Skip to content

Commit fcd7bf8

Browse files
committed
ruff
1 parent f6e9a6b commit fcd7bf8

File tree

4 files changed

+53
-38
lines changed

4 files changed

+53
-38
lines changed

.github/workflows/qiita-plugin-ci.yml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -156,7 +156,7 @@ jobs:
156156
lint:
157157
runs-on: ubuntu-latest
158158
steps:
159-
- name: flake8
159+
- name: ruff
160160
uses: actions/setup-python@v2
161161
with:
162162
python-version: 3.9
@@ -166,5 +166,5 @@ jobs:
166166
uses: actions/checkout@v2
167167
- name: lint
168168
run: |
169-
pip install -q flake8
170-
flake8 .
169+
pip install -q ruff
170+
ruff check .

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ git clone https://github.com/biocore/mg-scripts.git
1414
Create a Python3 Conda environment in which to run the notebook:
1515

1616
```bash
17-
conda create --yes -n spp python='python=3.9' scikit-learn pandas numpy nose pep8 flake8 matplotlib jupyter notebook 'seaborn>=0.7.1' pip openpyxl 'seqtk>=1.4' click scipy fastq-pair
17+
conda create --yes -n spp python='python=3.9' scikit-learn pandas numpy nose ruff matplotlib jupyter notebook 'seaborn>=0.7.1' pip openpyxl 'seqtk>=1.4' click scipy fastq-pair
1818
```
1919

2020
Activate the Conda environment:

pyproject.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@ dependencies = [
4343
"pandas",
4444
"lxml",
4545
'requests',
46-
'flake8',
46+
'ruff',
4747
'nose',
4848
'coverage',
4949
'pgzip',
Lines changed: 48 additions & 33 deletions
Original file line numberDiff line numberDiff line change
@@ -1,72 +1,87 @@
11
import os
2+
23
# from metapool.metapool import *
34
from sys import argv
4-
import pandas as pd
5+
56
import matplotlib.pyplot as plt
6-
from metapool.metapool import (read_survival, make_2D_array,
7-
calculate_iseqnorm_pooling_volumes,
8-
format_pooling_echo_pick_list)
7+
import pandas as pd
98
import seaborn as sns
9+
from metapool.metapool import (
10+
calculate_iseqnorm_pooling_volumes,
11+
format_pooling_echo_pick_list,
12+
make_2D_array,
13+
read_survival,
14+
)
1015

1116
input_sheet_filename = argv[1]
1217

13-
plate_df_w_reads = pd.read_csv(input_sheet_filename, sep='\t')
14-
plate_df_w_reads['Blank'] = [True if 'blank' in s.lower() else False
15-
for s in plate_df_w_reads['Sample_Name']]
16-
reads_column = 'read_counts'
18+
plate_df_w_reads = pd.read_csv(input_sheet_filename, sep="\t")
19+
plate_df_w_reads["Blank"] = [
20+
True if "blank" in s.lower() else False for s in plate_df_w_reads["Sample_Name"]
21+
]
22+
reads_column = "read_counts"
1723

18-
well_col = 'Sample_Well'
24+
well_col = "Sample_Well"
1925
assert reads_column in plate_df_w_reads.columns
2026

21-
f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
27+
_, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(8, 8))
2228
# evenness plot
2329
rmax = int(round(plate_df_w_reads[reads_column].max(), -2))
2430

25-
foo = read_survival(plate_df_w_reads.loc[plate_df_w_reads['Blank'] is True,
26-
reads_column],
27-
label='Blanks',
28-
rmax=rmax)
31+
foo = read_survival(
32+
plate_df_w_reads.loc[plate_df_w_reads["Blank"] is True, reads_column],
33+
label="Blanks",
34+
rmax=rmax,
35+
)
2936

30-
bar = read_survival(plate_df_w_reads.loc[plate_df_w_reads['Blank'] is False,
31-
reads_column],
32-
label='Samples',
33-
rmax=rmax)
37+
bar = read_survival(
38+
plate_df_w_reads.loc[plate_df_w_reads["Blank"] is False, reads_column],
39+
label="Samples",
40+
rmax=rmax,
41+
)
3442

3543
survival_df = pd.concat([foo, bar])
3644

3745
ax3.set_xlabel(reads_column)
38-
ax3.set_ylabel('Samples')
39-
survival_df.plot(color=['coral', 'steelblue'], ax=ax1)
46+
ax3.set_ylabel("Samples")
47+
survival_df.plot(color=["coral", "steelblue"], ax=ax1)
4048
ax1.set_xlabel(reads_column)
41-
ax1.set_ylabel('Samples')
49+
ax1.set_ylabel("Samples")
4250

4351
# Histogram
4452
sns.histplot(plate_df_w_reads[reads_column], ax=ax3)
4553

4654
# Boxplot
4755
sns.boxplot(x="Blank", y=reads_column, data=plate_df_w_reads, ax=ax4)
48-
sns.stripplot(x="Blank", y=reads_column, data=plate_df_w_reads, ax=ax4,
49-
size=3, color='black', alpha=0.5)
56+
sns.stripplot(
57+
x="Blank",
58+
y=reads_column,
59+
data=plate_df_w_reads,
60+
ax=ax4,
61+
size=3,
62+
color="black",
63+
alpha=0.5,
64+
)
5065

5166
plt.tight_layout()
52-
plt.savefig(input_sheet_filename + '.comboplot.pdf')
67+
plt.savefig(input_sheet_filename + ".comboplot.pdf")
5368

54-
pdfn = calculate_iseqnorm_pooling_volumes(plate_df_w_reads,
55-
dynamic_range=20,
56-
normalization_column=reads_column)
57-
plt.savefig(input_sheet_filename + '.normalizedplot.pdf')
69+
pdfn = calculate_iseqnorm_pooling_volumes(
70+
plate_df_w_reads, dynamic_range=20, normalization_column=reads_column
71+
)
72+
plt.savefig(input_sheet_filename + ".normalizedplot.pdf")
5873

59-
vols = make_2D_array(pdfn,
60-
data_col='iSeq normpool volume',
61-
well_col=well_col).astype(float)
74+
vols = make_2D_array(pdfn, data_col="iSeq normpool volume", well_col=well_col).astype(
75+
float
76+
)
6277

6378
# Write the picklist as .csv
64-
picklist_fp = input_sheet_filename + '.picklist.csv'
79+
picklist_fp = input_sheet_filename + ".picklist.csv"
6580

6681
if os.path.isfile(picklist_fp):
6782
print("Warning! This file exists already.")
6883

6984
picklist = format_pooling_echo_pick_list(vols, max_vol_per_well=30000)
7085

71-
with open(picklist_fp, 'w') as f:
86+
with open(picklist_fp, "w") as f:
7287
f.write(picklist)

0 commit comments

Comments
 (0)