@@ -3521,9 +3521,10 @@ def _reduce_vals_and_metadata(self, *, dtype=NO_DEFAULT, requires_metadata):
3521
3521
3522
3522
flat_size = []
3523
3523
start = 0
3524
+ sorting_index = 0
3524
3525
3525
3526
def add_single_value (value , key , metadata_dict , dtype , shape , flat_size ):
3526
- nonlocal start
3527
+ nonlocal start , sorting_index
3527
3528
n = value .element_size () * value .numel ()
3528
3529
if need_padding :
3529
3530
pad = n % 8
@@ -3541,7 +3542,10 @@ def add_single_value(value, key, metadata_dict, dtype, shape, flat_size):
3541
3542
start ,
3542
3543
stop ,
3543
3544
pad ,
3545
+ flat_size [- 1 ],
3546
+ sorting_index ,
3544
3547
)
3548
+ sorting_index = sorting_index + 1
3545
3549
start = stop
3546
3550
3547
3551
def assign (
@@ -10390,7 +10394,7 @@ def to(self, *args, **kwargs) -> T:
10390
10394
return result
10391
10395
10392
10396
if self .is_consolidated () and dtype is None :
10393
- return self ._to_consolidated (
10397
+ return self ._to_consolidated_compile (
10394
10398
device = device ,
10395
10399
pin_memory = non_blocking_pin ,
10396
10400
num_threads = num_threads ,
@@ -10542,6 +10546,124 @@ def copy_dict(d):
10542
10546
10543
10547
return result
10544
10548
10549
+ def _to_consolidated_compile (self , * , device , pin_memory , num_threads , non_blocking ):
10550
+
10551
+ def get_l (metadata , lengths = None , pos = None , keys = None , prefix = ()):
10552
+ root = False
10553
+ if lengths is None :
10554
+ lengths = []
10555
+ pos = []
10556
+ keys = []
10557
+ root = True
10558
+ for k , v in metadata ["leaves" ].items ():
10559
+ lengths .append (v [- 2 ])
10560
+ pos .append (v [- 1 ])
10561
+ keys .append (prefix + (k ,))
10562
+ for k , d in metadata .items ():
10563
+ if "leaves" in d :
10564
+ get_l (d , lengths = lengths , pos = pos , keys = keys , prefix = prefix + (k ,))
10565
+ if root :
10566
+ # l = torch.empty(len(lengths), dtype=torch.long)
10567
+ # l[torch.as_tensor(pos)] = torch.as_tensor(lengths)
10568
+ out0 = [None , ] * len (pos )
10569
+ out1 = [None , ] * len (pos )
10570
+ for p , l , k in zip (pos , lengths , keys ):
10571
+ out0 [p ] = k
10572
+ out1 [p ] = l
10573
+ return out0 , out1
10574
+
10575
+ def split_storage (consolidated ):
10576
+ keys , splits = get_l (consolidated ["metadata" ])
10577
+ return dict (zip (keys , consolidated ["storage" ].split (splits )))
10578
+
10579
+ if num_threads is None :
10580
+ # unspecified num_threads should mean 0
10581
+ num_threads = 0
10582
+ storage = self ._consolidated ["storage" ]
10583
+ if pin_memory :
10584
+ storage = storage .pin_memory ()
10585
+ storage_cast = storage .to (device , non_blocking = True )
10586
+
10587
+ _consolidated = {"storage" : storage_cast }
10588
+ if "metadata" in self ._consolidated :
10589
+ # faster than deepcopy
10590
+ def copy_dict (d ):
10591
+ return {
10592
+ k : v if not isinstance (v , dict ) else copy_dict (v )
10593
+ for k , v in d .items ()
10594
+ }
10595
+
10596
+ _consolidated ["metadata" ] = copy_dict (self ._consolidated ["metadata" ])
10597
+
10598
+ slice_map = split_storage (_consolidated )
10599
+
10600
+ def set_ (name , x ):
10601
+ if not isinstance (name , tuple ):
10602
+ name = (name ,)
10603
+ if x .is_nested :
10604
+ from torch ._subclasses .fake_tensor import FakeTensor
10605
+ from torch ._subclasses .functional_tensor import FunctionalTensor
10606
+ from torch .nested ._internal .nested_tensor import (
10607
+ _tensor_symint_registry ,
10608
+ NestedTensor ,
10609
+ )
10610
+ from torch .nested ._internal .ops import extract_kwargs
10611
+
10612
+ if x .layout != torch .jagged :
10613
+ raise RuntimeError (
10614
+ "to(device) with nested tensors that do not have a jagged layout is not implemented yet. "
10615
+ "Please raise an issue on GitHub."
10616
+ )
10617
+ kwargs = extract_kwargs (x )
10618
+ values = x ._values
10619
+ lengths = x ._lengths
10620
+ offsets = x ._offsets
10621
+ kwargs ["offsets" ] = slice_map [(* name [:- 1 ], "<NJT_OFFSETS>" + name [- 1 ],)].view (offsets .dtype ).view (offsets .shape )
10622
+ if lengths is not None :
10623
+ kwargs ["lengths" ] = slice_map [(* name [:- 1 ], "<NJT_LENGTHS>" + name [- 1 ],)].view (lengths .dtype ).view (lengths .shape )
10624
+ ragged_source = lengths
10625
+ else :
10626
+ ragged_source = offsets
10627
+ new_thing = kwargs .get ("lengths" , kwargs .get ("offsets" ))
10628
+ if isinstance (new_thing , (FakeTensor , FunctionalTensor )):
10629
+ from torch ._subclasses .functional_tensor import (
10630
+ mb_unwrap_functional_tensor ,
10631
+ )
10632
+
10633
+ # Temporary hack until we have the union find
10634
+ tgt = mb_unwrap_functional_tensor (new_thing )
10635
+ src = mb_unwrap_functional_tensor (ragged_source )
10636
+ tgt .nested_int_memo = src .nested_int_memo
10637
+ else :
10638
+ _tensor_symint_registry [new_thing ] = _tensor_symint_registry [
10639
+ ragged_source
10640
+ ]
10641
+
10642
+ return NestedTensor (
10643
+ slice_map [(* name [:- 1 ], "<NJT_VALUES>" + name [- 1 ],)].view (values .dtype ).view (values .shape ),
10644
+ ** kwargs ,
10645
+ )
10646
+ return slice_map [name ].view (x .dtype ).view (x .shape )
10647
+
10648
+ result = self ._fast_apply (
10649
+ set_ , device = torch .device (device ), num_threads = num_threads , named = True , nested_keys = True ,
10650
+ )
10651
+ result ._consolidated = _consolidated
10652
+
10653
+ if non_blocking in (False , None ):
10654
+ if device .type == "cuda" and non_blocking is False :
10655
+ # sending to CUDA force sync
10656
+ cuda_device = device
10657
+ elif storage .device .type == "cuda" :
10658
+ # sending from cuda: need sync unless intentionally not asked for
10659
+ cuda_device = storage .device .type
10660
+ else :
10661
+ cuda_device = None
10662
+ if cuda_device is not None :
10663
+ torch .cuda .current_stream (cuda_device ).synchronize ()
10664
+
10665
+ return result
10666
+
10545
10667
def _sync_all (self ):
10546
10668
if _has_cuda :
10547
10669
# TODO: dynamo doesn't like torch.cuda.is_initialized
0 commit comments