-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_finetuning.py
230 lines (175 loc) · 7.47 KB
/
run_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""Fine-tuning BERT from bert-base-uncased or meta-leart weights."""
import os
import sys
import json
import time
import random
import logging
import pathlib
import argparse
import sklearn
import numpy as np
from collections import Counter
from functools import partial
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
from build_dataset import AmazonProductReviews
import torch
from torch.nn import functional as F
from torch.utils.data import (
TensorDataset,
DataLoader,
RandomSampler)
from transformers import BertTokenizer
from models.bert import BertForBinaryClassification
def get_args():
"""Parse arguments."""
parser = argparse.ArgumentParser(description="")
# Model
parser.add_argument("--bert_model", type=str, default="bert-base-uncased")
parser.add_argument("--num_labels", type=int, default=2)
parser.add_argument("--output_dir", type=str, default="results/transfer",
help="Directory for saving checkpoint and log file.")
# Training
parser.add_argument("--data", type=str, default="dataset.json")
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--batch_size", type=int, default=32,
help="Batch size")
parser.add_argument("--logging_steps", type=int, default=10)
parser.add_argument("--num_domain", type=int, default=50)
parser.add_argument("--gpu_id", type=int, default=0)
# Zero shot
parser.add_argument("--zero_shot", type=bool, default=False)
# Optimizer
parser.add_argument("--learning_rate", type=float, default=5e-5)
return parser.parse_args()
def get_output_dir(output_dir, file):
"""Joint path for output directory."""
return pathlib.Path(output_dir,file)
def build_dirs(output_dir, logger):
"""Build hierarchical directories."""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
logger.info(f"Create folder for output directory: {output_dir}")
def load_train_test_examples(data_file, test_domain, num_domain):
"""Load Amazon customer reviews."""
train_examples, test_examples = list(), list()
reviews = json.load(open(data_file))
mention_domain = [r['domain'] for r in reviews if r["domain"] not in test_domain]
domain_cnt = Counter(mention_domain)
num_train_domain = len(domain_cnt)
if num_domain < num_train_domain:
select_domain = list()
for idx, d in enumerate(sorted(domain_cnt.items(), key=lambda kv:int(kv[1]))):
domain, num_examples = d
select_domain.append(domain)
if (idx+1) == num_domain:
break
else:
select_domain = [d for d in domain_cnt]
for review in reviews:
# Low-resource
if review["domain"] in test_domain:
test_examples.append(review)
# High-resource
elif review["domain"] in select_domain:
train_examples.append(review)
return train_examples, test_examples
def set_random_seed(seed):
"""Set new random seed."""
torch.backends.cudnn.determinstic = True
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
def main():
# Training arguments
args = get_args()
SEED = 123
# output dir
output_dir = args.output_dir
# Logger
logger = logging.getLogger(__name__)
build_dirs(output_dir, logger)
build_dirs(pathlib.Path(output_dir, "ckpt"), logger)
log_file = get_output_dir(output_dir, 'example.log')
logging.basicConfig(filename=log_file,
filemode="w",
format="%(asctime)s, %(msecs)d %(name)s %(levelname)s %(message)s",
datefmt="%H:%M:%S",
level=logging.INFO)
# Add console to logger
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logger.addHandler(console)
logger.info(args)
# Saving arguments
write_path = get_output_dir(output_dir, 'hyparams.txt')
with open(write_path, 'w') as f:
json.dump(args.__dict__, f, indent=2)
logger.info(f"Saving hyperparameters to: {write_path}")
########## Load dataset ##########
logger.info("Loading Datasets")
reviews = json.load(open(args.data))
# Train and test example, 21555 and 300
test_domains = ["office_products", "automotive", "computer_&_video_games"]
train_examples, test_examples = load_train_test_examples(args.data, test_domains, args.num_domain)
# Label2idx
label2idx = {"positive": 1, "negative": 0}
train_texts = [exm["text"] for exm in train_examples ]
train_labels = [label2idx[exm["label"]] for exm in train_examples]
test_texts = [exm["text"] for exm in test_examples]
test_labels = [label2idx[exm["label"]] for exm in test_examples]
# Split
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts,
train_labels,
test_size=.2,
random_state=SEED)
# Tokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", do_lower_case=True)
# Encoding
train_encodings = tokenizer(train_texts, truncation=True, padding=True)
val_encodings = tokenizer(val_texts, truncation=True, padding=True)
test_encodings = tokenizer(test_texts, truncation=True, padding=True)
# Datasets
train_dataset = AmazonProductReviews(train_encodings, train_labels)
val_dataset = AmazonProductReviews(val_encodings, val_labels)
test_dataset = AmazonProductReviews(test_encodings, test_labels)
# Train, valid and test dataloader
dataLoader_fn = partial(DataLoader,
batch_size=args.batch_size,
num_workers=2)
train_loader = dataLoader_fn(train_dataset, shuffle=True)
val_loader = dataLoader_fn(val_dataset, shuffle=True)
test_loader = dataLoader_fn(test_dataset, shuffle=False)
### Model ###
model = BertForBinaryClassification(args)
# Perform zero shot
if args.zero_shot:
# Evaluate on test set
acc_test = model.evaluate(test_loader)
logger.info("test accuracy {:8.3f}".format(acc_test))
# Save model
pt_file = get_output_dir(args.output_dir, f"ckpt/transfer.pt")
torch.save(model, pt_file)
logger.info(f"Saving checkpoint to {pt_file}")
return None
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
model.train(train_loader)
acc_val = model.evaluate(val_loader)
logger.info("\n{}\n| end of epoch {:3d} | time: {:5.2f}s | "
"valid accuracy {:8.3f} \n{}".format("-"*59,
epoch,
time.time() - epoch_start_time,
acc_val,
"-"*59))
# Evaluate on test set
acc_test = model.evaluate(test_loader)
logger.info("test accuracy {:8.3f}".format(acc_test))
# Save model
pt_file = get_output_dir(args.output_dir, f"ckpt/transfer.epoch-{epoch}.pt")
torch.save(model, pt_file)
logger.info(f"Saving checkpoint to {pt_file}")
if __name__ == "__main__":
main()