diff --git a/.gitignore b/.gitignore index c0f10dc973..22657eee27 100644 --- a/.gitignore +++ b/.gitignore @@ -10,7 +10,7 @@ env*/ /TODO.md /postgres-data/ .DS_Store -examples/pydantic_ai_examples/.chat_app_messages.sqlite +.chat_app_messages.sqlite .cache/ .vscode/ /question_graph_history.json diff --git a/README.md b/README.md index b56142790c..0b392a3fce 100644 --- a/README.md +++ b/README.md @@ -50,8 +50,8 @@ Designed to give your IDE or AI coding agent as much context as possible for aut 5. **Powerful Evals**: Enables you to systematically test and [evaluate](https://ai.pydantic.dev/evals) the performance and accuracy of the agentic systems you build, and monitor the performance over time in Pydantic Logfire. -6. **MCP, A2A, and AG-UI**: -Integrates the [Model Context Protocol](https://ai.pydantic.dev/mcp/client), [Agent2Agent](https://ai.pydantic.dev/a2a), and [AG-UI](https://ai.pydantic.dev/ag-ui) standards to give your agent access to external tools and data, let it interoperate with other agents, and build interactive applications with streaming event-based communication. +6. **MCP, A2A, and UI**: +Integrates the [Model Context Protocol](https://ai.pydantic.dev/mcp/overview), [Agent2Agent](https://ai.pydantic.dev/a2a), and various [UI event stream](https://ai.pydantic.dev/ui/overview) standards to give your agent access to external tools and data, let it interoperate with other agents, and build interactive applications with streaming event-based communication. 7. **Human-in-the-Loop Tool Approval**: Easily lets you flag that certain tool calls [require approval](https://ai.pydantic.dev/deferred-tools#human-in-the-loop-tool-approval) before they can proceed, possibly depending on tool call arguments, conversation history, or user preferences. diff --git a/docs-site/src/index.ts b/docs-site/src/index.ts index 57fe78c5c8..bd85ba9d2a 100644 --- a/docs-site/src/index.ts +++ b/docs-site/src/index.ts @@ -55,6 +55,7 @@ const redirect_lookup: Record = { '/examples': 'examples/setup/', '/mcp': '/mcp/overview/', '/models': '/models/overview/', + '/ag-ui': '/ui/ag-ui/' } function redirect(pathname: string): string | null { diff --git a/docs/agents.md b/docs/agents.md index bc39530e73..eaa188450a 100644 --- a/docs/agents.md +++ b/docs/agents.md @@ -103,6 +103,9 @@ async def main(): FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='Mexico is Mexico ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='City.')), + PartEndEvent( + index=0, part=TextPart(content='The capital of Mexico is Mexico City.') + ), AgentRunResultEvent( result=AgentRunResult(output='The capital of Mexico is Mexico City.') ), diff --git a/docs/api/ui/ag_ui.md b/docs/api/ui/ag_ui.md new file mode 100644 index 0000000000..1515dbfd8b --- /dev/null +++ b/docs/api/ui/ag_ui.md @@ -0,0 +1,5 @@ +# `pydantic_ai.ui.ag_ui` + +::: pydantic_ai.ui.ag_ui + +::: pydantic_ai.ui.ag_ui.app diff --git a/docs/api/ui/base.md b/docs/api/ui/base.md new file mode 100644 index 0000000000..2217dac701 --- /dev/null +++ b/docs/api/ui/base.md @@ -0,0 +1,3 @@ +# `pydantic_ai.ui` + +::: pydantic_ai.ui diff --git a/docs/api/ui/vercel_ai.md b/docs/api/ui/vercel_ai.md new file mode 100644 index 0000000000..e2dd79bc6a --- /dev/null +++ b/docs/api/ui/vercel_ai.md @@ -0,0 +1,7 @@ +# `pydantic_ai.ui.vercel_ai` + +::: pydantic_ai.ui.vercel_ai + +::: pydantic_ai.ui.vercel_ai.request_types + +::: pydantic_ai.ui.vercel_ai.response_types diff --git a/docs/examples/ag-ui.md b/docs/examples/ag-ui.md index 27e64886e7..c0da742538 100644 --- a/docs/examples/ag-ui.md +++ b/docs/examples/ag-ui.md @@ -2,11 +2,11 @@ Example of using Pydantic AI agents with the [AG-UI Dojo](https://github.com/ag-ui-protocol/ag-ui/tree/main/typescript-sdk/apps/dojo) example app. -See the [AG-UI docs](../ag-ui.md) for more information about the AG-UI integration. +See the [AG-UI docs](../ui/ag-ui.md) for more information about the AG-UI integration. Demonstrates: -- [AG-UI](../ag-ui.md) +- [AG-UI](../ui/ag-ui.md) - [Tools](../tools.md) ## Prerequisites diff --git a/docs/index.md b/docs/index.md index 45695f92f5..5870f2f2b3 100644 --- a/docs/index.md +++ b/docs/index.md @@ -25,8 +25,8 @@ Designed to give your IDE or AI coding agent as much context as possible for aut 5. **Powerful Evals**: Enables you to systematically test and [evaluate](evals.md) the performance and accuracy of the agentic systems you build, and monitor the performance over time in Pydantic Logfire. -6. **MCP, A2A, and AG-UI**: -Integrates the [Model Context Protocol](mcp/client.md), [Agent2Agent](a2a.md), and [AG-UI](ag-ui.md) standards to give your agent access to external tools and data, let it interoperate with other agents, and build interactive applications with streaming event-based communication. +6. **MCP, A2A, and UI**: +Integrates the [Model Context Protocol](mcp/overview.md), [Agent2Agent](a2a.md), and various [UI event stream](ui/overview.md) standards to give your agent access to external tools and data, let it interoperate with other agents, and build interactive applications with streaming event-based communication. 7. **Human-in-the-Loop Tool Approval**: Easily lets you flag that certain tool calls [require approval](deferred-tools.md#human-in-the-loop-tool-approval) before they can proceed, possibly depending on tool call arguments, conversation history, or user preferences. diff --git a/docs/install.md b/docs/install.md index 0742beb507..77ff4e56c1 100644 --- a/docs/install.md +++ b/docs/install.md @@ -40,36 +40,35 @@ pip/uv-add "pydantic-ai-slim[openai]" `pydantic-ai-slim` has the following optional groups: -* `logfire` — installs [`logfire`](logfire.md) [PyPI ↗](https://pypi.org/project/logfire){:target="_blank"} -* `evals` — installs [`pydantic-evals`](evals.md) [PyPI ↗](https://pypi.org/project/pydantic-evals){:target="_blank"} -* `openai` — installs `openai` [PyPI ↗](https://pypi.org/project/openai){:target="_blank"} -* `vertexai` — installs `google-auth` [PyPI ↗](https://pypi.org/project/google-auth){:target="_blank"} and `requests` [PyPI ↗](https://pypi.org/project/requests){:target="_blank"} -* `google` — installs `google-genai` [PyPI ↗](https://pypi.org/project/google-genai){:target="_blank"} -* `anthropic` — installs `anthropic` [PyPI ↗](https://pypi.org/project/anthropic){:target="_blank"} -* `groq` — installs `groq` [PyPI ↗](https://pypi.org/project/groq){:target="_blank"} -* `mistral` — installs `mistralai` [PyPI ↗](https://pypi.org/project/mistralai){:target="_blank"} -* `cohere` - installs `cohere` [PyPI ↗](https://pypi.org/project/cohere){:target="_blank"} -* `bedrock` - installs `boto3` [PyPI ↗](https://pypi.org/project/boto3){:target="_blank"} -* `huggingface` - installs `huggingface-hub[inference]` [PyPI ↗](https://pypi.org/project/huggingface-hub){:target="_blank"} -* `outlines-transformers` - installs `outlines[transformers]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} -* `outlines-llamacpp` - installs `outlines[llamacpp]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} -* `outlines-mlxlm` - installs `outlines[mlxlm]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} -* `outlines-sglang` - installs `outlines[sglang]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} -* `outlines-vllm-offline` - installs `outlines[vllm-offline]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} -* `duckduckgo` - installs `ddgs` [PyPI ↗](https://pypi.org/project/ddgs){:target="_blank"} -* `tavily` - installs `tavily-python` [PyPI ↗](https://pypi.org/project/tavily-python){:target="_blank"} -* `cli` - installs `rich` [PyPI ↗](https://pypi.org/project/rich){:target="_blank"}, `prompt-toolkit` [PyPI ↗](https://pypi.org/project/prompt-toolkit){:target="_blank"}, and `argcomplete` [PyPI ↗](https://pypi.org/project/argcomplete){:target="_blank"} -* `mcp` - installs `mcp` [PyPI ↗](https://pypi.org/project/mcp){:target="_blank"} -* `fastmcp` - installs `fastmcp` [PyPI ↗](https://pypi.org/project/fastmcp){:target="_blank"} -* `a2a` - installs `fasta2a` [PyPI ↗](https://pypi.org/project/fasta2a){:target="_blank"} -* `ag-ui` - installs `ag-ui-protocol` [PyPI ↗](https://pypi.org/project/ag-ui-protocol){:target="_blank"} and `starlette` [PyPI ↗](https://pypi.org/project/starlette){:target="_blank"} -* `dbos` - installs [`dbos`](durable_execution/dbos.md) [PyPI ↗](https://pypi.org/project/dbos){:target="_blank"} -* `prefect` - installs [`prefect`](durable_execution/prefect.md) [PyPI ↗](https://pypi.org/project/prefect){:target="_blank"} - -See the [models](models/overview.md) documentation for information on which optional dependencies are required for each model. +* `logfire` — installs [Pydantic Logfire](logfire.md) dependency `logfire` [PyPI ↗](https://pypi.org/project/logfire){:target="_blank"} +* `evals` — installs [Pydantic Evals](evals.md) dependency `pydantic-evals` [PyPI ↗](https://pypi.org/project/pydantic-evals){:target="_blank"} +* `openai` — installs [OpenAI Model](models/openai.md) dependency `openai` [PyPI ↗](https://pypi.org/project/openai){:target="_blank"} +* `vertexai` — installs `GoogleVertexProvider` dependencies `google-auth` [PyPI ↗](https://pypi.org/project/google-auth){:target="_blank"} and `requests` [PyPI ↗](https://pypi.org/project/requests){:target="_blank"} +* `google` — installs [Google Model](models/google.md) dependency `google-genai` [PyPI ↗](https://pypi.org/project/google-genai){:target="_blank"} +* `anthropic` — installs [Anthropic Model](models/anthropic.md) dependency `anthropic` [PyPI ↗](https://pypi.org/project/anthropic){:target="_blank"} +* `groq` — installs [Groq Model](models/groq.md) dependency `groq` [PyPI ↗](https://pypi.org/project/groq){:target="_blank"} +* `mistral` — installs [Mistral Model](models/mistral.md) dependency `mistralai` [PyPI ↗](https://pypi.org/project/mistralai){:target="_blank"} +* `cohere` - installs [Cohere Model](models/cohere.md) dependency `cohere` [PyPI ↗](https://pypi.org/project/cohere){:target="_blank"} +* `bedrock` - installs [Bedrock Model](models/bedrock.md) dependency `boto3` [PyPI ↗](https://pypi.org/project/boto3){:target="_blank"} +* `huggingface` - installs [Hugging Face Model](models/huggingface.md) dependency `huggingface-hub[inference]` [PyPI ↗](https://pypi.org/project/huggingface-hub){:target="_blank"} +* `outlines-transformers` - installs [Outlines Model](models/outlines.md) dependency `outlines[transformers]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} +* `outlines-llamacpp` - installs [Outlines Model](models/outlines.md) dependency `outlines[llamacpp]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} +* `outlines-mlxlm` - installs [Outlines Model](models/outlines.md) dependency `outlines[mlxlm]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} +* `outlines-sglang` - installs [Outlines Model](models/outlines.md) dependency `outlines[sglang]` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} +* `outlines-vllm-offline` - installs [Outlines Model](models/outlines.md) dependencies `outlines` [PyPI ↗](https://pypi.org/project/outlines){:target="_blank"} and `vllm` [PyPI ↗](https://pypi.org/project/vllm){:target="_blank"} +* `duckduckgo` - installs [DuckDuckGo Search Tool](common-tools.md#duckduckgo-search-tool) dependency `ddgs` [PyPI ↗](https://pypi.org/project/ddgs){:target="_blank"} +* `tavily` - installs [Tavily Search Tool](common-tools.md#tavily-search-tool) dependency `tavily-python` [PyPI ↗](https://pypi.org/project/tavily-python){:target="_blank"} +* `cli` - installs [CLI](cli.md) dependencies `rich` [PyPI ↗](https://pypi.org/project/rich){:target="_blank"}, `prompt-toolkit` [PyPI ↗](https://pypi.org/project/prompt-toolkit){:target="_blank"}, and `argcomplete` [PyPI ↗](https://pypi.org/project/argcomplete){:target="_blank"} +* `mcp` - installs [MCP](mcp/client.md) dependency `mcp` [PyPI ↗](https://pypi.org/project/mcp){:target="_blank"} +* `fastmcp` - installs [FastMCP](mcp/fastmcp-client.md) dependency `fastmcp` [PyPI ↗](https://pypi.org/project/fastmcp){:target="_blank"} +* `a2a` - installs [A2A](a2a.md) dependency `fasta2a` [PyPI ↗](https://pypi.org/project/fasta2a){:target="_blank"} +* `ui` - installs [UI Event Streams](ui/overview.md) dependency `starlette` [PyPI ↗](https://pypi.org/project/starlette){:target="_blank"} +* `ag-ui` - installs [AG-UI Event Stream Protocol](ui/ag-ui.md) dependencies `ag-ui-protocol` [PyPI ↗](https://pypi.org/project/ag-ui-protocol){:target="_blank"} and `starlette` [PyPI ↗](https://pypi.org/project/starlette){:target="_blank"} +* `dbos` - installs [DBOS Durable Execution](durable_execution/dbos.md) dependency `dbos` [PyPI ↗](https://pypi.org/project/dbos){:target="_blank"} +* `prefect` - installs [Prefect Durable Execution](durable_execution/prefect.md) dependency `prefect` [PyPI ↗](https://pypi.org/project/prefect){:target="_blank"} You can also install dependencies for multiple models and use cases, for example: ```bash -pip/uv-add "pydantic-ai-slim[openai,vertexai,logfire]" +pip/uv-add "pydantic-ai-slim[openai,google,logfire]" ``` diff --git a/docs/output.md b/docs/output.md index 3702c7dd3e..85bfbddd1c 100644 --- a/docs/output.md +++ b/docs/output.md @@ -614,7 +614,6 @@ async def main(): #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the '} #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyr'} #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyramid'} - #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyramid'} ``` _(This example is complete, it can be run "as is" — you'll need to add `asyncio.run(main())` to run `main`)_ @@ -662,6 +661,7 @@ async def main(): #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyr'} #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyramid'} #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyramid'} + #> {'name': 'Ben', 'dob': date(1990, 1, 28), 'bio': 'Likes the chain the dog and the pyramid'} ``` 1. [`stream_responses`][pydantic_ai.result.StreamedRunResult.stream_responses] streams the data as [`ModelResponse`][pydantic_ai.messages.ModelResponse] objects, thus iteration can't fail with a `ValidationError`. diff --git a/docs/ag-ui.md b/docs/ui/ag-ui.md similarity index 60% rename from docs/ag-ui.md rename to docs/ui/ag-ui.md index ec559b1d5a..1e85b64760 100644 --- a/docs/ag-ui.md +++ b/docs/ui/ag-ui.md @@ -1,6 +1,6 @@ -# Agent User Interaction (AG-UI) Protocol +# Agent-User Interaction (AG-UI) Protocol -The [Agent User Interaction (AG-UI) Protocol](https://docs.ag-ui.com/introduction) is an open standard introduced by the +The [Agent-User Interaction (AG-UI) Protocol](https://docs.ag-ui.com/introduction) is an open standard introduced by the [CopilotKit](https://webflow.copilotkit.ai/blog/introducing-ag-ui-the-protocol-where-agents-meet-users) team that standardises how frontend applications communicate with AI agents, with support for streaming, frontend tools, shared state, and custom events. @@ -33,27 +33,27 @@ pip/uv-add uvicorn There are three ways to run a Pydantic AI agent based on AG-UI run input with streamed AG-UI events as output, from most to least flexible. If you're using a Starlette-based web framework like FastAPI, you'll typically want to use the second method. -1. [`run_ag_ui()`][pydantic_ai.ag_ui.run_ag_ui] takes an agent and an AG-UI [`RunAgentInput`](https://docs.ag-ui.com/sdk/python/core/types#runagentinput) object, and returns a stream of AG-UI events encoded as strings. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`. Use this if you're using a web framework not based on Starlette (e.g. Django or Flask) or want to modify the input or output some way. -2. [`handle_ag_ui_request()`][pydantic_ai.ag_ui.handle_ag_ui_request] takes an agent and a Starlette request (e.g. from FastAPI) coming from an AG-UI frontend, and returns a streaming Starlette response of AG-UI events that you can return directly from your endpoint. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`, that you can vary for each request (e.g. based on the authenticated user). -3. [`Agent.to_ag_ui()`][pydantic_ai.agent.AbstractAgent.to_ag_ui] returns an ASGI application that handles every AG-UI request by running the agent. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`, but these will be the same for each request, with the exception of the AG-UI state that's injected as described under [state management](#state-management). This ASGI app can be [mounted](https://fastapi.tiangolo.com/advanced/sub-applications/) at a given path in an existing FastAPI app. +1. The [`AGUIAdapter.run_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream] method, when called on an [`AGUIAdapter`][pydantic_ai.ui.ag_ui.AGUIAdapter] instantiated with an agent and an AG-UI [`RunAgentInput`](https://docs.ag-ui.com/sdk/python/core/types#runagentinput) object, will run the agent and return a stream of AG-UI events. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`. Use this if you're using a web framework not based on Starlette (e.g. Django or Flask) or want to modify the input or output some way. +2. The [`AGUIAdapter.dispatch_request()`][pydantic_ai.ui.ag_ui.AGUIAdapter.dispatch_request] class method takes an agent and a Starlette request (e.g. from FastAPI) coming from an AG-UI frontend, and returns a streaming Starlette response of AG-UI events that you can return directly from your endpoint. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`, that you can vary for each request (e.g. based on the authenticated user). This is a convenience method that combines [`AGUIAdapter.from_request()`][pydantic_ai.ui.ag_ui.AGUIAdapter.from_request], [`AGUIAdapter.run_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream], and [`AGUIAdapter.streaming_response()`][pydantic_ai.ui.ag_ui.AGUIAdapter.streaming_response]. +3. [`AGUIApp`][pydantic_ai.ui.ag_ui.app.AGUIApp] represents an ASGI application that handles every AG-UI request by running the agent. It also takes optional [`Agent.iter()`][pydantic_ai.Agent.iter] arguments including `deps`, but these will be the same for each request, with the exception of the AG-UI state that's injected as described under [state management](#state-management). This ASGI app can be [mounted](https://fastapi.tiangolo.com/advanced/sub-applications/) at a given path in an existing FastAPI app. ### Handle run input and output directly -This example uses [`run_ag_ui()`][pydantic_ai.ag_ui.run_ag_ui] and performs its own request parsing and response generation. +This example uses [`AGUIAdapter.run_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream] and performs its own request parsing and response generation. This can be modified to work with any web framework. ```py {title="run_ag_ui.py"} import json from http import HTTPStatus -from ag_ui.core import RunAgentInput from fastapi import FastAPI from fastapi.requests import Request from fastapi.responses import Response, StreamingResponse from pydantic import ValidationError from pydantic_ai import Agent -from pydantic_ai.ag_ui import SSE_CONTENT_TYPE, run_ag_ui +from pydantic_ai.ui import SSE_CONTENT_TYPE +from pydantic_ai.ui.ag_ui import AGUIAdapter agent = Agent('openai:gpt-5', instructions='Be fun!') @@ -64,19 +64,25 @@ app = FastAPI() async def run_agent(request: Request) -> Response: accept = request.headers.get('accept', SSE_CONTENT_TYPE) try: - run_input = RunAgentInput.model_validate(await request.json()) - except ValidationError as e: # pragma: no cover + run_input = AGUIAdapter.build_run_input(await request.body()) # (1) + except ValidationError as e: return Response( content=json.dumps(e.json()), media_type='application/json', status_code=HTTPStatus.UNPROCESSABLE_ENTITY, ) - event_stream = run_ag_ui(agent, run_input, accept=accept) + adapter = AGUIAdapter(agent=agent, run_input=run_input, accept=accept) + event_stream = adapter.run_stream() # (2) - return StreamingResponse(event_stream, media_type=accept) + sse_event_stream = adapter.encode_stream(event_stream) + return StreamingResponse(sse_event_stream, media_type=accept) # (3) ``` +1. [`AGUIAdapter.build_run_input()`][pydantic_ai.ui.ag_ui.AGUIAdapter.build_run_input] takes the request body as bytes and returns an AG-UI [`RunAgentInput`](https://docs.ag-ui.com/sdk/python/core/types#runagentinput) object. You can also use the [`AGUIAdapter.from_request()`][pydantic_ai.ui.ag_ui.AGUIAdapter.from_request] class method to build an adapter directly from a request. +2. [`AGUIAdapter.run_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream] runs the agent and returns a stream of AG-UI events. It supports the same optional arguments as [`Agent.run_stream_events()`](../agents.md#running-agents), including `deps`. You can also use [`AGUIAdapter.run_stream_native()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream_native] to run the agent and return a stream of Pydantic AI events instead, which can then be transformed into AG-UI events using [`AGUIAdapter.transform_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.transform_stream]. +3. [`AGUIAdapter.encode_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.encode_stream] encodes the stream of AG-UI events as strings according to the accept header value. You can also use [`AGUIAdapter.streaming_response()`][pydantic_ai.ui.ag_ui.AGUIAdapter.streaming_response] to generate a streaming response directly from the AG-UI event stream returned by `run_stream()`. + Since `app` is an ASGI application, it can be used with any ASGI server: ```shell @@ -87,7 +93,7 @@ This will expose the agent as an AG-UI server, and your frontend can start sendi ### Handle a Starlette request -This example uses [`handle_ag_ui_request()`][pydantic_ai.ag_ui.run_ag_ui] to directly handle a FastAPI request and return a response. Something analogous to this will work with any Starlette-based web framework. +This example uses [`AGUIAdapter.dispatch_request()`][pydantic_ai.ui.ag_ui.AGUIAdapter.dispatch_request] to directly handle a FastAPI request and return a response. Something analogous to this will work with any Starlette-based web framework. ```py {title="handle_ag_ui_request.py"} from fastapi import FastAPI @@ -95,7 +101,7 @@ from starlette.requests import Request from starlette.responses import Response from pydantic_ai import Agent -from pydantic_ai.ag_ui import handle_ag_ui_request +from pydantic_ai.ui.ag_ui import AGUIAdapter agent = Agent('openai:gpt-5', instructions='Be fun!') @@ -103,9 +109,11 @@ app = FastAPI() @app.post('/') async def run_agent(request: Request) -> Response: - return await handle_ag_ui_request(agent, request) + return await AGUIAdapter.dispatch_request(request, agent=agent) # (1) ``` +1. This method essentially does the same as the previous example, but it's more convenient to use when you're already using a Starlette/FastAPI app. + Since `app` is an ASGI application, it can be used with any ASGI server: ```shell @@ -116,19 +124,20 @@ This will expose the agent as an AG-UI server, and your frontend can start sendi ### Stand-alone ASGI app -This example uses [`Agent.to_ag_ui()`][pydantic_ai.agent.AbstractAgent.to_ag_ui] to turn the agent into a stand-alone ASGI application: +This example uses [`AGUIApp`][pydantic_ai.ui.ag_ui.app.AGUIApp] to turn the agent into a stand-alone ASGI application: -```py {title="agent_to_ag_ui.py" hl_lines="4"} +```py {title="ag_ui_app.py" hl_lines="4"} from pydantic_ai import Agent +from pydantic_ai.ui.ag_ui.app import AGUIApp agent = Agent('openai:gpt-5', instructions='Be fun!') -app = agent.to_ag_ui() +app = AGUIApp(agent) ``` Since `app` is an ASGI application, it can be used with any ASGI server: ```shell -uvicorn agent_to_ag_ui:app +uvicorn ag_ui_app:app ``` This will expose the agent as an AG-UI server, and your frontend can start sending requests to it. @@ -160,7 +169,7 @@ The integration provides full support for real-time synchronization between agents and frontend applications. In the example below we have document state which is shared between the UI and -server using the [`StateDeps`][pydantic_ai.ag_ui.StateDeps] [dependencies type](./dependencies.md) that can be used to automatically +server using the [`StateDeps`][pydantic_ai.ag_ui.StateDeps] [dependencies type](../dependencies.md) that can be used to automatically validate state contained in [`RunAgentInput.state`](https://docs.ag-ui.com/sdk/js/core/types#runagentinput) using a Pydantic `BaseModel` specified as a generic parameter. !!! note "Custom dependencies type with AG-UI state" @@ -174,7 +183,8 @@ validate state contained in [`RunAgentInput.state`](https://docs.ag-ui.com/sdk/j from pydantic import BaseModel from pydantic_ai import Agent -from pydantic_ai.ag_ui import StateDeps +from pydantic_ai.ui import StateDeps +from pydantic_ai.ui.ag_ui.app import AGUIApp class DocumentState(BaseModel): @@ -188,7 +198,7 @@ agent = Agent( instructions='Be fun!', deps_type=StateDeps[DocumentState], ) -app = agent.to_ag_ui(deps=StateDeps(DocumentState())) +app = AGUIApp(agent, deps=StateDeps(DocumentState())) ``` Since `app` is an ASGI application, it can be used with any ASGI server: @@ -205,7 +215,7 @@ user experiences with frontend user interfaces. ### Events Pydantic AI tools can send [AG-UI events](https://docs.ag-ui.com/concepts/events) simply by returning a -[`ToolReturn`](tools-advanced.md#advanced-tool-returns) object with a +[`ToolReturn`](../tools-advanced.md#advanced-tool-returns) object with a [`BaseEvent`](https://docs.ag-ui.com/sdk/python/core/events#baseevent) (or a list of events) as `metadata`, which allows for custom events and state updates. @@ -214,7 +224,8 @@ from ag_ui.core import CustomEvent, EventType, StateSnapshotEvent from pydantic import BaseModel from pydantic_ai import Agent, RunContext, ToolReturn -from pydantic_ai.ag_ui import StateDeps +from pydantic_ai.ui import StateDeps +from pydantic_ai.ui.ag_ui.app import AGUIApp class DocumentState(BaseModel): @@ -228,7 +239,7 @@ agent = Agent( instructions='Be fun!', deps_type=StateDeps[DocumentState], ) -app = agent.to_ag_ui(deps=StateDeps(DocumentState())) +app = AGUIApp(agent, deps=StateDeps(DocumentState())) @agent.tool @@ -271,7 +282,7 @@ uvicorn ag_ui_tool_events:app --host 0.0.0.0 --port 9000 ## Examples -For more examples of how to use [`to_ag_ui()`][pydantic_ai.agent.AbstractAgent.to_ag_ui] see +For more examples of how to use [`AGUIApp`][pydantic_ai.ui.ag_ui.app.AGUIApp] see [`pydantic_ai_examples.ag_ui`](https://github.com/pydantic/pydantic-ai/tree/main/examples/pydantic_ai_examples/ag_ui), which includes a server for use with the [AG-UI Dojo](https://docs.ag-ui.com/tutorials/debugging#the-ag-ui-dojo). diff --git a/docs/ui/overview.md b/docs/ui/overview.md new file mode 100644 index 0000000000..869089affb --- /dev/null +++ b/docs/ui/overview.md @@ -0,0 +1,95 @@ +# UI Event Streams + +If you're building a chat app or other interactive frontend for an AI agent, your backend will need to receive agent run input (like a chat message or complete [message history](../message-history.md)) from the frontend, and will need to stream the [agent's events](../agents.md#streaming-all-events) (like text, thinking, and tool calls) to the frontend so that the user knows what's happening in real time. + +While your frontend could use Pydantic AI's [`ModelRequest`][pydantic_ai.messages.ModelRequest] and [`AgentStreamEvent`][pydantic_ai.messages.AgentStreamEvent] directly, you'll typically want to use a UI event stream protocol that's natively supported by your frontend framework. + +Pydantic AI natively supports two UI event stream protocols: + +- [Agent-User Interaction (AG-UI) Protocol](./ag-ui.md) +- [Vercel AI Data Stream Protocol](./vercel-ai.md) + +These integrations are implemented as subclasses of the abstract [`UIAdapter`][pydantic_ai.ui.UIAdapter] class, so they also serve as a reference for integrating with other UI event stream protocols. + +## Usage + +The protocol-specific [`UIAdapter`][pydantic_ai.ui.UIAdapter] subclass (i.e. [`AGUIAdapter`][pydantic_ai.ui.ag_ui.AGUIAdapter] or [`VercelAIAdapter`][pydantic_ai.ui.vercel_ai.VercelAIAdapter]) is responsible for transforming agent run input received from the frontend into arguments for [`Agent.run_stream_events()`](../agents.md#running-agents), running the agent, and then transforming Pydantic AI events into protocol-specific events. The event stream transformation is handled by a protocol-specific [`UIEventStream`][pydantic_ai.ui.UIEventStream] subclass, but you typically won't use this directly. + +If you're using a Starlette-based web framework like FastAPI, you can use the [`UIAdapter.dispatch_request()`][pydantic_ai.ui.UIAdapter.dispatch_request] class method from an endpoint function to directly handle a request and return a streaming response of protocol-specific events. This is demonstrated in the next section. + +If you're using a web framework not based on Starlette (e.g. Django or Flask) or need fine-grained control over the input or output, you can create a `UIAdapter` instance and directly use its methods. This is demonstrated in "Advanced Usage" section below. + +### Usage with Starlette/FastAPI + +Besides the request, [`UIAdapter.dispatch_request()`][pydantic_ai.ui.UIAdapter.dispatch_request] takes the agent, the same optional arguments as [`Agent.run_stream_events()`](../agents.md#running-agents), and an optional `on_complete` callback function that receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + +!!! note + These examples use the `VercelAIAdapter`, but the same patterns apply to all `UIAdapter` subclasses. + +```py {title="dispatch_request.py"} +from fastapi import FastAPI +from starlette.requests import Request +from starlette.responses import Response + +from pydantic_ai import Agent +from pydantic_ai.ui.vercel_ai import VercelAIAdapter + +agent = Agent('openai:gpt-5') + +app = FastAPI() + +@app.post('/chat') +async def chat(request: Request) -> Response: + return await VercelAIAdapter.dispatch_request(request, agent=agent) +``` + +### Advanced Usage + +If you're using a web framework not based on Starlette (e.g. Django or Flask) or need fine-grained control over the input or output, you can create a `UIAdapter` instance and directly use its methods, which can be chained to accomplish the same thing as the `UIAdapter.dispatch_request()` class method shown above: + +1. The [`UIAdapter.build_run_input()`][pydantic_ai.ui.UIAdapter.build_run_input] class method takes the request body as bytes and returns a protocol-specific run input object, which you can then pass to the [`UIAdapter()`][pydantic_ai.ui.UIAdapter] constructor along with the agent. + - You can also use the [`UIAdapter.from_request()`][pydantic_ai.ui.UIAdapter.from_request] class method to build an adapter directly from a Starlette/FastAPI request. +2. The [`UIAdapter.run_stream()`][pydantic_ai.ui.UIAdapter.run_stream] method runs the agent and returns a stream of protocol-specific events. It supports the same optional arguments as [`Agent.run_stream_events()`](../agents.md#running-agents) and an optional `on_complete` callback function that receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + - You can also use [`UIAdapter.run_stream_native()`][pydantic_ai.ui.UIAdapter.run_stream_native] to run the agent and return a stream of Pydantic AI events instead, which can then be transformed into protocol-specific events using [`UIAdapter.transform_stream()`][pydantic_ai.ui.UIAdapter.transform_stream]. +3. The [`UIAdapter.encode_stream()`][pydantic_ai.ui.UIAdapter.encode_stream] method encodes the stream of protocol-specific events as SSE (HTTP Server-Sent Events) strings, which you can then return as a streaming response. + - You can also use [`UIAdapter.streaming_response()`][pydantic_ai.ui.UIAdapter.streaming_response] to generate a Starlette/FastAPI streaming response directly from the protocol-specific event stream returned by `run_stream()`. + +!!! note + This example uses FastAPI, but can be modified to work with any web framework. + +```py {title="run_stream.py"} +import json +from http import HTTPStatus + +from fastapi import FastAPI +from fastapi.requests import Request +from fastapi.responses import Response, StreamingResponse +from pydantic import ValidationError + +from pydantic_ai import Agent +from pydantic_ai.ui import SSE_CONTENT_TYPE +from pydantic_ai.ui.vercel_ai import VercelAIAdapter + +agent = Agent('openai:gpt-5') + +app = FastAPI() + + +@app.post('/chat') +async def chat(request: Request) -> Response: + accept = request.headers.get('accept', SSE_CONTENT_TYPE) + try: + run_input = VercelAIAdapter.build_run_input(await request.body()) + except ValidationError as e: + return Response( + content=json.dumps(e.json()), + media_type='application/json', + status_code=HTTPStatus.UNPROCESSABLE_ENTITY, + ) + + adapter = VercelAIAdapter(agent=agent, run_input=run_input, accept=accept) + event_stream = adapter.run_stream() + + sse_event_stream = adapter.encode_stream(event_stream) + return StreamingResponse(sse_event_stream, media_type=accept) +``` diff --git a/docs/ui/vercel-ai.md b/docs/ui/vercel-ai.md new file mode 100644 index 0000000000..3e9d4288b0 --- /dev/null +++ b/docs/ui/vercel-ai.md @@ -0,0 +1,83 @@ +# Vercel AI Data Stream Protocol + +Pydantic AI natively supports the [Vercel AI Data Stream Protocol](https://ai-sdk.dev/docs/ai-sdk-ui/stream-protocol#data-stream-protocol) to receive agent run input from, and stream events to, a [Vercel AI Elements](https://ai-sdk.dev/elements) frontend. + +## Usage + +The [`VercelAIAdapter`][pydantic_ai.ui.vercel_ai.VercelAIAdapter] class is responsible for transforming agent run input received from the frontend into arguments for [`Agent.run_stream_events()`](../agents.md#running-agents), running the agent, and then transforming Pydantic AI events into Vercel AI events. The event stream transformation is handled by the [`VercelAIEventStream`][pydantic_ai.ui.vercel_ai.VercelAIEventStream] class, but you typically won't use this directly. + +If you're using a Starlette-based web framework like FastAPI, you can use the [`VercelAIAdapter.dispatch_request()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.dispatch_request] class method from an endpoint function to directly handle a request and return a streaming response of Vercel AI events. This is demonstrated in the next section. + +If you're using a web framework not based on Starlette (e.g. Django or Flask) or need fine-grained control over the input or output, you can create a `VercelAIAdapter` instance and directly use its methods. This is demonstrated in "Advanced Usage" section below. + +### Usage with Starlette/FastAPI + +Besides the request, [`VercelAIAdapter.dispatch_request()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.dispatch_request] takes the agent, the same optional arguments as [`Agent.run_stream_events()`](../agents.md#running-agents), and an optional `on_complete` callback function that receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional Vercel AI events. + +```py {title="dispatch_request.py"} +from fastapi import FastAPI +from starlette.requests import Request +from starlette.responses import Response + +from pydantic_ai import Agent +from pydantic_ai.ui.vercel_ai import VercelAIAdapter + +agent = Agent('openai:gpt-5') + +app = FastAPI() + +@app.post('/chat') +async def chat(request: Request) -> Response: + return await VercelAIAdapter.dispatch_request(request, agent=agent) +``` + +### Advanced Usage + +If you're using a web framework not based on Starlette (e.g. Django or Flask) or need fine-grained control over the input or output, you can create a `VercelAIAdapter` instance and directly use its methods, which can be chained to accomplish the same thing as the `VercelAIAdapter.dispatch_request()` class method shown above: + +1. The [`VercelAIAdapter.build_run_input()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.build_run_input] class method takes the request body as bytes and returns a Vercel AI [`RequestData`][pydantic_ai.ui.vercel_ai.request_types.RequestData] run input object, which you can then pass to the [`VercelAIAdapter()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter] constructor along with the agent. + - You can also use the [`VercelAIAdapter.from_request()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.from_request] class method to build an adapter directly from a Starlette/FastAPI request. +2. The [`VercelAIAdapter.run_stream()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.run_stream] method runs the agent and returns a stream of Vercel AI events. It supports the same optional arguments as [`Agent.run_stream_events()`](../agents.md#running-agents) and an optional `on_complete` callback function that receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional Vercel AI events. + - You can also use [`VercelAIAdapter.run_stream_native()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.run_stream_native] to run the agent and return a stream of Pydantic AI events instead, which can then be transformed into Vercel AI events using [`VercelAIAdapter.transform_stream()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.transform_stream]. +3. The [`VercelAIAdapter.encode_stream()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.encode_stream] method encodes the stream of Vercel AI events as SSE (HTTP Server-Sent Events) strings, which you can then return as a streaming response. + - You can also use [`VercelAIAdapter.streaming_response()`][pydantic_ai.ui.vercel_ai.VercelAIAdapter.streaming_response] to generate a Starlette/FastAPI streaming response directly from the Vercel AI event stream returned by `run_stream()`. + +!!! note + This example uses FastAPI, but can be modified to work with any web framework. + +```py {title="run_stream.py"} +import json +from http import HTTPStatus + +from fastapi import FastAPI +from fastapi.requests import Request +from fastapi.responses import Response, StreamingResponse +from pydantic import ValidationError + +from pydantic_ai import Agent +from pydantic_ai.ui import SSE_CONTENT_TYPE +from pydantic_ai.ui.vercel_ai import VercelAIAdapter + +agent = Agent('openai:gpt-5') + +app = FastAPI() + + +@app.post('/chat') +async def chat(request: Request) -> Response: + accept = request.headers.get('accept', SSE_CONTENT_TYPE) + try: + run_input = VercelAIAdapter.build_run_input(await request.body()) + except ValidationError as e: + return Response( + content=json.dumps(e.json()), + media_type='application/json', + status_code=HTTPStatus.UNPROCESSABLE_ENTITY, + ) + + adapter = VercelAIAdapter(agent=agent, run_input=run_input, accept=accept) + event_stream = adapter.run_stream() + + sse_event_stream = adapter.encode_stream(event_stream) + return StreamingResponse(sse_event_stream, media_type=accept) +``` diff --git a/examples/pydantic_ai_examples/ag_ui/api/agentic_chat.py b/examples/pydantic_ai_examples/ag_ui/api/agentic_chat.py index 374ab77308..4dcb1866bc 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/agentic_chat.py +++ b/examples/pydantic_ai_examples/ag_ui/api/agentic_chat.py @@ -6,9 +6,9 @@ from zoneinfo import ZoneInfo from pydantic_ai import Agent +from pydantic_ai.ui.ag_ui.app import AGUIApp agent = Agent('openai:gpt-5-mini') -app = agent.to_ag_ui() @agent.tool_plain @@ -23,3 +23,6 @@ async def current_time(timezone: str = 'UTC') -> str: """ tz: ZoneInfo = ZoneInfo(timezone) return datetime.now(tz=tz).isoformat() + + +app = AGUIApp(agent) diff --git a/examples/pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py b/examples/pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py index f5eb1ba55d..45ac25ded8 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py +++ b/examples/pydantic_ai_examples/ag_ui/api/agentic_generative_ui.py @@ -9,6 +9,7 @@ from ag_ui.core import EventType, StateDeltaEvent, StateSnapshotEvent from pydantic_ai import Agent +from pydantic_ai.ui.ag_ui.app import AGUIApp StepStatus = Literal['pending', 'completed'] @@ -116,4 +117,4 @@ async def update_plan_step( ) -app = agent.to_ag_ui() +app = AGUIApp(agent) diff --git a/examples/pydantic_ai_examples/ag_ui/api/human_in_the_loop.py b/examples/pydantic_ai_examples/ag_ui/api/human_in_the_loop.py index 1106527644..cc2a5b7657 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/human_in_the_loop.py +++ b/examples/pydantic_ai_examples/ag_ui/api/human_in_the_loop.py @@ -8,6 +8,7 @@ from textwrap import dedent from pydantic_ai import Agent +from pydantic_ai.ui.ag_ui.app import AGUIApp agent = Agent( 'openai:gpt-5-mini', @@ -23,4 +24,4 @@ ), ) -app = agent.to_ag_ui() +app = AGUIApp(agent) diff --git a/examples/pydantic_ai_examples/ag_ui/api/predictive_state_updates.py b/examples/pydantic_ai_examples/ag_ui/api/predictive_state_updates.py index 94a9269f71..938deab962 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/predictive_state_updates.py +++ b/examples/pydantic_ai_examples/ag_ui/api/predictive_state_updates.py @@ -8,7 +8,8 @@ from ag_ui.core import CustomEvent, EventType from pydantic_ai import Agent, RunContext -from pydantic_ai.ag_ui import StateDeps +from pydantic_ai.ui import StateDeps +from pydantic_ai.ui.ag_ui.app import AGUIApp class DocumentState(BaseModel): @@ -74,4 +75,4 @@ async def story_instructions(ctx: RunContext[StateDeps[DocumentState]]) -> str: ) -app = agent.to_ag_ui(deps=StateDeps(DocumentState())) +app = AGUIApp(agent, deps=StateDeps(DocumentState())) diff --git a/examples/pydantic_ai_examples/ag_ui/api/shared_state.py b/examples/pydantic_ai_examples/ag_ui/api/shared_state.py index 2e151ea94b..5318fd63ee 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/shared_state.py +++ b/examples/pydantic_ai_examples/ag_ui/api/shared_state.py @@ -9,7 +9,8 @@ from ag_ui.core import EventType, StateSnapshotEvent from pydantic_ai import Agent, RunContext -from pydantic_ai.ag_ui import StateDeps +from pydantic_ai.ui import StateDeps +from pydantic_ai.ui.ag_ui.app import AGUIApp class SkillLevel(str, Enum): @@ -135,4 +136,4 @@ async def recipe_instructions(ctx: RunContext[StateDeps[RecipeSnapshot]]) -> str ) -app = agent.to_ag_ui(deps=StateDeps(RecipeSnapshot())) +app = AGUIApp(agent, deps=StateDeps(RecipeSnapshot())) diff --git a/examples/pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py b/examples/pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py index ae451523cb..8fc0262a38 100644 --- a/examples/pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py +++ b/examples/pydantic_ai_examples/ag_ui/api/tool_based_generative_ui.py @@ -6,6 +6,7 @@ from __future__ import annotations from pydantic_ai import Agent +from pydantic_ai.ui.ag_ui.app import AGUIApp agent = Agent('openai:gpt-5-mini') -app = agent.to_ag_ui() +app = AGUIApp(agent) diff --git a/mkdocs.yml b/mkdocs.yml index e0057f5ca1..1da603eda7 100644 --- a/mkdocs.yml +++ b/mkdocs.yml @@ -92,7 +92,10 @@ nav: - Temporal: durable_execution/temporal.md - DBOS: durable_execution/dbos.md - Prefect: durable_execution/prefect.md - - Agent-User Interaction (AG-UI): ag-ui.md + - UI Event Streams: + - Overview: ui/overview.md + - AG-UI: ui/ag-ui.md + - Vercel AI: ui/vercel-ai.md - Agent2Agent (A2A): a2a.md - Related Packages: @@ -123,7 +126,6 @@ nav: - API Reference: - pydantic_ai: - - api/ag_ui.md - api/agent.md - api/tools.md - api/toolsets.md @@ -160,6 +162,10 @@ nav: - api/providers.md - api/retries.md - api/run.md + - api/ag_ui.md + - api/ui/base.md + - api/ui/ag_ui.md + - api/ui/vercel_ai.md - pydantic_evals: - api/pydantic_evals/dataset.md - api/pydantic_evals/evaluators.md diff --git a/pydantic_ai_slim/pydantic_ai/__init__.py b/pydantic_ai_slim/pydantic_ai/__init__.py index 9e67fa680b..1054cef630 100644 --- a/pydantic_ai_slim/pydantic_ai/__init__.py +++ b/pydantic_ai_slim/pydantic_ai/__init__.py @@ -65,6 +65,7 @@ ModelResponseStreamEvent, MultiModalContent, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -164,6 +165,7 @@ 'ModelResponseStreamEvent', 'MultiModalContent', 'PartDeltaEvent', + 'PartEndEvent', 'PartStartEvent', 'RetryPromptPart', 'SystemPromptPart', diff --git a/pydantic_ai_slim/pydantic_ai/_agent_graph.py b/pydantic_ai_slim/pydantic_ai/_agent_graph.py index 4d9cbf5c8d..149e7c97dc 100644 --- a/pydantic_ai_slim/pydantic_ai/_agent_graph.py +++ b/pydantic_ai_slim/pydantic_ai/_agent_graph.py @@ -267,6 +267,9 @@ async def run( # noqa: C901 next_message.instructions = await ctx.deps.get_instructions(run_context) + if not messages and not next_message.parts and not next_message.instructions: + raise exceptions.UserError('No message history, user prompt, or instructions provided') + return ModelRequestNode[DepsT, NodeRunEndT](request=next_message) async def _handle_deferred_tool_results( # noqa: C901 diff --git a/pydantic_ai_slim/pydantic_ai/ag_ui.py b/pydantic_ai_slim/pydantic_ai/ag_ui.py index fe0ed77951..fb751877f5 100644 --- a/pydantic_ai_slim/pydantic_ai/ag_ui.py +++ b/pydantic_ai_slim/pydantic_ai/ag_ui.py @@ -4,107 +4,35 @@ for building interactive AI applications with streaming event-based communication. """ -from __future__ import annotations +# TODO (v2): Remove this module in favor of `pydantic_ai.ui.ag_ui` -import json -import uuid -from collections.abc import AsyncIterator, Awaitable, Callable, Iterable, Mapping, Sequence -from dataclasses import Field, dataclass, field, replace -from http import HTTPStatus -from typing import ( - Any, - ClassVar, - Final, - Generic, - Protocol, - TypeAlias, - TypeVar, - runtime_checkable, -) +from __future__ import annotations -from pydantic import BaseModel, ValidationError +from collections.abc import AsyncIterator, Sequence +from typing import Any -from . import _utils -from ._agent_graph import CallToolsNode, ModelRequestNode -from .agent import AbstractAgent, AgentRun, AgentRunResult -from .exceptions import UserError -from .messages import ( - BaseToolCallPart, - BuiltinToolCallPart, - BuiltinToolReturnPart, - FunctionToolResultEvent, - ModelMessage, - ModelRequest, - ModelRequestPart, - ModelResponse, - ModelResponsePart, - ModelResponseStreamEvent, - PartDeltaEvent, - PartStartEvent, - SystemPromptPart, - TextPart, - TextPartDelta, - ThinkingPart, - ThinkingPartDelta, - ToolCallPart, - ToolCallPartDelta, - ToolReturnPart, - UserPromptPart, -) +from . import DeferredToolResults +from .agent import AbstractAgent +from .messages import ModelMessage from .models import KnownModelName, Model -from .output import OutputDataT, OutputSpec +from .output import OutputSpec from .settings import ModelSettings -from .tools import AgentDepsT, DeferredToolRequests, ToolDefinition +from .tools import AgentDepsT from .toolsets import AbstractToolset -from .toolsets.external import ExternalToolset from .usage import RunUsage, UsageLimits try: - from ag_ui.core import ( - AssistantMessage, - BaseEvent, - DeveloperMessage, - EventType, - Message, - RunAgentInput, - RunErrorEvent, - RunFinishedEvent, - RunStartedEvent, - State, - SystemMessage, - TextMessageContentEvent, - TextMessageEndEvent, - TextMessageStartEvent, - ThinkingEndEvent, - ThinkingStartEvent, - ThinkingTextMessageContentEvent, - ThinkingTextMessageEndEvent, - ThinkingTextMessageStartEvent, - Tool as AGUITool, - ToolCallArgsEvent, - ToolCallEndEvent, - ToolCallResultEvent, - ToolCallStartEvent, - ToolMessage, - UserMessage, - ) - from ag_ui.encoder import EventEncoder -except ImportError as e: # pragma: no cover - raise ImportError( - 'Please install the `ag-ui-protocol` package to use `Agent.to_ag_ui()` method, ' - 'you can use the `ag-ui` optional group — `pip install "pydantic-ai-slim[ag-ui]"`' - ) from e - -try: - from starlette.applications import Starlette - from starlette.middleware import Middleware + from ag_ui.core import BaseEvent + from ag_ui.core.types import RunAgentInput from starlette.requests import Request - from starlette.responses import Response, StreamingResponse - from starlette.routing import BaseRoute - from starlette.types import ExceptionHandler, Lifespan + from starlette.responses import Response + + from .ui import SSE_CONTENT_TYPE, OnCompleteFunc, StateDeps, StateHandler + from .ui.ag_ui import AGUIAdapter + from .ui.ag_ui.app import AGUIApp except ImportError as e: # pragma: no cover raise ImportError( - 'Please install the `starlette` package to use `Agent.to_ag_ui()` method, ' + 'Please install the `ag-ui-protocol` and `starlette` packages to use `AGUIAdapter`, ' 'you can use the `ag-ui` optional group — `pip install "pydantic-ai-slim[ag-ui]"`' ) from e @@ -119,113 +47,14 @@ 'run_ag_ui', ] -SSE_CONTENT_TYPE: Final[str] = 'text/event-stream' -"""Content type header value for Server-Sent Events (SSE).""" - -OnCompleteFunc: TypeAlias = Callable[[AgentRunResult[Any]], None] | Callable[[AgentRunResult[Any]], Awaitable[None]] -"""Callback function type that receives the `AgentRunResult` of the completed run. Can be sync or async.""" - -_BUILTIN_TOOL_CALL_ID_PREFIX: Final[str] = 'pyd_ai_builtin' - - -class AGUIApp(Generic[AgentDepsT, OutputDataT], Starlette): - """ASGI application for running Pydantic AI agents with AG-UI protocol support.""" - - def __init__( - self, - agent: AbstractAgent[AgentDepsT, OutputDataT], - *, - # Agent.iter parameters. - output_type: OutputSpec[Any] | None = None, - model: Model | KnownModelName | str | None = None, - deps: AgentDepsT = None, - model_settings: ModelSettings | None = None, - usage_limits: UsageLimits | None = None, - usage: RunUsage | None = None, - infer_name: bool = True, - toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, - # Starlette parameters. - debug: bool = False, - routes: Sequence[BaseRoute] | None = None, - middleware: Sequence[Middleware] | None = None, - exception_handlers: Mapping[Any, ExceptionHandler] | None = None, - on_startup: Sequence[Callable[[], Any]] | None = None, - on_shutdown: Sequence[Callable[[], Any]] | None = None, - lifespan: Lifespan[AGUIApp[AgentDepsT, OutputDataT]] | None = None, - ) -> None: - """An ASGI application that handles every AG-UI request by running the agent. - - Note that the `deps` will be the same for each request, with the exception of the AG-UI state that's - injected into the `state` field of a `deps` object that implements the [`StateHandler`][pydantic_ai.ag_ui.StateHandler] protocol. - To provide different `deps` for each request (e.g. based on the authenticated user), - use [`pydantic_ai.ag_ui.run_ag_ui`][pydantic_ai.ag_ui.run_ag_ui] or - [`pydantic_ai.ag_ui.handle_ag_ui_request`][pydantic_ai.ag_ui.handle_ag_ui_request] instead. - - Args: - agent: The agent to run. - - output_type: Custom output type to use for this run, `output_type` may only be used if the agent has - no output validators since output validators would expect an argument that matches the agent's - output type. - model: Optional model to use for this run, required if `model` was not set when creating the agent. - deps: Optional dependencies to use for this run. - model_settings: Optional settings to use for this model's request. - usage_limits: Optional limits on model request count or token usage. - usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. - infer_name: Whether to try to infer the agent name from the call frame if it's not set. - toolsets: Optional additional toolsets for this run. - - debug: Boolean indicating if debug tracebacks should be returned on errors. - routes: A list of routes to serve incoming HTTP and WebSocket requests. - middleware: A list of middleware to run for every request. A starlette application will always - automatically include two middleware classes. `ServerErrorMiddleware` is added as the very - outermost middleware, to handle any uncaught errors occurring anywhere in the entire stack. - `ExceptionMiddleware` is added as the very innermost middleware, to deal with handled - exception cases occurring in the routing or endpoints. - exception_handlers: A mapping of either integer status codes, or exception class types onto - callables which handle the exceptions. Exception handler callables should be of the form - `handler(request, exc) -> response` and may be either standard functions, or async functions. - on_startup: A list of callables to run on application startup. Startup handler callables do not - take any arguments, and may be either standard functions, or async functions. - on_shutdown: A list of callables to run on application shutdown. Shutdown handler callables do - not take any arguments, and may be either standard functions, or async functions. - lifespan: A lifespan context function, which can be used to perform startup and shutdown tasks. - This is a newer style that replaces the `on_startup` and `on_shutdown` handlers. Use one or - the other, not both. - """ - super().__init__( - debug=debug, - routes=routes, - middleware=middleware, - exception_handlers=exception_handlers, - on_startup=on_startup, - on_shutdown=on_shutdown, - lifespan=lifespan, - ) - - async def endpoint(request: Request) -> Response: - """Endpoint to run the agent with the provided input data.""" - return await handle_ag_ui_request( - agent, - request, - output_type=output_type, - model=model, - deps=deps, - model_settings=model_settings, - usage_limits=usage_limits, - usage=usage, - infer_name=infer_name, - toolsets=toolsets, - ) - - self.router.add_route('/', endpoint, methods=['POST'], name='run_agent') - async def handle_ag_ui_request( agent: AbstractAgent[AgentDepsT, Any], request: Request, *, output_type: OutputSpec[Any] | None = None, + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, @@ -233,7 +62,7 @@ async def handle_ag_ui_request( usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, - on_complete: OnCompleteFunc | None = None, + on_complete: OnCompleteFunc[BaseEvent] | None = None, ) -> Response: """Handle an AG-UI request by running the agent and returning a streaming response. @@ -243,6 +72,8 @@ async def handle_ag_ui_request( output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. model: Optional model to use for this run, required if `model` was not set when creating the agent. deps: Optional dependencies to use for this run. model_settings: Optional settings to use for this model's request. @@ -256,41 +87,31 @@ async def handle_ag_ui_request( Returns: A streaming Starlette response with AG-UI protocol events. """ - accept = request.headers.get('accept', SSE_CONTENT_TYPE) - try: - input_data = RunAgentInput.model_validate(await request.json()) - except ValidationError as e: # pragma: no cover - return Response( - content=json.dumps(e.json()), - media_type='application/json', - status_code=HTTPStatus.UNPROCESSABLE_ENTITY, - ) - - return StreamingResponse( - run_ag_ui( - agent, - input_data, - accept, - output_type=output_type, - model=model, - deps=deps, - model_settings=model_settings, - usage_limits=usage_limits, - usage=usage, - infer_name=infer_name, - toolsets=toolsets, - on_complete=on_complete, - ), - media_type=accept, + return await AGUIAdapter[AgentDepsT].dispatch_request( + request, + agent=agent, + deps=deps, + output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, + model=model, + model_settings=model_settings, + usage_limits=usage_limits, + usage=usage, + infer_name=infer_name, + toolsets=toolsets, + on_complete=on_complete, ) -async def run_ag_ui( +def run_ag_ui( agent: AbstractAgent[AgentDepsT, Any], run_input: RunAgentInput, accept: str = SSE_CONTENT_TYPE, *, output_type: OutputSpec[Any] | None = None, + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, model: Model | KnownModelName | str | None = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, @@ -298,7 +119,7 @@ async def run_ag_ui( usage: RunUsage | None = None, infer_name: bool = True, toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, - on_complete: OnCompleteFunc | None = None, + on_complete: OnCompleteFunc[BaseEvent] | None = None, ) -> AsyncIterator[str]: """Run the agent with the AG-UI run input and stream AG-UI protocol events. @@ -309,6 +130,8 @@ async def run_ag_ui( output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. model: Optional model to use for this run, required if `model` was not set when creating the agent. deps: Optional dependencies to use for this run. model_settings: Optional settings to use for this model's request. @@ -322,50 +145,12 @@ async def run_ag_ui( Yields: Streaming event chunks encoded as strings according to the accept header value. """ - encoder = EventEncoder(accept=accept) - if run_input.tools: - # AG-UI tools can't be prefixed as that would result in a mismatch between the tool names in the - # Pydantic AI events and actual AG-UI tool names, preventing the tool from being called. If any - # conflicts arise, the AG-UI tool should be renamed or a `PrefixedToolset` used for local toolsets. - toolset = _AGUIFrontendToolset[AgentDepsT](run_input.tools) - toolsets = [*toolsets, toolset] if toolsets else [toolset] - - try: - yield encoder.encode( - RunStartedEvent( - thread_id=run_input.thread_id, - run_id=run_input.run_id, - ), - ) - - if not run_input.messages: - raise _NoMessagesError - - raw_state: dict[str, Any] = run_input.state or {} - if isinstance(deps, StateHandler): - if isinstance(deps.state, BaseModel): - try: - state = type(deps.state).model_validate(raw_state) - except ValidationError as e: # pragma: no cover - raise _InvalidStateError from e - else: - state = raw_state - - deps = replace(deps, state=state) - elif raw_state: - raise UserError( - f'AG-UI state is provided but `deps` of type `{type(deps).__name__}` does not implement the `StateHandler` protocol: it needs to be a dataclass with a non-optional `state` field.' - ) - else: - # `deps` not being a `StateHandler` is OK if there is no state. - pass - - messages = _messages_from_ag_ui(run_input.messages) - - async with agent.iter( - user_prompt=None, - output_type=[output_type or agent.output_type, DeferredToolRequests], - message_history=messages, + adapter = AGUIAdapter(agent=agent, run_input=run_input, accept=accept) + return adapter.encode_stream( + adapter.run_stream( + output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, model=model, deps=deps, model_settings=model_settings, @@ -373,437 +158,6 @@ async def run_ag_ui( usage=usage, infer_name=infer_name, toolsets=toolsets, - ) as run: - async for event in _agent_stream(run): - yield encoder.encode(event) - - if on_complete is not None and run.result is not None: - if _utils.is_async_callable(on_complete): - await on_complete(run.result) - else: - await _utils.run_in_executor(on_complete, run.result) - except _RunError as e: - yield encoder.encode( - RunErrorEvent(message=e.message, code=e.code), - ) - except Exception as e: - yield encoder.encode( - RunErrorEvent(message=str(e)), - ) - raise e - else: - yield encoder.encode( - RunFinishedEvent( - thread_id=run_input.thread_id, - run_id=run_input.run_id, - ), - ) - - -async def _agent_stream(run: AgentRun[AgentDepsT, Any]) -> AsyncIterator[BaseEvent]: - """Run the agent streaming responses using AG-UI protocol events. - - Args: - run: The agent run to process. - - Yields: - AG-UI Server-Sent Events (SSE). - """ - async for node in run: - stream_ctx = _RequestStreamContext() - if isinstance(node, ModelRequestNode): - async with node.stream(run.ctx) as request_stream: - async for agent_event in request_stream: - async for msg in _handle_model_request_event(stream_ctx, agent_event): - yield msg - - if stream_ctx.part_end: # pragma: no branch - yield stream_ctx.part_end - stream_ctx.part_end = None - if stream_ctx.thinking: - yield ThinkingEndEvent( - type=EventType.THINKING_END, - ) - stream_ctx.thinking = False - elif isinstance(node, CallToolsNode): - async with node.stream(run.ctx) as handle_stream: - async for event in handle_stream: - if isinstance(event, FunctionToolResultEvent): - async for msg in _handle_tool_result_event(stream_ctx, event): - yield msg - - -async def _handle_model_request_event( # noqa: C901 - stream_ctx: _RequestStreamContext, - agent_event: ModelResponseStreamEvent, -) -> AsyncIterator[BaseEvent]: - """Handle an agent event and yield AG-UI protocol events. - - Args: - stream_ctx: The request stream context to manage state. - agent_event: The agent event to process. - - Yields: - AG-UI Server-Sent Events (SSE) based on the agent event. - """ - if isinstance(agent_event, PartStartEvent): - if stream_ctx.part_end: - # End the previous part. - yield stream_ctx.part_end - stream_ctx.part_end = None - - part = agent_event.part - if isinstance(part, ThinkingPart): # pragma: no branch - if not stream_ctx.thinking: - yield ThinkingStartEvent( - type=EventType.THINKING_START, - ) - stream_ctx.thinking = True - - if part.content: - yield ThinkingTextMessageStartEvent( - type=EventType.THINKING_TEXT_MESSAGE_START, - ) - yield ThinkingTextMessageContentEvent( - type=EventType.THINKING_TEXT_MESSAGE_CONTENT, - delta=part.content, - ) - stream_ctx.part_end = ThinkingTextMessageEndEvent( - type=EventType.THINKING_TEXT_MESSAGE_END, - ) - else: - if stream_ctx.thinking: - yield ThinkingEndEvent( - type=EventType.THINKING_END, - ) - stream_ctx.thinking = False - - if isinstance(part, TextPart): - message_id = stream_ctx.new_message_id() - yield TextMessageStartEvent( - message_id=message_id, - ) - if part.content: # pragma: no branch - yield TextMessageContentEvent( - message_id=message_id, - delta=part.content, - ) - stream_ctx.part_end = TextMessageEndEvent( - message_id=message_id, - ) - elif isinstance(part, BaseToolCallPart): - tool_call_id = part.tool_call_id - if isinstance(part, BuiltinToolCallPart): - builtin_tool_call_id = '|'.join( - [_BUILTIN_TOOL_CALL_ID_PREFIX, part.provider_name or '', tool_call_id] - ) - stream_ctx.builtin_tool_call_ids[tool_call_id] = builtin_tool_call_id - tool_call_id = builtin_tool_call_id - - message_id = stream_ctx.message_id or stream_ctx.new_message_id() - yield ToolCallStartEvent( - tool_call_id=tool_call_id, - tool_call_name=part.tool_name, - parent_message_id=message_id, - ) - if part.args: - yield ToolCallArgsEvent( - tool_call_id=tool_call_id, - delta=part.args_as_json_str(), - ) - stream_ctx.part_end = ToolCallEndEvent( - tool_call_id=tool_call_id, - ) - elif isinstance(part, BuiltinToolReturnPart): # pragma: no branch - tool_call_id = stream_ctx.builtin_tool_call_ids[part.tool_call_id] - yield ToolCallResultEvent( - message_id=stream_ctx.new_message_id(), - type=EventType.TOOL_CALL_RESULT, - role='tool', - tool_call_id=tool_call_id, - content=part.model_response_str(), - ) - - elif isinstance(agent_event, PartDeltaEvent): - delta = agent_event.delta - if isinstance(delta, TextPartDelta): - if delta.content_delta: # pragma: no branch - yield TextMessageContentEvent( - message_id=stream_ctx.message_id, - delta=delta.content_delta, - ) - elif isinstance(delta, ToolCallPartDelta): # pragma: no branch - tool_call_id = delta.tool_call_id - assert tool_call_id, '`ToolCallPartDelta.tool_call_id` must be set' - if tool_call_id in stream_ctx.builtin_tool_call_ids: - tool_call_id = stream_ctx.builtin_tool_call_ids[tool_call_id] - yield ToolCallArgsEvent( - tool_call_id=tool_call_id, - delta=delta.args_delta if isinstance(delta.args_delta, str) else json.dumps(delta.args_delta), - ) - elif isinstance(delta, ThinkingPartDelta): # pragma: no branch - if delta.content_delta: # pragma: no branch - if not isinstance(stream_ctx.part_end, ThinkingTextMessageEndEvent): - yield ThinkingTextMessageStartEvent( - type=EventType.THINKING_TEXT_MESSAGE_START, - ) - stream_ctx.part_end = ThinkingTextMessageEndEvent( - type=EventType.THINKING_TEXT_MESSAGE_END, - ) - - yield ThinkingTextMessageContentEvent( - type=EventType.THINKING_TEXT_MESSAGE_CONTENT, - delta=delta.content_delta, - ) - - -async def _handle_tool_result_event( - stream_ctx: _RequestStreamContext, - event: FunctionToolResultEvent, -) -> AsyncIterator[BaseEvent]: - """Convert a tool call result to AG-UI events. - - Args: - stream_ctx: The request stream context to manage state. - event: The tool call result event to process. - - Yields: - AG-UI Server-Sent Events (SSE). - """ - result = event.result - if not isinstance(result, ToolReturnPart): - return - - yield ToolCallResultEvent( - message_id=stream_ctx.new_message_id(), - type=EventType.TOOL_CALL_RESULT, - role='tool', - tool_call_id=result.tool_call_id, - content=result.model_response_str(), + on_complete=on_complete, + ), ) - - # Now check for AG-UI events returned by the tool calls. - possible_event = result.metadata or result.content - if isinstance(possible_event, BaseEvent): - yield possible_event - elif isinstance(possible_event, str | bytes): # pragma: no branch - # Avoid iterable check for strings and bytes. - pass - elif isinstance(possible_event, Iterable): # pragma: no branch - for item in possible_event: # type: ignore[reportUnknownMemberType] - if isinstance(item, BaseEvent): # pragma: no branch - yield item - - -def _messages_from_ag_ui(messages: list[Message]) -> list[ModelMessage]: - """Convert a AG-UI history to a Pydantic AI one.""" - result: list[ModelMessage] = [] - tool_calls: dict[str, str] = {} # Tool call ID to tool name mapping. - request_parts: list[ModelRequestPart] | None = None - response_parts: list[ModelResponsePart] | None = None - for msg in messages: - if isinstance(msg, UserMessage | SystemMessage | DeveloperMessage) or ( - isinstance(msg, ToolMessage) and not msg.tool_call_id.startswith(_BUILTIN_TOOL_CALL_ID_PREFIX) - ): - if request_parts is None: - request_parts = [] - result.append(ModelRequest(parts=request_parts)) - response_parts = None - - if isinstance(msg, UserMessage): - request_parts.append(UserPromptPart(content=msg.content)) - elif isinstance(msg, SystemMessage | DeveloperMessage): - request_parts.append(SystemPromptPart(content=msg.content)) - else: - tool_call_id = msg.tool_call_id - tool_name = tool_calls.get(tool_call_id) - if tool_name is None: # pragma: no cover - raise _ToolCallNotFoundError(tool_call_id=tool_call_id) - - request_parts.append( - ToolReturnPart( - tool_name=tool_name, - content=msg.content, - tool_call_id=tool_call_id, - ) - ) - - elif isinstance(msg, AssistantMessage) or ( # pragma: no branch - isinstance(msg, ToolMessage) and msg.tool_call_id.startswith(_BUILTIN_TOOL_CALL_ID_PREFIX) - ): - if response_parts is None: - response_parts = [] - result.append(ModelResponse(parts=response_parts)) - request_parts = None - - if isinstance(msg, AssistantMessage): - if msg.content: - response_parts.append(TextPart(content=msg.content)) - - if msg.tool_calls: - for tool_call in msg.tool_calls: - tool_call_id = tool_call.id - tool_name = tool_call.function.name - tool_calls[tool_call_id] = tool_name - - if tool_call_id.startswith(_BUILTIN_TOOL_CALL_ID_PREFIX): - _, provider_name, tool_call_id = tool_call_id.split('|', 2) - response_parts.append( - BuiltinToolCallPart( - tool_name=tool_name, - args=tool_call.function.arguments, - tool_call_id=tool_call_id, - provider_name=provider_name, - ) - ) - else: - response_parts.append( - ToolCallPart( - tool_name=tool_name, - tool_call_id=tool_call_id, - args=tool_call.function.arguments, - ) - ) - else: - tool_call_id = msg.tool_call_id - tool_name = tool_calls.get(tool_call_id) - if tool_name is None: # pragma: no cover - raise _ToolCallNotFoundError(tool_call_id=tool_call_id) - _, provider_name, tool_call_id = tool_call_id.split('|', 2) - - response_parts.append( - BuiltinToolReturnPart( - tool_name=tool_name, - content=msg.content, - tool_call_id=tool_call_id, - provider_name=provider_name, - ) - ) - - return result - - -@runtime_checkable -class StateHandler(Protocol): - """Protocol for state handlers in agent runs. Requires the class to be a dataclass with a `state` field.""" - - # Has to be a dataclass so we can use `replace` to update the state. - # From https://github.com/python/typeshed/blob/9ab7fde0a0cd24ed7a72837fcb21093b811b80d8/stdlib/_typeshed/__init__.pyi#L352 - __dataclass_fields__: ClassVar[dict[str, Field[Any]]] - - @property - def state(self) -> State: - """Get the current state of the agent run.""" - ... - - @state.setter - def state(self, state: State) -> None: - """Set the state of the agent run. - - This method is called to update the state of the agent run with the - provided state. - - Args: - state: The run state. - - Raises: - InvalidStateError: If `state` does not match the expected model. - """ - ... - - -StateT = TypeVar('StateT', bound=BaseModel) -"""Type variable for the state type, which must be a subclass of `BaseModel`.""" - - -@dataclass -class StateDeps(Generic[StateT]): - """Provides AG-UI state management. - - This class is used to manage the state of an agent run. It allows setting - the state of the agent run with a specific type of state model, which must - be a subclass of `BaseModel`. - - The state is set using the `state` setter by the `Adapter` when the run starts. - - Implements the `StateHandler` protocol. - """ - - state: StateT - - -@dataclass(repr=False) -class _RequestStreamContext: - """Data class to hold request stream context.""" - - message_id: str = '' - part_end: BaseEvent | None = None - thinking: bool = False - builtin_tool_call_ids: dict[str, str] = field(default_factory=dict) - - def new_message_id(self) -> str: - """Generate a new message ID for the request stream. - - Assigns a new UUID to the `message_id` and returns it. - - Returns: - A new message ID. - """ - self.message_id = str(uuid.uuid4()) - return self.message_id - - -@dataclass -class _RunError(Exception): - """Exception raised for errors during agent runs.""" - - message: str - code: str - - def __str__(self) -> str: # pragma: no cover - return self.message - - -@dataclass -class _NoMessagesError(_RunError): - """Exception raised when no messages are found in the input.""" - - message: str = 'no messages found in the input' - code: str = 'no_messages' - - -@dataclass -class _InvalidStateError(_RunError, ValidationError): - """Exception raised when an invalid state is provided.""" - - message: str = 'invalid state provided' - code: str = 'invalid_state' - - -class _ToolCallNotFoundError(_RunError, ValueError): - """Exception raised when an tool result is present without a matching call.""" - - def __init__(self, tool_call_id: str) -> None: - """Initialize the exception with the tool call ID.""" - super().__init__( # pragma: no cover - message=f'Tool call with ID {tool_call_id} not found in the history.', - code='tool_call_not_found', - ) - - -class _AGUIFrontendToolset(ExternalToolset[AgentDepsT]): - def __init__(self, tools: list[AGUITool]): - super().__init__( - [ - ToolDefinition( - name=tool.name, - description=tool.description, - parameters_json_schema=tool.parameters, - ) - for tool in tools - ] - ) - - @property - def label(self) -> str: - return 'the AG-UI frontend tools' # pragma: no cover diff --git a/pydantic_ai_slim/pydantic_ai/agent/abstract.py b/pydantic_ai_slim/pydantic_ai/agent/abstract.py index 363b624e96..a96ce81cb1 100644 --- a/pydantic_ai_slim/pydantic_ai/agent/abstract.py +++ b/pydantic_ai_slim/pydantic_ai/agent/abstract.py @@ -49,7 +49,7 @@ from starlette.routing import BaseRoute, Route from starlette.types import ExceptionHandler, Lifespan - from ..ag_ui import AGUIApp + from pydantic_ai.ui.ag_ui.app import AGUIApp T = TypeVar('T') @@ -654,6 +654,9 @@ async def main(): PartStartEvent(index=0, part=TextPart(content='The capital of ')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='France is Paris. ')), + PartEndEvent( + index=0, part=TextPart(content='The capital of France is Paris. ') + ), AgentRunResultEvent( result=AgentRunResult(output='The capital of France is Paris. ') ), @@ -990,11 +993,14 @@ async def __aenter__(self) -> AbstractAgent[AgentDepsT, OutputDataT]: async def __aexit__(self, *args: Any) -> bool | None: raise NotImplementedError + # TODO (v2): Remove in favor of using `AGUIApp` directly -- we don't have `to_temporal()` or `to_vercel_ai()` either. def to_ag_ui( self, *, # Agent.iter parameters output_type: OutputSpec[OutputDataT] | None = None, + message_history: Sequence[_messages.ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, model: models.Model | models.KnownModelName | str | None = None, deps: AgentDepsT = None, model_settings: ModelSettings | None = None, @@ -1035,12 +1041,14 @@ def to_ag_ui( uvicorn app:app --host 0.0.0.0 --port 8000 ``` - See [AG-UI docs](../ag-ui.md) for more information. + See [AG-UI docs](../ui/ag-ui.md) for more information. Args: output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. model: Optional model to use for this run, required if `model` was not set when creating the agent. deps: Optional dependencies to use for this run. model_settings: Optional settings to use for this model's request. @@ -1070,12 +1078,14 @@ def to_ag_ui( Returns: An ASGI application for running Pydantic AI agents with AG-UI protocol support. """ - from ..ag_ui import AGUIApp + from pydantic_ai.ui.ag_ui.app import AGUIApp return AGUIApp( agent=self, # Agent.iter parameters output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, model=model, deps=deps, model_settings=model_settings, diff --git a/pydantic_ai_slim/pydantic_ai/direct.py b/pydantic_ai_slim/pydantic_ai/direct.py index f526acaa01..eac647f2e4 100644 --- a/pydantic_ai_slim/pydantic_ai/direct.py +++ b/pydantic_ai_slim/pydantic_ai/direct.py @@ -172,6 +172,12 @@ async def main(): index=0, delta=TextPartDelta(content_delta='a German-born theoretical ') ), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='physicist.')), + PartEndEvent( + index=0, + part=TextPart( + content='Albert Einstein was a German-born theoretical physicist.' + ), + ), ] ''' ``` @@ -229,6 +235,12 @@ def model_request_stream_sync( index=0, delta=TextPartDelta(content_delta='a German-born theoretical ') ), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='physicist.')), + PartEndEvent( + index=0, + part=TextPart( + content='Albert Einstein was a German-born theoretical physicist.' + ), + ), ] ''' ``` diff --git a/pydantic_ai_slim/pydantic_ai/durable_exec/dbos/_agent.py b/pydantic_ai_slim/pydantic_ai/durable_exec/dbos/_agent.py index 2b9b0c6b62..2f4a19752c 100644 --- a/pydantic_ai_slim/pydantic_ai/durable_exec/dbos/_agent.py +++ b/pydantic_ai_slim/pydantic_ai/durable_exec/dbos/_agent.py @@ -640,6 +640,9 @@ async def main(): PartStartEvent(index=0, part=TextPart(content='The capital of ')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='France is Paris. ')), + PartEndEvent( + index=0, part=TextPart(content='The capital of France is Paris. ') + ), AgentRunResultEvent( result=AgentRunResult(output='The capital of France is Paris. ') ), diff --git a/pydantic_ai_slim/pydantic_ai/durable_exec/prefect/_agent.py b/pydantic_ai_slim/pydantic_ai/durable_exec/prefect/_agent.py index 9b570292ed..6d622e56f4 100644 --- a/pydantic_ai_slim/pydantic_ai/durable_exec/prefect/_agent.py +++ b/pydantic_ai_slim/pydantic_ai/durable_exec/prefect/_agent.py @@ -598,6 +598,9 @@ async def main(): PartStartEvent(index=0, part=TextPart(content='The capital of ')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='France is Paris. ')), + PartEndEvent( + index=0, part=TextPart(content='The capital of France is Paris. ') + ), AgentRunResultEvent( result=AgentRunResult(output='The capital of France is Paris. ') ), diff --git a/pydantic_ai_slim/pydantic_ai/durable_exec/temporal/_agent.py b/pydantic_ai_slim/pydantic_ai/durable_exec/temporal/_agent.py index 88536b92aa..958a43d1bb 100644 --- a/pydantic_ai_slim/pydantic_ai/durable_exec/temporal/_agent.py +++ b/pydantic_ai_slim/pydantic_ai/durable_exec/temporal/_agent.py @@ -669,6 +669,9 @@ async def main(): PartStartEvent(index=0, part=TextPart(content='The capital of ')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='France is Paris. ')), + PartEndEvent( + index=0, part=TextPart(content='The capital of France is Paris. ') + ), AgentRunResultEvent( result=AgentRunResult(output='The capital of France is Paris. ') ), diff --git a/pydantic_ai_slim/pydantic_ai/messages.py b/pydantic_ai_slim/pydantic_ai/messages.py index 50c3b3c457..5c38860eec 100644 --- a/pydantic_ai_slim/pydantic_ai/messages.py +++ b/pydantic_ai_slim/pydantic_ai/messages.py @@ -13,7 +13,7 @@ import pydantic_core from genai_prices import calc_price, types as genai_types from opentelemetry._events import Event # pyright: ignore[reportPrivateImportUsage] -from typing_extensions import Self, deprecated +from typing_extensions import deprecated from . import _otel_messages, _utils from ._utils import generate_tool_call_id as _generate_tool_call_id, now_utc as _now_utc @@ -514,16 +514,16 @@ def narrow_type(bc: BinaryContent) -> BinaryContent | BinaryImage: vendor_metadata=bc.vendor_metadata, ) else: - return bc # pragma: no cover + return bc @classmethod - def from_data_uri(cls, data_uri: str) -> Self: + def from_data_uri(cls, data_uri: str) -> BinaryContent: """Create a `BinaryContent` from a data URI.""" prefix = 'data:' if not data_uri.startswith(prefix): - raise ValueError('Data URI must start with "data:"') # pragma: no cover + raise ValueError('Data URI must start with "data:"') media_type, data = data_uri[len(prefix) :].split(';base64,', 1) - return cls(data=base64.b64decode(data), media_type=media_type) + return cls.narrow_type(cls(data=base64.b64decode(data), media_type=media_type)) @pydantic.computed_field @property @@ -1612,6 +1612,14 @@ class PartStartEvent: part: ModelResponsePart """The newly started `ModelResponsePart`.""" + previous_part_kind: ( + Literal['text', 'thinking', 'tool-call', 'builtin-tool-call', 'builtin-tool-return', 'file'] | None + ) = None + """The kind of the previous part, if any. + + This is useful for UI event streams to know whether to group parts of the same kind together when emitting events. + """ + event_kind: Literal['part_start'] = 'part_start' """Event type identifier, used as a discriminator.""" @@ -1634,6 +1642,30 @@ class PartDeltaEvent: __repr__ = _utils.dataclasses_no_defaults_repr +@dataclass(repr=False, kw_only=True) +class PartEndEvent: + """An event indicating that a part is complete.""" + + index: int + """The index of the part within the overall response parts list.""" + + part: ModelResponsePart + """The complete `ModelResponsePart`.""" + + next_part_kind: ( + Literal['text', 'thinking', 'tool-call', 'builtin-tool-call', 'builtin-tool-return', 'file'] | None + ) = None + """The kind of the next part, if any. + + This is useful for UI event streams to know whether to group parts of the same kind together when emitting events. + """ + + event_kind: Literal['part_end'] = 'part_end' + """Event type identifier, used as a discriminator.""" + + __repr__ = _utils.dataclasses_no_defaults_repr + + @dataclass(repr=False, kw_only=True) class FinalResultEvent: """An event indicating the response to the current model request matches the output schema and will produce a result.""" @@ -1649,9 +1681,9 @@ class FinalResultEvent: ModelResponseStreamEvent = Annotated[ - PartStartEvent | PartDeltaEvent | FinalResultEvent, pydantic.Discriminator('event_kind') + PartStartEvent | PartDeltaEvent | PartEndEvent | FinalResultEvent, pydantic.Discriminator('event_kind') ] -"""An event in the model response stream, starting a new part, applying a delta to an existing one, or indicating the final result.""" +"""An event in the model response stream, starting a new part, applying a delta to an existing one, indicating a part is complete, or indicating the final result.""" @dataclass(repr=False) diff --git a/pydantic_ai_slim/pydantic_ai/models/__init__.py b/pydantic_ai_slim/pydantic_ai/models/__init__.py index 2731f07ac9..df7ae9b54e 100644 --- a/pydantic_ai_slim/pydantic_ai/models/__init__.py +++ b/pydantic_ai_slim/pydantic_ai/models/__init__.py @@ -27,6 +27,7 @@ from ..builtin_tools import AbstractBuiltinTool from ..exceptions import UserError from ..messages import ( + BaseToolCallPart, BinaryImage, FilePart, FileUrl, @@ -35,9 +36,12 @@ ModelMessage, ModelRequest, ModelResponse, + ModelResponsePart, ModelResponseStreamEvent, + PartEndEvent, PartStartEvent, TextPart, + ThinkingPart, ToolCallPart, VideoUrl, ) @@ -543,7 +547,44 @@ async def iterator_with_final_event( async for event in iterator: yield event - self._event_iterator = iterator_with_final_event(self._get_event_iterator()) + async def iterator_with_part_end( + iterator: AsyncIterator[ModelResponseStreamEvent], + ) -> AsyncIterator[ModelResponseStreamEvent]: + last_start_event: PartStartEvent | None = None + + def part_end_event(next_part: ModelResponsePart | None = None) -> PartEndEvent | None: + if not last_start_event: + return None + + index = last_start_event.index + part = self._parts_manager.get_parts()[index] + if not isinstance(part, TextPart | ThinkingPart | BaseToolCallPart): + # Parts other than these 3 don't have deltas, so don't need an end part. + return None + + return PartEndEvent( + index=index, + part=part, + next_part_kind=next_part.part_kind if next_part else None, + ) + + async for event in iterator: + if isinstance(event, PartStartEvent): + if last_start_event: + end_event = part_end_event(event.part) + if end_event: + yield end_event + + event.previous_part_kind = last_start_event.part.part_kind + last_start_event = event + + yield event + + end_event = part_end_event() + if end_event: + yield end_event + + self._event_iterator = iterator_with_part_end(iterator_with_final_event(self._get_event_iterator())) return self._event_iterator @abstractmethod diff --git a/pydantic_ai_slim/pydantic_ai/models/groq.py b/pydantic_ai_slim/pydantic_ai/models/groq.py index ad43b69110..a310b97a69 100644 --- a/pydantic_ai_slim/pydantic_ai/models/groq.py +++ b/pydantic_ai_slim/pydantic_ai/models/groq.py @@ -524,6 +524,8 @@ class GroqStreamedResponse(StreamedResponse): async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]: # noqa: C901 try: executed_tool_call_id: str | None = None + reasoning_index = 0 + reasoning = False async for chunk in self._response: self._usage += _map_usage(chunk) @@ -540,10 +542,16 @@ async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]: self.finish_reason = _FINISH_REASON_MAP.get(raw_finish_reason) if choice.delta.reasoning is not None: + if not reasoning: + reasoning_index += 1 + reasoning = True + # NOTE: The `reasoning` field is only present if `groq_reasoning_format` is set to `parsed`. yield self._parts_manager.handle_thinking_delta( - vendor_part_id='reasoning', content=choice.delta.reasoning + vendor_part_id=f'reasoning-{reasoning_index}', content=choice.delta.reasoning ) + else: + reasoning = False if choice.delta.executed_tools: for tool in choice.delta.executed_tools: diff --git a/pydantic_ai_slim/pydantic_ai/result.py b/pydantic_ai_slim/pydantic_ai/result.py index f5b542953e..549333c716 100644 --- a/pydantic_ai_slim/pydantic_ai/result.py +++ b/pydantic_ai_slim/pydantic_ai/result.py @@ -60,14 +60,26 @@ def __post_init__(self): async def stream_output(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[OutputDataT]: """Asynchronously stream the (validated) agent outputs.""" + last_response: _messages.ModelResponse | None = None async for response in self.stream_responses(debounce_by=debounce_by): - if self._raw_stream_response.final_result_event is not None: - try: - yield await self.validate_response_output(response, allow_partial=True) - except ValidationError: - pass - if self._raw_stream_response.final_result_event is not None: # pragma: no branch - yield await self.validate_response_output(self.response) + if self._raw_stream_response.final_result_event is None or ( + last_response and response.parts == last_response.parts + ): + continue + last_response = response + + try: + yield await self.validate_response_output(response, allow_partial=True) + except ValidationError: + pass + + response = self.response + if self._raw_stream_response.final_result_event is None or ( + last_response and response.parts == last_response.parts + ): + return + + yield await self.validate_response_output(response) async def stream_responses(self, *, debounce_by: float | None = 0.1) -> AsyncIterator[_messages.ModelResponse]: """Asynchronously stream the (unvalidated) model responses for the agent.""" diff --git a/pydantic_ai_slim/pydantic_ai/ui/__init__.py b/pydantic_ai_slim/pydantic_ai/ui/__init__.py new file mode 100644 index 0000000000..3caca97083 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/__init__.py @@ -0,0 +1,16 @@ +from __future__ import annotations + +from ._adapter import StateDeps, StateHandler, UIAdapter +from ._event_stream import SSE_CONTENT_TYPE, NativeEvent, OnCompleteFunc, UIEventStream +from ._messages_builder import MessagesBuilder + +__all__ = [ + 'UIAdapter', + 'UIEventStream', + 'SSE_CONTENT_TYPE', + 'StateDeps', + 'StateHandler', + 'NativeEvent', + 'OnCompleteFunc', + 'MessagesBuilder', +] diff --git a/pydantic_ai_slim/pydantic_ai/ui/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/_adapter.py new file mode 100644 index 0000000000..bb03147b71 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/_adapter.py @@ -0,0 +1,386 @@ +from __future__ import annotations + +from abc import ABC, abstractmethod +from collections.abc import AsyncIterator, Sequence +from dataclasses import KW_ONLY, Field, dataclass, replace +from functools import cached_property +from http import HTTPStatus +from typing import ( + TYPE_CHECKING, + Any, + ClassVar, + Generic, + Protocol, + TypeVar, + runtime_checkable, +) + +from pydantic import BaseModel, ValidationError + +from pydantic_ai import DeferredToolRequests, DeferredToolResults +from pydantic_ai.agent import AbstractAgent +from pydantic_ai.builtin_tools import AbstractBuiltinTool +from pydantic_ai.exceptions import UserError +from pydantic_ai.messages import ModelMessage +from pydantic_ai.models import KnownModelName, Model +from pydantic_ai.output import OutputDataT, OutputSpec +from pydantic_ai.settings import ModelSettings +from pydantic_ai.tools import AgentDepsT +from pydantic_ai.toolsets import AbstractToolset +from pydantic_ai.usage import RunUsage, UsageLimits + +from ._event_stream import NativeEvent, OnCompleteFunc, UIEventStream + +if TYPE_CHECKING: + from starlette.requests import Request + from starlette.responses import Response, StreamingResponse + + +__all__ = [ + 'UIAdapter', + 'StateHandler', + 'StateDeps', +] + + +RunInputT = TypeVar('RunInputT') +"""Type variable for protocol-specific run input types.""" + +MessageT = TypeVar('MessageT') +"""Type variable for protocol-specific message types.""" + +EventT = TypeVar('EventT') +"""Type variable for protocol-specific event types.""" + + +StateT = TypeVar('StateT', bound=BaseModel) +"""Type variable for the state type, which must be a subclass of `BaseModel`.""" + + +@runtime_checkable +class StateHandler(Protocol): + """Protocol for state handlers in agent runs. Requires the class to be a dataclass with a `state` field.""" + + # Has to be a dataclass so we can use `replace` to update the state. + # From https://github.com/python/typeshed/blob/9ab7fde0a0cd24ed7a72837fcb21093b811b80d8/stdlib/_typeshed/__init__.pyi#L352 + __dataclass_fields__: ClassVar[dict[str, Field[Any]]] + + @property + def state(self) -> Any: + """Get the current state of the agent run.""" + ... + + @state.setter + def state(self, state: Any) -> None: + """Set the state of the agent run. + + This method is called to update the state of the agent run with the + provided state. + + Args: + state: The run state. + """ + ... + + +@dataclass +class StateDeps(Generic[StateT]): + """Dependency type that holds state. + + This class is used to manage the state of an agent run. It allows setting + the state of the agent run with a specific type of state model, which must + be a subclass of `BaseModel`. + + The state is set using the `state` setter by the `Adapter` when the run starts. + + Implements the `StateHandler` protocol. + """ + + state: StateT + + +@dataclass +class UIAdapter(ABC, Generic[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]): + """Base class for UI adapters. + + This class is responsible for transforming agent run input received from the frontend into arguments for [`Agent.run_stream_events()`][pydantic_ai.Agent.run_stream_events], running the agent, and then transforming Pydantic AI events into protocol-specific events. + + The event stream transformation is handled by a protocol-specific [`UIEventStream`][pydantic_ai.ui.UIEventStream] subclass. + """ + + agent: AbstractAgent[AgentDepsT, OutputDataT] + """The Pydantic AI agent to run.""" + + run_input: RunInputT + """The protocol-specific run input object.""" + + _: KW_ONLY + + accept: str | None = None + """The `Accept` header value of the request, used to determine how to encode the protocol-specific events for the streaming response.""" + + @classmethod + async def from_request( + cls, request: Request, *, agent: AbstractAgent[AgentDepsT, OutputDataT] + ) -> UIAdapter[RunInputT, MessageT, EventT, AgentDepsT, OutputDataT]: + """Create an adapter from a request.""" + return cls( + agent=agent, + run_input=cls.build_run_input(await request.body()), + accept=request.headers.get('accept'), + ) + + @classmethod + @abstractmethod + def build_run_input(cls, body: bytes) -> RunInputT: + """Build a protocol-specific run input object from the request body.""" + raise NotImplementedError + + @classmethod + @abstractmethod + def load_messages(cls, messages: Sequence[MessageT]) -> list[ModelMessage]: + """Transform protocol-specific messages into Pydantic AI messages.""" + raise NotImplementedError + + @abstractmethod + def build_event_stream(self) -> UIEventStream[RunInputT, EventT, AgentDepsT, OutputDataT]: + """Build a protocol-specific event stream transformer.""" + raise NotImplementedError + + @cached_property + @abstractmethod + def messages(self) -> list[ModelMessage]: + """Pydantic AI messages from the protocol-specific run input.""" + raise NotImplementedError + + @cached_property + def toolset(self) -> AbstractToolset[AgentDepsT] | None: + """Toolset representing frontend tools from the protocol-specific run input.""" + return None + + @cached_property + def state(self) -> dict[str, Any] | None: + """Frontend state from the protocol-specific run input.""" + return None + + def transform_stream( + self, + stream: AsyncIterator[NativeEvent], + on_complete: OnCompleteFunc[EventT] | None = None, + ) -> AsyncIterator[EventT]: + """Transform a stream of Pydantic AI events into protocol-specific events. + + Args: + stream: The stream of Pydantic AI events to transform. + on_complete: Optional callback function called when the agent run completes successfully. + The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + """ + return self.build_event_stream().transform_stream(stream, on_complete=on_complete) + + def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]: + """Encode a stream of protocol-specific events as strings according to the `Accept` header value. + + Args: + stream: The stream of protocol-specific events to encode. + """ + return self.build_event_stream().encode_stream(stream) + + def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse: + """Generate a streaming response from a stream of protocol-specific events. + + Args: + stream: The stream of protocol-specific events to encode. + """ + return self.build_event_stream().streaming_response(stream) + + def run_stream_native( + self, + *, + output_type: OutputSpec[Any] | None = None, + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, + model: Model | KnownModelName | str | None = None, + deps: AgentDepsT = None, + model_settings: ModelSettings | None = None, + usage_limits: UsageLimits | None = None, + usage: RunUsage | None = None, + infer_name: bool = True, + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, + builtin_tools: Sequence[AbstractBuiltinTool] | None = None, + ) -> AsyncIterator[NativeEvent]: + """Run the agent with the protocol-specific run input and stream Pydantic AI events. + + Args: + output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no + output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. + model: Optional model to use for this run, required if `model` was not set when creating the agent. + deps: Optional dependencies to use for this run. + model_settings: Optional settings to use for this model's request. + usage_limits: Optional limits on model request count or token usage. + usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. + infer_name: Whether to try to infer the agent name from the call frame if it's not set. + toolsets: Optional additional toolsets for this run. + builtin_tools: Optional additional builtin tools to use for this run. + """ + message_history = [*(message_history or []), *self.messages] + + toolset = self.toolset + if toolset: + output_type = [output_type or self.agent.output_type, DeferredToolRequests] + toolsets = [*(toolsets or []), toolset] + + if isinstance(deps, StateHandler): + raw_state = self.state or {} + if isinstance(deps.state, BaseModel): + state = type(deps.state).model_validate(raw_state) + else: + state = raw_state + + deps = replace(deps, state=state) + elif self.state: + raise UserError( + f'State is provided but `deps` of type `{type(deps).__name__}` does not implement the `StateHandler` protocol: it needs to be a dataclass with a non-optional `state` field.' + ) + + return self.agent.run_stream_events( + output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, + model=model, + deps=deps, + model_settings=model_settings, + usage_limits=usage_limits, + usage=usage, + infer_name=infer_name, + toolsets=toolsets, + builtin_tools=builtin_tools, + ) + + def run_stream( + self, + *, + output_type: OutputSpec[Any] | None = None, + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, + model: Model | KnownModelName | str | None = None, + deps: AgentDepsT = None, + model_settings: ModelSettings | None = None, + usage_limits: UsageLimits | None = None, + usage: RunUsage | None = None, + infer_name: bool = True, + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, + builtin_tools: Sequence[AbstractBuiltinTool] | None = None, + on_complete: OnCompleteFunc[EventT] | None = None, + ) -> AsyncIterator[EventT]: + """Run the agent with the protocol-specific run input and stream protocol-specific events. + + Args: + output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no + output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. + model: Optional model to use for this run, required if `model` was not set when creating the agent. + deps: Optional dependencies to use for this run. + model_settings: Optional settings to use for this model's request. + usage_limits: Optional limits on model request count or token usage. + usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. + infer_name: Whether to try to infer the agent name from the call frame if it's not set. + toolsets: Optional additional toolsets for this run. + builtin_tools: Optional additional builtin tools to use for this run. + on_complete: Optional callback function called when the agent run completes successfully. + The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + """ + return self.transform_stream( + self.run_stream_native( + output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, + model=model, + deps=deps, + model_settings=model_settings, + usage_limits=usage_limits, + usage=usage, + infer_name=infer_name, + toolsets=toolsets, + builtin_tools=builtin_tools, + ), + on_complete=on_complete, + ) + + @classmethod + async def dispatch_request( + cls, + request: Request, + *, + agent: AbstractAgent[AgentDepsT, OutputDataT], + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, + model: Model | KnownModelName | str | None = None, + deps: AgentDepsT = None, + output_type: OutputSpec[Any] | None = None, + model_settings: ModelSettings | None = None, + usage_limits: UsageLimits | None = None, + usage: RunUsage | None = None, + infer_name: bool = True, + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, + builtin_tools: Sequence[AbstractBuiltinTool] | None = None, + on_complete: OnCompleteFunc[EventT] | None = None, + ) -> Response: + """Handle a protocol-specific HTTP request by running the agent and returning a streaming response of protocol-specific events. + + Args: + request: The incoming Starlette/FastAPI request. + agent: The agent to run. + output_type: Custom output type to use for this run, `output_type` may only be used if the agent has no + output validators since output validators would expect an argument that matches the agent's output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. + model: Optional model to use for this run, required if `model` was not set when creating the agent. + deps: Optional dependencies to use for this run. + model_settings: Optional settings to use for this model's request. + usage_limits: Optional limits on model request count or token usage. + usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. + infer_name: Whether to try to infer the agent name from the call frame if it's not set. + toolsets: Optional additional toolsets for this run. + builtin_tools: Optional additional builtin tools to use for this run. + on_complete: Optional callback function called when the agent run completes successfully. + The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + + Returns: + A streaming Starlette response with protocol-specific events encoded per the request's `Accept` header value. + """ + try: + from starlette.responses import Response + except ImportError as e: # pragma: no cover + raise ImportError( + 'Please install the `starlette` package to use `dispatch_request()` method, ' + 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' + ) from e + + try: + adapter = await cls.from_request(request, agent=agent) + except ValidationError as e: # pragma: no cover + return Response( + content=e.json(), + media_type='application/json', + status_code=HTTPStatus.UNPROCESSABLE_ENTITY, + ) + + return adapter.streaming_response( + adapter.run_stream( + message_history=message_history, + deferred_tool_results=deferred_tool_results, + deps=deps, + output_type=output_type, + model=model, + model_settings=model_settings, + usage_limits=usage_limits, + usage=usage, + infer_name=infer_name, + toolsets=toolsets, + builtin_tools=builtin_tools, + on_complete=on_complete, + ), + ) diff --git a/pydantic_ai_slim/pydantic_ai/ui/_event_stream.py b/pydantic_ai_slim/pydantic_ai/ui/_event_stream.py new file mode 100644 index 0000000000..c18c1f1c98 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/_event_stream.py @@ -0,0 +1,591 @@ +from __future__ import annotations + +import inspect +from abc import ABC, abstractmethod +from collections.abc import AsyncIterator, Awaitable, Callable, Mapping +from dataclasses import dataclass, field +from typing import TYPE_CHECKING, Any, Generic, Literal, TypeAlias, TypeVar, cast +from uuid import uuid4 + +from pydantic_ai import _utils + +from ..messages import ( + AgentStreamEvent, + BuiltinToolCallEvent, # pyright: ignore[reportDeprecated] + BuiltinToolCallPart, + BuiltinToolResultEvent, # pyright: ignore[reportDeprecated] + BuiltinToolReturnPart, + FilePart, + FinalResultEvent, + FunctionToolCallEvent, + FunctionToolResultEvent, + PartDeltaEvent, + PartEndEvent, + PartStartEvent, + TextPart, + TextPartDelta, + ThinkingPart, + ThinkingPartDelta, + ToolCallPart, + ToolCallPartDelta, + ToolReturnPart, +) +from ..output import OutputDataT +from ..run import AgentRunResult, AgentRunResultEvent +from ..tools import AgentDepsT + +if TYPE_CHECKING: + from starlette.responses import StreamingResponse + + +SSE_CONTENT_TYPE = 'text/event-stream' +"""Content type header value for Server-Sent Events (SSE).""" + +EventT = TypeVar('EventT') +"""Type variable for protocol-specific event types.""" + +RunInputT = TypeVar('RunInputT') +"""Type variable for protocol-specific run input types.""" + +NativeEvent: TypeAlias = AgentStreamEvent | AgentRunResultEvent[Any] +"""Type alias for the native event type, which is either an `AgentStreamEvent` or an `AgentRunResultEvent`.""" + +OnCompleteFunc: TypeAlias = ( + Callable[[AgentRunResult[Any]], None] + | Callable[[AgentRunResult[Any]], Awaitable[None]] + | Callable[[AgentRunResult[Any]], AsyncIterator[EventT]] +) +"""Callback function type that receives the `AgentRunResult` of the completed run. Can be sync, async, or an async generator of protocol-specific events.""" + + +@dataclass +class UIEventStream(ABC, Generic[RunInputT, EventT, AgentDepsT, OutputDataT]): + """Base class for UI event stream transformers. + + This class is responsible for transforming Pydantic AI events into protocol-specific events. + """ + + run_input: RunInputT + + accept: str | None = None + """The `Accept` header value of the request, used to determine how to encode the protocol-specific events for the streaming response.""" + + message_id: str = field(default_factory=lambda: str(uuid4())) + """The message ID to use for the next event.""" + + _turn: Literal['request', 'response'] | None = None + + _result: AgentRunResult[OutputDataT] | None = None + _final_result_event: FinalResultEvent | None = None + + def new_message_id(self) -> str: + """Generate and store a new message ID.""" + self.message_id = str(uuid4()) + return self.message_id + + @property + def response_headers(self) -> Mapping[str, str] | None: + """Response headers to return to the frontend.""" + return None + + @property + def content_type(self) -> str: + """Get the content type for the event stream, compatible with the `Accept` header value. + + By default, this returns the Server-Sent Events content type (`text/event-stream`). + If a subclass supports other types as well, it should consider `self.accept` in [`encode_event()`][pydantic_ai.ui.UIEventStream.encode_event] and return the resulting content type. + """ + return SSE_CONTENT_TYPE + + @abstractmethod + def encode_event(self, event: EventT) -> str: + """Encode a protocol-specific event as a string.""" + raise NotImplementedError + + async def encode_stream(self, stream: AsyncIterator[EventT]) -> AsyncIterator[str]: + """Encode a stream of protocol-specific events as strings according to the `Accept` header value.""" + async for event in stream: + yield self.encode_event(event) + + def streaming_response(self, stream: AsyncIterator[EventT]) -> StreamingResponse: + """Generate a streaming response from a stream of protocol-specific events.""" + try: + from starlette.responses import StreamingResponse + except ImportError as e: # pragma: no cover + raise ImportError( + 'Please install the `starlette` package to use the `streaming_response()` method, ' + 'you can use the `ui` optional group — `pip install "pydantic-ai-slim[ui]"`' + ) from e + + return StreamingResponse( + self.encode_stream(stream), + headers=self.response_headers, + media_type=self.content_type, + ) + + async def transform_stream( # noqa: C901 + self, stream: AsyncIterator[NativeEvent], on_complete: OnCompleteFunc[EventT] | None = None + ) -> AsyncIterator[EventT]: + """Transform a stream of Pydantic AI events into protocol-specific events. + + This method dispatches to specific hooks and `handle_*` methods that subclasses can override: + - [`before_stream()`][pydantic_ai.ui.UIEventStream.before_stream] + - [`after_stream()`][pydantic_ai.ui.UIEventStream.after_stream] + - [`on_error()`][pydantic_ai.ui.UIEventStream.on_error] + - [`before_request()`][pydantic_ai.ui.UIEventStream.before_request] + - [`after_request()`][pydantic_ai.ui.UIEventStream.after_request] + - [`before_response()`][pydantic_ai.ui.UIEventStream.before_response] + - [`after_response()`][pydantic_ai.ui.UIEventStream.after_response] + - [`handle_event()`][pydantic_ai.ui.UIEventStream.handle_event] + + Args: + stream: The stream of Pydantic AI events to transform. + on_complete: Optional callback function called when the agent run completes successfully. + The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can optionally yield additional protocol-specific events. + """ + async for e in self.before_stream(): + yield e + + try: + async for event in stream: + if isinstance(event, PartStartEvent): + async for e in self._turn_to('response'): + yield e + elif isinstance(event, FunctionToolCallEvent): + async for e in self._turn_to('request'): + yield e + elif isinstance(event, AgentRunResultEvent): + if ( + self._final_result_event + and (tool_call_id := self._final_result_event.tool_call_id) + and (tool_name := self._final_result_event.tool_name) + ): + async for e in self._turn_to('request'): + yield e + + self._final_result_event = None + # Ensure the stream does not end on a dangling tool call without a result. + output_tool_result_event = FunctionToolResultEvent( + result=ToolReturnPart( + tool_call_id=tool_call_id, + tool_name=tool_name, + content='Final result processed.', + ) + ) + async for e in self.handle_function_tool_result(output_tool_result_event): + yield e + + result = cast(AgentRunResult[OutputDataT], event.result) + self._result = result + + async for e in self._turn_to(None): + yield e + + if on_complete is not None: + if inspect.isasyncgenfunction(on_complete): + async for e in on_complete(result): + yield e + elif _utils.is_async_callable(on_complete): + await on_complete(result) + else: + await _utils.run_in_executor(on_complete, result) + elif isinstance(event, FinalResultEvent): + self._final_result_event = event + + if isinstance(event, BuiltinToolCallEvent | BuiltinToolResultEvent): # pyright: ignore[reportDeprecated] + # These events were deprecated before this feature was introduced + continue + + async for e in self.handle_event(event): + yield e + except Exception as e: + async for e in self.on_error(e): + yield e + finally: + async for e in self._turn_to(None): + yield e + + async for e in self.after_stream(): + yield e + + async def _turn_to(self, to_turn: Literal['request', 'response'] | None) -> AsyncIterator[EventT]: + """Fire hooks when turning from request to response or vice versa.""" + if to_turn == self._turn: + return + + if self._turn == 'request': + async for e in self.after_request(): + yield e + elif self._turn == 'response': + async for e in self.after_response(): + yield e + + self._turn = to_turn + + if to_turn == 'request': + async for e in self.before_request(): + yield e + elif to_turn == 'response': + async for e in self.before_response(): + yield e + + async def handle_event(self, event: NativeEvent) -> AsyncIterator[EventT]: + """Transform a Pydantic AI event into one or more protocol-specific events. + + This method dispatches to specific `handle_*` methods based on event type: + + - [`PartStartEvent`][pydantic_ai.messages.PartStartEvent] -> [`handle_part_start()`][pydantic_ai.ui.UIEventStream.handle_part_start] + - [`PartDeltaEvent`][pydantic_ai.messages.PartDeltaEvent] -> `handle_part_delta` + - [`PartEndEvent`][pydantic_ai.messages.PartEndEvent] -> `handle_part_end` + - [`FinalResultEvent`][pydantic_ai.messages.FinalResultEvent] -> `handle_final_result` + - [`FunctionToolCallEvent`][pydantic_ai.messages.FunctionToolCallEvent] -> `handle_function_tool_call` + - [`FunctionToolResultEvent`][pydantic_ai.messages.FunctionToolResultEvent] -> `handle_function_tool_result` + - [`AgentRunResultEvent`][pydantic_ai.run.AgentRunResultEvent] -> `handle_run_result` + + Subclasses are encouraged to override the individual `handle_*` methods rather than this one. + If you need specific behavior for all events, make sure you call the super method. + """ + match event: + case PartStartEvent(): + async for e in self.handle_part_start(event): + yield e + case PartDeltaEvent(): + async for e in self.handle_part_delta(event): + yield e + case PartEndEvent(): + async for e in self.handle_part_end(event): + yield e + case FinalResultEvent(): + async for e in self.handle_final_result(event): + yield e + case FunctionToolCallEvent(): + async for e in self.handle_function_tool_call(event): + yield e + case FunctionToolResultEvent(): + async for e in self.handle_function_tool_result(event): + yield e + case AgentRunResultEvent(): + async for e in self.handle_run_result(event): + yield e + case _: + pass + + async def handle_part_start(self, event: PartStartEvent) -> AsyncIterator[EventT]: + """Handle a `PartStartEvent`. + + This method dispatches to specific `handle_*` methods based on part type: + + - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_start()`][pydantic_ai.ui.UIEventStream.handle_text_start] + - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_start()`][pydantic_ai.ui.UIEventStream.handle_thinking_start] + - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_tool_call_start] + - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_start()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_start] + - [`BuiltinToolReturnPart`][pydantic_ai.messages.BuiltinToolReturnPart] -> [`handle_builtin_tool_return()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_return] + - [`FilePart`][pydantic_ai.messages.FilePart] -> [`handle_file()`][pydantic_ai.ui.UIEventStream.handle_file] + + Subclasses are encouraged to override the individual `handle_*` methods rather than this one. + If you need specific behavior for all part start events, make sure you call the super method. + + Args: + event: The part start event. + """ + part = event.part + previous_part_kind = event.previous_part_kind + match part: + case TextPart(): + async for e in self.handle_text_start(part, follows_text=previous_part_kind == 'text'): + yield e + case ThinkingPart(): + async for e in self.handle_thinking_start(part, follows_thinking=previous_part_kind == 'thinking'): + yield e + case ToolCallPart(): + async for e in self.handle_tool_call_start(part): + yield e + case BuiltinToolCallPart(): + async for e in self.handle_builtin_tool_call_start(part): + yield e + case BuiltinToolReturnPart(): + async for e in self.handle_builtin_tool_return(part): + yield e + case FilePart(): # pragma: no branch + async for e in self.handle_file(part): + yield e + + async def handle_part_delta(self, event: PartDeltaEvent) -> AsyncIterator[EventT]: + """Handle a PartDeltaEvent. + + This method dispatches to specific `handle_*_delta` methods based on part delta type: + + - [`TextPartDelta`][pydantic_ai.messages.TextPartDelta] -> [`handle_text_delta()`][pydantic_ai.ui.UIEventStream.handle_text_delta] + - [`ThinkingPartDelta`][pydantic_ai.messages.ThinkingPartDelta] -> [`handle_thinking_delta()`][pydantic_ai.ui.UIEventStream.handle_thinking_delta] + - [`ToolCallPartDelta`][pydantic_ai.messages.ToolCallPartDelta] -> [`handle_tool_call_delta()`][pydantic_ai.ui.UIEventStream.handle_tool_call_delta] + + Subclasses are encouraged to override the individual `handle_*_delta` methods rather than this one. + If you need specific behavior for all part delta events, make sure you call the super method. + + Args: + event: The PartDeltaEvent. + """ + delta = event.delta + match delta: + case TextPartDelta(): + async for e in self.handle_text_delta(delta): + yield e + case ThinkingPartDelta(): + async for e in self.handle_thinking_delta(delta): + yield e + case ToolCallPartDelta(): # pragma: no branch + async for e in self.handle_tool_call_delta(delta): + yield e + + async def handle_part_end(self, event: PartEndEvent) -> AsyncIterator[EventT]: + """Handle a `PartEndEvent`. + + This method dispatches to specific `handle_*_end` methods based on part type: + + - [`TextPart`][pydantic_ai.messages.TextPart] -> [`handle_text_end()`][pydantic_ai.ui.UIEventStream.handle_text_end] + - [`ThinkingPart`][pydantic_ai.messages.ThinkingPart] -> [`handle_thinking_end()`][pydantic_ai.ui.UIEventStream.handle_thinking_end] + - [`ToolCallPart`][pydantic_ai.messages.ToolCallPart] -> [`handle_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_tool_call_end] + - [`BuiltinToolCallPart`][pydantic_ai.messages.BuiltinToolCallPart] -> [`handle_builtin_tool_call_end()`][pydantic_ai.ui.UIEventStream.handle_builtin_tool_call_end] + + Subclasses are encouraged to override the individual `handle_*_end` methods rather than this one. + If you need specific behavior for all part end events, make sure you call the super method. + + Args: + event: The part end event. + """ + part = event.part + next_part_kind = event.next_part_kind + match part: + case TextPart(): + async for e in self.handle_text_end(part, followed_by_text=next_part_kind == 'text'): + yield e + case ThinkingPart(): + async for e in self.handle_thinking_end(part, followed_by_thinking=next_part_kind == 'thinking'): + yield e + case ToolCallPart(): + async for e in self.handle_tool_call_end(part): + yield e + case BuiltinToolCallPart(): + async for e in self.handle_builtin_tool_call_end(part): + yield e + case BuiltinToolReturnPart() | FilePart(): # pragma: no cover + # These don't have deltas, so they don't need to be ended. + pass + + async def before_stream(self) -> AsyncIterator[EventT]: + """Yield events before agent streaming starts. + + This hook is called before any agent events are processed. + Override this to inject custom events at the start of the stream. + """ + return # pragma: no cover + yield # Make this an async generator + + async def after_stream(self) -> AsyncIterator[EventT]: + """Yield events after agent streaming completes. + + This hook is called after all agent events have been processed. + Override this to inject custom events at the end of the stream. + """ + return # pragma: no cover + yield # Make this an async generator + + async def on_error(self, error: Exception) -> AsyncIterator[EventT]: + """Handle errors that occur during streaming. + + Args: + error: The error that occurred during streaming. + """ + return # pragma: no cover + yield # Make this an async generator + + async def before_request(self) -> AsyncIterator[EventT]: + """Yield events before a model request is processed. + + Override this to inject custom events at the start of the request. + """ + return + yield # Make this an async generator + + async def after_request(self) -> AsyncIterator[EventT]: + """Yield events after a model request is processed. + + Override this to inject custom events at the end of the request. + """ + return + yield # Make this an async generator + + async def before_response(self) -> AsyncIterator[EventT]: + """Yield events before a model response is processed. + + Override this to inject custom events at the start of the response. + """ + return + yield # Make this an async generator + + async def after_response(self) -> AsyncIterator[EventT]: + """Yield events after a model response is processed. + + Override this to inject custom events at the end of the response. + """ + return + yield # Make this an async generator + + async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[EventT]: + """Handle the start of a `TextPart`. + + Args: + part: The text part. + follows_text: Whether the part is directly preceded by another text part. In this case, you may want to yield a "text-delta" event instead of a "text-start" event. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[EventT]: + """Handle a `TextPartDelta`. + + Args: + delta: The text part delta. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[EventT]: + """Handle the end of a `TextPart`. + + Args: + part: The text part. + followed_by_text: Whether the part is directly followed by another text part. In this case, you may not want to yield a "text-end" event yet. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_thinking_start(self, part: ThinkingPart, follows_thinking: bool = False) -> AsyncIterator[EventT]: + """Handle the start of a `ThinkingPart`. + + Args: + part: The thinking part. + follows_thinking: Whether the part is directly preceded by another thinking part. In this case, you may want to yield a "thinking-delta" event instead of a "thinking-start" event. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[EventT]: + """Handle a `ThinkingPartDelta`. + + Args: + delta: The thinking part delta. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_thinking_end( + self, part: ThinkingPart, followed_by_thinking: bool = False + ) -> AsyncIterator[EventT]: + """Handle the end of a `ThinkingPart`. + + Args: + part: The thinking part. + followed_by_thinking: Whether the part is directly followed by another thinking part. In this case, you may not want to yield a "thinking-end" event yet. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_tool_call_start(self, part: ToolCallPart) -> AsyncIterator[EventT]: + """Handle the start of a `ToolCallPart`. + + Args: + part: The tool call part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[EventT]: + """Handle a `ToolCallPartDelta`. + + Args: + delta: The tool call part delta. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[EventT]: + """Handle the end of a `ToolCallPart`. + + Args: + part: The tool call part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]: + """Handle a `BuiltinToolCallPart` at start. + + Args: + part: The builtin tool call part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[EventT]: + """Handle the end of a `BuiltinToolCallPart`. + + Args: + part: The builtin tool call part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[EventT]: + """Handle a `BuiltinToolReturnPart`. + + Args: + part: The builtin tool return part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_file(self, part: FilePart) -> AsyncIterator[EventT]: + """Handle a `FilePart`. + + Args: + part: The file part. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_final_result(self, event: FinalResultEvent) -> AsyncIterator[EventT]: + """Handle a `FinalResultEvent`. + + Args: + event: The final result event. + """ + return + yield # Make this an async generator + + async def handle_function_tool_call(self, event: FunctionToolCallEvent) -> AsyncIterator[EventT]: + """Handle a `FunctionToolCallEvent`. + + Args: + event: The function tool call event. + """ + return + yield # Make this an async generator + + async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[EventT]: + """Handle a `FunctionToolResultEvent`. + + Args: + event: The function tool result event. + """ + return # pragma: no cover + yield # Make this an async generator + + async def handle_run_result(self, event: AgentRunResultEvent) -> AsyncIterator[EventT]: + """Handle an `AgentRunResultEvent`. + + Args: + event: The agent run result event. + """ + return + yield # Make this an async generator diff --git a/pydantic_ai_slim/pydantic_ai/ui/_messages_builder.py b/pydantic_ai_slim/pydantic_ai/ui/_messages_builder.py new file mode 100644 index 0000000000..6a2edf1715 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/_messages_builder.py @@ -0,0 +1,28 @@ +from dataclasses import dataclass, field +from typing import cast + +from pydantic_ai._utils import get_union_args +from pydantic_ai.messages import ModelMessage, ModelRequest, ModelRequestPart, ModelResponse, ModelResponsePart + + +@dataclass +class MessagesBuilder: + """Helper class to build Pydantic AI messages from request/response parts.""" + + messages: list[ModelMessage] = field(default_factory=list) + + def add(self, part: ModelRequestPart | ModelResponsePart) -> None: + """Add a new part, creating a new request or response message if necessary.""" + last_message = self.messages[-1] if self.messages else None + if isinstance(part, get_union_args(ModelRequestPart)): + part = cast(ModelRequestPart, part) + if isinstance(last_message, ModelRequest): + last_message.parts = [*last_message.parts, part] + else: + self.messages.append(ModelRequest(parts=[part])) + else: + part = cast(ModelResponsePart, part) + if isinstance(last_message, ModelResponse): + last_message.parts = [*last_message.parts, part] + else: + self.messages.append(ModelResponse(parts=[part])) diff --git a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/__init__.py b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/__init__.py new file mode 100644 index 0000000000..6228771869 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/__init__.py @@ -0,0 +1,9 @@ +"""AG-UI protocol integration for Pydantic AI agents.""" + +from ._adapter import AGUIAdapter +from ._event_stream import AGUIEventStream + +__all__ = [ + 'AGUIAdapter', + 'AGUIEventStream', +] diff --git a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py new file mode 100644 index 0000000000..5d45f50a7b --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_adapter.py @@ -0,0 +1,187 @@ +"""AG-UI adapter for handling requests.""" + +from __future__ import annotations + +from collections.abc import Sequence +from functools import cached_property +from typing import ( + TYPE_CHECKING, + Any, +) + +from ... import ExternalToolset, ToolDefinition +from ...messages import ( + BuiltinToolCallPart, + BuiltinToolReturnPart, + ModelMessage, + SystemPromptPart, + TextPart, + ToolCallPart, + ToolReturnPart, + UserPromptPart, +) +from ...output import OutputDataT +from ...tools import AgentDepsT +from ...toolsets import AbstractToolset + +try: + from ag_ui.core import ( + AssistantMessage, + BaseEvent, + DeveloperMessage, + Message, + RunAgentInput, + SystemMessage, + Tool as AGUITool, + ToolMessage, + UserMessage, + ) + + from .. import MessagesBuilder, UIAdapter, UIEventStream + from ._event_stream import BUILTIN_TOOL_CALL_ID_PREFIX, AGUIEventStream +except ImportError as e: # pragma: no cover + raise ImportError( + 'Please install the `ag-ui-protocol` package to use AG-UI integration, ' + 'you can use the `ag-ui` optional group — `pip install "pydantic-ai-slim[ag-ui]"`' + ) from e + +if TYPE_CHECKING: + pass + +__all__ = ['AGUIAdapter'] + + +# Frontend toolset + + +class _AGUIFrontendToolset(ExternalToolset[AgentDepsT]): + """Toolset for AG-UI frontend tools.""" + + def __init__(self, tools: list[AGUITool]): + """Initialize the toolset with AG-UI tools. + + Args: + tools: List of AG-UI tool definitions. + """ + super().__init__( + [ + ToolDefinition( + name=tool.name, + description=tool.description, + parameters_json_schema=tool.parameters, + ) + for tool in tools + ] + ) + + @property + def label(self) -> str: + """Return the label for this toolset.""" + return 'the AG-UI frontend tools' # pragma: no cover + + +class AGUIAdapter(UIAdapter[RunAgentInput, Message, BaseEvent, AgentDepsT, OutputDataT]): + """UI adapter for the Agent-User Interaction (AG-UI) protocol.""" + + @classmethod + def build_run_input(cls, body: bytes) -> RunAgentInput: + """Build an AG-UI run input object from the request body.""" + return RunAgentInput.model_validate_json(body) + + def build_event_stream(self) -> UIEventStream[RunAgentInput, BaseEvent, AgentDepsT, OutputDataT]: + """Build an AG-UI event stream transformer.""" + return AGUIEventStream(self.run_input, accept=self.accept) + + @cached_property + def messages(self) -> list[ModelMessage]: + """Pydantic AI messages from the AG-UI run input.""" + return self.load_messages(self.run_input.messages) + + @cached_property + def toolset(self) -> AbstractToolset[AgentDepsT] | None: + """Toolset representing frontend tools from the AG-UI run input.""" + if self.run_input.tools: + return _AGUIFrontendToolset[AgentDepsT](self.run_input.tools) + return None + + @cached_property + def state(self) -> dict[str, Any] | None: + """Frontend state from the AG-UI run input.""" + return self.run_input.state + + @classmethod + def load_messages(cls, messages: Sequence[Message]) -> list[ModelMessage]: + """Transform AG-UI messages into Pydantic AI messages.""" + builder = MessagesBuilder() + tool_calls: dict[str, str] = {} # Tool call ID to tool name mapping. + + for msg in messages: + if isinstance(msg, UserMessage | SystemMessage | DeveloperMessage) or ( + isinstance(msg, ToolMessage) and not msg.tool_call_id.startswith(BUILTIN_TOOL_CALL_ID_PREFIX) + ): + if isinstance(msg, UserMessage): + builder.add(UserPromptPart(content=msg.content)) + elif isinstance(msg, SystemMessage | DeveloperMessage): + builder.add(SystemPromptPart(content=msg.content)) + else: + tool_call_id = msg.tool_call_id + tool_name = tool_calls.get(tool_call_id) + if tool_name is None: # pragma: no cover + raise ValueError(f'Tool call with ID {tool_call_id} not found in the history.') + + builder.add( + ToolReturnPart( + tool_name=tool_name, + content=msg.content, + tool_call_id=tool_call_id, + ) + ) + + elif isinstance(msg, AssistantMessage) or ( # pragma: no branch + isinstance(msg, ToolMessage) and msg.tool_call_id.startswith(BUILTIN_TOOL_CALL_ID_PREFIX) + ): + if isinstance(msg, AssistantMessage): + if msg.content: + builder.add(TextPart(content=msg.content)) + + if msg.tool_calls: + for tool_call in msg.tool_calls: + tool_call_id = tool_call.id + tool_name = tool_call.function.name + tool_calls[tool_call_id] = tool_name + + if tool_call_id.startswith(BUILTIN_TOOL_CALL_ID_PREFIX): + _, provider_name, tool_call_id = tool_call_id.split('|', 2) + builder.add( + BuiltinToolCallPart( + tool_name=tool_name, + args=tool_call.function.arguments, + tool_call_id=tool_call_id, + provider_name=provider_name, + ) + ) + else: + builder.add( + ToolCallPart( + tool_name=tool_name, + tool_call_id=tool_call_id, + args=tool_call.function.arguments, + ) + ) + else: + tool_call_id = msg.tool_call_id + tool_name = tool_calls.get(tool_call_id) + if tool_name is None: # pragma: no cover + raise ValueError(f'Tool call with ID {tool_call_id} not found in the history.') + _, provider_name, tool_call_id = tool_call_id.split('|', 2) + + builder.add( + BuiltinToolReturnPart( + tool_name=tool_name, + content=msg.content, + tool_call_id=tool_call_id, + provider_name=provider_name, + ) + ) + + return builder.messages diff --git a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_event_stream.py b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_event_stream.py new file mode 100644 index 0000000000..0a6f354abf --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/_event_stream.py @@ -0,0 +1,227 @@ +"""AG-UI protocol adapter for Pydantic AI agents. + +This module provides classes for integrating Pydantic AI agents with the AG-UI protocol, +enabling streaming event-based communication for interactive AI applications. +""" + +from __future__ import annotations + +import json +from collections.abc import AsyncIterator, Iterable +from dataclasses import dataclass, field +from typing import Final + +from ...messages import ( + BuiltinToolCallPart, + BuiltinToolReturnPart, + FunctionToolResultEvent, + RetryPromptPart, + TextPart, + TextPartDelta, + ThinkingPart, + ThinkingPartDelta, + ToolCallPart, + ToolCallPartDelta, + ToolReturnPart, +) +from ...output import OutputDataT +from ...tools import AgentDepsT +from .. import SSE_CONTENT_TYPE, UIEventStream + +try: + from ag_ui.core import ( + BaseEvent, + EventType, + RunAgentInput, + RunErrorEvent, + RunFinishedEvent, + RunStartedEvent, + TextMessageContentEvent, + TextMessageEndEvent, + TextMessageStartEvent, + ThinkingEndEvent, + ThinkingStartEvent, + ThinkingTextMessageContentEvent, + ThinkingTextMessageEndEvent, + ThinkingTextMessageStartEvent, + ToolCallArgsEvent, + ToolCallEndEvent, + ToolCallResultEvent, + ToolCallStartEvent, + ) + from ag_ui.encoder import EventEncoder + +except ImportError as e: # pragma: no cover + raise ImportError( + 'Please install the `ag-ui-protocol` package to use AG-UI integration, ' + 'you can use the `ag-ui` optional group — `pip install "pydantic-ai-slim[ag-ui]"`' + ) from e + +__all__ = [ + 'AGUIEventStream', + 'RunAgentInput', + 'RunStartedEvent', + 'RunFinishedEvent', +] + +BUILTIN_TOOL_CALL_ID_PREFIX: Final[str] = 'pyd_ai_builtin' + + +@dataclass +class AGUIEventStream(UIEventStream[RunAgentInput, BaseEvent, AgentDepsT, OutputDataT]): + """UI event stream transformer for the Agent-User Interaction (AG-UI) protocol.""" + + _thinking_text: bool = False + _builtin_tool_call_ids: dict[str, str] = field(default_factory=dict) + _error: bool = False + + @property + def _event_encoder(self) -> EventEncoder: + return EventEncoder(accept=self.accept or SSE_CONTENT_TYPE) + + @property + def content_type(self) -> str: + return self._event_encoder.get_content_type() + + def encode_event(self, event: BaseEvent) -> str: + return self._event_encoder.encode(event) + + async def before_stream(self) -> AsyncIterator[BaseEvent]: + yield RunStartedEvent( + thread_id=self.run_input.thread_id, + run_id=self.run_input.run_id, + ) + + async def after_stream(self) -> AsyncIterator[BaseEvent]: + if not self._error: + yield RunFinishedEvent( + thread_id=self.run_input.thread_id, + run_id=self.run_input.run_id, + ) + + async def on_error(self, error: Exception) -> AsyncIterator[BaseEvent]: + self._error = True + yield RunErrorEvent(message=str(error)) + + async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[BaseEvent]: + if follows_text: + message_id = self.message_id + else: + message_id = self.new_message_id() + yield TextMessageStartEvent(message_id=message_id) + + if part.content: # pragma: no branch + yield TextMessageContentEvent(message_id=message_id, delta=part.content) + + async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[BaseEvent]: + if delta.content_delta: # pragma: no branch + yield TextMessageContentEvent(message_id=self.message_id, delta=delta.content_delta) + + async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[BaseEvent]: + if not followed_by_text: + yield TextMessageEndEvent(message_id=self.message_id) + + async def handle_thinking_start( + self, part: ThinkingPart, follows_thinking: bool = False + ) -> AsyncIterator[BaseEvent]: + if not follows_thinking: + yield ThinkingStartEvent(type=EventType.THINKING_START) + + if part.content: + yield ThinkingTextMessageStartEvent(type=EventType.THINKING_TEXT_MESSAGE_START) + yield ThinkingTextMessageContentEvent(type=EventType.THINKING_TEXT_MESSAGE_CONTENT, delta=part.content) + self._thinking_text = True + + async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[BaseEvent]: + if not delta.content_delta: + return # pragma: no cover + + if not self._thinking_text: + yield ThinkingTextMessageStartEvent(type=EventType.THINKING_TEXT_MESSAGE_START) + self._thinking_text = True + + yield ThinkingTextMessageContentEvent(type=EventType.THINKING_TEXT_MESSAGE_CONTENT, delta=delta.content_delta) + + async def handle_thinking_end( + self, part: ThinkingPart, followed_by_thinking: bool = False + ) -> AsyncIterator[BaseEvent]: + if self._thinking_text: + yield ThinkingTextMessageEndEvent(type=EventType.THINKING_TEXT_MESSAGE_END) + self._thinking_text = False + + if not followed_by_thinking: + yield ThinkingEndEvent(type=EventType.THINKING_END) + + def handle_tool_call_start(self, part: ToolCallPart | BuiltinToolCallPart) -> AsyncIterator[BaseEvent]: + return self._handle_tool_call_start(part) + + def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[BaseEvent]: + tool_call_id = part.tool_call_id + builtin_tool_call_id = '|'.join([BUILTIN_TOOL_CALL_ID_PREFIX, part.provider_name or '', tool_call_id]) + self._builtin_tool_call_ids[tool_call_id] = builtin_tool_call_id + tool_call_id = builtin_tool_call_id + + return self._handle_tool_call_start(part, tool_call_id) + + async def _handle_tool_call_start( + self, part: ToolCallPart | BuiltinToolCallPart, tool_call_id: str | None = None + ) -> AsyncIterator[BaseEvent]: + tool_call_id = tool_call_id or part.tool_call_id + message_id = self.message_id or self.new_message_id() + + yield ToolCallStartEvent(tool_call_id=tool_call_id, tool_call_name=part.tool_name, parent_message_id=message_id) + if part.args: + yield ToolCallArgsEvent(tool_call_id=tool_call_id, delta=part.args_as_json_str()) + + async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[BaseEvent]: + tool_call_id = delta.tool_call_id + assert tool_call_id, '`ToolCallPartDelta.tool_call_id` must be set' + if tool_call_id in self._builtin_tool_call_ids: + tool_call_id = self._builtin_tool_call_ids[tool_call_id] + yield ToolCallArgsEvent( + tool_call_id=tool_call_id, + delta=delta.args_delta if isinstance(delta.args_delta, str) else json.dumps(delta.args_delta), + ) + + async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[BaseEvent]: + yield ToolCallEndEvent(tool_call_id=part.tool_call_id) + + async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[BaseEvent]: + yield ToolCallEndEvent(tool_call_id=self._builtin_tool_call_ids[part.tool_call_id]) + + async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[BaseEvent]: + tool_call_id = self._builtin_tool_call_ids[part.tool_call_id] + yield ToolCallResultEvent( + message_id=self.new_message_id(), + type=EventType.TOOL_CALL_RESULT, + role='tool', + tool_call_id=tool_call_id, + content=part.model_response_str(), + ) + + async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[BaseEvent]: + result = event.result + output = result.model_response() if isinstance(result, RetryPromptPart) else result.model_response_str() + + yield ToolCallResultEvent( + message_id=self.new_message_id(), + type=EventType.TOOL_CALL_RESULT, + role='tool', + tool_call_id=result.tool_call_id, + content=output, + ) + + # ToolCallResultEvent.content may hold user parts (e.g. text, images) that AG-UI does not currently have events for + + if isinstance(result, ToolReturnPart): + # Check for AG-UI events returned by tool calls. + possible_event = result.metadata or result.content + if isinstance(possible_event, BaseEvent): + yield possible_event + elif isinstance(possible_event, str | bytes): # pragma: no branch + # Avoid iterable check for strings and bytes. + pass + elif isinstance(possible_event, Iterable): # pragma: no branch + for item in possible_event: # type: ignore[reportUnknownMemberType] + if isinstance(item, BaseEvent): # pragma: no branch + yield item diff --git a/pydantic_ai_slim/pydantic_ai/ui/ag_ui/app.py b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/app.py new file mode 100644 index 0000000000..2d9cb434f0 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/ag_ui/app.py @@ -0,0 +1,141 @@ +"""AG-UI protocol integration for Pydantic AI agents.""" + +from __future__ import annotations + +from collections.abc import Callable, Mapping, Sequence +from typing import Any, Generic + +from typing_extensions import Self + +from pydantic_ai import DeferredToolResults +from pydantic_ai.agent import AbstractAgent +from pydantic_ai.builtin_tools import AbstractBuiltinTool +from pydantic_ai.messages import ModelMessage +from pydantic_ai.models import KnownModelName, Model +from pydantic_ai.output import OutputDataT, OutputSpec +from pydantic_ai.settings import ModelSettings +from pydantic_ai.tools import AgentDepsT +from pydantic_ai.toolsets import AbstractToolset +from pydantic_ai.usage import RunUsage, UsageLimits + +from .. import OnCompleteFunc +from ._adapter import AGUIAdapter + +try: + from starlette.applications import Starlette + from starlette.middleware import Middleware + from starlette.requests import Request + from starlette.responses import Response + from starlette.routing import BaseRoute + from starlette.types import ExceptionHandler, Lifespan +except ImportError as e: # pragma: no cover + raise ImportError( + 'Please install the `starlette` package to use `AGUIApp`, ' + 'you can use the `ag-ui` optional group — `pip install "pydantic-ai-slim[ag-ui]"`' + ) from e + + +class AGUIApp(Generic[AgentDepsT, OutputDataT], Starlette): + """ASGI application for running Pydantic AI agents with AG-UI protocol support.""" + + def __init__( + self, + agent: AbstractAgent[AgentDepsT, OutputDataT], + *, + # AGUIAdapter.dispatch_request parameters + output_type: OutputSpec[Any] | None = None, + message_history: Sequence[ModelMessage] | None = None, + deferred_tool_results: DeferredToolResults | None = None, + model: Model | KnownModelName | str | None = None, + deps: AgentDepsT = None, + model_settings: ModelSettings | None = None, + usage_limits: UsageLimits | None = None, + usage: RunUsage | None = None, + infer_name: bool = True, + toolsets: Sequence[AbstractToolset[AgentDepsT]] | None = None, + builtin_tools: Sequence[AbstractBuiltinTool] | None = None, + on_complete: OnCompleteFunc[Any] | None = None, + # Starlette parameters + debug: bool = False, + routes: Sequence[BaseRoute] | None = None, + middleware: Sequence[Middleware] | None = None, + exception_handlers: Mapping[Any, ExceptionHandler] | None = None, + on_startup: Sequence[Callable[[], Any]] | None = None, + on_shutdown: Sequence[Callable[[], Any]] | None = None, + lifespan: Lifespan[Self] | None = None, + ) -> None: + """An ASGI application that handles every request by running the agent and streaming the response. + + Note that the `deps` will be the same for each request, with the exception of the frontend state that's + injected into the `state` field of a `deps` object that implements the [`StateHandler`][pydantic_ai.ui.StateHandler] protocol. + To provide different `deps` for each request (e.g. based on the authenticated user), + use [`AGUIAdapter.run_stream()`][pydantic_ai.ui.ag_ui.AGUIAdapter.run_stream] or + [`AGUIAdapter.dispatch_request()`][pydantic_ai.ui.ag_ui.AGUIAdapter.dispatch_request] instead. + + Args: + agent: The agent to run. + + output_type: Custom output type to use for this run, `output_type` may only be used if the agent has + no output validators since output validators would expect an argument that matches the agent's + output type. + message_history: History of the conversation so far. + deferred_tool_results: Optional results for deferred tool calls in the message history. + model: Optional model to use for this run, required if `model` was not set when creating the agent. + deps: Optional dependencies to use for this run. + model_settings: Optional settings to use for this model's request. + usage_limits: Optional limits on model request count or token usage. + usage: Optional usage to start with, useful for resuming a conversation or agents used in tools. + infer_name: Whether to try to infer the agent name from the call frame if it's not set. + toolsets: Optional additional toolsets for this run. + builtin_tools: Optional additional builtin tools for this run. + on_complete: Optional callback function called when the agent run completes successfully. + The callback receives the completed [`AgentRunResult`][pydantic_ai.agent.AgentRunResult] and can access `all_messages()` and other result data. + + debug: Boolean indicating if debug tracebacks should be returned on errors. + routes: A list of routes to serve incoming HTTP and WebSocket requests. + middleware: A list of middleware to run for every request. A starlette application will always + automatically include two middleware classes. `ServerErrorMiddleware` is added as the very + outermost middleware, to handle any uncaught errors occurring anywhere in the entire stack. + `ExceptionMiddleware` is added as the very innermost middleware, to deal with handled + exception cases occurring in the routing or endpoints. + exception_handlers: A mapping of either integer status codes, or exception class types onto + callables which handle the exceptions. Exception handler callables should be of the form + `handler(request, exc) -> response` and may be either standard functions, or async functions. + on_startup: A list of callables to run on application startup. Startup handler callables do not + take any arguments, and may be either standard functions, or async functions. + on_shutdown: A list of callables to run on application shutdown. Shutdown handler callables do + not take any arguments, and may be either standard functions, or async functions. + lifespan: A lifespan context function, which can be used to perform startup and shutdown tasks. + This is a newer style that replaces the `on_startup` and `on_shutdown` handlers. Use one or + the other, not both. + """ + super().__init__( + debug=debug, + routes=routes, + middleware=middleware, + exception_handlers=exception_handlers, + on_startup=on_startup, + on_shutdown=on_shutdown, + lifespan=lifespan, + ) + + async def run_agent(request: Request) -> Response: + """Endpoint to run the agent with the provided input data.""" + return await AGUIAdapter[AgentDepsT, OutputDataT].dispatch_request( + request, + agent=agent, + output_type=output_type, + message_history=message_history, + deferred_tool_results=deferred_tool_results, + model=model, + deps=deps, + model_settings=model_settings, + usage_limits=usage_limits, + usage=usage, + infer_name=infer_name, + toolsets=toolsets, + builtin_tools=builtin_tools, + on_complete=on_complete, + ) + + self.router.add_route('/', run_agent, methods=['POST']) diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/__init__.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/__init__.py new file mode 100644 index 0000000000..40c9210de2 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/__init__.py @@ -0,0 +1,16 @@ +"""Vercel AI protocol adapter for Pydantic AI agents. + +This module provides classes for integrating Pydantic AI agents with the Vercel AI protocol, +enabling streaming event-based communication for interactive AI applications. + +Converted to Python from: +https://github.com/vercel/ai/blob/ai%405.0.34/packages/ai/src/ui/ui-messages.ts +""" + +from ._adapter import VercelAIAdapter +from ._event_stream import VercelAIEventStream + +__all__ = [ + 'VercelAIEventStream', + 'VercelAIAdapter', +] diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py new file mode 100644 index 0000000000..7eee52c419 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_adapter.py @@ -0,0 +1,199 @@ +"""Vercel AI adapter for handling requests.""" + +from __future__ import annotations + +from collections.abc import Sequence +from dataclasses import dataclass +from functools import cached_property +from typing import TYPE_CHECKING + +from pydantic import TypeAdapter +from typing_extensions import assert_never + +from ...messages import ( + AudioUrl, + BinaryContent, + BuiltinToolCallPart, + BuiltinToolReturnPart, + DocumentUrl, + FilePart, + ImageUrl, + ModelMessage, + RetryPromptPart, + SystemPromptPart, + TextPart, + ThinkingPart, + ToolCallPart, + ToolReturnPart, + UserContent, + UserPromptPart, + VideoUrl, +) +from ...output import OutputDataT +from ...tools import AgentDepsT +from .. import MessagesBuilder, UIAdapter, UIEventStream +from ._event_stream import VercelAIEventStream +from .request_types import ( + DataUIPart, + DynamicToolUIPart, + FileUIPart, + ReasoningUIPart, + RequestData, + SourceDocumentUIPart, + SourceUrlUIPart, + StepStartUIPart, + TextUIPart, + ToolOutputAvailablePart, + ToolOutputErrorPart, + ToolUIPart, + UIMessage, +) +from .response_types import BaseChunk + +if TYPE_CHECKING: + pass + + +__all__ = ['VercelAIAdapter'] + +request_data_ta: TypeAdapter[RequestData] = TypeAdapter(RequestData) + + +@dataclass +class VercelAIAdapter(UIAdapter[RequestData, UIMessage, BaseChunk, AgentDepsT, OutputDataT]): + """UI adapter for the Vercel AI protocol.""" + + @classmethod + def build_run_input(cls, body: bytes) -> RequestData: + """Build a Vercel AI run input object from the request body.""" + return request_data_ta.validate_json(body) + + def build_event_stream(self) -> UIEventStream[RequestData, BaseChunk, AgentDepsT, OutputDataT]: + """Build a Vercel AI event stream transformer.""" + return VercelAIEventStream(self.run_input, accept=self.accept) + + @cached_property + def messages(self) -> list[ModelMessage]: + """Pydantic AI messages from the Vercel AI run input.""" + return self.load_messages(self.run_input.messages) + + @classmethod + def load_messages(cls, messages: Sequence[UIMessage]) -> list[ModelMessage]: # noqa: C901 + """Transform Vercel AI messages into Pydantic AI messages.""" + builder = MessagesBuilder() + + for msg in messages: + if msg.role == 'system': + for part in msg.parts: + if isinstance(part, TextUIPart): + builder.add(SystemPromptPart(content=part.text)) + else: # pragma: no cover + raise ValueError(f'Unsupported system message part type: {type(part)}') + elif msg.role == 'user': + user_prompt_content: str | list[UserContent] = [] + for part in msg.parts: + if isinstance(part, TextUIPart): + user_prompt_content.append(part.text) + elif isinstance(part, FileUIPart): + try: + file = BinaryContent.from_data_uri(part.url) + except ValueError: + media_type_prefix = part.media_type.split('/', 1)[0] + match media_type_prefix: + case 'image': + file = ImageUrl(url=part.url, media_type=part.media_type) + case 'video': + file = VideoUrl(url=part.url, media_type=part.media_type) + case 'audio': + file = AudioUrl(url=part.url, media_type=part.media_type) + case _: + file = DocumentUrl(url=part.url, media_type=part.media_type) + user_prompt_content.append(file) + else: # pragma: no cover + raise ValueError(f'Unsupported user message part type: {type(part)}') + + if user_prompt_content: # pragma: no branch + if len(user_prompt_content) == 1 and isinstance(user_prompt_content[0], str): + user_prompt_content = user_prompt_content[0] + builder.add(UserPromptPart(content=user_prompt_content)) + + elif msg.role == 'assistant': + for part in msg.parts: + if isinstance(part, TextUIPart): + builder.add(TextPart(content=part.text)) + elif isinstance(part, ReasoningUIPart): + builder.add(ThinkingPart(content=part.text)) + elif isinstance(part, FileUIPart): + try: + file = BinaryContent.from_data_uri(part.url) + except ValueError as e: # pragma: no cover + # We don't yet handle non-data-URI file URLs returned by assistants, as no Pydantic AI models do this. + raise ValueError( + 'Vercel AI integration can currently only handle assistant file parts with data URIs.' + ) from e + builder.add(FilePart(content=file)) + elif isinstance(part, ToolUIPart | DynamicToolUIPart): + if isinstance(part, DynamicToolUIPart): + tool_name = part.tool_name + builtin_tool = False + else: + tool_name = part.type.removeprefix('tool-') + builtin_tool = part.provider_executed + + tool_call_id = part.tool_call_id + args = part.input + + if builtin_tool: + call_part = BuiltinToolCallPart(tool_name=tool_name, tool_call_id=tool_call_id, args=args) + builder.add(call_part) + + if isinstance(part, ToolOutputAvailablePart | ToolOutputErrorPart): + if part.state == 'output-available': + output = part.output + else: + output = {'error_text': part.error_text, 'is_error': True} + + provider_name = ( + (part.call_provider_metadata or {}).get('pydantic_ai', {}).get('provider_name') + ) + call_part.provider_name = provider_name + + builder.add( + BuiltinToolReturnPart( + tool_name=tool_name, + tool_call_id=tool_call_id, + content=output, + provider_name=provider_name, + ) + ) + else: + builder.add(ToolCallPart(tool_name=tool_name, tool_call_id=tool_call_id, args=args)) + + if part.state == 'output-available': + builder.add( + ToolReturnPart(tool_name=tool_name, tool_call_id=tool_call_id, content=part.output) + ) + elif part.state == 'output-error': + builder.add( + RetryPromptPart( + tool_name=tool_name, tool_call_id=tool_call_id, content=part.error_text + ) + ) + elif isinstance(part, DataUIPart): # pragma: no cover + # Contains custom data that shouldn't be sent to the model + pass + elif isinstance(part, SourceUrlUIPart): # pragma: no cover + # TODO: Once we support citations: https://github.com/pydantic/pydantic-ai/issues/3126 + pass + elif isinstance(part, SourceDocumentUIPart): # pragma: no cover + # TODO: Once we support citations: https://github.com/pydantic/pydantic-ai/issues/3126 + pass + elif isinstance(part, StepStartUIPart): # pragma: no cover + # Nothing to do here + pass + else: + assert_never(part) + else: + assert_never(msg.role) + + return builder.messages diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_event_stream.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_event_stream.py new file mode 100644 index 0000000000..b3a0e79f5c --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_event_stream.py @@ -0,0 +1,187 @@ +"""Vercel AI event stream implementation.""" + +from __future__ import annotations + +from collections.abc import AsyncIterator, Mapping +from dataclasses import dataclass +from typing import Any + +from pydantic_core import to_json + +from ...messages import ( + BuiltinToolCallPart, + BuiltinToolReturnPart, + FilePart, + FunctionToolResultEvent, + RetryPromptPart, + TextPart, + TextPartDelta, + ThinkingPart, + ThinkingPartDelta, + ToolCallPart, + ToolCallPartDelta, +) +from ...output import OutputDataT +from ...tools import AgentDepsT +from .. import UIEventStream +from .request_types import RequestData +from .response_types import ( + BaseChunk, + DoneChunk, + ErrorChunk, + FileChunk, + FinishChunk, + FinishStepChunk, + ReasoningDeltaChunk, + ReasoningEndChunk, + ReasoningStartChunk, + StartChunk, + StartStepChunk, + TextDeltaChunk, + TextEndChunk, + TextStartChunk, + ToolInputAvailableChunk, + ToolInputDeltaChunk, + ToolInputStartChunk, + ToolOutputAvailableChunk, + ToolOutputErrorChunk, +) + +__all__ = ['VercelAIEventStream'] + +# See https://ai-sdk.dev/docs/ai-sdk-ui/stream-protocol#data-stream-protocol +VERCEL_AI_DSP_HEADERS = {'x-vercel-ai-ui-message-stream': 'v1'} + + +def _json_dumps(obj: Any) -> str: + """Dump an object to JSON string.""" + return to_json(obj).decode('utf-8') + + +@dataclass +class VercelAIEventStream(UIEventStream[RequestData, BaseChunk, AgentDepsT, OutputDataT]): + """UI event stream transformer for the Vercel AI protocol.""" + + _step_started: bool = False + + @property + def response_headers(self) -> Mapping[str, str] | None: + return VERCEL_AI_DSP_HEADERS + + def encode_event(self, event: BaseChunk) -> str: + return f'data: {event.encode()}\n\n' + + async def before_stream(self) -> AsyncIterator[BaseChunk]: + yield StartChunk() + + async def before_response(self) -> AsyncIterator[BaseChunk]: + if self._step_started: + yield FinishStepChunk() + + self._step_started = True + yield StartStepChunk() + + async def after_stream(self) -> AsyncIterator[BaseChunk]: + yield FinishStepChunk() + + yield FinishChunk() + yield DoneChunk() + + async def on_error(self, error: Exception) -> AsyncIterator[BaseChunk]: + yield ErrorChunk(error_text=str(error)) + + async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[BaseChunk]: + if follows_text: + message_id = self.message_id + else: + message_id = self.new_message_id() + yield TextStartChunk(id=message_id) + + if part.content: + yield TextDeltaChunk(id=message_id, delta=part.content) + + async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[BaseChunk]: + if delta.content_delta: # pragma: no branch + yield TextDeltaChunk(id=self.message_id, delta=delta.content_delta) + + async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[BaseChunk]: + if not followed_by_text: + yield TextEndChunk(id=self.message_id) + + async def handle_thinking_start( + self, part: ThinkingPart, follows_thinking: bool = False + ) -> AsyncIterator[BaseChunk]: + message_id = self.new_message_id() + yield ReasoningStartChunk(id=message_id) + if part.content: + yield ReasoningDeltaChunk(id=message_id, delta=part.content) + + async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[BaseChunk]: + if delta.content_delta: # pragma: no branch + yield ReasoningDeltaChunk(id=self.message_id, delta=delta.content_delta) + + async def handle_thinking_end( + self, part: ThinkingPart, followed_by_thinking: bool = False + ) -> AsyncIterator[BaseChunk]: + yield ReasoningEndChunk(id=self.message_id) + + def handle_tool_call_start(self, part: ToolCallPart | BuiltinToolCallPart) -> AsyncIterator[BaseChunk]: + return self._handle_tool_call_start(part) + + def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[BaseChunk]: + return self._handle_tool_call_start(part, provider_executed=True) + + async def _handle_tool_call_start( + self, + part: ToolCallPart | BuiltinToolCallPart, + tool_call_id: str | None = None, + provider_executed: bool | None = None, + ) -> AsyncIterator[BaseChunk]: + tool_call_id = tool_call_id or part.tool_call_id + yield ToolInputStartChunk( + tool_call_id=tool_call_id, + tool_name=part.tool_name, + provider_executed=provider_executed, + ) + if part.args: + yield ToolInputDeltaChunk(tool_call_id=tool_call_id, input_text_delta=part.args_as_json_str()) + + async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[BaseChunk]: + tool_call_id = delta.tool_call_id or '' + assert tool_call_id, '`ToolCallPartDelta.tool_call_id` must be set' + yield ToolInputDeltaChunk( + tool_call_id=tool_call_id, + input_text_delta=delta.args_delta if isinstance(delta.args_delta, str) else _json_dumps(delta.args_delta), + ) + + async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[BaseChunk]: + yield ToolInputAvailableChunk(tool_call_id=part.tool_call_id, tool_name=part.tool_name, input=part.args) + + async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[BaseChunk]: + yield ToolInputAvailableChunk( + tool_call_id=part.tool_call_id, + tool_name=part.tool_name, + input=part.args, + provider_executed=True, + provider_metadata={'pydantic_ai': {'provider_name': part.provider_name}}, + ) + + async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[BaseChunk]: + yield ToolOutputAvailableChunk( + tool_call_id=part.tool_call_id, + output=part.content, + provider_executed=True, + ) + + async def handle_file(self, part: FilePart) -> AsyncIterator[BaseChunk]: + file = part.content + yield FileChunk(url=file.data_uri, media_type=file.media_type) + + async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[BaseChunk]: + result = event.result + if isinstance(result, RetryPromptPart): + yield ToolOutputErrorChunk(tool_call_id=result.tool_call_id, error_text=result.model_response()) + else: + yield ToolOutputAvailableChunk(tool_call_id=result.tool_call_id, output=result.content) + + # ToolCallResultEvent.content may hold user parts (e.g. text, images) that Vercel AI does not currently have events for diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_utils.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_utils.py new file mode 100644 index 0000000000..0daf8f35de --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/_utils.py @@ -0,0 +1,16 @@ +"""Utilities for Vercel AI protocol. + +Converted to Python from: +https://github.com/vercel/ai/blob/ai%405.0.34/packages/ai/src/ui/ui-messages.ts +""" + +from abc import ABC + +from pydantic import BaseModel, ConfigDict +from pydantic.alias_generators import to_camel + + +class CamelBaseModel(BaseModel, ABC): + """Base model with camelCase aliases.""" + + model_config = ConfigDict(alias_generator=to_camel, populate_by_name=True, extra='forbid') diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/request_types.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/request_types.py new file mode 100644 index 0000000000..1fe9a593af --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/request_types.py @@ -0,0 +1,275 @@ +"""Vercel AI request types (UI messages). + +Converted to Python from: +https://github.com/vercel/ai/blob/ai%405.0.59/packages/ai/src/ui/ui-messages.ts +""" + +from abc import ABC +from typing import Annotated, Any, Literal + +from pydantic import Discriminator, Field + +from ._utils import CamelBaseModel + +# Technically this is recursive union of JSON types; for simplicity, we call it Any +JSONValue = Any +ProviderMetadata = dict[str, dict[str, JSONValue]] +"""Provider metadata.""" + + +class BaseUIPart(CamelBaseModel, ABC): + """Abstract base class for all UI parts.""" + + +class TextUIPart(BaseUIPart): + """A text part of a message.""" + + type: Literal['text'] = 'text' + + text: str + """The text content.""" + + state: Literal['streaming', 'done'] | None = None + """The state of the text part.""" + + provider_metadata: ProviderMetadata | None = None + """The provider metadata.""" + + +class ReasoningUIPart(BaseUIPart): + """A reasoning part of a message.""" + + type: Literal['reasoning'] = 'reasoning' + + text: str + """The reasoning text.""" + + state: Literal['streaming', 'done'] | None = None + """The state of the reasoning part.""" + + provider_metadata: ProviderMetadata | None = None + """The provider metadata.""" + + +class SourceUrlUIPart(BaseUIPart): + """A source part of a message.""" + + type: Literal['source-url'] = 'source-url' + source_id: str + url: str + title: str | None = None + provider_metadata: ProviderMetadata | None = None + + +class SourceDocumentUIPart(BaseUIPart): + """A document source part of a message.""" + + type: Literal['source-document'] = 'source-document' + source_id: str + media_type: str + title: str + filename: str | None = None + provider_metadata: ProviderMetadata | None = None + + +class FileUIPart(BaseUIPart): + """A file part of a message.""" + + type: Literal['file'] = 'file' + + media_type: str + """ + IANA media type of the file. + @see https://www.iana.org/assignments/media-types/media-types.xhtml + """ + + filename: str | None = None + """Optional filename of the file.""" + + url: str + """ + The URL of the file. + It can either be a URL to a hosted file or a [Data URL](https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URLs). + """ + + provider_metadata: ProviderMetadata | None = None + """The provider metadata.""" + + +class StepStartUIPart(BaseUIPart): + """A step boundary part of a message.""" + + type: Literal['step-start'] = 'step-start' + + +class DataUIPart(BaseUIPart): + """Data part with dynamic type based on data name.""" + + type: Annotated[str, Field(pattern=r'^data-')] + id: str | None = None + data: Any + + +# Tool part states as separate models +class ToolInputStreamingPart(BaseUIPart): + """Tool part in input-streaming state.""" + + type: Annotated[str, Field(pattern=r'^tool-')] + tool_call_id: str + state: Literal['input-streaming'] = 'input-streaming' + input: Any | None = None + provider_executed: bool | None = None + + +class ToolInputAvailablePart(BaseUIPart): + """Tool part in input-available state.""" + + type: Annotated[str, Field(pattern=r'^tool-')] + tool_call_id: str + state: Literal['input-available'] = 'input-available' + input: Any | None = None + provider_executed: bool | None = None + call_provider_metadata: ProviderMetadata | None = None + + +class ToolOutputAvailablePart(BaseUIPart): + """Tool part in output-available state.""" + + type: Annotated[str, Field(pattern=r'^tool-')] + tool_call_id: str + state: Literal['output-available'] = 'output-available' + input: Any | None = None + output: Any | None = None + provider_executed: bool | None = None + call_provider_metadata: ProviderMetadata | None = None + preliminary: bool | None = None + + +class ToolOutputErrorPart(BaseUIPart): + """Tool part in output-error state.""" + + type: Annotated[str, Field(pattern=r'^tool-')] + tool_call_id: str + state: Literal['output-error'] = 'output-error' + input: Any | None = None + raw_input: Any | None = None + error_text: str + provider_executed: bool | None = None + call_provider_metadata: ProviderMetadata | None = None + + +ToolUIPart = ToolInputStreamingPart | ToolInputAvailablePart | ToolOutputAvailablePart | ToolOutputErrorPart +"""Union of all tool part types.""" + + +# Dynamic tool part states as separate models +class DynamicToolInputStreamingPart(BaseUIPart): + """Dynamic tool part in input-streaming state.""" + + type: Literal['dynamic-tool'] = 'dynamic-tool' + tool_name: str + tool_call_id: str + state: Literal['input-streaming'] = 'input-streaming' + input: Any | None = None + + +class DynamicToolInputAvailablePart(BaseUIPart): + """Dynamic tool part in input-available state.""" + + type: Literal['dynamic-tool'] = 'dynamic-tool' + tool_name: str + tool_call_id: str + state: Literal['input-available'] = 'input-available' + input: Any + call_provider_metadata: ProviderMetadata | None = None + + +class DynamicToolOutputAvailablePart(BaseUIPart): + """Dynamic tool part in output-available state.""" + + type: Literal['dynamic-tool'] = 'dynamic-tool' + tool_name: str + tool_call_id: str + state: Literal['output-available'] = 'output-available' + input: Any + output: Any + call_provider_metadata: ProviderMetadata | None = None + preliminary: bool | None = None + + +class DynamicToolOutputErrorPart(BaseUIPart): + """Dynamic tool part in output-error state.""" + + type: Literal['dynamic-tool'] = 'dynamic-tool' + tool_name: str + tool_call_id: str + state: Literal['output-error'] = 'output-error' + input: Any + error_text: str + call_provider_metadata: ProviderMetadata | None = None + + +DynamicToolUIPart = ( + DynamicToolInputStreamingPart + | DynamicToolInputAvailablePart + | DynamicToolOutputAvailablePart + | DynamicToolOutputErrorPart +) +"""Union of all dynamic tool part types.""" + + +UIMessagePart = ( + TextUIPart + | ReasoningUIPart + | ToolUIPart + | DynamicToolUIPart + | SourceUrlUIPart + | SourceDocumentUIPart + | FileUIPart + | DataUIPart + | StepStartUIPart +) +"""Union of all message part types.""" + + +class UIMessage(CamelBaseModel): + """A message as displayed in the UI by Vercel AI Elements.""" + + id: str + """A unique identifier for the message.""" + + role: Literal['system', 'user', 'assistant'] + """The role of the message.""" + + metadata: Any | None = None + """The metadata of the message.""" + + parts: list[UIMessagePart] + """ + The parts of the message. Use this for rendering the message in the UI. + System messages should be avoided (set the system prompt on the server instead). + They can have text parts. + User messages can have text parts and file parts. + Assistant messages can have text, reasoning, tool invocation, and file parts. + """ + + +class SubmitMessage(CamelBaseModel, extra='allow'): + """Submit message request.""" + + trigger: Literal['submit-message'] = 'submit-message' + id: str + messages: list[UIMessage] + + +class RegenerateMessage(CamelBaseModel, extra='allow'): + """Ask the agent to regenerate a message.""" + + trigger: Literal['regenerate-message'] + id: str + messages: list[UIMessage] + message_id: str + + +RequestData = Annotated[SubmitMessage | RegenerateMessage, Discriminator('trigger')] +"""Union of all request data types.""" diff --git a/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/response_types.py b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/response_types.py new file mode 100644 index 0000000000..1255503107 --- /dev/null +++ b/pydantic_ai_slim/pydantic_ai/ui/vercel_ai/response_types.py @@ -0,0 +1,230 @@ +"""Vercel AI response types (SSE chunks). + +Converted to Python from: +https://github.com/vercel/ai/blob/ai%405.0.59/packages/ai/src/ui-message-stream/ui-message-chunks.ts +""" + +from abc import ABC +from typing import Annotated, Any, Literal + +from pydantic import Field + +from ._utils import CamelBaseModel + +# Technically this is recursive union of JSON types; for simplicity, we call it Any +JSONValue = Any +ProviderMetadata = dict[str, dict[str, JSONValue]] +"""Provider metadata.""" + + +class BaseChunk(CamelBaseModel, ABC): + """Abstract base class for response SSE events.""" + + def encode(self) -> str: + return self.model_dump_json(by_alias=True, exclude_none=True) + + +class TextStartChunk(BaseChunk): + """Text start chunk.""" + + type: Literal['text-start'] = 'text-start' + id: str + provider_metadata: ProviderMetadata | None = None + + +class TextDeltaChunk(BaseChunk): + """Text delta chunk.""" + + type: Literal['text-delta'] = 'text-delta' + delta: str + id: str + provider_metadata: ProviderMetadata | None = None + + +class TextEndChunk(BaseChunk): + """Text end chunk.""" + + type: Literal['text-end'] = 'text-end' + id: str + provider_metadata: ProviderMetadata | None = None + + +class ReasoningStartChunk(BaseChunk): + """Reasoning start chunk.""" + + type: Literal['reasoning-start'] = 'reasoning-start' + id: str + provider_metadata: ProviderMetadata | None = None + + +class ReasoningDeltaChunk(BaseChunk): + """Reasoning delta chunk.""" + + type: Literal['reasoning-delta'] = 'reasoning-delta' + id: str + delta: str + provider_metadata: ProviderMetadata | None = None + + +class ReasoningEndChunk(BaseChunk): + """Reasoning end chunk.""" + + type: Literal['reasoning-end'] = 'reasoning-end' + id: str + provider_metadata: ProviderMetadata | None = None + + +class ErrorChunk(BaseChunk): + """Error chunk.""" + + type: Literal['error'] = 'error' + error_text: str + + +class ToolInputStartChunk(BaseChunk): + """Tool input start chunk.""" + + type: Literal['tool-input-start'] = 'tool-input-start' + tool_call_id: str + tool_name: str + provider_executed: bool | None = None + dynamic: bool | None = None + + +class ToolInputDeltaChunk(BaseChunk): + """Tool input delta chunk.""" + + type: Literal['tool-input-delta'] = 'tool-input-delta' + tool_call_id: str + input_text_delta: str + + +class ToolOutputAvailableChunk(BaseChunk): + """Tool output available chunk.""" + + type: Literal['tool-output-available'] = 'tool-output-available' + tool_call_id: str + output: Any + provider_executed: bool | None = None + dynamic: bool | None = None + preliminary: bool | None = None + + +class ToolInputAvailableChunk(BaseChunk): + """Tool input available chunk.""" + + type: Literal['tool-input-available'] = 'tool-input-available' + tool_call_id: str + tool_name: str + input: Any + provider_executed: bool | None = None + provider_metadata: ProviderMetadata | None = None + dynamic: bool | None = None + + +class ToolInputErrorChunk(BaseChunk): + """Tool input error chunk.""" + + type: Literal['tool-input-error'] = 'tool-input-error' + tool_call_id: str + tool_name: str + input: Any + provider_executed: bool | None = None + provider_metadata: ProviderMetadata | None = None + dynamic: bool | None = None + error_text: str + + +class ToolOutputErrorChunk(BaseChunk): + """Tool output error chunk.""" + + type: Literal['tool-output-error'] = 'tool-output-error' + tool_call_id: str + error_text: str + provider_executed: bool | None = None + dynamic: bool | None = None + + +class SourceUrlChunk(BaseChunk): + """Source URL chunk.""" + + type: Literal['source-url'] = 'source-url' + source_id: str + url: str + title: str | None = None + provider_metadata: ProviderMetadata | None = None + + +class SourceDocumentChunk(BaseChunk): + """Source document chunk.""" + + type: Literal['source-document'] = 'source-document' + source_id: str + media_type: str + title: str + filename: str | None = None + provider_metadata: ProviderMetadata | None = None + + +class FileChunk(BaseChunk): + """File chunk.""" + + type: Literal['file'] = 'file' + url: str + media_type: str + + +class DataChunk(BaseChunk): + """Data chunk with dynamic type.""" + + type: Annotated[str, Field(pattern=r'^data-')] + data: Any + + +class StartStepChunk(BaseChunk): + """Start step chunk.""" + + type: Literal['start-step'] = 'start-step' + + +class FinishStepChunk(BaseChunk): + """Finish step chunk.""" + + type: Literal['finish-step'] = 'finish-step' + + +class StartChunk(BaseChunk): + """Start chunk.""" + + type: Literal['start'] = 'start' + message_id: str | None = None + message_metadata: Any | None = None + + +class FinishChunk(BaseChunk): + """Finish chunk.""" + + type: Literal['finish'] = 'finish' + message_metadata: Any | None = None + + +class AbortChunk(BaseChunk): + """Abort chunk.""" + + type: Literal['abort'] = 'abort' + + +class MessageMetadataChunk(BaseChunk): + """Message metadata chunk.""" + + type: Literal['message-metadata'] = 'message-metadata' + message_metadata: Any + + +class DoneChunk(BaseChunk): + """Done chunk.""" + + type: Literal['done'] = 'done' + + def encode(self) -> str: + return '[DONE]' diff --git a/pydantic_ai_slim/pyproject.toml b/pydantic_ai_slim/pyproject.toml index 82b1a514ae..54538f1deb 100644 --- a/pydantic_ai_slim/pyproject.toml +++ b/pydantic_ai_slim/pyproject.toml @@ -97,6 +97,8 @@ mcp = ["mcp>=1.12.3"] fastmcp = ["fastmcp>=2.12.0"] # Evals evals = ["pydantic-evals=={{ version }}"] +# UI +ui = ["starlette>=0.45.3"] # A2A a2a = ["fasta2a>=0.4.1"] # AG-UI diff --git a/pyproject.toml b/pyproject.toml index da9f5cdcdc..3c13afdece 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -46,7 +46,7 @@ requires-python = ">=3.10" [tool.hatch.metadata.hooks.uv-dynamic-versioning] dependencies = [ - "pydantic-ai-slim[openai,vertexai,google,groq,anthropic,mistral,cohere,bedrock,huggingface,cli,mcp,fastmcp,evals,ag-ui,retries,temporal,logfire]=={{ version }}", + "pydantic-ai-slim[openai,vertexai,google,groq,anthropic,mistral,cohere,bedrock,huggingface,cli,mcp,fastmcp,evals,ag-ui,retries,temporal,logfire,ui]=={{ version }}", ] [tool.hatch.metadata.hooks.uv-dynamic-versioning.optional-dependencies] diff --git a/tests/cassettes/test_vercel_ai/test_run.yaml b/tests/cassettes/test_vercel_ai/test_run.yaml new file mode 100644 index 0000000000..f4bd74e5f6 --- /dev/null +++ b/tests/cassettes/test_vercel_ai/test_run.yaml @@ -0,0 +1,849 @@ +interactions: +- request: + headers: + accept: + - application/json + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '301' + content-type: + - application/json + host: + - api.openai.com + method: POST + parsed_body: + include: + - reasoning.encrypted_content + input: + - content: How do I get FastAPI instrumentation to include the HTTP request and response + role: user + model: gpt-5 + previous_response_id: null + stream: true + tool_choice: auto + tools: + - search_context_size: medium + type: web_search + uri: https://api.openai.com/v1/responses + response: + body: + string: |+ + event: response.created + data: {"type":"response.created","sequence_number":0,"response":{"id":"resp_00e767404995b9950068e647f092888191843d25c5285ef895","object":"response","created_at":1759922160,"status":"in_progress","background":false,"error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"max_tool_calls":null,"model":"gpt-5-2025-08-07","output":[],"parallel_tool_calls":true,"previous_response_id":null,"prompt_cache_key":null,"reasoning":{"effort":"medium","summary":null},"safety_identifier":null,"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"},"verbosity":"medium"},"tool_choice":"auto","tools":[{"type":"web_search","filters":null,"search_context_size":"medium","user_location":{"type":"approximate","city":null,"country":"US","region":null,"timezone":null}}],"top_logprobs":0,"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} + + event: response.in_progress + data: {"type":"response.in_progress","sequence_number":1,"response":{"id":"resp_00e767404995b9950068e647f092888191843d25c5285ef895","object":"response","created_at":1759922160,"status":"in_progress","background":false,"error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"max_tool_calls":null,"model":"gpt-5-2025-08-07","output":[],"parallel_tool_calls":true,"previous_response_id":null,"prompt_cache_key":null,"reasoning":{"effort":"medium","summary":null},"safety_identifier":null,"service_tier":"auto","store":true,"temperature":1.0,"text":{"format":{"type":"text"},"verbosity":"medium"},"tool_choice":"auto","tools":[{"type":"web_search","filters":null,"search_context_size":"medium","user_location":{"type":"approximate","city":null,"country":"US","region":null,"timezone":null}}],"top_logprobs":0,"top_p":1.0,"truncation":"disabled","usage":null,"user":null,"metadata":{}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":2,"output_index":0,"item":{"id":"rs_00e767404995b9950068e647f10d8c819187515d1b2517b059","type":"reasoning","encrypted_content":"gAAAAABo5kfxLc0mW1zaOXGjnG239Cj0OLbDS4R2vZP9Qkm4_OcqmYRLMgU_KvshspEnG73vwwg0ZJmuTP56pmAg1NYvUTVIGdfQ3vXswO7VsH0mbZYxDgcbGS8638Q4AZNyrd3cYJOa5mJDsVL5Mxu5Y6GmwW3SrDWQv3aNBSnTXRRko0A1B5zWWRsHngMogVlauGY4aUbPPSTtJZucgoLiirHZ5ROWD-NYBVRbCmhWCoZGOUKFCO456KqurwtrhHc_HSEWnr0ohnYkh3gmRy3HWhDopz4lKve7rxtPD8CTb9Bmzss3XogM5KgopyRU1XjA31QXyMNvi5R9gC90FMokaWnHbea3MUPsJE2dw_wJ6NCYkEf8YqVMinTo9MV9hH82Oq3FamabeE8U9911E_sPl1BNH8wAOQLxm0Zi8Je8ulp1dHoyqZD_vtfzx4Yue0VwuQdhyHj-YMpPEGRWflr_gHePrYsMcM0LUAKyex6FpWRYoJlvJp3kjDi_IwDxMVYCyEjO_oCzjCTrf5XVTylvHXJjec-XDq1p6RsEeuJplVt460cydXFCjAsJ0Xh4ELcIrePipT5cSSQ5ZppDepss1eXHywuYsYoxaOGgXv4b9-_BoJKsdhp5lF0pab6RrA5brx6NF_hTB33CvBMrmbaNUiC88fMQQ6b33UAXzC1gqVf4vQ4r7wgysnfP5xzDZMJMvcvx_TRHWpRhjt0gUJuo-ql6tkgmQJEUiNPHfEmc-AN0_KDqdmT5TIyZ537Oe-TT6ZmWrPB-EzcMYntWorj-HdgYCEUhn1DkomMhEHQ3ILbMVhAeM8upzCqRW1MnqDpzIkj1_lIC","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":3,"output_index":0,"item":{"id":"rs_00e767404995b9950068e647f10d8c819187515d1b2517b059","type":"reasoning","encrypted_content":"gAAAAABo5kf5xn6cAv4jZi6LDABpXHtrd1qzU0V68_w3dCOTzg7EVKvB8i56Yah1EC7B4i7Zh3fO1H3Q6sdGS-jULiPLQdtu6TOMlNeZir_mGMVRih89fRk2UBKdwh0YywoHpv7xQLHT0qOtbVxGkzrixkOKe7B-oFGVq7v5Zpz-uD-FsyZCMikyKgVI0MvbbVHHBx8FJULvlVOAKyUQesNtZGnwobMJvUgnOUM_7rPzlC-jpzD1hwURJ93QvSsP1Klpv9Ebuqbxih70HsMmjNqO8PKwRLUzo7IqKGUTarrq0eOZmDird01aNC8ao4paWUE92fEbT8Uzv0QPmWEBjQVUgm_9gL4E0M3XzlWj5hGXrqDBJYNB36ciCJyBNSS4tx2LFkqM0UDg8u8k_7yDdVyL7j-CLz095-jT4IwCRMuKuBjaqIetw42S7xEeTrrIZPGg6oqAgrz715lr1kz8NoO2aDds-RZ780FXcptue64fFy19kRT4tmRlkeUT4oHAlLcJqay-Z9EFtbKBtazKCZyPKDCHiVWQa4tUTlq6SsAvJAkgLMV18qO643EvVhmWsm37Jrb2XaiDydgNQ65olaacS8nH3YuM9xDhGatKuyo8BcQAJdHq6tRHJpSUDG8awLuGckKQ8h2FHPeztkj5ooIwb4EvmHcOTBn1KxpXC4SD6lS24Ob7l9G4VB7udxDrYyFM0d22fh-gdRcd_axy56CTn_wZIyunQwIhQXHAkF-A_tdsrhHLj2V_hQ2ICdPmtZ4ZWr7kGoiGW4RWr75yd3pqzehr64pDXn3HTZ_a7vyMSSvkQFYUZfTRU56cE_09q2MZKfGAd1_X3Tqvh2EJwwXGXi7NwjRt0deK6TUjVmLEFkiRrROGZ1XcFDWoCQs9kmaHUAEWqDKaJJ3Bt6PstG-ZfZlzSouIPpZ_aUzwIuVkYclzT_d6PPY40m304HVHoonODHlNYLYlNaQCeH0th0KAYQmGvt6JE8p5j6UYrYPCT8zXW5YVppuIqMAmT7qOwz1GC1DAFkZNkBVc9QWPeK-38leDqbNzNKUSsBLom1UwyBdJE-6GXX-zPrUr229ak8PT2VrrkiMvKoR9oOqdn0oMlRkCvreOvq7gwUHRy-yhkLtSAEmD2PoK-hPCefS_aDsLs-kscZOY73NrA6bhCAkh5KrUylk3-LKWJLXooZoCvu_ZaG5w8Gi1tBk1F3oa7WdXGeTnl8oxUuDFoiuLF4GASVmGIEMxbrSJhrpkXkZdpWzQAWV6-XK7owSgy8QBkaEy5qu70NwCS90JpvBTSmoe4EDvVwTlgpkCmQrEItynZ-Atma_L1TLHobjJcYQ7muZmFXhforiS7wrga-8oGy9Jch4y93xwLzWwSl6UWBmgqyhbqUiB9wAtituqlulU68WN8iAOaLR-zuPkHJ5TXrGyguReCAwWjEZXFjqtauX7ueoEdb-fKluBVMlivCZS0fXyts47doGzozeKaZg1ahDKxudeoZbGQR3fb6yHeLTM2W2iuk_Tpwp6Rc4Qj6EEFf5k7mTy5W0_cCzVOlv48Qn55OrnhFb8myAqtQ_8-hDt68FVuA-HCfY6KnByNHTBvKLe8Bt9BA9uCVJSXhTytauMucZXvGluISQZFKxEYpwrUkAtI4dWuGUEPaLOGv5oFrtW5-mBLKyinUKhjW0o5FhF8juCWkQ4Tm0IFhQcXasnEUDp3Z--xJl6l-lYurxa9nRrbYco4qbMj6fxHcDcjW4-s_3ZNAHFvgmLJKHvd6dQo8lzwuXw2ZO6I71htJnhPdfo8456tiiH0J7qc5i0jB5CUnttTupJMvGOr5DyrNdGzT9KfoJ4mt970AaIg3NDAsLP0mnZhsVJSUKeLxkoUd64mkhnr8Hjnjbk06QEUmVtyO3ha-jFkCVP2GjwLE2L9gWWQ8pctXuVAtHn2umpoQbcNELKgv9P9rK6eQNTTeVgz0ly8N8-P67SueDSh-Bf5nrUYmc8Yz9hxlYsemremEjftbCpODVpgnpnDINEnH6jELjameMmCJcQDzDIaVLNMM5z71wU_n1RDdWdnBdUKTy0B0Qqds9DHLyP6RGC7NQHO8EirWcpiMtckYDB6M_8QQI_ZQ3ORgmzoWgAOSmiOzlIiT3XNc9G0ts_zZigU4iIBm_BBXYa2PjpO5ijMiZDGybqrpzuNChKAY9f2XFl2YDt11cR-SUFV56dL0Ebc3BESJQ-1CpeODHqqLPd3iRWzUyyT6UVtUo-x9A70HbnJ142QAo0MvZ5Sd-q-TQVrKDMUvXZRQzQ3x3NISPPO_EIOXguwa9EjcLRpV3ldSVpNNTo0O2kQh8HTyH16kGw4RjMT7Qn_DJWpe9lXPwQyI_eCzacR_FwiOOUt5H2cgKgAI-TSKnUm7oFm9lTSPf2FB4LmympN96zX9a1o8YsoYKMnuGypCCn65qblBs0ftTswO2gvZrhjWX9MB7ZlAaA5MgHmrKcLb5ICe5XY3BgGouOWBWkjES-tjAogrUXnBAN7l99g5rkAfAfZvL4RX2H4UGvxHqRUrBME2IIUGKCK5joD-PFZL6x-75S7Kj-vLm37UXglF-RiN3AJbrFce7vzbu2GcLgJMwd4GilTycVUNCIKyJypMs9RbkeUDMeO3HIIyjn2zwNIQGWq1ZSL5yrkEzpBXd8RMCwVdpegZYzZwPhGH673xoj4CV5P42QRZ2qJcjjtGf9E35FCqCWb9ogKV-MWYriwKOFmNN4GKGV39aGQj4NHCw7Mwth5sD6WpoE5BaMbMBEfy2uVTfaqT0KZ7fRcgy1hXOm0A4qDSS3zkfsh4h7Oni2fjPPkwuh_DLx2Y9T01sJ1vYd79Gsmxlmzor-TjED3I24phJUgAanOxxcRD8GIojeiRTI4Tgj95q0SfkCzy_DY-wD6IIHjEyL4D7JO0Y7U_UADJN3ZAoKHWlZl3OSO7nw_uskVM5FB7jqqDfr5P0YBMQMwWjVuAibgMnt-9rO4NPBG1xifL1GwcBvFW30cgxE2SGFrOcPqyc8HS6vc55DgUS4kpPOkN8sTOP8wBT2_jEKzRde3ByBDa7Dyx1hAuet_huuNmYU6mGRcmKCqWc6qW6FJH4sjLSvUW9UoRDMn3ZpVBsHVtdiQAB8RlegtJNyr61gexss0Qla4InT65EbkB1carYnCdeQGyyMUKk-YD79CapD_BtRnMJ5twCFampVIiQn_tANwdMEX9NFGgQgnczJ3MzbrEHHA3iBhapWxWD65FEm2zYrDUaeMNm8yH60RuNKyZ7aZRo-sGKrYWMU6bZ4YwuRbqiTNF1NPizcpGrj_2k_hT-TcbtPnPNAMdXzTK9EB2QHfsQqmsqOImtx8q0vekrqCSWjN4H1xRHrYPZMvlvTdtDdhiWI8WSatsPludVXeYxqXxOy2XulPjzkiVtpgvMUwTGH_Yh-kUP5C94ZuZ3WDM93Gy9AsDdaNScSC_m0Ho4inuGpe5b_ctx7MNCdhdzl3PXwl67Fj_0E3qkdmDS6McKk0S2fOmzbvoJmaL7g2g_QVCCpxA-4vmmecak3J5Me_2EW6sHd5Zn1tvcFezrcmQfcZQbax7yoyZk20egkaQqpkli-AKjSUKBmP0aSR7qrkvAe2z4mgl4yP062GlC2YI3r_8xedjsg3jWRHyyJ4D_7Y0rtmAjVwhi1tfl0XK0JCPKVkwTTCBSbwVQo2yR_zc7zIazj9TDm8qFK2G_Q3QuEqz-Cz9VGQu_BPhrMaH1WaB-2ays6IUf3s7_gUavAAynaEM9kGGHj_t8zkyqDTjalRl0JE5T5PxxYdv1G9s3MU4B0yB3H_LhcDyjVAb1WzPZpcAxxrcBdpLVFa36ewDzKRmVmSONJd3fLtB9_HJhXgtFIIRgAKuhmRf1hMAG6qaJSsJNA3HYRZigy15OMe4RgkFSl1aj3ScrJc1-N3Si44OwqRIJGrVV2ihh_euAE0l_ImdW_vEgpRbgfMqBiDmFbxgdcv2cT_MaOMoFX3n_V1GrAuBzjrVQSBbhgau7nWsynSK4h9781waWYMAZK4LrOK0UQ4iyugcpj0JNO9k4WvB-yRR9E2rtIoEC6Nz0=","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":4,"output_index":1,"item":{"id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":5,"output_index":1,"item_id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":6,"output_index":1,"item_id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":7,"output_index":1,"item_id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":8,"output_index":1,"item":{"id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645","type":"web_search_call","status":"completed","action":{"type":"search","query":"OpenTelemetry FastAPI instrumentation capture request and response body"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":9,"output_index":2,"item":{"id":"rs_00e767404995b9950068e647fa69e48191b6f5385a856b2948","type":"reasoning","encrypted_content":"gAAAAABo5kf6RMw3cYGYW7G695hqy-Lc0VhF9ct5CCX103QsnamWXw3ZJIXPr3hTUifg4sJ8liWn3c1CwDSRK_2RGcxOQYtowBwX1a68VoxQxQYrZnmnln1osLOAYnxvlEczg7IvnDJAtllxXHKmpvMO573_A-r1o6Wm_BP7TBMvQzUt9pIH_RCkpFM5xI93ERGaKCWE9RA1dWeXDFUccGx_lOJa7eif13UlaPTjICzlVynuHg4QVejjon89TBQIPprkAliKvQEANSEZMBrEexL1Ta1jU983iS3nyIHnAliDiyZgDWJWpVZDgcbb5keDwIgD2Rq6TFN0y0zVEERUjaAribiUoXSg9rP6-527IycrY9AFQgmTTCU0Pud-A-DJN_IGIK4MATMOOjUnluLnZMTE8pMv1aqlZpJV2zgZORgNucV3mOIeWIjekuO42TmIeLvBmrvkMEt2aZAayDVLysbvtxHoehn59q-rh17eGfDvoTR-2N_MjidI9WjWrBcH42OI9SVGO2Cyw1I7Z78PxPFn012iGJhyfLfT5e1xjUecFDPgRZjVz-Y1j3QVSB8tTFxoXhlrSNxrdIusMVR4_8f8L92aClGIHtYwm60lQx10Mo_Zqlr5WlhpCWf8EHMAUSOcqZ40TmHGUrAhHbl2XsbDHynG_GC3twjCOIjQL7JC7pAdojRCzsIVZY16L4eFZXIxxGNM1oYzHeVTFsIXE0bpBNlugY_FgwsliLFdv_inoWgcCg7Ujvu4Mg83vXCfwBtLCyBmu3_xKCoLcOryErEDMq3jp_Siwtepgs2gHXkJgu-ihE5TfoUodkM4jB44OBivPY0dwS_r","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":10,"output_index":2,"item":{"id":"rs_00e767404995b9950068e647fa69e48191b6f5385a856b2948","type":"reasoning","encrypted_content":"gAAAAABo5kf71KqiOXQLdnpn0X2dce5ZXQV3HkgzKX8X-CIy9ax4SrMhk5x7PGHiHFyqGHhXQ9VBYdbmpeQmcXGtngPW7v0BPz1pl4HVfrNGG2MVFgqx3xVgDR8IDDBtoX10qhGFzQOmp_V14WZWPvdwP7irv9LtSXMdDKvJThXM-s4Kp4vdJCPWk6PeLmQ-3bh6eXbxGB9jK5kifSBoJfgicrgpfpUFmdispLXzxdTvyUUMJDjg7p_AgdKwupWPRz0I95d9Fu04GdBZfJn2bcXbUUgKeKKqpOeQjmnxD7Igmce3W0iD5icZq9d7ny_dIfygoel_9JPBNIKJ05TRKVY4C9yiy8VJAvywl55gUdziTWDS5WbEggs99brazkEdWTvqhFcASgqDErzCeppQ0ACWy6a8F2Wgi-g0Iw_MiaB4zvA0VSDC4xOduXhWB4BUJemEp7rE8ztCN7FTKtON98gBixqyV4ueEUDp7SXwkRJ_d-IJMh8w12e3eTTqKs3uljEPDBZXnvPkeCz6GUIuKkEQi5mk4qLi-vZmH3gvhOe-dKJNhhN9CI01PK0bmwNdXr6loXsTmPhsLlp3Mwc9mk1RWvXm0TbDSGDeH1a5UBiqjFI7qjWANOzye5qeFEs-vqIQnC9SBDMMDlFlzLv7LJjsTnz7Q9TTuUx1sdPqSu-lLDM5OBaCdykS4gQzOZqomLJNSb_lMKrzzylpo6bYmV40N_jZkM71gF57n8lBYVmS4t-JidvqsqW3kVlGGDmZ38sA2I7jJmI8v8v3Roio_uNCzzocWCtbcPqgjNsvDzXxTLl_WTjyRfHE9Qdrj-KY565D-ynxlR_iCPFcOx3cwdnprXFf08Jx9WIlvVysra15pjj7WH32t4j_Bp7g3pI8ZVYGwIb4US3Img9D7Plfc3rAWI0d-RGaMFjjbsPzCBZeF9JPDcOwdGLa88ap_vZWkdRScEJffjZocv7FZywA_VgNlGv1S9bP43EuaqEXmF9aNLkMxsoaLLFhRRsgryfxk4jslG38F8BiuHhzxASD8C7f6WNXZVjJL5jW1GkhuYB1qrn9TpXrLR8mJY1Kzkt3dUtNhnIxGKzP","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":11,"output_index":3,"item":{"id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":12,"output_index":3,"item_id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":13,"output_index":3,"item_id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":14,"output_index":3,"item_id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":15,"output_index":3,"item":{"id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY Python"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":16,"output_index":4,"item":{"id":"rs_00e767404995b9950068e647fd656081919385a27bd1162fcd","type":"reasoning","encrypted_content":"gAAAAABo5kf9aqabCKTlJxF74hcPXQKl5xUBRpxs4IzOqoQ1YUhaTBc7MowYLJQHHXnWYngx3hqtnk1ROPfLNDgQYfngIadOTZxwUoOrcEzIIEnMdC-JsfDfvyqgBrE8qDYNYkAFa-ml-G7Kuy2DRXhqrNljDK-1ILGgvuQALcWh7Vyd0erIWhbJORFeS5-OOgxCVHliruj6JHiGRYeJ-ixdQLrp6yZeRkq1Ow-1FMxblbv0kRuGYDeM5w0K8d8aC0xbFGiJMYCZonGcYG6MqeeF4v2w_9SBOGd-ty6r34TftOOLnWMmYGBKaBM0i1EbTBYrUH0gDwjc5SgiDaMfX_yJhZvtM3yAIk6wrE_Vbmnw86BrV6ZVNNIZjBlX8tQe_-k9qhr-y6Ufpmk7eo1VR2_05ryz3-7zMrzbgkGzj_qWXnVXBRkt4T2cwyHca3FHr1euqpJDOjSDUWIEs7zNZ2WNlCWPIZUrEbmSyq7ChhTU7PECR00wqvzpFSP50jyr0KA0L-hQI5FdAfrEanAOrPkp65aZn6ni9JrQxe8FLRjEszQ4oNvqHdWfHqsFOOhzJ14mLIm9m_2QUDB_crkJkK4o6IXYs7kdGfSzvm0z4HMNSU91PSNdrrKDmu_JTNcV-IFNuP_CBhvyEse4s5Z1IAwYQUxfXJb3mT-Oz3U8j57nNCLb0EP17xMujNuO1NFH5d-NmLWqPPX8YpithcX4jV1O7Yhk6JjsVO4eaFuYz_7BXNzQL5kbAi1spsrYy57uNIO5FG8UZTndcRRPCgyyA1AHCuqo2KTRr875fYgMLJcdAnkszV0YQLWCmcGmR0YbPCNdW8_CGfq-","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":17,"output_index":4,"item":{"id":"rs_00e767404995b9950068e647fd656081919385a27bd1162fcd","type":"reasoning","encrypted_content":"gAAAAABo5kf-GWE79PWmX5BUJGtdfBs_8-rH3_mU0ojB4l0DH9RZkOBh8uXVIGaJfTwN9yMTzxrSwC8kdSKuYrKAvpfn82Dq0i4KU0q9ZlA4mQuVsekJXqABXyBxSdR0Zt4k_hDaNRQDiSdl5z9qkDhupx3oD0QzTN2vJF0EntJpnQtiOkBlqdiFJG63olxaKLcaYk7w1UpPXHFKHxv_clxSb6Bhs8XJyquYVcuBP_qxal77tkyepJ4HQI46B_bnwS8LaIGjZ516MYzxNdIYPPc2T1TSACumXTsTLseOL2LseiClD_fSAEuCG_g_lnbtkMa95pz6-fTN2dmJaXcg05MSjX8YasVt1lkk8EzF2L_lhqled2ht2Np70R3Ykmlv8TE0kzCx1otr3WEhdi9xarx7pbISF0HuguVGp3V89-Vikge5LYIar1sMOOOFKxjVBhPvXqBB9sw6JCknfXKorDAj2shu9vGrPHX5YVVBvkJwPuSO1c2oV7SlW96Oy0lt3V9subpr6XqFtxO4QR45Kv_jLCs88_0W5ImjXA4vfKzWwP7vYuzWVY3xkaXXydjH2SzRZ3PpJBFzoNF7QjbnlOBlwKaPnPyGnA3gb-m3dNOYCloaa1Z6XIuNS1zlBHlJIHrJrEKMAtMJxBsmmjbxwu_nMbvdri1MzhtqTwySEB5rLTRYvYuU_3tnDbk1iuoB2kcDp_J6AY5eZScwsiyf-zWhTjgAyjdxwYytFKNzL3j1RTHwefI3U8JCmQfDk7kzfrBK3a_1Jm7MW_LnAhD-Nf9dbeNEBaVI-0LnH3A_xFMYLFOcINGe-5SoUYV88CWMIERuaSuPYoXw54S-fqUmDVVT5eNOFEKXWvuiUZDJBWYW0RAZzKXB2uLowcj1qBOeW2dxUR6s5fFudt45OwA7aDi8_ReiyC_RJ1NuOOYQ5YqxsAYZt6-NXALhZKgOapsK3ui6wCeaXGprG7IohQ1jj7rKUcRhs6JWxPSG8SaG9P8D3p_ahdKnSq6rXB9MpWmbtOSVNOLQk51RnMwwj0__6pHcJz-Tk0ZWr3dHBXbNKwxt8j89XF5bbNChGEZ458LcUE6EQQyjwHbqqxQRe325CHqhwwjgh3eXig_en9hHbDRyyYYFFeG_7ysZW5o6gO8QaI3Lo8JW0_PaY6e1um328lICJauuWTDKIWMFOUEahiz_eveoSHWJR-_mi2KBm4OQZ4y9xeffPmFs","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":18,"output_index":5,"item":{"id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":19,"output_index":5,"item_id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":20,"output_index":5,"item_id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":21,"output_index":5,"item_id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":22,"output_index":5,"item":{"id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY opentelemetry python"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":23,"output_index":6,"item":{"id":"rs_00e767404995b9950068e648022d288191a6acb6cff99dafba","type":"reasoning","encrypted_content":"gAAAAABo5kgC6pJVTA7kgbUftG9v1gX2Q9F-F39EeJ3t-43LUIAqjCjd7SqHqUWCBKWKJVZbucJs0MhBUziC8dhRNcp7KIsn8PNoO3dTjMcaqgXLmHSl_JWLYUPz9M75OhMpneCI9uMGycJDkgzMEWcwzyXGnPmGIupt_mfHAVNs9khlamVjjFO7e_QUT9s6V_bQD5dzdtwwIjoqZEjvUjqrbO-yR425vIjPTCzdhmHWJRCoVzD-Nih8_ubbkQfh_4i2zZjZhaLEuCqG7k2f_y-XlmSfLakRmEBAgpHXmkiR8gzjY2kYsBwL9jGrC-fFLez0bnz6cV4DPfI9c6obkWlI-t8YXI7DUoqgBbbIzqrviqhWkUjdqoCWFuFwd-3semR5RhLBlmP5tLJTv8Gomtw_aicnY2UpbJvnK6vj4UoOlLotfYueFCyMIgjKN1QbQh4qHwL2iO--eg388K5qQ1lBRB6VozpU12SyQQnqKzU7WDAsxkgdSgvoOY5P7Nfyynozy-Dts55htTNgaHiozBzzAqzGoW8J8t5hewSbbIDObPIst5QcmcnCW_t5Ny-rN7GEQyVn4WYXdMSP86oksp0rzep3DHK2YsZCqkEh3GMzxhHOwaT9CI0jctPBkhf-BcF043tWwO3C8lPy5aoXc3JS9cMLhbzL94MomR9D0dsj42t1OZr4bdjkrqwz3d8aK96lahPeufzKqj3LWQFECR4NVde-qgpNF8hnRoG_GBI61M-7y1nQNkPRpOLkxTnJ8vrb_YLNdXJ7qtMOUbfq_yhJeFvy8CfABuGHz3K_ykKsgKvRNgwNqspoMxAJfbVVdn9oPo8RNxpB","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":24,"output_index":6,"item":{"id":"rs_00e767404995b9950068e648022d288191a6acb6cff99dafba","type":"reasoning","encrypted_content":"gAAAAABo5kgDMdyWJm_4EBrnLS26HcJ_EvaKlVyP7dihwR4bkE1kXTcQkdj8PYFl5tw9am6ZKst4kTo_eR_ho9j0wrT8lpwlPyOvuF978cGUykoGJXGMlvBIEt7oBgrQGD5cchOr7uNqTfVo5YLY0ywfmTanxgyR3CD6xZiSrSRuG6e4xGfa_5J2FK6EOqQOvXoXI-KRMwXTlrqh3nMUXnUHCAZAQnplTHHg61Muu-tBIbG8dOXvvIxRJEomIJJdNg_g5pRhCvzqfzA7MR5_oBvQtkn_l3U_mPzvjfIITIJT4iCsnxJbYNE-XP8mokgKq6zZNfL4wi_az44_BshnwJA6fGrAmmMSEMgkFli-XYvTEleOqiHBttqB0ESRoztYo0Pxc_rn5AtsvvPtQUYYapaV4qlL3O6_Q95TsXBlnsmSwjTMSIEmSb-X0BMzMtoYV1srbiQiBq_LXwpI1owWH8rJsw4x9C60dWk7xY19_6bdcYE4QuRPnPmyO91pl33iw5hBOGckfKsMjERAmbsjcHSczOO4xa_30EqrDyx6py50KJQMFzFEdZQXdfM7lRIgbUW4ixWw8YP54vfVgSBNz9HsfRfn8V3jvQ0saIMW-M54aISG6hWs45EbtRv041W_J3SlYcDtOcjsusR5c0vd0Nl4VIECHLQc1ULnqkJZSk334B7oUppZNX7hL_Y6Q3m5mbqgbGsNRo40-W4I0lGTDBnSti4-BBEgXCcjZDQBpguyZR7F-sVUbli8kublzIkxzIYxXLpTFKGMNhBtsfyHEKXZB-I_bCy_rxlszOW3NtodoIdavaVbmbpCwXZAzOE4TJPPlQ82F7rEAX-sCtDzzqlvbs6ZW9AS_3r92Y_kx_apxgcl-uQ16pEXPlwy6IQHFhKQ2m0qj-yDc2C25DyJ8oVBK2vGje0Jn2ppsR1m1knfBP4UTogTMCp5MvWhvgsZgJsRRoL_WxQP9HoYajepLrRXft6yVfQKTh1ksaYIWxZeVfatBoFrUEQ7xVcbPVIduEON8tzPqzRTUaYY6z9HHpYennJmk4Iz3psJRHqa68O4WJN3P91FaUgwx600-LwcOimodB_BUsMBKAMkKMpDroLPoLwzAu3ubU_dUqmn2Dj7HEAjjO2WdN0yAn32AgZP1nqUjxed0Yght2LJWdiiPHAKr5DAd6uq0QTUqSm9dOJI3n-HgXMVNDasRYj-DbwsBN14qUm_zzJg8X28U5vXJZ398OhxRcS5x2uZ51xfPL3wwHy3uGpqUR9ZrMr8nEeC-FDYX--QEXVvCCzJsBdGDbW6ufLmMfbcsv9eAXQJEdCk1xvorwQXONydra0Q66ZC38d1rEdfYEa3FvuqK3o8ug9Jkt04RyMqYFjziIC2D2Jf55jSJhM8fGo=","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":25,"output_index":7,"item":{"id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":26,"output_index":7,"item_id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":27,"output_index":7,"item_id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":28,"output_index":7,"item_id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":29,"output_index":7,"item":{"id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2","type":"web_search_call","status":"completed","action":{"type":"search","query":"site:github.com open-telemetry/opentelemetry-python-contrib OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":30,"output_index":8,"item":{"id":"rs_00e767404995b9950068e648060b088191974c790f06b8ea8e","type":"reasoning","encrypted_content":"gAAAAABo5kgGPV-gvfGXSZGSBsZ1tPi2vexid6rlc1tiCGxsX_wkazKNg6x1Amgex25VFLw9V3MALILyIQY4Eiqlzr0IYWacB4uVN-u-56RdJqRLxRXh4cUkB5aKIYpFoVf1CHt7ONNkClsQy6cp9pDKrqKvNYy6zG86wWoMTxyk09HRTfrvzGZq4ibeQ9bqknDm4zGH50QyqG1SW8rhIiNFATbSSakM-_4RGOGMlUvLye0dxKFRcIVUJnR_cuxmwhjAzWgU4x2AJuHX13MDVtNe_Bv73xhyLxXeYHvVb_atvto5PBkde3gXMMJT0PHv_p1U3wkCgqpZnfFxKsInEzgmgpsPpThyLKffsfYH_gjs1jx7f2Q_Lni0MFBkA7dk2l9l2HFJSsWT4rzlypw8PqUmc6msnZTF9YC2QQhYT8CUElKnOZ-D9ILd3z9mfxzgVP-4f3zGF-nEBfwVXssXtQCx3ynAGKMh0LH5XxACuD2E-h7xgP6fUmBCEtdhHjSaJ9rriiJ0fgkBgbxJkP4tg31ue1TOIWjFfEajZeHmrpqpYetLENGrqEz68TTnEjl09NyQT_jtljWUisra-h8w6E3WXSVUhet9CT-KQq-cKvyIq4w0IvR25DxACLZ-HGVnfQelfA4p45dQl5AJepsT_yRnEIuw_S86ddjnxpOsDXTvnLNcKUq4tdy9pFdLKgfxjUAUymt1Dow2PUl0C6zC9h0rVd5C-3gQr7DbKOQ92fxx6yUvYe5k7Is_hIo0AdSKqzdjLDzc7Hr7pLuy_bPk_BEGbstjPNZgpy5Jo-l5EoG9ASMx5Ykk_mag3rvc6ULU0VjPGPp6rw_V","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":31,"output_index":8,"item":{"id":"rs_00e767404995b9950068e648060b088191974c790f06b8ea8e","type":"reasoning","encrypted_content":"gAAAAABo5kgKZNRzXIfjM9mJNtrOBB9QgXmxr9lqDw4vJJnfnrxtWXUO-0XAPYIAWwBgPImyrwdNXlHHny-QNhswuEa8gbgpPdhkhREfd-OY9s9gOe05wD2oXgLO_2S9kPLA0wnB0HriVNEYXhsxk93jMwj2XmtS6da0O8lO0KvALs3HT7EtVTNTShKqlumzH2HbA3tQFiln7yxVk8C_FIfDhWpzkLeqDGvIXy2GUyUHhQ3-Qmid9KMkj2jwI35TawAMvxckbMWcroYTRXsuVgvULRoGoU7npo_YFTvjQYIHKKKnMKzM0wBef8hPLgsYOKBVwvFvKyFph9fUV6TGDqzX9daq5Jzl3PgMVKm2o43HjN9NQu8nKf2Dg_VSIbfCmxq1Pde95MV4IuF7UEFCAREF4Nc__K5P4HRvroScjXiWur4FJulj6ngOMDnZDVcP1MchELP3KWe6L4Rz2k6itK_xDugXHnq8Ev3WuZfmibDePxi9KpLnjsvQ9sR2yRstKABto_fhbTuTBuH-CjiFV2nP-HuHlIymzmK_OhwX7v6BHvEfTdiCaDQQUD4a7uo9fwCdHK7mK7CFQynRU42fJzW35phx3QJv6XR4BzxzRUavJy7ZqoptixLGI0A9_8QLvh1BluN0ysh17Q5x49Dr5Nsme9kp2gablAXNbz5PWhrHypVba-GAS9K1AFiOIOLYDrSL5o1-QeaJPT0HK8Bvog0fMBuVP3-4UNaxDHKrTLD1eyTvhZpHCctA93zPlaOh1VOsY9k8C6wAFF2BfvUsdRraQZqN3Ec6QxU3WZAGuxqoWlqgzOzxT7OzzGTRfaa25797koiBwy8J7ov2A0Uu2-GsvJKWwv3Ncc9trFH1QaigqB2lHRi-zWAUAz2Zc5fKB0BXP5NoolEHTk9__VEqOBtXMzEbHVzOtVujoX6Xz2JR3AFs_y27UTYbFxpWBEw9zUHw2K9L5pNpLDJxw5Pe6k6scSEajcRTEPXrg7ztGJlhC4SkTuJT989O6MgZDp0U74FnWs0Q89PCgAIKJWTlzXUpqr7WKva11p_MHlLUJBa_zruktgENfp4h0w7WRNdENl-sUJCqZTfdzdcBH7Nvwsg-qq85gLw73JA5-5p7pYkuD-bfk1rOECiq0pufDxDr55hoZC_QeGuGpjgoJpYeYbkPNQR3lKa8GJBL6liu8pmDNbInBkLPU0OIfhvo56shLSdifP2Qc0UnaNARgXGtVIwmgRHWy_IqJKLFB2YUcawSAv6R19IzlLh6tkJVWOAe4gRckuU8W7eBNeY3fPs6ffRE-A7Bx-RYWtjM7L5OFYuB3y2vPVSGUvAcRxmTfLqOwtZao7ZPcldM7ftkZHMiw4wdFGgqGxUTSRzYS7ESMEGLM3sAp61BLB_X_8qMDceC3Kpo2rHiem_TILbOrW_vDnuvfAxB1oWBrr3IsbHb_BDe2fOEnXT5KlJ6XWc7VhCHKi16RJH_-tpN_YHlncSpjjtkPvu15oVB9gBXJ7kvLATMygy4L3_B-PkjNgVkf1-QmOgJ7GPtxk69jAklSKHvVwPN0s55u5RuvKroyZyoNdIhiSY8EvMjZT9MvmcBgUJNGS7ZbKegVeMR-kcsRxSmJS1_png1lv4bX8x7OVONm7kSC_YBFufov8ul45veYCi6ATuGsbPrC_QKp5mWJfYjnopTwKxs33GvZ_q_AXnmRC3zl2dqcu0cwbJVYniVS1qNIi7G9lxUi9Zzlss5bt3jAvVXbAO2GH1Ij0IrNbGB7SlmJLbnochFU7HweHn9aNWTD5khgwfqwZZNli13SS7r1EmCyi8Xt0KB5MAGOz86o_xgeBkIyaxv4ZSb6wY6g2oVu2XPo1229iGh5-_qHhFvpkDXfzIyrAAbs8ZD5ScXlUUgBzK_JOJImSEP4VSlQdgMBl8KLQgQpZtsPhtdCCT8nmhFRx0IYZxs2yLJMukWyY4iUQ00UsLXtVUyufQ08xjcdrVqevdXvJpVA3GIdcktxb9U5wYdMGOPMUFmPejqLZvC8dQwbWOYdGATfGuPdgv9LS3OTpUXkBnfYtTA3P8zk3RxWFCgDCjekxVgHPJ11BCMZFxw2nHjdqFjyAcISvwf9ix2UXCb9DSdmvbjqUTaJBCQD83JZn0lowtdNwTEWG1nUln8Qe9DIn7Ly8Vj6l0Fq-jkllBa7aWUTBS1H929Yx8gpYRApjBhPCvwVX8o6Lp-7qeb9PN6vmgUDfAG-8T825gkMVwyQVhnQvUlAL3D3Mh4YMdPHS5W83YyhawYvYWRgxcVis2oEMeSvr93CpbvmnbtYPRiousGdxu5Lc0KTNop4y0T5hwHGMpgrP4u9H_JaSBUaf9CO0dO3LyZ_x-rdOM8K70m2vmYDxbEHS7I5EBCN83PJnB8_HTV2KgmUsJcE-5OdQk_AEXikVd6ujMum2gA74MbOJCI89NmC6C5Hv9OS8lzDaaJi3KnhCvqePBweQLQrWTT0mc=","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":32,"output_index":9,"item":{"id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":33,"output_index":9,"item_id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":34,"output_index":9,"item_id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":35,"output_index":9,"item_id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":36,"output_index":9,"item":{"id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911","type":"web_search_call","status":"completed","action":{"type":"search"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":37,"output_index":10,"item":{"id":"rs_00e767404995b9950068e6480bbd348191b11aa4762de66297","type":"reasoning","encrypted_content":"gAAAAABo5kgLGc8_lD1si00enbgvnvB46KkRQyUMkOtLBq8HAyHqzCFp0CGUaBOXEidqCKAuoy4CZFGpoUNKF_5M-ovQ6z7ccWfzsOw45z_DYEybftvgIHszxR80FiQr-g58dNDTEp5DwTF5nzS4D0aun7gCTHU9_sp9hMGOq6POVJP7dJIEmoVqZ0Ymnqso-mDtyk0Bl77a5AauYVZ5z1cNmtEha-gqyGCx0LV0Dsb4SuoYK2JhM_AjhYsifQWq73PzbTcAAiERWLqljEnsJGaGBBvr3j8bV_OxnuNa6ql8dd2LKCh-hMfxqBWkLHDHIDICF2sQEvpW9vHkfI3mUnLcSmcVy0ro_KJbI2pbqwPjisSwTsauv17urDFFtx0hGJEwbCVYst2_tUYu-anwkl_f-yBnTSGqL_t5aZnGtK_cWyLI32VDZhTyuHSnjbgDX0-QcaLIFwC7u3pP0XcYOHqILPLtRAPR0HvkbwmMSMxh_o3Digx04okk5PIXfrv50x7Sn8f53vILtMffUh01NLEjtl6DySuxk2d7WptAzZbZ7rws6SggDAQjIBatDe4lDaY68rItn7Rc-gAE-_yqAU6BnNKiGLGrzLnULXIv0wRnOhy-afbAjn9_HAFUQg5Di9urbISnZYbwK0_om52NXOUCzezRGP1VR42_S3aTxHUvt4Q3Ub4tOfniGLeqxzckr-7V8Q0ZggZWe6ca61OTwbPAVShVreMaQZHVEdEdVlD1D6FYrvC1xRXde-U6c-h8AyS-FUTny25IUjB06ChaLBrkOtRW0IFkIqALDxAmwCfEKX2vDofpb9jm2PoDG99Ej2jC0hXlKXjY","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":38,"output_index":10,"item":{"id":"rs_00e767404995b9950068e6480bbd348191b11aa4762de66297","type":"reasoning","encrypted_content":"gAAAAABo5kgO1HDzgclsJ0nxbd2rPdcO-gp--TPErZWuWzl9b1tNkttOes7PJp-a5m3GggvshsVGOf4Bm5sgp5_xK6z5zpwoyaQVsac6roXrG4QpXIQrXo-2zZUBwnUjP_yV51JDI2Jgjb1kgcgYz65WB0soyx58CMi67hVyOP6dRvR8wfjoBPEHq_rTf3J85Oux3zIH1rQFviHzwKx01RqPeA22bjpNNoYXkZXMDFvBK6xEMox4MzQjPTjwvymDreDTQImB_qVspiqN5EWcRLWEkTSzM4hu8BgI4tW6zaH530pBL95QqkaWF4VdjQ3c6yEBXXJMXIgmvP0avmgQh6fvMAQ9XVeAWe0tqXMmZ_bU1TCqF4wPYau7hJlLaZqxYzN1JH4RHaE9f6oDAc1zy1n1aUL5qtSiCFD7TR5ADPsdX5D3sa6j43uGGmwrUfHCKnxdZcLY5r1FSHpYDah5pKbxGLWdtG3IxT8-c0RadmtIW8j3nrDy0RaZlLjDXaD-IYxsyRyZLIgZU9IvcT5VKJxGmNpWzt5HDVvv_IUAx2FtbTkPRgmz2rRVR-jx1PoAB5Gf0A_DhTt7zlAjjue5GK2GsLqYwv_BoxmfT2132a6dIo5w9JA15W8j4Zlizm5uHL8iLx8lKLwTcHL5YksNUOVp1ELgan9KSXMj87YJabHDq4iio6w9q0EChqL9p4iP7BQvpheHgdgSW-C6H7N3jQZdSq9TTKqIeYjPnP_ZHXubE3jzhd6KWe9VCENUKPXXEuwUHZKcra7NHnmEDJrZt848sw_T3Lar0mnTuuh6-mLjI7rIuxy1VLmLdNyYuWa-hqbQ1aXiqB3E3VKkwhjMOQG8CWGt2jjnJC9OQz9LYrkn-8n-R3jpOKAwhIla4wDvdh9mUFa_1kiHeNSHZjcXnWXXCKDeHs_dZwHkkQ-FL8VO0JW4jueLPZD4EfBPkcEv68kLtI7EcG2yKZ1d2shdCiFrylbAz3bg3MpeN_B7QtusgCaCKDbI5xmwd5hCR6KiUKjaq4nsOQh2y6gfjI_jdWKM6VD1AihhFtNvHDh6wrsv3q5PD5zaoLvMm9maxSLWwJpMr9dfEQ1X43Vs_Lc_PviJIdIHOuo2om-fwRy1FSknvsDSuktqC5g1oNTmcj1F9Vd2uTG48R2-c3USzK5UvJE3qsuIrzzTiM-mTArvtA0R65wni3SzkuppSvR_U7doHWnfHRl5RTzJqZGzZ478r7gWobbVGMDtNM-D1hU09AIq2dqt-IEteNXzSqluyAvdEQwgTgJrznyN-bGA5lbdUlpG70-t0aBiWplVzLVN6GmFuCO4nlsHvz_PVdx5GiahupscwERmH8rJVGP_UAfjnrcEpMt-oL-D50tk-c8hKR92F022b2QSJswabCLzX3kkduQfhWYuWAj_5FTW_8F-Y5SsawarczeT2ajbctFQyCEffxD2jEJEUOZY2wfp1XCcSgkycp6xo29Vnf-1Sk0rpzC6pQE_i_4jX0yzViQcu-YjTzwcp_rMyhEDzYPOVAlDDwdfQscRr9XoZSZ-CNhHYA7C9dn62JHP5tWxVtLxFuLqK0WNaL7l58qHJlAsb_OoWMzgeH40H9CkJuJqhE2SC3HEJBAZyvElvNCneC88YVTNqC-i0GAGyAN9KhAUkt9WDxtel3Q_2W50FEe1FIqMjrmfWwpG9oA6dMk6nrAmN1HhkOSpmEtTVcp3FcaBGQOkm7L51yG1A8FH","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":39,"output_index":11,"item":{"id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":40,"output_index":11,"item_id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":41,"output_index":11,"item_id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":42,"output_index":11,"item_id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":43,"output_index":11,"item":{"id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148","type":"web_search_call","status":"completed","action":{"type":"search"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":44,"output_index":12,"item":{"id":"rs_00e767404995b9950068e6480f16f08191beaad2936e3d3195","type":"reasoning","encrypted_content":"gAAAAABo5kgPlunNex6BuTxOUKCV2iqUXdTuaWPf158hICWGET7fM_K5gb29yY45CFmzFgPCtLcyxJeBn7GlAVj9Y_gBSY8iBgfLYkMotCGgNkuVesA7szthHh1rEgQbVEW3kOG-FNNtSNYSlwfhLVbnQtAeZL6JlE6okA2WuNUkTVC-sEDCu7tRvCvUCbd71bi4JonwQ7s2LXBi9gzJrzmuHcIbxq-owQ6ahDW8SA3hK-HSbC2474-ACC4xL_Y5rtwE5qzlSqsVGQ5vCo_A-fA3plz9H5qO_lTu9jll2df6k0iKOp2LY03kFv7vEAGNycoLU0alyHILclGfElMgW0M4a55PE5LsXglRtjyWXu2Vb-Azu2vYASuVXW90MpO-LL3n-UcZT_EPnOQoPiVLbvYaxQpu_7E6RMG9_Rz8WaOa0FRvh4R4X5_2RRGHfH8qndOJx_NKzrEeuYichJ-ipneBw-1PqIi1wp7tK2wzcCW6LQ51g_Olvz7arxcyqug4K0zuQOPJ7Q5msBWTv1lfz0No-D7LWa7ErkSZib8bshxQQrWuqV9ogHZyUXEghY7JKJ5moY-hsGYx-XpOg2KGIgwvl6xK337c9o9fLkymApc7LXArZNIWdVifGYHAZ2akMew3A20Dbtm-0I-67F1vmrfd2mSVzG49ROvf7xRDQA8bUIS6FQe9ekpp6GOJxnZrV9UOaP37H6YlMoO2rg8deFiDRK317kSSlJYiwVuSu9NGWT0qD4hsLGTdIRPQwUDShfjbxL9PVa5bklEXuFzZao5Iv0LJkSgj3jVkKCsDQ8LLoyJA7PiJ8uGCrNC1oIXuNs0RKyYKhky9","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":45,"output_index":12,"item":{"id":"rs_00e767404995b9950068e6480f16f08191beaad2936e3d3195","type":"reasoning","encrypted_content":"gAAAAABo5kgRqGx3zwhXFb4elaopbSnsU7HznDhJ6BQvZc6F45lekqR0kJF7nDtrPpt9JH9ZwBBl5xHUN2S4dlWBgWiVvQZYUL_3Ytc3AIB7kyDjQLaT9s6EFFsgIE93aeVHE1rZsX3mZm-VUSWLCNz8PxujflN_143h9JLO7AzxB5D0tkd_1bAP9lVEKuAVxdwkGTmGn7oidTHfoAqFgdFHkpJf77ka4FQSrTHVr_CGptlT7N_tJGdUDaTiNgeBak3aadpFxT5dNS21g_DoHzi46ZcguyCt6pgea_fFNwv1QRkE8Jx7qthNfCzMP6g79RAR008SwHrVq6MjQQvTNH8XI6giX75pnyt47fR4oAn3nQJsp60KlCld5vy9V5lQpvrVn4P1BBrXQX0eXqmVIOp2VQYN6dtVjHApFzJBZRb2tqzCiShK939eDoypVtr6oI84oTLlGBtOyeXSsk-kYY_wUwpqPbmCcvj0OfvzXXFzL0knmP5kzKN8KGE1Ko2sOBkRyRJ9dLUEsVQdyhN1QDrtgSNHo7QAKOD2FkcjMwnIXaNya1Pn_yhCDVl-f_jgdPlWvHf4N6nADs-6YM8kewF4VJNIEyVNrOEUkLm9_uIuJngoY9pxvgxEC1zAi2210NPhLbB8rivvOpItlW2KWk436zezajGyS6AdwDNpW88L3QBNNXr2cx_g9KFAmCmCQ97jXDRu9UYyiYR66YblYrxZ3dfc6gy4FCH4yZP-89Kt-o-g1wM3DVKNAF1RhIwHPFP5yv09Zvu3zJYYFvI6k1mUeDBJM_ipR59ja5zLuJZpVRRCPy3GQ5z4ZbjkDjftmN3-A99Bh_6Uhx8MOMspGhdYvK6x__YGp8_UjpqmIMEmqfxsbrNaBaoisMflxzejTo4tlFGQlw9JFC2QHaYN6OG0-ibNF4VR8JSmDlQ8bqUJzXKQvyPKhrcQUqCRbq9N9TWnB7YZcyC18FBdwVrYNTaWMy8AVQUzFEpvErHRFmANwoQcunIYZFVEkBOnO-nf3Qkb6VD2SpnKRf-NGWTai4H3pdbw4-ZlECKi39BWT3w2Dtrp6erWeNyuYcLPasZ8eQoc-2sbn6ahRglb9ElefIrcdw3IIqEF1sE8qsMvoVlRl6trn_kIFZ3e63dSpgmvjWpxYLJwIhtyoOCR6ddGlr7Vz3sEoiVbmp_I7T046EdyIUjBUXfut29WZ5DWpTlaI-q2YsxwLJI5Z6jEAMOue-oJ0LlG_mfGvysspU8LUL6Ls4GOvR5kuk6eyxJ4axuaXICjCgSUJvEvJCz17gMLHKYYeErlYMUgz-GD1yO1pJvsK6k1NX3ggZGWR5Ra2RkoK1h70KidhBAsXiXEFxFNAMi8E0aB5WCydEVlNl79m86CDB7YTE9LyIxrMc9ZyYiSHzLJaLJHDQ10X0KLRxvjM2Upz68u7aJRtRU7JX135cGL5K1MqRFZMA821b-p1mTuez483R3-Q7fAPH2p59s-BUEEIeHJUfc0ZDg7mAEYhNmAtfWbfG5KB6IiCFMRWCm5jeCAUm1KdokUfyEv2I1Qw-JDmmHLdeUCk43If7wgcN33sLiNuS1TMJ3BBBC4qhHrkFYa3IU6ketzYqrqb9SJcWws5xDYxV2oCV5krYoNGg40BdtMfwUAmCI=","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":46,"output_index":13,"item":{"id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32","type":"web_search_call","status":"in_progress"}} + + event: response.web_search_call.in_progress + data: {"type":"response.web_search_call.in_progress","sequence_number":47,"output_index":13,"item_id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32"} + + event: response.web_search_call.searching + data: {"type":"response.web_search_call.searching","sequence_number":48,"output_index":13,"item_id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32"} + + event: response.web_search_call.completed + data: {"type":"response.web_search_call.completed","sequence_number":49,"output_index":13,"item_id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32"} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":50,"output_index":13,"item":{"id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_PYTHON_LOG_CORRELATION environment variable"}}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":51,"output_index":14,"item":{"id":"rs_00e767404995b9950068e648130f0481918dc71103fbd6a486","type":"reasoning","encrypted_content":"gAAAAABo5kgTHcu5OJg4QP9h3bQ89VdC1knJ3GGoDCHDtyhVM20pT9s_x2EFIuYBAU3GH2stuBx8KUQO04_n_IjUDz0cWHWM_K-7A8o2neYCppxILORhbj3Zhuo3mudW9QWHSZcPA3ATtcuh4oyo8-Mp8hcSSx-mVM-FEwvCse9WYndrHYccDriMZ7CPchx-p1Xc0McS0eB4cmdWlmZQqLzp1bhbaRw7F2VYyc9Wx6Ymsh3UpgbuK0YUlcIb1teWYL2MPw759NvTiwOJHhOroQ7w_Hvip_O7bHbiPca0FZlacVFqglkIr4ttJAXs5swVUxaPWljLaD3r8eKdm7ixbdfH8mEe5HRZOe8t-H8hlpx8PagZDXVxA_E_TR0mdpfLgjAxAdIwSkduquGeFQaWMtVhufYUfFPfHGWmCu9oUOYlUxk00PJbgRUufa9xhUwNBBJvHD2pGXB3p7OMZ4xDHvmYGpI39vczQRM57LiXOrEVo5NHHNh4vV2AFAeBvq5XjlhjH9rstuZVeK_QNme2qsk8XLftvvhyA_SyW0hKyRfAMIwMVG_B2qpS7zibtNEDVXXIKfsla1SQ0bsyZoqPtMw2ZH6qciO5BABdk9BMckrVLtrLVNTSX8IwkAT72OCfCZ1AvfjjSnqA_TKeKm6WSnhuuyo6ZhacNxgqw1ADE7jEOlUKEH-M8twJJpkIzRqpyRhIfJb5H16kmgjFSdPH_8kKU3tZaYKfrTGkhgYLNHw9g8LWYs-xOVv6qgqAP66xtJJcdiRyi9nwMgOsWorcYxU6g8PCYvc2721q6oGNhVu9C-hHMejlUgC30SYdPoozAcjgoRHbLcNN","summary":[]}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":52,"output_index":14,"item":{"id":"rs_00e767404995b9950068e648130f0481918dc71103fbd6a486","type":"reasoning","encrypted_content":"gAAAAABo5kgvRqkGOKegaH9grUqGCPO9vfDWr1XwkE-Wtzt6L0t1rany58X7-oMFUxwaIN89pOPaz2k5N6xvW7MZ7NcqhyTtYC03uG2IUnxEN981cD4nfmZq8YJejJK20r0rEEGNWlEzw8g-CAWaeLaEw8Cx3VeleP1vWY3gBurvGnzuhgYn4iZqHB9ShYSI9-nkJw0JNcnI7JFpprPVZlluDcKkTLcfXYfJBgwCTVDVmkqTqNeIxQD7VE6rtzXpgGKiLDoOTEpX-4NzKlFYLw2XN47LbOqlFfW--nNHtfbWh_W0b3cM-sL_PXVSr1jccFaNMR4V7fioRjcdG155tknwzrcWIWkUKHWy_u7kaCQPbG_RKcRVQ0eTziQOdphQESXlPsVrsSnvUYOhsXOEJsbJueHZEEtZZ9wXRk68fEGw0llPcvSEPBj4ThgOrtXKlmOenvvF-WQJbodsIwbXSt3pj7H6yu83IW0sHzmWeESM0f-6SXwZmLevctlxDHAIQnd3KOqRq6uGaYv4bcFIpXH_Rmflacl3R4hlfxUcMdETlywZaSyQhomLvsqxdS4D6BS6uofysgP0YUJO9fnf-18hbyu8OGq5DeeOmdQ8HgULGeyuRCeFeere7jY6blGWtKOzDAhRaaDQbzGZwF7FMbo6EouIYdyI6gyFctN7YlwE71vthJFdlSzHXVQpibNj5u17XXeHbIeY0SI2xciz3javvMxnsgmpTo0PSkcZMYr5OvcA3IqRZl3Q9XfTdySTeFr--kt5c0BLzrdrVamls2fp31jNKO4yVZczUsm3lEQPB-dy8r1KbaGKiEhc45ZoTF6dMoh4eSkpJpwpOb-Y-VOh4MjVAjwFWL4gHgTaTQYD8trLuBBRvf8uCdbF_CS-fA-sDRe843HKHVZM9l-J4rTOGGZ1dTvqOTGv7KV5XJNoGmdJ4rX6m6TAvtPJzQNFQDQcaCuzfYcakxgIPFaqdEoH_NFIKXGpnZLycxtpNm97Ol1qkzoW_K3VNTeEMiWEgy7jC7ATUtyzpZw3o46KsOog-veyfCV0RjZXiMnZLbWo7Syjfxxed7wn3u2jMCRt_8LsOzG8CuwuaMjCTxooxcd7KNBhYxX2LJhKl-F_cFZhPg5U6ciXORcYN9Eusw3P4KDD9A-s534N-xDHSb-cJmg9dmo50IAh2yPCxTMJMK8qIw73o57tHrSab5KQUk-jE3C1ZKRLNig86S49lXwOtZQmHjVVFCKj9V9o7Hx5nPYEb-eT9YwaZBtOB8t5JOvRThlCrX5ygFix48JTF34JJAcwwxDcgB7k4Xg5aeODslV4sggehZreJ7Etaj2m7ymGARjPvnd0-xpy4TE-heP_CX4hnJwL2JinX3FHJwEpDjahNkO7D3x54UmttS9RBCbPTKL7txwpshCm0yhZ3tBZWTN9OFm1HEJbjt5DSHCBKNjcWKWQOHQbfSis8pHjz2ipw_cp_c6qm-n2GsGvMkad56-2BYVZnkN49t5j_yu7nDV0pOifl6LrclQIxB1mRnpvv2bWyeshzgd_VSxIL9x0oLnZ61XQk9ao3FnTp9cUDZqBb67GiJ65agzMd_7vTDAcLFfhBtZX-_3kJ4BLldTxEuilmCtDCHa1PrLxqYKUH3jqSSNY0ya3cdRDNScv8ew4NzEBbYmzWh13IJdwqlgIceleHxKa70zZsudLmXrcoNxBJnQwSk35jxPuYGV-jD9J4pLR3kg9nvwtiTSEYQ8rQBLGiw6c5u9V4-3vhI91n8K1DFA-jQeusftJWUsdQamfONlnnGbDoMA_Da-9nHpNloTFJ6Effeb6RuIYAP-jP9EgXx-6oT8MNoahO7Y20VXf_laHYdNBDeZuiK2EFFyrFsgLEyLyWKSZy_dpsL0qgO1H2LIQ7jSYlfs0s4JC-mhkcfxRrLVsmmVWD1JWdfPXA4rrx1uq3rtNUeZSQQDn9xhgRsDXIbk2Dn6o7tB9jIk_dz3jSwcw76CRSIOelpyc2gH0TffGZ8ieXHhDNcJcjcYpd44J07eQylwC1LxpKtMHV_vlBEgB0hB_gfoVpYXFtx1vikqq_zS7LOegLrl01nypu37YNMPy7UaGxtb0nl64wZpb1B98DKP3VTJT-O3C8UoWqkAfY5a8Bjs8jdO1V-443_GRjOAQQE-qEdrTAM1bon767biPje56J01n0HgYAOPra1RFvj6FWhR81aAaikjfCGdEl7HIfmEdBiAf80kDlgbluiG4daPGs9M6pHU8JVIWqEUQc09H2QFjYMB6Rc4zbFsQezt1x5KvGInI8f5xYsKEHMnoPbp0EfR_6NOZZfRYoEByY_Us7qUN1rZLvf9OaUxbFM19KkRog3g8G_DtC859D4Q60WGmpdzptRmNClzk2r5yOgpUiESfuLyJdya4l-qEhLJK2kAOpSxCc_TI61oeO3I7NBvJZLg2FxOpoACHjMYK7XVKKZkQzo5Z_tY6RjIuMg41ihDvoCukiGxEmpEFL0IGsDXInuviVgwvXeYIYh1rrVSdQYhq8jxTleItj-fia0AXGKNsT_8eW50TS-teK66c_yiSf4ghJU86WrU627LmvgjeNM-JzZd-HVkcMSf2Sew65zhDgzUVte8ObpPHo1W_cXO_uQmcKWeQ8lJ7rD9Jt8G5H2VIA1-HCiZfkJN_3HH71cHcH3zuOh1zjdS9Sp1TUvBEoiIoyw9iZ6J6J8bBYham8TWuilgAmOsqZ7M14eiqr0-Wff3sCAEnpJ7BatjZ0CaQr3bUaRR7zxkRZi2052ivjbFNy_dM2RqFpOl5EdopBjVs6V4eETNd1-4jeWoAT8eMdo28O95MXyXnEwHPTYTKafjtvw6HyBGRLUb6tVNU04CWtswWjNYgrz30Ein3ym8GbgNWa6t9U-T6Utiv3KUwhA4lQSzm91XG7WEEhjzPeXL5MfOOkmbrVLecWrNQzaUgPaBZ04HwIXYBOF0wLuJEC2WG6RA2jxa2G5RS_EwX3Pph5_nAWDpHCv-sk81D-k9xYXdobZlD5dCK-4TbXu0IksOmlYkWTqgAj_GMat1PMLtgNsxACR3e1SgUQnOthvz1UZ7z4q46yMM6yJr-NN4Kxud-3jV1wF2GjIaQBveHIuC7i_we4ObNlt9FL68wC6zPgz6N_Ma4f-Rhu-zQpmIoJxoq8h6i7K0AjEIV5KB4LfSeWsIPh-wJtZihoU8H8MDLq2IRFDYskCj2tmQu56ciHphYWxyS3J2PaNJPJwdPYN8g-UAH_DGQjsXjOL57WW66fabkaMRTWaUh8_S8dj_PY_c51hxFYX5pOKLoZPOshEBFwIGfIAINUK41o39ZKY_tzcqfytYtZ8lUjCVXtNHKDWbluKbEiRWoWdp0IFkViRhvE5J2ZUfc3qNUSi5-opQmFf7FUSqSl33dIcc5nOenxX2cv6bKBYl5fZ8olRGr_YFbb9hiq4bN7QQ7BRlhGEfU-Jn5jkY6ousus5n8ZMDiTo121SLtM7FYHAwlDWFqaTPu0WLg60cAFqXru8eRB2n1HA-2WwoTkdz0SPnCjMoAvqZGW2Y1Fxr9tohOZJpOm-barcwKtFvWC1tOkgf2GnxReTIjYZq6cmVdhz55Wvgy5vduwWoFLGMb2EdeHl2C-y6uJI9t57junYhsxVx84mbHCJttZRB7nq1_ZLrnNOUh8Ot97Z5yMVK2Vfn-88HcT86Uo9O2hFgO0DilmqEIf89EXh-a44NGZvXLToRwZDc-JkmeRB5E9fCjF2uuOv9mPyrFtM8LhMteUunUoETNWE4Fq82svMKq9Mg-k-cNuAbzk34hClf4-c_yyHZw0LKuySRM8jYK9k5FPfDaLPTuDfJ96JeJ5GTb35cF83Ee9r0OVe1TvODMk6t1D6kAHmRlLK3MJkZktHq0ETGlKtNmfHIS7vyn8Ok7PafSWyd6c4Dz50vfNH5INXYm6sruqXlRLTyjL9eg6tKxguFBdk4wsKgVBIgzJ5p1Xs3iDNlwdKekxzPzpHp7blZLUfDtsLSFY0Krf0L1pmzWGSGpEzWFupadiYHG2O7MBe02wibtx01Wi-KyHbeiwO64VuHJplTZ_z0KYSzkrqmWlzy9hXxSu3lBcwbFPLgO0-dlhmJbXHORqBj_dBEbL2N-k9KJU6qqHSM7t1Jj4KaH-Y-8wizK5b5t0ZzU3XEtMY_EAwsdnpqJs4pXBEliZ56KuoemB-lAnd853rwIqcQ4A1Flw88uSMvOHTSTZ0ZirD0pCLyzwW13lBUDpgp7zwZHwDR7DNPUtPpHKDWeK6YkLO5EjsPSLfwhcpysCDdHfrMF1FrcwT_WE6Z7ui5o0LEi-335c95Q8qwlGof9P7UxOna7DjTunXijF-aJNPqmhKE4fY92Auvy4y2wvmAVNuLKdPdS9fVnhMZh19Air0ri8WiXyWvqZOPL1MYL3PElKC5uk_INyK6L3S7aMCmws1zFA6PSb2FvogcDSONeNM03Gd68nJlf4daNQXErKkyt5w5ULSHamEqcT3PZDa5en_X_R4lgL_pUFmy6K70Xxw4LiUvH0gO1-v1jP5IH6aNc6N1cXQs6tt1ajViXcD7aCcUovQ2Ejmvq9EUmgVLWkMaXJB06c7ErXME7-9wqas_bj48FBV9mGwDLxif1lsxoe7pqT8xZ9QwGiKoRVb4t7nJUqLWcx3oGDgEetUMyI0VctLixoDdvuO4CIZliRm6ilMomyfNwlHdBMoU7-AhZThBjp8eA9vMz7LWIl-TFuueueodO9FZEdGOs6uBZffBYU39oImI0di6oeT5upaPkVCBEBLmwHmDEsfiaKR8IPuVjNSo-gX8JKu-GHmECGYb_3ffN4C3IG5w3RACsKzQfL2L_tXBF5a1T0NtDtrjeGI-kYFhwd4mM1HQFNKVYx_475tInEGmwbdtzYKi4OrdOnNUG8QyxnRl5tBXWwOqHvorIJvwzQHgm9jnaNMekwUhb_8fiUhm16G1qhBLQZlz7eofhB9WcfuC4dxrdvMhfGEsXH9b_gCfj8vazaJyfmm6PGnyJIK6b82dXtE6JIJfwmX-m1J7AGCaW0So98-XuOUAvDfxDtiOap7JxiIRbrmrY9rLDAMAkE3BmXY9tX-_tMQm8c2pr3ioc94mWntYbIT0QIiGpentwiHJHComvQkb9Ss3DtOuz5vtP6ImJXXOMzb7FVEg6Qc38qfpSw4XtYfrjI5EaCmPl9P0exeeHN_RrI9-VfuM8KdMrjlHd1LbgwkOOKB-O8YpcuRgUTySEDngxQYYA62jmu03Dfc6eyA4WwptQQZZt5RPiXRD-gxOdhjcNGf6WLMYTmI_pBeo56qSbhbt_tllPYbvP1NzZcKb-ssdYZX9m0eEZTqxWeHT4iay6kq3QIo7WUD6PYXin5jRpGfB6FstSoJcUhcJ5B0ld6A3ij6DsdzOy799EVtxrANZ0VEEg86O1x2ft8wl481wDAcDBObPrTS_i7peacVDWiWxYIRWe3NGXCmq6ZU9lBB1iQeOZ16WRVU1g50_AHxiuwPU_x6DmWXTofqr5VNcpMeIMe7JUxE4OF97r9J7fVomM3JoSUirPXc9Fqk0vqj2aZnqOLyq7AAT-4yqb72QpokQhSixAfWUxg167vijcSHoijL_OOxg8LTBrBnmLKTKwsbKtlSJzY9Pj4iws4tQRpH6LkNNkB0EVZBQNuqEzOy1GAeVfC3fttdV6oQLpq7ZGwt777Fw6HORX8dhqpOsaHyQz-VeWxtnZEfWLfWyIy1gouiDmTLdoNKmON8xy_dAWuEerNf0_Hqm8zbqlBGq2xiictUZZTrPtiX-u5y_nRldhSSIz5lDlDaNcSCNnlElMxjQ-pbFKQg_Zr2jGJeuAY6AuIvW9M7sDROlh8loCGzO9klwYfBjdldE0HsQhyJ8h2sg7qRaxcgGSFdnIVaSnj5tLyVtOiskFQOGj1U7tUD5jE_6nro0Np90_N2X4OquME6lqwofyMOSU3kUo-4CKiq9EF9RksWM9NCpZ59XQcWGTKqujf1cNXlXo4Oz27eRLGzUAhxY8XdTdxEtQ9qiNlAgnWMwFwDuJneZKoKxE3BFf2vXtwUdTMG3mAaLnRfqxRNb8o1QthMVoeLGVDIf6bTGGBVjOHJ5Rsdbq1ZsiQzJcNynvSfAK57BzMIOF53JZ-R8qvrgxapUM7gIqgtdajzTdl9Dj8MWcm1n6DQSWd0au6ZskpDnyfRmF0Vx5qYOwdHcWel0XtDUEh4pBzCxpXnIR2UFF3EbUYfSOZlk2c4RrdGaKApiJhrSveWzbyA5BwbmSj5QRYc8WY1Rjwf8FygQRXQpnFPsgoMuyxcverMLIOGJ2vnAPy3sQ9d8nOYQlOVD9kXv27eRl6ygYXGNm6GRr9lpRU9TFGaoLF4JDFQbQYvQvM_UaGUAM9h_X2Lnnljw4s9AFPV1QR4MgKg8_X6dQt3DKD0Lf76I8jXqdIzIJvBNbY3tAAgvC7uypf5cqUk27ImdMZ2OZoJmz9NcqTiutxBRmJbTIzzWqdwHLKgjeAz3OdTf-eNQO0qNSsMGs8-xC6xm7puBCjKIFkc2xbd3F2HZ4N91sGczTakCJB-5h3G2TcKHFZptvEGfvM06KqRlq6JG_XVgZuG1_O4im0FgDoEgpsR3_wddshPpOavxFpAzOOIY7A344aHAHXyGZtU0SG0Otbq2U2iUTSsmmnvbwTKhnh8OYyytl_zoUPmNSNdkOrQLw0T2K4DNTXyhhdttvff4wSlZ5JNgPWc1vS8Olz_QE1EuZFDrxRFkQo0Tf3mhI1c4LGp4WY-MuMXhS90rQFIsuCUcx_l7KqKHcJMxMFri7M0uY1NwBgvTjlgwsNwZAF1CTUBpnbXMk4dBkxDNM-ha5w3PF3u1JLKNxlGtlqX7QeQQc7zmMym3grPBUM--XV70NvwAKRaGlPSGLnM3ESjO5tXEH1T0ksEP9CSAPfMWk2N4B2Mr6tyyBQTY1GYLDJlam_PbnIVySDjQB9IoPYzfdI4vUWGY-rX8rPF2pMde24r6SqUI9K3hbSgkb9gq1SUNoAsuZRhelLURV_UM3Y777XdSxdCQzoh7sTFu547cwX97Yr3cBZFyzf0BHlt5mNX0WcQK_CHJr_QqYIGrkMilcLulApWXdYTb0P84ntX_LR7rrmFQBfjlVIacsAJ4YvitUS8uRKfVdG1BxlCxaUmVBJjjSYwyPCEUy3g7EyUSn7TSUKj3zBH6o1mZQTXHd36j8AEqeCWNofmrr__j0dMcg7mGlAEE-5h547MDpfNn_bUl6N7S5FzIF_5Y7Cu6c6RtCb63F_XVZm9nMrYOaww-0OAKjPiLiQ59fE3Yb9tACEgwmbcdh_txOmqDu4wIeJmspE6qgxfyadieE9j1gdI0rNWhe7saTKzzo48wGT9ljOrBRUAKmjYR14RwRqfeJqG2hHKAWoZrWAQ2QlxXk3SzVhHXzBTEmCCO_hZFd4YuhSRi65EeAakE_NyDzcsz05Ez4aZSNXonyv7CsNLc-EXrxXgVBReRKxawt8e-NMFy4monSuxBalAr1LArj3f9HHgnb3dERoqG-qfQr6c_0Al4kdm1FFsuX8vtbIPaByUPVI_fQfu3BScJZkWZEMZAoTliy78JhxKPVEQq1JjTVc0rGCcFl5iL-_s6oK9vYbgevfPTl8PFBNUbEr6cfNvikMOeJ564506ZVuzKsvTgXniSQvlk8dgDW29AGSE7dzeLQqq5IdLGqqz_fSc2mQxcAcJgwzRLT1LQr0WkHC17yIbh6MtCfRcLm-vyTuzLiDeTBqoOrH-3WOB3AnHae3nRrlwAR_UFsA1l_fme2vruv2MUY9y8DHX4vwmAhNpj1w29xEuzQpjNEMjKLJiyvf4CwzN7tQU3zUtRnQ8kTyoj2Re5EzETQ8jeF7ZWCZwmMbSQWH4xDyYj5_P96dMaUHGaLBOW-hT5fG56kCyUnV_AcnYAa55FeY-J_j0qHdUV3ZK-bizwcNIlI_kpe0GUGajdNvJZv6r4p9-BxRIDbIHidNjaP8nnyScCYU9uWfJxykcKGgl7jZeWfSAfJASkwsbbfH6Ug7Msv9i2R2HnZNK3WdlAWA4IcpHw19wp79Jq9yE--FTuWaORGD_jcjE1bNPDbQ1AFXc_naxhzV5-XRsFSa_wp4qQznepjGjc8PpczcoCcdfYobR1ZOcrBhhtufEoA_1-ZRjl3f3HPVX3rLFMrIIopS7saLTC_d3e1J3f9CQktA2zGfMKErQmyBPk-UpW1QnTVi3E_qB_IDbQNkV_cOU3doKW9hQXPb9di1An2qhOQSoBaoEnF4xxUrrlfrF7g4WZKM4hcJ-LXNOIk0lhlImnArFnepgH2outlUM1zdn99PXWFbVnnj7VTIvHQ7ZiLV3ej_Tv7oimAme2zB1f83PkrAXPZZ-TzfrFkyFSwOJs32U7VBpKjVhsd3_RxMtrm5QkZiMHKfobGlV5Wd5dmpYgdjSyVv_FkJYVd4itJYgfIh-R9ckUy25Qmy6mlKPCHPB6t1-Ip5e9ihYCJ3jiCCTuw6lGdp2quZc2VWWOm13nPA1Xol0bGIPVMFtuKXYXCRomgSomjqhm-z0NVvQrMsm_YFXl8Yiajq5mXxpDI3rkV5NbHca8mQItDwZ2sfbjtD_UIpk5lGXufs2M5xOzrdk8hSOfy3tLR1q-OkOZaE9U_KWPkcP-FESCoG7sTnVHpT18Ht7s0AneBoo_3q1qEEcX3jmGHwlerOLjpSyZRTaspteUfYXH_0NeiL2HBn3aMW14GP9VsBHAUPlynmFlxiqM8YDpG6bIAt4Yila0cCM9DLn8ja3_-tJt7rIdf7iCJd_753PG24KeKpr13wea0QZ3aBoXwnpqa-C4gbH7hKnExALeEDoUzc8vdENrlaJTYCAI6yM7lg_EZYSRhrTFqDZYFKW53I_i8YU8IfO_7R8s3A2jbTSuhf9WhxD30HvbAlDGk27LSbF0keP88_Vnru_mFuz7z_u59iwhnfDxyEmgNtwPWj7NIOThc5CdEjvTiCwMhHF6u5CxZDN-YNtwQK3ai0dnp2w==","summary":[]}} + + event: response.output_item.added + data: {"type":"response.output_item.added","sequence_number":53,"output_index":15,"item":{"id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","type":"message","status":"in_progress","content":[],"role":"assistant"}} + + event: response.content_part.added + data: {"type":"response.content_part.added","sequence_number":54,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"part":{"type":"output_text","annotations":[],"logprobs":[],"text":""}} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":55,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"Short answer:\n- Default","logprobs":[],"obfuscation":"QW656YdVl"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":56,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" FastAPI/OpenTelemetry","logprobs":[],"obfuscation":"3U4PZ1gTRV"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":57,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" instrumentation already records method","logprobs":[],"obfuscation":"q2ksPhSf2"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":58,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"/route/status","logprobs":[],"obfuscation":"sw1"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":59,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".\n- To also","logprobs":[],"obfuscation":"pc5Ee"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":60,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" include HTTP headers","logprobs":[],"obfuscation":"Ql6sBgDH0a3"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":61,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":", set","logprobs":[],"obfuscation":"e4Pg4aL3Sh5"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":62,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" the capture-","logprobs":[],"obfuscation":"Fno"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":63,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"headers env","logprobs":[],"obfuscation":"EpeQm"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":64,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" vars.\n-","logprobs":[],"obfuscation":"3C1N25eH"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":65,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" To include request","logprobs":[],"obfuscation":"NrPzS6H91D8FW"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":66,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"/response bodies","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":67,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":", use the","logprobs":[],"obfuscation":"ZnJ5pMj"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":68,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" FastAPI","logprobs":[],"obfuscation":"7sm32rpp"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":69,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"/ASGI","logprobs":[],"obfuscation":"2gFmImEqUg8"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":70,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" request/response","logprobs":[],"obfuscation":"KwiDLsxL9vtk6Aa"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":71,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" hooks and add","logprobs":[],"obfuscation":"m5"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":72,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" the","logprobs":[],"obfuscation":"02ehOPl5ojtF"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":73,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" payload to","logprobs":[],"obfuscation":"oo1Q1"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":74,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" the span yourself","logprobs":[],"obfuscation":"lr2fU5ljGqaz7s"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":75,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" (with red","logprobs":[],"obfuscation":"jfWSWe"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":76,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"action/size","logprobs":[],"obfuscation":"PYKcu"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":77,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" limits).\n\nHow","logprobs":[],"obfuscation":"Fz"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":78,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" to do it","logprobs":[],"obfuscation":"zOdlIvE"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":79,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n\n1)","logprobs":[],"obfuscation":"w0105lPiPO2c"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":80,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Enable header capture","logprobs":[],"obfuscation":"3zy8uPPFOT"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":81,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" (server side","logprobs":[],"obfuscation":"zQQ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":82,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":")\n- Choose","logprobs":[],"obfuscation":"7IXrNN"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":83,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" just the","logprobs":[],"obfuscation":"1pPuoih"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":84,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" headers you need; avoid","logprobs":[],"obfuscation":"MQJJ4QNI"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":85,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" sensitive ones or sanitize","logprobs":[],"obfuscation":"uPTnW"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":86,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" them.\n\nexport OTEL","logprobs":[],"obfuscation":"MDKjWaiX27Zhd"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":87,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_INSTRUMENTATION_HTTP_CAPTURE","logprobs":[],"obfuscation":"Tys"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":88,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_HEADERS_SERVER_REQUEST=\"content","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":89,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"-type,user","logprobs":[],"obfuscation":"1GqmGk"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":90,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"-agent\"\n","logprobs":[],"obfuscation":"vAP56nOS"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":91,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"export OTEL_INSTRUMENTATION","logprobs":[],"obfuscation":"xZc1w"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":92,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_HTTP_CAPTURE_HEADERS","logprobs":[],"obfuscation":"4gkvCmoHp5U"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":93,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_SERVER_RESPONSE=\"content-type\"\n","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":94,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"export OTEL_INSTRUMENTATION_HTTP","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":95,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_CAPTURE_HEADERS_SANITIZE_FIELDS=\"authorization,set-cookie\"\n\nThis makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n2)","logprobs":[],"obfuscation":"TvIZ"} + + event: response.output_text.annotation.added + data: {"type":"response.output_text.annotation.added","sequence_number":96,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"annotation_index":0,"annotation":{"type":"url_citation","end_index":946,"start_index":799,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"}} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":97,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Add hooks to capture request","logprobs":[],"obfuscation":"EEa"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":98,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"/response bodies","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":99,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nNote:","logprobs":[],"obfuscation":"XaIX2CSRdY"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":100,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" There isn’t","logprobs":[],"obfuscation":"rsOM"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":101,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" a built-in Python","logprobs":[],"obfuscation":"J7hU40MnWaDWKm"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":102,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" env","logprobs":[],"obfuscation":"NGoH9cjie1b0"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":103,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" var to","logprobs":[],"obfuscation":"6lVnhLDY0"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":104,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" auto-capture","logprobs":[],"obfuscation":"iSF"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":105,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" HTTP bodies for Fast","logprobs":[],"obfuscation":"s3ZURVDE7Pe"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":106,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"API/AS","logprobs":[],"obfuscation":"LxfNueuvmk"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":107,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"GI. Use","logprobs":[],"obfuscation":"yOzBvJyAa"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":108,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" hooks to look at","logprobs":[],"obfuscation":"GQdMrMH4MLkmK4j"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":109,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" ASGI receive","logprobs":[],"obfuscation":"g5q"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":110,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"/send events and","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":111,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" attach (tr","logprobs":[],"obfuscation":"cZoHW"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":112,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"uncated) bodies","logprobs":[],"obfuscation":"9"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":113,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" as span attributes","logprobs":[],"obfuscation":"Y238731jczz4l"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":114,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".\n\nfrom","logprobs":[],"obfuscation":"E8EBQ9xD0"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":115,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" fastapi import","logprobs":[],"obfuscation":"b"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":116,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" FastAPI","logprobs":[],"obfuscation":"VH1Hv2e4"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":117,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nfrom opente","logprobs":[],"obfuscation":"TbsE"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":118,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"lemetry.trace","logprobs":[],"obfuscation":"dXL"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":119,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" import Span","logprobs":[],"obfuscation":"unv2"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":120,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nfrom opente","logprobs":[],"obfuscation":"7TVO"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":121,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"lemetry.instrument","logprobs":[],"obfuscation":"jMHMj7SWlgIy4A"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":122,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"ation.fastapi import","logprobs":[],"obfuscation":"9q4BDBkbIraH"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":123,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" FastAPIInstrument","logprobs":[],"obfuscation":"ZfamyqTfcvhQ8g"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":124,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"or\n\nMAX","logprobs":[],"obfuscation":"NTlVsxprA"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":125,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_BYTES = ","logprobs":[],"obfuscation":"sd1zZTo"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":126,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"2048 ","logprobs":[],"obfuscation":"Zsda1j71SNR"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":127,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" # keep this","logprobs":[],"obfuscation":"j5DU"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":128,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" small in prod","logprobs":[],"obfuscation":"rK"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":129,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n\ndef client","logprobs":[],"obfuscation":"nvHY"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":130,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_request_hook(span","logprobs":[],"obfuscation":"USmXfXueAuq3wC"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":131,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":": Span,","logprobs":[],"obfuscation":"Ws1OsCUbr"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":132,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" scope: dict","logprobs":[],"obfuscation":"4iFz"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":133,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":", message:","logprobs":[],"obfuscation":"MOHXRd"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":134,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" dict):\n ","logprobs":[],"obfuscation":"FYlN9"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":135,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" if span and","logprobs":[],"obfuscation":"zzyk"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":136,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" span.is_record","logprobs":[],"obfuscation":"z"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":137,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"ing() and","logprobs":[],"obfuscation":"fw87omu"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":138,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" message.get(\"","logprobs":[],"obfuscation":"Yr"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":139,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"type\") ==","logprobs":[],"obfuscation":"fqUD5uU"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":140,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" \"http.request","logprobs":[],"obfuscation":"Ka"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":141,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\":\n body","logprobs":[],"obfuscation":"R"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":142,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" = message.get","logprobs":[],"obfuscation":"6U"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":143,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"(\"body\")","logprobs":[],"obfuscation":"L3lZVjRl"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":144,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" or b\"","logprobs":[],"obfuscation":"Fb6XQEIoBL"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":145,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\"\n if","logprobs":[],"obfuscation":"UQY0"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":146,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" body:\n ","logprobs":[],"obfuscation":"jXQYhCBIvivXgj"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":147,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" span.set_attribute","logprobs":[],"obfuscation":"2oyOpzLJPthfZ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":148,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"(\n \"","logprobs":[],"obfuscation":"lucm0soBA3V0L"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":149,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"http.request.body","logprobs":[],"obfuscation":"S9olTEyX8wJDM5m"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":150,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\",\n body","logprobs":[],"obfuscation":"OD1u3emOO"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":151,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"[:MAX_BYTES","logprobs":[],"obfuscation":"WKrMe"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":152,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"].decode(\"","logprobs":[],"obfuscation":"uqZx7I"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":153,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"utf-8","logprobs":[],"obfuscation":"XSqoyd89uue"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":154,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\", \"replace","logprobs":[],"obfuscation":"l7Pww"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":155,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\"),\n )\n","logprobs":[],"obfuscation":"Ak1JmuUaWvBkZ5"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":156,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\ndef client_response","logprobs":[],"obfuscation":"agItEfDavuTZ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":157,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_hook(span:","logprobs":[],"obfuscation":"0VAuw"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":158,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Span, scope","logprobs":[],"obfuscation":"YghN"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":159,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":": dict,","logprobs":[],"obfuscation":"YibR257Bu"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":160,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" message: dict","logprobs":[],"obfuscation":"38"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":161,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"):\n if","logprobs":[],"obfuscation":"JUf91vW"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":162,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" span and span","logprobs":[],"obfuscation":"Sb"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":163,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".is_recording","logprobs":[],"obfuscation":"Hkb"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":164,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"() and message","logprobs":[],"obfuscation":"z1"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":165,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".get(\"type","logprobs":[],"obfuscation":"yKuYux"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":166,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\") == \"","logprobs":[],"obfuscation":"1c6fxZTMb"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":167,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"http.response.body","logprobs":[],"obfuscation":"9aZ2PGrpKvVn13"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":168,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\":\n body","logprobs":[],"obfuscation":"b"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":169,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" = message.get","logprobs":[],"obfuscation":"x2"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":170,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"(\"body\")","logprobs":[],"obfuscation":"Dp8N8Iah"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":171,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" or b\"","logprobs":[],"obfuscation":"Qx2tMBpbMG"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":172,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\"\n if","logprobs":[],"obfuscation":"pbgt"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":173,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" body:\n ","logprobs":[],"obfuscation":"ODgYUulNj6ENmJ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":174,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" span.set_attribute","logprobs":[],"obfuscation":"AApyjf2xz4kJu"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":175,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"(\n \"","logprobs":[],"obfuscation":"gOJF0rdcPoyhO"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":176,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"http.response.body","logprobs":[],"obfuscation":"jumSpqpiJy5SRB"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":177,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\",\n body","logprobs":[],"obfuscation":"sqLISm0AU"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":178,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"[:MAX_BYTES","logprobs":[],"obfuscation":"hrYZz"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":179,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"].decode(\"","logprobs":[],"obfuscation":"wysmH9"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":180,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"utf-8","logprobs":[],"obfuscation":"IhrVs5vsvpY"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":181,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\", \"replace","logprobs":[],"obfuscation":"PEUqY"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":182,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\"),\n )\n","logprobs":[],"obfuscation":"ZueyBhDDVziCUz"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":183,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\napp = Fast","logprobs":[],"obfuscation":"R9HPs"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":184,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"API()\nFast","logprobs":[],"obfuscation":"kcdIII"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":185,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"APIInstrumentor","logprobs":[],"obfuscation":"U"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":186,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".instrument_app(","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":187,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n app,","logprobs":[],"obfuscation":"tzAvfXN"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":188,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n client_request","logprobs":[],"obfuscation":"0jlVOgOrTXf95"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":189,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_hook=client","logprobs":[],"obfuscation":"42nw"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":190,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_request_hook,\n ","logprobs":[],"obfuscation":"XdokTWr5sI53Rq"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":191,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" client_response_hook","logprobs":[],"obfuscation":"Ryt6PC32eRZ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":192,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"=client_response","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":193,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_hook,\n)\n","logprobs":[],"obfuscation":"gUGvAuV"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":194,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n- The hooks","logprobs":[],"obfuscation":"mHgR"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":195,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" receive the AS","logprobs":[],"obfuscation":"2"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":196,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"GI event dict","logprobs":[],"obfuscation":"Zhr"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":197,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"s: http","logprobs":[],"obfuscation":"jfNWuMPm7"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":198,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".request (with","logprobs":[],"obfuscation":"Yh"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":199,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" body/more","logprobs":[],"obfuscation":"YLpSO3"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":200,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_body) and","logprobs":[],"obfuscation":"Y4el37"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":201,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" http.response.body","logprobs":[],"obfuscation":"tGVrDMzxQGABo"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":202,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":". If your","logprobs":[],"obfuscation":"H4TMy4C"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":203,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" bodies can be","logprobs":[],"obfuscation":"uN"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":204,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" chunked,","logprobs":[],"obfuscation":"5k253hM"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":205,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" you may need","logprobs":[],"obfuscation":"fq0"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":206,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" to accumulate across","logprobs":[],"obfuscation":"i5xiKyaUonq"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":207,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" calls when message","logprobs":[],"obfuscation":"fQC4x9Vw6BuEC"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":208,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".get(\"more","logprobs":[],"obfuscation":"PbbrSS"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":209,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_body\") is","logprobs":[],"obfuscation":"GMX10c"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":210,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" True. ","logprobs":[],"obfuscation":"o74PybOdt"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":211,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html)","logprobs":[],"obfuscation":"tEbKNEDIrbvhWx"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":212,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":")","logprobs":[],"obfuscation":"Lz0hgKWzSnbRROi"} + + event: response.output_text.annotation.added + data: {"type":"response.output_text.annotation.added","sequence_number":213,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"annotation_index":1,"annotation":{"type":"url_citation","end_index":2582,"start_index":2435,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"}} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":214,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n\n3)","logprobs":[],"obfuscation":"aBwAhxAEaX9w"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":215,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Be careful with","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":216,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" PII and","logprobs":[],"obfuscation":"Rwe2UmHi"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":217,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" size\n-","logprobs":[],"obfuscation":"7DffUf27X"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":218,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Always limit size","logprobs":[],"obfuscation":"pR7FBMSjv390qu"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":219,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" and consider redaction","logprobs":[],"obfuscation":"Vf9TN26VP"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":220,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" before putting payloads","logprobs":[],"obfuscation":"h51TunAK"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":221,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" on spans.\n-","logprobs":[],"obfuscation":"JDdO"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":222,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Use the sanitize","logprobs":[],"obfuscation":"91PRbxVnGZLvgGc"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":223,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" env var above","logprobs":[],"obfuscation":"s4"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":224,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" for sensitive headers","logprobs":[],"obfuscation":"Sy0mQJNYtV"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":225,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":". ","logprobs":[],"obfuscation":"Tv2saDsNvGP0Ss"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":226,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n","logprobs":[],"obfuscation":"60BO8HvmqJxN"} + + event: response.output_text.annotation.added + data: {"type":"response.output_text.annotation.added","sequence_number":227,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"annotation_index":2,"annotation":{"type":"url_citation","end_index":2896,"start_index":2749,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"}} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":228,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nOptional: correlate logs","logprobs":[],"obfuscation":"7YeMGHx"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":229,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" with traces\n-","logprobs":[],"obfuscation":"EZ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":230,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" If you also want","logprobs":[],"obfuscation":"k2hW00zK4y3eqbT"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":231,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" request/response","logprobs":[],"obfuscation":"7NpO5LJj9Gy2m67"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":232,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" details in logs with","logprobs":[],"obfuscation":"gs8UaJ5wQd1"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":233,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" trace IDs, enable","logprobs":[],"obfuscation":"Z6a5MVGPKdbA1u"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":234,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" Python log correlation:\n","logprobs":[],"obfuscation":"JIOMeuA"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":235,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nexport OTEL_P","logprobs":[],"obfuscation":"e9"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":236,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"YTHON_LOG_COR","logprobs":[],"obfuscation":"OOv"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":237,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"RELATION=true","logprobs":[],"obfuscation":"DbI"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":238,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\n\nor programmatically","logprobs":[],"obfuscation":"qnwdSrvm5by"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":239,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":":\nfrom opente","logprobs":[],"obfuscation":"Esl"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":240,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"lemetry.instrumentation","logprobs":[],"obfuscation":"23c4XsjdJ"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":241,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":".logging import LoggingInstrument","logprobs":[],"obfuscation":"o7DV6JLpDWxpucv"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":242,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"or\nLoggingInstrument","logprobs":[],"obfuscation":"TTb6bDzWYMof"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":243,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"or().instrument(set","logprobs":[],"obfuscation":"gUwt2OhTADTIR"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":244,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_logging_format=True)\n","logprobs":[],"obfuscation":"ELUu76gEV6"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":245,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nThis injects trace","logprobs":[],"obfuscation":"VVQ6lbmXDfXy5"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":246,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"_id/span_id into","logprobs":[],"obfuscation":""} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":247,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" log records so you","logprobs":[],"obfuscation":"73QqvEOleOa3u"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":248,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" can line up logs","logprobs":[],"obfuscation":"47BlS9DSo91ld15"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":249,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" with the span that","logprobs":[],"obfuscation":"IiSRw4HuErGhm"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":250,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" carries the HTTP payload","logprobs":[],"obfuscation":"NIq2zfj"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":251,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" attributes. ","logprobs":[],"obfuscation":"idD"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":252,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n","logprobs":[],"obfuscation":"VJ71qk85d5"} + + event: response.output_text.annotation.added + data: {"type":"response.output_text.annotation.added","sequence_number":253,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"annotation_index":3,"annotation":{"type":"url_citation","end_index":3518,"start_index":3353,"title":"OpenTelemetry Logging Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai"}} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":254,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":"\nWant me to tailor","logprobs":[],"obfuscation":"GIvIt9hZF2F2nG"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":255,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" the hook to only","logprobs":[],"obfuscation":"N1ua4nlopnoaPkO"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":256,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" capture JSON bodies,","logprobs":[],"obfuscation":"Vw7qJi4GhU3"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":257,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" skip binary content,","logprobs":[],"obfuscation":"2D08dmEQMoV"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":258,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" or accumulate chunked","logprobs":[],"obfuscation":"4qW8RFDKgK"} + + event: response.output_text.delta + data: {"type":"response.output_text.delta","sequence_number":259,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"delta":" bodies safely?","logprobs":[],"obfuscation":"3"} + + event: response.output_text.done + data: {"type":"response.output_text.done","sequence_number":260,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"text":"Short answer:\n- Default FastAPI/OpenTelemetry instrumentation already records method/route/status.\n- To also include HTTP headers, set the capture-headers env vars.\n- To include request/response bodies, use the FastAPI/ASGI request/response hooks and add the payload to the span yourself (with redaction/size limits).\n\nHow to do it\n\n1) Enable header capture (server side)\n- Choose just the headers you need; avoid sensitive ones or sanitize them.\n\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_REQUEST=\"content-type,user-agent\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_RESPONSE=\"content-type\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SANITIZE_FIELDS=\"authorization,set-cookie\"\n\nThis makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n2) Add hooks to capture request/response bodies\nNote: There isn’t a built-in Python env var to auto-capture HTTP bodies for FastAPI/ASGI. Use hooks to look at ASGI receive/send events and attach (truncated) bodies as span attributes.\n\nfrom fastapi import FastAPI\nfrom opentelemetry.trace import Span\nfrom opentelemetry.instrumentation.fastapi import FastAPIInstrumentor\n\nMAX_BYTES = 2048 # keep this small in prod\n\ndef client_request_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.request\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.request.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\ndef client_response_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.response.body\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.response.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\napp = FastAPI()\nFastAPIInstrumentor.instrument_app(\n app,\n client_request_hook=client_request_hook,\n client_response_hook=client_response_hook,\n)\n\n- The hooks receive the ASGI event dicts: http.request (with body/more_body) and http.response.body. If your bodies can be chunked, you may need to accumulate across calls when message.get(\"more_body\") is True. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n3) Be careful with PII and size\n- Always limit size and consider redaction before putting payloads on spans.\n- Use the sanitize env var above for sensitive headers. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\nOptional: correlate logs with traces\n- If you also want request/response details in logs with trace IDs, enable Python log correlation:\n\nexport OTEL_PYTHON_LOG_CORRELATION=true\n\nor programmatically:\nfrom opentelemetry.instrumentation.logging import LoggingInstrumentor\nLoggingInstrumentor().instrument(set_logging_format=True)\n\nThis injects trace_id/span_id into log records so you can line up logs with the span that carries the HTTP payload attributes. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n\nWant me to tailor the hook to only capture JSON bodies, skip binary content, or accumulate chunked bodies safely?","logprobs":[]} + + event: response.content_part.done + data: {"type":"response.content_part.done","sequence_number":261,"item_id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","output_index":15,"content_index":0,"part":{"type":"output_text","annotations":[{"type":"url_citation","end_index":946,"start_index":799,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2582,"start_index":2435,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2896,"start_index":2749,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":3518,"start_index":3353,"title":"OpenTelemetry Logging Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai"}],"logprobs":[],"text":"Short answer:\n- Default FastAPI/OpenTelemetry instrumentation already records method/route/status.\n- To also include HTTP headers, set the capture-headers env vars.\n- To include request/response bodies, use the FastAPI/ASGI request/response hooks and add the payload to the span yourself (with redaction/size limits).\n\nHow to do it\n\n1) Enable header capture (server side)\n- Choose just the headers you need; avoid sensitive ones or sanitize them.\n\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_REQUEST=\"content-type,user-agent\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_RESPONSE=\"content-type\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SANITIZE_FIELDS=\"authorization,set-cookie\"\n\nThis makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n2) Add hooks to capture request/response bodies\nNote: There isn’t a built-in Python env var to auto-capture HTTP bodies for FastAPI/ASGI. Use hooks to look at ASGI receive/send events and attach (truncated) bodies as span attributes.\n\nfrom fastapi import FastAPI\nfrom opentelemetry.trace import Span\nfrom opentelemetry.instrumentation.fastapi import FastAPIInstrumentor\n\nMAX_BYTES = 2048 # keep this small in prod\n\ndef client_request_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.request\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.request.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\ndef client_response_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.response.body\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.response.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\napp = FastAPI()\nFastAPIInstrumentor.instrument_app(\n app,\n client_request_hook=client_request_hook,\n client_response_hook=client_response_hook,\n)\n\n- The hooks receive the ASGI event dicts: http.request (with body/more_body) and http.response.body. If your bodies can be chunked, you may need to accumulate across calls when message.get(\"more_body\") is True. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n3) Be careful with PII and size\n- Always limit size and consider redaction before putting payloads on spans.\n- Use the sanitize env var above for sensitive headers. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\nOptional: correlate logs with traces\n- If you also want request/response details in logs with trace IDs, enable Python log correlation:\n\nexport OTEL_PYTHON_LOG_CORRELATION=true\n\nor programmatically:\nfrom opentelemetry.instrumentation.logging import LoggingInstrumentor\nLoggingInstrumentor().instrument(set_logging_format=True)\n\nThis injects trace_id/span_id into log records so you can line up logs with the span that carries the HTTP payload attributes. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n\nWant me to tailor the hook to only capture JSON bodies, skip binary content, or accumulate chunked bodies safely?"}} + + event: response.output_item.done + data: {"type":"response.output_item.done","sequence_number":262,"output_index":15,"item":{"id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","type":"message","status":"completed","content":[{"type":"output_text","annotations":[{"type":"url_citation","end_index":946,"start_index":799,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2582,"start_index":2435,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2896,"start_index":2749,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":3518,"start_index":3353,"title":"OpenTelemetry Logging Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai"}],"logprobs":[],"text":"Short answer:\n- Default FastAPI/OpenTelemetry instrumentation already records method/route/status.\n- To also include HTTP headers, set the capture-headers env vars.\n- To include request/response bodies, use the FastAPI/ASGI request/response hooks and add the payload to the span yourself (with redaction/size limits).\n\nHow to do it\n\n1) Enable header capture (server side)\n- Choose just the headers you need; avoid sensitive ones or sanitize them.\n\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_REQUEST=\"content-type,user-agent\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_RESPONSE=\"content-type\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SANITIZE_FIELDS=\"authorization,set-cookie\"\n\nThis makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n2) Add hooks to capture request/response bodies\nNote: There isn’t a built-in Python env var to auto-capture HTTP bodies for FastAPI/ASGI. Use hooks to look at ASGI receive/send events and attach (truncated) bodies as span attributes.\n\nfrom fastapi import FastAPI\nfrom opentelemetry.trace import Span\nfrom opentelemetry.instrumentation.fastapi import FastAPIInstrumentor\n\nMAX_BYTES = 2048 # keep this small in prod\n\ndef client_request_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.request\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.request.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\ndef client_response_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.response.body\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.response.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\napp = FastAPI()\nFastAPIInstrumentor.instrument_app(\n app,\n client_request_hook=client_request_hook,\n client_response_hook=client_response_hook,\n)\n\n- The hooks receive the ASGI event dicts: http.request (with body/more_body) and http.response.body. If your bodies can be chunked, you may need to accumulate across calls when message.get(\"more_body\") is True. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n3) Be careful with PII and size\n- Always limit size and consider redaction before putting payloads on spans.\n- Use the sanitize env var above for sensitive headers. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\nOptional: correlate logs with traces\n- If you also want request/response details in logs with trace IDs, enable Python log correlation:\n\nexport OTEL_PYTHON_LOG_CORRELATION=true\n\nor programmatically:\nfrom opentelemetry.instrumentation.logging import LoggingInstrumentor\nLoggingInstrumentor().instrument(set_logging_format=True)\n\nThis injects trace_id/span_id into log records so you can line up logs with the span that carries the HTTP payload attributes. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n\nWant me to tailor the hook to only capture JSON bodies, skip binary content, or accumulate chunked bodies safely?"}],"role":"assistant"}} + + event: response.completed + data: {"type":"response.completed","sequence_number":263,"response":{"id":"resp_00e767404995b9950068e647f092888191843d25c5285ef895","object":"response","created_at":1759922160,"status":"completed","background":false,"error":null,"incomplete_details":null,"instructions":null,"max_output_tokens":null,"max_tool_calls":null,"model":"gpt-5-2025-08-07","output":[{"id":"rs_00e767404995b9950068e647f10d8c819187515d1b2517b059","type":"reasoning","encrypted_content":"gAAAAABo5kg_CSDv3y6-9rcajr9ztNF7AK9MAhzPmxGVnKj4L0iSbQJ-Q2asW9GGjj-PqQroo8OJbOexpQb-Y7t1rlh56uJjv6EzdemlPhVEyyUo4cc3UKGYxJTrLsfbgEGAFwfWgokayL-nt-6UULQmzGyc3YJR_CCDJPfEqz-88vaIfc2An_oGEwf7DGiUqM318Xw6K4rY0yu34lHMFAjwk6ux_uQeUcJ0Qat_h10P66peAx1tZq0lxkZX7v5HJKCxOjejslsYl9uownCGFWyPvpk7ZwEMQt5Ww2jc7FF8WZBhPfBkSvPxQGindrz5g_Gye0WfM2Bboh-oEH5RBO4jqsPomBUXKFgLdMnA9ACNJiIbLsFDgKpc00Ro4J10VoC7AlW6z51QUli4FFoR72hG4dzOEJm0zq0Sl0xrldm4Iw4fAoql4A0jB2E_No8cVHxHdjsC3OkQEYuPdl9PMi8ALNfqKlaBhkLgenGOSXnCuD-8GhzRUCeFHFXHG6xyEeWlodZmATtbhHqm0F4tkAgGgeKbXGdbRGy-njBt_oIslXxd-_jYJ4j6ekxbRdox9xpfcebq9xzLquOVG_MomzHYx08Ld-B9sBjl_3CzmzPmV8KnVOQ1CWXLIsChniNBCM56HNfgHcHoh4IRPqVUh4_PtmRpH9FtW5-Dw2dJYuXFOwkJJ-MUzNxdVhBzjQta9yWGOxT-U_VBQdT48wLD1RFx9DOamJ65H1COwIdthnFk7l-l-tCv0_KgfQnzppQJdXVGF2VfujBfXCCNzyVQF_HahwWAS77KQnofUqtev2ahZzvMk8bDKu7q9UOod14s1AoIQx-a_9QO3NYNvAeTpz1yNm6c2-EIznBsAkXOpITmR5zWXQ10NbBjbIjoXVhU0-EIZOLa0JNuJnbEu_AwMKy4el1BMQ2kkHElCCo15DjqDTZ3MouglZQ3sb4zHfUM5pc0nGGk5YrmZbVt3NYgtA9CuCDUibrlQgLluFd9jSzfbgoSNU0F5cQ_WKa5CaR0IujnwUPKpkE5-4KVdlmXeZ_3FKhSMZGclMVAXyl3SC-9I4KyhhtRFb4JoocpNkjhS21O-yahy89q1pe8jdbUSeCvPt3DoHSTLjtuXNLjSmuvtwBDPlOOC-sEVR8_GbzdwVq_Tkugg4wT8ErAuSrov7VenzMPn9JnG-2ttXevHxfO3RsdYlr0VxMhZ4Iid6aFkLOT-qNaVj2ld71AFcUCkqaww50k4skbFRHX1F7vuHRdK1aCTtFFc7JSTlIElHNnpI4ODykTYRjG3bHPeop41rpWTxC1clJdDfdcSosBsFfEukx-7Iu4mr1idxc5fizh4NelAql7n0N3LRIR5t44Ls2D7c0oL1kL42VKChuUsxnXkVbOIuDW3N1GSNyoLk2qHi9AVkkl29ruCgcBxPG7_UCsc0GmSDf_VcRY7qdASOxIvoALZAzhwBBXKsGvjkvoYwznajbjPhaW2qCaZdJzLE7NZneBsw4XzoUJG3BPY_TBmj6sU-7DlwtKO_yuArmXChCsAL-ItF_Hj5ROsdekSDvlxwy1wXFPJF1oDizO9inPYpRk_RhKaMcaSqQQcOOoV81uXKLvrEOHRmBf-MsfQ2-GiX6U5G0IRzgRgtCtl6srWJXMoBkmtETiSo04pc4x5lhD__djzoJi3XlVid6ahAbU_ez11afqeREP09ZFj5UV7UXWVpwwlJdEoQGe-mkmZuHMfYjG3D0_6SYhnqOc-hgu-L9y5qhjh66TyG8JN7OjYFj_VQ9oo4io0JfwiEThHYVycxvJ812XhUgKCyxz4YIzgU63Pf-TN0VOraahE4WWu8mjmbkydFDKtN4qpdBrZekyAqVimK28n0Dmag1T2PTz2IG0QLJisZGd0mqPHI6Re-qbV8fwsrq9XrbvkPc6eMd5L6xt9P7w_IMmGyXN9t9Vr5B77grhGQjqSB20PAcC-FYA1lG7XajweXC9vaIGd69KfsVWwukJko8S8RNyS9XNmQO0JAPdl35iOIn1yBpMMBBRfU59Zvqb7i3TmeyxiitOYJETi5FiggwZ9em9UaO8ojJblY4VuzrshdlPddN3av0os4izexyI5RzPa5DcHk07qKm1Ky8Wwa_g8kmmuGUns1QzXHWTQYestcG_5N0zmawYzwmpKI7LXGMBevcw-VrY3koPGAdyIoZhCMrta1wC3U6Umx-gAbmB7qCv8TNZApxYQbO8vJ4aNiG2WOWQxtVA3jTvC7DDh_gmi2EnG1PHiiTEi1jDeKmnpxW_y61wIY6M0LozLjO_tkVCkFLyBkTzECqXLubuH7__h3tFxKkMYkEq5shJa7A87MM-Tn_RsCkx8EgorBCb--g6EMJ-HRx0YVOdd_WjMrTKZwwykeJZINbVBDXIao0-tLpXP1RBSFSaKOuZMOsmjTqHCLQJGYKxdcYOiXZOZfKY3zVN4nanMbFsohGlLVUDsz12zZCWU_x78X9ypZcuad8RSA8II8cXCXrsKfeHPhKOxKY_o6WtJxCAMxNQrr4flyJA_18zuX9cT8S-kHepBSisDO5Tzzb9rNa99eRs4mC44c-07w90gsaWU3EcjAGfFRQFTaGMqV7yhbgpTGF0Yr0nT-BKdKqpgmdPCgCicAjOd9eFeY6vE6_0osdZ9B0y6I3aEiTSfcBce3VfsImm5ZeZCi_n3Z2adjCv9hnMXP1DoyFxuDD6_rRXBxWVtOpofcPdObOhrwuBBq6jHodev1cL5DTRWIUPCU2PqKdQvtTjxUP8HBjysN29Fsle7KZGgBcpGboIv8Gz3B2jTRRWdLZKeP5gSGxO9oHkT3YlbDTNNNwQQA0Vy4DkUpHJXdfTugvg8DWUOhnjThe1upVcPHoa9z4e0h9h-2ERp_JCwP9o3oRsJq4_9fLAr9bWXgBbOxDsCdYI2MHGvJ2yxzucaemiNAjC1hNkADJ84KN2RvjnxGCg6KiHVc3xKrxRK6GpSI1l0WiGvUmP0HwGEUjHYU_LNKvvd0vzNzcSdI50BEv5NvElu-HsrHtyG7CYGzJ54tRegrx5_OfYu1_SYXP_YNQDZBik64U1qAscFEtQEDmxoxfu14hIBgwmjY5eA4zDXa44whNjnwSmIHzpMe9NjJdl-LXtbYCGVHx9i2ZAdxPg_JNOKyCDEcPREnvefjnivjkuonFL3W4cgYXWVyRpMmYvZ6G5iLhrAPSuF6SyNhPhBHsQ_aHKGQednxoZmwhPI1ffJPUZowV6cQeEua3g6ageq3hBdKvBiPR5JyfmkV23UEXhz94wjpoiPlDcPdTcqlqBGFMzFLsy62R1iKCCEB2TSzJAOzysWRcK6nYM7XFV5U_WKRJfWh6zGNk3twZv657t01TaNZp6EMNoJPRh-qWKbYNs3DTgjf8uUb5eGWyTUqr1ztUr3547fQhGymPuqYdxX3SKd4kQYUk9cxUVanZc64Qc4czDapb_qzzzIpRv2sQbAFiXYAMhHNOq7XLk12DPuEGhETLCpPUxcRojQ_gUxy6q7mKpO95pkjUvEXLEv_wHnOM3GLTi-4dmulHrPmnfwn0JK_MG5s6BEyENX-Zbnw3641Y-oudnths77KyuBqSbLpge88fO47AEfrUzkDE1WmbxfoeJ_s9AeVutrYpu2Lk6uvdVBQSXNGKkAiiAz-6IHaYXEMCrrfIqw4E6AR1-jVRjFLT4Dh_HHDWv0RgdSPlDvA_3HtCGGKVg0qwaLkwBZ8wO0Jtt7Ca-PdX16UL9DrO6WsvRN4LwAwHCFnwI_BQoY-6S0zKZXqneplRzaeEcHsi-7c_X-8BxZ4oHFkGBBrzEobvo6JWO53gtESnHAcZFvqxsKX5sVc8f160tegs9C7X8WbXxDTCCBWgmDltW-mZeEuRfktvLVYvY2TU5S-eQ_etgObXvL5fbVx8RxWKd56vdmlRhzZVAZsNpkiBkcJssDCy_HjOcTYN9W1EJpMH9VxL2Uemai6O53mW9-8ePx0Lldti-ygHBH0d2zdNO7lUiXcqeFhwRgAtzLfLy9okUptwW8t0KJTHyuyuk1IPnqXQEeYD7GdL8IdiFbjexoLPDx7GfNyMhcJY=","summary":[]},{"id":"ws_00e767404995b9950068e647f909248191bfe8d05eeed67645","type":"web_search_call","status":"completed","action":{"type":"search","query":"OpenTelemetry FastAPI instrumentation capture request and response body"}},{"id":"rs_00e767404995b9950068e647fa69e48191b6f5385a856b2948","type":"reasoning","encrypted_content":"gAAAAABo5kg_Sp1yCm4uugfmhl_J3A7rbLewjS_TZUss6txJPcX4gObsnuMJ4yy85eTHxOopWB4VbGd7XTRIKmgnESjpTO-rmeur1CBN5YRjHmmifJcFAmVF7DrEfnNLzKd7BY492iflfRV9VPlV9J3zYI5ocBMvyM_MFhp8gCHEVfes_sqa28XGrGmYB57irWufiaIJsqwlZ1VUlIxBKRlO8-peh_FJlU7Jg6BeFbOI7dj7POCyxR-D2gHwRLlZegPSLoeFfWHObBOoxW-PFJTqA9awnvv3GGptXNCtaN8jBJlpzYakgUrWqS3Y-5-R3GUGTzGCRqAdew9WlUnCNf7kLKaVLw3VDdY9VMVP580MXMdlxqfNsL9xlieaZaOWLwR7VftD2aLFCuzjPFkoUOt0x6reM7dxrWfx3C8oIT6E046ispJAZk8pqxgwSaYDAfvsVBG98UgZYJICK-oue0B0IjPpwMOv92pkmXhlwdoE7y4G714HtA3V5JzPMD9UP2Rn3HGl541944qZQQjYquTk6F0wEZWKwYZJOAH66-vxG0x_34W7Tr74M7-2_iH4TUIImXEPKB0p9X_M50WvwSFkETEoTf44bOi7EWEBwxmt4RlvGPj-nBN4G3i4Csr9t54y3qcX6NTJu9dDYfBPZnmCraPQvYBvrYdHjEcESZ4jWR2h2A-iFzzr5cBKB6f1yldsxCqx6Kuny6MtfyNZvAKCWPEB9cHhggoEMzQm7lrsnKCp2sLvS484F3S37qy5XMbcGQeFzCdQVlz952510N5IF8gtIpzMFHd9qUHtFo_DqKj-zxK7ioOs2J0PxWFQC7bz4Kqe85fCakhwLUBrJ2UiMtFqB-ENF8MwvIQOk72LRkjnLwQJM8IS_th0Z0HHXqimo1ckS9LcH_CrMlolcRhQPHVFJzNyvhaKqG54fq5YR3CHoExq4AF8zYbepmhN7xotDHhQ_aHzgkSw-0cy10pL02VaE7_olxKq84HBbySvMnG3LXSJnhM0aMxHOM6Ezq_HiAYWZ9ovXyL0eyTXZUAgx-Mj0FrUaZKlHsyGEb0hkFTk_4iV9psCOvjg_y5T0Cw6iUcoQ61d","summary":[]},{"id":"ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY Python"}},{"id":"rs_00e767404995b9950068e647fd656081919385a27bd1162fcd","type":"reasoning","encrypted_content":"gAAAAABo5kg_kN_dYVYqoCoqiKAqcYBoZoRVg-POK9d8NoGhEBo5xGroENXeq0yu8Je7BaUvZKN_jCgsMmCno-wzFB-kn199MjhmKnaSid3JuqurWRD1SNCene9GQAL3mcGJjr10Vu16WdbVEte_23siMlMZiOp5EQ08u30pkujK1UVoKCNkCvG6xYNVPN_XYgXGr4jABNFCiHtaxpl0FG_6XcVqeWFIRlFC8wVBmyAMQmfvshmgnGlJa6q77ktaYZQeOWtIfPrNrJX1NAYIWzceSOhC2P3kuxEEThdT7nJqxV-xMSiwvOr_GxTrVT2gZVcEJPT14iMcHHLdVGT7QMRp3sMCBZFeIo_3qHCGTV_IRikEH5JIrJ6QKA--FgEaNMHBqyHNLG-O9QW9h2HFO1hvioa2em_ew42INDVQ5GY-CLG6e7qepgoA0sstJuRrD8t9k1bhH7w8tXqDCK77VHSOzxHKapSreYSKDnqXq6qNaT14bxYh639uVeT01QixfDmbZyim31DeBkW6DoI-49mwiGasuBwhWJMDThIwY9R6azSZgGH3-7hnGeGMTcbbIFPXu6XNe7QeKm03xJM-bJO9PANfBVGpr6OLyGjhPPDhFVJPhRwDtLMEEtCtcH0oYXmX1-3duIzq8Fe0TxW6NzcNfa9QC6TnWrp9EriBuweoLfV2O3PrYfjBsqR8-W38tlnvlr1doHJpvnQau6DbU8Cdqi8YcQ9iZc-YB1WCzgiUz14P7uDHDf3pKeW2khRNx2QNInMlwS4Co6ANeDybA4QYEbIzOoWOao3f_YflkQNy9tkQxX-4pscz69MTyOlX47Qu1oqinf5jIBtNM2O4A2h0eFH_bamY3yMup-v8wYDhAcavca-3O2ADRxbNhDYfe1D1jbomBig5OExb0zlsZ-qNWUGZrvgB3Dg7r09I88QXODVpspr5sD1b0PqfFFp1ESiGLLW0P39bcpDKT2XO8VYbv67_VAdlJ-RiInCk1BqbISO9WJOEKej6jUtCkIObMJmWTZ9d-KbsbOlVv5bFyIjVbp09tmxMBrpu71JvTaVfnQn_6Dc-BGdjgewkO589WXYaB55YiuNCkmsCfbfp-sam3DMYG2oN0drVQPUoShjEA66DSaCNoQqRNBIUKqCVUIIpuTQ1jUuw0eVuL0GOFEVBYjtVV9Q_pGTe484ZwSuvOXc0s7fM4f4IcoYUKjqlubcQU4LcBsbN","summary":[]},{"id":"ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY opentelemetry python"}},{"id":"rs_00e767404995b9950068e648022d288191a6acb6cff99dafba","type":"reasoning","encrypted_content":"gAAAAABo5kg_k54K0s32OZAU2_Yl-wVjWQMqgM72qY4zVDgmF55Vpagp213AcsdyUqd4C-N9QLt26OyQaOQxDd7fEv1cIpTslnMQUPIwtCUeAHKl5o0dqFphqQqDI7UtLErXrq1mfs-V1jMeXAF8CJZNZpz4KxcnrjAE_j2fHZ4TOq8CuvaByOCvmK_k5fkrpBhCB1BxDJUZIoHFuHuDXG_GejaiMPmYVepcc-X5MqUTeWdK9X7BzMA_Cqg6bqXoZNnXr_s9UCcYR5WW48B1xCfQHF4ZQzIGby23Xj2txIIPa9hT35rzP1LE89xGh00vlOshEwG7GlIa4BOSy7iymhCRGdX4tGCLOuFJaw4wRdBXyTthFxB6DhkHUEzYlp9a1MVqrJvruFUa5pqG_X8FQzF7B_EGk9eiR8uct7e1wcrXpSpEqB_0rwVTg7mtKLj9KR7ytU-D2-fUyQZ1I_yUhjPxozaN4KtcnvJgrwvR7kndNzxYChY0mQ7wznp19NhzHX08_iVjTGyCSdU6IfKkfWahE6_mjqrBNDKQd4Z0B4eyXz6ZkBF4UrcjSfWsVJS3I9kvJ1TOAz-26SAHuWefvFEXMAQpen3UZqwS44z66CR8dFrmmkYS5EP36KhNRWGmGxFcWe2iM2LS6u6QTnir66SHTgugczKfPHYW3-GtYskI1GF2Gmaf4Xzrfa_A3hmxQTYOVBAR4fKfDylPXAuQZ8fdxlBsg3rSKKId8xLp7W6lVyN0qWZF1lROLQKnoSjZGL2om90MpmQsPPYnerhX5HMDQOucEIsz0PlpQEj7EsHjA6b4BJRDlqx1T5dN-GqmyqQLjA7CCo7oIyh6MD_SJvtbRSKMwVEkLQM-UOO8L6o1R2y4q0t_TRze96BKSP_Lz6B9XECg-B7AkAWUaKizRXV7m4yzodu83YdEx7Sc8KMQ6PjNd8xVY-DEzMWGIw1uGF0XDSNyT5YT0qIq2MfaC618LBqRtJXMAdVabKoqvFlrhyUrfCmCQgCXGyQSPPyc8zQ0gpaw7ZTuAGEJmPNLwa-WDPBT14UIs5uaSu4VZ9-fgBKbANgGcSpPdUGwk4lHwGkYzY4NelS4MfsojubmqgKSSszpEuoKTD8bzbdrSEesszfenXL9EfUJIKM93M6YWvKxivwZCFHVJmuP2C1iQae6ypXtXCY3oaUjdN6PI5_6r-Hqmx_9SDArQN_MrkiB-jjohXkKJF34yJqyxlSbP0bisEN0YPap_zMITgiaf6AVlTk1r-PqI7H8l997OvnR89F4C-7WbfZ53JorfmpS3mV-Jmx3wUW7qyZKohRVmIGFtCxIXVSLmj25plxch-Qdw6pQmgPQYyuch2gzziGj5j5Al4N3jV9BCd2-IiRj49v5D05taD82Zf8=","summary":[]},{"id":"ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2","type":"web_search_call","status":"completed","action":{"type":"search","query":"site:github.com open-telemetry/opentelemetry-python-contrib OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY"}},{"id":"rs_00e767404995b9950068e648060b088191974c790f06b8ea8e","type":"reasoning","encrypted_content":"gAAAAABo5kg_3PnkkTC-1Vl-yPxw05UstnGmJBji8GLZs-w_dNuKjCXDNbYPGdLLKdiDxCVtW02Uqczoes6bIFeXiYtO1FV9k0nUcDvggFYPMOaVb4XfKzzJhdEdLyKEUnqzGIXVflvI7sUJ7JNxsgR9H3ywKBbs5AjoPt3HpLEZi1cLRZvbKvceiS44Y2lUhKldl6PdszZmp_LF00K0Bkcbu3UHnCq1lT5MgGboSE1dRJZdpWnUzSG-wcSset2XUkmFAT_I3JhGfYcLXrUN7YxCB2JrtyiExIRBRyePqZDLTmE9IXOv-FMvzIUt0sBTb1KbUPLik64oVIjf2w4wa3H9MohtYilVeavn7ZA-rhE8nobVwunG86yJM-MrkyDuXW5BWiDgxxbz9srIsWrIV_oJMjAxdqijVKhDTQXfbt1xb_gbdfHFBRZZ9OtynF-JoMkwgH87V-xB5a-z1xoa-qWLjgWC8sNgX1QZ54wygIIbJbeKksR06BPMejyLI31ZuiyaVb54mIarpiAuUsBMNALQ2PTRYkJHGtt5O3ZZVD6qZpvFF5oTUKNpu4fYZbiWsXo6vbyBnwv09B50mOajYkQKwBl0HRygSJGA29MePrjSX-gd_TW0vGSFcL_7W2WEDL_o1HJI_1Up5Vj1fhSIIctk3OdEsQ1_G6Z7-xR0NEMY5RHvHc1S6i0jrnhRhz_A7luMP_gpIxAN373q6RkPo0bFbNzmoNL3k3HQ9UDlziz_r-0FV2tDdX5MyWQAaQTMpl9PoSH5yvTfTgVPsEbkSKN9RBTOXpRBGflQAWf9XbJYGV7iZA6TdJBJHY2vus5opufgYg0msZS8MvzKD7YRrPT2d14_bTXWsDT4gjESkaBiwc6razfqXlkdZgpfThntxkyCv5sj8RX08C7noaplaYEgweJhTzHSNmCqBVTALPKF0QJsdvyfar2s1z2ZYh8n0HvXFWIYBFgn_DjuHhcQFxk_Xs13zu0OnuaTXNdN7q0qcpmHjo_RR3n1DpPnNDn--9My8-ZWrEePeWO9SvOZajsqwm-aEtMuyEMPY3O4muTeNXWCP1ge_z9E27dupvGn3m-tNuBqzd09KxTmsWcp9Un1agDWANcfn0ASHXIWbiqOH9qWFNFjP3QfPPO3ly6zxkY4Vhv8vOlAveAgW_nHS3NgQIU_W9fHMynwh5fSKamiJfGuwK3z8pIR0g_ZMyUtUBopgSnN_0DtVwvm0wYcF8-Qrm1W3jpuMGFPMjyBQVKBpO9cuV85RRJtBr7iIAj0OfxCB-UDagn_UjRYEcTOkmYiu1REHSD3aTTNfn-7QAz2oe2kPq_JSAYGfdANjndM6RSqdJu21MVt1nlb5J7OTIvHWYht56Mk_taCzdgS1jQRDA3wC3EEqfrUJMc-UfCY3cnIoDOl5F-LcD5D_b1rhq3UkniCWVMW5lxlc-6rnJyVSlMLIv-HjeRi8IbBb8DZLNLlVvQnVfx-9egN8rZ_PjlLYfUzDefTAWUdQFCIL_1U2d2XhmkUOs7WR2Feq1Tfh9kpw3_vb2tbjF4l2GNwdOZUjtSASL9fsvgR2AL_qRPcPeTo2_ZrxAcQhQsrjbeo27wQbYLWmbKTWpdLEkXYrSBnr1cCnU60tZ_VRs8Fek_pPLX-kfVMfUclEFGcT050ThUm84ziB-XeFLka5e1zWrRg6tbMFrGFy1yqxBZa7XZEIWEIYWHooxi7UVFiyipqFAiQMevPcJwsgIMM50YLL1yl-2VPNO3e0qbVFTvptvQY69sLx-jniWu86sBN6oCEQBXAj58nWDvhhkTN4BUJbeoXP5Kbjq3ETs-GgB0E6Sbwf-som13glZ_qchn2Z4Zv_unuKnnAfiDmbSXKkIoSPFQC1aayI4qVMjaUeRyvC54niGxn1KtrKoPTDLAJ3rW8slBo1_-txy8dRsjdDzpGKd0fuubjWmdikXVd2gtE7KAb5awascJs1y0VaP7kJL1MAeTyl9_tC6OZBltSCAG1OrrqROLUvrtFV16cqsrzldHrI78S7MK68TJ0-h_HLI54B1j3rjsC_IUk5bACpemwwQtANbN1ARXLnzk_mA3C9tuowN6mGV7rRyWxJKD0sVlSrM9v7HqgWgBdiAWzmRVYRDoQ3KHRSNPQNDTSTrpw9MM90rS-DZUumTQDQ-SOq5kdxTVem-G4w42hhIb6KkSsW65kkcZkkqpgon7OJkf3MAqA-MhkDkYsWRtY-W202jIKXmOxcboCqPTnPI9q-YCUBQb-nYgqBNjYH6LBGs7_p7PAgHLFLV57j4Qh7_zMBVX2Q12TN4wgLFxp1nk0Zg-iwBR-f-0An32ujBDvSofYwh7TgZwOUaTRIGRvJljZ9yD4rUg1Hd33ULH2--zvjmySiQLGYFDU-cbVzi1SVZCHJONxB2VgcINcYx59UZROua4GUQGC4PKkVZHFYNmfFEBNX2TU4PcpDKH-c6f3ZQpbHIuTv9CkskxdLDU=","summary":[]},{"id":"ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911","type":"web_search_call","status":"completed","action":{"type":"search"}},{"id":"rs_00e767404995b9950068e6480bbd348191b11aa4762de66297","type":"reasoning","encrypted_content":"gAAAAABo5kg_y4PU_steG8-2WnHp2BjMRNrLizrgTKIRAvGwaOQTvzCFC9x2r_8uPBu7VhWXYk7WSgzy4toG8PUYNjii_eppkdKJbKTxugRIKqHQNlcUqqoV_BUETVH4_gMfydnqWM5xOt94CQTWHHkTYqF09RtfMXORdqeTHMyAP9WjWPGjTmj-NHgOUfuwl9PlkusjPhdvN0_-nJpb-hUVm6UCJ03MnE3aber5Gw3nM6CqjQ--pgaR2WJSohyWikLB60rOQeh55XURNRI6Pt3MQHK9Cmo4Dm7botBWXCdlTS5Zi0-AChluqoBitnS2ScrksTL5RoSU6n3Oje6ySOg3aYVtIjfPtERUk466bqiZolGFoiTyPLn8hvvivB7a_J-DtZGFD_f44XzNLlFbmmM1YrW0fgJQAmXoIrWgJ49e6yTIlJNPVfnU3J3qMc-sJSpN9HOwYU9hvSGoNDjiZ2oy5j6eas8ED97kxbAmLn4j-ewdCG_jflXP8YcAsjB9RHi9ovwLKqJ76sT8rw-E5UlDBa2N0sPTAhY9tMFAlHHygc8lSCRxcOMQUmVtnX9b9LGe6gCwNWoPdbFSHdzDPSHUkyIUWgaPLsYUSmNMP2b8dM5iBPHs5bLyFG2IwT9QjdUu4u9OPCSyEy9Lpgy-pktWGyL-4m6VJIFvHe2HvMH1rgHcTkiNU8tkPzdT_BySHMqOgFzYeGf-x9ulW2TBLNCpkZmLloeQU6voMRlEYFnJ3g4SWO07Bc3JP2o1WV5sMmJozlO3KHk8h1Y4CpXRYyo4gYzTWJhfxa65Tk7Xth5JbFtW2F4Ufk-FkSi0zsLLhvPqQyky56x1RQd-kCmIPzNFzb3_2kXEySRNRGCyo3G9MzDJUU4ThYrXfXoikuW1Rj-GpOzAU6NTMslEwTXbHc8MOU5fNW7gQ48D20-3MXjobW3_cPZLjOAofWGEyZN5J0_jsEWM8XpRhEXHPcfMbTh-Az-pL8fCvNv3dH-fsj_iC1tTd9f2QtenznAlkMJK1qZoz4z2674zdbltWEZd9iu7Dcbc9br7Z9t9XPuy1XzBKGm4zDeVAnFgOh-2vHBT32BIHXN3qWfP3uWpA5dPBvw_Pr4hLXE6A03_4urXN_bUFEr6P94zN90Rru8J_sOP0x8_HOjkXMCYX4jmEo8MtVqjQRb7uqsbb1Qko8bZdDHUCQtgjnIokngyTjCzxskxUCxA5Y0if1hTctbDbC8KReXtLTlyaEVUAAlbrhwp1Ir20cab1H_DGNxjAz_o4flyHPm0DSBINUjNg1tj0sVPsqUKpwPGl8OdV9XLSjusKxrnUhPf48t25DcfXXo_CX2sZ1n3T8rlLuU5sDQUW9lNpgtMRS3oRPx8lZNXTrIL7SYy0y2CqVFCQfv6iskVYhnL98cli1sGCRt7ZdCU28sW1RCdvyq9AL4N65qPFNP5RzZaf5sO7U9CJSYwNjUbzvPY7YXIvpSvBSKGOqE1twPioyF-c7ZkkU4lPB5k0R8M7wTb7IwxGdX1NiS5FPhrqe7h58gEUIKg4oA09mHr6mZuU-rH6_3CbVIQdedfQPwgArHiN8vTBR73EfrywzPkvlXKxko_43HiQwXXj9ZaTSZKnfkU3WzV-5xjbjIOl3NrjjqFuTitkEvAZ3M4fyW9VQlr966JMKO16GA3te4jQ6yEDlgq0Z7yduXEZ0aflcZkYZYL9M1a5hGqzkb0lPvDPGW8aYjQ4uthcEre","summary":[]},{"id":"ws_00e767404995b9950068e6480e11208191834104e1aaab1148","type":"web_search_call","status":"completed","action":{"type":"search"}},{"id":"rs_00e767404995b9950068e6480f16f08191beaad2936e3d3195","type":"reasoning","encrypted_content":"gAAAAABo5kg_BfyVIs2KCOfcaV48FiJ8R8MAvpEuclA1XLwVGsC8GxGSbNacB9jncfhfvQPgMcEI8_sFCrZheuzRPpAtorOTqu76pvawISbRKLoBs8qzp-IcpCHT3WGamBqBzr1Wq-Ykp6StSreWlzcFkG-WofGPzH_bruRxEFzgfbpfuumlCU4YX6s6mITY0m8JCHX08FE4kSSH3xiUXXyiLC3czwFEAUqOkKhFJ0555hEpSs8sgUMbl7J60R4VtN69ToTsMiPoLhLV3kSyI2KLvUN5Q42iyHobn7QVgi0p76MRJEU4bXyqvVCpDTy_b_HFDRJCrIG1lyvasm-ZbwmL5bUJ-ZchSytzRtMAJF5lh9rt58jihEvi0eaz7DJ6D0bkGpMln5HF1WjIFc-oYmJaAXJov9tPayrTcE3TnlL8VV8Z3qiKXtvbiRBhiaLjJavpxpduN497ijtOnz9QYWLR9RWonLS9TKOkBqm-gwsgWPKpMwfOO4nlUG0OCmlPFXoyVOle5pSkbd0-fDMCkYVLlXzC0-Eth09l5tJemsJNYrmDqfwh44nk3j5HX3pEK1k_aFetF8j3Fgwy7DhQp76MMKZH57k9YBwIe7-vBP9x4KJQpxRvakony1hLS4N0bJakZjaij3A90pOiOgHl4VnguUYyyhPcY4TLPQvpPmCDaGWBbt9RQKriIe2WLD8gJ4xU0pOSN433lPYXYTHH_gAfavfsgrB-gK1rOeXuEvc3nWPOAAduI_MHx-ciPpCuyDeUEqaoDQmyIEcAaZg47SjWmVcb34c-tWfee0uNkLQQSNSLgiFbTerfHmLFf_UjI3LMWCMZrJoPwCZxceaoc0CWx-y1w0T93n9a_wc3tQDtdMGXrFR_5Nl3c4NiMVYj_Lf0wSawgrtiPET7_DJR6SLsKU7DgIpSyJqgi_JaiXtnN54KgtalKtFmdp_zIaBaNBKySj8l8P1Op_PP5Eo-adzdVEXcEH7ewPLFVr57PQHJRySftEox-ab65I4SFE-8eMQhbVp_WGcpMUXUxzBdSF4Id4bCGRfqxUH7a-Wx4ISD2XMfo0zTG-XrC1lAGfId7A-2Sn6th4ycMKNHb3p15dOmaLL1Zkd46VQJ6t0xPZOwB6pKS7rhd3axblSK0A2ijuA5OWstrRpXeu1km3IqRgsqOsxZ4nMLL3DLsD6-5W4wOB8Qt4FSuc30s_tccIeuEr9z70dOolipeKC2axYGKjMpc_TNDJnwBhGuh7GpipnqS6OWZMKmpXOoY7yvkC7y6U_XFovpWa5SHW2MDKf-qOuHxI7djELwGVS419hbHkRku68dqCg1o83CR__k3IpU15Gf4PcXwTU8vhbLAFZ6_eDCF2KZw7PxCNWhH5HnmZ9TwNO9DaBbl3f0VtGaqu6l2DRMT3RVD9BECOPNnctCHzozfyrIpTmMPFZyT8daW5HM2rChrFsz-cpknuj4nfCc65_61SH9fUMsMP0kk6NF9xcRmKDAeo-twGN2rAsWj_06K2QXJzLcXm1JqvNlo1diB1Z5bFnB1FNY8EtbHS7yDKDWVhSGXBz7bfVzQPynTJU0807yUE55bF0CbeFZyendVDLIBS9Zf5_q1JmJNTfMhQHQkdaJqbjrqSi-DFs0g0Z_xpcW8UCfukw=","summary":[]},{"id":"ws_00e767404995b9950068e648118bf88191aa7f804637c45b32","type":"web_search_call","status":"completed","action":{"type":"search","query":"OTEL_PYTHON_LOG_CORRELATION environment variable"}},{"id":"rs_00e767404995b9950068e648130f0481918dc71103fbd6a486","type":"reasoning","encrypted_content":"gAAAAABo5kg_rOCWwVycYlebbwzyQ0iLP4kA_eRibpv5pLFDHOfFeX-37mPc_nw3EG1bdco2ABtem4faffR8smLbG6uLSdRdWRo6V3VaVYVMZT7kN-knJLrSgTMPuqg1syrk5MW9GnQs3StCbDINGIjpFpCcrkT_wE3JhTUrFLPojMHEvSK24JvcYMKQr7t-zfS9eLitx5edQOFlULxpofOwAaTbIoGTu2dOA0BZL8LjXo2-7janXWcpIZQij3YQh4IIzvBdRHv0fh9LPlxWgr2QKdlcqA8imrBSc5EeBYWcj9uqhMtcItqGmrqyqYElBEFkouFDFTgwBvWh15Lo4oKALDQWATVYIBbx9VAHfMy2W8HVYz3B5hcVWSltXGSi63QGEdrsxqgVwntUKUhCH0r8Mv9MHY17sWquro1Ygv-hZiN-4F3SJ1E-ftaCtJ0OGE4uDV5kzYoJOW30jsym-A-eG_kj6SVV1qrmeiFRlVbcwSK8pWxux7bymMUjgsnMvEc8Ty1Ar3kVsosUG8iGqHBzwl_m5oOl1FCUjOLwV7PDMhFDKX8TFpD2OA913b9q1--RY_UfXiBvV29KZAzqQJpnP_fTqsteRujS3ocdwXa2yxB3pUnXXJnzf-rXAm3oAN3dYKXnXRj_EklNdXCPsdhGgnHevnBl3xK-YTLuMuRyTFUmCkc0cDYRic7ke9N_nsBcNHjY5JDMi_R2GVOhMlmu9BUwPqcOlzlkU31jadZIlfNTr_P-B8mxEdPhW0z4hS_vsHaay-fgNobzX0gn5KL2tF6rOEiajfPpkRiynJFd4JxWEaKLqbsoWTvqH3dI4_wLCQMB_cShgkdMUylj6q6HUcu5xjsrpTLld4oOxRVxYIky6lhT4B2AOcwB3LqJeMO9LkyfagfZZyc96obybLe4uVNtMwCoxBkI0IpGoJJKsckg0FXCDBSWcLMmyoGkpUXI4GD_gHih6wj51nD9MsBn-RE1MbaL0wQ3vyVBl_5P8qVO4l3OzK8CrtyIohzDrNKWtLBSFuXlaYgtLq9joQzULOhD6qWym-dyjXpB5bWy6ei9Bp8ao8Mxwn4EPmYwsTIRQYhBN3Ys5bImolsz0NcRYOBequG2YUNFgO_6S3tuzoWeKH45ALb1UWJY_a2_8z3GT_kygDm-4v71QS03TBQFIaTYaQqQXZnNwZ9FCWNfSyIKfFbtWY_dSsKePozwy6baq7pQRc6DAnzlNpMRGyDqCq-KufK8Jvg3Ox_CrWAdKH110hAke7BckIR3nd_QaKRvBllGDHNnyFUvAmwW5mesEb13eaxAhvDIt9DuUmQp1bWWOhKj2ApdhXfVpp5wWUUvCzVSVHrN6auqA7tf_kHXmWcmDiwkNcRtEwug5HngUtdv9qqzDbamIxPwu8djSTFmz7v03DyWC4a1P9NBhD75nQ4lVnVw4wBT6s_zQec1RlkXPLxf-75w-oQ-LDpog-bdid2IRlsXN9xQNm2j7G37AZaCx3pTnpVT5XJ_jh3V5QALDZDuPWI7U_8rI-MM6hkC3nhF2f57cCoVVWSh97IJsiV5pFZaq9iYCQpR67N2Q0TT8bDoHS2_13ihrRyjMsgzhcl3W7wgY-zrEb8r9bA1zU4aclJZ4tEQn3_2QjSEKKSVRySg6MsStIt6EC7MS2SKzFbQhM6oqWPhcMhyLUHcVQT_ZUzOb-UOPIApBdGTipEXu9zTQBdruwvZ_nSjWX8kLsG7iTLol3GDXnsCngYLX-rcZc0-WpIT9lsxEx76Ha9GHk4vVaxPoSz9erAP2J1Ll_C0r3vR1Wg3mK-0hPWPGCfYp490f73N7ZujReQTRtnGFWTPT4R2B9CZioI5o9MmpJwsg5TNZ0Nt66KPh3jSl6pKM090Orft20xo8j-TKygOOTSoO_UD4Hk1TBm9EDeD457-zIVCxGXwAtLvmNcBUBs8UpTOyxAeWc35GxP3ceUmGPPjqL1KLNFzrn8e8ujhfRlwwTXOMJMMgdt1tJO3OC8irJLeD2bjuw75TXaI8RiWLKgei902UH1D6SDYE8SgKEQHeD4eCbyptrI7jUVFLnTGn5pzev1Dg-Yaoil4HcqhSy4k5QNQwLg1oHc5XJLh_Y_z6OvHswzLNKBsZhivWlcG45yosnLajunXgoPIy-A9gylwkZkZ8dcc0czWdl3nNo-P7IaPtt1B2ExxCYzTIspFTcTD9TCzytwE4e_8YepJreiKsU2NcQFlPqYFKlr22GN-Z0BhY8oH5-LWgOCBiBhuKFZoXZaFPOqK8657oV69odXLa-5xTmy8mWdHvYA2Td2D0X_awYUnOhqOdrhalS9djCyd7UREVzwDcgwgpjAW9LfmY8182atvkhwaJ0deTWmX-iR1r0FB-iGTa-BgLkjnzcPiW_v9qCD6k7ch2Ng7-aBl-4mueNp6x63_wBpab75V0tKwdjcQA-WBsLULCl3Oj2i9q5yq5kaqD6Q78n4vvKPctwKHmaH-aPhEQn0GS200dkkxzRKHybnB_ZdJumQGg-5RS6cf1p7VTW6LAVUupoMiZ6mYhs12siSZARYXzadWlxq1THqw7p7BsqUWmXNOrJD4h2fUz5NIUeXHOnYW7Fr1AtlZyj0BAru8PwJ1zfAw2vECVRQZEAUoRG11fnaS2s2NcLLuuAJdfbQwytgBMI-d9FvegcAwZsDHa-b2kCB_2bCSrCPUzDwL9ObWUkYTd2A_F1KDq8rxVd7lvx_ZW0KGt57IZJVHSzOFsXm8khGrBxeyB8IPkNIFtNmBqCTu1mHiBps4lihvvbsIecEZdKynrlslSN3sNW8u3sCpcpekgDt171H6LSXpsHlnuNAqGnuPMdQSSLByLHo-PnzQiHXU1nlqSpNglHd9ysh3UCUZDJsV6qDPZglrbAnOtQeRzfsl-0OLjAKqclB8UxUysLKR8eZNepNBUpidprDrv-SVTGzCBqOrTad2cmP1qn-YAEdbBhMUJpfKquMx3XhXW8BZKAtP_iXxD689HhXM3zEv2Hmzw9TEZLkn059eo7ADsd8DzClpqDDlXCyfzu5L8KoCVNgAi1b4MmSToj1EegOvPQLDVttHZ0siV-nOBmuAFFti_2uKgf-hHWABI6lhqCqEAM_VHw7mITsSPhg2ewVxKDEBKNPIRlkA1j8aTQ11TqsrxuK642DxwV5lOvC0729OZghzAewTb64ZiZTa2lQqoPOgF7eok2pK8x1ra1A3w-tD5s58sSoWN7GrMFHK9Q74OTrCNWpeQP3CFNtJ-BWIdgfNc8BGSbgB_DugTFriucIuUyzpFX8CPDT8P9SZmENpy_bQeOES6AtJ8RdGX6zCiaUQYLUok8OTfzIc_2etib4LXY5ywyZLNvm03nfRtL1WolSW-HaILqg-AhPfJIivCo9pWyN-aMQKbeviOOwDLdm905eueShCFheT6Se2_jvzZiNIbSd_BUDvarvRF5HM-XEL39HUthreUUSAa4vnIYgxF7Vk3wXiwyYv8u81Vli2BrFqxzJbuqNT-PVuf5ZHsoGRMKSve7bpr1Rpoy6TJ_a8c26FoxtcmR6cMHQszUR7WxA2nfEGWs0--929wVIqbp61saOgIDs0O39FZRtPZ5aBWDazf1zzlAczDLY6Dtehp65rMRTaFELgvDLcwFltYb7fZGYMHUq8vFWUnDHJevAGCviquy5JUhqThQsci_wEAOIP-OohY9Z_j0hqRCN7hsKz99l96qEiNtpJ85J9kJ2AGoc6UaWJDUPIS6uOjdNhtS4NyjChCkYPERzzrIbozDTMhWRA_PziOWAaNTNgVF22YQqMA6SIw_Otpq5ezcbS_SgbexeyrJ-warYIwRA4kX1T40TiSdC31cu8dHIVDnkx_fHTLuTNThtQUjWq6U2W9xOMEcZiJn63u23KqUimrKIcYjNxKdlujM-BvDJmrYkpYFV_zowZZ1RPVR2jRFZTBMB-d-taSCIgToBzupM9utIVUdEEc5xP0yqflftaHhnKMnVIRCGHwaeLGeKmJtIjtYFk7ZOzsas-4NHSeBUfw4Fz7wQRlhogfADjWeTNqm8512Z3nFPDS-5uzbARKfhzCZHNoxFKRvuFKApBBTQ-V-OI4sUKeW9wagVoRs5Smsc-x6EU4LBrTLStFPEiMmxvTud0LGZrQypSUrZT_sWkccUNrF2_8D7bgEhUzOYHqmTKyJQhOWXlmKvhioX5AI3tr_cbvRJSPSAx6KfoIFKKaGzvcSnw6iOvNd9i8YmIVWdFC-8GjMNE7k6D7XZel9E7ks50Daf1j2vuMAB12UEInT3LZPv1-IbkimxWwmhKB9vdJSTbNeuy6EN0KoPW1AGnF09G2DXQip7EOqEAuS_Blk4KKvQhOJyfD7QtQ7_cPaZOeMykF9OY-luiTGq4a_MGA220v-sOjn3HJPV7iRuyH4EBn67ZO7HUPTHWociFOjHojUU2RZL2UtKn4uEiWcPBKPDeLK5uED9s-OzKDiYXFj5TylR2yGc5o1ye3VoxrewdN5t7QXcxVnuUq14JeMADb2Dd5Le1nKrbPEo10pJ5KC-Z8lBQ2-EnN68so4YebxODiRwy4FPkKIAeLJd9Wuhihbu8sKujVY5L71BGIgmJ7gaXZIy5mk_55X6-IUa_qPnj9njTgd902aSuJcLwEH8OBuzsnkFIlySWvhA7SOHeXsEyqkahueiSMm7E8OGeGJ7h3NynOMRKWGFrkle2Fm37nrUkIVDUfGeXsDcNTphGrEQD9tvJkJf1CIy1LLXJPtUJc8ULAsPjgRAuXByjNeLcQrRVXPJHz8cQLi65tAtTo_l1i1Q5J4gvIuDINBBRtr2erulw1m8c4E7EtwSslAXzXxgSX0E866RP7JhGTjTqnlZaJxAujH04UvS9ImwJwJkcH7TVnoG1qTxT00I5SM6zjiGJdSzuCpHyK_92sgC_O-qSBJsMQ24eX00yKuQ-5kjbjxbpNzaOR015RUORTpY3xisYtB7FlTna-jG3CvI8TGAq4397gmdvwmw2LP8x5qVuwNbYgJL4LrBRE8F6bYNMNhZnHUJ7kbET176vBUvAntm4OamoH9J5ZsQm6J9UdYl3DgrJTRfBbDvZXMcvpvwK_LOCe7TB6PUOUt7pGiGSIXd3Cb83yHlds9uQx1YD_hT4vN4aKZceIWzLwnK5IVSzIWo2iHuhlqatpuTEKeBejxpb4xidhpLtn-ypXb1GCwCTqjbFlTweVCMcXeMMMSyRR1W2Knl_CDNWN5lvJYe5SCTWwPZ0J-aSmNj1pMtAFL2qDJRatmh9s7lMpMvcairMB5DW7CREWt2QrqPHaTUNOVY-a2TC43muI60MIiO-r8TVz2NtW5Lrj4lhkI4cRjbidyR71NgD452REDrp8Yg83b5e8IhHGvF_0Qwr_ao9d9Vj_NDHd2hST-Og-aSogpYbvVZkC835krUmYi5eTcxceldRQsSRi2NsHcesbvHZeu4STzhR0QdnYEoE7eDOBpjRLHvsJo-x1L2bIUAZUU-PeWQui9Hj_uVkJDvKhIde15VNlWLu62JcZfBCG2i0c6K-40b25Q7l2r52X4Mdb5itN6gOhg9TqJSKr8qNMmruIPUmshOzyJKpdm2rimw5pXjbee3PmYkIftFGct7fYc9WHIFLXhOBhX4RAPMU2PohNpWyiF3scOMQH7TZ-YOfejnjpF9CgppXCSy56oZwnfe8hZM13uLqbwQYBrVA1J0RThqBZ_0-m8P5V0lpnztH02TNi1QFNWGimQWVeuCYluPR0SPscyd2cH1lsINITVBXRZCN4gacGoq5APPObOVL20wrhrj0yE9POHPmNgmod6S6fxLfpqx4hRVNj9lOor-pJtR4NpSCiJJwC4tW6nVICvGq6Zu4Zl_uvxqQ3VisdxdjvWyfj1n7qfqxc-K8WiCJxUusFSscBDcA2AOgl_GbsXm6JAMqWHdV3EQVAQxhjn3K3wk2Ob1TOA8_IvzB-D_xLNMUUVfMjNTq3amyY4JX7AFrey8FtJ2YzGURJr2KDzk3QbLSNzgqE7w6BxgLf6m4W2G3d63Fg-q5GaxYZjNcFQ70WXu6M8B7CliMYUi-CHiyNe0U_wloGoxNHC__XrL-btq-4scbRiDtdZSngRoM89N0s-hGObXuKb6oVauH0QA5HODqXHYXHgYMKW_Aa26yHQqIvBdd4XQ-aKJWm27OdtdmuA8FAhXirmlTTCo4jJKMo6dn5mgpHOLya4nG98eoH0Wj9MutktX2hA9wCv0Nm-QvItws6E6oYj_Djf1ZjzFleurXwvSAbHqlARaJfnFHE9RswT3ukfXHpjh-37O6muNMnlUeIRYKy0GTScHHZf5MgRmEFo3iRiJ7ZPfsAhJoRJLHsmP2_DTchGmTE7S6VT6KAm2Onrb1LaKIGGIlI30RMs8M2r_YDOWwjXqfUd3KYlNELtpx5rv9qzahOhd7SOEWWwpf19sVU2NNK4YW_VhGyOMeufdWk5W4iwvvGbjjoFycoFGNIjMPf9e2OeTsgkaZbWVufbwjZjfuU-xQ7SVfroo8bqybAEl5evHnBDKCFiuhufPQT5Jy2dUdVMDNIFb9nLgYNYkRhTtt_gtqLyLps2d_prBDy-AnickpdnSOrCRBxNjvbDV_FRWhIjiGtd97pXqtBUejDsQwZ2ALv052F-BUeYODreLFzwKlKPD3sPDVcaoOuXZpsnDbznwqI30lpBvYo3kq3q2eKky-GWOUlUUJ0fjo5sZm_XVu6oFOksz-kwArnG7YkJzeW5ItoffFhdPf_RkNJeuNx4tzQOtYuiZ0ARxiS6Ms8AJVyXLvGr6CKMqFYdZlQd8vr6RoFYsp4jK7CC8NBcA9gOAC9aoV8ta-4Wm5PEW9wCRBizjlwMQwowsDYjRb4wgJWDECeoe45znYTAKWnM0QxbbpCETnMqpCJP6gVfDmi4xFBK8Gk7CpKfYzukEMCPXTyX-xfJVim-DbxnttxVHvpRtzjNBL_7ipIR9Ikheljc7NmThosHnj1SksFD2mmIee8cYTiJY3_0cd2BzF8S8y9uB1q8ZrJkfD3WfZ0JNhz4J019vU_iBKqopV5CLazwBQrahYMae1jiHAeCy3_ToDVl59gWyCEK4FraAWlldkBwYZ5-Oa6TtTYNsrR8kxAW-XkTnMU-72j-iYf1ageSE3GcOEak6RTi1o8kB00t4NCRy8OJF-tDM3D-coHGrRSXUDdTqqWNWfDwvGp-I7_2X3whAWWA5Q7lHOVJv6DAvlbJ7RMFnHHphCQlxhnLhWOzP7Ok9r4Nl9KAGO7BTi_EXjQ-DebpDeCju8KD-GiD5w6WOSLcJCDed-uS1QHozHnt0cm2ugWwQeBAJAnrNBA6yBsH6wsu-Vdk6Ix70T00h00zKNwJyqRgG7Zca27q9nI4PIYRciXI8X8F6HpzoRVg7iKJpMMPejtF3ZL5tWG9pYbUysPWSyfWpwZKxZKtV32htE_JAtHi6PnvneirgNaNSjHcmJeMjJPk_Z9z0rUtiFpWoHarXJQpyyi5W8qIeqJXWzjwua6FDRc7OMOtGRQ-slqXvuHXOnQFBX4DdJngcmQ9cZw_KzOEcZynZNVw_czjxMXKhCwQiZJou-liq2ImLQIkiDx2GCKy6EUTlp8GGoX-VF2-hQIleLmC1Fy3ZrXR_4IEmLx64vD0pAUfGO_FRyj5nlDbxIwtxghQI3Mo2bA6ePwWkUEVTVLLepeC2s5L2Rvf4KQ8ieQ5e81FWE-lZUhWGNar0GCJuRvevLpqSGfSFi9LMxvSZfA7EBwCKQJ0jrL2Z-wsfotqa0DhfOm0iJ2qxOijclgJ4H8mfJJrODkoHcJ8CMroB88KoS7PA0q58Nh2vktlRe7gdwO1CMZ-XO7ZQ7HMSiUhTspqekt2C727tyBt9_Nw-Mq1yyV8EQ1y5K4gCVTCPeCZEamditUq8a1VFCjRDAwreRWw0DMIHEYp2Kz8Qcfph9KGwDhTSvR1hOlYOmujb-kztUC20OCchX_iuE5U_dX9zo4xDq49w-c9tKORi8pfBXXb0WCf6yBDrLadazmNPFPlJd1eWnLFgateb_p0DVTIM9_JyTenqxZU1DPwjxIvO9MEXK3jjgC7tJoYOM3olvLgfy3OKv7S3O3vuGscBA3BKR0ndZ46q-x9GiEachS12NOBajlZ5kDE_7J3oCA7jXiT2O61Nz8Oxx7fZnKh30F8FIegvkwJcH_BkZFuXR3rscSkhq0jpUNPDfsnTYd54ALUXdgzOs9i16_X9RXJvcYcSjD5tODZqcDbcb1R-ce53khutjhuT8aGmm40ZN5kCjz9KwKJQSFnr85aErVEIeGYmuyvS7hnNT025zKL2pJ0Ow4EnMzbOQ4NhK5SnuXNLwwjd8GpcLRmlGEMZj_SW8GTP-hjrG1KyrchFFvEkgtfWqlfOnwRNowy7AbDOUJnIa8_9Dali2hm7huliL4Bl6m9PXB2y8tYnHDjW0PGMr8C51BL_84En0yAnvHGoohAop0T1UWaWQXG4kO9t5m0bUpmKbKdWL0ynfS7sZk4mqD1_4sR_r1G46QXYhw-GkNCPt9dmlys-v61lMYERe8b19cYKnn759INiY-rEMqKbelA6Wu00DtG7vIRSPEc_ktATgXTvibEL_OKHy_eUhmsvBUvVYihvh7j6iOSikKMsSpueDTWHdGQXiE-t_Et3fGTYsLpoB1cI_CMOBl8TCvULsCz6H90uYxHNDMryCE4UlYiP-tdXTPst302x7bgYY39qj8y9bRh5Lrj5F5r2t2YP0AHBSYtIEpQcYrvt3yoHCqVUMa-G_ugc2wP0QoPUrYGUyNMfH3qVUNCdvuHN5QDamUj9KK-_BQ5VsXMDDhYH-wx9FxIewv-FlhlGNu42uezZbZsjFIbOzH2PFzfjIcsShuyacmGGmWT9hz7QL3Kk2RokBNCumiX6jlrpkESpuGFwstBPGXOofpJGd4Vf_9o62YnoOcP0mNjs1FHeW8NMA6mwo_NAArMlmG-fLMyB0Ziwuc6XBKQtVxEjT2Z689V8lxTzjVdkTIswWEyR4kOVyC2AtFg==","summary":[]},{"id":"msg_00e767404995b9950068e6482f25e0819181582a15cdd9207f","type":"message","status":"completed","content":[{"type":"output_text","annotations":[{"type":"url_citation","end_index":946,"start_index":799,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2582,"start_index":2435,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":2896,"start_index":2749,"title":"OpenTelemetry FastAPI Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html"},{"type":"url_citation","end_index":3518,"start_index":3353,"title":"OpenTelemetry Logging Instrumentation — OpenTelemetry Python Contrib documentation","url":"https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai"}],"logprobs":[],"text":"Short answer:\n- Default FastAPI/OpenTelemetry instrumentation already records method/route/status.\n- To also include HTTP headers, set the capture-headers env vars.\n- To include request/response bodies, use the FastAPI/ASGI request/response hooks and add the payload to the span yourself (with redaction/size limits).\n\nHow to do it\n\n1) Enable header capture (server side)\n- Choose just the headers you need; avoid sensitive ones or sanitize them.\n\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_REQUEST=\"content-type,user-agent\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SERVER_RESPONSE=\"content-type\"\nexport OTEL_INSTRUMENTATION_HTTP_CAPTURE_HEADERS_SANITIZE_FIELDS=\"authorization,set-cookie\"\n\nThis makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n2) Add hooks to capture request/response bodies\nNote: There isn’t a built-in Python env var to auto-capture HTTP bodies for FastAPI/ASGI. Use hooks to look at ASGI receive/send events and attach (truncated) bodies as span attributes.\n\nfrom fastapi import FastAPI\nfrom opentelemetry.trace import Span\nfrom opentelemetry.instrumentation.fastapi import FastAPIInstrumentor\n\nMAX_BYTES = 2048 # keep this small in prod\n\ndef client_request_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.request\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.request.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\ndef client_response_hook(span: Span, scope: dict, message: dict):\n if span and span.is_recording() and message.get(\"type\") == \"http.response.body\":\n body = message.get(\"body\") or b\"\"\n if body:\n span.set_attribute(\n \"http.response.body\",\n body[:MAX_BYTES].decode(\"utf-8\", \"replace\"),\n )\n\napp = FastAPI()\nFastAPIInstrumentor.instrument_app(\n app,\n client_request_hook=client_request_hook,\n client_response_hook=client_response_hook,\n)\n\n- The hooks receive the ASGI event dicts: http.request (with body/more_body) and http.response.body. If your bodies can be chunked, you may need to accumulate across calls when message.get(\"more_body\") is True. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\n3) Be careful with PII and size\n- Always limit size and consider redaction before putting payloads on spans.\n- Use the sanitize env var above for sensitive headers. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n\nOptional: correlate logs with traces\n- If you also want request/response details in logs with trace IDs, enable Python log correlation:\n\nexport OTEL_PYTHON_LOG_CORRELATION=true\n\nor programmatically:\nfrom opentelemetry.instrumentation.logging import LoggingInstrumentor\nLoggingInstrumentor().instrument(set_logging_format=True)\n\nThis injects trace_id/span_id into log records so you can line up logs with the span that carries the HTTP payload attributes. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n\nWant me to tailor the hook to only capture JSON bodies, skip binary content, or accumulate chunked bodies safely?"}],"role":"assistant"}],"parallel_tool_calls":true,"previous_response_id":null,"prompt_cache_key":null,"reasoning":{"effort":"medium","summary":null},"safety_identifier":null,"service_tier":"default","store":true,"temperature":1.0,"text":{"format":{"type":"text"},"verbosity":"medium"},"tool_choice":"auto","tools":[{"type":"web_search","filters":null,"search_context_size":"medium","user_location":{"type":"approximate","city":null,"country":"US","region":null,"timezone":null}}],"top_logprobs":0,"top_p":1.0,"truncation":"disabled","usage":{"input_tokens":33151,"input_tokens_details":{"cached_tokens":4352},"output_tokens":3367,"output_tokens_details":{"reasoning_tokens":2624},"total_tokens":36518},"user":null,"metadata":{}}} + + headers: + alt-svc: + - h3=":443"; ma=86400 + connection: + - keep-alive + content-type: + - text/event-stream; charset=utf-8 + openai-organization: + - pydantic-28gund + openai-processing-ms: + - '86' + openai-project: + - proj_dKobscVY9YJxeEaDJen54e3d + openai-version: + - '2020-10-01' + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + transfer-encoding: + - chunked + status: + code: 200 + message: OK +version: 1 +... diff --git a/tests/models/test_anthropic.py b/tests/models/test_anthropic.py index cb023bcd31..e7107c1824 100644 --- a/tests/models/test_anthropic.py +++ b/tests/models/test_anthropic.py @@ -29,6 +29,7 @@ ModelResponse, ModelRetry, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -695,12 +696,7 @@ async def my_tool(first: str, second: str) -> int: # The tool output doesn't echo any content to the stream, so we only get the final payload once when # the block starts and once when it ends. - assert chunks == snapshot( - [ - 'FINAL_PAYLOAD', - 'FINAL_PAYLOAD', - ] - ) + assert chunks == snapshot(['FINAL_PAYLOAD']) assert result.is_complete assert result.usage() == snapshot( RunUsage( @@ -1255,16 +1251,39 @@ async def test_anthropic_model_thinking_part_redacted_stream(allow_model_request provider_name='anthropic', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content='', + id='redacted_thinking', + signature='EqkECkYIBxgCKkA8AZ4noDfV5VcOJe/p3JTRB6Xz5297mrWhl3MbHSXDKTMfuB/Z52U2teiWWTN0gg4eQ4bGS9TPilFX/xWTIq9HEgyOmstSPriNwyn1G7AaDC51r0hQ062qEd55IiIwYQj3Z3MSBBv0bSVdXi60LEHDvC7tzzmpQfw5Hb6R9rtyOz/6vC/xPw9/E1mUqfBqKpADO2HS2QlE/CnuzR901nZOn0TOw7kEXwH7kg30c85b9W7iKALgEejY9sELMBdPyIZNlTgKqNOKtY3R/aV5rGIRPTHh2Wh9Ijmqsf/TT7i//Z+InaYTo6f/fxF8R0vFXMRPOBME4XIscb05HcNhh4c9FDkpqQGYKaq31IR1NNwPWA0BsvdDz7SIo1nfx4H+X0qKKqqegKnQ3ynaXiD5ydT1C4U7fku4ftgF0LGwIk4PwXBE+4BP0DcKr1HV3cn7YSyNakBSDTvRJMKcXW6hl7X3w2a4//sxjC1Cjq0uzkIHkhzRWirN0OSXt+g3m6b1ex0wGmSyuO17Ak6kgVBpxwPugtrqsflG0oujFem44hecXJ9LQNssPf4RSlcydiG8EXp/XLGTe0YfHbe3kJagkowSH/Dm6ErXBiVs7249brncyY8WA+7MOoqIM82YIU095B9frCqDJDUWnN84VwOszRrcaywmpJXZO4aeQLMC1kXD5Wabu+O/00tD/X67EWkkWuR0AhDIXXjpot45vnBd4ewJ/hgB', + provider_name='anthropic', + ), + next_part_kind='thinking', + ), PartStartEvent( index=1, part=ThinkingPart( content='', id='redacted_thinking', - signature=IsStr(), + signature='EtgBCkYIBxgCKkDQfGkwzflEJP5asG3oQfJXcTwJLoRznn8CmuczWCsJ36dv93X9H0NCeaJRbi5BrCA2DyMgFnRKRuzZx8VTv5axEgwkFmcHJk8BSiZMZRQaDDYv2KZPfbFgRa2QjyIwm47f5YYsSK9CT/oh/WWpU1HJJVHr8lrC6HG1ItRdtMvYQYmEGy+KhyfcIACfbssVKkDGv/NKqNMOAcu0bd66gJ2+R1R0PX11Jxn2Nd1JtZqkxx7vMT/PXtHDhm9jkDZ2k/6RjRRFuab/DBV3yRYdZ1J0GAE=', + provider_name='anthropic', + ), + previous_part_kind='thinking', + ), + PartEndEvent( + index=1, + part=ThinkingPart( + content='', + id='redacted_thinking', + signature='EtgBCkYIBxgCKkDQfGkwzflEJP5asG3oQfJXcTwJLoRznn8CmuczWCsJ36dv93X9H0NCeaJRbi5BrCA2DyMgFnRKRuzZx8VTv5axEgwkFmcHJk8BSiZMZRQaDDYv2KZPfbFgRa2QjyIwm47f5YYsSK9CT/oh/WWpU1HJJVHr8lrC6HG1ItRdtMvYQYmEGy+KhyfcIACfbssVKkDGv/NKqNMOAcu0bd66gJ2+R1R0PX11Jxn2Nd1JtZqkxx7vMT/PXtHDhm9jkDZ2k/6RjRRFuab/DBV3yRYdZ1J0GAE=', provider_name='anthropic', ), + next_part_kind='text', + ), + PartStartEvent( + index=2, part=TextPart(content="I notice that you've sent what"), previous_part_kind='thinking' ), - PartStartEvent(index=2, part=TextPart(content="I notice that you've sent what")), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' appears to be some')), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' kind of test string')), @@ -1289,6 +1308,16 @@ async def test_anthropic_model_thinking_part_redacted_stream(allow_model_request PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=', and honest. How')), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' can I assist you today with')), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' a legitimate task or question?')), + PartEndEvent( + index=2, + part=TextPart( + content="""\ +I notice that you've sent what appears to be some kind of test string or command. I don't have any special "magic string" triggers or backdoor commands that would expose internal systems or change my behavior. + +I'm Claude, an AI assistant created by Anthropic to be helpful, harmless, and honest. How can I assist you today with a legitimate task or question?\ +""" + ), + ), ] ) @@ -1593,7 +1622,32 @@ async def test_anthropic_model_thinking_part_stream(allow_model_requests: None, provider_name='anthropic', ), ), - PartStartEvent(index=1, part=IsInstance(TextPart)), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ +The question is asking about how to safely cross a street, which is a basic but important safety skill. + +I should provide clear, step-by-step instructions for crossing a street safely: + +1. Find a designated crossing point if possible (crosswalk, pedestrian crossing, etc.) +2. Look both ways (left-right-left in countries where cars drive on the right; right-left-right where they drive on the left) +3. Wait for traffic to stop or for a clear gap in traffic +4. Make eye contact with drivers if possible +5. Cross at a steady pace without running +6. Continue watching for traffic while crossing +7. Use pedestrian signals where available + +I'll also mention some additional safety tips and considerations for different situations (busy streets, streets with traffic signals, etc.).\ +""", + signature='ErUBCkYIBhgCIkA/Y+JwNMtmQyHcoo4/v2dpY6ruQifcu3pAzHbzIwpIrjIyaWaYdJOp9/0vUmBPj+LmqgiDSTktRcn0U75AlpXOEgwzVmYdHgDaZfeyBGcaDFSIZCHzzrZQkolJKCIwhMETosYLx+Dw/vKa83hht943z9R3/ViOqokT25JmMfaGOntuo+33Zxqf5rqUbkQ3Kh34rIqqnKaFSVr7Nn85z8OFN3Cwzz+HmXl2FgCXOxgC', + provider_name='anthropic', + ), + next_part_kind='text', + ), + PartStartEvent( + index=1, part=TextPart(content='# How to Cross a Street Safely'), previous_part_kind='thinking' + ), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent( index=1, @@ -1659,6 +1713,38 @@ async def test_anthropic_model_thinking_part_stream(allow_model_requests: None, PartDeltaEvent(index=1, delta=IsInstance(TextPartDelta)), PartDeltaEvent(index=1, delta=IsInstance(TextPartDelta)), PartDeltaEvent(index=1, delta=IsInstance(TextPartDelta)), + PartEndEvent( + index=1, + part=TextPart( + content="""\ +# How to Cross a Street Safely + +Follow these steps to cross a street safely: + +1. **Find a proper crossing point** - Use a crosswalk, pedestrian crossing, or intersection whenever possible. + +2. **Stop at the curb** - Stand slightly back from the edge. + +3. **Look both ways** - Look left, right, then left again (reverse in countries where cars drive on the left). + +4. **Listen for traffic** - Remove headphones if you're wearing them. + +5. **Wait for a gap** or for vehicles to stop completely. + +6. **Make eye contact** with drivers to ensure they see you. + +7. **Cross with purpose** - Walk at a steady pace without stopping or running. + +8. **Continue watching** for traffic as you cross. + +9. **Use signals** - Follow pedestrian crossing signals where available. + +If there's a traffic light or pedestrian signal, only cross when indicated, and always check for turning vehicles even when you have the right of way. + +Is there a specific situation or type of street crossing you're concerned about?\ +""" + ), + ), ] ) @@ -2524,11 +2610,25 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None provider_name='anthropic', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ +The user is asking about the weather in San Francisco today. This is clearly a request for current, real-time information that changes daily, so I should use web search to get up-to-date weather information. According to the guidelines, today's date is September 16, 2025. + +I should search for current weather in San Francisco. I'll include "today" in the search query to get the most current information.\ +""", + signature='Er8ECkYIBxgCKkDp29haxwUos3j9hg3HNQI8e4jcFtinIsLxpzaQR/MhPnIpHkUpSNPatD/C2EVyiEGg2LIO1lhkU/P8XLgiyejFEgzinYyrRtGe03DeFEIaDL63CVUOAo1v/57lpSIw+msm1NHv1h+xLzkbu2YqlXPwjza0tVjwAj7RLUFwB1HpPbdv6hlityaMFb/SwKZZKqYDwbYu36cdPpUcpirpZaKZ/DITzfWJkX93BXmRl5au50mxAiFe9B8XxreADaofra5cmevEaaLH0b5Ze/IC0ja/cJdo9NoVlyHlqdXmex22CAkg0Y/HnsZr8MbnE6GyG9bOqAEhwb6YgKHMaMLDVmElbNSsD7luWtsbw5BDvRaqSSROzTxH4s0dqjUqJsoOBeUXuUqWHSl2KwQi8akELKUnvlDz15ZwFI1yVTHA5nSMFIhjB0jECs1g8PjFkAYTHkHddYR5/SLruy1ENpKU0xjc/hd/O41xnI3PxHBGDKv/hdeSVBKjJ0SDYIwXW96QS5vzlKxYGCqtibj2VxPzUlDITvhn1oO+cjCXClo1lE+ul//+nk7jk7fRkvl1/+pscYCpBoGKprA7CU1kpiggO9pAVUrpZM9vC2jF5/VVVYEoY3CyC+hrNpDWXTUdGdCTofhp2wdWVZzCmO7/+L8SUnlu64YYe9PWsRDuHRe8Lvl0M9EyBrhWnGWQkkk9b+O5uNU5xgE0sjbuGzgYswhwSd7Powb8XbtbW6h7lTbo1M2IQ3Ok0kdt0RAYAQ==', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( tool_name='web_search', tool_call_id='srvtoolu_01FYcUbzEaqqQh1WBRj1QX3h', provider_name='anthropic' ), + previous_part_kind='thinking', ), PartDeltaEvent( index=1, delta=ToolCallPartDelta(args_delta='', tool_call_id='srvtoolu_01FYcUbzEaqqQh1WBRj1QX3h') @@ -2559,6 +2659,16 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None PartDeltaEvent( index=1, delta=ToolCallPartDelta(args_delta='ay"}', tool_call_id='srvtoolu_01FYcUbzEaqqQh1WBRj1QX3h') ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='web_search', + args='{"query": "San Francisco weather today"}', + tool_call_id='srvtoolu_01FYcUbzEaqqQh1WBRj1QX3h', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=2, part=BuiltinToolReturnPart( @@ -2639,8 +2749,9 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', ), - PartStartEvent(index=3, part=TextPart(content='Base')), + PartStartEvent(index=3, part=TextPart(content='Base'), previous_part_kind='builtin-tool-return'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='d on the search results, I can see')), PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' that the information is a bit date')), @@ -2652,11 +2763,19 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None ), PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' Let me search for more current')), PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' information.')), + PartEndEvent( + index=3, + part=TextPart( + content='Based on the search results, I can see that the information is a bit dated (most results are from about 6 days to a week ago), but I can provide you with the available weather information for San Francisco. Let me search for more current information.' + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=4, part=BuiltinToolCallPart( tool_name='web_search', tool_call_id='srvtoolu_01FDqc7ruGpVRoNuD5G6jkUx', provider_name='anthropic' ), + previous_part_kind='text', ), PartDeltaEvent( index=4, delta=ToolCallPartDelta(args_delta='', tool_call_id='srvtoolu_01FDqc7ruGpVRoNuD5G6jkUx') @@ -2696,6 +2815,16 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None PartDeltaEvent( index=4, delta=ToolCallPartDelta(args_delta='025"}', tool_call_id='srvtoolu_01FDqc7ruGpVRoNuD5G6jkUx') ), + PartEndEvent( + index=4, + part=BuiltinToolCallPart( + tool_name='web_search', + args='{"query": "San Francisco weather September 16 2025"}', + tool_call_id='srvtoolu_01FDqc7ruGpVRoNuD5G6jkUx', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=5, part=BuiltinToolReturnPart( @@ -2776,8 +2905,9 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', ), - PartStartEvent(index=6, part=TextPart(content='Base')), + PartStartEvent(index=6, part=TextPart(content='Base'), previous_part_kind='builtin-tool-return'), PartDeltaEvent( index=6, delta=TextPartDelta( @@ -2795,7 +2925,27 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None ), ), PartDeltaEvent(index=6, delta=TextPartDelta(content_delta=" to AccuWeather's forecast, ")), - PartStartEvent(index=7, part=TextPart(content='today (September 16) shows a high of 76°F and low of 59°F')), + PartEndEvent( + index=6, + part=TextPart( + content="""\ +Based on the search results, I can provide you with information about San Francisco's weather today (September 16, 2025): + +According to AccuWeather's forecast, \ +""" + ), + next_part_kind='text', + ), + PartStartEvent( + index=7, + part=TextPart(content='today (September 16) shows a high of 76°F and low of 59°F'), + previous_part_kind='text', + ), + PartEndEvent( + index=7, + part=TextPart(content='today (September 16) shows a high of 76°F and low of 59°F'), + next_part_kind='text', + ), PartStartEvent( index=8, part=TextPart( @@ -2805,12 +2955,33 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None From the recent San\ """ ), + previous_part_kind='text', ), PartDeltaEvent(index=8, delta=TextPartDelta(content_delta=' Francisco Chronicle weather report, ')), + PartEndEvent( + index=8, + part=TextPart( + content="""\ + for San Francisco. + +From the recent San Francisco Chronicle weather report, \ +""" + ), + next_part_kind='text', + ), + PartStartEvent( + index=9, + part=TextPart(content='average mid-September highs in San Francisco are around 70 degrees'), + previous_part_kind='text', + ), + PartEndEvent( + index=9, + part=TextPart(content='average mid-September highs in San Francisco are around 70 degrees'), + next_part_kind='text', + ), PartStartEvent( - index=9, part=TextPart(content='average mid-September highs in San Francisco are around 70 degrees') + index=10, part=TextPart(content=", so today's forecast of 76°F is"), previous_part_kind='text' ), - PartStartEvent(index=10, part=TextPart(content=", so today's forecast of 76°F is")), PartDeltaEvent( index=10, delta=TextPartDelta( @@ -2830,13 +3001,33 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None """ ), ), + PartEndEvent( + index=10, + part=TextPart( + content="""\ +, so today's forecast of 76°F is slightly above the typical temperature for this time of year. + +The general weather pattern for San Francisco in September includes: +- \ +""" + ), + next_part_kind='text', + ), PartStartEvent( index=11, part=TextPart( content='Daytime temperatures usually reach 22°C (72°F) in San Francisco in September, falling to 13°C' ), + previous_part_kind='text', ), PartDeltaEvent(index=11, delta=TextPartDelta(content_delta=' (55°F) at night')), + PartEndEvent( + index=11, + part=TextPart( + content='Daytime temperatures usually reach 22°C (72°F) in San Francisco in September, falling to 13°C (55°F) at night' + ), + next_part_kind='text', + ), PartStartEvent( index=12, part=TextPart( @@ -2845,12 +3036,31 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None - \ """ ), + previous_part_kind='text', + ), + PartEndEvent( + index=12, + part=TextPart( + content="""\ + +- \ +""" + ), + next_part_kind='text', ), PartStartEvent( index=13, part=TextPart(content='There are normally 9 hours of bright sunshine each day in San Francisco in'), + previous_part_kind='text', ), PartDeltaEvent(index=13, delta=TextPartDelta(content_delta=' September')), + PartEndEvent( + index=13, + part=TextPart( + content='There are normally 9 hours of bright sunshine each day in San Francisco in September' + ), + next_part_kind='text', + ), PartStartEvent( index=14, part=TextPart( @@ -2859,15 +3069,34 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None - \ """ ), + previous_part_kind='text', + ), + PartEndEvent( + index=14, + part=TextPart( + content="""\ + +- \ +""" + ), + next_part_kind='text', ), PartStartEvent( index=15, part=TextPart( content='San Francisco experiences minimal rainfall in September, with an average precipitation of just 3mm.' ), + previous_part_kind='text', ), PartDeltaEvent(index=15, delta=TextPartDelta(content_delta=' Typically, there are no rainy days')), PartDeltaEvent(index=15, delta=TextPartDelta(content_delta=' during this month')), + PartEndEvent( + index=15, + part=TextPart( + content='San Francisco experiences minimal rainfall in September, with an average precipitation of just 3mm. Typically, there are no rainy days during this month' + ), + next_part_kind='text', + ), PartStartEvent( index=16, part=TextPart( @@ -2877,6 +3106,7 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None So for today, you can expect partly sunny to sunny skies with a\ """ ), + previous_part_kind='text', ), PartDeltaEvent(index=16, delta=TextPartDelta(content_delta=' high around 76°F (24°C)')), PartDeltaEvent(index=16, delta=TextPartDelta(content_delta=' and a low around 59°F (15°C),')), @@ -2884,6 +3114,16 @@ async def test_anthropic_model_web_search_tool_stream(allow_model_requests: None PartDeltaEvent( index=16, delta=TextPartDelta(content_delta='aping up to be a pleasant day in San Francisco!') ), + PartEndEvent( + index=16, + part=TextPart( + content="""\ + + +So for today, you can expect partly sunny to sunny skies with a high around 76°F (24°C) and a low around 59°F (15°C), with very little chance of rain. It's shaping up to be a pleasant day in San Francisco!\ +""" + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='web_search', @@ -3409,6 +3649,7 @@ async def test_anthropic_mcp_servers_stream(allow_model_requests: None, anthropi tool_call_id='mcptoolu_01FZmJ5UspaX5BB9uU339UT1', provider_name='anthropic', ), + previous_part_kind='thinking', ), PartDeltaEvent( index=1, @@ -3571,6 +3812,7 @@ async def test_anthropic_mcp_servers_stream(allow_model_requests: None, anthropi timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', ), ] ) @@ -3932,13 +4174,43 @@ async def test_anthropic_code_execution_tool_stream(allow_model_requests: None, provider_name='anthropic', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ +The user is asking me to calculate a mathematical expression: 65465-6544 * 65464-6+1.02255 + +This involves multiplication and subtraction operations, and I need to be careful about the order of operations (PEMDAS/BODMAS). Let me break this down: + +65465-6544 * 65464-6+1.02255 + +Following order of operations: +1. First, multiplication: 6544 * 65464 +2. Then left to right for addition and subtraction: 65465 - (result from step 1) - 6 + 1.02255 + +This is a computational task that requires precise calculations, so I should use the code_execution tool to get an accurate result.\ +""", + signature='EucFCkYIBxgCKkCfcR3zTiKFcMLhP1aMZu4l0cfgiw3ukkSHOSX2qV1DEKtpe3pu1HpRvDz1mEw32e/wvHoS/AfpVYk3AFb8oAscEgxips//IwdGKRINkQoaDDc122APa5lQXEtsuiIw7RQW/ow7z+MOXL6D8pAl4Iz5V6VSbn2A37DxwRbzOYHSicZuvVrhZHLmn2WWwTZjKs4EYn4HNPF6+Y+9dITwGBWUz6WXsOnv/S1sp+WJLYD8vGMDG9DzTIdjQ9pMN/Bg6VB3hPTveXqxopBk+V7u1WaQC0NmkEmREv6Pdq9iHHEnuIhN0t7UrrNDxPwt/cmbilfa7QL8ofeeSorIRwvibXtG0aqNDu42r6JkatwttDSRIBSqIgKLkel8yPP9ksmOf4SRbNAbgijmq63s+EIkNHt2yjuTHV48pR1j1czHWcsoqJOHj6faeXge0OyGKuPqbBCzoqAjecNq0dRfHQUgXMWmeaJp1R6iWhKxyJV5Y2EwhA5WGH9xzc9h0TobIgGFGAk2OvzDPBO5qr+O85LbjNeHF3WfZciaj2lMIVsveklN9S8598m+R+D4/O8Sscebc2xoVf8qBDazJP5gVtuMoAKBcJuNVWeTR5snv2vs5BEejv6Q2gcb6rPa4ZxEmilhK1NTy9+dwoYvgLUm5o11PBXbI7uRv18tLwwer55Ult5Aq3JgG8Uj8FgBA4exLCw9LKUhzd+1lN0i19f2mDDuBORw5dPUBj2unzIb6sro/2SYm3MF2nmKhh5mm1F/v37ksOzJlTUPhbcs6aYrUJo5cM1H9AB8vpcNln38uWb4tuFgD5Wqy/0WFu60nsRsnInI5SPMN39wA4cx2eyrCfne32iw0Ov+VAdn0+D8FFzyVEEh7lrCQlJFoqoznxvpKh6NRhUzLmLpfEPOhFN/bZBHsj+3YJLT4JgRaYGTf6fMkZGCyIk60hIbqofwcuMFNqFYOK0nffOV8dz9ElisN/6cSJsYAQ==', + provider_name='anthropic', + ), + next_part_kind='text', + ), PartStartEvent( - index=1, part=TextPart(content="I'll calculate this mathematical expression for you. Let me break") + index=1, + part=TextPart(content="I'll calculate this mathematical expression for you. Let me break"), + previous_part_kind='thinking', ), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent( index=1, delta=TextPartDelta(content_delta=' it down step by step following the order of operations.') ), + PartEndEvent( + index=1, + part=TextPart( + content="I'll calculate this mathematical expression for you. Let me break it down step by step following the order of operations." + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=2, part=BuiltinToolCallPart( @@ -3946,6 +4218,7 @@ async def test_anthropic_code_execution_tool_stream(allow_model_requests: None, tool_call_id='srvtoolu_01MKwyo39KHRDr9Ubff5vWtG', provider_name='anthropic', ), + previous_part_kind='text', ), PartDeltaEvent( index=2, delta=ToolCallPartDelta(args_delta='', tool_call_id='srvtoolu_01MKwyo39KHRDr9Ubff5vWtG') @@ -4137,6 +4410,16 @@ async def test_anthropic_code_execution_tool_stream(allow_model_requests: None, PartDeltaEvent( index=2, delta=ToolCallPartDelta(args_delta='"}', tool_call_id='srvtoolu_01MKwyo39KHRDr9Ubff5vWtG') ), + PartEndEvent( + index=2, + part=BuiltinToolCallPart( + tool_name='code_execution', + args='{"code": "# Calculate the expression: 65465-6544 * 65464-6+1.02255\\n# Following order of operations (PEMDAS/BODMAS)\\n\\nexpression = \\"65465-6544 * 65464-6+1.02255\\"\\nprint(f\\"Expression: {expression}\\")\\n\\n# Let\'s break it down step by step\\nstep1 = 6544 * 65464 # Multiplication first\\nprint(f\\"Step 1 - Multiplication: 6544 * 65464 = {step1}\\")\\n\\nstep2 = 65465 - step1 # First subtraction\\nprint(f\\"Step 2 - First subtraction: 65465 - {step1} = {step2}\\")\\n\\nstep3 = step2 - 6 # Second subtraction\\nprint(f\\"Step 3 - Second subtraction: {step2} - 6 = {step3}\\")\\n\\nfinal_result = step3 + 1.02255 # Final addition\\nprint(f\\"Step 4 - Final addition: {step3} + 1.02255 = {final_result}\\")\\n\\n# Let\'s also verify with direct calculation\\ndirect_result = 65465-6544 * 65464-6+1.02255\\nprint(f\\"\\\\nDirect calculation: {direct_result}\\")\\nprint(f\\"Results match: {final_result == direct_result}\\")"}', + tool_call_id='srvtoolu_01MKwyo39KHRDr9Ubff5vWtG', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=3, part=BuiltinToolReturnPart( @@ -4161,8 +4444,9 @@ async def test_anthropic_code_execution_tool_stream(allow_model_requests: None, timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', ), - PartStartEvent(index=4, part=TextPart(content='The answer to')), + PartStartEvent(index=4, part=TextPart(content='The answer to'), previous_part_kind='builtin-tool-return'), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' **65465-6544 * ')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='65464-6+1.02255** is **')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='-428,330,955.97745**.')), @@ -4209,6 +4493,20 @@ async def test_anthropic_code_execution_tool_stream(allow_model_requests: None, ), ), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='1.02255 = -428,330,955.97745')), + PartEndEvent( + index=4, + part=TextPart( + content="""\ +The answer to **65465-6544 * 65464-6+1.02255** is **-428,330,955.97745**. + +Here's how it breaks down following the order of operations: +1. First, multiplication: 6,544 × 65,464 = 428,396,416 +2. Then left to right: 65,465 - 428,396,416 = -428,330,951 +3. Continue: -428,330,951 - 6 = -428,330,957 +4. Finally: -428,330,957 + 1.02255 = -428,330,955.97745\ +""" + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='code_execution', @@ -4910,6 +5208,16 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth index=0, delta=ToolCallPartDelta(args_delta='s today"}', tool_call_id='srvtoolu_01NcU4XNwyxWK6a9tcJZ8wGY'), ), + PartEndEvent( + index=0, + part=BuiltinToolCallPart( + tool_name='web_search', + args='{"query": "top world news today"}', + tool_call_id='srvtoolu_01NcU4XNwyxWK6a9tcJZ8wGY', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=1, part=BuiltinToolReturnPart( @@ -4990,15 +5298,28 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', + ), + PartStartEvent( + index=2, + part=TextPart(content='Let me search for more specific breaking'), + previous_part_kind='builtin-tool-return', ), - PartStartEvent(index=2, part=TextPart(content='Let me search for more specific breaking')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' news stories to get clearer headlines.')), + PartEndEvent( + index=2, + part=TextPart( + content='Let me search for more specific breaking news stories to get clearer headlines.' + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=3, part=BuiltinToolCallPart( tool_name='web_search', tool_call_id='srvtoolu_01WiP3ZfXZXSykVQEL78XJ4T', provider_name='anthropic' ), + previous_part_kind='text', ), PartDeltaEvent( index=3, delta=ToolCallPartDelta(args_delta='', tool_call_id='srvtoolu_01WiP3ZfXZXSykVQEL78XJ4T') @@ -5027,6 +5348,16 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth PartDeltaEvent( index=3, delta=ToolCallPartDelta(args_delta='"}', tool_call_id='srvtoolu_01WiP3ZfXZXSykVQEL78XJ4T') ), + PartEndEvent( + index=3, + part=BuiltinToolCallPart( + tool_name='web_search', + args='{"query": "breaking news headlines August 14 2025"}', + tool_call_id='srvtoolu_01WiP3ZfXZXSykVQEL78XJ4T', + provider_name='anthropic', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=4, part=BuiltinToolReturnPart( @@ -5107,8 +5438,9 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth timestamp=IsDatetime(), provider_name='anthropic', ), + previous_part_kind='builtin-tool-call', ), - PartStartEvent(index=5, part=TextPart(content='Base')), + PartStartEvent(index=5, part=TextPart(content='Base'), previous_part_kind='builtin-tool-return'), PartDeltaEvent( index=5, delta=TextPartDelta(content_delta='d on the search results, I can identify the top') ), @@ -5135,27 +5467,70 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth ), PartDeltaEvent(index=5, delta=TextPartDelta(content_delta='1. Trump-Putin Summit and Ukraine Crisis')), PartDeltaEvent(index=5, delta=TextPartDelta(content_delta='**\n')), + PartEndEvent( + index=5, + part=TextPart( + content="""\ +Based on the search results, I can identify the top 3 major news stories from around the world today (August 14, 2025): + +## Top 3 World News Stories Today + +**1. Trump-Putin Summit and Ukraine Crisis** +""" + ), + next_part_kind='text', + ), PartStartEvent( index=6, part=TextPart( content='European leaders held a high-stakes meeting Wednesday with President Trump, Vice President Vance, Ukraine' ), + previous_part_kind='text', ), PartDeltaEvent(index=6, delta=TextPartDelta(content_delta="'s Volodymyr Zel")), PartDeltaEvent(index=6, delta=TextPartDelta(content_delta="enskyy and NATO's chief ahea")), PartDeltaEvent(index=6, delta=TextPartDelta(content_delta="d of Friday's U.S.-")), PartDeltaEvent(index=6, delta=TextPartDelta(content_delta='Russia summit')), - PartStartEvent(index=7, part=TextPart(content='. ')), - PartStartEvent(index=8, part=TextPart(content='The White House lowered its expectations surrounding')), + PartEndEvent( + index=6, + part=TextPart( + content="European leaders held a high-stakes meeting Wednesday with President Trump, Vice President Vance, Ukraine's Volodymyr Zelenskyy and NATO's chief ahead of Friday's U.S.-Russia summit" + ), + next_part_kind='text', + ), + PartStartEvent(index=7, part=TextPart(content='. '), previous_part_kind='text'), + PartEndEvent(index=7, part=TextPart(content='. '), next_part_kind='text'), + PartStartEvent( + index=8, + part=TextPart(content='The White House lowered its expectations surrounding'), + previous_part_kind='text', + ), PartDeltaEvent(index=8, delta=TextPartDelta(content_delta=' the Trump-Putin summit on Friday')), - PartStartEvent(index=9, part=TextPart(content='. ')), + PartEndEvent( + index=8, + part=TextPart( + content='The White House lowered its expectations surrounding the Trump-Putin summit on Friday' + ), + next_part_kind='text', + ), + PartStartEvent(index=9, part=TextPart(content='. '), previous_part_kind='text'), + PartEndEvent(index=9, part=TextPart(content='. '), next_part_kind='text'), PartStartEvent( - index=10, part=TextPart(content='In a surprise move just days before the Trump-Putin summit') + index=10, + part=TextPart(content='In a surprise move just days before the Trump-Putin summit'), + previous_part_kind='text', ), PartDeltaEvent(index=10, delta=TextPartDelta(content_delta=', the White House swapped out pro')), PartDeltaEvent(index=10, delta=TextPartDelta(content_delta="-EU PM Tusk for Poland's new president –")), PartDeltaEvent(index=10, delta=TextPartDelta(content_delta=" a political ally who once opposed Ukraine's")), PartDeltaEvent(index=10, delta=TextPartDelta(content_delta=' NATO and EU bids')), + PartEndEvent( + index=10, + part=TextPart( + content="In a surprise move just days before the Trump-Putin summit, the White House swapped out pro-EU PM Tusk for Poland's new president – a political ally who once opposed Ukraine's NATO and EU bids" + ), + next_part_kind='text', + ), PartStartEvent( index=11, part=TextPart( @@ -5165,33 +5540,72 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth **2. Trump's Federal Takeover of Washington D\ """ ), + previous_part_kind='text', ), PartDeltaEvent(index=11, delta=TextPartDelta(content_delta='.C.**')), PartDeltaEvent(index=11, delta=TextPartDelta(content_delta='\n')), + PartEndEvent( + index=11, + part=TextPart( + content="""\ +. + +**2. Trump's Federal Takeover of Washington D.C.** +""" + ), + next_part_kind='text', + ), PartStartEvent( index=12, part=TextPart( content="Federal law enforcement's presence in Washington, DC, continued to be felt Wednesday as President Donald Trump's tak" ), + previous_part_kind='text', ), PartDeltaEvent(index=12, delta=TextPartDelta(content_delta="eover of the city's police entered its thir")), PartDeltaEvent(index=12, delta=TextPartDelta(content_delta='d night')), - PartStartEvent(index=13, part=TextPart(content='. ')), + PartEndEvent( + index=12, + part=TextPart( + content="Federal law enforcement's presence in Washington, DC, continued to be felt Wednesday as President Donald Trump's takeover of the city's police entered its third night" + ), + next_part_kind='text', + ), + PartStartEvent(index=13, part=TextPart(content='. '), previous_part_kind='text'), + PartEndEvent(index=13, part=TextPart(content='. '), next_part_kind='text'), PartStartEvent( index=14, part=TextPart( content="National Guard troops arrived in Washington, D.C., following President Trump's deployment an" ), + previous_part_kind='text', ), PartDeltaEvent( index=14, delta=TextPartDelta(content_delta='d federalization of local police to crack down on crime') ), PartDeltaEvent(index=14, delta=TextPartDelta(content_delta=" in the nation's capital")), - PartStartEvent(index=15, part=TextPart(content='. ')), + PartEndEvent( + index=14, + part=TextPart( + content="National Guard troops arrived in Washington, D.C., following President Trump's deployment and federalization of local police to crack down on crime in the nation's capital" + ), + next_part_kind='text', + ), + PartStartEvent(index=15, part=TextPart(content='. '), previous_part_kind='text'), + PartEndEvent(index=15, part=TextPart(content='. '), next_part_kind='text'), PartStartEvent( - index=16, part=TextPart(content='Over 100 arrests made as National Guard rolls into DC under') + index=16, + part=TextPart(content='Over 100 arrests made as National Guard rolls into DC under'), + previous_part_kind='text', ), PartDeltaEvent(index=16, delta=TextPartDelta(content_delta=" Trump's federal takeover")), + PartEndEvent( + index=16, + part=TextPart( + content="Over 100 arrests made as National Guard rolls into DC under Trump's federal takeover" + ), + next_part_kind='text', + ), PartStartEvent( index=17, part=TextPart( @@ -5201,21 +5615,43 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth **3. Air\ """ ), + previous_part_kind='text', ), PartDeltaEvent(index=17, delta=TextPartDelta(content_delta=' Canada Flight Disruption')), PartDeltaEvent(index=17, delta=TextPartDelta(content_delta='**\n')), + PartEndEvent( + index=17, + part=TextPart( + content="""\ +. + +**3. Air Canada Flight Disruption** +""" + ), + next_part_kind='text', + ), PartStartEvent( index=18, part=TextPart( content='Air Canada plans to lock out its flight attendants and cancel all flights starting this weekend' ), + previous_part_kind='text', ), - PartStartEvent(index=19, part=TextPart(content='. ')), + PartEndEvent( + index=18, + part=TextPart( + content='Air Canada plans to lock out its flight attendants and cancel all flights starting this weekend' + ), + next_part_kind='text', + ), + PartStartEvent(index=19, part=TextPart(content='. '), previous_part_kind='text'), + PartEndEvent(index=19, part=TextPart(content='. '), next_part_kind='text'), PartStartEvent( index=20, part=TextPart( content='Air Canada says it will begin cancelling flights starting Thursday to allow an orderly shutdown of operations' ), + previous_part_kind='text', ), PartDeltaEvent( index=20, @@ -5227,6 +5663,13 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth index=20, delta=TextPartDelta(content_delta=' Saturday as it faces a potential work stoppage by') ), PartDeltaEvent(index=20, delta=TextPartDelta(content_delta=' its flight attendants')), + PartEndEvent( + index=20, + part=TextPart( + content="Air Canada says it will begin cancelling flights starting Thursday to allow an orderly shutdown of operations with a complete cessation of flights for the country's largest airline by Saturday as it faces a potential work stoppage by its flight attendants" + ), + next_part_kind='text', + ), PartStartEvent( index=21, part=TextPart( @@ -5236,9 +5679,20 @@ async def test_anthropic_web_search_tool_stream(allow_model_requests: None, anth These stories represent major international diplomatic developments, significant domestic policy\ """ ), + previous_part_kind='text', ), PartDeltaEvent(index=21, delta=TextPartDelta(content_delta=' changes in the US, and major transportation')), PartDeltaEvent(index=21, delta=TextPartDelta(content_delta=' disruptions affecting North America.')), + PartEndEvent( + index=21, + part=TextPart( + content="""\ +. + +These stories represent major international diplomatic developments, significant domestic policy changes in the US, and major transportation disruptions affecting North America.\ +""" + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='web_search', @@ -5461,7 +5915,6 @@ async def test_anthropic_text_parts_ahead_of_built_in_tool_call(allow_model_requ "Here's one notable historical event that occurred on September 18th: On September 18, 1793, President George Washington marked the location for the Capitol Building in Washington DC, and he would return periodically to oversee its", "Here's one notable historical event that occurred on September 18th: On September 18, 1793, President George Washington marked the location for the Capitol Building in Washington DC, and he would return periodically to oversee its construction personally", "Here's one notable historical event that occurred on September 18th: On September 18, 1793, President George Washington marked the location for the Capitol Building in Washington DC, and he would return periodically to oversee its construction personally.", - "Here's one notable historical event that occurred on September 18th: On September 18, 1793, President George Washington marked the location for the Capitol Building in Washington DC, and he would return periodically to oversee its construction personally.", ] ) diff --git a/tests/models/test_bedrock.py b/tests/models/test_bedrock.py index 6bb429d2d3..7915f4f680 100644 --- a/tests/models/test_bedrock.py +++ b/tests/models/test_bedrock.py @@ -17,6 +17,7 @@ ModelRequest, ModelResponse, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -418,13 +419,28 @@ async def get_temperature(city: str) -> str: PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' in Paris.\n')), + PartEndEvent( + index=0, + part=TextPart( + content=' To find the temperature of the capital of France, I need to first determine the capital of France and then get the current temperature in that city. The capital of France is Paris. I will use the "get_temperature" tool to find the current temperature in Paris.\n' + ), + next_part_kind='tool-call', + ), PartStartEvent( - index=1, part=ToolCallPart(tool_name='get_temperature', tool_call_id='tooluse_lAG_zP8QRHmSYOwZzzaCqA') + index=1, + part=ToolCallPart(tool_name='get_temperature', tool_call_id='tooluse_lAG_zP8QRHmSYOwZzzaCqA'), + previous_part_kind='text', ), PartDeltaEvent( index=1, delta=ToolCallPartDelta(args_delta='{"city":"Paris"}', tool_call_id='tooluse_lAG_zP8QRHmSYOwZzzaCqA'), ), + PartEndEvent( + index=1, + part=ToolCallPart( + tool_name='get_temperature', args='{"city":"Paris"}', tool_call_id='tooluse_lAG_zP8QRHmSYOwZzzaCqA' + ), + ), IsInstance(FunctionToolCallEvent), FunctionToolResultEvent( result=ToolReturnPart( @@ -440,6 +456,9 @@ async def get_temperature(city: str) -> str: PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' capital of France,')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' is 30°C')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='.')), + PartEndEvent( + index=0, part=TextPart(content='The current temperature in Paris, the capital of France, is 30°C.') + ), ] ) @@ -883,16 +902,41 @@ async def test_bedrock_model_thinking_part_redacted_stream( provider_name='bedrock', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content='', + id='redacted_content', + signature='EtkECkgIBxABGAIqQJTfqS/PYuAFZeOls6R8uGN014YNT7YDIFuhNyywoX1Cjf9oIYThX1ucUFJ1cfckdN55jozmXi1PEgMfufPmD44SDHBw8Yp6gJ8Ys/Gt3BoMYdLaNUOqr7k/MAeYIjBhPIc9z85HrJAbeS8Hz/69R+vKHpRanI0n/B69dnv2nebRe7LKZgHs2AlVPEtNyyoqvgP463qJ7/KvDrAPSnhHQqZ8TH8JBC4eYb4Qow5eX7dI3UXY/DrQ2IOWLADJqshcXBg7zbN78H4l6fTP97Ztzz0qw4fadTzTb36dRR7p8rs2zA/pHWhK+75xvUGh8IdLPvMikKccHssHKdceru4JLG1cMVtq1Ci7ZPAbHRU8/XsjFtLWPHeYLfKGJN33C1MpWX5nQU2BjYICs5Hn+8Z9Smxhp06rZXTjZARiExrd1dgLn5/5PbEzMLJv/Q3c6XJH7kx7iUO4NAonTT1Q3WY1cGa38UNGYuTUae3CNFEZWjS21tWRmjX4t5w8L0BtQ5DSaW/ZzGf0yzUKUaS/fkVjr2xztQBvysFFbb7UrX+/lNw26CHXKUIXFcZzV9l0HrA6z3oQrqSpnwem/pt/Cxdh5YQlXq6DSdzstqwJA53n9Hj3osjT/viH4Y6N5dWLLBTQBvhUEy24FhlytD3scYrvAqCdxW9aDSW+e+Foj5vsjVA9VFrXqZeNSO77Qp5dLw5XcA8CH6YFTE6EWeFTki5vfTfSIw+m4inZGVzIRi8Qk90IzW2EnrxGtx3wsEn5XImQr1vg1Npq2jN6uiOPOp8nsBgB', + provider_name='bedrock', + ), + next_part_kind='thinking', + ), PartStartEvent( index=1, part=ThinkingPart( content='', id='redacted_content', - signature=IsStr(), + signature='EqADCkgIBxABGAIqQB3h5GyHJD4hocRchUq2I40ChRLdpxjVl0xZkyVZrrk6JIJWeInuRQfJG5nJymmQBjH9VDeV53H/D3W9xjIJvPUSDLv7jRCF9b6Tx1Z5EBoMSv3CBw4zUjjSDaqlIjDBpH7V3YQB5twUmulAycDyZRvP3loupy6o2eqrfKAZZjq3rwkApWD9qOqJD3OEfd4qhQJZfOcHs9bt5zCqzYjoaIkxE3raXnhUHOlwq1Jq60bTQt2SQiHqoZTEht/DeDEEgpFy9Z32Zz3/Az0ORgTi3QE56K15OXo6GWMPYq/CTJ/xzPXfH0/yoQ4EP103VfVqvymEpXUru6RQGkou41LKRI92fRsqCK+jPOpxeED4kz7CFhQYMHttk7cOAF85SE3nCcpliARrLDvsApjgMFAYnineZQMLwawmnIm6EB61C20dB1Ft7vLG1TS6fn27EB8JZjr/jeC8O4ZysKv5iUxpMlDZib8jFszfzxCXdFX7NVKO9+dH8cW3RsJ80kzBp6xyoQhXSFx72jFllwDy8e+QlI3OIhweJ8IYAQ==', provider_name='bedrock', ), + previous_part_kind='thinking', + ), + PartEndEvent( + index=1, + part=ThinkingPart( + content='', + id='redacted_content', + signature='EqADCkgIBxABGAIqQB3h5GyHJD4hocRchUq2I40ChRLdpxjVl0xZkyVZrrk6JIJWeInuRQfJG5nJymmQBjH9VDeV53H/D3W9xjIJvPUSDLv7jRCF9b6Tx1Z5EBoMSv3CBw4zUjjSDaqlIjDBpH7V3YQB5twUmulAycDyZRvP3loupy6o2eqrfKAZZjq3rwkApWD9qOqJD3OEfd4qhQJZfOcHs9bt5zCqzYjoaIkxE3raXnhUHOlwq1Jq60bTQt2SQiHqoZTEht/DeDEEgpFy9Z32Zz3/Az0ORgTi3QE56K15OXo6GWMPYq/CTJ/xzPXfH0/yoQ4EP103VfVqvymEpXUru6RQGkou41LKRI92fRsqCK+jPOpxeED4kz7CFhQYMHttk7cOAF85SE3nCcpliARrLDvsApjgMFAYnineZQMLwawmnIm6EB61C20dB1Ft7vLG1TS6fn27EB8JZjr/jeC8O4ZysKv5iUxpMlDZib8jFszfzxCXdFX7NVKO9+dH8cW3RsJ80kzBp6xyoQhXSFx72jFllwDy8e+QlI3OIhweJ8IYAQ==', + provider_name='bedrock', + ), + next_part_kind='text', + ), + PartStartEvent( + index=2, + part=TextPart(content="I notice you've sent what appears to be some"), + previous_part_kind='thinking', ), - PartStartEvent(index=2, part=TextPart(content="I notice you've sent what appears to be some")), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' kind of command or trigger string, but I don')), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta="'t respond to special codes or")), @@ -916,6 +960,16 @@ async def test_bedrock_model_thinking_part_redacted_stream( index=2, delta=TextPartDelta(content_delta=' a straightforward conversation. What would you like to') ), PartDeltaEvent(index=2, delta=TextPartDelta(content_delta=' talk about today?')), + PartEndEvent( + index=2, + part=TextPart( + content="""\ +I notice you've sent what appears to be some kind of command or trigger string, but I don't respond to special codes or triggers. That string doesn't have any special meaning to me. + +If you have a question you'd like to discuss or need assistance with something, I'd be happy to help in a straightforward conversation. What would you like to talk about today?\ +""" + ), + ), ] ) @@ -1123,12 +1177,22 @@ async def test_bedrock_model_thinking_part_stream(allow_model_requests: None, be PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' how I can help')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' them today.')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(signature_delta=IsStr(), provider_name='bedrock')), - PartStartEvent(index=1, part=TextPart(content='Hello! It')), + PartEndEvent( + index=0, + part=ThinkingPart( + content='The user has greeted me with a simple "Hello". I should respond in a friendly and welcoming manner. This is a straightforward greeting, so I\'ll respond warmly and ask how I can help them today.', + signature='Eu0CCkgIBxABGAIqQJDccbDQkr81n7QjZ0Fi43umSvw0YvnGkMPEpaGAa2btYHyWw06KhwckvsnKzpKcxiRJT35meoG4/pdrTUiy2UISDPDaEWfOl3+HlRVsCxoMzfiqBp252RMvpmEyIjCbQ97Ac9Epkr5mgxeu1vGtJg+fDWIg0UnpMM8NYknhhvJmsXpYrfquwGL1ZnlBslUq0gHtbAAPwlWPmiQXU7gDQCDW9IdMVyw42b4f5MrAlpWkPWOJc9H+yYv0TpP/jY72SD1opqwkWnBgkzbi7A2jPmEFzIMQSO1KDXha5ADqQ3cLYMmVdNTSH9wlM7G7/JJ2/cqowqkwD6/q1AnYzcPte9iC67fY1LYN0NMCOSABFojP1rmkv9YBEulx5Y6eQpeVXBQiIqcGoCmWSumpGBskS1KxGerUmzUB0JmJnTENv4x3fSGSUSEPqMiz6Ebao8sVkb1wCWuZEXWJGtiQLMIm1o471iEYAQ==', + provider_name='bedrock', + ), + next_part_kind='text', + ), + PartStartEvent(index=1, part=TextPart(content='Hello! It'), previous_part_kind='thinking'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta="'s nice")), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' to meet you.')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' How can I help')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' you today?')), + PartEndEvent(index=1, part=TextPart(content="Hello! It's nice to meet you. How can I help you today?")), ] ) assert agent_run.result is not None @@ -1299,8 +1363,16 @@ async def test_bedrock_model_stream_empty_text_delta(allow_model_requests: None, content='The user just says "Hi". We need to respond appropriately, friendly greeting. No special instructions. Should be short.' ), ), - PartStartEvent(index=1, part=TextPart(content='Hello! How can I help')), + PartEndEvent( + index=0, + part=ThinkingPart( + content='The user just says "Hi". We need to respond appropriately, friendly greeting. No special instructions. Should be short.' + ), + next_part_kind='text', + ), + PartStartEvent(index=1, part=TextPart(content='Hello! How can I help'), previous_part_kind='thinking'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' you today?')), + PartEndEvent(index=1, part=TextPart(content='Hello! How can I help you today?')), ] ) diff --git a/tests/models/test_fallback.py b/tests/models/test_fallback.py index 5ab588ab57..7ad2a34a6e 100644 --- a/tests/models/test_fallback.py +++ b/tests/models/test_fallback.py @@ -18,7 +18,7 @@ from pydantic_ai.settings import ModelSettings from pydantic_ai.usage import RequestUsage -from ..conftest import IsNow, try_import +from ..conftest import IsDatetime, IsNow, try_import if sys.version_info < (3, 11): from exceptiongroup import ExceptionGroup as ExceptionGroup # pragma: lax no cover @@ -219,6 +219,12 @@ async def test_first_failed_instrumented_stream(capfire: CaptureLogfire) -> None model_name='function::success_response_stream', timestamp=IsNow(tz=timezone.utc), ), + ModelResponse( + parts=[TextPart(content='hello world')], + usage=RequestUsage(input_tokens=50, output_tokens=2), + model_name='function::success_response_stream', + timestamp=IsDatetime(), + ), ] ) assert result.is_complete @@ -451,6 +457,12 @@ async def test_first_success_streaming() -> None: model_name='function::success_response_stream', timestamp=IsNow(tz=timezone.utc), ), + ModelResponse( + parts=[TextPart(content='hello world')], + usage=RequestUsage(input_tokens=50, output_tokens=2), + model_name='function::success_response_stream', + timestamp=IsDatetime(), + ), ] ) assert result.is_complete @@ -480,6 +492,12 @@ async def test_first_failed_streaming() -> None: model_name='function::success_response_stream', timestamp=IsNow(tz=timezone.utc), ), + ModelResponse( + parts=[TextPart(content='hello world')], + usage=RequestUsage(input_tokens=50, output_tokens=2), + model_name='function::success_response_stream', + timestamp=IsDatetime(), + ), ] ) assert result.is_complete diff --git a/tests/models/test_gemini.py b/tests/models/test_gemini.py index b4512ff960..37e171ccad 100644 --- a/tests/models/test_gemini.py +++ b/tests/models/test_gemini.py @@ -818,15 +818,7 @@ async def test_stream_text(get_gemini_client: GetGeminiClient): async with agent.run_stream('Hello') as result: chunks = [chunk async for chunk in result.stream_output(debounce_by=None)] - assert chunks == snapshot( - [ - 'Hello ', - 'Hello world', - # This last value is repeated due to the debounce_by=None combined with the need to emit - # a final empty chunk to signal the end of the stream - 'Hello world', - ] - ) + assert chunks == snapshot(['Hello ', 'Hello world']) assert result.usage() == snapshot(RunUsage(requests=1, input_tokens=1, output_tokens=2)) async with agent.run_stream('Hello') as result: @@ -863,7 +855,7 @@ async def test_stream_invalid_unicode_text(get_gemini_client: GetGeminiClient): async with agent.run_stream('Hello') as result: chunks = [chunk async for chunk in result.stream_output(debounce_by=None)] - assert chunks == snapshot(['abc', 'abc€def', 'abc€def']) + assert chunks == snapshot(['abc', 'abc€def']) assert result.usage() == snapshot(RunUsage(requests=1, input_tokens=1, output_tokens=2)) @@ -893,7 +885,7 @@ async def test_stream_structured(get_gemini_client: GetGeminiClient): async with agent.run_stream('Hello') as result: chunks = [chunk async for chunk in result.stream_output(debounce_by=None)] - assert chunks == snapshot([(1, 2), (1, 2)]) + assert chunks == snapshot([(1, 2)]) assert result.usage() == snapshot(RunUsage(requests=1, input_tokens=1, output_tokens=2)) diff --git a/tests/models/test_google.py b/tests/models/test_google.py index 4668b58c70..6ca78d4484 100644 --- a/tests/models/test_google.py +++ b/tests/models/test_google.py @@ -26,6 +26,7 @@ ModelRequest, ModelResponse, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -380,6 +381,23 @@ async def test_google_model_builtin_code_execution_stream( provider_name='google-gla', ), ), + PartEndEvent( + index=0, + part=BuiltinToolCallPart( + tool_name='code_execution', + args={ + 'code': """\ + result = 65465 - 6544 * 65464 - 6 + 1.02255 + print(result) + \ +""", + 'language': 'PYTHON', + }, + tool_call_id=IsStr(), + provider_name='google-gla', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=1, part=BuiltinToolReturnPart( @@ -389,6 +407,7 @@ async def test_google_model_builtin_code_execution_stream( timestamp=IsDatetime(), provider_name='google-gla', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( index=2, @@ -405,6 +424,24 @@ async def test_google_model_builtin_code_execution_stream( tool_call_id=IsStr(), provider_name='google-gla', ), + previous_part_kind='builtin-tool-return', + ), + PartEndEvent( + index=2, + part=BuiltinToolCallPart( + tool_name='code_execution', + args={ + 'code': """\ +# Calculate the expression 65465-6544 * 65464-6+1.02255 +result = 65465 - 6544 * 65464 - 6 + 1.02255 +print(result)\ +""", + 'language': 'PYTHON', + }, + tool_call_id=IsStr(), + provider_name='google-gla', + ), + next_part_kind='builtin-tool-return', ), PartStartEvent( index=3, @@ -415,11 +452,13 @@ async def test_google_model_builtin_code_execution_stream( timestamp=IsDatetime(), provider_name='google-gla', ), + previous_part_kind='builtin-tool-call', ), - PartStartEvent(index=4, part=TextPart(content='The result is')), + PartStartEvent(index=4, part=TextPart(content='The result is'), previous_part_kind='builtin-tool-return'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' -428,330,955.977')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='45.')), + PartEndEvent(index=4, part=TextPart(content='The result is -428,330,955.97745.')), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='code_execution', @@ -625,6 +664,14 @@ async def get_temperature(city: str) -> str: index=0, part=ToolCallPart(tool_name='get_capital', args={'country': 'France'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='get_capital', + args={'country': 'France'}, + tool_call_id=IsStr(), + ), + ), IsInstance(FunctionToolCallEvent), FunctionToolResultEvent( result=ToolReturnPart( @@ -635,6 +682,14 @@ async def get_temperature(city: str) -> str: index=0, part=ToolCallPart(tool_name='get_temperature', args={'city': 'Paris'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='get_temperature', + args={'city': 'Paris'}, + tool_call_id=IsStr(), + ), + ), IsInstance(FunctionToolCallEvent), FunctionToolResultEvent( result=ToolReturnPart( @@ -644,6 +699,7 @@ async def get_temperature(city: str) -> str: PartStartEvent(index=0, part=TextPart(content='The temperature in Paris')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' is 30°C.\n')), + PartEndEvent(index=0, part=TextPart(content='The temperature in Paris is 30°C.\n')), ] ) @@ -1156,6 +1212,22 @@ async def test_google_model_web_search_tool_stream(allow_model_requests: None, g index=0, delta=TextPartDelta(content_delta=' the evening. The chance of rain remains low throughout the day.'), ), + PartEndEvent( + index=0, + part=TextPart( + content="""\ +### Weather in San Francisco is Mild and Partly Cloudy Today + +**San Francisco, CA** - Today's weather in San Francisco is partly cloudy with temperatures ranging from the high 50s to the low 80s, according to various weather reports. + +As of Tuesday afternoon, the temperature is around 69°F (21°C), with a real feel of about 76°F (24°C) and humidity at approximately 68%. Another report indicates a temperature of 68°F with passing clouds. There is a very low chance of rain throughout the day. + +The forecast for the remainder of the day predicts sunny skies with highs ranging from the mid-60s to the lower 80s. Some sources suggest the high could reach up to 85°F. Tonight, the weather is expected to be partly cloudy with lows in the upper 50s. + +Hourly forecasts show temperatures remaining in the low 70s during the afternoon before gradually cooling down in the evening. The chance of rain remains low throughout the day.\ +""" + ), + ), ] ) @@ -1767,7 +1839,43 @@ def dummy() -> None: ... # pragma: no cover PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=IsStr())), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=IsStr())), PartDeltaEvent(index=0, delta=ThinkingPartDelta(signature_delta=IsStr(), provider_name='google-gla')), - PartStartEvent(index=1, part=TextPart(content=IsStr())), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ +**Clarifying User Goals** + +I'm currently focused on defining the user's ultimate goal: ensuring their safety while crossing the street. I've pinpointed that this is a real-world scenario with significant safety considerations. However, I'm also mindful of my limitations as an AI and my inability to physically assist or visually assess the situation. + + +**Developing a Safety Protocol** + +I'm now formulating a comprehensive safety procedure. I've pinpointed the essential first step: finding a safe crossing location, such as marked crosswalks or intersections. Stopping at the curb, and looking and listening for traffic are vital too. The rationale behind "look left, right, then left again" now needs further exploration. I'm focusing on crafting universally applicable and secure steps. + + +**Prioritizing Safe Crossing** + +I've revised the procedure's initial step, emphasizing safe crossing zones (crosswalks, intersections). Next, I'm integrating the "look left, right, then left" sequence, considering why it's repeated. I'm focusing on crafting universal, safety-focused instructions that suit diverse situations and address my inherent limitations. + + +**Crafting Safe Instructions** + +I've identified the core user intent: to learn safe street-crossing. Now, I'm focusing on crafting universally applicable steps. Finding safe crossing locations and looking-listening for traffic remain paramount. I'm prioritizing direct, clear language, addressing my limitations as an AI. I'm crafting advice that works generally, regardless of specific circumstances or locations. + + +""", + signature='CiIB0e2Kb6Syj1a961EfbWv4W5C8RgAA/hGleV9VYJtnJFh4CmkB0e2Kb2qMva5NvDLuUvN8VpUjtONdaccbsRQ79+XvVh1AFoHjMdZAETCTSMzbyNktSx0w0C4lJFdld7kI+5ebYSU7ohQP0bDh4gC2w/yL8P7jC2EsgTI4V81lh0geK/9ktUxg6zkbP+oKfQHR7Ypv9395FWZW4+/829hMAush43zw0QshgLy6gCngMYKmJrtYtvjZ2FP5xIvfU/PPHfldzCim2+UQKze4+cLUk/bFJc5W3G5s5bIq/ERKUf5W1Wj62ZLqlu8AI1K+XRQh80EHvayt1im86y2goz+a/+5OsUTwkGpS/6UPCpkBAdHtim8jtCeEvH7amxWDHJTFu6fBt+wX03WIl/Dsn1uTOL9MHR4x5L1AOm+45iJlxdoGIlXtR5bijCGoRpOQVc7WNT9Dt9q0FYEycA85mum+GxJBN9/yug6ULAxmQ55TFNaAwqveUoB2WOj0l4aYPFxZKnBRXoWkiUDmkYBqWg0/JpJVLG/Lh4oQx9DGXpSA7sHsFXO/0J7TCqkBAdHtim/2mGLbQSFLeexCigBRypMkOioMaTMH/brwjRBwzqu1oOqiFjoC1hX1KEehhWRUvL5ytBF3hmtadCs5yRUAcaClTylOT7ac9o9X2Zew5PdlV3uJhQJyclrZq7v3/T7FpzNxtXnW04nyyN1xTOhhnQreeQktmeOG7/eTpZfQbkauZ4ktcTWVQrN1cqUMmcLRhATxDv1JmVKZMzFt/TZ1TOiQ0P+MrgqTAQHR7Ypvect1e/TIFJ1Iv4IHEAK/oNS9iboCWraGGK9LaS7Jve67/GnTGqXB8lnyUdI6VKol/B8mhK2j8GkGrz3i8jyZzUmaVG+1cQKgSR5S9Ydc2XIZA+RD03o5WwgCCUoCnCX1ibQBvDfhnfH2hoQgBqHfIhlsJbnlnE5/daAK+0in+4riONRWNwYrfSd9cPtKfwqOAQHR7YpvF/32Xtcd64G3KIWgzlOuJyrDJtlDRiDr7L/HXp27AkJ9tQLihyGDLNXPumfulkyXMj6fJ6/yVJA7iChdXSrBLN5cstCy5fTmKToBNB1Jy6DMeVq3EEiLwvWRFmmyaLPVhPdsv4caiFk+zIkyZyqNl+b+I5aO7C3zgCQLBz03BJi4e5iY6UYBitwKjgEB0e2Kb40Mzzj3wRl+zYIxmxKeBboY10T0xjUxKQuI5R0m5QckA/YouNyLyOHOgoYdSm3FxcqmzOuLfKGuopjxi3b8VpMcwyRe68+JnnXRqYRlioDaDoTiFMkX+cw/jVzSuezZ9TSlw3XFN1tQgB5qMxaYA+/SDoKdbGq/vrCX4bVsXZ2MDLDkHML2AhwLCp0BAdHtim9Oubf02UU50cfreIZlHR6hxe3tS8AiI+KuzVs3bPD6vuv8igK21QZHbOD17Sql+NCepOUELMizth1neQwTjtomXfHHBODfKVUJ4F20F0CNjhhlKt1aVS2+O6tvrS7aMVmvk3KRt0drrm5VR7pRNXA1oPJdhX1q3MhJDuqan7orvWh3YZ5WGFyEK9YuB5z0pgvYtDercaQ69wqRAQHR7YpvoATYq0iXLopzpIaEXcnZPLxyzHqpVnNqSn2fJRPmLQdspJUM62TsxpBeXAsR0F8yAv3wxuk25Lx84W2cnt20hFt+PbtGQVSM6KfE104XA0iHuidSwb9h5bcicQOQyzkIlrwosgo5FJyYQJFspMwDcHPt1H1xiW/yPaF8ZtL/ZXAomLouhq/bErZ84WEKigEB0e2Kbxs7yDL/L2OSWSIPGHnybOO+2mo9+7iQMARzd6a9AxjNvdTYKwn0iINhZ6Rx1TeVCW0w4UbYQF/ujzgmNtGHdPsEZ+M+5wMDu/U/8kpuWRJZVuJ48f3V19YQxU8Isq75n4AzaqXjK/KUFYeQJbGSfBS5EHrSwlQijhNIv8HQ+NVMj/Svf24KoQEB0e2Kb8FthNnzJDZ+f2+Lshah8D6O/QjfJGrnKvMMrUoUqX5ZqAxYg4R4UBirA6zvaFuKI0V6odeGwXWmPArIp5RC2NiEBaxCtwirXSe0amvaL0hk8CLkKy+brTrZiC7UCdiW6sLz5f9wrU50CdUH1P0jh5VDSuNXFkGBSiz8Yf8WL5DmOdnzs7/HSw8i99XzUdVdKCbzNrT8rXE1RveglgqAAQHR7YpvGr3dgHVESEDYAfaFXQI8ZCZUe3Cv2DmR3wBev2kMmRlixDyjRqXCgCw0EdXsJM8okkHj55sp6EZE0THrCxPCxaqUnALaaFSfh5AJiaC8bRZm/KUgL3I3phMtqSbIlKptGo03BLq9rz8bXgPc6Byiaic+wnfNUJQo8vO5CpQBAdHtim8C13z5v4gDZaJo9xgMLa+CPHKD2fTsBfVEIEJ7RI8G3C/6r6i7sJzvCAqsAC9pX+KgF2iGYM6kLxBRV+cuaV23OSVWqrd4uqBpIIrKjmN8423MHivDsEe6390BTRmSuev8N5SB6Bhdh7q6wzyblOaQ7VO+QpMt+HEfdlXCxtdwyQlQ0RdlHioAOem+VmtvhQqTAQHR7Ypv/TSKdwJl31A4G5XnObS4STu3FwdEdIECw6loDG2t5oTRnVJ69a93v2zNeNztp/LqUb7ptIN2UgileFq6Hiv5mNGpCNyThLSyGiN8JlHHAAEAzlnu2q+d97FxTv1zFMjIVfsWIKNrrr2PpJPv0sgYyYbsxuiOem4azhnFy2Q7ZVuI4xtQbQ/Mis6jNWiaWwqTAQHR7YpvsBQsV+yPEVR6uNrS0i1ToyFW1xp18q8Xzp151kDQbM3CTLxrJtrpi/Y1A/W38plOMMYTH/xZWf7o+PbvAIeXpEVRyZ2ST73gqacgZCRJYqgNybhATFzMMka4YF/ZQIKeYoT6L9mGpaSxeLzIVtiMxCdg5+FCLU4/rEWYoeaO0SXFGZOkcXC5IwmxP766MwqaAQHR7YpvCey4HxoWg4wh/pl5RL1x+GYt4okG+LPCIspPFmOE5ZL4L8CC+CnTmuppL25hGPBxjbTE0/Cld04d2cu+S4ajupggMXN6gt8N7BiAeRW0JWuWRM8kwD7XQ7Ngy8XG2kAIqjwEwX5e8qm6Bc4MrwziwLcjnwjK0M5zmBO7fU7qpMwcdONw06r9fJV1rHp8eicOJDRE48EKdQHR7YpvBby7jsEEGC9v0Ku5pIoeRcn84d7mWEHQnNWeFvX4AD3kp3/7PmxRCBvxHfa6k62zz5MsMwVGHHpU/PGsN/+mObu4tZcIlcPYXprM28wFDNkFgzo/9jprbR0lTAOhyQdkwYC1l+XjNQZgDSiSWHg5zgqKAQHR7YpvLo+F+bUs/EgO1F8w+oGBbMIur2LFu/ptvMzAjN4adrogDjtZvuIMxT9i4kOcGrhGkey5E4jtlzR4q2O46INZk7ubFInL2/TnknmR8uj0LEn08NQb6Qm8T6ftiApfpv5gKgGvGwJz6jttExkNq04DGpnKOF/iYJfk8a/604BVCogeAvSfrAqCAQHR7YpvRPJBA1auMRSVnz0MjIEkMP0Nfi30IUbhb4RLOaQZ5F6TdxociF2tLU92nDbHydkDgZhEQEEotia6xUl5tOrBABk1zASKkTTnLeNhi6JHBct3JuX3T5OxS4oKQzFlRySBZgvjQWk/H1MDQFoCQq7SofII6h/41DfCi0y+LJgKlwEB0e2KbzGjX2We98l4sdEf3aaVDmY2oka/8sUcEKXbPN12ip4hvdt8apDfdx+T3al50oabnNhl8Hd1G1FIlOr+oJWBH7+TfSLQ1vt1SczRX3QJwhBV145FhcO9+yHhuLVOvxk1QAI8onelLnX/oTSrKcAb6dQjj+kZOsYIq67Hoe2FXn5edxN0Bppg76TWp/PzoyFkiHwSCoYBAdHtim8Cqd73rN2h3De6n/c/CjZmfNYzx/NNgA2XrZzXeuB+DbPINOKNzHkzZQ1kYh1EjlTreIdpVhx58wI3zw1ec7x1u5G7oHDf26IhS85AjDcIXWn7Xp6k2fxJV4K7DzA0gclKmCJFqnzZUNZ7F0NL4vRObmBy/GIILvVP/sBzF2L4KdsKmgEB0e2Kb3zjJMWKJLl/uUxDaoveBXGzzz9mHV6aI65Ur8oIEAYUytuL/1p7YlWylkiBk7UPJ98FmC9TCd9An6f3N7oebwwiFnf7aMtjoKPfhgKPZaHNjRQOJi4egyLkdk/YfPYWDWyJMvDOUMuJtpFhf5oYzTsoYzTrwsw5zeh/n/YL/RISa7KgZwESq9dbXP396n5gEr8J/NwDCo4BAdHtim9xqhsvPCOmY7nmz2ijFtMSFQNd3buUFQRNM18N+knI1AXX/A01rlh29qcdxZIeQ+kN4YKOZoHfRxqlvhTyl/0AT6Q/jI/oWwGHdDdZwZCDE4n3ju1ZN2up2S4lsbXTqSTUKhD5qaV8dGktZAZ88mY8wuiJF2iOsE8uyCM247Z/Sz8fGsgP9Ets6QqOAQHR7Ypvl8gvPbQbGnn0iafjVSBDpHWhJU81msZg+qVjOyUJRmhF4lV97ds4lDpUtl52BwTyHNTlz4STXDMU8PdHpDZTMzMmJ3Qg3iJ/gYDXP5kpGqasQelo9yz0qvEIqeWsKV7tXGxY1njzrRYYEGl/4mmHo23XrS2U9hJPJBz8TMdFQDuw5wRarB9SJ7kKgAEB0e2Kb58mxC0KZgOB7u3f4m66IbHeDWR51Af08Ah+KH4EpcSRqt2iYXijH589mPTKEEJnSNcRkpm/rpRDo+NbYO83B7LB06R/J+JKq/hpzI9JSviv6YFkMMGgvhsWFkHvFN62OFG3y5w8id/IZfvl54z/0ApnTZO0DnVXo2b1vAp3AdHtim/ncRkntLVBoi+V6IJjKZ5Uwye9jnCLbQHyoWeQ0AzP7IWOnDMZLvT1VupfJysJgGuF9mzQVsFf86+abuNBOAUJXcjkTViqFoDEfWWTyZIlQ1dBa/s32qQvkCPQpPLb68rx9IcXpBh9KKaVE8wXn2FhZqgKkAEB0e2KbyzwhSOwreaWP7nfhxP76KGa8iSzUYupJ/IhYwIbi+hNPxOrGAmYoyYM4ywLFljv8IYoy5P4Ht4grxl6kQjUrGu4A0NlioV8UG7iKdZX+NwvIB2iwYKjRhLYz7uE1v4U0t4vGBL6a5W4ulic6Pw3MS2G2TJZRDnv47E6jTLUHlxLpwE7vgYjP/w0AZMKigEB0e2Kb2OtrSlqymij19/hNYnF5ZKclwE2c5hgwpgxqlt6KPIIwYlqyh1JlLrTrK7a/Kwm8RrBq9i90NX1TQbNDBf178fZ55MyyfT92yFzsjnpiqtUEmcLwWmVZpRzlNNugsHS7WG3gpjPKI2tXDy4oKkNCax2qu5zxsbAYjd0WmJhoHlixwu4kz8KlwEB0e2Kb+UXDHMn8p+kZ/6WmCYRbQ9wxkQlKYjbE+28G3g8HgTj/kyqu0ED0meRDCEfH4258605JMv88QSMW/xNXDWegZngBYCuz7izrHD5745Ps4PldgGptwqhs+3LxKqvAPQeYsU+Fllk60I/XuVtfcTAeZRQBy5v+OLzIjD7nSPL3njsDVKRmhyd4hmRLZRgV5Qi6WAHCqgBAdHtim+k265Inoii+qCLrUDth4v5RCK/+siGsm4QS3ACeGPY5UivNrimEsbCM8KuwFq8ykAUCplBUEI8HDI1+OXy7jUx7dNM3Dxvs/L7C7OxF3b3FCF2w7rEIO1MRyYfC/GwMlXdjrcvRBbIy2ZyOXj/C6bO5kO0LFGuxkhyDLyM8kcG9drbDpObNJAFOi7h5ZEXWESsP62fI6xfc2ykcc2Thd7grJ/fCpABAdHtim96cGLSuRmr5lCfmme0s/o7+9n2nSZ8ziW/BLgprp6fg5magVwqRa8L91eLzMHmHbwafd2sa0Ki+dgUWiqJRnItVfNPK1HaIO/r+EAw89KLXMtSgtaHDED2YL1WNsM2QBWnNlIET8ZjK/6BVDJk64eA96lp7m69m7WEbsQkd31f1q+pkEcVCdNg2/jgCk4B0e2Kb3o9fcDaQ0TzMW3qo00/kjGwr7xO/Mlmz30HuSaH48iO92G52Tdqn4Yy0e2GFCnk9JlNjRyjsqeWrw7oTiOIFZ1EgMKlqm/dH8k=', + provider_name='google-gla', + ), + next_part_kind='text', + ), + PartStartEvent( + index=1, + part=TextPart( + content='This is a great question! Safely crossing the street is all about being aware and predictable. Here is a step-by-step' + ), + previous_part_kind='thinking', + ), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=IsStr())), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=IsStr())), @@ -1787,6 +1895,45 @@ def dummy() -> None: ... # pragma: no cover PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=IsStr())), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=IsStr())), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=IsStr())), + PartEndEvent( + index=1, + part=TextPart( + content="""\ +This is a great question! Safely crossing the street is all about being aware and predictable. Here is a step-by-step guide that is widely taught for safety: + +### 1. Find a Safe Place to Cross +The best place is always at a designated **crosswalk** or a **street corner/intersection**. These are places where drivers expect to see pedestrians. Avoid crossing in the middle of the block or from between parked cars. + +### 2. Stop at the Edge of the Curb +Stand on the sidewalk, a safe distance from the edge of the street. This gives you a clear view of the traffic without putting you in danger. + +### 3. Look and Listen for Traffic +Follow the "Left-Right-Left" rule: +* **Look left** for the traffic that will be closest to you first. +* **Look right** for oncoming traffic in the other lane. +* **Look left again** to make sure nothing has changed. +* **Listen** for the sound of approaching vehicles that you might not be able to see. + +### 4. Wait for a Safe Gap +Wait until there is a large enough gap in traffic for you to walk all the way across. Don't assume a driver will stop for you. If you can, try to **make eye contact** with drivers to ensure they have seen you. + +### 5. Walk, Don't Run +Once it's safe: +* Walk straight across the street. +* **Keep looking and listening** for traffic as you cross. The situation can change quickly. +* **Don't use your phone** or wear headphones that block out the sound of traffic. + +--- + +### Special Situations: + +* **At a Traffic Light:** Wait for the pedestrian signal to show the "Walk" sign (often a symbol of a person walking). Even when the sign says to walk, you should still look left and right before crossing. +* **At a Stop Sign:** Wait for the car to come to a complete stop. Make eye contact with the driver before you step into the street to be sure they see you. + +The most important rule is to **stay alert and be predictable**. Always assume a driver might not see you.\ +""" + ), + ), ] ) @@ -2600,6 +2747,7 @@ async def test_google_image_generation(allow_model_requests: None, google_provid BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='8a7952', identifier='8a7952', ) ) @@ -2620,6 +2768,7 @@ async def test_google_image_generation(allow_model_requests: None, google_provid content=BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='8a7952', identifier='8a7952', ) ), @@ -2644,6 +2793,7 @@ async def test_google_image_generation(allow_model_requests: None, google_provid BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='7d173c', identifier='7d173c', ) ) @@ -2664,6 +2814,7 @@ async def test_google_image_generation(allow_model_requests: None, google_provid content=BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='7d173c', identifier='7d173c', ) ), @@ -2693,6 +2844,7 @@ async def test_google_image_generation_stream(allow_model_requests: None, google BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='9ff9cc', identifier='9ff9cc', ) ) @@ -2710,6 +2862,7 @@ async def test_google_image_generation_stream(allow_model_requests: None, google BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='2af2a7', identifier='2af2a7', ) ) @@ -2730,6 +2883,7 @@ async def test_google_image_generation_stream(allow_model_requests: None, google content=BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='2af2a7', identifier='2af2a7', ) ), @@ -2752,15 +2906,17 @@ async def test_google_image_generation_stream(allow_model_requests: None, google [ PartStartEvent(index=0, part=TextPart(content='Here you go!')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' ')), + PartEndEvent(index=0, part=TextPart(content='Here you go! '), next_part_kind='file'), PartStartEvent( index=1, part=FilePart( content=BinaryImage( data=IsBytes(), media_type='image/png', - identifier='2af2a7', + _identifier='2af2a7', ) ), + previous_part_kind='text', ), FinalResultEvent(tool_name=None, tool_call_id=None), ] @@ -2796,6 +2952,7 @@ async def test_google_image_generation_with_text(allow_model_requests: None, goo content=BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='00f2af', identifier=IsStr(), ) ), @@ -2831,6 +2988,7 @@ async def test_google_image_or_text_output(allow_model_requests: None, google_pr BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='f82faf', identifier='f82faf', ) ) @@ -2849,6 +3007,7 @@ async def test_google_image_and_text_output(allow_model_requests: None, google_p BinaryImage( data=IsBytes(), media_type='image/png', + _identifier='67b12f', identifier='67b12f', ) ] diff --git a/tests/models/test_groq.py b/tests/models/test_groq.py index 0716e35cdd..5ce53b251c 100644 --- a/tests/models/test_groq.py +++ b/tests/models/test_groq.py @@ -27,6 +27,7 @@ ModelResponse, ModelRetry, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -408,9 +409,7 @@ async def test_stream_text(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete - assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - ['hello ', 'hello world', 'hello world'] - ) + assert [c async for c in result.stream_output(debounce_by=None)] == snapshot(['hello ', 'hello world']) assert result.is_complete @@ -423,7 +422,7 @@ async def test_stream_text_finish_reason(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - ['hello ', 'hello world', 'hello world.', 'hello world.'] + ['hello ', 'hello world', 'hello world.'] ) assert result.is_complete @@ -470,13 +469,7 @@ async def test_stream_structured(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {}, - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{}, {'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete @@ -526,13 +519,7 @@ async def test_stream_structured_finish_reason(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete @@ -545,9 +532,7 @@ async def test_no_delta(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete - assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - ['hello ', 'hello world', 'hello world'] - ) + assert [c async for c in result.stream_output(debounce_by=None)] == snapshot(['hello ', 'hello world']) assert result.is_complete @@ -1019,102 +1004,6 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro search(What is the weather in San Francisco today?) - -Title: Weather in San Francisco -URL: https://www.weatherapi.com/ -Content: {'location': {'name': 'San Francisco', 'region': 'California', 'country': 'United States of America', 'lat': 37.775, 'lon': -122.4183, 'tz_id': 'America/Los_Angeles', 'localtime_epoch': 1758144075, 'localtime': '2025-09-17 14:21'}, 'current': {'last_updated_epoch': 1758143700, 'last_updated': '2025-09-17 14:15', 'temp_c': 17.4, 'temp_f': 63.3, 'is_day': 1, 'condition': {'text': 'Partly cloudy', 'icon': '//cdn.weatherapi.com/weather/64x64/day/116.png', 'code': 1003}, 'wind_mph': 7.8, 'wind_kph': 12.6, 'wind_degree': 264, 'wind_dir': 'W', 'pressure_mb': 1014.0, 'pressure_in': 29.95, 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 94, 'cloud': 75, 'feelslike_c': 17.4, 'feelslike_f': 63.3, 'windchill_c': 17.7, 'windchill_f': 63.9, 'heatindex_c': 17.7, 'heatindex_f': 63.9, 'dewpoint_c': 15.3, 'dewpoint_f': 59.6, 'vis_km': 13.0, 'vis_miles': 8.0, 'uv': 6.8, 'gust_mph': 14.4, 'gust_kph': 23.1}} -Score: 0.9655 - -Title: San Francisco, CA | Weather Forecasts Now, Live Radar Maps ... -URL: https://www.weatherbug.com/weather-forecast/now/san-francisco-ca-94103 -Content: Today's Weather - San Francisco, CA. September 17, 2025 10:00 AM. Exploratorium. 61°. Feels Like 61°. Hi 69°F Lo 56°F. Mostly Sunny. -Score: 0.9512 - -Title: San Francisco, CA Weather Conditions | Weather Underground -URL: https://www.wunderground.com/weather/us/ca/san-francisco -Content: access_time 10:56 AM PDT on September 17, 2025 (GMT -7) | Updated 10 seconds ago. 76° | 59°. 74 °F. like 75°. icon. Sunny. N. 0. Today's temperature is forecast -Score: 0.9272 - -Title: Weather for San Francisco, California, USA - Time and Date -URL: https://www.timeanddate.com/weather/usa/san-francisco -Content: Weather in San Francisco, California, USA ; Sep 17, 2025 at 8:56 am · 10 mi · 29.98 "Hg · 87% · 57 °F -Score: 0.9224 - -Title: San Francisco - 14-Day Forecast: Temperature, Wind & Radar -URL: https://www.ventusky.com/san-francisco -Content: ... Current time: 01:50 2025/09/17. Current Weather; Forecast; Sun and Moon. partly cloudy, 16 °C. Wind speed 22 km/h. Humidity, 90 %. Air pressure, 1014 hPa. -Score: 0.9118 - -Title: Bay Area forecast discussion - National Weather Service -URL: https://forecast.weather.gov/product.php?format=ci&glossary=1&issuedby=mtr&product=afd&site=mtr&version=1 -Content: 723 FXUS66 KMTR 171146 AFDMTR Area Forecast Discussion National Weather Service San Francisco ... Issued at 406 AM PDT Wed Sep 17 2025 (Today and tonight) -Score: 0.8015 - -Title: Weather in San Francisco in September 2025 -URL: https://world-weather.info/forecast/usa/san_francisco/september-2025/ -Content: Detailed ⚡ San Francisco Weather Forecast for September 2025 – day/night 🌡️ temperatures, precipitations – World-Weather.info. -Score: 0.7647 - -Title: San Francisco weather in September 2025 | Weather25.com -URL: https://www.weather25.com/north-america/usa/california/san-francisco?page=month&month=September -Content: Full weather forecast for San Francisco in September 2025. Check the temperatures, chance of rain and more in San Francisco during September. -Score: 0.7192 - -Title: San Francisco, CA Weather Forecast - AccuWeather -URL: https://www.accuweather.com/en/us/san-francisco/94103/weather-forecast/347629 -Content: 10-Day Weather Forecast ; Today. 9/17. 76° · Partly sunny ; Thu. 9/18. 68° · Rather cloudy ; Fri. 9/19. 73° · Partly sunny and pleasant ; Sat. 9/20. 71° · Mostly sunny -Score: 0.6832 - -Title: AccuWeather Forecast: 1 more day of hot temperatures away from ... -URL: https://abc7news.com/post/weather-bay-area-forecast-temperatures/39468/ -Content: We have one more day of hot weather away from the coast today. A dense fog ... 2025 ABC, Inc., KGO-TV San Francisco. All Rights Reserved. -Score: 0.6164 - -Title: San Francisco Bay Area weather and First Alert Weather forecasts -URL: https://www.cbsnews.com/sanfrancisco/weather/ -Content: Wednesday morning First Alert weather forecast with Jessica Burch - 9/17/25 ... National - Current Temperatures · National - First Alert Doppler. Latest -Score: 0.6011 - -Title: 10-Day Weather Forecast for San Francisco, CA -URL: https://weather.com/weather/tenday/l/USCA0987:1:US -Content: 10 Day Weather-San Francisco, CA. As of 2:31 pm PDT. Today. 67°/58°. 2%. Day. 67°. 2%. W 17 mph. Plentiful sunshine. High 67F. Winds W at 10 to 20 mph. -Score: 0.5229 - -Title: 10-Day Weather Forecast for San Francisco, CA -URL: https://weather.com/weather/tenday/l/94112:4:US -Content: 10 Day Weather-San Francisco, CA. As of 5:34 pm PDT. Tonight. --/58°. 18%. Night. 58°. 18%. W 15 mph. Partly cloudy early with increasing clouds overnight. -Score: 0.4822 - -Title: Past Weather in San Francisco, California, USA - Time and Date -URL: https://www.timeanddate.com/weather/usa/san-francisco/historic -Content: Night Sky · TodayHourly14 DaysPastClimate. Currently: 61 °F. Passing clouds. (Weather station: San Francisco International Airport, USA). See more current -Score: 0.4242 - -Title: Monthly Weather Forecast for San Francisco, CA -URL: https://weather.com/weather/monthly/l/69bedc6a5b6e977993fb3e5344e3c06d8bc36a1fb6754c3ddfb5310a3c6d6c87 -Content: Considerable cloudiness. Low 56F. Winds WSW at 10 to 15 mph. Record Low52°. -Score: 0.3279 - -Title: San Francisco, CA Hourly Weather Forecast - Weather Underground -URL: https://www.wunderground.com/hourly/us/ca/san-francisco -Content: San Francisco Weather Forecasts. Weather Underground provides local & long-range weather ... Hourly Forecast for Today, Wednesday 09/17Hourly for Today, Wed 09/17. -Score: 0.2700 - - - - -Based on the search results, I can see that the current weather in San Francisco is as follows: - -- The temperature is around 61°F to 63°F (17°C). -- It is partly cloudy to mostly sunny. -- The humidity is around 90-94%. -- The wind speed is around 7-22 km/h. - -So, the current weather in San Francisco is partly cloudy with a temperature of 61°F (17°C) and high humidity. \n\ - -Now, I will provide the final answer to the user. \n\ - -The weather in San Francisco today is partly cloudy with a temperature of 61°F (17°C) and high humidity.\ """ ), BuiltinToolCallPart( @@ -1230,6 +1119,7 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro timestamp=IsDatetime(), provider_name='groq', ), + ThinkingPart(content=IsStr()), TextPart( content='The weather in San Francisco today is partly cloudy with a temperature of 61°F (17°C) and high humidity. The current conditions include a wind speed of around 7-22 km/h and a humidity level of 90-94%.' ), @@ -1293,6 +1183,19 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' Francisco')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' today')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='?)\n')), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ + +To find the current weather in San Francisco, I will use the search tool to look up this information. + + +search(What is the weather in San Francisco today?) +""" + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( @@ -1301,6 +1204,17 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro tool_call_id=IsStr(), provider_name='groq', ), + previous_part_kind='thinking', + ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'What is the weather in San Francisco today?'}, + tool_call_id=IsStr(), + provider_name='groq', + ), + next_part_kind='builtin-tool-return', ), PartStartEvent( index=2, @@ -1411,11 +1325,12 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro timestamp=IsDatetime(), provider_name='groq', ), + previous_part_kind='builtin-tool-call', ), - PartDeltaEvent( - index=0, - delta=ThinkingPartDelta( - content_delta="""\ + PartStartEvent( + index=3, + part=ThinkingPart( + content="""\ Title: Weather in San Francisco URL: https://www.weatherapi.com/ @@ -1500,11 +1415,12 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), + previous_part_kind='builtin-tool-return', ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' @@ -1512,27 +1428,27 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='Based')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' on')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' the')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' search')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' results')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=',')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' I')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' can')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' see')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' that')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' the')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' current')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' weather')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' in')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' San')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' Francisco')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' as')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' follows')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='Based')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' on')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' the')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' search')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' results')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=',')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' I')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' can')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' see')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' that')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' the')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' current')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' weather')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' in')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' San')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' Francisco')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' as')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' follows')), PartDeltaEvent( - index=0, + index=3, delta=ThinkingPartDelta( content_delta="""\ : @@ -1540,55 +1456,55 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' The')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' temperature')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' around')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='61')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°F')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' to')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='63')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°F')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' (')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='17')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°C')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=').\n')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' It')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' partly')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' cloudy')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' to')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' mostly')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' sunny')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.\n')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' The')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' humidity')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' around')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='90')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='94')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='%.\n')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' The')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' wind')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' speed')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' around')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='7')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='-')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='22')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' km')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='/h')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' The')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' temperature')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' around')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='61')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°F')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' to')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='63')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°F')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' (')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='17')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°C')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=').\n')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' It')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' partly')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' cloudy')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' to')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' mostly')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' sunny')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='.\n')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' The')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' humidity')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' around')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='90')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='94')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='%.\n')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' The')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' wind')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' speed')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' around')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='7')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='-')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='22')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' km')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='/h')), PartDeltaEvent( - index=0, + index=3, delta=ThinkingPartDelta( content_delta="""\ . @@ -1596,34 +1512,34 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='So')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=',')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' the')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' current')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' weather')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' in')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' San')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' Francisco')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' partly')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' cloudy')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' with')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' a')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' temperature')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' of')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='61')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°F')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' (')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='17')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°C')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=')')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' and')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' high')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' humidity')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='So')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=',')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' the')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' current')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' weather')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' in')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' San')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' Francisco')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' partly')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' cloudy')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' with')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' a')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' temperature')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' of')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='61')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°F')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' (')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='17')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°C')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=')')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' and')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' high')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' humidity')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='.')), PartDeltaEvent( - index=0, + index=3, delta=ThinkingPartDelta( content_delta="""\ \n\ @@ -1631,20 +1547,20 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='Now')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=',')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' I')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' will')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' provide')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' the')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' final')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' answer')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' to')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' the')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' user')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='Now')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=',')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' I')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' will')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' provide')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' the')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' final')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' answer')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' to')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' the')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' user')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='.')), PartDeltaEvent( - index=0, + index=3, delta=ThinkingPartDelta( content_delta="""\ \n\ @@ -1652,80 +1568,190 @@ async def test_groq_model_web_search_tool_stream(allow_model_requests: None, gro """ ), ), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='The')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' weather')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' in')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' San')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' Francisco')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' today')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' is')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' partly')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' cloudy')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' with')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' a')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' temperature')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' of')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' ')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='61')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°F')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' (')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='17')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='°C')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=')')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' and')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' high')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' humidity')), - PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.')), - PartStartEvent(index=3, part=TextPart(content='The')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='The')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' weather')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' in')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' San')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' Francisco')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' today')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' is')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' partly')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' cloudy')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' with')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' a')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' temperature')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' of')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' ')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='61')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°F')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' (')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='17')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='°C')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=')')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' and')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' high')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta=' humidity')), + PartDeltaEvent(index=3, delta=ThinkingPartDelta(content_delta='.')), + PartEndEvent( + index=3, + part=ThinkingPart( + content="""\ + +Title: Weather in San Francisco +URL: https://www.weatherapi.com/ +Content: {'location': {'name': 'San Francisco', 'region': 'California', 'country': 'United States of America', 'lat': 37.775, 'lon': -122.4183, 'tz_id': 'America/Los_Angeles', 'localtime_epoch': 1758144075, 'localtime': '2025-09-17 14:21'}, 'current': {'last_updated_epoch': 1758143700, 'last_updated': '2025-09-17 14:15', 'temp_c': 17.4, 'temp_f': 63.3, 'is_day': 1, 'condition': {'text': 'Partly cloudy', 'icon': '//cdn.weatherapi.com/weather/64x64/day/116.png', 'code': 1003}, 'wind_mph': 7.8, 'wind_kph': 12.6, 'wind_degree': 264, 'wind_dir': 'W', 'pressure_mb': 1014.0, 'pressure_in': 29.95, 'precip_mm': 0.0, 'precip_in': 0.0, 'humidity': 94, 'cloud': 75, 'feelslike_c': 17.4, 'feelslike_f': 63.3, 'windchill_c': 17.7, 'windchill_f': 63.9, 'heatindex_c': 17.7, 'heatindex_f': 63.9, 'dewpoint_c': 15.3, 'dewpoint_f': 59.6, 'vis_km': 13.0, 'vis_miles': 8.0, 'uv': 6.8, 'gust_mph': 14.4, 'gust_kph': 23.1}} +Score: 0.9655 + +Title: San Francisco, CA | Weather Forecasts Now, Live Radar Maps ... +URL: https://www.weatherbug.com/weather-forecast/now/san-francisco-ca-94103 +Content: Today's Weather - San Francisco, CA. September 17, 2025 10:00 AM. Exploratorium. 61°. Feels Like 61°. Hi 69°F Lo 56°F. Mostly Sunny. +Score: 0.9512 + +Title: San Francisco, CA Weather Conditions | Weather Underground +URL: https://www.wunderground.com/weather/us/ca/san-francisco +Content: access_time 10:56 AM PDT on September 17, 2025 (GMT -7) | Updated 10 seconds ago. 76° | 59°. 74 °F. like 75°. icon. Sunny. N. 0. Today's temperature is forecast +Score: 0.9272 + +Title: Weather for San Francisco, California, USA - Time and Date +URL: https://www.timeanddate.com/weather/usa/san-francisco +Content: Weather in San Francisco, California, USA ; Sep 17, 2025 at 8:56 am · 10 mi · 29.98 "Hg · 87% · 57 °F +Score: 0.9224 + +Title: San Francisco - 14-Day Forecast: Temperature, Wind & Radar +URL: https://www.ventusky.com/san-francisco +Content: ... Current time: 01:50 2025/09/17. Current Weather; Forecast; Sun and Moon. partly cloudy, 16 °C. Wind speed 22 km/h. Humidity, 90 %. Air pressure, 1014 hPa. +Score: 0.9118 + +Title: Bay Area forecast discussion - National Weather Service +URL: https://forecast.weather.gov/product.php?format=ci&glossary=1&issuedby=mtr&product=afd&site=mtr&version=1 +Content: 723 FXUS66 KMTR 171146 AFDMTR Area Forecast Discussion National Weather Service San Francisco ... Issued at 406 AM PDT Wed Sep 17 2025 (Today and tonight) +Score: 0.8015 + +Title: Weather in San Francisco in September 2025 +URL: https://world-weather.info/forecast/usa/san_francisco/september-2025/ +Content: Detailed ⚡ San Francisco Weather Forecast for September 2025 – day/night 🌡️ temperatures, precipitations – World-Weather.info. +Score: 0.7647 + +Title: San Francisco weather in September 2025 | Weather25.com +URL: https://www.weather25.com/north-america/usa/california/san-francisco?page=month&month=September +Content: Full weather forecast for San Francisco in September 2025. Check the temperatures, chance of rain and more in San Francisco during September. +Score: 0.7192 + +Title: San Francisco, CA Weather Forecast - AccuWeather +URL: https://www.accuweather.com/en/us/san-francisco/94103/weather-forecast/347629 +Content: 10-Day Weather Forecast ; Today. 9/17. 76° · Partly sunny ; Thu. 9/18. 68° · Rather cloudy ; Fri. 9/19. 73° · Partly sunny and pleasant ; Sat. 9/20. 71° · Mostly sunny +Score: 0.6832 + +Title: AccuWeather Forecast: 1 more day of hot temperatures away from ... +URL: https://abc7news.com/post/weather-bay-area-forecast-temperatures/39468/ +Content: We have one more day of hot weather away from the coast today. A dense fog ... 2025 ABC, Inc., KGO-TV San Francisco. All Rights Reserved. +Score: 0.6164 + +Title: San Francisco Bay Area weather and First Alert Weather forecasts +URL: https://www.cbsnews.com/sanfrancisco/weather/ +Content: Wednesday morning First Alert weather forecast with Jessica Burch - 9/17/25 ... National - Current Temperatures · National - First Alert Doppler. Latest +Score: 0.6011 + +Title: 10-Day Weather Forecast for San Francisco, CA +URL: https://weather.com/weather/tenday/l/USCA0987:1:US +Content: 10 Day Weather-San Francisco, CA. As of 2:31 pm PDT. Today. 67°/58°. 2%. Day. 67°. 2%. W 17 mph. Plentiful sunshine. High 67F. Winds W at 10 to 20 mph. +Score: 0.5229 + +Title: 10-Day Weather Forecast for San Francisco, CA +URL: https://weather.com/weather/tenday/l/94112:4:US +Content: 10 Day Weather-San Francisco, CA. As of 5:34 pm PDT. Tonight. --/58°. 18%. Night. 58°. 18%. W 15 mph. Partly cloudy early with increasing clouds overnight. +Score: 0.4822 + +Title: Past Weather in San Francisco, California, USA - Time and Date +URL: https://www.timeanddate.com/weather/usa/san-francisco/historic +Content: Night Sky · TodayHourly14 DaysPastClimate. Currently: 61 °F. Passing clouds. (Weather station: San Francisco International Airport, USA). See more current +Score: 0.4242 + +Title: Monthly Weather Forecast for San Francisco, CA +URL: https://weather.com/weather/monthly/l/69bedc6a5b6e977993fb3e5344e3c06d8bc36a1fb6754c3ddfb5310a3c6d6c87 +Content: Considerable cloudiness. Low 56F. Winds WSW at 10 to 15 mph. Record Low52°. +Score: 0.3279 + +Title: San Francisco, CA Hourly Weather Forecast - Weather Underground +URL: https://www.wunderground.com/hourly/us/ca/san-francisco +Content: San Francisco Weather Forecasts. Weather Underground provides local & long-range weather ... Hourly Forecast for Today, Wednesday 09/17Hourly for Today, Wed 09/17. +Score: 0.2700 + + + + +Based on the search results, I can see that the current weather in San Francisco is as follows: + +- The temperature is around 61°F to 63°F (17°C). +- It is partly cloudy to mostly sunny. +- The humidity is around 90-94%. +- The wind speed is around 7-22 km/h. + +So, the current weather in San Francisco is partly cloudy with a temperature of 61°F (17°C) and high humidity. \n\ + +Now, I will provide the final answer to the user. \n\ + +The weather in San Francisco today is partly cloudy with a temperature of 61°F (17°C) and high humidity.\ +""" + ), + next_part_kind='text', + ), + PartStartEvent(index=4, part=TextPart(content='The'), previous_part_kind='thinking'), FinalResultEvent(tool_name=None, tool_call_id=None), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' weather')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' in')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' San')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' Francisco')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' today')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' is')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' partly')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' cloudy')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' with')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' a')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' temperature')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' of')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' ')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='61')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='°F')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' (')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='17')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='°C')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=')')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' and')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' high')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' humidity')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='.')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' The')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' current')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' conditions')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' include')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' a')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' wind')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' speed')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' of')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' around')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' ')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='7')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='-')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='22')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' km')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='/h')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' and')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' a')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' humidity')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' level')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' of')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta=' ')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='90')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='-')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='94')), - PartDeltaEvent(index=3, delta=TextPartDelta(content_delta='%.')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' weather')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' in')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' San')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' Francisco')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' today')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' is')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' partly')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' cloudy')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' with')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' a')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' temperature')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' of')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' ')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='61')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='°F')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' (')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='17')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='°C')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=')')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' and')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' high')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' humidity')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='.')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' The')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' current')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' conditions')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' include')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' a')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' wind')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' speed')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' of')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' around')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' ')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='7')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='-')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='22')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' km')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='/h')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' and')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' a')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' humidity')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' level')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' of')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' ')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='90')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='-')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='94')), + PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='%.')), + PartEndEvent( + index=4, + part=TextPart( + content='The weather in San Francisco today is partly cloudy with a temperature of 61°F (17°C) and high humidity. The current conditions include a wind speed of around 7-22 km/h and a humidity level of 90-94%.' + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='web_search', @@ -2553,7 +2579,33 @@ async def test_groq_model_thinking_part_iter(allow_model_requests: None, groq_ap PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' next')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' time')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.\n')), - PartStartEvent(index=1, part=TextPart(content='To')), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ + +Okay, so I want to make Uruguayan alfajores. I've heard they're a type of South American cookie sandwich with dulce de leche. I'm not entirely sure about the exact steps, but I can try to figure it out based on what I know. + +First, I think alfajores are cookies, so I'll need to make the cookie part. From what I remember, the dough is probably made with flour, sugar, butter, eggs, vanilla, and maybe some baking powder or baking soda. I should look up a typical cookie dough recipe and adjust it for alfajores. + +Once the dough is ready, I'll need to roll it out and cut into circles. I've seen people use a cookie cutter or even the rim of a glass. The thickness should be medium, not too thin to break easily. + +Baking them in the oven, I suppose at around 350°F for about 10-15 minutes until they're lightly golden. I should keep an eye on them to make sure they don't burn. + +After the cookies are baked and cooled, the next step is the dulce de leche filling. I can either make it from scratch or use store-bought. If I make it, I'll need to heat condensed milk until it thickens and turns golden. That might take some time, so I need to be patient and stir frequently to avoid burning. + +Then, I'll sandwich two cookies together with the dulce de leche in the middle. I think pressing them gently is important so they stick together without breaking. + +Finally, I've seen alfajores coated in powdered sugar. So, after assembling, I'll roll each sandwich in powdered sugar to coat them evenly. That should give them the classic look and extra sweetness. + +Wait, I should make sure the cookies are completely cool before filling, otherwise the dulce de leche might melt or the cookies could become soggy. Also, maybe I can add a pinch of salt to balance the sweetness. Oh, and the vanilla extract is important for flavor. + +I might have missed something, but this seems like a good start. I'll follow the steps, and if something doesn't turn out right, I can adjust next time. +""" + ), + next_part_kind='text', + ), + PartStartEvent(index=1, part=TextPart(content='To'), previous_part_kind='thinking'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' make')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' Ur')), @@ -3173,6 +3225,63 @@ async def test_groq_model_thinking_part_iter(allow_model_requests: None, groq_ap PartDeltaEvent(index=1, delta=TextPartDelta(content_delta='aj')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta='ores')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta='!')), + PartEndEvent( + index=1, + part=TextPart( + content="""\ +To make Uruguayan alfajores, follow these organized steps for a delightful cookie sandwich with dulce de leche: + +### Ingredients: +- **For the Cookies:** + - 2 cups all-purpose flour + - 1 cup powdered sugar + - 1/2 tsp baking powder + - 1/4 tsp baking soda + - 1/4 tsp salt + - 1/2 cup unsalted butter, softened + - 1 large egg + - 1 egg yolk + - 1 tsp vanilla extract + +- **For the Filling:** + - 1 can (14 oz) sweetened condensed milk (for dulce de leche) + - Powdered sugar (for coating) + +### Instructions: + +1. **Prepare the Cookie Dough:** + - In a large bowl, whisk together flour, powdered sugar, baking powder, baking soda, and salt. + - Add softened butter and mix until the mixture resembles coarse crumbs. + - In a separate bowl, whisk together egg, egg yolk, and vanilla extract. Pour into the dry mixture and mix until a dough forms. + - Wrap dough in plastic wrap and refrigerate for 30 minutes. + +2. **Roll and Cut Cookies:** + - Roll out dough on a floured surface to about 1/4 inch thickness. + - Cut into circles using a cookie cutter or glass rim. + - Place cookies on a parchment-lined baking sheet, leaving space between each. + +3. **Bake the Cookies:** + - Preheat oven to 350°F (180°C). + - Bake for 10-15 minutes until lightly golden. Allow to cool on the baking sheet for 5 minutes, then transfer to a wire rack to cool completely. + +4. **Make Dulce de Leche:** + - Pour sweetened condensed milk into a saucepan and heat over medium heat, stirring frequently, until thickened and golden (about 10-15 minutes). + +5. **Assemble Alfajores:** + - Spread a layer of dulce de leche on the flat side of one cookie. Sandwich with another cookie, pressing gently. + - Roll each sandwich in powdered sugar to coat evenly. + +6. **Serve:** + - Enjoy your alfajores with a dusting of powdered sugar. Store in an airtight container. + +### Tips: +- Ensure cookies are completely cool before filling to prevent sogginess. +- For an extra touch, add a pinch of salt to the dough for flavor balance. + +Enjoy your homemade Uruguayan alfajores!\ +""" + ), + ), ] ) @@ -4190,7 +4299,40 @@ async def test_groq_model_thinking_part_iter(allow_model_requests: None, groq_ap PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta=' alf')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='ajor')), PartDeltaEvent(index=0, delta=ThinkingPartDelta(content_delta='.\n')), - PartStartEvent(index=1, part=TextPart(content='To')), + PartEndEvent( + index=0, + part=ThinkingPart( + content="""\ +Alright, so I'm trying to figure out how to make Argentinian alfajores. I know that Uruguayan alfajores are these delicious cookie sandwiches filled with dulce de leche and coated in powdered sugar. But I heard that Argentinian alfajores are a bit different. I'm not exactly sure what makes them unique, so I need to look into that. + +First, I think about what I know about Argentinian desserts. They have a rich tradition of sweet treats, and alfajores are definitely one of them. Maybe the difference lies in the type of cookies used or the filling. I recall that in some South American countries, alfajores can be more like a biscuit or even a cake-like cookie, whereas in others, they might be crisper. + +I also remember that sometimes alfajores are coated in chocolate instead of just powdered sugar. That could be an Argentinian twist. I need to confirm that. Also, the filling might not just be dulce de leche; perhaps they use other ingredients like jam or chocolate ganache. + +Another thing to consider is the texture of the cookies. Uruguayan alfajores have a softer, more delicate cookie, while Argentinian ones might be crunchier. Or maybe they use a different type of flour or baking technique. I should check recipes from both countries to see the differences in ingredients and preparation methods. + +I also wonder about the history of alfajores in Argentina. They might have been influenced by European immigrants, especially from Spain or Italy, which could explain variations in the recipe. This cultural influence might contribute to differences in how the cookies are made and filled. + +Additionally, I think about the assembly of the alfajores. In Uruguay, it's typically two cookies sandwiching the dulce de leche and then coated in powdered sugar. Maybe in Argentina, they add more layers or use a different coating, like cinnamon or cocoa powder mixed with sugar. + +I also need to consider the availability of ingredients. Dulce de leche is a staple in many South American countries, but maybe in Argentina, they have a slightly different version of it or use it in combination with other fillings. Perhaps they also use nuts or other ingredients in the dough for added texture and flavor. + +Another aspect is the baking process. The Uruguayan cookies might be baked until just set, while Argentinian ones could be baked longer for a crisper texture. Or perhaps they use a different leavening agent to achieve a lighter or denser cookie. + +I also think about the size of the cookies. Are Argentinian alfajores larger or smaller than the Uruguayan ones? This could affect baking time and the overall appearance of the final product. + +Furthermore, I recall that in some regions, alfajores are dipped in chocolate after being filled. This could be a distinguishing feature of the Argentinian version. The chocolate coating might be milk, dark, or even white chocolate, adding another layer of flavor to the cookies. + +I also wonder about the storage and serving of Argentinian alfajores. Maybe they are best served fresh, or perhaps they can be stored for a few days like the Uruguayan ones. Understanding this can help in planning the baking and assembly process. + +Lastly, I think about potential variations within Argentina itself. Different regions might have their own take on alfajores, so there could be multiple authentic Argentinian recipes. It would be helpful to find a classic or widely recognized version to ensure authenticity. + +Overall, to cook Argentinian alfajores, I need to focus on the specific characteristics that distinguish them from their Uruguayan counterparts, whether it's the type of cookie, the filling, the coating, or the baking method. By identifying these differences, I can adapt the recipe accordingly to achieve an authentic Argentinian alfajor. +""" + ), + next_part_kind='text', + ), + PartStartEvent(index=1, part=TextPart(content='To'), previous_part_kind='thinking'), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' cook')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' Arg')), @@ -5017,6 +5159,75 @@ async def test_groq_model_thinking_part_iter(allow_model_requests: None, groq_ap PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' chocolate')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' coating')), PartDeltaEvent(index=1, delta=TextPartDelta(content_delta='.')), + PartEndEvent( + index=1, + part=TextPart( + content="""\ +To cook Argentinian alfajores, follow these steps, which highlight the unique characteristics that distinguish them from their Uruguayan counterparts: + +### Ingredients: +- **For the Cookies:** + - 2 cups all-purpose flour + - 1 cup powdered sugar + - 1/2 teaspoon baking powder + - 1/4 teaspoon baking soda + - 1/4 teaspoon salt + - 1/2 cup unsalted butter, softened + - 1 large egg + - 1 egg yolk + - 1 teaspoon vanilla extract + +- **For the Filling:** + - 1 can (14 oz) sweetened condensed milk (for dulce de leche) + - Optional: jam or chocolate ganache + +- **For the Coating:** + - Powdered sugar + - Optional: cinnamon or cocoa powder mixed with sugar + - Optional: melted chocolate (milk, dark, or white) + +### Instructions: + +1. **Prepare the Cookie Dough:** + - In a large bowl, whisk together flour, powdered sugar, baking powder, baking soda, and salt. + - Add softened butter and mix until the mixture resembles coarse crumbs. + - In a separate bowl, whisk together egg, egg yolk, and vanilla extract. Pour into the dry mixture and mix until a dough forms. + - Wrap dough in plastic wrap and refrigerate for 30 minutes. + +2. **Roll and Cut Cookies:** + - Roll out dough on a floured surface to about 1/4 inch thickness. + - Cut into circles using a cookie cutter or glass rim. + - Place cookies on a parchment-lined baking sheet, leaving space between each. + +3. **Bake the Cookies:** + - Preheat oven to 350°F (180°C). + - Bake for 15-20 minutes until golden. Argentinian cookies might be baked longer for a crisper texture. + - Allow to cool on the baking sheet for 5 minutes, then transfer to a wire rack to cool completely. + +4. **Make Dulce de Leche:** + - Pour sweetened condensed milk into a saucepan and heat over medium heat, stirring frequently, until thickened and golden (about 10-15 minutes). + +5. **Assemble Alfajores:** + - Spread a layer of dulce de leche on the flat side of one cookie. For added flavor, a thin layer of jam or chocolate ganache can also be used. + - Sandwich with another cookie, pressing gently. + +6. **Coat the Alfajores:** + - Roll each sandwich in powdered sugar to coat evenly. + - For an Argentinian twist, dip the filled alfajores in melted chocolate (milk, dark, or white) for a chocolate coating. + - Optionally, mix cinnamon or cocoa powder with powdered sugar for a different coating flavor. + +7. **Serve:** + - Enjoy your Argentinian alfajores with a dusting of powdered sugar or chocolate coating. Store in an airtight container for up to 5 days. + +### Tips: +- Ensure cookies are completely cool before filling to prevent sogginess. +- For an extra touch, add a pinch of salt to the dough for flavor balance. +- Experiment with different fillings and coatings to explore various regional variations within Argentina. + +By following these steps, you can create authentic Argentinian alfajores that showcase their unique characteristics, such as a crisper texture and optional chocolate coating.\ +""" + ), + ), ] ) diff --git a/tests/models/test_huggingface.py b/tests/models/test_huggingface.py index 810b513e9d..a49dc187b7 100644 --- a/tests/models/test_huggingface.py +++ b/tests/models/test_huggingface.py @@ -557,13 +557,7 @@ async def test_stream_structured(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {}, - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{}, {'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete assert result.usage() == snapshot(RunUsage(requests=1, input_tokens=20, output_tokens=10)) @@ -586,13 +580,7 @@ async def test_stream_structured_finish_reason(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete diff --git a/tests/models/test_instrumented.py b/tests/models/test_instrumented.py index 0183634e59..42033cb3be 100644 --- a/tests/models/test_instrumented.py +++ b/tests/models/test_instrumented.py @@ -26,6 +26,7 @@ ModelResponse, ModelResponseStreamEvent, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, SystemPromptPart, @@ -402,6 +403,7 @@ async def test_instrumented_model_stream(capfire: CaptureLogfire): PartStartEvent(index=0, part=TextPart(content='text1')), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='text2')), + PartEndEvent(index=0, part=TextPart(content='text1text2')), ] ) diff --git a/tests/models/test_mistral.py b/tests/models/test_mistral.py index d2ffe7f5c3..76ae344c5b 100644 --- a/tests/models/test_mistral.py +++ b/tests/models/test_mistral.py @@ -647,15 +647,6 @@ class MyTypedDict(TypedDict, total=False): 'dict_value': {'A': 'A', 'B': 'B'}, 'dict_int_value': {'A': 1, 'B': 2}, }, - { - 'first': 'One', - 'second': 2, - 'bool_value': True, - 'nullable_value': None, - 'array_value': ['A', 'B', 'C'], - 'dict_value': {'A': 'A', 'B': 'B'}, - 'dict_int_value': {'A': 1, 'B': 2}, - }, ] ) assert result.is_complete @@ -741,7 +732,6 @@ class MyTypedDict(TypedDict, total=False): {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, ] ) assert result.is_complete @@ -772,7 +762,7 @@ async def test_stream_result_type_primitif_int(allow_model_requests: None): async with agent.run_stream('User prompt value') as result: assert not result.is_complete v = [c async for c in result.stream_output(debounce_by=None)] - assert v == snapshot([1, 1, 1]) + assert v == snapshot([1, 1]) assert result.is_complete assert result.usage().input_tokens == 6 assert result.usage().output_tokens == 6 @@ -862,7 +852,6 @@ async def test_stream_result_type_primitif_array(allow_model_requests: None): ['first', 'One', 'second', 'Two'], ['first', 'One', 'second', 'Two'], ['first', 'One', 'second', 'Two'], - ['first', 'One', 'second', 'Two'], ] ) assert result.is_complete @@ -946,7 +935,6 @@ class MyTypedBaseModel(BaseModel): MyTypedBaseModel(first='One', second='Two'), MyTypedBaseModel(first='One', second='Two'), MyTypedBaseModel(first='One', second='Two'), - MyTypedBaseModel(first='One', second='Two'), ] ) assert result.is_complete @@ -1014,7 +1002,6 @@ class MyTypedBaseModel(BaseModel): MyTypedBaseModel(first='One', second='Two'), MyTypedBaseModel(first='One', second='Two'), MyTypedBaseModel(first='One', second='Two'), - MyTypedBaseModel(first='One', second='Two'), ] ) assert result.is_complete @@ -1383,7 +1370,7 @@ async def get_location(loc_name: str) -> str: async with agent.run_stream('User prompt value') as result: assert not result.is_complete v = [c async for c in result.stream_output(debounce_by=None)] - assert v == snapshot([{'won': True}, {'won': True}]) + assert v == snapshot([{'won': True}]) assert result.is_complete assert result.timestamp() == datetime(2024, 1, 1, 0, 0, tzinfo=timezone.utc) assert result.usage().input_tokens == 4 @@ -1492,7 +1479,7 @@ async def get_location(loc_name: str) -> str: async with agent.run_stream('User prompt value') as result: assert not result.is_complete v = [c async for c in result.stream_output(debounce_by=None)] - assert v == snapshot(['final ', 'final response', 'final response']) + assert v == snapshot(['final ', 'final response']) assert result.is_complete assert result.timestamp() == datetime(2024, 1, 1, 0, 0, tzinfo=timezone.utc) assert result.usage().input_tokens == 6 diff --git a/tests/models/test_openai.py b/tests/models/test_openai.py index d937c0a6a3..2307b3fd1b 100644 --- a/tests/models/test_openai.py +++ b/tests/models/test_openai.py @@ -505,13 +505,7 @@ async def test_stream_structured(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {}, - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{}, {'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete assert result.usage() == snapshot(RunUsage(requests=1, input_tokens=20, output_tokens=10)) @@ -534,13 +528,7 @@ async def test_stream_structured_finish_reason(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete @@ -560,12 +548,7 @@ async def test_stream_native_output(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [dict(c) async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert result.is_complete @@ -596,12 +579,7 @@ async def test_stream_tool_call_with_empty_text(allow_model_requests: None): async with agent.run_stream('') as result: assert not result.is_complete assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert await result.get_output() == snapshot({'first': 'One', 'second': 'Two'}) @@ -627,13 +605,7 @@ async def test_stream_text_empty_think_tag_and_text_before_tool_call(allow_model async with agent.run_stream('') as result: assert not result.is_complete assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - {}, - {'first': 'One'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - {'first': 'One', 'second': 'Two'}, - ] + [{}, {'first': 'One'}, {'first': 'One', 'second': 'Two'}, {'first': 'One', 'second': 'Two'}] ) assert await result.get_output() == snapshot({'first': 'One', 'second': 'Two'}) diff --git a/tests/models/test_openai_responses.py b/tests/models/test_openai_responses.py index 8045aaf727..c8d7355e17 100644 --- a/tests/models/test_openai_responses.py +++ b/tests/models/test_openai_responses.py @@ -21,6 +21,7 @@ ModelRequest, ModelResponse, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, TextPart, @@ -1040,6 +1041,16 @@ async def test_openai_responses_model_web_search_tool_stream(allow_model_request provider_name='openai', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content='', + id='rs_00a60507bf41223d0068c9d2fc927081a088e0b920cdfe3866', + signature='gAAAAABoydMADQ6HaJB8mYQXlwd-4MrCfzmKqMHXUnSAXWV3huK1UrU1h3Do3pbK4bcD4BAvNiHTH-Pn27MGZDP_53IhKj_vB0egVf6Z_Y2uFPtzmyasYtTzrTkGSfAMR0xfI4wJk99aatk3UyLPNE7EO_vWYzN6CSX5ifJNNcmY3ArW1A7XnmsnMSBys05PsWqLMHZOUFuBvM2W37QUW6QOfBXZy0TamoO5UknNUfZb_TwvSnMEDpa-lXyDn4VuzfxreEGVHGdSyz5oLN0nBr3KwHIfxMRZIf9gi9-hKCnxX7i-ZktNIfTgd_WEmNKlaPO-qjKHPlO_XPKbEfpBdMv5b2P9BIC20ZG3m6qnEc4OqafWZa1iC2szi4eKOEa6neh2ltVLsLS3MlurF4sO-EHQT4O9t-zJ-738mZsOgjsI9rTrLm_aTAJrntSSWRLcP6PI6_ILHyeAl_aN4svtnwQJZhv4_Qf62q70SZQ5fSfqoqfO1YHLcXq6Op99iH3CfAhOjH-NcgThFLpT4-VLYABl8wiWBTsWzdndZoPmvMLEOaEGJOcM6_922FC0Q-fUio3psm_pLcElaG-XIkyn4oNuk6OJQonFE-Bm6WS_1I9sMF0ncSD4gH1Ey-5y2Ayxi3Kb3XWjFvs1RKW17KFXj8sthF3vY5WHUeRKA14WtN-cHsi4lXBFYJmn2FiD3CmV-_4ErzXH8sIMJrDDsqfCoiSbHwih25INTTIj7KAPL2QtIpU6A8zbzQIK-GOKqb0n4wGeOIyf7J4C2-5jhmlF2a6HUApFXZsRcD8e3X1WqSjdTdnRu_0GzDuHhPghRQJ3DHfGwDvoZy6UK55zb2MaxpNyMHT149sMwUWkCVg0BruxnOUfziuURWhT-VJWzv5mr3Z765TFB1PfHJhznKPFiZN0MTStVtqKQlOe8nkwLevCgZY4oT1Mysg7YJhcWtkquKILXe-y6luJBHzUy_aFAgFliUbcrOhkoBk5olAbSz8Y4sSz5vWugYA1kwlIofnRm4sPcvoIXgUD_SGGI3QNsQyRWQEhf7G5mNRrxmLhZZLXAcBAzkw10nEjRfew2Fri7bdvyzJ1OS_af9fHmeqCZG5ievKIX6keUkIYQo_qm4FQFkXZSl9lMHsUSF-di4F6ws31vM0zVLMmH52u12Z3SZhvAFzIV5Vtyt_IfrMV3ANMqVF4SmS4k2qUlv1KuPQVgqGCVHvfeE1oSyYgYF6oFX8ThXNB79wxvi4Oo8fWEZLzZMFH9QEr2c7sOWHYWk-wUMP1auXTQNExEVz22pBxueZGZhRyLdpcA12v8o6vJkVuBj-2eR8GRI7P6InJdQAO9TIBhM7NtJU2NUpeP_84js3RTBVktqBT74nWPaHIddGMSfW2aGmFJovvshhxGMLtN_6XMh4wRKW0IE_-Rfbhk8_-xHKI5McYI048N_TMYOS8KqPPAmGVklRGqPZ5xXMNvQEVweThDTYTo3NoAsS0fN2yMmSwrjRYBHsgYMtil4pd6ddp8dvF_XSJUkW0nF8t6ciI_k47sug3gyw4usqspWxY9Hwbzb4OFzzrgtO_7Ll6lFFFUx2oHy8AO9sJ97Y3Fg6luuew7ZRDzA_4XMrT7mNW6YuT-o2DunaZw-jvQezNHjPN2WhaTS7fkisyhFSFTMBYE-H4psfj_sizutv-LjwbumTcX2mnYE9SZhVr8dL0c7sgwHP1831RxTSSl3ql_obE3ICDooyuM8PYE56Jx0HOOGbEeJd3w91SzNHPG_3SQfXszrZlw4BGWrEUHBbtVY2ZEnsyGNAx6vKO8lz9D-6yZ618foDJSH-Ilk56a5rhr0beWjSd9mYMsr3zpVz6HcpTLYGEgHfPxpT2eaYaC1H_znw7y1eMKamwudYmtz_azX5LrOtwc0p-pXH-kdoNe248pSz9qsmHcXA41fuj2weKQNrmBcghwtfM95B060tnmebJ_B_KkLXL4cNF-hZqi0wAHrHYrZ_WM0Dy90AFH-b7iiWuWz5M1EhZXo179iEdybM-1PgccFJ0zvOqODl7FNxSgWVyNS1k9R42aZx2PzFAfAbBtJ-KVMhUayAvGLNmi35EAT0G6FK65VBEe7A6zPFqzrrAiG8dy3Z0I0253WzIblHPNMpmxI_ca5tIx3u8Za6Nu9rx8mi0CY2jsRSKnqb7RZvLuB78Uj32lb_9jbq5_gL9_y7Bt7U7i7FospyqMFzEYQLvdyrtfNrfY0rB4zr4Mo0tDn_4YOD_d_nP5axUh9_ruqXZ_d3eVdNmlITjQZj8ALe1EfidP8a-Dl62t6STVv8d2y8v9-jy3J7wReLJbJ6gDDnygJllY7NrIVXSjR45FXiCDnpaRonu--I_0b_LRJFOoJUJX0S9YMaXAkKyHSEj-UWjiuk8cIBNcXxwlxnqqNMezvvV113MAOEbfHygDnphzjzZQxteAVbSy0ucGDR2FPi30d6z51NxGnXNS_sM7wnjBMNp4Li0hhttOp6PgvDKPSMAcgUtKLFKE8iWQAvERoUVxw5Et20hNTNXf_0sXOyh0bF0URPGDxSYz9uZI6-nlwVlo1aobdEnn7STSq2_tuTDIrQyfBGZzhv8OB0H3cj9mBs=', + provider_name='openai', + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( @@ -1047,6 +1058,7 @@ async def test_openai_responses_model_web_search_tool_stream(allow_model_request tool_call_id='ws_00a60507bf41223d0068c9d30021d081a0962d80d50c12e317', provider_name='openai', ), + previous_part_kind='thinking', ), PartDeltaEvent( index=1, @@ -1055,15 +1067,26 @@ async def test_openai_responses_model_web_search_tool_stream(allow_model_request tool_call_id='ws_00a60507bf41223d0068c9d30021d081a0962d80d50c12e317', ), ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'weather: San Francisco, CA', 'type': 'search'}, + tool_call_id='ws_00a60507bf41223d0068c9d30021d081a0962d80d50c12e317', + provider_name='openai', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=2, part=BuiltinToolReturnPart( tool_name='web_search', - content={'sources': [{'type': 'api', 'url': None, 'name': 'oai-weather'}], 'status': 'completed'}, + content={'status': 'completed', 'sources': [{'type': 'api', 'url': None, 'name': 'oai-weather'}]}, tool_call_id='ws_00a60507bf41223d0068c9d30021d081a0962d80d50c12e317', timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( index=3, @@ -1073,10 +1096,22 @@ async def test_openai_responses_model_web_search_tool_stream(allow_model_request signature='gAAAAABoydMLww_4DcIPiCy5zW1t-Dtx57JodsdP9YkyDCvY9r0nBfoD-bwcBl8FfcFxRuq5nK5ndf90J6Xdxmvl9kGVbCUYSFaOd-kWeE4tgwXM8BwwE3jVs6ZMG3BdiWyXS3alnUO5jcE6kuXeun1LufAdZ6rWtJl3zSmqPycnTh9zoQ4cBBxLDq_qcVS1fgU4WjsWgjCZw6ZWRPWwZk8hywmU7ykCLH7SXItM4oH1m_GCEounJAS8YR4ajUh5KAdN6a1wngfGnXhYdzov98yiNLP6Nrkgr--K4vMTTqWXLTcR6fbWgkijanIeKmfSErCjMT6k5TrAbkFx0rgblHbdQii7zj8seV1BWZse92_k4sltxfc5Ocpyho1YSHhgxyGL7g442xMUEibjPCv6kwPMcW9yGu9wPMWsfPYCXpBbG6kQibQPNFJ_bEubwBRaqdSDq93Aqr1YkTYBja7Tewn8UfzZ8YYaGe5y_K4ZD47lfvDp019dOdXmOuZGC1ECRrMqKzSFYVG1CFY1VhjGdPmzobDoMcpZcLn25s1pg6lnNqNQwOk_IA4MvUcCU5HHD5YjmFkEy5-i_iRoDVu5coK0zyEMvPJ_h10y_ByszcfzS9e0ht5CSilckkFdxTBkZ5epp0YIg1e-PrZ790P-I35Ucquam9OXyULV1Y5bn9ohZa93Tv0JZRxUeTDG72_28xRj8tkJaBAZjoCC7VICw39KVmz-ZkuVN6IIX1WdNzyC4d808-2Tz4UZaU42-wxEWDnSDMD7iZu1Bi9fKKwAYBJt_OcEsJwpW63ZaUSG2PVFfm7a3wRcSMxMTUTTJB7L1Keu1hmNepif5tavn3P35nSq28D_IJyAqAgX7ZyROk2bJqjzSE4A0MddqAoBFFqKBi68n49KH09vDtDXIoh8jVWuIgowgVGr8pN3kuhLI9cir4Pr_WES0tPD7yWHPTzrD7OIJCfQbr_4Y4dEza4ixNi0RTADWzMUZBfr7bvwIsgvg6ZNuQlx_d71Go5VDsT2KI8H8AldiRvNWoLyYTFGyK9Kot97YsS5sEmSYgNAH48NU7pgnM0jNDQU1G39nTNFEjL_ziDwjDT5g3jm4S_gbQfwx-XFT3Pv-JYR-E71AqR--Lg71OsASq49rrlULfl5OENfiT-NB6x8MqnfUI6NpcCsOWLp8XfRbgqmZFutLIi43pcnxEe3cXHLWGF77qJXP6dFb-G5Ide7n9tAOoEgfsVu7hCDPEQ_xrIYRdc2DzDPUMCtXBai24E0AnQF8kxsEtlDW_YmAgGNTl9Gx0tFSGdDuUCsNx__c7v-_LOMWycXUKmH3iEr_su83oGIMapNp2PnLccN4iOxspdZQq0C6WBaR6SrdnGzK-0KwRPRoyKDLNWS8zfluR5bIgKlqd3Sbv_7eL-WO4LQXMvdKP3KS-DBt1HbA-gmyFW03iX2smPQbtVmRLWi1vG329R_07-tHMJSO9OQy6_6aiyO8Rgpbl_CHa1Q9BEkI2csonayDJRPvEXBPuk9-NPUP4VLNPB7npWBLlAqes5ZmhagnC7srTL0fFiLGLJiAxWo1f0BBiIlXjwqHdlgBjTw0KryCnEU8Ic8ATzrqEXXhs-FTBCcWInf3Bt5bzUhy20g7cTtYP-VCbsku-lXQ6wceWrfQVFtjKKICD8I4g9QusAIAvgCUm7J2rR3TLkzwOKngdTFPGQrQ1TYzlkA7q_Ew1uZpaPRckMaEioZYC6Sv_B0rgW0nyBJ0GLrB3AUN60hDrOFntyFHp0FM-Zh1SY-GKGBwZwVetOzM0ZAJ-NreFg1XVgyLTYDNjUrYJjRhr_JARsZ5t0pU4_yI6dPqM5jKO5_k4UpZspfQon6d2-NlWX0EDmz6G4CMTx0TScehYHrQZtPzpVnivc8h_pmXV3jO5GLzNeLWoB70SDPTETo1Of4txiEUaC2komu5B7MN9aR4c7VBOTv1NIjoiZcrd1HFACzZ7r1qAE-G38j1f1YhfZ0_TiMmtfR1cqjAKcFkyRM7rZMyMvvnsH7NFq59gFgWZt0dy0aAdw03XWXFNT67lrw58OYC3NcVozH4SKlmleu7TfjHNWSnJVjJ66riLn9DZWVxPeTk4zuISZn0yyaoXcdW8OMn_mJ9vP-8L1wElMyxKbtBRz-0cW7MshmJ3YXmHWDKbnqETSbDMtqcN_QyRJovopwlptJ8VzL7biuURRFw-l63Kc9vKP72Z-QWOUIPLB4q4nX4yb-IV0mkWFxIUlfv5Cze2anf7zDFyGzeU9xG0onfhJE4HFKcoUT8MzfrHZ0dDZtnEYeL5Xem3GuHpwEVGCxRE_J1joTmJfeWxSVnr2Vey9gaPmXCyRrdKS75v9xSXJFfHvcOO8Qp35Dzk-yFqL3dSOJfOEwDZbEf6QnV7VU1EhJvW4XmRS-wsRLMLCYcLrOx96NHEwb2h2l6gNfbCVJoQrMhMg68qBPnoSYLhML2ho7hWkSNZFy61yX5I-oEJV5XdtjFcBkyurmUD6uYTkJSqXyxLexQiPbT-uv49Yp9cAfFBG23sC9lUQ=', provider_name='openai', ), + previous_part_kind='builtin-tool-return', + ), + PartEndEvent( + index=3, + part=ThinkingPart( + content='', + id='rs_00a60507bf41223d0068c9d300b23481a0b77a03d911213220', + signature='gAAAAABoydMLww_4DcIPiCy5zW1t-Dtx57JodsdP9YkyDCvY9r0nBfoD-bwcBl8FfcFxRuq5nK5ndf90J6Xdxmvl9kGVbCUYSFaOd-kWeE4tgwXM8BwwE3jVs6ZMG3BdiWyXS3alnUO5jcE6kuXeun1LufAdZ6rWtJl3zSmqPycnTh9zoQ4cBBxLDq_qcVS1fgU4WjsWgjCZw6ZWRPWwZk8hywmU7ykCLH7SXItM4oH1m_GCEounJAS8YR4ajUh5KAdN6a1wngfGnXhYdzov98yiNLP6Nrkgr--K4vMTTqWXLTcR6fbWgkijanIeKmfSErCjMT6k5TrAbkFx0rgblHbdQii7zj8seV1BWZse92_k4sltxfc5Ocpyho1YSHhgxyGL7g442xMUEibjPCv6kwPMcW9yGu9wPMWsfPYCXpBbG6kQibQPNFJ_bEubwBRaqdSDq93Aqr1YkTYBja7Tewn8UfzZ8YYaGe5y_K4ZD47lfvDp019dOdXmOuZGC1ECRrMqKzSFYVG1CFY1VhjGdPmzobDoMcpZcLn25s1pg6lnNqNQwOk_IA4MvUcCU5HHD5YjmFkEy5-i_iRoDVu5coK0zyEMvPJ_h10y_ByszcfzS9e0ht5CSilckkFdxTBkZ5epp0YIg1e-PrZ790P-I35Ucquam9OXyULV1Y5bn9ohZa93Tv0JZRxUeTDG72_28xRj8tkJaBAZjoCC7VICw39KVmz-ZkuVN6IIX1WdNzyC4d808-2Tz4UZaU42-wxEWDnSDMD7iZu1Bi9fKKwAYBJt_OcEsJwpW63ZaUSG2PVFfm7a3wRcSMxMTUTTJB7L1Keu1hmNepif5tavn3P35nSq28D_IJyAqAgX7ZyROk2bJqjzSE4A0MddqAoBFFqKBi68n49KH09vDtDXIoh8jVWuIgowgVGr8pN3kuhLI9cir4Pr_WES0tPD7yWHPTzrD7OIJCfQbr_4Y4dEza4ixNi0RTADWzMUZBfr7bvwIsgvg6ZNuQlx_d71Go5VDsT2KI8H8AldiRvNWoLyYTFGyK9Kot97YsS5sEmSYgNAH48NU7pgnM0jNDQU1G39nTNFEjL_ziDwjDT5g3jm4S_gbQfwx-XFT3Pv-JYR-E71AqR--Lg71OsASq49rrlULfl5OENfiT-NB6x8MqnfUI6NpcCsOWLp8XfRbgqmZFutLIi43pcnxEe3cXHLWGF77qJXP6dFb-G5Ide7n9tAOoEgfsVu7hCDPEQ_xrIYRdc2DzDPUMCtXBai24E0AnQF8kxsEtlDW_YmAgGNTl9Gx0tFSGdDuUCsNx__c7v-_LOMWycXUKmH3iEr_su83oGIMapNp2PnLccN4iOxspdZQq0C6WBaR6SrdnGzK-0KwRPRoyKDLNWS8zfluR5bIgKlqd3Sbv_7eL-WO4LQXMvdKP3KS-DBt1HbA-gmyFW03iX2smPQbtVmRLWi1vG329R_07-tHMJSO9OQy6_6aiyO8Rgpbl_CHa1Q9BEkI2csonayDJRPvEXBPuk9-NPUP4VLNPB7npWBLlAqes5ZmhagnC7srTL0fFiLGLJiAxWo1f0BBiIlXjwqHdlgBjTw0KryCnEU8Ic8ATzrqEXXhs-FTBCcWInf3Bt5bzUhy20g7cTtYP-VCbsku-lXQ6wceWrfQVFtjKKICD8I4g9QusAIAvgCUm7J2rR3TLkzwOKngdTFPGQrQ1TYzlkA7q_Ew1uZpaPRckMaEioZYC6Sv_B0rgW0nyBJ0GLrB3AUN60hDrOFntyFHp0FM-Zh1SY-GKGBwZwVetOzM0ZAJ-NreFg1XVgyLTYDNjUrYJjRhr_JARsZ5t0pU4_yI6dPqM5jKO5_k4UpZspfQon6d2-NlWX0EDmz6G4CMTx0TScehYHrQZtPzpVnivc8h_pmXV3jO5GLzNeLWoB70SDPTETo1Of4txiEUaC2komu5B7MN9aR4c7VBOTv1NIjoiZcrd1HFACzZ7r1qAE-G38j1f1YhfZ0_TiMmtfR1cqjAKcFkyRM7rZMyMvvnsH7NFq59gFgWZt0dy0aAdw03XWXFNT67lrw58OYC3NcVozH4SKlmleu7TfjHNWSnJVjJ66riLn9DZWVxPeTk4zuISZn0yyaoXcdW8OMn_mJ9vP-8L1wElMyxKbtBRz-0cW7MshmJ3YXmHWDKbnqETSbDMtqcN_QyRJovopwlptJ8VzL7biuURRFw-l63Kc9vKP72Z-QWOUIPLB4q4nX4yb-IV0mkWFxIUlfv5Cze2anf7zDFyGzeU9xG0onfhJE4HFKcoUT8MzfrHZ0dDZtnEYeL5Xem3GuHpwEVGCxRE_J1joTmJfeWxSVnr2Vey9gaPmXCyRrdKS75v9xSXJFfHvcOO8Qp35Dzk-yFqL3dSOJfOEwDZbEf6QnV7VU1EhJvW4XmRS-wsRLMLCYcLrOx96NHEwb2h2l6gNfbCVJoQrMhMg68qBPnoSYLhML2ho7hWkSNZFy61yX5I-oEJV5XdtjFcBkyurmUD6uYTkJSqXyxLexQiPbT-uv49Yp9cAfFBG23sC9lUQ=', + provider_name='openai', + ), + next_part_kind='text', ), PartStartEvent( index=4, part=TextPart(content='San Francisco', id='msg_00a60507bf41223d0068c9d30b055481a0b0ee28a021919c94'), + previous_part_kind='thinking', ), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' weather')), @@ -1122,6 +1157,13 @@ async def test_openai_responses_model_web_search_tool_stream(allow_model_request PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' for the')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' cooler evening')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='. ')), + PartEndEvent( + index=4, + part=TextPart( + content='San Francisco weather today (Tuesday, September 16, 2025): Mostly sunny and pleasant. Current conditions around 71°F; expected high near 73°F and low around 58°F. A light jacket is useful for the cooler evening. ', + id='msg_00a60507bf41223d0068c9d30b055481a0b0ee28a021919c94', + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='web_search', @@ -2840,6 +2882,16 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( provider_name='openai', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content=IsStr(), + id='rs_68c3509b2ee0819eba32735182d275ad0f2d670b80edc507', + signature='gAAAAABow1CfwMTF6GjgPzWVr8oKbF3qM2qnldMGM_sXMoJ2SSXHrcL4lsIK69rnKn43STNM_YZ3f5AcwxF4oThzCOPl1g9-u4GGFd5sISVWJYruCukTVDPaEEzdmJqCU1JMSIZvlvqo7b5PsUGyQU5ldX4KXDq8zs4NmRyLIJe-34SCmDG3BYVWR_O-CtcjH0tF9e3XnJ5T9TvxioDEGbASqXMKx5XB9P_b1ser8P9WIQk6hxZ8YX-FAmWSt-sad-zScdeTmyPcakDb7Z4NVcXmL_I-hoQYH_lu-HPFVwcXU8R7yeXU-7YF3vZBE84cmFuv25lftyojbdGq2A7uxGJZBPMCoUBDGBNG2_7mVvKyGz_ZZ6vXIO0GVDhHdW4Y012pkoDfLp6B-B9CGvANOH3ORlcbhB8aT9qN5bY773wW44JIxRU3umkmNzwF7lkbmuMCbGybHYSzqtkOrMIRgqxaXOx3bGbsreM4kGwgD3EXWqQ1PVye_K7gRkToVQpfpID5iuH4jJZDkvNjjJI09JR2yqlR6QkQayVg2x1y8VHXoMYjNdQdZeP62AguqYbgrlBRcjaUnw78KcWscQHaNsg0MfxL_5Q-pZR1OPVsFppHRTzrVK8458d05yEhDmun345oI9ScBrtXFRdHXPy0dQaayfjxM9H0grPrIogMw_zz4jAcFqWxE_C7GPMnNIJ_uEAhkPOetpNb-izd-iY4pGYKs8pmCB5czrAlKC1MXTnowrlWcwf5_kuD5SzWlzlWOoKWCeBDOZuKTDVJKXh_QCtQfftomQazDFCiCSgaQMuP7GaPcDuS1jdQoMQBcFfKuWoq-3eQBOCiEOAERH81zR4hz1x02T_910jGreSpfgxSqt4Td0pDDSmlEV6CwaUDQvrPc67d8_Wtx8YKv4eBH544_p1k9T8tHo3Q7xvgE37ZCdd_AVhC2ed1b5oUI95tM570HAVugFilcHJICa1RbFzIlRkNgI4k2JvsVWtD5_h3x6ZaEFTomwIXlochYgsegh8RJIRRCNKO9ebsvTrkdl8n1mb3hLrz7puwCkRFyUkxYBGT9zUjuKrjp_IjTvvov29v6pwYHg2Xd0nAfLP4WWWPBLNx3oV1-yOfXStRGHMZTB6iN9d0Bxi2QS7dk-rPPXml5HxrSo1TG06EdBXQ1VgrkWIxG1TF97-gK9oWWT9S5aaYKZAOdaqDvi7qO8I-4VwExtIq4Do3BHnWrgKNHfyuAobQK4H_CFMElYibJHwA9t-UGujMic07AxS-2XjXaCtjf7LnW_aXE2rQDqzHiTiLmTqT6jYHP0WHGSqFTOFkNmzqy6uVfU-TbdT91zDBeesc8XpzCXWBVKqxEzuQGdJrYk6ieZaxL76Kjs4jyo838LMJCXzhcF8enukz_llnoxAV59hTDAn0MUQvstGlDX0ToI7C8Oc0NZfZU5Pi4gs8u0He_Nw5UsoV7sA-jk4M45sFt6g3u00kJFP3gIcdvOzHcRK5z3Sfb9JF0bnvIYSbUFUidEJxSOAcRlxofOJPnkPtWCYiiv3zSVxZXX77-wtc8yrOYFzH1k_8P6CDpcfzOW7Yl1Tajgcm20nygmPlFtXF3RNFPztW1V5GwQHc99FvT4ZAex3fQ_UBDKyXnyGoySgpZbHQIvhzUhDEGm77EiYw5FoF6JgnHGGUCbfXr2EudtpbGW8MRHop2ytonb8Hq7w10yQSginBbH_w3bwtd7cwgDKcp6wIPotjpEC-N1YDsRqhPuqxVA==', + provider_name='openai', + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( @@ -2847,6 +2899,7 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( tool_call_id='ci_68c3509faff0819e96f6d45e6faf78490f2d670b80edc507', provider_name='openai', ), + previous_part_kind='thinking', ), PartDeltaEvent( index=1, @@ -2945,6 +2998,16 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( args_delta='"}', tool_call_id='ci_68c3509faff0819e96f6d45e6faf78490f2d670b80edc507' ), ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='code_execution', + args='{"container_id":"cntr_68c3509aa0348191ad0bfefe24878dbb0deaa35a4e39052e","code":"n = pow(123456, 123)\\nlen(str(n))"}', + tool_call_id='ci_68c3509faff0819e96f6d45e6faf78490f2d670b80edc507', + provider_name='openai', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=2, part=BuiltinToolReturnPart( @@ -2954,6 +3017,7 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( index=3, @@ -2962,6 +3026,7 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( tool_call_id='ci_68c350a41d2c819ebb23bdfb9ff322770f2d670b80edc507', provider_name='openai', ), + previous_part_kind='builtin-tool-return', ), PartDeltaEvent( index=3, @@ -3048,6 +3113,16 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( args_delta='"}', tool_call_id='ci_68c350a41d2c819ebb23bdfb9ff322770f2d670b80edc507' ), ), + PartEndEvent( + index=3, + part=BuiltinToolCallPart( + tool_name='code_execution', + args='{"container_id":"cntr_68c3509aa0348191ad0bfefe24878dbb0deaa35a4e39052e","code":"str(n)[:100], str(n)[-100:]"}', + tool_call_id='ci_68c350a41d2c819ebb23bdfb9ff322770f2d670b80edc507', + provider_name='openai', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=4, part=BuiltinToolReturnPart( @@ -3057,6 +3132,7 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( index=5, @@ -3065,6 +3141,7 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( tool_call_id='ci_68c350a5e1f8819eb082eccb870199ec0f2d670b80edc507', provider_name='openai', ), + previous_part_kind='builtin-tool-return', ), PartDeltaEvent( index=5, @@ -3085,6 +3162,16 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( args_delta='"}', tool_call_id='ci_68c350a5e1f8819eb082eccb870199ec0f2d670b80edc507' ), ), + PartEndEvent( + index=5, + part=BuiltinToolCallPart( + tool_name='code_execution', + args='{"container_id":"cntr_68c3509aa0348191ad0bfefe24878dbb0deaa35a4e39052e","code":"n"}', + tool_call_id='ci_68c350a5e1f8819eb082eccb870199ec0f2d670b80edc507', + provider_name='openai', + ), + next_part_kind='builtin-tool-return', + ), PartStartEvent( index=6, part=BuiltinToolReturnPart( @@ -3094,9 +3181,12 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( - index=7, part=TextPart(content='123', id='msg_68c350a75ddc819ea5406470460be7850f2d670b80edc507') + index=7, + part=TextPart(content='123', id='msg_68c350a75ddc819ea5406470460be7850f2d670b80edc507'), + previous_part_kind='builtin-tool-return', ), FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=7, delta=TextPartDelta(content_delta='456')), @@ -3313,6 +3403,16 @@ async def test_openai_responses_thinking_with_code_execution_tool_stream( PartDeltaEvent(index=7, delta=TextPartDelta(content_delta='854')), PartDeltaEvent(index=7, delta=TextPartDelta(content_delta='332')), PartDeltaEvent(index=7, delta=TextPartDelta(content_delta='416')), + PartEndEvent( + index=7, + part=TextPart( + content="""\ +123456^123 equals: +180302106304044807508140927865938572807342688638559680488440159857958502360813732502197826969863225730871630436419794758932074350380367697649814626542926602664707275874269201777743912313197516323690221274713845895457748735309484337191373255527928271785206382967998984330482105350942229970677054940838210936952303939401656756127607778599667243702814072746219431942293005416411635076021296045493305133645615566590735965652587934290425473827719935012870093575987789431818047013404691795773170405764614646054949298846184678296813625595333311611385251735244505448443050050547161779229749134489643622579100908331839817426366854332416\ +""", + id='msg_68c350a75ddc819ea5406470460be7850f2d670b80edc507', + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='code_execution', @@ -3841,6 +3941,16 @@ async def test_openai_responses_code_execution_return_image_stream(allow_model_r provider_name='openai', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content='', + id='rs_06c1a26fd89d07f20068dd936ae09c8197b90141e9bf8c36b1', + signature='gAAAAABo3ZN28TIB2hESP9n7FpWJJ4vj1KEPIVHYTNh64J3S9rOSRfmmTK_uSNB79wwlv3ur6X9Yl9sPe6moHK4nud8jgeScuOeCDq70JGXZ6xH_NBdiDWzeMis1WIDsyJrADdADGQRhjb8sXi6lz3nNvjeqXD-oZJkxTJ9FeJsCNNPBHX-ZYRIYZ7vGKLPfmi5qNS7V6VVGvwEWOBwW75ptObu5E8g2TqhPlUzsVoZsIZiczRXq6zQpDtMPAtv6Mz8puaq-o65P5-vZMywmEjyi0Dd2M9ozUfhWfhpEhCsAiItesA802-TSBQCKeP62riRAMJvfD3PEGLYL9d_7mUvJYSsiOADU0K6wfI6y8bRL-UaWUvn60KfPvqfBFm9-hwP1NS77OKoZABIuGz5sc3BuAh6ebKrJkfNHq7W0BA09S2gt3wLPzflpVl-wJ74L9UGnaKpmG3XRFogff_SNgDhO0_Cb4-1PYJi2NpqnCwTG2c8EFxXiP4trdynbpgRD5hKDj65FU46cBjR0g00bCShqwsseAzw_lAxbawcjF0zmAyz68Km2jCRKHRGgeMpbT-YQWs04IizKYsWfF-8pXX2vwSqk3Kb51OysuPN0K3gihF9v2tPnK2qFzkvNics__CDabCmafEKQlLp6TDRc5RY4ZcSHNwUM_dybJStzoH6qed1GQNt05wBhDZg39N7pJ8_dG7wXCSGHY5CRORZm19UGTd9DoZMzr8JmtxmRgJoKCHW_gavpt4__zifPVxqLUWj6GBaQRT8pR_Tym27HcsC0GbHLR1nel9hC6RzydTU5y7LWY_NoGUE4WZX5rHe5t73lFNSMwd9-6i9Qlj60_rBZ5z9oTAl_Ksywgo68AG7dFdSeI3VLnOyzhqeePn0ywaMp3HqO-FIXW3fjqtM2XMMMMn2Cje5rZhJ9JNmMqnxpltITkVdHMo7Yr1WFTkwLByEOb3M4LCq5B3dM1s1pVmqWAc9YNjpB7Fbi6fG90EAYFNEM4ubOE7y2d5E4hco0MbEKg-Fh0ubh1I2Y1kthZFEmPQLm6fFaljJKPtYojEZZ2cZ7sN3UaVg8Zpf3A7WS9kM2--lL5LuBnVDebf8Xrzv9dTmJvOtwWzJsY4RxWdnzfl_ZokHmg_HDNbeZpHsVI0gqHGr7YTlFJ0NUXW9mzZMx9e_VTrrf34XwRue3xVCqzsspRMjMIlAoDp0Rp0L2tJWAbKs_btqVpqjz8p-64CzSRq65BmSP6i86G0cJ9WLSD3gL3wR-Zt2HyvUvecHVmgKhXgY3F-RchYRO7TarJgyZY5bP2EEpHUwSWx4uWjYfzXMGYn8gNwgwl89qog-inK88qSG0DbqJQPwYNuRjS7Mu01O6eV39Zu7Njsn2io-kPc5HLRrbbhN7qCSki8yPWE_7yPtbIKlwWKOlEYx8_SGgE7waBFRem7ElsE9wvCX5KknilmN5_d9L4Sos0oT5NHAhApvVVDcygz9VGYBAmWfMOynDnOiTIpsAdjHmuZG7GJNAtUEYx7U7pNqbD2FJMIeN0L-3uqhxisRzeX64JZkVHWYL8HjeC1zHiUMZXKW1KXIvIU2_BCtqay22FtBskeMXZAReKhv3eX2oQlWL2Ps9VOk2imzjqBbFLzJgDq0iFoaHdOXGqo54GYZIxfWi10uo65s-3gOGmqPPE02FHEMjK7VHFjMh91FPhh8TmpWjOfa9QEcpEHSZJ6ipUMTVfRHHHshB6Sb74x-Jfr6Ioq2RnWd3E32GpE3kd1poqOssBi5jCqsA86tIMt0m8p_CDu_ANvMNKTiGTQdejm2rUhccpdbp8uLBPnqWxyGOCTlREglHPeh2EzjEMbtIaFp2NhHE6UlJ_nw40CDa5PA7C4lgUkn-4KtPy6rSaMu0mWM4vPO-5ksdtB3E5PkCdIB8j7htbhZH_MTv9RL7loDNkRVlJRSBiAC_qCGgVPyP4l1w4imdey-_HuVCKBD2vaXUz2l2efn-jLSlhty5vBOR-kr0EsU02_NYZtOKgBR1zIslAlnhM8lTxJWH4osSXHa4fIx9O9tyALjvxhooYww_Die_8iCH4u5cF53z3mvoK3Knzeada3jglwQyL3_uUQegcFKpvZwVAcguVMvrsbNgdR9VeKmYq8U7yBvziP-_vpj1UZcf3QxlNK_oOgDg9lxP3vsSKzxliW422svFDiyPkWPh1DWmry1xBD4Pldemf8OEvgSHSDAlegWoBnfOHljDcPf6kT0PaC-jHrKn8t1cQgWk1-1oxiW4zKIlKGoRvmo4lCcUfqGXb5EPuZM1qRFWxv4roAVoxdLV0Pz53L_Q-grQWvbKH_Rl6Dw1BysU55Klt8vn_XBL5Zw_UlbT9FrszDRjJ56F7zElzqVYunI5uJaPWTwQyO-4dvM94CqiUU59iFkfZqaSulYktZrgZeXe0lw59ecQnL_pR2xwkialTgDoqtPksIjTuWVzkiW9hIL5t9sHyCdJ9nqmwZRZU-JuTPXswmrJEJ23GhvtH9kWsswLd0qvmY5mV3cwr7hlFNWEf8_5e3LoCa9uHQgIa0uquekJ3St9dLOXpkcRv74nCpxkcjems_2ZC71DRU63NILFjKC5ffsUPOZ4NfevDMUDbYHdeyVV6E2f-_1yMYCWI_sws69fWQkWUIv33hk7Gm55NaNgLD4RYCUBTO7v1FtEZiVYAU5ab7NvvnTJ3FaEHo9G9eTzN1I_MmPzqlYX539YF_DDedh0ThnSoJl7PYD-7LhRRG1215KmsTWbqDGmtTsHePAVRSh464XHgiZ6cNPNogtMl4ym6r6nsMbzFP2krBR1f-u0tHfQFxAeLyBWij01Z1WBz4GBh3bpdLrB85AlvFeY7R46PPydAHxwwanYVyxpS0UmS7Y2S37EVRdFzai1izvoy3-wA05YKcnRiUKR-oMcLf-BmB3HHZnY77YOuqQBUZNI7OR8B6lvTARQuoJbK26ONmXEsH-VoBJR7C-hNiXMVh1jHfhuaBAj6Dg9g1Vs2kGxfoJUXB5dlFmR42mnyGcT96N8ZAIdIoQSrBzai6bQbuvOb3OAcG2lEhOZHZiwFRCzpHMfu5dctZ_wcTUhYZwgOcBNIo4WELyjv0Yx22AHSHcrUzFezOwibs-heUF_ciKWkGv9OaabaAGTaTVncfCnS7rOcD3Xum89EAVegpYiQzK0DZ_VKooPoddgHs6diYOEn4iJyvE54vaVi72NAy0Tf9poRlidKaM009FImefEtZqwD1MmaeVbjcClv5Xwyh-KCQ2hCZmrnJ2P_e0bWIsE0MAJOK8iU6Q3zxbntbZAQAKZHqqauT8kkRYxk6oBicV5BS-whqDN_GoNZrnRLTNkjk1a8mnqg_kucvC1mCQRbvP367DYqZGuAd2EQWVLSBQibHoVIUcYAFbsfRHfsQ-uiZVZsjZ-xGM-ZcTzCJ6p-hFi9IQXKqOioM_xzRl4TSY-AEbGja_RY0puxi8BeZXvSxx8eYsJ0TRtIIQwloZzKpbx1OwyK-Ibfj01PU5NIurJL10PKXcnc7ImXN-b_p8wfzEVN12lSbQ8m-Rs0tx32jfvviXyHtWYfHuNqP0eL3Xjuka6FGnuDOeOAIzy4xj1vqhXd8UN2tiFOObl4Rza5pKzF-0IcEsKX36v4iN8oYxOoCxCxLwvFw3znYiAKe6CVky4e46LxZOI3bGM6MSrypwblPMA2gC_ogfMiYViJe8gsgld9UvgQaFfj0EEgfc0BWfxVw2i6Yv3OcH3T1jaHnCVgvcDpTXI4-ZeeWKl6fhH9ukYAG4-Y2mGiJhxJ7cjSg8CwU0KDmNRwoXGB2FT0bKWovkcFYM5ueMbXFTZ4FFcgfWcOzXFZka82HFB_iqD1XvOYMFQNiz3jdtuOr8o66rtCVAjJnuoTQDmbSrWPU0-utUMJx-4QAlZM8hdtXGfNBp0JRxctMZdxR4BAzF7JH_ETYi3itZkgDLEs9JBdty6gUiM0NdR6F_7mxsHCik3rpb5bauJKP89gV03mnBQuSUQTauNxdzXqw55SPDAHMBWg8QwyffzWwmyTAjl_R1QiFsTOv31U-HditYAeYMhLAP0mIs97T0inLsTUri1s2b1s7j6-I-NLXuT4VKiBO8lqVicTbQdQwiXehHQsi18e0H6T9XM0xBQK2t1dd4Jz2oLUGroSB3XuNbcaaxsffqRQgk43KIMEw9VsUA3FOTEpdM_xYIYEFM_-ApjDQJ15JyMRspfmu7HDdd-ybcXZ-C8WASJUPV8tFEfP4xgUcZeu-mExkryebbdMExq78yj7GlwWaeqBYfEXsvG6FIOqL9iFVcc3iIelrly0oM_xJmLOB_CCkGylDmHLxZZydf5v0RDh0KOXd7J-QYepcALXYoXmToj2JPrJPkaznH-2tI5xwp_M-mktoYNOhWrOepFjceXDSF5G5ILomGd9mHLnkq514ayZJCeE437I2geH4s6upgSAaqc07IVvdU3WjorhBw9fvefI5NnYwMiUSk_LC-JiQZDJ0bMLttvwKDx0TmOnMDJqxDr06_MWXn3i0zLQlAjItS2foksr6EMeK2InZznVZtgjcbD0exqZuzjCAqKz4PLQl62xyuJx8trJe0uHbQk-NweJthN5xcj41kJTcDuXbA1bA9HerCBWMX0RW3RXAKTvltGaqyMyUsJ_uOb40D0m56SqOmxnyA-mauiV2R11KC5Hh7YSS587NxkWUx2t7G9uio6WgWyx-HvhXYVi8wejyZw51z70YEa-aUDS2G_N0e6BV2B6dMGyd3lzTkMY6Ncs127IwQmXkV4VGL0stfchFf7rhXc1CZmFm7NZOMQPgb3_Heb39gZfMa4EYUVLuvfSpuM8wHZcQa57_uj6wmGp7NBBVpcgTee9ADvJXxjlmAj6gm9TiCl_GYbBLCdoTRAgsgsy1r4WijYr2sA_zch6EbDpTjQy6ER5GINZ4zi0VDy9avZcxhGmOEHYvKzcLB5PANOAW-8FLFHGgDWvf0cEMCD0UpSLAJVIX6rMjMJC3N_cgWmmv_zbllaW-vDVNFPyZOW32zU-l7r46_5IuF9Vc5choUlWOGLADSnXReau9WC4rfGF05CAvLe5Q0dex4K14SHJTEJuBWhGTaaXzONQSGtU9LJexoI1ijcnz9X59VvXxFX0oHmLvgTAim6nN96X5kllHFvrdDjMOiZKQTXtodUI-3ZcjfA5booJk7tnFeni0H2L1sqvpGy8JDlfl0fds8hST0vtXscfD5jDC-i6btLnRgpOpRDQMebCkqRlisZScBXb0nxoHK7CHtnQy4aCQq4oCBgMXdbwHOnbBygBSAg-HCpK53YoT-R5NUdESGmGCX5uJ0qlmGaXSshFbNW_NpQItJIrD7NW3VmqfWvSB1VL-nyVLOmc_wPmUhY7dSGArYKYQFKL4cBOSfHHHuftrRXy356_mTcDeFsHzqH3RXPaXhiad_lmQ9Bcw0OD_BotHvYfvVCaETpweH3eHl3RPBiUHlc5Da4nprHbXrvQL675qwVLiwLwOvPULU4VdGU-jIfSMkRUbJhSt349C1poj4aM-aD3s5iJy-3YDRYzmqMmFFr9CoKMah6hmn6n0oKSwg0YpLOc9JRDhBfp87_NNsWdRkpNw_DC7OaIF6VNxc6o2t9jExqmAiAbyRSkW2x-UiZl6kbB3uqffgAYWNylgJDZ-UPQNki30zURQFl1anKa8xhIGOgH7piVerG2LO8X7pFxa3DlYxFm37HC6irFtBwsFbvNGicua6MfUD3dV2MhE9x-sOlG9O08DKObUwBTpTzfAe-P_jGWHnyOsLXbaiV_cwxgWkEw9rKuFpI1SPuPrdO8_iSYdH36TqIREPLVbRcSJvHrsWP2Bf-Bb04SIonHV4Olu9KEYWVCOltRx7JFjp3eVQZLAGwjtxG_vDlublMpybM6TZdg1UYaCU4ZqLKss3iWO3wBNwC2usITNSjaiiLSH96fOHpAyXMhhodFDS9X-frLB46hilqE3PwoIyiR5R1dAdM7oiWa5qD6KH_dISw5H-uO6ZrUFo6i14E4RcCtRBBKALvVnApLxA_lcpnFR9_TZkstK-6klIEiSttNhxhHhv36XJw_J6jUTHnxRBr4JyXLL3-NmDZy8mplsbS4OXl7gg0vuIOBBHarKFvCEdvZv8ikxbDeftTz2je9mrCNCAHKTeNQWKf7Q7HFfPcza_BwhSqrd64DndvGVkfLlYBrbVSZp5nxPF13qBWIw9bbXTU5z8Wna72Lh4HqL-cUDsKbKBpst1VuBgaA7Va', + provider_name='openai', + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( @@ -3848,6 +3958,7 @@ async def test_openai_responses_code_execution_return_image_stream(allow_model_r tool_call_id='ci_06c1a26fd89d07f20068dd937636948197b6c45865da36d8f7', provider_name='openai', ), + previous_part_kind='thinking', ), PartDeltaEvent( index=1, @@ -5134,16 +5245,26 @@ async def test_openai_responses_code_execution_return_image_stream(allow_model_r args_delta='"}', tool_call_id='ci_06c1a26fd89d07f20068dd937636948197b6c45865da36d8f7' ), ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='code_execution', + args="{\"container_id\":\"cntr_68dd936a4cfc81908bdd4f2a2f542b5c0a0e691ad2bfd833\",\"code\":\"import numpy as np\\r\\nimport matplotlib.pyplot as plt\\r\\n\\r\\n# Data\\r\\nx = np.linspace(-5, 5, 1001)\\r\\ny = x**2\\r\\n\\r\\n# Plot\\r\\nfig, ax = plt.subplots(figsize=(6, 4))\\r\\nax.plot(x, y, label='y = x^2', color='#1f77b4')\\r\\nxi = np.arange(-5, 6)\\r\\nyi = xi**2\\r\\nax.scatter(xi, yi, color='#d62728', s=30, zorder=3, label='integer points')\\r\\n\\r\\nax.set_xlabel('x')\\r\\nax.set_ylabel('y')\\r\\nax.set_title('Parabola y = x^2 for x in [-5, 5]')\\r\\nax.grid(True, alpha=0.3)\\r\\nax.set_xlim(-5, 5)\\r\\nax.set_ylim(0, 26)\\r\\nax.legend()\\r\\n\\r\\nplt.tight_layout()\\r\\n\\r\\n# Save image\\r\\nout_path = '/mnt/data/y_eq_x_squared_plot.png'\\r\\nfig.savefig(out_path, dpi=200)\\r\\n\\r\\nout_path\"}", + tool_call_id='ci_06c1a26fd89d07f20068dd937636948197b6c45865da36d8f7', + provider_name='openai', + ), + next_part_kind='file', + ), PartStartEvent( index=2, part=FilePart( content=BinaryImage( data=IsBytes(), media_type='image/png', - identifier='df0d78', ), id='ci_06c1a26fd89d07f20068dd937636948197b6c45865da36d8f7', ), + previous_part_kind='builtin-tool-call', ), FinalResultEvent(tool_name=None, tool_call_id=None), PartStartEvent( @@ -5155,9 +5276,12 @@ async def test_openai_responses_code_execution_return_image_stream(allow_model_r timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='file', ), PartStartEvent( - index=4, part=TextPart(content='Here', id='msg_06c1a26fd89d07f20068dd937ecbd48197bd91dc501bd4a4d4') + index=4, + part=TextPart(content='Here', id='msg_06c1a26fd89d07f20068dd937ecbd48197bd91dc501bd4a4d4'), + previous_part_kind='builtin-tool-return', ), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=IsStr())), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=' the')), @@ -5198,6 +5322,13 @@ async def test_openai_responses_code_execution_return_image_stream(allow_model_r PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='_plot')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta='.png')), PartDeltaEvent(index=4, delta=TextPartDelta(content_delta=')')), + PartEndEvent( + index=4, + part=TextPart( + content=IsStr(), + id='msg_06c1a26fd89d07f20068dd937ecbd48197bd91dc501bd4a4d4', + ), + ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( tool_name='code_execution', @@ -5465,6 +5596,16 @@ async def test_openai_responses_image_generation_stream(allow_model_requests: No provider_name='openai', ), ), + PartEndEvent( + index=0, + part=ThinkingPart( + content='', + id='rs_00d13c4dbac420df0068dd91a321d8819faab4a11031f79355', + signature='gAAAAABo3ZGveBi351h31WQM2aG_dbN1N74J4X3Lf1SbUrUhElKaT5odbh4N1liwG5Hjip3Ci1illQSsd4n035fOOIV3sZzAMvV3ypncux4WDBpQ9NbeuFMNSyNOPTxJLg4j66UbW2ptw3u1VP3j0vCHvV5MoDhErheYZsWKhYVtkUNkKSVLWkS_yK0pOltSwHfRy3tbrkxnqD99BuVbCjV1nWSzTAmJLicBtjDaH0NjjD_vMyFiUe83-eZRs-Q_6njWasZNCmTcOq4zlpFoJ_AGeaTbaLIC1OwDV3sNT7pXvo7YI7jmsYEhHAKa8BjZmMjzBPLDRu9TMWtXMnO6nyVYqMxsyQPdNmP-BDNfr_8Rmo_uI5egfE0qRKgAc5MrOGd1fSgtUqeKah3kbLMyCD0_-jWmVInb2Y4LfPcX0iOeTGum2IRKwy6G1tdY8C_gEOnIGAUKOT2sEF98Ythy9auV27BCbcjfCBJlH0rOir_OiQjUIXZqqY0My1kVENBbXj2-VIFIqG-CcxCldFG2Mq0NGo86h1igQIFmLItXLPTS_QnaWADSD9La8JWpg8CuWg-yB3UqYaG5_f2Cl5jRDQdIYavTBvD-lp54y8aEnGA6HksQaCtB7jHX0ZM0pqYu7LvLjeHxAJWsnF4NN0HPz3d307muS0TtrXUxqeZFdTNoqdBOxfuJ2-Ym_LmeubnEzh5wHAguJKZ6S_jcEFM3Jdb1R8Gk9dv2y7BUz1hKSFF7peXc9Ear00JjPHAlR1x0ECqONTSD9Kda80pQlDSh05ITKQ2viOy1jmCsWeSsll6EJPcGEMfAcZ1UMgHYX3sBa5Oz3DS28Ur8yk-I62nUWbcj8n7IsZmZL0CWc2qgCtj2TzFZaVEx8iumUKpU0hmML_kF3JPH2Ie8nB1ko18HZV7A_-n9XGDZzwsfPD9pu4P-fb68KNqU_qQBfe8msYvuFuljC-0kyGrQIQH2X6stwEkyme1TuJfxIZ2t2q2l02gEUVN8LN8qX98hp7DBxXepgdKvqWVOM7icvtW0mPACf1b4izSDqEgqhqx4tNsjixoHcM9M8awzss_y2_jZ3V7gY3pbPgwWKHyyTUzA1ogPfMkjxxUrVLNyHRPmnklUeQdV-vytip3BzNOq4yTUz7jVFrudSDcr_KM6Ie806OkgKF81l-W-40qzx6bGg2DAcZf5hfbTzk-ho51sRBwDp7RJrx2SXSBGXA3ArYzgq-2iat368uDLiQhhbunzKm3_6CFWggpbUO8Kp3FP7-k4Z4CRbHkg8WVT0HhH6w0ysoi-P6_ZH-IKI7XG-GT1kq4yje3qlfRUT0-0_LPsr8LyM6AbOYj4NiWHP3XJ2qa978VVOLJQtY-qG3VX9kMq13C-uU8PDOsOEidYZl2gqFtXhxkXivwACbLMnvzJayXJRev1QkoNxIg1Stl9II4D_ndHfNYeAvMvOnSNafoCOmMzCBp1klovMP_31YvR2B3af1TYanbbHoJt2UR1GRR_Aqr7G6RukNkXAl63LPlDQSYm5BB6zD9iNX9hJ8MSZ1IFIcbM0L32tAWsyKKAEWyr9MGckicDa_hES9adeXuunqqKhUctd94J1dsXLiWCGIet57YIUj5WoF_FQ6D6FY9rB00KhCDlHr1Ot5NCMmn6y-u6TYJUhpl7elEErYGXaGPhUtKUSbAIzOXzBIAKb_MiMVvo6a2VYwsxwZV14X8TYkKw_Y7w5Wt6JA_wTOoen7Cc0eFyc7FZA4NjIMkIUOXymtjzOSkFJz1eMBqp9diET9VYKGsn6GxviD8jWM6-RCWcFurewcn4d6TeTclAt7G_LZrJ9bZtMVlieSJT-3vWr9qVt8OGBUJEJRVOzpr5FBnEceqK8s7D_s8EZwTaGwyAuuaZThy2PNWJhpE4c0UeKgh0ec36Q0ZRN8DF8Khne8Epe1rehOrsfeyFFRuQ5CDGdHimhtOAIbDyg_5PPCp8fgiU4R9xqtizCVTR4ej1VPIClmebUErOl3TN-IyoSc8rv--Vi0ATn69Q8tSPweI07KVEzRJpDtxbnGcbbilPN5_liJcQrLMf5ikaWBoq42s6FXDjr-ASD0h7IlNGHxnN8q__iO6jA9-2PTywI2bbBJsie2L7OaGGehO5zv_rWv_6rbk4HLVcQafi2nC5w1GNeDaXWSz0RjiTfXxjBh98302CQxiM-e1Lvt1Pe6Mqv-pAgXlFrSHDrqw8s4NSS2YpLDTUIOcOx8UutAJOgVpyZm2sQcvtOsGsSUBIyNI_4huseO9EuXF4TUQ-yzQRsimtXaDa6VId0y6qG7dWxTP30SWZkft2iW2_Nz_56MiioY7xACIjzo4s2aGLM352ufd4nEeU-K3UQd5hvhdIWUZn6KTyCUnqgChyIlB0Sto24VwIIj74DYisSiu-d8EYsVr5gZaQ_NaW4T7M_ZB0TJ0ptlU0X_h8uLu0ro2Vc_s7D8nkIKSzhGuuHO4lOjvZ-qLsPxG-pBa6jGvv1hOyng_x99icZ0oM7G7FmDl7SjP1pdLiZAA1hMPPU9b8Uk0j8hb4AFtfoXSfwZBQ8sYlT0_QmcSBgGxfZKXv4RcFSnAEGDNUn1V-P2uNoj06MOwzroZVjTuzVy284Hqe-08Gtt_bvZDmfsHonbEw5DrthsP9SzoC62hc6pcVs_ApQE5LwHgODxT-oejDppixNCr--hJ1IYVj4rRsHsmBv33H5kJP0rwmkdJ-I8rLj66jLf_Qu_OEh02dJqf3XSYsG7io3XCVjA-d-jUhLJSqcPS_3y5thCtWUcG_ucT64ADWdtOH0EkmzN0o7HmOJ48pkGhttNScjXlQUmOdkeBV55dTdXAzAyjKZsxP5ZK1F9m_1TMWDJX6nT4rRFrzv3PQByEyc3Rje7ZUdGa3Qky1-T5uhu1dk4ty_I92CbMDCM-jGZorhg5MX10B_zZ03DFrYTrdcDILS5i_BSOlGT8Du4aSMvwvUC5FLOYQFQdM_ZNIRIGhOSWsvObmVYh0j70YKqitDudSIm1V_Yw6qsW3ZPpLDgBju176FVDJJBn1Wx-DeQ6FrYtOjFHctqJN-2mjWQi_7lAzKbTLsB-9c4iZ4_efWXsHncmAeqvt0gvglQHDhY6cM4yZurpHkrE-lb5-vDLYamv-Du7Cs0pAaynEcbT-f3_F_WOgoXFy2WYOTt2KkSQZnW6ZPHzl3gfVOsHfAkWalMJ6vXa8FuoYfMmgZJpqtee5J6AxJaUea8xQ0VlVwuXmcK8EOPcwF1pWg8w5_SweA9jZ0fh5PaFW-BNlzGDmhRR-8Up0TCUTsdnZN7bABJBlxeQ5GEcwOjgT0UBF0_zXZo5fbk34TSDoEgfdQydVLlOGda8McmvsnNzDSq77a-Vj_8BeVacM1PPG9rp9F_-PQgpM7_7YsNoWMXha4b4_H58q7vPOvMK1zxRzNrq-sm9QhQ1LkzPgt158Gf2IPq8D3rh9YCmJvg1Ju7roShfnVdV_UO73MLnDhoqaUZEdq10723KFpescGNTRpsuWDE8qBiu58rbOzjmpy7nJfuOtfrv_qSjaFRTkShLV5PW2neHjNLlvQlWy-q3yjJXq-2zM-iRehbFIxI3ATcCq-SgThDeQ1qnTg9G0Jtsx3qBNZtCIi8x1oVsyavVJcqvo36UC-IXaXA1vpjuwER1dcZ999sP9MUnXcMTO9ba-GM3dslKvDtuZ5b8x_u7eCJfawzUPItU8iwISYKDWW8wTNOS8Iukujq3-IDOEFqmCOAlkdv6-AWNc7ZVOmyvvgDCpSN5nSkjpJhWI5kP13FJtJNHkNtP4RQkhRhwRh2ei308TvNgT8YSaa4E_BJ-QWQ_9PMNBsfAYSGIl1VaQinZF0qdvNhRIlonuZMV58aEEzsLk6hS7CGlbFwBMwAzZ5Q6PANavXDFiPGeIadxTE4r-iZLQ3CdvJWUiUv3AL3lzYraXX8BGDpEVAAIqoRYZEpR2QgIUui5b3gkCSlG-YdKqJ4HZ_6VCFqpywKsgPCX_c8pVD_6eJhgt9o5Vc0ARsfc1IG_XC-nFWOV4caiARMobX0y4qXDFulrAZInqBZ9Pq5MmbbhBmLLdT-y5fdPpB5UxsIHGqb3pip4ZaKS80IqAt8t7HPXSNza7zb1TwrjNlYcO_KhbLQBB0hMmKULnEJPWLDPKf_9NeAsN3U9AWyj1WpAKjSfpjjbXn37qpTMdgd-Js9-_FDaXDFH_aOYXI0GY1AMpvSSQzx_f6Erq4qyS5TAuAtXbvUm-iVJcHaZTIy7buGJqOUBb7BC1L33KpeQEZuCg6QyAdzn4bZUKvwjXuxNykpZA9LZWaFVdx2QfwCV_yqN2TTvLFmSj5SjldGwbBndjmtHs5kkDcV2mDlm3huEfbEJqf9sdxXaYhIfmUIkFDtYTpE1C0qSol-A6Yagtx_aNfWTL7F2lFI0OusuBwnDfkNow5mPsKqGMIqx5eJA2InLcpV7GTyCxT3BjVsggtSb1-4Zz2TYzBz7iYe8NPe-rxF6XWyHf1N0nyyCY8Y0_CqJS9OPFpsd53a6qY7xlhh1kwBOM8nJWb3OEJjMVspTUfwF90O8D9fDNS293vnG8SArU6d-1L4u0LalQbKXDRzcze8W8R3KWv1N0LXrWwfArPrO1WnpdEkJnbFfc1eUHqThJ39c7RAInK66VtNe5xtUVzuNZDfPKsIfD4Ms5xqMKEOWQt8RIciRapDo9aoWv5l-YCkuTrWp4pWP4b7eu9fizM5ZuzmRCj3Ecc7ZT2uvxe9sP045dqTH6lSeBNW1eW-pmb3oQ-g_mYL6SU60NmDp_mMa5HFuTdGSAAI9jP11k8KQUX6oGGGhx24w9seLaY98N_0v-cWsiNMQSnwR_SsGs6tPYqltHguz_azu0qsQuuXTQK9B06oEDR8tyb6CTqfX8pcumXIXC_DMFYfQ3pBK5R37G_oXTtX9srpw9vSulg4z52GhuvfT09ukMmdNGoIAS0551PjpZRz7-sI_nNTJQKpGgbhiH_zvA3U5hxue7fpAnQYXd6DYxR_y7QXSleoqQhZ2iVQW90Lwqp5MIDJaAx14bn27WBmQSLcuMpgnwpothMYFMmmNMdWYnGcQ0MIjhlOoykau7DRBFsLOKZ88y_9Pke7k9ISeTmArge2IdC1Ma7-GiJ90YVwwXDBSs9ssae8F1kWgyYV9rFxNbpF4uiWdQkVvASmW-QUNWzsHAtfuvrt-TR1SQ1Z-mMP_zF8mVjC14pAP5Z4pYkolLBinwy9V7DjcN0kymIM6fwpLt2h0LgfC1eLK3sutJcJJP9fFd8tTLIskEvUly-TeEct-syQebPxjxpxae7UPmqeDrOtvPi8-JWiHeIoJrUQnnw3ik2ULXvX1VFSnzDcKBAs_xZzdtjRlCGZWD-hgPPRTmG-YWeyovXZDp5Wv06AEL-hJlk4z1ZEt3yA0H6Ni7zE8jQ0_c6zJCWk6YtPhFk0ARZfjjdYSOFwJvx6rIrteH39b5W1yE8X0bm_cdeA1Q6TluBBkwv-9liCSOGT4ctzwaK3-cb0b4ko_apEEtpYkevu2ulqZoFi1S9g1joFZ5ooBLpxYGntuXXbALvq-zZniOJOtTdbpgsFQPS6Ae9kWXddWChNeyv_CEdkwXCkM__ua4GiH_Ce9WlqCzDCEoCYFpr7PyJP3gNg9Q_vkiLQa9V9bc3VtA5z4cjWB3rU5X9fLDZ0xzwO9krtGmsK9r2gkENMMu5Yy5BxGo94n6wRef0eMY6_GTzi7QsRuQSqNQLa98UdN4QGDa2c_-uDpENkMya7_hgM1z_RyUGtqVgpCHrld-jfSIGLPUI6kKWUDZ3USldXuep47KNuO3-BEOP2QEAKgHVlS9g2viG5r6wdeMl7Njs6iMsjs1KnHaqHlfZww8egAuOxAJjFxUYPy5djKn8n5lgPdk9ISeMZfxW5LcP80kPQekLohUbHcJ_JC2rTI76ckZvwuEGDUQTwGHR0B7YonoiTVzrhOWeqndwk3EBp0cr2mIc8vsWANK1WechMxunFVn7RuwV926PZhqFrnoep4ytDP8h4nJ4Z5zr9cXQCDv624H3JdPUYBBoxJ_7-QDM0fpuFXuRArtuezy6PV0a21CHLFtNq3DCWp56o4xgGm8x_8r2NtKTXxSwUY4_5cBHWd80aXF84Z42ldtGkAXayyFsv5er4VvWTzjwfEc39qkUGDQ5feVJb3YhfsT2qFyUnhb167hdJIPkI8rud4vLu3e9eu6xNLcw-LEjHptgEtfxOqiAPrBZLfWgkhfpU-encYtxg9cing8f_bAkf4-sP1tEaczGkdkMD-0orT-aN46m-8Dyn82fQgQdvov6n7KIuQipYomIQ3mJh5mSl2BAGMFlvLY297s3dCkBD3pGbRb6AAqu-5l8yCCVtg7FvzUWoQ3gL8FcP2cK_fYoJf7Z2YbgTNI_5SHiaAb-qxWuIP8ICEsxCHJJWIOfL6UnBXXctp8B_TiSbOFfGFrQPTJDUvKPyN9_mzO4mzXlOXLXu2VRG9J4NMSYTJT6-Q269vzse4SGqnULEUnpm2zQz9b9W97ahoMFYfV8xaVeFZK5ZU8LpyaN6v4mOJuuHm_vZuVircckh7UVVEK67jvRMi5JcKv-hDQhy1EmSRNCiZ4WHmGi7wcLEcJaUVFBRi84nU50Gjjs2kTslgVAnR9MyGqL2N4xvTAjoi4o-SCvDIvgWDnRCHXSD6ghfQagEUVGldGzk3EKEQF7VO5KTdheZ9FDiSXaaJJKit9NnohzmxM651VFC-AW0Ghklj52C5yvHScmJrIpMv4IjFAKj7erMRDjvYJ0v0PZDE0guTvoUFHrZd6umnB68QFINJogoy5GeT1hUs87OjZVQzPrxZqO6rzJK9m3meI2dFvdbgyAdbUx7fJRAu4yf2LC4dh0QaS5z24wuND3y-jHEsOvjUyIklRGeoH8EdGTBI8ZJIYKXJ8Ow797VYFI3FBzKNiPxJH-VFjpw0aqTLXVrAvCxwVK3awVAoWpwWMHN5yT57TOn3kpAbnBdAXG80kwTuOAAagePIVGrzENRGWVPGhvBFi55TDrQFXyymCP6c5q01KY04VU0udmOSe2Bwd-jMk2pjT3CLHb95G4PUVgy-l-occtk0mNRX4k3P9ETjeyOuA05c2rzMDthoHcFUnMqofePnvVK3eliJjh1uoNOrbx1rJuGsDZFEGxUfkjc5z5BW9zVw5YS7mlXjACPSDgMgreTTygsKTL0xhvSPsmu18K-cGz19v8ho7ix5B1WmPDsL75qXEqKsiO0ry1Ka23z8c4omngareIMqyM6OANeslUhQ7M_4o-OSaHUKQ3kAmJ3c_iPpedZUCo8GALcrgifqgd_ckfBRBpYssZhFQkxPNKJZhncuoRkdjxeAzANinaBUCxZ-Bg5DRQI6GCHgzUiUFMIWEqi21FF5UEiq0G2PM7PTE-RRO7wu8qg==', + provider_name='openai', + ), + next_part_kind='builtin-tool-call', + ), PartStartEvent( index=1, part=BuiltinToolCallPart( @@ -5472,6 +5613,16 @@ async def test_openai_responses_image_generation_stream(allow_model_requests: No tool_call_id='ig_00d13c4dbac420df0068dd91af3070819f86da82a11b9239c2', provider_name='openai', ), + previous_part_kind='thinking', + ), + PartEndEvent( + index=1, + part=BuiltinToolCallPart( + tool_name='image_generation', + tool_call_id='ig_00d13c4dbac420df0068dd91af3070819f86da82a11b9239c2', + provider_name='openai', + ), + next_part_kind='file', ), PartStartEvent( index=2, @@ -5479,10 +5630,10 @@ async def test_openai_responses_image_generation_stream(allow_model_requests: No content=BinaryImage( data=IsBytes(), media_type='image/png', - identifier='69eaa4', ), id='ig_00d13c4dbac420df0068dd91af3070819f86da82a11b9239c2', ), + previous_part_kind='builtin-tool-call', ), FinalResultEvent(tool_name=None, tool_call_id=None), PartStartEvent( @@ -5495,6 +5646,7 @@ async def test_openai_responses_image_generation_stream(allow_model_requests: No ), id='ig_00d13c4dbac420df0068dd91af3070819f86da82a11b9239c2', ), + previous_part_kind='file', ), PartStartEvent( index=3, @@ -5511,6 +5663,7 @@ async def test_openai_responses_image_generation_stream(allow_model_requests: No timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='file', ), BuiltinToolCallEvent( # pyright: ignore[reportDeprecated] part=BuiltinToolCallPart( @@ -6807,6 +6960,7 @@ async def test_openai_responses_model_mcp_server_tool_stream(allow_model_request timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), PartStartEvent( index=3, @@ -6815,6 +6969,7 @@ async def test_openai_responses_model_mcp_server_tool_stream(allow_model_request tool_call_id='mcp_00b9cc7a23d047270068faa0e67fb0819fa9e21302c398e9ac', provider_name='openai', ), + previous_part_kind='thinking', ), PartDeltaEvent( index=3, @@ -6922,6 +7077,7 @@ async def test_openai_responses_model_mcp_server_tool_stream(allow_model_request timestamp=IsDatetime(), provider_name='openai', ), + previous_part_kind='builtin-tool-call', ), ] ) diff --git a/tests/test_ag_ui.py b/tests/test_ag_ui.py index fcd0fea9c5..07d18bcfac 100644 --- a/tests/test_ag_ui.py +++ b/tests/test_ag_ui.py @@ -1,12 +1,10 @@ """Tests for AG-UI implementation.""" -# pyright: reportPossiblyUnboundVariable=none from __future__ import annotations -import contextlib import json import uuid -from collections.abc import AsyncIterator +from collections.abc import AsyncIterator, MutableMapping from dataclasses import dataclass from http import HTTPStatus from typing import Any @@ -24,8 +22,12 @@ ModelMessage, ModelRequest, ModelResponse, + PartDeltaEvent, + PartEndEvent, + PartStartEvent, SystemPromptPart, TextPart, + TextPartDelta, ToolCallPart, ToolReturn, ToolReturnPart, @@ -48,12 +50,12 @@ from pydantic_ai.output import OutputDataT from pydantic_ai.tools import AgentDepsT, ToolDefinition -from .conftest import IsDatetime, IsSameStr +from .conftest import IsDatetime, IsSameStr, try_import -has_ag_ui: bool = False -with contextlib.suppress(ImportError): +with try_import() as imports_successful: from ag_ui.core import ( AssistantMessage, + BaseEvent, CustomEvent, DeveloperMessage, EventType, @@ -68,21 +70,23 @@ UserMessage, ) from ag_ui.encoder import EventEncoder + from starlette.requests import Request + from starlette.responses import StreamingResponse from pydantic_ai.ag_ui import ( SSE_CONTENT_TYPE, + AGUIAdapter, OnCompleteFunc, StateDeps, - _messages_from_ag_ui, # type: ignore[reportPrivateUsage] + handle_ag_ui_request, run_ag_ui, ) - - has_ag_ui = True + from pydantic_ai.ui.ag_ui import AGUIEventStream pytestmark = [ pytest.mark.anyio, - pytest.mark.skipif(not has_ag_ui, reason='ag-ui-protocol not installed'), + pytest.mark.skipif(not imports_successful(), reason='ag-ui-protocol not installed'), pytest.mark.filterwarnings( 'ignore:`BuiltinToolCallEvent` is deprecated, look for `PartStartEvent` and `PartDeltaEvent` with `BuiltinToolCallPart` instead.:DeprecationWarning' ), @@ -121,7 +125,7 @@ async def run_and_collect_events( agent: Agent[AgentDepsT, OutputDataT], *run_inputs: RunAgentInput, deps: AgentDepsT = None, - on_complete: OnCompleteFunc | None = None, + on_complete: OnCompleteFunc[BaseEvent] | None = None, ) -> list[dict[str, Any]]: events = list[dict[str, Any]]() for run_input in run_inputs: @@ -260,7 +264,7 @@ async def stream_function( 'threadId': IsStr(), 'runId': IsStr(), }, - {'type': 'RUN_ERROR', 'message': 'no messages found in the input', 'code': 'no_messages'}, + {'type': 'RUN_ERROR', 'message': 'No message history, user prompt, or instructions provided'}, ] ) @@ -644,6 +648,17 @@ async def stream_function( }, {'type': 'TOOL_CALL_ARGS', 'toolCallId': tool_call_id, 'delta': 'Paris"}'}, {'type': 'TOOL_CALL_END', 'toolCallId': tool_call_id}, + { + 'type': 'TOOL_CALL_RESULT', + 'messageId': IsStr(), + 'toolCallId': tool_call_id, + 'content': """\ +Unknown tool name: 'get_weather'. Available tools: 'get_weather_parts' + +Fix the errors and try again.\ +""", + 'role': 'tool', + }, {'type': 'TEXT_MESSAGE_START', 'messageId': (message_id := IsSameStr()), 'role': 'assistant'}, { 'type': 'TEXT_MESSAGE_CONTENT', @@ -888,6 +903,7 @@ async def stream_function( yield {0: DeltaThinkingPart(content='')} yield "Let's do some thinking" yield '' + yield ' and some more' yield {1: DeltaThinkingPart(content='Thinking ')} yield {1: DeltaThinkingPart(content='about the weather')} yield {2: DeltaThinkingPart(content='')} @@ -923,6 +939,11 @@ async def stream_function( 'messageId': message_id, 'delta': "Let's do some thinking", }, + { + 'type': 'TEXT_MESSAGE_CONTENT', + 'messageId': message_id, + 'delta': ' and some more', + }, {'type': 'TEXT_MESSAGE_END', 'messageId': message_id}, {'type': 'THINKING_START'}, {'type': 'THINKING_TEXT_MESSAGE_START'}, @@ -1100,7 +1121,7 @@ async def store_state( agent: Agent[StateDeps[StateInt], str] = Agent( model=FunctionModel(stream_function=simple_stream), - deps_type=StateDeps[StateInt], # type: ignore[reportUnknownArgumentType] + deps_type=StateDeps[StateInt], prepare_tools=store_state, ) @@ -1157,7 +1178,7 @@ async def test_request_with_state_without_handler() -> None: with pytest.raises( UserError, - match='AG-UI state is provided but `deps` of type `NoneType` does not implement the `StateHandler` protocol: it needs to be a dataclass with a non-optional `state` field.', + match='State is provided but `deps` of type `NoneType` does not implement the `StateHandler` protocol: it needs to be a dataclass with a non-optional `state` field.', ): async for _ in run_ag_ui(agent, run_input): pass @@ -1200,7 +1221,7 @@ async def test_concurrent_runs() -> None: agent: Agent[StateDeps[StateInt], str] = Agent( model=TestModel(), - deps_type=StateDeps[StateInt], # type: ignore[reportUnknownArgumentType] + deps_type=StateDeps[StateInt], ) @agent.tool @@ -1345,30 +1366,7 @@ async def async_callback(run_result: AgentRunResult[Any]) -> None: assert events[-1]['type'] == 'RUN_FINISHED' -async def test_callback_with_error() -> None: - """Test that callbacks are not called when errors occur.""" - - captured_results: list[AgentRunResult[Any]] = [] - - def error_callback(run_result: AgentRunResult[Any]) -> None: - captured_results.append(run_result) # pragma: no cover - - agent = Agent(TestModel()) - # Empty messages should cause an error - run_input = create_input() # No messages will cause _NoMessagesError - - events = await run_and_collect_events(agent, run_input, on_complete=error_callback) - - # Verify callback was not called due to error - assert len(captured_results) == 0 - - # Verify error event was sent - assert len(events) > 0 - assert events[0]['type'] == 'RUN_STARTED' - assert any(event['type'] == 'RUN_ERROR' for event in events) - - -async def test_messages_from_ag_ui() -> None: +async def test_messages() -> None: messages = [ SystemMessage( id='msg_1', @@ -1451,7 +1449,7 @@ async def test_messages_from_ag_ui() -> None: ), ] - assert _messages_from_ag_ui(messages) == snapshot( + assert AGUIAdapter.load_messages(messages) == snapshot( [ ModelRequest( parts=[ @@ -1536,7 +1534,6 @@ async def stream_function( } yield { 0: DeltaToolCall( - name=WebSearchTool.kind, json_args='"Hello world"}', tool_call_id='search_1', ) @@ -1607,3 +1604,162 @@ async def stream_function( }, ] ) + + +async def test_event_stream_back_to_back_text(): + async def event_generator(): + yield PartStartEvent(index=0, part=TextPart(content='Hello')) + yield PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=0, part=TextPart(content='Hello world'), next_part_kind='text') + yield PartStartEvent(index=1, part=TextPart(content='Goodbye'), previous_part_kind='text') + yield PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=1, part=TextPart(content='Goodbye world')) + + run_input = create_input( + UserMessage( + id='msg_1', + content='Tell me about Hello World', + ), + ) + event_stream = AGUIEventStream(run_input=run_input) + events = [ + json.loads(event.removeprefix('data: ')) + async for event in event_stream.encode_stream(event_stream.transform_stream(event_generator())) + ] + + assert events == snapshot( + [ + { + 'type': 'RUN_STARTED', + 'threadId': (thread_id := IsSameStr()), + 'runId': (run_id := IsSameStr()), + }, + {'type': 'TEXT_MESSAGE_START', 'messageId': (message_id := IsSameStr()), 'role': 'assistant'}, + {'type': 'TEXT_MESSAGE_CONTENT', 'messageId': message_id, 'delta': 'Hello'}, + {'type': 'TEXT_MESSAGE_CONTENT', 'messageId': message_id, 'delta': ' world'}, + {'type': 'TEXT_MESSAGE_CONTENT', 'messageId': message_id, 'delta': 'Goodbye'}, + {'type': 'TEXT_MESSAGE_CONTENT', 'messageId': message_id, 'delta': ' world'}, + {'type': 'TEXT_MESSAGE_END', 'messageId': message_id}, + { + 'type': 'RUN_FINISHED', + 'threadId': thread_id, + 'runId': run_id, + }, + ] + ) + + +async def test_handle_ag_ui_request(): + agent = Agent(model=TestModel()) + run_input = create_input( + UserMessage( + id='msg_1', + content='Tell me about Hello World', + ), + ) + + async def receive() -> dict[str, Any]: + return {'type': 'http.request', 'body': run_input.model_dump_json().encode('utf-8')} + + starlette_request = Request( + scope={ + 'type': 'http', + 'method': 'POST', + 'headers': [ + (b'content-type', b'application/json'), + ], + }, + receive=receive, + ) + + response = await handle_ag_ui_request(agent, starlette_request) + + assert isinstance(response, StreamingResponse) + + chunks: list[MutableMapping[str, Any]] = [] + + async def send(data: MutableMapping[str, Any]) -> None: + if body := data.get('body'): + data['body'] = json.loads(body.decode('utf-8').removeprefix('data: ')) + chunks.append(data) + + await response.stream_response(send) + + assert chunks == snapshot( + [ + { + 'type': 'http.response.start', + 'status': 200, + 'headers': [(b'content-type', b'text/event-stream; charset=utf-8')], + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'RUN_STARTED', + 'threadId': (thread_id := IsSameStr()), + 'runId': (run_id := IsSameStr()), + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'TEXT_MESSAGE_START', + 'messageId': (message_id := IsSameStr()), + 'role': 'assistant', + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'TEXT_MESSAGE_CONTENT', + 'messageId': message_id, + 'delta': 'success ', + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'TEXT_MESSAGE_CONTENT', + 'messageId': message_id, + 'delta': '(no ', + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'TEXT_MESSAGE_CONTENT', + 'messageId': message_id, + 'delta': 'tool ', + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'TEXT_MESSAGE_CONTENT', + 'messageId': message_id, + 'delta': 'calls)', + }, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': {'type': 'TEXT_MESSAGE_END', 'messageId': message_id}, + 'more_body': True, + }, + { + 'type': 'http.response.body', + 'body': { + 'type': 'RUN_FINISHED', + 'threadId': thread_id, + 'runId': run_id, + }, + 'more_body': True, + }, + {'type': 'http.response.body', 'body': b'', 'more_body': False}, + ] + ) diff --git a/tests/test_agent.py b/tests/test_agent.py index eb965b29cb..9f5bb27a1f 100644 --- a/tests/test_agent.py +++ b/tests/test_agent.py @@ -3696,6 +3696,7 @@ def get_image() -> BinaryContent: BinaryContent( data=b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x02\x00\x00\x00\x90wS\xde\x00\x00\x00\x0cIDATx\x9cc```\x00\x00\x00\x04\x00\x01\xf6\x178\x00\x00\x00\x00IEND\xaeB`\x82', media_type='image/png', + _identifier='image_id_1', identifier='image_id_1', ), ], @@ -3740,13 +3741,15 @@ def get_files(): UserPromptPart( content=[ 'This is file img_001:', - ImageUrl(url='https://example.com/image.jpg', identifier='img_001'), + ImageUrl(url='https://example.com/image.jpg', _identifier='img_001', identifier='img_001'), 'This is file vid_002:', - VideoUrl(url='https://example.com/video.mp4', identifier='vid_002'), + VideoUrl(url='https://example.com/video.mp4', _identifier='vid_002', identifier='vid_002'), 'This is file aud_003:', - AudioUrl(url='https://example.com/audio.mp3', identifier='aud_003'), + AudioUrl(url='https://example.com/audio.mp3', _identifier='aud_003', identifier='aud_003'), 'This is file doc_004:', - DocumentUrl(url='https://example.com/document.pdf', identifier='doc_004'), + DocumentUrl( + url='https://example.com/document.pdf', _identifier='doc_004', identifier='doc_004' + ), ], timestamp=IsNow(tz=timezone.utc), ), @@ -4670,7 +4673,7 @@ async def call_tools_parallel(messages: list[ModelMessage], info: AgentInfo) -> server = MCPServerStdio('python', ['-m', 'tests.mcp_server']) agent = Agent(FunctionModel(call_tools_parallel), toolsets=[server]) - result = agent.run_sync() + result = agent.run_sync('call tools in parallel') assert result.output == snapshot('finished') @@ -4728,11 +4731,13 @@ def call_second(): FunctionModel(call_tools_sequential), toolsets=[sequential_toolset], output_type=[str, DeferredToolRequests] ) + user_prompt = 'call a lot of tools' + if mode == 'contextmanager': with agent.sequential_tool_calls(): - result = agent.run_sync() + result = agent.run_sync(user_prompt) else: - result = agent.run_sync() + result = agent.run_sync(user_prompt) assert result.output == snapshot( DeferredToolRequests(approvals=[ToolCallPart(tool_name='requires_approval', tool_call_id=IsStr())]) diff --git a/tests/test_dbos.py b/tests/test_dbos.py index 37f4adcc05..256aba83fb 100644 --- a/tests/test_dbos.py +++ b/tests/test_dbos.py @@ -26,6 +26,7 @@ ModelResponse, ModelSettings, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, RunContext, @@ -317,17 +318,23 @@ async def test_complex_agent_run_in_workflow(allow_model_requests: None, dbos: D children=[ BasicSpan(content='ctx.run_step=1'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), BasicSpan( - content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_country","args":"{}","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"next_part_kind":"tool-call","event_kind":"part_end"}' + ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"previous_part_kind":"tool-call","event_kind":"part_start"}' ), BasicSpan( content='{"index":1,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"{}","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -391,7 +398,7 @@ async def test_complex_agent_run_in_workflow(allow_model_requests: None, dbos: D children=[ BasicSpan(content='ctx.run_step=2'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{\\"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' @@ -411,6 +418,9 @@ async def test_complex_agent_run_in_workflow(allow_model_requests: None, dbos: D BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"\\"}","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"get_weather","args":"{\\"city\\":\\"Mexico City\\"}","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -452,7 +462,7 @@ async def test_complex_agent_run_in_workflow(allow_model_requests: None, dbos: D children=[ BasicSpan(content='ctx.run_step=3'), BasicSpan( - content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"tool_name":"final_result","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","event_kind":"final_result"}' @@ -577,6 +587,9 @@ async def test_complex_agent_run_in_workflow(allow_model_requests: None, dbos: D BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"]}","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"final_result","args":"{\\"answers\\":[{\\"label\\":\\"Capital of the country\\",\\"answer\\":\\"Mexico City\\"},{\\"label\\":\\"Weather in the capital\\",\\"answer\\":\\"Sunny\\"},{\\"label\\":\\"Product Name\\",\\"answer\\":\\"Pydantic AI\\"}]}","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -624,13 +637,25 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z') ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='get_country', args='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z'), + next_part_kind='tool-call', + ), PartStartEvent( index=1, part=ToolCallPart(tool_name='get_product_name', args='', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5'), + previous_part_kind='tool-call', ), PartDeltaEvent( index=1, delta=ToolCallPartDelta(args_delta='{}', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5') ), + PartEndEvent( + index=1, + part=ToolCallPart( + tool_name='get_product_name', args='{}', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5' + ), + ), FunctionToolCallEvent( part=ToolCallPart(tool_name='get_country', args='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z') ), @@ -675,6 +700,12 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta='"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv') ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='get_weather', args='{"city":"Mexico City"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv' + ), + ), FunctionToolCallEvent( part=ToolCallPart( tool_name='get_weather', args='{"city":"Mexico City"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv' @@ -852,6 +883,14 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta=']}', tool_call_id='call_CCGIWaMeYWmxOQ91orkmTvzn') ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='final_result', + args='{"answers":[{"label":"Capital","answer":"The capital of Mexico is Mexico City."},{"label":"Weather","answer":"The weather in Mexico City is currently sunny."},{"label":"Product Name","answer":"The product name is Pydantic AI."}]}', + tool_call_id='call_CCGIWaMeYWmxOQ91orkmTvzn', + ), + ), ] ) diff --git a/tests/test_direct.py b/tests/test_direct.py index 883a73ea30..0bb0603dc0 100644 --- a/tests/test_direct.py +++ b/tests/test_direct.py @@ -22,6 +22,7 @@ ModelRequest, ModelResponse, PartDeltaEvent, + PartEndEvent, PartStartEvent, TextPart, TextPartDelta, @@ -92,6 +93,7 @@ def test_model_request_stream_sync(): PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='(no ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='tool ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='calls)')), + PartEndEvent(index=0, part=TextPart(content='success (no tool calls)')), ] ) assert stream.response == snapshot( @@ -120,6 +122,7 @@ async def test_model_request_stream(): PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='(no ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='tool ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='calls)')), + PartEndEvent(index=0, part=TextPart(content='success (no tool calls)')), ] ) diff --git a/tests/test_prefect.py b/tests/test_prefect.py index 43b5faef64..3f2059ab6f 100644 --- a/tests/test_prefect.py +++ b/tests/test_prefect.py @@ -271,11 +271,14 @@ async def run_complex_agent() -> Response: children=[ BasicSpan(content='ctx.run_step=1'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_rI3WKPYvVwlOgCGRjsPP2hEx","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_rI3WKPYvVwlOgCGRjsPP2hEx","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_rI3WKPYvVwlOgCGRjsPP2hEx","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"get_country","args":"{}","tool_call_id":"call_rI3WKPYvVwlOgCGRjsPP2hEx","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -317,7 +320,7 @@ async def run_complex_agent() -> Response: children=[ BasicSpan(content='ctx.run_step=2'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_NS4iQj14cDFwc0BnrKqDHavt","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_NS4iQj14cDFwc0BnrKqDHavt","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{\\"ci","tool_call_id":"call_NS4iQj14cDFwc0BnrKqDHavt","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' @@ -335,11 +338,17 @@ async def run_complex_agent() -> Response: content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"ty\\"}","tool_call_id":"call_NS4iQj14cDFwc0BnrKqDHavt","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), BasicSpan( - content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_SkGkkGDvHQEEk0CGbnAh2AQw","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_weather","args":"{\\"city\\": \\"Mexico City\\"}","tool_call_id":"call_NS4iQj14cDFwc0BnrKqDHavt","id":null,"part_kind":"tool-call"},"next_part_kind":"tool-call","event_kind":"part_end"}' + ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_SkGkkGDvHQEEk0CGbnAh2AQw","id":null,"part_kind":"tool-call"},"previous_part_kind":"tool-call","event_kind":"part_start"}' ), BasicSpan( content='{"index":1,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_SkGkkGDvHQEEk0CGbnAh2AQw","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"{}","tool_call_id":"call_SkGkkGDvHQEEk0CGbnAh2AQw","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -412,7 +421,7 @@ async def run_complex_agent() -> Response: children=[ BasicSpan(content='ctx.run_step=3'), BasicSpan( - content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_QcKhHXwXzqOXJUUHJb1TB2V5","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_QcKhHXwXzqOXJUUHJb1TB2V5","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"tool_name":"final_result","tool_call_id":"call_QcKhHXwXzqOXJUUHJb1TB2V5","event_kind":"final_result"}' @@ -537,6 +546,9 @@ async def run_complex_agent() -> Response: BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"]}","tool_call_id":"call_QcKhHXwXzqOXJUUHJb1TB2V5","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"final_result","args":"{\\"answers\\":[{\\"label\\":\\"Capital of the country\\",\\"answer\\":\\"Mexico City\\"},{\\"label\\":\\"Weather in the capital\\",\\"answer\\":\\"Sunny\\"},{\\"label\\":\\"Product name\\",\\"answer\\":\\"Pydantic AI\\"}]}","tool_call_id":"call_QcKhHXwXzqOXJUUHJb1TB2V5","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], diff --git a/tests/test_streaming.py b/tests/test_streaming.py index 6b55ca8ad0..a30e19a782 100644 --- a/tests/test_streaming.py +++ b/tests/test_streaming.py @@ -27,6 +27,7 @@ ModelRequest, ModelResponse, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, RunContext, @@ -180,7 +181,7 @@ async def text_stream(_messages: list[ModelMessage], agent_info: AgentInfo) -> A response_data = await result.validate_response_output(structured_response, allow_partial=not last) chunks.append(response_data) - assert chunks == snapshot([[1], [1, 2, 3, 4], [1, 2, 3, 4]]) + assert chunks == snapshot([[1], [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]) async with agent.run_stream('Hello') as result: with pytest.raises(UserError, match=r'stream_text\(\) can only be used with text responses'): @@ -204,7 +205,7 @@ async def test_streamed_text_stream(): # typehint to test (via static typing) that the stream type is correctly inferred chunks: list[str] = [c async for c in result.stream_output()] # two chunks with `stream()` due to not-final vs. final - assert chunks == snapshot(['The cat sat on the mat.', 'The cat sat on the mat.']) + assert chunks == snapshot(['The cat sat on the mat.']) assert result.is_complete async with agent.run_stream('Hello') as result: @@ -235,15 +236,7 @@ def upcase(text: str) -> str: async with agent.run_stream('Hello', output_type=TextOutput(upcase)) as result: assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - [ - 'THE ', - 'THE CAT ', - 'THE CAT SAT ', - 'THE CAT SAT ON ', - 'THE CAT SAT ON THE ', - 'THE CAT SAT ON THE MAT.', - 'THE CAT SAT ON THE MAT.', - ] + ['THE ', 'THE CAT ', 'THE CAT SAT ', 'THE CAT SAT ON ', 'THE CAT SAT ON THE ', 'THE CAT SAT ON THE MAT.'] ) async with agent.run_stream('Hello') as result: @@ -298,6 +291,13 @@ def upcase(text: str) -> str: timestamp=IsNow(tz=timezone.utc), provider_name='test', ), + ModelResponse( + parts=[TextPart(content='The cat sat on the mat.')], + usage=RequestUsage(input_tokens=51, output_tokens=7), + model_name='test', + timestamp=IsDatetime(), + provider_name='test', + ), ] ) @@ -1126,16 +1126,17 @@ def output_validator_simple(data: str) -> str: assert run.next_node == End(data=FinalResult(output='The bat sat on the mat.', tool_name=None, tool_call_id=None)) assert run.usage() == stream_usage == RunUsage(requests=1, input_tokens=51, output_tokens=7) - assert messages == [ - '', - 'The ', - 'The cat ', - 'The bat sat ', - 'The bat sat on ', - 'The bat sat on the ', - 'The bat sat on the mat.', - 'The bat sat on the mat.', - ] + assert messages == snapshot( + [ + '', + 'The ', + 'The cat ', + 'The bat sat ', + 'The bat sat on ', + 'The bat sat on the ', + 'The bat sat on the mat.', + ] + ) async def test_iter_stream_responses(): @@ -1176,6 +1177,7 @@ def output_validator_simple(data: str) -> str: 'The cat sat on ', 'The cat sat on the ', 'The cat sat on the mat.', + 'The cat sat on the mat.', ] ] @@ -1202,7 +1204,7 @@ def output_validator(data: OutputType | NotOutputType) -> OutputType | NotOutput async with node.stream(run.ctx) as stream: async for output in stream.stream_output(debounce_by=None): outputs.append(output) - assert outputs == [OutputType(value='a (validated)'), OutputType(value='a (validated)')] + assert outputs == snapshot([OutputType(value='a (validated)')]) async def test_unknown_tool_call_events(): @@ -1340,7 +1342,6 @@ class CityLocation(BaseModel): CityLocation(city='Mexico City'), CityLocation(city='Mexico City'), CityLocation(city='Mexico City', country='Mexico'), - CityLocation(city='Mexico City', country='Mexico'), ] ) assert result.is_complete @@ -1365,7 +1366,6 @@ class CityLocation(BaseModel): CityLocation(city='Mexico City'), CityLocation(city='Mexico City'), CityLocation(city='Mexico City', country='Mexico'), - CityLocation(city='Mexico City', country='Mexico'), ] ) @@ -1401,7 +1401,6 @@ async def text_stream(_messages: list[ModelMessage], agent_info: AgentInfo) -> A CityLocation(city='Mexico City'), CityLocation(city='Mexico City'), CityLocation(city='Mexico City', country='Mexico'), - CityLocation(city='Mexico City', country='Mexico'), ] ) @@ -1575,9 +1574,23 @@ def my_other_tool(x: int) -> int: part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id=IsStr()), ), FinalResultEvent(tool_name=None, tool_call_id=None), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_tool'), + next_part_kind='tool-call', + ), PartStartEvent( index=1, - part=ToolCallPart(tool_name='my_other_tool', args={'x': 0}, tool_call_id=IsStr()), + part=ToolCallPart( + tool_name='my_other_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_other_tool' + ), + previous_part_kind='tool-call', + ), + PartEndEvent( + index=1, + part=ToolCallPart( + tool_name='my_other_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_other_tool' + ), ), FunctionToolCallEvent(part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id=IsStr())), FunctionToolCallEvent(part=ToolCallPart(tool_name='my_other_tool', args={'x': 0}, tool_call_id=IsStr())), @@ -1615,9 +1628,23 @@ def my_other_tool(x: int) -> int: index=0, part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_tool'), + next_part_kind='tool-call', + ), PartStartEvent( index=1, - part=ToolCallPart(tool_name='my_other_tool', args={'x': 0}, tool_call_id=IsStr()), + part=ToolCallPart( + tool_name='my_other_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_other_tool' + ), + previous_part_kind='tool-call', + ), + PartEndEvent( + index=1, + part=ToolCallPart( + tool_name='my_other_tool', args={'x': 0}, tool_call_id='pyd_ai_tool_call_id__my_other_tool' + ), ), FunctionToolCallEvent(part=ToolCallPart(tool_name='my_tool', args={'x': 0}, tool_call_id=IsStr())), FunctionToolCallEvent(part=ToolCallPart(tool_name='my_other_tool', args={'x': 0}, tool_call_id=IsStr())), @@ -1657,6 +1684,10 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen index=0, part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id='pyd_ai_tool_call_id__ret_a'), + ), FunctionToolCallEvent(part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr())), FunctionToolResultEvent( result=ToolReturnPart( @@ -1670,6 +1701,7 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='{"ret_a":')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='"a-apple"}')), + PartEndEvent(index=0, part=TextPart(content='{"ret_a":"a-apple"}')), ] ) @@ -1698,6 +1730,10 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen index=0, part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id='pyd_ai_tool_call_id__ret_a'), + ), FunctionToolCallEvent(part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr())), FunctionToolResultEvent( result=ToolReturnPart( @@ -1711,6 +1747,7 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='{"ret_a":')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='"a-apple"}')), + PartEndEvent(index=0, part=TextPart(content='{"ret_a":"a-apple"}')), ] ) @@ -1733,7 +1770,7 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen async with test_agent.run_stream('Hello', event_stream_handler=event_stream_handler) as result: assert [c async for c in result.stream_output(debounce_by=None)] == snapshot( - ['{"ret_a":', '{"ret_a":"a-apple"}', '{"ret_a":"a-apple"}'] + ['{"ret_a":', '{"ret_a":"a-apple"}'] ) assert events == snapshot( @@ -1742,6 +1779,10 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen index=0, part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id='pyd_ai_tool_call_id__ret_a'), + ), FunctionToolCallEvent(part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr())), FunctionToolResultEvent( result=ToolReturnPart( @@ -1781,6 +1822,10 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen index=0, part=ToolCallPart(tool_name='get_image', args={}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='get_image', args={}, tool_call_id='pyd_ai_tool_call_id__get_image'), + ), FunctionToolCallEvent(part=ToolCallPart(tool_name='get_image', args={}, tool_call_id=IsStr())), FunctionToolResultEvent( result=ToolReturnPart( @@ -1802,6 +1847,7 @@ async def event_stream_handler(ctx: RunContext[None], stream: AsyncIterable[Agen PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='{"get_image":"See ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='file ')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='bd38f5"}')), + PartEndEvent(index=0, part=TextPart(content='{"get_image":"See file bd38f5"}')), ] ) @@ -1825,6 +1871,10 @@ async def ret_a(x: str) -> str: index=0, part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr()), ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id='pyd_ai_tool_call_id__ret_a'), + ), FunctionToolCallEvent(part=ToolCallPart(tool_name='ret_a', args={'x': 'a'}, tool_call_id=IsStr())), FunctionToolResultEvent( result=ToolReturnPart( @@ -1838,6 +1888,7 @@ async def ret_a(x: str) -> str: FinalResultEvent(tool_name=None, tool_call_id=None), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='{"ret_a":')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='"a-apple"}')), + PartEndEvent(index=0, part=TextPart(content='{"ret_a":"a-apple"}')), AgentRunResultEvent(result=AgentRunResult(output='{"ret_a":"a-apple"}')), ] ) diff --git a/tests/test_temporal.py b/tests/test_temporal.py index 3780335c65..b3fe75d911 100644 --- a/tests/test_temporal.py +++ b/tests/test_temporal.py @@ -27,6 +27,7 @@ ModelResponse, ModelSettings, PartDeltaEvent, + PartEndEvent, PartStartEvent, RetryPromptPart, RunContext, @@ -370,17 +371,23 @@ async def test_complex_agent_run_in_workflow( children=[ BasicSpan(content='ctx.run_step=1'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_country","args":"","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), BasicSpan( - content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_country","args":"{}","tool_call_id":"call_3rqTYrA6H21AYUaRGP4F66oq","id":null,"part_kind":"tool-call"},"next_part_kind":"tool-call","event_kind":"part_end"}' + ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"previous_part_kind":"tool-call","event_kind":"part_start"}' ), BasicSpan( content='{"index":1,"delta":{"tool_name_delta":null,"args_delta":"{}","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":1,"part":{"tool_name":"get_product_name","args":"{}","tool_call_id":"call_Xw9XMKBJU48kAAd78WgIswDx","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -483,7 +490,7 @@ async def test_complex_agent_run_in_workflow( children=[ BasicSpan(content='ctx.run_step=2'), BasicSpan( - content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"get_weather","args":"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"{\\"","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' @@ -503,6 +510,9 @@ async def test_complex_agent_run_in_workflow( BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"\\"}","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"get_weather","args":"{\\"city\\":\\"Mexico City\\"}","tool_call_id":"call_Vz0Sie91Ap56nH0ThKGrZXT7","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -574,7 +584,7 @@ async def test_complex_agent_run_in_workflow( children=[ BasicSpan(content='ctx.run_step=3'), BasicSpan( - content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"event_kind":"part_start"}' + content='{"index":0,"part":{"tool_name":"final_result","args":"","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"previous_part_kind":null,"event_kind":"part_start"}' ), BasicSpan( content='{"tool_name":"final_result","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","event_kind":"final_result"}' @@ -699,6 +709,9 @@ async def test_complex_agent_run_in_workflow( BasicSpan( content='{"index":0,"delta":{"tool_name_delta":null,"args_delta":"]}","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","part_delta_kind":"tool_call"},"event_kind":"part_delta"}' ), + BasicSpan( + content='{"index":0,"part":{"tool_name":"final_result","args":"{\\"answers\\":[{\\"label\\":\\"Capital of the country\\",\\"answer\\":\\"Mexico City\\"},{\\"label\\":\\"Weather in the capital\\",\\"answer\\":\\"Sunny\\"},{\\"label\\":\\"Product Name\\",\\"answer\\":\\"Pydantic AI\\"}]}","tool_call_id":"call_4kc6691zCzjPnOuEtbEGUvz2","id":null,"part_kind":"tool-call"},"next_part_kind":null,"event_kind":"part_end"}' + ), ], ) ], @@ -747,13 +760,25 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z') ), + PartEndEvent( + index=0, + part=ToolCallPart(tool_name='get_country', args='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z'), + next_part_kind='tool-call', + ), PartStartEvent( index=1, part=ToolCallPart(tool_name='get_product_name', args='', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5'), + previous_part_kind='tool-call', ), PartDeltaEvent( index=1, delta=ToolCallPartDelta(args_delta='{}', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5') ), + PartEndEvent( + index=1, + part=ToolCallPart( + tool_name='get_product_name', args='{}', tool_call_id='call_b51ijcpFkDiTQG1bQzsrmtW5' + ), + ), FunctionToolCallEvent( part=ToolCallPart(tool_name='get_country', args='{}', tool_call_id='call_q2UyBRP7eXNTzAoR8lEhjc9Z') ), @@ -798,6 +823,12 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta='"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv') ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='get_weather', args='{"city":"Mexico City"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv' + ), + ), FunctionToolCallEvent( part=ToolCallPart( tool_name='get_weather', args='{"city":"Mexico City"}', tool_call_id='call_LwxJUB9KppVyogRRLQsamRJv' @@ -975,6 +1006,14 @@ async def event_stream_handler( PartDeltaEvent( index=0, delta=ToolCallPartDelta(args_delta=']}', tool_call_id='call_CCGIWaMeYWmxOQ91orkmTvzn') ), + PartEndEvent( + index=0, + part=ToolCallPart( + tool_name='final_result', + args='{"answers":[{"label":"Capital","answer":"The capital of Mexico is Mexico City."},{"label":"Weather","answer":"The weather in Mexico City is currently sunny."},{"label":"Product Name","answer":"The product name is Pydantic AI."}]}', + tool_call_id='call_CCGIWaMeYWmxOQ91orkmTvzn', + ), + ), ] ) @@ -1141,6 +1180,7 @@ async def test_temporal_agent_run_stream_events(allow_model_requests: None): PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' Mexico')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' City')), PartDeltaEvent(index=0, delta=TextPartDelta(content_delta='.')), + PartEndEvent(index=0, part=TextPart(content='The capital of Mexico is Mexico City.')), AgentRunResultEvent(result=AgentRunResult(output='The capital of Mexico is Mexico City.')), ] ) diff --git a/tests/test_ui.py b/tests/test_ui.py new file mode 100644 index 0000000000..38f9950ad5 --- /dev/null +++ b/tests/test_ui.py @@ -0,0 +1,678 @@ +from __future__ import annotations + +from collections.abc import AsyncIterator, MutableMapping, Sequence +from dataclasses import dataclass, field +from functools import cached_property +from typing import Any + +import pytest +from inline_snapshot import snapshot +from pydantic import BaseModel + +from pydantic_ai import Agent +from pydantic_ai._run_context import AgentDepsT +from pydantic_ai.builtin_tools import WebSearchTool +from pydantic_ai.messages import ( + BinaryImage, + BuiltinToolCallPart, + BuiltinToolReturnPart, + FilePart, + FinalResultEvent, + FunctionToolCallEvent, + FunctionToolResultEvent, + ModelMessage, + ModelRequest, + PartDeltaEvent, + PartEndEvent, + PartStartEvent, + TextPart, + TextPartDelta, + ThinkingPart, + ThinkingPartDelta, + ToolCallPart, + ToolCallPartDelta, +) +from pydantic_ai.models.function import ( + AgentInfo, + BuiltinToolCallsReturns, + DeltaThinkingCalls, + DeltaThinkingPart, + DeltaToolCall, + DeltaToolCalls, + FunctionModel, +) +from pydantic_ai.models.test import TestModel +from pydantic_ai.output import OutputDataT +from pydantic_ai.run import AgentRunResult, AgentRunResultEvent +from pydantic_ai.tools import ToolDefinition +from pydantic_ai.toolsets import AbstractToolset, ExternalToolset +from pydantic_ai.ui import NativeEvent, UIAdapter, UIEventStream + +from .conftest import try_import + +with try_import() as starlette_import_successful: + from starlette.requests import Request + from starlette.responses import StreamingResponse + + +pytestmark = [ + pytest.mark.anyio, + pytest.mark.vcr, + pytest.mark.filterwarnings( + 'ignore:`BuiltinToolCallEvent` is deprecated, look for `PartStartEvent` and `PartDeltaEvent` with `BuiltinToolCallPart` instead.:DeprecationWarning' + ), + pytest.mark.filterwarnings( + 'ignore:`BuiltinToolResultEvent` is deprecated, look for `PartStartEvent` and `PartDeltaEvent` with `BuiltinToolReturnPart` instead.:DeprecationWarning' + ), +] + + +class DummyUIRunInput(BaseModel): + messages: list[ModelMessage] = field(default_factory=list) + tool_defs: list[ToolDefinition] = field(default_factory=list) + state: dict[str, Any] = field(default_factory=dict) + + +class DummyUIState(BaseModel): + country: str | None = None + + +@dataclass +class DummyUIDeps: + state: DummyUIState + + +class DummyUIAdapter(UIAdapter[DummyUIRunInput, ModelMessage, str, AgentDepsT, OutputDataT]): + @classmethod + def build_run_input(cls, body: bytes) -> DummyUIRunInput: + return DummyUIRunInput.model_validate_json(body) + + @classmethod + def load_messages(cls, messages: Sequence[ModelMessage]) -> list[ModelMessage]: + return list(messages) + + def build_event_stream(self) -> UIEventStream[DummyUIRunInput, str, AgentDepsT, OutputDataT]: + return DummyUIEventStream[AgentDepsT, OutputDataT](self.run_input, accept=self.accept) + + @cached_property + def messages(self) -> list[ModelMessage]: + return self.load_messages(self.run_input.messages) + + @cached_property + def state(self) -> dict[str, Any] | None: + return self.run_input.state + + @cached_property + def toolset(self) -> AbstractToolset[AgentDepsT] | None: + return ExternalToolset(self.run_input.tool_defs) if self.run_input.tool_defs else None + + +class DummyUIEventStream(UIEventStream[DummyUIRunInput, str, AgentDepsT, OutputDataT]): + @property + def response_headers(self) -> dict[str, str]: + return {'x-test': 'test'} + + def encode_event(self, event: str) -> str: + return event + + async def handle_event(self, event: NativeEvent) -> AsyncIterator[str]: + # yield f'[{event.event_kind}]' + async for e in super().handle_event(event): + yield e + + async def handle_part_start(self, event: PartStartEvent) -> AsyncIterator[str]: + # yield f'[{event.part.part_kind}]' + async for e in super().handle_part_start(event): + yield e + + async def handle_part_delta(self, event: PartDeltaEvent) -> AsyncIterator[str]: + # yield f'[>{event.delta.part_delta_kind}]' + async for e in super().handle_part_delta(event): + yield e + + async def handle_part_end(self, event: PartEndEvent) -> AsyncIterator[str]: + # yield f'[/{event.part.part_kind}]' + async for e in super().handle_part_end(event): + yield e + + async def handle_text_start(self, part: TextPart, follows_text: bool = False) -> AsyncIterator[str]: + yield f'{part.content}' + + async def handle_text_delta(self, delta: TextPartDelta) -> AsyncIterator[str]: + yield delta.content_delta + + async def handle_text_end(self, part: TextPart, followed_by_text: bool = False) -> AsyncIterator[str]: + yield f'' + + async def handle_thinking_start(self, part: ThinkingPart, follows_thinking: bool = False) -> AsyncIterator[str]: + yield f'{part.content}' + + async def handle_thinking_delta(self, delta: ThinkingPartDelta) -> AsyncIterator[str]: + yield str(delta.content_delta) + + async def handle_thinking_end(self, part: ThinkingPart, followed_by_thinking: bool = False) -> AsyncIterator[str]: + yield f'' + + async def handle_tool_call_start(self, part: ToolCallPart) -> AsyncIterator[str]: + yield f'{part.args}' + + async def handle_tool_call_delta(self, delta: ToolCallPartDelta) -> AsyncIterator[str]: + yield str(delta.args_delta) + + async def handle_tool_call_end(self, part: ToolCallPart) -> AsyncIterator[str]: + yield f'' + + async def handle_builtin_tool_call_start(self, part: BuiltinToolCallPart) -> AsyncIterator[str]: + yield f'{part.args}' + + async def handle_builtin_tool_call_end(self, part: BuiltinToolCallPart) -> AsyncIterator[str]: + yield f'' + + async def handle_builtin_tool_return(self, part: BuiltinToolReturnPart) -> AsyncIterator[str]: + yield f'{part.content}' + + async def handle_file(self, part: FilePart) -> AsyncIterator[str]: + yield f'' + + async def handle_final_result(self, event: FinalResultEvent) -> AsyncIterator[str]: + yield f'' + + async def handle_function_tool_call(self, event: FunctionToolCallEvent) -> AsyncIterator[str]: + yield f'{event.part.args}' + + async def handle_function_tool_result(self, event: FunctionToolResultEvent) -> AsyncIterator[str]: + yield f'{event.result.content}' + + async def handle_run_result(self, event: AgentRunResultEvent) -> AsyncIterator[str]: + yield f'{event.result.output}' + + async def before_stream(self) -> AsyncIterator[str]: + yield '' + + async def before_response(self) -> AsyncIterator[str]: + yield '' + + async def after_response(self) -> AsyncIterator[str]: + yield '' + + async def before_request(self) -> AsyncIterator[str]: + yield '' + + async def after_request(self) -> AsyncIterator[str]: + yield '' + + async def after_stream(self) -> AsyncIterator[str]: + yield '' + + async def on_error(self, error: Exception) -> AsyncIterator[str]: + yield f'{str(error)}' + + +async def test_run_stream_text_and_thinking(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaThinkingCalls | str]: + yield {0: DeltaThinkingPart(content='Half of ')} + yield {0: DeltaThinkingPart(content='a thought')} + yield {1: DeltaThinkingPart(content='Another thought')} + yield {2: DeltaThinkingPart(content='And one more')} + yield 'Half of ' + yield 'some text' + yield {5: DeltaThinkingPart(content='More thinking')} + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Tell me about Hello World')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + 'Half of ', + 'a thought', + '', + 'Another thought', + '', + 'And one more', + '', + 'Half of ', + '', + 'some text', + '', + 'More thinking', + '', + '', + 'Half of some text', + '', + ] + ) + + +async def test_event_stream_back_to_back_text(): + async def event_generator(): + yield PartStartEvent(index=0, part=TextPart(content='Hello')) + yield PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=0, part=TextPart(content='Hello world'), next_part_kind='text') + yield PartStartEvent(index=1, part=TextPart(content='Goodbye'), previous_part_kind='text') + yield PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=1, part=TextPart(content='Goodbye world')) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + event_stream = DummyUIEventStream(run_input=request) + events = [event async for event in event_stream.transform_stream(event_generator())] + + assert events == snapshot( + [ + '', + '', + 'Hello', + ' world', + '', + 'Goodbye', + ' world', + '', + '', + '', + ] + ) + + +async def test_run_stream_builtin_tool_call(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[BuiltinToolCallsReturns | DeltaToolCalls | str]: + yield { + 0: BuiltinToolCallPart( + tool_name=WebSearchTool.kind, + args='{"query":', + tool_call_id='search_1', + provider_name='function', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + yield { + 1: BuiltinToolReturnPart( + tool_name=WebSearchTool.kind, + content={ + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + }, + tool_call_id='search_1', + provider_name='function', + ) + } + yield 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ' + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Tell me about Hello World')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + '{"query":', + '"Hello world"}', + "", + "{'results': [{'title': '\"Hello, World!\" program', 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program'}]}", + 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + '', + '', + '', + 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + '', + ] + ) + + +async def test_run_stream_tool_call(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + if len(messages) == 1: + yield { + 0: DeltaToolCall( + name='web_search', + json_args='{"query":', + tool_call_id='search_1', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + else: + yield 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ' + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + @agent.tool_plain + async def web_search(query: str) -> dict[str, list[dict[str, str]]]: + return { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + } + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Tell me about Hello World')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + '{"query":', + '"Hello world"}', + "", + '', + '', + '{"query":"Hello world"}', + "{'results': [{'title': '\"Hello, World!\" program', 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program'}]}", + '', + '', + 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + '', + '', + '', + 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + '', + ] + ) + + +async def test_event_stream_file(): + async def event_generator(): + yield PartStartEvent(index=0, part=FilePart(content=BinaryImage(data=b'fake', media_type='image/png'))) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + event_stream = DummyUIEventStream(run_input=request) + events = [event async for event in event_stream.transform_stream(event_generator())] + + assert events == snapshot( + [ + '', + '', + "", + '', + '', + ] + ) + + +async def test_run_stream_external_tools(): + agent = Agent(model=TestModel()) + + request = DummyUIRunInput( + messages=[ModelRequest.user_text_prompt('Call a tool')], + tool_defs=[ToolDefinition(name='external_tool')], + ) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + "{}", + '', + "", + '', + '', + "{}", + '', + "DeferredToolRequests(calls=[ToolCallPart(tool_name='external_tool', args={}, tool_call_id='pyd_ai_tool_call_id__external_tool')], approvals=[])", + '', + ] + ) + + +async def test_run_stream_output_tool(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + yield { + 0: DeltaToolCall( + name='final_result', + json_args='{"query":', + tool_call_id='search_1', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + + def web_search(query: str) -> dict[str, list[dict[str, str]]]: + return { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + } + + agent = Agent(model=FunctionModel(stream_function=stream_function), output_type=web_search) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Tell me about Hello World')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + '{"query":', + "", + '"Hello world"}', + "", + '', + '', + "Final result processed.", + '', + "{'results': [{'title': '\"Hello, World!\" program', 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program'}]}", + '', + ] + ) + + +async def test_run_stream_response_error(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + yield { + 0: DeltaToolCall( + name='unknown_tool', + ) + } + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Tell me about Hello World')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + "None", + "", + '', + '', + "None", + "Unknown tool name: 'unknown_tool'. No tools available.", + '', + '', + "None", + "", + "Exceeded maximum retries (1) for output validation", + '', + '', + ] + ) + + +async def test_run_stream_request_error(): + agent = Agent(model=TestModel()) + + @agent.tool_plain + async def tool(query: str) -> str: + raise ValueError('Unknown tool') + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream()] + + assert events == snapshot( + [ + '', + '', + "{'query': 'a'}", + "", + '', + '', + "{'query': 'a'}", + "Unknown tool", + '', + '', + ] + ) + + +async def test_run_stream_on_complete_error(): + agent = Agent(model=TestModel()) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + + def raise_error(run_result: AgentRunResult[Any]) -> None: + raise ValueError('Faulty on_complete') + + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream(on_complete=raise_error)] + + assert events == snapshot( + [ + '', + '', + '', + '', + 'success ', + '(no ', + 'tool ', + 'calls)', + '', + '', + "Faulty on_complete", + '', + ] + ) + + +async def test_run_stream_on_complete(): + agent = Agent(model=TestModel()) + + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + + async def on_complete(run_result: AgentRunResult[Any]) -> AsyncIterator[str]: + yield '' + + adapter = DummyUIAdapter(agent, request) + events = [event async for event in adapter.run_stream(on_complete=on_complete)] + + assert events == snapshot( + [ + '', + '', + '', + '', + 'success ', + '(no ', + 'tool ', + 'calls)', + '', + '', + '', + 'success (no tool calls)', + '', + ] + ) + + +@pytest.mark.skipif(not starlette_import_successful, reason='Starlette is not installed') +async def test_adapter_dispatch_request(): + agent = Agent(model=TestModel()) + request = DummyUIRunInput(messages=[ModelRequest.user_text_prompt('Hello')]) + + async def receive() -> dict[str, Any]: + return {'type': 'http.request', 'body': request.model_dump_json().encode('utf-8')} + + starlette_request = Request( + scope={ + 'type': 'http', + 'method': 'POST', + 'headers': [ + (b'content-type', b'application/json'), + ], + }, + receive=receive, + ) + + response = await DummyUIAdapter.dispatch_request(starlette_request, agent=agent) + + assert isinstance(response, StreamingResponse) + + chunks: list[MutableMapping[str, Any]] = [] + + async def send(data: MutableMapping[str, Any]) -> None: + chunks.append(data) + + await response.stream_response(send) + + assert chunks == snapshot( + [ + { + 'type': 'http.response.start', + 'status': 200, + 'headers': [(b'x-test', b'test'), (b'content-type', b'text/event-stream; charset=utf-8')], + }, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'success ', 'more_body': True}, + {'type': 'http.response.body', 'body': b'(no ', 'more_body': True}, + {'type': 'http.response.body', 'body': b'tool ', 'more_body': True}, + {'type': 'http.response.body', 'body': b'calls)', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + { + 'type': 'http.response.body', + 'body': b'success (no tool calls)', + 'more_body': True, + }, + {'type': 'http.response.body', 'body': b'', 'more_body': True}, + {'type': 'http.response.body', 'body': b'', 'more_body': False}, + ] + ) diff --git a/tests/test_vercel_ai.py b/tests/test_vercel_ai.py new file mode 100644 index 0000000000..085cd38631 --- /dev/null +++ b/tests/test_vercel_ai.py @@ -0,0 +1,1966 @@ +from __future__ import annotations + +import json +from collections.abc import AsyncIterator, MutableMapping +from typing import Any, cast + +import pytest +from inline_snapshot import snapshot + +from pydantic_ai import Agent +from pydantic_ai.builtin_tools import WebSearchTool +from pydantic_ai.messages import ( + AudioUrl, + BinaryContent, + BinaryImage, + BuiltinToolCallPart, + BuiltinToolReturnPart, + DocumentUrl, + FilePart, + ImageUrl, + ModelMessage, + ModelRequest, + ModelResponse, + PartDeltaEvent, + PartEndEvent, + PartStartEvent, + RetryPromptPart, + SystemPromptPart, + TextPart, + TextPartDelta, + ThinkingPart, + ToolCallPart, + ToolReturnPart, + UserPromptPart, + VideoUrl, +) +from pydantic_ai.models.function import ( + AgentInfo, + BuiltinToolCallsReturns, + DeltaThinkingCalls, + DeltaThinkingPart, + DeltaToolCall, + DeltaToolCalls, + FunctionModel, +) +from pydantic_ai.models.test import TestModel +from pydantic_ai.run import AgentRunResult +from pydantic_ai.ui.vercel_ai import VercelAIAdapter, VercelAIEventStream +from pydantic_ai.ui.vercel_ai.request_types import ( + DynamicToolOutputAvailablePart, + FileUIPart, + ReasoningUIPart, + SubmitMessage, + TextUIPart, + ToolInputAvailablePart, + ToolOutputAvailablePart, + ToolOutputErrorPart, + UIMessage, +) +from pydantic_ai.ui.vercel_ai.response_types import BaseChunk, DataChunk + +from .conftest import IsDatetime, IsSameStr, IsStr, try_import + +with try_import() as starlette_import_successful: + from starlette.requests import Request + from starlette.responses import StreamingResponse + +with try_import() as openai_import_successful: + from pydantic_ai.models.openai import OpenAIResponsesModel + from pydantic_ai.providers.openai import OpenAIProvider + + +pytestmark = [ + pytest.mark.anyio, + pytest.mark.vcr, + pytest.mark.filterwarnings( + 'ignore:`BuiltinToolCallEvent` is deprecated, look for `PartStartEvent` and `PartDeltaEvent` with `BuiltinToolCallPart` instead.:DeprecationWarning' + ), + pytest.mark.filterwarnings( + 'ignore:`BuiltinToolResultEvent` is deprecated, look for `PartStartEvent` and `PartDeltaEvent` with `BuiltinToolReturnPart` instead.:DeprecationWarning' + ), +] + + +@pytest.mark.skipif(not openai_import_successful(), reason='OpenAI not installed') +async def test_run(allow_model_requests: None, openai_api_key: str): + model = OpenAIResponsesModel('gpt-5', provider=OpenAIProvider(api_key=openai_api_key)) + agent = Agent(model=model, builtin_tools=[WebSearchTool()]) + + data = SubmitMessage( + trigger='submit-message', + id='bvQXcnrJ4OA2iRKU', + messages=[ + UIMessage( + id='BeuwNtYIjJuniHbR', + role='user', + parts=[ + TextUIPart( + text="""Use a tool + + """, + ) + ], + ), + UIMessage( + id='bylfKVeyoR901rax', + role='assistant', + parts=[ + TextUIPart( + text='''I\'d be happy to help you use a tool! However, I need more information about what you\'d like to do. I have access to tools for searching and retrieving documentation for two products: + + 1. **Pydantic AI** (pydantic-ai) - an open source agent framework library + 2. **Pydantic Logfire** (logfire) - an observability platform + + I can help you with: + - Searching the documentation for specific topics or questions + - Getting the table of contents to see what documentation is available + - Retrieving specific documentation files + + What would you like to learn about or search for? Please let me know: + - Which product you\'re interested in (Pydantic AI or Logfire) + - What specific topic, feature, or question you have + + For example, you could ask something like "How do I get started with Pydantic AI?" or "Show me the table of contents for Logfire documentation."''', + state='streaming', + ) + ], + ), + UIMessage( + id='MTdh4Ie641kDuIRh', + role='user', + parts=[TextUIPart(type='text', text='Give me the ToCs', state=None, provider_metadata=None)], + ), + UIMessage( + id='3XlOBgFwaf7GsS4l', + role='assistant', + parts=[ + TextUIPart( + text="I'll get the table of contents for both repositories.", + state='streaming', + ), + ToolOutputAvailablePart( + type='tool-get_table_of_contents', + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + state='output-available', + input={'repo': 'pydantic-ai'}, + output="[Scrubbed due to 'API Key']", + ), + ToolOutputAvailablePart( + type='tool-get_table_of_contents', + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + state='output-available', + input={'repo': 'logfire'}, + output="[Scrubbed due to 'Auth']", + ), + TextUIPart( + text="""Here are the Table of Contents for both repositories:... Both products are designed to work together - Pydantic AI for building AI agents and Logfire for observing and monitoring them in production.""", + state='streaming', + ), + ], + ), + UIMessage( + id='QVypsUU4swQ1Loxq', + role='user', + parts=[ + TextUIPart( + text='How do I get FastAPI instrumentation to include the HTTP request and response', + ) + ], + ), + ], + ) + + adapter = VercelAIAdapter(agent, run_input=data) + assert adapter.messages == snapshot( + [ + ModelRequest( + parts=[ + UserPromptPart( + content="""\ +Use a tool + + \ +""", + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + TextPart( + content="""\ +I'd be happy to help you use a tool! However, I need more information about what you'd like to do. I have access to tools for searching and retrieving documentation for two products: + + 1. **Pydantic AI** (pydantic-ai) - an open source agent framework library + 2. **Pydantic Logfire** (logfire) - an observability platform + + I can help you with: + - Searching the documentation for specific topics or questions + - Getting the table of contents to see what documentation is available + - Retrieving specific documentation files + + What would you like to learn about or search for? Please let me know: + - Which product you're interested in (Pydantic AI or Logfire) + - What specific topic, feature, or question you have + + For example, you could ask something like "How do I get started with Pydantic AI?" or "Show me the table of contents for Logfire documentation."\ +""" + ) + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + UserPromptPart( + content='Give me the ToCs', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + TextPart(content="I'll get the table of contents for both repositories."), + ToolCallPart( + tool_name='get_table_of_contents', + args={'repo': 'pydantic-ai'}, + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + ), + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + ToolReturnPart( + tool_name='get_table_of_contents', + content="[Scrubbed due to 'API Key']", + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + ToolCallPart( + tool_name='get_table_of_contents', + args={'repo': 'logfire'}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + ) + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + ToolReturnPart( + tool_name='get_table_of_contents', + content="[Scrubbed due to 'Auth']", + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + TextPart( + content='Here are the Table of Contents for both repositories:... Both products are designed to work together - Pydantic AI for building AI agents and Logfire for observing and monitoring them in production.' + ) + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + UserPromptPart( + content='How do I get FastAPI instrumentation to include the HTTP request and response', + timestamp=IsDatetime(), + ) + ] + ), + ] + ) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":"OpenTelemetry FastAPI instrumentation capture request and response body","type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e647f909248191bfe8d05eeed67645', + 'toolName': 'web_search', + 'input': { + 'query': 'OpenTelemetry FastAPI instrumentation capture request and response body', + 'type': 'search', + }, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY Python","type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e647fb73c48191b0bdb147c3a0d22c', + 'toolName': 'web_search', + 'input': {'query': 'OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY Python', 'type': 'search'}, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":"OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY opentelemetry python","type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e647fee97c8191919865e0c0a78bba', + 'toolName': 'web_search', + 'input': {'query': 'OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY opentelemetry python', 'type': 'search'}, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":"site:github.com open-telemetry/opentelemetry-python-contrib OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY","type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e64803f27c81918a39ce50cb8dfbc2', + 'toolName': 'web_search', + 'input': { + 'query': 'site:github.com open-telemetry/opentelemetry-python-contrib OTEL_INSTRUMENTATION_HTTP_CAPTURE_BODY', + 'type': 'search', + }, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":null,"type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e6480ac0888191a7897231e6ca9911', + 'toolName': 'web_search', + 'input': {'query': None, 'type': 'search'}, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":null,"type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e6480e11208191834104e1aaab1148', + 'toolName': 'web_search', + 'input': {'query': None, 'type': 'search'}, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'tool-input-start', 'toolCallId': IsStr(), 'toolName': 'web_search', 'providerExecuted': True}, + { + 'type': 'tool-input-delta', + 'toolCallId': IsStr(), + 'inputTextDelta': '{"query":"OTEL_PYTHON_LOG_CORRELATION environment variable","type":"search"}', + }, + { + 'type': 'tool-input-available', + 'toolCallId': 'ws_00e767404995b9950068e648118bf88191aa7f804637c45b32', + 'toolName': 'web_search', + 'input': {'query': 'OTEL_PYTHON_LOG_CORRELATION environment variable', 'type': 'search'}, + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'openai'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': IsStr(), + 'output': {'status': 'completed'}, + 'providerExecuted': True, + }, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'text-start', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +Short answer: +- Default\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' FastAPI/OpenTelemetry', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': ' instrumentation already records method', + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '/route/status', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +. +- To also\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' include HTTP headers', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ', set', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' the capture-', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'headers env', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + vars. +-\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' To include request', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '/response bodies', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ', use the', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' FastAPI', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '/ASGI', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' request/response', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' hooks and add', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' the', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' payload to', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' the span yourself', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' (with red', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'action/size', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + limits). + +How\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' to do it', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + + +1)\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' Enable header capture', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' (server side', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +) +- Choose\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' just the', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' headers you need; avoid', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': ' sensitive ones or sanitize', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + them. + +export OTEL\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': '_INSTRUMENTATION_HTTP_CAPTURE', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': '_HEADERS_SERVER_REQUEST="content', + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '-type,user', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '-agent"\n', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': 'export OTEL_INSTRUMENTATION', + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_HTTP_CAPTURE_HEADERS', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': '_SERVER_RESPONSE="content-type"\n', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': 'export OTEL_INSTRUMENTATION_HTTP', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ +_CAPTURE_HEADERS_SANITIZE_FIELDS="authorization,set-cookie" + +This makes headers appear on spans as http.request.header.* and http.response.header.*. ([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html)) + +2)\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': ' Add hooks to capture request', + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '/response bodies', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + +Note:\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': IsStr(), 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' a built-in Python', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' env', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' var to', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' auto-capture', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' HTTP bodies for Fast', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'API/AS', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'GI. Use', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' hooks to look at', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' ASGI receive', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '/send events and', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' attach (tr', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'uncated) bodies', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' as span attributes', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +. + +from\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' fastapi import', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' FastAPI', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + +from opente\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'lemetry.trace', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' import Span', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + +from opente\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'lemetry.instrument', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'ation.fastapi import', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' FastAPIInstrument', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +or + +MAX\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_BYTES = ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '2048 ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' # keep this', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' small in prod', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + + +def client\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_request_hook(span', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ': Span,', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' scope: dict', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ', message:', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + dict): + \ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' if span and', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' span.is_record', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'ing() and', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' message.get("', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'type") ==', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' "http.request', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +": + body\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' = message.get', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '("body")', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' or b"', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +" + if\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + body: + \ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' span.set_attribute', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +( + "\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'http.request.body', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +", + body\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '[:MAX_BYTES', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '].decode("', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'utf-8', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '", "replace', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +"), + ) +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + +def client_response\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_hook(span:', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' Span, scope', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ': dict,', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' message: dict', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +): + if\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' span and span', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '.is_recording', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '() and message', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '.get("type', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '") == "', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'http.response.body', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +": + body\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' = message.get', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '("body")', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' or b"', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +" + if\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + body: + \ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' span.set_attribute', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +( + "\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'http.response.body', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +", + body\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '[:MAX_BYTES', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '].decode("', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'utf-8', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '", "replace', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +"), + ) +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + +app = Fast\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ +API() +Fast\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'APIInstrumentor', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '.instrument_app(', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + + app,\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + + client_request\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_hook=client', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +_request_hook, + \ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' client_response_hook', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '=client_response', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ +_hook, +) +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + +- The hooks\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' receive the AS', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'GI event dict', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 's: http', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '.request (with', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' body/more', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '_body) and', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' http.response.body', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '. If your', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' bodies can be', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' chunked,', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' you may need', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' to accumulate across', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' calls when message', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '.get("more', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '_body") is', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' True. ', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': '([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html)', + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ')', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + + +3)\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' Be careful with', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' PII and', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + size +-\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' Always limit size', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' and consider redaction', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' before putting payloads', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + on spans. +-\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' Use the sanitize', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' env var above', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' for sensitive headers', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '. ', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': '([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/fastapi/fastapi.html))\n', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + +Optional: correlate logs\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + with traces +-\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' If you also want', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' request/response', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' details in logs with', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' trace IDs, enable', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' Python log correlation:\n', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + +export OTEL_P\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'YTHON_LOG_COR', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'RELATION=true', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + + +or programmatically\ +""", + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ +: +from opente\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'lemetry.instrumentation', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': '.logging import LoggingInstrument', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ +or +LoggingInstrument\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': 'or().instrument(set', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '_logging_format=True)\n', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': """\ + +This injects trace\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': '_id/span_id into', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' log records so you', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' can line up logs', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' with the span that', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' carries the HTTP payload', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' attributes. ', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': '([opentelemetry-python-contrib.readthedocs.io](https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/logging/logging.html?utm_source=openai))\n', + 'id': IsStr(), + }, + { + 'type': 'text-delta', + 'delta': """\ + +Want me to tailor\ +""", + 'id': IsStr(), + }, + {'type': 'text-delta', 'delta': ' the hook to only', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' capture JSON bodies,', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' skip binary content,', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' or accumulate chunked', 'id': IsStr()}, + {'type': 'text-delta', 'delta': ' bodies safely?', 'id': IsStr()}, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_text_and_thinking(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaThinkingCalls | str]: + yield {0: DeltaThinkingPart(content='Half of ')} + yield {0: DeltaThinkingPart(content='a thought')} + yield {1: DeltaThinkingPart(content='Another thought')} + yield {2: DeltaThinkingPart(content='And one more')} + yield 'Half of ' + yield 'some text' + yield {5: DeltaThinkingPart(content='More thinking')} + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Tell me about Hello World')], + ), + ], + ) + + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-delta', 'id': IsStr(), 'delta': 'Half of '}, + {'type': 'reasoning-delta', 'id': IsStr(), 'delta': 'a thought'}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-delta', 'id': IsStr(), 'delta': 'Another thought'}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-delta', 'id': IsStr(), 'delta': 'And one more'}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'text-start', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'Half of ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'some text', 'id': IsStr()}, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'reasoning-start', 'id': IsStr()}, + {'type': 'reasoning-delta', 'id': IsStr(), 'delta': 'More thinking'}, + {'type': 'reasoning-end', 'id': IsStr()}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_event_stream_back_to_back_text(): + async def event_generator(): + yield PartStartEvent(index=0, part=TextPart(content='Hello')) + yield PartDeltaEvent(index=0, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=0, part=TextPart(content='Hello world'), next_part_kind='text') + yield PartStartEvent(index=1, part=TextPart(content='Goodbye'), previous_part_kind='text') + yield PartDeltaEvent(index=1, delta=TextPartDelta(content_delta=' world')) + yield PartEndEvent(index=1, part=TextPart(content='Goodbye world')) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + event_stream = VercelAIEventStream(run_input=request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in event_stream.encode_stream(event_stream.transform_stream(event_generator())) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'text-start', 'id': (message_id := IsSameStr())}, + {'type': 'text-delta', 'delta': 'Hello', 'id': message_id}, + {'type': 'text-delta', 'delta': ' world', 'id': message_id}, + {'type': 'text-delta', 'delta': 'Goodbye', 'id': message_id}, + {'type': 'text-delta', 'delta': ' world', 'id': message_id}, + {'type': 'text-end', 'id': message_id}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_builtin_tool_call(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[BuiltinToolCallsReturns | DeltaToolCalls | str]: + yield { + 0: BuiltinToolCallPart( + tool_name=WebSearchTool.kind, + args='{"query":', + tool_call_id='search_1', + provider_name='function', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + yield { + 1: BuiltinToolReturnPart( + tool_name=WebSearchTool.kind, + content={ + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + }, + tool_call_id='search_1', + provider_name='function', + ) + } + yield 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ' + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Tell me about Hello World')], + ), + ], + ) + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'tool-input-start', 'toolCallId': 'search_1', 'toolName': 'web_search', 'providerExecuted': True}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '{"query":'}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '"Hello world"}'}, + { + 'type': 'tool-input-available', + 'toolCallId': 'search_1', + 'toolName': 'web_search', + 'input': '{"query":"Hello world"}', + 'providerExecuted': True, + 'providerMetadata': {'pydantic_ai': {'provider_name': 'function'}}, + }, + { + 'type': 'tool-output-available', + 'toolCallId': 'search_1', + 'output': { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + }, + 'providerExecuted': True, + }, + {'type': 'text-start', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + 'id': IsStr(), + }, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_tool_call(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + if len(messages) == 1: + yield { + 0: DeltaToolCall( + name='web_search', + json_args='{"query":', + tool_call_id='search_1', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + else: + yield 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ' + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + @agent.tool_plain + async def web_search(query: str) -> dict[str, list[dict[str, str]]]: + return { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + } + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Tell me about Hello World')], + ), + ], + ) + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'tool-input-start', 'toolCallId': 'search_1', 'toolName': 'web_search'}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '{"query":'}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '"Hello world"}'}, + { + 'type': 'tool-input-available', + 'toolCallId': 'search_1', + 'toolName': 'web_search', + 'input': '{"query":"Hello world"}', + }, + { + 'type': 'tool-output-available', + 'toolCallId': 'search_1', + 'output': { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + }, + }, + {'type': 'finish-step'}, + {'type': 'start-step'}, + {'type': 'text-start', 'id': IsStr()}, + { + 'type': 'text-delta', + 'delta': 'A "Hello, World!" program is usually a simple computer program that emits (or displays) to the screen (often the console) a message similar to "Hello, World!". ', + 'id': IsStr(), + }, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_event_stream_file(): + async def event_generator(): + yield PartStartEvent(index=0, part=FilePart(content=BinaryImage(data=b'fake', media_type='image/png'))) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + event_stream = VercelAIEventStream(run_input=request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in event_stream.encode_stream(event_stream.transform_stream(event_generator())) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'file', 'url': '', 'mediaType': 'image/png'}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_output_tool(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + yield { + 0: DeltaToolCall( + name='final_result', + json_args='{"query":', + tool_call_id='search_1', + ) + } + yield { + 0: DeltaToolCall( + json_args='"Hello world"}', + tool_call_id='search_1', + ) + } + + def web_search(query: str) -> dict[str, list[dict[str, str]]]: + return { + 'results': [ + { + 'title': '"Hello, World!" program', + 'url': 'https://en.wikipedia.org/wiki/%22Hello,_World!%22_program', + } + ] + } + + agent = Agent(model=FunctionModel(stream_function=stream_function), output_type=web_search) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Tell me about Hello World')], + ), + ], + ) + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'tool-input-start', 'toolCallId': 'search_1', 'toolName': 'final_result'}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '{"query":'}, + {'type': 'tool-input-delta', 'toolCallId': 'search_1', 'inputTextDelta': '"Hello world"}'}, + { + 'type': 'tool-input-available', + 'toolCallId': 'search_1', + 'toolName': 'final_result', + 'input': '{"query":"Hello world"}', + }, + {'type': 'tool-output-available', 'toolCallId': 'search_1', 'output': 'Final result processed.'}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_response_error(): + async def stream_function( + messages: list[ModelMessage], agent_info: AgentInfo + ) -> AsyncIterator[DeltaToolCalls | str]: + yield { + 0: DeltaToolCall( + name='unknown_tool', + ) + } + + agent = Agent(model=FunctionModel(stream_function=stream_function)) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Tell me about Hello World')], + ), + ], + ) + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + { + 'type': 'tool-input-start', + 'toolCallId': IsStr(), + 'toolName': 'unknown_tool', + }, + { + 'type': 'tool-input-available', + 'toolCallId': IsStr(), + 'toolName': 'unknown_tool', + }, + { + 'type': 'tool-output-error', + 'toolCallId': IsStr(), + 'errorText': """\ +Unknown tool name: 'unknown_tool'. No tools available. + +Fix the errors and try again.\ +""", + }, + {'type': 'finish-step'}, + {'type': 'start-step'}, + { + 'type': 'tool-input-start', + 'toolCallId': IsStr(), + 'toolName': 'unknown_tool', + }, + { + 'type': 'tool-input-available', + 'toolCallId': IsStr(), + 'toolName': 'unknown_tool', + }, + {'type': 'error', 'errorText': 'Exceeded maximum retries (1) for output validation'}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_request_error(): + agent = Agent(model=TestModel()) + + @agent.tool_plain + async def tool(query: str) -> str: + raise ValueError('Unknown tool') + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream()) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'tool-input-start', 'toolCallId': 'pyd_ai_tool_call_id__tool', 'toolName': 'tool'}, + {'type': 'tool-input-delta', 'toolCallId': 'pyd_ai_tool_call_id__tool', 'inputTextDelta': '{"query":"a"}'}, + { + 'type': 'tool-input-available', + 'toolCallId': 'pyd_ai_tool_call_id__tool', + 'toolName': 'tool', + 'input': {'query': 'a'}, + }, + {'type': 'error', 'errorText': 'Unknown tool'}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_on_complete_error(): + agent = Agent(model=TestModel()) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + + def raise_error(run_result: AgentRunResult[Any]) -> None: + raise ValueError('Faulty on_complete') + + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream(on_complete=raise_error)) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'text-start', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'success ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '(no ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'tool ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'calls)', 'id': IsStr()}, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'error', 'errorText': 'Faulty on_complete'}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_run_stream_on_complete(): + agent = Agent(model=TestModel()) + + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + + async def on_complete(run_result: AgentRunResult[Any]) -> AsyncIterator[BaseChunk]: + yield DataChunk(type='data-custom', data={'foo': 'bar'}) + + adapter = VercelAIAdapter(agent, request) + events = [ + '[DONE]' if '[DONE]' in event else json.loads(event.removeprefix('data: ')) + async for event in adapter.encode_stream(adapter.run_stream(on_complete=on_complete)) + ] + + assert events == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'text-start', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'success ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '(no ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'tool ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'calls)', 'id': IsStr()}, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'data-custom', 'data': {'foo': 'bar'}}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +@pytest.mark.skipif(not starlette_import_successful, reason='Starlette is not installed') +async def test_adapter_dispatch_request(): + agent = Agent(model=TestModel()) + request = SubmitMessage( + id='foo', + messages=[ + UIMessage( + id='bar', + role='user', + parts=[TextUIPart(text='Hello')], + ), + ], + ) + + async def receive() -> dict[str, Any]: + return {'type': 'http.request', 'body': request.model_dump_json().encode('utf-8')} + + starlette_request = Request( + scope={ + 'type': 'http', + 'method': 'POST', + 'headers': [ + (b'content-type', b'application/json'), + ], + }, + receive=receive, + ) + + response = await VercelAIAdapter.dispatch_request(starlette_request, agent=agent) + + assert isinstance(response, StreamingResponse) + + chunks: list[str | dict[str, Any]] = [] + + async def send(data: MutableMapping[str, Any]) -> None: + body = cast(bytes, data.get('body', b'')).decode('utf-8').strip().removeprefix('data: ') + if not body: + return + if body == '[DONE]': + chunks.append('[DONE]') + else: + chunks.append(json.loads(body)) + + await response.stream_response(send) + + assert chunks == snapshot( + [ + {'type': 'start'}, + {'type': 'start-step'}, + {'type': 'text-start', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'success ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': '(no ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'tool ', 'id': IsStr()}, + {'type': 'text-delta', 'delta': 'calls)', 'id': IsStr()}, + {'type': 'text-end', 'id': IsStr()}, + {'type': 'finish-step'}, + {'type': 'finish'}, + '[DONE]', + ] + ) + + +async def test_adapter_load_messages(): + data = SubmitMessage( + trigger='submit-message', + id='bvQXcnrJ4OA2iRKU', + messages=[ + UIMessage( + id='foobar', + role='system', + parts=[ + TextUIPart( + text='You are a helpful assistant.', + ), + ], + ), + UIMessage( + id='BeuwNtYIjJuniHbR', + role='user', + parts=[ + TextUIPart( + text='Here are some files:', + ), + FileUIPart( + media_type='image/png', + url='', + ), + FileUIPart( + media_type='image/png', + url='https://example.com/image.png', + ), + FileUIPart( + media_type='video/mp4', + url='https://example.com/video.mp4', + ), + FileUIPart( + media_type='audio/mpeg', + url='https://example.com/audio.mp3', + ), + FileUIPart( + media_type='application/pdf', + url='https://example.com/document.pdf', + ), + ], + ), + UIMessage( + id='bylfKVeyoR901rax', + role='assistant', + parts=[ + ReasoningUIPart( + text='I should tell the user how nice those files are and share another one', + ), + TextUIPart( + text='Nice files, here is another one:', + state='streaming', + ), + FileUIPart( + media_type='image/png', + url='', + ), + ], + ), + UIMessage( + id='MTdh4Ie641kDuIRh', + role='user', + parts=[TextUIPart(type='text', text='Give me the ToCs', state=None, provider_metadata=None)], + ), + UIMessage( + id='3XlOBgFwaf7GsS4l', + role='assistant', + parts=[ + TextUIPart( + text="I'll get the table of contents for both repositories.", + state='streaming', + ), + ToolOutputAvailablePart( + type='tool-get_table_of_contents', + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + input={'repo': 'pydantic'}, + output="[Scrubbed due to 'API Key']", + ), + DynamicToolOutputAvailablePart( + tool_name='get_table_of_contents', + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoY', + input={'repo': 'pydantic-ai'}, + output="[Scrubbed due to 'API Key']", + ), + ToolOutputErrorPart( + type='tool-get_table_of_contents', + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + input={'repo': 'logfire'}, + error_text="Can't do that", + ), + ToolOutputAvailablePart( + type='tool-web_search', + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4s', + input={'query': 'What is Logfire?'}, + output="[Scrubbed due to 'Auth']", + provider_executed=True, + call_provider_metadata={'pydantic_ai': {'provider_name': 'openai'}}, + ), + ToolOutputErrorPart( + type='tool-web_search', + tool_call_id='toolu_01W2yGpGQcMx7pXV2z', + input={'query': 'What is Logfire?'}, + error_text="Can't do that", + provider_executed=True, + call_provider_metadata={'pydantic_ai': {'provider_name': 'openai'}}, + ), + TextUIPart( + text="""Here are the Table of Contents for both repositories:... Both products are designed to work together - Pydantic AI for building AI agents and Logfire for observing and monitoring them in production.""", + state='streaming', + ), + FileUIPart( + media_type='application/pdf', + url='data:application/pdf;base64,ZmFrZQ==', + ), + ToolInputAvailablePart( + type='tool-get_table_of_contents', + tool_call_id='toolu_01XX3rjFfG77h', + input={'repo': 'pydantic'}, + ), + ToolInputAvailablePart( + type='tool-web_search', + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4s', + input={'query': 'What is Logfire?'}, + provider_executed=True, + ), + ], + ), + ], + ) + + messages = VercelAIAdapter.load_messages(data.messages) + assert messages == snapshot( + [ + ModelRequest( + parts=[ + SystemPromptPart( + content='You are a helpful assistant.', + timestamp=IsDatetime(), + ), + UserPromptPart( + content=[ + 'Here are some files:', + BinaryImage(data=b'fake', media_type='image/png'), + ImageUrl(url='https://example.com/image.png', _media_type='image/png'), + VideoUrl(url='https://example.com/video.mp4', _media_type='video/mp4'), + AudioUrl(url='https://example.com/audio.mp3', _media_type='audio/mpeg'), + DocumentUrl(url='https://example.com/document.pdf', _media_type='application/pdf'), + ], + timestamp=IsDatetime(), + ), + ] + ), + ModelResponse( + parts=[ + ThinkingPart(content='I should tell the user how nice those files are and share another one'), + TextPart(content='Nice files, here is another one:'), + FilePart(content=BinaryImage(data=b'fake', media_type='image/png')), + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + UserPromptPart( + content='Give me the ToCs', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + TextPart(content="I'll get the table of contents for both repositories."), + ToolCallPart( + tool_name='get_table_of_contents', + args={'repo': 'pydantic'}, + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + ), + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + ToolReturnPart( + tool_name='get_table_of_contents', + content="[Scrubbed due to 'API Key']", + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoYJMQ', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + ToolCallPart( + tool_name='get_table_of_contents', + args={'repo': 'pydantic-ai'}, + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoY', + ) + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + ToolReturnPart( + tool_name='get_table_of_contents', + content="[Scrubbed due to 'API Key']", + tool_call_id='toolu_01XX3rjFfG77h3KCbVHoY', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + ToolCallPart( + tool_name='get_table_of_contents', + args={'repo': 'logfire'}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + ) + ], + timestamp=IsDatetime(), + ), + ModelRequest( + parts=[ + RetryPromptPart( + content="Can't do that", + tool_name='get_table_of_contents', + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4sz9g', + timestamp=IsDatetime(), + ) + ] + ), + ModelResponse( + parts=[ + BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'What is Logfire?'}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4s', + provider_name='openai', + ), + BuiltinToolReturnPart( + tool_name='web_search', + content="[Scrubbed due to 'Auth']", + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4s', + timestamp=IsDatetime(), + provider_name='openai', + ), + BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'What is Logfire?'}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2z', + provider_name='openai', + ), + BuiltinToolReturnPart( + tool_name='web_search', + content={'error_text': "Can't do that", 'is_error': True}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2z', + timestamp=IsDatetime(), + provider_name='openai', + ), + TextPart( + content='Here are the Table of Contents for both repositories:... Both products are designed to work together - Pydantic AI for building AI agents and Logfire for observing and monitoring them in production.' + ), + FilePart(content=BinaryContent(data=b'fake', media_type='application/pdf')), + ToolCallPart( + tool_name='get_table_of_contents', args={'repo': 'pydantic'}, tool_call_id='toolu_01XX3rjFfG77h' + ), + BuiltinToolCallPart( + tool_name='web_search', + args={'query': 'What is Logfire?'}, + tool_call_id='toolu_01W2yGpGQcMx7pXV2zZ4s', + ), + ], + timestamp=IsDatetime(), + ), + ] + ) diff --git a/uv.lock b/uv.lock index 0a4ff18caa..d311853566 100644 --- a/uv.lock +++ b/uv.lock @@ -5321,7 +5321,7 @@ email = [ name = "pydantic-ai" source = { editable = "." } dependencies = [ - { name = "pydantic-ai-slim", extra = ["ag-ui", "anthropic", "bedrock", "cli", "cohere", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "retries", "temporal", "vertexai"] }, + { name = "pydantic-ai-slim", extra = ["ag-ui", "anthropic", "bedrock", "cli", "cohere", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "retries", "temporal", "ui", "vertexai"] }, ] [package.optional-dependencies] @@ -5400,7 +5400,7 @@ lint = [ requires-dist = [ { name = "fasta2a", marker = "extra == 'a2a'", specifier = ">=0.4.1" }, { name = "pydantic-ai-examples", marker = "extra == 'examples'", editable = "examples" }, - { name = "pydantic-ai-slim", extras = ["ag-ui", "anthropic", "bedrock", "cli", "cohere", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "retries", "temporal", "vertexai"], editable = "pydantic_ai_slim" }, + { name = "pydantic-ai-slim", extras = ["ag-ui", "anthropic", "bedrock", "cli", "cohere", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "retries", "temporal", "ui", "vertexai"], editable = "pydantic_ai_slim" }, { name = "pydantic-ai-slim", extras = ["dbos"], marker = "extra == 'dbos'", editable = "pydantic_ai_slim" }, { name = "pydantic-ai-slim", extras = ["outlines-llamacpp"], marker = "extra == 'outlines-llamacpp'", editable = "pydantic_ai_slim" }, { name = "pydantic-ai-slim", extras = ["outlines-mlxlm"], marker = "extra == 'outlines-mlxlm'", editable = "pydantic_ai_slim" }, @@ -5597,6 +5597,9 @@ tavily = [ temporal = [ { name = "temporalio" }, ] +ui = [ + { name = "starlette" }, +] vertexai = [ { name = "google-auth" }, { name = "requests" }, @@ -5642,6 +5645,7 @@ requires-dist = [ { name = "requests", marker = "extra == 'vertexai'", specifier = ">=2.32.2" }, { name = "rich", marker = "extra == 'cli'", specifier = ">=13" }, { name = "starlette", marker = "extra == 'ag-ui'", specifier = ">=0.45.3" }, + { name = "starlette", marker = "extra == 'ui'", specifier = ">=0.45.3" }, { name = "tavily-python", marker = "extra == 'tavily'", specifier = ">=0.5.0" }, { name = "temporalio", marker = "extra == 'temporal'", specifier = "==1.18.0" }, { name = "tenacity", marker = "extra == 'retries'", specifier = ">=8.2.3" }, @@ -5649,7 +5653,7 @@ requires-dist = [ { name = "typing-inspection", specifier = ">=0.4.0" }, { name = "vllm", marker = "python_full_version < '3.12' and extra == 'outlines-vllm-offline'" }, ] -provides-extras = ["a2a", "ag-ui", "anthropic", "bedrock", "cli", "cohere", "dbos", "duckduckgo", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "outlines-llamacpp", "outlines-mlxlm", "outlines-sglang", "outlines-transformers", "outlines-vllm-offline", "prefect", "retries", "tavily", "temporal", "vertexai"] +provides-extras = ["a2a", "ag-ui", "anthropic", "bedrock", "cli", "cohere", "dbos", "duckduckgo", "evals", "fastmcp", "google", "groq", "huggingface", "logfire", "mcp", "mistral", "openai", "outlines-llamacpp", "outlines-mlxlm", "outlines-sglang", "outlines-transformers", "outlines-vllm-offline", "prefect", "retries", "tavily", "temporal", "ui", "vertexai"] [[package]] name = "pydantic-core"