|
279 | 279 | "inputLayer = Input(shape=(X_train.shape[1],))\n",
|
280 | 280 | "x = BatchNormalization()(inputLayer)\n",
|
281 | 281 | "#\n",
|
282 |
| - "x = Dense(20, kernel_initializer='lecun_uniform', name='dense_relu1')(x)\n", |
283 |
| - "x = BatchNormalization()(x)\n", |
284 |
| - "x = Activation(\"relu\")(x)\n", |
285 |
| - "#\n", |
286 | 282 | "x = Dense(10, kernel_initializer='lecun_uniform', name='dense_relu2')(x)\n",
|
287 | 283 | "x = BatchNormalization()(x)\n",
|
288 | 284 | "x = Activation(\"relu\")(x)#\n",
|
|
370 | 366 | "plt.ylabel('Transparency')\n",
|
371 | 367 | "plt.xlabel('Time')\n",
|
372 | 368 | "plt.legend()\n",
|
373 |
| - "plt.ylim((0.5,1))\n", |
| 369 | + "plt.ylim((0.86,0.94))\n", |
374 | 370 | "plt.show()\n",
|
375 | 371 | "\n",
|
376 | 372 | "# true distribution\n",
|
|
379 | 375 | "plt.ylabel('Transparency')\n",
|
380 | 376 | "plt.xlabel('Time')\n",
|
381 | 377 | "plt.legend()\n",
|
382 |
| - "plt.ylim((0.5,1))\n", |
| 378 | + "plt.ylim((0.86,0.94))\n", |
383 | 379 | "plt.show()\n",
|
384 | 380 | "\n",
|
385 | 381 | "\n",
|
386 | 382 | "plt.plot(TimeY_test,Y_test-Y_hat, label = \"Residual\")\n",
|
387 | 383 | "plt.ylabel('Transparency Residual')\n",
|
388 | 384 | "plt.xlabel('Time')\n",
|
| 385 | + "plt.show()\n", |
| 386 | + "\n", |
| 387 | + "plt.plot(TimeY_test,(Y_test-Y_hat)/Y_test*100, label = \"Residual\")\n", |
| 388 | + "plt.ylabel('Transparency % Error')\n", |
| 389 | + "plt.xlabel('Time')\n", |
389 | 390 | "plt.show()"
|
390 | 391 | ]
|
391 | 392 | },
|
|
0 commit comments