@@ -84,18 +84,18 @@ For **nested metrics** (like CollaborationImpact), `metric_type` contains the ma
84
84
.. note::
85
85
** Unified Data Structure** : InstitutionMetrics uses a unified `MetricData` structure with `entity_id` and `entity_name` fields. For institutions, these fields contain the institution ID and institution name respectively. This structure is compatible with `AuthorMetrics` and other SciVal metric classes, enabling consistent data analysis across different entity types.
86
86
87
- ** Getting All Metrics at Once**
87
+ ** Concatenating Metrics**
88
+
88
89
89
- You can retrieve all available metrics in a single list using the `all_metrics` property :
90
90
91
91
.. code- block:: python
92
92
93
- >> > all_data = institution_metrics.all_metrics
94
- >> > len (all_data)
95
- 28
96
- >> > # Convert to pandas DataFrame for analysis
97
93
>> > import pandas as pd
98
- >> > df = pd.DataFrame(all_data)
94
+ >> >
95
+ >> > collab_data = []
96
+ >> > collab_data.extend(institution_metrics.Collaboration)
97
+ >> > collab_data.extend(institution_metrics.CollaborationImpact)
98
+ >> > df = pd.DataFrame(collab_data)
99
99
>> > df.head()
100
100
101
101
@@ -137,56 +137,56 @@ You can retrieve all available metrics in a single list using the `all_metrics`
137
137
< th> 0 < / th>
138
138
< td> 309021 < / td>
139
139
< td> Humboldt University of Berlin< / td>
140
- <td >Academic-corporate collaboration</td >
141
- <td >AcademicCorporateCollaboration </td >
140
+ < td> Institutional collaboration< / td>
141
+ < td> Collaboration < / td>
142
142
< td> all < / td>
143
- <td >1015 .000000</td >
144
- <td >4.469594 </td >
145
- <td >NaN </td >
143
+ < td> 980 .000000< / td>
144
+ < td> 4.32 < / td>
145
+ < td> None < / td>
146
146
< / tr>
147
147
< tr>
148
148
< th> 1 < / th>
149
149
< td> 309021 < / td>
150
150
< td> Humboldt University of Berlin< / td>
151
- <td >No academic-corporate collaboration</td >
152
- <td >AcademicCorporateCollaboration </td >
151
+ < td> International collaboration< / td>
152
+ < td> Collaboration < / td>
153
153
< td> all < / td>
154
- <td >21694 .000000</td >
155
- <td >95.530410 </td >
156
- <td >NaN </td >
154
+ < td> 12754 .000000< / td>
155
+ < td> 56.16 < / td>
156
+ < td> None < / td>
157
157
< / tr>
158
158
< tr>
159
159
< th> 2 < / th>
160
160
< td> 309021 < / td>
161
161
< td> Humboldt University of Berlin< / td>
162
- <td >Academic-corporate collaboration</td >
163
- <td >AcademicCorporateCollaborationImpact </td >
162
+ < td> National collaboration< / td>
163
+ < td> Collaboration < / td>
164
164
< td> all < / td>
165
- <td >59.104435 </td >
166
- <td >NaN </td >
167
- <td >NaN </td >
165
+ < td> 6728.000000 < / td>
166
+ < td> 29.63 < / td>
167
+ < td> None < / td>
168
168
< / tr>
169
169
< tr>
170
170
< th> 3 < / th>
171
171
< td> 309021 < / td>
172
172
< td> Humboldt University of Berlin< / td>
173
- <td >No academic-corporate collaboration </td >
174
- <td >AcademicCorporateCollaborationImpact </td >
173
+ < td> Single authorship < / td>
174
+ < td> Collaboration < / td>
175
175
< td> all < / td>
176
- <td >14.222181 </td >
177
- <td >NaN </td >
178
- <td >NaN </td >
176
+ < td> 2247.000000 < / td>
177
+ < td> 9.89 < / td>
178
+ < td> None < / td>
179
179
< / tr>
180
180
< tr>
181
181
< th> 4 < / th>
182
182
< td> 309021 < / td>
183
183
< td> Humboldt University of Berlin< / td>
184
- <td >Collaboration</td >
185
184
< td> Institutional collaboration< / td>
185
+ < td> CollaborationImpact< / td>
186
186
< td> all < / td>
187
- <td >980.000000</td >
188
- <td >4.320000</td >
187
+ < td> 8.610204 < / td>
189
188
< td> NaN< / td>
189
+ < td> None < / td>
190
190
< / tr>
191
191
< / tbody>
192
192
< / table>
@@ -204,8 +204,8 @@ You can analyze multiple institutions simultaneously and retrieve metrics `by_ye
204
204
InstitutionMetrics for 2 institution(s):
205
205
- Technical University of Berlin (ID : 309050 )
206
206
- Heidelberg University (ID : 309076 )
207
- >> > # Get all collaboration metrics for all institutions
208
- >> > df = pd.DataFrame(multi_institutions.all_metrics )
207
+ >> > # Get CitedPublications metrics
208
+ >> > df = pd.DataFrame(multi_institutions.CitedPublications )
209
209
>> > df.head()
210
210
211
211
.. raw:: html
@@ -227,6 +227,7 @@ You can analyze multiple institutions simultaneously and retrieve metrics `by_ye
227
227
font- size: 12px ;
228
228
}
229
229
< / style>
230
+ < div>
230
231
< table border=" 1" class =" dataframe" >
231
232
< thead>
232
233
< tr style=" text-align: right;" >
@@ -246,56 +247,111 @@ You can analyze multiple institutions simultaneously and retrieve metrics `by_ye
246
247
< th> 0 < / th>
247
248
< td> 309050 < / td>
248
249
< td> Technical University of Berlin< / td>
249
- < td> AcademicCorporateCollaboration < / td>
250
- < td> Academic - corporate collaboration < / td>
250
+ < td> CitedPublications < / td>
251
+ < td> CitedPublications < / td>
251
252
< td> 2024 < / td>
252
- < td> 282.0 < / td>
253
- < td> 7.770736 < / td>
254
- < td> NaN < / td>
253
+ < td> 2400 < / td>
254
+ < td> 66.133920 < / td>
255
+ < td> None < / td>
255
256
< / tr>
256
257
< tr>
257
258
< th> 1 < / th>
258
259
< td> 309050 < / td>
259
260
< td> Technical University of Berlin< / td>
260
- < td> AcademicCorporateCollaboration < / td>
261
- < td> Academic - corporate collaboration < / td>
261
+ < td> CitedPublications < / td>
262
+ < td> CitedPublications < / td>
262
263
< td> 2020 < / td>
263
- < td> 285.0 < / td>
264
- < td> 7.740358 < / td>
265
- < td> NaN < / td>
264
+ < td> 3294 < / td>
265
+ < td> 89.462250 < / td>
266
+ < td> None < / td>
266
267
< / tr>
267
268
< tr>
268
269
< th> 2 < / th>
269
270
< td> 309050 < / td>
270
271
< td> Technical University of Berlin< / td>
271
- < td> AcademicCorporateCollaboration < / td>
272
- < td> Academic - corporate collaboration < / td>
272
+ < td> CitedPublications < / td>
273
+ < td> CitedPublications < / td>
273
274
< td> 2021 < / td>
274
- < td> 250.0 < / td>
275
- < td> 6.529120 < / td>
276
- < td> NaN < / td>
275
+ < td> 3385 < / td>
276
+ < td> 88.404290 < / td>
277
+ < td> None < / td>
277
278
< / tr>
278
279
< tr>
279
280
< th> 3 < / th>
280
281
< td> 309050 < / td>
281
282
< td> Technical University of Berlin< / td>
282
- < td> AcademicCorporateCollaboration < / td>
283
- < td> Academic - corporate collaboration < / td>
283
+ < td> CitedPublications < / td>
284
+ < td> CitedPublications < / td>
284
285
< td> 2022 < / td>
285
- < td> 249.0 < / td>
286
- < td> 6.709782 < / td>
287
- < td> NaN < / td>
286
+ < td> 3209 < / td>
287
+ < td> 86.472650 < / td>
288
+ < td> None < / td>
288
289
< / tr>
289
290
< tr>
290
291
< th> 4 < / th>
291
292
< td> 309050 < / td>
292
293
< td> Technical University of Berlin< / td>
293
- < td> AcademicCorporateCollaboration < / td>
294
- < td> Academic - corporate collaboration < / td>
294
+ < td> CitedPublications < / td>
295
+ < td> CitedPublications < / td>
295
296
< td> 2023 < / td>
296
- < td> 253.0 < / td>
297
- < td> 6.693122 < / td>
298
- < td> NaN< / td>
297
+ < td> 3044 < / td>
298
+ < td> 80.529100 < / td>
299
+ < td> None < / td>
300
+ < / tr>
301
+ < tr>
302
+ < th> 5 < / th>
303
+ < td> 309076 < / td>
304
+ < td> Heidelberg University< / td>
305
+ < td> CitedPublications< / td>
306
+ < td> CitedPublications< / td>
307
+ < td> 2024 < / td>
308
+ < td> 5937 < / td>
309
+ < td> 72.517410 < / td>
310
+ < td> None < / td>
311
+ < / tr>
312
+ < tr>
313
+ < th> 6 < / th>
314
+ < td> 309076 < / td>
315
+ < td> Heidelberg University< / td>
316
+ < td> CitedPublications< / td>
317
+ < td> CitedPublications< / td>
318
+ < td> 2020 < / td>
319
+ < td> 7423 < / td>
320
+ < td> 92.005455 < / td>
321
+ < td> None < / td>
322
+ < / tr>
323
+ < tr>
324
+ < th> 7 < / th>
325
+ < td> 309076 < / td>
326
+ < td> Heidelberg University< / td>
327
+ < td> CitedPublications< / td>
328
+ < td> CitedPublications< / td>
329
+ < td> 2021 < / td>
330
+ < td> 7828 < / td>
331
+ < td> 90.864770 < / td>
332
+ < td> None < / td>
333
+ < / tr>
334
+ < tr>
335
+ < th> 8 < / th>
336
+ < td> 309076 < / td>
337
+ < td> Heidelberg University< / td>
338
+ < td> CitedPublications< / td>
339
+ < td> CitedPublications< / td>
340
+ < td> 2022 < / td>
341
+ < td> 7354 < / td>
342
+ < td> 88.166885 < / td>
343
+ < td> None < / td>
344
+ < / tr>
345
+ < tr>
346
+ < th> 9 < / th>
347
+ < td> 309076 < / td>
348
+ < td> Heidelberg University< / td>
349
+ < td> CitedPublications< / td>
350
+ < td> CitedPublications< / td>
351
+ < td> 2023 < / td>
352
+ < td> 6921 < / td>
353
+ < td> 85.150100 < / td>
354
+ < td> None < / td>
299
355
< / tr>
300
356
< / tbody>
301
357
< / table>
0 commit comments