diff --git a/examples/vector_databases/elasticsearch/elasticsearch-semantic-search.ipynb b/examples/vector_databases/elasticsearch/elasticsearch-semantic-search.ipynb index dacf58b54d..b5efb2a1d3 100644 --- a/examples/vector_databases/elasticsearch/elasticsearch-semantic-search.ipynb +++ b/examples/vector_databases/elasticsearch/elasticsearch-semantic-search.ipynb @@ -37,14 +37,14 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "8c304b93", "metadata": {}, "outputs": [], "source": [ "# install packages\n", "\n", - "!python3 -m pip install -qU openai pandas wget elasticsearch\n", + "! python3 -m pip install -qU openai pandas wget elasticsearch\n", "\n", "# import modules\n", "\n", @@ -54,7 +54,7 @@ "import zipfile\n", "import pandas as pd\n", "import json\n", - "import openai" + "from openai import OpenAI" ] }, { @@ -321,25 +321,21 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "57385c69", "metadata": {}, "outputs": [], "source": [ - "# Get OpenAI API key\n", - "OPENAI_API_KEY = getpass(\"Enter OpenAI API key\")\n", - "\n", - "# Set API key\n", - "openai.api_key = OPENAI_API_KEY\n", - "\n", - "# Define model\n", - "EMBEDDING_MODEL = \"text-embedding-3-small\"\n", + "# Create OpenAI client\n", + "openai_client = OpenAI()\n", "\n", "# Define question\n", "question = 'Is the Atlantic the biggest ocean in the world?'\n", "\n", - "# Create embedding\n", - "question_embedding = openai.Embedding.create(input=question, model=EMBEDDING_MODEL)\n" + "question_embedding = openai_client.embeddings.create(\n", + " input=question,\n", + " model=\"text-embedding-3-small\"\n", + ")" ] }, { @@ -383,7 +379,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "fc834fdd", "metadata": {}, "outputs": [ @@ -764,7 +760,7 @@ " index = \"wikipedia_vector_index\",\n", " knn={\n", " \"field\": \"content_vector\",\n", - " \"query_vector\": question_embedding[\"data\"][0][\"embedding\"],\n", + " \"query_vector\": question_embedding.data[0].embedding,\n", " \"k\": 10,\n", " \"num_candidates\": 100\n", " }\n", diff --git a/registry.yaml b/registry.yaml index c821bd077c..6d8b6ae325 100644 --- a/registry.yaml +++ b/registry.yaml @@ -866,7 +866,6 @@ - leemthompo tags: - embeddings - - completions - title: Using Hologres as a vector database for OpenAI embeddings path: >-