0o3mq3nGW3P04ei8j6Q/cUPnmtxeKVjjNmdpn0LFZ8l6n5p/C1FJszX26G/N/pxEpl1DWGM/8Rc7VfwdN2CT0IfL2PhxjmPO136Uv+R4CWWXJfR5dOAynPspM86tokU1au0iMLbVfQiExtCz14ASgx2mAgtg1KyBUjU5q5upd4ZL7PL2Jh0gZEygCat4xLKNAK7wQx571AqBoh9PoWhKJT6TaaMJmvvUUCWMUqaq40SwKxebsjzHZ+MwVlSE3cBGasEk795Gy70UIk7Z/HDc4iaH3YRmxsBkqRBNJ0vYjhNESUjUJohmk8sk4D6NUizBaQggDXcuTsu8jad8Tj3PhYOh9GHovjrnjCmNfR9PSGNpK+WCJbUyQsG5BqRaRbOAFJ7CMcRLWLehaHoAgmiNl341ljKN5Jl5wLg6dmFvRtTxJ+46uh9QxdmDovSTtW1FK4QbH0UQKISwMvT/OXAuOknEeia/XKYts6gPoeg+WMYZ1A9Vk/zzgHTEGkimbj3z/XZimzt7bxpGRjMumdrzOuqGjaQLlwMOP7SaKJIapAwIlJVEkMa1Y+WlotIiSCtPSmdjSj5IKBAgtlgLdvG0AXb+oihYTL0DTBEbnPgAPP7aHKIowTB1dX+3+7hvI8YGP3obs3Gd8az+WZbDn9nF27RtFaIIwjDBNA5RCKgVyxfPoGpqmgYBHHt+NYcZx9qHRIn2DOWTneZSMwydK0Xle+PAn70DT47a+GzCW/ghJY4iF9ovMt1/kVO13kTLo1IJI4ui9bM/9KOPZj5E0RrpKgN+J8KMq040n8WUVU8vQl7ibgcSDjKQ/8E43rQvVKYM90/wKOokOh0NH61Q1s/QiFe8AIDG1HG40z2zjqygCpPRo+qdp+CepByex9X5C2UBDI2XtoeGfZNnFr+KPB1NkqfnHELZJcgX/IWmMUnb3U9eO4+j9VL3DGHoSpWTXgzLT/BqBrKNUiEZsUFS8g6TMLUjlYes96FqCdjDNTOur+FHlTcSONrAaF+ctyxgh5dxN238DQRJNy6JpKSJZptT8HdzgOCn7HhLmXrzwJIuN/0kQztKT+cugAoJoDtYQ0BSRbFBufZZ88mNo62RyhdEcbnCUpvcykaxRSP0gEBPxVnoTkvYdtP1DNOsvYeqDFFI/SMLahxecoum9QCSb9Gd/Ci84s+ZcIE5hWWGQZJxHaAeH4hCDlsHQe8g4D1J3v4VSIbYxQS75YZTSQYW0/DeQyiObeO9b6/I/R7hJ2QTXhuUmrM/gvti8ZYbvyp+vdK3LnXs197me9l/Nfa713Gu51tsFP6riRSXcaIlQNmImq9DQMNA1B1svkupUYbxWRqtSiiNLC/Qn02QsC9swUErSDC7EhYaMXpLG0E3PVVcogqhGyTuIVD6asLC1Ao7RS6JboOTq3m8rCPjiiaP0JVO8f/ONVStsBGdYbD9Df+K9LLPcNWFjamkEJl40jySKW6piT0Icl+9UVBQCN5whaYwRKRepgg7hMkUo691nFCIWzIpkE4SOqeVWkSG9aJFQttGEji4SnVTgWAQlLuGsx4Ek6WHqOVAyrobZZdIHaB0mfyTbKKGQ0sfWi/HxG7gspPKQsoXCx9DisIxULpGsEcpShxQ3QtN/lbZ/kGzicaRqYxtbAUkk60hV7yyam+M6DspDEXaut5ypUsMPp9GEjWWMr+u1kbJNKEuE0VIcpzdGCcIZNC2JruUIo1l0rbdz3zKRbCCEjW1sIpIVIlVHKRelFI65HSkbSHyEMDE6HoQoqiLxO0JqsRBWJCuEsgyEaMLB1Ec7no85FBGaSGLpI4DAD8+iCNFEGus7NIx5M/CuMAY2sIFlRFLymwde4/6RMUayWTLWd3ZcL46nB3z19El6EkneM77phl7fDeepByfoTTzAcurtmjZ0pF4FovNvdVXHrvmbWnHuegb1Fe6z5ufOtbppdStSh9+sjRu4Olzsx7gnW94B/PAcudRHufiGl/tbwlWUZo/fWwQ3pPbI8ohZOU46KXLXoUVx8Vy46CVRK8bl6pok8fh7d3hc3w14xzkDG7h+BDKiFQS0g6CTagK2bpC2LfTOJBspiRdGtAKfUMaTg2MYOIaJYxidHHxF3ffxoygOcaBImhYp00TXNKRSeGFIzY+JlZoQ2LpO2rIRQKQUdd9DAHkn3i16UUgrCDCERtqyCJWk4rpoHe9H1LFBC04CQ4vb6kcRVc/lyfNn6Eul0DUNz4lIGAZJ07zqyccNQ1qBTyDjycHQNPK2E9+7c5+a52FogrBzjKnpZB07ng5F/Hs/imj4fjc/OWmaJAwDTQhCJam6F4mmUSfPN287mLqOJgSyYwi0goAHRsZImqu5y6GUtMMANwzRhei2N2GYJE2z2y9uGOKGAX4UV97zowjHMMhYNqaWJ2/dcsXJc5Wy23ou18scu+Zv4urPvfQ+a34Wl/5du+yxNxL1agvPDZBS4SQsMrnEm46rOPtJUS01iKI4iymdS6wJJ77diDr6D3Q8c6a2mmR8aT+axgCa5qwZK/FxV7coxn11o5aNiwbJxd9cf5+uf+76BuW1eiy/G3BTjYFLnQ6X++iu9rgrnftucKO/3W2ZqtX4w6OH+PqZkxiaRsIwuW94lL9xx90UOotyzfN4bmqSzxw9xHS9hh9J3ju+icc3beWhsXEAFtotfv21lzkwP0fFbRMp+IFde/mBXXvpSSSoeR4vTl/gP7/8PKGS9CST3DM0wl/edycZy2KmUee/7X8ZQ9P4xUceQynF4cUFPnfsMCPpLH/19ju5UKvx89/6BjnLxo1C5poNpFL8y/d9iK35In4UcXRpgf/x+qu8PDPFdKNOyrQYTKV5fNMWfmDX3jftj+X+f2Vmis8ePcSx0hKaJpjI5fn5B99LTzJJ0/c5vDjPv3/pOUYzWc5XqygUO4q9/IMHHqZgOyilmGs2eGV2mt86+DqtICBtWXzvjl08NrGF3mSSqXqd/+fbT2FoGkopphp1IiX5p48+zs6eXjKWTTsM+Nqpk3z22GGm6lU+vm0nP3v/w932LrSafOnkcb559jRD6TTHS0uESvKxbTv5+PadjGfz3ef5+tlTHFqYx48iXp+f5eHRCf7mHXfz4Oj4hhv9GvA7v/oULzx1lEatzaMf3sdP/d8f63KKLgeloFpq8Es//TsszdXYd89m/srf/yB9g+9cv8f1X05Q888QyDqGlmJL9hNXPMfUBzD165c+3sCfb9xUY6DR8JifqzIwmCOVury7t1ppUS636OvPXPG49SBlTGzS3wUEuyiUaPr6LtSbgcF0hh/Zeys/dee9COBPz5zkbLXC18+c5Id2xzrkv3voABdqVT6waSuf2L4rdggqidkRBFHAP336KbYVi/z9ex7g1v5BFPFON21atMOQQ4tz/LsXn+VXP/xxiokEr87OcGB+ll955QV+7oFHrrq9b8zP8rfvuo/HJjaTsWy+fOo4v3vwdf7mHfcwkctz99AIe3r7+fTn/4Cfvud+9vUNUHAS6NrVWfEKqLht/s0Lz/CX9t3O//fBRwH4wvEj/Nf9L/Kjt9xGXyKFG4W8PjfD//3go4xncxxYmOf5qUl+bf9L/J/3PUykJE+cPcXhhQV++QMfJW1ZPHPhPC/NTLHQOsjfuuteAA4tzvO9O3bzsW07GUyn+fzxI3z+2GE+vfdWbukbIGmYfHz7Tu4ZHuGffvupdds812ww12zwd+65j1v7BvnTMyc4WSrxlZPH+Yk74/v8t9de5rGJzfzUnfeiCcHf+9Mv8+m9+9hR7EF/FxjBf94hpeTU0RlmL5SolprMTpY4fWzmHTUGAOrBeXqd20iaAxvhlA28ZVyXMeB5AQsLdbLZBOl0LN4TBBFBEFEuNRkeidNKfC/A8wIM4+Jk3mi4LC02QEBvbwbD0PD8EN+/eFyz6eH7YSzkoxS9vRmkVFTKTVptn0wmQS6XoN3yOXp0hlqtzdZt/YyOFhFCUCo18P2IdNomlbK7bWu3fTw3YGi40CGjrlbOazQ8XDeIswp0nWJPGiFgfr6GpmmkUhaJhIXvhwRBFOsRdJ6j3fJ59tkT9PdnGRkt0NeXjXeMF8pEUuI4JrlsAtPUuTBVJpmwSKUdkslYaGhysoRSilTKJpNxsCyDmekKTsIimbRwnLXyGA3f58D8HK/OzWDrBmeqnWtYZtf9f6ZSRhOC94xvImXFgi6ys4NWShFKyRvzs3xyxy529/aTsqzuuZoQLLZazDWbDKczDKYz2LrOrp4+ym6b3zn0xjWNm6xlszVfZCybQyrF5nyB56cmCaTsqB6Krhve1g0SpknCvHpZkFBKjpeW6EkkGUql6UkkkUrxyNgm/uFTX6e6bRd9iRS60CgmEkzk8mQtm4lcnvlmgz8+cQwFzDWbnK9WeGV2in/30rMYQlBy23hhxN6+vu790qbFplyezfkChqaxJV/klZlpvPCiHGzssTEuu2hbuk5vMsne3n5Spsl4Ns/ZSoWSe7HGeyvw0YQgbVogwNF1LC0ORbwbPGJ/3qEJwdBYkUJvBiEEvYM5hi+RJb9aKBULiX31j15m352b2L53hMQ1boCWoWNScg9S9o5gahmGUt+pabwbWA9KKc6fmue5J4+y9/Zxdt8+3s0yuxm4ZmOgVGqwtNSg1fK5cKHEnj0jRJGkXG4yN1sllbIZHIpledtuwNxcjdGxHizLZGmxTrncpFJpMTdf5dFHd6HrGs2Gx/x8jaHhArZtcu7cIp4XdBf2hx7aSRhGNJseCwt1Tp9a4NH37MQPQubnq5RKTUZGYwPk/PklGg0X1w1QUnHLvjGq1SYz0xV8PySTSXA5/uihgxdw2z6arpFK2fhBhOf6NFserhvy/2fvv8PsyK7zXvhX+dTJqXNAB+SMwQCTI2dIjphJURQVLSs4yApXtq/82d+9lmw5XNmybFmWg3QlUbICKSYxDTmJnDyYGQxybHTO3adPTpXvH3X6AA10I2MCifd5RhT6VNhVe9fea6/1rncFAgobNrSRy1WZnMggiiLJZBjSYJg2ExNLyLJIS2sUx3GZmc6ytFQhs1QikQgR3tyJXbMoFWtMTizR2hajvz/N7EyepaUyi5kSnR1xVDXN/Fyh+Z67uhJ0dSf81MUGapbFZDHPC5Pj9McTBBWFglGnbBnNOLiHv5CEVY3W0Hl5TfFC7XvPo2gYxAMBolqjeJIgNBcvw7ExbIewqqJKPmkooqoEFYVc3a8TvlqE13bdS8I/QUUhqmnoskLNtggp6gU8hRuHrxJoElIUArIfc3dcl9ZgiIJRx3KdZntVSUaXfU6ELsuEVY1SgxNRs21s1yMoK/TH4gD0RGNoksy6xr8vfJ6gomA5DiFFwXKdhob91UGVJEKKSkzz07R02edGLLcVYGu6lYVKhSeHhwipPp+gLRS+JkPpNq4fgiiQTEd4/ON3UKsYdK1LkWq5VslgH0bdYm46x8tPnySeCLFuQ9t1GwOqFKNkjvk1YOSrH3O38d5ArWIwMbLIa8+dJBYPsnFH97vLGJidyTMxsURbe4xTJ6fp6Ijjuh4zMznOnJrhnns3Igg0NfpnZ/JUqyahkMb8fIHFhSK1usXQ2VkeemgLkiRSrZrMzRbYsNEkEgkwPDyP50EkHODkiWnuuKOfWs2kXDFYypQ4fHiCBx7chCAIuK6/oC3vnE+dmCYU1rAdh+npHH39LWSzFYaG5pAliW07QmukFsKRwxPYtkMkGiCVimAYNgvzBTq7E2QWS1iWQ3t7jGy2zKmTM3R2JWhp8XcLguBrDciyhKr68sQjI4s4tsv4WAbLdNi6tYulXIV63eL4sSn6KwbdXQlGRxexbZfRkQUCmkJ7R5zjx6eQZYnxsQweHql0ZIUxULZMRvN53pyd5l/c9yCaLPOtc0OcyMyveK7lcEDFMpsLzvLiK9DQQ5dl6raN4djostLUYhAa56uSiOHY2K6LIorUHRvDcdBl/51Ljbi547o4rosoCBTqdSxn5QSliPJVuTOXyXfXmugi4HsWTNfFch0czyfcFU2DgKw0SZUeYNo2pmOjShKW42A4FrosN9opElQU+uMJfnrnHgKSDA3i44VtUhq78wtxrXaNKAgo4iof+AXX2dvexUuT4xxfmGddLM5AIklfPEH4PZ5p8V6BIAgEwwE++VP33fC1SoUaU6OLjJ2do5Cv+hor1wlZ1FGlOI5XRxICl80EuY33HnKZMpMji4ydW6BYqN5ySfprNgYqFQPLstm5s4dyuU6xUEOSRMLhAFu2dbNla2czXz4QUIjG9OZDJJNhMpkyExNL9Pam0TQZWRbRgwqRaKAx2frk2I6OOBs2tFOp1KlWTaansyxlSszPFalW/R1cLBYkFgsiCEIzRLCULdM30EIiEUKSRObnCgD09KRIJEJs2NC+6nMJQDSmI0kCHZ1xUqkIc7N5FjNF7ntgI+l0hLm5PAvzRQAGN7TR39fSDIkkkyGiUZ229hjpdBjHcensTPD886fRdaVpNIyNLbI4X6RQqGKaNrIi0dmZ4LnnThKN6iRTYTzXY2I8Q7olQjSmEwgoOBdNGqbtYLuOn4svyZiOw1A2w1B2ib0dnU23+7pYnNlyie+OjfKRDZsAf7cvCSKaLCOLIlvTLRxZmCOiauxs9QlGNdtClxXagiHaw2FG8jkytSppPcjppUVG81n2tPs+lpimYXsuVdOiZBpEVI0DM1Ms1ar0xxNcCwQBwqpK2TSpWhbxgNec2q7kEpdFkW0trUyXCsxWypQME0GA58aG2d7S1vR8OK7LQrXCcD7HhkSKyWKBs0tLbGtpQwA6wxGCisJSrcaxhXn2tnc29QI8zyOsXV29hWWjyvW8ZoLThYbY1WKmVGRjMsVHN2zi3u7e8+/C81YIr9zGuxue57E4m2f41OxNuV7ZmiQV2InnueTNc9A04W/jvQ7P85gezzA5chXVcG8SrtkYaO+IU6ubfPELr7OULfOpH96PbTssZUordknZbIXR0UWOH5+iUjF4//u3Y5o2hmFSKddpb4th2354YWR4gWNHJykW6zzxxE5c173E97yUKVEq1f3fLoDreszPF3jm6eM89vh2tmzt5NzQHEuZMrbtcOePDzI+vtjcvV8LBEFgx85eXnrhLLl8hVhUZ/fuPsbGFleN1zqOy9EjE1QrBjt29uA4LuVSjYAmAwKGYTE3W/CLEF0Yt7cdSsUa0UgAPF+ueP9dgxw9MommyegBlchFZZ47IhG2trTSNhnhR77yeUKqSmc4ysbkyqIuP75tJ69OT/LVs6f4k6Nv4Xke93T38nBvP/d09yAAv/HgI3zu6CH+w2svUbb8Wg4fXr+JT27aSlLX2ZZu5Z/edT+//NQ3cFyPqKaxq7Wdf3Tn3YDv2n6sb5Bnx0b4ka98nqQe5O7ObgLKtVNSREHkp3fs5s+PHeaPjhykNxrjg4Mb+NDgxiv3F35q3/959wN8begUnzv6FiIiraEQv37PA7SHw9QtG0WS6IvF+YtjR5guF3E9j8FEkl/dfy+iIKBKEp/YuJWeaIzfPfAKNcc3AvZ3dvNQ471dDXL1Ov/uleeZLZc4nc1wainDcD7LhkSKX2q8u6uB7bm8MjnBF08fJ6AoGLbNJzdt47G+AQYSyau+zm2885ibznH22NRNuVZE6SVTO4zjGQSkFLcNge8vjJ9bYGxo7m273zWLDhmGRb1mUaubuK5P7lte0FzHIxzx60pblkO1alAs1ggEFBLxEK++OoRp2vT0pDh7do5t27pJNXbRlYqBpskkEiEKhRqqKqPrCsVijXA4QKVsYNtOoyiRTU+vrw1fKFSp1UxkSSKVDlOtmtRqJrblIAgCLa3R86RAWULXV9/VeZ5HJlNCQEBRJRRFwjQdJEmkVjN9CWRFIpkMUa9b2LZPClTV8wvewkIRz/PQG3//6lcPcsfePuZmC8iySE9PCj2o+nUSTJtQSEOWRJ588gh37htgfCxDOByguztJNKZTLi2XPvaJhisIj/i8gdly6fxOX5KQJQlJEOgI+zFNy3EomQaZarWRx+4R0QLENZ8j4NdQd5gvl6laVjP/P6nrpPUgiiRhuy5l02SmXPSlkkVfO6AtFEZqGEX5ep28Uadk1JFFiZimUbftZnzbcBxGcll6YjEiqobruVQa7e+JxJrxb8/zKBgG85UytuuiSRIJXScZuHI++DJKhkGmVqVmW4Afl++JxlBEiZJhcGxxnn/90vf4vfd/qLlT1xWZrkgUWRARBKGpMbBQKTfeiUdE1YgFAkRVDcNxGMvnaAuHSQR0XM+jYpnMlcu0h8NEVA3LcZgsFjBdh7ptIwoCuuxrFXRGotiuS6ZWpWqZrE/4hLSqZZKr13E8l65wlINz03xndJgtqRY2JdMIgq878F/eeJWf2XkHj/YNXPF9LM4VGBua5+yxKSZHFynmq43xLKMHVaKJIINbOtm+dx3pthjBVWLYM+NLPPO1tzh8YJQf+/sPs2FrF7IqMTO+xMtPn2BidJFaxWi61Dt6krzvo7tp70oQWOObcx2XasXkpaePM3RymuxCiVrVRBAEki0RNu/sZtsd6+jpa0HRrmxYFnIVxobmee27p5kay2CZNpqukG6LsuOOPu59fBt/9l+f4bXvnqKYq16QWnhptspzXz/ModeGmR7PXPLbph3dfPwn76Wt8/JeL6NukZkv8Opzp5ibzLI4V2BuKueXbK+atHbEiDdI1BfjYz9xL/c9tvWyMuSWW22UoS5iu1WSga1XfEerYWE2z3e+9CaHD4zw6Z99gE3buwnoKjMTS7z4nRNMji1SbRRvC4Y1OntTPPLhXXR0J9CDq4eqXNel1ujbc6dmWJovUa34WiTJ1igbt3eydfc61q1vRdXW5r7861/5CyqlOrvuGuAzP/cQ2UyZ733rCGND8+SXyliWQziqs3lHN3c+uImO7rXH24UoFWrMTCzx1qvnGDk9S6lQQxBAD6qk22Ls3N/PHfeuJ6BrTcn61eB5Hl/84xc5cWic3oFWHv7QTvo3tjM5ssjBl4cYP7fA0mIJo2YSigRo60qw7Y51bN7ZsyIbpVYxmu2Zm8wyP5NnenyJ7KJfwC7dHiPVEkFYpS0/+48/yOYdPUirjKNrwTVv3TTNX+giUX0FI1+7qEMVRWq68ZeRSIaolA2/A8MaoZDaXFATifO131Op82S35HLxoqTcDCNc2DmxWJBoVPdrEuAXKPIZ+uePCwavPDgEQaClZWWBomCj6aGQtuJZg2t8AK2tUT/VEQ/bdmlvj2FbDooqEdRVwuEA8USw6d0VBIFKxaCtLYZp2GgBhVBYIxjSGs/hi/ogXOoiF/AJbINX2BkqkkRSD5LUV696KDSY+70XEOMuhiyKxAMB4oFLtciXcaXfA7LM1pbW5r9FQSSiakSSK9+lIAhXvNaVENE0Itrl4+kCsC4WJyCv/gmokkRS10nqq9dWCMgym9PnMwtEQbjkeRRJuuzOXZUkOsMriWhBRSWoLJfxdZmvVHBcl85whB2tbbiex1SpQNWyMJ21dfv9WgJw9M1Rjr05xtjZOWYmlsjMF6lVDVzHQ5JFVE0hGFKZGFmkvTtBPLl6Hfd6zWRydJGTh8aZm8qiB1WKuSoHnj/DycMTZOaLmIblC1/pKuPn5rnvsa3N7/Ji1CoGc9M5Xn3uFEcODDM7laNSqmNb/jMFQxpzU1mmxjJs27OOO+5bTygcWNMgnBrLcOrwBAdfHuLs8WmWFvxwnqxKhMIB5qdyGIZFpVS/KrEg1/Uw6hblYh3TtKlXTQq5Cl5DrMio21e8hmXa5JbKHHtzjFymTClfbYoeARTzNep1C3EVAZxKsb6CN3IhPM+l5mQwnByeZ2M4BUy3eN3GgFG3mBpd5MRb4zzw/m2EwgFqFZNXnzvFiUPjLC0Um23WAgoT5xa4++HNjbnuUtSrJguzeV5+5mSjb7NUSnUs0+9bPaQxO7nE1GiGrbt72ffQpjX79uyJabKLJQJBlfHhBb77zSMcOTBCZr5ItWJgWw6qJrM4myezUGT3XQPsuLOfcHTtmigTwwucODTBycMTjJyeZX4622ybLEuEYzrzMzky80V27R+ga10a9TLG6MzEEmePTWFbDlt29yAg8O0vvcnZ41MszhUoFWoNw1QlngwRjQdZv7Xzkj5YmCtw7M0x8pkyhVyFYr6Kadg+yTvvj5vV+CBGzWLNwXINuK7UQt/lfu3nrVuXZmG+yNxsgZbWKKl05JpUvNa6ryAICBcIh1xv+9bC5SzD1Y8VkGXYsbOHM6fn0IMK6ZYoiWSo0b7zxwcCCjt29nDq5AyRSIB0OkI8HrzkuNv4wYMABBrZBZlaleFcFtfzGMot0RONNTkQq8F1PXKLJZ77xmHeeP4sxUIVPagSiQVJtUYRBP8Y23Yw6haTwwu+N+0qxvrSQolKyWBqdJE3XhoiHAnQ1hUHz9/tW5ZNpVRH0xXEVb5vx3aZm87xxotn+dLnXsJ1PBKpEB3dSRRNxnNdysU6I6dnmRxZZHp8iVgyxM59/Xied8miUa+ZHHtjlBefOs6hV4cJhjXauxNNlr5Rt5gcWeQbf/064WigaXBcDj0DLZimTUdPkmrFILtY4s0XzzYXxauFgEBAV+noSdLRk2RmYomJkQWMmkV7T4KO7tSqC01Le2zNvvBwMZ0iJXMCDwfTKWK5tWtq11rILpYwjQlmJrK89t3ThKMBWjvjft+6fqn4cqmOFlBWnbsdx2VhLs+bLw/xpT99EcfxiCdDtHUlUDWfnFwu1Bg7O8/kyCITw4skWiLs3DeALw986TM7tsvCbIHXnz/D0189RDgaINUaoVWK+aHYYo3RM3NMjWUoLFWIxIJsu2MdcGn6eLVscPDlIV74znGGTkwTigRIt8XQQyqe62GaDtVynbdeOcfkaAbb8ovXdfelr+iZrFVMpseWGD07z4tPHfc3d5EA0XjQ98AaNvWaH3K8ePO8XDxPD2rovRodvSlGzswyP53DsV06epJ0rUuv+s6j8eBNSTF+W+WIIxGdSERncP33vwqWKIqkUhHuve/yKUiS5B93/wOb3qaW3YYoCMiS+K6PsIqCwAM963h1aoIvnz7J/7aP+JwGUeIf3XkXm1LpVc/zJ706X/ur13ju64exLYf27iTb9vbxvg/vZmBTO4oqU6uZZBeLjJyaZWosw8CmDiKX2VEt49ThCeamc4iSyD2PbuGDn9xLV18az/UoFmrMTWU5fXSSrt7Uqi7gcrHKy8+c4Ct//grVssHee9fziZ+6j/VbO4nGg7iuy9njM/zZf32G4VMzHD84RrlU47f/+GdR1JVTlud5jA/5O8ajb44SCKjced8G/s6vPE6qLYYkCZQKNd58aYj/9dvfYuRMHcdxicZW95QtY9OObjbt6Ab8RXBxtsCpwxPXZAyEozrb7ljXXJgAvvH5A3zhj14gYxR48IM7eOJTd5JIX1uaoijIxNRBNCmOKkZwPBPDKVzTNdbC6SNTZBaKOK7LXY9s4olP7aOrLwUelEt1ZqeynDo0QXdfelV3fKVY4/Xnz/DX/+t5KqU6d9y7no/++D1s3N5NPBnCcz3OnJjmr/7HdzlzbIrTRyf5f//Tt/kPn/v5SxbICzF6Zo7ZiSV27hvgx3/xUbr70uhBFcOwOHFonP/xb77J/EyOt147h2nabNnViyitNAQ8D469OcbX/vI15qZyJFsjPPTBHXzyp+4jkQ4jiALFXJVTRyf5k9/9DtPjS3zjrw9QyFX4yX/02IqQ8GrIzBd4/YUznDk2xd2PbuGhD+6gf2M7sXgQ07SZHMswdHyaTTu6SV6UmppIhbnroc3c9dDm5t/++He/wzNfO0S1bPDwD+3kYz9+z1WFQK4Xt2sT3MYPFKKaxt1dPXz1h3+smWr4boYmSfyL+x66xAkoCmsnkNVrFpOjGb78uZexLYe9923gfR/ZzUM/tHOF10wPqSTTYQY3d1wSfrscjrw+wp571vPQEzt57GN7fOJw49RwTKejJ8meuwfX3Nk++/UjvPniEGbdpneglf/ff/wMgeD52Kwoimze0c2v/MbH+LPff5bvfvMIY2fmeOE7x7j/se0ELgr7fePzB5gayxAKaWzY1sU//rc/jKKej7XHkiEe+fAuHNvhr//weWYns1f1nO92WG4ZWbz+cNpqOHZwlJ139vPgB3fwwU/vu6Rv27oS7No/sOZYef7bx3jtu6ep10y6+1v49d/+EUIRvXm8IAps3t7NL/6Lj/D5P3qBJ7/4BmNnF3jxO8e5931bCYVXfx5FlejoSfLP/sNn0HSlOYY1TWHPXev5ld/8OP/z//kWQyemGTo5zaHXhrnjnsEVHmPHdvjT33uKzHyR/o1t3Pu+rXz27z+yMuycDLH/gU30rW/ln//8n7Iwk+fIgREGNp3gkQ/tuuy7m5/JU60Y/NCn9/F3fvX9KKp8/ltDI5YIsW1377tWKOzdPxvexm3cRAiC4HsGxJtRde3WYjkDRhJF5Iv+u5z6YGa+wNHXR5p8lQc+sJ3d9wwiSSKiKDSvu/yfKIpIknjV70NRZfbet4F9D2z0zxMvvp6AuMr1PM/DdVxOHBpjcnSRSFTnwQ/uIKCrl7ZLFEi3xegZaKG9K4Ftuxx+bQTTtFdez/U4c3SSYr5Ka2ecvfdvaBoCF7dp3wMbSaTC1xT2ezfC81zqdoaJ8lOMl55ksvwM87UDfunhG4wdK4rMrrsHufvRLWv27WpjZblvTx2eYOzcPMGQxkNP7ERvGHkX922qNUp3f5qOniSO43LktZFG7Ht1JNJhdu4faBoCK8cwrN/aSU9/mkhM98NGB0dXcBpMw2bs3Dxzkzksy2bD9i72P7Sp+SwrnlESSLfH2X3XAKnWCJm5Im+8cPaK706SRJLpCB/+7N0oqrzqc4uNd/puxG1j4D0Ez3NZMoYZLb1Awbw56Um38f2HcrHWzE9u7UzQ0ZMkGr+8W/xakGqJ0NoRJ3YB6fdqkc+WyS2WqVUMNF1hcHM7gri6ISIrErF4kFgyhOu6TI8v4djn4/2e51HIVSgVati2QzgapLe/dc004lgyRCwZusSz8F6EJOqE5U7CSg8xdYCEtpGbkVqYbInQ2hEjlryevq2QzZSpluuomszglo5VjULw+zYaC5JIhRs59UvY9tpcDj2k0dmbbC6wF0IQfF5Guj1GLBHCNh2mxzIrRHos02Z6bAnTtJAkkXRrlI6e1SWlBUFAUSR617cRjgWplOtMDC/grqKqurKNKi0dMVo74+9JvtftMMF7CB4uc7VjzNdOIIkaMbX7nW7SbbwLUauYZBriWO3dCUKRwGVT1K4VydYowYh2XalM2cUS9ZrZJC/mMiWOHxxbc/JcmC3g2C6eC7lMacVuz3U98tmKv4h4EAgqJFtXj78LgoDUYIoHdPWqSITvVgiCiCKGiGsb0eU2ZEHHw74pyoPJlgihiH5d4yWbKVGvmriO50vUZ0qcODi25k54fjrX6DuP7FLpEmG1C6GqMonU6pkuy4glQ4RjOguzebKLpRVqoJblsDCbb+q4hKM64ejlQyyt7TH0oIppWGQzvgLt5XgDelAj1RpFuYWSwbcSt42B9wg8PDzPZbZ6lJqTw3HNd7pJt/EuhWXZlEt+oaNYInTT9cyDYe26J7xisYbdmPQXZwv8l9/426s6TxAEalVz5c7Mg2qp3vybosgEI5ef4HVdRVHl97QxsAwXFxCw3DI1e4F4wCch34hRoIe1FXyLa0G5WGvu7nOZMr931X3rpyOulYYKIMnSFclzuq6iajKu6zV0ES4wHB2XcqmOh5+2qmrKFcNi4WgARZXxPD+joVYxURR5TcNVUaXrrjPxbsBtY+A9BBeb2dphwsrqksq3cRsAeDQXyMsRDa8Xy+mz1wPP9ZpztCgKBMPaVXEVBEEgFFmZi+41/8/yQVdOx5UkcQXL/L2MvHEGVQzjuAZZ8zTxwI2HCsQbSMu+cDG/nr69kriP41yeD7GsrbFcc2XN45ri4JdHQ2vs6tHgVLxXcd3GgOvZnC18h1OFb7A59iHa9R1MV99irPwiNSePKgaJqz10BfeyPvq+xlkrUz1y5hiz1SNkjRGK1gxVJwseBOUkKW2Adn0n6yL34tu6Ao5nsVg/w8vz/xldSvFg+z8hrLSs2r7Z6lHeWvozqk6WH+r6bWRRY6z8MqcKX+fe1l9itPg8C8YpJEGhNbCNPckf42zxKcbKL2K5NWJqLzsSnyKh9l2Uq+qyaJxluPgsWWOUmpPDwyUst9Eb2k9XaB8xtQvhAjrGTPUtxsuvslg/w/u7/jUTlQNMV96kYM1guzU0KUpbYAvro48TVTqRxfPW5WTlALPVYywZQ5SteWp2DsMp8dLC73Jg8X+ueOb9LT9PX/iBS0RMytY8c7VjjJVfoWzNYXsGoiATkCJElU56QvfQrm9Hk66vEttaKJhTLNRPMll5g5wxhutZ6HKChNpPZ3AXfZEHWO7bizFTPcRs9SgZY4iqncF2DTQpTFBOE1d76dB30hm8Y1Uik+MZTFffYr52giXjHGV7ETxQpSBBOU1KHWBj7IOE5Jbm+XWnyHj5FQ5n/5JHO/45upQgZ4wzVHqanDGGh0dAitIa2MLm+IeJyO0r7u24JpPVNxgtPU/RmsF0q0iCTEzpYWP0A7TomwlIUWh4eP524pdJav30hx+kJ7zfV/H0DJ6b+dfkzHFSgfU82PZPUEW/sNZ4+VUmKq+SM8b5SM/vNu69+sTjC+34Yyif9VXa3i2IRoPN8EJ7d5Jf+pcfo7Xj6mKsoigQvyCWLQisMBBs06FaMi57jXrNwjLePe/jRpAMbCdnnMF2a+hSC++0HHE4pjfVFFNtUX7ttz5Fa0fsqgwCsUEYXQu25VAp19f8HXwhK6NuIkgioWiAC9+HJInEEyEEoFIyMOvWqpoVF6JUqGKZFoLgcxxCYe09yQW4Wly3MeABhluiaE0zXn6FgjlF1hxBElR0KUHdyTNfO0nZWkASNHpDdyGJK908k5XXma6+hemUkMUAYbkF13OpOUtMV/MUrVlEQaYntB8EAQERWVBRRJ2F+gmK1hSqGESVVpJd6k6BgjlJxjhLTO1FFCQ8PAynRNYYYaj4NHU7j+NaVN0sdbtASE4xWXkdEDDdGnO1o2hiiP0tv4CA7zaz3CpZY4Qj2S9QtTOIgkJQSoIANSfLUPFZStYC3aE76Q7tZXkwWm6dqr3EkjHMqfzXmakdwvNAFYMoQoCak2es/DKWZ9Afvp/O4J7ms4goBKQoEaUDRQySNUeRhQBRpYuwvNIQCkixS6aDpfo5pqtvMVF5FcutocsJn/nr2diuwWz1KGG5nbS2/qYZA57nsWQMM1x6jkx9CNMtoUtxEARMt8JC/SRFa4q6U2RT7AkEQWq+K89zma4e4kzhW5TtBcBDl5N4noPtGhTNaUynRECK0xm845L72l6N47mvMF87TtXJIiA235Pl1ihZsziuyZb4Ry8618FwShTMSZaMEQynxGL9NKZbJSS3YHs1DKdI2V5EFla6AitWhpnaYc4UnqTu5FHEILoUx8MlZ45yLP9FBuyHaA/uJN7geTieSd4cp2Kfl7stWbMUrGkK1jSyGKBkzZLS1vv3sBcomJO4nsWVJv1gUKOlIw746miVkp9bfy0CX7cK6fYoelBt7s4FoKMneV07KlEUSLRE/DCIALWqweJc4RJ1NzhfrruQr1CtGKtKAL8dWPGUNyoa54HtVrHcMpKgvuPVCn3xHs3v28azdXQnVxWeulYYdYulBg9mLWQzZYr5KrIk0tIWW7FwK5pMZ2/Kn4NMm0KuSj5buSwPYW4qR6VsoAV8SWvpJvJurhbNR7i1BQuBmxQmWDLOYbplQnIr7fo2REEm31iMF+qnUYrP0KZvJSDEEYXzL9T1bAJShLDcQlTtRJcSeLgs1c8xXz/BXO04ASlGd2gfAiAKEgEpRmdwD7O1o2Tq5wjJLZcYA2Vrnrw1ie0adAZ3IYsBXM9PSXI8i/nacfrC9xFTu1monWKudpSh4tOE5Vba9R1kzVFmq0cYL7/CnemfRUDEw6VqZxktvchs7TBdwb0k1X502a+WmDPGGSu/xGTFT/FJaYPocmJFu2y3znDpOTQpSmtgK2GlFRGJvDnJUPFpJsqvEpSSpLVNqJLP/g4rrUiCQlzrbZz/XQJyjM7gbtr17SuuH1O7LrF0F42zTFZeJ1M/x/roY6QD6xGQsN06NSdHzhxDlcKNBfnG4XkeLjYTlVeZrryJh0ebvpWUth5RkClZc2TqZ1kyhjGdCj2h/ehyEklo1CbAY6LyGjPVQ0TVTtr1ncRVX+Kz5uQpWbN4nocqXsqOd7HJ1M8yVHwKxzOJKO20BDYTV/1KfzUnR8VaBEQUcW1xndnqERzPwvYM2gLbiChtWG6Vkj1LQEqgiufHm+XWyZljDBefJVM/Q0/4bpJqP5oUxvEsMvUhJiqvISIhChIhOY0saETUDgrGFKZbbrgsPQrmFKIgN9rmUbCmGsaAR90pYLrVC0ija0/8kZhO74Av/ZxZKDI9lqGzN7VCC/2dQjQRpKU9xtRohnrN5PTRSbbv7UMQrj61cRmCIBCJBYgnw1RKdYr5KmND89z9yObm7xcilylTyFYw6ibyGvnstxpCI40TwKxbzdoY1wPTyeF71iQcz3zHSxhH4zrpthiRWBDTsDh9ZIJte9ahrJIBcK2olg0mRxdxbOeSDAXP8ygX6yzOFSjma8iqRM9AywrioqrKdPWlCIU1yqU6CzN5JocXVjUGltUCR4fmKRVqhKI6fRva3vYQgCiKiKIInodRs665PPq14qYYA7ZnEFHaubf1l1DFMIIgYLt1Jqtv8Pri/2S0/Dw7kz/s198Wzk/iW+IfRkRBEhQk8bz6lBWpczz3ZY7l/obJyuvNGI+AgCZF6Q3fw6Glv2Cm9hYJrY+ocn4R9DyPrDHCUv0ckqDSE7wLUZCbxoAASILKjsQPIwoqp/JfZ652lLnacX6k/0+JyO0Nb0WZ8fKrOJ6JJMjYbp2cOc7Jwtdo07dxV/rvEVZaES5yyY+VX2KudoyF+m7Whe9d8ZuLQ9Gc4UM9/5ik1o/SWNA8z6VkzTJTPUTeHKdoTZOWNgAQU7uJqd14novhlgBQxRBpbSM9obuu2Dc5Y5SSNUNYaeHuln+AJCgr3pWHi+tZSMLNSrfyF65T+a+hywnWR97HjsSnVxiBU5U3OZn/KqPll5itHaUntB9JijXPn6sewcOjL/wA2+OfXDE2XM/F8xw8VjKPPc/Dduscy3+ZojXL+uj7WB95lO7QvouOc/FwEYW1h/5I6Xtsjn2IzbEPkQoMrng2H+cnheUQzGT1dTqDd3BPyz8gIPlG73LI4pmZf8V87TiyGCAd2ERCXUdc6SFTO4PhFvE8BxDIGqMEpBjgoYhBcsY4hBt55U7BD18pV66YmGyJsHVPL4omY9ZtDjx/Gj2ocs/7tqIoUnOn5jW4BZ7r4dgOkiIhibcuD1oQBCRJYsuuXhZnC5w7PcPz3z7KYx+7g0hMR1akpsjNsmKc67q4jp/DrgWUZt778vVEUWTj9i6K+SqZ+SJHDgzzsR+/2yebXfBp2pbDkddHyC+Vcey1Weu3GooqoTdqpyzOFTDrNq7rXrS4na9dcjlU7QUkMYAkLBs271wJ4+W+3bSjm/npHKeOTPK9J4/yvo/uaZJYL+1bv19X69uLUchVOHl4gkKuQjQeWpHJ4jguQ8enmJ1Yolqu09qZYOsdvSuq6CqqTEdPknUb2jl3YpqRM7O8+fIQm3Z0o2jy+ft6YNsOc5NZTh4ap5CtMLilg913D17cpFsOLSCjBRQKOY+Fubxf3yCgrPB4XO1YuRrcFF9ZWttIV3Bv0xAAkASNhLqOgcijgMd09SA1+7zylyAIaGIURdQvmZhlQSOstBBW2qjaWTycC34LkFQHSAc2Mls9Rt4cx/HOxwk9XBbqp8maI0TUdtr17YgX2DyioJAObEBAQkRCkyKElTZCcpqw3IYoKL6bV04AHqZbxsUlZ44xUz2E61lsjX2EgBzl4g+vN3wXEaWNmp1jpnrokvckCxr9kQdJaoPIwoU7U4Hu0D5UKYLhlBq715sDRQwhiSp1p0TGOHPJIiogIgnaJc9yvXA8k7Hyixhuia7gHXQF96zgT4DvwfAXaY/pykEMp7Ti94Acx/UsitYMeWviovYKiILsu0VXkMkcDKfIePklgnKKwcijdAXvXKWFQjPssxY6grvpCt1JUrtyRcD52glma0dRBJ3dic+iSdEVzysJGtsTnyKstJEzxxkrvwgIpLRBREGhZheo2IuAx2L9NCE5TUobJCgnWTKGAI+ytUjdLiAJCkmt/4pt0kMafRva+MAn9iIrEge+d4Y//2/P8b9++0lOHZmkXKxTq5rks2UmRxZ4/YUz/NHvfJsTB8cp5qtXvP6N4tGP7GLfgxsJBFRGz87zf/+Dz/HUVw4ycmaWYqGKWbfIzBcZPjXLi985zp/912f4zV/+C2YmllZNP3vi0/vo7E1RKdU5dWSS3/2/v8LcVA7LdPBcXwv/1e+e5g//w5MszhbeUZJXsiVC72ArnufxwlPHefPls8xP5Zp2pud6FHOVq5I9Tgd2EFF6kEUNy6vwTnMGAB56Ygf3PLqFYEhlfGiBf/kP/5wn/+Z1zp2cXtG3I6dnefnpE/zFf3+Of/mP/vyKOgO25bAwnePf/ZPPc/rYZLOKolG3OHJghN//ra8zPrxALBFi47Yudu7tv8SoFUWRn/mVx0m3xxgfXuDpr77F//s732ZpoeiPKw+K+SpvvTzEv/qVv2BxtkCiJcy2O9Zx/+Pbbul7Ww1tXQk6epOYhs0L3znOoVfPkV8qN8eK67gUsuWblhlzUzwDuhwj2HCXL0MQBBQxSEzpAqBozq4opuF5Hg4WM5VDLNbPkDPHqFgLmF4VxzUw3TKGU24cu3zRxm4AiQ3Rx3lr6c/I1M8yr56kK+THjxfqpyha0yhikN7QPZcKVCCgCssFg/xrSYKGKMrn/yZIDQPCa3gUPKr2EkVrBsezeGH+d1aN0dmeieVW0KTYJQsc+IZIQutD5FKXqCqFERFxPBPLu3kTcl/4PmzX4GThqzw1/X/Rru+gM7SXtsAWklr/TfQI+HA9h6X6MK7ncCL/t5wpfAfpImPPxWmmRtadAq53fjALiOxIfJpXrT9guPgs05U3aQlspj/yIB3B3WhieIWXYRmmWyVvTeF6Di2BTQSk6KrW8tVY0DG1C12Kr3LspedWnEXK1gKCIJEMDCAirdi5ep5HUutDEXUK1hR5cxKAhNaHLGoYTpGSNUdQTpMxhtgQfZyAFKFszTNROQBA0Zqm7pZQxCAJ9crGwDI7+8f/4aPUqgYHXz7H/HSO575xmFeePdHMIV/eeTuOi2XYbNrR4+vQ32KEozqPfGg3qdYYf/7fnmFiZJHP/d4zKKrvtRBYVrTzsB3XV1JUpFVd6oIgMLi5g8c/vgctIPPmy0O8/vwZTrw1jt4QF7JMm3rdYt1gKx3dSSZGFpmZWFq1bY7jcvzgGEdfH21WGKzXTQrZKqWCP38Nn5rlv/3W14inwuhBFU3z9Q36N7Wz/wo1RtZv6aReNXnzpbOUS3U+91+e4Qt/+AKKJiNJIkbdF8X5iV98H+/7yO41ryMIAkGlA/CIKOvwcN9xzgD4hM77Ht9GLBnmT/7zd5gcXeR//8FzKIqMKPvzntfw9jiNvhVE4Yrhkp6BFvY9uInvfOlN/s2v/hWq7hdK8lyPasWgXKihh1T2P7SJj/3Evat6twQBNm7v4if+4aM887eHOPL6CE//7SFefvYkgaCK5/pGh1E3KRfrtHbG+eiP3c3dj2656em5V4Od+wYoF+ucPDRBpVTnv/3W1wkEVT+9URQwDQtZlvi13/ok2/f23fD9booxICIjCpcWmZBQUCU/JmO5teakv+w+PZT9SxZqp3A8A02KkNQGUCQdAYmcOcZi/TR1u8DF7AkBka7gXk7kv0LenGChfqppDMzVjlGxM+hSgk59N5dO4ELDEyGsuJ4/fwsrjrsQtmdiOVUERNLaRhRx7UpRmhhZdVcpIBAQ46vmPwmNvCg/enzzgkNRpZOByEPocozJyhssGeco2fNMVQ4QVbrpCu6lJ3QngiDdlMnEw8Nwy4DXJDleTBxdhoBASlvfDJcs/zWtbWBP6seZqx0na/j8kZI9x3j5FVoCm2gNbKFF38SFmQiuZ2O5FYCGwXD9Q1sVQ8hXaSTZroHjGYiC1OASXPoONTGCKCgr2hiWW1HFEJZXo2TNEVE6MZwiIbmFsNKK6znUnSI1J0fRmsVxDVQxREhevTjRxRBFgVgiyEc+ezeDmzsZOT3L+PACCzN58tkKHn6Z8YCuEkuE6N/QTkdvcs369DcToiiSbImw++4BVO0DvPnSEGND82QXS5QLNSzTIaArBMMB0u0xWjti9G1sJ5mO+DHUi6CoMrvuGiQUCdDeneTYm6PMT+eplHwlvFgixNY963j0I7t93kC+uqYx4HkeE+d8b0kxX8FxXBzbr9a3vAMrl2oMn5pBUWUkWUKWRNq6Eniud0VjIBQOsGFbFz/5i4/x0lPHmZ5Yolio4tgusiIR0BXaOhNogbWL9jTfY2OMrzb3vlMQRZFEKszOfX383K99kDdfHmL83DxLCyXKxRqW4fetHtZItkVpbT/ft9IqfbuMYFhj/ZZOUn//EV5//jSzk1lyuSq27aDrKtvuWMfuewbZfkcfnb2pNTcCiiqz484+9JDKhm2dHD84zsTIPJk5n5yoajKxZIg77vXltjft7G5U+Xz7Da1YIsiu/f189u89zKvPnWJqNEN+qYzn+aWWNV32RY6uUEDpanFrdQYaO++L4WKTNccYLn0Xz7NJagN0BHcTV3oJSBEkUWWifICiOU2dwmoXJqp2ElW6KVhT5MwxTMcv2rFYP43t1kmo/SS0vjWaJVx8OVabxFfCa0TkRLpDdxJW2laEHy6ELKoEpPiq970wbfDtgCqFSGkDBOUUmhRltnqEkjVHwZwmZ4xTd/LocoyE2ndZUt21wOciQEobpF3fvuq7AN8mupiQJwgCuhxnXegewnIri0oni/XTFKxpZqpvUbLmqDk5JFElqQ6s6LZlI8rD5UbYNj6v4up2AivNxzXGkNA4rpFiLwh+v2hSFNutUbYWKFvzuJ5DSG4hpnRhOCUcz6JsL1C25/GAgBRFla6uj5YleTfv7CGZjrBusJXRoTnmp/OUSzXw/Ph1IKgRjesMbuqgoye55iIUigTYsqsXPIEN2zqvS672QqiaTEtbjHvft5VwLMjYmTkyC0VfuMZ0CARVguEAyZYwbV0Jegdb/SI2a7zits44elAlngqTbIkwO5XFthw0TSGRDrNpRzd77lnP5MgilVKdWCLE+q2dl9jlAgLxVIj+jW3UKlcv7BVPhUi1XDkbR1Ykki0RHvjAdiRJZGo84xtAloMki4TCfsngzp7kVd/7RhEMaWze1YvrweCWDuKpG8sqUlR/kbr3sa2EYzpjQ/Nk5ouUi1VMw0EP+oZePB2mrTNO3/p2wpG1+xZAkiSijcVRD6pMjWUo5avYtkswojG4qYOd+wZo6Yhd0ZBKtUYJhjTau5Ok22KMDc1RLtUbssYKiVSETTu62X5nX7NuxuWwYZvv/VY0mYFNN08Dxuc5pHjwAzvQNIWJxth1XRdJlgiGNTq6E8RTN/YtLuOmGAOOZ+K4l+b3+jsh37Umi3rTvWu7dcbLL1O2ZukLP8CG6OMryHae57Eor10YQhAEJBQ6g7uoFjMUTN/9GlU6ydSHkMUAcXUdQfnmfVCSoKKIAQRBJKVtoF3fdn0Vw27IwLzw5Ktf7CRRJSy2sCn6BOujj7FQPcFU9U2mKq9zrvgskqCwO/njxNSuG2lco4UCqhhEQCCqdNCu7yShrbvyiRdBlUJ0BHfSrm/H9gwmyq8xVHyKjHGWUmEO261zd8s/bB4vChJKg4dRdwo4ntUknd5KSKKGLGgYbhnTraCJES7uZMMp43gWoig3siD838NyK0VrhrI9T8GcQhZ9rkxU6aRqLzUyTSYoWjPIokpIvr5c8tbOeLOIz/WirSvBJ3/6fvjp677EJRBEAVVTuPO+Ddx53/W3bRnReJBte9axbc/a421gU/tlJ2xJFnngAzt44AM7brg9a0GWfYPgw5+9MgH4anA1pNjLIdUa5RM/dR+f+Kn7bkp74PwufO99G9h7E/rWj2l5pFqj/NCP7L/hy+khjXWDrawbbL2h6wiCcFPasxZUTaa1M85HfuzuW3aPZdwUAmHNyVFxVhaG8DwPy602Y6QxtaO583Q9h7wxied5tAa2XhIH9XCpN3K6L4e+8APE1V6qdpbh0neZrLyB4ZRIBzZdknZ3owhKKaJKF57nMl87ge2tLm6ynM98uYIW14cLxHka177yPVa2RRAEZEGlM7SHO9N/l4c7/jkhOc1I6XvUnfzNaaUg+WmEjYWsYE2v2c7V39PKv/k67DqD0Ud4rOs32Rj9IC42I6XvrTjL56d0IyCyZAxjuMU1vQM3s3/CchsRpR3Xs8nUh3C5lMyTNUax3BoBMbYiGyCmdiEJKkVzhrw53swwkUQVTYoQU7tZqo9QMKdRRJ2oemn+/K3CheO4+d/bkex8E7Ba27/fcOGzmW6Jsjlx1ce/F9/JzQ6f3saluCmegYxxDr2SZF3oPl/4RhBwPZu8Oclw6TlAoDN4RzPvXhBEf9cuCBhuEdMtr7jeSOl5ZqqHsNzKmq54gIjSTkpbT96cYKLyGnWngIdHi7aJlsDlY3fXiqTWT90pcKbwLU4VvkZncBepwIZL8t0tt4aHgywGkLi5sTxf5ChBxclQd4p4OAhrvh//w6k7BQRBbKjfnYevX+cLOfns95uzg5YElf7IQxzLfYHp6lsoYpB0YMMlAkluQ+RHFYOIyI0UTX+SqtgZdDnR1B5oPn+jxT7HQ7zoN5mAHKcnuI/p2mGGi99rhHRWTy30ffbyDccC2/XtVOxFZqtHOZr9Akm1n4C8MrXwRP4rlKx5OoO7WRe+p3luVOliXjhFwZpGaaQdyo00MVnUSQYGyJvjlKw5UtoAEaXjhtp6tag5ZaaqJ3lp8fPUnCKaGKQvvJtH2/7O2+JtuRHYrslsbYgXF/+KorVIXO1gQ2Q/e5M/9E437abBduuMFr/eDG+aThHHq7NT+4drnrNojHG2+BpD5Teo2gV2xN/HHYknCCuJNc+5jR8s3CQCoUTBmua1xT+gTd+OIuoUzWkW6qeo2kv0he/3ZXaXJzpBpTN0B2cK32K8/CqWW6VoTSMgkTfHmakepmZnicgdjbSrNe4rSKS0QfLmOMOl7+J6Dkm1j4jSftPi38uQxQAJrY9tiY9zIvdlDi79GS2BTUSVThQxiOVWqNpZitY0EaWDbfGPXyI6dCMQBAHRE2kP7mS6+hYj5e9Rc7LE1G5cz8V2a3QEdzUFdnyZbpeT+a+SMyeIKh2ElVZUMYKLRdXOkq2PUHNy9EXuu2nqgwICuhxjS/yjDJee9TUbFip06Lv8GLlnYDolanaWnDnOfW2/SlBOIiH6BUE8mxfn/xMRpYOQnEaX4yhiENutkzVGma0eRhRkukMr0wYFQUARAmxLfJK8NcVs7QhVJ8Ns7ShRpRNRkDGcMhV7Eccz2RH/YcJK2w0/b1BO065vpy9yL9OVQ7ye+UMSWj+aFMHxTJbqw8zXTpAObKA7dCdR5XwoJqy0oUpB6k6BrDlKb/g+5AbZUhYCxJVeTlb/FtMto0mxRpjg1qNsZTmce5re4FY69A1IgkpIfucFi64GoiCT0rq5N/1pThSfx3INrFVCmO9liIJEQtuMKkUREDDdEqZzeXW+qNLCxui9xNR2juWfxXKNS9KMb+MHGzfFGIgoHUSUdsr2Akb5VRBEag09+aQ2wPrIowTEaJMzIAoKaW09XaG9FMwp5msnqNgZRBRMt4QqhtC1BKZbuawxAL4oT1Ib5FzpWSr2Ar2huwjJ6VXTz24EoiARlJP0hx+kaM5QaCw4WWMYUVBxPRPbrWN7ZmNhvfm7J0GQWBe+j5qdo2pnmai8RrCews+QEImpPU1jYBl1p0jOHKNoTaOJIWQxiK+fUMV0KrTqW+gPP9QQu7kZbRQQPZne8D1Ybo2F+skmwVMSNVzP8d+VZzakdS9Fxc5QsTMoYgBF1Bs6CB4VewlRUOjQd9IXujS+KQoybfo2BiIPs1A7RcVeol55nYAYQxRlnEYfqWK4UfHtxqGIAeJqL/2Rh6k5BTLGECVrDklU8TyHqpMjrvawLnwvbfr2FWqZQTmJKobxPJuanSeu9jRTPWVRI6p0UrNz4HkExIgv6XyL4WeDVJmpnWVn/FH6w7ubabbvZo/AMkRBJCjH6AvvYq4+TM6ce6ebdNMhIBFR1+HhYDVSmKUr8JcCUpiAFEYVA4xVDr8NrbyN9xpuijGQ1AbpCu6hYmcahYoKqGKQdGAj3aF9DEYfWXG8KEiE5TZ2JT7DcOm7ZIxzZI1RRGTSgQ1sjL4fUZBZrJ8lZ45fdhIKK20ktHUoQhDDLdKu7yAoX5orLSCiiiF/NyaGm1eUxQAhKQWC1/ybJCi+TLLSvkKgRhF1WgKb2Jf+WYZKzzSKBy1iuzUUyU/7atd20qZvQ5HOhw9kQSMgxQjLbchCYNXnkcUAITlNUE6s6dUQEBmIPITtGszVjjZ09EdRRJWIsjKe7It9iXQEdwECeXOMip3B8WaRRZ2AFCMd2Ehf+D56QvtvqvEkCAIpbYBAPEJrfTMT1QNk6mcxrTKyqKFJUSJKeyPTINrMOBEE38u0Pvooi7UzVOxFStYcrmejSmHCsn9Oh76TVn3LKvcVUcUwe5I/xmTlDeZqx1gyzlG0Zhq/hQjLrQ0dgsgq54aIKO2o15iaGJRT9IXvRxNDnC0+TcGcpGplEQWZuNLN+ujjtOs70OX4ivM0KUJEaSOqduF6DjGluxkakQWNuNpLUE41RLha0aTL13O/XizHYmt2EduzKNlL1JwSqqhTsfOoYgBZ0JDxDRXXc7HcOpZn4Hg2Ar5RpIp6U2fBrxNhYrtmI5tCxHSreJ7XMPICKKLajF0bbgXbNZucC0UIoEnBRkjo/PdiunUs1/AJop4LgoAm6ihi4BI9i8s+c0N9s+6UsT0L39gRUUQNTTyvQ7J8XK2R3bFc3EZERpf8cSIIfj2TulMmJCea78DxbGzXxHLrhOTEBX+zsD0TWVAx3RouToN4G0BrFKbyQ0w2pltr8pMkQUERtMa7jrBUP0bJGsd0SihSmBZ9t9/uGzDa1upbRfDf73JfWK6J5dawL+gHRVDRxGDznXieR9FaRJOCvvfSM/A8rzG/hhrXe+frZVwNPM+jWjORJQlFEVdNcb0YhmEjisJ1l/t+uyF418kkcTyb47kvcjj7l6wL38+m6BN0BG8dA3ct+IVt3uK52X+DIAh8ove/E1Ja39FdzNVqhL/TWuJXwru9fZfDWsN6tSqHV3PcrcK74R0vt+FrU7/DbO0cNadE1SkQbKgptuvr2Ri5izuSTwBQtYsczz/HUPkNFo1xJEFmc/QBdsUfJa31NvkSZ0sHGKscQRJkglKUg7lvUnNKbI0+yLbYQ/SHdzeIxnVez36V0fIRcuYMAiKbovdwd/pThOVE83oAJwsvcKb0KrO1c1SdIrKocGfiQ2yLPURSW5kN81rmy+TMORJqB3enP7HiN8ezqdlFnp3/E6Zrp7Fcg7CcZENkP/elP91c0Pz0zhxPz/4vpmtnsdw6ihggpXbxeMcvkNZ6kQSJI/lneH7hf/PZdb9JSu1BFEQyxgQj5bc4VXiJH+/7t8iiSsaYZLJ6krHKEfqCOzmU/w55cw5dirA99ij3t3ymIedusWiMcTD3LUZKB/Hw6NQ3siGynx3xRxGRGSt9o+E18zk/PZFHWEE0XgV5c54XF/+SoBRnf+qjRJSVG6eaXeRk8UXOFF9jwRhFEmQ2Re9je+xh2gMDzb4Yqx7hWP45ZqpnKNt5JFGmP7Sbu1OfpDXQhyhIuJ7L75z+Ue5OfYKSvcRw+U3qTpWOwHoeav0JWgN9aNKlNUYuxE899tsszBbYuruXz/79h9l3BR2HWwHP8zAMm2995yh969IM9LcQi145DH3w0DiJeJCB/pXhvXdCs+BqcJN0Bq618PPNQ8GaZrF+BtMtszX+8YsEbG7jBxU5q8iBpSN8beY5qnaNiBziFzf8OFuiKzXGl8w83104wLMLr1Kz60SUEL+++efpCb49ZL13E36o85dwPZep2im+OPFbfKb3N4ir7ciiinSBh+zZ+T/G8zw2Re7h413/BNOt8/TcH3E49wz94d1siJwnbS7WxwCBwcid/Ez/7+Lhl2pe3n17uHxv4c+pOgV2J95PX2g3llvnWzO/z8HsN9kUvZdOfQMuDmeKr/La0pfYFL2Xe1s+TUxppWoXAY/wNaYRF6xFnpn9Q6JKmk91/3N0KcyiMcFrS1/mtSWZOxJPoMsRCuYiR/PPIgoKP9n379GlMDWnTNFeJK60IV5HQpbp1pioHCcmt/Lhzl8hKMVwcbC987oGZ0uvMVY5jOe6/MzAf8bzHN7KfZuR8mEMt87+5EdJBXZguzVqTgbDyXIzQpPfXfgzbNdkMLyXj3X9Y0y3xrPzf8LR3LMUwxk2R30CbFRuYW/ih7gr9QnCcpKaXeTLU/+eodLreLh06H46oYfL2dIBtsUe4t4+v0bJkzN/wLHCd9ni3Ud/ePdl2/M/vvoreJ6HKAk3TVznWlGpmkxMLjE0PM/GDe2Mji0Si+p0dSY4fGySet3CMGyCQZVkwh/X4xNL5PJV2lqj1A2L+YUSG9a30tYaRVXemee4Et4bPpo14OGyUDvBdPUgkqAxEHl4TTf824nh0gR/MvIlHM+9bArPsfwZ/nL861c87p3CFyae5GD2BK733iMaheUgexPb+fmBT/NY2z1Ynr3qc0SVMPen7+Dv9n+KR9vuxnDMG6okd604mD3OFyaefEfHwHKOhiJqaJKO0ijR7LutdVQxgCQqjUyPPLO1s6S1bgYje9HlGBElzaboPZSsRWZrQyuu7WCT1DrYHLmXoBwjJMeIyCk0KdgspT1Ufp2e4FY69U3+70qKgfAe5uujlCy/xLPj2ZwtHaAruIWe4FaSahcBMUxMaSWqtDSJl1cDy61TshaZrp1lR/x9JNR2QkqCtNbLxsjdnCm+itnQR/GVJXWy5hSLxgS2ZxFRUrQHBlGuU0DMf26HHfFHSKgdBOUoITlOtKEu6XoOC/VRilaGrbEHCMkxQkqCTn0jYTnBROUYAFVrHtMtIAs6IbmLydLTuK55XePofN8OEVNb2RDZhy5HG317NzWnyEztNODvbKNKirTWS1LtJChFiKttpLVeTLdOzVmZHdYb2kaXvomIkiIkxekObqZmF6itItl+MYJhjVAkgB7UmjLabzcCmkx7W4z29hidHXEM06ZYquM4HvMLReYXiqzrSRGPBRkbzzA8usieXb1EowEEAWzbpViqo8iXV3l1XQ/bdt6xeeDdaaKsAQ8P06mQNUYQBYmKnWGy8gYVO0ObvpWEuu6mEwevFaZrMW8scTh/+rL6LKZrMl1b4Hhh6DJHvTPwPI+6a3K8cJagrL8ns3tVUaE1kCSqhChaZcQ1PkJVVOjQWwnLIcp29W01Iw3XZKI6y8niubfxrtcPD4+qXcRwagTlGFGlBVHwEz5bAr2cLL5A2c7heud18mVBJSTFiattTffo8jfqeg6mW6NkLTFfH8FsuOA9zyVrzlCwFjAai7LnuSwZk2yPP0pETqOKy5lJ156+a7kGNbuE5dZIaz0ootZIvw2R1nrJmtPYnr+oalKITn0Di8YYU7VT5MxZokqKlNZN65WKRnmrh6EEQUAVNZJqZzMc4f/g/4/pGFSdAjlzlunaGXLWPAAFc56cOUuloQliuaUGH0NBwN8cmW4JTYohXHNas0fNLmK4VYJSlJjaiiiIiIJISuvhTPFVSlYW13MRBRHDrZE1pqk6BWzXwi8xXiQoR3EaFWKXkVA6iChJJEHGxSUsJ3A8C2cNAvG7DbIsEdRVQkGNoK4iiiKlcp3J6Szlch0QiEYDVCoG1ZqJIApUayaO4zWlTiRJIJevEI8F1+QQ5ItVTg7NsrG/FQ+BaDhAQFNwXJexyQxDowsIgkBbS5TBdS1Eb3IZ7veUMQAeNSfHUPEpREFiyRihamcISkkGI4+gNsg3NxuWa1FzDOqOgdUY6LIgE5QC6JKG1JjclswceavEVHWOvFVkqjqH1CDIBGWdhOLn+i8aWfJWienaPDmzsOK4iBIiKp+v/lixa9ScOqbrK+opgkxUCaOIMp4Hhmtguha25+C4DrIoE5KDlKwytucQkUPokl+VcMFYIqZEqDv+OS4usiARV6IoooyAgOXZ5MwCGSPHkplnob7EdG2+uZi2BdLIggSCn75YssvU7DpOg50vCSK6FCAihxCvkRzkei6ma1G0Kg1i0rJQkkRKizddsrZnU7FrVJ06nuchixIBUSMkB5HFW2cM1h2jMQ7quI2+CMo6AVFFFs9/SpZrUXdMqk4d27VB8N9LUNIJyb46Y8bIkrOKzNYXyV40BqJKmIh8a8byjcGP7wuCiCTIK1zksqDhee4lyo+KGEAW1VWfxcPzU9w8l7HKUaZrZ7mw4mNADDUXffDd66oYuGGD3/FsbM9sVL88X6fEF7jSsFzDL5WNhy6F6Qltw/YsTpdeYbY2hCyodAU3EZVbCEjn61EsF1i68PkuLMK1DAHJD5MIq5fstT0Tx3Mo2zlOF19ZQWYVBZHIckhEEHBcE8cr43omcW0DlltBEUPXXK/AwydnCoiIgrxCRl4RNTy8Rt+6eJ7AdPUUE9WTlKxMo5ib2DCUWrg4ZKxKQWThvBdFEMT3nIiQIAhEwgEE0f9fw7SZnS+gB1T0oIKiSCiqTDSqE9AUpmdyiKJAIKD4hawSIQrF2qpVN5cxt1Dky98+zEfe53PvujsStLVEUWSRl14f5q0TE4iCwIa+ViRRYOeW7pv6jNdtDFwsWvN2TVuGU2Ky8rqvqS8l6Azupjd8DwORh27ZPWdqi7yePcpbuRNM1xZwPIdOvZUHW/ZxZ2I77YE0tmfzP4b/mtHKFCWrguXZ/JMj/755jYdb7+LvD/wojufwX8/9OZPVWSp2DdtzVhz3ia7H+dHeDzW/pwNLR3g9e5Sh8hiGa7Au2M0nux5nMNyL7Tkcyp/kXGmceWOJRSNLt97O42338sWpp1g0snyi6zH2JXcgCiL/7Oh/5Gf6P8XB7AmGKxOUrDJtgTQ/N/Bp+kJdqKLCTG2e3z/3v5muzmO4Ft+a/R7fnnuh2b7f3f3P6dLbwPO9G387/SwHskcoWCUEBOJKlLtTu/lU9/sJSFfvRvU8j7pjcrY0yhenvsNkdRbTswiIKp16K/90088RUcKAx0xtgafnX+GVzFvUHIMOvYU98S083n4/bZpPiLrZC6nneZwujfD60lHeyB2jYlfp0Tt5uHU/u+NbaA+kmwzq6doCR/KneTlzkInqLKIgklbj3N+ylw+2P4gmKvzu0J8yU52n4tRxLhoDn+39MB/veuwdD3ddDAGBsJLE9WxMp4blGiiNxbpi5xAFGU0MIl1A+LscRCSCcgxJlHms7WfpCW0jIK6VMSEQkhNU7ELDgFh9x301UEWdgBTB9gwMp4ouR8ATcTyLip0jKEeRRQVREP14NRKD4b0MhvdSspcYKr3Bwew3ichptsUeQhFUREREpMau2GsSI6tXyP9fDXojBbBD38CHOn+JuLK6fHJI7qRqzyJ4AqIQYrF2iPWxH2mQCq8N5/vW99as7Ns8giCiSUFEJGzP5Km5P2JL9F72pz5Gl74ZgK9P/y6adKlOvsCqtdneU9A0mQ885qvabtnU0ay/Il7wYOkUrOtJNX/zn9ufE1y3FVFc3fhbRrFc462jEwiALImEgho7t3Tx8D0b+fbzJ/m93/w0larJW8cn+cq3D7+bjAGJ7YlPsTX+cQRBXLUg0c2HQGtgM5/p/3MaJV8QBHHFbuJWIChprA/30qm30h/qRhFlvj7zXQ7lTrJoZPmZvk8iCzK/vvnnmasv8krmEE/OvcAf3PGbzd3esstNFET+r62/yHR1jmcXXuNQ7iT/YdevN4+TGtUDPTxeWHyD7y2+zpboAD/S+wRhOcjzC6/zp2Nf4Yn2B9gR34TtOrySOcSvbvxpRipTHC+c5Y9Hv8wvrv8xDmSPMl6dISBp7Ir7H+znJ77Fx7rexye7H8f1XL4z/xJ/cO4v+eUNP8VguIfeYCf/Zvuvca48zn879xc82LKfj3U92twFKqK/48iZRd7KneS1pSP8g8EfpTWQxvEccmYe07Wb3pKrRcWpcao4zH8++zk+2P4gP7nuo0SVMIZrMlNbJKpEEICDuRO8nj3GWGWa/3PLzxOVwxwtnOFEYYj/OvTn/Ob2X1pBdrtZOJA9wmtLR3A8h3+66edIaTFezhzilcxbDJXG+Jn+TxGWgywaWf5q4hvkzCJ3pXbzKxt/GlkQma4tEFMiRGR/svzNbb/MZHWWb8++wLnKBP9m+69dMgbefRCIyCnWhXYyUz+LVJTZFn0Y06vxZvYbRJQ0PcGt13RFSVDYFn2IU8UXsT2TwfCdqGKAgpWh5hSIKmlCcgJJkNkee5iDuW+hCAqyqBJXWqi7VcpWloiSbuzSrwxV1EmoHawL7uTlzOfZl/wouhxlsT7Om9lvsD3+KFqDiFx3yiwa4yTUDkJynIAYJiIn0KUQHg7LVrsmBgnJCU4XXyGt9VB3KkzVTnOu9MZVt+v8W5bo0jdhOlVeWfwCj7b/XTQxSN0pU3NKWJ5BmzaAh4vl1hAFmbCyjq7QIytSoa8Vft/uYLE+zrHCc+yMPYbp1TiY/RYBMUxvcCfQ8Ky4BroUIyjHcTybBWOM8epR1oV2Xvf932u43Bd68W9XKnYEEA5q7NrWzb/79Y+DAF9+8jDlqokgCGiqhKYppJMRZhYKHDo+eSNNXxXXbQx4eIyWM0xVl7A8h5QWYU/iyrXWbwTLZX7l67B8bwRxNUpQ1nE9j4CkIQB7EltZMJbIGLlmzyuCgiIojYVQQJNUX0L3ImtQFRQUUUES/Bzq1Y5zXJfvLb7OpkgfO2Ob6Qq0IQkij7TezatLR5ipL5Ko+tLPcTXq79YFyJsFqk6N/lAPC/UljheHqNjV5nV3xjeyMdJHl96Gi8sTHQ9yYOkI49VpEmqUtJZAFZVm2EAWJFRRbS5Uy3BxMVwDFxdd1onIIRRRJq5E8Rrhh2vBRHWW44UhOvVWHm+/l7gSQWqkJ6XUBELjnkPlcebqizzadjfrgl3IgsT+5E4kRP525lmO5M6wM74J5QZKGK+GA0tHCEoBtkQH6Q12IIsy96f3MlaZJmcWOFceZ3d8C68uHcbxXLZG1/Nwy36iiu9GDsshf5Fv9LE/BuTmwr/WWHk3Yblt+1MfY6T8FqOVI5wuvoqAQERJsSlyD+364BWuctH1PJG7Uh/nVPFlzpXe5Fj+ezieiSLqbIzsJyCGCcm+gbQxehdVp8hcfYTRyhEcz278/W4Gxb0EpBB1p8zrS18ja06zWB/HcKuoos5sbYjWQB874o8SVdJElBT3t/4oh3NP8fT8H+J5LrKoktZ62RP/QHOHuyzA9PLi3+DiIAoisqDSoq1jffjOpi5ES2AdO+Pv40Theb4w8a/QxBBBOcZAZC8z1dPX/J77QrvQpSjnym/wjen/guXWkQSFhNpBf2g3bdoAZWsacHE9i4o1RVxb75+/yjJ1OPc08/Vh8uY8C8YYkiCzZEyR0DroCAyyPe5rwdyZ/AijlUNMVE8wVHqj6THYEN5PZ3Aj4BNLd8UfZ7p2ivHKEVRRJ6a0sCG8H+Uqq2q+13G57/Ti3672mxZEAVkSqZs2siSSL1ZZWCrz5tFxzEb5bFEUmpvFm40bMAZgupYlqgaREIko37+DwMMjaxaYrS2Ss4rYrk3WLLBYzxJXo74QCcLlTcVruZ/n4eIwUZlBQqTmGCtIZgWrRMEqkbeKiIJESNYJSBohKUhYDqI3uAxBWcfFa/IcADr1VqJKGE3yBV+6Am0ogkLeLFGxq6S1q5NQDkga3cF2onKYFxffoFtvp1NvpUtvI65Gr3yBi1Awi2SMLN3Bdlq0xArPgib5TPGqVSdnFrBdh8FwL4FGLDqh+EaMLgWYqs2xPXYTqqQ1sFygZ7q2gCSIWK7NXD3T/H2qOgd4vlEITFZn0SWNDr2FlBZvHqeI7x16TlRJc0/6h9Hl6KqiMGmtF8ezCcsJynYOUZBIa720BvoJXlADI6V1sSV6P1Elfdn7JdRO+sK7iBmtlO0cjmehijoprbuZhy4IAmE5wWB4LzGllbKdxXZNJEEmpfY0SzuLgkxa62mSAT3P8bkAQoCY2orcUHhUBJW2wADrI/somAu42P491W6f7NjwhGmiTlugH7fBh/CJhuGGpyDRXHhDcoJ1oR04nk3dKaOKesOrESeldjV5DroUpVPf0KizsbZHMyjHaQv4u/+MMYnlGsiiSkROEld9GW1VDFO1y7iefcXQQFxpBTxiSisd+oammJAuRRtx/uW+7cbFJijHKFvZRt/20BYYINioO4Pn60Ak6u3UnBKiIBGRU4TkOB4ekUZ/Cwjck/4ULYG+ZshBQKBV60OICbRcRzXT72eEgxqD61r426eOIOCLFkVDGlMzeTpaYxw8OoEeUBifXiKg3dy6N3AjxoDnkTcr9IfbCEoq6ntosrtWzNQWOVk8x3B5grJdxfYcDMcgZxaIKZFmfOhmwvFcSnaVieosi0Z2BUEtpoSJKWFkQcbFQ2247kVBRBLlFf/2PHdFqlxICjYXWkEQUEQZXdIwXAPDvXp2b1AKMBDqZXO0n5PFYaaqc3QH29kY6WNrdD0xJXJNBELDNak7Bp1625ou8ppTx3AtREEkrpxXEPTZ2QoROUjBKt00qeFlOJ5Dxa5StquU7ArDlZUV4toD6eZiX7LKxNRoMxzwXkRcbePB1h9b83dFVOkObqY7uHnNYwRBIK31kNZ61jxm+ThJkOkJbr1CiMEfEx36ejr09WsepYoBtsYeuOw9/fuKqEKALdHLl+3V5Sj94T30h/dc9jhVDJDSuklpl8Zxe0PnK6iGGumVl3t34H+7YSXBemUf6yP7Lvnd8zzCSg+WW8H2qg1V1bW/t77wrsvebxmyqNKpb6RT37jmMYIg0BXcRFfw8gJAgiDwQMtnL/lbuz54TR6kHxTEY0H27ujli988hO047N3ZS1sqQjZf5c4d6zh5dsZfawSBdV1JPM+jZtsYto3juUiiSCJw/ZvyG+AMCOiSyvfmjiMIAj3BFA+1bbvuhrwbsUxS+trMsywZedaFOvnxdR8loUQZqUzyxanvYDjm5c+/ChfRqsd5vjzyx7seY3d8M62BlUphAgI5y4/b+26o84zmy7mlHO98Hmvzfxvs79XPWt0dJQoiESXI3+3/YcYrMxzOn+Rw7jTfXTjAhzsf4aOdj14bgfCCO63lADv/lKwwcJZ37+f/dgvqQiBwb3oPj7TeRX/o4glfaBo+3vXe+irHym3cxrJEckjpJKR0YjpFDGfpnW7WbdwgYhGdu/b0c9eeS8Ptnudx4PAYpXKdlmSYrRt8UbTTS4uM5LKUTZOYFuATm6+Ns3Mhrt8YEKA9ECdvVjBd5z2UJHJtsD2b8coM/aFu7k/fuSI9sGrXLiHKCcL58rqXi+tcSHxc7ThFVGgNpMkYOcp2jc5VYuDXk8MxX1/CdM3mfatOjZxVJKKECV+wmxWX0wfxGtrja+86eoMd9ATbuTu1h0O5E3xu7Kt8oP3+azIGInKImBJmpDLJWuZAUosTUcLM15eYqs7SqiWbz1Gx6ywYSzzYsu8SfsONQhZk0oEEdcdk0cixIdy35rHtWgvzRoYF48qTs3iB7r6L995WALuNtw2OV+dc4ctNm9dyijiewW7tV9/Rdt3GrYMgCOzf1df4x/ntzmgux73dvbSFwlfNTVgL120MuJ7HRDVDXA1huQ4BUcFt7GbfzSSoa4UsyATlAGW7wkxtnv5QF3P1DC8svsFkdZa+i3aJYVknqoRwPZdDuZNsi63H9Tw/z1w+78KJKSHCShDTtTiUO8mO2EYsz0YRFXRJQ0Tk8bZ7eW3pcMP9L9ERaKHm1BmrTNMWSF8XSe7N3HF6Qx3N0Mbzi28QloP0BbtWxLhTagxVUJitZzhTGmN9uIeaaxKRQ0iCSMmqMF6dQRdV0loSSRDJmwVmagsk1Ng1s+HXhTopWCU+N/YVnpl/lZ2xTYRkHcO1WKhnGAj3oIkqmyMDVOwaT869SFsgTUQOcbo0wlu5kwQkjT2JrddMXrwclsfyfam9HMwd5+XMWyTVGOuCndQcg9n6IpIgMhjqRRFl7mvZwxcmnuRw/hRJNc6u+CYERBaMJTRRoVVLojWMpJgSJiTr1B2Tw/lT7IhtxHQtVFG5JkPqNn6wIAoK7cG70CSfs+CXMC680836vkPWKBGUNQLSSnXLklVjupZltpblkbabV4+nbljMLhR45sXTFEr1SxRTf/GnHiIUPD8veJ6HJsu8NOkX80vqOu/rv/7wyw14BgTSWgRJEMmaFWzcd2Uy1I1geSHYk9jGeGWaN3PHmazOIQgCnXori0ZuRZ4pgCaqdAZa2RHbyEuZg5wqDqNJKoPhXvYld1xwnEZvsIMN4T5eyhzkdGkETVTZFlvP9thGBAT2xLeyZOTJW0WenX8FVVSai6wmqrRo16bHDtCht3KuPMF4ZQbDNVkwsjzUso+2QGqFcRGSdXbFN7Nk5nlu4VXeyp0gIKl8sP1BIkoIy7PJGFnOlcaRRKkxKVlUnBqPtt7d5C1cLaJymMFwL3eldnGycI7xyjRyI6NBEkR6Q51owECoB8u1eSN7lCfnXkBEpObUkQSJh1r2E1XCCAicKY4wWZ1jwVhivDpDya7w7MKrnCgMEVZC3JHYRpuW4kRhiOn6PAv1LJO1WcpOjSfnXiCpxkgoUXbGN9OqJdkWW0/VqTFameL5xdfRRLXZFz3BDgZCvX4sVW9jd2IrY5UpDuVOMlQaa4QQPNaH160wuAJSgL5QN7O1DC8tnh8ru2Kb2RwduOa+vY0fDAhIhJQOZCHoV1B0/BLT3w+Yq+VYMkpYnkNQ0khpEQpWFcdzCMs6ZbuO5dqE5AB6IwNnrp4npUUQBYG6Y1G1DWRRIq4EyZplZEFCkxSKVhXDtdEllZCs+WuXUSalRajavqCc2CDDS4LIoewIvaEWuoOpFQR5X/DNo2D5VTgXjSIFq4okiETkALIoMVP1yfW+foqF5Tkk1TBpLbImmXhxqcQzL57GA1rTkUuihqtVSkzpOtlaDct1CCo3Riq8Ic5ASyBG1ij7al2N0p7vdli2w9hMlnLNwFvj+wkHVRKRIC0JXwDlzsQ2ZEHidHGEc+UJWgMJHm65C1mQsdyV0puyKNOht3Jf+g5eXDzIWHWasBy8hKWviDJ9wS5qSYPXlg4zWp4iqoboDfmliAVBoDfUwf7UTk4W/cWxZFfQJY1OvQ1ZlFAlhYQaZV2wE1mU0CWNtJak7volT8NyiC69bcW9N0X6KFhlMkaOqlMnpcZ5ML2PuBJp9p8gCKiCyv7kTo4VzjBSmSJrFkiqMeyGotqy0mDRrlCyKwCEJJ0OvZUHWu68ZmNAk1TaA2kea7uX784fYN5YwvEcNFGlVUs1QyLtgTSSIFFz6hzKn8J0TVJqnP5QN/uSO5ohgpxZZLI2y0xtgbprsi7URdYoULIqJNUYWyKDeJrHkplnvDLDgrGE4Vr0h7qZr2fIGnnaA2k2RPoAPwtjV3wzAUnjROEs09YCuqjRoiVQRLlpFIblEHsT24gqYY7lzzBRnUEURJJqrCHTe/6DVkSZwVAPlmvx+tIxRsuTxNQI60O91/TuVoNlO0zO5ymUa3gexCM6bckIIf3qNfyXr7OQK5Mv1XBdl450jERUR7qKEq7XAsdxKdcMSlVf0rVu2biORyObGEkU0RSZkO5/m3rg6seX53mYtsPo9BKm7RDWNZLRIPHIezUDysVyyliCXwPA5wzkiap972yzrgKe5zXHZs2wkCWRlkSYZNQ3bBaMAudKc5iuTUzxM0nm63lqjklYCZA1ykSVIHmzSlBW0SWVkfI8JbuGIkhUHZOyXSMgqWRljYxRQhVl/99GkapjEpF1InLAryxplijZdfJmGVWU0SSFnFmhTY8zXJ4jrARoC8RXPENAUlYQ5ieqi5iOjSAI5ESZhBJitLJAzAxieQ6GYxGWdYpWlaiir2kM5ApV3jg6zk98Yj/tLdFLvrHVZIwVUaI1FMKwbTRJbvLArmctvu4Sxq7ncqo4zenCDLIo0h1Mckdi4Lob8nYhk6/wL/7gmxwdmsZxV3/0nRs6+cA9m/n0+3a/vY27hVg0svzjw/+en+n/FHviW64r/e823jvIFqv8P3/6DC8eHsF2XB7eu56f/vA+tg1cWzXG+aUSf/30IZ574yx10+IXPnEvT9y7hWDg2oyKteB5vn57rlTj6NA0B09PcXJkjsn5HNW6iYBfDz6ka3S2RNm1oYvH79rExt6WK1+8Act2mFsq8c9+/+ssZEvs3tjFE/du4dF9azPm382w3RrDha80CaeWW8RxDXalf/kdbtmV4XkeM5ki//HPn+PM+ALxiM5nHt/DRx/cjiAIHMqNMlL2pbkFBNYFW6i7FnmzQsYoYnkOP7rufg4uDVOx63ToCXJmhelalpCsoYoysiARUXSO5EdpC8QbXksbURCam4WS5au/tgcSlO06Vdtgf2oDcTXIq4tn+Gj3fr41c5Dt8V76Q20r1jTP8xguz3E0P87Hu/fzlakD3J3aSNGqcaIwweZoN1mz3DRi4kqID3Xt5UsTr/J4xy4S6uoqm8dOT/O//vIl/vO//PQV1QqX2/HVM6fY39lN1TIZK+R5X//gdYfqb4gzMFKa4/0dO5moZKg6xi1JsbvZ8HcZ7/ZW3sZtvDvwytFRjg5NM5spIgoCn3/qEA/dMXjTjAGAifkc//ZPnubM+AK1+qXprabtUKmZLGRLBFSZu7ZfW356pWby7OtnGJ1ewnZcDp+dRhLF96wxIAkq3eH3octpBERMt4Th5N7pZl0VXM/juTfOcmZ8gUy+Qqlq8KVnj/CRB7YjCDTE7cVmCO5MaQZN8pcpSRCRhfO06ZxVoWBVCSl+dUBdUjBdm7JdYyDcxkC4naptEFdCRBSd8cpi87opLYoA1B2LbdEezpSmkZeJx41aInmrwmwtR0QO0hI4v3laqBcYrSwwWplnuDxHTAlxLD8BeARljeOFCcJyoFFLRiIgXd0yq+sqPZ0JTpydZfP6tqsqdTyQSPLy1ASW49ARidzQ+ntDnIHuYIqXF0/jedCqx971hgBAPKzzL3/hg+SLNSp1k6phki1UeePkBE8fOIO7hrfgNm7jBxGXxi1v7lfuuB7/40svMzK1RN2wkESBSDDAvm29pGMhRFHAcnxjYHI+z13b19ESvx4Nh/PtFtYoEPTegYgupxCa2SgeHvYVz7ocXNdjaGKRJ189RWc6xvb17WztX70mws2EgK+8t4xN0S4Gwue1RtwVXAj//1dFhb3JAXZ66zjfrx6vZs4iCRJ9oVbeyo3wgY7dgL+wS4LIhkjHeWKz/9pwPRdNUugJpdEkBRGBx9v98z7atR9VlC/R0ElpEe5Nb2JvYpCwEqBTT52v1CnQIP4JzfZKgm/ePNF5B0F5bWKwadiMT2X5jd/9Bq2pCAFNRpLOhwp+49c+TCS0slLh5lSagXiCXL1G2TJvaFxftzEgItAbaiGqBKnYBrq8emWydxskSaS1EaOybAfLdsmVqsxnS80P6/sRYTnIT677OBsifejSzS19eRvfvxjsTtPdFmdiLo/ruty3qx/tKnYsVwPbccmXahwfnqVS8yeyrtY4n3pkJxvXtRIMKAiCgON6WLZNsWzQ3RYjdY3GgKbKbOlvIx0PUawY9Hcm2b2x66Y8wzsBD5eqvUDdXsT1bAw3j+mUiKnXzyR3PZfjI7O8cXKCLX1tdLbcmjCiIAhs6WujPRXFMG1iYZ17dvQ11/SApBCQVvJBVouD67KGfsFvABsjndQdE1mU2C7rhOVAc/EXBIHARSH3C8/VLrhnRPS5JMuchYvXNVmUkEWJUOMzUMWVsfoLr3vhuVdS6U0lQjx2/2ay+QoBTUGSxBXnK/L5B7Bdl7lyidlyGcd1yNRq1G2LrenWy97jcriur9pwLDJGCYCApFKy69QuI77zboMgCCiy1Hy5ggCRYOA94dm4XuhSgMfb732nm3Eb7zGs60hy55YeZEnEtl0e3DOIpt4sY8BhMVdmKV/FcV0iQY3+ziRP3LeVWDhw0zYXqiyxobeFB/YMUijX2byulT2b37vGAIDrmRhOvlGsqILj1W/seq7HiZE5ZhYLtKci1I2rVyO9FgjAYE+ae3b20dueIBoKcN+u/svOvVdbB6AnmKLmmNQdk6QW8YXUrqGGwLX+vtax1ztuE7EgD+y/jLrmBQRCz/MwbIdsza87UzZNLPfSctnXguv6qotWlRcXTjVdhpl6kZQWYWf8ttb0bdzG9xOioQAfeWA7H3lg+5UPvkZYtstMptAU3WpNRljfnb7pLH9JEklGg/zTn3z0pl73nYIoSESUdahiFEUM4XoWhnv9OgOe5+G4HqfH5jGtGws3XAmCIJCIBPn5j99z068tixIRUX/P1slRVZl08lJyoed5mJaz0ksgSQwkEoRUlUQgQN22KRg3ZhBelzEQU0M82r6dFs13JS3nhd7GbdzGbVwtXNelWjvvUQzpKvFI8B1s0XsHfrVTP2VYFFRk8fprYdiOS75YZWR66TZn6l2IWt3iz750gJ/61F0EL0oNLpsGEfXmkHmvyxhQBImU5heKEQSBhBb+fg2138Zt3MYtgOf55MHqBdkDoiBwk+ULvq9xs8Io5arBwdNTXGeW+W3cYjiOy/D4Ao57XpHQdl0WKhX+5uRx2sLhRtE5kR/bvuvtTS0UBAHpgiiPJIjv/pzCtxn+d+UzdEdns8xliiwVKlTrFqIoEAyoJGNBulvjbBtopzVxbdrSrutRrZtMLxY4N7nI3FKJYqVOzbCwHRdZEtA1lURDbGZdR5JNfa2IV2BSV2omR8/N8NRrfg32R+7cwH27+hEFgYVcmWPnZpleyJMtVqnWTTwPwrpGOhGipy3Oxt5WOtLvnIaB53m8dGSEw2em8YAtfW08tn8jw9MZ3jw5ycxiEcu2ScXCPHLnerpaYwRUhbppMTaT5XsHz5Er1VAaYig7BjvZs7nrKnJ+4Vb2N/h9XjctDp6a5NxkhnypRt208DyIhDQGulJs6ffJWQKsYCJfDb538BynRueYz5ZW/V0URbb0tfGh+7deU2phvlRjaiHPydE5SpU6lZpJ1bAoVQymFvLN3ej4XJZvvXyKEyNzl1xDEATS8RA/9aF9RIJrE2CrdZOnD5zh6NDMisnzQrTEw2zqa+Wx/Zevune1WMpXmMkUGJ/NMb1YoFipY5g2guCTvoKaSiTk6yS0p6K0pSK0xJc3U6tf81Z933XTYnw2x8RsjkyhTK5YYzFXZmwu2xRhOzO+QLlq8NKRkTWvs3/bOu7c0kNrMrLmMZ7n8c2XT3JqdJ5KzVj1mGBAZUNPCx9/eMd1GzfL7Z6YyzE57/83t1Si0tCpCKgy0VCA7rY4ezZ1kYqFVpDx1sKhM9O8eXKC6cUC4aDKr372YSRRoFCuM71YYGhikcn5HKWqget5qLJEuKGHccfmHtqSkavi13z5yUNs2dCBrin87VNHLvndtGyGxzI4zvnxLAoCMU1jR1s7neEIuqIgi9dTreY8vn/rDr+DcFyXWt3i5Og8b56cYHgqw0ymQCZfoVI3EQWBkK6SioXobU8wt1Tkjk3d9LYn0DXlih/F8uQ6PptldCbL2fEFZjNFCuU6VcPCdhxkSfQXoGiQ9lSEga40+XKN3Ru7CKjyqtKW4A+8sZksT75yCs/zaE9F2TbQTrlq8PLRUQ6fmWZiLke2UKVSN/365bpGSyJMb0eC6YWCTw5qS1zzYnSzMDy1xAtvDWPaDtW6yb6tvXzvzXO8fGSUqYU8puXQkgjjeR6P37WJRFRnIVfm6QNneOb1s2SLVRRZojURZn6pRFs6QlsijLzGBHKr+xvAMG0y+TInRuZ48dAIZycWyBar1A0bD49oKMD67jQzmSJb+9toS0avmfV/bmqRFw+PcG4ys+rvsiRSNywev2sTl1mPL0GhUufU2DzffuU0xUqdSs2gWrcwTHtF9clcsUauWFvVGBAFgXUdCT7z+B4uF0kwLYdjw7M8+copbGd1Y6C/05fxvhFjYFnV8Oz4AkOTGcZmlhidyTI5n28YAxYgoMoSwYBKNKzR1RKjpz3Blr42Hr9r7RLGt/L7rtZM3jgxzuGzMyzmy2QLFQrlOnXzPFdgIVtmIVvm0JnpNdsY0jU2rWu9gjEAJ0Zm+e4b58gWq6seE4/oVOsWH3tox3UV7fQ8D8O0OTEyx/HhWYanMozP5ZjNFKnUDD+cosrEwjq97QmWChW2D3bQ25YgEdUv++1NL+R55egoJ0bmSEaD/NzH76FcNTgxMsep0XnOjM0zPpejWKnjeR6KLBMJanS1xsgWq+zd3ENve4JE9PKhr1rdwrYd8obFG0fG2Ly+fcWibtkOtrMyDC8KAkFFoS8WRxFFZFFEk+W3P7XQ9Vws18Hx3GY2pSSIK9IzflDhuh6Vqsm5qQy/99fPMzyVwXU9RElElkRUWcLz/I+yWDY4N5nhewfP8eH7tvHDj+2mryNBQLv8e5ycz/Gl547w4uERShXf4pYlEUkSkUQBWZJxPX+XXyjXGJle4vUTE7x8eITf+HtP0NeRRA9ceaH2PH9iOjO+wInhOf7k6wf8vhYFJFFEkUVc16NYqZMr1Tg7scjLh0fIlar8xBN3EgkGbnpe+rWgZlhMLxQ4OTrHF5453Fx8HMdlYi7H5775Om3JMG2pKGfGF/ir77zl7xg8qNVNRqaXmJzLsa4jyQ/dt4XIKsbA29HfruuxkCvx6tEx/vQbr5PJVxAAWZaafVGpmRw8Pcmhs1PsGOzgkTs3oirSNU2wwYBKPKyTiAYbyoAelu1iWvaaC+vVoFa3WFgqMT6bbf5NlkSkgIrtOM2FSBIFZFlCXeU9i6JAWNeuONmJgkAkqJGMBbEsB8/zhW4s26F2kxjyy+9laj7Pn3z9dY4Pz5Iv1Zr3lyWxWdLachxypSqL+TLDU0vEwgFmFouXNQZu5fddqZu8fmKCk6PzzbCALIloioRhOc1/y7KEchlj3jc4rjC4BN9rmIjqjbLL5+WIa4Z9w2GJZWLd+FyO//7Flzk3teh74pazxSQJD99AnMsUmZrP8+rRUR7Zu4EP3LOZfVt7CQevriCY3Zgzjp6d4Vsvn2R0ZglB8MerLIl4Hti2nx0zny3x1ukpnrh3M++/ewv7t/Ve1hPxsQ/sQlUkhsczrOtK8Ys//RAXutrLlTqZP3hqVQlw03E4sbhA2TSJBwJ0RXyv7NsWJihYVQ5kzjFVzaCIMo7n0qkn+EDH7veE1sCtRLla58XDI/z+F15kqeBbw6GASk9bnC0D7XSkIliOy/RCnuHJDCPTS1iOy9dePM5MpsDHH97B43dtuux7XK6ZUK76E0VAldk60E5PW4JULIiuqRSrdYYnFzk1Nk+uWMN2XEZns/ynv/we/8dnH2JLf9tV9dXRoWkm5rK8cXISgIHuFBt6WuhqiaEHVPKlKq8eHWMuU6RqWNQMm8994w029LSwd0sPqdj1E5tuFOWqwZnxBf7wK6+yrj3BtsF26obN6bEFTo7OYVoOTx84i+04zGdLtCTC/NC9W8kU/HDISEOx7vNPH+L+PQOXCH7497j1/V2q1vmbZ47wzZdOUGr0eUjX2D7YzkBXikQ0SNWwODE8y9nxBQ6enuLEyByD3ek1JbdXw499YC8//OguaoZFuWpQqNQ5OjTDU6+d4fjw7DW+/fPoao3xxH1b2XVRbn+lZnJseIa/eeYInufR25Fkz8Yu7t+9epGmYEAhcoXJOxoO8MufeZCf+9g9VGoGlZpJtlTlyNAMf/SVV2/IqIHzO9HxuRz/x+98haVitbmoiaJASzzMlr42ouFAwwg0WMyXOTOxiGnZDHaluXdn32WNtFv5fadiIX72Y3c3xxH4Bv+bpyb51ssnAdi0rpW9W7rZvbH7kvOX0ZGO0ppY2ysAvmH0i59+gL/70bup1k0qNZNipc7BU5N8/ulDZPKVy55/JdRNm9HpDP/kv3yNpUIFzwNNkUjFQty5rZeulhiO47JUqDA+m+PI2Wksx+W5N4eYmMtxdmKRX/jEPVc1D9ZNi88/9RYvvDWMYTnEwgH6OpPs2tBFNBSgVDUYm1ni1Og8Czm/ZsSTr5zGdjwiQY2dGzrXvPayQZJOhHj0/k3EG3UalqHIkl+4aBXjayi7REhRCKkqiijekArw9WUTKCEebN3CkzOHeKhtK5PVJQzH8jmE75GCRbcK33z5FN9+9VTTLbZ/Wy+fft9utg22o2tq05p2XJdiuc6Z8QV+7/MvMLNQ4PDZaXRNQZYlHr1zw5r3aEmEeWTvBnraErSlIuzb0oOuqUiS0FRX8xo74KHJDM+8foYvPXfEd9sNzzI0uUhbMnJV4i0j00uIokhAlfnlzzzIfbsHiAS1pna253n85BP7+Orzx/jum2c5M74IwN8+f4z2VOQdNQZsx6VSM7Edl3/7ix8mGgrgei7js7mGTn2Zg6cnUWSJga4U//+ffT8d6Sie5/HUgTN888WTHD03w8xigcVciWQ0iH7RLv7t6O+/eeYwb56aoFw1EAWB/q4Uv/5Tj9JzQZhhub9Pjc3z3BtDfP2F45waW7hmdrgiS8iSRDio0ZaKUK2bHDg+fo1vfiVCukpQS9DdGl/x92KlRrlmIAi+Fyoa1OjrTLJ/2+opyoLg71qvBsGAgq7JpGIh0vFQU9ToRuEBJ0bn+J9feqVpCIR1ld2buvjw/du5Y3M3kiSyPG8veyYqNZPTY/NEghrrOi5fbfRWft+6prB1oH1FkbbFXIm5bLHp5U1EdNZ3t6zZD+AbPlcr6x5QZTRFJh7WaU9HyZdrN0W46ti5GT73zTdYKlTxPNg20M6j+zbw+F2bGnOUP1aWuTZT83l+64+fYmaxwOjMEo7r0pGO8pEHtl1xbJiWw/MHh3E8l08+spOH7ljPtsF25IYwkOd52I7LbKbIH3zxJQ4cG8f1PE6NzvHUgdOXNQaWkUqEeGDfpToDwaDKr/3CY6sWGbujvYOabTNXKVMyjbefMyAKApqk0BlMcCI/Sd21iCuhH3gO4ejMEidH5xruUIGWRJDPfmAvW/vbiIUDl8TxAoqMqkj87Efv5rf/7Fnqps3p8QUioQD37exvuHkvfauSKLJjfQcD3SkCmkKqYUmuduzG3hZyxSpDkxmOnJ3GdlxmFgtk8uWrMgYc1yMaUrl/9wD37x4gnQhfMiEHNIUH9wxgmjZnJzJ4ntckuDmO+45xB8AXnNmzuZtERG+SeVriYbYNdJDJn8N2XNqSETb3tdHdGm++857WOANdKY6em8H1PLKFKrW6ucIYuNX97XkelbrJwVOTzC4W8fAn1p/8oTsZ6E4T0tVLXIeb+9qoGzaL+TIvHlqbALYW/HEEy/sLSRRveBEVBQEkAekiT6kiScgXtF8Q/AVGXaU627XgwuqbQMO9fnPG4NR8nhPDcwxNLvr15BWZDz2wjft3DbCxt2VVjQTP8wgFVAKqLy97sUF5MW7l970suHYhFFla8X4E0Q913Gg/XHjP5TEluJ7f5ze4WMxmipweW+D0mB/uSMWCfOj+rdy9vY+WePiSOUfXZAKqws985C7+8CuvMpMpMJ8t8+TLJ3n8rk1oqnxJOfqLYdoOj965gYfuGGTrQDvRizyFnuchtcb5zGN7eOv0FIZps1SoMDqdxbKdpuGwFkRRRFUvHaeiIKwZzpiv+N6VsKISVBSeGjnHo30DPpnwGr/b6/5CBCAsB1g0itiugy6p3wea3zeGU6PzTC8UqNb90pzbBzvYPthBPKKvSuiRZYlEJMjdO/robo2jKRLZQpXhyQyT8/nL3isZC9HTlqAlHka8TMeHgxqdLTEGu1PNv+VLtRVuwstBECARDfLQ3vW0pSKr7sxEQaC7LcFgd5poyB+0hXKdUtXAMG+tiMmVIMsiG3pamtKeguAvNr3tiaZUaTIWpK8ziaaeJ+BEQ4EVk2mpamDaK0k8t7q/Pc9ffGaXilTrJqoi0ZaKsH/bulUNgeV2D3an2Lf1xssg38alGJvNcmZ8gUpDH2F9T5r9W3vZPtixJlFMEAQkSSQRDRINBa6Kyf52fd/vVYzNZBmeyjQ5FVsH2tk+2EFnS2zVzYcoigQDCnfv6KO/M0kkqFEzLIYmM0zM5bDtK+vkiKLA/bv7Wd/TQix8achQEAR0TWH7+g7iYR1JEqkbNoVyrTleLgfLdiiUariuz9epVA3mM0XGp5YwzdU5Frl6jZJpULMtDNumalkUDQPnOvgY120MeIDpOsiCSEgOEFYCTdLRDyoOn50mk/fjRaoi8fAdGwiol2d4Lquj7drYSUjXcFyXXLnKoTM3L+83GFBoT51P96sZVpMsdCUoskRLIsy+rT2XPS6gysQigWYc0fU8ylWTSv2dlamWJJGOdHRFH0iSSCoWasZto6EA7amV8U9NlVekz9VNG9teGW++1f3tei4nRuZ8shW+u31jbwupWPCyO910PMyuDZ1I0g+uYX4r4HkeI1MZhiYXm3978I5B+rtSq7pw3y7cyPf9XsXQ5CKj00vNf9+/a4BUo7DVWhAEgWQ0yNaBdlqTETzPT988dHpqRTbFqufiE2z3bukheZnsgGWia3sq4pOH8Rf5ZYLp5VCpGpwdncdxXVzXY2o2z5ETU7x+eIzZhcKqIT8PqDs2C5Uy06UivbEYeaOOvUZa7eVw/caA5zFankcVZYpWhZlatikr+oOGZSPo7PgCuUanK7LEHVu6keUrv2JBgD2buwkH/QmlZlgcH57lSrbA8n2v9J8iSysmK9txV+SsXg4tiTB9nSl07cqFqBRZWuE6Mywb8x2elERBIBHRVxC2li34ZQQD6iXuXUkSUS/oO9t2mmlwb1d/uy4MT2awGu8wEgywdeDKleQ0VSYZC9GaiFxXutZtrA7X9ZhZLDCzeF76976d/aSvq4rilfF2fN/vRXiex8S8r+mwjJ0b/z/2/js8sus684V/J1ZOyDl2o3PuJtlkMwdRpESJipYcZNmSg+zxPP5sz8ydPNdp7oyvxzMeexzkKwdZspIVSTHnZpOdc0Ij5wIKlcOpk74/TqEaaBQa6EhS7Pd5QDYKp/Y+Z58d1l57rfdtIlhht14J67rqaSwZT7Ztc7JvYlkaZkkSWdtRj8/jWtGxZ8jvKXtRrZLRsRyGRmf56398A8MwSaby/OjFE3zvuWNMTqf4X195uWIZnaEwLlHGp7qo8nh4a3SEBr8f9dIzuRXg6lULBYENoVbejvXilVx4RNdFecj3IQpFg1gqh1Y0EEVnsakN+1c8GbfWhctBNXPpMsuZVlaJwe3Q2RHODUWZmEkST+VIZzUyhSJa0cAwTIqGedXu+rDfQ11kMV92JQiCsMAyd9KJ3lkDURQcwp9L++b832RZxKVWOMedd5FlL1Q5uxnv28ZmcjZdtvLdqrxiQidJFGmoDhKdTV+Vy/AWFmM2lSOV00o88c6EXxPxXzcVx0txM8b3ew1z2RxzRyECTsxSbdhfMSW1EhqrguVNi2XbDE7OohuXN54kUaS1Lrzi2JMFHopL5o6lIAjOUaLbpfD0S6eorfazfVMbG9c08a//4J+xK3gG1tfWsbamltlCnnghz8Odq67KEIBrMAYc94ROSPGSN4sk9dz7Nl7AxmE+m3PjSKKIR1WuKMfe55kf/Wo5aUVLdCDLsjkzMMXhc6McOjNMNJ4hm3cmB4egwtkZWLaNVd5BXN2zKbKE+zqp1L0jEJZn4hOFlURG2wv+dVPet+3UY8+rx+tamTtaEJygqfm66rdwbcjmi+VFQyjxGSzH+Hc1uJnj+72IvKaXj+wEQXDG3hW8B49bRZkLjrQhkysum3UjCOBxK1fgabuaPiE4cUITCQ4eH+LOHV2sX9WAKkvohrlgFOumyXAywVAqiW6axPI5iqbJ2uraq6jXwdXP8jYkilnSegG3pOCV37kzs3cctsMfPTciBYErPq91AtxKxc2VtwQOnx3hzeODHD43Su9wFN2wqKsKUF8VIOhz4fWouBQFRXaISnIFnclYiuO941f8aKIovKPZANcDoiBcdmwKXOHQvYnv27SssndFWIFhM4c5QpT3sbPuusMwrbJhJuAYyjdi/3Mzx/d7EfPHBHNj7wrew1xaNDhmshM8uLw1pazgCPBa4Pe5WNVRyxsHLhDwu2msDxEMeEhnCo53c15nEwQBlyyjiCJuScaybTTzHZAwBseFmTEKxIsZWr01hJV3Lp/8HcfcJD3XwUoiLFcCy7IW9MdKu8y5gJcfvXGKg2dGiM5mkESR5toQW9e0sKqlhpa6EDVhH0G/B69LQVEkpmbTvHls4Komi5+EDJHrfvs36X2DY8jMHXHMMbhdwW3ewnWEcInVeL2Dpd+J8f1ehDQ/RW9u7F3Bq5iL1gfndS5F3bwAgrCy664B1REfd+7s4pmXT3H3batobYogiQKGYbK6s27BRkAWRZoDQSRBJOLxoL1TEsbgLBL1nhA2Nkk9x2A2ytpQ8/Jf/AmEAAR87nKeqmla5LTixQ63gtUoly+WFxRJFJ280ku+Z1k2e48N8PbJYWLJLHIpKv73vvQ4PW21S6YsJdL5G96R30+4We8bgRKpkPOrZVkrptS1bdu59v3kP77B8LrVeUFhkM5qZTf99TCYb43vlcHncS0IznM0UljxeyhoOvpcKqHgiHy9G9ovFPCwe3sXu7cvZOBsagjz27/88ILP5uaaTFEj4FKZ85VcyRx0Ka7eGMDhGdBMA7/spsb1zinVvRugSCL1VYGyslhBM5iMpamr8iOt4MUMTSXQShGtF/PgF8K0LF4+dIG85kSVNtYEefL+zazrqLvsy9cNs0xtegvXBzfjfQsINNQEyxNfoWgwOZNa0f2Zlk00nrllC1xHVIW8+D0qkihgWjYzySyJVB6fW0W9DkGEt8b38hAEAUUSqQn5CPvdJDKOQuRULI1aH16RSuDETIpUplAur70hvKIsoHcTTNtmMpPhqyePUe/zIwoCqiTx81u231w6YnAskLHcLHfUrGaqkMTGCWYRuH462+8VzD3vqtYaovFMKcDF5OSFCe7Z0b1sBKptw8m+iTIxhVtVWNNWt8jPa9swE8+U+dV9HpWu5uplXfmZnMbIVPwanvAW5uNmvW9RgI7GqvKOMJsvLshxXwqGaZLNa0zGUgtUAW/h2qDIEnXVAeqqAkyUjLIj50bxelTqL6Pet1K8k+N7fraNbdnv6gwUQRBoqQvTWBsiUVrUTw9MLmAZvRx6R6bL+gGiILCmvR5VfueDpE3TIpPV+OELxznfH0U3TIJ+N13ttTz+wEa8XrXsjZQEgVqvl/s7umj2B/AqDgnZtay8V28OCQIuUSFezFIwdQTez4mFDjavbirnHBcNk30nBtGWYI6ag2lZpLIFTl2YIFeSuw34XGzsbqw4Acw/mxZYPgo+VygyGUtzYbSyLO0tXD1u9PsWRIGetrryBJfNF+kdniaV1S4b/ZzMFLgwMvO+STe7WRAFgbb6CO2NkfJnbx4fZCyaXDZPfaV4J8a3KAq41ItHEIWiQf4dJgtbDt0tNXTM03g4cGqY2VTusuPCth2F1XNDUabjGQTApchs7G5c8PzvFOLJHG8dHiCT02hvjrCqo5aaKj/JdI439l8o842AYxCpkkRzIEjE40ESBQqGfk0xXtdER9zsrWJGS2HaJj7Z/RMRbHYt2LSqkea6EB6XgmFYHDg9zODELNl85dQV03KEdE71T9I3OkNB0/F5VJpqg6xur61oXPk9F61DTTfKFm4lFA2ToYk4Z4eijEwmrtNT3sIcbvT7FgWB7pYaqkI+VEUir+kMTcY5MzBFoahX3PVrusHoVIKDZ4ZvHRHcAHQ1V9PTVlf21hw+N8qJC+OMTCWWjeco6gbZvHZZl/47Mb4lUSTg85Q9U4lMnul4lqJuvmsZZbtbqlndVlsmWzp8bpQLozNLGgRWSe74dP8kvcPTJNJ5FEWioSbAmva6d4VnIBbP8saBC3S11fCRD2zlkx/azkN3r6OpPsyLb56raHAalkUsn2MomaA/Hr8mFuCrNgZEQaQ70MADDZu4t34D694DwYO2vZjVq5yne0k46pza2FKsX5XQWh9h25oW1rTXYdk2U7Npvvy9tzjZN+G4kk0L03J+DNMindM4OzjF//jaK+WJZE17HQ/sWI3PvZjxTxQFOpsuuo1nUzn2Hhssl2uVaCznyp+cSfHN54/w7JtnsOyfXEaydwo3+n0LgkDI72bH2pYy2VBe0/nf33qd0WiSgqZjztVhWhimychkgn0nBnnmzbNXnEVReWxUvm6psfFOo/J4XRj5b5d+5qLKr+Q5VrXWsm1NM821IcBx0X/92cP8/VMHOD8ULfMALPgxTHTDZDSa5FjvOEfPj1Us+50a326XQntjpNz/hsZnOdY7xkQsiVmqb66PmaVnmh+RvxQqtu2lM60jdXvFfaquKsD6zgZ2rnNo0qfjGb714lFe2H+eTF5bMPZM00IrGoxGE/zJ115lYsY5PqsJ+/jQng34POoVcYTcKGhFnVgiy8N3r6M64mSMdLRUcfeuVczMZiqSDl2YneXA+JhjCJSO6q8W77w5dJNh2U6jZ3MaOU0nr+nMpnIMT8xejNDMaYxOxjnRO47Po+JxKbhLPx6XctnjkEfvXEvY72Y2lWV4MsHbJwc51T9Ba32E9Z0ODaZhWozPpOgbneHCyAyForMwbOhq4NE71/HoXesrli2JIo/v2cCrh/tI5zQS6TyvHb7Ab/zRd9iztZvasA9RFElnCpzon+D1w31k8hpNtSHu71nNSwd6r3dzvu9xI9/3HD7zgR3kNZ2ZRJZsvsj5oSi/9v98i41djXQ2V1MV9KAVTc4OTXFmYIpEOo/HpbC1p4X9p4YwV8hTrukmhaLu/BQMMjmNc0PRMq+6bdvEkjlO9E1QE/bhVh2ZYJ/HhdelvCv4KGxAKzo78LxmUNB0Epk854ej5fGdL+hMzKQ41jtWvne3S3bG9zLkUZIosGV1M//Xzz/Eb//P75PJacymcjyz7wwvHuilqTbEmvZa/B4Vy3Ii3ePpPCOTcRLpPEGfmx3rWtmztatC2e/M+HarMqtbauhpq6NvdAbdMDl8dpRf/v1v8MDOHuqrHVpr3TDJFXRmkln2bOli65pmasOXZyctFA3yWpGCZlDQDDJ5p0/NHWHppsl0PMux0lzrVp334HUpeN2XX6Q3djfwq5+4i+HJOEMTcU5emKBvZIZvvXCEHetbaa4JYdt2aX5PcOT8aNkIb6uPsGdrF59+ZNtVtdmNwJxnPZ7MEQp6kASBom4ST+WWVFTsCkcwCWHboErSssqLl8P7yhjYe6yfv/n+W2hFA9OysWwL257TvdfK53Wj0QSzyRxvHBtAEgUEUUAUnB+3S+Y/ffFRmmpDFVN93IrC9rWt/Oufe5C/+u4+TvVPks0V6RuZYSyaQJEkbGx0w3K4+4sGggB3b+vmEw9sYU1H3ZLnhIIA7Y1VfPLhrTz31jnODk5hmBan+qcYmog7EpkImJZFvqiTKxS5bUM792zrZk1HHQfPjJSjaG/h+uBGvu85hAMenrhnI1VBL994/ijJTJ50VuPI+VFODUwiS6JDOlKKV9i0upEHd/Vg2w6BzXLGgGFa/Oe/eobRqTha0Sgz21mWTUHTywp4pmVzdnCKP/7qy0iSiDg3Lkr//9DdG7hjYwedzdWXre9G4eCZEb7x3BHGoony/Vu2s7MtlDw1ALFklrdODHJmYGrBMwiCgEuR+NIn9rB5dRPuClLDgiDgdSv0tNfxu7/6GF/+3j4GxmbJFooUdYOxaIKZRAZJFMreRdO0KOompmXh8yy9e3unxrcgCCiKxJc+cRf/8+uvMRKNU9RNEpkCz+8/h1yit7WxsS0bw7Tobq5hfWf9kmVGZ9P88ddeZWQy7ng1bOe7Dk+/Y6CBY5id6pvg9/7mufK7EARK/xb5xY/cXorNWWx0KLJEU22I//iFD/B/vr2X04NTZPMaEzMpXtrfW5qfbUzTpmg4hiHAzvWtPHzbGnZv7rhu0tbXA/U1QR6+ex3/9588TXtLFbIsks0ViSdzfPJD23FV6I+6bTKcTOKWJdqD4Ws6pn9fGQOpTIHe4elFUrSXoqibFPV8ucPOh0uVKFwmSEwUnYCwdZ0NfPqRbRw8PcLgxCzR2QyJdI5MrogoOkZFbcRPfVWAVS013L6xnbUd9QT97iVfqCAIuFSZ3Zs6cSky7Q0RekdmmIyliKccOmhZkvC4FVrqwqzrrGfH2lbWtNfhcSs014beNylINws38n3PQZZEWusj3L2tG0WWOHhmhOHJWVJZjWzeeZ8+j4uu5mrWtNexsbuRDV0NTMbSK3N/2jaD4zEGJ2aXFZbKl7xplTAdz5AvrowH4UYgk9MYGI8xPHn5yPq5I5tKMr+KLJHKFS7rbhVFEY9bYdOqRn7qke2cG4oyMpVgYiZFNJ4hVyiSN8yyXLbbpVAb8dNYE6SjsYqN3Y0Vy30nx7coCKzrrOcTD23h5IUJBidmmYylSWULmKaGKImoJWryuqoAVSEvymXSKXXDZHA8xsB47LKxK5Ztk9N0ctFExb/H0/kldQMc401mVWstn3hoKycujDMwPsvYdJKZeIZEOo8ggKrI+L0uVrXUsqajjq09zaztqKcu4n9XxbgFA262bWglm9PKjKSRoJfVnXVsWV9ZBC2azaKZBqZlMZ3LsfoaMvreV8ZAJORly+qmq5J3nIMiSyUimMu5Eh0SmQd39dBaF+bUwBRDE7NMxdKkcxqSJOL3qtRFAnQ0VrF9bQst9eEVu3i6mqsJ+d10NFVx+OwofaMxMjmtvLMJ+Nx0NVdz5+YOmmpDeN0qqWyB2ze043OrdDRVVdTjBmfhqY342drTjG3brG6toSa8tGTnfPg9KqtaazFKtJj1VYEbJuJSCc6ZpEkgWGB1R4hI0ENV0IcsiRhWHklUEJGQRIHqkJetPc2YlkVbY9UCFUNwooxrw362rXHaoa4qUI7qt20bw84jCSoC4g1/3+CkmXW3RKitUqgOezjdHyWWzJaIhSAc9LCuo4Hta1toqvUjKxY2Prb0NKEVDTqbqxdIMs+HIAisaa8jHPCUjIGrI9GZ62srhSSJVId9bOtpxrJtVrXWUrNCUaxKCPndrOuopzq0sv5aCbIkEQ54lnw3tl1qHwQCXjeP3LGWdZ0NDI7HuDA6w9BEnGS2QFE3HE+i6hyjVIV8rGqpprOpiua68GXv4UaO76XgxKd4eHT3Otobqzg7MMXAeIyZRBbdMJFlCZci4/eqNFQH6WquxuuuIO5VgqrIrO2oI+z3XJNYWU3YCZ693H27VJn7dqyis6mKCyMznB+OMjyVIJ3VShodCpGgh86mau7Y2EFTbXBFvBBVIS897XWoioSqOCJhK/IkCNDZVIVuGOQKReqrAnhXIHHtdim0NUd4IryZkYk4pmnh87qorw3g87gqfkczHC+3bjsMhDZXzzwq2Dcg6se27bJLbs6VrhvmPDfQ1d2uExBiY1kWqiK/rzgN5tyNkiQueO65trZt26HMFIQySc31aPO5OuY62fxy5uqWRIdn/3q8i4vdce7/88tc7jObopWiL/0cDZ5tBJU2JMEZhLPaeTxyNaoYQBZdpXpWUoeNYReQBBdCKd7WxiRWOE9AbUIRfUiCMq+8S9vgYnlLtc/S32XB57qVIaWPEVRbUAQvgiBWfA7NTJI1os79Cb5Lylr4bJc+v2Xr2FildnPuedlnKz3Xey25eGFfW9kYMaw0tl0AJBSpatnr382wbBvTcILsStMHqiIv8iZZlo1hmqWgQec6lyrftLn3Wlj1VlK2VjSQJRFRFFccSGiaFrphosjSAq2Dy9Uzhyt9jrl5Vp5Pw1z6/MzMNG+NjWLZNqurqri3vfOKyp6PG7JtS2TyfHfvSURB4Oc/sAvbtvmbZ/ezpbOJnpZaqoNXZ7kfvjDGK0f72H92mD/6lQ/TVBVckqLzJw0TsRTfeeMEH9m9gabqi89d1E3+5sdvMxSNUxXwsrW7iQ/sWnvd2hycFKaZZIam6tCCzzXd5P/88E0+eNtaWmrC+Fdg/a4ENgYJrR9BUHBLYdxShII1i27mEAQJRfTgEkMUrPi8z7y4xBCqGEISVCzbwEJHQsGwChh2HgEBUbjYXzLGBEUzg1sK45FrsG2TmHYWj1yFS4ogCyoFM8GpxDdo9t5ORO3GJYUwrAImBURBXmAgxLULeORqXFIQ27YpmhlMCli2hVeuRRE8FZ/XtDWSxUE8cg1uKYxt25i2hmFrZI0JImo3AhKGXcC0C4gozC3MRStFSh8BBAJKC5KgYNh5TLTSdVC00hhWHtMuYmMTVFqwscgZ0xTMOB65Gq9UR9FKM5E/SFofo9Gzk2rXWgByRhTdyuKSw7jFSPnedCtD0UxT5e7h6vcj7yxMO4lhZZHFALKwPItqRjtOorCXgtHP2tq/uAl3eOMwNZ3iOz8+wrOvniaXLxIKuPnT//unaG4IL7huPJrk77/zFm8e7KNQ0AkGPPx/f/SzhK9hTrkSVDLZrxe0osGnvvRlfv6Tu7ltawctlzz7Unh53zm+8s19fOEze7h7V7cjCrYMrnbXXtB0vv79g3zmIzvxXOJ5m8ikqff5aAkGWVtz9YqFcAOPCeZ2k+BYQj9171ZcirxizelK2NTRgEuRmU5mr89NvodQF/Hzsw9uxz+PlxucPNPDF8b4V5++n+qgryw3fL3aPK/pjEwneO1EH7/46O0L/qYqEp97ZCc+t4pylRralaCZSUx0YvmT2FisCT1JX+pZAkozOWMaWXDT5r+bvtQzBJVWMvokLilIu/9eJOFS96iAIMhMF04hoiAKKpKgMqv1Ei/24pPrUUU/xIkhDAAA7/pJREFUYKFZSSxM+lLPUOfZQr1nC5ato5sZBMTSjzOco/njeKRqfHIdeSPFdOEkiuhjIn+QRs9OLEym8yfxq01M50/SGXiIkNpe9lTMIaENkCgOIIsexnJv0+F/AEEQSevjRPPHqPc40c6CIFK0skwXTuKXG/HINcxqfeT0KJatM1k4xpaqzyEgUTCTzBRO45Pq8Mq1TOQOUrQyKKKXWOEcm6p+Fts2MKw8OWOGgfSL7Kj5Uvkzw8ojCk4/Gs2+iWWbmHaRXG6SVcEnyBlRpgunMC2NKveaa3rXtm1TMAYBG8NKIyDiU9cBEro1S9EYx8bAI3cgiWEMK166zzS6NY1HWYUiViEIIqaVQzdnyBuD+NWNyGIQQZCx7CKaMQqAbsVQxFpcUhMWWaazP8C2DVSpDrfShV+dy+yoPG0HXNuxMdAyIws+r1y3hGVr5PQ+dGMaj9KJItUgCCqGlQDbomAMIwoeVKkWVV46IO9GoLbKz09/9DYeuHMNh04M888/PlLxuvqaAL/82bt57P4NHDk5wg+eP35T7/MbPzxIsWjwM0/efkMyVlaSJnkpbJsyn8FKvmlaNv/2//kev/7z99HSELmiVEbDtDjfP1VR2fSOllaGEgmOTk3yfH8fv717z4rLvRTXzRiYTmQ4cH6EomEiIBBNZGiIBNANkyMXxjg5OMmO1S10NVYT8Dpu2leO9ZEpFDFME1WW2baqicaqIAOTswxHE8wkM0iSSGdDNT0ttXhdCgGPa8EZkm3DTDLL4QujFIpOIMXa1jra6sIossRrx/vJF51I4pqgj66mKgqawVQizfq2enxuF7FUlr2nBvnoXRt5/UQ/haKB162Qzmk014RY01rL5GyagclZ0nkNw7DYtaaVurB/0VkzQCyVo298Bq9bZW1rLYIg0Dce48TABB/bs4k3Tw86nNq6gVuR2bW2jZqgl1eO9VWsO5bK0Ts2w8BEjA/v3kBVwEuhWCSayHBycJLJeJrDvWN0NERoqg6iytKSbX52JMrA5Cw5TcetyLTWhdnY0chbZwaJpXIYpkVRN3hw22ps4ML4DCf6JzgxOMlTb5+ho76K5toQAnB6eIqTAxN8YOda6iN+XIpCUTd45XgfBd3ANC0aIgF6WmpJZPKcHp4CnOMLQRDYsbqF1rpLz85tMsYkWT1K1ogiIGJjo5kpGjzbsW0Twy6gmUk0M4XP04Bha2DbaFYar7T4rFQUJERkStnlWLZOSh8iqLThk+twSSFMWyejT5AznHp1K4eIhCL6kQUXXrkGWfQwZ1wISNi2Iw+i23myRpR2/33Od+08upnFsPOElQ6S2gCWrWNaRSRpoTFQtNJoZoJq91oy+gRFK41QuleXFCaotCAKCgIiIk69lu3EZEiCgoVO2hhHET0lY0dGFCTn/nAmD93KIQkKQaWFVHEEw8pTMBPkzRg5I0rOiAIgi14UwYsi+vHKdQBk9SkCShNeuZqilSZvxjBsDVlwo8oBAkrTNR4PWExlvo5XWYMoepDFMDZgWgkS+ZcRBBcCEhntOPX+T5PX+ygYw9i2iSJVEc18k4bAz2BbBnm9n6x+BpfczEz2h4Q99+GWmzGsFJPprxFwbwMbJMUPgoVpahTNKCIuLLGIbS/PIiiJHiTBs0BUSjfj5PW+RXW75EYsq4BmjAAisfyz+NSN+NXN5IrnyBRP4VHaMcw4WSRqfR9BEBbzTdwoyLJEpBRfEblMXJAiS1RHfOiGSTgUuyn3NodsTmNodLYkM/zuxHJvyzQt0tkCp3snKBQWB9j+84+PkEwvnQVSLBr0D89gmovNjrFUikShQJ3PR2vw2vSBrosxUCjqTMymONw7RlMpr7pQyiO1bJt0XmPf6SFqw34aqoL4S8EQr58YIOR341YVfG6Fou6Qc5wcnGRyNo1l2yiSSF044Ei+VkC2UGQsluTEwARVQR+5glZeXFprw7x89AItdWEkUUCRJQqawXgsybmRadrqIrgUmdl0njdO9vPE7vUcODeCbdt0NdVQKOqE/R7SOY3BqThnhqN4XQqpnIbX7QiWtNSGF91T0TCIJjLMJLN0N1ZTKOoMTs5yYmCCh3f0cKx/AkWSymd1bpfCvZu7KtZtWTaabjA5m2LvqUHu3tztfG7bFIoGyUwBw7RIZvOkc160oLFEm6sYpsWBcyPkNB0B8LgVqoJesG3SOY3ZdI5C0WBqNk1XYzV1YT+pbIGZVJZCUSeezlEX9mOaFoLg0N6+fmKAHT2tRAIeBEEgmsxyvH+CqqAXTXcCaHTTQsDmrTNDNFeHQIC8ZqDKEi01IZAWDqeMPolmJtCtXGkBhjmqGEEQEWxpTqMLwHHVCza2bWHYeYpmhrw5i8sMIctuTLuIZesUzCRuM4Iq+QEbUXAWTBsL2zbJGpMUjASGpWHbJoIgIYseRNGFaevYmNhYmLaGZRtOHVIQbLtkHJilowMBG+ezgNKCW4oAAjaVJjQBQZj7rlJyJdqIgopPrscrOyI1pl0s1auTN2N45AiS4AIEcsY0fqWptBM1nGstjZwxg0eqxsZCEYP4lSbcchjT1smbM+SNGJqZwrSdCUoW3UiiGxEJ09JABGHesYqIDCVyG1UK4hIDeOWay08Oy8DGIll4G7fcjiLUIIsBwKZgDJPWDqPKTYgopLRDVHkfRjMm0IwRJMGPR+kkUzyBbs5iWAkKxhCGlSQgbSOeexGv2oMshbGsPEntLYLuHUhiAFHwAiICEgIykuhHFiPIYviqnqFoTlSuWwwCFoaVQhRcpAr7EQU3PmUtmjFOwejHr26gYI+gmzOYdgZZuHwcgq47okTjUwlH28J2AjF9HpXu9tpyxHk6W2BmNks8mcUwbXweleqIj6qwb0X8/VeLWDzLbDJLKl3ANC28HpXGuhABnwt1Xr2ZnMZsIksimSOvOXT2bpdMQ22IqrAXGzhzYZLpWIaR8TiWbfP20YGyuuDqjjqqwt4VG05zpEZDo7MkUjlM08LtUgj43RVjJCank0zHMhR1J+7K51FpaYzg81401mwcF/6p3gl03UQQwOtx0doUwedRsW2Ynk0zNplgaiZNKlPg2JlRYoksQimddeemdt46MoBhWIQClY8RdcMkX9ArBmJOZTMkCgXCbjed4UiFb68c16VXTCezTMymcasyn//ALk4MTvLK0QuAE5X9wNZVHDo/is91cVdk2zA2k+CezdvY1NmIz+3s+BOZPEf7xtnQXs+TezYtG3E9NpNkuHRe/vlHdhJNZPjBvtPMpvM0VQcZjib43Ad20hAJ4lFlTMtmPJZcsrxEtkB7XZh7N3dSF3bER86ORInG0/g9Kp+8ZwvjsRT/9PIRQl5XRWOgKuBlY2cDf/StV3lyzyYGJp085DUttVwYnyGT0/jw7g3UBL0MTMb51mvH2LOxs2LdAKs8LhRJ4sJYrGyFBr1u1re7aa+P8MzBc3z87s3UhC4Gi13a5pZtk8oVeOvMEL/64TvZ0NGAWA4Og/u3rnLkQPMah86PcWJggo/cuZGt3U14VAW3IvPTD+1Y8D7u29LNW2eGkEsDNJEpcHpoCr/HxWfu30ahqHPg3AjPHDjLB3etQRDg4R091EcC9I7N8O3Xj/PIzjVcesBQtNLYgCSoyCW3uiAIRPPH0MxU6Yy7GgGRqfwRCmaCgNKIWwqTNabIGpNYto6IjEsMkTdjZIxJTHREUaZGWkeNewP9qedwSUFq3RvwK01oVrpkALjKbnIAUVCYKZxCEmS8cj15Y4asMUFMU1BFPy4pRFhtZzj7GpqZJOLqRhJUMvp4+fsCEpX2EF65hqKVYiT7OgUzQZN3ByBgGkUk4aLXqWhmyRnTZPRxRFHFrzRiWhqmVXQMCSRMW8e08uSMKBljDFGTCamtiEilexDKXgbdymHaOqKgzDO4nOMI3c4zmT9MV+ADRFxdpIrDxLRzmHaRLvVhksVhJEFe0EZXDwFZDBJy34lHcYKfLFsnUzyGaWXRjDFAxMakYIxhY+KW23HJLfjU9Xjk1RTNKfJ6H4IgEnHfi0/ZgE9dh24m0I0oouhFFkNEPA8gChejshWpClVqQJGq8ChdeJT2q3qCvD6Ajb6o7qI4hSrVgC1QtCYwrQy27UzqgiASdO3Cp27Atk1ytohuxZHFpY0By7ZJpHIcPzvG9549yshEHNsCr1els7WGf/UrDxMKeNCKBmf7pnhp7zkOnxwmX9Bpa4pw185u9ty2itaStsL19EDYto1hWBw8McT+o4Oc6p0gny/S1lTFhx7YxKZ1TTTWhcrXXhiM8uahfo6cGmEymkIUBeqrgzz5wa3s2dmNZVv81dfeYHR8llTGSfX8vf/14/IQ+re/9ih37uheMcumZdtkc0W+8aODHD89SlE3qa8Ncvu2TodLplSQZdnkC0Wef/0sr+3vJZHMO6qizVX81Id3smFNYzleyzQtxqcSPP3ySSamkoiiQHtzFT/90dvZtK4Jy7I5eHyY7z13jImpBJZl8+V/2ls+6nCrCt/88y8S8LnYur6V7Zsq979sTuN/xF+oKLPsURSmc1mGkgkShTwtwVCFElaG62IMODKuRZprnBtpjATxui4fTCYI8Gsf3cMzB87y9P6zNFWH+PwHdjIRS1Ed8FIV8K7I+RjP5Mjmi7SW0nXqwn6KhkFRN/C5VX7rk/fylWcPICCwbVUTD2xdteD78zWgwTkHDwc81IYupjhNzqY5PzpD/0SMsyXVuLqwj4C3crqHKktUBRy3WyKT41DvKIokcd+Wbo72jXNycJKxWAqPS0GWRNrrwghL1H29YJoW47EUrbVhvC51QdtmC0W++sJhoskMsigQzxRor49c8TlaXisSjadpr3c8MRG/B5ciMZ1w+NXbaiN4VAVFEvGoCgWtyOIkZIGe4EcBi1L+AhYG2NAZeAS3FAacnTLYdAcfRRUDzM0SQaWN22t/a0GJiuhd9JkqBthW/cUF9a4JfqzsEZiDiMy2qi9gY5SCBUXCahe76/6vBeX55HoaPDsWfLfatQ5BEOgKfGDJNvPJDfjkBpo8ty/4rk9ucO6qNEm5pTBN3ttp8l6M24jmj2FhsrX6lxhKv0RaHyGotNHmu482333l67qDj5X/vSrwOAB+pZGLxLwXJ5kmz200eXaVvRg1rg3UuNYvuC6iLhxD1wInQ0VdcA8CApLgJey5h4BrK275IltfzIxiWClMu4BDg5NDEtxIghfbLmLaTjyRYWVQpIbSMYOAKCydVgnXRtUtCm4sK7uobs0YJ6MdxyJPY+ALaMYUknjRYBdQywGoDi4/3hLJHK8fuMBff20vH//gVn7nlx/G41ZJpPPMzGbKO8sX3jjL/qODpNIFfve3n6Aq5OX5N85y9NQIx8+M8bu/88SCuKPrhRffPMsLr5+ltSnC7//2E1SFfTz98km+9oMD7Bnv5qee2Inf52I8muJP/uYlIiEvH7xvA3fu6EKWJM4PTNHWXIXf58yrf/pfPsX5gSh//fU3cKky/+U3P3TVMQOJZI4fPH+CQ8dH+LWfu4fu9lpiiSzf+tEhYvFs+Tx+ZjbDGwcv8PzrZ/iXv/AArU1hZhM53jjQx7//ox/wf37/M2WjJpcv8tRLJ/k3X3qUloYQfUPTvPTmef7wz57hK//vz+FxKzx2/wYeuLOH8/1RfuM/fYM/+U+fZE1X/QJD7K5dq+hsraGpvrKbP5PTqAr7Km6MB+Nx7mptp8F/7WvGdTEG/B4XblVhoET2MZNyyEf8S+Y1O2vA2tY6Ouoi9E3EODM8xXOHznP3xi7i6TnCn+XNgYjfy7Qnw2iJtGI6mUWVZTyqs9BuaK/n33z6AQ71jhJNZHjtxADNtSFyJV73TF5jMn5RI95ZfhamitRH/LQ3RKgN+fjMA05AlygKuNXKebaCIKDKEvdt7uatM8OMzSTpbqqhPhKgpTZEV2M1H7lzA50Nzi5AEsUSu9jiuq8XJEmkPhJgPJYqkcZcrOPA+VFUVea+zd10NER47UQ/yaxDXiIKTjqLtgwZDYDXpVIfCdA/GcO0bBKZPJpulj0WoiAs+0ovpkyK5d8FW6TBswNFdM5qBUBEosGz0wkYFOZOra+k3eYc8qV6cbwkcwvy3H2U34UtL/z90tIqfPfSZ1rqeS/33cuVUevZREafYCz7Jl6llrDaiSwsT2J08Z7h0pQ6534oxS1c/H2lqXfXBxIRz4OMJf+CbPE0ouBGEERaQv8CgLzeR6Z4nLR2kKI5g0tuwyW3ktaOMJP9AcnC2+hmlIjnHtxyI0VzKdlnAa+ylmjmWyQL+wm4tlDr++iSd6UZU6S1gyQLb5Iv9jKW/EtqfB/Br24iUzyxqG5JCJC1NaazL2CaaTRjCK/SfdWtcuTUCGf7pljf08hPPbELt8tJ7wuHvLQ1OXOJYVq8fWQA07L52Ae30dVWgygIfPjBTRiGyev7L7DvUD97dq1a8a56pXjqxZNsXtfMri0dtDVXIYkCH31kCwePDzEeTXKmb5IdG9v40YvHCQe93Ld7DQ/vWescWwiwY1O7kzo9vz9ycVRfixBeOqPxylvneez+DazvaaQ67KM64uOnn7yN1w/0la+bmknx3Gtn+MRj21nTXe8cr4T9hAIevvfsUY6dGcVd4lfwuBXu393D+lUNeNwKwYAHn9fF6/svcPL8OOtXN+L3ulg4L5Vm+XnP4RhD4pLP5vO4+J1febgiV4FHUXhpsA8bqPZ4+eCqnqtqH7hOxkBNyEddOMDB86N889Vj2LbjLfC4FBKZPHtPDdA/EcOybeKZHKuaaljVXMMP950GIJkrkCsUuXN9OyGfm57WWqaTWb764iFcskRHQxVdjdWMx1IcvjDKSDTBS0d6WdtaR104QHNNiN6xGb756jEyeY2qgIf2+gjxdJ6n9p9BlSUmZlMEvW5WN9fQUhvm6bfO8OKRXnxulUxeQxBEllpMmqtDNFc7cQbPHDwLQEd9Fd2N1Utyc8uSxPbVzfzZD/ZSG/LTUhNCVSS6GqupDfk43j/BudEoqizT2VDFlq7KrGSFok7v2AyHe0cZis7y8rELrG+rp6ellroKdRslA2dRmzfXsLa1jo0dDew/N8yx/nE8qkJLbYjakI+D50ZIZwtMxlMLDDG/RyXodTGbzvHNV46yvr2ehkgQzTA4eH6E4Wic108OMBlP01IToqelhuMD43xv70k03cClSNy/5cp3kgsnBJEq1ypEQeXisi8Sca1CKrm/rxyLzYflFu2V3u8V34ngcCQs3BkuX55bCiMJKh6pCll0lwyBle+cVmp43FgjQKQp+Iuo0kIKY1kMUuN7DMvWmB+0CeCWWxBFHx6lG2wDSfQjIOBTN5RiDiQQwCU3IwgyshimKfiFsoEz78nwyB3U+J4AQLnkHi6FLAbwqxtRpToinvtwyU3ljIWKdaPid21GFDwoUhV+19bSd/wEXLucoFDRg1ddi0tuQpUun00Qi2fJ54u0z9s949QIlCR603mS6TxVYR9tTZGyS9vvcxEJefF6VEbG41x9otti2CUOlPGpBJmsxvn+KMHAxUDegZEYXW0C8UQOGxgem6Wmyk9dtX/BAiepN4Ya2LaduKvoTIrWpghet4osSwiiQFN9uOwlsSyLXL7I8Ngsz71+mqOnR8qeiKLuyDpPz2bKugqSJNJUH0ZVZSRJxOtWqQr78HpUorE0qzvqVnR/lWiv50MUhSXTOLfWN5IzdNKahnGNYnTXxRjwuVUaqwP0NNdQNE3CPg/dTTXUhHzYOAvU6pZagl4XcilwDttGLzHVeVSZiN9DZ2M1blVmY0cD/RMxphMZREHANK0SX7qFS5FZ316PKsvYtrNY+dwqnQ1VZLUikuQsuHNu7rnI9bDfQ3N1iI56h51rVXMNAiDLIrVhP1tlh2xjfVt9WZFsDkGfczav6QazJdEWJ/hvabeeJAo014RoqQmzurmWjvoqJFEk4vewvr2e6WQGTTcRBbPMHV+pbhvnvEtVZNa21uFRlXIwjFOPyG1rW3HNz7Co0Oa2ZaPKEjvXtNI3NkNO01EkEcuyaawK0F4fIVcoIgoCzTVhPKqCS5FxqQ4T39rWOnTTIX2yuagGt66tviy7qsoSDVUBupuqyRV0REGgLhxgY0cD8XSOomGWBW2CPhdbu5tXlGIjCAJuOXLJZyKeSz57L8O2wbbj2LaFIPgQxeVzuCVBRZLU0tHJexOCIBJ233nJZwIg4XdtKUX4z3lOBAREFKkWl9yET920IG7BJTegSvWlI52LpDiS6CXsvqtC3QKyFCYo7mQli6MkepHEdtwVYguWqlsUmlA89U5aqnBxnzs/PsEl1wPLpxXOqVQuFWgGUCgYGIaFLEt4vRcX2jmmPpcqk8lpl6UIvhpYtk0uX8TncWGYTsDbHNavbqSztZqqsBOsnMlq1FYFlvSsXm/YNlimo0/h87rKc44kirhLR7Vz3mrdMMmVAjM1zUCYNz/t3tFNU12oHIApCAIet1L2sIiiQ/jmUmXyeX3JoPelkC8UicWzNNaFykRGlm1j6CaT0ymaG8Jl48SyLVKahmlbyKKTcZXTr40K/LqFlTZWBfnUfVsr/u0jd26s+PnPPrSj4ufr2+tZ3754cNSF/WztriyV/OSeTRU//4VHb7uiuj9575aKn69urmV188pJHeZ4s3/z4/cs+vz+rZV3ypXq9qgKW7qa2NLVVPE7blXmXz55d/l3WXIMjqXafMfqFnasbln0+aeWeG6A5poQX3js9kWft9VVXoyfvGvxu2ioCrBu3jttrQ3z8x/YtWSd7z/YGMYIlpVAkloQhNbS5zcv1ezdCMMSsBFQS5OgJPpK8QwuTEtAvCT6VBAEBK5skZkfq7Ec5ozwSue3lep2Prs+06xQOma7nPCUKAmlhc3GmpeXbs8JN1m2Q6l7nbuUbTuL4f13rmHPrm7aWxYGQgoldlTbthFFoSwitTyu040KjvDR/AV6TiLZWfAd75wggNsl89mP7GLrhpYFGRDgGBDlDcwc0669sDzLcphiF5zDlP+59DPH4llefauXjz+2rWxwWJZNNqfx0t6zfPqJnXhKqcmGZTOaSnE2No1uWswWcpiWzX3vNgbCW7iFW7hSCMhyM9nMSxjCOUy5FQQFl+uhd/rGrhuuhvn87Mw0OV3n9hbHOAp77sG2bZJagXOxGTbW1V9VuVeLRKGAbdtUeTw33Uhz0gIVBoZnlnzmuuoAfp+bfEFndDJBfa0TlGZZNolUntlkjtamyDVyQyzEnCBTfW2IRCpLIpVjlVx542RZ0NIYYWI6STyZW/I5yp4VqfTvEsmPKF45NbEoOl6Rmio/Y5MJNvQ04S0t5IlU3knbs20kScLrcVFTHWBgdIZtG1srMtzO1W2aFhNTSUeR0XaUSedSJutrAmU+HEGgrExqW5S9qpc+x8xshpf3neezH91V/nyOJvmlN8/z5Ae34SmdvqiSxIbaOmq9PsJuNwXD0Sa4FtwyBm7hFt418OBy34dtFwHpis7/3+0oGAbnYzMMxOO0BkOIgkC6WCSay9IaDOJXVaLZLBlNozUURhBgMJFgJpejxrvwyCRdLDKaStEbm2VDbR2vDA6QLmp4FIUGX4CQ28X+sTHagiF8qkrBNBhNJllVVU3RMkkWChQMg6ZAEN0yiWYy+FUXYY8bSRA4FY3SEY4QdrvJGzrnYzOsr3H4Ht4eG8GybR7o7KLjGvO6rxTbN7aSSuf52vcP8K2nDnP3batwqQqpTJ5YPMva7nq8HpW7b1vF4RPDfPvpw0TCPiJBD6++3cuxM6NUhbzs2bXylLwrwccf3crTr5wil9dRFJlVbTWkcxq9A1Fqq/x0t9eiKBIffmgzf/hnz/DS3nNYls2OTW2IosDA8IwTS1ATKJ+j11YF8HlUJqdTvHW4n51bOsjmNQI+9xXxJQT8Lu7b3cMPXzhBc0OYrtYaEuk8P3zxxIK2aKoL8cRDm/mnHxygsS7E2u4GfF4XmWyBk+cn2LOzuxznkNd0nt97lu2bWmluCDM4EuPVt3upjvjZvLa5LC4ky46hJMsSR06NoKoyDXVBCppOddi3IFhZucJsiVqfDwFQJAm/em108LeMgVu4hXcJBMGNJDVhl4LmRPH6p5i+UyiaJr2xGLuamjk9M022WEQzTQYTCSRBIFt04lUUSeTCbAzDstjW2MiF2dky7escPLKMS5LRTCeQayKTYU11NYIgcD42gygIbG9sJORyM5FOM5lOs72xif3jo7glmaDLRVswREMgwIGxUWq8Xmp9fkzLYu/IEB5ZYTiZYCQlEHK5uK25hZDLjW3b1Hh9mJZFjddX6TFvKKrCPrZtbCWVLXDk5AiHTg4jCQKKIlET8bO6w9mN79zcjiJL7D82yN98/Q0nO0QUaG2KsGlNc5nf/sW9Z+kdiDI+lWQimiSVKfCnf/syQb+bloYI99yxmvbmKp555RR9wzNMTCWZnE6RTOf5o798Hp/XRVdbLbt3dNLaGGHX1g7SWY2BkRm+9aNDWJaFokj4vC5u39ZJd7tzfy2NEZ54aDMXBqd56c1zvPjmWeSSLPR9u3uorrrY730eldu2dnD45Ajfe+4Yz71+hoDfzUc/sIWezpXTNwd9Hh7as5ahsRjfe/YYquqoP9ZW+2ltjJTJmsIhL7u3dzE+leDVt3t5ae85EBwWxoDfzR3bLrrhPW6Vx+7fwAtvnCWd0ShoOrIs8jNP3rYglkAqyZw/8fBmTpwd48TZMdxuhXDQy2/8wv1lH42iSAQCbvYd7mfbhlZcqkI8meXkuQnCwcVKmoJw0b8jOB+suD0q4X1hDMSjSXqPDZOIpir+3Rtws+OBDbh9rhW7nxLTKQZOjzE9Olvx74pb4Y4PbL6iMm9hIfLZArOTSXqPDiGIAhtuX0Ww2o+6TPTtexW2XcQ0RrApIggubDuLLIdLf51LubQpmHlEQSJv5RERCSorpyG1bZtkLMPU8Ayp2Qz5jEax5CaVFQnVreALeKhpitC8qv669V1Hg8DAtC0KhkGqqGFaNhG3m3g+j26ZeGQFVZKQJZGUpmGUzpUvdSQblkVO14nn8yQKBTTDIOLxYlgWSU3DJUlohomuWOiWiWaamLZFXtexbajxeqnxesvu1ZDbTbXHQ6ZYpKAbeGQFWRTRTJO8YaAZJqZiEXS58MgyBcO4Jlne+UjOpBk6N87k4EzFv8uqxO4PbsXldeFSZVoaI9x7+2pHo2U2jW2D163QUBcqi+XU1wRY39Po0I/3TVEsGtTWBFi3qoF1qxrKZ96qIuFxq4SDHrwelc7WahRFRpEl3G6lHKymqrLDVhr2EfC76W6vQVFkVEXC7ZJLqqUCddUBdm5uIxT00D88TTqj4XHL1FUHqQ77EEvpc3MLfCjooW9ohngyiyg6ctahgGcBB4IsS2zoaUJRZM70TlDQDEJBD4p8ZUuXqkp0tFRzz22r6RuaRjdMIiEvG3oaURWZjpZqfB4VlyrTWB/i3ttXc+T0KIlkDtNy2Aqb6sMoioQgCDTVh3hoz1r27Oxm3+EBZpQMoijQUBvkju2dC1IkBUFwUrd393D4xDCJlBOEHg56FhzWhAIeNq1t5uipUWZiWWRZJJcvMhPPsGNT24rEkK4FN0TC+N0E27Y59fYF/v4Pvs+pty9gWzZ2iQZ4Do2dtfzX7/4WdS1VC6JHL4czB/v5zp8+y1vPHHOELi4pM1jl509f+vfUNEduiLjGuwnzg5WEK5ABXQ7jA1EOvXiSf/ivP0CURH7jf/ws63d1E669Ng7udyOc9Kxx8vnvgK0hCD4QJHy+XyxH0oMTRTyeH0MWFWLaDKqossq/ekWLtmVZaLkiR149w9vPHWewZMym41ksy8LtcxGq8tPcXc/tj27h8c/fe92MgWyxyL6RYUzbRsBx9RuWxdqaGo5MTlDn8zsGiSjSGgoxmEggIJDSCkQ8Hh7pvhh0O5PLcWY6yoGxMR7vWcOp6Si3NbegmyaHJ8ap8/uZSKfpCIURBIFkIY9h2+WdVYPfT3soTMDl4sX+PtbW1lLj8VIwDA6Nj5EpFumMRNAti0ShQCKfZ31tHaurq3ljeIikprGzqema2N7mcO7wIN//qxd57bsHKs4j3oCbP3/tP1HbHEF6nyi0vl9R1A1m4ln+v3/ay/n+KLpuEvC7WdVRy+c/tZvqiG8BC+GcgW0DsiiiiEtzFawE7wvPgC/goamrjmQsTTaVJxPPUchrK5ObWgJev5v69hpaexrIJPOkZ7No+eJNDWZ6t8AomiRm0limSbDKj8e/WCzoajAxOM3Zw4OkZh1mt94jQzS01/5EGgNgY9sJZGkVljWLbaewrRyXdlLLthjOD5M3cqiiizpXHTZWOQd/ydJtm3xGY99TR/ifv/kP6MXFojzZZJ5sMo+hm2zcvfp6pqLjU1Ue7OouFzl/0trS0Fh6NrtEQy2wvrYOq2Q4XDrB1Xi93N3ewd3tHQCsqbmoj9AZcVKKLRxOwzlSp0r1Ajw8z8jwKAoPdnUv+u783+/tcNzEy9GkrxRev4v61mpa1zSSSeTe1/PI+x2qItNUF+Lf/8ZjmKbl9FnByWBYCm+ODqOZpiNhXF2LMu/aKzUMfuKNAUEQaF/bxK/+4U85lJOlSM4ffvklnv3qG0ws4Z5bDq2rG/jcv/0oP/OvPlyODv3x37/GS994i/5To9f5Kd7dOL73LN/9ixfRiwaf+PVH2PVQ5TTPK0VzVz3rd3Vz8IUTuDwqm+7qobb5J4dbYCEEZHktpjHhGAK2jqrezqVDVBAEGlwN4HYSo72y7xJK28qwbZidSvJ3f/g9dN1AcSlsvquHOz64hc51zchuhUKmQHw6hWXarNnWcd3Tz5ynvPzfLuVqu1pc2iJXUtal353/+/Vukubuej7zW4/zqX/5aHkeee4f3+Dlb+/n/JHB61zbLbxXsFLv6r3tHZyPxTgwPsY/HD/KzqZmnlyzfoFRsFL8xBsDAKIk4vLMF0myUd0qwlU02Pwyndzni+fXLreK+BN+JFAJfcdHmBmL4/a7KmpuXy0i9UFu/8BmWlY3IEoCHWubr5vX4d0JHUXdgqz0gK1DmVBnPhujgCIqVKnV5M1cmS56OeTSeaLDMeJTKbBh854e7vnITnY8uAGv340gilimia4Zzjl04Pq385WyOF6ty/Naylnuu9c7/qfiPOJ5f84jt3ARK+1np6JRUkWNnuoatjY0YlgmiUKeiNuDIl3ZsdL7whi4aXifxgkOnh0jHc/g9lcWbrpauNwqriaVmqafVG/AQti2hmVNIwgeEGQMYxBJaiv/3bRN8kaekfwwumWQN3N4JA8RtWrZvHEtXyQ1m8YoaUy09TTStqaRmsb3R9u+t/A+nUhu4YqR1YsktQJeRSXsdtMcCCBfZezALWPgFq4atm1jFA1GeyfJJHPUtl6e2/0WKsM5HzaxrTx68QQIKoLgxjSHcbnuZn7wYM7MMZIbwbBMDMug2rW05O18GEWDXEYr/x6uDeBbgu/8Fm7hFt4bmIsniOfzGJbJupqVs+ReiutmDMwFvNi2Dfbi2Dxh3n8EYXk3yMVyFpZXzqucp4D3k5a6d7m2nGvHRap6V1Tu3H+WkMapUH45oGneO7FMi7G+KabH42h53fmbZS95VDD33ivd81z5l+aUz8ec6uGVvu8VtSfL9yfbssvBaAsUGK+5nxpYVgLLTiNKDRSLB7CtND7/z84rCRRRodpVzR1Vu2lwN6CIjnDTpV6BOVpULr4yippBIXfRGJAkCUFg0buaa49K2umX1nE9xmf53Vh2OWBqru4yU9slfXX+O1su++fGj6WF7byg7Gso/3pg+WcXyqnpK7m3+UGNK53ny59fUr5lWeXvCzg8CMv1E0e/Yx4ddIW5YO6+ysGnpXJX2hYrWZecoir3+ytt02vFSDLJna1tNPgD1+xPum7GQCaRpffoMHt/eJgLx4dJzqTIZzVM0yIQ9hGq8dO8qp72NU2s3tLOtvvWX7a8yaEZzh7s5+1nT9B7dIB0IufkqAY9NHTUsPvRrdz9kZ0EqnxI0k+WMaBrBhND0zzz969z7lA/MxMJ8hkNURSpaQqz7rZudj20kTXbO684sv702xc48upZ+k8MMz4QJRnLUNR0vAEP/qCHcF2QjnXNbL6rh8171izYPdqWzTN//zqDZ8aYGokxPhBlajhGsSRKcu7wAL//+b9c4n0IfPgL9/HY5+6lqWuxmlcmmeP0Wxf4g1/8yyXv/bf+9y+w8c7VVNVfeUrXsdfOcvDFU1w4MczE4DSZRBa310VdaxWrNrWx6c4edj+2DVld+pztqb99lef/aR/jfVN87t99lAc/dQfJWIazh/p5+5njnDs8QGo2gyRLBCI+mrvquO2RTTzwqd24POqSnCC2rWOaoxjGBcBCkppBgmLxOB7PYslb3dZ5a/YtDMugzl3HptDmBX/vOzHCq/+8nwvHholPp0jOpClkNYrzMgi+8rvf5e/+4PtcuubXNEXYcf8GvvTfPnvZ9hw6M8bp/f0cfe0MF44Pk45nkBWZQMRHY2ctux7cyAOf2o3bd3ltBduGE2+e58//9ddJz2bYcvda/vVffQGAkfOTHHr5FCfePM/QmXESMym8fjeRuiBNXfVsuH0VH/7C/Ze9z0wyx2jvJK985wAn9p0jEXWOSmRFpqohyOY9a7jvY7fR3F2PL7i0ANClMHSTMwf6ePNHRxk4PUpsIk4mmaOoGQQjPgIRH7XNEVrXNLJuZze7Ht500+epQq7IqX29vPLPBxg4NUpiJkWxoOPyqDSvqmfbPWvZdu96uje1Xbbfz0dR0znw/An2PX2UkfOTxKMpcpk8tmXjC3mobgjT0FZD+7pmtuxZw5odnRXjH/7i336Dwy+fJjmTprm7nj9+5l9ftp9MDEzz+vcP8rU/+hEAv/z7n+bOx7ctmv9mJhIce+0sf/pbX6WmKcK/+fIXWb2lnWJBZ/jcBE995VUuHB8mHk2iazoev5uGtho23tnD7g9uZdWWtkrVA44hMD4wzYHnjnN6fx+DZ8aIR1MIgkC4JkBTVx1rd3XywCfuoLa56qac9nhVlWf7ejFtmxqvl4+uufy6ejlcszFQyGq8/dxxDrxwkvOlyTCf1TB1E8t0cmYLWY14NMn4wDQDJ8eYHo1XNAbskkLTs//4BkdeOcPg6VFS8Sz5jIZpmAhANpUjMZ1ivC/KwZdOcf/Hb2PbvesI1QSu9VHeFRg8O8aRV07z0jffJjaRIJfOoxdNLMtCwCHiiU0mOfHmeVZtbufhz9zJlrvXXHYgGbpJfCrJ9/7qRY6+eoZkLOMsDgUdw3DKLmSLJGfSTI3EGDo7zsxYnM4NrQuMAcMwefk7+xm9MEmxoFPUdHTt4gJjW86xweKktYv3sVTKlCSJuH0u6lpryKXy5DIFigUd0zDL15jm5ZUiL4VlWiRnM3zvL15g/3MnSMbS5ec2DZN8RiObzDMxMMPxvefZ+9QRfuE/fozqhjByBapT0zDRCzqFrMZ4/xQHXjjJgRdOcuZAH6lYmlymgKlbCALkUnniU0mGzo3Td2KUJ754P209jRUnRkFwIcurkaQWbDuHZcWxbQNZXixOZds2M9o064PrkQUFVVxMQZqYTnF6fx8Dp0YxdBOjNBYvfZb5bTuHYkEvxxVUqtsomnz3L57n2OvnGO+PkknmyGcLmIaFIAhkkjlikwmGzoxz5NWzfOgX7mX11nb84aUZ+2zLolgokopnSMbSmKbFoRdP8v2/eomxvikyyRyFXBFTNyhkNVKzWdKJHMoydLTHXj/LgRdPcvjl08SnkmRT+XIfFASBbCrH7GSS43vPc9tDm7j90c2s2d552TKLBZ3+kyO89O23Ofb6WVKxLIWchlE0ME0Ty7Ip5ovEoykmBqfpPzXK5MAMO+7fcNP4Rgzd5OzBfl773gGOvnaWRMkYnHv2XDpPNpV35tAXT7Hutm4+8sUHqG4MLzmPGLpJ34lhnv3HvRx//SypUgqkoRvOPI8Tl5KezTLWF+XU23288cPD/Od//DUidUFkZeG7MooGxYKOli+WNxOXg7M2WI4HEjCNhXwM8y7ENE20fJHYZAKjaDDWP8XxN87x1FdeZXosXmoLwxEBShdIzWaRFIk1O5Z+98WCzt6nDvN0qYxsKu+899JYyWcLxKYS9J8cYf9zJ/j0bz7GhttW4Q/f2KO4Wq+PeD5PVi9iXMaruhJctTEwRzSz90dH2Pfjo5w50EdsIoEv6KFzfTPBKj8ujyMXmc9qJGNpYhMJREkkWLX0xLD3R0d480dH6DsxQi6dp7G9lq13N+ENeACbQlZjejzO+SNDZBI5RFGgWChyz5O7Sruv966XYKR3kkMvnuKNHx6m7/gw1U0RNuxeTTDiR3HJmIZJYjrNhWPDjPdFySRyCALUt1VT11JVkZTEMi1GL0zy1o+P8daPjzE+EMXlVojUhahtqSJY5UeSRYp5nVw6TyqeYWY8Qag6gCQvnLxESeT2D2xm7a4uwFn8Z8Zn2ff0MbR8keqGMOt2ddFYYecPsOH2pQeH4lJoaK/hI7/0QHmCmB6LM3x2nJNv9V5Ve04Nxzj44knefPooo72T1DSG6dzQQm1zFV6/G72oE5tIMDE4w8TgNInpFE//3Ws8+jN7qG2pWjSBldvUsug7McrkUIyhc+PoBZ3VWzucyRSBbCpPdDTGSO8kk4MzHHzxJF0bW1DdCk2di9vGIRXyISBQNM6X6IhFdP0cLlfjoutN2yRWjKEICn45gE9eOJ7qWqrY8+HtrL/9Yg59LpVnYnCawy+fBmDL3Wto6qpbtEj7gx5aVjVUfG5DN3n9B4d486mjjJyfwLJs6luraVvTiC/owTQtsqkcM2Nx+k6MkEnm8Phd5LMaOx5Yj8tz+QBTU7fIJHMMnRnjua/tZejsOP6w17nPkNNvsqk88WgSl0ddcgNg2zb9J0fZ+6PDHH3tLOMDUarqw+x4oAtf0IMgCuiaQWo2w9kD/QycGsU0TIpFnVBNgPrW6orziGmYnNjXy/7njrP/uRNMDk7jDbhpaK8hUhfEF/AgySL5rEYmkSMxk0LXDOc+b+K0dHJfL289c4wDL5xkYmCallX1rN3RSbDKj6LK6EWDyaEZBk+P0XdimHQ8i9uj8uSXHsbtVSseEY32TnD01TMcfOEk0ZEYbWsaaWivIRDxoboUbNt5N6lYmvh0ivRslmJBR1Hld2xOLhaKTA7N0HdyhDd/dIToyCzta5sIVvmQZAnTsMil80wMTROuDS7IOJuPdCLLwKlRXvinfZw9NIA34KG+tZqGjhp8AS+maZJJ5JgaiTExECU2meC5f9yLy6PSvbGVQOTGUVenixoeWXYk5EWpvFm6qQGEtg3To7M89/W9XDg2TCGrEaoJ0LOtne33raehvQZ/yIcoi6RiGSaGphk8PUYg7GPj7p5F5ZmmRSae5Zm/f43zRwaxLJvGjlrueHQLux7eRKQ2iG3bpGYz9J0cQdcMhs6Oc+SV0xTzRTo3trJq89IunnczbNvGNEyOv3GOt358jHOHBghW+dl+/3p23L+B+tZq3D4XetFgvD+K23uA3qODzIzHeeMHh9i4ezX3PrkLt29xFGkyluHU2xd45qtvMDk4jT/kpW1tI92b2li9pZ36tmoUl0I2mSM+nWJqJMbAiRG2P7C+ZIA5EAQBWZb4yK88WD7DNQ2L0/udYwctX6SmOcL9n7yD2x6pLJ8sihLiEq5SRZWpb6vhQ79wX/mz/pMj7P3RkasyBnKZAr3Hhnju628ycm6CcG2ATXf2sP72VXRvaiVcG6SQ1Rg8M8aJN89z4s1eRnsneforr9G5vhnVo1LdEK5YtmlaDJ4epZDTqG+rYf3da9n50EY61jUjiALxySTnjwzy9nPHOfXWBaIjMY6+doaq+lBFY2AOlpXA0M8hCH4E0YOuH8fluocS5U35OrfkZjA7gCKoNHqaqHcv5GhvWd1AU1fdAi/K1PAsh186VTYGdjy4kdsf2UxT18KAo6XO4Q3dID6V5KmvvErf8WFUt0L7mka237+e7fdvoKo+iK6bzE4m6DsxgmnaDJxyJmFBEGjsrKVz/WLp7PmwbZvkTJr9zx3n2Bvn6N7UxtodXXSsb6a60XkX8alk2RDp3thasQxDN3nrx0fZ/9wJZqeS1DRG2Hbfeu58fBvVDSFESaSQ1ZgcmgHbOd4aPD1GMa/TvqaJ+k/vxsZeNJZik0ne+vFR9v7oCPGpBIGwl9XbOlh/WzctqxqoqguhuGSSsxlmxmYZ64+Sms2y4/71NyVV0LZtMokcbz51hP3PnyA6EqOqPsRtj2xm01091LVU4fG5KOSKnDs0wOs/OMzA6VHG+qZ4+m9fZccD6+na2IbqXnyvvceGOfb6WaKjMbwBD7d/YDPrbuumrqUar9/RbZidSjIxOM3ohSmiwzNE6kL4Q953jDnRMh322dhkgpHeSdbf3s0dH9hCXWnOMzSDeDTJmYP9rN7cRk2pj82HaVhER2bZ+8MjHHrxFIGIjzXbO1l/Wzdrd3VRXR+iWDSYGYtz7vAAR145zbnDg+z90WGau+vwBtz4w94rjslY6WKeK+oEXC5cpunERnD1dudVGQNzi9fcxJBN5qhpCnPHB7bwy3/waeTLWINLuXnzmQL7fnyMk/t6ywxo93/ydh7/+XsXXbvutm423tHDH37hLxnvj9J3YoTv/O/n+Fd/+QWoMIjfC4hH07z4jX2cOzxAIOLlvo/fxhd/71OLXIurNrex/b71fPW//ZDnv7aXXKbAt/7Xs462gte1oCfYts2hF0+y76kjTA5OgwA7H9rAJ//Fo3Ssb15ykF7OFa/M2y2LooksyxeDxkQBSRFR1OunHXC1b/L84UEOvniS3iODIMDDn72LD/7c3YsW484NLWy9Zx3H957nj//FV0gnsjz1t68hKTJ7Pry9cl+yHSMrXBvgiV96gLuf2Emo+qK4SltPI2t3dbH13rX8qw//v+SzBc7s76dzfQu7H9u6RP+0saxZJLkTWW4HFExjFMr8d6X2EASCcoiUnqZaraJGrS67vecgiuKi3Z2sSIjzPD2SJCIr0orfVXw6zVvPHOdUyTDb+dBG7v/Ebdzz0V0Lrmtf08TG3T1su3c9/+4Tf0IqlubEm+dxeVV+rRSHcLnxGR2Z5et//DS7Ht7EF//LJ6+YztsyLeJTSX7w5ZdJzWboWNvE3R/dyWd/+0OLrl2zo5Pt963ndz/3fzh/ZJDpsVn++c+f5/6P34akXBwbc+PhxW/s4/gb55idTKC6FW5/dAu/9LufxH8JTex83GwmwQPPn+DY62eZHJwmVO3nsc/fw0/95uPIysKx3rWxlU13reGf//x5XvinN4lPp/mnP/4xv/5HP13xuGC0d5LhcxPIiszG3av59G8+VvbWzKG5u55NdzobPcuy0TV9QTu+E3jm71+nZXU99z65i8/9248iq9KiZ3vgU3cs+f1sKse5wwM8/XevArD7sa185JcepHvTQkO0e2Mr2+5dx+2PbOY/fuZPSc6keembbxOqDrBqUxvCCuJFLMtG101UVS6NaXBmQEejYy64WhSEMinRhtpasrrOeCZNWtOuiRnzqsxV27LJZwo889U3yKbyhKoDbLt3PV/83U9VPGtdCTKJHD/6m5cxDYtQTYCdD27kkc/cVfFaQRDo3NDMw5+5i451zSRm0hx84STj/VOYxvUjvblZsG14/mt7mR6bdUQwOuv43L/76JIsVL6Qh233rmXXwxuxLZuxvikunBghFc/MK9OmWNA5+NIpTrzZiySLNHXW8cu/91N0bGj5iSc1OfDCCY6+dgZREqltquLjX3qEhraaiteGawOsv62Lxz53D4IocHJfL+cO9jMzHr9sHY9//j423dlT8dhLdSvUtVRz54e2IisSsckEs1PJ8pnnYgjIykZsO0c+/zT53PdRlPVcaq9btsVofgSXqJLUk0xr0esmmnM5REdiPPMPrwFQVR/ino/u5M7HtlW8VlYkOje08MGfu5ua5iomh2c4/PJpxvqnKp/zzoMoiYSq/fzGH/8stc2RK9a5yGc0nvmHN8il8yiKxOY9a/jYlx5e8vpAlY97P7aT7k2tFAs6Y31T9B4fXhALA86Z8Svf2c9Y3xRun4uuDa38+n//aQIR/7tq8/Hjf3id6bFZ3D4XbWub+NRvfHDRcd8cmrvruOPRzex+bCuWabH/uRMMnR0jWxLSqQQnQn/5+xAEZwy803B7Ve760HY++zsfWnGQ5HycePM8h18+jV40cHtVPvvbj9OxbnEsD4Dikqlvr+Gxz92NJIvMjMcZOjPO8PnJFdV1YWiaP/zzZzh6eoSjp0eIxXMAaEWDHzx3nM/95t/xhd/5B/7s715lpDQ3JTWNE9EpxtMpfNe4CbuqFaGQ0+g/NUou7USRdm9uZfNda8ov/3KDo1JqWbGgk5hOMXx+Atu2Wb2ljebuuiVf3lwZG3evprbFyW3XiwYn9vWiF5cPRnn3webU271kU3nCtUFaVzfg8i6tTS0IAqGaINUNkfJno72TZBK5BdcNnR0nPpWkWNBxe13c89GdeINuxGXSeOba9900ya0Utm2TTmSZGJxmdjKJ6lbYcvca3F51yTS0uSyVHfdvcFxtls3E0Az9J0cuW9emO3uoaagcdCUIApIsUddSXa5X13TymcoTrZPWZOFy3YXX+2m8vk+jqDvm/lq+ThREWjytJPQkhm2U0wtvJPI5jdmpJKO9UwCsv62b2uaqJXd9Qim9atu96xyPSSmI+OS+C9jW5Y11f9jL9vs24Au4l003q4SipnNi33lMw6Kho5b61mpUd+WxNNfHa5ury7ETlmUzdHpswTximRZ9J0dIx7MYukltU4Q7HtvinDEvk452s8aSZVqk4llGzk+Sz2rUNkVYt7MLxbX05kwQBFpWNbB2hxMDZFkW548MEZtMLLq2rq2a+vZadN3gxN7zPP23rzJ8bhxdqzzfvlvmkDU7u2hf1+yM/6u4n9ELkwyfG0eSJLo2tuINeJbcSAmCgKJKNHVdVPtMzKSYGJhaUV2pdJ4Dx4Z46sWT/PjlU3zjhwd4Zd85ikWDZ189zW//8kP88k/fQ221n+8/dwyAkVSSnY3NbJ2v73GV3qir2sYXCzoTg9PlCOW6liqauupWrPh3KeYiMeeiSutaqgnVBJZ9cY3tNQRKAWmWZTHaO4mpv7c8A7ZtO7v7/ijFgo4gCPSdHOVvf/e7l/1ePJpipPeixZmOZxftZiaHZ8hlCo4anCqzanMbknxtylbvBcQmE+XIcbfXVaIzvvxzqy6FlpK8q2U60rLRJeSpwaGMrW4M4/IuHRQniAIev7u8WFuWfZlIfTDNCcBAFMOIYnjJcjVLQxEURMSKZ9vXG9lEjng0RbE08Td21jqBeMvU29xd7xxd4Rjro72Ty05Ubq9Ka08D4lWwqDnxAgZjfVPYlkV6NsvBF0+RmElf9nuTwzFGL0zOFUJyNoNlXrxPy7KZ6I+WxZ38YS+d61uuer67ETBNi5mxWbS8hm3Z+MNeGtprlm3DUE2AupaLxFUTQ9OLNhXgHE9ODs0wcGqEXLrAGz84zHj/NK09DbSubqB9XXPJk/Pu8jjWt9YQqQ1e1X05cRApZqeS2JZFbDLB1/7oKdTLGFh60ViwNmp5nUxyaU/LfEiSSDjg4c4dXYiiwNkLk0zHHJnqTFajo6UaURTI5DTOlOZ+27YZz6TIFIvE8jkOT4yztqYGj6xcVuCoEq7KGNCLBrOTibJzMhDxE6m7eiW5QlYjMX1xwAar/XhXwEEfqPLj9joZC05ke/y6cuPfLJi6SXI6XUoDy9N3fJi+48NXVEaxoC969jmvADgdraG95pr0GN4riE+lys8tSiLVDeFlJ25JlgjXBhyrXzfJpvIkl1hEBAE8fjcen2vRWeylkBWpvLGfM/wqw8a2kxjGCJLUiCxZJQKThZ4H27ZJ6klckrPbtezKxsX1RDaVJz3vCOpykdfzEaoJoLoVBFHANExmJuLLHhPIiuzwSFzFOmtbNrpmkJhOYdsQn04Rf+U0h185vfIyAC1XXPCebMtmZiJRnuDdXteCBfTdAMt0Fqu5+3Z7XSviIHH7XAQiPkRJxDItElMpCllt0XVtaxrZEl/L4OkxLhwf5sLxYfpPjVLbHGH11g423bma1VvaCdcGCUR8Jb2Ld95YCq1wLakE0zDJJnNkU44HfGo4xvf+4oUrKsPQzRWlToKjWthQF+KeOxxJ8rGpBPFUnkQqhyg6c3go4MHvc2GWPGyKJDGUTJDTdQRgOpel26riap74qowB07TIpQvl391e9ZoEZAzdXNAB3V4Ximv58w9ZkVDcMrIql1+cbb+3jAHLssvkTOC4mkRJuOII3Epnq7m0hlHKJRclsXS+ee33/G5HPlPALO3ABVHAF/As+9xO8KOE6lbRiwa6plecFJ2LBTx+13XekQtIUh2FwguYxgiWPA6CjMv10IKrbGzSRhqX6EJayeHtdUCxoKPliuXfvT73skaQIAjIioTqVpBlCcu0ySXzLGcNiJKIx3f1k3chp5V39YIoIEniFcXHyIrkLGKXBOLm0oWyV0NW5EXBc+80bMsmlyqUm1dWZTy+5bVCJElEVmVUt0Ihq5HPFCrKW3t8brbsWUNbTwPf/rPneO27B8ilCkwNx5gYmOa17x6gqauOOx/fxvb717NuZxeuq3TNX+Ypr/gbLo961XFshWwRvWiUDSyxFHR7JVAqBCwuBVEUkGWR2GwGWZaIJ3JMTKc4eHwYw7TQdZOibizY9Jm2jVuWUUWJoMvNB1ctztRbKa6ulWwWnv1d57OhKzrzsLmaPvLuQYnCdw6tPQ3seGADj39+cRbF5eAPefFewqBm29aCtnk3WOo3BQKLJvMVY4XXiqJ43XPHBcGLy/Ugtl0o/V6BoAjwyT4MS8e0LaybEa1+aXteyYC7mvu7yna1bZi/F9i4ezV3PraVXQ+vXFJbQCAQ8eG7ZLFfON8B78axNP+Wrujs2F7Re5JVidqWKn7lD36KT/3Goxx66RSHXznN8TfOEY+mGO+P8u3//SzPffUNVm1t55d//9O09jRelw2Ibdvl3fAV4ZK+e6V1znV1xSVz5+Pb+OS/+ADuFRhZc3C5VTwrVABtqA3y8J51/Pp/+CaGYXDPHavZsraZ8akEuzZ38OWv70WSBHTDpKrUP2dyWURBvCrJ4ktxVcaAJIsLFp5CTiOXyROuvToWQEWV8c3Lac+XWOKWg140HBa8ooEki/jCvooT6LsZoiTgDV50qVmWhSAKS0a+LwVBEhd5B7yBizs4y7JIzWbK+do/yfAHPeXnti2HyGa5uc6ybKc/FXRsy0ZxK7hvulyyB1luwbKSYJuIUiWCIpFatZaJwjhhJUyVeuPd1S63isd7sS2y6cq7x/mYy/fXSoyGikt2Ftgb6JqSFQmP3zWXjYVpWLi8riseS6IkLjCc5wJM5zY8RtEgk8hS+y5S0xREgUDIW25e/RJhqqVgGiZFzSjPt56AZ0lmx4saCxCpC7LniR3sfGgj6dksZw7289I399F/cpR0MsfZg/386W9/lf/8j7+ON+C+5lgC07AWeKduBjx+lxPEPtemukFtS9WCtWo5XEkQbCjg4c6dXazvcYIBPW4FRZYwTGdTd/jUMNmcRlXIx+oSsZtfVSkYhrMx4Nq84ldlDCiq7JzD4hhOqViG2cnkZQlVLgdvwL1gkUpEU2RSi4NYLkViOkW+FCAniAL1LVVLptG8myHJElX1IaZHZ8km88xOJcuR2tficamqD5czPEzdYmJg2kmL+QlPK6xpqsJdYrszDYvo6OxlzuodmLpBbCJRdsH5Q95rioO5Gth2iqL2NjYGIGHrx/B4PlL6q1C6xiZtpJAFmaKlkTNzWLaFeAON4EDER7juoqEfm0hQWMHEHJt0goJt23YyK1qrbugxlSAKKC6ZqoYw8ckE8WiSTCKHpKzcVbtUuTVNkfJxQz6rMTUcW5ZE6WZCkiXq2qrL95jLFJitkBVwKbLpAsmZdDmHvboxtKKdrCRL+IIevAE3oeoAnoCjGfH2sw4XxUjvJAMnR+k7McLqLe14LylzLkB0LuhzOcxlnN1MSJJEIOzDH/KSzxSYGppxsoSusT8tXZ+Iz+vCt0RQ8obVjRR1E49boaqU/dLoDzCcTGLYFrJ4bZwOVzWDqG6Fxo7acseLjsacCN6rTGtwe11E6kNlqtrJ4RkS0dSyE/hY3xSp2SzgdK7WnsZ3jO3qaiEIDuNb86p6XB6VbCrP9Fh82QjolaC+rdqJZhecnULv0cESp/f1cy3PP1+1LftdwfMQqQsSrPbj9qoYusnQuXFMY2ldBACtoDN0drx8TbgmQF3LzZVktqw0hjmCZaWw7Ty6foJKZ2CWbWHZFgWrgGYtv/u7VviCHiK1ofI5+VjfJJlEdtnxOXJ+gnzGOfJQVJnW1Q03NPPBiVMo1SOKJKbTxCbipOPZaypXFB0GxbkdcyaRpf/kyFXPdzcCc4GygbBDtZuOZxnrj2JZlx/viWjSYWIsobGjlsAVxEPMxYbUt1Zzx6NbuOcjO1i1pd2JYUgXGDozvkAtcw6yIiGVghbzWSfOY6n7nOO1mRqOrfi+rgcEUaCqIUx1YwTLtImOzJKYTi3rFbtamKZFJqtxYXCaM72TnO6dWPBTU+WnrbmK2upAmYhLESVqvF7CLjeyIF5Tn7wqY8DlUWlb04TH57i3B8+Mc+ZAXzng6nI3U+lmZVUmGPHRvakNQRQYODXKWH+0YieaK8M0LU69dYHpsVkQnNSwnu0dy4qXvBshILDh9tV4gx6KBZ3YeJyTb/aWhJ6Wb8ulrmvtaSRcG0BxKWiFIm8/e5xsMrficlfSqZz2diZ4R/yncPkv3GAIgpPO19xdT11LNbqmc/qtC+XnrgTLsskmcxx99Qy2bSNKInUt1bT1VObov95w2lnHtnPIcjuquhlF2YwkNXCpMSAKAo2eJvJmHgEBl6jeUK8AOMZ/pC5I54ZmAM4fGSI6OkuxUNk7MNcnj712jtRstvxOerZ33vBsFtWtsHF3D7Iskc8UGOub4tzhwZWPpQqLpyiJtK9txhfyIikSs1NJDr982pnv7JXNdzfaaBBLaaydG1rwBtzMTibpPTpI4TJHBY5uyRTnDw8CzvFv54aWRVkIc1kwK3mGtbu66VjfPPdN4tOpium0noC7pLdikY5nHQ/vEsZlUdOZnUoycHps2fqvN1pW1dO2ptHxyMWznHrrAsnpi56USljQl65APChXKHJhaJpv/ugQf/ftfXzlm/v4yjffLP/kK3A6jKfTrKuppae6Bvsa6ceuamQ6kek+7v/U7XgDbuJTSQ69fJqv/rcfLPvwjrLd4s7hj/h44ov3l63aQy+d4vmvv1m5DNtm8NQoL33rbYbPTRCM+Nm8Zw1tPY3vyWMCBHj0Z+6ivrUaSZaYHo/z5f/0LSYGpjGWsUIt02JqJLZooRMEAY/PxbZ717Hutm5M3WTo7Dh/94ffZ/TC1LJBl0bRXPYaQRQc8plSm6dmM5w/PLDs494M3PbwJrbeuw7LcjjTv/Pnzy/YAc1HcjrFmQP9PPuPb2BbNmu2ddCzrYO61pvjGbDtNIXCy+Tz36VYPEg+/33y+W9i23kWD1EBSZB4qP4RNoe2UqVe2Xn41aKutZoPfu4ewOFgeP37B3nzqaMVrzV0k4FTozz39b3MTMSpaYqwaffqkmfgxt6nx+/m8Z+/G29JkOjkWxf4+h/9yNlVLtOfiwWd6Ejl3ac34GbPE9tp7Kglly7Qe3SQv/kv3yG3nPFrU3G+u1F47OfvobalCi1fZOT8JN/8n89UVKcEx7N64PkTvP3cMURRYMuetXSsa1kkJqZrBulElkxy+aPbsb4ppsv8HAJV9UGUCuRxLasaykaHUTR47h/3kk1Xzsc/8PwJXv/BIbIrqP96Y8vda9j54Ibyces//NcfcOTVM6Riy3tuZ6eSK2qzOQwMz/Bnf/sKa7vr+eSHdvAzT97Gzzx5e/nHXSHDrjMS4c2REQ6OjyGJ4jXFNF/VNnpOtOYTv/4BBk6O0n9ihNhEgmf+/g36jo+w66FNjqJT0AloSc1myrKmmUSOSEOIL/3Xzywo0+11seP+Ddz9xHYOvXSK3qNDxCYSDJ0dZ88TO6iqD2LbkIylOX94iB///WtER2JIskj3plY++zsfKt/bSrDAyrWdALtrhW0ttMyupMxQdYCP/NIDeIMe9j97nOmxOP/h0/+LXY9sKivtebwqWkEnEU0RHZtlvD/K8LkJ2tc28ov/+RMEq/wLyhQEgd2PbcMybcb6JpkZS/Dqdw7QXzrH69neSX1bNZIskknmSM9miU04QjOyKvH5//ixywZfCYJAuC5I25pGCjmNmfEEr33vENUNYbbcs66sD6/li6RiGepaItQ0V5WJaJZtT9teEC1/aXbE5dC1qZVMMsfEQJQDL5zkmX94g4nBaTbuXs3aHZ1E6oIUskUuHB/m6GtnOfHmefSigcfv4iO/8iCb7uq5aeRMguDH7b4Hl+tSjvQ5gSLnPopWkXgxzmvTr9DgbqJoFalWq9lRtfOGsxCGqv3seGADdz+xg/3Pn+Doa2eZGo5x9vAAdz62laqGEEbRZGY8zvkjg7zwjX1k4llUl8yWu9fw5K8+fFPaUxQdds6f+7dP8N0/f4HRC5NcODbMv/vEn3DPx3aVFVUVRaKoGcQmE4wPOOMoPZuhbU0jX/pvP73AaJm778d//l5SsQzpeIZkLMML/7SPoTPjbNy9mtaeRiJ1QSRZIhVLk5hJMzk4zeTQDLJL4bf+98+v2Gt56Q78SuaRLXev5c7HHZrogVOj/OBvXiY+nWLHA+tpaK/F43dRyBY5+VYvr/7zAUYvTGKZNoGIj8/9+ycJVS+mV07Hs/zjf/sh544M0rm+mbU7u2hZXU+wyo/qUrAsm0wiy7nDg+x76giDZ8YRRAF/yMv2+9ZXTMPcfFcPZw/0c6qkRfONP3ma2WiStTu6aGivwe1ViU0m2P/cSY6+dobp0VnCtcGbHjfg8bvZcPsqPvvbj/O3v/c9EtMp/vb3vssr/7yfzXvWOKyEfjeGbpBLF0hMpxjtm+LU2xdoaKvhno/u5K4PbV9hbQKqKvPofRuQpcXZSnKFWC9ZFLmvoxPNNEhp2jWNsav3qQtQXR/io7/yIK9/7xAn3jzP7FSS3qNDJGfSeAOekmCRY3EXchrpeA7VrbCqwu5dFAVcXpUP/eL9iKLIybd6iU0kOPDCCUYvTJZJTpxAkjRTwzHcXpUdD2zgzse30VRBNtc0TEYvTLHv6aPkMvlS/rgTOTtwapR41OlYiZkUf/0fvkWwypHjlFUZRZVxeVWe+OIDeP3ucnyEZVmM9E5y4LkTDutfKSddK+gMnRknWjrXymcK/PV/+FZZ4lNWJadMt8KHfvF+/OGLal6CICBIAutvX4VhWLg9KvuePsrUSIy3nz3Omf19eHxuJEXENCyK+SL5rEY2lSeXzlPTFFnShRcIe9l8Vw/FwiP84MuvMDk0zcj5CRIzaXqPDeENuBEEEb2oo2sGhZxGajZDa09jOVd/yS4gCEiSwH0f20Uhq3H+8CDpeIaXvvU2x/aeL+8ITMNCL+g88tN34Q16FxkDqdkMZw/2c/bgQLkti5oTMDQ1fHE3/9RXXuXtZ47jDToRzy6PiuKS2bJnDV0bWwhELhpDiirTtbGVxz9/H/mcxum3+zhzoJ/JoRkOvXgKl0fFMExSsQyxiQSp2QzBKj8f+9WHWbuj64bKjl4KJwPGgyBcPkpZEiT8sp9OXzdN7kYEQcQtrTyy+VogSiL+kJeP/NKD6EWDs4cGmBya4e1njjF0egyXV8WyHInxxEya6IijbnfPk7vY/cEt1LffHC+LIAiIIux4YCPZZJ4Dz5/gzIF+pkZmeP37Bzn22hlUt4IoipimhZZzxlE6kUNWJKovkyEQrg1y78d24Q24ee17h5ganqHvxDDxaBJ/2OdIqJck1eckwYuaQfOq+kXj07ZtRs5PcvClkyRn0hfnkbzO8LkJxgeigMNg9+X/+G0CEe+CuUl1Kzz++XsJRPzlzBlBEHB5VPZ8aDsut4IkifQeHeLQy6cYPj+BL+BGUiRM3XQUBgemsW1oX9PIQ5+5k9bVDRUp4C3LLlEdT5CYTjF4egxfyOu0oySCXSJ7mkkRHZlFKxSpaQzz6M/eTVVDqCJtdagmwOY9a5iZSPDWj4+SjmfZ9/RRzuzvw1uSgi7kNKIjjl5Lz/YOerZ38PU/eupauscVQxRFahoj3PHBrcyMJ3j5O2+TjGU4f2SQmYkEh148haxIJXZRAy1fJJtygsA9XtciVtjLwaXK1FT5mZnN0FQfQl5B/NtIMkGt10fRNMtHBgI3WcJYEARkVWbbveuwLRtfyEv/yRFmJuJMDs2gF42S61pAVh3yEV/QS21zhNbLnMWu29lFYjqFL+Th/JEhZsbjnDnQXz53khUJt9dFa08DXRta2P3YNjbuXl2RYMMyLaIjMV773gFSsxnHENB0h61vXqBbPqPx5lNHUFzyggHn9bt45LN3OSyHpfdi246y2hs/PMzMRBxdcxZRLV9cUKZeNJwyVRnF5ZQ3t4Dd/8k7Sh1+4f1WN4TZeMcqXC6lPFkkY2lGZtLomoFpmoiiiOpSHKKngJuOlmZ6tnUsSawhyRIN7TXsfnwbiZkMp97qZXYqSTaZY+jsePkYQlIkZMUxVoJV/rKM70qwec9aZiYSyIrM5NAMk0PTDJ+fAJzBJKsSHp+bXEaruMvJpvOcOzzAS996yyG4yesUtSKGbi44djr11oUy8YfiUnB5VFSXE2/S0FGzwBgAJwhw452rmZmIo6gy0ZFZZieTjPVNYegmkiTi8qr4Q166t7TRtb6Fe57cRXVj+F0ZeyIJEm7JTYO7AUmUkQQJRVBuuFdgDqIksu72bu4e2UEg4mPwzBizU0lOH+hDLxoOaUqJ7KZtTSOrtrRzz0d30rWxZcXeoOsBQRCob63mtkc24/a58AW9jA9EiUdTTI/OlvqVhSCKuNwKHr+bUJWfutZqVm9pX7I1ZUWiZ2sHSmk3fHp/H7GJRFn6e854nps/3D4XkboQneubF6nJ2bZNdCTGvqeOMjk0XU5rvXQeMQ3z4jyiOgRrqktG9ajc++QufEEvXLLYtq1twrJsbNvxuE4OzzgSzZqOZVpIkojH76amOUJDey1rd3Sy54kdSxJpuTwKbT0NTA3PkCzJ0Wt5HasclOtE2Ht8LoLVfqobwnRuaGHPEztweVwVCdFUl8KqLW0UC45ex1jfFLNTSaaGZ7AtJ27H43eyzFZvbWf9bato62m46cYAOCyNLavquf+Tt6Pli4xemCQeTTE7mWC8bwrDMBFLWiSqW8EbcNPW4/T/yxmXl0IQnH7x0t5zdLZVo16i/rtjYxvKJe9aFAQmM2nSxSKacW2Bjdc84/mCXvY8sYNNd/Zw5mA/B54/weCZMdKzWYqajoCAP+IlXB2gbW0T3ZvaWLO9o2JZczvkuz60nZ5tHfSdGOHtZ45x/uggmWQeURTw+t3UtVaz/f717PnwdoJV/qWleAG9aKLlnAEmSiJur2tFE5NpmOSyFRYv28YolhZ/3VmcXR51RfSspmnNK7PyTr62uYqq+hAb7ljFy9/ez9lD/URHYiRjGQo5DUWVCdcEqW2O0NRdT8/WdrY/sAH3ZepXXAr1rdV87t99hKOvneXkm+cZOjvO5HCMTCLnGHNBD76Qh6q6IN1b2rntoY0EV7g7buyo5bHP3UvP9k7e/vFRzh0aIBnLlOv2hTw0tNXQsqq+nPI3H5ZhUSwZVACqW0Z1L981bctCyxdLhufi9pxzVT7++XtZtaWNQy+e4sLxYSYGp8mm8rg8KrVNEdrXNbFuVzd3fHALqktZ0qp2eZ3JrqouRKgmsGzutCAKTqZMXZBiQccX9F4XtUjd1ulP92PYBvWuekLqlmUNAlFy+ulcuqTbq17xvcx5gh789G7W7uzi/JFBjrx6hgvHh8mUdtaBsJf6tmo271nD/Z+4HY/PvWw9sioTqglQyGqEqv2XFde5ErSvbaKxo5ZdD27izaePcGLvOabH4mRSeYyigaLKROpCNHXV0l6am9bf3n1Zkhq3z8XaHZ10b2zl2BtnOfjiSYbPTRCPpshnHF2AQMRHIOKlvq2Gro2tbNmzZoF89BwM3UTLO0bv3K5+pfNIPlNYknpdFAW6NrbQ3F3HhttX8cp33qb/1CjJmTRFzcDlUWnsqGHD7tVs2bOG7o2tl2V8DUR83Pfx22hZ3ci5QwMMnx8nNplEy2mYhuXQc/vcNHTUsGpzO+tv62bdrq5FxE2XorGjlnBtgJbV9Tz31b30nRwhNZvB1E1Uj0pDew23PbyJbfeto6Gjlng0RVVDCNuycXnVikaGKIq43PP7uQtJuvYMM1mRWX9bN+1rmjj2+lnOHuxn4PQo0ZFZspkCcsl4CdUESlLOq9m4e/WKKKHnYFk2mYzGt58+TDjoxe2SF8h3r1/duMgYWF9bx5HJCQzLoiUYvCYJY8G+jmGul+qqL/XZjcbcIy1V7ztxT7dwCyvB/OF4Uc/8InRLZ2/sdYJyEN3SCSlh1gTX3jTvwC3cwk8CllsjrqScS7VDrnYNzBd0YpdJg22sCy4wDq43rlvJ8ViGt9/oXTCZpVN5Bi5Er1cVK0Z0IsnkeKLi3/SiwYWzk+9JQaNb+MmHbaexrBiWFQcWe5AkQWKVr4eIUoWNE1R4C7dwC1eGC9FZDg5dW6qiYVlMJjPlIOeJRIojw+MLrhmYnmX/wOiKynO7ZBrrgkv+VPKEXE9ckT/u7KkxUokctm3j87tpaAozOjyLx6timiaJ2SzpVIHEbAaPz0UuozE+GqdzVR1nT45RKOioqkww5KT9zERTToBGXYCm+TKaY3GS8Ry6bhKu8iHLIlMTCVwuhWDIi8st09c7RUNTGEWR0Qo6sek0dQ0hgmEPU5NJRFGgtj7IhXOTrFrTwOS4wy7n9bkYHY7RsaqO4cEoqbiT+hGp8SOKAonZLKZp4fO7WLWmcVEb2LaBXngaQ3sDSdmIrN6OpKy5xtdwC+93OLnJCQqFl8AuIoheBMGDy/VgKcDw4kQgCgI1rloUUUEUxBV5BUyjH0N7C6O4D9X7GWRlE4J4dfTh1wrbymEa5zCLRzCNPmw7jmP0uBDEAKLUgsv3xdJu6pbH42bDKB7HLB7A1E+heD+NrG5FEG5ezMeVQDdNRuNJppIZqnxeZEkkX9RJ5PLU+H24FZl0QSOjFakL+EGA6XSWiUQa9ZKjm3RBYyadZSyeoq06jGXbJHJ5bCDi9RDL5NAMg7DXg0dR0E2D188P8fCGVdQH/ZiWjV6KoxiMxZlOZ5lMZFhpCtTcMdyl0IoGr+w7z327e3DdwFimKyp5JppidibjGAMBNz6/m/hshmRCwLJsNE3n3KkxausdK8YwTDIpJ3d0bDiGP+jBMi1SiRyKSyYeyzi6BP6FHS0ey5JJ5VFUGVEU6Ds/RSadR3XJJBM5VJeMUmKwik2niE2nyeeKFIsGa4PN5PNFRMG5p5loipq6ALGZNLIs4fW6SJXU06Ynk+RzRUJhL6NDMVRVJlWiQV6aVMLE0F5DLzyPbSURxJpbxsAtLIJtF7HtHLYVR5TaV6SZYVlJLCuObecQLGdoulwPlP9u2iYFs8BofoQGdxN5I4dLcmFjL2sQWOY4hvYKeuElJHkNktyJwM02BhxVMaO4H6O4F0M7iGUOASaOk1JCEH1Icg/4vsAtQ2DlsG0L285gW7OIYj2CePVZJpZxAV17GbN4GFHpQVbWw7vUGDBMi4HpOH63i8lkGt00KegGI7NJuuucDWZBN9BNi6ymY9kWfpeKbdsUL+FfmE5nmUpmUCQJURQYnI4jl2iT+6KzxDJZWqvDTKez+FQFv9tFLOOQaiGA16VQE3DirAam47gVGRvHQLimZzRMjp4aYc+u7htqDFzRMYFp2iWZRQm9aJBJF3C5FDLpArFoGtO0OXF0iEDQQyDoQZIlNM0RKkml8jS3VlFdF2RyIkli1gkwc3sU1EseMJfVcLkVWtqraWgKM9A75RgbBYPoZJKhgWl61jVRVx8ikyowOZ5EViRmZ9IoioRt2WiagaGbyLLEQO8UhZzuROG6ZAoFHV03yaQL+AJuunocz0F8NoNpWqiqjNuzVECNjWkMYtt5LCuGbd38Y5BbePfDttKY+jmMwovAyvTMbbuIJDUhCuGKfzdtk4yRoS9zgf7MBYbzw8SL8RXeTxLLHAV0LHME2775xwu2Dbadp5j/JsXcNzH144ALSV6HpGxBklcjig0gBrgmubn3JXQsow+j8DK2dW20vZYVwzInsO0iljGMzc0jTbpSmJbFaDzJmvoaslqRsXiKmUyW2WyO6XSWC9FZZrN5hJJHYGQ2SVt1mLqgH+mSAOBoKkMyn2dDcx11AR/RVIaI10OV18NwLEE8m2dLq8NGWDAMGkMBaoM+qn0eFEmiyuelu64aGxidTdIcCdIYCiyq51LEkznyBR2taBCdSS36mZpJMzQ2i3kFbIZXgysyMwQBBNFRx7Ntm94z43j9LkzTKmuHP/DoJk4eHaa6NkAqkWNoYIah/mlkWUKURCzLdKgzvSpjw7PU1YcWeQYQQFJEVJfDU9DaUUM2WyBS5SMQ8pCM53j2h0dZvbYBSRKprvVTLBqsXtfE7EyG0aEYxaJBU0uY7bd38d//8/f40Md3UlcfZGJ0luGBaYb6ohiGtSA60+tViU4mcbsUQuGlIuklFNed2MYokrwWSVm5POotvH9gmYPouW9gFF9H9X56RTsrWV6NaYxg22ls28Dl2g1I2LYz9lRRpcZVw501e2h0NaKICg6Z9fKLpig1Iak7sIwhZNceBPHmijDNwSwewdTPYVspJGUd3sj/QpS65wVY2TiegluGwJXAtnMUc9/G0F5CUtYhylcvoiTJXcjKJnQrjuy65117RABO9kC138er5wYQBFBKxwQf2Lia/QNj1AX9ZbNyQ1MdfdEYB/pHSRY0Au6FmRsRn3MU8N0jp9ja2oTf7eJCNIZtQ3XASyKXL/fKOW9APFtgZDZJa3UYr+psIAUg7HVzZHCcdEHDpVx+mf2TL7/I/XeuIeB383v/8+lFf7dsm1R66eyR64UryiYwDHOhFKxtlyeqOUiyiGU6KoK27QjXOKQMVjkSMpXM88z3j7BpezvDgzM0NIbZtqtzQT0Oecgc572FZTllivPLlSWHj9m2sSyQZRFBcK63cRibBFFA0wwUWUKUhBI5hFkmihAFAVES0Ism3//mfrp6GsiWJJQfemzzojZwmqsItg6CDCgIwntLHOkWbjyK+WcopP8r2FkCtS8tez7vxAxkSr9JCIKIbZuY5iCyvKo8IVu2RbQwhUtyM61FkQWZLn/3svdj2yagl/qtG5DfgSwfi2Lua2iZ/4ONieK6F0/oDwDxEmNgDrcMgpXCMifJxD4Ldhpv+E+RF7FZrhy2beD0FeMd6ysrhW3bGJaFZc8/KrORRBHDspzjYhuwbWRJxJrHaioioMxLSzctC9OyMS0bVXaudS61SwqLjrFhWg5/jigKaLqBKkuIwkWp4vn3BI65rl6GQGhmNoPXozIwPMPf/NNe/n+/9NCCv2dzGn/81y/y3//9xwneQFn1K/IMVGJEqpSiMd8rMved+SkR/oCbO+9bi2lYbNzSRiC48AEvrUdWpAX12LZdLk8oKTXNQRAERHWhW8btvujylySh/N356aeKKnHHPWswDZPa+uCSxwTOc7retWdot/DOw7ZS2NYUljmJeAVBeqY5RlHbjyAoCGK4VJiObeWR5A4kqQbLtpjQJtAtRxo4okZWJGHsGKxSaXJ/52DbeWwsBFQQfBUM6XfnovNuhm0XsMwoljmKIFy7x0cQZEB+T7wKQRCQ5y0489ehOff8/LVDovKaNXe9KNhlDidJFCteK5cWDtu2cZd2/fP/LggCiiQtWc+lCAc9iKJAOOTl9u2d1NUEFjR9Jueipsp/TRwCK8E1RyNcjcUoSSJNLRHSyTxev2tRzMBy9Vxa5/WyWhubw2QzGooiLSDx0QsvY5kTYC8U0hDlNkS5G0nuWrJM28pgaHux7ASi1Iys3oVlXMAyh7CteEmM5v/P3n+HS3Zd553wb59cOdwc+97OCd0NNHJmBKNIkcqSqWDLsjTWyPEbe2zPzCdHfbZsS7blx7I1VrJEBYoUs0QQBAEQIDLQOd+cU+WqE/f3xzm3bu7cQIPCi6fJ7qpTJ+yzw9prvetdEiHSKGovitaHorZzOTqHlB7SnybwpwiCGWRQADzCyd5AiBiK0o6i7UYoKYRYb9gEBEGBwBsn8Eej3/uAjlCSoUtZPwgYWxLfAn8St/E0CBXD+hgIAxks4nsXwti0bBDucGMIJY+qH0Yo2TXnk1Li1P8YJKj6flT9AODgO28S+JNIWY3uy0AoOTT9EELNIzZZ0GRQJwhmCbxzBP484AAiun47qr4/uv7W4irh4PUIvGECfxoZLCJlmTDmb4S7c5FAWSaNimRkjNrIYAnfPYMMCgTBDJ7zMsgaMlCwq7+3qatVj30YoXRGbSJDwiE2gb8A/hQQYJiP4AezKLIFCOtEKNF/qqJiKJuL1Migitv4S2SwzNRfhkA17kTVdiOUzUNhUvpIWcat/RlC7ULVD6IoOQJ/FN89H7XJcn9JoaiDqPruqG1XdkfIGp57HBnMIqUd/tv5LgRlpNAJ3FPYld9ac22h5NHMhxBK27pxHZIPfW+IwJtABvMr/UMkwv6u9qBofZd1a7uNbxD4CyhqHs38AODgu2fD/hYsAXb4rpUMqrYdRe1tenWc2udBGM1x6tnfQQYFhJJBUQciIrEfjnc/lNFW1BZU/ShCya/xfoSVHSeQ/gTBcj9rzi9W1K7tKOogQmlZl8seRGMt7G/h34ei36s4ja/iuyc3PLuqH0I17tpggAX+PJ79LDJYXPsDoaHqR1D1fQhxJTGk8P2Ec8oUQTCNDErR+wnnAEXpQtV3he27LjcfWcFpfA2BjqINoOqHCLzz+N6l6Dwhx0WIFIq2HVUbiEJd4orz/7WsFzdy7LV+v4zlzW8mFePOA33omrrmt/EYPHLvzg2CQzcbb4vm6nKho1xL8soHv0VYvqdMdqNqltv4Op7zEtKfD8k0sg54aNYHMGLfv6UxELp+S9i138N3z6KZD6Jqu3Dtv8BrPB8ZBEXARaidaMZ9aOajaMZ9KGrbpudbJoB59iv4ziv47nGCYDIihOnR4pdB1Q9gJf9mtIDpq34vkcEcvnsSz3k+mrgmkNJDCAuhtKEZRzDiKqq2A8lmu7cwVa1R/reAhm48jCTAd97AbXwd332dICgQssMzqNpuYuluhJJZd5aARuk/AB5m4qdRtUF87yJO7Y+iRWQeKW2EMFDUAUTqH6AqsQ3GgAzKBP4onvMybv2rUbpaHYRAEWlUbR96/NNo+mFQ2zZdLKQMABffG8ZrfBPffSM8TzAX3YO1yhDYh6n+PIoaB5SQTOoN49T+lMAfDslXQTFsa1mhUfn1TfuHoh9AM1YMPyEsNG0Q35sIjTzZQFV7CYL56P5AEQqtRisIgUQSU6xNvQJSVnFqn8X3zoL0kDggHSDATP09FLUTwVa8GA8ZzFEv/T+oxr2Y8R9HagN4jW/gNJ5E+rOAHRqeSge6+ThC+REUtWtNfQUpS1F/eDPylixGE7sbVfN7Cc99Y82VVW1vuBgobavOE/IIpD+B1/gGnvNy9G4Wwn6r5FC1vWjmveg8iqLtYP2Cswy7+gf47jFUfR+a+R589wJu/c/x3DcIIr4GGKhaH0bs02jWB1AjY6BR+a8IEUcz70MzH8Ku/DcC7yKK2otmvQ8h4khq2NX/ie+eBSSKth0r+fNo5uPA8o4yAFnBs7+N57xM4F0kCKYhqCABIRIoaheqvh/dfC+a+SgSa5Uh7RP4E7i1PyfwhgiCGQJ/duW9V/8QNhmzZuJnUY3Dzftotm8wh137AwL3bNjO0iFcfHXM1N8J57fLGAMr88oErvMsvv0KvnsiNAikh1DSKOoAmnEE+Ciqvgcp9VXPI5GyiF3+NRAmuvV+FKUVt/E13MbT0UasCgQINexvWE+ERsqyB+17AMmEye7tHRs+N6PiRbcat58A+20I3foAqraDwJ8jCJbwnecI/JlrOoeUFXz3FI3yf8Cp/SmIGIqSRah9yGA2XEy8S3jOa+ixD2El/z6wYl0uDzjfG6Ze/Mf47mmQFUBFUbtR1GyUWlQId8feeczkX4d1C4WUNRqV/4rX+CaBPwyo0WC3Isb5CE7tNG7jSWLZf4lm3APkN51Yw0ltjkDO49T+FLf+NWRQDF3aWprAn0P6M/i4CCXJVn5HKQsEwTyee5xa4R8i/alwl6e0I3GQ/jS++zoIFYG+7rcS1/4WTu0LePY3ABWhtqMoPYCDDOZx7Sdx7W9hJn8Bw/oQin5w484EB9+7RG3p5wm8kHUPJoragaLmQ8MkWML3Jwi8Iczk3151E37k4fGinWSOwB8n8C4ihIlqPBy5XtdCUXLNOKcQCrq+H9+fRtMGEcpdSGlTq/4OsfgnUdVwklCEQk/8yuQwIRIY8R+MFosigT+M755GBnNX/O1qBP4ETv3PAYlnPx3uUtXukOQYLCG9M9jeaYJgFDPx86j6oXVevASK0gFKR3S+oXAXi4KidqBq+9a2idq7CbnRRwYLVAv/AN95HXDDHaLaBcIk8Ebw7KfxnOdw618glv2PqNoupFS26Lc1gmCeIJilVvjbBP5keD4lDyJH4I3iuyeQ1gc2MTzDXbTnvIqUJUDB9y4g63bTVR94FwAdZA3feY166V+Qanto5X5kFdd+gXrxnxF6WDRQ4uE4FgaBN47vnsR3j+HUv0Ii91/RzHuB5XsJvS4SD6G2oihphNqC77wKGKjGneGzrIOqbUds4nEUShtG7IeQxiWCoIjvnSHwLiGDyoZjN0do9NaK/xTfXm4XC1XrD9+PP4XvvIrvvIxb/wLx/G+hajuRcmMtBBks4tkvIoMFnNqfhB4VpQVII4MFAu8Stncx1ECIfT9G/EdvWz7DtWI5rLDMU1gPIa7sBbkRvGsMXAU08z1gPk44CG2qhX9IEHzr2k4iKwTeWRzvElbq76PHPhROZgiQAXb193Bqv03gncOtg2F9H4q2a9UJAqQsRovVMIraiWZ+FCPxM6jaYHgeZBiT9afx3GOo2k5WJpAQjfK/xW18HWQDzXyUWPqfoWjbovvwwrh19Xdwav+LevGXsZJ/M2TDs1Xesk+98I8QSitm4icw4j+EiCYiKd1wl+yPI5ToWTdtGx+3/mV89xiacQex1P8KJwChRSTVOp7zApp+EMTa3axr/yV29ffx3WMo2j7imX8ehhuEFrZHUMSufRa7/J9xqv8dGSxhpX4Joa62wD187xy1pV8i8IZQtb3osU+ix55AUXtW2jYoEPgTBN7oqs+XXduPopkPhS3iXcStfx67cgkhMsSzv7IFgVDb0Cam+Vj0t/Bzo7mTu8ZJQMTRY5+kmdtvP4Nd/W08+9qMAelP4PnTKNouYpl/gRH/NKEnQ4YGbP3L2JVfx61/DVW/F0XtQKhhITKhdGKl/g4rE5vEqf42dvW3AQPNfB+x9D9af+Os37kG3gUalf+G77yEog1iJn4K3XwvQm0HBFLWcWt/jtv4Gp7zErXFnyfZ+tloEdlsigsIvCFqi7+Aou0knv23KNqOpldDShvfeRVFG4zOseqX/jQKoMcewkr9fXz3Ao3SL+M5LxLUZ1H1naRav4JQEjj1L9Ko/KfQIPOGULRBwAKRQrcex4j/NVTjMJp+MGL/R56DoIRT+xOc+hcJvLPYlf+Mqv8GQl0eyzqqcS9x42h0/Dye8zI151WEksZK/SKacd8mz61saNvwPbVgxL+f5b4SXvtz+M6xTc6xEVIWaJT+DV7jOyhqO4b1wxjxH42eSSCljWc/j1v/c9zGV6gt/m3iuV9D1fcBaz0OMljAD5bwvQtY6f8bI/aJaCMRZUxUP0uj8mt4zkth6NC4H1XfOkz7TkK94TI2tcTnv/4GS4VaRFRcwf/9dz9KKnGbEAj/qmK1m1wSXJWAzOYnstDNx9FjHwsnzcj1JgEj/kl85yVkUEbKKr57AkXbSTMGGxRw7acI/FGEkkCPfRIj9gkUrR9YbWHrCC2GrrSv+VxKH+nP4jWeQvrzaOajWMm/gaINNI+TSFRtG2byb+A7r+H7o3jOKyjqILr1GFtBShvD+iC69Z4o1ru8ezdQtX6k2nEVbeahKDms1N9FqF3hc0T3JIQRLrQivo51LnFrnyfwzqNq2zETPxMZAonoOAmKjhn/IbzG0wTeWQLvHJ79XLSohQi8ITz7WQJvDKHkMFM/j6rfg7I+pKC0oopUNKmvWOnh/0cEPUCg0VzAhUAI44ox1zAjZp5G4yv4/gwh618nlfqH19XfwntaPbw3Gh5XB4mq7Uaz3o9ufYiw1HL4jaINYsQ+jlv/fGgk+cME/lgYgljVH1eeMWBlMRII1Cu3S1DC9y7g2U8DEivx82jm/Qi1c9VvdfTYR0DoBME0gTeG2/gGuvWBdUbfmhMDLrHU30VR+8O4tghJX0IYqMbdCLFZFT8ZuarfgxAWqrYDofWDexqBRLc+jFBzCIzQ1a/twPOnCPxphNoThuIESGlgJv8GQkkiRDzqZ82GRbMeQ8oqduU0nnea1VoV6/ubRGflXQsE+lXE+Fewoa+Iq+8rMqhF7f0k4GLEfwjd+sA67oYevjORiHgAw3j2t8P220SwLTSuH8GIfRyh5Fb1fx0j/qlw4+BdIAgW8L0z3zPGwPjUEn/whZfYNdjBkf29IYFx1ffGFVIUbxTvSGNAyoAFe4yc0Y2qbE0IW426X0YgsNS3j6cgMNHMh6PJcmWwCgFC7UBRexBKBiltgmCG1a4iKcv4zssgG6j6nWjGoXDnso4Qt8waX9lFLMPF984SBHMIJYmq7UTVD65xg4aTgoWi9qMZRwnqkwTeEL574rLGgKrtQtV2o6jdrCY+hoPY2pTwt6FtlFYUfR+qtiM6x9qFVqwT4pFSIoN5fO8cUlYjzsX9zV1EdNbQPa90oWo7CfxRAn8uiueuIPAn8J3jgIOqP4Sq3xHFv9fuooTQQGiXibXfGIJgAVBDB1QUdgjrE6wI8AQyoOAWKLslYmqMhJYkod2a+1mGou1AM+7awGMRwkKonShqX0S4LEScgJuHwJ+JXNaLCKUT1TiyzhAI+5lQ21D13Wj6HTjeRXzn5TDEtYUxEC5EB1C0nWuIj8sSyJdj5QuRjIxoEEoMRWRCMqZsoGi7CYm8SkScywFEaaPL4j2hIalq/VucX0NRuiOPnYSgDNILDZjr3YjcIkhZIvDOI4N5hNIRkk3VwTVGtBBKOH617ajGXfjeOXz3TVT94GWMgQc3kEiFUEHpQNF6CYIJkHVkMP9WPOZbgobtMTNX5oc+dpRcOr6hKqq2SeXLm4l3jDHgBQ6+dJFIFKEyVT+HrlhYahJFqAgETtBAi9jVUgYE0kdVdFShUXHnUYSGocSxgypSBqhipVytF7gIITCVOMqt0g0QBqp+F5u56oBwRyESoatfrqteJav47imAiJnfs8EQuCykg++dAumhqNtQ1M0IfctQUI27wP4mgT9N4F+67KlV/TBCbeNG6l4pajeqdoCt2mYjglBJb7mgjwwIgkWCTRX5ZDSJCqQsE/hri4kEwRy+dwEQaMa9CJHdlDR5axFmMuj6fhQlT+DPRspvct1RkunGFHONWdJ6hg6rg7ga51bGEhWtLyLlbYRAidz1CshGmDVwExEE0wT+KCBCCWWlZVMCKIQGpaodBL6A755cpduwCZQEqnGU6/GYCGE0F/nwAwuBicRFUVtZIYRqNFOQpbMcDA7/uUyKjLIIwmwLl9BgCJCygfSXlQR9JF4kO317QQYFfO88RF5FobQhlC1KFytxNP0uHP445FlswV8RIo2qb9R4aX6vtAJmmFUlazf+ELcJFEUQjxkM9rViWfotTyVcj3eMMVBwpim60/h45I1eSt4sQ5VXSOqtJNQsmmoyXjtJi9GHEApOUKPhlcmZPaS0FpbcKUwlTkpvZaj8Cp50SOmtGEqMQPosuZPowmRb4k7i2laL5A1CaKhaH1svmkYz1o1cKwEqpY3vjQGgaAOXWcg3h8Qn8MZYZuSKTQhGq6Fo2xAYUbreFCuL0sYOGu6ib2x3GjKOt3DpbooA3xuOdkw2nv1NKvZTV76OyEbM5BXIoETgTwMi2im+HRoSAlXdjZRFwv4R4PsLhNkKNF3zy6JDhmJQ9krojk6n1XVLSxgLkUVRNma3LN83hO0lkYSejJsHGSwR+HOAEu7GL2OkCZFERMp7vjfaTNvdrM8KdFT1elX61DVZEwg1/CPFOs/UqueIwlqwbAgEIbm18a0wI8gbitLxiiDtiNHvXef9vXWQsor0pwAQat/adlkHgYHQtgEQeBNRxtFmRDnr8u9GmFE/kFG453sDlqnT2ZbmzIVp9u7s3JBKqKmbE2JvFt4xxoAQ4EsHTzroiokiFHanH2bOHmbBGSNv9JJQc8w2LqIrFkmtle74frJ6SGZSuEQQeQuK3jR35z/FUOVVCu40ujDRhIGpJK4o3nJDz4AAsYXVfEX4UfZAyNC+lpggEA6aaBEUmFwuVSh0Y8aj3bSLpEE4yW/RNsLk6nf0W0G9wj2th4zaQxLmhecjUt/lIZQkyvpUUOmArAEiIvq9Xa7YBkIk0PWD6PodSOngeafRtF0sL7iqUBhMbOdY8U2SWhJTMW+pIQAglLdRZEs6hJoVgpDEepl3I7RVi1E92mlvbgyAwvUJMCmXv4ereReyHGYTFP6PkHkvdBQlj6rviXQnEoBC4I/iNjbK095WkB4yCHfnYdtf7v0o4bwCgM1yquuGNhPqDcyT71w0bJcLI3N85ZvHacklsEwddZUA33/+5z9MJnX9BaiuhHeMMbDs1veky2xjCE2YzYXbDmrMNYaaIQIIU7B0JRzsJXeOJWcCRajEtTSaWJlAFVRUoVP25snHe1E2SQG7mbh+yy6avKRDKIxyjcVDhNIcYHJZTnlLSKRsRFa3GqrFvW0L5FYI+Q3LC7huPoKZ+sWr+J2ycecv1HCxk3WQNpvtVm49JJ43imM/i4gWBxllMQR+GU3fgRqx5w3F4Ej2LgruEquJjLcSb1v6ltAjQ0QCyzv9LSC9sN8CK16228uxLmUD37tAo/wrSFlAMx9Gtz4Y8htEIkpBVUHWce1nb39jQKigLGdhLG8atoAMIm8NgB6+2ygzZcNpb6/X9pagryvH3/yxh2nYHqqqRBLHK9/HrWvcAF4j3jHGQFzLoQoDTzoIoZDU8mjCJGt0YUSdURU6vnRRI26AqcQQQmCoMbpjexEoxNUsvfGDKEKl1exnyZ2k4i6S0TsouNOk9Y7m+W4v6ChKK4FfCuPJQfWaNuMiyusGJVI+LF/2+FBHwQtdr0qO221SBREqNQo1nISECHPUr4VHsXwmkUBRsgR+PUyFxH2bntZBiBiBLBJ4S0h8LOvD+N44MugAtR2JZMldIpABju9gKiZS3kCGy20OIdJR/5OhsI7c2giWqwhlQmmLjNjbq9/KYCkUGfKGQajo1hPo5qMoat8acmAQLF6jp+xtgoihKKEypgzmwo3GFpB4kWAVkSJjAiKD911AIm5sKjq0jNWS/rcC7yBjIENMTSFhjSs/o7ST0dujmFyI9W7TmJqiJ76/+e+UHnbevNmLJMDxa2SNLuYbo9zsmOfNghAWijZA4F/C9y6gBgsocsc1LAI6irozXDyDuUhZr7EF019GLP0GQmmJsgRuNyhR+lIsEkuaJ/CnI07GtUEoWYTaA/4kvncKLXgMKbLXvxsWy9kQkrBA0HK8+HLnEwiRRNV6wdfCzAJpR+EarblVklJS82rYgY0udFSh3pbEspsFobRGehwS6Y+CrCJlhs1EnKQs4Xsh2VXRBm9LV3PYVycJhZNyaMbRKD14vfhO4RpKEa9km8DV9rebAyHSCDXUKQn8cQiKSOlubpTLBr53DpCRuFT2lt/fOwmKEhZOmpopIIH2lhSJuInn+ZSrN5eYu+n1b/kVbiKEULaM6YtV/10LckYP21P3ogmdvelHiKm3iDx4gxBKCtW4G1Dw7OcJvAtR1kGAXMdSDv94a78TBpp5N4J4qAjmXSTwxtccE/4uAGnj208jZRVF2xbVKbi9IIQSKqqpPSAsAn8Kz34qeu4VshasPJeU7qrvV7BSi0Hi1r+JDKYBe8NxK+fxNrT7mntDjyZDGS5euFseu/I8Al3fjUBDUwcwzfdhmu+nXvs8mtbfJPApQtBmttEX76fdaielpW5d9sttAEXbhqrtBTT8SKseWd6kz3tIbxzfeYFmVshtudj4KyE6kSYkiK6IMoUGpEfgnsd3TlzdKYXaDH3JoIqUNvItItYpSguacRgwCbxLUS2B+TXXD9+PjwyWIr2IMAPpajg+f5XQsD1GJxb4b3/wHP/ld77NmYvTeJ7PUrHGcy+dx3VvLaH0HWUM3AoIFAwRI2/03daTqlDaMOM/iKK2h1ri1d+iUf5VZDC17kgPGSzgNr5E4I8AyzFUFaF0RgqBnXiNb1Mv/TLSH2Fl4fQJ/DHqpX+D57yGEBaa+QC69X5uTwisxM+h6QcIvHM0yr+G2/hzwtjyWgT+RZzq7+PWv7phx6Vq+zGsjyKUNmQwTr34yzi1P9mY+iRtAn8Et/E1ZDDJVrwNobZF6U8KUtZw619ABlcnX22Yj2GYD6HrBzCMO0ml/wGatreZrSFQ6I9voy/WR0pL31LC6+0AIVKo+n6M+A8Aknrx/8Gpf7X5bpalpJ3an2BXfxffPYuitkdjpfNtvffNIJQ8IvJeSX8czz2BDGZXHSFx61/Frv72VfMFhEiiqMsKhg08++lQvvutgIihaAMY8R8FNOzKf8Wu/DZyTfqui2c/Q6P8X/DdYwilFSP2MVR9/1Zn/SuJ4fEF/scffocnHt2HbbvYjoeuq5iGzp99/Q0azq01Bt4xYYJbhcu5gqUM8JwXCLzhKB+4EaoDOidAOgTuWRz+DN89jVDiCOJRTvb2SDznZkJFKC3EMv+KRulXwqqBtT/Ga3wjdDOKBGGVvHLoYpQV4tn/GMXmQu6ElBIz+TNAA9d+Bs/5LpWFn1iRSZVlgiCsJ4BIY6X+Dpr5GOslgG8PhO9NMx9EyjJCZHDtp6gX/yV25beixVgP31mwgJQlpKyhWx9BM+5edyoDRd9FPPMvqBX/Cb53lkb532NXfztcUJQk+EVkUIy4FoJ47j+hKu1b3JuJqu1Gt57AbXyVRvk/4dS+iFBzgBlmLsgqscy/jCRZo77mnQZ0VLUVKSWO810s64Ms15NfdBY5UTzR9H0tOQvkzVYeNtem/QX+DL57isAbClO/ZCOKU18AJJ79rUgkpiVSxIujamHVyC1zxN8mCCFQtG2Yib8ZKkW6x2iUfxWn+juh7LGwkN44QTCLlA0UtZ9Y5p9Guhe33/QmlDY0/RCqfhe++zqN0q/gaH8chUIUpD+C742j6rvRrQ/ju28S+GNXOKuGUFrQY9+PW/9znNqf4NrPhOE9kYz6Ww099v2YiR9f80vfG45qmYwhZQ0pa2GRIW8U8PDsb9IIlsIsG2GFoSx9b6gt0tRpSWElfz6qavkmTu0PcBt/gaL1he/Hn4lqe5QQSp545l+gRNUL38UKfD+g4Xjcd+cgX3ryePTpWhLhrcRNGS0Nv0ggfeLaSu56yQlz09PG5ePNjl9FCBVdsZBSUvFmiKt5VMUgkD5OUMVUUleM30opsYMyppKk7M5c9tpSSmbqJzDUBDE1j6mmtriOxLOfw3deixYTD3AjdUAvXDidBoE3AkIPc5eNI+jIm24MhIu5hqrfhZn8W3jO66GioDceihEJJdrghy5DVd+PUFvWFPYRhDFYPfYJhNobVT08GRY9io4QwkI1DjWrpYVqibfv7lMoicglnELRBsIqcP40+Cu7rVAYJ4+qHkLTD2/IBQ+fL4lq3I2V+jt4zkth3rc/jx+saluhhTtVbXtEatsiZCWUUKo3/gOAj+ccC4tC+SMgjDCMEJGuYHl36+E4ryKlg6KkAS2KLa/0R0MxaDfbiKvhgp3WU8TUjWTXwJ+JCve82sxXl0EFKQvh994lpL8Iwoxi7wZ6rBoqWnJ7GQNAKO2r9WAmfxal8WRUcGmWwF328CgoaieKthvNuDsS9tKvOGe8HRBCQ6jdmMmfxan9GYF3DukN4/tj0RxioZn3o5sPAXqkgXF5Y0AIAUoKM/7DIJ1QcClYxAsWQoEk9CYJcz0CbyjSOjiGlC7ghkZvUCKs4XAR1w/JjKGIUhxdfgBV289yNVSBCmo7ZuKnwvnSPUngjzRF0sKMnzyaeQDNeADVOBoSk2/jeeXtgBACTVXWEAXrDYepuSKGod1yo+CGjQFfutS8BQLpEVNzOEEFN6hTcEYAgammcYIKuhInkF4YO4Io7U9QdMZQFZO03oVAoeiOYygJCKARlFiyR2i39uJLF00xUYSG7VeIqSsEr0B6OEGN+cY5Wq1dlNxJfGmjCA1diSFQcKOUljCtUGG6foKc2Y+CiiRg0b5Em7UXXYmtCReEJYGzII3mtKyoW5PUQnfuKvKMMFH1w4CIWLdbv1FF60c17kYJFqNc+LXHCiEQagu69REUbTBayM8jg5mIAW+Eu3iRo1EfJCY61zKSI2lfzTiConTgq/14ai+BP47Eo1aB4lKMSrmP9p730Nbdi6ptpfaWQzcfRspyKFN7HSx+EGjmA8igENVMvz6paEULKwUq6jaE2hnJoxaR+NHuJY2i9qLqeyNRoY2ejlC2uBUj9ikUtSeqcT8WehVwEMQRSgqhtqNqu6J3ufVkFtY1eCAkUymd4c4IB1BQIjnbDcJRMiyEFQQVFBGLeAIrtc0txaI31osiFGp+nYAAQ9m4uxJRnrZQcis96LIRsOWc+2YPJyzV+x4giFzQW0FF1fci5WOhFO2W3hIIM0D60IwHQOhbqhpu8kAIDHTrvQiRxtfexPeGojb1EEoeVduBqh9E049sURQqulv9DhBaWDFSZLjceFwPzbiHQO0L61+sPqc6gDTuDdPmRLx5TiEyqNo+pPmeNRLkQqTRrQ+AlPjuGwTBbKRzoYflkM2HUfV9SOmgBbMRJyB22XsN6yncgxGU8LR+An+ymTEUVnjs3qivAaEBIhKhB7H5QJcT/DEIRX8ElZqNEJCIhXOqbj2KUFrwGcTxTqCrc6hqQBCkqDlteO5OOtMfQigZfD+gXKvhej4tmXhoBBn3U2/0E/j78XyJqrDpAqhqO5HGAxGpenNJ59WwXQ/X9TENDU1VqNsuigjJejfK0A/5EOF93qjxGbd0+rpyHDs1QaVqMzy2gEAwNrXEzoE2VOXWGk9CXonZdAXUvQJz9lmk9OlL3MtM/SRld5qat4ihxsmZ21m0L5DV+7GDKl7QQCBI6G3oSpzRyvOYaobe+N3oaoyRyvNsSz6EQLBgX2So/G0O5j5NxZslrXdhKClmG6fYlniw2fiOX2XJGeFM8cvszXyMgjNKwy8QU/Mk9XZUYVBywxhWUmvHVJOcXPo8/ckHSOodNLwiF8rf5GD2U2SMHjTl1lWGeivgOh5vfPciR+7fgW5cvb13/uQErzx7lpeePsPdj+zhwz90L/m2rSfWd3HzEE4qi0jpRamOmxtGvvQZql5ipDqCLz06rE4OZQ/fcuGhdwqklHjSCaXGb1CDYZmIun4HG0gfX/qoQrvha1zrta/nPGG2ycb79AIXEKhCua7rnLw4haoq7O5vY7U7e7FUY6FQpastQzJmUK07nBqaZnq+xPvu3U3cMqjUHY5fmGSpVOPxozubOfTT8yXqtkt7PkUiZrBSzTdcppb1+oMgaKo7K8rquhJr4QcBs4sVCqUana1psqkYlyYWsAyNXDrevG4QBFH+Rfgc4SWjjAwR5QbJjcaJBGp1B0NX0VQVRQnDsYGUzXMth2iD6IaVLUoRV6o2F0bm+B9/8BwTMwWScRNdVzE0jb/3c+9je38b2i1ML7xhz4ClZlCFjhM4BDJgpnGS/ZlPMFU/xrx9jkrlRbJGH4vOMF7QIGcO0B07wtnSV9mb/hhlcxBLTZMxQms0kB4giak58sYgRXOErLGNhl+k7M4gxFyUrrUCXYmTNwbJm4PkjG3U/UV0JUZf4j7OFL9EzVsiqbWhCJ2iO86e2IfJWzvIm9tJau001CJ5Z4CcuS10eb3D0ag7/NFvPs3ew33XZAzs3N9Ne1eWVCZOufC9o/n9ToFopjNuvbgEMmC8PkbOyOIGLqbyNikD3qao+1Wemv0cd+feQ97swLgB5cSaX8aXPmk9t+bz6cYYxwsvcDT/OHmj/ZbMGVtd+3qw5M6R1nLo63QLnl/4Ohm9hW3x3WSN1i1+vTVGZwq4nk/cMjB0jfZcEtfzadguruthRnK6iZhBwjJQVYWG4xG3DJLRZ6VKo/mZ7Xo0HA/PDzCi3xZKdWzHxfMDEIK+jiwAYzNFStUGmqrQ25ElGducfzA6tcjw5BKVuk0qYWEaGg3bxTI09FWFf8ZmCgSBJBEzaM0lWSrVqDUcFEUhbhmkEybzhSqt2QT1RpgdpOsatbrNH/3F6+zf0cmu/ja620Jv38XxeZIxg3QiRjIe9sGhiQU0TSWXipNJbtxwJuIGh/f18Kv/16cZnVzC83wSMZOOtnSzPW4lbtgYqHqzFJwxbL9ESu/EVDKMVV+i5s2jYpI0OvCkTYu5nbI7jbrKnSyEihNU8QObkjYJSJacYTJ2H8IMlanqXoGyO0GLuYOR6vMUnQkO5X5ow30IoUTHThFID3VVx8/qfQT4GEp8Ex5BOPHWvQIld5Kk1oEWTSC+H/D7//lJ5qYKNGoOZsxg98Eevu8nQq/E9Pgip98Y5fknT6GoAqfh8ZEfvpfD9+9AEYLzJ8f5ymdfwnU8giAgnrT4+X/ycUxL57vfPMXpN8eYGlsABIfv286D7z+AEDB0dooXnjrN3/o/P46qKjz/5EkunZni/veGZLNvffkNahUb3/OpVR1a2tP8+P/2PlzX4+KpSV745imGzk3zX375ixiGxv67tvHEp+9GKJffwVxuh+N5Pl/97IucPT6OY7ukswn2Hu7j/Z+8CyEEz/7FcU68MkxhoYzd8Nh3pJ+HP3iQVDbGyPkZnvzz11EVQbVioxsqvQNt/PDPPX7F694MSCkJ8FFWudxv1XVmGqPE1AQxNYmqaMzZ42T0Vswo/LT1vUhc9xRS2mhaD6ratek1VKGyI7ELN3CYtWdxgq1FXv4qwlLjvK/90xiqhXIDi3TNr3ChcgI3cLg7//ia7zrMXnLt34ehWIhbkJB1uWtfCwLpU/UrvLr4NPfk30vOWEs0vTf/PhShot2A6mq1bnNhbI4zQzP82IfvxjJ15os1Tg9N05pL0Z5PbjrmNvtMURTGZwsslepkU3HacgmeevkcMUvH8wKmF0r8xEfu5o2zE/hBwPxSlbmlCj/58Xs3nEtKyTdfOoeuqUzOhYbDnXt6UVWFsyOzdORTxCyDTFLh2PlJxmcKpBMWvR1ZMqkYX372JNs6c0zNl0gnLB44NMhXnj3Jj37oKGdHZvG8gIHuPEJAuWGDEKiqQrXu8NLJEfxAMjK5wM6+NvZv72RspsDI5ALdbRlihr6pMbDsQTB0jYHeFog8EeotrkmwjBs2Bkw1RXfsCL50SWpt6PE4IPHlACDQhIGPi6WkSWodqIqBqpj0xu9BERqdsTsQCGJqFolkV/qDJLV2DCWOBAZSj2CpOXxpowmLhBaGF1ZDCIGCxmDqURJ6G4aaREQyw73xe1CFQYAfKROG7tee+F1YaibM71biDKYeJabm1sgRK0JwzyN7sBsunuczN1ng+W+e4uM/9gBSSI69dImhs9PhopeJ4fsB23Z2oCoK9WqDL/7+Cxx9aDepXBxNU9B0FU1XmRpb5OKZKWIJgyc+fTdSwne+cYL+He2ksnHshktpqdbk+zTqDpVSHc8NPSLD52bYf2c/+45sw264fOWzLzI/U6SlLc22nR34fsB3nzrFox++g3jSCl39N9CX7IbL9Ngi50+Mc9979hJPmCzOlTl7bIyDRwdo786yfU8X2XwCx/bwPJ8v/+GL7L9zG4mURb1mc+HUBJ/5xQ+g6SoXT08yPjTHwmyJTGuMAB8nqBNIn5TegkBQ8UKpXUMxMZQYdlBrVpbUhI4ZkegKzhyaYmAoFrow8KWLJz1sv4oqdOJaCiewOV9+jbzRRdZoI6FtXp5WSknVL+IGDpYax4x4Lp50qfsVLCWBpSaQSEruPIZiYSgxNEUnkD4FZ5Y5e4wWsyv8LAiw/TpCD0WI/MCl6pcYqpygJ76LjN6K3oz5CxQlhW2/QRBMo6p9CKGiaQeaE0HDb7DkLCIQtJptpPQ0WlSx863GvD3FbGOCeWcKBZUOq5eu2DYafo2h6hncwMaXPjuS+/ECjzl7El0xKLkFTNWM3KZ+9O5Mql4JRagoQsUPPPoSOyk6C3RYfWSNFmpemdcLz7EtvoeCM0/FLyEQ1PwK+9J30WJ0Yvs1xuoXGKme4/6WD5DW8+jCwAlsJutDjNXCypQpPUur0Ul3bICXF7+FH71jS0mwJ3UEic/p0uuM1s4TSI+AgG5rG51WP3P2JBP1IRadWe7Nv6+5c1+wpzc8t6nEKXsFJmqXUIRKI6jRYnTQE9tOi7lRaU5KSdGd3/Law7WzzDUmCfCx/TqHsw+R1nPYfp3pxhgTjSFUVPJmBxk9j4rK6fJrjFTPogqdLqufFrOTdrObc+VjjNXO0xnbxkBiD8moONtE7RIz9gQVr4gmNDqsPvrju5moX2TOnsQNHHzpsTt1GMdvkIqZDHTlmwuuaWgYmoqhqk23+NVCUxQMPYzrB5FOQa3h0NuRxdA1KnWHWsMlHjMYmVykWGmQSljo2kajTwITs0XuPdiPqggm58LS2poaXkNRBEEgEULQ1ZpmdGqJ+UIFQ1fpbc9Sqdn0duTw/IAgkBQrdep26BFwXA/XC+8vlbCIWwZt2QSZhEXD8RiaWCSTtNYs4J2tKc6PzjI5VyKXidPRsjH86vsB1ZrNC68OMTlbxPcD4jGDrvY09905SMy6taTYGzYGdCVOztzW/LdFBhkVnxCIVdW6BDFWXF45cwCgGR5YntA6YysCNxJJq7ULEFTcKgmtjYTWtmlutRBK81hrlXDQ8nWWFQqXr5M1VognqmI0f7v8vZSSIJComkIsYSIELM2XGR+aI5ASz/GZGlukXKxx9KFdJNIrLz/csducOzHOX/vFD9DWnW1WoJJSMjO+RL1mM7Crk6MP70YGkme+doy56eLmjSyXY4jL/5Z097dy+P4dOA2XL/2vF6gU67R1ZmjvzqKbGoapc+DoAJncjacFOrbL9Pginh9w4K4B8m0pLp2Z4vjLQ0yOLpBrSyEUgW7o6IaOEDA1ukCt2gjbXYb3vP+ubSRTMeyGy/C5aUpLVfScR8mbx5MelhIjpecpuguU3UVcaWMoFh3WNmYao6hCaxaq6jC3UfIWqHhhJktMTZI3Oqn7FRadUHshqWWJySRuYDNRv4Cm6FsaAr70qXtl5p0JBAoKCpowqPklFuwpFKGiGhqq1Kh6RYrOHL70aTG7sdQ4Va9EyV1gwZkioaVJallAUHIXaDV7kGHdSOp+lfH6eXJmJyltrQs4zCJQkUGNQMwDGtqqEeoENtONaXzpRUaRurnS2y2GF3hM1UeYscdQhBZRcANqXoUlZ5aZxigZvYWGX2OyPkzdr7LkzNFm9jBUPdU0GoruInE1QafVz2jtPAktjaXGmWmMk9ZzzDTGSGoZ0nqORlDnYuUEaS0XnbNGm9VN1SsyWj1PTE2goOAENkPVM9yRvZ+kliGQYZufLx9DFRqKUAmkT0AYI/alhy89ql6JKmVm7QlajY7I+Ay9Lr70motTQEDFKzJSO8eh7P2kyFL3qizY0xue21ITOEGDS9VTDCT2UPMqBNJHEeqmxgCE89Rm15aEIaLwfl0WnVlmGuNoQqfkLTJUPYUqNKQIjSwpAwKg4deaBdp8/KYYUIDPRD2s59JlbSOhpvGlx1DtDA2/hhqRqMPnlkzWh5mqj5A3wvoYoQQ2BIHEdv1mPN1xPRq2S7XhMLNQpiWTwPN9yjWbpVKdmYUymYSF4/mUqg2WSjVmFstkkrHmbys1m9nFCq2ZBFJKMskYqbjJxOxKWKJSs6k7Lq25xOaeB8DQVWzHw3FXwsoN26VhuxTKdRaLVTJJC0MPU3dLlQYxc2U8Oa6HH4TqnooiSMVMRqeWmF2sYEbsfisyfhqOS8PxECK8bq3hoGtqFI5Qm17Z+UKFam1zb16p0uDEmUnODc1Stx2QUCzXKVXqmIbG3YcHbmm44JYk4q52nYk1UpmbHXul78LvVWGQNbZhbJJKdTOvs4wgkNSqDf7iz15BEQJFVSguVbHrDlJK6pE8ZCxuEk+txCWllHheQK3qYMUMEikLLYpNLS/ohYUKiWSMZCZ6FiFo7cxQr9jUq3boLgpWVAF9P8D3VhS9WjszJNNW032USFl4rkfgr1X9Wv7/G7UmPdensFilrSuLFlnhhqmTb0uxMFumVrF544ULXDg1iaoqqLpCpVjD90KSj6qpdPTk0XUtMho0rJiBY7sUnQqXaseIq2n64ruRwFD1BAJB0Z1HQSWjt3K+8hpd1nYK7iyq0MPPyq+RMzpZsCcxlBgxNUnBmeNc+VW6rO0ktVzE+JF4gRMuXFsIS7mBzWT9EovOFK1mN6F3y6PgzHGm/DI7k0cAQd2vMFQ9gYLKVP0Su4G4lmKidoG00UrJXcANnMgQDphpjNBlDWIoYbEdKQPcwEEXxgbSlhAWhnEnK6V318ZBPelT9kqM1kYoeWVUodJmtpE1sjf0fq8VDb/GZGMYgPd1/EBzbI1Uz1JwF8joLTzc+lGK7iLPzX+ForNA3mxnMLmXi9XjDCT2MG9PsWBPg5pgILGX6cYo7WYPOaONidqly15fCEGb1c1DrR9mzp7kmdkv0hMfpD++iz3KEc5XjqNEc5AnXcpugYvVk/z1wX+CpoTEwmWC3p25RxAIZhsTTDfGGK9dZGfyILtTh9EVA4HKAy0fbF67JzZIIH0WnRVBqnl7ctPnVlDojG1DEQoPtDxByVvkbOlNRqvnOJjZ6NoWQpAz2je9tpSSgcQe+uI78aXH+fIxphujJLR0aIDZY/z4tr8Xnid6H25gs18exQls7so9Qou5IsK0L32U0doF4toKUbXuVxmpnuVQ9gEOZu5b2RghqfkVNMXgUPYB4loKU4mRjbtMzpU4dm6ChWKVXDpOte6wUKoyu1Th3OgsO3pbKNdsFopVZhfLnB2ZZaA7z1K5zmKxxvRCmdjIHIPdLRTKdRaKVaYXSmi6wo7eVixTb6bbmYaOqig0bBdfynBeVgQN1yO2CTdqz7YOzo/OM7NYRtcUFEWE5MZSjcVSDV1T6W7LsFCoNol5yzt+IQQnLkxRrNTpak3TlkuyrTvPK6fGmC9U6OvINYmLpq4xMrmIZWhs723l8O5u3jw3ga6pxC0DU9eYmVnC0jWW/AA/2Fwdcmq2yBf+8k3uPNjLew/sxtA1FgpVTl+Y4o++9Cp37O155xkDtwLxdbuoW41GzeHU6yNUinV+5u9/iFxrkuMvD/HG8xcASGXjICXlQo3SUpVMPtlcgHVDJZWNUSnWKS5ViCWMJpFPSknPQAunXh8hNR1rygcPnZliYFcn+fY0hYUKpaVquJv0JUvzFWYnC817UxTlsvF/AbiOj/Sv3iDYKqlESolp6fRsa+HZvziOE7nKapUGIxdnue89+7h0ZoqZiSV6Blr5/p98mEqpxvN/eZLVp1RVZUtbrcsaJGe00271E0ifmWiSU4VOXE3hSZdABvTF95J0slS9AiVngaI7z6HsoyTUNBWvQNENJ+i++B56YrtI66HuRVLLEdfStBhdoYGwCcIY/Gh4Pi2NgooT1BEoDCT2sy2+D1ONMdcYZ6YxRlrLk9LzqIpOw69S9pc4mvwAFbdATE0ghIIuDFJ6rtn2ujBJ6uG9tFt9qKtCUmG8MIaq9uD7s4CLpg2uuce8kefh1keZqI/TZXWjKW/P8C15i5hKDHNdQa+yV8QLPPJGB0IIMnoex29Q96sIFCwlhoqOqcTRVnF6LDXeDPWYW2TyrO6fKS1HSssgEFhKDE86zZ37eth+nZpXptXoRqCsWeAafpUvTf4uhhKGEqSUtFpbF4rZCls9t0SiCY02sxshBIZioQiBJ6+d52EHDV5depqJ2hC6YlDxirSaHVS8AoH0yUel2q83ZCSRFNx5MloLsfU6HAgOZx9kqHKaL03+LjE1zhOdP8JDdw6EqdlyhQOQjJl03LuH99+7p/n7VMKiuy3DRx9eScmMWwY9j9+x5jqxtgyfeu/hNZ/98Afvav69qzWNlJIvP3uSh48MomsqZ4ZnwtS7/lbUVXOcEIK79vVyeHc3QqxkIQD83KceXHONXf1tbOvMhRsZVcF2PJDwxIP7SMXNMKVbwKN37cAPJIoiUFZd6yc/fi+e7yMIeQMHd3RxYHvXcuOhCMHu/jYGuvLomto0ItbD8wIatsuPf/LeZnvuAvbt7OSZ7164oqT5jeIdYwy81TAtne17uvizxef4rX/7NZLpkBPQtz3Mo1ZVhYefuIPjL1/i3/+Tz6EbGoEX8KEfuofD9+0glY7xs//HR/jdX/tG6GoShJ/9o4+yfW83ew/PcebYGP/8F38fJOzY382eO3pp7cwwM7FEJp/gn//i75PKxHBsj7auq6+ZYJg6979nH//uH/8xqXSMOx/cxQc/ffdlf+PYHq89f57nv3GS8aE5HMdnYmSeex/byx33bGfngR72Hennv///vopre8STJvuPbGP3wV4qpRqnXhvmte+c5+LpSdLZOC0dGeLJa2FyR+lBCHaljjBZv4QnHRShklDDif9E8TlqXomElmFH8jDb4vt4c+kZql6RrNFGX3wv8/YEm1kdgfS5WHmTRqxKb3zXhu9NNcZA4iAvLXyVhJahP76PvLFxgo1raXYk72Csdg5dmJhKjJiaou5XeWb+c8w3JohrSRJ+loI/z1jtHG7gsid9lJzeDkgC6XKs8Ay7UkebsVopJTJYoF7/IqGiXIx6/SukUn9vzfMIBN2xnubO9+1AWs9hB3XsoLHh85pXZsGeieLfixiqRUy99lCVrhg40sbHwwlsFp3VIlIr/3slmKpFTEsyb08iCZppdrZf40LlOFmjlaO5xyi480zULuFGJZCXwwnyKgqXbfXcy+/oWhfoza49VD2NL312pkKvxetL36Hml0hEnJhFN5S7Xn4+oiurQsUN7DWF3DaDQJDRWyh4C9SDyobvW4wOsrlW9qbv4ljxBU4WX2Zv+s7IALqmx7thfPD+PQxPLdJwPNrzKXb0ta5ZnFdjq4V3PfRVO25VVbjn4DasdUI/Qgi2yuxbrwGw2e1caVcfi+n0dWWZmC7Q2Z5BUxWqNZvJmSLbeltQ3q1a+PZAVRUy+QQ/8bffj6KK0D0uwLU9VDV8qV39LcSTFtv3dYf5pQF09+fRo0504O5Bcm2pkKgCaLqKZRmomsKh+3YwsLuTWiUMN2RbkuTaUqiaQkt7mk/9zCM4DRdN10CAYWq0d2YB+OiP3kdLexj71g2NT//MI3T25olHpBUzpvPxH3+ASqkeprK0XVnMR9NVdh3oIdeSpFFzCKQkHjfJt6fDUIeu8tiHD1G6v4bvB5H3I46qKSTTMR7/6GHuemgXiqpgGBoPfeAgfTvaiCdMtu/r4tM/80jTO7Jzfze51iQdPTlUy8eXbZEbHUDQaQ2S1lqQyGg3FbZ3f3wvmtDRFANdMemJ7SJvdOFLH1O1MNUYrWY3OdmGpa595kPZR1CESkzdvC00odNqdnEw8xCKCLkFhmLRanaTlW1Nop+lxOmO7SSjtaIoKikthyp0+uK7yRud7EgcJqO3NMMW97d8FFONk9JCcqqlJLgz996QBLluZx0ECyhKayRQY+J74xDxb1aEbATq25z+ailxuqxtTDfGeGrmz9CETrvVQ4vRQcZoYbZ8jGfnvkzdr9Jh9ZHR81S9y5fMXg0hBO1WDyeLL3G6+Cpj2gU86cGqRW49vMBhqj7Chcpx5hoTHCt8l57YIB2xPtJ6jsHkPr49+0U0RSelZcjoLeT0dt4oPM/xwgsESJygjq6EMeO0lgMEU/Vhnp37MoOJfeSNDibql7hYOclMY5Q3l56nP7F7y+eOqQmCy5Rc3gqbXTulZRmrXWDOnqTmVSh7SyiE3oYWs5M2s4enpj+HphjkjXY6rF5azS4yRit1v8Kri9+mM9ZPh9lLVm/hePFFJuqXWLRnqHtVemKDbEvsYVt8N9P1MeYaIeGz3eqlJ7adocpp5pxJFARz9hR3ZO7HVONvucqjEIK2fBLLDAm6pqFfNvf+au9v9XGqItjV3xrG+tf9fqvziXVeieu5D88LmFus8O//+zfpaEujKoJa3WFhqYrtePzm7z/bFElKJy1++ocfvMIZrw3vGgNbQCgCw9S5457BLY+JJ0ziCZOuvvym3+dakuRaNl982joztHVuvtu34gZ77tha5TCVXcmmUDWFvYfXqnBpmsr2vZunpm0FVVVo7cjQ2rG1B6J3sA02aQ5N1+jfGbpXA+mz5Myz3ehCEQq+9LGyKpk4zXLtudYUudbNxYyEECS0NDE1Ge5wRHjOjN5C3ugMF3MR7mSSepa4lma1oEpc23jecHHp39KVDGFZbFON0xEbCMMq0Tnj69TsVEUjIdLE1VTz/gQCTeRIaNk197LZ/ShCod3sRxKwIS1NxBEihpQNwEO9DQvtAFR9h4zeiURQdOao+i6BFFhqkhahUbGKNPw6CS1NT2wQT3oUnTD7YntyPwktRavZyc7UHcSUOIZi0RfbSd5oJ6Gl2Jk8SELL0BPbgRPY6FHGgaGY5I2OJtFQQHTOAyS1MDPIUhNsTx4go+UxFBMVDUuJsyt5iMn6EEIo+FLQCAJazDy9sR3EtCRaVA7aiMIUphqnw+oL1VKFiRJlbahCI63nwwVaz6JFGSuKUKlYRZyggSJUemKDmEqMml9uihNpQqfN7G5eYytsdu2UlqXT6sNyY5hqjA4tgSHMKKSlsD2xj+n6KKqioSladL8KMTXJQGJfRIjVQ/K1EGiKQV9sJ6rQiGspVKGhCZ2BxF7m7AlqXhlN0dGW713RMISJKlQ6rT7arZ4tQzq3GpahYxm3jjgrhCCb3JybdiuRiBns2NbGxHQBpCQIQo9DKmmxLRsaXkEgIzLpzQ8Z3LAC4bv43kcgAzzpogsDT7pIZJOApQgNRQh86Uc59AEnSy+zN3UnhmIRSI+KV+RE8WUebv1wNBmHJYBVoYUT5RWs5kAGTDeGaDf70DaR3/3eQDgM6/Wv43nDCCS6vh/DfOym7r6klPgydJcrIsybiArnEsig+RmEhEVFiDC7IsqBdqXP+fI4GT1B1khiKjrny5P0xluIqxaqUPBlQNmtkdAsNEXdNPtnWRkvZPQHUYok0b99FKGgIJr3FhpooTElhIiY9UHzOJaPi36vCy1k5vsuTuAS0yz0yMM0b5coulW6YjniqsXynSzPhGp0DS/wo5wD0ISywdB7F+/iZqJhu8wvVa/qWE1V6GzbPDPqevGWegY2szu2Glxb1orf5Pj1x17rgF39+3cH+0Y0/CojtQvsTR1hpHaOqlfBkw5e4NFudhPXksxGOcgZPc+iM8exwnfJGe20mZ0ktEwziLbkzDFnT1Fyl+iweuiP77piTFURCt2xm10F8vZC2AV9FCWPpknAJZAbY7c3do2wn8/YS1S9Blk9QYuRxg5cGr7DnF0kZyRpNUPv0HB1hpQeJ6PHsRSDgICLlUnOlyfYlujAVHRQwfYdtMgodAKPObvAFydf4OHWg2xPdpHUNu6yPOnjBC627zLVWGQw0YmlGti+y3h9noyeIG+ksAOXqtfACVx0odJqZVCkQsVrMN1YpMVIkzOSuEF4vobvMGsX2J3qpeE7nCqNcLo0yr0te9mb6sMNfOzAwQv8Zkig5NVo+OFnEklvrA0pJbN2gSWnjCIUemOtJDTrugl67+JdXAmmodFzGc8s3Nr16S01Bqp+OXKXGZwuv8EdmaOoW9zCeH2EqfoYrWYHg4ldlL0ihmJgqRurqhXcRc6UjtFhddMf3452jbnXdtDgTPk4hzJH+V6QI77ZcKXLUpRKVXAWKHtFsnoLR7L38PLit+mJDWIIE1fajNcuoaFzZ+4hLlZOMm9Pr8ntH6qepeqVSWhJJupD9MV3vl2PddvB8y7heedRlBZUdZDLFUK6HtiBy9nSGBfKE3TFW0hoFo70GK7N8O2ZN7kjO0jGSFB0q7yxdAEJXKhMciS7gw4rx9nSGAnNYqg6Rd5IIeKCgIA3ChdosdK0m1kA3MCn4tbRlK0FkYpulUuVKV5ZPMf9LfvClNLKNKO1GXwpOVMe4xM9DzJUnWKmsUSHmed44RI/1P8Y47U5Fp0ypmrwzOwxPtHzIFW/waXKFJcqUxzN7wZCj4Ptu9Q9GyPKvFCFYLZRYKg6Tc5M0m5meXb2eMT8V7lUneKnBp7gRHEIJ/ApuVWGatP87PaPvGsIvItbCj+QlEp1fvdz3+XNU+M4rk82E+fA7i5+/JP3kkpat5Ss+ZYYA1JKFpw5LlROowmdnlg/C/Ycp4rHyOhZTMUiIGDenqXFbEMTOjONSebtWTpjPczZ05wpHydvtNEfHyStZ5vnrnglZu0pphuTdMe3MWNPUvfDCoVJLYWlWEzWx0lGcTFJQE9sG2O1IVRFwwlsim6BBXv2Cnzbv7pQUNAUnfPl41S8EsgwZWq5PefsCRShhe5/Anw8hqpnsf0Giqqy5MyxaM+y4MxgKiaeGoYa2szudyfYdQiCBWRQRgZlhNDQ11XIuxG4gcdobZaD2UFazDRJLdZ0wfcnOtie7Canpyi4ZUaqs2SNJDHVQBUKNa/BnF3knpY9TDeWmrtkTWjENYvlMIeuaKT1OAnNottqwVI3N8xldOxAooMdyW4sVafgVpioz5PUYqS0GIEMcAMPU9HZne5h1l6i4tWZc0Jxrj2pXkpulUWnjESS0CwGEp3sSHajCpWEZpHS46T1BN1WqGypCBVT1YmpRpNh7wYenbE87VaWilen5tuk9QTD1RkW3TJtRgb9bUrjfBd/dTA9W+Qbz5whm4nzkz94P6qqUqnaTM8V+eMvv8pPfOpeYtatC5O+ZT1cEypu4IISprs4gUtMjVHyirjBHIH0sQMbX3p0xnrRFB1dMUlrWQIZYPs2gQw2iMaE2to6mtBJa1mmG+NIGYS5y0Kn5teo+VUaQWggqEKlJ7aNeSdMxQnzpS3cqEDSMhqOx+jMEq+dG0dK2NPfxu6+NpKxK6fL2Y7HQqnGi6dGEEJwcLCT7tZ0s0LW9UJKyXyxysj0EkuVGtWGi+N6YdEMTcMyNDKJGF0tKbZ3t1zxfJ4fsFSu8fyJYaSEbZ05dva0koqvfUZdMem0+kBKuqx+FKFEhC2F7tgAEtnMmfcCF196WGqchJrCVCx0xWRbYjeGYtJmdZMJbJCStJ7/njMGFko1Tg5Ns1CqEjN07j+wjUzCuir3nhAmSI9gWXRIaCyrd94MhO8txoJTCjkeFiTU8F2n9ThpLY6p6qieSkZPUPMaaELFUHQs1SShWUzWF6h6DTwZ4Emfqlen5NaYqC0QVy1yehJd0VCFwqxdwFB04pvIxUIYm0/rCVJ6HEUILNUgpprUop28qeioKDiBx7xdouE7aEq4yNc9h5lGgbpvYyg6rvTQFY2MniCtx6Pn1dCESoBkplFgW6KDhm9T8eosORXGa/Pk9RQBkphqktOTxFUz5BwoGg3foeY1yMbWFvFpOC6zSxW+c3x4y7a+/8A2ulvTmPrVTbGO6zFXrPLMm5fYaldyZFc3g135W0qe+16GlJKFUo3Xzo1TbTjkkjHu3NVLOmHeFuHhcqXBmYvT/PD3HWXntjY0TaVcbXBxxOKPvvQqnnflNNcbwVtmDKT1LGk9G7JX1QSqUNiW2MnJ0hvM27ME0idr5Kl6FeJqnKyexw1cMnoOSUBaz4Y7/XUKhHE1QVbPkzXyZPUco7WLpPUsLUY7cTXBUO18pIm+hBu4xNQEDb9O2S3hSY9Oq4d2s5Ox2hCrJ9267fD6+Ql+9Y++TSAlP/a+O+nIpa7KGKg0bE4NT/OfPvccqir46Y/cy6OHd9yQMeD7AZWGw6vnxnnmjYsMTS8xV6hQqTthESTTIJeKsaO7lYcODVyVMeB6PhfG5/mNzz+PHwR88J49pOPWBmPAUmP0xVdi9qsX8B3J/cBauefVOc3Lx7aYK3Xul8ljmxHL3gqE1w/bdFlA5GZMBlJKhqcW+ZNvvcmp4Rlaswl627Kktpmo6pXPr4gkitKGlHWEYhEOz5s3SRmKxs5UD8/OHiepWyhCIZFox1R14qrVzNWOqxZ70/2cKo1gKjpJzSJvpBhIdHC6NErVa0RkP0nFt3EDj1m7QE+shbQWLuwZPcFYbY5WI01c2zhmNKGE1w1Wvms3s9gJl6HqNJZikNAsdEWj7tkMV6exA5e0lqAv1s5kfYGLlUnqvk2Lmabi1fCkjy/WTpimqmOqOiO1afoT7dR8m7rvUPcdZhpLeOl+UloMSzVQhUpSi6EpKnXfDuVmFQMVQcN3iKkmAqg1XC5MzPPrn3uWIJItX8/u/v/+zBPk07GrNgZs12d4epH/9GfP4Ud6+Mv9dBl/5wcfpSOf+p43Bpaf2/MD1Js5PoGLEwv8ztdfYXqxzM6eFtpzKdKJ9iv+9q2A6/mUqw0O7etFVcJntiwdXVMplRvfG6JDQggEKo7fwJMeBXcRXbGi7GlBXEtgKiYNv0FvfCCqBhZlV0e/DbXMlyg6BfLmZuU2VzpL6CnQCPAZrw0TU+JIJLoSylkeK75K3a+R0FJUvBJnywX8dZ6BG0GhXOfYxSmKtVDA5OLEAjt6Wultu3rhoNWQUlKsNvj2Gxf5V7//JJFScVgrO3ruSsOh0rDRNZU76+srM26OhuPy+vkJCtU6nh8wMrvEhcl5dvRsNCSutINf/f0VjxXibfUISMDxfCbni+SSMRJRCdabgeOXpphcKFKo1pFITgxPs7uvDfUKVBQhBEJtIZH8zE25j82gKxq98VZ+dOA9zYlFEQo7kz1rjotrJnvTfexJr9QNEUJwWN/BHdntoY7fqsn5F3Z935rfG+j8SP97mmz/zZAzUuSMtWmXbVaWVjPDkdyONf2j1czwRNfdzVTOjJGgL95GgESNzp/W43THNs4Lu1O97Er2hPeCoNXM8Hj7YR5vX1G6e6LrnubfH+84AsBTM2+wN91Hq5HlWOEik/V5BhKdobdBU8gkYuzsbaNUrVOpO9TtyEu3edNfEaoiSMctdvW0Uqw2qNYdaraD7Vz/Od+pkBJsz2NyvkhbJknc1Jsy6Dd2XskbFyaYK1QoVOpML5Y5NTLDvm23hzEQihoJliJpZ0VRcByPQql+WS2Fm4W3NBB2V/4BQCJQ6Ir1oaBwR+au5k5yOQwgEPTFB+mLDzR/+1Db+4iSnDacN2+08mDr4wDckbmL1QWHHm374DpVrmWVLlg2IJb/fSMlT9fcTzrO3Xt7+ep3T2MZOod2dLHjKnbqW0FKyfhcgf/2xRcIZKiF/ejh7TxwYBvbu0LN/2rdYa5QQddU9vS1XfmkQMzUue9AP196/hRCCPb1t3PH4LXpE7wTUW+4vHBymF/+nW9EXpvtN/R+VuPonl7euDBBpe7QmU9x//5+tKvwCrzVuBpjbLNjlGsw4tTr9Pysvu5AogMn8N7ye3m8/TAj1RlOlYZpt7LsSK7wW1Ixkzt3dfM//j8/GBYRQ3JxYoGvv3SGP3jy9Wu6zjJips6BgU5+8x8unxMm5gp87btn+J9ff/m6zvlOxVK5xndPjfAvfu9J/uGPvIcHDmyjq+XG0+iEENy7v5/vHB9GURQGO/Pcu3drPZe3Gj2dWT75xBH+93/2x2zfFooelasNiuUGf+NHHrylfAF4i42B5V3CZrtIKVfcxpvtHJe5AptNCqtV2dZnA6iol3Vhr69meDOQipsc2dnDf/zFT6Iogs58aoPr/VpQrDaYnC+xVA55Dw/dMcAT9+7h8M5uYkaYp+8Hkh09LQghNi3asRkMTWNPXzv/7hc+jhCQS8VpSd94lcPbHbbrcfzSNA3HxfeDm+Z+E0Kwo7uF//3Tj1C3XXRNpSufvi3ikcto9vMr3NL1qqhdz7GX+12bmSVgY22NW30veSNFXDXxIv7Aao0BEbmtzVUStIauol/J/XOFexQCzFVERdPQmkXO/iqhXLM5OTyD4/r4wYr+w41CALt72/inn3k/rucTM3U68puLn70dSCctjh7qJ5W0mFusEAQBMUunNZ9kx7Y21FvcF95SY+CylQOvMGBvZLG+nAv7VrirNVUlnVA5uP3mKMjVbZdSrYEXVbva0d1KX1uWfGpjmuW1QFEEyZjJgcHbU+nuVsF2Pc6Ozd60SWY14pZxVXyNd3F1MLbIRrjV0BXtNskguH0MybcKlYbD+fH5m35eIQQJy2D3VXpO32pomkomFeOOvd3ML1YJggDL1MmkY1jmrR8Ht0NvfxdXgOP61G23+e+WdHxN3e13cfXw/YBqw2FoavGWSHq+i3fxLq4fnu9TqjYYmV58u2/lbYEQgphl0Nf91iutXrcxIKWMXDgrdaUB/CBo7rhE9PmylOky83YZV8PkDkv8hlrMy+7c1clWy79fPsXVluoNovOudxErQly2PPCm90fIfN0K18KIDaREBmvlUeuOu8YYCOVYJY63tgiKiO5f3YRssvycnh9sSUhSIgLL9bp4N3tX67H8rgRi04piyz9bzn9f/Y7WJ9ktv6tloulm9wNr33Wp2mBsZon5Yij76QcBnh9saEtYaU9lizZZHgNbGRWCsObDVvd3OVyuLQVh7Qxlldt6q3Msj1EhVsaKhDV9bHW7CrHcV7nsud8KLD/75frA6vu9mnlkuWS45PZ97luB5ecONpnzgDVz+LU8+zWNebG29O9m43O+WGVstsBCqQYsj09/6/GpiA0VA1ef+3Lz3S0bn+ue9fLjM2iWgF7ufxKa2SSw9Xp3s/vodRsDjufzf/73r/Lq2XF++D1HeOLePbiez6/+0TNcnJwjl4pzdHcvn3zkIHv721kq1/nct4/x/IlhhmeWSMVNPvHQQT583x66W7dm2UsJL54a4dvHLnFubI6p+RKVuo1l6vS2Zjm4vYOje3p58OAg+lUyLv0g4EvfOcnzJ4a5NLXIYrkOUtLbluW+/f08eHCA/o4cmhpWKrwcnbfheIzMLPGT/+oPtzzmb33iAd53dBf97bkr3ttr58Z5+vWLnBufY6FYY7Fco+G4a3JMf+UPn4pimGt/29Oa4f137+IXPvnQJs8smVoo8ZP/6g+pNjavp/6R+/fyo++7k91918euLVTqnB6e4ak3LnBqaJalco264xIEknTCIpeMMdiVZ0dPK/u3dXDPvq3JO2dGZjkxNMXpkVkuTiwwuVCkZrtoqkLCMmjPJTk02MWHH9hLf3tuy5TPctXmT799jIuT84zOFJgtVFiq1Jrf/48vv8hvfeWlTZW92nNJPvbAfn724/dv6qydWizza3/yDE+/cXHTa7ek4/zrv/kRDg52XVVq4Zr7rtm8cWGCr790jnNjsxTKdVzfxzJ0tnXkeOiOAR66Y5CBzvxlCYr/+De/whsXJtnR3cInHz7IE/fu4ezILN949RwnhqYZny1QqtmYukZPa4aDg53cvbeXRw/vQL0Go/hW4NTQNK+fn+DE0DSXJhdZLNdwXI+YqZOMmWSTMfb2t3PX7l4O7+ymLXt5vstLp0d49vgwZ0dnmZwvUq7ZmIZOT2uGAwMd3LWnh0cP77jqeeSdhOnFMq+fn+DFU6OcHJpirlhFiDBM2JlPcWh7F59+/BAduWQ4710lFko1zozM8PQbFzk5PMNSuU7DcQmkJB23onTnFnb2tLFvWztH9/Q2fyslzCyW+cp3T3NxYj5Kly5TrtnNY371s0/z78XGuQ5gR08rH7pnD5/50Obl2Sfmi/yT//41zozObvr9zt5W/tGPvYeD10GanitUOHZxim++foHTw9MUKw0kYZiwry3L40e28/idO2nLJrccn47n8w9+40scuzjJQwcH+fB9e3nw4ABnR2f54vOnOD0yw8ximUrDwdQ1tnXkuGt3D/fs7efont6bTky+oTCBHwR4ns9cscrzJ4Z55tglTg3PYLse1YZDqdpgdLbAv/m5j/Drn3uWNy5MMrtUwfV8ag2HP3rqdXRN4aE7Bjewuf0gYGqhzGe/+TrPHrtEuWZjux6u5xMEkobrUWs4jM4u8cLJEb724hl+6QcepSOb3HRnDKGVOF+s8BtfeJ7Xzo1Tqto4nofnh/uEi5MLTC2WePnMGLt6W6+qkyiKCF9UZ45K3aHWcGg44X0uIwjkVWctzixVOHZxkkuTi3jRrnW95Rl6Vzae0IvykzeDAAxNpa89y0KpRt12qTsutuM1j/GDK1U93xzVhsOTr5zjOyeGOTMyS7luN8l54e2E72uxVGNsrsDZsTlmlsqbGgNBEPArf/gtjl+aohBNLLbrh+9dShwRFvQoVhqMzxb47ukRPnr/fh4+NMjOnrWpZVJKSrUGn33qdRw33F14fkhKal4v3JJs+lyXa08AQ1VoyyXpbs1Qsx0qdZuG7a35/bW2p+v5fOfEMN967QKvnQ/7qO26+H64k6/bLpW6w8jMEk+/cZF79/XzqUfvoCO3ORHKDySeH1CsNLg4Mc9Tryn85pe+y0KpRsN2cbywPWzHo267jM8VeOXcGC+dHuPv//BjaKrylu6S/SCgXGvwm196kdfOjTcXF9v1m2TPhutRqjaYWSozPLPIxHyRjnxyU2PADwLmC1V+/xuvRfNIozk+V88jY7NLfPfUCF9/6Sx/9wcfveZF8XaFlJKvv3iWL79wipGZpbCPOm7Tk1m3XZbKNYanF3nh5DA//sGjHN3de1n2vpSSmu3y1e+e5rsnRzg3Pkel7tCwXfwgaHrKGk405mcLnBubY65YXmcMSKaXyvzxt97Adj0c1w/HnLy68emvO3Y9DE2lqyVNoVqnbrtUG86a8Rn2p6trx+X7df2Ar373NM8fH+bUyAzlWtieQeRpqzVcSpUGIzOLfOuNi7zvrl289+hO2jKbV69d9kwulKqcGZ2l0rD5H19+Mer3Hp4f9lPbCXlOo7NLvHxmjKN7evmFTz50Q57c9bgpnIHzY3OUqnV8P+DjD+1ndqnCqZEZ5gtVzo3N8ufPneT0yCwDnTnu2tWD5wc8d3yIhVKNNy5M0t2a2WAMXJiY57ljQzx3fIjxuSJ9bRl62zvoyKWIWzqO6zO5UGJoapHJ+RLFaoPPfvN1fvz9d9GSiW86kCfnizx7bIiXTo8xX6zQlkmyt72dvvYscUunbruMzRaYL1Z55cw4xeqVhR40RSGfjvOZD94ddmjPZ6lc4+LEwpY7xsthZ3cL3/fQAQqVevOzpUqd4alwsgJ4/MgO+tqzJGNr40qpuLUleU0ogmTc5Effdyc128X1fKoNh3Pjc3zz1fOXXfS2wrKb62svnubbb1zizOgsS6UaybjJwcFOcqk4lhEWsKk1XBZKVaYWSsQt/bK7OEUI5gtVhICetgyd+TT5dBxTV3G9gFItzK44NTxNqWrz7Tcvomsq/e05DH3VexeCVNzkh96zklNerTuMzxV56vULANy7r5/Brjz51MZiOomYye7eti0pXImYyeNHdrCrpxXH80Ni4ugcr5wdY3bp+ooMPXd8iKdeu8CrZ8eYLVTY3tXCjp5W0nETTVNwXJ/x2QInh2e4MDHfNOY+88TdxE19y4lhqVLj2KUpzo7PRYIrrXS2pEnHTQSChVKV40PTLJVqjM4UcFyf185NcHhH11tCXoLQEJxZqvC1F8/wneNDTC+WURWFfCrGgYFcc1zbrke17lCo1BmdXaIjn8TaIoNmeHqJZ49d4rljlxifLdDdmmFPXzud+RSJmIHj+kwtlhiZXmJ6sdycR370fXfSlk2i34T89rcLjWgB+fILpzg5NA0i9Hbt6mklk4yFQmZ1h9lChTOjs1yYWODLz59CBpL79m+jPbdxAVse819+/hRPv3GR8+NzFCp1kjGTO7Z3kUvHsHQNhKDecJkvVZmcL5GIGbRm1o55IQQdueSa8VmsNLg0tdic6x49vJ3+9uym2Vj5VJwdvZtpzoRIxkw++sA+7j+wDccNx+fpkRmePzG8xvtwLXjy1XN867ULnBqZoVRtMNCZY3dvO8m4gSIEdcdlcr7EsYtTnBkJScq26/EDjx0idpnxObNU4dVz47x5MdwwH9zeSXs2XOukhMVyjdfPTVCqNbg4uYDnBzywf4A7d/fcNA/BTTEGhmcWCWTAgwcH+egD+xieXsL1QiJIuWbzxedOkoybPHJ4O3v722nYHjNLodvqwsQ847OFKG4Snq9YbfDG+Un+8uVzjM0W6MileODgAIe2dzHQmSedtGjYHufHw4n3zYtTDE8t8sXvnOTIzm4O7+zekCLXcFwuTi7wjVfOMVeokI6b3LW7h6O7e9k30EEmYVGq2Zwenmme88VTI1e0HFVVIZOw+NiD+5ufTS+Wee740HUZA7t6W9nR3bImBTKc0IaaA+TBgwPcu6+fzvz6wbo2JrcaSsSk/dB9e5ufVeo2zxwb4unXLnDte9jQah+fK/KVF05zYWIB1/NpyyY5tKOLe/b10ZVPk4yFUp+lWoOJuSIXJ+dpSSc4vGNzYSQhBId3dDNfrBI3dQa78mzvaaGnNUPM0LFdj/lilXNjc1RqDUZni5wZmaU1k+T9R3etSRVShCCdsPjJVW7EuaUqL58ZaxoDR3b18Njh7ezozm92N5vyGpYRM3Xu3tPH3XtCD4eUkm+9fpHh6cVrNgaklCyW6zz56jlePTtOodKguyXDe+7cyV27e2nNJDB0lbrtcmZ0BlVVODs2x6WpRcp1m/v39XNwe9eWi1ex2uDceGg8HNnZzaOHt7Ozt5XWTAJB6FJNxEzeOD/B6OwSk/Mlnj12iV29rW+ZMVCsNjgzMsMXnzvB+FyRTMKKJts2DmzvpKc1g6Fp1GyHYrURisYMT3P//m2bZtaUqg1OXJriL146w+hsgY5ckvv393NoRzfbu1vIJi3qtsfFyXleOzfB6xcmuDSxwJeeP8XBwU7u2t1LW3bzHd3tDj8IKFbrfPPV87x8ZpRkzGR3XxtHdnZz994+2jJJPN9vbjRihsaLp0d55ewYuWSMbDLWNNhXL2BBEI75L79wiqGpRfwgoCOX4uBgJ/ft76cznyZhGWvG/PnxObpa0xzavtbTqiiCzpb0mvE5Nlvk6dcvNue6+/dvi3QGNnq+1nMQ1n8XtwweObR9zb1/49VzHLs4dc3GQBBIlio1vvrd05wcmsZ1A/ras7znzp3cu28b+XQMRQgqdYfz43P4geTc2Cwnh6ap2w6HtndxaGf3lhuL+WKVQiXcUB/e2c0H7t7NYFeedMJCSsnkQglNUXj9/ARzxQpjswWeefMid+zoummCRDfFGLBdn5ZMkp/80N0kLIOBzjwj04vMLFW4MDHP0PQi//gn3svDBwfpyKeoNRw+ct8+jl+aZmaxzEKpFpGcwqZ688IkL50Z5cLEPKoi+MRDB/j044c2WJY7elq4a3cvzx4f4j/+8bcp12z+5Ok3ScQM8qn4mk48tVDi5NA0xy9NAXDnrl4+88Q97O5raxoh3cDe/nb29LfRnjvP7/7FKzejea4JiqKwng+jqcqaRUlRBJqqoGs3/vqu16aUUuJ6Pp9/5gQXJuapNVy6W9M8dngHv/QDj1zWvXw5A0sIePzOHTx4cADTUDeVXt3e3cKRnd2YuspvfOF5SjWbuUKZM2OzG/KGhRBr2knT1DVhJFXcvLZcvv/rgZSS545f4o3zk8wVqnS1pPn+Rw7yUx++Z0M77u5r447t3fy3L77AM29eYq5Q5Xf+4hV++Wc+tGW7O5GbvS2T5B/9xPvozKXWeFG2deY5MNDJ//zay/zpt4/RsF2eOzbEj77vzjVj81ZBSsnJoRm+8fI5xueKCEIBp089egf37O3b0mV/ub50YmiaF0+Pcm5sHkUIPv7gAb7/0TvoXNdHlueRF0+N8m/+1zcp12z+7JnjxMxwN/tOJBMuc5n+5Ftv4geSe/b28bEH969ZHJdxZGc3jxwa5DP/+g9YLNV5+ewYlqXzwMGBNbwRKSUNx+Pzzxzn0uQCDcejvz3LY0d28L99/0PXNeYVIVBWj88Nc52Cpqpv+/h0PI9nj13izQtT1BoOe/vb+dgD+/nR99+54dh929o5MNjJv/q9b3JqZIax2QK/941X+TeDnYgt2qhuuxiaSndrhn/6mQ/QlkmsmacGOvPs7+/gX//BUzx3bIiG4/Hc8SF+7hMPIKV6U/roTTEp2jIJ+toyTYsQoLs1Q2/7CjHw6O4+8unQetdUhW2dORRF4PkBdTuMtS/jW6+d58SlaTRVoSOf5jMfupuW9OY59W3ZBEd39fB9D4XV3V4+M8bp4dkmW3wZr5+f5PjQdPPfP/PRe+jbonb03v4OPnTvHtoy3/sCPNeLQEoqdYcvPHecuu3Sko7z8MFBfvHTD9+wpWoZGumEeVldd01Tee9duzAjY6HWcJmcK93Qdd9OBFLyuaePsVSuk4wZ7Olv5yc+eHTL4wc6c7z3rp3ct78f1/N57vgQw1OLa7JO1iOTjPHXnjhKd0safRMBk3TC4sBgJ0d2diOBsbkC5brd1Le4lXA8nzcvTfLs8UsIoK89yy988iHu2du/KVt8GZebA5958yKvn59AVRTa80n+2hNHN3V9Q0j2PLKzm08+chCAV8+Nc2p4mrnC9YV73m5cmlzgyVfO43g+MUPjBx4/zP37t216rBqFOj/1yCFSMZOlcp3hqUXOj8+tOS6IODiff+4EtuPRmknw2JEd/PwnH3xL5HLfTjQcjz9+6k1sxyWTtLhzdw8/8PihLY/f0d3Ch+7bw4GBDip1h+8cH2J0prCGS7YePW0Zfuz9d9KRS27wSAohyKZi3Lmrhz39bfhBwOhsgVrDvWkp0jflDSYsg/S6ymwxU2/mwsdNnVTcbHYYIQSWqTd3pb4fYEfV94qVOqOzBZbKNRKWwX37+i4btxNCkEvFuG9/PxBaoMPTi1yaXFhz3Phsgcn5Iqoi6GpJ0duWxTL0TScTISARM7hje9ctrR/9Tka17nB2bI5aw0VKODjYyZHdPRia2lRo2wphWsxW34k1f7Y8B5BNxprxMj8IqDtbL4S3Mzw/oFAOY6WO69HXnuXgQMdlJ1ghBLt6W9nbH2Z+SAlvXpxiaRXXZD1ips6DBwe2TJUUEceiZZURXG04uO7WE9jNwvD0ItMLZRqOh6oqfOCe3WST1lURpNb3p3AeaTA2W2ShWCVmaty3tx9D07b0hIkopPTAgW1hepeE0ZnCLRG/eSswu1ThVLT52dXXTiZhbdmflsdaX3u2eUy17nBxYu0cWq7ZnBufp9ZwkIRVFA/t6LrhMX+7I+SB1bk0tYgfSHb3tLGzp/WK7XloRxfbOsMMsiCQvHZunNpljPVcMsa9+/qb59jsvPlUGMJZRrluXzat/VpwU3wvhq5tIPBoioKmhC6RmGmgKmvdI6ut/QCa1s3MYpma7eIHEkMPSWFXyqmMmTp97dlmFuB8scpcYa1nYKlcp1hpoCoKHbkUhqZeNt6kayqdLekNEsbvIkTDcZmcKzbfW2dLmp7Wmye960cM2+nFCtOLJeaL1bAYjOfjegF+4ON5AaVqGPtbzs19J8LzfaYXS81CN7lkjM586opt2ZJJrCFijs0trfGwrYaqhJyRtmzysqEhQ1PXjOX17O5bhZnFMqVqAylD1/Ge/nZMXbvu/jS7VKbasPEDia6pkSfy8vOIZWj0teea88hCucbMdRJB304sZ9FMLoSesumFEr/99ZfJJKwtfxNIycRcsZl27PkhUXc1ag2Xyfli0+Xf05qhq+X2ktu+FWjYLrNL5eauvi2boDV95fBRZz7dXLilhJGZJRzX2/RYXVNIxs0rpscaurYmvOd5/k2TU78pxoCmKhtiessLuCDU7V7fbuubcflx5kvVZqNrqhoRnC7f6JqmkknGUFWB50vKNXtNRw6CgKodVhYzdJV8On7FF6kqCpnk1oPnrzocz2ehtGJwZZMxcjcojwzhRLZUrjM8vcjQ1CLD04uMziwxvVih1nBw/YAgCPAjAauaHS1+70w7AKCZWrSMuGWQSW7MbliPhGWQjJmoSlibYqFYw95iF69pKnFLv6JyZSg8tWKoy5uoDX85FMr15q5JCOhqSd+Q63lh1TyiKspVzSOqqpBNxlBVhcALqNRsitWtPS23K/wgiCTMQ0N5tlDhL146e03nCKTc0JfsKD14Gbl1u9TvVTje2udOJSySV1FrJhkziVsGihKK7s0VK1vu4nVNJW7qVyxPrSrK2vG5rBp2E3BTjIFl5bqtcLmY33pUbbe5w1OEIB67MpNZEQJdVTF0Hd8Py342oollOTfU88M8dSEEcdO4InFOEVdf8OevInxfUl3l8lodFrpeLL+rV86O8Xt/8SrD04s0HA9dUyOSn0rC0omZFqauETM1jl2c2lSd7J2EIJBUGm5zTBu6umWq3GqoStgmhq4186j9rSYbVcHSb18J69oabY6wnO/lMjmuhKrt4q2eRyzjimxZJSKTGrqG5zs4rrcmL/2dAtvxcdyVHePy2NnKE7oZYoa+YU73g2CNmztmGm9ZpsnbCW/dXGcZGqZ+5ZRTTVUwNBVDW0mH9bfwXhqadtPKqF8vbsrVheCmBYQ2eAyu2urZWpziihfZ7BARhjrexeaQhLLJyxDceNGnWsPhjQuT/F+/9XVcPyBmaOzqa+Vj9+/noUODdOZT6Jq6wjUJAr7vH/9PZpbKN3Td2wGrW+4yOisbIbmqg5elwW9XyGDtQ4cL1/Xf7/pfX5N34x3sZYIVKe9lvOfIDj712KENWRSXg66qJNbpmEjJmjGviJtEOnsH4PrH59Xt3IXgbR+ft93WNx23mikVoRrZlfNBgyDAcX0abri7skydmBl2ZCEEhhaWF11211TrzhXfTxCstQbfxVpoqrJGArhmu9QaDrlNxHuuFgulGr/3l6/iBQG6qvCxBw/wiYcP0N+Rw9S15k5FCNHU3X/Hz9yEk0A6bjUnHNv1VsIfl0Go2e7RiOKQyZj5jmV1xy0DvbkzkhQq9Uhk6PqeJxU3m8Z8ICXlWuOKE3gQSFzPC+cRCaahE7feeTvfmBG6m5e5D47n05KOX1b2fT3C/d3axUlTlTUGQrXuULPdqwppvZOhq8oa0aO67dC4CrKy6/nYro/theMzFbfedonvy+G2mzm6W9JNF4zr+UwtlK5I4LNdn9lCheUMqGwyRi690kFDlrRFMmbiBwGzhfIVSVFeELBYrn0PLDW3BqaurUnTWihVN6RzXguCQIaKiGNzSAl97Tl29bYy0JknYRnNHOblCUrKUKTme6HyoKGpa8iX5Zp9VW1ZrDZYKtebi1xXPvWOddu2ZuIkrXChCSSMzhZuiCXd3ZLGNEPjwvWjeeQKfcX1fGaWKs3dbzZpbRAveydAiciiy6ncE/MlXD9AVZSI33XlP2qU77/aILAMjfZVIkxzxWqzoND3MmKmTld+RZ55sVxfoxC7FRbLNcp1OxTUQ0QpvbevouVtZwzk03GyyRiWoWG7HpcmF9ZUcNoMtYbDxcmVkpdt2QQd2bUusZZ0jFwyhh9IZpdCMtpW8VUIJ4aJuSLfCzvPWwHL0OlpTTfjkBNzRcZmC9fNbPVlmF5arIbEz9ZMnHxq61LNgZSMzhQu+w63wuoJbrWW+tsFTVVoySSaqXQLxSoTc8Ur9vuZxQpTiyshkv6OHAnrrS99ejPQkUs105ODQHJyaBrb8a67P+XTcXLJGDFTw3V9Lk5ceR6pOy4XJhaaI74lndggYvVOgBCCdNKity0LhJkVc4XKlpkmV4u4qdO9asyPzRaYmCveNDY7bFQVDKv6vb3j09A1WjJxskkLIcLMl9mlyhWzl8Zni02jXggY7Mq/7byAy+G2MgaWJSQHu1pozSap2x7HL01Tqja2bHg/CFgo1Xj17BgQTqy9bVl62ta6xLpbM3TmUwSBZK4QlslsON6mrkPPD8MT58fn3xIm9TsRMVNnoCtPMm4iBFwYn+fE0HQYgrlMOVNg0++DIHT7L08DyzuTzc4jpcRxPV45O4Z9jeRBVRFrBHfqtovzFuTRXw6KohC3QqEh09CYXixzfnyecr2x5W88P+DCxDwXojx4XVPY3de2qYb7OwE9bWnac0nipk4gA144OcR8McwIuNJisL4/Laczb+vM05FLYbsexy9NUaw2tiRwBUFAoVLnlbNjSBnOI92tafrbszfzMd8ytGUT7BvoAKBUszk5NM34XAH/CgJSUoZjMdjkuETMYFtnWCFUAGdGZzk9MnPdY34zLHsvllGrO7j+2zs+l0Oie/rbURWFkeklhqYWqTY2D2FLKfF8n5PD0001TUPX2NvfflXE4LcLt5UxsIz33LWTOwY78YOAuUKF3/vGq6HLXsoNf+YLVd68MMnXXzwDwB3buyI54bVKY4d2dLE/GhwAv/P1VxibKwAbzzk0tchzx4aYWnjnKtrdamhRTYYP3buHmKEzV6zywslh/t+vvdTcaW/2vsKa6mHWwGoYmkbCMohFMdqRmSUWStWIH7f293XHZWh6kc9+8/Vr3u3ELL3pPgW4OLHAzGJ5y3t9q3YlihB8+rFD5JJxarbLufE5/uDJ1zd9fiklI9OLPPvmJV45O4auKhzd08dgd/4d6xmImQYHBju4d18fUsLQ1BK/8/WXOXZpass2WP7jblF97tHD2zmyqwc/kMwXq/yvJ19ldqmy6TkWSjWOX5ziqy+cBuDAYCd7+9vfkZ4BgO1dLXzg6K5myPVPv32Mb7xylvli9Qp9XVKsNsKy7uugqSq5ZIwP3bcHQ9eYXarw7LFL/O5fvnpVY/5qwj6puElmFe/ozOhsFAp7e8enZWj84OOHsQyNct3mjQuTfO6Z41vez7IC5JmRWeKWwV27exjoyl9WVfXtxm15Z3cMdrJQrLJYrvHiqVH+5FtvMjZb4O49feztbyOXjFN3XI5fmuY7J4bCwhGeT9wy+OsfvY992zo2nLO/Pcedu3s4dmmSV89O8OLpEWzX4569/dy1u4d8Ok6p2uD4pSlePDXKiUtTtKTj1xcTW9dJr4l9+hZjw31eg9fd0DR++sP3cHpkhosTC0zOl/jTp49x7OIUjx7eTm9bhkREMixW6swsljk3Pk+14dDVkuYf/sjja86Xipk8eHCAb756numFMl954TTFqs377tpFSzpOqdbgwsQ8r54dDystSkkyZl4VmWcZMUOnI5diZ08LFycXePnsKF7gM1eocGRXD3FTp9FMAwpozyZDQaurzJaRwXqPx9UFmoSAB/Zv431Hd/HMmxcZnSnwh0++zsximccOb6czn8Y0NKoNhzfOT/DF5081jdXWbJJf+vQjxM13piGwjLv39KGrKmdHZ5lcKPPUaxc4PTLL7r5W7trdS397FlVVqTXCQkVzhQrHLk1haCqfeeJu7lhXCGf/tg6K1QazSxWePzHMnz59jJHpJe7e08f+gQ7y6Th12+Xk8AzfPTnCmxcnm/PIT334ng2FdS4HCWvDTTdjzMv14/Pqc8otQ2OwK8/f/cHH+Hd/9DSFSp0/efoY3zkxwiOHtnNgoIOEZRBIScNxWSjWuDi5wImhaTIJi3v29m0qhx0zdX76w/dw/OIUQ9OLjM4W+KOn3uC1c+M8fucOelozYRqnDMf89FKZs2Oz1G2PbR05fukHHrnsfSdiBl35FNu78lyaWuTZ45dQBIxML7F3W3tUXdajXGugqaF+xHI45KqaNFg7312t0rauqTx0cID3372b548PMzS1wO//5auMTC/y/qO7acuGEsKlaoPjQ9N87uljzBYqKIqgvyPHL37q4duaPAi3qTGgaypHdnajqQqBL8MqgucnGZ1ZIh23MHQN3w8oVOvMF6rUHZe2bILPfOge9vS1bbo7UlWF3b1t/ODjh5ldrDA+X+TM6Gw0UQyFucWeT6FSxwsCBrvzvPeuXfyHP35my5hyuWZzaXKBp9+4QMPxsF0fx/Wo1O01ymVff+kMb1yYIJ0I8+MtQ8PQVPb0t3Pvvv4NBZhuNhq2y9RimS9+5wS2G96n6/rUbJeZxXJTe/7Vc+PMFSrkUzFMQ8fUwxzZzpY07zu6i/Zscs2iKEQYm/3pD9/L1148w+vnJ1iIKgoulevELb3p8nM9n4bjUao1SFgGqdhad7YQIfHzEw8d5PXzkxSiMtBLlTovnx7F1DUc34+EYBrYrsdf/+i9vHp2nDMjs1fdFkIIMgmLTz92mF//3LM0HJczo3PMF2s89foFNEXBD0I3Xz4d54N376Zvnas4iHaaX/zOCQqVBo7nhyWMHZep+RJjswUg7B+/8YXv0JpJYEbvXI8U/j796CHasolmDFEIgaFrfOyBfcQtnW+/cZHTI7O8cHKEi5MLxAwdRRH4fsBSuc7EQhFdVbhjeycfeWA/fe3Z236yuRJips6e/jb+1ice5P/96kuMzxWZWihRqoVSzQkzrH3i+UHE1PYoVOoMduXxNgkX6ZrKgYEOxHsO43o+r54d5/ilKcbninzr9QvNeaRYbbBQqlKtO+TTcX7qw/eyr799Q4lwCOPFZ8fmePXcOI7j0XA8HC+8j4n5FU/iZ596nadeO0/cMkKF1kg57s5dPdyzt39NlsJ8scqlyQWePzGM7XhhKXTXD6v+zRebx335+VO8fm6ChGVgGBpmdM69/e08enj7mnlPCEEiZvDwoUEmF0o8+co5ZgsVRmaWqL10hu+eGkFTFCRheM5xPSo1m0K1wWBnfsvwmxCCfDrOX//ofXz5hVMcvzTFYrnGubGwlHHc1JvZYK7rU3fChTsVt2i5ClEyRQi6WtJ84uGD/OfPPxeW0j4/wfDMEumEFY3PANcP2NaR47Ej2zcYA54fsFCs8qdPv0nNCcOA4fj0mJwvslQON3hTCyX+yxe+Q2smHrWlhqEpJCyD73/0DtoyyeazLKvS/uDjh7H0sMLjyMwSL5wcYWhqsamW6Xo+hUqDmaUylqFx954+3n/37msyWN4u3JbGAEBrJsGRnd0UKw0MQ2VirsRiqc74bBHPD1BVhbipk0vG2JtvZ09/O48f2UEmYa2p9rQa+VScO3f18uH79vLd06PMLIbEmvG5AhDWp2/PJtnf387hHV3ct6+fX//ccwRbDIyG4zI6u8STr5xfWWQ9H9f313AclpX0NFXF0NWw42kqjuezb1vHLTcGHC/c+T75ynlsL5xo3Kas74ppPLNYZmaxjK4qGNHiZWgqu3pbuWdv3xomMYQDRFNVju7pxfXD9KVz4/NML5aYK1RwXA9fhjyA5UUwk4jR35FlZ0/Lhvu0TI0DAx188O7dHL80xexShZnFMqMzBRQRpnql4ybtuST37e/nPXfupFK1IxLT1bdHzNS5f38/xy/t4MLEQpOwNzS1gCDkFFiGHro2N9k6SEK517BiYAXHD3CjeumrXaGO5/P6+Ymm6IsetadlaLz3zp1rwhXLGOzK86A7gKGFbTU6u8TI9BK26xFIiaaE6V2DnXkGOvMc2dXNQwcHb1jw6XaAqihkk3EePDjA9GKZ45emmFksU6g0mJwr4XheM56va+E4assl2betg9QWUrv5VJzDO7pZLNUwdY2J+SKFSp3J+SKOF6CpoQhZJhljZ08re/raePzOHeRSm6c1FqsNzo3N8eQr53BWjfn1ss2nR2Y5OzqHrilNQRlDV4lbBod3dhNn5X1V6jYXJxd48tXz2KsWr/XnvDi5wNDUIpqqNA0BXVNxXZ/7929jfRNoqkpnPsX7796FqgjOjc0xvVhmMZJZ9nwfgUBVBaaukY5b7OxpYf9AJzu6N45PCMe8qijcs7cP2/Voyya5ODHP9FI4dzheJO7WHEca2WSMgc4c2zctE74R2WSM+w9s4+TwNOfH51kq1xmZXsKN7jcU5dJJxy18f+PAD4KAUrXBU69foNJworkuFGJaPT6rDYfXzo03haYMLexX6bjFe+/aRUs6wXru/+7eVh47soNU3OTNC5OMzxe5ML4QCZ9JNDUURtvV28qunlbu27+Nu/f2vSPG53UbA4JwoHW2pGnJJDbsxk097ARdrWnas8kmQzSQoYysFu0467ZLNhlDAPWGi2VqzRSyTDLGh+/by86eFp47Psz58TlmFstUbQfT0OnKpdjV28YdO7q4d19fs2DG8nVkIFFVpVkeUlUVWtJxfuaj99HbnuXVs+OMzRaaaSKdLWnu3tPL3Xv62NPfjh8E9LZlqDdcUnFzg5LisvtfsqwZrTXZ7VsZJBt+fxV+P01VScYMulrC9JZ4VOvhaiGlxPOC8D41DU0oCFNvMrcbNQcrbqBscc/BFVyeyZjJ++7azeEdPZy4OMXLZ8e4MDFPqdYIVeWiAjj5ZIzt0YS7t69tw3lURSGdsPi5jz/AX75ylmMXpxidWaJQraMpCtlUnIHOHHds7+LRQ9vJJC129bVxcXKBmu1eNXlO11T62rP8re97gKdev8ip4Rkm5gqUag0UoZCMGeRScQY683RkNq9yJ2X45lRVJaaqxK4gI7r2t5FW0CbvXlEUDgx0MtCR5/COLv7ylXNcGJ+nWG3g+QGmodHTmuauXb3cu6+f/o7smnSlIOp/y+8ynwrrHEgpN1T+DIIAGYC6ilBp6CqZhNXsa6ahXZNy3Y1CU0OD4Gc+ch9vXpjkxNAU58fnGZtdohjVLoiZOomYQS4ZY/9AK/ftG6Qrn0JKH/ARYu0OOZ2w+L6HDrCzp5XnTwxzbnyO6YUylYaNqet05pPs6G7lju1dPHBgWySfvlUpXokkVDI1Db1ZNfNqsdxvNnwWDbDrOWfA1rFzIUTUn3KcHZvjjQuTnB6eYWKhSK3hIkSYGZRNWgx0tnBwsIN9Ax30XEaTQAhBMm7yxL17uWt3L6eGZ3jp9Cjnx+co12wc30eJxnwuGWPn/7+9M22S4zgP9JNZR1dV3z3dPQcaA2AIEARJyRAlUT5pbdBa22E7HA7bYfs37D/aT/60DkdsbIQ/yI49JK2tlbQLk5IIAQRB4hjMgTn77uq6K/dD9QwGQ5AAgQFEBuqJmAC6u6ryqKrMN998j06L15ZbvNr59Dv/KOyCwcpig//0F7/D93/2ETfXd7Nx3w8Pr9usFbl0Zp6lZuWR1zgYswwtizHDF7Cr/ax382BeevvSMhc6Td660OFHv7zNzbXdLI4FD9wQ3760zO987SytWumzExqReawsNCrYBf2JQjtbpk69ZGc5IcjGspPKDSHUC/TbUErh+RHjaUC78fAg63ohP/3gLu++/ephJCY/jLmzsc/rKwuPvfbRDlFK4Qcxw4nP/FyJf33vFpdWFj5V5pOy33ezAch5/J7s5m7matOZr32hOj8tT3L7/GnIZOTRXMhe8MH+GE3XcEoW/b0RP/7+L3nnz77B3GekdH5SAi9kNJjSWqwBD9r3Il2DTurFUErhTQLWb23z6uUzJ3LNJ+VZ+m24P0ZISaXxeG2TO/IIpiGN2XPxvBPOnPxzkKKS+whtCZCgeqhkG2m88diyjo8XL4qn7ePj3hLP65yvAgftelSbPu+3X1edviq80G2Crb0R129v8dHqLn/6zhtomuTO+n4m7ZUsBmOP7sBlf+BSMHU0TXBrbZ9L5xZ478M1+sMpmiZZaFbQNMHG9hCFot0oc/niqcNydrpjbtzd4YOPN/nz736N9Z0B3YHLXK1Is1YiSVO2uyOatRJF2yRJUm6t77PSmaPkWOz3J/SGLqcX6+hS8sN//4TlxTqvnW0Txyk37u6wvFDHDyMm04AoTlhebNCql1jb6qNrkvZcmZ/84g6eH9Gqlyg6JmmqWN8eUDB1Lr926qFUsU9LmipWb9xn694+zaU6pYqNNw24dW2D5fPzmJbB/dU9bv1qgz/467eJo5grP7hBuebw1u9dZP50AznTMgy7E7bWutz7eJszry6wd7/PZOShUkV1rsTS2RZ3b9ynXHOwHJNhd4I/DVk608S0DXY2enz43l3+8G9/k865FtpsxRp4Ee/96w08N6C1WKNgm4RBTHd7wNLZFlIKhn0XbxJw6lwTu2hx84N7lMo2jZmA8vGv1uica2PZJqEf0dsd8cqbHfxpQHd7iNQkp1baLJx+MlXk4/AmAbsbXVavbfDq5TP833/5gP5utn9bqheRQuJNfRrtKk7ZJg5jdje7LJ5to+uSychj1J3QOT/P7noPz/VxKll7DFPnk1/cY/7MHKaVtae7M+DUSpuzl05hzTQcSsH2vX1uXLlNda5EtVUmiRI2bm3TubDAZDBlMpySxAlLK/MYps7Pf3Qd0zJ46z+8jqZpfHjlNu1Og0qjhFLw0Xt3OP8by0hNcvvqGjvr+3z3L7/D6QuPF7hPAhX9ApVsgXAQcg6EThpdRWhnQEUoNQIVIPUVEBKV7KNUjNQ7oDxUch9EAyErKCKS6X9DK/4tQjRQ6S4quYfQXycN/hcqnSBkCSGbIDRUdBuEgdAvIIyLDyqVbJPGn6DSPtI4D8Sk8RpCNgADknWUGmf1RUORgIqR+jmQFVR8C0WKlG1Uso1SU4S2CGiAQJpvkwb/G2l+A0Ttqfqt63pcXd9Cl5J3Lp57onPcMOKnt+7x7qVX0L7Ck9RRlFLsjCZUbeuR2rie69FzPS7MP3qb43nRm2kvq85XN7ndCxUG6hWb+bkK3eGU+bkyGzsDdE1jPA3ojaaoVPGD/3eT37p8jla9jOsFs5SPKpvMq0XmakU+vLONY5skaTrbN3tYDVMt2cw3yrTqJebnykghOL/cQtcldzd7OJZBp12jPVdme3/EjTvbOHaBe1u9wxW9EJkg8vvffIV2o0S7UcIwNK5cW6PkFNjcG+AHMeWixeWLHd6/sc7phRpCzNK+port/THvvLXC6laf7lYfw9ARIlPFnqTqNVWKycinMZ8yHk65+cEaTqnA5t09Ll4+Q2upTn9vTHupThwlNBerVGoOjXbloXrsbPT4+Oo6dtFk/dYOcZRk/sZC4I48PvjZJzjFAoP9MXGcEIUxv/2HX+f6ldssX1igvVRnZ6FHe6n+0JZDmqR0t4d85903uH19g/2tAcWKTWelzeKZJteu3MYp27RP1bnx/ipSCi5eXqbaKOGOfa786EOKZYute/vMLVTRtGyy1U0N5YI3DdF0iW6cnKdswTawiwXCmadC4IWZCl4IpmOfwA345rtvcv/ODuufbGXtOb/A4tkWH/9iFYALl89w9Sc3Cf2I198+T+CH3PpgjdAPKVYcdtd76KaOUypw+vwCS+daGEf2FlWacu1nn3DpW+coN0pMBi4fvX+Xy+9c4ur/ucl44FJvVbn47XNc/clNvv29r9FcamBaOvV2lZ21LpZjsrPeZfvePlbR4lt/8AbFso1SMOpOiKOE1lL9xPrtcah0DyHboLUBSIIfIEQZlWyACkGUkOZ3SIMfg5AI/TxSWKTRNYQoI7QOQi6ALCKUR6rNI+UiyBKoEUrNEpQlW0jjMoqINL6NkLMtEmGAeHjYS+PrICpohd8EUSDx/wfS/BYq2UTFt4EEkCg1BRUh5BzC/Dpp8BOk8QZggBqSxjchdZHWf0TFNzOhQFRR8U0gIEvW/nRUrAJSCOI0s/PZ7I+42+1Tt22kFEyCkCCKWayWs89+wN7YZaM3ZK03YHs4wdA0qnYhM4CdTJkrOcxXStSLJxtO2A1C9sdT7u716DSqOKZBz/UYTD1O16tYpsHt3S6OaVBzLOJUsTUYs1gtE6cJpq6z3KxxfWPn0DjX1CX1YmbH8cPrt/n68iKvtBsP1X3sB2wPx+wOJ5xvN3h/dRM/inFMk3rRwjYMPry/S6dewdA0/DimO5nSqVcJk4SxF5AqlQWnS1J6E4+yXcApZKGdV/f6LNUrlAoFJkHAznDC8lwNBLx3Z4OyVeDymaXP3Fr8svNChYGCaWAVsj3IOE7Z7U0IopgojnH9EF1KbMvE9ULsQoAXRPRHU/ojjzBKcGyTStHC9UIKpo4fRDiWeZiH4EE5OlbBOCxH1zXqFYc4SZl6YeYjX7GpFC16Q5dkFpnMLhgMxtlKOElTXC+gaJtomkQpSGYGdypVWAWdIEwy95Z6EdcL8YOYkesTxSnDsUecpMzVS6xu9fGCGCEFXhCz0Hy29KzHUQqkLpm6QZbeN0lBKQp2AadUII4ThBTEUYJTstANDQVEYUzghwz7LqOei+cG2YSnwLJN3NhHyCz4T5ookjhru2Fldh2hH9FcqBL4EZou0fQs/0McJSj1IHdVqhTuxGc68QmCmDCMsZOUWrNMaRY2Ogwi/GlIFMbZynroYZgGYRCRJlkUsoJlos1SZQsp6O+Ns308KUjihGF3QnOhdiJ9GkcJ04nPYG/MYG9MEqdH+iLFHXtMxx6BFxIFMUmUUGtVKFWz9NiBH+K7AXGYMB37TMceUZgQBRHJQXtm1uppqqg1yxSrzjH1NSRRzHgwRTd1wiAiDmOmE58wjImjBN3UqM9XmI597KKFYWqgIPQjdje6qFThuwFpqtB0jVHPRTd0SjUH08rsRh5lif/cUCFoZYSsZ/9XCQgFwgblgxqDmoAKAD37DgUqRBFk58kaQtqoVAMhgRiUj0rHqLQLaReIQNYRaoxSLkqZoKYIMQfi2AayigEXlQ4RspJ9VtNZ2fHsQTbIYpJ4oCYINcnqlG5l/rgqhHQMpAhtHhV/mJ0jK6TBT5HmN/lCG9fHMHUNTUpUkhnBXb+/gzvLVJkqRRDHrDQbrPWywEK2YeCYJmEcc+P+Ln4UY2gag6mBLiW6zDLqPY9cFmGcMPJ8hp5PuJvMvJJ0ylYBQ9f4ZHs/M6YsmCSp4t5+n7mSw3pviB9FNIo2pxtV1vYHeFHEfLWErgTr3QEXF1u4s7wdx+2mNCmJk5TJ7PeDyduPIu7sTjF1nYpVwDIMeu6U4dSn4ljc2umiz4KcFQsmpqZxpzvM+kmTeGHEvf0B0yBLoV6YGQOX7QIFQ0Mp8KMYyzA+tTD9KvFCay6lQNMkmi4ZT30m0+xFtwsGtZJNuWjx1qXTTL2Qvd6YqZcNYoOxR8kpYM/cVrKwpRxahh7P9iSlQNcE+qycetnGNDJL/nKxQNE2sQuZq1a5aNGZr2EZOmeWGlmykiSlYOhUyzZy9tLEMw+BM4sNCqZOZ6HGYrNyGEK1UrTw/JBo5l44ngY0a06WCrmQJTwRQBwnn4r5/awYpka9WTo0Huuca2FaJp2VFk7ZOpyoJyMPIcEwddJEMRl5TIYeoHDHHgXbZPHMHAXb4PT5earNEuWqQ6lqU6o5LJ9v45Qtmos1ls41qbeygCzFio1RMLJyDD3bWnjI51qRxAkbd/coWAa1ZhmnZGWToYDqXIkkTuntjmgv1Vk402Rns8/2epcojOmstClYJqfOtqjOFbGKJvVmiVFvgtQElZpDwTYZDU4uTnroR3iTAJWmjLoTrGKBcr1IqeZQrNgkccrW3V2klNRbFZyyjeVk7ak0SmhSsrvRo9XJnqndjR7BNKDVmWP51UUKtsnC2SbNpTpO2crOPYaQgsVzbbZW99i+t08UxDTmq2ze2qbWLDO3WKNUywSIUs1B0wW6qaOUwh16uEMPTdcoVR2aizVqrTJ3r23Q3xuRJim6oSE1gTt8fJz1E0OUQDjZ6lwUkPorICyEtgyymk3c8SpCW8hU7cpDpX2EtoiQ5UxoEJn6HSFBFFDpBNIRKA9UjEp7IOcyQ0JhgihnxxORDXnHhj1tMRMm4luzshZQyTYgENo8iOrsrwJoqHSEitez41IXUAjhgGyAbM3qVkJq8wg5Rxr9EqGfR4inX4FnK+SYIEnwoojbuz2kgGkYMZh6BFHM5eVF9sYu9wcjEHC2WUNKyZ29PnGaEiUJg6nHxA9YnqvRqVcpWycfsTKME6ZhhGMabPaHrO71EcC5Vp1a0WZ1v8d8pcSpWoWCobM7mrDSnqPnTtkbu4y8gJEf0J24DKY+C9Uy89Uye2OX+WqJZtmh7lg4x7YJTE1mhuhhRBDHDD2flVaDkmWy2R9yb7/HK/MNWpUiUZIyDSPONuts9kcMph7lgsnyXI2FapmxH7BYL3O6UaWg69zb62NoGkPPZ6M/JIxjVloN6kVnVqcijaL9XPrzRfFCDQjhgTXtUe8Cjnx+EqI44b98/30uXzzFTm+Epkne/c7Fh445Xs5j6zRbyR5kxDtex4MsXsePfVI+WdvjvWtrvHUp21L47rcvsHQsZPKzkK1cxWEIX5UqxEzoOAhWImZC00HgDfEIv/Tj5x4nTdLD1fijzj1azgHTsc///K9X+OO/+y2MmbfI4849Ws6n2pNmHilSyz4ft6B/3oRBxD///b/xvb/7bZyy9bntQcA///2/8a1336TdaTyyPY/jeF8cXPeR5R65t8ePfdxz8etBkanPJUn4c1Syg27/EQ+SEB+o1h91bxWHDfycdMcq7ZFM/wFh/h4quobQz6MV3j52VDq7lnbk86evmwQ/BhWjWb9/pE6PrqNKh6hkjTS6imb/DUI8vSJ2db/PD2/cJkoSfvfCWVa7A9wgoFOvEiUp3YnLX7z1Bv/471cPV7Rxotgdj1lu1PGjiHrRpu7YbA3GvL3Soe7Y6NrJJ8756P4u769uUiyYjDyfdqWEH8VEccJrS232xy7bwzGtcpFa0WZ35BInKVIIFOrQE+z+YESxYPK7r55F1yRX7mzwV99+k//8oyu82Znn1cUmrfIDlfz2YMx7qxt8uLnLn/zGa/zy3n2+97UL7AwnXN/coV0psdEb8NpimzBOGHqZJjV7jxRnW3VON2o4psF//9XHfOPMEnNlh77r8/PVTSZ+wMXFNm4Q0nOnuH7AG50FXj/V5p/ev4EmBd88d4pO4+TG9RfJr0UYgE9bTH+RiVUphRdE7PUmlJwClaKFYWifOuZJr3vc6vbz6vi0FrpxkuD5Ebu9CUutKgVTOzTcOwk+r45fpM8f176nseRNkpRBd0K9Wf5MIeqL9Pnj2ve8SVNFf2dIrV35TC3P0Tr2d0eUag6GqT/VM/RFnr8vc789miMR4VIXiBCyNvtGHPn9UXU8OnR9jjCgUlBTVHofIedBFB8xMR8v59HlqnQEqGw74bHHTrItj5kh4rP084FLNiikeBAsSEpx2EuaEFnuBQEccWGUs++FEGiChxY6z+PeZ3VNZ2KaQIiZq7fioUBHUgjkrD4HsQmE4CGXa4E41PymqUKTYpaBMUtodNwrJJ39aUJm/0qRRRpUaqZNVujawRiTlXPYF7PyD9oghDi8o4lSJEfOzVwXs7gfQnAYj0ST8oW64p4kL1wYOAkOVudRnKDNth6+7C4dBw9qFCWYM0PCL3udTwqlMnsDTf/y36cnQc22PbQn8PE9aLuc7UnmfDZZnAD1TCvoz7jwbHIJABMhJJ8nPHz+pTL7CiEev6J+EPfgQJ19svf/iwjmL1rwe5YF1rMsSJ6mTk9yrWdZYH1V+EoKAzk5OTk5OTknx1fX9DEnJycnJyfnRMiFgZycnJycnJecXBjIycnJycl5ycmFgZycnJycnJecXBjIycnJycl5ycmFgZycnJycnJecXBjIycnJycl5ycmFgZycnJycnJecXBjIycnJycl5ycmFgZycnJycnJecXBjIycnJycl5ycmFgZycnJycnJec/w8NxSSFt1hVsQAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "