From e0c3a309872b936d766a1b72c02f3e1cbe7cd381 Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:25:44 +0300 Subject: [PATCH 1/6] Delete lecture_1_intro_knn directory --- lecture_1_intro_knn/README.md | 1 - lecture_1_intro_knn/homework/KNN.ipynb | 778 ------- lecture_1_intro_knn/homework/knn.py | 143 -- lecture_1_intro_knn/homework/metrics.py | 87 - lecture_1_intro_knn/homework/requirements.txt | 5 - .../WorldHappiness_Corruption_2015_2020.csv | 793 ------- .../lecture/ml_01_intro_knn_annotated.pdf | Bin 2902148 -> 0 bytes .../lecture/sklearn_seminar_inclass.ipynb | 1954 ----------------- 8 files changed, 3761 deletions(-) delete mode 100644 lecture_1_intro_knn/README.md delete mode 100644 lecture_1_intro_knn/homework/KNN.ipynb delete mode 100644 lecture_1_intro_knn/homework/knn.py delete mode 100644 lecture_1_intro_knn/homework/metrics.py delete mode 100644 lecture_1_intro_knn/homework/requirements.txt delete mode 100644 lecture_1_intro_knn/lecture/WorldHappiness_Corruption_2015_2020.csv delete mode 100644 lecture_1_intro_knn/lecture/ml_01_intro_knn_annotated.pdf delete mode 100644 lecture_1_intro_knn/lecture/sklearn_seminar_inclass.ipynb diff --git a/lecture_1_intro_knn/README.md b/lecture_1_intro_knn/README.md deleted file mode 100644 index 61dd9a3..0000000 --- a/lecture_1_intro_knn/README.md +++ /dev/null @@ -1 +0,0 @@ -Introduction in ML and KNN algorithm. diff --git a/lecture_1_intro_knn/homework/KNN.ipynb b/lecture_1_intro_knn/homework/KNN.ipynb deleted file mode 100644 index 10332fb..0000000 --- a/lecture_1_intro_knn/homework/KNN.ipynb +++ /dev/null @@ -1,778 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "id": "39a37345-99a6-4b16-9be7-ebdca1414c7f", - "metadata": {}, - "source": [ - "# Домашнее задание №1 - Метод К-ближайших соседей (K-neariest neighbors)\n", - "\n", - "Сегодня мы с вами реализуем наш первый алгоритм машинного обучения, метод К-ближайших соседей. Мы попытаемся решить с помощью него задачи:\n", - "- бинарной классификации (то есть, только двум классам)\n", - "- многоклассовой классификации (то есть, нескольким классам)\n", - "- регрессии (когда зависимая переменная - натуральное число)\n", - "\n", - "Так как методу необходим гиперпараметр (hyperparameter) - количество соседей, то нам нужно научиться подбирать этот параметр. Мы постараемся научиться пользовать numpy для векторизованных вычислений, а также посмотрим на несколько метрик, которые используются в задачах классификации и регрессии.\n", - "\n", - "Перед выполнением задания:\n", - "- установите все необходимые библиотеки, запустив `pip install -r requirements.txt`\n", - "\n", - "Если вы раньше не работали с numpy или позабыли его, то можно вспомнить здесь: \n", - "http://cs231n.github.io/python-numpy-tutorial/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9638c464-806f-41b5-9dfe-1ea2048a1fa1", - "metadata": {}, - "outputs": [], - "source": [ - "import time\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import numpy as np\n", - "import random\n", - "import pandas as pd\n", - "\n", - "\n", - "from sklearn.datasets import fetch_openml\n", - "from sklearn.model_selection import train_test_split\n", - "from knn import KNNClassifier\n", - "from metrics import binary_classification_metrics, multiclass_accuracy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "43bd8dc9-c430-4313-a6a1-4d3e5a7e9c47", - "metadata": {}, - "outputs": [], - "source": [ - "plt.rcParams[\"figure.figsize\"] = 12, 9\n", - "sns.set_style(\"whitegrid\")\n", - "\n", - "SEED = 111\n", - "random.seed(SEED)\n", - "np.random.seed(SEED)" - ] - }, - { - "cell_type": "markdown", - "id": "2867b963-214c-49ea-9460-5b427b56544d", - "metadata": {}, - "source": [ - "## Задание 1. KNN на датасете Fashion-MNIST (10 баллов)" - ] - }, - { - "cell_type": "markdown", - "id": "60a90da7-87ac-42e6-b376-bb34dac2b10b", - "metadata": {}, - "source": [ - "В этом задании вам предстоит поработать с картинками одежды, среди которых можно выделить 10 классов. Данные уже загружены за вас: в переменной X лежат 70000 картинок размером 28 на 28 пикселей, вытянутые в вектор размерностью 784 (28 * 28). Так как данных довольно много, а наш KNN будет весьма медленный, то возьмем случайно 1000 наблюдений (в реальности в зависимости от вашей реализации можно будет взять больше, но если будет не зватать ОЗУ, то берите меньше)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "54fa4253-ea6a-4ec4-b914-f7cb2346b195", - "metadata": {}, - "outputs": [], - "source": [ - "X, y = fetch_openml(name=\"Fashion-MNIST\", return_X_y=True, as_frame=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "3a188c83-6bf3-485d-9995-9f71d0868d30", - "metadata": {}, - "outputs": [], - "source": [ - "idx_to_stay = np.random.choice(np.arange(X.shape[0]), replace=False, size=1000)\n", - "X = X[idx_to_stay]\n", - "y = y[idx_to_stay]" - ] - }, - { - "cell_type": "markdown", - "id": "4a9e7f89-97f9-4257-94aa-989826258726", - "metadata": {}, - "source": [ - "Давайте посмотрим на какое-нибудь изображение из наших данных:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "277e132c-b89f-4dbb-8efd-cbcea015876d", - "metadata": {}, - "outputs": [], - "source": [ - "# возьмем случайную картинку и сделаем reshape\n", - "# 28, 28, 1 = H, W, C (число каналов, в данном случае 1)\n", - "image = X[np.random.choice(np.arange(X.shape[0]))].reshape(28, 28, 1)\n", - "plt.imshow(image)\n", - "plt.axis(\"off\");" - ] - }, - { - "cell_type": "markdown", - "id": "236e593f-595e-45f1-a794-4069a16637d7", - "metadata": {}, - "source": [ - "### 1.1. Посмотрим на все классы (0.5 баллов)" - ] - }, - { - "cell_type": "markdown", - "id": "8cdf3ab2-47a4-492f-bf9a-25c4b00eb945", - "metadata": {}, - "source": [ - "Возьмите по одной картинке каждого класса и изобразите их (например, сделайте subplots 5 на 2)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "362137fb-4577-4a21-8088-98cba79206f2", - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", - "YOUR CODE\n", - "\"\"\"" - ] - }, - { - "cell_type": "markdown", - "id": "866ea214-4de8-41b8-a2aa-c86ac0a04b74", - "metadata": {}, - "source": [ - "### 1.2. Сделайте небольшой EDA (1 балл)" - ] - }, - { - "cell_type": "markdown", - "id": "1fe3abdf-2c95-4ce8-8fd3-2445d815ea3c", - "metadata": {}, - "source": [ - "Посмотрите на баланс классов. В дальнейших домашках делайте EDA, когда считаете нужным, он нужен почти всегда, но оцениваться это уже не будет, если не будет указано иное. Делайте EDA, чтобы узнать что-то новое о данных!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "74595ef7-06ab-4700-b9d9-42db3fdd36d5", - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", - "YOUR CODE\n", - "\"\"\"" - ] - }, - { - "cell_type": "markdown", - "id": "68e8f61e-32d5-4ad7-9f2c-f7e0de050d32", - "metadata": {}, - "source": [ - "### 1.3. Разделите данные на train и test (0.5 баллов)" - ] - }, - { - "cell_type": "markdown", - "id": "25cf3d30-6bd6-4bbb-bba6-4e249da33475", - "metadata": {}, - "source": [ - "Разделите данные на тренировочную и тестовую выборки, размеры тестовой выборки выберите сами. Здесь вам может помочь функция `train_test_split`" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1932bd43-16d6-4201-8950-7dbe720a9fa1", - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", - "YOUR CODE\n", - "\"\"\"" - ] - }, - { - "cell_type": "markdown", - "id": "7c8e4cd4-b3d7-49b7-9b10-be02991ecfa7", - "metadata": {}, - "source": [ - "### 1.4. KNN для бинарной классификации (6 баллов)" - ] - }, - { - "cell_type": "markdown", - "id": "aac2e121-639a-4b0c-8e9c-471ad5a8fac6", - "metadata": {}, - "source": [ - "Давайте возьмем для задачи бинарной классификации только объекты с метками классов 0 и 1." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "f40beae7-54a4-4323-b467-3173737dfd84", - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", - "YOUR CODE\n", - "\"\"\"" - ] - }, - { - "cell_type": "markdown", - "id": "7df7db35-8832-47ec-9955-d0656695e7cd", - "metadata": {}, - "source": [ - "И вот мы подготовили данные, но модели у нас пока что нет. В нескольких занятиях нашего курса вам придется самостоятельно реализовывать какие-то алгоритмы машинного обучения, а потом сравнивать их с готовыми библиотечными решениями. В остальных заданиях реализовывать алгоритмы будет не обязательно, но может быть полезно, поэтому часто это будут задания на дополнительные баллы, но главное не это, а понимание работы алгоритма после его реализации с нуля на простом numpy. Также это все потом можно оформить в виде репозитория ml_from_scratch и хвастаться перед друзьями." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "44d468e9-2a00-4268-bfdc-fbae3857ce90", - "metadata": {}, - "outputs": [], - "source": [ - "knn_classifier = KNNClassifier(k=1)\n", - "knn_classifier.fit(binary_train_X, binary_train_y)" - ] - }, - { - "cell_type": "markdown", - "id": "c5817a1d-161e-4242-bea5-821f416b3eec", - "metadata": {}, - "source": [ - "### Настало время писать код!" - ] - }, - { - "cell_type": "markdown", - "id": "61c760bb-63c9-426d-9f4e-8fab02536da5", - "metadata": {}, - "source": [ - "В KNN нам нужно для каждого тестового примера найти расстояния до всех точек обучающей выборки. Допустим у нас 1000 примеров в train'е и 100 в test'е, тогда в итоге мы бы хотели получить матрицу попарных расстояний (например, размерностью 100 на 1000). Это можно сделать несколькими способами, и кому-то наверняка, в голову приходит идея с двумя вложенными циклами (надеюсь, что не больше:). Так можно делать, то можно и эффективнее. Вообще, в реальном KNN используется структура данных [k-d-tree](https://ru.wikipedia.org/wiki/K-d-%D0%B4%D0%B5%D1%80%D0%B5%D0%B2%D0%BE), которая позволяет производить поиск за log(N), а не за N, как будем делать мы (по сути это такое расширение бинарного поиска на многомерное пространство).\n", - "\n", - "Вам нужно будет последовательно реализовать методы `compute_distances_two_loops`, `compute_distances_one_loop` и `compute_distances_no_loops` класса `KNN` в файле `knn.py`.\n", - "\n", - "Эти функции строят массив расстояний между всеми векторами в тестовом наборе и в тренировочном наборе. \n", - "В результате они должны построить массив размера `(num_test, num_train)`, где координата `[i][j]` соотвествует расстоянию между i-м вектором в test (`test[i]`) и j-м вектором в train (`train[j]`).\n", - "\n", - "**Обратите внимание** Для простоты реализации мы будем использовать в качестве расстояния меру L1 (ее еще называют [Manhattan distance](https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D1%81%D1%82%D0%BE%D1%8F%D0%BD%D0%B8%D0%B5_%D0%B3%D0%BE%D1%80%D0%BE%D0%B4%D1%81%D0%BA%D0%B8%D1%85_%D0%BA%D0%B2%D0%B0%D1%80%D1%82%D0%B0%D0%BB%D0%BE%D0%B2)).\n", - "\n", - "$d_{1}(\\mathbf {p} ,\\mathbf {q} )=\\|\\mathbf {p} -\\mathbf {q} \\|_{1}=\\sum _{i=1}^{n}|p_{i}-q_{i}|$" - ] - }, - { - "cell_type": "markdown", - "id": "c32db2d0-355c-4d74-961e-22d6f42aa11b", - "metadata": {}, - "source": [ - "В начале я буду иногда писать разные assert'ы, чтобы можно было проверить правильность реализации, в дальнейшем вам нужно будет их писать самим, если нужно будет проверять корректность каких-то вычислений." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "01b1ef27-4284-4d6c-978b-25f0fefd39be", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: compute_distances_two_loops\n", - "dists = knn_classifier.compute_distances_two_loops(binary_test_X)\n", - "assert np.isclose(dists[0, 100], np.sum(np.abs(binary_test_X[0] - binary_train_X[100])))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "505e2c4b-1cfe-4e4a-8002-d9ce089d100e", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: compute_distances_one_loop\n", - "dists = knn_classifier.compute_distances_one_loop(binary_test_X)\n", - "assert np.isclose(dists[0, 100], np.sum(np.abs(binary_test_X[0] - binary_train_X[100])))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "dd81b766-5de2-4f62-82cf-8b6bd52002db", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: compute_distances_no_loops\n", - "dists = knn_classifier.compute_distances_no_loops(binary_test_X)\n", - "assert np.isclose(dists[0, 100], np.sum(np.abs(binary_test_X[0] - binary_train_X[100])))" - ] - }, - { - "cell_type": "markdown", - "id": "64d108b7-b132-42b5-bdca-bc91af8ed3d7", - "metadata": {}, - "source": [ - "Проверим скорость работы реализованных методов" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8ed08354-d0ef-497a-9d9c-b17c92b7bef9", - "metadata": {}, - "outputs": [], - "source": [ - "%timeit knn_classifier.compute_distances_two_loops(binary_test_X)\n", - "%timeit knn_classifier.compute_distances_one_loop(binary_test_X)\n", - "%timeit knn_classifier.compute_distances_no_loops(binary_test_X)" - ] - }, - { - "cell_type": "markdown", - "id": "8180ecc3-8c24-4564-8963-1a0123b06043", - "metadata": {}, - "source": [ - "Реализуем метод для предсказания меток класса" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9ca2679e-c731-467b-94b5-91a3a0641d7e", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: predict_labels_binary in knn.py\n", - "prediction = knn_classifier.predict(binary_test_X)" - ] - }, - { - "cell_type": "markdown", - "id": "d746796d-6ca0-4828-be8a-8b9e22999f54", - "metadata": {}, - "source": [ - "### Метрика" - ] - }, - { - "cell_type": "markdown", - "id": "c29f2abf-be34-4273-a7cd-d2c62ba1eecc", - "metadata": {}, - "source": [ - "Теперь нужно реализовать несколько метрик для бинарной классификации. Не забудьте подумать о численной нестабильности (деление на 0)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "94268969-5334-4672-a939-65733068a89a", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: binary_classification_metrics in metrics.py" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7842978b-a328-4035-b9c4-eb3711cb58c4", - "metadata": {}, - "outputs": [], - "source": [ - "binary_classification_metrics(prediction, binary_test_y)" - ] - }, - { - "cell_type": "markdown", - "id": "71dbca1f-9ad4-4059-9b1c-0c0c85d7d816", - "metadata": {}, - "source": [ - "Все ли хорошо с моделью? Можно проверить свою реализацию с функциями из библиотеки `sklearn`:" - ] - }, - { - "cell_type": "markdown", - "id": "5982d081-ddf9-4522-99b0-459a5cee087c", - "metadata": {}, - "source": [ - "" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5caeb94f-6464-4adf-b3b6-8e12bf4a50b4", - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score" - ] - }, - { - "cell_type": "markdown", - "id": "6e9b0e1a-3c67-4cc3-bf75-6848f43e8256", - "metadata": {}, - "source": [ - "### Подбор оптимального k" - ] - }, - { - "cell_type": "markdown", - "id": "4069069e-f200-4673-a99c-745e7a5b6b36", - "metadata": {}, - "source": [ - "Чтобы подрбрать оптимальное значение параметра k можно сделать следующее: задать область допустимых значений k, например, `[1, 3, 5, 10]`. Дальше для каждого k обучить модель на тренировочных данных, сделать предсказания на тестовых и посчитать какую-нибудь метрику (метрику выберите сами исходя из задачи, но постарайтесь обосновать выбор). В конце нужно посмотреть на зависимость метрики на train'е и test'е от k и выбрать подходящее значение.\n", - "\n", - "Реализуйте функцию `choose_best_k` прямо в ноутбуке." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "374d6fcf-21f2-433c-b011-76019201ce52", - "metadata": {}, - "outputs": [], - "source": [ - "def find_best_k(X_train, y_train, X_test, y_test, params, metric):\n", - " \"\"\"\n", - " Choose the best k for KKNClassifier\n", - " Arguments:\n", - " X_train, np array (num_train_samples, num_features) - train data\n", - " y_train, np array (num_train_samples) - train labels\n", - " X_test, np array (num_test_samples, num_features) - test data\n", - " y_test, np array (num_test_samples) - test labels\n", - " params, list of hyperparameters for KNN, here it is list of k values\n", - " metric, function for metric calculation\n", - " Returns:\n", - " train_metrics the list of metric values on train data set for each k in params\n", - " test_metrics the list of metric values on test data set for each k in params\n", - " \"\"\"\n", - " \n", - " \"\"\"\n", - " YOUR CODE IS HERE\n", - " \"\"\"\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a2418dd8-93f1-4a11-8488-a8bce98e7d5f", - "metadata": { - "tags": [] - }, - "outputs": [], - "source": [ - "params = [1, 2, 4, 5, 8, 10, 30]\n", - "train_metrics, test_metrics = find_best_k(binary_train_X, binary_train_y, binary_test_X, binary_test_y, params, accuracy_score)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "7053ce06-854c-412b-8559-833595b1d6c0", - "metadata": {}, - "outputs": [], - "source": [ - "plt.plot(params, train_metrics, label=\"train\")\n", - "plt.plot(params, test_metrics, label=\"test\")\n", - "plt.legend()\n", - "plt.xlabel(\"K in KNN\")\n", - "plt.ylabel(\"YOUR METRIC\");" - ] - }, - { - "cell_type": "markdown", - "id": "73fdecd7-a4b6-4ca9-8688-d1ae2195647f", - "metadata": {}, - "source": [ - "На самом деле, это не самый лучший способ подбирать гиперпараметры, но способы получше мы рассмотрим в следующий раз, а пока что выберите оптимальное значение k, сделайте предсказания и посмотрите, насколько хорошо ваша модель предсказывает каждый из классов." - ] - }, - { - "cell_type": "markdown", - "id": "0bc98c29-3217-407c-a466-58072bb7b8cc", - "metadata": {}, - "source": [ - "### 1.5. Многоклассоввая классификация (2 балла)" - ] - }, - { - "cell_type": "markdown", - "id": "aa0fa9bf-3002-4b0e-8e52-1d9e70795092", - "metadata": {}, - "source": [ - "Теперь нужно научиться предсказывать все 10 классов. Для этого в начале напишем соответствующий метод у нашего классификатора." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "88b37ef1-fa15-4cc5-8558-0254890c899d", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: predict_labels_multiclass in knn.py\n", - "knn_classifier = KNNClassifier(k=1)\n", - "knn_classifier.fit(X_train, y_train)\n", - "predictions = knn_classifier.predict(X_test)" - ] - }, - { - "cell_type": "markdown", - "id": "fa8ed7ad-e347-4f78-b34f-88febee9e94b", - "metadata": {}, - "source": [ - "Осталось реализовать метрику качества для многоклассовой классификации, для этого реализуйте функцию `multiclass_accuracy` в `metrics.py`." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "65887922-a799-4042-902e-f63f69508beb", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: multiclass_accuracy in metrics.py\n", - "multiclass_accuracy(predictions, y_test)" - ] - }, - { - "cell_type": "markdown", - "id": "a6fe44f6-e056-4f17-beb6-0ce65fab268f", - "metadata": {}, - "source": [ - "Снова выберите оптимальное значение K как мы делали для бинарной классификации." - ] - }, - { - "cell_type": "markdown", - "id": "daa8ee4a-88c1-4967-84f1-6f7ec223db7e", - "metadata": {}, - "source": [ - "## Задание 2. KNN на датасете diabetes (10 баллов)" - ] - }, - { - "cell_type": "markdown", - "id": "d3dac1f9-42ef-406f-988c-2d663b8b2806", - "metadata": {}, - "source": [ - "Теперь попробуем применить KNN к задаче регрессии. Будем работать с [данными](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) о диабете. В этом задании будем использовать класс `KNeighborsRegressor` из библиотеки `sklearn`. Загрузим необходимые библиотеки:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "8ab4c84e-6036-4fe2-b81f-8115bf0a4774", - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.datasets import load_diabetes\n", - "from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.neighbors import KNeighborsRegressor" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4136b3bb-e482-4102-ad5f-af5b3b1a030a", - "metadata": {}, - "outputs": [], - "source": [ - "X, y = load_diabetes(as_frame=True, return_X_y=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c884e687-964a-4b00-9f10-232c45705f12", - "metadata": {}, - "outputs": [], - "source": [ - "X.head()" - ] - }, - { - "cell_type": "markdown", - "id": "9ce6cd71-dd17-40af-b7cc-c48e61d31719", - "metadata": {}, - "source": [ - "### 2.1. EDA (2 обязательных балла + 2 доп. балла за Pipeline)" - ] - }, - { - "cell_type": "markdown", - "id": "4397b3ad-63f9-4b25-ab7e-d572216e21c5", - "metadata": {}, - "source": [ - "Сделайте EDA, предобработайте данные так, как считаете нужным, нужна ли в данном случае стандартизация и почему? Не забудте, что если вы стандартизуете данные, то нужно считать среднее и сдандартное отклонение на тренировочной части и с помощью них трансформировать и train, и test (**если не поняли это предложение, то обязательно разберитесь**).\n", - "\n", - "**Дополнительно**:\n", - "Попробуйте разобраться с [`Pipeline`](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html), чтобы можно было создать класс, который сразу проводит стандартизацию и обучает модель (или делает предсказание). Пайплайны очень удобны, когда нужно применять различные методы предобработки данных (в том числе и к разным столбцам), а также они позволяют правильно интегрировать предобработку данных в различные классы для поиска наилучших гиперпараметров модели (например, `GridSearchCV`)." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a4aa413d-d830-4355-a063-9c5d6d5a6c9a", - "metadata": {}, - "outputs": [], - "source": [ - "from sklearn.pipeline import Pipeline" - ] - }, - { - "cell_type": "markdown", - "id": "8e1fa5ec-18db-4e7b-88f1-6d010f449488", - "metadata": {}, - "source": [ - "### 2.2. Регрессионная модель (1 балл)" - ] - }, - { - "cell_type": "markdown", - "id": "3d79f583-5feb-4eeb-b748-9b4cdea9150d", - "metadata": {}, - "source": [ - "Создайте модель `KNeighborsRegressor`, обучите ее на треноровочных данных и сделайте предсказания." - ] - }, - { - "cell_type": "markdown", - "id": "5ed4a2ea-4f42-43cb-95d7-50cdeab5f284", - "metadata": {}, - "source": [ - "### 2.3. Метрики регресии (3 балла)" - ] - }, - { - "cell_type": "markdown", - "id": "cbf563ad-1b71-464c-8359-75fa4da268d3", - "metadata": {}, - "source": [ - "Реализуйте метрики $R^2$, MSE и MAE в `metrics.py`. Примените их для оценки качества полученной модели. Все ли хорошо?\n", - "\n", - "Напомню, что:\n", - "\n", - "$R^2 = 1 - \\frac{\\sum_i^n{(y_i - \\hat{y_i})^2}}{\\sum_i^n{(y_i - \\overline{y})^2}}$\n", - "\n", - "$MSE = \\frac{1}{n}\\sum_i^n{(y_i - \\hat{y_i})^2}$\n", - "\n", - "$MAE = \\frac{1}{n}\\sum_i^n{|y_i - \\hat{y_i}|}$" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "580f604f-e9c5-4109-8b9f-235369836057", - "metadata": {}, - "outputs": [], - "source": [ - "# TODO: r_squared, mse, mae in metrics.py" - ] - }, - { - "cell_type": "markdown", - "id": "a6568d8d-a9ec-4639-aac1-0ea18a644f9e", - "metadata": {}, - "source": [ - "### 2.4. Подбор оптимального числа соседей (2 балла)" - ] - }, - { - "cell_type": "markdown", - "id": "d82f145d-41f5-4bbe-b553-1d05d90ec2a2", - "metadata": {}, - "source": [ - "Мы почти дошли до конца. Теперь осталось при помощи реализованных нами метрик выбрать лучшее количество соседей для нашей модели.\n", - "\n", - "!!! Обратите внимание на то, что значат наши метрики, для некоторых хорошо, когда они уменьшаются, для других наоборот." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "138a7969-8079-4a38-b92e-8eae5d246325", - "metadata": {}, - "outputs": [], - "source": [ - "from metrics import r_squared, mse, mae" - ] - }, - { - "cell_type": "markdown", - "id": "1b4bbef7-35a4-4f05-abf8-5d2b450c86f2", - "metadata": {}, - "source": [ - "Для поиска лучшего k вы можете воспользоваться функцией `find_best_k`, которую вы реализовали выше." - ] - }, - { - "cell_type": "markdown", - "id": "2cb77960-fa30-4a29-9a1b-7c195cc867cb", - "metadata": {}, - "source": [ - "### 3. Социализация (0.5 доп. балла)\n", - "\n", - "Так как у нас теперь большая группа, то было бы здорово всем познакомиться получше (так как выпускной не за горами). Соберитесь с одногруппниками в зуме, познакомьтесь, а сюда прикрепите скриншот с камерами всех участников." - ] - }, - { - "cell_type": "markdown", - "id": "e116a42f-fae8-499c-a985-dc09e66a29b0", - "metadata": {}, - "source": [ - "## Therapy time" - ] - }, - { - "cell_type": "markdown", - "id": "031c493b-26f3-4622-a1f4-affee64f81db", - "metadata": {}, - "source": [ - "Напишите здесь ваши впечатления о задании: было ли интересно, было ли слишком легко или наоборот сложно и тд. Также сюда можно написать свои идеи по улучшению заданий, а также предложить данные, на основе которых вы бы хотели построить следующие дз. " - ] - }, - { - "cell_type": "markdown", - "id": "6d1c75b8", - "metadata": {}, - "source": [ - "**Ваши мысли:**" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.8" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} diff --git a/lecture_1_intro_knn/homework/knn.py b/lecture_1_intro_knn/homework/knn.py deleted file mode 100644 index c73ba6e..0000000 --- a/lecture_1_intro_knn/homework/knn.py +++ /dev/null @@ -1,143 +0,0 @@ -import numpy as np - - -class KNNClassifier: - """ - K-neariest-neighbor classifier using L1 loss - """ - - def __init__(self, k=1): - self.k = k - - - def fit(self, X, y): - self.train_X = X - self.train_y = y - - - def predict(self, X, n_loops=0): - """ - Uses the KNN model to predict clases for the data samples provided - - Arguments: - X, np array (num_samples, num_features) - samples to run - through the model - num_loops, int - which implementation to use - - Returns: - predictions, np array of ints (num_samples) - predicted class - for each sample - """ - - if n_loops == 0: - distances = self.compute_distances_no_loops(X) - elif n_loops == 1: - distances = self.compute_distances_one_loops(X) - else: - distances = self.compute_distances_two_loops(X) - - if len(np.unique(self.train_y)) == 2: - return self.predict_labels_binary(distances) - else: - return self.predict_labels_multiclass(distances) - - - def compute_distances_two_loops(self, X): - """ - Computes L1 distance from every sample of X to every training sample - Uses simplest implementation with 2 Python loops - - Arguments: - X, np array (num_test_samples, num_features) - samples to run - - Returns: - distances, np array (num_test_samples, num_train_samples) - array - with distances between each test and each train sample - """ - - """ - YOUR CODE IS HERE - """ - pass - - - def compute_distances_one_loop(self, X): - """ - Computes L1 distance from every sample of X to every training sample - Vectorizes some of the calculations, so only 1 loop is used - - Arguments: - X, np array (num_test_samples, num_features) - samples to run - - Returns: - distances, np array (num_test_samples, num_train_samples) - array - with distances between each test and each train sample - """ - - """ - YOUR CODE IS HERE - """ - pass - - - def compute_distances_no_loops(self, X): - """ - Computes L1 distance from every sample of X to every training sample - Fully vectorizes the calculations using numpy - - Arguments: - X, np array (num_test_samples, num_features) - samples to run - - Returns: - distances, np array (num_test_samples, num_train_samples) - array - with distances between each test and each train sample - """ - - """ - YOUR CODE IS HERE - """ - pass - - - def predict_labels_binary(self, distances): - """ - Returns model predictions for binary classification case - - Arguments: - distances, np array (num_test_samples, num_train_samples) - array - with distances between each test and each train sample - Returns: - pred, np array of bool (num_test_samples) - binary predictions - for every test sample - """ - - n_train = distances.shape[1] - n_test = distances.shape[0] - prediction = np.zeros(n_test) - - """ - YOUR CODE IS HERE - """ - pass - - - def predict_labels_multiclass(self, distances): - """ - Returns model predictions for multi-class classification case - - Arguments: - distances, np array (num_test_samples, num_train_samples) - array - with distances between each test and each train sample - Returns: - pred, np array of int (num_test_samples) - predicted class index - for every test sample - """ - - n_train = distances.shape[0] - n_test = distances.shape[0] - prediction = np.zeros(n_test, np.int) - - """ - YOUR CODE IS HERE - """ - pass diff --git a/lecture_1_intro_knn/homework/metrics.py b/lecture_1_intro_knn/homework/metrics.py deleted file mode 100644 index b65c588..0000000 --- a/lecture_1_intro_knn/homework/metrics.py +++ /dev/null @@ -1,87 +0,0 @@ -import numpy as np - - -def binary_classification_metrics(y_pred, y_true): - """ - Computes metrics for binary classification - Arguments: - y_pred, np array (num_samples) - model predictions - y_true, np array (num_samples) - true labels - Returns: - precision, recall, f1, accuracy - classification metrics - """ - - # TODO: implement metrics! - # Some helpful links: - # https://en.wikipedia.org/wiki/Precision_and_recall - # https://en.wikipedia.org/wiki/F1_score - - """ - YOUR CODE IS HERE - """ - pass - - -def multiclass_accuracy(y_pred, y_true): - """ - Computes metrics for multiclass classification - Arguments: - y_pred, np array of int (num_samples) - model predictions - y_true, np array of int (num_samples) - true labels - Returns: - accuracy - ratio of accurate predictions to total samples - """ - - """ - YOUR CODE IS HERE - """ - pass - - -def r_squared(y_pred, y_true): - """ - Computes r-squared for regression - Arguments: - y_pred, np array of int (num_samples) - model predictions - y_true, np array of int (num_samples) - true values - Returns: - r2 - r-squared value - """ - - """ - YOUR CODE IS HERE - """ - pass - - -def mse(y_pred, y_true): - """ - Computes mean squared error - Arguments: - y_pred, np array of int (num_samples) - model predictions - y_true, np array of int (num_samples) - true values - Returns: - mse - mean squared error - """ - - """ - YOUR CODE IS HERE - """ - pass - - -def mae(y_pred, y_true): - """ - Computes mean absolut error - Arguments: - y_pred, np array of int (num_samples) - model predictions - y_true, np array of int (num_samples) - true values - Returns: - mae - mean absolut error - """ - - """ - YOUR CODE IS HERE - """ - pass - \ No newline at end of file diff --git a/lecture_1_intro_knn/homework/requirements.txt b/lecture_1_intro_knn/homework/requirements.txt deleted file mode 100644 index cc26140..0000000 --- a/lecture_1_intro_knn/homework/requirements.txt +++ /dev/null @@ -1,5 +0,0 @@ -numpy -matplotlib -pandas -sklearn -seaborn \ No newline at end of file diff --git a/lecture_1_intro_knn/lecture/WorldHappiness_Corruption_2015_2020.csv b/lecture_1_intro_knn/lecture/WorldHappiness_Corruption_2015_2020.csv deleted file mode 100644 index f85236e..0000000 --- a/lecture_1_intro_knn/lecture/WorldHappiness_Corruption_2015_2020.csv +++ /dev/null @@ -1,793 +0,0 @@ -Country,happiness_score,gdp_per_capita,family,health,freedom,generosity,government_trust,dystopia_residual,continent,Year,social_support,cpi_score -Norway,7.537000179,1.616463184,1.53352356,0.796666503,0.635422587,0.362012237,0.315963835,2.277026653,Europe,2015,0.0,88 -Denmark,7.521999836,1.482383013,1.551121593,0.792565525,0.626006722,0.355280489,0.400770068,2.313707352,Europe,2015,0.0,91 -Iceland,7.504000187,1.48063302,1.610574007,0.833552122,0.627162635,0.475540221,0.153526559,2.322715282,Europe,2015,0.0,79 -Switzerland,7.493999958,1.564979553,1.516911745,0.858131289,0.620070577,0.290549278,0.367007285,2.276716232,Europe,2015,0.0,86 -Finland,7.468999863,1.443571925,1.540246725,0.80915767,0.617950857,0.245482773,0.382611543,2.430181503,Europe,2015,0.0,90 -Netherlands,7.376999855,1.503944635,1.428939223,0.810696125,0.585384488,0.47048983,0.282661825,2.294804096,Europe,2015,0.0,84 -Canada,7.315999985,1.479204416,1.481348991,0.834557652,0.611100912,0.435539722,0.287371516,2.187264442,North America,2015,0.0,83 -New Zealand,7.31400013,1.405706048,1.548195124,0.816759706,0.61406213,0.500005126,0.382816702,2.046456337,Australia,2015,0.0,91 -Sweden,7.28399992,1.494387269,1.478162169,0.830875158,0.612924099,0.385399252,0.384398729,2.097537994,Europe,2015,0.0,89 -Australia,7.28399992,1.484414935,1.510041952,0.843886793,0.601607382,0.47769925,0.30118373,2.065210819,Australia,2015,0.0,79 -Israel,7.212999821,1.375382423,1.376289964,0.838404,0.405988604,0.330082655,0.0852421,2.801757336,Asia,2015,0.0,61 -Costa Rica,7.078999996,1.109706283,1.416403651,0.759509265,0.58013165,0.214613229,0.100106589,2.898639202,South America,2015,0.0,55 -Austria,7.006000042,1.487097263,1.459944963,0.815328419,0.56776619,0.316472322,0.221060365,2.138506413,Europe,2015,0.0,76 -United States,6.993000031,1.546259284,1.419920564,0.774286628,0.505740523,0.392578781,0.135638788,2.218113422,North America,2015,0.0,76 -Ireland,6.977000237,1.535706639,1.558231115,0.809782624,0.573110342,0.427858323,0.298388153,1.773869038,Europe,2015,0.0,75 -Germany,6.951000214,1.487923384,1.472520351,0.798950732,0.562511384,0.33626917,0.276731938,2.015769958,Europe,2015,0.0,81 -Belgium,6.890999794,1.463780761,1.462312698,0.818091869,0.539770722,0.231503338,0.251343131,2.124210358,Europe,2015,0.0,77 -Luxembourg,6.862999916,1.741943598,1.457583666,0.845089495,0.596627891,0.283180982,0.318834424,1.619512081,Europe,2015,0.0,85 -United Kingdom,6.714000225,1.44163394,1.49646008,0.805335939,0.508190036,0.492774159,0.265428066,1.704143524,Europe,2015,0.0,81 -Chile,6.65199995,1.25278461,1.284024954,0.819479704,0.376895279,0.326662421,0.082287982,2.509585857,South America,2015,0.0,70 -United Arab Emirates,6.647999763,1.626343369,1.266410232,0.726798236,0.60834527,0.360941947,0.324489564,1.734703541,Asia,2015,0.0,70 -Brazil,6.635000229,1.10735321,1.431306005,0.616552353,0.437453747,0.162349895,0.111092761,2.769267082,South America,2015,0.0,38 -Argentina,6.598999977,1.185295463,1.440451145,0.695137084,0.494519204,0.109457061,0.059739888,2.614005327,South America,2015,0.0,32 -Mexico,6.578000069,1.153183818,1.21086216,0.709978998,0.412730008,0.120990433,0.132774115,2.837154865,North America,2015,0.0,31 -Singapore,6.572000027,1.69227767,1.353814363,0.949492395,0.549840569,0.345965981,0.464307785,1.216362,Asia,2015,0.0,85 -Malta,6.52699995,1.343279839,1.488411665,0.821944237,0.588767052,0.574730575,0.153066069,1.556862831,Europe,2015,0.0,60 -Guatemala,6.453999996,0.872001946,1.255585194,0.54023999,0.531310618,0.283488393,0.077223279,2.893891096,South America,2015,0.0,28 -Uruguay,6.453999996,1.217559695,1.412227869,0.719216824,0.579392254,0.175096929,0.178061873,2.172409534,South America,2015,0.0,74 -Panama,6.452000141,1.233748436,1.373192549,0.706156135,0.550026834,0.210556939,0.070983924,2.307199955,South America,2015,0.0,39 -France,6.441999912,1.430923462,1.387776852,0.844465852,0.470222116,0.129762307,0.172502428,2.005954742,Europe,2015,0.0,70 -Thailand,6.423999786,1.127868772,1.425792456,0.647239029,0.580200732,0.57212311,0.031612735,2.039508343,Asia,2015,0.0,38 -Spain,6.402999878,1.384397864,1.532090902,0.8889606,0.40878123,0.190133572,0.070914097,1.92775774,Europe,2015,0.0,58 -Colombia,6.356999874,1.070622325,1.402182937,0.595027924,0.477487415,0.149014473,0.046668742,2.616068125,South America,2015,0.0,37 -Saudi Arabia,6.343999863,1.530623555,1.286677599,0.59014833,0.449750572,0.147616014,0.273432255,2.065429688,Asia,2015,0.0,52 -Kuwait,6.105000019,1.632952452,1.259698749,0.632105708,0.496337593,0.228289798,0.21515955,1.640425205,Asia,2015,0.0,49 -Slovakia,6.09800005,1.325393558,1.505059242,0.712732911,0.295817465,0.136544481,0.024210852,2.097776651,Europe,2015,0.0,51 -Bahrain,6.086999893,1.488412261,1.323110461,0.653133035,0.536746919,0.172668487,0.25704217,1.656149387,Asia,2015,0.0,51 -Malaysia,6.084000111,1.29121542,1.284646034,0.618784428,0.402264982,0.41660893,0.065600708,2.004448891,Asia,2015,0.0,50 -Nicaragua,6.071000099,0.737299204,1.28721571,0.653095961,0.447551847,0.301674217,0.130687982,2.513930559,South America,2015,0.0,27 -Ecuador,6.007999897,1.000820398,1.286168814,0.685636222,0.455198199,0.150112465,0.140134647,2.290352583,South America,2015,0.0,32 -El Salvador,6.002999783,0.909784496,1.182125092,0.596018553,0.43245253,0.078257985,0.08998096,2.714593887,South America,2015,0.0,39 -Poland,5.97300005,1.291787863,1.44571197,0.699475348,0.520342112,0.158465967,0.059307806,1.797722816,Europe,2015,0.0,63 -Uzbekistan,5.971000195,0.786441088,1.54896915,0.498272628,0.658248663,0.415983647,0.246528223,1.816913605,Asia,2015,0.0,19 -Italy,5.964000225,1.395066619,1.444923282,0.853144348,0.256450713,0.172789648,0.028028091,1.813312054,Europe,2015,0.0,44 -Russia,5.962999821,1.281778097,1.469282389,0.547349334,0.373783112,0.052263822,0.032962881,2.205607414,Europe,2015,0.0,29 -Japan,5.920000076,1.416915178,1.436337829,0.913475871,0.505625546,0.120572768,0.163760737,1.363223553,Asia,2015,0.0,75 -Lithuania,5.90199995,1.314582348,1.473516107,0.62894994,0.234231785,0.010164657,0.011865643,2.228440523,Europe,2015,0.0,59 -Algeria,5.872000217,1.091864467,1.146217465,0.617584646,0.233335808,0.069436647,0.14609611,2.567603827,Africa,2015,0.0,36 -Latvia,5.849999905,1.260748625,1.404714942,0.638566971,0.325707912,0.153074786,0.073842727,1.993655205,Europe,2015,0.0,56 -Moldova,5.837999821,0.72887063,1.251825571,0.589465201,0.240729049,0.208779126,0.010091286,2.807808399,Europe,2015,0.0,33 -Romania,5.824999809,1.217683911,1.15009129,0.685158312,0.457003742,0.133519918,0.004387901,2.176831484,Europe,2015,0.0,46 -Bolivia,5.822999954,0.833756566,1.227619052,0.47363025,0.558732927,0.225560725,0.060477726,2.443279028,South America,2015,0.0,34 -Turkmenistan,5.822000027,1.130776763,1.493149161,0.43772608,0.418271929,0.249924988,0.25927034,1.832909822,Asia,2015,0.0,18 -Kazakhstan,5.818999767,1.28455627,1.384369016,0.606041551,0.437454283,0.201964423,0.119282886,1.784892559,Asia,2015,0.0,28 -Slovenia,5.757999897,1.341205955,1.452518821,0.790828228,0.572575808,0.242649093,0.045128979,1.313317299,Europe,2015,0.0,60 -Peru,5.715000153,1.035225272,1.218770385,0.630166113,0.450002879,0.126819715,0.047049087,2.20726943,South America,2015,0.0,36 -Mauritius,5.629000187,1.189395547,1.20956099,0.638007462,0.491247326,0.360933751,0.042181555,1.697583914,Africa,2015,0.0,53 -Cyprus,5.620999813,1.355938077,1.131363273,0.844714701,0.355111539,0.271254301,0.041237976,1.621249199,Asia,2015,0.0,61 -Estonia,5.611000061,1.32087934,1.4766711,0.695168316,0.47913143,0.098890811,0.183248922,1.357508659,Europe,2015,0.0,70 -Belarus,5.568999767,1.15655756,1.444945216,0.637714267,0.295400262,0.155137509,0.156313822,1.723232985,Europe,2015,0.0,32 -Libya,5.525000095,1.101803064,1.35756433,0.52016902,0.46573323,0.152073666,0.09261021,1.835011244,Africa,2015,0.0,16 -Turkey,5.5,1.198274374,1.337753177,0.637605608,0.3007406,0.046693042,0.09967158,1.879277945,Asia,2015,0.0,42 -Paraguay,5.493000031,0.932537317,1.50728488,0.579250693,0.473507792,0.224150658,0.091065913,1.68533349,South America,2015,0.0,27 -Philippines,5.429999828,0.857699215,1.253917575,0.468009055,0.585214674,0.193513423,0.099331893,1.972604752,Asia,2015,0.0,35 -Serbia,5.394999981,1.069317579,1.258189797,0.650784671,0.208715528,0.220125884,0.040903781,1.947084427,Europe,2015,0.0,40 -Jordan,5.335999966,0.991012394,1.239088893,0.604590058,0.418421149,0.17217046,0.119803272,1.791176558,Asia,2015,0.0,53 -Hungary,5.323999882,1.286011934,1.343133092,0.687763453,0.175863519,0.078401662,0.036636937,1.716459274,Europe,2015,0.0,51 -Jamaica,5.31099987,0.925579309,1.368218064,0.641022384,0.474307239,0.233818337,0.055267781,1.612325668,South America,2015,0.0,41 -Croatia,5.293000221,1.222556233,0.967983007,0.701288521,0.255772293,0.248002976,0.04310311,1.854492426,Europe,2015,0.0,51 -Kosovo,5.278999805,0.951484382,1.137853503,0.54145205,0.260287941,0.319931448,0.057471618,2.010540724,Europe,2015,0.0,33 -China,5.272999763,1.081165791,1.160837412,0.741415501,0.472787708,0.028806841,0.022794275,1.764938593,Asia,2015,0.0,37 -Pakistan,5.269000053,0.726883531,0.67269069,0.402047783,0.235215262,0.315446019,0.124348067,2.79248929,Asia,2015,0.0,30 -Indonesia,5.262000084,0.995538592,1.274444699,0.492345721,0.443323463,0.611704588,0.015317135,1.429476976,Asia,2015,0.0,36 -Venezuela,5.25,1.128431201,1.431337595,0.617144227,0.153997123,0.06501963,0.064491123,1.789463758,South America,2015,0.0,17 -Montenegro,5.236999989,1.121129036,1.238376498,0.667464674,0.194989055,0.197911024,0.088174194,1.729191542,Europe,2015,0.0,44 -Morocco,5.235000134,0.878114581,0.774864435,0.597710669,0.408158332,0.032209955,0.087763183,2.456189394,Africa,2015,0.0,36 -Azerbaijan,5.234000206,1.153601766,1.152400255,0.540775776,0.398155838,0.04526934,0.180987507,1.762481689,Asia,2015,0.0,29 -Dominican Republic,5.230000019,1.079373837,1.402416706,0.574873745,0.552589834,0.18696785,0.113945253,1.31946516,South America,2015,0.0,33 -Greece,5.227000237,1.289487481,1.239414573,0.810198903,0.095731251,0.0,0.043289777,1.749221563,Europe,2015,0.0,46 -Lebanon,5.224999905,1.074987531,1.129624248,0.735081077,0.288515985,0.264450759,0.03751383,1.695073843,Asia,2015,0.0,28 -Portugal,5.195000172,1.315175295,1.367043018,0.795843542,0.4984653,0.095102713,0.015869452,1.107682705,Europe,2015,0.0,64 -Bosnia and Herzegovina,5.18200016,0.982409418,1.069335938,0.705186307,0.204403177,0.328867495,0.0,1.892172575,Europe,2015,0.0,38 -Honduras,5.181000233,0.730573118,1.143944979,0.58256948,0.34807986,0.236188874,0.073345453,2.065811157,South America,2015,0.0,31 -Nigeria,5.073999882,0.783756256,1.215770483,0.05691573,0.394952565,0.230947196,0.026121566,2.365390539,Africa,2015,0.0,26 -Vietnam,5.073999882,0.788547575,1.277491331,0.652168989,0.571055591,0.234968051,0.087633237,1.462318659,Asia,2015,0.0,31 -Tajikistan,5.040999889,0.524713635,1.271463275,0.529235125,0.471566707,0.248997644,0.146377146,1.84904933,Asia,2015,0.0,26 -Kyrgyzstan,5.004000187,0.596220076,1.394238591,0.553457797,0.454943389,0.428580374,0.039439179,1.536723137,Asia,2015,0.0,28 -Nepal,4.961999893,0.479820192,1.179283261,0.504130781,0.440305948,0.394096166,0.072975546,1.891241074,Asia,2015,0.0,27 -Mongolia,4.954999924,1.027235866,1.493011236,0.557783484,0.394143969,0.33846423,0.032902289,1.111292362,Asia,2015,0.0,39 -South Africa,4.828999996,1.054698706,1.384788632,0.18708007,0.479246736,0.13936238,0.072509497,1.510908604,Africa,2015,0.0,44 -Tunisia,4.804999828,1.007265806,0.86835146,0.613212049,0.28968069,0.049693357,0.086723149,1.89025116,Africa,2015,0.0,38 -Egypt,4.735000134,0.989701807,0.997471392,0.520187259,0.282110155,0.128631443,0.114381365,1.702161074,Africa,2015,0.0,36 -Bulgaria,4.714000225,1.161459088,1.434379458,0.70821768,0.289231718,0.113177694,0.011051531,0.996139288,Europe,2015,0.0,41 -Sierra Leone,4.709000111,0.368420929,0.984136045,0.005564754,0.318697691,0.293040901,0.071095176,2.668459892,Africa,2015,0.0,29 -Cameroon,4.695000172,0.564305365,0.946018219,0.132892117,0.430388749,0.236298457,0.051306631,2.333645582,Africa,2015,0.0,27 -Iran,4.691999912,1.156873107,0.711551249,0.639333189,0.249322608,0.387242913,0.048761073,1.498734951,Asia,2015,0.0,27 -Albania,4.644000053,0.996192753,0.803685248,0.731159747,0.381498635,0.201312944,0.039864216,1.490441561,Europe,2015,0.0,36 -Bangladesh,4.607999802,0.586682975,0.735131741,0.533241034,0.478356659,0.172255352,0.123717859,1.978736162,Asia,2015,0.0,25 -Kenya,4.552999973,0.560479462,1.067950726,0.30998835,0.452763766,0.444860309,0.064641319,1.651902199,Africa,2015,0.0,25 -Myanmar,4.545000076,0.36711055,1.123235941,0.397522569,0.514492035,0.838075161,0.188816205,1.115290403,Asia,2015,0.0,22 -Senegal,4.534999847,0.479309022,1.179691911,0.409362853,0.377922267,0.183468893,0.115460448,1.789646149,Africa,2015,0.0,44 -Zambia,4.513999939,0.636406779,1.003187299,0.257835895,0.461603492,0.249580145,0.07821355,1.826705456,Africa,2015,0.0,38 -Iraq,4.497000217,1.102710485,0.978613198,0.50118047,0.288555533,0.199637264,0.107215755,1.318907261,Asia,2015,0.0,16 -Gabon,4.465000153,1.198210239,1.155620217,0.356578588,0.312328577,0.043785378,0.076046787,1.322916269,Africa,2015,0.0,34 -Ethiopia,4.460000038,0.339233845,0.864669204,0.353409708,0.408842742,0.31265074,0.165455714,2.015743732,Africa,2015,0.0,33 -Sri Lanka,4.440000057,1.009850144,1.259976387,0.625130832,0.561213255,0.490863562,0.073653966,0.419389248,Asia,2015,0.0,37 -Armenia,4.375999928,0.900596738,1.007483721,0.637524426,0.198303267,0.083488092,0.026674422,1.521499157,Asia,2015,0.0,35 -India,4.315000057,0.792221248,0.754372597,0.455427617,0.469987005,0.231538489,0.092226885,1.519117117,Asia,2015,0.0,38 -Mauritania,4.291999817,0.648457289,1.27203083,0.28534928,0.096098043,0.201870024,0.136957005,1.651637316,Africa,2015,0.0,31 -Georgia,4.285999775,0.950612664,0.570614934,0.649546981,0.309410036,0.054008815,0.251666635,1.500137806,Asia,2015,0.0,52 -Mali,4.190000057,0.476180494,1.281473398,0.169365674,0.306613743,0.183354199,0.104970247,1.668190956,Africa,2015,0.0,35 -Cambodia,4.168000221,0.601765096,1.006238341,0.429783404,0.633375823,0.385922968,0.068105951,1.042941093,Asia,2015,0.0,21 -Ghana,4.119999886,0.667224824,0.873664737,0.295637727,0.423026294,0.256923944,0.02533637,1.577867508,Africa,2015,0.0,47 -Ukraine,4.096000195,0.894651949,1.394537568,0.575903952,0.122974776,0.270061463,0.023029471,0.814382315,Europe,2015,0.0,27 -Uganda,4.080999851,0.381430715,1.129827738,0.217632607,0.443185955,0.325766057,0.057069719,1.526362658,Africa,2015,0.0,25 -Burkina Faso,4.032000065,0.350227714,1.043280005,0.215844259,0.324367851,0.250864685,0.120328106,1.727212906,Africa,2015,0.0,38 -Niger,4.027999878,0.161925331,0.993025005,0.268505007,0.363658696,0.228673846,0.138572946,1.873983383,Africa,2015,0.0,34 -Malawi,3.970000029,0.233442038,0.512568831,0.315089583,0.466914654,0.28717047,0.072711654,2.081786156,Africa,2015,0.0,31 -Chad,3.936000109,0.438012987,0.953855872,0.041134715,0.162342027,0.21611385,0.053581882,2.071238041,Africa,2015,0.0,22 -Zimbabwe,3.875,0.375846535,1.083095908,0.196763754,0.336384207,0.189143494,0.095375381,1.597970247,Africa,2015,0.0,21 -Afghanistan,3.79399991,0.401477218,0.581543326,0.180746779,0.10617952,0.311870933,0.06115783,2.150801182,Asia,2015,0.0,11 -Botswana,3.766000032,1.122094154,1.221554995,0.341755509,0.505196333,0.099348448,0.098583199,0.377913713,Africa,2015,0.0,63 -Benin,3.657000065,0.431085408,0.435299844,0.209930211,0.425962776,0.207948461,0.060929015,1.885630965,Africa,2015,0.0,37 -Madagascar,3.644000053,0.305808693,0.913020372,0.375223309,0.189196765,0.20873253,0.067231975,1.584612608,Africa,2015,0.0,28 -Haiti,3.602999926,0.368610263,0.640449822,0.27732113,0.030369857,0.489203781,0.09987215,1.697167635,South America,2015,0.0,17 -Yemen,3.592999935,0.591683447,0.935382247,0.310080916,0.249463722,0.104125209,0.056767423,1.345600605,Asia,2015,0.0,18 -Liberia,3.532999992,0.119041793,0.872117937,0.229918197,0.332881182,0.266549885,0.038948249,1.673285961,Africa,2015,0.0,37 -Guinea,3.506999969,0.24454993,0.791244686,0.194129139,0.348587513,0.264815092,0.110937618,1.552311897,South America,2015,0.0,25 -Togo,3.494999886,0.305444717,0.43188253,0.247105569,0.380426139,0.196896151,0.095665015,1.837229252,Africa,2015,0.0,32 -Rwanda,3.470999956,0.368745893,0.945707023,0.326424807,0.581843853,0.252756029,0.455220014,0.540061235,Africa,2015,0.0,54 -Tanzania,3.348999977,0.511135876,1.041989803,0.364509284,0.390017778,0.354256362,0.066035107,0.621130466,Africa,2015,0.0,30 -Burundi,2.904999971,0.091622569,0.629793584,0.151610792,0.059900753,0.204435185,0.084147945,1.683024168,Africa,2015,0.0,21 -Switzerland,7.587,1.39651,1.34951,0.94143,0.66557,0.29678,0.41978,2.51738,Europe,2016,0.0,86 -Iceland,7.561,1.30232,1.40223,0.94784,0.62877,0.4363,0.14145,2.70201,Europe,2016,0.0,78 -Denmark,7.527,1.32548,1.36058,0.87464,0.64938,0.34139,0.48357,2.49204,Europe,2016,0.0,90 -Norway,7.522,1.459,1.33095,0.88521,0.66973,0.34699,0.36503,2.46531,Europe,2016,0.0,85 -Canada,7.427,1.32629,1.32261,0.90563,0.63297,0.45811,0.32957,2.45176,North America,2016,0.0,82 -Finland,7.406,1.29025,1.31826,0.88911,0.64169,0.23351,0.41372,2.61955,Europe,2016,0.0,89 -Netherlands,7.378,1.32944,1.28017,0.89284,0.61576,0.4761,0.31814,2.4657,Europe,2016,0.0,83 -Sweden,7.364,1.33171,1.28907,0.91087,0.6598,0.36262,0.43844,2.37119,Europe,2016,0.0,88 -New Zealand,7.286,1.25018,1.31967,0.90837,0.63938,0.47501,0.42922,2.26425,Australia,2016,0.0,90 -Australia,7.284,1.33358,1.30923,0.93156,0.65124,0.43562,0.35637,2.26646,Australia,2016,0.0,79 -Israel,7.278,1.22857,1.22393,0.91387,0.41319,0.33172,0.07785,3.08854,Asia,2016,0.0,64 -Costa Rica,7.226,0.95578,1.23788,0.86027,0.63376,0.25497,0.10583,3.17728,South America,2016,0.0,58 -Austria,7.2,1.33723,1.29704,0.89042,0.62433,0.33088,0.18676,2.5332,Europe,2016,0.0,75 -Mexico,7.187,1.02054,0.91451,0.81444,0.48181,0.14074,0.21312,3.60214,North America,2016,0.0,30 -United States,7.119,1.39451,1.24711,0.86179,0.54604,0.40105,0.1589,2.51011,North America,2016,0.0,74 -Brazil,6.983,0.98124,1.23287,0.69702,0.49049,0.14574,0.17521,3.26001,South America,2016,0.0,40 -Luxembourg,6.946,1.56391,1.21963,0.91894,0.61583,0.28034,0.37798,1.96961,Europe,2016,0.0,81 -Ireland,6.94,1.33596,1.36948,0.89533,0.61777,0.45901,0.28703,1.9757,Europe,2016,0.0,73 -Belgium,6.937,1.30782,1.28566,0.89667,0.5845,0.2225,0.2254,2.41484,Europe,2016,0.0,77 -United Arab Emirates,6.901,1.42727,1.12575,0.80925,0.64157,0.26428,0.38583,2.24743,Asia,2016,0.0,66 -United Kingdom,6.867,1.26637,1.28548,0.90943,0.59625,0.51912,0.32067,1.96994,Europe,2016,0.0,81 -Venezuela,6.81,1.04424,1.25596,0.72052,0.42908,0.05841,0.11069,3.19131,South America,2016,0.0,17 -Singapore,6.798,1.52186,1.02,1.02525,0.54252,0.31105,0.4921,1.88501,Asia,2016,0.0,84 -Panama,6.786,1.06353,1.1985,0.79661,0.5421,0.24434,0.0927,2.84848,South America,2016,0.0,38 -Germany,6.75,1.32792,1.29937,0.89186,0.61477,0.28214,0.21843,2.11569,Europe,2016,0.0,81 -Chile,6.67,1.10715,1.12447,0.85857,0.44132,0.33363,0.12869,2.67585,South America,2016,0.0,66 -France,6.575,1.27778,1.26038,0.94579,0.55011,0.12332,0.20646,2.21126,Europe,2016,0.0,69 -Argentina,6.574,1.05351,1.24823,0.78723,0.44974,0.11451,0.08484,2.836,South America,2016,0.0,36 -Uruguay,6.485,1.06166,1.2089,0.8116,0.60362,0.2324,0.24558,2.32142,South America,2016,0.0,71 -Colombia,6.477,0.91861,1.24018,0.69077,0.53466,0.18401,0.0512,2.85737,South America,2016,0.0,37 -Thailand,6.455,0.9669,1.26504,0.7385,0.55664,0.5763,0.03187,2.31945,Asia,2016,0.0,35 -Saudi Arabia,6.411,1.39541,1.08393,0.72025,0.31048,0.13706,0.32524,2.43872,Asia,2016,0.0,46 -Spain,6.329,1.23011,1.31379,0.95562,0.45951,0.18227,0.06398,2.12367,Europe,2016,0.0,58 -Malta,6.302,1.2074,1.30203,0.88721,0.60365,0.51752,0.13586,1.6488,Europe,2016,0.0,55 -Kuwait,6.295,1.55422,1.16594,0.72492,0.55499,0.16228,0.25609,1.87634,Asia,2016,0.0,41 -El Salvador,6.13,0.76454,1.02507,0.67737,0.4035,0.10692,0.11776,3.035,South America,2016,0.0,36 -Guatemala,6.123,0.74553,1.04356,0.64425,0.57733,0.27489,0.09472,2.74255,South America,2016,0.0,28 -Uzbekistan,6.003,0.63244,1.34043,0.59772,0.65821,0.22837,0.30826,2.23741,Asia,2016,0.0,21 -Slovakia,5.995,1.16891,1.26999,0.78902,0.31751,0.16893,0.03431,2.24639,Europe,2016,0.0,51 -Japan,5.987,1.27074,1.25712,0.99111,0.49615,0.10705,0.1806,1.68435,Asia,2016,0.0,72 -Ecuador,5.975,0.86402,0.99903,0.79075,0.48574,0.11541,0.1809,2.53942,South America,2016,0.0,31 -Bahrain,5.96,1.32376,1.21624,0.74716,0.45492,0.17362,0.306,1.73797,Asia,2016,0.0,43 -Italy,5.948,1.25114,1.19777,0.95446,0.26236,0.22823,0.02901,2.02518,Europe,2016,0.0,47 -Bolivia,5.89,0.68133,0.97841,0.5392,0.57414,0.20536,0.088,2.82334,South America,2016,0.0,33 -Moldova,5.889,0.59448,1.01528,0.61826,0.32818,0.20951,0.01615,3.10712,Europe,2016,0.0,30 -Paraguay,5.878,0.75985,1.30477,0.66098,0.53899,0.3424,0.08242,2.18896,South America,2016,0.0,30 -Kazakhstan,5.855,1.12254,1.12241,0.64368,0.51649,0.11827,0.08454,2.24729,Asia,2016,0.0,29 -Slovenia,5.848,1.18498,1.27385,0.87337,0.60855,0.25328,0.03787,1.61583,Europe,2016,0.0,61 -Lithuania,5.833,1.14723,1.25745,0.73128,0.21342,0.02641,0.01031,2.44649,Europe,2016,0.0,59 -Nicaragua,5.828,0.59325,1.14184,0.74314,0.55475,0.27815,0.19317,2.32407,South America,2016,0.0,26 -Peru,5.824,0.90019,0.97459,0.73017,0.41496,0.14982,0.05989,2.5945,South America,2016,0.0,35 -Belarus,5.813,1.03192,1.23289,0.73608,0.37938,0.11046,0.1909,2.1309,Europe,2016,0.0,40 -Poland,5.791,1.12555,1.27948,0.77903,0.53122,0.16759,0.04212,1.86565,Europe,2016,0.0,62 -Malaysia,5.77,1.12486,1.07023,0.72394,0.53024,0.33075,0.10501,1.88541,Asia,2016,0.0,49 -Croatia,5.759,1.08254,0.79624,0.78805,0.25883,0.05444,0.0243,2.75414,Europe,2016,0.0,49 -Libya,5.754,1.13145,1.11862,0.7038,0.41668,0.18295,0.11023,2.09066,Africa,2016,0.0,14 -Russia,5.716,1.13764,1.23617,0.66926,0.36679,0.00199,0.03005,2.27394,Europe,2016,0.0,29 -Jamaica,5.709,0.81038,1.15102,0.68741,0.50442,0.2123,0.02299,2.32038,South America,2016,0.0,39 -Cyprus,5.689,1.20813,0.89318,0.92356,0.40672,0.30638,0.06146,1.88931,Asia,2016,0.0,55 -Algeria,5.605,0.93929,1.07772,0.61766,0.28579,0.07822,0.17383,2.43209,Africa,2016,0.0,34 -Kosovo,5.589,0.80148,0.81198,0.63132,0.24749,0.2831,0.04741,2.76579,Europe,2016,0.0,36 -Turkmenistan,5.548,0.95847,1.22668,0.53886,0.4761,0.16979,0.30844,1.86984,Asia,2016,0.0,22 -Mauritius,5.477,1.00761,0.98521,0.7095,0.56066,0.37744,0.07521,1.76145,Africa,2016,0.0,54 -Estonia,5.429,1.15174,1.22791,0.77361,0.44888,0.0868,0.15184,1.58782,Europe,2016,0.0,70 -Indonesia,5.399,0.82827,1.08708,0.63793,0.46611,0.51535,0.0,1.86399,Asia,2016,0.0,37 -Vietnam,5.36,0.63216,0.91226,0.74676,0.59444,0.1686,0.10441,2.20173,Asia,2016,0.0,33 -Turkey,5.332,1.06098,0.94632,0.73172,0.22815,0.12253,0.15746,2.08528,Asia,2016,0.0,41 -Kyrgyzstan,5.286,0.47428,1.15115,0.65088,0.43477,0.3003,0.04232,2.2327,Asia,2016,0.0,28 -Nigeria,5.268,0.65435,0.90432,0.16007,0.34334,0.27233,0.0403,2.89319,Africa,2016,0.0,28 -Azerbaijan,5.212,1.02389,0.93793,0.64045,0.3703,0.07799,0.16065,2.00073,Asia,2016,0.0,30 -Pakistan,5.194,0.59543,0.41411,0.51466,0.12102,0.33671,0.10464,3.10709,Asia,2016,0.0,32 -Jordan,5.192,0.90198,1.05392,0.69639,0.40661,0.11053,0.14293,1.87996,Asia,2016,0.0,48 -Montenegro,5.192,0.97438,0.90557,0.72521,0.1826,0.1614,0.14296,2.10017,Europe,2016,0.0,45 -China,5.14,0.89012,0.94675,0.81658,0.51697,0.08185,0.02781,1.8604,Asia,2016,0.0,40 -Zambia,5.129,0.47038,0.91612,0.29924,0.48827,0.19591,0.12468,2.6343,Africa,2016,0.0,38 -Romania,5.124,1.04345,0.88588,0.7689,0.35068,0.13748,0.00649,1.93129,Europe,2016,0.0,48 -Serbia,5.123,0.92053,1.00964,0.74836,0.20107,0.19231,0.02617,2.025,Europe,2016,0.0,42 -Portugal,5.102,1.15991,1.13935,0.87519,0.51469,0.13719,0.01078,1.26462,Europe,2016,0.0,62 -Latvia,5.098,1.11312,1.09562,0.72437,0.29671,0.18226,0.06332,1.62215,Europe,2016,0.0,57 -Philippines,5.073,0.70532,1.03516,0.58114,0.62545,0.24991,0.12279,1.7536,Asia,2016,0.0,35 -Morocco,5.013,0.73479,0.64095,0.60954,0.41691,0.07172,0.08546,2.45373,Africa,2016,0.0,37 -Albania,4.959,0.87867,0.80434,0.81325,0.35733,0.14272,0.06413,1.89894,Europe,2016,0.0,39 -Bosnia and Herzegovina,4.949,0.83223,0.91916,0.79081,0.09245,0.24808,0.00227,2.06367,Europe,2016,0.0,39 -Dominican Republic,4.885,0.89537,1.17202,0.66825,0.57672,0.21684,0.14234,1.21305,South America,2016,0.0,31 -Mongolia,4.874,0.82819,1.3006,0.60268,0.43626,0.3323,0.02666,1.34759,Asia,2016,0.0,38 -Greece,4.857,1.15406,0.92933,0.88213,0.07699,0.0,0.01397,1.80101,Europe,2016,0.0,44 -Lebanon,4.839,1.02564,0.80001,0.83947,0.33916,0.21854,0.04582,1.57059,Asia,2016,0.0,28 -Hungary,4.8,1.12094,1.20215,0.75905,0.32112,0.128,0.02758,1.24074,Europe,2016,0.0,48 -Honduras,4.788,0.59532,0.95348,0.6951,0.40148,0.23027,0.06825,1.84408,South America,2016,0.0,30 -Tajikistan,4.786,0.39047,0.85563,0.57379,0.47216,0.22974,0.15072,2.11399,Asia,2016,0.0,25 -Tunisia,4.739,0.88113,0.60429,0.73793,0.26268,0.06431,0.06358,2.12466,Africa,2016,0.0,41 -Bangladesh,4.694,0.39753,0.43106,0.60164,0.4082,0.21222,0.12569,2.51767,Asia,2016,0.0,26 -Iran,4.686,1.0088,0.54447,0.69805,0.30033,0.38086,0.05863,1.6944,Asia,2016,0.0,29 -Ukraine,4.681,0.79907,1.20278,0.6739,0.25123,0.15275,0.02961,1.5714,Europe,2016,0.0,29 -Iraq,4.677,0.98549,0.81889,0.60237,0.0,0.17922,0.13788,1.95335,Asia,2016,0.0,17 -South Africa,4.642,0.92049,1.18468,0.27688,0.33207,0.11973,0.08884,1.71956,Africa,2016,0.0,45 -Ghana,4.633,0.54558,0.67954,0.40132,0.42342,0.23087,0.04355,2.30919,Africa,2016,0.0,43 -Zimbabwe,4.61,0.271,1.03276,0.33475,0.25861,0.18987,0.08079,2.44191,Africa,2016,0.0,22 -Liberia,4.571,0.0712,0.78968,0.34201,0.28531,0.24362,0.06232,2.77729,Africa,2016,0.0,37 -India,4.565,0.64499,0.38174,0.51529,0.39786,0.26475,0.08492,2.27513,Asia,2016,0.0,40 -Haiti,4.518,0.26673,0.74302,0.38847,0.24425,0.46187,0.17175,2.24173,South America,2016,0.0,20 -Nepal,4.514,0.35997,0.86449,0.56874,0.38282,0.32296,0.05907,1.95637,Asia,2016,0.0,29 -Ethiopia,4.512,0.19073,0.60406,0.44055,0.4345,0.24325,0.15048,2.44876,Africa,2016,0.0,34 -Sierra Leone,4.507,0.33024,0.95571,0.0,0.4084,0.21488,0.08786,2.51009,Africa,2016,0.0,30 -Mauritania,4.436,0.45407,0.86908,0.35874,0.24232,0.219,0.17461,2.11773,Africa,2016,0.0,27 -Kenya,4.419,0.36471,0.99876,0.41435,0.42215,0.37542,0.05839,1.78555,Africa,2016,0.0,26 -Armenia,4.35,0.76821,0.77711,0.7299,0.19847,0.07855,0.039,1.75873,Asia,2016,0.0,33 -Botswana,4.332,0.99355,1.10464,0.04776,0.49495,0.10461,0.12474,1.46181,Africa,2016,0.0,60 -Myanmar,4.307,0.27108,0.70905,0.48246,0.44017,0.79588,0.19034,1.41805,Asia,2016,0.0,28 -Georgia,4.297,0.7419,0.38562,0.72926,0.40577,0.05547,0.38331,1.59541,Asia,2016,0.0,57 -Malawi,4.292,0.01604,0.41134,0.22562,0.43054,0.33128,0.06977,2.80791,Africa,2016,0.0,31 -Sri Lanka,4.271,0.83524,1.01905,0.70806,0.53726,0.40828,0.09179,0.67108,Asia,2016,0.0,36 -Cameroon,4.252,0.4225,0.88767,0.23402,0.49309,0.20618,0.05786,1.95071,Africa,2016,0.0,26 -Bulgaria,4.218,1.01216,1.10614,0.76649,0.30587,0.11921,0.00872,0.89991,Europe,2016,0.0,41 -Egypt,4.194,0.8818,0.747,0.61712,0.17288,0.11291,0.06324,1.59927,Africa,2016,0.0,34 -Yemen,4.077,0.54649,0.68093,0.40064,0.35571,0.09131,0.07854,1.92313,Asia,2016,0.0,14 -Mali,3.995,0.26074,1.03526,0.20583,0.38857,0.18798,0.12352,1.79293,Africa,2016,0.0,32 -Uganda,3.931,0.21102,1.13299,0.33861,0.45727,0.29066,0.07267,1.42766,Africa,2016,0.0,25 -Senegal,3.904,0.36498,0.97619,0.4354,0.36772,0.20843,0.10713,1.44395,Africa,2016,0.0,45 -Gabon,3.896,1.06024,0.90528,0.43372,0.31914,0.06822,0.11091,0.99895,Africa,2016,0.0,35 -Niger,3.845,0.0694,0.77265,0.29707,0.47692,0.19387,0.15639,1.87877,Africa,2016,0.0,35 -Cambodia,3.819,0.46038,0.62736,0.61114,0.66246,0.40359,0.07247,0.98195,Asia,2016,0.0,21 -Tanzania,3.781,0.2852,1.00268,0.38215,0.32878,0.34377,0.05747,1.38079,Africa,2016,0.0,32 -Madagascar,3.681,0.20824,0.66801,0.46721,0.19184,0.21333,0.08124,1.851,Africa,2016,0.0,26 -Chad,3.667,0.34193,0.76062,0.1501,0.23501,0.18386,0.05269,1.94296,Africa,2016,0.0,20 -Guinea,3.656,0.17417,0.46475,0.24009,0.37725,0.28657,0.12139,1.99172,South America,2016,0.0,27 -Burkina Faso,3.587,0.25812,0.85188,0.27125,0.39493,0.21747,0.12832,1.46494,Africa,2016,0.0,42 -Afghanistan,3.575,0.31982,0.30285,0.30335,0.23414,0.3651,0.09719,1.9521,Asia,2016,0.0,15 -Rwanda,3.465,0.22208,0.7737,0.42864,0.59201,0.22628,0.55191,0.67042,Africa,2016,0.0,54 -Benin,3.34,0.28665,0.35386,0.3191,0.4845,0.1826,0.0801,1.63328,Africa,2016,0.0,36 -Burundi,2.905,0.0153,0.41587,0.22396,0.1185,0.19727,0.10062,1.83302,Africa,2016,0.0,20 -Togo,2.839,0.20868,0.13995,0.28443,0.36453,0.16681,0.10731,1.56726,Africa,2016,0.0,32 -Finland,7.769,1.34,0.0,0.986,0.596,0.153,0.393,0.0,Europe,2017,1.587,85 -Denmark,7.6,1.383,0.0,0.996,0.592,0.252,0.41,0.0,Europe,2017,1.573,88 -Norway,7.554,1.488,0.0,1.028,0.603,0.271,0.341,0.0,Europe,2017,1.582,85 -Iceland,7.494,1.38,0.0,1.026,0.591,0.354,0.118,0.0,Europe,2017,1.624,77 -Netherlands,7.488,1.396,0.0,0.999,0.557,0.322,0.298,0.0,Europe,2017,1.522,82 -Switzerland,7.48,1.452,0.0,1.052,0.572,0.263,0.343,0.0,Europe,2017,1.526,85 -Sweden,7.343,1.387,0.0,1.009,0.574,0.267,0.373,0.0,Europe,2017,1.487,84 -New Zealand,7.307,1.303,0.0,1.026,0.585,0.33,0.38,0.0,Australia,2017,1.557,89 -Canada,7.278,1.365,0.0,1.039,0.584,0.285,0.308,0.0,North America,2017,1.505,82 -Austria,7.246,1.376,0.0,1.016,0.532,0.244,0.226,0.0,Europe,2017,1.475,75 -Australia,7.228,1.372,0.0,1.036,0.557,0.332,0.29,0.0,Australia,2017,1.548,77 -Costa Rica,7.167,1.034,0.0,0.963,0.558,0.144,0.093,0.0,South America,2017,1.441,59 -Israel,7.139,1.276,0.0,1.029,0.371,0.261,0.082,0.0,Asia,2017,1.455,62 -Luxembourg,7.09,1.609,0.0,1.012,0.526,0.194,0.316,0.0,Europe,2017,1.479,82 -United Kingdom,7.054,1.333,0.0,0.996,0.45,0.348,0.278,0.0,Europe,2017,1.538,82 -Ireland,7.021,1.499,0.0,0.999,0.516,0.298,0.31,0.0,Europe,2017,1.553,74 -Germany,6.985,1.373,0.0,0.987,0.495,0.261,0.265,0.0,Europe,2017,1.454,81 -Belgium,6.923,1.356,0.0,0.986,0.473,0.16,0.21,0.0,Europe,2017,1.504,75 -United States,6.892,1.433,0.0,0.874,0.454,0.28,0.128,0.0,North America,2017,1.457,75 -United Arab Emirates,6.825,1.503,0.0,0.825,0.598,0.262,0.182,0.0,Asia,2017,1.31,71 -Malta,6.726,1.3,0.0,0.999,0.564,0.375,0.151,0.0,Europe,2017,1.52,56 -Mexico,6.595,1.07,0.0,0.861,0.433,0.074,0.073,0.0,North America,2017,1.323,29 -France,6.592,1.324,0.0,1.045,0.436,0.111,0.183,0.0,Europe,2017,1.472,70 -Chile,6.444,1.159,0.0,0.92,0.357,0.187,0.056,0.0,South America,2017,1.369,67 -Guatemala,6.436,0.8,0.0,0.746,0.535,0.175,0.078,0.0,South America,2017,1.269,28 -Saudi Arabia,6.375,1.403,0.0,0.795,0.439,0.08,0.132,0.0,Asia,2017,1.357,49 -Spain,6.354,1.286,0.0,1.062,0.362,0.153,0.079,0.0,Europe,2017,1.484,57 -Panama,6.321,1.149,0.0,0.91,0.516,0.109,0.054,0.0,South America,2017,1.442,37 -Brazil,6.3,1.004,0.0,0.802,0.39,0.099,0.086,0.0,South America,2017,1.439,37 -Uruguay,6.293,1.124,0.0,0.891,0.523,0.127,0.15,0.0,South America,2017,1.465,70 -Singapore,6.262,1.572,0.0,1.141,0.556,0.271,0.453,0.0,Asia,2017,1.463,84 -El Salvador,6.253,0.794,0.0,0.789,0.43,0.093,0.074,0.0,South America,2017,1.242,33 -Italy,6.223,1.294,0.0,1.039,0.231,0.158,0.03,0.0,Europe,2017,1.488,50 -Bahrain,6.199,1.362,0.0,0.871,0.536,0.255,0.11,0.0,Asia,2017,1.368,36 -Slovakia,6.198,1.246,0.0,0.881,0.334,0.121,0.014,0.0,Europe,2017,1.504,50 -Poland,6.182,1.206,0.0,0.884,0.483,0.117,0.05,0.0,Europe,2017,1.438,60 -Uzbekistan,6.174,0.745,0.0,0.756,0.631,0.322,0.24,0.0,Asia,2017,1.529,22 -Lithuania,6.149,1.238,0.0,0.818,0.291,0.043,0.042,0.0,Europe,2017,1.515,59 -Colombia,6.125,0.985,0.0,0.841,0.47,0.099,0.034,0.0,South America,2017,1.41,37 -Slovenia,6.118,1.258,0.0,0.953,0.564,0.144,0.057,0.0,Europe,2017,1.523,61 -Nicaragua,6.105,0.694,0.0,0.835,0.435,0.2,0.127,0.0,South America,2017,1.325,26 -Kosovo,6.1,0.882,0.0,0.758,0.489,0.262,0.006,0.0,Europe,2017,1.232,39 -Argentina,6.086,1.092,0.0,0.881,0.471,0.066,0.05,0.0,South America,2017,1.432,39 -Romania,6.07,1.162,0.0,0.825,0.462,0.083,0.005,0.0,Europe,2017,1.232,48 -Cyprus,6.046,1.263,0.0,1.042,0.406,0.19,0.041,0.0,Asia,2017,1.223,57 -Ecuador,6.028,0.912,0.0,0.868,0.498,0.126,0.087,0.0,South America,2017,1.312,32 -Kuwait,6.021,1.5,0.0,0.808,0.493,0.142,0.097,0.0,Asia,2017,1.319,39 -Thailand,6.008,1.05,0.0,0.828,0.557,0.359,0.028,0.0,Asia,2017,1.409,37 -Latvia,5.94,1.187,0.0,0.812,0.264,0.075,0.064,0.0,Europe,2017,1.465,58 -Estonia,5.893,1.237,0.0,0.874,0.495,0.103,0.161,0.0,Europe,2017,1.528,71 -Jamaica,5.89,0.831,0.0,0.831,0.49,0.107,0.028,0.0,South America,2017,1.478,44 -Mauritius,5.888,1.12,0.0,0.798,0.498,0.215,0.06,0.0,Africa,2017,1.402,50 -Japan,5.886,1.327,0.0,1.088,0.445,0.069,0.14,0.0,Asia,2017,1.419,73 -Honduras,5.86,0.642,0.0,0.828,0.507,0.246,0.078,0.0,South America,2017,1.236,29 -Kazakhstan,5.809,1.173,0.0,0.729,0.41,0.146,0.096,0.0,Asia,2017,1.508,31 -Bolivia,5.779,0.776,0.0,0.706,0.511,0.137,0.064,0.0,South America,2017,1.209,33 -Hungary,5.758,1.201,0.0,0.828,0.199,0.081,0.02,0.0,Europe,2017,1.41,45 -Paraguay,5.743,0.855,0.0,0.777,0.514,0.184,0.08,0.0,South America,2017,1.475,29 -Peru,5.697,0.96,0.0,0.854,0.455,0.083,0.027,0.0,South America,2017,1.274,37 -Portugal,5.693,1.221,0.0,0.999,0.508,0.047,0.025,0.0,Europe,2017,1.431,63 -Pakistan,5.653,0.677,0.0,0.535,0.313,0.22,0.098,0.0,Asia,2017,0.886,32 -Russia,5.648,1.183,0.0,0.726,0.334,0.082,0.031,0.0,Europe,2017,1.452,29 -Philippines,5.631,0.807,0.0,0.657,0.558,0.117,0.107,0.0,Asia,2017,1.293,34 -Serbia,5.603,1.004,0.0,0.854,0.282,0.137,0.039,0.0,Europe,2017,1.383,41 -Moldova,5.529,0.685,0.0,0.739,0.245,0.181,0.0,0.0,Europe,2017,1.328,31 -Libya,5.525,1.044,0.0,0.673,0.416,0.133,0.152,0.0,Africa,2017,1.303,17 -Montenegro,5.523,1.051,0.0,0.871,0.197,0.142,0.08,0.0,Europe,2017,1.361,46 -Tajikistan,5.467,0.493,0.0,0.718,0.389,0.23,0.144,0.0,Asia,2017,1.098,21 -Croatia,5.432,1.155,0.0,0.914,0.296,0.119,0.022,0.0,Europe,2017,1.266,49 -Dominican Republic,5.425,1.015,0.0,0.779,0.497,0.113,0.101,0.0,South America,2017,1.401,29 -Bosnia and Herzegovina,5.386,0.945,0.0,0.845,0.212,0.263,0.006,0.0,Europe,2017,1.212,38 -Turkey,5.373,1.183,0.0,0.808,0.195,0.083,0.106,0.0,Asia,2017,1.36,40 -Malaysia,5.339,1.221,0.0,0.828,0.508,0.26,0.024,0.0,Asia,2017,1.171,47 -Belarus,5.323,1.067,0.0,0.789,0.235,0.094,0.142,0.0,Europe,2017,1.465,44 -Greece,5.287,1.181,0.0,0.999,0.067,0.0,0.034,0.0,Europe,2017,1.156,48 -Mongolia,5.285,0.948,0.0,0.667,0.317,0.235,0.038,0.0,Asia,2017,1.531,36 -Nigeria,5.265,0.696,0.0,0.245,0.426,0.215,0.041,0.0,Africa,2017,1.111,27 -Kyrgyzstan,5.261,0.551,0.0,0.723,0.508,0.3,0.023,0.0,Asia,2017,1.438,29 -Turkmenistan,5.247,1.052,0.0,0.657,0.394,0.244,0.028,0.0,Asia,2017,1.538,19 -Algeria,5.211,1.002,0.0,0.785,0.086,0.073,0.114,0.0,Africa,2017,1.16,33 -Morocco,5.208,0.801,0.0,0.782,0.418,0.036,0.076,0.0,Africa,2017,0.782,40 -Azerbaijan,5.208,1.043,0.0,0.769,0.351,0.035,0.182,0.0,Asia,2017,1.147,31 -Lebanon,5.197,0.987,0.0,0.815,0.216,0.166,0.027,0.0,Asia,2017,1.224,28 -Indonesia,5.192,0.931,0.0,0.66,0.491,0.498,0.028,0.0,Asia,2017,1.203,37 -China,5.191,1.029,0.0,0.893,0.521,0.058,0.1,0.0,Asia,2017,1.125,41 -Vietnam,5.175,0.741,0.0,0.851,0.543,0.147,0.073,0.0,Asia,2017,1.346,35 -Cameroon,5.044,0.549,0.0,0.331,0.381,0.187,0.037,0.0,Africa,2017,0.91,25 -Bulgaria,5.011,1.092,0.0,0.815,0.311,0.081,0.004,0.0,Europe,2017,1.513,42 -Ghana,4.996,0.611,0.0,0.486,0.381,0.245,0.04,0.0,Africa,2017,0.868,40 -Nepal,4.913,0.446,0.0,0.677,0.439,0.285,0.089,0.0,Asia,2017,1.226,31 -Jordan,4.906,0.837,0.0,0.815,0.383,0.11,0.13,0.0,Asia,2017,1.225,48 -Benin,4.883,0.393,0.0,0.397,0.349,0.175,0.082,0.0,Africa,2017,0.437,39 -Gabon,4.799,1.057,0.0,0.571,0.295,0.043,0.055,0.0,Africa,2017,1.183,32 -South Africa,4.722,0.96,0.0,0.469,0.389,0.13,0.055,0.0,Africa,2017,1.351,43 -Albania,4.719,0.947,0.0,0.874,0.383,0.178,0.027,0.0,Europe,2017,0.848,38 -Venezuela,4.707,0.96,0.0,0.805,0.154,0.064,0.047,0.0,South America,2017,1.427,18 -Cambodia,4.7,0.574,0.0,0.637,0.609,0.232,0.062,0.0,Asia,2017,1.122,21 -Senegal,4.681,0.45,0.0,0.571,0.292,0.153,0.072,0.0,Africa,2017,1.134,45 -Niger,4.628,0.138,0.0,0.366,0.318,0.188,0.102,0.0,Africa,2017,0.774,33 -Burkina Faso,4.587,0.331,0.0,0.38,0.255,0.177,0.113,0.0,Africa,2017,1.056,42 -Armenia,4.559,0.85,0.0,0.815,0.283,0.095,0.064,0.0,Asia,2017,1.055,35 -Iran,4.548,1.1,0.0,0.785,0.305,0.27,0.125,0.0,Asia,2017,0.842,30 -Guinea,4.534,0.38,0.0,0.375,0.332,0.207,0.086,0.0,South America,2017,0.829,27 -Georgia,4.519,0.886,0.0,0.752,0.346,0.043,0.164,0.0,Asia,2017,0.666,56 -Kenya,4.509,0.512,0.0,0.581,0.431,0.372,0.053,0.0,Africa,2017,0.983,28 -Mauritania,4.49,0.57,0.0,0.489,0.066,0.106,0.088,0.0,Africa,2017,1.167,28 -Tunisia,4.461,0.921,0.0,0.815,0.167,0.059,0.055,0.0,Africa,2017,1.0,42 -Bangladesh,4.456,0.562,0.0,0.723,0.527,0.166,0.143,0.0,Asia,2017,0.928,28 -Iraq,4.437,1.043,0.0,0.574,0.241,0.148,0.089,0.0,Asia,2017,0.98,18 -Mali,4.39,0.385,0.0,0.308,0.327,0.153,0.052,0.0,Africa,2017,1.105,31 -Sierra Leone,4.374,0.268,0.0,0.242,0.309,0.252,0.045,0.0,Africa,2017,0.841,30 -Sri Lanka,4.366,0.949,0.0,0.831,0.47,0.244,0.047,0.0,Asia,2017,1.265,38 -Myanmar,4.36,0.71,0.0,0.555,0.525,0.566,0.172,0.0,Asia,2017,1.181,30 -Chad,4.35,0.35,0.0,0.192,0.174,0.198,0.078,0.0,Africa,2017,0.766,20 -Ukraine,4.332,0.82,0.0,0.739,0.178,0.187,0.01,0.0,Europe,2017,1.39,30 -Ethiopia,4.286,0.336,0.0,0.532,0.344,0.209,0.1,0.0,Africa,2017,1.033,35 -Uganda,4.189,0.332,0.0,0.443,0.356,0.252,0.06,0.0,Africa,2017,1.069,26 -Egypt,4.166,0.913,0.0,0.644,0.241,0.076,0.067,0.0,Africa,2017,1.039,32 -Zambia,4.107,0.578,0.0,0.426,0.431,0.247,0.087,0.0,Africa,2017,1.058,37 -Togo,4.085,0.275,0.0,0.41,0.293,0.177,0.085,0.0,Africa,2017,0.572,32 -India,4.015,0.755,0.0,0.588,0.498,0.2,0.085,0.0,Asia,2017,0.765,40 -Liberia,3.975,0.073,0.0,0.443,0.37,0.233,0.033,0.0,Africa,2017,0.922,31 -Madagascar,3.933,0.274,0.0,0.555,0.148,0.169,0.041,0.0,Africa,2017,0.916,24 -Burundi,3.775,0.046,0.0,0.38,0.22,0.176,0.18,0.0,Africa,2017,0.447,22 -Zimbabwe,3.663,0.366,0.0,0.433,0.361,0.151,0.089,0.0,Africa,2017,1.114,22 -Haiti,3.597,0.323,0.0,0.449,0.026,0.419,0.11,0.0,South America,2017,0.688,22 -Botswana,3.488,1.041,0.0,0.538,0.455,0.025,0.1,0.0,Africa,2017,1.145,61 -Malawi,3.41,0.191,0.0,0.495,0.443,0.218,0.089,0.0,Africa,2017,0.56,31 -Yemen,3.38,0.287,0.0,0.463,0.143,0.108,0.077,0.0,Asia,2017,1.163,16 -Rwanda,3.334,0.359,0.0,0.614,0.555,0.217,0.411,0.0,Africa,2017,0.711,55 -Tanzania,3.231,0.476,0.0,0.499,0.417,0.276,0.147,0.0,Africa,2017,0.885,36 -Afghanistan,3.203,0.35,0.0,0.361,0.0,0.158,0.025,0.0,Asia,2017,0.517,15 -Finland,7.632,1.305,0.0,0.874,0.681,0.202,0.393,0.0,Europe,2018,1.592,85 -Norway,7.594,1.456,0.0,0.861,0.686,0.286,0.34,0.0,Europe,2018,1.582,84 -Denmark,7.555,1.351,0.0,0.868,0.683,0.284,0.408,0.0,Europe,2018,1.59,88 -Iceland,7.495,1.343,0.0,0.914,0.677,0.353,0.138,0.0,Europe,2018,1.644,76 -Switzerland,7.487,1.42,0.0,0.927,0.66,0.256,0.357,0.0,Europe,2018,1.549,85 -Netherlands,7.441,1.361,0.0,0.878,0.638,0.333,0.295,0.0,Europe,2018,1.488,82 -Canada,7.328,1.33,0.0,0.896,0.653,0.321,0.291,0.0,North America,2018,1.532,81 -New Zealand,7.324,1.268,0.0,0.876,0.669,0.365,0.389,0.0,Australia,2018,1.601,87 -Sweden,7.314,1.355,0.0,0.913,0.659,0.285,0.383,0.0,Europe,2018,1.501,85 -Australia,7.272,1.34,0.0,0.91,0.647,0.361,0.302,0.0,Australia,2018,1.573,77 -United Kingdom,7.19,1.244,0.0,0.888,0.464,0.262,0.082,0.0,Europe,2018,1.433,80 -Austria,7.139,1.341,0.0,0.891,0.617,0.242,0.224,0.0,Europe,2018,1.504,76 -Costa Rica,7.072,1.01,0.0,0.817,0.632,0.143,0.101,0.0,South America,2018,1.459,56 -Ireland,6.977,1.448,0.0,0.876,0.614,0.307,0.306,0.0,Europe,2018,1.583,73 -Germany,6.965,1.34,0.0,0.861,0.586,0.273,0.28,0.0,Europe,2018,1.474,80 -Belgium,6.927,1.324,0.0,0.894,0.583,0.188,0.24,0.0,Europe,2018,1.483,75 -Luxembourg,6.91,1.576,0.0,0.896,0.632,0.196,0.321,0.0,Europe,2018,1.52,81 -United States,6.886,1.398,0.0,0.819,0.547,0.291,0.133,0.0,North America,2018,1.471,71 -Israel,6.814,1.301,0.0,0.883,0.533,0.354,0.272,0.0,Asia,2018,1.559,61 -United Arab Emirates,6.774,2.096,0.0,0.67,0.284,0.186,0.312,0.0,Asia,2018,0.776,70 -Malta,6.627,1.27,0.0,0.884,0.645,0.376,0.142,0.0,Europe,2018,1.525,54 -France,6.489,1.293,0.0,0.908,0.52,0.098,0.176,0.0,Europe,2018,1.466,72 -Mexico,6.488,1.038,0.0,0.761,0.479,0.069,0.095,0.0,North America,2018,1.252,28 -Chile,6.476,1.131,0.0,0.808,0.431,0.197,0.061,0.0,South America,2018,1.331,67 -Panama,6.43,1.112,0.0,0.759,0.597,0.125,0.063,0.0,South America,2018,1.438,37 -Brazil,6.419,0.986,0.0,0.675,0.493,0.11,0.088,0.0,South America,2018,1.474,35 -Argentina,6.388,1.073,0.0,0.744,0.57,0.062,0.054,0.0,South America,2018,1.468,40 -Guatemala,6.382,0.781,0.0,0.608,0.604,0.179,0.071,0.0,South America,2018,1.268,27 -Uruguay,6.379,1.093,0.0,0.771,0.625,0.13,0.155,0.0,South America,2018,1.459,70 -Saudi Arabia,6.371,1.379,0.0,0.633,0.509,0.098,0.127,0.0,Asia,2018,1.331,49 -Singapore,6.343,1.529,0.0,1.008,0.631,0.261,0.457,0.0,Asia,2018,1.451,85 -Malaysia,6.322,1.161,0.0,0.669,0.356,0.311,0.059,0.0,Asia,2018,1.258,47 -Spain,6.31,1.251,0.0,0.965,0.449,0.142,0.074,0.0,Europe,2018,1.538,58 -Colombia,6.26,0.96,0.0,0.635,0.531,0.099,0.039,0.0,South America,2018,1.439,36 -Slovakia,6.173,1.21,0.0,0.776,0.354,0.118,0.014,0.0,Europe,2018,1.537,50 -El Salvador,6.167,0.806,0.0,0.639,0.461,0.065,0.082,0.0,South America,2018,1.231,35 -Nicaragua,6.141,0.668,0.0,0.7,0.527,0.208,0.128,0.0,South America,2018,1.319,25 -Poland,6.123,1.176,0.0,0.781,0.546,0.108,0.064,0.0,Europe,2018,1.448,60 -Bahrain,6.105,1.338,0.0,0.698,0.594,0.243,0.123,0.0,Asia,2018,1.366,36 -Uzbekistan,6.096,0.719,0.0,0.605,0.724,0.328,0.259,0.0,Asia,2018,1.584,23 -Kuwait,6.083,1.474,0.0,0.675,0.554,0.167,0.106,0.0,Asia,2018,1.301,41 -Thailand,6.072,1.016,0.0,0.707,0.637,0.364,0.029,0.0,Asia,2018,1.417,36 -Italy,6.0,1.264,0.0,0.946,0.281,0.137,0.028,0.0,Europe,2018,1.501,52 -Ecuador,5.973,0.889,0.0,0.736,0.556,0.114,0.12,0.0,South America,2018,1.33,34 -Lithuania,5.952,1.197,0.0,0.716,0.35,0.026,0.006,0.0,Europe,2018,1.527,59 -Slovenia,5.948,1.219,0.0,0.856,0.633,0.16,0.051,0.0,Europe,2018,1.506,60 -Romania,5.945,1.116,0.0,0.726,0.528,0.088,0.001,0.0,Europe,2018,1.219,47 -Latvia,5.933,1.148,0.0,0.671,0.363,0.092,0.066,0.0,Europe,2018,1.454,58 -Japan,5.915,1.294,0.0,0.988,0.553,0.079,0.15,0.0,Asia,2018,1.462,73 -Mauritius,5.891,1.09,0.0,0.684,0.584,0.245,0.05,0.0,Africa,2018,1.387,51 -Jamaica,5.89,0.819,0.0,0.693,0.575,0.096,0.031,0.0,South America,2018,1.493,44 -Russia,5.81,1.151,0.0,0.599,0.399,0.065,0.025,0.0,Europe,2018,1.479,28 -Kazakhstan,5.79,1.143,0.0,0.631,0.454,0.148,0.121,0.0,Asia,2018,1.516,31 -Cyprus,5.762,1.229,0.0,0.909,0.423,0.202,0.035,0.0,Asia,2018,1.191,59 -Bolivia,5.752,0.751,0.0,0.508,0.606,0.141,0.054,0.0,South America,2018,1.223,29 -Estonia,5.739,1.2,0.0,0.737,0.553,0.086,0.174,0.0,Europe,2018,1.532,73 -Paraguay,5.681,0.835,0.0,0.615,0.541,0.162,0.074,0.0,South America,2018,1.522,29 -Peru,5.663,0.934,0.0,0.674,0.53,0.092,0.034,0.0,South America,2018,1.249,35 -Kosovo,5.662,0.855,0.0,0.578,0.448,0.274,0.023,0.0,Europe,2018,1.23,37 -Moldova,5.64,0.657,0.0,0.62,0.232,0.171,0.0,0.0,Europe,2018,1.301,33 -Turkmenistan,5.636,1.016,0.0,0.517,0.417,0.199,0.037,0.0,Asia,2018,1.533,20 -Hungary,5.62,1.171,0.0,0.732,0.259,0.061,0.022,0.0,Europe,2018,1.401,46 -Libya,5.566,0.985,0.0,0.553,0.496,0.116,0.148,0.0,Africa,2018,1.35,17 -Philippines,5.524,0.775,0.0,0.513,0.643,0.12,0.105,0.0,Asia,2018,1.312,36 -Honduras,5.504,0.62,0.0,0.622,0.459,0.197,0.074,0.0,South America,2018,1.205,29 -Belarus,5.483,1.039,0.0,0.7,0.307,0.101,0.154,0.0,Europe,2018,1.498,44 -Turkey,5.483,1.148,0.0,0.686,0.324,0.106,0.109,0.0,Asia,2018,1.38,41 -Pakistan,5.472,0.652,0.0,0.424,0.334,0.216,0.113,0.0,Asia,2018,0.81,33 -Portugal,5.41,1.188,0.0,0.884,0.562,0.055,0.017,0.0,Europe,2018,1.429,64 -Serbia,5.398,0.975,0.0,0.685,0.288,0.134,0.043,0.0,Europe,2018,1.369,39 -Lebanon,5.358,0.965,0.0,0.785,0.503,0.214,0.136,0.0,Asia,2018,1.179,28 -Greece,5.358,1.154,0.0,0.879,0.131,0.0,0.044,0.0,Europe,2018,1.202,45 -Montenegro,5.347,1.017,0.0,0.729,0.259,0.111,0.081,0.0,Europe,2018,1.279,45 -Croatia,5.321,1.115,0.0,0.737,0.38,0.12,0.039,0.0,Europe,2018,1.161,48 -Dominican Republic,5.302,0.982,0.0,0.614,0.578,0.12,0.106,0.0,South America,2018,1.441,30 -Algeria,5.295,0.979,0.0,0.687,0.077,0.055,0.135,0.0,Africa,2018,1.154,35 -Morocco,5.254,0.779,0.0,0.669,0.46,0.026,0.074,0.0,Africa,2018,0.797,43 -China,5.246,0.989,0.0,0.799,0.597,0.029,0.103,0.0,Asia,2018,1.142,39 -Azerbaijan,5.201,1.024,0.0,0.603,0.43,0.031,0.176,0.0,Asia,2018,1.161,25 -Tajikistan,5.199,0.474,0.0,0.598,0.292,0.187,0.034,0.0,Asia,2018,1.166,25 -Jordan,5.161,0.822,0.0,0.645,0.468,0.13,0.134,0.0,Asia,2018,1.265,49 -Nigeria,5.155,0.689,0.0,0.048,0.462,0.201,0.032,0.0,Africa,2018,1.172,27 -Kyrgyzstan,5.131,0.53,0.0,0.594,0.54,0.281,0.035,0.0,Asia,2018,1.416,29 -Bosnia and Herzegovina,5.129,0.915,0.0,0.758,0.28,0.216,0.0,0.0,Europe,2018,1.078,38 -Mongolia,5.125,0.914,0.0,0.575,0.395,0.253,0.032,0.0,Asia,2018,1.517,37 -Vietnam,5.103,0.715,0.0,0.702,0.618,0.177,0.079,0.0,Asia,2018,1.365,33 -Indonesia,5.093,0.899,0.0,0.522,0.538,0.484,0.018,0.0,Asia,2018,1.215,38 -Cameroon,4.975,0.535,0.0,0.182,0.454,0.183,0.043,0.0,Africa,2018,0.891,25 -Bulgaria,4.933,1.054,0.0,0.712,0.359,0.064,0.009,0.0,Europe,2018,1.515,43 -Nepal,4.88,0.425,0.0,0.539,0.526,0.302,0.078,0.0,Asia,2018,1.228,31 -Venezuela,4.806,0.996,0.0,0.657,0.133,0.056,0.052,0.0,South America,2018,1.469,18 -Gabon,4.758,1.036,0.0,0.404,0.356,0.032,0.052,0.0,Africa,2018,1.164,31 -South Africa,4.724,0.94,0.0,0.33,0.516,0.103,0.056,0.0,Africa,2018,1.41,43 -Iran,4.707,1.059,0.0,0.691,0.459,0.282,0.129,0.0,Asia,2018,0.771,28 -Ghana,4.657,0.592,0.0,0.337,0.499,0.212,0.029,0.0,Africa,2018,0.896,41 -Senegal,4.631,0.429,0.0,0.433,0.406,0.138,0.082,0.0,Africa,2018,1.117,45 -Tunisia,4.592,0.9,0.0,0.69,0.271,0.04,0.063,0.0,Africa,2018,0.906,43 -Albania,4.586,0.916,0.0,0.79,0.419,0.149,0.032,0.0,Europe,2018,0.817,36 -Sierra Leone,4.571,0.256,0.0,0.0,0.355,0.238,0.053,0.0,Africa,2018,0.813,30 -Bangladesh,4.5,0.532,0.0,0.579,0.58,0.153,0.144,0.0,Asia,2018,0.85,26 -Sri Lanka,4.471,0.918,0.0,0.672,0.585,0.307,0.05,0.0,Asia,2018,1.314,38 -Iraq,4.456,1.01,0.0,0.536,0.304,0.148,0.095,0.0,Asia,2018,0.971,18 -Mali,4.447,0.37,0.0,0.152,0.367,0.139,0.056,0.0,Africa,2018,1.233,32 -Cambodia,4.433,0.549,0.0,0.457,0.696,0.256,0.065,0.0,Asia,2018,1.088,20 -Burkina Faso,4.424,0.314,0.0,0.254,0.312,0.175,0.128,0.0,Africa,2018,1.097,41 -Egypt,4.419,0.885,0.0,0.553,0.312,0.092,0.107,0.0,Africa,2018,1.025,35 -Kenya,4.41,0.493,0.0,0.454,0.504,0.352,0.055,0.0,Africa,2018,1.048,27 -Zambia,4.377,0.562,0.0,0.295,0.503,0.221,0.082,0.0,Africa,2018,1.047,35 -Mauritania,4.356,0.557,0.0,0.292,0.129,0.134,0.093,0.0,Africa,2018,1.245,27 -Ethiopia,4.35,0.308,0.0,0.391,0.452,0.22,0.146,0.0,Africa,2018,0.95,34 -Georgia,4.34,0.853,0.0,0.643,0.375,0.038,0.215,0.0,Asia,2018,0.592,58 -Armenia,4.321,0.816,0.0,0.666,0.26,0.077,0.028,0.0,Asia,2018,0.99,35 -Myanmar,4.308,0.682,0.0,0.429,0.58,0.598,0.178,0.0,Asia,2018,1.174,29 -Chad,4.301,0.358,0.0,0.053,0.189,0.181,0.06,0.0,Africa,2018,0.907,19 -India,4.19,0.721,0.0,0.485,0.539,0.172,0.093,0.0,Asia,2018,0.747,41 -Niger,4.166,0.131,0.0,0.221,0.39,0.175,0.099,0.0,Africa,2018,0.867,34 -Uganda,4.161,0.322,0.0,0.237,0.45,0.259,0.061,0.0,Africa,2018,1.09,26 -Benin,4.141,0.378,0.0,0.24,0.44,0.163,0.067,0.0,Africa,2018,0.372,40 -Ukraine,4.103,0.793,0.0,0.609,0.163,0.187,0.011,0.0,Europe,2018,1.413,32 -Togo,3.999,0.259,0.0,0.253,0.434,0.158,0.101,0.0,Africa,2018,0.474,30 -Guinea,3.964,0.344,0.0,0.211,0.394,0.185,0.094,0.0,South America,2018,0.792,28 -Madagascar,3.774,0.262,0.0,0.402,0.221,0.155,0.049,0.0,Africa,2018,0.908,25 -Zimbabwe,3.692,0.357,0.0,0.248,0.406,0.132,0.099,0.0,Africa,2018,1.094,22 -Afghanistan,3.632,0.332,0.0,0.255,0.085,0.191,0.036,0.0,Asia,2018,0.537,16 -Botswana,3.59,1.017,0.0,0.417,0.557,0.042,0.092,0.0,Africa,2018,1.174,61 -Malawi,3.587,0.186,0.0,0.306,0.531,0.21,0.08,0.0,Africa,2018,0.541,32 -Haiti,3.582,0.315,0.0,0.289,0.025,0.392,0.104,0.0,South America,2018,0.714,20 -Liberia,3.495,0.076,0.0,0.267,0.419,0.206,0.03,0.0,Africa,2018,0.858,32 -Rwanda,3.408,0.332,0.0,0.4,0.636,0.2,0.444,0.0,Africa,2018,0.896,56 -Yemen,3.355,0.442,0.0,0.343,0.244,0.083,0.064,0.0,Asia,2018,1.073,14 -Tanzania,3.303,0.455,0.0,0.381,0.481,0.27,0.097,0.0,Africa,2018,0.991,36 -Burundi,2.905,0.091,0.0,0.145,0.065,0.149,0.076,0.0,Africa,2018,0.627,17 -Denmark,7.526,1.44178,1.16374,0.79504,0.57941,0.36171,0.44453,2.73939,Europe,2019,0.0,87 -Switzerland,7.509,1.52733,1.14524,0.86303,0.58557,0.28083,0.41203,2.69463,Europe,2019,0.0,85 -Iceland,7.501,1.42666,1.18326,0.86733,0.56624,0.47678,0.14975,2.83137,Europe,2019,0.0,78 -Norway,7.498,1.57744,1.1269,0.79579,0.59609,0.37895,0.35776,2.66465,Europe,2019,0.0,84 -Finland,7.413,1.40598,1.13464,0.81091,0.57104,0.25492,0.41004,2.82596,Europe,2019,0.0,86 -Canada,7.404,1.44015,1.0961,0.8276,0.5737,0.44834,0.31329,2.70485,North America,2019,0.0,77 -Netherlands,7.339,1.46468,1.02912,0.81231,0.55211,0.47416,0.29927,2.70749,Europe,2019,0.0,82 -New Zealand,7.334,1.36066,1.17278,0.83096,0.58147,0.49401,0.41904,2.47553,Australia,2019,0.0,87 -Australia,7.313,1.44443,1.10476,0.8512,0.56837,0.47407,0.32331,2.5465,Australia,2019,0.0,77 -Sweden,7.291,1.45181,1.08764,0.83121,0.58218,0.38254,0.40867,2.54734,Europe,2019,0.0,85 -Israel,7.267,1.33766,0.99537,0.84917,0.36432,0.32288,0.08728,3.31029,Asia,2019,0.0,60 -Austria,7.119,1.45038,1.08383,0.80565,0.54355,0.32865,0.21348,2.69343,Europe,2019,0.0,77 -United States,7.104,1.50796,1.04782,0.779,0.48163,0.41077,0.14868,2.72782,North America,2019,0.0,69 -Costa Rica,7.087,1.06879,1.02152,0.76146,0.55225,0.22553,0.10547,3.35168,South America,2019,0.0,56 -Germany,6.994,1.44787,1.09774,0.81487,0.53466,0.30452,0.28551,2.50931,Europe,2019,0.0,80 -Brazil,6.952,1.08754,1.03938,0.61415,0.40425,0.15776,0.14166,3.50733,South America,2019,0.0,35 -Belgium,6.929,1.42539,1.05249,0.81959,0.51354,0.2424,0.26248,2.61355,Europe,2019,0.0,75 -Ireland,6.907,1.48341,1.16157,0.81455,0.54008,0.44963,0.29754,2.15988,Europe,2019,0.0,74 -Luxembourg,6.871,1.69752,1.03999,0.84542,0.5487,0.27571,0.35329,2.11055,Europe,2019,0.0,80 -Mexico,6.778,1.11508,0.7146,0.71143,0.37709,0.11735,0.18355,3.55906,North America,2019,0.0,29 -Singapore,6.739,1.64555,0.86758,0.94719,0.4877,0.32706,0.46987,1.99375,Asia,2019,0.0,85 -United Kingdom,6.725,1.40283,1.08672,0.80991,0.50036,0.50156,0.27399,2.14999,Europe,2019,0.0,77 -Chile,6.705,1.2167,0.90587,0.81883,0.37789,0.31595,0.11451,2.95505,South America,2019,0.0,67 -Panama,6.701,1.18306,0.98912,0.70835,0.48927,0.2418,0.08423,3.00559,South America,2019,0.0,36 -Argentina,6.65,1.15137,1.06612,0.69711,0.42284,0.10989,0.07296,3.12985,South America,2019,0.0,45 -United Arab Emirates,6.573,1.57352,0.87114,0.72993,0.56215,0.26591,0.35561,2.21507,Asia,2019,0.0,71 -Uruguay,6.545,1.18157,1.03143,0.72183,0.54388,0.18056,0.21394,2.67139,South America,2019,0.0,71 -Malta,6.488,1.30782,1.09879,0.80315,0.54994,0.56237,0.17554,1.99032,Europe,2019,0.0,54 -Colombia,6.481,1.03032,1.02169,0.59659,0.44735,0.15626,0.05399,3.17471,South America,2019,0.0,37 -France,6.478,1.39488,1.00508,0.83795,0.46562,0.1216,0.17808,2.4744,Europe,2019,0.0,69 -Thailand,6.474,1.0893,1.04477,0.64915,0.49553,0.58696,0.02833,2.5796,Asia,2019,0.0,36 -Saudi Arabia,6.379,1.48953,0.84829,0.59267,0.37904,0.15457,0.30008,2.61482,Asia,2019,0.0,53 -Spain,6.361,1.34253,1.12945,0.87896,0.37545,0.17665,0.06137,2.39663,Europe,2019,0.0,62 -Algeria,6.355,1.05266,0.83309,0.61804,0.21006,0.07044,0.16157,3.40904,Africa,2019,0.0,35 -Guatemala,6.324,0.83454,0.87119,0.54039,0.50379,0.28808,0.08701,3.19863,South America,2019,0.0,26 -Kuwait,6.239,1.61714,0.87758,0.63569,0.43166,0.15965,0.23669,2.28085,Asia,2019,0.0,40 -Bahrain,6.218,1.44024,0.94397,0.65696,0.47375,0.17147,0.25772,2.27405,Asia,2019,0.0,42 -Venezuela,6.084,1.13367,1.03302,0.61904,0.19847,0.0425,0.08304,2.97468,South America,2019,0.0,16 -Slovakia,6.078,1.27973,1.08268,0.70367,0.23391,0.13837,0.02947,2.61065,Europe,2019,0.0,50 -El Salvador,6.068,0.8737,0.80975,0.596,0.37269,0.08877,0.10613,3.22134,South America,2019,0.0,34 -Malaysia,6.005,1.25142,0.88025,0.62366,0.39031,0.41474,0.09081,2.35384,Asia,2019,0.0,53 -Nicaragua,5.992,0.69384,0.89521,0.65213,0.46582,0.29773,0.16292,2.82428,South America,2019,0.0,22 -Uzbekistan,5.987,0.73591,1.1681,0.50163,0.60848,0.34326,0.28333,2.34638,Asia,2019,0.0,25 -Italy,5.977,1.35495,1.04167,0.85102,0.18827,0.16684,0.02556,2.34918,Europe,2019,0.0,53 -Ecuador,5.976,0.97306,0.85974,0.68613,0.4027,0.10074,0.18037,2.77366,South America,2019,0.0,38 -Japan,5.921,1.38007,1.06054,0.91491,0.46761,0.10224,0.18985,1.80584,Asia,2019,0.0,73 -Kazakhstan,5.919,1.22943,0.95544,0.57386,0.4052,0.15011,0.11132,2.49325,Asia,2019,0.0,34 -Moldova,5.897,0.69177,0.83132,0.52309,0.25202,0.19997,0.01903,3.38007,Europe,2019,0.0,32 -Russia,5.856,1.23228,1.05261,0.58991,0.32682,0.02736,0.03586,2.59115,Europe,2019,0.0,28 -Poland,5.835,1.24585,1.04685,0.69058,0.4519,0.14443,0.055,2.20035,Europe,2019,0.0,58 -Bolivia,5.822,0.79422,0.83779,0.4697,0.50961,0.21698,0.07746,2.91635,South America,2019,0.0,31 -Lithuania,5.813,1.2692,1.06411,0.64674,0.18929,0.02025,0.0182,2.60525,Europe,2019,0.0,60 -Belarus,5.802,1.13062,1.04993,0.63104,0.29091,0.13942,0.17457,2.38582,Europe,2019,0.0,45 -Slovenia,5.768,1.29947,1.05613,0.79151,0.53164,0.25738,0.03635,1.79522,Europe,2019,0.0,60 -Peru,5.743,0.99602,0.81255,0.62994,0.37502,0.14527,0.05292,2.73117,South America,2019,0.0,36 -Turkmenistan,5.658,1.08017,1.03817,0.44006,0.37408,0.22567,0.28467,2.21489,Asia,2019,0.0,19 -Mauritius,5.648,1.14372,0.75695,0.66189,0.46145,0.36951,0.05203,2.20223,Africa,2019,0.0,52 -Libya,5.615,1.06688,0.95076,0.52304,0.40672,0.17087,0.10339,2.39374,Africa,2019,0.0,18 -Latvia,5.56,1.21788,0.95025,0.63952,0.27996,0.17445,0.0889,2.20859,Europe,2019,0.0,56 -Cyprus,5.546,1.31857,0.70697,0.8488,0.29507,0.27906,0.05228,2.04497,Asia,2019,0.0,58 -Paraguay,5.538,0.89373,1.11111,0.58295,0.46235,0.25296,0.07396,2.16091,South America,2019,0.0,28 -Romania,5.528,1.1697,0.72803,0.67602,0.36712,0.12889,0.00679,2.45184,Europe,2019,0.0,44 -Estonia,5.517,1.27964,1.05163,0.68098,0.41511,0.08423,0.18519,1.81985,Europe,2019,0.0,74 -Jamaica,5.51,0.89333,0.96372,0.59469,0.43597,0.22245,0.04294,2.35682,South America,2019,0.0,43 -Croatia,5.488,1.18649,0.60809,0.70524,0.23907,0.18434,0.04002,2.52462,Europe,2019,0.0,47 -Kosovo,5.401,0.90145,0.66062,0.54,0.14396,0.27992,0.06547,2.80998,Europe,2019,0.0,36 -Turkey,5.389,1.16492,0.87717,0.64718,0.23889,0.04707,0.12348,2.29074,Asia,2019,0.0,39 -Indonesia,5.314,0.95104,0.87625,0.49374,0.39237,0.56521,0.00322,2.03171,Asia,2019,0.0,40 -Jordan,5.303,0.99673,0.86216,0.60712,0.36023,0.14262,0.13297,2.20142,Asia,2019,0.0,48 -Azerbaijan,5.291,1.12373,0.76042,0.54504,0.35327,0.0564,0.17914,2.2735,Asia,2019,0.0,30 -Philippines,5.279,0.81217,0.87877,0.47036,0.54854,0.21674,0.11757,2.23484,Asia,2019,0.0,34 -China,5.245,1.0278,0.79381,0.73561,0.44012,0.04959,0.02745,2.17087,Asia,2019,0.0,41 -Kyrgyzstan,5.185,0.56044,0.95434,0.55449,0.40212,0.38432,0.04762,2.28136,Asia,2019,0.0,30 -Serbia,5.177,1.03437,0.81329,0.6458,0.15718,0.20737,0.04339,2.27539,Europe,2019,0.0,39 -Bosnia and Herzegovina,5.163,0.93383,0.64367,0.70766,0.09511,0.29889,0.0,2.48406,Europe,2019,0.0,36 -Montenegro,5.161,1.07838,0.74173,0.63533,0.15111,0.17191,0.12721,2.25531,Europe,2019,0.0,45 -Dominican Republic,5.155,1.02787,0.99496,0.57669,0.52259,0.21286,0.12372,1.69626,South America,2019,0.0,28 -Morocco,5.151,0.84058,0.38595,0.59471,0.25646,0.04053,0.08404,2.94891,Africa,2019,0.0,41 -Hungary,5.145,1.24142,0.93164,0.67608,0.1977,0.099,0.04472,1.95473,Europe,2019,0.0,44 -Pakistan,5.132,0.68816,0.26135,0.40306,0.14622,0.31185,0.1388,3.18286,Asia,2019,0.0,32 -Lebanon,5.129,1.12268,0.64184,0.76171,0.26228,0.23693,0.03061,2.07339,Asia,2019,0.0,28 -Portugal,5.123,1.27607,0.94367,0.79363,0.44727,0.11691,0.01521,1.53015,Europe,2019,0.0,62 -Vietnam,5.061,0.74037,0.79117,0.66157,0.55954,0.25075,0.11556,1.9418,Asia,2019,0.0,37 -Tunisia,5.045,0.97724,0.43165,0.59577,0.23553,0.03936,0.0817,2.68413,Africa,2019,0.0,43 -Greece,5.033,1.24886,0.75473,0.80029,0.05822,0.0,0.04127,2.12944,Europe,2019,0.0,48 -Tajikistan,4.996,0.48835,0.75602,0.53119,0.43408,0.25998,0.13509,2.39106,Asia,2019,0.0,25 -Mongolia,4.907,0.98853,1.08983,0.55469,0.35972,0.34539,0.03285,1.53586,Asia,2019,0.0,35 -Nigeria,4.875,0.75216,0.64498,0.05108,0.27854,0.23219,0.0305,2.88586,Africa,2019,0.0,26 -Honduras,4.871,0.69429,0.75596,0.58383,0.26755,0.2044,0.06906,2.29551,South America,2019,0.0,26 -Iran,4.813,1.11758,0.38857,0.64232,0.22544,0.38538,0.0557,1.99817,Asia,2019,0.0,26 -Zambia,4.795,0.61202,0.6376,0.23573,0.42662,0.17866,0.11479,2.58991,Africa,2019,0.0,34 -Nepal,4.793,0.44626,0.69699,0.50073,0.37012,0.3816,0.07008,2.32694,Asia,2019,0.0,34 -Albania,4.655,0.9553,0.50163,0.73007,0.31866,0.1684,0.05301,1.92816,Europe,2019,0.0,35 -Bangladesh,4.643,0.54177,0.24749,0.52989,0.39778,0.19132,0.12583,2.60904,Asia,2019,0.0,26 -Sierra Leone,4.635,0.36485,0.628,0.0,0.30685,0.23897,0.08196,3.01402,Africa,2019,0.0,33 -Iraq,4.575,1.07474,0.59205,0.51076,0.24856,0.19589,0.13636,1.81657,Asia,2019,0.0,20 -Cameroon,4.513,0.52497,0.62542,0.12698,0.42736,0.2268,0.06126,2.5198,Africa,2019,0.0,25 -Ethiopia,4.508,0.29283,0.37932,0.34578,0.36703,0.29522,0.1717,2.65614,Africa,2019,0.0,37 -South Africa,4.459,1.02416,0.96053,0.18611,0.42483,0.13656,0.08415,1.64227,Africa,2019,0.0,44 -Sri Lanka,4.415,0.97318,0.84783,0.62007,0.50817,0.46978,0.07964,0.91681,Asia,2019,0.0,38 -India,4.404,0.74036,0.29247,0.45091,0.40285,0.25028,0.08722,2.18032,Asia,2019,0.0,41 -Myanmar,4.395,0.34112,0.69981,0.3988,0.42692,0.81971,0.20243,1.50655,Asia,2019,0.0,29 -Egypt,4.362,0.95395,0.49813,0.52116,0.18847,0.12706,0.10393,1.96895,Africa,2019,0.0,35 -Armenia,4.36,0.86086,0.62477,0.64083,0.14037,0.07793,0.03616,1.97864,Asia,2019,0.0,42 -Kenya,4.356,0.52267,0.7624,0.30147,0.40576,0.41328,0.06686,1.88326,Africa,2019,0.0,28 -Ukraine,4.324,0.87287,1.01413,0.58628,0.12859,0.20363,0.01829,1.50066,Europe,2019,0.0,30 -Ghana,4.276,0.63107,0.49353,0.29681,0.40973,0.21203,0.0326,2.2002,Africa,2019,0.0,41 -Georgia,4.252,0.83792,0.19249,0.64035,0.32461,0.06786,0.3188,1.87031,Asia,2019,0.0,56 -Senegal,4.219,0.44314,0.77416,0.40457,0.31056,0.19103,0.11681,1.97861,Africa,2019,0.0,45 -Bulgaria,4.217,1.11306,0.92542,0.67806,0.21219,0.12793,0.00615,1.15377,Europe,2019,0.0,43 -Mauritania,4.201,0.61391,0.84142,0.28639,0.1268,0.22686,0.17955,1.9263,Africa,2019,0.0,28 -Zimbabwe,4.193,0.35041,0.71478,0.1595,0.25429,0.18503,0.08582,2.4427,Africa,2019,0.0,24 -Malawi,4.156,0.08709,0.147,0.29364,0.4143,0.30968,0.07564,2.82859,Africa,2019,0.0,31 -Gabon,4.121,1.15851,0.72368,0.3494,0.28098,0.06244,0.09314,1.45332,Africa,2019,0.0,31 -Mali,4.073,0.31292,0.86333,0.16347,0.27544,0.21064,0.13647,2.11087,Africa,2019,0.0,29 -Haiti,4.028,0.34097,0.29561,0.27494,0.12072,0.47958,0.14476,2.37116,South America,2019,0.0,18 -Botswana,3.974,1.09426,0.89186,0.34752,0.44089,0.12425,0.10769,0.96741,Africa,2019,0.0,61 -Cambodia,3.907,0.55604,0.5375,0.42494,0.58852,0.40339,0.08092,1.31573,Asia,2019,0.0,20 -Niger,3.856,0.1327,0.6053,0.26162,0.38041,0.2097,0.17176,2.09469,Africa,2019,0.0,32 -Chad,3.763,0.42214,0.63178,0.03824,0.12807,0.18667,0.04952,2.30637,Africa,2019,0.0,20 -Burkina Faso,3.739,0.31995,0.63054,0.21297,0.3337,0.24353,0.12533,1.87319,Africa,2019,0.0,40 -Uganda,3.739,0.34719,0.90981,0.19625,0.43653,0.27102,0.06442,1.51416,Africa,2019,0.0,28 -Yemen,3.724,0.57939,0.47493,0.31048,0.2287,0.09821,0.05892,1.97295,Asia,2019,0.0,15 -Madagascar,3.695,0.27954,0.46115,0.37109,0.13684,0.2204,0.07506,2.15075,Africa,2019,0.0,24 -Tanzania,3.666,0.47155,0.77623,0.357,0.3176,0.31472,0.05099,1.37769,Africa,2019,0.0,37 -Liberia,3.622,0.10706,0.50353,0.23165,0.25748,0.24063,0.04852,2.23284,Africa,2019,0.0,28 -Guinea,3.607,0.22415,0.3109,0.18829,0.30953,0.29914,0.1192,2.15604,South America,2019,0.0,29 -Rwanda,3.515,0.32846,0.61586,0.31865,0.5432,0.23552,0.50521,0.96819,Africa,2019,0.0,53 -Benin,3.484,0.39499,0.10419,0.21028,0.39747,0.2018,0.06681,2.10812,Africa,2019,0.0,41 -Afghanistan,3.36,0.38227,0.11037,0.17344,0.1643,0.31268,0.07112,2.14558,Asia,2019,0.0,16 -Togo,3.303,0.28123,0.0,0.24811,0.34678,0.17517,0.11587,2.1354,Africa,2019,0.0,29 -Burundi,2.905,0.06831,0.23442,0.15747,0.0432,0.2029,0.09419,2.10404,Africa,2019,0.0,19 -Finland,7.808700085,1.285189509,0.0,0.961271405,0.66231674,0.159670442,0.477857262,2.762835026,Europe,2020,1.499525905,85 -Denmark,7.645599842,1.326948524,0.0,0.979332566,0.665039897,0.242793396,0.495260328,2.432740688,Europe,2020,1.503449202,88 -Switzerland,7.559899807,1.39077425,0.0,1.040533185,0.62895447,0.269055754,0.407945901,2.35026741,Europe,2020,1.472403407,85 -Iceland,7.504499912,1.326501608,0.0,1.000843406,0.661980748,0.362330228,0.144540772,2.460688114,Europe,2020,1.547567487,75 -Norway,7.487999916,1.42420733,0.0,1.008071899,0.670200884,0.287985086,0.434100568,2.168266296,Europe,2020,1.495172501,84 -Netherlands,7.448900223,1.338946342,0.0,0.975675344,0.61362648,0.336317569,0.368569762,2.352117062,Europe,2020,1.463645935,82 -Sweden,7.353499889,1.322235227,0.0,0.986470461,0.650297701,0.272827893,0.442066371,2.246299267,Europe,2020,1.433347702,85 -New Zealand,7.299600124,1.242317915,0.0,1.008138299,0.646789908,0.325726211,0.461268276,2.128108025,Australia,2020,1.48721838,88 -Austria,7.294199944,1.317285538,0.0,1.000933528,0.603368878,0.255509764,0.281256139,2.398446083,Europe,2020,1.437444925,76 -Luxembourg,7.237500191,1.536676049,0.0,0.986442685,0.610137045,0.19595392,0.367041469,2.153700352,Europe,2020,1.387528419,80 -Canada,7.23210001,1.301647663,0.0,1.022501945,0.644028127,0.28152892,0.351701856,2.195269108,North America,2020,1.435391903,77 -Australia,7.222799778,1.310396433,0.0,1.022607684,0.621877193,0.324973613,0.335996419,2.129804134,Australia,2020,1.477146268,77 -United Kingdom,7.164500237,1.273061037,0.0,0.97570008,0.525168657,0.373433441,0.322601646,2.236721992,Europe,2020,1.457844973,77 -Israel,7.128600121,1.216463685,0.0,1.008052945,0.420699477,0.266861796,0.09989845,2.713358402,Asia,2020,1.403256774,60 -Costa Rica,7.121399879,0.981107712,0.0,0.939635336,0.645017743,0.131266311,0.096362092,2.953135014,South America,2020,1.374853611,57 -Ireland,7.093699932,1.446886778,0.0,0.975670695,0.587779939,0.295426995,0.373433262,1.943878174,Europe,2020,1.470596433,72 -Germany,7.075799942,1.314184546,0.0,0.972114801,0.564274132,0.252037704,0.309362292,2.295249462,Europe,2020,1.368543744,80 -United States,6.939599991,1.37398684,0.0,0.831618011,0.534608245,0.298143059,0.152284741,2.344124794,North America,2020,1.404786706,67 -Belgium,6.863500118,1.295842767,0.0,0.964901149,0.499805421,0.146966159,0.208724052,2.348626614,Europe,2020,1.398677588,76 -United Arab Emirates,6.790800095,1.431086421,0.0,0.787814438,0.652936101,0.28065598,0.220213518,2.166965961,Asia,2020,1.251170993,71 -Malta,6.772799969,1.252513289,0.0,0.972042024,0.633239031,0.341180831,0.178864077,1.952012062,Europe,2020,1.442956924,53 -France,6.663799763,1.268129349,0.0,1.029714227,0.514050901,0.112607703,0.227303237,2.053198338,Europe,2020,1.458839178,69 -Mexico,6.465000153,1.024387479,0.0,0.831601024,0.553892553,0.083094485,0.083133668,2.662540197,North America,2020,1.226333499,31 -Uruguay,6.440100193,1.071000457,0.0,0.856928885,0.59426707,0.132143691,0.193425074,2.167276382,South America,2020,1.425081134,71 -Saudi Arabia,6.406499863,1.334328532,0.0,0.759818137,0.548477471,0.087440684,0.163322315,2.203118801,Asia,2020,1.309950113,53 -Spain,6.400899887,1.230535269,0.0,1.051343083,0.425983816,0.16530548,0.109579779,1.997088432,Europe,2020,1.421099186,62 -Guatemala,6.398900032,0.753815711,0.0,0.705952585,0.613146722,0.170611665,0.0983603,2.882723093,South America,2020,1.174267054,25 -Italy,6.38740015,1.236396074,0.0,1.022504926,0.321305573,0.170266211,0.040145598,2.249505997,Europe,2020,1.347296,53 -Singapore,6.377099991,1.519580126,0.0,1.137814283,0.635317206,0.218770906,0.533162236,0.937031746,Asia,2020,1.39545691,85 -Brazil,6.375599861,0.952679873,0.0,0.766119063,0.483292729,0.131674588,0.106518604,2.571860313,South America,2020,1.363464117,38 -Slovenia,6.363399982,1.208652496,0.0,0.932548046,0.646700144,0.145701498,0.076516323,1.888586521,Europe,2020,1.464677691,60 -El Salvador,6.34829998,0.748940408,0.0,0.752730012,0.524043918,0.1189363,0.117030352,2.937191725,South America,2020,1.149397612,36 -Kosovo,6.325200081,0.840481341,0.0,0.672709167,0.557280421,0.325286865,0.008559024,2.736902714,Europe,2020,1.183962822,36 -Panama,6.304800034,1.097667813,0.0,0.878546536,0.57984978,0.097207308,0.054230526,2.221176147,South America,2020,1.376149297,35 -Slovakia,6.280600071,1.194837689,0.0,0.853465259,0.423542529,0.116729774,0.011291441,2.256422043,Europe,2020,1.424331188,49 -Uzbekistan,6.257599831,0.696652949,0.0,0.716703713,0.693270326,0.363311023,0.280260265,2.073346615,Asia,2020,1.434020042,26 -Chile,6.228499889,1.096992493,0.0,0.889260828,0.417482227,0.155579001,0.06284935,2.283012867,South America,2020,1.323286891,67 -Bahrain,6.227300167,1.296692252,0.0,0.838836372,0.610399902,0.287453711,0.126697257,1.751917362,Asia,2020,1.31532371,42 -Lithuania,6.215499878,1.193559647,0.0,0.795421183,0.42046079,0.053691041,0.081350274,2.238146067,Europe,2020,1.432865739,60 -Poland,6.186299801,1.16922915,0.0,0.868038476,0.557903528,0.063374244,0.160541251,2.056797981,Europe,2020,1.310399771,56 -Colombia,6.163400173,0.93220371,0.0,0.810020149,0.526890039,0.092374094,0.04584837,2.421656609,South America,2020,1.33445096,39 -Cyprus,6.15899992,1.21279943,0.0,1.026124597,0.459385872,0.227932334,0.051207144,2.032334805,Asia,2020,1.149170756,57 -Nicaragua,6.13710022,0.620033145,0.0,0.803093255,0.560117304,0.212871477,0.174084574,2.496081114,South America,2020,1.27081275,22 -Romania,6.123700142,1.120401621,0.0,0.79229486,0.534852326,0.068181619,0.000829569,2.412749767,Europe,2020,1.1944381,44 -Kuwait,6.102099895,1.424833655,0.0,0.776468933,0.570261419,0.132751092,0.112814933,1.840167999,Asia,2020,1.244779825,42 -Mauritius,6.101299763,1.07366395,0.0,0.763389409,0.590838134,0.186894551,0.084088229,2.006720543,Africa,2020,1.395666838,53 -Kazakhstan,6.057899952,1.122594237,0.0,0.698788941,0.497432142,0.153713793,0.110463686,2.021602631,Asia,2020,1.453267694,38 -Estonia,6.021800041,1.192441225,0.0,0.842615008,0.576664805,0.125136748,0.201766819,1.629928112,Europe,2020,1.453232527,75 -Philippines,6.006000042,0.775120676,0.0,0.602189481,0.621915162,0.129260212,0.130385727,2.501741886,Asia,2020,1.245381713,34 -Hungary,6.000400066,1.164307117,0.0,0.806793869,0.386401802,0.070491239,0.027548173,2.121845722,Europe,2020,1.423009396,44 -Thailand,5.998799801,1.007029295,0.0,0.793855846,0.609449804,0.376709014,0.031837862,1.832384109,Asia,2020,1.347519517,36 -Argentina,5.974699974,1.028465629,0.0,0.849773705,0.520840347,0.070100471,0.060415059,2.072540998,South America,2020,1.372543693,42 -Honduras,5.953199863,0.598763585,0.0,0.791989982,0.568148077,0.256528199,0.086807102,2.464295387,South America,2020,1.186664104,24 -Latvia,5.949999809,1.14139545,0.0,0.777902424,0.329198807,0.075407945,0.090391524,2.121283054,Europe,2020,1.414398789,57 -Ecuador,5.925199986,0.853383601,0.0,0.838837743,0.555234551,0.115006477,0.086753383,2.254933834,South America,2020,1.221027613,39 -Portugal,5.910900116,1.168800831,0.0,0.979315281,0.589895189,0.053036947,0.027733466,1.752558708,Europe,2020,1.339530349,61 -Jamaica,5.889800072,0.779058397,0.0,0.788434088,0.553124607,0.116268493,0.030147785,2.214436531,South America,2020,1.408289194,44 -Japan,5.870800018,1.26672411,0.0,1.072881341,0.495465875,0.03571178,0.181439638,1.486200333,Asia,2020,1.332338691,74 -Peru,5.796800137,0.91854918,0.0,0.824444175,0.513210058,0.091611817,0.02703266,2.213499546,South America,2020,1.208405972,38 -Serbia,5.77820015,0.988181829,0.0,0.828403294,0.395428419,0.15028289,0.059447147,2.029040098,Europe,2020,1.327448964,38 -Bolivia,5.747499943,0.730976343,0.0,0.662445664,0.5744645,0.138375074,0.072942637,2.425928593,South America,2020,1.142350554,31 -Pakistan,5.69329977,0.616799474,0.0,0.469933242,0.405421734,0.228705063,0.122592121,2.976876736,Asia,2020,0.872979581,31 -Paraguay,5.692100048,0.897990823,0.0,0.735869646,0.586510062,0.204299241,0.065077379,1.83412528,South America,2020,1.36819756,28 -Dominican Republic,5.689199924,0.983191848,0.0,0.741901696,0.5628739,0.112196781,0.115945682,1.844246864,South America,2020,1.328888893,28 -Bosnia and Herzegovina,5.674099922,0.91839546,0.0,0.813928187,0.305365741,0.264005244,0.001172487,2.16724205,Europe,2020,1.203986526,35 -Moldova,5.607500076,0.707916796,0.0,0.713299453,0.389571488,0.174049184,0.014378744,2.370968342,Europe,2020,1.237312198,34 -Tajikistan,5.555699825,0.474874616,0.0,0.680594802,0.521141171,0.182417125,0.221779913,2.25650835,Asia,2020,1.218377709,25 -Montenegro,5.54610014,1.010150075,0.0,0.839028895,0.303223848,0.14901033,0.098435111,1.880565882,Europe,2020,1.265657902,45 -Russia,5.546000004,1.126999617,0.0,0.68044591,0.399499595,0.099041916,0.045699362,1.815716743,Europe,2020,1.378644109,30 -Kyrgyzstan,5.541500092,0.513180971,0.0,0.680645883,0.614617765,0.30137074,0.030466691,2.060206652,Asia,2020,1.341036677,31 -Belarus,5.539899826,1.018854499,0.0,0.75258857,0.290755868,0.08993306,0.193607435,1.8069911,Europe,2020,1.38713932,47 -Greece,5.514999866,1.128070116,0.0,0.979431748,0.173516348,0.0,0.048844352,2.016179085,Europe,2020,1.168973565,50 -Croatia,5.504700184,1.109024286,0.0,0.900575578,0.381456882,0.113998979,0.012325006,1.676029205,Europe,2020,1.311264873,47 -Libya,5.488800049,1.021913767,0.0,0.615626633,0.451354057,0.142757699,0.172258079,1.888563156,Africa,2020,1.196283698,17 -Mongolia,5.456200123,0.904872775,0.0,0.615788162,0.355703115,0.263885736,0.046533126,1.810527563,Asia,2020,1.458930612,35 -Malaysia,5.384300232,1.168421626,0.0,0.788511872,0.596941531,0.274886161,0.062163133,1.319420815,Asia,2020,1.17400229,51 -Vietnam,5.353499889,0.718092382,0.0,0.819133997,0.650835574,0.136488721,0.089848459,1.685977936,Asia,2020,1.253074765,36 -Indonesia,5.285600185,0.891720712,0.0,0.610437036,0.568161428,0.542646527,0.038278613,1.479573488,Asia,2020,1.154800892,37 -Benin,5.21600008,0.366244704,0.0,0.328062952,0.40583989,0.196670428,0.125931874,3.440809727,Africa,2020,0.352428436,41 -Azerbaijan,5.164800167,0.990272701,0.0,0.731134057,0.467734724,0.040113214,0.247307181,1.507632971,Asia,2020,1.180613041,30 -Ghana,5.147999763,0.575862467,0.0,0.432162255,0.477290064,0.261291206,0.056570381,2.378437281,Africa,2020,0.96636796,43 -Nepal,5.137199879,0.444050372,0.0,0.66887939,0.480608255,0.300971806,0.127502963,2.014386892,Asia,2020,1.100789309,33 -Turkey,5.131800175,1.127169251,0.0,0.781335294,0.25440076,0.085885569,0.120983243,1.564816713,Asia,2020,1.197159171,40 -China,5.123899937,0.990533412,0.0,0.867248535,0.601605117,0.079021044,0.117255554,1.336181879,Asia,2020,1.132080674,42 -Turkmenistan,5.119100094,1.008963585,0.0,0.612448037,0.515236676,0.323129326,0.03350389,1.115337372,Asia,2020,1.510476947,19 -Bulgaria,5.101500034,1.046554685,0.0,0.777776897,0.417820066,0.103833713,0.0,1.294961452,Europe,2020,1.460578918,44 -Morocco,5.094799995,0.75862211,0.0,0.745096922,0.450054139,0.040032551,0.077385604,2.378402472,Africa,2020,0.645208478,40 -Cameroon,5.084899902,0.503958046,0.0,0.270189553,0.439242482,0.198020101,0.054393422,2.719370842,Africa,2020,0.89972645,25 -Venezuela,5.053199768,0.770238638,0.0,0.76702553,0.271717221,0.087179154,0.063624777,1.74484086,South America,2020,1.348546863,15 -Algeria,5.005099773,0.943856001,0.0,0.745418549,0.083943799,0.118915014,0.129190654,1.840811729,Africa,2020,1.143003583,36 -Senegal,4.980800152,0.504061818,0.0,0.518391907,0.352400899,0.164397135,0.081865937,2.405123949,Africa,2020,0.95459342,45 -Guinea,4.949299812,0.390007734,0.0,0.333655238,0.371878058,0.249490842,0.112204559,2.740729809,South America,2020,0.75136596,28 -Niger,4.909599781,0.108330332,0.0,0.298816353,0.435311615,0.208176896,0.137554765,3.017630577,Africa,2020,0.703800142,32 -Albania,4.882699966,0.906653047,0.0,0.846329629,0.461945891,0.171027765,0.025361285,1.640897036,Europe,2020,0.830483913,36 -Cambodia,4.848400116,0.544634938,0.0,0.587904334,0.674940348,0.233342081,0.072837502,1.663300037,Asia,2020,1.071426034,21 -Bangladesh,4.832799911,0.556156278,0.0,0.694940507,0.604130566,0.176745117,0.176735908,1.755261898,Asia,2020,0.868800581,26 -Gabon,4.829299927,0.988044381,0.0,0.522574842,0.369459897,0.052013602,0.055804539,1.735027552,Africa,2020,1.10639751,30 -South Africa,4.814099789,0.902140439,0.0,0.407034069,0.43478182,0.126406848,0.05950214,1.625117302,Africa,2020,1.259086251,44 -Iraq,4.784800053,0.982018709,0.0,0.529350698,0.283588052,0.153002068,0.073164992,1.752173662,Asia,2020,1.011466622,21 -Lebanon,4.771500111,0.889232516,0.0,0.788671136,0.18551667,0.158524141,0.021518147,1.53554225,Asia,2020,1.19249332,25 -Burkina Faso,4.768700123,0.302467644,0.0,0.312833875,0.322398156,0.186390609,0.126408055,2.588826418,Africa,2020,0.9293859,40 -Mali,4.729300022,0.352462649,0.0,0.234981522,0.377534449,0.16966705,0.062146276,2.559335232,Africa,2020,0.97314173,30 -Nigeria,4.724100113,0.645901859,0.0,0.167835936,0.435079455,0.221328124,0.047589935,2.219635487,Africa,2020,0.986717939,25 -Armenia,4.676799774,0.808262408,0.0,0.77585727,0.378075808,0.107225738,0.104618184,1.468161583,Asia,2020,1.034576893,49 -Georgia,4.672599792,0.847198069,0.0,0.694657624,0.485494107,0.047609735,0.174088076,1.69239831,Asia,2020,0.7311939,56 -Iran,4.672399998,1.029322505,0.0,0.749053836,0.301195472,0.27697894,0.142651513,1.286969423,Asia,2020,0.886271179,25 -Jordan,4.633399963,0.785179198,0.0,0.777624726,0.424855083,0.091494769,0.151878625,1.262258053,Asia,2020,1.140118599,49 -Kenya,4.583000183,0.476413399,0.0,0.536312759,0.519180536,0.393902093,0.067201078,1.684904575,Africa,2020,0.905077755,31 -Ukraine,4.56069994,0.780434608,0.0,0.698674381,0.319423705,0.178551316,0.00965116,1.252669334,Europe,2020,1.321316481,33 -Liberia,4.557899952,0.174103007,0.0,0.392284274,0.405943096,0.226967871,0.051139876,2.386757851,Africa,2020,0.920733929,28 -Uganda,4.43200016,0.312337428,0.0,0.378311664,0.401682556,0.264807373,0.063818842,1.958671093,Africa,2020,1.052327394,27 -Chad,4.422699928,0.302287489,0.0,0.1087441,0.228601769,0.210805088,0.085755408,2.74742651,Africa,2020,0.739118278,21 -Tunisia,4.392199993,0.874742687,0.0,0.781156719,0.235860556,0.055881143,0.043899573,1.528496742,Africa,2020,0.872167706,44 -Mauritania,4.374599934,0.539684892,0.0,0.425184816,0.185714483,0.128899664,0.122257635,1.85955739,Africa,2020,1.113323569,29 -Sri Lanka,4.327000141,0.897986948,0.0,0.792036712,0.528632462,0.252666146,0.049444564,0.611288548,Asia,2020,1.19494009,38 -Myanmar,4.308000088,0.67809093,0.0,0.495443076,0.597478867,0.569813728,0.187530354,0.681462526,Asia,2020,1.098178267,28 -Togo,4.187200069,0.268116266,0.0,0.342731178,0.303539038,0.200774252,0.114826456,2.409595251,Africa,2020,0.547622859,29 -Ethiopia,4.186200142,0.315125644,0.0,0.483846247,0.41256687,0.227698103,0.117437035,1.628459215,Africa,2020,1.001103282,38 -Madagascar,4.165599823,0.244553208,0.0,0.500617027,0.192967549,0.191190064,0.076248638,2.136298418,Africa,2020,0.823694348,25 -Egypt,4.151400089,0.875228941,0.0,0.596911311,0.373684734,0.068801254,0.095461793,1.158818245,Africa,2020,0.982539535,33 -Sierra Leone,3.926399946,0.240560383,0.0,0.203953966,0.382027686,0.257647008,0.047940936,2.046271801,Africa,2020,0.747984946,33 -Burundi,3.775300026,0.0,0.0,0.295212835,0.275399059,0.187401786,0.212186828,2.401507378,Africa,2020,0.403575271,19 -Zambia,3.759399891,0.536833763,0.0,0.36359334,0.49131754,0.250620902,0.086705238,1.134339333,Africa,2020,0.896037281,33 -Haiti,3.720799923,0.284734428,0.0,0.37436673,0.169297516,0.463909656,0.161935672,1.619916916,South America,2020,0.646671355,18 -India,3.573299885,0.730576158,0.0,0.54057014,0.581142247,0.237072483,0.105587982,0.734130859,Asia,2020,0.644198656,40 -Malawi,3.538000107,0.176534727,0.0,0.446163297,0.487389833,0.213185057,0.131633952,1.552718282,Africa,2020,0.53036809,30 -Yemen,3.527400017,0.392701775,0.0,0.41500017,0.243721485,0.094689012,0.087352127,1.116472721,Asia,2020,1.177477121,15 -Botswana,3.478899956,0.997548997,0.0,0.494101733,0.50908941,0.033407487,0.101786368,0.257240534,Africa,2020,1.08569479,60 -Tanzania,3.476200104,0.457163125,0.0,0.442677855,0.509343088,0.27154091,0.203880861,0.718963385,Africa,2020,0.872674644,38 -Rwanda,3.312299967,0.343242675,0.0,0.572383285,0.604087889,0.235704988,0.485542476,0.548444986,Africa,2020,0.522876322,54 -Zimbabwe,3.299200058,0.425564021,0.0,0.375037611,0.37740472,0.151349187,0.080928579,0.841031075,Africa,2020,1.047835231,24 -Afghanistan,2.566900015,0.30070585,0.0,0.266051531,0.0,0.135234714,0.001225785,1.507235646,Asia,2020,0.356433839,19 diff --git a/lecture_1_intro_knn/lecture/ml_01_intro_knn_annotated.pdf b/lecture_1_intro_knn/lecture/ml_01_intro_knn_annotated.pdf deleted file mode 100644 index 9995f1576f596b960ad5f4d177a7c4a43e3cae69..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2902148 zcmeFZ1yo(jvNpPKcXto&Avgq=1PJaB+}%BRaEAn!;2zu^f+RQucXxMqlkBti+56mm z?)~o_7G5itE#)Jzv?O$)jLsfMph;cc&eI%vOD;fq%5R1`sVO_e5A~8 zjjT-^O-VU`ECqN{Qc`AdGfPJ!d*EuR=V&BqWME@x1TP=}@8D=}q-O>1n(CD*6=m6A z7kG6+Z$D$TY~(-;%E1Xjf&gcD?R-SZxSj>|jR`jv=XBU5m5Y$vS}O5eDS=Oy)r}j{ zU+A<~HTuar?9_*9V!F-C`~HNY*<^@6FX=wkI31#GJypc*Vdtux#2ZJa?I{E0US00K zSn#25Z!7A$(+BFOH1QF-@*RQUXZ=!T`+)}P8#wz!7v=+wGmn64>9e#w&kYw%_0?hh zk5!mARXiJlXl;^G=N=kfTch7~*Nz?sbOn841fQBR1ngJF2ZvP_?aoP2h~9WlbD6k5 zoZp;u4KHh#?Ej^vXc=nSBW}mn7t-iH#I=xeGT=l4q zHjlBM&0UHZfp-`5xY`STia5ErdU`l1Mxm9_%8kj;ZWS9L+vp!Vc~{!vO)IA*7JV3` zGpDyO4aIXwo(&zB)Bc?Rt4%lfs3M0cdl*5~2R}iXm6`(h7d8 zC<|fXBx9&pk5Qj$0aZ)5CHe)hxg1(@N>)-!dUf|CF1mE~yIaqG%{H$Bv!b9%COnnPc0Q?TMr#}jg@HCf#m;UBQ8^rhsjddo(8W49p;JDYPl%E zpoi{4cYMi2wqx+^<<}FH>`S_G@bcLL1&OMq?5ol0jTU&VThAMXC3Z?H>2mO-{wyTQ zm!Ex+(<$uo!R2PjMo(|1hD2?^50#crB77O)q>}NjDMG^6BYr543t7X%nq7@Xqnc}f ze1o1RXH4KkTF*qQfOZzN_yd0dPAYi9`{U?Y1())&$R4)O(ruE-CEW>rN}rK?NXjen zoll!g^I3x*5jg3N%ND_i*>xLT##AU%O(uugiFj&bu>mP&Squh@BBysTJQun=l#yt} zolo&FWe8IYNy>U<;6#`qOdhyj8j2W*HZU+!&|Z8kcZ*c2)7)tZ?m}mWr!R?{OXxWi zjRQ#AwwVR-%&qa0#!>@8f-7#nCL*m=d^S2zZ+4<8x-@q~emuTrZ(;Y1RcYFg(fN79 zHa$9Wf!ht5T=7<_v2L}zZ-i?RlPq z*283IfZ}u;)5ZCrg5j(N@Ros+=)+gXAlV&`%8*qi?oEo-3Tg#;b{)@ek~%=I4^GV0 zXq+)3h?Bi9j`=P^o#$yxPV1sA(oyKgS*cv59`-0no}+kvun|4WH)Hm` z=WW8SWq};|_@<{?89u#%a7k~s! zW|@uoU6Y;|=L@4AtOuR(7U5#N%-!FXUN^1HNlW3tz~gq9^YQrJ!)_Q>2PI~1Sy_4 zs!pGK;Y`m^36iDMj@1ym=dvPuyy%ROCT!)B8O$?Uh{N_0YhS(2-%sI|4mS3wC0`-T z=1_>DWHCz;h@Ydc^b-k^rEGyef~PNA0AAyBJRthC+#)Y2YxjyWzIv9J})uTK%jg~ zM-Ts5gEA|%lL1AMa%h4aNy9IV)ZcZ2nd*ej&Q)EKD=MTwRQntY4CUk$U0|AHhA;LT zW(iCa@fdY7^`aH zNipyg{|F6uWAJ_M#S)bZ-HF=Ipc9K4wUfA&=n^9FL~q@cp2BX62+5y^dlVsWdogt) z!mL8~lvY{yu6ODn>o!y2n+xcV?x_`>WT_&>NIiMSrS#W3$BMfxd<>a%s8oeyDYep} zhK;_f%2K9sli;3ZSmag$^AfWrxh!yipEZbr96I-<{(7h~y6}h!N1Xj(PIVvwmaDgc zy97*=I9b#uby`4HDbAOz&07-acqQp^T%sNEuW#oD#tOQ7!bF6laBQlk0|^r9o$)n7 z{7uSco23cupt=*@+-OY8LZ!cS4u5Umn85hbE+1Xue#1Az*@ezl-9!K7uz>=Jlwpy; zYr;HgqsA#&O2QQxJ*u({YLM zF?Etfi-1AbA!@cvdAZ`6oEWclJ;ZPtuD2VZM; zwHIf%;QNXak&bL8jnt*qfxFX+ZL{HnE4%}5Sj;zls29bfSP>;sIjhh@pq7SxVktv9 zmAG_PDMM6^xM342nzJ12L8;ezNH3qNlF_4FN62|&Dxe`Z&fr@5S^@frGnI+l}EO zaf_*j_F!BP9xO%<x#4Ee&IYZ29-%b_gQ0eT_qD%Q4T?i55UbP)-qg$q^vUeQ;Y5 z$Kre2XsXTs73Dakr;@x^#CNl(=fFw194|t)JqnA7U6f0jAd3yuEhY*}HA(u>{W(Ool=J^5y z6G!u4o@|B(VO@?jrPW<^%mrF%$r);G@m(%m>>6hj89&17hgD?M@) zL&lY7)6lAiFpNf3?>!S}A&TVo9DK3wKCnK#3o+<}T%+623>I3r2$t4LOfD~(!_W8q zBE|`fl`&{_jqLr_1f!3;qI6{?w+h))2{-R-XqUbtcTgEkJ*$s=N6V< zzw_mcur`)WAdureCQFlU9&H@9KgrB{B8z1bE4|Q>gj;w~w@6H97vYL>kW76hzxKRx z6cLPf@;S;Gb*NGx7|dE$N__X)@)T=V7CFR~epu%tXf_^^r4k6$;MH>;&!1Y&j*!IH zNhUgN$V~+%N9V508!!jHYD`MT*@AA4w>}~WephU(&-l)PUees`2p1v=i>E16F@*D0 zqBOPheK6DW((2%{!pzZ4b~qmajPnH%ne|?i!LV24+e7AQJfoHvWI>6O+e)j-iEDVq zC7%8BAz!NSKY8b4d|uttdhQ(Zb=SoC%v`Lw>QH(ayzwTyfI<&=@RD_#>V&fR}Y*-g#4% zvSg2Y8cegacqYyLOq`E0U5{C(BY7;f(L7g~;PL}!qUKVKz1UbIw?0K5Tes%iXMzNo zHt2C3=(TQ#Zq~PEu1@?FMKM|NtklKB>liA6-NKr00vN4#+F`-W!$EMct>p8r25dFT z5d(Zm%QAH|s6+D`Q3geITO42c#ogc?vQY%i)GE-V-nhgKtEn<`P1T25iFI<}QNgX1 zyufhw-^vCc#b7@ExtTL64DnQF1bp)@ekpVnQDTKpM=Wmw*HjY6r|-2&U&1bcA;=}} z9AR=OO2a%}o~doV~R(zOZG;x)3=tv38-T)%SBdkSB2r z70_V^N~>JcAxITiogS2MiupWiv9=a&L(*aUqU|DE8yXzWRoi&_|a6B z8SP$O(jDhrFv8`gv1p;9WEj~2m@WCVAq}Ip(tbh>j+y?P}ew_+9- zfcbWB<+(WRUIorZ!=ybYA#aOnmaLS-^GN9IDkB*`S=pL(k2;T*!*UfsM0HW-FNNM= zsk#7sbD8KHbTSUaH_tw!w<~L|N*f+(d>d-`a3V20ZN_AbQmfUs^rq$L62mtAZ$J4} zDKx_-_a$qNC3=YN0ZO3$gzdwnLJ=8`SAjzk~^T-T)4jA-Rt{7MFn z6)@@`z(47pGD>gtga*T>zK}vcyq~pgP6xWZi?eI8ph}7yp;B${d1P(hhc{Htn-gkN z@S-GeWp~Benj8gu*&U#cci>pG0&J1H_ty&KwuBh zb_thqQD?Y-Gy7wqpxw!59O;;8??tansw6JV9+h6OFe>PX-fvBLIaSQI(e{qA<$KM# z3;9Yfa}&~p$GYg6Xr~&(b@0B!O{NZ2nOqvjdgU=%-k}dLMfnI24D6A)Ll~vC%sdjf zgrj3^uMXcH%0fj}5qR6a8RezMr$!ITp@wtGkua5o(t*_O=AdzZIIE4~Ix6-`l_vCs zBJ6JA#Z)-02fAfgqc(4EcU+jNia~`k+;x`6xOu0y;#LFzl{zDhGY_cEuP(6wR4KRT zuHZQC)bl0{_EYe%-8+xPJ_dsez@kOj)vfW?a_hl(a0JFd^^@otG_ zCRU+ENG-n;Eoso9>>6H|xE4B|)yLOa@W-9Y!NpL_2?8ckkX< zY7f+Zccg8GPce=cqlAzFY8x9vhy_?hlU?kV| zY;uT*)Pgd<@zuMKwap0Dw%dUa7MDYDsz?f|(zFGIfTHfco#!{R3Fa!WOmHL!tAB9R zsD`XnWPN5PcTQ1Q0ML@f_sg|Qi2Q{Ue7)`P_eSKA!$X^#|1QJ}b^%mz zWh*}kFW8pUi-6i~dhktoT&a&H4Ik<>SdM|2`m=6(X5Lh|Iq0DWfUK8Ll=G|+1Twe4 zREz9+?GnZWc|G>5Yzj^EcA;VzhQ5UYtJrF9!L&!W^<{%Sunj^u*(o+tWdpXC0D$ym zWqzS?s2@yON#FEY^}c#jp6pfH_mnO=aB{6&%W$9sKL{bqV7Bd{1?Z7)8I8o9?9z3N zAa!}X=af*tIRFQ?P9}3uuaL0J#M2Pb z+xw_nJ8GmJwjrY%!;+ep`d#bO;83`-D;C$%MBEYB3&xjL znoISwOZd;lSAmeJq$Q$Va4V{xUDa)5p@=W;O|4(hrC3C2F#(FqPro6>H^HKRzUqX| z77@|2RY))kMw^Zry>}+g5@l4HnbB%o{K0dB+sTIl1tVdw1`3HAP(~soc=D0X4mL7K zCn8jlfdQ1M4=D_?1+wpSAcr_-zioL?32n>%4EeG`y;eS6divSX-Myfl0Qto#lHe5; zOKco;MvElwVvYjrRgT5qe_7i-80*U9u=WNCMm#d8TooVU^^vpKfxKGck~r=0Y%p_#x8$y zRe4$FAxeS6Yvu0s6Y!#geQt76lO)QzdNd$J1dvpHvGBft`Orxg_%uJ-{Y{G^O-&~< zFd^03#L&$Jl6u|4@VQ(I+T+A!Dlr_(o+f&GhD0bM{MB}S5I^61s)|fmpD9Xo?iqf+rhkK%5VE46TA^ED45-e3x8tO97&H!1=)EF)d zsh4G4UmJ{yLoQq_kVQs1sGBnTS>vzKdKx8PxRap&EZS^2K8E`V>~|1`G8zSYd%}Or zW+oRo(ow#U1ozKN#J9kAhdJwN6K|%p&nOKI$zL!TQ5hJd{K(kZSL z%pMJD^R%U^r>j}{{u)qHwk>(28ArJNTn)MTYiW|Wc5uz5dnNtS@h8&&)>z#h9n(9~ zq8P{ZuR+1$irAN=eji*{8{nj{RNP%DsZ)+K=TM;*QTaS*WQcDFUv$%i@bAw9vM|Mn z@I-z)J6-FVP%q#ybv@XrxZ2PQ$hwMczq_TgZBbLEp1sB7!!<0LHsPZy|s8#d` zdz9RzIy|nJX>`3Taqe>c@wvx9q+Mklj_$f}{i%0Xjg_h)2IJ`ENloJROL3R0EoL7f z9ZXtS22S6(HK6$K`W_KH0eY#B0B#fh>234(-ANAuRJcA+{*UP#wFsIir5xPp%0!)4 z7NU!-T@%X|&58ZR8ah78+ge8?IWei?cX zqqdF6@ou9r4c4nrx3m>gx9J98eL0{<7OrnX_kwOk835$CMha)LKIoA6b%*{mHtUrT zyInr*IQNkmuva=ceB~vEfh?zSjx`M>j+<*8`F03%ZN6IGjY{4-W_Ycn*`%oOv@;s8 z!Nwx=WZgo8JBs6V)-S{$$NRXF7J==o5wnxz?-vhIlsZc5TP<*#imnT&Fprdayifqz z_-T%J*4(ldQ+-Gln#H0USmCaLquSC4q{PIe1|vFE#S4jd8-qXY61ouBhYogn6w6YE zb4vqQcVa)zVxaYf#D<6#ywq9{EVKF@&Wuf=g4*e85 z!d-3T_rh9S>dHWJ_$(2$csQ*>i70XPilS4Ialgr1RnvtuxBm;u{uL^G>K9!bz}&4Y z>O(LeZuv;_*ww&hHsKV<(q_z3XF{Gm%}|RqJ=x9@Ju(a}5?|8S>TIgC`qRFhG0 zy4lF?qn5o+U7$Dn-oRwWmEbxtd^IK3j#+cmseKaXGS_`N^qz?$)B?XjW^HoV>%lU} z!G|E9n|&!`r$?^kbD(VrWx#l)t!4ZcS1?zUK_!!>rE= zBuJTsWk{K2ZS1Y|EJ*=p=Rcn5vHW@_B1Fnc%50zqoPT@v+nHHSPT$K_@y{$)Mix@ezh{yht58~FZ% zKQo^(#Zh$k0qr*v6Gq6L=A5nvI3@ zB?||s_OFK`0Kq_U2hwNv@Nd3g340qS+dnb!TN}S}e`i7wXxU!R+QIg@Ed#gTv!zHK z?VXH%Pl*7fM2(!y42%>cgr772AwdNr2OB4Q10x60=blpd6KAZ?^!?7-KYY}z&+Ptt zC-pPOzY+M4j(Ki~S>=kYG z3;<#NMzVyx-Y>S8r2zTZ+uA()#sA=rS=h|c;hmAah>ex4jrFs%x&GoUKS(=hD5gUd zmxD`u4M*#X&d`C*;EVk04BVhIkZ~rjA6nJ+qHGeuq+RR@4D+Wjd}M(Dzqyi=#}xZ7 zzYXBM$hcp@+3&)_OVsR#O~20H*gj<}Yqz#Fa%wjA-rYeia+Xzd;-xEnvTrQQozWO8 z#Z|URm*@%mUMjgICAB!DTGg+LV-RZo)p_YyS+AZygtqgFE=XUDEUy43^yU=oqUaUn z31wgHAeQBUFy3UHu*TEso?ua;fPZ^jdWlZ$ZsAt&cJtv2f>Qg28lR_znug*RDPN1X znn-=A!FiQ0r2Ntt-e;f8&X!8ihdW(lsH9qSn#v(smnuiyoo(g8lbp&l$S);+H^EED zx)hbS8FfF8h!QLpf2y;11v!S6XWAR3Dz*nluE|OoW!C2(c2nrIce&LC!Fgpcj;A4q zI9K!dv87S@O~rP?96r z3Y0@O^qA!;y<70>Mn5^P)Om}N`EK}|d~UE2Wc;prpGRehE$qdR3bWXcan|(@3jATN zrFSivSJFLIdB^(O?F#&GjXgOABOX+%QmB*e%V=sv)cqBmEFkHN@Z{JhkgjO-?v7dW zvLb3>x^FK%gU=W@zghL6i+Q;cU#@%ZD(xgamK+`PIU?|00#2n0Te?Dv!b$vYLTJ7c zP{d{5I5|7_Qo3h++*RB8vDS=!pD%Kj9&0$Y7r|RitSCS0gl$5n-xV63@%l7OOD;B0 zDu`cAfnQ38fyMGQ>K@)|4Q^w(mYm;EJ6W^B3FSvi=#_+U6QbfC$Jf$DCg(U7EWq31 zdC-;w-*Vl1t&rA!Hour>H+K*P8<*}o8|24+^YV46A>Y*%V(TLPti#p*$BXNf_rqx- zZ@{Lc`y7&Rb?AwP-J7t-yD89yzb{#KWG6&!iL)}5I`Y}*wJ5)jY?g90F2>vmB}}mwx`&PYVBGFdFFYU_As)lKSctt_P3l#L^#s>wf+EY}+;xCl(NxC#3E{Pu=}l`M;PELSZp)Jft~^=@Y0djiH8Xu z;RMlLFP3#jIx?H48=9E!Z&Alx0M&khcS^&&)`!u zeYY~~VFlGPl}SxdWXc+da%NHcCN-)9Vp<~F=ndFSIBA9zt=c>YmO%rxKKM&>`|%b2 z7gD_U4yXNdaqx*?LE|Pq{M_d7sd`&M3M>VbSNJOsIIqjl1Z=^+G>TrgPh#NwH1gdw zSplz#B1V93pN4Ha0=?DQKOkSZy2y-f`+`esaeWYsZb}9*sXT_Gl<9~grK`A}geR!4L&H?e}&T;+26o+ zw~fN4GQ$pYiv7H_jQ4~-`l~;+NrRA2XUwPZP2&W7x_f{l)-JDRi% z{TRm_PE9I%?pZET*!a(krFW$$XyW_N89JLMM?^w%hI+r9S0A_(r%w^Fn95|i_R;;0X4Yi%ABbF@!hcHg~B=?kq9!) zWYx!M{TXiH`iEYG8e9aLf|M_XA@hCL-iFlkFdWlOjpwB*64SYzL4%wEK;TWr5)!hQ_SG6M^&Gz*!y}` zC!?viWjCQy=(_n*=eUbbfgdR%DeF?Ym;Ie7>pU^dWSpU1tR70Dl3Xkf0wMuww|kH) zW8$D-t~e@>g4{|WFq8^`;(*G!Y_))u&Zn;a|Y z@+lPXpHz6#bq_1m{4S=X3)AmBpmmS14jMe1yYB}B_4!?p8G8y)aZq6Y@=sy(idV{&M%@)O=FM}ME)5tH8a>S$VC{sgVPhM4n{$kE)jkd}H_zEu z7WJn+(PS1gwor##I{D2GiH3yGZ}8}HH@yo>aY}efng6aWjB^x1j$%>LnRN9*{c(%d z^D*M;N5TVDN_lPb#gjJAmX9vUP4Ud0&6Q-Yhu^n({m7+;TxKV}$D{Y$kI}BeYAl*& z2^$`B6{SA>7qJOS*!Geua(9H+_7hJ-_`u%k3^mfT{vb9;)%C>Ge8MGg zQTqHNj#yLW5f791sCY~q%h>XenDw%w++Cm`HLRuf^MvAm35Vn{14EubCw9=L|ItMF zg&v;~C4dUqUb4OV9Yg;@?f;52e}kj{Zz0NmfZ+dQK=}*D%IG;*kp68TCfPxSko0Nf+;srG=9W5RSV7t(;P|?uRJXZn+0|NsO3y%R0k3oZv zjZgF6{yepV&|tw{gT00TBL{(_fkB{wJ#~Xf06L+-etkgy_<(^!0QADZ!oec|1!_=1 z;9w9C;E)hdP>_&7X)oY82oennos3lo8be+WhTIO5%{L|smO{9)1507_n37%J-VY8Q z8wVE;pXvoQ4K3YEj#r#q+&m(pV&W2#Qqqb_$||aA>KX=yM#d(lX66o#PR=f_Ztng8 zfkD9^LqcQY;u8{+K7CHk&iRs?mtRm=^tGzGrnauWp|P{8yQjDBTmQh=_{8MY^v{{u zmDRQNjm@p?o!yhuv-69~tLvNFXTHEd5WlenoPT5NU-&`;_yUK7gn)#3<_iqm1vntk zAfd=uq0xopVf5@U$k}{hF@N1Xk^ z*gyH21tCI!0i6ed1`-6_D1_2vg8#2MD)mh43UtIQOfY2Z=&eL`zC3}1j%HgZx_l5@ z*KhA1BQ8x*MpiP;AekpPob)Q3Dw!sxhqD4LWq1&lOp-=*MP{#cg=>BFqolqXX)X7o z#x!mvTE<-`&y?#B3chN&ncMI=<-0K+y<@$XOWH2aI&5an(rO=-`Z7aT%VzLVe8HiM z3HBbzj+pY==xS?(`ogA4);k~m2^0<1np>RQD)lk1A?wK9+UgB^E~lBPn-`Y;Fsw$veVdd6oWIUwBl;3jt52xSW>)aYygCq;X(D?S+eAOAleN+oq-*cx?IV8o5@y?W_{I-s7r)6v z7hzjvgh77i)!X7!JaTkSt<&$ZJ{USJh;eB04sr_@^Jlx8j+qBUa_KbX1@!oPowry+ zNSMhovBd^2xB{%E`Pi1D+Na-Mdz*R0wGAw78W7G3nhS=U^JK}9ZCcG^HGeA?Sdb;u2O6F zavHsMLTp#=ocN)r#eKTt0Owm}hT133E4(0LcTz#ty@eodJOZ!1a;QMpqJiYO@~q*I zvI0d19vj$eox!dtyHBf%-X~D$UOi#NUzpsPyg)yo?Zq51<#ipT<7vf&;rmILxd*dG$!A1Gu})OQ=_tMaGr?A+0yVjj?oH z2B}-7X0*}&L88t5R=;^`4LNM28MLd3Mi$rTe^*a`n~s3XSv z>3fuK7i{~A0SUC0m#18E2)h+(H>28CqCTG_F=OT45;`B<+)fU*VU@vF)lse;N!$5n z2u(-1Z_tz{Dw?SiUqsNSIlQa?W|1hiP!Id4-d1rVAyl9%2q6s!R>so3Hwb1}W z;!cs8dP|(@F)4^?UZLy8s&U{b_vxFGAIe+A%cC226(}rOt72BQf1^0oIt6gP9$%yy zbHy(;3z=lt>Gu^Pq=#j^X7^2v(Hj1@eK%UX%jOAb)}fkwmA?4q5oO&~J(Bi^Y`nAP zO(3Sc&dvsKehuaD$aLJ2^wDyiO*H#~oF4KnG=cxMrIXgJe|YNq@~vNMRPb1f#LjKH zfb~LVi_h!qQ2HG?Oq%Ra(DOl8R%~|pz;rt7lXUq}hw=Ky!hpElQmICEd~9qLz7=oI z#x3n>0D67k=Nv@mDyA_BeQ{ZoS{b%BE`jdf>-h8aR#UqA4m!!iq;2Sqj~4shztL)@Ud%fRGrJ@z(yGoGQ(lY}>REcgf#swrSGVJm=yBgxEqr3r>wKud9{FJLi*WsT z(u8h?@3;mvpPgfQ(b;UhzFKV7`_Y|m?A;Rocz2$B{va+dhIJPF6{r#P`+;@7klU^5 zTrsa%du=R4{t9*=Cfe4kcvJdvI1s;nf{%-l=+nGfUEPoE$JRVVnEGA-{?}5TJ&WWxn zzE3bxHakMt=IOKr78x``>J6OXK4LS>7TD& zoMv`d3niS`2d#L~k`aDvUknLJ%oFR|{yojwx!!?6CBzltoz33?hx8a|hQuHd&Y&&wibm|AgZ1y$y%m0c8UjuY{ZQLuHv>WSjDB zfKFHHqCZoMRk%`W>;jcdkQ zbyAWSbMFJmi`h3`MV@QZQEX^2UUX=cI1k~v^y+5f5nk~5hYpmQJF0R>7;5t<792o1 z*l13czSQPC*0Vm*-4Ao$?W{-PP7yK(6DvXbMWbAKsNvI`rnU>n+peLPkc z+U$|?1nTOe4fg881f+Il4=x$TG$^kB&?gi3TY1b-6?K?r^ccd4fIpPKn$vgYkY{Zn zzxZeA{eExmYN4JXG)2}{r+vp(j;Eh3#xK;j$#V+U(c^I#QmkR2;pkF}ZWB^Zdi-r+ zGFV^mcFhmTb3x;g03aZ^9DlWAB3S#Y7%3IWI4RnsNv!h;Cf_Q|ZJ^FBdj$+|#bLAa|R-Yf$jLDH$%ez|fs%`hKkx&Z>tW`N8Cj zpPO>o`0I9dtAIm-6nFnZ)wTf^W)4v_Fw?1i*BZaBQZ^WJc9=A;&2UMn^Q3wtG#627 z*>+{PfBaPChV)u%CrR|7vr}~judT}do=5l1P@T+p7T4Ax{8Ug-Cm}(bI)bTgzRNQI z%pOCU?c5Z+FLIh<3Ks{#A z@BRLFS1j{B`Id^MOM<}^tLugJf&L~UcK=~TWz)PbtA_z&=0g+z+PuoYX|l-4gv$75 zJbBs}{N!l0dJTseWEdgc+#6z9yL6b1ovE+IUyik>20xd6Iw3#OsH2ANePIH1uboNs2FT-!bnLaBgXp?WJ$(4y9WztkNLN&7alQgg<7)p zbl(F>(GmzDhAXgSL+LpSI{&*yN|_lB`LIG=S_PISq9irED|M8Q6jNiDPPBldEGPdmzh^M3<6PVQ{(AWLMz=y$dLw z|JDJvE-4q2YJ!VFr1|pA%HmF}dyGdTzliCje=446l zpN9=MUd-fZ=+{&~WLS=w>wfj>FLYl51sBZi<rS$cRYQ6jvjK65mZsXtANU!) zAQs`G+YMayc{kkCrxs)5$QZd{bt1-Fu1&a*B%1Zi%p=+0YU0*Vr9#vi!B9pub5Wf3 zZK-jLT&Ji7-E!2{LglESY^Jl>x^@s>3@fIUX95s|?)9HR)PHqP@6mDDt1XpJdJrh} zjpB$HbYFF&g5)TGH$_$%QCcRXHWPM}lS+up0#l>J=p__+Qrg)vkIDoW@&+B*&HCrT zxL|}sg8t)9xeZmlo!>#KJ95`)k7_Qpi!CsjqyH*oAcZ>W2Tbver$jL>L$Y^kbEiJdN$L9s8O{pW@S?PN6wvK%H!uv;{+|*0;b#| zn(Wr1YN&K|`j|s!Q@%AahoU@M zkQbF~njLx#vG+%%zgG@iQ8cdkvv083_b^b>*I2rSMPWAiJu3PrC~R8XIh4mr1v+wP zW{%DThT+B9a2IM`|KN2jR=&D^%hNR)!7+Ze>zPhoTq^$^(3#pV$o{dW!KB{nje6eU za(o2-W8kClRuRT&ddsIZ-?*mP=ET;-Nh^V++(q@H)5lSSo;JL>2FV}17v;$o>s3QM z`RYo#7H7I+{P$(WX`C=4fQU~}-u^|VHpSb^gIs5Nylow-@eyXD+>;tIMtJucjtg}N+QbZwmTmmyM z2WZNFpnUzinIw>zo&9$dywT0cOKue4C^iKarMy4ZcwJWM|4=)}dCx+(N@A6k)~j!N zA{4c7oxZWQ{D9?n(@JV_WifrupPJ=qGkyUy-)ea&{HHDhZ>d@lFXKQ#MvyS(#Ae*6 z-DHp^jOX6xDdV-eRSlWS532cmPNYw8=d@Hscalg)sW?ICZBR~1NT}+p9d=u4#91|Z zOISZ7SeLh2x9x=|_HLBJLdHTi^0HIrgcFh&kD#$)U*ZX*Wh+#CafKF}tPs{{G9=B! zGz{!g(FHss1FW8V)ydwBl`hlp&efadn%N#nA-^sDKCwQpC5;`Y7L9SS@h>fHafWZ& zArhVUi+JOnK+}BS7VXXd7KAs4FA?BlrqQ&y>-rtK<9XvvCa27J8*5_~XPX`sxs`6Z z$>%|@HuRs9Y>nkMA8(xFnfm?kr>3#B<&W~wOTIx?wa5_FAC*hw3=)pbp@=N%g7n55 zi2i5q<@XSLCzXsz8y1s~^??T&Vbz$d4DK9{1^OZ*YppNeAwTwEVb|rfCT(zj-t4_0 z@LPi!c>-lnm*->sa;Qt!EAEP1?=bj5SH$40mY^-6B^a zJv1K8B)AS@q0{an3$ji}BO}u-NZ)YQ5QI0Dl05ThbW4-n;xPOh;YIk1rDoYXV>(OyU#XVC26>&8iTa;Fd+A^t zY_Wd!abHEkwbBx|IQ~;BTk+qTmljN|B&9V-uk95`+7fQb{Z`%lUJ zX5n+(bFLyBq3Ce*_!lBK8HT==7R-B15%cp2Bu=Teb#mk3M&%1hmsK?Azrs6<%XR-ZkbC#7Osap&r+?%N!4%s)OkyPG0u9 z9|;-O?rYSMennGQXFL5G@m8A`9JvW%yb}rEeg3WKXb5aSD5e%k4Okzfm*{6U=$C{! zYXmMNdJpoF@~alyE}x|HOg)r`K5jSGUd*4=Z3GIgX_aEeC;!Z8jZz&uGB{l{tx#g8 z?1HF+;lq%%qJGniK-Ymli;IL|r8s;?jkR^I?D6I>(4fW#0oboZvCT{kL}cM_z`}gQ ztfS!z3yG=fx5YKsX4UG{T_i8cUFa+d2T_uO-Hf+Y+q7++ZaqHMU5|bzZg;G3RhTC` zJAC0h3=!=&XF;rc--=XG@>(INAz~-@%N#+od%bkGnn<)uwtQJwL<% zKS3VuoS(=Gj%iFoFH0fmGT&F1Hb@8_5Goo@o;T6lS0^(-F%-gnJ8JI(O+$zgkIj)* zPHMZBA0cSk$dprfyU9Ot_<9s*FRmRZR{4&)qm;qmZIvnk=4VSUR{2UBs;;a1Nf`r? zq|+Rw0=WDG8yI0^-z`RJC~c>GJ{1k`%eUEi4Tfb=&Lf^K*}Ih}uU0Ir!8dXm-sjZX zKEU>`Wi6+wD(f;&{=I4JQO&;7qfuhBSj=JITg8_NyDeLD1OWh_$iW%Za5*XQ_V%2$I zjXC>Kk^L`w`2UxtA)aR7|Hdi)dxR|DV&>#zVgJJ^{v4?KuTJqlB31v(-v}~_X0?D| zMGSO#f{*C86_Bd^fgMjE-QgKAci0-F=PA<7H zk5OX4?2(8FsO;n*$8DqS>I$CIf|#rDX@+hmYM0$y4itL{W_K?CQeqdx_YUIcBHr{K zAL^vO4bP|U>OG!hSKvo;IG5+JO70d)RjqW5WmTq`a~kdHVs(pe4Gv+hNC0mQ!t+5U$>M|r{_jK+v$Cq`#qU+MoCPy9cL{`mbzx&D_1dq7n|j{X0^9>0QE{?`Y4Y>RuDxn;*TN@5Z>Pgzwx zfqFEH!k<8c&AJ2C9#c;F_Yph|eFATF2cq#sxL!7o-6~AfzM+3}rL~pGU9NsD_5`B5 zdrOfTEO>oW{-U8>;tIOOWCcIr+U<*f-@w)rh{XJJ3k=bZezS?md=+tDF-%3!{{>4b z7(waF@d&a^NX(7AWcJr6+0pnKzr36OG&FzncK%A|ynF{Tqj`}mh4}$RLt5BdPuweN zLwa>yLu*pe!)nvb$GmRoVTr}$G~X)^Io(t6>R1uY;AJpoPYl6fBgXzr{u;DzD62Hj zxWhrH69kbM=gZya#@_#VfA)WR5A8oPx){^ClZirp4H#$?yY2vHqTbl#FyORwS83}O zUpT=mBxL$bB6vBvNBA(V!5E@XeBmqLvtrmWO!71036vvdL+rn!hC}hlB-1c_-$C#M z5)b_%RphS7=4JL!7*wE_OxuwC0n>2oG6%DM^%Ignjqr$1k9;x4B5c%-25u2{pTLVr zan_IIg1MwGC0@1^=9Fvr*p$AZN?;P2-4g7yn0~~nunE2uB02jW{3tNFu85Lw4A+^S zu;&BM3K(TiAgNhc0^NcqkW~?NrTqNfbSY1Ai`gU;up#l^+{FD;d7|ySWRMf)Ec-HN-rwYa+$+5*L)Xz}0_4Q|CD zcyM>OmO_!>!CiwpH)rmhS#xK7v%YiAU)g)Fovf8)zmNRndFS(gg1n6YM$AmPsQJ-< zGyeB~{{Q2=|L0SI^^To57mbu#NuKXZ08)m@q#GFVN&l^KEZ`$m0vIuk(eMTEMymFv zZ32wNnScJ!_@>AgGNMS5DM$|C^qP!OUwo0L3gwzU0>_(2*GJ>ZYpH%2UxyHqd~ovop8X3mTr#dAih@qDuA`rJ z{c07n{+g#Q=M)m?%wri>2C~Gj)Y9kSUm>)`E#nNUC*ij-3mD@}C_i=)(G$z2fD7dJ zIsgZW2x~@u?Lh_Lhh|sbHyBzQGh|+2%_g4cIC6XqIM%_U5KSI#O^Y}^?=iJi@f9|A zb_sXRSm!bXL6n|QPorvF*E$59_dj?-y2RhbP`-_RT-%d-vNdYH)l^%QovKK}z;JIw z4y=Q=I*?#?=WhY)n4_ikOJFjdpEBk}K4NN}u^OGE8@g`yTceP16 zb+Z@&ca7QoE~cJW;>2aqi38Y^`Y!T2O+kemc3xbV_7Y`%TkB4sNr+~lnnhp+Gxq}{ z#8CYW8Mgy=0~t+vW8vRQ9bm_v%oh>Ac`#a@-msn)$;*9gTj|K}NVf%i3nr1DIIIiD z*#Aol@b4@`iaoM;Wmwz=AJWD%0GId~(A!57PBs5G@EHIkdr-BY%pPp)d>8)=cy(cR zg{}TbJo974qu%&Ux8K^Hf#4@#Z-0~IC7SayAYRsq6GmB7U5N<87Z^Ef4kO;XAn4U z3hw!h23oke`XRTpDwG6ZuBf90F%C}$cK(OCk% zDP!AuE!4X`CV=^6jjY$o4+#!WGo?6Lr*C(e{T7fSV$PXnf)UdP|E7?)c56O+kAfd* ztuFX(4O-%l`Siz!uEIJQLCDRNRb@<)cWe_~^(tl3IX(KHebP?;!k+=Lk-`S9LoF9C z$6mCXo^L#b6GST8(Y{!P1*S4N08^xwUuP3ZJB zTcBONIQ_74!>#^A3l6^um-u8{g=X4cc=i`IctaIekQ^>z)%8}{)GznJ@HDovhR!zL z=9&|9T*A}ajOsJ4$5i$6_z=D)*;>5-GuL|W5-RZduaF^p)c``F_4tvJ^kikFW0X&p zQRJvE;;`eVd!S3zq7yPRX*QBRKuOeIHi5 zxF~PZ$LrNh3im)&+c;45^2o~Ff#q6Z&YO3aPD7b#>?e$+G${&Eo-VSjgvNBwv605n+T56*id31T=wWtZ*It5-fw4V-LqPiG4<5(hZrl=*cRx0v?y(dT;$ z)t5lbVHmB`TTi`Bn}zx9vqj`z(=$4#^5P(JD(|oM7oWPPTA}D64TH08+ZjG2Y@A<2 z85`ry!XLJqpaC+G-w=Z2f6)D0{}ZwMXV2ecTidS(LxU&7(BmGIU;6sJp$;Rpbw%V< z${Gc-Z=#WlH_79mbrk2vjGR0E1N>DS+rRe8Z~WHwQ9qmPJP}f~jH}YzJOdi@8;4-T z70l;|5QL5N4AA)g4EUR0Ci-%kv8sb>YFx>Z>n*<4>R%N!$E#xG0dAY#H0(0Ml{23G zmS;dVH;|=MbcW37mgG|N8KCk-5)3diio;3L29%;pYxR#_W3*7A->7=e_7-wKNKO*8 zh$6z}#*wMI1R=A+LH#V`fph$UIz!K=0Jtkxm(oM=r@|eat7({lpcqwN{CE8PpEw3g zYGo)%;p3sw6ulkk&XqZ#Y%V!wRAArCu)^&RX4|Q*^cj?3oATwfYrPDajcv=TjS2tB z*i4!I$T}ouxeie`txq`6XjLZD>1mq6y@iSJ#$UI=Co}ZldWe&Kys261kRT#V8256` zDv3faOMHSOgS=0j2s{(D;S>*v``=yp*c6rBU2DazUet2BlN{6Qr*Ck0(x4M)f{`(@XszHB?3>IhQwKvor$8&MLw=>jyqu{bg#%D6FdM#E@K#V z>Y#kPPW8V+TI$ok(?=}%^TTyqsMf@MX0qrErXToAq)Tr+_7ym25`E(cC3JhQ^-MN0 z#`@{BTdtrdYBsKWre3R5k=c}RztTma$p!*Zi<&M=`SG&zFjG&uGlG?Jv`r+ChW9kD z@lrxc2D42-y_VJl*MF~{{!hnzlg!h&82~G96DlPQVQ?YXM?Q|D1aD!%%ODi!3Uiqva$vEH*s@GblxP(p@OR}mC`qn=+)NPD?tbZhd*l)SdxW92Y z3^Ct6e|d28wR}&26Ks9eh)2bWiRf9hm1m( z-b@eKnhPoc@TBV|In(Qd8KZGE$v4_0b^`?f16; z`iW>@c2+n;Gl{p$rFn(}ht#*UIn)3Y*0}y-u^W0zgi^!bMqPCwv$lat?xoYwZ>Pu~ zZ51t*uc!0c!nG&yge{_?nqT##NZbP#h%2L{poi{9d}ezt>C|kR!5puJ_6xlu2fR#| z3lL1-CqCuBz0=E&PCPP9385lA@b&Fo zzy`kl8CZcT^7BZIoar*}N6-ctIZ|T%Y^5(3^$mss-IG_&BUbqchoZq!l~z%Q-5T)W zhX_J3==6wH##p`40)5R)m{KQ;Xm$Se_;yk9>r1w`vqq!htqm74^==oh_v`bMAEpwj z%*Sr3FRZuVl->Qw%M{h(D~*0cEBrY9Iph?Ke@7s0SxIj7y<5qGbVkI|*IX~*1KED1vshb! zguJg3^^>p*%uKEU8Yk~?AcYNv2Fh9qmd5dQ;gX;Ai*A2ajwgA314)UC)7}7f^!02L zXI%miMAG>(7i0MLYNJ7DD}ZD*qnPY|dh}6vPiZqz*#>J=%r(E-k~Kk?D#jao#=@hVH6A8$Z~9R1|G$o zNEDML5!W%Ao!F#-KYz3HQv&FI22kC1*pj?E^KE(6TNijclaKbTk9CQ(sQR&NVY^p4 z6-FNlve$SyA@(*{&H%TY6;?Jkc2)i%4kz7To^l;hCNSAeQ2+r9ubFXd%_tZYZu!NS z87vdyd7;%g<=L!akg)9b^iZxml}!ZgvpzB{4KA8+(!qjA`81n87`UBCeUf5v;T|qa zIsdUq{&X14CB6^tQzF@F{F0~U5qrrdx5-AfvoGRMf%9g!&K5=vM+-;@6NFYmD~66u z0@KDDUz&|V_PzsxK7^zL!zU|OC>j&^Fz)B%(`PH0R7B8w$8q0R-h35OsqHKVqgGGj z$+G+sVZxf7t@N3-eOW~_%gG@oxIRWTFd~>*V9QLA{8;;jppv4xR#q4tb1$3LO@MXj9M4EiRAxcJk0h`&J1+ejOi?L*Ln|7VflS(36 z?+(%Tbe+>b1B@c;|vP<>1HgoBjK(2QESepUNx+T#wH!R1wj-xu>Ml40Mt zc5-MbiJ)szYdZLg$=1k-M1$eV*1>QI%p~*jso||4W2QDP9oI&-E#Vi%Kimr$V}r~; zYfhww-l~oX(r4Feu*NRW^8G9=q*9V83TUAQdP`0J@na&%{Z2nlQfw7JPC)fpTI^iv zSncJ2P=gd%q_dMZpc-^hiVQL;Das}bRO&W~R0$pvQBfong0EA84cZ6w#HO zPAUCn9r46w$29Powb zE@Swdq^()3<|rNH&b<5Epvu_)rrWAz5^R&gb+1yB#Il#|9H*+RPyP`EL4F}mJ_W7u zeFy1T=ftwf7%TH~UXe;}0G&Z)M)tGS_GQ9?K^7*3VUpDa@84p>4nK$;XmGv@US7`4D~Y5(7im zQF$Wd9AB+3{0)MFq|1|~WacpncQb^pLFz_L)^xOXg`%Ooab2O(@9JE`kYm^LxAK2B z{dS$xv2xUTp=LuLhf#oQ!ljZSE1JdcIKqWAdN+28var+IER`D!W%f4}F=I zjyYNIB7sk*tI8+EK~Y_wP#`mmCSAjkzyc|@eKNQ{3_Wk}K#E{3X$0SetLJkHWmu63 zY4NwQuWO^>jm^H!&j7al->QqkLkCh3hWa+-=emrE!_00%++5=wMn}5Gba-;ZD{k5H z5M=83G0+d_VrWe(=r{W0dn3K65sVSs1?kI*F;nPAwGk9X%dz?>Hmmy{Z-_dM8MG`+Oz(@M9;WDo3`i=zj-i1*>)B&uD-1$V;X$`N?(Y1A^{qKnsk)k*b@kK7B zOECfIFoo_t*O)@{CU#Nyn1z8HNDx>YeW#xzF_`ctzNt&AIes{VdYYtDq6 zc7ul#CQ)yo$J;KuX6)x9J5!I5N4v1pwCFHTh9*3l{0s=##Ed)^BY|YON(b%Bgzdcw z+hmkY_CKuwtwaq4pZckWgzngY(!yvJqvZm68X1vQz zdvy|NGDUP8d$FeQzSc&%Xg!lT`rpagGzZeTm$|2}a&hQx(ukhkrh$Y7Fc4TBX|-|g zMP)D|4&SKd_hAC9n1>$golYxWiFiML-{ab1S^;Ua*_(By&KN%S7_?-CR5HCEIt^>uwvR;6nU=Bl>c;TG4CA@Sn+{ zdjrmavEEVd*NFKRy*xhdr#j0uA8Zx8B7fv+1FpV@w!3U?oPXfL{2&>Eo!kJIH}q3p zM=Op%Nl9VG_o&3y-3fnyfl~@CPeR1;isgKLBc*i zEcH|Rk}qs^aY4L4`c>RFUXzU_vB~I0HLo)2(CNV8L6OLaYB?Xh&?{&U2*rNqz_8L^ zTE+a;7~R)+Z>2hH3VquL3qhU_ zHfp?5CemudMH4m#HcOsj+S722NbhWGwj@fMH4r*9e_UHilIbE>cGzNWE!=#-qt}e* z599vp&B)ciE#sd*I@GsJZIJ9U;T{0%plx=R-%C85cT)efCs#QXd_JQ^MM_p*#g=F| z{xx9*@pUEyyXTMFmF{h6ZO=fZTxVQ|ALQ%~MQsw+iMM|o$9}*rp2nTM)pOC~5AF<^ z)|6HJ{GTp_f8iBHP>T&Q)c&-ra29tpO>a>qlF%u8X{6ozc>HEobv+%$n_}c36X$p2 zPJPd&tasZtJ$3{(Bx$7b!HDql-`v0mPFyF1zvOa%BTmf)(MMY7W?KhPvABpck27h9 z)2MfOkEKNKIa8Je4u1Hxl}FhE9&YMJ=@k+#dB(1$Xd5iInMb zh@h+#0#A3uF@spIX3o&z{jOsR=Aj;@tVgmm79+K9XC6{ZR%4B6)_Qpq?N(a!g^uF( zNH!p4{)g{QysrK1Fp&pFz|V(^t1*$0sAVy$2<~RilCrx3{^Cfs;)M@*vYRbKWNC0I zQh1z{xXlns<8cVCrkubr%0n;s33ur__cbYB0vQeF9Pfv3-+c7qjtp|iByoi#_bbCk zj-|F619~K;0nY&MP+rtIr`33mRS$lylH=H6N-5qgtP3P7Ypzy7mSsB>m6RL;K4Y*> zG(+^&S2-aq(@)>jtA-^-cG>4}F+;38u_DiNqPHDH*NU3N=o{8L8xzpbw@H#cAFb!o zb7YWW#hJUcfF#A5Uu04cbm_mvUeX-AciZSdhhR+xh$XI@O0J1Ufo{Wc51s+4rqyJ{ zYmu;_XY%B3L{FxOBMnFmxoy_`A&UGY z_V`x?*v|YY`=KwpzF*w`h@BrxR5&+frQp2HlFZH+-%D@y>)adn{nbjC4be^FH=f#n(J8QfFDDyQYg9U9W| zMEj#z@&|3FNqsAx32~I~KCfxsDV0upJ$!x7Mu<=lI;GBMa6o&s(EZ4(%^n#WeJ9Bf zs9E_9TX9T*l~>dHe<64gHNpQ%3irbEQ%<+$QG$LNn9oJ-uo)=l+kW>F;tCnx_?TT~ z&&hWX<>G&ba0+>PYxooYV(+s|-yG_sqMA%3()v123Fg)payN=HN@LUPR6{4ZC^@Fk zGnRe^h^HZGc$T(zVcWXA0EE4mzZj5VryW?LvaL;7j-Z*^a`OH&#o+OGJ5sxKe~G|J ziv^Y{YGOm``_~n*^~%#NLC$wJy=;NMskFq$2_KSj*2T>4W{{~$2!Yt;a;`$w-B&vq zlb`C=i8S6b@c2x>`9Rm%F=a*7(Sl~+dZb~)LstHx>kKyYP$a4JLWE!pGP4~hkcELd zZBLKwdH>g)Hr?FW+7hJS$RNsEvsrI=Un%*ho9Dq0xsA~#h}1p*4IK{AOu=AsnwkG# zgaDD4WISWWy+50Oo_#HdX?0mL;eU#05gCb^F~3#c87HLXu=#X0qyEN3-Mkol)E3HB z&12zi^qMaJ;|_|QqvJjHI2stu>VD`oUD80@FM z$7bpX{XI9&>2@!!H@JPE)fhUDNh|2+0({ivjA;Kkj{WP(xZWqqM$4Dxumb0T-=CdT zxw$dSpgzsQovcstw{+iYwRN5t(f|L0cYnRd zx005dH{qsItBkA#+ z)-1sW9XK29de0)gy(IgGtcnjQ;pKztvY5reIg{CT*{4{2%bv<=DO$>L`|5w^fJ(cn zMzm{6^X|-C?>UY%f+F;NkW1zSxu?^1Ih^Vp=@Y^b3VxrBM=U$&GE+v z+g>NfGz7>?A(vg$a-Ww&B?H_i23~L*->ydPAQVXPPi)VC3BHY$opPD4&AZG@6uV`_ z^;()zuSKS2A%f&nsSDtMjcavi9UE}-+pOdPjB3lsYa?T{+WuzTlp?fUax^Z+TXP}t z2H`l^lS&(rK+ycHcF-qMJl|J^crLzm&wxDAGr@b%1^ACy^BJnHUuI)~=atF3MZo&g?%FRby&4P;(w*r*$LY>r9#=V%plb!LgNH z9v8QHmB020nau{4R+J}}eQ`KRDsu&<;|rclCCT+bUWEPx!6b#&Gl#(3!Wm|{xx$LN z-$btRd3bP)ga^2Bgf4UQ7bKvJP>8XTYg6!^4vx^ct+xOa#W@l%;VWM{KrO_Ux!$^h zb-=lHf@^T_Mu2n)-#+_w6N*0Bx1JP6r*@%I_mQX@z02vi;gKLw-`?<&zt@Oj&tU1I z81kW_D#bLN4vtPW2_}eu4E%42`hUBg`&Skq*gWPX-?xi3)JI?YlfjaAnD?-Mwp_4D z8zBk+RqwYpCRU?11^%|0{WgACn$pX);Obm>Dg z;lXxW1!{_O1v6rzc}*C+hyMmG`7;zj-RRakFs+*sygSHu$gDP{lc24mJW9B!k zEiJ51aXLN=VxA>=t_`#CU6pX>T-bF8bzkxiV5odV*09qGwS?N zgh^|(o9mNqAcd>cZ!*#A#@TnLTX#vp zCuk>qa}1jn&aJy8)dAJCpIuo)bIVMA3Pp&Wh!xwi!~{B6B?Owv?D;ggaH33fSM6+P zPY89v7U&-$>v~~Zcy4-wn-|LzRo(f_Qs(Am151kUlo_*)Al9 zhj-E{e=mLO!g=^mVeC84dMzhE+3JL||8_saR;^LpmN%$!p0?sgIU%D?0vz{DIhw0X zgsp@vF9zr3?_lxjnf#+Da2$X{1d0t3yfeyGVO3l8IkO2`+MBS@`Hs=btWAO$qEjB7 z{Sv>>Vxt8g-)c$t=}(ZZa026N^@fif+OB|GDXq>d+e}=?$TOm?xKyf8_RBM4Yjh3s z9|cG+uf=e-SuB|C-6b&%nu7S&m*4-9WX^7F-S#Ih8b`C~voW~^fmDWv?q*eWqI;9v z3c(c20ri@)$p1+k|Ff^is*Xv;5IVmpDN1>`fK;}41c1bWU;RneduQpCd$OsMF;qgb z>FN6F%f{1F$0v~^02RcBA{w><1T9oMc5UV@dIK#GQiIB3GTCW2m#Sa92n-46&Pd57=%2o6%SDmvvL&gQ@q5dRhH)1&)1K;(kGQP3vdV1qP z_q)f5>B$&`K-`OrvB|Qe^5cCb|MeWjghU*=d4bFimydSR)`sgo{B}X90(B#Bf%3x` z|4k$7rddoW-0rbE{k}hoFfW76`e@fnehuDq%wkWD<#98ku=hRJ#HBee_=vAd-qB6g z^H{1_(TOu3T+5f@_dV4NnY{M!H$tLie%hnF7$6VcQ%^0~f$$5PA4wfb6o@5e#9b6& zUl4pAnYhzZz!oCc3LK_jd3*mWsD+wS?0X?A;hQ(8G<3w&fk#p?Qv0r#C15<9ODlPQnLM}DY^#F2M=L`x~%gRDge1K_|Z9~o&+j77F;N$o&C6U+Bk1Jq>4pe~B zcq?^r?uoW3)eV@R3n0no=igwEjZW~@7ud^RdiPawM=|i4Ba}|LsGtcIoR$fkm4nD0 z7<#`ZuHTBzOwMr5xwoAuX#i<|5J4DGHU3q=9Ez|Q&c3QbubHjjOmcRoiIwr={y3e9 zd}2UJUvC_P4OenZc)4IOy#EsMhw0Stf~NjDh)Mg|2`!SJhBl1Dxet^-xBHcigmHWl z1KCc2%KaFD6D;gy3!WC`9tzl213xQN zcq1&BtT_Iv*1obyhMpMxwPjA(ta=|}!dJw(fV_rX_-sc-ry&aw`gUWuKXqysVX~%@ zse5`2%0)B&M2q|SDs?7HdvNhS>W$xyEe}Im@8`lhV&(f%Q}6VCT7qq=!xFVZIkLB1 z2WnoU^|ssYdlSECd*_kH(A;w(e4c87?-HKBgOtqbF(^@wkol2}Z6vjS#%zNL)2m4;(> zU>bqn*eg1~pt?&05sAI6Njy6S7fu)GK9 zB;p0=TEe)`nTHsuvRK=K^!53#OUU{hwU@Lx9cja0FRKE46v;57g|^G285XS_**`M; ztyH`hEAv91h@IiHAq3+$;>9t#Nf??B+E%I+$ra>vK(Y(4K`7RaxfV5X~Q%gaj&U-Kqi{b5$8n|Cy#qJ*93>d>fD#Luz1!^-2Ie9l@*dg zxUj}=^(EoKW`5|3&GoVCs%TF>F<0?>tidea!USuk)T#a6WR*FU3(NB2OJ+9VN1{z4 z0{%`vv%euG>qPp5Y#hSET`PSpYMmt5d1daExmhVL&hUM`k4T=}K{l&h5jk(!KF_eb zjT~RJj2KuXcy54RI}dK72fh3wOxyls$J*?mTRBZHpWu4_r8Dm4BOGNn=Vg7&+a7_1 z?9xiIV!iv1ZIE`d%sQ-tZj(38i3tYxx^1%7R$i(pVl=1uoZ*5ZY7Oh-xL!O8n6y2y zm*)nbbtto(hpRsPrEew@iGlQnZ~<0vyw^M5&Dka1eE$GNZ2n@r%U^CV+OMeHDt&NS zCEsi*!8*H17o^1{5u6cnQmO@FVQK#Q(+ZiP8fDDMc`ZGFxOLj1>7ni;xouUsG8NsZ z#?V=%(gSaCpDRhf17t~MXI?iHQ~sOUVrmpM$mqNIfNonN(Kjv>M;9y;V(JV9ewHEP zkB-QRwFV!__U&@ur0Kq>rMZ&dwZdpFuvrV*f$t#T#Y_oo)?|2n?|2XCRFTKeW)AL? zZ5(*+yP5+SY54HO5iJEi?lS;HI$Z{R^Oy}4a!qISft<#Dmgzsc@`oAkQ&OeL8= zEp)g-Mq_6RJ!qmOy=yqaAM~NHyY~nK?CV8IAcDNfmt2#m-yoSZLzpIX`}O$crIi(! zeRKoT@)P+qknitx0<=*TMD)xFQC;*R+OypC+Cu~;8!~Px{_q2s{H~dF zZasA}cG>z#r~f^-DAnVXY18Rk%BeuCx)~E_B*u$=i4KV9**ZxOnK!%;I7^4<+4w&+ zzC^Iiuq*}9$!XGmNsGiaHOAegB;{g8P;@WZ*WsZ$pb!kWPe8w{iYXYMqg$L6+wLrX zEa2Fzz2RSHUc2vJtlB{UGP9$91eny-W(oy(vNzt{4^5W-nWL~>Dh|FV(-%jx9jnU76&SQx-WO$xbhQx#fAHjA!mOjxyzqY2yDLLR;zc&5M8o z4U6m>8jB+j8jYGafQ5{vB^@+bl%;G%fo^7-GRZ}=B%1Nrx!YMqT$&t7JGuAm%4EUf z83f6Nfl5FDeV>_5s?vF4y10w@MH0(~*!dJJfYh7R{IpDje5&9!>eD7N2rN{2Z7QPi z!r?Ynl2o;WMW%~p2P-=%!~r>a0);)G|1OqAq5CzutLE>7`uC&mGU_OmwgQ3&)W2&+ z0lPKp0SrICO8vpHg%sh9u#&sXfg^3KrX3&;K^9q8)W|2?yUbU%n#cL94f*K>mXf{Q ztDwmMwl^Lb-WT{&*EaIYe1P)_@98E`UEg&9IiU>jqzu$tx)ZT8xfS+~<9PT*;K*$# zwZutnOnykYJJ0A!poiqNZbOkd%9Gn=g?9#mZ5EwEXmg?`kYq^;_yC%6HoQ_8a@ONu zzD##Mz~SWAp9%7SjBWRE3Qyzr>A5rQ(#1x@injz)1Kt4$Nqm-19{H(IvX-mie%&o#URK>e_5;UTd1S{U;SI1j{b3>)8z{g zYFHHw#=D0q$2YOq*pgs%*B5gu;z=Vv$>s${hVJV0d=>4sY-<;LgIGmT-}V>W4<$y{ zPhvz_Z>A&jGO-V!{rEkp*iti7e?OqdEjmC&<&W3=)G*|U$2wduNqpnDy=HX0%GXGE z=*7(;qHj~O*nGxNO+z1zH|i6)D(3g?&T=L-%D&iG`Q8Ta)gqM#nxydEH)dQ$D_5)T zx8Tlrm;IH_po<}%K#x+I28%|7k9 zVMF+lAj27P6kxI(Ddo=DK!WDxat(vEH^U>n%+|h4b5yOSzdIUt1zI$uval)teHG!U zm@~8fuwc>qM>_2N13zV=Gj`y{VnpbYBG^`M57Xmhv@q+B_`wc^>-z66cft>E3r2Ds zOt^ij!~`EuN+^?;9|Yj&G5&Nt&Y1DWAK7ce?sd3Wcxv|Aaz}a|$};WEiN5+!mgWL2 zmwy2Z+e1mBe%XMQ<3X#G9kwBYihOU_>t03w{?_H8?7Ht)+DQx*ld9`XUyrgf%+uUd zk;BYreu(=-3Ghe^y&zv@I@%5ouLl?|hVfVL`xPb-BenMuzDDRn&?634gL6NRInJYtgb~z&=)f zeL4p&MW2fK`xBH6{66Q-w&n3vW!V0vB18d>3GQzT_Mpv&Q)Xl|M!A~v94o&3)_mL^ ze5cR9N}=SSz6K0xcoo5;lxjQFGSAEM6rfiZ=MCg*VEH1D_gzYTvE|{t#P@ zYQTo@;|AKb-^I`WD!0%lfE!vOa?R@tqX5hJwbktAc*Q5Vw$#B99o(#tK$EIyv9^?& zsZ3n*xQLt;OxK4{iTsqIMj!$6o{ApoB6=|bnprEORzqam#0H`Nus{CGqOWiW*3?2U zG;G%zdAO4i(LRRkqdo&lY;zudT>eSmV$HqD9Q%jAh!vD%6E*(W;Jq_G%a2I9$AT>v z1D}_zp588MKQ6yRIFh=8ny@}CQ{7bMnz%luAuzGP$Xo#;KFTEI$+#S&YO*o>7Rq`J zlwWE^$Z8aJTtp34hKQ88Qwf}{mmIBc)BBkE5Not8a{G_I(;CZp5kED=FRziz2KCeFU(^|#*Pc^-hAa00THC^t8>@`^EJq2~z#N}{3 z+U=?@MD9|(wt<=ruuqPP2UR};7FUNQ74D2l#OHEy5a*Rs3he;0fipNujOlAy` z&e7C`%HH%$XqV!kJ|zV(sW-Ocug{)J-Dxm-8;j zFsSTI@yOVp@KilQ%-O+RGSoibPV`GTeG|{E9gTRZxVKiTR6cCb0hY{PnOMa4C*RMA zvytWaz9x(=XEfYk{c8lyXmRA8Qzy2sYy6LG%4?eh z+l;~VuZ_5fF;K_2Lz`rXL?HevOO#~CMz`lcLD#TaU1_`GvNVEhouk7AjoavS9~Wl) z>*@<~ES8pqOUf$Rx{PzWVbJGjLSHR87&=(b;E_XQ3y zWZQ2Nl{(Y(diiR1{ivfvS3+lhDT9_&cV#PNg0c2?la+!^QN= zpZ=Vt-h?z|5;QfW@E#gFN+QNw^Z6;px%iL*!Q7qz?3s6;Y`*h`eoBlRECGfrV;IW{p`+C0$ZC%8uXS?Wj91vbqdnE(wIO_` zp6(8G>~wwmI6cyR!I+_lbR@wKFA87%h1v$k+6^>V7c$p68wJiwkL+DsSCLP5ig-ru z8&XM~E+<3cC0lbelcS@>l{mOB#=L}yr@v00Sf(I;eebNAY*JdTL zT`@3I8f*g6@6zSP?ncC8S?U$uKld8!X%w6PFF%< zPs1E~>-z_X16`}AuO98>`?~5GlD}<8meW zl^g%AlXj)j{k$)NYdW)r1HuCD#TofZ*LAkE={YPwLR-@!Q|O(fgPKvWk^YE$FLkcb zmk1vpQ!5j(e5?e2cJQ<08Mkr?QUIGq7lS`O>4XVsDk}d+s6$hX#>~_OKq!lO%iy#n zV`hoRnHOc>)wB%IzG0a2W2U(JiwBCOy)#Qu98VfrD3i(k5b#C{@Ot+_*RhF`avFcA z14?KKaE%kyf0v6w$h{Dx+#8sd1AGR2L>)+>*Nn})uB2MuPQ_orX;=OhPvlvUmwS_)uT@GvI}1 zAYT`O$$RuHM@RPUkQ03pI&v3m>Gcl5E1%QUsCrdb(ul!~Mpy(Jgz1d~w+ zJIoh(S!S>OF;X<9pV`vF_N!4_orcDHCFGk^XF`pBj?94^QAvcJk~Wy)H>u4rb^P&@ z@EYELdIOrlx!Bee!PY}yzDl3%LXyH<0fwo3L#KFRY~7(J5xWt8f?@5|l|Y<^-G^hu zJ`}Gnf1%?p7i9N@ZzFzp_(~|(EvbyB%Py{D_-jSR$3_pQeZ+uUV%?>SF^8xVaOoTnIVHR}R*4(pak`rBswKh)HFS!+#$SpB%_SB&nogKCl z1X}c^SZg-Un{<$Wk};}U6Mi_L&=>zSZ5iNCjEI+J;exMW*b|nfGV?uCO~Xu+xNMh? za^1`rE~d9+vvD}*_z_Wjh=F7g9ref+5hhchBb=xVy`-IMI@N4F$~Ft+yIFZ5RzC;# zOq31&(6#fntDr`G8Oe2Nu}J4x-a*O1Oj&kyvw$$0be{%80=0qQ!N(tBGYxw>A9y}&>16M}>zMMseeCS^<6yImq zQ$gm_w$8=)Qm7_Xgl%&$6{!k6(K^nX8}N}Th9paiOX}Iu2X@TP7n8x{0ac)) ztCEzy*d2ooRrY^4sb&9#Y9|+kpX_n!NGl^q?sbK6D1|L?`uWL`=(i#>?4F#A56MHT zdr$o9TJ91J2RZc>WiaZ~Y4a2I=qgY})Dv2Jr1m-YiSc`Lq83woa_sc7NzCfY(zFEW zV-^OXL|BQnMV9)3=JX^IC>8Sl!QjwZN>-q@h{I=!x2T#BTs@;zSg6d^_~*? zg=m3P4Em^7dOOzi8wVdPx6_MF7ut<@N9kK;bhs1|3Oa+j(cl_;-gY zoc`Tt7C-gx3Y8Vfu+_E2I`piL-d||H^N9E|W#hp#&Oeo>!nCgrR$R>q7deS$Yk-*d z8M$q!1~J?VC}_H}RF6i-|9SPKyW$DzS;4CZyg zlaprbYp}@hlK%ETa$P_S6mT#dQmapu?FiS(%z+KgsrWI4>VBRsJoFkJj4zFO1rxc~ z&7xB1fMYk<6k1;;d^Ay-iz{8{-&d5Bva6kxAoNVxKI3Z(BGXAsO)l21_d}}Ejh&Ub z(On%=`pCm6vaiy%%wzd0c}Vk4`)YJsBmY_q`J=&G{jR!t*yp;$!$-*oPstK~kV{Fn zi4&776|cqWOx4Tuh7?l&2uo*yJZHL5ozmM{*AYph19x?Fn5VW(Qw>6|b$>!)>u^<7 zr*zP`K;Vm<)0fepiF>%Xv>v1eadPHQ{-y5XTdw>;#v<*i`?^Z$6g}|dkRLH>Zvp?BD0#?QKZKX%~h6<8FW~j5yr@4L@E1_SeYYx(9nx^Yo04cO{SHXWGf!urt1a2Qy4o&(P=qU-S_Sb- zz9IYU0?iXEQ5;J9y z&#BN7^l^V%S=Z$5y;+Jqq$OX;o5V8D*B%ietySS)y9u2brmV)$k?Y84L|# z+%Oiz)T1^`5Fc|wYU$S8zQee7RL4&1c9J=)5xYZ1mO-c~AwxdFIO|AYBHBvb}5-sk_Dxs<5`W0MTxQP&h z;Z;A5X-u<_p4RK^%PmT#uTBx)v3Ln;Yd>VcmyYlQc^%iHd3)NAIFussS(cdN zw%O;IL?`Xanq>YQQq)xVdw%lX$v~UWe`|qiIeI@$n7pWRh7%=X2}`^>!Qb23g0iLg z{h$_(MNh!1YLG9vPn!`*-G3%V+=`Dqb`{XdkwRal$hzoiYu-QC&(rMSBl zN^z&SwMcO&?xcm{?!_r?f#U8GC{WyjClr?iO_B7=f6vJ`2Qz#2;d|vQdGbC#S?gYq zfavoNo%~<>7tn}hiGvNzbJ^#B6Wqdwe#x#MRn$LiyDqJd)6+d`qZQalisl+#U3{S( zNPAlcZrrHIWhF49SE|L@^OApVXDC!kSwoC=D4c67l-6mW83mCJOkBg-`ec9q33w*5 zgNyE+BDtTBMWR=3BcuOSXB6YdZTZK<^}?2XcSspn!%f#T87(MxVoCH#UK7q#6kT~` zw^W}#ML>RTlHt1%>|1OslH5=pxcn`OKMp|kLKpkRd{FRE<^4+OuewgK_zv8HItMgn z9nUe(gsLr+$}Ob6FG&aBkYUs97~?_yn(^a5s)yL`Em&aO3?N&#xgKYO@-ZxoV;0-L ziFSWq6bG~CZeBetaXfORPEBqT>?_0g;(n5@yM8dHI~>GzF}g|YPw*MDe}?B;_C>xf z@+;`bDilT@SPEM%#Txv*sgUyFTDKO7-91CK&-8NW(2h5$oN6Qq5G6wj_+HVDn|-6? z#4|MJ_ft}$#*8Z((OayMT!bV$Y5fGUuuw?ecd@ARK+h8HwbMFO>8P_r&q4AWY7B4} zZ&5SnbVRWH`o0(BR*WW%K5=5SQmJW3U?k_lYo#yvK9)&CYg)pm;(xmJ`46)Toy3gf ztwNdXYmD(Q&I2SxZ3sEet=E6mW1iii+@*-JZMfwd+;QZz0ZMdd)mbkfZIsGdMbab7 zO%7#&{dD^&zfZn>FJQDBSoa^6Fx5@x#Z%TWN>Yu#Jm4a@x2Rn1j#7)E5})$Y-=SGC zIYGWlEsVZJhxXd90>+R2Q<32UGM$N^PWV7b6-&St>Ph-*Jts8R=B66!)w^-_31g5h zQBdX3c^J##-aoXN|I*;~G}%Ummgdvn0HWe326BaxU=DB|z*vbny^41w6RIM+yPsdo z_@8ipu$z5rGg}t+QtzqXvlzJo%;rVoA*xEtZMESl>%i6IvUntwtkO(=ztek8ID=|( zljBow2ug^Ee+io4y>3uItcUoL#Q2ko0p`fglyyFGvz%C9Km)H|wndHcd)4d|dzeLO z27XzL1I*2$0uWNTI37UD-v^U~a~skaL{2KeA6T|STjqs8g&6}srNSs9(uB2>Gg#CW z5|V*0?c4+C*W8gW5nUxr*#tq+# z?FbBaRBB#udt^j=k9o#<>dVu6gcx9souNd7uW?utJPo*J-v{YxEIPji^#i%ZRv(*c z4z*Q3rZ^3FC!48YloHxxel>Mex?31_@}<;Qq5d;s_gWXYo@!+d<&QRF>Pr?+2;;Z5 z+Q{>vu4PL2mQD0xZKawanGSxH}>_%r+5~gZ@%y<c}BRp@Y06*_UFpaBTv=V!4Y*^1Pc4PT~? zRR7XfW040xGAxG(d%N@TvqcyfIZhhun4HU5c%F}cVp`oX;$2LzXqMywrD>5*S=>Ai3NoZyYo3^yZ_!lEQh@^BoTY2= zj*2Fl5ZN9f7BvH(`%pGD;(nI1RfIZ1^L3xSMzdYcn5T%7c9790{WdqsPC3TsRC%Ng zNtu071j+~L>D;h2oX@%vdtMNtGUWiR{Q{0+nYPeb7n$v>nWlxSBC&{jCQF!>B z%B*udxBUfo`W4-FPu`Z3WpO5=P$!rUC=ptON7s;1(ORj>%Re^zV-KI?doh5(VLc__ z$W+Z)UzRfX1|?iWe+)fxB6RWA%XcXJzF+42vD(I7Rs^d}(7~IPalgYlz7ZGr(j@@y zS@j9$;|iLm<@TgUm^mh1l<fPxAHKN8|OEYH}X%u8oOgvT?x#5g3quDJ8r*oG`&7J^m4vQ1GdMwyWWfb z%KK{CJ5A#?_M?4VYn)hh=D^BehgWLiQ3dsHmU{XrX7)7Fe(Uo5p~p_BNLO*^!MM)( z4FO$#QHStoAYhc+>3Ujcu#dMX_1p5#3Bt6h!>M6+z_TUYP`p&{9j49Sd8N((lGYs|fur81zw@>~ym<2~;oystIC>%q zpSE0kqEXY9?)?u9_c1Hw_>=Ihe-~YXylWC5)4Pk3g$zQw;;VzN9faIpYLaIp`D4^Z z;d&xeDZ@-8xFw=!_c`M40`I$>#K_YWnaJkv%2=#JN!vY^!wn+!dg@3m^?gC=tnk<0 zch4E2Ea&q99tw@HQ(*!Dhn`NGg)OZsRkc&RLvCFMM@*OmfeuF04xxT0k8J~k0_%ox z;gDAU7$9acap;m)7-zwi^^tpaqs}v(6JJ&P}HnP}P-@ip+@^(BJlhsMRg-se~LEcom+jsBXYyj?W77^8L0bZAk=T6GMrR`Q| zAiC4L{4rTqN=;@Jv0X&HZwXOXJ0+5;L^4k}jIL^K+qB&-%hW!OR~=LDF7qCWDuJs| z7A2PeTZ0zeKm4u*fsEB4lp?Xm>}n(ntXYIFI__Z?3tjjYl&_Z*Qe4W=&uTTj8=Ow} zO3g~`;OW|N7-=fbdi^rq7gscxB0w9$eI^H%HhAck$ii!0tpZ)w^%G*CC{`nkjd&%R zHJ*dm0m;`DYv;2)-mmiTh0L6}KKUaV?+rcZoH>TJ$$h5vCD_dU7QPXJ&anffC{6|{ zNDP*N0U0nam7qSUAVW5s2Srzm7TdpuyUX8G3|3Ic4=IEH@h0y-Dn5Frhl+y#1q|G# zoOv{EgCc*#quj$*ooyU)t@9xU1Mokc^4EmcPxLp_`EFF6!p9P3DfMydzkm(wk^etL&wnSU zL9ao9#g3tjfO?b)RgvoR60gd+qW70q|9PVP7UBo!VNc+UW~AJYtyT<}CCdTG@rQw$S5_0VH!QTYqT>l%X8$WduG349W(%okp*dnNN@$A3Ca zNXNGZ4AToXekTwoNv{om|aI<65Q(-%o+SL3W!&-7pN6`JBRb zF4g=?iK-EE6L@B=I~Rx18_(aN(zl<7p}KsYE~O!yO*ka}$D;(@a}x z-yZ15Z(iA7qd;lYQy=ZVGw!yX)k=L9>(a@Z?y`&LSuz_E;z@1J^fF;FyZ%VPItJ8R z$`Bm2IKwB;hN`fqI|;2yP^x`?bz#vf)C-` zs%e|FDFv$s9GyUG(i1!gKmEzp>vneFjb!%e?uyf;t!|9x`g06Z{q%i`1c%f!v)8Gf zc3~tk_!ZM>&T8N5+(T>73*th94cVS$Js#mz6t+}+k1BNXR=a`3VT;_ANemq1FH}bZ z(IQJS^k*@2%&Z%prQDQXAan`ic--X8(n?|;D^CpYv6-st*Wa*KqPVz$`qH{Dc9KYd z@~pJKi4=R~GLVaC`xB|EGWcLvbV7q1i^~Z_gWERH^@Z4qU-xZbYBNTU@87Q&t*F&0 z>5TTZ4o#7hx9c8>B%yPt@K$-T+)Z1qBt(sO(~6GFl1YcK@<;U`q^JEh1nwip1|tGS zf#UUMZR54Nj3hVop4CQd2+-Z{_o}p8JS@BZaKb%NcC7wj-1P?TC5gid{`qJx1P(w6 zSaj{L*c%h;S#R`9QGJ^w#fO^<3y+bt`syYN)klyoF=$=55v!cj*!|XP=qXM0@xFKTAyYY^!N$Yy8^aVxoK3uyQPbTyr1c!q!e+2KNyf0;J za3w=t>{~Bv6X+GB^-7>wvwv5IBA{<(s2Mm64(NZsU@K$^?xuA&Bw#9&6Bx$WSiXps zV-HXnp&0xm%6~fT6os0GC9Y2bbOeZ^uj+uf7GUX<)XMD8&xP+bYX@z!@M1)iM&gD1L2w<3lOog0xvVY#{j3AfAZp*jJ|$&uz3O|A2TQiM zDSgVakw(K|3M%Bz=tqq19-aR~Yw98J@P&ki8C{+&nhUM79x#;IMzjPa32yjSg-Gu* z=^`?F%;C)EDE9@8vZkL=3RSSV>M!Uy^n$QWQm&`asmlM=xz488b@!9Y$ZhH|{eBU1 zye)@Vo6GAoQ;KFeDTn!{8_{SaHG77j+>*H8s)g^aOHC@+pa1iEg{(Gr{t_w22ob(k z>0S0LAK;=0_QTOhUo3Xs>R$F*4xQwMUd{CH_9f!uw?lzf;V>ZYuliMew2Guk4X6G?aX@Qu%LD_2wY$I>-vD0gg=(6Xiq;2$oO zg4Ji19nUg}?VGD=`WwX+qj)N7iM56Lku9z_g3ZjTDD&Ljxc&U&{Thn6L;C-@bQ}8%xjYuSR5PZ~`IHIvZ24)<`%Uh2V{W`i@DF#al*=u9axk(<>RPSFS`Go8~J~-|B%j$Z$5I4 zj4E+!p@#Mxx1&86+r0_ey#HWyy1Q|4MwDo60!amvzJ+ zP{K5R!m^-n?)iQPmx^SF{Z5ootX*rAm~PnJMgNoUD5B5eQ59aM8D_s+uX;}-zx(cn zldmG^72cg>+4>c;^kT6$!a#L5S*s`4#^D`oNY4#!JghH{&wJ5-T~K?h9X8k7p)YLB z7T|8*2KS5gI%}bIF!Z>~W`SB;OzEt17!9H&gc*Wj=T)yiCvSel_t@3jJN7HygZ%7a zf%FoL-rIRQ-hbl^ZfUu9y{y@I8?h+`t&{+Xwxr2?bcoGi!$H>xx*~}UBVA~*R0_CI zjdg967ksy>s18ND)V6H5#*aRT#;)OW879Q5OsJlt;HEuZnB zePno9nR+T9`8#-dgPH56;Kia^6YB+0dGwK9FnyPh8Bnk5wPek`-R}JE8iYNmUk9=j4KbR#j&8XYvtWgq}c@hP8b?8km|UfLPkqIJmkfz zW=8XiiVRcm5D1ZnfS-lC{CS9#59C=%%W*$1+m`v}bsFjtM7edkKeD9dRl=(T)yWl= z$n|WJ56Yq>1Gy#${2W2I9;&tAvT$yj^?2brldCO@vfMj67@8`3r9bPGt!;NBk5Z9H(;+c{`fND@xuI9t+GuQz6Tz-RF>qmwe=^WQnIG3Ym)qA!q? zSNR96${XZ5VHs$XfE&e%svQPf#>EUmb*rH`RGIk&qR93BNLLa(zS$gMghN-1byLYF zwwKV#A>*koXLQVozWn$SE*zi%`IO@w7|?dld*9o->yBn4?*~F+QU*VBIrYU-#+yL; z{(S%{+)m;Fzy96BVD!g9jikW{Cx{^&@YTo7_l+U0iBpQSn<>9L z`E$^^C)G|7WuLs$otV_t*PSQP8yz{E7B{W3b^L70y7#ucU$iALWGQdUCR}BD5F~p@Et(QXHLS&6jR69DB z?aUMTMqS;uFjoz6I!@L(Rt*WZTP?wxqQA=nxi_%+=syiJ`qSM~&a-eZ8kDkQn|cvR z6MVnl-ql))yc@PA>B}Kg-E9fSvzX{UFv*~=F2RK&Vgr7yMgNisUZHs4b#ZPyW~Tkl z6?iujOePD;DE|5nEyVa^X^R@f?cH~(oJ!V1ZoILnt-RUah>J4km0WU{EqW&d>!!ov=1<{>coDmX+BM;u&0tl5_1BG2T(AJe?G-zej=(qwwXYqZ_Ot>(bm1Vh) zW67twN3zE9@J^|2x!$-^uMoGk(&0y@(L!f0YJ$QI%DQcX@ilvh7=e6(&sZ%euBm1b zwqx6*J%P36h@j>B?dg<@PM=ui)h=PX(073$bzXJEr^Y>D6J{cbRRPf!0lMZhxb1Oo z!rXohq{w#A-5aGPa|-6A%P!xK@e03LXqo;42^WY`W(i*Whb9G2PD0Xj!i^Ij8OqGI z`SKh-mQMp@uYYO!&0#a-{X=8IVDxKn?=LVp&6xnb!TNmn;EojCFggC{E>fF}qt>;o z(}h}Y;NzmeSp^yf?v{GcK52y3E)l=de9yZwXY%9RmlDbEyIa2t)t}mE5<;^WNzB@| z(L9(}wH)ABd_D*GLlO~bv+Z;6g>|ZTV+O!|{|{y#E#`o?R59%rLveTHfMc8S%;|wkC3#DNx$b<@h>Bv z_Rf-fK=sa_pC#q6Eml|!glh@QDo_=njt&(QY5t0EP4ipGnb>LR1XbCQAn0d3Dyw8) zMj_;OepSRXFl)u16XWVP-l%AGfm`AeA4QdOHu&rkg10Wl6;zG0FOOn@?Amp#^fC9S z4?$K;(j4+wj-i5&YqxCpXAUMmzJVyMEYyZb6fAo19pKdM`|7VQZDWRtuBMuntj3|0 z#7-tqBtP$6RG$#SMIS~Lomah4Iuq=IgAJqJYp+)htnc4dZY_A79Ez0%*_z;#Ew7hGlc&Hx8`q6WnvMA?wW-_TfoeXc4d0!%&M5%k8 z4;rF@nff#LmCRKNF)l0fQg!L066`!D2q#*`y7Fzg^0#>D64NqygIPGZCTtc!2-sy! z@}NU_vGTRLk<$2;d-0Jei@!#~FyPPn>|4wO7pGFjy2CEd=x}=7D09dc49=!;pyJ`8 zq9*%r>H>S;1Raj~_}rA6onNGeMi0f}s)p8$u>&IWJsb)ebvWcEb<>#R5 zAA`jPn)i=-7C6H!ar7j~J9Z29V&FQByhJ(gs~`W+>`>E$lkvw$|AEv+->TIX3DiJT zD8Ki02a2ch-&dCOwxK96)AB>b7nxv4^*VIY`=sJEYJ%Bdu@S)#I_hIhrSfRO5C+(% z?!T8jDF`cR{hGI7^K{`nScFs;?SBeK$;FlNw@!oU2RmFtRAN3jJTRg*(SwF=s*bDY zj%6F3^J%G$evV}&@n7wURJkatRn)OnrRYZ&0uf&!7FWo4kH=bTKgwn0>~Lt{iH$uMa2>-0+kxO(RAh7!7Veqp3KQ z8Ui9SgKz(#(XJ};k`E2N%UmOHAdb(XWrH3E)XC!PL{*3G{JkMEJ3r7_VWi_dWli-v zC72tuIA^<+vE5F5pPJ2AnRb-r53cE$yMD-J z)o(zDS(;9<}=-6uYRna6+~@0ddzKCES=64LswWpod?a4I2odS6udO3=N1TI zm~wVdU5x*BlOJaP+sg6Rk&78r@7z+i?OnB~ZxUG|86Cr{iNA(t<1U4v=Ks*5f~Mpc z;lmrpg;aJ%3!)`?l`$W}&J_h1Xl0vk4rSfxY&sj;dm0P)fE+qPlBKTUt=~$QnD8y> zCXNg7W6%FAUekfcpza4h69K-jWMxUrK*{=F-Z5C3YY`2nMM>I@&C9hO9*Z+3Nt|ei zXZpH-?2VHCK7++*RO`U;=!Q7)J1Vu#$8Yu@x|Fq zik}ft7;q35Y)#-ORIm9A<944pI!y6k5zWPWK#p-PguiTyglJ8}Np@*4xRX6)f+tBj z%^PHa{&l7kNa@y@aNOQ_#aF(Y9MkpZX1^b@PGqCP-zEK#BGUl*D+yc5)8rCm4s8;r zxi5-t<<@xpBakqCUFd6aRYMzcPSEF>5wwBHWd$E0?+2UoKm$p<;V2z~y}wd*}yc z{nxy!kH0MvILAJlCj&88Z%NkDwH`#|A9P-!)U z15S-gXFPF&R@R$BCIUS95qn75GgX5BIw7jtV2P_K_3O;8VcK147nomZWsyOpy zC}Q68D{vZ$DVC=KCp@XGH2PcURkY8Huob#K*vlKK4${|mvZ?}`0B{XHA%tv_)`ER}0}c^J$ENg=kdr95Avh32OC&|YX_@8?VD>%M*_IVdRq zb6SJ$S0!U6jwt2E7_^cSp?0|<`=t!Cvtp{e*h>yZSIqoQGJwOwb6f!{zO!xt~C>-O9Lp3m|?U zE}!HsLf{gsoLJ^&N-qAiIr8n9KXEip@=)J*L@GpKmj% zP3lTk#EEA-U+}XE?xlG@IlZHhG)Xo0g9XE{D?y2+>v1-GY;xapa|kC_z0F-esCpyx z{V}R29pV(71W$d6h;A+r$|3&cE+j>-uv1a$F~$DnzH|*!3JB2+@LI3TgJF{4^+kK~ zf%S81)j3nGmyAMu3JncD-SGw52Rh4kDdP*^(HE>0>fxRyQ(Nh?9>Xq^wcEHFPbH?U zymB`?c>t?7_D{6NnPH36c-WP@XO_>E($1{FpD-@m2Ces9X3dS6nVyP0uDd5}wYW#j z-Ur1+(T@Il9rNL#PK9+b4)j!8H~c6#&u^!!Q7dami9U<1{99$GRdC*zNhjcMwqD@# zwv4L5F&Ye%`}1aH1Bne=3?qhxWfm({v9&2KNO|@tOLE*aBs_}Rb@eC92$yRUrdT@r zO$b%*joC5uYp!hi+o{Q1UgFDbgi0VYeeJfw%PIKYp;r)!`(t;IP&pm>!!?Gkc$(_` zbA7t(zA+cc{X>J*Uz!p)`ya02VdA|CYaI-ElL_=iY3Qr?QtF!~IGMym92)jq*y@}M za)6#YYe0AM6U7ydp57KLoA!R!kn^q8=IA z`0KBsK1iNFWJx-YHI%*a!R=4RY~M}R+Q1eL?C0}6BX_gavu;UV?vY&W+Ru$^YCdUX zLmTETCLnhgC(@t4WQ6WdKRba#@1kVvJwwvW-tm|$~XH`)BzG!3L(KUak?*$ z&a6RrR+?PAycG5(2as(@e_&ps%q`5Rx7^a%jh|GzUR@T$H$OO_gI)n&#?*>jOP^T| zMCj%ktz&9*%Y}CW2+U)B`$?_FDBR4G`&s4 z!kCs@`Ef@p&5so)H45@IczD};=L!`aMYCWr`gG=Ly6gNkIrcbW# zk4cH?Kvm+P8cg!4eT#gjC^ldjO_G%_;Y;O-fs6Ud=pnz$BeJ#Qu$OSYS`WI{N_WoU zBwnNxe^>aS9#LD^3o=v?OAT$TszD$oL?ka z64eF{U>h}@d(kQOZLs!IsR~PK4UkQn(3NHZqcwo$jB`iTSf>RJh!&ZngiXykH=2Wn zO9^9DnZJ1fz|2v-U{KI{q`P{8VV0n1OEr&TK)HUC@)Mno-hJ-#(-Ejo2vMhfB3tZb zbcNLWR4CQ04Ssb<&4gG6cFum~x9{&ku2(&S!?f$~FG zNpHiB&ZuciqWZ#+97k72cT-Qgdr|eq`0oi;Qfe9w8C2*Elavo^zR%|Ci>VI>Zc<0@ zCdit5JQIW{CAfxvFhi;G5+@UKc7YCUm_cRyr~((x1KIQu6QS zbf6D|mZUp&LB{ev@{m6xfMY@xq!LxAJL?C(Vts%*-l)dgj$_W8l7jF*<&_bdlr5)% zd*MWOPIiEyP>3dT*bELb!mNMDg;j$V5ed=zFKx-82wnlYh(l#BhX}qRYX(!2)E^yG z14T$6j!OOlu_+p#M6uo*r%x8~Y1&F_1vLznnD5@k=@>8o4&6*Os|p;;%TPjH#s4Hw z{x{TVE#5c8B3l)?CbqJ*93#k=^CA4@YSjTzNCpBn2_dyYwNtbSj@4(57^X33X`iu# z)Qlu@O=;QG34|L5bft5zJmDm|aIGI6QD(x&vEj-;s#(EcX3xtsjK+gvj1yD65TTV2 z^UwT!oB`qfg_3XIl^^=^Qe|fed_F$ujFk;Ml*;9y5ozsDuwqHtJK7>Ql`#kAXErY| zd%hgg*gWn~JbkH9dSw9<5^>(w5uZ=QzFjU^-DIH;2*+{|e4>@8n2d zm#uYMGc*hQz0JKZL}Abzi52A%j!1$dqV=0$j6xfO-T?Yz@(m@w7)abZ3671pjPqZ- z2<=h6n^2W8aeC9n#n#tpQ{0R{6KQYmcfu4~drT`v0lU4%>Ydq>@wzQ(t703cpY$=p zFeA)#evZYGtrLF0+(*6G=#OD*YP;QdJ54>hH*o*~|q=az>uo@r$ zRjZ~h#8+Sod)q~d^O-Mrw6Y}6y>A+R*w54G!5qGQ^VjkSu5_AJvt0y=Vl>=dto#pQAavmssKtHRe`20CQ^g0SfQgWU* zo%HA3(+4{^wP!ozSE6>%PpIzOVY#D-;!)Tm{nqt! zFs*ZH1J~#9WdjvCT4W8Q09;o(O~)w5EPJ};yn`EHFugs^XN~=G3p<2-{5Fnvnk$GoXy- zX^9}^-fbjeiUqYg4={Gx+sN8*J;#AT-9jGVEW2Z=-nAxHh#<9=-k|+G9=&yS)^}`A zr(ZKc5~DuiNVJumUPre+)_~q(eQL$~k-X;QUFdQ_$&F-s?mVc{C3iV>cXbf{s=>aT z`)Tkqg7=zgvMAQ5-5+iqAgqu#GFOy&@giS^(qa2$bBi^$lbQd8M@1i;YT@$IC5_+* z;u&{YLY)9E?~AskHkQk=W%fk*7kWNzV!9dal7N`|%6K;!me7zp_+e0pesxDM`!?4L zi2>UiR5H%#Bh9Wn;bD+(Qsa-cx89+_uGuW$6@2DE!$rn(S>aJH0L62cqHjoncAP)v zEb{43AR}ZZIE1UKy&K`O%V9aqXr=}1hCeD&&RhYV&b*6AJMC>t;yhZ=`828++k)sz zs{)tlqi?6&trjLpCmnINY{HPvL{ip2PsHhE@)|w!zB4A_Czaj+O^we;WqTq7`!TEc z^Mp3(!d}3sDx+J1HBO4nTskq0Zuia{Y>{*gMF2-$XD1mKj_A#hY2}TP(2hG?I& zZ8bH6s3jRR(1QKX;;IfEx>*rgu$)KfVCr5dCu@-rZyR`7@Sy`cz$Unz%E0fNnf_p+`X!X$;E^iLcPWUjE z{kic~o?{akHGtUcHcy-EH(0N+v zG-K7D7;0W)VzPC_k0NBh6U*e0cL=uWf00Z(CL5_xy5oiBfcWUkK1{4J7O|Azk^IMkWFR?w zul_5Ph1RlpN^!=a{I4BP=-kFZgYuXJv~YM!#$i`WeDprFH>sH=&xsQ9DY@vR%$K;@X1I<%f}DuMmh2z`e|&(JN3Y^7jo9W-A@ z(j{B-MVc&Esz_bp@hE0@(4N(CXFmAL)xvdEKKURH?XlC4(%>fvrs^VL+EnFFIm>LA zH$0wCPHJUQnKN$?ti^Au1I8ANy1j2*2r?W=`Au;Ee=NjWrjR0VTZ!SmW}nBx94`Pc zlz*3>xH3uv_e|_{+A7W`y+@Vw$CLdTYIK|t7K#y2dXW9V(N*I1a_7eIv9Kcg@QtL6MD-hVTh=e7*eRq{ge>_s zWh_3V&XA*Yz!0~0!+G?B6vLd&f&Xtd`*G;PRu!w;=WhqBG6rvdUM+`97Lx`s&JsI) zWsJ{cU5R_~dn!o3lU8IkiE@@OOdHa1^xFwqX%?#{R8+2xL;2;r5A8(U%zDg{Tf03q zZN?33Mbj5E=@js*PAu1`+Iwhnr18`yXKrH`taMW|_WGTTU0)A8^MpHGjTVl0v{ZqxYp#Ltn4z-y@ zi&Rv&%@-<`P$rn146}IG(s?8@X#X)8s^fyNV?W-S&mVDIcz`>N=fs_sSb!7=GBa3gARUz{BTCaGm z$8wi}KGZs=-**E#pghyz@-JPERS3~0ZKvE_M&#{^h&G+V@Rvkuqmoa%j+NVXwaxE@ zekXVM9Sd6R!yc=qf_$bqdsUbSV;Aeo8??fWPt|ey!26H>6&uF@LSI$eguHbZ@!nS5 zPU$7wfyZe-`pAOOktlAvnS8PFt;KCA$S(*H9G&zT^_EmakfMiqe&z5s=`f@SbJhCo zm6|*CuRpO5%{-1KVI^JYDN=h8mqqGV9(YbGeHe&p@7*K2c4kUAPxF>(Q(-m-<}01I zt+=2t?)fp5$#8}a)^dAx2k*9o&Q!JQ$rq@a!U?>t;#75NCr+9`(OnPV`juzAZx=K{W3vqQpx2$e8u5qkDE?W#&~Qm^8d!^p6}UI?7lwvft?=g zQ7fhKsSI3G03R1(WX65c`n()QH{bFPEl%!L%Yw-GZfx3;p)K?yY8nrLFO6Ok_gdJgH_B%WvJk4JLBUHvH-G{)T$$dcst)a%UQR&uT7VhPT& zT7Vd{+IPFtHfOvtCqVM&Cv>hff1@Ywb9L|>+l8I0p)|`4&l{J3J00z_ZM(e0gPkS^ zIQh3s!E?955Ed#&a2X->@@)V5OYh6y(hiF&7Bihmlw3aerRT}&+HWhF-thA#VK9x@ zRG)}J?%piB{w4wQe2TBEA$xM(QgNLh>0WoR96(Wo3>FU?XC7ZKYnSh;xpOesHg~uQ zPtIVLBmwmP8a)a$uT49T#6t6C43Gn7Rsfihm>fAgfl%8m#M}q>_L)4gH^`@E5+YGS zOMPidD%V=qBEbw%_-x-r&N*U0jPrxan>~Y6peoEG=m%5xu!{#NLj}=X=m`c0Ko-Ke z;}XLwqfqsWpO3PA?aW4~34OD1p&_iLq@HaW6#yN!J%Xf0MVR%La3h#rq^^99vXN6^ zQB-&ow5D>FvOJHh(fM&g_SY;jd*b;iw3)<4(E3Aw3Pe8q(NdsoHbjB3{oveuLwUAQ z?u!7OjNh~;OH0x4$(h&C_Gm6si${&q?9cvaX)BXAzl|5`Nfv#MBI?Y|(?zF3HWFx= zKL-ad%=OmPjfkYG;jvQ|AV++u1l)BbamrnDB9yv2Dwu<=%Qg!OINuqNE7f3c_*6`1 z4K-l;-j(6R;irupgumu2@E_8lRoMZ=P=hz88?$~LuRrjG)=`4`lsM~q z$ktwU1>1MF1iWHXdOTJF9H=|Dl`hqW7#Q>I%z1hgwsavyc|E+z{xXn%Nn(p+avTNTrz`9{A~r}Grm7PY3Qm;w3FR*8l!tr$Csj>hru_oT!;TauXrOB-L_OlEm$v=S zbE@Kc*QD#HWV5%qHje7A2TM{+x;VYHC_DDUQ%Zkan9_el^~%YRk4J9q062KX;>sk~ z9EBCJ;@U~R)^PVkPQMZ^JyR(cmziITpyR;*i&_-cJ@PBCeDM)wxf=H0A3?2;E=>cC zuTdFma&$jE&<<6Q1(6PdBgZtTcr`P#Zzliu9bvd5I$jmiP^q9jdf+DxG=qxFm$6&M zWMjq6!i-oL)vtP*^;P?LoEIGLsMCwk*J~_9H(d2ZB^5B0X+MTnPe>fASVeu|3#f%? zPad`;V;p76yZQZ#Ghv z@^+03nn2v28T2aWqf5ma$fXiI?BM(bD~=K$8(WHG__Edn5;gLUQsJY?l97lu73l{w zX`4bECV|lE5qXfL}B$$Jhe<9YLH~+08@Nt#Ku$ z#^VLZsnJo$jv=5uNCkHSUFFK5($bD2pJW+9feS_7ZSQlB)%mnnCYis)9q^K}#PmG} z?{xfZCzO?x-&OLV5R#Kv<*SBuTL)y0v@N&ONZgW%K~4IoGjw)l@YTmn`jVaf(YGh* zkcO)vYO7)N0aMkO|Ij{ekvxXqjD$#f%MZ)rsXCBxE|ex?`f>?Aaq5^9m{`Z=*{eQ` z=(Q&fR~_lcWE|kg9rW^z5@MeU9ENh|Uo%(m_3jo(k8Ej5)u}iA__gu%3U$+(bu>hE z5d(L5y^Vi%w5F_T2ntRoXGT{w=zs|vrm(g5qZO59c2sK&f`w_+toB&ZJ7`g6Lk5ZQ zYQKjFwLfXz`(MxEh{&5HZ{{=$xw{taamEdmqh-GvE!cnW_R=!pQhkxnXz+|>=XtI_ zRafd2V*Uz5#gV--^|{QCvboI2$jukvO$00n8FR{eR{mq-N39doc(&E;#k#Zgx@hO~ z>rK;tXwCWA@jFBgI=vI=8Y`a`=5%0ndP;(S_fgub@Z(dKSjprAF%X{Wm1UV z!9>xbAy|!hcd3XmM3(&MQ1YRRvpJ(lyd-NoT!v!0ynHGDT?3HKl*VzdSYF_<*;r(9 z-A!=}rSyMg3am%xf-W+WAxHsSoy4of*;f$xcmaz{;p6c|@JxNDsSD9m$D&6R^C| zGrAX11^mbeO_IbqjlXVe^XFL(fd&0NQ)?VI<%=Zefs!>~yDw|zG?MI;$V~RrqOKHM z2_|8))L9>;*pIZ6w8ulCTiSx}vjAChx1=NJMlaJTw3A41p3h=}8gN9_mpyMkak~lo zG7`7)G-E}^CB38WPFp>A?pw^~FkPb^RKLRO>QS6hfFfQ}ZWGGH7loi9b9~o;6Zz#cu3SqCT z^Y~c0zBb|h01eoP$UnF@P6(UJLX9H+h>GP>N9)E>eA%eQ9lAov?vSmSOs1{Dm!|nI z#_fp~7ngLWX)j~!pOakR2U)y0@Y;D;u}{L*Eae?wo9~?xz}Wxwg}Js+OZW^Q-S9=z z|3}z+M>Q3GUBUrW6r>jgfuJD0NL6Y;r8nu)J4lz_35XQwML-b2ve$9z zqT(?|YKw$lYtr??=+V-b*WQ;1Iw7`xOcU{_pQFfe>ib3SibCThhx$y7`(=OtAEK%c z?8}ZXl7y0qeB$Y(n>C^67r$-Tht2auX{$|0s>+}hmgFi9!^#N2!!1j{0X11gTxQTx z_Uq*Sk-%E7@fQ|T`LB{RW5QVD=|quxs^J4^gat0v(yHc}*mtocIXm&Qk3_e>5lH$^ zr^!^Y{9xePq3#y}V>wE;B!fkq{RSBwMLCJz?z8`t_Wf!qC?%kuCNn92&}A+p6AP!^ zLNjS+%bM+&DwY$X9+$ zfL;C$7OW=o8@l8zE!xu|;G7R`gqf$JsBPLm%@MRzQoULovR zaPvlSo(@0c*Wj*#|6QiW!bCyNSnEi-TNfpsWxs0Mw0bn_67%clDTb1EA5vjT>&9-$ zb!}S~e2`kWh25CSFvRzkKB#GInB}vaakh;Q694^nK%AlMatnD&e-u)a>He;Mjmm1~ zxnb9x41G!jbv>d3Mzhy}2M0E@;+;QplQ|+3x|7sSMVBHZBBU>RBX6QlDl2)9j&PI3 zCPs?}{lWG{iBA%Gk&7k19vYFVi1>7Z<^d}^m$9SR`=lBd@D!X7=A~=YO)u>w=_E?8 zFUII)kA1ef!j~Q-v%mGtXfeR*Yn?lC>_7w7JiSZKg}wCO;$IHU0P z=6J#2?Liq?+!F_(PVRZB{mQU1BVU+&?TqkHnB-(hQxyJvt*t*=(oGdKAB@9wc@zlo z8w(yV(yip_Q!cje45`oUbdA|Zb7 z`YH+~n7;>%2zA^$5MNAj5Rbp03e#^q&K^7rpw|{MqkiLEjG`C95QaW4XAgqm&6uI@ zg7P}eiDB=@HM{<_ajV5Efg;>EA1kg7cLMs2%81JMb!C$JTkw9N^*>NjUoAx!kv;OD z?SFdf81`pq7?n(?)dyL-4XBkv$2K{97;7GQtvUY zsyj%L22x^%IqViDi|w$fPO_}$3Hxvb4*pT6GxijtIRO((OPMY0)80UOt!~xpKa3MG z&%G7s`Pq{hwz)+&bYgnTDruI+=JX8nwwOufOK;LJfr)&_;YAVa2SGanq?JO-D`aKO z`#9U>eKD9GuRD>(4J7M>0zjpVz|^UU2!r zt+1aj-X3E7;CnTynyyDyzU0|-6IlyaT_Rg%y+$*Z&HND$PWNCmt#ra_p;D-N*Y_wh zY(~K$`7*lB_asGwhFlU>p-5uw68=4QQs)0=Zb;AuJcv}#f5g4M1H`T2H z&8swy_45C-7S5amoYP>Q1XQEmzze{D(Gbuu?o`@0>s2rG8$~$6S|Lae9-t=nrgoga zt5}^KUja7Y5Q|PTLaQGE0?6oE7T>G<@wVse87^+B-wnBV|3rf(sW&wL#AfI}M6Ui2 zz8dcZQ^2ueOWQb_QZiF+GF8hp%0L})%ef`Qwf*g}DEc=+_95HTow=b5`CnH2Z4^g= z9Sno9V6xiRye;G@ureyF<51E4$wo;~QPMfw7-g4$k~vrF@HyPN&KL`zp(-&wuMI0H zD4&#-qyCS#^*^hi|MCEKzV2IX-3gIIZ+=wUeALF@HL)z!aTyj)OTYoF)~*4TpR`(Jp+Z<>q)vx?~5+PIe_`sxuk zlMS*QFQmV`z(qu`n%zt)EiI-<>QtHAM`p%A~%q+V~aZ(jd zTt zeltWpS*z9e7(LkY@C9L|V?U1Go{4+<@Z#w9`LKbL=aHd>t@JFNz-vDp5JTv)9btCr zX;Fft3VUp;QHkRf;+3n1FNz>vWN1{!mJ&9+ z3_6|zIHJekL=a{emc;}tew{1kwkskJM}d8X3pH%O;nzVd!w$3#gASW%%RO*WkP~3; z7AI1xrY6r?f49x!PZ78xkb03cC#QN^L`F)jOfN9$Zh^pHG7ISxNq#VO04sm_Ai8N< zKYcV(X*&F9;A&M)*Q^(*FDbUJrn52>wAu1;W;XpwPcU(^JE*ZQ@Tph%zP_Pa{Z}_X z)->7?)i;+~{{6kT>NqGGv!8V-hH0ef+FUh~dE=Dbyn?vh0|L;^V zhvd3t>(#oazD6ZR`E9q~t3Lg5-KcTav-tK@4*Elbf$b4PKs#ygCD;lALJyo!E<&p1i;S`K_nh}ypG zse%%D;!j`Z`I%KB8z1Y8j@ z5G^UTd7$vE$8e?Y@;wc)Q)1AYjg~7K$uQM^Q~=b?s$$>t){Nw@W8q@jKZ~cT78@R? z0~cmzQ!P9tmIM}&n#S`9ynN@oM;Kjme3QLAEayY3u_!N`9ZiE>v23yZoMBuQcJ!QE z9NHNHt>856GeNIx&&3@w>ZN$86Q#j19(dm<_LMVeBdVo-RcH*7CO?+g&;hwl|Q>1#WEQ3;J z4M?CV!J|*4Do$~G#qFL~*YYzd?jhX0u_5HEP3JFSvHR0%s5J1FX^m@IHVfu)1oyBs zz9Bad%NJ4h_;;(4mlJ6Kx7|&2@gZA+wRS4g=i|C`k8)Y!!*JCvS9`i0b(PkH?-Y?o z8TM43ajR|z#y0m<#TGKB>fwSvh^dMOXL z-#dh5ff;w(@sY8YqU4LddYej7cU9w`F!-l2dslu_Me!o>50?urW2|h;gY^TpU9q=d zduG~zgG;@57)sknC$oByn#|wFnk^yw-1S$BLDNU5lW(#FElFY;;(FQNI<>+NYWoFG zT0c&NHK{qRRvtW}Ur(a7GpVtmE?&^ZZ1F$}sZ?)h&qN1gS&nCu#hu(e!G&~SOq>^j z$4nVQA)6Kz2M;2#7qZuQSjXAXqhY3}W}R9=-|eN(a4*wxN8+`+Aonnw>%&ViZKU_; zahp`cDw5%2-R^GLcixNp>ziQ{EQ4*L1^P)zIYaZuNyb&DQn}>S17?2SJJu@Wa1uBl zCOE}rP_41*u}4W#ZJ3dBRn~1BJeq2~!<%@zZv4Ihpf}$&3__ajvUX2KXdDwbI)H-;^D##|ZZ@364sET+fmIkfkt zSI+^<*M3HLx$Ybo>erHdU*2uSa}oN->=J{F{HrQ|GOSVAH9;gD^!lIGSIn-}sn_x1OHh#n~E zu3_t$nZpf(&()ZBYYb-sFwIk?o;+QqCD3c1u3f&rV%+~Fk)Dx%Z(;G;Q|{#;{`awP{fUO6I5>_$^WBuxIM6!B*j9!#kKFCU&5{nO?n> z@v%WV^(E`*t(kzP1La4;U2&iB^O-(ZHBwd{hfJ&slKblj7L#Ts3M{5jN=IS8@|iaw z^rJjwpTsm?eC6x*@3)i%z)eOGTJN3>A~Kve?akwFZ!BsiKUhIfNX$VDHmgp|DOm7b z+Wyb_hQt-tU&pkxfw00Zlk_9qhcPM$x!PERxW18(JC&kaH+m!i{d?$KWY4CyXi`4v zdG}&XP)XAFS+>YWl6emwJrDR@lc3>`h*R5~TK^!HEJ$uC^vJrZ(D+#d@uxh35na}l z)g}e+G_^4$sRR970e$(;&9lq-QBiRk3`9|D4v!R{Cx=VPI-G-n{{C)VN7UJ;&3;%; zAKNeZwyDvq6}WdT=QsfT{haJqO{bx^kye7vT)s^gT5c##_Ck}X=Q>5xeX9Dj@axt% z^&S(rW#W7#*k;OAo~^+>{*M0<&pp+vMR|uPq*>I4Nuuuuj6#FGPNVrVsZe+wStmH+ zEwB+?w*w&!*eb@)GHP72Ky@{rLnwq#_XrF>CB_?l^r^U^Q%%|ya1?x zRq+qJ%~th3+in;8 zuxv!SV4iCWz59+y6nUImh|1G=K38pD;U2~2 z`=K%U>G+^dHp3N0N;)NBoxO)$rl&hz=l}||f&=dewu?|TTYJ`e(1#A7B0#f#S^#;_ z&TNUC4C9-DCxwU4qkHYLkO zub4KMSPTqwtdliBUaS*@G9AGCSh4g!2dtNdanuP&k4=IS?JW`+g07_}Kv2&V?l$Tv z;y@1piMV()e!q2If6=*a1b&GQP4`XxlBr0@njJ!BVYG(G38sTi6tAJ40gAA#+S}tv zPJoKxbnr!3zhNHX_H_f3-S3tc7_Lo>6)KXxO5?#w{YF>|kOw0dWCXZl5^p46iQs=h zVZ<<;gaU?xKLT>j)quOt2Spu$0wsdV9n#aMR#qIemseCql9ky0xQ=~K&}sV=e@*Nb z+Ni($99DDHV^ERBg1G2wY3$74-Wz6bTzL%sBC-wvOA{MnB&N!}vhG}-UMZ(}xQd%N z^ApqjWGDuOMT`>=zS|L=rb(c~O}7DqA27)^k?%|$h;-=(A-cQl<>UaX)-X9>&txc> z)apaW5Iesz09+o(XJ|JECPd>VXdHY^8__+`T@mEF!z%`fDk>}ppxoelFI8>k2?Z{T z)d%PXO)zBt@xLqS*bQ|c!$awJiLO3yCE7hQzdCW-5i(X`d+FzUOF~rodM{z1`uzm5 zf?caA`C4ytBkLi>nRi8>%SHo%@nuME9osVA(j#*#%*|Y1^Yb)sip-si#zQM@_syjG ztc*~z9E&gwLYArWWSQB3o-6$MekQ7Bm$aMF@<>FI24F-reKYI)a--tOhdn=EK9;25 zQV%SbX^#;sPvNAY(0&u}>q$%4>yy-DRGY}Fc%f~tS8O>6n3e(as{h|d(y8Ms zTR7UF4)`Stba&DSi1Zm<2BVtE-3BhX{~aKAwJUgD$1588Nlqd`nS(%v$-X;RJ4K5V z%k^@^m(h_x*$JbJe0R*t+i^}|v>wY8pf6Ean(zt73(Bm^YQTNqpjX{{AgL3rKv%3l z0H=A9bRheRtyAG7)dfOyu@=GF5aRiy$1&)Ob+E`bUuRx6idnw`!wb-4MCg}iWTThC z9SD|$J%e$}?_Mz~inVnaK#<&jFG9VO5saYTw1@R`;&ld!wMH7xU`*gLLXH7GjIGYt z-_g&$V%3~cuBuE-O(`n%dg6gi8Tjhnl$iFG z0NCd|?efIv+aG4d?IW2|gHHqB%jj>`I>9xOA6upAO`y^&Z7ZqviG7sNrDwfh6a_?i z1p7IdK{PCPXfw!mjH1MWE5ZDF*{c3sj|)?HgU1@df!WJS5XiIQmK-(beNG0hYWXmS z?;Lmv=C>tCVC`<_1-78jnGB&275v-G0R6!f_yW-ox53gYuA^=2yqNCxM=WKx2iCbA zpg#oEVjO`(Ha_4YI4weU6i4@n%JNBaC)vwRN}}`IjXQNgJquPDWAnm|7bcIirni3% z1UWx#NwCxEn3*8_BSR;@cn5S4jb6HRNVCTgqI5IVUoNvje;IvxnJ`F%de)2dt5$_m zS8oeG>mri53Lm-HGkEqfPK`uvJF}+?}=RUa`_W3$9?GnG8 z1pB39yUAArI}FFNXS83&l6(&(9K~)ajbDxLsXxi^_@$JOcLoi_rH-TET{tGBNkht} z8q*Y3oY1QWKH2}!>(DWmA=90NzXB8-80dg<^+Ig*LF~K@JOlduc%Bln_TRlW!WIk? z&cprB`4{T#fK>r)7DvkBEab*?z=eky4FDg#+6ZtC*swX8IUI7!`*TT0<3okviCh5I z^Z2ka?tX}6S3(s14)#L=E-wBH*s|~_&m%ebL&mCkvLs|UTbAYtcJe$oU!j88I>1F?V-}M*S7C}-f74Y2Wp&_uY$8;Gi@51Q9hee zh8mw8nz6Ho)_*~i4QY^!Iv;7tIcSw6NrmIxoVL{JyAO|Ub^H_zs?o)Pcg+^o?h5mY zubs$QCTEM+knCJo>D51Z9j(ZmH1j9h=XgwgdVnUS(Ba*j=BKW4$g`7C2RR?xeceL0 zMlXUST^}ov5^;m&M5PZVMOl4nnjJHq6(TfsQUP+)J)UUi&DT&Z?u-r;lr~qgMh*$y zyhW+3-kYGkL{Bwwo9G4DtiRD&`_g5uE~fhi9_tF<0J~Lw8C(xY?oV+lc$i%Tj>d3^ zNsA!9LN2KRJIm-&`hi~f9eZXvj9TFeGV|?7jolKL;yBHQ_{rh?)*~@idL4T8+&jVY zXcgA{fQW8fT{yTC{>ghqlASulBPqxgSS&fklo#pcvn2M%-#4NDg4Sa^PT%@Q{PyTE z>Y>BAa5Z7S2a+p@v&TRY^kAHXsbU9VFgx>4l&k`_*SQ1rTfq;pv?-TwRERJcesV#+ ztne7}p;{zC%5?1$yry9J0*RLMW%iuF0Qe&W2?#yn08JJdQ5YIdf{Lrg{*HrQdYC?C z4{P-wf1MstR3R`b{dD#N_!vlXmLa{ zs{)hRyPS{+va{l)%d{|@0g86_FQ~293iyN!1n)d+V111ht|>#*gkrR!3vw|y(|jR8 z&qY1%@49GA*0Rp2bT#uAgw_=fo~GO)*tj0RhC|V6zAt-xTAuvej)ji16`b;uVVaE3 z{(@99(i=(^q~e5D29EfjWA6e6Q(>;SS(U#a5~2V3)C@OmO6q(rL zn^EY$Kl#gb4w<^Yo~WQz+k>H?pOBSVAz(^WvUT}wU={JSlW8#uKyzN}kL?C90UCcn z!J|@7nm->!{QRSj+kf3Vd9*JbQmid?0kt0v3}gSmPZN;ZP6$S=mtDeY$3FC6*}Iz$ zp%;SytPtexa>np)E+vw5eDrGie5Inlb6!^MD>Pt$UHc$Xjk{Iiw-gfio@S+}UXl@-UF3g7QgQ zr4Or;N%b1)7x_}_}%T;~k?YS%~k47gIzmFdi z{0qdhbU%6S8F{R+Bl#nkKo-b^h*UDMlsBxL>*ThS(<@mjuxx zGZ#9^Q}53ANY74BEUto6gYLZmFTNZaZHV;p8#IcEfz>=4;3=cnxuDq`jq7huMNNKR zLoIci($yj|j2sN>;^wo2T?Gf~?mIoq>h<9^C`BOaqsqV*EqTB3UFs>OJ z?a2SKtu(q?Fmr0%no=k}m9pxjtBBCl-JZ(A$;)V*)RES(uIw;-`9~h!gm|j!s1nW5 zUr^ob=I~|$=|W!!&z2ui{8BXzzm>oMg5>+^uED~zJYN|+IiIJA%7qY>(9}wJXQnja z;p!+&kpV1&k_w#hE0jW^EDT%Im<&n6jk2|ezGdnY!XxGL$+!GOk15!ZVwWJQ8=vA< zb$o1=EPDx{8*s(~nwPB(@)gpmz4o^cap%#{OJ%L)MyDXn4PN}|9@9tD!V-+5jzuz6 zdC$5MS%#p(u1QAR-A{NrJIl>X#CQ5KJ4Ox3dKt_x z@qMOtNkL%9L$Y7=b68lF`MO(|*mw>+r&XZb$TzZQ(YD$q$u-ECvAaZ!vq^R_sQ>-D zs^Qac<}^^{v*Gx=aA1*s*KvCR#lGoOpP^iCXoLM>+C^kX{=vXN5V|POGVzS&s&bXg z%}ffnz(f&`?n?6gDsUOcGe8We=6F^vfkBfhMBLo3;}Ga~o|@^MGV%c+OnJmxN`G}=&r5MzMhmAMfFOP)HL z$U#Ndxi3?2%bOWX@_vmDqYni#nhar4fIFm0OqqVvt(N;%J%hzcM6!^88L0B<2~f0{ zL?HCOL&E%2Z|(K6gIbe~M&B_C9)#6Kc;m=-;1+TrH$1_q>6^TiJ-zf&tEr`(DF!RK z3i5P2)l6Gq7c|9T@xJ+qff1pwuk8X8BH()m>Hc@Bsw<9i)ixfn{E^urY=1?B6=b=J z+~r<31Av`M!>5jaz)r~$-afttQC7WU*=~%jf059+c47*B!M*RKKMbi~TR{MJ%nnz; zmCtyT%MEfqHe=II?Z-Qkn+tH`U4QyWs=HU~C{x5V1< zrkeptbe|)`l2ntlWQLo3&6LYZL!W*EQ9duRILi3u@-XRIOKn6gTTtRne=S4?!(Jv= ziSkgJWi}u3x*Hh3lZ%zD0P+*iLW)y?6o?*yWu>N_Jr91Aeo5$CsnNMmWsW}T`{1%1z7=SX7GF6u2Orz zv>K=I)H~vs49=F~96sY$+MLBy2U?W^Z{Df4-K`8ze+W#v!VWB))(Rm7oj7Q^$c?E_jPK)TkXp+Y9FF05h_YK>3!)qcVrz;}^LitMni;=? zsi8vx2v_*!QyA`(^8VoF7bX?7lJD9ZgnrMo^e6sb7u?-cwX-D?r0N1GE@U}>EIUL;UD3%t_5Cc5GU?9%Ol>Av_1pWW zQQ)hR`zY{beBFoPE!SxChB(WpyKlK-Nk*Niz$3|y`>-JzynPX3k1iB!OVGZrStxw)Y|LtBs($skwJ=>@IDQ zw7Hua;i5tgS3)MMOT(;en|6Gs99Ff}lF4`j(y0ex@VnRq5TL;`;J!0{SaQBDK*mfZZ9?u=$TqEB57|^RiH}~SOikPg z#p=!Bmm~97o3GU~H+X#>;x?Jk`+@h0PynxMqW(wAO5UkTP=FQ32q9WRtVL{1y5!Hm z^Bu>@#{@)r1USN^sF?^K=D%3($lHVcI^bzgXP?<282^UO@zgvo13F^s%$td~+i7C# zZFCQr>Yl#k5Waubho>UW?!!#5r>J@gsK=D|3Q#WD;M!q_jNc=gOEPUHTCaIg?j2bH zQknOh9Z9}J%OXT#$;<^z)e7aj;0f%0Vf2hIM0s5pu}co5x~>mqK-)rVAzL zvw3oVCM%v~L`%Er(I$H{#t1Br>@ ztUGwk$nO5wIq0)}eN1>OSl7Zjg#jq}bb+PhcHHL${k_iB&YuqlloXcLA|FQNq4}j@6abWP5X~cTE1XnC$H_#YM7F~N2R&JDu~o?RMJ?oQ_$!u|3K+jd&WpDp z!t)+)gfcH_l!&%F>{F@BT?Qe)UKHE3H!}F0;Yb}gSzY{S2nJX4PIF%6x5L;4#{i6> zMqk#R>rVLd6cEnU+W(NS&P@1OR?`j|#1uD{3kG}wOT-BISC48Z+r7BlELZML$<(zw zQ9m>;@MBHPq#7vDPf2`5DSM=6)~0W9qf^gN&-Fr+nJ90n=Jyxg>DQo#2PgV}2E|O3 z{*(kI^o&D-5qmJ{3M9*JmnFl&(D%DG?^5BrgT%?s^`+f+#SbzC7czSt(eA zBx5NMT!G%0-CQ**S7UuCah2`|?$ljary7tQ_2d80&TH?VVqoa7XmeC>ctz~uLaY0% zgq=XF>wKL0>KUunK3o#NX<%!Q!G8J+ zn)i)`P7C9_zAZ08h@{Iw=0RK}uL&%?va_|JTvcs^Q)T-Q1a)?XTB3Pt75-`5=78?LdHol(t>S=Y4Boxb?}t`5@gf~{hlc1`LW10Q8*!i$Ve2GHXj$$K`DR5l!AR(bnfgz;H@F zVbDWjo4=s%l+88q?+AvV4jR{wvsr-78d&g@pTJX~cAGFneJzXhQI4wo9q8}a)Qg=X z#zF`B@oq*t^?xR9=wI7m)}p&6RX_5mLWefgd|`(@i0R&X2>HhR#S!g^a@CLe&+Lnv zrz6RNhf8%;D|GR0@dB$EcY^$ur>)Tu86UU)9K8NW4uS~e6Ltda6&WTSO8FPG1ji-! znFWE{gHsXUBk=?F0SKkiBW^zDCPJ})db4&6BoNCf6=Ha8b-BE^?s^4>UWNy0nDGQJ zWl56YE>3V0-|?j#CO+4HUuOu6sN*q?+wUQea+K&ky9k-jnJX%KTKd3j{AoRMEo1!9M~_A?QoPa8bAR$ zb^F6_h1_N=qlHv0OLhSl)ivoA^%GgdP&P(Oz$q52Kaq4Bg91L}0L(5UP3ENHh0Wf$p`rOW zoVqT_sxjy*#HZD% zZkIit{L!%gy`_6uXE0yn%h@g$+kSk0#2Bd9%V4{{D(&4H$>E=c!543)M3&U_))$M8 z>mF(cRx$M~=F{;tIMnRTAAV8lC4CikWR}IJ;u|`I?%&?Q-M}Y@|AMXw*BCPW$o_(I z=6C3U^W6U@6?E1qm;J-dsR!!5L z6&+=UV!(MRv#d!2*b8zX!K`d&?LLMLxfXq1=IqgvL99|VVl?#CWh23Rj!W_W`o%5J zBeR#mzup4)>XqtWP<_XZAU%LEZ6CL+n?-5N)1 z#``md7S-JuF$KSSH4DIjt-337&G^5dEK%K`h_~*L=$Kf{1X3@d+}FpfeJW6mI`M#< z>t50y1I0VfhR-<7gSFbo7`czu{>N|rf8yX4wAy`)FH#?!24qhw(FDChKZ6e4M>Na< z-$>aepRnw|g5I)O1#MGZv?g?j7^#2-Q170O4&Ld`VIR=q4|hY4O`v;{vsc~caG-~_ z1z+YLE#Azgk48)z z$5~25PS_H+kU6Aw8*3k(0x33B7ztH)5Jn%yg<^#(2Y3b!V4ddPm9Y5~d;T2oBPt>BHkI@Me&jyvL@VCy)rH1YsguxICV1cekgd``{bQg+K#|10G)HTK7LqkQA^XAahL7iQ!I@{P&CFf%?%Qy9h0uHS zK?>jdnFg)=H$%KVcPlncMjS*NHZ+BEOr=t;O?v=eSQ|r2 zh5F-a5V*Qs$!B8%It==E?rk4 zWS@xuMrP52#@=F;<9*(?2g*L-1R4*x2P6Wbwq#V1_<1CBLDslmoM05tR(l>?5rj9jAAV z2C@F(2{ha@8dD)PkNrbS?TYEMdbH>yW_YzB{t>T+zON_U%Hkp%V5*at^*K?bf1FZM zda_#RG5T_ar*Ly?Mpgq-+K(M3$j<~CLciLEZO!1Q7M$1OdK@=E>8yZgzF?}rCsF2qc z;2rx$IgqHZ!gWVrwf!~f>$=xbbxVu7N^A$4yJu!#Pd_>zC28fq zYXwv!s7B-!KmB^^b=Q!T@8~;Jj685Kug9=G)Vu7*>Db#`pErR`M3{2vNJ2!>1Lpyb zY##*Luo(#s_3WV7&wkt7=9l8&mKCoLDe#J6sVms*-w8}Rq0oB49K9h;X|(({kZ+>g zPR6bwAkt>cJK}4#Np*^I!BWoSG+HNr%S!Pd;%`wmz9aPUMFd{am%!MLO&ChTyYyAW zL`xn$9w3x*kS?56rel5eNWry&+Vj>WLk7{~3;~hFl+M?iaUz&Oym6#X6-g)Ls#(|Z z_UZ3;&~+VQ4Q-*`0W7aV4*YwEB@}gye1LTab`gpDet{MRP?*W%0P5$URRutl)7Ntv z-mZ*E7v|_XGfl|u1G5WYD4hD%teLC+`@O0b@cF-|N_PDKQIlSD0H%|abuHbyOrPM5 z8;&}*G|)8~kFvXeckCYcrQ?1S4($6P2ZD%1xhVk(I41~3EpQ0U8UcRPDu3t2bS2Om zg+7~KP-=P)1{*pli2RcSbgi_qY>Z=QUja2{J_9$&M2$F3MQHanh}%Va1`vOCbpEkq zF!1R9@@qk&VyS;0v)pn4=fV~PxW%{Vz!6|7o=r6#`nn!MAI5B67Ki0bB;aD};XfW6 zClmyFp`ZK(4Os!u{qPp_+@>xly2CSw1Mdfv4Bg%F90v?RhLn*V*a*Ox=R7d=MwT5B zfG1v0r)oE_c^ZfKOAha zJBT$CPllw++&h_*D7%SAYShxVrO#jCqo63G&_ZQ67%B(LDSs8Iw=0TotQdrEhB(W1B=;P@qh)Ge!$Om~p+nF9Qcj5KL` zn!&F>Eg4Fc+s-x@cTh79p|ME7s`EEqKvD_v6FKB9N$y+lsOu2)8$NQzJDNWn;gxD z|0i}zbMyh;yTUUC=~~b}XX_;JY(|TSqY*FPYWhG?L*!ATF3-SknYTDZH)K36O~w=XzT|GE1wRIaViU(hpo@HKrgZP9D7K7I$;iK+O{KdU}# z%5mSXs^i$@dRnv-EpPwU?ckhdu)J_!OS*XK1Irxmy5e}*Er7=VfvcON8YA@IZhw5I zz7f%1O`mCCYU`)tUUH(`C+wX=^HlM-I_EEthwfGud$ibQiofc2nO_G1%v1)ePo^Hco!-((+UThLY;33; zdE3NqU}9Y>xtZ>Ka4SLC@NE2J`wLg;W+h)B!wFBsm5l&``A!?Ns1CW~ zNU(6!IX^w>QQx!;bJf=h)+FdhWnI6^F4wuXm%s6qb=~4?^M$QZ@ndQ#FIys3eyWEk ze`E-n&J0eKr^xdiR-C-(|1@Wu!cdLLf42TXL34m+k_B{a5jugM7u#47zfx##sfm8- zOp)$YYnAV$@d7g{*MA|xr)L!OKvYBV4heJU|tBssGk7SdI-jsSiltm;5?bLu-CBnQ}Ko0 z_?I#E_fg!JUx8|c+=Sok5aN>M%--OJ|AJ0mN%CI&V{E@V{ytf>!>J5JcN}Db{|5x- z2kPMe!oWFXfJW`Vkilg{r?CHBj6;?V`G$88ChL-(ctC9muluG!;S1H66Q24rc0-f#n7IcO0Crogi(+-_Ix=-eiwQxxG>Fo~ zq*cQZl#Sp){em}y!{B;w$a?(Zbbqs_3Qdn+?2Z0Z6MUf-hI(sw z0KU1^0H|@=mM$}Op<#x*UV0DXA_6F$Y_>kXd}fR~F@s#(8`xomZm23O3|&3gQ^smz z_g|x9&U0^y&@&OiZh>mR886r}L*HM8?q0zQAvPbFQGBP*6=r|CV%!MN;a`I}fOD+z zZ><5aa=`oyxJI&pJdnIj)Zf!*N;L2J@v2P7so402jF*(b;^j8Y^sI9}3)byXHAn_ z)4tvL{9Uo&L0k@kn^Uie`j`u1E<=X8R?krk6;qJ7a^=L!8?U5hUT*joDAs^><6b%^8c&D9Kb^OhfuKni~ zkPmwAZD`={FV^zGT;DSCB*m+YC=7?LF@U?j0aKC#fX0bjbW5_Kk0>oGUAt~tc6lnt zpXhG|vYOH5y(>{m!1O26Uo+m{GEDUjS$kfw7@QFi+(h^ZBjQ~7wtsSQd6dV(s9Jsi zrC+7E`D}DWCs7KZLHFSx6bUie2PSYZbnEya0sT(lJV*6}rDU$G-|rm1P>-pW(m;Jy zJfl2rsz_VWde^}VF#gNc@V6e$XsEMCfBIJO>>*Z7=1;!I=&Q#EG89U0L{uIZGfX^TF9x@% z?o{X}UgX@hKGDsWz7UQ~854T*oXB^OAw@Nfw*JSOshp#0C~NE;jRJp?W!1S4{o@p% z7P?59xD6u;8>i-ipAn7e->jt)0Wsc|QQ`^Fs>N{AN=C$R)G+ajTJ+s=-oaDqvbl3cX?-K#EG9OE>)ovR}3a) zyc>*56zlk)sWq57$W;1Bf5vb6I1(!e{jEnRdtQ3Aj*U2AR8>p(nO}3puFrxt(_&5x zynd$8LXVETH2WX{4Hu1h7%1Ge)YOurkOA)^!0N1!&ohQ>{Q( zzz3xTjs-srPE^7`PKYpTs4{?CVDJA6x_kuG?8(zNglpjc18-UwcXUIqpRWERYDicC-{njhe75FP*Fc5LCgN2c27XE0QCHti0>zp>}+eiO#=ju){a$0!>B zXC_q%qlM%;gE$HaR5Czb_}?<_72;2-jnV-$H9-AM*@hYi-ANI)n+qZ0B%8~4#QuBe zMw?u$U&F%G3c1tgwrfi1Ou4M+1t;$lDM-%k(yqN@8DQmGS=NUWMXY^%LJ5pQ>wmD) zzKwB7>O7ZChH@deziLDUnw0qVyrEQK>-}xv*@9QF zS7iWd`Ftle1bs?z_I%SrPd#AD4lc$R$EH!?YQ;^a9YIJ}>HKpDDb3bTWG_gDiR##N z%x@Sr?(JAL=T1Y^)LoX9uMPSP(=69V@BAQ`%8FLp8&D=xb``FrrPh=Ksgp?*%|FE*+(cc@;n(PpL^MIbU-Q!dfbu~oEQioJb7QRoTdN(dT%|A0FscbZRyw5{q#1IEneTgifA9T#?!E7Sd=7BV-Y52c)_T^n9{PT@-&0AxJHQ}PHD}#> z{ro*dMKh)wn&*kuBt3eiiJ7&Hpo`#C{umPGAUxf6UzYCqCZAQHztr&9?~ zl=|#m&V`R)pvzIAamIi>plVEFlyt;>aLY4VSb`Q|3ccLydT`C|qN=yx6%*ZThtDSi z^0!|*&uX?@9`<$C?guef6Kn`~MW3K~Y|pu5LpNQn>Wl!Y)Eyj~C6Y~x1K?~VHc)Ek zDw-Mp^x-ewvMXG~DCt>F5OT1P=syrWH;^4z2Z&gNd)`?K1bzqd2I|m2z;Y5(CC`Vy zn@w9cgLW69ZxiW48X3r`9f5&h>wo^9AXY?}3DEl>za$s}Kzj2q1MklPT*P>A2JInM z#^pYYNRV@O$@k93IJ7DRly>?4=2HYJnEl}YcRX&dz5pjKkfj9%wIk(L;uK4zcr_sg z;E^BzQTI>F4XDs0+>*Ede+LHHv$)n)p*hT3sIA+{--IpG0Q<5z1*CeS;r*ECWnjSZ zn&4OwE@yY}3;Z?2E-+=cS4;6~beBH?r+H`&KNh|WG!9G%;U;d*sL!eQViRf?kA&qUxb8^-%li$7m+xs#t z{0Yjgw41s447hr`%DPvZU!1_$oG40!M+o8=Q%bvE7=40u1j9=Y z?3b>yECra7rN?n8Q(6{|C+E3$Moxl?TG$JADzY z{7fJ0CBSjXLnbc}JOri9(WUnJ@883g+K_y2bKtZ6?gwkSnBbxLvHw6g4%T^_x|Z=rIeh`R5{P{T?q$fIa}pb-yDaxE zXVm|R5P-d>C`oSyS_kZHYtP_I^XSyyrrd$k&~xJlJ%AtrLhvd5iUWd$h<}Nr{~^&q zzRjcmKY&mk`foo3ZpQyklAr!xBzY@Qy+HS{|RRnUYGEY1jV&Pdk+ITIjd@= z-S+WoU>eDX zsIokpo?|^!i435J2ExneznrIxAPOSdJnV`z;b?6*i-;@<+0$)JXSJLzv9^L`hdj}ILLW=$Vzl@mhR7WAC)gCY z+iwCtsDJ{F7UvSzF6bu5o0ha5?0BmF@~#*H$rvYF2M5f1 z&XBkb3Wb)JY4DyIDgts#LMx2VpV=>!Qj3jlFRFM@%TH&L-Cvjbhd33JiMv zMDh5wR1fH;bRf_oKVFWqC?{0SCDA*nD@V?~Pd|YvEM0ww2JpR-Go34PG@uhiWEf2U z(~d>x3MzQHU?;h79&dY=?~;BjP1ncoE+4Py_Y};d5uW}&x2`U$lF9BLrI>$YOn#eg_L;eyPqZ!*Oa*z* zv|tY)2nrx8+<>3(a(pjT_hTT(f{8II$N$xq?U(zhzb7Pt?Rwgk-^SF&83=A%G&!p( zyYFo=QD4W;OCY}lsX7LlHkKv}42%rz@JlFU9s)J+^r|=X!B54gJvN}>i|`2kg?z!p zVaVsWS_vD@!Rl51`OXynfwe}XjHQY40oKyqbjRjqSn-}Pmz(02uze=g+{P9YDNc1I zglhkan_wY^a&?szYqD>Er#<@z4ID^QTKwXD^QVU{m2lF9Kru%}OLkwYLj7ra>de>X zZ;@B89bdoxQK=dJ?c2=R){p$BH(E`z4$IR`nvXP>r{8}QU!Ec>!OWcb=v`z}wonGL z)DX^ZkUf@svR5fNkUiQ{mN~&7{9Jn5BJX7xWf?}59ZolP?y-jaG8NW>iK-g*XT0Y= z&gm0fqb$FJ*jP)Q2XTcq3mayy*x9|Jmkl3{wvF&u&m&6Ycn+p*@3CITV(B8-n6Hm; z0N=cpWBYy))d(LF^7tFQ_^>Hc)L zJpK>KcT+)&S#(V~GAhX<;$58nP~+tDngmrgduuL9jfS3EH`VaTrf)|VjszI$R`Yr# z-dgHeJe>VqsWC&EftK2lUN*@OCdd?U$mMYTbLtV(7pt<5M|Ve_$tT#3-$b$`O&>;| zc{7JOOdm~uACui>W@!z@rQq4vZJ?~#{V_rAg(z-XANv>S@E{GCO5&Vy4x;VDP$css%L-TdQC zf?x@LpwHjbtEsCB^K><4UE(D41U(*_xgtAPYb3_uaTEwc!$5AQ&o5oLW|i;@3tzt7VVt!<|Q2gY2W} z37&p|w>(##rZr0rP#z07K0EM&TkK*EbTTI7jFw_!E{&KXNH0*k{$*e8TS))-6Csq4 zKs(r|GVzUu+H{YmcFP<8bRmb;-q7Rd{u3vHPbfmI?gQ^4^JdFfI{X0Ea)wTU*2Fd5 zq-83&NdbU_E;b2zO^Nrxg#6;nYtl1Zqq8${mP~KzzE6@d5lRj?%LWLK2DF?ly-n$r zcr@YuC9Hq6Bb8MoG+U9-spoRc#aNKujHe{!2Qh)E$)(Y|&|)9cV}P<}V($kVnxa_4 zJKhOOu7?Cv{O*DQS>~4}ukRLtJgG7S57?y_aL`Kll|ZZlXRmotlcqH2A^5p| z1N$xy zB{ox=UY;K~y0>?~AjFBGQFNU01@eU|CdWF2k8!a^Kp;<2Q`ryUV|*`1TzQ^eeGA_n zwY3x3v1=3fGi3J6vcsU)tisuMF0klP_X(H+WiM9~esrg{9?@_7;wNC6<5AL-T4i8*!QAG!VK{~ z6c`J;p5U*fZ5*+`o?0fY@#np4{kTssa7-w%hLrQy%ew=LT!n!-KWmbq2md>g;71BX zcxk_%QhR#QY|SMO^*igM-BDT3>b?P++d@Ia5>Ph37u{+DwE+H81vs`*;FgDvEQ2ro zPw4(Iuzo5o4y$Cuh#SoFHHzf&u-pm^mxXVD5o%}*?*BkEMNaWl6hIvIQ+%^9;m!p( zjZymb6*T9iB@kcxM+(Q+p~-V21|PI?+4s=dTK_`dym$jJ6rqZ&27-4WXo}Z+)g0?T znBZ&4=XL=ei+@KmXwgMoFW5szi%?agSpbqrG^IU=I+-scEBW5(^f`;8K6n0CeJ5t! zCm$1hVIR%rWaw93r{~?#{7{QykM{=gE+kuc- zh{{6yT0L#-gyLKv5rSI&6R6Jcczh=A&v!~Rv%mEG^C`oH{YBEy4GU|$8{E?JVJ4e1 ziemey&x-X`a&upkV!)Z(cUi!Nduz{*<2n|a+lcL2!@c-N5f?__kC&BRziS;ovc)>k zJ{J}DquULgs$_p0PP3f|qODO8?*P_`1W1lPTZqvaTkuPBAO$AKTl-xdlb!51dawPd z!>g`{;w-awO*fjxc}Sw~+);~tuKVNpuwzEkW%(F(ZW-!`-^TX?jR+~n<~|}Oe?MF< zo_Z};RzVGy(}N=2SY*S|+`Q$zU#M36Ef&$C zi2`l$3^7Nd9dSR4#&&Xam!zofY-ii1tt)n^4L~TD%-u&lxBpXj#Ll>zAI>}r?|u~_&}m} zLSN3QJCJ*O4Bb*&>NC|3{%f_q)gi1FGWbCgAfZ*&h@G zBIok0tHLEo`1=UA2`Q46Y6%G@1Q&GcRK?M635+PFdxa2yZtVf8pKec}nSyFP<{{)h zH!Lr(e#6AmUujcQ>RvSydc4v#kP3{TE$ZGRS0a7y!B!_9{JwPg(oB|hZLEExU1rk) zdude6?LUwN@JnDo5q;bNZ}5oVW} zexf*g-i(LadWWA1V%zdYV^4Vo1AJ)a+U9bgUB*Aw6zMNN2z8jA-*ewjlc;zOndhXwy5UHPsSEWz1^fQA;=&-OV~?@tf0C_7NUkCGNageLs#z=(B~yq@P_j7t4p z^W#_RKlgf>29cT6^iYd*(yX6=N>}7rte7k7uQcEpYnbBtdrewTcCsVmG3ka*9doa_ ze2ZcY84)X{W+uz4Nc=ITFw4B3R=1MpRyCSW_h$Y4^x^_%vv|E@6wYqq#RMeQ%<-Pv z__+{B7&v0{_BL^??|o%I)FFyE3f;PnQExu`P{H3<>F$3l*5;`FC)QYa+c`gYI&`{g zHu_g@HDh%{pw-{3wB5LhMY~p+UYP(Jwo#Ipg^0^5Kp1|R@u|yB*Kg=6B0d=Jjd1VE z{>d6kSNZ}A`fj|Y1ZQS>ecK8@b+j2&2FN0RcWvZLP+9_9M{XYQ$_!L6_CxEvf*~u+ zN;zcb#;!;jIom`fM}judd{CebVDQ`Y{m{TOrgXH-Za#5Q|L3m+vC6Q=nII^!kDv;sN^sJTo}x|i~om~n5T z?$9zwQR%Yn$(>mkLmPTgr%`}EzUV1o+~fYgQ*S&rXcC*SuH(Ib^0VsXPBHsMrzi>j8HLGB~Gx^rJ6 zwW@6w={g-7sH>TJiRy9$9kK)&IfC#>t{_2(uKy|P==xu!9`ESOs>kz!?ygfd;L)vQ zHC3xIDk4+DBgvTyX9ko&D>ar1{MoBy|3IWgA!a`lP$TlsNhVGUa~6D(g%rIm1ta{f zPI&Gs0t4WaQ=QrHgf6^H48TfHfo2aabpwcuJJpf@fvRC9Y{;+Q>?LSB?>+NeNT{vP zv&2ZFv}51kAOl_#UF{uh0imbb&%CQ&YAEVgzUpK4dkLSw6oFuGn~jp-!UGdVTPFtw z25kXB9DDK)13FJm|70B{9AljQ2A@OVI}(S$pwxM*k5%Q7&~lgTcK97(H3cdL5OjP! zw3(I%c`H@aR1WgVoOup?kM`IZ1Sb0Lso|iXopd2rUj94BZyYpR zeAg8|kQmr<#{eHoR7qfaC)~sa`dI|#*~Ua8_cnZ=pjo|H&so5Iu6K}5Dp%%N}Y@EgKBf+Dy{Cke==I;AXSENd!3Oz$5 zADTEST-2WHB<*jY_NmCy$~Pi9bo5FiN*)I-K-xMEI`2I1uoMlaAz?MEUoY@s&+aF9 zb)9_UvNFd{l{p6uK$@#plyK9=XVleJ3W#RAV;Imi=x!7fGl znW662L#OI(w5zB?z1~IP*(@KM=H%633a-EC3&H&S6bWy06DG4t9qGl3bP(pKZ#&V# z&zgQLq9duGvHTQG0u~$;)f)6_M8kPU?z7Csv9!*6iyv9~;8g2D#*3;L#WSTA1*aX` z7ib?Aj=<6ePZJ*|vtzo@24U;rVQ5srPEmBLNoWZy1KW>XMq$CT{!?;aAb)vmcGf2) z&8HaoMM71w)L3AV`3B zadXpJzjG(EM~R zkwz?|ZLUW#79;KzF|R5?VMF~Vkplf z4g0KrqVlLA~s1pBiq=p15G4op163z9!GXGiUmv1I8uL_?M6XW+L z%${lv?6QY>vRG6d<;ZH&nWM#NO`xP~N!D!i@#uE4to(^~GM`M)4Z#A)r;Ds1s*t+C znDDFP0wKH6)%SeLeA0<4jQyF?(fON%f1~0D;Rk? zp8xwz2EDH$smt)K+41ES1rHaF8(t-`sTv=qG@!}+fr7XS8Rn(ihM7B1hPm_Fd-8j) z+r%xav98(;^#$o|xy=^$3qu1L2d7PAPik*dRFK#JZ$%uff*n83{{&0tCUy5NfB>XACC~%)bGziRA-FwZ;w;y{SrLXwM1e?N2~q z&Bq=DzMki|H+QJ8_iecP;eb{dT~00uaPEtpbr99-nBtaMjq&p-H41JTZTMX1OmMF# zRcZ!RE#TgXnO^~Jbu4^P7OKLCCGxL>%u^yZg7+2MkjU2Bwo*H>j9GYgRIa?(we1I{1 zjz8u3!kK3@cO)T<(8eT07MjMI;W2+@JAo>EeyoZij5068bT-Kb zl@EBc;af8c?H-%uF1y~PeFW(1udDzUQ?`S7S;&d%y^Xdfzj$$DJ=&tig7nUTp~07elfVyYURBkyt|B7W z(^jkXcwlmRPgLOnR8{ach}Ro1Aj5x<`-XHfoq-%v9t#`{Qz=|W{(k<;m1k&B%lK%O z3Bk}gEs-$@Mx3l|y%%0`&auY!`V@Or#044_(*p?4r-G5g<9Ws4dk-fxTiS!hCbPQW zK7E2AfK@ijt|wUzc|?EoirWfZRXsr#_L)bVLcRjw6o4WVHsM5~FZT8;E*qT?<^Nz+ zzE`_O(xDN-1Jf#_iOg6g(0E!44JquWV;bb!7rwe@gvUXhKzAefXIpcbeQu-9m78#4 z8&qH_^mw)l`OO@`9R=O%OapR%z|k6H_mpA zO`7LZu(#-ygnzGkV`P8@j!Eb#w9-O#>OhCM!51bSuZ!S;FxIA1dd z&wTVVJddguXyQEL$Cx8ib-CC7E?4YC;vIRy9Ki8n|Kr*}07%DxW9{{Buma_Plb? zV-}{Gt18Zi_nYtCcGZdnQLRZ2ak63xoAh2jt)}2h;02It3IcAF?GeVI#tB`!9u)vT ziTgf7s^I&;M3TgmHc4@AvZU^o1d%iM-Z*pgo_>R61ccc z+swtc3;BJj`E&-qVbF4nbK6Z-msDAq;O$h#C|$iihcOte`nnK7JSxoC=&yVC6D&6cJ(lm@K(6?+o0xOCU|})$Vayxaal_-Z ztP&Hj$1(lkukm@kkG0z`LKW-WcN4!GF)lWDV9Xk#2?wxOcyqd*HQa2wTZeWpKk<`pFuEaqcbRmU?`9XWl4HNK)NrU2ZG z0sBMBLL$XUygF{U)4BZ?r!IvDC-3g6RLBtUxZ6bn^Ytd7m|{NUvF(&Lq&r6rn-1c5 zdUL1eLp`cw%3ecD$wFf?_T=uq`mhVx!9rPRa4O{E8z8?M(fn<^WWUS2t>&Hyx{zUu zFf#bIVNB`Vo1m^@#6%*5C8(t{Ou|?@IJPQ^`aE~4XJ_mfV-SR>-G_%6`Dqw2CqvI`vGs8VuDwBC) zmxBo$Z@0vBVSE#prZPSy@9u&0%9jXOBzB@OPnP6WV6xFT^sa8wiLczYrtd}k-;JrH z1786GW_ay}3>swa1?=Yo6A;xkxCv6XnhvH?IxgpVbOa02n^b3wRQlj6WIeoB*k5Wu zHK!==-XFYWYH@5Tb*rx9c?nKqk6=ZBqtK7N4<)BcXHMOJ^H@86+3~L05+$EGVQ5J@ zyEi556-;qx)V?4I_$my}2^iiw=D#wH2xR@y)adtlciIt)kcDIFNYq)}m8?@|a!#N& zft&R6~u-*&BPijVXSr76ipnb`W)9-?w(yPo;mxs2w|Ok$D_NH#K-Pz&->3! z6exL?q+eprYFk2!)r6PixQaD36%7~@&mwxNsl2OLKTKWTJ28{}83#&c`1X5P8XQdm z$MXm)IbO9mh^n1$$R>U>VV1{aDF?i(5%;`rX(X_ly2L$%9Tgw>K2EHHDqc~#_vJ2L zvpAIdd_2R*l`u~@)GhM9viQoJUJlM%^a^S?R+4X-bvWJ-NW|t+9?lh6x5OsMG!jFkEh?pztt&dH`Oy(`k&9U=|zX>lYAMjtw_81HjQ?gAzS1JwOQ`qV2 zbhpmw0Ij4LFGK6*`>4P8`NV%I<<6rBNbvkxc+Dv8bDVV?NP^_nMR4~Ssu*fb@f(9> zCL`OzuAX_tF7y1wUdPza<%{*3pC;agJ!=hPGPC(nI^r_(Nvr-nq8XLlNndTurvSZ1 zLI*h*qEjt*RurRnu_%TjU5n%Fq(EN4lr@?e0lkF}WajNIjs`g5>nu|Uo zf_BQbwG}+{TSA!m!@HedW}VpzAf7$AK@OH4*R78LZklO#pR`Or-kF4_ataW$ikQ8j`+xBt95M$AzD?J z_ey1k+o0Y6`FY(zqTAtJy1=WK20Kk{nBuVTGc)JFA{{>B(c~ujfX8y2*++S8opOU` z4y9&ZGA;a%wPLlo%i=nC-d8%6ZATtcDSK(Mwa+b|(NxUU z9eDceRE0^Vhq@B#Mf&U|);Z6y{L>!FlEIPpx}~>iI&OoIbs2d#GR$p+DtEsw*4@AWVid4^vB{TVl3Y_AS)3e62imCv^|Kki~(c+8Qn? zR9@JLtu}YEdvueW!q3Y{oj-tW)ceuK2d(zz6H|1o1ty}{e#_7KZ<#IDw zmJ5%nb=mEW43Ut0?qs=PE{?anyqkwKX;uUt4~>HDnuYQAa(@Q1xRv=8O92}1kc!4i z;%$mN{s_F0D&bMi{za+BBR6$YFc{TI^6st_jlB3D#A;f|Zk^p>$~o!s8(#YiL{p6W z8aC2Z#mj`3+BzVqFY|)gZBiRt%JQR1bO0!9qTc8?FIgSj4A7_jvAB@3!+N6JUM2DQ z&Z|1>L9O}#%`tC1`|#F%o}4L z&7Q6NEDkz^otN+pK{aHdrMG5pdM-P=N^+0}cW#c)af@^O)SA>Rw(MJafBUTzsT=t9 zC|2S))ex3zP%lz}mbE}ObSIYyAmlwuJn){3o8-=#=S}K_c^)7+yNW8EQ};s)@Qf<8y|;AZq7$p zMun#84qtX^T@25Tok&aggbNt@9(^3w4ajG3S+0UpZ6ZXsG z0;iZIQ=Ba^FAMLs)NF^#sfdFuFXvSL!&W63ZH!<4OJ}&*oi;- zwO;s5QFiPfka6+N621m1P6b zF#o#IQp!%F4cSoat>L;*q$?QZBB&&L!OZo9M*H?eHr#AnL~V1zTv4aRD0=0PgT}N-()%Z6#Qi7 z#fKG-i68LVF2k63KBNS>bYFhE!|oCcc`&u!%n=rB$0OV2zC9$`h?swrdmJWa!*68J z>r?i3&TAT#HE@k)hwWm%A_5ebaYpW3F?PCgi&@N-_-z}w{^x*5X`%I)fQmb(m^LPsT#^P zGhQUA_1&&ydUz37dfesy!e@>Zn{}JwZ{LL*D@2?=wXBsr8u`4aMhi$Swj_&~M*!&k zqE~`-3OlC^)_BI@&`D_)%lOle6uPaKvgZG2W;Df6A36Kb^(Mq*ewX#Hyxon_#hrTK z{+%YcK3g|-SB$S<0coRib`$PCi>XpSwUefBFlOwV;|lls1rpJH z^|K85rI;ogFcedYhwm56#n%kPu+rK&^n$bjfJ&9J(Z;&czk7QD*mo!f5!tiUp^0oxe!Np%w zJdYgdXyGxtJ=Xp%PBcBc@-K- z6%frKlJ{rbBSR(Fe-Ab$!1sFWQ4&zhM~5?YW%!JepMX3d9sXiXaY|`>r?4pj$^pxh z#125GDaQ>z@O>RGHeNYsE$+_KZ>QD|?$fw>c8B|?wLM0)uBEfZtg%tx+(=Q)T3r>M zqi|uBGTs8XXcV=-her6nz)!KH8ur-a78q{I{+QrM5ex`5!8wXFl@xgZD+Mz~RvXXw zD^$x?d-%$(WrV2<#0G+NPb2(gzI!_wW=uMcXpH4UICvv)s@Nr_c0z$eH7c}qwm0f z{y^?^?SQxFSy67FLcHN$QA+W^XB-P9e=xVUreU|=SVB;(kHVeUN48KU#2~ee#XRw` z$jukxi{iT4EWgLa<@rSpGk9p1mhm%3eI%j~6|(nOu+0wUO-^YAfePC*#{`@f{9ACP zmk3u&p?CCwp*a14^ugGVZArob{FHdjDPx)IV+8HNta=HgAeckj3&E z#eZdVME-7a%*C}7d^uH0g`Ko8^zqBH=sh&lYVba! zxdtofp>7%Tm>nJ``a2JdxN^rq0r}*7{63^OeD7NAeqCLRE_3(a4|-H)Dd<4Q1Qb9w z6%#7Nb5%wB`!OHC-ye*FSW#RHXWjZKAo*~z9bg|zsIcmnEWTs+yh@InRpOjV>g%81 z8{!bxF>T-UGQ(b93b6Pu@I9cvn6J`0vQ-=Jh-jlqa@aD7Nf^kIaw|yay~9;x3O{~} zxpK~SneNLJ{rpeVAA)wK0XU-(JdvPuPmK@{e>aBMX&BJjj5vhVEz5a)04N^DnR;8p z8(sV&ui@{nBC#>&O5}aZ(Oi7WTux0<8YGeYvt9_&jdgQ4#(N9K4voo>*8^uF zGjoV+QbwO*D;8I;*;A{r{p^6}k~e(vfnHufEO;-PZH0l?CEa?mDsKJ^Fo_Fex`qH7rV!_d%3J#lNBDqAK8J(~5 zrHYmGP!@!#dIe4`rU4@JkHv~%}QZkDscu# z`R}%TclnbslHc);0MhQe`K@0+@Zgyil!{d!$1%T&WOYWv9M`ZIZ+Y7FwPhmfA55=? zmv)MZ9GFd-jzy!)wm+DJ8X!#uA5=(=bi$TBv-tX7F~dM)`?9c-*a^&@BF<4ki29@S zLddiX*)#m1f-f@ck0Y$6gG)5y*+P2D4`ZkKfQE{oqp47hEZ58Y^oS1`67|bdm*RYq z>A?fApNWCmg@=+STrjDU6y#*qquzbpEP@7B$al<(QJQFTh-1ET3Z$h3Q}H=7(_pBQ zMoP3ZBwQ2{2ub}kg>k9HCwsygsU`1nD6b+2<=13=sh{PjR>`R4cC6Y@?rxz{u8R5IWUpdLK0iP=QBHw5z^Oog*$(LY#8UR2kM;vC{-VCT z(CPq|kVN}`Ad$rhe#~-Pgp%`t2SrHb6b8C-=s(ca9Q3ES3_rmq^t1LzLW}9-CCXDm zqP*GXqQ>o^KePG_1{Z$A?%FHx3vRm`7E6iq9P@H){Y2RdO9!5us1=J@=FarFdvByK z^rc@g3{xj;O7jvNsyeoe*T6+Rd4%GTD=n5 zX{%NHIXR9`Dz|TVGk;!OQC3a8JKwhIxrL|c_K@+BH6hYEWMT=kg7XtUPM>nVi%&QWnBM+B%zwI9l#Q%{>iH^Uv z{g^0zgfJ*avwpGt9$I97_X&^Rl$eQ#E^k4dLLc7!IqP!~QcJalYu;LAh@3?aTCQXTsicDn8rsz0$yJ z4!)1Z_bBkUk#-E^*f1IRuYK%*@$DJ!B*8&$+V!K4#G!^Qb54K*Q(6t)CkdU{hs(tLDPO6739_M)MPj3y%uX=zhH5(AOGZHN^5Ln>c4xn=AhM9`lXZ zmY9xViG-<3E{|3njZ42?W=>~w30^Fp^*cL->Vi)4p^r;H4L*g-P^HDK)bAwxs;X*( zi|LK?>}0+Xm9N&HzKV%4UHG}C_bIOdM%A3abpC6a3x3I?_bew<{Am1Zur&))IIW#9 zDA9lY%?&C4LG==o`L9mgL|=qPeCB1zxSA`NVGTz2&i|(0+OBc`ndHlNT8w5V;_PO# ze)sZDm2}TSwDVfGkSdVxA2!YH1X_zz8acPpKtt@KHWC$B*19K8w>;4YmsNQx%}Fc) zY_2lP@PlFKp*ozflG--EwME~Nv(SS+wAoL`I3|roedc3h972`ia;V(kVCc2eXSqQ8 zUPyHe9aF8+k{^m)Zq~fM)6aXD^F`28oa|g7ilI^4VMM&FYvsC?cMtlxHWyrI)ai&# z2-r4vQ)-T|&&Q!0pQ@`^H4i51?k7r@_0sp@WDwCgsMFc#Y8DRs_;Cu5d?(HCdf`ta z^&IAsa0=N`|eO=mSUP*?WV4AUv0d+rcy6`-9AC8DUbi~w2>6o}`IH-ddA6AErh z6*x2sAnA3z)Tnun&Gr|X$d*mR@6Tx2rKhJS-z7s)S4j^Q>2nPzH=|B+uhzNzctFM^ zs}z2oLgQb7)UEkBT&cXH<1XywDz0k|IjGlT2g^s^{In)ILWtHXm+;sbKB8$ih4*!bMbb4k<8I|kYpnD$%4 zwT-%0+opK;tKXK;cMc7$cR%9LD|`f3$#C50MRjb?Ac-{mFU5v`)1O(|o-!MbWa)_w zp+@!jb4E2KeQ_n5rr5S7Vb?XX9b8++`w~DqpfA9%>^a1c-G)akf77 zk7G9%_&!?{`8bcxX;^e;cb7e&L;jeQCCzB_s~}YT_;$L`ler`rqkM2A5FTjy-p>%Hg#c;fFZWea58s&UU+C$I zWP{`nqh;4M@-i=acEkUweXWvd+50#UZ6Z;>nwmdL>LPXB&k358tfJgaoLo)J!lIda zF_oA_;OIM{12iPhf*oEKLLP?|F(>B2o^A$*kxaqdBy+lRVXupe`kjS}@~6}_aSh(e zdKZkC!HOmfvn{fG3Pv8U$OuI1J~CI5XSEBGbWy|3lt?`Q8K}cv=PP>`kCXgz&3a0n zqWCmlbK<2BMDs(cIytTjWL4bR_Q4kXrX*NFQAAxdCP@{$;8ay>l#KBDP_goMT7_P0 z>c@Abl-nsQEjLMq7*I<;GmKBp&XYm{DfL7LOhs_BGB4?u|br1=F+f@Df6ux8<^qk1Ft84 z`O&ohM9Y{r)!mj{o5ZvEody47p~+fa>$)fstK2`m9#w-O66$Jm?Sp;ff`Vuu=lv<| zdlfyx^wX;)HaO|b6YXExUb>Xf;OpwQQy%ulZt}IWm%|#zjuR3j=bvKJB(@;@GhRFr zEPtCM=+E#Atu4OIM-D@bE*ICE{yum3+gdMjonZgXP~dMVH9;LW&J}ibf8?$-whmhN z8oPNMB!v^c*KwxPzey`AY=WMo*(eQ8coi5yKlQlfPuh0;W|r^tjg>3zkHe&?Oy7w( z!VXs9X)-1#skPr z`D?SNs>?j2(uKr~au{?;aj1V6-sC`2?L_FrgHI_nY;#mlIeDe6U2 z;5(JxYaQd+tfF*0?`P2zE@)Ob!TPTmSkEdc6u}aSF}4deu|Me|RepJPQtdoKWLc9F z^J4nO!4%iqZD)!T<-B%B^!205=348=@bN}A8U9DPGGcUgYQpIx(@|yGGoLq$BW3q> z_84L1MPfRzgx}IsZ<88>PfhmDSQP6KEIlih(le3)SxGrFmyE7yD9v^-^!4?>UMaOZ zt5%4BF9M2#SYHF80^w<}7Zp#7#vOh{D+P$mQU2i@C?dl_6(&qX=LwC$$b;is%6f4= zXutgITP7AwpsXpkCABEOGUHwX&fNN1jG44XDrJ#dNn<{3@Z>n4{? zV}f`xrYeiEuPC*MJs|_7nT`~%@S{w7NaegC36K#Qh&W}ig4ePE`jGTYLW*#LAs}N^ zN}+|ht#-eyojJQ*$Ba(g3=Wm&XI#{FFbNMTbrhY+`O88w@gy5F zul+S=71 zg0o)UTxSW0?N}0|gCSXs-_++zGRc^I?i;FH3SCw0i-#3ah z?r6tiIXVFKVa#b)-vQd_-W7(N}Y;r)v-$kNGh(_yK4M9`>$HjZI2- zn`l{2h1@%<|3ZpqCbfmGJ}=G?<0;U@K>ppSGYx9;P)~F!p%^3!Qg>VZ+V+aG`@{&h zb`Nwy0dmp)e*hps-@dML){OY%9w;prMldl_aB)yZ;p0YAkXM?J8lf~ilgJ%up|RJk z9ZfDc#Y+&mr5!3gxc8+8fs=|rJkocgImQlYKa1X&4$U#xDEW>l!B3?o(dn81V7QN_ z@6v%V!N4t2Z5aED`BO;t1K3gm3DK^to**`7xvG%q0ayuS1~L8K^`xJrKeYjJvPB#S zJe9|8d)0sk_|#K25PPtxSFH#I{#0U))KdXRN^4Tm5kM8L(8&X;{qCZfY~n~&fyo1D z_BAxlBSOuU=rqpN4^%EPQ}xYgs*s_KeOgyeQ!Xp*`S(pxx^2wh1apgjF5 zLVi*^)lD&h)2&W_<&ysZDztigR}V51*{Z= z^!A{dLqO1ElSxQuCyE9ydPeU?X*$pXQi=dRlny8mv>quB6w+uD6!oCfb4i*CLx~iI zkY}DW{l7-QTe3?qs=V=%1NBjP0cQ7BEU@<;))l&0|CuFX`-C81;-p>lZ?_6`O*SA zP&CJ8jw!84K*h~C9x6U*MF2dSZh551q|fC^yAI&g!g-}8nN0u^e>wwg8*!Qm;+k8M zGIDxxQcKk9ehq7f!@n2wr*sW(ti}D2AwR-h)PwcPsIRT$QnR=Nh}#2-_$ykHacX|S z9mJQmg>K#9Qhv^=MjeRzyphd)x!|2%PY`$y!@8@;l23bK6WmFk`DwIn{c~Eak5>;T z$ztZBV6?ja+PaoO4ZLi#BChW-8;(bQ)#u(GMDSO|8SEmt^L#bpSlaRw0}E*>WdM5v zUZWc*B`_X6q&Q*0u1mk*fI;Vaz&H*GR2sS;5fH(#Mp6p# z*R5c9!@`zcDT>}zU$SeqU>hw#4kV1J&dmP+bmNg*Hde;VPO`H%GF>&S2?3r@y&+MJ z&F*o{NzMs9L8LUUVE9wSvTHFLEou+3c$U>SUD|~>E1U;Y@5kp`{{VZX5`~g)J)nuM zK-wfL^JCLB2BCLxXo)O#V&ND4V2u3Ay~rNa?p5qq!KKA!=>8_qb!KR+HAoDdLP~Zw z>so^1#Z|-JTZUe_l}0~WdWSj~ahe5Z>pm{iXr4ykKYjX5;#1yuZZXv^Rt- zvloS}?z}^&Gi-_liQ+~+%vUGyS}eiI9>x)wNm$*-`y#RYSK{9fcq#~Pd{wJQr}?UU zq$<)oW3ClJJ?qHk{{V%<@fro5(FcMw=*DA=PSMFRl&!jq>^ORWEU$VoC3peG6WI8-OtRNLCTdq+A=KP3jaEYpVFO?cCOtXEE7>gCSYry&#SNma(HbaF zqtI6~@Y>oz;2jPo%E=g!a(e#&tT_IZT$@;@4w2yRhnhC0;u~KNS!ro+G)5T3F;Dybu;9FmdaWaoeYAzwsKv@5a6)(Y!Nj zBFm#$T#0-^0d2lyXAKzl8B_XJ{*emF@e9QIlyZ~jT0senj)4nckFHHVgGlJt3!U6C z>54|jrz5Q$g(x`;ODdv_v$5a`iyA!yjakkYsr@UJ*L*@G)Eh<8%&T#Y(q1U}ROjxB zk6PDe)GmgTpd&~#^E&?k%Te6tum zMV9%O=b43UM#Yt!g3aEm^*kDuEVf2*+NJ7KINyx=h|>NO_@3y2{{SBTP7nKMXa3D! z8tEWKVFLB}f6w!;t3PS^j6Vc*q-+x<&AekC(xZP$`JY|UwLb~#kE3{&-YZ-7jb)F^ zZPB`)L;WhPp~Z=dYUpB~GoC5xe_DV6f%0wj&w6s46Hss#l=3Oy)p**a&lH3tjaB4t zmZXsJRithYr8^h091qKYE7red*8|61Dvx$qw5Z!|eHed_>s~|{ZNWT|UZwjm@$p+% z1EiV+jDDhMg<3i=zY+AP;YV}nS$g%I%xE_ zX~B05{kmM)y0mNoWbYeyQ|>8=FgVE_N$E}dEO&1VGJr^xTx4ei9RC1HalrtAgX>C+ zRf8$RgON!wwtQKw%+vVm#uAb;+SS_;k6BuxbHM&p=-;$zT1W9-&{-rgdAd?dKEaLB zdD0A@d;wl@FAf_X)$HNj>7&i7@eULd?}|b1)`s`b;ax46j4~)}768&2q8(fcWROP3 zb_s8Kcb4itNFrc66V{`hfC=Ito%#GJ4b&hHpQp7d9FkfPt>~kQlrIB-KMHNIAX|lR z^?70Rr|yuCxB#gL?ZEsg2%!bRGmb?JGfU1zFV?9A$jXIoRAkeaIKu!y=RTC+IjH6X z?DJ&xLO)8GXn`L={?2|JgHQ0R{wfkPT=;+M)xqN@M0}_F3oTRv$AA z9)0`pXiOZL)99Mko8lcN4MRt{GuunbGbutx(AI-;dSalol+PPVVvabZ!Ha5z!sCuA zagt9tq*FXY_K;Eby#`Vb`r@5G>6xz}1Z3B?{?iEG*nS<80|QXm)Bc&a_*aMSJI@sp z-19M?84jkYE|q+b(P1n;wT*57w~NtZ01v{h>#}UJWX=rVEmcL^8V~M_R`gbbqohUW z1B~XApG;G!JBrxUN>S2-`qDFY9q9ncIRJIdGE~e=y^m^_82l<3m`53ZUIjE-D(O>i zYnYC47z9=IBLf{xLjrkmr~q!q=TDR~p+I)Ccl4%FFzPZmr;KK@&`lUE3zzcxudQ6S zxDqHb4UOn&HbX3*r8A72ig#|bfc`WRG_N@a6oHE8co@%7Qg)``eiRH)K|C5Mtg3PA zN}%^5fF0OUP-y-y!hjhW`AtY_7`h*=OWe=|7d;pK;ZuRhsAa*DF;guh1G`ds&@qZy zU?HS$&Xn}1W-XOS`D54GfGbW6_fHQ*OdQnRE|mvel=X}%?eE6d_Y+5JUN>FZVXFZl;t^ZY;7hp^&m=(##|xIFxW`Bl@osvDKkcB0ciy-6bvY&q%;V1CMXoN3^vh46bNvqQ$+-v&@oSH zQN=f!UbF~PN=Fowzl}*F4s%XgOmj*)RU(BHQf8Ml08@eDn@T!R1GB{d(`Xz}O@{+d zT8tiP;Ls*Mj%m5(moyU48Ys`_MF4>Gr2J?mkTnGkrsU(T8RC zp^Y~_w9wF}rA6jTEzPZ#p8>hluO$}tu&KuB7~y|XDbg@Vo!sSA79e-UdcVNm0ez0z z$Hw~OdAf|beLmA?%L?a-3H9{$p)Rc2jXrmCvG{r6uLXD`OHC`p8kUtGiS?^PYpeaL z{YlGmVhfxPya#OU?^ZqlSxKQ@c-z7M0BlR!JvQ}aw3%4H?wDt1d}9NQ^(|BQv*G^$ zg}iF_Kijsp_E+~TBsz_}KufrKpHHoMeV>D7_+K^0jr3m_$*yUdMcRF`#ua#)bSGvQ z?kaxp>IfZcSiWP@OO*PIM&dSX1&qEm@KAqv6DRj*l z7Bn9;vW3G==c_eQIF`4&7g7}sBQ$X_Qb;5C&u-P-XrBYV6kYi@$wy47zkY&BhS!*tBc4YMdna(?QPgy3h6O=@LhTS)z%{ue1AT1%-h85{Kn=T#GjKR0#8E0ys4wmPqi_04K*wE8{U>2Wfi z2g;?h{{VegA1;;gGe_3#>@2<|=(?TtZi;<|qdXg(Roi*_OrHT}I}6b%hlC+f1vt{Wj*hZF>G6 z4e1ixt+@L=xeE+wzy$jKC-trq!f&ehw(Cpr#P-^9Lbj6H$7dX@;mXLvcOxA^#UB!{ zb&XTNf-Or-lEI|Efn;dp+zM_S{(_4P>ih$vNvGJ&eWj=8JgNLfDaiYY0Am&C-?Wa2CY|E#Kg8%zS?cknq>+xRENTXRga!R;%_3ovI%1`s zZX%y7%cy!&*zr)KesuQEDp7@oxu_o`8j;OHNc`%NO=t%sueEl+1~s9f{8G~=mAtqv zt);Sd&mS=a5Bul};mOZ>Y}XRns$D>TeFLP3eF$Mxi=!tQBku=BMkv5=aZ$@}71UxI zfOZqt(yZzS{W3rlfuGK!8R^!BdgrsEgu2|}p*O14k+c{{MZDjud zo^9Pt7AIo9m#AB6_5$k3!BTMOda3Rz>;rwo0I1qrel>%v+CGzcH;QzKUSxs>`$m-t z5<7#V-*&gCAqLlFC12 zNgMi;T*btaLfa$+rg&l6wKd6&=Zrj8b+`d0wRS+qV<|t@s!Ph?^OMbb_;vfVaMfz! zhEvezia#2U%OmDof$vILm#74Kis>_GeJN3jU~!D}9+d3le56pUiL(@E)|Q)}T3*!m z9m0@xqnc60767C1q{zYcq|QchOm-BLyRQ`;(*Xp>83Hyxr8pi>7~-2aZ?R9vKf7)T z_Nkx3#cfZkei3B+B=B}I{{S8X{{TWYzpGzIrRkR!*8sA_r(|QRx1g?j;S4^1!k+~w zZH{a}QJ%b-x2RbU6l=P4(cQJRr-rXfPPpRb$mTzB(!PF5?Db>tmb7a*rIH5Iv;wmtz0x(E5re3mQ+<=sq0r{WOsAc>!vf$BQ$Z;g z-Y|g>bVUotwE*$Q6r=8g>(-mx@tOqBBK@XiU-(75JpgRW{io)A2bBK+;w!>(cM+VC zUbFj0Uo4&=wbK9~+B|X(_!L<`%vX`;3|qZSk3SOcGb6+dTI$L#N6kFrk=~)XB7J({ zpOFk|SL?-04^!T{X)O&PtrQf5iYWS3vc$+I8K5Zi=9e7NNCZ4pYmB_HKma*AkF{Dj z%}}#%KT(y=epSGx7cOIy#t&*koP$yxMKt4@V@$2Nt)~StRzuIVOvsMeldq_ulroiW z{plkn77^doR&`1=%rac>A|T}a)PAi(xYgRk4zs?MTAS9-6*JtXu!cN z4_x-As|Fk&!j;B4ie93UmUr!_vh@&`p z2I9lgs#s4nH;AQ+EBvHpmBPlmu5O@EdZ{L+9XO~IhPv|?l||c{oB{<11^g(;^~D>o zxjiZ-a@Ytn>U}AIuH&NeO)P7*w{>I12%CH7H2#!;LyU4c^{S3H-yq1_A16KP$v-L2 zYNZAxl2+#|aa4r09c1hT==>7pfcC3Bg;$k)sn&1c`=nKjVDrd5C@HHCrksXt&gC4a z{vlCaNRw%I5~hCc3i?pT9nGC5jXn&2aDOVeN!lv5o&wn0kM;rmD#1JoE_d&Di1WY0G%mmp!(8|XaQ)W6i@=@olG24ff%3#9qDPJ zoj{nhQc;{zu_Do$Ow!_*Tqyo@hJn_Cki6!cI#U7WmoxyUic!rsG@^kEnowz`iUPy) z%_ub;E^$CuetD$^nY)@$MFC;Pl8~M$v;~J|mYJF}#R1AGG=-_Tq~|`ggjt6Qn4khK~YankXOh4AtY$`9C7mV>&<PRDx_fbgy0K>fCF4L3GTvtV@OQpj;kaf5&%n{u4aS6mo*yGIq z0A{=MATEs%8yyBEL-&`rK9uR{snYd4r{Qmf{vc_d4_yPrcXqmVo)R>-mez9jP^ye< z?!AX|itlt^4e2^WYvtRE`PA+gSIV+YpROxhWEUjv2cgX{bQM<`iY0evCvy{@S~qe& zKn^rK^sFXKH**Th!0V)E)`*?ePf zF6ZPQb&p(R4mwtJPrL@+tgY7uwn=w6?7|+A(0r5P($#4 zG3{QDqx^30PO#7}wSRe{U(A~sCW*Y2W9Z-!k8_Iory(4$`U;8m`7YCiWa?FiT5bu6 zRDDmY^&2>s;+}=$nY9}T{4Hgny|>%txK$4!W7F_I&a5xS4~F(vrQ5}J?;uj7BvLZ| zVMzUJeFfLq=RmL zcpQ77;=KdKKN59Mh@S_gi&WC?p}*5F;hyUD2ne*9M7uyklk*MBk?o%N64kY3soft_ zT`3a)T;)_}-k^WHU9bgD8$HU$G$1q*#ICGQVn6!z&+1+&(JUCNUVXmdbN-89zH^d2 zg++}M(Aq>Y97YQo%hvS^izwuSOSXql*1V$d*}R(&k<)W?ip(+Vo+FAWE(+;7EbEbI z;HA+20CbJxQmkvnYu^^BjZgMa8ihIbr}Lj@av5N5l^o z$!UE45Ad!od|Pn}+%k|vaKXFgC5Lc9bA91I5^Jj>_^-tFlfvzm8en)B{*_Wc zgPtABGU__;By+n^Z|EvC8ZCa%`UC2J3ue37nY5`z*5x_aIA7N%@~@k19LoeOMhhTf zan~dN0Iy$8=zk9M8yz!Q(j~dnTGv>E?6OHE(>afx7-xN5~~sTF(1&? zkfbhpS0&&pl#j!DATAyYvp9u^VkUEg`PW_mVBq9!9qL)?Q+JBE!81ldTnr!1x%gz$ zyf3W_H+PEHUzP45+&)OAP&Y1n1I8S@cjzyF{dBS78bH~HSOz~*fbOb2V1NMt0I7v9x&@U#2#=t!IBBPh=xR8I-ytB^?Io>_f+)3=*<+PopVwj1~$bG8mU95A?MMrVB?6WR9#={?lOuiN*^*)L4CcPEE zz~2H{hj{f}O=PmMm3qe@k$^v-uSL^rKeIIGt)B+t0j?Z>9KXchjw{SRXYDHD=i%>% zHBDp7me$|QI!pv}1Bo0whw4Gadcg#?WILU?CcGJLdNI9(a>O1%IN9Lx#l3D7Ji#5XKa41Ut$FuyJ+oa$#tW3W_{-wSV$R%J zFFw}jKc#Z2*kVsO28XLWy1LY6Et&H!E^afCC<~8FfBLG|YNe!q$T}uGmS+4ptGz3# z8Y8843Q^X9M*@M0eQC70rk zvBoK+RUx6LkVj)pbuu7UCj+HC(hT#>GKR#(Mjxo@Q!Dns`qXR#V~i0-aoCyy#N2a( z)|ko(^fb-nAG%Iy;g9zT`c&AKtS=+b&=_Woz<&c%bLc4nAU!FQ^Aq6Uk+f2Sz~Iv) zUF_C5C^rPRLe1N`su$)osIoMtP?Z^0(4~k=Vzv zADpW;?3#N>qdc6B)G*173Bbo%a-hlMpIQV*gCWWJM`2Q`g&1Bl)|?0BMF1$^bjhZ% z#XGe|=M=z(;jt0*H5Hoqae?2iX=gt&C>bR4?NX@69<@a!Vmp=JZtK+j;69YL^LfaO zyo__6)hNh5wN4UXzGz7TIX-3j`ch#nO#w}8QmM!}7$TZ!5G@qFsH6fOpyw5tszBH~X;8vz7GmfJofvpSHj~tek?Gt4J1^hs%{=8N-ys2SuB7FUx;O;^{fxYWk9tR+T zGBMt{X0Sd=2bu}uicHWj z%_S!^cA#O+28GJmXM@EQf`Af~Qshz!09?^VD4+s?(uzA! zAykTeL=89^1~_Jefj~4+OB7<18fSW11z}ACts&x!@;RWS9qDuVQ*+G&pr8jI)|47f z^a=n|(~2`iB>*opw9sj20cfP+lu!cZflWO{8K4C;jhYFhKXgz6clM+QoX}~fy&_nS z`#~d|)N3jL48$ZU$zw|=EAsMvtEBi(;TU{zV68>R3@+Ct&qgToZMSu2>^ihd~G+s4>K5Vlfx_BdV5SH23!bsamz z8vW*?nzhZ<`L~My0Ls|%Tc8^OABm+Ep-uEX7mOY%I+Suw(m?m9&(efa4k#mzc<(^# z(ub8`jpk%7P#vlL=IxrHnBFh(PMhG(5p`{C%A}GAZ6ID=;#T{r2d4y+=~zA*itkNp ze-e0-2VWBSidDCG9!>GuM7xTr4%`JN+}A1KN$>S1lU}@%PZoILhzClzA{$*Pcj1~X z<7hYw$T>fqdkw{^Pj_!U)?}In-W9+h8y&wo9*Bpj&3saiQ%xUB*DYE(28VRl)5WwO zF$8P|J^8OZ@gKvl4S3&5w(&-vG}<1ksz>&jRyE#@D|OtxtK1jKncfMINfhA5=)-~y za2^b|xcgSSV=b~ht(L1Ty}y>g;yePNj@@c`*ql>7Tk&3(srWlqk4y1AxQgOv{OfsR zJCbPfKtA0M2C#0gRpWTp37EGWEq!z04Qo)<<<~B?D?4S9$549-=#f7CDdRl1fZ*q;^0a%74mF}jGCoQjX_wnUQGQLA*u>ibw-%vctV*n!*0 zUVlocE$wa@%4qsbvbT1!jFb9Ms*O=TH;&?anNv^D&)T&KKvW6ya!>THsO|4`KLY5` zd@s?guKZc5!~4s-U_7#++s)qO@%&0~3F8^-OFpmR+h2`ZWrm%l=`reQU{-0Nw@?w7 zj19nb>x%V<^5eg`niyh^;qa15u>kG|P0iHfwK+=Sl;*%_LA#y^gIP~pR^<>l^L%aUPxwnG##>l3WZdE6#Cdwga;g?o>m{gtJE*OZrj^h*xHLrIGWudI1!dDpLz&v<~|sB14sCG zVr}$cCHAFu;jc9bfHJ>M2OKY6KN3l-m59HM{Bdws&0n?KqP~9b`aEE+J+WK9KJnI# z@c#fz7dqweg7)PIw}2}#W9z^?3h|$Vy8i%p3u zAdF+_+MBx-&sad1>3}-Z(c@$Cx3@LG+Wb|~Z7(IV@!p$p;QP_{MjrAvA5>rQuD`>& z-iP9t%XnK_gH{XGL~RR?_zQq)EXz+)^8moFO7joe2g38~S{0v&^vhM2{{TnxUi{=K zdwrwkKD%&z@J)J*@Xc=~+n8Q9_Z_H(qs)saN$q7r6~qoQvPRr8k?2Ngpqx~Z@vXe# zXjW*?%HO3*WEdFhT_?qF3;zJZ9pj6LZJ|gsolrI9gh~GZEZ1=bKMWtk70ILg#B?<5 zc{M5W%EYe3wtG}eMo%;|aZ!`aF<5am4aq)3h3Z8-8f)^Tdea&{t@tvnKf&(<-c01J zyWTT5fB5*259MB_+1b0QxX3=Dywmo6RlE2L;p=_CIa{v2rs`Vmv^iV*K3f^iZ!EA+ z`-i0_dXd<$$L6N`jAt~bo_%R4mS=dH8SXS$X0wP*t65@OPH$Vu+6tw>Drz%wzx_S!4w2@Yi^ z-n;NOv$@5HwZ&U_LE%s5QV7s=TvL{m*PwH;n-@JP*gRn1QAz`^?C`@`%clV{^(4VCYRZue!qu!OpVR7`uCP!{+xw=C8V?xY$=A?{D!0sUlJq0V= zEDazIa&Sj#hW`M0wGlv#CDq#tXd_;%@4)_a_lyTQJB@GnCOB?>A$Ui4Kf2YeTn~RR zfAy;>t*A1fwbc59!8%iDUIp;hk0OPZ&rgU<2OvtrFaH3K6I(;2OLj@Sn6@w+f%qDZ zyiLzdEd=JMYx;WX`ZU%I<~{C>xPP+Q{*`~Rqtl8BEHGAGvGE!Ji^pOA0P3aFlpRvs z6P#{8rACE99!^QmN|MdhFX4Rgk_kPyp#-)*5p7CcV^-9)Ylqz>UotHzRFs9G+#HifiaqGoMY7zU%Pd_N61CdIoADO53r2><^06LJ-Mko-6p{7)ar8A18 zS_(fJ4Irj5*y+tYeQBSCC}G6}$djL5X*Q2aGBZn3Kw^=B+Hg6gp#5nSMxS(h4r$)J zQYYSF_|t&=C;^f#AH^R^X<Xx>JkrrXf{G}h z0*WZ02KA*JQV#UIeP|eFmXob50t!J(MF130MF13bqMP1;0ZtUrPM~3$P-!TjL%PvT zpc(*oT0$v7%_uYsMWyU1X$j2&3Q#Gu>P(T?q`;%K6s`hM-h)UwQ$s@cpdM&6(cYNJ zDEuj-iV2`VX{Lf{GBHR^h-sw!r1i&YRzEES24q~|9<&MSSDf5R@LJeLTKe)q3AiXw9c-5zBF^T!s66}HKAN7y71d>R{-x%&muJX^vI+u;E4Tr;BF6%-P@0t8ZtVNhsH8>&>hE`*djGmd} zxV}@qhyF7=? zc9Dpk>PlWc>pnd^^i8s{_xe}_}(dZv}( z?-A-2UMa9k&1MZc&8|#S?c6c_-7LYExSKs6Rn;wYI}7XU>x(#+)*~SeCB z`%i)y3#86-hB+torjjM;sm**Ln%Z3##dBEB*KteYONj)h{ix$O{cE-kKZp>0>w@qu zn-777rjrR}(Y!-!nw_oK`>Aw7gBShs6xVZn&0`GL8kvz{h9fIDUZ8q@Vxg@~RIW~# zb^$qWVbZyq?S5TK{dA8BpB|aG}5gU<}4e89JoL4b3mIY_^-ph8StNilfpJ0B8N%W zeAU#VxV&-Z+`2!Q*<;w?f&F=@v>%SX48GCrC)c%DY;}2yB-ZdNNUMe+PT&aTaC-N} zX?SYi!oL^1FQ@pk#6B0cmhns55pl~V#vt_SGCCfat3%;8fF+e#d@HA6x@|*>(Y4f@ zK8BUIk31E2U+n%X(nBBxmRp5FGxfz;PZW4=RV@#RbXfrE67di9tmODL;0?{62v9Eq5_)5-CD9@?f zzxQqIWOMp0O=;kthMHu|_8LBnlVhJPvT^y=-jybqZy`+@!Z;KR7Tea11g>CN{6V$U z2!lh>b+)^2^=AIb;fwP%q?bN9c|yLM;k67i=6#|}q55LC+Ig6K&cu3C2RXpQ9+fHT zK2yrIzl0tf)HOSw6Z}NgwJmb>$CmJ;`Bw4qfT*ei40ic|&m>i!0qL;lUIx?jYbfp_ zh8gCV365BXVn^s}d&fF~n)god{9uV4{?j`s`=NRR_02%?GdTiM!FUu&l#(p{rP|!V zIzc>LmS~mn`HJIpzlNR()}>pU-74bN_#FMB!sNw|_zx@j3hEkYqQlQLQ7?9p!irUr zDbTzwuAkmhkZKjs?Q@d0@UMzAID}pS@p+sp7HeM;e)2L8WpD}YS@L{HztC@{wD_0d zJBxV$0z2&zJ@)dqa&mb52|m@|Fa(SYt}sPQ9E@R-8A?fRMm&iWGPmGr@7z{vRC#~L zi!DFL-UHKoQ{fxidF1f)PS-H`gUnc)ZgM?F(rf3tX_jSI92Nlnb@bnfz82|Pv=_t<-P0v_t#6o->}@^{Q59 zC3n-qt3_f$Bu{fuLAv%C(n$0O=`y* zwAFR|Bp>`$eIcz`oma#6mII02Hu9MEe$+G5r0$6wb}?Ln2SPj3MQ8YSX1MU?oh0bX zG*SJQWh11K{HOE9Xda%znP_b(`=t9)P=4w9Qe_`H{?n3NP4P29wk*cREfy)lV}Rya zK_lM*Ys?rAH}S7k{iTb4!otyc`G2tDANdwa^0wfL^{{HtJo@k6C128t6pCL;>_!Yq zP-&yR8KlG`uvIxARVLIC+(&B@yo0G>fmUXTWEhxdK8Bwf6+o(hDCxyRY|#}E>JCqw z(4zV$H7D5NBpD04dz!F5n5D?{q>!D)s0ucy0CwV}#{<1IQsiQ-2!-?J*GKT+2l$QQ zu-M$Xg|iR)`YWA~pEK~Tm*G{rT>MC!T$hCoc1y{KRV9U<-3PRy=^pR{o^SC^ke@3>#r2_md0j_uH0(= zF1xn0jay37e8?^zAM((2t@J!rc7db8p=s@D2hDeMR(shq_oc@*qP>2UtVuLqck5i& z#Geq43HTdQ)`AC?21JcdLdk!GzRmEUL7ctDr*5nN0DQ>b`yr}A zpTc~>qz$$Zq3WRir$5%L+_(BHqt$8~P7nex+2)q@ztLs-QPlHWysk_KPo*iOJx9`( zx|YX65|{eYcA%V8jAX5~3m$@!6#+r@sIGo;unw>DepO|7Z1(Ly3VKo+7~pb1_o$4+ zI6zp?B2JVR_2Q#D*kpX8-hmr+XUO)ZfO%npbNEv?7U(HRMOHXD9Mh2J2h>v)#(>?$ zDEz7C9Mc%^IQ(e2X^6u;7%3jT>5b=s@&sd^^zuUh7;+C;CoegVbxgdwbS(r zg#I5c*_)5bnI+k_4fd;hh@?}3vc^{*ogrD4k6hy%Q(8cvmgz|a%was&c=nONEnMu^ zEj03}ash1PJX1v^&XhpJ z---$zFguD140Ru!H_B2le>zVtHREo6rmDel;fGzr6lG5VhI>*hQGxe6_B1dX#uFa& ztzj}V`^%Jd`D6%GpHWf>!VjJDYQ4!30V4yA!=+gza7H@x%`M5e0rPufgF#isdCe+z z_NQ_|#TE;Zlw1x-%>h&}Ae{Tt)DWXQ=7I9Nt}-duE(5P7ssg{;w!XmTtgsncj#&J{ z8AwtN1A0`+T?9S5kYHrFcBh-El*=-=L}yz|a;Tx~eBmT<76u4&z=i`Ji> zC?NptLF-5gNOF+VkDGo6}g`$%baX{=XEhQ8PZ+cNnMF1rf z8eY^4D58@z2wEu36ad;k8Yz2FF+P;;)RcQr0?|bj2q>nU(Lf9Ir3CuYEh*_h#my+i zHh@h6ABrivhvQ3{1TW)Grtyz@UeuZZVkrd;K=z>_p$R^;3MdrD0*>?=Kt^d2BU5w8 z{b@c0o=^g`HXSE+|@fm{`ckacuvk#eL&qeL)L(u7`LhkJ2J{Wv3 zySVT?Y2)V9?CjT3Yn0H-d2!u*qYohaz-J?<;=O()f(u)FJ6I#O)2-8NHn9vx81@uJ zYd!Elf>~r<22D$IWi5;(-pg%jnfvqHA_4iDdb842iXr(Be9Tml#waVa1sy$WCiBF; z8MH!fyiwuiE5jsuoDAds1G=zpzAE?@(Y7u2r+h%<*+&zAeKK59aBOmtI;~SoT~fkW zHwBw%Xxq`NL*eI*4zUUF?x(v?@hzfYK;v(n8vg(ic02=`^7(!?cs4ea!=-q}Ndo+# zt)SWuu0)l}{6P4v;r{> z00@qYZKvIa8(+k6$r_Jem2zqgGRNXo-N}!{m;Mok)a~3fu`rW^&n`WUG&XieXiyvy z{9}|Sy&7T`CH@9k7n^-imyB^ zYSI4y!ab!(j~goCt|kl1Gajl5U@!nZeJY}^$)3kMuXyjoo+Q(>D0N6JH0ym5HEUSx zfnDwt0L_wn4ujUJ>fSH$KCxnuYF;7KUfUV+7C@>G;6I&W$Yd;Cm=eQo-%3dcSe)l1 zR_+MF%-FT@cZ@bFN8;UcWMC>s_NLkZ=rLQCe--?D4xw%vST{ae5r za7fP;8pva~^A`oj88mVsDZ8Iie$6+}seCK@O~Qnc^(n(3>5@Ss^)>0&LF0+yNepBU zl&|pD%fAJ_Ea{&Q^h4qQ01?|=%V}{u*GqA05OWzg>NC@Vco`M+mW8Tm{v^}Jqv6d$ z-&3=fqemdh`!MWy=y|Lq9ZrR|hH%ieE0~?{d{wPPjDA(MF{a4GtuhjOoTF55=ZEYI$AyHh4Pkj6I} zx``66?qWpG_eDD7ny=0zHia#3RwZDq~7t?PewbNHn@jc;P%@>EFTg6ZJ zm=Hf)(WqOo-6FG+BEj4DvUpnI{6q0?z+M}EVyR1uzgkz8h= z-x2;QTij{sWozKi3f)h(PqieF>Jvm5af9pZ06dJ5*UmmLXdWK$Ua6({Q^T+snJm83 zb9pHbBR`tTHy+32JPdZNAr#o8+AHZl7JOx=>-xsE92#ZJx`eD^hfs~1$&8)=+E=gx zudQjX#;*{#15xnihygski%A<``!g`FIc=>ea7lB?CV&Fubtk=S>7yQbBiSr|D)BmrMIf>7r?)eTcmw!DLL zMizYi^%y3zbjGV6XTf7Mv6*bZxPKfzujmRK!sZ!}A&)E_Te@}NmS-EHJoYi$U+j7ep4 zWp@@cn`?xVKar^AXxc6;@Slo52&b}^<6H18s>`RaGF<6uertSnG3ToF`d5o3z@0;; zaD97M+qUx?OVpYdD=6cU!5)UbSNOT%3H%r0xrnxoEfZ3ar?hDKSjp=jwmT0>q}$x& zuSIT-JRg6pHbOR>(ULgEGf~_Tu#WW3M2}1Tn>E{g8{(S7cH2`_fozxEnnb|-#eIa? z-a+GQWAd+pz8xI=Oz>NS&-T@tejajH-uDU?dAD#2lS`r9Lt~Y*x@!*}>o%H&z>3QB zMA~XM-I8LzI3DDITh6Sx5)H08ioo&Bh`iCQwK!vG^&Jj>x7xzhKJJzO|s0~|2 zu+;bsbqdKMXZ>7+e9C@@G|d*|^f5ad*A$(yDH!~X^fVeDJ$};6-|(??F`f>CAO4M# z{6%?l9!C}FpR~LG0L9AC)3DGYKlvI;^4aBR{aKn zNp&U-!bT7KBE1{nc3a}z^5gzlS)ZmQhO@5y!O~ivPh6>Mxm89&$Vcl{!82VJMgll^ z!0c(BBfW=8itL#fDQiueOJ-Zk+r>BfnO^A)ECQr z@tSK+0Mj(liuC|-O}k;_N%Wy^d9d8K z8Ok9Zl=_O?k0LYQZAo2AW2ie)AFcrJOYPpP-ZA?-h0g4D?NS3Q{{VS2+&REPPz|PuwE&$p#k7`gi&Tun<)|m6f0L{#T zHTrUBxGl%NMmWtWCjgbg`kG5}tx#mbKa(L5L9J$g57 zE5kP?H8^P}b%+o9?5%WqZ^8Y3;x>J6ShUjB5Bj)Q&u`Fy`q!~4u|W_eR1N?%)x#aC z3Hh)9?@Hj0J&WM(kWrd{66&&Ga;pL+f1PS+-wOOGZEq1v8MP-TlW^^y{B(-ywe3Sp z@a$h|@g3}Ti60FLI=t==_hZgU=CSPM@sEv6qruiIpmPiKE&G=y=C| z^qi6}*|tfoXg>@*Eo&QiyTjUKA^!l??UqpNeu`>^jpm1T5>JPJ2!^Y4hbeU=tRPeC zm;V3}UEhU%8u(|!6H7WZ_P=uD<~qEKG-`cSc8|>D``28O7@{cvTXAn{D26#*}cwW&{vqdC`N8%V#$?&_t41zWAwVEIp z$aypQ?$7I8hE6Fu_NC1(;q0N<;U@Sq@b+X>{=;}!9$q=*$^6*XWWNG@5M-3aKCc3w zx~U-kpx39;6P$ZhDM@t~v4iM&A@~L1rVZt5`t7^+C(Cj9V!7Q<;10PPm(exLOZdt8 zR^@z_{WD(s*R4Al9V)%7kiM@5e7SS*W8z#gw%-fKaTw_FY7k)kGT{D|m#BO-_<>~^ zdyfWR1yPn{l_cZ-0!@8vpeZFw20nz-)<+`-Ne(-1HA=fPcvO5hbtCEWm~}gOtfw7g zoeG+TukGDN*^r$2*WCu*+Erw^vb4Aj{{TJUSN>wT&0pcygEhEHYJMECL!9}xafl@R z*B-T^uYJs=gzS88eJjgih7=4HvT7lyA}5(C=lg@LeL->iKX@8;A7#7Otm6kIQsoH$ z0LPHmnRvh9X!w8eGsBm*B27obEq!RhONI>Fyu}QUfCpdFpR`>F_6=@j_(K3pL9@Q$ zkBvM~65=g2biFi;o150yNdEw3Pbar;#=3jIfLy`^HhL00bgos{u%J^i0zgge?iml6!nxu5@G)U102_u_?z~7(j|n=;B8)e9Y8Su z07um(-2)8s^C}h`eQQ|NT})+%Yh&k^A852W`6P_xed|ib^)AsDV2#vZjQ#I=={#@n z=f$24y|#U0O^Z;mkqdpNM~+FNTz`0#7(ZNB1#@?99WL!;!>PxXM`|T$9J8eQoha%@ zN>VrnH5_tzu_USn8FFz_@qt)9&Ni&X9ccBX??p5LNs3x17?`D`Jt!0aw3wx$feH1c zr0YvS1r$aWGywO0QRva4?p@*$7^yYy;Sdx;P_|cjGaqCD8 zB^jUvKbQt!ujY!{ z-KU%eR39P})YrUx67VIDhcvl7Z{s$JWiZEcZzSrGYw^!W(XXel@Xn7d_M;PQY3>+#B#yWP zllltA_@(h?{{UT@eGkD`vP0qc$xE$BXMNKX{3P-h>DRBOe8DZ^wt-OqW+yw_?>E%e zv8LXqZ0e}Lbl34;kGyH)Y(=bULe9l{TG=m>r|XVS;!SdpXjXwd$;^+>Ah-Bd%W}iz zCmxi^<93f}jnzr+D^(PXJ*1hKnpK-jS|}8tJPF3X+({g&fPO8;eY2lxudOZig>xJl_K$g{H}|Fa)czu-=+UV(Mi+)5i1it% zVZcX1PRSIb4D|+}f@tnTwYNnBuk7gOqQPrZ+=sNWYyJ1 zevKH-W|K5Yo~p@pb@H9S58`eGa2_}KpP_hG;q=`lhPUF$$buUiOh1<)`=&$uBP4tK zcdTnYFUI~UY3@EHYHy`zlJGn|Vq@O_0Nvj*eAv$Y9>kKNoej@fN5K$gM49DFk41jun3(6n$%({idQp zKZ6?D);mZ*mfd4Pj4B1%Gx*oGm{Vd2UoNL3-n_H+nX~&xhWssg(e3Xg4fHBM!ln~$ zb}qFg8h7e=DPX{>fR3jkn=mHYM#cagY4f76EHk?p6%35x!Q*anIK_G$4>6+5KkDKw zz}hoWumQ^x@@9yftPx~q<>^sjnnF+AJprk>(mfO46|{Gs74+3*N3#}}LU^2R5-E&~ zVEt>;wZDUZ4z+n_X!KkCHda4=&gWu}qPFE9m2ls)y@78S-D*3+#c6FU48E?x2>l7K zcqDfpt#QI5i@YGEb#Uq}nu%D6WHA@+%=N z{p8GTwD`@$tmivbd9RQ)JN4B(L$2zvt1McL{P!^e+1nerWnaTJ@4p{)pX|Se8ikF# z(TmMpk^vrmVu68U`Eg%4SV_9k2F6l=E)TVIVdJIQ!HS=~WLjPqf_e3%I2h*?4t=QF zTa*R4#{#+%IV8lv!8phj6zauQ(0~EyQQY5K*?-5}fl2-W_rEIWJUQTh8u-S}8;=fn zdS9?i;4SRaMv52v*kTXA8PB~9q)cHc9OUsG-ePdTXB9jKM~oNGJxzN&-?PMzZ6Y_1 zH{Ynn#M45cVcR?Yy#AHPU3?h$i={7@ZKg-8!puTRZ*vmu1G(Hm=QSSDJq;ZRElx6M zW4LXyqB{Qowlhr9(k&lbu+=O9x1QQf#gT~r06ppY;$QfCP+dF3x?R?jeb;Q`D#O$f z)O|SjsLLau@}x-vo~mDQ(!t$6fbik}PaZ8X^COKXH_yt}MviN}zMvmqw^frtwvO7u@GaUHM-R9IyY&^6v^R&pqdqC}ZXuFed(~*K zAR%RrL4u_7Ri$HtkUu*1FWPrXiqFQHRi-`$WJGLO&|}4cY z+Gy`Q^J-&eiORYu`G!5HayF2Aid{y0KsrLQ)Wl5$8muS)%; zqL6%2(B|^k#B>N#cfXw}{-V6nY-E9+wd&zDf#=uwg*ne{xb&nlN01pn_cZ);`cOtj z89^UP>g6(f2m&6;!klAHF&h3=7>z;sMm?#@7#_S)%7h_;GoOn-9>80)&#&&>CC zI0trcs5Y-ZKtC$_+v482Cx?C$_?u9+m&>^^3uxJTgChjv{`&nZ;@dDIv57}qWd1+? zy1s`sd1y?$N>{L^&w{0KoYJZN;Xb020@8)<22CjH&RDHUty|;^j9_A?$GugH?~zsk zu9I;cf{gpq8yg7DL(;d*#1X)zugx-gXBN;lf<6XP}FliTXAmW*DS8);%<$=5M zuEXKK!~5?W%=a3V#QH{q8t(Iati8bWOyjSwPpwVMO6Nb}%`W%E+WZZ|@WYr;A&hpaDrL#X(7L>hcH zx1z)rouqAsBxB1H)aJLRn%_^hH=2dyHkLetET;m2y&aLPF7-?GSR=cTl^cmIg;n?T z73W&_h_A0T%WGc;Ttj(v8|}Hg#^jAUH$D2)&}tgLjnX(Y*yqvwEU&)e^Ef(+58xTW z3&H&BqLSL$(?-6w(k$V!Qn`&`P%(;SqI(!x&ICyuPjXlHlacq2wOJds@Oi415)-Fe zNJwL_2G6Z$_^ZTvXN7dM)OBfgOyrw;ML#_F>yJUm=chE8FMA_yX=At3u5a${A+)l! z1J1dfwxVR<4Emgm3gL9$6ZnhAH}dHJ01d5;rJQVj)vjDe@~U^hBLMTj>V3M_$ANq? zuK4OT@dw0tCx^r0aXz2n-V!U1m*sZHB}RLUl07&+vuz!B;U*b(a&%a>1@- zX&7=ccoi7WIbFV#8s}}j&b0*{g=4tnk|}o*#PO0TfYRoXq92k@O&t1DGHF4e7_?DE zD+p0bno22*D58o0P-%A>Z5f~k?ri5HpK4Jf4^PUY%{29-1m0s7$sqQoG>z&y)MV3J zG{tgK<&Ruqv3y+(#qWpbOIJ|vx?Ct_2bkC}{#B|oM*t8<%0|*Yv@HSZXZTZBlV0$a zm#obgM!Z)z2ccFY`c|2dh#QC`R~z7|E;R2Pc(=k*k1t8Gf*ZXlO5ian8cnCaFWaSc zp@R(IgVw2uNLeQk#Vo9bK%?%c=A?#iGANx;g_L9xI#W@MZW%}o@6CDN#C>bTzYn!r zEqhFgePhDYhdPy$50(Nt6>h87BexjuL{-G)WpmNhix4t6>?sRj3m_&;^sHY9c$Y`< zrk{0r;VaL!eVixSA@bcC0>dC3z;5Vy85~x_J7hL?xEUbO(A2JCc>BaU*M>YKb$to< z$!~KIxQAx{0Not!I6iKGPZ;_Kg>8tbhL zKWmQO@fJufRHWOw5W^qVyzk*G+NO`GYCjLWPM1%AW4h->xVb7r*dYj^S$O^&) zxVB>}b9=|nnzx6w9|(AdQSipB%l5l69ycF$NZ4dB{KxqfS}7TrtAGIS>t9iPMDPxe z90(GZ$riyUsKncwPl;V@M048Xo6i@@Gr2J^b0v3u&P$&T?_n?Y9 zb)W^Lpi+*M0GXpSw1$AVQc?UuiUQ%@lu}SA3yOMDQO!DlxZKi?^pvaKfEJTDpwZaS z0xT6#oF<4f$5b#!rfK_^wI(8{uCr4G4bgP`NA1GCAQ- zO}ItroaVCpe>wPH;5&Z==@&NlJ|)-G$>IrOmwQCphRBy4GnP~8266LL-WB*6;*D2H z)5f!@X<8PN@rf8ltk*85)o=kPC%@raXtzB|aB4iUJjUks%S*L3CSfdboTyQppTfGo z3U~v@9w~|ojXObGYZnBi-SmPa$F2#<`~`g#;lGET4e+dSP2v3(HoA)euI`x2BcJbK zvKR0Gdsk0$H1{|+61#$Pf_SKve#Yw$ea{op{s8VlCyIPqaIzoyVWq+VU-%h6(ze&& zUxH$ACDc4ucAW}Ic^F^PFn?O~(-~DKBA5<4n#I(UHjN0QJHfsk(tH`CzMJ8gWrE&E zXO>Bybc|0xPZh5u?H~(qklaRiWS%8;KY^(8!KUXm7kirWq^xk7{{X??1Netin)Y}# zJuZ2UU394lpt3ru6zR)(3w0P;!C-uQIxaPm2l_#yT$ZVT!>rgBU+MGlExhZwSbjC<-VN|M@IS;W*t84C&xUndV{(?V z5@d!&AZ;I+=lm;QYjtxaK}Jf)qb%|%;mOAxDmIo@K&=Uw3DxettX;^X0d zxDGIgAL)WBsk=zVwyk6o8$; z=A4+p^vyT^T7}0nkXZMB*|O0j@OHVV{{R`*WQRV&7?1U@RXtBN=by7|4Ijc;U;chI zi-`x&Dlh)ZYtWzX9M=t3?;ge(T9}#iq~|nHYco(CYQ>UyvxH&*87xWQDC%mpaX%V- zRy-x}{%<6e)U~fN%GrlhUAT7qGCw+LUD%3}U?(@n?-Lr1ImBOVS=o8&bdW z(+%@Ko;}fJ)U@lHJtM>Zf0O3k z?^$O60?itQJBL1?6Oo<{J8qz?c`EfMbBUi-jc#L#7~bY{j6)bCu{G;H3-~jt>sDXd zJ~O?%&>(UQ7FJ<==U-MN{J%m!0bb+bPYq~(4zpW73fZg?gbOV0H%U8xc#~JIa`J~_ zN$;A%bzeiSo*8b=L&3icydU7px4hDAE_EyB99-(fC20Qu-2p%!TxZ_9S*~ZAH4gX# zfT%Ws_zHk=^K}QcDBIKnn!(ObbEY)o5=C}iGn3TNWspYbqz&Ek(xdOw6o;)%*=;Kg z)S$N2tya%hu(QF%fAWT>UvhN2IwG?WqWpS?)2O< z{`LonCc&kg+{1vIbkK*k-TgxKlXJ4Hp9;!zN`HxEV zFN5C`9qw$rFRKXN!^&7~Zy4Z$I1BjXSG;Q4b%wd8jX%Vea9?Ter3U!JG+7^cPhu+ej>W#H6(IWr6@b2=`V<06JHs4M)$*) zIk&mB&BQY@AmfVL{oSQXFJ|IzoMO$4XXGq^n>R;+lHUcHGIA!?sg+&rb0$xVg8xw1MDzcupgm zJsG|Et$$uJzVv|Nl}O0Rz|SUtJj3>n(4*8o9UX4nBszwZGyt-7Fqhg!JwAN?74w?P zlLV4B43Ee)_W`uGzqh%v)E9k~!t8j+``p*VzuA{s73JQEsw8WFr%B~Mmd6AhLG9~Z z*eaUxoR#BkOC9=A%{XVc#UcFb(!JTr*pz0F&?$&_dQt{Bq@%S1xZX3;mo$g1cdE>6>0LTWt=k{Xo{LpB6mx?BQ zMXVyhZn*v!rFA6!BDpb=_iSxNYI@=70Q;&oiUmEv3_}o2Fn(3!GqgKzdo8u0xKC$sz z#8S_dODoy*_=a*7Bb9*urnzyDM&b!Q4O`IRuJy2BDeL%C?GEd<H#3k& z-4s*Y&IpnIRworI5J#Y=6$Eq5006x!s>b%vie?eSNjS%PjtL4z)4l>@aLq@m?IPGQ zAxR;tOT)S)=Zf`3)9qi$)1v&Kam7PmqjPKF?||m1S^Tmlz+y6@U8Gou*mErRcUAU9#=Bwuw{_KJf#VKU`Im zZLS!&R0EPvK}yD`;`}e-D{TwmYw8k8Ce<}-=9!~&@_?rqKkyJK`W>#J<0$O)j}+S5 z4H7VZ$!5JJKi*|ON=-Y%8eXfZuBRMRT6khLA{{PK`^jbv%$e+_yGf)EDV2a##uXHB zw8*gDKFpCup(2c8IMi)a9)MFAmQXXa5ra}UQn3jA3>RR#hc!4XMMK+|!yyo<(_|b1&WF z0eyuxaLK?K^`y@k?0QmHHIDe`tUQy(Nk3XMnnOrB&<2!?DWzLej792Akq706Fm{g2kbW_->$VZ$|aN85OnR&1&1l8adVU z;~9^6j(E`j0I6}@$^~Q7b z&1jX;64O(=U8Lm(@TZgMRdszH)5P8%)jT_Wbv#y@nyhUkSlom#AdKf zzO|stWYVsAUO{9%(ZKtpbHS@@<9ZF-T%VSNxmc1?N0s<*!h^&XR}m&yL|jK6aF;gQvhkk1 zw`219P2i6f#o{9-o2gn{Sa_38K$FB*3vd^MDh|6(uf25%Ft(6Mk2L3zj@6pcmeP_l z{4e4Nyj!8#_>WJ5I4rJ1Dk(gNQ-=LPtS^cF1&_ztD$Dkdv-p!w4K1y}U-jw+e5Up% z7^diQS$JE;@8F|vGHJJPKBcEjqxWd++{91UKTbVsuv{dIlp<9*7^dE$lvLx&&y6E# zOp?KO3AenrZIeX91zYJ)$>4Xc>*KeOelF_?94eD}P&}Ik0VXkA8)wYx)3sAP3en`K z(IDi}>qxyl>1kZcsL`5rC*wsj#iO-1G^3>eB|4Ii#()mAw9(d20CCoobj36udQigxmB}4NH+31J;5vNv$F zeW=YB1RPOFNTVQkqT>{GqcoWww56!H2591&pL$YyPy+FfdP-?N^aJlqLeWT1y#V`) zR||{vqt_IKj1Ke?Iqk(49hw<3yC_)5Rwu1?p9J&>wSO1tTK=Ic#i#gU&|jqFe(cQ~ z2N^vvg>3yRj(x^3K+2xGM>Xib4wm=D-WJk41L4-VwXw3flH!Gp%WGS_@{;uzU1Uj9k#2SF^1#j-!yP*)Z2``w6VC9p6F z_NGN^XJcV)VWmQ_>9%Mif;AYzjxv4trOzWBG18)P=4ZDEa-rqUK2wicadtS|aw#`8S|XZ#x=SFJ3{m=la8EV9&70-b{{G@VMr}) z&_!YN{_tatIjEgZW>pGG2te!y z2NZ?a_u`mn6$e2eK9mzpS_!5h!>u7a(?Ot~XcfiJuS#9S4k?s|m4f7j&U&6IwymY< z{vpz?G+liRx^344WBpr?y2I&H4|;NpoF0UCr+W%ZnOUDO_*YET{t*0JveUJhe5*;& z&aMtpXv(lt_27@KcR#g#rM=FH;N5!GLh#Exu@mdLRFC}t*G=)m!XNOIcp`h-Xr;LE z7LbALiVTw$@Lh4=01`hg_2wQS)z`&;vkso&{M-E(SVMHV+|i>fil^8e!}6|#`H|<; zhc1lrYyj9DE1>vufBl#7AHz4GWnjEgN4G=#&2!*}j4}~{SNuOT7P{`2b9_qLt-|?? zKZI71k8_GA+q#d5d^Klz40l@PrK`?@RaxWM2~<$}VD25a4#ZP85D3Oe?NsNmcWD00cPs)ifSa(jLGQd(XDO2NP10_3=y_=^q;{Q` z*>QqtGSWIJ*^0+FJj2je%ipw2acRFAC76*KYPxI}Irkfr{{U&4`b$LAwC@lHI$YCr z!^JFSHdFZ5%ikP)L#BAg;@6v{?YXeibmX%Vj#Zd5F(c{b5%^ZPXDH1yWme5t<->*< z4jb{O9Ot0}6+&BUc91GOu}C=~DpwLN){bc$9x&#;wECPa76W_HRmT~p`%oZGdaf3;pQ&2U+uNaWI_Mpi*P()FY zp6yd`xnO4=)Yf%hyub>8mos6BUOEF#Di$)t2R`&%WozjqDn7^q+{+?E5cOs_752A< zd@g(~;cYv^)TPR7{{V!7`tZ-LYPQz$6Sg~P0st$_#m@4v)k-#3MT@O-LA1R4E#HWAsBVwjv{(Rdw9j^hwu5I8mp_#*I-^h)$4Jz(vmz$f*NadB!sbVu)){#MG0$JNz z+QvF85h?-sR~gfGQ;S@(k_VA&b-WIRte9r4==X3u+3>fEUVD!hc&1yG+bo*B)5tv-$aDJUvSVzZ^&D462$OE`G=^c7Wt1IsrpdL%HPGi6hUf4 zVrUve-?cfp$2c^Y+CFiB21zy0*`>-lgf|yb*;?8mY3?NQ&<^DB{Y8BNrf6{ZM$bp^ z#3vV$zuGTA{xUoM8LnsGW`hmvy2iPG32(DBR`vzg_}@E<{zLPwt4^5ezB#(TY_PG3 z?HS3>&&5e=YaJVs3w*(&&mPr6_E-kXc`)rU7?0aMYShfI#9mb@gSj=3ElBZ|lSttC zw$A(yyMfYzlQs!C1C67A1sr-)dWu}q0ZBV{^(K{7nn4l*Um2#R;@}|5G1|H8O=0U( zTa1U>!yC*-%c{wz1*1t~iqif!1{)9f#NNvvAMWgg7}(qSe2(+(!b z{IXi~Rl*=u#>E>|eFtiq$ix8bL=iQALMfrH)31K`Qke5&htLgGomp#6FbCX!A{T zMb&;A>zBSE@D`qLd@p_!>l!p;=C&)(nHcotx^(I3j{8Q`?6sXD*H+S`7ZwwN_lM0B ze|5dZU5Vb^%*^D6JwLtmuQSyae}}&nzqJvz_&3D(TdZV5XD9=b2LmJz%+a};k0IT7 zr${~{@Q$~jtg9KnwkZ?1$VUVae@cVG65SsR+1Tq47;ZGBO+8M3*Cc8Hf5#QEE>(yC zl>P@(!voNYuRO**V%o{T-}YlL1oh|t0Ix`TUgsV0Cr`iA^=nTY=nnq?Z?jl*`>SqxNuuo#I2q*9x4!N}?Q*D3J3Q5u(l z;6))@Nto%5nft98kMR_4D_NVm)ZRv$3mkKC5{!=JzxvgpUPYNR##jo@)$Gopr+FZe zB1*F^KiTH2cz)qEjV{XmH_A(s*U%e?BOh8k#s2W8sO-mLm$gUcC#a?K7d#R9(Wr;!{jjQ+Lt=Yn)u{43yH7sIl;7qy7J)2IBjm6*B7?gs1%;XVd@ zJhae!H3q$|=|Fgr_5Axsn4Q+Jk@AqIqaJ#U;=M?n*~uiHzV#E8v`4RoqM)wD2P!D< zLB=uA3PDhg#>W~v(q@2pq$WGHCp2c06b%c_0McfYy#u)Z)B{b=6uF=Wj(-|_FSbOG z5&Nde2fas=K<~#|1k61W6w!Q7cc&II{{U^tE~61Y^2{y)THgnZ4l4u4D?EN2mr&Et zole}MK)`*~XB)py1P{IMRJF}R`y<2Jrlh0`h#-Hnss1^3@CW5og7!S~#M(RjM)<(` zHPmRn7VvC|Ez2=1E}lh3C`V38mB%~->t3ZKp^_+~Na44IL~z3jgh{*%wU8<5QDb3K1;Q4+{c{c@%61Kmu;N6P*qT{2kBJf2pZG^TXC!B<_@Ii zDpwx4uE?vS%#Qay+VC@P_-)|LxGZ!#JRe*_wYr6xK7cZgYt23n_>)Yt_!Z$TOJCJ( zty165wP%)9U%MoMSDxWQaqnGDo8tX9Sn%!Mr{U>8wY;f(otDHL9>3Inb%d3*I-{$y zItCbAHV%2EM<^7=N|o*_h8{H5#IdXVJMk2wyT>GW{b?8C1@g4NY4~^In4?zOT$u1b zU-6}K+!^R@1>!xW(*Yd7u2f)*`~EfXPlz;4Z^0fQxzMGO87GNV&fZ23HTE<=5WFWP zyG^O;QRvMRgfQR8s`>hUb@Pwy9NK)}7TZwKFKut_FZB3k^KE5URU_oaLB~W>{{RB5 zDNWqUYRKUeTeyyL*Om(I1~(zaN;QaGQ!u<>w{uycr3C!pf$AyS(ZZ~Y$Tirj$sEll zZ!N{MDa7&T9Wzo$c!a`1EO|b)&VZ$#-k3crMTzn!km%SrS0#BAiMc|S zQUiRiM4%Rz0CptTGd0c2 zu+7Y;@ug`bWeW00H$GZd=PJ*^HBnfzdf8v*p(@2{!f)$~numQ5!OHqavWX zc_oO)3}uPq0QIb8UR?(m>U|^oE@<~L>3Z*sF5%f8r;9ihPw=naKTLo>3ihBzLaqgK z8m6HafUGS%IimO{#2T%=q-sOy>zK(SoSgdSwPoFEem>RX^R$Vrd?tsbwyS8e%A@K5 z>+UOtbG)w3*i)0)9q_{va7i8UN)+InAIiMZYBtx%zym$Vr|Cr-Q;j0QIm;aS3i7Emzl=|7ES8@W^hq8t zGP3FMM!fpBl7E-wRlW@TRn;#q^+@D8!;uAvl4#4{c3gEgKk)i z;EYz*(85I`>;XB+tNKA6Ly|e&P)%;WXpML{$*US#mA5&^-lUb82)5*L#Xi>8`%d=D zPZAY-xt1V(Gf}@FS9|bVMNLCmyVfq^SGUu#_J4VQ`q`%0NnG{oOL(kpG|NbcDQqHg zsxg;PIsGe+_+2zt8h?v!W>!NkwJU*+g95t=c_u_7HJy2~B^Gv3BvM~LnB@jCM^jAE zDKT z#~3(KpHF_&whh>Ln^tQ}n-31@@SBeiYZ85*WM}5Hh~spuJ764)!M+PUXD=#JVn^t%^~U>=m2rT!k2n5M<^9+aHsica(h zbtp8Qs1yQ2sKo-7f`W=Dph9Ab38XX(T1r}JqT*uqq$ZBk*6b({s@WuWr+4P6O_7#T zLk^VK?yv`$$I^k9sVRuTfGTn++o%|{gpu^6%{29(O#tBMtv2omFZ9d3Gf;{-^!vrx zG*S$V9{&JZbse$RlF*i}a$XtKhL2_9Z5Ldd$&W%2y@bx+>#do11Kbgh#6$dnJ5SPWj2cyxHnC#|VC4QZ zH*$GPmhwC|P|uH*93QSL&%7CIJUQ_f#2yuPW*U@}Yw$Osvu)e@AIiJ)oB^DSS0C{^ zOud@M!^B=6i#{OIonzd;dP`E-arkrj(?XK!cJ>8)@XiR0RFj{jb3X{=jeZ^J_P;Q? zv5I4Ij4(hf*v)C$>K3}Sg^sVL$X?RvLoPi>-XET8AH%UcUl_c76q2k~Q|XrC2nVT% z7C8Eo`O`q<*z=Ey@e7{?Y7?U=@&RS`>&*sM$>)!)Z3{bWaTn`DT3fKei~;qf%pB;%^PeNQ`qQ_*;&YE| z*1)l~$o<*;>Bh>~ll!mMj$v~n98VzcpRF&R=e|Cbsw}OBeoxkvS=)p6Gx*WC`H_%h zC%$Ps!aL%&e#>wF06d51N7*gE=aBsBt}bL_8C%wu&LfQ0!LzqG{oX$sLuqb*<(T~G zTvtX%nooY7^qy;A@_#zm7O(<;b~*Q>?63fF82sqC?u>6W{ZHpdn)R{vSU=~Or54ct z0B}>dT*mWT(u&*rEx-3aS}3?&lR2V+LC$JyO@$m$NITGRKv*+HEhlWy76V8rXy$;h z6H7>Vr4$8#o@u<$deVbHSO#(0gG-u5&w2?HwH@gN98fXBj?@mng&n@NB(gaHAO$#L zYj@$NhGp@$jUv-iY11^)m$&lchE;GpzsEnJ^sE_@=6AQW)6hwObt>Dyo~*|i{cGxf zhn^Ud!2Soa@cgsePkOBKUP}o3%*;q#-AEa#R!Zl73XimW%;_)Z`$g=Ms;~s{p2M)H zGC%tDB!}c1NXL4J{*{!EX56|8O)WN@y(kzO7p(`SAnQO6qcq&mIq5vM;%$D{ z88B*B5R>b+LO-QI4+gpqiI#7td`s~h6DU@=yPEbe58g+Wuxp>_27C0cN)2+O#;K&3 zkYIcBUZ49r=>Gs~@rJ3cNyIu_UuIGL=ahB)05#>&5~|GP1x`;j^iRN@65~nmebx2a z1RBh--dm__{^%|NKAGmTuI&?SJUOI#B5(yPopVYlAD)%xo~vYSfB|luE0EWkKM;8O z*Ta+VM9>j6DV!c9^A`aK{6%(A%@whGo3IQpqe#Q(KmAqAcoNEZv?w)AW;Oo+goja# zeX>AuN+~-RKEoAjVjI-x_hoUDv!ahmUO1#3SAmZ7xg6A#6rIH`X{R0f&;qC=(7=O= zmfr_C>r9*P8g>(8V4qquMrkrA0ZFE{Eg_~b2bvE`L7dW_lmMcgOdV-{lnIUMIoT%WT#JRyna$ndF@c?w$fQO z#4`*?qy`^`f2gUSgU?FzA+h93;$wr#)==2J&BItEhEZ%>`C*Sz7x1rr{g`LRgM49O z3hh`m2&E0^9Ah8&;I9H)1j~ByUgi5Pu>Q*UfWEJ0e^>ti8qUAKZ-#H2_BLk7K4X$S z=<^)#U9r1&C#^U7nmdZ%zK5@ENH1)3>!>9=?FHc-H^ch2 zm#p}HHn-F6VGzr1k>Mh7>FjbpD*7WMX%c+MPfE-2R*e?Dpj>J5gdwm{FzJe_bsSlR zYHDiBbK}KK;iK*|^`&e!6_*4awb%Sc@P)^Pbrrjf&}i3kh^_M9GQQlEBex*eCnn}% z7=w!R6q8p+mr@Q6%mVX}K>E_0j@hWy)SNjZ(~6KYDFZYTh-F|SbAm84PKlMGi2A6d zlM`fqm zPL}dW9#1ku@_?f}{#BhLtSDq)SP$X#HSFI7{0i`Rn&tdKY?9qAnRmC|F$yybaypaV zv#UN-Z9lJZM&eW=NFFRp;|5#&4t7$2T9SB`SqiE?|fsV*dGrZPSQ5zuxO zAI-_*6~n%#ud=X!ap_CO4-_0wJ*fek;|uYl{5=H;PHu?Ek@xea4SJVFh9CZY=_&MSzx0RaiTWAntukQmN&>H!KgXJRQXpaN( zuBr#0iIwGKHBa6L0I9(MbfI?0trG%y&S(H~$TD2ylS2HiTNvWHS~$q8vn|Y%I3N|; zD&$D9p##@76|PnwufY{ycOZ^A@pm?tcsHBh&sL=;AU~Yo%+cbKi4u z`eM9h4JT06V%up3$mAw5EXQJ#^)>V!n{M#w+EuR5uWM@@GGOous1zDRp6Yn5Z7wdR zAVqGzWBb+@gf6c&i+Od6;ISh}R?amXh|N#pWnEKBySKJ+_Ir5P+&Dc*?N)R(hCLd= zZOQvTkcCD%WKiCPGe#~Y1d>SP)*pmQ{{UpX=x`;Or8)OM{c7EWubbBZ0!cqg$MA)) zo5NaQ04fwdV-wREC;1u?Hyh(G5!rZ8MtxIIgj`R;+gdc6Jk~w`0NofQ)BX!+x`fxa zKM?#!I69uKZzZj@g2q%q4nW>=c>BB$LQgs4kQy@lW%z+Vh@uZ~;O#A9vy4f%e5{d! zuqJ#Xw4-Y zPykOfW|ENcKn|oPlQhz4F)`GKtpb*%5-_fF#%hhsJ5J%qC-SWkOp#TA6=f%5HaTR7 zIK4B#J1qdZL;XBk}esFk+3U~p(O+}Yj51k?~nB}0SA>MCKmw#EFjNMYIJh>E?cUwD#IN?>-_1WjyVKp-hni7+C8M62ey4K#?niV4jE0v zGAYcEJ04W~RK76OCDC=wAH<#*(+0PwTr*qTK&`N{vSD-R1_o=P0D?wxr?o!bC{kVi zSPpu)6cFKa=l=kXsp3S{beoNTOSZDIyo|C(Zrj2z?8n!odC2*g9+>T4So}ip{C+L) zKCPyay8bI^Cb1;+kyjvR-xcycn=qc%C&|vx8|y>vc=+lrGUhLTS_K)RgM?nxQ)zos zD!?;J3H78D3}S$=diSNz;Yd5ungYU6np$oTr2%2tpc+bA0>MQTP&v zi>-R<+1p6d?Ie!gXJ3*_la3VnfLrpfcmNhH->Irz9MBWO9u?C3GZ7570JO3Wl1kjM z{K>1|#N>3TlRk?NO;e4B3=E%M)U?s}MJ;B{BrO9Xo0?qH0mr2v>qvW0I?@>Ib5lf_ zJdQnT5%-6sOwxd)3Zx*JhHx=~z^HT0BQ*n>3Pb5Qq{SWS40SCf0P{eH_xg&*@u!BO z@qdGLJq}{(&x?qeI`2=L1M7;|9V%EPFwBw+jiawfDne}(=flf}OcG%Z%{NZ(Oa zk_(WBByEtYl0Cp5ophxBb>{vCwueLb`Qy(HY4I3z+4P7mtx)tk5*+RS0D(yTJrAXN zKTr)htwl;#LxoJF?HCxvL7JIP0Kv(}LsDp&;2$3RCvmO(O7M(2UBX-5>XuDzjUm8! z5?46SsSY~vz^^mD(7aio-@S&p;q6i7NeofT9kUT3&OTNH4W8JqYyF}p`xd+Kr&Az^qTI!}WIHhdai3C0=UobRNaK|yCfV`! zqo?Y3SMuoEew}@Dsz|4Gq%jwf0OhwR$>Rq;mG*^=is_nelcp{<*=g`wk8-F1{#E0j zvv-H@ueFU|;$E#Zi*b20@Y}>k`o?@SN$#U052bqT>fB1qVVorR;I~6jT6fU85VobD zc%)W{H z44ZSBY>l~(98(1qNs7YI1r&Cq0Z3`xsjb?84)ms)I@72Dz3F>V+)~p4MOf2Ie`s5n z#$R_F`&DYcpd4#fpH}|>&`l`rOVJ-2{6U7=+u|39Ak*C*(OMFWhm4q)cj`@Zl5`_A zcUaoG-SVz6yna6@s!xt<(2LOWB<|THT*kQ_E89P1_Wj?F~`Sg&aP zm-F_o9_<8=vs$10dB6Jg6}|&ZGyUQ{r?=9BjP=R%rB!E8RZl+E70tvp(V1p#s=ZI8 zdGBM`AJs_xDM<~4E~v~7x>|5nvSQYc+*egPt_GIezHcmKgzpkJuGtKsbAha@UG$0kxm)FBz2`; zp7ie3(0SwxHYs|Bsp53ILYs*O>i9u%D&|9Aa?%%mV>#iPYi3eek9a2OC2{M^!=h%Zk*J# z&>naDM_wd;7t=KG;7M_Evu)2^p#K1kcu>zfh_6-sqP2?~?Q=)c?3pH-$~H2}j2Hsg z<0I)_QG=WwYqpZKQ#`8w0K{Mhdx7aqZ@PUwY2%VcIvPTxouqJUpywi44&+n}@-f23 zgL5(T0=)ym9}TZHH(S3G!EvQo#Ui)a+ipDBi@kJeD<^dY2Sc)@@T!wz9N|BDAoymvm^0(~thOCb4|FMu%~zNa|D} zRp+fz@g%nksd#D&Vtl)+(Hww!RWBIAbzc`nrdq^W-pWmv37?k~)~1PB4wlul-vzRV z-7c^eOcTh;^IH0Repa1l7#P_CE1bTSYd3I3)94!Z_u1RXo zMhej#o+#~2%>%6@R>P@Ql7ZH!sIp2Non>5;@7u;lE2%Q18%aT8bc1w_ZjcZ*N&%_S zAT{Y`bT>#hN{8e~=}zg+-?RVoW^Wny=f2LJ*Lfbt_h92wk(QQYhC%=ZqnrW()XHo) z(*JMxhoM4ul~4f}ob-jj&;VRV5jYk-X(5m>kwOoXlfO<5I~ByAq#Wy2vA@PMXeiC@ zE2@_=i}-CBu)}89IVZgKT0i!&Gp}SUPXLG7tNiUhWjKyyAFUB-2X+7{Ljou<5peLb z2u@ju{wfPP{MENi1a?_~9_BeOlF&@G)9H7+zb>2SS=f$x*0m_ZDr<8zs}$-yJ;%Xw}QzF6iY!Dy? zz=*A-a1`U!R4I|25hn0|(CUmElxHR|X9w;EeDN7r?*{|~B_gd7lwqhoK|xtV*$807 zn%{u_3K^X^HTpp)$8slj5^e%UTL@NACenc6AC-(a1{K>uV%k9)3RB0b(|7ZC+GU&FnsiM@C0QOb29bWj}ZLLf5|F$*#q`=vr^y zezPR!{BC9>bs+U<>KvSZT5v7;Q>U8C#$hO7XozX+VM=s5zHu7|V0~ROZZtMf_lX)h zy)>zmV^xA$uDBKP_(DZdHlNHr6hcQ$+@Hb?Lk3q<3RsT;1dB{56;jIqBCtS6q_Y%} zb|i)CPYiDw5i~Vwg+iv{*U7)>z&KcE!J1zP4zd7eUUbr*{ar0wmI?oE0Bq;kd8!pU z0v65wyd*y#r;U-EZT}Cjxm}^{Lv+Tc9`NT2XTjO-t-(kHYORT8LmTCWz^-V$39ElH z<-+{qMuWFo{sHGsSHs$Z6bdrm%F2W|yuvBOC^qwjFga^ZFMe}2C-)J{V!HiY!H7i+ zef6hQ<{w{o@d#?nUPaWi;UAIghc;1(pWg-J4Ec494DD8O34St$B?L(Q2Y_UCchsJb zO=(S?d>fVCQZbdsX^8Fj!d=qO_MvJDmd@^bexc$Hw|6u>b{u=bCtVNtEB+Pu?W!`L z6aO8p=cSh+wN*5$-s}R}_Tukg+;AZbjD0ZoPF7X4K);gPVJkvi-FY0=cl?FKqWKOY zj?Lx^J*_Pd>Y>Aa*6ANfeaCx{!WG7Cp+oCz#27fBydyzPn$R`NJG{LWw`F6sy2C$3 zcuACVJe|3h7l?MER_syK06>pLq6iwlHBobeL{1hvJ|)E>^emY6+bkIFOI%s095_IA z<_Y6jR^Tt{|3f|KqPm0UkpBSm>HfE*&p~#RZzRZ?VpT_3$E@it6pxFxs%2FhWbv_x zR&d!${MP%8XWM26&&~cd7H><;RIk$#o88Kqhw0Tq37TH7{H~Hhd^jU#(qkRN>A+WH zB6Pi<9x`EMA$8rC1RgYrjE7jBnTIs6*@mfpOBS*uzW@kZe-d5OtF`axHF}kn^Ac-# z$8+8yg|X0Qbk@=hj8%b`}UT)E=Oqc}e7b7EuijYqC*@{8!N^(UlCC4!+m@~2>!-gFz1{N=ggI`vD|{Kp8=d@plm(lW z7_H0W4L)!%t9TQc`kPt2!kf6UeY1B~v+3VMQ6JyH&iv}wrzPjM4-gHvi=dWIVoL&NZ`wGtEbV{!wOjT9qn!`KP>fcBcn!3p@KdahB z(1t_CQc~<*aP0XTl;7Z%B^7o;WaNYc`sdb1*EQY*#8=h2p$WK9lK$QAI;usFss!DR zHXAA>V%$=1%lTHyH{+%x2lam{&|eh9ZPW8*Y;<~@7KfksuvBHrcOzF$zA-bzM}LKF zo|8Mk`8H(HI7Qcx7OjGT*v_D|Ef4FH=b64dAy|%*Sy7W`Q>hr!K`~DTF3UPu zo13TkeI-9mA!Rx(GZo98=2M+b3ak4%*r|ncGziQWmoT3ex`(!Lu67$;O&n-nJ(^=Z z%^Wr6l2qIP-v8Jtf0LiXbg!qJSOpa`6`wqA-Kr)jY>a>khw4dwZp3sn_`PQ^hjkWa zVvY~FmcTzfnn_8fttF27TLk7JplPcM}%oXC2s7HA@>1XWMA}Yp`+g$y=*rBjGB4 zUy(@Zmag}pbpZ`INc$N6Ytt;Nd5Gz3-%Rw>W~*n@y96&b1?F0W<3eqGPjPMV+WK7* z<(~)&1*a|@RPHdlst2!+T3Jut9;wI=tOpZDftsv}m1$4Cw_!4k?af+EtwDHc7t?Qd zNk%;lkHwt*i6Yz8U&{Sotfy%N8xO`M|Iiw!w^(SGDuy)e#YIVPw`K*y- zo6I}XBJmGMn1ai890~*5Qzk<^>k2|`HH;oH5>eJBb$>C0$+gt;pmpZL#I|B8k3JYNH?Qqy#b- z(osG`-q?G#V2S#BfFnwLc7QFAXbY?dqoYOxtk|d~0R5HL6B`zJjzu4JDKDGncqQQ7 z2RkG6X+V9}bUm0}5?AwHQ<0Ud7;XgJiJU-x0Q(!Ef~?p~#;z$`W1&(^n=NY;Hd0O+ z(ugq4W@BTvBAm=$AEqx+87%C0Y4gXOgtuVN^nRtX)&9y{NQIV3_SGDg`V7YWT6S@V zFF7a%bRzbh+&r1ivSk&`(^>4@S`@7c_y=hAY84;jCs$48 zh3i*r5p9hXP$Uc&$4Eg2sD;$pDU1jK+Q6k)PZVHStcOxBAfs#r=z%%pk8IPah19IC zv0jG6t;vVBw0{-it9w)lQB8bz$)@DW*Z7{rngvN# z3^L}RKUVAYEX&5=+^WCjTp!$uOo=z#Vr(X$XS`&{y&eDJQGIK#a4H{F_h8@K6e>qd z9iDvpA$4S+iQaiYY_rfqZx#%77eKhx^-nHz*X&5PHRDtH=@!(>a~LL_R5=~hT${2V z-1@uoVoCIS9b2qA+rIk|E!INDhgqTu_p)VmZR^U9a?Z|e9!oJNc0 zlbj74{I7AylF)VppP3{!sW@vBPbm2_Um=^b6F5?!GyfPaWs zkf^iP52bmu!h(E;G*LV?ClrvVfDWidEDw!jMR_gqVi8i9NH`RAM%UGg;3iYAz>vHj zgxww_66u0*CDQalxQdVcl9kdYnu>h_ulQC<@mx2vUqep{Z+~e0jP<$Rkq}SA@HZOM z?Lk{;(};XQywMbqh)>XHO;p*AvQD}BuDO~{-fC{m=p`t6KI{04NU^e@m-Sl)j(%`( zE5gR~&I-yfu>Lgp$uT^?t($kj^4}ZG@X-#TE zv63G2{{X3Ek9H^U5%+k=edVI!`)@-FJ8N`9bhu|9BAPrX=E5bLz={sX+9ThE?}Dt6 z$-Qn83Ag@vvg_3V=vx6#$uB|F>PJI=#E|kWLzmPcP8fq5KOga`_a#_Q-LqYDP1+iw z>h*5iFYuKp%K|fq)`bp@Yx0F@46vMsm|Nbp9B3=a8FYrR^JtuCO1BMT^>f2?+HK+- z;gCax*+lJEpC)+OmP>i0f*a6l-kiNFpikeJ4h!!ltb;H1xy z(Ub#X1s^IPdI?)NIJ|DLn*$B1LK1BF6u zB7W2uw$1|;?%n{{6`Ao8pIQm0L?TJvHKyLA;_mJF*oj(u^Uq)5g-7M7+a?~=2P~VI zF3X3D&!V?_Y?sE>6bABn*S{H7xc+&SjF7sE%gcG%D@KtaSTF_ch;T?{=l`fhBxm;V zvGW9HAa8PZWzLl3Fc6^?DanJ|)3Bw!$3LA%)}6Mv-k&5mhR2GE1{Q9enlW zD7rOW|8lG9V}aE^d;HB?{(`H>;yfN3rQT)VrD3aL3PO(Y@n21sfBEuC(obFpI zaht(7s^G>5D|@VvNE*FN%Piei_R~@|OhbWlMN z31?!E=%Kq98r{&N9m5MDMw|(x)BNu&Kz4x8Ej1EPp~-;HDux3NrTo`J{9B~%hh z%9-}a)G_E6&=0%%WFVO3rz@qH?@m+sX)> zh+Fq3sXw9^@ADAR2s!qz=RBIB@SYX>!(*O)&h#uyq8Zg-;|U*gHWECfX zi0)C>fyY}K8D2MMv8&QxbHipoL|lbmQZxIS*`P1r=dwJEywJQwB$YEime%c5N8Crk zihHwPn=bOUYg}6|i6(};LXlRv)Hj3}NeB@koEDhWyYK!3Nd5=VHTXK*yBla)Gkj1fi)c$Aac(bR`FWz};OKO+YLjB&RjS-`{I?rv zb&lOZxvtTj{_D+v{RZtT6M^jYT-U@Vj)%npn&8^3G|4B}J=e_9KhDw4Fnhu@%dl=7uYH!=-8T`aMN5M%DuI>A$JM26{nWi)v(+guZTc?tlYUbp^%s zdcbJ!JSwGRf~yehJ}%(D%AYbzJ(^4)9uvjyi(xvkV^QVluQ%2Gb)2)!%S!UdiUa{f zS9x_OMk3B}bkiQMq6den?$hrJ>^h(cejAT_>mfW@05Qn zEL&qd`{T;9{0WnB+PIr#5?*^ElPf9U&|RfzmMOP#kDBQm$9P%RJ--fiW;cTR4B~|* zHNI#~2e3u^#j}dH(;bZFk_-U%hI~o1A|D5RN1I|!oqF#W?`PG| z3YGLpo+w3}>)}zc@~Y4TUjfY)qBx@1Y1S=t;th@S0YqC8dRCYlLj@!cKEy@P1aM=wANJ7_JsPgJ1*P1J z_Z|HdGoAm4>|ZUWjpjI%nan`{Dw?6a)|R~bqY*k@n=ok8Ffpv622Gf zW>7S@^u2Z$nGhLZ&8D;ZEG5WCc$1QiapwKz&tIIWSCoop3{MJ_<=ql=kKA+Zq?mJE zp>6AX^B5&kffT$7X9MvHX6-Ss1%91q{gPr zfR)EsEN{tf|2L5QuD39=>dLbh zrhimJPQD^vDhy@0@{4P;(2NUquZq2{bF5eAKjB}vWN(`DG^PW2$^5poV6BO)<+1XJENG}M&dfSJvuJu znZ-e$uher_YU+w~imu&M#l-AwKbGZ7)UO)ZlU-8hkCKB6uhyrf5QF0fA&i$$r>E?QJdkZ3IL^@^F&!yZ0QG<+8^G3CJdZIP*=CWIkEcsN?!ZgNZk#ie%; zO-0^%Ycyjy<;P85;nABs>t^_1tvkfe>i0z)G}Sua&uJcbBQ@PQOg6swk=~lE-NhD_ zVlJneD+S)#ln<>9cnxpn3M4`=SzD$!SA^bC7vP+))!*p z!jlbHzFixV95Kh)m8x(Num|>l^uBaIA7Y!hpBsAptp9`F6njVT{JMsVOLCD6r}A5J z6L{H3&dp)N7%H(@4O4tA4$M58h7-|7f%^(T))Yd07;j=x+jXTJ04mB`3`tWDXe;GY z3YKTJw2()QP3+z)wiH)u-cNtaxh!iQvJG0;eiw94l05u*@xASB$|L;Fbpz)+ml*8^ zi#h$TniJ}**{>2{z8j4WUm4{_45|;VI*-yh#D9lR^XifzC?qjo3PtL?m!pWLQ z)`x`q>G{;YVLb)sQ{tYJlH10)J`ZqQ{ywjA>@n@(4yzR7Ul&4OIq$qTlgV^!oXGNh z*yrf5LL(@JiH)eJ9PalktL2#4iY&hykhn%(4^k(0nExKdbF3)j6cv?uFw(@LL*I790;vWSkNcntCP; zh=mbI!0``o6o;*}QRDvVPG%BG}ASM<@l!lpUDbF}Tx`@b?cHA@n#KJP(A)fb)Kermi<4QBh_@kUOOOOBC zmXj=h0RQ)hob>K7FHUfxyc?f-F;`Vf0#Db7|G7!Gu9y^05jV^dmxFX4QxX~fx4*fuLK6J_|AhAym5(dl*jutC~+ zh7}XW@X4{hpHD!v4ei;V;@iyMC=WZ^O!)#V5)Lli&cp!fyfmho-WL)Ue#61<%ImDX zyldb0*L(~>36umP>k{U1?@8BIdvqr`zwlR6Lf;B{+(3f*hqp1aZPg1?Uk5D36p0_i zbo~lj(0L0p4;PceoD=E(+1l7()hOiWQ0lyNDa8M;PW8gcJBUJ0c@iYoI2hG5i7Ts7oUSLO%Z-65N-FBVW3_1hZnBVH7Uq+aiL*kA ztF|Rc_KXDK@1KV@qPUQ|JarN1-H*-1EiB$Obdg_MUaR+{{&;;SN8LRvvHU+jew`g52QHdA#h_j?$6EP@Y!_U)EY*_?n8tFN}XJ ze?+M;=vW}=n7Gzp{!{6_{_Fw@aGXmQ(~jj+w;9p7x~XP&_Ck-(0pMTD^Tg2@nLe3e zQ0A<>H@?flLRQM)SjRTLLWYX4BVekE58xImPwoBb-C)n3yQ>B<2UtesrBE7VXqxPD zZ8+vb3d!DUcZ^6h04_&A+*)=%`6{fNTTN<4yWna8|GyFjrjw5QvvsXrRJl;pEneHK;{ikmusJC7j@pud}rWYEsIRy z9J}{i-H{kam{yRaZasi2G-S;|e|?;8W2_p5`MvSxfA=q@vp!p#G)O<$=TAyVt~xRH zA%MhOp1xd?oHdu6Dv8UM7A!5t^JEXxs{`;0O8*!Myez3&s2@{+zgIj1&a=2aQGYdh zkOu*T=zg2_KLCkbT5ToaZY~^5C^DBx8|8<+gdPQnUTx8MW-l@GaXYOilxxf^AM+(A zalJ=wTP8s~#C4wJSubckhSAh-tBE^rA5r?5-f9`ZW=wsSB$Xb?D$2P_HEigZd-{aZ z%GB6tTrfw=tMtloj^}kP@kaX!z||DMKc^fh9Oa*pv+o}I4QCV|Uyk||m-(37hLi&0 zZ)2s&w%%3NJO59ThlO)hMR+(e&9&P$ZIgVkzxd((m_f}AzfZ}qL49)A)XMwYi*;&z z|K135vsR77fncD*svn_0z>bQf3?FI!I@F9U94!i|H_y*>&%t@=SLERTKL_iS>yF zKT(}QNC}#nAh{T7ig>R@1LfgP`d&k}11C>FD)#t`Y&XoCOQqT^SP5QRSX`%@p^AKc z!?bIh?umucQDM+$0;)32z+(a?JWbGHLwh6qc zWxdlg-$z`Khms`(Xh@qIdxj}YwJYVC?Je}a>8J=F36&_Nqvg;aN@*0NP%ri7<2R%^g z0IHyjg8+dT6~9kT{ZXCw2HnZJRzZ-noB5WUlk^?P&%AE9B_tQtqUIKVnn( zKY%tx@WAx$Wi{`u_d467N;Om6M`EQ~o^jB~lFEf|*B!;p6S1aol-c#H0Df#g70ENL z-FsN`dtQ|V#o1VrPrQU8(|+|-tU}LRmkUH6Uw|^9kR1JH?GS+!5HJ-rL^M+MXg=wV zMcM>wTMz=9i{NHKKVFz6zaMljcv7b?$chLqv$Io zbO+OJF+M_^4hzpeeG6YgzfI3H6nkE7r^+Yq@x4EZTvsT@VXpOKyxmnfbxh~Ke7Lfe znq6>V<78=jeWQP9&U?5}Rk)F9>8N6!IP~@Cp;_lKj!2F=Ou2!kNcZe@J~d6gAA@I@ z-r47Wh^$JM6r$AC&kaZT4xXBq8=ZfRfykqrshP*YwW!x7sKR*qTy86N?Ept(#Kga< zE-1RaTRZ$?E^(uNMo@VQj==}Z55prr1hx_XcfN{Fm?|=O=^*L$e5ikq#HSgkv_|djz?o7sQXNiVi$1^3R zGu9mHcfRxN>1wqN^HIn~(vSSP_f;Txsubw*&^1VE(^xNR@Bg^%RvVefrBD|B|G@0CR?`PhU%{_bhTNpNc<4a2P!)U|jFX}s@v zP5!PK94Wv+;~Vg~%6J1+L$mQ{F%SJ{rubi6so9zgmX5a-Np%;|9&kJLD~&eukkV@#ili=dkD>Rxvm(Ajf#*}jD3-=f4g z_CaB?c#UUP{p=r<$=2~_D_$h%PVQq9qPQJE>97B`Qwj3tb!pU8mHiG_z+&x|0Xc-& zZ2Dw{m`8_(d~o$`j=euDe~@_-{D zwf@^LGWkWvF?H=6m0cSe1O|53ufK<$2|A1~S@e8ZlPB;Pic4u;^x=8m;T~(QL`bT zX2_qt!O!bytB=?7!v%a#(T2M{Z=yocy!ZRHHg*?HbA<-M%3bT{0*8kJMO`XX^~Eyn zXnqwUC*e2PK~=%*0Ek}j1&y_ zW;F)3B;fbzxlb>yLCsXlU`7ECcjyoCq7dUnb+*xKa>cow&ubU@O2)3^{nPqea{0q2 z?h843O#x1t?Oy8xSq#^!4ysjNPVM@VZab<&PQiB3O6Av0Jt{Nxe=eo;#@0X6!EpDI zOLmK$tj8-Z*)YhL1F_P7Ss1NFTI=D2aQXeUa`gOlP*u6v3|6oO_uS1%;h5W96qbt@ zI|X|qC!<-5KYaoB0X0=~MJJ{65&+^*oh16i*q&d7AY@i(L9)-ogEAx*YQ{F%@WT?r zUf`U3pd$RYEsDi~idyL;p0b*4|GYlRtpC*4dtfcm6E7)?a?)ue+Gk^OxrSFo(4I0? z;jDjClwi9x#sCcNo=26p65ZIQXnt^tDaY;qu7LhMl>c?!J?k0~GEocmfH2w;2j>G5 zTXHaf^^@uaJQVSXNH9GC!?{9Bp*Ym4|7=v2vGmWu93Iup9P!uW^$1C6bB>pO6H`k< zcSUillG^4{K3X%Rs;9Q$#kLaPsyH`k{y9I^nTrj)SFsB>I7V-S^ltS3v6dF2E460g zz3M90t4;ezef@JMp9nYf&(r!82{VF09?e+nl*ee?YCQc$&BILbvY?O6A>JFIX)>CT z?<~Kn>_MKR6Vm@_GFanCNzH@{1V=}n9jXJbh$)+5D(TJpv-_dE;*jYVOo7(BRMA(& zMnB7gfh{*V!WA~{ysT?BIiH2@5@Em>t`(+AD>;8 zMAeY@*e+!Am~1;ieqWY8kFDe(EWaq1M=5Wy6z3Kd@hX_yl#&}@#A#xT@dT@qA4=9` zC4PCdsyN{6HBze`4y$5v!r5=_7>cmroK8qEGkxHf(e5^5X~!UN^{1ljkm360zj<{a z{<6=ObKK)4p%DZzAIO^xLt@vG)C?YQsIy^|bYX5HBnu})rY+r}FOGI7X@jH()E!mthT59XgpK3f%=N@^slVzKN= zRSkQpwV%rjF!MD>tw@FSUnEG$>UL86kc4BkG7 zpIU`dg=z=i2g`*n7oz5vsCR%!8TU;r5=jBTqAq14gqm<+R1!!Ph!fz;ps=LS`r{cv zG|>qNNcRPfktb-F{iE_j;+M!|)R32djkaDrb(WTxVb*G?5q6ZpOCzMD>C=%Nk8wNK z8Ba(gYogHq^w#vtdP9#<&(6yJ9C*11XS7BZ8{^c)AGhS1yH8sy@M7Uq`3iW<10E3h zLowLA(8G{nzEW~`U4cp=i624yLW&REr7Ke(h!t#(Ys#89z-Q`K7gAlL$*~HNk!y=zflWUtKCxP64)B1>$C@mhvbpS^n@lfZOcVR z^3!-3ToHwdSV1J-OjIy2nW(iwd!o}be$s{>Ox$`gC9K>|7I@AZA4J)bYsSQ~H(eDU z3fe=9?GP1{6(6%V^fJ z9m}@>!Um1rIfU)^Z?|8>)ZCNZS8P5q@g!^9=%CwKSN|+LK6au^TY-*PvR0CwsEK0g zKB{@q_Qm{ghQ?RLt?eJ3R4J2WJ%}QiC6@*;qrIxxZxc3A>8un7H!Nca0<_P|C@b$a z;468D(!e@mixK>b9iOc-ACFU=y}6CcAO$~u$xOw~O)Nz)J`<_N@j0UWIU zlfuzq_q22-{6sBFSAORT^u3qrcnKCcWu!Gav|Sec>x#@ZB$wW0PHPTM5@M;;{&{6gYUx2ZCGG6&u z%}$*Mt&vBnH$o2w{Vb)5z-HN6xa+`9ZFe>|eFycYNyu(E#(sdjsh)^Be9=x(O_8f- zbr(#vNruON?eCk{2}$R}>r7uBwqm+FeXNE~;QJCZhn&TpSseBe%21;mV>KD^`8RUS zwBv!nx~$98^RSHC>H8_!)D;EF3iv+n9emi+;a)H9vBtzaXe*H7U}43y(Os3X&dhb& zoqu5%z19K+K^!C*xfB;Vq|B`c!>&d@tV?yrr+`8cQa~+DL^)RPiKgjC=GxYf=YKV^ z&RTv#Hw6jw2DZXvqoT1lLgTnm$@lFR(UzUoRF`BV)$H}Lyw)k=hj=}oQ%ugVau45a zD*uuKJSY9a5X{Qh%pUuZUnKtClcitHj=*XI$ZNdTRlE;2B7|ksWzURyJ%+iq0f2%z zl_%lu-2(&nN6na+=iK6G5gJ!ju3nsT+kH^t-5P?{%9@r>E-wd9G?k10orhYY6cCT> zmN=jgok&5tGrcsPq?j^4%B9M=?_vUzudGC@U+>Pup$i@mxN|H;CvE;h=YQ?CZYnZL z>3}e)Eogt*_QLyc!T)b0S9(`?r-iv<+~vn^)Sw(EmDO2cPDg5HNgkX4tB;u#8?Gt? zhS3(1@5DXt-|K{*W-qwaZD`>3d*T%j-rl#MwDTsUJ>I!Qz2o?by;#JF;}63MS5@QJ zc?r)P9eB_?eMRY}i4*@blI?rY#+=zCmtkXgRb0g7U5H!PL$Vkmdq85+tiTPhkz77M z%oIo~yo6yp$Ny<_j(^mfrq)6pRY}+)*<6)W-~eUTyZ~b0%%?JAYGD#Oa>fiDl{7Tz z9$Nrx)@3Q(Gz;tO0<7`#FEpRVZF*-v(H*en&u6A6fELigKjou49bI~cqfPH#m{@Cw zmes~&k-clueco%?_UT^?BdG)wBEpRq$vW=GA@hcmmX++fEF67pI&hSEjLkGf^_Q|H z>s8si@k%;>nBKdO6TGgo2_rNOQiG6-m*OzZPum~7P}B)W?F&LSv0;d?O6O;qFCAK| zC-N7E@;%#Jcb%7B4H{kpMjCw4^*C%EqlFi8S|3i7+V7DNVZ3L^fYF!qaianziTd<@ zzAVT#ExqS3k&hOsxtU#r4>I%wVUjy&x_lz-e5ezd^#t|EN-I+|$v-xaCNdhe?co_$ zuKD`t9cXwVFkf&3ycYP*g#zNf9j$mK&F4)LOsRI^6^Y96S3V~DY8MlfXCQ{P?iq(} zs}eX*q!p08W4HgzQGpL)H)R7JHJH7H_B*~*|#L*(n9S!#O8`_BU+G%vRJ zb?Yo=16r7_3xhut-vW{7<#fU?&ILl#v*5l0~}b zqP8QJXBqG-FU;&}k~PV?l^Vj7GlmD%ELv8(n)f_Wt8OWAcNaR14E2dN>GSu3)yUY( z!Uf$_?k*fmnAYnM?4rF1WoRJ|LcU=B1xmh{gNVlf(S*js%M;(R=7n@QcCb#os;BTW z;o6WQ?^A3{s1*%g`k2qGr~T6pbV=;KRDF*tLYQ{1PrsoNVMaLdadN1Fx!9MM)}lTd zJmxEy`1gJ;`@o#40gAeRSU|Y<Nv5x#dKfdFN%(6kF6y}| z{(!#FEVomm&QmqQcw@Df?>_(^ll>l6A_^PdV5@#Reuh50BV6SMxq2~KYYAce!8pZ^ zQ)pDkC>S2B*V3i&**V{iv{h~)&e@9Zy3q zANTOnPY-hau5nBVXGTCFg_e|Cz&j200_~(pPqpA9jSCb#EL0c+)HYtp@!Ik~K$bY0 z&za$h#Z}=2>+o0d?!eNY~;PjiCx*ttz=oZRE(RAt;Ut17I6nZ&*7Ad@JMvb23_&Z<|bpg}2bXVWWtHE(u z+uF!viU7V*6N~FXXR}F`?=GRa8ufhWU!V>6f|XTd+d6GTBp~YjwTc(^Mfgr$VQ!(F zsQ*8}8y~q%6`_g-!KQlThT|VcyL4IF>lh}~o5H@S{*X3Xky9^DjG7vgZ`68Bwd2uc z*+!NhIPh#IpwK=8SJlAI=?@KTZ%~wkwrLjan<^V9&s~BpE|%s`%M8F8hEYj@R}#mt zTD2A+$9z@}&79rcD*_y5h*`^MATd)LW%};zE=2Wn( z6sQCjmg%{n5Y&dCUa-ZmO3EmKVB`VSkc0)RS|PwNB!v>1=J<$T1O8uj zZWPy`w1AdpvqOQITijj+;`rA4q|4XR`wz8<7x@Bf`ai9$t&DS`1CGCWEuS;`H@B&{ z?03KX-BIGFT(;@~`!uCE`&NzC#jK!mwKgP^yjemT{Es@AjRSkH1)2NT{HJum8W&F- z2o>#_p8EYvPbXn2gqvPtf+udTHDOvgP6LOXF;Rbf3aUhHq?%x1YCe{}+>M41qYZA9 zuBvV4;=0V2a@oA99+tM6&@-tR>5CYHA*n1adRJ|4BR=DvU3Z9h#pJT<=po+_I$sdl zXU`bs-lnVzOWjGNkGt=(L?R3($;C~#mkI+l%gRikPhT}X7j=CTK|7R z?UNctH$)4PO5T~2%5$4c4M9)w>LTS5`d2I$)kJzj)Xh7M(IscjvCbs}kx1e`YKS=d z$Fi;Kdyd}oozKWv@PIMg_KkCC{y*e98;u}uF2LM|GFvI&I1vc zm@Tkk{vm5ghgwf0Pz5fH%#@b(o`6ExUPuuzel5yE>k@B6L~C4e_2fls6e`AK_(K(- zV%|kfr%}Q{Km65AGkw0d!IpaL1o~ws_ADn@l)DWu0UGZ9)52-A7#nF117-#yE6tgGOz^W46!R5S| z%CemAH7ie~h`@$l#`MH+!uzuCZ)Jl`KJ@!KZA#y|`Fq&1BzZ8M8THR^IW1}Ig%+`& z6DQ?u`83z5_`d7=xBG35Sggudg(`a*5$n!R-Fo-6j8JNAx}&^?u`8pcU_R&K2&HVy zq0oCruLMdjB_NkbG;k+nLTbUyjox#-U`6>(lnVm*q(F&iO6Ac#5e4JG(D)y?JwpZg zAdg~utf2VBDcA%U#TYtfd-6+quPQJ0t$-S8fJ#^kIG4k^3G<<%9SmY$8U}t4n{}@P1-E{ryO0Kj2CF4rzPgYjFP3kM#!{Q) z(5!b+#HbW29z9ZyZ7+7PQ*qCCUJA%+S&L@3SKMxHRa}?pYZ}d)?2{+WvS&5$jJ6kbKfO)H3I4kU z@3ES0ho1R=oUrkgl#8^7wYwyGUesbTR+)G5EVO^=_2WO2jBqk-sC2q=OwCLdm;!y3 z7Z(T~-yC&4lcQqQ1L5-BO)%nmGF@aBy2&FHH!?kVhA2J~c6HqhNk(C~6CQ`H1c>aU zG#Dw7weYb0h9Uic>*~MdKpgBOP8~6Yn&0N#?>#C-DqYgFhIzfGK_BC^JH53#p!K%! zKbG%-no4q^A){Q!Y-#xoZ>htQi?MG?O8+2#;IMI>oyf^0$e{)z64BEOnu?g9yjYJy z^nkZ0wRsjRT7D&4j@4{ZE81)TW!$f<0=@C?VuD^9M}7o2YDsj>N%+-#Pt$S-o)yAO zuW5PCLavVOS0u1*jV@5}<7b5B6a%iMGIWhU#0r>#lrG1xRQP+4y9m)`M#ZMn=QziL z{c{XQr+~M3F+2}7_cIki`P6JnPLFKa-Rv~QZNoY7QX;Y5m!&yrx%6R7?pGzyo`nFL zcGrpk5+SB<;$>i0gFtvj^ovsDjvO`QUGMBh0)N_di?1Aim1)=tXylH(WE3@BH2s+I z=A}5+=k|CZG?QRNahdr76fA#JL27wk*=r}Wun3FW(QKE5 zDw(X=ME~AIz)C=v`0GF(OJBBP=Y{S81{qakYk_mrvGIidce6)xW9>>)Povp`MYE1< zYglAO^v|wGX`SGq?k5hb&FUztAjw<#Z=#iRTG*yCYK1Ahf1lUBP1X*NxiJEfV z8(P{mN^lRnfPFbGC;?rwCTfuPD$Puz11xD&^I@fg%2n4@@gI!#-=XKMIYm3K^oCyY z+wpw)%}0(oF=d4SA9puCO2N>RH%cGSFG-1*C;XcGJk7g_>o&4O7LkYd6!+R2e(@_z zr)Jd!U44sXOA6U1jG>aL*fm+ZxuI>*q3OMjwhIMe0Gf{Q!Dq`V1^?fM*uH&Mko(|+ zXX;6QHYs9LgWi*v6RfUh-A{;7z6s|Y`3;fUZFM;zL{GFK<3psJqSHHzKiS>E60*9e zO>8(o7y3m@vSp|Y|KG9_s0aQA>x~i2^14ufle;K4P)hCzb6 zy9Lkf{O8oUb#K+H_g)pvRCn**t!wSImwaEO!v{v4`j7*QcfB011~=mHvI?euS%A+) z>u5iTWwyqL$86tMzGx$R2@rS*AztQo#)MDvi^i+WvHcKMBqTHZ(1vX{F($QlL!lGR>sXiph?Nf00axC_- z?!=yyPWby@&fOB9ir=(Qse{1as%RaT1RI*pFw6I#d#{pJYWwc) zW}(G=|K2dSmj1_k9B5s!74A}0gboGK-q+n07K-;p0YlX z75*smLw5klTnbCBq%`Da8Z}`mZ|%$&mmnT2X3+h^T29|f#BRaV@3F%H$MqVCspq>d z?l^^tfLJ%}G9Wvp-j0_tDa$0hpb#dS*iys?dfcSbZe_t1xm7&yrD_Z%nqXD__GK$5^Ci>#HF-h$5teAo5NlE+z#qRy* ztfkmnJJy&)+^PkEtxpd}rV~4HQ3_bnQ~?fExywIg30d4Ua%>VP9wU*f@b_p~;?%5Q zU154&yID57(R#s|usH>`-Nk3bSs4Uy8gz&*8%9u7Y8x?;TJoZ8XhoHXN1r zXrP=Ejl9U<3E3iTce^K;3xxU&;w}}GNKfes!|Z%L+|One+Z_|aMNNN1@v1w(>yMIR z1KDe{lnU+Kaa*N}l!`pIc%xY#&W>+~{zMv5^_Ao0R6D1c*9msF3QRh!e)LxZan^zx+6@cJtMb?@Wv?e= zxUL*Zj_#|A{o_Hk!asyGF-+~!UYJo~lOHmrC_EIlsaVH(pggPM9|(Pt{rT21#r%HH zN^MD*j2Uk|qO>_V8ez`z?bgY)m{B`?lAsKXO6cqY&ODAL~Bp8#=4f3qon3q<9Y!r$#5 z>sI2~`?;^V(f0e%TMy-ZD-q4jS*l-ur?oab{cbdfc(T^!*_WV*rE;1T`X+)^_gaYo z=L2X@6HnZg%^R-8Ar~J$M!fRV1F<6h1J6d&s};wvfa#~QQQ&2!p_ zuqzepvv2%*lT^Knv!xr`SYB9e(*+kPD8b}n;sPInaKO7N5cv+)BH*7aG9eSr%Pu3U zs@ls0VrHE?Qk4f~_MPm=j0mVPuAixVP_}{NyZzX;ebN)!!q@TOX$lqIkC|KH2{q^q zeBt-?s&m}&J?F2rk8vekKq1h0=UwmX3Cl+~!0Wuw$N6w4vPg8CSsB8>Vage?xslph zj;#<7jQ+j*$$`;eRxh6UFy3E~AM)#L+;>euZAC3SFF`-;duXuVc=l9EA{bPcRHudI z^yh}L-EWD#)lJ{k=bQrDgD#oC?wX2e1JW!<{&vG~DA z5Z(;*&G&}JW|VSF7f_(r6Zsp*`1<{-ZRBWlt6YOhdGos@=EdPheb3z-vxB~#le&gq z@b>8Iu35+X7B*&?L^jbld>;M67~}p+Q{+j3a#BtB#sapR7Ap)t4 zqg9RwmRe$~(wcYYh3T0YC`9%coAm)Wa3`h@$2bx=THe_eBHPyb5@R)|HVXy(8KHYJ zX2Uybaw%M6rfeo@hUIWrs0P2Iwk91xhW@AHch3;kQxE8~sxH zxaXLNUBIZWG+2qQ`z}pbhZX1K8&)^UjlAk120>&WVf z%`NCy)8YZ*ywky zXa-#6mJ?1BnssWj&Mmm3iwq?~-Tt0U4ld}wdy1@07n9%IZ#;q`yw#R!!$+UK=id6E z33Duqz?c(^w*=v+B$z8`id43L^S|F8dP%$c?y~=^swzdVv1WWrr)P>+jkr>a;u_DA zz&)tNLf7ZjigPRN%5N&?1WB<)&KoPCO5c5$uiu|^fy2Y}?o~&Xp=Yx~q@wx+vb4z>J^aOQGV{@EB#CXy#I-B3usueN zWumjf3@E7*s`+Zz6QVXGvFOt_O%3!~CW595djPEaqB6GKH zYp{~U`6c~@6cTv6%d;Tp^EQC3$8W-F!<`rhp&V9Vyyz`54rnUeG%^O6YQp=xcAm>k824whZDyqYk5nwmP+wRBh; z9Q38k2K7g(?)Y6@%Hp$${A|}CHce?2q;mm@=Eq-#a!$c7Xbdr`X&*|Xf1FeX7S&_f zXCS#I zDYj-9s|v(4TnN_IUKg6S!$&-g@zKfLbq81PTDFOpp;7BQ}_ttxT2 z`R9wzB4ozDt$kOV`q6%+S@n9AHo}}H$&|6-yYOF-buT#96t@ORX zXFlaVFZ&)Znz}svYStk{^0>lYF1rSaH7UMM#MepCx1D|q0oycY3SBZ z9O%}zP&rG5qEMFyP*2Qb4TW^;r}!UN^pr+fPO8!#IIik^=6VQ8>ndllvl-+ao33qv z${;S{>4ti_H{RZpFIbSq1Hij>VDxyN#Ul9{8B z^QeD;CYd36{$-&^VHh3=66I$0Bs!K~#~lXeyPBv`j)B_Ggaa9%>Bg_oRA+QxI-hf7 z#E?SF(0&BQ)0i%}W(7L2v9YY`YzX1eE_>JzWCnI#fuUD95xfwv`&QL}Jp>sAQJ$@B zN~2&CM_v}WSCSW@DTk;Kas)R573}gog2H~t)bbO0#98)KRWhX?|HFyGZtm903K|dF zif6I|=8LUo!>n)mB`9(?pB7Dn$tmr&uoK}dag9m_jHjWDt8GimnqgcAo(d<}6-C{` z`JQqqnmkf!W@*GagTp?f!FN3G*EC5w3rs{~u(4IYob*772OkV+E-w7l=;~@~Yvp1_ zMjjpHQD43YryZ(IP7ts5)H|XJShPN3O1ofbqeHk{L920AUlj64EB)OQxZW?+o3JQlJ^Q}9(9#q#xK=NN}a3|z^3_5UiYkZ znm>I&Mh-b?U!>0>h1aXdp>EqEcj~GJZ#7Iyw=iyBUFEJ)y#FZJrXcru4JyQ%?@X2; z%t4zY;Wr)WLWbAQexv)+K)~E=*vpqe-9zAcf`UW>G&loqC*srTZUbZ?Mb`9!xiDHm zcCgf5UF91uwVhpOXX;1v;O?ms@~_lT%;-IhuJw0!x5$XqV&4jxFTs0?>_iF{i>&h; z(jzX$7NTuXce-_+6!6z@h=34FI;u&_PuR|Rt%96-*!H?&PbRqydYW_TIL67R4CH5T zHdL^FX|vmSUdsbG{)ZuF*(k`?4e0bRsl!o zQsL8UADwPO)c0tcr3{sz3Tq*o_sexo&pebh`d5@31jgfR;?8r%ry>)dfHpsf=I0`) zkespr47^>hwpOf=joiDULC1|6|ofRk4Ka%EgIASe0iJNI;&dLBBlcgI;va z^>pkV-WdAt`Mp1H8U)BHuJ>YFgLJO-mQ=I+fdq}Vu?w#VaUZ7&uFhwdafmvZjLc6h zil;@y8%jVxa<2$u*y9ieAHav5ecn6`h-m6}V*_iseB``a~`R2Irr%S+qTf?he@eS1vnFw|8aJMfsXR!R zpn#+DRWky=Y~0BUUDL(Yzlp)EThDPb(}_d=J;7k7BH=ZJnp_!}#HJt`9PrCpL zSCyoX65(1tdnOiO$2pCY%WsblRRO|rlr z9MZQ!GwD-j>Q9V|9AW#|jCC)BQQG_bWa9W#cfO1 zU|=j3lWR(y;~Ks%8WK`#&xXk;*ndo0tjn_nYBi++0SHl|&CnAN(DtnW#O|NWfSpO@ ze)YGpq(M&$XnwUduEz0=%If|ahRbqT1G;bj=k-Ot>qV)Q2Ml>#5mV2FJHg|;qjb=D zqsPO$?4jmsf|Cw@#Y@eA9;kx^a-%{h#CK^QJJl1|5HcmKv@fx2(2kx~iI6jZJj@Sn zd3&m$Yob}goG}5Y2dPe=bW?XS-N}Ya(fP zrdc6Qf6IRuuw7~ny~vBC_v5FN2Y*Pd$6kfVQ=O>2in-u)YptS?r&MN)B7IC`6f3JY zcGu%M45RHBrr6WHiY{1)^iI^6V7it6g$R`EU_^(#jT0$JtWI(swYsuc{&GjMa-EN2 z{GhH0VUzg4kcj8>7o@LQ#UeC=1p>8U5zMW>$3UCOfN2LNhrXAz(}C#AECiH@A>Si% zDX_!<*F8F1ZG0*iLuM7uibe=7Oh_d0#*lf?^+r%@Xc`+}4suPt^=SLhlhaa51M&Rf zO&+Wb%7e2716x4=DS6U)K?#~4L`6(n=P@LmjTNoq7ILIcjyRC->N=4r0JmzX2cPdj zvfDJ*0GNI3?zcGB#E#Q5Kb|E9g-USC-Zo37KWJ6>!xR8!#|5E_*zU6A=3|=AFPgvg zI}iXAlZL7Ap~8N1(%UV?*%;OWq3}u=;XI$Zgw9T3X_qm9VA*04p0qKiUhjdbl2lUt ztH;_DrW3|-c*Nkc!3&IZI|TK;x-wIwvP4NwIQ#>i^-L7)mbuCCji@Kbfl24fIpY8p zf!8mxFG6N$*X3almY*HuFaF`zs5c@dbXH=)GBk`?Tl+UrLsEKCPN1fJUd;{NmM2^j zVlEr1DjWER(UWWbV*FX;nsl)vaZ~zYVz>ZiJudE^Y+i^G$QAm#V=oFw<>i!tBE0lmE0zjyRm9JOs|8G{PFe)1n@cfwXS2mHeG7!pu#ViKxMFp)` zh`$UJ6*{NwP)557Dz4JGFC>1D)jTdQvZs`Kdoo z26)8?fJv~}^tN>1EIKJ!Y6zP^88BIPE+K z?nU3r%#5C-16`<<@5J4^s3N*ABoBL_jD2W%xtn~*atMGR-y>W|TlET|ot=J$FB>0r z{GZ&Q84!-xAH5!E92Oj(|C84sQqFpFW&(RR{q=El>=DUy+Z)tnqOU+f+6XbjROHif zB#&TYVc*`1&kS_=IwK0~<8dESLZ(91b8#0_!I?XgOt=8#x)w@{cljUPE{0%R@i2W3 zreukqj!cnv4oC~o8{nec9JP{w=b318lfLEpJHwvxvTHSahR@kHer>}-dzl&KfxeR3 zN+@v`;e=p10KO}jV0^aiu|Lyv&^8;O4sQQ~SpI@25r0A9$^hoWm_hen(4Pm*hnFhb z-V&Qh_Y)%=Rpwd@x?q?F)A6+=*!ZSxE zF%p!|t12ESd`z#TJB9V#3wbL0vta@wXXBbFkaU*NQ$!*~Kw;<`hLSttd(ZdCJ%p`WK{}PPRUM?Umv|3E7Z+o_ou2 zKhuxLku4(hoA%>uxm&ncRvh0QvpxXB*U$d!n7crFlfK~LDG;1`Vp1;8ggQegIPJT? zU7zUnEb27=gn3`3w)T(?>?To?pe~NjuHOlLnEkh^xd*;Y+_#&2P`~|@|P&&&$niqtY@Na_pe`N%% zi+Q$VUR=%dTpopgX>n?b`wKb{voJ>7b?)1HOMHtFFt2humhOq`qppu7_^#mE@YEJ4 zDw`HB@fVpYr`9(arjNaS3gAFJW-HfYx%>zmBvQ#I?=AcQn&if%ouv?b>k;vu9JpIH z+bh4)jt=GG?HpQV3)&kj?JCXu=ijoeqleL39<^c=tGEi8VFfLwXg<8CTfTx+sL4d? zAFqtwO8~t;(L1oZiTpiC+CvMVWc#)+ z;}5A4_I(fSD$gEBV`>H-Cdc@tcgnNxoD+fd+P@%Kb)1L4AfRmzZ_Wx1to^q~8vqk7n)dB0$^lr2uK_Uvuiiu^SBy&LwGls%3bz5hNMihVFWRwT zvq$%s=ft=7fVe)<^JEy=u95?UR{fvQYW@@28$dFFZt=dFkKTm=4gVw9PgK8P#Y+6A zL+=0SaPZ&B|Et40>8sIy9V+tU)4W$C-Tt^D3>bg1(!>uW|7jJ}RXE+g&GPRG{{RTq zo`>PqqqyKMg~R&ozo6q1ucI5>ZQ6gQev$e>O7rhfO=6(!j`Y>Sb6M-*!Ig-BvK`{z zH}Ai$)DL*X(-dp@5i@ZNr>-!!5-F6e0I?0Hb)a9b9e~z|`Pky);rW3c0LbJwT30r! zWF#~5ypif;$7oc?Um~B}EGv8w{*&V3)5tdWsiviLU+OKa`@zTDcDsGe=y&GgEcLJo zvC7cHVhv!vzRXSlP}_Mf??2w%F4A@e^<}2Dm5Zl)>RVji7ah;e#~*ejd+oi>m@_55 zdYt!5vQ9kR(nGeq{a{b+%*9@}YCDn-EG4;peBkI}{?aJvPpdVp z9#%YegsU8{@CTfzSG2?$sdURKf5*KxF%6dNRfVo{h!p9kblIwRdmFm5Dp4C6PxJb- zvCsSPbZh7IaWVu0b5Du`(L31+`T?nVecF$DbzdDCZO~Q{E?0NKI@#PW-Cs==%~>;M z#-MG1P>n4yLdz)|p(^YpZIQ9@fKWM8AQ6@~m7?D!QduFed zq5aVeFJEIP{f$A)+P7!AbK!Rm;~%@YJm0m~*D?PE1^V&_ol?KOYFK%wSjnW|(tbEo zOKqLc$pExnX58x z_X9v%|Eg+W1R3cHHGOlHzXJJF2c&=!-@beP7xY{mkkhIaCTZc!RgZHx&jWXi!HhXD z7}e$aRx;ihAA1L_Q?FL_u?Af=*we8vI*_SW!M=W5Xq1q4?c4Ep!vZT<*8X6fU>-u{6#c5Y^(Iz9VG zGkScp-tO}I7FXXUmB$W564J&pbU13Q<<86YNK|Mm=(zQP_Hv@t=vwwKs252a6GVLW z@2Nfu)CxNBN(dF3w96k07qMwwkrMTJRI`NeDN%GPB>4-f#f$TIKgPMo@He_Dr@b?i z(wBC^hA|T($fT0D6xXtYWf-AZ94zxPfS)IJLV5*uMPhTb9}D))o?jr6mRv$+a}YaW zAo*l&3^Jp*{<^3l8v!swPLy$(=vbXRO2>;pNzDpA|_w`DpZt*D7Yg?Jvkt3&8cfUMZe~$3F@vY3(OQQPmGgcF$}iamXt2SDe%=@5?k8?l*xJ3dem#4G&VDYXCd9%W>X{ zjWuNU`}3~ZqPx4Dr9Trv;Yt!LrSaKy|Fwc<15^%>mM@Y|T1yK~aT2SSFRiH2(4c1G zn7)x6ss@E~gnvnajhj62G0}^QJ6-V2)0Tr z#zOUu&#dTsg?SY-o2=hk52BFn+dgY(H?tK$f2*QiJd$X~)nBtWPHf3~lul2lY+b5ij z15=HI%!Nm9-G8~mE{eY*M4QhbEp8fJja|z`^_0B*#xbu1AhiT~h7qcpr@m#zfqBQ@ z=Mx0>jMNl7)aMm7*p1l)+9&FX`6mY$T(<=ba$2Mr6R4h;`&xUy3236%GsNP?mDnV!Zzz-!UhQv*Ii|L4Qo&o_(@zt?@JAyhSN%8=gtc| zkCL|98}{iQ!i3t8=H-x%kdN*hYS0fdA{aPvipHn+7^VR{I?4=;g|6LGZSby5$^q*v zfn>LM6@+npgj#)c`atnLN%i`fNmsr6#ByR4PGn>o)kVe1b$xo6Z4U-aG! zdnR!Fbft4-1^MaCk;}y=c2O)B^vP*CTywW7m&267`Z5EEjVfZ!p1`iT-4))BU@CK2cgDqir z5Cyj23>cosIpRp30|aC$g8swh(Q~)@sctw{zOfCA}(H;lS`B@P7`4_f8Obz;6 zt{)%t-%AtUV~)Sc@1AVJ0G*j9lZji-dwkNep4g}o{Is8mONEWy#^yb+{kwmteW-*m zCN7F5iMWy1r+5Ru9rNU(K%Ww*p@!$;G9UUfNa!i2I^bYtc$bk6N}#mwij{X{46C^M zG1K!Ue?{>Yz~fPM@*z9Ab0P)kb(Mi*p zK7!aj1FSu?)@s&A3IK?wH+@TM=1hb)E#TYzr7StD>GA6$vMf<4m;c{=2AcxN%&cf0 z3Q&OXVVJxiFZelg6cWg>O8n23!F<6aE%eR*-l7gXmu1Zg&~3UC7f751g|wXq7>z-u z*)ZVG86a<_PCQah+y$T$?a%WG|B)pco8KDrJ@$YeqNgW5}+)Re~{Pc8F4{>9M-iht9hA^!DSx?trvT?!_ zz4mim!%;+jdXEi#bbfJ)k)+q#?`)#Q)YWwKx+=;-6cEff)q-fn(kd1jY@`h!Kb<~k zaHhD2@`$|#tKOh!jx2e$!XHizk!GS?|*5}ka#O5%dV1SVid@Ro`{}REh0S#df zNl)`Ej(cAsAcGP9W}rYxRupoh9eOj_Xy~-fX86cE86yf3pPr=wLzyVRwCFq5bwkNm z$cF_mCg6H&J8Jlki+PE}Q8Q-wAzD2%rrt%hcXbg)`m!t{D#*5_~E!hF86aCyqqBf2RtmuXlldiy0_O`xwYhLjjdFlNq-P4au zv10KNL>eA_?4fh&%xiehoF})py1f~lXEcZ_B%swDEf8#=8UyU?TPH>Jqov!_DOz() zXX#3NM;G5$?_(}mmAr}01b{Z_AV2(!=XaK|1Y5Bax12*ZZ1+y|^7awK=XrjfdM^&g z@-WM{C_-pP8DajU-^9j`m7i9v&4=8W_Sk&GzLojjE<%*4bWx&I)A_x5U8z=PBR&%P zlB3}VSw`=OmYYVfXojC2j_?v;6FP2BpsQ35QtvcSaE=c^WV_C?jZ+35fukE;Om%lZ z*>5R2>m^xQ>h4UC#zQ?myv#<}%iV^YS2ha~v7`FaSvwiE*V515aAc4~%E};mnc07H z$U*_E`x3GZM1ip}hz*EmV)l{&c%UTUI*1JJzc1*Yd;R}jk^r(3kQxMT%!>9e!UG)R zCQaVHuFya&JptId{p#MoD_Pd0?>-&-EdrWuOwh;b?8W+@D)m{gg6=w|#fJI2ezLvv z^RU+&iV1-L0uQ_0cYb}WS~Z2)x72JS1%4<_VxdFL4eNc#RfvP*c8?}(R{_23MksC(5Vb*V{GkA z?) zN{WtLAXzw{nZd`_C*=;cj&+|I$VPUEuw2aU7^b<_2rnZQBzbYy&Wmg~vRo86rt+_3 z`QR^RqZ~L0k}(j%x62E6%4s|+*4wgqogRZHvZUJ;$N5HDK}aVe$EH@CF=ZZKA9IqkBD$i>?GZU4tpeH(^SCe?JDdo9E^1=TzTye7-8bLa}7Qd|9 zZ@b*!$2k>4Zx)20v9ald7m3X5Kn93M5;LG!}Pwi}F{JofV64hu&5EpG%?7$>6 z@*R!Hk^()(EOxs!dgTKdBJ}j`D!~l~k$%BHuS0j`L3&mKN+v}x{nzPsIy*9W{ct-8 zWV#9{nFw1zW8On6q6m94n3-IN{V6-yjOCdQJ%L*`43unwV3U~O2jv=)#GHf9*W=Rz zeT(~K3te*XIntA8ur=7f3A-I>S84`ALwGwc5mY)1*ad-g!QS$u&xhqfj^pyAnBic6 zLE(Rvh=gEj^?#wJsgMhV^OycL2sv+uEptsqxs%3ou1-n;v^gPr*|soSa%y#bqgQja zo{}6=etl1p7cp!r9r`PTe=n&#& zsASTWP=p6PGTl(l+?Pr>1Z@OIko|#_J?gPtW4U5AGK`doEN|nS91g`ODbe7AD0N_H zthdQIuA%4obbASsOXFD&2fMOTC@Fj*3Y)N?{ZuH}KQ`&hEEN$Z{xrjxMMQ9QD968J zv-Vxa`US0V>87H@vtHhs8ph9wA8?Beu!!8U>Jy&YII_`Q=H@q9S+?UN$71haU}!qx`ff* zFixhhZ6T^uN1fua8WoYRkaS>jJjS=iqfle`ZOuUCtcSNmGitwojE$Arx3ah;<13zr zJe3yoliq)n+`kCo|DQ#};q%pK?3HWS1NH>6; zpLF<&7=|layzY`ThVAw1s{z?{Ewc34#gV>^g7<|GX0`CjjuQ4$X?6$CqPlk;i)qUr zL=I#Kq$~JJ`b&yuL!u?^M#Qx21VPwai08^KjAXMa5gtUy@MNpSx+k1D)=b?2ZIi0>(Ii0+V=?8Y6QwL z!a~fLvQxNnlHIj8_Qmy^Ds>MS;Y* z>~;dFEjR@ds7?dQV1zFgS#J_hJ#URlXG3cAq(Up6laSYrC3Nhqgj}g=RDlSq%)@qq?lm2DZz-owBosJiT{W`4U4=L|w z0u2yowLa$qv!hzut#0A$@cX;4ry`q~9czabxnKD-;+tu5gUdOV!hcXqt)H=^8LN0a zR8&h-92JalIe(sitK}DJx-cD%`JS<2K38Bu@X;|XnZLx3v7^G6A^9H-I>~k;$~3Eu zU-A;j2|VZ(&GD)?f3$u(?s0X=8jp(2$h_#k>RxFpZ1DV(s^(P5xVtTmte%i^?qzy! z&UEEbY8N*swc>_;{?li>CB>spZ$zcWPa0Cm${qRm@afdY4nobU2nnN z0GS&h&HALBrOnBn?deAi(>vz`V{p z56+JJe+>4}J&nS2kj6Ppofecofl?yGiea|4r(HxUnH#}8Fg-s7lOAqCHaehcYo-;r zdw)hQB|1y)3HwD4@2O{Y^Epo%#WFX(lzh}LljRuYT{@-DZ#JaxNPWS6BRZ*J8cI!s@&w%tfnJjRYLK`KEHE2;4+$25ce zQ^{idZ|B407~wcI#RYb{#C#}X*htpM&M_JPX6etBpMxXvBjelZTBfK}?b>KpZ|fbS zQ;XkC;z}43q*_<6Ts&2p^aWQ194Z5BU%*2EI}Vah{1*p1MNs#U$1pe z2`8sQ@ZCF1iv6%y{(2fSMWlAjImOI|RRz}zjN+)OCZH0C@~u_+rwV+0rw;$rI1(gtMvSRc9RALic=iI82_=*T)B%HpeZ*tV)Q z4iuS~)SY2!X(GSdd=rUn(=1da48IZx23>#+x!+ps07=J?*0^8%0=lAe#>N-BOS^>Z zuE9>UTPNjf*IJ!`sqg4x+dcd7(*>F>qU&v7!CE-YdBnT9xu0%yF<{RA9MX9oot1^l z3Sk!kFx}gOJ@b}j>9E0^gRgptBiWSIIOr|3+^orWX&< zsS?v32q^Z_kY%wq4K}-j33*ZDijVa)vVof`aI~6jTeR@SWXyHSYkCY)O?~Lo?k5T0 zmx47)dYUZhDcZ=nw5x6ylAJomKU{KPvpgoPG*0#ft6G)_S(!2=R(E1L$gHU_Otj=6 z*Ic8{xaRI-5eyW=s!D)yjjV5R?hqnvjj45td+Yt8vJiO6#noa1`~o`4j~Jav zq3TLRXaj&Y0%xzA5)ta8_Y9x8Y?YAayT7zX&u3Mv0NG@p3pu+|!c7L2QJns9u8WN& z&M%(khYT8rM?7|>^vNMoxg4zX8*?7bcHH};sj}wPP7F2fK`J>~2lL(z@tNm(P&8em z#A3db-z$uWM+R|$*+yj1(_%B%uN+F%-Q4c8#_N<5T1IdyUqY%IC!7~&F9oQ|P!u=N zedC_Q#%!JRO`*Ra9Oxol;~8U?Zbr#ES}zCDR&Z9*?4A%0#_rVnr;M&&Aj;iDt4*JC zecst2w7;=+;?y(4n@Cv^?26cN+GzHZ(d#LRy^M}B3WR!gV6=l-%~-($6J=GCr39Zb z?p3J^=UL<4;+Z40M@eoW<|KK(JoGUdRQI#zu>`wf1<#*7ygIB6`ItuRrvJ%qzNy{; zlc2~IW{H88bg`#@2k}f;z>kzoBO}7G*5jNNwZwt}UocvSPCr-_e>R1r&4-GJ4TN-6 zz=<~ebNl^nP%0Xv zsb@|uRQ4I?!zA$N^}eiTs&DQKrSdR(t>@9q0l=4%9q2yl0B~S_6bZ85<*dTXNZ&w* z*g%^IJ+L7nr<83ED1`Mn z$I{vm?S2}vGtAp$7vF$_M<2V*ObIQvx!`v3dP|mZubKb&@~JL3YaY+K38iv1FmSgU zHm#LIkI?G=?vTQ3-=OWBG*E#0nY&11tjBmZn9EyJc@rkz7)PaRb&c;|iCca#Zi_?A z9)4Mns(|@~YM;zgbWdYt$gsJQ)7MhJSm}jzmVL!AVqX&bf?BDxaMdnkz8xV%Utk*V zoz+NPs>ICNVN=|;I)Fna$!^!~J0S6=GEHf#0*lePZw2)jdR@N9mi(GtlF;H6nZaAL z@%2f>P`^#8;8F#71(6@oFnQs)jG?#PCO}O~Z}U?krM#@=JMcmR-; zF4s>iFWZ3eA;<2xW{}qS{8@*b-ZG}SG~U??D!`%Lr8#T6eJGtPGGoF5K`&BZvs(OG zU7;^ala$0u5benkMEs4t{+`~FAgFxH#oWFn{`^nLmzO*&n5gHxY2*099y>~yjMfQ! zYEYl$WgX!UutW{M2TwFgQaacl!B4KT*qIv{St3PPovR@+^O`ye0VnE(DKvGD{Gwv& zmb&7k+l&kcL2IEhq%|RGjKTIN4f8+Jit|D_-^Z|`n>f5-$~nXK9U(LfBbLA-lhxtI zd?VAxHUO4W!jK&1B{52V6Em;CmpEANFn`ztOm36omFbX$s|F`OH1E|qnKXI&PBAd7x$dJx zNO~Fip;Lams!-OJZ~P;G{f>2pm6Pv44L?r7icF_-Pp--FkntWm-Y^91lm!O|D@d|! z3U_Rg@>f-eyJtzVqB|&R@>qv72G;#tFvs`#WiI0@-heQ0eoLu=yNuLCq^!SWnF?l{ zs0*ruXgEh^&G13#K>z#O$2!vCAVn&1#etT#U4>6Tc28db`(ZZG zC2kZg%*gu1D_%{JoOf9Dw$4-`I`>gnw5^Pj7oSQaW?chHUUAUA-nM&Uj4yKX8P~on zz}bqfH=({9qU$bG#QA-Qcb^DKutA_!5ci0sLbo+K666tbU{=39LI32iFk07y47^-IXBMrkp8K_%?(#*toI&Ycl>Rf(OXMy#N`p8082t7kmx zldUps{?5f-odkxAD5`9E-SQFrEYm$R@FufH0LctBMXH61f+Pt_+cV3P1fEqv&8f1J z`F;T!Bf@b+xKtHx&)bQjd+Ue$64~fQ4d)sQ#wH{dL*VrR?}Va$=na7r8-;XFv>{eQ zZZ2Yj)qFZ}gx={aF+6qK-1Oh;BHplFH+YeDv60c#TMg+)xbDte6sDz1mUaE%cStAr zW-3?BYYlfQ;IeI^jnj~S>!YY;Im}As{NjTFbTybR zg=^VzwJ=1Yu2b|+5rHKhEm;mu)s}2wpAUK#Yz&>Kjs|ddg0=(LEko_rDiqk?vCyi3 zl0w#X$tX1ulB0*sD2G2jIXFDdsN$H$G~gfab@67H5J`eP=TrMXm@sORuW_ zwTr{4DRnUmeFnuUCJ1%g657y%!)j4^bv!%AzPxlDm;`!btwf^5`P?ST*ngrM z`IP8GBt6yLj~?F~D=QyiO-M9m+3L#>g}VIC zJDc!kRLHkoh$H#^gNf zK3OuMHbIq+6C(rfE5-^J+=R)l=LEk;h!KvnYTx98c^$rLLs~W~ewzuh03`2bp1Yo+ z4%*ExXAY$5@M3T=2grTNN^nT0aXfuJV*eLmZyD8AqpfWRr?>^T;_j{iihFP^?(WuN z#ZsWS1a}P@99p2oJy?qs*W%I^+CFcdecpY>KKniU`+j7sHS#MXSu1nRIq&(AWmh*@_f8Nviz$5u~GTwX64_GH~=N&UeER~0GSBGKL$cpbxr(x;=dA+ea+DFv;|00oT~o0>eSUe)%7LIx!yEiFYvo!?(V4qjiVd@*88+-U^)_U7 zy4BprmtQ{aEai%QmugN7SomGUbdjo_JD*wt3;i(k0jq>4BxW|Wf*-p8Lv4HYb8l)L zFg`~ln&cxj+fXV7nsBqILp$7EnwB@6M&q5vs7lfjJklT0>J1gmds7H^?sVJA19i#l z>oKi$st=8IXj1;{y*66xsfy7psUbsgi0K&~o<_%vk=J>*}%^ z7Z1+_5$o1zBo$aV1z{B$61!0!JY{vX2}B8YLsnYs@;?J4?qHhC!rf~=&yGY;M)?zD zltcZ@nzj2P!)3V@8Su}pVpDu^!y%`|lcBU3+jx&l)f>sdBNVu_mFDt^U_F+Vg~i_U z23Y0SH@pumbIGd;)YW1Bx<-~CXsP)yF*@QdGpJpa7_=7OkFccLGbUe`Xl%Ot1qc9~ z6(Xd7jD@es;{6+T?!wa_Mub>i5riQ&PSP;sos<=RFIdr*2&_p#8z0^Xj=DxqZFK9np{E*>xK8`w$mz4$&mA zm=rh=gC~`ctV=oqPEJm|JMZ{hv9|S1vrVqcQN6=n7&o{;cWG;6e*E2_M?fN}5628ZhB^%y;H(4% zyPytYzF6y~hsO(*@+k{4xRj1R8!vsfSYvK^v{r5=Kv-9Kix1HJv7mn`m!*egpiE{+ z^0)K>vp}J;6r&uOd(Ba*Csh)rgtzj#hHo9oqJ+~x%4${Se2GSlTk7vxmsKbjuQsFo zGRB{wLC+RTDMz_F8rAWziBQIv8f)Bk@=w8W>9)cn8XdH+>dnWGEeOukmC1%6QcDmw zK^?LQmKo97>ef=PS23Y#5VWm853W75CWJ9E?upX7juwD0_s-PJp-Ue}1k0wEX+$~M zG0P&ZXV}0m45kU|sydF?fi!g+A$2y-4X+`iTH2YkPI;SBh>P)Br*zc_6X~$DFX-oU z9R_JjndAMpkIPOTPs`l-J$RW^q8g6d$woD9Z?^A&a7SBC)2ZU;clDncA6NPpFo7j3 z;r=HU!;aPm=WIa}ilCPoOOO7R`y@ZTbR=Nwk}~75VJ5GhZJOQ+>a83^E0dX+I|E0` zqm}VcktUE+^nWN${;53q569>Kv#eObd|&=!>G~I-dFU@dDHQV^wpYjcuzFW)>@de~ z?j)I(W`#J_FP>Lej~#yu7d)zGCbk#V=Q=D!Rc24nR6nD72jY+oJ&Z!pWSHEl&b)dAk7aCJxuAwRt`plyoS5x`r-NeL zHPKwLu+|#txms~Bb=?4rR-0}^*bO;ALuu}8YqbVn=5fHN|5_9>olXXHE=mn|d5Px5 zt@6T@cUcV(ZN{^!PQ#405=|{;KvO%Z8Z+Gc0rjOyZ+Z+XgDV|wkmz&>-=_^LE6NF0 zDLf;XmD7T;W zIo|1b^-5P{pEez~TKxr_QVV&A#H#QmW-soZ7Q%^bQR zxd}IV^;|;$C^9 zb$jf##KxyYcpJ>)(W~o!`>*pW6HBv&f``o5j=tb#xr+Sau9j8@Fm*RN>weS=r8%rwyCA( z$t`D7+n8>9oYoAP@`p{b3~di}qyy#+eMx|RDWyQjnq-=gx#XPD(0JX^bxNC}#kcnO z3)GcvqSndv;b(M;5SVOR;jSpvLn%(smN49JeP3IxrM(Qs>L(?STCLRD& z8b#wfK3gzg>VgAp=3Vmr7nV=P`wu^ne$-G{Na~S`JI`~O6288(o=@aQQ!z64JIb~x zDnCu(F4z~?r37Gi?J%T1_9ME7RJvJvh=s|~A2ubd`BjrwuS6yf{bR5|+yuP7B*!X4 zL-gf&wAHZf8J!FEcjsflPqJq*JwIMH^HfzVl{9Zo><&2VEf?b^2)F+v`wpfE zk~r!>m3d&mI15@7&ky+&AhXP?!mF!nH~Y zvC9oGuA3^%ebJ5HR8(3xP9Vh%Hr9>%xhBm{#vw`V=Yq4^sq za~fJMO<@Rdp)*7yBc{<@<9Sc2j?O5$QJCL-DPiSnptby48QDPB`mK5%=I>lH6O9dh zRChBPHr*1F@%PQ#S9<+VhKMhl6VH?v)#{8xz-RU#^6xnI#ezm38O$9r1ds}zyi^R- zbU!_MIPE-I7mn3%xk$bUiiAkdeXXz#W)wTRJ~TyJDvGYy^`q=bdC@;s^mKv$Y`GTI zHC&ORJ7ic%PpM4^k}iN5g<>NO&ZN~_$XJ%LXdkDc#qn^f*5g(;!I2p8GYppHBAzF$ zkyVzJHV9wL>2V6fePRB#LxYRs{c)YD#&qRKIZ`f#y4VhJyzrKWUmMR${@QtfmiPN@q2%`98z@j_(kU@KgCyyK*q`{XYjQrs>v~{sliC0 z+w&BCS+#r8*8yH;xGftlt`fA%7Ws;raUv7!(-GUo;H0cC?lXh+x08~afxDHd$<*daG$B}PC9|qBCRI8nGNHrM zK2;*IFkTl$k`nD21EgV>5q6LW3UP{RQCo1~Gn~?K>l4K{Wdpz%`<^ZZC`c44ECdkGZRzz*R$b z5QOIowc{UuZ~s)BHDNN9ctKgAT4Zg|hY?-%A(JaCuoS0iu2~fCi%XQOzYfIV#x&#E zxjxUyesbaM3_x^w94A>NZ2nq^123eu_$q-0#2B^|OrgzB2>?@xiQO~Wm1p?=5;g6S z)j?j3xb)#R{$M5XY21MN&?@u=--0)oQCaeWjj(f?!pv@Jw+*#eoKH9@d95tBP(E&Q z-ol?xc{gt7un7vK;`^*dWwi_->S;KomWC#wbUGQlxL2SaQAUJ@D2f=B}bKBxVh; z4)Rg|<$m^A@kEZMy*>3H(GWMv1@!Tgcn0fgHt7YOA2%05)jhUP?#NsYoqkTbt9ErsOj+c=NICd_3fz$p-YS zm@IS#*5^JG?TtbOgaGug#2t4dX*a|!ziE06JQMYj^&ZLGDlJjz)GyZP(m44uZ=YmD z$lk<>M&h4AxRORW7hbRKL*mk3aRNo?%0%}&>}8q@Q0BdU$~-eJ*3>Rxl%y|@61K@P z^x)hZkUBgWMDN6q{7mr^@Mxs1j5d;EQyG91F+ue9SlhTZtCoCQCr12(KA}bJzZUIs z#q%g_Mc<9$e>)Y@=9tA7Mry>@@zx@MP5kzCOj%!7w2Eo$edB{#ALCeeDeB(HiY_U0 z1rPEq_G_)W=TEX-dAe7vBc3!Cq1e3MRLsAjkgJbqT)&|*1PPu1KMH!G51rk)v-4=R zmxqz}4Y@0Sm`_bev3dLHDCKV#XU-l?>Z~`-H9hpt(=r6dn_g>%yZi}^1JFrSGmmsc zQiUX2lI1F;ipe4~5BWtu0H0N4f3v1cnqAhx53ic3f~U5@1zTy8n>Awf->d1dr_-+2JQEMP2D_Q!QAo50Ur*=PE zJ2X7n;AX#tdyZe4SEr*Zo4*>mQPjzTnFm5BML+D&g}tIMNJ(!;D{8E~o(pqLs#pxj z!zikFG1F`Hg$*tQ7B1O6(bM$gu@8VI8mTzV@5R_wEsPQ|9HPvX8YFG|LtT9u(C zT`Q1@wx3|sL#@$rhB{0Y-;)LVinrGENB8=Ju-|`52Jb&Efe^7Ea?&o5!_f<_PHhf* z5GewZC@QO?4A9DElriK8J*>on0K%Yws>l*Yr%Y8IC3T9F@236jMW{yRup!ZzZr&@o zi0HwSOq~Z#w^5SNF*g;@3bx`}v+h&3_;w#&J*KE>RmpS9K)26lH9Gq~FLRdd3?&tP z-0LLA*pOyAJo6-etz>ny!=^FO8BWVPTe7rRn2cRU^h$deG-vmz)G(&vZE2mG1s~TA zl2F7B<4$QH7-4Lc4+4WvDdWTz{Xu%w83T)?KHA76(Uq?JWe}c}U6151 z-8!|Z;N({v*Q~>HbrW6LXe(`sD@m3|nJmSR7yHB_De!wexAzMtkOEpgvYeq42s|Cb zr~k@z^U-k2R6b6m3^`M)BGY7=&`*;DzMj%ACix(phHuu6n4ZKfDt#Dnw>Yj#cJTcQ z6oPOGvbC?;4^jYAo$UvM)$qZ-i0lmL-%2(3XSW@MUA0N-8b%t zj~ZtNvyB-jD@9sJu5d`x$CL{-L1kQJf&Zap`42)?QqhqJ=e@z4&zE6@f27>umq=Ga z$xmY5$TOsw)=>oCD$F<*{ zK`}s)>!k9W@|&o3Yxg4<+>P5G9i@f^V++UeB#YDk-I*!ZtWFmS$Aei~VoXkw`Q$I*oB$w~XIG9BLVp!bkS+>od1-N~O>D$NJm??~1 z9aWjJ%ENmn$pxdrRti~t(7JI~fmztMC=He5xE;?V52HkOOIRAQ0KOUyPR3i$MjU^a zofj6pF;eT0?qLfw#Lxy<2i#ib{Hl{_d-Gi%Q9zW5-iab2>1dESUW(x=b{(rP?JaR> z%*1hWOQ5Y+^x7YurVP;Sn;JqtTB{E4;bXe_%7O#gT;ij}d_?5$@)*+9Afm`Offmt_ z`Bb}xv@m18@xCic>Y$$w^4YlRUA^;|2ia4?+K*|$X0ka?u^?68UY-o*|yHY(uVtWpzprfdqZ@TQFme0R>jwP0J@m~A#>J#+vV>> zlBj89rCowVrbn{w;-8{}swrcO$6%foGqea!2|%HdJjoa34%$|%G!C?aMWI`IKMI)l z$j$bCv}JRAuzVt)XRx!&W@jHK?_|xHmJ&Y`Ax+L>teKovK`=8hb`V>T;2W0_5QwO!H38J8D}^c zJdag#{MfNow!^9`08jt(jsBN$PCB!>S-mbX-p8CV^V<@_Gu@g)lD>+d`xEO9UoK5s z05%#KUHt;y90^4pt!+4XgYWq9HwST1k&m*Nk+dpX9&sg?fZ9ae6gpamU|8Ucn10VI zK@e#LH(uT2;_&S%q|EC;_^W6jD}E|+_*b1tDROmoHY0N53cx$8)G0|3z)26&LtCw@ zBZDNSav-~`5~k=8rhqD>PlpUS>2v<)q)+6&QZB1H6N%_T!$D3D!yal%WkVWIrJ1%n zSQL`C?Kf6gYx}0cMrJ`0O*IAu-yZlglPG;52V<82S?y3G=eiR_()R2CRAdFXPIXK>juu9b(dsYqRLWXB! z7w5x^p@%t-HE)!cAXyuZ(@J!r&s>hHxWRoBLr8bxn5ZTYA_rHV4_hj7qpvcpoG-krz zA6AuiCd6IDAiC2%Shr2n(o46kf}+@$8k{-;@=_Xi#$$ym7134I2#6i|KV-yzONsyU z3-dd2jH!#C!GY-`OgHG%~Vp&&w*5|2nWcf(*+5cJ#^?cQp0Tz%8!^E+o z@o?(qu`03TdDLR~z!=%aQX1b+qp%EL5PjWM_8Ui>7=p0XI&1Y#Lpyc$!o%*81ae%A zZXUpxWYd&hI%V}x(SWuY=0-?>iV+s1B%p`hYzUZb`zn7g35AQIm~*YEDTif0Vys$K z19cx-^vE;Jo<=3OC;~M;F&me#wal*c-+cMIwe74=vZ-^vz^@&kSZrz+#ZS(rSJoE3 zl)%$%AAi@VDV@7ye50wizUPGk>~Y0Q@g$wb_LH*(5es9FZxGU*QgF@n3irunGbD+= z#YfYnkV;pxb+L?$M@sUVk%c0JP9hS|d`fVs=YS-$%kpH0i#Po=F9^B2K-!TKhpJ8$5e>K|U zP5h(xFMw96<0j1-#yG%a+I;S9;4AZeZQpaLi?8KR$i=nr4c7N)yq_jXoEx3ZM1fxcD1 zODo;?S{D;|M z-Y6p|pPkO^!-?0r-N5^mSd`*+Il5y){})>?UF5mgl{EA9BEW?1s_3~caBEYYo67N> z>%?CGx$F~qK11S~3?%|#5bk!UU4d3Ng@<_hFmzwEFR?K~;Q+48Y@aRHv2c4?G9er1uaYJl^Oqf)U27uK-%KhG6@Zhbiv*8JA$F_L!Fsrpsq>*_fx@oZ_|chQU8x0`<}+MITc6 zpsLe2dc{Ja!12Bu$r*u61K-aB^=`s$q@kH4pkrCCcQCT7_4x1d%!PfunuXC9w>Q>4^HQ>dlFABNO7fIOh2eO7u^p_3S|K(+EBm~O zd;Q6%d>hq&uz`g{Y^;i)8;m`pj_akTs=>leIYt&$33>$kN!A55=}L-7UHM3sVn36i zO>!)3$ob@Qvz!MK@_ppa_L!=leiUfP4j1d^3_M)Asq{Y#8+ zkV7Ea#;SBf$ky!VZ(U3#4|JThR@rr{+9E_{uB=86Y%QXZWEN(hUMO273?P9%ySM`y z28WJV9@Mjjt~5OAb9FF79;5uOh9Bj(dMsRV3Z`$`-ygC-p%UYGg0Uc#4dG;?Qhnwx z#bY839*D_W0wG`H7=QCH*#g;NVSd!c4pRFU2og%8O2)!~5pO=RcZl+opi;_na2Qym zO=Yx%?HI&fWzNo=s%-ydrcL{OM`IBNDh{W4CQ~gR=ZSvdQM4}mJ2!<{mlyZX)4OFJ zPONqJdXjpvLl|$Z>jLA@q1Rt&w47EMu#$}`q>@M96)y|a+HWsSy1z)Z9jlT9Xf;Gb zov)T25=ee43-FJ{Jv8X60ZzHz3LeJUgJ^I$xFio@s_e|rPwF~5=O(+EEY$g?$FX8e zJ_>c>MjS6=FO5+s8^fU0S~L(?F#UD!Nr{)#K`XQ4>-TG?Fh_4P+9mw?h=NR}RFBrNQ${X}>w8T_rLmcqX{ZvRae^50He zH235m^H{$agT@edfBT2bci$tK593K#e=86FHb*K2imdsby26q0?0@y3{fBeY_OZ3{ zBL-2EI@lH4OBf)0?u|n#hZ+fCw**_GJ9T=h191yu%jHUs6%!`BHM&H)&>5yI-TU>K zX*vm!ny3SPZI`}lufjm4i^Q?EpULC)N;9*O79+z)%Y-D+vjJUG$Ql)PdkSbx8hZLm z(38l3I?B;@yp-UrayPlYMxo8ST-gTQkDZUH4G|nkw-IJLs z^$}V>nz7=aYfBHOsk9SMe?I0wGqGB|`+%-nyS~xl-f3BWRM*V8`bXe2S72bEU!UJ| z`_|gO**$mdqKx;jOjuL+MqM-qpF7*$_{e(6i|@svWqXU~pg1G7R|U-Klmx5WaaQmq z+1SgK5@LdjGi`d1#Fm+C;8H30g$y~d2k`l7$idh2K@Tqzl`B3bB-wkETN-YCwgM=CSxO?Al%6Em)Sk9$(!slkYX#ztn4;u@moC`a zEfUhHKz{1B)<+LNE`RY>#&frSn^cus-uX&QeL*J|US|;4*cPb2$kyccnm<8%LF6Z6 zRyR=`@lg%gCqD+#dz!p^*KbSNNxHNT&2sjcCFTpOfoAt9iWWT+tVn2vv7_cvWekL) zQs93X+@mPVO4?>7FJegQ$_j(%%XZX_wYex;P;|b)8s6IOJEvPRM6aB>CuGPDQ~tR= zw|)aVH1+lh9Wj5NZG&Nt26Wu}3ShKBe8Vm^I85VB8Z!q>axG|(6~@jXns#1Dx8Xah z(>AIjNd?hPcxWXVQS2yY@4}#>$u{;tl$Uu~+q+ek=YacCT+$J;RvRMh#_n%LO;Tw+ z4I^|3lOWVGl71nAXQlYh8L}zSNyp4x&vY$1LSEa(8oemZ90AB2K^c{fFl8~+63rCq z^aVIjtv;?m-a$Fg;Qthf6D{J)+{tUWoMNzva22K-6L)^tF{)q?e$wx6k-3H3`jSW= zk13HFc?(@AT^a=(u$`z5Xa^U~ok6{_dIl8MVZJZUH4U0+iSI_#^%?q+?N3(^q7z38 zVxT2jSY<0F0oB*0dsVlW+P^|tbjRZ7TkPgI!CWk;cd19P6K%S7nRpIA9tOQ=Pftce zRCDc$UGkTOv69s1NS zx*p?Z?y9Qo{6YYC^$Vkop+Lrzw**|nO6kXL8LjF>iTZ~2Ff|IKb1p6=s4&X4$`xvA zM}W^^t#GcRCls<8(!Ighy4X+L`5I$!v!RZu%i553Y>~0@CB1;Wj^uKoM6Jjxs==ac=!ttv6Gh*z@A;5ln5fq&i=kvoqcce2TWC^u zY;H*O<&zPagTpm=ADlAFMk76{-^-k-;~t*){_cfIWe42!r@jLHa>*>UMp4eNO? zatW(AwLO?=j3U=)jmPywp^b9~SWf{noP-y3MM;JLzNA|OEU=`LT8G=i=kEiS~ z`)SE0U1J8?Kt4TnPlZM2+Us%d{))8rNJ8#j_H^IaYU{jKFWYADS|7v7-&i$bJLcIo zG*Hf%U?}Pj@vpi8_r>TvbvITi2)Cl*|3~-q-u9nlCU|{az4$K76BDU6`R`ivpK289_l90I{aLUK$Tp!Dj zMiGh(nVfVUHTj@{hRjv7OOIz=S(V4H9qG;r7Jn(da%(Jhm!cQYwqE$9gl?kH%p|RT z1Po>yU5RrHtlO|Kb8QLDO_g)<0yHbluS~r#BQ@zu;ZN^uH86b)hKS%&zFzS5dn+d( z5ZWx1X+}Et`c_ylJwH9ERMm0M(|R&I+NY~p*<>6Pwo1BN5!g8zpR26O|7)b6#Q_#K$d`AoP@p)=||M&Q&eY za*PN#HipAtwC*{@0h!UPea?7ci^O*&alB=nZK)1Uo|RV8yj?dA z!|~VzzS=cGXWDff|NIXA{b*EmkHjF~-<1-U_T$(6c>RPVqZ zlM7oUk$}*{D1OM?BisiGSsF64aSD5t>ryN_dI8=IPv-@y)htCD)qZwM_bCCkBO; zX7dnla9<+ag+hKy1XdS@_oQKezz88X^iv5l&a%eqQ%Fcx-9t1gZT}>SSOs*2(VEju zTkQpLyQ@Y;HrhfVFY&B~w`|e`?tnEl!&fTAQ8VOJuLYh_0Uc3lnMV~GG%%RbcGUJd zkb9Np9gt986DH^|SI3@g{|L44H<##73+936bZ$h~+<`1cX7SHzPUa5HpI2}Af)e#o zHty>}*0{P<>u!9w<|&K$(#EQK4AwFGV|1M4&F>>=)w|SullPtPo7rY9M9T#lx|@d! z4RMsvGRJGw)F~N?lszeL3HG*XN2q)C)|mi37(LBqi`Y+iFF6@_LsOIE4)m$_VLFl8B}{|o;9FmK-(=9DSot18(rh^NZb6T0_V2P3F=@Y9QH z%Z^cmE*e{>3Q3aAW{Zxt+qwYvnA=zc_oE$LCn%ENN5)lW#m#hLxq%5{%6$#iX?IzCKtJb5&P!@)}I*n_P^IN?~v=6cfaNS zMyH7O?3nH&h%lrFn87{v+N_+F)&JYG*uRP@kbYrTcuy%7ni`?G7D5j#RY;;jBp*2- z`+H;hueBuy>6b!(=sfrN#7}wHY<_&J?JYABMU1z%(jfyx7oOpo7N<)DN2^53AG4aP9|GXL6B>pj-6m$0{aKQquE_DIew~JCW@%E-o zRL|EWR5A;ev)jy0E>UzRu#()*-`d(KXD*Lj>3MN2R_D1(^{t64vEq*up!qu2>_&v< zt-w$*7=`j=CgKUv_m08M{q@bCtJbf@1MUfD;7J7}+UkFO>izqhMsYPx!_i-f66=?& zVSU={?-8^ZI|S05E&rjnd|!5T@KLMjp^NoJ=z$4sq|}W!-e#y2boi!H&+^Zys{e58 z#%k*^JxS};M24E^S$Kh&i7(FAa7d-*bN}xBcasg{Tlc)1R}PU(Jkf)q%I&ni@Hg?V zeNPOTR8M9=zwlD;S%c%XJ8^MjZ`_=5e*E0 zc!@ceHvIq2NjSQ8d%zTvvP$3=KZI2}ZBUcllfT9{o!55S zUh(VnvV@{>A;Qu^g`7zLN?36fYgrK|>!^w#q7!boPAVQGn#+`-8n%JhTL+*UDcL)H zd#N%(zijWzBM50`z^q}$*O#Q`O-f*-zt=Td+Fd+f5B-!Zfm#wA)EP8tCcn+R(v1&3 zJp6OjS1e7aF(W;o0-^ZsXQ?qgt;Sv@M53$kX!Hp_Wd|ap+HGWF;>Y1GsnoDM;IUYx@m6%4bs)O6zHF9Q&4OQT>D?Q$A zKJ~W*+0~Y&KJ8Wum-%ncMhTSVE{zc17&DN_CVhsjp%cR{V%FRQ_>;Kq1}CHMh|5oM zE}XoW5~F7EbA7pJx4c<>T)cW;|d|^{u{>EHGY!I-(`)@bmP)~>R?rC zJM=TjXQk=3HVgJ&7kzv4`sqL}EA2=5HRi!4Ka!TC&$_H$3>}GRKZA_ts}^*dV3rVB zi$`{@j{{_E0-M^ESIz?q9KwB!RgN3opDDn!_w_mm;H~);#H==^m!&TRYO%VG$LKhJTYXMQat`$0br?W?>e4%V!`)u9@u5-ork)?(wy!E-m+_aM z&e$k9WykkT80vp`n=Sn8hWk<;PYQ7t8~)U;FcZ-@>q#1y_+DeyYSvne@4&mG-*E%m zAU1AfyJa1hG4wFco=qnJ)jU*#a8(F|4LtX%q&HSrgJo4=&T17i+*|Oxh|yZ>m?i>= z`^ua$eHXK<%?YX4VFHQ4?@bLc?s1EG7N`0;1eo8bFGA7(1g@*ya9at6gPn3afCxW` zls-trDGCQ!G)l4lbtC@o=h-6>NXte#!TO&Ms>piLA%T>~AxT?7NVCze|Dw^v{RIF@ z<|f})>h}!J68M_1wq`S9F&-7_nH9TosWUsuKpfHj3;6PH_26G?!~b%QQ9;)IHyJGJ z6e*DeLyW*`IM3KSIVUCLmQY%EG_yOGhWr$JvzxUR&a2+%+Z|W6>2`#CbEv>VlV~YB(pqem?Vl`S&%-wrhnGn#j*k*9cH2&9?ZKWK=*@t=zDDdx2d;XPrjev zbMu~Xds>ee_U+_!5S{!RezuQ;mPDA!K`Y=F?Pxxf*Q4CASFf7R>comsk62c{(LLt< zRFP&M0W+uyOH2rA&j(6Nm7HAOsAd+AvTH;qOR#Uvz7jXlcY0I6_3Y(zt|k(WNF=_YnW0- zvI06p;7i48L8y}PWSI+fWx^kv927yQ4KKS2XdP0OUFM!yh&wUTZ`~JHL;&`QB5J@DyS}eB~<2hyt@i=M}Z3SkvR@joQZnfJBX}PPxQmpOp z10=Aa5~;126K10>e}7(t5((X+F8mvhlHtunlSRPva+ z?so-Gzi`c0m$y5bSzEjhv$g(r>{|m|0Y<6p<|at6RoabdZoJ;C{2S^oKO!4u%G_#u ziwko*8-t4Ws@)-10f-`frrQF-ORK}aDs^wv4e8!8Nqne(Im|EHcr*WU@8cibRrrr$ zDo&R*qd^VE0s8l4dTgY@}T-K*l4;=@Tii4LFFm7s|0l{(rmBUsz8 zxHh}Ig0)fLg29;qq1#K2+CdtH!_2Y~U-}~PGA@L?29}06#yYvv3?1Xv#2nYKEc1!7`aTbakxM^tM;#X!JEj z{I1_sT57$2^h*Ea`b>LoNMYu!-9UqJ`j#phGD^%RSS&4x)i3sSi0BMQ5q!a0*`BwS z|3cvE+!BKgLG<40->}lc#dRoOFaw|wYzd!~bc^WMyq;qfC zZbAO9H8GazgR0Sv{}X6|?zlXPXcc%}@(#s<@bUHEyqz^9Z|CI=(^}-}<)29xY8f6{ z0lD~I$u@hXVjP^qxtF88NTBn(kiP&M3`o90{*Cf`G5q9*#*+${bv$mX)|G~>kwX>A zz?TQgQB&needOO!Q2!5=@;|)?eyFS>L#e@^X>(~CUWoOXOWTTR*Z!}W7{-9yg#~B- z=a?=#%E0Cd#~;ATAALJb`Mcg2Q!-&iBW)9`72N^Of1aNbgp5QiGk~QWOg=}p7gzXJ zhA3&1OygHzvc87T=igX&RBatYlOKa%9uKQ&g)&}}m2bnPAe@3 zR=Th6b53X-mD1EsK-AWBrn@8!B)A0l0aEt;((mo2Rx?eFX{ZH04+1+}`u2u1X8^9% zRqiYijB^_MuNgIT-uf95Rg0Z3LQZ($ONk_(9#`bwO}p+q#aZj-eEwC7c0`IaUU1?5 ztK@>d(!c`7`v3ka<%N~a(*)QjGeU)7dRWcJw=@H6pQkt_Us}U=)7Sbu?UaHlbYfVp zewQX6^jG~cqHPt=>Ay7w{j4PPnu1jJSpNz$tYJozoKY71tb!aA3Hc3jTJHT^o(fe* zV+InSl|Iyw0bEdz%wN3f4_~q!vc?z3$n%E)7T5*(VT@SGw1(c<`m?U5d$jWy-IOS| z1_#f3apHvGz!Qy>o_8>SxN`^4-W6Hn)|52W+@6u?t0OaRYs%_ZRZ)~pMa?f6*uqwT z?@2XY67xKj#t2}d-J0Fna7w~(tA#8^GSj$HCZnnLU?FWA_dBhM8(!U%REM4Av!D?N zGyE=QI&R0XRb|m8M+6mnO^!B&oi}IRdpI+lJ*VE^U~E zwJ_8%*~XI+m%gMb7Ld*gGh)E`oAA!th7A44t-&`KrcjSLAZp_;8~Y1j-S(~DldKKc-~hHT0bxIxtvqTIfrlVFC9 zfNe*3NXfi?w~EF$yqarB@Q&jOucM@vq_ihma;KIV1=hPq4=E>_O0<0iv|2{PR}K6t zPgWmX$?H7$nC-_Tn0jr^Dxg&q%q8>tS4HrX+VShj7UJhRN5G0*Z&Is}PizG{XPg-u zO=$L2>h{~sIO~&|CpY6YMb%1(J{aGVB4ULF@eR7H@1sEV+r8opzaoE!5}7C968Tw< zt|P9e@YiBE6j5wTO?y`_{+cOn=w>O?^m`aQ<2mK_D$7w&ph1NlzPZsypnaz0I^S;i zazT%^y3Vd*>N09{F($XzMW7-%cCOpqh?y}Xz1wqb|EO?du*w86yeE&~XG64))AZZZ zJg(er)!>I52XSsJet?M*PD)nIi5|0sW+0PHG!!&JRXu4t>dHVRy8rRK{%`9MBnjwm zeYE`9kH}+Qs}5gzY9!hij&#|6{hc)r-nbeR+75$msr*Kyb_0_r9(TUEYe>gUfPGxc z^J%{s76#0igvYN#I=EFPK}_`;6%sQ5BR4IBFCex?1&5nb8xWGKW;nuX-reb<%FfjA z&sISK2jEGz3qMFHC}qDY#XhbfQeeg`K>FQEopNb$03ePLjyjl)d;T6o@K$oL6dTLj zh)RNX)jx1YI$XkFZY~cbt8MyLv!&xp=kqzR>t_>*0#CW!P_Q5sO{y?teI-Kh0hd@x zwy2&$2uF#Re;9LS1ao|6%Uqpz-` zpTU8mOu2^?if9HiXoS201mi8X09~qV)zxsJMg?E3u=N~D5bvQ^mx%#0qzbKV8HUCX zRxrvXIH;|KDt6_P)ocpoB*rq54dLarmB7QgM&Sz)n`yS-lT@8e`- zV4TMIQYF0$6&4x{VAlE}{iV|aeARpB^6Lv70q)svFNI5y7vA#87A1uDKs@dzQoZSd z`l~gu;vP5?(!zRJZ1*J%WdaQr7@T&Ymp`iQaJrJ@?RCzKDmITbEj5jcS;nOzPyxWA6IF% zPf{K#&^gp>RFs2@+2cF{(IKLf|A(-*3}~|p*ENGX6pFh93zQZKuBEtJfIw-{LU4DA zl|pbWUL?WYp+IqW0u(7lf?Fw40s2k8z2}@cvuB?nhi~VpHk5h_JoA^55H- zb59+yQ@HYS6BWvpp%g!(a+v4T(y5IHmR0r_S{4e!m><7sPA$!6m)vkR)N)VEcTA&xB>a_GD37?%h)c}@69+%RhoAx+>iK5)4 zcBZ^h5-4=Ti2m_|Q%Q|6w`rZa9Bjx?^${pxK|Maw1FL5JL$3J48v0E;tU7JJh5B{K z=XcU78-0{Nu50o_O+H|&;F8~j$sF4MWk<}7LpU5mIyDpl@~xJ`ytx|w{ikHGOmo0s z)U{X)*pgNBxeJTfMB})Zyn#R!#&&38zbIH{FNa^=L-?vGC#4SY}3Fu9RO2`gugUv zAun8OWOkWX9zXWbkeYUSTv&w)`#PALSc;`*X%fAsMnBDOML42jlCT^N4cTFcuz9}U z!>gWQ`DF-=&w>|-^4s*OWK1%Z8TAwE~vG+Q3*=1-6Fyc_JP2pGARAiC0BBu9sDHgCPT&Tjk3;!$|=SvOJU1kn-WGKX{B~f3>h{V%*$U0WT zjrvACZfv1$kVHmHGj`vx6la}pa_ClD5`Rv%d83razFYWP#YbouGrAdUGIOZS%@b z!~nhN6>x+{@pE9v1>77rmy2CekRFcHOR04$` zlzUYCDPt0YqcjIQ)8VPqlq=Lp2?-`Kgos_tCPS90wqNR|I?M9`@hokRQ{jxUD3}eZ zE4mOa1}4F6iF+xulU+DzzMo;6E1V0^wDP{tHRfI4tV;xK4FN5mxdkmYP!k-3hQt?V zlZEI6Hg+(HZqi?jSBBB*n7!x<(#eW})^A|#g&_q2+>d4!JTC^xa!erR@Vs|MtspJh zzqF*1rkz`F+c93H$Y=ackY{UEfl(rC-Jt?rqVchRXTG?6_cne;|6O{iM|x@PH&Yl* zAcEj!=U>Gyye!UK!!Rq!E!@Zr#)b9*sPSJx)>gK-7sQ6oi3A;S_T8DG;H(~?wpYiP z{3>{s@idIz_Aiw~U*GD3j^_yS-0+JgUrEZq|KF?LD;0sh7J=;%U4S`O5f_RsC+Mi*M}tDWUjPlJGZpYa{7k zhrUvXEiY1wP*0HDdozcNAh}#D_LHJi8Qw=u5ds>rsbEz_dTP<8Br@P^-kWiTGj(E5 zD=uMu3IZBomxLt&N6qnwabBtFgbw)(0C~%Ir}+Mx;y7w7WSKe*yfCIfG@YLdY1A~c z<2`4R7L+EcNR-Rpd0P@L(?CWqRY@fR8#2I}_SS5YwvI`~^$I-sQd z1TfL4Z`X+Kzeu%g6@d8}6uVASQHKNe8*d)rec6!2u6r`xH_K4Pm~NjDm2TMz6HjW# z&5AbAm<%#uz&FqS3AVGtNxHF8^c?H2vC(-Ct)FsMWhK*Z8#!+c107i~snG7a-Pl`( zgGziVaTv4QN-U_njrgYxAhIUe`JU5+I<$<>CSZ@*Bu80}C!Vnf8Aq7n=iuA53Cn~O z5myW4ugVadSOgOw!6mq?I{N0!yHG2RAv>%Usfzq#&lIAuqyD=1aj9KNq?yO+h$F+a zWVd@S;(<>~AntQ`a;-0u-1|LU<68tit~9Sgw`>qG3WFHjl&gr6NBCBM^3-;~`7CBh z7&cRsp0256^dil+7lfbvrp^)Thm^ru)k}?iRmBpg59Ly_Cj3CqXl|C60SajnWet41 z&@48|zn_UT43HeF_MdR$(eJ)`sr%8DrM4o`_zeT^GBN=Xkp`xEq{|obda36*wk=iB ztz^yjQ5+sbV;u!Sn{!E%*IdGi4DVM=OQ#Ue)lA+R!+(y^5+cH+UEmr-{bl?zVVUab z5x3y#jG2XLcBHuqiS* zT%2k}VayEauvo90=Ae*e{h<&SGxj zHv6&zk_TnMu1<)Plu0v!bga@&vu->xaObQSqVT#24p1LDkp<-P3>}MgB&gMQuD6?%NgQ3-0SpMu$3&0 zYwBX+b^iPMFl^c}3q2K+Q@1P| zrlT`Q%vhi>L-nqpLE2H+S&!rbeU9LFTw}O|_DuJCY zZZ}|QKs8Dq|4qi!x*o2v1m&qsZ)RYreMaioNp7WQ8ah?o-qQ2Ba+5BJI%Vq(QthV( zPYqFYq5kVID?pLMQZHhJojxLBM#TYUs4SBs;?F8=(s`PR(qM{6Jy|H&u9bvI@AXtu zNYaigZ5RR9zN<#paG>g43u+CT&`H8)R*CjIuEe1xMouwb@gKL58U0G#rTc#Kt}w#c zp0NGdQ_23mdiov|up_(cKB@t~;FPxW#!_{_Ps4Ca|8`%*D1cUFQ_j=inH@3c2e4v!Rn^9V$3#{Lvq72SBo%{M=4y*a*4{gw|$)vkAB$E zG2x}QAs>*O95nsVk?uGm2f9suT{V>CsZK&01l1<)VE$QynJGQ$OPfe_mmlbwlpMe= zx`Jf3@#B(*I^s+q=hu9Re!>P0Q}jn7on-@XcqWLwQUY+(6cw&R`vL-^lnr z@#kA9ZhUGux%Pu3oF7c_~8Jzf;-!{;}{E;`2iQ(oUv%jIEDS z$&S_OYuSjp(XjWWSq)=fj)kob*kasxQX)^Q*Ws%R-3qrNf1M!mMMg~|%_B8o zY?Gn*TeXiR9Cm4rq}{{CI!;~F9G;5Q5fQ*o!bU0SN7Pz{i_I?EJ*Wxc>pJhXTPYR8 zZ7Xl87B#|$%0elSFVpmoP0Z5p-e{gppdW9B(`VUiVGmuI0Gog8amfi-Em^!iGhchx zr;((-3kOVf$DRW)Ou_yJ4}zPL{hv=3CFPu^J?JTr06~~(EwoLDmx)5|xJ9P}o{FZF z3^~K#R^2jPsvia7lj-eHI@aS- zKc-D)B3j#_kEd*=*vZm@b1#SQ%H=c9Sm|2mSn(Exyt7Q~6rv~}Kq(02d{P`OE?1?S z;<+%C;FIkz}>BSWa1YqMN?%fAF7DUd+ElTC95SMAS#d<4f>lzHh7 zB6MYqUj#2;O%1*#DOh3-{uy!)_oruuoA8#2@L^Avf*PkSB*EGF&(0u_x6s$->ncjO z5i0C*tmX^U7<_8=S7)14D(jx3mGy$4>zWVkPV{I`E9K5>O}=vP%8gI@<@N?$(OUjP~H{i{*Sk8Ie}VEIWDW@zx5R^EFs@t>EBS%O1!t;eb`A zb^Ek{=v<5jqr{{3qJvM zLX}>R30xVTK3lV)1+=5zg*(hRQt^v@AIQwMbkuEm_m(l;V^{@vSd^c{w?~pFS&^%c zNFM<)xM4;!4zt2GfjgBigv`2oAc^6BOci9#$E!t|501~)|2on7AKzU)KQjCSK&!O>->AYBXG^`2Bv~Su@IQd3 z-|n8^sKpHbZIy3rH^YF#YF^d4XC7TV=TFI;mCrY{&CRG6!y5l%f@SW#57wBG_SEdy zfN5iwg>xx&{4uh77c!%&qQ!Xs6{Mz@9i)%Tml~;*@F-M8tzweeiS|o|Lb#nS`~k1dw%ySF6}zxgsM<@5xfuacqj?|oES>>or>P4 zfc(cFsLe*?gz zaH_e~np~9)VwNPG$ob_)+5}V{YjLX43r+>l*Uc>U^|H4KTdpPM4C0d|n05v{-3BLR zmW~Do_)naqP{1~q3fE+WabZQEtzaW{Q~8&d87ncT7ROX{X<)#W<$T@yQKR3zAXFq< zs@<9b@j<0<$w*;5_X7T1XT8e;m2la>@)n>9tDgURXm$@uQ$mHI9^z!Us3$-_=vo#% z^#F0mfggmc=`ICpD+4D)oC(xABt$0CerQblu2GG&18i&c6Zu^Olhd62MkavzUaMeZ z1Z=`Pccnpia_$y^g-di0iP$n(YE$LPXAAP`D^2m#GsDon^o7q{6n`sn(crA-Uk^J0 zl@#$3CD+s5yNh9EH}C}V(mXRU0hR92kfD-^)|plE?~Ik6CaA1&mTu_dMaPI+cSOM3 z1tHr?q@vd~K2BbeQYE`n0#|m#fL6izkx`6Z+r$=Ci>7jQ*@A>lw=BF^m$_v&DQX}Fv57-950xd)!?I~8AHY(bpA*l(r*Zb}tEf2!^}!b3Hr?dC}v z=XFMA{8L2&XiaAqMLfPavMz*;FKrnKh!!Xch$1NE1sjY>G-dyhBd z+%@D=Eh3zt7GSi1NL!c#!s!KkY7cMxP-nai;n{vKW~7ciEl(HDJ3#LR3@y%0tr>{b zN3B}0a^6_`K8-#Hc6nVjy1Z$q$IZ71#M+7hU!y+E(thL=1K=sA;e{+!r~`XDd;$2W zv22O_@t} z`+4lZ$D1{pk>WV@EHGXv`kNx+Ay0!2G{p$gIsqlp@CJhh)!XG_!IKMKcseV<`lW1~ zFCoPdTT@i~-Tjgv0bubEFpZg+v7B73@=w;cBd>YAfamjR-O z83Ru){?YHbwZLq4Dq*E3t5FpB{-a<&+AYdq0|4ty7$JsMi0=%FozX=vX#EIU_V&^^ zGj%hCkz?+^rqA?Kx!09`z~>V@K#BE}*VPjNJ6$#{;Ml)%P6SY0eibsN;j|~(6g1ce zV4i@QRol2ST7)0XV=xDm=-s01ph4EpvY3-}C}9Je+|kyO{uZNue#Z%%QfN5E^BVbN z*jTiP;E93UVsZx->&Nw74^zn zy;C)$Jewn~Yh?nTc^vE`Msn)Nggo^Xw<2a>8ib<+_^GC#4bm}Pkj3N3Z<=tO(S?t$ zgO{Vs3uKd_N0W0XSRj}K7pw4k;jtR`?yo^Y@}MW4I7v(Ezb<5K4%%skFhC?|-w399 zUZ;O$JaK2T3Lp*~hDd!)SZXGrla=4Js>de)URtFRp~G7D*K|#d+qsgQ=SxGY$W=sk zi$g8y#X75;#Py&Jb;8S$=NcW6{F|QG#ZNB`#s&)=X~q#97!xSaD>zrxJ;)X_#g>?@ zRlE^Jxx(?`KgdBXaKGG+U;P#I9syM^#&aaJt{~n?n2^8K4LFnIcU3|Tb19#vIh}LM z@?cnIPQ}v;asp}w>WGKKKPElgpLd)bz5f9`Q88rrYUPp4+-}Mdk2L12N zVI-9%Je%=QEmLk3vsoPbUttAxA z4&IYl^5h4vx7`AzF6VU~p*K?J0`+O*#`sqef>=j7)DvXCjdV0XnUXdXWqcTjhjbx- zY&n;84@lht6gX{~V==p?#@Z^z4l49ioD`qF>;DEXL~jSsSGA$tepb^F{A9SucZi@q zc-RRaN+dp zo0yTSzJ2iBW@XIeFvD)ppCMrmUTF!z5SZ%Ulec{n0a%de;B5TvPCGS^T6(vp2hMMzXAotyu(U=USXHR)tTg!APajKpj}Idv?Zr$QGwTh;!bRz3a%1@? zqemW6XrAB8e4n&jYWaNjm@sCs?o~(SMoDsbBodW0h+FHsLRGiIz{`bn7(~{kR;#$p z;6`{%Lfe;Lmop3RN>u@)1}^JwBWwr&E3eA<=t#Zr1v2N0oSkEgP#8!$Qk`sn!CRZW z(7{rzg;fn)ULthyi`uIN;9Zk6v)(@zMblB}AelH}rSVFxw< z?DR$Sp6E*M*Ys1plNuFMW4Hov!ObmSkgMXc3yizOdobiKQc6iTa9k3N0whV%Vke3N^V&*`W6{8 z{HoT+WPR#P^*hX2_5h^0Nw?mSQz8PQ`X~+y)iv@{ea^v&UaR}pwzW2}$L8CJtt~qY zHcGy;wz~`WaxIbvr`F>S%fr_xucIFfL@5X5Qbpu>Lx1i)o$y>%`!n0zuB)ub=UJYX z6l##<5KPob=YF!?>e1AC*^bGRf0P`%u1nsY9`3EKoP4~+q#TWjjscGFv!F{f4T-0q z>B4ksgJv;gBCM%eQ$PQ5t=@cny%kYY6l2wUjkV9J&_Y&D#DR{A8n*wXOtp$|3g4}` zsja7ZsJdKZGNcto+1A?qf{nZKLTr?)?K_LeC-oLDXq6%j<@Z~BPe|h9?P!}Qo{_Qz zp;|i3&pe_eD^Kks>>qv-pyp_$9A)MFX$!B!!hhTHCbh-^QxQ42XfD~%=N^IW%twA?ow*48HwNCvtWIK67#Q0o(@k|hdR&60x5=~=XZLAofvI(ZX~RIVozXV-ipq-2aEdJ~@lPTo@J5 zP^(5w5dLmk2T|Cad$nyUHksq<7B$G9z)FA6D#jCxw^SSl*p85cF`S_VV|YM)K}!W3 zcz@&ErN45Kdh29n%WuStBF%vw$T3_=QsL#qjjbe@BijDd)1*9wArGiHr7^H6;ZUVQ)n6>I$3GmpB2r1CU9UQU?)+YM{oG@ghRkj8TjQoYi602x39c zZh{dizmlt{5OFM`Fs!bm-Q6zi8;M65yJ(cgf=+2U@u`Df6dK+P=_m z#2#~2d>y=x6xUAcO!u~RXWR#Kv0g)mKX=m8c=_U~gGmDtnV1=KWO6=HUu?LpNyE!s z{C#gKxqoM;&*;z|y~kO}rNsO70p5@UF!qFJKh-=ubbLp{gQt?uhSV%)XM>VGDn;_U z@skNBDhut%c4Z}_FZ)&%c%v1hU?*&9I9zjT7utT*@&DubR>5RZMbpPDR zma0Ra4WpKXexAAY6<P)$}y`x;oTw?a~`}>p{oSVw`sS zuJ0}5W#{XF7(-LYMax3%68f#zzS6IGJFpDvW(OMm`fgzy#M5_P#1{1Z=Q0?K6}BWK z-%9$Ytq4ugsxjIl!0t<-dinJsA10wmWRT#{;avfJ_Z&DTzZ5T(yLTm4^ZQ2ZvjZ7p z1?HwTkbc5tUgEhEVZxqTP%8P3=yLU%MU8qWW;OrJf22K`-3a^pazj@J97MrEeS_=J zy^SLljuVx8O%ljFx3zLAq9GDJ;I-zo z(`WQ@l>=xu^rbq9N}^ah4SkB_ME*|XlA?^*@-UB64T{vcu$9E8l4w6Ai40ei=O=FN zXjoa>g=u}Qt>o`SI#F9;;|n_PFd7dO9ZC9f&POBe6;jwtHpOjX<0z++w$BqD&`8GT zOX2wBuD<2T=djbDXf8DC&9jQ4e*h4QR&9Y2-W<760~H!o7tG1_|I6%;$x4~S%H0VQ z_1-d*tN)L7#(%PmQz-s~Vm1WD7}lb#EyIXF=Q=%{9GT#}a%3rdjOP#W{GIy3i(rBR ztlnn)Il9F@d<2uD5E&!H@{Yocu?ImNT%A?)7ZKVjJc2*4e*p}i5trxh$47pe1wPhS zm?Fo3j9doaLO=20lRh>FX{M-XuaG4$&v8BNPXXvm?f5!J?nm zi+#7A4FmL$7A*^eHg^*OoA(rNget!;8aNMVtw&P6?YXJXKdooov<12;@hB z-}8r-4{c41+3n{(mVGr46#UXzy2VCN%w@y2jA*AfZ$Z%I`c+Jj>!y0@mn_@$h`%&f z?TI>nqjvo6guY~5wn?yDVcO~S#l9AF$y@s$NEa(#uLAwI^hF~sO=HFGG6G9GNPw`g zSJ2-V&~AyY=yX3`__3@DWQ~hTSZFqC7Pf2sa!6jXB}u^L;K9kyKnTmp8FvO6Gi)W+?I|*V)=qpJ5Y{k~)wJ>9g!+6XEwrl^@IVdlMeZ@ooOL9d`t~2c8WgjVXLO5)Wpf*TO0# z7UN|3s>bU+)&i`%vyC{IlwGz*Ehs(n4~cvWN;)v?a8&S6#n{vfyuC(_M%4R{nCCW70lAr3(_6b{f9E98>Vn zrB1a}?W}q=>UZWY>oFotE9XdA8oI;8&rwK_x?l`sCT~6H`Vbc>R#7SNCSkv+b@g0j zs;OqXJ-?vENm}K+gjOA+Q-BfJ%)EbcHk7ape0I=K|KfXZ&TXyLifge!esj}xB z!=8*EV_hLq1NCAEQh>gO7Myeqj5p<`@NAzC>KrC;%(c8Sd4*|Q-(1ZvtZ6O&3E z=&eLF!+tc>Q;{le-JIymNK+{=3dyk6R#`fEtMKRPt9)R<1qY5)2R<3PgT6dsn}}vD zX^xwPzC`8W*2rrBU(*z1lZWRfiy0cycOw3GLHhsY_r5w#^jX_nQXEMj(xqDAsi1ew zSo!Lolg0XOW=S{AoS;DQAFJv=daiQZ&Gbm=9c{n*4>L4Oah%&XG*bDi}+1aZkA~e zw?O!ZHSlrZVG92D7*kdavn@4`0G-W@j^0{P`~_oPf~n>bb!flw&tcWX zX^~XBTt$9k4>_m)P=2!#21z4xXu=deon)<3#!i)n8&Ec>#f)KASV$eX-}&HhI;@b+ z#Qd{v?Re@%nTllv&2VV)S=Z+2p6E1BtP2w1cy;_Z-%cnH=vOzOK%~}+Lo*^!)X*BU z{DqUfYgAq;<~GgXnOR5w8`T(AOSfpVfhv=s+$Tk;sglRkNZVJV6lW!;wMkw3G&h*8=x=?}>Ckccfe!knEx$`%mkc;S2k<2ijtqalX{fF#Ww!}02pHD#;~1)`{;}I5 z`$VIe8f!T|eGCW+K_4xDicR{W&)QMPDogZ1>f|NDh19v77mkp(AbPf6rTv-zAh(qR zZA{+jvWPqNV?p(+I+*htsDiwYtyX?Zfd5pDq0ZU3-Nx*_6!T4)If{FKK0BLoW9iFN ziDc;2WT?_vzh!#vQHyiGbh!Kt9m4{VguX6}P=m7^un5?Xku}^&`9X%;lsU1dQR76n zk2&kCuAmh(M?wC(EQg{&83=k8e;VA4RLFs)y7#bYO2{T^>egNrpz#rwr?dW0{OBla zr!*yG$fSpMwGM1y4@hB?s$Jl$p1YO_i5+d#<`+Mc2_}Xfs$X$;9P^dr{0mQEFZnNB zeuP*{OgL3XeL~+qfB_P$v)lQ9T|AiA5Bxv;qAZ^u-cmf^Rq(q7xUdI~cOK=kA(A=l-T8TB(+V?7g*vpdIPww5M)B9*oaVAx-h0UptHFj zE`Hk1K#{FDs_V3dhPNG7sh(cb#IQ8U+m7}~o0Dd5X#AP?XbAt4J{`2uH%qC7{M9=F zmTJo+?sXoEsB0d8Mjri8^2pw-kJQ7Yq!zuIm3d}m*GmUj5GwU_eSFAH6jKE|7T49el1 z36nK()mfwE5kxZ%%x8qQllQ&$t@phAIq*^=MAXyYzRMyT$X&YrGkvWa6ztq1VrkiT zDaGt=X&9WyIvk8OFXs9fk~kphZ?xPV66oivN0DeY#>k!ce0POr7do3DbfbeksO3YL z^?8KiiB)Qm4o~s-p+Q0GFU+2Lo@NKKPb?@S`8QFl zF0v`28jT2{WaQ?tT@7yR`%7@pL3Fo*&<6xCXY$SEu;VZ17s+Z1+mSDn#YI+`S2Xs< zZxu~EK5E+Z%mkUQX)JQY$W_kzdv|Ud#EzYqB7_sN0Jh6{vJ}3KvibOOhdAQX*3tM` zmhz`Ih^3Odpb{Qd@OH#G$Oy5n?1H=SA>^Q5b0SwOFZkV^BsWfw5l+_9J;Q4TGzmz? z$K=Rz=^sF3tBmgzhXJSUq4PRY@Pv|2G@(%1#Ce~7(DO*M-@89=@K5f6ING)zoC6Zm zHB z=FW8L*J!3E*IF2-xp#=@S?gPlioMy7Pr4?Zo$b6oti~h}R@pMC%_v;*yrM1)&9v)2 z(ccfkfgBl;0`l6U9Q>o;eN?&a;vl3M^+j?&-HD3}Y1-NWd6j)XP{T#Ln{O&sYP)!l zkjgT&Zd@NUE0A7zx(!^YAj8WsEAa)Uz+h$CSBS>e`FZP87nM5+*Lf<7{GC1~Zy z-#z-%milx}>_EbUqKAnUcKc!HUEng)FUI*bAgzdX z*lTwt;Ax+!fcLi4c1n{rPLbXXK<(zU#|C1Pfz^nY+Y;)WVK6?^F&n?lWXG4vUtDD{PfIv21FLrcT54F5bvAv+8RasXuo>|u<@Q0mkM5=ige!=a@ zhjDgZ=sCL*Gl%hOEchDl6Z31f{Kk^hAV!b6Xitr=NtjMY%Kx|{`+xoXcNPE;_|H86 z_kZjGa91#gIt<$9(b+$Mll!-a_!!W2bYWS#7;9NtBh|Hm6d$O#iS ztrkb3ecze!*?wy^DKCArT0~LWOEo6s!(r=l7t3Vu&a2#TDeUpD+Y{4h!ExVp$%*uT z0L#^%aq6j5l6WO;zF_w}9%iMFdf92$qq8Nn@rSsHJn*yA)7Bx^kvK;8t!8m=2-hWE zd+c@Fw;~JO($pUi;45;mJafBL8z6rlL*2JQ|JxvH5@x?X&<{tPA+YMB$otZj-`zzjnpF( zTmx#W_X|x=%Q~YBI5+Hq^zm;-e%sg|f?hI;ViAvuS8-7TQ%wFIo$E86MqgsvPy2W`TNatj1Nw_dlLdZi!eS~JexM@q{p+GD z1Rq7fLmFRPZWVDIDKe{UP&~jPRXSN9?dCG-jM zHUg~r)G;Frf*yOTUnXv?Vir`jX4_cys5dm=ILMezI>gj7Kb-z&o%y2LOU9Zh)KlDqgrsg(Ri~J(v2qpx`Jc*# z^M#5e6$esP^WVe-;s}l`uOiia91t!~*(rx#we*i)(`3H!YF10}gk~{$1TVvQ;=PU| z;HipZW!&mAkWWmULyFAAwSJ$E0Jhj=vD@!NE*@a1+C)b5G~9}bv&%JnJK;1zsKbB? z{^I~@!usGD$tui0DowG-`H9Kx>r2I$it*d>=-YD6D?_Y>aQerXwRsn*0|y|~;}*({ z`fkeb$}7sCtkReUxZIHR(C*-^7GBTYA;=Bl;ut;jc|ITaUQU(8=RabQ}?qbUriD@gt~#?ioL;UVLmRBM9m~S*}d@ zUG&F<2P>#3YwXPYom}9w)8==*;+o}=uuR91viE9RKN{5n{II7JAP16vGiQI<_c4{R&nd*VuKFzWW)|;Wi`G7RVXPpsVGIN53{tHOxQz#?lS|m1nA1wUb?c!7 zrBM*9ReU?vsjA4<$b6fJwEW(k3Z1e`xw_C+9ce{a43>{`e&SJ+1n;b+Pge$Hk+E(? zz{vfR53HJZL)G8fPjIE+;WXBBwD~64`*9-(IGU#ce$SLxTJxZ){+!q}JuqkWudXKk zDWYRHRc*Qs?Npdv!qOM|-!4RBqtpPAcZNgXrE^>D*{#FFlcBYY@sTFFdO-==wizRs zhLk>j_UkwL%9L`aWJ-XA0Eo7&r7ndTmfBaRty8l;l4 z@Omdo%5z!PCHcj|mTNvHCHb7NekkttJUQlqZDa1tYnb-)*{WF^SWWUNceJ%GAl7~u7@ zE5wwF)*K6~6R^}#2ca?kV&=!y>UB8{ZfO$Jecp&>>_ql_MIl7-0hhx7-&9qeWcFPJ zq>~DwJ%cdhpcf=3pqp8Y7jZORS2eN$!n00=V~@xc=1~iDR5(#ER14T<`jMnb(Nws4 zkOvs(McKXK?jMB-i4v1QvXt{9j-A3rIe@kR$Ut#N#wqNB=Zvhb}0nU-h#SMeD{elSaXd!}Og;w6~y%cY+vxM1qlq>Os z>VaH%6=QF4HFV@kb=`J$%G0DEO|ABs;_rPfu4-pzgNQBxTqQ-er@WP|zZTFqedZPmoiX+WT$)uW~J;&sovFQY0n znH2#%w}8_}RTVP=^R2JwEmk+A&DHwR-U}TCrlbDkGc2NofKo+CtqN8m;x3v$@TlCL z3K*4Drx13+cRa(LqQ;j0LqzM}?WdkIu+frhy;-nmPxEFvSg>8k+a1QEAd!VkzB8+r z{pIb<@-2>%Tj#h@X6w!rA(4ToW+!Mhi8N1Z_Lf=%R9zoLyny7MS~Ja3;_+oXi@FZrzBZQ0CDQn!ua?AYO-7*LJqVVxSg7l*jNR6Mp`zCkG_Ouk zyxlrJpEx zz23DIP(S0F<*Zp#eU#4_II}^iMT_%>b!pmJbRo_fAEqc-HfrcsAzhEOertR z|GqH$4@v^hCtFOQH!OsN;NM{*T9g_5b6)kI8%4KcLNnqMvC-KReOQZ@r$lPk^ zm!U^kYb~|)_aI{Qlb!WvQhnETZPQ;~eCqsJMAAkXyO)CXi3@4b@Qx~Ugd;K-KHAig z38veMzPYK(Vvrc2r&MHSi_h9*aY6*B)9=cW*&q5FB~$7y+x~QTM!erHFE|X`WGL9d z)uB4yC~c^FyY=UHm&F9SrJQSD_NIvZAAnv?w8|bm`wszvVF|L(kO*=vrQfK(oSmHw z4gQG|7_mwGODI1f9XYM?tQeNfG1i`~q9UX|eSVZ|qK!G$=RsE!COgi(>{z)$wr%)&G&AnhKqxhQOMIXzG z`;FLmx5f5@Do(8XQ0>EIewZ=V`m1AFe~mr4hpMP0?Z}4d)&x-oj$C}+N(l1`PQ`TD zSVA@Ks%#|nGVY?7d!C~kc2ZtM$+qphudD9nf{!D>;TAk&`Aw_hmCU5*P!PFu&If}I z_ukr%o+kF4h02r9sOw~y(q9}2J9Mdy$~hCCwOdNfcpn)=I~*tJEu395nfGs(*P( z_t#U+R9K193x+z+*9-FKD}*J4CI&<{8Zzh-UgX}ax>$_237u-GBCd`>se(;7>{zP- zyS2c$Pq?hDnSsuHToVe<&{VLc{B%5QFA1CMcqZaP81ihVBs&G$a~2%<&3}<5PgeND z)46m-1|z}u+?`gf+4DpZ_Q0(bC9jFBx*1~axW+_?>_l6x>k z54*^wdutBYT)qr0timq;ewv#aqUA{#Y@k%+Tgy0?SxwVrjBB3^7CwYM-KhiBTsKVW z3#h{}i5=_@%qvnyoa#rbW%bavFn@Z#vci^@WdboWa<*FC#J;LQcuugsNEoVRej%Ul zkqw-WnowWPkuzUfU#bWfnnKRsQJ$1RJWx?iYDk_zO#Gr+S8TYPHG`Tu8(9)Tir_>H z(-#rO-Xez;sG~g<$%d&r|1Y}UDyprpT^9{foKoDSNb$C~dvSL!?(XizQe2C>6Wrb1 z-Cc?kG-yx$wf9+L?KAedOXf{Rk}osw`)Kh|Ale+Z2>Y)YDH2tAj%dIPoKC*|J);`) z!aNK}xmzY~L2(|Oi?oi5x)8102rq!7Q(&LW_|YngJ2xZQlw^U4VICyhj}vHFw&O_P zqC{lPf)K=}#Z9quu%KW~S4gcInfrqa?r_>kJvgTGbfW_dS+qY2o}=4#tt|6i0zDpU zv&P7)m@X{hvAd)Crg2ZYSIn3cIi`CJo(Je$794(X?KhdICY6k7I2DoAN2JmqT}w$w z3HopN`Tu~aRfqrrHWB}Wkb+;f)6*OZfX3WF!6<0X&6i*7p0aN2N&5@)mhAtnX{Gx= zTh(yfs;Yau4ZGUYC6xL;rynBfobnS^M6(>jqkX@Jx(lW;#ShPx=_FthV~f1G!XHU_ zIiV?eRhonEKN5R=D}u+NO*C%Lypv>!F!X`_0s_{*#w!*wH8Ppxn-!e2W=212Fadgx zs-Fq9Sq(5C4RMQC!)?Nh<`sqzg?lcFERBUpmhgD$1Pc2a~A z!Wa5vS-i<+Lx2-uJdG`(Z-#JNjqF+6qp0vEQA^rrx`*7)OYf0K!*JLm>@YM_u_R4w z;;hJ+1!lIuTSW}3fYr8k<}Rvc^4_bT(+-pk3YBc}Kds8GjF+COeiS+cw4Vs0E$6i) z^l7pr5E$;YoaLbD>i-}Uk0&PF(JW53a=qf7u$ib*)Vb0P zsTlX+zK_9ybgvxO{*k*@Lo-^2Bm&8ki?3D1{H90exlK>+Pd0JOF9iEB^1L%o0h8H%ydl&Kb~5^@Dl=m&l)C@*-s~-yR({;B>Y&W{lI* z41#&*?u)*SCnsnBGG-8P&lKWSygs3y8*wo@BhWAn83Yrt1ILw+I)fC>2GQj~?M>lG?vxYZFZ>wORxMK7NCw$}|@FYOC z)R%vrpU-igPI7ZrYKk!>duf&f{|lW0ALdfY;sLl)PMfMZOWTo)Q)ZdjXcq(9I=y7= z+X^MixUu2^9UK{yDb`7f+t{k3O>Bu1xzO{W*Z3TUboMjkEp#t~*r!6xvukQXf=oei zu0?lUy0XO6USbu$^uBORTvb{|oJML8gibD-q1vWpqyqEK2ZJUY89pBu`o{9?>rm= zpqNAlFTC|M`SDC#xDa(y#`^yIe*jeLH8iU)MRs+xyQZpf0Yv>&0H5V$owu;ma!+?Z z-V?Z5y*#SCLEkdai3gGR?b=2eJbBVHFeNN4M_O`UR?5V(h&}1QhsXO~Dgm}hAHS%F z_s{jf%fX&7YAxVDfLmZShC#7S?sZDDOW_t$K3{%XpxLx{;lSdwT!wV!h*o0I$YZ%8 zp|(s*FD~dyaX;#?f(`5G-j)>$b-V6T8Wmx1$jGq04XswXdV_fo7v@qGl948#DU*-s zTz5h(cbo+fFz#V78zO|}4IJ6v3`Dm)y`?7F_W0#^M+>?qDLNl5DXS>mw7ia07W zu+J*0|JgW@(;f3OJLw1xi>{;^P7!Db3)x+SKNbqm3-86<=K`GRF~md)*#SvwZl7}z zuqWB)x>eYR_8nzN9I~yyDZG9 zK(V6`;s3A7;(tGfk<@Xn|2&pSWO=25g*7NCY6%Ad3#JS0lFU^v+07;O(-ygtkuP3U z@qe$83Ybgwe65(Q=AhR>0#T>_A~foc zxO(t)u$^P7Tsf4wP=lSOsb@{0^I|}^x4aoz^9&7JrfSJW{7Y0+ug&kGn6}Ri(+>R0 zUeT_ZlPU&T{@%t>C?T8m55Uc{o?b>0a`D;d;JER-05?=z5H&ZFZNGcU$l3G#$4-vk zQmf(bk)t>gAK?>!KSbOLW7xxtDyvlG=FIclIIl^(-KK1GfHi_P;Hb&<38fELQReV- z%ldc3PPaAD$~ag+F1kJ!=cr;$=+|R%gRV8(d1+9iuf|bV)|ti)6hqfV0yHJ z+$}1pmAC?sYcbt`)TeurCBj%6GPV<44W`OKDQ-BREe!Jl%W-=42kg(san@$dw=gU> z0;e`MZoscuK69`>radHZR~q)phvJq~EQ2DbAE=;yw7+y~9W!wGAGza>V?KOK!DzCI zA2TD?tag!0-?bZIPGN^BufU&Xoognhyo~avizLN zGi9ATSZe;YfEifpRG}-iVl4f$N1dvyFla#dzq*PKCYUb<3>I}xYpZ>G&cHuWwg%j?=KK!6_-rt`IVaF)FMN-fTU`< z#!v*s&IJ)kb99(IKAeP15oqY&-{;E^q0-GGUIl44;ZOQFV!0U&!ElgOA4>dC?$XPa z@J0c+KL3uKC>9;_zMU(#=DKnsz{9SSKes{EX-%J+oS=eE!XvAvk9hcYt|BIHbC#&2 z7e!Ia2?bj}lg$V}$Lj39T8`p^qa6>(JFG!d^#QI|?C6wHw;^-2RWvCUn|vt_Dps8A z5eIeyBrtcy##u3v98?n0#1fttDoO)Wo>hr`iJ-3X-hdu3Q@%unWIKPw{D~rNl}tUfAXk9h8PQLJwa=0`t2EI zBjwbai_~fhMLv#%Y8H0ByZayoea!)U>@hWf`v=m%YF%(w*A{Uz@PUT)cM1#Cit`Z~ z#;eo8@T@E_k?7$pT{r|>Ei7VBrum<XO4S8(k*Hr-gG_GEeG;!B#%j1m^Eq-|bu+HC zk3x}DUfea9IPnwz!?3qW3X1bbNoxd2jyk=bVCDJrDId?-T5=Rdojn!1Pjd|hHvCPR~FoSGH^_?43Sg!7Vspp;xH~o;GanOhZbF~*DPG3qB&90Kp zeUQ21qRjkBMKdmGO-0j^A{ax)V5r6Pa@syhMN}nfHYn;S=_3LL2R<+Hg7SjdVrhT(r%;MZOpZ3) z=|rCLci`+K0uVtFrE*FU<-?aA6EziA5a-cE7M{OZ8vc4+${lSx(6` zneSYQQ&1r;rE;`!7xDt>iiQ8z_Dkyx(4j|EofeUi>Nzfj_Sn!vOL)a;pyfJ+?B+ng z2PXrffCI56sKI>qzw~$F&6MGXHO`DJr+%Zq9*W`A~8`S4z z>3rWBKB?~nV4yMkhmKUQ7*=Tkap@8(r?suiL`Mg2W>e3k&UO<4#Ucg%(JpsqEod=| zHNdo&U{J3u9`<3c#;_&e3xL}{8RP-ymx(29-vB7b5~qdwGI5NQczP)AN~vP@B$W!F zaJ+6XR^{#!Y#>WvGqa!<9LJ)ky=c>U+J@S-4T2S}Rxqo#MpwqSWPASjVDFu!Y;P2kq4AZ)L$@^+8BIq47GWIYu^hRX9yWNF zQ2WBgeiRd0epOM)_V~<)T$B`dN2bFBmBmuw6ix}Au^lzMrN4(wfq**@s*nC~wG7}u zRWX4$fjZG~x=3LOEcw|KK(w%UVG8`qigw_l-7EtR)-r4asCH%f)|IEx#xTMzOC_K- zw@`l?E-7+_5&NV?Mo;o2KZO!6C-J4sI@nwo_B9{^iFnef0h&hE#fcBRPg| z02J6`Vw3z$9ZN{UMtQS}q|U*&3z-elQki2o;C<&KcF*Tqn4ftn7!JGcW}6t4}n3=+z_=z*c>Io2G8rD2UQfPVwanme^m48@VUMts=xH)|{*S zixqJdzp@YIjMdDZVxfh(R&Z{w#NlHk*ihb~cX#@3UA(pZ$vyiYU{HtXq0uT|_pNw8 zNytgkdzfps*B${7iBH+`jR+FVtS5#>xc*VXFJOuxQf7BQ2ahXaiy&W&v{Hz*>@5A@ zFHd2q{bA_;0YWGXqtHWDEvRe!#_|d)cyNzEujl2Gw^pMkMdr1RlrQuQb(x<;a5r>O zBY&t$Id?5er5J=Bq^e>m2>u*u*y3L2rot6>)G|rWc6VjKb!kz>1-3OFxIgrv*}HSY zyH}Q8Y$p0}_Z)#_^1Vo@l?c5MO6$Go2LA-|nFrEjvnQxC^am+rl`3+VE2n;)&PnCL z<)1wAo8eVrb>I|I7FSvQmYW|a7+O?VM9P4SA>+%!KS!->;v0qI&py^%B-iu^-WWlS z*sbv4YS@#nNtt^YhR0tH}OQ+A+jH3@{a3YD0I^bDUpjqrj-&J20N&hW?&-6CwSBm0w|O>?8Wt~$ z-p+n)$$8$2fmT`Pbm}Yfo;>QHR;)z3CkI^49cpd3&}Fy8v)cnGu1G(=S5hoYg$H-$ z)gHoJWaBL`)xI-Mcb9{;65@2I6U)GtX&4_AScisH$&%Q6O5jKa0JC{k^iy8mAuNJS zZ|u$Z2_*zI1z-2i^zJPSt70Yu=_hYS{(2UXT6=;l(tyL5+=Qb$7z2wuRd?$)v0rX= zphYs|{mkb!Z#HS-o$)Kjxa~|Bhl-^14=kvVY>H7XMPoOxXMD&oq zhM>H-NAx&QmQ$Li3R)y!R*n7+ULGV$_))5L6)LF2mpF_Y`a)4)orC3TRQ;Vva7wNA zKE>`I;6-k^%U5L~Q39g5*M6KjW;S0O!$tZdrU?5VfXu8~hF6=aFY}O|b2>G^LbuFx zu0!62J@!FrfVB@aBc&A*>&)_`S=QuP%>_ZVwtL0&bKVth>FA-pM=5wt{F#GZ`3NJY zjD<9{-$Nc*#an)3Q61`D3zN`}Ciqk^ z6m+P~@}!|xxvCcHOeCgAaT_ODO-i40oSv|hPZV7~;5f<@N+mjgmhFj4o>JKMy8>%` z9HXIx9J;ryq{&MRq?Si)~eX+wuoFVA~BMeooeqZ8u?L5?)9aHgA zN=60xn*r~H6{AGWj4r1A3wpHVASiKx4`_tw27Ft)_`R_)j5SPBKB4xVwq&j#&wlaPMWuiQxNATGUzx(DyC(+T~Z9gyCV;!M|4N|1bs6%RZrxyQ1 z>74x6sj@AL=L~HW+GphP~^q$7-3{xqj>)y7C3RihJEtE@aeRs3aWxK;tgm za4Q>m61kAODU5F#iaPiQa8;vmkxh;kqxG)kEo#Sfaj}9Szg=?E^KaB9BMugC+$=nv z<5{d%AA2Ee9d7-paFl1?Xl%K~s_}zv`vRqE@#Efx+^qt}h4Nff;vgJ(TLD#~N}-BW zUILeyK+j%YiWX&DVXDU1_U5f7hYWMvQT(W{Tx(CZoWRYbbuDSV#@5npl zA=4oDY=TxS_FXlG<03;}<(>w<}tV%-mE_&dIEYvmQq9D6ZA*QL+jY) z@{6A0@;leFbl!_|AqAi0u)OYQ~bQ8~Y7_{VS#+tdbq`A<73-_~IadW@97Q-YC z=%7Lq`MwqOyxAP*U}$gJ;HQ86m2DZW)D7fNazt&1ADJdR2Km`=osaI|we4N~jE#S3 zXc6sBi^}%zPKGf_30&9jWm;rF6y|@CBcDLS zZ$k9{0K@<3SN65|PwN^KsWNzjpC{V5c0ZF=5U^?>`kzbj|9p%>|94PZTLI}PO~Mk^ z=XZEZ(kT77YsH%UXmo^83-(-Hy{ZU(Xn*M_BL93#%-&4%%Ax17m3?wai8O;wXwoJ3 zK5lBEfnT-kQye{slaBkotyKdywD?7yPxZ@OxfJ};RQ80X72#v$xaIm7iQ(eQr`{e! zcp^jB556sN$J9idDLZ<)Khz8_4m3H>wUw|Zt*oLv2v+W2S_=_C4H*PZbD1w8?G~TA zWhA2p9RuS;^zKX0V4;D|zn$zy>C6wX*Q#|!Mq1zmgNxe;MTOyC7Bnt{!bG+#F-wfO zOlx|o!e;TfmkB<%FY^$Gip8+$JljTd)JPnL%P9?6j+OTuz#?)mVXt|8`SMx%zO+E% z=30_N!3JQCh2@`Ch|pQc*m7}T!c*F@H*d=vrCQK-Q-D;lj;qZ~TE%~{LRx1DduJ_X z!BaulQ@R+aoVb>LL%&aZlZ%{+v3*@;9IDI1ACrv3hwGAsK(_R)g|IH*!05u0<0_>^DWx~|V z?Daa4p6!uWf$aN@9_1oCZZO|mJXO$IJAKV zgz6QLaCz5O`law$Qbh#2Uw&z(u8mpRoXF++gP}ZEb2OXoN9j}K&J-SckArqp=pG;W z7ty-5u#Wo481b&Kt2SkdE?uR&;{aftQ?s*hE-*PMtCyB*Bej0;S64vXh{O;@RB~U0 zhkuSBT3SZ_e^Sxn|BIH+Pe=*G>%{Jls{cEKN5$~nW~yEv|Cc?@i(U;qjSSxKJk$&> zkDN8(^i|9eaG@&8q}(9~;THH{Dm>M5Nej}`Y9?vscT$s9dAGD!q)qwUhy+KLoaJSm z%GfBadWk4rsjmDP%_g>3trhsWAqn7E6)4)Jp@+`art6{%RmBQ#dGC27ZTxp41^Lj3&akA# zuG{Q_H8KI*L^{(If>pT^f!yY;oP=qq9GU`8(O+4SHX|I0XSS8~Encah)l_h(@?{2pT13|RappxELLxI4ip7W0~V?3 zKENyh9(VeoBx3ab<%iI#d8fmm&O^?w-^a(F%jP$(@E^}R8Z3jc3@v69McszPO1dw%!t4imwQ^5NZBWF5hRz2hX&sj?2;Za3xGKOVF}A=zPV z0;mtJ3->3{(1jfXdsE(n;)7i!_10+o=B5MOkIa2i^{NXK=-nfjD;n zdL1|?sg&Old9NlPvJ2)DN$A&E&K|pxZcRj(SkE_;)ME|o+2^K?&mJ!Fvn#UxWSwrG zQ*JfP`8YG|{3{BZxYXzwQ@xGyg6-%Z005a99{l+UOdg>@Qv*f_Es^I>0SA;PH<8v= zc{^i_uPoDC)9!vu1#|Vc4R!DNDXPW%=y>6`v!gWoLs^f%QK`7CXF_@!et~M|a{aQ` z)J_%#*42W9^~h6WR^gleswgA7k(fN0^eH*dDT?OXX#|aR?U!vSx{AD$a3#jR24n22 z5|p0noyvH#O}u~cpT_*_-bVY%c;W^U(`akIF}>a7Z%MQgG%{0P4MtRP$(hcBI)TmB z@$2!)SioP4-2BJ5{6Zxb1T(U<|M=|sC;ufU^QRrX9_~+3G_u28sxISWZpjhUfnU@A z1B*O#2!Q3`nI;e<+a~IwgIL>fX@hZ6G`;1|F7eE_IG*?d$Kc>%ekER|7jU@bgUQeT z0jeM>$Zif{WYk?Lo(Q)lEXdS<-p|k&a~`yX1v|^h5g=>duzgvs{=`dDX^ef9y`om9GP-l`?sLszP z3@S#jP9at>xl(I$({J)EEaZSYg7mBxW~*_dYf0HZ7JhfP8{AYRPhl+25{(1zYi+;4 zmOnqu;UjFF?)jt%cnplZC%B{wMYv9f3L!Mmbl1l~(G>6I3@`MCUl&2hef6;l znQr{g>eC;6zk;_1=?s_neL#Y-d2(>#W<(e63Y-_eLxp|t#(hYR>V(Xzk;zFRbNd5b zUknv^hlvAh{s+Hpn6g`gzi2_3SIRf?s9N+g=op2~#=UQJ%yAJmM zvMK^*$EuyPq}lVmjQz(25gBtX6tUjf`u_ojY!C->>TUjBXG!jsM7Ys4{x;jF`6-n< zCdsXhL#GE06oJ2|aOOW&e#?KS*xVL)E6yv?)?qxf#oOZg;4+i)VY(IGANRgF=zf)7 zcc&V|GZc^eu%lVpTx$x~prCZh6OF({E~EZ9Cp?=aXHa?5vWw!^nrFK_#j?wH&!QhF@Kp!utanj>GR!KdjO`uWd{qie6Cltvr{by(H>4o_^@a zgbSqRhC9$6rxSw4+()iyK#!w<7~sYes3gr@h1XI=k2WiO=Y>jWOk)xS>jxyXjT)vkP*# zhQI4pc+L2j7(*&hctXHVbR(RMqsyiLo#vHq{vH2S=2{2hq1Y3O;JAsxHX4VK^#C&^F2-r*ZVw9e+kLyU>4yLL zZQIg*K4#^n_8%Zm)8U2QllfI(hlgW)HcQgLEHzuEr*%cJglTwz^;x4yH?v$}iT`$Q zxkm`yQ*n2yc8?TQWy#+DTu$7i#c~YS3YVCIG8+y%^Px(1Sdiv@5kdtG^AoRWW3zUa zX4Mxb_Pq#aBxrv#-$$8^q!rs~h;N zqL*NM7w1MxIQ-m1jQI9yI&#S-Ga79B(9&(zjUwq_g?`iy^6OkcCSoH`nT&Cd{#AOm zkp8s3PaE!vfeg8P5xZ`@-@Gr%uXK@i9-F9#e!OO)Au)&wP`d1;ez@yPc%LBFQir4~ zPEitdU-YXp3A_PRy*<`y zWrrBv1KtoB(k$o^hP*G)l2J}Kkc*>kG3(iW{n z9REO<1Zye<7LKx?F8nIP51Q8jtMLvTAb+1YAunnbaUzxnRbrD{_DR(To$J)qRrXB> zy~Zx5m$WaQhtXQzrQ)>j&$z>o_Wk4EuVQ<|83y6OTjP>p1`Nch&6)`g4>8xmh=hQz z!u-p5{!`sJjRB;aHaZx9nl zx{*7?;P+_T=Rs3>4pd)t*gkDR4^c;6>iY)+E?vnyJM_5tuZ_N&F@IB^}yq5 z+;Nv`RQ2toC5K}ARD5^n-~ZQwaz2_QJtP0SDsRfS0GV2LXFF<`cJ7`^kC^qHk=p`Z?J@ULSU$*%N=sf&J7hD?KT9%zN3|p6P z5FrvH=qr!u>oSMLf*%Jo-|0H$x=6;YEQ+<7wwu{y88>iu;#+W$6r6^n2uG$6-739e z6y#c=Es3y?edKr@RAruaRUASXl3pbB9OK_Itd)bt4FNs(@ExQJr|KJQf3gXYXMYFyP`BQ-fYlJ+UTm2wz($6cg|&m$Hkwf$5qMPJpOCtzTCQ+jeZi>__hrL@UDHK>n{Lj5+J>4bPNy#+ zFqv2YK-7)Ax6t_um`fEB`PQ80SqoLCHZpOJB&-)tv#>SR@tS@oi8AF<;IWmA)zgRM z>}qt|?B+zQbkAIBx^+%C<0G*}gIfXMP2#xkeymr75NmQQ{~2$tkfU~=XyOAk9}U8r z34fC~FTy7UMeaeLa zzRo7r;?(;GE{}0_lL*py)>hwRpwgto7OvshQ%VzC9-~bWGsg-;?V~Wz(eetGF=DE0 zPu$ny%@?}(rX~cmulQ+gkgm~E5B-?N_oP424@~$P?eM;m%|&D$VzqOIfGU{(Ve&{Q4A&t! zU`L_kTG9Ku8)ge~*5{5jxvMYj`q#}=!x5Inv31SgjL#o@V0f$6Xh%M{MYUM6o3^2?ny3Zhux=_0t_YBz4bLmd>@N#$>Go_HB)5EFjo3{ON3}sOONQEYA6LjCM z>)XTBQVOy!vdNUh{*G9Rn{gPbxdj{c;RQiS;4|henG>Z(5--d>LrtF~~qsF|gMf@ZjCu+*DwQVcaS{_ho z5|}OiBu_yn%M&9q4BN!T)O0!~Oi&5A=s2RdD;d0L{Y{H1jGtr=P@4I~rWoq@f$3Z{ zN(l~eB<)NVtvv&9V~v~!+#!;cTHzMFgUS2EAWfB{-3UHsaIE}AlsLVpQ@e*`vMSToa=?tHYVoYEWj`2SF#v(BvtjJv!-G&4hl0MU| z)z>QX(r4SSYWR4w}RS06{6L^&ng;>8nZ1#Dl_rwq| zk$E)3WIa3Srk~qWMk^hA9iW&krPS(*a|`jD(!pgkS{)=9G)L#gZkAPO?5Q^=z>#0( ztW{3r@0opYsyQyQWUuKftwdypIcO_M`&hs*o`Cb(dRKX5n*c3EtpBkV{3nd{qfG_} zQy~qGvXs&PpF3Y4F@#3y-U90r*T5Lt*)W9Y_|!%lO%rn@leLEO7h=i!P&?a|>cPh> zy5^vQXjH=kIMGm6l1#M4IBB@A{w9GwOM-!FSmA)>3n1lW1A{+* z{9akk@%8^x6|!5Q#2tT}Dp+VozSN1Sc5!l7MLzVxVG#BHVWv=(xr2){lF8K6SX!<7 zoey{v(lPZkoRW6`7~U{n0I`vn!wlqfcU(KbxTG*R`RTK75aW+|?E$QM<*O*JeOOl) zV_Lc{i)G3SJnWq!2>2*)wg|Ba8Q#1y!1An}|M^znt4RwD2_D7V;2WsG|EtkP+*Cqs z;$gD(wc9Ed=0{#K$4lbd%Ef}kty`7FfKVfDN98r-TVFF5J~|myOSfS$*JC7?y#a)v zis&0cPs=80t>DRAgX=c>pe-mYhAC%9PvdKc@={HLp90)K%~=<1)1t5JKB=e;NP@d3 zT5m^!2Ri5AxXhqg(3Vvf37Oh`KY_**ES)L{HB=vE`Tvgi2gsEFDZ9Tel?U;v?6pRf zgO!pZ?<4i_PpdY4OK~Ii6Wd8ivqK9UFVRy(8{gC#o5Of@7Y7*$y15W7bY`|H%76tE z^Ul0wt-5H#miz=Q;KiKR#aJ_gc@S?d()Wpb43Mkr19=t0_!ss~T`1qJk=|^Q-YQ;6 zefGLPoaj_V+6cUD#qwPR<1!5q0=7hBq|xH<&ZW<7_NVLfGJBY-I$pu#DIWgXlgg3L z>V+q3{_%w(B@q9usii)qC#C*S@o_9i#4_qPdEe$2T|OHFoL8#dnlZ%HeFSm-ux#UB z6<0g11pwy)%i4M9o6i^yq$}4jv!o)_$&z)$9JG9K`{8ni?Wetpqbd8P}*$za4|vWq-znyU40L zzQgDOH$rI^EPA~=G(ui7r;x4ULGi+S)@~~TJ17o~0TCR-BiMvZWYsHkbeN>#R1zd ziw>~8#ANCUSnS+qp(sKqZ=@{4_$jr4@dL1-qyU@&-@F&oP3FgFU#h&^FH)d%v6y$; zAjEedN92n_uU#?p4azjeb#$BGni^bY0))~)r zW+YeqyF{xv{y zJ>)(&G)crCnFQuZNDKCucfo@Zs=Be?zrWSyVxl{!H#J8R+|-&GEBQVAn(nfsA-DJC znqQWNxb4dG%$p1ruScr6gtG*1L%`Ng0S{9PL#l5zhByh+01I0af?UKWCiq=*womO?VBtwC8-%Am5 z;lR)7uPZjYZMb*n6~&nD@Y2pzEUwjkj5_cHt zB;JD-`>yu{pu5RiD8zhdZN%)g!4AZ!=gkFp^ic25+Eiq3lI<-8)QdBZF;XgwaSad? z*LX+mSS;g${{b${_Oq$?=bFba2^DFo>?~Zta>MMuna=zFn3#^!&Ypyu*N68}Z zZ#`MAXE{i(^zPl>#L8xr$FwZ|XS5sV=#XU-G#&qFBMKk^6Z?zOBSx*L1QglcKOLAs zoa}B~j)=Z2*qw%5QD{$Fy1av#%{cr`yFy41>n4~y`pP)Fm->)63t|SaSjCUre&WTA z{0De27g6^omHjqQ9mAUnyxM_XB$Dm^svxW`Upu7eOQ#Iclz*Z2T3a48!1oMYel%ZP zj39R_`okJK#+iS}Vdn0qO~k0*&`Jx0=%}$ARK#V`K{Zg4>^x7m>6$_dgSMBmP_3z z9E@dDYxZu^gt{*ywFBMHpS+u2^iB&DA)-tnM)!Ox`3!vJM`F+UGm2>g?*nb-y?Y>Q zJ*1wnInKwYwC)GRsZNLe`^N{xULjmXDuTw26uio^SP_2;LnE?qqV>g~J#d5o5lQ^oR#{Ea+6U3DG4;xGhJ( zm+<-y)6;xey(^Qs9=X`<4mFNZ^?|q1XFBpH!_sHO^Z3;U>g*xyFXlz@Xpo=8D@Q0v5>UQgWWx_yXCr6rbEenMvWWs;a7b|4w|MzYUPwT}ym6{n<{ zzJ1RPka;jzyBeY|f{4!daoSejRp2U1Vegyv)lFv*`Ae-?I*y0k$uz4}-33Va&|aj&DFF zGG_e2^o16B7Z>!p7k2B3?PrbvhN}Q8FTCX)k4S}^YR8AaUH<^xQSna*WdRmK2&X@h zA%-d51A-C-KCX{-!oy#f$I5f}yB1U=ZTCS=IZa`p15a|{IT%LfdvIo;ccqjFA~+eE zl@ztTQX-+{8jE!{)tVx`UmKOPi_*U0&o_TlE%R2;i0pb5Oh%o6cypL$+zkJ*{3gHV zRjsC)_brO!@6jy3d~QO83+c=Prpq{Esl@QiQ1|0Zwd`B2E8jNOE6K8LLxyzK)$&+6 z-Dg6NRZ6^`OZTuIl7#Qj3Ti=r2xI~ zpRQ4Td9Kkk@L{Nzs<$t=%p^CR0hq@vN-QS{!<~Gg(Tcy0jVdEJ) zAAMVr>wfvM8ZOR3 z)KXRhXVW-4h!7PXOUlt3P#hn*0Y{Ro)cTATATtjB1tJgb5LE{9>ELW&823|w35%Q+ zVjsTFXZZ^4O}d+F=#IC5MEB!NR4$&L&Ym;_USu|*w5vk|j3af+jgiP%o9W0uK$nqo{B+#O*OY_scQxhP-mIih3gQKq`mX_0o|$-)N`w<^h=uCFaEUGx0dRhBANn#$q_ediz& zV6QV*0l;g}t^XvLn?r6g21kjm?2{(;f8ZFY{|(19Itl#;j`>gY)qmg^c4(u6tlz1^ z9q2LozX6#fwfLbab!AyLk`HjyGw^DvD~3A1H+-G{>H`B^v5>5iiPhZHmLuBz>- zmj4CT{J-|bvrOaW2C1Js#wjA9Q{qN_2s_d}RlqfMA4f62*(g;}3nTJWer?qysN7$9 z=t%B%1!b?2Lz_|s7#hek>Gq8KtpD1w*53?LrWFmR_E|~}p>IP{Vp_`Dx4{;>#l~t`MNOK&UIDy{@{Zhe>Zcx zFHa^+HE_d-69(Yw?~sOho2_rxIl<>&2R>~!Ab%dEKboXann2X=(6pdEPtUerd9^Kw z<7~=+et9Dc)kZ6GP53E=VX--T3?9Y}pIdLqtx5Y^t4SMYzd&rjv%V}P)^*l+rz(8G zCM--ryC22AO6@!HOyA?4Y2dwB@R8t<#8?H@8|z-6=IE@^9>IZ(Nb;ePeSAxx$|4X~ zV(U^IR!5iCD7g#>-kH7V4_HasjV%EM?PFMBm=_E*ve9_q68@w0-~jre1&O-dSI5aP zIif}CPtFqP0He0=>fEO*72=#h*&i7!n&E>#3iGS}G8#c21gPK21`+L~CoGH}hZ+sb z)HTfxczi`w-CLu9kBTjk0W_6Hh)_ejW~x7j{h$rB7NgeUp$Jl&98ee(gGR8j5?q+N zt3{G-+^G?AINkZF1I+5z!n^+;y52IZ$^VTT9s(lL(m6V$MLGs34N}r6AuXMfA`KfM zAR!^0qdTNKq(--NY~+B!@7e!;o)`C<=f&P#$BxDEy{_~8Y8@9{uQ7=MQ_yrTbp zGS$NcYOQSf&E{d){G&e01{N$9C4xk^(UAmFI&5c6QAig}T-BW!Igjt2dbIM{=%~Eb z+)>@KJ{Xw3=Inr_OW$vA^cnTGbyU<0u=|#SPzC_l;je;rs%xC+F{i@EO z#t6nR=0*X!RO?nl<$jWe%O}kSq=i<;dKU&o^2sA*-!#mB)y@60 zZ0iNgg8;qF1u{gbJXJiAv6XmxQK)kJPn;pZyuYkd#vlpW-X8gR3gX=#Y z54nMlC8K*P^egA2DJBer(}f8Bn5%?WxXHM}w1v&DT81I+m}2MgIg$&uKmC4p75@i_ z)R6fyh18e@-r(bUZ!6hZefS&(9 zaJ7VMS&m+=csA;Js5I@nxx%(a`C&IQ{DmJmACo-X=Esq$`Yz&g0@$=guCxwRUl_jy z=p_ozIwEF%9}$X6myhdv)-k9Ih%B#v*8R>Jekl9O!Mzf!Z%*Wxwk=0CC`Ih}YuRjt zV2p$TS?(acHXgAOiCHb7Me+6)`0h^IXyrU)zxz-D!+NP+mip5ad*U-kKNjpd1&_(1 zq)r-*;aWPI@6vH#^Ol@Z1h3|{#uq{i4R94&9OWn0V@p{8K-iA={_Pdel+&&4`0QMZq z2&qQT)m21g#30)YgfC)e$D(JQyzg zVK5-Q$CYaJ`S%UK02HJ_z65*D&WTH!-osCdWQdMr9o(p-J!{nwlWe$?N?ZQsx~fcX zcY3FP`X=_+a|OkVh}wE;rkSwYcG8eKUAs!Q_ziLbqrJ09Lli^){!)}D7s zqd_}bYx04dI9JbY@#5$~?T-V_@7(m_@N;{Vhp3^yI_S4l8Z~i`9Rdg{R2olNEEP?I z{D)XBs{54S-c^|{#C;4O)cASLBB~m+6j`)hRQ`)LBPiS4y>^~N@*)QL@eikwYTK+r z#>-13=}y5(LQ<*{ETve9;(eUbfSzOXYZnB6FQt!`MhSAIFOD`eWcJI9DCU|`YS;~< z!PGhvysD|3zS=VO-_K8KaDxLUa0}AfVX*&K$ePQ%JCwqXhxP9@M~uuHKb-dsKo^8Y z>TaP8duHIp(*`?Qz`(s95|c~nof`*hdZLH_%g*$T$n?^G!?_`37m3cc$I%MC-c1=4 zdb<(1Kr+r?qQZ`umo)sm9WC!Wz_atVd!|5R;vc(ijPKHej+fCs{r&SDo@m8^|9(^l zuQlZ<-WG(=A#7QacDV3o(rvs&r)!@hY?YCFRl-huH}+2SCd9Dud|9_&BEzi0fndD$ zc0WKKgjf*1e%@TBRAevFRK818yR7Cm9sr0oxz}IGo^Z9))nc%p`thv&R}>w1%>XIkpc0lXmi7 z6o~^{SE?tY(b;EOn-+`~s;3th7~*#jOt9Q;AXolD4h8Zt|FCVLfV?O&-JR~zO#MN3 z;^U<*@AR_=95M0(W1>i&hB5E=-#C3PztionE+{3S$Q_`LZ!9#NCp?+VW)&BCBQUXo z0Hyc+8eJ9K_CeUdfm}d{y=uso;H(NYw%RAZD`(3mdZ#_j@L3Zlbo#QCUFn8s7WS2> z`gmTc_1mbup)bXmGL%c?03%iR{{R{vLVo#}zkr`G(AK4KJNbMc?J4A2`aGn${~kf2 zCO6xwdVk_!LD=D59!P@FSjY`=VY`hu|4hI>EgIk-9q|GczU zgD}rEcDmGUJ7AC`1X!$Xry)pb_+igT8>Um$fg{D>*0E20g+RdT#swb7Pr=>d)YVz<;KIc@(Kic;CT-1p87&dpBJ*Q z9GZHjzpW1N`gF2m^%e6ei`cqH3@Y;Y3#C@zr?x#6yNh^U@;u9lM^`>UM%Ip$3sbs< z09F+MWD3XsCSicF-5s?+(^Y)Cy)4HQ#s9Ah6KFgWKS$dd`8uUE72<{f4MJboKT*t` zUvXhIGseuPspS{=?jJ_Ns_;Sn_^;W>Mt4MPxZs>^? z4(r1^<|jdZgMDbBsc6tvRs*H|9r{LQv*Q;0m8SDS0cAYxDnmQ=8);zDGzS${(U*)2 zZL$sxoVXf!*&_W;*uU^U0KPMYN?^PA@D$dt8@5IX>dowCYot$e>ZpJugJwFSuq)`Vu7MneiTF$+Bk$Lf?911r07i~Pd_g=$|78_#(7(h&)S;xxTx((@LD zMtvFOs0s8#rf$)jY_4~H`t6rIdh>Lc2NtseNe16hcj-=wRCvxdyPK={=qf*^@g`|^ z%~m*uPwf2W;weEagCrt>k^1c3pPPO#iZc$oIW^6BDW9R(+gJu^M#%M;an4TZ1a8Z{ zf4>)~t8ZOI(IKWnQQYv{zIzQ=98Z3`AoafDh)vRBI}^bDoBMe@4CBGTZ$loTmmcAa z60TTrjKNP)aiwm-sp*0}DvP5i(4aQ+FpoPN5mBsqlK2mb-EQND0s^j5P& zqv4f?svf(E30#{Pa_=Y`{}A{mY0(QRGRHG>FZ#-brw@m@<3E4_oV=*NKaL_EvJ(}$ z5y1)5^w^IGBC5jacg1B&Dnc|z#J@ZH-WA>a6u%EA-!lh27NUfT-bu+2sWf&P#w&2Y zA8}5|CRSNKJ-&zso*RUR^tLpyL>F6FtvTiYMFDMX$QrX9WgmvBMD;mSBeTRGU-juC zfH8c58rv~}kE(|qGxSQ+bY4^d0FInlEfw8vX0}No%RlX$RQ&MFyfTEZk~rvo9KE%?cyf!S7IV(hSeuM{rh>oJg>$4{{Wrf zABUQ$M;ZaLKX5OJvY`1;xvjd-! z6VX{G-v||D=WQlWu&AUZK-2UK%WNJr16^`QHk%PV8quCJnBNR5RXyUxVc4 z&t#ZR(x;a}*;`b0#V^E;umgvJzBI?a&ttfb07Y2`w)axi4l1zeQA!Zy-(nz>HV;U4 za|hR{{pRdQ*85E^2vtzn{uYq`01g&}hc6I*Zzy5jI8*0)2C?h>e?ljw-2gbCfG*$J zKw4Mnk(jMih%@Pv@VbNf%lg@Bmdxb|-hYF5^^~ZvLu2-g@4vVGZ=)NIA10nX3)3u9%(aD8O@f#6b!+j` zkQ=_&FN*rAx_F#HB;2_L#92Ntj)x`59-Xxl*YA(fBd!Ntm<}2C@o08x!zw|IUi9xY z`D<3+>zUMina@`qrB-czcc`oYTAJNnPuSuoTJ-}B&WscbSM>>3jVX?YdlLL@npRC5 z0Ppl*T?hzW;h=cz;c= zyXU5bTer~k9!G%w!(igHJz6m!i)TLY@cJ+z1W}-rswH70Cp{h-zv=HBiUzblbSL=z z3*vepJB+lT@JrXnmu;*8!(7W!Z_$Q4#-|31>p#gKg7>R6Wx4tINgV3fujU(~Om{ri zs>M)F9NT95OEOe`ZFWq7ov-&DI4Y=q63xY;cG!IQ$EG|q0KqxS8%9TJtXiu}W&jy4 zutEyN-Q0I)BRm)nk&r#Yo=ONQ7kivP{UI-EaGa(c5xAcnpEMo*P3F~%uw*CmJ?}f! z*38kTrSJhMLcJeX$H?5$?QSI$TiIB(AAjF+;|ynO_w4CeHs_|~V5K{=(gP;cOi20Ek$ z=PO%`OnB)8k5tumKxqnOWVDt)V}LBs!vu>gkY_vI;5X_6Qf1pU%KYQDcC3$&tWU(s1*DvBqerTt~oX&H;M|8oe`U*~;OvZ6(b27XK9|liBzXYWD#n z^R}B1t%PUmNU(u5R!OSj3;pX&@ML}RUHVakP zyisw9QxDkmG^32HVr`uZ@!Dh<)vzAjw_UGt4!+p@Y7hi(-;8YC$;IV}K9y2%DXF}a zav$s&Vfui}N&@x_o6s9+?A@b2trqziClV5s`ID!*@5QKQqaHE=9@j7PybZppA8>rM zJX!B{12=XY(AEe>EfVOKvAlKxiP7Iti%}Jq>ENMnBZp8Gc?`^c* zY8f)TY8b!Sa4xQ8dz1V7td9Pswgw6u1;9kNq2IcRQFyj|jU|qPP9ktVTkuk$|Fc_m z5xUZyd{+D%z=Q()(x4HcUjEmLUVbfb#BypKv+Y5*bKui`aE|x+a<_VuJ}oblDVI|K zC+P(meUz66(LC^y(L^X;H)y3@ zTjc2E-kEh1o?oT`M~!w0DnX4CIe2sa;Cd5-_>vdb>hdo~_|wW*zwDE$Q`ZcinRNn_ z&Tc$G0V^yk5Ho=fDrHpdq*F-~s6VKd6)DyyL>hMHq^pKVkLhqK53vm7`x}uJp5D#D zS9`TOuE+w+xZ01+XJ~Y>EnO`js!yeFMs-hCEgBvXkF(gn8g1}iHWSfq9H8cY(z_OkH-gM@k0w|T0elVfQwhSos%Ae5uJ`M-tf2W zhBCr4ba5Dz>bLor(V=$J2Sjn$^ESIZnYNGKpKQcGd_g%jpCCdi{Cu~Y<2uAEkNHCi z9Q4zlAO7?4OYC`_a6~H^&?Nilo(Z^lkd%CAcvVzbEJBS#HDO;333^5O)x+=L1$&n% zyf|zd3SQ?%us6Fv#|oELMx|<5T1hI-mS|olJ|}-3+`2DJGysfTXGiK590qg54U(Fz zYIyNxp?^&;DZj9MBY*RX$6ky_ zc52_;0C77gadMB-_lT#~lGdjObIxn;eh{KUEwR2RFNBJ%bzc>x+}I-|M(Es;d(0-- z^WV#rs-N#<2UFkVDMC(_+`aQryfas=kt5e8m#jy$VumoLkT)f8s4Y^dM4=eP0gtFt zstNhrC&VWq6^)jT>^mZJw}-x0OY!g6qXfE`T!}TP6bK?MxHf=HI^!6-UNWio*bbkY zM0|YQURgEAd@{Y~{PQHALL>9#vGJTuM22vN_lB$`(?3JtU$+QWf4+P<(LD zR!;>St&atzX-|>`z%o$o@UCWr#m8j4@9Oij%Mm09fA)z7qsSe5heZGL?D zlNlINm(Y*kS&mAWHmw=Y^15V>ys_rwIFkK+gJ*iR_D;RMj;Z=|_q}K6rcJO_y*}|5 zAG<_9#%n0oJcypS1H5dcb)G!q2?9SN~p!Xd%0aXP@ z`yK0~sKO~@8ebUlEM&U$|4j~wRvZY?;=c3>VRj)WE&E5GTl{LHTFr3elG7X87>I z3+fT(P^ouhR-MpI*qW57$E*42>KE==_A*KnZwb zR}~s_6`R{@X;ZUzQHY5iR1MPxWuc*RG2|jl9x#9^-vkx-wlnO?3eH7 zzcj4rFRPi!&yRb`qunq{mkf_D#LF>MsP|nxV*$3DP)(#K++bi`s^P&W!-)X=a|qYJ zR7kPzKR^qBEvkiTih6Tr-lf}SWc&pzSSXgO_L3*S-5aR*raFX47Rb9Dd(YqhAD|8v z!^697L3B(()5pm%k|yNB^1!FY7hH+$hkYF}k#Mr$+jMDSE<3;$srUMzuaxmJ6Hv_M zH2Xvn$TBCxw&)0>`CMgf%btVCkM*`P@%ivUDC{EJdjzMLy8y9qa#xO&?2&**LmN+J zww&KPGk#-#+}r;M5*!q4A?cZF1o(4A7J1KY$Gp*h7fB5@OY7YhOW)ObxoZiF0qEY= z)>_DmLGw@?4-$S^#_*@q(p6**y|n9Zqs+DN_QCi!oiDI!l<2I*CUk5XEc5-6#+az+ zm5+6em88-}|Mn_#P-BW$nn?2<_k@r`QT){#k9Et7CrKAR!!M(BFb>?5fKkF6eN&i@ z{{hGXKUFOs(o{I4`7jRKc#Ko>e%Hzaw{XBq+-f_Vp+)Mvg_StJ7rfHCKi{#%4{!t9 zdfOh*j`JPUx)~^cV@R}!&yC1mY8rz#RCAE?SACcz==tmdg1K(Cwz!tHw5&WG3SqGc zKTJ^=ur7MQ_z#fdhMuH9>bZ>l2aqn!BhpIna9m{!@I2Pr(alM95IZ*4b2tb<8XNdp zZqnJ6o~yeo4*HQ@u4gKdk5My3F>{aOVNPfV(=^aA_>~*rHRzWmE)-h+&5W)s(nlR7 zj$kwVh_!z^V%>HvUcez<{7u@PV?8kj({it}U>_Y#!RTMM^F`@xpVf^AHnr5{!27D% z%wWH~G`^jN`0V*OhxfiD?J`tc`_c$K+`@;U9Od#4liO;F5I&>|f>|>nbG_--obqXY z?wqiXf7zH)fgl-Y_)nRbG|q?Oc1_CQzn90slL$HG)HB=YW-f?yE*GQytxc+Dr zSxUF^=%UC@wAylw(Svukhp-C{D9g;iOa^y1+ zAHg|RmP}SbIVf;4tZKJRXH0PNNRWPbDb3Z7jg_Pjc|)C&Q}T8zZ8s-%5;-;$Ob>TC z?TjpP^)Is+c{TRhM7cK3E%<;nJdFj1e5!j8iu?U>BdRgYeb##${rBZ9#C~5d5$f-i zFuelx#s>?hpm!_sgB-z`{gxT*`OfQVf`P&vpE(YU)F_T z4;Q&#Y-%OU=6R zb$367>#+uR%#si9Cno#@#AM~|jw=y57isQ_>9b5b46v;6Vchg~ z1*uagk+GI$8R}5{cY|^El-!c|k#ZrBQ|wrQYy>|yKX=gzk8*i1|N>`mDffR5v=l*vYfkW1G8&HwRcU<|+c^A)xPtc@siM@ho?=LLla%dI%(bvQ?#s^<~CcH;DrPUq02W(^v< z9t(ns{xaS_X@_u`n>(s95d2wgDnRrmqt!|CTflv}s%@))e3x;`f(?h*fdK90Pyo{F zK%(OA>)R^je@du!@u}I^N7lKJjxc15w)@fA$Ez=RYmutY&}JUeiYT` ztbXIS?vQQKTEtx@02#N{-D5$HocgGYPVc!&;HB0WIKAQ}UjC|B_3bn?z)fs~n);z_ za-Ca@*SV5JXJJ`5h9o3{%#!F2hG|+W!r+gDcTDmn`e_$49VeOE67sOeJ9LG{LinEk zzBxAbo{ZVF=cuhs4Q%!10x#{FZ;=H}2YF^Q#L3b@PQ|y!LP$}%ttsj)YFPw)Sasl! zmfE>#L0#QK0#o8EFe+#s+OL!wp@n4WYr3Dz|H6h)EFex=*4z6_Wj98>E6U=2y_2{9 zZzF8^jnf7NimRlC;N==#876)t2__d-0R2yt(-mD<$MEhZ12(|Fd!RdZS+ft%#H%CH zOwF{zY6`Mr)ysT0^hX+WKhn^F!%jA~GzpP$ zsteAI(jF!WGFxBt#f#!A-ekw0#?#s0Urqo5(mL~({i5E_c}eSoBsDu@etWYd<$VA8 z4FjhZ0NZ=q%kZ{?uG%A*S~_D7tH`ZQ)7}0F6s&@|uVzRynw{NSY?37m27#DfKcx&F zR2@ZU6|1mQ=hrK0qulvOFZ{`#$ohjw;jU<`uFrxfdh2650(%DYt3UWLu;Gjt*q@_m zDb&S_a`^j1v!+!1?(_0s=j#~TCa`7P%bXnR%|uPD77n`XXSmnV@Q5PM`1oYaXWef* z%%H2t^#07IW*^Pm(p9N`(qHA8qXmoj{L?zr*Pt+vLzbCuzrMtW&aH(SwZr6f+Mj&y z%d5x9T(S5lIg)XQioT+UZ(~OaUt|4(FX_fEGgL*9a)~|NQ(G395+0ho6Ak)>G0R?t z(I>lz`|a)zXSuKPq_~(vK~lji$WI;AJFc&gE_`Y$Mk2@B7@4|1YGB}X1GCBLAB8r>o(QD%@}O^`R@$El`@UB{yX#gZC7R=;DD6W9^9|mC7;l4|sx(h?DNZVRf$pfCxIXZw5ePu^Y(D~UBj0Afi4*gCOMKHMN`0c}DrEYAJHhKA!5TOU0wc!QTc(Q_j% zB#K0EzdFO~VTs-o@XN zNGBY(93L?DkbmD&t#qR@Yodu1r(ZG+vER^eqm|Zk2VTa{g*4t&-4K0`v4KR+L4U`j zKMc1fKB>pZPNkx#T`K&F_f_HgNgO|fB|~lgi0!bpW6Zt&wjpQXhs5ipaScO>yW|}Z ze~)F#sHP%%;|mHHX5(OYmpVl0`28!A1e>mI*}|*iwzRO5F#N^1lpuwY|{Yubk$k+-f5C_D+d+nJpU>& zf#2VT(OoM1&w{>sRvme`>0)L3xV++Ut7F|Y7KL-AdY<2%pz3T&x@eFVJbMNs_0u_w zGEuR_0j{~B317%GYY>$A_1bfmWF=uZ(LgKotwmh0Shz-8OVih}5wt|#5F*Yd8Jj2( z-hK`3c^@|k`b2;)}5s65xjX8r!1d;(n_5{meY-u%kn*7@}R;nz!RYcrt zEg!VPdqy0alv4rc@4@`DL2&gbvPYcxYvbM)$-%1nCot-9{$*E&&R3Z9gP{YLKivGu zY9*wepRr9AN5^Dz=t+USeTvEtrVdXl+d7t(RbxBr4ouS@{uN_uHuRX(DRf=FK~?E; z{zQ(PT;IZvZZo|M)l^a*%STa@O$+_ASlUo)Lv#-kFa#Mpxbj{}DzrUUWaWe~=!Bn~ zRY9yREc^;g>fn=M<;WE6MaJ5&LdF`MT|#0~l)78NTq5@f$cCSQJqbP&g&7as+)>~S;?kvSgM-p6zl!ocVv%p4CL^& zGqmZvzVFtcWU8ZcLFZxzOvri(g#U5PgH9KObGtljjCOH8{=Blw+Ud;K!+lJ5lDgo$ z;`$dNt`Jl~B(x7>56i*WnOde*pGGN#6d)!0PRoyC#3T3qA?Q3L+QRN~1;mc@3M zo1R_-I=IHrtnG!D+lOn;@wy~TWst2DxK)?;IRMJ;V077+vvkO)lL_=H#^e{J-2s-a zUDgQr7b%~-@tA&SjNZerT>TNQ{Su*l{h5IUe%Jm5EBD;GHIRx%m)9`U8P|qRMe?-4 z8;V%NMLWj$;NYC^m=-z4lrd6rM3L1Uz=8>mrE8~t0xVFlub5V@ybof%`+XxVvZ0gx zLAOKf+YBy83OKf+`)vx;y;K@kFb}&_ed@n#un860$+pSd3+4%Q|NBJm7*n{sB-36+vS+G5 z|0lt6>a(*5)%6PaCkHk8v5u*Nor}A##{hGzNSc!Lv(k}A>|pPaN;4;k!P;%^#qZ7O z=|oaLsb3oIV=mfZE^6V-F#ynHO^4EUg*2WS{3`R^hH}lyWHYnv`q0bDm(>`P7}UF9 z9OIj+cdB*sZ;v}UK7Nzzl=!Fa(Z@M#8G;5l{OMr(#ZkP21v@~(4wWXmIY#9g@wGiZ zkg37JYCo=$REjJxM~1Ja1sSppedT92?!VLYbBMMXE1z0l=AY_bi$3eMIP~LViJ|Ba zKUpdx5tKC%rv+Y%rL=`D2ZO(c5EO%8W@2qwEmhHpsRV9I$p}0g)mpKwfIp z&!QCQE{vAeiWb3KFL9~$A{T}vm94Wa?@3IW+A;b zB%q86k)nNA-&L8^{PE`%*ocd zsKfd<(Vix?xXgS$B4zM?3LI$W>0d4H+|_^TMEI*Ew=M!CAXAm-@ihqy0JvG65%wo9 z7UHaK)OF=Jci|o;ClalEv1?(W@952aU_=pk^{e zoK~IjnLI90KYOYb2FR@3RL!Mb?{>h8DjXhaSiq-gdN}j3i6Q4nxsLaagWCiqswyD#9MLjP%_%B{X7PCZag<1selKfo3>LQY)pu}wPfYH~89$TzoPWoOeM zW~66oDHM2fNe=MaKhgDLL1@Olg;75!Wb5urCn3-zvBFoop)758G>}!R*si)#`Tc<> zcH@CJ@brOYqt6Zz#x$vMlfsI3GWM_aky-c}IH0_fvc(_&ZU?wz;DU_)37LCoCBum1 z--IDE>6ZL{`1s^477O^W-EtVt-!bx#f8c{WIr%c#Y(E zBFT-as4(wq)`ksd7%7dXEj}(zweb80P_$6Jf)M!isUg@qw_Qlp*I_jHe|sd8F6!Up zwgqL-Yqk^$?Yb_{^lEVIC`_DqY&Ft~@kOpzL*h3C+e8aTTe$x1SX6)N{KkY9Z?%K}{7slhf>b(k5?defC>23$%{QSlg&QPGvUCc&EO$pa)$6F|(0KIkGhYIW zNB>o*>ZbnPkZ<7X9l!oHMDO5xpLubK01t}2pGC@_ajt%5fB3Y#f20+h>cLNkELTqZ z1fSJPqn5Q_RdA2QDSq)GAa?5LQrNI9XzKksR{|sb@kG>sy;rB|-q^qs>D=4n($N0^ zN{WKRt<<#1vM+`iA7XP>hVCa&R{JVQ&vLUR!BO=tudtzc>j9uaQiw@$0MSn(RjH}o z78jgtzLc^fNXaopJ@TveMy+)&FR|-cEh9NdJNBf+8f%bRmVXi5JP+~idqgn{1H`PW9^Jnmv%S7-IEGyg^D zBYN^SNK4U>5T5~Fox(js0+PlfpOv_OHZ8I}#~})e?gP?5Pz=3?+0F8LWhJP7wfeg% zm^Fqmw7wFmNw+Un`5D>gz=H4RK98f*907R>m(S-NNn_6Znv;gYM29nDR%y*NKJpvF zJJEUnF3V14>;vCS6-4mEhPMppJ(FU$Ew&Tdzb&lOwq{Vr4xYLxhOkM^eEi&N80{;$ zpSTl`ZXpf4-L6HEZmU_)IQ~5p(f6eYsMw8O3NOI8jr5bUo~iYQMoakQmYEtYAI_Rb zQ&o)GEWRN`*Wi$SrC#s5ACNTP|EMx$oB$yoXzs7z!h1`D_3xwSQ_}R4-t1vOQE`32 z%8|(X-?f4hBvOMr&9h1G%T!;Vko##Yz46yXLwftVs;dmwMv%9WO8o2Sg0YUd3z`yc zPg&DXQZu@Sf7K^qB_3uMeoD-R7rkZrx!36RwY&a`dpkzH(Jg^g81XM7QDPBq^&cQu5%{1U?0uQfBE^Y1Ug&moTH==xajI<{_enD80oGh- zN24Xlzbb|k0Fo><&%XJ3bG#kZp3}mq4<1RD&!u@gpH92Juw^xM+eA8q!V(S|c`o&b zj2OohwioqX__!P2FH0Tv_CjX%lf-zb3dWy@VfUp-xf}LwIT;4O4Hd*wI3YC8lrxa1 z(O3wR4K3OBj@on!U_dutyn_Yv2kOiS2WcvIBecNVy+>*e@;yWw`mcR*`Pn=OrE87g zC|6_>p?WZ1V%WMeQ^<5a6e?u_ukSH`+l|&86Z?hu3c#2hc?t=sj3YZ56|d!#@?9AI4QUz&^9qG}`duvk`9U z1#e>O0>W~8y8@9x+he)d$XPW6c``1|jOO~gZ2#Jt*T+aSYXBy4#0ri%=Hh9iC?apM zmPBLko1QIYgCJGZ;G$}^fbuX)3v?#;rC+)RTGsr$erxQ&mB&`Ql?;Vw!WkYz@koZ7 zf;-`wTQ{ARtB$_+SaH5?dnz3n#R+CpY)xeV(haH!rd;0Oi5&d&fm~9ryBtx8&*0+_ zPfpX~Yv;l5S7QQnzAx7!yACt=sPw1|d%CMIJh;F4F=Fl(Fgl%VKnre}{YzuKfbC4L*r3ji#%7rGL@oy1i4JhmVR z9&IyC@20sb%L5FRtY~_QgtS=;h8*Zr1&wrSGZ;}Zm+~0qgjWFqaS*e*=nTZQ?YI^L zyA+?Mc9U=Fs;s|Qexk|!SxgWZC*VO;2hAaF zYzLC~{aBO>_%e9jY^1^Z*_4jHM;Qwdo|F`CAh!v@@U!cAwgn@Jb=xs96#Z&2`Blge zQ5?GQ@{xV#!)%Efl)_X|pQ@k_&uZghMpNAzZ!X&%?6mDPro>Kl`}P+0=9&MhQPy3u zavo8)46Z{(VIUJcA+xM+v1nwcK<#1nz7c7RvN}krQTM(xh~MQ4 z508s;o|1jlw&4$m0$NhgCHq)$rdWa~@BQv6ba8anA=IO*J0&(bv16Ghv43Tq6^ zfV&QAqqvb7Tyx8sC%ke}am9KZWBc5UnANknfkKv~u@5Hd9q2+$P4G?c-unM)zrZZk#+*k~o zGGg+vPEboxC>vd~DH|A3iI$ax@9;7o%g$dHx7O!6jbWPfkysWA{L`Yd!HmDD-stgR zAM4fk;U14ZWvO{W2tyuJ9F5tg2Ki4xL`V9W@uVy7zc5Vnl@Gru{9;aZ`ceApP9vx< z;E##EVIiC6dfBTFMd3#1DFf}W%y#~Lv}oj|rUNk~K&UJ{*v8T*oqZc=KD94cD4qyXvB zr-XRkU9oZp396nTot!{1i}k*Se7Xc8$=yJ8|8`bUucrH0C>qnY>2}VEgr}Y+Aia&j zlF0ohV%I2%$f6fsb5J2`>xNTq?y|={|A#ywuia3wNk=>xPb2~%>j-7Yw3uzQ<_C_Z^aR?PozoGi>$KW zift*4p9D>+2qS*wl*%v%en#NL6)MDOHpHqGy<&K##4sFo%ZPam4Sp=^uzI3GI8ngi=;r$1|gyvi&h*%H?(kz^(zG&_I2sRHss&_{Xyk$ox_c_?RUPGyo zk@nF^<8F$(cIWl&r7|nlkKAi$b!=ZBh)7DMBIf&>hc@KgG}9iCfi}6S*Mh;Sim5Cq4dwJ#NvMq-pdq!DXW6LR|dNxmZ~ zlb3Q6Uy;(bbslPDV?LntAHdMyFB%d9|6Dfc$>Ktli5`i1nh^(g8G_UmLBB*^90p5S z{Nmn(#qp7a+BAru?p1q1kJ+%P?plZUh=opE?tPi`R%!P=_K-|i$rB7VYm8!!eQ|+( zQ-=SF>$rg@IpjdQDsT#Z*?${C80b>s_ig_D!huv)sgeeyu+8bQH}2CexN>j|oKjTPs<^{^4N4pGD;5luV%& zj8jpCi0*-1*!q0B!ryu~x?tzi{!fkROe@+v@5VMW z_PndxG)!E#-{Ghgkai}E8J`^KX8{g;#~<5aROyt$6@Ns@|0Z9YGvm%cW-JV8Amd=T z`=Ij@;Bn+KSQ1@7Nn3iKs`bKT7wRAg-J`3pHXtS^VH0CL;DZGz! zK4ahkbh9Ep?C?in1M*@qRCW~`;D>XHgK*M^6ZMDS8y@;vAoyb0+U8ue$uj;HayNTo zhBwkuv0&}qK)q&#xivI38s@#mlH5zy2J8En!z1;nadMQ*qmpL2m>x^_ouFXj6P+4d zEPVvi)pIP@y}eGS8xUf+edb(>v`n*Yd%AHlx5fK=?k|iR>-HSC{W>_tXfQ12+0!`8 z1!Y|#Ur};oYuSM}|HVz&N}5_}uLR_0@XbEc=_qskSMj@Ck()h9@B4Oa;JCrTek@AT zZik4#k%poc!%3|rHj;bX1;y8W%GCo@MfZF)hd2HbLT~hepmIYg-}~SKx{JKSI-xyR zg6V2X#@p>snTy4;=p>QBSn`iP0E7OJ#^T~-$e`1T53OQ`9d;>b9XoL2u`=ZKgD>AK zKs$5|)`T7G7iia&tBtJP!96qatS*yo0iC?x69(Rn@&as8QnS|cDBrCr2^+h}OP%IO z1xyfA(!1dAPkQ&N%KkMl+OG2qc_K) zMWKuUJS}F2UWQ(DAXC+mV))5QfTxIdDKU}(DFqYVat)Wkf)`g178Kd@^X226N19~V zq>o8QrS-UakGL463>N`sQ2udv|KgL%`k%5 z$WKWH-v5fLea`MdeU#4D3R3*}n$>_tjgXC?5|qr*tRxGKmzY5_wP7 zD7uigu1deFk?k&0#8m7xklHWj!F<7#w!QdHJNSfC?4woyK=3}NaFzu2G$mTQ9OwqG zoC=LpVWhtHvyr>6fwrJbey?HbLujt>gfK6&%iV6waR zHX8cniPf)s{cb_U+sWdTdY23UnX+z8$%dj`YtABY|XwHQA`%o5`(Zzo~ z)rC|DoSH_RtduupAxipYo&{F)@fJj!(TEH^NfAGh{dv$ehgYX=^V*@O2hNP@2BVy> zIz$*h0iJhU_hF`#r|8Bfq(T?vT8}FyL}x*zHq1lx#qi_tPW3Ze4+%=+>!g;zPyy

B_J8+`g;*9Zs+gK)*;-wv;h4A1mHyk!xrsp)GDp&* zZrp~+qa?#})Q9@N6G@HI@vYomn>f_@3#-S_WK2j@3^6i(%#V21vZYkS$o%6$mul0Y zr(6Oz4>$a!8*|0;l8Ud>*zw!HTDJ2DKJX5_G2;9ZRJKwM@GtPjs`Eg7R5&auE1Wh} z5uG_NjSBE_G#olBw%8C!|9vd+Ej!DJTJ;j8E&@GLV3K+;5JK>stoY&S;4$g9CW{3; zZnX#ki_C=m3trDOP#*znJ9C$wD2|%rBg}U`y3zhG&Isqoy!r{28J`Av!Q2!97bZ}o zVq+*Rzd%3hio8PrUalt=;S5wwmiXx+=u~zq$-7D$3zYYdVDb#a*j85sf>H~uDyW=R z$TwP*YD>F&DXv?8Mo_Z1%!=7$l52bwki)dOfgwX}7AQaG;!R+$Mj8G#1{ch6=*@oe zgZhbd@bd5itio~}WM?|tA-(mmW}LJ1H;lcE$s5(ViZMS3yx zrVx-CLI;s97Fqxc3LzB1f`BL>A_{hW&h~lU_dVbDoj>>7G42>Q*~#8}?Ul9HoGWwg zwPrQ_I=q?hw8?x&w5uQ=_bNevauXH%?WUN~l<3MT9mulcQbSAS-=&Z$0mmi%y(rAZPQNYUuOMq z+;ltG&@dM{bj60BRh&?O zG{L@kZI`_V$yOli625;$9IUP}rFCCgthnLaty8yenr0t&>SEGFlztK7ws}hDL`j?V zd#44?=^Pv~Y&KuH28`Y|tLl5H>?mG-!L1;qSPICL*C~GY-WkslwY*bO1vB?QD;zy_ zjSNTCNN53S;lRT>uCrf%eE7UDEyi}Q+H2g%vUxPP_m(tHu{p{bwJXRB5~GtioJ~9= zCt43u?+WbnRyGbDil~0>ncURNOIkKHFYHXp->`4#_$l4#>oc$-akIu&c-~#p=`Ba1 z;Sc>dM^nK>EVc7JeHB{Uu`#@Z?h|8}P8XN+$s(Q|BFrgrQ&+Um@2ma?V{OJl%1gfT zgA3is37nNC)>`xAoszimXojwMwY$%EZ_^G|nws*|j0)lv6<-%_v2|zmpLqD>%5M!?|1a--UeXsaw?6jQ89ZUKfnuX# zEB9rN5g}JRN=;rg>clzv|_EHow}Hgz}o>%oUxYZF)J zewu&1c>Y$<=WB{jVsK$Yxgn-|JS-;$^B<@;MaGRie*?^_d>`GCpKec5rM!H1t=Px= zan;cH6qWs#5X+m>fiItqB{ZFW>eE)0kRwAddk((2{^o;RhJ5sseAD22JkNa-llyO# z0_o|H(bvv&TlO@`Ca+`Ew$JSy2<2WelH5>O^mr6%ux>Lr{BaHX!Dg)LTF=+!^|c&Z zk0f_N&V@zaMXtA79&gWl$gS=7e)zyv$ig^h`k1WssmgvStT6rM_-Zs-`Bvvv*i57H zJ5C-O+Q!}QUz1-A{e-U13Qv3{>+(l15gngMi&E9U_XHT{KtH~Gm%4s$zfj!E zxgIJXw}24yPETLz+`jMhO1buD!Sa)@ubi_KMi`~Xn2-I+>S9Z=&;>u_=C+p zy!~8kghH8&ixms#{eY{?Z^L%rxgB_iGsH-HLmcvi`%{c}Jw&3*1oiP`*?0a(lb&Vq zAAunP0%9f~?(A2~0gn@>o@rjL%Gb6ANlw-2AG(`0Yv2+=Te=8;}FST`6&16V2xjaa#6`I}f+K-ej)UUdsOQ*fX7$7w?|(4PzY% z`q>UUuov|V@%;qe|G0QDk-=W(`lU9ic9iG4^RlH)Zm~_}zjpbSI}thOeW(k#%_e%0 zba|-cD9dU^1_L_wzR@8X)b{KZdvp7G9GopScE@}}mH~9%#NKBE6K@pG_+zYN{ z9YPmEnuUP+Fi4Qj(7iu$O+d-N3@8o&*Sm7cKdyIc%lnOg2P_if`IEQ~t&?un1SxZ7 z`X!IKO^p#$>sxCLRr534Aj(Zh97#HyX~w# zXv5MHl&2uQtCR)0I?7n;Wq{1Ph(!&uV*|n%L_^G+788m2@waLHn?ZHa7 zz2?{M$<@)K(7qc5bIo7!x<^d2i;@k#+iZxDZ>dc@;ls-dcOHFvN@panVo^9*{B1e& z@_mEu>^?R6y+PtYKWXRMATcK=_hHM193tQD!(_y@QgKV)v-@0|YMjr13LY|%t2TV4 zK7QUBEuO$#5-FH?l6Qm7)-+ltsg>^IwR97SxaKhpgRf_OhI$Brw@^AA#r!)Xfoa2| zBAZ6;FS-wVH&k2C``tPW+OXL>2Z^2i3zTHt_OkO*ulN>_ZT+E&7NT1@?}>CzaIAi? ze5+iiOxG!;Dx3q>?7@SlW9<5jmo0iDqn7fvKADLX0$Ff!G{)tfgz#Is&I{LmU+Pe? z*mGafK5;$SlO}iXo}fwe!PWEZT%+s}K1aH;u5ym^t6dycDkC;&=K2)pf@N$Phlh1v zDTYp7I<2|$Y+SPYp+I`~qZ;V4n(_&en~jMD$*Yzh2RAtUy!J}yuY_yCe!Ylyd)n`f z6BLL@qwz>8TM(6}wARd(^c;;1P zq)nHmlc-WdMX8hOA4hVyf7K^~k#Jc^% z%Qr6f^7)8`%z}IuW0YpSekbfZ?k0>pU5oC0^!oafVN-LL5aQkX2D~#KX1q@+KhppB zCiQ{lmS0|>GsrUu+V4wPqT|BE?wbXs6{ zE8$`3_hm-5Mg(2(=iPH_!|%hkOA;!dHxY4yy)*A3A59+1l%Q2I_aE0@VtStUaqYR; z28w)za8rGY+s2aO+EmB+<2V1C!Wq*;55U<+efs;$*FMNest;ObVdmqkw7|vKhlXOd zGRN|Ab--i0U!{L?VE>j7Oy?Nuj4=~P?(0r|^FH~&8K1f-_D{&4KhZjkg+Yh$=EJ|@hhY&tS9FPMn> zOuo8Ftw1vj{iLR2KG_rLw??KyK51e2XC?9ekx9RgMs^2qV=X-T7vj;2YX=wYwR(7ms(Hm-Zv zUXs3bg-u~=Y2jO#Pw37gu^Sm_5gYu`T?2W=Riz|6%2eNqYAP)8Yv#Y4Y{@VsYA zys(Z|h;!N?yLVxI<()jx0)#vNotyeD4F6ri6 zmmczA-n^mD&JyH*D)5KfSCe!5ywlS#em?B{jQv24|0ApX?&4olrlowV*RzFAR%egy zq5AKwCi~niOI*@;?yDfG``X|1yGHx&k1HDk_PO^Tbf`~JwfN@fN|Ghcy>?o;yJY`_ zKd#qzxVUnoA9b>-UC3ux|1Z#h+k0`L=YJDM!? z9F_h{zl1R|Vs5kWRR4kaOFeL5`fa+rqy6%#@9A zMT_x0@b?j4>V8ZTKajj_$yqz|h>I~Z?p2naan57&ch=|Lz)gcieTDXwZ-)z57GDVp z5tm4)OX^7GA)mMNgoP( zqPbq(yAoqlByH}md)4XZky1a)2E}F*{WWQQR(JHW@ZcPRv9eD2Y|XA^sd5I$=ktAV zBSQ-4i}t54`)Y@p;(QNkm_AfDY%I!p&{Q|hlk%E#rt}n>*_~RP4Mgq~8{DtqT7Nj- z7}q}jy=i>ogt7IB5~uK+?c%RblT`EMhC*^a5fW2xofZGx_VfGKLb6SBhymC-(p@5N zWhz|hVDH4&?$CYJYhYCsYBb|#|Jps|!Huns$GYp&=}r?bvj@Diw{FPpjy!*9FZ505 z%CQN7C+cngYd{%zJCG&!UdUVuj~&kz1csx$v^iK zbc>_h^vv0KlrVqUcrQF>1(t8{uJP31}WFX6-xy`gVOf3yiN#5%3;&T}? z4d|6wuk_BJ__fHsxg2J=97~nT%F|F54tsVyo0$2-^=r=8(v8sUtn+IzHMxSkOj|-E zy4sJvE~`gLA@t-NPYUoYr=*4t$ys;I8axtFkqg=i>^Ce<<5X05qODm>=sS`^y+e3Y zh6dcQpA;s}_TxlSzb>B$j9egCrO0Eo>Ky;4lbPUZt zL**kXkTpUmvZ^860l;dIUVzBe4*`QfT}qqQ$*-6OKi?7mmz9gO81ulF+rU{}$cLKk zlIn?4blsdn0|E43Kk$iq^5Pwn$4M6NmF!WEdLOM}%(jT2XLA8)ap#5iF?y+4>xV

&K;I@zlX9dCIa;N<8yOlO&zrN!mt0w&Frbwyh<@`z&5z_7P!3k(iOD8@yaN`n~xX`v{(+XJLJ(4Xv(2dmaCFd<){LM9d z^=-Sl@+fqVF#BQg$8)Q|TCi41iZe^O?t@Df9CDY|!S8_NPJ&(To^{Dpt#0ccf_SeU z+bg#AL_5nrrbQ5#mMs#b8Zs*j0UgUPHz^saf4d?Dqg>W-|ehSZG5q036@#sVg zp@yynTFE-rc|UN>h`}{@(1J~xxm8OitBG2|VtIh=`^lNC_^?tZX@Q7({ic-Yx0oMO zCEX4Au({OBm|cLkDtgnYiI&CtEFwzC9#7)^p286>42}#0vx)_33T}lorJ&%{sUio5 zXHL8Dq0opL9ILy3no`#Cv9Hs_X@Sn4*r0%GFKh{(7}_nJl{CN2dO^J-J?*uNZOi=U zObs9KtU;R;s|&U~8uz8^!^BrTrrYJKbhDx_X1t-3sPz8yiR)t*%h=T~@k=A!=M4G+ zoiKt^9y4e78Vc1y2m90wB#UD%KQ7q3cNt-rB z_Tro$yq>s;iVxj!yJpGcR2j)8-vUkcw7$T4P|uQUqMT@Z*vIRAXFP=H(B89g(@6a#G?(;amju)gK?>_hWj^)tN$7f;yn<>)HCz?k}!RGuvuHT~LSgu71Rh`ymS zp_l;y%_6DQ}(*Fg+!02gvPjs)`zN<>`^`^Z6Pfs@E}d=NKIx=O+ba%CJafl z_>C*h8QZ8#I4er?_bF#6CWuKslg|9YQIU*G7Ma?%@8)=0BB#eg(NzDLIPtUnv60>& z@oHf<0~N5aROtwqSu^9-tHF7$xvNA*`~1RWRG@8cRWaKWNeIfC!gX6d8cjrRYUq)~DIc$_!u@GZJ z6rUQooDn;2vkuHg1Z3{nqZ~AVoMRGA%q0Y7l?YSVr4QPJ{r?C+$N#bPT>J5&@So6Q zXFGMuj*X}RX_F0C^PK51_5=+xHl(To1tbd@s^biyQ(6N2j#W%n_omt-BviE9z7beA zZr6$|Q%!Ha&&0nFT|917tSVMWzYxPvyN710Y236wVah!w+y9Zx=tZR{N8)iiPS-^E zP$YI)y)X7v))Hn+sGBU&=e;&m>8MjZ2u+w=<-gvFTjsyUJuPjQX}MYc9XnK59abvf zH*PtF4B3fa-5KyO-1o1@9B;)`FLQM4YQ@PPuLUN2Ys8HKXwX34D#DwW(O6V zGTWgT<~&+FN&qY{@!LnHrO%ypK;K>Ywhenncr_!kj3azQyNF?Rl>YlCSz5coHYcv} z4|Xaqo0sukGRDzCOr+vo>ri=txtHpk9<)11thQOL=E+r49j2)G%nWvp$M0_JrMsS2 zYplYeysM z3&fg~UsEM$DY8~o(7#=Cdu}R=Xcr^ds$d6?uvVZ`Xrc(#F*aO-1f=j1d@uyi{};t& zAPn$${rmIZ#u|{k{P%mxf*^nhJ?SFaIHcirh`7ZR(Z7K(fXb?%VQkB?i2e|a3q9-{ zL7`2y2*u=D#IS-vA}kai=ca!oJSsN}OhrP?rL^TQ8@k>{Laop2I(4E*+XMyXla}s$ z#YjkMmXOb}OyaXgj+adz(epwLiJ@fs?1)IbQ~enlmT#}X9h z`IL9=jSMsC$!rq#-X+sYUjjJjvyqwRzkp!>fXBHqGIEAA3|fO4OOKl8k#ceXrX>Fe z{Ktn1^QC_)oOAmA3kXnxhB#|YpoDg;nIKqX7E6;P5IBK5wh_n)7&uU9r&DOBP{$B* zRPP!AbcEq^I?ZE2y!X5VOA#;&6=0y20^`8U1VE6&jv*+J z=~Im1;lSUjh=Zc~PxT!n#F^!D@H~VY7RkRXQM+TG_`;-mp^sYta0a~gCc?bdH?7jtDwLOXM(^cCg6Xy z9#?(c?S9yrI`^GDrMNzD#VhuU63*#TcaHc+&A4zp3a97=9G@w(QtutG+upybGKdSE zYuI}F;fs*?AJzhb-Qv z-Rg3Kuf`WX8@@^!lKkS-3&tq^HVYenza+#qreyK9{K!sY>1k5T0Fem)5b;$QkaF_$&fb^G2G@7U=4GHS&4vt?jJE=2a%fjwxaG8tEyko!_UeX<9e zES}peC2ie1q8qQ{8u4~^jE`Qw4#KMoW=>r*S}`AyJ8u>Wy1qu27xlC*=uz=fwR?!! zr(d_t{Swwdr=dE;+VsYxpsIsjHJ`)sxQ?RrQa=gqdsbS4MW?Ri`e)rEu<)OYPZ6|$ zU%pr?CFq`Ott48`FQsJk(5w1RJ>RvpUB#yK^_)*-s<&3&z;Q22Rc%1dlCJ}w&YfZZ z_|5mO!*%8vB%g_t(FrZLuxP;kjM9)ngD8yH-pbXQTnt0TCx9~AW~ z3{>MWR*UaBTx(y)TQFUvrGv|j+j7qDVZ6ho2LgDWYg5TQ$m0vG}#vV(~f`2qV(7H%`mAec(Ix`}9a!}WF*=cR$&hLY>emO@b+JZh( zp{xuBg5Qj_j)R;N%qKAt&6C7w+@0DTSMQbYQ$Z<`(A4fe!@6bl%PjEO-=9hy{5#u{bIfzcJTQBB+0*t>|Z3Qr=k8I zderz2J^oFA$hc@5Y&1Z85=KUU3jPqKzdCRtp=N0=p&_9b=ns4YBne#j=UdIwDF7c7 z82xvhI87Z1U<1fmLM={HR|44n9RI7P^@XrM)&AXXunIy&LqZerZ|eVZuV58z6?F+s z?f+h;1(f|^DStDGf2wH$Kh^tp5zs!c{fqf%ssqJ;ApO&6*Gu6+5^B!=XM-eUCA9tq z(b+#T2QNGZbFP1WU=w*E zCj7qu^3P5FF8w!bSm4%?{$Ww!e{L3d>EFe+648+{LH|Cp1Zr6Y#o_{kTx=}<6#ffO zE1`lenLELuMw$>mzdLV8y@CN<02C@V(GcqwVF)}kV zF|)8Rvx2$7U^X@|gp-S%TL2;`C;;K-hl$FH!-SN#fws7`yz+GQ)yC%5>+LshcXkgyemXk-{N?Mn?|m@FJ>Nj|53F5W2me^E-#giG>)ec0kLKo%&t}(jkWrMk`LirpBUq3= zzT!%z8e|mjNUIo&r{!Y4wDPCc;o*}mm~g@AVkArF2^5ovvnJZ0C_ID_#J}w%tSH zLHVhq=2+5{S>0820*hA!BrP``@=F1-0SA#K?|f|^I2|#4$5onG^JsmLtSHl!FL8Y0 zNrhU!+t{pU8IYg=GczQWbEA}&lZt{LRkT|Ndh6A3!dDtaaVZag9R&0!xPZ2y9>TCh z^g}o!4blm=DUbYI0*URbjov^qSXCHTk2J zkdy!^MP09o^qMki-vWKFivKzO*JpUuo*SR5_ouks&Oo0~>-X`!f`6mt=p_o)z#>Bv zcFiSPS?sPTy2_P`j&353$V6At93K|dBvdztu!^7S6YB%haYDk;DheWV&H>j8?KB)Q zwkdS>1RrO(4~`YrDAZhxp5hQV!K5HGt3sa=5~|Q7RSE%5w$HicVJz#2* z?e5dtZ5qU3{H2x zQAY@>#aS*41{GAjsE(f}Tx3jfzJo)`$2+jWkrGX!IE2PHU_hlvRpAsXgZ){&!ZXey zzT+TtqH^%BP&xPt>A-?nw8iTbtv!zr5OM+QVm^U&)N;)I9p#Xa#OebfU1wD7L@sIm-^YkQ6#%01}jblNHk9{GfIUE(n2`9OxU`260Xx3(8u_Gs*8~3!H@cJ#WYYp}= zzujVS2&!qRqvFl3Ov$rAR8R?WpktaH4PQ;J==WVfIN&Dgy0Yk>BA5_1S{&O8w6Db z@B*rt7^;ELEJ}AG6PeC|Ae?>d8wE!aL!>Cj+=G^VqUGvUjZcLwq_L1$iQ&xUm8HPE zda?4h%a~(m*)xr!`yD$~t}A)-b|KK48aKw_&MN^%C_IN;3b zW^A_hW_8Tk^ksST1dxNseBMG2T7Q;~mO;oXzz0Kx-QL*>9oRZjF){aymw8*PY?gLBEt2;t50?Q1qtrOb7+ybP^p08Yv*|E8v4(t zAtC#H3e9x3DXQkJ8Wdf~E_3;ePZS#R1+q#9?mLo3Jc#^0_dpioL{GflW|#Ehz@C$f;z2x-X8%s8+tfJfNVFcAp19b$NcnK`)=!!Kj`Sjl4X z22(I+fBm_6{F$tNZGThs&NaCQ;L)6qN&#bc?Z!h|-s5>FI%Sb{-{-8Ef}LMvW$oD8 z;6eU74%)H^0w1%*H;N7^sAX1zi9QtxVhpJ63n<5FGr$4P?Rb)tobXXQEtqUFJd$o5vsin@TcU?AO&h2Q)Wy!!dFnyGe>miM(ASGd0~+4_i8FWoPi zqjNf80WL>!q*?jnVrfmdt~+mss68h$t*tp6*U!+D_1gr&;Rk5Qx_*7CVl-4UkC2Lw z)`zl_jOYmA5LqL3SKWX)Dm*h>(FIO|*=FYS*gH}L+lDwK0tlyQWegtD6=z)OJJn~j z-LkkgT`M^_+XtRAIg4y`d%t;IUy`q<-1GHvigztP_4G!B zyVuPijVyvsaB06%js?7#xh8%gWQb>IqtPF$-ZG0|P@t&lH)ENz2z1-mt>Nm!5+dMO z4FWzIvU}A9tk5XpB1pbkpn(KQk^^dRL;7{fa`2(iW*8SfMDURa7286#XP~C$%~>Nw z-v%PHT}A^c8n@#6a*O&;4ypE+`Oco{8}^|_5u?E7UXA>sE%hysNqM}1%UpyRD-Q5{ z1#!s2Nq9bCe_Ntgkh(d_5sp(haiw~W1LDkX4S9Sl2^oizmDv4>IH;r$WD1J1Is?W% zu}hM6ma}?F=5Z+|ob@6}8DUvl(Fj675Dwz*_RQO-NGWKk?HOg5!_{|?&)N%IiA1PU zk#=dFJ(A!VZoD`#i6l0=$kHTYq6d7fsfBAzHGv;214^5dcmA)%-ic;KGlzZa6J@4If3Z3ZY5BdJ7Xy)om0Os4~MzLljMA=x+QP~28 zIhAu0vVdex;hwieh1_7q!2vOz1Yf@pP-7I(j*<&#bXs)8F#T3RY&?;houYA-gjj;w zrd!E?Ls1Vg8x=&@gnr8*p{xMc!GyTqBSeN3Z4hk`3qw5GR_omOF|YiT<^=GR&*8ho zd2z2{Bk!{Bi>}yeH?kxp5@2Q{k??G4ZYJTAs(IUabyOz{)X{BB8}p16OzqMjDu|V> z(XGcXq>v!5Z1W{Y7jp`=y_)jYsX=nyyKvTePTZt>P=lrhT8b1z-bYBT6hanU_DKr3 zXHFLMjS%WERNoT48Zty2207@pJGah|3XE>F+lsMnWKGT^6q%Lmo*cL-ls1K|ssza) zazAuK!zAL`ZqVbm%r<(@$I4CNzzd~KN^pu&nT3s4po$|>gCYRUVcn>Bt{AD;@;nal zUarIZ1;Jfpo)92R0H$3{;bLXq@i44yPp-W!5zb%Kmjg|OO4=O?-)jdKcjSDc=;Tph^FkU( z=2B`AF+dcJsBAUJ)OkARcQLX6{5$az$3l!XVN(6j8RG+$gaP zjB*>jyii*~m3NbG3(03LW1d^Y)xjjt9YnFz{6r*;PdX@)){8yVBb*<=oBcu>2_Yi1 z0+T>=+nvd56%(QX_HCdAwutJ&U^jsr67KihbA1(f+ig*ZzBe8wsX>ujt&lac*~dnf zD7};Kr!#I_DO@eH*|+UkX?ndiC;g_$N8_VjuUNa8`f&G9owWFV4C9Ah` zXcR&ud5R(kSF(@}z~chfqd6?{35Bs%< zRgrRr1U8N z=mN@X^r)+m;vJui=#DQ&rnDu@#kp0xnVfzha#$Vgsq~40S;#Z$!i}_2gbN=9WIzZG zsbkR~^VtJy2sZMd9UPWHUqidT!{r4};W2Bds!_NB1EQ`FW8ti=4!V*N#SRn)fbdXb zWI6{u$aldr&Z$L2|NBr$lD2J5PN(_?3GWYC;IqVQxm+X{yJiMxEnN!(R#m_(^gUK- zh+?VmfH)}i2FlRMRxlc)AVP zI=Vf^w|AZ@19v=}Mf}LjxmpcZH*Y485t)#o?Wt|-^4wF=S8koDTj2f(f7420&s$*o zhMTQkNPv;-rM3CkVMWJez4ZmUtj73~#z5r#Kn+5vJd_{r@Uu_-28L*kWUw4-M9f7Y z<+2O`{4z=00Q$rSJiO*Ky60#~yEZ$RFJw86Jla*jRnL_sKisM^9AP<6KfglU87uql z=Njo}1z%9TsI8gE=v8rZwTDi>X;v0mU$pBmZ)TnUN)(4iwNEY+M-1NUzD9vX5CRSpRk zk|LWsU|gE)W9Rxh9J56g#|I+ZmYQ?tXd0ci%*F~*HT>1B#H#WDbqy!XtdWWWW~7Nd zBr<~HP&NmDh+?~@*Gm5p-g5+%phyJvPz0N$N@;H8H;a2xG>*xc0Yxm@{?;gMY0q0F zBSp1=F4OpRkycYjoQ7u}{hc-o7RVuww8)R(be?IuqL3~c)x?re)GF#;-D1?aa{q{2 zK~yZ?Zj8WcTaN}4nL8}gUo_&&M`&njrOvRZF)rWnRD>mWUu6@5iUye?T%0)=EQtI? z^Q)zT#|I92vwBGj=r8r`);rEMoOpL*yc}YlgYLMsV`^Lbbbko0wJf%^rdYN5g2XMs zoCIPs{ITNfr|^{cMIC)aYx&7Ne|R5^t@C_f1g&}jX_5=xw5_Xw!?}##-e8VcEoewb z@`K2wNanUtA(C7kH8>ZrnhR+}fUfVL<>M6?PQ^TfOP&XY*~#SC_htzLCZO2=7M4xw znnV|_BgBunAwJfoQ@h1%3T6?4w*!WDs!>}yT#;WJ<$yEBWmFSfaD9`ixF~c(YW>r? zPv~Z6e#xRJ3qo{SF_Zf!Qn3c#t8zN1?IwJdEftfAOk-BS+tH63v%=9QEMXQmT4b?=J`btJn2n-G zU!ZJ0+TP{i_})BiFJL-a4sR4{WjQ82MU|ViF2+H5!IgMnIG?o!;kq@Rb$8rVa~>hh zuJ}T+FR<8yPf)1isV(!W&L>BcqqnrHq7g@=Vs}=WntUz3G)gN_e#ialB2n|5-j{XS zDRbO0lywz`V#N zr=%pUD_Og#fEC(!RChe~yxtAv)tV(6JSKI_!fj$PIq&jkv2q<+0ldceo=&NpD$cSD zqA{GU9W~=KPqc&g(GxG=z3h1DaBwY~c#sS3k7cW*ToIo+!kLbU+jAtB&VmqgA$Xh- z)?)WO%nh+r@5o^ua?+K@c`6)Cy#5i-!pMyTO~Y`A;U|a%vkbCcvx_!@5skTHd{YZk z>Y9O=x3_iR1>>4w3NS(31`+3yA^=%eXqM$Dn5=j}JFghd3D3lPpMV5oiOmv*`8bE$ zuqPFXi?(T&W+JXB>|j3@z+?rY(GV@-+6FH!P;`T`_hnDJ^EQ~zw6p3#Im(I^#gIOk z_9Ea`-q-iaLsnDTZ~uC~$UZM1G3ex&Q0mc;S(cs$ZiH0l5f^&P?+aPH^a_CqK8Sj} zk%Yh9K3H<;w_B?c%YzL0mwMuL9ZyGH)@GhWSkfz`9fwElyy%iCzPY|7ZtkkfYX(|; z=ng9PPbB~;t^x-wboo!zyeV}k=jJLhOjax>YM*b*OQ?1oNnuLyZ4_cas0YWf-n%5o zAwk6{Ng6JrxI)}F??_?|)68SGQyc9cS>$Sk%T2TGRM~Ht zd4A{C1pjdJo&jH9j~Y7mu3w>}&%wOhA#nzefw?IPCKk$~~Lk@5*00UB;7A%HAx%}MgaSUQ{`V8uSFasRn_T`3yEpo7zzg;4R#wwSvSjw}QV zxSWTDjNV38{j?Egm1q%yBN-9AaPmtPIV-L)TCV8TR#t~7Yi12Q1;l$pcG9epOF$7T zO%`5nK5JMovGW!Vzi*pra72=-F6(|t$bZn|?zYi;R$LoD1A^9un?$*%q~gs{OnR}1 zl@etOX2mmJS>PTZ7kYzL58=81;Y>i6RZoGSj-n9m1U>)m?fAv5yxNiUXW)(s?6T5o zm)TklXgz+TlpZzp^3}t@R2Rx^p6cIn#5GHn$F{A~ey8Q-NR1Y9e)SjMtgyR!gkP{O zRVmU+ci%64bh?Z#C7#$LmF-xos-E=LFAvmY;x4Ei%&|L~IqTpiChL69G(I0P^^1aj z=VIO8OOXjW4LTe%Mq6!OIL~E{UG3wOI9bY@e1h|6(7k}=!AK@H$+o8y?gIFJJ;#fP z#LWD{Kh1t4@ga%BQZZDSZqIJBhjR|K#pkXPpnS68>;))z$_e9MZdVud*pPaM5@79M zlj1~enE~rX(A@inJ_)%Mo`Q!RElY1%Pq#o0{P1s#zMTzpHV89$(cdjw+GUF+kUx~m zE1@-gP@xrllM3G=6+7423^VnFL>1=)@<%CdwaRX{c=g*IvO3rwJRG|(x@%PW#ICS- z{J0f5v@@&0!6KwBG950%`E0Rabe!9Dv?XeoGcMZ4O#z&eMsNF~&4aLn)50Fe( zl9ngsdGAGG8Mlhx$9LM)yxe84m<*F^%5SY~myUoPk188Fii|@VJ0T!))r+g?ODO@- zkZefbgqb950ZE_2Nn3E#BNK5cm^H+UqdP6<84+c7T8HX2v;ry}5%WuR^`nQ@IDt-s z)Z!aZF}w?&e|;{+&Jj?7p*7TvclleL?DBgYlojd-EOsy=y_P*vE`*MCR`J&^4j(Co zWU$JHN<|Rx3)fmmEAKoDvg`FIO0GJF-1ko|OB{3xakvZ#;rqrZ5!J3KXRzT&RAVao zhPVLKpUDOilq$W0Z78N#B9J)(+Bl7`i=Iig?K#6iEY-x>oAXkEcl1RH=n&6`7>muO za5|bnMFWa)D_h`>|3%SRKQ#HiZJ3g77!A_G21tzt>2BD75z;Zj(TEsGD06fO6G577 zj2;bwbd2s2Nl67k)DQZ7dH;gvr{{U@>psuxI5;yDh%WIuLq`@#sb-R@E`-3LiZqu4 z%|I<8bH?ZUJs>zWotH1|HTj=xT`wP+;1^+EW!1N=IW)|=ZCM$ zv9LJy{b|^)$SFw6pmy=GoLs?;GyAVBnyZ{xxFUO-_Fjm@!-|(j_k3@!Z%Sy&GK$ul zp5AgDT~-QQAx-h8u2Ok*bd9G}>$4>ncK#_waR-?uj2mf)<=4GC-^kRU@6)nGn}RS0 zfbf&X%?;6Hwmr#zq(h+6`@!_oukpE>IlJiUQtwF_2F2mfW-=}o)b)NRgVvZNz8|nU zhR{*%t9h3UeR@>G?L8$zh*%XLP0V+}48yBSMJGB>d1ywV5QpQ;&2~*Q<1GHZ47DH0 zWZmLVf>iqi4}?FUN5yptgo>VPQ^F_YN;HW{9RKh zlWREJr%u@?e__hW#Y%tTe{pMBQtVr55!?O}c5w~`3U7jvb~uz&MZ84HF~i>+D)Ns< zyCR*=;q(J*Bp+nqKaD_?_w=p;OU54?cApB!HD2|lmT9~}qI#`^NK%C)Ow3R@Q%#>u zb$E=XMwP2R{O@+)hfW{+x5e<`w0YwrY#`8erQ5FpdETEiZU+MkZXrL02eIEF3J2^t zJW-BqSY(fg94Rt`+1Qr! zUj0?c4}7rzYB}iUaCM-OU_7g3=q(`UP$bgJGb0PJHZK zs%&J{9BE})sMYOphm>DPF&wRDpMfSfS3J9%)72(>RmLt$ROAp*O#B{Tp_nH5fwi!G zq*9>y%WY;>=?FvcAyXxHM3H$mzG~rf!pD}`cs(+1HHhRZq5};#w#gGi$_Uh-G*X2`aS2=&NaN=s1Me=UG^Cs6b8xOWyi*wL zkq~d2J5<0?3=dO@Te7M=ydcIWL(a6fnInuk z=oh7)sV$5sX6)XvOH*hIg*CuRGIb6f!4{GL2DYyYQ89`cwa;vds{jEJp9~S*v9yaW zJeh`H24OG7Muwk?Ia!SzIRNe%aUle)#hq*VRX2L;0uZ);eNLqBI+Z(;Ma~X zWDyMBM{4F3PWd6+TWJi@jwH7S*bZwHCwagwPl}GvkVPT;pYTD-{Z!ZIU5r+{@U!^D zP2^MKkzMEpu_m0;JXm@}aM1<$v(?%AhUgc_`2@X0Yq}7i4I#N2G&?A9t$3l8%P^k6 z-G^5c#_B z+(f2~pIht|xWSVhBzNriAs)uj*Y)A?ere_4oP$@T4d~82ZqZr&8C_z+Z2C^z6|4&6 zD1_IXv50)GI8wm*G>EdV)wWJR#Ka5Hn86 zF6JRW@oQA2G63uSG5zjl`42tT8u(-)MQj$wp`D#^w4S-v9UiW`Z3sO^&n8(055jT@2G0!S(hM~Fs3^<+EW!MEU59q#jTvw6%q-;O zEja)Lo%O!=aTd zkWiLelOq4&@_r5zoRq}YK!o-!1!|ftQhX?P3?&;-B??Iq7A{*h#+q9&UssV5L6Vd& zLiOBD@2J?>@7jHjDPKOb;)F*OW}73+<9PCtk^4APRh+@&>Posy3)u!*ye71;OjGhd z(O{cyi;RmB8@Lvf{V4!mjdC!+aB7-9@$0`LUJ!Zz3tTR{) zV)GRDx*`8fD?O#lOAvl8|K($K1fzsG_e#JCw?ok#xDXW}zHbqq~`5013O z#V#zb2{$E>=}d{>T~e@Fbd}CfvPx(*^RE3TG?db$<9#O`(%)8xC}DoSiC1Sn0hdp~ z>VU}<0#_c>=$8g`Cb(3`@oY&!=q*Q(E_PlS`YEV|F?7)15__CXvLG(a4SGL*gHvYB zRuHxgs|ip0RqD}-AXi5pRP)HA~A>g8`ms$=Q}bM@Ais{bOB@U_R`tr!vHa^X&B z%~M@#Z~HT&T}eeMxflwQ3#NP)$0d0c_rBLugowA(8TM(Y$Ka_Wo6-^X>q%gcS+q#j z;aJjC$Q6$(NNJJlx)j3rj_b>-4K0HGhfnd>7X~2O!4zSJA9&k5D!;Lt{%M}ZB5y(2 zQI`wg>_E26)z2)9K>vg4xX>6fmm5yIZPtf8%jEp2XSwNv2BC)d1Soc zI8!I~IRq2TWDQ|F(O4*5l!q&0 zF1F_Xccwb_Ui4~}wqyJHeheI!*?>nycuqhh{djwy5j@^@;0~+a*rGb-E;!HO|)qYAiXx8jcKM42+oceTkmGv2)~MWBCfpeY2)YUnr2=Bp~>BFnT=FuV!VBnkmhu z(*cBW?C#8<;>S%UuCAYkwkL?So!aEb;6f}BMv9wVOS;*YBLsCy2;StwAdkjxv#wQ&2J^N%g>?%D$QliXx+)gIO+EH;I9wmkYe zp=PV)y43xMfVxu)^_1F#%vbE&Pv!$xlY>I_w43SCNkbN9A5lo(EemS@h#2;Nl1TOW zd@iE+84U@^tmj+yFW+>`bVgw?FNt=G nrupX25&gH#kBGNHH0GD?3{Ee988MDJ z$Yqf;!ABo=jmJzy^kPVbIi}p?495JIFLXBsW?H-sC|mL3)Llinqbrt25SrgQH#oQB zXTNsb$hUTF_0;6>`65=*F{*d|{J6v|uI`-n^QW$l$;$l-cl@blL(Li9_9*{LGSfWY zV&bY$CVBH{W}5Ln-j(%+D6}0TJ-GrX+ybmjBfEXJagW>9fU+m+{|F;y9^iT(pEPg5 ziz+l;;8!94D?A^ON_xt*exB9G@ZKIm)+lzhb#=UODc}EXmc%OKUWgOTUxO$Z`m1e7T{nSVzFooonsG=v+J^O&k|=*oyM`ii7E;!XQOJMZa*RgtK`ckMyz#{Hey zf967Vm!D*c`hOmf#N5rlIUjsL<{X}eo0MEcIi6@fVKb2xGfp7Gr!L=c+1oa}V5mx% z(>zQL%a+~Y?*nj@NJNl-bV<7m5jWCWdEvu_RX2&_iBky9zE@!)|34De`3CuzWl?vq z>M~0%wrXG7--%Io)=N3!m2p{gtjRr2)yCoCd!5AOUWV+Byba?N26($Ia%_v#b~xbs^o6c4ZOyp{X$i7 zWp{PJ&Ny$}vSFeP72>tp@rcpC!H|AQ$bO6C-mk#o@4G_ZpoU)w3+u-m)mh^5uhpK% zEOE$${Su7!2pC$w08`@29oHHps<@9Aus!d#gL!-<&NV`;Na&XeAFiuUo~?6={srQ5 zhSa~VX@u0|xfMRThbbFcg(9b~+7-L++x>t^CuTfN4RsTpb`xn4TTjpg4zJy`t&IoQ zHE$)@9QKGr0nx~0m-sHI;vuB`8)wOkTFw#3c>C-WWz~#gfhZv_@3IHjxRkELwr;C^ zp&dzOdJ71P*!(!tYQp-DP%b~J$Oa>nXPIajrQ7^YhGaWEsOc%Abn2mItP{%>EBQ00Ag1!xLOIAQKS&!V-?jt25;tz(z4-jAVv!9NZ% zEwdbl&VN9xsgLd%POknqa_TI@D#H}C&Nh5(&sh?tkz*NvAQocKLy=|I7NfIw)z~H3 z6wa_`0BcYG33mnS(F=6rkq(&tO`C6vIkB`WznX?$&Q5I$o$h}RJtH5*+vdfE`QTcn zcpS6zjHjX?Pl*m`5f3x)h0E$3+o|t`-O-1=NeO8C5UhbtozBh$h?;euL*JJrJ@XkY z=}8i|W&(Z(MrO$0%=g4u+^AIca6fxE`G(B1ncD?fSD(hq9Z)q0r6hmeM)b*B+_+8AT!wk70jM_vxPq zxnwV5ze)mX>h{k;O3{B7?nS$YUWX|8bP@6uE2+sOrH4+KVjI}ZBEBX`AJ`?SSeLWi z{{D1(ACgMR3%;e0)uhJUXqHtJFd@7kx~9WiQ(BcBxhlRDm16js_$*XW`kdQACU7Oy>3SQ=WYAr?iRTU{*5Bbgmu7V0ZK`c3Hwh4So;8-yze39=gMd{yIf zh<=v$=cUA+s9T!qpx0oPPJm?A_Rhp=7$?_$$Gn$U?pSbPC60lZGhSal6W_!H0h&6;PLHxC0>dA+TpR>JO$~`JIK?af(h@#V0eeadCpa^& z0ANC=gy&eyB)sAa&Cpf=^TI3RzR%B8hry;%>%){4RJ8CW#(+w3-GO*0zBugE3*t8fhdmqqgsurED3V`{TcA5Lb^>Oe{rgv(hQPAC)1fP2X_BQLQ<2QJx)NV zNLzKc$y7Mt(0I8qFHM}9^$`(k9M7dhTI!Wy|Fb&2zqk${9*wDe!&e^4ny3tq9Ay}( z%*^5YVLdTuI;ZRB@Fm86?d(}18nYc?X2;n7LsjZoP9Eodz^f6}LBAtA!p5g>_x7ys zgoY_Y52EGmYas8t&J65q^>HT#rp_LN1`@yfnP8`;BVUd}2I*U=P({GPguep%n%0@F zcV8_aYOLrywY)-8`Ro7vxV7`93`mb2ZQhqh|s9=Z}<9$T_~ zdO*6o#QS2*BKT`;y(5uu%Xxe-hMbrB{iUti;bXf3<^DW21YpFq-zojj3fd^YR*0Dd zWyh@O1cgopmN7ZMf1JN95vE=$OAf*D4!0uS_1HcKRx?WSbcg{Y3eU6Ow10fc;|lwY zlC{MWvNoyt!87*_W6JQxzo( z{DQ}MP$ti-YCh1{A1p6v!uwnX{xX^WSu(2FD$fWdBpZasmP<3Ng~l&7C$Ne1yz*j0 zmL(Ab4Y!ZhlZW=U7A?l|*O9A?tISKbU0C*g9LJqhE0GW`?1`MSKCv@vV3=ZFnLd0J z!}fX<+eEO{ZL2gCp_on9JQ5CTXP3kpzvGmCmle<&7NQx@z*awRs|}e-*VrGMuM2y92~mlBpey42l}{K!7i)% z0s1<}yZ`_f$;BdLFx%oKIhF>(SLIXeFK*^*Y`s4eF63J{z|bPdWTbh<_rSJah#42~ zY4Zs01WJji$${Q7+}VwJ-tt|o^Tf0LsQRB8)~)=Lbt4uJT-xI)nN{g7YmW^*_M}5$ zUyTV1?|H9nSz7tk93Z787ZOvZ<@8_8LE@I17Lcq#vt1dUI_-6)3P)?|Ny&2c0-O&a zH@AR<>TKcN6Td#!GeaXN&Vy#q@`K>v4@fx$nGkJ=RP+;`3UwtK%^waGzf%s7RT3j$ z`FXbc{_Fa=N?4QB_%ooiMBK}&1w^QY^qr^XZSfK+2a9;a!JQQ)1)p7^b zn%ivmbGwS@k~DrCb%puL5UDEtJW%b08soEeJU_YB%RiCHt7Lkl`=&-4f9%aX|Ktz} zVF2x^lG^`~=n~#o&He0QQ@KZwsNII~J$!=?zU)?2lK3GWp6JYXh*J6|-0_@0 zklc3BMfZ6)^TpEV#r9-t$D#%4BT2d2KttDvvV7DtAUz}0III1?dD*@y(ov#FWL2o5 zOM_=`1uVk93`lrrql9M@bKxy~gV%@XpP8Dn><)QC_^n6V{82IZ2uPFWspz7t z#=t20M3iA8@Sdv;W$D;^C1g{TYkttYUxgpM@oDK{@jUHr755XvC`+>yQHMuG@=xX^ z!a{AG>&GRleQeX1Zi#s*o&12Lm6sb_0!Dy>$Nw^)i|l-(ZK{lyzm?WD-*H(AGC*ah za4}MY2PaCbFImIO!{4>!3GA18Li+1mkWYu%l+=6+uHP0B)-(IWd?QvZMmrk(o2CR4 zoT8z4T9tyB(f#UWS8&CMj|vrcZNo0|hvm~PZ}MNrZOmOS^|BsRca5ss0keGw5U8|+ z>=vtqAo+5^CVi?}?*n^S&A(t6ZCF;79qe9$KD44iU)hyN4==%!JHo{jLp1V?RH1gZ zd}CiF7ItIv2_!qU(xeR9_hH&H1$`L6b4W|flQ);k;J%I&Vx6ad0 zD1^PZJ?NSUQw0mxGni~_%^8acI-@>F#d>*Ob1kh?+p< z5dbD+Ko)D>oJ!qsvz|8plVWS$x)9yWk+0~G8FT2=Y7{`XzBn;Prr`C0!6R8=BXY~u zv%RA7C06oJ0tfqlk)+yW?-2zqHo;Wh)-4&V_C&$sWs8w~8JdyZHRwy>8MZ&gErJZE5A~&%)U5DyaF2yM2VkZ2_OcrF@P| z()I)vUb@dvcx9uJc0Z8$TlQAtcDnw7^!AVD?RHB=}x$2J2|WvUwJedK<$n$OwLP{ggq+2L&xPB~5q-kCbH1dHXXYo`|E zLn7RXM8oD4-auar^LWEe6@RL{Pp?X;65|^?+4ZjZwGTo;UleqjBX{jN5&7QMPmnV+ z$;ym9Tly0t;Dql?(U6S4n#!@oJ%yYyVB zNsPbS@GFbCJ0L#vkM2pSMW?KF?8&`9(1SsKwn_cYR&Jlme?o2{bOyq$s>|_$j)``_ZHOf(hyH^nq1w*Cmeer7WuFv7^&I za&Cf$lMMEM_rg3+OOy!k;BWlfXW>`apEZpfYo9d)7I4@xiZ7!7RjFv@rpSW{y;)iX z+}GtT((*lJEG9hFPoV!kywM0mxtA9 z#x7ZjzDOm!sfG;!3IIBy=eEltZi8i>HO|Plc4)ER*(k=qq9#tI8yRn_dHXq|(CF)n z*J|jvRmap7z~H*Av3;14y8^QFLtcQ`R??szpDvhL7yIGw&Ss00y|X@x_EEU)n%!_tKui$AdlEBC$;@L`a`}&M?V-QwXmp@*@IK+2|WQ%ab=2^fJ8vDJbn+orP{| zYsodNKcH4*;KFb3ny6nOwYL}jnDWGrBouOH>~dcRx?nW1j~V}Af*w^z4v0mSJc1eb zNd)|eZw(gZ^Uas%Ze%dr*&|xW@BUL9)n55!XKr3IuuX_ixBjof!^y*pxeOm%le{`1 zjN;f@1Q+FjOYX*=L}BD>9^Q8lWUBBU7gBd1n1Q&{ets=ORu5lQnJVewL1`V_+6EAt zTzK1OMX)`>BB+z^q?(4&sGE)UZieh=4F^(G6K@XN!gqKRUIgV!phuRSPDFK?JBLF(ou&Z3O zYI)75XIx`zMbzpY?0O$i?LY*%B?LdaQI8U7HJS?I*%_)DFIhv?ywo#PH)hq%8gAj0Z5g7CpA3KAU)!|WW%Bg>YPXc&YO#w6uk^I)MmaF(e^D<=;+C9i80O>VMUh*#^+Qwl8XWTs zYJSTj0$W(y2US*3d~@4T$=XKqbUlBLn1Zr{KMp?Savk4eQvY3g zWVNZ(^30y*?3VoZ=~k*rD?e4fUgHOP|Ea5T-AboIES$Xm&)DwaYC>EAi2YS-Lv>`T z;HvB2(mTIRM#)>dJ>i)--33o@JYVBfYbw?~hko~j4un`e^nwx23PePlJde`T5DYdi zeG1~*V|S2;aTb-$%rqhov;TkSX#&KhF)+J~2%ymul`2%BBjC4c$-H@l=9Ro7&eUHB zm8sbAHoIVTNh%M;?USJ^i8d~imxHBn()2%@P17Vl5bpVOhWlsgMhq*-5>E0q>- zrih=1j0#Z-1Hzta!rvG6ii;qeXKT2NDO%WL(akbY?-3$H-^dU(4u_EKx+3a`B**Q7 zX#vT=r<4oLGEzH>$r-X(pSZSvZWf~Q9CmGHfrwot(+pF`AKC#r>@ zZhWw<#E0f+m7P6-{dd$)oLvmtyy7ow{yQu>*b8BmjR6m=VH5~rmXvXgo?vMiqH!evsJ7lhn=FG)SerP8yV z*k98|*I$EORXkkfV)=e-?wacMfc#9`Ky*f(-CmXz55dpP$1SlBkfqI!SgXh8?tlLD zpREI57)ThwzO&fb`3~|Tl462Bf7``nMIgwVQcq#*x_k?o9 z4{Kxuiaes=`5L)kCuLr&=eQKg9*2zZiBLOlk|+`=v=BManDs*+Ssw6eQn@CIeHrGi zeftGJB-$09PG5rKgrP=dPNHy|r0U>Gz1|4$zL6vU?5x2iGt)u_NDVZ_;_ggF?O04Xbo`IOm+vstZ z`08TOSe_5SBV{}Nq%4g(mA;y$r(w%lc2CFx-L5Q|5b$PWMomejNwiD3>}QwzQYc_Q z+|INR)F42JrM5|Cl(Q47frqyvBqc^RXXF<54;@(((-u7LhYa&lZNqOG(mTrHH_MC> z>sO^j?x~z6AE_EnqRj}7>4nKR3)CIAfJRNuv#`-9(0U61C$nwN@dq+KYAA>PG+!k* zd~tD_L4{{{De^Zp+54W)bHmkkWggLx z3pW(_4^Ug~AaR1@=p}#JPs9YL&aefV1ffi0(^`=O72IsC_Vzm-vMS-kUR>&!fmP`m zO`V>yL1oe|YRTjaQRT5f;CBVb?R(>7Ux(4&4zq)Ix=@^AI&?+*ZNJ|yC>7P1fR8y_ zli7--cYxO`o6DmdC7U@e~!j{Md>G-l%! zQ@Tfk>FV;xdoO=L#V#&QKkQPW`zHNU9oIX0C3KCak0+NWUQV9Ip>QrEL>Fkne0pd? zTcpFjBF*?BLk`+1_XYsbVTByq%OfZ)165DMVOGxU0=MHsQ#r5WlFs80cTk%L@`^uxb7swvViHasfgjW#`(Sh^0HGR13#pr!sX(`(k-!&OfB2 zAk(`nuF`Mr7AaqD*I$8**c2o*7IPjNS{N+w&NTC!=AC{p&)@9syETz_>3RRGOXinL zI5ux+FZy)on^>4uHXrK{h=ujl`ftY=O=yptRW^SFDKz;Nu1-w1`GB8YP@jGHA;R}3 z7W#C6DG)I;LhS9oN7;pt`=G!~Sf!qUIVxE3(<@Ejd?410>*o>jhG5No>= z`&&M{U6K|#JKeFYo5PDD2CbOkg7$#$R3o#T4FpiFXe$_tU&O=pqGb~kk z>uTW!H8xySsvpP~%XM!9E8VoGnDslab2Tn;2J)n^>M#{tp8Sh7=L$XTMDye!-~_T# z1L>Sdk_<~!_OP|(av&=xw67{6aLk6rTYwV0U$3YT&0mSyBR+-EY(c)3(HgOw{lO zZpeXFJv;H7-M>e$+{rN!k!}r!V!307)NG@E`}@?QbFdK5dabC`{7RZCPQaS1`m?F9 z9okhN_1_`cnJ0qsam`;f^2i6P-gklDUtC{TNUf%hrqEnu+z|hQ+*A@nPi>N1JS!TJ zt!D9#%Caf7TwaCHtEJds?Pse-)iwLJ(=S1qBjeM5c=~%9m?!n_?YXukgq^{L&gnyi zK`j3bjRS2TmH`lvYR;vD}L~i?RBS1oe0{SN-h`P8c`+6Vn00U z*6ezv;=>zaNCN#ygr(Z&+$-6}HcScE4CrYa#a6!d|0>qntOOiskE2gFJ$O`NXh(>J zCgn_6m&HPylf*vr1MQ;Opz>rd2ZAf#h4Fd7e>gKMCs-!sZ-qKca47hoL{P}3nR)46 zKfP9Rw9j80JL8>Try7f@s__)Lm*I;|)oZVJ%4_Y;c|?D%q&#+EaS8g+0PLrlUi#o{ znC#k=-BdMOA7|#CIVtucj=;{}tXNYU{xbu!UekYQZ*JboWrJQ16t`zh%canP{#5p% z@b-4F&79nRpl9gZlA26If?E8TQsz{{GVhUBp0~iW&;8}L42gHWtEcv}T&gu!mqs*_ ztPM1k7k6^@;Tt3LanUxfqIo+v;7CjSm#a)s#mT+<0_&$aalL;HLK#Y2rRdM{`$&`3 zpqHVSSUh)Pebc5mZCHNwg+cJf*T&VpTh=)^RhSQbTxF}UeDGdXZ(EIygy_!Cq$0Qo zZ&~3pTfpuos5rVQ9cG%|+6$9|)zc|K^p&*XcbUvRjsp_>W3gYLP(gkgm0DzIQEhh!OW_ZJgpbX?+j1C<@Q_>upLA2eCMwJ%D56JbHuwsp-`ynCNKW=37jd2O zTSMTs?7aAWvST&wvtL`#s_`@T=daeG#mGw!(FgEmp?Kc-y8|HO4Ndb6w5qci{-a1( z<@+#h>KLMT6T9e>g;T9V$KSRBOnS~?-4kp*sQOv%FMI7|O+GF>glM)kv-a@jt7>oS zUioXRx%4!4t0^4j#`^@)eNmgX@QfT9_uCp+5Y|WufbQ#eGvWrKm<^-#er?x#dZby2 z-~$L>I~rXllt~jD(-6O@&^E3^?^9$D$GtWGQi(3Uq7Wy}!o``W>4Fe7`8y9pVyfBa z#u1Xs4r2EhEHnei8E>0g67^@i@fab`a}-ws21bz7 z__u+-A-NZ_$l4Yp*7D5vL6W5~#4Z2-HyozeXB#X~YuUB~-3{hYfTF1H`@}cYRmhd^ zW0dpk$|e6GS=3X2ijpzUc_Gzr2~MLtBDk61i6f)isnj9OLg3u*weQNvI@Nb{T~&kg ztN)S2c4)s*6cgpmL9sYVTkwLL*P7eoot#zi#x6pD1OFdi9aKi2Kt-r#JKpfys=r>y zjVIc^)rF~z_*~=2Jj?l(9^APoq+dvH&XVUXHZ4El0K0|#g?FVf!ZSNayz8+JYB`}~ zPD^)TGU_~R6C#FM3uEx;u+8ZR%3VmKm$d?ck3GEh%Sej|-BoaTU3LXdo%Ec=lSW54 z$17j*H0m*uo%Q1+nnBqfEqF>H$1yZ_Fx=?W&{0?J zE6_}JjNT79jC8FXvjTYduC}vRu!sk`PMjzkTH)pQ5?g}Omq_MeL8Ts3wLpHD?@I%> zVd3`d=9-Ar^LCqiQblG;+K1?ph^P^249%!7Wl0pPgNx0$h$nC9Vs&&B{u|xVeILx) zy8eKCAzw6Ls9*Ayiv_`yY=F$_TbOLFYJ)7a{1xD=%{5cci>*0-dZeqrRUL-^c*MMa zUw&?!qQzJQxjskme`}aJfTcwNYFwWOPlm9wU3@o+y-m9j*s0h;cK4Ie=(i|)=gDXR z?Vq)7KZW?py%LbizceGR5lU>Vg}lTu9hdSJ4Lh<c(h@3MXo8iLzi)TNfP!Md{HNg`mO=)*a~LEC z{QU3Dw&R}-$kS|d?`T8=ren4lR%vtp9W8-MkIa9j2Rsl{Xhyeko(p@= zUd(udT0|Q(US`gLtsF>30%OBE+jACB`4w_Xd*F6|T(sw4?2lr2KSDMX7OPLBH}5Zc zEI^19shHL|_To6>NVb(5`5RdE{aJHYKr8XT0+p1h@5QD#%-V2di1;gk%>`l)q+uF~ zc&jEJx*PrV(XT1pC#tL4Vt?13esM|LP6N$#-Nzc$1>mb5GKZA8NIn<IFLr$sVD^@=v&~=Z5QsZGu5oY60`@fM+5tM5B)N^XT zY;gJ1V1}si?>z0f#BLa@=iOI#0OhXvt_$Uy2Qb|E|D*AdV;M)wM{f&gZ*`Pjc8Q|4PpEir@yw3Dk;Od2RA0(a73 zZz;BM-n$F0*MO2IcM>h-f$Jn&5dUNYSgVRkwU0E-fH&UooEf<5jbJi$(6KErjLtEF zLu@N+gZ5uGfAc73!2p4S4RV(FDS8GY=52g1*TdKXp~3eSd3xVY)|c$u`*IwV%j3a0 zL0aGW7Jn9oq862!z?OUCYc`6a01BQ@!D2JxtL9!0HZ(yv1NwwEY||&bTUE0I<%FZ> z!n_BW>Yp8OnCOxzO1tbR&`|1SRSBNXtl}S7P!3oj#nP{HMt0l087O%_x#g{$J zs7pZC5;?))F`eC>Zl}=2HsOsob#+-ifcE8t%4DqlEW`X)ufEcL*HISTn-AV|VndAZ zq1jTL<%**0k*{m33V*o0sI3^)X0w<}`xFclH%`wWa%qE3u7!*V2!AA_An0A!JKuol z>Z?P111kNZZZmaHFO-dk+`!f>o3SICMbLc1CCem(4#<7iK5ZTHm{$ZDK=ZV0!q4*73zr^Gf*v-^+r>DSFL*xlT#@B;E|iqF(ll#A{9IOQ&>U=?(0+EH77cs5Nu z+jD51K~*cdW=%^XF1L#{oBcJ5m8$oO5iSCyB^3X_B^nf}41L&OI*r4$Vzfe-!GTXF6XR9 z8ySdgY|^fM99z$H<`HkZfOS`lz4*%bxx(vfP~BepkP5WSaWJil{x~)93vL`|DdUo- z84L0LP!3tl=vUAP?k~!HtJbXJco{;N4P5lxUl2{)Mf9&bC_k3Gps>{PsYPitH_8nR zo$U!4w^2lco1};oMyma^!?xTyUkx4soZlHQ^^oF^oy~58ZW*ssJbVaaS{AamU$X(y z6U|J^b>&4t=O?iEpeg^kQs{Klc?N^mp}A)}?S=vh`bJ?zL}!_mP^8UPcArYP3mLn9 zhM67q*}4B#*X0rjB9=}l1OKK|c7uil&AwD<{zU$G;=sy~zN7&?Umj9_m&bx1=zY%l zqvkpDC-?SMBPtbq;GM__ZxtWK)40LMjQ_|{$pXox^1B5%WLCp){Rr64Y9!eJOdeN` zcW!u?WqRB_Gm+NI_i`33qRZJ<@z z5%47ZkvJ>lN`O!b4=mss(@4)P;Dk;Es`m?j$;g1asvVE!M7vyQ8btk5p2^zZcy#i; zx7yt()Gek99C-IJSIhR~%YXAGtVB-1-TlT258$n}unU@;8pCbQ`gf5JVgX<8li597 ztdv>hd`h1pEU`KN)mbC}2TCd3_}pzTSd-iA#NZf#bwovCY;@!QpyL8BLWIj{LB=?^ z8IMAdR<07|1Wzh^2&NzmxXL<>jZrB{=LeeD-32SsBRyj?UMkF1ng$HTRLRIoo`Le* zMS0rqe%{9Fw+%X{i}@oBN{ zf9ApA`b1u(kwHha>~T?YwX>Wq$VPTlSMtct{xsfJO6V0?(Q$&6A^WJmexg^mvB)Vh z*U?siHaMQ#&@9xpG|`RHLQExMKZ8DMYae5|au49^vW+_(-G1ZZU&DMh1>e81i4x5W zE>)!&FSa{$6|X~}BNIjt-XZKymWn2bqBXZ}P!sWr7qi`mB*Ti||E8Npk(T!f3qK}4 z5KQxrtUN%Pmo!TFs9@8o(9ORAY@UgUW736%SD5U5a~>1s-C2FDARbSjXxqEUIEw`f z>E6|t>iL^~#lJMX8b%rrM7h>C({ACLc1qkS_aL}(+dr^X6}N~+%@{Jb7I2nD0vv~c zV6G8>jNFqn`OxJ~S>#r-PQusNd4+(%Y@llOba4s)v1z|GOKNuQ-qmGI1t*}S*|+>k z_1$apFo4gX5p(~N4F=X9$sJ>?a(L`0zLA^GJ!o1SYRdD~L4-8~Q;|5vsE!P*J8+OP z+)`NHnteCBQ%Pu;n&M8gt<2w56osa>Grg7d*le=iWr5A*?u4r~>_r(o5nqu5_(sz6 z-~cO129Bu--aIn}vDyBuhTNudU$Bz|)wc9N`b-p5zdhx;?v6zSk8Ax$z6;}#TKJLN z^~%z#?5thA=9E=4uwhW*j=;iO4Del6+c3O4sNZ4%%^kYeKK#Y*C@N4vF%$J&r$$7K zdxKv-^~?AIAK}yMJ>FQJc7c>99u0HTw#^1&96+F4-9t`Tp`cs3Uiv@BmH~^ zcZtSa?`If20Jh?WUUfZJk(C$omF~h<9dKJ zey8)p;lJ|zHcfVJ(*Y}?q{lgn2QHuWTFzx2)axo=YuDY+(`;O5`%pydT=rSV?B{m-U9ykqFd^1oa;GEz4BlL&YFIdYj*O|$MON}9Mxe+czxbxYk|B+Z7 zytN^^yNDQpa7+azl(hkzp4Muo&DxG1Fu%L zA^CE0NOR=|cj}+a3v_iSF6*-nrIMY=sun?GCK&8yW$vI4O%8s^2X=fWLWEde`LriO z%$=npj>0roN*#bS7J zgLo`>46-!Eso?KIzF6l9PD5VZ!6X7CLHE(uGH|BTvIF-yoQ7 zO5u(^MIJ75sKiW__5)k?vIE^V-v6P+&nLcvjnV&pU;VL*rO`@`B2;TtMa=TOUP^qZ z5yEq`)J#Oc%;RkfBj&jFwPvfChHF5F58;U zl&ZE6|FT%PL$VMSJE!a2O4sI#Z3Xz=oA9w@(A|ov%y`Gnhc}e_h|Uum^DK*8?Zcdq zuQT^DUIx*|+E*xH(OllXmA52P?kR$yj*}eJL52TFb)J<`fK_zSRhcexVr@@#S`4E zLZLtjQY=Vt2_7iLDYUq|yE}zKfl_EoZ=UD(J>PrI{p;SlImy|bnQZobb|*VK^O^Tc zH9%_8>vzXfGvHd)z$FlJT~#Q7jDnIKBWTKb5s5r2JRq~*bNJ!amDuOe99&Z+MBtN&eccO17PQ%Vkb4PI`Nn~+2hXWMRC7Hfm#~Q} zR_YG|678=8R}|H6qI`meS%CxSKzV5|F+SrjZYe8mtBEJ5#wUQAlaf= zhqa@sp1b%t)?Qng4;WYruRU_snX&otE?dD3hFKbVEM+fmM+oou=9tip3HDT_{+JQv z*D&=Y`ma_TZ1LdxTkVXU4)e4a=*ES7o?T|!)evy}>#!SK%vcR;47Cy?D~$3K55hw0X4+|xCMzr1KRD3;fRL%%fsaQ3$))Dv*&g2pU)L8l#l z$Hh|=o|<~@NO?be-yh^>`Cbd_TQ{skv|gIMZ^mi?HMe4715cAR9wF%;?C!V9iivLe-Y7-oM-_$dUr-LHw*!c2o~nErz}Mv(r=n#^wN`ll=b6`~mvf)c*Y`JG_l?>x zT>3tlU#)8{j*IUc!anR^EfdWJrNQjh3WvFRXS0$b|yb|yDm%e z(@pZxQ4th@OSv28hEIU;8lMvMId6XuL6(mg`ym9$5El9 zn{l@Guh5F{ZMdaGj)P(!M}71TDMONW-kXv?2+bt@2o_50O)TN~3zA?Y1qI2y-=Q5m zho<7I(_0&IAdDo3reo#GaYe$IV$*y@^@XDMlfx%y!QOn&RRS+elqp4_3*o2LWyf$i z^`_EzW9bA-X5MK`ET+a_fN$|&p~D4s`!r)Zw_LS(zt2~Xe|Yd){08@M#$8C_GlL7% zNXOd@g7g}p-Q+>qrrrA!({DY#g|AQ8`kVDk=1a-ciYNObH>Rs>YL>*XK!jJ^3qlOl z*}oVFS6et5qBKU7Wzx{BdR5(*#m@@IRpKJAYl5u$YTBT}z(G$1s4m^sj#)el)$sJO zfv$M$@VU$aZ~boN%2V3gBTKroJuavZS>SJPUpRWTs~Uc7{Bdfgv;jodu0;AW$!ELCpS_XNQ^7;_!w;K1 zNKXVh^gYheHRMPG>V z80YObLe6gLjgmQ(Sdx9%2Ko&cxmaMQeib099DhgT6;_!S65CK(^*dZr)KyEDti05B zM;xQ$+=b@`Y;snmSra_8jrm<+#e8X;ujV(6)A2|K&EruOkDuVS<-w2ZXTef|71*W`!?uYr{C8|diQxWRV+etKzIsD_7UF_IjBZ4|xG{xp&( zYK@RZ3J3W4%}B}O1pHo!BPKU9?0DTc@vE(K`8W~iT{~EI*vzwF(A@HT(@uY;u%>Dt zT|ki7KbMePy%1A$%8AmtfC%WXX?>ZSvSDxiIN@V`7f} zeq;c@Zo8ddlvC`JGI-bH+rvO>@ntFSC;an~uhHyi9`z@?nLLiV$i%tgHxJB(3^fW? z?tz9$IRT=MABg0y{s6M}^Tjr|k@_Q6WrcBO3^?pefdqX06cUk)vNJd*M@F7IK$84C zv=K2!D*g!NPw;EPL7*CV)4tZ~de_W@E-N6|P@k}vlmZBf7t++wT}9bi7{e}p@VPRw zNgo-J?nunb&L#uq1WR-o*FHe&nJJZs@R_O-Fv(`@cD?(BHRw|RyXUcu%#;Z3ONU22 z?1R85t6!^>1bta-SO({|Kx7nlV)$`_(Yhf9;A;TdKreN65RI~ zJr0XXxhH2 z{ZF2>kw{GJ!ftg{)K;a1km?Njp?7v0OC%JEhGTp2U|4muFFjo0uYB*7F~yD79Zyh8j~H8Lh2j}j|J5BFkUv> ze3kq>u@qbaq4pB($eekjV%BYVRY#UwM@7Vi1_NVP&GPg(f5Vb}vf3We1!2o|tEk4q zgd>~8EI)!hRO9Ep_she<;DNY(Xl|ya(xH!m#(cA{VkoYf0@AA81O-_Oc1Pr!Oz*`Q zTw40pz?uU~dDR{Tc}qz1r1Gn2HmH{G^ZD@_TPAlh>xEz=zB8;FtuhUbBZ^uxOC1}7 zMJJP?TYCY8z@3`1uo~;zX^uDkskRlHG4v=d_tm5*xA29lMypZ2+fTtYJ6otvuvAWe zwLU-PEi;~~_79MYZys!4c@4us=^ywm10R*w^lX!T$PE!3?jZA?bmpI0r~{(EQz@}} z{QV+m)8RHDOz8aPrfQz|y>`KE?)$M2lat^5^82;qSK=t{Cg~>rBh+L)`_Z?u@-b)V zt9`bj25ABG2_ zxzsrlfG5Gu9>G7&Pmp$vkKkbBXiHy^mYm8Evs4QsIsAr6|E(hU`p!w$Pw~xOsJMOlZ{H?dZtJjgtA*GsgjvIWxLm#2UGqOSMjN@is*A(;ybZ z^>Kl5;+a6zSHpl(PBw3W^yI)VeD4}QYFeVGpX7S7kZU~3b!h=b>AD`3h{>?|d>F1+ zdu;x~l)fB1JJ@0^DuL}bL8@(&JtziFX2m0FyUIsAs*Fex7>;)8Vf}5Ta*q^!&+I77%O?;)Gf&ZUkl2YVu6e=XDnO#B;KYJG89(w z4UNeq&~X*kT5Es{JfykP2qAPx^w`}{2P(RNEMw4PxawZ}w04zw1b@T%q8A_XvS+v^5 zgDMz}H3&i1eTqt!{F8%bx}_y)0wTrbRD%#&wZ+inRDOfa$m!g!#B9R)8XC;=Ru+;n ze%U*0ymUrH3e#jgb1^3?sJfDPuqrf&y5L(dIR2+__D!`|aNsUgA}9_w!3OwEI-bRE z5d1a}?PI9*a+%&twwN2I&Xg)}mE?1HuPNgqx>NpoGBJc+xcIRYg;xF6kj3gJTxC*9 zrSDpsnsCgi$v2CYjp7f`@sg13DgT2Zt_j5pykeN>NVo=0{l@wy_x7q^Nw~~K`GzLn zo%39o_61Q+V8R5Iv0yaY;jqZiKXgxMxtQTIR}L926z@_)rdfP=f`+{|FreVBTb)0T&PW_c1tq|Q#>MV{?Rh`w_99tc z35aR4B(xgw85uxF#PD>g;n=21Pj!a!3 z63`o-ES^RZ^tbF#7N%l%rB{vi_i8Dx#zo)^lhuV${>Hxq$Ki1sTs~tq(<@SZU)LdE zsA+{@takazRFw2rf6kHwIkmx+L56t8?Z$Qr;jtIR6V#7^F1>HrhFC*4nMTe>LPF;% zzF7e!(4nD7sARH2{0l0$gW!5U?+5!5n;GJWCK(kHoSnH%W7 zC%yal*ER4=a6qIg#~qGETLZUn$!#!CY4+T^WVXD(RSF-YW0B1RR(OL@ldAkXGtAxD zTdQMuc0Ip9ab~Xfe(}nD^=ge3n5JT2%c?JP2xy~6rq~$)Uoujc12LLo+_U0TgMYn7 z!a1WWH|-Tcqp!X+>QM7WCHj~Z*^`r*>oHXeGkyXwGfjSamjZG=Brw&9VW^T`l`gN- zTuo-i1B#uCoBr@QhFfHF(q@_So{p)E>cLH=p;14ol}Z%EM1FzA2C==RZoyzhB3ZGv%FTqg4h|JHU=!+b!7OlKv>nVr9unkR?%7T06QR* zvxE8^4>oBT*L|Q%YMjI5b6u{CV??B;*FHIE+x>g;^v6CD;2uBgiF50U8|J($ZmtrB z_*hBh!hm_jqY?KlEBtCq8CQDpv|qY17z;-V+kZdwLxiJ#P0^_Hxr7S7X1`bUD z6Xh6gEMK_m$b?6E|Elau#HGv{W05PhTGwVpB~3H3xB8m|B{KCPcY3kP#r**1h(a0d4WZQ8efewfs>z?|(~sT-8>t=>{)qH|f)S{zmy z;<-jn@6+eEwdX%0Q^gzLFrNzje12c#+-xXFP1C_#h>b3MmnWBRk|ng&OgE?`803gL zXgnF*=Hs!B&r>z6vq)I=dWiR3o6PL>7-uTgGvT0Pclh#Hy-wYR@MvT#VDOKdy5?*` zLhTvu1kPSy9&#`^kKK+`O@pwtgT|<}Ub-0>KEbD_gqb$t?jK_9udiBN)7sb2F-**q zuCC(>nm=P9>tWw+Xc!BezJ6IXYhnHNGEidaDlPE{-SDDr;5-jxEmLF`^T@9>m2Vj` zScN4WU?LJ41CIr=t@twYAT&GxKYVoYY&J zI4gk_X+>$-P;()lhkd@}t1sRHXY@QrjiIGB7eXnWl_RV35_a?Jb-tcOraqBgm+oZ3l;^t0+#0^$4z;D?R{Bii6*3hZJa4VxN8O&Pkq11eZPRo&%>a}aZUNr`-tng+IhKh~@N|0+wQVtoe5xI-od711i<~33=SGAPOmd~x0;w<(q zQypE(t)svP_X1O#lQjj+^td7GqFhz+?!1jOr90(nLD*IRRRmmPr-zUAi1S6BTiF{D zxTvdU6;jFVqsHqONfa;5;6mT50#|z?IILi$tLo7lO~O~%Ym)2p$HyWcZTMUlDSi1- zd+rjVca}jA~4`S z(^6yPI?n$xN!1c02eLSIK}z+}v|S8Wa7s+OGi#JoMM-1_gFi{=s%Gub`4Lme_M0(0 zeg%)thutjuX-=RX0;oB)nKjxRt&x$@;YYk?F({L&EU$d2%+?hx3 zeNjo-SMs3E_d%o!hI#YtCbcGy;Y0c)YDa9mq8ga3exF=_4*D(EMDKfUaR3a{JMa5^ zjJnS5A3tZ8yp=CzpQ|(qjh$7`9TvI9??Iftd{wGk`VZjP!}5?edP6Mvk8Tdr&Tx%B z5Zi@W&lIHQhl7auRcBU)Ph)Crhmh^wtR7wkOFK#n>d$BY;hLd%p~!20MZ^CGK4?Vv zZQe0t9JG+r7wBAAlqyuRAuIyoacAS__}%hdC)A9!+q3X(>7YVTi%D{ACOT|N3>Zf$ z0xOg>?GM2S2^LE(KnUy2@@arXv=a1^wRx0*o@~FWEf-ln<>8b$qT)%@jg2yltnj^u z2FLk7khGBUEjzG6N{Q=QJPsQ93yXRUa7{ulph?RfAGlmt-RPLh)Nk9&&3~4ox)?mT zV;roJXN@v^pAY@$FEUyP!3sjpemd=uo`e(l(|uBvh-VCWZfq%oJcQ*z`T-cbyR2Dg z(!>M*+fWiT7Z=ajwMhPO{CP;}iVdfBYz*UfsPMkM6%GE>P@>6x8>}R(TrtWwKRC=x zXd>+w)ppzS2ZOal$mS=E(l@}qc-!xyEANo#;jvi3zV)1Pa*}X2MBG?}RSRHnh_Tkl zjZQR5shQneD4--;J1+4dk$dEKTQjy#pIeXS%r$$TGdxK@e^OBy>IZC(B+8i|h)rki zkCh4^TIq0tT1kY)KTJ_`t0k5=TFS}H{Cy*Ia`V_ol&|}vG`uHznxEz+`GW~VD|soW z=rK8OAL~Grtu!!sN&h9&l-f<5>>A_87r}9%4vmfpzW)H4?Luzi_=BS^NpJ9M2r!!- zBQl9G`@q=pMfCvjb{z`V$|JpHjVvtXfOy%J?dkOQVoLbXPuNAmUxQib{ktav`DL2# z?y1Yz7qZrlX1XnQe1DrIzO8zG^!4IMynKQ$#P~GQs--75^NUllWQxF=q$CX|!8IQH zjK@J!dlsD{Z9PRHW`%;@!p7q>;G4>Tv*ZOM^U zo8=Mw8~8Q~ozlm6`@R#{hc#uZM6(r2x-Q!GR>UxPOW#y|lo_Kr#X4_CnCv(EM~xMy zp6DsD>S(U)yOaCE>)i9;W7GE+gV$h_ox&4nXDnGVjx_=;mIOZ{0@CLG5D3l^OZlM+ zKl-^JQj8FhY9(o{wAJ?x2G?$__(|5f(5Q{qvKv);Ym6D0uVyFAUEN--3^aX?8%f79 z6l$urzBGFkuB|`(c&|FE^pKa^?RkG&O~NY&A1@wca7Hq_h9}xO2`@;xIv*$4Dc~fm z!U<*u(J+0WDEPV*!;|-JLsxHjpbsTiJ#S{_dF0^Yxn-*~@&y7M3jRI#d6s=nh)X^3 zj`CahZt*z-mDN4ZImwCzmXMYqK1_V+;7dHPWvzn>n3cY?LlRXOBY5`eX+uIOUFV;a zA2&7md_Y;^zHVP=Jx=0klgBvF*2#)4J(%Za|AaL1RSixP;;tSNB%d0N0Udjr)h-<` z$BRt}N~Kh%UT}KuRlYD(sZh_ZSP4Gv4!K&xePEZOf>`x*vW~h{hemF<`%0o6D`+z9 z!*P$vi6GS$?S?fB@oM*G&v27`W-fqo2XWvK3>)!5!j3l{;d_?J13D5irsXJf<3O}~ zRMXJ3RiH&ryw-ROC(-Q7xx!M{CZ>dp=%T!3R?NdO(T5SgpT&!^?YFebnpZZqbqVxv z6vxD8E{G<*iDBsTfZ2j07_Sam8=WjT)1_Y)iN>%;5Y+*-3~AmaD8DF!o1-+cm49<; z1{<`Ma-_2}Gh(g9H-7o)&QxEAovg{pX6~B5H5_~j!6zvriucbX&q=}@MNc~i!T?+e zC2zz{0w`#pHo;-$4P;XJLEesvJ>gj_F0!WbN_>M;7X%+-zWF~5YpE{P^x|B5a7i)f zlY`na{Yv%rc0qG{%xK2&<1~AH;G6nqR6km}x)BG@eh}9{G0&Al-IPC`r)R$iDBf5< zHXI(o3zw7x?cK*=4|t!yd5APh#V4JU#c?-We+Kxx8x@^R5mPHzd)6L_gH&Ze z@AG{y`o7JCvTs?0FNlGPEOpOcZZ~KV!<}zyESjgUA_JU!V2pgz@|$C=-jTeF-*i1~ zo;9JY&)H4ayi+KPSsGdgHU$#1dkuw9)rQeI>ReVSqD(a!kHdjRmwo0pWb*hL-2Sf$ zTnMCDP-qCdcd8uEZXdY6sPp~@gO2VQ$r*6(HEnlr^xQ7q2&tG>1pQ>rRmDHR7T4@@ zSVixq+~h+Z$`{chpxlIBv)_GvU-OxF_}gnaR|Bts)aBWeUOnf&paky)5Ds zaca;h_t2S79udYBuI;_-?ZFm2%_z#3F^V^W&$lc-gX0!G+ei~aUEb9EPQd9Ux(jcH zBh$Y_#iFrC2?Ql|TBH;S`^(>!amZ5DI(gNt_se1Wy;$f_GGqX-1cH2 zP3LLI{MPOI(*_~6!;0olE#5v6lyC3m{XOZN0t^C^yJ|k)Q-7tlQA}FmS2X~>%#{8! z#tr*iXVbg)N43cI@Luz)5{(wI$+(^XAbz_|fmXS)I$0ajJ|+?VDOOKUAlDZMOl`K< z&|m7ip0@T?9(MftwG5MbzpkRXE(^40t`k9V+NC@0MSkZeEg8?C5{3J<`{#!3# zHg#Yx`?e*uvugcOSUyF_2hm`g@H?}f1{B?r=cCcM{Og?j?)qzeYS>+tg(O49XOVF@ zr&0BSP=m0+yH_X2+7!Kvd8g?=r+6bFW-JikEbJ~LCcufr$-+^gOJ=*3ui=%Jzf4iA@XB50lgj{gOy~wTcnI92Hc&}bVaH8OMk{GdDeCi8xg~z)3_W0g2+L+$KoFB13#g( zdVgGt<6BjEK8R;}efDci3FiK3nB+%sMHSQRVN$i0_u_7t$wpQhGI>I8k@VG=DG5{A z%SMq>y0+q?y7)#;ceb?Y!e}zaGM=#c@}a8aZ!6PHveK{U@~bS@HL226+3n-zT2C#z zlvoy&HpfJsKmUB2XSCAqBu14~!X|Fc+IuC3``vu<>`E7^AuOBa)GYcJ^&;9h=N|xC zaqb(u^YM%NOB%8867S$DR8;i|di{QT4tgxjm44~!{fiM0>S!)-Ua^yE9qj0A6t0EV zH)?k{^s|CzWh}{cJ>Z1g&Diqo4$BDe<5McKPxmUZ!j`1Bo5a*SZesi~&xA7Q3?1s( zm({mH;pg)2lB2B56i(^wb^Q@~s*p&-;e4gisqwN%e{NEObo~lH1M6UV)r=y&{Ifx~ zvID|+nm%5FMd_@rvGe7we9`q)jyp=?dt}y|^JUjUm-;W7ndF?oKhJ7)2aGqSBa;Yt z_2gnEID7TqHKO0O&g?t>>?&1=xrSsM)U`15zt;NMK(UWID!NFL!kZ!JWNIMZ3>$~b zMF^R?p8xXy-K0C>CT$(C2s?6mN=eXOa_0^{Q+nTh3hMAN^7i(YnGW`6TgwAU*r=j4 z`br8nkoXP~87T1I^od4AhxNc33qRW-3CrxKQZGw#@_eN`Cu-b=1NvtJ9%hdWA(2Aw zpX)|K0A_wAMKH!zMsX{B(k~`cX-S*mt3J=vX;jKaIXqSiS#S~yrqjjsz6;h^R6Nd3 z(YH1sh|{phgMQRlJZpGEq!d(E(jRE~kzA%mjx4~Tr_HF~`A6j(zy3E_HBY;s$g%1w zyb4#^w3Qr>L%%Bq_?2f%*Wfp|rW^-{^x_~s;VipKTFaGinU@i*8}x3)`i;NAX*fGh z0$&w)MB~lPWz}5Q9s)^8b^`zlxxZq%i{=U3EPnw~QrIlRPxGw}4J8^#0>6|!43StM zz)u`^Fo@0HGMqH!L+T8(HboABLuiK$4QJ)mG#R?UdYgc3r&Vrig3jMP{{Wc91@6S` zD~?MlVJWpTS81H8*_WK#Bba9a2rCuD8f9gs16K+m5qNjFbNKUzkz~|QZS9j6#g?zI zqoyC5slqo2#5}*RHy6dbRCN7$hB~ShO!=#|$|Y^r>%#rP+P_BFK-@+uk%_bB_1->G zw(;-o0QWz@@}0R9-vk(`JCfL|lE-iD$ymZF;;PCE&P@>JurryXB!Hsj#FZ7Z>=$>L zm{VXvZ-Jaozy#I_F(ZZrJtn)P#-^{~CB0J*<5P86A5=J6i9CIyCd9+bK!-r6WYR_C&G{Yn4+xu%}r9=NVoj5S+?6}y?%&d^X zGMiO;?5S>M_nvqUj&`tildey>@92r|L8+tIpZ(LIE}B2c$dHPrwf-DL(y3KRCg(H`#0ovDUwyV08mYqOqtT=TSZrFuK-Z4@2x@E;wrypuJ$s=q;(EZ(*J&Kf>Lv)1h&MP_ET)%B*daEY4ebI52BO{otiFg)=y@ z_N`HDaG|l{v3&Ga+mjK=oimt9kB7Zb|9UR6-A+@y|zhSF(ZmY@<4fFFi_AV(MfKU=x~dIvTph` z-}r$YQERnDBpwoMdyx&{nl|alSUtZ;c(Go>qk9by3 zH<1RgRxu%VTDcc8CLL`KhI6%A*blbKnjnVB%qB)(H_F7nHABX)#cN zri6OBh?4g0i=U>p;I{J1AJsH(B{cq7p3yE_8-VSq*;;Zj+T=dqXo#5260d7%{+PbD zITcV9Dc{qy?*G&g$0ssLAo5$_XwUhNRMjy) z#{IGC7cW{%KRKzn{ZJ*%PE#b|OTv%*11oJc7gqh^$97Xy`2ns z+lWrb`TO9Z(&!PBVJS2GZxhT7GoH?xJKDaEYARh2Q12$m{CRDR?cHywq_&lE_7u^v zKqi8S_Pd6a!JyC5L^(id!ZzGU?-x<>-E|50jbNmCovQyJ-rzG(MgnD$G=Z9ep}D=$ z`^t@;w|YaojKxWAj@8a7>jtP?L_h6Cog_2goSt4 z$(okxm%E-4q~i(1h#uf{-ZNzhBnl6FSRJl%{&`C0Y!rxOCG>UU`FU)~Nj3D?fAGX= z`I9zjf{&~|?HKw>6OBa|}b4W~B5N3FgJ`nlZ5%5JyxURV@%Ul*M zmIaU(fugLdF+z1Zmp14`kdc3e#=S2F#bdF9yCcXkGmeUvMJgg~Gb6S*u%_TXAKi=2Dulfl436 zmMOzejF1~FRp10Q{Bj3US@fOSO+agqDwZRc(^xc8>mOjcu{Baft5-|DsEzd*I0bSp zp6Hfqm_>gq;0yc75q(t?dSdEOMSc||QR*NVue1peD4a2{I*cEPP=X&wBsm2d=cL!9 z+VU)DII?ycTB=$-E31+{`}Q5VGMlPjXZ?jgC4O#9Ol~^y>HOFdV~N!q19v)6L5-fG zpAFlWK1D<887Z)T6Ni`KQ`7P^p<4OqDo3Wz>;j%djaGKa&qV(m8?=@d&1FtfnJlqt zye~{7&^w8oE=mqA6crP`rLBaqYS41zfwGy@@-oM#1?~RsB)XME4_jnc=;~@VNQ(t$kViLEo&U?=1284; zRPUE1-Ge5)-Ed#-w|$Qeb;_#>3i5jM0=(*8K+O5*IMFX>*S_YV5m#XSue=T2DfjC) z-K`NMTXdw##&Q-4f>XO=|7QO*y%6M>AF|wPM4EiM zND+H57Lu4(>*Gf&LN@(5%79!Y) zh`qaWv`;+)SINfou1n0;)|6=TuTRerlW;&>4gjgzoBsfew#)Ejr3&orE@zageI}Lh zny~d$Z`N|n+Nz1Q*pF=!OC}qvZl%YQ&#lVHE%iiBU6qmI7>BDf9I8sW1=g~iKaZ`o zYyAA_x6Zq2?$gW57hl_Oh7KBGhwJilkE0UH?1hsl#yDP|4%9M8W9C$xw-&Gd>~VxqQ4I3yW2Gf3f6Tfe<#?2k!$0I3U+X4=Otb_gvpVPWng`8NvF-v+OfP z>N#81NTQFAHEWDEwt;EQPFxWx%@*U#@#!V|$y#K&!tc8RSna9)Na5=1w-+^jzN+Qc zXPzM2N6U(+F@0wy|K0-Vls^EnMYn1YwSxGHwaRVlbPJz0{Qu(3XqYeDmF z@KnKOGy`BPGm3U0ggQ>2%xAEW9~%z!AiMJLbcaa_=vpFZtEr^=cbeVQ2mX& z$(tD^^BuckMh3AQN~IE%-HcV{YtiY`+6K2~SM|K)40Bs@)sXSjE$Kf>=pjG+^BytH zy%0w`JCf^@!QT1$#}M-PlATf|##-K~KiX0;4JW%zs%=3n5Nc}N+}3fT=}&2%5P+! z(YG1$Jau6h91D~upyrL?MQy{N3!@(Cb>|FGL&80cI;`2kT8CTUG8*_z4SA5x?ju9g zIOl$qxzX){pLV~knx}jt6&~gVZ=h=vgNewPD(GSWnkVZ*Yt4_xQCL^RK+KsurbC-? z1*X+eiLUK=D1LUTnYgV{;z1h;*heS(9!R|P(X1=;wzqIJHelVnt}qPd$cc@X^+D+V z=JdNv*W4_CJUhCtRh*N#q@YQT>jMXYh;ZduT&Q{;Y;->XdSopxM{C&N=ew< z&#Q-SuXaX`(9gWxO<2XJ;s*RAnnTn|_H?7L`ZQ1}KroS9QPw1Yu-e!2t2D5#q^D7P zr=WVQHJfd_dB@PpzV}?COh_d$2jJ5kHra0!&JGj5LyaaSxfPMDFlq*H8U*p( z00WQ0-{Tpq0H!~{11?7RXyv-xB}H>g4^wgLw`36=q(~3qrzv8Hgd$S@(H%M1Nd$qG z-Q4g51*8b#4L2u}K=ew2YKZ9@S`=Hc&G9)2LPCOxf?Cn(kHW@6wr>mc`$s3^G)@X0 zfn8O@1tgckN!*@Eb|dD*pslQXIrMyHu7(3GHG#jo?yPq|758p@0|($o4~;$3AVk^w zK$yP*uutp7HuvPM_of+sn+b+EOS_PtFU`xRQ-4gp+YTPRrF7Hs^!8v4{(tgCo)gH0_L}NLy=h03m5+rFy61kVx+e# zA!cj6Q1}uuQ{(wZwB}V*sZ~bs6uy2#UKy|x$b2#-&$iStpWx#~uwVGXkE<`mH7zrH z4}h!43GR>^J*X=y|3x=FbzKz~7s53CRPkKn$8J{O?n3%eJs5LEPl6}m$$~eTJT9>C z((FUQFWa92BY({eKBI862OUUuZ@vi(V35mBDmJ6Ne5^y2dGQ8v2c0)k&3FEH$Rh*c z5;7)U)rWlnhKYb$xsD6mVB;Q?Q<@L4t%aVA74rj#R|S!G^#sYU9~O;|y(&hX>XWvd zk^oZ|8?35O)MBF9wVVg714hC1x|Zfb?{oQ3$iA{{(u#)7HkFpQn$IuCL?l5vrs6rM z_GfXQP%CUw8p6xSDL2u`Hf7smawRv?Qhv4>md(EvZA_aOr4pH2a#I;fb^>P-%3Y~p zQz2c?`VRHkVex}Pe<#f)K6ojI4enq6@l(^0#4@nlFt2?fb+qL1%Ni+Qe@Jb?^+`jF z#;lFa%igyeuCj0A%_kzMD;S10_gjxk5@1cw&(RUbsM^Ip8z30x8?Li~?~23mbIeCI zMtj?Nn?qcV11<7fM_sIykH0XgB#R61Z$?ItnJ4{Os{USBWHy(*?3CAxu?V5#7g}p< z&u(vY5-hpt+Hc&P1pj_0nRc|G;Z<8c5W~Y<&rQ~(RLPnpu0(F$&;cS`3qGR5NI9sTUI235LcL( z)o zqWs5U^zQ<)6SRo5t3s0c^_CtLQ@ja%lW@izqmnTq>XF2-D zU!0SBQ^36t{^|4n>5U29BkeNjM>#h&8Rv(-8|$*BGhQRN7d9^8*GC@01noZx8{Hk{ zHSeCFU)aEA;zmZo0$^h`+8-Zvcj%D?=969V7pi}4w^rq2Gx6Bi_#;5_a<%_5W$)<% zFAOB6u5@C{T{XmFjzYIjH-o75NW@CW!RVs%Nf#%3+G8qxd+?!)&}KcVhWMRB2)z zJ2U#Lb8v>;xT1pAng3s&X+;c&=R^hCxvM_XVr?aAXaZ8zbSL+B=4#u=*lBQ1A1+Y-+!5xRS?uro$ zX>D}_ihkDVYqzXbO*rn|>&TYuJIJ7R|y%2c_|_?8+6g zw{(eaacLtUsBRBh=2#&~$f7xJpX;hjzPp!3ZxcBT4U?gqi7u?mu;vF>Gk?I|XY z%n($J{LpKzwDtM?cjXw2S(&yn?F+`xvq8f$HYnnZd(AL8R}Wn`f=aK_DB{A(6T zZVcpS^>g<0qZEzpT&CuPMbnbm>NqyG@F$r+C|+n*Ek`BfhSqJG&A|GX`(A#r*a64B z;cOUA6ruhUe|z8$8yR{i{%?td#L3gq&)?VSg~xx^yzJp5Vi0x__W!J~v$Kmsq@^JL zn<4c-8M3nMPjs9-UHo0y#iX%mM*k`L#3aPqiT#O%zCGN@!T-N0#sT*J|4r2Nc;Vvo z-z0OGBlcU85+eWI(r|*gxcdL^rm~m2m#?w+3kU3eRGb1~4o*hu&;DCb)6?I{*W1he zg})QKzc02g|35$Y4Ce1=;N+|9<>Bq+>E!9p4*74g8q6JA7`q2$6BQ>1FGnX5d3lom zk@#=%-zI=kOHES^fP)JF;9y^Xe=7iG03kjBApt)2Zc2y^)P6uhNkT$QOhQXeK}tza z%fLWSOGn4V%KeCmnUjT%j$M$QlZTfd#LxIhNJNNFgqx3_?>{@iAtE9oc|bx#LPEpG zM90MU|9Sb>37~p_8;%=}hrfq?)?BWW8`}qe11_g(N zM!t)Rj(H!8NJ&jYre|bkp^A!2(4}SN6_uar8ycIMTUy(?dwTo&2L^|Rr)Os8<`)*1 zmbbQdcK7xV4v&s6eq3H%|GfEid-oq*H~_r=BMbZae}w%%bWve-;o{@t;S>Ew7Y=R^ z_Kin{Pw-fjkXp%*=!FjrhuGT(w9k?Y>$-?J#f{E^_P$djbX*c!+!z0m_FrZH?}SDC z|5En9!v1ev%K%b59PG)%qXH-Z&P^Zf8vXtUNL6IpG!CDrfs?R=lZ#$g8I?aF{=OF) zhN^D&mf5c5yY(2~xOEQA52bwn^XJb3m0thODt4cEA3bYR99kdHb;X>|9iB5R)l z%j9EbhO07iB8RII&JS-wt$_!PfG0|MX?u5m8ea|j9)4J$1zaBUakfm@Hc-F~XCH;y zJ-OX}tGRMF6Z3Ksz~7y{oW=yenuv|@AFZ6zW}#^T#h1mG1rC2)cRB!12y;aE8yWyx zr&@9qGJpA%O7OlKA`ImCiER1RPjm=aLvPTm{6tzoTZ%P&=toe!`>W#BNxaXA`ACR= zX`(cmHEa?uM(?WNvg=g$ri`4T5daAd?BkP&OjW!$0o*Ix&F+uo`#yZ^ll+YM%VVISS62nZ1RBUkC;GMx z57J)w8Bxp^D*rjQzW8N~i{(1A%vPKl)E@NdfaxK1YUJ zRP)w8?UgEkZ##EPYT*xm2>J#2ge|NG;qsacLSd*wMBY%0mUx|36wb!4bZ11~QKuzi zfE#~tqW5S%i4CUIRY33;rjB91Pdf&fV)qlem~^DIhk>Yu`b|>Z3KJC2-hpPW4&eq=UG@9CsvuB>%D+km!tb z1pzJ>%g+j${3ApD1B@2`TaHU3l2`?3QeXkG`i{OWftq}~@xXj0b-YPjp9;uCcKaIl&DwvFz%?q1} z=EG5k8y?;3vY#ZTk%t@Lb%<+UZ)a~TEa#B(;k<4~1y303u);QCXaV25bI183(gF*J za>8c5GPz0=mzC{cFR!$M8TGP8z5=2^^i2sPng|65a=*GRBk}Tjj^^w9jsOIIKhk5E z;3+0Tys5K7Qj`2gzNjwb z(ZG>jr<|WYkU`?Q6d$1%Y7%~7$X}ND)CgC}i2pB$d*ac2o(!pffjPHrYX$8APtl_U zjm%Q~@OvP~b$NOT5n(vDwNIax!efK7+dhqU5&#mmIct{_u(MwB=m6zPOoz5bJ^+JI z_&Q{AuNx`Ijb3=aCa?cfIoCqK`&jNgh=*Nq^ZSDn1H|4KQMX% zwHJCkf!2WhtQ=gcv|BZ%f#K0j2?Np9=~}<_)`XbyE`}4-XV*7@#Vp^kmkD~~5!$NhcjVvmH_FdeANCNY`EMGL zlIOgF1p^%sa{mA_-u(*wsYi+hLTd_MJ3zM-R>p`(wlG%@%{ zOByeakFo>SbMdEwfbXV&fcF0)>D%L({@?e9B66r4LQWwvCFh*xkQj3|ha6MRBVo>R zO2~3PgvAgu!$^@+&M_&6Y(~iW(8&2LyuYu{@AsEKm^~hQJ$FB^`?{|Cx?4>ajMjmp z_+pqAWeM?YPX?cu(w#|!!5JQh`4%z26F52~$e=l6$JQtnk97m!$vb1(vNlfP{=Ueg zVU^vr0g#@`u$++~%(v(we}tT|AVJ{WLbcEuVcW%>k6`tZ_Yiv!Gh%itZ zuYW$-3HacsvnwOf0&E;xVF$|PoridiMH0<_pkmw#1|j6RwqL}6N;i%=8RgwV&a9c3 zhwgLG2>p>*Am|i!l|Dv*LS`*mSFf7W4bY16SLmqkGwtCS;6^my{rOVIdZt2HdI<2H zzuE(1c>p=aTL8C87CHo|9H(F%H8`#5%%TO}^q!z?7T>wWr2->J#Q%y78kA?O5?K%C zTi~R{gy1b!c8eItC}p~boEaV0OnKx59_PsGo_m- zE6}2WYr4S5P=%@bl^!4~&p|%~Pv2D+z<2dLK%NS-A{4DvP z5j?X==P;JK$79+$rTEu{--dzv#G1wHEvqk0-_U=cidHZZZmovSn&QtZ(y(<@IhXfW zbw)onS+e5>oq3!_3EDC|hM8$z2Ci}nT7t;EzZ}gfHxiqKJQ>4|k(xIGiOrVezVGJumJ)G2*0Gtx}ZFFLkN)*CLPhw%s48MX^3YZeLRQ_oLp&0`F<;zljpeO(b>Uy=DA*1!0Ih|>Z z1}xnOWY}8UqX%IGiVmE*rpbQK*t0+C9zn*~SYkDF4dn!DRl-|Sis9z?<(O+Vw&^CY z*MftXvS@L*xx~sy(c>_nxNuo)n-?$gRy6@-NE~a*WkIe8JzO^}1M2`MG~FB(gM{Cs z#9YJUIZ&^7(~V@fuB%z}0a?NQ2v?umblIQCHYLh;fF!Js)AYZ;i5{*!;)Q<#?>)~+ zx7q;qU<;4Hf)|~=Kbr8Y+WO5E_p0G{V{Gf@n!An z`m(b5jG`Rzg>@wFq1x0_`!fC0^1cocw59>b#POBcpD02YG);96ONRvsEQm$x%8f*G z1mc3u0|v8Z^{A;|hiU(9LwzI|=u`fOD7OL7I0KWL2A)jd1@nC&a~BuW+ce#joK|^X z&+zjs(5$hi*15&>UL9x~x?76f)C8T3q-2?&0gqoGt1hok9e}az+4mwPN^p+}O1>U6 z*79?w)b{?Yfd4=M06y_Em_~<@fHT6UV!r%t5@j})k_DPG7>4Vr*Zm!)C4I^y$`4U; zn)Wv}+0Hz>IeLH_3gkOWYK?$M!~$S#*px1H56AW&$U)j462~=d8q?>pD8V(= zA}zMZV$4t>hnt$$qSW9qL#?_jw~H7#^2wFM0p(VuwxCP^=YnO(q~6W^%vkeP5 zF}?7HNGavto-T3xO6pWvGi1zK0j{OKa%+Mf4%Z5T0RaF4>h(+*6*4OPu;}6UiBdz0 z%M`3JsK}*1%p#G5PK1C>C0=J6LBeP#C590QOL-dMLabgpR<|9i*D4Vs>$heuZkreu zjJGBLMF$H@*e$oFU~NHpVdQreocnldEbT2rzcu*ny}fdF1=+naVV!kzRASh+`8`Us zQl*l)vLbkWsJyds_bZRATn8cXu5e~SNif0M%gWNpmxhmT?7RIxR(K*sXd;=kyvVf6 z#*Vj1<>rsFJz(*nianq9ni|k1H;#se$>)gNk;~JfpOYunT;i!N>gMP*bQ$Lt09BOMu1d2$Q*<{0B z+1`2G22gYebXf7FqY)Iyzpyu_fpA~Ggd7Q+M@qJleBc2tJO%?GqSgp%H+PxDB0Rz5 z1@IPXyuM|NL7O84n=Y~Zo6m|4u|M9Hm^~YRM~7IrsY_uLXC z-fr9g7s5>#gmcximeiQuLs22+6b!45Jl$A1E_Nih?k@_I<(AK)i)&Tm`$u9IWk7}P zfTcZGjUzm1gv1quG5gm@S^r41E@}rjR3b2xR0G^)g%s?C1qCKjCxB~#!-WCg!gFjv zE`kifmI}1wijcAk{UP`SEz7Zb7!J6&Vt^=QdrRLLtZ@PcI7KU*;QjKfT@%L=eu)@q z{B^2XjaVsMGm)zleoXclba;<&5DT&rn0}CrF<`hycVy?8?d-~3k8epz2Oj!okQp0bp}1OjltIg);oQ6>bs zouZ2j+gOg5(NQX(pb(A?UmbaO^}W`1CXnBnfzkTry0M@!0ApYfiMFg(&;bBdBs?z) zuAo4^@?YH08gejI;7NO%$L7OzROLZ+B`6qN^K!}xK?xqV3)A2Q1$k-_Tkliy{~wkn zaZHozK&z&qdu1rqb9vCV@genyqzcdm#th>Tw`u&t-Kk~+(%`-lzdicO=^r1;Stqsl z8NvpP4CN=C&nD8zhgCRL-mdFpa)YNx+J?Hlt1+^VzO12LCe803MX7^xU}kz*i?_+! z|B>Jb_UFduDM6W!4E8BrXmgb(9C_m#~lVR zucj>4WSTSanabd+isrPSw9$HSzeg{DfuUGw-Gt+JBmeCojX4K;=A4Oq#^qd%LC=oE z9ssRDTh;u`V$JWZ7=iZHTP0@q%g0C@`;b4hrU)H{YyZ$;09YgMb^<^<3xM$2XeUEl zx;a6M2Y*rMe>W-TCGSAIR++HbKAwZDxsQwO^`H$@+a1AbZys9)h$zS&tQpa`0(BRI zXm0plJ-kp6f`==WUqR=|_0Wm||DoqWd%}vjL=hubnf7!seJKO#sW?5R{u(Bt!V+?u zu5)j|!hK0YdVjxq(tym_C9RPhQe7CL-!}+-GG%RDyynJ`>ert+q%cRuB4PM%It`vvvR>QDzfKC+0!&piN^>nicuzpC_iY=YnTp zwpz#VRu2%rC$iU5N$AAHS3&OsTRQ-$@P$1K&f_r${G*cB*y7uh5@_~EuNZ{Ag#Z8TNAw2o{F&!I`SyY!t z@7;Yk*kDWdp11vy%9;aMhBwzoUX~R637j z#-Wy*Mm*(Yul($*xo4Js=v7zOX4CP{#kVT9WbgO7qv8p+N|_7lKX97nPG021$fPp-yv$aX<#@c*K`Zn@6?5z2#`*FVT$4*kh2eG=PA zNWS-V<%fiC(`UcfDO~$VZGAEj94RyL{*9+yh#QX?25KvDp8;>_JXog+0ZSS=cCYg~ zj5z43Z^3tK$bp=W%fASd%YrxO>?lol?>)#d1~MT(k+Co5xIbo@g4FYfR0sMu^OF(g zb9)1tP);h)WxU26KHg|(fUV)oX8Pvw1`j$Q;iTQQhviT6(&H~dBr22q91QvvMLD)f z(O4gespy@HGv4rGjRmKcFZZl zqMR;L80(l1G~)MK^;n_U2RKw3?}cw!-tGeX^{zK99E!LGfz*A*uGN)i$}N~TbHBCbfN)c#RT)a_ z4JhT+>zJJz&yiEs$w0ZhXX6!i7R6P<43jo&_uYL}GsY9p!)jIXX zqpjhQ=kYj~+z(9}>TFlraUUR+jie15o=4Z9F9hma{hoVOQQ?oKrH;gnN`nO!rUI+O z-~r+T!_*p>!kpWS;S8wwly{-uNGZR>x$Lmi3)LzUcVrh`?vyV-+XG1!w~(R!ug)W_ zjTYwC>R|!-{H5M2nD;Nc`6#xl*A6wOM&rIDwtvAvz#FfZT&uRvJP}-PhQBqZ;H3p4ZE%H(`fh7c?kY0-^E)zXqg2ix^hg_pl6@ zFDE3%zjCX7P!Y9r`RJi-=5_ue3!&%znKOSRvx0BJ@O?vu);8)1ig=du_oNFApC?f3 zhu8B3yif(PT%A+0nkz|G*E~O!@!oW3e|6$sqwsWCY9xvYcY{@vTM1Y7o>P_HSZN;n zKDkBNTse>CMjkThfd12dj?F#J3>|aGs;d5FqvZvbBxWWD*bl-FcOd*sW3RN%^|I?_ z`$kaMb;(p^ zguhjo=ngpXY9jH0idFu!poh0>M1J|VP69IUK)GM9@v*tDB#dA8XOpKXNIE#6$7yk} zyi?R~BL3xwEo0H~Q_H&rQw{uH+T9lZ3 zZ{L)D50-kC-CwbO!_(Nx`U+9# zZtbAM>u*E$XI_;0KnH~dnugT*mBvNX*O;fxmvgmixt&ayW%bU$fU*%RhE?w9XF6Kz!Zl#XHJ*b*nXuv!)`5?@b77;=lP!7e_14A3L=z6b_hjK zQ-4)K+r2;EU@8KR!h9bElyI>VB?HPv2qzf81)JRk6ognRIy(&DA>vG00cjvV%nifx z5J!tC%T0{ITNOEmTT~9v0Z^cL(^TA^ToG<645Sv~0dfcE$^Z%ngf}HKAuRUFF1}Lc zUWe0-RN@curU0Dw22gT2*Z;_)g8!)vKqoFylo5c}QnO%+P{wn_0_6vPW!p3fPNZrI z-iX#CKDM_UP&b(g>}qgCq=XEp`m&_Qyu7r6TJq8kX^|s*e3m=mE0@7$LI{`$`0;~D zTFtHLuGAAzu>Or4!n1Ls#UE^tFl)Yr;SHRmz?;&k4G`BK<>h9Ay7$G-lQE2^xs-K& z%Ku!;0soTyEE1{adBMHsJayZVFDX0VyA!ldS*gtt>hWz>6mO|Lh;I0eR~Zsdo+Zis ziOP1~vsHEm60hP2IXf52-aZc<%O5+U|XKt%ayyZ;A!|{HiqbMmx)f z{(Nby)k_|8llm1ey6Dm5XHV#QT~Zz`i@eP1W_!V#__v=A&#JnulO|A8cJz`3dihz< z4~yBCqb2ii%>nR!#|cU2USlckq8|yM zw9CTH4~iJvvIK3N)J9NF>REdSWdTM0w?9;Cs38X>^vhx~9^zyY_ckR*&8>t!OCW*@ zIvrVQm21#~sbJ<~*oGo?bb^IYBQ`4D=2NKja7=yde5h0&{kIE>F?w!8)9MK)77b6Z zK`vsS!o9H5oRMbqi`8Od)1X+_Pwv#z!ID^6`MAV8N<#!&y*^W7s@B@0dS|Tn zg9@AI!Jlhm0{fCXe9Y0h$}93aE!HUzgvb~jCKT(3o)91jAD3Rdz#N%JNVdAPgt~n) zaN|k%R%G_zcxA7FKhFo6O^2LV5#IP3Iau6$vbNx1Gb?n##%L1mA^9f&!#ZMwt$8Or zZ?*VReY5DavMN#Q7`k9?YfE!2?uHT-7&`eH6-+=XPO8pvaz2fl&g1XOzTMO-hr&Of zQ^Gz+LoFdOYj!^y2%f*7IT!N7&F^K)W~aU)a0y|91&;X&dkHf-2P`jzw{#9|o-WWe zRb$9(qRyZ*u;jYpjd4fiQJY6jsD8J!ROkLv2PDl+?^4eP4fe~Quy-(KM% z@>HJ7jTjgBn{(y*{E2qCx^6#^^zDK>@}l=_(!V`|a1B2*SPYB*)&FdtMSZp3W0d0Z z=eMltO1&SNbN4@x2auKVLvv@$#n5D0B;UOa3j0O6$B^r){5)#`m^oTL; z&UYHqy^g+{pPS894?(K!XfXMcy@Y?fkxjZ&!5t}_uQFB|`drsgqMQH3!fD%>fvTBk zfl7~1wb0yNGl6TeORSkZhQ*mQteM}FA5M%JL|8&9E-G)D$5J)f@j%Z_z7)#equ1^T zFoYZ=@)j5r`u|C5@^?$};ecUXM}dg~7?VwVo-Ites?va4GtoAUeF;=8K!-qBs9As( zN#t#+5sk_|AYhqF9OAW#9U}e$j%Kw4HvIKWL^JaH@m9VQ}0@*(h2#=56 zg&q?OkC6^WC86nbDPdzQ9P#4T@I&J;YddFOZV`OH9t|j%GYZR+*`t!ir%025;f9ujer&0Oxt$z(FG~MB6UR{CQu*Z(X`xnI^(3(W@EZPfOEpu|GfksWC3r?37CqH+IbZ2xvYeYWvquII_~P0g(!?X%YlJha~K z4Z`IqP`YtzExfIfYpK1qKbJC>eYQxdAyXe|VXB*3>7d3~rKJCDO82#)(BI+$qcU|5 z6c-vCj|sFz88U|BNYr~~&u71kEu0xP-KuQ9r)C(Jl!cEr!Iyk+bU^q_$dCY;##Pr=5gr`>`eQ>+fxvUq$)haQ&ia-AfCNMcU(> zy_@qqeEUU#Lx^NeK%l+%1nszYkr+D?Jw-B-iYTYm{KY{l5&b{r6(~FIBk$0Fw##lT zSXeL3t|eqnGbEmKqwmsGg~_~R%Gl<8J3AuJkj)K&DYj)VLb_qPnpf{Wn5|7RX4KLY zEHT(KnZAZWxY%F16T)m#E=VENt!iHUph{Xq4f4lRBK|sCx%37#jGb6Aj(+M`ATtdR zjNb3vBMP@Eeq10JJI6saFkuvoDe0c064v+1IS3R5GMo15-Gj z4veGrQZIH2ymRA_maU!s!4@`uSKbH?-aa<-;Wr2%NItt~k+f{kVe*M$Zaq9*FuxJD z)Y>N~^%uUJZWDh=&CfC7$-!FGTbl;frXk@5LXAy!a06tG@d44rJ>WUEOXPHbL@*G4 zefQ1+n|zD~dS%1yDb7pHKNWkcRJ&t znp3mqfgI}M*S7U{B-n;G3WxN@+7Y{1$AJZ8icZxnGQyVlRCg zR4#A3aTFxE$uTv)`cnJgNz=%ns9uD#bX!;9^leP{>KGc>`s(k zuz-24dd2|5Z-5Yn8NH++To~qL40Li5fCyHZZ%*q9=wyizIuMgNO)i>Kuq9-*8M$sA zPc^*E1e7dPj4?uslFR-w+|Ps=!3n&KgGLE>MI4JBZX!>#gB-m}9e7ZN!5y1k=-4%< zI|7CjV*PqRFCvaf3B#nz$l)0MmKpSN(}(q`G*&hzWkNgaAk(|3+-%jHVJk-3vJd&4 zfgHc)*o1=jIm)Wvys8?~{*bjX=*xB?%62s%QBx)j8S_#y>0{ax8#|_M$xR2YY_XAc znUlk6p1Z6^s{99qGUKW>eh!>T)5q0v2Dz-Ibm%{K#d|4yv)1ynfn5>CZH$)DJ^Jzz zYOZ{=EKh$;<;U0s?K0Sp$t9;?B}=}m3m-A@!}^_h*K^{n>98U8XobOS5xZ#-2J=WK zB@u{DM7q2em@|zQSHrn-uDJE${;=xnfBssX2h~5+CAxKepZcOA_kz^}(U63tMfZ^+ zZ}-XR&tG&(r>NKO@>LjystWS!JW&=c{DX9?aw)A&6*lt=a`s_mpZ@e%^j~3Eiz-lY zEAqNCkKxyNBW;{ai8tc{!ffXMhLw3`@7|xf$9-qlBf;HCckOde9tm zcTzP^{EUW*vHTI`S2nS9HCSKVc> zywroV+je{6=g_|d$^Sqp^$#1QRJnx;ru>N2lE$(v*1k%;VOGA!F2u*MrVAAn{bzc! znImPoX>R$9G_*!9wGP|hsOhc!e1H4;2{{n!a6*|MrS^rgn~#sLu9=BX_9XP__5_U& zCsdjH+;Zr?yK_bUbG(5W`IoIx($8KRCCl$uR4IYUC#&}vnT4GtGw2uo$k}pP`FE=} z_67GnBi>BFdU$>|9k0!}9AdVm31Ee42-qh>p|0A!8|mkDQ}-^>()p#NZU2!;#|2FM z$Bp9MTX!4oVoDcB2Lxyv{GMy{Uz_V`8OY1XC`$+5i@!O`FJVg30(1Q$h*Nud0 zJCnCW1q}(V+P3AB?5A9=FOf9r8!sphH8@AOBzkZlX9wGz!e9^n67g(pZpqeXE6|eb zNG7BFsHU+d@BwL{{bY(!iQ2EQRAaheh(r07XOSq;>KfwPdp+XA^Hp&%#)@2`d%LV` zM;5O?5A9yM#Pi2~Os2_TI=`|hbfMJ|SpSjE=kzZliXgKTuP`{SUgVbhXmV?5qW+Vv zzU~oQDfembN=fOSOwJPylcJPrXa+1CY0ktczz(ug`8s^GX z+kIBCHgK1jEEw(Z-2Ip~`KfMkcFd-1>JEx9l>#Lo_4zFp1GbD_N{8l7`XM5K! z-1IKgp8KccN9C@ZAGYBWIceP->4~sm;P=M4PXBc^lBmfTw(vylim@UYIsj1fBgA~j!eAO zVp3prmHJImP&i*>zDjv@YNmLK$HF~PC9PAN`Enx>^#?C2r^ehD_`wU^V*`9|I|);# z8SW{qEXV|N;IQTdocs8MSg{A`kNC;=aF?^Rni2P z^uoe_qCxN>A5Y})wvqVGVd*N8ga(CZ*poh)jl^muEWZpRU6k_RKK+T2XevT#vYtu! zBRk9dCee&NAffc+i8zIClOJ-7TM~+sGXfu<2DU$t ztndGrMg)h5T61l`ad@ETGN&zX$aZMLbFN#a^KhuC^Jc;W<+7M&DM$!z${hzM3Fisw zI_8y{O@`1bWQSCN4;IU>&tU zC{2a3Zqh0?B&UED$w<4jM*9fx93R;~HbpkVi{sa@s|oM>eAWohJGxTuy`zg#>cxtD zV+BLDQSyC;{#BX&6>^r#mywjyyZ26ELH8}652Hw#PHGEpK*~9lSzmTC9g$s+-q>RN1|G5BjyjXL0cH*)bvxJD#VcQDB$c$dF|E zD`RTnb1t(xdMhfmK|MHWy%;d5DSDA=-JH)PCuSo`_{N5!c%;;ZUh^gloLAp2IpHrn z3;QDb<;V8NrBeTf>u*@zJ#1pOM#Kyvb))B}=b<^0X~oDXfo$DriF;DTb*Xu`0xeH~ zk0YERS^*IRSl~aAovuXlA_p=4< zPJasEHfl?!?UNBn-dxL^JhqC4K)gc!Ivw76fY6MHdr;sx3+U^nA}$(+gK z9S;B!3H^~XlQ^0GA48>uzXGUI>n4v!qQx9lPRQk<gy%R9=qNDK1A_nxz5J@QT4vJOMOax8zvtQ*L54jR zoo!oLiJbVK{BNYj8)qkmVFA5}v=+a!L7dtz9amneomm#kLZ+j_7N`Trcb7zxqG*90 zL|KzB&VGTaD_02k_5S!m9}h;?ir%U1V*>#zGbcxCe&zSh1e5sCD-G*u7a>rEr+2De zuaS{}4xK7nYx<&krFi^%(v?t10yd!8l_WO&A87E)Kf_j=tfc%CXP)Ye-mN4-OgD=&}EA$m*$RhRh>PhGqYa zN5RjMwA8syhEqvbbI6Z;p07#g@^sUMewQZ)hlg&I_UXAi=|^kx1{3=FJ`s1Z2e{X_7>dNt=AgfpdTBF{M&J(?owbJc zN{8n5aL49c9lGKZY1;P$Tl|jT&8$}U)lhOhs{NTfJ2N|Ff03sw#QN)6ZlJBu0i`gM z4@I!6d#jY^5EmdR^Y6p2p(6^zYr@ckxeJ4=6dT#<&k%@ikG8n=b9l@BM6)+BO-koC z&8OpT;h_(%EfwZoncan^^VJ$AnsE;RCe09Q}cO^$W zyLR3c%$Om?9_;+Hy|@}mwA!9LYTnRGdD^TVmQGq;)lefNy__8#m@usG{!ZVDdvyAd zUVAg$vB{^=^iodm8fZEmOiyP&F6S z13I4QE*y;(%axL(+*_jS>%90W1ARBr*bpOI1#R_87(42+U;b604u**e&nxz}YunvR zSIX30LTxw9k(attbK2|O<-+_U40E{*JcF*#{FQwAyW!q$kHYkg*p8)84m$~J5rVUr zcm2H{q6zGHXkOZ@kk8AUrb(yw=MhNqPhSeR3o~o|Ebm$C0HxSZG-&s2OOrqDyOOfl z=PrVsvft2@Ud!56Q@W8 zYMTJb`vu!<&5ZoLz*JdN?#P{|N?Lmzf(4<3>=wen=u&s0R5jnH`;IvA{pvrC=4$wV zwes459UVA2v)CS`;PdPeQ_BmiL_-lLg-VSy#Y7y@elKK^Z`#5`7aJqdpG ziIExlHC8_jv$lB?vNpKaj*cRzN+3O@@BkxYQHS960<`Ix_D(n|Qn6 zL;4>IyKAVDP-IlH_e7g7l(W~VnJ%dr`z9CHxWom_2kQ2cDOb$MmlVNi#CEx&Hsijj(zgea z)OC0LPddBTDAEkZ;MRi}5BaZ1@96YFdY0=fYhkL;Yq99+=1R+w=0*ZEU#vbHoSZ|ZHv?6T({tUGp0)Ba?^WqhvU zW7~h1=zWsu=ru3MJWZ8TAD<47^b<~ror1T1b!OacxUf4}FOG@OhZt$<^}VE@bd z^e4k^ujgkh;C>~iait-7dxjoF`f8z1+~*AAMIr-4$M#FzCo;291lNBcNpQstI{Hdx zLE<#7K6%46o;&MHbq6?hOx_`-*Qa4_@(~x$U0YL|?K({CPW3-%mJzP28=^e4UlkFo z`-McAa{R(NNMz(|$pbRWVf95a@p3nu`E^_+kRk|!?04hkrAFN~oVS&GmFRQVlMV*l z0!p~HXX`F5ra(6?cx76YP^^7-ynR5uTB2e9r z9G$|^lAOkzO@1C)W%v5GU&*Yj%~&6;Fkq|B_r=w1+R23XOSrOQUwH~f_F-%+da)VGtjGkz=qTO~A0}4K zz0s7bk^xRdJ{5@Mo38NlpFo$2u63o8fTq9h_Lqr{kbF2HQ-3I3KXCt_dZ0w1u;KcU zDYCC>*z41Fsph!P4Q){r5y)(L9O>1ZbX*eTM@bM(WUz-5vAS%0&K$E*Y*>T~49Br$ z5{VEB!Bqpk2n@o0*YvI)E=3{+TnI}OK-^k8B6S0v$!oFZHEX8OZv%P&pHjdE%Qn)) zZR530sWGzuYjrO^N2EvDKD{HcT&it)6R!p64Wszg|H+$hz?mFt!eSb0Y*ltKTO%7{ zWX)!d-!EePG?K4ge+5?(PNIMDj*K+E5KszHWik#Qlld^O>&dnRQ!Ww60_kdmv<`Z~ zq^0G?Cd#$Heme{kXl*219Tt$*k=JJ#V`7V}cbrQ8t3~`ivt}jLwn?ebgyx=|o2W0o3fP2FDNQ)`3UPcHdi+jg;!BOm7gw<5pv**btE!n3$I556Bg(bp!3rcqfU=7-mznr{S1Oe+ z#xcq>DvePsXr+PRZHEvF^v3gH8moiZu}1t6JsqxK6Z)L4>rRuhJ|M;$Gp)$GGWm1#xj#9GDW_H=^6)9KlG9^p5a2FXi`D$PpA7KOHd3DplN{i{&etlHz-QYk7i zl!h-i!w=qEv{H8E8x5cXGhviv}O-?q!p@N3eXesNL|jxFbsg{n5kuID(oP9(p=xoWa@y3Ab$SH4)y;RY2`1=fK`o4Ep)AKmgb2Z@LM{` z9R$BhVkD}aY&%l@%Id_uSa7vN^i5}W-EYG_2z$JhEK;{g^Ji->#|1EC)K&d&5<_q2 zhpb#|Pw?eg%U4mQ(@L2mN*#juW!&d2*PI`&jm>G8#+wY3H!;0kbAsRpA68icr+MrD z$?Kjw1uq;r7DphK3S;H#v-7_0R7YC6&qg|U1W{KW@QkhR6Lq|rz2e}TEZcExLgx=!6_B%GFXpCOh@|aaXLkhW)0LWV&uA=aTF|S ztDIKrKM*b7$ep+Tv!|`#D>WjZN3S+$D!qga+a;`uw04<6EVAj(jX!*ZTD^r3@!zU5 z#tc4Yn-yyo9qv_!a&FPH>UjJb5Pb|@;aP|2jog_sQoc#&*>^H}*UOY^`-aC2+4KaF zBPfniKY!=*Gqqn#ukA4VU;8%ir1;9N1dDGhzrWhjB7W7Z$0qPrasy1Rr3^5#SLY@f z&*&T*$ttL}ZTJQ)5R9&6=7XHh}r$Sn0#( zt8JXU-Shpyk0^8VQ*CLFm^UoH5!*StVjWfz=>vF>gB&U0{w%)Ay$sl(Cz0&$*tf4S z2jXJQB$hE6FsgDQlw%el9R>Esc)rf%4a0!1gu%%R1dt(Ht7;ABrA2auA5d?Gw;*7x zZ{-#M%@4G{cn);5f?gS#))#PDY9wnWfpvs)^Hk8;Mpi6C3gFMTuR8Ji7s8?yAhx+& z9NXwfz`e;(uXaC*673r8w~wog(5nE_mrn4jNX<7FQ(^uM{E^upjZ~}>uhWYU%4(zp z6I-oulx4MZkZK!LgAzkEI4y^SZKEy-yAPNvuVB33X(jnIHcws$C@l(P7uhYY5G)?{ zRlk;8vwQ-K1faJtRTsTB5BcAmFaM_OTT7XMIQIZCCYVAFpIaIvIlfM4T>YD-(h z5A95xZN}@KQSYxB+!ozUlQ|i)b`DWe78=Xd{G0irs#_crZmr{m&pp^s-k?{m!WzwJ zdjMo-sohjVzkY{^GD9_D&o&(@*^)`3q&VX|qh?)w%BSuYi(GY83p4A_;3)V> zeamEN>JF^Bqe;TlbJpnet&QNkIm+CShfwe6!1>G{w_ni}5)8_T|E5wdnl*dhR3~5R z-oE%VivvDvmHN`>hjDuCTq>-K91|tIiwa8gy@{4((~dP{v(10;?(Cz4lb^7&8ksj> zettAeKq5Vp^Bd26%#~^AKgvS;lGUBXJGl@j=dJ$G*T&%ba>-7>@AdJ0B|`b?qGfH5 zc96Qgz#h$aL}`^v*azZ*#mx(!XwH%FH7P680vMX$wj$&#T1bh8YB}#}GOn^%H?J}v zY7y$r*ZgHNJaf{K=@Zf5Pk$3rWI5PTvHG#DFBh4c?#v{XHi|nrw)B}wK9uUY{6|KU z`=kJMajLS3%~C|E8gBaOQLX{kgOv9zZ<-X7G8p%&RR1|?{r=et<)9gSondkFc(3aF zcj)J5{aQ&FFF(SxY{+aFiT^@TrPIkUJ^z>VPb@g)^^|NUVmm|!-qPUZ^^L>VV$pe+ zf_--n9q9J=O{`MU+O`^krgaWv$L<}ArlUhomcMhb}Y%o^l9#n z1HZ~iqZ^1Br8anK|fOvq61G~tC{hAoBLI!JIULh-p;QzB#8Bcb>{g; zmT1g5Ze#!aoH`0DX>LFT<{rOPwia5z!VT=~Tm{`f)+ZFs#zFTg;)%C{2Sj?;pKb6E zbC@^eIv*tt7^%tG0a>mw^N!O`IfqspJHzj^(Ae-r+~AmGd?Wpm`n_BHq68>?W z%7IPrv5d8U&G(e4ZCkDxAsQ{P{-CkS*oSX(EWA5hcU>>_^;!lMk~jwug>2l4>;KFA z6s>F#OlH=b+Yh`~GMIZuQE)M;>&s%q&%GMEG5PRTm5E39Zti@uuZ-RK3}FcsQ?<6b z;g<5kikfl(KH8rBP~`x}T2J=Rh!-TNDLiQPM4s!&aM1zU5z#g}5SIj4Qd!mpU}cq( zFQ)eJX0@8^@pw7`Fev;fF!qzn4m7$FIQ;rC`~lz|#{(mF)kO>`U`us!M}aZeazHcr zh&S7a_7(#=?4UdbhhO06$g-#;DS-ZG&UlYugC%-)3=6xemjNp`1D51Fj-%GrG*4U0 z88DY{tPokr+$qPIRG9LLMt??5;hJXri^{HK?j)_}7SKeN48*xu9s>*xsUZSfAQ2VC-V0D@S4K?$tuoG!JO#FwMBXiZ2 z7&KMNv`ufwShBF4Z}H@5E?@olk7uOq3ae_mt4UXrC~@O+9in$#bSK4zOl&WN-H(5s znnk0;FN2=R%PyVL0ME)RAI#DVEjN>pZ=MlJv@z&|odlD2t-VHPJdYdF%5x+@Opp;PWPoj|3|rRIlIKIyhunZRvKayM^@ zpNHj-9%j3k(ws`rEEK`G}Y@|c;QMoN?QVPK=1kRTTGLtMx6P}5s$RAP~gIO z?&0&y&h0Y(U)%fgcfq=nwe4WgfbNUPeLV#=1ml{uPD%Qp92K3sF1pTxbrPAN2YXoN zefYxkJZfc|4=pZ$zxdA5jp&05RtK?jfr+sWdMVeB zuJ8#Gyn7NqJaziDM|dQ3RcJbjkMg2?X5yP9i{UdMIAoTooBUVQM)d7H%$*I9MnW%- z`1j)+AVo1wp9i5R*VJwQE$zCHR0tO6on@WWevr4SB_`iAX=gawtVh3#rGBX?4W zBAoB#h-L%s-$>g8n#1euk#)mYjrzAwMg!(u0mF7B`@)l1!Y^2Gw(1fe(5EOkgekX_Xz z{_cMuPHkFamX>Hpn4e=+0)t?J!a^bI%FY+K_oG>09sOVN*qyy9#Kv=zr`#T_vtdv2=!neTEn?kkwS}Pw~+c zC_vgN?nG5Gh$oqfSc!Emzp17Z)ERg%Q0FVL`}yd+1Q+H3Ei@^VKSNXj%yUZ;_G{B0 z#x)yrb^ZMTX~h7$_jcb!-Rpy_2+cCnU#3T*z;k+PD++&9_`3#pnPbz(b>ejHp_~@*c{n?LH1tVxO^r<0tMueB+cPXQ*FO(PS6^B);X}n5WJvVkB+Bl=?9U`< z9-A6%Ek>|}ZoXdl{B@yB#R zl{v>fgH`KxZ~iHTd+26S`O>cnzf=vkip;#SgUycT9FK!j4I;uW=34&SDX2`PR6mlJ zwG-}`5}Jt6!hUcNP~G8vEYRy*mO;8d;<7YZ1V2F!1EF87HeLObWCOfRra0-cX z=EK;Ndg}RhS%;CY~KRO1Ka=^WP+6zW0=N3RyiSHP2({5Rd68wI-dm?p&1Go zMiE*k7Br1`j+8wb>HkGh{2u@~LC3y$H3&S9=T8QhiNXA7!v>)ZPYv%t6D>ScAor(( zLIP1r57w9sE_tRS=E3ZLT3&+&oBmBG?de>`;`X7B6uH0|{OJ!)^Z>^^bgSw2G2hy# zzuo#(vQ&UhlLFZ#qkF!{KvGkwF~)YVo009zR2?@=H`rG9Qd{dFDCAG-&x zPgsDepOpr6s{&c|7(C&qf zt!*~_r+-7}c&~G}xEB`j%D6ka|3@%o14@1_v zoicTM86yM@yq~Rc*95G&UvO({O1K_W;Bl1)@}>txWW-JediAb?+FzLtd)FtWKbdxb zbH;O9(#_>8IO=kLT0nFX$^aEKO}oB$;<7yO-calE^sQ?(`FA}r9LI@ZFgEOCaL-!h z8;0Q5bK=jz{2uo)2oH zDDObanq|O=`R2Mc3oHfKoOKn&t8IGM({%=mDo+RXrXrTNXXM?qhz7|Hcvub2JuwpR*kcQt_=e^h#PIf#{4#T71CXg zln+5%PM>_U#UAb_fr9`?-dyr4vX(@dM3J^thH7L~M7D366>)uPow9=2Q`)YDDlwXd zS{|n((xaJz}$yoOR^ri*-GxmnKm75X8`=t7wrkml5 zsYbChC9@t1;;PzQ9Y0Ko2n;3#pWEJ{@MNB5s9Uag8afE>qn9#mJlB@|X7F2T8@25! zJ@+xLE}~J)iaI#=9sR4&5`XlE1-Z`^HO1GE5%Yjf4NO~$x(1Y%r^y4LKD6OpmGOJQ zOQhWY0Bvbef5f`szj}%|hC}}VvY+Q(YhHvW&aQDzJg&p@^rxxCM5dmn{QA`rOs1Tt z7!?rywD4#GRW$WHR7!n+N_glhgh&rR<5H`B0-#gHN~ekhOs1q$P^(kHrVN=+9ckdy zDrw?@69dN-^*@C|rkD&stO0KcBTB>Fr8-eiQ*5gZFL6ZYt^=!ZGPo+wPjV7y5-5rhsIl z19m;5Y?;>hGa7oq5L^{pFUic&Pm=Lb+ZC66`cj=UcIuxf?c{Gft* z{uQ4pW!}fq8Xt~gy$o7Z2e1uYo}Hh${$`?3)V^cr+onfd%GHAHf^s^ZwZmz?JTigjHhoxgT@|LO72E#zd6$wNa1#SRTGhF^-EdVpD&T!< zm(Xs6DLZcDoM2YXkqis5B()$q%@IV+=0Dv~0Ig^yE`C$Nu6IqJ$+qdq_pN&gMil3Y z0Gn8ZNoc_GR96Lk9@!f?;=L+W59Xz)x+#cZ50g)Uq0-dPYrNz4vtGo>6kx&Dgy0~bY1Rgq22O|Z% zi9Cie_g1tl^$FAkY=Qi$dnDT|$FFK^(0~b1#UYwHUa2C!*EzxBx1!XQhFNj$E0eN} zF+6jQ4QVMMaY>{!>~#@HlSjTYkxU%9KJ}HP%;HB3NKz|LJawqCcPuB}H3jPKjFHuO zr(3vSN2NLW$o8Rb4^xZrL}UmY1J@O2!mdQK4$LXuCtvhf&!bX!SY}2z?kd?G3=b4x zHK14c(McZlr{UKO^1|IDQop5T_?1c4oF0mxRQd~*yi=Yx3SdjET%>WZ;O$+s&jQF+ z`ZiCU=bb5<wK zZVxocCI^amKAETll;v|w3n1}MR;s~?#tEmXpbJXFtvEQy#a2=&!H2&Fn2RC*06KV* ztEu$qPY0y{Od6c0iiuAY^*`iL1c38PoKqCjg)lyQ$0mW#{{Ua5AnVeUeR&nkY$zm- z38g<;VL2YZN^v~#Oazk!4tol>0n7`}UiD4eDwZN0?tW^hI>^YPnv}B z^A6tia$9Ddiwd-kY@Vcx7*FZxVpp7fr@EzMTW)$hk&O3%9ujJF)0!nB+6;;CH@ryt|>tWl{B zna#w5pvP*_WDStZkWWsPo2CB%$LkE^8I8(&FY>KjAH>&o zGq0LUu6g#Xxj0-7N$G*jS7bejBy=R?ij)VbY5p#T?G!VqKK(^#L#RUY0*!;%SB(Y3 z1_Z8i^8@I@b;1`+;?8 zw<>b3qXxDX>5<9FJbKg=ckxUJh;+am>vFNYa-$vGm2nkI^nqd zXoh1Gf~OT}lbVKTh#8<~L8NOem`MR3o};yI`F8r6WeDCo^fkan84puhR#$RHMh}0+ zfI4>53USZnO%{7W0P{&4kp)LEmHWqKZ<(z`%m{fl8I83fZ>+#WGoyAY}4 zziO{6YOTPfa5E#Y+4FR(3mSz0gPMGj9)DVAm@&zqXt8aC$sK*_;x^%$p$irVp{uIH zXyX+n6Iz@Tp7kqLXq#(P+p|b6U~B8T)y6s+i^8D!(y8gzrPa>mWzGT3Cx_F@mES!S z^sNZFgW@&Ys?2?cX__#_%KB!f@d({?8@mo_9V7lf5q(VnWNT!$sdByi!&}-C`6#Ct zHH&znO>$sQ9%;>Vv54S^7G=dT7B6P=NUBA-&!t0ge5JlY#X__0_V%PRukh{4y0T{k z4wbCTRFW%;(k@I_D%s;a*I-+E2G3DZB9Tt%BAMj3xj^>wsg6ZG!Q#Ge@u!F8@YcUQ zgn*cV-2{Yv_|HTAE9lFk^N(t+;y(=O-Yn8Y8iMVbFnp=g@5WE_9@V8PoQ#RbnIA8T z3BmWS=T!J(;yW3cVz!F%FizPanMUF3wXlB*<+WWGQqqt7OssA#dB8G8LX-9BU5asi zPFX@o&kT9V#W)&f02J-jW@Lc-)4?4xQ4XEOIcb41x8+aCBbtd1Z%UAUGywHIspFAN zTmzbLK9s~rhx4gNPw}XSPCp8G&tZxHk!nHH)}m8S9cThY>%}-?m^xF(N??5Q4=0{! z2N>p%aHIKB`eTz^#_U|2ji zxS&DF`g&EZFlOpLoO4x4Cm#N_cSjqqKj0*e`Kgx0M{`w|spmN3imP+TCjjy5R^PBw z+ls4jenNTc$*fVSO2q#FrU1bF%173sg21~lb_P9TFg@eoZ_Tssp$70 zs@FrrgP!&0nhoh-iW?k&Msr=gl;x2#-`0UM16{TG+>gMT=4M04$6EAVQrKKZ!}(Vg zsN1x16OISACA zS+$+unOzPrXam$W2n4W~PC*&03F8F{k=u&B;r(4MVF@7w^yJi0vlaIA`S2U-)|A~G_pC>9pktFxj_HRCGe~BsZSBFvO$rZjRbZ4q zvG=QpbB|AY0Gbj(8L9li-k=e+oqxV{OMhMNTjjk?B>fPb3_QeaxE^1E~}W z=0)3igpxben*|ZYDIS$vp)KoIn+X*dlCNtYP9uL4-@I{{x&1#j+8{WWjrP^7Z4#^yfNdsR{P>2uuYpQS>x!EUE+OLroHmMx$v z2JQ)~Wde@1lyw}Q6x8tCvv=dr(h+(YHnCeEjd&-+qLfaeDtJ?UbYhUDU=!@0F^BbqZC4Ckggk9^b=G)Gt z96vet_QzUvp;tfy0(@cq|^b=kE0v}_NWDSJwtm{u>;*VG<8 z@T?vv(ImEP3%J31X-MTC)97pFTf2E}W|j+-G0zhebUjp#wcSRiIyoxCmE4JWH0Awi zo$2e_@~zBC7mAfne)S5UYLRFHPG#pwj{Lrw)UqFg|%7N(WEyrXk#;@-*^)I_5WGgMh)$^_n~N$I_4U z%`pj+f^piPX@M8x)|h&GeJS?%^1A1qlmR0jmpoK56VJCwm5&t@{{R*Se;OE#Hzk<+ zkLgu)0gHZ|hZR3K_v1b4z2W}=NA}z*5p1D3%V(z?)JgokYDq}Q=e03O&s?0fPf89wvqyfM{b&$+{(`hLQT~wN1HjMHv$A_0D@RAbX--J#Q!R>)=BYn6bC0J= zt#j*+YIzP00o;C{$W?g`PBT~L|}7)^sNml@$IGx-*orwKpv?BiEtR?pK8I^tiEPt z2NgDps4R%29+kCm8r;X%ApVpRd9BP?>-bedy(^{Fbn_dq>CYTi6tNXz2*LHBWpUP~ zOk;{`FLBnEJ`Y?_GUbiSTFMzoJlA)l>QLTWtWxwNxvxD;ahkhjaMsc(R=@^;I}J*~ z?a%k4ZdCf#Tdo1^TiQOU745H)cZXBZlgO&Nrk>W)bl(~Kt~wfEViAgTUwGAqkF_!= z@o=M@6HG;v%C2fDj#+C!+Wfczsm*RvaUy^z&ck*pHDUBLlObN!0b;#6P%``uM<11H zT4q6lYo1xKc^MUl@8VYDpHwQR{;F^_2qzS~ zznusVo`zBKAGDKBv8E zXxYq%+-9=D>H1dAikqNw!TGr+qI(q$%e%=_+dhV?I6pQ)AJVP$3P}K-z|<^B?Zskh zW!*+L27+;|rR?NyI)L~Pdxxogx{{V$asW=nXZP|ht=UN{rpx>a?RmlY;`z_ zf)Ys1a65{%a~|MMG7WUv=9pU23zQ#paw`Rg6vSh+KrkIfDUTV*E7Q`nUNC#qVK$6( zpk(?b%#qBh+ymb=-C0~nfk_!$a%+GK#}%hxs@&V*S+^&trYjw_-LhTU=bgZMb6jop zrq(J(IsB`t(X|-vS7A6Max!V!oq(BgqYdxgfoyORMpf81YH1j)YwJf=VpouGD>avr zFlZ=^2?nP_(wJACfK%gBKo>1$co-Eu`L4@I)*`ro!FD$x9Ot!hE0B6snAw%VQbF~g zXIrT0<{#cg`^XPR9lo`c>w*uVt9m}N(T^%`nLC0jM(a+F<}*Eq%sQC+kEK0=#5R%% z6O+y=V;7kVf-_mDS|i4IJcHV`Eaz8`wHFgHF73GGa7ATH9uG?Go)wWu#bW9@X&adb z9qEYYO7l)pj8yFb+(tRiN{ym*<&=T$C>d_r@<>4L2c>Jlu3=Ohf-9T{9B?u3L2`S8 z_|vc*GiwBn2s!l?Rqyxbr{P#Zk343al9X)iVfayCIvaTl$@5k7-)|gN9-TO8lka|2 zy|MRlr}Cv@S&4mu%nNhrRId<82s!CjwOE)+4i0hYS1tQ=cQ7fQ4~^0-4RP4!o1?+ zTe*`^GMNcNcms?NYRXcvwHjX0+UKrAIaxa6wknpb;jSAGoHNU^)(*TnP_P|H?w-3Oq$)^sd66va>zdHYr+r0wJmQ3 zKnK`Y6%?CmrttN<&HMQ{OyNQAS;_Y_g6wsca-F^TttcnsrfV`GfmY$`T#{#05vr3U zh+~mKRvTGZWDt8-nE2bmEvK_zX^39Mj$SZ&3m+}#;k7>!L3GA zrD+l={3*cHTaSK}fsJfnP8yw>gdfV3KRBR7%4y-as{6U>X~U=WpbG)>N~BaO)Zl)Y zpbwvz4E)=%-<(sBjl>POrFHA==~0Y~6;LtBHO_8W>(Giqc=wZnfuM4z)u7xUwuVt>>Z7J%Jy}y%t6f$US+i zq^!zY9=YKiYCTI!NGCaTU8MT^)OwbUD!%x+U!{4+hxHe;xCAj?c=WGV(lunev_ixZ z2XROl$;%5y#7Lw!y+X^L)!)x!X?TR~P{z6aLqV1kx-2;KrWZN=xFV(q3XbNMNLn`9 z%E0!`2)j-(kF5hFhDWz>@scs_iNE0nW zse5n>e|EXMn+J^T@9#)s&>^XkFx@LLmEu1!AX3LWA>f>QP%~5~BM0ePI(7WEk^%`M zrD4Z*GtNGhb{mCt>L?l42`u$QC5VdS`@{OxNv!3xVZ3EeM^nM9SeplOHV>$+do5N- z)Fjw=@yKD2XbTcWa8nzJtH~sCj5ZEOH4l|-cuBQ?Ezj_<;MF-+OIAK;!hw?Aus!Iw znmlXvi}9r18=lie(kFOsE@LxKG);*SGk^i@o@>K&?-^<~5;Ty@E3y7LD{Js50%-QHV+2GG&1+S@ zHh79yk~sy5$8%)~Kl%-L_&-`vA@!=TxsOk{_@%2{F*6hgzn2V1KOnUOd_tZ=3(0z? zzn3^)j@dr?G@@hAWpGkuQURsbyc_mjq^)z;>Fj@Qaik6E< ze>aKNM1CB*e;IB;&tA0yc*QMZ+V<%qXYaI!KTLG4HDg5_5=YjCiU%By{*O>b`&UCd}uACx&f{#A0_ zW0{vgHEE z813Y64RA(E=cie@B94!0Z>~c1jB?f9+eRZ*RTv659+iusX|iedh_azFH_YS=^IOnV zRF&DBB3g>B!kOwS2xB}|_?H;0S)$qdWBH&U#p zp;KNLIVeXzm3852 zx^lNha^onfkiS%X%i+t37sOVh&6MUs4qTk(y+3*90=%cg-!F+RasB>t^si9|KmBU< zX}u2$rsT>_DcSd^v)iRP8~N3l6MrwINDn^W&Y@BcGf!G#CPFF2uzB^UmxG#re_lIK z2ZMCS0;2;B&N)4C(x3flBwT@xwa#u4w>w5Xuxa%PZjGLM)S&VGX@IA<6hoY__vuJ_ zbmEpAeCHoFXaYfxUvtePb^dg62VN**I{yG#LLZQ0UJh~TO_P|NdJOtflZ6@Mfzq2N z`nSOY0+B^>atAdS>U&d;cog3G6vQt*xTP7%?rFRpqLg&U@}?q4P{}Mw-IxmP65sb| z6?5|XS3TkDU$kF_BlmH9+}CSu7C>)v)YesArm#kFMjp5vWYZ*s5JG{UTIgf84gn`8 z9S=-YS9)uLep4CipYICB<=ExtU8+lC*C2HjjdTA1ABaXUMmZJHUa8yjE&wzdsGE_$mm;w|6VDaZ=z62Tz%k=LopCC~a!Kbkv!&c_R2U$G z(z7V_I}J?ZIpB|4*oRVA$UVIcaMlX{0AvikJJPM|qwsoF2<_*$w7gQRpf_5`xzJq+ zXj^dftf;kFGtU_Gty^7da2v_aJJ1$0WVV_%#F3Ho=8`^~^{$0=SfBl3u5nFx>}MI< zf_*3%ghqKEol9+TBm@}S@HL=x)R3PhTpq%av{}f?NT)q00`-oxjfImd>zcnbHrLCa zmpJWQ;nFW-JR-NaYMuqYfw_iEeJO>D7kVs;#iAgA+pS~IU{sLtl|J1orh@iNVo2Rj zxT|5~m40+q2h>mp25f_LW5=yV5?C{l$EdF6Z7$wZ!fpB*toj-p?2v)zXt?fk5MAx> z_*Rq`D&z3&RxUIpT#RMA9)_~zvXTclEIy)+zo-Th6{6Ezu3(-KziU3}{X+p8&42o_l{*9+isotf$7zCbJ^a6pUc2eYfS5M(z z3twx&q>cQT7ps-YKS5fz{sU`dR7vHM;Edp?3;E`{{{RYFUTHdfHh~@G$;w-<^Z1^E zv7JS24vKWO_li1i!z)RYwA#F_&I+o9BlE2Zz82WBf1~P`Dti_Rz}H0`rTmilvO^RN zjAmJKPvEty6}UtONt+}4qXM}lR!gbasmHPAw?7Q8q6EW#Yd>HlLY#iJRX!bRD{_UB zCyX30j$EI}*QNrFH5jeAhwL2yPxJK>skqTv2eH? za20V}nmZnTR#smU$$rEBgq(mJKQ1a-lw;=2S6e_G`drE z)OBIW=Cf+Xv6ahhAlvt#^=ghkyW1O#)q;}j)wo3Wscz^a}k zaVLj0Bz{4+e!ohrbxUPG>*M?lWq6NPw;CPzNke7_#|P4`F?S+URz6|y0VQzE$q774W`EOT&r$HL6U3KY})bEHSL`6O2g(4864NO2_>Q6)Pt6# zjia{|xbH{tWAoyi2Y=~XrgPYG9-P#x=}__b)T`6df=91jwD33`MKEXS?NW|}`%?qK z525_%*Zo{gR;k$Z#9F;8*QfF{ovrGxLtFi+B%pZ>Qr=yScX z>CG@?lni9^o;p#V^NJ5A8SP1kQ~s@e$4=CYPnP)f=bQ>t_ZI~8RxZWp%;igTN(gi`0-Ru6R4fPI<3X*Wg)fn}r9t9Ak>| z?O}G1I*{D)TEkK$xn3+48OQ|kb5>B5Tmz3x)lsy7A7}vQfl>(%Cmly)RLMn#%O@vs z`cn^50M8uLcQEVMr9E4}PI$+9Lmj4Do1IDs0_B;<;5z>RO7^>ZANZHXq+&&04nIos zpN4jk-1w47BpESBy+>^3y>lUl&Byhusy%E}QGlTE9e!YWscmI3Ob<0;^4RX)qkt-| z&DcHa3O!50QZ3bn!@=!VZ}h+!xW^|I$9NZ07PsOVPsrz~JPP%vwG+ZU#zCfmoFTVl z#&S8Q#)mvtMLwR~<#Y6^M#+_r%0Q+UDaIS}t1&aF>rN3B{u5FxXFjwHbZ+W*2K*}A zcaknSs=;~3Lr*AZ1YM5(^Yb62O1hkj_f9yh(4=(+q*Nqy!1X5rfU%?fuKZ;|KT45x zV1E2)euEX9kVJWFsQ!ox5mO`}F=4yPar14B+dMiv|+55}iUm>lsYKDC<<*>i=p zL;myTuB0~ZpEZ~K3MS-GGT8Fu;5sn+)E8DOEPXTWP(GIJ^I6JRj;SEp!}?W5mg)v8 zAar5bhA0aa?(CA@DIP${8UoD3Z~)}j#9lhp&bi{9Pf=zpvrOJzdmuO;ps%&H&1whI zFKsWct)WSvc#MxA8+Qz5z97^z8_RpS;LI|tZcs{(m49%3D{5A`l}^Sl=}Guj+!_Z1p0CjjD<6S171+9YYv$sgjIU#;y z`1Pude(ZoQIQ11Sj*{Nr1t&3~+(-1Rn{RVOwb1IcTQ<2na% zG|y_zi)=A0agC@3G3ia-c{{UQl5MlHE0r2eaHRFm;ZVzP#Bg!_DuVqV8{OYQto`lkqYf@~9{-9ck0GFDC){&b^N?3mpc+Vj}+D~%d>#^{KeJaSYVilw!b@;UEbuPv-r zbG^FF41gSFK7iJKvElf27|SB6P1)Cs{e5VqnETwbM@3wnN*wf`$n$~I>rV~&RF~G1 zSzWXj3PZ2!P>;sFSjkCU9t7ayE?2qW!=*TN=bxoBwtq@f*ENZu)_4ZbPt;pkwA3wP zmP2DC_VS$WM@$|$$4u5|h~SBI{VrIdjxtr!Pc3nh4n}?OYh&R?8^*SAvA~=?x&Hux zqY8swKs+Q7(3xP=SvO;l3UvI%M>FQJrM=UWjP3w*BA*xEZrpUJ5aGG0V?Q~q49Q1a z{{T80xa?@f4fXwLF$#G_9Y3Wo=MBedR_Flt_on28BcR8621A}Hr}L#JCXn>)nh*f4 zlfl+rZOh$AzbsrXdTy?I6lo+>Kua;euSwFalFrI2WCJKNPpR)wQdULNS9dN%hj73> zYW27*Td3`tuMz>AcjB~dq6#yN3}@Q8jmhofJw`$G&1&1m>lhzQ5ye4hgkZA#pk(A? zwr%1K7F&a!4Nb>m7g@Ja8Ev4Fy!w+~N#aQSxo#IfFm4C2uVK}q0b2y*gN#>`c)>Aq zGj%<4TGKO;g$sO%&nBLu<_*)nL8|C-KqDN~yNh=p%C#VualpcyamhS=J?JcQcYS&P z06*u7XwC;94&xmuNdSxykMsU>+K?T8!r4lAk&qk)i0AOHTRG=7;-3#B5qPrHlhiVg z%DuN40P|SY+|oM%0oMcqF^Zu*zSjf;wD5CR$ROt!#V_9+kIu6hn5yxxbtDx$SEu+V z#c|1Qws+10sQF1fYtQ72XC0~_xIZZ&heA71a6RT5t9z01l_s9nuu3`)!n|Kj@fF6N z;bkwdbUu~Z>0T;Hm0Nftu0iQkq!v2o(-DUQnt}AZbQ$)fvDRXd3rKdL>c@dpwNDpX z+NoP$uHLM0KPq?Z7G<~7h#44OI^wC$_V5GdN-_^1S0{VoYm3Pn_l@)ofmzRZ+geGc zML;r3Hv)m9t(#L%yKf&(=bE8$a^)IHr2z+0#{gHK>b^RH+jM$zi-+mv9uR+1T!rqn zd8$ZW>UWdTPYR>hQ&DUjl07=-#x@#zH<2m2Z$$f}@il{g;nbd;)T6xltVFplJI3p{lcHc@+murx~jkx|FdN+i@r>)r*?S^Ptf5 z#f^%IHvQ4ntBcijdG4hpn`-AFM@pVskDAA7d`oa=SmC;sNi+An!-4wMjZ?(WYi2g5*YtHl=kM#8pdJWu~hgH67%efCBH*hmm$Q=3>wVh_?RDYc8i#$fX57x4z z9nU`4rkCdnnnHLa;*)!lY`jv^s2ZP%LQLU-OBo< zEln-QZAQ(5*Z%;mQF-5&siw;yVbGf9I!O$fJag+v#N&@zfHu*O~2Xt``3+Wf9mBN{Hz#yabB@$Cio(3{pAOm+Pc)vhf`G>)~1WD zYKk}&YAHrVa~%cP)MOSlFvbt1Laor#oR*CG;(^?n>On4>9C^X}!|PGo0s@8{&F z5^X1i=~_0p+mb-~(qoD(C?tWLQb{8T6e&!5)|zTDwScplD15Ek#Hkqb0rbzMWZWY8 z!;o>vAm+2VppFZZxK#~FHd;%8$Wm(fkwL~us(Qoj)8*UOX{wIo%VUz!W+PFG5y)aj zO?MH+yM|S7YT)!14Xi@vu_p$*_$5NwJr7*=t!9j=vr|o)*4i7G?zGsh9!1+6rb3Mo z_2a1ar&w9fIdp~L+KO3K*e@R0>rat{mvTv`M+-*+tCJZec;76pA{pq4lmf zb@%>NydBp9V$OqrJ*yV%#%`rC22?GO4^dsXN!fB782G6_XpaFIz|UGy>(-7scA$OX zkJ7g|jo$~$_HAy`b~seHg^#Ek#dP}ani%-X%W zyO5xInqoG*DW|p7+e|^(7BR+oJuA0GAmzEwdW%WZe#2=Ux(uQmmhR2#iqwuJ?n54) z^~q9qXG9}pG5}iu^ZM4#p1(K}0qKsPoh^l|ZOX9({oD@U%C{o13;|w)fs@j)xuS^M zXueQD>yB$gfS{50arsm+TRd_PF$$6QcODPnQq8W3z6SESGF_fC#Gu(yO$k+@HwXL`MMm_qKrSxcognCcC3mc*|=vE_@QYeREjot zZi=HM)qA_NwPXixE4!Mey6eWoq{1_g;o#FzY!0dq4b3nOdhlCDdq{Ub{qjGpS%%L@ z(oXnQ?j{58%6K0|9Da4c-1wb>W!$H(A%FnG6s+1ROJy$*WNZBcjy2 zPj6za93`%96k`DViha*|<}dY&%|VaaWy*GpebM+C$buW7p;5-lHw^ zoYXP4%YX-ZT=LWa_?&tCo&cnpLF?bvq67kcY9}SJ&S)7dvV6JEQ__$(%Zh7Y06i(d z@x~|+9Jf)LMkF4G@}*WeJmC9MJcOKg?LZoO40)ZUaC-&*wbmq^v&Ji&vH2ZPX9@s6 zUiGXSs1zi_I`o#}uM$sORyjA%Q2gNTdOPIIPV{T2r14Cz#y#sJr5n9F8a* z$FrR9b3txBDmFO4%`m?{!jKXNJ-Mb%H^Ae$Q`(xXnhSpk>54jm=5`}x<=joj-s9+N z(sX%z%`(}u&cW8a>6d1|b04cUcK#cac9jS{iCmAZbXD5sRGpoT_~h((t1&S3tl-3d z`s&Iz$`5nxT*l_S5)5LmmWV)OQs_%; zCVRjdEY7z`xmhvDUA2XUYO09`_`NH+O$E4et> z2S5FKWSXI6RKWp82rZHMcBaRvd2$IOjdBkIJZ7M~8(MC)sOb>i+bkrd!ufK?BL2R_ zQfk_soD$tEmgqLm-wF2PceXoLRGO6Y?s?smw_bRv&Z2CShCZT`cN&ehEg8~Zy4X1A zYc@+Klh2wiLLZoag;-k|gXNEwfc1VWr111M(pt&}JiLsv4p{n+N^q#@yP%yVRdTcB z-23tEK<)gEA?Mzl0XW5aXO3!UtGd@v+}Qb7IUe=s7xSa)eigj`0G4y<@W#U*#5W-o z!RZm=*6{K-D&&4O*IpL?0EBD9S3mRbEYOqbwZjk4)-w2wqF8O13(lx_sz`cntq$5EPM z8}D7`gFHTAL4SG*%Io`>_T+$ni25H&=X@)q9a~dWel4T72C=QX|JcwKyGpan#fZ!vr@u_NQc$03=rCB%Mw$dhykxP>@B{c1@Y->9GsZwg-hhs1Uh?!falwohZhuY0$cG-`Te^skz?5%*6u?w$#_ zn_1H!`#SlO?FF&hjAZ(BtgA<gzM7{PAxpmg^vUder^RZ8@gO< zpp(vdsC8DufsA$)Mi#k@76Gt2?O<_L?=G&cr7S~WcR1-l#>`1$pSmhZf8)+G(C#%* z`J?YY;X|{8<@lfpV{?I%k(zX^`@lyB=~YJTefH`Bi-K;cOAruQC{TnBC^zXRHok;X~u>rpRLpXWj3^O^ve ziurk_+kDrMuX5`{XK4Qb3T>~=cL3^l4)ny4(c7@|pZ)ShX)b$=n#Z%rkxx=jdgu}? zfx5Ao(@c#4&ovPw9GY*py+5@= z?m^?d06exj^Gq$@BvT7?rZaUJpbi^W9#@H+=YrYK*1DexzHFpJ$XO06oAFTDt;FN2 z0DoHD@WcGqNuG=w@U7>pQH*{wrBlUC6CMU?vakc*q!}bvInZfCDFhM0^s8wznfLVh za0u;LQIn1{n!5~yZDZTkmqDXtA-0uK*fLGW&YW{oeU;IEM)O=Br{`7@*4{={S24+e z*gUEF9@QlFkGVJT$mE0k>n4p;D+e(T-bU;0Mnx#Pk36s(_N%TV@*Fne-^0#DW!zgS zLOW7`$cxjiGAczbKvKsT$qYE5Xb)4L z(QY*>i^3$fw;NA9mCx&2;pN@UpCg_dG{g|C!DU2N?m(-_b#4gxBRCk~k@)qkT&`xL zVw=eOi+zEZ~ zLwPtDO+MIUak+ATT95rbpZ92q?2E{)Xtm2rH7e0SRnN?gyPu&Pih}Q6wqyQ-Zef@B zie-a+bKZ-HOI<$V=0LXv-Mg{Lt@e8zF4TGRDv&d=PFcRbmC1i>>Jk@?BxMXR#r-QD z?pYkLEEtC4u>5Iqw#!u%R)>UV+NXtf4C5?)syNduJqI--HaY3^uT`EZHS}@~wdp+Y zz5VO0Wr+Md4J$rk)n#5g20{K6$!NrViuH&&A%2+6ZG)c#-m>lrbud1-jGISlLG8is=~h8rS$A$;ap~T< z+vrSFl>_8+kTYA;rqW9N)6*xVX5S!^JYy%X=~RTwmiwfhr1YkD^*yRq`@DMhr`W2! z(bx;fQ$ANKg+dLQ8L)&bs{{b1%V)aYliVlf1)pMn1Pz@wMjlh zlg@eet{24LHKM5g@$X%9&RT~v7t`xf1M=k6b#1GfcK$1NVoG`tc|N$Nu^2c%T+5E01B`ttjl_>Oa!LGa z3AZCek|oqN875)@!1Wc(>l%c1a5R#9(jU421VQ`0x#ZQ``Ig=$k^WyAXd4di(uqx0*pdwE>rLG=+vpBv2yyxMUu*CIn|A z9Mw3aDn?F4P3C|w4rm!FNQlEUt8$9OfI033R%ccRlaW!D=Lb0LKo`E=s)aW7Jn>C4 zhTKQxREXm^=9D%G2dywHO#7919)lGNx5{{+I6l9RdRFi2KoN!+9jQ!&5rI*%k2 znCw3aXkY>Nrk7mO7`wXhnoYsGQ(eb336mU-57Lmy7~`!~k@)A1IO397_{MsB)hVtO zc+PpI1g|c@NI3qr8%>_|P3Kd_@4~9J>LD3#!kvK5@pm)Z$&zw5n$qyg{{Y0oQT^!D z{#BRaHxpV$!2Qg!{8wEW1d%lMh#ZtVJo+?FQk4lz`BUDWMyN9SXUr_=Z zW{@duyx~VRaQmNbwV$rc_WDK4(J@y<+z2!!s9eOenVRo+l;1JujMku(1=^{D-`=@T z3wV!GpHmP^a_4X-AP&{lo9W5RFk|XeR+5V*GEEZsh|9T@7WM|Ch{fh^F%Ej1QXA>< z)j#jprzOwD;0!ZhI;rv5+FZQ*>YC%MBHiOp!y4#6%Tgv&s3Ugj{=QYK|jtet0 zZY&N5=k)$nP>GdSp~OYP8OmgiMs!I7}XZa_Ib>t4;A?HyP9*v>KZHP6_#2l3-}e(pfxw(R!# zV+J#|8HPIK-~rDy%+aztJuc-yj54DZ2XW6lp1}34kx1Q;bB+!>4^C^0uy!g`oG4!cZBcKbaNL3B_*ACl>ZTa|m0fIjPb$ zToxSq*S+cg0JGCvLFQR_vrnCSvRg49`V~t50JE;5Kh^k$PH$Y>NI$J4It!nLmd(u9r~o#;0zqUfr1h z<&jH%g1r00+Ue6vL2Yj`Ob0Vu#8Fr1q;pGg*vIj1q4sT8%VgeTjBN~f1oN8YFSQn% z@5!HIz^OG0hrM@}NqpHD<(!=6vgU~L0LlJUXhbtyo^Wx;tyMA-atZaRUfsFKsQjD| z4_d7W92oJ*{3>nC0M9iUw_r1ZaZB?Kxh8-mSu#7~gDyRPK52ueOjB{wBbq=wNtXM@ zq(TYgpQ)%ekb7dJQ_~)l0bx(eiedNSjPZ&(pLzx}vF8+`Qa!~yDC@^G!lUUx4&9NQ z;}n6rccnmbGfA|QfyDwGJ7%OEv&p0pw_Zr~0;E*m!eN`x9!(*QG`KkEde*I%hxJ?4 zA7#^TryjA}xgVY@X5ZoOimnIl^c(Ddwt)cr%@+fbRms8aQuG|xcMrnP7P9lDBKq&R zL7&#FC&DikH{Q3hLH^a)$o(j~3m$UgnthP}07{S7JbqQ^=iu*&m~;J_Kke)P0If?G z!S54AAZ+Q!+wEWdjTb{O?MYY^jPfc&CM&96hQ20_Fh0*}`2OwE{{ULAKY)BqA5ATv z-6cl;wUgB7QdT*^Ba@Or^q{ysO>10uS6+chn@GJtI-f5i^vz|@VRZ>Ud`$@)e)JSS ztt$_i5XmSV@^MhKm3GTS)NkA^mA~3a{{WtB4Rm%N4)qy`H}^1GXR3f%$MmTv;bnTE zE_$9ldFH*c&*6rfo^slCFJU^n^$W<*YP$}bn17p;IQLV0!GCZp+gV}ROIz;Mx$u{{cWLD^$ zoVm>6A{_pQ$|TX~B|BP(aMXK0p_ zX_sW(0*K4B{HFxgmBTB{O0Z$KJXErl`%F&mmmNsHU>wC+E47c!XMr3JBb|@xIlda6Zd{|_~RYDtFZB;?GBzJS1IN& zQ-joZ701EyoPE-HQPq#9(zJrm!mj5a{rSyA1`jnmL~+X~KAkE^>}8M!4Hy~5Nv_MB zmL}5W*==^e-wFpF_0?P9ejFje$kd#J>-(`>;#f;*ZpKzmobj~e9u0JHu}_Dw9zYtC z;A8%ojMPhVMhCTYej(ECZnY+oAgrYmA29yyX8!=f zKYqs|B;@tpD)g~Dtg4T>a=iME^t;(l7z`@xejmO@4BlLSR?SKMoN~*!7E^}7>q|jd zm{K8Ao^VfEyQPd0ai5zNW$al=0XRJ=EiC3Th@p+-k=QD#0!trZ>q*M!aaLx9lkMm* zaul3>PipD(t9y&rNG&3k=4bhmIM>Z2j^4HCpANnUU0lZn?~9~sIC`y|M>4Sg0BrvN z58=&wzJsA@ULLd-+AWM0kpY9TerEcy^`M&b&x`WhwXKbswk)RH(kh%6V0Z`H+NN^lR~#eE>{0RO z#5QYlXW>~ELg#F^!2Qwx08GK^ed~jg8LqsEp5|#~X4@uYZcndTewk&-R$M9`0rbsk zMQP+u4guO&9=)s0saj7{(W3~*LiMhjbgl$9cWUd5ZJD$D>K_v5*H_UAZ={m$M8b!a zi6iOhT|yMK0k{Jrnq5NbCbN-I)UyzJcdj*7ciilfis)YOb+g&&(mX|?2!RF<1PZ+l zv3>Takw~}%;nk2QKh>(Q)9GCj#Z=tJ6e+i6j^9ny?DZ7})_FQqXkS zXMPb(}dEgP)^&O3RaIMW0&n|TN zTTJ-2Ei&jQP8fPHaaS?gX9(6xNE)r4`(f90*e?w|DF{vx<7XW?DS zJ3fzn9P#xLTn&yrvN%7bXr`GQtndcVZ;1ILQU3FQDObby`T3R*JO1!jq3XIcx>Vj) zpk;zz?mP?$`e%bwRv4K{SCp#tJ2CvtTCp~<$1jKO$5*!=nR0RZQ`f`t=Phvu(+$OT zD{TgIBT4}D+t2Gr@z}=^XJ>D1>N8J3Ia8rCb-Iin`sPhIXbLf#vVDJd{{Yvnlg`sd zFeE&3Jm2ezooCZYA!6VTGc$AgP#PS;(Bb|oiC7*65DHb$?YgwrANcKhr-u9qcdTum zYe?*@$@}t_F5}cM^)>0b4})}F7_64|amhFz>t!38@XrFF%_5XrJQqj!U#M!4LoJ=1 z!G=%yX(XEf9{Cm9X^);KDW8_BTSq>!0!Eu^%!+I+7qhnnZrv)Zwq8+A)%hBtkn7Rlh6(EA%)D?Q8Y z&q0dC$s?&Ns~OKUn~OckRsQNWYLvldaLU=h{xW&1^4Y!3=(V<03I{BB6(z=-9lP!G zyu;sW;}xVfFqV$Y!!RA&fJOHUP5U}1`J~2vg0>{GiHPCJ^d^I+#(G<1dhV+t=Of~K zcxCYJqZocnC!w#N^u{sX+POF@I^_N}^=6}_LnfVc7%GDk4o|gwr1*;BMI3C9{)V=s z)tM7Ml7`79g&Z=F$_O;sEK7aYIPLQhRJ79^_7=_~aKbgo&$m%l_8jCl>sY&7)e9A* zkjxz=aq79qH2p!Rki;Wmii3fZkyW1RXym|Lf!x%?QZgu6P;uOKqmuiAY`*uYZX-!0 zk@7zH{{RYkXr{vix0^nPYkr;T8*^)LyF)JH*zjpCY=mPfIPdLQ$~H8Nu3TGdd6Wnz z@}=&R41@F{soYviYU;O97_vCe-EVMeF(FZg8`syk{{R~3biWX_wToD4F-Li(N-^^& z-k(EIX>*#7?}Z?KRYSyTKeMg@9BrVBqxir5AQo zqSDmn^b2^R)dNE)aj@r%ZT7B;Kn{80uzWTL_Ja;SWXS@$X%Gc1jEdS@n8#v{Fh^Qd z92{esLOJ90rC-L7z%9$qzXvjcBBUp@d1zeIt-pmU~oRQ%t4bL0qSwLu|B7{ zt=}K9Z9*u($XNO822WbSQJ9nF7#%xjzyAPUw}--W)PC{LV`1EkbKiG0de(H1Zja<( zIRk-NW?bhy{b+)JDqzE>Lyt=6vuMs%=yWnVHIdH;c*>8v^#-(LU_KvPk&*uZ6B&8W zA8=Mpzwe=tAG`km)+ZIMJYhTyXt=`tzEh0n_!gmVPeV%m)Jifz`4A7tRY$%t#!vtU zW142MC;C}Yk+l~;kgV5z#GWzORRH^|sT_})fa_S+cdXZwoa8?vH9nxlU~oBR9FTd% zV?Z64vMV;xl2mjRNfRfj)mXC`!jfUE9={xa_TVNN%F11>~ZrS>0d}lPbc5Ca@CvI))CU;miOYC zTNN2@Dkmd68pzO`zpW}Zq_X86a&+JA-wcJrS% zP?&Cx-8&EOH=wRQ`%rHdTc_Ge#VP_L%tIqRaf8ol;5-g25 z7G2zUe*104opN;b<~x{I%vR%^`WoqV2bODPD!Yg{DhE+X9re^OFlfZ_FK0Y~{(Wm0 z%{|dFycy>*c-C!11rhAE&OuHI`u_lhQNHmL#e$PFpGF*t>m|DIwxw}$mlp4*UB*ae z*|2?bG6<|4N5IW@AKEl+M%wlh$oYnP^vKBmRn<*W>Z}hCwmJ_B__oRo9K81h8IYqO z1d@J(r`D=3jG~5PBr`?jV(^ zZbr^4%CGNkt~EKCW!(TJyub$bZ+zBHiQ?pS@~4|1{GpuSgYW5D32z~~b&P`?qj7Gz ztYt-0dX*W;=z15!-C6-4PqcZC2oJe_Wj?=7YtXKi;fa%CNWDN)jMsh0PX~HYIFb!$PBFHx(1Xo(yQ<2*G5$YCpx{a~6)Gea8fxm)P$oxGIxUVhoU&4Ul z=kU$O3Hgnk!|+f05B(eSuT+j95pSK_ap+G<-QPiw&H0#&3)Gg(=xL>^# zg9KFuI6MmapTt@Qo#HD$v+9=OObkUT@g!O9t^GPzfOzM@dZ&hO7jSF48JlDmQLZw2 z1!4Rx`X1HM38@)MEf_jwmDZ_y9i@f4Pje~2QT)%fd(VMB9NB1T71pAwcc_kcHz^VH zQT=Lfh29U3!k8x8+6Sq8p>T2zsqGY`I0CEL3>fscfgXut6udpw_y+bU(aJVh{RC3JC_l-b# z&Uv6LOw%rT?@>!SBxU4fMIA{z3eMFv8*MrvCDegI=sJ`5S08oa2z53)q;-Th%g4*d z^{Aai4azT6W5PGOmGz6ZuD0T3 zZw?nxyV$D7fg(U&Xf$V*4}$1e_CG@Dj~!w}T`{mG6&g z={3kpU7j)<=3nG%CicyV6TsyeeFscb%{Q@h(v|fN|5_wJxu*Z@T~xF^qSv zbP&&##B%4AC*^N&dsV3J6y`aU`-9f7waxEg*0(n;`^dg=pPfe-t0w6j5JBCZPHG!e zSf$?!We-(7YI*EpodWt%IDK1Iq(%tusil?~;`mmvEg+`shG z`qnMzxwU*;M9Mol@(<%pfsDWrFeA_!u4Qpq+QzP{sY!VQeX=1VBxO*-0u%N1ubE}= zwyQnN)4^)S*vj8G91QfYqNWV7Hqd%k0WF=yj-hhN71@G9SPi70&sw-tv(T3d?r&&D zRnl#(+713(VM{+0vswipf&kCmQ&zMIOqyz|W91|cFmX<~z&)tGr5MFs2^ns*=-7_` z0G(Vo1fS(n+u2WbAV_Vcl0(oUXEl7pmEtN`Zc+6E6~Cnxl33zwx)a~1thcfIE8_I| zBRDIJx8++g>Ja%+!=u_sZurB@?YW!j=~>j0YRJ-@TY8DASt`4{DpQk!IvUKfCPtMQ zU@s(BWqArmVH{I9LQ|4PPJL@1P1B^ko6EN4N%`f+7_1{M=JJKzk*T2DiL^;!naNy` zppF2pC&Z9>x((s}I7$4g(RBlDrCBAlqnTzS0YLlBUVq|zTj{b{w4dn{le~Io*0N9E z(A~u-YH;2WWA^4Jl0olXbfa~ZTLV3DO5?F#1bfr+0uV=Pm93^& zyvB*bXQ>qofbIM#Fg(Y`Q+b{uln$t>4tXDyWrrSO7Ip;p##{n_0XpGOa6g z86*!{uM-87Z8;;56@OlTopeQLa?4h7xgGeV-9wHIGBLEIN z@G1yn+zT9l4OrC|cC9(b@eZFsPl_U{z#LOxW9tiu-)YVVIHzb#iKASiL|%EBmxa#& za6dYaUXaJ~e|&RWehZS|v}~m%`O7N|9PY1M zC$4M6J{W6J*y@d^wcJxaH(?kY4@&m5aOev12*@?ZJtS`(h~(qxRitCuuDaw^d1LuW z?NSYy^UM||EZ8ErZx-rbYPS0va^+=gNEGB12c>j=BDHxf%+}$VllXnB$+a8F?KLp- zCN0T18-It|qNHyZV(CuOS2k^}ZEfRHV^ke7tNiPJ!qz#}Stjkl3QcoRUM}!sV4(j1 z7I??EYTLD+a_&Y`(>p=W>0UKRzNf7hp|f(5+FNrGxfkz$tTjeO(R{ky3~Yr^Qn_LF@wnU6;$cAu3=J2DW#oO3ZAOR{3{O#kT6(0BT$UNgKX-3D)=j%5obpKu>}-#?cymOq zlSe&DcUMN-mv=r+ZEw7bs757*Knk{dob;;qTDiKjgsrW$^fQ))WPs!c^kBn^rzMng zTz#b-cO&vhIVZWTNJ`t=G;l{8VBwo$fs#Amde$+}+EsPn67#(Y8Pw@Vgt2|42YXgvY zVt^maRa@#xnIF@{{U%4Z!Cz4WKG0i*QFgl$g)RSBM3*#2qX2TTKIcSwYONb zt9Y$tRQUq%jC%9lxqV|#@f6olCC$zeM=+?^hyCAL!NpW#gV%FPJ!xaQ7WV5T(Z|7d zJf45gTIrOD5oAz6akvW2(B*;~VFZt99mfmed!Y!$1XTD*-$#Nws{>z zbtZ7MRkXSjuUtQMsfnz6h|Qef#gGTBX~ig(F#e*eLTo&?J!=mB=j}S27FZ0NJBAq? z9xGyFjxc{J;xyaM-ZHq}+ywv**v&K}(39?rQ;tBUM$ASS40a-&-lpY?+N@ee3vOrL@Cvo)+6EMwn0gSC%A z_;;^Ai$l7>>aXz4)ZLHpU%%sfEj7N?@L)y4~BL3*= zmo}nIF5TJN&o$|KzMpNTczWVVLp%9Q5JoVFef{glV{N*{!=b_Q*C#cMl9FiZrtPWg znqBSh+2M=;@Tkdsqa)bVI_LI+Og!7!jk|xVh%pL1xUPG``hzGUHUM(07o2ymNz-o< zeL3Nl5pfF*vPaYDkMXVvHx_ynDk!_y;i8T*FvD@{(yiND8JH|kv18~nTQljlHlAb2 z=4=BX8886!;;BKZS#8akT*lxQkDfYIy-wGPOJr&2_BV+zYZjUVpO}xk_>T45EOL1& z9Ob~|fq-iQ(_9dkqMkR~kG@9+x@B$1IN*xx!?kT0E%y$xf_ z3Cl$&DK6Y&*W6b`F}pneBAIh<9l`~bcMS1^fvqxfKrOs}|D5P#j%IgZWk-seP?kPGhvwUj96BA`y?uuN_9$Ai7T< zX*;d*Jrgw-+aM97k0k9A z^eVl7I=OFuqZLrlYOf}F!9cZKB}k}8DS<;?OkyvQ8)#!G%RV(#k9*jss0PbJqrXdf#66`QEvLuC|; z*D+YDnJ;H)q$ea3fNB~1K@Ge{D^!gm#shTyD=yxRbSbGk}xV8;_b{WSWlp7SiqJUEk@=!w>oA{{YvmVv=TUx1lDF9-A(uHN~54oGDo$BaHfw zTGzK++2vDnWd8sL>f`haa~;DoHgnL5=vAFl<#rtQYNpa;qQ!teZjr7d5tNTSrZMk| zl4+ycYFb#`OXqk2K&*+&G^DdLXTE9&QIIIOGX3m|sXG0kC21dk8#oo4aN8p!^aGLW zOSc}?M_-gfrCmv!ZH=*$j@0*Ly$>UKPuit*EJLwlj-+STwMiS~9&iZ4C(V@Vl;=o5j#uA=>k@HURP0R5_basKXWnbLFidw?=VSMjcsPzAgZqz=F7ml)%= zR-x``9f#hi{?L^F0JZ%ok{zmkZ+!YytMb2WpO6M?4^+HZ({4!^G*}sptV(5^{MiaU zD>;b-fJpjO&doCujx&KxDi^O>(HXNt!y4534z&gSu_2KBz#qK5#eI|T_r=z_=96zM zasrOI9Q5`-jeJV6=a4czab1Uj{7rk|Tg8^zMtgQYyo)>^aqn2xijulDr6#mz-B9e2 zK~fKTb3~2RMS0(V{Bfsinrcl2+KEBIg}(RTf1$5Ix4DjF1xU}ea(bIISCYk4He^X5ZQ5vig~`X# ztZ8>wjOIA)?nIk5;o~ExO7`2UGIG&#>ZiR@@_EB18|hfilqb2YYfc&-Nvd0Tg5m(P zN94!csodw^Jq2RA{QhX;}P*U;|-Or=>yK9!BBczz3w&l>;;=oE8T7$~bm ziBxiWo^9dZ^i3oz@`JZ3#m{WyRhi_|)-yXwfqwU2ygi3=T`ay6ha5+{@#d<(g_HyP zpu^FHVDQ&>H1_J&Ijeng-sWfkkyTXkgzY#S;O4AqcQC3cLx4x{*0jD9frbsgBzGCC zjYq?tKq|g$TyciTsCZt&RU>eY#w9y{$hp-^W`YNNEayiLloHWiOexUHQpP%z!9TjT)15KeM)TrQ8O!*OtnA;=#x z{{V$`I)1$bo1&W95Iaa0k?Ddfo~1U9h)UAIk}WoG#wjE_oZigk9=;CqRs3lwmc z3diLSjyU(OOT$-iT;9bJPUZ45k;xvkpBQdd4+`D1k?uD#q*0PFfIHMui<7Z6VxrG4 zxZge0^UHIYWMJV(QV%AJeNyJYNhOWU(OfF?jHw{>tlMKXy_cIbOK~V~-SBhIYMV@& zTl_uRCen78@&ND93b-R^YAROZ${Xorm$5E49Zh$~jDsK< ztt9(B)N#vXpJy&Hf;cNz%P69688hgg4S0&vR)|Fuo25kD+;kl});EiOAX@0xzhJP0 zUS5yBcVamHro4l~o+67)yp}nqk|TyyWh7vC6)vF{_FU1)r^sfK?ehlVmnS_><6RVG z%}BaWrKy^&^V%4O-Ur#&of~ zf#bWJZgC*z1ob|@g)-(Cl6WjF8Kk;yHsg#D-2VVd=;Vvo=I3j3=oodixIoAulw*d5 zK*G7}-F7`z;9EmH$TNcsAQH#x)Yd#JPxMw@h@Tf=tf%m8mQ~6S?w2WV&u0IL{~RUNL6UT-@AE5-~zTWGN%x zrFv57&#qssz5f8s7Izeoe65bv(Tj1W!m(-aC6I+lFvg<r5tt3FLSn^E_X=RO{c z#L_5YfaLNBuE#~y62*43o@!?fbJDaZZb0?b>v4%o0JgEo= z@H|uF@J^hwEUaa44noL&@6#0N!AaOtsmQKP;Y)e7I|!w_8)H^DByzxiD(nj?_o`Ov zut2dyHmDdFr#U2YYqFg+1);@Kqnp%}o_(pM#w#~bo@h}-Q5iCO9z|HPklb5tWMp7) zK^Uz$wXvFtYUX9}X!Rmge6BkBR&C9+GRc-)H}{u=TUx*?9B+=Eoke6wL1iNZPzbDS z?;#uQq)UbV5B|`;#6RN z3UNx~ZP@Dc9Udt>I=YYc{k_e@KE|;;NT)vE{;HVTPl7fOLl>$fBGsFL36%V)_e?Tl2(;#-A^ zSm0M!rN;Ef4UU-xsmX9=c9Y5Zn>iT(epQ=DwQ|Zr$g1*B%OAL{$g8(DHx`03cW)wz zIaZfE`_@D*@i-txG1DhCZsPXpC&m$i5H>0 zp2#$Il6gV8x{sUiJw;_|3|}oF+{{U4W0HRwvlE#VGj(pYR`GJD2RP|j^)*`zvpZz~ zAzXDnwWy?&_pFN;%Li=Xv-(!L@Se16$GKir8RDTUj=!Z?l}P&3K%C%?DT$Fd`Au`a zHk-=OryEJ#^8G8NY!Glbt}o&=g*3>}Fa_l3dgt1-hs2Dh@UzdCDxE>+mOT%!sbd9M zK~sU>sr(0Oi~`NLedESYU!e4M(1&le+oywWa(#gwKgGswx>-o#hB{6F}$9m2(Lsu2X>081Xf zPg?o#Z9H&2MOs+E8Q}U5IUkK@D5hGKkGOQbcHZ#=B#K96t~jIS>AR0{PUP~VIpZ9L1L;*~vxZFWPQ68G z&jgI+fkXJ>tGp6}_X!@yH117~OIGmeNuMABJsbRMj?}y|3zKg1sv+<2Em zv9-7kx1!~oM}QEaA1M4i>!|S$#Bc2n3~M?~=#Ilti4-E91jBbL$l#8+t^(Y{xi0Qv z63MeFM{mNiQBm0&HstjrNhUXNL*+DLHRS&Q2sIX=Y^`SgQxv&~<%kt zx`s6>>I(%p{Aj9zs9ZR>g5`X)Z=5rgBk-c)8E!4y>TH1m;S6J=dhyqa(Rz~0aofo~*VPyC492Rs9^$F^a{J4&Hn2AKVshl*G5Q+Rm1deLjmE(y(ECxd zx7<|9@ofzwnbqxPnO&aHG_j#pWIMh29jTgU_KlT*pUcg;!AuZw>-4Uf?c-JZNMad4 z1+&X~Rw%fQ+TuSj?2|ir?Vg-;ts_$Lo(2;loxbuVoV=_J*e-D_Sk zv$bp8GWTqyt*xolH5nF5$;m864&Q3k)x0yN-|JS|#ms7m zVA#MArJL0IXMCrmQUL26K>m3Z{gbCj%V!sux;Rvm?E{MpPY_l0OQ* zt{4IiYI{lA351ExI)U6$O`)}Pd34uvTKI`$C?G+@d82NBI`<1V4Uopbko70|AWJi1-5bJdY{llfK^Dc#)G6**O`d2CvZyf@?v zh@A)ovbQ}eN=vBO5#boy(xKDThyecpzKvU%{Jd@$&%ISRa*Cw+h<2zvHfRGr^cmOx0M|`3 zdJ5Xi#CF~@wEk2XdmqZO^?O;h2;)S&mfK@)-5*o!)~w5LQ9|P+_dHM*R=Apr27`mh zIj(M8sU+~Z;|8{8a?v?slUVm-G1A3b@_2xNeDyo zwiF&ip0oj$(S8xynp80cv|f4Z@ar4M+T}JgL)oEquiTo=A)9PUm6CgG1-NzlZ{Ber_eBABW+ z0ovRiJ5ZzzB9oyR*0?F_;_%+o_q}F zKQOG@yEI!FTIy$6yxOh_lbm;~$yL=4&5>92<0|VHM4h3W?LO6;A}HE-s}t9bl)8+I z2iKwRPG6Mn@7E@iVaXre{AyMCLW9traCxQzMlx^!_o>y6dXe-sSYVtfC%?T+oS&5T z^r>SdUW8M3V@5JwoI*8<$PzFO>33x9ZasuIr5<%7wfb~!CHRas~=^@!LsYeBakU;aV2|02_1(2h8Xy zT`3l(k5IrT{{XK+LHO64FUC&}l74i@vvj3D7`!{$WFzZK*~n^0<~}F zb{AIZX$o8b*3HXgV`0w*vXgOkH;$_2u7#?^1-+1IeC?Uuc?>)AT4PW7Wu6%0n&CGH zyu*NV?rRMvwn8Phok%P&0`fWPD@yxPTRiV|o;Ns5H$Jt`C9TnDbmn!Dl6av_$%crp zAmiJpq`I)RxzogPu!V$UagUrg`Qovo)ox_gOtai7*(n=$uiY5w>s=gMr4J!!S~hNc zzMCp!oL$OVoQr7-Z6ZC2B(f{;?0a_xuFq$8c`PDru?EVWr#R|yS2Z{i4UuW0RwS2f zHsA;2P}s8@C6LXvqmcFJJ=LZPg*&<|=~QKnL`#9MDBr_a6n#ZLVqXM|Ppr8|4A; z%Yo3>b}X$ifgc@)>iO@&`n}$Rs#(0tA%VyRheC(99+mC-X0>Oi+nFrqSyfKfBlu6h zrBw-ALp)4A(W<&-g34tU>E;o%u_T;&RhaGV)cml-Kj1Z+_Mz)jM|OKPbX?@Hn$n2j ziQ-V4ki-mTvmm>0PDX21c^2Y7E^b$^p{jpifRB<#U#~Q@9;A?JSVI{ZT;vS*rlz}Q z%vGOjgUX(wp?e7icCtA3;MbRYVesy-mMyOMd8b>bMsA={o#;R1qK{GB4&2b9q{Eq` z*i%rok#ZzVRI4?+bYwX9uZ%7JBJ1!s&myrOP=B3j!SQcbj~nC39*%2ItFe1S>$1tW z)5Z}GnDjxD7JvD_&3G8eQ*(jo>2lE0lYNC#h&-!=0z zpBi-%PRmpH$^QV>tn06f`rLr|aiaPbVrlys2ee1ix3k9`q`{pB$WK5k6`f6}c42}t zJ!|Hr_=m4u-b9k!Dn{-DZCvr1`U2Sb`g|{(hlnuG(xRm|9nB#-m#y!R51E~p&~a9y z)#ZhclBQqY=xTUP#usCJsyo!5Ue^8SzOx0FCcB98IP{u zIHr)~ef$qmR#rSHVNM{yd-`;D^#Imp4S=^XWX z5-jq(Y7X&^GEWuF-{>*Cl1*Y#)^_{IS20Qc^7i~Iqacr+P^UbO)P+^Ke7C62O6ZGd z#@9dp*$N6}Ze(+Ga%Ev{3T19&Z(?c+GC3eHAa7!73LqdLH8C3Ntbw zFd%PYY6?6&ATLa1ZfA68ATu){Fd$M2ARr(wMrmwxWpW@dMr>hpWkh9TZ)9Z(K0XR_ zbaG{3Z3=jt%)Lp^uDOvNxX)j4mr?`z%y|F`xiDZfV4%I|)~?zMSwo@SehX-M;lJNJ zae`zpzLb@&f&rJ1b?@bg^F9-YU@(UGBdq`ZF0TJqLjCc_&rko~Pw@x-_t$^=@o)YR ze*Dva{Rt91QQ)tC{_&Te!q<$s$Mj?UCCxks{*rSJ1*|Qe$5)9$_}{=tvDUf-bM9&V z3CUT$dTBpq{u&|vNb@V#`6GWdy$)zG#97Ls)w%vJ;xFq$a(AtM<F1R2=hTSpZc|;ar`V7{p0%YPkJF-@DD#1H2?V*uY11SdsPVkg*T5^9^f2{iV_;dRQ zJ{Fo+@BCey`~9__e*J6D{1IGZ|6Q)L-&OnhZ@rJvzGm;MYlW}S@j_C_|DqR?)+oup z=7q%76Jz5;@@4FvsyDxGI3;}v<>z{a@y|c~jfYs1+gHa!)cG~X_}6^al;c;#Q>4H5 z6n`>zoH)D0|8!pUuls60@8=GGvYlH7OUi%io24}k)V>}w#IHKqzv^-E#@6H3zc;1C z&YP1S^+y@#QNGMyelF<3@nKWu*|=6$EoNz`wPck%)frZ ztH1sm{^94}4VkTej+m*Eoo@g5FPd&++2cUE$NEK?JN3oO91-^X_Pv7|wr_#gg^@-w5Zi6+M`(`U)Q^cl}wS?(Z&T}_3cO} zloy+&gH~<7ujT28X?#Jyh^r?pe9cx%e@Xw6sUnD?5bIjW+v?S=k2MtkS6z?S!n>!K zl+6qJgO27ub9()?YqE^~^}^FX>@`e?ctKz5CH(1^#vs=4`aiOU|E(w4k0DR=3r`}G z=J%2NYo6ri7|&b!J5Ln(Dbrc7R72UnvBntwlqZ$@`WsLA+xmAO^cSD9{Y$=A{9E6P z4@aiGIeFaQ{QkFn{^qa0jq^8u_~-xnmp}jY$A9_rAO8B!|Ia`F)3+O!U+mZ<%wKqE zk^MjA=S8hMYx-#UOrp=&i1{aZ=KmSpf+zk7M##ny{ii`LrF ze1AnnC*eQn0-AUi^89}`bH*RFQ=N{gbKc^_pZ=4+#Qj6M<&nveFXVT>d<*~mkNEU9Eg8W18B0c%gT^#Id&OH5et zXpNl1318c0goH##GbQrghKF6}F#~HJTv}w{bn*PgmLYfE98R&<`P_^puJf|^_eE@% zUZ+T@A&y8S`7c&I(W`01&Rm8|1z5G)!?jpP=tjTlD}Rd6kz{iG@F>=sbp(GwS2Uf( zpaSDo_Q?%LuhAeq!KJx4P!2W|ke;X>GHf1sPbB*?*77L3Zs|yF;N)^r`R<8NMjJMY z^X{74Puy8Bjs*nm)HQ$I+3=B53tTsDIjapknrDzaA<58MN?_dl)v}lA!wx4MQs+Rc(}WnzCG7Fs|M3{Z(}GHWb>Q|NewFSs}D$x zUkEL=Yk(n4I#bR!mp_CR^ax~zdv`iG|rOS>uVB{95R5Mwb zpXKdWeXhU(8y*ngCSSdO6cE^{u0l-IHn6A5u|Ym7#>B>BI-?Y4C0o4>EX zAXi!wp(_xa&hNpSFZUQ2EjT1F`6H~C>{dr>BqJ`T$`M*9VfP|J)qAgg~09)Yt zRR$^$3bh5kkn6+_1t$ND#HNPx9nAthtC$F>FJ8@W8QTI=V!e=*_dMLW|Nd|l_DBI1 zg696nW-j?Fq{(Mg4%h-)!k+|7LR_gYZ&0WR*JGUvHY($pw!!kI%ato)8!c=;hk_kf zQd2J=xGou`hqL z!W9lk_aU5VNCPC}q^gyZf0?JFJZ^9V}lpRcW&4xl3n!?Ep;!hjZ{iX$M?kYBE) zE<^|@_C+ry!EeEoQ@$g6yrkYDGF(RVSu)ddl;a-rXWYxm^Ex-n2Z*g!r2@#Q{-ifALK z?kE+x7%J=V|A$Y4^8QDftnT(Z6&hmi+Sy(zU{@jJ18Mrx4EEKswYMNRW&dvfJt6Bh z;G=|Rq9?Xd2!0f;5y^W*+Qbsklq~Reiyh^NM@~|dWjQsgR<(Cvfx=(Wreizj+Gu_2 zSvOH>=ubacI^fWwOb%~Dyx^*%=70^ysLobPonYE3%~At&=(+Ovwe4(4_fL4$5pd;Y zYt)Lz0YA7#EDXaZir8rS# zypUue%temliQ4?wv+4QyW&ZOmBJ{J(KXp~#9xe>AcD<`ZGziAtCrjbku+>617M3m? zHFXXIkwgoh9h-jOcl)ElLS_c9!c%L8D7Rqfe$vYJ8>}yL$Fp3SpyhDz=9zCOWo2Y} zdOcB)RODaLJUBpwBo4Y90S{x35<6pMa1ZG1xLVV}guX5PdA61p7%gfdan9v1a*?k= zpb;WcW@0qT8To96>5~A#Mup5c4Nc=TjR)5SC<;|WM2_eBXEEYl8a1zar?-vKV5(nI zYE3bn6sbaRVZb*t#!W>Ywefe~joe1lJ{z`MjW!v2KYPQ95=pJwmD@Pq+sDf`jEc*h zZ8`Mi$4|FKP_Dw{E{nRRhKrPKWYtWL8YHLcSI-F&BL!zDYRVy$vLvex44s3~_?pTW z6ECX}qrcv9!9qSepjwr^kQmG-CeZzmlOufOPWqYr&&c0Lv3D3BNqpj&I>SYz7iKia zIet~nJpht?;?N5uWjn>l{6t>;KF_%pt)=6At2?0BjVOu$pF~hu=qK z1eE~M=$YVnb$cg{Ck<6cAV*3&bNru0iuN;yv4~7l>SLM>ME7?NBYb2CxRoHw$=7N; zphtF}JYu^bLK4-XSHCrCj%7Ujj0)*#q&OiGG!)&_KQud#knZk zNL5Xc{fP9%3!!vCvSQUmlFz@91vbnF-8j+865XI;igG7Zq|9g~bDYC1XPdE&1>t(= zTy^s1zNJ9fvhWWg1T?@$al8A|Mk8+&P}PaX{mE+scaJM_Bpb82#5pSHRZ$;2=%%V} zwLmKq)GOM3_Hfn2+gzs2a633+gzJJgfykrvRMMo}p5D*u1Q)DYn*qcY=ahguQkY6P zkD|T&(U{4H7t%B$)@#Icb^FI76!%@)4&K*?ZQbj30&olh!rkoW=gFUd=dG+F+txq&JXmMs*IRyTcFsfn@-9KPH7H4bIOf&7T6ndw-v1d% zc~G3(T)+yy#ZUaaH(+7j@h8;Uy5`l$G~s0VOk!8 zUQez5?Fh$1XLE*c5bT?D(fRua2H~;&S8p)JK>z-##dw!6eQ#g%fAb=DN`74{(V_yX zg8p{4PMGK?upw?3gf%P3^tdztE>GAWnP!}br6R(LwkbnGCF%qJmH_@Vs-@pG3W4RB znj{AxB%}2su0MamIiGBZdVw)Y_^~me9+^qrrAP2kIlhH@PF6Oeb`1k2>h!z6#P2{a z!Y>3MD#_aejNlJa0v56BxCXm)$7DVCVnP13@~eqH=^^>CEGxo}h`VK`n2boGSnD0` zlITekoNlO)`2CeF1G1K$*h^zHHU(WLe&J3ipYL~3xW!M5FDMrbx)5oBQa}>C;V_42 zCe^yXu>im3yZdVojJEV!Ampm=bD8<$xrFr$;Yj~yHxiPS^Ucp2bQ>9 zP#&tY#V9xj+6ymagcwn`?>qgH88g2IYSN6Ww_>gcoQxd;upvB36}7g|Qw=xqZ(qY@ z@(2^(Y~*^;s74A&BWG7jZhW^P{`92J5_C$QahN$lVmpbgd0od+1rA=uj&WmsJ|gsg z`$%CnIZ$FMImukQu8})I@M3~jYwrE&kzK>U^}iw+;N!;>hBR4DQUcV3Tt~Ikv*12m z#Ss%VkdiO7MrCn8VFH9Hl>w3YnlyTbCJ4Mrz5a4LPQ0?r)l;Y!&Gwd!mjfWF6oWxo zFo(6bQF$~`gRA*iX<5`%k;36)duVlK9ibw5DAB^Tj?brJ8j8h&@}i5hsrIBgA$3^i zHPDDjUyd@Jn)5$HpZcS`jdbqV!PoA#h2E`(5m|YqL-S%!c?QFR6+Cp{ai~8Sjy?Th zG7z0jI5EZ`5JlC5UAJU&kz2SFln*9~s!BaWG&P(LhNcu`^_g7B0TqT@JCv8|D%3%)rzBlyy)0q z==*nu4iNmDadwua_N}{?H$;_)f=;jYAd`+J*g;xhQ0%TTeFU2grHLxs@aSKx64l=9lIek+E)nW$8%3SXcK( zO!}O8vFOsdJnpm8pzih535AoOfam?f@E?~$$N7r~lW2ARC4+W)Y#+~o#CSHJr&W#= z9Sf#PG<9F&uyWxTVe+m?s@16c!P&doYQP8%wa5d*RgUcIhoykpIqUJ>q4`$xJwq+E z?B{DYO}r3snqtiLv5?a)4 zv<)1dj4&mrsFF~NXkK&0Vq-`9?Z*!FQ+|;2v|rho{nBj5 z73q$Zy_8`PMk1f);}Y+pNs+MXKp#InA?_{(OcuynY=hCtpe>&0bJ!Eo(@c6iU;1L0 z(6r8n(1_311YtY-5ZRl*a9y4{w8Bmo5tfVL>wZn^IE-^P;a}Q2konK-=HqRz~)s4Ka2bl8wRe zvGIXTjemFA?AM*e^PN+t#@h{SO!#;A%UnZf4RH|Ey>s_KmLY5{)*4cUR?3`$1=XNk7YD_O38vbjL++!qC($uhEKO!is}C&$jAjUd%6qgtzA@U;lG!x6J@BMq+F_Ka}rTAfX_!0ad+;WdC7^JaqkA#?5qUWy& zfTUoC3n!;Jd{&_m11S#`iO%)XGJi=<<{Rxu(6OM5u6#)*^qSKEd#Q|#v*P=?#X9O~ zXEtNbTkcFFL+Q&7yU%?wA(0H=1@7laOnl5eY9$~RFk-*DT!x}K*1{!&t`J5Pj24P zkAJGfIBbz*`6o_5z7I{qElTVUHMFk2z#s5$>KFk*qNG@!9yWk2QAT{~9!^TxeuDFj z-`$PuID|Oq8!g3F$b`|LCVe(cO8-(*D!i0k2H3-A@aEgayK~X(S{FsMYK~r>OMy2f zqZ$(kpl-UfPLGT zx#W~9COrI39_Jz;4|PZOeaRty-*B4vB|%_lSJ!-jYozu$xN#rYck9p?6Dx|4f69v7 zqw41B9+RIb49h^K>`Q!}mGRJ|LYrx9ELXSoz*wlJY z5fd)clfYb3#Z!B_dTh53esgfrI^DApoC&ieeihTx_LV$f9!d8xDb)%KZ#o*4bdX)j zs-9(EhkRUZG)H8eu=vrq-z6n6G(E0aa3-}C z=yRCm_{qcBK9ag?`hhVhoro=>Gc!)R7Jxm=_~dLCZm{YXnnMB4A}@Mm)u{v$HMaR2 z9ze+e89=By=_!(5L-{~L{Q-Zu3M0(9Za*A@Q9c;jI0GKFCZzEaQ9Jp@#6Dt}OtC@e z`0n*0_x+N@K9HKu7RTv=Xu3O*WIJnmtfKTlWs4glh8|jE8;E2OAd>DSS zNQ%;+w!APTs%oK(vPzC?g*Ui8;L#@aX)w3bK!OdlDfX!AnwP0G&+tv4=h;$vttLnh zx!^okHN}6Wcs%W{Ut^T(;>L1QJ2S>;ZraJg!peyS%&fp)kOtj0>!^-DA=JL5Ih>^u z_HHA`!5_tFsVDw3tJ!TWw^xDI+BLB}l&Bi0*)hgioMf`#ALGMR;U0B~b4>&&ExOId zpIU$9tTxOlJoP~a++_Zyg-F^aCP!nrbQ| zxDSLQo_i>WT4=V0g8Eh+2#QH^G6cvVjtyD3?ABvaF1gY@BZUjOlzjlpeZW*HopB)o zkEI7?ngP}(B|Vv;xE$u@Cs`J9nn5R*t~yh0ejIr>l7L zE5l-+ogZ*TmOk*jbKw&J(wqWs{E+_}xM9 zM}k{Z!b@Ho|3LLJ*2{G}?>wtFYd#dW*elZEb_q>tU40{ubo39!yOQN?*lk8t*f-cB zkjL<3Mw>5AH*L5|Itk()^wF2S^fqFrE2%MCk!h)D4KcOtAA80aR%BT&C`}4^a*Ot| zbyrdiyFBWtPA}AF_`> zeuv=9Tl~Jb)Of|*X zqVA+WPIFeSQs=;ZMoj`Co=dI!!ZBkO&g%^K`c=CX95;AsiAHb)@u>^5D~JvAlT|S{ z7PCm|jKY2WHNeY^Z~JNTHAyGEQ~kmrgRX3N;P*PpA{Y|H5o{;w7NFfy<9`9T*w+)d zhKWbA{#~h2>{A#~{W0-3d-Sd79e!Cg3>2 zKh(Alt5!!Ue2*atQ2SeBQSfQdYA1nu5JI8?L$QD?VL>t zUlAphX{XjZKKkhS^!cL07Ux}>i(4>&t;@O^r6L3f9m?1L>o@uNx;5)9eQAtAIWzUN zY%ILa8JYwUp*;;G=aqQ~;Ics|0(2+2ztsAVKCCJ=c1p{Y)ZDK~je^zhmQ_tbrbEDU zfTKwq*iKcJHXSNDfavt2F^KnCYE&Nk5=nwr zOD)oc@TaahXr@U;wjgZV)YE@zM;z_mlBudz$a%KCCiP>~>AN}*d-1xOFMAOGT{h!X z-^|O+v_g~H94%}YlAQ~B?^{ble6(9`JTXgu1W85zB;0{JT#}sefd(YZAKl1&pegpN za49bf*J}E7w=Vy+x+&NN_riEeeS`ED_6s8&%H9NBcxt6N>4y%5tgEDqj*K>+m*%*I zn7z@=>^PU|?Di6_#bS56k73rVM^F3}1N|&JBzVZs$y8FxahO@YD1yd3?~-Ty^P~g$ z$!P)yc*iB|4?}O=5E-<~VW~5NkUY6_#3bd#1~WhOrJ*>Q4ixGj=Hlh6JE348bk1G; zd4}($H}|8f{TDkgYx zWw(8>T&%L?lYN~B5VizGwWUo-NyQQh_RLFVZ&HxJ$`-vy_y@#$$ zELkXL{sl0B4FV}p4ktEmMid6)p9H%C0shQ5;=+X=jgh)Q+8hO36Iq>Frl$q`^Nlte zF5HX3LDcxcHas9bP#yKY)Y&H{=+FfKx47FaLE3i1M1Ud z^aALoyL(y}=RRN%zIp-hjq{J5j6J<{tO4Wwlx8Q<4+yq`C>#v{=k`~25#zupDFTS| zncQMyCgD@Ag|%CaGr%($(G|FMI7)qByUGF%2-_)1dok_AtYFMHG2*~Yi!;A6t`NgV1R8pOc?gHkrPzo*6+dC%*6KG(gnYu<({ zD0MasB-tZws0?Jzq3nbF+p~t;y*-pOq|0qw-&S;2QSHILa+=rt;K~1aZa&n z7Xw}hx85rO;oyak5c$ZrXB5*)cnY>Jf4^5~ta_wBOiI5CZ9LlZF-c2LVtE?LcG|}$ zA_cm{=Un6u0oC%8B9oPjLmY9r;xkpe$1izO8RS1Gg+JU*t?Y+}w ziCGWRr15>KnY}*^MLTeOY=97ARt6j`oB`9kE)eJr_!04G`=S{wD?Qp-%SX+Kdr7NG zR}lQVY(Sx_k~=kOlCl*gDnI_fx;TCqjG~$wOxGxQD>O6(jmLINI>~+A{7wM`fa0v3^Y9zU`L7;T+>0N=ZMe)2ReJA7{LsSohTBLUA=v~@?T z_AP=tiqQse+TfcOx;%w4ddVW>&@;z4uLW+V}p z8;-Ce0%UE^XIHOX^J`Rb3jQzB;wTc)xrgT$|%>|zUX z7E~68r+O(PPS8hr9lf|^eYO6Dg>; z?PpKXZbp_l?5@Ch(Te(N=W=C|ZH{7T^xUB~_I?A-I2G3f(uVpS z?UHqzW_rKpFag9u?Je;xr>Hrx_+$xvJi=zDakM@d?QBa-h^=B~~hVQ*==T;E#ilT}vx?kvU}$$2bT z6(Vk`FC4qZi&Mi$!qvoPtk?c9w8$~{-V74}&rS8(_u_PuB{q#+>-%jqX%GB5a=F`8 zGV>&GW4Lj^$!@i$i3V>Ab^aQOY|{?;miWEQKR)-O&fdlf9lLE^VX$ZQ`a&4cWO3%Y zM;^z|$kScH0I5W*xSs4|>>PRqzBL(-#=|5{!!DxnisYH1) z^F5Yz?9lQ9jZivB5-5a{93B(J-;X1_RmS9~=d}Xpjv2*vjd7F`Oi=a|g+u!fBC&Dxtze$J=GdG6Z;T^eSf@WA-imY z4KR?_j4-nR^}e;C2IV-2$PDc(%~q&R7!ZJxjA(b?s<|xnGm=omI=#W)P6tVikWiDI z?YqsZWD~WMQ0JeF_A`^&Rtf^TkpGFkT7JzGq>CRH`em(RvRhAT87c&`5b>Uns_Io*W^-SX@(G%W_|!%n(YgHl;DjdXF-Jc3I_R=oW~$f&0SxRiDj%u6DMb zuZx7R8X4xkf5I!_pg|-b9Mc7ERA*}PIkpM_YsMvhj8&2UcFIY{TK+R!CVq;);#wj~ zrKJcZv?KKcDR;@)?`UF4Yv*eMt)v@!-FR7?Tn~EJo?J7Kk?@$X4A)D-;v^vxhD^+n z5cQer*uL(bv6``L^mx{z_AsiNk*o?9AHwOfYEi}L=0QzB&zLlj-%M8-&i45BHzYg- zxeca8v7p<&4;cEeEo>1qX7gas%kM7VrLrc%d$G!kl&#)We0*^#NHn{3C;d_l8e#; z88URWh=0IATCPid_)2rbHC6n%krXHm*?iAw>04qde8?lEbD{RV=2B{b)Jke0CPQSb ze8PMcPVi5qwEiuDtsv@2$Q11R7uO2WiS|H3jnl9!K39Hc7mU&M{nV97o!aoKzrxmM zKQq>vuMmnS@I6$&>IU>s`eNJXc%12`W7kjV!sE@73qQ9Tf&oucq+gsrk~$ z-aG5iEq2|t(MkO!BH*MOAPW@rC-N-1V^e7_p#^f17X6J!*I}t_j*TLKs3M@FvRww{ zF!Q}h>psF2Bp3>2O6!<)h7t#=V zLimjn6+cnQ(unX}o+cQ#m`A?es!YnYCjUl!Ip6JK$OD_{FkKW|C@w%z|Gyg+!j=O} z7a-M)Mj4fAo2v_)`o`}A_UYLZ5MdKADup!B6^*ArWVAo3yKIvxWv`Wx_;k|_?gTL7 zpVp4?6_ykLeMJf!>_7DV84vTEqkvPuiTKHa?gSUCYz-D(1Hl;E9gtK%{mmtIE@W2# zD;qXU1SRcwS&`f^8RelKOr>G%{957%>3|SGwk-5H!ckeI=6ek@O7rwg*VMpV!unr- zXpwVU?$UY$m{6_6 z6Cft_tX7fwb|CY*g2Ji)P*UdC%kc1d4g(4IvH0JEC5ng$bLVvwKuymAdo1{$R=!@%?2^Tt$5eOCunjH0%0q z0pWkmAbNDO2OFSX&BcSBOE!azJl7Eca@K=`!^9mc!1zfOLS&dOhqWL_&ELIxE{p1` z&{&573aw4mi)QFyy+%W_tBvncEE!jhifzJeQi@kxqaor8>wO;YeITY%tK+Tu#94Gi zT%4U_(tVg7m+_T0bn`d2@{HfXVgvWj5wDrGXMe=Z0IXlyB}n#9{&^41LDq&O)B{FPSqcg&NeU7wB$w$o1kAlw#Wy z*J8>+mTZ{%5`vBSyD)Fkei-tk>^kFeI@5yz&v{tG%yznI@ve!7%2EBatc^P4nTLM@ zKw~CqplU@(2v!A^5bdBd5_dG6u=^=DZ}P5FREE4j{Up0JY>Oc6AowElUWXb6krF^w zCxT2R0hk7CZftI#GCoqrnH`q~BdYvV1}Ljt<{_wDrcc-PB&Ya! zx&RB>m9jgzBDv*fs7w#DM)SvEeDWAhBc=bBe%iu?e!XU=rKZ+X95Pmg;OPjQP;1I) zq$t5Ap=oq>prCLo)I((8-ew2v*uLXpJKLa@1fMVLiom=`gMb$gJ8l*h?hQT$OY*_! zol{k{UuYVF5GLOIai<$#e z=B-VHtd%HNJ$Q&W`&tkS2M6>QD{{_Jx;~;YwJaS>vK?>pvqw%j*{2b2+FQ7+)lF3% zOJ1&%@*c6*6Qo1`)QL89Z^N&sI~MD{l7eDC$dGjZaqS7X6*vu?^TxnQTSbG$$Jji! z<8bhIFZg`?+Y8?Jdl3AJqsjgTV_5kq{`YWUq|6uy|1^JtVwf`!G&RtV2CydFTBypT2@RYQhLtTlfMj<Y2)zX}#~G9P%j7^WgEIhfM}7Tmqg!{#EHAwE#`8~p zi;BL#K9*Z025!Zd;mGno+ABwifz#u;@tO$F$`)ofP< zl36G6&G7#rHe=KH3~o*Kt!XbvZQ9}7^^fZG@ER(Z{AAs7@0abN<~7@Uqwm^y{lMt= zil-iRmYMCt$ooB@8GPQ~P-xveGPclBjMC|EXqPd3P7|Iy^$3*acus~9ur9n$MqRdz zsW{fQVouw-bXHiCaJmX{n3l;Hn|QzTjrPj+6j*7}+7ZEI{}Gh$o6)%-sC@WPDW=iU zxD%G%zaRfVp_iUSFg0I%kdDr#Z&5jA1Mp#-pKgAkGovmh? zwdr){9xPpf+8*-3lq*4aWs|h#i`b{7gVqYQMAO;lJ7Pv;imSY}UT*af+B+V5rU~pl z<)~<8j4)Q4D)UULNCElajFxYI7$>NKrn*L)1KUm(ijomnz%6a>|H(mBPk#mS0uyDW zKeu$+Vb#c}H)jD)#w6Ynin-jU@E5?BnS1%&({`uZV!|3AJ?s(_o=TVqO+l9XEJD|n zJIbTC%-P%mbOe;SBr|JJjtjn2By?#3Y3=(?_0X*wF)<$?N7Cp-=s6G7+>{20u>cpzdH`{YmY-kjtj=eoHvpAg;n%`Wa2bM^>Dj93Q8d; ztWbTp>t3Dn%jqYw$rxMJNT1EzlC)z))r_MkO)aC{s`>*k#?MR+3GVg8a{2%f?2CX> zZ=*jD5@)-+G3=U2IL!5yAnn7%fNM|glDMA^j=G;*1wYU4@Fedllax%ZHROQ8-$DTW zrcUCWFs#T=HB@zmoQ5ksJx&HXK@l@bs@M%2fg)kn)($vQIP)HK8frmzqE9I}nBx!B|I=SO8pGak$wch(b3K!|q( zk{fpvpA>}s70CDz%fct6Bc`Ewc8!ZtAnrx?N85Nc{17T7;xQ4_0~y^HPRc67j#4

YKY8aMjR6-v)Y>;-mC9>%`2{3_ zZ!vTEN#UB-y8S^BI5{oC0ZF!Rrgs@)bh$9U&^*=4fp&PD_6|X$fm$x)e}(SqxxB#n zqQ0lzW8n1IFDx{^LY;>2uI)hQ5TmYkg~P?_2wN-*+)h!~w*wfTSTyQKB^Fs{pVx)G z*o$@A#gF!IzDtkxniaXh@m&hVKA!x|_W~)Hb&&f=a^&Ayv-p*Pb9)=Tenz_kXeBzF zu(6iWU953?IzO4L ze3TxM%IWacE_HJM&8AEJ8{2t$2jy1JQ?%G9uIdz z5GP`6UH$E>9U@}vu;R(Sme!^qvCvD|!!nSgvZf4%P3pm{A%A#RC<~>J0!k*ZXLhGk z9z>TCDcrOJyn*GvCjPjZa>;M#KZ+h^%&L$`6&<&NqJI ztN0S`x)ERwQ|wiBcdR%}+8#IebB-t7$e_!{4`+0M2#H1dq<2zUD5(x-(G4%OossTw ze+cXA10bvVPm&{z;@0|Qkd%1dGeSiF;|#6g-Uoz5>XI!v0IdV&?w>TNOv8Ex(s`GnJs}? zUIip&W}ZK~%AD_H;t9}hokNYoCC~B~93Zp9i-_zo%KRk#F9t?4`rQ9)R>RaZUH`Ak zWwDpF_N^6VZ5m)P3KXpJ7K7<-=RnuZJdf2vcZMb0YbXKMZZ^$xoyvwo?O>*WthcV> z*|JIy0UI(GAgIBEEI|&nnNw&Luk?_5``PC;wwBI`-p@!5as73+R8z1L??9=mpAk4r z!w=;fKMPO0qVJD{p*;2<>vaRZuu? z06oN*S6{N{qeg4nDVTwL^lKqvSZZ1{=2B0Qu^`V}x<`fkL z;x=n={Vn~@J~%`K=q8UDJ!;Fu!UBBsGo2(Isi#Sbl#1mlNvWjAO zu39gB>U`op3d`5gS`^w=RMASbHR2myxi+whmbMmqaV|H0)W|?JsTiC9al$VH`QnGY zX>MWGXcA4Rt-W8%zZeNwDt42GotyN%nYMoKq&XQVolTHwNO`#^Me(uMD!9=p85|(L zL}c;}o|TSy4LXv`I46Q?*r;V90CY58VjV7$Q>ilVCV^CV9l^))E)RJttlz*;=O5Eu z2yR=CFc;q76brO`UliYIo@pZGe{xl|9~(NR{`Rdk8`T1g;ZqbS!S}ig6aM_x3v?0u z^b2ulh|ZNwA%W?Y!XTmHK#a^ADrWEeflw=0Mm_5b#%Qh`C5~K{>*>u+dRE&AS$h;S z0))_|uAJH@`1H$i5lH7ah-&hSeo9E9UjXvg?lYcg{R@ueg|ZD#-;jemZSOgaIw zL07g!_qJ36;#@UtCOJB?lplX*9sp3hW^AuBT`)D9e}Pg>ukqsTp5E4ea>~_})Xk@x zFYEN;oyA|oN+B|M8{;KjDRcJg{)QnzugFICtFs(FcL@Rf>PtQf4L zyJui3=;riJC$axVsqxaGDH|C3_rHt%NR!6^NXeXQinooHbVHx&!!)7#ph{Vt{F!Ep z+c%!(jv$#YY*lREBI~NbNsq6r$DPEKjh(ZG)}WWc{FjH1dJa3`rkMA29=w#?k~izO zKDs(aUXRv@XJrGpRlVs~ps4W+5uBxRIGxi9MhPiWIR!>LpqJ8RZpo^@KDEO2kQosY zZ$2nKuAsB%tlRgmJN>FbY+U2u)yFD3$}k=JyWI?1H}N=7`#BD47OheoEG^ubK zkU)lSta75FI17?!Qs@Hao%~`y)fuTX}5@pb0= znFN{egQfN3f)mh8>IP(Dbe;XJ82vc_S}l@pax6NYeUj>%to-6-M<;4r3o4)bL=Ov`^3}=2Wl3B_X;#0}jBmpLd#BFjc z(4;FUFGd8ApejQ~KyB!rWNy6sz~J7q{G+e>3zsx@iAiA5CYLm4>aH7ZoP5+F80|&t z`Q1$=tp+!gM{Q?y8TNTBF`UFOgh<=yE)g*80m1t|7E`)yMX~lj5X<&T#*hec|rf zfQjpq}r0`%L zRTlnvCKMP!oAKfzW7#nal+z)m1BRo_TJ8MOGXKIf{kLBX^k)r-PjjyJoZMHc!vLdi zn+9(d(Q+eBjMIM#&@8pdb!A&e?V{)hP+&xE+GLD`u`67(Z4>|Pt=H>ZzOx#S`NUZR zsFQX;XHr^MQJKp|`ue_ub|2ruqRCz@Vf^2Cn$uSDEWXCLml!af2^=ibM3n=35l!yj z*GoBZoelba)zkmk3O@QVb!blD0FxgNI#%UzMsDYjod++3+!{A`)S1q=b4<=hB|__& z=q5vnN1a3<_nvk?^ECQIT=$7fnl(S>?pvm#-^}=AVSFy*)q{N7SxsR`yN?&T2i;34 zgQ-=d<5ysuu!6cPq?mVvi5Cx=8vB1#eFJn|LDzPJMva>$X>8k0W81cEr*YCGjcuEa zZQHhO>pyuvtnbgty6fIKnlrO!&z`;a^UQTXw_yw*Ig=E-(9dQ7c#xCZleZQyUJBum zX&+Eo1r%|A-v{zd%AZ}(wX(hgIKG^P9+#vyeH_GYxzmt#u*mMZ!7jXAM$_@(7&H-?(6!s9Dv*A=cF9NKL6?*MFBuMvrC6)u`j3* zYjMH>ZDAMULaucKRhk4e4b%6yLqXC}2c$!j6F`3YW2bOEG4s&H2t&nj9!%WYfk9iV z4}W}J`+C+7G|%3bF_PT$rVGeGSA{bM+?A5J^=**sV7|jpXI0O}5B zt)-zhVRQ(X{Gg=f8V`EP%l|Aoa>I5%^4HDJRh@4@F2G_8AIN49HN|jI!j?odmyKAd!@%^+KAXs% zQV0r&xx#lNG?9>+ey3xA7C`UNIS-fiOEMMu8$f_ifYp(kkNvW(m5<#DMMgrbeCfRk z0f-f{jJE}^wJFfCLUqMkB4IQMqKD2CT$~9 zuXxNgP#4#+N?I-!X9IBEoJRPp{0&N*^j!e1>r{eOAIEwfK9UQxB*$dV9_nSYcnsi3 zHuuXQ#V@t-pJfS?;^fP;2AUS46l1~6{%u{TzY9-tNi=)UxL;Ic z=E3AQe)pnEVNPOvuay{aSgDwV+4eQSS_m7d*w z8H^28&=myV`S2@vXd^R})%M4Iqm0G0YHv#evcNGe_5=AgA7Z>F>O#xBqE(%NMp*cf zn_}K?WMzj5fTZyxpDE*NUV9$rg1vnqwYH%szQ2gD^PNY@NU^X3^CzcfT%|*}`t&mE zu;5J&qDEdWv@{z`W4GId>HeuG$k;vLu33gK0rCmSxJR72cvW=V zUBCe0VLnn(h=_)83Fh}Ky8lpZC+L9%xFg6bd?JyWvxK8zeE|q9RPax8wGLXcaGH@C zpijGZBH5b*))&RFVL@XjxCSb}zH?oF0r1#mqU>U&YJz}l%q>@?+e%g$&#Gbg{ zY_%yCcYk~Ws(-DT<+Tf6hv&#Ji~`d!7t7WOVH9L62Jj@Y@TGn*QTa9{=Nw@6ou9jE zCIa;5k16@`k$junSw$JCvGju!JcYZ>+vebu8DaptUIw|X=PqM^8{U(RBBHEhMpvli zz7J^jW*nTr@AMyuh)UZv&LQqr4;oE5};YK zzSeA*S-b$eH^?$yzDdb!@Zt4+cm*q@jq0o6^Z&GS5g2w;^YW?X)`q5?+q8e2C4#3*{{0(P#z z(B8)_zrr(bPZ@q!efg3w;Z(FP?Y8Yf6p;k|idAw^D6u#yg``l8yUJ<+_;d}JHQS^U z+1)6(%Wz@Bm|EMU^+#ge*LzN3auUnt-i#HbooLN~D8lH;UP?S->H1IfQvjEi2RGt$ zW=+(Fo=;3Q@Cg3Q0#9tNvsch0JUeXH66IxYp0ZW$#(QG`agHMz#^K3zpZD73|3GLOb#r0Q{vOgQq;mtA(~q@T zu6tuVD;`-E$w0uaY;}K0Um`h1^MMgF4u>J9D!c5IS^=3uOF&1lZ|f!KIGfaEWLj^Q zccqJHkOr=upTq|3V zgzr})t}-4$RWZ5Ti{9FdUH8w*dg)$s&m0W#9O@D4#vifhxrw}$yv0zJfuDlE)IJ@~ z(-fU){Hwwb*R{}xCkm|v2jYXd^SYNw$n}Xu0_Cr^PaO-8w#qBU{nr-$%YydZemxk zIAEz=T-NnJpcx8viUr0z1OBJMZeBRtV;Jb|IupI8td)g=DRDA>cZc=QYumgho{D}?n$@61C z$N(=K^!*QDHvpeCIRgJjG-vMYCq{64cO#Zv1j^1lsTA;LGx;PRA{jB6r2y-}==WEo zNIF5Q&uFI%!2+lDq1{=Rk!8J-ZbES z5^geyW#{eBGXS!5rgk}X13K4n=I|2`5lR(EnIw5GTJ?^}TP)MMt+xP4EIBa4B+Z z?y5=sV;u?j+oSH$n}3RIUMvHPbL8H#sTwhkg@p()ooS%S2C&)e+NWY9L^FZl@ULa^ zquPfASp^FqT@%=`sc@D%!(T%orl*GpMQI?kc&oae;S+9~Esx!DS8juT877Z~=~xci zfva1LsMhxhO!YkNl5|k9vZHJJlRcNyNA#}2isI%Az&<4Tl~b`9tL#$*?j9g9t@T>z z6Q#dDTwtm~Pgib}<51SOjb?#Bo)8*TF6I7&BIOPV*5Ob6Bqbr?%ehctZ8}=Wq*PVq z?Aw%dR=AK3K)+ifhn3_DQ#j=ga5Su z>N6?8SOLx81QWYHCpq8p2Pz%N?O$Q9{OLataOTD1psnB^$#&&(&Lnwip3K#FUj+^0 z!{EH#un^Ho|Em`WCO9A1U%$C7^7vD~vwKV_Lcq^2z#zaJdTk*KbLlL1b4>M+x68yL z{jQ+zyoH0Gr{!L6Mcj#oJX zlzm~;J*X(qXR{{(mn~MGk7M3bjU3%f`NCM`xr1&j1xp5c)j{dLpvivzPRldCJQ1jq( zcim!~VP12d)9w-apsjSzZVssX4tk(MVdO|(Bd2pB0bg>j-;3v{D*bz$t{#uSYb4i+ zR++z05Kv#XWL_O!g0*2FB~UDBBVltfXO;mem( zm%ti5EU{@hC+5AQFL@XrB4GkZz=x1S-pl$+9!Xz-7m(wko$EmQj2I_3sez7?39#-7ad>4YddI7)-67 zpfW+TmWmFx?JzE0K-g84_cS+eThrWAfLn}a1ehwayRof=v?iFU$6*2Ul25~l-d`=H zMFjw+)EOImQfrE!f;BotQr-G@;6wb-&E*^zbrFAXx`&F+^pGDhPO0Z&IHcI%_hJ2^ zl{1caoqah88jygw6~V{)K0AL}vY^9Fj!~puZ?u|qCefe$+sMx{aE}egS~k-ewZ(4Z zx9%sI4#;h{0`3Woq=4QG`?)NfdAKv;iLB-J#fr>@vz91p&tKI~gLwCix6i z6ki!GQn4S4D>h|A9jssrkZnb#d#|a|`6xkhg~m5LnAkIIV90<3s99T+aS!8>fheJ8+Q3@y+?E)5Ey4F zxw)Y=oy)aW{0825==t1jtb1>5e-W7?V(F|)F`7+F1G_k+z2|!Ha#xicrYyl|B$oL{ zl)m%?Hgz4nLiBCQDM(mPj|YC0ca0GN94U@l1M}8lXRunTJ@BwQ+~cXLsKPX4#CtdK zd~s%8kP5at>!0Dxd;K6r8GOL)Zq4fJTZ&)z7lMMqHfQ{bK=L&1;YCL=^MC5rz5#XF z21u|7j2v2Adt1=9l6qwQE22Oir0MK$O~eFu!gdE7V>ZspB_gRfWOajaZh)?a*rXx6 z)?k;MIsl+>0vxo2S*ExvOBiaf`*vh|qz9p?M|Nif4yk|(KWHHg?bd*m_bv*E$6477 z5%JKL&+yIm5EU(_jc+XvEgs7TU4#+pMGjnOP8Umi`2a%HN{37M=*}zIz6B&>s@qjY z_B3ZAIs1J9f(VB1a0L{|{|<@c8_4#E&x>k)f$S0&$3xfvssZPVwgBg}@mRX-X5bwX z%md65Kt!&sz8e#o7KB9w@ zPXuBv+GP+SJnp{9Yo;0F#(E;u9lBq3OTzK@=&{!CLp+E4EblWE>MR;2MQGa4jWgYD{RIP*`yQ^;XPVnuVSLniznl zbfuX=8ujJhP%k&2Ot6fukgcgCr6j*?%Erq?o@57f2njE@7x7$pP6**=mfkm`Df4?V zr$2a8nd_MHKzd(yvbWJPo%m*2Eo~7X(~GqH3#RVka4wUfdm+>r#pLd{#?)i2A-$!~ z6saH?SWh`|CUw_)kuS|-QRc58tUbs_uE%}CaY)Ky2dvF<6~<&+=i5kth31Hm4kV+p z>b(Bm3j`PvW)*hx4&7|>r)5ezK;-H#BkG?W=((ss2_Og>jU^HdY}s-#&Uqdu3M8uF z7)b7Tt=o&c6$<{NgRX^N)VKV4Y$*rioyQ1>t-{y=I&h$l)SNRg27r3lETOxIiceCyK+OE@)8*Fi4p*=J2-hw%m#p zECLY5ZO!SFyJsP(`0{tvq~|0>8P|2s6UMvpNVP?>kn&`C#X|R>;9@_PzZh(Vl9!4G z6K-Kt;Sl zm#B$`6!_vnrfedXV)BJjzpWrtuF;)M6`JtfRSN7RmdN@JTeAB;uB|^9hIHIZ0vN#$ zP_}1(!5{%-RTmD!yddq@$Yl|-f}n>O+*M@u#r8aRhA2N-lZ*+8l9X^1>guY!j1^kH za}R7u{>`C}beLmx+JSc%h&NFPPMlh2g+t4>oMK8KNL7Vab^;@(aLm!rP6y3Is%}6c z?mlC<3#^uD_*|NG0# zN6xn!_f>5^cM6Z*zGnrt7gZ_#TX&si`v)N7!oNHGrX;714|3I1J3tg!i8S8=y^l91 zq%7Hj?8H=?EhAqjHB?)^hA$c{dnYOw@AE>YdNY-;D30aN8NN)dS}WA=of{&V{tP8N zO)uk_gYBUlg5>o9MkH z}+OutkhHlI@BX^%*1u3 zBH`aejpd+&O=nyOGR5ftyUgQVOv0%?e1S@T1#oAXql$2e#iLecz!pS01_rX<}0ebm3GZG-{&1_h@Y@q2%V*|JesKwpL4SZn(Oa!V?j++6q|0n-^w;>K&eHT$GZPAUG9@~C8u4C#h zowxx49<}@M;R+9{*mXz&`ff@~3sIj4f%XtY_N55&mAH(%HE1x>U+$YgF`vC{XnidO z-5rXnoXpfi7a|4De|PiCv4<*vX55<`tamm%kv!ktiZp~sNc#yz!ieL2EN}=MOW)lb zy1rS*hA%xGN!rkyZq)b8wX=iT}IB49F6r4*0__ zlWvxRC3-ZA%gM;nO^9RX?@g3ih90I{+`i1KEL{)`P!09Yox#`OOE;B=zLI9DxLZ(1#%pItl%KG=L50h-n?YG=KFDSU$!g&b>Vu z+o^M&_WFwhbg?pZp+oJpB%{LA>s>^SC5;7DDbJ{!QPW&aWu(?{Z*BirfV|J5yWzfi)3p)u-b57D5v^mTacSX7hke|-AZW~d)XWx!VaA&8{Yp({C@p~LRaXQ|Sz+HCydok}5{NzD%21>`_!R{W;1rrjJ)qR+K2CB(~h{2(r;kh9& zLRweZn>^v1ihWX`Uik2FoLsDb^Y-ZYUDLisGp)y1fj79GLQC*W>2GaD5?!NeEXE@8 zqbUUQH6OBzaY562t%yv!NSMBV=c-?K+L!87;ho--MELHm3j!hLW#4e(79mx28NAde z!OM&Pu(eFqw-$WI!mgAH*PTCyVwC>+4e-6?X##OR^PkBX zT0j^jco7pa)#BW3Dl!ih0psUvB<%|Gr~8DPwrym1`5UYh!+RF4n0UlEK4#(xqT8qs zKo?+U4P)TVksuEUV*HRhh6*@|)2C1sX#B#oQ(B-=_gDe2)o7QNTpLFWge*dutP9}hT@*tVOy&t^xaWI_ zCgBDld>0l$;gaF^O-|@}RvaJFsU`gm@09s8HG0tjX#0{3JA>sWqNlLOT!cB0=S+%l zk5@3d_#j$ECxWpSj>E5!ILI*zWYvMW`HTJYi<{^A=|~63i)Q;W$jJB-BtVX%B-Rdu ze0vW7*-yXVcY8p$*q=~5)`_d3@h^^b3RNElds78iDAt~cY;M*$Al9Th4n@qVV43mO z@%)1}ZRWFpHAEtZ>34F0lY_<>S(yoq4W(p z`KAiTnXaNLDdhUXsdUIdM_m@&dqA-9Y&>4wD(f2o2vJoutg z|2}q~c2<3)=6vbfE!hR5F1-X186A`M`7R_~j6|H?EQT7Q&XWF8^Cd=;IchGTPn_>O zX_|W!el+9qrBA-2*Jjgq$rnRzEI$SR@9`zKcst50e07_BtHg3wj|4@*s0%#xU1H|$~XCSjvv{D@JaA7DA#+#>F?KlJ-%ak$pa zMaLOJC4;&D%XE^?bl9b6Tg?(U=3C<#|> zPDv+eM{9ovRbLO0X5O*W!&U4rVaeii_&TV}Y_Z+$7O_&CvHQOjIRgKJm5`YCT!bk@ z*6;u75!SM^YLcMTExo3%-gPC8dBn7{Bxt=?65?X@aq8XtHtLC$N+Qttnx4sYE-(}s zN&C81paq18@!8)vE{c;liX!g2Pw^~lQpcfIz5h7BqZva&mmvJsvk9up8V0KYgInQ+ z&T9vISA-9x<4hy-RM=U|J<*O9AZ%N?EJwMH%<4#S1mj(2F*2)A=>V~S3)C8~bXUy` z-FIJ#$UalLMs>ZWGkhv_S{YH;e|)grel7U=i`Nxe}blJt)yXs?y`ype<#sFg+;~4mTT+!mc~>TBivm#Sf6BV&LrB(RR>DM9SfKH2T4uul%LskmRm^KCM&6 z>!Zac7*#j2V#t`Sb-;g@ID3RNE@xQ6?Q^VU;0QzDqO*vn?_g2=k=07f`qoLMAzUs~ z`L}igNynh63aX}u{YRt6Nk8`))-{fw&zFzn}qmQyiSND^-}qZr|Q&TeSn~1YQUc|I7w>%)lE%Lh#@HPOoq}dt3Dr z5G(8~)A_2ny9E-z_Os4R9{L5(?R?(XaE5>@9cvvj?6%1np$2e8mW`WMyW!c-1vr#2 zaY^ll$Wnxh_KCJziS2dfm0XQ$`^!3&#F|W%HulpUKR2H(&qpA=EtFk`~m`6usCQsqY2?yGuChS9~s#x#>^g^|4TO%PENe z+U`!YeK>@eN7@_+`@9 z%~X+5Y9FGV5cZLH4(X45uKtTwg5YD(4KO`r6$MPE4}w=GPF#nkmiTa2 zIis5nS;MYAR{(-cXK}u8UJ8>TxeE+w@Ilf!2KI(m`qjh0x}NtFGaGzr+sFA%54|(G znp(}`aM&My0<2M%t1lU9701j8&3WQ!2w0q|1lP3bp|D6w-aR^4>qzi?#f+X@Se&yK z4~w}?krzj@FGoIYv9G-$CnI4;lr-F$yeMBDK7jR(k)AnxwnbGe^uMANfrGBRB0bN? z_*&ArI@nF@x1Pf9Dn*HKm~T6V-$yR{W47;7ZICDYmt}DhV5mXRteSnfqzP_+y7bt* zQBtuj{T;S*e!oV(e}%)G)ta&qKL-SqNSZWHkXi5miqpr?MD6$LPrXbl$EAC`p~iwO z=A`F~!jw29Vr=Q7tue^9UHQUkY#8_WtV_AHSpgBXU(;aX9L8B&j3^>z6gofUrmyJX zFYePjI2^^G4r4G_%r-X)4A-8i3Vp`#!;~+M5rA7@KrjZ=P!LW29Jlr>ak$!DH>GHYkBW+8&C#9oZ2Z4gzk?pKVR${k}C32{KA@}&FYR-|*oSLIb6S1qO`-;2D{wDLEoTByl-gZeZD^Zrpwxn%-n{ya zHKWFm<-bdUA>tg1jPT+*OPW_H7y+?hgk=)4(NwbOppUq06A%+YWQfy}^1a8gBWx~O zjii6nIszRuW#JAKjB_;I`t?{}%WD8kC4^t(?|9-P1pnkX2FJila0mESy4@WYa+4j= ziHsdver0T!l9>Vl4h7GY(OBEfYwtIq2UB>_V%D$|?yNREr29d`J9Vs6$LK}y3|#Vh zO9M>rDkeqK^d575KS1UVV(14Wm!Jvh8Wcji=LZ)T%=zBEnEKV?1hE5z(5HgFhr zD8FoZEJBQGhgYD$a?G;VVA4bG`}E?298?+?d%nEz^sMFX?!0Y38dWEJA2=+*<|@n7 zd2xMZs97DQ0(tF@d+EFNMg1n4o;&9W9tfCRA<+XMqcL_5YR@4LB8%XGQ~J{n4mJb7 zwRavnPv+f!Nwk?nEvc*cE<-8kC88~*ISyDpB}UxV1xv-K&`eVh^HILwD(rF}Hs3++ zk}nRpev9FvV|Heg8LQA2eIcHcg)gEwRc;rdJZpYZtGgyF!)URG8P_L>`}1O^V5IeP ztNlE`1J0=abF7jYdZbRX0S{}HR z*+-@Ai=7L+SvL0687d_Jq^A*qdM;2Myqkc?n zjVRlOa>{#6tp?*hH~kwBH6AfVI{F!O<_CiP3_UxFMq7qGy5`W(&1P21VFwW_T0e>2 zg5UqJ9xM!4s(Ze~gkwL{E`7JOB#S?jo!+wPG_)=6{2HUEGO#Q=4Y^>znVj6OEtnXh z+S9{SzFUg^?Z!p05?kCI)gdJkC5k;~(Y;xPaVHbUB&K@dT^p z2!t}1s)L#~J(upzul7zGO<<5WAX{j7GsgaBs%f}!j-Ku0fspR)ooMq&Q&(tV0hk-` zN_Y8$qezfH!icUzkJ6E}Re7mfg&*_-7@3lYnwpRi=)+$C%$_T`ER!d|B{XsYf-g7vZy1t zDgWoS{_>q!D8h0*6OJ+DqWxq{g%=tA&?bu2H65#(TE953cb_!fZs0<>VxWr6RhU6X zoi~h_tLvH{jwwCddjy@5&g4$#>6bg+@P2m*^Z9$uQtN=a9`8={i-M>)k>dHTE_X2@ z4DWFRiKTO>XH4lBE)4h^g#Lp+S%jV?15;P^SIk>Bx}cL!2WH!*f@xoje@I+SgxGNs z^s^~-4)?R;%2B*!MwzP1@wAbzbP``jx^m-J)^|<1+$Lg+bHFQg4XoX>-@e41%TAZ7 znotK<>xCE^VTv-;QPlVq~K7X$&2fqhrdPSKAJJ(;K*Z%utMYyJuyvReS~QpBd2)4 znM^cB~L(rNA*)yg#~FHRu#$sO*IsVC>0GH7%v7sq&?^>wnH_Z}EFKYFg~t_>+M4S#`OWx| zG>t7cy|hLlawf%hFizvsst=7pPO}5bUQqG`Se{5Fp$L=LN7*w#d+jOoL_pT3m2$c7 zkl{LNk=rt@npNaaM?lp2dj5W-9B0AnlZXs5{l%U}XEcGFM}Dt;0?Qj5Q*lMZqE32T zjMXgQM2%6asVZjus5j1VAe)-Kwl$+xc1)NpxXh zPZBJhO0tvabm4{ngXo19x_+rKZ_) zZ+8}uLGY+5(ZyUYnyMq>T{A0Wk6~7d`v!|)3x#PRUH%fVhZGz5Q=O3I1mCJuRmpt2bA?2h3 z)+|`~Lyl(LB}kz|dFBt^5?!>eve|>1{=o-1V3QddBc&P4l&hjlb1~FI#H=^cK zDYOJ}4fkhl0bEn}VB!ED!cpr?ooNvSl0r=i(no-uKo16v=CB@3BOfx3P+Onj8m?S0 zt1F|07yA;v4R`bQI*hEQC^jF`io-|m0L>p6SM=cD^qMtUJyo>W50jRs!b}p|-V$D~ zs5PE`lKqx_k{(xW@^mUBj+tH@{9>omI1r*HhI!%*!OYcCm`1=FGCazKs1V}wE}kO8 zk(-1R2&ox4U6-l8>JkPzn6`O}>fefz6C+?<8(ycIfM70ZCXwRGO>WUgdW_wVl#F8h zin(g8*3_{&2`WtboZ+e`9DEm`q?Q-7Kb2r#q+I%}@ruO_mt(NCd$uZvrY$S$tvMAT1k;9=h+jTY(G~!mZCx=&JlXxhA##>5IppA>GGafn5tlm znA_xqq6v*Rw2gP~gmcF9U2f9sEcovV!=GczXMHdj_dEO`y0mx4@A@H=n-Ba{UEFeW zEQeoV(Ho^;mGD(d@^0-^P~|3DoLTQxM6%(CeDDzdNc7{j42zq|fN|jnInJEOz$48Z zIG5`Fq>b^pascfpp*yftrLPiIFiZ3Eu9b zaXzQw5fsSP)oFg@J!i-HC|`w;PA;TaKdM6z*4DHlKY5Nstz6&Ze*6$?n;ZuV@Jl6{fT<1Cg;vXA1&~Zt z^McCGnUSP7QFBhmKZsN$ZATVd58QI2gy1KWPJ0#jEJo1iXH{ULES^y_78UnbBV2UC zj(>KkM@hB@1}+SeUj1V#;KM!k2yw}6BcmyO<9JX{ja30j(ub`5fv()GJs>ybTr|Dm zKZx~W>gmlL=s$Rrsr4jH$%7=5kK!?U^6wu)UVzX=Xk)_@#MDzX{;@`dN~NDu*40{(NIR)}5v_tmNWS6mcsPE~^}I zEzs-DPPisJy#k#{k91VcYMpt_-5L=@e@|9;4JYX(5PwEcQuD<{ts)d$5$b|Um+WZt z^=771iriaoT&K>A%j!9|?z%fod}4e$Vul3$p;MFAe!G1lX0KgdY45>zDtp))l)9kR zRWP2gUXX_UhxOlyhqroaISoU_=%0Vr>xn~ypze};n(Q88NA}2uy8Ra_U*n9=!>|T^ zP#xFU21S@=r7m@opFuE9ro&n zC#}BW`^_N+XPhG}FAiitpd&HlFN)Y2;Som~A*B-8Lk6y=IY!xqrX=AUI=&6GPz*A>R{TD?LoV z@IW!=1CF+3nRIB>gegq_dz~cgAmfCV$r7*Iv;&~CIE%(RB3ExY(;)%hOkUPrO}d<3 z%%Fb^jRrBT$?U^czAe>46O9@ z|9gP`zYlP6eIBC~a&;6@aMW`&!uzj+&oVta;0GS903RMb9<6~M@X5pTdGddK(hA#H zJN}=ujj36v>G2qufcwgSo(25T8dI}U)8R2P|Nmu-KpFf0U&H`h%Jx4+!2N;$|9JyC zp!o9*KC7bWW^05;E30Q>gh!0W^q-2$>e(9s_4s_9|2&pf%E-`6kKe`>PXj2T!((Nj z!(*aj#?$)G*#bbFfzus;#`xb0MC@&xZ2!-T{MSSNQ~E#ep#VJEUeDUW_VZx|ZvRs( zhUaMSWb{A31c0*yjhxL4jO0c5KMVi6o#c%iY@F;3jDUy!S1td~%YDA{|Gb=}k+q4V zDIVkhHVv(?nWdwVJsz#FCD1W~Mg}&9MxQP7-(BpQ7O%b%s?~(#by3Mi3&J^R;@A<8 zjSGrThd9`0li_B2dKG{#JqS=-T+}3#n1*AiVc?@V?o;9H+OuU0y(%&*H)Gdi{QR+&o_!IPQVN<&SK;5(u9n{#W2``LGMQ zwO|OI=@6tJ&b-OW?9sfSXwAKzdebm@LI0r9iiRD`bm1ujUAuZUa03Q`QA7EJqrq%> z&C|of>+`{+rbxHoJ*{aD`>{G;!4~$gr~U`Kecu9_xrmul?EGu zqK3!UWYvK-`-2xWF2o@BRwoy3y0+KO`>zwnX;@_+Yo5y9_hlj+WsyyFslh7EaiF-8 z3eVy*+}zII<4jwQ-=Du4UKG53Fj134_ArV(Ju(@OL@v_urXzrW@YZ-rOGb$Bq`ujHCre`kk=r8Wmm`5UaLIScF?>0K<(kCPXd)j}Cy+wY!O>DeB zMd~cx^;l*XyRENqKZRTIFecykmAtRb7`&*Dq2ERQtnAF)y===Ycnc5a`u#fMy;d=` z5VLj}M0#P;xJ?v;UDQD*yON;UuBim?7aqRXcO-U!f=Pcng8Q)Et18di`pe5RIg~kZ zi)(^xM9!tVr7+I1;jpY0vwJ5IQ;fX!LWG^r$@8{nudSQ5a+^^BW&te8%`=HS2%w06 zfAugGdFf=j3D)4B)u*_u+wh2JkP+DCAR1c}AaCf{c<+u= zq8kVqNUK7QDkdkNl;fA;&J&}nLgo+Xjoje(naSTL1yZ(aJxnwM1H$C^fvrRM0H`~Z zOT&Crs7$^!xbImU=(JaQfUpo)aU&Uop>s-4&<;P)+MV zD~DrcwP=9N3L)^jrwIPaUUZESE28NsA;YUeW!uGAJtiS8TexU#Nc~9uP@y*VZ)Bl+71SPAQ-{sRHnS+(W) zkl%+N6hzhRf0;IJ4Ick)w?twKY2@ga2m?&%%mYpt}-lQIW$|d*YA3y7mE~=!zTN{F{Gr ziH_j?Hx+&~@aQ6MbLY_TKy?kUtUmh$$_|j|OQNCS7oL8iSdb|M)D+>IkYpD}pg1M@ zA-KS4_KR_`LDwfYWaWav!ny6FEFFi7l&UUzV$lJz6Mlt(CE1dlsJX3T;@vu#^mXYw zxO|Rnxyl{9fW~{~;IzFfPFQ~Z?}`0-*524<%YJO#AhA9%K?;J6zld~9uzfwlZ99pw z^t$nNf58|D^+su6R5)}J=@QCg;L~clk)sV6K#F^@-Gvm{2|@H0Qm`9?6>FXwFxBRn zEzk5k+e63_Kal65g1VOxN*KdcOwDZ(cRA&uT8~8O zw#AL!I1dY!68!oaEO@-ql=2-FG?tgRZ>;TC4N57%i5wrbOwVtbE+z>LQ4cP8U4kU5 z7+;G7z7EY^9>*IN`n^8vJl8$x90Uz^CFd&(cw};=l;qgdUsygp;$0>pqpuI){M}NN zYO2tGBRl1^X(B==sB6?!8(71L2H1%Mj;9a$)l{K;{1EyP7-#sDy!_?c{(j7rW*M1~YRi>P8}19H=wH>t2gh37j4oEb>T*?71OyicvoPT*EB?@cmbw^_hp2(+ zo6tzST0{$A6U0DSLYLgdVZ2U;SY17QykB1t2Fz6oXj@6Ye?BB~5SvR_`wymA{kd!JH02mG?)aAjrk~oDK#V6&{wnl0->Hlkx5g}guozN+>gAHA9G-BO9bc7X z&JMy^akl!p8sCWrX9S#vI$ySsZo(V1u0{;8EX0G%Ke=$3Q&B zXb`Yy6o5?vaxfc+6rj+0>k$va5_deU!YD`Fkq{1%A0p?19zZv&Au4NA&zvor&(5QV zPqzV{D9n)zurC%}$|MEQiMyf{UcMip6}`q_je?Qj6EN9H@?KAHnbA<_1&fL1{(z03 z{s`4NL_Dz#2M$~OjKs*VFkK7H+Xl<$877{x07>j}Ki+EwFbM zMx_@Vi01{mbA<&`%@lcj9w25)_$p_Acd~v!av6B<>SGX}zaMITAkAJ6#4AZ9~hQnPk5f_J_EqpLU zB;2~iMeRiO8*f`86+ZZt(*MwL%;~PUJM?w1S^ih_0T%=nafw zEDaluF+-kgofoUBLNu=w(APITT$&&U_RD}_6%&Yg83luvRyPd5Mg_fCBNH>)2N6U< z3;UcTIM|3)Dg=85RS5v};$;6BDY2dr209VRQay04O`>ymNtSdHcrW*Y4CqdCKrT?& z^5&1IKVQ?-!(TKp?_;~?uEf8#5Vg1%y4GDXh1ek+?*_~@F}&f!8c}vSuHF1aYGbV> zOiWT*(#s&Rn+xNGY}ka3j&(i4kW}E>AhQ3C4N(&7T;^EG=6bZOR*#twueHkmZNmL< z+F!O~SuJVQcWL_^_H_S`ySD&~>q+*8hhPB$1PxAthru;?fZ#zB+}$C#GiV^V6Fj&} zaCZyt?(Xg~e8XR|S-H>NcX#i7-{%|Bkm=K>PgQqyb=9xybX#CNvDwFa$;H>0^#=0h zZJKw4YqT2frvBA76q0B06Pb|{JnacvN*b8&{D!QY2;)xbrzl9NAsbJREysmG0vp#^FMw@(&a$yjS5#Q*Q5Rff%&z`I2G{ z6Df}Jm#1x>d7SB3);o640q1qY{)r{ejqnpj#h&I$Lt3AqcF^i}hW?4y<6DD1)X@RP z_Ia_rbr{$JM8;gf7&TAl2hkuG!mGlYiYHn_AbKiDg4TdfGudSv1?cHy_EEjpyzbO} zM{}zvnZB5sb<=*!@I3!@O_a^4{s&&n;sL_sluq(t&l%s7+1p5+jVQ~ zy+~%43MN}(Z!gSd7uXuw>+f<4EuC-}hdjsn=i}XbZJZo6t0ui=+~!f3$F4N24TU?N#hmuH)z|O$Bu8!FXCZ8jJZUm?tD&{<^KEW~ zZ8Es7~VBMLIAc3HK!TM8)$vFDso&Z7+&OSS2x6n~E`;Uk>J@|be6`1+xj%vvgp|PJdnP;}^ zDWAQwsCn(I8EV*iCsKAt6l~0}NHO{{G6*Z!^#$7Fzh^SMkykWrYDp#iTdHlLT*%*d#YS33Af7I>}QxYOAxUMgim zbQI0&?E?}$WO6QQ;8LKd+J}=^=TK$^+>c{j%HI$KG;f|pje@Zk_NQk`Wi0n=Q5Z`) z*)&30Gj{beMIYiWY2mO?3EA(Tt69Ey$9_Mpqp0V-WL??qqF_mqkhbv-J7#8-Gh8uh zI$6|LQp+Qwc6Zzt+oU{IT>Di=0pKN4FkEwh}Jf3c)&>k|KWHstF3XhP)K{Wk_ z;dwd9#r!k_IG~=BbDC5mb2r1L5vE-$c}{EAs&>2^&FN}FOZ#X|u%}SvT4jEnP+Y3W z8F<=Ry6Mg>q4E5Uw%y0?%Jmk6r1V$W=^8mX%)Wx3+$6jL4CcM?WcK;e-m(+}9c{Cn z=q6jamIG>;sSds-$0w5+RmBlH#MKbcIdQb45P{*F3f>3)1CZp=775i^Z#QQ$v?wGen(Q?Kp+y9M?~WnbcF+gq_F&iJ|NJ*FVF(pPvZXuH(~vanST{G z`H9ld|1aVuj~yZR3v(=wDAV8ICM-Wurhkf?WGYHnuChIEyj46hdhtA#xy=x5tE5?D zMnd%}=Iq-Wdyh1it%C=6djrvFYZCo+PAEaK zE6Oh34m~$7oQP@Ayep^O_ei5X=>+&qf+JCG|E@1xNT^Yl?hm0fQc3xNRR)SpYF{?< z_}lr3G$y_js%FKf%m$gih~pVFS&HT9@^Re|jlV=?r5Ms_wXyC_4W71=d(*SyVkDbd z_S$NaC133WdLhp8w{6ZQjn-$F<~<(YS%Tlxo=`O!X}Q2yH66LET{owY9YHq{-!@$~ zspFnh&ktWrCb=4z4&X=`K}TpGO=~es<1~2c3=iY>zA_*Q5nQ2Kb9K@(zKBB}kW56g zAQU_kcMqO5c^7u$v1S(HVLY+>VG&B}D-6K$nTM0WL{eYT{iS#lm9^j@G4uHQDb!2ESfc-#52(Bw$4`djF1?YK_y<1))+9I8n#38-oGKJZ%^86hC{aJ-#yT9uF}Fw^`xkl2OjAm+b55NSEc)<_2w&9Oas##FZH&(qh%S$ zJ1E*j!$`|S1~zR6T!9h>%hI zT?x#Y3p9!3_fq{_N-%-%!|{vB5yB*~_05gpT)!&@d+J2Mq`2|Hni?Jc!D>XhZ>i_= z$T>Fap2iqSZ3-zx{ZY*4nvqv1c8c?QU@ALrzFhp8+GYm)RiSEya`|WNKcMV#gho+v zqq8kO2jhsZxt9jEOqqiTCM&ZPY{bJjd_svJ>mO54xBC(8o znw1z8sWmpsZBFYf6)OHs|1U>~T-5!!RYg}W7Njs5mZZmq{Ts)hv3&xqiV8?ZF36Uo{>@U_p`}wdgzbY zgprZqC*scXClvqxI^xdq2#x=#T>lDjXZv?%j^A|l?-2d}-puh^qyN>+@edGpmj6ED z?yJ&Uq|c6)lu|q;h@R_kM>C7A^V~BmjOl54`%9hY=$uqLNa8rnn`H{o`{s36TMCyA z*$RdGiVbSFSG~)JT%ivUy^{`>#VH!#mBkcLb>r29I^W%{P%!%Y<;^B_VvPd}UTk8z zJ9HJZ=%#iYbrRE@E@#SOpTQqbc{iVR;7Bw}n^fAyk|_o{*ntuELu%BIV|Y=F7p`N_ zjcS%dH|cRi4JoffDrn43+&$gEPi|rlHCv{4jz5g-n_4MFMsZ=$*QgyXYG}GTQXW?0 zAM(|^?>MkpAYihZQO?zFE(^x>g0XBI^U*egI&z_Na=tr zc$e2kq$Qgi+UtgXoKz-um*;9A4ZgYA#`^9_>yxjupQ_G3N6V-KM6_3~Mgld0J)v1& z!fxI=OQw35gdU|XO;S5Vl4XuO+uJLq2S?7I&w?5oC!nl?rkc9F>A9te>OUgns)O$C z8D4-kcNZDr`I^JrUENM!Y*p{xDmFCM${|%^j*eAy^jk+!F=4&zM_5sX{`Y|<+sVRy@CU}`%l7CJPKE)+!>dAL87 zYd>OD%UqCyAvWeZj<9$63U-jWbcnWYU@BzRYQf4!__`bXK}zUM`!0%P+*HBu8=!|) zmtO|OA?m4iwd$8*;AUOxL6i5pgB6b`)so=pin`Vgh8S_TYQh0IZWLM>!YA>5K3wbm z9NLH6eZnPhDBhvUPxuVtJrKpuF+c7>@wJX_QxWv7W|O(UXKeV$Ghc!rUYb8C!qcZY zr_=f6!3|JC_@+aVvncRJjqVoN%hfM&E9Xsm=nV&({E{`V1_N{YPsdhaDh32`odItdA)S36EQ(aEMImwv z3ne4o{Pm;~G}m=9B(sxOTBDg53R6!Rzxr_6_{elU1?>QSz3Jf{mTX|==)6fz=3 z9@dva&}N%;+Al#9K#z_(3G%?9N`hRCS2SrRecnmp+K7?nXy`-8CeW%B^^p&?Z@C># z+c$WL=>j>NJ_IW4bp~GW>jNI;~%0#ldYb$EU=w>1UL5#or>Aj8rY2c zNhPM3tlJ!GW_ouF_IF=ABX3vXua@71l4x@?rVacQ}lN~6hZXIw)JZFFt89uhW zdR^91-HErXB45cfR-w7|JSJXpK&+Q>u$W_ zIU8ztHc-#!(kDFQIk)9^SBlg#uO}*q!+OM+)l8Kfc4npwC(XFn#>V2_T6M(9lP3L0 zf4+SK>CzjVGO0Mze%eWfr;sk47&jfW(1r2z=9;}AWP1V}XC?FUm=z3!NFo{JT#{!D z=o?QnU%Y}hxhaUlr8_B6*AAYp1$)KUu21J_=kBJzmu}oGhU_L*gC|e2{wgZM+yhdJ z>eHyBY&6H{;#3TUuReLcg}fyFSXDE%!-pkkGH_F5>WQWnI+=S=kwXV&XsppSBL4cr z16qQq8gcfK7S_oqq(sqvQd=Hk9{k&MtC($5>3c}^!U$aNpI8JB_pMoJAnbL>fCO_x z5Hp<0+E{d+qN~x?Ejd;ot4&%fI zbp$GlyxWv?6U<#WI|zOmCOp4}VIi=ihu_UKY^=6HZY`xhRsuO(k{p_(_=2f-Ktu=2 z79+UWE@tcLlX2#9Lwo2?#)6-8$-QS8V3IqZFBxiY7@)0vE^2BO{-*tbX{-zhM)Dr2 zu5{CIPIxs(#->}=ZQDnz*`x#*m7!e1KS(`>aR52#J!*^rL0+fFyQCQiHE!i9#jDs5 zmvSWaHHO@GzE53!e+O+TY*zG+yi?7=&HIIb-abR+(+*-_qVLeMeqh=pzB^^}#0TZ7 zoVMOqZ<#FDkrkukCz%;+IhJq?pmIAr>1WX#suP|I+P+JB)>h+I)c6cZMP^hH-zQ^W z2fFJ0m}dSL`>CfTIHDsgE^uF|EvB{*@%f>3`r_$Ds>Nu7$st2n_OLx_jUmgYmXWM% z6w;}tYEM-Xl?m4)KPNzEa^AN2^Pvg(5JRy=k0qIjNTxI}i;sK-2{g=^>j>s1ACB=! zpYI{kChy>j+r_O4HNCSW?t``e>Z4OZMMgIO^(oQK1wugKyLr#9&tdL2050+Si4>3M z8YV-Zr>1P>Z7=;tc}arb87N1X1Z>2>LyjlzOqd?%L1cUvkURwy+01Lm$S1Ckm$c!B zk>Na6*Sd4rr}RdebdLc+OoB!jg)j0Qk`#+?G6RD0ElyCO{sKQtM-*~N`dDmTt3K|| zsm-oH`06+{%2%He;_wYxpMJd88&~k}1u9hN+B4w|;&$6}f-}3aB9e_z&};*$Vmj*E zukrQ{lEUe>Kg_)-zJ=mnUMGwg?$-`F6Dm%nG=s5Mp~98*q}9zzhiDDbPp0-y##9NI zRkTUTs@r+V%@Ql{r5q_4j6?UL3saq1fv-&U7lWJ08|9S|;EG{}fjgoOQK3tv) zs6R$^Tl#a2K5YBk(zTRo6MdH~Gn1Q}8i!@I!#*K`Yo!{+(7QMtQz$34p`tb}6Z`UE zz@0|RH@G>izpXkT2xd@aIusVtf%1#C&7W+I=P`gG-C5;r!di5~&51m?2HhXqUKW&~ zmAccN-q18|!y2}|k8UsxO`u!GvoK zF1{VbX8Y=BY;j5#JR)}pqP(;JQuh4qkDPWiBlS}8JD=cYhT@26`mf>F5TU<$zqHyn zp4xQvMkWuQcAzGMllagXnOrJ4m1%)=RE2zDQVUF_^r#^V*}!+uYg={{lc zQM(+}lOL5%>mZmrAgnHfpm}O%GvIHX)dbloa9?n=dERx9wB()n2xJwff2L7qf05{g z1YJLytsno9lqS?j?!9Y`uLpX0J*PH$eFZBT%bisR2cwBdp&D*`r>hihMd?A92z8O& z#hrC8GkRV^6*plAx__h5Yvvn?cq={r*f+30<~r5_xpz=&^LqCo)nU*o}{R85xwEcRHwYI$Z;$K&KwYb_R@@Yh~{l-26`X$7m$7k|$OUyqQ&`)0YTJDc_aZrwK?VJI@&FoI7c?bLewmm1E{O z7xrj`(bNcBqSUoX^%_Ih0+O)@jcSuiU{%<9YYg=bINj?qeTa+{zxw1z5{Mh5Ff<3n zZ(HW%vX7~=V7MEvZM{k=fj#L|d8(>zNIrUXQ+OfT*oqy`S}Ax^KSHad6GjxTI3>XB zJ+)!nU7wmAfSl=EF)5-V({~8d?gYnW7S5f&JMPqoTLhMcWhu zyC`ux?KL1<83}UESn{IdcM7jZ*ud!uJZJ(!RL|)%$k#i z^mGmod&^S_bDZOzJB#{W&B4)ND+l|{8IUNYH8K^xHn(>) zc|x;&xR)7Oj*zO}R9^T_N3+OwV`toxh63-6~bwy7lTMezgQ6nfN@H8y>|zB$)i zXNu7J2j2d#*fHyypV%?WzmFX&N$Z&C>pq6qy`*1%F#ZUuWBmz}{}Dy_NAv#1?FTy@+uuS9#mphG zg}-Gf8tXxV@mSdyfBPn?Z)|8}`;v`?;kU1XmS&dLA3ka8LZT7>D&&t|3=&^x{mJq% zVDD#eAiaRGt&NPnwVCrgXRXvH_b)$(U}-#fvNe;3^MF!itmcrGq1CJcaj0sufk zegF@%06_p83@jWh3>+LR96UVSQ^eY*J#451Si>bDQzj}O!nXb8RVPZ1E2AO$L(1D-%ZLqCCmhJ}TJfs}TG zTnE6Q!J@xne~9o=GOMk@yY4g z`Niec_01z+Pyp!P*@FE3ow2{+3k|~86Brn182CrNpq@BD5;PhN>?=k%bbeWQZ7U2C zCeNps0^zCOTM$T@<&Lm)tcMY?$yk=jj~`k4jkEtAV_yFfXFnPH3tuyUXV6fP&Vxn+ z@BwZpJDmG&WU5s46r98ef+mzET!r6~N?D`cGqD^JJpj5UlEBwso!TqDu`ciySU$N( z`a|VWwm5w>+kw>sV3vsV0r1WA0kD`Za?$1g0NBEN099@M=pfhC9?U`v=T8QEt?|0NS z5#0OlD||O_P4_n}ztm=LE8BDHH}UGuf0eJ2TjT-ocJcwxBpmunZAAkC9GahQ+WEo> z41XbS_-B2r)59Xb17an=6Vf2?)G_frv?ll-@7L<;IH}g%+IF9V-&v*nLjK=yOHf?x zrbFBv!u*qbWAFC(iiSC~MHT-T;Z9t{2%h}PBKFP)zzOCkZ}xRS93_@Zylf(MZ*&V` zM52eAQHFGNleo&*G9p!)$NzMCv-l6Xw%hR%%v*kVIe3aS*#geuyA(Oe32h(9YijZ9 zbJH_TrW~?GAPH5UIBQ^BhfP=QtzM>smxD%&pDd<0UZ0!-Ghf;Br>XBM4;OV!7b;L# z-A*-HF4WS&Pja8-?ZkpkEYCP<+3zjFw_g_-GZ`c2Q{?K*Kw=>4Up&=D{6;`9J;z5!B9lo82!?7{cEPms_@(6qMEcmQNR z0J@n*!PVJdFY2ZxcM@mS%`4Tr7CR)0u@q_5Ive-!FY#02jYdI<@UIj12XQ;8##oVP z*)U^eA!mzxSyPJMjMi1KeE&T^W zlGU6qR9CG$Um%{}9mVC5`gRqsp`R<4lU6T{`H9+sB)8^Q(UjB3nJAtEO?J!9NpS5J z`laRejpoe>&konF7=2c0$PRqHFSeMLGE_KLSw)<)$EQ!yYIxr@T$UdI*K|bm4}cPl zlm|enq=v7+G~ezgXSN1Dvc7#?^$`|+vp0`hI>k}}){MtlYi6awQzc=SO8FU2n zJ*x6MpsiT+)4)BZk?ke?9PN;EAN>Gu!W-NmNjq(GGJXX;nv-gpeO?BNxD!5`yxG1f zn>MS!2j0Rqey^{rDb=T`dfrov3!VE6g;B<6<{-SVpfGKx63^dfKWs*gY!)?jMhe-f zBi7H1-qmTf7%|Gx7C7rdC}8Shvz`+j*BT-gFi#fe$ zNu*?5b!8BVn$&>LI|haYr4Nx)l{`i&6{mN6OIwtgcTKA9@yY)5djn~<#|{>j6MS!G zoxJ>}(vqB?Knq=d$;*d|rDN>G8WRhsWAw zq4(u|0BlTdp$bo)SF{FDeS1>9hz}8|5ASbMHh`tSj@W<{gi#+b^)*;TC&kJ=s{G64 zi){%78(2))xBt_Lz%mrHx-0bnaD4zUs=E^J=so~!LDXy9E)M`=6^Gl+>ww**2fzp7 z+w|*?A}faSnoDgPyw%0njv@+U_3Bwy-u#p1<#lyjVrD&R#v9w}>d{{w07_r^UY-|C z1T37%V%)y|XYEI#_5sCPO@Veo3&A^3AX#wvi-m8dT15MT^&?)TuKy z&}9SnGG#%_vx`v5l=pV|Agb}1H1gJKqDY-sD|HWlz3T|Os1Q}|=uVq1!q336wBSl` zMbieV`U9Yl_L>0Y`%=GKy=ji4Ut2Oo#VFpz48E~eio~rnTFlGOr;5a`7lmw-tV!g$ zrFBQ(vLdy20c2w|x)q;s6L86851{F@P_vzPwo;7>P!(x;ZTTwj6tn=|`H$_Qd~Q?smHrQ4T1B*Cd9{%@w9tf77l zQ%a0f;D%q8etxBGPIJI5l&x+QGmJCRvnX=QNaP2K@8VcnL$|gztxog(#v=vG{c1&a z^>{_`m@dAp`xdPdPw?67b)&)j1HkC^zDk#PZ_-T&lNSB$xx;Vs#j3021K^b;^A6~1 zQO_?@Oik@dDTQ&Bzj;j<;MQ>?H$pk5nMteMhbb!r_@7QzDbJ;Tn31)-Qc78u3hcbt z2`DsXhbCYssx;F13PoeIWIM+!d;fV9?3VffXoM93HjHwnt0Z{&thzWQPTo;sr<`u{ zZBRV`d{!W3DDOIKo3zUx04YYGLr;+@bH2?P;@c%zV}}D0YD_eSP5vzQP*VnHZuEv~`@oX=M_NMr3e?+=${#+yg#>)IZY;c9g!6 zeE=X-#NHjHoD~J`v89~uquw7;-6Ch--3memA0jQ?>SpR)@gc|Jm1IHFrVnKLAwEh_ z1`Q%S0K~T%+a4c21Tlu5gqF;J2Fv*_o6|-P2+sJT?>D)A)|?K;Fr~j<=G#_(@soo; zX~a}fZ%g(&X{z4@EwhzA0Fp7lQJ_|H{RaRy^63&IzTJ1v4<#mx5h1Q_kowUhI;=UZ}3& z>X(1AB3Bq)TB2X&k2d6snW%TEFVKL)Yt*qg7RS4C|Jo?6{LODl_EFLPZ={+AO|S^z z3vf;EJusulQt<&0-X-(^D6)q17hszzEdW53=H1K!kX8FsH(qRcKw2K_qucc!F<}q< z3ex)Nr-k>vRYtuti+Te^0qgFAE5z43e21wb({~Vg;1Rh$d+maC*UeKL$(aX?zUA`= zZRSAa*q7Mw81?R)_;M(Hs(6Ec-!*PrR;~EwJyd@wNYnvhLN#3*$oq$tQ(XYB!(22e z>^>?2FF+7;Xb>WwZiu`;$@s3>=RI@HoR?OkS$5?Ib`HJWlKrJ1PXJhtX!1vrJXX(r zN;}`_7-&%-^k>06#nYD;jqi7IiWL9g7JP&0_OqN$QyhH7iJ`oZb<~~3gl*V6DmNd;L zL9)^A@D99K2kR$!A!1}_nBPSs-$k_Ul3AoikF7EAJmu*Ca0aA06(~)c)Ve3w@b=CN z_T93$;9MuG9Js%2ZaycSDIS6n!jyp$lBt-Wp{q#Pr$)G3oXU_>6Z-zSBhtPtg2ASu z79+?;aSM|8wF zM7=#9QDk4WygK!}znSnmMoY5vOqk$%yx^6UV+L9sAiji^RBq^1g_ua9+P{(UNXoyM z)E2+cREUh1-`-Q;JH^j&mP)>sYV?6tC&z^9yD#eiogs{Zju@M+0(hranr>jWo33yc z?}Q*`2|V+~AQr^Oq?CLBG(()QmDk9d0Y^3&+tm+%;>Yj6>iYk%*MQMiac=p>ycj78Ly6Znkc}Q#ps*T;E&Q0ey5EqqKNm)MTa=f- z^L{s5orSIQfFA>^3I>&BX_=`VDmn4E-{wboQE+-=cJx)s3S5Ta1S>JJnjl4_A#!FA z>=29f!aS$;)cGudg&!a&c5_zXRPOkNFSl5>acxZP%y?s=vHkE5+5(v$=G=^ju&yOg z0!$3eVQ<&Q2chq{OGX>9T9(Zie5B6l)zbH;v6{$}Ew$1B#a^H9Z=t!c--FcaZW8-6s3%k* zUP_yr=mIEf=Q7?^vD8WIc03xvDoEQJR13$YQ*?!L+8%%DUol&^Z>}gd%IcDjQ=nTB z%1rH9<@&XIwp!N$p^I#zK*g0|)I3()?^abcrdO;sS$SOr%TSG~t4?}&@>W?Wsp7vk-kSFLrJW4iHaUO}zy zJJr)KH5jUfps~cT4KfKkGeb4=PItQHM^7krxDy@`H9*c+$Sf{e8Of>^?GK^~lftkr z*L${45X5_TJXkDZ5kFCbypXU`2rcFCarWr<#-0c>iV?@x9&+12|c=Fw=4Cet1i3$#~&84vNJQ}iTwN$US1+P z88NNlo}NLUq*)iXL8vr)6+GxSZicE&3Bt4&N}&o-Mm zm5-1YeOzxB_hutsJFyqXbN_fB>|I5uv>K9wV9m3xm|6tCcpvk>v(smfhKu=lt1i zHcrU(5t8O4DeX zLkrHm=q^WnK0CcIS5a>?iETq-y+nrSWh zP;^(i0=PEu*#iLW+!TNC#r#~oWmZG^;kTDTPe%ADr{`^gDz}xN4mfgKX_Tc2IiZB= zVrN@jBtSOVTQN^{{lOO8?+bXAcm!+1u8G0|Ok!@mV7kxgSe{OgANvBgji~!YidReY znN?62va!i!Bh_c{yAfL+ii18~y-B?M=KU@Xev2iWloh@aU%kS6?- z6rt_DrrcHCs?nLbRk>TGij%Q!MTnunEZgvH^GABMAiZNRuFdUax?|0N7tIruoEdoP zo%!bORi~MGJ?yjHUp9mbhZ5PKRyWrO5cgS8p}KNSCTqLL&yz?$jA?zwuNWt9KFNHFrG{%PHr)%l0=y?RaKI25r}}D(|j4>{?;ZrW0Qs4u=u>` z4s{#3uC93Z-6uY@JH^~9147}0-j0*`d1J$t(Y|&XAN}Y zQn8Oe=vgqDU6w`zY-D!V;H& z$Xc2u)8U2r{#CHDnEeCb^8>)^6CQma>mhEH&)F@~`LKTDFsS0N=$j|GwF5OwkSL;u z(swfNPWT2&f0lW3Fy)o-57t9^89bq@SXot;h29OpOPO_Ox8aDVyC*t*6`*1CzJf} znr;<$BIC1tz=Y$fJEu1Ay=`>=)hw7BGAX&2r{29YR9!MS4}H9{l$(c7{AiK1d{D5o zo@f!ml*5q~!UX&$k{tUypSa4SeFyk!yTHGyrgoGSm@T2`wkI;rTj2sm2QFS8Ti&is zs;kH)7KJ$5Vamsi4XX{_k;U?zp+ufP01)|>$!Z|@xot}Em4ZgATQE<7RD8e&=r6gC z{wVq2J#@xBs5MlZw`E_)c1)4^*UT$1I?xs&pkK6eBCG#%AS9j8M>2iT&DZ zO3JfrP^*{?1RUSy(>zL_k}h#kN@B(8gFvf)$pxcJq};%ZL3FJzQLCHxO#60Dk>M|y z#77Zo5aWqcdh(9y0%MP8f>Kh*hVPe5h$9)X3HBUuZ(0^9NzuCa&S?US`!(|yo_Tz3 z;VZt3%KldkA-hL8^`B{nl)tpiztRTze+nA=FHK>v%jr9jjrXc7{7GWaYt~F^rl3&+ zJ8EHBW5Vb^g%2q7+7!K{1rZ91)`qA5KP!KaGOXo{D49MaH~bc%+!>KAlwU#!Kry^U zHNyi-iwQ^&`Ic^UhFLBH&zc7X5tPah#;!>Ev!Y0&GpzodrW3BM#q&W0YA=tTigX)&I3{sWiDb|pzNU8diwNv5)VER1e zdZ+1Y`rggp-MMC;BEJyP4+rfZ8<3Is$1_69cKJ@nL5%9Km@fbSe%4pk@CN`b{I(2I zp}-6nr%10`ccj*N)2{d$S>;|xNYomb^&`r>a3COns>oaBcOUf85B;|ibo@AI&0)A{ zH>hc(R%N4JL_aUdPiLQIlWAW@OweCp=IDPrB z(72Cl(B}mvu2v+f>6vK(K%Lfr(-cC}6Gzfc1-yfFr#DCQ=NXl;jLeY)FVONO@bk`K z$2bY>UYRBirA@M$Tk;RN3Kp1Df-FWMC!l9m);a1qY3L(a6rrq%MtjU;*a%!!f~)Sa zzz3@)vkw5xQG1@OfTL}@291#yBTW^>MXyHgbPcn+97l1=u;wO`gf@`tB4MnaQ-~g*Aoh#oeA7DFXrZS%=siS`@OkJJj z^IO_pYAzzRCrs>mx0Cd%l7>p3iN8GQQmC(rnUo(%tFVjquR^_WYZ3kgHD}F9ka(Us z(R(vaKjz*v@c>wJal=}R2Yb7iuks-{TFC74wEA8goj~TJJC0kr+>ND1upRL+(3C3Ef^$TKE$5A$!e8JQUnL$uLr@M$EMdIxM%K?GI z4%fS*MS~^|zUQWXa(2=(KZl;bSH!Yh*Ey93(f9pzL+B%2(s?ymR;)w7CY7uLb$ z_8@z3P{MZqy*cQLD7##dZ#e~X)-hz~-gcMk@cT^95z;oA0>V5_zCYN!>)F#EGH;gR z=W2W{XxDxF0wP`u=-LYdfG=| z0a%LQ9HIQJ3(n}$+7_oLYQm)e9AJ(X3IcA+c`@ZNliHP`;N8 zknJSBC7BkLodda7i8W)Qo>hRQZ_IAHbGBbO!nvey+xwEEj_9p`*7d@L6=h!az8yg< z8SnK0rnwFO-Fr~L1K>uKRsSAjzZka-#+lrA718FI53=bZQ2e065cigRB`h7y%dscX z#aW@jb$9u;L5By(f3y&3eGnf~QQ&kc<~|{9wbs*4nL=REqe>n!4zu4(8o%W#V!m>Z z(Rwiv>s&X@I_XdItt@6%CgQ~CRd}>Ikus^^%K_16sPHg}G8N+U=2z41Y0m8Hpw`DR zBZ-yr%~&kmIDDFX{(MQGYoM{(cwI-z$zZby`Wsg2TUeXg$-B>m?rF8uf2wVL)nyVF zLM%*Km6-qZBGMyp`pXpk?XT3W?uXSc=<|fgn6j$a)(d<`bB)yHBWD}f*^;VPMV3C( zG{>C|KKx!xYE)$5CmZG5BFn*~?WPv2E`q>WMk9&<#m`D#aJck>^65lmP+7}_2x(8j zjY~}*l8K%j9Ub*vxf*{8CZBZ?!1biBv%kNdZ*t%&tK;6t>pD7ZLuNb|XHbm2A^6$L=zWz6kTVGA_y>qluO800(lGh%T8fI9o0uU$Mg zDJGdV%i$}?cwEwWfrP@28>eY8J+IBV(|ET9H<|bRCiE9SLhaj; zlD;8#eLGZk;DtIGAMn%7kjN%3nd%#zrB)LU#rUq%E{em)HB0)YrAvH=Ds{J-7DZ>J zt0UL?N0vz~45xEgNe6EnO9VBFXQCQFx)Ih$WVxS?bwb|!6YFPMx7)7!V@CfUyC-*f z@V%h}6d{34T$4-D zj7kSlg@Z-qh&o}HH9a-rCIRt#49~$Q6*;Lp@LZX*jurGP=8Ez|hNUpq;j_k(LZnum zxJ5W9R(BLxfvwI2?gR;M!2@5;zNm<}7~>|QAE<{YMJBa}55i|L0IdVqq2ovHkeBzF zkOhFM@O+j&vva*XePt44N~DHg_tfYqJ>Ft!Ug5V*{>Uo0pv#u>P*oK}?klN%2Ov_m z)#|H9!3i_XO!MIIJ9_b%m|q?LmV#_lZnb*Pan$hodg@PATz-}PHza=F^>;b@F-CHy8 z0QiH3^gk-KRU+~VLgg1BdjNdp(4X4`{XxUsbfQ~LAd$Bw}J8>WR>`j$C#!;ngQYta!}s2^wMo|{XtadA1%r{47tX@ z14|GI)>@CXN&08pCpoWz-K5t{(xq9!*_N+-V~q*(3x9ipoNdNsSPlNXFGTIe|Hq?U zY!o2-0Be9IAq(D|+oti51^)1zQ*cA<^$@(oufCw#WFTmb{2OR;2`v0*)2l+_9cZD! zP4FiyP>@0J2g0LVD#0~ZZpFqplZbxy0KmE14c0lB3Bv!LU3SoqNbMKva({e1yuJWg z(08{5m(gEezFboub`MDXBg@I5X^}XISUL9YHq4rCt4T=a*jc2tC^Pbdr2bo!^^HskqLc>@U9UA*3u7u{G%w{c&6Vr+=BE%6pI!dvcwA>KB`PZCgp z|80OlLp+?{95!f9)N2I3RTb7G_&cAJ<3hZ(mOG|%gJ=hSAuQPY5v8fQ`5v4u7;_-( zj)0dG&s9;@UQxIBL3eV%;L$}PT*J5RnTmMvn8}Ibxz17#0*Eb!^F;WQ3x=FJ#Q1i& zU{l0^sckfraJ-1D&x^6}h6Z5te~{#2q;!+D4xq|_64GK1piSt=Zkwodm{f!ubv!SP zNFQl}gPyF*3>`D`36t@>!*Y0oh+jz0(NweI_!;}ivEreR^g&1#-Os6((-^dC=jFwc- zlq^VaK}j(mD8~w714215me=%t&oggWi5kFx?_XFREl&GRf2w(#;I~KWzrr|rhPTx<4gxGx3 z_q%@pu#U*SC0Ly0h9Hk`dr@z}Mz@9md|SBM4**cVZIlcgZ_FgBHQotJh&8XiU>NE| zCGgMw{^5P4ztc~B;8pJhMk>ZybmgyZgv2bqIWuqpa!E*}KQl_3*JI)gA)`^dKN5x) zKfl?iu!MGWP#iZHvphRw+Ob6&tTaZWlx;@uEWmzmKZgR$65lSSd;p-{J5bQ|Gxwi4 z6&}{3E%nnO6=M$Oh%Db4_lNj?s=UQYhtiJ_=;ri#65G;pEorblEVhc&BkX)js~M zTR+N)z$SpB!J+6VOO0(aP5A_^LAW%HIg0gDMFnIp1Qdq6aI27bBIF1*J8~=1M*7ip$o=gW`iS=vw9D9KWg~;>w&dr+Z$f&imsb6m{bY|@ ze71VIU4&+ePrqv1OzP5$=L-Q-?Z#M}$SoMhge~wRj8QWFcvTf%a(pqgcLtxPaDOc2P9(;vOkDC?3F|>jYakBv`5qPdFPHoRaCk=~4E!kUJEs#%!$vpHcKQ z^78HOJ6qHBD~m?m$lBWn0R7O(J=4K?x+KcT&8C#M@^Nw|Z2x%KUbLuia@eD#E7-Kf@!NhKL&OgqfYeiPb8CP}uqul%sJX7A1csxI->}G=nv_HLgO=C_* zrQ19ohEMDO(5Wr(db z?Fe2aGZU;?e4VCI39bW$^B`YJj|4m}Gf=>}CxB~Jh6?W4?`a>6;~iL zK;5&}U)A%!`~RAJ>1(25zTIh15=6JFfV$6}9snA>cUwPo``;?ApSs@LDu+C)ymE~( zUPe6V)7$(e%UG}zi1U<6=arB+^TJ_j{nENYFdmR={{&(m(Qk^(u0vo|&4H?$dq^a@ zH|ezKa9SCLoZ&#bLQ6}RuGFn-(`oPZ@c9kT0|1VwM>rTO>Ear+8GD-kX9bg6mv=ZW zuklzE9R8>)v)Z$kfo-SnQ)~I>C zez)~^k9lnNvc}(w<8O;T0OUm`b0818kMbP_O-iU>rDVY^k}{C8LRQ7DfE(0J&t-+M zrVRd*9x&D~Ex()ji?{kJFp`5f|{$t&LdE6RV zyk?kWIzYsxnn~qQc`sjFag_r0 zjM2P;2*kuUl!!7{$m>HdRf{iy?ECHzgX5ciEEooKo)=PMw<4IShETrCDp?=SD|-Jr zE%lgGx`p`UiS*^{^~Ajm74YPGQUj;AgV{r_kgQ8402!Z~3jNpHr@8_{2H)ZUcJoZadRFdsN2ZuyORD;^LpS#q8>&;Sl-984|E-O>RXBk|AAKRSa={W{>>b&ns%o_Kk;i5b|USWH8k9zF5g?1kKSCll=~jnQ^;uY4y~8 zi;l0MrjIm4GzFaIJa@L(P?WoKEuJ<`kdzdbZo9=isY2mG%mg+ddhogtO*m~!hjme0Y7gYQKe#8=SV5jZ7FjfR zYgLue`aWl2Ks}$Mz>{u=yk^QR&W8h|C!5E}y$D!#=f^=EfRC??L(4Rjf4`EoP!gtA+>$tZ8F7Aqu!pIUqXVPv_vc$sru&k4FQ*|l1{idR>Z#7|*I=MFgu+E&0 zGwq5c4ebO)yX4`T_!x(@=Z6pb+_?aIiU3ZoYi!$CLw%=u8t0+w0wHd3qs6m)tCK{B z+0yhH=I3^p?Ki+TA0#eoc*9=bE$Fjg*&tt!ahh;y?|k53IFa_|J}St1G$5o;8g7}r z$yBLpn`EkC-cCzfQrtJ^>)^7%%IU=(&n8^d(<4@n(y3TCz39DW6k=T1N8M9LQ{G~0 z%d|d!f8BVOiv3>bwBSwap#E}IPdA~I2{r8z^>zz0F@R zQ>wCJ1jrE-Sb{8hrtB>5RG1$=;96oayiO{7-puQ%35CCwG16g!ZElBEkIb zq}HP^9oEeC5mF2pG>!#%OyaXGEsdyFDCRv6`}ABkem^P=jxrGFg`b3tq6pn#;>cTBvxb*WVh%=y}dHP4TAB(-@FjS8q8&!`W-f%Y)L zVL7nxdd2cJ(*JqA@R`eLRm1Yb$Fqn;gA9JMI=25-U;Mfkf|2C(;J zk$8aDtI<&e!s9jq5KLDUetll7vTm4lLBdeX8a9joRJ{p6WKT6H9P=ZOO1r-(betjqPV$=t(y`$ z#$WDh@Vp-a#39-Tznnq;N7nE^&jMZ^u`iAS5h91+jhJ45>xVXzFP``PcB;vpc}Abl zYVLbZB^)EOo;F^bXldV1vyQ^u?$vOnC^Ta*iJ<%3GASkwS z!UI4HXPdZyXrBWFl|iwN6c(M*5bk!Hr$^A*a%pePIL&7HpF)JNzK-8>$NA;^mO(a;L1tK z7<818xe_BB`l;I2o-BJDo^A5NAp8!)TDWX>q>#%2ZcYq^3LW%H5(e^`MHI@D)8*$mDClduI{Sb1?9G~YSj*N6spOL+gCcVaP8t)^bEswx#fM0_yYgp&7 zuG_=HB6zLIN#w%#eJQg~1MmjwQ#CM?o~ESey{ifDFz^~@V>0w-%xx^MK@x^ys#7wZ z!iV)tm{|8p*K^kDc&H5nO|J=SH%L%MHZF8B7WTQ3np0Lvok`3HEVJC%!G{EP6XUJE zMgRP<+^rt}a8-Wf2%k{wtQQh9cakzAaobexKGXImGj(j9yNO!ik_@&HA9~I`zyk;S z1pCLNhJzuN=5CC*E-ZQO*(-xCSsF$s+OJgx9Ud>KWj;bE;@8Gi6nja|znmXL&~E4Y z>@h!woC*wzpK=k~PvjIs?vBaQ`}u0BGBj62de+7##}~n2b=h}kW%`-zN#ev$R!*EY z4EtZaV{VROyZR(3;IlV-;{bBbgO;=eB=vFQk$3==BNKUKCwB#-OGNElZz?rnD=T<@ z9V4Lj47ZlZ-ODOG+rK$E`1D2-DKkPcx1XJ zBcoJE&JT7`y66N-8`|y(ie*UAB>353-o@l_n&6KiQ`jK%LLdE7^YT^qS?$}L>DH3L zT{G+a$cYgT$z6AGENsB6aeY)}uxQ%-;QaZ7LxHB`Y{+>0H8u2M@fi@cTZ8{x$z*i0Au> zg=)K=p)|B|S(z(-WV?m0MQRwxhU~@PLQyBnO<7V%ochIXRCB-I+^lk`US7Juxs*`0 zy`rG5K<{=CDYm0(A7pYK(8fo6199j~IFxkh?n($uxoV!u;hl+9mu`!-ib6a@Z%jAFq3(>y&fM*TV*vP&5Ld@@g@NCX9aWN4 zX!A07Ry)$V+~_PM0>Q1ool;nJvo(M|gX7;a`u(C#vHxdAy?>-NE^reA1X$OELs=7L zOb6a*=~Bu50zAGeF#vt$Ji8721{ge@;OABvPf{{Wij&aS)L-(qJXMXZ*GL5Oe30Dx znhH)XUKm{APkNMK#L}nAN-6^%NpVx0pd`RUf4>M(A#apW7qfwG zg`0x+Zh*4^hxYFmq*+2iA^8Dw-$2vU{m>S)NUq3 zA>c*++m+3i1CINxjKFSt9iae7E9&RQzg*5g`*)`H35va9;8t#ewq$(Su&8l4VduWw zQ6Fsj&H!|Y9J(2y;N&2XQTg!jY0b9J)ek|}P1H)ie&snO%f?kuv;}PP|9S$7zo16= zI~MM{_l1H8>UZA;F%aO)0r*G&%+q&w10cBbKlcb(`d>(g^B49$Mhm$!OAOyA;rf#u zOK{am&u`Z2UE}V9vEH}wn;Dg9Z3ba+a}!Y4{p6NP#Nnz2m&&AK=q|W20nqabT;7t1 za6aFJ7aAw8C?JdueT&@xrh&pf{WlQjY28S5bLaPAF8j+SrayTLeSbc^u4`cA%$qQA zZhZMGJQ&wq8r+W90<^`Pm9br$9)*{`Lc{}vQz#aoPOhrML=&=$hcFGni(iY9#V9Tz z63Sc)+N9k*oy;b`{Iw@3G(+MzVFFO}imN%#ls*b8kLk}^?K(mPZea zxX(LQYQvjxcphCNv{J&+rGDdtYhSWICfGR>u$!&2Sua}eLh)*Se-^JF9!)T)@ueWN z!?mKBwEw^?Ya?diJFaph5m|9ov}5DJx}6&l6kL7Ayj7%9}!WO5{Gr0~SBmUomI zCM(Q0C18_{H9T)bS<+VY%E~sLUL)n)9M7dYeif?Z zbAa!V{rgKYYCCanD<#*D#mo|O{2(qvE&5bwJt!bNsT3)CK}F@M=bKiS>r2LoH^onD zqM{u}9PG7U2+7HD5OOP*VcH4S?Pf5gT#px4tPn>9H9YblUFt}bORYS4)g?5tf|bGb z4Yd4X-nv-(s74P2G9L|L4_I4Dy!o)HhS*H?#CsvxIeq1j*gN#Vy$2SlCW9~4IG}vv z(C=7;Z2Ln@be+zP&uH$()Bax9M*ynVIR7n%;xFbUV;_OCDug}7q$Fav z@2Mg@%zL)O{azoiS7v_$oxA4l=7f|+;agjVo6|zpZ;#`Ot-V`7O0_JrSl1C@Z!wk$jIE2$7LHNYdO31Q#Uvj!wp=<51< zBSt6yYymx|z1z_5 zAGrz=d6|H^34E3Gzus;cW)_QZChks(_z0NO+L{h2fmzWPMvNunQlSpK2-UE4;1ckTnqoI$`kbbo2}Lmr@a0HP=mRfETa5`SV)TNL~S+ucZF zfbl>kgK1AQV@kl_Q8QO;ewjijr-HUD17o}0i|r@5FIciIyP~8>s~Nt54lIMfi{C&1 zHOPvDWTqEN$^?#X7l0cYem@s(O|s zoK10j6tWWl#BErtBUrsG1TCw4&fyQoF$m#1K&W5 zSeX(C530(fQt;2Vr*w@JdpL5ZN5%)a$7=2x;N5Mqc|73c_}P|XSeOmq62k$_i9`{! zwQdDqbrbwH>2t7tHvTz7p-hAdg-YnznS`^L74&CQS##FL8$bdu6tEQi&!P75YM?Iw zC;>J2_6fM)0y*GspriBe@P2Lr;Qa%NA4krq_m;&JCLjc-Y4qRoFIl?yVR)@K&z(oAMg49Cdwm`hY9;ILD|8_iYuzD3JN0~2Z6?^*QlRA!pavLX$$*+J#?z{mRnE58&^dlpy*T= zW2q}+vPtj_b>1TtJd^_JK;kV)!ZwWEJ}#u(p9iKqlDsaEbu+l>+}3jbX+Ht5sI%69 zU&rXNqU%k8Wd9@eLwnYfCB~|p8`DPP{jk-doC$Zw4^JaG zkJM8rW+VoP5-l^~mb2aBD?DxRp>?66VubKoPxT+ok6TWE$Oc41- zQ%rWJ?^L#*@YNYE9z zqQ05}V=mnfavXW_LBGtOm`_7${;f#b=lYy_ajeIbq}IxdN9NP~3#H-ObXM_}g@wAt zZy)7vU@kDZ7E>7*U zWb7JRK+oXWwdoG10_0pyj@4n??^8IV|1(a?rF`_^N3VwS8DtVroLuHs$SvLz5*#q5 zj$L&Wfv=#e)hJ%^jA)%Y?dLk?hh~=?13~aFHB4k>P7tu1G(3HC`x#ch`#!O**$}oN zv5!Mq=;o|C7_E)+x;AfWwm7|zX8CIx>3q+gW-Pl{db=rPo0jkrv&C;d>ZgekoiAtV zEIt(T*jQ`CEpgu;oOI*K9}u*Lem2d^T+TNsK2TXk>F;h&<$3evxwq6qBBwFi5HS;{ zuCG0-T5PPs7ABX^js2uYgxhv> zb7!nP9Lk_ZQ<<6By2|-boK>4KDNF3Y1U-0fqCEnNG) zhLR%E?`!iyx@k2=H}{Kyo5^X+O$Q%ePN0Tu^M>1!i(7%H5*u9?qWqV~-CHN;g!bKG zB(Pn62w_eo@3y8)uX&OCQ~CS>uGPT6cdR)Y(0en+wXN?@Jxd}P*s9o28G9jUbrZLG z1cjV!9aGfvwa4hC=wh7d-X!v)6N^9p3@&FA%5+J11Or&LPh^?^xA^ALxbgrvYsh&i z_B&vaa=(x(sWrZh5V{{^sg%__!BG+LhxV!%Y4xoM$#UGDKeq!qDdxZOkCaaT=KY&C zO$Z51z)*JxI6;&B@l;v*;jH-cj4*?%0=csGZZyv*cDB@ztr%?;NZ(fq%?R7-LWlt@ zWlr$fYE~}&7NR24xcEvhGyAyc?I`hV)+1T&+>@&%=UW5b_j`gAjm+I>r25}RW=-1m z80X#xG(UYB!0|2voy3$lqm3CnzoLmaGKE|#fRHHS*$*OIe5=ja=j(-4v z;wND1QxpoB^M}bj^tl3m0N~BhC6fLKOrV(a;7^Q!r?~(G;7kJZ`_YXl!0{Yy1H4I& z`B|ptuc&?;+eqC1rP4@Bk4XBw@zZJz1X)=)!P)ZX288h2w{->DgKkmCfW1=tL8bD2Vt;ij1UVLDWBJv_rgKD>jlDY1KJ6`)Nw5v*QLR5|cvD_n zRc{d1_Ph|_{(<)$49H~e@aSI{y}UG8>3hYUtw+(gvje#J z5(HEgahh`yko&x%fHg^`N zN$4+~0MRbLbs`k7QMVe7P(CEZI*%%e;;qPIw|yd#g~&gSfqOs@_E?Iyde-v? zcoILx+e}X$%2^XGW1ZKvt^tIN-=ItWF`Q$+!kVfBg;w-VZs`>CCv-hOhO1ZsGE7!r z{RuW&{u~=WQQBhHg)eryc`*6p_QL0BZ zS0H)6@T_t8V|Xo%V&aA2z=2T25Abn6{fGVw*MD;$5Wr)yOZ;f7`#$;@L{YvL&?n@k z8#$8zbc*<}!>w*K2{GFQ$Tr2<5kMvZ(d=LS>E}MpJb+;XyUaWH{EYkkj7*$;q0C2n zBa1hY$M1EiuV3uq&~2)fK;3_Xll|@3+GR%VTx}G-yDbL)m;>RFc-%iy+Y4`8Pn1-^ zCKRBYc{uNXT!*2D1b8Jb9z);Rl`R*lhF*njlZ6KFx8-7+j@VCxx!Ri>;T81++%WWf zpyJfjM!Q+*`08s-1B-w9ijL4WeyGW3-Ie>=pPd{AmBT0HN?l*XJNsWPU?DMGKP_w2 z{Ln+;0^d1%3Jupcog91-z0f7K)d+*k2wdA((~swyDUa!S-HODD>rEJRyHRO&w6|z= zQ5S1`6?<6&%V#e(+OFR|TfZwt<{;lSlvd@A;L)su;xLm#I-La)>0quKxUcA(0gk}J zmcw}SzD}JI7JeX^%)k-K6_(7~5zcY#YvYr9*@_-Ad$)Uv7QTUa0Ao>LA#Y5aZ+)Ej zV!g{iR*ZPE?EwYt@odPb0s1V%O)?vgRYU7;jBp5W+FEBiS@2f(&&4|nN+pd>E<5b7 z8_J5BiXSXtiF8m~7Fr*Eep-G^cbJ*m5}YaETy!Yl0eioJtD@^&xEf4X7h@m1KX+IH zgfeiq_Yyc8G_}{qJM*91WK_(^6u^las0BPA*#Nl%l+OAMG}}0fC@a~?So!6w$`JA; z>#09uIxUYrx5JwlMA<6XSkc|@R&`Ye4xxb%gdi-(Qw&$7iSl>T-+%H`g*ON~rwO<) z*%U)a8o@ivlhCrKVDA_O1hu=u`(L@89J%R)vp~R?L!0DyQ2nXQl=!<`z?=<8$K8uR z)PoE5p;w$N)dmdu?J))1$3Ch&k7yx&La^blpvLs>8_0~DF*PZajo;j88put?9Ve~1 zE-Hf~Cp;-gy(2-^I1z7V`jxt7b`dpuwfa`~ep{wY+{2FGj?aWMQP<{5tbB|G2SSwy`vwXn2|ZbuY)$)RAAC9>b(FaMW4*NqYP%{jpo0&z*9}FdBvb^B zb`a$NN1#axtp8unh5C=$s_WeIk@~^nuBrscYOAHoL`iFh-rGWyWiFLF6$Z*W%Gb|j z0DSG^qD#JZ2hx3zdnhq4-hfy-%fyqGQkPtdV)&52nVP%eym&^dammsi1KyT~0250C z+lT za)9&$TZG>C=MMnm0Korsog=}-0j5{h2=Q_wVd_xXJX$(0`nR(F36geU8|3hq}L zWs}D|pb#+uPjh@{o?CK7{{c=Cw%$W@_pSjs>H2859g3J(iF)6mD#Gjrlm8Uqi`ZL@ z@R^B;{f+0wXH8d833Fy%f&j592YW8`p0{Z=+`=*)V5DD2d>g+0_XV;p>n>f?Vxpv^ zN-6zac_gO~!Ef43MIWI1914546@ZDo75p7 zXca5r4z|wX($nd=;DOGGqC{oX&WCdT~_ONM{1bS3}H=A!J?&k|g+h6X0j z9$Gq4Y68QuQSx%IQF5_yQ)*u>y{IKnM9ad?mhy6o{NFAa&V7O5KU5R@lak@w|9Z*r z0c9CWV)k3ro4H%q4Abp(a@W>BnzB~i$?g~Jt&0-*B>mAjUGa2NK;QL_W;mA+zS@f~ zi?L0M+b>b)svaKOOm!R-S8R4KolZAu1?gFk3l#Y&VUjz%nDp#u#%}R@_}*60`~BB@ zrW}g~WcW1#Vz*p28{Y7TOBS_viW5A35evdJY!fCa{@9>Ec;&_7RX`IZk9SQe|Hgz( zfLwQgE7Ez|-K|4W3HeL{q7MzY4@|H3l>2>^;2d)xI8|1=M^aao5~Xs5hC_h7a%XJ>5cAtax^BsOi@2uH>G3Bi5yb-x5`g zFua1%A0W)Bqr@m$8Vd64i=1BQG#^*F>#U6mCM{|#Z_OT9_!l18PbjV0bal>*1^cdU zZ<`J`E~lPiawNoV{0RyArM4jtAIA?8^dBy5$iqen{9TkbWOd?Urv(0fyXK(exu7fm zUdcmVfN*jCGs5+qmT>?y??O2tP(bs_Etdg$BXVR093jxP)wPvqkML;XZP z&dZ_yw|pW{J`wa3sqTNvCtj9?{GVSwG0J4tm;70yi?xD#Io4)E^MJc1`+z$C&#NVN>`27>cKZ^WS}%i!!;w>2ja_1w%QclZY2X} zn%9PGGp@9(nJ2D*?}K{two#*@Ny51%b~JsF>Oo&g2zAm3Th200P|MPsyy_>64`uAl zNShWI-tgW`e#7W{KX}mBY*Ucx1$w`Rvaf_dzDF0!48=0KI?{m{V&Ab`I1V)|MZ@Ia z*=zhBzX&?&m-i#a;y;~qql~0vu0&~Yzm6_XX;&%Eo8k&51q$s6wE#sGa|W4b_j}Xw z`?9%RkGYQNs^s#t@5t+y%6IxMpg>;--Fna|(0%nFo~t{@{ssiwk%=Ih?v|)Mgtte&b!-D=ZFX5C5)(RA zZrK+gr1K)mWloNnE*2w^{`kqv=sIW1Oerkj%koHYlQ$DLt&fZ&{C21RBq%rHUY%|C zc3AhTkUgaCWpdW;qQLpWKKrZjMi|fUkWznrLfANm;^sK=gps%5q%o2lC^3X zJfG$a6CrcUXHpOhC%t>`1z#s9N8RJjk&a~B=nB+CS#k3K;{1Z0p87VWm;ma7`Mln8 zrwzSGqL~;vvD5Y(bPA0*Vf^eEW8&AvGoW76=q^rLj;3`SkXlG3(%_fGoB6#vBRj2( zZR#^Iy-GMu9BlNh;-bjQ0gF@Hn?9*dUZ(nOk?q!6TpUa|Ul6!&bD9M0Fd!d7SPReY zz`PnTn#0E!>(FREYNoLSpk?X36lyR&s?*tOXsXNXH7cy=+b}0)bTvkQ5g9Ozeap6# z)CyHx;Q7n@*|*ic3^L&#N|zGgXGv#yN?r|3$NQ*Gjs>^^$vgra013f+8t@WRP#fG$ zBFWei2cpp!n6Z#ueLN1}Rlm%8FOqAfh%ZB~{o8_y*Ff?iYMfK7UqXJ-mveq2Z4w5ly`7`BH#w zby>%+IcQ}qK-;#+Z_X%(Ub2^?0b40=Y>2RBp9`tY$zfHuY@4MD<$NRl0RJia^AJXH zshdl^Vl+Xottik!tmE%L6~szkbu16{V=ijTBx+2sE6$76eBleOkYKV|Ki^_s-)s~r z_I#FmRM)^Mm1zp!VeXg4sZ)v?m&EU}QQ-l7_+Ye^E=Xcvp5;MlGQz!fNbqpIp|W6{ zt2de_&zxo`+(W-V2DH3!Wm1`yl%}dy!kBK zk@oPf9B3hGLmc^GZ)*1LR_4|ePuz*EEoMw{s*ory@wsz*RQL^Y&8&|UTHKqOMgG;n zDtp*X<~x0YLe|$I_%0tHj+}+?Jilqbh_Wz|7oaP09-JZUB6xO^_Lz)Ki?Rt?K)z`y zyT-Cn=lQr08s+Apz@eBm){;7}|O{1{u{z;8TEo7>cL7`TVFxOSNBMmFqNaE;u z(5&M-_5>lPRqa4IoVta=^t+9YQG`G`qwp>H>Y{BlzrD5&mEETSJ=yIX+GZ0Kv(%xH zO8UYBy(=SeQK4yV?w_^AASSok+8E6hhCHaZ1Ln_!+>HfoXL>CXk%CjP-tnLJ9Hu$- zN;03xOuJ^QCld?WN@w*#Gi9RW@4Q$8&nI5pdoD2ZlA8-gU|b&cku11sG-d9y4!wo> zT#2)iJw3JZgis^IrL@bR06%=$LFJ3oja5$VTDyU(1UUY<(PTB(3G!xIi=?HB zP-6sZgVE>}ro9*m|DaDBf-#{;9(uCDdUYkJggH{E> z&>5=PU5VSzcr)i(@XXZidb$$9SVGx(CDS zp@80;m1&9BR8L<$paHm{5qoS;b?f~nl*&9@wHpyNE&NS7=k&;*iz|z_QT<-@=8iqE z3d*oWMgBO4gN*ERl^lI4MC`c}z0Rm9;!a;Kw@il=Gwo|J8hFPPmvp_`=j4pNoRkSh zr#1lzT;~>QZzArNBb$?Mr;3Kx<08nimR<&=h-vpFureu^G()5#~$vAQO)$tb^TbmaAc$yq8G|cEevQ>XrLT4?vfd2bLL9J z>DXYUq~Z0_kZaVZ{&u50I4)P@rIGfj?YaH8O%EkbRlV<)hNJa27C@*8DJxADFxTV^ z=WaSt2Y@!YGiZIqVNnCcV>Fe)B>H@MX=oH0O-B%S*UwJKb%!HajgZw?`uV7bA00Va zY&{z+CR#v!i{UfIv&B0@l{qyGIsDY|>;WBHT0Bt`IK9k;t3#~o%@Io z+icmxMM?oIC#Vj&aMq?16_%8=VbdrZ4O54x!>Dk5H(u;4zaf4iMRdV{k%5zjBOtW4 zD-k1QYs0TN${{m(ISJk=$1{R$8cXT6Xv4ymM*Shg#DYoh3uIjm@U}7>NK>c^Q@qE5 zJ}oL0^ueLiTH~!e8fNk+BpPvFR#UtCZh_AYQFGH(m;84nWW6{bBIeiRU)?+GV!HhH zv~eUO)CSD5bmZ0XXAFbBkTuG2X98&&DYg=hBoIF4B;P>DRNp|vz5aWax0f@Spn3yl zgkMx@JBaugto!Y#DKhXZMiB6YjScw33_lAqk&4qmzCIH#sIK@yhejd>^X*z;^6s4Y zMe!aprW`_Zj=Jla`h7wo2idM|ny#bj=DCysGb76Ps1?%;#ppDz`$GwKXISv0~$B|FoCgN{=qXMfs^Kscm7{2BbSZ@p`#olF5mA$_F!b z=4nZ#_)oyZQq+OW%|9%o(z)rA8q38`bxdzJSwgOFhO6JiL(AaSyH#_`2J7xi4!cc^ zB@M&55*LfWRQ2)J>n+?>pR6mqY#!(#@pF|+`0NSc&q(dL6Flx)40EWAD$c8K=lp<^ zh{M6C5dZ@GN>H63>eZ(fnIBC`9MwQ=%;g1aWE|FAvl>lu1&A&l)ZWQ8S}^_SF=YO2 zBhUJBkVB>tQ0x%Mse|>Z957VT0S4JK{JL+TdU)jtPqcLkOSE41k*l5O)ULzYCUNT<-}=z6T{tU-kpLL4)T zEqR*FIV^8j9&e}0MGpqWRi3H>9!K2D$`8|#L~4+~q$w(PBPnOEF*93OSTJYn`M5@5 z3Whb}rBLb-P(@K%cc>@5WK>rh9`diQgIJo;g{4Nf1kt^}v$F2lMrtF+9hvC_u8XNo zEE!4lP17C^@;HImzu;RAm*6|hUZKBI)e)CH@FB`krMtuA?y==nKO!P%xzd(I(KFVU zmE^BEj-HBO+Lsf;H+`d*o$bD5m+_0V5Zj2#YiV3bh+h}TqG4);Z9kuP;IVcJUN?;l%0M%w4Vw&Ye3d&Fd}MmH`BP56iENE^8ER%ZihfoRTHW`+F*w>tHsP4vRA1O|CqD1B)@{H%Msh}of` z(7R`EE*=e5JkC1m7TylFos9-I234eNA6e6enoE&@~31jbmVJkaslNfnvzqNm)pS$15d@S#I*Sl!zY(!-8o2@pTN;Kl<$=7COgeB5iE>+VxzAKa?y)%^x8ic)hX$x zQ0Ud~Gb}2F=-(>eeV4!A)yh5;Qig#kU*J4@lw!-Nrh7wkopxNmbO$RcD3p_)+U@)&IW2erBTaU%h?bG!Stbjh|npzu| zGjF6=sf;!PGJIhQ2WoKL=lA9ZX+=kW$Yl+!DDT}g%&rzk1pGgueLWsw= zgXi~sJh@JE-k)dKR&(*ZG-?;OSKUCnuD07mx~-${nC9dnQukE{4{jHFo4+2XPMph`i05`9lpf8Vz+-JcSBOl7;v`VeWv$^tn=+#ryEHrC zCIm4wR@#Ucdi1zvHZ)qVQ?5#&>BN2_bIM(#wUeEDu6XV)a_}0P73XR|n&GU|rcp_8 zK2Ye0rv5dfzZo%#Z+}Hgk<$U4P=N@3rS%L+7se3FNBlUli39>(o1(6$XWFeC1SaGC z@#754th(@h#!|Xhb*aoaM%N3vY^X|yBygN*oOGXm%{vqN9NNIFB57yBHR?{K28*Af z%2Zb`Y_2d+6lGho!on+>p2VRo6YNQi$QnA9Cb2({5XtTmqsvId*z_lejvB$6Le!MN zxjfBwbeKxwpWum0-YDFdatTHMF^(0CHySS#WT{J3}5uTv-A^MXe&!vt$Kd1B&=D* z$|LgQ6f2I_QLe=OPvutm1(EMGZ}S{PisI2k8xPssw^dgWrhyl(lDN|@){ewA7GONb z3rEq-YZa-13V<0t78bX8Pzy3LMqAz^ubGUu#E&}|LZ z6ct4YtkO_?#h4DHKfqy}9rDz!vO?fIO+ORecKGtyqvO^qY41~hKh9=}o=>CuPqiC> z6owL}mw`wEJ-=mcdRwR+P(E9 z=hE-pp6~wF?@l6yjI1!ccVS~@1TRFh1m{Ux!UUUqVpty^$OF&f@4I-1^XZCG*jKX5 zu)tc?#d`evMT`Eq8=nd>{7FVdGK>7i_#SvUc!qUyc5zSsJyf*9&b;4!MU3i%( zCh!rJSo3H46wwe%!e9b^O01`2C-M6wKZg2!7$pCc<%4qVw+=3DjF^?q3;|Me;ZiNY zKXrmevB2NLu5c`m>P{Z{@$b8dr~kWU{lj+oKhHAv$4cq`6YO2?TL6ZlKY<}Z%=mY# z{l4o!Mm_&@QFgws$#1>l{aL5qEhT{89Izlu!0yg7GBt0*IW1TZ02TZr_r?F_`)Gga zt9EJQ{>|r#mzSOAhdunlCE;)F;XfRvezVN~OZIS1u0Pnr**Vz$*C0+$Pyemv!XWO1 zr2M}I@&88*;;H|3^hO|6S6fr!T_p_|HcUP>HC&4*?;UC88;4l^%Id%~C#?iM#DA z@bJ7?aIr7juBW^?VEc=~vo|$!*djMCT=;+f8|-{ytIQ|8i&=jvkGzz_D}59(-Jx>M zv}VC#5IK~TP{5~X8(I~lYWPnQE-A~Z%DUAfIJ|%RH{>nIB%aQ90s%P#> zvTWZ5Ew49*7r&nIPI3kj9{h&~I9epx-8z+{(afA=2wrV!9FoG_MbaXdC($XxCh}bO z?F${Y*~e7aU&>`$mFu2GV?q#LyP-Tev#JBkg|SbqoeZ#%L&I)RG|Qu`80pZf+9Pev+F96xv^Mr3gpFYPWdv0D918m##A}3m`#k1eBpn z38>{kJxy5RlxDa$WOmk-!0yL;%WI= z9aU|vnPFVn_bSE5?D7R+QYSN~r?tf+Mlm#DGE$5o-b3>+jb*^~I-m~jCVKwf<_@B* z-y)y0dV;y_c;O{4BT0kC$kKh|GUFH(N9@n(bP=l|1MdN&O~Sc|J?spPVpd}{OGD}z z#^GnUhpkyKOEkn{ja`IveleKEE&Q4^S2nA=ql&!$li8XWKz zDagTdiU1S5#t3l0AG^_#Y7qvKM~zdMd_h6P0euLe3vYHPL)1&bQ*~wCpb7F3&^M63 zVUye;yb2X4BB%8Y6y7zxd5Wq9U4rO%{&?faZBxF1TCCu(H8Qka(>>GOI97y=4-gBh zw*-z=O$Kt0EsFyJ0AIm0r12%=pYy0L1#(T7Ip*hv11$>U0Ka+zRiuEBzCBK@^TF4G79$-4`?>yhbGvG5SjP292SnrA zXtlb>w+bhZC=fo7+(Zmr^yTRCCqYpoaU&Djn?}x&(q2+sAo##<;U#L-blsGL=IiyP zyV)tXA9gg~ylkZRJS6)u1~Ywi(Wo`a^?SH?=6Gk>ehA91_A^R z?hq^?XmElPJOp|J-As{8BK z`9U$ex@ONY=X}RI#w*YBxOg8JcKzd21G)Y@Oxs7c#+Js0IeUBd!q&Jgg13gzbi>;; zsms$6M3yhP#bws4rzC9E-O=X^zayp2}ehLx)1qY z-88le)-c91Hu!wm?_YS2j5@3Uy$ zjV;AHFjcia&ZjZ9i`*x1Ld@6sc+#=`iA8ZSNJNKrwgh}ycljW(l*7N1sMiK+0IFEv zp{PZPwvGt5R3;hp^A~{K^h(tRPSpV6Q{Wa*&?Rq@Exc_ zhIsf$zq`!7LW#J$tU!t&mtglTmA^GgEx>(qa$^1%LPHKP@RZ#{YNk$Kw9h7iGiodo zlGB^tNCB?=5|}GwRCn{DR*#Ybfmb6vsRsY*SO2S->)v>DGt6~LdR=$3QuwE+gPI@T z5uk}G+4(U6%^g@ufH*h6Ipujfspl*CRqC%8I)DoB>OZ2{5!s?zQ2ErU_!k6dp<=^OThf)i@$DvS z5Qwde>Y4B_Lx+Znp;A5XS^B0vY(|rd@qN~;bM0{I(l-C9LmtM=)BKKAAVAh3`^lV- z3ER6*3&aat;s$I4vb;^rae~LMq6T6 zfZ>F@-E~pBZD9^!;;p9qEI5|Ds)=GoZqBm1_ISNK!lOK0Zp_u5SEC0=0{j=ptCM{Y zcwxW?y+fD0hjmc|@%YJ=sZ{PS@@uC3<^8HRst+IcjKx6-%2^E)$sT0?^v>KwkWTPnQ+!_-q`X zds7%f$qaZ1R8(9IV~LRZ{%0So^9l}qRA{aOu!?|R<*SAMb6+4qS|zq8J#$)WQ|or8 zXW>u_4_4XI2TH^`_Y9ew56H(oXQK^^GS*ZH47I$2?dem~)X#WVVy;C&URt{BH8$^PWim17hma{{yOXqaClBE(bA!6b_7Bp@_`;dx@!Pw!E=f z3rhl;i)VqU9%4)a>p!a7?a*utewLebdTuYKc@;ih;6)hW2U*X&RRi0Sr<{^s<>Ofw zW)boXRv*xE~r4T7U$o7Xodb?>_&R1j7np;R+i@GlsxiiRU zD^4URwZ;zDP^Yf!9dPuo$#ZY9FF*2-3&J-3K{ z#3_!E${}_%`D(x#sJFNCN17HfMw^0ShCPJ|)67qOGG|2G3k%yn830p*L@V)KQrQ!$ zsVQ_qc%`&B&Xp>)f|xO|j@SdM$UiqsI#}Yp>;yY+4UKJo4YhK`DGstYxei06n?u=8 zw!*~liI{IypQHdw%>UP{760}30{{DD(SP6<0Z0Td@4qCA{uK-NAK;1q1f=|*B#U_Y zxc`p5ZB|p&4C7a7*^mpzoO9ZV*T}aYn5Km#6IAjkhx2F7kF$DCvCl zu?n~QMdnCo{LL}#uDV`fXZu0R+IVr}(ZpZax60;Pz$2|Cz4_c=wI1wM>{RoL`fc2U zjOAef_xWyW1&+Ad!ZABk89kZt>+8w)w*h=V&uv@8xZq`As$7yKBGA|K!du*u- zH2!!rBP2tqzcHqLzApgxlb3@Z2-Y5teqGRx8nsXT7 z4gf;CDJ5^F(i{ug<5{LTkF+BfH*$>6vMAYut`j^O{`WmUUezf9FuK<%oTtpIA5NK8EG{Rf0?5HFohW@DR6znkGZf#HhV6m-}!m zVf!6l?zq7p_lkl=W|jcEfQa|&w;NhNisfS5ixw^O?ez12SEXl-Rz}gdxz{;-O{g?{ z0*&%^nJO;%p->wkzG@vIAO&gV_-dId`5m#rmI&cu6x3?72Kjn$_j*#dE^}s?#&7z2 ziTR|`P?Ohg0d!x${=7`7bB>LI)oWmWDNSqXqy2e7!w{Q~uNE~}eR_N5k$tGd;721z zogxAF%SM81{+Ex-BK|gA9MtiCoeR9nFB=udj;v|m!Qkp7kcIgaCscoO9%x-1XHWy< zsDSI5It3r*8bE!bJO_xyP+R;}MBLrCNA5Y1CHp+x#xFA`S+UJq!o{YC-^J;)*hGfy zMVv`$D!puHWV>7MKIoTJjkpb~jB19Flijrv<>oDx{SKbH)wz?MJek&esHANgBTo}- ziJb_kLRxWoQ+;Eb z#_ygP&Xdn!@!t)Qvp%9z`d-&YZxDY<7ix(&g=6Zi8Idf&BMB^DsBmN&{quQ{)9CAYdz-bm_?ktE4F8_2WNbf5c$CBeGYr>9*u768qdg< zu(j<(->J2i?`CPZw|})%Zmh9b;>iyyi5)*)@VIeObjPe3 zArNGXTB%@|TAU1^>^Nt!Stk-%m=!5&OCLse&=>9DOh4%n9BNW<_4Pmh15!NCi{>aw zE$N<)%X0hV^5LmIvj3g>L7>X8(9%t`@w5FK9j@hNTaTnk#&}HGq+q=%i#a@1p}4ub z97n|_-~P5ab~9hW{uay&keSqU))WQY7$N6wh#43r6p-p{?^vU7Jr-%v7BO6^6YZJ? z3RcFT_GcC7=d!I^_0u%;*`3)%ST}Ev*yG1?O^B&0JXjw&9+@sX9#x#RWG-ZUSb%s2 z+G80dG=JL$eODGcgR0Fgd|GH6;T>@&>S=~NZShV=maO;4=2ub1@q+dxawNjhesn*t zRI0KiaSk+F3l5k_{6rr1T5fbpn^W3tgvX4fjAk-XZ9;fC77C7r!%mV_J( z3E5A?KIL*5;Rixj`!-K7@vsAnZGBq83hEm(c~T;y?`H`23v?f3EL6(C2*uvqH;p<; zx^_S#iKls6c5uwlp|a8&>yrmZQ+6#t@hrZ?!QEbLS+%*YwW}rSdYcd%?>XLcYLB?m z+QrE7*`5q2O~ zuOI100gAZ#bDA+p7Yl3GKTgho_F?q9>Cun#ZIjQ>y~~uI@PIoBWvCJWS;bXJb zQAtq+Q5!%J|B`))cMrV!73|~KA$?AV;AoyF*miNQ6MOBY_Wi=p%mnarv`{A!yIXQNNId- zYpp0=adwm0yuRseQbxKR3;(cB>sHvCH=?#XL`ce_tje)!=5>uS3hxg|h><>s8aVg) zUX^o-h!?G`v+wMtnv24=2o;bUV%)Z47IKJ?28|Ik>*|P)FFGpZY&=b1PG3kGq-n7k zS37b=t8~EU-FX%JuZoJDVY=1zBRk&+K8Bhsp^%Xesf|0TNjx2{4keeOBYPeb%nAV0 zkPp|e=6R__q^w)CHH`%La#gOmD6of~#5R1b-3JN1ARlwm)QVA6`a11|x&ti~+azLmU(-BT*sOBhD^Rwl6Wnpa zGPrr*9BJ`UFHFcq#%5aLS(c)!Tl$NqvAuM$7E1z^xs`aTqUFIeur-C;wKcL_k9Agh zRBnMP{JFc#%qURU#0+e3)#OV{*c$4H?xsW(w~G@xwJo)VV%>cHGut%nn}m>7MtC^r z_LmMbBT6ukw11>P_?8~Dhc!8u>mIZ~JOdm~QkE+&NNt0P7~(r%>4O1;bN6bs2Z@G; zKgz<`nc{X8)yR1iSqLOnr#Mx7P7cF*$`wkiTUw@ID!xpeO7zQL+q~sz-Q_CsvAFe@ z$3%F>o~ZD?xhVdCS~UC(<`WbDF3O&N(4*C+x~3QsioxZTlA-B_GsLj8$hk2|Y`lVK zH^w_6QIm0UyPPvi!&&y=v1dM9sX~c|igFp|fVA3Xt80@`+Z&oQOiZRR=(X_^r)uS% z_-eZkeYzKQV*14^%GQ~&0&xDtGv@vt(qAqNdhN%)VaU_xW06{tjllquHH+Jn)?ijw z7(BKj7iE>Tf2o{frPp|;K;nV-+DkK%%#A&9gr>B1N}k#p8H1g@Bn^YHC3HLFb4~&w zE!l4s2T>NEf0Ro8&2lbgLtu?9bJhbyO`Ut*l$Q8FVdKEPt;DNw&O;_OAx{9OkqCvU zg|;J3S(a5pGgz^P`*aOMq|G99OYZTA_&Eif(wL$vtzlyl=g5d;0d+Ur&PWj=Y%EHn z`ovj*5|`in`}5}4{sXG<5)FvRvO@~I2uIV#IlJ0MFB+Q~J}mPm9Uf`2-wtaUf8Kdi zh*4Gh$n|xw%W0;n`+gR0J)@LQdZi%YBWbsNB@uXtuD(#W>CNgrFJ; z9lZ>#)A8M0?P;ff?GY?Iyb0q)*UZnxnG>V=@2=R%&n;O$QNnNFLxNDLg?kl_kSZ@v zPHO>qWju4p?qXCLAF7kuB z!=Ml6%3R}aSG(dQCp?>Ys4F8jyzPd~71!eu%Wr3fF{OJ+EL3&NUC^AI2S6V6h;)_Y zff?TDM)t_w$DU-SuZVcGV}u{A2Xs{3jqE z5;L!BsOouKYcAvYY8aHdbD{81bQdFxh9{d?>}QAsMT2}o|HbGx1{t>RJ|LmY&C8xh z3gr?Hc9Xh=qSho+;x8&DaQ_MwJqGq5Ra^x|Cn2}m^nRh3OrvDc?<6kk21w1U*5Tu< zxyXC@FiPuD~O$G&4%>iVWQ=NT4u+*L)?u$Q#9C7K5_atpV}sB$aZvrf8S-FXf< zV#?r8UVEhbx^f76hcc)Jv^tJ^{%m;*0&mv6Q0jrM_$3GOnmtudo3S0J7^#5%=o80tvFSq!@*92u&L~(2NWnT@C z(U2!oNoO?9>I!~%)ci7~)UWIdv36^KI03X~!9iib=P5l;O>Ci)O{ zfR%ajkvgQCv~J-vY4gHfhEaM6wdsC}gC|#u4B7k0Ks@9guf)LikyC+#FX;LFCxsTR zHg&ll_LGd_FBvbq2hk;%QRaaxD2pD>i^YK!q3bf@-I@yEHGT>p!zvlCzpEr}2&HUe zG#A;c@wLpdAjvbwDaPTEAvn?Ctzk_({jMM$38h=?RH!ntrV*IBH!l`m9kpzkv9GQ! zNtvYNV6aE9=JZo-n|E_bP)oo)@9B&%X7FNiH;=TUMi{#xZn&x-l;M?+LGl1}MFL`O z1ov;waW*%%uoo++vgMyy(bMnO@|%jHOfy3cNgRQ)E#3>%==qVHmu6HgkGuOdz=kS+ zEAFXWTO|9wB)7yGl$dO8xl0}KBf}Hh}*Uo^;5)ia}^zYo|fld zt?N~|Fu*5?&;QZf%Q8y!qeb7AjU!Zf{^dZI!21P1tx_-~GXP55)K#QJ(on+IZQmGr z{rkfp-V@iU%UYFwr=ziRYa5;G+ldOF+sdx&Sj#h!wEBq{D6`r{y+K~qlLu>*IX-Aa zre*Zzm^kj*(qZ8>oV?}(*lBvj9+di)lJNpvSr|TUivSOJ7}2-R*_#F*&Z^E9>z>wd zOtB@Vk!xHeJ!L3(vY6#nrY?|2+KF1#SA4{6bL-!<)S7-LWG6c_Sio~}HEFDTRdD`z zA&cnPVvXcI(Z;fu2S?lNeMu5rACp~8V?bFJ^;Jc8-~0n2f_WKDymGL2$NI5rRu8Z$ zjEl^eS6~Vw&1K{DN9FZ(Gt|Q|CtrN#(0}StrO1Z!Y|S+VDM&aSMZ`JVeVA&!UmQqg zWw5ikb(ui~i}3ut%icoStcOmei-W(*y67;;*(JsrhcCJqS!X3nXUWW}1?w)a;56_` z;N>jl6lb3+`{pVEzzi}G`wHv!=Jwg4K0yZ zTg&W}Z#y~`uGoFmyGh|-qaj}i6@ebr9k;hmlo=>4m-12tu<>j!zJ z$;z#Fj4$-qN9+&p&>3muh!bt{6}PI^scn-FZagSFDy)ceK6k_nFvgR;9B1}M@!-mx zW3R}0hl*VA}PAewWpW+Z*lsIC0OwvFT*cuT?}1xyYXJc zbB1@yw}0#)UBrdi1v5PWB#c9WrNYwD2S_#q5cJ}_& zSJqEEEH%}}2vRZCJnepEQ;+aj27j61>yqu2-}cU3Sk;B4+>J4F@Ymh@=;YZ>{T36P z^OJPxW{;O!v}ZrH+na((DB#B@X(>xyP7==|eBZV=Ahn1$bKrV6lKhk*X{+`3M5?B+*| zDZ19!%}n8^_|tP$ukeE;(FDhd||I+@}Dxq%0KN<{~k!O&s_NoKQUycu9LGsApG%%jpJ*3_8lJZTe;T` zj9*Y5RxU)jWgMm@P_1k!^oR1(@sY>>aGF)HS(R3)2#0Fr9F_OJkfsv;C}U6Wvt;>EAheUlg~m z?2=r3GCPV67H*Z(?M**)*q==N*&U%6^9=(yBVKi^h-6da{49HB^OGoa@c_$4Gm^b}hB(gV;-$tEl z+N4HqKvRuqBM(fpdYW~)oeah;$Rf*iIiM(mr%K=05;n0w3DI3(rjw*{F8`{90>bMp z0c!pLE%5*NSM`@EMfNN-5i`6AjK1wIDDV@TYr>(~I$oUaWTonmvR~zX^)rSBqtpPVY9F z7GqVS#C+vaXZm47I{;MlnN$K#a>(qI=HqijvU>$0-)768?ff(kHAMjXIt|a0ZDzQj z&Z(MMLOfOrVe!-6x1Sc5U{r-b!Mwm|<+}r0z#w*qbTwx6r}LU1A5WrWejI1@GZZobk&!>`jd4LVag<#+LT6kB|O5U;Z3becXQNjDqCnzb|kb#X|d z!ahWfGfP}$UV#Yj3lK=^121mR9}mXz=WCr5MMH{^f;9ah!u@%8B8na`+)xN~P0@@g zS+!^Gv{3JtQ!%gk7~AW%2_h$!ouS}+J;yD3TJ7$|bb~Mpf3Yi46-8(2hF4~;oqM~O zg5~juTI73*(62%<^|3&%D;mG^E>*{%D`krWM%L%7N=|OZ|?M zToO*Ja=z)c;EcMH-ID9LL^o=0XHVrir(F}@r=(74FD%~%fByvmQEAoNXat)ib5}XY zuc@w-iv?M>cT8eq<ER=L6T+&* zt9h*dLgE)#?{`}7#0zb2%qlVYNw^g?Yul{IlQbW^C^p7!1*=7?){IlsRt?(Euh9hj zmII2!<{(BW6nTBVv=}+kgX~E^#OAlHJX1zp8$8LEj|P3GDQyBd5zlXzCm)d}5$OgC zomdqJb!xCaAlG!paVj=5{e$x}JmRC~(~y@q6LKPVI`$i!WHvOc;QHcmuFUCRl_%$o z+_Lh+qjl(c`bArL7;6XsVtjVlW$M;3&Z5T@yEbKj#*rn@;Br0wGT4un|6`@?ZF5DH zSWVSo7#Hs@5^|`-+sgcxWata=ssXaN6~3FaM1F4Y@D< zbBIE<9INzNxYM8VV{k72R%#2hD6T#{bVBHoc>OEtXpkH*E^E_`&W*|+U$rlGazZ(h zJ^dY;Z*17hTNU`vYtc5sP!3t&bdxDr;6}UVBZ4<)4Q91v1RDBZkg_s3xF>Q8zAVKf zN}zffcQ3iAD2g&*^lZ*?QMF5A_-lnQQSIcAh@69kdaA-c2~hI&MjdR}pgCpC`=mOO=sx zf9zH-At<#w7I}fDB2uqVck9c#!G)*Q{h(nTnLQIf%v0nK0cm4jtl(UfB~X1@&TTY6@b73(@?-F~0U$O@2R_S2s$ zFrLs#DA~01c4_fu#pA-fnyvj_iiF1I{gBKtH&2VSSiMmZ?O15Pe+@_wn}WSk_f{Qk z?1@NVp6Q<=w#xj|^j}Hq#5CZy3jRZo<$wPl z^(}=vK{F;;h~h)T02cii3!Q5y_E!h7IV7gPZ5#gDLa6hg0^O=8Nh-D={Z|R&RPgXH z=|ns@1M;g&(0{V{tNlLz{iu>fn-g=qB4EBq%mlQn$Qw$9vZ3H7@Qmc6{u^obe?cZN z|1T-`CK)2Fr~lnr%o+~osNiqe9QLCv6&{QxSUp^PI`CeVFf>wr|5TFvI6t?wcH(qX z7_3+O!lYh0bTwWAG{Uzhj{Mwr635u9@R+L$PJG-_l6Ur0ia1j2qa4awkSGo8X-&;$ z@G6O*nQBDTYhr+~;T+1qwcnl|>8IknDFJ)PgZX`SU}&_AelMd+F0vLBGQv7_1(k(& z7(+wc7p7D5G)Q>-GjuAFO_$^SHam+X=8x^fp4bFXPwgn4;ji2D{;(_BRTC+?iKV|% zE%{szBye!!e}+f@0X22g91z;xWbNgi`cmrAGMzrL`=-(c>&!DZ6o|O@-GJiSIvv~& zRuFfslt{!w_{WDp^(dHl6$4HS3m$NnE^TMjp0OR@)2=kgEVA$ic{=yWz|QF-9>IDti+XV+YNQ!SUzJGy`&EkZFLbW%)*8cDNtD1 zGOOiDD(54&(nd`%*&`3H+sA>YnFe#Ha75D2E0d-}jaGscemZBKRSg|G6wY>wAfTFX z!)GHYYhGD$U#8Gn+yja9^+44p36w8UP%0+v+@UND=Q}r%e2&xz*aA$` z|J~S~z`M|IvAdx}Xvw*9pXJ6*LR5?+*ND5}d@-c7wz0e&rVZ~QudsV;%``d2yR_uc z%O)3sMCE#OU(ERFlx96(o;cXge^>TM{op*WOZ5z5*(MIsH5{U;0@4yvDsA(%0khZ2 z0@5FeiTDLq-frJz9{nYNamvv2C3n-ND402+Ly@jGAEiPpxD3kqP;hd_DS`*F!BV8j z5-YK%sbKT|?h)GUA^3=Yu?Gthq;~Namqw_#Rt+qrw4xeLHM5jqqd$VYM z47sSI(&^aO|E_a=&Gml6o!oA#BMFr_hkQkBO=_f#EY}9LB`#R>AS|E z4oSa=NAvXkH&0v?E=(f#Lmw?;Qm-%TUj^1)g#%>oiaFZ4q)J^EKMJ|X02diV_x^+Y zva+b0KAs3k$Jkyc6~hHbnttq3p$S zRW!U{5e2*`UNUH*6!zgb&UgoHCPvD})C1l@)Ebmy2KT_|;W{m~Bn1FxLlPzJo=7|$!hju&D@oM&PuKGgF!X=AqQ5>X zc@uDdT-9uYO>rPhhDDXTa$GFcY_96Qg{QCyOhAXx-1Ti#+D@Prx zH6=zpRBP=aR1@FNN#0en!pi-6?%8>t;9ZW~yQ`6nxJ?YY4C2kickOkifMcv` zjCsg&pj%)2{IsXUEBU>l)Z6ah+mX-ZX(YqLhoZ4IN$BdVY3HcLRrVE!t_LTj%~c)_ zY12VC6vvwCU!BN<(HQFO)PdM>!DoEDGd+N0#=SWfGm=wJN|tBJf-(wp=*d}Lf-cHB z9=L%z6S$v+Fn_#@{{xEEaop&5>NZYK3HIk+RE)$JsHs5X9hoFUff}VCP5N1P+Y4{# zL^+rXy4R)3&4&T&mN?EyXkOnL4)|ls*lf)rOmC!HJfCrTz69@R)Xv&whjY8Is}ab`t%DRv>|0@8@7<0}BAul-clDKVqM?T8*A3>I)C7~-GnRx)tAmVD z@9`5aMc-@&@xDsxqw4Tmn!e7C9mU0A8=WMqd=vXa9v8%<0u|8#x=8=)YW2?~pCCY?z0Tr~mh4`R6Z0}(qgVh~#(Vx0Co3X%61 zMFNaBh(!F}GDujTHEYU^9iq}hcqqm`$EVAmcm1CJ&KNU~{t^xP8Py9rXfc10yU~cAG&wh#*4dv??jqAkg2d|%CnglPvWM1C= zNaBBU4^&_r2Z)?%mx`o~T2)b9jX2L&ha&i(*rQgVZmZmIr~{n^Q;9RVF8mma!1YA4 z=l^xgsvt5D(us_-@qf9S4puj>pRr7-rHPtoi9x8tR7vPmcdF>g_r|Ve_woqyiu}Gm zAnUOY@<+|m+X1OZ?%T99**Lx%U+}tN_a6e+UvvcoJ*%UZFLJq!+U_*m=wLTji}UTl zu)ZCuHhpqaT`>0{r-*sQHMi>s@9~-8%g4x`F!8fiK)GceWC@Dku9<%eNUo#OBqJ51?(+EO) zibCy=YUM``r>Utl@T!tssEy0NrOCIa?_nmI$W9=`#_1~ zZj(4(YCGGLO1+qWl6FYs_7Y00xX}`IPhE!4Fv#m`XzZq$L5FcP@vlufvm(zlAm^w3 zbX^w&nFWcew*eB@h%{Psgs|44gX(aaQ@SSY;3{z-$#ZR>-j{{a% z*=S4mi+94yG>ua!GJ}M;uU2oil6-WE`Zn3=?d>lkuAWk=t17gt{-OdYi^@OwfSW;n zWb|g!H`?AvCBzx=PWRL*?1CJQ;=rZPCh-nTRsIdM*M?kUV7PyaH)v?|OS>(&x33TO zCT*JI#kVxYaH}*KHkbaymL3CD^e?)H{5ltgOsR7Mc#v1Y&Xi$X@*pNKH6BA$lacUw zUq6KvP(`uPKZ`t7>Re;$hO{J`^B*{nec2=b3PTs0Kb8naqQ(IcX;GU^9A3}KSyZT$ zy(6RLC)@I1n8mFYe>VU)4POBJS1<-l&990ok9-o;GOoAlF>W{nyNdpDYH`95$>V9f z+KGkA9V^Vjqz|QEYm{Cr>`r`_@h(>?e~%&NHyqLLV@iZ8mby*zB>nxYpCX(`0scL$ zPO03M(}e`_30y@YL1^RHS&4*BEn1E;@93vctfvPvRPx7&I(KNki2pnrW5rdu-9vSb zM^x_>EuXHCuAwBmwAA}aGH-b;t!}ngk3ybrZ)Zh z8>7c;RxAhTCWs!ll1oz_dDSbv}I?aoX4z2|%c&7)G2ShveMiTC)g<7|s z2Lz z-FcAmr8Zy1)+Ddb73yj!&z!ueC|G1|r)7xW{*7_3*3Mq(cAe5%X>-tw@R+ifFsY+` zOSE!;2&6;$Gaf^s#P*SK-rcLZq-X9*pe;&%iX`q?Wn!)Tu&_?H&!Wvg5d*HYgpH*O zk2GG<%CVjb&gLwIx6LzhM_P~1Y!#~fIM2IQ96R|w$q!8@deq%xCK`H!f}akH=w$hE z#&{VUFW!?2j8JJbmz3@WUC%V@={yXr;LWL`7cXWY3O8YnR7PM#k%siNc~ksx^Flfy zhSrGic8c7MoCKEhkOO3fgFIk12CmYHs^W+^skI8U4@FT~TFRo^|4-Wkk{2 zwj`J!pDzYun_#H6JJaNQT%U8GHqVH#FFc?Do#%zIcN!%PRUHZ>AF^aA$d@cBe>mo+ zLwQ-iN7|c3jjl6u;_h#TmZvo@BIz9Xgo_J@l9jtkK0iKHVp0@?rV;5>;D9YnqogHu z@5^fyUJC*9*uK`vT&kJD*g}0>bOPR2zgi7DR+9AUm)R7Cx@>?**#vRzd*_I5`^)-< zKP@wOxg}Y2_Be{?VOO+{JD{n{NDXfIVlII3USx*Tg3BvFG4k{j#VJ{dAS{yX!Nqy~ zJRdt&$9T3=*mc8SN@CvOLr44E$>qb_H5*I!HieIehcS%(;+bS@XffL3MLN~iNn4!CsIH}Jjo^9<7c_09!cSbG z7;B!!^lCo?XB4tskJw-qnpC2+Mbm6&`-7^DLnwsz^ROE!!J*4;*PEMxw+D1<>s2}s zU>C3L8FA`h*C}4Hs{7WeGYqCc7lEDbR9yM^65y3??`+n|6lwa} zwNLrIX8&2!Y?VCzUDtW~AcN*P`}}E3ASDjRsqZUjsYx`;AVLr0r%Q?JnZbH6lwIV_ zIhycbEBL`myD4oW#cyWSXaeH`K38Y?RL;J8{zYV|^*YWY!M+b3!0Fu4laK*}X{6YU zaD3k@?Ps)zM?vWZ>f>$?j_>CJCa zNfXz%5-+msl$EMMZ&Q8^!soGL5%@YKn$^`oLN=Jp1OWNi}Um~VOZozQ9WdMG$o zjz3OJ5sT|zRsO;Ya}tQ~gKQd8jw-??`jlrT%^k^qXZ!N(T|iaxk^gEvYRe_TVP&)kj66F1_1pwrjla^k# zG|twn&EI@6>T*W(uB5vd7cy~`2Rh1JhVWD5LWyoIOFU*Wwhe!Mvy=Y=lKo`zglw2S zc@Az=01&mp_QE#1&#!7Dt?R%`veT?DzMn)s71o%#&$pW8oBH_iKUUmX8Vop-T=B z{ngLKBCB5*#q#ODOSBPxM=bWKLliCiOD38#ue0bfM|Z+>7)^_u-Z1wCi-nih0=;@s z(kj_HZ8W#I9Sq`n#3|WSa)7BiGuy(fGG{kjZ0bI9QJ+swK zNY8p2gSVxZlgDHDXAgO1GHi+u7ChBgV7jnx&YZU+=8;-ihZ4KB(|-?%HRc7mbRw!YSgwvs9R%@qPfyf^IMW<7@c#Ffcwj&0{Y}r~&e38ZZTI6&PhikA zA;uq|&7$WHzuW4&XesA!sZ4L&d%8U;OwFv^AvkA_5xaa;Jezg8j`GDC3A3F=UKcNkOHs+Xl&-&rF)v$5Z{p@xgMfZVqUP{PxUx5dK77I+viS+rM?hVj>15?xVe!?s-Tunwq&`-hxb= z!7_(OJ!M4~>G-r%2LgXxoy~x4Io73eX$boa$Su z=?-}45%qgG2)sv};9Yhju53*$V>{!Y55~Q6G!A^|TmH(j{;HRtM^0%Jb6w$3D(XsHJc-Du^pZH_68!4t zB&Tkso2l*;PkR33!XSa}XXJZ~w5c%y`Ovv;RFYDVOf1qBPxJF@dd{~WL+OUsd3c+O z)moklc(Wlm-vxve_}{cDCMZ%faCS>7$o(*VWvZiA%l%<&6Z|>Yz#8L~qhz!~J1Ou( z&);1QsFqwPBk4QZ{|OGIlV5jz(Nyer*jUE(!qvI_~O z>9IO9OIQ>UwU&ijz6(^Hk#n#e{@r+9U9mgR@)}j$-7N8Ctl=M-6-@<26I0Be2c`#f zwBOjwff2o8t}id?H~f^Op8U4?qxN$^j3AY3>%nY8Ms#s9EunN!7#-5ITYtidwxg{B>4u0Q(gw$^M zQmhJ{Jom2aZ(-X{#~JUAvh1gJB;P1rwT=lvzBkyT`>4&ZKEfuRy!JhDb;gt4Ws#w_ zceTpOf=JX=@l#?~g(&n5&7c@>Nh+jY2Ng879&iJ&t$j4qt`oC-IugSdwe$IS?|ihp z5BCgh_p7?uH1ESm1|y+<)AvX(^PtBYJ92R4`qFjRDg1;L?AWX z6y9)b92HWgxE)ZvPMIGGjr;6gkAwJy#YK=w64pwa`$5{Ovt3FdZ!_;Da%}s7Oz&JL zFj_;Ak{DdgrIoAC`Uj~hfvQu<2nF``&hyfERTs6}kR+ol?P@k;e*d^!(&Zo%t1E7^ z1ayw(Mm0U?V}7x~WlQbsLSY#{pR_CUKEX^Ro}3EB-a%VInj~N$;hz}H_RZ6I(^nJ? z-9mzm_`c(#Sfy2rd+;4(Z#;Hl#9%HOA`&;5>rHGB_|V&k75;`2=jqPbnccv zf~|t{8dZ`+PrEOd`xAToMD-v#lfV3vNSU`{&>5Eu?`a&&b~ozF{Aq8QQk-^P8w22y91LpNEcbIZMKsgmUz?wg$oS;mcQyVx=76q{Eaw;Fku#Vj7`g28 zg|+RY5w}-UKU0W6`U7*z;JQ5Ed?(bai`ddQV5sQx;&R%6wQr@7HNj~UwqXw;SU$8P zq)+tF>}FY#QYTCo=b9F~nGdw8{wR}pHzpmK89&>uo_=Xtel-?HCBgZwT{@@y@drmo zS@RNbmMla&PTY7`GBh{1 z7L!_(u|1cRi5kA5DDHnKqmW0dB7TA>%$GAv6~3kU#rf{mN-g|7v-7l}8UsVq`W^6y zbLU3L+j$a0uBPsWjb1{wkiN+p+4y*{P(%u+xDgG^YLo+ScgE_sm(PdKhpJOpsw#LT zHk^KHGjbQHi!TVYiz$gN+flFx$u1L7fMF<{QT+)MGt(pfouA)l*oxFxmWa+kT0tq0 zHd`HSCsEho<3A*3cqpkbM6f!olJ28AWwEKUI+GKbZ8SE-u&8-mm_NoH8t1VX%9A+T z0j-@O>k!FLa24eIkZDGGAfsT+=OsG=K}J6czT`UBPBconlnrm=37Di5Vcu6D)d)L% zzn!8Y&bX?bbtR*42Bmd*;q(RVyfimEGFx3-*mi2CQA(0?eHdy^li9%-ADK-NmD6=B z@2xgtWgB3d@}`ZmT~adr;|L98cePegCp@v*8zZ9;0*2mw9?m#6df_0pu^k<}b~%7= z(MSoq?yZ2!D9~b;S<*bZ(_()}QJ3PYHdTHeBY}MhSo(k*Ln)r;ZDBs1l623vv`>~f zIoH5a@bzH^Ol!f>4jjH)n7;AZl#$HKWbn8oAo~dzA>VD`!iZahRH#v~CC>lD-dli0 z`Soj~1Bf6gA{~RG0@5HMHK5WdNJtGxw{$avgmg%!BB8_p5=snRlG5GXLkt50<9YnQ z?|%2Y_la+x@9gWG@9b-PA(yUM^E@kl>$mRpTWj6-Vx&Z070pAVn;8bg_ofd1^hBlA zQi|F`JJjsQ&$}bok2L)a<_x#(kwU5%w&3Xj#~}WLC@Htq_e$K+&d?91$@ktbBb3uK zR$R6|=?-|0iBA#bG;h-wJ(LZ6qa{0X${KAn7RBS^M#ujimxzWK7&Mw71p$<#2Bl`5 z^Dol+tx&olKQS4ikf&bci<3bXStB=*FQyv@<#g9SmvZd5q1d}<%d&qyIkGKzYNXjz zlW}5WfTyM5HhF*h(qz4-;P5SpSQ_r@X@QeP6z}KniE?E4kXt|5J|v}VAhNrAa6k588I`fy*M+10|i0*|0?Fvo}Cb*+0WK7I*I&-uhDnbUDqN=2!j6+~`$ z)!B`{Tmm7bMc@c;5iT7!b)hV_I^$Wx_aekvflut84VpX3B!*5==y}~T=WEl%%wr0k0p9| zauWXD93-Mod*3i@M49?p*@n~E3g~H>%ZYgO)X&ZzAx>{JxUG1r3hzE;5c4XyX?GfI zC@;|~g9krdvX!-G;Fd|}eCy1I-{cbz^{uN@gk3NId2-QY0tr)WMoU3%p1G^>=`ZEE z@!_B3cYNFL9xD1yk+k%d`_aj7dv^;WZWWvrY+ao2ExcVlpjrkI=4_0uPr)oQtiHp< ziSu3>tYar)0=K*M+(HD5Xm6e=z#IdJP1#6*?}@=FP2f*?gF-o^WyUnSD8^bM=3Dy( zHl!do1c!^n({LqYPl;^5ibvV}%1m{WEtV`3Xg>O>(zS)p-Ko7nV_C(&Gls6lRWs~J zcC0@7saCi%^F8%#RT7Q4Foo-v-Dj*+Wc&nLfr9$wNrQTqYS#K`bh7VK;LujZFXJ)B zX}AyGFUpKoBEO@lEi@_0kYq}GmT>zkVmO!ic{@V+IsbQeKEcqpwrVW!HaS;5e22Jw z&UoQs@jC0}WW(qM*E50pn1m3Ht@V5op~L7IVnK$qO9I&2vg=?@Ptk8hW>D`F?*1F# zm0~O51I?H@UB6$+XYqvvp}m^bK6ti(?F|whX)?54^?lh(lq@*hy?GrPE=e_8*d|+?lZL#x|epW0%mAY zM%nQ_MVri0%t<{@N5gmVLIOzb?ID(14a*KmpKnjU#b)wilW$|ULUL>ROKSGwH$MC_ zbg|oKiS(cDe50N=p^`cpc)E^cg(hbu44p*H$pa$nNv^)J0qCR)D1jDV3g;BD1EIc> zfyr`aE#~&Cuyi2nL29%(6>3Ij$1x_n&&Q!Z&9raNqDi=FhkifB!l6ITMq-J`(^i6qCM;JiSH&S5 zQ*bYuCwRNz-)~S`QoorjqcXuudQBXa2=v|%`9sG))>ha})EHwE+c-fnWOnY`cr*~z z$UhO`TDmtx{5)`V?@2WB0*_otOn@Zi(7}BF>6!OVc??aMbnxVL1ZL)3$T%&SdXcKA zE@&K^t08a8>iqD)gy>R#I^!cnx4nUhDWMqIBto$H=)}b10GO-D+6f^20{~1GeRDc^ zHDzfTy>CJo_AU>p6;E6GG!1va^oMutKqCO=m-_cT7v4J*@j+>E-$z0=v-OBa*~kj> z%9phdo(@O6>jc&j!BqEGM6Z^^0r+;;gH#0`YD2ag$4-2I-yX=9PuEH@!6pSO%6L^`6OX z=!ML;@b`>dgvfKRr(HMHUONvCvucS~XC-}MAkZ4NnUX(jQJ1tw$jHDmtaSQ*(EgHl zn$vdY!*>5VYP7tb8P8IY&=_5`VA@(4pyjUMAKgYZ9ThC)=DM`c zEp(UpD~j*NanW*Cghl=5f~g4`(~k_e z@!_h2iAA})L&p4ci>;wiXJLtw#lY851A5c*1ouQW?$rmw@+-2p$h9<(Bdi&!v9HWl z%7Nk8Vi#@A3wif_W=&RRQ;nBvvk{H3UzM(^A&yv96Wp|o3g?jSHKp6P%rj8=(|288 zgFf#9qKS^OyiQ&~=S)PbFKlvrxj`llxDpJwqWW9A#^=a3EIwc=l=?>87!#%&?jt4Q zX~FMgXM1*dJX6F&2kO`_#Kt-`4=v&Z>}GKRlh(qmFr0j)Uz`=gq=F;&fy6=*x8jDR zu;YbTTCiGs_G62g)f&F=#8~$pcHw;!-hqW~B{y*7Wy zk9XQuq;t34@@1!zMbVwktYwf};B=PVAz-kI#28w_?;(xT!naGEsfo_tw{1_UZiLXK z*46Ui>-Fu%G}Zgcw%0^TGU?F<|Kx_JyF1PY*YfCyqKk}!Wjn%rQ;=OCR{>lAI=U0k z=tgyYVWsO;;SvYzYao=Soiy*2+O5w@-cysUw;z-n6*BdchDVCtHl_{kAz|3)@{8o^ zScgH=aP1$h)(*xfX1-XCPGTgH8BPr;22q z+WT|ZMD?D^(rH1)rhQ6XP|ZYSnykmC-szUF{Sy7+myM)ch6q(#8&7Ed=N{SYkb4Sq zUw_>)!=D+vsWWyq47fuR`~%8#@VT(*S@MlG*O;t+$_K zUuk$+HmEe#lEu^DH@O7i#?`4$KV{IfxJXRC5`Yn8(7?8E5>7Hh(V68zg6EI4WfvNRh5&Q4j&0+}bcg z_@kcmy5K(VkKZ7GMfNCM4Os6K6BrWD$Jm>AuUgtq*0n8r^P!PopjMoYy%aTn zL#BS(DyWy>h6wV=*+>}fY@#vZZg%j#tAoMKa*(ONwWKx4nUpEqblZtbp=z*L;3Cba z;bpqA8@ti_jchr=(H=sX;KX$$E)~zPXfa%rui53J6-JftUJGaMM&JkpePib)t@tGaxAsY%=UB(|y zava-CXKBxK#SByPHr7j+`mJS>uCm2* zl!pbH`Z4C{Z2iC|F~`c1V1!l=+;N` zg5%;q;x5D0w*%jv09CzzN2<$#yVH#;^+d!AW%^tRqzl3?LF z#|V@~Suy+xSKZ!S%A4AsCS}U!0?+~NlQEx*{Nh>X;$Z`{+``Qi=f-E)u2Njdo?3{c#qYu8 zpc|}Q;+TC0^LwWwluoOw#o6H;fm-c!wP_pPr8Nl!W$Y=Lbt%G`{&A|rqf9YU;{uLF zX$~LOV@Q<5R^B%0`5p@})g_+*(L&tlmwFY@w>KK6*G!3?>9!B7y4@n5MHSsNVm7uD z&YZ`_#yR)zFOxQI-2Q&_s{hjk86E-rsqOKDMgQL!qf@S9I8Sljlo7TYuLCDf^|rUE z7J+-!H`IP{DI*p&6CbDfbrUC~RpsD4*(IFwHF$*=oITn1Dv2}U(&%Isz+9?^lJc}a zt$Z8#ZrEs>jJJORlVaO$AN8|wt=@F=?h-O;0$>r|`~2|2aK^gRyu4M!-9wQf2HvnS z(P8FSTNeJ_8eBq!10;f#GOB?)&LAGL#rFFLD zXT8q^Wm?@M{fSjD8Gbg#+lN7X{#Kr<95Y!Vi_K>1ScUNle-Neny)UV?C!69xq(Ekf zrR}XJ%R8{x1z=@6H;Tl}ri73)?~>hJF(M7E)VYQytW{JuJNRXpicscApCB%rExsIyMpkm@9xWYRQ9@iRazn|`PTQ2_xS}c zQGk9k?SR^Mjuv9A_=_8q`Mri+c?YsGaT#3WcufspiAOH?iJc(~Hu~E#GLzZBnWCi$ zZ@Q~mz``P)lZy12)(?abNjjfPLvFu4F}ETCmSHyrD$?RNzB3bO-LAelavnpdM4v?g zy?gqx@*S@0}~UyMh5 zNd7j8-ppVr(~+x|jX6By{t`oPo#27uimYO{h~%j+{k9Y$C7pV)O*zkX`}-neQ_iU@ zcT;BP)!7)CFzG|BLyz%=TD`4bZ+g!aQn(94Q}YDx^M@k_4S^}6U5C)DxxmJFuI(;K zwwlx3TS2d89XSB#H2~FXBVBcV?@G*N-$jV2)q^>+(8DH}E3xU{BEwyjg=;EDbKK!%?rzgtaU=!QKqi`GRC|~V+{-TcoIOxP- ziXS7J6E+-;>})Y`8VfBCeO-jzFxB4_cA4VtD>Rx zbU!~9`oXQEgHMm#vXGt_zFi`4&kN#diyKU{aT?)ui+Xfu$nW~oT04!k(n)<<#!5y7 z)Jt_LBh7oFPUz%$AhR$9PI+=6hS`sMFtnY$9{~61XC5Uggl&m?n)XzDWlPjwBPU)Xj!o z<_(wI4fuz=Pi%M|@i8_|WZrqRrJPg!I>wdT8v22ADKBPZ;9@l6!a^rJu{_{W^r5R5 zM=Tv}Xd`>-Ds8`y1J;~sRSDcgJ9#-(|LlBLexS*r;C8ic_ermclVJLLtMk02UGB?5 z=c?5=Yujp+TrcPC1%8mzIotb&2SeO`kn|0hoAXy%FscN3X!t?a#*E5i7Il$)`2NE# zuB0|AC5_4^%MT;wp1)_SOMkZRz)r3;oI>6dRqr)L&B{PfyENjd-!j|t(^cXE=EO=Y z$jc?pwC7-Q=9HZNPNvP0nX`2F=gSar9}$)OWSQmHx>i{?rn%o}j6@ZNTt4NGZ66Eq zZDcm4s?fZ9UTtznhb~8mLMvWQS5a zMB$U?IMq+j_Pn_)$iTDIWLapFPPW;=)xGc-`hfkI%PK~kIX1cZOtP^)L6l0b|F?EX zDf@}z9pX&qn6(evMHbPP-Dkn7Nf8A()ous=eBApcL>gXtUHip?@2VN*+wQi6FJ&xB z=H~F9bv~@%!`;h!NyBwMW#bs6TO^?pR1d10yKQ`*dx83d51*DpV0*z_Ns0emJsN;< zz6iYo>9*d*n!Es0!j-QzwwjbBvtrTq9~e`T*_;bIWx6OYCKGsirzQ^HJZcTC#{@m( z%EBDm&JmXE?j_aCk-g8?oJM-W=28lOAP2yq&fh{fq;+spe9?+GVwAlJcxBdE%hliC zF+9IkqOJ`N;OX?5?W?DI?j84Ze`3dZ0Y&hy?t2bT6dd~PKxvy z*fz-`B`9yT*ITg~^AXL@Xa_ z+di`KdwL%h)Zt_}grfwE25)ywBfIqyZe87KLc%RF#@U!rmnF7D1r2c&N zx8J;f*ChHYkCzA^3-H6oqWLeM$~if@{nN87xrMp;Sp@%~YxL*&mfRxTd@O?hps)Q~ znjnz&k23(ktAHP%R)4A>Ec}l$v;3XvR>RcFg5@C#|KF63G)!GAfVch;RMPybR;m`} zHm1*d@N7+gjkIJ`tUhWLLj><%U{P3{`LiV7bo|(|5WT(-ft~fc>hZM zmsZgN-tA)Q==%20%gnt0C0UWh%>{_p0(JOPjpsnF7Zx5iW)_93%4)--?@JOo7@*5_q`EF z2>New-~S@yzOj8+3E=j&Gb~wEV;a_-1wPTw9VA zE1|Um%Qh@LzcU3~vwZ#!x$pnLk*ojC`)_pz{zvU`uj)4_P82c+UDtXg3`K4dV4|+R z+Ww!iO#C0+di{Sht>`nXJJMhMq$F7#I071X_cC`=m!qkp7N}-?+kcQO@2``s|DE@5 zCw%{d?LcVXygEpJ4$uvalcrvIw_*YQq{kV7|0C=A|LSv&Z7^~rSLE`F^}Mvp<@kFzGX&ux!9{j zLD%>TRZDXB6}|vWY3VF?#%}pK=>CYRmX>5pP2n#<&xc5Zpzfu%TPE7w=y9J$%{gL;7=?HgH1+ZtY+otJDe)n;GOwkLo}tWIcF7c%)R z&g17GABv0No7ev!1^7b@@PGgB?SIUSUm1AOCn49JSZ$&I+$Q)>6w3HlTmFX|{IIZM zfbVC9OkF98`-E;Pv6f<*;BojExz4rE&7B}+c~5#rK(F#}7iy*3CMEP6lvEBu@dM=e zTRqz((-`PJ>Gk5B-=M{Jzd=NB&sBKr0@ZWRuQ4v-uhth1Rdu7755L9r>&{j)%aMZo zCXZ54X>}94c_WSP4o*cw9JiQ1;@robe;299fki27#^d|5lgY{7M@V0nVQFnHZ`B|@ zf*ez7&t0!`Pzw)f4sBrH3%R&DxR zPJNiE`G_8bQu_bhbYIT9$`(1>3L~v)vc<)p)40%CJR9$MA%*5{*dhga({$&~kg1c| z>M}DP$tUp?-Qu5z)`u&A>+hdhGWGTlL{nyYKTK^~jDk=y36YvQsR;P>N_}%NdzpLC z<#Z#O>-^s37QE0bRCQNiF5Yg3>Wb|k38`SbXxFb zlAT=udvyq=*UElmbE{wXLf7{bwhuvA^>`*`0{%sG2QJVRek4l(057-?aKE9lI=JoU z!r%x$RZXMaT?Mhn>@DCx+@k*r&Z+;InI8>D#f_YSaju-Jk)fZT*4Ae*U_4pZ1UjoF z%&%X8^Cy2vQK1)?xM50>`!yIzVVAr=ftm_}{t_+tu{u|M9H&Uj>t) z<-3}X-Mg_}oX~4JCjWUTA$k(42HZxT>a_a}%4hv7c(B7>y6UhM zz)C#T`=nyM26{|T_>X{rWJiTnW%0^{uN8)#frU6 z9$p_1!!L(;`n}P7%hJyrZw^G|y66D%&`;hIbIf-4_vm!k|Kwd@A{eTn2#JR$oB@Cn zA&DG>KT18CRY)0OJ@-qK`sJdF=~s9hatg8JN@X=lW zPnAMoDnBc_*CrpqHbq%rDMUv z=8kN&cIRWB(}_2T^2B>u=$o)X#7G`VE|pif>QQ-+cj>Mtv6Go?W;Q@~{WHITvW2mweiO#ptIZBhvAsZ98y}_2 z9yYrIW) zv;z{UwVyka(QfE}$Yr+(8NIe#oJeYKW(>IJCoxH>j1IMO_qQ+Fj70JBEbBsip7M!c zpAw9@!@reeBPT$)w5uoG448D)Tpwod zaX1rG1ZxMfvQ};ucs1`^tV+V#m>Gs=+kK)l{OWYos(NoTM1EZ(iGK^gDioB=dLoB; z_{lX`jf`v0MB)CzY^H5AuDUB!0z3N~bj*#0ViD_r-UvR(`!JjrE9I3WS36#yN~E2WWB+49t?Ye+ zi%C~ZXe*&)-~;!bEe_uHp}35y>+)T#@nw&-2lWd8p@Cn?lD{b2s zy?x#MrS03iO8aJvp2Zu23OqWdS*fYBdJsAQ(+OdaqEaWBx$Y{Q$gB-1=4-4=x=wmz z0G4i<{Iz%k!MB}zXYX^+Cu;h$s+&2(wc3+K>2y1~k}_-N?n}AyvT@vAoyK8+qwugq0$*ja(!Ual+Olgi5gUE{zBuk#SX z3tq(9A?*u{6|t+YbEwjbvZxh8?%aJ$_B!^~Zcw)&@<7;=-*~#!-F|r~M<_)Y+)*k( zzGf!|CAF?X#|T}x^}QDQ5FwrFL~BEV12C1U6(tOb0#kC?Y1|B6H!vz7F{Kl31Zv%VO#0DTBv7$7LWKyN6` zJPzE^Bj|xrOWpUXQv!ApN1p8apca)QQ9mEn$l*%D8D)bET@wc;ClF2WP^>VlcLd!&XS;I4r})*ePVsKYN&b&6j-2n$s?H+|f*h<+)OC zN+G|Y2ZXR09OtF(y*nj;dxdw(c?vI=P|VxTc{uWD-@X1AFYM4r(QibU-piEIy zIQ4qlgKyfVwnAV3S%X>F4Z;XX5F-)j0#`j0fIvn8BbOV6R+w2xU1k96urZ(}*%V-< zNNqd3T@W4}I=}XO!&g;(Q-Jq8Kg~S1nCr)$-Tn-+d8WC2VrHm~6SK{#<^8#rssD~y zJn>i2p^rL)lCOM#OX+CNju}|AAHQk&Hktm&z6fa1o0d^PCYJ}a4d?hdee2ekWK=y}dTcY`sQlc6hz_1jTuXbrcg=4<+iE>_l3Gp@P7yS|CiSGEA^t&R)J zxl6MgI*Br>OK&LmE7(0Wpg%}3g>Td78&}$=>dh`Sbd<>% zsDri>r)EN8YWdzX$!u?^tP=Tm&48EVx-*kS1nqp{(@xg2-RsCr!)G93mxppAZr7A* zVeJav>Z+W*|W9Zl!M>vhx;9>y|v?n*^ge1eQrtW{#uFm zUFdAGJ&w)>D{+*Z(@@~3u<^5xn6X-byfJ)xckZ_DBriq*?J?T{CUhT_u(cXp5t%rq z=yw3Kfwku#^v6z9o|^IPD+ByfX~|^=X2z|tXJ+Vq^`C)KMewv{yIcmZ)V51N0d~Jp zvUI^_c);O76?enlLTk&7oTA7}4`5MM*SuzPG<5B)_?MtJ;Lgc;%iSR$FH7vDmeBk} zx`V{XZ5&VQpz@)a29c{|AU?c}jx9Oyki3iNwGhGuom$G8M;Ja6+& z*#qvtipNa#z@nv__OaNTKjZQ@$SU{ZsW|lV(Em5+Q$ZeiJ!f~bEsSCZON+Lk+6aP4 zhR$WY)2JTK5^gJ3AgFsRrdu)jE?^pVtmx3Z$3c#bN(mGOR(FTDcNQL@jqB>qt|rgz ze7T<4#2Q!=NwYO;8UHY5!Z5*lSs*Bi+>3|4F(4V3w^NbcoH0}-UVpZ0q>nS}@#E-3 z^*kyhK`g-IRs=;J&PY5hG1|^};9BZYi@e=1EV2;q$vsIBD0(iLyRVMq@psix4_~0N z%6`$ugbYcNm}W3BbZ_l~&9q=CbE%MrA!|px(bd;?c4Qvzy`AlId9|*idl3n*=%G7| zKF=fnHNy@UM`Kp$Bq)vmX^PTC%a2lA`waCx7YyO`#g@#w(#+1tc2u}JsVxmN_~_N! z`JIZ&*cH@E1Up0h{W!!b!iyl*yF2GK+G_PM#?;{AjP%XmExA)l=ye3+Z_wyNmbgw? zTWohTxr4i1$s(N{Us>CXD$4h6yt#MFP4Blp@pRHspL6nbC!gRTg}(-f`SHbJxoOy76OcP%9Lae)gc&HO6c{K{QK&8CE7g+c_Jrk4eY_PyiS}%w5L|0Sg?0D zypLX)q5Cms*HQ^5Nf<%#eFQnWtN_w_7+Y!VNZ(eE?BmA^q zLuz=?;=>((FYVoJsHXKdMb~^ibwS4z1F!j6+TO>vgpj%W1%T450pQ{*Bp{b!wiwp- z++$uF*x4=(Hjo|f+4sdLDTzw7_Yx-i&AELl!MRRK$I=i#Bk!;~TLl4v^XnMA%xyqw z1EZ16z0aL*W0^ciMIomM3H4JgU9<&|zkC-v*Iwh)6Hb>GuNe*WgGH3u3sI}c$6_SI z1gaR}D@CMdB!cHU(|D4neD8pJGodUkj$46_L6_FhS9j9=XlO5uB0#v~{!j|H`d&>qj_cSBanb2L4#o2{4J2TC zE2w{pgOsW)xN=9kJ6@JvrhF5MX7x)fIGlYWEtVq39kipgy3kaD@ly|3HiYJ$&qXS1A5Y*O}e9^`E5Pe%thUy638lef9@mPS6MQZ`1)&|fx23`E6R-&PGD!Oj_d;2zVL@5wSGtGEmpEIJilQJgMHZbo*N9zN zKzkc?B88o0l&9O>>x(p|NZ7nFY$;$22igU$CWyYWE6)ZmmnC;*ktubqwLEG_gL$11 zN@a`J=z__lq->Q@CD~fKk#cJfGBzfza1jKfk(UHZyzQBQvwHl?c>ZRC@0|hIQ?S&E z;JOv2WRy8C=WP1}&e8Q`Ou!Sr#|=S^^1`1`09oM}((^|1-bG$cKrE?0|B>0sU@}rr zIjJXl+K&1w>3CA@TXN(_?1LfZydz)Ax!p_Q+!fOMyUG*XW(}1;o+Wm&^sr7&#pcDz ztm(EEJ4xO0b7xOf7`B--)yw%dqZrb|q$qbq3#b8Xk@~G-9Bj*+mIm;YwSv6;M(e)6 z=Z`BiCpe-ywRfz#U(aW5Lddd4u?uCz&WXsL9TLr0MU)k#f)54at`h^r;t2he07(JPDcI* z8lSrFfWAiX-6aboYYUX(9cy$&uC|n*2K;#k661}^OII=|_69?MH3%ZqSGScsw%)UY zE>&SXFHQwXJ<@xplHV{;K*ju+aBctTYP`BA>h-5sFJq2X#rptxpy;nkuc=e1L<XV63^RuLtKtG zJ*v7o!2Q}V5IPJ(?ZqoMX{N1SXYimr(uD#U4s8trhl+PE9^XgDVO#4UmmI}-8;jFJ zEAxB8#@u58Ea=#cRkf-}g1CL|rn*Y!8Ujr-a={&587l`0xus&0BT({`vnY9=~R zJD$V@TwKPb+#g+=;8-s52)bNZ0I?iP9I zm1F_h;6>et8>i?#mkI4FnXz+ANoD4>V{5!MgT-(F2v+OG=986_&Wri=r(Cux{RW-4 z!ZNpT$__)I)oKM~->8F-_d>dky*Y}j-#lgUTeWX7aTsE#AUw>;-=)8xL=7Ct*5(#( z=WvfM=^++2CeE!}Y^3Mn&K}c(&k349{vJ>1sC2cPLzG4ig^0U29c+k)IB^mw?pBIk z;u*VQgwUU$cds6dSk}8foPTe3D=jP0tZT#{b$6)AM|;1NWmzH2A(tJB#h$;%HTZdU#9yI_u8$B>gyfDLDznK-D@<;) zFUjDs{4i@W)mdDa-_v|FRK*C=e(By6`srl7?faa+-kI5fqEMMMm~0VUw<^+R^lZLS z*0Z?jTP>CQE&Me~v+PeQS&SYer2gtht}8-u9dM!;wF%yD#w}RY^)C(!TB}b9>Jxe( zFQ+DQ0SZEL1FxbMv5h2e`tKRz{TAVK$ujKib9^@u`qz=}94zS2Qk&U`;9XULO=+;@WG}3`Ir7SL3HrXmaNC##5u(r(%2pGkaGab(w53Zc5!fx6r8|+lx>&;- zq8^E$HJsP)Y}WXdxnF7GVup7IetmM{ukicDywv$O>DO`E}ug`!(0>m^m{(u;Fz~hO1Kau4o<=4%k zwUu?=b5{7Z(V@(1OXRLl0qlS=Cvqq*;L!qfr+$AggFDMfa-bIGqOVfw9J)WKXNF0x z0bKEb{S~ALtu$zgiaMv!wJk~xCGR1}3=Lg>D?dkB9YL?|0b1!?85`UgDPOSJt_eTG zzzxq&Rh*|%^2l||)mNZ#Zm@6!lfSM(LR#gtlLNCv?;_?aMAHWcjW?m&4y8R4Ka2!S zKL6pZY}xtZywjBY@hX@3uCbvB%S{qZ+QyXeis2?(W^ znc=yIT4zki61dlN-$Kei;63_oyvj=T{|5vV8v$HO_FZOm_Py z0h6jlK$jGI=Bp!}FM0C{hTD`SGC9ALzwcks0n~Oa#dupj7sN^c5}tFU*8EPIH3!m|Sro$nKB8ttmUE&MkU9-3xx~APUQt><#?0#)UcEnHaDDutmu@$D zQW*pAw)GMrMXnoQ+pn}+0y-ea9OzVRGr)lP%MIr=+bPi|34MRNC*W04sKghMN z_tWy$kQ(PPR!Q0&c0Yxeajx*r3SyPU>#l==KKYe6OfXY#A19n`#}&?lWaU45fNR_N z3fS#iqX3?2NC^Z@@75Q7v?;Ku(+|rRGnk&08yVotx&a7p<&kNv9LDV-n7qVRb?Rri zXR$j!r*bSm#1dfgzet6QMP8hsECGV9MJhkN#7XER51ji^b%suzi$smdtC*5#9?6pA zF`gRO4BP5m4VjJEEuD_NA!P%N04vGH?o}j<8(kr`hZaIdW8HQg=0}d%2$WiblU|qk zy(~jRTYX+EFprf#*)D26UQ4_=(~mGkXh-f**(s;efF zrj48C<;3B`CPYG!ZjSNm;Qk!}-y;xQ3I5pq~<_k4s` zNL9zJuChA1?@8IOS1`dX@eFhgR@AGmW0AUgx>QKH3?i4Q8BA->%EI!lrz9NQp|G2E z?6peOfKj}9)`;AU;%>xSx<1!QFf7%)V8cosxCZ{fu7KO0N`izo>JT){BD_?EaJ#dBQB_GAbz}9x-uA_CDF9pP&i$IohupB`AR1;X_-qeI4g{;)BQyNWS zE)OQ%=O54OT@At?cBEZWX}}J@Vje|;P9UMsn-YRYdr>6{3%^0HTW@05NPm*Qq>sHF zV71UB05E@*v#tn^M|l6(({Og;1iB7J{~ zk2+ht@=?XE!XBf;QDVSj5U@Qa$cYjN6N?~5ufghI*855murn8^{`Ar*(VZudF|5#e zfgdGCn$ru03LSSMO8nyP;FG&gnoxNy0}ciG?}0!dJ_1{gc%`Iv#^DOD&l)@JA8(k` z`-7;Ellyg6i~&MN*DKMA!a2YA&u+0&00EQ?3^juPx<*L!AmE;jn4dlE^!9QtxNUIH z`QmYISD;iDn&0g__f{h-S5`C1oKU@dj5v3semDIE^>KeoRaa<_aS@(`EJMHX z3VU+#>T~U-L%l-Lw+l1R-Hh#Gymim(^4pZ(TJ7cScYsylj8HGS9hHNWtFwEU6K-LZ z*DcaBi8JFJ&n#*WlKSYn4K;v-`0=f!9&JQ+94l5v0FI2Q+_xi_pb>wC*yeu2(O|CQ z9^a#?2m^(pNsj2;a#@gf?q1!|Zu^A70w?``YJ^aiX5K76r`31Y_!i+~!9JW;7Wdvu zoK)SiD8>EZhaJALi#7U{EZr=O?mC8-#ip_R=N{SK)E|px7G{}-4LiQc z`2(9Fr%!N}A^#@c+k+sx3W!=>3|<|Ew!@3><|sBIz3vaLh|X6028o?5&T3&5b<%%> zOw*cARnEYBCCf2*+Gu6`!7m@TJ?kDFy9>1w)Ejz<7NK_h1G>%-%Z1g%pvG; z@X^E(Y&eq_O9Fs!dU#&*^39{vYoZx)EHMDAR;&SHT81|0DW^3A%?spspGW@A{g4_S z8z4OE6~i@59qcmD=4Hc~D%q}w0BKaUB~#!l9Zjw$u{)4eAmFCLUHFbx>b zk!(8h4CXF%vzb}coOodUqUY_ewmdqboQ{K+In#hN`NrZmXe$$IhcP&+Gl%y*oaMU* zwTEovN9{KSi;P(nEW9ctS(|~R%7-&EH?1;lE7=H%= zmZGA5b9oP(d;M|4{vv2_k=?4O7+zW`ac{Xvih?vQ{4~ldTsCr02%J|AMg{(=Zg2|8 zVb54pt%`hAi*LlDZF&NK2JAb9?}-4w&Y1r>h}Sv-Dq z3di7f0$aD6@Ulk!!l_(Rn+MYdcO35Z^7Eb()PVf@N&_Y`vTE1eU_{e1L(>Q4Gr-74 zXlq?eav$X@jv{#cUN}Hk*dohvF4lC6_*)fuYEPr@;NIA;QG6rVvJ17?k)j{2VOJ50 zjRL3veLhbVuO8n=C|!S%qO>t44r}kop^liInw#^_@YQ~!!$FjyqjHQxG|hyA$7GGS z_gVXewk*+CK7f2%b21G(D8*BcjB9HWJJC!o9OE|HD}U%%C16ql)_j@7_G94Hb-|UV z=aN&n!=ogQDD5#z>UbroQ|T{O&Ih2DQ!a8_&QPJIOv)Tid z`Sbmh|E33HLQ=FhBsZK#p4zoxqc&sLM9!Q6kmgcAi?OYfKZ zyOb$g>cp9g#ToIdrX5`mz!>PZ6Lf$9c6dSN1;;k!0h44-)9T8``_Ju1b)6&ag?ioh zZFITHYqy9JC|$@nTmN0&K&kKWc!1nU`H&b>TN`VD%X zcdL;NqtTw{r7QPqw#`M&4a4q0lCMF$;cZRhA@MDGRdfJ|yR{nt&wgg#j1~Z2**1AD zr-lG}VMmK?Npol?*$i*DO!-7bt~Zt*d>SQg4Y>50kasHZBH5DTQkQ-KL$mf-|K?WW5ltyoo>N~%Yf=GA;8#22$AdTmuA=b zdx=7?WHTf5Ien?+(+SKtr*#;{oD+noUUF$mdM-3ojq`&=E@i2I<=8 zOzrL`dYf3|HC`uSsT&m#5=cgsbFE;vsr9u`h>vT|eh<_>XK6A6I|e;AK7h?t1KmlD z*ob@*_8{`E-l{B7aXyap7HE%iId>)st2{r1Ny)v$9VVEkI+5RR_S#;Cle{KBb2aMY zzx)J(oSMQ5b~hGhJz75>#f9^>h?^k16i-iBhp?l0ZW!T~sClGZskD5A^BGGGWP<}mcD2?rCPQUt0 zwKuDa$v@5`k8fTst$|-syB%V%fWt6WM|!SsFLqo9bib@0HTjl9>}>l5PwdO-y~mOJ3THXZDc|d0b(CAv+&N5_g5AXbBxCFEXTGG^uB)5Z zN^E|EPy~Rtmsf?Fd%0p|_j$2RZ-7R^2R5E;V7)p3KHMWG$HrzfrLMv{A0CmnXA7#2 z6ykOGB!95GNv7K93$lr8wm9F+E)0}7LFJ>9oL3|rA>jy0-nUU=-M(usj%+=%gxwlN zfPjHr-16ou7XM1P4(+^5xNrC%V_@N7bGCQi>N^5VNg~0Q-a}&p44WUfow7S}DB|NI z)VkuR*$4Aa%-^&@ z=2M`cgjPvW_?2LZ-JNHng}FA|voDJ9JFE??CBH>pe8x`Vfq8>t{m-D-QK(kWdoBmY zuW*Lo(o*2;h78p^Kbqw?e11ZoC=N|&euIGE4;a0OibkqOIY5;v40y?=4C8oS=kq=Y zQYYZKDcyapD|7(hYbjM6W&t0)hx4Z2J}%;Jc#Bj=NK zj1SA}$nspff4+W*l?#-*_!KAu3W>MQ!$my4t}a~-SqaE?rfoO0aZWwANR-L#11I~J zKq&&IE)$_w`oV*gKT6%UOx&5W)7JoNFtWzmg@;Y5`yTDKO=|uImF6ndBqPd*lCE~w z7iV1|M;U0}QH*5sshRHh0@-M${84Opq3Fzn4xa(VmZlJN8!8kqr|;{Hpd3qf33cS2 zZzAvc2|4Bc87O(UGdy`34Va_<#FM-1z@bOS{JK2bA2(DR z61#B~1M(r*%XB%px;v5|5N~KG*Q_p-c~J>}fjqy8K(GS)CJsZ`NZXZWOI7aE=3oT# z>sO_9oZO>$a}v?7fU}$8b~XPtC+I>M^$s3qpS&Gsmlhl@Af8X>~2AVO8}^OGBka-9DMa^Qb_%_SN#SM zF|JGVZtuUZ{9|_GUT!hSB+K=LgaT@0jm104iE*sh&S4ng9wxDH(5Squq=Nw9F{`}U zP9$eW54KFAeR8`HRwEc44I83gYc_*ka00X7lz`JUnHYvxbNGpKkrBn`?WKs^8wPA2 zQSdm}zsUl^_#}J~NH!r#2qu5VVV8t1SmkuW@nU^BS^i4lsJzchu{%@nZ4^MqKLw0c z9=|t7RGY0sbTTW4_;%DDDTf>>#3JcBUf<3W%pkk>HyOC&@-9O(JI3tDrtywTa{(N|n~xnI?A+73V$X|S&0`_4 zV%^ynS>6nBo3#iYYMbG5F76h7`3+ohTTyCln4mQUA*LY32WGeqN+&D6jGMYzcspod zdF6Z7>1$kx(Kqb1+|KvXWao*vu=vp^@HO|GiUx8%43`>p!#ukF%G_GUJrH;GK(iBN zcIU$PMk(%o7yo`FhV>QNb!k8o5GwTJ{@>Vp53r`%bZs;k6zL*eN{}K50;2R56=@>U zM5Id-0qGqA0Tk(7KvA0Xj`R|G7wIL^OHeu_)Bs65%lYQad^59W&))woXU~83<;7)) zxOmr_cRl5P?&p58WM7ITR^B%|up$asd;$Jp8b}~YUM`Es#pFdD7Rf31zg6c6dRQhJ zDZds+LeqWoW>af7sO+=A(ojSi#W>*t_UsW7cGc6FA=RmCo7t0)+gQ8v&LLJ+S* z!(%uw4-6FjJZT>gjEZ&DREo1#TyaV*s#bTo9ion((nA$Y&-)MB-1-ua5IddTE{5n8}z*#y)pQJL|X#n8~LLK7@I`yn_23WvZBcQEvicE zy~rN3#N`Wq&MBwAs+zz>GKfY4$Z)3^#!%&8=!+6NV>=7C8)BR9Bd;Dgc9wK+vHI(t zlAB(fGMHKLpEzbfmMc2j3x^3YsN~#PLk;*}l%=`Dp7;|)=}3YntpEb2UO1)@x>T|V zB){UOIA&^snCV^kUxs8O07@Y7x@GOjFdS`4{Rij5hkK0w^a+CusMet3eUts!Zb1Og zF&}pBWg_=k^V2~Oi!z^GxH;s64yOh{2A=`QpkWWGiooCbtd1J zQ5h{^G}}qVL=hRJj50!Q0nr#|dKi532#ROC15rhGn$}q35{n$q&IA9F#Zy*m_qQOY z0TdT>1HKsqU*l}n#OD#X=DdnJX<+i`INx{i?%}(=E3>oK3i%Ft;vU140f85poyKQtw?WHwfe>?Ux${%}?Wof_$t3ctqs z#TEBZ8eTbsaU$A)oNs0|z)7MtE810yX7f`BOYrcAP60nb?yiB@w8K3h2Jr*%jWFnD zI~^_xl&X5f3AYmlSM034uUs-!mvuUWu_ zHjv<7w;Ux5lUSVb!~3X)TQ+ls2r=;$P#Zup9{t7(enz60?ieb@H)u>PUd~Q_CbA;D z>`U<-$BC&)U!+zTT&hva5hIY|51W-WfI!bEh)l_GPl0BFqGUq*5#*FY^fzq$_sHeH_x1lBNGFU7 zWqKlw`U$e2FC#=oH}90CAQaI611zTJ?(#Qb(adZ%ZSuV38;l%7#`6CVLH&71Bh_A=P>T13=+ zG%+A~>Ak?Gr?qpgphuhZK9H)_OKpdymbqOM+(8pvqF# znYarfh~Hv2itb$WwN3$H;NK1(;LP}2-&}z$zM6SkR#&vT@T%nkOkr^$;!0i^0K|){ zOIy}GeSKL*W!@s_7FmEK>pl`$;&=WIgx7zXo$Ng@DuijOdjQ;hqs$|wt~G%rJ)g&w z@Z}VlNf=mQ5d8^a@G|MSJ0Ua*x%~7#hsc+25-M3_YZ~*C-O5HmK39(9Ow}tUMf+1_ z9@j)~eECk{(!ueiA#GxBD7wWeVtkyt0WDPGcw{~^IePM*UDzt_?%Z}Pb$tePv0cBv zAkG%O+Ht0DKl$QN&X-u(4E(D6^h?JMwL@O{t_cyOttCoF=|;}@j`q;bvbs$q@N~F| zpwOiYORHP8HddbWyV35V<78|LW|gy_MSg;872cR_ox{HX&&#u6gG}kYAor0%_LK9z zn^y0awLJ>toYS1wP3X@Yfl+d`OYqaP3c0VAY3l-yxwH5PNM(sD9DxQ8p$IemE*;uQ9BM!V>M8qPp zJ5@@)&#b_xq!4|+xk_8sS7-^B58iMLO@j{0g0ocNWhR`eRqyO+0#iJ;XnY8AB(A0q zocQn|G%EcH@1(nz>R4ARVw}k(j0s5ZLA>L9cNaiu6W_cXkBl)4dHI6KDECb-PK)>F zE2}$qxAX%v{RoaZe$d4h(zSVt;pI`7oMlo?LBBc<%p?Y9wy%(os4_^^59bvp+5Sa(uBF?Q5w@e?+R)3tI* zv((wvEYx=)`v|&4eRp`6q^f)UhApO|;pUf$k3n*GbB&GKtnCH6W=Gl_FDJ+AKjr@v zot@B1kEw!#<%O{?-oa#w%_-ukQj1hUxacpwFcNI#a!53kcGK33gnQ%4$7C75R+f64 zBFLqM9j25{=YO+{F?gbk^Kpb)r4?ke*MlddX7wfHZpvBKy>erL`(pI+Thzemcf{dfP4;x}h{dT#r0fGr1FD?x>XMXHXO2tD!52Ht9#q z5kEoqhYZpy7;$lp@Kb#HN%#yt69+DYDWc_S5;6yD=w}(%Jqd5O3cnO^#$F^z|LC!; zClAI70Ki7aj32Fj(zIb$n*O^P5lf;NF!wnP_P0c9Za@njOc+y1c$BnCXukp{ga7sF9}Sr zNU7MqBsXnZn}lqX*b2z2?2VJRGMBfZ23RYrPuU}-1=+jdhJFhok@Z%wR4B^G(->!y z&&yF@b&S$0@2pLaO;Sl z$Kv25VA{XlGza7t(8-@zVxsL+9`Y(#{1BhKdJ9@xyiJ>rE(``DdzlUO;SZ}=CZN! zqq<6UrFHRaLGFj?oRQnCd)_atYw3u({X5{8? z%0L-U3MCf;vjj_gbJ`4AUXE!c4ohi-I>$N__Ydt22^%ABV)Vq*@qV^BypNDrJ z6n`Vo$2l>bSph&_AlWHrft`eU00nDLpNX1Tl-iE#RqOmz?Nrz*&Kmo<= zt~GFeho8S`jy8luUTib$h|=1mPK~yMe9l(YyyvXY5Sj?`gjR)gmk1&6kHfAmB}ZtF zJASe=tVhW#*DA5---UShazAsD+3#{$C_l!9$m#*O?=XB#!z2;CdgM0(yP7kv?s{t@ zjWcatC95$-?z17oz4|Drw$)wM^oOpR{sRl7?z?Z0r`tWDLZT<X2sAqf$O6e3oLCCl1r)++36Us9c7$=6L)6Y~1fyQ^IUNN|X{!*)5!J0%& z6D&ms#MERhE6G?Wp>+~|dR3sH7=FPI0uZQUds!eb6feD-9wVRQnbZ7%E?MXkvr+G|qPywa4Dhb& zki!AdL86!PHsCzDlV%9*u|RrKZ#TC&0Q8BS+kjs}Tu6}*6D-z?n^$&`AN{VIsN2R2 z+TZu_$e@lu2r#su#?i+CRe^*kw$6m$)n}ei*->A95D6;Ukp6fz0KuE*#oJzEz!3W` zXwKi};z@2Sew}4Dy+3f6Y^fOpU&M54gExLr-b-u)JQ*hh%$RdG^Mv5@W2PA zkaS*8*LtInz1ayuI$!(#0Sx~7Ff#opkYqDJ0QfYP(h2-tw$Fj8oa2+%ndS=Xrx7y= zJ9lS>mS2Fk$x!YsVe^zD?nQE($0k+MiQ}6NN$3OtfzKe4Z&ZUSXWz=+54CATHek=> zYfF0thqU0us<#Mg4Nc&svaP;6EL^W*0-;*eoa1iCKLoU+`aixp9wb4VWES@k)_jsd z{VD&C0W&u12uNDvOY#83h7*Ek6T7_xdF>8~O1~@wQ(m^R$kdni?jP(X14U2C1%N$k z8^I<8XLoRPz}a+Uw>hne@y>0tOwyWGI|^}Hd!lUKdY&Uvaz~1-0a@k6(mw4OgcG*N zT*GYF)I4P5`jI#^?{Ubze@X?)pzIy7h|&hi4@AGJ57MCP<63thP?=f` z{=y%e%y}H(WCG>6;0|_-K1NAe9XB2be)sScYz3ktoE_j^_Dfh$kk?`m#*OAHY1sAY zoZzu(`=(AC87_Ny!&Q=4B`VS_fswn!=cw+M5n=1kq@H@U=rre%H8d#8XlL_tGZYlaWQp3HecrcV3Y-yIQ`0Vk)t+W0}g%Gi(Q38BTR z%3x1b(LowI-vrYOUKQKTH*qkFPhDJwwi3>Fsq~2NUMYM}oiSZZn3&GnI>A7@7)2x^ z#J(ko$u@1{k{`9~L@U7;?==Tv711Ggv3A7q-`)$mdyiQn_XC*9jPtWz8%3hxeG>u$ zs8z}mT3!yF`zrhrVPi%sOBG=Quk!0AIdTTq_VV~42YLD~`90Zl@(^g}o$pM?Tv7*v>fVaAZSW{| zHem4duzOfm4dj4&(gcWXIUf_=5*@aL17lge^prn5M($=-REAn2LXx0!S`+V1sqB`G zm5gM7KI2JYe|j|Q@(7CfR@$SE|A25`HpG@99GCgbHBjC{+=x1G z9rFpCZ6Vn2I(l`9@CpqyHw>ZiHIp#r9m@`N8LFLyG*Bz^q9%!Ip1$FFgI`J1TXO-! z7fDR9ZjUw3#k3OXo5%yGHe)CJh!U9bJECq_9gNyNp@As_EiN7xVc>YY4;j|?C<;L7Z!ECc zoC*g|?24W-iXSy=_BEvTQhbq#rq{#B0rPu;;LNfQ7{)rK$D>|A*SLyh*W|;=0il(n zg;!9pn_|Mp~m0N!~?{2Cse!a(tcFk_X=R{)} zvQ_Wmeq9&=F1X7|G1C>bdFx%Y>o06!z3!Zxx|t$60u?-K@u>bc)ZiMDEt8zE@mcby z3j|jmJF8ONY2I}k#*P0N9u9uU1)rME87Dqz+T z&yIccj_yumk2~?eB`l<#HF{WhN^ZvZoIVPWJwx@pf-eCxh6~q+dzuO7&y3TVi2jP>9bTcDbA$M@MG66w3hen zRlpm0tU-Uwl3vf#al@WsTUF5FdE`3|h&moh20C3eMIOXZ>$5a@YFCYIhhS#ET!NUT z<$ZH~jH6%1({?vJOi6#UE045d-F6uDewi*Epwa>Ixe1Meb!7YZ&+|=`oga$8so7BN zJngh>co%ce@CD?3S&lpl7V-e=xAbDv_vO>-?OK83w!1ORdTi`#&?JWP8ylt2W?M9&7w+y4dn;w z*s^6uSwL(;zwCJC0d#Zc7X{!$;VU{AVW371FcCJ9gj?7r$K4B*?&;L)E;C)e9-Mpg zi?Q!jwR*YFd0$k1blC4d2%!Wh`UJ>?z59A`b{(Q#U(=vbQkOhhRcp|X4~+b4j2t;r zz2DL^6eQ1q4a1!4*BdQ!oAD*GVXMkrnpFul?z?&~*2^qfSw8gz_-peeF9l8P1craV zOaA)3X}03Rv8#i97s35CrbqWs^7Gp%XIk{YpL>OopbH@Sh{ZArn|UhqKy*k}SH7oQN8_RT=e_!R*k@U9yCcO z$z*j=laQKdP5gO=(MFjhE|T*XNPe|NaQ!Vjp5Q;yLUjlaB`}P=6lE?()mJ0-zZuJL zR%}@<2FtF5gHE{GeEeH5_m0~Mq@SS%#1n^u{PRvevetZ%XxIiX@TrilkAUpCy8r>E36RU)ee)}pB@I;b8sIhtMz<8kIMHow{N z;@<5&R@Z3d2cXjj|3-DKzo$s{zp7imQ@;9*q5A2MQ+)rw_`6sb0`HAjhMrvjih*mn zCDUIqijfU@Z`^&!%|H1TNo7RVx6bxHww}2bAg_WCgRj7m@GU0zfvw(@?tc1KKRUfj zo(S`(Bp(|;KTYnvMHqr4OZR@AnWzjLHuFV}yaj0~()~~RBKn=yTP9FL{G(9dA6i0x zjpO~F_I3VG(vgKe$~dpQaeyjNufD@m4(#ije`${L|GuaApQ3iAU4AX|N7S^B4|{X!F(Pjy~{_Dka=U;J{JILE`UkjfGogb zTL=Gm1t!iI!=B`3x=Dm!&iWBXX5%=5EhIjK>%t|$>i(gNwwJuL7Y*$m z(QfTko+l5ZtL3ISR-k%IG(2KdU9wZKwD9J~u_@>Nlk#$#Qm0up&g;CfGN@Aibb!=O zH}BQornxB{uE@Ht!M_!Hsj#pUpe>WwDLTzxD8~fng~QY&!gjS$Dk&cJx5S(tI`5hj zfhb@(KC3yNqJL*ybpPG&|Fgwz|DCZU(0M=#Us*%|>e@-jbF zwCleg&d2RyrtH_+tCz{)I#$iwZh9gq%<>a7qk*T;Eu*0zjGtcf)qnL96x{@}#sX|W z_FHJZkQ|J9UbMTwOuv$HUG%+sH*XNN_AwDhUtBjZVIRX;VN4Z644W~m(-%H&R!mQ} zUa}PEP+8?F0tXIwLfKkY61*Y^b<}uDn}u`T@|UrWko_I_fp`X$@Zx0CGNr^ad*h=1|uJA45i zg(F{HIRAoC{^|(Kwa}>FQg+I`&f<;HezXeop1=q~1T|5QRc4Ghv?R)^vAOnm@pgeg z;33yxnK(8Mz5iqkL0PoX%!?T;$QQk|qh=*<^k^l3h*^sDpf%s#KDQAcm#6kjf8yb5 z>Yb9|=XjzFa{0?6vi6t<6FB8UZ0^3|SgywzeaU-)VB*L{V7lqYgzzqmP!Vc~6ua4B z!ZJ~P_Mu3;A!?~H?2Fjfhl_LxY|cYQhnpsSX!#xTmS7V$@vqs+FFBoLq~k9_W1vyq zyW2#bV3;zR@>9i!xApo=RGAOMFTlC(u!VHDu+3u)#vYC0Q1be{>@Ha0z=Z}$cQz)kGxh>Yga&8ml%PMrgOO%rE$-b55*=>jMZ7(=2E~078=iB zht6E}pQf-Bc}9}btysO=;YKkPFTBbk2-kL6EPPD>x+XL)n8s8=m|?k06q~90Kfl+!iE~+^*qy zOVq)q%|%Q0{Dhumq0jWyT@A9%-66K;UpMLSI`YQ`Y=`5(M0MRn<4ggdTAiU62rWH?sPLv`fXjcjB#is07vm3X<=RSF zhTZDI>y|xd6S-3jfS?*5z_=U|hS0OZl=ds3yABGElfvjURaV-gXDY8gdL3|ktoknM zCx`^w-v zu`GPL2tDA*pknC&q~n@zycn@dp6B{-XUynjO;tHDqd;3+w6e}evJZ>%fMK}3%uv7R z_{%Uvi0%vSa7#VAK&>-KRxT;kMn4TBhhS`FWg_AEKS5JbPX4R_nwg9I3ECV3fXfG< z3CsjC3a5b~A<)37)I2lS%DaAO6oiKEQxRP?#ehIck9^5iagK``3|N6X4H$+9RI2t5 zHF{b#%8tuycbR**S>4;{;f9!)2!tJmRtudMB(!}{Bqs`~GHLk!Er_V6<`Ibf{lIgW zGS<7uX8!!7m?v;D^ z64D|HG3s4#gZ=c2YiZ)xoEHSn351sCr}cdqav4L}vMpGdWUoK#NjVgb@|S5smn5ajgEr!9Pktd4h8TS6 zBDLa~K@}!X?=@-&t(k@08&5VAXdxR|DRQ4d=K8geO=E>oemaKr69|drj23k4+SU_& zI?%N{&W+$Y$@L8Z83G-l1u)+NMnF#`HPEt}3*$q3#AU+nPdEx9tnu|Ff{ksS4wyhr z+KwIBB++Wys*ktvm@mzZ1-FHeY)cm?E9cp(sZV~Ntw+@giu>pw3fWp*j ztLXtPP*-bJg|^qlge_cN#D;yU4Th2CE!avhMhDqM@@UcBlsnmw{zznk@?P>I+nZJq za-amrrsMg^&+&qs@WDc2O_V0^29w<0FXJtWg_&Z+*O*y9JZ_4RGK<{q$BgR^MJjK>*<^{l zy_~K0t{ts0Jpk-arXa}JG1y<6FetH&!YiNoTE8!s@s`1)rutY%qSz-Y7d1i+vQ4Sn z?RC0qByKLOoh2!IMVhZd+{%~+y(CdhK0Pm2%n>>$lJJ8vCfE&(Zf(d8cio3aNmpHD zb2aPUS`$Y?8hik07HF`jDGN@g((#h*JYU0zTi-i;JfNGm_X-*G>zVK?G_;3zLCFwy zxoZUe2~z{~kL-CPMs1)wDs+WPbu~yyNu{l~%SW#*;+;@4Bi4Oe|AAm(cdLihV$2`{ zc~lX{JBAaKPyw{!}u4td$e*0~3Fuuv;|DvjK&-RJZuRop5Vm+D(7%ah%q*MsHUE?$9Tsmd~G(3MOj$ zko|C@H0)vL#YUm1Db}wX9Mya}x_7MoId=M9y!2Km`|BNWq~C}kywbf>!v8vEqO0Hn zsl#z5+eINPz!DC$AP6mVCIC+bbno`?1?8Bk7-rb@nraNghvk{MCqqL|O9glOp1CIU zatBd~q+RSSQ^8g*lP6-Y`<1R8(@q(wIoiu=cYZep_e1WuRjuzJ5!kaEQC< zmKvoe;WBy4R>@coK5;0qk=tPtQ1(n5UrXP!2RM<>NTCNhT4%R_Ej12YaP>flmH9KOW`F0Wp;~Fr9L_ALPjR?cu!zo;6P$ zB;+Q+jR-i9!mKdi&+J!6a5|nPHZ@zhd!xsKdkK+?2|aR37fXA(3BrCli&n_6DuJ-# z?`cz(%28hs>Ieaf=*5*MK*tixJ3)CSulGCe?}+dJB|1FhgYK z_Ld`S-_<|!e;FX-Atqk1D0pudC6vC5-LXF(+*B8qX+CcwY1YHk!`0-Y_)AAvd00qR zYcW+%sUnH5R0wr3=K9sUv(%ErM+d-U`HWdFi#F*;QNA~{XZ1U^<~biE)TP}b+Fdth zqa*rpsvJ;FE*vG@5@}gqWiP+??OtqwqbS?w$TX3d*yA06G>im5fTLL_NY!IBI<`&b zN0)c6El;noWv4ZTa-=yqznX8#4F_T5)RvMXan{!SUb~&cO!4C4M^99qKqW}*q*{AP zYN&yhYrsxWO9VDEt7c=He{`#Zz3z)NMbn6{orch%M?HT zLp=Px+<4>_5QdFqX(&{*L-4r0?8=OC#)3$k**ou01nRrwGv_f$l4!dKOw4PCDvfXx z${6j*=acSdn{QJ#JQqQ%_GC=~fDt|{YOcTxf88Y9l8ZGSFJ{HSFb%o|G$7CNhR|_vWptM=7e* z4|b@XjfhPcupQQxqD78$HZBJFd!yTJ`}go33F$+dCUc4)CsQ(c)@dwN_xH5#Wrud% zbFLm8=Ub+j`?_8H)E}dH1FEU1Vagc2P=_6R?y8B@6eg5l)9q`!A2_JeUL&)$?y$nU z(#egn{jJD`Yw4nwj2>Ys5G$`)j6?>BF|-5cwIqZ6^H zC&s46ric6iCr+3ECFe0-5a_(m1aLUgugF6-*l$NDBZhacR!_JUM3%p=tgd)`2wDuv zh?cXfA4gES?AiZ~3-ld(K3>ZKI2-_(wUa1`K z4C2cY{2{bX|7I&dnyR}=8qhQH(`YpaUg(ax-7PXZO({P)+ll_{D4H5w&uW1U@mZJW zT4QAA1Jup3^wsF}7@c1$zm3gUVRs_kHs<+t_@#y&WJMO6gq09U*Bt~ozwOetcN=ST?HNsr1&_09-^)P^d*rW1!bx{c;uJw%wP6HCY>Wnw7=$;oZyX(Y zGQO8!K!UcpQJ&@(xvfco}&Fsi&DwakFg2t6&aR=bP zHqifyYK~XUk9I>DN6|ihh8MUzsjIboJKc4Dj7vSCqAlY4OL|fEsA0#az2#qJJ9Wlh zy&;aY_;rA1#nf2*bRN}zZi-a1cVIdS#`YTt*VHU2$v&LAXO$+A zi3O$-_}ozoTf$rYMKbWM6U%swDh8HUFT2HG;m1r;6+!f0VCrc1+9=$0_nb%CGC>kE z4?E-^XJwvx$agn1@PUH>*>-j7yXco`Y#6Jq=q%gJtk<1i7aAP$XWly9a^5~D6#V$-A-}TgF1k3Xu7Vc=`ZEwDmeox?NqLIRpC(+58`x)k&MMmjl zI0!uhebX$3)*bi?r^YGTPCpzpGBCZ4pE_EM>9mkf1X{s^eLl_$M07zexw}nNt2jNY zje@(=uu)5{uK~0zJ7j(awG_5K18dh6VUf9Unr+}wxB7J~XOMgDqm$$;DcfzMFE|-& zh^I9^xy%bg^_uZz?!}>WZi~Vs4t8ai9w1p?j_K%kWS!CfQtR@~c2cl;a!39F>#HC+ zN&4{p5X&SN~ zqv&UGQfP+EB{+*$r9o4DRnmf9YECfc4Sk}x4?lXrSyb;!lUwC4jUi~4)~ZVQMDBF0 zBoYoveSl6`vb8mEIJRX;V2H&_$e!g<+B|tkiWGQI#prt98fhVcA8mZ}8U2btBj6ih z*?cBg#cr3hx6g8wH}E4YgjEk{x^PK@po^wqqP6IntXsFE1z1lG#|Lb z(VxX@x4V`B;{_w+FETF7?fv*c7ZT!n`#tekI zyWut-bi(3|M`3RUvrmZwYhUM$&RI7#kN%od(@`K1ul_|f4zA+-{}Yb zYkvKI+KKz)@}!JeWb_}&QCjFWQaACQRee-4`kS+Teeb{LA^4B)*jqIkNvhX)JN9(y z)3u+VdB|Wg-<1+>Tc^Q{Q(DzOeoBRm3z)rykiEhKm&m_;kpBs8wqIIE;#TBAU+!;~ zWFv8R_7#2sU0C&2>2Hn8iQ>Q62>r+R|NqEFT1wO3V15vtC%W*PS<((6$mX0*7#L;! zjRAsv`Y$n5|EE?v@P=go8>w7i-g1R~3u+l!V)wY(>=v_V}=K(m&J62OS2&;k$( zFr7KT;ry#N|H+uHe=*m#J7KqWd~(1-^>}8(_R}@-aK55H(^fwS(1(3<2c_({yk?hf z#3-d7+53pT(xZt8J&G!lrEp?X{!9$X;gGu$zPGu{Y^Tt6d_1{l*yEG3Zxh$3SpNhn z$-(2=*H)TKDcofzYcCOYBRllwjaLt+pIXPI-wqcd(Nc6yc~f6xJI~uVjJP#9x$x}1 z@62ZC*FfeyT^b^0N#b~QqhTSKqGPFAuH9z^&zENVnd2o{d*dG$yVq1ZJehb!ji@?+ ziWZ`Qp;zPqwjC7^=P?lK0*|;C78?dNgOxR`N8MZq8dV3-Pm#otAx}Vf57sd zUC}YzH$5ErfH|-OrWKX+8Xhcvy)9?iCWhQ3OQ6cQ*-#*UlU8 zeR}r~`Fn=tXQS{&UH-X{`2_s5#xs6^joSK;MrU3JG!;r?@JqP$w^%q*nSds^1tgsj zim%vcwzXIL)2@2LN(ra;n9K+iSM-6`kvcD~(un+$H zc-K7HW7{X}hgjWPW_mb6PYRq?%`@?pA!*OZc!2eil7wu$q^{P6>LM8^DLi`KtMpm4 zueU`CDV?+`%Y`R8y&TaO3;spm^xQZU^Idqda3UX$`eIt5n;pPc2psYhzxp)72KiHx z3#!={voNwc#XBXt_VLSuUZsL7%&O*28w>X&MTx}zmCuFrkCx_%dMys7d{|-|MgeSV z>|Z>bfYtf^_y1(0HGh9f1eghDe(EnLMbrJ7a|<~wUVI8K|HG~ALl|L3V^tCLf}(X) zS)!Ij&D)<}tx?0<8=&C^ZyWRi-PJz0JkgH0QobQkZbYcwtE5F1h<$&~)HhtLx*fcBcy84AJZujvOs46r#Bob4TP+tMdY#y#x1%+u7y|?vFMpQB4P* zyBptiN9|uC;RUUtiy@)&S4VOBOL-%*GF~ZfGV|50+|UeqXyL_^ewINr-(>yE!eXx! zeOHPXxv$H82&QWYZ0`q}zbmNEh-wMZ#bqJQ9HY4FODCexOY_&#;TF!f-mRX07;cnk zNkDTPm1#^j*4ndtjzp!{b+N=6)5jEm#>&|xQy6mcadP9p>{M0tuMJa^_9dwvh`6Fi z3ii7kmq`G{>XtAA#v=vwJR_DS^@L07U!qp4Qe$&(No{DHYYcxDe)BAd!_gQq@{D72 zrT)XC>Ldbv&^GEx61RODQ}i7FrXNJROGue1cX*JyV2ywYBDN zegwF=C*gd5*AD;5KL62>>J|aiB#y(MAfJSPqal9kw+@{vtaj+wRV8fmmeT_d%CmpS ztNnis=@%GuGYiNk;nH_h0p%`0au?1YRBQ_G>GvZ6LSeyxf9-0wY%VjU=|8>kBIkX~ z9TIM&6yT$Fg8_z!g!NC5-y|O2GQH(sfBbU)(~DyZ$zCpKiPr*-4=B0aT>`vLIzH89 znb$kB1z0t+olKD;>IW(GhmV=f(kY|tRym}_@WC*jkEhF z=mwx@t(O3AkAfbsL$H9RWj>bL)E_Ade>+-0oP7Ah z{W+6tQWCp%yE%_^ioPh)*#FC#do$0Z+cv}Wr16s-fu}1hy4jL_Jr7oahJHD83;qJ2 z{k&V4upILWc;n`n=$V%9kp@rX2Sn2eim6-CyY?^cgx=QNLO?sn?sT8Q_*Gxwuy(iJ zTi%jU^;5s3zql7;`jSpPj}aq7749His^}(Wm0nJSHGvK=I2nMOYtiDIeAXYO%G^zud~_)m)~%iF*Cveqt4q(87=m|NVuV)7|mpcp;GTZyQy zz-Js52s@b7My~Z{=EQRF!eEw@3te({57L(wLOEaQe2&+va>`H0Vvt+|i4CY_uBROL zY@5&MSG?IH9=)uns&vPG?e+=n$z(`p**Pym4Kzcer&Z?EU02E?gbU}h0=6y{MmJO1 zo~5#o`E!?NWC0*cWa?Y#B-qRi?0g6wZO~xFra(zwm`=MIHhu9P>G;faz5k>2HAF{e z@n@JcR#)`(4Xt^buUkHR7p2683B$>nU5hWSdef$UDu*cT+9Hm`B z7P~b@uoS&76Z|?H;as0u`%H;({B+V1PA|BtUYJv-298b&V zn&0lCAH0}IqJ0tPm49d&dR6ShfbgB+LpGNmeKm7p<>ajD__>~fqv8cxpziF7Hao0r zfM8L&Y~aTj>IgAGXWX@E`B%Ay^Rl-dOt!18I!`Kr!MyVU(nF+P%VV7$4M{U6NG3!_al%b0y> zDMhWYN1LGib}}rP!sk3>veKVx&Sn!`3CM`h+VBKEeWb*ccp|bnDA4aNAgF1(K)#%; zE&cFKTb5e=)yo&Z3$*g9Fmr*+e1u2}Y#=nr+cl@wp>Bd|3Q72O163EWvH)gphmB>r z2%EJmD$N+SGOVN8)Y5V$txnUciXk|O_$HQ#o3u_N2~mx_v;gM(`fi@7;JB!OM8SG2B{W8FTqy|V8G!oMM6(+ zJZ8W0ViCK$+}U*1fw!{OP7cQqNrVta0eV^)=$7d1LqDqnV`UA*$YE@n?erYcS?A#s z)+;>?*xaI`4Ih*ACA^weQ+d4?PxK7sYa@U3M<>!=@V5!a&_@X{Jv1wWrFbT5MIVQW zzS+#6A5mL@|K;wiuAiVw-^nCuN~+S$8X;eY&o?fFIkznf;K>&5j|+?0nXw2Wn9P@A zrMM3?8w0qH^NR`mhI1!Jnrl8qUO~*VHKXm+H=R?v8qOc*!;CdXyD1}}q_^obRW9D2cVgNAowqW-KrMTw4p?V{3bLJxK1y<)rqtndKDGwjgw?(zxP|r?H zk~_k6y;*BjSfyeHCL7zwmYmtqL4*cR2Q+HreM$D8>s zNuzN$Ogf#1#>94~p>IUhujmN9&owmc#~*5Z*q5E`a@GD4Z;D82R*vg*>A(FT-0LB< z!p~r&CH@%x1h)MNri-~2CNbsyjxhZ>wK$pl``U zWlbQ9u+1UYA9888DbZ@F-n)3%(6gw~rxPeEH?!C;E*JCkzLr>{96?_VL_8fGs63Tm zy@n?-L-gOgTv1vloEXZ0gWJ=A={e@>c8qR5A|IcZF}m^4X+6;d67#>V zGX2H(MZYT`6bb(h(lEYLr1>O(~nQI-E`u`%@dQrLFa1&Oe*c;R0DwU_R<)j3@?lHK6CBhQhYo z*C`epDg#SUL~jO4kX)?k-ATtCNfK$iV~6XJ3l5*dmO}+V9}G*Cq&7DVMKv#o9f#a- zl-0=H9Aj>tGh>arM<4J|l4Hdpt+{&0)|4Cp^({0u?L3W&OnzvxEF+T}#$z!ax4Rv_ zlmDsJ#h)F0A$VzKb0(GjdP(qHU2W3UYnp*Lqy5GOxlP0NY0C6BRZm5mB)`~a-q0Jc zAL#4rYb~+mD`%Q#K!1;UV=rWXfD(ybUfMAoc-G@fR7kbtewl^v>bh+VdoVWsDSTD&5chKF|HUzxR*H%%OA6 zobUR%KG$`9mg{7XttzyLBHH6zXfmKxuiycf`Z^DH`tjp>*1Ne|*JwdC#(^*idZHv- z<^Dc?*gzevqE<7XS?uY8=8v5i{#YZPL<51Q>3+hLvGC~ru&bU*g}I+G6m2Yz1uCr^ z6mp~*ACDr^D=*pKRK#b)+4Ja51B9(})%Nxi1CEJ@jn3>V?!YODHdG2<@le_bL9-f0 zPcuO_gsnIXeKD$AoX!~}z@f_R{XEW@S4n&-PP6l$YRb|JWNSg3Gq^q|BBkkCzf!k! z@i7n9<7E~noFl)LHLQR}SXH$&%0SY!$zBQivE!7*)T^YRnx61mh?r1Jf zkhd5U#^yi#6abjgim&CEcXf1-#Y$l467L_M9uNS`3N0+G^I}QZ-+jDEOFt z6lGd(&%TJ#)Jy*i|NQUL`+f@`kog1Ae94O(Gb%8U4_78RlcgY`_Wf7gUrQ@n;HlV3 zC!Qu$2_ZxX!DjAel7|s~#^5wBISN2OdY#SM)o4j=;|Z(6nU++&ls9;k#v*h zCri{GrAlkAiX*ikBCk2V=P#VZ=50MJMBgSKFjDHTaPqREtM6FrXwiTmoLu(3S~fpb zqwEvaYJM!=du${av!2&Y_8eaIk)=bE$a z0EEhp@oruw1;L?ni>ciOG!D>t(vnP{XoPW(txm_yksdidO^cE>VOs<~D5zMbum z$a20~_6Bc(`0G&mV1OLihzyw&rJZl^TAoYMgHXMPjQIBzI<4z2BY3oxZap${;!;fW z6!d_2YOEN^OOUE6w14~XzkScXIk22U<%J>v>`$Ir_1M9iPDQE2_?~e6)mo{%v%)Ex zwm{y9KzifK_O?c<&^v%vO<`N$z048Iu?Ui(emXfdWp zv33t8?PG$*T7%*pi^=LV@g#FzX*>&=<29RNo9dzG?X-)mjyUk#d{(qIgA0qg^3;9E ztD4-#jwtw@p;KY@uS85cWdImu3alsggXz;;%iaEPQT^mVsxYs%9tsJJipc`$~EO+=FOK!zIJH9kCD)Y1Mfhl?T&9Ut-$L!w{yU!>=-(GI zpo;rAkZ8{(;rq_nicr~HSH4CxAVI3)>Gn-a0oggS9RQh3-DPfT)R$eI#5LW^*we6F z!%N?2Q`t_^UBU-u>|bw9w|BD1$|-2hM?{(OUS<_VV3VRvzfrN)g3i-{SG^YFaB@*x z3RF@K`~_6@cnK^SzsxHV>?Gyd&^y~~l?Qv<2X80TQUK7s#=lPoU_Au=>T>@drp(L? zGa`WmecQ!LKs8qO)J7|B}S-F9Y1xN2wr9sy>C2o^+ z!@J73ac;rS>(ksJhUW`dSolbm~(v=aY0F2nr7+9tvFSv;3(`-ia z=~^hg;6v{VVSubCcuAgYF(Lp^!>{9f#xQ7WN+%OAo@tGXMdEfW);m~wiE`LEs&>(~ zLKC#;_`CHioFCs>8_bP|#;VGFTzlH|&RDs5#ra8JliD@L`D?*ZCVtM&)}AK>yf0qJ z^4ff6v)=JMGLSsdq^!wkfoJvI&|OeZ7qmSq#V=N-^LFd{B_bJUO-1MRq;pawK2B+E zNGbEdNRl4-9nF@wB46x*uGnEYD^efMc-E1VcLKZ;E)zS%-WlAOdKz$hNW!yIo?a$5 zNaS5|&HH?X=RWsDm1pdij;4w@R<%cnv>clo^K5-%o<2h`)UXenH{sfJ=a5?3CcUOhUl}ePG8LlFJbqq28GHqWs;U*H!rn>-n9r%X(QG zIS)FVdML`8?Q^^ROjE3f>)i9c$81WQUrSDlv(ddI(KhaJJ5abtLtHMZu1-7<^cc28<`DLK)F<1-EA)0IflcpGe3s6;fF{z^{hh* z_kYH?1qqP{EM64;`7bn+3YfOzHl~;P6pm0!kSg!C6U9X5)OT1*-~?a>LlCM0kXlxO z>!Tm6{XE&vkI1)2FJ#NHS*S*x%4ZsP@Ll90K~Q8qwJyLN>H;xe0KJbCbAZ#56}fXtaiEax|@^XX?rJe;x}EJCF48aL<@hwN-I!Drvjb3Z3D60}qb>)eP4e9Kq- zK6W4?=~VELIk)j;oCR2sE97uKHs1Ve1jnS@Qx3VL!*WlJk6Ys^$N8VRBDo)Dsotq? z?oP!+GZ&6~D7LFUwWPp%Y=@qE8&pKDSR$@0Rno48^@$^FlhM6{vi6 zxlXR-6KzCwb^FH;*Tau0AE5KXO4~Be`tfFLi#?nS+nNnpACnpXB3?m-NMx4aEnZdI z4zH?dhtTws@%K|+Rnlzf&`2rq$dxOsmNgz4flpa3+ zbV}KT;iq#XFk}w{ATxksYqY06)!E8v96qWbLB_BXD(?348&&B)&XZ4)tqOxw!S@U> z7v1m&_G5rL0kZ<0GKe*Cje&~XFZSA0L3!ozaDp3T*Do{{(%oNI@p3CNG8z1keptxt zDWPPwI9X4~8!TzHrHNJ=8meIzLTI*K;UF!df+r`D;q4@uc-f}OO~51^WIQ$OH6m9} zsc}V+T;(X}S}W#6c*t_jlZ5VTeX=h*yP_XRS@=fjhcANRnzqEcokgOA?Zb1EBLVOa z2mEbr(Q6m4cf^>ji$oO1X-$MbGn5kw`N+sY#%v@a#rM`pdj8atekdNH=>B%ikJHGi z1hw>c&9sH2dX2ZjG1}Xmj1tt~_?Bcq>%CCp%**rVFz3cDqx^KI>P~2h=)Cf~)AbY; z^!!Ye#so+8kC)$Zs$IT z=YCRAvx75BuIDgg%w*?VTK(MfVzn8Cv{=5K#fMR7&3AHK=6uvb@J*6p-x{`Z8`f{q4a5ipCq4RP zen4g+d&LeiHekHqOScq;lDoOUzME1crCUIrIJ7r7W|IB^h zXDO#|eN(BeuMpFJr69+12JhY^b2!COeVaE--Kx}yPN(MLTNT$Fbnn@ddf1Hy;pjDb z^gt_)ri*|3B;H$3w8Go!qrG95562(KrZjFgKVGyE$pvRp&YvTO8f3Q0NFR(eETGMZ z45?{JZwy~omNqyTcgP;cHl1ZNN|^D1dc`0C7V`rd32TZZ@PK96JlwYvsF*9g+(%3+ zxYAFsfkA39IS)C25Oh%<8(^MWzDB2M0VUqoOO^HVRhPBHVH8j%=mmg@$6b!QC$JpTFNH=fmVjMw+s0!(`^QHMKdB300P+q)0H5N7yNt~v@BS^V+fe-ZO~J~3MfetjOh(h}CyLx`sp%*9aTc|4fu5f&viEkM1*FP@vz zvI`p|${+IKJjH39X__Nw_Z(k1kx1hbo$C-3=1@$EIdgYj^15!YevZDT z@|%@8F}hzyAZ7zQdln|sESR&#NP9I3G1P>YCfNX4HLzYVwbmTjp zIRSP~D;-{+F|y3{>X%(PUC#kZVs95(h+uzB)17-s#J++NclE^I7n-u%4x*f{ z*teZcir!l)2%t!y1##KictzYEBO7}7LfDkDDWKgL0y0U>VnBrP_|Y+)0bY7M(-zP_^LvEFZUfMx*>P^!sijQM#0uRt?` z!mb?t71u@jwYuy}T?y@w1&(Qk4Yck+K%9rR=1R` ziEQ5poqjM$p|H7~2p*M!!9$UYO!kSKitGfIAz=XVDq$ZXT_OQ*h=axet4_d7`P*L@FKgIi#;5nljnpJh_A_v22snAF{-If88?3KYQn0yUL?*#?Dci|vIRf)D6T z&BkT}MX4TETstMNCr?P0J>;YO5PItRTkNTh#q=nYoXXJYLgTUdQ+{_6e*hD?=3wgfSjoiFGJ+@f<+`iNfLbG*4Xf?MldGGiFb!aiHvm-l(m=oXDLeHK47npy8Xr*; zJCCHP7+Wl_A@F$XDS_3KN75LGm72nVSn0ciU-u2WZI}Li$9^8jeG}bn@n>!h?lr;Q z_ici`aC2xmz7=N=xi$_rFT{k;o z?nzX+vl+UyGmN&WDFE|qSp-G39zZ1Hlb8K!M~@mBoB;C-0_ZG(;6WUTN_5ES0*8N` z&fU%~lA}_alqD#NHcI@xw*Vr0JGY4nAW$^Z3{;ZyhCe_;+a+57OzYpJ5dKW-_(KTy zs}S$s_50spo}r`eLgyiX|A^**rj+)9H1@vOm{z0B4cH5|fMEb=67H8&Ru#3CupAaN|l<`%%gvyKl^~X2Z*q3_F zwl0F*O4yLCP1MqbPCXxqd&W{Ex)vtZR1-Sh0gC9p3QKPjW@`U4peN*zkyOst^r2F% zs?8eapQu73Egg*q`XkOTo}SsCriE+7R-g!vjjjt*z3m>WI2h;=&K6UQ-SorR_^%}h zx594al)ES@C$RP;?SVUqu`_7CU3=tEYfr_R64{L%2Zp^z-(H)YDJp3Hg|^=tJwP;s zT7Y<*QEm;tj=#SSpHlSjNoEEXc6KpTZ1dm#;y`n-HTi&))pynh->ujuCr}YKoGPu) zZu5_H&0j@is7Iu{Q8A^$w*@18x6GiZ#%_Q}no^i+vv?quw2X{u@+Y<=6wL5TC z&bcF1H1Y#eZ_iPNwmt;zl4}_;)hYev^@I*TLaNC^_{fl5HtpFnnsuz5=8vsa@J>dG zM?`oQ73pi^`yHW|v={hLB%(GL4fr&rPem_1d>OWfF|J}!d$Of?UGp+|#y>K1?%r*3HlEB#g;Pxi%&%PnM44yABOKK})(8g| zzE%YV0rucqq3?Wy0;Kcg44nWVSE@2ScIwr*>L6W(HDbXpbuE+V2)s*PletJSlF zq57EI+_JtZ<9@ifqV{=P zE6rA@vz3toYQSN|=U1UinX=87rO4x}&IR+~AnY)(Dx7sN zf6xD}ltXXk^oZshUq6H}I|Yhs*QqU}_)cX}X2mST!nbTdXL)MeY=V7W2kJrrC{zcj z1?HPMqVP5s`dSv!&(h1M+&ESQVXAv)BFkUd0*_szYb6q6@K?|xe%(L{v4oqOr|H;i zdXv13NG&bz3#0e2ZR?SZNx>EP^nRUBPXqrJYW>lm0{;0UpYUHKbp9(We6(8@Cd*EQ z6M@>R%^{U>f5#)M?XOX}zTtEJuU~rpwA87Fn~Ac{A1@q|`;0*ZXZWCb{IRd4dJQd#<0FJ*Y-oq_p5HPs7pcm1Yi;<7CCjWhB9m0d5RtH@p7 z#pf3WowIZZQk~R|j13~MaNxq8SZMTTXg^tD?{iIs$yK@t&FQOXl=?wlS!SslNY6Ca zQ!;1uS`mQ{Vlp8X#prS+_|K~AsWTl5cGZ=#GHJz7L7Qy-T>OU%bbWGbz)Bxjt*Fuf zD1B?oiNwBg79FMmYJ*=YKXzF(pQCt}s73S3?n|ZZq;6~0##4?gVw`b3E9d-B@&x*-xG_AV;;o!(XWLt`` z(8ozAD}L|c!V0+ohuC&tB3lM)p?1sPzSy^Bu0++mdyCDD_Zpp_l+NE7++t z%fDA=-dOKl&5L>H#8p!bkdG77P=KP=+>0=}%mg!hn618%ntq@Gj^)+vLlD?Cxbr}d zfzt(;U2fH(3d@v9lGH;VD>tgLINn_Cc`MM+>?*R)I5y&Vpk1?cS8^T>eObq2pjug+ zFEHdh?F7%*4$2LmCZX@n^!KN@(|Cv&J9n}0c+yZ;q!(4(!g!GQU@Vh_nK_Ox#dUU^ zC#NLEPCBeiXc<-bS(4dtT@F?p=xG~Gx^3I5^EOF*^it(m2ZQ4k>>`ta%DESAa~0=R z7a6kKnGS;tgJy0(W?z_2mx$ni_9G;jY3$h~ot-LcrhJY3vN%<1N-%RbB!ZjxHXPmT z%@4jxEm6wIAPBv-pJ}1~&iZs@V3D(d*}&!<@!Tff>Ja)Xg%omJ&l1JEr~)OWX^pX) z5e!;zMM>_lcl@_38q!{CEWKfrW(Z`fKFo(7+lc7~j>5|PIBiQ)z19G@?<`N9-$q*r zsDZq|QzT^5;cO?Q;Vc5>1EtDqm|V_jnFS>MECHqQ@^~MRs1WX31hN%vT20|6abYWw zi}e7x6IuM_f2RNegll$53(~$6h;Tb%of8m?kOm+URlXx>{E|F(=j2OYPdk}rTu+YG zz5!kv1*o4uRmp%ar&X>eRU;%&ajn~k)BP~3z|%QAdbVM0^#u@_Zv_`fKt7ohrT+EC zn!a2*IX{;7)4$^uDPzhseslwB1e&`(S3gX%FHc7D>o-px^>5Ps*%N=cl7BQ{5m+Rq zT65(w!d4TjGCC7crX3mEKBOv`wm*2pLceuM1dC8KA1N9rL#@F7R9!U zdVS}t*R0n4peLNUcP$5XYSR17y3MpW4X%Yp_L|?XJSoA#SE_S$_r4QTaMC(-*A53G z-L+j*e0T5C5?^}f*nExw(S_{$ zI@$T5jCTNe^8Y^%qA?(9LnuUYVew7k*ID{2EHC|o>Eij{xuEWGfd7@z@TdL32aON4 zg(U7qfsplOhc8aZDj&T|92{!#e5D}B;|OY$Y}K4a{&o7(gvv&;a!j=TVf$foGZzHOl|=qHkI+e%?}ey^S> z=tP@o{NDh8ZnIod+WdBCAA7e_K+AErtQ3Ba$A_x407&!f<(B_voD_Z*P5wK7_hU@< zPeAQf*5G%5kge3)mh;{0YD4=Tc&wT_l@Tem=;_*r(lOu{4$OI6*!iIq^xVvA=_#{a(6!P5Ol} zN-s6v%d`#-k97_TUlx`h@HPl>E6%Mvi=D44U|D%*twURf7fuc6wJ4y>nXR`&r&&Ly zN!>IWfmERNT58;$SMh^`q#PQswc8R*oa7{pTq^}zr@4Fu<z}P7B@JVaINj5#IvcCi~~6@4E&zy<4NxWfwoc^xG`#45%@ z%Q~jfvJO2Pk^M|Ks`X+$2tK&C)Vs#Y&C-!90G(~$l(1KWu4qgazzt%Bon+Tv9J@hL z!AZF^LPq%fooZ-McbC8e$}57W$Hj-0+9p}=bX;Ed06%s`wsby%En`!v1c+yx-+kVX|a+ zs5bjbZx^^g)5y!pz@~d#D3NAq#pohf)tZ{k9S@gYm_D(20WN2 z#K@4qoVtP(^tF~b=6rWRod#=vS--DeKfbu-ATe#H2`iF0!&D#_|8{KJEjXsuOu(FN zP0m|KLnj@==N?P-d>?bVuc=rTIS_$cRa2aJnh`<+#oR*`y)=b^qh^$#mdkfo!yUp_ zhZ1gH!86#6xQUi!?bSf$8@d=0Tlrriy!<(L_g(r1s9#NgkjuyE4DT(rv+ezL7S7U> zrQXO807eHCSvPIYWf6>VkiF*IH#-nyqf@g6by)RX8yceb(x034Wo)3 zrPxdnY5B|S3Libl%AF+VVI7|7C#RRXq|>@3J8YvDE~(Ut86Fk6-EGvI?Q~)A+{sf# zyg3{P+t;%@%iez!IPc+piuf8HOz4qy+t&V8g?6+wPW@W^^U)+d%e(NdgPFyoMx&f`_jMjJQw+Buus$dvTv+%AU}xxXK# z1`}7GhOlR*!>f+LU7X}%>{a*IQA@JC7d65MTm*w3!hxD+*CmWhHQJxVOC6ak@Q4q3 zII|gJ0JUv7{z~}z5GSa@;cn#JMNQeTT#^b(9*?X3WxTGd_(bv;Hl&KjLeC8Zs%h){ zN*oMKIOaBd$kDfEZYG@{W}j-nL>?Mu*iNA}QtMU};m9vV_Xsmr;?{b)ceV^d^{f{H zL>G}u-ac`Qx8q%xRpo%PD$dgI7#3_?WBM}&LjK0QNSub_#B1%DHt(EJ?gPE4J!jm5 zz@%D4p}r~nu?9FQ&Goi8x4H{zuz6h%sCz1%n32YDWq)4dV=ZKINtLQPk~HSR0jYd3 zTYm#9@HHvAB}|xvQY#+^Eq}+fpvOottQ4^ve#LJsf}OYBx~AoFOt?p^8c{Bz!I{8Y ztC>()j8chP1?m0+?%GW^T4ru?S*H|+zA6YkaW?Bn@Z;AE{rbbYP}$NU5r-iu?NeRy zz9+J2CFeO~WW?DiQt~m}U89i93RZ%G9OM;h61lBud?FX*4ryv-UDM|txN&74`FSvL z15;p3sJuh%?8V~ZCL0m%>j!T-tvu#s6Pp|XW4F8V8>i-Hrx1cJWf!z9Qxh13kgmZ_ zOLqqm*UAh#DAlO8NcgLIB3m_NYl9ocPSqF+VDMYX@M1c^(8YXGwa;ocFU!RH$+zB| z8S$HqJHipN?rI0ys>S&qBJX}9o&8Pr`-vU)`)|u=FaX(#| zYD@M2^4Po=R2V!2(>xD%I0;K#iaG4~)C2F%>acqs1BTEYG2+h{_Z5evHi@agn;Y~9 z!-9tUz57b$d`&yTXI_K{W+c61iBQ7fqFk;9v%X9}(P-1>@50cOo=wQA@ama*J@er% z?;-UI30E++oX@38!EuwPG-kalvq6VU2a$v7h*DO=>g*FiZz`~HhN&=?e}a*0NyT8{ z=q=>WZ6#5WTS{&(NFxK#YSz^Bn-*@O5X9dUz4SAtpb8hF;1QrWJQko?-1~4<_4PR@ zwTghjN~eyCmzN!0HHGNDHp}R|T(igYXWn9!oMC*1MLf#Ul11$AAR2x9r73@=$;f*g z|JOtGim&NIoR;0z8bt`5dT7iwPDm18t|<=I&pUZswB*8*36Y8SE2H2TO&wTv`&9Hy zIIqU4Z+1F~ox6;?R9^G!;)^oN_+XiPphqDe;;uivwZ6&0biSy-A1+t1o^qmfNyJ)1 z=AN`MB8RO)xIYjmWtQ%$@w5jnYes=h&O>_Xpc8CS4{)VCG7(B_zml7gZIMcmHkj$mYcQry1eL|i$+;;$Ci!_`hu(~+PA%#bXpRKLU{vdnOsCQ; zPC#Cl+k|EWM{a};9$e^h)2UOZgbiP=g@!pgg{ff$O*5Q3Cf$z>aF}uh4LsUvwY1eb z>jjX?@t%qM_^tG3Qn_e*n| z?J=pIy}dmzu0CcL)AHBLm5uM$#A|V4O}GF;I2E~AkF~1`^)2gZ5}H}Gml_%~^1nX6 zCb91wkvr`fMNC(WiA%)1^EX8)+7a5Kk%Q8GGOe%}$*fk1hM<;eNokdSE4$bA*K1hj z8=V|u)h8FH)`h7wpE^D{D*g6^P#OFDHk^7tcm)Eg=b&9&Vo&ECwd z1KgFbC~C0?4uV2*aU!b2RNO!VN9GZs>oC|7_elcw51o(A+qKeUX)6y)^7yXG6>2)Z zIe6AeLYOu6c9a3gZ7`O~Cg>IajrSkamllNM7XX3wvm1Vx_3+3Fl~p88Udz%4#@y$} z)M5Un6gQh(uguS2q=K*~S*s)1JODe+=JY{^JVyYV@gwMBkO9+vN2xs^lm{ikyxSZJE z{E2g#Is0C9JBJB39jV9pvu$Fp<8_5=q#uHFfnb%@hYBax9P5M0thJc;Sy5e_`ND*f zGg>nlwAsBOgDfp=V6U-x+y|PU2KiZBA0=$C6brmJ>z=XR;7HNWEy&6Z?>Uomf>A{w z@G;JfkWc1xy+XFxZc+aCfbEYmQ#AI`qtg`K=?L=^q+pO>TM^bmOBTkCO$GA z-g>)|Zz^%-q|pc2H6YnSa}XcHd2l6!WV~}Ez_XtGI!hoN;BXdg_JbQ~ zpbBC%9ruO7@d#14-_UcW%3Q|s-i6f-$!00V4EN!n(;_v)W*7Q#``c_vX-wNm3XE67 z12>%fvFzW{yU{;)0QnRhi?WNX61eMx-?|WaPxMstl5(VME2L>S|B;|p#@c~0OwE>3zFCHQm^gsb;9^jCE*OgHE2U^q#Z%vF^&7m2;9(+$WRr7zB18B1J2q`U~QzfKjaZPFAO zAzVR%pHp-8II^W3nb5cs@)|yOHcwKQu+`%RTe5Yhc`>v3M7g_@~m2P(Dh&}VDoGokJBZxgXJr7|v zZi#P~a%ukZz08SBcgEaVT|F=V4Jg@3poc+{|RqpzUQ-zgPTFx2s(<8hl70n!xWE1cdt(g1dd9E8RvrX3j=s}!Oqy%?G+ zWNxEO&wCN^$}s`1YJ2TDdqxVKu~2MVyb4)t1D-XYZZI|m{sAmQc7Kum>y8#$k!Y(T z6l1-_9mvi8C8f&OYVM{mmc5mk*s2quvE@9DmgoPLNOI54!#{d-|B2&di`Bt{^{fM{ z)nIZ+xkTd0(DjEin%*)G-|F6Zbx|wG(KKQ?kXEsYVp<&$_@R9rGp##Ss zea3L4Z*AO{2!Gwrh)KtkGuD0%4_T*8;ek+%v3o%|GKY+&{bY4oos!J6SyF5mf6ft1 zji3!3(94^%{iw%EcQc1wb&0tn-;VY2T+fR~r;3i58xVSoGWQuroqXJXBycELjFu2U zi0ODNQDXw#}V*r~b z3o>#n|E`Bjh1A2=J2lN={iB@1+VjNVu#r6NE8whUwn;0OX9@<$CmWJ|MIdf<(CN4P_MSS%MBJcT1rukJXJXYG2vDw3>5ghHpkbbkxyLB5(QV&%wX1+9h2lJ=r z244tt&vrg=O>-WCl;ZO2TRBSq<_hjCblvSGTs`H!z=J7+-VK=i`6PndYr$n>cmk{<9uBOPm2<`KpCo*=Yk11x_n{q^%r*r!BZ`yn3HE1tEeR1@uS%2%Aczti6Ta) z$~E|^kS-mZ&%pdMg|%1^jSo>+89kbgP6_GpH&yOv*B(0=tr((q_T#$yB@?EsdN+d`-Bbsl9V-tmAB5S3$a%iKJ@i~La3=X5*Ct> zs6SS6ex;*~NNnBDe|8l-B3X@`KqNzQEr zS*JEY?1vX2FC!6^W^(V0GBB?h5piZ8iLZQ6mp$)qdqTvPfHhY17TjyDeDQopwhqzB=8wk~ zsrVY6SO(q}3Id&3Z||sp_@;1$ynshY$cTQjy>Hd)wn<#Yrn`01CW0ujmX4xZpA(r*~_ zNiL%woYOLpR321;^-o29dVcG8=xgfhfeIUSkQa`QF3L+pVQCe~AFAvVx+O%4V%aAe z20l5bq!9WB9y2M`%Ovni@X;_{kCESf#1v!;djE~1?8n{iFJ461u<}r|KFPwmq6>N& z5s91S5V&c@)BG@x^zQDngTp_(&;5n*lhl}UKyd_QcXu@j{TP(SXGTm&51*E%WozAc zE$Qq*F_A(?B_Y%dni6)FTZ)H$2%9#U3q1r`tbWiaNt6Grqjt9^h@Fmkf(UaXTN6D8 zIgAbrsre3#QVJ_=Eg7=?KbUX+H_h#M7x%w0abw^LS zGFm@cQU4pq3^r%T{fQulbrsl^dy`TjO2PM>**7o!vO?-Vg~o`!4?C}l&Eqvy^b|$r z$#(ac3yWIP4)?ZGdX5B~qr`V{U*wx!9_&3m7q{*eXlc{u8Nry9J%18IB2n$hKAQEH zW3&bSx2DAC(vyreR1)-8!q#n4S7zd6g=Hm0iaF{^FxXo7bf}EUZ)X);j!Y!EDf32a zjDfyP#kw6t&1Y91Qa>7!P(EbVeNpK&UeZwvP5WV8T5q*tI$Ey-!6a%pHfd zw0cb`8b-DIv~nhnTYOx?X2mK9XTyFrNADR~Ucm7|E~&@#W=m18O-(O##=^4jK}9Fk z0f8ck6u1LYGr=v(u{1k|9gA7mDWN6aI_t_lE`MR37x3H*VY2OvM!C0-a?_?$2l^*u zkX2XA#c6e`Ll4_MRc&9|kUD(9;P&}y>4{RB9F7*YC>&+{XeA7cGVE+lfa0jufXpb# z{ubl|vA@J;LnI;+F=C*#&|23&eTV{FC{fj5QEbp`(QR*Gl-~rJWsOL3RgfBy8UeVm zE=n#+7<>7!#k|hk)*`0vP)FxT3*0n(+5XZQ|HR#N0BQ#SIZGm;nqKS{gt~=3gXW|( zfU!&I7}8eR!91e}xjY3oUUQRB(?^h>^EE&&MC!PdWH0p?*gX_$K}aOR>QI2TF z9$QxY(6NsdZ<;>q#WYVtm9DbXw27#CdSwz&;ELR&g#G1)WaM!co#mGxV#;+}y5&aI zdQq0SlES%JHTetRaFuM8&9-hm=&IITq-3$?KwqUJ*Wv2Wuu&m-rGqzF3AhS2Hm+6- zad8=_Yv?=?xM|B<9AHxidbfmbiIheWh95M{*CzWxLCN237ohpRm|t!cncT9s;6&S7 zC{H?WTau9iHpQ_Eu?v7NC4C5e2mo8GDXak%b@uQN;iU za{`bQh#kZZ7*zrn_~{3>D1z_61wbVRpxGdH-QT&P!`ptyzftArKY=Oieoa(0Bd01Z zC~t#jf)u(@!e*0oCn_n29Wgh9xC5@LT$|`KlM*VQ?a+0->dMpKYL~R&U8{2nsCm<$XpLH zx4sor(XDzPaS?v~R-Dje2^BF*4DB@51AQ-=5y#+l-_-(+rzD=9jQpXS?{8ivk2uaB zvDrWlx13kqRCzk+L*(+wHerbv35tX{o)>)MJN`PvQyh=McVX6to}j;7xJOD{*U`npthK$v)_9{f5iLAE_QRF2d<{h<45kYjpo_N|smrSiIugM8YQ72qR^2Uz5e zBu{WHiU!0a8L!8OW?ZM8d202r>y3Z`D4G_Ut(~p_7B~!_F>Dd+zXvP=1!z$f%@+1n(d^4m-|}AjfU?RxBMBH5{;-0`H^#HO z<;?z5$KEje`}+dQ2ucL04yj%Em|EUEf9#PrBeDK$*Y_hQAJ~!Uy;cNdcl1uq1a(Xo zLsz=4WU!YOUUtvchHs=yQk`}Gbc#16AI9o@dH<6^^SC6!kaZe-j4`~j6juy7fesA% zX?i4kVY;UavFM@fQrD?mjn@$pH#!I(l4BmF3IC+a{F?F{b0SiCxD@L%#;`uz=QGB2 zOC&qW8fO=`{v9_fbOr2Rq!!bGdKs;RfQTyrDB1PJjr4y!p@2#}evu*mpl*AbT#d`V zmLhf2OUazexJP|QRD(bD#uRk2vnvKjFVt(3TzzI*Rc$)H_MmgD5^~TG@hfEp_k~MvzEyTxbot0Mj z7FT@{OfUqfP4Q~W@emkUCRw+$>Sh@IFx5i0X}|W+tRe!+Qk`~fmL8pLU`rQ--mFKB2Xs6)*Ro!47m)F+#9GFd>cHLjaL`7_e2s zm}Hn=y^llUJ_y@?C>As^?*J**I$K8VZLwTR->p$c(^5Tb78^Th2!>((XqQA689LVpP#hu4 z0n0x(#YcrBXk+3XisQbGvF{6K@5UrR9sBC*jgQuRZf_g@ERo(d_xP(R0<|C{&M^3n z;&~48g|bqs)990oOUOtt2(u2JE&rIc@=$56yePDP)=_z5-Z3F@Ws)7@MNdX`gzm|p z7Ykk;?U0R*5ioDRFD@x+7z9;Nn_I~x8YhQ#M)vBDKct6Tn7wA8b#ffQOH0i1hudGj zzh9g~FAzt65uWll7v^IAG-vs&!*gB~P8G@b`h zK(&r{vF%fKv7k^7w@rA@I@u&~G;M(OK!#OXYL>G?n@9D9L#bI0dML(Ye5Zu4(E9|y zO9wDC26Waf$Sqs&zbbLd-KkiwhW6B7CmvBA|NU|)XiJDaSFGQX(R?j~yoYKj+iqF< zo!doFe_bx+3y}uZ2mYfk|J{uKcRQF0bTzd;jgR$upgv2O(#2}PpcDw6{+xtX2iD@D zp*cR389~z0)>i!&Rgb@&MA4j|=NEv2_xN9<{oQodyQ${>=)>JNBm-17+`S|M9_J7g z*QA#-v+H(={N#y4-BD{{AJ(C!b5)jyolehV_9vg2eMndiD1aw9CTbfxtj!2*!4K*b zb7lH1YLX+bI8qH%_P41{GfcCz_5*Rg>hy^c^|aDaeLL1_2TQ+`tDOSA(|EJy&k%Jp zB2vZH%Zs-D!W5}?#8>6PG7(0Zl0CHVoOrdCAoJs9O-LH2OW7Tjcd7E_%)v)hSPz_8 zSrTnK>ZCWiqTCk07VKFgYN_X~64u`!8{>O3{S~WAp}0W$#U<~VQ`6HKD^I~x$N6blH)dPbdQnOGBD)-ms zvFaZ?4+mplwH(R8`b|vw~YQWM=e4=*_0~*zS2t|&)s!3 zyCupj<*~avn{iw>wvCY0-La1F(t$M_bL{eP&YY+5<1aBQV5S^da*J#tPQwW>&PG`)6x} z9ekHI3<)idV33mHVds)+9RQa2T|4!Ui=O@UUCiC&ze1WsiTwVh*{S{_0Q!dW0M*$6 z;^Z&O&wM8k`$xgS-`?9!P4>u5J!jLHw{T*3=BhCGM>v_?8+C5}=$S{~3b;@Lc<)YFxibN|=lEO**wd_scg7 zD~v@#gGRul^pbhK)Ju{xcAq-TPq!M6< zuB-XDPi_RVLD%!VMDSWzVYhWMW8}xCzzxAUd@DVR5ZToL(5wt{+L`}wTym5DNdABk zTu|*~c{~+8QGiqPT?Cl<;cLNGjfkANu5nv0h3CWal8bl1STCy^3#EmmE=y?5)wpNN z^IPH;w{!-_YJe?oWxVay!icvUcD{AZN5V#JK9E>>E;QQa&X5n2qg6rMBbAk|XNc6q zN!$6dI-)1Z1!L~n=VppPHl$RBaRtua*$=AMK1h@jY*ZZs3zNJ7X70q8GJCN(^1|Z} z2jRyBm2OXg42=)>-Ik&V?M|Y0&^s!!iR1~1wY)o{NdSt4@Z_(Z)G#kTk&sN_si#}j3>R{GI~nl9Fi2r%NFz%&*&HBhsz~) zUaPw^&`P0l*>?Zg8`7KklOT=Jn|hbNXXlI&8}Q^`bDLvpI6Q}q!-Bb|h8eZkwrcVDi*nl+6zp-l3PUWGkIO7+{A6l#Uwerwkai5t>oknTrM1j>$y)M$*xTIcH%-Vf>^o+Vx> zeeM9;@*`7IjiqX|3J!2MR4HC=4+q-+iCJffbNr9hjL6d&K3 zk&aOd3+U52vet-~(tf;fFo5G?YZgotIb=SXaQa>+3#B1zK5bZn=yK-iI|Sa|>iEy& zmhiHjHU};7*MYs}<8kCTqH6mW+L+gTGq(O-YU>viVt+mn z!57if;&Mt(kPJ=XGhIDe)8ko>GlZmc6lB){=E5J(A{52Zq_TBuY#aZNz4r`@V$0fw z8&MHOQF2B}Dh(nzgNS4SiA_c%XUR=$GLmzYAUQUOlCwkw$vNj7TXKF2)HCWiGjq;7 z^FH6qdwoB==qj+fYVTTWuf5j2?wewKlr$=7;p*1U_k6GHLM685N+`_I>BYB)dElHU zpz!tYlfVAL_uqG++rQOD_ny&GU35s^%*>q#5wW>FjkgRu!sGvfM*#mur+mUR{&oIi zKiny}H9d#ItMygq_J4CY|J4cpDy`V<^!2^97pCw}fHn$pbQxX6o>IqkB98JK zT64KIxVvUNO=`Jo)wIM*u&aLltX+ic3OAqKgx(HTn7a44f?dmE>Saege~3_k1KHjy zx(HfKm8fflNXGLPC&kAhu*#$5esG-=oda`%ur2fPRg9w7#qC(SQIe|5C+%NORB>xb zNl!s0DRwM*_XuMA1i&{hPFMpw*!_Mg!dukl2bGQoJo7lXw>V@DipZS;OP8>Iet*GT zW!%#Lt8Xy4d-4>dN(vA&^;CZ~>;<^C;>~cpizEfApq6g{6>RIJF%c@AXAd2h=)S%q zA}+sL`G1^!TB?GUzj7VtjeMZ+y(zUTh|Y}i)g@8X{OT3r{(Zjf-{vH5{I;fNBR-G~ zeROxIN3`;t`&N$s#0k(Y{#pfWcO8b%Dd{D0WStFu%xiY)}yAUJ$j*3JMmIP#q6h*O6p8 z^NyGG1Gv1P`$uxEx?F~bH6&9dyuPQPFYFGiKvJvb!<_csaP?M~SwDIJNKlco#WUs1wL9IKTGL@^Y|@7twGa~v zd6$G1dgY^oBLlC}r@hi?Zo>NbiyWk$g;$tqB~_qriake*-(KpCdb?Bt+HSDN%qk0i zi7))&qSh@%4pUD{+6Sw-1*4>r1*N8yG&lf)K+ELK;F{2}cS`3(0nY`u71DC!h6ZrTej zxcxkeAm0CoV|gRR=#&=BFT2bVUqKj&E0;{^PeE1Vadh7&90Y#P!N7?lk9RxP6+FN0 z6OZ(|ZdX^iL$1MdVl98W*iV z**86!HTw=HJb?@Cz>c)G^6sQf;0uI6)cY#!K!}HvS;tcp1YLDTuF(TBsmQl^2-=D^ z6)I}8$lm26G2M|Zy04cc(FBx9t2wl>7vh0u`uQ9d=-+*Y1D~kbxwLU|Eb04B_YGpX6-97J13(26XmiDLO^F#64=+CA?|u@4x0c34eFmzt44x+RTcme z;#q%!Ulypo{*i9mU!^JkuGx0Z+n2I)4(>loe_zRkPn8!%jLk8J;L9c_qj>_kjAg{N z5B*hF`pA1Nb%XTh#5%E|-MhPJZV$$qZjNWevsamNhC zMpaOl(HFHEwFyn;1sESGYRpPV)5_mE94JE}9alGf&=XGKh{=+sng zRav{uf7}QNUis{pdO0x_B21#tKj9=_A#niaqsc4(7)(S(Eq+KaB;rJc$E6Zm>ETFK zjhPGN>dt`uzaT}vd#xXJz`y0M|20tE*K+hZGxT4=)Sct=&(QT@<4W0o0WI?lVB2t3 zj`pDk3PyOzfX=Ppy#~!>hrGjQ zx?xhz$|@z|^Hie-4jHSGh|y;l611wjq3l^ak&q1u4it43J!2asKR3QgyU(&!cQVpv zx}?zh;rzqaz!0r9`1)BUB<~V5t);17hWsw=?E5FEN|tC3txA%n4OpYIllzU(s8x$9mbq&?+G z#<`5LTpx_NDLDE8p0yu$wM6*V|O>zqQ*xzwN&~M}*kSYL67pY>M z3_G4NSrUTdJ%tqR-c5;EcnEDbhDwUSJF^9_8<$vjV<7dFEcbIMjPJ@9>0z+&(%7JG zqS=|K_dqm8tYsnBr;N=l5n(ueyBGrLi#XCtc99WIdyVA$`}9qPkd3i8I5baVe@%G_aM2jCa)!nYy?}Qg+R>~0obdmZ#(ZQ^sa10|IzD~77;Z0kX)1@{+r|v zP)6Cgju|D2fX+Iz=f#kCa4%W!C~LU8AnmkC`4er4M~k06B~4iO?7{klPBu=gA}8m2 z#sv#GR$ew_8r3hOHk%MP^}`MLPs(_AJwRfP0Lqs3e+u;aAFZqaD5D?<@J@eBtop6Y zk81oKvi>bu_1^ujb5xi#XF*!8YD$;VLEBneO-MS*2m$WnH%aH~GtYYiE z!xYH=rCyOV-a_?0B4lr~?wzub5$%y!dfE73ii5WrV~P8E2rHU>|Ept;zGC;a*>?z* zNbXWH+0v())odqn^Bqm{e*KJPJjKYqpWerUYvo<*rlw+w>uewNj~&NnBY0dlJbiiK zZ}vQQm5O7!mg{M$D;V!6-f`0pV7mR~inIi`NX{z9lsIQC0;=0EM%-%}(JPM~(L6Zs zGb?-K9|q8S-=2=y0+6~!4jMBY5Lc6Jx@&v6gEXW<0Vh-JTg$fN7J`}}|GK;Q8r^x! z@XVzSg99y`_Aq?^Kl|U6GphQFaz@_)S}{LBwLJA&v1FZf z{5l0d|BOcSe-jJxKl!fTKwEz?M)(dX`D^WC0C+@B`><|Vo*5m$b9(#066_4ws#&yb=2lh&*f+@d@v0xzkr`oo6l~s~X&U-V9KM;T1*AT%pi@~1{H2GK( z9608zDoN7A-!Q-&-n7rl>`YZGXy1|?5AR$sqcU}G&!psH@B^fsPrhuuQ}^!=-c0wb zqJX;9_Ft$|@=?wp=Trj6=H$C9G$ph%uaaORBK)WHymqX*eEqcHGy7WVb=5sOInc=3 zAxUrA&r0wl;TjEXBH;wVJRAh17Owd?YHZI5QsHuA_SVsRp}iZ`Ub7G*2~1NbUhj>* zhUYuGlY7YvqTm`Xa)hZ&SDZ1I5aw8Ix_;2n`@8*zh*Awh6F|)B3F)Me;l#*n?5K z{uP#7Ksf1N=~??>fBpY@6!2po$RB?GYpO`+VkrvWTSNb)zOQf8_TTv@R3BykiL4js zJG|R2t2gZw6l8Y_s{H$%C_jPh*;2<$W?roh zxALR?%myJU z>jQ$hof5wX;SeVK?UU;4*!W>gx2~-DK&$HQW0eD^^He)PJY5l33&Vd?Y2{Ym;j14= zYVZofYpGIbSq-jhV`^^_I@pf2QPNytgfBS-F7qUd(}ps3CVHolTG-~gJJ=2csTSch8c3D`1b~kc2NbHz5I4>jbYeXr#_S|y` z#dD4#0vAuq3hm17;2 zVtaM(#A?y3?4u8$z@!n>YE*u#6OjHmfI0gE5_{^sz ztGH}sNW%jUX}dQYY~HvsTp_C@u+osT;2R~0qwatM%(ZU-tK@(5M@dBB+?h3c9gm+8 zGn{oS{6!6$f7KellRW=7TjPX-*mU+@h2&i?2l6ChL)qe2;+9HQp7)Rzu8~gh#BV1~ z(BTJS@+4|HYCMR9FXm#bH49!Z=Ehfe+3cu?oST%r1SvW&_GnmLaRnPfKZmfNU?WrX zM+Ev19O~=V)9s>kpfe)h-1!N0* za!h8wteVoMh2jqrxdiYy_v~Ue7+(`JqZYu}wz>1@NSre*mp`3iU#Ta=r~PEOt9pS_ z`xFF=JktByLI06~?es|Z(l#vk`19cRZ~+A7*d$?b43>X;5A1bx0a}_ z%hFO_4#oR&G2{}36VqDp9hp#vOaq0a_rQv`m3M%u2pgXTfZ=j|1x3%ZGX^8>f>0w9 z`XagP!?*3Kn@{G{lYHI`^+n{!6%szI0Ui?2P-Tgjsg0fA$c|h95Us0~;1gGQ_1%3~ zV_IPkP3}l)>SzVv9|9iLqt}LnseMitOpzN=A5lt5DlPHsBd7hGUxzns>4)W{lLa$g zRNumQcM7U*IbmX_EXUH9FhKai$RGdw^aisP2$kA*!yiNHM~QDtz-~Pbv8NXeo5;IY z_=O@VOVvQ0CB)VS60z~gZ#CpmI!Ost(%;4l7(8>ICFw+I(IvVyrh8eaIrzFy~El0r{u4Kxt5g_D2PQr-#P_}|1|QE=ObU8-FpJrWqj-d z*N5psKNm$llaSSVHNwJEl0K^PK_55Tis@xjtVyt|-+@-Is?wZEY*?vMPu!U{z*j*# z`FjA>LEQ=fj$P~C4C$|IPrC5R$&KDmyqJb93P^^ulyfwd{cJC-3V`0_GA zPM+B#OV&8=qSj1}6NAuJZ7(Ezj7jV2jc$xh*_ZAq765t?ejLz+LPr)w9Jahw5?hp_Wh6K105;xpJh_n3@JL6sN)(l z(}$a1lvEY^@b#+6U39wG1N-r&h!AViiE`N))g>KCnf%%M-Oc%Yj)oNeHL~F%yq*Tr zWsQDc9?D9EG&!TdnYstOWx|M4a%iy=el*k09}muKHvP!Ol)!yM*892tP=tHk#-GjKervB~bT)iL&8<_Kz3O+xzL_UGstFC&1j2 zj;B!h=@KvZLLYa^YWHppr0C67 z7l>d@hNnK`JJ5Ok$EP55L^cb@T1d`*&x#ii>2m{S zrZR2(&CEV6WEh*gDG&Ty7{i|2#wz&1(6>TT;PjBCojJGzw~(SZ`W+SdM^t-XYtiaV1{D${STM5FOs%p78H|V&GLGvRR3bA z%(S_wnl^VM4Q)-CqS^*#(9E_jhlHt1$6XDEn8D0Ud;+GR@I-wRO5r56+?ji%-dR7H zzzq?TPyY8?)#y!UerL1FMJ1j~cW4XpTk$8jjPOY7p8>XIp2`MprgiYv%PLm#2v2q| zFE93Z^$|lDD|oMm_ebNpA*Gz(=r003x2}u_g{ki^sS1A1X9GR0I4N|B(O-GG*hY%+ zR!VVRsq4e-C6?y_S2q8F$Na5hG*ig{2Vx@Kw>GAWOd)jp1g?n)}lq~SgZ-!!S4*KQ;a-s_&@5S>#{hw=ewTd6Th6A9IZ`1}C#y}5`h zZP(#_d{QSZR>+&!TckT<;in)zFx}xv^|WHyh#CO`yQH8e?QI!~JBh&>%5lgIp-DC4 zr$jRIbuHn5sxX8q8+Y~LV#5I^w!@w2QQZ2a{9(x*`&#y*DCfbQm2nTN@QEtAJ$}dZ z_o{m)^5q^9>y#fca=Fows`(YGZtlUe7d(s$rH+$zDjeo_Gq+3tCw;3)B6Oy{am*3z zPC%x>m#Jh^=KL*f>}I`$n+}ZGgOr~+Qf{u9;Rj6Yo8(Gdm^eHzQ#w$qPF*VAEmCrv zvBAZ$=h}YsvfL9A?-lsiuuI0TNH?3*j;phmAWW7O@=Qr+PE{O>ex5Mpc`{Elb67l0 zhq`R2q^f-Xs#GJT_IQo-OCHnm1fw}%8PRSGo5>B;8U5LN^$utUKqC}XDf~UV8 zFA-!XkerA*CrgB?c7ybeHL%Qhf$y z!SWk*V=C)TWPZ~QXT}2-y4G1?LQ)l3TpQ~?J(4x(o5wE+gs!3<>8HWXiP1nN@u@7H;1=;Sp+zERiF|vrAi2r`q7|;_9W9=jgSq zU}I_JParMJ{<`FbUbRT5ea&>%dGy0T<_w*!XUwVfj2>)MtUs^h?pweEM-&;Ptxe$} zzeEeb<&Bg7^Nv2?9a-5!EsdbMAR+iwk(CAx3$OYZ9G_G`n}`oAzs>j^}Qcr7pC>-6g=1<8+jfEDaMdwKt^kN}|ZBKLPb-Y6)xVQ(6i4Xh#Qt zNakYnmtKXl3k->VE=51G72D1#yr{GmLX(Oj^X?Px<|wQ&`)`5e@(DAw*_!@0*C6$5 zNOgEjP^}A^{^+F=3mVea)N30@ecj?!n}>YmYrw+B`xFS;X6)J7f%$Fl0rUQJn?D|8 zep}1c&(?A*&u7hi!2WqGQ!INiU%0a+Ly0`I4lMe{ZM{`S-{gsYvq>j}?$?M)%s6vE zRg|o#vMA;;V-Y(t=|=(;grle>H6<{$I16c#Ox6gd_aB2BE8dsZkjluB_c0A>$p$_v zu+enRW(bj-=MPbSrzv3$@iE5DNb*Vgo~1!GuAZLag&WF?|JPMkf6b$ErB76^SI8i4 ztf}c5D>qYY551XiDkvHU$czg-I=nneJCVX}%&>jn4VSZBcOu*a*80jwksfAr^ku(D zGUY1{{jSfiP`C7>^e;lHNEDYi+WoiN3729V4jeFt;qeK^FIie0<)bK9j2G#ozMmAa=2MbrLO^7Q)T}(ehg;4OF{=7EX#ySv-L4j$cfJ`#kb<8~vE`!vb+q z6@>cA=o@`I8W9UlweTR(L&ztQ8Lk6A54^41*32ht&}WEX^XU;DHoB7LmrUa677 z(4h8pF%9sxH`1IybO@scYoT2u9^5a}^a1T$XV{??k|?Y!X7`+;3`aktVc?BZ%(A0( z)mP#UNVrACseplfw?yu&cK`(DPAVR;xZmaoe*86+CUv1H9LP*?2hIwe|MZtj%BrQc zl^@?6=$uuCwQI`hCDkZ>fmhGxCpQ-XWtPUQP621cb&H9ye8-$|)rL&{Y@$srAN+*d z7?QlS(m>td4jfozC7%K~ae#{1JI^7hghY|Ay!?2+m)~!bO@L2C(U$yk6`lig^+xfl zm{ZWRs`nw7*My2N8r}(Ss~fCV-PR-B2-=f4e41Yx!0EkXtZ$B`@qxXD+rzL^^=92; ztkHWb?RPO_UzjPBOdBw_6Dms#!O@X__sz*CSf0heO3uxAasWG_s{GrF1^yH`X1L;mWFu{YAk-SUk$8 zEf*xFpg;r8;?OzQ^f|fPLIeS3`bzvqM20S24BjWrH~j@Ri)rNxP~4;Y*G*4c?R1ZU z%=(eIq~?aQqU+9>PR~|t{>R)$x(hd85?Tx%|?m$+Q6Ub!?eA!DO+f_9y(F%=~swP z>RXQTEZv*8y;Ub3RDyE%O&);7`TdM$6b5DBpwm=(J=dhORZ?xnl84GU()>qnh%Vq95b}H@$PtP z-Yg_(kSAcsfBh!F{pk-}Vk zfV!Bl3uI~#%;bF$3{l58(|U&N3w zzhvwnwUHA~y)k0v6laAdLtERd;ck(i<46)~TEp zqn|$k`{@gr=JyD5lQp(!ACm5#8F(j*{Dgf{QJ#Cc+Q>0FE4ZEBRyw4PsT6LXy#giu*_eP<57P@Hd;Et&hZ0|g)C*Py zXK(;)R;vcMdz%efVSByl@>$C({bfd&*VJ&jLPa;`UTavq zgmV{`Jy|8O4!O+saZx@aE72{TulPoqVm!>R^$r0vB1U4VxhVv|!Az>9PmyA)8OSSn zxW5!HHfUCVS%Vx)Yw^2#ke6x6Xp@k%ww~OpW~l4(#}iSyPnk4G!ab4aK9uG)6~`%E z-ebAzIwroBA2}j;Wg4tjnY)NkUx@LDW%P)c8WRpGexxXjKb_8W0JdY(lk#-?MsITfqoOSF0k)jUFuX&OhsuNL82b}at z8{0!>j^RaYroL*IN)fOf-5u@Og2%(3$LAyPM~m@lc*5rsejQcmZ0A&Y3G>lNmnlD| z3+^ws2xbF@Y;3r0IbB)Sa5?Gj=3NI`FQyE~b7*fD=NEg5d_gp3)LVYUOOt}|qe^(} zbHqlc+4{E1%2TGd*efbqG#p6*excWaKSOv-<_N>^9E3%TgukwfXL<#!`n&0|^>%P=0N z$8wm{U1W{?ia*t3w;dqWK6#*ek;H6g-W&k44!g0mF#L?hqXlQ7dvV~P*ja3{^gT9tyVuVI(+7NbJ`v6`L1xqp2wclt?Pk}olW%W>lbV)e z@$}0*9S3I#K_{i118`Cm0d|+n0(4);%)5E^{$z}V^62l@;pG$DBbMroyjSt3AgQYN z5jZZ%!>BI?DQ@+ki*5~pscjtz%w+-=w#-x%qox*`Jro}(g1OOPuXspLLGHe_kRet7 z&t@Z%?+wM`k`1$oCP-@f{r_M_A?lYzD@xN#TO$xRSZPugCS#;b4zib%j{hJw%TwPo zolM(k_ektEU3(E?89Y$H4t6!?a5l8|k$owfAr?az$S}oaqAND=g21eDOTPa=H`YOR z&&qzPRcB~jyt2TDE%D38*thJTxLvk$!N0Szm}p0W5Q~VFag+vI&l`R(w^B+qi@ZD( zfXK>t9X{tMCJrX@nYrvRL39eTt~>>Ok8PDYYHK}uIAZbBEPPs3)V{siwWdy2ml?;} z8J3jv6e)B;@6RJL^q>8f{VaCdmuB?j!*(?;{TKm75yy|42_EV|AW4}$s%ii!3TdF> zQF?U^;|AZ_B`Z=4E{2nP8x=7+aTZuM=+qDOy{|btdYFFGx2P>6_jJEsCZ^ex7yH6+ znmpk3d1PP=RM<8+RRpPrBBHLGf`AI~UX0`~G0~{nEbUq-RCDfQzMnOP%~2);x6r&w z3r!u6fwNtK^v-xI1J*GL^#X`*bXjxJ4V>n;=2@C$qlezljl0XU-u z9tu@{$?A7LNEaH4UVM0m${jgY$x7ZM6}-gDu^3N)eLqWjkc5Yjt$xzXys_Ib9#R!I zI_BjpxuFbkWuzD?3VX#7p$jZCd~jNniM2e<9ECBFOno>OCPfOEM;L|6p>P!XVf}gs z1_Hn;(ClpSs@tXBD7V6i>N9YRkeGA?M{DvhtIz6}PM-wXDM{U}}Ho~@m{1X?b_9MuB(Kr5q|l>U6BeItpu6*Q!Ssnw{PRt2Q0o>EqpqYnn1+MC}^>r~o2FwnX0^4nKg1E8T>f zSmkdP(90yEcFUW^ycbvHjkN0A;(6Y4M4Bx$c}VXKPZK)w}%^uq~uC+)g1ZxLN?+ToKnYxkSkUt}-vY0q4p&O5Fm3TPjYi_Vw{M47lnpz-0XW} zwVhR`@eR@G$=q~w_f@NwRU45)*EuGuP2UaWBwqw2}u`#C2A#WlI&IOmeflH_PErFT7Eb2GN%){2qNk} zgf>js)7ne*n`~cOhK>=5V31)My~KWm9BNpD!Ojm}XK%`CZc( zdFNU;dsu2jnwaNUyyuwC&+0?k79Of94|#m~HVVZm09v3ou!G*{VZwWpx7_ zi=5dtbN8bp+LTk!m6`d#d3F9JoS>1#-G@RfXMuCPbC3|TFDy~WcFGZ~q(7?l)<-Ym zHk;XPe2Se$@QcD!FAs_yyI5#Na}|SGoURRVbs7|Z?+$$aa*NGjUxU3Z@_x&`ye)3QHvF21 zsUhKK)uWffT;e$_)X)Knd46S}TooS;bd~d-f-u$g1&q~ECCVinZ=mJzG|ZZXJ#3|< zUCaI5u138UcBy@m@Y_{E{`3taOd^S*&LoIA!Fd!8f^FFtyq> zY+#mv!-Z`&waj^?prr*GGbX6J*@8Bs>4&Taeq{l!c5<>w*yjS{7XKbqkD2<6A(pT=c6k{j{E3CvPa!2%Qo zs_2w^u#NZ98|yyC%;4ce{M)ZsW?vPp@eyeob|1;5q`@a!1#9~zAq=Mnt zLaymb8F9jxJ?V0;{t-~oMB-mDehviN9`h|t1c~H{w~^HDPQly>in6DO1y9DMy88&d zhn_&_N-jX#aN+ji*qzGPuPzEYqLb3L(X$(i$ki3Z7MJ~QuiA6Oyr-D~)oi$BpyY8J z7DQv>p+Q?tVb*Kdvyh{4wxLNbLHP=!;}{9)UG|`I=>H`jS;3_548{ z(FHm1ecJd-YQKqJG2lrFVBh{D3i$uDb3hZZ)T7Jy8UQv+A9?_O|HAJZr8C|cF0J8j zzdVut!wiBgh?x{`H>Sy(?cyC=JeZ?U4W)X`txvPdTWuzjBqx z{a%0S*Z%n*kEwgT#zK#WvcD3Fb=f2RJ!br$@W_&0$CfZa4gRdzrIdG!v@Hm$LPo2< z6-)HSIJ;Po;Nyvz&F!4(J%Lr&e8o7RSTAOO)+=`gjelpUan}|cE$U9SpOX6=R!av2 zmfZ8lytRS9{k8ltRux=qU*w>WZkB6T)wQq7!qlj%!pF&cujWAhx!^sO`$IQSoA7f_ zK`NceJwXh?M9ZCs9y@|~V(LC_w!xL__@wmQBHLO1l*DBI8dtjIee&xT7L93}>nyu& zTX<+~?_&3S`{uc0YE?o$U&-)UYm83`LBYF1dwsoz=E4isMmaq|?;e#G9F`*~p7#seaQobofp8 zdVu8XtNu9v0{Rr>dEF*VCW0h3@e`#bMqPI-J4J3_wCR>4&Jkxdt9&a1U&7v=+no1t z6zo+V--b=&HE?Uh3Awk?JeOl4gQjW5QguciB!Ve|MMO#!?|C+wE4Yi*lVvXyq>Glas$7yz{9(J0qhe1ZE_ zrs14GWW)INyq!>*hd7Ps?H8*h29Nyh65Oi5iyZBdrdclOYVi!KhiN>m!w7iB^d##i znbFATLbOIqhj3h)a>lNEDe{nKA3ucox!&MQ&E4!gt18i|9e?B<1y;Chl>|2~M|9uq z>(ccKm0?3hp7dp^C+3&6#@O&?uQUkV4KVJWLft4S)O zqyZ@vCMUL@2bS-16regw(@%!9lwHhy!HvBBFSv!A-t_wGHl|(NSnOm1Dy}U3tb{MS zUxAQVzlg^7tf6QMm{~xZq`KB~$PjnE#wCj?W0i$0u!q{R$#wOfgUH#qHX&S&QwvAr z>BH?i>~!hzk26gPS6^hM#+8xype9XNVaYl2tbq@&*|+G7UPR<%)NIS+leXpjU0nBt z9$v&OYhPAx25kDPRERK8B>ab}aTklm5eU-0!hA)R>hlj-6b~B!&l7|u1pvX3v0j|{ zAmA88F9?k4uP1-B;s4~%VEmIq$G?Z_1bpsyzVL5c*}c{PzEU2T(=#PM2&~Gfpv*b! zPY~&z%Y*pyAHyc)`T=ecg&yAilfS0ixBVOY{x{vv??v9f`xAanB$8G5wMqN#TWnw+ z{;8M#BgF`jug*~x`^8za!vcW7Ni_O7H;=?@pg!jscA&~*@NV9S=n z%m;*a^%SyX45(KnZ%+qms*a2yZ&d8kzC2*g*ERl}9qu2P`N%qzi^1L}pY7_+E9C7w@**CQeHl!oO?Wh_uX0_K zI>iQ2l}YRDGa*7`ct5D|i58~cQT_&D5SH`sA~Mi&synj1FKlnCG6HEHHK~) z)4BJ;dF#5xP4P6wBxb1OY%h{Q)5S`ComPglrjh}>Pvdlp9h~c2uPj~Ra^=2$n+|Yj zHTRO<=P|z)6W6H|i;h(tr}4jXE$A^?k)+9eq~u?EQ~uv>21-~j?&)hiXTAByyc{Rh z8_cRz0OZ}D_ZT)|P<}iINUvP@I+j0^KmEGc$^EU%7VL=If`B3QMEy#5L8p?P8 z%Yhc8zlwEFYBCUaq;hn%BBHqM^73oJE3IpM7ctiawDwFVbloit8%kq1YT zd6qyZh`jPfT_WD-?wx@Z?j_}->OBlYNtxDoB=N&fjLsX7+E(TIc&x%cof6NQQH+i{ zvJfSnhxI${+-1*qvvGM*j-(8RSGC?n1$eUi6fdD{=A}NUQFwC|gak$Qv&<^ok0(d+ z$d;B#zwu9V6n6UZfda^p>T-{{*D}aJIYR_=jrew8gtB@SnW#VbAYaNZ9^z!>E=Rt2!@u(b|ck z(-d^b0@tRpLt>cU?@QwNn3(*$**^1Q-o=VNaE?%@VTNMs0v-cFGt7&GrCXseR-zt; zUD$yF5So|13TzTNa$7EmaitRAVJ6gh)`H1aG4}3hvVY z6e;c^Ui}exZl4d92DI<-r zfnWugXdin3iMrkpdpv=`Qd+uZs?zH?iM4COC?r~KH=PRoQ}*U-4=Ou~x(io% zY}+p|hh1=rURI|(;_uxa$6M|mALn^a550o+k&H%&OE&;rv(>ix1Gj-BiQaUb8bw(Ns}k47_^?=sZ3r3b)j^coL>KJ7 zu;&@|T7n%VA)VX!Dd9TZl(sKq$qjKHdsz!5uKMif)FE?SCR4BrShZ4S?u_e*iM0*> zV9;L{5SqF7uJ*e0fx?Od_k7K!SZSYR!hHK~3DKb(yU;6I+6qDoQg5rvC4F(UYwoWJ znB@blrK~sVh;8TLHf0I!Ifd7b)z%c(aKt6*4tbuXzRYX~H;wHFs&vn96sB}6++ykn z>2*;A-4tq*v-TgcvwKmJBh{$3#8Kp7h(HkygjAIUw1|ieE3OeSy)D1ohKJMyI(!jl zIn?gO)Q)awZrES^WpqUOgN-r0%(a{nQZkqD+re$NA6hMWST<@uO^)L)MUc%+OZPCn z*Q4z)LDA#1c4iDw%7$8exG7+qES{lmU?ZkWAaW_Z$GPd^YqQwr7=jY4m_EWclvR2P z{dr}2=KHOPVd8@?TlH-WFdak3R(7aBURdOF1&c!J-V><- zBxh>pO+BXZn*#2p?+YGU?(@Xu8cgNyC)y)#pxu)QIyO2 zx+N-ykYA++xqi97Q12GJW|&v9A$u)DRdtagH$A1Wdq1>EpKRZp*LtYA26Ks8eebcQ zX9rbRisC3$B@?3*?KmHBN8(HhO-9WM_DjW>h-YKPKqd;Q*i!d~`*jzV5q zJx4;$CkEpTtM;_l$oIyaOdpE1v=50L?QgnnADF4e2Txw1v4R$Ij`Bb2rAzc{x)_<8 z{z;}^@7ZO^Jf)8%d)n#Z=_C5%Lw4`I1{op0~Z49A8kk($-vZAlD zE!`aAq7v(15=*z<2j!MfQu=5o#5~@rPrAb<)UBQrJ*HblpTN*QkMUWNpWxaBhhbT_ zf>_OTqJHBHC=32JK3$HLs^rs>7-k;}eKMDaQqBqt!Leq+K28Y}m5dT)omB4`8=1nw z?}*oUZC=JJC8yY3?(;=zP=^M}Z=_cHuU^`2Og@e#E{KpG)tKRDnc%;9dE&~)R!)hk z{uL`@%2mvU$QSy3oHM<*`A{FTTYlKT!p26NU6N3%WYxM;ZecYiQC3gSXNDPEK%mT6Wfw)Iiap!h>1)0IEi$Nxl~-kLx?1vlBk)D^#UxB=Cg> z$`m`Y?5rA1dGwIE&!Bvy^fJ-~L6V`OC&n_h2ja({NUU0O%&RV6o_Z4l*POH$<7QQS z7ob1HEv=sxm5(oTZ{HQsVcljZ_M|(hi^-RkV{~+~&|5>$!Q_tMWwWuE3#;E)l>Ub4 z{jU@F{VQxqjK@0%e=0Hq@^+*y{{|kyufllw8L+&g`&JhU{|RT+`KBArdgRuBypH&* zM4#E{XIu&LUn!9RqR-Sn^JTv^&HN~{2AiI(zUrF(TYUET&*{ZxkC&d)dYviToU;lP zMAQJu?}tBuu6+!lI(RYnW=K~vm}#+`>nk?Wz1A6b;z(*A+egWgeugmT0qED!zBrqm z>%1%do_D_}v8y9(SZ|0Bo2j`7@F$CxH{U<<)AdT_^#QN(T#ZzyEGUh*R&J%3^di6= zo4U^Rx(Mm3o2MYSi`OAM<^VRO{-N@2BWqx$lEjcn)+xy8iFjwrTFdepFH!%s6sI-} z-v*AV3eO(WXye2?1CGir`viyKo|8n{==w^L?-OK8BdX*(FPVU{eBbh|&eCje8Ou^q7?s7RnomG6Ju2D%jnuc8Q$_b}(Q2O@mZr%bXGClQW ziCmxR%}zAm{U8g;!^cu5lq_zCqAyQqsRC2)<;AV?(Cx*yx~kRbngt{&h_aq=2z|-* ztedtYy3Q}Cz5TEyp~I(SPQlh>MIWsnop!WRYGn%&H{hVQQQ3H@K2qMRIvQ2u6cjL5 zCWel`XAYRKcArsHyifbv6LB}yhxJ_vb(Fht&l;r8e_p~S!mQ(1b5)p8mwhg@C@tSO zDZrpl?s+#tSJod%M~Ceyin-xOE+NEW9f$Vv@M7Pt(i?uy7#a$#L(ESH)0?>?II2EP zB2Cv(z`z`EdxuRE4=$wx44L}GY>*q5>zNFQV}Y-PwtTX=%40-i?g%E7MR*n`4e}(yp^Ay!Ngv`3 z?YE+nRgPC*3qCsNqieXfDkimo1#}m8r32vpLq7Z%g|yM=$T>p10Je!<$yYdKvtcY| zdkHEbyS0%FG_0$J20>iUgNx1PXYRTM=&PWscBcox-nU~SV>xpaXONQ>z2i2lJ>oMo z%W)9$74j9&@7ZcmWw~!`w6->c_nL<9<%PHz5K58b;@idDu03A)&e`6A*U(T!Z(5_) zQ$3^AJOuTN+P@17+X& zzj@in4v%}+QLMoK9uwp-ml?x8R64}c=y-G{Uj7&pxJJD-p)Mg%wTBxH=K?jyusb_lV{ zQ`c4|v_&BD=a*RQQC~s=o6b{gO)UG0oi+vmz4o04d7#dN8UubqR&ZsxxiEcC- zddG81uk3{b^TtjKp#zhMrMdH*isLD0w{n@ZhHAips=sR7f)busQmvTof2}}I>$w65 zl>&M35n((I!t@mvpMLsy!=%DQx9NqF=xs`x49T&<_v}qZU1NJ=h;3Tw@kblmjoFtY zPUJ?WCdrU$J_&!A{YY$Q(O_;Dk$~=2!97_CsU2ENwjm!;R&GG+zbw2?W{%}TDo`8i zhvWwln5w=xwxk4a_i(@_AQtvBz@3Fzy~yE6SQi%J0|dX+CtG#8>j^01v(qD3`tMgF z`#s#gXy+CzB?8YtsBloc#I?}tH*YDwKskafNZ&SHezKpwr~ag9W8Q1U@-Z2|Eh%MxK-~I+ES6MlmmCA)w#v6~U(`IJzFGQNJvBRyt3pCG)0V>O5L)z?n& zRinP)h0an&HfhMgq(90>F*MMYu-rbmtLZ*hZ=T4gH?;&Vej0l^P0KbVW6xL3i89wF z%$M6d0jM*Z3q*Fg^;}JreKGJW$lspEbhadGJkN!)7u(?8kuS40zFfVC;ztopeE@T_ zKA!8;cK~laDou&bkFi9ykv*j8_F?Oj9{q}R4GL{z>MgbMHoLGqn9-fH&XKblS?bpE zE%!Hg5zDcwE6TFJ+#c$ynzJ^n-2$XfqV7*Oylqe1$!HYq+)FO$m^7_94WsmgF+b`a z7aZ#!duQwQ z%iVl?jM>Y?PB3G*yHreB4;YB93beVUwitvbJ{?a2viPr<%d)Ez859>~-wY%QTq-{~ zxVQ!dk>E}7CTrI9zWYYzpWWDe4GJVIN-!$b{k&HFND1~d<@7OgikClyq3LplZb;@7 z5NY5$k1lMHSGP&SUZ11$ZCmV%TEKKBwk!MbU>Os;SB{nDAyxRfN_g)DF9(cl`abMa zWI!lyOp>rRq#X+yA)YKfT8`lOSo-x)Z{;^ku;|!|3e>CebvfLLSw((;Wd-W2jXz$5 z^6))Yul(l6n?z@G_e5gB%l%x|iM_ z^OBwDr%mNeuQLA zHt143tlJJyUBkp}lcCPJE%(}mtJ^xG{_{oJ#16uhgeld1#FMC0zNJD5DwY`p!`yNO z4I`|%;TG~QYP;i2O(`O~-SO)s{Vhyt@=Dg-y<4+tN3(D{$Z02KDLLPn343Fq%N9<~ zSZm-;89qpu9taVjcIsl>VCu(%i(n5rBE9e-W$qWC4f%@jEZJ_qBFlHD7oy7y7D41j z8X}afA<-r8cc@-wP1_MUwMaWIDr<*;MQh7c@20_$7v?e7-6vwT*5jm-<6henRdaoO zfu+_+TiFNUDZofJ!-!8Y)}@~$V5btF=iKVyJsdSIA5uX=gFX~D#FTy;U^Y{iNc_cp zI|;=lEl@$CPdG@$(tu#dm7$z^xMuAsA=#5&wqZ;ubDFp6j}9O-}2*BKqg1VyJDAqH(Y93^{!T?%+wFb#jr{h`&(TS~6WN!BI5S;cgY2cw8kXFN%%cgrg2eA1_N!pAat(IMOm~ zdaEZj<|`Ih*KN9(@z2mak-5W_k&|LK7gaE4>5%hny64=aleNE*hCK=C*8ZRbKp>L( zd}vK`D+VjcVn5}RFl8L{Zba0moS=;RjE9yww$n!>qjgSoMF{c;9>_w8n94vT-zHC< zB**K?dMAM~`2WJh zzW%QMuI7S^L-psYF6pUd7&v?3 zp``rxS{K6Y-?;TqEQ{K1?m=mhd=V1y?COVA_9nA-lCq$DvI-ItLH(=BGfW-LQ51&X zRZagt*5-3`e7+mXa(-~&csD!$J89qfV?*Fpo4+9~=7s~wj<6flukY?ZPY4c{d_xLa z!{%(W<2itgw2yz^2Ug$y$k>0Vk^e$(TK~`sg|M4G)w0aodYtNSH}!$8Bj@+MzVkO+ z{TCYi!|?qRE_r^S%S+!3zx9VSg~*H1$VfE#HN@WwNWotZz<(R5Khe|+u5RSoRp~M9 z1EmEl%LddRK2v~0Y1wQS^}v^68AwXRcTxHJ`adn_|D>b-D06?!vfRxUaIHp#{-d2Z zL_M&hb^DDl=l+p4q5p#o{(i9jdNx0&x$#xJ$)Ii!PEQcesM?T$sQG+AARP8PpsdMbnz8$*n3y)M04M3-tv%N z7(S}u^timZg;{R`yf@!Vu5j*2*I;5@liMp>6_WW z;usah$8uKSrss5ZNdj-3661OAl#0Bp5P^O!o!5mbtW5XH#GmvWOhwj*(Gh%e3Y5Zd zImVCJOYLr2@+Jt&rw_I_9eJmD@klXvrXhXC9Y$_Lw2;R{F(ukMJ|D1P!(wV;I3+rp zdFD@FDsr6b5oUR+#5xkyhZ>7)v_V)@f`8akyC`q17~yT6M<2XnGJ5w}uD4evD-#&@ zbjEYThaz!HQ1j(6Y72WniS;?zwCQ*Wb%ZwEH+^-Nv~8k6g;)DT#6yt=r}{voX}}^L zM_lnzv*@5h^PZqJ^QY1_CWFm!M`^GFhP+=rv3pHzEEL=R2H<`;kb?cKod@#XM-K@Uh_-uGIZ{)P>Ze8@e*BTy>{^uG* zI%_pY71RYIAC4|6{g`1xErU&M2m}gE;Jb9{tiIfJBQ9-`1w#rrdsk?`sD$0~7oUks zqwurg3od-SO1 zujew7A?co&wyuz(Am^u?%Oqu2*ji%&zyI)qPIQD*_PRIV1*@vufWnu*U6f`)sd`Sb zt8`xyL&DZs+QmQ?JP$4L=i2ZtI@@wpyAVdMgGmL5tR7ToHD(CeSXsOY{D4DfF7k|+ zXDIxIRiTR9Ty|A(Ou57 zH)N5k@C`hkO=N9b1hJ2I`>#P7^ys>&bE(jo`fOOa+mR-Eh3})MFU=`t598dRPw{~^ItY=3U#R~FwGOp0r-4c z`J?GD^8RV&=ljUrjNBr)UDN4v(Vgf@6{#?QIEpDy4EU^p=44&p@a6GKS4GUZjo}zh zX3xmC5B8eSI(ju4qUsV5m(tMC=Wg?!y|>d;7G20O8-3(eHtH}&qb z4VPRQHLw!R6s6^H!Ad{#WEKlQ+H9c|=GV~R#mP(Zw`CVIq>U8n;rs}xe7G4<5ztY2 zNRLHBReg$9%Nv>~{hR@J9InXI59aH#5^6S5mc^2N??se(@V`Jedk8Xcs)Cn8#8p|Ug%o^0^4SR%LYWR7BX))u@d(O^>6-F8pB zVsA`*qAqCn;b>lJd&4^dt5}W<#3}D(*WO)bqSe;qa2u+lFDF-<@YyGb{{hgwF(WB! zm#T|4!Fy?f$)T=|Zm%7v#Wr#ezF4YV_6Cg%w@fU=yyWpgzbAB?9bM7Sj0b$k9&cAd z;U1JY?ect3XS2&Fz(ues+|J5;dvlCzGE#BZM1j*v#6Iy#kZb7D58?!N9ogQlIb%Q8 zJ*>N}Zr7HsfawycehoshJ|8bZ|GJO#a{9?W=L-r;w^%GM1aFh$3iADemu?X;Vdv=I zU?e~k%GbpD8mj|)aq}+t`k0SL6}EdBB>|;Y=Bw(%w8Lx&!J>mKseSO2ypDobLMq+h zL^N#Q;$06vkF|>0mLSZRZY2Pg7i(fm)0*v&HU-l@VoZpuRV}Oh#}H9`%_MgbeCaZ; zOMkKbyxD@2#L&PuHC24&>+PPOH;@rvXf{bn1bJGA(hj`IE3RYRBe`d0?ePu=A_n0r zzK9S~cA|9$7t0vLZq_OvFAN>t^HYlBe(QF;@j?Bu8cXgldmd6NjoUJiWV+?Sy7^Za zmnqaQ${3rh1_cIc%lE$NNNt1>iRw3~oPSBIv zAi}6TTe)+}`GQ`pHT%AYy+UXfYmwrLfugH9s+-Q1&A6Fgu(|>8K2Ei}^A`1)CS#W6 zV&K(?U0;1W*8ZMQx^zoCZZ6X2O#OWbn6FHT$^wXOP_sNultbksAe5(H%Xd~hx6AS}%x~k#=)XPznNB465(dg!XzXJ~l)u_-P3uDPp%M_gV7O!i zzr{x#OKE!id2IXCUg4gzOE5z-@6HwBvB}t4h2Xd-gDwzBFnXjpyqd8wd2fb=y|LW% zsi;!3zd@_Bw>pYH-A0N=y^RG#AO7Or`0kZ@N3x^gX*0#tnsnZ6IQ^2sqqdFR@`%DY z-f;K!q(Md1F@_4JQ5daFg&l8E7F5Tk>=uq}^P3Z5JU26gw|;wmn=N~xF9D3IEZvPH zi8$JimXk|47{%61V5Z?1;iQZb>D9?5&lESa&x94n^)BY&hw0M2=ZUaJw>(e!N3iku zuiF_bvX7h?j}RbYnI;;(%#hEi?O2(Zo|%vB=(U*Js3?71Fj^=(PN{?X`GSgbzD&qX z-z=ehT1^UiMP~*B6UUR=_Pb>))3nV^fk=sUJ+!fmE^Az)W8r&>QG(+|Vqx5#=3nze zn3;#|@;H|aoLd-X4vr{VZN`Mj7tu|0;+NfG(7#!J#!`u5nX`DU;EeoAMCcg(_-`GJK!a$)j#kadvTm{@WfniVDon6eDmqFrAFD z*Esby<(&5FWUB95gxen@&uZJZ7w_&uk>(BFL1n{g3Wf z7cMQ9CTt9!88$k1cc$nKY@f(qZh5!j_sl>KCOz*3U|VbO@fuo~hs$Xr53ayR68q$a;9GVfb`EP=GDcwkr+Khg5SmS6S*NI z5mPsS#sGT`g{6B2QPqTo7hCD>YiaAGH3RK$t4r#~3#%jenTzt8kDv}&^7v70n=@y* zKDtDGUTo!LhtDU7g)_$9d+Lfef4$V+gFGJRy~>gf2%s_9>E&9ki^&(iLuy!sX_hea#(FUQarihWN#S17aB%jZ!JxIpwOB82%+=zEw&_XxXFq{-QZ(^x&5a z4>o1rFI$Q`g-3XBTcz*us$+|hWa&X@tCzHk+gu;)iUUl9J`-d*+Zm`J^$~$&A7D~v zw5V6$tr29<4o9aKwszEbXvW=*eH)7jHWrxn2?xW_re@a9W1>s9vSsYD#xwXK63>dM zl|WgTihuES4?bnzBGOiv$H~fyn=rX4YVHYvyRuh&1Gz3S;3^}N@9EM@qR~i@J)Yz-{L+r+cB);{ zVI@DDt^o0NESG*rb+Pu^v{}#FqJgB7SVka9=ovC}0(swi9L4{(LGELGJG<>^vH(;~ z@df~T6KbNk&-UD|a8r(_Yg((OvSaWf=WdM9l+U~E6wusPVOf(hPmTF*th1zZ->+{D z9dA`p4ahx>6{I-+EWK|cX@uV0+G}BUDw@0ZkjCbdwr(Kjj*lY}vJU9j(HV}2 zYDh^-H$sTi$ISTi9UCH((FGIwgQB%Rvw6S^b(8eRgdRntE2_Viu&{4V9~A9?`9A$eWAH9;qL+6mf2GTb#soBRn^U3B+hA$=7%VeBsn#W><~ zp-i5q75w}DS#5&*`ElTW1h11O`7Mv>^aH<-kI70O&rV*rW?{q_K%?@lbjs#3F)~Z6 zou@z(F-G>Za!;lFon=}*Q;4hJWwbEke&4CJHRVzDOcZGzUkR$ z$}>~shJZ8zI?L$DZNS%{m)vq;_V+6Fjdy0zo41UJVtK#%z{iWe_=@ZRo+n&4xI4j9 z#{M`iKUtQetUHH7+hVpe){EL`kTTtD6R@<-a%nY<*d1Nzsy9@_l}BgV)9U(0KI@Jf z5W17H3d6V3(4p@R0HUz;n{=l-QoMUfjwor`-<+10bk|Ln1NoK)7xW1_{S*#VSzx{y zTIMsSgQqbPkuhZ;yET#zNv*lM);fBfHbTMQqWLdTwxshcH8XrseK-~v%F0LrYG(B0 z$Tyxe>j*_nxpizO^wxTlgKl>D|Ir`*>S+MJtEXABjh~QC>&VuU;zh6f zf(-dbq~KQj zLsw;nU1xc>pPX(NnQUpC$gapa#ibQ~gpl{)^S$uZH(Cs+?X|%l%iB&xY^ZLD`JBRX zL}MCBsU+{!``ne0n=&keY{)@Rj_wUOnaTS(^^>7$K5ztD=?VY6^P5Zmd47kRdY=+=&1E3mV}DomZ*zidrXNVoXZtF{(-HNe<^ z?NoFWu595NM6{m4nxL*v+3$I@nP5Xx4$>yNvy4K|yyK)#?q%^_j#-~wYriMcxP-j6 zt?*tL+*%3AbAy84tT(^6WwG>>?D~DrZ=-bp? zgUkZ3phfJ<)gt%gv+mWm6N~BWwz2uI>g=J9`s&d&l0BY15xj4726v`}tPBYtSogp4 zb!m*}4bh`qCP|7r@%5)_IGh0_^^4@r6B2vdE4AKLJY}VH7Fr!_(pd=46GqCsGPmKt z@*FL97csF1;s=XRsH3TwlVp&Nkv|)RE4oaiY{2N&QVL$SfX)qGQt@%U_VDVjbw|1r z5SxWKbm>J`;9-LXmFphg*TX{WKG{bZrCc!=BG_DO%*LXddyMc4F!hPm0mrSjj z?p4R~%uh0vs>Y5{Mz%>TJwhyOQR>-<&RvhQ?gXHFt}0IO$ksHn@}RS;MvDn;HAUW| z2aqpY8fdVg<7(F+{3HJS#Qyx!b2U{j%;LN{JN(0-LkoW7NCpMM_r$RwuI0zR zY|ntlErHX!L>GEnp+bIYb^uUYl&b+{RlQjC7lLKYK0DO3a{`Vedf2%@7N%6n3K6Tp zij|3+t0G6Pd1r8sOXlN`dk*2Q*C0YGl?_4Z6g!+nImZJK-z)xa_Z2_+SRhX~2B1Ox z2LU_7b7u( zKR(zHldZ*|9o3G_)sIWk?;f*OBCw8Ec8$RDBXB3?c0nyyEIy53lC}HIlyXn;;p^&%Bz$E^fDc*WCiLVmB!jB+oh|KW_NLsFpx$?Sc{9% zTkE2{yrjHhYk9(q@oCq4n$e=EsWc$Km79KF;atR?NR-0Unx~ikP2l&-P7%reu`tGu_X!4$X>hC)kXTe++Coc%Td}y?2N6UlGCS@syXBOw)Vvm7V zbwYJgoHTcTxV*(iEO^`0s+NIOe)PkAmHWh+RssXNX=EmO&IWLGxX}7V_oOOW^qSB9t9zJC*x*%nbK^m3(w7HcdgB$#K<+xLk@>^5 zjCQ!4bJXo>z2}m-*fn->lW*Xz7=6(p5r#yHMIWs4t=$z1KHf{+uFMWx6;M)7r7_7Y z%)eCIM`$D4(_ijS7K~iBvz-{X!Wg@(QUq(ZAcH4c*ulEwY+@-|Bd!M&Rgb?luvOPQOwLpM zl0%NQ+PDlh2W^oOX)BVdy&^u_DMvNVPM(xeMl{jAUBpDx)3U^&?35H zCQgmK`+QH6Sa^$&$yL^P<(bM%$b0IQD->h?_3$}6IgK%Y%FTMgmBg!Lf%-IQxCF1M zwqBdFe7YWUF+j(W*`l0Z5oGyg}A4RDzWjxqIW|8O^ z1Z!ntsY&ctcjD^qb3fO3;z9b_1&XUBcDn*_42SA4Z<8wO+sHI{^cVV7i7!B?CokZk zZX%jNEqoQ5{`{hB`)*a*M5<su#uTUqS}texE~ zRr83N*GJ^o>L+U<0k>^V+SnBdpdwi*N007h4BHELAn^|%Q(-^~@N*UnUotMDE7*~$ zkE{&WepE}UPslMT=L*^lnrY03hU)JpMU;QLO71EuUE2+UmtgC|eI7gOvsw?)_Q(2K zyKU0DySR%zNtaaFwKOvwdS^A#G_(7-*C27wOpvm@E@IYda|wX?f`91KpmEiI?44h8 z6MGg^w1J5C&N%Dcn$yQpcJfUd@Gh#gP8gLe*(1rF)!-|6Q_ttZ#=c&8ys;mJ`EOkn z;!+mPrd`f*L~8Qwhigs%yNmNEx*XRa+1Gk{kSYwM08sB9{$OYqqgp7Jy!~bT+{*Dj z2KVZx6d!ip3(`zPZmD5mOb6}_$*~L4BGk>GQy1t{7!PI7m08UoVrzP%n9XP|L1p2F z#B#fW7|HJ2Fscy#Y^BQVU?m~A;g(d*YfyMS#4PIN*%mj$<+`+zDewTonX|{^O1r(! zSs{|R1k+{j!`2b)#VG9Z01)O4XgGC4~yaIuKF?d#d_ z63lYk;1MH#6>voBFwh#3H>6McAs(>g?XFrEZQ~P< z{;Lsr7~jRG52{WDg!20D0dzWthC_W1#pG_mfCyhR0^b>ZDY0t)Z4xpve?&~MzGgS8 zlILd_RusipRZ}YMw*_~-r>pCSF!gCqu1@)aOI{L;wr1a?)4->x3HACjfzgZ<;ED3Ryl~9KcOp(nMUu#1ebyj}O&-5`1c4?SVb@ zQ3$rR0Bcr+7%a2cuqcuRF>I)Z7V<2LB0!x0%sk;heJK#P5Nck^)R)5dVPF|0XH3w6 zkR}^aEsy+#bSWk0;fO<9uL9?*tL!BmS?6|EkBf5sJ(_n=`rZuYugjwPF$pJYaO<^F zifaM;(_f+3Rbem2z~g=!&8pEBF62~!dLP|qv@!!- zBfHqK5ARnz+6#$o!VGbp6==i^oPDK0&#K9r!T-)*pHvx$}q#`ut#e} z9zNMe4oOFA-162VzJFQ z;yS7uUfo=+b6$3bOn^yEoh;sd3T7S%~wR#vO)Zr?%1c6Xll7lI#0px+j1s$i~ z+P((eqnSSjQhc1FO?a3$B~FAq*ccK|$*tR>jmAAdrrJXlQ#k%|NxTQk1Gl60nU&5& z_#`!Y-9p8Oso=pU(zusfsjuW{zA3k$0rvKyUk)#q$R!Ffw2!#J_s$>aToS`pVPD2J z-B$hC_U1|oeU^n>Ta6J8c$boORr;caD5%GXhAjGL zIiKnC7rA0CJ<)tKwYo+kNm?9Sr*&J8=`$xa)AG~vY_tvSQ}El!sA{48klQv&1d}1= z>T9HqVqa1WZ_Pa9>!l=+XR#jc$nEKc$}*u+2D{GRZlQDoPqNpdTdSw)j2eDPf3-w4 z;J(_}M{`ma4WTMPGWd6dQv5ubdh|@q~b35p4F}t=FT7jRY;7~)X`&3jf{Nd4> zW0u8!4kk%}Mo^L6jHdhc(oS=*hghlXgA3*(ETMf(h(fgeA#kqI%kYTQ6S5 zSv1izMW zXTvvsFYwtrGVK_tva=JXfKgjuzND(&Z>-;mGtGi%ws0o9t+mdS5+&md#^705tMxYU zEa%Hmr*rsBsDkxY`+-wzzy$D=He{#iPv)uHO(GV})30cVEyHf4dh+s(dviQ0oWw`? z0xH)MXHN%pF_L=|!S7(7bQM_!SJ>yKrFd68RM+*@nMU05M-v-amwi~V`xRb|G0fy}Z8 zNT8(bg_Kkjc=qlaiF-#NnJu-|GmW+&aI40|;!b_ppe^B(#%DCDUf~{;2~k-$ax4bn z3*}M7v21c{i?L;+4d0U4Fjec^rWP<3u_@=ts&vi!QX0RxyU!10F}u)>Wy0q1s;f*Yu>+aM+3tCabK+79UWH1G1Ad#c6qmwK`CaZj_)3?paw`oKyJig{=16 z_jCqd^5m_1XbkIB#@oC>YxKPnP2@CkSRMiq->++h7-CvakEiEPOBX!Jo13$LY>%)? zlQ4f+c+}7QApreYXst$`!6pUqONO;nyj?uk`nMy8Co=^)fD8A2F|UFtqhSosKAXXf?Y{GvZOB;az7oR-;f50NQ$*jOr*EzabS zq(1jp4&A}4#u2;EoC5{&s?f|R198IaS9jD5QHA-6q5hC=yAoX#f}Pzjp{L;&6Rd-u z6a=GdOZIi8+a_ADeG1l<&Q6^<@ngKp9Xm3#p6iU35XPvsB}cak5~~)_20GT&dHbzm z?_*fqgJR~Enm(t|D1;u(WUe53TLe*s&vfc=Yb>B74YQccN|f4Epz&7heVXr@fCet< zNWB>VlNBQgx-Gevi*=n>bhF=Ck6Uy0)U%ei7jE{+dyOzNL;sdir2tQsMUqefM^nW? zBXMN2kZw&~HO1XYPSQ{F;nx-~@P~cP5VoTn_V@#%oCIRD4QH-x10NFzJB}v?v%Xl* zv_z_Wj4j6oZvi#@^Nil;UMone8;Y=t*}`$dtxu=jNUHJSh<`kX(KR~Y z&UsGsoGX8A2jdFrxd@(}YT||{!3{{mH*6;;-bNQmlqP;~zG>bvK6uzri90bZA*(QL z<#Q&Qx#WGE*RARP?%NE1JaMex{k2b05=GY0K?Q7a*^}#Q%j4sC5l%3cJLVOd$;@gdP~vIOt1+4%TUHvs5guWMX(~DG z=qK+AqZ;y+E}vdYIpTHqb_lB}33aXYiQ#25HmZ$nfF~vr;jeg<{fwUyV@+qL03x|B z7QRqh<)dp}TUA+~JTOVLJevuh&;hB{gT4V@T=~z7%kyAQ4{Fx6B>Mz+TTU5sjb3P) zNrLcupzz}DLvDrygZ?ioHw1HLXSV&OB8#6XzFll)`b#e{_)nsYo&g^y?(R#a)Sau5 zWQN#wByP|GosN%>vcvml+z&(gGsQ~LQ zms@Ib|ra&iPb!MH?1YvsYe1tC#o_@OxMb%R%dnO)2!K9s8fM<~m;pX&ukN{Dfv@;}beZc*mSYa96LZXX-&)5h z@Oipx7}r%FSC#PP-_l$U`tS=2-Wsx7kNc^pF{H*DnNAUiIfeD7Tn%m}VZ2uTeaGk)80YKN`uu7D9nJcyqba1i z5USIwKH*?WyGuK!{=_PST5{UG@T9^v`8%smwC=QSW1JmWMfS6Yv7+^kWflfsF9{;7 zV$l%UVCo(>iP@o|vv$W_G?VA^DfNq#aGo~ZI+-USmHD?L=2;|H&W7)P579z)(HFsk zTggQCC!2v9cF$3b8hp5mqhEjG!`daFh4xGW;dsD%X(DgvAKN!>Y##U!@17vY?TVMD zg4?^HWjv|3RjVHd+DRJA0E=T# z`+p4{$$b6nJ|^{XVVSEUE;RWA3Gds*8C`P0UTO0bW*@6BJzgKD$iv{HnF zmi$@PG}~zRkjiq`Wn#P>i>WpJvcT^*{DS2ncF4-(zFg#WF@>U;#kwsn@2QOO(*-7> z8wGF6fxyB;($?D_GB`)MU$$sk6|AQyq&p|a)7HL!vy=B^n;dDZZ-9BE^0)BLpU|Jb zzH6rXnhg2MFA~+v3O%fqi=ygVvBvf*)vZ~epq>pB7m@dt$AjyHy1;OdLqtfG_M$WM zEJFxhr20viPBuF|dyeQL2aX||hH5Ax>Y#J4Bk;6%S3mLXuA{lkXL0TzbL++5JW@iG zr&J7*9WFh(5Pw8a$-;oC$Iwx(2~G~#-WqePpipKJ%+6}SH8)3SCePPZtJE*M=a{&ewb(iaNM`HDond%ze-<7{@l{Kr*5V8_3n&#D7>T%~FBl96i3CDdWqR0c}wlQ2JyutvUpcZff zf+_bRE&&g>w{w)2w-om(9%na;Hj54c@w_H5Y4)+ZbB0jdYYYQw=_X1Ly#1 zyw(&6Z;d(zN)IYLwP@`Iw^HR8Zfg#(SJQj>V$acAA0Q662jyP-vlh1;%l)Zo&;0RD zT5}@=N7M&Pt3q#Fbmsq-@U+Tfnr|u5?X!kU3=2gc81jL*W_p+f;0V*nzJD7Q>KOoh z!@j}8hTRSLx{C>eqlaqdDa-vNT=UPE)t1|v`B1WmG~OHWR4|7=c{No@M$ZJ~O8Kn9 zFgwlZ*rWu8^b{YgFRWm;QXMlQ7x z`1qpQyhJ|{HTH=dZg^`}3_a)_lg&-Kp&S!YzGlWd!0Q_HW~KcnhwL{)lLNyJcxiYf z^a1E3Ss4Dhn#%dsg){(U9&?7d5xdKNiTW>GqkKGd5(9&$Jish|*wX&T?rHyh_YnTl zJ<<~v(_+v&0Ut$+Fo2k+KQOoW3v*&WWyA1BHVhIaDfKgfO~?gcgOut#SLpLK=vKgr zSH(}6iTExv3_s;?Kj20Tz18vj-2HwCK+wP0`OlAz$RcIP-2I89ZyWy1^^HD2WcREs zu8q@xnh%;MFy%jFavAOOrr};(2JDwkR48jylO!!WMaW&0JP>`WaH=4CUfpvP5MsbG ztZ_66Ek~hgTUicngWMGu{NlCaZCq+eiP2&NzM!iay3}>BvmY>Js1AwEnTQERiU7IS{N9*4L+aL{NpS z?AL#jJyGg;81J*%D8j7yxAR9eNwhS5Dd8GauX%>X&*Y>LVFR1{3qk#@?Y5s9^5H+A z_=igTRlI+@>Q_Ghk$ivGzJE8x|2It6{~SMmP+46+Ro36}V^06VmM2Q+NjxRiMntjx z8#$KGSTU&2ZY^LcDMEBzmG!C<($d}x5fzrJ0S|7n65sJOZlXAqZ$dipl!5q8M7*0| zPsx85{(rJV0~20e7+a(9bEDlyyZOMu$;r#h|7-F6Uy6l=(b%ON z>|N1*e&FChT2d}e^dA7P)pI++RWs~rLuNL7G@m$ zX#8Bi)|T{il~#2%ay9#YZwXsROQZW}95)RE_x^s!fd;g8bNKz{&JHH3X0B+uKs%45 z(Ad??JYCV)zu))4FYgb3d6z}gzq#Zmi#G(`uz16QnwO*54WSm_|2vxjoc(BmUEa*p z%IJZEC(ytR4SbyU(YWvP0C!@42=EV7bV1|i{Z0+LikXXpo3n`-P{Q}4M8e+Q;iiJX zk3(r^2RFy>?WqDyIvd%$I2r+MnRo#=14~T4;SU=AQpHinh=Ff=eJ)uU4 z6@O4@oTqY^;sJXYm6a^GZugzpe` zTY5_wJ&O!&2e)%LS)TDcI(9p2$&AHR4(A9hll2;0AhVA$MTM*$?pB9|uE!MTZ36j> zr~Q!l3LMStY;1NpopZ6mCAG0kSm-9CDRR2VV#jS;TSFu7TdMFT+%7XMl#YK9$;Kg* z)E%A8aiTT4K#n~#{>fl;s7tHfJ@Xbz<#5YTmFNml1rnB0_^FtWl^tK^^cBjl6&@)Te~bk&n?tjS$Bw z5Q~gCZi1~ZG}?QTcb#2lrl2)+f3tZe^W{^tTG6j_wn<8L1IBC)n#)55@9Fuy4r~yX zmFWAMSDG4a+qfxH!=`r26jLJd{m$PuT2HU&x^M&zer*fZ+y>Vw(@19w*L5Ud*BIW0 zP_xYv>JhvW$AD8E&`w*`dBQU1@a&L+#q6^cy8GwQh4xSZGr2Ema_01M<{N=u;v+s= zhBj`00DZJqzaJnFH}z)pqxk!|sNgctQ$Cr=^ef_iBKTgX%ujjp$KPQE_l`@dEA{zsw#!?qALb3se0f ze^h)tK$*%-UG^Vh3cUYLOn)zzZYuAszlq;zy=?JE;PT)yJB|k z%$R+=fMUECUG<)vqHy!XZ_0RFY@wiQ;>?BfgMvmrrYpzwd5n-i0tA6g{u>)AwD?c&0nHb2Qu)L*9S`0+xbidja(p_BL9;>whqAHzV=O zxN&ju{5oh{zYf~>QTkQYQUN*;7`B^{GrA8PP_aLhpyHrnH!%YK1LFpq`0@Xz^8Q}O zlaH4Q_yxxN=h>Sj;dl2kXXRz(pyIj_mG5G4bANMIKGyqGT)&FSk1{TxOyFlVpef+@ zr=W5EN;B1WHBI$hO;gcQ0gJ%R#Y#6S)D@ufr|kXI*i^be(S0gFV^aYdn@azC?Vn1U z>bn5{5Z3Q%`FCXBECy8UKa@4l!c8NpK-<69*S{3YQn@<2nf>g#hd{00bU0Aump=P- zT>v~Szf<`;?rys8hi?CE8u5Lvbkpn)N`5Yw-wAOucKuG?_Z99tOPW@uu9j4s_qqAM zAIg|nSy%%7!NJ4%3&*w&&Z>?^CIC-=ppIP@SihVd9d4%RuY9mSuyS=#GIM_DVCU#y zf77u)?)q~=KYFP4%c=t~@yjxEJ$bzV!g?$vD+PkP1p>hVKcMRw&_fUs0wNM30umA; z5;8Ip3K|v~8Y(Ip9tP$eEJ8dYB0@X@0upjsN)l3PG6DiB7Ak5wdPXKjVoKKgtPJ;Q z85kLEZUTpljEshYhKq)V%RoXv!tft{U3Y-6Q4pS?fZ*Zofo@^L!DGW+cY`PaIuYT% zzd*md;BLVK^dh66qTL26)M9~d!NJ4dLV!m^L_h#)`vK=c2-t`?cR3`GaFvaa?>XUd zK975gLj9ofJ-*7&9u1eVb08`j0U;4F2`wEx10xeR4=*3TfZ)SNl2Xz#vX52O)HO7< zv~^5O&CD$c$Jux{Q6Bwc1~_yenDYTaaDCqZC!ms zV^e2W_lKU|kA0tpM@GlSCnl$+!HbZk<(1X7^^N_5!=vMqQ|Q_G4PS5opFdwe82cN( zumQeqAt1mbAm8u>cgq9#gU3cdyvu=vBcY6JV^EnFMgSfYq?@_6_RQB+Vorll} zXt=?&`!}q8=j>l&Ebu?Y*{_WK#@96H4m=z%c<|UDG0=JRAWV4S8srp^D6a&hB3aF62!H_JfEhmf z_uqd{AKa}5+mvwIu9%(BhO8s~3*SA2t0t8#bK&_c6Q z6fi9%l!={i=v;%=KCZ)6pHxhfUbN9(gW4Hk_y)VZhU6_wA-n1%OYTLVTjx@$Bx5|L zo}YzZxCecFzb;P6b4h!Z&w3oO#$7?Ks|)0Ii;dgB!l7cFl*x_H+%=8S!?0Nwmmnq! zKZ8H1hZ+^E(M^1qMr_iVnH@awnelwZ#F9&(jfe4Oy5nR3Q^f{=aWPXQ)bq>%`)ZsX z5VLcKMa8)buoEc_B^)6;Tp~RaiT{hBhrhGk{k!g;I&1vCuTX5SL68B=Q^GT~vERvm z$p6-d7Q|nd&0=rqOV5H)APZ!p{0<5;n3Cig)Hj}a0U%BsnYx|2`BFm+&jd%VK_>VW zu*m3GN)Kg83!A2uLu&4;T>qk^78}JmT(@iZ6=)goHDP_ZRC9s7$Y=B@#`fkdiS(sO|#wC zyYpT`zHd8^;gQh<4`er=A8WoBLkQ@E+dEVo%AcIrPL1eM2(jo97wLf06gl~dY*A#; zmA^irIbo|YH%*_S0ne|FkZ^`}MrjDWfXtIy4_gJGyM~qB6LakXH8e6`t?3oZ1|1_+`*MI=Njs;lCp~@S>qfTW`eZaoV@fDW{rc#h zi7JYr!$dYpPD=VMR70eer0MF^VzP4*@xux|3m{^hHWwcI=ySOzUnZ3Us9Ne%DZAR~ zktgq4UxYWdzl4$3?rT1;Eu%Q#ac!t`d=b+~MJ!DLekK+SGQK2+#+mK2clIjRM{L!f z?A&dsoo)W?Yl`JlM2=ZWUeZ<(5nw#~SPpO?PY;1C>93c5@YAPxP_TFB8kFvrCr&KN zw2zSr*1vVAJ-$OQ*E7Z^lp!l}t8k}#0dB))DJlTs(5)CoL1o7bp3NJJs=SDu%JTZO zy4%MHMpj4_AK>&J+nssXgRAcuqp+7=ldGfsh;2uWvXyJqQf#My`s&c&Y>%r$qwUrn zc~sVOLiMI7i}qAXuE$dDt3xg|n8w}-;*^5zT@EqNMW?QcN=ai{m!o`Ekw>n~=f`6( ze4U`ddx!e+?2Gv6W5-pQ8O)O{&B2Dd(sY1Vb1&6-bnS_qOPk=HK`0~&|7Z|fo3>lT zB-Xd;!Tg-mM!}H?h9t<^Qm`z)IeT)W$>j~p?o+v!T9G)VaKz*>BFuml+J>EY69#x# zhs=?VnvN_tHMu3pys~F1ish8(=(}Q`@)gL@@$?ZNIr8J@udaN~x;QtJY8`n?(Zx_0 z2H43DSfPfnwq+px2@&MA8_Et7^-Peg8>^9B`=~|LzJp~h-nU1(A=vM-y__KE;y_x0RU|w!w#pUXPVt&l@phVhu5H| z>(`(ZCFE~zidv&vHFj*9%42NQb(M9IpSg$05S3xx9wmtf$=f*)+2Ecx3!4JGUGEGH z?8JQIA6fdpW{q(>%DOX12Kze4v~SRO6}9*2laHmTU7So3%sVi}Vr{6a@hlkWNq@x=2yF5Tyu+fJh4v2t|5{pn!rDrPoN8-ishb zdWVEw0tq!hh<88FIq$r4&a8W9t+{LNoq5;%;aVm8nYwHD%|C=3ssU#qwCBQg$`dFfOr6GixG_W3MiY6T zxOQqc83hGV7f+Q-a;KcQox1?Yk(#I7>oB?JiQb|G+iGxDjDpT!FoKuXv0qRvZ&s|c z*5>EWf2CmxJz3> z-B0m5_e}0sO|^QyLNBIEC*9-YGPMQwjC(Y3|FXk#JMC>Gl{?*J3K9o6kXJ8gg3{CU z1k>GAz}N0)k%stX4ZN?-SJ=1;3;GXlY{f0q8>I}vxvrtA$xkRqn>?@{F<3BRf}*8c}R;= zKp5)nE*2AgR2B!O&tyhLe7$1LdvpKtPvyXqPe*LWb|Baw))HfB(+1eZZtoBw`Ga|L zx&__jeYDQjVK+?!0}30JL{*RM@RUUuXsFl3H1=R(B6!n*xDjWXF9=FMclvl<`5UyH z=-7x@zQaL^OsQ!+HQ9G%SxP85k1u)y5i$#=t)JiHv=FXw%$u{&!sZJC**`n35&r~8phR9kn8Ij8b zD1K#hwyCDz)9E&8-udKow|mRX3(OvH6E2RYF@^P5&i^6jr>n@_im%l*_Gfog{)b4Vu?&^CX@7r3l7dGQ0*Nq~(3z6EOgN%!WR6RU0bX$7vN}su9 z?qbPtd{DcfUobU9dj^$?uvXI6YPg0Glm7Ujs!?l{f8P4p66t(m_zBrQ74|t^rh~+e zS5M9aFzW9g)g*LS>E06XNs!cBr^MU^?VZ`6l!`uA;HbJwtcH0|1g$FSub_PYQ@zMqq#NCeSpO^;GcP-jJQA=lIP}$wsd;ZG_!vh zX}XU*-xqX00F40#^uIxsR?S(2P$`MXqp29JFC>8ZfW|o z^v4&#J68@ns4uTi)icq|6(9oF9<{5$F?^Da&6gFmVTvE+Pq!Vo-E2@DPI!)AUD5qH zJ)c{_53ioEczwj_pS6!FJ#ZG*`z5vhN-A2xPxM9@3n$Z6WQ+H4Q6(Af6s|?6!R1+o z&2%PM&34SDI_pO!*zFiTf8SkL#-BMc0cC*OCw1T3IFVG@|x)M19;5mv{gBxrMj)HjcaOS{U{a2 zkV{n%5zuLRll6Hi+!+I<-6DajaYq$Cd8*Qt2|d-j6@FALLWhbbBUO7;*hT>EuNT(5 z)vI^T5U89%@bPyqAdt7q91njg-Kp#|TYVQuTmMIKe>ZP}t_NEm{3dXaSOOEfGjiZ` zS$|ua8%T3PyNK-2W8Z>;1&0AzLKP(95J3l*jM`UePH)@MeQ?9v;StYs6Cv`ML_X0;r#8r|<`bdn zg`>*=vO=v-g$Gf79O3E83YV~$^CdZ*RW&AEk?Iz!q!3_TC_p_$F`UOWFTVqyQ4bOm z8oL4oMkT~5w|JuaHWFwpVAE!H?xAYrLhsip;P;nMNadRoM86{>!^;WZ7m>VMd?gKk zh#$}&XY=)Wwl0z*-KR)E-N^!2OL`Fe(Z)Wb56c!fVefCy9it;IawUBF0okd78rvEI47U*uR_5IFP0ZRJ74A&S z@-~ACzCJdhYoBueKV)Oeq=F|NN<@6b+w%N>t{1WKoF&bN1;_0^}X3h59Lau4hI)M(UK$iZL zKbumYu|PPV?XVvN*DcJ5%b*kF4n03YiDxkP^&Vd!fh374Nt28Pm==|n|Aobr3#nKT@uu?fvu>)X4&kXzq`LljS3-&I_ly4 zmMTrs!IV4>%gDzSF|RK^)C6E{b3O5pxlG1}{QOrtHVqZQo0M~OzltOLpTr=CMo0gg zbC3bWf!@+C8_Wjdl5B@Qf3w#%awdQC=k0Ga19l%+)aB4BYjL8bgsC$XRdnixqS9ji z*U_rQ`6m@jR-)bm_dv?TPuL-ThDT~XGT5BoplcR-zd_#=A*b>$k6foF7O@#`rBYp) zw&J@zF*@Hn3j6oPzTWOJ`VD#&(icD;lR&n@OpsaHjb=Sl-!&X7?#Q^?EuM3vM|}I% znW!R-l!*(t4Hq24e#J{2k61L%g&QKOROREo*j@a5&LbETbrx2e5kX=q!*_=q(lhGE zGNy6e)^5MfrJ}&=7jhC4cR;3xhIY_PU}VBrjfVFx=fmrZOypofU9bJ`13F^sZ>a2` z^Z~u6=M$k#w@afv>tsFeT#N0{CEm?7V;sGk_!|_Ia+VZ$rvZwwlxR~1*N=Pl1yLlH zuON-xr=ECQ!!9)Gj+3O}8iYg))o>G^+3e&D>zTBcnaTGhieu{*wl#FIFAGVbTt(z5XWV|JjeTvS zNH!TDMYgX%yhAv6jI}o#qi;QFC`0j`91NT{mx}OFE$MZ*hBaLQN@x12vBPfyKPdJn zJ`3yOwUv)Cro1+SCH`NmJn?I-?10I$cfm}9$aLaoJx?2PW!rdluaNZ?XNbOUkP4so zTcTPn0o8s45MEykm(}U^%+aKWntDBZLw(5hBVZ_HJPW-WLJ}A~u&BMYi)Nx;L-M@$ zz!%w&E_4J)qZi5`QP*`%EO3>>tj@O}(@ZzlOLGkHhjbao{eFztKQ0m2FwYFlQoDh67Oi9+vw+++pmO?u8g6BnJ(Lbyjl%LhMO8up}#@)3ny|;dZ#D< zJI?{2WtoU71Re2i-0@$DPKWTt@r$f;=+k$ME>ApA&rp}n%Ypw|0zf33Gz6bt&<0JN zC;v%~Nks=XPVBBW*XvAKvp#$?qhd&=beeKFja!&pBWckhCbbdg6r!{F7iiD={FS>f zd#AR+W&&y6#hcujTtz2q5ua6*M^!NjPgAhH-RpdqsK+B%BD; zq^yS|nn71Zn%V{Innh-gjUOg=Cvoj!GR`S(0qAZ! z;ol%uV~^b_r!MZ$wjZTibw+jX!#sV&g~->9?gKqR(RK^wGIdOyS2XX9YQcCT^aM-<*v*&m0@Drb89G+(LY}~!Ry+5Qu5x2yl(__n#BP6COo*=G2 zPiL(3!K2tkiAxUETMWtQ#_Mw`U228w5MzP&gp@|lOoz7Vr;hT7S;*dYdWJTLFnFW@ z)Gy6|9mStrtI4br_%qxK+_o?3fjYq?_uYqj^DC`SB zHrU#Mo`Xz=5C8c``czo~KM{MX@H?b!faY!><{Rtdz1ClkKdqvQS4ST;UM+Ai)4gn-1Y>%0~|;l@`%+BWXF7PHhd4@ z=tlZAoml)Ew7J||RnfYBS;zrVKy=zQCkP(}8UsjMEN$UD+cm?@=|f4Ps_iR;z6M$a z><28G>Bxp?Zobpu#c4?0;=g%W{@eO}F3Job0eYS}Pj!Q1;Sg9Bi*8=!L;nYw9f^||@TmRhfLls03y zZtIg;V?)L5Yc>y-B_0Q*i>48t=T;+eYwg_dLSqa6dvijMMiC@S%32N>;y9(_gcQ#b4QnZyxsA2yex!@Y|h<5#@1*2{O@? z^)?uKw-5REeriv-@GjqGY>3%wd9BH(1yMI?RR##-BoN&CezujCQr*SxNVl1zB4Z)W zW%9Vfz6>L}J6*~!VS&J_mbouUq zLz=-~3Eqp}4>)jJn-szcu8LOF72o6TZ9@hc{r>gKe}jP6M;{sCx`GOc*Mirc3?02+kB{w> zGW^KpX42EP4jwcC8W%Q>xug-pX~*$z=H}h`rmw=NI~;1`SYBrZ{Sd~Z8g7745_sT> zOI##~uUaS+ZAjCrOIBe$4q3{<>edfJHYMXXOrcfwNLM)DVzdPxzgNv@RU|+2U0%i4 z`IHZu-tHKr&miF@sic0yMGqu1EI@)C*2LZrjGi=`ViyTDib{sRdD9Xo|IBtx5#+cK zFg~8YY)W|G^SDAcKoIgSwmIz$g6TKNQ3j6;K7=x6(3E^^iqKg54RY{FRet7P)62E7 zDY_-fNDXt<3w>UOBgMONAD9*|8JyAp925t79-SJ3946BFVCF`S#WSN}3S+SRfq*{M z$AESOeq{-Ky5UI7LFI3)3{JX|6dP=QgDk}$AF2-dKyZ_PXpZZ|M2||@xh>N&h*xq| zU1`+n&mQwsmr5dq;}Qo*(+hh~4p3(oI)8(*)=(u45_zT>^o~MPGc3+mggz#pg-i!3 z+l@nR!d}N-8=HC5eB4`zkY5S7>?rTrIT%q=1pfnXRI#8K)t4)K^V;}) ze1U*~-jRNipdv%n(Tgl}39Vu1mr)PPdz;r6v&Zw74%zlhuv)lOZQN61ej!|?`asv} z()P%75lflolk#%=chtr`>(rcEQJ}M%YzAxw4+>*Il%UI1tB?w0bZLVP4yD&Hn&Ws# ztKlaaX;B>WQKWnHgYAzUcO!@+l5dW{gPzgK*0vt=CLWJ+Zy6$Y%}i0LA{pv(GwEh*gjK~{!{bq_L`x4=|~(}R&_eOdwbNNYx~JZz{}8q{Q;6y$BwCp#b+lQITO zM`}VyZ>JDATL@vyceh=F5@xl9u6es74ww1buUMy>^+PD>j-&#oeuCD;1U zCB#rkCcqzR0*p=rm4Ol0zy1)PjO}0UM+?)8I(4+)9!(@*g=OdH!nue}+q;DO4cCBN zQ5^!Xb_obV3NUo>R6`yi%QeT0*qw$7vp|d@RumxrF)QXXJ7DK>tr|FavLUD9=EuG` z4%Z_wfmv5AHMX?#EUkDl^n>1;MRB;fK>obnUAO{qg zjCG=`$e94_NV^qh1$c9{KFQ|r4-jI#9jY_Y-&~E2){2G#4qM~wMVm(%SK%) zCtt1A)UX%6lT^kxe)QZ;l0Fr!LexP-fN#Ut8+copU)9ZZk&&()j^vy5wJU!Zce@vJ zjgIL^BmOeDgoG&}V|}8G90r zh{G)oQs52p2f)6SG1&7Ow;onMVBj`KCpF>7FA!KucgOl;p%fbr6^+gwt4Y@kUTzYU z{9@&;aXF^~@W9J;+SLXTckzP}*&`$+C;5GqWX9(xE%`sNp@{3QA6OLN!Hqg3?ml2e z{l)$fu(b#WSb%8h7Dbse10Au}smoT^ERw~hWj;el!DGi=W2ALJzI0iF-~@=mg{A=| z-32i5Civ*vxTTpzJGY}DwZH(8lz4db*9)hc=KwiIxb&HT#heyC;AROXz64W|I_L=& zxp4cg{|wt9s*CRef|Ym&&maFHOs4?L_2vH9@&i5-ya?5jWdz8B^J}2;&GUo?L>^41 zBPBN$HQR0PSXlf*ZdJih?p-xor8UPT6NZ6D5>!ebr;$xH_5c^MM62H-j7x zR8GQsceqj$)VaWx6UCW{lmPJX0zA=sypZuC~B=vNS=E?`M zQ+=wrDm0`TN=(o}oYANPp`vAlwPO7%_` z{$E2#{xje?|L4F`{&6ASw1Y~4tKmdDrjgxuFq0BeU$XfOdG@$XSl+5XFmd_ma`H&7 z`;nS}a?;noX)loXAYL|JUos*{7D^XNHhw6xEYDy5TFpr!i#(;-2T#^?p86NdcZa%O zkE5N5>|Dw8>dx2;_2gd^`Rpl>p$dI6NaxL@MTgIh*UaJLwKLOfz39!h*WCe~dgDE6 z*Mwupx~N~z!7dZix59g%1(M?r3g^!aR4znu6E^S_S~&3xw_L}&?fI}IwHx0=U38uz z8*lQRvli?I^}}W%)J?KayQDS_`+AD0ry@POZvzdU#~oRKvNw?j7dlV-vtjKlBIII} zoQz|_;{@JX0CVs8)|E*wVe%PSDY7MS*}5qHZP5klk+qBbvpN2qP-P-NK@tO|B$|yW zY86^KmOGAIYwHk*pH|=JW$O_EExHdvt*Q>#K=8CP2bhRm(+J$gp4rJe#>^@a>=txg z2BNRMcAj{MQaw*?y5%^33s)5vQfQg2Ech)##U}BaOT0SUP)37WOkC~71LyjN*&;MICya;DWh>$(DEB6UOe zOa{+G@<@)**ALTe#RHe##HXALE;6<eWUkm&6 zFHQWm44}LVehf4bq@YDUZk=;qJiBgoyF(1!1pVaIbH4+=emDX*qdH2u2Y1LY8$$~} z;<&J{|GZboiBt;Gdm8$L?vEuqB5|q4#zdK%AZmbPY@d|UePLnd z%I@>R=2hoAN=3SNmt^@rkgfl zP&u4kSM@p4&P^mDLHc>+m5ao1-eW$|4H3{u_|f99%k^QnSdn_Mb4hOcv>_GE@I|0K z_~mSwy!{1(g_slU?7n8>ON+91qn!K~?!?sEy<=FSk2yu=_;yDg&?|JD(yt;*EJ`{< zhhN2CYCXKj-@(h|#|*s*OFepyS4I}{G+%VO{j@E%PU7BUS9fsUPs)+Q-t!ye+mz1= z%_3+hwSZ)`Fm1E+=#x*D6+xyA#s2k}-1!j0_e(u<=f+$A)us1CjE_fB!4yq*2{HcB z9p=P7n?F@MOcOl1%P&lwi;fXR&y?3moH(m`M`w|j{MSZ3&Z4D8UEaTZU>o^<*&r<| zT~93L2oos#&;32Dd3y@iY(a3gM@d8omnG<&T)9(H9CP-7>W5JNR`UVMA(JucH^|xb zM8wzRJjfcjF#8je%IttVpbbzZqht{WWL64iszlaNWuccx+ymkH<`xSUGyVyhF2@%= z=zeD34Zh!3;{scY+NV~gg*%QI*o+Xh@m*OoVuuCq$hKuO8Ouah7-twU?C%RrO<_73 z^-+5;7qz+Nci(Iy3d@Uqc-c=P1*@q_>~(OeOZ>H5HRHr5+*9A}8phT>Y3}X?PL=)! zp;6m|UkJWOd>Wk`;ZGYPLvp?&`>G8g4VSK+9JU-%2FfF*yxWtNc?oKHB?r!IU0*~O zDqr0;f|5xdsy!x52%f#%keq|Ds*iqAcPMt%?nk1{ILMIIPZ$YIsIMYPH92NZDQfed z3TJZqV@F@y{2CCGcLIJON0kD?HBasXCpd6m>V=uZmc~4$vfapDNqwt#ou`6J-j?0y z@{KyBY*NFAZ`YSPo_?ywiKFPo(KX#{qhVZ_1G3TQP0eBk(2xx7!_G5?3e;>)#Xulm4z{5e>iio99TMC^4KMzLzAF*880|2B8f)HV0s^^T6%SYlj}L2$RC0(20+uCT& z_!Y4);-n4LeY!M!Co?ZJah#_^mY1=Rt;SXS+&cM&$UpV&6ZI1*0Yg?4qogY^dMSSv3saO}L)@}|PH&M&QSe=| zwbcUva=`&J7DIFw0mCseNAh!Sg-BuAftKCl)%R2SfZY3=NmR2U1zJg=Rhg}9sPb(G z`_{guM!!_}uIBtQ=_y$YTRRa%&;hqwvio>a)zsqYcR5%)6XLrVnZF3|dJB^auZxZY zLqnjJdMR-t;SJd_N37FAJxuzWxk!|RpA1A1QNdlJmkJJ%eX0A%`1Qz|4aVn5I5%e_V!}FS+#K5m;~3YBqlJ z{>&i8fqeUP$+J0fp5d2gkdDtlo<8B`MJq23evP{@j{ zl;z;r^WB;)mWSU@#WxQa! z?KmHnr&RQkRZJKCrd|QNGPg;D@((7N8=tgrAs38x{9Jg?UsHhm ze9P;?9&l;)2rM&O8J(%X^~-RKq2eVar3OR|KjygMIUX@~G*Ye+w2U+a9SXLIk?7zK zxYMez@M1l_IK)c38O$1jV|hYKtX&+O@-u22GyV<2P*$=2VXFAfTywZjrlP0CnJDA0 z26}uRLu3>iulHHvnf&DZ>Q~9DsqlrwFuw5e0znehw$s*hUY4Vm{Pkq#+>Lu>=B6_O zaW||vjlgT4j}^yyK_`qyKXA8>>Q+!O+tx3t>W!)!MId9nS=7s?cLSS^_`fzfEpl|x zOLmdK6(gQHJy@cFGk2$yF1prEU)$B~;V%e?p))-CSRH2WgQ33l$ZN)uxfYMUf3 zlQ(tg9VS1O70(j^i;=%l6|Nhk z9`P1|2Lq)c+CW)1Wqd6*;&t2w{>mhRe`OLl>!1rz(k8<6u)uCXC}Dxr_6{h`Sxo9p zfK;OVw^ZWsS1MuIQ;0uG7AY<)rtYE2NFAvH!7b4aK!L+A98RRjmN-@PzWazH?aRV$ zzi>HVq1-JNb++50%rerzjJ6P?)qHs0rCISUd_*(gAa+M@rG=O5DFmp6a7mD`I;s7a z60YtTo_TTM=xc&8{DKcuWOo3|8YK$feh?e3`5!y~zp@Fp^53!v0>~yV|B_8gQ$bXL zZ}~sF1INek{|cl(gXzE0A60wcqP<3ZZ|=>_fAue5{?Xh2Rk>t0|Ao@@CuQ<)%WT)z zfFzCK|6i=UfA9B_V-PbsB<*UTH+%*|9C(Z!X@or^k=#Z$-s*3;tCS6_MF zrr*xKBjom@=S0^OUlT1gNVy(cxOM&cD?XbGLbIL7hjdZTJT4ncyoGD!5l|08jE5hF z4ZjLn6(7II%cTA?IikTi$3dQym}Nzq+&mg5U}{50CELdvL!;txpwHm&cRHwON@|zy zQ)Ss2Tvjv^tCcBPK&{xA$=YX+>h;s7()oYXj9~kGI{!Ik*pYHavOu0o?YrEwklF*@ zAx;jnNUDMB?8)OG2NiQMXL}~ivq*Gh&q~c$^TGtZGJitibS)577 z0t2iXTU;!DJ>0`WIZ$2Em`7QeK9?D*<( z^N0G>B+xTkZz(dAn!(Vag1?hS`DpR+dCJbU6s0BlsxWmmE8vZ*MBybdiB1{woTemk z#eR9$s|e`}v9kxu%Wjs}{&n>aRM~|oOy`hbg?N+9C8`UD zjM#=7eX-a)HT`J*$W$Wbi$zFC{QC_Hp+$W%wHF&H^J#@o=kMpuX}F1HMXWJ@e*4Np zIM+$1>d)%^9R-`klcs3hky2L|Z=ZYkN>ruoBHd@2ew=sYD@BXU)}oCE&mC{tLFMk% zP*KICfMx)JfWPOS!cFgAj&+{>*sk5{^Y;>uVm{ya(FrpDS_TJWEWqpz`Y)&TQ@7u< z)2^0|FD~NWTRi#4!(G>lIw$TmC9KrD)#~mr(ZvsM!9P;`ZjlXOjT<|e6>~J^<5*W_$?Kl%SQCHMm6IHe!7qP5L2aDEZq&yziGIc z{At6x+91571Uv{UU1%^E`7bddMDFc4#Ebjm1p4vXKn_NWm zAd{gfs!!LeWu1A;@Tb7YG}&w0WZEj~0X_6nIw&8U_1a#G%Pz}x=dUXzAOFysD232~ z4n;(GEb?7SFzM53NnB6l<$1%X-rX-{?SybN2%{Sfb>(+9F_=B^YjMM@!pYm+x&Ha& zLk`7^RD^nUe8A_4I{L})k&h+}Y3gLMZY~=W(ffQch?Ad>B-=uaJ>ynjpIz`^k z!uzpxBSRId!u<~|vp$S1EpN-$B`e=*%5<(%ssGajG}Bt2aHeoBY(s@x>Oa<2|1D7d zP5uF#VE_IzrYQh}@;C9ILLLZVKjgfVWF$@ZAE{6NKY!1=nBiY4{9tqhFqr2)&yqeP z+p};2reQB*d~4<*rKe^1SOoeSA#`z&8kx?Kh;m8(b(z;5M}PX5B-P=8;DdoX@G-Y! zUJQGI=dAB!^cN`eAqiT_(y;mts@0kiBabbw<6Y$0GRXs!0TOZ+G{D=x&5@P&+}EPX zI9cuf4JwAn2mgYgub*d&+nZY9uU7 zI)M(91PmPQ`aQ=mvOc}Z`to@1Zi3t-BY5y2lRkr+sE1UWNNzu6|8%da^c@!#Eo&MC z?m&nPjF4_wPC9wj*~ckDl*1-ovD3!RV1$mYmo<@#JcaFcAJ;&ok7pj*rRM8mN#uJa z3)6u_I0i4_~tJRr-YQSAoF%`dZqswBU#0JKL z0fxwt#0N*i1h3U@Er)prRBjIiM{Q5HqK9-F(aLxfE{tn*z5n8S(j9TX6`OwF-A>Ac zL3C-;t03dJA7freoUOpF2?=4Z(zQ3Ji*B{z_&$EC1ZtbCMy#@i)IUuQSJVMVAsqUz z9+>OdOZmdz>AA|Iv*Hc*AO=>kI7(Vrz-5Q9S#diPAL^Zz0rwM=JNYyBsjxcPKS28X zj&XZS^{?I`1a6Se)SFzxQ+3NDf)5BU8nnd4cX;}$tKQnJxZcNFy1qP_!Td}a{SD$H zLfE6}i;v$;?^efQqdF{Bg)#zekmqG!P?1s}fgtV(xKv;9Ych5uJ81g0U-?n#f)zfo zBs{QG@o`>$W2GiV$4ed;oaXN2{!?)Pj7RHgFyd0YbAX~t^}#qS|Loq05B43`8j^<6 zkp|33pGu@CO@I9ic-Un9_Et9Cxw{HCJAz02P*=T8jJ2J^J1OB~Ryta1h8G!=FWb$v z>1GVqz-KzjA60y9{o3zcVAlI>rjwOjGU4tc&?1?oMyrBmi86-+Ee*xKSVwHoSfo%2 zx`}UEO#(}`Xi319eX0(m;pg-3FS7X}xy`a9-5$8OOKnan7vR*$&9^a&=b{mWcs&0?%XDt6tKUo8n&yS3XOnxuOP{^BEYD%k z?io`QuvFif_N2d@{E$oUfy_0KhZQ*?4T0e~Ll+W!mo!HJYx@jbl$}z<|YTzXQ}wTz53w zqHyCj5=6K=(EZ1m7vA{b2F@6(m#fo^F*+P zYfZL$DP?ZtS9{A_4@TTi7fnvaRM&r1 zl;M}ag^s7?XtxH8@CNHiD9O+)5uXc3*qwjx{hCeXhx8A);IBhIs+JU&PsNqG-Y#73ms2NPFzSrMg>YDkgEE^_zl-Ueh?}Al zj?Wl3RCqUu=3|F_sUeFQG*36HneG_Z#S^RE$YV>9=-m!KD7)pHV-5Rz$CSCe)2*A` zKdJJSPRBArypG13>EQB7Q9<;DwKH?bTL{Go@+CGM$h2x(`4q8Yc82Zy%vktOIU)ow zir#{9BtOE3m7se(ETa1#On$Y{AnSX22b6wiFHo-ExSCK^;FxkAm$9Trubb8Bi;;C9 z-+h?=iP-sqaFu%bJRAO8Fkgc0+YNuoZ`@^P2KfL*MNi|6vfb!oDx4Ga$c1D`~@ zl@T_*ZEouRX2|1F&Knsr!i#!ZDB&15bjl%#)`Y%JZu_^D@AJ3xu9_z^uQ1jA*ysfL zi)v8KBt&bBUa74A_ECGJ?Mufd zwSXTk3+RuNkn>5jda|d&5w5xd)m<-KS3UhpxJ9?Bj_0s#QdJ4U{0nf{^Ayi zQGQzWA(L@$nHUwV1C^52x~~snECJ+mv9?%$a~j1si8rWs2`8F(%J2FKpkdf~F% z;Kiegoebe}9j`^jX*+{kNs`ruC3$ngsc}sf07W^1=)~A%?n_iBgkv}{{Lamnp|x3G(G-%$#qRU2>vTwbdcd(hyFCv8>5XYWgwS_jt=G+PjdREO<@!HY90 z^;g3U;-tvGfoMQI=Q+}`TAuzFh8$T^Ei5MU!qyOdiXVT2j45TMH>;bZ&lrQ2Cx|9_ zKeBu*LM-Yj-I4W3L#N2|Y@8s@^*l^4H(-Qr@GHS;>c^ST^k?hmlQG`s4i{h~QNq{N zj?E)0%KGF%n)QM9OgK)QbdXbav!} zf^U&M!M%asO3?s@Q6l*Nj*(n#+g5 zjX<+3u6zp?qGno3G+LY~;=8U6n$@_z&k335D^kX)tzqR})GV@9kF?K(ZO>>4`5mH6 z@x|=NR!rkp>Wv(@hjm-S!5%{wy_-abi-|Yp1rs(NefSnh99t7O0Qn}UbowlVFDsfA znbWJblPGJykMMk4PSP*AdKy~ljqa++c0_>q*E+p0#}A`cmg43{Wm3HDo-m>yp|0zs z>x9T6$MNp=0M-$YeyOgnv-3aIC-Hm4EWR>;Dcdd)aW7rItj?h%r=qD6A&!~0%188+ zUOirVABo!bSYRCVDV&*Wpmk+s@0Flb4eD0322j}czhKQwiXL^TEyrIC)}+X(q3-q$ z2LmrBwvQc|@g_)@UUJCH&-)R};;XWm3`K^790ufKtc=;X)J%l5nCeZ}T-063HO?dO z($lJz%=kKXlXwmVJ|^A!RMWaf=^OV zxRl|W%J*QTjdxOIwQ52h6t&%e75yDT0bh8aGx0uZ!-U<$n^lo%lEF6qLwuK8&^zC8 zwcU>2AkN7tKJDEW?@PHNyDwNTY&KRjX;n_Ybd!nY6Gp~hAn_0tSo2*Vp*9)4M-m7c@#@(EpT&E^nIGc<>^BtcP7l0&26Vj$g z>N5{NcLUZ~s+sg>64Ach5w~nI+LT#pM;~O$ut)_7YIJGeBwZEFC)nc|7P^Z3U9Wwv z3n;Q~brG{$E`?oug1C?w#~7;2zc(sQpsl7dG+my!vUrV|^ow7X`Zj&OEPs7Mpgfcl z{)p6%Cj*FNVU?c_`yJIctRt|R;b*#pF-t~F;?Dqqs$UIuU-Z6M&ZSlFRk%i}AIwcR zw4*({V`n<7#OiTXx$oVjl8b93;44p`eI^STt^pR?yOHw}-zuxew&6;kn$NnI%bq&F zZXe3n?*#dxI`nuaVZz!`t9X9D=&(I3_Up=@)v}d01`=t$9l!_^S88E}yy<8)Gbs7D*mJDzIa!olIgC(Zzj_jt6@C4E2hYZE{c7@qcL@DL{kvyohj|z3cYMM1~-JuV8pnc zdCYEDNx9eBwhWM!+P5o9jk%(0k?8PXY}T)ipUNW&Cz`u+-;~p<0=qlHkAiX0gzt_U zzWAn|?TRW^8=Tgr1Nm6M6{31bTXIs0WzL7`+*)r^?f}F0L!0SZXOkuVB6R&tXlDRx z?YFdK&*~|14N+S=9WU9z6(i!c=!|K=+tyb`m!hzwX{T>5BxhhSZDeO3X1Y zM~b0d2o)ZkXjFkb0mU1lyWLV6rS5~_n*uP?Zl#7agTMjh#CY6D*FE#y@WcKG?dsu= zEV#0bqr|fMMQUeXQ<*OTcBDutwWVvduz5Eayq&XcXHE7fmk3ai;;Fha4)@(A&f8VE zeKoo)RXe=274M*(QqS+}_^gAO+a!aMcQm;=J;02AiXpaXl+LZocO~D8FSRJ$cfHbM zw{ySPb;@^Mmc*+ia)VK9J7O+O^QTqY3-;({5`^-8FTPv)fFoR@v`UP9cvrv7kG9~kN7BI5ozDmTJ~ExnC$|s` zz$QBjvHqYDC6ImtP{MQQ*FGI=F-fXUu}wBUHb_iITU?mEKrQ6m{~RW0HhRbyTyx|- zEmdutlp;Rkmj{oI|F%cva_3~i89zbN(u+WB1p>J^)NZ|-bZ46EH%MRbH|T3W=ye7) z+`Gt}K&v+l7e&{nS+7pYWZZnt>!8B|5-#ZUHEBmiUc&U9VFBidUb4=3ahP58yEVa4 z?t(MfR$d5=M|JFlPv#nL6w*5E4~pq;T|CeCydA<*S)AdXn8}a<$Rn|gsE%h1RqEdL zce3=Hcg|c?S28^+o>Rb-VB@MB^I!|@BkM2l!S~%76d!hH3Rn4b2e0CziMsfzh0qeI zzSPz?zka%YE_gEQ6}mQELqvQ5Os@kX&(n$>Nqk|xe*xf}GHvyx12 zakVkqoOlO!Aj6##W0=###gAqS7tX()PxPCRDjE!}>$sPa_F@0FZUOK5&j7a}a#JWR ziJ2g2fn$g)cxnE)-^UH)^Ym$NeVpbxC&Sp|C5|=}HOw8olUL|)YSZcmQsqhg1m$`r zFUhRJ7l*_^34b(EZ1_%0k%q;JtzAXE=B8S<2os*@5`dJdGIA&((R=ok_TJAm7j?Ik zJqb2CQXdW=uZiDAtm{}M;zqzYRD%*gSTsPaOOXNaNr2VxHoCJ(@RxGOGkL`(v*dtX z$pp!`Ingcv82V@BR?#(X{^GqGP`TB`Jr5QK8QJ$qdhteWD>K}!>CA{&(G!`6oU~4|d#7Ggef1=D7%YQuEit+vml8y#U7aNW!uBOxA}}@~6jG zz5?^ooW*l_l4sbk&M!9w8MQwI-=B^&J638Q0C>B()*u9X_QhNB2S3hLfRV>9_?1#v zh8Agoy<+Q|I`{OvS%kHm(1}m$y57~mJKM^V1pd`ig*)z2JaMB*e%A3BU6smr30_N` z%?vwI=X~rw)0(THMuGHUgH*YFZdhhLmmFsJ$#@>GkoGB+!y=;zt&!KB3pwrQ1jZpy^csih#b}0K8a0> zpvg=CX1c9S%&?R-U4kkGw)|#zT}(7kQrPO?LZ|#nHM{XnR_MYO1%_IIkE}- zcoJYRbD3;}z=~0{lK3U9g_YX)GFG`=JkAi{y!e{zG{z*JcpDF_VLDwe>oJCvUQa(V z9p7XY=+B(>QFI@#LD=JA87zukby+iwxOYBSmpfek*tDjp5{b79duB~n5e*rq%$W>X zUCk_A(HKsm(wB|LTk=c7ABX;UT~;bzhMoQf#;lfodFk~IHqlnG;gx)sdVE#xVpR6& zuTnx6t!o6w5kD2K(iasmep^C(kNJt)UWGUIDWvNR$!AG;H15hay}@n{Ye3qvZ(CUt zm(o9GGCC82mQo>9j`xlwRj}W#U#)L_wZY_2?LM_${QIW<4=*U%-+QyS#DF}s>7tPO!9nBXBC~(E z7IV8=b8VIrh~IHp+Zv}u25;p?n|x0-j^m@`kIE{~ncvhVn!bcW^3+$|&mZwyCs6s^ zsj9pqN~C)S`6-o6Ltfmw*_k!M=PhO_4hHvbD~aHdfl$epkh8ZogV%vK4P$ia2o*=n zeEguw@8$9u4Rwn$KiA$->j|u&k1zMzR;>^=U_qyrcZYZ&~~>vSt=fkAZNZ=EF;dUL*b)! zoTfZqQkq+^Vt>7+r9l)EgAD1-YCTYXfM4Dw3HtaM6f}X>f25PVybhf3*$(A1~XXcgLiVqUFJgFu&D`b$ebfec-d+@_v^_*SzPPfzEMWj{O2z4{v zUYu+f+NU|+Pd{l&oj@~CwycshTVAc_TpB8Up)=fVYLz$@i)o%-8Hc4-pNdS*fZSwb zfpsJVb!2%LJFU8A8;h=n8L|3^uFZ=-SjNQt$q~xTs=NOUZDt7m?vTd%91#|t$K?m2 zN`Wfn$Yh5@WxBHXPO>0wf<+wy7ZlqWiQ;v`rafbW8FKbAjgHy*M?=O(rac+dK!CHk zgcDjaL(W-joKqZogFCV_ZlA85$!W?uAXrF?B7KVZVJ)^cR7K3actXOWK!RECtyO)9 z#1eC_IDU$uA86r(!q{G&{;`eOwWG`9>Z3VUXU*zymrSF!44>F)G0(*N*^ZXakhmp) zJR<~Ew^w*=@+Cp&?1E(A77JvyKpXMP-gD|Eb|JpGtl-KMpJAW|_ffADBCBa~{2MxvF{%Z*$9$eYiKxw?f8v@D3BZ2;kIR0sN08BdK%NeA61>D?fa z3h70mx|r_aw9UC(93$!^i^@M+hr{M~M4z#=&K6>>H6N*GUfy8hhnLh z@R35NwXkupmk4>Zva4FmE@{29Qr)9pRpwm3HmcUky1hC#X=aNjLbXdxdF)gtM7%0U zL7uo2f6)aAd70!ak6lGFGoDFbd*RI4#j}qlw{r7+CXffIAzEz#d=|D?tz}G(mO`jw zW!h2QZp;Iv!IFUA>+KQCG>ghzXv2&Su4db%K8q>UDcz|;Y74p1#7u#k4ho78AD^5n z+p05;iB)Q^B&g(yu^l;=Nda&v!a$uaIqaEJPeFs=fNCzonK~S;Ws+wCw^y6k6z}!; zlyjDX$Qg~08;b*}XUZO%wZ2S=<ddA~wHBS1NG4S$uo5L14Yg1$VYbXx`I}#|I0XGX!{5V42?0(6V3v#ZS{1=^k0T+c2k-d@N?Xs|SmuT}CWyQL z8fW)2N`sQ3K8?2}eYvBS6X&`0c8FKCJBtldK}fwGe0?*)9{D@D3NjGNr+G6)5bW4S zj(98mlV!lTUX5O~^=I>|W$POi={K{fA!)t$dS!*1>w3Oxf?@u&_PB=;(BGB?V$t}9 z?Sya?&_u6KAUw4lVtsfGi)z?tFqiB;JWi7JBlL&h_@8RIl>Q(@FrNS4wH?UFJ;Yj_Qo~ z4#q4WDGgS5`)W|Eh?Clxzy!Ml9A0StlvF%E7FhB9Mo4EfiN=0u5!bl6kMWU+Rdj0% zM69Kf?ItBc*j2M$wzz51!fvGD$<)xG<>R zfaAng)gmL@@v3#wYa_EnQkMv?GfKUjala-(RGHDrw&^4b*h1#sbh>m?hmf zChWIaA6)mhlMqJ5E+^hz2yHq!Klrfr+&EO-A(5o`MMvV9X*4 zlAiFKVj-36mm}O5#9K9sfOVZP_Q?*q)TJ$P>lkW4LyVRu(!VZ%~eGC=84ShL9%FV$-*CaK-(L>Ey z{ZXpOd^SWz7)qilK;iJlMe04DMz+?72@%jwgWC5oOQmjxBI>3to;JjDSrllmPTx$4 zuBqej4$HoQrzJe!FPD0hGbImb?73WSOZMnZ9_cJWa8Q0VhQ0GFZ_SO4j)Bn5qN2I( zKXj4wmag4p?sIY6+L%>^;8R@Qn#eo2QGxFGKsKgVY5SgP@K#;3Hg!#@1qC$zP)w%G za^~Fx4vRi@|9fOUu_@l}OD>dKxw!$E7FntqLL9fW@n2l(h?fL>h8hD`ykq#&UZig5 zuxbgvov7D4o8>iF<8~>8A>?L1)8(hKJRlx)Hvo992KO_-$+a9pkeB@0S?VS7=ol(W zN~_r0n#zR~sKQi@UXwOHgw{KgOyZF%U;cRs6hkQnbH!cS(J5xc-(z^Z`Qp|d~Ku^;AOX-Be1DGQ^N)#>(#YQ zz@dboJ~`5vo+O=shSqnRIbtV(dvjP{1;-3X932dBSJTddDWG1Gm5^dWk_Ru+r50IA zsx}=}op;GpN_F++XFT|lXK|kFtSe}2ZPZOWOqJL4>eDnZn@ymhQXLD;)Sxzg0=jjw z6p!rWC`X4feo721V|o?mv+Oreznu!i`d>kP6QyQ!&Y6seROMJ}-IBjy?)mzB_q-;N z7e_vEFvvukXsCEp{36!P5w&iz`u*I;30!=Sf=q{bdv!@bvu+oRh=8(S!q`-kH@=SN z)~Cs?&ik$ilmr?BOJ@rrilcX!Iq3*#TI*;O)NoUQy58hm_CV?lHR=ZJSxN#R5l0;y zNDnb=+RweSXIlEPb!ysR4|R(oJSG!rI)mCwTE**5KpWwkINCuQ!EDUM*X(q^rs+&z z@}+e_T=fR>l4{vTcA%qym^LU+Zzj**afS`Fa&R{)V<=KCtCjq5fR94^0kW1+GI0X7 z-gFw^Rt9Qtdv^$ws!F`{JvA&*=@U1V1X!1dCg`@XQ&X13gB@>b`EB5nUFDbQtztS4 zIOpV`H#C5Q?+XVNc?0jM;oPd%u?=L{ICWGiMAKDZp!7DB$j5A*!%^46QFi5`)E-`8 zn~SsG9ws_qP_)-xaKKUBa`$x+v(CN~DLb*IUxD>Wax9Y8*-F}4ozk<~dD;SZ^%mLKy>_KE0Q+~;c(ALSXf*=t zu^Go~IFs*Ti)F3Y=OR4qT)xgHlJ1^;&9zuXjbj>j!^Eu&qRpl(JS8D8nn4-z65^q0gb%6Ge* zy;11S0Xm6g%HkYwzHQhtlACeZ#kE`m4;H!322D4t^wUfPU>FfX*7>;HE)s`aj7e3Tcj;3 zH(pZ}p;KS3-&e`+NSWo_&_`}a21?N{_Y06}uYysECowgp2ugDw_`R_=mtK)M8`MT0 zot;wFQoj9$!}?zGXw(Z`l7NtnMo*7XF$E7^m7?`a%c4C&VMw!+=Z}!`9N1c&=35h) zw1+2JFKI<0P28CasS%?YFxVOjaAAQ6s}8z=^$atNqnrMSd>g5E`+7G;a=giI4vcA< zEsp+}WkUmw}9c9N34B$0)$P|Xb*1sBGbO(R2n4lu0$LAaK|28-8ZM{rb|(h!F`i15ngL*PK=NHK zjdIhkqvcZ48!VmTmSc$6$h{M2PL7=4m2>&9%jET|K#MVDWrh|)WEJ?e9BdqBX8im9 zRGe;oID0LW#y*ELuM5RR(2xrHL=y-fBKO9?=Z<}U+)ueN@K8?ohcAjUy#CWrNME4S z`D^H!egz%7`)>jF!<=;p@W0Oa1tUWe$u8>;XG5joNRsSJncNs~`3Af{Y?Y!61tfK_ z1qZ{hrKXyUuL>aU2he_nS@;+3{}pBhO^#t?5P)IR;C_Id{ukW;%!e6WY<9=2CV|N2YwNsj-6c@Od8o-)7ZWn{a*Cx0sx?33sC#>V0Fg8VuNAJ`t23| zr+5c}Rbb9n4+0qOPcm+*5!?gHa67=cgl9ItXT$415b~4{Ver@e18e_4p)ctDUDp1q zNq-?vbJ1Kh%xA2r`jhH4zY{cm=}YN9Ndx0QGEn_b?D5k8zYwRdlKC^w z{sToZqKaS~7%ui!pjZtl>r<-_<}gP*jNLPJ-1Co6RQ^#5{0^#~BP1wAOodqZh3arF zGtLgBZ(=T}NCaOIR(tVd8O5(Z!(J#T_+w4bj~l?hO-VN+T73#u7l_C2*4TqkSKu$w znkZ+i!lWRE83>0@OA&?{Z!}~p-6Pniz2%oGgXLISSBz^|jWy?PU z+~d?fKNT^XGio;pZSe|8;qc(+5=Y+DM!GMkF`yJ zuj49^lv)k6^71}Fe`$X9oF5hetjaU(&p@2>1MwRr4+d?Y5}9*c)?k=n?`EnE8dt$e z5&e;)*vXEfvda8Jr~+B{?t3OR zs;|M-?t9WW_redO88~E#fP$bX6oR*1GkQeL7#3K^Q3TQLc}K@%0XNuzw5pTK0{C00 z3k9V!bE9j=J!Tc1D67!kO5~)Z0=RD{c^OtCF#>dZ z06L0ih4M2X86|~y5c+jOZWLmBCTg!lGISH8f_Q?@&~Y`DwUkGOaQ z%F;~^V&AgZ6XYcl%r}G^h)orsZajCKNr7f2e{gVb&?YszMk~!LI>3?|YQd}5j^cap zTq3)UbYp#o4a=BB>s3#;b*9OU)r-mJXobzMun!{*dhm;I%SlNG+yn7H<$;U-(5m89 zS1e;~@t(`!ZS*yYhnn$gCraYzP=T;=fpD&oIUoT0F%@yw>6sVm`yQ`lh2uP#U3Vs# zlJ=ACdC>$xr0rzX-gNkP6kXwuRCI;BmZgAiB0dTX(I0}t`2~GYdjlwiPk)ZMN#c19 zCzTE-Rc5yW{NX6mZHPYUL@}@47BJ|*fI&woS;e>JOMIylb2|g^16s>J8vZn2uAmoc zZz$?}pwPlJ^fQ!(XUV-W@3R28bB#o zhyV?7lOJ|7616uCvD`ZNn1QF?j9<5MFWQ%be?Oxiz@higKZh@u6(=#X77h{{0>8&FXhk zvvn1z4&-$Y6n~(owB~tB7}P(mMWG)+5!NMv@Y5BZqR8azC4sP?M*w)j(iMvipa6m? zPALFjPWOQ1&QHW9@kD}i!1r{`)B-q`Pkw4KRr)K-0?Z93>{&`l#8>4>VceY2&yVST z!Q_QeH0MOJC59M~Bf%3o?BMF*wUm6y$pGm9rk69}S>t(BLKJf4!Gb}VKhxbs?)qaaO$5Kfe+c?Q z9)yHut{@nMLDd#mJI!)xg@H5%3cEM>kd=UH zKLN~4n4xS9q>(+%!o3V!v^JLEQ zGpqH+q$Q>1TX!V}C(95peN0Lv+SPuuKY4<;N$%bq19XqaQ!(9YYIeIkxP$R#XNiO% zIp7+exn6sB=5D?;m&`jQoTGEWB{#W|P^aZ&aOAH^cNOImzq(h5Z*cdLQA2IEE%X8s zpaxYBHS5++6yxE_t#U`e1u{t(t0lm>+$I>*D>bc6pn!|e_FBpn zVYSkpkT&-HK=Tbvm(>8|HcgcT&83ki@dPMFS9obID4aEwuM-k4U3T#e zl^LBf`#D~T@gef-o60U)iK|woJcKpVyTxW=(!L1}tk*6o>R!9XL&205oCuAxcvgBs zKNQ`JQ_yZYrxBt|_FVCd<9$b(UgCBK-ljcm>aE&b*9=qj3{&Tr@M2YS;@}mJe8%b5?Jw`O}p2>xI2!S0! z91mpAv3VZxg8k3c(Pd|^WS=E@1<`0h=@i9#Zm)0UG==R&FyKPj&z670!sisQY0Vis zH~83aK2~;1VkZ~uqYk9M`y5#PWJlSI| zm@~6}arZ5@^-PNT(;;6z+Iwk}-S^G&XeB7<8b-_F+j5m^UYBoC`n&KvFd{(5B}LDfeS3`&X%Xlq_FMxRsy0YJv;d(GMd=(J5lR!I3gT1vaxw? z-FEAw8gIre#bjk}rkR`&Kq!*8X4U&Ru_V|^0wtBAHhAy*W9Js~gFx?5IcM{cMGUuQ z75ejSrPV(|M|1KFDlM+m5jSG9cgvU*Ju>Bwc93c0;XIyC;i)Vc=xT_n_9Q@J3UFHz z7+4bE?z1SVL(*9qj8hp&FT-U8s@;Qtd<_F2+kq#1J>MsP+y5EM&N#7Hn7(G)<#41I zg~PMCyjQPs@-heeoKSBajhH993%tzK$_?zw9cz_~csC^Ph^ksZhrH$bh0Dj;`rXTj^_dI}m+(#j6GiI1lN#+ab7 z61#&PF4M%r39H;fb%A=tb$zt=3#&g4?`&Fi7SG*lZvzLO;f@JZo>hQaOlQ}qG$Tts zwiR|}dL?ZMI?N2R5??6f2)sKa4fULcx?Fe7ZNKNVNzkFQ?@d2TmFWg_i5?GaP~R!_ znfj39*2J2bz)kEjLM3kIyd)5+rUBrdt^5xu-h#$dOFxhZvh18hUGfTv13Mf8@6SB-vkR%Yn|S z77i{9iN>bAZo(%~w7T~ypoo{M`@M>aK_bK1{Gd2c z{{(qiU72zPjHiUKo3%=;X*6Q;9^H;1=ERo++G*hb&OZgX2jFiUHUBovs`LwU3i&Kz zbI#wqnTO8yL;%;v(z|!#>RYwP+L8&O{afRv?->#>fj;S#cV8xTr8JoLs@{a%LmA?&2G(iJ}rgiq(BrZ$|-l8QstDC=)MYycdD zAbw^q2wM|5o_dvO*fq5~i>&ur2L;OcR2)S_Bp+qu(pqPu1?GFj^P}CYqkaawmco@t zs9Ym~rmEtu(n2f#!ECB3RQm!{U`b#+enjP788-Vunfhv%wb>L4v6*J;fu9&hF3k(t zwQN#Cnz9b;tJVtWkJ3|=ya)pF{o{-C>FF07OXIUml%34-VvHFB+G|3~gJuF^Fn*RFn=E-^)$Yt+R39?-uJ?5&Dmn(9XSYfI)Fg`P(k_o?F&gZ;WI*Ly#N0`#2(U2xz5foOhq_Q}~s$_47#N4b(N(xwd)6(I-BX{$?EG zqKvG3F&c-u^5QAFjttHhupepdW~Zy0lwMO?xj?h~(RJ?8i#4~B@H7V*slJWb%0P3& z=qvlu)|Q_f-8a1HDW8HYm50>px9l=!sPo4;yTaeLGP~9{E74F$iz<;?XOoGTIMyd|8XIGc;bZFl z<9@|NS75avD6WJ*D1Qc{%9UQcpY=gu^uh_y^a6+U&V3Qggm7BnS5td4Rj$H~mC|c= zS!N^SxeA?6*Y%CG@D3Bhyn;;9Ew|tM=kL7GnD))>-L(wVkh>y2$6jtf#Lm9 zsms~<{A2!k8f*5Tu7|m#uh=)7Uc8v71fzF48qSiNipHJH><*GTm|r&a##~V?pcZ(g z99#Cp#@Qk9wr9KFoR%+zsG+eS)phpyavE!O*=4(el|7P>KZvYb3waG6XTQR9ql-SX zgD(g3z@7G!Vn_ff`Lpc=pRB78+;2P9`wXfQ9!B4mb&6&vIQ8d!@z;ITy-2YcOQpc8 za_>3Y<2w5ju_2pN8&jhO?IeHaFPG1szz@sb^BMG@2i}&d14YkQW~&=IIg`B$I2AWV z$d|r%&?ushymI_xbO*lY|GE5K<>I9hJVh_aAm86M*L+KJtUT+T@Xr3r7Op*YvU{7}> z5shcQ^)YQf7MqmZgFn0Z<;$pu`x1+siz;nQ^7DQbyJ}!GDN3RHOx@x9#TC0u1qLYM zRD1X()05};H0&y~mdg70NU3-Sd{i&^NUbfgvigRWWikraEri1jTMk0Cpk-4h>`H&$r_M4Vp3$d_W%}l*6`ywFO1E(URO0aZ_yuZ_YuxCihSKJ4| zhb5Xy{**9-guZ~FTR{Xh6Rt1+d1j{L>75jKI5P@w5}q-z{>9`-CHLU%5p!bl_=*BR zVV~;o2k3nTz>6NC(JvofYr&UO^Z1*?<@Y)QhSwkV27nmfc1+;<-zE!yA%zCH3&esS z^AxFnn*&rV%l-FB0N+`8b_qQrUg8*E!v9KN6ny4wxOxVd6uGIE&loQ+(>RMM)Ex3G zYFC*Y3|`ijWnRNr<#j$(W6A$RBH{VH7p+1B%~D(OO)}OCPb!68?cdjl+&A3Gr^oXQ zTkOJ4Um_+Vlxv)hpu{6`SnHVs1^`o}or zua&THXx|+#%a=G^7nH^5Ond*XIBu$N4 ztgd!HW_?P>)GO%gdoz_={rpe3Wum&Rb=L2wluEWUvk6;EK}2IRR}bO>&6wSdjOSgJ z#?0OcQsrkXWUj<<^>S26E3d4ltJ;h{DJ}owy0>nMUYyul?mX;Cu_{-+=IGWaq`~c~ zIZNITDVx40MM-X*GI<^)KvPJhWEDb{7I zyJE&HbVlJ6>{a$r^^B{1(eJCur8FeWX}cpY5|bj+gY<_29df#+oo%=J596gPYRclJ z!afzFg;moW+ENTGRhFjPv*e{49f*u6&rE1)@zOOt<@f9cOM?2!2G?2ncsMhTx(j2h zt*!}}CE)c9op~J`WMf;`!$O>{X8WwUw7Ko$)HbGdLmsbqF$5PXN7|O9iUD3L6_6{Y zEq%ymJ~>1VQ61uOUcrT0tj%)SolqVsqSi$P1OQ#Ioa&w($)r2DZAz8)lgRMOztX5L zOxui_4PD|!h5)Bj=0009ccq?Obvfs>0yVERq;A{A7utq-+UdTV4{ev;t*WxEU0FXy zCQ=CtZq5QWKjW=C(UbwU;0qNWEGPp0$%;s8dU~hB{tB{qmDp63h*Js73}Ev3qBWIb z!0_ahRCBm}BFm8Q%{L|ZgJ8g9G)e|&a3xwF z2hRhkGbwaEsoNsZDPdScn(*W8`N4JcQw~Uf=e-DEeQyD||7MZ>^)>AD_qQ*MIPQazPJ^u1ef`%r#BC;1{4J?zy4Yws}Oe z4wPHje8NBrhR>kGs|o0oxaK<=GF}U27v7fXJn-OczP5}zLhe&LHgsVN>MS{U#LU(d zD5{YwzpzZW!cl2lJ!&Oj7k1H7Y+8%0#W}{`-8=fc8m<4`5NGinw99Xp%@xh(Y{;*f zvdtLy_;9#VidAo!d>CC#+Q2V7#5nUYlkYL=ggnoJ2Y-c=d@r3H=FX-RV7P}+)AZl-(9ffDmGAK3lgHTRA94j_D9H$fTBHZp&*b(ED??+<&_ z0~oWFCORdZ$J6`ru6a6}I34~4mw}?vad0?m+sSgKz!2MBoh0mkpLvmC+=uQP(OSXB zefvNZG4ikpmO=s>lt@KZ6|H6gR#D-kmA(^ezIT zq_y*<;5}(l%ER=JK;8)qZZTlIy=Bn^*#V9!SLIeIe$fv=FQw_(M@{w%MK+VDOVI`+ zTB^%8Ae!{!&*{Vu9#m2y5ONGhNT6V%XsqiU)F?rJ(jB6a^hDV^i{G z)3nCSM>i|NZ*6@<9kn9 z-P2AnXQ|{#E|d+1uMbY5V}^cAXmOQMaYMS8Nwz-q$JoizI;;)XL2#z|gd>?m`L<>d6D6Gb z5y@~a5Jvkprvn4ius5Y5PJDqWMQ>S3!&3o{GsP+Zm{XQOV2EEZ8203Qp*vt0I zOL6A-(_lopVt*;K-=rBFE`?wVneR~)38xNB;3iZ5wBjEWO-9uj768wp01>{E#;v38 z?jL3STK}lp>OJs6gMvxbQ&^ zjmu*J_26}&$FPH&5`WGnb%9p*Lkp2;&f??GDJB5F`Rr~@)r$TnRv2eilkS{v>r!5B|s}|oY z87Vc7&5@}>>~Db+p}&OiZEa>=vh#V_sJ@oerzSBZd>LS;%L z+ScToNJk!ie0%3w>Z1VNK|22_9W0}=$%jCBp_FstEAi}*itTQh#!7Vt5HieuMUO^! ziHuG&;U8T9vYTPf+aJ#Nz~}#z+dUS@d9uq^in$vKL{GC|{_Y>_YrsJMcIfzaEsxaW zx_w$-!}RN@DXg%}16c$}cmHzW0KD;EU14y3$iC*@7UsUGWOADIE_J5l_okQq;-u03 zuR3MasGi1$BzXZt{eRr;Ur&_Z#m~Rp`#pC%%r*7Zdzo_@*_WgOIQF-~DuiY{(r{lp zf<+Z!uFv0zC8Z#Lckq?_#-`d+f<_5FiXH%1a47<6G`_`?0N3J=e6Fky6mu|q22ErQ zJdgpZFpgIuP)vRgfQ0YrFMwT4^}oc|?u0l6YlqpveFR@*3ikJ3?Lsshoyf6+B#Q_r z3Eq@32|W}7F9v)D?X_qo#lH7*A3^&J;xqgVs%1ENFS9=jK8C0;BnvVE?{%O*g2V&$ zliz(m5R`tL5dW#w9jL8aKl>RJcl|SHlEBK3<4pYSWA|?0O}CqV;9|TJ2cVe5MX7_~ zJ^KF)|3AoqaoYdGoWo@5{50OK|ApP`W*(CX!zIAS2GcQLx4kddzZppfJW^*)1Cs*} zR*w~dauXA|Kgs-;L4W>RWZVl6qZcp3%Gy%@w3q$De1Mq~ROCdH@Fb|AvfiX`flB$k zGq4>T)@2TscEJDwQlh^4)j)tp@yAH#={Bx>y00r1F#o)j{>Aj5uhGes|EduBfdA$W z@Xn;H?c{==ZJK|v&k&9%7_$B!{r7uONC0Vn8&UbE)t%`|mw;7NK7bdIn}oq#*uN3f z`rT}fAGq%aGZQ8fOm7iM9O^mkr+FRn^|`<6!#)lCshp;D$mlZ1rTO6~!0m3hRSUCh z|MDL^LM~b7;A(vJr<|kSp!%O}9}prop3|Ui2TMv-VDVN>@?-wzNe}?QqLHvF)2|}= z?{UqTe_8bDoUI}c6KCcwRoEP{K;BRnA|Alb>oOMlR7AcED537$u*){z^gP1Ha7uq~~NF zVwWSTaH0Wf!;$@WF~;AQ2zU-jrr^)a08sN+*7mPrI!7*Cy{Q{NmKlQp>lXOEl5^*% z>7_emk+?z^R(h|>9rT*9sLm46cM{mCCKYWT>)q{F%?;eCX~It8Iy?9jExk}7oyojU zS=T7ZPyYuH)K0TZvcKe={C*JqYZz$fG@DOi4aK^@M`#7UeSDvE_oLPQ<%9{BA9yT? z?(E(qJQZrC1(9^(BsUDO`Hw}~1nKa+y(nf$SV1r>Z;#`@FmLZ)8oBummH5l~1AD6t zXPdPdsqcYXV2=pW*va1+GJEmyfGOaFbFKM7xkcdY35($~@aiPc#~vRk7{aU) zFAaT^q&_lE%5BS4`kITo!S9A<74pdvIM!O-EZvjUcANre5qQy1%ZGR9|x*h(VGvRA&1Q2RDyOAaP(!Wq@;s+&pGvFoXI^X60H*A+szWV6F+9rkw3``1bwC! zGLO@AHsd=oHHG!!5mPS!i^LVQ?a z8RxVgMP30kB2PX}QaG{|Q!n;c?PI;d=IQJhmW}={hiqzgY`wFPy>TXUD5TQ=4s^$p zpYftF>A6L(_*5tJimhO^vMTqrbnlJf_(--wk8SSRom?4Amp?4kXPaN=M`TGhAb-4z zqYyl=O=dZe->J9ysrokAgkhwf|C9PJ!&yB>SG9sXI!~f9&uLRwjvrj3m<_IDePAMrv9u%788sE^qE)}!tjLWny zU+8!1JV-x4-*1QdndP1d^{4pUT2p0Zch4P$z-|$X4lmN6tjTakN^d@eRH2#m%V5lj zw-M@(B?!90-pPb@T+2hECqEz~Sw3OWdUA=_EpjQ2j)}bi^@qIh0NH7Y#!u@?Z_Rm<-IQi)*{b4J z??7foCnU3J=c9te$L58vxa2R!F}0S=@QYMqWh@=!tW%Vvb(sg%&%S%sQDvZW|E9n; z9cr$ly!)d%CLJc34X$}fR@(agF18Vall`O26=au87+cVX((jReOh+(FaB=7HXAlsJ zGlbtwZVx>S+*de(Gm8YkIdune8CW0n0hUp$g|k!a_v|E^z|{f!fxP22*re|8i82oF z)J+1FvmV`aFc`$XO?MI&Zyb5J_%T_Qbguol^(Yeo5brwBH_PQj(G||Vfr1v{FaVR` zBP-OxK@kH+{tN;_c-P?o${~LK83Z3L1vViNH9NNthk_5jO7M4so`jj4EiJ6{wMw~I zt%#6{91Uq|G_D(#6+o~NjveLzL&UV-FaVSn$pGm2w6D-F?1GRexV)W86yg~SJur#- zHF~bY7a=z<0b4B`+|Qs?%2Ol|!&i}kz%J0_9X6Hxk4Q*GjJ*keCij&d@CoDoEZ%>E z9~eO<5d?v+^E>)~+W)!;1oPN`qa%RUvq6k!{lmFDQuMw~%gN;`2w^_wz}vk0V=fu((?kU=t}>avY&M74%2sE4 zUK_5k>(H$7*c>RQKQgcj2x)E+r_Qf&eCZ$JC#ARPKp2arn90cIsy^|A&|cxg7|rhM zYK1>KDqrF1+;zD*WB_6FX4$0G9HZYzWx9EV_k{D~%Hyu5XQTJnyeq5Y2>XacPC5oy zchD~Abd>g_;ZipVsok|%01^flCS3QlyxUp_)b6v>y?Nb&tH3_ z+@#TqH({-Rk6^7oaS_1vP9EKG^&$2vPC4B`?)99sk*xE2&MAW7?3_7ajFNTJA}UTA zh|X2Rxq$^f-y9RpV&L$f7ut}-j}!j$TctVO}WLt>OtTJpvce46fr4Gb}@g} z&)=gIt|Wrt5dX#U;mRGpd|(9#GQr0DC#5Ej5Z)hk#TPQcwdEHT3{(1m+WV@1en#9c z*KlgG0NnV6FT(GKTJ8fI7eX04Ee|W$?;`P}oipz=EZN--6&w2h_bP=pbP zliWS!s>ok#Co;06aLt_Yvz7%W2WCZ}?wfM@JI?tN>XZ`oQ|~pM!In`^-Su^^Q^^^R zyHeQRbtmr{@J98N-#lpkV}8{?otgfxJkP2O4=hbJW=Y+twkPZj%qR1&P<8ez5dn!7 zw3e=-wF2a+Pe7i+1GnJQp$uwKz(0EaEtxU-Pop;)I z?%4E2MZEgfU_9N6N9m~v*TvXB{c--SoEJ_Mwiw0Ej)D9DM<==RhlGB!d*!}W;t40( z;cW_NhFuaLPEhf;B3$|nIzEGtJ8k$K`RrL@Yb&ych0b25S-<}x%=qP9MMAv*eeCdw zhrFa=dP=RFSuaWG7u_^jA2L}+ROG{5Rae&&N2M;m*c0qeMboE$Z(~(hRqvi zJEOK_iflNClbJL0sWO*@W-6E8aT3gI*!5+j`)%3dW1_1wlE|mENj*6k>SR#YWvpXm~vkgwm|fhuvaSjs1DmGTX#kWMKh;k@sukMl~YsIv^34o z7NpRN%*bE6mEb^z1DE zfz29|tMJ{T{#>^%cT<$ETA`2gf}JnkPeEGbJQtjTo*WDX97)lJJtkM~;Fa=ctgE6D zZrD+HAM8}I)uhU^=>(Eo143ZEWs**FZ@QyQb#z2QMz1dmeOdcEXb|<4dTI;65UJm#<878qv$tRe`11 z{_Hyc)#oo2UD*R)ivfT}YX9+M*1r!k=fJDFME*5ZU4QAY{5xmnzv>wy29ngDd|kg6 zRc5MLk1g58LYc#r!LyaX$5m!X={0FI<|kgDV1;t0k9j^y=-OqBGXJQv5D;%ZQ?6P< zNpb{^qV0XV>*YZ!@bI=Xm&t)75Llty09skd$6d<1Y_u3iBRrrbg!(CuSa)WUldIz$ zQ`9A$=+Jq?c&G}{C_8)2M-Kd(Z<+3zMJ05c~rnka#(|0ZkTk#V8 zdtIra_bf$kWxUlt3>sM6#0eB2f2(#USQkfc;Z_rW+tx|Az(fh!vR^y9zr{9@er7bkXz<(>;x2Qeg<=uJAr-!3e_s%;YS;tn=Chu7sadAadu zg;bur{+Y?7ib4@#Q)`ql49=WP4(XmA&vR+%Hg7^6+1&$teN;*CFbSga?TeT3KT_Rx z>Z;F2)b13=)vEw9N|6Q+!oh?6e-(Iw--i_lhrp{ab!FhW=Gr-kW}iUC4xklai3eZ( z{YVH;z1m|$4Q84KW+6}t_0Mx4(sp2;{pUY8S%2;G{gZ6`-}nuM+@X;6n6dg@pG;x5 z!5;O=l#u3-s0jmPTE(Dr5Jdfk4skWkBl8gVhgWU~$%_wPJ!VdZ%(r?PBuY8YWaOsy zt-pCFbICoX0JN7+Ou^p6iaNrv`ILx@#Bok$SA^6j??(KhAVt%3JUP_9dGEElkyDt8 z3T~@`z7jS1dE&(}zvYG*prz*YgZyb0rwQk7%;o3HdxgPF3&>~MI2`#&$;P#W!jLp7p0m$wbr{k@~XUFc?nHce2Og364AL@OXMPVIx^`{1 zJOB(K;&6_?C8y0f?H+JbzYM~XsQeDA86&{GI{iQ;Yw6%!e9kD^c4v7W^=9E~v3^^E zJ}JDr`Hk-?Z${hJ5*h(v+V|$a5)rjxcvp?A(_kJ0U@QITc}EEF&#}(0MSSq?sDD?8 zf<;kGg5z`thacKGBeBho&TLB0J~j~{J@qjImB#s#-~Rf`SbyG&ZJG3(n>u90+&e56 zM-B!sN{D)(M}+}ErdPuA}X?zPy?Z`{R+(ObAVg0JW2Qv}V;pG+K<(;V;i-yXFf)__`B zu$ynNJbf!q=J*gzmx%jtl98YBAl=W5W3@|pMAgu+FUM_?QTFN^d&}ybeVKIiZS&v& z9unqPuOV)+u2UbXB}`~SIv6PI13)ySLbT#Lvx8+6s-!H+XOB`Estl#4t*Z>m9-}!r#oZ3mb6%zGS(S_7(!?VQ1 z;}Qi_Nzb3Nhx%y-OudM<2PGBl#H#m+mumPAF_TI@55PQnCrJ4&|MB^>D2y*j0>9=7 zhA(CE|3{QGyvL7P(tiUbEp;g9D1rKPu|KTTpD>eD8<`p+R6^IU>@|>O;z)wczfk zkXWGS9cSED=I79o{NZI~9`pDtW7ACal_6#$NR^pVx62SWTfHlC*X2=#L6&u2pb(Y3 zVFWc5biMJD+JuYyU>=`<+*+TsVoeCyr4h3xvLH0zT&UfQEu!nd)u;}BV$)}sH1bR? zXqoI)wasupOu1@yf>QAE_`uL{e31}WF6cV|C)?8lJ(i_<+L(wCfCQ}ZJ(;LWXlkef z&L<_CH5qy8QL2hVhT~)<1vV?IMH|5vwkBITM~P9=eb+{$(@iD)UyFPOIXa(&uae+A z+m3ZYVvTghAOCROM<;8CK&LtGVo$X&9+qeqX8DZbzNXvd>SQgbT8>fCaZwYI)!hs8 zN*emv+x)AfGYl4+Y|TK&H{&LYO)&`nh~HKq>P$pQ;ur=c-iXA_;Q9NVua%Cu^HsNo z{B7KEMZrZI@4JHT>6NripAhs&5!}u5{jh5&LZ-!2NpJWeW?N3gCRXT6NEG;sa+;;v zl@9N5B>yMlpD)Yli^V36JwmCoSE;=n$-_Wrf@C%4AC<#v*NHXfV%Z0zj9qlQ`2w4X??9X zkY{TePXgfm)_W7>T8cx?Ufi~*G;OiMso-2^*-{U!lK0;1R&S`Ut&{pa7S}w`kM`Xj zC8jM8U#Bu=#p`_8f%&F3z}fGL&}=Qew+y<2z{0`c4KqsB-nT^TRBybelN!bOqy86p zZygs^*RGF`B4Ch8rwEFGbT^8W2q@j%V45G-9ukRgE0e(MP_%+xlF-H${X4ZzM<0QDFG6&#`W#!?;v5-HHS=dddMauVQQOT$?LISh{!|^e|-`L z`J7p*k>w0=$MpxkbNk!uUQ^d6SSt$%>W+2}6?}ri{`bxe%;8es@TsKSa>Sbu$ z(HnS6S6Q%i7MjuZprHTJ`XVVAmxB0-PCy?V+kI$&j6Lzo67X%Vi z5vQ%c_LB7b8P6E!!=_mU_zn)gZAbuR7}p5YR;9FuD%*U6M$;GdFZ&>R(ea|)hGHY3(*#a6DU*O z1=L%)Yc`7jPdzPN>>HSlV=k3=^5gROE)dzG$Ndy&NTFzM5Fx?U>)h9fyd+nRHz|u9 z=hR|w3ZE*YX!E>%c(oG;Nd)xYo;81+f&uVF5?Z`_V}*3BneO1L)Yza$?;G=aD+0F7 zZ@b*9DttHTV7i_*W_8cHVEF4Kz*0j8%_WN0@&`{W!F)25ROp>k>vlumOi^uBw-q8t zi=&zI2;y+x>h)F*e{|4mRV9Cet2nf*Th6Z?yI{U0=mP;n(tPvGvjeDp}Aen{-;@q7q8JkR-(%Ptyzf}f^+79?z7lE^JQM+>rTO+v&~J+ zPrng=aLxAK8iLP%6?mXxJVjGg^c^IX4_%;#4M2iC?7S>T0FX6fFjO;DATbTBDpIL2 z@wGJ24lw7sY_-)8wQ!bLf&y&=QoS(*EV5l-eP`*GU6+*kkLwb})zjeSDz7?vG z$2$W|tVl*AO2H>i{d~givy+B%l7}!pL8Gf}Z=c+VS~xsjD)e%)Z+51)s3pM=z&rFl ztNsq!*AXJlUx|Wpdadu>`u0?@WJrRtVC^dAP*q@~uw2z)d-5u@gU{O3POcq2YuWrd zrS7RXaDY^VF!!+)#5q)I%r_a{Qf)P(D2w8rX9$mcAAnKT&baS|^D*)$Cr|kCqvw4M%eSHyHaqe|_ zmu2^w>3G>PpYzMI-)?^gb#tWcq@NwT**NwAVWXA@CZu&wYlEHaY3+om43E}k>5^DH zI=+!THh829D#c*v-mE`Vf_7@4R*#b#*>{t-Gbj1eH<(n#&|#!(G`8>#Q9rU z7hgzxkvwfl?TS8L|JJ)CdAfh{b>J30Hm?|#0+r8V()N7-u>z5sXj>%_Q4Y$Lrmekr zT3YVa^J-gWUVbledE;dh_O7`2yD!DcUeq!356xl+owxYq?@#Re(O&lRd&&lCp4RSk z{%97NP3^RKSMYg901Zw!?}^Ly{_@2JJN0?9LN9vgMb~sKi%uD0XWIH${Y6g+ zQ~KjU*iH^ncd!6iSH3A$`~4)Y8v>dvf}=Wp)#MF{IBZhJY4~QZ7%_dCpddK&c4~EUr^7YXVY?uc3yiH4wti;QICvtKNu{W~*b`0e9bxN)oq*YIG9; zgOR;!qPA$>R$=v|=)C7+r^S=r9ehUe87oG$iOi4XiCDoIS>#tTyuhZIvbIS&d=F&LM z$67Rrhf5zLExGPqT800Zu7U(Ej#Zn+V>?R9Y6)A)oHg7w9Qdp2pD%syywwR8HX40l zC;dv7c7I{rfAr=H>;4x#;-?S(ZpD977VzXh`$Iw!*~O(lSF3LT>D+`QzX0vz8v_Es zFMj@?eMYblpTG41QI5o&*rzWtEcgQQmLwB_NG83_RUGV1649Qv!2;OWpW@S{zb2&o zA=>;5Lu2PCMcg-m|Gq!E`KA^2Xp5HOwm)wzI&oVKL@O~C#S z-7f2Li25$3rpuuaO#)^bAo5<0_T@J}y&Lc^AXfiwh?i}-xC7{Dyc_nIVHH0EzXDXM zk-_PxXXDy%7;i_UtSBwe;%|$C>|a6(XO%re1~D%}ak6IJ&*uR#|Ci|8n|bTEzB`{L ze(Ag)RgAc_qQ8D|(c6D4>*igcKb6)7!%3LxyPdl4oKJ_VPuc?;qp0EzvLah#{+(KN ze^{ve72*Dey~O|Nzoh`}<*WvyN|cu$i?qZTJo*mW>79|CPM|Ff;*-cYR1%4m8%!HD zd;cOe%8nmb%nICnLXVJ>9d^;c2(zAb4(1?SH>mK;CHWTqF+@NEc#BKIRCy}@A~RXu z0yJ~e))LsMbT^sXuYx;E?5?Y}&CPYWSEX{HaS@XH*qvsAGIJrx6+W{SzT7F6z7jYr ziJ9#5IG{n1r#Ay|<+ZQWT}^S8v@e(R^LkJwq+meH`H)|TUqnU(gcJarQl6{k4gWhpVq#EI+R7P2(0!DlMk-+*{5t& zvWBh3u&8OcARIm2pn#InKWVPV9)>34v8WlpL(`j z#fb3b&@VyU&+=*gWJW;<0FF(ZLL0X~`Z8-peOxe*YZVbt?TAdM7m@ATlLS(u%-B}T za&`IVU(K&BD}hVs*=_6}Kr4VvnD-5r3$@=7*rh=@D~!x-%gZ& z*{J=)wcEd8*A!MR;cNr%aWgNEqyNzv@;TY?Ia>1th_*TUf{Qpi;0GgHGJwFD`UzwE zdxruN(tcaO{*J%_0cYZsTe#2k&v4So69k9fY&?ZNf+sq^+?*;SV$qk2`kIrH=cKv|W?4Dw8(V^HD_N>ArR{Yg zGM`!ERV{26+rd4^wVVn_ZUTKqd5}x^CuKdHQ{uJ>DOm8CoH{>=KG6Hq!S?t z)}}LeR$8w`Y=DQ^R#zdSpNK07=M%;hCc-J&bcFDXf8Wgj{d!6cbNivl@K;XnKO>RJ z|C31MOYT>N9}=7CAZI1&Id{-kx4URNYPXytzJusz0bLPSa86oQJXfdcvoF$drgT#3 zTj+9iWDmC@+pD%tKbJD)@va}bH}e8S`?HCGJLCB!2>L8tF4iWd#uZ>$i>3ru;+@k% z`C3CEdJKsJb1(A=gU|Hx=GDz_(aJ!*OT!wrtkb^bZ(hY z#aV`6MirL67bcqd25ybs=I;t<+S&|Y3&m<6eqI$K*7DqF!S=|z6EghD@I!9Q^bJu{ zg#G!ZEwBZ3eoD^zYzCOWegZrre$uF%2@wCr3jKE{Ggp7*s(ATl+;zdFXsA;5?F&8? z0Cx@S0So;r^W@bW757V_(BFwFw95ZG)aCyacYOiR1G6bcp6hj>q@`CWpxkz8i{1yP%y7VS$>*KBjGtE zP#nZ%2?#GzdSDSWn3n5c{>JT&sjB*i%|_1f=U5x^hNHBn1hyZK$eTLd8%wXYHboVx zr;x%HgNqpFrxAHhIg{Y0{qRa_j0_W;)gC;O(Bu_5Uu7}WPEo~^5JGKra`qc)9m%n? ziA2UV_e74-$8wf(ZoA|P-u$}Sd?K~wrmQ}3Xt){qnt_revKPaBs6j7Qe{FN5nN)r!p<~K*51yG_GRS0f3 zxX`(g2HUb0;BB*5Jqc%?4p{Y3?$l&ha;0g3m6LXJAr6{Gc8Od2cQYv~s$}*;DR?Ob z-jhmMLCstERe2-NdW(vq&`ug~^~nd#KjFdA&i1PE{@p= z>eX+RXrb}x$R@Iam4+8aj;5as!fdNqh*t?Y8y|L;@z)=~Zf=K;o~dYw4b1C4mta{Z zd+nXLteL0Tc{8E!=JS(Uj`~)lpe(<@ioow6FCgT+a;yjDjh}H1kYA^Lc=n4>@-MPF z7eNr|mxCnGuXEHxV7~gDiB|AJ6?`4%f?od=!s{BGd~zl^6ouNhhKTb~FKbUGL~Do;G07ZB$qPua?S z{JLq@t;j!=6|&r`e1ux(e&;R%c}&@qDG)qFUP)^ex`N_Fw5#n(_l2HTf?|-K>UG$? zPdRC}UEtMBdxE#MQ+My|!M2qB6#`|yI#emWd)blwM4m0E!Y=>lVM=B9yNj2--#KzG zqVEri+zSGtOPY;eob4}B?SfnU-FeDl#8u}@j*C5jhTk4gOa=&Y|IBgllUDrm4`~yY z5d-MMl%l_s`u9)#kEz+thw1+>|F*S4drHz0@OnQ)&gT!Xvjxm#wTNO8=IY5GTF&zG z&P|1-3q+9bE2d_&rLe3wWx8!~cZugcKg>!uu9ylm&j3fy%Y=hppZskezUNTqRnwdK&Nk$KVBpRpiB;EusYFIe{-glC(GInwZfF8h8}NsO<4 zusx_ZV!|k~p*qeckLu8NcC^@?Y--Y>s0n)|;Zb?hVu4R$0 zRlDAjXFsMIU;}p;`QM+ugRJyI)WUM8Y(;y(^++Z%&KwlipYly>#-(76|Jk(skeN9I zcGf}CS=&J$cV`%Y%}Bl{n=-lg4%cBM`zrS}xfck{N3oF7@}nW)SiP@$lo5;A((0u_ zDF>3}%YwHc^m~a|HHpY)>ETD{BmS_&^LAn*-Q(?KSh3}vMJ|0`**i6xo zqsXA`nq{4ZcUfj9LEh?|4doj)8mh+%CFQ*`u>_t;)wOsV%w3jV;@?55!_H(;wqPwB zFf`iJfp{=R;SMr-v>ZeC0j{&c~mVlMYMefW&gwoMorZ zCjUHD6PPV>i$(tvCEA$-%H)qn-Tt=gbWKjAr#VIHBWlJ7_33dlY8Qk2?$AvP%vm)z zwk?_cX%Dug!fLp;Tt57Ish9dw1f(&`d?T#ObjZ)d05gECGB#N5S=0?S+XCgN1?A86 z9bs(HK)%@evnGL-((DXM^*lwzoZ}{-%Cq?HVs-Nf|h;yhuW}DT2!@6XKxwX+nXFiAGooT8% z6`VQJXkrO5LLQK7<(pEbqy4zVCE%O*Hk24piiIQN_d1Aa)JBLGi{}y%7y1zmGpG)^v8SHij>BqJ{A$#|~B)#+9!Ulv~;KGl9V}&ju*U5Tf1;8CGvq zRmWl5Z?Q?RZfrR0!ep>q1O{z7RSe1oZFq(6slD&p(B`aS&Lo)N!CPIIW%WwbLI~k? zeh1y)N0dg*iBm=z>Jpo=IIMP9YQR1eAGl+_N@&#>_=0$pMcEze&rEdJ(5`+y2?>!N zTR-e{e=3B5Js3@M`5;`Q1LvTFn90>Id9NNuj^<#l+|NebGO%eQVbcyVg2OBD8#`Wq zYK~oO!B9iWgE8?|qrRw&ZQ&ugJ@KqpGWlCq&;;v-%=_b=qhWVV=h@<-h-N3L&JtMq zU+91Y;4n=4xUA2~yct`BIZ~=lN*ICTs9utgI43Mtr_Mzd54)iZ%$Fj^(bk~K zB3*TVti`Mp@m?`bHNZ~nt2$w{PPSaay&U9wZ8*#EQ~ye? zmf4}QNY%F{%|**(m^T7^RFwlP17uB1%mU?ILvaEhNl?8aBtf}mkCLc<7M7{JOh(=Z z+2eoGH}w)ibarH*G4g_|eG$G`Q|v?Gn41**K)Zld9AxDLa)ureRHls{t}ACsweX~M zu*tJd2%Gi#FNlwcjS|>_DxEOp)+NmC&20?u`kR^k1H>sU#tCduNipHPF%i8l#2g`1 zvhAczQY6n6MKP{F;qh|TO)3~HUVl9Kh;iLaMPSRbinZ^3*iOC)u(ge6qz-g+d_&sZJy| zY*(V^POoC#HZD?@wu{&iJ?v^(1J~PX`JPebmm8-PfHSx4+HYLLKHSYq(UQv-d2~?n zDMf}VDpCmZbgJ6*qshkI(i{8!dV$W@G&b<9$vli|;a0;94Mml`2^(@v1Ub13I5~4i ztSu+#TYcMI=Ic^6RBlgV?sPE)!Gjj+j17iCj= zB+b{smKUS251-BmTPk(hD8h@F3H)llp=J=FG0CuVyr-x!UhVLpLM8yZzFg4@+Xa_X z1mE{vnG+u;o;Sh8b@QV-!`Z}ea3tz(?2~fMP*+|ado^SqiZlBbzt!#i%wA3>wGgKp zQKgS9jNu5u02%)rvY?^|_XsYhOs=Ck1q*jGE~|DWgAri)kd+M+w(OX*Mv~{F%IVmT z0z;n%&u?Yftm~c~&n@4wz1!y!lN^BMCThIz`^x^CKe^A#K{@F%GD_%hlPZ;cH0RrC zW$r4Ouz3Y?PJt#@bg=SQj-k%v=?N_rQU>B1$>nAE#7{#hkYkjw>$#WM>elw+Y3UWI zB#bIwQ?zmHu<4&#sw*{u0cArP>l}4c)wt5ITj|6bae1FUr!I71fO3l(IiT$D99Yux z@J0&cQ8TFJTYgCr1xD1bJH`TNRrv#kUfgQy zHeQxrQSv2ISguOH8|$Zp>-#wx!p%JUshqF(H15Yb=0|O>bjoyCV87$>T=f#q4HWHn z(J-3j)j;9Z;FxFyl^z?7-HIfr*N$~MV^96yAhBC*-MDGo_KI!w21L2w+vxjbRPwDm z&keY%9-n5+K``c}Dy(&EKd5&WsCm`pvha&hjup5O9EQqJQB7g9A%4$K@Q zEhJlH4&LqTvS)#3!102u;VX(PEfsuGJIE!}C^Y&lb2Uvt$MUe5m|Ovp3FE9xcXHm&%m!9m;jDx%o;?$T;A zNKknI*oUL5mNbDrq+r#N<^-{-pT*8|R76W3+eO&wfU_)3_;Pay3*P2j`4oPo6=vda z5Q@C&zPC($<^_iK+QfrZ3%92COGoAk`cEn&9h9Tv8?ed=h{gE!lF+*S1gHjJo2tWF zWsWd*nx$jp#<=w`b#H9J$6=}hgb4W|H?pD-FTUtel{t|z5R*&SuT>r(SGIGso@nK!c%-C&_B9Dv`_VCmf0TvDd* zCyqZt+s!4dqR4b_z^V{87U>y?TIH?L@S2fa9==+QN}>nHLkik557}LJJ3H!LFKMx@ z3MbYNBIzIi`JUOr<`S_V`0QUFn#?uJGhh}b2-CafnV?ceqEL-5>Ma4@L1J|+T;52u zH+-d!X-3D}GA1sQ47Y zVyt?ABv^|%Enq@B*fW%iZ+8!Ns#Xv6^OsX78|s9^J3nKOk2hnp+`H!bO;@N(e0NzK z-I<&qt2SU*xqqQw)d6ZuCV@RTC@Owm1`U;qU9-Q{vSXh&FqmU*`dM|Pt`{OrIK1_y z%9T&vBgX-s`%dmWimu<-b;XzRgiJjEKb@w^X(aZ>;s`a(PCdN2*t@%`!UjX8EDn>L zesj>llJ}f~gn2#=3M!a4Csc2rjkl8`m#N|?nN2$D@gIP^CAp1a?cvbrgz;|e$Thb7 zK9q_oVd-ksvD{Ya8@(QOS5!$3MjeN336kvs49_kVj(OB@$4)2YG^_FD9?@h~4oZ9&RMimdhL4HNl}JUsMxclyMx zM1XU}DF=^;AuL4$9@&!TR06ZgKw-bTgbLSh-4a0e?nK!8lRbC&%)lJ6yXe7ja%F2# z3;ob*UTyG1*gkh9ym8+aYD-tZa$}`)c~vv0)<)^ZjEo=Cp|Cu3pVVA&fJpiI1KxJ~ zk6*ms@;l^iS)A|4!ZNkgOoqZIwWLV!dKs3YL~nlNmq@zBCXcdl1-u^>iCi;zrlXB- zuD;Y)Xp@M4=&n@BQDIo1XKNw25GRLX{>g*WIEke9AJZ%Rc}LxT*uqW)_v)F{91 zXcU?JJjeLw6zQ@^ZEnnm51MT{YOzKmu6>p7z#@MXqs_YJ*lCrBEhGvh%4p zM8lU&y;9pK@A1)a_6eZH6Yl=emGV2NXQ;sKihEnCH6T06_c)UFq{l548`xKn zAKqv?8lvK{T}-9+sx2Ictmj4@ScGn}S+yOzljv5DH<91m)v!_w-*8T98HD(@AR${^ zix=2O;b)dRbe}DWPg!x|U&D`?pGYsX z5RW`^RYj!F#ixcE;JLxUuf1f8t7|AUITM-8Z3RB&)vebQF=8DZ4Yp1xf`j*?ZQXpu z3rg1_vX_kbAO`i_Fz1rwt(7Tv{0WDEZu#nhngm9gCR!iyF&qHCI+v{F0{|Xbv@p^R zp4`a5zujHt7&3Fp#7{FKhCXY@Q=Ry_*r6ES&qxu;sCXuu^y$r)!qyPwgxAi);LO8N z_0U$RYn2oIK{&+l!GyZ#wKSHK?;vLq=bcXQcTmGEeLnuw{AL%5nB3843i%gGPFp3tHr=eifVJbUXPZ<@5iDfC?PE+#+IG$-zaNeyaYet)sE z_yz-sNvRfCg&aBE1$)PG^GM!q>Q+MA6wL1pJ2BWfYsx-=Ezs9`M?3O?2bU)g+^^9W z?z0yk$mUFdY-AvngR$f3b$zK1zN^Ty)TCwt*@gEk^v=K4c)FIN=JOU*OS>hn9rtBe z!Dwbup!N8=YE>rmaafAF_aZ*3rCvxm)nK(uW7I(cMgQLW#i+6U9u~Yn0x0VV25-pO zz?Bl?bhb$Ga|Ybs^eEB8aC@>nK8arEM|TwScf)#Y?{GlGJ~x&f_g?=wfNrS}d#qU` zVxSmAdt$s%XQ&)kp?+whQhn^&`bMzcxfev2tww0w#+?5`p!hrJH4qVO+HFSnAVvl! zS+;C+cOGEj=%!bHBizpeQ*z^e8h5xi*D3=gX1r}`w;$0>)qO_lIc<`z*ZwsivYU$)nAfw1WCo1h*7 zBt(zyNZ2BO$O%UO)UfptAN}2REBWLlB=%KV7l!-*u!&8)oNT`)>W)~%y%K#&a~wSn-)~kbo_m&RWC&Z1|1MAsFNBtuXI##toI4}9_L!Dfgdq)OeE4Q1X zB9cR9a0MT1@a)y+u0B6>O;>i%l|sK??(AMnoVmd0f6wI$uFixVyXkZTFZ>p7wVFcp zz*uKh+ih3RmxzNJ1wuhp&;osx)LfPewd+?d08l~A4f)**KO&>m7{;5z~6qsY?_?VP4Teva_ zt$2+NWoFwoJr4_0SJqi46Xxm0^us^}cu9?+NpfgMeV4VD5~X**qq+syi7ihedOiAt z9nEP-k&G>SSovElyZyVKk=!2>9wOq-sC(E5U?~9*nPa_n*@CkT4R4ADZW63UFK04v zufd_a5$RC8K%}c}hJ=C1J{!|(2x3W)W5!x!x^bLvw}aSt)BIj}aV2NA!*vr?;kbyf zkW(Iuheb#owv%GYWe60XG))sc9=B3RmIxcCrfQ3Rke9$*L|8(ZSwkqwDp9nbi}RdX zrQfmCYb6TX2f=n8IZZdbzRa7D?DPz0Oq}o*mY2h;%WA8m6};BX&c+rb3tk4lZ@H>R zg88gG#erO=5AJGpB1zx6U)Hqs>534G1k!Mx(<9WN6QQaE_nW2&)p7CtzSXs5d*a+4 ziJ2>LOBw7#q*h0pQoU^MSfV{(s9VOXLR3mtQR|Y&A>5=+I~umpjgSY!BB9T2ci)F< z-I@u9yn1V0lrg!!s_I6$Wfz}kIwqaY?O;~CjMReAHUpgw&8LGbwZ_Otr`nE+2w@ajuNyI?UsaoS2sI@P7^l z^EKPXxE%XXFQBmBOmenPaHVT|P$I$c_W7#}iU@B_H%fx#?l5wb2#Y4mGKGNH>dg;h z)R3;ltw7QRR*Flt71m8L=Tb2W3~dp9oFVGpARTWrbJZd6~Rt}Jg` zZgOB33hP@@tGW;i$GNIn@qXRPA$q;CsF~uzN1D0|_1o)YfhmzbFOCwGM^pMQa{XpI9(CMx$z-q7;kO zw;-2RT`N~98y?+@<>((2zw1lZQXzvTDMc*NeGU)qb?75F#M}ik+xg)6X=IezsNC_HGVx2a5#RG)&m4^LPVAeLCT(!XeLsW}si1J(gVit5*s5%LGU7xm< zQ)r;AvxeIWadxE?H)T0?qq(i=9CvElx2ltwI|=WzJ3l(az8rE9!Hc%nLC%G)+*5&c z#7G2j^a-P3x;YJ=%G7PGpxfd=bCcLsW1bhOEIhjt_x1+yI}#g|!bdJNj`nj}IO4-& zQL!f0EO(VH@QhF3sMox`2lRE{ zy~g?$))THTu*6+`Sx#(Wb){8Cb#<40IH@KI-EgsMd!mJmJ2|MKzUb4t_O{KqL778g z`VW1Z^yZs+<_{{u48SoYsA6)FG@d>!JXd5@9aNQxRvg)3Pn^H$Y*SW5nCWQk%cB|b zw=H_`&|u#W4i`ZSVp8yZO!hv5_TxkOEAnU{)T>#yXne+`_Lo0{G2iJntQ!IxuFsct zvuutXA+J)roMX(=9(%KSptxImAoJH1iQv4{#!M%9ITr8;IETGB$-NRTjFXNQmii9T zQD%fX;M{-wQiKjAO9$C&B9$XfD$?d#?4as+S8wZqMLP&tfSs5Ya1}|wcAg(m>l?OOB2xi$ zghEek)I)($BgfE~`AIL#e!+C7%&!kY{9Jj&hX=`~N1=YUvB$6%&8aF4dC2dOP?Xvh zg(uMBu4s0sGq#+#H^306r_SF&YYiS$!!8^yN;4XC&%vc|&!H)a{h$~}@Wp z1%0oKwp!w6kLkef*u;m>0X0$VzWc{t-U@8+gOd=Y!FPazXN*UT4L8j1`#yxsoB4dg zkjbxSZ+GDy<|9p?D#?Q#Mor5ir1tUDd{MEN(kz249wJR(=>YuOSvX#-fbeRbo(c97 zw6~^-qlRZotBP%CzQ3>lis7Ug(dnokcGiI^&9C6j@4xq0TGBJA zJ6h+Mg@0P&*+q#0os2-aMo>U7$h<3*9nc$^jwkXooFgQ>ce8wq$uZOI;t#?X-iuv9 zYor@FrNzAbqx%-*`zG$?N4*!H{g?H;csPL9IlH*&Z_D=h(E$-_{qEL#AHH2ym;7I- z?s-N3!|3Bg82QB~>qSS4T{bpY$bB>&7$UKY&*zstb~zp|E}Pcp3N_zw zE1te=Fd3k22@DAP6@c{p9~M~zx%P%?qU_U*yr5w$@LUPgwWsBVT$+nXJLgU8QzH0> z&F>!&zU(%cA}PQ?VlS$a_G2J#yF#^qs$70{|ESQVh5YjhUA9qT-=wzusNdznn0{Cm z`&F60TH@z(OB7AA{0<_}4ig|-3F`2;>i!k1>|S)jaE4V*TTX7OGkhARCP+XUJG-A1 zrOOmAa|~8a1ZnuaW&r7;j;UqzD52F(4JR*koFbgaQZKCIZ#!~hU>EiDzu2m9UPs|9 zI*;p{GUZ-k?+bGuA7tuTUad-}!cff`+UOYMc- zvtAg|FP?TD4F9pG{i`iRQM!zVmyU8dynl{eEdXnvL94&b(_<>_X|>y1USgjy6;1`8 zeQP*t*l1XQ3u$&pVa zh-Db;TOymW8~)Iv;=t}Z5~jM|(m~yrakZ-?u2Veo{Hr5y$wXXZ9>)E_!RFx8cjAQ; zPx2kjC^zIc_&nED1#fGYS8hEhf*6rRJm10!Yq>#ne6w+w-Fe-<5i@xis`;T*=|!M@ z_#6_6CC%*nh+!nYn?pXxPxuP>K96%`LlyVo3b4Ypkm#2P>9CAj?(j*hou}0DAsmsf zjSk;GohJJoLil%3!NgcS z4t@IitM~IGFY9H+GWogL)y}XhPwCFES9{pY=(W9!zeuXcO1@EDdb4R#Bhv>*cf!xvS-+J)}Ugr%HB5jG<>nElMP`k&=X6h zgrOW?^}_OVa{1 z4YgZFP`VNPj+-;CEl*??X`|mH)%Kkjnart4nrv!w1nb%2@U>;vT2+J`a$j@qZz;$D zD{)FfbS%NCupCe53QJ)J4GFUP7HT!WP}iaJJnuA?gYKf#v+L`7+0I&Ug1QC?Vj6v0 z!e!uur?UpJ2+L@mIWC9kMs>d^0Cx)Op7dsp+{)ueIhjj|ZgfgH;q5UmZqwvwG`Y=wVi*ta;a(RL=iy6C+yhCh2XKp{`b8NJQFm5V6Iw=lRzwF zK|;@2k9}yio%b2!?$QS$m_zQ->T|EITWq2Oj2UXq7AGDuk6K3_J}3huPMunU5wt_2 zeJVD*lHASl-PF3gG}w36L-?~(5XlZMGP88cDm9(B18*zuG!%zL%6&r|_GaFgpT;(Y z;*?k@o8;YfOqR$^13eAcEJaFCKEj9utJe;uBlv4PlVgp|+&-C8Lv0vvIUx!l>~`+W zvDCu|b9>h$wPr9$5m$AoRaUs2Upu>&I;WFh@ceMp(8@+1_>R%TQjJYw)QJo-KPuS) z^ibp#PSv3pR?VmWt|q)=6OW7*rZO_Sb(!3W3^V59iJuRUecIlWonuLPPRY`w_F*67 zvpNxwy>-^L-7QsBUL)q^`eZ}0=oZ-v=5LP=>TtX3@9+BnIY}6a41t!Jo$fX}LQl+m zEoQWN$vkYh*JWOkD#GSq#1fTY@OWL}M?Z@nEB24+IDtCXEB+Q8LdV(h43TZ@fi{>nJU(h>$`k= z*(FLATIy5dV}ddCab7en0;^aUtUX&|&vwLZf~AM+ry(Wq_oh(8Z1(kHUU3twa|7hv#>bL+)%bYnlFoxge)E$ zxs@B4H*z98U{nR27>y;kH;rB?8iG@UE1>69eRPIn%4*$;KUR|HI(tk?GvllA3;`RH zh;Vp;9qSo(Iug@R*n?I!02H$uah4#-NKMhYzY?fWu5mgP8-w>m3s8` zfd;3}g#1qF=gEV7S7zvn5$DUVeHz6mG*L(t!Ebn_CuZiS%CA?+!9-Hh1HM8%hGm(r zBMVwqp_xs`K{hq`TgSB;i^Oc^BwI?f&y=|simKpw(IGDc^<_SLxPf z^g|lii%a@8$f;M=Lp`YzrMJ5Mc0012%QggBDnlAeSduJS3l`yX!?)@ojHBkmU5V{u zy;vRX#P5xK=D812UlNyEv{RKUv^5J~z6NiSM!iD0t8K%MdHIs*^WS_+{?EQkTrMF@ z_n<5yegxb(o0rp@v2u8iL5Q@BYK*!;!2hK*^GKeDwX@ZdYJIQFZO}86`pgtJra1T{ zLb5d_91*t(SEjF#=$?d0ibJVq(_I7y#g zSxZOeRDfHWwoH^phM~bKI|y}^uj_>$E0W`{2!=nPU34mta0O?JoLJ1acEvD48U{v~AG$v;~OisG_ zOqIstT``cMN}8GSp^o4nS?sew@x?Y7z4o8P6np=Un)xT|=SBVpK+Ozn$^G9+%}hex z+>JJQ7${a0Ayy{N9xt$9mNVLg#MGsP$dz)te>gXY47^DMM<@?ftUVz;n_p7g^7FT;)_7ISO*a2R{Mt@>RV80g z2yW=}a2{uccZV@^0Irp<7p%BbUaDOvVvl#dTPDs@Gx>w&_@Q;H8-ojEtsBj~PB~3U2C6bN9t_316{jyL7p15bt9BK6t^92g`vRV$6&K3uNK#!xO z>oUkt&{H7O9K0zHJe?Ef(^gE?kf(mAWA?ds3~5CRx*y zBi70v>zz*8XGWgY%)djGKBSiCayz53bv8 z9sJjib}1QD{Zq$($iAP4&a&WJb7H=GoI;E~#jiudXI`B;Dd`_zO>)MX(~7^gXsZjD zVyBQ(u8d~_lt2*nM1XXrYN`+b&;2bi{%3;xUw-CD{7{rtSZVwYYJKOv`H%6ocW=@V z%-og+ZGgiE1t<>9rOKJ4+{i>AIrn5|Wy*1HXA!JY>p2mqjzo8eV#u_suV&_S-qPr| z9U+1+Y;X@cX!GO&T-_N^Q;C(J6}fmCE_p?8Dv)QEjfcpu6#iA$aPcyKuxy#8uJ#0&F-D(?Zr*7>6$V|6nu1^_uNB)weyk(a8m0( zx*O|nDDs6pXQb^r$Od|Z!nhZ>hkJhs2pqHO5%qFrt1`mj4mV|ocmyezIt2ZvXnU!! zRu#cqB-nh0oF}b^N+u~MT0Q1W6<#uW6e}wBd5heqbUo&eAm+NvQ)YtE!2LpZhxkk{pqpqZwCY}+*8Pr#jPwS_EZ_|u6Op=V?Hj3ME_Adu zd!o$#)%Avm!$vS71&ow&vHzP3Nv)ha*wH zBj&2(Guq0HtBetu)~lQMe-U*L>em!in_Mm8_<8zv)%z-XHmC*GDou^(ZTHM;KHbuy z%8K2geA+d5uC#3MWBK7>I*guiJBqvbCpVA)jh3&6-msLib?O$~gVwP`-^Jo>k-|m7 zgQd>9G&&(8Xz1bzOt)R0n4^n<%Vm-1)Hl9Pkd_@`i`1=(C>IJ=xgUV>RifnssCYzR zu*Qg;TmC`Xn7TNN`Fw4W$C)+q8t-ZQIxF#2?xiRT1Wer2;R+_<_x$Tq1;$vC#-dHs`zvXg-a zH5?zQ0!I-eBac`RdvsYBv}y@v?~bYb&{?H7%^ou&L-Kg8`sN%0(g|P4e*iY*zKb2H z?d-*SYBGV*641U?l4CoKF=A@SNHx(!#q3>a=DO0qqL`H}@}c;BRn&u+J0=TP>baMv z0zIt)@-n;jhw$&T+?yuCBLlBJ_nfT6bZYK%5xzg{&tT(RX%iq157{8REwxI^iS8ZJ z**f>Ij1(8w&mi|Suc_igJP9p*@nKJgm0BpXuigBJcEqNto&A3Fr%nS~mG7p`b#@ygZ4`4W3jjx(~S)SEWpc3fy zkRwvQqJN^z9C#F*RH0UB{Yw1h!!SEwlJ2sMi<6hhSq{AUd@T6APrJg~u4LtqB$B<9 z8Lbp(P;T;DUs;yx+$ixP=dZ2jt2GeLAC+T%u;k*jem{><$U zJ=k9HklpwqU!m0C?t4ZJ4^-}hX-Y~46}~aju9+vTiJW#&66$~Da$hH--oUKHcM_>J zUuQd&>S(bn(Gx2--gchUXW#LQ0ezp?>ytwW;YGX)TP z)L8dEXzP?dHMM;s61_9|%q+9O(cFH@1Z7-~n%X7ll)16mZL zToJF%TG`gHm9QH6;+p~;Bh}bIH1Qw~03A0?5zDnf>A^*6;P%jMGxP$-?%7dg_VUg# z_q^v*W$%W_aaWv;srGaeN0Hb}(IVNx(sJz+BllsR`gVf8*lH<5&saXA&OG_xUROGM zE7^u|$@}kppmlJr&nqPePbH3Cmnc8z#@{6LzEG?K^WU^a>FiAVutszs!c-gT7GPmF zg~BVD^whAIS6zI9teZk9e@(xFjzWNpu2E3xDfp4)`5=3+ zM`YT!X|=T0H%$8#0}oJ@Y{{eds(cWPiU2rgX)fTAmNkyi1I8X0Ss2ubJOx=Whkm_w$43ioi-50jRQr^Bkr zx|$M9pzURS3{PU~`wBP?wyDuf+u}USh=@?uBJYh>t%5uW0ZK9O31Q5t;-pesT=)0} z2cKs#iX?D@+oCTZDfI>|B~p+{`vLcqFWXU)L8$nkZkbNf{lo{EpOC&<9Vx~l4=wX5 zCu(H|m9F3_+ZlFt^>no>uycJi#aYE8+8)lqJ4n;Tui!W+hiI?oK&uv`d=j2yswCanRY?qa z78~AxU#K9 zk_J8N4T`|S+e>9o~55KIru$O@@^`;EW}?x~2iwoH6;j_vFztizRwc*Tg2X z4J|KEx}b$MYev#HIA52bVBDEn@*=}c!-Qrh5gz%+9zF2F?mO%7XN-KgK89(_sgiOu z$ee+UdGHV4UD)MH+4D*2E{RG9iEq7+*rqT#u+m65!P_a2?hb#UVY?3+T(1|Pbca7k zGOC9|B`F3-;%~aGuJy&Vv{II_!Jc2sz*-qz%*hKmv-mhAwl8#WY%vp3E82G`=`WRwsj+I#Ti zBhqIK!JthiC4TR{DZe<<>cNfd;#k&>jB%G#osFAl{uaB|c|gK444xwgm+c#~%CWp) zU0qY1dsG~y6c(Yc>Q?Mqz&)+x;V`#bhRI1vcu-omTgG?_G?~6aTpLIvQYowiUR5YK z)$8&F&mY%-V>9pKw{<^l=;3vk4!W&P$VaMDQeFX{DdCA&KjZ=``VU59+V?opPY|O*i%WIN`ub)Ygh}1s?eZ(6j^7kR}IRk%AJQAG2 zXS!wy&9*Q+*9qlyoUOKp=7-&5Pb>ySW4L$3;XHqZGf9d`65*Va$7t=UZDIZu@BLBu z)<=+7$#HAVbkM5SzV?HoJn?O$M#-lW*_*`At3Wd4KJ(Y~g1ureN2@vN5(5EE>P|ox%rI-^@KDI;L1lN#bQNvygw3xBl>!NJ>b*p;_&t0i(S8TP4-$ z%OJ)fQibvm7xY7=xIT_|A&mEx8iMq7EY^hOhMAz?JdE*X-3)1S`wJSdeafWNV27^b z`DBc;>1S!f#Hy~treT8Au!N9qaC&2Qqp=He0iF)JXhq!3lVS52NfTle364;aodO#O zXXvKb+N(@{0;U@|DsD$RLFX&e(JdUfRvPMHH3?PCoaBgCG%;dDbf|^iaJt^2*yoR0 zhLtHE-yLNLS8^<;2XmF7+r4D;mf`$_ghZWk7cn=nOxmB+)D2yAY`IikZCpdU{$>aj zU89v=UdoH3=qBZ;h(;bvJ=X9O=$-*B0gF&mZwAXdQC@6vKaUkwWGH3 zK!P)99UX+J+L{dJj*aaZXJVa@{>%tCJ6`aMAoX0}ST!mY+V}CS1FbN$f}3j zw_`s~nFO7(3ZbGAuaYu2$6SYdkqL2` z-jHPYMm?xvP|NVcspSF_H6GQmsrGxmQS;9-rEE8Y@HJ+KA$Eu*iDkIk=bxZ8HIm38 z{V&bpMrSNuB?M%{>uXpIkPOP6DY14Ft`421RF{?EX6QZ7^IYqln=K5SJ4kuOM+KR+ z;l~>vGXWwGmc=a`uA#8@MnnB~Kx+=9TxVHXo^#@Q!~?-qbb7n^M9yt3ViZGu9w3_B z8)Gv}ADI0X`#Zm!-YgOEt@7o-m$)r>?5Kw`uF2Xkq*Scna1e@T^@h5{CA|zw2K;90 zT2%V>UEiGjtSM+Wc7dJ|oo{6QXj1+{39sS|m$gJS)6kT()5!iUHJZT}w>+_9LYyoF zfURl^bD$C-u`m>kTg8T+CvqJvN{o_4oa{P6$qg$2N?V<5A2?&GZ=GW(Y07;d=HKJ- zAdFH*K<6gnwHFqf!gb3g%|TZ=S_224w_aBDP&hy+UolEJyj=bN2<{RCloPCyIxIP> zT>h`wTM#abmR=r^J-fA8I}DWbfaPEOcRt+MAL$nXmG*yR`bEHhb(#7RKBuqBYPQ?k zoQ)KHRSkNP#c^O0Lw8VuiI%bO0%60=FQeJ%z6B{kqJt|Qc)Q7eqeq9%KXey;0KW4~ z$u6{x1iLQ`(wM0^GTQCs-=a+E%8A3@;)kM1+IYgAm!{rmZk1|+dm-_}L(D%mJI0o5 zFN^>7p8C1;bXO321fq1hu{qccn<6_JuKgTv?x{@D4bL8hRIqy`s!YA%DA1S^=S3r^ zC%E%8#O-Yy4dR#CdH6IrvIY+rI-3GOXU}>?WgMuwAT27{5WO9a+ZSS7apO*Z8@*O| zg3%RJ*s;XV?E`CKnVRH}RgA%!v84JDJ+3zB>H`KG+D*CaE}eq|=tM*vATQ0} z+LV51kE^u{jPL<2^G(vOfX;s)`I1M;tM>S{LPw0Qh)a?aekJ*m>)uOg$;{VQ0YaHf z+fDp@tEPiF;cV%uXG@?ddHkyV;*w5R*y{>vX~x-7#}$YCBQF3BsV`rJ$}evO;{jJk z^77uImjVz9-{+5|S^!>fb)*ke`H&VxuYLe)Cxl5p@iR)v!G`Cv*#!+`pG#`Pdt!?$ zUDuVzFGXSzddc&z1YdG!`<(j6pa6Vc4oc|NU|qF;m*M4zfA0uj5n$pwi*|nr_ZQv) z*{A=``;|;C+hOGVxYLzTKroT55O9`}Y{Y@aO^A(&rIHqfQChyZCVb8rA6D?)Jl z-VXZ#tbGYKBz_P6;sKba373L3yBu4A0^(wiffya4{j~A1PrJApI;Vq19p>7R`@}2i z4X!<3sKPVc<6*Pw`;?&kanHDfA9AJyhDY#{tV>B=4gm0oh+hta%m%CtO=Eya)c}BnFaiUiN(1zYY2VjPomY{`v*L&iCg8)&U|?YaAL7Et@75I9_Ej zE=UuHWHVmrV?bPg%}Wb^MjPHftG=i;TOB8Gl6tD5ONr;^C5S&FKnRrejV~o=quo|Z*lwv2ko@{28RhE>Q3z%9ez`q_;Huy8mCd0RXJaE zmf>_>Q`10I^&{Ylu@li-D#Au8hk|Ag*CLD2^l!Wxg# zh?m#QAPMNAJ8d91D7Rr-C_IprAbvko(o^@jqe9SgO*)@Q>HP&(jSElxJ0u_50G2j> ze*2rMAnoQi)~cY?>>Agmcr^mVxNSEdX0}MyffA$l07A~Xxm!`Bt+m>!W9#79Ccx2x zm(kdYXzIBi|4MSC>sEY|Yieb7yc&y(@fUPyp)IqIdbvi*AysI^fx+kTWJn>W@8_JH zp`|k}7%~IJgF%utV8XIwRlQ*8_Gak`orht3H*<)9pTqP*ou!<;p5_o#lW9>iNYaxJ zWMP^5rAVB@T>zhRv}!MLtPzMwIv?CQvR>XbK9px`XteyCiez5x$?fUTZ1Xx^UIG|e zqK{VZ`<+QMTOCq5Gqlf(8+l7Ziwat!8gHhjamt`5N`mVuV%H=5bUlskNUEvC-Jm>+ zMlj?*?6e&*mlu(;iek9SIlL9|mJPh>6!3hZZ+t|(4XwPGGGwFDxiK!1IO|6LbV(7R z(Fn9x#}qWfl~V4H#WpmV66x>hI6G7=L_Opmuf`=Xi{Y`4^>xBde3$H0c>i<1$XMVY z`l&nr8^r-vLJe(`iju@`ROPO4APoZOjOB^DRqJC>iZZszxsxas7fD>iH`^Fq(1{nc z)y2KcY7#a=i=G5S&vc_W5GjckOP{Xs@+XcjI}*R~KfJM^Zm&f3p_@sd#bii*p!ZU1 zGLR>05eM?Qx@g+Dq#EH)ybms>E1*Cej_N&SD1#X;YM6b3y(HG@E!7ZJ6>O7Kr$6nD z%$ub0r=2quNaGKqs-5oW6w>Np)-@X9xfLglNFqj~ptsFd6uM&6;TXkGHv{E|Te%xC zI^U-uggtz>WO(SMt4wIbI`pz%S{H5x;5;&}5K&5?O7hK-sQtSR==V2P}%4q&a3KFL7E*0bt z`*3MYmxZ%Ed=PijVGm4-oE^Hfwi-iSsSRQq)qKmtRhi30NPnL1ZW(n#<}sjI`;_yq zNd9i@E>&~@%(?&xl-vs2fXN{JeJ%5w#erS8GDW{wmfuwIcjXOe{2x4K4Fwlln7%Y* z3r7JAQE|4V&fFnuvbPF=HTtoC|99`OgB>!!=kQxChX3~egHcZ~Hvw=a7SZ!}WJqMF zQ8w6cFrt4g2$H3pV>s9(2%Olu|G_Wf{-fZsD&V10!~l}zycYoW2MPZP>kO*rBefGi zS;OCRb<12X!oM%ZuftuQm|Y&Z{N-jz{wH`xLAgT&MBy6{SS^cxni3iQVO$bsOSABmr6(!uo3dCavKjZ0QZf4lnHE8*AV0EEnYl%)~Bb+A?fB z(4#0ibsC0J&?mgmX>TO+dIx@U{R;jFfPZ6}@Av$`^eG?gsLrGD_ETd-U=O zVb?wv8H3jBX|1k6n~{qeB}N7Ztqrm1x>1-7)m8QkYX^P#XWRJ?vv{PdO9mJzDhfYP zc?yPEbKNL@0UUtQe1n_JJ)P_%2{Fz}1TtAGJ@~#&`LSL3<2%mxt)XJGO2Icc6##_5GY40DS&oJpXF@8D=c*!FPDFS*Pe&a8=Rcy)Dq=KM6AaUee>kOO{S- zS=B#Hn7=ysrSm#q#=sn4zl`<&tk3_?mR$WOf>13wEpmhTEq|-yef`h1N8xCGqA10X zgb({y=+wJ`8W9QUNvF&EIE*mZO5cB6hg73Bke66@rjj@`9kPwIkqbBP5|nIzB>vR+ ztx-%%G)dTs*uObf|DdGdl^EQH_yOc+Ht?hXl`X#KR^Kp!0YHB^QGQmrfjLz)?)ul< zH=ZP^1am$Ik2RgHc=Hu`OkDj}Rs7#@iQocj7s zY!{+#!r02G&NM$BScl#hF^C+bBrqfiiJ9Sdl z<$XB*cw5SkQi{Fs!6)4%aO0WV*1@V^1^4iq&o$3X7l0sBdnw1f^xRwharnFaLwvFe zT`^lB2k)UliWj04$n>8t2+qWO)G>`m>s8nobhVERX7^0?+Sihl*z`Ja?PPNZdKbI^ zDV4DOeR1)tVE-z4{2k{itwSG|`lEo=&l8qk1{|OK7R3vTFdadXmKulcsm4xe@d1N) z$&!#wXXT-VSyT+&lE=?xV zos{Xa3XUP*VP`}O)9F}s)gE&jLi_c#rW^O@>F#{~VAZV!?#uG;uVO8(HO==6 zRogu@-3M>7Vt_VT;shf7$Q;=I1BeWqxq0qxc2637`JkK|=l zs_3tu$K5OO+@R0blBn%nV}Bkn!Kg?;JyG$8jwz=YO)K>(wuN=X?+Gr15h-kCj2V*o}YyQp@rpX#y?XLoBPUR4W#J_dA$Tj{-Z^9|o8|i^EH*z;ve+$G0tz zdw_oHM)8_k39B@=eW3jwedU>~rZxg60FCJS`1%nn4@&bV}Sd zGLV97;j{$Ftvbq{>(SkKlN$Eu;7>tc_Om43=HyP3VG%_Sa3B>Bc`cbxZ+j=DI*SdM zvfUwV{FqRBN5^1Pl>#+6_>94lFOcTw!!(-6i9HkpJ>7WGKC#B@l`Mlvz1OZsxy7+k zbFFvWuEw^>O89aA{(X<ijX3I__+c zzWc7E@oYx%2U8|cBTjIcu@b}1twpY7kK;jUZ#CSa#1*w|pt8Ds?zX78MHv>WQHl_W zJ!gxR+)>cef%xX4iO~_Z=A5qZ1J~yjL5w?MpD2k)P2eg`XRDcJB{T)e286Stub~d* zd>E;qL(g_Rb;ZHi^v^b9)zoc@^8R3@i{}uc?kq_V=Z{lHwyRp|C{=C#l^=CPRp>$Z z5U1S9&HD=P)1Te;w?_i)cS}r5nix5&Jnu_;W4`trGC^I5#luqY>AAYsRG&Lf^c3Op zka7gOmPnG76_}vyL1_t#sR;hK#VEAZe=p04@D>oib*fDrYmOE}B~Hv=9oRTNlfS1) za4^;cA}^1FE6@}~emv$eu6UDTcR$xqd`l_IFzv{8#|5;roU^xCprJOZb$q8~tPt;k z&doF9hjD?EoV_gpxQQWMs|+n8j6=AOKKQ5{=<&Rf*;0m34WH@GNa!8BU1yjr*;(Hp z-6kZo)ua;m-3dE-(Hfq^kL{bfD`i zdsE0Q?AcnfJXdHyiaoQkCn=6FU+sooXW$t_4B^Ph^g&z!X(eik={vDl;S7YTPbKG9+A|kVcMl>jdoh$*_@9in6`4& zw>SayshVA+<@%}!`C5D}4xA36Xp-Kgzr=l2jWJZXai;4;-SEYR-r!cQl;@x_sqHEc zVbJqiC&;5m!Kqp%7li7X+*qtLE0dCy?#D{P43^RfY+Y$@*aT;J&gyEv(7mWFz30Qh zLe*E+4M*I$&kEl;Wk1`b6lLzt9I$Y-VM?+pug&P@oY{-uXb~{Cy{yUHERD0`s5$9t z`cdQN=b}c&{&lp|h%gG2?n6Hkm&~}Zuj?WbZZ}3(aP@VH`I`aH#S!6fmZ9dAG^?VMmzk!Lr?5|Nz-v0`g7$H`$<`_2~)iHf1_PdoC6 z^W){b!|Kfz+@^s*67=Ziii84(nQ|4i5zGO6Na{^|UaM8eQuBOo6@)^U#`h}=Yvu4w zpw8%L|3%O_4WbkzBSk~fMi+aSJ~Qec;HLjkpa0*i zccW5#x#?Q@QSZhBRtE$2H|hQhyd!WAPKGAo#|GiAI#xh^z9l-EntxHq>hCL=-~RuJ zod2tk)is0%0^|_dd|sa!>Bjpp08F5)L<2!f;>Fj8t6_VfL8QibUvt9N>W z7G8U9+j;tVJV!xWD^pE0hod?YE((@T3{%=}j$eTqQ}gRaF0JwEXmoN1#h}@q0dJXh zAzJ)vmS~Lj93IYgF4OAMiANvwPw9vg@{gza2f^d(X1W!n;_J!c_bkF}xUMPfJ;cl` z?mgi6=o?_PoV4Pbo(Ngye*8~n*I$dXAMOcppuFfnuc+1KcK?s7GvxU*y>V4`kSH~V)0!$V`E&jd2?lhai#7l5F^q7(S1f4nbh^IkKec_D^&;60r z=pSH_s<8(-vd|jABb-J7pEMxPAaLvu;FF9nl`tIDl$AtjT&h2W<zb zbAJdN+{`};8@6SY`=ehd@#={Czwfn=Rps7YL+XAXs{Ha1>iqbCoOCOb=Rb!DX2 z8=AVVQm&UEh2sWt1tk{XvBHnZ3M~H~J+4rz)}8g%6GD^q2PSDR3mE^eMvsdFUdurm z1Q_`1-^-Ks0rA~G*Y#DXu5$;n@n*p03CslshlWk?)Az|LbLoBfshR(ZpHW)(G$E5tvuFyf#4JXmo1p%%rT_?Y;Za_+s?U{B(i(T zf4FD=%}h6%@dZ_X)Ub@d8Qig@$F7Kr;6+%gHiq3g?J}i>a>K;wQ>i{}Unk+gm;13G zo(XRKC?x!AB%%exK~U|y*hhJ1jKe@_EcILJaWxt%{GrMzZVg|ymil$e7#}@b4K>RM z7aGUvgQ%22O`^mJ=XWy#($gRFSFHgEr51a;8IV`b1Y@yfHMB8?yo=o%)S6=J;;5`Z zCz4uV$Ft4JeI#zF?B%x$sKe}q-*h5u-}bW*-pFMcQgws^0R6Jh3Um4XUSjzBh8v#v zGrfg50}E<0MAj#r0%w;xke9-3x>HWkh|-Db`SVzXFp8eImYVp~Pk!XsHmGTt!ND3| z{8@4gteHhor98>l}Dj{>c$6!-SjcK*zfqdQ=AqXmZqMXN;DRVMDJ~5 z@wU63id6=YcqQa6pcv_N2cudn<~F0mw^to>2>2-;`OJJ^(jOpG#GOW~Zfqc&15jE1 zL-x+(3CDT1HilK=%50G2q>k%3rIk$JN%r#ooHK>35mEZ3O=OXj?oH=9?h~7w``a%? z>$JCmBfXsi7U10G)1;aCH!ZY)`a7n2y0fQ7u7h+gi5+^+)+sn9s6*Rw*b2+Fu_UM6 zsHE3=Ep37xq#1h*>LO{1193Jt zLp=K0b1#{}`@?dh?17)e8T=MeZ`Y_^w}=~nUk!IW)v&KHy{9XSteVmj!5jNosXw~SGn@vwX*BFTFuzRVI zFbuMqT1n@JY}D@)BdFqu+Yx|P4H3QJ(CVCeZZv!6P?$-i$G?%|-j1U77M`jt2zkHCu&dJXjBZJ7QjW6LaJ0aRwYU_KuRC~ND zTRO51p%JN{jZ*7@Lk)SU_Y71X;jv~e3emAUf-tf|j%pi+BOX2|tASQj#)O^bP|zZ~dLeElpm#U9(iZeU8R^RMvEWzy|8fZ7N zmPTu|y}5Msy`WbzG9Gc9i#XlO2OY*=K7;;$cqKiD252me)Jl=YcRAG-F^8+- z{s+Q?dk6g&lchtct%Nl_RNBlWl|>MBMs2BDs8clIs(SQ`)4oQQ3XBXSoEf#iXzOqe zuvww{vTYo7l(^@ZLmQF0y*cyI`-e#T8Tb2{*w7v|+Y#^$4xU*yniU?i^BX{372bH| z#bq#3M#AGEhm?YWr>1FN`mC?Gd>w$nLJUKU4AAu+&IUdjX6s{Hub4>5lD=JT!xVg% za70uNN$v)?qj)v;uIy3lbom|%djNSsS)i)YNTO`RG`hf?l{zV|+N^kK|Cw-FJ>@Vv zdM}Fzi|T#3+9Xp}AXjryYMb#va&0kKmpViri&pZuWqc988*epg!Q9zKKcyrTH_a*y z-v*_%M5(kwNo>&0xhXyYsV7DmX*w2pS87{0==D5AslO>0T-e_JwCLtRVd(0D`);-q)wU0e!+=lYl8veu9X^T)(&7DxCYLAx-rG|GgZ+v=&RyTJ*CwK;a zA3Br!@f+Mt-jh9UUei}mkp&XZ7Z>DM@ZvS}AZ^gXnu3zvy(}@R+xAIPP>2$;1!}N6 zrNQ23!@UfH0;4sr%%|LKQ)QMjdvrzIl3}IMT2e|E@N>r{LaO5M+_Q-F)m13xV3lJvSD6|au@qp zz;Rv4;#fK9i0J~w4Ffpu2y543k0tVCN!!Rw=a(vmACy(awD*z@pKP}-qoQwfek;{N z7$3)N(KA&2_royQ>iFIF&Bu>T$p46UBE#lYBeM%)@H>sE`~IdFC(DnDZ;QaUQu96B z)RLbey{)l2Nw8HDmSKct@7lfo04qbP%$MDIBv8;?9V-k5~? z?rQFYe4n);_APVfd6A5={g!^vRc)-wfPH`~R0y@VGTS@!s2#$ z+oVf@!@7KS8s+%*2P0QE10*dDlfTN3!TNO!VS@!Dcj@~@KoMt?6uY3lHq%3iceBWZ!hs zb`f24RjIuS>HP+${E*^()(s7BqB-ROQk4Ca;VN2v%3&Gk46Qg$jQQ8EclcHp&IzB? z3~kDdNtQUI=y?@8CyfJ#F&Rhl%DwU$W%-o>(c)!+NOWrK2Cu4uKEAZc&bQ1!>byCD zzkT0%^tG;cE2lz9rfi?mu9o4To4#J}Fo1`qh@a8!sxiS^EUy8f6N~iBF1eKdd zG4$WE3gO$;q<($D$vBi{V?IMqS?Z2C*JhGZuv$qSH$mSYNX0zUbNqHjXD{5R;!=ae z$6h^rT87hZZ@2CJT9qp#Ka_H7$RI(i%3s*czM9)x?5i-py+ZI=xx`itCz+XYI!+=w zcJdjSp6A^VDSP~Nb=tHd4oSYi=--~K-Q?}+rGBP+A$=3jPy3iDi4^ho=g4l4tYFi& z5!*MLEKT04)|8g%=M}`Mva`)cDY&0I6Y|8W3tf!NlXk*??YCzqm%f37A-;)VD9@D9 zKiqc6lijE5`U@K!sRd#mAYM|m5kxrzJ;pW4-Q&!ObHFhj(dg1srmx(brN&>LjQv95 z^P8$u?k-Qc(n?oPV$|e~fXI-lTuwF#&_cFKeC#*43Dzk1-zZ3DaaahY9_Uxb*ZY&U zPy9>6{rx$FX_SAbZLSpO_s8gOit`_o#UCG|?+P7eRRD{#0V9MgHQnu~q@z*cksL~vj<;lj`NHvHleM%;ayTER zw!~hvwE4C@43#)wZ()htyV7Kd4FJ#RZypL1J1<%q4zpbuGnHGN(T-`XE&)f!Ay;NI zHWDkEo$o1WMuKYTVJOLmt6!(+P@Q5DBg5}!g$Ls$j#|VVWRIUleFqRddod=O0xz&! zcaSD4hxpjt9wE$IoCX|2f>~XL_xk-~C;Ce;=Lw zzctW(_j3Ky#4!q1^=M7{Oyq$I7i$naSCQnzuuuXsrX}ymp~(SE(`zyrD-;5??Ny=8 zxEw6TAbwK)GV2H#kM|5OCDLz&lo9Q%Yc-0W)2in`m6F=AW-oKcfR z+7#h|B$?Kfvq z6$Zl7eQtJ$1Vy_|%bUCdXKhSng7?}z5zXoYsmG}6rG*8y>jl zN$iLgx0bbHr-7Wm7x%W$Co@c~@4b1MRP1ZUZ@a@j(>l+)9iyzCWB*8SNRXrA8!57T`c?$I}I)hB*0>wRg#P$A!kypk3AK)haviy91)aC z7wWekmm@n8xzWwNfEHKvzhv#CZVX*^B@0|9_N;3sLq4|KweXgEG`>gyS%`kR{SD5m zjXlTWK7a)6#@!7i-H6}H(WICqUayLis!Y3u9P`j;P8UcCz?u}`*_UVx;d;%U9;3QG zo6w2VY7~!o#*z6(u?DxF^w{tfJ8AdFv(;RP%7VbQSZ-Pp?I->K+sDaN)kC(Av+2M{ z7Bk=eP@ONzkj3(MoL?i%?`rA23)*UxkQa%9WN`2-ada*Bo06=XOfMb*&hkC!i zi(<<@t-Ddk7KFY`&>l8Wd_+xs1UYM55@pL1rp93;ppupAO=`F4_EIx#(H5-??>%`P zx~Scq0|bijw31+1QH8P=ic~H1wjr%}*LWqCQ+uTD2L^qbjnfuiB_<7?CNOV~b&_~5 znD^yYd(1=HdH$W&Wi5~CTF4|(t!Yu$5KH0g%UP88!wO~j3}bHB49p;zBF|}QS#m@T zk&G?7#{+62`5~sDXJ!rT`)5H%knWKg<1^+D4#8{N3N=WbD|SN>;lshcjMR`9yxswg z7=3AZ@Kr|^GgBB(4SF_4r$vR#<_Ry3S;K+HQg!&)#Zyj(T#QWkS0Ywb_bqM%nJr)op1*sN$QUNv zGJVcRbCk?#2ZjD?N&MKaRs%n<$Vy*<`^#KMfL#CC2{O%3WcmMwQ}Lp!2UIDG)pV8t4^IKEx8= zc%?Sg(2c&LYIM&DU)mm{;~SiF9Q~UCSFF`hg;W~FNs!7fU{bqLwa^4^01y$qkVt<1p2a;)X zJr8_A%W6zclGzcg1>P2_C*a!Z`j~EfVlAWnI8mSn&5O``&7*#n%_~U_vhX^$s#)~9 z??G^yh+Sn#+N~Kk2zN`015MussM$C)U-a-Taa)En?Y59|K}`UggXDS=5tmy{(g4Bk z^B5wTTk_p(iwu%dX5jdQY!`;>Y_GfWL0vpnt%|EI-{7#;oK$BjN+2^x7}yYE6}uZL zd7vZJnH+LAU&%_-}N!soxjfzr#Ke1{dEA{N@TQzcHv>KpJ0?@q0(8dYQz*zzeI z*P{0X$G8NMM2!9ynsZ|{qakLtWI>WgRr!b{F^<9t_owBuNKUH{B~ zJVm>T9_93r!Z)}Cz{^}?EE17h3F16Wb1%<)p5V-?*{7f!9i=VNtxs$sbFtB<_5_KQv}Q<7Kp3obhZtgy8k) z>w_rlcmrqv#33odk~>~k#gVkB_V)6j#Qn~ZYWMgku6+9gzAQ*E0T(_Ijy~mWCj#R< zbd{(;jbVO^kHI>$Jqj*SCS%aNNf(QRm6DUmP;)nf5s3aLq|CUl=k$-OhQC4w*j-Uk zoa|8bH;8A&DdFCHwWc0mb0jNwuV3_?dEnM9IcvVySAFtm(KB@X%!#G35zQ|{B)Y=S z7)$n9h{~*gRbXcPq@G8&lrgT+s7SyIA#(ph?>WR3dZD)=5Z{e^lBe?lwtB8AXywcC zPeUp2yNRuyUB^k&y-3<-3%<53O>%T!94mEBM|4?D?Zs9H%G(rCnr3w{V(|$95HYfj zZJSv19~`Lv6~E&C+Xm#9_1gc0_KfszaIny-A@8J%3|DBpGA7{LSNg+(Lk{74qMAX2 z)pG^d+Di5xwqpN`;lC1FNB`?8}y-^+0FfWgXP z(30;5?Z0LFWc~d<|CQWj0GQ&p75ZODp|6Bu1yx)>lRL-pl#{Zu66<0aHrAvB3e6Y+pGjMIt(? zwOsz~_Wmm%c~DHKpVA;zcbK!pS1-OJNCkF(**b5_i4b9p3gV`WbC!KyqG(Ia&20eu^(q=-+)xUCNZ z$ftBwJ&v$?(D|Xmd1XpAgt(^V1?F94vr4g6%9--?;it|W@{*s&6&qvcI0c7eH1NSGno85+Sf4d1{)QKjz!m#sM&QG6@Z1c*5DnI3bIP#l07GnrA> z;Mysh-;!N$$C05Sq9H!9>r|`aX7*NAEFUtDSQ}mcRHr|?AW$~TYcT|^P%E-;ZX2c9 zj>j_DF?KZc8A9V?V5auhKzqzpWO-VT^m+EEP+D6mth03V#hW}WrI%v2%iW?auAMt6 zbvMxy!n^67M`y=MwbL{-C8PCTKh2bucel^BDHlwsF6pmoC*pXiM;b3ZRP{_z$|P{@ zT;1oDRl_v-ED9H!)23N1Q)`AZ;dV;D2}>sC;0R zzI+Jc@TZke3M#>8RH{k)c)ab_{RFUFZ%{07r%#(;pB(0D$hMpva~5JkCZ%nR++4{# z#St*%6flDvKkVn-NDX$#bSV+ZhXy|nS3ngofb+NLR$E!f7$K$YR4(MZb71dZ=Zp1@ z|E;1Mi1~OW{;((ahKp1Er-QlbGg*y7N({#0Ple%igyI^2XI#Q2(Kx)MaQqpiO48#s zAuRVBl0<_%WD8j%MEn64_-ZQ=h1yGpuf`;(J1M1HA6vEIEvv-gABkF6ZjGB91~X^m;e8u) z-dCqX`f`|mP?vW1DRocJjB{TsbJni0=}F#))>hnz6#KI?bZlOoGV%Ux z=Da*Dy0F27GGHH+b*ggFkz``^WGFoI>+w@!#Xuxv@wV2NK4vuC)h8y70f7OTEEza>Q+^L!k9c>`&!PSnH3M4xY02$mpDE>FonwZ*at4jJja)_e zWvNnQaz0CJ6UHVJ3qOJMTkh7^yyA(={gdM>O1@ZG^^PTX!gTBDW6Q{9hoPoM7x%Y5 zt9=;q{zxx8b5}y$CS+t#LWDg|Y{_a0`)1uX&Kk!-?QOGl$~%I5DgMD_dfDyt7DhMUSTo-;n!KkTE2qxGXKOU$`$R8aJtX@L4iRxTxALpz>rwk{ zHt1M*`Q3u5rkIQEk4ol)0W?PrFJGSVnBSiZI1hdE{O$$l_U$qCF-tGah&Ow}eVaCZ z%`u;B=-Q|0G0er{uGkm^g4XV4Ahw7c`?ri&5pIhAch?~2 zPA)${)G!|p^D8m{8u>F}9xUMd$_0Jt6bg@7<<0!+W8=kNo;hMj06OI zZ`2T1AgV;q(yVt!1rjK3$D5?lBL$s}<#@IoRugZIvH*5?IZMM7gHhHcB}i;BS?2T& z&inI_+Cg5TI6aUpo`LbDvW0!bwJ^RI@I0kaMZd^Jd!e ziDqg{DR~zrUU^vB`xmiY7NKnii3&-Ky$fCbl-a#I_n?D%TXX%*6dFqb>1zxD6;u{p zF(gMPu3-@wCK07~M#r=}DJO*z-bBV+!~g2?NL#(_Ycybe< zT<6?Q%3YJ}JyKzO0Re0Di|Rf+1^)35^IeW8%2$uKW^~tFFbv5%RtK{>ys|ntQsOeQ zINa(fuE!L{Gs9P!Eo%-pX!~r=s4EY!p`>55l-{8XrYrm;)^d~Y;f0ejGP%L4+qggi zLlJSd@gt3PTFd- z+2g5&xT5znfJoh%O1gFO<9NJBLe@UO?>NTf8Z&QL$38a&Yg9iF|F}Fv-td`3HdzNB z;xVxJ+~1J^iqRyt&qu9Lamrw6e2~pJ9v|8M8MLHTe(ZiSM4S>3=gw$mu%!{su4VMF zjj^$VNU9aN8RcD7a2IFZb2bWd8zbkKZK+BdecQ>k1rXkHY4FnBlM63gn^=}r>jJT- zA7*yy!`U|nUN{Z8jq#Th(=vU9LdKqzZBwGzAai`md>m-?C1!s=PiUBd!EKr%Zju?D zZL+`?)XQr-%#twHZ#CWE?t-BfA=LjeE%3C_ry*F?+@>QA5~b?+ahr*SNXj17fWv7E-Rb}wILFOr5(_f&JXD(0P~*BdQ_7dL5_o6Cy*wqXgJ3yL z>8|ZaV_o|8*N1)u3y$LtjtNA)aR)sksA7%3XCnq ztlw50eYT9BaOlntl;&#VJyDEVB%DQiW}heEy&2E^tk@%!bfP?X@aee%y{pa2ByFwa zqlV#9OATmdEByIM>WohUnH}%It0Q$G0-O14+nXh&yM$S98#%h~k%h0uC0NfC<_nJ~vR`h((?KOZ9QlL(1-?_~R7kI+~Z5SK=v%R|f0Na@Ptz~7kl=0h>f;JYs z+v2`d58I&fc4p}IdwF785ELi%XrV0jbkke{z70Y96Jmc+xkp1;lSlH6SqaU?R?q!( z^(&0(f*YSWFbH{-+3>A~77i9i^HE4u`ZN-}DfRgnqakP?YR&lWz71NHSK0X*5X>t# zS+*)gOyB9OpCR;dY?9#uzow!;&nyv**KX`dA(u?D^N4H=Dk?hN=35XMzjtvKxYO!! zWeL`JPDM*$QVeG72vR}<`T=CY89Z|;jeGNR?dh z$=|$sE0WUuL{blIqARLJ|7bWIVSy9r`o5e(15T#ZA|!J%2QHmL7ZofMd$2BNTPvo! zvDwU=rwPQ|wS#|wn$VX@&QLZeT#K~=EsdFv)^2Ck2G2+_S>Q`bGkt0Gy%KBX-pRCP zvd=bHM9=3`A z0^H-I*cWL4>PRv z7l`)i?%7{q34th_!v~SZ3`DaW%*O~6;rat>JUMkDN?SbcoHc#rW&=9SfpW;pF@^&( zhywEgPAZ3(xA0m$Jxs4(n5Uq5E%3F?~x^`a|+E{dZG@9yIX%edyGd}iA zS?d>nx<+H6cJax(Poov~#&VO&Vu4itH-6|5Mk>$91XBtsxLvT*8a})173( ziH$At3$*f;;2K<0_-hojfXu}HT+rf6j?&izcXypW3gYqemaCaLstYHn=u*W+pp__*aIgkJ&rygxb+_xt%+Vt?cj$FPJ_d1{N{VfDdtI>|fR7P9U-=e=8T`uM_Vt>0a)H^Rb?6m43juaAM?rTy zhG?`goKTihT1r%?>SMwDmyg;>zHC<8d0T#-@l5jWGyeq=7Vo_l|9Vdv5VDu+xB@_k zX$I5K>?wy79?gg^?*B+M&yo2^`E^3&iKxpGUsTI*T^0HIaK~PRe^hHLeCXV)it?op zch-G``ry_5T99HzBPZ{7i^`8DT-c;cL@MSl+_gi(L8oi*CGUC2FA&9Gk?yw%=`|9A zIF;6KT}7}V$PvIs!C#=10U(F%lgWhz#n~wgvt82vxD924>uwlm!&e+`W@A5<6ULxz zwMKu}H9baG=_K@Byy@`c$dKGoP0p#$2n>1O_D`vg+rb~EfIaru(o3fWaGb9w)G2RP z!P40yHZs}Hxe>|~CZb6$YZ;5l1hWtH#K_%3!SK$jPI$74Gu$ zwFa!8QmhH_(Iz~Wga?9cU3yR=S(=85p*hpx z(wI;L^xOGyevX!Uur+^aUugIG!q(Gd;V#IL9-X6J-jxc|nt>eHypugpqUcM}gGj(; z8iii+(t=L6>HzkeX#Gury${LpYA){_l1>D0Gdw%Y__1{9E^{`j6pV2^DU~F^UcD$7 zLtT~>am%%YdKiVhqzk9agYI1GFX!z>rZ83uI0HsP=#DE4r#|3s`YSfwm~p8mb2b=k z>n0CiC9Dn2(^BJ|d0aUWz-GP|R?5p*XNMNan^tkhVsx(BO75!5m#_XV2aRDa1(el0`zN^y!cA{SoJ2ztqRQFk0}c!~z;}40S1Rd5a=` zk%`n=8XC~~1)e9JS*jZBN&9Ra|3=cHdG8}j+d9)HM|>+lug+SYMRr2XszifI?q~FR z#4lEr6Yrm(EY%mi0t>g?JTt*K*+M2C%OW}BB14>th~?}Z?6<}jQ*OMq3%*;BLwa0I zy^b(C+oq;9qt1SI$ak>5hZh!(ss}~@hn!k|Gvxj{_QTqyIKC+TBd^a)YzNIqR7+2T zZ%WLI@H@AK*!1-jtbw*4J9n(na7?%p+s?FV!h?xdJgw&{N6E2Eo%+K~DpMlXMM zawXb+Jg~V_vXSjc4IaG>tuNEmL+u0wNo#DFqC;6)njA@1Z0#JM->Nzmu*7Zm5C0Sf zGRMr<`L88l%-_QBCbE3;-S-GXfsgxTOy{~(W??LVp%fR!{H-y1C`;PH;Y(>Z{A;}> zCBAS=ed3vfAIXCM10vpw_AQp{h_Bs4Xb`SQ`-FdTIK^}-vT3%)=SxgPDBq_3P{ z3^(iA5+F_{f9fq~fH(#6ZeX5)LUHfwcZ-ugy|2IZHOTi8uQ5gk%NTMpHT7q(M6^mP zIs*C5{PRvRm`jof+N)@zk~Z+1rmSduqW$xWS5ZRP61y*4$x1|M{*)#7-z%;9Z>6OJ zLX{B-Eb;GL-}4OV7Q%1Bnz~y^NCi%$ieANlC9Q)^-2t5yX{~T^xumLx52cz;=T-2} zATY(@j+XjmB<`kdR%0^*YE`Sjq#h@*8 z6>F7{4vXGdf|OX(2O(<_k?}H<9rMv);xTafuYQWsYjHl^>x(&$Gz-&Wdyd3*0qu9o zS(9b|Mo#dVX5;_~gj?R%9)B#)LuAlNj1~~WH>0Kp9JOs$XNjj`LU~zWhnOTQ%TJ~- z4+c(%0zP?t#}>*r#Z(!<`~Jh}cGN$BDYsG}KBR0(S20_tYCNi9?&z~v4fheXmqB>} z8j}$JibZPTNwT0vBDU5?Gd7J^vlZ?cKrnY_QG<`Qt-(x#`_Z>eW#Sbh91np-YC?_b zID@2a>?UHgO754-H1BhWOOXmsN8vrJN{Y8k2;1pMTe3y{1UIy|=@Gf+Nk@AY zutz1m-O(psEc5m)RV)X4aqJvY?8_8LVwB-3?j4ort=c8iHQ1!N;`i(Qo#k*VXpN1~ z(YB%3U&E#ti{8Yqp}lN1?4N_P*R*OO<;Q0IMrME+p#_SM0(e%le+SU^cs*{7-eXJJ zh;b=iuxTw1znN@|{+iIs$F4c@g*onREpLQ8shBvw7Eu6-JGf7JWwQs4ozO2Fy^~?= zCq5`B`;UDo=PB~>l5^vAML>D}jNSMONCR{0o5jdp>+nazIxgn+l+&at=^ko4jQg=9 z$ery4Z%2s?!r5t?7sqs?zgH9Rn0Z~|DOpCI`YuQiSLsmAr zPSO5$u}5Vmwo5_+ z9#*)d9q^r0<(NQ_PC0TP2&c1S_3qr!w($C4{6Inyo&)6?-S7;<(+E(9f_@A zGT-VshEQ@Q4tWMVVCkQk>W)TqG%+9T2(70>4q0ErWS^>qaj<8>5h!H~{>HnePh=*> z05#EH3;AK=#EEM-xe?{+67>kbVmoP>rmmnvVgd9=1d)m?Vi`%I{%CEtGVz9%RIwL` zja?=#&H5Q{V#a6ChH_3cY@}=VbC*flz?IVV1$j z-M6)x`KM8fyRucx<_k}AtC&OZl#8G&Q6WShoqo7}vbsr88Ltv!-o^?Mi~k`3ST4W` zem!cyfq*A5hPR8X?FK%1G$W~wOYi|PKyNoXIGsDCutc01Eo^%~uc`NRbD+0>_~F~9 zPX83In2#1+87m)oMUdpCIMf1$0UX>>6YR9BPQntt0M7V#rqZt!VK42eJMG2al^J>? z-6aQ$oN|vWPyL%+t&UeR1dWCL1};5<*2N#0gJ-LV{nmNN5+1HziG=gg8N~s$cH<>O z5V4~49&e3*x>&O?a&CMzyD&ziIr^F4ytzqk{`j<-;s(TGZ1MG}|H4?H2W`%{MQr$S z<%0Q+srfB=35*@XQ?V_Bdd^K!ezWhjWq!{?Zhn{y)N;X{-nl8*{z|Zqn)O+eupz=^ zQG_*FUDd2C^xz@+%n6RSOXY@My~JK>z)^v&b@_+Sh>=Q`PI9T}$mD60Y}Z0##yDQy zeNnb|?jlwO95c(v6f^qCX+|cfU8TqwfR0>rRY-Ks|nN# zxT4pBb_+i^=Ig}wj=5KsZw`DZ>D1a+`}h`4Ol{=+bmF>F+tiuF{-6Z_ zu@C03Z48qW%lo1`y#as%kc_pA?OOTOD?%Wv@f)|a$%M&qyhoj^}07Y`tTv+F=F;&c!RayTSalrWaRYn zy#o(*HF5a)1i-Zry{e8)ae{_$B}46N#dQBIOVYD&yAeG zdwTLDI?K`B$;wnLG#4<67G*;r>XhyIJT-!udFW!0#Q^bBpe7uj*Z!+I?AGN(0t5ilgLShQSsi z)9~*mKl3ho>9uJ>oDt$jO6-;@NW8%E4>k<&=ojx_u)J4|jJ;#3^UZmwz|U5!)p71# zJvA&2jFc|&%<2TetD=}6d|!FoKy&f5S|wt+0HwD;C#jL z;}%-0b5XCGhQ1C@Y-vJaTvG3;S)lQ;W)IWoq&fI~F%D?je`(?@ z)O(jzq4n~SFG?V9x*KB4G-~bKlw-4#fp|@3l4QbAMWwBmb1I-ZSX8d}p|Jet+4hf~ ztk$e%W4xX!T|Edn=48nfOkJgFlvgkL73&>n(db%F#d8{cV`M3j$tpUvEvupu7s80( zaLchu?-9)z+h;ucy&jr-+ZevFH}{0MZ`Jm|6(Nr63>5>P6IFstk=Qd?n>)9cQ8id0 zE4LosX?44^2i=JgFSE&n2($N8e5UIrIsk=R)*8p5DQVD1l5Hstqwt-mvywyH-lXPF zJ$Vz0>|_g=HUDJBWQ!3aw9)ox7>jl<7Q9g};eNUx04aj>D?kGY#PWF}T077;biE1d zABLJW^_eYfS$3e>xD0zgYnydVymxVEgKZn|rTROuQ~nf(L4WW$>k*e#BC14)wqF5= z2&ww^EIWzwtfj^|u93Q=P?MiecQD8T2_XhSx7X0At5yRr`Szj>hmXkLR1Bk(olMP) zmop#jTEfR(QNItJ>AQb8e*hL28rtEjK-O2D$Fx?&o4guT$t18M~Rtv zcF_W0Pv%qh74nRS+2j=*8zaP@qT_E2@vXZUlGKobrE9Xy-8573UJug8%6AcHSm7P{ zO5bjima>EyHQT3ek$OGw8?-Fanpb46q_MKg&($!L>G9!7a!I?(+ML1*tHoUG4mHy( zA3kEW3{Ec1@GJBsMI#lOh_VbAILdV_df0!e*G9Uya)0I`(figZhh9kQJ<+^A;CM`X z5J*rfe!pl*StD|_J(pw77{E6}rIb%(M&&4~LE-HW7pc>J3N=z1WTzW6CFJWV#)-4e z)r0|HF!s{Q_f>B81=)+%V+}1QNU&%(e0`(56U{;ZESi`nT5}CyYJ;{o+7#ij&BJ8V z+Aa>3xPur~K|(5zUw(b`^0p9W%KTstl&FtVk;tAGT8I5eL^=167j1qrrscdZV7Gkg zOKUB=v8ce!h9LVFcB#d!Z-DJ!tfM^Z*zU$xt5We%?4lyKm3t+_lj|>I;1|h|U?1qq z)^FeEYG{Gt6!$S?9x4X^LsNDm|GRdw!!$g!A+rFydob?BZ@dKpm6cfCmX1Ty)!bBP zJwAAXo5G{LzCiqpO5lx~rB9GTJ|0ezReN@v6(RrhVOWjxQiuuh);;qCecWnl{x1G$ zTIL)6l`iv6CwY_#rIz2EM}gxK$4@Oa?I>*WG>prkQrT>m8egqjceu>ZyG)CB_c~#2^l48`SF=T zGK~v8txsPCrvI;R+D?(G~LjRf-53kkG68@^?{bTK@xP^YmaGc`$Gu6%~8^nF^Ymf)q%n z{HpZHuyEqys`P323gtto@sBD75>RFXqDddKNd~t;`CIWHX;5Lx%%n^tqnS@9f?5 zMn+(UK3FN;yY&(^Dw@HZN8y*-crT^g9_^T?Hxhj;zfKTl1?KmA8lSL)2c&Q?GKlKd zfscWEqp`qSKk`gx4yAX(<=;8s2p<(_sM)DaD>7xUVpEDYyhijoq_R1sjZfl-fBoh^ ze7jXQZE!hgv}rlqWC_3{^CGU=YY(!)Pq#A>4UnZ5yDhr3x9mmyz15p#jmgEZA)N1c zHYW!R1ZkGJde0oJmR7?waPa2ce~wB=&zInCxCA;FXXrNDHaI^aV{q6o(mD7+!-|t< zvd-Me%Jd6_>9jA%{dCQH}9Lmdivo|+uNy1Tr#Cny73q9B3v z=drCJx;mFxS|p9Hs|mrzIlQp6q)R|h{nX#zP^jcoL9V)Hr1%Zo+-h+QLz`Rjv58OG z_7Ga>VP~;kTMF(_`Ig95AKn~%oxX~Elx!ONk+KdT1n-B_ABYQ_Ysp>>vW zv0+c2k+CDxDMJhsXkX%gr>`KgFW-G#Enrl);zEP-I zJVqQdRDAIomt~-qH&wvfdEaK&{$fmSQLua}7iGZoe!;igILn{&qkpFWD2bR_0J_84 zRH8hg@sZP=r~hqLdiM}i4Y$)V!tR#8Y^un)@1zdQRH)py+j$PX+E`9=QbSs)^qpQc1)iJ?Px}+?P147 z4LGo7#s7!|WwTsrvveR1-Dzk?0t9 zF7-vasDv?KHH??~fEsD*_*VCH#~~>s!)dXb`x4}nGaYP8y87Y=%*>^3ME66GTL}?j zK%)o6qPD91jWI?Mqf$}X5_(^c!HpUp?-<8m|Dh~c@h+~+k}?@BX{*&3J8mV7y>-Wa zz4oc`K`Ku+{sA6|Fi7$VmCB8Q-=Qiuje6FGTyPD)Glhbfs()=iG zU`yl5CB6LL=uiAc`MM!*k=E-!TH)lq)cQvt0^mlVfA(Vevr+0uFzuBiV){b-GXd~K zS04Ur(@=OxzLGZcR)uWki|_>`V3H93Lo02pG!~T7nA6&fh{uH%A}G zT1N>L%@kMVuP3Y>y9dh>%@8xPW7I@D`Eun~%c(={YXy-(lZ0dFI66p|46y-S08ym$lHN#f1VM2(%GE_Bb^#q3%F*_VMCKV;9p z4Q<&2xVhEKnmq(8|DaI#?MTY+A;Plim>BLMV^MwShO;pDHqwgGgyq4RcC63!A@m4w z-A>kfDgYjuXu?q_Z+q_gm$-n}LFSU?+0vnnbQt$+pXA*rswgmaU&OxPdMN=Z*I9{- z*M`g_y<8Jo8q7yYjdGyG7Fc@}l<_HZzgwhO#Hv<}*h|ut9u-3A7TOX`7Q44)r%EPt zAN=ILvpgMA)hT)~RaKBmR>W9;>Y1lEHKpuC$1Bt2$3yppfLTzrbDjc}e?Ins7pf-{ ztX(;{yA3CAt(cMpGrwX`xb^J~hDW8C@Sw#dYt2^@qc@eM)jV5)*_~e*Y1AGIVKT*$ zZ4FIU#g|Vp9~ltXV48zlQ}S@T$gQoR*#W%oFTuCCZS4gccQxU9>`%LuN!hbD2@1v8 zNJFVeig#XtPz#csGytC92ud|S6uY@PEN{6S=&$LUwLeyHPms841H2Z<6s+8!>j(w6 zt@JD6`WVw=&9#t~;)bEHYB&RT_>wtQ!k-TEJ@6zFi4s!+x;w`u5qE>`(1~i}J7nn0 z%7vot4!N^~|L7ls|*g;k{W& z$GL-%%9D~ZqR>{)fy8{vad_JX_uZzx9Nlau5l-SuwWM4&Tgg{)LPc{l6Epgo;`rw5 ztDl|}NYNKjklg;P$2Pt$)}xJV3p#HIK}k?fDKG?sXPZTX-sancpj94{Zzq7l7vF~z zqj+qx86$~!^k-hA7{@5EJgd?`U^v8qv@T9Uc-ckN_yrO|RHyyWnLBSQOMVxm4J=`e zlO2O|Vi`?aBseY9m$@78-$rF~vPf~q#Yl5MnP2PI3J+#?!Zt7i3roeqZ*G4N+QI?{ z7l;g%gTBi)If9k}nE$Q)X&D?m-r_(4j#XztklWf|DQ_y-x*L3dV&nX++O!~BuwPB% zrbdK-7f}k`M;!3{j~9>O4<@#iBeKOW=>9sBhyGjnYQZNnYevFocV?m7stK|2qQAq|8BMw{csxT z6I6wve8De}BSO+Mu$Z-(K!2n9Zt_A+IIh981^b*lS-ocjDd13l9!#_m{wjoJVN>XORHincDE*oFkzVF>FTD*|j zRA!BWq=Bcv`ii;jD+V&F&2ZgdrjswXBv1HS?+<&3<-<~Dp-gJE(Q1gdQwmUPLjluZ zW1Qx9LTgEOx+;(pEehrLOzuEfQy(rTi#rlpnzT%H#@(b5xfLx*-Bz&Fjcs#pUD%2v z`dL1!aIeo7^iwEs9d~|X+mDRP0RBC~nE2Wt+7v`=w>=-P8y&0Eaa5#D_0RE6ND@dLd z(kVjpkx9MrhcLf6`e-@yRXezx6l~h0FR7Dfx_KM;hgVvJwakmF^CMxSoU-P23FlL( ziiz4zZi&&ZG!Or<90YhQRZsTiu&Je()Vo9sQw8leae}LlF?)qJ#c)AZs*0hA`&Rgo zN%;Ose^;h?wQBrNdi`}>KlUd^g5*DmLU4WmthOz4xmweEHx;OT0M@N9{)ioZqpPP4 z{4N^8%=(Qj@&X+|4Y}^Efc+;>!tee8c}%%~eEF}z$6xAbrHHQLq3bZl@y`Xk;hcOJ z=TYDhF$2)8jgP6|2D(fUk^0qW|Mxu>-RMivj9(zP0?qe8;6!#=o_Galay9yY#jpR# ziT$JGwnWS7swrBzm`~9(5HmCWr8Zd|wEHK(JaBQ1yL}x%0zqUWv-U1t(eJ2foN&&& z1OU}3Ae{qF;?XoW*sms;21Jk%Hv#l~A2hijFtd+VjL${;q9w0Z%%2VB?OOkA9{799 zA_)8&7CqyN%2(SKZ`Do!Vli_8dnZJnveJF78bCDy1pbe1Yk_f}CXK?n^>Q7Rcc_k* zNcuBlpUBE+C%i*_JrmuT^F(Hung9CzPzC+^;?a1+3~fZtfF#cKMaC<@aC$vWl>!O; zzKZ_aA9#LWg$7>?oT;y;-P*=Hm14Yl(mU}W(3|TEj_Y>-IPLeZl-G|xfAsg`NV|1C zAhjRY!^-{RSJhJQYKaHR=|1Gw7t;UY#@ADO_YaT#SI>Eeo*r~H$rYeG=|8>gKYX#~ zdc2$ee7yf^fd8ivUC;UYPAmZSTn|9X)GSK0&5Zqj&46oqUnA9B5gtqN`rY&Qm(Q^N z1v7E4nVI>oc>7mYVgdJ>`Co6nBCp}t*gly2r(9?x{(tfIU(xE{5R1QkmGUog@NY`g zHhOw^7cj)%)6=*Tvo1iA|8cfgWIw|)xPJeG3;&XkzqKOkHz8I3UrO@NZ~ZTr@`r}K zyjD&Xbb0iVf7GA9$>VQH{6El`#XiK53@~DVS^Rfj|M6Hw|KNvy`<{G?*&Le;h(JQ< z5-|cEm}M^{h%V|ra$e%T>=|p~O!rez&FFjE^xdi+kZr}RSVNE}w}H)*IOV}3W-Uth zR5ASmiRsyf<`gmW2ISGCzJ>jU8`apPQXF%@&W0(L3+LQ;Lo1^0&7IZL@RA8i!AaUX z5CLq7l;&IKuO%KSAEQyb4_#8%+Ik2eZ%oH%2W+0|TmNw3cQ}3JBSNj*TCJ40PzkRo z$kHRv(0wR$mO0IRBW!ssOJx9MW9hng;i2tBI0ZgaWR(_w10n#Or$`9*o_c0KvD<5C z?#tDaVe8j*jU*>!6!rJx8S-Nm$4`8Hs-2xU$N8fxs_g93Bq%bFi5HC_HOz_3hPQMP z_l6>Ww|b;;MQWe!;~(7l^Pba7vo)LhQ*zegbf;lW`?qKD?rf+Be|YUQIaXGJ)g@6` zC3;e#Ms5DTL8zbyk9rt*)!(lgK#62jNy1BLuBFWn z_H3Cfn(5Y+$%!Iv=|1tN@xgH_py5Z#n>!RIr-O@j154U>*q6|KhrUM~tLlfPF0}78 zgm~Z)A1=DCM(yhb_FXNf&pW|*^%W&Uc^cOB3-qF&Zy?7=a)E>X9q|OWpc>wb^DtQ9uD^hS zfWO+XUOP7AgkYj7Btts_y2Vqbsb;f;E}-sMTJao8q8uhH&-L<@kOOq;_y>zNO4p&D<$4PN`OF~Lw2IQ*+xVfDg zj_4(Cq^Ftkyx=laFWfjs1eJ$+w^k?DOtd7t?uTf-kbsqb>6ZNk+J1~41llMPf2g1O z#mIt!>Nw#hssOj{K>p6n`US_!d(#fPU*&h5?7`&%+P z3AiS?D%ZXgYd6;OS0Fui5Y!~=jx+SwxoN|)dWoNm zA)>jG-Du^s@j!cpLYueX-l$7Hq-pG@Xc?TLr_lb!4q}4)kL?A|DL}^nj@X}gGJhXo z0x{%u$j+^;vt;J*PBqH&rfWNjEx0*{+RpJ#U%<1a?G%f%M4oV-?#taJ!-#o&KQzqT z5>_O`*6HG=@*SA5XdMmdojjxTMLrdK289KnvaX>ei9U*xjnp)`^eDHqwSB}QZ_dB z{STrGe9&gXCi>*t2WpKM73~FT20cWe9Er#8gM>2c$9wZvT%c2PO43(tgHv*ZuR=3 z+MIixaQ=pR-Do_-j%7PaCvw8`j*4u7#-GvqKmAFu2)7~K#5AZKLK-h z_?(TKh;XEIvgX-fWjMuY#?Ob#5JQ?Wg+4-~@R^phS6m^kQ7K&#U?7`M%5O<}Xm!ZS zta8LA$6eNcSQ@sH?UH#z%x9{lsg>f4dl;sOS5(J~aVc$1t!@%ldASfIMhD`S#M z-M!Gmd2#=l`3Zpm^O*o^{tqLgy3tUxHqyLe1Bf`yAgxAK*%O8#^0yEgw?|9`CUDa! zAg$#Wh?1@7$IGx;j6GD1NvN~$WkihcLJy(psHpLhxl)yTHof+@5w@<3G9pUdKui`8 z87&xeM2lr<2YdeD-Qj*%7+WZK-;7@-lKTjaJ>Pi%3L(D&|n^~XTIk-C=A5@8OE zS-luM-*)kl@&3OosQwi6|M{uo#eu}3p&UrLgsmha3RRzxon<-;YSM;UYdKfB7#nBz zxaZfZPU?m8rMxh<>%TBZj~@~>bxYW;k6Sc&P@Y%3<44OZ${<)O&sz(0NjhpZw5iTgj+qX=y`L#EJR!V!t z7RneKJ@c`9Uwd3=Qo1y%#p%C6Tg+&ewRNRHc3=sgXnD&g&_!IwZ&un?xWZ?zIrkz+ zvz*JXJ1YLeY2Dxdjf(&C-cIjU3nF0|Twe~-0uwYNqw@;(sGWQ zdC3SLqlbu3*q~3PVXjQJ5Vn^Pmr8-`!MnbW+v=Kes$r{_O*@WvY>(AHp^m80!`{=> zS-LzK_)*Tzjg8BVk6Zq1MSnSZI?9#)eDvM_DrRUsu(>9FFHSfd(NI<6%brb`GcnD~ zCTw>9Ft^lx0tcedsP)TdL`{;Y)$MjV^Wyv<&?2xC{$7|p!eFD1unnzDp zQONv(x2BQxY)su^=-siF1l-YRuh%397UJ*FfX4fK-dJPlK6IK`pJj}Fb-`M`kgUz> ziqF=j2XJN*U4I%h%}K6}#-fBre--S%ZY^DH7iC^qDGY%x7wMxq*wuILWgiNfcC^XV z*@9)7u?=W?ppJFkMimG(9U1B--zaOiUF zpXO~;b=oRE@gzo2nXjK_(Rm2B)hr13+nr{TErQc5E=+%8}Lv;gycB0qB`#ep4l z5XYCC(kYF=1%|a2&ztr&@DfI3@)K({{9=P`sSktr%vT>AU6y2F5+w@_-AU|&KKe4X;@(X)VtAH zlaS+@+F*{rB_#(%`=`@Lw7DuMGTG2L3Ap z|38ues-lJvlf=cF?eE?t20rlb{V9Ek2U@ZgJ72BN-z%~)@^AL0f{Sd-C#>|Ow-Vhe zUW)<%D#J^Ptox8Wh69{Ml&$roP>C1S&;o9Ss_3op$c=9$O2tM(kAxLqIrY0mCFe9w zqK>bY^Xn4ztg7{obXS9BNn>3J9z~cYkF(?+(H~}3R0eEfBuwh8zH8Hx9q0aXOjqQ( z+h*|Q9PiHbl+Ff$;rJ}LH1>#ovSKNO;ITt$ZlTfJS;jHKCj-14C{_o?WWUr&00tIe z$564oJw#rZ;rB7u{q^~Y9st7bTUZ(yYV-Q1v-iqr%9oST$XSMr8A*h-06n85_4{1I z>_Y86ioOp=dE)F4w~r~LmEkG@HzGGyJ<2oi4sK1gtB)U+7!TIUU+8J~uMRQ7 zb*aFe{EM4F-Mx96n_~vPZ!%fyuG5Uo$>oD*%Za z7}j2}y`FV($(D7i45c*mQQh&t)UMc#poLnaCHEqcmU}So=4#auzC6P3uemW~g7SSfr?bw>Qt zYTMf&3_z&|`ae>0L@p(BHosSjGVvg~NR#tP3`AdP7ZY06hUoTw+{j!;j8Htyd@~t5 zC2cD~B&wOajsO-PX=J}Za6VQae>dyNcyz(@)c!FyU%yB8*d|dT3H!=d{Xg}Psp=!j zeJ1Jc$1r6Tqe#?AYFFK>RoHgXO3E8-B6)*P$Dr3^(k%GdpXE5+#=J^$I;l=wtHYcq z2agSdFYh#2rZ5jDE;`37)RCv(dwWn4A8m&{208{3f}ax4jYXr#0u)U&kfgyoD)F3V z<}YU^FeOm3DAv3^%uv$S@cd^Cfu+@761$@4IO8KbdTmAgwSzx*?|g$`RHY_f7AjF7 z1nLBk2pg#j{jK$4O2gAY%S_mQbF)2|^rv*=iMTb!i?tO>yFTlsB5T-Oiych6IZn8+ zKOU8yUy32VUyVxmWIg8YLZaR5a;2h-Hdz0CCQzmxHleAk>bEE6n z-QpLBM=5AkoCa3GNp8-h8aDN#II3J3FTMdnCT1(_C!#4UYBgraJ0dD!njPOzw*9@t zZf%|vWX!+46dkg*mvdy1ul5cewr~{WQ5tg?+iogl-*6XYLK|`zxHH;6(Sy-OexKWB z()PAc<9tj)DlLI#G(cag-BbLJh#bkJ`$7qpve#hT29y> z7iZX_s5=^h88r=Vf=vrk^m@&1_wC%0P_j%%DhC#mHmPhH(hRPQ8rOyZ(DBh`vG0_> z!^DJN)lSX7|G?*t`%r|E6Ia>OlyBpJ6987CdFmfC>EPR^Y5=q1+%eNqRV-qgsdLLn z#1Fjq0clfYDjICak#-XZueBECNbszKzm1zL`U&+L(X&Zgof=3E3^$XpI@n35=(EB;q{Ne&)Mo8_Ghl*>;{cDu2=e-u&d4*Gm~Ah@ z5u2k>w&~4k(Q2v2h@6R)XxIBDtG$@}+X{pM8jqy*3+iT$=F;m&_o;E76@eAvC#;HA z#-6Og9LVDsR~P|UMXdd{_%Ut3nXp5``|+72iWg(27*q62$WA1i&tF0f1PDLJ3| zP0@a^X}EyKe0y~e)tgY6;F!uf*C}vDQzGRceghdA9^#0oDwpwt>AgPQrz$twng-BX z;6_1~X2qM6ycEw76rtq>H#6eUEA3z8rnK_q(Bw=pEIG^{T^YvZK8rh#R5tJez~5}FAkKN5kzsU9XTp}%h$@BP+&+2M4=Zpnzk zLe|<*;-Rq#Y8sci#rdb+5Y4ujsL+@x1*24F2i1~JMft3$*ordm$c>Rc z-~_}V%e%=?ly6nxB3s>SCY5PsCggl6q4(5v={54TON73zcxv7Re|NAMbbLF)R>beI z3^DfBG5TVm8`Cj+X@jK=&rgMw1JI<>TuqYQ#b%cvL|Xlw>}IrkNkfktMOUpUSuepr zdBeOb526@dAE}f%M_68hyWVr}EmN|`_rwo|m6!t*q%e-~ zN)N83Y>q#iV&kkTe*N;cN{yFcoxPjpZ7;^n1T6#Xi1_Un`vm8y>qEE4eEWmok-=oD}ediF4^uweLZ z?ZK(G%L3lL$TU~D^DNV#p6n>r?uR=9 z?T@$iQyWjj@OWpj^22!yI4ujN>JSXCHiYbRR@_C5#!TSVb>-#eu{*1`DYT}@VkNWs z()!f3SQ{^Sx4=o4bOQ^CPZDlhmB>}ZXLZzmGpgoC)nS%^kBl&3{@SCN)dnWbE)*;+ zL>USK@vCM+=qqGx65#4e0D7JRG1udAG8&#h^Cz%-r!PdNKT-&Z(KKr;G-K zWQL4$XUu`X4M!W4O1w5qU-f0ck*R7lc4aWYH)?K$!`q|28}@BdnhZIt&JluVu z0kf|6W8u?ows8n(2a`72;=#LQ87AV_sakPe7hSQ8M1yKBHeYSlOh(p=`KQ`rn;Q>K zgH=nbzV4H!M~yx?IP+OD?-faz*P<>7K|#gJ-9CC@>+)8C95t$My?Xz-T^&HI8=#`r z_KZn}LoCM`g0hQh>Z=(K#e{>blnm+Zv#>$(DH)T=`Z==y#(~AZbExs(|MTx1{`@mK zp)HfB%5ZLzdc2l0p-x$u=7Cq-?>PC!SBktKuBTS|j>c?w zR)H=bH7s4`8r%(44Xv6PKQ5vTu4eqaNPAOX2XfE#1j=Sb=$0*Mm7?Qoh=9KzeI$R* zKzT-ERu=cAu&BVE`7}A$gDCmazGLpb_dKh1J>D-+r@(;3Rm-Sg*W3+BV`-D453yAi3tvz*)y5NSEyy!+ zEH8C&+-g%(>gAs*YC)2sl1PCB(XIYppmlET&!^p&QtW1zwX45C{kXQN1c!>wb8XcU zK`1eki?q?mGqoxIfOfIE+a^O?l2eQ@ey)k-jp!pY z)Yx_D5u+#Dm3j4Yns1|PpxaqR)89|gaqLi{e$PX-+=^8FP3-8&d1rH!KKr!JcwlnZs< zddP1`m*DNFj;2I*cAlu(dv}(X$i-ZN1H$|W4Lf2>dHLBB1M5RLLMX3uyQipqzCMsnzDRZg%r(2=}phpKWIxj zQ&%=!oilNm&kmYY_T64hmaT3uae5$T>$SV#e>&_<#TPr|LClao!sQQh_9o2=6_CvD#$;5pN~iG z-GrB+$FHr<>>@}VMeb#KCv`U$Z$$Abuc+;3lYQPkJ5E3Nd95+CJ7RDRPt0%{YV28(+A2a0~koODKk~T2dq}&-Lu?>yj%qmXs;Ci0y%Zpqes!+gq^gyQRQ@h+4q_OiN#1OuY1e) zpW;IpdSc5KMY4W@WJfs010-fJQX~kxS&ESV4}0$c7FCnw4>vgpEjiN!0hK5@H-cmd zB1w=WAW1-SrWKGRK@d<;f}lj91ql*cGJ@osvt(#e)6h-xzrHi?%sVst?aue@{-2$1 zpY0~xTeogioeHPUuj-srubR#0YDy+utXOIeABrkgeWS@`FF0Qkf6-=|8vxa`Bx#j% z&j8JOke4LSo|R+27sSHJ4A!1E6xide*K$4|JuLB(+-*Uf0uDF}-k_z7kV)-HG#la& z;qC+RK!zaC!+kUZWUInQu(8;&dh|#e$40~o2868J$z5QTj#qa z6roCHTddWcR+%t$90aewo3dZk641KDAL$cp_w!yS%O)+}urq5E3o#d059mTJ4(fpSu)~#|CDqd4vvA zf|3pdyv<;-a@8;W3ue~MnWBF3#di03;W2gfj70-S^pI|vXX4&0fiKljy6Qm%-IZy| zyyLUPzi*Au8sF{6l1aINA3&wnuwT+-jMXa@GSxx60G*6nRsL z;=?;7KgPvVU|F5FoV`X1x-(O)H)@|Q@0|)|QC@(&0iS(A$90DY#sClF5v8jEj%JnB zG|njJ*wsV2N2^IHUO|a(O6KJBnU!kuAmkOoS&(yaKBc$OmNUum=W|XaOk)XGukkt^ zhdsJhYv_ArX?ArmkS7g&Hs^a1xt)K-T-Pt8U$vVGhVMGQY<$Z|ncm0-Z^D#yU%v&s zw1dZ0nfzeH&APAJPlj+gjlViHRJrWod^?odZTpq}s}}Cio2EAPhZ^bnCov=tG_v6P zalE2Tb4kaE?#KH1JKh-b!_?u*QdfbUVU?QJNCpIRgRPrud-tDr_*1RY zonQuCL6@O#A38eGTGz=S&wS=78rXdoCp@YsU5wwFk68c6OkLspF7G}6^5q3+ta$D+ za;~HxL~maT?*E8qc#n>h_mFOHHJBiI_-pB=X+)aUz0g$n+*oabocNsrU)0;9#@6K@ z*Q8r}QVu`qvJKV=z{q4umZ%(O9`oS)N;4YALjaQ2!;I+#74BzPiGf|y+M_F zB$c|%(Nss7zP45zVwH%oZ-`I~{R~quGO0$;FMWyaMMVfaBI!xi49ldVyM&XlUDn?m z@D-|e*`0039DfYIcK$${anh>$96S1EFob_#w*k5k%qnzK+mdFe!Lis~cKVpU2kZLv zrRhirbWuQEes7oIUil>6w+ql@5|+3I$BgbFzV?73&$QG`kW6(%8r@^~doJ z6IU&stLloZo)?qEKu@&TSPsD?vw$8(h6>s@)~a~=P$}_%4I$7^cPAdGF(oR z)&Aaxk#=y$lw>S9$n@Q)zf+?Y8vLkBiCXaxYp`$U^0}SpP~%Nr%qo2iRa9Be1&E)K z!(AaOPE!x_m3rF!nonl|Pc4=NA>QiPHQ{FIHLCzJ2NvOdoY|m4x zqj;dN5y8$()0wm90>vNA-7BY3YIqyq4!N>LLm3|lhtYcn^&|eBln#~iL|V@7`cudJ z4CT+ZB2Ex`P?n7b`aF?ntWf?&G05owhb{ZeLFXY~1I83^hf%ZakQQ^gEpZjQp{URY zKD-Vku&TWukTh%Xi~~LgQ$&D&Y`w>H50^~OS_=VQ&ASdDlxl3*l_W7%nxh%=HeF`+ zMbk`OSTR7IpwixHj(vzZm4UHYUE@Ikw7cpELb+L;%~;jz9&A(R@B@$g?T@>)pWnIl zY0N6BL6-sJVSO5>4Bw^%H&pC{hI^JF?YD);m``Jl>Bm_H&StN93tXu?WvloIEiq20 za>F^=`Cigm+<31!Xv^^FDd-!)!y8H3hv0CU?e=w>4qzUsacZG#!K$E9XMCC zo!oyhU`F(tx*CLi)1)-=_XmWJXqD9LqFB#LD% zeX8G{RL_fNp#fVdE^Fco(D(`NN7|O-d$>HhXR%cO{;*F^FVzi6RHo;e;62dS<^14q z5{UT(QoUx0(taj0SXu6tXK_rA*4M6?-Q~|4r{k2y{m=53#_NN(%HZXbx(5#)W`rG= z=4S}6(IZ*LXiEaB*E{kTtO6hCE&AW+T(g99>Ywt}y~6Cn*4qo4XwV+U$n(yaX_M;9 zLbGdc$qwmj$}F-|-}$n;nl4o*gu(;3PxOc0)6RAcrpDKmJzfCt%z#PN_4egu`Hg_B z;rE$xUS|9hu8swBp3uubQ$(J!Xm@DRXt=f&s+JNX)ldL zGQoFIV-&|cjSd5R#@&CeIeaCGx;w{af1J>-4BC1IZ-ZRgNM82}xbGt5u23KRUX-k+ zT65v)F$tYSIi019mZessxv73xuI@l_fyDMwdK}92{koMRatU41${2L#)%QTr!S54t z@8U70*=FdTwk(3UasB=37mmYrZ8tWh3ZPdP9Ltx-otNL2y@4&tRUm_A9(13y5wG;} zezD<U&`iBnaA6bOgYBR@jcF%(KF6wDfZoqRu=x7OJRCJF#`;LU^#b%n3rD|UWa>EX zI0Z#tf_1H)eUJxc3VhhlKsc5g=;VlXe*l1kUSh8TqNVi`<2e=b0<=H_dlqC&7wQ+9 z2PDynjo5s#CxRur0KNIUoQlt)Bd{=kJ5LXh_=OBvJA0?8K_eL+rYo1?&&G@HsB{|X zp^|U}kOSK0=8ZtufR}?0<6Wq+2Pbe4cS+LolWSW!ua1- zOe%u1!Musn%>zf%MOA#a2XnKM@L7i_$<59jxOMJ3&ttpbD{vs^TMhKG?(;ap3(${4 zYqT1U3pTI^#^Ld!O-x=Qr`zk)c6NSdFLiO%HMkvqM;WyDY3*g-9cm1VV^AvAy;6nS z1Q==qz0|PV#`zk~F#}k{7TKr3MF+r;WYCtRKPG7U@s7^cmmLU}7`g&2R&78a`TxTg zG=6Ver6MZe;DB%0r&+FlUy;y7Ml`@DR2!gZ!t6z>G&P82wiD3KH-JMI|7&~1KlHsj z$CH2R0^t9p=Remz0VgqGtO2c7I^IR-vbl|&*WZb^JVacBR@H;S<}fS|;O*&lJ>cJS zCwqSR0+jHuF(?kP!;-%0`CJE6qN4O(??g`vAr&x}gzRar)1G?^p>HO9)#=+q5!#{R z-M8HDy)pL52}0FiyNKa&&O=wvjm^})$ek>4Nb=I;uL@eF(-A8bn41D1J?w=b5!2N8 zaPL2Ignwv%qrY&G=l{u`w!)&{>cOzVSW}Y$d(IiPxnI-IKdH(n%ik2LuRZ#Y>}xft zgg+2qBRhZM9mcsp(QE#x(IHaSUkO73`}8kx|2wAs3wT8AA}ghx-mrain_TYZtA~a? zVr@JvHlVK@3)vmj>$$a#{Ias*xi{|IF9ggVQo{cOyu-uyQeuKzdA|D&UYf49EC z7n9`V4(|5eK3)#CZojTP9=MQ8OLK~H{<`4gGvbF}v>PL|EgD*m96Echz*Y>iLJQhdo%5Es4Q-XGNn^xWtkhvDGp>kzN z5sd0_KQ6Vub8RVb@(VJ)uHO%5SbBLT;0-${nedKeP~Eq**>g%4=&}Y{*AO%sH40IQnMd%4M8?DC z7Y^mIDLD1yk0;hJw2IlWrNP))`)-#ozIp}7f+ux<{4StSmUQQ$$HDQ z2kA#FlJNdC&DAT~`XV-1;{8boTGjaa^E%2tMChGi*^JbiL4!#L0EOT6Vb zb6<%|X;wnEADPNu@i);(AKUL^(AXW3CFTj7QI<6)1|I=!3O$zmuz0HX=zN@i^?>{u zl-eY`ADSI?g@Gl7c==-MR30U?`a*Qodd}U9jO<}FmzAubO2Vb(Yt60NUH5ng#8f&S zdfo_+PE(fgNj?+ES6d+GDQwa(&R#s^wpB1czP2(mLCPV8KgzXHrH8+4wyO2`GmUm+ zWUEZ6`g-FtdqObl)8Q8*N@PEnyvin9)txA5wq0LG(iE;86OstL@77Z>TzIJtBCx$h z2Bgw+d4s-gW86&V9r$r!(TM_Kyn(}6nt5)~o(*qIaNLLCE0t{KnLwKFyDlR=-l_9c znx!WwJc^u)`jBoPnYGa6ovrvOGHbCR{_EGVcp+Vh@oif!&C7;lHOG-wBVY6fMoK6R zYUK1>-w=`nVY`@VTix+M3OU24_oi~~iu-Cb=U)a6Zb)0XElSbD>j zR;AdPhAo7~Fw1?M!uaQN&d=0SNT2+w6`G1?uLx#0WrEyJZ>`0Fc1I|UeLt*lX$c9R zhab5BNkvLkpst9f1ze_6B6HqjUV_yh-Bo0G67Xi21G>vTvHo5!0fi;_c-PXvF--Hp zy`O7iMFEGb+X@+%l@F?6*|tlOv$fHLr;h_~37pHE5L;B1(Fie9+n+kc$(wtO6oA7# zi*+EAc8Pn7`oa!3Za0t_f{L0n)UvJJB7-@)6jF=qdEWsIa+xfFU)y_j(ZAy|M* z98C7np3wd_RXZt%NjPCxvJLmkCoFAL&1BQ573K-#`YJBZ4&J3iq#0aGa3gEfRS_=l zmkgNrG~xrfk)V~Mc}-71){HE(%In373|T5IYjbP0M`5G}mw^->zvCDgN4549U&T+Z zy+#HZ{VMi(`E!A7i4!N}SGL~NsrK$maB*+A`DPV;dumc?Q^RYt9!YD`BICclFdqNnkpvPQvJ&Zv{a{Lof9}&e(@zX-)Gr<(uAH^r(X`)$L8Cs=y+rvA; z=wYYtu7g+;r*u;4ixGp+W)-Jpiz}vl8ausunm&W0$NPIPe7AK7+0De&l0SHIKkDcL zD|Do8(%P`?-yE_1QAYDU!~1FaoQTo!N5)r+YgyfDBsEgeC!hOjlX9=VCwR-(UsVwm zMPZ_%Rp;_yUCW6SKKZM=%|ylM4!guI5+Z|n0?c%&AdvcW(~`)Uxk}PHn^_~-wmh%< znFJqF*Ybhp;p$urv^_R??Bgt-wqScK9vh!GwdPaX99uMB;5l*`=7v{uTc1`dwc}~3 zms*wH8)8buXPqy#&f?17PXvzSzm|0wxw#-y=5#9sBiKXBX52qOB)~Os*^u$}E3F&1 z!=pz#$?->Ce6o0TKRj)f@sVD<$vNK<(>MiTwInhxBMJV znVjViHpk^rx00`io46wUx@k@D9av~;$zKzaE06)?(GhSb->xP#!B~Hm<1Klzti<=@ zX)ix}U8vcWH?Qt|L9zL!_?~KOi;*m$3S?bG0>+8Ixa2n4>a2RxnA; zEZ~Nj45M=D5Hsbmw-RR!_hwUKHH@uQ#$J4SNLlvo;lY04PZe2etBdrF{ms+YZM+pc zuibXt_Us*Z@(QpqKAr_`MQG)9D5QCcGUMG({hq-Id%&qR5E?aleH}oU3*`{>DA+xCO}jB!Kn0ZwT^c(di0H? zo{#^2p`vc4Iq^UPGdR#^|gdvW%A;ZR+J$7uExRVP=5}R^wnwS@u$;qyw&m`su-&cg0%4)`X{L44 z`gF29DOpA0$tH`4kQVI)ld|($d*4_-2~YgA9KmUNza5ym5->r#GUv-2Y`M%&AEr8v!vpQr30M;rY-bGuxp-5mdtwY% zoC-+-Ca?}4LJ42`_FcO?eZEL0@U#=r6GR&kGrrBz7EvsytL9RN$xjq@^uNXbiBRj9 z`&#`;OzA6kLhx2B&C4p87Q}{kdG6sY<4_qbon7G<^&`6Zd$znjTC^`lR!2$Y4rhnS zTrX=OMQ%N1gpW&o?4KSYFg^}HxGHHx+QaK23Rb-N+&M*_HK}ZPq=?SyMsKtBi}m^L ztG8}L++M3i5>#=@3!2__Y?=fd4a+-rlF!$ViD<&MAhP*C_3 z$=4eVfl&SM-IOO>n zQ3n?Jyl*a1txX=&@2!>7=q}X^WtpbaN0aMZ(M5Zwqf-~DI}|+0+o}nbFC_J>KGUqQ?`wW^ zX6HWlrtu~snPxY+Zn|{E-t;h&)+BtYIO*^KVV@eoJdvv-pKs$zS(b_KHJGz~=^G7W z*iqsE36DddBdPA)MIu)Zz7u51^RpmYR(a3Tv3G$Jl8!=2N|*+H*&FpTZW1Yj4VCo{ zQ@5(Rc?f!+Ct2io)@tZdOoOTKE=d|+KF*!hRT`(i>*89S%^$+d^GS|Lt4HBHGJ$iH zo#DR8>qN;HQSB7fCa-(UgE>|gN5 zZ-7HBz(?b*4*)he6%>92`~o4iqQDKOi0Vzw8=N9`w!mKif&dTx^jE}8|AC8xozHJ^ z0%XKEfgb?A{Qgwk!~NHz-_v?1Bqel%Q(WSAg!3!?heFaqqMYKAe;Xzag#9YqZ$Riz z(ZqmPWquC=atD5X2Ux#?f06gAphkg@9XLe{Y#kjqc{y*0{YIC8t(OB(kiQ};T?cz- zTNRH0P7B~oQBG+wQBDa_Nlwe(Vygm$2BLd&{szzf1jRJGJbWMjfs#Mv@>}Td#N7q* z_Of;Ne*7ylyTIRrwK#ped>wwjQw3t(a`1Dub1>9U`4#x*YBY54_VD$xbMWT;txXL7 zK;3UO`a5;MgGBM)E8@@e{<#@`r6_XO_kquEm7wJY)WUB;rq1>Nv=kGSkooOa)4|!% z38;@7l7FfnRgXs=UUwhc+5t89H>DHN0;$;c^y2vwIs_;>^a_=E&RM1+Ju>`>r2h>)6yhU>;nV%j^lB;1~KVo#Iblk%vP zH`5yqBCm))@Cqj*XJBMvX5r=Izk2Pugrt>VCD zIyt*|`}q3#2LuL1L_Uj(j){#+d6}A){_6FcjNH5rAM*Duo z=c z5)hL7q6-h-ANVDpCM4pzK}>V=4vDQNEw|WHQaY97_vOuGJmQ8(`UhTvh5z?*6akWsEaAZr`aGBmI^}RX-ReOLq{o@eI|W2ewhg-un#(P3;93gh zZ$G1x>x|xQ0@MzFlyD`ySk)uF{*Aips5Ap~wTv^w2pPCvgXOlK0uIbQZ0cVL&AK1> zx^EWax3=Hzcl2+m{Qpl5!=rqK4Q##u-5)@q0IAhHZUUu5Pq@_4 z^-02@aDhD+G|#eHLem?JYQL=mQ{32Cs2u4FA0vwZ5ab2@N#h^=JN=hj)Bi+NYCIEe zutt^`mk-;C&3`l8CG9l5>SYw1CX^HcXi+FbIB`7)CJ7I6XGRXjeaq&G8u2$f!joER zf*_}P0)ehBMOj&%xD#u-5H}=4#77-J;Kb{~?&8~iV`5|X;yY2mN$^Y^{C#aawg%mZkdQlT!vQY0_nqO)te4<5QzA7hzP+9P~rn!1+?P zlnJRJG0W`wUTp`RGbyg-|ExRS|1t5nfV1C{WT0Dsip=$l_kX~JrW&}1|Mgx~F$vX!grTw{1r_vNIou_R6iUKL z_{c~>IB*RPBUyss4(PYLS~E%ygD%)h+O3637}5N|n{&^U7^_dXvAbt2e31Kd2z zh$LExagdFSAD7cHDJ6|TKAU8`t}o}UvZTD9}A|gi5h(ZC@+f_0xGAgNx0ak zrrjKJx!oeST&Ikvk`Oafv@uWR^X5?wJJBcZ zrO<|h-BuTZZDK{;(7+nOJDRow24ucs#-_>GW!y z$a(my3y_A6GQ=vteaWJqYQtZevMI3iL5g~ZSUVp7p=91YrOOwfWc^!!Wd{@V$b75{ z6!L68Z;AhTrNeqSdmuo)ThZVu|JDgpLDo$oWZdM;6b%dcl&Wg4!p` z%^No_iCq2~x=QwtgamGDHMk#*)6$5CZBzSRfO0dM{LZ5hE3!+7GgJiN4kHM3wiGAO z3Ul6zLm;1_VHgs%Y>ybpt9_PWsn1yy7;!Jgb$#0xV5#$5oU98B`BLiXLa3pRysl#0 z%$$W3i*q!QD$F;?b7bu^{gHliqv44;+H$c}!{}@9+v(?O&JSS?YsoM7+CzAk=J74j z7R?;YW4<=XIajzsvc>1-L_+EvyLq98cR_Bux}mK|Fivwm5-^DT4ttYBb=IVU4&A41 zuK~2*-wf_aZcSDejEZnd#n0DGlnfLC-M9ewBPh%nbk7Srmx zU7M`?Zt*9pN!I3HFy^rD^dmq~e$HQj)XCRi4`8Q!XZ`2TvM)fl+La+H<6YL31#S9_ z0sc$VW==uJI|->KNV#ST&>NmB$%!zw@$o7oVh2z~z)b z7863*my=Fu8g5>IY%odZ45J5*+xkETjOG`h&v#+#>xBf{Q>R;~#{DqFq9wGIr?swh zEE82Etg!4pt+PYD^L?vh`E-1s>R|70#{&q32sf`n)gnt;Gtx`FPE3cVUkdgo^r?z| z?+n4SYz!RV-n#%@v1maYZ^Mr4Omhc*xuqoe0eEs5PYBUkbhBA0 z)dUk8hy`VT3@&KZ!IYXV&PRzHlVt?=l!{F`e|+RHn``*Pb5l2D81op`1#6i<-jc>e zRUJ9DKu&p;r~q2j3UIOJpskV>XgGvg!J;%I$Wp*~9PVB@=}>P{o%}S3JkgYZ&8Bc8 z?hJVZ2Q)h!<6*5@<}3E6ClkvByB~k+1z$w~M;(`Ul-STxq1w7Bn|B|wQuqM|aVg71 zkXfsOgH1J1V9n0W{U{i@8YC)2z|VG^4_~L`HBz_I@kQR?G`!;cChL4fbgXX@U5HFm z{XX$~rT4y6MS^64JGJ4Yxi;eS=^lMeci*<0Ro5=)U&gA9|4eIpWfPWxwkoO$kqs$9hgqa zYPPK_Jx-3Zv82FQSt`!n28`T!b&S_=HbeUtAh!j0P^KQaiDKZ}YP(VA?@x55sDH(H-nF{uKOhmr&EU-sHDv1#H7R0m zKJ}%Bl}t_c9_BSpl&iCsv!q=KV*h%QhcZO6S&8qve_TqUE|?ao+#tCALz-;&UHZ)A zR!te$@2<6z0ZBVc{@eZe#SxLh9@wXTJ8<8D&_YwJ^5#9Ja*9pur&gUv+T}_Pg-i(% zYBkDNF@7&;HQG#VE@kE%lo9LAdExO41ixoyQWRLso`SYQk!4CkQ!Y5b_*6A+&;8>g z9;VBE@IxYww@)7VoR$w5kj#w!gjPn?7NPwY`AQ0%UZqT0UwOgZ|BKxiv2g$gTrY;2 zE5cgMP2l7^iMTO=7qxw}>#UF{S6~3Sf={{45$AqD!wvQ*vuU*KB_sy~FSNQUNsX+H z`aW#RpwRL9)-PkM8jmutNLR$$`=($N#)lr>4-a$?kq|zbW%V?c@;XnU@AQy((HG1{ zdqkgrkqqIBULyV|3@T!y_16E-wOA#YY%%9ThFkb1>a z{k<{WB@k!XUNA@wPQ{z)I+TjJj6-rneIWY$)*d>wNdC zJH9me7ogpiMy9odP9Dw$j;am|wEXfOpy{<$s$=#=gEftRq^VmEwvm!tvu4%p;Qqxr1w2psJ!P6| zcw|~>%yJZ=k!PlW7)TH%>I_&YZ(pg&;4R-LDklC~MRI*>_(yz}_8K!ua`Je1sM78f zMbEv`vc<&Uz!#lY46i!)0*4F&Aaap1Xck8iHt@7^%?HpG8FK36_x+H=pt|+!;r*O?(K$xuu%s-g@b+(foO{)JDe85%FK6?C9L~?Q$9CTiVSV?!b zMzK5x<|=(<4xNQr`DMp8A!grDNL$^j2`lw@ZQr{j0^_TOV3^)0;Mw>RPU#-*3{0~r zO(Vj^X!T;{%y!}$)^!wN4?X2EK^&h#aghR3P6W#oBJl{iCKgvuXPiQ1I*KZv0^L$y z;LX-0I)C@8=~xrxzHlbMD=5vjG9>bK1S)6hqnJr$9Be1TNuk;Y9@8{a9oCV#!BzTI zt)YyQOy@hDTu;u*mNY&e6=#<}u7yxkL1aXqY*sMo_;VQD>#X)h|9ql&1{k74+Z%Zn zv)(-y3#~D)RT&$*IWRwHC{h?UM(7Qf!OP|ysw(v*O3z0Pw4g5}koH7en-LQRazd*WDez)J_FVbT`Dmg;CoE^$lt9mOYI%m zCgF#0&7&Dz^S6uhosHMR#yyI*#On@B*dNuy=6O%gyshn=tEDm=A{oqm8%)L?b0%JW zU{D+<2O_$c15OB`#;67$TIA+Y`fWP*_DXX-ggqs=S-TX^K=bO%3SI(RymMk_C`7aeO7AElcZb`vh#JO(N?&38HDmhe3K0_JA|lMkOg&)F z&b!(2=Wz|z0y-sV^-bNu>!D2pki`|jIK@PR<@4p40g_Q4U~UQdf-wov*_Vz|aLae* zU>V~ZUa%ng`dXzV-Orybg=~Ryd9HT-6T<1cofeI*O$q4RdH&2}*n;s>jB++w3*mGs zQOP?pb8n+3$%HKV0u(9>uPr247E*yuLG(V?Ha2FP#*Iz!W!$6ettE{kvukyHLg@#s z@Mwe30fwM;vq>?>fmN&lr3?XW&0Yx&B7{^6M`xxDSnUf?itiE}Lu3hCPlvzyB~@`W zr~&c}Fi+)~JW*-~B&7f71eO1e=lHB5=)(wHE&QOU_^+3R{~bm7XY$0)0@{q@+Ofw^ zm({yN(B*ceQf%-2{1ci9fkhD(*!OYROgkW&=JCMmUH>-VgZScH4?3Brn z&<=tQfC)$>m}rOu#iCpr-et=vF=d}bvEqmE+Z-fTm z;i!{YvWsRWPzZO5dC@4XO@8oHWkzLGef7?UHAEJxZPw8lS!&hfuOW2_lMxE90)faA4;kRX5GEH3j8vRi@o?K42Z{0%(wKQS=TIFQo|j5Ytk~uU7#=Ljvp#Q+%q}#B zt(i>~?A$*&bC@l_a`ix_xB>vl!FkPnl}F~FcFS7JnS%(Kp9G4&jhst%e*)4r=lgk9 zEv8>9F;DAct`gv3Vn6hW{@I5Q)b39rK4T0>09;&dicQnKi~BYNU}3btjybvnbsZR{ zMa8fQ7VC2eQD})WL>M=dy}t}>$ewNZVsqh^=b0CvmFEGbxW*)0yvu>eG;rWy2;>4} zDU3)p-a>pqV3R$_fd!3nK&(kn=6G(+95xL(xZ`7uAriqQrZ@HeBbK&6Ljm_Uw73Qv z;2l@<(U(AOr*xJ2XZrw9RV#HhAZY=BAPM$e@yHabbOW`z*u;|>WN6;H(>3o z1bj|Q89J!U7Tp0r362}Tpu{*X&gFC(#Q|8etO1hg)*SepY->F`9(tgyUSR!Nn9Uw#7TDvRAUc;VDD3Lv;76vlqamvs*#Qmkb`&JYkbK zc;T0Wtv4rY3r&6IIV3AJoU{1f1aS>FU} zR3y6A?SoU8eGqTG*ffJ`3@2gWD=I~cL>U~>R&VIbMG>&`9365e@p+yKS4Cw!H`R7f zy4`H-cm9z9lHTkZQBVLU2n2Ea20`svP5u!r!)ecJFF-%F0280R^BVXgGzoy$JX&DK zD~KNhB%#(>ez0*l~ilu2FEj`~>L zvr0yjiY@8p#SGE)<&%Om1r8^Iq39hC5*RViT_U(HKpjn$;Hfz(93|jOfmju=whDD! z7eU`t-~pBt%7EqyUx%SHpn%3{(m8n@7)S9QfF(`@EAZ#pm2|MnA=KVE{Lw7U`6;pr zhrvIWU5Pv91s(I{#*1)m7oY>(<7^BC6c-y;8aATDfW)OCVR!0=j)bmvuR1;E?)Q=?7Le9^`=EyDnN!EmmWlYu&$A)t%KH?Z>KE&+z0EN2EV*8uqdDSa$67$Dt)M$_1})a9Iz}B z8XG3nz8I=B+#>1(%D+?tc!m%+h-LcKMgSuJWxx1gDr>LEc zrVLdhEbqVMeUn>@E{>g@$~ZMXoOF{iq!Hr~z^WUe{dwOn+l{^P(2_!@m1T#P*u=q) z0R8m7W6_NGfN3a(*Y)n^1&E|Hx7N>Zxa?zvx_dqG_#HHvsN$0xu)z6O=!y-p<~#^6 zrh8u+%8Ue7tMnrf+th$0oomwM{qH}2BDXx$#B`n|4$L;Zz}nnSXg20VD6}ugv=#CN z;0W<4)oVBl>o912`V*z8v11D%ux7)^vDVmJ#}HqJvqf$pr09sfpMKx)0`v$sXw7tp znRcU^p5`7JkY4=>-PAuZO^imRqMrpW!|5&11kIS;QoCBS`~!V#=*$`(bVhYP-z(^< z(JRmjO8h;h~TDp2+A=Me9@yD&dvA`S>jzCH0D7 zpq1vxn1o<6^em$kLkGAR6C8zYON!uP!mALj{ii&p*2kwLxJXxi)HR^B?iF8vCS0t~ zsfj?r=fC_-JD}l!X|LU%orSrWSOdIm#dHk1)#q^z8X)O{lm` z;Xs53*{9co;Bb@#;!KGgWB7y|U4R+}QZE6}(gcUdIlE+NsWlyL3U*-ZGmjx?2P6bw zMXfwU`U1qg`|1K@RSsLnZ_q~#)H^9LOekjxOKOfbh0C%6-UKEW5vPnkh_hn=b12g< zL#i#GTZUY%{;I4$DJk>8ZvEpG{hvL`93;r3<%A1RtH-6@JTs^2SFw`AmJ$`+-Tq?5 z%LLVzO@VbXN{3Rw|Jj!U*!&5A8~0!jrdPhAor@+@@+~ZN`)0hTm*XQ&qp>CHlqKs| z306eVu0kHTXPNT23s7U=s}Ae9@oYNYA^WDGolmU#G{vXFy$wopwMUa@PpeN%5TsZEO01#k<8-am7q+S1H9R#;WsWFdW=Y{K0fwF{?3}G?>v#oH6^%_6 zvc}Z|E_~KkbEqs(d_a`oGT4Lx5Ky?a9(Owb4?!S-RoHampmu=Dwn!i4$n8*#-55y! zF}zq{Wq$hkorGiH_`o=gw{)hABAW!M#sI}EPZVFG9KX84pW+yk&tiTiA@8l+ITH#5 z?{xajIYtV0&a{to&fvDeTc_idxPCv%d@K|40~M)=Gb%BZ*Y8DGl9e>Zb3*oci(Gio zM5#AH*0*e-SEtge%52iDdsF;(k){!q^Wb~vu#N!1v^0mncjD=O4>UQpU2`u$Q59nV zE%$~IdzcH*vtY;V@4@UBpk^r5WupcPK`IhtS{g8%I{mUc8Z}(b$U&zRIF=ruKHfX( zU4RgKIQkU`U4uv9zH~csv%)cP)pD{a*){Bkbl1-7yZe^kxgAUwjMY=Xr{+waJ%dNw;l(k$G!)L;BvgfF z`Xefg(>?+G$1Tg%$sSg%C#_(U-Js|?Q7~9pA2TJNAk}ST8xF_+41G$6hs-ZpmIt^7 zPULgVet)dQ9@zPY^zLxC=cT}folR-Tp5{03ouQ^#q;&KVoC1AUZ%6`Epcl@y`qgI6 zJy6)}u?~%1=vF7x2^=2A+K3D*fd}~OMQD#6p*c3v2c^{HI0d`yAXjAw!$GoJ8Eeo7 z{fx7-YM;=C2hP0VQ<9BeE_ttBbE~+j7{nGO2%vl z&0|6KPk8l0?(X|;biTPHHIS5739Ol~ms{=Z@3vP#BC-UZ;R#mjLfK({x3V$30gT%> zi!>Nx8t&xZz}I?0AV~uG!Be0Q^r-MFgYWo5>t?@X-HvO;d5A!C= z^H_jU2JJJRM|9#6%t082e^K2$(!VOR75??||A%^Q@W=*NKti_!9Fft(aq)>wJMfGU zRir@MR8r^7rF9XB_a8D1Sr1rD4^{F6=%>FhpK7u#f8@&60on1eaoe1~_CevG=;^=jw3LT8rGQ}(~e3(0ogmDA7)%&q#VJ%jx3=^ z(q2R>+pQh?3-%<)GQcc!-}lL&q(1rmUN-Y5b<)-AYsB{U#x_kKwedsWPK*zoq<^-W z(s%Wz(RGuP@akB;zNt>iGZ0~Y9gRWVZ%Q%@o(F9{rtq2`8#|p6y-mI8 zM6gAUoKKo(If9crn`Tf&Uy*wiBW&lyey2vmiL_Z*W8Vgei0xEey@BOI&%>C8ft|Lm z+nQ5q9W^{Epq(lmPqb-C2xnFK(Gt&igeagF|eE2Dx@@#uTSSl!_xqd}2RrDYPQyn;0jqn7tY z)D7CGzvRnfyqBJ1gwgwqkAil?i%CG1dL+2G9Pk%`Wszw+oVG9^mDqd)IK&? zhhQcPbcBBWh-B&I=~hp+luEB32W}>W3ryem3F4EjZ3alV{&tTRq12#Q=8|5gRJ3@` zb-%inx4|%`!b&-QA_njLr^5xPNqN`x$htE_0mp^ZYs{N$@SK^S=yjv*)>Q6$cJmQF zaHy zai)xbTISzz9N z=1KeUse)umD)k#wre9`ZAp>-#4KQvn+j%K;C2kXTyzc?@I3n-gAYth5kPxncUS8M& zPO8AlH4Rk8y5%;eYkp9D+-|V*Sn~?L2EkAT%+We}s-`uYc-}c4o2mpi2mc2;CHAZ8Bt2&X zBm>5OzmIzs2W%2Vp)LIPrB#OQhTuXwzU)e-0ZoHnHMqaxrKS-^92Aj|6f}Zd!uo(| zQmsJ%Xvj`ro|Fu_w%~2eV1d1aM&uQ@e%Q1!(rJ0FdoTCS5k%-7AQ3X}!z}f`Yz3_| zti+e1N(FmPDM#>1FxFW0p{nN=V6ydB26I)7{ZnwhXA#_TCD%Kc9_#;TJF}sx?JN)L zRbr?`7PN%QQL6Az?i@BA4T?7FqRC0O{jS^l$(GqIdTh_W4=_hj>bLnrr-M=jIb`C4 zh4S1xoxgi2>T`_l8Q~p>>;OX%Sb3m;jenXyV;LVrkiu3{(ek)&sO&Rd*ItA(Bofe@ zYD-YPRfjz9$Y%Nyr}@#Mh?#8WCZVlf5X&)wz?n7x)*M8YIzB5YHyla2WRgBY6 zJ+MO! z^9+$R`7TTcw@-g$3|MUtfbJ-B2w|*X-&p|J1>OZc;<*O}P+Ll`DXta3qw6sOjp)6F zMvYDc*j+-G#li{B5|Dq_tKHz4EDtB`yI^C;`E4S9NC&w2MF*x>s9)r>2txPdZ-typE7WXVCzG$&Jrn1?BLk@?UqH^$?uAKuL zNh`%02owpxZ8dbQT}^>bR;khKL5;n&Uz!Ndnb}C5?tGA*SYucx>X4$|Pddrux!0Tn z_D9ZRpVwKR2LXUHhrACRz4$uBVIk8_IWwGMf}AJ$Mam^HDaF^4}6b@x9MS=Q1x0|MaNXq;})YNe1_D671RW7Z^W^-?#SM zVELH%rJyzRqh)iTqv*^_<;BtH5z{QJC0cUv0u-}>dYdp6Rvkw#NosoK>7f1nC(8#s z<(>40*!eG=Z3xO)d9tROjOL5d^P)*nC8cPgX(>3^tcKKb zpy6=FKh|!IGj11uEe{W`mf6?OtS3VST<_;Cedn5fP8^Svc0=pZ*jsP^eGM>a-U!@t z$d*9KuM%_ih~_(xl$(lEM?VhXkdhFyxn>F@GrorIZ>=recRKQ3miB%Vb)3}gHSPPz zU-TJT!4uen?+HBE^LLB%iiy)RYmFG`Tkw^tYry;MpFBgNx?^?UnVK#V7818?qQdI~ z*R9k+=KL@zF_Qk+XPj^(Dhb{%xXo$jL{*=NB7>V_$Qft_YSvpm3*4}N4h|0wqCYNJ zi3mTQQ}Yu}aXc!)IS`w`-c&!p48{-2GGsg8Kx!coeS?eRQ+MQXohh7T!}VX0_8a8@ z$W;Z@(Fz2UB`z++)xiy`g?{cudJpw-_0^&n1x%Te9TK`U8z+<|s)AoCBPnn~ig$ z(TgPYNWO%~ISWXpVe1!p2CDU;NGYsdc|z5n>+z6N$v|RM=jx+Z@bjg!;5F^3qO2F! z#8W#Rgur0k3Ux^=q(Q58$9FU03ZiqtTnPjOe`5^(LI>))8`4fiaNY^Y9iL+c1qYDLK4=&;iU=xA7?)LMx;&zcA zC>*5yb1je(yy{f~d&A6b@^gaozNyV>K*lW}wc#U`nL}kBWfr>S{G)Ddo(Mp$VqM50 zK&w=VD_Yo2*ES2?9FQ_I=|U>-&;EQR9^2Qma%`XcKi_?Cw6DI>k{D2fN^|(i_fq{e zP9ml@1}`v3v}DV$mH7tL)Na0f6VCiA$wO5tNmUrz`UC-3_<^goDlW3#HB{G$m!^$pk4?R8VCX9N!tgd=x1@coT}->MajUvu}* zMY;uF#&0Wj#+pYm2kqLS@KCXr4}H!ky|)KP&?5;a&jXWu+Cd}Qx`dQI4;HERXK zUzspDK4}j=Zv4i4ODV^!8OVIBAB=TOl9hj_#w&N&m*wnzW*Y0vyMkFIpHyV-?H8$_ zKJQ!7rCT0gCmyFQ`-YU+Ju5^3Nb0FI{(-fokA1GvQ**^>$pa*K4B(h(rz_tJAh1l_ z>#@2ZWxf`1VnzW|l$k67UeAKx$?WtEkTTp$eH z{)zRw`!{s=-)Ko1hwR^h@FIc&z#IG{e1Ih6ze?5CSk=g&&Q~n7`f`XMeAEiY*%+hn zG4`O34gHnMTC_ifvA39O#n8zMo|vvk;EYklO3~;u<`)KM8jZ7jpbYDASD>64MrM(7 zD}K@9qfUCZTioXVABN(~DBMDUfXMC`cI&SWWJ&?7q8H_Q2fYlj5>i2T+;x3=>E#Wf z@Y|TT?5C7pm`FAdewQ_-e@*a^eh#rFy`n{H03o`2$o8A|_8K-6_wgHn@ay7=_e>4f z>2o&5sdO_+8>Qmwhc2*_8neIt_WvtM@qgv-|BuOI{Wm}Je=q6!?>U)&|NX!Dng5^} z>i?Bq;y-h*|Mn>Vfbs|bLR$Vu`uFd>$lrheZ;$fd9_3%fO8?b7O0(%xlSi*Vd4$~Y zG%N>cq0S?3JJIE)G>`KCG10UC5y}Pr7s8YFAKt(K$~FIe z?f;8D_%BG~W&u+73C1Dw%!5UxRkCZ-%$Im4We)##N+$bn(MJRcy|7h!#-DqWf#pqc z2fzPOf|JJ3H&@!TVJyBsp=tl-qf4dz&e(oJ7_0u@Bnspo5hY;(zF1CvTmD-2FSNox z(+&R*pV-b|B+jk_wnL$jAwWU?J^p|3Lsp5J#aA-L;jfmwLeKvB@p><#NbZ-)d@cF& z&HuAInon}HY}iLY6Yt@c}@guwjo< zVCiU(_i5sk$(nlq=QApLCS$>;T-O-}cCSyq%PPp-SE3-t)4hvDp^eY_=#zBmKQDRD z2TAT@1qrGDI|HR7_h2>z_Ko>`I3!g=`)^JHYzHr1M6d)xi8BR_cBE*g1v)Y-XSGZnU&ji-vjTu zwIZDWXv7Q$Y^bH!vBpE<=!)RxNF(8C<2YJziAmJo<$eW zI~|+P!`?kHCiuc1^r4hj%6XLrZJME6##o9c&ei5_A=b;9bI&428zjD?#^=i~G3|Io zgwo+nLMbm4B^J624>4qHdB+L#=myF`8$(A#<;r-Q=HmVOob6Xa04g&+Z;0*e)}c#g zv%T~l1q$9{7|a`~HfaqZV8u?c>}%%4Ad9cRbfW}ncVn^&q#d2VB2y2cHrB3Q?ymhY z>EuK?{_AMgwJLiHNQU6sh<&o!Pl2Iuk&Hk%^!b5pj^|`)4Q~jevnhW=S~klk0rpX1 zLK~5)O25z^tv8nlk$QEfik7znrx_YM!@qst>1B&!=8+$yj2BrN+&w<>7qDB%!PG+g zn4YA+oP0Imb*A_J$zVFI&InIohLf~qPl?x(O+$X`kTFs=8ZB`=R0(sqsDA&XhNb1p zQPHHZRsBw;)RuWM=IdqAg?YOCxlWLV8mRxEHKfK26@9j#hM;_J%-=bJ5z4^1*Hj@OMc zf;&C7Ntkm*x|jThdaeyS?nV?a=Bd)tCx%q%8dgwF30j`5UmKsRzZ-IU5YkG4bKa|J z%*2T#@~4V`{@{LN+kbx#yb%Hov=IGromFR?DJK>VI<+nuGFlg|x3n)DGlzbZ(w0(r zb+}iz$_jzgY*CH^=(t`>mgA{y2OCHLr(5#Ikj>(^HrN}k8#q*99O&`sK<}zKhl}gD zwpR6rw+B0;D;A8GagS<`Z`<~FHF|#DjrHdH;IDnwb}dODIX9~JJ-_vuSg%hkE#d+p z$==Yn9AEODvIxNO(5O^uUKlx9cSId{v(mCwa~IA*wOt2qN!kIn0i)THIm-2fPZ)}z z#n*0Ay{P`wM9Spkf0$@{nV~yZPewe#M*HldvfOm~P0CR~K67}3X;oU(KqUc{)|1b5 z9?puGK%sTj6d=?#67R6P;@6yzV*G*^~F{=?o^ z>76L%5t6vL&ADXv`&=Ry+W;N1*SFjw_eOtCJ^p&elqb9D;;6Rc;&qhy+QzBGo7R9H z|Bh(BK%)|qT__pH&V$wY&-k2eFD=&d4eH-sAb6-!U)MkF57yU(9oO(D=ub+y)Mz<6 zO3v+kZx~04(qLG!tIbPQZ(5IldgC>mNRhOnP_ zeaV=gU`OU1X#@;FerqWw?>g%!y~m3_iwm$o8uXZIoPAcJf3PHuGhNiCduUMaawZ)N zM*5(FR(}^}IUe5&fzve|ySn>UMPgh9!=u=O^{3%3&WD;J`Z>zejbj8X#?C#8&v zXVls15bPC#27>QU2NsdtL(#5*LXNzLqpXkEY6ps#-;2$7T$-Lrn1aGliL0~1&sHI| z*wtGr9zyZ%2ErZpES6@fMheO;Vcw7CskmS0pmbw4HL4<}GPHdB`6xFeWTU)EiTzR> zGFq;__p78oUOx%QDe^CW;zd;QC>C5{!OizoQpTuJ@~$o{m$pW*ts|#57?h)`njy)h z3DnX~K4WRIdKhQ5uXPJ{2|bW(UFnmAC-})?$Z=MOR;*p_F0O34-Ly&S%X91hK>R8T z_};v@eP(qR_589M5%=qd)4kP2xjU>>?C(eY4=OU+;P$_T1?uXXOSBDGtE7coIcb&spk(wPVdyTRyEb$9fg|hy4 zch0Lw8O@!b*$f#j>{W4@yKdsP-rZB8k$J;d8OG$eutnmz*cRV?AZr_Q0Mz7yZp}`}OjYKm^*Qd2S%a&}EW1l) z2i)Iv+Q=tqyi2p>K;lK&C$>scHk+1US5w!F|Ij?_Z>X#uRV;P0r`Zyuk_*WlWJ^WJP>zJv0=?7pZ|2ne{y58fGghTa=)rywPxcP=P^l%#GZ z2#qjoF;>j+NgX{7o`Mcz_}W0026r7U6vc))gZGP88BL|B)v~W05Q@>hlzN|>Nbft> z`o+Awv3=00+TuDbE;58Rz#uSvtv7-Vn9&nVQ1=!r(2%)Xa5Z6HA2Z@iX20pViPQX} zC(okXN>CG_8H7~UZllH5gTbXOkCYwMgzp-IvkJoq|XmzUc zDgA){WxJEx+=SE=DZy^@ke}{2A2}{Dh2NVjP15l!F$WDFn~cqO>1DgZM%jL#J}4sM z2mjY9#l-p0@R>%+NxzaFs_VPynNRpw-$k`1IixoyAF@}t@4Jjy`gtc%57{EZ$V_5h zy5SG{9#kFO^~)9@GpXgVX^IL@BxN`+PCZ)ZI4Bz*lOG|GfPVo>JO{HM4|hF_A3I=s zrUzvUa&jxT7}RmInb@w81$aa;JreO5>848c>S07(wtFzAvXzb~Be6J8*$>d?}3>K-MVzO?e%R;ZYsW^7eRe^nub?anJpCAP!l?Y^n3=Im%C zPv4B*&AgSBkd^6=g>xO`Cs=z|)1=)U)J_?d%_r)Gc;@73n5qes{ZM+( z5skz%Pqxg|oaD3defij#QqH!0hwaT)x;JV z>|T>}4Aew$K~mHNZ-%=Wrsje)w~UWh7acIhjfo!ZZfeLqw}Uk#i54#+!~xwjI)4Oa z$$_k=f625Q7=F)mtMtk-c~3M=Xtd_`YwLHjOB{&Dv?VtjEiXOc7sO|XPgC|VUdvx% zCWzl($)khpz?;5V2>=$JsLs45{3^W^7q> z9C$k&^>hx-k)Ll~*7jA~?Q2mpf1pVHWF=ah!L)tl9mDah+<}FKhb0l*oAiO7MGavO zG_0-^Hk4={jXdnIS(V*CP+q);d(5JcY^DL#OFgv5O%YG)KW_#N2P&;|CEq>Ns@o(b$8F9H?cP@F-(wkT0XuGT!5+oqCvJL^avrZbt5 zHa_oYKA+#Z0y(0R$@YFWKEPYs3aS}yfTCGfhk`tnoMBgVkH1P1t%(?pwa+C7wT|S2 zPkWKB0BL>zFCs5Wg|;)vd-->uMftXWis2$Bn3-Rf(k|?^=XoIn`eiZwM4AMAdc=TA zw;XpV=on8zm{Dtc7_o(%S17DpKq~f{-?vN>S9i(i&~!5R=F6O;KUp5Mj`V?7&Sf7s zi#DT8z1*K;UQ50(UnVt$u7*$op>UySX|`*D7-5u9C|GrYqd6V{nb~uwk?4R+nH8B< z-J%WM>@UAsTYVvcjLqzM0Lm0|!Zx%yuI`*K*NVh`1cguWZz%zGmbiBN9<9Ki9^&?} z|0_+j_y|Z(5t≀SXZf2S3U^SL!TI7pa2lh&eCiZJ!yDR{AyXx>(%^bR#R%)#FC? zQfSM?n0Vk`_fa-T2E$E)7uv@HSULVWzR>J$C-{jpU754QTZyU|#Jq3}y|-YK-W9m4 z-0#z<)>vO2D1ke|D7$ILJS}sTlwz;{(o|8j*5q7E`dyE%(*f-JM4j%ThqkeLexO!e zUBvFn0lG8%y-7z_063`k+9+Jb*VhxN_HzkVx2z`i>J<}cLGMstyvk~}4-@iL2nzAp z56}M|_}aUC*3r$qppuUz@E05HY7=v0J1-oq62#SPruc~!GRaRbB6yjpp1W~a{l?#p zvfFR1FK*>la}e>Ep0|YDzO>4X+==d+DczF8=6tHg(dJnnw`V}>EuLFIdRc7+Tb(2H z{#$p!=hS=Vc-NC-uNZq{WIDLWh8i)4Tk!fR$(S*#q z9fqNt)bA>5mMTau=a9G18ymBroOdTa-n$YQky+FWzlx#y8#CjeNE}JLVel7zzn05e z!p!v~sN3W+TA`@@4hE6P*s8NI z{MX5@o2-c$HZbu8^GPzk*m z?1e^%FdsLEUr$-AzTjA7Csr`p%g0}LW3OurGG)%TckQNoz5$=eqO=0#U$1^F+VweZ zB>u#rkR)B9-ebvzG|Y5zTZ2Mxs4XfZ{g}?GD~rbBN6>9rYWd$=8EXWhgu|L~NXH`E z?EE_V9E&VeUcZWPzLMF-dE~SCEjeZ*04#IT{1CQC6RKO6c3|HGUcqLy{Z(;A*n_ zPY~)4VP$faF+Uqt_zfxBzzB__72MZA+?9%bV=v|hKIgh_hY+4~oql)STWqZ`M3zJg zCy>jREcQCsr2f2X)ZlIzx=L&<&8!+QQ0M*u>s*?fb4XPtBVO&CZ*n@n@xF^*@1@U@ zD^#7ij_G;oRjnxo4=&(cp=ya?kJtBkjs;TyS4bOKn;CW}l>W~!ioZXY`}^Dhg7eKlw zGMVH3oLp9715kjB7$2OUu`En%4LkT{kH;w@3>Pkj+qs#g>YCTa-LzaAcO3udD_$oC z>03j|(B;ER-zj%Y?wI*ahzy4bGta@lQ0Ud1=B5&zf>3ngD!Vo{FNSWi<;M;(D zfND_5t7f1aLP%Rj#>vRNv5k!0nhU=gv8#-l%LsI0?QsG|@g~?4P%oDe17M>?B|+p3 zGUU!_11n2)FWKUaRo~nt^)!!+@!sZd4RHy&^K$w))zBppYPy|iWfF5PSlr>w7NFb$ zl;8y|T?4s>YXYFsIt|{e_rs-M%!AEtWT@;eSz=Z0r({w}+PIwJxP&VhBB$fowyC0V zRfeR7jX{Q2gkbfhj1wNK?u0V8HM-CWM-!Z*jI&nKeO$)YaLn`8$ko0dcQz+f}bZ{jr_f8iK9i%fwD+Ou%CkxcOqK@Za*Ot-g%MMi{bY*{hXD#=$uVY zAtJP~`Go-n0+d)ca3i)j#9ATP+ObsSjCuqxHo`;%_;s9~v@|eHZ8OOrMLr+zvAt1F zT9J`^aK=)b5n=$|`vVJiTK0(Cmiex#4Beybd-K5tF-TdA@&V`VsbTPar|F$nURSu$ z9`EG1l;4S$FFgd{Y_8)WOCl3`x2u__R*9opYC@J;r_%S0T?D<1=S*I#LybETw2~9P9PtozGauWwYTEk2!;Eo2< zQu93cG=wP}=%w&t$CW##k7L6bC5*g}FMFu`BT^|V?Rtrq$&DXug*t@%8im2w0F)3}d}R!G_L9O93B^n%=DGg1a%UuoVlJgoOR& z2`YL>s@s^))oTLW1pnbR4G2Eo`osmkJxNz2RpXboj4Umgw<>y# zTEi$=s9=Efn&|=q;TneB*>IYPxw#?veYO`5xLi}i#%#r5I=v@0;ZwJ7#FpM~Ktpb% zR%Dpj>bRlBy?lpYYfi0qR?J&gUJIpK3A>l*`Ks$hwYqRjiu9hRDl+Wi=>kUw{T26P z0{-!ygd!K&RZpck1+M)GBaIZa;2KKAMOiY)zsJmygq5B2yhc-(@RNjfYmPCPlp2*Z z7(_=UsFciBq;~oZeD0V2_C-l4mQL$Kr_t+4(PY&Hk{W7MCLlfdQ0*Fq-h+EfKVQl(z2h+E>TB`uoldz$oOE(B_e+GhQkCRR1Jx}h>wizlNe zB3o8>XrDU~&Z{=sOFMTQU$oe)(&L$VY;DY}e2%pZfRlQzFxqz`ZkGI9q_%C@>P--L z&4UJ$HW4pIR|}IC7=3$s43Axl8gZg-Zk@AH%pho_1?d8L1F^l|#UEH^ncaHCIx<}* zFUUZyr_vS0sMo~lU^(4@Ca0?uMqP( zW+*zS9Ir82lbed^ufxf{K?#uS5zZSdxzU3O6-&Q@xY#+lYny_IRgjDFdl!%$zHFY{{3QdxJ zKdfGema7ZZG=?apfqLlG@CSBaruqwI9&HmLQM;hYO*7#RoUf>#cToAA`I|07uocT6 z`Dqdwc_D2ZvG7!cqkm*_nV{1;hgR8sebb; zh#25GB{+7>%MP}t1B4rNLPp8W+Lcl9-gPXUWx7c3*lQ+2bh+vPgI5jpv3-=wexQY~ zuQx*((czQ8AA0I2_=!zvhxe)SXrFUTXxUB!lI!&*Ib}Q!gOR+Q=bBB)^F&8elb9iF zEd=SyAnsr`2Z2>-j{9w591g19G=2NvnC@UHNJDKr+(h+NQ`Fm^&u3wb4#jOSytbuP z@sHN!ayWyV97td;R zCS2XTD_~!!5;VE=1ujp2!-++Tjy|=TNngv^PLx=~a7vuqeKIyD)Cu+o%#6H-+IhxX z?N@;yX?_Rs7IeGbIDj$eU=N?pJigeSzGU+6k?&mC0rV8Y5OAFjy#>+it*l|TJVNJH z_xB_R(A>Um?>5c8YM(O-A&MQ#Jyczv)$b~`M+zKkVdTO0!fLJ zjymnrB>d;jGY9tSnO+%E`|gQ}rlV%6Z=a9rYPCF*jfIjctxV9_+axw(L~4(x@t2RY zN)s5?lMT_%`NX~o8I$kU?X<=lJMd6ZD8t`7!H-l~PNHXai=dtdCgVPOF$?uWr8R@_ z=K}HgwcR%EG6H{{s++6*RPA8cg8@OV4)TX zF(M!hylyQ=j+4HJba!860w4W36`D6&sISq9;Uf)5OEVNIz!`rky4jS?{{g`ZRSQb1+K4>SmFAJ>Ag_ zFf}QBvVgnoC89cN%*?mTY+TviXQgRAIJ*atVepF|2o%62e;>ow{JO7OEvHjfyR22V zYQ%qS9W_An63f`0Sl8WuxDT(PxEM*Q%*VAou1cGRDJo;vHEhB#Hgf5`5XGjB$(oFvAtmdl ztXfywqza}7V(eRGX~#Ojri{ez6JWAeIEaw;kW_zPc}q!Tg~_MGXS{rAD%qmE%a4EJ z`cFSy1P#+qEc_Tp^9!!*@h>%5-QpU3MX{@(`50fUVf>A3R%FR%#llw;TYFDf3D;il z3tGCb@cG;iiJ~^DQ{kB#G0|yYx&_&xeYZ#aYUYiPWS(LJCys@YjouiqcA~~4fk>VH zuylPkL;F6)HwX)gnchv|LwT&n+r;K5lTySY%29ZeghNiDf*U7eP|%}97vuwIusVv+ z>Lm-d6ZR!JNn~|@`}OPRAAqi6O9zu;63XfL1$K{Z?Dc9Rqs;W_&uosyY~zKqq2$Y- zI|G~_O=UnxIV9ufiB?&LqyYgE6T)TYDv71mPulyR%WjfgEsi_{LOs7*oJ zb>Zk>70%4R)f2&p13JF^qql1oTM@v0Z~!`sx!x7w$!LseWkz3?Gka=_bg8xC7jfBe zpI{24K`6>qobB|%Tp!M-$XIL>n3_k2r&`7!)&7V=S1vOc+Qi&-K8rTgULW{ z%w~k=LQ$bId2Ajrj=nq%-6PIFP-Uz1Du5>Vt5dd&z^7P|xgsLeht@H1?cbL)h_%9T zbM7Iwe#0Nz0IRgC6$&q;$}RBmRMq-#mI)-wd>{Vf6!6CRl|2v%rB3p*c)p!`I#_r% z?85o>c{1Wx7tfg;WgC1mKnb4WvQAAOSQ$9iY~A=JP&I!Bn0mRhf=z7eFtQn~7D8x+ zQ_QNs{e?fUY}5I*V<}l0mm=t<(n1~G?Mh*6zQvj{&pq7ZA>Z^olKjn(d>!5*)gA6C zYH24SF@%@LFowcfo=Dare_4PbM1IbEy>;t6QgirbqMcQxd}*%Pw7;iO1k_BJ7m#B&j1mo?C{XbSmc+*SZ_-}+w|`)Hg-HBH zsnnPvP(cT-ie+rPBi%#N1l3kX@a1&am{p-irfpZ+OpxND!LIw{Lb?6@tF+CvB-(z$pGlZP}=Lz9V4{t z+MLM58g!D}_(+1T9HMoHp2 zuJ~=pNevJzTup_OxJ;|~ui zg}=vYo1N>pK}LuCwx~Ry2Kx}QO$JPVuI{9vnTCb z+lmg2QB!VNO8-9cIwF%_<$KC1kTzE+zkOHpa~Y$Tk=3!9(Kq%5VAq2+HWe8!!Y2_R zF5JeatIwl0&yX-)jTSn_6s_Fy_=(8V_yqlAJ*3Hpt=`L$ZZ2lOc};VI{&CqRWNJu# zDcT^k1@5sV4|W@v)P z*OUzvAWY2%RY_dg5$?^+vQ#@v!brXhv-zECFP^x@r&`JS)(x%4oM8K=C-oUF1KrOK z054~efadT)e3Q|P+f?X5+1ATmY1;sab$J)kyI2cQltZtKzHVtn^ec276UXMvuW)EL;jeX(_6Lt()p+hD55=Gio&dmp7 zVOtJc>LCM^v(4t{_t;;pk!2O!3~T4`y%=iGd2hHGnlO6E;|Eo7@qp`3y)(`;48=LE zxK?huEm)4Kj0q_mF@1o&ZbOOK_SbGWp7imEgAH}|@AbZieGHVA?ug^J`68D1w#ydR zeL%!Lu5ia|>~`*UUCjtw0Y_ilBiM0|p#%?0|LK{0U>i@S?Y_XucVa1lT=g~r5U=i*|VfP6)nhC)iW=y>=& zCbSGGe-&IJf~2vBT^rqcS>4`i6VTNTlzsLLmgIj6>O;HN%q^m($2S+)0|I>SW)4Y5 z5c`W3tX9cl$W-|$h9VVc=t+ESirCS3y8v(loQ_P-7w-sVtLiI{>AJd=B|JApx`ky- zQZ=Wp`+|5xdNPx_f&?wc#VIS(TbLE?LxL?!$dI6JG5>}7hmJK3hx2JKzj>N_*TkP^ zvAV>!6-PE$rLK32s%%)~fFW60>To`d^49614!_V`8bE!E%&+9dbba)`b=*d4qFUt} zq3$4OnuY?u-ORaTVISA=oyk36vl~7YMWLN#Uf!=iX<(FF%z*H{xrTY->H8{lxK}n! zl%G}?IiuoJ0+Qz+TNu2mNjvGz+j8RE_^YW5KCM1CX#Fvd1u~wsW^54>^Od)1maK_& zDCs&8#9_@Vo|zxQ>za%HoFiy$O}b%{Lk-z;tS_$p@Z$8zIM{m2B2QnICUOFuaM~eMbld=U%yN zI_9Wxr^=(xk}+hrPzK~zcwn(2O;T1w{+1u<`{M^kS?@H`Zq+~lhuQ1l4ei(O@D<%y z+yL?qgO`i=C!ANwLtWF<-Fqu5x4!xlhi3PuurEb+EXl{x703AYVZ1RBGLTK6n1S&9 zbYxaxLqPh08w4Exh0-&m{W5qQdiC^Chj)!iNKfACFrEDbwFT^2&0Ks$HjD{WL03BM z<-&u&Tj0DfO9`?kTADuSh`;9?iqa_1aw}U@^`a@{9phh7qiQJ`bBg4+ zGSIA1nBrSCe*B_zgHZ6 zPJWh|TW20ad#KW`iG0MEthER|2$^O@+$Ru$QK^W~^QYeLNPBPORG93~YLt=Sh~w&9 z{Ivm*b-J7=zI9XrNeP2TrtwnR$!Ia?H`;#HnHim^+MMi37x{PVpa(SR8B^CWI|8|eD85hq8E5?SF6!O7tD zKp>iMs5V$|N7t^Jpo%0u83Cs=VIwW(JtQcuMhD%21^JUYrA3H3m@D zRKo9=XP$1#0%6ql|G+v5QJX|bRy;>M->I%+A1tNeQGN%)G0AWvL90oG_wc)9wV#wp zw^fvD&V(%v2S-Xh^fI+z-VLy$OwV&RL=1OiIvH1s&leh|)bZ;4=pZcMsB@aj;0#K5 zgsS=ji?uibjtV&w!~__HtTB>7j!0D{7KB;Z z;9L*>;RF3iZ5#_qxN~{kHCdw0eaYA3i)286L@7;yjW=@;vV~y2S=NPAwP4ZV$4hI| zWq`4w`EnB^AIEvZ3GWKeB9fC`NJ8fSy!@e=+#qFMZ0Wwfbt0e3?~O;%TBUM4PF#1W z>Kkm*pkX<>pVIe__h;8(KW*)3IZ5Xudn_q9-_5h7n^YK-?U&Qzo!8Eq%uf{vw zh?@^SajjY@YIDWMi8ar#m%Cf|GHyJMwy`tR7X0*-yUgVdL!n^VIpJO4>54A70*&2N zM;4*N3C^zjCd<)Z&e^fcN^|j7KheZngN0@HODP{?#gZigI&lQ`4V)Z{4A=XVJmsZb zAMkQ1>b0?ThHwF4pQ>o)e`+X;x&y2D3l_co58BhmjaMsi?d8P4b5s}vl`z%9T9^8S zNnkE)M#{;G(pLdw8Ik*j9j6DRx5qsGT-b@-6jr+hia?DSxk|o(UMhd{2rNZt5bmQB z4KGR@gqf@80}wVzE1Gz z?aDm@f5Ezk^)o+nF4Z9nx@pf|ynRXCJmDk}3nHvGU`1eGuNy4U?RKk=GnD?jnt&?W#x$Jk#?HuObGk+6o`=y)gD=3Z&hJoJ$Xi9pn58q zOld1O?ek03*-uq^kWe22jjQ{tSTgyDQiLJ`_s$b#rROeu0|U?~z*dU$KhPx>+K}a! zp6P(SDYS8HkQt5kNv>3xxA|d*yP3U7aqqwum$X*c>H{EFc&a6>T>l{v~k$L;>v7s3?cPG z8hH;4enK465&@wbCe{;HxJrGNkzlOgmskJ-9Ea?ZKCa zciX8M;J{435?wpN^%vu0Y!zgHQ8)w{$mPFy4BV*TPluwageAxlcaL0HXPbi1ewOdj z^@L?%@B15I6j=lOY++w1T;jiKJ61Wn{=D~z1+Sd&PeM5D zNSD0RKhwt5aKXW%qv>bB(r3_NtS4)*iC~v0|DX>{AbG6V2l$r&{WWqwZFY2aWwg3e z4-4xj7O4|gF8=x_TCF3NxIeHKwH@MV08v{bI?kK&yTH3qOvf>N>aSEO9hLxNaWfk9 zF)ENg7y7g7`S||QmlmH2Z4E6d%Z+}=b5CmHGFwCbz{+t5Ir^x_QqHBXT`q|YHs!)j zQer3|XL$xx3w@K3_FLJLL6G}g|4vc<2b@vUFvMKiz$ac{z5}CmA2HW7)cKIv>t12J zaGX0GPl6In3BZI98Dn@oWgHMY0dO%gSe2{?!8GTOJT>z_(6c!{>WQkBrg>9frf&DB zs`XL)%3Td5ERiwBce|C+_``yHxe6&jH{{8cIppFKXVr>}9w%d#OXwX451#ZHO*r)a z*_wv5?O8Lwln1I7xtk#ApEI45(<44%hw zVfho9{+j|O|EJOht2tqoVs1nWh;GKZUv|&f>jc%Vi{>50e0(Mi0`4dJI#Mj#_=hHR z6@6*$>0>8aen;x5vD28mIYpY^I@%K~1+S-{0$-{?9<+q3kSBlE1pO8c=!Al{l#GOD_z#L zn@VCVKtC~Up(g;nk${na)Br^Y-jfkFJKS|b<^@sy5m)<-cq?rT;3H4-@T*xH22mA<0 zX`0(pg;4qkXZk2-Q4adu?~UxGs#9fe3?GZ?+QPMuhfGZgPp=necPdfFt(q+u_Q8k8 zdGnfIJ?&DN1E=j*52{_$3maiCTQMy9#ppHuXsrd$=J)vsN^LE+To-4kUUFPRW&qm0 z!as$-xu3DwmPs~05b``L0qZL279_%*allFc_e@akItk^XLOTP-nPnY@Xr9BkDfpD8 z1NP)!_>`D0zqLTa+vIPY)6Md)hEx4EkMFzkLo4+AoLwT|e0 z?j!;A8<-P)mEp1N6|OycWQZ~Itw^+8q4TA{y)51;9-`04)Lt(ygoDxFOzB_j7nB9? zo$|+G-zm0xuSXIv+o-k>gR&?oe>wyUP4l-Z3J+_&h@XG8smQAWoWFD&7`Qy-xSruE z9rv>sWUKuVUrzJTI2bf}9`|&%c)T9PpLoye*XL@y6{+#MV}R#?8WoBDdDNs0nLNzP9+Lmn!mO9?^`dbY7_0Nwi`MX&xJjy%UV&r{%SBF zH1SWeq28NB>*zwyaBbDR7OY*+oo-8Kc#^}a&a22<_h+2Pg+Guun(5TaM2=&m=O4&> zLPLA8yeNz)f;s%$U2#c8x?X5L`JHGHlr?FTHXz*+8P_LIVY<7#kQH58?Q4mQNX^sO zaJsi*HpRj#D^XSyDE}LxUV5;!P zZ){u1t}1g^0v@XA>KNI?nr9_Klstp)As-|8zreNd!&8<^M?i&tL5K3Fscrvdx`1R& zr>g1$tm-Y_XIr}8)bob$Y*hxc`uU$AUGlSEgBY-osd)h-{Y>EfeTPDlBC*iaJ`Ygx zRPZAQe~Te`ze}#Y$tzCgEKuRTq?H~}A7dD&Pr|T8JVr~5=%+m&na&klMSntZ;mKbi zbJb$7Y#}!yRoBEh-UDu&O}1ALr zYyZWB5%B-YU3U5#_5H6v!n_Kn3)7b}E@xfB=shN8M!#SK>-6sXa2_T1oCils8p!at zkv#hL?7Rq}aH-3xiVl=A+RQrbf?Bk8VQmBdiTvfy%@pa4;Z5O~bVxOPj7-MX|^?BW!p}0AP@&9^d!6fh#cj=W^jCF8Uz{tx&6`i+cGkKDoZrEcsrOf32u-y zTS#W}3pDWTyw6e0)qW0%TVpqc!80k@6>SbLZK_XEC7_)LB_OGw%X@R{F-BkM{LBbx z$U=>+?sD>abJ=`uYfQO2FiP)48s{U594#4Ta7q&L7{nSC(N)!y&T4zkbSdm#kqvRM z79IN{xZy${{AINclJIaxLNctQ*?8un&nf;#c@}f0hEEs)E0n0|{AacLie^eiomQoj zY)6tR&0Wt%>>Pz&Nl(?Hy2p}wx>-l(x zA=F9E-K|Ee>I9favlg8mebby4Tevoiel=cpMEI}prQ`hIu?Ndm(brDAf?@n$wL|ej z5yfH`wF3L4aBtGg)-uga>y2*1PE zCa+(OeeY)h(7Q79-({#%3u4~ZVnc2)UI047NXvc2VO*KF|CiXq>@yVu_9@)9MWeB- zd$p@BAeGPTx4+{OUJ2>!F!7E-9MPHdkR+{_*5B(p?y1_X(r0ODw}4j(@W`5zq2Dfn z2uf&1Va-DP?EPn%b0e~EB<(2*Ml|gmA9by$1+;q3j%fFMBn&foeUsn2u`mJ~4VoHJ zl)-A2kb3;Fli17f{<+Uu{^uJ0G{s|_j`?x@aoGqYGD*zNEuZc@@$TqO9+jcm!xDVQvK za}3?j_Oil;b{S54{ArrN)mv5+Kj$HXtG0WuZ}5{img9x-zH%^iek>sfD9W);(Gh#A z$+==!;#hmxYGK1b|W3XF-ECA-=A)v3uw(o|Egki%HdxDx3V? zhg?gJ062_b*o!Mdy_o0j9&C}n25$u7l%cHQFUWVB<9=9b;=JIH1ZUqW*;db4#2~mY zrI}UW!nf8>uYi-9KZyglZ_pW=A z5Fo+bB?%TFK!Ur3;K74i2thlzI|;!Z0wici5yXaCOJbL!kW zGk5Nts;Qc~f6-mFyV=!i?{}|vt><|@jgtip4F=vsae_Af{_m&Sk9jx5=O@~K0v>eU zNmy(cPB?P-1%~lsBIUk>aCm((WQ3fqp_2}`Wx9|0)ef`NpN1+umR!wEy)SU@N)?n- zHccBt)*)Fr3;)ygWHqM%euw>#WF5FZmVb7ZaTSM1+iirY=FaS>UO@Hm=gzd@D)! ziJw2EtqN<59^E1pR%v`89^Y868Y)G-tZ^$BE0f2CZm(Lclk81O2>tOos_zT?`~vUk zb#Glbx3cgShG5zX9_Ug+@bwnBi0dS;AnmbDRE2HHM4J^K#n)Y0TI?Pc32YW?41=C$ z`<0FI9{I;eG~w!{Nrf3pj7Oc1GM2PAlBF)tRm4;1ze1Bs7RySQZnJH3QgxyUj3@bA zD!uqgExYQ8uT?fb%02SvSF3BiqMC?m?o@BwqnC{l%K7*vo#qX|A&!}DYx&x@RNR=v z<|v?ANrk$s1OrTo6<_xw&J3SpYKkw{20#q?LUS_M{>q9CWb>@(aexy`p?dIM`m8rV zM$@&pXaNNLSbM4c!7M)9^#Fr$$Wg zdDk6EKHP)#HXKibCLxKC2=+QR#=WFJx`xt;5Gq#t+Fly(L_xGUGG0`@5v~dL9H>^o z|3uLnz?W5Gx@S=CW_yctj-;)8i57KwRPSG(MW|J$6F)>OR%x0b6#b?zCPwl_2ZW`o zm5hHqqtx_09OBt*?H0h9LAvLbIWR5dkniZ;;_WlY`a7MK7FiE{mf)Kyo@`E{-7UO^ zp_@E(mSMA4_~RAj{DG>lLs zBz}N36Dh;H<881^Pvfe%IZjbl&X4y9a4<&tOT%U(J~TBG2~}5)wj8m93auY2!X~3{ zA$~a`(MVo?)1~_?_Zp{-^%#Wr-9vC(bpr z`ZB41dLw4*zlvvkE!41Vovpp)mF9QmT=;w!+2_#*8V?p&=;TPXb7$3gMz@GHcr)v> zR$`skT~{i=3hnGBO!!)8-lbJ$?X8<=8)4rD-23HVmtym18*FyD=kcK4CXrazKYOAd z>1aPaO!5=nSyMsraIiPMoI6sTxhj#{O|18)d`islK;S!y0}PCO+SY5NApAaB|F~ z=?yS?>7F$FeAD9sBCcCHaPza+R~#B?jMB2Kf=wQMW_HhTqMQH4e35)I-aD_D9?b;V zoHHKAqAV4j3VipK<^%?hr?l02dDp8HA^|?hoSN4n1h=-loMU+{r=h`e?HBUAEGY5k zoVlZSdfl5nzc+G9KJ;B$EWTa^kNNwMZbQl1==H7)=4SzxHRg~O*W|{>V$L4()iTc( zb}oad)0b`Q)nVE+_V_&*eLe$Ct+w75OC{ho&|jS7re(qhKF-W(y+o#+ndtzn*ip6Q zE0r&6@>JeQgl*GFV6cZ@*ofO1Ff56v@bA=l6rLy-TDjgQSZ>*f?7E6ywt2!LH(KAGzzI7#%PYOK~lMfWzP*5~l^!L2^ zu7;ay#lh=PO~ccY@QsaTD!?mxn{$+mJY+Cvyp@he4)R~Q#Vl9S0z^sbaKNv2)cG#> z^AGM8PpSih_%;N!v>Nt}zS7j!%ri^Z!lUtwA*A_YuY>cM<^tdl4=RtYnvtR_L5Dl@ z7A9z@Y~$g{Tr4&5lp11%!Rb*>YGVYlF|Gujj~T_Ex=QLsz^rND9#h$cf6wn-dg(PI z1~StIzSX~ro5qXvv@RxC^Dg?Ejr*`hhSONyZH=cmU6`-z)!z*Rk}h82u@Dk=_|BBL zH?4Kr>Wyyr=189W*rZO-*sv1HBC%p@V)qL4G8XQ?BD%KdIBh{eoWb#4@r1f zOwuie=3b~xeNACs7TB~dYrP*bF;NxzhNAqI%4U{>w(cMUaZ9%3?!mwqxUfs`{sEe6Rdu9_O18)&7MeBd4gCANT9}RJ* zru@a8stYCsh3QVTL^B9kc8BZHW`m8q}l8SI>Y<%>gCkVLgaYs01Vw8LMnVhGQr_w&$_AQ%2fvVyNPpS@l@ zDFLH2?=!X}niXa+N_QBslf!Jx+xk+*yrp?X;}%qKtldkUMGNlQUzF=m&^Si)uW6sq zH8@^>Zh+l)oC;RrOD%2PJ^$I;J<9yykj1+yah+b$tKS8;f8DFSkD%r#&L}BXfASTh z9L9%q@_L9S2wBB~dcB0R%wYYM?>R8%EB@VSwMOu|iV!7G`~z3eTsgu8C$jriJ?xJ9 zF37Ja^Zh2@h=%A3=+;;jl1Wr~;qo?_*`LrhfAUVh!10W>g0Ck*@;ERc)k&s&J#ZS|Yg>TMa-cS8Ki zlaytyKvt|2q0dlax$+gjUc8|N=m3Kp>pTC&kv+uZA#!+w3h%xaC5Jb+52PxdluiYj zd-;Kw7mW3lnFO;lcf1lw9h$`Ov>T1i&@=J2Cq@n#G|C0)O)c$fy+2XZRX$~oZ-?^d ztaW{9Wxj*`WE3YKRitL^ja_M=5~52rpVhV)CY?VbGokORvMDeP`i-$-v|R23C86{3 z7XY_2!?2JM-?I-LeIjwh0q=7kz?Gu{nd+_$3=>|y{y?lrM6;#4xkPjev9$gC*LPf@ zJ;s>VMIZ4jy<=C^X5AeBa>sOGIpRmQ)6d<)-!+X6CxA zH|dx2uL&N+#m`?wEz|Rg-H?!=5*qWPmm)WuBvTknAQvEek z-83EMyrQh%;NIg?nj{SzC@lw3OZ=-%Mhf5UbBy=h5N+%e()?=v*HEu|GA;9=Mn`5p zk2+wlX_Mo4FN>aBq|HV`rAli~#IJ9x8lE|*&{rmC>wRe4ZC>?13 z`szO{T=>f`{}0yiwSTVpN!K0$uccx7T9;CdsLWsJ(KPVmEzQq&`V)>$swD&b=>^q# zxRgREZ0xMgy5qA)Oe4xi8TLmc<1%_vtwOLS?#y5VOdq&l{6slZukOkY%0>8qi9|TQ z!Z$;0@-OfGKwNHzZK=$k&v&$5xO>UAEw^izkYBYK5)rK>Z}KqKOu2b#0jDd$fS7`G6`J#rY=I;N))O zEm0R?>BFjEa>rN7Yo*CE)aoC5|6&mfCOCdL&k)rDE+_ZXi-{u|lRr)xwJ3@EiWeVq zQ134)sdjE&?h_Y!KJ%u-3bRmPAH9f-TbtozlNZ7mNmpf_%Q7mulrQ}4NCvCEjOK6^ ztY;Ns=cH|e%-w`Js20PZo;Lpd`ehO_ z#c=m!Q}v;6&IDqIqje_=!`V}!#!5({Y8CKk2zuV{Wbe zJr-&X`N{c3$_flkcCcZeyVY5D(Dkd7QzFjKNK#UC$6(de$uQI=Ep)fvF5rep?173Z z`;J>jxB|HsaC8w)%ljI+FA|u(ukXh+D_Xrc;}JA!mIM#oiT_6baxk3t&ToD84^}#7 zqRAZE%K=HC=YiW)V48R#_hlbLwKQosaOORRC9S8h&YunT$lrmssP30;-A(+k&mNi-YmosS=?w2)F})>wb~baK;E z%1ALtN2u?;dbVqJ6@JIX68W?_)u{37j_TNz+2P&Z285%DzbC4>S7uxFH#$rM5ym93 zs$QSk$HUpn{QP9m^!(m=O^)Y`3$M`cGR)11q?d$WHOs3Y?pL^!&!|6MkGTY5y*ndC z6`zh;KmqH)-5$53Ufdyg$4o|)xEC;2$Ryl2U^=*+k`$yRA>f7dO577)55Z}%jWyDrIcjir{Ls-S8|6_u#)zGfxMsDvXNtxyP0-zLK>Q@ z@^-$=dL56*%(2AjsMcl4VOk_+CJJu9mlv`c+IGS=IZu22EyMWpbWZMTPfr)#Y|mo7 z?_Z7$isbiJ^%3ES=7=kZp;PI^Z4vAbraY6<4yo1~c8wRrVe&r9ymCZRDcrq{H+o1& z{*XwScMCFyQ9Lu@-@FDo5_ILQ(ul+CXx%AGMjjGE5+k7xnT_D*ND)3`eOLZq)NO^d zmM4!Gq+02KRc7ZIN{r)~S=5f(dUAAx(AT&%I`h)7Jf@_n$>Ue9nnJ(n zS{{B2BYj)?qm#`anQDM?jxW^OSYG;;Izb4qYfSlte08M0{0#h3OJW94gap4bpaiQ*#hDE*^im3(@pQ>uooXp`?p&cwh7>9<2^RVNLILn*D zeqdhZ!lTT4LRgHq$x(OSsyqF@?(CqDTyc*ly=LP45WDNxpl5|)uf5{q{v`#QFQ74392zC1K6dIzbC)ifjIXoCKk4nWu_{OiiM$L>74N?% z7X3=$ZEt?qvc0Ym-ehXB^ir+HZ-4*`*L`Lgt&CAz;J@Pj&{#Tn{nz8ljzxiAYnty@ z%KrPzMd`&K3y%-O3|geYsxE#a`F@GDLn2AIuLOHN-|Lxt=BR7{c7+Im&5{3DbN|nd z{{Q^?KMwfM2mk-!_5YK*-&(tU^1|tj6E{YP;u$x=m+`3n#0NaFxz5YdF?jLsmU0bOvt^n13Y9Nd zds>R=dH=~QdI$zKYbg_yT zv&&gQG%>hDA`t!s8FlpGGtkS$k8xNqk|-I*Zm0#_u`p;#Fzww#nq7t2)S;Cx+JV)n z$2aMLS|7b+BTtp_M*hLFV~{&?nl33&IiTCS;eBma8|e`3b25%!wR zpY~h3%h9WO)xlJ3j#6WN-JK{vBCN?|JQ*nGWr@F({*(}ZTZUZo*-7~zywp0euMXCZ z3veTMPv*7CEh^mNL>2=9Pj_M$258%+g4cDM(yX{z!gHnzgT z)^o%>sD>YcRgY|F9?R2U5#8x&EtlLhtz(weQ@Q; zx!g*iIN4s~c~zT!1cF)Bd$xjpunVSgc}h{R-NG5B9dSl| zCQm!%7VOd}_@&4eV(z1ZiEew(l7>3>%c^Rzp+B8ef`%H;kq6Uu-vgN%;)RJcsXs7| z7-647&-$R{Yt6q^uw5*>{;;9l9EFYfD=rwyRheR`q6iHV>Vc{LA&Az=W~S2mE$zpK zYfNn!pTDEDlU3&_+nz01R6mnb0=8 zg^czaxwQ@_b643Nf1(mRQ1+3aiAgJ5jjI0XOAT)mz67B|p}AoXUL>=isF}Z^tk(%< zuF_&#v%PV8ZcL>f3!i_O%hZ;-<#`iW_fW{3Z;xG_Af#4wiR{;s`9o4271~F3RN=qT z&b;CX)7YOb#g@%4SDmR^m4-SI+mh>-`X{X@>%^tZZ47>O9cIq<@&{erzYc2;ttm(26j)NxN=toH;fz+f>EggqR-V!nRVWzGaS{yrtz&&S1Wv zc22C>uSA+pm5)zrb!^Mv3*4ums2GP;vVKTE}f`YK+wEkrRwcg?cHb)UxHT%tb+-)VkAW*tNYK)gYbd492!7 zqsUinYL}12godvbr{}inde%RK`fN@peTudB&)RpusMBG2$2XZWrhK*$SC&o`DrunH zz0c5$_LAmuIbyAi3r~1|e);=uHfE7`*x|Jdqe^5yeJ*VXNr?XrMnIx6BJ|^fmu{Jn znrJJR;^q6Y1*0}&j}#?bkaExRqr@H}miY_Q-grv>^jGpvy>8%YqQ$g)dHHT>WkW8d zmhv#s72+PQVTM2~$!t%k=^CSnJM1W{%v5exW%Whc1GWbiU)C%M_#?rul|wu{s9%wr zeb9IE=(sdVyISDgPVd`pNqUfevsLS^22Pn*a!WjdTkJHK&fA;VwC9NAfs!ZRT65&X zy;}K$VDWbkbORrelVlWfWUR5*rdeERH^LvD)6hQEj}Pd&%pCdC+AVOc`~qvYkK0mx zFXqUtjSn4E2np{iEFL-;iZOHg%)e%0Ndko)wa|F;)8(WHl=U~vJN`Wpq~E2oCcqBxV$uYgIE?;sXOdoQhZ_}km%|^#9y`9jtgZ?)S3C1{Iyx-@uOQq=-0={ z2Gur3lMu(@AiI(!ig3UeKK$H!xxD_VIf+=xomN`pA@uNj1Jb$*b< z;)drDIIU>kx*=TJX0oGS3Gg&%2(T6tNEV55)jJ4y|9cHTXpSJ~<|XswPOd#An1``Op03n9TJ zz+u-Y>+gp*;&_y!sB;d_vBtxhRY*ej5^zR3xe}AfaZWXpJTaGBrmz35(q{5&*zQY5 z`TTO4ONEgt$g@$Ic1*%hxX|~B(0ZM;#l>Mw-m|Jdx9^oMQ-Zu0E3Qp;+}iLOqA~0% z)dP=hJ`nq#nP>F&>7RUCNRaU=Yd@(t0M7(3flACx2Q*dU@LQ3x*w9u=9dpOo*nj&8 z6H5!(M>Ss`nAtc&txgKRoH#{2a!u<)N6%uYkMbgRpKmXOnHNV&kvCClP}P5NCL8%{k5{a~$>wWAVNSsLtFuL=)}PUMXqy z0G_60g|fL_gA_ki*%en;|Mf659K$*BvbG%$nD!h?jf6)0tY^G6R76_h&VhEHH?~Jdh>XYKk7rytO9xyDZC$~eyai$svC8Bizmj6<(;HDu(Cc^05l2~9a}>yn8wOe zD9yh=ta2-F6jaz4LgM5AWA=VdCis^&=rrAMBbm zP!Gl)`JnTzHvngmBf#&uF}*-H!)!^VY}T4r%PjKL-1Z*&V89*ML0K(1b&l9%`g=fD z2-%!+81&TbG-d=XG!)1dN~)6l4_1yj;*R3J(weBSuhO4YKB7-11R~gNfur#tan8%M zFAiAY5{%P}$e!K5!T0ausTv4W^a2*=q6>+-pCx5ppv9wK?^=YE1iq?ohZ7y#^qy&D zmv&qSy*95){NTASR1b=F7Kw97g^(H){l0p#FU&sQTUuZQwsU`2GRV=u%L|dxK$Z`3 zl4;>oF`Lx0oD!U4z?s|b z^$epajtXzU&5&{x6;uGcQtLdfE@nB0;LmJH=b^RtH&&$xxr;J?RI?d z=*v{a(w(fRw>n6qxrA2vB-=ytWIL2~!p^XE=J=g;#apbRvL{MFTPWB9X5q;Ox&jd$ z;!FX-mb|G}7P$}e()oJHoBXF#g8<)ng#K_gC!lPZRQ!F%Gmu9YhS3Q}jYw&0Pr6y( zrjI&JnyaDhib>;B=5GF2An1eCtI%Xjt(&1IPe}cpSY3o*>LoCllt}HB!Ab1Vb8dnk zP03zwG%T1fQ=D|6y_bF^+#t7DCvEyD{qcYFoo_zzVk~q}(%Erc!Q-Fm+q!z!@?5+d zt89_NBCB-I`zBCw>vPp@iA4R>AK?}3zk5Dir*xaujeDQIxjXhHuc;ht7`C)E!0G(- z+`?*aVkQU27Uu>0-kWazMM?pZmR98+g#TM|;ntRXbyDwo>9YPFY2tp>lh`mG4RM?9 zAs^9gbFJt=GHb|^vd6Y6$n{50@`GG1icVKmYxX*DfLkE#2O%`O@1e2jRbXp~pd!zE z-5uo<*er&$96PU>SqtW1f-cr*n#t0P(H9I$Xm!kp2xQE})n!uJGkW~=Eqb0?TCyWE zC^Cu|!dOkG?)+D-L%23GP5u1-oiz=uFk;(Mkupx;@fbIO*h;J}x9^*vkq67Ij+LEr z)-D8cF?&YDa?;|ZE%K{4vm9yAi>za=1)r4Hu;4W6$df&3YMXyubJ|{UAFwZer)MuN zy(uc=@|36~Hxb4}`+Uyxe>=}JCPTW+9=>^$;c?q&pv2Q$y47lh3)fZ^qa8dp>uX$H z;MLqdd^L1wD0_w=6{Xj?;#g6t5D%ExJUG%tmzFAk)@Hx`5g6*!m&``#W2kpi955tH z0*4OZrLc2h=kX5jUGLOA(JP5)ttLLKr-p_CY$CecSS2N{c+On?i*b2|*Z3A^F*}K@ zXeT#H3qg2_DwXkHr$-miab$2YQC|2_zMZ9j=Zo@O)k=wzghb*hBt(^Hxbt~(waUQ2 zjp45aU;LFrRS|HBx#KfUeZE(6rJLJ@k6VQl#ocGJO!f@X@HBT>t ze;c!Axn|RB5md1cMAO;tw_^(ziym9^B@1reFM<)u;OS5QU>U3^=nKVCPajO-HKuQr z^#9~s7WRybqfc)p^2-%mjh-Tj^8Y&2sUC`}W%(oX0%DwT%eS#%JuEfL0|}I>hI?6; zbo)tXZ!>n`T^}1B1-`hV*ZON}*ou|=iFWX^6t+|1rPk|kXm%qQhgRD2I(+|7z~-aO zk8&W2VM!^&x!}~u4L#G!vQ|N_u`=K(3pPV-0Nv|IX*lC$y8 zSqRVpx428cXl7}2l0(`1hmD*1zr3uh)L4S_)KTODrmW0H^{bSW`L~L}hw?|UH}TN$ zB5qaQ_>zyV`POu!PR31xP7J?k;R%$0OyHig%faDAz`|{gTv+mD93%a1Xh%n3HH)rf zRL>uYR|7WBTb|3-+P87Th3wPXr$hBSRzGdE9{u49HpE}!qRhg0*okv7 zSuL;74(%deH{nzeF_8jYNKoSbb#0clUtcO<7^k~?&B)T%D!gUNu=!@PL(Xa;9SZJ3 zG%=SJ$O{=5I4{V3RwDBBxpcKOm7>w9NEX%ZYS=*gC#j8ERahGLt(=a%#NxI(DyFI1 z)LO1N%!hJL3Ej(e+u6|MV!gDIdnLUuy*45BsYaR2vAVC9;Y)kW;#94e5c-FUU$I-n zPYjAGn)3@l1iAE?rA`^xoL32bv=!^=A1za^@O7q^^CTqZrJ-_TGWh%5WX;BEl7yi# zDl~QN&4_Gs-dJ62BHqHBIdAXg;?1|=D~t6620{q>h8AQO|8GKO&r zL34z4Q@z+Tuv=mY6k8W<=~A-HkOef~8)NUYnP6~VJ2@v}Y%(~XGdvf_qSEAYcW;;N zVMm$!F&nQRQg3%<4m&n!Te*m+m)wGZw2_lc1^#cVNpaM+vJlUkwk+IoYj(&~MEngZ zvoPO*6z!sXE8N_YT%(a4d_ zNV3b@5ajNa*7V);_U!@+Q0IRGWLl(Nv6YAHDpC>L%~~U_ZUe&Lvb$H4zyG9b)k@h= z{`rV!!s_p)ag$(>UC~P1-(%8cg!TvRi>SWmA2Ljyn0>O!ATFg@z2{%J(VrcaJYd=L zeuW@E{Z<1G@CqCbz)5VM@8X;euMxe8-G2`_?W$*vKSX8!NWy}tx(~L+^Z1c3tq;#g z2aX9$I{iY|;F}y6orWbydst-rHKyOZJUALFK`8DeMb2_%gTshZ85b zsxMy^o%v=b+xmQU3E-UjePy}jK!QBuYu~WG!YJ*Tiq$zpmfZJEziHCDUdWO1U0qz@%%tHGWTe@skNJYn zQZn87e2I8!aa=e)^B3KCI^ge+qM?>Q{BZhwQO?X71r6@*%zYbn=nvaGkVa-PXm}+n zB`cNE;{W>aKwBH>DgYYK(5cgk*3M50fe$j5bQ+JC@a$c}KUg|7kvi2WPrgezOP*QE`W6k{0t?&eI?f`Z ztd6Nbj)2AWZ->z$WA^4H4bS)1BN?S-!CWUxc~J+Lalf?wB`?OxsaW?>HQCp_OD1nI z%r5Apc@e?eLfJyUu;IdeX0~Px-Obu*3Q8ghKgGy)h`$oVRZ4QLk?k9u%qY!p^6bL~ z5)xnM?!M%<;$Q==zxM+t{xKm`%IwwmDv8Y+oXrxlL+8xGm~dR^uR5&VxLL~r zUph|&zA$JG@?|^;{nt?p!(y@kq-HHy^Zh%o`HA9%4|h>@tT|Qu{Qm_Y?SDJ({C@?Z{lDNWJ|zpAYKYhB&>1WhzD)JK z@jM(BQqRsj+$nT&mfW?Dk|CWbVm3dH=7TAI_Rjc=qzBm5wfK>hmV&j!9QDFX;)rj}c=^+@e_gs6nmT4U|( zk#$;v@mIpk^DIx_wYSM53BMlpx3{V)>MvDj!2Y#6^uG*?r_y8+nPTW~N}!@>=nUS_ zA9`{2-wj8B4PgPZeBtl-j3#bB+Z8DnTny9<{uY=2g%%cT*&o7e%nNP|X$tNn zZYjQJ=%oj|*}RL;spn{Y7^7;uM6_3-==8{Yg6&m_(S()U0T5>Zc2xs>QQH4bu6sm- zsIr(JbaDNHOtSiN#1j?UAxbScFwa*blE;vJ?N-w31J_j>+wqy|r_3d2Y)lTRyNHI- zzTZ&h4&|w=fklihJ*}5Z=6|55p{RdeC9?NF8v6gOsBOS=S*Lb-Li(`BwRFb}S^U+0 zJNi?2H`vo^x#2hpL*0yGZy~UIp%iyYyUGm8KSAViWPm#z1dlx#Gg-@=uAbP>#7q2p zRf^d{@)((zMpKKyKUMAE0Gq}w`hIJ3FVn}wvfpiLq5xP&+o*y@IMmwE*c#`1T!JFI zpYl(iKho?&_i7>-u8AWKGWpU4)n{V(kkQYxk-p{Xu<77uM!eY|dT~O1Ulw1(h8d-) zqT*$wzefMWzxl%c^}o3Z_CsK%QZm;44c6|AWEONNY%Rn&&&kUR)5hmXDG!pi3Wvr< z3K`15%Oy~XH2~ZL`AvIN!0*98>h9M8MVwl>fL@OHD)JiYxRc?HXeb8mRyyAF9>=&* z-S>#h3fR7a$`K^-EK2c$Wl|lY`T6+FJJ^Qi`lq6x_8x8EjAlMP=a?4-|9&<8`(GTM zQG>prPZ4{2F90W=fmEs?RoDw|cM=7QkaZVai~ZbZwQY4jUh1SR5?IroLyv|ia4K|O zztnL{U5?skXzeml8wL@zwbuWs7hHaq)FZ~%|KXK!bK<|HwM)AFdU37cBR-EM^GB_Hx0S2gC;4)bOZ3`}B#A$Qg@*#kv@?T-h+|p5 z05U)wt!4Mv9VnGFJag~B|G%rD2JP*z=~Y3Cv7{b}nr!?UeHejcz=B=O9$VVu+X?|L z$p!gxFK!3S(`;w-1 z&_m$Y2aJ3F#S8v#wX4AUz3!MC0BtcjYmb$HU%oamHf>gNRv9KHG0|uxUyA3+F+wRt zIZJ&hHT9e88(llG*4}Wo`AIPX(vpVM_8Jj=}%770;beSiXDn0T1vVEi#9XabMVin)GuE?YNia8Gq<~?PhyFSPPA$ z%&MW$nDrdh1iTJ^7R3%Cg$pf2PwJLjh55?i^4W zxI`TnOna&~H@x}zTw{o#&^k~WMFm(c8u^?j$q-8KI5oKqTjtGi&sE!s4gXVt{P#=p zfuf?pyd8p7WX~NwbcOW$Dg(whG8)Tum%A z9&A&IWR)51x&3^}XWby*r@d9x;su_wv=^;jH0_&y`Kdg40BX3J^7wqefQi}w`|LOK znZr4p^Qe%0=I{Bt4^$UaE=%*e8{7jI^5Rw74O`;*R-m&t}Rr58k!TjQHzQ>Zn)&L#$^nDe4o!`oXsf&2W!zfpL@}vC1e z^DZMURcYFo*7BXqqIe{a%8GVVXMXvnkIs?exl7gVD|F?XOdUp(!kPhJ ze1=rh4;v39=usrhy9P~m@wL--I}&{S6lZXU2QtyST)B$wY{}&LNptVN?pk3Pw{ptoG3^d4Q13|L z0T$8L;;A%Ye-ACNWzwFcCXsi@&n1?8k%<8A`P<6V@YA}y<4hS zzS!i9v-VOX(K*fZZ6_M+@#T)-Zq$c`9ME(dHr%jm>TwCbp_2FqtCNdue~3wTmFA8P zz{kkJnnEt(LhBKAi`2RgI$7zM%A?VWzzGzv96`J#l zDS%FFEa7|Q)+qPBq)dNupqigyf2Lo(zMn|^uWXNGbG#U#af&QDVTK^x0Kdo)r**48 z0d|m&=v#~$^Urh3`^Sc5p!U-zjX=*1eAW18iIf%HD~R13<7_tzsTRb3`!LcI6|}{f zI;x8jjpla|-kdnMu2x7Cuo3%&Hx0A7qy7g=zswpiky$iCsAsjCQHSRS^IxhOFqp*+ zXE8|8_p&}|`u0^D7VqplJC~ll7I~XW^hboWqHuZnrY>RfJ2@<$UGwp9ukW)$zWkI} zW522s`Wl^-J2Nq0#|aDHw2kPd(l|qf)ln>8pLe&k4QHstEZRb*g2GeA`dCZB;09Uh z1@@Jg+7fm;Szv6uCfoPx&r4z3ly^W1vdAIsY{pgsUS|f$S{{qpoTgg8 zB2mY21@)U3s{hdtZoa(HcRskn!X*5=!AAs5Oh#DcXv#lEpWlNV-~l zkd}9e{&sC4=g%y<*-(I-+E!9Wn>++x$LCkp@zWHTZAMseG8p9F7LHsiaLmxP=zq#!p)f8jVKCYr#|O*Wg?KWM2nek~AM`D|WgF52;B2sv zzieA^wf$L_t0WS4US52sqBJjjwZonFC{G{FoVC7Wd#p4Whj>L-X!|6TSSbKymhG<< z#TO{mR0g{F=23ktvVjGjZ?>dDM~ur=pFuBc7;zNtlwlqejuKn#;6b5ROcHhY*e&N)?9DxX_;L zxDWT-k)2rY_tXv>!Uiw4D$zhB(bAr>{=|_~`5(NY)&WS_oF*@X7yWlEw<^VS<$^+I zxq1YJ zP?bujeiox$t3M0C(X|2Zmb%Hz3OuNKd^4uS-Qf36v5xy12c_ zhW-O6m8pVr1WogZS`^$W9o&_@-Q38YHi&a(>k|y$10EuqbTQ2w=l4k+5sTc3omd70 ztNm=R2QRM6)+>sEP`M=-hlvuAOUT41Dz54B3({0S(WE&A;io*%Lugm8nYNz^s!b=A ztlRqZD9_}KBsTAqVXA$_LQjZUr|$2J_W~1X?kk06SbgzTYzCR(0&X65_A5`JmGHAFsrh8!DEkKp5J> zOFh8$C?rGY8?kLU#cA3d8%3*R#F*lS0Jdh@a!m*0(G+1wZ zp1Nikbu7$Z``1yI&iSczhINXooB2}4U6>W1(gxj?4`Qf71~w}~T2^kzezWv^_cy(u zKxAf^X04D0YWaZ5OdaSQUJr}YeP^Vis|capwP2m_bOSakjtifL?)A#CsLi4?3KxWz zAUE$=+mv+ZzYL#EmF-QU^LpxD@6P&L)qYE|Fuxv?E`L$9R^01hFqP7Vc>c4YjAYH{Xcg>kQnPQ8GH}cOW&zt0u{<>> zyy3inq-v3-%#ZXIAD9L#F|3du3WInI;kEaUM_6EHwRIOnT`=RylBMrQ$=JbMhnTR& zrd+N(N`UsAx8ukX9>;nT_i_HwBTprA|fs()pS@c2O@iE1#V;B`P+5GoTXq|O`Allf`> z=PdurzZ(UwNe!8rW}To$^LxxR_LW9#7IMRRYpWh+{1Hc9OR`$I!zzDngP_QAk=2Gf zZl{V_i!UMGyn!Ptcp~*>z7gx1Z78Zc-41jYmcoNUK$j_qV!IKmpZ-je7xapoF5&SN z^5?27{&=zZqGM*pUGSm^vKZ|y4q)S!B}>~_-y|<)+48-0x0ZC=EDx8tjSgzO{JVQW zMA9RYskf(Ex!khXj2TmzJ0IimS^Ebo+SGD7>kyxMi{r&AfQsFhzT-!#$2uh<{Ro{~ zrShkszARmM-Ma5gt`7O1v7r)*vVBqlJTEv*IqL6$%sl}?xQ?z)8Zzn^=(Hr9hIA+%G5Q z#kiUFh+MX|=CpJk=+I&H?aC6HFzN$IwY+{Gcwb*r_Xf!y1@7gjWsI#0gX7 zT8hZm^X`v2kR+xf4DO=xP8KV@ekewAD|Rlgl1p@+AMxy(xLh&pn!wRH zBWu-FNC|gyb=31yNx|Bt5<5H`C9UU8TI7JSe8VOZ5#Gc<5t@_MznLi(!qj5o6 z!2neRb``oE6uNzEYM)MVCfY{iZh>zamJhOBB%|Ki#q5^n5!AL?{DY;QR=ea>(ZTwH zlpZmp=e$I5JAil%yMbLX=plHRxcmQ}0n_IX8y zp%GcB*hXAT_e>j$qknBuTPYIv$6NPiFgDfboqAmZK*iN>GNYY&YhS&dj}1|nQR4Ro z7Qxd}-A&oiIkJ~DQMS{>zvnMD^wQ37nv!dFvu&Yh?4Fwa^b8Tv{^8cpYeo1*YC`RR zlrU1fVuFNHb+bAFxXz1CT)yUY-xSPxILbPt>#7qqj8i%A+0nq-$r)PoOfivU5DRpo z0_vNA+ukgVb~95sD;ANb4EwayJE5P#V#1&(_P2{4lo;Hu4ea9kf#hr1`*n+-5RbKM zfMAeR0mW2~&xoSw+t*Le9fCP!Px^Z(_Wk8=9Y#k!>m+z&8#-8+o>*fnfrEkQ35g5t z`5+e0II9`&&u57-lY2Kov5x+>ZxzT!%V2pt*1OovmZ0j42Ux{ zNBLmhE+k&fUc*-iO%$~IQv5W?Lla{uatd$yX)4k=~-77 zX}EUCysZc`9Uk>QJtCv8&v;>8-uvONBYk^3|Mo4@Mw8d~ckfjnY(|OgfWRo9pMd6` zX*M+n(74m~PZ;I}zM8s-z2`8PhSgQ;@Yp{6xh-vPalRS+4Iq%EA7-BI&DV$B$-96` zEQU)=G~ZmOGRt#fe=!IK$`#1iVclQ~2Kw>w5jJ@e9!E}TpbY#%{RhX4@MYf6hi=ag zp5-BwR=2XDnWPJs0z}I#aE;rTW59{~aP3Z=9c&pr8aqy5;rq;svNcznmChh;V{kl} z`+VD??SvK{QRwC1gS%xzi-YR3W1h{a z%FAwzTWu8WD89t;SDzbM>v%#sOfdN*kuFDGv&qZ2T|%vv$t(hv&a*Tw9y|a`E}Ox5W)lCe*LLx+*PMbVx7$@$C^)_aeOp ziv_%vpNb>4+)R2=_s{!Gg){%lG7GFp*zh>f{Gb(*y6#&g+2hUyllT+NWsohAvL0d{ zsgj_iM^|3Y21LMToprXg5-iK00(M=9^NLDRZq~n~#y8U8JumHD8z)sQW*GFkos{GQ zW{#WQcGJRx`z5<5gF!oSg3VB^iCLHy(7w7P9%T;lFP>fa@HW5S*hyqT>uiT~S(OBp zGkagIgyp(fj9bW`Y-5y{OfgOMn6Esu`%1@}Bm?oqvU)M-w1UN@oeUo`M;{SXUsfh< z2LLW_Xb)dzZiNeFWUiRERLk>VGd?BN3<2Dn)H2uhfxTv z)HqsA2y%TY$`>TqUq7-b;U26jq!S z+g0GHFFoqs{T=}zc-7fq?SFYqL~OqQAMBlXINN{R?sXWYwQ8?ut)ljR1~c}lPa-8?NxikiV=H@8S{7Yd(L&P^IYd#=l^rg_579m;R?R_%=i1g zUpHHnCC5aLwiIFXSsyOku%#^d#R#9oTEvDt-^-qgbQsh%W;v}4D8(0Vq@^R?BrQv5 zdUPv;y7AoQwV>aPZjb&wz*a50-|a7PR-S=r45b7%Ed>lX8O@EP%*{KTDm( zX18U0^&S#|c$mZBkU1X!{(x{rhr3>t^(#?@^|+g#%nR^~%xecQ8s6;PIPRXXG85(< znN_Q2fYfsI(7xRr&#SV*P!_FH@T`@^RBaMXYL$5H-)F}N69Vrsw)P*QlO8nHf%T07 zLis<|Xpgf}?dFBzqP?;B#%~u5Efzz@9>pk9)UF1G}+f2k( zt=zl&`aO%B5s4Likyl#9PR(2)q@bk2(8|99X)Y;=tArpJbu|2#BEaQJ^PtV^6HNrP z-u2*SGgytJqIjEk&6}(A))#rx(^n<^!(CUyge)6^=PZ>l*t3Sl!$4a^f9U(KbO?!C z`s-VQu-ZQZ8&{6lP>z{xmh`Am3iFvkB2nI$X4~_Tyls~Gh-LrkEYP7vo&B4it8Q7B zK;3_l^kzyqll3|5o;W_84duX=zJ_<_5DmYv1JUrc0ujNMj$;u<|8Su@FCg{L-YRLF zNcC*M!lD)Q+S$Jxh=!;{rsNhB03a?V#j2&*jldS%Sj~TvazT{Zt}Mho5x@ z$+wI`b}X~%-!_zeS4@vS0o=z&dRI7`*4KW`5yq;eac#&JT^X_F;-hlxH`ff zNpLt9JwR-1bI4qVp)3|2-l4knWj#kItiXX^M%$ob7oSd-s&5rZ4aSR!^aTA(zcNeAbCS^a&(=4===QL4dZFgRx)&`gCA9{P*N|MDsr>zz@hTGuD1(>UnT~{QPVB*>flc*B!-) z#O_gbRr+EJ;E3=nQoq<-wsP=xUH^! z4KCZZbc=LA;7b|Cc_;R&r_8>@+`7vKP&2&pI0~z(@QqkqUpt1QTbr$~xF(xTZ|?$n zjK?hdj6&F<#peNU8@4>9=O2v|ZXRUS1NQa};YPO&9-Y@;cmhMY9M5Dx#^_3jjA3i7 zlIq7_lQLZ|*)0r=Wz+v!0$*dP`wy<~ciTr9hV7Wr@poX3v zX+^EE`yNgzQKc|}TXatFFUH_63b=S8dAi)6+1VD=s zl1B+)SbI5W6^#wPh24~L;u$+3z87?hb8+2+{mA@A7-zTIRVT?#aietav9?Mp!73%P zWS4Zqv(>C3J1e4p!WVugtZf)|sdX_V)^JS>(#g*YE!|(?58c(lu;{LNv#b*e9YVB_ z#NEdJE{e1$OX6z*<#5)PD!AXlyzTmSLt_hFSP%L3b>C7md02Pqg8O{SO{50j{y;!z zZYioK@aA)o;R~}ny?1a0`Qj91@wA491nBC{~FRM zkJ$yN+df#`8e+l!9_5Sm&LfZDBz5Eq_an!kt6LuG6-u2n7b%wa{funVm(G@RAS@zk zH(GjtmVc|hC022pdPzB$e~5J2U6jT51`wCq0bD6~3j!6;K`&YGbiwP^qi^3+BA~II z&Ag2vHj-e#ZHKONwKqSMQezIRm1jUL6D`Mb>q|8)4fq%zHpZ?#H&5O7=o-E#E!L==RC_4|sp;%+~hBQ^q&MN$F4XD&fAD ztv8&_HIBkfFZUmM7lxXfb&2VSX!8e$TiY*44ETLD zg099UdiEYkUUIM&sbF=(7?sLz04T9$l0k7IUP97oG%&F9=1YyQ9M4?5z@9zRqmcMO zb~@Q2VuM^_-oo{X?0|#vtr`aHB4?1^z`qJUOMEx|hPNS*-%I{C7l+Bafc?%EDywY< z>Cw%~>Z<3RHBVM>ron<05XifIY{oEWN^q^O-7pgYoFR#{(^@!FI|5_q8~02eX)B^2Gfzr%MvZn%uF)Lp4+sV+e?%K?!CsbB!A!|4 z+c)kUD*^X=PDTVpnryR3|FC^OE56dp-CpjfX&5(skGWO-EzeSvBMUP1q_nXi-B?giY9!lkc^B{+$D0lb zc<}w#5RIwyKtG2UP%;+dcBIK-yMdM#e(0XXNgVdbDndgq^?RUbV?&7HO7rdClUFij zU<*qppoGdZLKCNs{MlgOWI_(X(#jC)qu6FP2L?4(Qd63FeP785JcjXOHZBU@{GRX| zKLYE_8sp+Izb!XkJN;_IsyYy*B>aJfbqrBhS2hH zx%N7{*PaE98lBUh+*_%w4tNw<^o5cp5QcMlgyX_5LUIlg=gHdF9s0kAK;|3^0KS&X zZn#y2S*(6U@%D^e)-jABlooMq?h^drh*R$ig6&HNRkSaoNL3JHxk-KF?5IP`P2Q>8r zJ7}2p)8ptVE=evyWcQ~gMgNPPi?u>}p082rhT%%c z`3V%8U3Kz!hrSQ_+;jKJ2~g-X?cFtCer*Ox<@*t4?$kP}1a;x7|>E8kjF_RHZr1(5iW| zJc)V_Wt`q;k2-lDawgkfVd8M`DQVmH&?%lf^p$zSJx)r0IIAWSmz~2Z96ykm)zc+3 z4ao9Sept;~;jRTiT zQaFd$YDLwDSSDTbMq+MF#$-=0Uwp9i{NtLM@#F4$K1_3{qjM8>&;#8rG_|IX)!?A? z{WhO=S~3M-p821e$&rpMy0=*fRuoGh`Dt3F#p}q?CM~R>Kkejpd+lgXi^%sz)n#;r zHw$l805$CJ)Cg^KCvt<%;bWrn20tNO{dIsWt?lZN4)?y_IPJ8zLUz9iPO&IHd;V0K z!L8f=)%`>(x~jiXmuMdGq2Hja&I>z3BTzMbdD<+xHw9{8-) z+vIoV5B$J%nCM*p*quG;@-hcWXTb69omF%H5ZN1q+@I?2AiC2McuFpCj=BlWpT&4= zc(7oa8x&qhvCA>5Tj{t($L;NZ93uHSfn;~LM#_2lhwhCl_l@aR!xbSTj>W%g1*ggy zF>detU%z1Ch;g;6lh@2N|EvlzKi9l48ZqHr+3STGnrfwJFIBuB>OiwhBq!(HZDU+Z zxqBdRQyGReps{$MB*e0906c#OdqtjvXE`nvFtRMAGKRX(zqhFRe$XAcI8x2`tH(Fh zlPmB$%{3&hW`w{`fIQUApXm>?5$lCM>bcSjMAFR$&s}S4zd!sA!fbPJSy%NJ&TYQR zX6w^53!)j#S`H)ohsb5qqoQ%Qp_bWHVP%Yb6Re70Bab~D$QP+H$n`&q4~ z0w+xIhb>`1$Z2HZU|{_#vGlv0q^fxU?^8ah(Gg?J$(CM&w}MuOr+?xr+)KHyN&uAE zl1rp4_YHDxJFuogBy!@-@ZQXp-4olsRj~v;-)iI8xziBxmX;yHh7u(Pfhn#eSv#gf z*!IkNJZ`U?AuMyDwSxJL)Oq#`UV}IM&4^+%r3^yMk_`C@KuQz{wT|+W>x}=(VwIPR z`4cng*EM4GnXt2Wpx+nmTlB0qxh_pzY2`~*QU8X&bluQzKzfF;`t_Cv!ahNQf*~S?BW@KVvPYS$5FnO)Fz-51Dm$}a z&PuB7D~1^$Qa|8R{kr6Gpp(kWwzrvCsqyEd->6}Ch5C0-?G}j#0<9{Gx=Wo#XZ|Vy zjg+DghWeowRdnu*-U0eCu2=x^Trb4E$e?6uef97;6W}#is>(V0Q8r&=Ri=K8S~}Fa zsePCR97)G}++0IaTazve0QjrAsw|Fs7gB_{hKq}v-TLrk3^_#IZ+9vfPjdLI#`S0r zQ-9J0Y0fPWyfWZTKU~u=-&t6?bq_WIwDA*_vhT%@;jfw8n z+!6o@Aohw+dFPMPy_7qo^@=ypzR@0|g~O2kD_RAOrGTO;SK2-7bpBiTN3Bp4;lM%I zDD}bJB7q9!E5SBPLwN1u=qW^!?>8UJIL)AJIatID$D8=3A$W#K&kl-V?y`DYWBiGf$%Rb-{{ql@v4wj1C zAGW6p7QmiPnhtJ!AWG~)r9o5k>yz~670R(qhNaG9c&Fu>5#f34BHa_QZx`<&-|+Sg zr!ic!^BaCPJny^IK9E4rPl^COwR1*ixp`B#mgoa~gvI0|X&C)Nic9<2;(qH8{Y3`DqAgfI)1+=pKc`?5$f)H0*Y2f_ z=S*XR01t;NvuC69xJmWT6v~0I5_hW2u9C_FcDcNd@k^7WnR^pyX zXsO+5liqoq5JMWvN>8x<>(`?O&?ZSvR87#c59g-(rJiW$dbMr~jlb30=6)W=S*(br zpOWYfPHOY3(bmkCQjF5)jLmH3ai4u^I0BxhLgyehTh~s$bp^>~hqPBst3Lk%XMEhi z!mrK8p^?jGVYI##@HxUgSS{ZyUU*rp(d8M1hbZ0s0|?3TOPo|=Yh%b@Qm3&$<(u_ zWn_1ll?qWHXj!wH-T2pZ5&o`r-U=)~7bAn$<`*s!ev#J+fzTZ;6&7O4MNdK+l){&Q zD%MUA8|XAuD8KH0`>O3s9g2LpgM;p4^-(_9*@K_=*`q&q2tCbe;{yBL@uCXE@R1x{yMBjV1JmMM0@opc5CPl~aX>+kHuD}2GQP`uJ&!Z7S(fcWEa3}vrUdi z2Xb0H+aws~fQS!z zPQ2bLLLQekL=a)3#G$S=<7sKMBa$c0>p7S$*iBWwo};8i*)!{ z$54sY4eIfxXr-_GLrUt$d4UcHDc>4ens7W8Y=6HQ!2o=Zw$;#R@!Pqe4-5N_TZj^c z%m^byQ6s{Wf`zSL7Vq{B>bc?3ZGNt$8WoOBmW2{b%tFv(kU;*v!^Ax&pONoE=`m85 z(P=a8l=GeZtS@(fj!Ja{-q{>ug_X7Tjp+mRDI}Wf%%|*SAgHh)!C~_slG^{FwEXv# zBm}wD?M^Exv1)wh(`kuv^}`$gxv&NL_t3Y5UXvr=6^;P6ZGLhyY;e9zFmVMFd@;l1 zVKes#u>)?(`_TXN^OCo7PQ$~7SQ9U?iMx0IAV~&n7|3>om4-%GTBkPj=rAsn;C2bH6gcyj-juO>uIQL{yeo*2e#w?EIcCCw0-f8uxWNYvTI?wfb{y z&s=LYNY2S#e>D|oV_(Fk<>2^?VUR;wKQ~qVoGo3Y6>i5kzS2yOk1(Dj?sFbH|E;-$ z5{m=o0#mQp{~=058Qe4~AHf$otavMjC)9Viv;O^`2S9rHxtIA4cW0A#rW-Xpy1Une z5CK1}XP+BfOq0zB!pEd2Ty-Yggm}!kY`#b6%vkzuSmf600lN%mtdPj~$gVtr!?w8u zWw}IsToVu!=lj|TEnQ0~QKKrMqjcJy-dK+wF^BEdI^@ot*Cq?3oB?HpEZeVC4!>%9 z{#;NabVU{C;_FWGvyNF!AD6ZCXd(#M`^QJagBR*e1oKWj@$IR)1 z<1Ptkfz33=5fB)|?ME9ju4v#qfw+x>BNd0@%HgcK4UyPCG)gkcf8~G`8yt`7$JY+m zM-VPw!`P;}H}xrCp&7pxzq6 zNP3Tt%Y9QjX!g#SS50nSO}5}SQ!_RN7jY(U$=P1mJZ9wu%qUNuvE*knxD`^V8bp^)eA6!2s?8>Vl?NpT0x|x@jZytr z%frDX<0o4LUYT0~j^lxnk43z|?i+h@-lw;}XIHCQj{ms$_0`o#H&=c}pfDqhvcQ&p zqKX8nF-L`b3&|F#9&?KLXNN*-V3CnsS%Qlq zGfcrJSH;lv!UDAQAMSHPawa9?a~xIlPu$-?&5}UgSdXFJxCq!u9}aR^>~bR%17~~8 zud00oshCjWQY-8u?n?FLw4dRdyAAV9-E2L9oRBgU2`?N_9zu)qw?v)O#K0D!PnHz} zO_fmCSv}$9oe}l3^su8gTA9#lWuNKr2{1bkeU};j@SaHWtl`+6_nKFv%-uIPCV5!I z!$hhXp59+|jh_xdk45vwhcU@64DcSp+y&OW_Sw z@VGJFHHiMfX?^?w!fN~kqlDEnrtSG7Xv@q5->VP1;}7fZ@J-RRv3E5Rzhy+K;DF?< zS|%%ZXPF%A3sLo1O1>@LVmXOqFMya0QfLkqLYG~xeCQhDk*R~3J`hj&9SVMCjp%ct+0s_u4dNvW1Splt*hY6Cl%|EHa z(LJ42sSc0>dtF>X3gBGr!dm`P+O2#gPHpjE*%C?MH?`r z7lNGyK9js)dRs8PVbn0bg4A>Glmo=LmLsHSB*klPO~*k`@JvlKRXzguuFBf4EXv^s z?11Pwtwmp)pT?u}&q@za}13fu^OH?RJaZ+zV8L_ zOfNdya=3~i&}V^OD-T2FP?ZtECU{$PLB|!;dvbR_$XiZMpeD=P-IdnsVQ1r)iplcf ziE3KEaltfPZA?@Q+p9Ji%s|^MF#FD~tIJ`z0l#5Z>^M3SKWkNo!YO_l-IVc=e23*H z>-U<;!+y8HY*~%G-|-aBb_RWa_lDC5$_&0S=c#!yx_RM0oQ7`lC4HdnR_4Cq|N&u zB|Ty<9c)>q5aM05=t}hS4qJ`WTFXDK{We((PDq1d-{Ov)sV{s|bPND_U?X>e92eJmD0Grf_7m|-RGpC7+Ik{SJ_y!0ktyi4i<$6+6%f*wC> zXmv_+yK}df#=9-KQ41$)H)OajAw126+rB=86>FbUV%d9VM$c8?&S6h`vV4f+7TTEo z;l|(vbkQx8yVWU(jj_Q5(@@{m%SA*bJK!gsPJ^+?AO7{u=8J|r*pjuXQi#q}B)Uo4 z?q_byEa9(s`}&9_ZATLBYG^4J{9HXvER3)|sjl35+CjY5;HqZvyK+q9cueGrrt$iI z2tSH`Dh=KhHx-&{U5&`i;&Yu4;`M9RsBs?>WO8vM}`N`P((1G?=?hs=DCW@6bKD zwfgC+5N4S1Salgng^OGA3(ZHhk^flfko5g{>n>B!NkTQF5W=s_~&I~_{20zHSmE*;>?fUd%G=9aP8`UJrNoC8_>b_r)V(yHB3;*KV8AKX$`%d!4EVNb zpil|yP{Vq!MD}S2vF?AI8;dkN77lWHUJtO4{BUhJpZ@pc$&iSc-a38Y^|sBZEQRI! z7thfgUFfPcvp-asYV*eS!I&~xeHSDth~}BJ(#~ z?%Ns@gtIT)x7w5{D%j8gAxNeI^}al)?-!X&C!CFc5C1Vw%#aV6GG2HSP z5D%OuLgpR)PA7Lf*I#IkfSD&3Q?zAH$uUuHD zXi$uc9Cp*p4(+&JI^8;alA5z))aYHEla z9^6>u5(qi61a!0z+``UIp6#ARmQ%e+k>BF7gWmp53Dn`O)Y*M;qI@5$7nD0Y^nSL$ zCfO4@QLapodi69yZuXBW`Zh|FGheLd@86vQvMwt#f&Cr#-6+t9Q_6;= z#d_U^Qoc&+{!uOUYGVjOj?L|mq_^KJ-r2NFZ;f61-O@O+?w-M%NML1Y*?74^ z-u#eEewi5O^s_lC-u(8-i5m$NS_tBwecTi|vMb&zi$_wZc*YC3tX zQn;97kv*;9;Tim*h9%z@*x)*m_u{$f*EqIgskv?eZR%7rIxfyjqnhs+(h%425c)pn zd8wM}Cg~c&0FppZrmff+{2btoS%!dB@zZlN12#T0{5^AF0)}Tbq1AG6IGq@y1E9%37U@-=es;k_aLMg)_jrQ1pK`0S})_QPc~?r*=FPIcTJGCKS}0 ze4NUiN1gs5dIy{F?!M?^TZ8Fse8M0d2yoN?QyTmK2s!`1>h;ztfh4XxZbnd5DrfmM z-0OAY*``sDQRrdoC=0+?Jd__Iht zqAf9U$R;6GU(i2u`F^ymQR7jZ=V+}GwIiD06fGBzbqR{1EZfoWs`VS*BuH}K!B)O} zJm+*kI#-w7J*&k!Gzmx{hfHvqStNNsEnCI;iAC?R3l81fx9SsiuU>omHs)L0HKYO; z7UNQWd@q}M(mYGqH|a}9&X01DPjcLoX=g0)qhFK#Y$G=Go%w^kLWJ-MMXmIc{}6rL zBx!OVlxRGKmceEs(@K zD?lY2bu|Oh%@3BR%yzT{Zm)lQwGk+J!5F^!yTRk|3HO)x&pII%_|N+3`WE^1s?yiP ze`-QgbCi&$2&#EY%TM7?#o^20Q%X@^ucrq5<{p**xMcg>#&Ebc!TKw8z+vOg4J}p7 znYGLH$}2|lidmEyUd7Mt3>Ie~K$5J*N&9R-^=*2aHO;#wnDixk?^~w(AG3*_t4k>U zArj8cSF|xANMrAepY$_{NM^#RpqXbXx^ebZQ3HMGyw4H4tUN-%gnWb95{a;YQZh^lkH{c`>xPH`=#I4a>;V&6(I$_rgU@Wjw6sJOuH zPo}~7V5>T}00VK?Pb!>VC-S9+XH94gpa>4P+SYhg2#VxIp}o7%X?O^6AdhDl`LVWl z7}YHgG4Afat-G*YLFX2lRK=!50FLx3Rrh6BFdCt8Q=$~!mkHL=erxs}uXt$Zi%tCv~ z>0=DZAn*=B4YPR>Srx38W-TR6P4u>%xpyD7AIiNjtF;sp@iN2n@I!mHAiq;&;>q}^ z^1k>vvo)niwg}NZrhkaaVpmTW(SSt}8a4OQh530i@VtKas$-r|ElC3+Qj@iXl+{}7 zew2dCkm3Vdf0F$h8UtD@r-pBiqxP(X41;yB_>IJo&O*r$VDakY5&m{-tQc%9l+mdsqI&v8%;R#{_53%vuB(DG;nuRX6S?jO@`3FkKc*H0<@G^V(qq@KDMpkOwno`JZPpV#W`-2AR`+&eo5VlloVkG40 zKSV?OkBu5knypvQ*sbFVl-LjGoZNmgf6(l%D>oqWhmC0u|1{W%S2fSj%6RIL%ybQ@ z!N=rFBbIu9#@P)s-q{e$CIq&UJswThZE>%fvmpAGvI@w^r98|D8}>5&q~sutW|Wy% zsu`Eu6+fJReEt?kf7cdejceNiDMNRW#k=#^1!t05x~_j#Zjc)+QOzYj^flRKo=>w{ z`w~m&(-eRd+f`01)#Ol`7cR8<*&UgQL({=H*l=l}Nlg3!A!O_9N^n%L_l9C?@|RQ9%-oC0m-+Xf-EI_Nz&H1|C$*i) zM}Pg&2z=ZiDD}75Iw_v1QEK}AzoBXgwD;XSz`!D>_%leEL(fq8HHxq%K1nQTUGdC2=`znvm16!DW zz*xp^u&k^eponP#0vMC{o^R-QXle!SD{)Q{W(wrjTZ5!~R&p#yW5pJLSSQg`b&IbI z+_o)&$I8(%rz3c)eQ(_Avix(K6hq}R$H35nZv5d*1Cuqy9!7!2@6j_cenI>l%g^D# z8nh5t)XxB0p8$#8RIx`PP2TXlCDwMICHa2C$IJl1T7_e&q{aS3yxNsXNYO%>*4@!y zL~R0Tg}3hY(s{*w+bgPXL(!mm+=Hga?ONkTOH`D@Nnj*8Q>MMX6AKWvSd3yjrbm`+ zpZeC=JKAY4FyCV(;X5oJdg#o2;JTB3V=S)COwimUh)w>={<;!xTk%37l>j!Mwek-= z=ZW#+j*F}u6xfeGZgjuvuX$3v_9bJ5DDCX7iFJ7TWPgFB>e1sKdu~C|yJ*|xfhXG> zY;`p%X#m-)TV)*>UbNjAd3^m$$dD4=53392(@6A94O7@t3b2j-<=$1YU^%y?Bv&~u zi4i}=D6}>;sRLCA^}MJtgPY!QgX#5%RSt(fWeIRX0U{qrZLzskE1@&1IhG1A5?IA` z=~{Jpws7Yj&#z6?^OE&@bZSE6J9-d5tw~=!k4#k78I7xq*Zshh@cg7ahkmZz{ioIW z=wo|cA_-eQ`bhUk*cgV5v6Wb;z}dOU{w3ArS{3iONE18ua<;4t2%EHL{=%;i#DY99 zy{f$!8rsE_tM_qz<1=sT2aX6^JFy1xNZ&_u3#l^Lf!)>g zsH}3`GDef9SMUhN|Sk(UC$Jc$ki@$ygLiueC&!prDtq6paJRrP;u~l z+^YEdliioybwnV{`aas?=1$ouz+ikWl&h7_N^*=v(!{~G?ql51JW2$lk<$KJu=tG) z8{h{*0H0WDp}WkkP{v*>9{NSh55sf z)b^WjaY_wWLq`;?Sj5CdRd*=+;0+tjXD{|yhugZ7qA0O%!zaOVd>Yv)DRg)*`1l#z z0K1ndm3jiNd_$HLYRWYZ+f|@&71-4E^A+bX!c#Ht{4x|Ofuc2sclDJc&NEBa&H6(_wBO@PGlfB2p_9;OUb76WG7pzT*{9)ig z8B-i%?#b*()o*@LZsZTdikyBOX_pzAbvX4LmDv<;QqmVHyz8HyDK2@EF}L|>l!k44L-YLKT#s@C)X0^Yf9LeW0^a2 zcoNjf|GX!GK$e;+L_WEg59-e&V{yr+bN+@)N3VKDACWT!PA0a^M!!2qP3DdU15-(p z@Ww`XzAb3UDWGKP;Rikc=BV|KFq*vw1S0H$j{#Q%^fX*t%t}!5Jzlwc-%CJw+RcD) zYkapd8lh9#l7-TeZ!jYC<&_@$zuoST^EN$wz~+)ram052j*;Gyh0_&3q;PBOce#L! zT&;)KWDOsVINadRRq?!gc87S^o9-vg^!c7iul% z-OVx~9*mt!=U{dUB!-FyG9|7{eLhg>r`UPNyY|Sy9fqtfmei%9V6HIbt9#eabpAdx z{MXHWup0Zsl~F@CmjpH3L*HT^8IA%tdE}tJI64)F#X{E`y*K}&w$+N zVj=1nU-X)#7})3Wo|53_9tv{n>XXV~PBY=YO-UR`^=WUhet739BdI6u9m!qjU^0q7 zEP6B#`GRoaJ_1DV0FB2a<^AkxUx!PeNl+Y@nh)`Y$J?Bh8IOs4nL7zkJ4VT}Xhiu* zkh%l)_ug6rXt(JZ7Oebg^zAoG%{aQ-@K$|7;JSLqg`RFu16!#}4qiQvqh__&rbGV70{;z4Rl~*H!&as z%4+LHdrC<{_5GTjD-_jZRg@hz6l3E;%QFdJtouHRrKF9 zn^zdQlJWV0v3#D^wr?X~%UQ4dax7S})XLwhb@Iqk-R=Re=yZ>D0YAty^*HdZJAtSN z{%cK+-&Ig7D$IbJ>jKggeyMtBp#n)iDgSnOIKL@ORwti9qGat{B6G!+{dg?CbH%iC z`rh^Ct&iP5r3Qk9$7Y7CCm4qOf6+duXS(~gTCdMlH^|L?)Ue67xw{k?hp+LSRN^t8 zdg0{~N!jKvwKK7zq&&7hs^H*I(a9=Rvr1J>t4YcS9h5eCyIQ+Fj0WC&vKRRC_Xo4< z%zkS@H%#5GmCEAgf-XKQsOXQubVkm~odn`Q3;#@mo9;`88LnQvS(yjZ$K9YKLg5PL zJ%fl7L7vkj&o#QviG5F~Q`RZPbb#qn_&G@@|xm!_ElU{m}G(h&Z?1FV$LEN6ivN9T*lqJ5{1z?!npi48bl)mtDX7@Z zJIL#PG~O^PpUvboo`+DA`YEL(yHL9Y0VW2k5IAy4g<*ffvV!hV|48G!HHU`cZ*HcW zA8+m@=Lxvp4JRX&{CVXV+!uBiMVYfqQo@t?dGtvPiI!#3W_GGto034)m?V?XnC7_I zr*=7&FB1rygs$8|l=`G>@{4J(@6n%U+qws{9cd{WuRvfO&iW6op8V5So3BB7iu-tS zgBMcBmWN-4t@aF}Apv$p7z=ZqKBgC$TFbgid4w(jphLGr_;B0x%%t&6(kMze#A{&U zQPr<_2crd4*wURT=+V1yYcl`qb(l0mty%wv7k88OOr*aqHgJ!Ur+ei1*-j{^*bxuL zdeK#usIXF#ZFUAATKntY5)dhq_KwLfi30xIZghW$Pi~u4g}qqU2B`~_eiG|FrT=>c z7;)naUpHz}W3?3ZdA$iWzImpUhDQG|zF`5o|AbEBWV&c8SW+=#^jjRfV~gXG^3lBU zW^{jgHmyvG7u1Tbz)o-qvi7(y5;G{O&TO9F)x*604(9erO6qY@&o0PgAfMwK8Cnw0 z*!)^&>orzyzWoI;O;@JugB6<-e{Qhsb`_!<-3oi3?8#pMl@HL`^}k1v>>zc!Z15^w zLcoftR(NQC8NT$?n!2GeucqVs;;miSG-g1{p}!=#mMdMeZ(eSEu?6Rw!&6SHuJ(SX z4l`tl{^hKL_$ivC#vlC-P!OQpQ5I{0Aqu7TYFvo1eND}iVd2Sp zw!jbwb6BH%nE#}5H*hCW4zFxS+;Q;@CdJ(tw|t!k<}Jzv`Rl$IcYn&F_OvyI`2$Nx)zNvm>%W~txj zTZ-V-N_L&Xh%Sgw4!7UFYN7foa1|I*rra3Tapd}*YY7oU{W8OBk8DtJ!0%PVwv||v z&-ssVX|>Jl+{$JtCwJj2;$x!ok-8P%+sNjJ)BTK}I|sVOE#K;OmtdiCZ9_W?IPwL0 z^vt!4JS*-dLY7dKCh%Dg4L&jaGJrb|NjmSur_M_gl7iIrtWPny{ zW54$#Qp1Tx_dBoI{i|`K8*Y^HtCB0_i~<~dlF6mqElI=K{UgQ^A%qJ+ zZS?N(HY8?Ga(25c!%Qqqw$}Hg5Z`ta;$T_XG+LdBw~KG~^N${I4i=mMs=^4JM6dfl zySi*5IjLTQZxD!1SK5jg-LlV@(9a%MFE%au=0;#>2(#wtSL>`nu4NkggPP2>+pNuD z82WjC-5ZTn0fWCxz^P}Pd$}6HJwvb zww?Sqmi5wfIC$j0vGU ziUg+=cefHeI1~w*VmF)=dNk=$i4l-whIART1GrNCvPqe# zYPF!nJ3mBA8UD&`jqIFtvLzX$(zweNAx{MoFbb|~D^#`M(b(k9_q1OS@z*c8w5q0i%MH7qMS3`$^ClZhwbSj*k`-jfEwm$~hfoFm zp!IpEn+{i1t79OoWQN9@d#*-4bUUkr%Im82wI^NR39jagyFh-jm4gcx3|{2Kbws@Q z3b4rkA8`>N3esRD2FTV^B`)r1Wy>9Zl5xT2kD%xT*=Oq{%8ui2#ux8R>nELY^G|97 z_O}FE#E#8?DnAJl>Zj;&J+{z{bAjdM1m`y4m3-^0rfOzDBBE z+m62(qtBzPi!=T)w$MW_y!*&hcEyBPmM>ZGl!)kce+43fB4%4ehx#G-A?&Flxt8f2 zRe+>paHjT=2;>zaxq2wKz!pT?>1`aQ@&9AaghQwl(%Uh)=T}2vB)m z-IxJ~49C9v{bNp#2r%T;!UpB)VTkrcv@mGVHBsk`7;hW#=}oE!n6ax_jTBBkrmos2 zzR)q=!j@|@OYf0k^{s#Rk^YR^BN2TZTj4<-aVzAD?7aqVVZPc*{B4xhl6^Fym#xAT zQmd}AYFc6tlWJX5P1~pQCd(64vQPFwR;`4L2q2@98&s&SZcIR<9)K;bh9sshUz`v> zV`9SnCM5lr4I-mG^Sqxq=@=qfe#x%?U}%_0X7V(M^SwjWy`5qHi_Rv?y@3nif&FKw z-YFd<*;4bTN%MQkM>mQhT@^R5>Zf$ENex=wjj!L*8;1lNFy9e zUV^!P>urs+Q@zL>tnT4{onmu-t?YO2;J$05L%yaSoiJSG;vlRt`y%w4$2RjJXl z>=C(ZyHu48MRf#Eai^$>Th(s=J-|Y8L|<09Dc_|lTUu20NvtEP%CVmBW~M1M>-0OG zeo$4M$qB7ksr|WW*Yap}k9`7W4BBx22?{=2 z4x4_fKh4WmmE?o_hGz{!SDpvKqXFe9}DNt(EKe;o>ihPkb-El59EYU8Gn<1TH zZ5rSIi68$^(+I07*Bm7eLh#4Tm7~~OWz3o6k2X_ttL&ww&De@ZV8#*bORHvt^9sE7 zDB2`q+J_`CqQQ29M@eWH>^>OJN!iU!!$9Jzcd5YLlMWh|jV)ARwOrQKT=~ye)Mnnk&mrryngI6pq|KXR?ld^lFggWB{VgN83am|cy?$smx>_>m?uL~I!LOEVb(oD_>wMx7R5eVQ- z3JNwBFhC|&VgpoXzmn{}qVr$|_zU0AhT-x|k{PoUD&v>)`e2pQ%k z7lFhCu+X%+;-b8N$Wwpv@wLg!Zf-J&XeXpHVv?!HME44+pi%% zKL6;^6G#AhpfP=_EUo)0^?Z*b)|gWLLp!-!Lls5O|-x%f~4b_RIk0_UUw`BBGg6(ZMU_0M(xy`>PI%r@;ZvVsjGBtdX2t$Y^@zZ~ul>oAMyrC_Jg3xUS zu@O~+ouXW8ryaAVxgT|H){iR_qnn*k-%@|vGC;Cwxj*51I`pxXyVa`CtWNY$AXnT_^YRjZJ*o-ec~l`{$c^np0o1OR;if-vIuyf zTqp;KW10-49aui%u+=X9U}(v1hGP`4D|NrP>`$-UKTSM;YRiXHDyUYg^XQBq`@(j$YKZtQ9Im_>4HDTB>#qn|ngO~I9=@R9d--ukQ(ayO50c)!^-&V! z<#e*JvwhsyZ>9|0M&PF9;L+GO1c|n{1NI=>rtIThDFL9g&62ZQFXeZZ0Oq}@iCD^s zd@!VQ^gRycRRxn3?#1F4*BarejBBSV*OP?o1am`N?6OFWi?HqhbZYOvJBb2Q}Mlllz2cMVu{K0v!t$XnZG#w#X=Axo7?53r5 z=4o21BTL5#uAay~E_?r&?dxV%F|@8JiIuZ20k`sF9K&TvJI|~ed-51M{_It&B zVnXBZpGQ{bMEL1U*=0|0(=4rdrYw5YJz`xf`^e%`(|xG?w+}-K_%Jo5TiNJVp22p1 z`UtJYy6RZCL?G^{kjyQ4R;c8%KwrZ@yck%?#3@#AP^b>Myur)l;~<@(WlzO2O`w~U zwmry6Q}&+xmDKT-%>N6=Pc)8Y)4K?x~amiI} zKdItwJ6hD0TNFIlZj{uOk-bwjI1eZ6OqtC42JK6D-uEmMIVl%O!||fy;|KOB&F?AX zO`n_Ef={E3wG-89z((Hm$%JqT8JKi6GJ;CF3GfEA<_x+`io&bEo3e!97 zLM)*nr=^5DJp0_F65&!OF=v&s5_>N8e+y#aYE9M7D=RW^oRcSm9_dF2MF=VM{L>PD zCAc`(xj3S7SRe=!Xb~Gx4;jOsbk3&of<`i9IWva9l873HAUD0!i)tkyiqYu)#1T&K z2ys2}g^m4|2djh785_ZMFxlUZurc&}Hl@v~Axu(qzV=ePoD<8mH_wlQM4b>f3xp z-|W}oqC)>q^=khsj<$aY>-VLoYU%xj(l=Ru$J+-Kxh2>o9*wQ8JqPM6e0%4q9*H73HRPl{aX=7+eqb1@JhZRnc3Yqn-WMTXewi4 zbC-9)X7NV7PK$YA6)z0FYd3(%mwI8c1OQDgvEY9w^!;~4qOkm5!C}nAifCScmK_RR zR@zdZ?VrL6waj;IR1Oy9?Rh)}wJ0c^mknf{iF_N$__rn!)tZ$!bu!<2YVSUF3E*Hk zIAA%n)5~c{;|-?)&E%ypayAsYeqatO_b6#k;@g&k&Y}JRPx`kuSp2+g3aFJceCj*% zj=1|^yXS*ncIEZXK_66SlFz>V+IOwbDcSKHx7FcWoIg0uHyUg(MVD&}*;BJGYyDFY z@Sh_f(h$$=Zn7HfqPhxh=Bdu$tlK0ORW$(|R}eUkU2>rB7HEDNjEYI@#V7GOJGnJhE)hM0pLIJb@)q1&8{fg3!AK9A4jI5H3aJO$) zjG!X!^bG?Kpx<;`1IzviTHIk|Io*Z2(V5LczCi{V-@Q|yrV`|Kbog+JyhI58d- z$9Fl`#3`t!6X3X$ciBpl3TBA!mmhp>m3vgrN_qzXKuz+RP1)r(270EfF*&to+cu{B zIQ8&JDf-V_xmZIugrvyy|Uf27@%6fMk-%V^|#`e69D9h z8HjlBpGWFn@3oPfKi#g_9V&jZf6+h&IXT#h+ZdVMK{98Hg ze}3hB(v`_vH^wC2^l4MpJgSr0&d;_!xW&8xn*wE;>}rp*2&W_i8etil8z=t9Ed4K@ zyEEDqmoW5=5fhrazu57zx*jKh-&?U-^6} zDAJJW>C+YK(!lJo6Y*I>RrY@yJoLA+zIP zQ4^0VaJ-&&Z? zM#B^S%Eo5dnZL@fe-d-{3%Rz$4irz)fCh+rx5<1!-QQ%)^_J|0*d+GG;O2qcg-72{ zpD?XU%DauRVN%cS@!l-nGegUE1sHUXOVU}F?0h;jNE-IyTVU{_!i&G&*7by0(6aa! z=JYZuH0Qcoo@pYO~LLKK}l@DIv~LN_dAd4Stjk zUjlP4#+>2CJK%|7tNWwM;juH>mO87Bg*U2Soi$p*A{!UA{lGser7(CO_qhano5t%q zy{P)^yEbF*?v|qWN!L`TU5@1l8u9K&p@R=iQr(D^L~10an(BRjWwQ3>1}gA!N7_@8 zB<{56hT4c5rhErAOs+Iq)-!SCB_{Wyfj%%e;}WVzY5!S^h_nAu9ojVp>dNv!{a3G} zUuOx3>gj3GdP4|PxK%Xq)w>7I(hskdgqw2|6Vn%e2q!M2KhaOgq?tmN`|n&U-47XJ zSfu-TtE~~Kx$!#z;cS0NA5Y%JpDrut5HM#7wak1WXPL~zu+K-n=IJaFEExc`&mZWR z@YJ?BX^x^fymrom?B3ELz!&&TQB84OrfaAIjassCu+MeW&V%VjjShH3OrGeELRl`C zsBT8lGacL()zyMn=Mt!Rx~kJY0qK1&G2YsJu}h$H`BOQP_pcqABvg}lSDx4VSfo}t z?J}~f;uNyfTcG6p&}7dtT6)QpbI@PdFU3fzN6$bcapYO`H%YVXqx|IF7)RFD84If# zx!+89)YqjF=*p0laqhCE_BnghJ1;wMdoP<1x6lh$PubT6i^zqu0D^$N*7pFnYU*zt zB#?CZXGR-YZlHzzk}MreFSho=JQgh*ne$<2i`lc%AZB+-G*>s1#Xk4bibo|QHYA~c zZIJxqbtBtX%mEmvtdS)K6;!k4hy0}9MSp>JP#>YL`7A=7HD$NR+kU%=(6)wRHEhy*ZYmW7D z7V@dEft~uXLyhCP5mGdT)W`PXz24hrSpWG>zV?8e=2yEv$ax@QLd!d-nPvQfd^c}a zFl)hH{Ak@;&8GT+!=R*kKzWMb9~`d_l|tC@bNyOTmhc>}`(GV&?$3CJyl=v6=7UCx zndqd1p97=U-mMEzfBD$czWZbZLWn;6KsESew49x_(W^OUWmZ5bdq)ZvV0PD40Z8!Q z)a!qWs>1O`bR3CXM>IL!IFncT*wZc6w7+0^YC3~-9QtLhw5m&cK5w|T&u4wxMDQg~ zR{7U1Wd#`BLUHvv5R46VgnC%Os4W~^dv{gx!6>- z#y3Dcs6N%sRxgu}?T`01!_7xm^?M9!HGNqB;0S5LUB^vNFlNX;z#^isnmpj9Tl}@%uZc1XB79TMz825C?p4k!+E!Az zQ0L!CRbpG@+Xf+NQ1l}L$|-Z}4vY6ysG7{$h154QiC{qfF2tCrrEMDd;!OE%KPkme zW+$BAv8o-d!eXSdi?pS@CF!#vzWhfsX{EN8NxD@6d9rmM)&m}s?~5C!+2_yy#WhxD zUL{tZmzxQo8UlCcIjEB&0+#L7!O;_ z4{5>oC&o4@Kw-a2!QXaB*0ekha`)cAu_63=imgWJ;FfiS>! zhzW6fn=`AZrli%y2Wk}}RPo>=sF?vXx2q8C7ZA~1;EoAVwRR~7>A7R)H0<9R5?Gwa zLtq)0tuVaMQ!yUOFJOY)g{l7I11(+Qp3_tvOh&aTX_lN5XP>Ws9KipY55}G0=H)6B zL)Tt2tOlZ$o|j;QmprpJ)$k2Yv#_IP$$#a6hvP6sth5^~BTV63@%_4`_S4JxQ9 z@};m3VwO0DgJ+P933wZ-(ui!S@{9n-KpuMK>@C8qG?eQpn?M-{rtcgPETg3#RlvFK z3kgiTMW(V&d{`lOKT?sY3Ilx<%g-Ol^FJyyfAAJB*v=vtjgyh#X=2oUc=>{rY(zzA z71~mvHH6Jp_NC7Fj<42)gy5rHCd9m<_h~B91bWc2MEojX5Ntw_@b?)nLAzTXvMb)g zd?vv&5V7-hDM9_fuHW5}x+}3ObUd9vuQ0;oOatg?X!Zjsg*Kq6gTZp97dSxyz}0T+^cy#S%eG7=NEeIC|y6JO4mt6qF2cMRPiHkFNSsbDi!pvw2|qn77n4Q(+)@#$am;DF@KHw3Oc%eG2rV1 zsXQP8Yo2F412-PiJxt}31E%#kFs*=YWyw4PIaK47xtS5acFpyh+H1Pi8O%H45_oW? z313DSRRx|y@-X(|tr2C{rG=A%as4QbN5@6MZ?FwjG+kAU;y1NRrI*L9E+3 zi$L5|gbcM23Djj}Q1QvLE`J}Ow%>Eb+o4Rgk<`8Szme_HD%ja45V~{HoZjE8 zxmL~7-@SBYIi}QlkoqW!2GJz@v&0+e8iw^lOEfQ&*uJzCkNt92;y$S;jvr?+2G#Dl z>XWJQcCWo}O)7blfw)DWz}A>?%Kl*0DuT`Qs~FYYR<yKZei^dy{$cDgKPHNx$R_G?qQ;l}Xec|H5M}ZLv<( zd;erlo0lv9C?Mw7%!DUJVpFjO_zbk?wWlt7R=;lkz(%;q?s(KK&v|a*6Vi1EQ(wabR?GK?3&SdFp{)G#Jy&w7uOsp?X>Y#ODDZrZ z4w|T1@O*+`Ij5QX*%UyQbD;}T0-}tJ8H+A8;|btMdY(k|4Z26DOH0O5k#P2H^M)jMjyJNVS78kTaoINidxT{INc zIW)hM8KAh;BEK@o$?y=l{(7bD6~6iNz0 z4@mmxX~#xB2ShbILcB!T&1T0;&=9UK7bGa~mFR{0{n+OPsatO&M8R`Y7O?k3?ES_7We1Q(v(pd!9bl zM-Bpk1;Mo=y@Ecb&$44=I)%ZjbBE7}pN{cpg$RjsN>I6*++%4yf--qJx%7gX#~&3A zE)oS;e;%HYRPteqb>Oy|0#|E`zFD&ot5l)%==LNG^Ee&BL>#p;bt2quL75#2pXWIe zaLhBmBX=o{AC9BPE6TG!&Iseab7b4ZK___RQi$;`_0tLJk_={X=q)oWnnI(!Y|D`q z@A1YODp|17k0W)a_UGot4eumozEt-$8!LDFxqrwN*vl2;dA)^jR56~odBbs_z8h<$ zL1n4%?1KDhP3OPuUuR95kwgc{;(!ZNz0Th3M?>Ne`vYIEq6MQ}ml`OhN;~SQPYiUf zv7sWUm`7G*Y79FJIF~m0(K%ievUid{_6{4xev)1{sQH8A(K3q;4cir#AL8q2IylAxrLUqZz6IOUr?XAtB0+&sjP zhCTD2Hbr)Yl)~}v#KjMai;>n=%m)=rd}>N0I0vvnUn8{Ayb1kJ6v~!`>r0Y2=c87! zVQ;@7c4tD_7c5k!ADoS;*BFSQ=WQfhcB|1{0^*0X;Uiu`FK?OEyXE(m?X*j^P2 zx{!(y{FsgX{jw9|l%&=in0Tq1w=G3Eaq4w{hOb&dj^7Y*d}Bp@AjR(GG3lj2_XkH< zpj#;41~Pigu|2s*dhPq zF<<@}=I=*2%J8easBdO|cx0>y`%~J9#VT+R;%8K0e*JrI`o%pw{C|A!^ghq{VH z`^vjM=(-Y|caa-fbH>9%MD`#I{fS|IN^d@QrA^a`I4mX(Gw)k-^GFyW=|jr~CDqnO zQbbQ~Ht)t6z0!5cWc=RT!x@Hol;0L1Nk@^*s$)*EVcHv0&@dW`5E`k>G48q`!h8&l zWdr#^_q+;QWOLP1UFR87#N^E4pL!SLrg0BFeySvB6M!=19F}AUYEs0+wgR>#eO0M8 z$+2vkzz(zyb_>S1C>8CUP?J>QQ~5Q}HEG%&jBmF|eNt8WzE$*}JhUuh5X)31Att#s zqinwRDm{x=tiA6Z;{3k-z+VS1beuIIeBR*hFQ}XHitGYaOD}%;r-QXArkqUe^iv8&#g|09>KFZmH9U>)V|kJ+ST>_D$7f3uqwpN zeDY;0n%ku@90@bh2I7Q%a))u}?<33M9EXVcT-2@@&+{;}ey+^z%#eye1L(D?*UysDJ)qPXbbLke%Q8K5d8;d(bQJ)*o11Q z8qNsulb7*Oa`~CSsN{qvnN{vBAL`CB?Uv?~zq^ZnIjNK6&~)#@K(*K(N+Alcz~PD~ zMjYSpcGXw=%4JR%y-mYec>cb+l|g56|BREZzFA|O-ie5_tG0~@I_WE)rJBHc#ZhMMa>+{rP(gLfsBa`D;smK z{lOs)=y>T0E8eMYB7P~uqbeq}Yhb@Vd;2tElhgppIFO|&dx$4A`N|tC-lmtUk0=4|)QELk^O8Ke)U4tj_B@R%$4Pyl!ZY zN;Ld~)4fR0UR%&+Gruo3-|V~-t7zRhino1%c$BezB%xX>?AsZ2!vTd22QZfG^g9Yn z0vMEdGR9!zPbr_{{y&si{Rc?^(K7(z4-XJOY!Pj*^)Vxo8^11PK;wl#x)3%oc=%3P zPKh72B-!%exrz}Iu*P!wMR5|aVDWZdme1`SOE4UC zEFjy$iRJi#>u1z0GxDxH(tuOhFk#w+%>~sJoG`mciTKZWd36AXUDY-Bb9|L?{daf?q6m7%Nh2bZgR_yYT2It{C@5yws#N$D=zaNj?Pb%z!<4S7RVPE{I*dNpd0F) zZPl5bePdiF$k}_X31C3QM?q4KJI0N!o4-lDs7^dG8h0|M*HNjT0OiQailURB;aclB zDjZDLdV@KZg9a`}K-%N`3Wwu^3r!Pjs^>Et>Ak z@7^ziv8aK;ke8xQ00Q{*~2ca@F2mVRv<3}8K2w~hCRs*TKP)i&@N$iJXtacPHN z3xU|L(@sI)ACl{vCEOj*@5A1PG@6l0{WrZzX#9jnj2r9EUdYVu7(^W-x(0e+|~wi4_}^-9U8pBIZmsbXmQz`*gQl_cJ!F=xZO!jzYDaLSO+~di(}|`li}m0+d!2u9%yp}ueEYdo2lNvSFHSh`dFW(LE9J+B0w`q3Gv3Ps z>14OIC*|vnN6{#mj0JkmFGnW908>iiXL+GS8K#gpQt%%f(aLuS@`iew0-O*kA?;Lv zazV^x%Ej-%>km#lRJ{eXaaXd7&FOTr^cwK8<77i`JfsKmO>lQFSxZ?)Lkh#q;x=+W zV}5HH^Bj4!q9Ig|riTdKqQKhBtS{egjI2q`& z&w*@Y7WO&gBN`ii$*K4Y;+`^JJ76hz5MTacuYq%FPPm7*9(7@!#cd>*_f{%eM*y5y z#H7%o)WrGnfjXz?pl;s{GwiEHudjWl=1;C&IqAT8w#P^_?&n8SGMzs>A z_Zf{!%&(TFXQ!v2{m7{igsrgk=WDCUp9T^LWZL&aWl+KYNwcf<}ec8TgGk1Pm!&& ztV1#1+ZcT}8C9-q;`d#Fxe_G2yy?Xo-nL#e_Xnr#hI7JK8Q?M)-nwzF6q}MHM>mg> zMC%t;KjE}|#YR2@Lj;67UW;?(Bn&$+KVUJRbhOhFyou#C3Lvd$trt<2zDKyyPWT?K zsw(yeCj%US-dEMZaBidS$={QYJ634!rGxt7ubPlxy>(-}?CEFZ22D?f`48I-T04hurMT z>(V3)Z{V59W9at9?LXG#{fzm#r1+e&=K* zkT+V)dg!O!C;@phSf4NJD{Qtu{uUgN4Cdm`^TrsPmtq-oW4o10w_Q8Rh8xNXa)?t( z5>dl`8(>#W=M&Wf5aY=$$l?!<+ia3AGqCasb$TxV?Xou&Bk1L>37djv=K*$hp8`Tr zjnepVk*-UkZx?1TVg1iva9!KQL`w<}rV{i=$$(`X|Z^SA& z#9P#-6vh@8!Vf#?fvlKbZptwCbRdokk*p(JMq!%kRI?Bkf>Mb0U`rjPKO+#ye{trp z0hpqwW~NXqY*m@bU~EDuyz)UuVyjt$<-M%eMoQRwogN~OjTS&N*m;hL1&S?93E|43 z`P-@WhNJ1OH*8|;5`gCVMoMhy@+jH&=P5v~Y#@#y=>{gxW0hAcP|rO%waeY{7t`aX zy|GDG0Di%tKK@j%@RcHS1o4(}O2p&4MIA9XCEh)0xTWt|$_Eajd-wFUR17L&Hj_{> zQN37qE*GrakDk}G61v0~hFf_*rdvQEL2-Jbg%_<#tjr8>2{+F@=@@Z&RbtF~#M)e9 zt7iMy@CT3D`lnu-H6&EbRXbWGwefK*x0uX8cV(3D#ONxgd=x2Dr!Yu3BC_58;kdgI zE^1{sV3VA-&WI0ZR=*JH9lRMfBgJ?nk0 ziOyyHiO@XM!=D*>bOlj355ef#*-0HDUHoZ}bi+@hz0QcGhJFu!!2yMDkvn^oEGtp7 z*h;nr^i5zFfqgsyY!R(n_rjGc?CEmoxu?cWSLAG~HTDlqr~h*dvy%P8lyJMh%rhIw ztvi=!r_o0zJ2YJ>n>fwpFWq;RYNDsb@|!*7s%w&H=NzoI#p@c^s5gDQ&~=kqE2V5h zoj)Tsd(sis-Ly837r(Eve9rV5HSyl@60tb55C-ZAy^3um+*FOtjQV*t88ga`D z4CNe>LL7w}`u^bT&BWUZM5QdpbO~-y%N}AKJdIxf|JnZ!&TT{eaRu>;`tXE5IC8>uhgQ{n%@%BhAZI=Ldq;)gk^+KZRy96Ql}+j`P_gEOW}8~(H=RS5 z!k*aQf7$%O0q$Ush3>Acf%A{A-7j-Ka4Z;qhsg?TQ9^SoiXmV^5lo+ZyebA&CLDQA z@4ZJeJRfB3+#q_Xe_Su0T7Cc>%2k(2sWMqD8y{Ttaizw?xfg4wOOA29m5XM&0eD}= zf?+$~$uX3Gat950ceBAuHj6FM5@U`dp5}66h;iiS2SadX3JKSAjKPTEG?V5~gi-}nY|XRst=*1A2a*gQJMX-yHDqpbTqs@sBGv36q3m-j zdsTV4zC6&N`mxI|1Z$nq(d;KYsh%pEGOy3~kiNYUVACu?&Nf-aK{-X3j|OsC36)qN5?nuwHFoB7Q{Pw z7kG(uR7 zGqeu@5kZ2SXKEysR+h>3#D_dbh2mZcZ~qX=m-miKn1dV%6qMt4pS7VqP`AzWA6NSh z@-%u)3GN(5Y`SSyU`slbO6QBvlMAF(CCR?#R~>ai3`8a{V=4;qnl2vA1F9xBbd9gX zS8T3Q9mON=FV$C#_Yb<2E7_Mfe&+2{&2PGz5S42T_M(DYWFweA8x1E;&LI7Pv#n2j z^kz*1f@Ra6@Kr#?#7lC;%sGm#Bes2ASHoMBa>`i79mf4Nvr+}~mYEr}9fykawG+1w zf7ANYJ+D<_6!!vJKfXpxR4{ait40WBlehkwiM7cLO6m5zTbohoW~nShD-eeLxP~{D zUteAQ#^FF}&FR(F(}+F{MP%_3+{&lb17qQPw-i^C!C(seait%56$u-}C+AtYY96_> zCAcwmcB887!|h^opT+4R-u)S2hqPPAJ#$#T==WgNPo0jTf6-;MWthU3ZxvHAP8FAq z0z$6kS38+W25ruR!)Y5qFb2IN-3TNv32Vv89KJb|=_nN)r!~vIxm4Hy$5_IlYb&Nu ziUzRkfMk5M3*fx#F%UK2#n%hXrV*wsJ}4Jr3|YOBE9tpFUrATYduYVkox(+0>$IpwJorhWB#&4-O!2XT;EDu#|3B&RnZ! zL6zuf((&c!@YSp@2*0*1VQwFf^V>;+SD})M+vROwajpH>MlCBL=FJvcN&Mw(#nK;~ z-sIjJSH}%wS2XWE+gS9=5*yd9*aZcjSy*;=iC_GrzRkPn-h(Ey0)kU5@9g2*v%%b| zEfWGMlgGASk9^y&OSXEYe?I{Hs}@_ISlm4t&v2Hh7HOfTvgj1BDnqh78fdGA88g*{ z7d8YL6>rG+W=Lo(ksKp$Wo7dx+z9a90Oo9miXC{@0h90yra%eaUCSoiD#o3lH{>arP9Al$64Ee^<3>!9Cf=0 zdfvysAaLjRv_#tjTXBbq*(K@>CTlT^O|+6+&1H~MEO3v!`O6kF7n)60lq zoBn!E=x$8Hj1mM!^;RR635V%PdPH3moeX;)Xzv3yEyrkK#~JANv)3UJ<*gUJMOGbc zIHY!*e>xlNuPGK|4f@@fWktNWVKkD{;?o;M9FDT`c2wOk?ldIsBE~h^^E|(}v?!)q zuyEPBhvTeXyT&twJnHw9_oBQ+Uh2jU0=WPuKZZ+P#~cV8u{501nlPN97R0$XFVw?u zA6|qF+r#zYl}vEX6e~5*j%s3*-k8dr&bWwaTh|5>C2qP*M@_)+k&jy4ltm+0ec^W3EaRqhj7N$V?lZ{kaxqNf+v_(-!a+;|XIR8(6$-4|lbDWi?xi!_=@ZeawcM_cZ zyrwJL_D-t7+QQ%RlfHA!ydyQucVWqS#-W>}-9))@gcnj~6>+d}P|x(JoV!y*Y^~e_ zV}CsReqb$P!>-m|SM3W6hAjRG^*|op#@VpD?cEOma?JoWlvyv(0^}E;K`Jj`qu+tj z08QXa9Q?d~fbLP(dW}}u>`GPmQUX%>`LDRaoqd2(tK~VG`!4!5^GviOJIjytV;5WK z4!hKDx7N%{V^2X}`ITYLu4Ax!p`l%iW^G^0E4&4QwH2C+4`-z|JUrj0VPbpz2Y9YV z?)4!;!yKEtTj0i^ey-p;#jXlsq%viQyAeb^WUs6G)jMftQ%Ub>%?pe2dUfR!wt)Eg zAGa0?09qSoN<8a25Gas)lraXW<$l2BWa#FztrzzSm9wFcUyb^nIh|o-HnFP>VosC% zgR_cv9fDN71gO=9rkA6$jtP)}wZ#0v5wBeNgM$am(q*n8ei=$k@9$XQv{Xv`s6O0R zUQ`P)Y@ci2M{GXNVvWOzJniuA=3#|gX|a~38j^ke z3(_=mN13U`sO`;8i10x~^OJ$oi!y2KTOlJ#^@OcXfw!g42bs4vu1n=6ilru=b52I= zJ#M2ZjFtqE*>(Cf;&@{qSw!5K^PLo>&z@BW4x3d5o`I}2BM!Sx-gYojn+IJtUh4We z61*mmB_Rmo!}-Nw+Gx&s&?_>uW*>KP6@6MsKd!()$s;fua9U|58KsMWNB+3X1+=!z z-)54bq5c+!(h{QhojX^*^0RM)5;F9g9r)3$z(_{KwZ3zEq&#WX32 zXX(z%5qEh5!|U~@!mx!6bU&Se+Lci~jB^p!$qZfH*TUKYVN=3An&_&}-fK%aB3cD0 z7fsyrDB0HX;`pz&O zg%Jt;vNE|*1Cx_Jo-87#uUs+Gf{odtjJo7D6u4L<1JeKLD9`-lzqrVibbZ#Vl6IWsxo4zge6^fTFrK33e;l=cL(h)CaSIq{9k6>wt8=Vo^`YdRf`clczMDh{7TvYDXZZT5&Kq2 zH&x{SK-fqG&VL3V^iS6+oJkbrHGCNYoJcO`GQBj0O?cs41|ye8-I9eICsn^x%YCE} z;K}`PF)0I}jN*KeJ-TI@+RS6ZnercV(wEa99p+C>spD$W?&bM#8^2?yJ>a>fm`iDE zM3h%X%yGm?Wgz7f)$GOw1X!V$2dKx0pBhX!Z+HkqH6{bR2gNV`<6i&9IrNln;Nt=P#b~Km;lNV;VaotGWAapW?XQ5yJ;mE&)nY{v<=px067QGX1wZr>JYtj$ zOA>0T(oOi^y~t_EiqN?%?};eQ{T-tE(uIl5b4Q)cT%ok4E~oMEuDlOrNLixB;`xU_ zC&$(-?`;^EN7r2RyQNc31c%~32djv;T<3TK;zd1eLB&G!*CmZ=AO11OrV=0Hkt`kR zt6kU)3xJO)F(%MkfqGkg(iwJBieco;q!*ThCky~l_y0TQCE~^Z{qBFCF}OD>8GtVL z>C~mS6P_8h=-n{y?}5&I=a>~T;%1w$L!Z1F{QWif`UQ3v2==$G@dGj(vG?z+!d{6| zO>HJ8J}yJ zT*ARb@)Na^Y-?oGJcy3pl4+-+7Cm^YMk-kZGL~fOvGKYH0lI>-Q!1<4W_@NvbVW0VXt( z`;=TEiJE8qDhxM3{KTbK6`RvDWj@5+K!DhY$;H6iU5A_n9^f4nw0ZU0^ZHx|0Y2oG zpI3lpQKCLjnz1@pl3=pKMSsn}Ug`kFc3*WEn%3jEx~7mQ$n=xw4rC~|k3&vw!ThN5 z@ljH>9`-^5VodTukN6^*KElLLVLtEtJ;sguLyuRU6RuqR#K zg%QujS^W$~CV!3O`LCzEkMq$X?)-Ru7)BFS&*b{t*SemyRki0S*8lLP^E%pE+hu&y zyRO1W#Ji=`!YS*or5#^Rr*n>I=MP%aGHM3c!>($0vS7G9*IIIx1B6K^|48Zfm5V=l z2F6?^QF+>4XixU{nq4FP2VGhDK?5F$guk3%s*o7V_qH$F2K)Q_F$p}T3W&Ex6S$IY z`&!pbrMBWNR0^^lZCZbDaGErYzKp=}x|*`WxY!z7l=RLmUdZ&VwMxI6JuBT;^wHbTo_~z8*n&#+ zv~1~n0nyEu=T!*VZw+>$ua7I>m6k_S!sAdrzxb{&-NOqZXmO=Y-3=Jp-T(qRM?YZL zVkBi&_jO+I?sLB*6~4y`E+1Sp=_a<~b=y;ttNY1d_l5YkE(ntfkj+(IZo{So$B5Ew ziJ1mW);XS~{z(^6JmS~Fg{+h1Ff;o6RCC#+j_FjE*-CS0Gc>F&)C}r#V(Ult)QE(wCenDgte?x_3Pe-_?JT6&z|O#Z;q&uqeT#>6 zO1f+-`aCSyP>%~|E)DXLX)!ujEfz>6F(v|!$-#QlH#C7zDJwn|mJ}*o+>@fLZ^Nfq z7^L5C>qM-!t-gnONU_jZm0A*snErm2Adhr!BLqTgrOAN3tTUmm-8E^-eSz4sz~4Fv zI+cUtU)q-v6Bh%%)S!vUv1!V6S8h7O!xmm!5+5$eXRtEHv0XHZMqfMK-f!Dr5<-tE zzLxPzCIYR(c#FA5!zVocU|NRYx5kO8*%}6NMvKvhr0~Xa$64hG^C!EH#vUhANp6v+ z`k*UGYy{riK10?~R8D^#d_3&@ovL+)IQoqGbnpc)kI1*K3GyG^?(`h>nAkA4-s&{j z>R`Rt3}Wu*JC_pT~dZr>DUA-e3G z+)q9X?|CFIgY|*E_c|Wv4h$Bfs(gio*^{>g?{_KUIDTGhWGt5zQ!dQ;f7pBLpt!bg zT@-=_2_Z;u5+pc;pur)*gF`paND`b*LvWWsAUFX61b26L2=4Cgu8lU(^uBAK-#O>K zd*7|P_3G8Ddv4YKV-*xd_nK?2Z;Uy|m}7k3T;M{O)^e)hrt*W#ZnwUvdodf$Ap_BJ zWc;c7Y_l|~0NRJ*^yyp7roW!N4Y}%*oaSN`oiHkPdVcym{SKgZ0(x(y{<;3^&jFnl zJRVZ*L6RreeS$%dj}u0QNDWn!jzue^2-Pc@P)%25*}=!{WB#z1nAJ9U?SCqR9$YxNkBP$52{N z`$GUY=dzdw%E;?R%i`MBL62AsGo*}uV}x*>$l)IyJ-=DHPsWbiT*Qa5y_lNo^r1TD zT}w{802-QCB0V;Up0_r+5r<3(nrN-Gh!?{sD`(0{4ot}SEu%{3rggkXKkDQG8S4JJ zroLLSvW@QW_k9nrm6+Zg|Tx~pY=%OU)Kqmt~!TJa~5`xU8xFC&=6XqXx=v?V_owAmg!TH1{)gKkmFcVn1u{f)my zPD-`U!SOm!LgR#%Z?}_oG;a+`6A_DFTWPbf_;UUH!{?Ns1-w+~gqU9LtBUlc#ix&> zBs4vALg$Vy?=2c2tcucUajyyO$x}r_yT~u}_iN8(o$WL9zA+{imM!FwwY04RGom0H(8(**Nd1>!-alkVPBb%TL%jSNeUgjnPyyG$1oETJfe}?>3W)Vj z3Vs~EW#L{7YVm`*kY)ohNfX+d&gX4Wa<2Ccw9u-MnH9$0>A^&W>7*)FwtO~;xY@Q~ zDHTHFk7|ahkJrX)B(aAb9NU}QTejF8+HlAQJ^A1vRxX4&D@`q>&fRP{-;74M(ur?B zQ*`*aSoUsfP*bzE`&2IG)9emn(C27c^V#p+J)2(3yfIW`M@$N`OymT+cy@g|>~?f+ zm7IiK21S1c!5P(Gw(ovhsc#E)zfN;0nCrFTw-2H@U2wNEN?A`Dey&^ot++e;oXMIR z_b~;%Qlj-`^~pf~v4D5qrYBMQ@(Lo*%SAJ&m)f+4C}WGNAJJB-Z+HNzy*@HLUUK`b z)lQgr9V;ulP)O#5)-81{7}1?NgKaYPyZu!#$9YaAZj%s86Oe+`ZH2k4BmEUQCkhD% zgc+((lnDP1lhsaD_0&#iLxN;)StM!>q82-;NFyl5)y&kf~5j`rCavPDJ-#&%K|R0?2i+W zjw8{^M^Qgi#i+l!ZMaXTxlK}iKm>)zyt*T!d|(qB$M5YtXSiQIaaR+pf? zr;@*B`0s@tWb5R<(IIV4^~a#&bt(5_DR#-Dd(PdXxLY813Pq9Gfb$E9$t;Ck-bzv; zl2qxQCB$j=Y`lr`&D#;)HyCX%(I5YE!hbtgJfWb=hLcgI;~{FHUS^BWx`+1&i&$@= zYcaDnfO=XTLrG8-3@HAEgzUKqW|_IIol+_m_2Mg=@G`@ZZ~v5bi#g=3bZ+lgQl3(L zltU+*Q6{x7{darnHG@*yL@Z$0>V#p)AheD8Y&Uk~={Lk5-58xEm#^?bJ045#>v}(i z8@LlzOdzGGR&;|Gx=5lHT2#|LMD?g0+}V<(Wf z$aecn*3XA(zxAb0Ux^C>Om^0!Q#;|wBhWqR`&`&)H+8B&^zCY9+lEN!a(H8tH}+{{ zO^Jv6YuYzZt(}xi!4DO}C2II}!LPz!&6wBB9i~L})&yvcRqxlNyt_BnGLAv%_PBG4 z(3f%)wF*79dReK>hb4;fl~2VZYSyPuZN>eITiA>@gCy~X&|Q3*S|U;2UZeQ}6dS@T zWAa461G-qBi%G7*hlNDT-ABEhl@FO!m^$Xl8gct@T^hQPFzRTv!#%FusM9ZJbgF z#``=;`9$Hd@20-FeHhUet{tNyU&Jh$drzA~wv$*E>Z!PXn*p;Q8G|Sy)t_~N?Rj!q z##^UzzFQ^Oe;dK}+V@H|l_(S+X6NWH@n$%DdN`VA?W}>V<;#E>Gi(IM32j!+W>{_s zZ>TV*5Ek{l)9@l~ufS%%-%o12B(pqTa!A$!MQf~((mdl zRz_wJtdWkYOjSL7w>>}(yujn+n4m z`!pgkd4~;gisco#s6Lufk~}iG({8HVjKV>)^*-3PW$+UVVYHBiEYEAG7Av#)$WF*w ziKlXDdl|&4u_hbWR8zS(T3DiH#s4RvN_G8diC@St9J_=(JZIQVn3>UViC~t@cEgs` zTJX&Qm0?bd9=F0u*IRm}q|+^(+6!^IkS$OAja7t#re!I~U{i2y<+pE!PFf&l(Ezd` z#H{8_brXqGwzMt#3+ArxyL255w)lv9ota~%_myh3emc(nRc}wMKi`(d%Oq}Bd8w&o zHn*Wj9<&r^K$Be{JGlr6(07tFrKuTDX`!RU|E&r2T1!O%O z_Wit+Q8Lxm)hONJ0)3E4MO#(v>!z>cThR?DCl!6qNINdA=souuvfaeqV5B@*ma*0K zYk}Vf%$O1qu~lovq&^+WIs8pJHtL=SBIe)Ad|nDc-C_`V-LaSNiqO@EFoffT({MwoCwfw$TlR&(hNib;ukk+v@eKaw`(1G-7k3v6gQ&dI@SHUzaVSc!_Vis z*}X5hZ<=Tx<{^DYtflzc@Yt=pLo0m(Uh#oPkkMONEnBKXDv27b_+T#BrlKn$w%XfA zLH9FthJMO%H+wFPjYA8b9kUP4t8w-80dbAntr__##v@OYk1qHgPNruNaThvulL0-U zq;JZpgQ6Q&f6(!^!I_u0o}bAQ`}*LN+Q~|WfR0EIWY-O=<3@IyqvVGus(P?81YG6d z+m$>8cP%oUs?Khl;LPMCdGq)ihPdlhcFN{Z;B-pD9w``SO_FM~WM$Z-prhPK&aOs& z*Kk`4RCS`{0&~V=FU|A8PBP;f9>j_eSb_#t!&Tc#hZ$YnN9GpU7@c~+!Ud`)eMNeP zsXug1Pe2nBdaIdi0^L?d0;z<$R;e!oJ~rAms(a?ai|8a{3{fLV_Y$IVl^hpUb;BWv z;rR|P+l>s0caG9q;k%3GLiUhCQ|axB4^QnzL}snlV9$V}y2->xLcWd?Zt=3*S?tsgzfI;wRY-8r`ll+$tx}M%w+LpwZ*k< zaHfdm-M$U;KizI#flZ}@a6D03RqaUgwegPmcN+BWO3Z`Hq46g3tc8i;NABKf%tO7n zq0uUCf73@J4p45gQ?(%C3cRt}$L-zB#SLI7cW!e4YFi5>D@ALDAo92a$gl(mPv5+s zvP^x_X0xp#aEIhqlnY*t1)V8N*0xz98~usUL^BjLfz&8LWZv?p$S8b_#KD%qS=aLM zh$Vw@dkBziOt|v(zg4H%cM>e5T)y-?*OclT_j^^gTD)hiGAtFW%W8PJCZ}B{cri;Bs`N!{?BTHabM( z&Z=gp>;xLLKVqUc%+#5`U~O1QnMk~*Y29_O>0`|HXb#gUosGZsXnet*BRC1c(_P0_ zte9~~f0)?^MxD`J?USikCeFur>3d|v43u}Azx|_;c;2MPjdaU5?%_7A^CJif`=Wk= zL$d*Npi;Fq*4jSAkQH_MHxJCc@Bk-xzV;#JtV^3an{OLhM9%a`*w|^Punj0)8kcUX z)XPGO#906Zk|}-)=1}!!p%)G8%H%J+1!lm!Wr(DE9M$iug-QEp8Z@5B)pcDk-3vIZ z<>wSrMb$m!i!~BpmCEBdxHeSOs9jcjpIMIN+TehBe0Z*&{PfKqcu40|v!RPqVTx$y z&+J)TZ|7f6{oxt8IfGMBo#C+)4#uv#OFFvA@a-X628=Kk{cT2gU{Uq~Tn~}BfZJ7% zduCdy)?)6dpQaZtw^U&5IP)Tq@M0$ymYvA`_^n=QX!=1ER79uc61Sgbu%5$-EW_y2 z8A^>T97C17Tvs5ly(R(W)ljAq>D=B%T`|I;*Ugd<# zE-|N&;xx~3u?-a5dPFsC27g-_&K0*zG;Ez8Q|9kLtD#p9^6y<2 zC>WzzK4ulXWg*ivsBO~#bR>R2WF1^m8AU*Wb&ZvUN}bFt>Qxoh z_Y~B=_U|_L759B!=r0akiU5x=8sbxTx!+w`xY`@bxNWIMF`DVL92qKdjzezW4!65bp?Oe$yscVg6KSOnunh45>m^UiT z-H_yjR{zMU8k}NH2TWj4l;NSEvtM`Q&?n~KL^;mRBEuys(E^xuTgOYP?i%B*?bF=b zw;Lof@QN2Au}m~{&`uP?UM0dsqsoIz=B$^4plGDG#TlbVq_ir(-*!FJ(oCVBkm(jf zqNlzsSR}AW;P^Y$6mjnx;T_IcNud(fyixMTYW{(&-d19HlYc0@jMy>XNL~);tWvaT2+bB;>)?vZC!l?-HiRW@VxHQED%ORi?tN`Z; ztq~nea{W>){oQM$3u8oNY&v`GMn)B`$v!`i2y(s6@ew_8I~*A@Z~6<31o{&Y_!Elf zZ4P>}#G}9NXiRgciAc5*NhxWz5FW6Yi3~jjdK*pai5Gn=Y$#!?64s_mRj zn1!bxpO&XJ*F*3ZQ+lDVY%@yFG!4i3spBGtj**;AO4Xs29rENXoOFJ3s_x)urJAl!Ptt!>v0<#C5GvU-%Oq%4zyT!I929btmX zP5$ROrVC0((;Q8Vav^K5t2S~YDO)ZsPM|%U`gb7XJ{ZZfL8zub$(?ot?{%Rxll|hW zAe^__2iB+cBHNnz3yoOdx0uwObDkOQ;!m-kim%FCL%UmX-mmCQ6Z+W`SO!@qD^9|*L^ZpkG4gwW%PDD$C8HU zV8Rz?M{w$jtADq?_G6bqJ-vsRA~&Wg^ve=AF-3`-^`0p)v8cf}=bBm(B56H=M@dKc zpm>L(%;u(cZ$UVATaiF@ZLJ-X#WRARtG>Y7p?7U*eiPS3F6gF6KwTqPV*6UZwuv^D zECAr)8cxqS`B|>WCUwLljNuC<`Llp(D=`>yqJ~(OWHAf9ve#9Q-P)W}SztFD*$5$e zRIg&uBV=3VW3s2-a})A)#RdO%Y8ApYP#Z7W$T1A*NgRnRk+#?ng}83UmQy`aKpvLE zu}-qcBe<(AGon?R1_tbU*y=1VE}zX9w5Swv3?K#IMA}oO7Bvl(()QVfK~sR0dgpEW zJhgQHMSLg-I)t(HAkOVZ*cNqmXpxZ`>F4Y%B~vcs!C$k#n2kV#rjRfPry^RR&aX^2 zc;4neY5m~^9_LqBg*$r=tE5P=1;c`=FScdGscH!yjw6k*Tu^9H+h?iC=S`x&zj5|5 z%_e&)PdTk;m9#d%9zD7R`9@1pT^j#LJ7=|OyXyK|GW~$e#s9Eid^Q28Q8Sy@S|K8z zXhIaTy&GBL4zaLWys7AR`w`k~wZZe`;4#g0T;OAB+&{@vWf2lNUUBY%am=a@h%EXOWn2l?}IJC*jMMSHfFu_Sj78a`JzdpYxFH z^Wa?Pq?Gm>aDQU1xGGS+`!yXYlUX5P=q}D9Whl3=#xAUps$vg9y@G=>fOY^Ys~Kl5 zQ@QP>UORdv>MCgMhJN;aYLt-!Tz?i)59K-X5zdccl1)=ZO;@d{kw+4@vn!+;E=hVx zZ8ZFaMv3U{GNNvlX3oiiC@gAxV;W~&uv4qwILR?-9RoQ|aDh%AzJ_6smKY@Ra`I3z zVPl%oP-W#E$QY7y945c8>| zV6==zINwbu)5_co#`e4$>1~^7Ns|A(U{>*2k++OxkE2_H*_x`lPVg!8wOn*j7)7P_ z#i7x3mQNq|EUKaGob(;S=XC+RcdQBMX`}c*karSVnz*3dsaE5oZA6Hs1#B5?d` zLQI2?H^|Y*16+z!gA<15hKk1wCgtt@E`_W=4|2SR%1xf?$}@cr0BKz~XsI|T*@(xs z*yt$Q_XwSw?we?>+lGf1P&QNgSc1kzf;Bb^`K`ZoTf~irV0VIzGE=n`OEl2>=GnnzIkHsLxH3A;#y-%MVy? zxfL7KY^^Way+~|pRR-H|Xrc^%bd8c&RUtHv*OG?fz6zod352R0z>RD#1dLA!ZyAl( zS&+d1Vce;Jy@UY3b(jaxXxDlZAJ&?5`pqZ`4nF2wi||d{L_#+3IU<9c>&oAHxP}x- zJVB?S+Digp9D2o@+vddNA<+V`5>T(+0ZsaMkITdn6gYENB&);p1C2huSJKqdV z+KDl}=rst#TldC01l5+fK))_B$JXUD=0D1ezS(IGi9g#sfFOF(5AHzn@Wjhnb$&96 z%|4?vX`^>=pbEWlrZ{eXC=i?ZOaz=sL}C@b&eU|#`^#iL*#*rMCFw@U9ah18XllIRhvMv@ITsF+>911Pd7Z3AK(K^kX6zoSA5F<1=ce2=<0;YANC37k1TMx~=Z1d*X zt+$7)k}S8$O}^fo1YyV^pA>hT$Z_LNp-;XqUWz?%^e1(JjL#~3s)3%GOk|-kPAzmy z;)QFHs@f9~&ZdX zr;(g!2wi=)sFrDF6;L#9nLx^M+xxBHd)&Ar#z?t-BtW6UH)** z>rt&Cl76T!Aq4~hPPb0D7>*U0X0&!4MG`4nh%fx&vQ|$tQVHOsn5% zd=}B-P+&El6snlq^yQ9fK^lsm9O3Ez%u$d`XoVOl$z71WM%H=7goly{;z66`nGEx}S*KgLKz zV{#Ln{s-p;(1?AN-!nHxmyRxXraI#e(4qxSSl<}W1aR4iK6bnXYrpq^<=MB%a72Z6 zC4K>E>A8L$^&az<$pK&FAlhLbcI)HUFS@~YF}ArJlI^Js6PaV=0|e9$^}MjHx|vF& z^R(@y@%vJqJ2|xui#RoMYqhW6n7J2!(EzOJ-9{{H;fnmmQ~;p^6ywWe6AaTLrrX27 zh8BaZPoQe%DYPPWGTLismBgp-$?3zunl~QNrN?B%hY5gpb;k8VuX>_d4|JeX#{M(( z&;X~s#d=}|5~{ao8r?VK8_^&@>Qo@9HdWY$>7^|BoRt2lRRZPhb)J@tv~`on+aONMJBz{Lyt&{@Cj>&J^*!eTQwVf@fxmTo~5!{mn5 zM@)X-C%#W=ioNEwe%02rn)W+*DD--)Zn=jqa4aZw41}Oh+H&9^P#5u3-ed zv`8KCEq6GF-`V~){v_$Wlsz>qds`>Z6N7~%gM)<-iW8R4?P> z==ecFHf!u!rVM1~%^_J|#cIRSHyd!sc2{w(ij-lh*P?;EEuDV85jFgi*Of*x?&?PQ zlZa7Z!-#Kx~cZzVAnxB&%a1)JEkpn(;6vb=}PK+qZ85Ah& z#@;?3QB_zH32^~L%g2yT9zsFr;Rdxmc2Tn-HE_A(nz#Ii_pHiuGT@u6yp>^mRYiAq zhS_fB?VHq!=g4op5B4ZP9|Xr|>(fjd{R3Vj!qYID{z(FA^1RqpjIO>+453l7u;3c^ zU_+6&ko3jWzkfNgo@ZrrtQTd#qwQo&4REi(07|L=r&IzA6fyLP~917M#Wa;Hn(^1CpVku(Q{q@W8wwYr;j^03>-Vmk zBlD*0s~^CMYxtJO&3xtzXf|QIcaxr8=_x)k(YQV4QhGQAz%F=&EwuBRetzZUs|AG! z(z>@~q=`y)9w;+y@D?;@fS#K1ee0yT!DDIlCvNxC^Tx_dE7&ecqC=juWJSGBo1@Pb z1rlFRa*e*(3~cW!ZR^!fi3?rtsZQu<$|bg&$yAQ}9<$tn7usT3GY-A^4G@F1ZIRib z?g5kE7ua0ILB2Dwjx=*%iRUkMenj+E;E4SlD`Un^BfF!w^7-q$X}9t+GM`(HQ`Ciz z(p3snuX4Pk`9a2*T_T~!tqecD3zT+Nv8b)7lDqk%y@$|D1$DQ zZe;VrcrwVgUGUwyEL!*mcyxy&-)~n9E*G|M`y!6=IZhZj&B~o6Sd6}Kh`$KjR_TyZ zXg9UnBJ2_U%WO*XW}Vv6e6*(;bT;q|`+c%`jra2p=Lpp)$+PrF^~S+M`ZW&$&EWi* zQO<9&6!P)6E{`y$&_@o7Z&S%MbqJ} zBTY?gyxPzOPxvZ)(+YL>7uufAJVFR1>!EhHYxD^Y?OO0IB7Hrly!+-gm#=Gk>E!xs zaP{Fb`%F7?_m}|%T$apL#SQfhtk`|)oriCc;LY7*zExDpw?FLhbHCe7GO}6RBM%Y1 z+C^o`#TxFfP&9`QuoaeEB0{qXg~`(%Ui0vN+;z!eRrH`Jtr&AqTWD~!z~2~M_Ef4C zY~a+j>80=DSn9DG)jyZS-Fx1+8e%$gMWHY18ABnNE!+5zCZMMX%aDfv zTMfe=$tFOj68zwtg}Mix$Gpjh5=!n4ie*{Y!ZTFR>D9lW|DO7?a`Ln^qd8{KYU$Pu zC%J+@|4`FAE&l*XeD#2d2yk;nNmfU!kfn^VDJ+*i9(D%1{|GzbV)or5e`zX{06-%Q zWYLv^x1)S-=<*?K;8W+D`~$2nR+3L06TWOh3ciDXw+H#TT^9JM#xpJ(Z6@8^#trQv zUuGOiP>t7EIpN0fy%=C`^`PoTK)p)4|L(I-uyr+z*ooH6I|b)i<=%sp>l(4ROmPNe zM2U@jG6wC|c%ClhAV2Wm`*+o^IV9HC9n%ZOgJj~$8)qSvv!R!OE@c920>&`2I^cC5 z?U~pH$6J9K|EMiDh+OHdfuvqF@Pq=PYjesYwQ7Sp8lr|%ZPd#-qh$o2iMitJ69iof zR3!CSu+eCHawZ$X-%91vmjJYX&JrVsoyd0R37U;Rk%vQbmnGvJsJ`P#@3g$ted8xW zwNlnKAHYSHuuV^WVo;g_jb?CDu=VC>8!!HBOVIu$ja?B9Gty31lGIa(yD6(k|B=lL z=4p8cy;fp)cTQYtoc`iN+zxR$2f;24Nc*^-Rs8fOOFw=mENN)<8 zI7Q+m8#LH0G!DU^c>|i}vDoo>?Q}TNR7Bm>V!b1$V|lp~{)+_ZMnkm@<2vyq+9*oM z32v+0weSA(=TR~}=fla2k&!X4ii7m|spF^=d`VF#pe#-bcYdXQ)Nkm*>N%+L0?p+Q zK%}OIZ9OfEt5&hr_A24jm}P17zsO?_RE^!g{?(7lTcERPI973F4_QE=&bkm++Dsscpr#PpQekY^J8-U-P zo%bkv;fVsr7~Or(-ikZO3b~fTHXnHE*{!%FW-mvmHwC8uOjj?u{uJ3-r&tqktZmE- zlTB8n`}Wyn4o%WhEKJLr4Pn2jQxka7jlTprCw1A0=>$3{qdSBJ+$4sbC>Auni3=Cx z#`uS>oWf~P%*-_*^h9C;r2yxAbL-UcrXO3osK$-Gin(hNO35kjzHJKZ@~OyR#bD6A zt2-ytl*W|a{k+Ae3uKSD!=GDqs`lZKcp@_0jk-&@BN1?SqIX!}0W^FzHjk_H<(a3f zofYI6nw_bSRZxseDtYtWE+Vh-q9w*S<}XWBC&ASu^NKs~J4-o+nssuGTwS{N%k*U? z7RiTvoymA_*g5uUkV@VULNKGWZ+RQ!@Q9l1QIl6cET{%@Tmbg6PY2}gWq~N#ewe#h zgOSXWndS41CS5U)?4`wk+TV(<@=w>c(v*}R*l!Hawx{&Jy^`+_R@lOr$hFE>WN!KK znA@^$tl-RhLD-W!lFE1D)9<^)PQ)Ur>BHaJ5qmoH-;h#bY&-iBFR+(5JfmM9pcSu% ziVRrW<_%j>Mo+7*zanB3DA8k6<%1ZK$Z)guKn^^}qkw>S(dP!|yvS(;A!J-J!;hGl zFg%y@71^X%1Ixaj&hE=Q%j)%XK?inaCiyag-7j_Qg%6;%UDy2^i`&7tP~8l#C5s&l zhH43peXe{<>UD!*5?hMvTqMWjc4%kE#!+1K7WUv1yO0s$9e@9O$#)o;tzzjVd9gP8-$aWFsu_?(8QE?S5skDxjT3g^YS}y& zw=-&-=*+X~P@H4Zc(LRqT%@_z zy>AghHTY=h(o_3v5!+q~7_Uc$7Q-$fFhMx7VM9Irsav5jWzC{!P)22)&l}V2KR97C zzr)S)Kw)PKMkt?xeL7+^S8srNOKMl4wXDwIYEGA%d^&eB%H&tHsXDL!N|kX>BF&69s8CZh&N%UvLE-?yDKCZjiWam^ zK(4A6FD|(IVkShTZgkN>Fj_gjwMS*ZAFko>Fp2DTr;h-_ez0_p9AD(0*{IVP86VU&*=hN+%EX+B8(ci>9;7Q`r#&b7JpC2-JjwsEj1R$o!Xv<;^B0=Nju34lXg0{x z&Me=`)+$SA!Is4^={Y0j^lG34b^QBDBgl03)UF$**Q)hMVs#EnP04|k#tI&X$I_N5 z{aH9t)rx2k_I2owH$_n@@5E?uTXiX^4a5=jqfNke^HnU<%=PT`pW7(f28^j$t+ip^ zl4c=NFyos>WY?6egXTr}!~@>125UpFBIE70J-d}>v(2lR%9f|7Uz8gfsji!M;0#y$ zDgFJ|1fS;L3C%R8$(%h5w{@|>-0nqQCx_Yf3mhwDXruojtBQ`kP8)vkHur3<+(H>2 zo|9hg=GZmXW~`@B>k2)S%F{Ht*_0VlTQ_v-GqGh=Yu4U841se|9dMEK3OTrbCmlqV zZZcFw)Q~!l1Fg=*r*N2G%z3~um1S3pSOj$ z0ECb|=RMD^dEeUdJBop=pc~69C}Q26d#R2t5(-JzC%@XZyW*3GZatoFMS#~o(x1g2 z^kPVuL{8M8_!&|j(?tFj0kUd;ilPv9KoU-p%t+CGNBD#Z7ACzbjs^2HnJwO_g5Vl^ zt_QB+d=MaO#q;4Aa%_Ez9KLLfTU;+l<-2dErV$)y({JO(xaGEY6t;>i|+ALr9A(wQG_w(1b0H-&IRJpU66p4@> z#pl3IF~(Q8h-*`Y3W7misL4_Lfg-`);i@oplTF~pg)cmrAq~l!vli~4Jo_SXqeCEK z{Ws+lf#+OlX7eVXO3l@plfPOlNBuT?8TSZGwzr#67+ahczr=bno3M?NI75|TwJUs9sI#oW3q>G#xd$#ac6CzK{gv}Z`;qj{zFssd@{ zljE98!BuSr2`yQR_Q#ShvA_ld+)J0kna!6ky+-~*Q>W7D3CX=;^dM~VYx@A^r4Rms zoyHs=aCB4nQawj0pW+D0vw@wE|85P+VHrE0IlqHu_vcUx!Plj)g!qh44FhV{*gr3h zxaH0Yi8p#Pm5|#0g@#UPj7=psE8v_U^Olia)Ir~v1_-tCfVXIZEW%&k$)O9_2$$p1 zrFKaUPY=7F0uC5z4mlP*L?Mb|{U$LUXhdis_Ab}9WBCA=kdI{FBHU}KHjVK31Ct*- zK=`uT03iw^m7oBJf1QAtOXQI*3op19{W-L`|YLi4MIKR7yEhiU6Lv8s^P%G+GKpU11JOhMC#3GY29PaSen*o z)hhvNb(fLY&})&_6dLE~lQ<^yS(*qe6{cIN3+|$uOk_kv2y6PI{{t`FS5>tMbt<+5 zKc>g1tgWss+oLCzbsZUA<36wtlcM!AM7*D8;K;ktHPyyYt;As%S(Lo$_vt9nkRtP` zDy~YaShPSj@F27jd&d6|LNUmHh&! zWAf8+=|<+q7#BMRL>~EmQ=|>ghBb=n61RX}69S*)5D!SI-L0-O7a#fv=uo)Kb2Yc| z9G%_zEYI=YYG0~jnN1$W`g7&fe;NylN3vb$FAk#`akKwI^Fl8Gz8W;K{4`VgS;j#I z8g|r|67{EXWBKAzVFXjaCykF5>2EJ;0Rf$&OY|ctGrOK9?CfQ{P)0fxX#Ar<7}nc^K*3ev3nhS58Vz z;+L90;rMZE*1&KjNQs|*9@(tj4(Gq7_L%S1}?D$AmgkzUtcY>xV|@lLv9AP@9eA2mCJDg^gR(%&6a zd{er1o_IvJLXI8<-|7 zgvb=S`}&&a0Z{pOW)Dn&*#pmNviNuOjPq7%cGtf^Mi^TVIVd;=0O!0%lHFQYuctk$ zx(-C!^^txXWSNewOrZ5@-bCJ5PF+@>ETx)-7t--#S{)C7f**uK58_xm_V&uMJx8$i zm_F`fP~MFafwztTDZ23yC`r&Oj<7XVx0~VrvKIkN?^yE?v@+)K?C?fqUD_7?*DCCK z3z@OXmO5(cPtmo;rO4z`J`*9`7JXKM;1;j4ko1!jnlov&I=aqwWle0IG7O`xNbYeF z@X%k|Ng1DZ)0m8t;wc`dr_p)xDn=xY(eG*kUlQFhOz}n^QuO4z96EiD9#GF7Vabr< zJp4?dH6k6LD*bUU*o*Q!Zaba$3oSrD)0Z)XBHiE}m0W8`I#{vR>0Ca*M&C&r=>AviMW8^l2o5(~Y5xf2OatS%Xo9*c2QQKgMRAd>Ez8cZ5G= zKYD~$DNLiGay(Ei1G(UfKI;i*YmL!q4HP!}xg$I+_=^s4sOkC_nwEzl-%(uN1NSZ) z1znrcfi-0b*KQP@rN;6To!_RBInNAc3?-#Pw`~kRoZ?#r=j`*o&)TtT2|kSJe}EeL zetd@}ePoG&fssSHb(_*nX7;&YvN*WEs+Q&7yv;^cO+ei{7y;}cAAof>FRjk(lZHtCB@y$kzx!L!Z-jfV2zU?U}?pTw&*A z`o0XASRnZgTMxS{MAxh=Dj@iK3|5xuc>SNu!yCA`rd!^B^iiss%pp}rlam+FE9RW9 z6DVo0)uI?ZFXC6nFnJ&D+*4R6%K9gFm_Um_g-Su3Qo4XO9S;t;41oFOZ_7fP238g9 zW~&!nA;sbp=CRuB0qTz;d@%(E-Of}^3jsy9_0nRPWek!FVQ(33WPf@CXF);@u3U2+&Kzx)c zv9bTQzGw3bLyI}J0gKZ=si+2~e{n#hv>mZ||Mr(5_?9n5qX;y1OS>>`wW~FxaQ8}c z4BuhQg^dMO3QxEbO^imvyCbGi<2@qjZJJo@vdkChvt@&4Po;Kw1V3vm=2>scwH zz|M|i-8QVuY`l9tED?fM8b=uzeHt+*1iYRh4HDPq5GoIO=(CG zJndq7gFB|+UOS#Pk|s-vru}SQf8bw}nuQ50OPH@_mU_2;Gq61@`_sqr>*;@=<4T`@ zSmpfuw@-~%tJK5;Kq~t8VrN=W9UH0$!>BkJ_p|OMMJFX6lTKrx*c>$k+<7Jx0&I(C zrAgCH(GXS11;zpJD*M2n*zaFZ6lT%4W#pce~_3 z@wn8}oSa5hZ9is>K6JE4zh}t5%tMv!y*`*A|K0{ny$_f97f|y64)gcdV{e()gM$x$ z;qcEDmwbYaLuA4aDtxWoS_8DgV!eqA#%WJL5#2rknW;{p>$_8$vMO*JRLD#q() zRrbk((Z&Pf4A_F?1aN!ePFn(ur?P+hJfiInaU%=n%UspmE5*Kv0M>xDNKdAw8cW`U zqFdzOaEJLHxKl@$CH+725?CfVtt^|`NXBJ+vGpI%(4P?Z%5v5N{m)hQvac7}&ccr_ zae0;Ljf%GM?{abr)I+12MxijC6kF2zo-4x05>0UAn>p&LZI5W6&gI{Efs%G!9XHLo z;g z|0Jjf&e21z!j%>3_;jr@&jlzQ+9*hqlyBL%s^ zsyF9&Y_zonCUfTXUPQg))~SqX%J+iplz(DaVv;rW2V-r7GIu;^hyNy*B!g%qx^mGe z>w4bGzaQZ<@_F8+yoZ#>j>@-sw4z6Ev9{9euQ`Ph#yj7WcV+;&!L zlIvvJIapgzoYm;O5hqLWihCR|*MBP?GVqBIvrMIEsQJElJIqT9|CS6^%QY;y`US>) zUCI~oytyIn&!v?_PU3&^wii;RmYL;>;k&&K8(Mtoo^0;RGpJpFN$0 zR5N83S^5uI>hS}i!Xq4M#zCz#pJJQrMYiOu40-1c_e#aR8C_wh<4yWZDtll7e_#Jg z+U%=YqxZ8n*)|ftx}2uKiAKoxQ;rYj)YK0Y?{>=ZRxC`$X0!AMcNcrPd0V8r`AZw( zI&4O|02sXt_+OHUY75ojL!nGVZ-^DMfx1j9!+8=716x0&O)67MV;wn4-F`gIdx8~U9=+$&j21rjXO~9C)`O7l7$Bkef z@Mm`m3N)7YN4t!Jzj(JSD7)QhlUFTkBMeNw;*f!y>yxS~1W0G1$ZD(dCB9D^f;M&* z#%(;V(3)BDmago0cY!RH>O#*-nZ}<~xEJc!jI)iZ=QFq26R8 zAn#`T<^ZyQjH)wpv-LttoY0A59FNaozB;b?jt%XPWBmcLiQO`K)|S?p%HJ@N9hEp1 z$4aqF+Bi~STZ}-?9|-xabj&BHLM&~*n-^_tZy(;-aG4AbPhN>rjrLGsZFjUo3nBd+ zG+3Gr5FpZxklq5vy52VP-(f~u#XA?cJ$+dHDaC{$n?&+VGf#W+5KJc5n}2xVRpm$! zn$x_2?Ks}Vf7OFj-)I(Vu=bk+rJ*EUGxTQ_D(h47bFVwSFY0QA%WM-_cVwb78|g9v zWnG({1=G%|hp<=ZS)j-yIZ@|=fQMplpD3-m%BX`zo2HyYb(Mz%H?lsBz&VEq;LzyB zK2DdoZ1Q*M>X`ju_bw1<=4byk#5H5!qC#qvY%}pma$;nc=-#%4HkL#6CL{kk(#&Q^ z3x(h2=ZF4>Hz6G*rR-+eNO1+(``&R57{elvrg4MOFl7r{0BHX zAhg~V!>hBWsaC&|NY~Ufi1ryE6ksjgl`eudnny(*bM%#5OnUJt!k@$xRTv81Q3uk> zPyylfqg5;YoU4<(4g5JzAVJy`VsR_Qm`ca-nfTD|AhvoU6?WYJ<0U*~Ocb zPDu1aZ=slb8D+u3sxG>yf4nBo+De3GP00YG~+lJxOX(p#z^) zZcvMBfur5Xg=av6bSWHTUyz3BD+Zw+Fx3^s$oH5#&7RP+x#5$%dwIuVOziipgPo3RcvwW=b7R0-c`U&vfj4Y#-s&!^{ zkU;I1_HNV%JvVpoR#3l79ysL-_ISN=$YmYd3Eqf+<6M;{ICz3x?4+8sEQNtXQz}Mk z(3ZE)H*Rp&NHfsz*-~5XJM8wR`{}{(M7dg|*y|@xs-U-NXQezF$#q;CFpwXRt(#)WhqC8xw+PQhVGRwbx^GmGMS;RQRQ3bRnopSCj-Tg!XhV&QeoY z0$*W^Ph>;n4ZxJ%(*puvi_xKkv!J4J#!3GS{58npBL z-*@KTwcfci_v4+r)_lrJK0W8jIeYK3_fI~xpi6lIR~>#zjZ($OpM0kC^~kF!hTYkU z+;TBi=I+l~SJ2%EoPg6qcq-0dG?wpk?bytJ=dxu?KT3~+0sZ@&`5sCIadLv`Q1tIu+rmv=|A0DE#+$gi4Ihe zZfM6~KA~iG9I=!$LbX3Wu9yI~Sp0^_`kxDRZ#ZFUB1cz)c3i(N#n`7y4Lbn;(cvPR zQ^6jM$y>ebJ*sC*gBrnh-#g?uMay4d6hGb-AT<_;!Cj7DirP1Ci!#aG=KXQ?CXZ`S zA3fp;$i8;KXqB8JX7BUB4TDXR1(mhZWIIj9ZKm13-(p?!3&pHOxt}dRg1Z!wDL=;Z zM}b*a3%*etWz1##&a}&LZSc-~35xMaNKHt7C!SBftW`VVekiCndf~94N4;M$Ub25} z8dZOzdI5G=_VnI2g`hbG?@3yfCbcF~`v{iB`0!l(AGs|(yAf^#)cLo*8?>~9GFxgl z`bI+vHlN?@5tYGJEXwTaFC0AWJjv?@)A|a(LbItNZ^d~A=HbQjHAC~V4_#DT{(^8= zbx{YEO~DzE;KD+~?KYN~`8mw7vM`$MWBL<35H=!;U6X&OFQ%17su(!A`-Wweg}cIQ z{_=a`UNLl;`8w5T`3PU^YQw#k%H(GL38-3*dMhX29Mxq07eVj3Eo}gAozzv{?~gX` zv)Jt<8qz>PsDN62gl3F+(}tF${9sQL;o-!*;hx9I2>bzgTD-1=T#5d!kE>#!%MaE_ zE{iGTPd|fk*qK48JA58(ol2Gqu&H1`yl)ay}aGWN3CKu{9L0+lm1(?I=t`@~r*?UQfa&iaoYuyICuluKif z1%~j#c@sEkUa$HSESLu)LmhO#(<642wuxHo75 z3G{rfy;sMNwo6mX1_n@5#0%=7wI0-)wBeNy2W`ZD{qE8}Om zFlM;Gu!lW;O5>UG7Kc)hVA8S4c~qWA09Ca3PsF>E7y`k$>WI6Aye5H7D^0HRcL>Jk z_@L8#tmpR^Wa13-_xOxH2bFEq2@sOJBvJtL_AB6)P(;g;%}i5U4W2 z!)~DS{UIMG|3tF{s>9y@xSdVgVpvmoINbpbbu;pH z%kY=S{&v3~-&uS;(!RP~G5>qHqi&K9J0lB8whHXog31*QdbQNBKHVQ1SUnEy-*PKa zDm`^stSS0AFPLaLv6i6yZ+}T;h8GQ{CYBY927el3sfzUz5m3gFUxQ^h8zm#_E?&Mu zx|C}0={g3tAXgk&CxnRPegtyo7cCC2WrpJyyo#)QDTPwBvA>MkdE|4RSoE{)=u zO_m|Bqc1)2AJr8(u?>A8CX0i(DCS0!fh$P9#=#4~!)=_lM2s=^uf+M5vqf#y9e4M@ zO2=~3wJ|tzb1&}Y#xxo#nb#T621{rM$6vZNalV3|)abliL_au{7=c5g@-k7dW^eMly=Lg_P@8RO(~XL!F@4f$_n`rf?SWKE<|Ak>MkjMwZ7iSE25P1#lVvhLbpUC zEdYh+j=Xbm+OTIo`lIO1cxaZrVfL73HCcbEJ63+(tHTPn)?JDn6|A_%Bd$5Q(v|ls z*>;_}46?Eem|sd?!cWRS!A!@JEx!jcyubW>!UwgbG9Ev9x%7!>qB(obpXx(ReT4cH zbFfOtrVAt#)5Vkuv#UG;H_6d3Dec94d$sE)JjhLB+^sKuA_E6z%+p-b#{vb(HP90U zjY50Mro@JfUbmEgFA-8FNBGZaAw`t0lS>$pHiv08D)1tU8{Exq(iB{Lw!cRld>ZGn6IpAN?%*o9*3y1q) zT{LBU-fI)3YdQ}}tdxm{7tB8jm*$+$%NfScA>csjJ!eep10KFU>rHKQpDCEtfYyWr zykG{CD&Lm$`cUYxmG@I(u6>PVOug*nkxJ`PA-3Ry^hi|*DIw8^b|g$llF|$B-F!N$ zgat!Tsan*Wf5QY%86_LpF>?cb#`E}kp6h7*Uo}1yBejJ_`s@dn&iN%LRb-vTO+W=| z@^1xd|I+w_jJWz~j~=SERK%3LDte7ARw92j)K@PJBfBJS7C|*Go6V}ljQ1KV-_We} z3jjAk7LLTIP2Fnb?0PcFXaDZRZWV6aN>U@U9iM@%?-9eQzf_Tafuv#@3+9GbeIt^; z`EB&lKeZ40GyHI3zsq^SIE3qyJX|~>fP%Osp(P?Q*GaH`!u<}cw|JN8OVPX3Or!*J zT|2}<>>pgxrnk6m(>)O#_LjR(YVz!US6LPJ-aM5qSeQS4*yH{+sxA{a>wUoagk!1J@jGfW2n1LqEOh`luUbKX%m#Iqa zZ<;z>i>I0EMuhCuaar;)Za%7{IVJj_2VNt>+lBv$-x8R30TkLs5}suit5PXKbap)( z6aD0x6xuw1Hj}UT~sIPXb-D&yHdz#;EO+S|i z)$sFshB6o$paw=bCa{b`=$aH4ChpJLb^i+?3Tvp-(&L#(bI)6QwU8gBjL#4jk$xed zz-8^fpok0IO4Ho}u-A{8E{`cJ39V$fN;$Kk@4IW`!&{*>80E#>9Aa5B)aXaZ^C!b@ z=P_A!b^LaSsvf(CikmUNEI^1JJIPt%S%M7xmG60p!C8AM=F(BO!f`)S_3B8mB1s`o zOl+~S876e{U2SZx?k6_xFOb?AR9RA!?7UE^WfeiAx{jp;J%XO3*vO=mP%AWLZ-ph^x*Yua0L?>(jM$CzeP2$ITFdo0o{Z>E;1 zOC4As9HDdM)`=n%>Vl_uzh+MqKhM#-xkN1TjqTrZmf2EWc+}}4b*mS+(ToCe?wVq6 zNo-g&6wH+R0MLyMPO8HT-HN=_fRikoI)k^o)DI;I9gNmI76y|4G&6FpXOhmSt&2Z# z5F$pP-(!EH4tn|06@&b3YsxWxu32Gs{f`LQqkcIF=&4h)PGJiNI&; z+V#;NdnZ&OLoFKid{XT5e@6Q9q?FPabNOV;3 z*4QdT>c%b@sZk7pUp!?L-sx(U`)xM2J4W+w=ZL9$5&Rt^>CLvpaAIZc#P!oE+84?1 zUTOr%5RH>mMVnXFW8n=4b<^v{M-^l`H=>@OyRckZzReunJLU}$Q1&vOp3V|V?guBr%2y?I~mU>WMBCr`~BiH!96G(bdj z`#x#FHa6)~o9W8aCv50lCB}1AdC^^5_OT1)L#2scwzwm=@ARw6p0DPIb$bW;Oihg8 z6qUQIjNst_UPae{wTW)DV~%Ug>7mgQ@l@8dAA!_V5lbjfDLvK*A=~j2<@ycbMl15` z)Hx?;jil;^(Tu&i8vhPd)!tvPn^rgO&6HD4J!iqGv0hjy>=hrO@xCm%fwf5&vtNq^ zP@*v`#rm>chqn7;eK>HYKmH+lCS=s6GY+sSf7I!nR{aGDPS&LRDo>x@rFv8JiXD`Q zMQ1|_-&nV%vxEndxs}tSRW33MFm=7hZ<@n%n*bjYzXq%^pq;>EAEyAbb6qM)mmJ4` z8jfBU)pz9-_xUw z9?c%9u{$x><=h|^j-m_6m~JexQ-`k>gzi1h_sV4!eExbZr|NE@OiXP#Dn=4xum%%U zQ?4xDQ>5Jb)CM8TOs(}fPh6m?c!8)YtrTHN&IS}1#0w1;@-OFjKE@NwECsD^mFq*F zufB54=9QNkx^0ll+Z{=gNlE7I&0S~JSVG2~UDcTe1x8wU_ zNrg5AZ@0}B*hv0@yh{Xtz|Pn(8ecr$Cbp6R{)WEK0(Pn8TwJqV@fG-%&7#%8Y{tvC z+e48tS*S*j*-BU7!Dt)T+a=>Ai_E6O4bO_c_;*$BI%7k%qXC}n*$iRrw-y2!+cBqWzg#N7K!ZcNs_>;{#R0{Ie zC()AP8dDChX8iVdCmy%AEP}b`djl97f4;>j`FuhK)FCN7Xz6e6gf@m%%|;27v4;Zh zx=+83QhY<}jw)4;=R(Y$;ZJ>x;oIcMxj>iy#=Kl?F9l6+YV?U8I=DOGb!t9 zAvM6m92zls_pzj%OnO7Lef{2mwhv?H_M+v9Q0Fd*_3wg1+L*B-a1&(epw&eiR@oiWp-z#2WI&Zentn15tIAlnI^|xJ0TfJ{!xoLNC6-6|c*=DaKw{*B(ib_Vd zm2Z|w2OHrj8)1-(!bcT5N5}S{xn_GwB73$6@e>uiEgx5J42G!0@>^V@@hU~jIMfnSBp5c>X&!;zTt0qu&I<@L}J7H%{nyYx}~#?Gt{7(V=;GohUS zVjcYd{qGXZ>rTY_@nbLV-50%Fv@>OcdIvhPcKnN(sJvX3yHmXD(p&28X+ZskgDChv ze6K|0XcxN?eO})Z9w^~2CRk11f7Q~X;SFDHVM)hYV>qDlHmmWU=ql6CsNGv)YY9cZ zZH`k=FJKK;GvyBZ?#F3UCh!3RJ(N0FvHE6F|CRU1L!oHDUL>j5b)zYg$=+}vC1lag zr7TfFYKy2df{U%8eF{&Y_ryw(y6;)5b+KKFf7>tHB!qLRGjqp77$OexuFjCAN4!yT zsWA4|+&#uq{y=BUFh5Aaqr(Zg0qR|aF%7_6oF{gmitCVl03aT_-(Jvm&%(44hFt??xdSS8>% zIa#|L^Zn))IdO4|%S7Pi{OR=RFH16-ktJ?qnC0YfkqY+%0=#Z>UL4=GiWj#Gzk9-u z{NB1dLzXBtf+fMQ%9_yL#gFxG!bLmI&kJ~apy=d8b4+#9+Zy6^&KRW&`!xxj6>6bY zCGj2Jr4jdgHgy+QM80n=D{pvVDLdn~4J#Jb4|(CtO;fp*UNemT;_%3Gv@> zK=O0$a8POep+hd%cqtP#;LGrCsk3|m)+zde*m5#7QM<{YyychgRGQCX08V*N0oI?1 zjjumuZi~Z0VNu&%Vc(@L<9nqSVSv>o?|wI!-W8%p(oy^%@;P&wd1fyRBmJiu<4&Mb ztm5tv`8fT}!vcO)LA6686t^aV(CtnYf0ZLWPmN(S31;QQzTg6q7#~%Ij0q7Eb%}k( z@va%v!OGI!Mim<(zcM!iAl;f*^97S-Bg%@T8}-||HOF`(aV7TGd2?~)iw19~Z%b4i zAtJdP13dHEZb?q`Nqu8Q@6jEs)D)CuZzg#anF+&ShW`R}%pU}SIlJd{dMnKxVC9=t ziTX`~(9FZBO;f>c0#P)`{Xp!jHfiwHOP@wxYYNl=IO!*SH%T z727%YyF!&fG9fzkjs3zEQ%t6>6M-(`v;(%)SF-i;Cg>99w}F?9Ldt6uWcbn=dnfTA z_u;*}S+}R%8sR6tr;E?6j?{N2WT!jH&wv6)HeeImr^Kvn5ZKXY=Y+w<(+~ zZ0yjoN0Ohg6=-zsnieckqt<%17zFw_1k+ozB=lCr`G|8~btt%Gx|j>-R+ru~ z{qCs~&m>+nHjJ*Q3VNK+^i`pl+l(x3&p^fOP1WSYB2P<+Xd1lUnm86walRa8C|`(g zI-`8y*}HjCL7uXE9*A$SN9#waPtr;9LYp9T*pdmy{<%bn8S$bFWU^nIx`)uD?T(rg z67YNwqvGxtZ?=ncsp-dVruex{O%Wv#LDfq*L0r<SYzbz9wZ>T$o8|- zbq|t(HVeu|3bD0?9v&P~iMpvP3aOgjTD8{Sd{EpfY!T~Ezn?D350B%^|(<<(Y2?_(0)ObQJ@~AVzGJtu0Qe?`wRNzVmGC^lNc?& z5y?snWSUGhMAU} z&(vCmDog5dyG|V%lNon`ntXJ2CuX#dt7c3gXRGSIS?;}k4)x3U6(;UUQ z+I)OMs=~s=ec~lFzM$Wl*@dhHpN2PSojGB5+W9%TgF~mB1Y=(mKcJW%#Z$qOdlnq| zQtoY3krKX#ZT?N)V2;H8N=?ySjD&CKd160frqHKb6CtS*O}&~^u}0R7^TY_O<`dTfy{lhj}U%g zhGj3O6%BQv_yCECPOxy~#?3;{gxdqDAg5a2S>9h`>2bu`{$SRXjGieWoez&_Ktw9j zQ+85>P1WH>ix3eik2e;5?sU#NXYC*cPJPI*pmxd}r?kZLTms1_Fft_rG#gv!gSJby(*h~w$oX{3r*EKG^L$T>Ue_Ef-J;p`A?Al1%E5^;# zB1{@PSIum%^u~0ZCx8_@ZVnpAU5FB40UP;G-?Y@np+fqR0f=PB)EmHGtm zD;I1di9*+zBfS-_^n}(jLB?L8=LL<3BW$CpSO;v*iSjuw)%*E({*prT8S<1Wx!jT^ z)Vr$6C7!R6sv{0codM0lUuqHVeyb-Pim{Zf%d9b?NXRkKx2ojx!R zU=+HLw2$g%H>L`jzkBI?0cq@jA?m@(sd`YFIb6p$J`FvM#k$BM`GKMJmXGdF3t{>@ z^W(XR;fbzub?d0;U{-av63sXJ)i4*%)x^<@B@C+l-*eeXN~iI<(W(<5Dwn zOAkb*8K-{At9o)G;RN?_Go?cNCmsgB5FQ$A)cSgCT6?i`d@I5;yH3oME$+@N$ z=1F_kC3)2BGJdpBnSjkVku=&t83NbkZpW<%6yj*AZ%h!}ir znGRLB?p&U0B8tQ&dSV~TqKQd{OBWQJf(T?} zaG(G?Pk9hU&rqzS1{;(n2$!M=!IelsqD6bZ2FAxM)Sr|}KgP%&cXdD87a^OA{!tZF zo4eMEw{2YaQl?17I;!h&hbV=9%#sPbh+L07e#hAi`^&X_UeJjp$n}2Ma@XPR8(LPo z`HD3WVCNyd~-uAOZxIW}R0?WcXk(F!ULzk_Sp)U@L z@)MHW0J7kg)dFT$WZNNEee{|J++)KYxSy@=v9Nu%_`n)9Z?;!IVe;w+)f28q+AC+J znZb0}DaG)hHuDa~pJk~^D2M61XLI|84b9c~HE;HWp<&9XCll^=yfv+w5L-5fUTh8M z_^X0t`EXCSE1#up#Uf0I+N5J{ebdhuRrC*1rWKw-2V6=8z!7N9AcxvvL%Ll@1BR#i zk8nK^&2(P>5G#B*q&|(TR83?3ICDj2U%Wl0~IM#q;`&-?T6tqIv@p;n2dBcXP ze~NUYg|J1owO-9t(L4B72Vq2?1v=Qj_1S3X7&QgYf(Osqzs2o(O8En_Lgc^txkFL_ z;nF1tLv$cwuQXYz*kFkW}1v0P#Bhwj=@> zKsQ>tCk<&rIvR8VIdb!iqOOf*3g;iUzo5f;SoiwKoB-8CHMEwK5mtYh$YamtRvRt2 z>P@s3Wr>vrRE1Rt$Lx;~8}ysMAp4Fu!wr({6DeJ+~dMJ~3Fo+`OnA zkh1CUhpv;*(@gw9x?7_*D|hZ5bg*Pe>4YDldqD_+4-m;2D;(&YceP`>D8h^#6x60U zYF%dM!o@r(?8+gd6GPwVG{5XYZgrTwgpWBVaxw2aFtP;10oKQ7`Dp2ovh#h*`c%V) zXp+l>=PX5jTr2yTL`H+yV%;b2y72PfJocCSAUXZ&`u>}m4jpg>5$Ptt?SU9q>?H2A ziL&04l>G7eEIrUD-X5y8u-86ERBn8iM_+P4Loo(vqiUUY>nk0pb*3$TnxJS_Ye7Bs}POM?~i4z#D4o^n<*tTJyywxZEGy@v7 z&=%qgb={+lnRj&GPfDXNA*a`!Ox)}Bhh5Rg7^Y<}9Qes9+&-(fjE!Nv##?K{uejma z=^IVE4G@~xlcH&B9kZB>uKkin%4m|y+pq)S`?CZBN+Ee=f9uuQM$0*n5dVaWlXa;m zL=_A>at)+?f4?x%c+`GP;p3mpG-G~o5_3`}-ktfh09nffG-N!Pz}7-@Pe=1V!&lQ~ zUcEIJnor+wAU&jcn8Q`9D(R?Qn`ZW|)H(3+OyD22(i72MX@D=D9=xy{x$O2q@Jcr( z?4E8oXYbR=vQfi=swExn=y_R0&pkywn&+P{#_u)OMM)pTr)edPK@R3o*vDMUhqOM} zMI14N2-SRT&+~@7EfXG>Qc+D&I-+Swj0xQCBr#2H?eH1roV2m%tu z@2DwJspDTR)tSGk*$y^q5=ek0^6{Q`7N@rDl|YF36PnZbzaUwPB`@DDgds(H zvJGuXX3L5T9MR}R<|mnH)@pZD+Z>f$6?;If_EAY`fY|7rvuDEAb$VD>xR_9xbfclr zsF&88=CM_Nwc=4<;v485$Z!W@7$qv)^h@S-59ink(RbBn=%u8iFFA6e(n{wMToi|& ztjuN9y~gqoydx1{=0UHb3;ui#ni`rG?J1wQq z{`0{^yoT7im?eLEW2d*X=SVcys}k3n= z)g{Aroh{{9f@Q_~R>Xyo;gdJ>h#_ef4osTDOMcMIGO?0y!hbfwDl8wuY1a!ec`=mJ z+AnkN$(G#3NDoZ2?UH;!BOcSsME&N7p%mk1&xzOZ8gO^_jqfr;&Z+C*o@@9esT%OO zy_a(Cb-ER^Mr@RQq-@kW3`Gvk7o6oBm_~cIVIx()cRH{)?>eWH`NpYf%K(j1h77e(kA1+yP?L8{ zyCO~nBdW^payjB0RQk{9^n#%~wq~|%v=h_T@hWw?xSMmC{8G~tiz6Yh_bFCWO4RUH z?2<^L&y#1P_`~%59OXsIMKv~V0rp>OuF)S55)3%GMG>pwa$*JD%r;J~98Hqyy!-NB z+FqjAOd0FM3Szw3TyV{jSriNpYkUVI0A%KiOM}xC!IZClRNmsndrg}?cfXmhNPo{c zPc+ROm_y+QvArdaO|pG8*cQ2DZw@zJ9ljo{+zNce5p&N$a-`mw3UIn=O-oEYolvU> z?p%&%t)G1PSq9l`B_S=9!OFgt(FQ3tSdZq5VC=k>nQ<%%i8YGue?g2Be?d)$7jNy&<5dfAW}LGM^CPq-z&*Bx~A< z;7h?1ZYkQ{voud0J&txW7p})f=Gz-awPikuTWy1i0{XB?2){><5QTTy1&hMzZr*&P z!764GE&ObPY=G(lZ$6vNb1QY>%+ETFuCuL7n%>@yxs`CQ^6uoO7$~g9h$aI;^RO~j zl`h4p+aCw1f@<5f77-B-I%V(O+ig)^c`xLkB))G{P}LMe4M>NhRg*idZ&ZC9EYy?k z`mQV!<#ns7FYMg+w;;pz$vgTOdl{5CLD%E~7+u=I7WU$EL%k&P9Iw%IPY6uv$e} z896}}bH9_}ksCxj0xT4IbfVk{`U}!ukAL?npIUNE%`jTI$Oqt0e*B+ug#LFWk^SGF z8<%Fy30t9P8Fm-BhCl~y76@wah52df4aRqCyiy33$e3QxPy~Z{LKhcD0=ojJYsY7| z*OdE379+B&axM)`VKeJl?i(UPHzFBi-2A3H&3O#h&?#@EHBG< ztbT6pj19D@_nH~8A$+a7YC130L3`Cgr|-wbu$=cAp_Cd$S?2GS2z%ix{?7w|J{-%j z;bP#M_Q1FZc>%0F_}UqKKpr-jpT(sFjzjZExpzE)45BUJKT<= zW3*n)9Ed|0=lUr8yeQ_*h_&NMguZolXP*iwt+L=K(~+bBYXk51KS*U1ZHthL7}i4) z@8yLBL0!nuCzNBUgrhqv-!-pm^OsT6pXI9AkVl-&xOpi?kN$&6HLKn7IU5=$7CpTV zsQ5dysAV0sRw0fy>O61qzShs+C4(iEG`40gxWOZBlwSR{5l)r%noM=@lg*}j1{Jpq zo(ZROI(G*Vt%j<&m#WWt>Go3^3m-C1MTbJs?KrcTT-|BMXDvvlXHcx$7f+9zcTKw< zzWS0Qm}~{2lvHb_9G6=4H$0GnKF@oZ1AYFWO04(WhIuiLA}2^&x8CE@-f+%#Q~isQ zu(S59f{oC9jH{F5yrmnnKO`ArwhB||Lewi3Ne{Dzf`nzLbHwU0-z0s18#2U zx5Wm4J06%5;%Zb=J;ZW-{PRquOFGeeG`dBU0UmDNT-%a*I5ew2EkAxPS%u@%hJL)~1{!54_x>SA$;$u|M9U)QJ#9`xkM` zc6u+38WkBHYf3sRIrNCzzut!=IXLl@bqY_ypECfDu7$)x0s4{2VcAWz@j;efWJ9qT z#gP7bY)RdPz5p3e6IlAztyR9g2x7_cSFy2yB58cxi;r!MMe$V)6U~(q8fN0VQZLYy zzslwrwA33?kVD)$si6vTk97zd}nin4m}VucQv(HXTsf^D}){#!`S|U6e2gjn?Jq+ z;NnW(mE?=zY)@+x^tmMe7%B~ZoccEmM(;rl`gG{yAV1OD->p&8|9BD`<@Ibl31fSZ znGe~yWYr%#EaQEq&da*cC*}%39wHzGK>%kot7$7~w9*~_)8b1u8W^z*DC7sEtBrL> zS4<)N>~eBdAG^%uH+ZfzaD8C;Uvc~5sQjma!fmU{iYHfO0C(>{=!XJ!n$&ZOCK}|H zfKI1&4x*;tk_7Jm`N#{84STw|#H;LZ2|v6$_H`H6j+|E*fXkI+TBFQl_(z%CQTtHi zYuY%2b=Gy%Ew6I+QGzDt0(lK-`WWzb{yTs4zcBi^s`_GCys5dPfjz8MGAzZiFW4Ub z+3mfh?RsKDpI%c&PEx&wQDuIvQ}$94NII8;~j<-})_48$9)7;BL$eN(U3w78Wvdipqv zyMw4(yWCf&QcZirp|Uszc93$oeQ5+C>ra#0jZ(@ELh2*vmFOFo)0qAwxFOE3KUjmg>peTIjpzGeWYF21HfGPQ+Bp|X;Vvt2`&_dhk*MCw_Ts@YbXx*zt*Axi(L(&Z!h=wiAXc&r z$z2{JLv8H)Q}iIsX@#|9|l59KenK=bA74#Tf=>k;rMK zIn+&(a$xSt_I$&zWKmkC&vT&e?RO0yRdqDrzHgQ?US7smJLg*6)yEN z66V|S?WjCsfyr};8l!NXkM1Hlk1%f8mNayVFVsmx;o*x1rXS0_G|Fxzor-shb@zzr zHtAPfO|#dQuc-KL?hnv9EsPPIVQUI>3BPe!%PA-w`eA3>7aE7<8=w66(T4kCE^~{* zd>|^KD%0Si4M8@>g4vH?@%^%1b_1Urx=^4#xD`KqKQSuIE z2>FVHxiOKRDLWXw<8c<7uK`uPzk5*TvTTI3LS0R=j2&$Zcq_Z`S45iA>na@y+*|17 z#yIBqi8rHhT1?ME)$P{Ti@(O2zyS%zS9EUCZa# zMB=8`@DV($3|4!`ERelr(v}CHOnhwq@sq)6&wVjoaViUd2K9Q<^sc$*N4~~RQa@{P zqbm<<<8tHP{*WI1+xs&MTWoTBjzVU0!hOT)?# z@Ldngcy8%v**kR|YweiGZhVQsVN+JN;xWzwQf)=B#CX@)-gBn5qNqUavrBhQS-=^cEUKOQx?0K5MsUCS9YpE#^NizM?LS_!4B*DGkOQaGm4JEJY_zO<5 zUDI^={z!UiB1(@{VWKJT^YNZAye_NO1J0o1_I*RDIoU=SA#m9X1OmidZzR9-1%A-S&fF zykyPcNx@QZsUPWn2_VVy@wTX)PI`S?3DEpSRNb?SyI1o61trHGx*DRq%GD>n9p+EY z_7Rg%3N|ILCPVpzY#J)3savPmHe*b|HIvdCWPp;Qaq<=3NqcCE*QG89opkT^784hy zOnP3BkJ!1O4L!Y=?)U&g;~Zzb=uPw zWFV^0@O}!l00D35f7c|+TG0+5u2y;5Rj)hY5@*RY(lXga+nqsz6jC<$O4oUkaD7x< zaOmZ!SZ;&|NnJjeyD~mLAA+RRo-#VXR-6x8@cJ>F0QOld^Uj0mn$TTLE@t+YEAUI# zWio$FAu`suzLO7w0YGE>fQI9k-Gp(q^Fcd_w%^oMdrR~n{GKIMW^(#4$0ino?NMfZ zBuxR&YJ*YM9Xxb8k*K^1sGY@>7*Ez1X>ep!_Q8+jJFH^rAn^zxe=|eW`Q+@ZRQhMK zOi`Hy$w~v0-~9lKo>i^{>KkBv*|kifxJJl1++b48O77$W1{)%s&ZSBIf-LMr%q*=m zhhJ_N+UKL*znmz0`$PZ3O6++dX1>$&WG_T-Y@1{Obcbu- zj!LkNd3vXK%;NDNZ#L33QWqZMr|6n(r(Rq0;Z&*RLffNqvt0_N7{|;>Q65=oin$$!5(St9lx*nb z0TvcbFW~bnL0CSxrt)Be4gRGuvfk7mf@L!89tG)2c7oVmyZ?@i<4~VZo+od|7I+1Y zTF4Zw)}aV+>r0A_OuFQ6Q7FZv%Ai$Xd2^}#PU68h^2ord znyZnfWh?$*=96op4^vFE?Hl;O{xm^eAx&1=uPEG>uQ#6O=8H-VaqmAbXB}x15afX6 zQ_%h7Uq{r{KEKtGispOam@xz=p2vAG0y;L3rfT011tMh|WO6L9J4gC@qrFd?=eekN zRVG^VM1d7G*o`!tZW*)Z6w%-(03fUY@2l8|ZpLkxUt+Mo5u2$=FcQgwO1+nd=|4@) zjOnecWuGbwV1J+F$!|0w^4U($WqsGM-&GaAsri}If%Of8HH-*)<{*6|b8gd!A3XLM zD+cDC@f5j^#))Sbh^lh48vWpGd=6YEZ>{|8FD_}f(#9J)A1**AQMliZBn0i)^h6ZD zn5AVg6ODx5<=xBhMmbIGgL|bo`_PzERonQXACI`(3WW~N*Oy78H*)L(QB2z!OluwG zm3(g@-CS$klk@7;tzN>n!=I^MGhD%(LYG*RO(ztaMH|9D&P%Ge`TQPqfsPdU3VLH>J|==Fag4f1|(d{X|>lGYV(J1y<03?>n8nJ(H}4YvzNv& zox-Tl%m8XFAk+!tPIZ#5&`nZiV0UUS=JO_c=9xWnO6En|IrSdG?4!JyRZhCts_M(EzpQ?S0jbQ&)SLn1)0Bp@+gQf zj%%Oq`>R%$rMZ*yBUqX%#{$7t)ve;nqS=S({OJ}Ek)bONW_(hgJFYecbZ?$3tK3CXk6d*M(EuyTkK^vD0429-h1wVGqSEQ?<)Cub)-c;yY35??x3dm~768 zr1}R1(3BbVEIT$}etd^WeCcnvQsX|-!06dYg{>=>Xc43wrCEG=z+^4SZQ-ew?o_^_ zU0OJBQFW^lgXIhw3$;@11SmDGU0K~B)VmFUyT)+D_d(2AXQ7s11XOB9B{J9 zZu+c4Cvuf_W=5VIjNtcV@HWym+0HR9dM$fT-3>8%-P-fW4)&y&#J1kg_`)*zL(G|A zt{M1u+dU?4fJG=SRlW+y`{V@O{Z7Wuz5A0W; zZ2NA=)>=cmfB&vv%7$v}%;~A!Ts}1OP(^)dyRbh}x2NlKeIhVo%DYcEyUF?GmVcP9 zF_q1f|6#sDhLLF%E_U4ApG({Jt{NjiOq(4E|oJscKpp~BhUI~YnaeBquBJV z#cKYI!u+9Cz2~2AAwQ&QKOy$Jk!@tj>Qjy@aWtRUh8I(vq2YyxJvfd1ywBcuqLTU1fdXNyD9UUm2g$w4cn{O_9~a(Y#uf ztoCcV5Ixqm!vHFUK?lLtqqRPIfAZu|HIG2pL8`cZIt{#lLZ1iXDt>6{<91-jX-s&< z-bGVg>eCW&6VUqSZVOg--_UemeD@M~x8T9HSARi$YVWUO?(kZbRe`MjJaCcX)#C2$ ztPWK>liE}zU~h=U)RTFF-S8LW24p@{ol=a>@}CsP>H@-gevU2tTjPHV(DDfBjVIDK zg;%t&l?H^2=_TQ4(_gMDnWP-Bf)fAlsl2)M$kVd;KRz|I$fzUU!_i8+VR^Ub>z;qyzovm>1Om)9?7WIv zj6N0sT5Ep0w7gp(wk!USA{0)`^?h)%V5Cy1M)jWfbURg$AD=h;wz`aI^{p5N2=0S> zZ1Es}J1zqi4?Vi5DJD+~WnDDSeMy;cY!-ji{wx8UwLqV2hYcO$tB!;QrzM{@{@Oz~MO0w==KT z>wG?+kMNdN3hKR#2!|QJHqx)(HLScTSkB;H-z?F)gT5P_7naP2X<;lS@1M+YQhonm zEV}{OKxeDJ4+L?&Sp74uysFEsOREa21Dm9;(Fqh0A$onqO|)%*ai!?=OL@{BOOGn0 zMB!hJvpTf=RMBIm{oZ zIVQ9Did;daA_rW;=%-pfv1xsGHDrib4F+aXh z4f!lXcNeBeC7`{s_nbwF>Z(h&7l)z!$Gy1XIouD_HcZt9DSm+8>;|0TpV%^wSJxz= zY7#2w-fQ$lzx;(wwjHRKr!L1O^j!m3VG`}}bEnvxf2L_!6g_*%;v4Nrw?C;Vx^1s$ z38U+pQgBp>p+dF3+{dri4T}1dd*Reb_C}jkjQYwO{2&l)K+`xV2j9t4YH!2Xu_ud81RXgPAX3>Trw&Dp+TPqI-yRJ^Ee5Y&bZ zA#YNp3o00MKfrL($H;UKYVFB~pQx`2suoOOS?R6`71|p$Uq0Jp>9K#wKI1yH;w51z zMxnoT{ru^xc5Pl9f1T2=uxToC9HahO^S2nOT$#Q6lz?5>MrA>xFaocv51D3IX-xE^ zI2Z2+c!7(K{|plh<$$2CDeE~-u=}Z(1>(0uN`BonWt7Lu+Osw1x|;41_Acx%$rr?0 zJGyiuLqb%O4kMsivcumT+uK$y@zLk`m;J$L=jArmH`=$H?OCINCxdTW;T|l5Zzbyr zpY77h#gqhf^`HUf?XY%P|KIMj4tM_O97^xmbYN_+h?XOe+%;q?$@m~w+w7smjB7E@?%z!ENdhZ3w+yp2X1o8n^LSvw&rSaNPSOn*q8dwKWhHGqL#2zU zq+5D_<;f~hfxp~jGfF(=ziuF;M>d-@`I^sWMlPeS^Ac>dv5W>-$uD6{P1o6iIS?pw z5t$8C){GAe&}PVw_K+U!D?#p=>z<&1i3PQ-*J*^%hC@~|#?gP%ejKWsqyr-TKDHF{ z4qlKwsSBjxI_((8U%Ps|1f+5KtKDysEQCo^X6Mqmwne?|{lI~qUEz#}#2;=Y+F(sc zr$SM)3sWmd_|d5>D|P;J6$~IGOv>~<_2|17wk>Auniwkxo1l2JIodUCHGurlx?fc= znNSsmEW7(u_33@def{9mF2Z5ytc%s;fHo&Bg}z8E0gg~8R7vv$PKSBi0?9lv`5V6}_ z*F`-^F$-1jseR(V*=yJwpi2DVt6z=jX|E#paqeP6pudVddBB4nn!!!Cf@7XU?ioMg zGB?Riy+V;;A}7U}l^@V#P^Yroz`^D6rdOW)w4X*O(204X+%ZFwcGSDeM*%P+FH*c` zn#$Q44fR;z`%IZkhj&ZB5m*`=1L?Qd5&Y+FO1Sfcn<=fd8#I1yw>C_eQ|nLq3nr$I zZhf~e%?UL6*c44Uk?M7!g%EM8;OuQl!tAHtOVyGiYhkL@}E3+_i~D3tWp{-xKP zV>)zP2vunphkc(LX3m|wz$F-aj}g4=yb`e4bjyf~w|(kdsGaBZjc98IaR?)*J;%;Y zSpP$$EU~3T5=X<3C--u2Lo2%tyk8>|Dw3I-ctnjWU6s%{12H*Xs6d zx@sVUqxZI84gWRbJ?mo4%0;|pvlUr6sOItsMAU*qW)~KLCvcGVU~dx$NhV#z63sEF5|my zlZp%$xTG!ZfT?qBIp<4BQ*&)8%h*mQrwg;S#R?%4zuD}B+C3Hq>|;p=^l(R{H?<>& z$HR+S?ReD;311mgdg{$!*ynb22ykJ%(v8M2NQaK(DLZOK<4%f@ zh`;)nY0v*vfc}rctIM%|fIyDlGtjn1&QGkP ze~3$hqo`ES9p}yZOPcR0 zy=a{ajGuY+VO6VisRJPP_IKCc@E7BijX#hX@H&nWV4p9++)Q5)aTD{DHgj6MpWTppctW$Em{2M-`)_47B|uq3HpgX=<)( zZc63qcA+J@z_hlm;Pux4H_!X{+-`EFEtuPiHRgW?pOw%QE`}tQ0Tc(tDk8)ARgw=W zwt)J5$&ZF1>eL%4cTW~0TXsJA-0;JqeB=C-o(|Wb`wT@(>`m#U_q}YQG*v4M_{xlmmY404@@uOsX#vHMbtx}d`xi9K;jXn<5zdww!40^h zh3ETsOK)X%mZ^8n*QI{Dve064T8l4^d_cSdZ)y3(w)wQIrxVc-@8do(%NKzcjx!THLRIb|a?AVIUD>qK7hpLirMS4VVR{XLb5`jjV#{WFd}UW8 zlyLy*agJ7#h${mP#RuP2kTc;LL#4udJccDYChWU6|Mkeuo-Db*q}WZbY&eJZ@*1U* z1pTZ!?0PMeCe%MOvGSR1(J}XjP*c?`140T2(KuPXyLlYxc!7W7ZPVfj8~gJ^oWW** zFdrJ}P5T@ILUO*?gSHt-oazYj?BI2jNo^*`-pfaz@}r&g=kuD3_$(pNqlCJ( zWr{|$m0nAr#1sCbk@V*G^lRV_Og?F6(Ha1ND`dYv-{Cc#v#8-t%vK@OXJ?b}*2jR_$c znzc~5Ea*S9;`UKW9edg6@Hs>dq+&%#m%3VqTQTd?Ao0Cyi}vqPWjf?9rSVl9tB~2lPeQ%~&-8X0+k1ANQJXqdL;tj}zFADs z-0@MYlw}eG;-Q5S0fTt*ahMaKz#4G0axR?H!G?g(s+|4@Oo_+@=5o&#csioqU>{wx95_|N0HU z5t=qPp^_ zA&3)sb&TLrLDimrty_r=-ND?6y*x6slQZ*{^2bk?%ubK-NQHdKS7$Xn@uoM+4U7T# zG8kKO56`p7XV%&QB{n22K3_Igg!F@VR`zEK-fnAJmP z^hHPxS4^VNX4Jb(^-k@=m)3(Pj;+Gv^XR@*Yuh19m*8?G-s?y6g}K-9===ISX=KBV z+0GNR6}9Bpu%(i6T+h-iGxy~%>;>hZegIc=%`-IP;`XMx_Anpg(6>(`m| z_ci_uzwqzZufi1>B79HZzb~;-mhZJ676>!|pT+Zo4o?)~yE?{TGWtY;PPddd3Savq z#>#wtpVt@-TI$~BW2!)|1NWN^a<>!GhHFg=bF#gS_Bm4%5_W^S;v~Yf`&bzB0L-$O z=dewSG?E+sn4Z1SJwcH(g1l#!qdEP1>3z*}JYaUaaGCa}f*~+#6Qx*Jy`AXmNjMrH zW8)2WsdMGRfQLh#{?62H93rl5%Y`z4~pTBIEa|>zJ9)GQ}sqymZ^G_Yk z=MWTc>A#084w%}&)UL86pX=-3wQS8^(Du4jx2f&o zqW><8=hCKCj??E*=}?i9QH4LEz~PLroUI&WUSQ#=K_|9aHb++XDD4i>7y98rLSzHA zE=)qPN0YbtQcPZ}LyiqxwWUEZl-?^O9dKj2!E zhCy3t$6C2D0B3s#Bx7L7FOWr3MvVOy?#3MlHd|@9&NTyUZo6bga9Dpm>0?XZ{s0vB zkBeLS82wh%#P2J2^;(HWRXHIu7EAz$AaZxPU`YP#mk<-Vqz#dEMAvgI_T*yt&h;68 z?t|R78X6}!#cCG6*i@-9&TCuUJNJ;a-gF@34F($T@RRcW*Eg_;WL(Wgn|0S~mZ9gY z(F-0U;(TrAwdREholZjk;z!ffn+6j?HD#L`e9D%rc20jjfBgLYlA`-55RnW)?=n0t zWTZbhEPO?p^OJN37)ChHq=ibPg7_3;@@;qoStNLA_~@l9c9CYSGSgqt&L4h$p#CndL5-&ITVj`Jz}Y&szEZS7o(zWHmH_ z6mJW&*Udoeh$bmf5*W%0y_sN&1iuHHakmrpBbr~J_`zgI@Hmw^IxThg*=5nlggS;c z+RAo%7BXb@GiiedRVS~6fv9UjwV&u~wda|4Dsze)yTP4HSp9e02Ze)?Xr|6A>f18! zOC;B74CzQh0bVueHXjtRYD>3>wl=r6QDq|$=e1%=vzbzrDE^VDKcjEn+*y_ysvKjC zgg`tY)f-RyR@)2n6}@(V%$czp`j75j1CPLQ8}9QHUci1Th;y^xPn#3NkfPpD%CPbs zMYh(~R=Dstvu94R*Iw}#dqJVwrn=SH(I3&OnyMx@vn)NZ_Kiirs3O3H_Na1xH{)gd zt&#B17oPZYS$@k|iND1Mev9j&GMJzvK@qRgB~^Ad9&dZj$5l-d*3tkNd#`HJ8wPfe2d5y1`{ z(4)aD@xZroNRTSo>P84#hpp&hK_N=h$u32gEme6Y4cr-Qph{uDW#3;6o0S(?i#xKb z18+WT{h6kq8!QIGnnsEHENI_f?HPLM6TiJ(@?mx8oDViR0h6!lt=|oQ;NtG#zSZ71 zIrL7q?~zB*`*Pf#+2>MN#;Q6h!rs{`Cq{&JBY4% zWJW-oK&pfO_qnZQstOxDkl&+>Z|rfk&>Q_h*|BHio?Ingc@DMOG`HA0^awc>AUIt# zr5aI%b15{L|M~2xDA}I#k>H2O_dmQM2`<B@^gXgKVK~0tdb%{qboTu443gdtNtKa0?V=>z$4C<55tFrL&f(O0} zF!0KU_hK;84#!ab8KJX(64OWGqeBZk!HZDQ0rOtU;eK;nnzWmYBbU5llbu;d$6oiB_6swL2eW27+pq z;yGIii{`xi(=vUskI8>tJH>!7Ijl;oA|8#Cp|6iSX0E@=E~O>Y_?TUS7TZa11CTNXB?(-Y1bIDsG}@gIt~yAx#MN&&(S9 zl0W=Zzoy$J1RJ5&Is+YYtXE4}k(n#vJhh2Z)hY5W5;F7oe4HFFH2%XB2{yrK(xLP- zKZTf4VnRC9{zEkI+ttfOs#AyLagbAvS?iQ3db4bnlG?dB$EFP)mBx^c)jQUe>?>LukiH$7NP$C|MeaEJ3{6&JCDB15Wg~ECc;-Z6VN*UGl8rB zU;o|Y0E~XzQM;TcvAG(3&dFE{F?c&vtX#Wd`!7&0iqmUo0073Cee(qX2I>*+9$a&C zkN>8YZM#*%g+U(Bp+k^*ria=q4mv8870wnBMDJh{A}z$$+M#gZM4_=NBAYo zx12i$r(BS0o=em-+S8gg-L5YNjoJxj6pW7}pO`>fq!9g;yp`a*A_7JpiuA60!8{>m zh$j5>rc-=UbH?s9Rnw61GmJ4hzr;I&T;8_Y4Lp000a?e~8=A`wngG1Tt4upQu5b%A zBMHjWT)0BA9p`<>AFza`!)pdSbqv<)+f z4yNOGG9#XfC%8Qjrgw67AiifLJqgirse;5f<|g&TuX-wSZzIZ+In5lU{#A1fDJA-{ zFkzW%I$V)7DS9acqQ&A3-$DeN4dPU?yav?%{vB-K@1S(H^g?|rZ;mEIGs#`Cab_WA zciH%&s@t4cYiH0uVu2K@UM!osLUY!tnIee0X1JLeyg+d-{2X#i`lqxB!( ze4`d_XXa1c3U|!_p6J?OWY#ydg-*RO_YOh4 zwSnvUTLv$}Z7}+6cnZ~HNy0kHx`cUCaIeVF&BNGREisMyv8|?AvZ?|1FtkLGcG8=r zow(1%7QLPVk^b@TUXElDDh>J{(kck)W$4aJGDhzNShG0cvCx6rK)!D|^V|jB;+uBySSmu2DQ4 zyau%&Fjy_=(c)HP>u>Fv&IE%;En%nb%PF&r(X0lqXMx01^I)hMb$O^7T>M6R-^>75 z+;;I{;B}rCqIx%6Zd!nvzOXfm&dFCKgLqH%ta<;)zPhlkT?!+|`g9=(L9W4U(#&xT z0fQu3_{x5p2m(F9<6R9b;?4UXtm7NSD@Z_`)s$2pQa|4Fma=^+KICCZx6`e;L! zP`k+w%!?9~kO}dm3j`zkQ+8yFtVEe2hiSy(&%es3@>Eb`WTVUOS72#ILj3$lMEKVp z15jY|m8NG}yRlWNnt!MbB3cbIEazZts@w_mny3#>RJoY(P4C6JI4ch`FEc7o0IkJqt~q zp8WRf#yPp;w^D$qKh;nO^IZ5@UH8dtI#Q zJacX>LxBx_OM=G-XLbP%Aude!0JN|4wa#*%ZEBD6qcHA4soZPvCrWWP9E}KwJK{lE zT;JZwShk+nwi^L9MS#rTB;WW@8z1eXua*81?#L*u>fDTI9Y>VQpe{biKZZmBWBZ}D z7!7%s`-v5e4S?pyhVmc70JDjKgK>`Lib4yTY2^RYXhUt7WZ8k<@A<1D!%J7_i1wq)qE3uAXBXn z(hv6kw#qFm9)n|J%s!#Y1HZJ~O(IN$juPbMHi7C~*>jn9NYhV=!gT#^AJ1&f;+5Qj z0$>v<-u~Yn5gc`~O9BmuP+_k2w?JjK^asxe%;X7G_gBAIU)wttKxp|tq3>gt5en7_2}f!Wp*h?1{jB5lb&wew*-6EVs4Hq!JD9SaU-#xvwvcvh|Kvk|)1DJ7PbyPMU4NEI;in zHt)mNkjEaN;^@xnZf0J;Wzn9G9h(cR<+G% z`gdJBUv!21KpuQmeemc_h;l`!X8?wgj8H}AEsT7l`QW?QXQp0iQ(EA}Jm$jby2kdw zni6N?Nw`uTB0str0Z0}u8_Sw{pEyYnM69ToSO|BR_UI{PR=Db*3a~#YqT3dC*+Ecf zzzI=hOM8~+ycF_(Ei(HFqpZImt`-(o9I^qRT1l5FYlp5rK~W31jNs9`CsUiTmA8(q zxUzV2lA&FD4!O^mQj~Soo}CsTeKypq)a6o*D3ex{yvs=!hpz@FZDhq|#%SFCcNh%4?-zf@t{v)TVr9D##< zx%bup}@r3Ci)EVCH|8wkp0g zO6p#1>Li~NBYwb{fL zlP7H-0y*Q)mErB$${h)Balbv-CI-m~%(Tc3s4sPdo#3Gkv>d+hs#NFJT4z-oME_^k z<;=J)FRTi$2Zeip8PWXLqU6L(L}7c?$D3^~wJtjWj^U>C{Q7|N8Z*phmS;d=Z!6bn zp6{!b$1C7fyi$PQitw|W)IG1?>A&f2jSXFG_F>!9)S2S?7Fea&uHQvwvSH)!ob^7^ z(eoM~EnKc!B`{V{JbNp2wJtex57;9wg-{-tXZM>dui;spjq2#Qxk}=C($VQ2(fEe8 zb4>{OP{{|Z7!yR2=gzyKMMIAYjt_HklkG1}yOVMFN(3*nj+D%&^hG$JoyystCm!4( zyPEP{`s|od=B8>geROb6=10Jg`6|XpxJFk$T;#0`E-e9-T8UqJ^S?M(aLZ7l^hGaP z?A{Z*>?8Hu(v)i>N9!Tt3rbuO;F9t@xQQQ!G-(RXOsX2M0*8j2x&%EzHA_F)U@qHs z*}n>obFE35h~JP9W_HOC;miY$ZI3YeiX0J9=6PAN&|@WHVt=^^(03X|*1U}1cd@zH zezM@>5nollys(2fkeG>&RnQZ&F2E&}k`lzyJx(m|zaHRsjoN-&Y3D*zeYqr0$h@m0 z6%EmM%Fq7I2_IyHxKOWod}W#igM8oR8wW|n%9~+2$ZVRRZ6Q+8PDG-rbNQC%axx57 z&gY7^Fl+Db+K-1&QYUQ@a^aP5%-dZbG|R!Mu*Pw&8*$g3$Ed=x_N6}pSA z@i#WrkMa8_82;DVybiD^WuSw^tJ@dy-&ADfHd78riQxH0(TfI`O_I(vLKLyB#+f37 zx*=m@f>@W*;0nCY0hVEVRzyrszeqt>h_V)j#PQY`8Db}L9sG|U2pwAJkttJtRH8KX z)u)+ry>vvOxi!`AebBLs{kK4T86eBgTkdga2aPIe_ItxThl$>2Of#_lKnV7S4wX32 zz~JmTL2(ZO=i@G2@n_hgTs2`)=U2n#NFR!xBtjh``v?#-O+eT&q@P$?b_c@i7H-S2 zgpeq6Bm`P+YV{-2{_%#HbisB_x9h%}frX`Bn@h!lM4ud-4X^hS!0;cU!Bz)IZ{K&| z;(@d|J{S?prq$|4jk{ER9E1{ zX6(n^qN_d_49Xqt`Hfyo-~Fp*9d1{;_kM2Axmtmu?}A~Bf~)G~hY5SHXnfWEON>Xd zLntDxJGkNgLNf2^Ss8)T3Nw?d1kkMYnKoU2FoO?DN56W&D8p)5DNjhB_l3oI`eM~Y z{RcFav{*7v?m^loQV9b1{8+GJnZVQ^7#XKM7xPPfg(!Z!^0Xr2x2|W<9Y++4d3^1r zb5j$sTVFn^r#o9Ul`1#rX7`Z9jB+KJb`P8!&jmk^;JEzorA}ndtXN$>fM&^EfSKO= z0RfW2LomTr?JAv5b$u@c-|Qvq_jsHgwiV4eSED^Gpi>9mke;7pd3VDjTZ*t8T4n}< z5WE&)1gBv;@%5x0wh?C2$B3yX?LksNrOXb|`aQibVpxnYQPPo}F0R_xj5~>XMd!p)|F2wfp zm}D4sg|wNdj2gc4YQoudWHroPkb1;5TxQzc!;(6Fb0f0?mK?|$TeZZBRfvYAH#usO znr|>#ofL$ieuW=y9{4N?gare9gkl8i_vszdrJkQbbj^$!;RoQ5787cqpXSa>ECt#vtGCW9o5HzS+YRZ7h&eCI;mF=4k^1N3&y?(B zpSmR<`{&=Jt?fX3=gCm+oS*;tz#Da2PDVrMM@EDUP+PyvMAiryQMe>&#c6-UDCNW} zrqd&!LXcVixZNS+g4}~*5vvg|w)4$~;1LlkSV6I`?uA6CPe_RcPA%ji=V^{=-J_bL zjkEIGheNi#!ov$&l8QfCJJXAISjbwPl@Oyu>rEJak{KnE4V7P7pQBgBa>6BwrNC!m z`NyjsTg3zv$@PV<=K$hbMTTao?r}#Fx!e5SKxmjViYM{F&++xUlsLz;;r`dK#u!PY z;PU)rW(Z3aO|~2PcR?EJle=L{Xu!xV)$8wp)8Bq z>q&kT>?13q>);rXbk9Hh?AxxUfc@e0j_BMeINmi{>KG-)E5Nw|4~*z(vP6CoIEZ~p zZ}P#(AXQ^rcp$FG_DNwTz3`q@KDnc&JXcxeZ-F{q4*7Vni}d6ywE=XeanlZ$+5J&{ zCB@$J-#i4l{{0&ZpCY9zX6;P~pB`5ekAL7%{Mo~&nv5Keqv>kNXA9bow-TLT)8F^o z+00lvbft$+3B~}aO&;o@{F7Vtf^B~<*KoF$SxX82q7hrWGKfF5iVD<9SC)(T-Y5U- zyvFcsQ>dA;VA$5oro78)NCYJ(_vQg4gPmMWrh77Y06V*x?zF1u{^9$?>s2kn<`Aq~ z5(z_of=c@FD%9=Edk>hy-6Qzn2ww<~#=Cf^^}?2(c+Y1%}>R%F)<+tq=NiUY$ux*Kn-lBvQ#1%Z$8PxwF$B%v~aH zJ10fa;ZJ8psyINP!d0iVgX<58L%$Fomq*_BCxopP zCJ!p9US*oC#8ly<@m`UVaQDSu!dvzV*!U^vaa2a*$^zrN@X7D>V(jaw0Hw8WQ-q5P zi&AW}ZjKYGP59neD$Zlj{_Y!<7c4)FG^aChF_JSy+mk}rR&mSd`jV-u1a&)k7;P;lVn6LLmne8znoRsKE{Rkhz2c44QZ}_ z2c+RX4fZWD#TY{q*ae=F%FvgX@b)XaLn7LJ7k;!X18Em6k74ocG9}v;?(D53$@w(n z&qD0mXveJWmt(+|k(5%gY$h#!pm1Q|OrYcrqTF9-s~2|yMLvYP5xzM5&SFtaS^ z9dFd8F+^t(%dqyj<>1Ckw7trdL+)lc+xpzuzULcGjDSc`P*}zmGZuaWe3^rn9BUI= z(>t@cBGhu+7V4&0a+yl-8zn!jfEDw&FDu=7K;7Tf#>7}!ViJPUP+mI%#M3uwmwNYU zechSF6y6q|Z}9h5D-1{oJYh@%NZ=pXx^<0BMX=Z;oNyd>#p9()w(C%_htaE9L@*D{ zy=w$%q^BhAWc6&@Nn7T#lDLC9ciZxvT~v5Q;cKFpiEkhW{`(@IEuXtyV0T}`C(sVr z^jxp#sM|YG?PFWX9op&i0pZUZ^q)U*4LM1=!(#Q0oPaUwD&M&bkaY8)uc54K7p9+t zh+7Y1lwy5$uB(eJdaPVOB>iNs4mFSL>46U{jopbPWx71C201HV?ObNpCTT+&|0Tg} zW;ft?l1q`g=K?RPfH&+C)B`)~bYIXhPr(eNX3nfxN z^B2<_@ESUGAF6L!d2)y;c!}PP!egb489BcfxJf6E!jbhiB)8r*x47|O+9-lw$F`0z z2e4~DT~j@8Nt&R1A^OlDmL;q9)$xyE;TU%vce)_^g7PAQu{z;Qyb7;z9bVc&7&5UX zMI>CriIN%`CI3M-fU&mJ=za&RD=KJW?r-Vlpz;@0r8V_UDZETD3k0&0fxH%Pg7=k3 zzE?i50Ul2qrRgC2fC6oF>`S`}FQsd>5q?#2y3e%Bvizw=P7&=#tEGv8w?!4Z@Bveq z%gT^ws)F#KYo&HWSVM9p+p&&)U!G)VSI5n+3OA)ylWH(&(pgoQN^d3~|6PM{l^fLQ z5os5m{Z_iYzWu&50sHN<9Dj%pgIJjddaqrOHP~ZW) zEcWrmE$s~4%t`Y7yyh7x)nt^UOZ6@?xbf)d!%}yE|B-1YE6&65IInP;%|cj;sChlo zo4>55YWoamc&gQ*XdJBuXzTFkia+WSUPEra{|}K6bRqj#>Q-#NnjX0DRJN5E!4wz{!A+G5uWgbdC&fmR9-JY9=ZETuetc$^}2vO$S)Sg!|D<%IdHR6oDnUL$i;Ks3#n<_fU<*y5IuIe3vnAr|^2tlr{}7$eccuGF_^9 zixAmitWF$Fls_;sF+IvN(kA+>Q~YE8z2>IQN&LlsBY$f`2p_$Nw=d-OSnL<9983(z zR=#Wl0#=HretH^xTy*eBwwq1&Vj$=Y`C8h)h2^bDJJK_O(f=W$p*_IOjVSe2>|KL9 zrLk&J)y~2o&nMG5#dN10i*^;}Zm&<0=Mu^&18?2*YWG^ zMvQ^kJ(&^qO{nIv4-qr~`hRt)M{YNpDYN|-b51>iLcCD6a#>;@Ims;reTj5z#)urH zQCg25QW-WEeak5$L_VWDnOYKI) ziMJB*IoXH0HkgaCmU(E|&KuAHzg0bcIN;)A7h(13edi7eznC=I3T=vI_%VTZATJ16 z_J*onB40IGde(A2%G5YvE`GrdK*jT{q5+(uNwfC-K4_fnAOGJd5ep{fKK~U{t&tzK zjk8_0ee2@u#C8^&d@@UkzZmKVF;*UBhnw1S=TeV0PC>9u50`zMKzD*L$I8Hc!l;cU<+wq$f_29GR$1ajh43BBBZwf3$x^8L! zpK)EK!!!jBRfRMfi=KnOsFwnr%%NR>SHOHfqP}_1@AOM6x_Wzt?CQ*xQ8hKiWVuMz zS>oTNzxc);il_Kh>%x35FfTvMlc#^)!Gd;lG;#S;tsz!8R?wGO=|D>0!5}f>>w(&n z{}5TGO9aEUhfsy}co~S*UaPB(WzIlf@<<~ebh?2{{9K(GD|M?(lYf3mds-HV>=g<8 zqD;g~D^g?sQHFUprXQq-TF_}q+<1%Glmz5;N4wQb2_Kw4k);Qrffgagyr&Yr=iW&mx3I_uyvnH!PFv|8 zgPDpAD_xKMR{C7^HCJu@QgiuuCO+k@reL-yUI(aUiWTlNZp?*QEu8*78OU>~W5_?}d<9crwY#?! zVWerh&=zEVsuYE+-?`;(hX;r$w>^@3bir_<6cro_Lv3uCh4Rg@8%aOLbj$h2atR{8LYIu;lAG8!h0NLhn0DCUg|`cfWc}<#e*K0? z_U}WtX){YGh~r?%JIF!GuX@e%{pIpZi!BPDo-9CsZ*S*6s}-;ERxQ$4ezE=XK0je# zMaK~+!1Qa;3SxAuPz+w~BSX7NC^?Y(*D-tZ9}PaVe`?OX+U7-9ddpz8{JOx?O%8ND zcYs$aGUxtG;s&DAWM>?ZmLWps;$;k+)^4;=6d6n+k7UW+X2c(^fyifPXUgN0WiF^U z^6uwxV0jGQt+_lVMM}8dqOZm7-5xIg>Y{4=n%Q?@YNqoaB0GJs>RUaH_bAvoD-F&y zjB=lbtcYfjKP;;*$CRgUk57D=%6xapX3zc87Co^5VA^*SEqmK7^y@^&y=CH_(}UBu z4TpyyDc6dckwM~PQ_LFZpgoR%pu1Aic)g6BJsNBH(#KGPIi# zhjf)>5bFRP0_dr$PE;j(mm=J)7Cenuy$HA+56f8Px`2UTdnDZ6Y@Txjg9vY_Q+cO38{{ZM&}z5Fdns! zTt!fU>~P<^%2YD^6gtFjA^TgqGPdB{_6dsaaNgt|n3SpPJ_V)V7hXdj;8sl0l%K9{ zBZ%K&2`3;D=_)7oD-fxxS@Zt&M!3VoqkM?hHBE-NXY44bxJ5EM`kW~W!V&IA?+Lnn zGcqA$uuyrGH)vymO*TJqfc|!Lh|97#7E3=Av8j|b%fP>zc6e^Fo5JQ0hy2JAS)YgP zM2g2)dDU zGqp%_d}{aoW8;smAt2L-jgHU;nCSyA&Ug_hV%)OI6EbGhA)cAC`GgkFZu_hV)h2Lg zO`JT@M)(}i$;`-Tawfj1h|GVdZaIkSEn*y}vVGmv(Kx#9cXr!I+pAe40dI}MJWWw! ze;a1jp(-&+u6|*=`WIfbktzGn_Gdn&N5m@Qu`f+V7q`|xe@J}ANu2Otw{scQzO&x`1YT#FsB|X@n54(`dtJ=ObqB9JDbO`4 zG(XXTweTR{+CQ3~+0m2vi)U+6O{`shVo6v^Gy7`)1o0=g zbVD$2i*GeIc&i`r*Tv|b!Bduy!>c$_=|Omh5Nd=>jQL z4i_@=$Y1zZaKT1aav;6EA(rg}r?14;5=#fH0hjG7#QAU&^hn<)?KXme;8%7tMJTc~ ztFUKrzmC1Lt7|WO=^PwhTGxf(*?kwvG_%<{B?PLWgQYIeDtw|&S=GPdCuCRndaeUJ zSGm)!Xpeh>aNtOcb^h5H5OL z($pnUjg*RBe6QCYC!h1RHWc~0 znZm`V=BWT8hJ(mW>giC%49Vl}x4rBt{XVQTPRX~=nOQeUUFf%N3V;$yOZI!$bnsiM z%rphzzL&*I%(IqfezbO~wypR1;PegX0np z*WLACgs~{Cm{4`a8BK-1S6b~wp7Dp8)kls3r-eal4@J_IIp)l?*TNiirT$tUQwkb3aAPqp&a)TepGqSQ-Pl^Y=9E+EO{v?BEgfjk45P>yo?hCVB-z;mZ`PK z)N4w9rsYYwr4IB**l<;b~X8W@(_X=5%!_6h?dh zp&Gr7;c~h!^exo%6&gK1vK07Sz16|-pK%~vpV1H2?~pKBmHH{n$^KN=()UBp3Fvl# z%Ws8%M}t_>7~h+4N|pk~m&}it%T6KjeBwW+>&AD&AH$)4F~ZQH>X)W23CTm#;*-QX z44|vF23kHg&_d`mOi62JyRxlgxGCdNS*1%;Yi@&b5S_15{+1bUg^L2c=7O=ezv7*# z{jz7TJ*97Ha?Z4+EX;qJHS(*w`C*PpkV zUh+@I;2BG{r3lodR+1+LHg==QCB8r2cA!7+wdDFhcA8+XQJ53nEtwvXt@s`db_8B4 zlZ{x_S*1AlXG$c${?kD2UaJ|yiy)^YhxH&({PMIr+w?&O9Vyv>zR{bAtiwp#ktV^U z{|b8PZrP4E^K1L+b}8$~roJC=U@L=dzlcMmMSCyesG}c^^Lbq{?C=(+n*EmYNuS0) zEZVtr+(aH|tgn9-S-3KhtBnq4ZEbehqD=%aFC=#F0UN3QY?d86W+`S~JY+fDzaqT} znq)aQ(!d23>`1x!d=P>w|A$C-f?^dIMK$e$_Ta98{2fR5YBSr-bcfNb4~R;?#~~y# zKb?h$E?Km_>%I3O=l9@Wq#3~$#ylapyh`{t3Arf0x9EMid@}KB65jUUui9s|kJ6jD zs&YH;nqVUGnyc9qPb-Cfc}V{HLpfp`E|FdmD);xSt@%*k7LgS5B4~?rR}T4JmGaV` zw6Z})(0=tcp=vP*+2!Ux@RCOwUwIT0%2Ve2>}Yy?QpZj+;SP>ro3~K$FqWn5yN#tv z5V5KkL#xzVHMjJL7)uTfE5F@HpGFTl;SG2j1D};u(#@k_n=H3dt5|o;gD;&jN{K$; z+Fmq;ai>&(wyzV9T!x(p!56etbL1sRozkBlea%KEy36U?-4?v)(*Sw)20}-wqy4G*d~)aT_`8nU$B@h`Dh~WOaeZouI)>PUc^-2GHlZX zum|4543Yb6<+(vsAH)|)8+-;^@}W^ZO)z?SK6zcHN_x6?k$@j*s~7P|(Er2Udj>WA zy?>urQIV>EAVmcMK|p#35$T2wp`)Nc2%-0?BE3mhsx+w~v=BPddxwNxLN9@Y8d}_Z z|1-Py?EYtevorVoV0Y*HEHg|pe9q@O=Q`(H@9X_?Y5_<0&b@U_vgiStDe{1wk1BfX zEGXT0mGqL)Qn3P(f@<<|#&cuU>Hxv^U8ivN&_^9ZrUZC_BJ)d1GYzF3;Ueimc2vl^jw6SvTwAt?JvoL-sH=j+?=E&=!hqBoj>$a%<5Neet3F`)7wh=8(XObC0=aG6MKYF zLBPYN0h&jLXF!0WSV;p75lrTpd2N*cr2%r8kNMh7AvJa9ePE;1vYA}_TJs;2xJ>?! zTGn^Swm4=`T?`33oEF;qHuRb7-2;#bqM53bfr_rUCn^)%F`w@nP&6zv^B5G_v(b$<5>#DuAKtJNg5ipf7?8q26Y}6}{2bvkpoFv?a7pU5}8NR(z zJI=0w$1KJB$V3HFZzrcF$DNok=q$~z3-k00LN=2Hw$9zOx*EK0UV%B=&8aI!Uu2 zd1Isr+ofF!k0L}Adv8pvA~nM-#+R3d*A!A*#AMBk9jP|h2g3v z;b^##V2vou_HDRviV(Oo-eURUWg5()OF7nvSO$hx&%3JCU6{NpDZy_I{T< z+Rv7S{&|{(go^+~XLYN5!9DFA?Kge=xzSNv%uZatuhy)e=hjQeNd1u%%@R+Zo5#As z3!Vq^CGKQh+pOAtbMXF-nE)d3^y zHsdoJ>jValm!u;=dBwZ4?|t?ZyuswFjxM;3dW^tBz9zng4eq)z-=MdWX z^!KLVSu(kMmMX_fIquDWMxFd(Hab}(SyYwelQb1r=+8B)@peBQ@_fPft+M{+vI#tMjGQD2*ZnReEg*S!>ynm5voRW{3AsL zTgVwA5OJoXqU*Le6H2VqPi9oax2vw1-jU7Y!FM_Coz36Jp1xm4jhH60z8*CIBu%)? zvGUI_66p!CRa4jnGhhZBuQx&%+yuby${YY3G7-J+&YbMS*u$&PceMCgqfEk7AAl zCw>(|T-)If$IC^W3d^AA`rw=l+R>0ZY$Ci5Q)`+0vM7a>GxBwP892pbmJz9Bixoc0?^Tb*rXltA6_pEO? zdkyuZnOgZxmaaN8g+Io;n0}46b%w{VI05;yd)u2uH3;sj`w*e_WJdQY1(KgZ_vz!` z44$R-#xC!Lv*ht7F8Kcv-96j5L=zk1U@$RlH-thujy0&dg{odO_atQM)pa$!0KHWD zZ^A8eaHLppxQgnX18;-1Ek4LAs^DdOA(lZsABCUK2F=k=Q#m zajkptl)59RTq7?sMR=Xjgqd2O%gu3m*0|Ci0km7+=e%(i7NyfeI8KpyLlZLfkKa@d zZatdYV4r+5`ppvYCSy(XT##8^t!CmSATN82RV9s>fszq;tK|#dq|B#Y9J(2cwh|l- zJ}-Egktd5wE?2_@eE}oF<%n)`>l*PKEHq%SS!wi{qWRn2~$bgYGJ=iGoMc zqYz?S5AXj$uOK!K(gJl_5aWdq(`qWEIVx-uHnvkoZ4cD8C{SWtrO~7v#tx08Gam`I=8cx{?NqRfuIBrH zpeX-?^zf^tA*5@}BrTcep_MC@P$vhb_Q9xWQ&y}nSwjc>EB5Ey(hD6Sv)2*~1^*1i ze;3jjGNK}@{pkWZwQ6k_$3F;{eczpKQM9p5os5CobB^a9TK*$iDYl!9&p5fqRqBie zyxeY?ZUM2{Z>)Cb^UjBkt#|&P#y6!5T*Jtu%8|>XROWO?$L@D18pCQ@2lkiT7)Vk= zH#m2anSI$R5!?K~kZS(NGewa6`}u!n4B}8ef=4~w4@s(lp?+#(`@#^HySdGcbSad{ z*LAzaVM_6~N1C^)YYzJPdQN$y94rIi(u)o5a@XMdg`Sf2N?LsiB=Xzj-i~cD9===r z_Ktbqd&pG864L3=X@y=6Cb5jAbg98h-(p2tf0k4D=+|EK$@Dfyp9slv8_9#wS5JRM zYc=1U5x8{U^=QHEvtHyhx}qm|9bvXke+(;s)2455`nyRE2aAwhan1J@sxza1FFpNU z9H1|d!pq7&tz$Y#?-93o1WdntiY$Xc%IqCK3aZ*`4rpka>Mh8n8D;6i%PS%*Dx~;- zvRmD}fl4hZGl<`QXCdf0*8NLIMMa6N@OEQlmpN-zyQIBjW>%qjRY`QeaDM2TS!R59 zr#V?o{GO^MD0g9y3?i}7#93-$Mp^}&{!z~#ek=uJF$Kl<{T{t@&ExP4m4o_X+x+TO(kazsJLn))dlQrJ>)U|{Nlzz{)eml;7kR5vkrg$7QL@qOHTnK%wyYd5(vXnWUnJcL#Qv}qGBIoDbPA%dgcM+(MUU5Pio#E9JQcn4 z6D5-~a5q6t76A5l?Xn+(YbDAM9R#Y{%BlqIamPKvIF+DaavQZwV>5{o) zTxC4V!{Mta;X0a)>w7oKquj+yRUsmQ)Lxb7Ssi+h89)2Cj?^#Wj*CG>E-)Qk1IRf` zwxZX1_Q~RHeB}_2FVW2}qoM{xMpSft`ki6XzF;{AxEYpd`6Indl^LhAScjooT-703 z*s>AI+$Mmb_}k>2kG3+^hxnQQ#3MA~ztzx=bctbe#>4da@AwZ_Hqh`jB&Vz7qM`A z=BBRh$h{4M{)~MfVSQQzDxf=>WRx$dhR>Z)-Vf}#-A$-1IG`;u3V1~HOeBxJa@Jhs z#vIqy!{ccN8YZHOT4~*d9lC@A9%?FjvCp^<{amTt<%g4vejHGv7Pz_c2=)daTd10k zx9X|%zJI{qBY##~=%SWdG&ibPpC0O}=#)iq`~XdPrJmat2GnX-bD2JjukO)u4VD+MBH zg^!1CdsQNNe0vMv>DVd>*Qk}Icka%b7<;{HKv`&|wkaygEw^MdEgo(ATyO5T7*8)V z(boivl(EnkOD38$Ua#U2s+f;j33}_uu`+2#Q>~NYI%_AD`~t!Q(|@D9W-fp>;Zxe>x(X-8d|L|59&qztD->u~me@(NNuO=n6NDh)mYuuX1CLZJZ$W|8mgx!Ndq2dIF zpQjaax&Sz%vt#91#Nb3CFtB!)3r3W=3Av+r*b41ZP}%@~uJS%@C!ddcviDJZM~e>z zvn~2Qg*k8yxOg3Nq?(_y%>gbN`>iH;*g8%`Pg52DWIlJTURp^-OMgOx`}e8%LytV} zO+Pc(6WBVNIFJ4Mv1;sNZOw!u<1U{w`+)92X~Dj(%O;r8BPUiTv{mHZ`B&KMA=0a3 zbEvr{R+{<*+x?Q^OZUa(4(+IJLC$52kH5d6wrN2J4-w_6+7(Nt&Qo7BQ}^USkZJV- zbvoYOPR?=S*@Wo+M^KuroLYC9GH0deT7&lXupUej=NW!1Lu}k+bT2Ke8B4mK@8Z3q z>nA+vAcCO)gHckseJQ#@C}waFE+zDRHEuE~$8=us-L`t;x1?cdMg%=$MeI>0UH)A; z-32T5oP>!8ch>+WEWA0EEAw$f?~gLk!51IS7&r6f+3ml5e?%Skwt6aTJ5~-Kjy6+Q zoD{~}v+KuLKW#N#Z|D(_NmtT(>~sB33oj)7Tu>#{-GC>>nRXk^#-1e$pHBFpK+xZytKA89w8Mh}IHqd;Mq?Rn0k1izYU6 zc66gf!fLoVxWA~o4Laa++kC#Inx^a&Y9PYIl2i>jTWAH63Kg5++}ceRqH$Y^z`NKq zlPvv_X}&DK@((UPSx_7B=#C^RGDY(z--oeQ)}~ONtgbR`JG(n!4V}G5GJ?6amfxlL zwFG&(FLgogOHhL@bl3U1E&F$#mt%A?LJLg~bjvlV@IDWu$J^^}{tWI*Uzz!BJnj;k ztxg0q>84>V!r{ESoj$=ybA?E3!_8~XUm}jwu$s5L?8p^5Q-kwT#NzTC{z$ug?~Yk- zDo_}+9OHdUH7H#y)wdSA1N_uWzjhiI7@+D&ELOg#jIXHBjwe>Dx6VDFXnzlkdrOV6 zNta4gTi2^8X}3b4Lr+uE^mbDJ<(u-FdMu_LKvQ*%=#6t&Mn{&mco&a+e5)=QJrnR1 z_)ZaII+8Q#O9^aQiJuaco03`7)`ruNIiETBTsLD zl3x6YYe37-eHG6q!_KBpu(zenXS!!XlRFZqhFoV;$Ht`}gFoH>Dm8n0s0&&Y5I?2e zFrYHGCB9p>N_vza(c*>jg@gEx_G4ee{93V#BC(3iMQV57rU&f@rc;u6eXnmuot8A; zop2D*q?nywcm>Lmcw$)#i=4U7rk?vwKJ}q?s?bd>VvtaFbGBZ)ySdO3_); zALOeW_FbWRic`gBt7K#&a9QE!A7^;yGX^uRrf5{CiV|1yJrRs*JLV7JMr97qoT>ar zRrC^K*5f@xT^{`hr%I*aLkcj?i#-Crte4L}9lU=c*rElQUFK2I^_)j@7H%J8EZER-$LhbNE9_Y>DYTt8m$t}@@;tMv>XDL1M;Rzn9e@R1*Ys3WQ31uLCs$h zVOnN%>Y`(Ugg-?2o1g!!HuB`k;-_p|gP!L1ZXcLHmE;eFgSA%hc9h}f^a&jX9z+#V z|KmMQY+2~rN{HCouk%#iab33;brr>IeP^Nczx06d2(v5g^+5W-Rr}F^puZ#vFg?e! z+lVVyLed(G$VelwYzMo*kwFzRg%()9T24oSo}p--`n1O=aN)L#5 z*(K>8Sv+R3?G|U$M}JAqR|q00Fp%+SgfQ?c;Z|i_!27u7r4Ie9(BzrDw1Upx+sOjm zjx-pfw?8?t`OF2>fO+{7i9qu2vfM=BZ=+n2?=5eos%3wl_AWrlW_kE%+H-XbOku=k zq5w{+U!(5bM2pY~sm^J5I;Q4Vq6el|Mf{P{Ua)7 zep8mO7NBvHvHwHx)P0+=VJxNLND<$H|(pfju&qL@Pt#Vt)cRBwKY z?eO`bq}^8j2aPy}Qa7qDuZ8MF$-DL4B|C(O3~YYKx3rHw7Jq5gTw_r?rjB4uqB`~d zbrA#TPgbw+eTRLX86C)rw$mN<*!ldNjh(n$OoaIb7Ukh-==`jkZm5p!^TBRsm-R5*-6IWAk+D3@RGlx(Lc$k`ZJWzO@sd39?c z;o*8Cz^bkLIZdi+b7Utk?(VSdKno_gtn0$&~6Z3 zVY`}2`oV=Ab@fpjyB8t!xU#PYfe+M|^S=le1|a*_D$klon3yJ{F6b!`f#DVh$C~*m zORkHgfh&hP#IAs0qM0&&Eu{_kjA^fjlO?I!>#+*XCUk$*Tev4L!shv**t=7hel3DN zS(CgicHzZMpO5+mu_D4LAA{9Q;g9|IoGfnrqzrYcos*0x!3`7SMFaP<)>J<&&j+@p z=D~h-@bj`u2uNYBXXB7TXvYVJue;`-Cfyw%<51pERCTQ#^bWX@)074}BXDMWSrJ}~ z${lygeTS;8UQ*2LiWY%N4ZH6)53DeJmG%CzsrL^5+kY z%nWq1svwg8X;QNnG$qR~V#m)UKhSZ>QIwIy_mp6uvAc~hyVLNm>HXDFZE@oBxl>?X#wyA!~c3(P(<%5vGIZ6V( zf4jfftE^o+l~Iln<%UdKr=kHI1O@25xH`q63GKgD~Z8f{yL;b=4JLB)dKVnaguctO6Z z*rcH@G95BHSBJ|b$m|C0)CWppsx8iFi2wt(c)1(h37srPkT7%`4E@k)R7%%Uk` z_wre4!O5fQNes>OiYBi|Gp3!{4g{N5^`3Jjuv;X>JYN3L9e(_QFjbPpY?*ZAs}w6m zJB29k)C+AlXB&~$cJ|JleLh%K<1~zT){r*HXF+XCW4uGfPSca;s;OOpzVyydU!lQIaxWw%iEYW5@ETt99eVs z{NC}EBSBt_b&ql761=n%300D@P;_NJXL&QtVeFc$y0bO^ki>m#@DbeXO@hQsA z6k;jClGHc@5}AI~X;ghdY^#AqWMkLrKRVQY{~Q^$!AU#3pbP`oKTMGf;!S_<$@S$x z<+LP_=90&~EYdeaZoT&N*P?Oh4Je%!KKU<+x}^J6x`!%)#YMF?b)zcr`C>MF;uHON zQ4;nwq^j}e#(gDCWTDsP3fdq!a7J^-*!;$5qx^D{njuT?^U9>U#O6C25}g3tn=)Wf|KhiE&>6$Hfo|kZ;J}e>;3RA;!xRo>cgX@{ z9ZuMzjagYE{H@*fEV1VeI>hPX*>?)4EWj0cv&G_2mx&lD!Zq_;XkZV`A)!`|@D<$W zenr|@pAx|~sg!o-KxL-c@#Z~@`_D^N=UPjI2}%h^b~H;Zg5VVN8{siHW98 zex4)qKK>Eo@i(Nb%s6s=T{RDqwn<{9eG!wvqMl%J4F( zuODpwn7c+H7sInU8IwbjN4B)WKUpjUobF}XS*I7exK9*Tm$)8{V|o0D$Fey8=7O`- zHe6hHruQ|B&{S|C_*!gs9oNNH<+0yS_q;=Zx-2G-G~9( z#hZ^kAYL+F@6t=D6K_Ub4y(jo8DH^q9}`uf#7VIyc1Sz72@H64@gQ13BmDW>v)2hy z(N1E>BCNKXlkf*QmnauzwygaPG&mR-}vr!?(?x# z*2m&OM4npN;#fn|V}fFusFucwT62{oB3z$uv`p_&=T-iai0rzLP(gCp zez#th^!QyP;!qyzowKfk^G6GCep^;u{vKZVqd)I~>C{6)M(2Rxs8ZheF*8A)ByGg7cln~JUh8uT<@!stGzZfiYdgGL zo2V>9U9BjhQuAf)96Q^y`lM72m&j*y%&(=99FcjNcT@Kc-k@A5TrW9yh{qH+O6nPW z+4_#w&*)s%#66~{OaZ;L#6%0nEt(?@m7`*=obUg+hV`$<E$p8AiV!MQ4$S3yX z8jLd+lTyLW$@&)}ZX(&s2ZmmS_+IyxU7oKGW9L_GZiwvqC=Pbcr}lc=AuBU0DpvJp zxD%@Nq-c&)UJ>-p=7?$^~OH7dN7E_eIIW2Sti+5Z}F7g$AU@B2Eg zEuqF;;xE)fYcyf*h($bOKf@#Bi6+8^U=hB(?`xM5ZhQKQcRafP?sw7;+w?^xw1-`A zw2Yl*WU6^SX9yqL#M94tKHgcp+{=XbvtHZ29X*=DrzR} zh4+deVSDc5XR_~t8bUL0KT6zfGb^(!dDKzY82rbVPf;}nuO-Bf#5bCieSR*1Tg9H& zY;O~4cJ-XAt;aO|t357;U+2_1(&HC)G;ud&S+RSG?f~nzhenLA!)eZmh9%pWK~rpU z9a?H$$%LN<@3u8iaTf0UFh?cpyXdM7X_on9THA!yNept)-Pf~bt@JI^8SRBVCeSRV zCSpb8F9|bW+zOPxJrodc<@fOFm+I%Va8^&Iqm4MT3>!(^-wE-HdZyf6kiw>Fn;STV zPUDbB*~t9O+j1Cy($ceiK&!6!kZfLnQp3c3Y6U72rtbm?=Bmq!_!3#6ZJ(mET{lC* zFllyxQlQMn0nD&2Qwj{S`T4bzhTcQwGXqDxfZht=O}zPW*_DN6{Hu1rglpkKO68GR zz~MKPv~H1H2ZpEJN2uee-XScK15IBhQ`>!Y#M1)f!t>ux9V$Un(wh}6`bvb{Kaub4 zCP>QN+m@zYkw=?p8jY`)i;DT!H=8_78CVch+6!We4S;(UGr^L{mekWG|B|$hq>DIw z8Wh7J92KujcQ(r&cLq}P`pK-2i@ix6AG|Oa77P?~OsFfDHDw}L)>A$Lk9yeqk5LZA~H2 zpC=nPVB>Ht$FSrQ9Fv#UOkl+cOe|K&0n^}&w-F|k05i4LkdhVt)+sM-{GaDYrSkm1 z2cxGNnX{o6v;Jj9&ke0Ut5!Kn$T<02+cG1M8g~BVC|uz!sLI%&+#q$AflUTyRIj6@ z&p1j5iO4fee=zw#+te|}&l9ptuB(b@s^NF^F&Ri#jb-PPmIXW zurlBrJO8D6X*DkWL>l-5Z_$xD59@$Y+tDr1)zvrGz5`fRE&p2c=0#)%mG79jRh}nA zrB_$hPr9FNWe)M!Z; zm3LdG+_jB)$o1rd{EaA^acrr7(5itk0z7XrPN3*&o_1|$qG=u?v|z;~?RfgF@IQ;e z9&uvdq{aBM1v@IugnGl4Err&Cy4Ek76YFg{XH5p5e;M1;413%BX3KfCs-;kT*=r*z z0+E8|#S(Zl%{xlnDTr={sPVdOVc-u?Aoa0{#RFpy%d3&V%IK}@cXa^moS!MJhHlHR zj5Wm4dVTG0mwY*soY$eidatBkiX}p3hx>d|Jbo6TG?4mm35iljN z&3Q$+oPdmNjl4=g47ApkP+Wk#KR$`WbTeFn4B9m!8ZoCOFg;1bFny0`!iJSn1kX^TB8~>* zryv@<%*=2c{f6>*zs24;OOsH?mKq_#kLi-bwGm#eR>JW1am9ZM{Cw-Rrg>4)fN4Zn}!PR!ZxM=WZ_jgOj}6ke(z z_nxNyC241QlzgFx7`mu4g#94ZiA3E%Wwrf|Md$gHWm#uF8nc;zmn6MJekkX~I;pq3 zvnhCYp?~$J3Fg=d+L>KfM%gZ)E?Js02+F^;&3%_(Vf4lYVe8n_u%q1k?almA1qa}x zAvr#u@8FS=dlNQFrd3K4C2y*|e>t&IH|iFFQrEv^Z<13@h}`|+vejbm-K{x%P!`(B z!Z#|-&&X_d_B5_b=lQLSrnabb-=i|pKYvMZ`j>_%={J8#WHM7_d+mH};^OcQa#-#o z-zs~HD^o{pA3qVRAd%X zX8P6B_d^L>UKXY;>QZ1-2wI^=q&Di8>n7#93+o1#*Ei!ym{nnPSGg}=W{)4G^*mKM z7OfR1>3TI#JM2(P1TojMMjAIEld$D}YYuy3JT?x0NnV}(C3&s9qW_Yen_DN>eF$R% zEq&*#`+HldtTEzL5vq$ueLLDg)_|uSm?@C9&t87M@*>3!5>3xg)r(Y9WP>aizV}08 zz$ZmVPYx)N6$Dnijpk@0>j(Rq@6`#fVNL^|e=>waBgL#$gO!A)FiWtMiNDYw5scy{+1?A>u@}I!Z2Uka19Usjd zsI=-U*NJ2-4^wZ+vLjOcX?D#N$<7>F8JwnuWZ(0o;ecN`aI%dk#)Sf&O{XWXK%+F- zSxhN%7Tt3|nG1^{*ru-82nHqEnQq>uC|a$$Zu3sG#8$O&T2q1~=%E!95 zghGiaTNu`35S6>%Ay3I~Gk+R!hiG_I*~+Zt-9{fO}Hp zqA2xguDo1=bqUL(73sbGE;-5VOL^E<0816U@!+mOdBSHC_KFkj_`qvMa`&s{@XD7D zeorUON-1vux^W0jIStZfb7vg=pRrjl6Js1{82p91%zMazlUnEXlpFVCL#KQ_%iwCk ze(KSf$9d2OVvXxoRni1hnIa$DH`s8rL$tkN8UAfyV&~)Ego$c~ly0&|W0lrqC@4je z(6RKkne@>VRes+aqVitTd$9CLbhoI%u>Ay80#QC?9&Riq%RJ@)Pns+%eVTb?Mg6ie zdRC9di}bU%^omG-zXt6mhK0Th2e%@vOmfw z(c_4)MvLX)J8h~ls*00HDX!ro^0SB|IU2*o`OODLw!rX$`EtD&m%0NKn>b7D(2Jq; z4@%TN5>ktm(*dPyIyxm1yn6c3`Mtj+J)t@{hv45kbm#i(xiofS_i4l*3e{-7_6S1A z;-NEVhn=$2mDsH4Mh4pID$}_+v%7o_*7nuVb$)To#9tB}@TO$C{yn$cySk7f&K78B z2vjGpfH49Y_-mTkGCD8rYtGk!jwKQ)Bxz_PXqhM;HSY)I+VQwL)9inwmc*rhq|>6* z9;=IuIEM}%otRUMnno+@$+fr>4Ypo+a_$7-DSb9%89^TB{9U}B8dYZHCPrbXOpTj< zS+2%ot(_xDsx3Y!^}Z7nDw|e7M?d!tFTeHW>Bvd_QUI4%iPosis9O_B_f=8h+)cBs zT5cPL?upnQl)t(1|IK#3wA?8&u^3>cXt7ag;r*M>MO8PbDgkjuAcg*VAMxnx)asY0 zRO97KD;&jmTQht0xI3A$Ee8TLvuu&X=JAk2f<4Ne8JyXSPlIjo-#URWOF)HR%yIX9 zyg~0uk2=NUwP61bTkM|m=dOk0j6)AWO+eM|w;+{xi&XiNC)b55Wo4Uv6f0YHDl z?nhKx<=g3$Z5pvJ#CvvcdfyyB&j7M~g22EfvrPzkjI-mDJs(LIhUc7%bPoDutwMkbN8eaZzzpW(H#j0fKFG$v#{H-b?4 zuJj9HxX$3*ZD1yu%F$HUDXZOWMGGBLHo{rXBguqO6JH0!0ZJ>AJ6){BKXbvy)+d8D z_!mB&*|)6(3UX5A+x!_^Cl1+3|LyN0kh;7t%Yl#SLz<)wlUT?*Qq3Kxy6EfqB&_Ka zd@Iq>5HN;{sUKQpawpOx_{eemC1LlmF7m(qv%qxGtir_CYsTmf!_(Kj=t8_nhbRl@ z7*KmGRSCgob%lmJ4b_h59`Q4%C#D5H_ni#>zA!~0k&@m(*>9d|~W!jV1c*?-CA+a~jLK(F3W~ zl#V(00AHx>z-WGsdYwK!Yoq6kXpD2L1KhVQi)!DYQA=6|ox!waoEY@#`$ZgnNbZS~ z{FBN4YvwO%YPN{SWP~MKbS_7{@0pa3>5&~zI<7m?zL70Ie{f9taA3i#sXEZd;OKEONPg7s^jf>B*+sbR|l=2g$Md|?eD`oS_0@Vo%{*ih7hcdg=;cqb&XomOlFJo}u zvuU3(eatG9Mwx+KZ_Sa(I?V=%<@xA-ER-L&Zv}>tM32N-h9Dm43IPb z=1Xl9)2U27PzviyJjk?!9z_c-wxQ@5UDf*BY140!)b&GVXE|H!wlg2h>Lx$Sh;NSA z0-X{_g#~2$oU^465VK5TgV-XNMIiPat|n<2S>?@gB^KWC`R2u9drZJS)LkD`O{ ze}LW(72z2qC^prc+!5?fA-T4bV9XfX(L%H3++AcBK$*O#;BmuO{i2gJo2}yHi9e|S z+KaaIB3_jL`~vFgy7*L^t3JzcO<%t+3tUmBa*~%{*bA=m`+A?sTeQ;B%`O*z0ds%K z*h@w9U7M8FOa}T?H$GjAm~L3(m|Xo`)`1Ij?bdR!UQ>0=smJ9|@sBWF_;E85bs!@d zv2uBL*VvPmI!W5L>nH;Z$2~#3={D+ zBP9}1_otvu^$zy;6Q-{1Y25Oj!4s*l|qa?*)^UggqQB!mp74#KPyh^E=RQvtJZ<*qF$3XOBw^8HY6JCLN2%anDz{3X3e1YhraLZOe2P zJ9R+|f>y)zJ~*Fl(xxuY7{p1HMgklj-O<`V^xa} z7iLW66dYv+s5Ql?l@4y%{3UT?(OfnS{Osqpz&63}2G!N@7c#11h`$YK4RKPr>}I(F zcq2M^1A%F1<kjP_~etX~Tp8M>Psm9Oczo4wfj)UU@?9(Wk*Zo!uD|M{K8!Pxo=;q91Qc85AbiF-& zY^Br>Yl>ojtcr}1ch3=YIjBVZP-!6rc!7A8$(Q~dWPu!74Cwa!e|*>{dU5(2k1Jx6 z=8p+!6h)2`N>bDbkY%6aRK31Nxm*}&d=1Fm`<3x#k=ICkzG|Q@_G23 zci7{>FI0=a1Qxs-Z?8gT5fj%?O`w;|hW*L&{PnXvL*m66(x@Fs<_1wHDM#gJL?2Xr zqe#{9q(Jbc>YW5@G*M&BbYrHvQJ}OFh7ai1|KeA>XGK|FLlLqx;L9cobfZ1ZD{n7TC+wi0Az?CNTc6IB`6KC(= zOFef28@lG4Pn&#oE@g1hEyQf(!1e{>0A1{>MOej0&ywDFLJWE5W}-GN{sL`re$0BI zQJo)BRl-$55Jgd&uTy zzQ}xuo2y~mwq;=&TQo#Q?0L0+Q&GME5U+K&B}$WNO5&s8c2}Z%7k+~*-0>Q~>Di5G z&okyp+Vzt_DiJdwld5q)$82(bOsGA*)&P4H;vJI>Q`}|exL zOGUlDJ9UTCQz0{h%S)};?ygx==_K*kZ&>WW2br1OJUV06r(LTL?SKTJ8Q_%UUdG@- z8m0tKp@)KBCgXfo7E^Z{DbbOd^tJ-q2DYPqo$TQ;?;IqfPBDYDuaZCtnd+MQ1+e!8 z5d}J?aXy5AjE)gMi@crsq1^nf12vQfd$@vTzqan_2Vwza(nc%`$#OJ&5^B;!$rAn#tdUbFW4K86R&UzsQGJIXyS3d-CNV%8FM1 zl|HC-aHfCIan|KSWPt=1&-|I(fz-YK3N`?U~Q`_O1ngK-7G38S8oL#WGJR;w3E!8-jWyp`fGU^?R{wO$k2dMwvK3 z^4k#3cpJkN`MRGmBrJKTq^xisWNeAC;tC}>vuGFQYqz9&iw&xx+qv}w+7g)xzlsem z`&B-=+EUX{lVn}1>JjNadm7d{tmEsJf6N`>{0+KqzXv_tm4l8uC8DOcYyxXBP>1&o zUu>#VUo1N|uxl`AjzlCkS}dK0i!=mMZZUpp2`=LkUQbHg<`KVl%{6%zQKK0!iNsf- zWeP&1wdw)KiO~;CywP5ZFHO>)ymL`~G~_#8@}-2aERptfyT(H9j~=diO;sEGedCK`VET10U^3UY~B%EV%zOa#gj5 zS)kj(*t31{k%?EoBDm)R*f%VzKl8T4)IxWyNSB`+ac+;V$eqfae9FmW>?^f{TDCmS z*6T1EcUy=L%$0G7;3{J)|Nl#q*}-G3+=P>eX2E9_>aY6aG72p3#|8kvmjQ~7p{`XV zYNl`X&Y4!u9_Sc(IqFBQi0n0<`~m40pMk`FG}cT$n$4JxwHv`VhIDhbT(6LQ!rh8Pv^_9c(&R4gjmdNPFuVkKf63Q~3kY8Ja;%2PxHmmp zSH3+VJN?9Iirszbijv5U#yW-&yAHZZI~VwB)YgPdXRiww5)nBi$Z$<(13{3~Ia z-8gXua#XV~(FJmuoXi|49YEm2F@FVtnPdS?g-%0WY%i57WSo!6d|!-QT~(X!Xj(jX z#4|pgZ$s=kmQ0Eiq_tc!Yie=j2hrXNRftji;I(gTLFuKgGogNs-Ig?Dfcry|bbnytGU@-lz8RY@^!^9J8jU7vBwf67VH<%@pq^ zn55z=jNI?#-E*{{TG8+;DyTektf<54zJ;*0(j970&cJVr=_E|-UDRE^3S^9338)oxsSt$8B&`xm_q4cD%0;Hwk97!e^RP)JPH!*J_&g%^bC4DR$vL&877z&%1OyZWBuNI5 zoFxlLkkn*ovczs;15Nw3-#OnoXU@#L-?{hB%$sxHv}|ODu3f8YRn=On*7~n{$7anX z8L4|)=ar#ABJ9)?J}Z-K_zFS%STWHo69z&UAc?$N&Zc-P2gJns;`4yhn*QTXbS|$H zV18sRP9ZU68#q@ff!sM5b#3WUzVqfH``A(KmeFe2Pmp(i3sHhF3H+eTlqJ8vVn1k( z6gsDq829BTXt_EI%`x&YO~|&>=;8T=?oL$V#jqOQ8gF2>EF4nZ>}vFRtVz^$ZP0ms zV)<&Wt>vIRhVkoDx{Zu0BbP!^=@P$zTx!D%zV2fCAwzdDVkmx=ALpZ=5yA(3w?LnRo`u1^_BxFAi`;_I)YXvr^X9px!KSZPWX&pJ2uZ67#WSxc$3JAs$d!&& z$tOn;J$f@MLbo~WI_L7^3_5PUlA2CVyTx5(=s1o@k6m6=e#aHW(m1h4Ady<#@tbk1 zdWidJdJm?EjR=q*W|oD|)-QCMRn#k9{WdD(8W1(KxNvsS%#dEe$ zb+N#x?z#%mNpydkQI=rsN!&9}>6n2dP~PyarrbFOZYn8VV_UX&WhbbKcfL7r0rk-% zhNj{=4gn4q%Bo$S0xmWn6b9PiSC)>E=sas){S>Fw%n$+-(ZnlkP^oAxY8UmSUD<2i zS>Gedzhz23V~RIrSb#jg3O7{fC_M%uP+Ab}A1<fYlEy8n)IieJP&9x(u=j0;$FbI<{`#H+{WG%_Oe^HR>6&R zJT-wqNo8!!(m`##I|B%TcgP&6a~rx=p{8x?pCCJ&#!T%wSYamGY7mNhB!RLGJ<@Ctk(fOTan`nOu&2twwFvimvlvx_umNRwQ1 z_{Y8WlY~vfWJBpu@cCWdnIy?m-}kRI9R#FbhlXV*I@)4)`*X9T3N18pPhe=8bw7W2 zE$UHI%~1Z$YE-UIyv>Ux)nM7gu{a9_wxi7qdgOMKMs{1_kCJY(JLGj8oK!_BrEb?P zcrk}(0n?6Hf$RG>qGwCL+};;??*(KWDbB`vqWoLQuXqi!<1 zHPQ_IUDi0&dl6GfpL+VhkZR}Br~4;{e7*rZ%jU5=nm@~dtE{C zapsRR*EGEFG!2;8@-pTNzd<2RHPt8;YX+IG>kv_h6GXFF1}S((9VJV$6r%`44u&{P zi=Ce)n1+*o2hc$+?zkz#x0IM1ZWo4om=Df*ecuTTDVfbD-xN-QeQY?YSg8$$S26Mor4G25$+zefim?iGwO$q8&O&;%W!cg1lUc{) z&T-|BBJ){6jB<`S*bY>)q6IpzB|XbDGA|0npwg^IN*8X(?n~Fqs2rN3?qQ_syp`RW z(Jf}h-&d;IHIu$9Uwc65(I<8 zO_$F+9LEKh;D;L=?veD|x}pmVWz35U;Q&mCeQJqx*QeS9|4PBfs^#@=mx6R1W78iL z7-(!xpKcBoww*g@2wg=ah{&1}2Kb}2yEW=`Eue#ps8 z@ToUW0LZ<|H0~NCWXCjK{V7m<;%eo?HQwnU1d4}ek1FJI5MKp`CpJI|C8>5h{QS|p zjBqQCSOW0H`X~}+|6OBFSpso$>O~&EcG1XqU;kQywCf8d#$g=glZ3KcF2VIFavrn6 z*vm$GMVsOcnwfIPS$8@d$#;FNMuFI2!}$9gMbGJ!L9AiVsJnK+UHBVFXUoy5)#l;S z_TJUNY{?0gy+%Rm+R;1@y@%H$Tyo#&jnDoln5PfXU-qebAkXrt5u371j1ey-Qbe88 z&sYK5?E7P(V|Y#;G;8t0<5w|hUygTkR%0<_$EU`+W)2J2gq)XaYtT=VXhjMhJgAQ* zA^JcxaAu@eyipq@jAs6Ec1Sb1DM7RAr9A)XE0xh}O%?d6}A&1gKr4a{9qN>d!oyHDQSB~>@VIw^EpwI=&!ADAEORn@h%HRrM&PKlF%LtP+YQAo;bR8z`+uc zBGs+JxahS3D$t)`)K5$B)eyM5=kb32#%RbZL;J>J)1D6+_>WpATKnZZ7wMPoYB(WA zPw;&Lxfq}P~WoK$UACW5v1Z4Ohw^LSGdCy{JZe0-uhq zZ37@83Q9i)X64-*kWG~G;j)zi$F*0>2BPvYt}nPpXLBWT1uL%g<>u4`O2>8A#Rynn zBXjLV?DkMv)sMbp{AQG4H+heNq`qx=)Aj)1Skhj zVg{p<6_$8$cRu0gdKKh4HvCa_xaMf`$^BXio}}Z5WfMrt_9yuT&7|TE<&WHj1H6rm zbIyowy-&C=OS^|Uo0txrRZxcu-okTZ+hjG0?+s&vx@sn8T5;9vN6?5~9N6Jl#U_Sv zHq3yL3rHiCJYCz_ZwBAlX=2P%y6iwhbIXe0-UjF(D9L|GIHHujLQ z^-YZmURB_HVYp(OpyG5==A=LFu%qIfl0CdY309BtSn%CElI;iNBHSA-A_TGrKc;>p z=cpa0J|ZkemXs=EXZqA&^M3SFlTqiHZKvy%EkEUaPgI)f$5B{-BkP!%`3jpSPeHjR zI&eL*nz#H~*O^#eh#QCTstNJ)bvJfV{~+)2$d5@(LHhy4`l-8~s7(pO{05{rQmbNh zfvU+F)u^GUj{!$kbBOhyl9IB=chXQrk?P7&r9UsivtU|+Z846ICU%8Qyk-h~l!O!3 z-A^T_uXASYSS(zG<^bXxe+SSSqd0+(VcBbPtzE3Hx=ka_h>EAL=vN}9d;`+26>RvE zPcxK=Y1!XQZE|kd|88d`D9@2u8D&3p9OT!m+1NdO=*JW4dZh236nZ;zPv)}lrjjL& z_B*pGTB&I?^teuDN&Z#gF<~}w)D)yDymkr#Pv6X%yGs` zT$=vkaYs_DA18;ND9#18tNdPOIdN3AqK0Y{!@>=zi zc5Y1$6@x`EC9Oy70=S|Z#f7ueEav7KysEDcdz=n-rCEr~T`HgvF7kqK1)PqJjlKIC z!IdhHwiNfR-qKe>GM)2;7@um-k9N+bKm6VU(2h3b8y>3Q&{20*kv+}Kj``b2S#Q+B zmCXr5v{{?*fFnzhM#8SqxzN41X8Kg!)tZ8hifxV}vr;t## z(IIk=8RPfED=tEwc09+hF`2~U*qw013C#Wc?AoaTgbn^tIO3Q-2!bw6+CEToOVGIc zddFDbws43Qpd*MwkvBHPj~0 z5DR$B1k9V3h;)aqC1Jj-Z>WiNFF4|%<6Z*AFVGX|j`;&FE2W()y{k!5lEgkow0rcX z<^kGR=lo5kyH5nh5{Hag>z}VK9s(Xb@z(2j_7hnxbs>QG00qF zNgVQkrhDq-G2Gv|WxXIFI`jQe(8nVOb&t=kNqLS!cpt#h2b(&8qRWk>0Nu9`k!Ooj zY|8A;5UfTUCf=Zrzn!M{4*G%`g@e9hOR7LG-$%+ypx5^M9@@Mzro8)F+1ijK;`ELJ zXTedKOq-u;CzMRlLlQuilKS%YNh2D-f4gxNUYp0K&1pL zU=VIG%3d*kGs^f$2%kYx@NayBOMqkArtpiin^_;=YztcBkN0m)s4?cump(U+?@NH1 zE<3AGOR9Z5O))#PHPtj&zMEbT)4J=?TG^x%BVqBD*T5Nmw1@R;$>X!QesaA^SCz*0@u_1RCCqD zxHm0Qw(C)-n;aSO;ZEvil5wDq=bB+9poGmyCGlNoiqzD?-t`BVrD-FgS{TALUsAk! zn{(ByL#os1JguDbJg3!RZp;>&gs}9ql@HB&CP7oB5gDgUj6lp+$@9Shw@q_r86z|< zB6Z^J`4W{I7vtdU;h;*8l-PY?M(j!_yDPz0SMViRRaiu(xm7-nJYr~CCx3g)EUL1x z()6s9PD|2S0J-{cZ*1w}IA>U76w#Zj*Ip1MZpuu!wh7TywUQ`$ zNFR(ukNqfu2-c#{d*|EQcWndXf*=3Jv%%o%# zva0KVG2VL+T?1r0T=B%}>sX9Z@ZKy-^=q_$`p9S-Ba)^$AXa_U!1`}Y!bp3J4jrD& zvF!`Hnds%SXd2`Bn}Fpd5M$OcJ@8A!9})Vih+nWl=`}Aiy6X)C!~k&-AiF#LcKpZ1 z#>kz-FGcC92ii#M^3_5SKs}#!Sr}3rBsf~r6k2mlMk;_DX=fIAC+l! zBw`o7_=GDXsM3A4BIBm=Yt!tfHQnGmY@Osk3^;YgZcrJX&Wvv$lMB|pR>}0 zKjV25&a=+4JY9u@6k&@ET2nQAAB3unK0q`m-a0kemtH*V_6vUG?LN_|E+&WVn&O@l zu21)}Q|g#~lQee@{dxe26eySvxY6W#HSM90l6oW8<=>nXaYa(H@p0XsOXT^C&9Ksx zLWcv2=gvYT4b!Alj5RyNklhUG-zH9a!hxQDaaFaPE9q&1*ZG~!JEl7CiFTqVg3|0U zhH~Ol__?f#{jpQM!UHfXGg&lV45_4-%qkrjppiS*=nP~lag^$A)NXB0M((u~>-jJ4 zhCTxv1&I}03vWbi+B5k?9L4$Erq22TN%v?aaJG~#f8`SGcpUs}HN5ABuSn1OBZ&?K zBMct0r9V>LFInmxC|1*V1Il?hzK4gHX49dyU5j!v1CrUPQEWy^zq|J>{3PleDKyll zDIHrUmae8QQdU%zClGMdlF6y=9-V$&!ve@Ml2k1Mwd=KE5|4Ccpk%3iXJhrelZxPY zWunA1yz}eQgE)m@LS7Jo2q5SMPMmbMk|Ww-sQk}SN>Tef*UY}o5ykdQhA4SVyG8{( z%QNY*EWq9|JAbRsUjK5DzmA2_jlmXxyOO?Ra2xZ2*6fw9#!OJLK7WN*70zOBJ+xpt3$0PMVM;t<$_B~3kqLxMWwaB{D92T;;{E+<>wTlx4wegqf@8ktzQ_7r(^7(B8z9G*b` zD8Bv+P1xY_bLnMFG32@|v}A76kG>VPW$EkvQLX;NAjRbnk*(oaskLhF#~7XQ0P#`B zsT?s)M`|HR7eeL{D>7nb{K@zAKtg8wqZ@JjG9mZbls!XaY@6NBoPUBk^T&izv`6mJ zR^H)#m*X>An4x+)Bzas4I1q21O;k90iZ^Dbb2<`ScD{M+9;@~vHn2FSToiDBexIGT z*Shp>!^7WE^NxMsLaL+|19sP0*dn~+>{9YsSuOvb$lhdpY`xXtdJWj`AnsL4#;y91 zss*fCRkQTqoJ(6w>FVsvCpc7OnQj7J`~Z0fiC91=ll^!e!ssa%2%K->INr{$pQq`*T3zkD6*SSh@vJVz zFxU3_fd59q$lRXm*blt;Pf+jemNP(}&WftE5pM-|WK!3Lm6nvb1`Uu}H*)c6ypIo& z8k7M%b7{TIE%Vet&kWv@8=AbjQgUKL$#HlW1T5`oa^d&g~ zBa0DXF#{^Q%2};3Abw_hRq#PZp=4>0)4HsbKZfwp6Jq4y06pd1^?`)B$-2d5h}2%} zxZWeo5iWx}vjczS`%h4{@J`R(YJx`m1OK>v75VB7?-lSv3{QxxZ;3;La@6$1yCM-E z<2>?>&UJ9%V&V*gn6a;BRqiTns;N*S09L?2>0g zim}R5I66A!ar8dboxofoZmi(+WbtB47Z?pN$}Ou$HLCzNh1~Y9xyMcc`3GHI`kl&e zHu^P$y=qLiunhNK6x}cJMmp|QtYzHIfUsc8+s+f$wo14v+QAlxbF|IUHswplV!7% zEpp*^b7p-Lu&DZRoLKBkTPyj}m>7qZp>p&4-~`{m??>GWgGKi9cQCaPrClfC0V1|+ zsVk?t7PFS`sTQpf!rcvfOmN?G-?o$np<=<`F#L)cv~=tR^0Nfy(3fIRR(omI*64gqU3@D?Gt9C& zcKrl7sV>(^@LQ`6^_AD}gKHe$VoWAdmQ-SxJMypJ|Hdc|xS$Ep>`v{)jY_UHgHaM; z)tP{N#+hiQ?^@j#$J+jR$;G(R87$Dd;jU{Z&pa*^bZaYhuB+hDowZpmy=PIrki?k! zuN!_*8}L-O&hdg&$0V~#te1%Kv%WCNyQ6DC#er%;>)VLQF`)^F#&>Symck*xRyg*5!YahJkjJ^dx{`{OQmi}P zhYl&a6_~kkHB8f(?`Az)jfGkH*bt`d6^5egEP&qkOf#Oa>-IbAmjSogts2>+iV;=h zcd$^USSQg}RfdN=mIIDv@cbU>^lu`jaIw4C{$N35txQPSGj>ZYtx^q4T1RSrB zr;km?OXqbgyM_D~7&wFhee;Alzoz>a{883!@Z4jmPq z9fBo#FGIVX+8dnQnw*S~V6oaoYRb(9t=IsQf`u8 z5Q&mHd)(&LpXL^?vBozWq$$46xto#Q$ZrrXr<_|I0!t3(;?qhylv*v~zYKOT~Cjg#gV0j8|TSDIC+ z-@AhH1mdFT_25cXZ>ySB&b@bn`ULTVZY*W97cz$fJ_xcynR044TX(-U$*o9xi#tJU z%jvDp%X}t~OHGFEGBCS4HD7-7;9Gd_C3#O2J2BLu#rO!GA*VcKP#HUFIGVe^W<019 z$H|!(tFY_fE^_fLiP>X*cM$(Dd$>fl)i2#_e!|G`X!A%WY9B(W#FAMBjxhOdl2bGL zB05Pj+B%3Bse{JITBrEc;%*AQBwXIE6Un&a8IxWS+ceG!?(i$k@0#;8%b2|N&eP>8 zUsIP%TyOX6O5o_2p}xMIzp)h0?xFuqMV{f7zZ7rvp0`CFbovHe6Zl#ZNy5Hd{^-lH z#4h66_KSOo30^gTwprt?vV1eR5FXb~*rQx~u7sS{)kqtc*QU}m4xVpdp5xnV;=Gk~ zgQiz3bEpDor@M;84oQ|^L0R^w+hx(O zCZy1G3DmcFQS_`~26H|7d%}cFTq?GYkjv(C&+rLnW_zueE9GV_grTa`N8s_aIeoX( z%>!CzCrN;?Bi7=)=?spN*`(Y&XQM~4-hOZRx_IDq3o65i9&014dw?;ap=!jj%oqH} z24RpAi#+M@1eZRnqH|IwIN<}Z`-bQWWIDG%YpiAF-Q#JD&k~PyBDVWYfxYM^v7!yr^{8874=pbn)yi96<}#dbe7_#zKIToB($2;_?zI;=&ojQe z^TIE1bBQdVOJ-325X_miDe$@4SZc!Ip>grEZ4cc%F>?i2mS}WkB0_fsd^AH@N7CHw{gNT3~$^fF& zb2U8O4}G1ZspB|25oDjbNU^CEFk#sK-D`?B*{)zN=3=^)%yd)A%gGMMHV-ycie8LMNF=yMQPD3Ho*b``hPqeu79_JB80!0S)O3;2S`GSi~RH zC=W1dHw)0?3V` zSosoH>!hEchSslIB${Tm|7HckSwds z+!6I5pz<%!`ZF4}`6rpD8IFHnTPW%}HVi;AZ-QcpGf@^vN?J(UX($#*!czY4wEEw7 zuF4-@kT0YHz(>FQLvMlng(29_a%K7fYg|kvZypMif|OFGI{?*MxFNB>YlUB)U4I=kYMV9jUC>z?Q_7#gdpw|{6FOUyS-zhfS&0Zb{yT(f!7ceersg&v?CMfVUVQ?{ZJ0e zE|NT}Xih)^BR>+(?=ja5ZTb(Iwf^aQxKbCb6^SsxkcIy-V+M z;n%yT<nIXpd`pt3NS4C40UEMkn=#bU%PwNNkQUU^~GT-CEUQ>-~ z{J&m3|9;-n`(wF<{Fe{B;2>srb-=ypNsKjQIy%GT{WPJ^G6M)Lc}Q3M_X`%VyynFf z3rF(&1i6&&Uv1Ni9ry<)%KSejO6Y&}$_5`mcEmA#tiNcqUwWk`7L#G}4z<5u*Da|_ zy{cJI;3axua@(tm~pP%F;_ew2E{v)Xb1q|v;T%9 z_4mB+@c*->`ri`*R{Q`Aks$_bNT{IJ>o$miD9_KCP77jCW+s3LL%eRu(~x&;{0WNu2c%N{i$7$L@PCd~4bcfWs8}vh zz_Z5#OkBO#5#sCi3ytIGB&;Vpv25y;MI_h>hk<@}4Y0ly2n>~9WcN!>!iyV-1n z>AUX}k8I=YGAV&Dt4ELKjj^BSDf&Aamb5CLg$=50c8q1J1L1}YFk>Qp`+JRSZ)KZ&OLh;umx&?jHO5lchwK4H@|$wq^~ zKS4|bq6&aaa6!47Hwuh%SFst_^srAJJ40MGTAmgiN_yWMO#4LCfY=2G;R3zpnMB8d ze?S|w{X-}a{wGwp_|0IH@H3gW76>LKF7?HRz?e&`L!6T3O4;EtX+M6~nSfE|`@3>Y z&YN9N^&vZo7xYhl5dEAYC%192_Vn_wv2_0Rm+KP;a!FD4+w8yoU}t9+krb1Zl={mZ z@ju^@m1P(H&Bn#n%Z^=A0=TC8>seuCdnYd&58!_%OD~%THde0IHstd1qrEGz0ag2T^0-@a*s>&D(}wzEE{gsme_nBCxKS9<_IX-m*EqYdA%Up&jCtDqr^3%2 z2Asq8)xo(mp{oT3RT=7(x`iv`%Pp^FvM%G9mTMaCLup1zuRUQjUc{zzR}??9LNr@Gdx@Ytvs_f?2` zuX5_(`_FFVxz=$LRmtRPreEu|Z&C1|-W_gjqE=Tir&cgS5&05{eEBW@S+*0*A=A!q zQ_m4fuBDvX_rx{m^Qrr+(pm_A#ZU2|p}_e2eTvxF@^o_-(4Y-yp)Q${$N{N>y8j3W0d&XeXtl@T{u#KN?CcDpCE z%;~ex{{}Do>fJx{!d;QSGJ@D&7~%JxSAu(~=y?IX&Mqta>%uQ?u)GbNunQ|Hu#2z@ zTUi3X0bT%Z{OPx_vDOm@8!NBhpMgtCu>(H!Y+FE4_5nC z{!<|dq1)`DziRS3`~B&fC~)oflK%Qtk=wvENy$H+1Ktn({K4zLiu^_2ud3=lbF*O= z*0!{@VdrKS5&cyHaOPnHR7K>EZwqVKSle6PcZIW?0heyGOWe85e)qN*`=j5VRs^aI zJnqRZ`D>*7X;i3qxO%(&4K06q%kNkJsG}b6ZVyWrPq$w$vwHT&Wi@s$4{w`4&J=;C z9@zNUTiNKU-2Zj)&kd<-`yiMb4UCt zQCQFWiP!Iqpymv;!ta-i?5%-Oe&_aG$=^>^ZR~CBfc6j(yYu_GqN|guhn}0I70`13 zqISY+KvQ_Qx&E39{z8ZFeS0rYZ5t0oS7$d@mtPJ0r&9lzIUXqL|Eqc9=j6{t&=qxM zHDwS1AqYeO`~&@*0V#qm5tCdZA-;5pA4E(;a`lFY!li3EmS7Hd0Oue+id7K2TCtQB_md(>E|QGBz=_vbK3@YiIA^>E-R?3xDPp`XcOQctm7W zLgJgG>nH+9iL!N&wkNG0MPlz=TC(F9bGg4U4+EMM8x1)OIH9_mExT{lbFB|50Gq|Iy{>jX;;X=IsQ}HfLI)XSqGoL!WB8Z{42*O{&y7#2{YnaIXK)(8Vt#HQF6XnklyfF~ba)o+T?X?d*5>3ExSRc?c*;s02dYN}ll z?xCi@5_R@wZ5f`G)GBi&WlYoBeK(Wry+!Tv1zAX?Z1>-FeEw(Gi;x+LJqW$%!W)Pw z+5$6y8=|hY?_<{Uf44vX-}?GL{~m#sDllwl&obAI`2RX{>G?-G!F_jZir^^<=%*>g zSS!P((GljMn_JsM0E9U%H=~Zk9oQc(g-rPZ_;8|FuXU3~|7Iht2LER^uUF?tFGnLT z2>?5W04U>nI07YrbzEX))e9J%uDmBQp?^9GG>i`Hb`TKli66r3=4JI^U+GuPhsxPR zB!Dl_BSHEv1Ji-^6b#0Uc8S8FD4+VGDUFqdh)()Jk)#A=a?&9;GS~JNzl(SB{Ma~M z>^u6HC1;ld?W(cI@f>C;vsZ1H+lUWQ##XcbMr!9Sj(Ed3)B<%kZb)>#@53Rf_|2fa z1^j6_QS+!6b=bTVdf;%TY4v5lkwWxUhD+8^Wva|DP*C)D9aD29Uq{M;#z^*e^s2L7 zHk|Bu<-8AsEn?U$v5j}g63Qt(aeKu~D$uFZMQk9!pVKNX1nZxL7o77;wx*{Fqc%TnYchVIQckT@L?41BIY_?|#eG{?~A$tDR_h#VNrvPe${pB;1stt)M z`#$NOk{gUrRuPEzgSI26V2yj}LSZGH8NOZTpS9|znK5Of`pw}Qqqp{U)0~@2gk@tk zit-|HVW0pjOkP~4@bpupLi9VKth(BfeHnI{JZP{zlz*qyIg^TSq)BRt8UAIT%aKey z4rSQ_{X&O0->es&((QAl!`Y7qXazK8OiS&tHZ0k{Ex2IP>T7w8#h~`EYWQpLsJ3eX zKU`e0K%Om}O$56>NjN(qiDL&0HI54gu2S)xbAMc#-#_SPC8>pT%fdO139Kwk#&yaF z%5;z`U; zw#`sOpWvJZ$h_Yk7S27>Nu1{mW`v-{fmxKGjN*6{Iep&kCmg=`q~FrvsWKzOR#IgGtN~f*BZV_P`oN6du%p#nVxg3+yRuRS%E#kFwJ@MmRCEPk+r~Q=O{=g zeWs)IlMW?0=X1sm5pfXe#Xz+qN(X<*Am0R;?}1FgV^vPZ!JFz!EfYURqCjZa^H#QO zO!Jr@b!7I-A=u-9ciE>;8hRd+ox)g_v)a0)jhc-BC$p-(FrzO}T0!qts<;ZJf+uG* zSH8Sl5@$Y+?T}&K?5PfnTWod?P(!gYo8G&=a~y9@2WkKIA?a5#k9#aB|8jC%&zy?u z@e>A01!Md5kx$tfOOq+!Xq&pg&$uG!JHUbbP~u;HV`XS+0cDC)#jxye>M|S(-OYJK z>?HebYKGwuY~Q;LW_kads$Gj2XNm3bmqI&TH?@e3s|t)#AmlkmQicq~W&vxdmw}L3 zJAxI*=yLX9?5OcAhwi>uO|DBw@LZ0d+S!g|d8OBY{HXfq&bHT#U8&Q~unMgRuYnTl zbGoO`W;)wKAtI??wLt7lmzM_{YYfv|wZwvqdTLf3 zK%2i{>je5*WO3#-Slc`Wx)PCjN92bze_tMJ2gy6~Qr&Q(==TS0tN4xjy5#)sdL4t<_`FSP*-q>^}F~>kHovP9N(`4Die ze{4|ZG#R3J!L;W%FO8i9DnIcvscCwI{Xh@zI zzIL!g{rtv+*h9P0Jzd|LHxEcv1VZbGMrFboWkW5(b!OTq8)$2zBwtr}6l5tp@z7%J zT`R=CGOQi0VpTD0lB}tyO<2?NRua5-vh-XQxg6ddD1oY?uyVY*$#w(a^BMZ~`}sM2 zDw2mfy*)0~i>c0gJH$IE)b|dtDFG6mmsY41Wx?e zIyiXjf)BIpx`Ch#v+GT3~5H$8KyOAa)XULomQG9uQPIN34bWT+v>%8<3N(wj9 zMOJgi?>Id7t$BT__ zP0MGN|F|w~QQ?$gcwL~z*!(qvHQVeFXc+tznaP0X$ElA!twPhM3B`PnoUtN}A7jg~ z-o2ea>zsvW2zXYn=P6!WNERnU)i4wOsbdF{9_X9%!;tA#I_1lFTau(VoMe|tX^ha2 z!Lng+2L|^LTaC`Qcsbft?(a!+8dFp7p#M&6-c3em#1n!|%D`vny>2E%ERM&f+}dACW5?Tzwc|-X@XUQ#=7iF@pOE3y-+`Ss~apkjo1)<`8j+vIZomNKq zCaR>vqkzD305#<69IEvUgScR@BPzpIVwU!R(5AR7tmVX3myw~iny-hpWUXzCCgI^7 zmUV_NUl-ToMCIwQ=k6|IiNaBrFl)~Eu_<=QQO~!_(773`QBF`FjDnt773aOA8ZfgJ z->4C5naG3~vdUa?MIEx7Fq}PoE_<-ZeG*ws{qk5BJ9P_bY+@7Bf}~F3Q+h)C`8Acl zEz7c)?b3Q@GY_ild2K_4ghXXRaiLU|Lx089MH5yU{8WmcD zTKf-e&*)0gv@x^pQx{MHShXOh87zQi+0{5T)4t>H{G>!bMk=gC#Gf&e_&rVcQXq+z z=OQdF1ELt{THxp_b7{>i5H>I^mlG-xJ56F3`Wdgv-)j2(ZtUAc-S-I=gcC8cTZ2^G`~!8&ZKLsw zSgWqH?zE!KW680Sn`$|A!A-TV`G`3)m&}8a@srW1+Z#lvxEUh+L)z9O6c|5X(TE8@ zejX^QC(nrWCfxL!Lfm|q#hApI`0?v&L`lHO1~r51^4C@;>Qg}=$`<(oaxNA~jRr67 zq;%}?%c`lFqq=>>LWq;L#B6UfMq+X-gi}dA!>@>gDO7r8sB;7dxJVBX`VDj)DFtgWYT^ zSnbAkt#)s$4?P9P`f%Z(oW3?V9}9pgBBBChEK4``PirLNBRP3OWav06h_9#=h?T;` z@SUk+NDBrGeT+bIZ1)=967j`%{!i@wPh~IEj>_}?>9;%oS9R?FYjkG1)z+$>a43oc z3oR+JZ&=o%C{XIr65jg>TDfzyX+SsEWaLw6X3m~K_PU3IEjsscT;J=VcdbvfuADZ& z04NRt+^~AeaG{)HOdOW5@E0~@ZqO*8+8tB3HCuD;WNPzSLgaii-y;^tj}BbhO!Bba z=gK!@d{(U-3#*=~EyJxMhL*M%%hr$QkhPECt{vZ7XVrw)V1-kR7hJdvqSA}#yVRco zqFhJS4Nq%*Hy1i8&n66 zMmJu*BYOQn+?wSls7_!THg!C|iCkO=%W92M&8P3&j#qu0H(3t8NDvtIiBmY$9R|P0 ze~0ZW1ptv_7Jwgq&ef*GV`d;`!uQor&{k>resZ(xaTI_t2;_r1JBD2_B&}qATEK-i z!G3}sIV0Xw5gbth(Jc@O{7iBI{xW)J3exmS+b;MR-U~egl@%YW)Y-RCOm@$)H`K)h zrJW$e#d?Bf&Z1OMt(Sk)vss^b%vud|ko*KqC(Ysek|}M_ddj}KrQU)Ei)V}`3b^~B z*kN$lFN>B@IDP~Qeu@otyi^IqS_r~J`b4k4S>c~kO1N*0X1MC6#q!#pW*4yJbY@(_ zjxWQ)Jb1!ojq(Pb**Fjim2TL%uq%8aU12HzsKC%oN_Xhmu@{4ARoX}L%4xqD%rjFxxjsDOOwwrMLLGEol^<4+VeaDv< z@j)D$Y}_NRIEgaN6A9BNTs5O#XVSBH><#6P-#M_PI8^oD0uIwwmw;KVW~$CWhhLGX4y87@v%l zXR*nnA9nBE5rE*HA*9c09nPrxp34JK1TQ}WLCq$kt>_y-08gDO(B;hK0C1BJQmy5C zsi5xsj!Uv}-qR=drFYhAhceq+j;C8f_j7*#x~%Q7YHdR;R?6|XE;q)yF;&$!+9f(Z zL@sj9Vo2#3&yLt~V=EC(Rw!59a@?D*rT21CkX?%Xt>syQ=l=BIYLGon0Xw=lM5M+2 zF|R;uJ`X}^^CZJ5Dv)7?Kl6#gaXC-xMX6K#*HIj&`yJbt8K+Mq&xl>u%@?-E(N-Fm zs?}83vI}${{Fs_7VNMC5=!zDVHtO;469n(rpR#iUkWkF4z z_aK7s{^NASRjiircj_0(lMeKs&7Lhx%ix+fm3LaS2SrCY%JCho``0n97j8h%&2VnH z7q%_iUK=NXar*QlS>$W#qYi<*2EzP)+0ZC->!dIKK3)g_lBNeRL22I*9992Wyj%FQ zc;~pyggrl=1AK2=I}k^Je0+9$7(5E2XkB@SRl&E>XP$8jZ zf#Zde*B*RdA9dqALw3MEhpivmcK6FT#?3VkG;|fjb~IU|cdE zVym6{BDG}=)*zpR9{M+|Z6G0c1k)GS7eT_rws`KuOq?6i-rTl3^OP$?_$TPoqaOTo zJEHZyNw>@$t?N|t8nyT^?m&AOH@+itpBCeL;a>B5E0+F`obk_Un+LYGZ)DO1A(`&Z zvtTQ2mY7+(E^;pW3b3>CyaTm>f~FjG+J zGri-NSQ~GQa0k8knf}BlhZ>1X#u+Q0l$Fh;tqGOg^7GNiYv*zSloL(hWwN8atF!ha zv^91@Io0v+!=K#gOacXbi2VujdoKS9*i0ho{0VX_r$#v8c#`p4bMoZ^LO>P;qB8P zda1Y5qqs9>u!-$kKK8=KqZ(^d+RwU5iZhcR${?%X#OacPAURBMtPG~s2x2=f)}IvI za8YTN@Bnu|8Lv-pI27G-6ANt{Slv3?DY?!_w2es=%-M_}Bbp6<6!OXDa_$vn1=g)K zVUnP}nu!w;b8L^9L{zS*$z;|8s|{-x)iYlCqr=St1M&|fL?Eg$f^}Gx5iTA^hd}-U zBkC-V##7_&PXsYJJ}fqA;N{U9zBKoFsdK_8f+7vi!;_m;+P;f@~qKHWzLD_-I!Z&6r5 z=<*VcHPI{!QFl)Z`elZ@=G4CkUc2eeC3JzbC_-fF#1A-briNuCgOpP z(sH%oO>!SMj!n+RVj9f4wRGw3^`1!fo*}8x{-{gg=!x;w8Y@KUZ;emKxbKzLo<}ro zTga)&^?vEe`;*gyg*PfQI)e%cBoDV!D_~|-A6eab;rrnM4}X_h%x8sO7NVEOMM1Ra-FGOBOGuUBQp4%?DYpnI zu8fBwn`*L®$Xp78Q&=ySmB*;?a1pG|G8Pi?xs^SMDz2J8RB-h0P2*=Fm)SWyrV z0ck>fMd?k7AT1~&0z#yQ9;J5#q?f3O^xg!dgLERjgVKA4NbkKRKp=z=&*MAgotbm? zeD9vU_c`;;_y>gh`6YP@_kFKxUF%wFdAV~@IDOrP*#oZegh-IkhjKoOjjIL|Pl$UN z9sEuT>eWwfFnqygpt=FNmhzz0N5?m#?j5C#2l@HWtCbmidC5|K3CESHrwN`esW8cQ zU*THu7?8u0Y!CU4BPQZgj5Np?$+yS{!ot3Ojzcq-TbN@ze4LLH*BO?>kaUPRxh7aB zbaCsbW_s_-6sXLqXdU~y{a6!#@n92<WNiMC9O+#Te-FQ&FqyPaxHcJJS?|AIs7A-BYVBoR0Oppc~SQxb)P zFh6+dPS8BrEu8#{l3EM&`j8CM)ZljLw;Gz$3CGYz*Cm`0P#d7suF1w@zI>$~?9VH7 zd|^ZOhN1-vc#2#8zDD~D9U=P6juZN58_4NlfxibF86YZo@B;DK>MIynuJ5F7V#5m8 zjwUX&B{AqsmR;i+De${fa;fQKAQ1-QJG=K3&+?t2(IqdW`et+zcrFNv5s5uw8U<56wytf@$;YhyfoENUM=X@-Tk5tMrC;OVPBK#duZN5Hcn#9;)#HNhzqbkVfy_+W%mLyT;Dc7LY3KX#zpG2 z)3kH|eqx9s(ZkOt+Xr**$uT=l3*gIevwG66(9f0=^IIHEmPAN`9t^Zq|FQ~$4zU-+}4 zKF?ha@0tx1@D!_7+PU)?h()~r@6Px5`F+0$Pya&7ob%h98R7qvUHWHx<@mFv{V;Jjrj? zM*YuuJBd?@&(i}ruKeEyOaD&i`$?btA-wQ!no99|@#atZO%+wO2iOH5e#u)2f#qLiF?a&*$)SKKxiF|996#ZWf2`?JJk=OHl4=uBAu) z{i1UJ9=fRCL;n4I&;Qh1FtAI*KSyDLWWu<}b~=A5jgbD_P&UFd=0Wg9kEg;6q_%jy&-`T8C!((&O>Jo!h=i>XjqaPO%lxlyu z7h6y)>o!)6R%rTG=B`fRycl+up#GhR3J0ai#mk~EtltukDVM?X=g{HZk-0Lgts0|6 z8Y}kdJ?zbocGoPTH3oIL(@eVdsaBb@A;tCioTt z4!md<-NCJjScRfoE1E8sSI3Nau)+bD0^9s#?2E3|n;WYHZN)txIoP1C=drGT^QP$f zw59V!??TzL;#seLnr_3V4Q>{4uyK+VZh-XB31= zA!GSnlxY^Vil*&9ba~9t&)lC8x6;DV7?G20{DzH)YW>j8d7RVKVJXGp`-gt$cAfXT z1gTFzWr@ZlS^d>jTKky64Q6I+Z_zjFFpWSm1uYn6|2AznSYDl_I zAWbWGBw&x>0$eMcoOcws4{}Vg31T8WKo_%q$8CSsz=b=pm#=AkFwv*uXZaQw*&sSl zKCLEO1sy`{@W``pF(wsa4E)fD;+uv8Z9NVOZ>^GFE=fi4^;{PQJNHtg2M;Fn96SsZ z{82a*_?w75L&y{;mD@`X5b^)d4*m;z1r+BJE)!i-CPJ`a0~S|emWGAyJGV$_7pd>H z4|>%DebYCZo^Kegc2Xp6y)dX_mrIa)u*m0sFX4fQzKBil+FZEzBPqhCI=I%D9VW=< zUfRpOVu`cfDhD*l%E}NOu5ErduN$|HG-e%Fi|O)WW)R9>Woe2tuy)X~OZTn|bodc; zD9ho3tS^Z5SBuW)U1=BuX!$$5Fxu|0u5#REKUbZ^>eEf1O zin{^o%1bu$&Do|$B&Wm+eucg-Vq;VY?)VxW^P=PC9;c!|Yeh_YRp66MgPaZZurDJT zGX;aa#cRwI*dUirCAyZ&MTKI-8|wt&Eq9yKiY)WEdurUDt2#`C_m*86FT*R8OCEoO z4-n%$-BKKZZkU!0aN(|XQ8Cn!&PfWMYV@m-X=ZM>x`!9F3XIj`&F^r-f3Mo%94~l8 zp0G~P*vs;Q+7r?tN02>443{7MA%s|L1_U19nwGi()U!&4Z!QBxLXf`58c(2AS%d_T z&j(Z!xl@2jX}Mn#b`%yRp2wbE&$8b1kHq_Yh5{)Rh_LCu?I&vbKo$3q+1<+h9IFAa zh{q43?I(AH+=N-_QXIH8PJ_A{IKoa1Pi4Idt>J@!JpCn{a}_awQ)d276qmv`5=CtY zto>D~=(~@9to(Do4vGHx2mh?HwSWA&xQN?oHq05Qk=o3To)LWc3^lKoH7zNpqweR( zcImQ&V)GXk&sKzG%LmYT6J#Zck7V6w zkIjre2oLV$*jTCFztJTsI&Q@_jPL#YLB!w1{n4r?2Wk^CG|D>ic19o5Oc4S3yo)JX zr!;z&lcxTPNOcg#2%~~h@>+(j4yb03C=6%<1jlEgA1sHUa6Pf|Sn6HN>z!;Fi&q+D z48#|~XY|(+cdRS*zG2uv0$x_r7EBrg`LDYkUy>wqncHXhCbv`DUfk{9q*hcuTfLv{ zgTL#vpd>AO>F(q&J*AXQVGniKNWz?6VB8$F!#UzO4 zK`2B`({lexn`@`8d12gf)Vn4*^4ibofn2@f|M)-Zf6tA$v;$t8`NNiAwNV>}xdyL+ z$9U%IiT0Pc-XB996W$oCqs$18_P-Os`0%lHy!AlA7kt1fp#gTxWA={lOK&v1&NF^m zMV4kAr2OB4LpT%uyh+Fyyg9C&0=Vq+Vqi=VhUT#R^LHY-pwmHo{=$dvL}Pp-(20un zQ)a#+xxFIyQ;N*_-D9`CQ+fLzJ3^7;y39YYCy?NL+rMq`+B)y<8Cu+1rT@YP%5t5> z^BI39N<9ak1BxcSFsNRjI3}`$VYc}QudNpE4pn4b;F>~}2HRK*rRItooQAywfZRsP z0g)Y^^gGcO`(KT?n%4^Jqdk~K4%-Befl3Gjxhi-Q27)6JApk{`4ymyOu`f^dU(rir zbi?6?I;bx8LluhcVAwu^6d#sx&=^c$tT9pS*tHJW=%;f61xCUZcFRIw%40lrr@V)x zIkg`?-tdxB!6Mr@5F{uKj@r~#Isj`$6feTB zOR-L`i+xNG@f&AJzAAANnHE?~Kaq<5vZ3^n0n!Sl(b6v{*#KDw-8VOr*6tLG%83Z>Mgg@e5|Pg}bg>G6=Sw(d71T4b(`UI{DOz4d>?t zj(qIy8RR4>X@#E9WKWXfxGO#sy{Z~1N)2W)2^!09Kh;D$ zyQoae8n{llv3^bqtyJ=)`aQ+0`~eg3Y9KCfRD;1bvqCOJnLINZsx~Uc;A-(oiQX)U zc(O>^j4dy;TR#M7QNwhB=6KnC2%$2PyoJkCA7#&xO9l3j2;kS>>1Lpft0>R5prjXO ztV(4Lo=Rz|vQb-@iL!0Aw#lvr&wy{9T5*hJLl(?TL1zM5HWkPa&AXDUf#~>#y9TyW z%5ip;rp`-Ts z*7e&GbH^=T23YeNCJRn83fFNx%x>Co!v>SHkm1dRPhEI{>rU(X^Hh2E6OwNr2sM=fZ}U~_vySu`|}mwHuYf@GzTrn7(XLjR6U82-{I9Q%|PApDq%jW(=0 zQm9M@oe$%V!Fyt3`u=d^ZT2Ds3OZgm+!{W2v4Y#_gtUalUu+QIa>wR z59#UpL|!iJ_GmQy^#gk1TY(s5Kx_Ud5k+p!#yxlIi@KZs^T968t)i`+O{RfF-S;+uScb9>U;Yv*3&|r{2_;KlLYPFHc0WV_E@*Qkj65ZL^)@&K!}`q$41Vl zy1)pbclbckYxftbRNgd>&z3p^}nI<(s#HcjA3W3#51}fhr zBf&>YW8aDVoK8Sjbrq!&hJ@@J+GY~n+AQ;4a1DhC%?%w;a}6h!87B(u{DyEffD+lv zd%qg7d;?{{t>k-7byDzD=wD-61SwDz40z_Z+<@BmaRf!}d9c5u31}C@>Y}b9>n=C! zORYhstMz&4roe`Xige1h2pcMMLSZYXNzJnuYJ%hHEr$i^=-1MGu1H=wG};UN8n;Nc zvpa3!JPDt0?se>@e=G^nOqLDJDN3``jMzGWhU(xAQ(m5E#$BJqnXZBhopjh*rb$(u zLR~!W>z37n#a^}!B?m<4-f0`u8_Ld(ZH$;2eEME%HN@C=bnv|lM~4t@O#&$3{Cff~ zBoqqllI-Ue5*x9&#M4896PY5=ArYhoZDv{_HelJXG=hj5r~vm?d$lK36z&E)%E5oz%G>jU65Qh=G56M*}=(td#) zvr_{8N?GGjLu^jL>0;^aZ2A{PNKGSn6HltkpwKM-A_SEOojHdp--t<+DbYI$1alLt z0@rg2iu$z&vhJAC95M4Og5ILsuIafNxM-`JZIxDN)W_8LVERX({(291%3H$q9uF!p zQopi)oB8qq&0(wO$;rdDi1Ez|v4Tsq+Z~;}#L%aXn44iIE0tL)m8PBqyV&7u$mEb_ z#oFGs*x{mbC-zo|pLmGc9Gdep-fp3n?WIli0kKuQ^G--#Zca&=hENKrmw zK^b2m#&sGS9WUZE%%bd@%4*6QVFTLMZuzq%;tK5P4cxe!f7qv&rS5Ff*0A}hZYo8~ z-cNc~EIoB~+W(NIkU_OjMJ;qIFos67x;|ob(BRy6B2wCx*?mIe(E^yj8iv(sVEs;% zg85F=2&@3K@Fr09#?YgE7ryioZmF^b>~HbABT%5sQd28h1P=^Pv0*@)>x%wq1x9Veg4x>De|VN~#b96&_+e<#8wfaeXdi3B*3fS3DD z)G~PbCSVr?FhJq|m6K==?U2nR*}SxmH-ausX(XT-EXI=qU7(a7IAaaZzKMib?uFgJ zD_^aPHDKc0l7iMqyoQfsaHD)d2KU@PMLinI;v%tk$|llE*(53`x#SUYr95 z@Na}My{}N6L4VE_c@&NV$r!}IZb8fNtmyn%&b5hx+9FE0Jr}bc#k>?|WBzU^Br**h zKlUhBc7eZJIUggJ`>V6XN&`_Fc|Kg&Q%M$lI?AMVqK4t>*y3S!3nLwHPf^&nQNYg|4&@a1{G1TB8+0PQ&9GP6sJY!(J`}KM9FEcO_UdxH?vD8)ltw{t)u$I&`K^L>Avt% zyZ}O(d?@m@ zW2n<7OMc6H3tEh)%aZEIIF0&yI2);T(>I^xW(;~Hxz+@1e<^$unXSFAhKFV!-=M2I z&&6wQ!PkS~(TTP|jhP{e}vV>mwVF3)JU!;`bebf=U68v5GICflo}h^3XdO z+ZgX{2HNZN@-83sYwo91QG37DRj4)O^U=?Bvwgt4;84eTG6>y#178e+t8E*IL^jM`h#P8pJP7sbPi!&F*59mro}P5Wj_X~B z_7sZdv3$|{_OD{63&cT?h-U`^R~t{=H*$57?znaGsnMxL6KEVirq_5ho^^dcPFn6G z7FtWku*!Qgc1G<6y3T<-Z}DP`*ue(=8f5U@dLQUo@q{b59V%uFG0Ls&H(b-u+8adU z0vA@F?{{<$euy|8d8L}|m#yINk>+FNjg2mQm8frAo;I9J9 zlsOG>;K3*C2ry8r>s4GHzOSGbySd_iryUmno(6X{s3Y=zgHhft!6&TM|0(z1t-m#l zt|G$fG(KBCXdJov(k%pn5uVme&!Xi3y?EC&(mJYcvC{^W7F&?eQS5w?9-Vyfau4&Q zKf4-1JK{uIudrOiw{tt$bfeGl*j>Z)PJrp{s7|)}JFXhVR0X>{VMF}%HaD*DC|QkS zUdSri*a?pSD>zx3LRPj@cudPv6wNgCg3u9uZn)1AG%Wm)qYF+_J*-Rf*bfb~q!QiW z`rL?hTo4!HwH|X~@{A)3>#J7uzw?9B4OxtE&kv@2l-mWm_F1K65K+j%w$=+Ypusk) zp{AP>-L6zrA8$`3WqP^dBWI4I&&9qZK!GH0=+tk;xS}2kS8P0M_;Y++0Y58=DgV6hH_0R z3BU68V6UpAw|yJP{^`lzb%JDxvxq#^{*36-a)E9HiyL-FlgA?(YoNsXCcq%eWPB&m zYE%KJRCs$GY$t3PM&14^+#CHf+^gO^kc#qaTwd+Qh=N0K6o>6Tcd7zJ^wzfzeZMRr zoRT^^m&$vk>xl>#a+ z1zjbW6{~17fC7ZPoFykT)9hZ_M+Sbg$EbDS^L0wg!&C)>M;CT{(<1|ANoDU)6P2l| z0Bx!M_y@J8%y*)jWQv6PETA4PnWwQBbUgVcu(B=!V}l`}H0H$yK_;$GerhYCJ`36V zrxcH|!~lJM5sW*G!$F5e_aT3YQez4>J>{I`2;2LHgYvS*9=DJo-a`WH!(~rGMaoL} zaYSbbhV_vR#@NvXQNXs-(iPsmru~gCJeXWY%3%w9g91xtC2t@X^KtZ9Q&s(P+A8J% zzIALl;L5E1!DyS-c5{bFgYX>LHx|1$qc3A)!zeG&M@i{kO7)s+bN90OW~!?lWSHvw zWDCtVI90M1;da7U=}>z__@G0<#w*4Bd+eF%)sO-~44I?Cu-VlOhM1&+ESK{MCJ*I` zE+6L2qGDY=2tEmRg!9>0q@VY|?4FnofWIT*Yjy^D?waWIOau_q(H>dTj1i{Z@+xO6 zh{$jI8u8lXxx*#N_0g16cn7f(utfo-{0=Cgn^bGJcA~CXsL~~CC#ecui2pFh&Ll4k z;FQZSAXvI4@&o8Az(d5_KzkgUFwC;Z58AC}C`rn(tEZIX`7#aN%<6cJcljqv)iQVQ zGz+I&Aw8eFili}fqqyVU!&g8!BU=SH9pp60Di@oLmN{Xzc$Gp?B8fu_e?1dRbvhtk zxdx7WH7ml&8)`!Q9@nZ*@no$0luIV4XB4r${b1=b;n`WZ`ZRkQBH{%5&Zc8D1@F@Q z0pF}VqUyvl5KZxJmdY%4gNe4q(JlGKWjp89kB3mn{ci-P?a_Yrs#?Ky{;E9J9LHgx zGWhjC1y1D%^UNZbwi(`G{GCr;pN=bgj;~JU9xs6h+!HKdk7N}hvT5(v-hL$@*5h;;9z03}4h z1P7s8hV}*f*OI0i7Pn5hG(L}Rzr&d<(W-zJ0-B9B*P-$xm)VFMKqZr^V9Q-DdHA!$T!IGCDoOt$x^`Cu`jnedSI}R3Y8|1Rz7o3)utx6 z5z6OAw?OClWY%j!0>DBJ0dj-y!H2N1WH(}NF0TZ5_6B!_Cc<{@pzAkRr-*7%1Rr=8 z*eizMYdreXj_06ee0 znX-?`hR?PG$m0hQ|JPsehYwu!Qf}NU?O*%f&rkrN#)>~fjn)am`pq}FXjDjxCA`!% zhTG>iIv-Lgm6-YFU+86Da|CE3rw;xiG}m$U3;W%3>&druo*ByAwbyK+{Bct4-5-WYR!+Xg6l?)y^Wyb`<*UkYueW- z4U4Jgd14VuZr!Egv4)CNk@8CkHZ(j16poJ6lvnD4Ddnmc8tfbo4u_y-GIQ|D)2W#7o6l3iV%|6wv>YFD0cN{v!H2k<`^~k@P1rN&T{J~A8elb&`7^ek`P}B2qMTf_3Zr?i!P3jr@4?!; z`YtDT#Ki|M(Vxhvs~BLzYgkq35ZUrI#?O$G^@7&>^H*O!$V5;W9k51envED-9aA$H z;IWHh9JjxD@M5gOszd7hhFMSJuzrKy_yh2^^xxhJv2Ih)=$z0aBm3o|NqY=g$QVc>p` zye=>(L{rmBpJO{$=xo4@n&7su_pbf8SDZYn(~ENc$h#Z77ubWl$e-|${4FYPoyk__n)< z`|9SNgzYs~vAs0O#Zy)cx>Y2~ZBBF4}hWNX`Dhc60_A$wKX9B5HE~V!djU zy_3oLMS{*vyR=rX_De?k3Tn;rcrk<=0kSWlHxU>dBRk@wJ7P3cmY+Bt)_v_dF1e|} zderXI2I_a?d)t7YpY$$juDPGI7YQg>w~02EvRT+WO^LrZaV91_Y^m(W%M+# z75DlypSZ_*@N~~yN5v-2pEzA@DVd7c?^(Q^V)sCwh8o&DnlDzenpi6pdo`GrTO(Xk z#2+t`ZFN{kv&FSyv>fx89#Ujw8mPXZ@G&}dYe0e1atJEdo6I@DTPL1dUf40^w-PEX z>Vzo(T3syMd!K;xGo47Cn)Kn8TOaY(*k6_D^=i`&!A&!EFX*O-1UH|M#Og}Et&f}Y z!@tH*;DEr~xUB1_2j5qU<1-r|3=sb;3GDu(@6_Gh7}{W#HU(hol%14i7$gguNYVDv`VCB&9q>6>t z3q1hsP8iF$m!GF+FjZ{9>d-Ffm*oL%+kP_PYRLFV)T;WW*XU!&hGyNZ;vP-|OQx`I zqDCZXkG1^jk{T2Vmo$;S5|SN|jJ8Z1dJg+7+ z!|ao^=?HIHr9YfH_@Z}m`A!xc7Z2re%c>fsl!XX~z^DVzAvY<^Uua!1PsTOyspA`; z6q#+ke*Xp@tx4OUN0nC9#LU(yx4h5go^thIc4@727WwPz>;d*FR>d>-n7lF6DzJe! zlpP&|r8$NnqYh#Whc9Vv zq;=sy7h0;chFUm_PjqpJeGs4kbld-XB=(sH>%Tc+j_?L}l8h?QA>@y0mi*t;EPu(c z|An3<-x~aX(6hwW$sGm^z!#hKeZlJ!4&ZA5^nD15@o+N4cFRJpx|%&3)*~B!^pI-2 zofFQ_#jY4Lby)ljUhphNs$LQjW}e;4*v!?+8682F&#`f7gCl0b^U@DT5}WCoseQ{? zPA$Ca<%2`vNx*{&3n=r-K^o%D08Myy+JL$3<+VFjWyv9$U0ukDVXqyIk{ci}V}~;g zY{IlEQXt_dJ?}$sj{}(Vz>5t!T<&^)!eqOC#JgD3+RKY;ks-NnXQ9g}xzFu+yc-2o z%nNK_m%7@wLw2+B7g-v;Six-_u9XxDPkl6Ve2F+RNcFXSKpP0OOR<@7i13>csz4{j zw2U2=>dM=8m9T_Aej@sn$(^~WI7Wo2-;p$apjApsT&iai&;j%uoc$x+Ov3!jUprp{ zOk7+2SK%G!fYxpZ3;4k~7=38WuuSg$jR$D8V}f5A{!*-Hofo6RM$n;!o6(zzhKLiV zZ2aj1083o(gepdDYKZCe9o^@@U)rR4=oyD>#Gl({9pN4^Dcb&m5df-#-z!|SBU^vc z>r$X&3_tI1nT|jj1!GZF&m*lK<-M6`uthujo#=`?vIP_rwK2B0PGAaE)RntnT;+Y+ zel68&5O>PeIjB9w$zf{rny8aC$@Z3DY8CJ2)z!PNwJ4rHS*cH)uP8?C%EyYp%4Bj5 zXvN+=p98iXC}(5#7(&77k=uGdf4=+ZHOwhxKFVc&Dnap6b&+fZ7J-wjb$SO{usbZC ztVCuPjc6jTPD@AWD&82V>Z-G*qui2J)GLXKs+DRc^~-+$DR+2sA295hYf?_904P~{ zRSrBcVD}oBsVh4`sGO!X{^g;ngQ5vIi4>Ip(841n_t5qY;0E)E5b6PUWk42|$3TpK zT{eq51e~=8G~QL?NBmfoh((HHY77Fm2jDbmVf3h1z+WGje)ViT1&I6Hkfa~Pf?I}N zO@y_rztYBO&YA^$Ct8i?zHFC6v^Yyc`>swf*R@jfgg4nYY$m~_@7vd%cAQIrhq#3u z?|enY!~LEGA(iQXFEkj$n>s<8dHu7bq%W_0o0UifHoaV&GxMm%?X-%mrS8v>ZRPZh z4&dB=SF?Gr-z$F=#B;(>&BlNC458qetTe@q}P0sp*~nu`Zg?{$$Kkk z+^^g#z`zPUDXj!)BFlN~v#sNJ`P`Y#;BY!GF;G)kwo10Co7*Q{VnLK|wyty=^`9dO^y92?`4>;vkE+IX=uZ<+*;ki zU%W zfrzh&4?DNa*&;d4kO!;#Y{S%{@9@yU(8L9~>Ja-2tGj2I&biPW+`stCbYD5(AOmIUTM(`?4EPi>T}8H zm&D5kE3yyzYIBFci4s$N2p(SLg09?xIjj5*p5a}^TWwOA3u#69^RWp|AleBNN2Ufd zxb>^kCy0E6hH4gPSh|GRv%@GAeTaAE1DZPXj5F#KLk*T#-Rt@d9*$UfbIeZD3+>g=OjNAK^<7g|=jhTcYh)?MK6v>Y zUH-Yh`<58xW~+x?P$oy3GO;FSV-A88tDc3odlA|ifX|xJ})TE^RO$Ax#4jKg~n_U7S;6R@zDImvHMwg#J)^# z+zvE%Ifb70N;0QbzyiBEMSH^BW;wPd)3wjgoi3w&Sx*BlyWGjmBknA>;#%oGgyA!H zZrar@sbsk&9|IYdKn_Qwh6>A`N(iUtTz5} z4@r_ggf?gBWjHkH&p!`5j%&F$YlP%WWxA#bD)bV8-NW{_By)~TyVHkw(Nc(Pv({+s zIjUFR!uRML!rp@R&W(UKSAp(BG>aNrjpxBj#5r(eKcS0jr0+Y?^qq}H!606O*l}{e zZ@TS`{4nfM)afuje_02=OMj^3SUA6bdiF16nXdXC*}&9ptE`=WQW1R^gjQBK5+#|MdDH|o5- zl)!GNPkpReAb2B>{@vV$d=}$c-IhDd-IJvBbhN}`gv%pZgZf{7u(@BIVnXm>=19ZB zpkq^{r1$B?JDM%S+Uoh5XD{FmA0Mb(NMTj#95c!`P3A44_70>{icO|><&Mq+dn(C+Is$ISY&ijL>U zO6x@KN~oqav*fB$R0-2qyV~eJ{*wZZW@on44)1D}f*Ipm8l4vgh5*ekjRbENz&i8A zW-o6T&+ghE6XZ%&9<#UFr&v;}1m2at07!M8{f#GaFj=q5M+iYj9Ks9{`Pn0U49GF5ZfCjtw7u31}cR0b7SD z8pbF@1{e6nn2g+|zQ4g$dt~+&;OK%I0demr;`G=Kori>-7tYk1+_-lw{XRB$2bG@O zOr?qAQX{ja926ajaI1BwZ{`FYLYH9!B>D3;{F_oN!>@Mi?Zq;TN>)>bg+FZR2Z`JX zRdSg<$0OU`BL0}=)}_p-??g=Pn4;C47AynTCS7#aVaiJXrxzi=1h9lWOef0ANIjRD zJs5abk8RfX$8>mp;E~F1 zrCIw<1U#puRJI?{39def&Vd~etawI6s5c?RjDvksF2{W*s#n9v4V9_L+JoHxv>5*t zUTONUyASl?4`MHz+rCTKqaqA!W0A7577CfUO3LEtW*0=Ox=lR`h3u{%ZschU#F$8i z2-HItD&Hxuj=fsj6PvmfhIg;aYd9eee9sw~3rdNS(xrT;&N|Pc)|@cf=aVPvW*x_2tf0p}DFNP+5 zcQ~IUKY@H+mRghb&94C^&BliE;W-NgTPWR#ahxcE4UK3qtCQzG5Ey*uYJn59{3aJd)pQ``H?d9(?oi+(w&rjAO^p#lBT% zpLu71h8hA8yx95l#1OGb4PS?`RpSqY_1)uz1~w*0atu;t8|!g3XYrbcB4kfOvmDQs z3paKRY&yakh1=qo$&6JDZtDisfFI^wP$j=MzUJk4B}hpAwwZ(ImFy7)CpWt$2)&%W z6?0Hd*YyRdo6cY_cr6B@ib&7W&rR)T@)te}gKi%p6EZBxrU#x_VGh5_N zmmg+00$i@U1q0-hvSlGPw6D?&GLk_Ub@lQR7AC4^}*y?RrP>WMsoZS{U1-^Ak7 zVwrWrE|x7~5Gw3(uXu#@wT~~D1H+V;mmtziUID$bME9#dB~;vZQxC8^_Z@8JuSv@lRsM0_YQFt z^pmUeIlJ_Uw7KXhI5WJ^jSyjqoOs87rWy1BM~>OxJex!GoSX=eH8;hzk{jUR$+Ztp zTQ$XKWGJ~Oi=#_A+VjTs-|TfWH+cc(K&NgDkQgr5hC10@=`z$Go+Mx-Avp*l#8ipS zMiISS!7HhAcR$T*H!Q{OmC;f@O>w_RE|t2{kT9^j2=s{6?MUR}e$mK`*(Y-sX==RA zn#6Z#kj6S`!Fc!nTFClA!G6Jw{2{fsW8esFCnp8ZlJVqTS)#XR&R=z>l=ZYY_yt&< z7xXpJLZ|mub~H)C)2vg58jNa_iflh6)pRU}Em#dTaAOO3!3&TVH;vWery&4a;9S?x z(9Y7N5W=QvrR^>ECLXH6n#L6Vw=ygSgb5ZPFmFoA5E|fzDmtt1ok$EUK3N~{v@dyW z@$}Ij0t?XpYG9!myKk)1tyr(pVvD|udo8yoyr^+78zvOC-AHOM!QPYR+3}rd#sJ>p zExa$7&r%}#OZ1%2rXCjSFtW1a-QTR`t9E&-rjU08)Ud38znlsl6zQl0e~O-t*j%(6&3LH6-kzYCRy@D^&QZQX z-+Aj%z2}Gf;2;nR@pPb0IMdwxVxkGPtyst7RWORB*D8bfS=R$qflIrJ2HV_{VlWc0 zXzR*{0)rTnY?E|C{lh@^!hQ+%BEbcb;55`q@_HFEPZ{h)9ej zIRBs({wT@)KT|mWN#G9p+eFr1iT_uBlgKJ$8mtlsB(e(1(q)RCyN#BnYhXb&ge{0l z)a$fyB+_ZySIFY{SL$@zL6=O2cvc#R_!eUO__Z@?>>1es&kmn`Q1qRs?K=^TP#DE= z?1URbXsW=y$FsFEgkkst9MlJ!-&)fi$m`jwxt_r95YE=k;6;o3n6Q?ay(i@&-10nW z0V#xUgnlO?e-4l<1D;=gunW*y@80awb9z8?^kO(G;xfYdG!ec8DuN@m8lyCw8mLA( z8)p{x@nNRD^Z-t)>My@Cm;j{T68$=SEr^%-E5VfM4|@Ku(7e8oSjycN5DhqG&0XX# z#Zj@np2H|Ag2H(?kYRU#$ST$z!-j5!oldSa|N5vp4rPRX_zWO+PmN(U1@vLzd1-FQ z%_QmXMAjFZA)4pjVhU>q_p*SrGTRl`X24p88q{Fxhv3(H7@(6|1Csqs)o zsTB~3fW&k7LeyB}W|tk1{?M**$QMkES9M38x&iX2R0ixu4ZC%J`~pQNb1)`se3~M~lO7^Lzv!{ZgzpN|fR# z!8-?MB^8S=R@AaN07y^Z7PtbQ!M8FJaAENM#+E&bRGK1yFZhH zNj|yJC<=5mgiHWJ!kTm@qQaA&boJL^SIf5BNkv^LMxz%oXKUFCv{9~?9TuL?zVed) z^@{C5p7a?)Kag=kARt};0|t(xiCYM29j+6}Gr0TZ{e&F;;YaVXK|#yAHYqol%hzWA z5*Kp~63zfOCJn)10MVT>;kqX)jDUfRf_?~iTD;bN%H!R9m&0w|wTkH(ae+ zL&n&~Fc#rkQD^24@4oMC0(5a+T`S6qPSbGc)pz^Q$IYJ!^pA#Y+6wqUgiq& zQ^=B~S$oXMIjAYeWmEgP5KLiS>AsU58+$j_sJqgb`BQlv+g!aIEC%+XvZTLPFf`*d zVy3>ad4eX?$FO3I@&c27KlkcL!k*)m2|D9>h&I6>+nMSdXMcjuBQxIvMi_-ffR&}d zv~f7b8B^%ajtKdBC@(mzJ$GWUz{eHT%bew)k2&X-0QC&w2@26F zJ}q^-a_p8!IO42^XgGy;`vKx!W&y`&5}T{wK$f#2elzrOEeR7W z94FMbC3Yv7;x;T1@9;c1uCWKQ=Ds(HkD@*wKLZr_ut% zeXXZldB<7BOJ>@2FT-Eu*7g#Z;Y;St3^Lc`7&_iL?qw^Z5ms))ecl#s$Og!l+utZ{$@5H|IB&HEQ6J`}9Lp47xIg(>g}$ z#h+CTuguymx#zA~=AOTH=_^yn9nU*rQ5nKww!O?#>7NSkymCI2;;D2xyK^s~Hf9MP z0%U~03sam-0cP}K2!Uo*2s${lFy$q>*BxtM1CNqRk;r?OG&(prgRPjR4tg@9xuyGt zAl$hj=G&IW7w>ROTUUw6JKjRvRU=z;9Q-K%NL7PNSlEJkr7dw~TDIbcI1K|YYB!L5*9 zhFo|k#IeXq)L&jJhdM29MLXTzDu~)VF zMv&M(96zc9eAR<;*8q4pu3~kwCOa<;QQefJPP!m|6@A(uJcq}8cbm3)w|V=K}gXR9*#dWx{9!pCakg1*V7l&j@r*M%x;VHG;$L`HrpTOP({xT~ zSobc0{uUcXFA(L<9s@a#^+g%XxyZKOcM?Uc+m&%xM+pr2u z<0)T1vfyFED`;jrMaw3@Pl#DPP@mtk7N&R9+3j(1BpIba*gXIyq5SP5p%}xqz6HYn zV(-1J@B!~!XK(gde`$W$7tq?~P|2~DjMsd~Xj(K@~n8Nk^iZ4hb z26!QnQTB{^{D)$SF_}Cs{uQ4@8P_?H1FiL-q6GP|tdZX^pWi1n_8WwIkbOu!H?O(S zB9sw(PNDd6GYJ`R#jqtpZfob#^rn>dhDF2*e)7?8W zXw)~9xEIxPo`}};iZ%!p7UdkUQ4eI9-G~~(JRRfjcJ1aU4|*!Y=y${_EZHzn;d{qm z-d~K>b}?M^dnBo0H!okiQ`evu{wDie>u?N<-V4mUaOZHRsc^1rkL&�C>41|3d+V zs+XG7rX-mBZ;Txq+a~noUzD<5cxy+0Z#Yp{@~?&yIsalfF+P8|fB!Pz94hV?JpA?y zQ-ALFEk1)^T5p^WOWIR(qMuWkYP{q;dVw>V^2+GpvO}1=d!u=Fkm{6v@}1FuvoOdc z-Tf1YVlTJT#A%7nmXMZLq|vO3?jbDP#ev}2%M2&#m9WfmW4>^-8~s{6S?4?%e+ub+ z|N8>ej?3MFjTYctK@HRbl-QB4idPItDpp$aU9`l)Y)c_$JDvQCN^GaaSc$}r@5Jd( zkN_|oHl9*{$Lf{bSF8mhpGaV`Lq@P`n^@ZofI4o3 z4=ieeFRCMyn#yNpO6xOaN#yZxywA35sfV>oc3)R}MbzdyxEdQrO|FFv$vCAL0dbp} zyeBEL={&ts7l*4hxep% z_aif`4b}YmS-#T}jiG|43jj*U7V#w-(wSb>?*7`2L$E*AS=OfN@BdIehMIPrl}NLu zzNqho6u$P_Q!`YWEWmneR}AqbCdpn&#vVL0+fp$R?^%GdFA>9yD2L4)*ignlL}YA_ zR{-erOm5wXVtIge%ZRJixO{1@llQkm)m5nzGmP^7x%Q{570>FK@d$cOsX62EwVPEr z-}AT55(2v}rsMV0#h*Gywq-sE%vQ*^70~km#Xqso>8ezDd_X&f51fQ|jYKZaOUlol zrsgW~zv{sYf^9&kH@Z~y==ojCyTYlM-wE!K*<*#&{UnvJbk|F|VI7UN2 zn9qPf{+@L3VE&MFxB^KBWJTj|Nyw12h0nlUpSLK>g1@F1>wf{~6V8wSsHWHu`32Yi zHR%8f^V>JAqro#xmsu$<60sWCJD`Ek>3wja7jbjSIg4Aq{1H|e?xW6+h68Zsov)nwG5hF94D0`SyXa&8!PGxo`cMcE;7InOQXDaWX zp1G})Nip;W&(Olpz*7WmoX(aGh^Z{28BakWaI;G9{Cg%p{)MsW+s@C?FMRQW+7;Qy zz~&y#&?=;hlCt8^d-x)**=2TZ%3CLPCH`Ybs{3zFNb7{3Eja}@<*zA%oKfdo# z$HSLUCe~(v)*=l2HnbP^{3qx;t0y?gQ6%nt#pN}39bh$pgTMO4pg1YERev1vl}E1` zS>Ab38+M`x=Ipn0#@$Vr({zx1#zq<;lJBQ=@;vHW04YN;>QzFK%k({A0qyq7_NGO{ z!zHe@Z1hi1v#^oIl=1sx5L|kQ7JI|6Y^Z{L_(oxP`!@jj<26>4GqR z)TOAg^!U{JiZMdHakL4ywLB%Lc6L$2sboslyL%Gy3BYXH=84LaI0~vH=M0FPAJ2jV z-A18_A^j!%V~M3lqO2xXBjZRvQwBB`P1QUh5Fw6|482vBVAe z`04@nj<14@qh_;4Y{}pSAs6YARgqq(vhTn?uxR;2n7Uqew{5X%vr;aaIr)A;j+JhX ztAG7&X}>;}u7PDWEiU`8Mx*aBkk@(R6*l1~=rI0 z3y-sjY)7U8%sXyvg^JBKvlIqKOuyGG#gGclOX}|$KRO(l*-BTlt++U^jv7RoGPx;a**eIfHrhjAiRtLS7(x9iXqjzI-6%?n!|hGH+@9Yy$UF<$-wkC+cJj(b zL(_(g=pn(y9^-3BjyeP~ZCVX$iH z0)oGsk5_1l1r`5UZ10p8tVJ}|aSj~18r8xP{vmwg5`VnpU>4hRW28p~0Lk!COfpg* zR5K<_V{40N=$;XsWUa0M(Lb+9eEr;~@Fp^_!XT#$MnY_|sd2V3rbLF~MCT1BEr)m# zWlqNTTyYhhTVtzLp z6lTqy4L{9`$czAG;xRHt8S1<-f5YDJ_)3<)7`4r=4Cc2Md+Wgk++ znz?R;Nu)RC<_+uUb~``HtV_`j18*9QNj&^)gppYD9PWiqMjaEn9V@n&!R5@FaTJQO zr4DXZo?AUQL_tVUwbT5 za(2RYceY65aKY?!NsuLF+h-DO(uTwZcvR{Mn3t^|tQWE4C)Z5*VcA;z${)`WRg?wS+>lMIWh9OpZW~Cx zUk#j?k{LNiLg?Lcjm}cpHo}6ZcRW+z66Di{yaQ>yoZrOGxqAHo=amiI;OUBnhRoT)`xNrQR+t(1M zh|2u?PWJ_yffiq(c7k8T{F={K2B)_qp%>agNvT`4(SfDK)p6pjw8Wi_$;u)?II^?* z1=xg1BR93*flNT4Oxg<9C@rDF>6z@aCNv%#?YtI zbWneDe4CUgyAG`GJswUmsYLuTt~C;uCc)IPsUtQiwgsp}t|$MxuKwZiKikFrZqv5* zyEp7Fo3{EYV9$9^Bps}=Z*&frHHHazxm+7*3#qD-dX^Zx#3Zyk+Y~ome-j=rrR0nt z4$lt?%TRi0pA}J8xFxc?ZMcPWGU)TVFUEqxO$96dNQdX^tbX~L!j}YGDde|)Z)cJT zDgkog1stQ8g_I9dMOCXaTbJe2xId_1Udxl-zA7u$ii)C%s%@j~O0fxbVrMEPwWIdS z6~$GtON&4535}NU?=;><^IsM1cc^=RWYGsAs#locb)($HNPhdGL#OEIw*S{Py z{sh&}svH&OttDBY z0EEa=A5|_;ks?Bu{p}4Y)(8!RB8e`OUH+z@&Q~`CZ zVf_V~CcCqxf>UqJarRZ1EQGhV0k6&P4sfC145QE)zY%)wA9uqR$w6VxzlYF!Xx}1%ec^(+T9ykYVSZhtSG2h z*2;-Q-0gtu55b)LTbDqU7FY&F{04u5{-7L&0%0oY6^)@slVQ-+ylT)S>5X8sG*fvC z;pJ_EI1EdJ^i_aB)7fTIXKk7~8>@g%gy@s@vG$j514sPiD*nJ(L1axQDvONI{>Cd! z+NtB-jLUCY6IlQ+SLeaJ0-T?c0qomI0|uzJMG<8ubpoRYx^AKEDQiZDtU|(rcHUxNTfoIA04*5jBU4%EZTSWwt+=6g-d2PkWS64VMAH>@; zCwaV79paxjv0(v}+r^Uy_v5<5p3|fSa9V}}mbu_&l8DpWFC~tfrLdIvX?Yl}L!&e* zDWBLJ4~D4+*~h|+2mC4Ewtb5332M3t$Sw$P%N8bw7GBavYWQ%LqwC_Ch$c=6Qbys% zb+S>hX3$xK`OtNz9`V^8Pa}o(s2Yn$@jX}tgcn-*0E^ORn@u2 zqVxQ+hem%?{?Gcf|yE^v1k&FFcdTNUuL@1s1LyE=GCRNR(1?vgLu` z^7LWR5>lU^)?52CTNS!A7^Q=XEFot=#aJ!ZejV{BwwH(Pe*?XdVOp(Jh+2s)@NZnk{h*`BmN1XVJ@!c0YmgIQxe)?-o%{|uJV#M{ z)pu|bm_})}q&mNEmT+hs%g7?uta|y+Q|WFHhS2NieWpZnz+WHqns17LE^&u#mn~vzf-tbK(!Y3uh|;0 zMd|etvkeH@<~C~5S6>~T0zUOfe+gn8>qbLlND|jx(5?5d(X_L@`AGV)ts&Vc*^+j6 zNCti$HwbmDILX$UY=hgAHgn&UF3vvt{sJPHnk$HcnFL#=N@s7Os+e*LO$Ws0Uc1&- zMQ+n$DGG{VEM1=yN=e~*tkkzPU29P*?>3hCC-G| z$iYkMO{+pytt6_vPi|JBt^5qjobg9%8D`E|a|*WJWHMrwgoRr902)h(zU=`{9nE+$|#*UEhc(-0i`gflit@+vt4B5d6-yZMJ?WL^b3dk+Wiz zE%KBHs$L*U5}=IGS;S|_mW^bz3)f8?l2rx?6j_VdjpzH)Wqy%W__}~IJ#z__TO0sw zUDUDnQPSc^NUnGb4ynO|Qn zwMb0dve-{ADqlRDl3>kqHjNQyw}-PY+i1op2=~vHZ9Js7mDBYrN|yT1PMDjf+fuIO z8E;x-0D5FGwqmjAsfX$owbSu>Yqk^dDKh8cNPIhsLNhY9)11F}4&}RXW}GJ^!jfJt zR-9{BxK>*oL12|^{Y_L|Xtaz61%kRRqy$k9gkb7EW{S9dojET>{8+}u?4JmM_0ABt zJp^SB%4uA_zgmw9u8v-d0=#9~CQP)|^U}Sl#j+|H=i=(X+pj$#{(g66WYvbh7D2ie^u{{Yoej*bGMme{JW^*Oua!*ZM!j|hee&9Q=D%7yP74FV#2P|$%0&J zU0JpOWx(Cpc7ao4NA)|$aBA?Gl}=ts8(BmE)mo!^;ii;=jfZgME9f0ml3c0xE^;E)3-hheQ?jX(nSQlwaJG;&4%XvqXKJ zDR-^++x9FcPEzu>^(-Q9$7wcIR!H(*PJ$k9h@`YODkioktn_NzS*p8=Cv0|KxyJ4d z3tO7@d3|l3=VuAl^>4qTDCRA28u=Iu1`03wEU_- zCM)p8%%aH_D+`yb&5{@CyOe&sIC?_Wb&2nV_44)7&Xr9NgU9et1sd&FJr`Vr1gspY zgpewQ44fKf;8mLnIgiSr&rUJyTMxKFxFBu6_Zd1HA_gLU@web}51Y4i&P=_dxAlaJ ztOw##bmJCciQ>4RzW|K*x&PGu{C`Ps`PVVBnBNf5PD`oO(eGAK*T6fb9p`Hzt{2*k zGAo-jKtg342$gMY1`~~Wh1Ie-&B=f0fk7TljL{}w>=|TPUt2^V@l|BWq!bC=Evb}& zLgVx=hx~cg!d1t&hO&u+Sb>m5C*dz~%U|P{|NYyWEFHkU0_Tw-$624_N9$*J1ou^! zt7Y5V8A!y(M8KwAri8Ry3@xMt)Jppz>0~^Q&5fgoFIllKRfZdG!izlhkirrf z!KcZ{C{LhMf*~4GGhX-= zRz<*d#N4n3uh3S?ZQ;ni&FKlb=fMQSrrit*+o_ttg4wMr?!-GeUsba2*|Lb&m=blQ4by!D8=M#2_%3ughGN`YL0v(Y#> z*Cw&38x$*WJ@_?1vhV-r-Tlw|e~fni9FIT8<3BbBdNSorJ((V=$tv(&gANg=*Uve8 zyrPFg!+%?)%sub2sY&;FIdqcrOjPudd(40Z9{q`b`>=hlTrNi(_*PACv;y5Kxte~m z&VMI%=bzu@f5p~SLq1MMD%K>AN%xc9*LqCV{B1U-_k+PodTm?|B56-TaO?EAUVXDT zKdp_J`@mMZ4MP3o z!LX71^7D7U!7nhEb4h68o2OSx@Rr8;G1Vd0Nw1$b$cMQ;p^ zEfvb97iWl(&iF2KJ+l{#?JK57yvYR${5!C+q7PMinLl#bR$pN!E}{|+%hmUCGB~S<>mjC@&=?_xT#5KRAh`+wdTd_RN}L1X2db60fEFN*Xj#~W0vxs1kb-^hD;)p zNmUeV8lV{B?o|nTTdp*8QSa(ackYm|<)8=9iPNKkgKs5YGYA8W31oL^^3&LQoo?;e zZbyDd7##PZv+8F)H<WKEGDlyS24hRu##8KV0m!_7r4rmnA*D_KTDqN1vq5V9DbN zi-wG2&7z%15H^ELLLh8cxTaOEq`e+r0v*jj=jlx{5;tHy0>e$)0JrF&agyr=>jC?f zLS@WPkOA@>AB6gUbs7J6Bf|Z6`98-f5!A$|RUcN8h1v$}j=5-$#~Y~gx9)Abn)4Ci zK%eoTwOy_AJ~{fn>}$HuLC;LFd}=rlB;WGjgkl$5R#dlQ1EtmsCg~PLT+ZMh6H{&~ zr=ue-I^JVPKfI1;*z}>v`w24h_}qzVY=^7<@XcS#Q64Nv-0+)Dc$JZ0KK#LT4QiYq zFbKS}v7xh=$omL)>{piuGINLrk90h(cQlcK(lq^SU6eCB zZ}AF!Ll5TV49QyE+_utmzsS$HKd`6|tBeyjvK+(`ggeedo4qL;EOw9dlVnUi@;j(i z0?SY9#t{saAue-{)ff2Fh=is$+jw^Ptr))dYOxHsblFVFF{sDOYjP1y)~B=lO@VI! zHS6=TcfE7V6w4RuoeoqsEp0YV(|{*hG9eVKxX4%dZD}}6H5%N;)DA}x<6jLmvWz^*pbmj=P52&G zamZCFOD`cN=R5THKN?KtG~z$)4Y0;NMo>3YB=@clGD#SZs^$a)Z71WW`=a{x4||!Q>1@w$opt3E^63-2aNHG zAD}Om#kDKTb?DtJge?g#YgWY31W6K9i6Pth8!|l*&|#ElAw%bKZ&{7+(G5yd$B1$q z)OrWk6yUY7WJ`Rzy-YD)Lv%4(Vr;?dtfPr?>+G8L_>;mCjKC2E`97`>>meiz-fw34 zpwg^w0B{#6TGzrR)T>y(9?@5fdy-$>c^^FfPM8jN85&mZ6zIzO1ZcW2&~|TNyfG8~ z=rH|zmra82(MMlh&DU>nQ(hV0*_yJOi_TFt&v`aD(>iTPQPdhU-~;ySSYN#tjm!p?V?bOSSLOwF}hltQU3g%Z?&8rNO9wwqlyi}{Ii_>h1pg8;EnclZ~>F-1cQbHTK zlMjoCnsOd;CVk|=7cVhH1j4LT?pd92WAo(qc3W`T-<6T<4(JU9pV}TuZ~8B;XrHj%zMdZ&=M<@=NZN zN}-SS(taep@SvC+EUPazcSW(c?$b&R6YhB95F+d+$o41bRyc2a?9^)Q5=}G11L7sn zXDiTw$}Yu{QVN-_RDo~Yj#IVl)HmAb_j8TCq2oF+gR45PsWBy0F{#PIs*4#WZCgaP zDA5I#P{`sVv}2}${9=(=2uGLjc}*(uGhqEZ``G1=q43VjnddXPH8PsaUV(^)yn#_r zadEiNSifcb{v!3H`?@L~`FweBxFD@>B-Qc?WZCHOQrKg@Jz3QM2&iXr`+k0EX3Qyn zUX2JTuuDEVBCra29pB0|`W3o?XlWuu1Y&My>%Af1?L<7eDe=ZxlCI-l*#Q6hX!`$G zsQjO=^KZ`qSi)~e4=3niT02lOyoD5e8cK;EM-(?c-Uu!7kUhF-*iU&Ziw9w0ZiIXm zfXgb7=jXQIRru_gDSbvfolGe?uy}P+fL9tlPVG|*R`;PlWZ06pdFSo3ej6(JfrE$} zKD*1l&`Zm9B(jD{G-{xV!nQS;JwLW^oT=DMAf2w#8g)pM+Vr5nN*Ofo8kl|U(%VAfuC^=Fk^Nax;AZS zQ`%PfY)+4dHY#Flk78?ew1(B$T>>xca9+3Tl4bXXLyBtArPUwf(zb&C>MuqEePiwHxS5O!=ZdYvTsc1hrA-H z8sYz_>^Ah=+BqbN{H=a;!sWe2S8RnQto2TYfbgX?6;Lgq2B9ZtX(KAm26nn~dVCMc zlobr>p4B<2)F9s5?hZ`eo~*|eV)|5+O8l}MXP;sjRw0LpCKyP&irItjP|f>F4dbB)=%7N>r%b7ZG5Zl zzMC81&;J;ppkE=qPzk{iuS(|njB90KXyLM^i?;lo$n}y$`&@`i1g_WrU{R9>J(dzav+^DXlSvhMF!m^KB zfgX_fKV@HTntnQbOHAt9cS6NThQ^}|s!d~4Xt!}?3ML4pa>jJ^1?O1C5AFlV;y&AD z!jSw|&zeNGQ5p+SOtc;QRSn{Z9A|@Ksi^`2pO-u!)0-;3FZd=uY;ZP7uYg*Ti^jc)=EjcltmBZ#(&()EAA6Lc1z1G=S4< z$kkl?;#MN=v(IMO)tm1`Y7dB~23ihn{74N==eVB~>N^+Hsp6kqEc@~3z^pL*hu86O zK21sVT@2!_?fRx&f<59cm0F>Cnqlrb#aaVCE67d_*}=ZUra4(Qp!erHY(#~l!*XbO z+xV8iCs?!gJBcBLAo_AqZ7C%e&=uw8Sdqy~8$`cNMV)KnA2~$O--F?M`~<0%lRTZS^NgzGrV;z< z=NflVWf4&InAT8}|9$@U!<(JiI=~d>EUV zV?ap8E?d98sxFCT-vLiSI!mmZ2vjDs+7rqxgnELTt^ zN{B#~mHU)l058u5)ms@~44mXyPBSfz(Va^s50y)Bi@Hr2yJzi3jvO5q$_MX_PX2{j z_HP%mKNt6Zjxo6tbG<~&?o8*d?TQL~>fw-&u{$MYgvHaxbT@pxjW{o5tc?7U9P*yU zyVylW?k)4T{5HIv*;fnJZ>jzX%3B^27Jr;Qkaj$#U`JqJ(1B0O7jf5Dp+n9P(aK47 zY1^q?Qf{6e`IKyeq#JSVD=kn-NGV+AA!!{<^0XtLL{+uTf-lKhWABAY#hB4_Q}z@^ zyaQ3G%Jau!boU>_>Hz}wJ}nxda^M#zkeMr=mm{G$z~POb!RV!H z7D%AD1sD13XmB4c@dOQND>AJgOXZCaD}D)!@d-RsSr({UW}i&2O4{Wcs4aQeB5}TL zq{~tI<2+U_D$Lbd6Q>wbv1QXQP;p&B)awv{%>5(%~mN zMsv$QxcK1BVP>?@aG6Y-r(qqh+?Icr11Q?fCHY#s-{;sfQGZKV^3)$jB1yr%ijL)K0FNmZ4!W=a;2>fkZFw_rPS1z9IE7(}8od!|kU!i{B_4vj z12h3IP)%JIP#9y#vZXk=MK$r?9&^m2wMIU7C8;_}CH^rGPW`1euD#H8Raj@wkZi)D z8Y}ERKh0H;2T{{EzT4wKv;F)?8IVVcxVKf08&g?ZGX!a{bOT8#|Dq_*tHo&o*Nx&_ zOoy$efb>1>1=s-pl@>pU;^_WvHUK#_kYRfunZDk}5B;WKM>Io_ndl2uync#5;!v1v z#E{B+<0IvA#Kl@uwSHY=5+Fnt}8- z30^%ZaR{Y8H2Z81NlhhmxUEO9Pr5l?kl0=t$i8iyS^F@8j=EKRLqNZ?dPb-fj%lt) zR?-hye-Bp-W@{@cO7eT?5wFQI#@tLvJBYW*l?2A1R4zBP1;ezS_;BSmm!>{_)=Ol2 zJaTpKG2p4c!78|}9JhoQY91bSA`CBXp-Ls>bQEi_!9FFLoO$hj9_|I*Y2F2Q^o!-T z9GQbNJzqo&%l}yCXfKgiYj}L>W}yPtbJPf^=mLg)FyU7WV23RcV|h|eW9LQju<+$1 zx5(ZDd^DQ$8wC@|ARH@j*cndLu;_hxdz8ZCx3I7yoDRP?wij;_B+A^g`}<;#$oX&v zJ*K+^0a&3t|MpR3<=q0C>|7I`guVlbP{9x%wd~Dt^gPqMBi?3V{y<}yt1b!ps!=f& z-@KXYPj%VOB~uInIzYaTi@O4Jj56iLm8vDulv=nIRzv@ej_J?Z)<4#H{TGZ6MH}Wd zpl7DP#CBe3%|M9{qpzNO@1N0}YYRm#Dh;BXBG0xUOUCg>%HGC16M3!#YY*({h!>4m zjixUJU|lBwG6Pn4mt%z29BkPHQ?YjH{Rx~#>sQi>pspHe5-O*-|>F%c`XOx{pwyiKr@f)s9p;Nk1 z1TwY^y~~xtw8#x=mgib(fokt1siyn_v#h)C_4ZO~y5O_7`~=y_XdN(zX-WPBy%fj0 zyx9mxBmoaPoRjc5TwFmea8ilGw*M&?V@m|@lTg2&vkydaNb4fr1qdcuoa^u^W_l|_ z#BT5;v?&JUXX()~i_yp}uQ?{%(HD1y`q99;w*griQccZA%CJ#jJc#FG-11=#hQyOD z7+$^|+PKuqi%tMxc}f9yVo1%6Q?(oM^S2 z@jMtsj&mf3c{*MQ?1tBWf*O$+fQlBRH`cWAAmwZdQ1bb{mjU^}fOatz`LIDL$bJP- zj^C1?@f(;*`GC>2%~$aF%pvJt7wmOm`j_(AngkQtpNkMJsy52(s#@|z{iX1O_r{5} zg{Z0I3`cL5)%E!AW%O%}+1QeLJ@xUCw(;He6u#w6fA-ZRhMp5n_3>Uvlh{XUtU?D! z17U=X$7s*dqTf3>Jk%<$KR34!>cj&VLeaAa8)#OS(4}U7Z$Kcu-q)$@8JpyC3LQV= zDPw=Wb&i)zWQBXe`f`;}gd{<4MS=_+3!y;Myciw)bo5*>S1fnM`5bEeXE6QGj!wP( z38I3m$Tj{1IX1<(|6xInU_`5<#A!3I7m?_=HJ|9eUvxvEl~?^KhgjIjRm?FOyxfk3 z!JAgJphJF^gM5ImEDzeV*GC;#l4&%7y0|hX+|Ra3!#E3acbEFOW$K&4*K?v7Z&pO# zIr+D+f?FnUrBaEVu~CqfG?iaPJ)qweqH6ni{?zl3_!O^wm#OhaLtj35fy%7WOIsAR zpe`d+I>zMI1vSXkXaCX`)*YGwLmvKe8}}tK7P^{><4(D`ak?aP9Jsa=zfPkflu8_7 z`%k%;!q{#zxQJ7d7~nO-&Y8W8m$B@FR=CH(%K}LPiHGb)3K=X2mwj;UdZE)j&eGG_ zNGXPt@rLcw#sk#2#M7$LA-qY;5LSoNBW0f}A|g3G5LV!T|6{Y3&wt^-CKSb3GzB%!QFuWUjJmm`TUlR#yjVU5`kw%oCBU2Ze;H}=DdsWQ8#T~ zgT5BCa3xZ2E%@R5ly^r)TN811IovQ#@12!uL~0lSq8%?)g)$w=g`aRrO~T_?Qop{h z0vy*ZAOtCQG1C6Jrn7cdS?XP>ul#R#67aZl%#_h4TpFLs9i$G6-Dl3{X10@x)#Tu* za10~veJ4UZW!##-1P(fLmb+^kF0SX%OdA~rZ6V5}iwUB7dFu=@TDNVr&#_vSBrV6V zYvK*ZETD52kq1q{+lzlES);;v6+sy-Nq=%l<5A9TjP_bHC=Xw2%`VM5zDT$zZQ{SW z?-Arch@Mt%dS4mIW9IzT=R+8B<0{UZJ|la2PErc~n&_JsHK^=A#<%>FpZZ@tUIvg( zm2;B)rWuD-!wz8mrF`#j-5B)LjUIyEMS@}VqK{C!!pdQkjwKWjcGyJ7@&&-Tz_NGv z#KYDB2d8=F2E?hooc=Vnw=HVa`(NVUJvQ6RCx~>+Kq|m9x-dJuCYtl%bhvfi?KumK z1dcgCuP*8W^-5f|s@KzYd|{_(I*s?n>8@+@)Do1FK9WOJ&%Swmk>>7?@cXKYx87fV zH2pGKa`lmP%&SrAi>5_~-G{H}V{Eh0S*$X{cN(31XNcmN8{ZyA`nwL?Hg2dym~oi! zXhu5_iOV==3DT)Gv4Ji{J5tKKf_G9q%0GIp*RZ*j;9A(O!ocWht;3?Cv)Y2bHVBhv zx7x1G)XVT3o3l{cY&|9MHteX@wy_q527L#cn4yyE@%ehRTC$j&{dNjh(}M#m+!e)3 z;#0Q9&&zFkJESC)x0f|9D3}{nkvmxdhNGrBwAX8*ByYXtZif!TN?w1KX0EW`*kW?E zm&GHH1ZyM1ug1VfFSsOvFQBE+h^x`wfrHK+hFBpnoD@Y6TA;BG3v6RJfYTVV`&U~# zpXgIhz;!Gv<*Wx$1TmeM6UWmb3i~z_kpXUH!QJ%wmH%>K%OEQr06S$8=wU8$zSkIx zEj5k8IAneapYV-82c;|{Qv3!W7$CVh|Gf$hzEVhz13ZKjQPjsjLGRh1i&?)>-t}C7 zqwqn;#8bG<+sjC6u8JxnzZwc{VBukn|Q2}+5 zk;C-`!PAcRg!w=cvs$r!d%XDzoOeXdl3+mq1|H8|F!U0|iaaxYOxmu}+t#!UzZhr( zv`UeI4!gKUOsB_0ltLh~U1Q2^J)-RN*^0_+OFlB(@Pdkz)uuBVAjdEAalL$L-D57^ z6l7=aU4OUqg@o~NqxRvw8sDWm>UPo^No&<#0L1kQsJqOOkBh10eB`9>)m>c{m7Arn zM~>=2n=c^*K0KoLLgKs@hA4b$IU6um+Z0!F5)5k(Z*>%LDxnR zZN4nr56*2{F7QG7+i~dV#ov5%7uk28zJ^)?4ehAf-o3TWNq-07#%QG)p>6eRMqDWq zgwsr$xH}iO#B+UEm&B!8FX}}iVt8fvEX8OoCy+Dq)P5wJSCEl89k=PN?xxyATFXkw zZDUG6)d#5Y7@Zkx5`4bnf4%LGDcl3jugZ155j~l)a#aubl#cx=W`Ob>!fQx`xRm#J z)(Sc->~Et7h2g@{Z#y1rg+cJItJ8;c9i$S&(4hb|n0i>rb`d3@-N*fC^>tCxsnntG z7id^jO_xs{urugys z0X8D>S|EIi8;&Ps4EF1xCliSae>7IaXc9{h#{Gb_wQ(%@H3j*YcrULExLu^ljHm~8Y-3l`1Y>Vgcvg9yEU;7@c5Q4g~K-y^<@f%s3!F?(~( zysBLwsyJxqk7>V8`uso9ruy`eJ`PfD=xP|I9sMj7PWCIeb|{m%h9 z{|Wy8FV2I2{IDiF8++~+S?nWc&EBG*%CoTCS@_W7~1hHOtjY zS%0X=0+hh4U%s3;avH-N{PJP$)>Kr*2ZMSj%`V^{|M09)Ra{fJkSddWN$N%(H|r=cD0s=`YLZkUh+vl_ zErEHRmd7gAwr(O7e#zf>krY(#YSeq21N$0FkEP@EtYEpwxarm^X8R7bhAF?1S!4Qzc|Ye z?n+VJgtJ_W8s-~T5b=$F-1MnwQHee-yM60$Vk#rI+dNPToN4gi%w+KQ+~Uvg^e3-MoN27_uS-UTg8V+W!To#39jwwp z6N{B8KHA#+HJlU_{eAcHsMkEw0AfJ|IrzsnZNjuK{@;L)z_&a4gp(Ya?9sX8YqkUq zu7_Cjh2E)jC1|6eIEU`#cI95VW>OoCYc~`mUWVn3o;o&Oa@C_m*m>Kh3cSF<`zNd+ z({=Lk7r*r1@VMgz^{0=n? zi`>XHpRM7(H6fE(e-Cuun2j`WO)E0d4}6~$_OgxPX`3VXWkpha<`D4V$PVT7NBQ)9 z@05QJz%|%XlX^m;??k)eM8vkK?rM=nH%Vc`rsnKRGzAYaXtpQ3W)-&Zx|7x(cXK?2 z@teGntfmZ*596p=7lqXaJ@+oW!bFG5!{$scX1LSN#M@|;3^c2*`z*AQ!1r0Dx}fCA8?I`C!jp9kXI{njPXj-MQItgyQ(JTE z?vvSYyL!Rc#gdZ_EqOo~C7L;^x!zB~TnKc(qe;y7*1F>?rkX2sQx2baT|FZ|^|eW_ ztQ6jZQQbYQ3j!HAu|xgN*U36dVQ+OOSTOy>VmvMD3LLgXy!FKdkp@E+_n&{!FpYW? zZuA%`OGTLd;EHc@9X`j)bo5OvqF{%dxP7=vYCiW7`NS-fjK`!Q|Vvc zie0-NQ_Coi3vNwHq!@mj4u|Xi_ArVu!79Ujk>cyMd8xV2P`Vw!3JgGP1$6JR%qiT` zl++E~x$zc^Z(cLbgcMV7<;dcEwvk!zrpu=NDUrp-CYtmTfWgHsf6|*^(iGG68 zHu%(DBLyx z2tLZlT|YFCWvYsK6oz_j(soQ9cb{ATh9H^DU9)$u-_}6F@3|KjRXs|t4u=?wGNa3K zH})Otl!H2$Bk1zm=xT&Jy^~KS4Q5(w(uyqM6pumOi&BtqYxOU=y%f66G98R;cDk?Q*~{& z$b>98D*om&+BLn9RU%LD$fyqdrcw`Ih`ERuODeKb~hW`D5BA5 zINY6GogCuZr62x*XC5-&z5A${uGxqj?Bi=Q--fvNeJP1~bD#4@QHD9Mlp`r^(c+9n zk&bmI?U^#?&S?!#yUf7ne!+_Ibwe4?vD5rRibBg#JHEnuYb6u`#VhDtM6d8c{Eu4^8?cFT2sLs>gn!h%_J z+gpDeQLb`Fi2uIrX=57g^G9w7do0ms_|f_yxE&`Qd^em+hT0)+9UD@fVs%vVbv?^* z0981v(siocc)jwFuAWP9%KzKF$rfuBn%k!juC&x!MwK5~y4!(`+Pm&6&(`I$Z`IOe zQmly}LdBdH`z6FJ4M$McXG%0h}kFfS@f zP5VP`Ci93&-e|3BhFbMj!k)5>XG~LjV&Xjgl(m3>YGb&g==7syvRYZ0?-aZ5-m;Ha zYp00_tn24T#8_!JF-}XS*B>up+X0aNBSryHK3oBp=inrBoY0au#u_esv7b;CE zMK!npm4AFK@dD4-7Qks)HtoNnu#~KS^!X6eTW7 z1m{@MQzwsT2Xt54_Lvhi=(9Nn#4u_2;HGX-YnLqbRNNBFao7(V-=Wj@avs2oXxN@W zz@1!uu?efl0ian>g{P}9*uRlz5K#`^)z1f=9nSQVeqXC@MRnqurHSVu z0>y4Gejf-)W*OPz8$5NBP^gOh@##%>&x(M`lClFvD4<>9esy%)nI6IS*GMPDTKLO! z{_vU~BGFwh>xUfemWT;4(&Mh;qR)Jdy0qj^f6LP8dy`5i;O$yysh5$jC7a#eFz?;( zxtZCwD4US2+)E?wJO6mKsFKZNS@CKDU6pPfwB~JVUB0ecA3HTbY4M16f)+>Bqe-&( z;BlxJPrio@bE)p$_>VPmH+D9`9Hz^wn8%S|sLIC#@>+7$o*d@ny$3PHr67GL%MwN* zi3%rgE)qb^Q_EM|_&?Zt3#d4n?O$}TK+vEe5ZobyyG!ukK3H%DcPChoOmIyI7HqJ= z2bbUwf?M$5uE8yL@}2XY`#$BK0}1ZEN#NLtWyelNG*ju!X+!-A#4@$Xxb9&L{rD{Va@usI3r|! zhVpzwS5-TAp=_$GJpGN=juTW?uxKh#qshB1_91QWO{B)kBI9z`8>+gAoOHeVT4~gz zCx*}HlOSttM0xgPX;GqjoJ_aUKRO)LY%PAg33#KO#Xk*y&k@0#UdGk6ila>OMw|W# z#Q-`f(^cRI-|UsCVw}wJMRs9NOx4B9h%7o^GFkpK6Ex6964xL?o?QTzbwJoy9{st$rE(JZC*L&>MV5=SmPf{w~bp6{D zvdQ9lD+<%nnY)DO)!p%84f~mI3ZxC^*?_u3&kldrMf2mE$=-50?~X zwfqVtU#roFX!`6av`&drE`w7!-#J^>zf`zH8$fg8M%cuiYgZ+16mE$5!ek7*(+c2_x<#SvN7>eYQm{dDAnF}-C|cM)IRj;fKaW#7GIuC`qVCgwZBz8 z-j_;gX;Q1Z$u#7wUsTA(S-b+BfBDWeI-(T?rExJ(lzkjR1U=v-8VW!$fC zOpjPuy-Bm?W4UEfk*3_!*eN_bTy$`oqgZ-pf1-u3#eXY3ci209C`8*7p^(L!gsDI+ zVEO#hX|HCzt$cY0ta;acbKgO(zhYdI#(Hg`-m|HkA$%0?Er}ikOwSYOdSsX4M}p^k@a7x;lvt>`$j2e9tSgy=Z%Mm9|oUe8UGzEd$MM&Kf0~bA^Ql z_H7(#7};|9#I1=p+62)@sw&%BXD#X%WrVAjbh`(ux*mY)$h=xtN62@YrW*?==v2m2 zqMs--`!d8|3T_L((W%I{^$TzB5p&m12Q+yO<-5wVpNo8O?C*6Grp*03v#!$Uzf013 zRKcHqsQ{PHw!O`mH!Ofpz`wR}jI|Kw?Fc&vUm%=#>ju@#zO!Vb;~Kb@GpGzgN?+p@ zX(gChEku}ZVT8jMV_*wzvYyxpqF_d%cuA-Bd%JznpnSX1)dTeIbnEQfmo zH8BeJUf+8(?Ldj{rpq`{k@6)lmKoFl@yrdLDv;DWk`NmPpa}NyYNTsduq^HBwKVM& z)H}mEYsrgkd#CNKCRCi~3!)coq{6x-$es3&tUo&RrpNJW2$>2=QPJTKFZ_5Q7OP7D zui!S5P)SnLCvn^x3>BQuxY&d6 zE#j#+U42?PFu@Q2U&JdVDYwdvOMU4O67$E*E;AW*yY%JX@qgoeow5(~J-uD{1rRYk ztx8x^xI=ed6)HF(8!WP$U|s$0n?yQ^{hIc;t>vfo1D3I2jDHUancf`T*jl2HV@?LA zZM_X04q~=^PbbRZd>Qj<%VZK*`;70Cqe04Q`ZEm>w?s(22Ne{#R-9@({UGhVsC>!Z zbY;hVF0IF@C2mfzTdR8?3O#mK@)mO+9`jFAS^EKJ&*~jBS;d*?M#s{&OuohQ#(_JI zW3NxEG_XZ`bHipI__IVdIWPT$hQS|{`o|KO^H+}Kwv_xQ^5F;TUK7+hjdk+oOX?1m z$U#d~DVoRdis+W7_xWp5#!9`XhXyb4jc5m-F-43}mtwn4TEIOd@OUY7fm)!Gr%|7k z9hJ4Ifz_4Hj9jAxB4>9cCwzuF&kHj^x_X9-9y`6L zsq(FF8CnyjgXhAWquSd=r@PZlZ-PD#2GAcneezw&WHOvesPM!_ulM#sUc`^mQO6ar zS>_8`8IU-x4Dg+K5Vv?xF=pz@o*z_ z$F1;$?CS{myXmx5GvTdw0YWSK16(5l^Xy*`jt3M+sfve~!pb0#O)Pvp|P zq=MXOQ=$$@6U3VvNb$&%30 z><;{BzvK0=(q?%`=| zs_wYSf{9`GzTp6Ubg-I}+B&Nk!F=~J-k~QJ7RBT9Rx;l?e=zk&jWyui3%nIWlSiYT zHYb$O)i?qf3fTQBhFPsV-ug?f4!TfP^y}673N59W0YSdQ(i=n7)LjcXvJPfA@BNmu z;okH;uJTIS+u9=n8JJr6b$#mbE>9m$slp%`ft1Y`x)*Nfb<9`ZE6T>^mqz2~9}k^9 zV#v-{YO8%QqAjyOtf6KJ?hBPqtT-V?$DlVAB*p0QKX(a6NS9!ZxST#r6v7(Ew=$Ew zF%~^qyH7B3+uC^yGk51FvV256k05O3i@T>IaQIz2MQAE9D4W-R`2p{akZR?n>8v=@ ziC2ijp~oKETYsO~cc)#*3eWB&SUaz*RwyL8-<2)c7a9)Q@;%Fo7|TqhH~(i{SB#-= zJ%I9RCo}K)$QzIimPO^3RCc|CaedI~PLLbaBFVC&YNO5v&RU<_lR2bEe;t!$j@8dc zb?@I$=-bd4V!2h+Ooho9&KufSxcOS(*^niS34xu`CRF>Rj;HBzuGYFAo`xFWenc)9 zYT_Z>c+@M&biZ<~OId~9rEpNOzZ$xy+17QP=1M=&G_Y&rIx_*;6@9jn2{H(fhxvr) zj%ZD*cgN>N+=}{q8KAg%qm#D6+@kZ@$M(t`4~Jt;yFW}FJZTu;eYf>IDQuzwrQrGA zoRVu++ra^SMPd29C$9VeX~WJDX!l}9)+zl7xPIm-!kxv?LcJz$B13Hgx<#UnDT+iS z(Je>hja=UGh9`yENb{6cB_V7fk$=1LBSQF*V;^yW5FSK4{hh-E(oySj>?)p@R9?Ru zU{|=VsZTgEwoWTtl=?v)$gf|wRG3B0b%>6)vG#0drqxCZfB(8Q8Ftj#9F$NX{QRzM zT;P)A{ukie>E5-oQ`=J?y&khAV;Q+*o<<>#CxKA$)~Dy?X{%PdS23boIr>7D)7HxG zlrBOfEwX>k)dk?JG#)&Vb>-~EV-)xlKx{ABUh@dJC~UhMnSQzF-dzK=wM|+PGA2A5 zKhSsMBu$jMalM+(8pq2j3F>lM7Hiuo&ZeIM3S5l04+gc`dQp*hl8oPxT#wp$oV$Jsr|?C2lFzT0R;*o98m_4kwpAQA zzq&;lx@fVe)iL?}4zY-eR)Va46~@-#Csr7P4zUEw!W!!9Y8UpO$ClBlDqf1}0grzH zBr^h3nkFpcl?#0Q46N%l`t{Pt!6Q_(yzRd%SyWK-Zh->n9-q1~o zGZ^^1*O{QJt|oDlu6mcUMDtxjv}!;U8*}1#Ix@Zx7gTmYjypDEq@cFmX@*l22<=)4dOy=79#2NWe)z@cQ($+A zpkV*V+Vzwv*0z_p*ooRZxEg`nO#Iv;Ih&!E7ZzDX0J6}|&5Y(8WzHL5IeZ;&e+(L! zJ-pN&nT1*IsJj(9)zKV&nU zFK@c6TogBCkzdgCGdx5L`m)f*@a(GC^oEN$bXpzgX;Wg>hINiM_!%{}AnFb@d=XgAxve>eXz;$~$Ah>*4V>t>}0 zaC3!J6dGJbegUUi$%)O!6XD|Wq_5jtIr`(h zg&hIuan_if#Fu8!A}o_nEr1ggt=wWeS{0PO!Z0?tqgE~KL}F%S)IE<~zr@>rS=rch z#T0r+*fiq=3!wN>`Vkf{?`-B+M|6pTDM1JsxzfvPOZf50v=-%J@Y~|BnnL5Ct(D;Jfz`B%4{In%=Id|-h zfCzZ5K#!qTC#`hqfkaemg(I}K{fTXwchl;CKf&VQbN(T^7p`vHUy!-`X6EYNkol&| zRUw@5W51|Yw0PaA{Q4jf^5w4mYl#m(9+?l7YSz=^tH}d)rbHbG`C9`sbN_^R?O?p$ zBf1um5)h8J{!E?%+|hWD6h90j9tG|`A^H&7T%}`pQLd%RzR(1P-Fl2)3RX@Y>`$6c zrW`@j-n8Nhbj?lmh8+|54>GcNOblQ<34aE2Wq+}5vX=-qq5RZ^k;bXWSp0%kzKy&7 z<7PtUqU%f@D+Sh<`WdRnOvjt0WOJr1i3%S*U105QiP{NqC%N;6CyQ;6bfM!s@%)5q ztiX%>Q#DfDAY9k%QHAyiYUxXg?`C3;i z@Z?ua!)z3@cG54vWA9?TA8*;9TMJ(M^sQW}*R|0ew>Ix3`ABp&!`6OU*}v-JE~4Uk z){nk(Gd;OQbiE_uKm7HgZ8;=)g|U&9?Y88`Wd4Dv5Y%I}GJ?x0OIlY|9b7lm{Z^e@ zPLXN4Q6j9adL)0BlBPwI{k$}_VXG*b;7O2h-U(he)qESq*nvmRjzrXYEc4|3hD_-7 zjmMq+n8%=C?Sb&z@S<0jGg)`ocWk{haXW2OfgXV?j-NpZ+nrOa<)#sACqc&&JReR1 z5uxN@g&#%v^1d%hZGK5|1z17V#9C+GzFCfRW?UWK&_O)1Ne!5YfwS=f1j@b}+20&i#!Hpi!5V=n_4I`$IoGbGyE-qep7_SIQdI)0t#Hb$sa?^@nu?qF)EH&c_JzXQrgv4PPDw znrE(`KV5$cDH;2Qaiblgad5_YMS_+k%&eJMK2tQ6^;&B)2KtTRXNof%Of>2SZ|dw+6lm=CNopbZ(3gw3w_P5 z34b6-_l6%7RNQ!oAzP~L3lX9W-f|gv_0F9D(WNInm%~85<9RT z?cK2g(q6l{dds5;(@jmiLtMnu&Eskd z$RN|rih%=Qs0{2F7a}ULLLs0=N02YIAzm#2yh-0?&TT0knoP>5w}E0X%gQ>0LYRw~ z|M)EZ|ITMAYbqQnU%KP|eTc7{>l=XEaG812*{`TXSxcc%$icw0N=nwJPBQaVo+XL@FCU=toC;XWW0} zJlxLPOF=~9{Y|UJpSHr7aZ@YMJ}YefLS4Nk0Bz%jo zOtmWf1sJvIHof9>KF<61t2H;V1iH2V#M?~{O8&X?Kx8|EM>tY!U(Ku1#C=%+$<|2d zD30p_^2S|b`yf0$Ji>V(UK~@~L&(&}_kZQtGYu!>%Qw*}FDUP#RGg>S(MVbbXfGd^ z)h^#)U;QhKOz(_eBd5L++kOVq9UD;KAxxb17oa07D4gm)NtOR%H%L404*D3;a)T;} zrM@Fk?Z>Z|SLFXatG9>7`B%h)4Amdn|FhcR(K5D2uO@EQDghoUg;aZIF8oR>Z% zK6$=vPC+0to_C5uyv?h1a}e10p{-c{jn@AHOjrI*mYDwo-{psp-=Y=v8=U`LO4itv z<0RFpSgVKG>5-2#NtXiR>RXez(4|&JNRV-PN@MuBus}OYXHaMLM9?EpTf3X3{ZtE_v3L4ew~`g|x!E(Na|@j}nOMuoKeyiy*^Vl|sN4nZyD7QT z0e8?w8d0))5t1Kn1r7RJ`Vp-|$=|&6ii7}i%k&9sigC8b@G*bd6Pj+rek$v};dD04 zgNQD5`JZy8eloRwxQ>M`#m4;qH~Gy%xEU=PYn!>KH~@MdhOTGrqqROVFnI zO##)0P!R4F`-t@9n_1_g-Ala6!okuS+SivI6h7s-5H`#d292L8i=U)3z@@VKh#^ua z!ldQ@*~|4Gnm=vy2LpdF@CO5bFz^Qhe=zU|1Aj2^2LpdF@CO5bFz^Qhe=zU|1Aj2^ z2LpdF@CO5bFz^Qhe=zU|1Aj2^2LpdF@ZZD$-mh6qOe-f#cMmr!GsoY*oXzbpg*d4> zsek{VrluC;um2eJ@jN8?=O()MfZ%(E-^H69cD! z6EzM_OJ-tf*7<1YcRxijl(ZK@K0jY5S9jURN+ouuE7YP*7%3TQ_R`^UQ``_cp~?Js zA{&s3eImGVSD^$CXRU&7u^KlRm7n44W2Sl~E_maVmOnVrIeP7j$55GkBdCr{9QsNH z`K24nt~Yq4N=6{3apH_b;hKR(wZ_hQ-s7#5A6ZHWNa(Aa+VHz4P-%9e-yD`kLuX@A ztlTKNzszvQ!AG9dqx#7co}8AKrxrV093dFwI`=Ms3n0Xngh*?-0^?3$+2z_(9_+i~cDCfMUy?r{9ot)V6*F6*IQM`$l} zF4_*@(|I=ie}lE(@cAd!__+B0g*5JeA?+_{$@+N6Yk44GMJ+1&JK;Cn%s3GT)EqKW z)LhgY7G{V&0&IvA|JZZrtC`zbS$OGEGV`NviMO8vXiT8L}AnK`+;{Jxll@88La)E;i0R(~JKAgEqid4Vmg zH07m#C;qb;HLcv8J>4v<5EuR3Cz}72yWdUoyYK$1I^h3T&Hho7e|E#~5;?Ry%{~5V z1Vu+gEBuwD2ew2g5q@6Izm62Fz&5rX|2mX$c5rsnaxt?&wA;VcjYAR95NfKftef zfDGUfD%vA7)JKod9-*T@!oYljiTU_3CJ`7J92P`{w2 zV`O4sWqC#gO1 zM?%3z`qd4fLevut>8}m&&kYF~1yNsgjK`Q*2m<&M05TE^3Nk7R8X77pf;td!9)OCE zMnJRR^)=*fBkixm)OCOp>Rh&&U`UnV4BvdHMJS1ciiU zUdqbJD<~>yY3u0f=^KD7EUm0{Dm&&|s( zD1;UjmsHo(!t3fA8k;)1x_f&2`Uk#_PfSit&wQVqTUlLO-`L#R-q}4l{dsnNad~xp z^P4Xu0LnkuLhS#+*njYakKhX#6%_>){Wo7o$li!A3O*_t4c8+ADGhWpS3+9u5DX&e zgwItSkLh?ckBQCQ#xP0fc~=-tezW!$XaDaQ3;l0#_Akc%Ctq^_Y!oC!=b_*OBmmbS zh!Qg?CWyHQK-5}9+QUo)2u;l($$AQrO(J^)24MSgTvtT`KZJWBfk>MUDsaBy!j#m|wtn;TOe;6LTTY?D61Am1L8Krgrg${#upK?2(3);>pHI*2a^i zB#9EqGA&A_v9VXPXy~q7wcqOM^e8-qFlJ3JSo?oa_j~&6u2guf+s}w;-ItN>_I=-` zZ3AdC$LMzQ-7_YDb)$bA=@0Yq0i^wL{-g2gtrNLY0W3Fj$^>SR9u{Tzg|)^nG%uGM6ddgqLxcYfbT zT;yd~FeFs%!e_cwG&)FJ4MDi`gsyi(uA=G2Q26t2FJelMi1q}&ypK`ZNJiM_JK*)} zY9|dc-3(B)!O|UETFOZH*q0#O_K2_ygsVWE$XVV}Smf2ZDKLn?2SsRNJSoYfxG><^ zRNo@T4JJ}d_LbgQ9ioStNfy4M}KOO~v0?PE{NA$(Gh8(~qB-7{S z;vEHx-|$W_`c1!`n5u$JC`N085iY1c3F>>eKe4_W;VZGUn1B{YSgQ&BeE4|mZQ6iT zkzZ47dRY5u{?zoOyk6x>pg^j2_vxhoQ&TUh{k__rNsbyXZtXR~8ixn!^Rz3K^pv;3 zAo4`{w(DjFq2I7ENl5dear<+$Cy}%hr5${rn6^;NYI#ggUd>TP;S83X@y%dL7Fq60 zNnEHF8jzEc`A7i=2oO%zk_Tx>MvhN_WdVYk(R_L04yCu|=}YN2DNUst{QRi{l}uIliJBQlJx0>Ge$MeC`27T`enPe#&~ zKTy-ZFPZxih@()q@2`%=MImG%o)YM2D8{N&!vsfi7qYl0Mh)oyKwCKuaEc0NSxbQ>|O0V6HUkS2nf#2ox*Tc}>jPDaLXN z*)%t})gG`DW0N&6Mtw86kA@1TOyM@fT{|o76h~7^u+(_nDCO9Pkbt#Ycy3)qbVB&K zsE$acvT}`JL;G6+mq_1x*0)%IvtnJ8`D|E=#btRMXY$Ev^CAB-0n8 zc*X@IdrI4WnI)jAeU_RRBzsM(tEBR`PH4UbOU=bggj>t6mO3gWlt!#==$lEz^EZ>s zEXK+Mr1GT_E-LsUZAY`Gs}Ebu9CF?p3b^mlA>ClE#(^}&z(!ueSaBrF{XuS(og$7# z2zmJ0IK@%!zGd|F%f({IHD(E+Sd4ycbz@5q`}kvr*eO#W~wbCBGKdU@D;IX&l`wsn>lz3VbQm(DW^UT7=;&sRi2N-P93qlQd{^qQu z4)L3)5};^FnoeU(LQYmko(QKV$_*yMwxo`^# zAufd|;Xq!kq9;GV;M`0}OqR~ySS}z+whn&IBFjsrZi}>-*iIkeex%^H%m5T4lI3RTt@k{V-Ew`brIN19(=OEk^B4gulkS(5Eg5SX(`h&?&CRk&|OtP9|L&TR2;+F1~{XH1fL zJR=FGUf>&=_Y>KtiqA`U|B;feb~-gXXV))6ywA*?Q*4?iZn!PDYV^$id0>(XT#kaY z_c20g7SU6ixuEB)!ekm6KE6)5 zC2KP}8)Oc7!;*-c#Zr5ogGRKXz#^H0M#1t$OIB1JIYc$TAoquOvZgueIQHS|rQ@5oZckbrw8c z&S$k6kT(+=3qv@y{)Y?-X;ZN*fQCFr_om4AKr=K)e5msgC7L@ZqCF@u{xmrnv0&X* zl49zj*ut`X=P3sHZC;Z8(W}WZWPg5YFW56KT)#aH8n) zfpO^)R15PP4wSQkCI7Rc)GX%8zA#nP33T3LmMD;0EDM?#7(<=qhnB3EpE^)hLyc%m zjR;VxN))V>8iJ)tH0P3ocBD!)F`dDT1nx{n6U4Md*BsXhCwa1q#t4>0^v-PII7E^e zss*0J){sSp0F1^Yb24zjN_O~efsb<6_rn*^HPP4d;5}?^cus0D10BiFFwM_{RPz+=N>5_)C|)(wCz8^Ku4yGy z&@pjLfoir+utOJDAva4Rlh|tMoGl(yF%~{8;z3hB>byRRS&e+&6DqM-VFSTN` z3%Ai8vX99T7LdYpq4ifhJ^1z~@Yc>KPmIWKt*Bv>LE#=1&$Pn&R!oKTuR{4~=HIDr zD8;jt9nbWTzZc32)ARb!1gzP0r}OReF8Z-3=v=oU`WI&7f18)u3_)Bw%FBU8x8 zEApiKtjUeHp&09@my`MJWex&};kWn9l7Vz)9CN(4 zVEL17*mba7=QKyC&8=EEZ=YB|e0v(zcwMr)G0V1%*`69v&yE@eOOy{3#;G-vj=&va z00#je#&LEN;n?VyE_(=_B2D<5WpYf3CCUYgxHGjYy+CQ62A+4?8ocOSp+FjPwQ))2+Fu>rtBhx+ z`a<#+cCF({|3ltc7-_pRSNVz-Xq8!eo5JMNB?{YEHl_%r*sPO)`~+{i-bR5>%JIn4@}@VDH8zd%bl|o_T+bxa@-mZa#O`+vj0M;*AV3 zlMa-N`A*;Tz~wp|6})|mg-dD}=py7P5(t->DY0=S8fEQX`*$OjbMkil=|5o{tD?um zaXK~fCa03$od*lNKsFE$6$K=;UHZr?#{1cOyK7ZY1E}`Qb{s1E_`|_`yq!+8!soo} zkZtXC?f8hOwLHDdkJB+^c-hL3XeusEN3y_zT-QE_X}*0oYUaUrk&+@a=4IP5*ztZd zRAoaf(`%&eJ z8nmuHk{w)bVQm57446Zg?}(Fqx~EuS3Bs{9QkfckK5U)(XTQ_brU_I1sguFM7j3c9 zNw_QlZ+NVJ`VUbl(#2pmwwb|CP4UH9#$S2)*H>ml}D<9ZMH>Dzr z(=j~rRpMu<{zo8vllt|k!>}W z8{0qf4Y0^syR*YG)- z5>56s2WItO((YdJ8<6XWYrh6nnf`1*duKCaD2CaDJnl91 zdU{UFEFOHLbwZ#Z`JZYp#D&~FW(^0?`++h!vw7ke2tLJM{0rs*I4n(qxa*T0qSg%^CiAfP@Ynu(HF5kQ$G40*Ad z?8E9113g`3ab0^4MED;9H@3_vI^}?C)~lPoCOAhRRD;j7Pnt z&c)#n8h(%8f6q1*AY`-p&H?-8tsCJKb_NgTdH`w@up+v4_FP`WI?;(yt%)2REdFI? zv|hla|28E8Po!p2@7oDZAe{>Ana*yLmy$@9-`v!BGJ_NCoNHKHRc{SO@&Gl`_a7O0 z{;N2`bBDv)DPip6QX?{u6Xn!KeG_T{=3z1Wju}&+gBR(^IWDMNRBTF^@=4LO`1)>;d0of-#M@$@ zZ7~+oCvxZ~@kLCuBhVYB;8j8s`XcP7+gy%Ql}NVDEGTTVoe$=$x168EHH75cMfUrJSX}rptg`zO{B37D7*wnyRY~kZjPTTg@N#pcu=0`ORV?m|U0>1C> zcLiQeGL7rl!0!)=CE9|svelFh&*t|WRfn7$*73+a&$YG#*HtQy1hR9@&wGfJEv5uq;gh5g<1;F*Rg?xd%v^BW)f(5kpgm0w&9lrFpK2 z(t0H#K4fx%n`KE8`D6Ls?>w)g;>neTK+5W^4ioZAAH=v5;rQd?luh43c|k{XqDQXw zL|5Siq3TpOQ+h?oTzJ2#gF~npGjQZszS`nb@2Q%=NmRsnmV#M#{W3rSrrg(w_?;+s zBX*kwlNA+G{;4b^E|n$sN6@P&pIqM-(O@V?*(DP?Cv ziO|r|=N%0wrmG520d~gJBm#eo)`FhRO0{~Ez6e)%v37bk?~_Biss3oq=*D!>tfQqIe&*2T*QD-nnspj@j1ALl|&BBW6LQiv|<8<+zIE0}MQbPDPW09b4l_qDV+ zj(j|6&IoM=XDOjqey=D+Z>L6mD1ab&Lc6LVa$5>%zR=eQTARfiD|trn{P}#e-=iFk z;&5NrLZ$HM)hA;yuIcxQGJ6Mt@**%sT*oVL+*N9AVU&4_7f@x-6}8z zXJ9OFP4tI(Iyc6UCx-=8^)W;)`i670bSM{@2estRi_iPj_|S(P9t-lC^Bv=gw=D*N zP{SxjXE=yv<@sH|Sm_60(cM1kI2U{Ot~R{JNv0QpL`8bvtQ}q@%p=UjD?&Dm9^tv*}R%4yBqYsE-$Zl z!$dXmyP07STR#q~T68@!Ws^b8yJM+q`S!^ecWT!CCz=EZd9FJCm}Z26ZAAWEh2!$( zEW#eyR;NMKV&v#G%CYV66wCqkOHDUQbYzIb7~{&)#o)7siC&$=BXvny5to0|CMThdcH z_7)UdsEK%ydgZ+~7(~+T$esc`_b~b}bNH=wR-$C)^;pWyOh3pe&%MyJ!{3Un$K7du z%~Q0P_&g=H;$o1E{8JH5v(bEhIag;RRsWQ2tWwp6ML{&@x^>NWWiZnxC)Zsudu#1A zYQzY0OCuIdrJ@)keR@}9`#8@b#|Wd}Cg=$`+;KoW{k%#{%(j!>0V7dN=z7MnS z!JyrmIJ0PO(8`;h5SyEy=lktseFDlbn<}sHL)ylAU9n|0N7)$evWDhrVWVG+ox79W zbT+ddmjqWs-2?2I+(gZedssp#0<{$xuh4(iJc<;~DwpeON9QoJ8&SK1 zj)ezVKPNlmAp;jpK^9bjKxGlI^yH?5osQD!M|vs5?^Ovqm$J34R9^YIWh2!E=q!ek9$FkpR3j$L&CiGp}){f_tX9Z>-aho%7}UpCEGS5h5cr;P|N#yUwKL+$a2C^AS0=$!cqy25#`%{bfS}2 zlxHitN|a)V_o`aqD9>5CphO)?%t$}R5mN?_K14=qO%&ZsY9Du~*E|Pss}+!8&e&uq zdJL5rtGPG6HlR?HiFkg}=Qq#Au$6rIx}aghoXYoPVOn;**t5uJ$x&P}{=)bv)~7r08i%lc+MsS!wK;7VMkNQU%96;Pm@NBF_faoqRmQI(T~ za7kk8De3;~S{;Suw&9L$D!IRc@P{>%GBw8XZn448O?}wid<{0UM7Y$0b#8roYYS;* zolE`+-Cbi5kR8YvuTTmcMET;7LX~Ov5t@WTN_t!3g1)95oq4F0q}-Ge+%ma9SwJUv zZ!b4Z?r()eV}Ni^OP-NlJ^}jDL7##enfMqg>+J-^y6sv>2+{cr7A+96f$YYeM zUjT2Sm*e%^^SyYlab6h&-^RxkL%sT|4T;}3vuh639NIJKIvQwsW@cD=KNEr#`l8dU z5)&oXaWX{-G!k{Pk666T)}0DiW?x;#+ZmE_nW@LrRdztA$kM6LPnmUP5iYFfaE4sd zREoe!gha7pTc6i;iy1v+7mdClW(d5l^Q?$^+EaNtI$#A;XlMRT#3+6t+U#Wt61xNF zpOIk(PWF$$K8EU{TcFxV?UcMKj@vDb#HVdydnJ=C&K9n2)9EVpDOS(s-qmk9yV=K# zpDDi+;O~1$mjT%&-ruiXbE-Sedv0}c*LPAuNP!krY-Czcbp1bT~sM=BpRkvrsnvt#~D{{K%l_2kW6L+~CeS%NeEAVIa`uJY}SX}#b zW22NVtG{NS=#BA>i9v=i)kigXiVm2g9jP;rcB)KbZOOSUEQ#>)QB+$Xs{2GVOuN4M zlS&)paJFuc(23Yfsz<#U#jH4SZ&EJqec6w6489>2$?B$6ORCder?qYSsSD1Ny#vf!h-QIQyB3rajBG&UJ3Qhv&X+F{O{cY`tc>iqXpP%V zkS{3-N=IyWOjXdxlGPO17Vk60dw;wH%B59>^=kt~UCOt5&d2F{RL&Fm&J8d7@jm}} zXejsAN)@wFt(`uY#1jf=4yWp3{_zlKdmO&}T~y18=Q%xWy?w0V!Kb3Oy4x(9L&w9J z^p%DKYq6j?N&ZJR!6__oG^e zG#c8i>8NS-$oDpBTZ~8tXlRnH+4eow>$2mAUVY>jp>qB0)T73Hmikg2adxG-=}#{4 zE>98x;!~#%!TDt|lLTzLvjqn9@eJprw&7|~>lXFk2N89{5kO*|0REV9QQW}45d znM34Q$ch0aU`TcqU30?`RuWWwpTxG}3+xpx*^>n+U7 z1p%vTiEPU)j|H+sDCVRjhQwnQBq{b0*a}bcyUz2gpetthZ zcV4}MZ2G`nb1w+S^6jd)f!bPuJGQ_OWsB>|%d!|}y+A`lD-*}p<_S5XK`nuH3d5@3 zC$~xo?6b<|$0)O?uyY$X8l9%6g)A_>qT2uDS23=K$8JhjXVwkG#k)4|X(SQxe_oCk zH}@yJx9cfKer)i@=7Dg?x>nfwjCZqH*+)9p%r!hl{m%~?_a}~QMkC`Mz zG=?%RJLIlAQ{Cyiby6Ou+&TegwybY+B}_PN6PflbE|wc2%TI3_{XP|7jCNWaF>5Bc zp?zWmyWbl&%)om!!SNy-*2RA2diMef)5C8mC*ZTO7DSR$Rs|>roQ}z$0T|5I5x>IfCpteXzzajnm}d0bZ-q;=FuDKbmTl4KLUHk7EOs^R+s^amrlDr`q1EIy^-n zQ-ds=yoc2KeJj(yvMudz>~!5mIA>eSe>DkS4;>A7;0Mh7YuL5xlGpwMy;J_S$yf5? zxUun}>7nK4bR$O;)HZf! zY4GdDw;mPLRb+OPOO?NW2jtxa0zsJhfI2yj6e2ZAc}v6W&7?@eV0GDSx% z_c@WCyRAaoTzuBJg}LvAmb0c*sXYw0)b6CLod z-4uhPudQ>JjtYFvIb!Fila!N`v>J)}z?ub^Rji zN4(i^gnxC%Mitul8u~3qOSsZ+4pv3^52aSq^~m*2J#97E4DdMOWgjy8)^s*f=$fL> zXCb+@-IbL_2_A%YHLYAEY0sXPv3vO$^QP=?ctM`SQ@hY_f7IOP%O{|5(xtnF<0Z4T zqi&MM^TQzUyEC(Ca5>(;#j zNU(ZWmx+h7t0?)I6*f__rz=QSvJnp2HdMQPsN3y8AD^qzo+*IR=Ze7T5y?CX_wR(- z3_cXmf3yI}gXbc^|{w7;By-iDntKw*CCX^uX=-oL8jypTzI>vasO9 zr)sG5uc*kf{{U>9+AfqirFL}Jn)H`3-AG??4YXkNr(4X{dV5?y-fRq31&lyx(Y}6Z z&MIg02N*CJC$$JysjdqqlR9h#l=R)KD6vo3Uz!r#2}@joCN?S zE-1w=C;>4@MLQIBpax=$Q>dT{(*5f8pM>+7yd~ zll(+gxgZM$?XIO| zj@77#3O3;9)A(yIOftsODLElY10J-dWwC^`^6VWzCyGf5d+2J&%MuwRA!AXJNvv(M z>h}oXGg||~=j9{R)r&S=P9HYlGs0WtL%=@g{3}ouR0^x~R2&M?BMC7r^AJ?X8+rh| zRizSr=Hu6jq|=zm+Mo`kv80J-x@Ku4DGy*c%~1@{f>mZI05UK@`c+h=wQi$VTe$1r)RT-Vw@#YikwEqAuX9wk%AC(pnAbAvgh=@M9 zs3#X23r6|+3P-V=4_4^vfcA&TH)MI4T~ ztT|IsY_y1XcjBv?tN6HeY!7PHMWcAZE~NLmA>_g{^sKhBk{1A}9M#3vZX-X$J&jwB zTZ&cNaR77b4OQAUN-wFO1Tx6W8ir?MwN!UC+FGT*g`o2W$+c%4agh(O_pH4>^4b>j z;e@2DFr|)m*6xp@+UpZia7V6aYOGvH!&vOBSr-z5P#Bb3YoyGk3 zS1&EZj`BBFCpk6I{6mH*{0reNLfwA&mKjOwxE?EKUGV<^g|x`kZLjXHF7l<8GNnNJ z)@jrA9e+-TM$&C%n%)@<$ru^hPjcO>ik(PbD(&>{)Zz}f#cIEslq|<&2T(YZcT8vht^W{P}x6?fT`u zmOPKrxPKFTC)e~S+F!FR^b5(7+vXs9uUhKCV`wNS!H*GJ4~nVoO(TfAZTfJxbNm>t zP<*UG>zr3bHsy8<2q55t+Oah_{JHW63^QJy8Krc2`RzV<#-w^#5i$95Ueo(C=yHE* z>K-DSD{pTZwTJz;Zd>vIes#nAH1GzY<7?tmHu_X8`}?vuAMB{^-{jZR`hK5jqUl!p zZkG^>(gfJ5I-gcPq}J6Z%IuGmtx+Y)S-51Al0I)*<+Ytfqq#6dI9{f+PWD6>RM_|7y8Bj03=s1$+VC^ELPWsQt}s( z+86sP@=5G{s&b086x}JN;`;VurOnjOaD5JH8Op^Oc@76^*4L!A(_oVAkl>sJ&vRaT zsA`j5$XU2v$~p?`#n)6HCsLfbbY}LM;ux$oWHQ3OOK{EK9<@i}_lDB?81;)K23AqJ zLHtYGKjU2NjK}X+b>OSPs_B#Hw|_eYCM@?}$(R&w@q3T(uR!pIn=63y&M{;bD@^=?ee6CJ2!O2Yw0>?*tB-H zSsG2mI0XI1^d8mj;4*6QpS7yBTMAH~$31zb#bK%5!xDgtDP&(jd8KFsfCc#nwQ1^^ zo=9#PaO8P!^%V?pjhXZ{^;EDhjCR+l)lUeyZpfu!3tO32d}w+RUUjeOGisWJm~@E9UXoIn!-RTXj5I)ZH1l zGwqpU+DPW3D_RaCxQ034b&@F*NRGW3NXR4b#Z`48yp%}+Q%SVc#ZDl$QF}Fjuj4Y1J!%Sw?V~w1c z;XON7QR1d)^l+*$3vM;acvt3*d!M>V09RM89r|7r@E4^ zxGx|70LamDeN|8CUV*3C%{<%o;xsvTJSvZ^aK91M4;EZ)>9Ifb8uIv&r-u2LjBAxx z=9Ys>w79Q>Jn;o6qZG6Nv~;5s>Hul$K^doFj8Fqepi<(DPz7s`yerWD3rt1!r4D#8 zqmRJj`q!RZ^%dCsA)CwbS&KYN1Fz+SPCJS0dpR7^sHZSFGyrQ;Fci2np-np!0MIE^ zbImRdNg8C1CN+la)xCaoyzve6;N^4WsUCxh zEF%Hgi0CoRX7oL5G%XZp!y3nK7l26Q)Un~%K0Z~#ulUt>CEX(g?E{**8vgP$Ufk9m zXHNPS>^@lLbJVubY1bBT$lhhr32;70{rycg$(3y5agC+PIQrE7afm(5#sTP~`3ku1 zV?D_yl52RBnBxI^7RS)l3tQ`_nO$wy$tRZGfPRCmSTQu;zrFymA0&Q*-lYcwF~IcW zr_!~ti)ft!Nb2r4$(|SZSMaOIK>Mqc>)NrWk)xDIWD!K8l6c9iqv9K(cjdxWly&2Z zY7Oj9D`#jB^>+$ADaJ_ANeJzZ_^xut#EmBX@Q2zy^7IvY%TSkAEYbXsp~3f~m95F- zYjV_@pb~A44aeM7g}k{x>g`h}y*|}hctk)wO-S;$IFUY-nJo~t?x7ltLV*1$H@nnX zI^*amsdY52LX`UTryGX{X_WmGQ$pCyn(pD;i6)SG;6AR zh^XO?erl3^dgA6cLmWs5$I3aZ=TRo^&dNAEOyv}zrO0C3(&wTMfL6V{%@klO4_xB0 zVv`2FAK^EJ)5IE!-)b2C%CkSb3^yovmmz~43lYKo0zgq7bS<|$;Qx&4eW2Z;ZD8X;Xu4|j|-;EKb@}S9rKav=b zefs2Kv$@pv-D?hZo@2KMf$3g!AyX0jC1u^89gEB*hX0lssv4-g$sZxSJGXq(oAr%?aggGu{|5P!yLvDdPhPC zym70-q3$4#MfzaY)|KP;m(mciqt zL(0@uldwE=8@q|tc+0~2FN!T>xt7oD_xRkmcEAR2_lNNh*1U2rhob84A$5NWTSq7p zf%40AUWeiBYHbSYJA3Cc>5?2PpS=-3(y#nW@cR9Ubvse=oNi_4LFm+B>*6rA zd1`8r>)~oFWeHJ?x7*9e?7TZ;Yh$C^TIrB17Eq=mMH~-&_b0ilb41+tub;I2PgK*` z3tRh?QOFA+#dMly#2tFhMf2uM$h*gIna}(PVAru6!jqG_vGOu;rzZ)$RnJShQm3Ak z%wMTX(ibOpHMydA!$a`^5X=7n66?m`M=={*`YZncjwzlf(_YRAE&w@2Bp>BZ9YJE~ zdrD6Hx`S!P@iFDNwbIwkykR8A?#4RSY4N4=T_X*Vz^5Kk^dsNaxtW>fV$v~YJd$}e z7+f0h=a^N|McE^Uc&SU_(DfVGt^7sd!eS#5eBS87yvFv%Ya51!<#w>>al!W$)p!E? z$<+m%gn3sWuRR0x2l44$hP~mq^-ETYPnFbVB<`pDE9hfJIi4L>j+0t5rZQEb%(py& zqsXf|Mclexqi=T>Lqy@Y^zJ_qnx9e9?=+jgvtPnvZ1Dd8!v5gYbK98LEIRbBA-T|+ za#m=@QgJ(f5m-fWGT&+ZMRI~g3VWWSxkkRYv616oNgRMd;<_&kP4X1&mcDeb0_o{NSjxrB! z)k92Xx4RNW%zLnT?OK|YWJ!=XVVd?`G^Tb`!zfDK8AkN)u_X32$T`K?uEto;*d_;( z0X4=-LAeLswS-ot^kS9G?+;zAzNH_U13=#_h)^66a_qiwkz!8j(n{{RtqaXfMG`R9la?Oh=Zk&)I&@yZ{|Ij=7>q>@s5Y;fkZ zRG_L`W54~IJW2h(@a{VasL-yN84hd4?CT4T+YV5!==urGD*w7 za(Jwrh8Y|%IL&sJo)t;o&D5`8vQT@rTk@;dY2ckb5;+?G092PhGbhL^^qRPcLGr~n z=z1}HwnQEUx46`8r-I%uF}Dtfp!crpR=d!2Ye5dNa4x1*{{WA84sv}7u6Os)Q!)wIv@#(&1SRvxAc5?bNu?b!E*x5w&@%$*f+(_IQ@s z#xwi7X!N?HIq(uy&PQ9uBo(uxfLG|&e$>`(_Z0aomAD|g|v zzE_Pj!<+_kpPHJ)yyz;|g>F90;ypHAfo>Bg@yGS1w+FHGlP|R>Uuv0?pGrkq)fo&6 zN*1KsM%n<34ECm8$@Y60=IOFFZ^%`ZTA||5u=rb0l1C`MQBZwY^c04*c06v;+CUhd zNhkBI%VCHRVC0;WSXNE8F_Fp5Y(sqlBF4mq0|$sL4 zX3wyw?j$!CDpv+HA%Q(JQpoJYD-yf#xb~zd0Vtpdqu`p-J_{xVWc2!0Y|Qs26C-YIq_HQhbV8l=WT;?=@}T)+1Lt$znJk;4L{`h7}e zlIiyqA1DI=RbJG9@j(Ro)-T>YdU1>uqJooer6^KqU0O8^z<_!hYUrlo^cn}PNT=GE z82VI-+=_ZLYHPVV<%kG3G2kffYu`LacOQWM8rkWPfG*`w7!Iu?a>l&N;U#58>Z~}-XX;M%981;An@ji zE!L)wc6TzOI}_{I73ex%jJG$XvHOU63{-kWn1M^!srQw!k?&n)F*r(OnOa zoZOzKJ@tq-%mVdX3{FW-U93grD zO>)|vo)buHk6QHG>t8Vn5edKDPGrR$sS902xui&89*zq@Jz>1@a5Kv zdfsCsWWrmLP}UvozR093I3SAE@QO90+C9!VV95UfLTf7eJFv@fQl*Gpk0qKGw$v`I zWZ|J>`DT}HYoPdvWA+~!$$^EPOA5r>Tvff=Ic9Ku;BUra&ewFNB4lmBD zpj_!Xp)#0M2;_5hD`&aoP);+qbDZ%O zi7teF|N{0y;Jen-t6iWaQU&m58P=)r;a2Q}?>cdMvr_Scc)_ox{AH*xvbilXzL)#!f@ zZkgF*=yW5l_ zvNi$wiqvs~Nndp;H0SZfGpbJIIW(&)cosV=WVaY9+XpSjbKbnuPzDRRtyu7+;=N!F z)#u(n(^}TvVgVnodyWTcW{2A-P8Du!{3Z zT&(9kjtzRf-Tr0Eb_`V4to$Kq<=5u4j~+$E zq>9_Rbgw0{QX?CF_BgLo_-%Cdo+Q$eEM?^i-|mruE0Z&iHX440c-Xf>NZR-r@PkzF zuZt$u^~a4om69uHqimPlalG~e9S2(X$!S-G8649X?(O=RA$lX6jEE_3pnRD)2u5<6Mj66g4tG6iXAdXB9V zw39u!bN6?kBp;=H*8zFpRn}nXXN-v2ltmbGn2QN<{HH83;}?D!_~60CG=LRqa34=i0Pa3-fvkhoRR7n!7F8 zO18Grwmxo)ifmD|3asCFk1(Hlr)&G^lsUp~$<1E9m0B?FaUb0^Jf@erFI`DGX;zn# zz6YDQp5y`2v-K@~@7l0uFULC zala&g773?KI5K>k05B>ex?_bHT6)B(%N+Yw>DXyDBCAZ;V};R?Aicz-UGENW@eSIm>#;QX&-rkiO+#vZ-5`L7|c^Hxa0M*8wN$iKu2<};s z7vPL2?NRxGeT70d5r$*djhC!5m~D?-W||kn|%y)Q=*n=M@f5@bO6b zVa;m{o|^cZWlJ-x_Oc!>`QbD8(mms!x;E8wfN21(+Ie*deUk~}tIK&43yC|isbY}G ztgK1yDzG%+l_2J|sfMR0I9qc%c!|cMo%Ss&91PTo)f7Y@r9AL!;_B0MX5l06aP?zW zoN7mAdPl%(;c4*-);T`q)KWq->x_@(T?dOS8Gb9k9CT8Doq0}ys7a-2)>@1Q_qMYv zqn@B1N8&5!e;M0Hb>dwMTen=>-NC~SnZ`%xe@gkRToo)-YkZHH;yPTl6-Bc~wwD%U zQb#*QboQ&#uxtPX5nUCoIIUFmK1*`+XbBZ$CP1j*996YZfn88&q*Zu&@mY7)!a&ML z1XlS`gT+*q5Y;nDSk^kL9(AbbD={iS3z~D-#}siSY68SK$7=0nwHP&xaR}T%73N~= zUUpj{(xRy=qshK1Y4cv|+CjC2<(Z%?RYpz+TH;Z6DaT%w=>9kHVDQh6G|8idE*jq7 z=Zv;EZ1L=BJDI#S;`v_ZOb@4OL~dvp4YK;4I-jL!PYWzmF9+{-J#6O%TCEyY;~f-t zI6G*GZ+i5v21G2pKXW|1d5l}|70XXz)-x2DNNn-)_4-#yq{`R&E#0g{jfhl!RPw%R zIGHMn%_e-+8S*=veEOZu%+fPT_+~5ycpTIXE68&p&(@D5r~$YmiUQ-cd6TZ^H_Xp6 zbtN|LJqAU0KMtWk>C=A*3WNFA4cn&`>fRQx`v!voup(K%dinS0KLK8^57G9R#Wk|j zx-op$G#GP8MLg11=!Z?j1Bzwslo$4oZFIYlyZ2g@b*U1mHlH%wx^-nrN^o{(o9kW- zxqu%p_x9xV91-|cJwL)X26Zrvp?R-b11dr3Ro=)K44Di)E7Oi^RYR4YlG1yBFl}(WfO>g*q$spA1_OAiOa^kU$r8zt6W0tOI?W2CZk5wH%8f$el@zXTYIj@aJ8XHJy zO(Clp`F~!srrlfGczaCqBM!n9I3uljDCafoR+i>1FHRA_(#Rl89l0NOKi0mJg@27U z`yPfH;wQ9SLs?eZ>1hD&`~oXuON+z$Lzy)TmA#yD0vw9Xwa|6lT2Q+kBmV$z zaWgkfh)?vczTZL7w1b-sJYUGX@18{qpQT%W5$h#9w7j>|A?dQzE^+m)53DHv0J}rx z%;Qot^`jrW=WRR<;wi@YEgB^2`{EZB=06#E2yc$dZd{{Zczu+)`yCz~Wnr?UK{e=74c8nx@;=BirDu`-=XuyU5i zoUJ$tYE#90VaOEhPz5ajCMiIrpb7v?VwRnXF+dH)E-7h607G!Of&P`1TQaWboO@O_ zDKI{W_&0I(uL9eqertJNBl+k0*JxLo^H16OaQarQYo1bckPoWk`d6sPhjniqjHS5_ zDeH^_w=;aF9N<*F z&d6*Fh@nzR98)iD&BCIn0Z;${{&iM)8cbyHJ5t2F1B%iyR~vnTIQKR_=XX{FO(sr);csg+CWZQ31*}&t9PQJ9<(&yH?R8rWMg`*;q zGy_h=vFd3ZjU^b(RfTbcWYVaoh4!ft52Y3+;{tkAiynBzPaIrTgpZ1eSX|{u;yba< zDnh3?BL=P{CypuaYSIr+b6y^2f>qbFhUoTktl42-v#Id1luAo&9r&+x_))8kcfxJq z`^WzPPt%*twJp@ATz(vnrFgJ`p##ibJ!`7)%-1n6zp*VH)vgbizK7Pn4>OBPmTJu( zRf@sU%&^vkx7qog_h9@kMm=kxvwj6~9v0Q%*5D15iue9nL!4y#k6)#AFe4$s1XqStnO(xH$6)}GP;I@M_<%{)dS zBx_9-uOEU370v6~mA;dwTwh%_*kMw~KgH}mwY7V2sI1P)s=ShV0bf3RQ1NNkuMLfh zpX~Ts?|;u$_4*3&tm@Cm_A<=6SjxM5sNprM`SqQ0?@+m7(oZ3OpzJ>i(9_J2%N+4B zM~sG79YLxwpi(k9`c}Q58%9Cf-n|)3#?Cre{SKUBm$Pf#+Q+f@YUbO;Iv{JUsYoN(4_m-tU?>tTO#P9l;)8joG0lls?e-Em)Afttk8jY^SR z$K$#E7-4e?l<94AkH7FhnceMf!ZQ+fy7Br|82kr$oW0Gk1JILQ=1A#CNyT&2$gq=_ zH!Y7VmJe2QdUu0tZ6rx9k&@9SL@tV!wgsOFSLxnqxP)^h68q=ym4SFmAN z)yy*NmP!kE+jG;xWwmiDnwqlnG${b6t?%NP;#BgR)EtVq6Q{pJ>t5aqGQ(rz%|ciF z%rQ7xxMymJj4w4REh?=@ql)f1ZZrz92+64S)bWf`V@&7#Z5aN{IUHuZ`qDEM^bR_7 zHR&EPLi#Mf?2vz2;T|9n9XUN~(ZWvD>`d_zq?{L1rLY+oBRtnZq{aUL6DxM@xPLn5 zbaoO(otwRN+ERtNgFT#AE+Sm9WKowhM{|rQrZqhDsGQe<6V+gGO*DklOI3*c!CrG- z-39&Too!~8C<$1j8;H;Fit#A>*S;BT;wb+3M=X>;wWLa zjo+cQO7!VFOLK(Nt#0)hmMcLdnd2%>E4$EqEo)@!E~77*KVK|zE2D_rmQ(gtUF?>I`(YO9RT^QUvY2c>_ z_C0#kRT>Tv=y1u_q!k)efLG@Y9w6oEN+~f;0~CM&rNsiAC;(hKy;;lPCEfcq& zdc7b+$oihu^Zx+Dy+Y$p)@~loSBhCJB|yv9rhlbgW|C)>*kVy!7k$(%Gc z>JDF;m@haS3bOHFpIT`L6}}r9l#^$zTOd$_P~5D^gO1e4Tne@jIOl^=OoVY?S%$9) z(Y#snn2aq-58p*M6xyAZqAQbKiYE&jMK0bcF;A41AgBHmovGn+DCHvJD5r&|qH|NE zMB|DqMabhr+*Ioks}aCXF;?TZ4 zso2Yo%((&775A?9!9E^)O+N1S)zVnzU5x__@$2|j z3{aeKwYQ?*$zf}Ls>Mu^;17P4^V!T{EHviUwmWj{Rdrqz;VUN9(Tj08hGlq3NfhKV zoDulfapAv+Hx}z08ni~{KAv*$!I2HM&`BsPOxSSmfT|P?Dy}tA4 z9T!{EHDm_H=^e4k6NVp!Yz&TuzIBDnY#Jsg!=VQivuol_X4rn~P?(QKJHMS=F>XB% zmBetfPV^c8v&waIF?vd9UV zSCNlW$0n)PbzX&GcvenH*Os0~QR0ssORYgIy}Fn!Sm2!e%suM0hr`3FXjb}`pLl{v zl(&^4;C03_D~XM=2Q}^=501|SX+zZ*{{Z90y_}~F3bh<1vFPyyPwY$#WrWjTyz;BR z1?x7_ZIZ%P8R3v_ADFF86Tw=w2m`eqPZXXlT9T*x)tz@ULGrWviMl4Ms zQct~21Utsya5_|%QLG53l1+YFR)!*^9wut*yFWz3&YDV`bSozD&H<}-(@hr@V$*-GHP{S zmaAIGBpDTVfVJ*PwCrub!8aUh||{O?~05Cgvdj0P*geuc#RQmG5xVwMnbnL({{2Ot@_> z>{tsIclRq+g~y1U0*M($I~-LzST#U)`Hsz=G0FU@`ssS>jo)XwBiU=~G<`zxgI?YMx#x3}TXwoWkhbO%5q^4q2Zheig@vuSqRtm!TCaL2JyFk0;b%Hn)?&PE2f9KDC>wA#V<9eejBZCa%}V zo*B5%HBhrkvn=CqW#EE3f-9A|kA91(sP798%b)35;wKu|M<~19Gq$XiN;h4PHBOZx z)KT&UOe^y#Zg@k*C>+oS6!5;4ARru5fTsng1)v52p47Oh0@8(`2*T3ssX`iXj({Qy zSo)aTcHDIWx4gQ^*5lhWZT;n;fn&kXv&0sIrs7lc1XoJ&6(k-x>0FM1D2H3Hk+=yu z6ZFWhNx0IdlJep;jH;xJyPJW*HLWVKroHBRI6O66N^zwdv|)t?twRe*gh0$m=sB&c zZ8FZ>Zn{}69CSrHMt-%srRloe?qkvHO|&Phin~A_?rBdSO*=tc?^zvWxvRAm>T}R& zGYI_4*(0=vyH40Yfa^;f`el;^vA28suFW#yG4xT_@vf3j4rtnZrhgM_(Y&4DwQn{; zeKXRL{8^>xv6#Fwqem0>xVanL`{J|u%~@=Wog5_(wam&E`c3wt!slIVx``ot~Lm5RnE965U$8IrDk_}vu zLE!YNk|76*x^l7KHJ~8kl!5$1aHc8eikNyD@1uyFCwRLY^)U47$CgUu7dF^U@qEL$ z^r|~WY$zkY2BMnTSmk&=p0)K^esK!6gpEdnPq8(YUHsM>ZYOq6X{<; z%Y9Mu@^;aXs*~EMjSWu}48&kn>uVBE%qnEkF_h9N#Q`R?ptc>V^fo*U3cUrMI*R3; zOBhO_ogJ~rtC8CASJK}Y;;hAN$F*|Ksf?-=BY=W1YWx=2#%km?Cypyh+Q+4GRIIFJ zDu#4chkyrK)3ww4kSk8!%nWf_P+Fa%<*o_N=1y$Mio|+gRF}5V+i2HL%k#4;Dg1L= zK2Finu{>2VTWe^Sp^&ls1$ep5M;s*2Pa==B$J1VSFib{8z~s=DvS;NPt1t{>=~v;8 z1M6R!xwL+?>bRMnOoOQAk1kAit#Yf39<>w3pm1t=jMa8y&W*PxHH)ZnMReCO_4KSA zLNULB1$0n)om48hXw1l$1Kz!_;mi4+4YXdqT#_f#=Klce*Ng#%1GRdu!dsB~ZlPpP z%^R$$J&ySCbN#bI0QfF0NSG`!45kidrc}eWCcwoy4MwDWf}xMRI!L`Fgax zU^WP@wy``%Wb=7cw9q)o-Yl0YVJDN-i2RhB+9xJsO7DsIDF+v{x531 zs>B3Kp4?Y93oGtU7#_8^1@GH!yr~E86m`#9_==d9R}Ap=S1Vg+eU@EXE>WCa$~$ms zNbnhH%@O)jS|%MU=C5a|^-tbf7HrOD1G6<)b{=~H>s9R=WWfIbcau@I!x;;a)RJrT zz5}4tD%S4L&v??Z=ch?;t2XqBk~thma4Gj*AhU(GD!coR1#`mrm59LDdgiJ~W0{HR zU!cm8l&;T`hAvQtEKOZkP)$PE{M%7UAXYu*$x$XuXB%3Jjh z39RCTMC!65Dh`BX8pggM;q21A&g?BOZ@bv@&xGC=xUs&z*YyNwq`Hhl3@$Li0nX#; zpGx#;8=7;sH5ul-nMu@>oVuR6ih{Bb(@i*vZYTruC~(|Yx_mp=q_Xe@tkI%O&`R)> zbH`kd(AR|%(!EFE%R#8gf1=&U5;<4TLVFRzewh5LwbEwFCWo!s-9|bF9M>0l;B6fw%lLv7W7~m>)bRe7q-f03TWdx~ z0}P;nkHWsLv?)zVn1rkMNt(y z%Bx~JaEsc2Dv0>$Pgwn`(2v@lBj$iAEI!pD!&by}^^e+sDhPS$SzaZFZM-f9FxyRZ zs~@#d@eRKH9&?URs}IhAIH-=-1aLv)+P;ju*0dJ4hDjm4mf*yN;|dXXZ5ibM06O`} ze)c_U-!z{GYu+Hybj?dm((W!T?ro5X6B}{{)B1`%lxk@svkQ-_gS({dawhR=TDEkp zCejA&B%{uM*NV#2{6Va0oL*`ZynoycwMXDMuExXR4~p*C32mUWPw!1A&*V9-%SiYc zXrW(O)ufrbrMhh&nX8Q$$7E$&9a6KsNj7*mNL1y%W9?lAh2eh?Ya|UPN|?rf<)fz6 zABnG}v|j@FYeZH19+z(N5BX^@^BeOu(0r;kqJ>e=4gjlAM&FNt*= zFH>)A{agGi);u-g%_GBbh_st1pg866mv5^cYh3lD#aAjbb8mB-_@m(HJayrDEQnOp zVFpV{$or3unf~eTUnIdT#-Dw0rfP^`zP585i2ZUa?g$A45ndttQurz>oeDn|*hCWU z&6Yc|qnRTo3dh_Y{)VuvNmN!n46ib&fUD09yB&{Xxv&P_$)Zvyy_!)4B)VAETJkF?tU@iF*vKM`Jhu#=0^Q}j#^ z65#O*l5dt?XAMjJh#aayrjV;pv?QQKEMrEy;7d^X)OD&j+ht7`~el#HsQ=Hj8~4V0b| zRE$?Q;@f5N?HNvAa{@muYg5HOAWah5FDe5)#HZv_!sEF$$?5ux_u7b>^yKF_#{=5F zV~8=(jTb>~eP0b_)m>$adPOI1G7ap24Y|c>Ti(P}D}tm}^xAcvri$>G&4w z+e$pC&!V3H0D;AEUSKj+l$&bey$H$ElxH4?qgsSDdCmK#dcmE@zmC@1+K8>Yj$9Q<3BR?=hRo!VRN|El7&TU^*=Ao zcqYCcoT}mF&2FAYsBfUPS0Jx^{xohi^eR1%&s|+?P9NTbAoZw8G{a88?W{fHw_;01 zq@KK0XNC~_k~IW$z^P76M}wbg=c$CFQ{sw$AdWI{)(+l;o?KI}%zU@@85GCT?gHjE zje$LPVyCjx?rz@@#@PPx=~~x%FOjCo&np&1$@i}l6T;bjdGkFR?0pUoh;gx}XB(y5 z=8PiU8Ca`G-AL_KN~;FOGgG`0%%sGQ;C0$FimT){4oM${eMVn`qk*KTQQ03ejm6f- zRQC1ve{o7>JBa9WQd(NHrwTAhsmvvFkO=jut>v8dt8D?1o!tmp8Y5 zL@Ac_>?_ecJK=bM6VFlhh8v$AzLly^sIM0hiIm?g zc0QK{f`usa&vtmP#eavQ*4BMv!|^uM1+FbrX9K$+{$uj3?}7T)_P>IoiP*HZQZ>0J zy7gbs;=L(=ZlE5bH&}SWr#v)I za@#F46*~%U+LX;15gydsRK;n8Q@D@JLt6e9)n7-}tuGhu#^ZSY@*liED$4Ik_fBgX zb8wQ9=yoR7sQM!F!m`gGy0e-Wicj7tkmL|~ta+i6L)I0hAXaqguhK992McgCu5O`g?j zWvFQPA?+J{4amXuuB%SfZry@S9^vYzHOBlp@c`Cz1zVsRYh&fe4_tOXm3khYxpYVwWQ%T~{HP3Eg9z}v?nyhq1UwT_{wSvue@SxEFFHSW^sv8wry$j!%d zUO(~F{gXzD;ww~XXKx})gVj^0AJ3ZSp@@wxX)UZ_hnKUHw#>)zm%?jZ58-B;;>$f! zOPQuvT6ngNn`Gx8_2Rsoeiho={6870SyWwLC}dRs?kQj+k7D zW2dBi^s5OSJV!__Lb3Z(FD<?EQ`VZGu1pVt~j?_*?g6E;3dKmp-=nWGwX`_ zw&vVPo!s%ruZsTwXq^ePAB$Jl2#*!6p|T%S5H3_uGRtie!=sZL4^TXQeKiaG!igGxf0p+;-y8bobKM{T%YJLxP zxlq@dNjzO5CFAVXlkvJ;o!y$*JDr(V;)~BPEXE>Y#N-pv2 z&xj%b^r_VidcVaVg>9ld+P{Y4GHJhldqo*Ada`#Z?bLlM&8^|{04hP_Ja?}mtQ{w3 zvHF%-!z%b871Fz*?{!@&a z{mh<=WAm;t%c#jLRW_8muI1=#Gup4iVeMM6+l+C~xT`T+u{c#H=quEm@6`P5Hq7X( z!sCopl(zu%t!Q-Hi9YN^4^k@ZIuwk5dm^vXn#Ii{NYk6>VEJkdJ~*C3wj?Zlg>_J9 z_Oat|GB^82ioY615X5M!^c9n<*xERGKZxb6^h>#pWyDMG$*b__&_qH109eDjR@*jy zw9p1J#g&D+1 zGJb-j{>r-k=j&Y@cvM9LfT}-Am22;*)RKZ;NAtB@1v%B6pLhA3xAtY<{PNG^QYMjj z-}1{JQ(Z#Tt5oW;f3qnZ>>eMLzt%_)dv&cVO%mD?8Pv$$ty-ul>bb1tHgr?LQK$B9 zMv7Z*UWs8+Xv7=fGEjr!~GKc}kbKb9$Q#y~G$}GAxBB-cIUqjBW z{3WQYxPjr3J#&m!*M~ea_6fezdh0Cz0Kx}FuB4hmdsdRf)SP)+F{hVMr#^JG1?kNx zq@u7o+X_M{X){cbxZ|LvGSsG;X`mr1NweObX{R2wR~3)U3{XcDw79H}qi?|)%IJFi zz0Jb2*|GAjV;{#E;Qn2HqPkBKYgRC7Hx{X;Mpic3vTytA)mwqwb6$VY*J0uR0PNj! zNRv*~W{%TSfp=Nl%5aXIOiq7QKZSakb~ddq-Nsf-YNL+FSMal2vWHy|`E3$iAx8}P zT#iM1D?x7?28|ATZLgj@7o=(z8k{EBd3M{tlI52%qW3wksq{(gw96QlJE(840+|Z| z{Hy7zSCWF2uGyn)tCTG6uJRQkmk0ft&GF}lAH+Tt)GPo>LAAcvVpflIWR8wGAIl$& zcT-+Pc@O$6)Ej*iiq2@vO@@_DYbWF84;ZoPK)gEpW;!mebn}&2_po zQr$|B+s5+B=L(22PvKbsVNhd%Pgv{HG;f2RDby@vxsn)c$Qekk9}fQj;rQ1%;x7wo z{u`P&wVNllGH1&qf*&1lMG2re;T=3j?N$N~1z3&%$C4J9ii;PuOtA6Nr*jlwatZe4 zqcRpeU^%2{{VP;Dg6z5NN#%6j8bTtDV1c6#u*%BF!Um^twmIgndoJ? zg-iuyRv$kz2?YXk3H1G{#r`;{VSo8a&yf>T>96eN}sb5f8 ztY02XA@F9f=l*?|es~p~cgs#s$kPuVdeDz{cm|)D2y@lBKhC#pqAoxJv9yHTiYukH z0z6mcn8|z0{XITdSiNtiMn+^AHGVxV*maL4sDEsv0~-lyjBC;p_b@6bxTWtLlZ{zD z4OX$Y3xNnVT1z-ae{=x)(-T%MnNTz7QO$WIqdYEavhjNvsLgIxy0nCYg#gw?-Mmq$ zBq*&Ji;ziiS+_~%XM5y*Dh`-7p65Gwpg!Tqsy7kzBc*KK!i5`WIQFVCrucKv;<~9y z$oBA+6|7}R-jp}Vk=1Fl{J9j^j|5j@(OmSc&7t*biyNWHngoB%MO_VC$HRM{ zwRjUqeB`7?GyebqB!7i;TdVG9OPZ8lbdSODw4EGPN`0FwE7b8mNUA`Zo&)n$*u@%g zsN2b@R4;1qFWOhcUNP{czL}|bZ&_dAV~#Z}CFFyW4+IMNuU7bn<4sTzed29e zRXtQ(6d(BRD<^Y!#_0R|Sn&prqQdg(x}}wxs3iH*Djq$vn&SK=@dHlygW^f;d^%*C zPSaFNJ;aH%WO8tULFXJ3pKADbPO;QA+qn+;t_)**l1Sx>udYpfnfoz#cHcz!a<@^& zMc$z^$upj(Y1*Ud*Ylxht`b+!_3oIU(lO?mTBRX54knXzFts6Ss|w@yQM#keChB$( zE@=x?d8U@9VKMuu3sV@=Nv4p8mgbPPGc;zMgnnZVY1D(IEn;>EXbeH^L8KI3!aHvd z>bj?iBDc_PHG6AYSivzY#QJG>2UPXwUC?5H*pVf%s zy$isf6}7JlLe}XOwe_()EyA74^kL3DtJ}cl@}o`Dlk|OyPr3CKzk&4aCO@^a)H3Sc8?eZeP>yMOWMqL}9jE+Q({-&-H;W>>hTNW(-#V}1oY$*(d&a*GCXx$n z8V9+#l!aCM8?%%6*GIREwUpeSk(BIiSlN6(c9UDyhL?4C>JWXPi3m_Q0T1WWzBlm= z%vU}j)MvMiB7#eq84@vtRV;7-^u>Ld;tz*o*clZfzp{+zreR}Tx7J!*Fi zApi`qJYu+w52gG8s6WLGa^mk>@nhHoWp%Vke6qv)pkx359eJ+%FMymscxy zsYWwv3^Imb*v94~ps$s*Ukvzxp_)rwF6^bMmz~vkjd7ot_Ts0tj8B0ys2KCf>q%G{ zr4FVOqK0Z@_mkYPi0C;dh1f$gj1XU;B3LzF}`~ zou}Jq{$$g*ta*NyZ#C4Z1-w$rJDe)wf_hvuKrExwc@s_jV8H~EVp*_jZ3eAOIqV%Px&r{J4g1kCz zf43QR>#f7e7VdnUcjt=M(=^R5QMaE|()DdWPqOoN#cv{yHazqP*PiwBqukFUe5JZ^ z&2~Nt@IJlbo0vtcCMW^s;zNW{?dwLO585|I)hzX0D*pgbjz1;hYh;=~y5&i4{hG5s zX3O8P{AKX|Ndj{u2mS>ce}#H~?GL7D+DF4JH%hqFmg`rtmLh@QF2j)Ab{IdUct68i z@ZH!a_j-gR_Tab&`Ovo>==}@3;;EXud&{4#QEs)mIfk*Oni$hF%>XWFCYWhA zW|$Aj^rI)zm`S5`06dfFM(T{3Ge8o9P6nY3P7Od42B!z8H&X7PME+rR?P-jnx5aLe$X90qdXml27~~TFGDek*X%Y}#G{<2))7}b9g!m!1E0$ztk5B=gEsPXL>e(h_biA&%L=d?l|BqPvQ zSEryOKDGHiGFFlLJm+Lj1(ai!P)%GGaIpUXRJi(6(RdYRG1J<-`gL2Dr!1;62rT1M z@}iHzopB0dltGVLnpsg8Be+sUXJ6gfL-+0!pG@Yxx-x1vGUc4v6w$(`qLb(aQMpby zjX?Jm6#Be*BGxkh0PPygxxLhGn`B^t=&PEkUPnwQ%0CeMxTB6IE>s*>G=LQ&@~zqQ z+k}VAyl=h8TFSVCY8F~4Ni8mV7)pss$(;6}HoaE1Y_Y3argseWs+NnHJ-gSdP2MNJ z8ETR5zXY#*?+M&mvH7j8PvpQF@AnGv-+_0bbuCiMKYk%7AMTugBVN0l*VtvV=EKDN zgNf*SEY7E%zj-)eQo`RoRR*MqzH06~Gsu5y2|@5~ks0c5cYouCzD~FsSc>|4_OhG) zB>D__>pQn!_G{)VlbI_yqoS6_fAFT+TGv#Shh3^Y`kMO-;Tj0O9B6-wp$n+FRguT@UaX(4)i5%zh(#XB>wI-pEZlo<$VUq5o-BIR~H0%VssW((xs4Yc=JhdCDE!1Y6hDnlW%`i0^sIZUC&1%Hy zx~0XbIT5$YeOIykjZrn;{6x~r+sCNFxiS2bk^SDrxGvSq&b{>-)PT~pMh`TB4>SQu zN~VF1iaqk8E;7UbNx-kZJ`nf<$HATxv4J7BlT&!Z-CckQk(-ykTi}mqch~?xdC{GcNq1dK`BC zwea4zZqVu%1)W&=%o`nZo@?mMGvl9yqr0AQWvSa4#>X3#ln=tZXIk)HzjbM-Yu375 z*Y*;zxEE64S7RPICzHtOT@|HxBxMNM+~QQ@p0&|I5?R|qFdF7jx!J#jb_3qJOHYP3 zP<%X}#d^KmHW6SotTKa}kWX)aLG4_8mjt@{;~du+vGg~Iyh#R&@HW!I#nEpyP^%-S z-YNjje=6{p=PT2UR{ptgB=84@0bpbjTq_@;09PtbPCC$|VHZs7+~%An;~lEBQM(YT zq?7GkZ-#setZR~}g4NYe@xRKW@ijqobE&>V@`KH4=zbg2b&G|H#?oooh~-BE>TAr){*H}gMd*6@;Nhj%CHkmQD)GaOn!HQIn zdtrgEvOXPXap<~C(A=nN%cUZA_B?GKz#90@@*{6`aS1%e?4OY%`coWP`bp+_wvkJm z??CzbjMY|dYOjUv*8c#(x*gKCMAjDaesPMO&nC889PdG-(^;t)(@FNA1Hw1>jnx=5W`HE!nm1H=r42xd3sPp8kw$0%<*40J7Nb720U>HPR9mSx z&;;A4-B6dL4L}ozq%TnJqjfX{+o;`|i+9$I)B!TKD<8);U)sJ3*6e`G$!hMH>$!em z`mJe$OS}h7+^+6NwM|HK#mBfpe$Jwr=+X1ff@d>Y$Dh59b6xF;3Po~Px_W3nHq|U4 zz=37+A|LEG%s(vRx{EgX0k6t4dM=%5MEx06RVk@1s^;8BAXSw-RR|>DRi%3HR*c2! zCDo9;7qaxyy(%^Atc0sh8YX28I?5HqaF5253mWZ3 zRUX2$ofihE+%5q%e%4QRFKFevGPM@-cs&JRT}Op0fsEHdGUS@exj~axPIfwI&y}1m zzPlzEs&GoH7yDmI*YN~9?yxHpQ?{2$j@nDaF~@X;;%>|b2EK<3ok%3NK9-gy5rUN3 zN1}WT1-wsrE-PT9UzZDT`ZtBw3B$IUn)LW?C zKoVw?cQnn^g{T5T)Mld%NLrXOP1FNXZl&EwM7yZnQD&DWfIdf_815jF372$osZu>b zuO8R*$uxaVTUjzx9LCuD%h=bnVz7K=q77q9V+aQB+-{2nk0WEnMAajL zI6NNWqHdLusO<4d4I%r0(gQ#b%?6vglu!e@bDFpPt$u8l)9trEWnM%cYZ$@x+niNH z(xIZ@bb8;6HQjSgv#`~5Iqod%)GQFO!lniX1KP2YQ|Bop;2xD*y-REZTp&2XJ?IlX zFT?r;V4aM4gHu0M2 z^1O4~M-9Ts8(^*&gU`~u-sQ6G_d1iC`PQ;qKi6huo#2yFm;_cF`-%`6D^3~20 z^{icc;*PJVBSRd^Wo?WIp!r5Vy=%=f>@k|r(X=f~Sd(U*X+6VtD5Qb-^rKPPBK^JS zzPk%G)NyY-$tgdtdgx%$;AaaCwWrQc071El{{Y8o1n^#)rLO+~6>HYEP1o$uA39U` z4h3Ac@$ZLxGKN14Xis-Ik$pHt%ywyWXJP=}rcKCJpaRxj(tc^`Qa9J)`pwsp(f0 z)Xry-d`pB|_^QU`f92xeYjNEUKamx8PH@qR()hJvf3o!Zt-tDSc9zFY%184RgQH87 z75Uc_(NV-UkGINdI+!@$q0mBV+BIj!dR3^+d~BAdX?YHL6#9lH;-n2uo7BofWCyoO zrEq>yD(jJsYL&+)is?)uXGp%anRGcOwWJl5bUL2Zv>CikYf+1R(;Q}#;%0|)dGNB@ z^$ByP&*p_4qizr7)~>96b=EoL*L$Zmy~VTX*P%_M*6kZ9=y=ESCcc{`#KxW`FqX|& z;?E~3;gXL=c~9)&;v{bnPo>^T`{|>_yA$`e{{Ro=)9GJI?JI#_2_U)f?}}L2NLJ>; z<-E5ZsN5gOSK598@io7Ud@XCL+o+C4`6r7%>ZKofew>0mjeXrW(D>S`UT)^t=~F}0 zR77H?fMtbhW_;EAR=@mIS}J-#$MvrVl=4k`{{Zc0VR06ZGfzgP55qM>KX4`k>&0UkXHOTxR`F<66Tz}Jwe=}V>H#MwwIpw(~ z>P*yosNGGHNt!o%)LWyWWld^%iK& z76aw1QlTnx4k$F0k7QJHrrU`X{IlmXrN8&TA)?JxAbEn{ZYV*5OzMpfL0-G~G0T?dH%8sGR&K(^Jq zMQ&Eo;Hs-y$g*I!O#W5NY8uXstm?+@^xZ)g)Qm?QDt4lPFgeFc-SMZyXfRA(6cO6Sfp_>))H!8)bjS5O%TY(C58bPNJ&V%^dNo#>&cjgOOL2eMNj#Sh%}1 zci!aDnwNJK0`X4I6_j0wXh|BY%G^|rY6*E$TgFL^MU>@Zjw?3zg*f!BCqv$=$cxJ{ z01s1J(|YJ=wA{_o?N~@{=y~LA;oy%ae@<7LPUZMLx z_+n`FiTqJ@5-qYu&{~o(S&!auJu$_8g#_+=%d(A`^izzJQd=%xn#vcd=kI>CR`bMG zS~aWQY7==@$UtVsah{dXbDmZEV5u5MhEMSM@{Yasiur~9>wPQTziB@oX&x+tNU_mc zSys|kk>+K>oUQ;Lt$0fhl>IB7M)27CtKmBj_*K3c$Nc!G^{$DVn&kcyN&f&A$HQx$ zmPkLHbmh6Oi0pIAa$M4GsJGBsn)Bz!CP2Tjv)NZB( znfEkq_cak}GH3!!^Glz4izbtG0DR4i(@3c?NNW?N4IM>!cf>6nY&9Ww0^$p-k~;_Q z`Sq_-Dr-Mm(<9Y1=`CmAADK`0Phi0$<*`Yd`$ichO{Z^`*unLztZHLpns8ogN$l-PNXt7XA1aZWq8Eef+JF%{)KZK& zsgv(hCm%HcLrM)L6acxSaipSv7jdH}){=?G>L)J?9`L8~szR*Y zozYvL`e(QDpbu~Tk}mwe8fy00;(H9^*K4W%MAy@I4Td7VL;abqg}=pH6ek~Of@pv7 z+>hm7Tiw6TeQRhLPjRKGrK%$Io9ja|Qq*p!chC(2CEZDyk8q=P07<%&H5qC*Pz1TA zmiDG@q|Y?KlQe|WH&b$GU`x81O*1soO&}yDlW?XIaY>qBNxG9FnVL=1fRi+56&W;S z(*jV`pz%=Vow|T5+Rk8@IQ)K<(?c+lFzRv$;MX6!>sPev=75xLQ2vw&of}Dx^@Xo^ zV?x)#{?^kiZW|a5@r~b@=C6x@<15V#D92h5y$&AR;pUs9T$j>ky0?#?-7KW1TI69>&$*8g1U-H+2bFjaN;toCM)=`S2}59Ytnw~itpn~ zIM44Rlzlm*UmfXS9m0S6=Df>PnD0K-gEi9*_^%#ZFM+!8UEIYtcd(ExsxJXYwRxU{cxJqvSx3rQK_BmCx~nJofCsOwbS(~c z?sti)CJ)Vn*ygc(Su7fbpV;pSHj@wD6*watgZb5Djj#^kTz|w{i>~qq)e-mkU+JA>U*S8|hU7x%R9B%g_ zxQLGC$E{->cRF@Q+aC%blH1|Oht_Thv{oGUJu9hVHslNjyfiHlLXq1`}kXaa52Zm4%rx_~APOS+-m%`RvI=b>)I z;0&6E=1Y53&CSd)f4tyVlwRw)mGfri{^5b`y94qSo@Cr|#Ig6Teq*bU^>^3wRQuQQ zANN5&(w09G_-bT72(&uW(lW>TSC#mK<0hSG%@%=Z_tFE8I$x4J`wpk{uQ=C!A^4kGEG55t zXipwhsPdQeT5Sqy^R$$)b?pUH6q?bzu3qvi-6?LONGxTrYqG} z=t~kw3U5bH%Gv4dlm*Cz+9?8X(39P| zAI7W>Kq8}J2qA|Aay@FRK+*GR<}>}=Wl!NuE?*re&1e4rXc${<%;7%DM}K_?W% z$!0v{SD*Y)LSVL&>b2do=D6>PDZfWX$K84W@eNS?%~%%)n%~tv^H)D{*0PbTN{(uc z(am0A^3^MWS+hcu4rvF{q;=+#ZAig+#dQk?A;;%l>1p8m3FC@crJHdBa;d25J7sS3AGY4!V2I;*#Br%T z&nGzas-9T%r=&~iS?p>pjCqB**_F-4c3Z<%i)=%wFz~Eq1o@F%&Ob@pgnA0 zS>H>(t9g`frUkWXnjf29gh7-hhuXU<;v2P}CyT65BU_CyS#m5Jh zpeV*WdQ|bev7Ck={c9~*rik9uejI8r#AVYA8iE0wK;w8H?)9!J;u$UGXr@PwMf=FZ z1XpRK>eDN(*Yf3Fj5w}}>gvnHQ7m2{w-U;{EzEdHSMlyXv~mxe@-ivAYp3xSgzmJk z_ZH3e%Mf$sqVj{b@!RYCtD6F$rixDDM7!7u_kV`Bf(uBXV}*494|?%kJwr`{*1bo= z#i4>M9(d{PT2oq?RA;d&z*kMQ@)NYz10RypxQcVx zk0_gxs-4SptjP4$W@BbrH7EUH$Oq^vX*8nlCBBvJX6iS6(exEOk&r%7(w^hFksg%{ zQIN9AvL1Ja=QPAysPeBrnmZCOYem-_p0!eD+6g#S9Z5V2EKSKQXJnHTI4Iwkt5c@N zBdF|a&-_jC8^gXIB}C@_?0?HEatI$*=qlI3&mFgpthFb&w~h&ICkl%h$nx28Gw+aj zspeO)e6H6!6PoAzZ3ms8Tyc`4b#yE-)~M?73H0lTj{(q+(wZds!&W@CbMqc+s@3fF z%OW%2sUwkC6WSnezAGsj#L9D3Caqa56Z_}#s9w%9)taH280}51Z?Hq2S*lpH>t;A@ z=bu`e1B!c?>^8GM}QgPQgD zbjzy+R9s6K=)m$nI?-IokDG-x^Vi3S@#0%I1Fg9JX1;})S(Jq> z02MKsxu%m;7V(GP0Mw~;j7ClkF&49mLe$N`@(x8IY6oIX)S0M@b4Ka{#Ji~7P?n_K zKv?+4WgBX3v}~?ps^mLq3RL@XL0SUka+#(St2m~z=770XlA~nytBkb9T=b+fI#`Jn zR%ptK*J%9#{Hi94Ipc~}0|#$3;DnF>$@Z)c+oN(GLU`7DSWf(UZ>*AyN?;mYBg)U9>#b<2_#4cOCP%1 zdw(k7TTBqh$#FbEl;DIrzbY&SO2#qNRFT`3I2gydtyGHEFX4AS{8Wu3WMLy!{3+O1 zDMe`-kDKN{rCE(t1`q%~l?V&@nrR=*S(v)Nu6pO*y)#vqy~u;ICjS7; zk^L(c{>d)wnkO6{htSe!Y1y7{w+9sFHD2{}^P9IFV zcqB)O%CerKy*tAi?Y^KAE0$QUJ7=TUp6Yr8wxr9a?vgL!k3TRT-nE%;cG>w(9CjR5 zja;3NbidXtwB!SKn<@LT$IBn^tchpV^+H19PPIKd$Vc?79|QQJ87`8;Q%JP1PRc^vT z8$8ajq71V!z#olc{6+YIqqTvz zAcy2YJuo`{HO#YPgj`cRvm;>Tt0`1$-Y|+QT)Q~hgA3Q|Uc>t_N%nnnSGIGHv|9-j z5!YjL`Wo{)eLpL@UI6W0hwx5igW_(VZlem;^GE*xj_3MRM|+N2A4JGGHC}ZM8-hDk zsg#3IxcLoqqnP>Y#ZZ{FTcq@Mu3B-1uJ_0G;yrfb9AxIWi-p4)i6cZ&!O5mcQxVNY zC1%m0WI%IPt(Ps$K)q_!xamL}dTI^BitIF=gTJkET3O^*S*9E?HD+=>SK)(gH^aFK zYqyckYliq@36A+-g=W^ZJ8Qcut8|_?wlq?<-NQYNdi<@y z#c+N!gY9>Ua5o}=38KM!A3xuCUt6;|dkG|7&kG3$=~+)4@SIN!v7bjmzs|k6Ebc>r z4oUw2WLHz7X?mROqIhF4=bt$N$oy#JLC$>CvUVTNy*uGl-@BE0`C7fmcxywQK)ca& z=?`*XP=88A@Lz}H+}2hrWg~TKa#uf5$e|>GzGPO@TXaiW$o^a|$FL@wYoQBO+ZDlK z{@U~Tik92Xj*xN>u+dFL-Eg0Mn zvc@42+Io>l(xp~vS}n_rO$78X_(i`!&doBsN2nyGuLY8Sup z^?7k9^k+Eysa#~upxngRyq?n3ck^Z${Dw^-veF?xzSQKMy)CWJ^K4dVPz5_4lnl}P zMvVad)|)-UdfZQe`6#H{R*-+kt(}dq?d8Rj`L=4HPihK#f%sC?2g|8y6J$N?;2z55 zN8~E226oFcvGrn2Ojp|?ty}50mjm}!@)iE^7$2G9fHQ(Ot}44nwaS|5qtY#*P1=s5 z3`hQXLOj>~I3Jx~w_gs6Nu+Bl`>EpFv^>H!Wj#p>Gy2jQ#w;NBHLs)idj9}Zo;a+n z9#(UJ#BEXaW5BD%{{X$Uy|u9HBabcloSK2>nnSut9sdB{Y}4FFX+OdVpowF;@g{`^ zq{Ay{XD#>_0D)e2t?2jK9;G#grvZlMBZgdt2iy_C2eGb~!&dQXT9R5_-itJ4IFbJD z;m{hPc`n(S2?|_A6BJ$CsTt}$0i=*z=7^?|&1>pr6xhRAhXO^r@L?g?myN&o@)`uU7q?u1tO@zqij5T4(WA2l-~au64wWJ?p#pA93V- zL$O@r&W=d`05vE2Q;y=6sQOw{hNcrvm#s!R*5(4{mYQgw42@81)h)^CBu>AGApZa? z)NGj;srAvdZ00|~a1@_r1X2YisR@)W>|(lz$1>!0^%cwNT0Hh-kiKL+oDQE_?g|=E zgz!dvXcA|e1ji$#NU@SDx4rQFwa_gZ`7-*b;Qd8&nueEiV8l-oZ0#b9sik7BX2zu) zFyM;VwqYs;&L8>KdSQ+N=kTqqBT2rzbr4&yL)F}EQTfs(v%2to%G_A8IQ`^Z5Bny! zk8xRgE}WWOw$0n-Z@%8YPioLFnrH`##Md+^@3S?t2yRDH{4M_X_}0d0cT-vkqs%Uv zYk8Urlz6TawsH7_{cG5K1LAM(jTj~4gL`U3a-Qx#g})K}s{>Witu<(TyQMpa+>v-> zKGhe4w2AZ!##@;qnhDgzvo9QuS0nH=?tt`5olf4`2bxTjPP;)Q`&T8YYhEP20krF1 zu-fPEHX1@b`wFSz4RUC82-eO;2?*(q822PqwDD!U(CwZR8{-6_82Z$<`U1C8&U|^` z8N5-bOL*629arq^Raj+aW#kWP`Qkn7NRSY~;EziCB7IKE`trm>Ar6i6ZW!%fE%=7o zD__Cc==xn+Ck<{{Z3t0EqgflE2bH zLqkUf>(;BtE3j_>_?VCR2R47-6%qJz;+YQ`YY(f6o>G*N$P5EkAYsLJR=)|nRX5(Z zf+7Cgqxx3 zjrCuBC~9DQ(WGh9>X%~P3@FCuk&nuXJDSzI*DbVlHhvo(S;pC~Nd4re+xw&SrPX8_ zMu82S8CkA}nLBrHLG%^M0g+h9-4AzpWGv*CCnS@SXvaNCGzwBpA%GO%FlzRhqv{%w z{{TX?mR0Wf!jG#SD^YYkKGCtN>Z!bShR}Jf__s=S8P6ymU!_SLZzFAm3%8<-n%KFx z(<5Lkbi;xCS2CFi{00RwO=kGSV~$Y-f8B)yWAquK!Ez|{Tf&>?5!$D$?iW9YU(%eA z=~m}AHxu0-?%SwQ`M3C085p}}MlO4ja%qPc>GYsQ_SIvAkL>#!cnJPE7tMdyil=#d zb#`-eG?M!k`pj<>oL&kVv`BqSBP5ky0 zhK|R^+6;O=y>_~8X40MaTFk#Plp`Q#)Mpifuse3Z^)=}~417!E_zT6lJ>|MxLYCfr zx-cIj94R9|f#ST$rjlR_F>kMWaT6`uyjG!##Ben!iy z5OgQbGjbF21bsGumbM`M0>32E6it0B%g9??nbUwnBamQg%Vy;{$#z%8i zisHIa&N7n*pS0709Q3BdX6uldbeo``c~m(1sm*8GU2eBYG53HqyQo}RX|}RlYE#8; zZlmUT4hBE1b2@UPSw>-f@UR9p?pL?zNi}h`p|NUKWycMoIuREr=S5s~Rt0jCD{pk>I+2zMkghV=?F{Hk$rk=KgO4^Hzb z0i-4rzIPtAndXo>(uv5R4KX+2OXqvmXW9)0;Lrx3n{8CpZ={dx%D4haHk|YPCaa6C zeQPIF)u5A8v#|Mvz&>alitQqk0s6Pfl3Yfl1wT52_kHUD^_bU;ImL7)buuy&haER` zV0%|7;(rfa!*2S9j~|;7jnZ4^=3i32quQ0&)KeRIt}#L(U4)OkTD*=~T1`UgNe)@0 zW+(Bkj!jxe97cC{UiHfi{jz=CceY13Io|OX~Y6D(C4?^po z&b^vKwh6ztZB%wO};oIeaxb4n?I>y~oEsGEB2a0-)Jop8^&)|j zDW`)`txBSqB#Tm_oM*LB)O9NzF4?X%8>nreUaceGejdMtd8df}GFn7h4-Hwh{M~ByNt5_tA1rJ1QN>MbW~iVl;}tGND0eLDdgig>7vHO0yr>RDEApcK z7o}zSDl=Mb5gn=)jGi$|a;&-;Hxc}#4lB0!dgOR?rheq|59Di^lHcVy8Lo%GnU2Ep zKA4{)@dAaoJ&u{0np%;~Gbc4hWA{i}&MlyC zPgXwF!f4u*`c9yimaJA}R#jknWMecL8g?=}7A$ubJm)l!8v4J8H4RYhp5c}e_h5_U zjeUZSD|LfsXPjH1Vt2}Sj`r}=DR6Y_U$S6PQauy zwfJ}9jVr_Yv(Kz(<5IS`h{Ysq*vC2GbgCXNzR~aeL3MNC%SW@*vZTtuFmyQ;>R$~!JK|k$!j}o*(;Rm5OkUi|8A%)29cGqLzJNakS6G@lEl4yE##iV&RFipUE4(HU=&1h0Cd{p>sz6!Rr znKf%$$!2Y`!4Shm-#vPEuP~Ww+k9Vt;H?Wmys*Oi@5f5Q5CcXV|(V zpW0p@)2|ce6Whlp9_lKlr>W_>P$yBof&~zLIr$R@w#HqA!SF{*8bAS%h~rmi&XfPq}!63ZM^rgb}T%#{{SD-xgA^LHnlo3 z#9^_F_la`fnXf;aP;3yPRC`q!E(;%+ll83J+buyOPgd6MZy1^9mf^p>GZy}J>>dib z5_m^Smpi|8u=^Dx8t^$J^yJs8{3*IJcw%T7v*cV5zeXAV02*-IQ(7K?CW*iL^ah7; zAPkO%vkT#|Ldnls+U6EFlHeZoD3Y*NQajYka>Kr9+*US~$Eg(U{`HiXdHdC3JA^;P z1v`a{+x_V`)pc#(b%Ciip7ex2ch-=#G^zKa%gF0M#VzkxIYEis#=Io8pE2)MwC~ zenPQh4UQ=R*Iijz-^DDSW3+pwT&%%HLHG5q0FQaOlt16xcMp8mt?7)*s-VxxsQDj- zd3~BJ_tF;VS)28!X0a=kc_k|vmOg^CEvyziHO3u*;X4nlXlz6QVo-y=JJWIVidGfP zZ7mAP9GUsE$F+MOf-U@=Eggr?BNjf@Rr@WMS#?9s5erEphWwrcU5prC_eN7IBIZegb)T;;CCjmwO<$LI#43> zQ??90fg5{%LW_l&(XL72r$L-^ob<0Qz4)0d<&(p@CC%5Q)Bf#0F162US3WP-@-+=l z>=wuVSXvFE9_OttV$>Px-XQUwf#Kjrqo_tE9U+hBbNCPIUT>{@Sk?6=XuLP43s{c= z=HPCBs2vC6Sk^ufv$iGO4AP#jA;~qYx^!{yssI%n&6UcL$K6?KI4MJ3>sdext(QdNh2NWMJ;yKojxEGoK@zGZJ`ikJ-tBI z{PeAdKm}J})~GIKNe2gtzu{#O%Xprl8~M{+X>?ZGsZ77#jDCiIzJ}`>NxkyBd>p zbH=Y(uJ~{UTXp~yN2vF%i^Dh3Xx6e{vMjfSw%aQVg+1T!piH;@nQx<{bL)!DD-F@v zsly-l&+w0KwL@0duJ7Xz7Fcap?pwk(BK`xf)Yfg~)Yq3XO+1Y(u6HxB&T1f;9cTn0 zW8BkDTeUpx9ZqQr1mDYRV57Cf!CU_M88og4z}ioGHu29&-TN+yY=6>kt}h7cw$bbv{{VTv z!lHd@#@YV>&@`)bV0e<__s#n8`ck;e+k1I#2v{JNUjG0hmi|@S_;bNpjM0;*OJ`$a zDEZCZ%15`+g6BCOO69LSO{!g?j!Uw!ANgkx5wGO9tcI0~Wb#jXR~hKHz8LWJiT?mf z@rIc%KX%d?CU4{bsxmKvZATYczYh!w@lD&m;RbvO7k)NI3J~R)7*KIGpZ_+*+vKDTEE!P+bDfX_TJys0rMa76s>>Z z>oq=AmCgL4_^uozfA`4e^`lTR=7i@YRA&bL0VxJ}{wJVYT z04*+lSclOEU&Pjap|4AD0+5P}_fZrouh0s_X&Ci28yZ}oS)TFaJh8=Ac^Qu;qh`l? zV>Wtbn1yzz80D(=nWkUrvxs!-JBztbMTRox^yyoED)0x0{4J%~>N@70*0%RA<)|zR zD`PldI%l;UlI$*JdmO8KSE76&xXWsG=lGQ*1M$c8uRMO8E2{WgbZz`s6nVnjMDdZH z_{jcLM{t(Mt{%7|j2d)+=9`mRn2rj4Y3e=cibm3w0jRfQ94G5s--%@3;vEuPW9DTwsD}cu{7gu_ z(j* zjQ+Lg%_hgblRPX9{HxCNPGmnyhq z6a7Y|FdmMfs?Om{x`CB^&1y07&ub|3WFnXCy25?yJ83`Ml#l0DNu(`B!sxDbok0)p zG>H%UlBuTu0K!3Y(X@-f^eSrB@+l02cB13ZsC-3q56hz6x7CzXZQ>1Gztw1LJ>;E5 zT`$En$@HS)Rx_Vg@jQq3RvL63?=f@wRauwC7kp2w$85fq(2wS8VV>sqYd^$Rz>Ah^wly%Z0nHL*j# zH4{A{-HOCwqH{>iiiw_q2-O>oXlACfcBU(r?64yhJ4xEAz`h8!a45*aKZ= zzor|@e?9^JkrMR&@Erbi#R&^OGmgT6mQ;lp9cc?1wWewJ8id|etY${;dIcV&_7$-v zpQCAt4dwG++zznXaDe(54`0Aky##ZpjO~RPC!qDMSUf*}BwlpUEwmr=(&dC>_2=}d zr12z>L}AkHpsp`YIFrr~^jp#9E!m3fHqFeUdZf zsQecKvm|L``PebsdY<*IW#PR_?&WRcw^-(EVP=tH{{Ya4t?T_KPq(wRvemWQ8)+>! z<|}nGlepxLIM3r#pw2cZm76k5kq>&SGGbQRcPQ^$_i}iC)r#6J{qg?%ghIc788t-e zkj6>3)9sY!gCR0w^Ejr4Qnt31;ed)KbNiW#qx=p`u?dHgT;48=GMLtVv**yJ^6lq66%~;bk?L$_%TYWOl=JIwp z5y2UekL6!pcxU!{@Q#vFO;hbUysP{(w#f7T;{O0sUZtgJT3&|$he@!tvyUHk2!ekq zF1l(bH`Mtf!hf^Zi*=7KO<2RDTb@|lHu-Vvi~UHiXz;)6_u$&O(oKL%9l9*ucC?PYhZ^29c&)TibFm3}F?2D)aA(HZS7u z2Wnb-C^D2X!N*A#k@<{|#=REnS<|j0p4RF7y{B#;ztXu$Hmr;zZORS-^%dx0X{koi zTAZ_&z0976!%hz%f(SSx(y#bpQGTsW{?N1s{yro8=mPLO)5T_uQp-Ht$NAI7r(}9v zNBPheG)FYxg!ihcb8f(Yq{sQy`zWHAWZgo8zF1Lku!|WZtz&qlL@-*)?S)y#K9$&8 zL#H7ETi6fL#U{INqP~fCM37xbv9lyw`nEXf-j%|~DXA};r^w)NQB8C3jC0zd)I33O zZDN6Kn%jW8CE(}rr|Au->U(YCvkkwE>P8pbnl395-pUh8)ZaKJCLg76dK=&u`#}0!fWp>GesM+!&K)Mr84{;F9M z@v5+{X{G08saEMvdcjIzcj?^x+`KQCyo`U&a2i z+E2on{jl-zB1os)QXP)N%=e`-w3R7U

aCEw2xXqXcLF-X8qt>f5wG&A|%PlT@)K4Jws?8_8MAG}v1-6o!B+05xFTD#l%sHe6 zvPtreX&O&@rX@Rgq%srUm=ipn^%Fl{Y9@TtWsZ2D2}||nqIodL-`yb8Y~HmS2bdL& zNj|gz(s`NbPDZNGgRw#Tz;jlkS_DX$sRbgfJTIjHc~oHTt8u9~0CQL}c&|->{{W)f zTwEUBVe;4X=CUt5Rj6DNBWUf@(j~$C`qJh`oQ>>v@ra-y?q-S<9FrpfTqd(?qQk07 zHI?M|FtOaRtVIH`>M~Cw@T^I$WSNV|?96(WIX|s5G4;(un=MA$n-_Yu&BQBj9?N@S z(kMpN{C$5Krl=e5$gA}=P%**go0>_5k)#sEIg;i_K8T;=LfvWc4lQMv{{YiR!2E?~ z5^05~xLDRY(T^h9#?CKto6qY}$*$^B4W{l@Ur5fu`c_dUlO}k~mU+wQ+={vL(qa$jRoLf@`MGJQuHcf8#v@mtDTKu!!==pS^Ma0J7Ge$uEuA&DC8G1z5{)22awp^dAgr z`u)m5q}W{DyPOXxIQ;qw`q#rB2z(Kt$fd2{R=QrM;Q50-$Ua*1Sz(65N^h}RrMg4| zEODq_2e74hEfTpdaW6lS9><24x=2A5ruUsRQej`J{V4P?-1YVb2bD0(0{zS{*~6~xlog} zn%CrV#=G{hcf4QbdP=Q^lWvhk95%3y6(dlpK7dmq)oktyEH??1>Iub5s9IXyLIvUi zig$8xisx>xd^2G93k=eZi4Za$@UK3aQd>Knle&E@XkTlV*7Asln>2^`Vp7$17~Xi* z*-Su;;kt_FB=Kj+MU9V_=w)HY;42pIR=T2xZ1VdX_g6V0vY0k zWyj64pg!56r8-oVrSCDqRVqJsM01`a(qhy$UfMq2`RkP+{#A&UrrZeFvkt_JSD{}r zL310h0cH6cKE10i#E_w~^9q2$h7YxAhsDVy32YT8MYkon^3Uxxr1^LHF0C5;vPSmK z-s9#Up+A*)i0fZi{C?7tQTT0jD)TLri*mleaDPKzCl9AJo-RK3H*=zkyli_vfOQ0K z1==$fXN8&)0Q5Y5hObMhPRvAcg&wB44}~)M&}vpC%3z6?ACdl*+$NtIH}5yU`^LGJ z#WiMUy~V_*=A8W!g}0Vd$d&!r*1|;^kC7FAf~8+*M10IRZ7?~1avmo4`ZKBUygOTA&u%0@kn0dkX1 zHs6-cEPI1gC(MWUk;5PRxy@@nnH*;~T9V`a{L;Y{QPss(A=Ds9KwAjtLtor!Fsx+al$6kb}1Sa)%gTl#c1 z_K*l{;Ygz#0IN_f%uw*n8TxZT)NRz|Tc2T6OS!Cy$KUX&6&us@s#f~+3IKI)sjH2v zD}YiwsUEZvKg;@2<$DT^bp=1ckH(}+$ce)ODS)0&wH`;cOp?U?AM>eILFhrI1uzl0BOS#6a}($mlXZnhzAG|+3dPBY znDd{q z+^_Lwl*c&hU6sy-GIJOXKU&R}(c|JoEA<$pJDm0=9dk|HCVSTDfM%F&{j*7o#mt!L zO+II(Y@2#dBkMpI#62{ln%es|J5n2Q=}ZhyDUWJTvpMW*Y(NKUQxHGHNr8&CCA!q9 zWEYy(5c?WmB7ibXIOr*@5v^v0K&Xs);3=RC!x^UioUz~<)>~YhwM?*pI#32oRs(|E z)!1#7FcooEL^UczJtz|(jxTDRBdJz8m`BG-0EuI#Y^j3Nw$KO41d36LkEo{uSe+yH zQ-g6)id@sMnDA+7gCn4)4AW6>VKxrKrAAK`+4wWz&xrhA1KepEdr54qu*~ccHx8pF zy5#+z{9z_TL1`bmTo33gWk#I9O9Z5U0^u>3Y zAMEj@T7`X2SC-+2EU|!#{xzqtg7~HP5$(GlFGp`IjfGNAwRGMe_0?E9vhKFT+m_-ld+M4V&GE^32YLPn$UV$2jJ_4(mDCuU>BP5pNB&z~NMs}E4+6I2mMBv)GOCYLSxUQZ(bRm4 zdFWHNisV}&Lj)FT2i^PIeSjDg`83EUAl(@!_I5jeA;o9kc&AUd%Eabr0Q<3urv|mG z-jDQMGs{!aPxRlJ1u< zLjCZ1#}@yZIc$$V5u1De052tWwheQhEt*Xe#Bgdh zyg4f;PPpLyV!NLf!Q|=@%%ck9oO;(S@dn&ar`t+8@}u(2dzfm9Za3uVvsC64j2P2Fq;-ajHdHCptnS`~I)ck_qHdWA+#n7>>_u|g{{V>E?$p}az~%At zF&#dFyQ}ElOG#D^B`QMXcg0rGnhA91rt+glBMu0`3_8~h8qtru<9jn|wB+9^cF^*v z^c(GOO1!h0H}b9^c!_^?BEB)27lL_Ulo0VdBM)$JYxJU6)XC-`&mAk^FN<1l_D{sG z5L#{8t9I_A*}iYg`&?p$}*7iSWwv?7k|2GljTDi2hk0%Dsh<_iFk707khs zTAiiHBzaP+pP)7LBalENq2{?_Z6YANbf+p0N=fI2)&niWtY|xvSkJFZa{Dyn=O#BPNOGIoLLPARQAkM(U9f8Nbw#cy?S^G|PiIrke^@~iOLUa0-nkCEyP0b%lQ zlkZ)SJrIhmC6Y1R-)WQInz+(mTMW&lPa6LKc{%=-8f$Qu+Sdyc{{V7Nl#kAh0>x2l z0-u`JcK-l?)74;3mQ#LJtqtswa~#Oy*@3G9TaQotbW^a5MF>t(&R~0SQ$~~LF~K7L z0KjWg&bZG}_=}4=htD7%@Bu<4>BsNJJ%w0E?=mww zpZE82(ir`!RtBhtOv`%RW>+ZmD9%7M2sW2wd~PDEK_bUdpmQ~1!U^2s>t zON^R#XU)F?H7!o!O<%)yT8r5kVf$UQs-XE&DH-67K^Vxcw@Ub}t9Wz7(r7;sEn*5sFa^h7 zE%+e&WP@IgHkBobjAXsprLURILQ-^`lh!AzLnW>KqDdP^JQ65nWjmFD8OT1BS#)hV z9J<=Z3G2rd^FM}sRpMWSdW<@Lw`SKmJ<9p9Ad_+x{`5`IdynN_`=WS?PZ;RQf8oYh zZ6qZG^ADU6!2x>_?_OGqZ}gtUSvm;HssWhV};$%idX zl1Ug(FNn1Q1W-k15&kD^wK+U0voLK&^5WsUjoU%4m|%3LW|FNXq;wCf#p^e7KF>3OxjWOSDPv=(vz{Nh3n$6x$@^>^zN8vy^P-vopj6W9J`I=kE2QmEFu1j8v?HUD{ z>-)w1ax2hp;ujWkM0z@vt{QH9I}$hFj%8E$HVt=SYFRHPaAG34-k?0rstHVI=B4MWHdSlvgu5BPTVFePtY%0%)#;ZJe}a zzE=ML>((O2u4-p8xVDV?@%mPUj)QM(#pidpn;&{Z!1@Z$*(zUaUcv2L`U`pD-6GEV zJ1K4&OO_mnqbwA9k~&w%{{Xba_SYX3ZsxPb$G3-Z9SZ@1YwG_17}`Z|p&8?oE3TJhhDKL%4$xw`Qb{vfr}pj&MDcL|J@91Q2ZHyV7GPf@~hbF^ESGF8uwkspalgwmQzz3~Wh)l9|JLVY|4!=QB{ijfn^L;Y?8lN4o z7%tgATvX_(+@K#y2XeY3Cf026XLmWb|1MYh^E?Kk~)@001h?Q-(hzZa$<@%7dAs z04I#B+Y9zf1Lqn#dDY&?kj^%NNWC;abtjFYw@hz^d)L-fjU&KGf7$xv!;( ztga%uLiW+Lh`mnSWAN=(uzNt&5B633^DObR!7hICai6H~TM21&iaf)Y$0r?X9wwAs zoR{7n%5PMPD6ZWiBj{>TZs+(IRpeP$sORZZA%5buO+8b&o4R_L;?_)OZ78>4*w(6o zd(`p4yBy-0B*ZYELr+NktD%m`Pg74idU|Gyf=52F`&5dRytWbJ?&5=|DI8I8*v3>e z^^UcMo#{vRd-`Ub(6uv!W4Ngm1zr|1dQ*j?1IYa-xN1}h%}A<1;MJA3Zs63bZa|<` zD=zAlbKa*|fbCE6$E6{VidvKLq_h=)>`@e*XZ& zb3_Z+v7I}i`{Vp;tJrBkBAtr4=N@0oRhMf6f(XVbe2_a=d#GvF`hp)hc1k|%ia8(S zT)qCAai_i|8H}HnMf<1x54A~1%MsJOy0Nf&P*RnEt`KLXJ7={|v)YZ6SS~}dkfl$u zjkJJ(C#3~yeYAyW0xVJyQthUZK*;u*TpD&MK%fs$xwBiD0h&iB2M7)YO9h+|{{X9v zN8wX0O6Hy0nq1b{1sn_jDZtch>Vqsm9;To-c_cv_NZ!2#D_>A@v2^|1=9+*IaaG|< zi4N)50sYmhkth`|)*8F9^6$p0cGA8mi?sOzv^PMHP)1MbUqbl0&2`TOYF6NG7dDK@ zJzH)^>x%L(+G@*f#*=)bmPdr2rz85;uy`uzbq@#W7a80ow1}Us&=2Yjdf4f?;iy&W zwEK=sGPPQe?s?CI;IZ-7!s|^pR*1jT*170moM)ULi7_}1scdfrz~ zyqDyhjj6l%WFE(%_r-NT1<2FI*?D z4r6}UKAzQ;TCt^4RHUy7Yw3QaQjDhsH1$VHj1Npw7aW#29<}A)4*XqoE+_EjsUF=* z)d+w{NHPWf5>J1BN{dYKJrt}q z&r7=0?JdYxnM|FLPFVc_s}|FF@T{92J>SCP3_hZ>v^@t;(bdJ206YEp9PW1dlUm&? znezRUWzF`5qJc(e0HTvLpwI{ya0PJs^gn0&bUg!1Bm?V$e_HL&dgMH0!EbHA`_eD+ zKmB^>!YkCVhAZH|W6!=cxw5{{HCVWKoS{CrA%%N2rQB0lMLIAsx(5yF2*@?$e;Vyt z>%q3tMx~5bC|ewy5Jh$$46WvW1Zh8RNmf;hZrK3`0P(^0uDnW&u<(<5rqPWlN;PDc zQvRx!S8&XhBsq2mJGu`_q?$gnEwbCqcMZL-b&Ybz@vgB|V;fOIub`$eu1M8sStDsv zTeF_D@V1?7cgY)1Cw7qLwC(L}?a%JvL>|JdoS#!na9Cp%UeZ$dn3Q6+LOh^j9Vn0I z=8<40tw^i4ik%k4D~{uUdUwryUGa-u)wM4aYBu_X%+i=r6`{c6TqGke`0&<5g1O3%NKYwlCQ>x$Bh z5;^p!JMtG86z2jV3utAQmcW)Xiwo+Zf*X~_#-}t9cna{P#^HAC~R+VPssui z?kfB;OaSvO6CY7jn)e5cgIx}R;VoxeRh47=HK+XdxXLLWpmj8ylvUUj1n~~GYx&mh zm7`p03FZqk1V7)Cf1TcT8iC6VCY{!h|lVaDz;`5Bh81HtMWP3Dl z_wir1`yS!P=vd#WAEz@VT!dUe!Czzr5>BKZOig8BRwvI$S0{c$xZC4JWlk z#2V_t=GeR}uTG;Tcv^K;rxRKc47?+N-GSn)tW2i_S2}%-XxVD74ia!>Okia4EA2AA zE{#U1;?=y*BNdahxv2fd!fq8ZF{VQ#Q^)2&;n%)8kErcZqK-=t0OXQ!iu+hf6=JGW zcTDi4r3rG$S&vmM+Oa%U;=MP+aP6F#?-+cR(Hyb&K7zSDZ^u&V+KjqKg(X8jE8Np z%99^sgV*a_VS#%O(!A%5qkDUJiz#EbIn%L9)N2K4j*ly7!?;PK|Z^+_}K)7S) zkw{_(wOk4qWlllpdr{^4P$G$h9)lFtgVL{<=<>}M3mN7TJ5qUg?OGmRv7^iOr*U$W z0(()j+OC+geJKoBqTynhkJ_8%)y9sSvYo)FQiqKtiK3YU#={J)$Tek>kfj4T4O>TR zB4&h_w$I}qvG%OxP;1Zvbyfg^FhL!wkk#zhP1I66;@aarLG)qOKdAPgW`4>FdsUsD z)P;GaVU@OfQ%cpMl^I@X3giW8q*Uc;rDz!e9cj2CrYlV=NC=3a3X>dCVt~2Q%i|fK zmE!vj?WY;@I{p}|D|4=D=nbG2u%F^8N9t>%v(v3@lx>L%58@+}R@w2uttD0|`;q(1 z{gl4cj14oxjRnG7UtiqZ%Dn9@gwNBxZ>p$X1v7E=rvt@e+@-9IVxtxAk3A{L+M^9m zUeun$>UmG?A!KIoTsI(dZ*Zjj4+ghB2V9$vh58|42}s&A_&F7C;`N`~z8-5)<1COF zNBjhXT<`4TapwF!FoTl?)QgX<5B0A1Cp-nemS36A70ZhCMMhzwe0}*w*!5d*PrGgZ z02QxXY_jJaYsh{v6Q=m%!aBY%t1p)1dIlfSje6=FqLJyE%NV(-(y85B?qkFIvz$Ec zd0)kE4qb_&@lJ-jbuBb*bpZbL2lK~6?ewSkvrCgz(X4z!Vq+4R5=oXWgkw8_^%?xW zmFcbq95@6p!3Vu@o)Ks)@3p@TzDiq4WPy8m5)9+;B#KnAGf6+?{EDeY4)O2#mcASK zk@c-QNG{kL>s$ss3$JGVFn{{>*=Id#!gPt{@VCSW(qEP@H|+A`x;I1ojeDpx@zi5V zrQx)-L58U*Lekx6Efi8`isCjFkeXzYA}(Emk8_HpE~gTLBFmBApsG=CVL2taX7$x= z-+3WV%1AgPHOF3B`Q9$FvzAFDjUi^s9GhKUd9SxMe1{moKJT5MQhO~pD{BaKT)>Z&@DaacEAD6vN|+6k{D z2kyYRABj9tigMWwQcH7atujWABrhu}AnMF;2jg7(Uu!pm_c7bqDem9AfAFerrdqS^ z)n}IaO!S$F0Q)H5R_rRYm8)DL<7j*hi}Hda`BJGe-LY{Bo-{XWvg`- zl7ACQRUr)`X$mryvS+6JMEJw3c$(f#KEQuw=`4AM zCi&za?YHzCR~g_&Z}>}W4_}<_{{X&CV6fu4PloCr#(H#Z(b<>(039{WetBJ;3Mw(O zJ;EF?$Q5QL2-za56nj}rZZV3~(e#_`Zc`nETa{1GBXEiJHMNr5=STA)oF9~VdF+kbUWn@2^Vo zs;ZUluViltSftAmj0OYfb4+E(J5GN}wIf2OY7G4aSC&YIK3pGK`TTBQg^Ks*X8N6! zt5m*-tnJs1Y6f%dR%XM1!|}~jkx4vP#^YgI2UXJM^F5jpjY#uYV;uLU;QG>#M_Oq$ z=eH*HI+IIbrjXL^rkX{jBU1_Xr;|)IXwfn7TuW~+nG=<7QT=^te-JI#iS$V{`#Ytv zmQE%-=0xwa{3?++pfOSkk_hN?(!KnrJg=9}M|k!)@puY&nCqkNW@x?*)3m!)wqVmJ zJBVY2X7yp;@veaFRSKX58~{5}=9{c;IG5Ca7ykfWo3xL;_}A*V9BmwZC02|70Dyds zCl6B(K1zVZFG^{1*i*z{o=r~@qWjlb%(c{HL9>&^OC&b)rYBU8cMhP`j>(RKpm`N~ z4aSi}?X4Qs%W0RlR+;`3kg|W@EsXA9da2%lLH_l^j#daH9+CYU~IbyAie&YTfvyVQ zR+{;ZuZJx@)&bi06A~d$&#%x|LkET}-X&}H65aJO!oE(^=(~TdWh9W&zNbsJf}GYD z*>zhO!Lq(vwO)~3kC^*!9R6U{n{90tSmD%RlFE1CM4Y1^MRCEY*K)7i(=pModQ_l- zDG3x@WF|4`QJC{q2_2~pDW)z|RcP@|DOO76lVw*hxk}q>oA{3;aCl-sSS`Vk8V^w5 z=OgGdT~m~eS)^d9qjM5*f$Lr^@dv~L{_08H_S-|1jWPT_xb;8bRUdhh-HxKlVRva1 z>M^}?RCYbZNwTZ>YSr!hJz}zqNYU?M=ubGSVbF?_vHTTwbsr8{&mw^)&8?1^UO%O673QVr z+7fqH8bt#%@F>T%D~`enkvmWpoT8<&k~928ZT8&{QMSf>+i4>M>ZZJl_GG%-r)!oh zaM4VUkEkI30O&RCt_IVd_2AzHgK57L{8y%tftSGgNyq4Gw+-*%s>9KkSNCedM_2Lo z)Jx##Zotdh+$#g<4oCP`cj1e{f8p&q=Q;Cj(TV>6fQq5x%?e);_+sx(w~->2Y;AWO z3>^0QRZj)!yPbmujqN6and;wUeABhm0?(e}P=Gjb|jZXrtqsAMKV< znyTsFV}4zq0OSMeD~`3)*3;qzg~pn1b$Da67MGV0#9YXGA3{ZXfbhPJ<{2KwDP+z| zN=u*CwIPBSBMAg)9Al!Wz!c+%QI9RIt#7;?DK~wOCHR?RJ>Z8|w6nWSza*RE+RKB% z$MvsB@RqF}rQxd^)?xF;10O;-Kd7w<;7Ma>-9bkL5$l@3@TP%2ikCKXNRwHaOps%$ z=cpozm6cj565cy{0)vHDDD^ciwa8J5M2{nWLa9EbcQC|b%Ln_tYj5n47Rg2Ys#Jv( ze5yYx#ZD1h6yZ5N&U!m5tAm%`bKR=^8d9e+Hhz_M_VU`o-KV{tI3ZrIBLxHTt|L?U zo2ABCG>9%W83Dj(*KB0{PxKX}eXUn&Xi|+je;Ye^;7GpU#b8|9D|o)zV8a3i`F|h& zy?KVO;;#_u+KsiP{lU?!ZgZE7NL5fd$?8pZz8A34Z0(|pOTPO|k>_;AP0f?f;aj{t zN;h(Pv}EeWqq5l1@lS|h(1OQ#6BM0W47`E$u5ZC!B9mG0?Xu~&GR<=mc`XvCREUl~ zW){Pe6CbuB-_miIDmwbSgRed01gfxsV$^{a&x>Fw_l=kH$U zMEWdE3O28F*Afm}EJBm)D3bEd&ONs1ile6(72^_~r5~LUZ_0^w*0%C1~0*u)ox!5-gSf@_bM{ctP8+jFsJV$6Dyb3hf8@p@XEY;6oGz2xq0_=m;X z=ZIu2s_Iu0j>)@f5BLb;u>fYrrArJ9?S)cLwP{=FuhsbWt~peco~-Fmj8=%D6i2Yl zSX*}^rUh(AX0eV1IK$6MR$+8xi*74-z*bkXc)v^j&9$2D;U-oQM5M7D&(q$$AL0K1 z!L3)sXqVc%9V<(05M6(LDE|OqI}dYTK=^ON8aIV3jjn}ckOlxrDfy+B{r2zts+3*s zM5c^;9|uP>M?SU5>-Kot{{TX7=qsy*QV3QXSdu7{g+v$vrH>3Ua!obB&eiMO)0NJ0 zyo~JIV;Lr&9j-`ePVa8jGAL1jz^HEg=7fuPResxrWjMC9E+gi+jtnX;=j^LgrSm3j z(;ho2^c3q>jgY8TjzRa)k0A8x-|I^(m^&jIr1b1P&2Utu&!qM8G>n=n%miQo_m4n2 z)pDQ%k(2zY%Eh-Noz8l(;-H>HgyRL}JroXq`og(ogQEoGy5B+KanA3OL5sytEyWNNN<2lZNBpwM(8j=DbWs z60RD2l@*!jQ>huNp)*Y;oM{497B@pkqys!tE-qrXJ6W?K=!?leg;hUjpOCfwu1f{{Xr=nz?OuE&y3Z*Bu=9_BELlaY8?IpfT#hl7AYWCRI7; zYt+lL8rf}LdN0*?Iq^7Zc$jj@e9cXy93BrtOTyAy%(E^S?Qzha{?%b40P-?x^_;&Q zOCLp6r2SW8<8fGd;it<#yn$nR4+Dz3ZDKMDa(zGQU|?tKS-ExwXv5@L!m+@K9BMEXMgXY3 z*DUT**%|%&3U!UI+EaDph*@vB!iQCX*z0;5hx%Nm|dP11S}-eXQ}p=qyX zL{Ze9g0mM}7q?$$x3Q7Yj}IpR`{J226H6k`sGqb;yZ2Bh3cus^HKS!}EyFyRXf zp!O83x{B|ieiO1VykecZ-k=7TbsVK!l%GREC+ks$%|&x^u&=B36j(WiUTPx7NW{@I zBcHy5IHYY-Ie=SSl7EPd0aRU@M=v2IyA1FvAH^EnJ|5FrW-8Zmg0RNj&#Cqw{c5F6 z6U@y20Ej*zj>Zq{=;X_|-8*L|AKm7b_@}y(ubstkz&GM6om7M!@ zs3EhBPFpVCta579XcwTxDE4~k`8CSwo;=bl!wY9?$p>i1ADONrTk*cDs0UkjTS%B=Y=3(n z?{)mKT{N&&s=XDLnUwJmg5K=)tIa~z$};y;q)Uwa&ClQ~lfLoFK2uMGliEpmAC-CD zlQO(+m$wB*a)grIdX8%A+(8+|x^5$*5nc4M*v0$$vzB-ij2$hdZBprY*=~MJ z`?=%t&369ojBMSPV-@WxKXqL6OPjX4kIQIda5+#{I6k$@>OLybyeo6|omWy==L*0< z5!~&b*dNxsJH+1=yhE)k!)-9rZCj5n*pS%wezn0!?<<#)nVg)KW0HRw;j5UzCmLw$ zr-GB#Z1&$3{CB*#MuWq)OK7M5UMD-;{THD9YsodecU0GIe$lI5&vhqbBj*FybRUIg z4|;Gl=FbySrtIy77(-+z08{ghf|507V5%}tLF-%kcZTk!0qz&bPxkm@^c9P{G;J7( z8#@32B>Psyo{cPkJi}u8cdnMxO}4Wbg);d2?bfUmB>K})CgxlgNfKcc1N7#nSZeTu zXD6*`cy~e6JV&a&sC=M$)W(1*-o|L7EBP}-i_1z#&rP5XO-QSO zkLOB?vRz9j@h`|dyPxyzR#rR%*bcQf9g5p%+3QrVd_kvLN+F6yyt_RhwH{;sIN*LH zRz=12tF=Mlpg%enLdnRBbX$!N4xNicS`+@I=~>HYKc;;D-m z)X35^O>rmRo=?7ghB^;nQBp3VYC0Dmb>2jB!*O)pW~NX^4p!ApQBSLXc>a{9;n^=^s5&4)>oFvaRjPjbJXxb^dr~Wyc+mgk@p$erlhpk zag~3JV~@^}Zd4o}yV%sSK?sP;JgFQ&WV;*;S2KOA3&~p3!PEQL2+Wc);N$(DLG-N#1-g&Oab6`{vkidKr@t@2^eNY!U9>_%u|mhnT*!X&wTmM29w7cNz+CPh6l#SJu3 zwgKFI1!tM2xE%b5e}zw9sqa!M#|&)pGNLHSB;X42#mtGzkNRe(uhjANuER*utu(Z6 zvqy(>nI&VFll|uJ^y%$iYr~mVGK|%B`C|HaJPg|zhn!tCt23>yP&tmu z6Y?kf?fggS#dR>o7A1}q5uz^D0AK<16vdHGL-+wxA&~vRpnKQc?tIcFNKiIN%VVkL zrwE4xpe1@|wN#R0Zkz5U0CoU!YdUM$XK;~k`HmGAlGQ0(9Fiz%V*T#to@tW8*-2DX zJDG>CwMAq8nAp(ZeZXPwCh70)--T^Qp~pE{H5T)+{{Sqr^8P-xu^OaNgpE~DbWkt{ z;ZFS#D_zRgHos+z2_<>v#u`@~pYR^lWYI~Q5-1G-b3v;2H!BDr5L%drT+Sg}4z-=V zq;kitLRqGlIV5`e(=|;-&qvc|zrU4Xwt;supX5DB>59=M6hpfkt!mbq7MUgXpy4A< z6-VB7?4#V*&i*m+Ro=0CHRZ!{-zvtr!Vbtk&pD*=r;INAQKXC^4HY* zlUiR1yg&W1ss8|NUM6fU8y4Zm%PhUy=s%qcxuRA(ABKJxIv$(-p{Srbwc6z5b8i{w zfcl>Q0F`x;GZVwO`WljEEJ?{H>s48Z;PL5E)LV+u-7hiR9QsH%5AmRClf*xNY)Bni zCf)jQf1Nb7Fq&HwUAEM1Zcpy!Lfz2t!|*j_vGg^EG*M2tnHB#4-W-p|wMLQ8Y?!sV zkT3ToK4Sj7kItRMZZ{Oe*0R%7xQu_L+UFm~18xWY0(t&*X4_P>xjSN+cmDu!zE=E= zD}iLw2&a-UO*8=0Ns4h8q@V-A*6pSE>iX7B8R5yn$n0y;q(6muu9H2}{7FW>g<-g8 z%Cu^72g}Db=?;EcyiNJkpHyc{XOSpvlR~-dIH{JYc7~-?F(MjrD zPMM+PMCy5}4I|^_V~Qh~553lpX3FR2ToXH-D&Tw6ao8{Rm)l-PGI?H5O#Gl{IRnmJ4@?vu(n&9OJLy`qfjz&aAm&tW4`h3hz_W z@2~AFWAiUAB87cqU^85whS!9*N!@QYlZyHc?HGG%H`&EmCx}z5`QyL8JPAJ z>Qc$$YtC0WCytZ&QQc}^5cPYo%WE7qihqel_8*D=01D;q@2;;Lwe8f?pZaLz)=`nq zC5=Zl)E4oXF76|SG1a7O3iK)ADAL&&O0?=dS*9cz;-yTn&ua7iW8zkcriNQ@GWt>f z06c~hKkpytD}vX)C~JCxG**n35T4MFoc{p8jbUFKMwXYmHHH?gPL@ZzYTCw;p~kXm z_t9JT2wUbqMI4&oJVWu83vy!c?T4BF08OsAA5eq(n(Q|I?GdU#6Bz5{6ix?r++l6PDDWMjC~YwSbKBVnt0$-k~VXNT%SNI z&y?jicFx5W9f*p7N#3`#zY6ObqYtxLOSArZNH#C#f2DSsZ^O$wRatdO+Tq7o<2zIH z>S=PZ^CQhHtgbJn5n4j?KcbA{y1hHWZZP_s;w*p5DE?;rPeEO{SgoV-Y@tXZ^o?>xzRy?-;>HMigZ=MjJ!l^}~Sy)4k zqLiRtOxE_1;k|EKltrd#v&>I@xL?Ga3iW>o{2GScqq^}#;&)zt$pamk^k(YcL4ifZ zdmd-tUjgc#FuBdRHri@7CA@L+k5HrdkGF31^lydyJEnM7Oj{iu0E4WPH!@7#tb6@B z3e<`?t!?ACwT3ugjBQBcP^zQQ0Zc8;30%f=xbjIkpi?tW6=VxdV!=+#7VVS9ed*K+ zhEg%CwC!Rb{{U#!;LEcwDb6n>Q*&8$}tyi%gPZZ@)>gnCtmsLQIHGXYA&xy;*7E{}a4nW#HG ztiLUt)0~oj=aZlBdLH$+wCCyA((0C$dZm=Mw`#8pg9Lhd5$H!;*A=7dch=XJdPLW$ zcO(zx!*d|Ql;rMgbs%wyMMqPAUcFmrmMGEWzkXmyhF@^+^z|o-!-6ZFSDkKPBu~F# z3B+sYT>k(be=n_T+Ql3N*h0JtHtR#Ep|Ps~61-o~ZI<=(_w zRTL@!pbP*80H`Ejs#%Bt4CL?yW@|drXwMW^mhUXnownj0eCG7WWBOE(=+`&ITzG-e zRe4(&-}hMHN(HJ&fFjOV;|Jhb(AmJY`fL%$67(uQQS|jSUQw!A+XRp%qJZNi zc1!*Sn3opVEp;Hai3UiMgY>|xE7pxDw>^!a2RCF2mp3v3gC$OPbld(Fa^axUVp(+? zf?1CVjO6<-b69uYBe-l^=<)e6f6v6L^MAls`kJq#!y8>INgE0Etc(`&Km*U*&6a*U0&oS>sUJge|X9rz}&q)*cEDBv06zkw=8UYkZ{ZnOP}zo+HR8bm6CkN2VgiY{uCu`ST^=ZE#tV97i92&!DfPEbQ&{+Zb%DVi8+HyAc5BKgO&0Kf<E6vy2w6Ln!7p%2O_g2 zgKKU=N78^KE1s1b22)6~NWDhk>rN6W``l6(-1Xw2ni!@SmNjwy(9KyO5t?Hy77dD# z#Vxr%Wx0|i{^K3#`5*DCG3qxladU6He|`g>%?~1zZ@m~lg&?_d*81M-h-6aT)SNK< z4>fCTV$B3oW6eO!IyZ6njzuC#e`*ie|vATS_rVrmK?ARsk4FfuR-Wo~3|VrmLGIUq0~Z(?c+JUk#TOl59obZ8(k zFfbr6AW{k-ARsSBX>4?5av(28Y+-a|L}g=dWMv9IJ_>Vma%Ev{3V57#QcG_WK@7gn zukbNJ+F8Hmg{mA7T)0JAi9^ewt&&hgn!bei`Pe&~s({$huD>1mv;Em7Ksy83M=`Fv1I9*Dh`|6iY1M&A7` zXqs|~S}3Oi(=m+uArIb-X&){Su_02jHzP9H|BYeZOyAwH4A>o4aJ5?ZyI1n%#fFMS zAZLg%dGmGp{3q>d?W|9e6)sv$F8m96;j|QPHn$SJu4dY;6<$0&n$i+_3y;A@ z7Lf%i$6`j2qlyA&iVfMD_XX~44{EZ0DN;>6o0b|G*$2Ob$TkVd)_Kt+&9|qo42-|5 z(eUvUwsS_D2gszpDLI)GezRXLNEbm0)MCO?i-Huj(ITg_9>TMr%hk7+mxt%~>%1Dr z)5Grm`Ysy2JsroJAE(1;xZe)@yPvyp?Y%bjbL?t?Q!HdV!#FFZ$f@?#-iF_(?7atA zlS{WK96ACLQIJkhP*4;Eq)169(p4-dAV>s6ng|FeJro6{MWiW8ks?h9DqX5bv(TG# z2+~VJ4J3qrg1W!G&pFR?&prP==k9$U(HG5R=AG4M&6+i{)-Y#0`u8I7gUdf<;-r-9 z9}*$|heYg1fQGxP)+JZKeL*E9N&!VG%uj$1f)eVgf|7y~mge9$kO}a`kKYnT`WALp zmaaQ>+$B#)0*R8ONYtjxScn@V+BCj z0dA+@tkn%$b2UeIK@-sOgrJ<%3Bi*mWCXA6e5nq=2Gv~zPyGRdgw`ELH>W@0@}rlX z(qHIZ0)5{xzwP2g>CDpOSFw(u>m4_%U!T-Lt9ZM_F z=?@(Lh20OL{zC7Mu`Bh96hATk$qdRnB`&#HxbBca#{tk`r^wLu1{m^ECr--meAKqG zwYC8ik(80z`K<1E%kj=7Cv!_cyT8CEp#z9<$H|eR7yiIRLe19I<-FA$bw>v$$J-Rr z{&?#zEpl4j;NR(x?cVJX$R1ry9Zd)oH3UKh{y?_-A?gr%S~_|<8p6g%>&FP8p*jemW}~8EquTxmfdM$_sCIrJKYysG zX#l(ojJueaL50FS5NawK8fsb^IyzcfP}>K5520nF+j~G#m44p^bB2S?>{9-bFByf@ z-qdhhY{LmlTiglQ#k8N3i<{@rVG+?IM^DPg%E_NnP(Q7qsim!>d&%JP6+m z8cN!gqwz1_fs-)uhympHOXsOH*#DLfow5*FY2OU$8AVJ0xQyhCjjm6QPO2L07ypiO z{r?I~)Vv77a^O}S`Lc|{9`~#hB~J;;rTU84X@z*L200ZDF4^oxT{qc>zg| zs$NOn-6tkiD{!#g`%+p%7QuH@Y?jj^#b^m`-nmCbkjQqm04UNsLz0BRQ6#;oNk8Ga zali+!2NHa@^5#Cjux4VV_exS%;Xlh^a<;OtbA@O>4|iWUwqR*&5i1?zCL|d0PKA#B z!v8bRo`21b+5Zx92>S(%zvXkO9f7TZQe9|MDFh;w`;Z?im2eUtO}ysC zKFYOD^|ZY%dYmP2Q2~PCHod+aH2JQlt%|k$vI7=LZ|k|5*eaevZ&b4lxhy)`fxGUT z%244_B~Z?)&}A^fq)8 zFz<+(D@p@te63-Uu+#F}kfLa+)p5qQS{}uMuxzTk^+wpNI{5#vZG#cp$_yqMRqZAE zJO^njEieWc@vRKbd)34H&}$AY09R9O9-bMdM-TO zhG4VIux27e!8|xr)5mcVvANsJ3J|?&J`XWg)!LHxl!2`Aq_Po%MmWT5Lqhs%=Vvq6 zwjq(cBpaHk;Q+DXQO^6ClG~8Iz4~OuYlY5L^oEWf92r?G$%pPvF00tT{aY&Z|LR1; zcneUh8M@B7VbJv_Q^$`LlP@yPB2V1;}*Qf!fPWN z`gt2dO&5n}C=^tH1t%UU!e<1!R(Q5B6+6>EIpOlXQQnor#kN?pc#Xq5kjU>oGF`T{ z7`VENseguc;3_?tyVINUh6@`R6+V`^c6a;4(Oy}@RdKe~%q?P`M+5Z1#nDlSTUGmI zQ^yh{KE&SsDv+3DQ=&2HxiDF?)$uz9CmaVgp~(&<421JN11BMdO+%~%^q3Iw z?2LjLW{lT=bjoeF?h(O6m3%E09Z9ot(Q6?t^GzT_Q_tkR&;q^Tz22_){o(2NiB@Y> z_h`NP?E+WkWiAYEBc}2wc)<{(c6OMD&iIlgf_xpgOG550^5t8-mCj_tuQug zo_R3}14e`Ohk`W7hY*cxf-5rEq{6s>;~+ysaEE=XN>yK(tngmZjYMjvDgESTuz8%p zf7S)|2KnfFS({tcZd3S`rtXD)k;mxAvnwp@Tc)iH9URNhI>)|!S3~RMDme+LSM=|T zOT0A8+{4C5w37ec(V6QKl<*XIFeTzo|CP0TWF+{OJ>8@sq1NGh)rZbKswyUoe%m7Q*>mTaHT zuGM%k5#PRXNFDU!>*`-$eKCtG_cfwD%2eFzkUyH+TGK^vJ_~FfcJ)j5}l3 zCrPP#Wt-U}%rz&BCrqX!$!&+$0vFMC#JkU&Sq%5+?542!h*o%~)Z54aMrGAxC?|mv z-`p}ro0B?wzAl3hcEHL2QCdcmb>>A7&6BjmQ?$!ydrTl)!Tp^60~E*0GTgMiy^gM( zf(PHmG2Uo__eRch8b0qvay=#X5%jdXN6u%V?D@Vk;3Q#EWCkHzGE{6UN5cC;3PDl7 zn{+(K%of*Y`gHNix1t5(6KuV!)#hQS;;V>v5@_*q#}Rs-y0+5pli$8@?v<6(4xR{a zR(@N$nBSA;{!YCRFBep(yq|vhMSY6tk(7R0cQ-&#yd2p;%EZ0+Xg{%Ozo zSEf0z80#xr{itD;OgK6oLiDUO*?LWK8AGwSH)y`YkqbRCOq9_trf(C~5l^uqJ$~}j z$cu*cz;LM|p*LY$fehsECw}mJoI~gO(4N+Xg>fm<0i&8@d0NN5@_?(14;P8ifb-a- zhi1InkbJ9Ra>&(MLO)g*Cs&(r$-wxs#JIY{4e8J4uuNKcZE^5V;3jemzqc0tUYPGG z=x&10wemOloc897MYoRhIUmbKms7E#1}`9ynIHUgEa;^?<2SU{ByqNh>jwDnl^d^( z-@d!KFisudP9+4F$JoZd1zuZz`B^ij2VqRng1zBGVUR%zrH zd%5+(?W_JrZawfYpZF`cx=xZ`$hUSEjDn}`t}Vk>AUI^nIy;|Ps&i=)XCa; zz$Ur2fLO6S&w%Mtw!HMNtstjD?^43?xm-)zn=zY5{iC)aGmC~|qf#o33*CeDr(S7?apn;yzZvBKa9)!Fd+_4RVit!!0@o}ebeKiiiGcJqg?d7 zG0`J#EDC{rU<)e9TW%X7;vlybR*c$|)g{LJCt4FVXXBHCefQ4v1wHaO9y6mueXNa7 zAt*+*X1?ZNY0Ec7z{n6Kw(OQMeqHSO#N8@&d{IRcmzP?x%KE~qxe|TFWbMQ^fH%3@ zkd-?w%lQ~5*6>_7!fmY&J^P7($#)Hk&{!PMb?3){*YZyXuTNX|v z*vh)}1yz;~r!dX>b*=^X<8vwt8W4|dNIet{7wj%aN)Z$d%Q{>Y)xWD;SKM90@Qk-| z*A(=+e3Q&tY`FA*?SAPq{b^5V@7}T$1~(>68h*sk4iNS(YUFnUlhwUo($#9mAr42o)`ISb3|1rWm)WKsS$ zB=lZN@vH3AZHVA!q*_l47`Q2uqp?qh;y+q~vae)zsy9R-aro}O7nW}0le5bf6)EK| zYiF)i(XC+76)sMwr30|`iU>cZ4VtxnQ}^Q9@L3Bim>y88v$LBUoNI%o?oqY7XKh7E zFHqqSU>-fV>wN_0UXK{NV26^A?zv`)`QVIxP{|5gr3a3=wq4gQ|7EiKyDm`wvvB>% zjgBfazQ>g1*Rle>|!@(!>BgI1yR>;j``N{EWLI#G*ob#ipE&I`ph^*ndJa97Yv zhl8vKORmssfOypWp{L$=F=|`ME&?k%IC(Ei#Pj2GlZ`{)I6=XQgaM3jIqm{zaG-vC+20- zEq_pz&nA`1fCZxLmnF(&SPSRghC~%TC)b-)ZSfxR`HEyASd-87ITE>V1Ep{)nrdAJ z_msnS4CIQ z!SKVC(S8RyGQ^^~LiVKMg`xG8SGPjucpM+b*WpbY9A2IDSh0?j+!Q*`@GZt43*(v+ zVCkrveB>s7%>34URviz<84h~mDypkxg(QV5FjO6aG{WW&*vJ9X=FmAYp4^^}TyFU4XVOHBOQ<9SdA4Fm*bnZ1xwu1Y<05cia zK$xmZxFQHvi6V*8jC_TDMBrk5TjLK`tRdg}R3QtVH!drEefCU#&_6LTph`7o^xADM zpjYjg-E*|Mo1i3-3cAo3Bh###cDi-QVGgj|PMx=@HA z(#eq{LMlK12X-mLM^upv)|6x%M3Ycdc1zMf>B_wpvht>3Zzc5YS-B5a4@Ijm&cA;7 z!0E(^H~w2<*x~+zb-9&dCZ;2E?>j7tUD!|4A!xvQ1R=jNFsNR6@(y7T{_{$h5xydY;c+9k-q2~DR8{3dr31=>N zYV#dLB7$id(eHIhU+hEK)qJU&UU6n4-XR(I4X~rJiu#sw)<=2-6NHV?ZBn{p`eJ>r z?w1VmhM0;#0#d=Zql$5UH9fBW>e>0&1Yj6l%k9izxd&kpV-Thi9Q7CpyTdp+<@G3~ zs5sW^(SCW0iwkp394bx1n--Nqc=|WFBI@_mQ&$ z*%N-U5|oT#nQeSbV-8 z2dCTi=|{L47347Mi6)(8X>wqy=i0~v!Hr+3#VUN*N`}Rf+0^rS6`q-L78`*V7Q6Ujj>L?SX?~3GLb{<4NagLpGn+m@(rj zCjFJ*w@Gp-&F$0Oa}#=8Pv1z2>m2epT#i_aARNk=x~fPhu92O;8T*=Nsrj(tWtWd{ z)=l|tuu3-8v#KVYA(*IikR(Ql{G3|%)h(^LB4if4VnyEX)e$K@Txeg1xCwg{MZnhX zvyJbpzviOLgb{gor=r8`J;#FHlW@u}28@uSy+M7)0`E*OGTv^;wT4kq*EG$aQTQ{bR>< zr3)XEy7LoR62EvbFGlqz-dnp!Fx*0CWQ45}B(uy!NP1(=UrqqKz<91%!Bc|RAaD<7 zQWKA^*MC?%B!Tyno<7ksF>o6uyo7&C$3S4W6e1?GZeR+c=^&yIRtP&4uBHCvHiTQl z6)|(byr29`bsp(rSc~8ZCRuT`Hjq9ZQ$%%$D(5UvJc7u66N5eOF!lCY3%&QtvdUNF z8xgNVks5~eup)2~M$gB2In}p^Z+6T-K^*shdw(rK*Li0{)=}SF^vGWb5-IPF7)$Wj zXTTPV0rot#R}Fl+Eh{N~GQiP1vAm;DR>)Y(2sX6BIQY|Bj@Bzt|-8C|-{W zaoFSSy>s7Y17CO+>Eptd;Jh7f=swP|xy^{23H20{#~t%ZCjHcR)q;s%Tj1%>i^S$b znH7ED^+V0|TqA|W;T9pH^&IRh5Qb!SDtz#K!Zzg4)dq46$R0NJEoaV=Vo(Bu7h?nr zN+cio+wjum*QmLDP;z*DWj$`4_B1Ak^vF{A1@QD)U2rN+xRukc7vC^orZpVFWBH+(*)kn|OpE zhQv7r7dDdgGGy-e7;3i(mA#Y79!ZLRamTBtw3W(?j%dq5I@SSw^^TMLD6wJ<#K$M$ zUKL`Y!B^G<_}<$0Hx@E3@EmfxlrId1u8LBAGVNBhA&hn2kFA;|EmO})&W>lHnNIX@f9h(0}t#qI^k2lEUOR%3?SFmR{HYsyFz+zjn+GWKsA@24W~F+YSOO z!oTJ7uN|XbyGZdA16B-HTPe~?(&Kw;!&4ZWoc~4#-XdyopYM(Wde(#kkA4L7GiUG2 zo#J53Nh0y!_{Xo3L6?zh{#-4s@hV=hc}YCH3sO5>xlpYl~rSjJjVvcjrDdM-Ngn1JlF9k7lc5)^yUZ%4*Qe;fffV zceqbABbDCEUWet$*T8kX>vRmAdwmn^XBCu5Q8-W&$T!{pzkAj^A7Ud>Z=>+AWwXgDLU~0+;Ac(zt*q9 zFEMYASNnuLw+*>3rdF!==&FW~u2KI{|8rN4MdX%H`^frtzPN{c8y9dGhpCG1G+kkBkeDc^ZP7)lc|B&=8yFs-o*Z`m2RhjF?Hpm}+^lVxFlu7-#%Sf+<82)F8%2| zn@*|my?w2FpLLS@wXW*FzD8#%C>tp8_tRy{Vz5 zG%x&oARu}2khg`q}1y29>wdB1JQJty+zUU!-`t0>}GH^jrTY&%w7k9S3pz1pbhwA>(s3Sz{7 zYIKOB=XSY1epaP>u}!G7vS;4fHEd7Lvkr)LJ{P97Z)5ml60OYhs)#bjkb-9?pF2YP z2927FMxP0sEH5FSRz-MmubAwGCX#w^H;Q;qj4P4xtnSQFYH+VMs$Ix>vuk7QZ?BFc# zL$%5t$9kPIcz)CIvd~kqAKMfi#Ah$#b*9Iv<7`HW68I~jqq`5D)%z%i`_?ZgKQycq zOw6n>u6W=b$xx#o=E)^nCj0WJ33>zH_2mNjbk^2UGMadj&~dFwFNt$Dwx|)+t$1er z9_*Y`6=8i;h0kZM4AU?ie$-(!mRIN5dDbe+cj}+_btpwm8RskX40^gn^W06c2PQ69 zWFHC==I3CCq~d^I5r-XJ3&at%i1hxq)SCjG-NbopdtHwW1&Tnfvw%BNO;iMq5RKeh z$ZVM4-RW09zdPT<)tAT0c>nq*-}`%#a0(xQ2Ib#+HYzr}Z?GXW_lo}Efyl-H=>RQa zOA>MPtQNj!WH`)M$Xg}!d|_34N}ENHyr8j_6JEmbklJITH_A{!Q7p$|A8U-m%c)qN z%K^6v-ufRO<6q16lU}TYm|?=fo)T&UR)8SVL$`QV*EHN2<~ea*ACYX{XVYh{?yi5% zC%cw(GxB!2>-Br@ZkV6bX+#XUeqe)NLPW;yGt!$M;aPx?NLI< z(+fL{1{IwvyU#d0CesNw6#7i;=o@#~{65^J3k3gM+s&S!^fy5p2V~dv?#u;fFo;$^ zPzuXG1+G6|#RP+UchlTqnjPg@N}N2o>18!1^Chhu%8xWbq6);%DNOh&Ij#X4^@&#s zs`mnF#UN%mBXADL_oI7e+&K6PUE|(eCQ8wd%+!{E%2xT5ItBTjGuzT9HoBIJ=lmec zbN7Kv+CABx9H$S{-#FqdF|;(zM!toJYV?DAZyDS`oVShc<9KzN5HY4TYlNwTWWU&wcg*i#OKni>HO74NQG|^ zU2dL6fYshps4rG%;Is42EQTys%Ae+M+EPfQ^Nz&r)2Jjo$G^qaDU^H7zg}R?xHB-n z_sJPa^h=2UR&Qg@EK$*04KMQ0D(+)hOo8mgmE&&CuDAK}JX69}X9KQOrV`vn5=5%u zJi(f6Lh!2z%V!A7B9B+^!po^5s;N}?m4SN*#^P@O!)XM3Q7gA%)|I^n)4W;n$CDZ! zDVZN1iggXlZprjJgp#v-f8yGE$@dd9dGfPJ?SHqzsFcTjuP+@tE}@STc*OnK%uaLm z^Ch&bT8Lk9N=lBb*Nv$5%4x#jDA*q1^FGz-di$KJV<27C-{sqU)x^`72N^} zB~MsCML$CqL#TSGuDJn+L>;2&9x28iMx+HUl+>G;H|5H}3A|gHTwwuj`J)5pRG4ul zACvZ!J6PvT87kbk+jJu~ulQn_)Z6z(?pGRX(T#YsZOAK==gP9}-=0dV@72_v(uP>C zBs0r=0_*?g1l;YQx)t-&p0BNKm3 zS~L=APN&WA*Z}7_iQ)6Ro3yJ^XgXl@U>T;N@la%KRmX(E57&FZCN`yBH9vY$Kyj3wen~V4y&o~w<_KZhX(@g3_ z8e5p>d4^KLzB*ZfleqMts-$GT z&MO}@gKFXWg}GEmQ&P1hzt?&)H1j_q;>IPQ_+=&^kxWua z3b>iVj~@)4jLEkQC)5k6PjQ^XCc=SVxRNA>(@3h_hR_?^#Ci!>30QTGTyK%2aq*Fd zctYspGzbo(4!m{iiK1^i^w++3l%w5_wQC!cZiEC0i{H_r$)Jf4%l~oms#0&OcpEY< zIjX-o3XT!HJmh0*b^-r>WXbz{S-XgXLqYBJw+ENNcSk zn)5Ds1pxoYR8e=>lL_Fo%U ze_9IuZNt0RSI`6;`VR|MAJ^Mi^t@W91-uvhuWtALZuh?q zn)=6Wi926UxY` z^)H9XPe<&LiW*?hw4gd`T@{>_8T`3QcWp|BNhiuKpUF& za7d;^r{8H#F2vkL=2c}u5X(^I=0elH1KrcAOW^(=N@a=u9{DA4Y4UfIIxc}|N>6zz z;PW=bbc*PSe=2?o9KLmPVZZKqA(;a{R54Nl!!hX>XL6q~r2=(kCPYDJDo1@vQIiiE zwus5dEXYIg6R6%CcY$b1n@<*7`r4F!sJHY<`G3H0Avq+;(G=TQ(n5>||M4F;wI-K# zeffpb&wgF29L;d1Py!tVqa7;z>UY|AplbO8AYvCF1E5|jQ^1xst*Ub%xlXX^Qu{BW zQeZn0x{6q$RBhj?a6tnuE?h3Z09ZjG-EXe`<|-JgucBWUY4h#*c8d1;YL4p#ov{Dt zFzfHKzj|7J)8jWie#^jb8Tc&&zh&V6zYK(dU<+<`N{)lZ)Pw(KQ{yWocRx1>@sLus z0l%eH<^Pmu_lT4zl}+kNitqAQhJ@6Ue@PAWqwODlr?3Ae7g+qyg+^FgJdbls zB5?2FFjQ*|2;Ve>k#3_2*OH)BQ;44*{gin^mZR|RMnR^Nr`r&+jwuRX=100qaN>0& z343otdcr~Q3vV*?Y)W|#nKQ07w-f~B2ctKaz`t16P<+SeXIDHYS$kj`f-i%tl!<*A z#$sxtxgFWAqkgn~h5E2baCm|Gpac4pLy&I!DZ@jSY4DSy`Fw;Z0P1ZNVekk6j~jsK zKO`Vlur446-V{woCI;NG`(P1=X(VO_49#J3G365Za_Cc#*%l&7kePUl28j^xO zV##~;Ns&9%uz2if$?O=QjNgwgWkZ&s1SE1dc)5_sPjEdccuq2p9ZUN8a;oWQ!)Hkm z!>shEv6Sg;$T>>e=i3lw>}b^%3u;4X2Q=oy1PzZkk_0Lkwjv3_j&>-N4&(Rbi}D{6 zN6pqxZbQP`u9t$By+DUoLDBkqP~$NTfQ%W?aI+sw{lRD>anC~_bP!kO4c1f?F8<*4 zcf!|^!_yelcmim|rV%jt@`9PWuQY+yt*2_~92UI29SWoau?*XWG%2FVa-d4e1v3u- zXi_y|Mc`*Cpf__yHEiYI*Gm0UEiIBb8l=2x^#Ys#(d&cznG=IGJcdc)Nf2u?2;JN` z1R|>Hr%|IW1O{^8@P-KG<5a!?s5D6uNBy}e3|C6}vy9Gtn0(o0<_VW}r+tBP{DBT{ zI$-MO5s6LcFZ3R`wAx_cFm5G!)Py1s5kO-+doWhc&wmmGfKu=~7X#( z5Gr|{tTO<_G`0oH;EyqWP*h}!L9U!?Sk^t;@0{*ZnNq&w7%l*L@JSEjSDQ)X1MIkw zi5hh$DfR+c-o<*^Gt!d6$Y~dG>~|luPD**5uM$btJaX(D;s^7(df`$8rcreb3_Sxm zK?FuTbP|*Qyl67H&GaN{zY@m*MVZ{*Ci%joViNVs5<=aGiQAxTX#uL|1*NYX*NNgY zG4d79hTF_;!R1Mcry3r5qB?dYAafX7ReN9Fk!^V!VkRd7(x-K@dpdATq+;W0Qvh!F zLjyaum?$jnj3nJ6_=w#{e}uf5f;a3i0Ra4tGGLp?(gb>zjk2`?R7XM$$YbvYA$-Tp zt>B?QC0qQdabk>yM=PNVM+yr^f#JHNL`Lzc)golepG=(YHB@E|840f2hS0DNZxw^2 zc|9OsJW1n}?{UJRD9>4AB=W8PHss@F;*qr*%MGQ2ZDwwA^;N;RH^wqsX--jheEGj1gBRg!tIWKE!jerim3$WjZz1{!4CKoTC_IN%20 zm>JBVygx2t@9@V1y=z2{YO-@HL)ry12RD4}==ayJj*!#~8_plgT96@erT4-`qFC8!)#r_)1zAr9b!;i}*~K>IZPF*m4%EQ?kuddtVbkq>Jc zkSk)KsUBcd&uGII3-YH5rs)vHNFoH_yb+Z`fSJ6Y&RL*W)^R<;V4mr~Y|?>|4rZdr(46sI>y z7R00ij_=HL5KkYD2?lIWtvR@9<=0Gfhjfo{dr(Omfn%buww2*kn;A&i$6v`OGK3dE z%es4gaovAh2+nZpAngC6kevtg7hKCZNyni)Isix@QBwPiY56B|WhdabX6U>rWQBxpY z!H$5b2*hc4WRN8EgApr|U_z$|Nh+B$qc&-it7=Jihb5fK;vviW1Tz$C)gSFB!rL<1 z^Dp6LPK-HYd*K|HpU+pN6$~%o(=Pn+SJEKNC$Ng>aN(kNWQjn{q$VmHrJ&Ti4Vg?K zyDdXwjqXU{sjSG9rl{C$QXSsQrTOM`-^VCt?VSaR2 zC^O8Z0TJV27BkZ2;^j_ZV!D3)k#I* z4j>`6eRl?oxH5_~XtJ@2`Ws~5E))H>y7Yb}rXi$Yva*v$y%#E6x30mU_8IJ@fU9*{ z7D0yECW7(Vsd4jQ8Jx-B@sfigHD=$M-Qh#Yh8I#n__)P@; z`52)R>(K@3Pn3F>6iBrp1cmi8CHMCm?9DRsvrNjEC0sdBYH$23qy+u4Mg6Ke8~2=* z0+WJ^oo~=qia`5IkOlOjPd4lFX~c*{rz~W7cTEhdg|-ip`?QSa%S^prDI8csrL8M!YZ%F+DA*9 z8DwhRBfg&;yx=`s5m!t@rzPy8VXZK&s9{=v$7z5lGS6l$U}xRoltw(Ga-%WXD-sDc zp6YvU7oOSR^^BuZjknmd5r3uBLk4@b$?5QsCZRAMp=)}l!?tqQw1z+weQ`5O+hm7R zI?;e@8)Cu@h|EM9On4Oj$k1_dkHQtVn6A3QHsayS16ZzEkf%J?MAPuN?$nkv@w5@G z?$gzQQyC{4%VSMJ?k;VD<<|QQcU{dgqk*EyaMjP2n-PV%qo0-4uO-@V*{v{JMcMd4 zBel#I`x2U`Mom)^*5S!s4?7kWpajkem`$j>l*rbK*klrqO>EB^{(h8q>}O)RlYVh~ zX%(xxr9p+noq931!KK|*axkQ$V{<}1E?l`KyRvQ1>_I9rE{%Bl6nD%ikfL^|@*@6& z?V7@a2bCqNNsACxWq4JrUA(*HnM!A2sjobHba~7zr8b`Pk#NNm(Q%|GEsf)7cWFUq>hk?aGX8SKiCrt% z;ip>@WDC7u4j%Z)NBhW|>`Au4WY31A^#|U@hjVv#27OOqlNfYUO{#xA6R2NWRBW&J zFzo4I!3ib*0N-GdSI#|s@d;gD&4VY-4iLrWPk<|hjJ6?*FLlKaDhr<>@(>P+4T~GI zv+fcMnkOVB&xkpGShm;*l>0J>P(mev1nFmHc13K|xqOy(Mlk>z3i83BrmvxU$XmYUIm~iB z*f+Y$CRl#?5@L~w@L_?gb6*32r|z+bbQ~|Q5KK-*Ip?ZJKq6lHa-L7C`1Nf_VjD<2 zuTENrB~VX5H)ayhL;RbDHEpJ~6Z0aDFt1|%>Gk3>C)Z;?e9Lpv9?;|*-spZ)_vzdx zx+6*VoH1E(UTD#f+Nnq;$Euvc)%Ew}%^DSZ* zb5BODVfWm;u%T21`hEBpq1SKFggvje@_Ls<9s>Pb=j)3cepnm&o|>SnrG#3Y;blI{ zd70+(!?cR7UAbKbU0;vISG2TZ3QdwW9CuXD*(%Z+nxcB2o@+A4wGDsF+~~aoS1QZH901& zqIck{?&OqqiC@@88GPj8{wULo4Qh8U?ciQEq!6!rPqxd2r%vbE{4{sFly}`u zB|IZK3eC1DX(7tbM3k?jEsr9Wy5TD114EU{_Ll{3&tGV=-*YO9+^s(s+P?v_WPYfx zV+qEf&BaHl%7@hZgD_!VtK?^nemrmefLmEwYYk&VM&M{bRrA7+I^pdiA~X~1%nzU5 z(7unVKpr)jj*WHRRj4+@?Q3MuadfMi2FtupfIS@Q|TS>$2=)$K*&xXl zoA~8n%UMSSiH)hG1OZp%avNgtCGz;d+3SrgJi*byi7sEQnw+nTY<1{(II*(RO%uo* z#l;KZ$9$Y8fa#*lxeRm@V!2BZwFmQL;@*?}%a)(_JxL|lQ?H+m9Y}dr9H;2laHg|d zy|7){rAK{U^`utXLoc`F&#?6l@+JnolG%vhx|0rdc8qUBQm$Rvv!tRWgjQvjBVb4>$Y%dQqA&TUR#B^xyT+H8 zMl^7w_bt@B7;|YQZvG0%mn@FzXQx;X^8gyLWz(9~20+f)i(IN|wGOWqx6TcQKIGLdlyP8?i>z zUk3c=7elh0nsu;;BUC04`ahscp+E<-3;fxH^zjpGi2QU*g>l%M%OWeOk59F9zzV^t zP#I)XudI{kqbNr_YS^Mmx=%x_sU<&?X)X$~xa1`1-NFME?kCInpt(aY1Pld}eb@8vPHQ;<4C-XS>!)*na#zl2W+ zse!0ky`kyVRifETY7;Pu5FKZASt*`Bk7}{0T70QPA?y#btA0yy=rw(_Y4P~L9p(|5 z?wxnSci#DvP$1FJ&g7t0CG*fdO5nQK)KU7!XVUf>cnTEUVScf7V#n~KfLrx1qBew& z8y=Q&?)B{aEb0okBa2MOp8~9Uwu8|RR&_A^G#8^&&4mLXQxKp}ADC!eCRQbCO_F_% z5EVmTY#kv|IFBGs8Dx+82|f1enN$uU+jm3x2oaH2V$_IuHGLPeB%=3QM`g1wlF zZ6uD-T;2NFubnp}Y^23Br5F%b6Ng9Z6I|$ClwF>!cwHB&JsT$4aEsWUFQDbTA2;Co z+NoM6Frs|fY{Hv41=(+whejQXlWmw}Nl=-Mu$Qi@+GXC6-Z9y+ARK=x%^*R$MorVl zCLevUlv}JgU8h8fsTW@v5f6PRUeKG6&UQ~GaF3AUgA>QpN#NxtrIXZ zPZ(%thTdcuwB1#A8vk}YFrGG$%g*8utwEbkJ}LR~iR#4N#$kLcT~t<%!VFwlmgSFO zPn|DE-%RWODkyt=QU_i!bIZF|2EFT`Mt}UkLsB5Zi=B%3iEuSH``G(Z>etzO%EzJw z8!8}I*y3fqE>|Q*(=ucxGd=go>^s_|+7}*8Wt1%JtoPmJMVH@;_W6l;Y8nALLDM}7 zT~V;lbs};3R+(K>4_pf^*`zOe7|&nQ40Bm}439~5xVccPL^BMV>@LbsyL0gJMX3kx zIYi8>7egYnonAx~PT#TVew4vT9VI(3P7Ldz$~GxrZR$&~+Z#}l)fsAG8-J+&Rq6eC z)utS|pyN!PwQS3W%%eiCF?_Vv2rwGjQ$v_Gitm2C{^iWB!rnyH@D zdX3&wDV0i7#Xs}?)yrdd>t3FYP8^(l(Ute@`|yFuykXs`L`i*h(b0i3Ii>t*ZmLB& z>JaJrw{qO$T}jUdN~dh=k8dgV9DBVc7v4Q_f7-5fPK%qX=I}Gy{Y{-hN0eRSa|9CG z_muk^j&zvy=Fl|qe|7mp-}bCeE7fGC&v(Khf}RTto2+my3kp9JwxBeE53Co7qQ6OhVc%bL8q3fVZb3A^+Aqo432FR<7|f7@ojZD?*x=L!eMy|YC**b3tolm^ zTIVYlmBu$Oo@il_PiFc=9T<7W>e`6Ep;B(`#PqaQOws8p{AVEsMr&2wX?@cAk!sqt zd8|j4G>G|at1~v#uOH9z*6A@Va4R4AG#em1?s-0>S5cp~mG(C8*9JQk_-#*vyprpx z6OmmBa%-<>A@?5#l+tJEJcxdr%5mGF4sN#lym{eT?0D-zvB!L*LatJq&cjEC`r?*+_zV-x+cqY@SLJY+Hxyj_to+IgE?n-bT|z5eq3Tm*Hb?;wGDZD zsOzaV=jU_TUE$fbJ^SSZ^b$6vL#B?&D26gi@0SZNVc_5G(qm|N@k`6W$I_jh(bi4O z2kPN=t!-Z-D|Lhz&~_cI<8MoyITja^X!h=Fz+SYQij~vjc^e}n7_rhC)?IPX_DpC= z;oW?{`N!H0i6E`=% z>jJh9^VUXBJ=l=B7MgQ^FzISB_2&r*nAy>HLcB$^V~-oH9;dxL3q^byaN~DAQ-WNH zd?C;oCD>P5FC7mt<`PzMYsxf!$lZ);*&xm6MCV`TKT1xC0F!SlWLL(}Pa?NHle*Idk9qVH zLM}uSE-ECHpZ9xknAuOWjg&pd`J64aS|-uZ7K^UGZz`~X*s?3olMtg9QqEdBA`%gE z@$gXw8S_JPwhuK;Gm{VSml^zj05U<%zMm)=+nQ7*qy+Fg&;(n4ZfaFPIjQE3JdZ5? z6&}(J02maZdFGW=V~o?+sG`Fgw+4}h^T^Fh#VX@o{*E_7;Npbs&7UhpQ$o*=rg`&v~*qcz7&u*$S#%s#< ze9`8qFOh@ywP$N3)J?RxJT7*z$gXz(094Z_m3GU9L-Q^$GoSPMR;7$C0eXVW;@Wcot62NDGLB&-n8uLjoOSyU67@{k{BRR+3s<*4TN!(R&{5M%`LGh3=J-DS%4e?Rka)WEHNuvtAl`c zuT$Ib%}=%F(${9Qs~51#3k!)YQD(i7OY+N}I{yHl)}X!8Bb#JmLzBs3IqW~L=~%W0 zTe-cKNZFxDA0!YC2c>JrZF>uxyUOJ9$NcmDe+4Bd%KXU3nZ0ghMH#f6(g|6RbCX)O zbIT$W45S{%rCOH2i+Ns5DeJX>5p$0hZg-HC1ffswUPBdLK`J)357WT1~C((}-ETKsY zpMR!nM@+o4v(c2vcMGbh8}tkJ?jQ`n9V>sD@jTW6u!5oGIjc>@G-?oN0E{PeDO!2Th;)}fx)U5!Kr zHvQl|dBGU%+wras#<5yjU$E0Bm2$<#I2(x>ApQftryc2YSzQU)B5#SB<<_x%0X9hr zg!x=yi9PxBtX&VqmwH1qGRNmC;B7s9hHAa7!I6Bq=fa}k7s_QxSLDW;&?xIxnu(k8+XsOZg|rE7-O}(wvnD$88(Ci zEyhjhn%eB$&bT1GaeM;ZYw{!A7 zGORuQ{{Z^+sjYlJF+1vd8wLzFn{qLMj^6(O=hC~y7WVc~3x!E@*C(cW)Aa2|z)sfI z?o|-r83qCRS4B#RE7REHr01+EEsqCFCApg8&EFKovB<{UdsgO$qnj*F&%RN}&reR`s<(=7=hP-ki-{IjM%$5&gW9NB-Yh!gD;Nc1vO9U{)3^ES zS=zkq2uH~%$L7iJ{HkRa>|bK4xW|=*xNHD@2jPmXbrMM%5C-BqQEhkwXNCuZlh&+Z zWgjDC9tSn$Ugk1tM>TV56p&Xnop)@qF4T-?x8+@J&ANex&T+x4n}`aN!K`H5HfI$| zZZ78_Y<#&@Wsf}M@x^SGw^$e-DQ&uK9eVzia!3gcxC6#3D(cE22xxlxS7sX+p}ymc z(pF{-_0mTpJ)l;F56n;b_NlH)OAsOw}(8jTgZK=}$b*7yr7En<(g&T2J z>(i6HtV5c)n4rv{Oi_oR?^44JjkJm_)FiBVIOjiF&`luWnl}n@jyqOO-h(?nWw~(d zcsLjoqf!%g=CIU}9=#p(j~Ri`!bZ{P3t2%1YW|65RtYhd_@>))+%g1Wh*6p51(b6_brHgKx>PNM+JoCZ&Eau=`T*rkN7(F`rf1mO6W!SNN zpz*-;sz?-ng<6S*0S6WHweb?ECfMBEhd3+%+r>cf{KRAMtBU9jcqiV5Wn-LU+*dfP zXEZ?aMk%J>ap9`^#AZJr4gMcmy$+g|$g}DW$gBZK#tXR5r|^!vpTjkzV&$;8Oq)F} zTe&vIxg3&7zys8t)p=xxOe$=c$#lGnjBtk^!aYa#kFP;R-PEqWRB9r(7{qFNJ1F7dVvfEQV$8N#p zh!n?gPcOwnax;wnRGw3}(w{0Tl@hs(Fe8T}?*q^I=B2m0f+vW{Y$SO21b6%@y27LV zc-{W(BbdW3-N3JZO1MjxV&f*ZHKf(-56yRJwoZOsfa8kJy4J0>;>I>Y4?F=-EH6Bp zx!cg3{{Tv{Z)LjT3wR?#JclGW7z4h2zs9;_QO`rF3UxFQ9gImmt3Td3Q^`H*<+Y@< z&%WVQFJn@@se&0i`B@ux?#d}3pG<#`y=qw7%__$sVqz*jZM%1IT2xYvH6-+BN7Yp} z5J9j6jR9T{{WFx zof>wN{NksI*$hG}te8hC-C9264{9yZUgVMY6NSxR zD5|`k+~Xej?@hLWBNFpWYh%wS+^er3kMsPyR#nZW7Z?Qncl zBX1we{PR%C>zrhg4O%I|#%i>XGYpI=u7xX>nj(2YY`9^8!5yjt8IvTO57+$v0Gw3K z6oCB97!H)XGBDWu>r0l3(?mj&qa%~+>;8War9c7Q{n9-niK^Y$2 zl$!|1Jw0%J{i&yKZ|6W3$cB5DXcWhm%Ax3^>sLI*2b>&LYd@JA${h6~l5iWg)9NS} zkdo$Eas~kXdQvi|Z{8D*hmZ5`QMJP^R1eOYX9t~}`*A?Yt_H>pxR6hC$E`KYY@maH z2l@X1KGd>o@kYlD}@|muRi|(=kxca4qN3Q=eHO={{Sv= zPk6kp2*~OEKhOUFtkfV02-}ZbamV5LcKn4fCRQNsi~>EqGyVjBE)7_SGXQxX*Zi6h za;I)M>yu4cmCn@%arUOzi45C5RN+UUuhAa^f5@4jf7m_`{T8+P*J`2em0bx3+P_7- z76SM~Lj#a3U<3aBtz##0;kmWmiaXI#Y8CJ*9sG*>>b@eCH0?4m_M8?yk2&|Ps8MxZ zn1t@&3K5uKxgpn@-aviM1?34glMZao0be;a;3DNkvWUaLW~Wa-({G62x^Y zxNeanws`id0fKsQpTe=V8@&fq`vkYwPi*!_i10pPpU2exRTiz{ZwlYrGYiPpZ$q9> z<^KTJt_x7rblF4sQwANoaro3$!lbT^sp2m6Jr_~&Hi55M-&)<>7-M(DWRBVW1y{B4 zW{ag<>DE@Vytc5$QKrD^asCzMUn~64w;7{g9M_j6XQ|qxndwq$+6IfIYO7&*Zf3o5 zdUVceuDdUU^{ePLtw!=inkevX#y(?;^R~-yX{vysS2-0UHhe4MjVi)F5ynrFmrIBj zxf!mn!#+9DbpHSk={C1AmSilF06yq!4u4wmd(A8sFBjIc3KHZKj8Sm0?biD5hCDR| z^~Htsmsc00kf0CU=l=lLQ`r1S(O<48z>w}88RTO-y`OsVt0l=VSLK>woUoe5|TJgudPc@r! zY|+X|=9(po6l%xi7&T=r*^kO|^s3P01M6Cr0F=&Z$sGlmAY|gLEt-sEiZ_g7IH^H7 zpk%OHMyIt;96@B=o+>!nr%q`IcqEKsm2-|LUcA(b1pqLdQt*0H*#!!sfsNartpN$? zRw0PVAXOaG?jUP-+aShh0;peFHe~bCr3=R$DBJBo5pBnQ1zCpNx!iaQ$tId3`OtPX zxSD*^LW^oLG0qPs^8WxlSEGWUrtZ!>O;-d(r`zr<+Xm5`F&VAhAMBH}DUTB>{u%33 z8at~C8HBOnK>Pl@_5T1r;Z?M2&no3h6$Fl_q2t^9`*B``rm56WXy%MvNL=f#7k#@- zKZ9zq9k~AhBk<08S0%1nGX>lL^v8emgIy%EhSR2v2q58(djA0Rx|*YZcNx=Nqyx+Y z*T1brc}7uUqZuh29Py@E2+0PbOLZLW6=n^x-^>pg;|_A6lTgRFcSEW63;@)zEDen5j`nrzXsW z(n9|L5XDU%o``dd){ZG~Dv2Oikw?n7H1MMw)5xO~tOQL2Y(8#js}iX=AB9c8?LYv~ zk{#I&&?$EPYErZTOjaV>NI?RnB9|Vt0a&gJ0=I5Jrj^ccD#=ko zsGtgwq2G*P)Xb-jlv%mCeCPNDa(Ao&?}9UtG@%UG}bJug&6{#V=Iz5yk~y z(5*tVFh7+Ifzcg!L=$Mk&Ci;vm1F5sn3m^Q5xjrs*~w~?#J3PbaJKd> zn83lJ;BeAuvs=Zy5uRI=VKr_%9LKuwtoL6h`-@(&(t5}8zl=(pA$n@__4rb2E=H-IL z6R|xoD?)u5{@Oj#TSx{ok}K@L1^hYD^b0KgmN_IC{ox%erM>Xhk$VfIkVfc6H*Fr6 zphv(yTdxc-O-Q&3N$4xwzBGI=k3$Ck08CBR=acQ4@*5o{?)foo1dO2Jwv5mQa30j4 z16MBe%bO+w>NywPg;(f$9w@jB3zNXfqi^Agkw6sXMrRvE7XmQ7yVF3($mv(5vbu;5 zIyQ{A-6VAtD`>Zm7?o|DgUBFtpk`lQX+WtS7e?B^k7|5S$s_r3DP}!@pbGm>TyalP z(~c^{mhBU5kxH=Y4Kr>&ln7}YQ+CvtqZ9zzX%!$Iw74FW0s1{(H2%`i`JOn_WX9ku z6@7o@q@Vq2`dYqz{h(pEZhM19#C zhaeHgMN5BuYXqAR29u#9*ZhjPYi;(Z7DeDNuN~BBCe@C1?Wpv=MYj(-qDh~asK$M& zo%XcT#x3H^#Ga$ITANKzloj8Ox#pTIfaMb$@CRz?jz5)bSGG-TSG0kaCBVr&lyo&? z%LRPZRc!V29r^U*nzL^NnJAzIZ@s&m{YUxyGn(7e>^#N+@&V31U@@M*k0+e=&wAR0 zIN~2NFqK1_eKgAZws1#7kHN94xGFUI_ip1m`J>sXpC;c`K3tH0*QL(hDDYtc#6 zrFXbR>U1+0Y~w3&D3faEJ#uMnB$jpziUbZi_cd}@Ev}Oil`D*#o((cxI_}=b%(ILv z0OUKJqwuZ@v^f>cZJ@~*qXH1GV~#5Io$Ae)uOj&X;qlYl*F2hpv2PF*xNvy@{<)b{eP_dQgVQLJqH}MX8{{Z^xA*0+| zNDRLwK*Iyly(#T2pgX`wi8(mpsB1AqVFE&-zVIihHQP%OszQr*vDbJnL%2E&af{IS zA+}20GC%tN0M5C86tu%q0!wy{qZlk&+dZk2hY~9(?hkRCA4b%5>7Lp>s=g=bb6lN9EvUKb<+5dHHC$sh3$N&EiTm?Ty($(r%ZcR z4~cJKMG{)6Xq&$$=IVc+sq5OEu4~r!nmke45N6NJ804tOspS6v^{bVI-dT(?lF_)} zW`!Fou~o0k`C`d#=5Ori0LeVk!@)WwxJ)H zVJ>j#%iF*A*Vo;9k50AD>KbgeQ!HhcMUZ)rO&Q9{zN7p*Q&H0AEaiDv*wA$OB)VPy z0607h91wrc*1Jy+-b-&4-JGmeHU*SOI0K63q>w-#B#-rqPdWU*ms-Mtyxom4PEH>2(0D&uk5aK!z6I_f`9hQH`g+zy+Rq-S z@Weu(a>qOn4RP8wrcK4f@U{xe{6F31weD`DxR~y3gyD~T{y*oncT=L%z4SbKwNreL zbAQ9ShPv9v*rA#>w+Accb;q}_{{X7J5kyl&iKrsYA66T3FgpJLPxFfLuMy34V`*)u z>9QZRLxz9$fb4yL`qkX{KgIUi>`+52(8qRBSgv;-zt1Q1rqQGKjVqlZ?YvHxR&guX znD(sPytCWMo? z2JU&lKj-z)<~vKK|Feztt)Z{GxQ(l{F<9{ zn1rp$lfw=<>s8&u5sLFFG||sCnNoaiCkF@Gt2%?mF_VsJ`$l@2iK7P@BD0G|49}Vu zLP7i9l~};+K0;5mYRM67o=$yffk-E+``1KU+|I^misJwSkLg2OZhX6Bcg0?jMtkQ{MRD+ALtE~K99w8-skl`wP2>0Jf9 zVeF3XynqE{Awx!1UyE z)9ccUi^Aw*i53VyxDIp2bJWoqeOS`&PK|A09wOT<*EyAjQFy@GG0S_NIq6x~5*g%o znc3O8vmBF2v}3+~DMV}BRo|i;V<9nl%4P+l@3x|qP?jnV-0`1Ek(CE}ic&gus!vN0 z%Cdk?4k?=u@;Rrv@lgcEd*-xA$&0aZ&{Rwp2j&1&fm=AnThgAk?B{?v>}t}#QN|8N zdq(ZVXLft~RfudzA($RHakZ%l<_v(y8^-!LZ!8SC`#?fF*6g1lFC9E1B(`_EYj zP_4jUaa@JoopfiK7@(BxCxSYUt$H<!wOJ!mzpY5HC}Xig`jJBhz!Bhc$){}z9L!a622Z6Vj<7=S{ABU| ze=3khsTeE49ChZQ@{7s6`BB1(TMT`g6-B6S3QGx&B|RRyRz4 ziy;2BhqXp861y7rP(l%=wI$(f2Fb}*?hmimrDV*CKJWuQKM_j}?6&iHu`u6^6+Ekt zMjgc@k$t6J=T6)df31M^jC%X8UVC@#N3|#G7wBi*M7Y4`)Z_g68o|`90B@Ch@N1=s z(p145o~Q5`q3qD}TB+P69(|4m;?QL7UO!65y0j|JaB9lb75T0;39OkIW2@XjFAM^hJ)~?2TMJJW-oMN(WVN?WTBd7WQ06)&X z3Rr~9wmI1$!Q+AcfBMuIfZ(yuO46DUw48tS>ab7_K(5Hon0&YMX1;C}j_Y~7`a5(4J-~99W{b}BCBW~V$oP9fW`hWWBC5)4et^Q3g z5R&`>$@cv}l}{WG=XoFlK#;Mam5IOu+qdCUG(m?XDE0jR0K%IH%WRDC z-~4*}f1c9$47n`X8UFx3=jlMlq!ER{;PLZjrAZ|NhR>x!h*3u30`}&E36SO&KKQA% z^${zvcG~I%Gigwucc;R;6s)|l9dS{yGB`uVIvN2BG6Ya}bL~T+11dmsOl4I^F3Qi_ z{Qh+vqqLK%xja!|HLZ!*rMPdUeua21AMl81ckOmBJ>uZr3>SOsZRd18#BoasGPO(yDGba=O&=8&btHyw(06 z>2THc|=`gv`<5R*uvXl|m!F(PNn8?(8H@0{1qr#Q)}9;;AmLzdH5{Rs%_eX4fk3^4p@ z`YxY5+A`cmyc5Xl+O6Md)7rxuN}#I%K^~REUTMtgrv{^QH-XcwM9fFwQaJ1h0;1dj z>yuery9q3%6m+ax$iulJwC?_4$EWqI$$_duDHX@1K+dC$zolAbXv;i59j;5N>@sWd8OJq?HQ=P{jjQ~_h3b0ii=B>`Fj5l0!RpiF}rvQ4>i-Ng) zlhTkBiWPEH#@TcIZzpa73?N(Z6lnq`k@IT-acEU3o{!zbQ=9y;^Xbgqj^ z)r>KsgV1!xKDEyg$4t`~Z6_UIFH*_-@|cP#-*k zIU~;uaaEG-$H>^*-m9a!%v}INae}{J^ZC}b@d~85iKR=CSnB7xdr;AB&PT0sw^wsJ zn9s`)896njV?5q?ON3`Eq=H9YN9$0ojQ7S%kP7xGRXTH&E`+BQD;N?v{?JxHaD6L6 zOy{m@rlAb>lMoaDJ!+BECS%ZJ-n{8Ul;}?8v`d3dWb~|+zL;Q;Hu}}Od(h_?CXq<7 zx0-g`)6);wig-~#5Ns3__o=pkN2%#Z!#VcrMZkjx(x3FD+nNI7GyvVCo@gSZQJMhy?>=R{oGIlOt~~vn4}BHpa}TQARk(pkW(0Ar2xpt%X3m} zB!GVHCNc@_O7fD*05k|mq9t~o+=^|pY;qgYrjkRz_Ul!pjkUSuT-yi2tB<@ZGU`a1a6yJ2l~rqo63K&t2j^6! zyDG=AJ?H{iW(^j`AT?09iBu`wlSp68lc=ixY4b|3$fUs&z^mrQy+Jk9O{bfMw~jH0 zf%%Pcu`ueRk`bdvMEXBLZ`eTFIHhSmfs=bNJNP%*}6spP2NfPipf*v9CGc;){;QKBQ&1scfS% z-F&OidRDUN>W-#DcAB{)aMi>312tZfL{uS2BB^plao(7Q5_eF!=RcMy0}|);AC)}!pa3}? zI#jTbSd-SE>T(BKu>uSd%mJjvi}8~1_5A9Ty>pScRE72^!KOhHxn^^ZYC|FiBh&o< z0QIQ~jCzw-9qfz37~j494D=|B`jOdC9Aq}z_7t|U2a#-3sXbf89YUT7oG)}q=Z zk%5t#f=e(CImJ>XloSvLJZ8S8{gpKM-opNDfiK+z9(m9BSIo<2oxmFQ&)Mh2F?erS z7T1rq3Ai~l!1phUI{o*DyfkIg!z|gsARqE8&;AJb&t2Cwrh@)i z)4V}oo^q_PxX2@s{&}k2AMmD?;qc940wE*s5IFp449WP9Z5_{oZ$-#bRSzEGyeHx0 zr%dp!vv+QY^2a9|hCut(=pP(BYi*}!Q`pj`YO% zYon#>+1p(iFCzK+WllSOl}5|rZMEI>Ap@k6x|s=-fsEvwRsR4Hd_>c9{Z4r-;8S+_ zRgq5^JXE+?YF9e16nHmH*6i$If;5ie0HQ&Spo|RlttqryIdtm_O*S}_VtH)ELC*yH zSBdMt5pMMx)w#5g!6L`yunmAkYWRQRxv{Z^8Die?Dak$0Pf9~N8^4A+JKY<0x<6}m z-k@~+s!tF6JJK{wQr0{BfcMVfl{THHrxnTEd`u7G8+}P4!p4O{=f6z<04m#y;yut81ri+bSZUmI zOa;XzDb$&u1OkIf4I!Wp(c1Zk_M_A;Exco=!4`bC)76_Df7VDp&*5KBSI++cv`&Kh zuZ!$wjzv~mB|)G1=;!*^7BW$dJI`Y7mgmp*j6T#Pl>@dp<2lWGE}j(HD=GzC4h2%v zJTz@226G&Z&pUDjZU|L4!Q-`j?k>D)G@@ZqsTFpGeatW@WjnH<4|=v$F_JM+Ib86c zg>rKlSrDjIU<&o)iqp`pMYYz)0IqwC{#BYz0XfGMqHo?Kh6mJluR{l4*-1;x#%kxL zO{Yhw+M`B4dH}#qOLzYO>;5&!YZ_RN>Bc}pc8~zaQPcJO>!R?!sIlxxTr_y#o_`Ey z{{YuoJ|eSOZJy@D9G||Vf=C?y04|>O_UUra}e10ni z=+tTKcEPzTky>f6+NYnZA1q*%fidQ{0E3U=Uvv3WF7MiC%rM4afPVrEZtM4tRzF^y zu~jF#c_cgAEKW&dlb?D>rv_E?56V3&7^KyrX|F-a5qD#f4_pJts4nA0$PUAfL8ZRc zrf5<%w+PXknG|yW0AAIO>wR~2@-W#6!BBeE$_guSrDI!7)E`XKuhzvQ^BiT^^&obx zS+(1XnLb&z=Zpc4`5)o_O=#WN%_IgFawFx2(aHRMDzsWeOBn_g{68Arg-B9e*)3ed z@eG%XX*|1p#XK{kZs)Pc>(a6OJE&<3J~f%|A&dpuumOYq@vicHDPx3rM3U-o80B&4 zT-flmX5bmqV}pvS<9?yZa(a8xJ>)=(v41CM_If3 zP2JG9hscaZ!!X8cYFLz{uCyvM)m-w)8)%90NfjO3io`JV z#c$mBR_-S%Fx>p4Ru-Y8-P$^>zyK4|Kj+rHnpI-fjOd-D?nfE(23Ms^1MPG;=xRl` z5UQ+rBdN_s+jryg&#ex929?>jbUxLj$c!@ae8blj%*gi<+L$6@*5$mwpWJSlA6n>i z`{tGbq;pyGr4wfh%H}JOL~@*D5D7k=E7tVsqqfi+FwH1+ zPbNeh=NycWP)DzRMoxG;8+2Ba&V^>PZg_k9OasU^zVpWigP+&@it27=d(9BqBxxHAIB3Ah z7{*BTw>F4A(ttA+JRe%_jPI&Es*q1rsQo(X#^+39dii7q zGN-t&CA*mEn)LqwW09j++PfUv8RE^ni7m5y%2b1l{{WHxb6+xe za?0j-B;OGTIx+g!XW>s3YCayjjeN$E+Z?0wkI#zDt33^+W{+IgJSA(dX{~E=Foc2} za8UaH0QKw5u6!pKhV^DdxHmENR%4T#^fjffd_lauVwPmu+v6N{{{TFi$2X5~1DSVV zWU;P%WtBa5IIByQB#nV|ae>16cK-l9X})o8+4}zgpL)Ve^mY5h9-Nw$ZrJtPk6Q4( zjGse|$(v~*$1HiJ+<<4jWToPi%C}!iPqm&7aDSaYX5-L~V_3*BjkOmgx(;fG+H=n% z@u^biX9lj)d$C;>iv2mIRUe1aq4NVaIjLi1$INhPdpQNr@DsNtrig;a3Nh4XpbVMg zr=>ke1K9Sa)RxvQSh4{lfVF!|EV6)cwAO4tF~a1U+OW3r<5{jriZVf7#rggb-=|)j z)|4SNJF(vT1loMpH+v#dS+T}H&OWs|J+_{Tu`E{?1NevrHTB2$k6uq7&Zg95cDLCX zWrfE${xk3E^!KcGRX8PZqwbt$wZuh2S{EDGnrVF3XO-l6*z!+2RAp6p@J+oE@(x)Si=YjrvR7I5M0G_nHocjfcnG|uFiPW6% zaw^hdL6u4)RTAwdCaN@~*wk)N5Igh-9Vu4SjBYiqBEdKnQ&OE`O^kCP=(XEV4x_A! z_DOC>9kLO)oQ}S^shN=hR7{@d{Qm%+l|t6xky~)elZ;iUneI4`DS~o+I#$Xw-o}ti zWH8-J8-DSyI{c&j_p7i>v&8JY9<^QzMv2du+k<-l04mbAk7Duw`c`h&vNnm8C?%Do zL$|hR8V%qofH>g#RRByHt@ zsy_;9+qAMS=ExlfO0sQHPH;WBsh7OQwjzm3t{fewlb)ufw;#F#(Bhg|$I27|Qb)r4 zq@2{$k1DZHeFSpye2e!xustd17)8Lq0CcJ0VG^C(G3o2mgZ#Vxbyn`^K?^?C+Bw^t z=iafoVJoWOw;+0osd1@C9EK$sW61Os%<8@{wuQEpaIA5WSk0>&yXaX7So-Aj$N4l) zGPZ|3O0wD~VKv~%CCMhK%XrLB9M)=FES!hOZadVKm3lD#M0XzDDj%042R`*8oD=Iw zuBfEV7JzCB(%LGe*cp=Cbbt1f*T2i#>A_XktPVp1$UfDgAR3Ve zB0WH#TrB7MHam1bUb7bCvC#^SBYcHn#y4P|f6wDtm)0tGWB_t_trcgFF~~5(f~-0b zRi|w8lb)X7R{ZI$PPs}lM=g71P?3T7RxQ=5VEm(=F&eT0H5nwlUu71#{_!tYo@uiewfGCzqj(Nx$PZ6KaVH>0Ign?D#W#8 zpPd*SdUdLj4WuY$WAECwZeeVZjGX@fpY#3|pKyXV`G^(h)2VQav6XU-{3Aby`S+^9 zk3Bi|t)c{*hzi*6>s2SUUB!ULdJ5f1GgR(U>b=SI&U=6Q>7CU)F#a7>3+9In7TTkBn{W$4{q!!lA*&M^T=h)piMylqeW(ohSh#VBhOW$?Sj6 z`Tk9nR1x_eI{yHi{{Wm+(thmx%fP6vFjSNo{3rskQlyeW&wpR@#V-s>`{V2WaYz|~ zA+yh7a6110`svZ(M>z*PjQ;?ie%&Yma90H|7P*Z%;oOv8pAQy;+f=8+^Em;AebpY!yRIYehGlkcDN z>Hc`YGGr`@8bWt<%|!EK@1{ZibhF$Ulp=wUbH}Y%v4Awg&L1W?IO+a>r6w)4C_=l) zP=%QKdRC3Cvm}hfW9wV?aY9%Kky`^9BAU(~*l&5kWu4S%xBd=a7^dG@r z@+atD_2CEpixv6w-~-1_++x2$d=viwB7TMc0A3J(=&@3Zqq{b{(MNhIn}O+HIQX-{ z_GupRBqbb>Rk;H_ap}|fSJBn;zlm&`_9-A|kP8p|KMtRAKeEr9lOBq5kN&qO=~$jDx0#yO53`VBk1P}B!NAUcEc$cblU-HChNGoz zg*P%tb}Xc4@D*PA{tXHQd!mvvfHtlOIRn4qI(pZuS3QL3Dm{)`IZaM?RqT1}_EJKq z^2W-~*~Smy{(q)Y<~hZwQ8cC!a1=4Y_X4&rb;xcf-eLqO`4c~0dSv$R+O;LV7W!qh zw>G;LZ@LaRKmMS9D)Xx5wB;Le9ns3?&G8v}YTf?;XGaPN6CRxnKgM^Lu-MwjWyp;{ zD^?GPng}uFg~`Yr0Q`S1@&!`XHCT11;u(vJyDYKj#Lo>heuBy_tz~kT(y;x1~O9 z4rQ@n&@=>HSVHa@$64t_1I}X2(*?ZW|Uy(JH5T@(5HoRIA>lc z^0_VhsN>vKON(9!1B&)NL*eX^LnPLX<|a7#dB^$x04BJtOG{3B!)lxG3w__MA)Q{D@Y!35AMX|W#<}fVQJ+w0Ahl5H z#|4d3kL?o>v(8L-;YUi*ge|DZg@XFhu)+&4mhmK~?v8O)t}O|i2_2pz_ZQNnS)^xf zK0wd9^3b&d4hw z7Iq7a7?IMOyEz2X7&4qtibV><(uU)wN(3QJb4^t_rxrLgfRR8C zP&SdCX|6B;rfw=t8_N-%)By6Nj%laAr67=!R0=k-j%WcjovN6cy_g|`C#04{3Y z&4{Dd)~B^WHf4|>EjTrwIb4NkQB^=Dt;0NO>AyRA8h|nuX8sP?rGhZZSbb__%1F_@ zwels7XaF&_Yw5DQF$N?vAI7t6XA&T`kZvcYdsC6j1fv7E9{g0jN?IPP;d|I6vv{s0 z3hcf4#ZuN$u6EnQdLANhHyYw?t_T2!^7HRf!**jU2cNif$?HibfwQ8M_m!Ei`Dc%)rG+uEdYH~~h|M^ji@<;6?WlS(L)7M*N(NEr*_~l2Yl9vScdL2-0pC(ii&9_NkV$nsHchppDbj0 z)LwGWcf0{am?SBbw=sk)%;59{@G2SY8CRFbA8_`qVRl5UYgw&~Gb{PN zUQmPTf zAQ*!NoHM`LlyKcBpks2&C(FpExng+~0>&`HrxP?zu8dWI$RevF z91MezO5~OxPmY@2r4N@D*mK=ZE5?ff z)1mySj6owD;PFF%x$J7{x~AL{;^yBf(dJ(3YYh#j9cTDGC z@ZPa3EprB+aU^OF&VZiY)thk?(8-CCMPb@Nc>L?$z7P1m4MGd6eQM$uqJ>7#KpE@p zTo1(^Zr=X@S)Sg;7}nZ0Ay_XhT&kLG*7=*djVqiGZO1HsN^msNIVEsCzt7T|8>a;O z*A-ekuIBKa$urFxz3HU-oKtrL#(Au)Y@|z!^GGSG{jf7ns_XW>i+!?xCl;!OtoMO1Ae4!(6sI@meYXID8%`c0?SmPu8<@ zY?ibs2#!8^nUB(*5DrJ?YIR^+8+bhrt!P?l&2kCc5;4hU;4kC-DW==e3y@tV>5@>X zjl-cmG29bgx1(w0ppIEwMvMtDj1i9jKS990PyV<60It06Mv}%W^tXXG$M=lRFwMvy z0sK8ZbNs8k)*-xyNRE9xNg}LcXa_v^C;Thxa*Raf6$Z?zVb?D?TgNh6+38?fPaJV> z$w0soPk-n7R~@2wPAzgNL=#EpFVE&~$Q|mmwo~hJh_C$BnK1S7Y;E6~T_>00u4f94o@_eYm%mJ?~(y~VA;GHq?Gfz#jVPF2HT$IdfY zzB%y)(AOi8!}(VS{b#@VHEPFEH?g9*#H+wPGwokLh{8si z0f-)GAoLYcpl#nX06j-FYayLLOrJqW*6!_r@{d~5_9-&DD(?!sf$fU2ul>~9Q!T5+ zr*;{-fmRdljDQI3=}Vb0ITbv|FS8gp&mNSMTx^eXu<604-x)+r_H`a%7~DGIxO?BW z2^ih8f$h-Nl%dXCA-g7VUE_69 zqi7#^)2fn?r4<$=QpqC~3O=NCrFjCeE~jrp#U!)#QV2h-9$=CWE?f<~^yK|$TIxz& zSUI*R)LFa$~>Gj9s{zY0+8c3sw03eT;@%R(du<8E*)~mMqMeKlw zk7-pnCp`Omb^UwQ`)x6xhz}{1@zWgsf0yH2bE=WMtfG)jrKQBX%d08wPSe+%`gi?m zv=K{bce&;>MtA^{arpieuW6{lk(D8%&-%4F-Tr^2O{q;SrHnJjADaud!a*M+dJuYa z{A-oUZQA#_%{j^FI(Zk)2#O3_e)09=ilF+9)u){lQf3J<3ZDFbpYmz?js3Nv#BOCE zbC3Z)=e1zZ;t_Luw$jWAAdR%&&6o)s(W@Ar{*_fwkCjSo+p#+|RT{7|IT#-n&~{ z*l#UG&4UR)*kfGgtES$`Zr3vi?UnK|-}0?2sxDSUl6#b53n1K}rU!bpY7tHuy|L+8 z(9Pt$aAeHg>b9+`&u_VHEquZO83Y>hrA5YWCnVu#W1thNort8LQ&wX6z{nhSu3JmF zyC_Y|@IQyHD{##$C49i?y>~9*jIXHn_pTbW++}29!+``_Su=ZezYNcREmNhFcU9Y4T(RQhGZPZV+9haO`7?nfM`?T=Nf6WE22q|4Ks zj(F@r?_KJWYu!3IR_K`+O>PxNPCAiQE-f4Y{9>-#LiW)xLAf#1cBD9!SQCL-&We;* zFymt~Br?obpdE!;@_-oQ=}U1M?cSd$QP!5(+C&@EY4ttpDA0^cvLcq;I2bs^Iylsf zU;;Y()T8d?bm`WS@)Yrt*NU!1)T5aUZzAbi6kd>7q)o(YWy)3U`AKHSeDfpHth<-p`?uMJ0wA^>>Uyy*LlhAQO!jeb4 z#eZV#pR;T`&G|j&1F(9I=zZ*K^K0}u?drogVQyee|fn{9D&od z6UbZ=*~hhI+&ONtW202s%xA_&i z(aE^Jc|EaAmRBPMPT|FR6cskLdXpI@w=uN%bwxX0VZrP=R^(Am6bT!i_@%Yn7blNH zoYjWU1d&{|q`94rX+221ft-`uucabE!8!cuaLdq&-_SsRwsju#bhu;ZoZv4nRgSK&vXdlxLCrstCJx`qib{0l))_%1qH0AjR@5cSTa< zU`KF&h<|ne0HLZ^5VS7QTt~InAcIyFh{!ySnEwDj=cP`!QO^on-!>I+Bb*PJJ&5io zb8OX1OBmBY7!oi&@mbdv=RA-`D_;63tt9f~KnWX_fXF%MM?8#wk(wiN;UT^Q;Y7luHt94hP?#$MKc_OPlx-$`xn!hTI%m-t}YP*Gu zWfWjm>P%^~K6_H9<=}c%V;cfNAB|}!{znI`Sq<+G)&D^&u>ng z)1vug1Rh3DwOhEh`=>lNJ!%bw7Yv|!{$JPh#H7{?SZCnWU8UrGSA9vlJ(1OEW6{XeZ*hSMF4yLU*Y;yC}EaClq7+S{#CoD zc_^V|kTU_EKOg?JMCEOWl&nCSY9cw8B>NomS)N8DW4nNQ4srn>pZ@@=wk5uVNbww= zy!+;`DtU^)2S1JyD zkN*I#x8+TE;$yWrJ+buv06(X>tx6Ws-NSAHTzeYVw^k}diZDAb_|`-cGA=`~9kJVw z^Z8ZFd%~cJdG{aGf1dT6ljuy7Wu`L6F8E16c){ditP-*==_D-p{Hr|b&r_cD`U~KX`4e<6`tXDQ07b2Sdx9Bqq!C}C9ti&c zkvl^F0Ivu?^jgxjjVX0D`_V^wC^riE-tO$grYDfT?!%G^?nmYN*U=U8Cxz{sQPg*U z#zw{o89txa^~H1I7SFNMhIVYD zW0BB#RO(+6(e*XyC6>l%d7Yk{q3QA}+{tejpPVC(fDS*PtbZBWwZ*jeGR8!3$RmlD zp~xH$&biGK#fMJQRtuzZ%fK1n{{WsVf5aXjwZ8COyb;Zbntw3F8#v<`>;64!(UfAg zK5CTTwfD9-yXc-oM2r?^APfxkZ}RtFsc z=DWRb#&&o1URp6gfDysTedER5h&GH`HpYz(EsJxHi3rrFK&Tu}s{{TFH zhozO%jO8Z!9!_UcQBhaiF1%43QtY>g6dlRyT^56_$A5wyqqzIuf0NUZULk#O;%uIP z`c~J5@8wxk?gs>LN$2a%eXG%-i&CAed6jVOM)y9B(7Z!&Z6Yj<<|xO?MoGu{{V9BV zr&(&6Ginygi7 z2O#}vw@}G$N|15u>suOYY5Ika*`$m|F#b9K$2Sbi`>{=F9~g0urCYnROF5Z5&BLfQ zQJFn>paL1uZlW?T?t%HMcK-lKv%HL4ST+th70oydaHop12B9^iY^uZq=|B&a3Lh=8 zk=~$`DxS29zIA6U$)#AZesh`@fFd^s6*OpM>T)V6Bgo+34!-p3b$G_&al?sLy_O>PxDScrfWI|EaNANxSx2`vD~tfXBj4}M*NQ8@l{Y` znzJ4cK9m6k@_GJDCQmFhn|A?O7giEQEXFB()s9V|f;rrFDH%ySoQ%-U5U#*VNHg<_SBBtj0wIqzN8TMXTW3hM2s68` zdj9}gL8aTM!iNj>sj1B^#}Yj(KFN|nf*9})Ye}-PjOV3AZ3J**%Fcc2<~FWLq^{Ae ztX74J=g`vZSuzR_T6O?pX+gpErUY$o9ywl=rZClm<~>80ozDDDaQvG6a%`R zG2fBxO)H6#L29>m2#=CU3-!%fn?SgUi2E@pqz;+m6{X>AI$NDa-a{F90}SJ>dZ9=X z$jI^I2OQ&|uR@hL^4?74sV93RcynpX3~{)GXYQUVyF##TA~ixd>0XPeSwnF#muHs{ zJBkkdtB==V*>*-au1cD>V|eI{rs_G*6bOzoMhCq}P=?QHN#wX`6kvH`v9Wg=Mk%E9 zr<0zvz@V@M@M+j$F{Y&~=%K&{fS@oP=>VpIPYcKCO(K9A#}yIa=B70h4A29J#xY8u zoDTI6J6CH|h~*tyy3hj3ralP8M$J;(&hs#4Jow(cUKn+PT zkOfCR;yy;jG(N{FdQwP0;(#E}1RuttXKvjpM?4TZRe9axP!MowisF{@JK)ktg-1Q; z<8JQai6&R&cs(hm45)H`P#TDSH!NH>{A{B$)FpD9p>F^eOy zBZ6vZSR!POw5p^QU=-8QS0l{jYY9%~@r8>P(3^!De}=8e1|r)TRZfkQjMGfe#R&3v zElm+gFwCc9XV$V(F3QCc6D1)`pycMJwsc@uZaBq9sLHBLaQw0V06K=pjt5TFZtW4& zxg5(B;g^!8|*s`CRuElQS;yiqLom_Cv~485@C44eSytT&RTsOPr3NW}#cu zQm^Lo^sI}$(S`ZB^fg<}X6S2fRAY0ji&BnBLKzMT&lRP4sk%lZl!pO$2Dn%^u?8$} z9M!2VZY7mcQO~U>VV7@iUFA}}4K)fAi9u4mJ?VjP*e8KbAV|alD=A3QDGMuaJq9Ye zt0adUW~SM-_T;grI|Lthno*V5xQ5f1eq}btj=~^hHLv4~xD<8UXOAh8d{{Wt}*dl2L zBN!vCS&lX%9OP4463GIczb#7y4I#@8Dob<#^y9s0K&X%$^~Pu!o-NmY7c}WC%MXz8 zR?uvjPw+KcXw)Bq;%u4i0|`)_B7W--SS9+MIJm#8EJYIZsqHwsn0Z$%u_O5oY+kKjKJL!_pmb8&EO*nG^K zL+C|x#*($nWiu~T@II@i+8c>{lNK|>j(&oxcz40troA7TW#uYoX!9E% zm#uUjE4_Q)4`|RRkWVQ2$T8^Kq zjXLHKZgZ7YJRWnLlk6+5vG{GSlCL1PUBht9igG_6^T?<8s`0gLH%-*7i892Y9mgc} z1NHt@ui~kuxr0Tw7awMn$MZ?+z#~70*QIt+k1oeF+HTC^_1z;?(si3-I~LSJMsT(v8LX4xaU!@dE2p)8o_Zva(sL2NEwQcRro@tDh7nYsj?u zq1@1wE2O@9r}KsrFV8QNvZgX>S(42usaxIEHLDMkUu`PSZLj7D$R8~ zw(m~6wY?V7#8!Opy)#`xd@|SHPkWG&lvLhOFf2#YHFgN^b>A3=y-y@U-#N$2j{g9l zu8UCdMxUi?am}advP^{eW+JBnPan>T)Q3(-mgqVi-nD+#cFLdChcl{595L zjpUYFU=(r;i~c|7H9U%JJ|Tv*C2g)Bf88K3IpVeaZLerC+}*;EUVXJd81sHWeL%+* z#_4EoreJBm4Yj-LQ$4?vw|3lli=XFNTK9#o^d{SOBO@6FSQ_d+7wT?{sEK5jXv9U8 zSezz*m2kS2qjh;Cg5q{~!=0*o4D=PxI5_HU8C9#?@ja$L=g@!XZ(i?S5AorM@kN*iALwKM07H87Ge6)lRrpUh!5nln4cWms zs2)Zb%M8-*0{{|9ubWY4HOai)tTKDkp)$ED$%!;1_RU{nhV}ezmM=cOCR3iVJ-^EqJBp?EO;2ZEELA4_vbw+c5KhLjP&U>8m)}xZ({n7~US}3)$70XdOB&i~{85?)hR;Hct z3s=zPnPRs$Hf_i+&ZDviURt#;t%;VUy*Qs~RN&%`_JPE5mZ z9ho^BlO5}wT}=7SHN?hg3Eaib?Ee6se>$hA=`C?=B(!pp43nOR+PRdPOE)py7Tm`f zRVNkfM!aJ5+}?EgqhxCMqF8kZ03 zf4hpF3wAQ^BWPY~YRB6YfanoN1OZ*VI!&A-B~*YqlU(k*C8?9j ziXJP%6i z&6HpQGta$6Nw~<0iKb%N*a(l$A$#DPNf{x9dvbi)vrzS&B0wb%)aa(!|S~s@)PM`bRMmTN5=7qZ}dXGcU{{SqzEdt+8GEBfmPu?e> z{{T6z-YI3Yl*QU^c9nQ{&lsjc*Y1U{{Ya} z_s#2{mb>XB(&alND@WZqy=O(c)9kkgOL^Czh~s(dj0)y&wGCGEq<4(bl^7)UtIRcz z5Z>nAIb~))>l=g>vj@Zb@3AqspEo$pK`alobX`Og+ghB=S1{Uxo>=E6xvKgv_IcEs z?Jp#8wDGdM zAg$fdIS(fyEFA6w_>Ud<_BBEcNL@zoYTj+k60u<;9nwPQt0_Hm-D{GyxQ+q{2X-(? z;2P7?=7#0L5@6@0a#W*bbYWHsGWShsbeZkvRNk{h<1x&KD+a6dZLF|Dr9`(%yzNdn+7{{S9(R5}srLZ;cvMWtL}eov71 z>&0D)#CgR@+!wg-T|{fW017$$>cl!!K^9qvPwx7k!_uef(ORJPD1%SZl4V_~o-^Bl z>;8Q!TkMwbjj?Q!QO@$Y3Vl=_zl}sLHvs?!6bFSL#q~YvL5yKJ?OhRywXABQk(VHv z)tPP#lUp+u4V=7edXb*KnqodN~)K3F@Tw_BCREl#i4YJQ8Y@h>&F) zbe8OMwN45j?b}-6FJ(zlm$C4=)?aCjLpB3D;z`-`wfB>f5M%k6?p@crukqZ+(9E^I3#h{g~cS&T83EJO1GgHtKKEOc&shsvs8s# z;h1A~Due>g*+iF8t2r4gTPL4Sr8QACcM(bwPnVb^vjh#S4;)kna%3OJH66yH?IT~? zMq{!=<@5YU*A*<&EcW6=00Mt1QjB?dkU~wqR#%?mXaPZEo|RtSXNq0uLEL#$(yWrm zg_Q#l#s?J0?LUfg3pY3%0bG?ME8QBj%>;@$9o1${>NA7i=~2w66sZFv)~HDzkl?8$ zdSf*d@<{AaNhFWGQ7YEb+LD`FkzFg?6A~6GIT$=un=38PA^HK>)K-lCXe1Gn$UUmv*2RRe0~JceWs*iCHk5BXYf1Fl!Iiw&86fOf2deMM+C@>FNa}@w~{{TP!s$q5h z_cdE=Br()~2p@$;VkJgRPs0u0=(m=H4EI2 zx)q*B94hx8&{TVXg{GbSi*f$|Egyp3$~*r6Pio~gop>1D+S4$?#|IyNU-!?aw@T=t zhUa&d!@1cFPTox_OH`3=Cf~tRl!MeOcl0>pj{R#r%7M>7D+9wWMU$CG1hF_3t3BLy z_U|mebax`Tt3uT+5WU5dmdEm}on~~mwcRU)4aP~TI^MoQul8hsgTdqc`&TP*d-mC# zZe(^)GBdv$OGSw zqOV!b(n7)G3Q6ogojOzpj0}%&rE>FHRuzmnV{@J`z46+iXtUR!TF|*t-3D|20N1L_ zrAY*IuBb}rE>M~hK4FvXQbP>)1CRPeI2ewDn zn7zlhrfWjUg9cHS`k%}E{{Wm&B-y|@^yB>cRB!Tt2d7{2^rn(?$o`Z8bjFOJ#gG2I zN90Ujr+o8IwVjX4wSNlGhvq#vscaIs=%W4FhdBO~`WN7?JRhNR$JikM0MTn-pP@23 zbJo8={1yKIB7TLB`S64P07Z(%_bLj_n_cLlie`adH|SU2+4_5nNTYGIks$*h9z8m9 z`q$DG^2LUv>!!;AQXB!Fe0%es{-@U*teC9#$U;Up zuQ68w~!-wj5o86LzBBpk3;7 zn1Uui;4=ZAZ*Q;v0A7%IZf3muEaEhiJ4hVo^ZaVnh3U0eE|543agcw{ty!N`ORME# zs=K%i-~8jXc2L55R+?umY{kVi(Ij6B@27;z5+PCDPI%|itY3I};L+B?blEa=&QDYA z{&=pF!hS3oZTFLK+u&}ciO*i1xvxf?X&TLsorEezOEJf6XY21@L586WBiE_(c)U#O z>urybHH{IXxoD*uN}L=YVrLVU$(b ziEXCoGD0J}GA#c9-p5bYv1QWWmi6J&oXhRpR?J#;(UH$P8>VW_t(@9(7iCPhr{47b zwZZK*_m196t0R=W(QoaXi7liJ)D5Sa&wFPd!g%TpdJJ>Q_X|77#By*z>z}9j!Kyln zvRlg|A_Y8?=~_Z+PeVD=aYqzwWGTC0#YG(L3zcl}YkN+AIUja5=Zw`YS4(19lb-c` zNa!q6i@5ep$mk9_R($rdTRCWnDc2&Z$2;3OSI-r(r`#jL%P9muN@6jM!Jc2<6YWp( zf$9mXw_1F0fa%=kl0^}P_n-=)7jI5!vLsBQ7@hSikXtLz(j;M<-1qdL2;xng4n<5h z0rPU+l#B^GVdcBhOCs@TOz=Y?Va5PQME%Xj7h-vtxK8V5F#oN!}z^w(G0GW1#+ZS*n+Vh{N}2`5R(jg zn$dy~agKN#)eu;PR1t$#qg$nm{!2DL?>I&e7>ffk3*7n574i>+9B)aY)z|Q3)N7h7-xQcecDS$Z$aG zkJhxUwRz%c?dFs_KPua^{(IL8X)~+vTOOIM{UX{ciTAl}z~pDY`Qo~r>OBlqp}BwU zVWXGrPlLAz!|R@(g>%g2`V%rAF-LW-&TTf%P)jiBo_*^!$4`>M=SOIkCgcD*kIVe# zx~buG)W)TKPCLtN^1Ktrtu8V#T}|DL7tHT!rAqL_99C5JMl~hBm0?O)xiam3`Kqt?j%$gX2#I-aXfd-+Bn^yqr(*{-B4@U0Mj0Ww7!=lE z4M*ImsTiFC-I8So4E z=V!>h4r=AmH&BIE#@;YH)Hc#7L%4jo^#1@os%tA}oUn}J*EG|y4klwj&7I^E=}(R{ ziV#`(^ruT7lPhmL14@xBtCj86ubV?R5()D7F^aTq96=l>a*w8IlSc7v0Dg5mS1Pff zWDHMyQ&OZ1-$^b0ADqTj{)Cv=6 zhSj&I+C53AS}-$_&tqLJot56B43{!QObWTk917pibUReE7k3C9yKd=dsnS}mA36jqEz~S^}o(5D)!Dj<8)y0)KP1O#{|1n;gp8wlTqBr zhB9%_(z;vw6p}KHf!F5ru6S6@G|v=ky+?W?wG^I)TwuE}Bx0tSL}39PYG<-G?7_he z>FG!!B!!cqJReHyNancku*9plo_kXHk+D!ZnvU$}3Zo!%nvOBGfyaDP0_C_wmA2q} zQ^o*dJJj|zVaE16np8yv)w^_{2SE{d!5j*mzV6eUR5m5UG;PzUtIUhAWA8D?6ad&j zG3{Z~p{XJV1xd|1Me<6c4owKyew70pi@6GugHR0b+QOz~Aa3nWU9FOO&;)FQj8U8n zezc`dX{1mDWim+zIjZcW5(Qkr{u+pky8+gi%3EBXpQS}4A&zlcB{ABgc*q}GKxD}l zSnw)sK7X-aM|0&Qj)yp5#ZKwgp)j#LRUtE_zVX}Ks12rB9Dma_{{RZ*bv;_=P=DT# zk!K<`;YZ=pnr_j=cSAMN-Cmh0DEa;^^CgcBB9VQT~1EoyFXjbF{O*`J1jt z&-v+0Xo2V`F`j^$)-`TJr(*rKrE?X(+0swk=R0xUuePIcc!-yB?~Os~K*t#4{{XF% z_32oCTc2qXN8^srUamZu$PTT@E@;_~sJhFNnGk+lmGgVP-I`TaXr zV2U(ye&D-^#zX zNfTPDzIg4~PLwApGn#c}7Lmw!e#x%2Gd7zMgJA`Z?2dTvNqKcFI;4$j zJfNY#Y>}Rwy$>9BuT1z`;rPyzsA^MVZ=-2iIm(#^3BV^FnXE%0^EV7(Z%c-v}9%;_`8@Z-z0Gwu&Epa;1I#dlEA5^&0V7W_X3T9oT z_pI}lKQ|}Vo>!@)<29V7-sY+{5DqYTr(%G9l(hv3id^wU6ao4-UIFp<{zkh$n*;1> zfAROPf3E}h@&WN>kRy+=u7B^huQxIN3nsV1d1{3@%MwKg9YHxYYsrlpIO2e@mm7a7 z`QqzU+(Wf5-Bx*OmogN$n*qZ08*E(Xr=iejWSsStcFBIRFFF zw6yECwsW|n#=~rpw<_!0AM@{8LZ$Rzr1mR_R1wym&I04h2i~n-+pfg8vSyOhoDfIN z8z13se?#9Lx>XX+?ATDCdiSjyTHH)>mS9d*NAsv9R0!T{<%cjtw;2UDGN%km{Z$iq;+5Rqhun8mZ$s>ss0rmNHsGj)?PU1+Tv?F{?yma|bxB2|4%o5vqC4;EX zKu<<~dsa26D(N$pardmxM}^`iB2>X0GfK{?!xAe4>0VJ3 z(i|0M=Z>|tq3RRB#5zeLb;&&k`Tmv3JSCRk=-BijDCcfi4@zsZh{Nq3-lDnfKH^Cx zSwpZ!KXV-`qe2Sw80ssMQRQ|qapeS*mHVeX%`AA4a$BEzLneM*x%yJBdJqLpf*`%L zlHw*reYx*k?4BE(XUd=E_pYxik@Jd`HVhsKs*Ohti;UcMIjt8&xVE|9aUS8GzLnQ6 zOfc!`NR5$@YGqJy&(gA~H#c@%q~*B~pbY;2iK&D^j}-F=RmePnQliMP#9SZg{(hAp z3!l42Juy!Jkx`;5%#(At0G-(3dHb~+D&*}AnsP1=QcrA9%nmSwRLR_-3MgKA&-heN zuyIcF0OM{co?@Oc#U$*xngO;z3X#+>JwYCn^B!_Y zKj-|4Yeu9JK>F3E6!s(3FKu9+C%dqZYNibEXP9%}-8~O%^Y4v07(5f`I%c-)VVXOE zdu;0hM1E=C?sNP&{w(@>R(7!^wAzG{*ha|%Z~^XnoOaKqc%odEy@q2=yC5ob>J(x$Y~rICP*Mt_xP+Gr|}rOu%zml64a>e6$MkasfAzh<;wBG{3X&n`jESob{o zR^^4vw(#QNi^e~Qo_!*HZZfswc>M^Reuv3Ie->K+xd)iFF0Y>mG1j)t@Dyb`vtnQY}R zj&M&k+|HKPMIeXEjC54aF;KfWlntckf-%R|n{TLG$MC(hsN`QrtQYRDPIFzgy{cWt zBJ#sT{FTlR*V?kzO;=MXK3+!+`Sz=;eq&!HRH6)I1NV=qp?Q-eHdy}vvd}UQv@UQZ zBPyf%k^X&Y(cUbDrFIP1z^q&x?s`}M)C4I@%tvNgTNIlS~`};B)A3O!%AqN0bt@f!r4Gd;b ztaFjnXWouoMCx}$-X*@bl)+@dR594cYz@YvD9PvMJf6JM zQb~0ywUcRz(J&Amt?xs!T&Qrnmo$wi*8mcDDk&aNiU&Cz`qM7u2!&Vg9x+lw8afjZ z&N_2giaw@ywj@2Naw(M1=1+4WnoX#nk_Q#j zPY&d+Ge=m~B)h#+Df2;K6sJV=!00}e%=nng1|B5BC<8vVp#%|ckz!#c@0)1nAK_4& zdFHt>yr|($>^F1iU9r)mjbZTG+M1poy;sv9W{b+;DGk@_S{jtGHJdE15HRc7vF(*J&jrpkmuswPhR>r&HQq!ks={%eR-7c1rOXHxP0?Nk7WD z{Z{@9i(%z%58vhI^QfBd{V7evQci>W!x;YnJl3MzY1fJpC>U-yZaQYYWVul`wyeOm zot{{WC!4Ww7uVnU*GX+>4bn#@6-nogzvrc6>RMc|Oz&=vQ>f$fskD1b#$Px{Q9}v9KIwaSGdRY{A%N!!~jTQeLv5oFqss2LfPFx`}p8<(?3e-gLWWnQ9!`688#0} zhI^>W1c`!y!Bf_)DY{^*5-5kEZ&UsiO8dxyBe{QjoD+;>Vy!!{MMjr%1I`B{{Qm%+ zv}6;K$``TE`TqbWnUrq9{7hmudB{3~l0p(K}0Y(PL0Q&V`%a9HRKTf~r`O^V@?@X^>Z(s1O3kN5H z+4QOl8xz7F{Wz_Q71+Nz7;7kQyNRDCDhVnLQpX4(z?$PYjMj2NEBsbuv{hJH6WH~(rXF58U8oF4qq+P*2g3(Ce%&m~7m>p6v<}#<_)|zZ!Toqhn z(~5>m2w8z(Nc66%b)6{abIzKm^)Gm7MfL9Xk(L<9{o`}f745nol{S|e+k{@9@Gd+4 zpQU+MgESd09f6snvkj66Cnu&q&;J0g)NWGV!qVO%zEmmD1JwN8c*j%v{cD!CHgY=X z;NcaqiL3a2S>5KbKWCj6I8K=M{40~OxVJ#ddnppe$98e+#dpy(*N#{N8%n2W90gxr z)bU&oigchRmFS8 zFP1GJZc7}3eXBFVH+JuRBWf6mc$}yocOxdWu5}d}s>Fa5Ip?wVr&YzvpSY=fJdDxt z4X@dBg`E)Y10<(U#<_cKP42B53gr{4`d4EO+Fn~VyYPpCGspSOb9%;;b8Du&8dCXU zLQA6_PJKHLD=KlNDZXP_s)>7rDD}HZkCi0*S$M-9_^bN7u}k6U8W-R4oSfI4UFes# z`=q;xvDD+A^Zx+qr|H^+u-eaT%*9_L1lDStRG%n&N6Tp!v^$cZrhC@UoLMm6O6PQ& zcQcGB0=g3rR{B=R#LU0bivr`5=qn~r@HiMEy4c6}s;;A_`Oy|k9y(%xC|KPo067Mu zzqMy$B65|TBobRlcMkch_E&^qB;->9qOZ%q{3+!yGUo%*ugz`T3R<2I)6-1GQQqkAl~4BN(NTK70|M!mab4l=6ETM^Ik?;P>K~5XbXy4l82DBgs9h zIv7~LLxJA4ZPnvmPi_SOBrAtCY7{IX9x3?yzxQqAO`?VIN zM#Q&LKPs8XES<{pLfjcj>&%jP$_^Kd)YkTM%^98J1V(VCnuyXYzFQUat9otJscCZ* z%u1e}y(@UiBw3Xu)aSRAqEdXe>S~PlyX93v2;iC&Nb(Tr^5o>6bJP4QKJ_+CcI8j4 zOzLZ(lx%9B?kyz)`HC|~XF2D?WR&Ct0jms;6ARpfE zS59%?70bap!r=6+%R9e4K<`pfY*Y5rSA)$<#Q;W5-UTY0nt1?~-}XwTl_eU5Y}dAp7;L=}N|PS34Lc5-9wt*i>agTanKn&-#7>xm$a(o$>h9<m5zlWT$-rZHL40vP0eHRu|Zlsdh)oo*K@ymMS7 z+(sEnK0^uka~CYptwwv_dx0ETw3gHWw_*E=O}to$n4lw z>C&)=APQo3`_pHe^b`0ao&eh%bg-89Y z(s^NHA3sl+aYU7dq-ugX1J<4w9cwBrS$J|3joWd&R*YAPbt9-7sY-5UXWDBBmk%EQ0F<9ktv>4VOIuKjA!cEabDq_Y=lr{m-u0}Z6M4SFu8Ns3Pc-NX$D9m~ z)kbz_AniFk)vIIj;OC!FTIh4?J=n-gKO&sYsMssX8Knr^?HxPR@W4pi>ewH|Y8wHz z*9!4CWjoK^%{FUd(1u)Y&owQ?(R`!;2=uD?X`M`R@W+u&D~$Fp1ZeGd;4|dLSpD`R z+n?!4AJ1e~KblzEX&AxC&-JZug8I~2U-}K}g^kn%BoZ;u{{TAZJY(T_Be*(-jOe?D zN&(by`I^;7LJkqG0bP&s$~y2r59e7rtkH#Ht+~A^*V>F}BPGl%l8y=NPvu!Rch-TN z#*SMZ`TmsB6J=|+2F*Cbu^dx0$iz2|#y1Y8s-c=!-zfqxas@+qd{S51M*|f|hGy%5 zp}v2Z5ay`1@}x27II1@{Qarhpi(uqcsBQ#^dBOFq(Tf=*hj0Y)DOy~p80k<9nGSkT zRgVkE9MuTgvAlhXqu0G##sOyPYckqCKwcOO=CnaP7UWW3IwUN>;O4Ipl^HyWf(9d{ zO20Arszy&BX^~mKhMU|GQVB3Iif%A|vQw`r8@kk2VashZ1qDcgVD9w6U@J-8kMk@PgCh=m|$sr+f9z*i9u^t%ga zRFRT%)b#IK_kJ?ETZ!hfXrXy=yDTty%|$ni?k`iz)fV1(`1wO9MTP)w7< zx@NzjI>~8a0ft8M%8cV3a(Vv%IjtRkNSjiU!b_;31;>`e3ZPIAKP&U56x>9FIZI73fpOxSUlmYEI{2s#snf5?wDviriaU zf?O%cHkxwl)%wCGh@Qy49r=Q#DPJvYVLje}g6=eESmTkj5sw_kHp z-1yG=dsejn07MqY1SlY3y?WL)u}(`u>0y)#llUfRrP&potj8cR=KztPT3`4<=arCI z*;?Fuq`6%6=Z?PAmOdrCv%Hp6dvdbldX^mEW7e-n;~A|Y^0eV^1Xl zV`I;JWv9ND(Lr%wE#zh2f!qAzxo{4{h3{R*#642yT$Veli6duJ350C){C(?A^5eN9@@^_guY*i{`I6?ot7%D#vEYoe37vngsiSy6JR z0MDT7RW8uZn_mOcw6z;NLbtX|&t%6O{pef!t^E&w%vNCx&&kOoorPPI|NFOxAVX5R zyF;X5G$`GTBc!B3I;BH|F}lWRMuXC=fOHLs(Smd%o$`71{XKsG$H8&$c;E55Ue|fv z)CRt8cQT!%aTP2P`_st)H(}nuQ)3$3>(L#;LQ^J7hzpAF4CduxG4+#lh=)tOUaeDdKVaPWVZ>YMvF-p%5+-cf$8wcQ5&d2NbgJeE)n`bU!1;3D|B2=lh5NeeQ z3UO{vast>r%-tTFa=n6wxWIy(huvNZe;2p&UKYu*3AHTmR7%BsBO0{b_?% z{VcwL_M1rA$KhBnB}c4%-PXs?FK5_&dJ5Pw$Tjtb!gju?9X;~Q1CdHVB@0aSP_0msdX3Jwi7btr(7+^@wWt%o55>&J1cVR*~9=thH!Ke^r^c!SYkQs(ZEX4O8?0Jj61UdtG%lrzyMY1;B^$#Oda4ZXhd*@>FM#*M zYZQ4qi}Dp#NiK&T{{077M1K8rnB(rg`&zm|jTK&RoA0~?7L?G{`2z;~6%0F3Lhnw^ z`uKxf6XHMG@{g`AJ6AmpRo2DR0{(8ewxUwa#G-a%-eAmyJb%}mHU2&;Y9H!SmnTYE z^>SM|bg{c;=LGUz-73NJofX=M820MK!}0F{a)RjZS-~R-|*i+ZKOrF7Ob2W`X|; z4H8GKgM=CTN* zJ$|C!74msxuqSt>#}Su_teHreL#>wTT{hA?<537FtuO~HW0{e}C$58h3 zJxweqK~S02+!wp4B=30Z6$7?1?XS;8*A*WNW6c~oVrZR-e?0uU++7LHm@HcOwWl2Z zS02$8HK8fMXg=pc?av{eWp2l?QKKcKNXZ$Tl2?t~euD^T;kQmfUMmY~3Y8a$Rywt) zj>HUUy4Cpwf;V&<25qVCH)0A zXS=NkO*Q)ZW8JbPo{?nsZxBpK{!R{`vgk@QukWyov(v6A_Ri)~BiluJ+AcdQ(lVza zIEvxse2n3gkAmTfy*5qOu6^$(OV+UI#yVtIR1`66x3Cqv_k!$o;DK_Vj;rEvV*Hlh zMgk6;Geao+f2EeqG6CT*-D9zOjV9nY4+`Ld@En{H)CmA zPE0sa9jJ#9p|qX6z-CLI&EOGoZ^t+@i+jPdL7Exs<W=CJ5oxyFIa-xrtwrHeZr3zL6%JucsK-?Clsvb zB@*lT|D2nPOXGh@aJ7wDqZ@nhr#HW=4k^`%U60isq{9S;dx7P*MhX^-3^6!;1^sn4 zF5v3iDGQ^tz+oigF2cO!M}sQLpQ(s$v)NvwSk z{jOSfJ4gWDB{!~;D)H8BZwU4c6B2y~#QYK3OkS4am9W#xjg{CF^bp$ATR5~M5J>Bw zfJDPmD~x@zOfvn^BXN?~e=p|AHolfp$D9135vN(5RVZqU(2NhgxvZu@Gp#BX0HN7* zxMK<0?HwF}gh%IUr$+3FwdFm%y-$o6Po73&6t%N;hLQBl0t3TN=l0 zNGX=EX{yZ>{f>3(q*7f>xlSBY!RaNrq`djz7g1nA=K*tOgYAND=voZ>M4aOnBLFm4 z1^fXnHul0S({zjTyD%E;UrSd!b&`GNNw7VX2{4iyK<{iNEWOTiV`3r%4L^pd$6n)w zHPlDB1J5uAbYto`6f0TXE)mx3A&C@oZ;SLz!>?pslr8sC>5r~QdJj3*`j=0*(FkWq z&3oXYbsViFODp3-tpBD?XJEA~O}5Ts3ZIhYds$@?rG^zd16Ws#qZZYpPV9V#t7>p6 z4Swi@a*W(q36ONN#jEPme-h9E3;L1{of{GKAP?W9(J%BqgV+`x>+`9r=nRP*x0Q#e zP0)>-*itZcqx)|B3a5JOPh>aQOgtq^h?XIOcXpl-58hMc|IcF4@dkuG><~8JBeuwW zK@59%=q(KEV=dY&U$7eb_W+JN`AC*FwRoyTzgLTgdkdE0u3=zHZe1G;GFcTpSN?X^ z5W&KwHyMWTvu2*~4}k`qH>dn`@s~B)bkiRVVrbt&ku8m@C!HX#!JfjN;wF$VXNsyuvUD$e`8~^+7 zPlbwulI?&RM+; zQK;G@R1RFfIpMrMcxK)aG1!~0^1mQjecfkaS#z$ajr3F~1HY&q{uFvu<0zTp%kRK5 znrpab;9&f>Iq|w9Eh|;x#=8}Ae|8t@o4aA=So69THrtxs^$dM_@|#xbwtMP@$b4CIc}GW^k&Ww+WMLQUQ|-`W{Hf%wNd}krbV;tC-lzpjwiY& zx?0@LsGlorqI33LSmgY1)H9AGn_U-%jSkgIHP&CDD<^5fzDPEMM3LNNgt!Z9t}N@9 zqVu{bF=ZTgox`g-Ypa%AV}h5o)QxEE`az2y<+u8{=xhgs7wWdYv)8lt9@X>pUd^DM)=A#}MQ{G2x^!Q>!Uh6P@*jX}qe}g!6B&l~ z!MHhvYh>VnH4^Kam^>$Jzl0Uj|9fD$c`wN(ZgWLyT|WUIHK(BBtHmRMHQ9WfR@;QjBOIx7?1OLRBg|HDIBce zPD2N|h$iyJrC@+cIt4>6MuDr!O^6`AHcq7_NnJTB+3i%U#6wxekd!|7E;XdJH6;uxG%Uu~LPasCDJW!Db$k-))Rr)-9P<-5$CukO8Sa$-b zni4coq&XD2W)a0Da!XIg#M%!2B01J-dV#s80N|}{cZHd7yoUjq+exc_*=+TxwUP3^${KBxl=$I|~{206cmWo})CoHi! zkAlpwHK%_8T*TT8-vw_pd!)_9emOCU-}v?Fv7PVQJuQGAZPi0v=h1wz=mCfk0@b&+ z#i3IXq>UBqQJi|PJ&{_qS4RzJfRlg~XFY#o$!BJc)OSv8RW$C!^O_imitQ4;6Ha6w z4x!wMQps%T;x2hSw@N|TjNixR8YrP4h3;gI2DyHrI zB+(Kxq0vIQLUOEuQ~``3nJV6BCl;IR6&^bNG5rQE^~|5L8bW9%%osP_Dep+R5-y0B zCHZO228aB;2a-45EB;&il0OS<$4Sp(ed)y#o}puEO0un-n1J(HXC_tcA4jqpS2ZN6 z2>K_eyLI%vj5e=CMJ-5)XNGsfs*#R)Vd3G*i@M*5AO-X$p*@4WE*$ifTv zf?$ThjXJY)(g*`54PRNea0V)%{ttH)+Fu{L!~cN_SxM6{$EXPi!lX zJn{-M{)AeHPNDNmTZ1*y*%>BRBAJ5?f0ez5?;x^>S+qeXJRg{Kq^GL-Ng)yPXr}Hn z8D6o3w>cnS(f@T8(Agf+#42h?KAW5zz={Yg2VPxTslF0=Wn#Z9~V%-eJcN^wY6}T}-qZ6^oLnBK}R@T4r1yUb^TWBozVg?T5+@SI)vHrFddMi))Wzp$PigP(A zG4IvUdIjoN%so`-Wn&kk=ik$-hAX}Odlyj>$P&*B1{Hc4Z)3Yo7S`v{mT&O|w%}bQ zoU}=sQy8a9g)i@-yz8)?=NqBRnHlkEYdRrpZr)>;tNFiwe%p-zi=h%lq&{2Di8eP` zC5{!;x-1Sp+XmqBmXR6Wi0FQ==~aUeHOTiz-JxnrA4;$)E8PpBJA4(iy$4crTnWpv ziwZLT0rJceqFUcL)*09^=m3&~ja1ju4`^+at=9Um)lO4Pnr<_Sgod9C)jcfQsV_0x zukRhm8qJRsTiV}-b?u(Ey6adU$$?i#dBkZ~+TQAZN)_r1SMHtiIS4MW9w3#{;JD`8 zlQItJvL4hRHnEW}#DE)?ZGm|$z-VXBp&x5}oTUhpf>--4ZK4yw=daFCmw;V!p{?s$ zTgo;uibGOmFvVohJ#NmEb$cA=?~3dbzEy26k;1GLxkpvRU0&n(X{J-n)C}cj?J&o(=#&C`C}mI z?}v3M1mR}sYN&DsU1Qc86)Uc~Puc2TT#>txDHdCt@G%9<9Z z?g|1@U-Ko*9PorzbAfdXHSP1`Cb|NPR4SSgp=epXh06YA>na?SG3pZu|%LG(-#g0L$N{hh@)dU+M2~)yy*EuZF~U z>z@*}MO~Q4a=7Q-D2h4nK(bss`98W9a~k|a`&*(GpbOOkSVY&k!si=h&n~%9%FYuK|_?`H$GBIq2 zv>{vD>Wp3f3e!CHdzjIgG%Hkef@@wk-zXDlcX=PqM_eJNyEglS*j}z_T#LRCraz?! zNMk+aybZPRkYq<=kDiaduAB(Te@8oRze4m;y}pnCH{O2$KXmZ&L2w|k(7W|+E>Y0% z3zZ!ls^dID8XCpcnyS~KVvg41Rs)ni`B(h-vrVBc=P0qD&hCMcoy{6`?9>)O?lFAeYchV{$~9Kol=}H zXRK(gwDQHtZqyxpXamWNoJc)fAEQV;c0VTqzYBoq(Ko$Ay)JHs^AN;0h?+mj1>e12bV_{b12gK+wV8oITgp>)Zlk|`|fEUdtwjINX6=Z@jkRq{4 zc*B^#(>e)o%)&r&2$PiT|Fy*EX1_8sZKmk)#OiB!&L6nE2*mT^pavZ8&y(X3PbCW* zsJ6XN`71TU5x0^(LsHuGC>#isP|8{IWbUV-hIYgbs7X>pLE=5WM3rF389Um%-A;FjMGaRU(HGK zehR3e<|h$b5Ew#>LPe>g9WWxOwg~6I68-V*21C|suvO>oKZ7!+TCDCss;ZA7sD{i> za+p{?wQ~*7U>n;oex)sU5Yly{o`2l_1(SJ5k?Nodz%DEfeTj`{!QCmpaNW{#4canq z>^vG&AP&GZu!kvMJr`aEQ;Uwa&U>AGqvIu|1XpJK?j-sUxwD!3P#PMWLz0C9OIyW8 zo}|Xz6b@_w8T9sY)4$WtZyHnHd1cf-{d{%5tix=yoP(Qh0{n3c+kRAf)kV{z5ooO1 zyF%q(>-d-_rP5}0+tpc_eHz*}NGS7JHvejLf5~yKIkuHD8GK^wn`(Ow4Vd@#P>0i>STqA3kp{37UM3cYet?`P(|tqqd-fm*TgElSrk{X?^A_)}qU|MGTBR zp1#6ZQX275i2*l#+}Ce#4b3xt|HRH7$XM3>#E>H$|5^7Jq&n{|9Y0d(!Ohn~&A5<_U4~RLcv{?5d0n`(-6S^h+Xw`F-Q{mi9KdkJEyUa+F%z=G3yO!~9!hZhd)ULwo2eAx>T5$)C&3I^|Ay6xTx7NUgTA{Tre{7A2DCL_*;yo3E=* zSlZJyoi>bpMBv_$TI!57T@5pnyIj7mzl2U_jb^ND7;n)J^hC>N#MGY}XLq~bRE&8< zjhhQR?XAz2F0y}~W5xSI3M`W7snT!I#Egig50Pz0A17xCPRa(J5z<)d-HXa`8*Kes z(CJec^1ND&i8p=yo=9EO>H?L;I@x!5Agu2?0tjWybMk}?u=8J0KM(dtFoJBNA1-t} z5&qV;+w&3tUrvM&^UkoT-5`}!(5$A>vV#N=ZWR4o8AB=z-A1%5=u2#hjY;2nCK=*# zx&{nGS2_O|A2Qy*a=CbMMM}6X4)u4BCGb_jM>9;hX8JQ9m;*Mzq1Dgm82z zY+0@Dm3v8sjj_JKaL!%8{pQ+PozU*U;dL6{OCk8Z-(^MaK*MODgJzO;L5$~oX$QTJ ziHYF328$S@e?-zn5-N}1@lAS8Gxr5U#@QR;Wy#n4@nWe#R$*5MUw@A2c{+Kx&j&H> zDZB9YFZIseK}gWJ%zfief>j#jP6k7g$3RGaGry4DRGs6ueJgUt< z-N;abl-x5;doqWF^9GE|9utxEQF%R97*ATxYg!*=i`ZI@5LExhj%)KO|mdv>|0v#{R> zs&H5Lj2{kl$$)ecUKoUdkVoG`K#Ai-q{eqwH`ejHGT7H#Y1bCV>3y8)5`zN zIc&b+JMA+XO~)CG@t$2Co&_cdy1k~i?1SY+puy%m$iMLF{QK`SIet9^8@on@rGn?*LDyu}tu%yz3qvpiD?Zjqz2hr5gD!jW zw8zl1OLbyN-Eh$FRaw=0QZjP1 zvGJzmt)DdYxvopEf$%lNip zV&)Pjizl#A5R4c(1&d>mqe;Wl`rWAjcc%m)<=^jQGZHHTEbl@5#5J13yW5`2M9X<3o5lK=iIv1!8JQrS5>n!ijnsyFpPl0vL$MPtVU74i(BWYrPK7G7k+L{b1 z0HG9`61bc1{P-Prj#z`1x96F6`1ic()h?OprA76-zQ?Xe0q_5{ccu3aXqqSm8u~n9 zJX3BjE53>q*YWruIDVZ|l>E7?Ek!eTTiOZZR%40KCiV*r>%x^)1)5w(1@lz8udZOEOOf6Vr8xg??m^Jo zYeKT8v#_q>26lsCX~v+-5Pfb6QYMIiZ67+%sK(vl^-E`)N>2|DG8&8-@gS1!y=>&T_khz4<=c<(>}$rdJO<5`P^>FnRsAI; zJr6x4CoJIK<~IK{JwnRICozOwJ&y3l_l}D1WX;JlkI1N|#j2shfM(#A5WJcM!ekD% z^Wa`5xqQ#glE7I8)NhH;pailDBkrAm6)O8=$k;OWo85t_>negD9-CM+dnb}iUMkHF z7X9y{o)0>2)%w|lV0_S`V$eKy>$T4>Kp zr?M6{_5@9Q=p&*!o$$5ZS5iOftI2CZ-%eFqlhoe*X~jC8G$rIsop(@s)0&J>(TqP5 zB~awG5LsLr314GonCo{Dz=jObZt;7Cgh|d5 z(KV+YAf7SKnk$=5x22JK(4KFfAF&~!=dJ$WI0kTDltjw??)wcw-3$_8+Tka@+b&l? znUUHrAW|9j&111=&p96aF&*?V9S%p&1mEm%(+is5ByTysvuy4+uh{HX?T@uLfahQ7 zYS0k_N)U?o;jiKj?$mZ(t%BeF&9TcO*f&2uC2 zDGq0SmK?QA&LOA?gaKR#L8W*)&TatZ!-+R6b2a{D4N?2@WH~}Sln^x4%~1$bPx_NC zw*5ru?CUlUUajKms&hqQc{0H$4OmXePPQQ~02-xm;8=)#Sqc(4i&}~W_!MG8zN(u) zwu$J;6Q}PkMHTcFOs8YWGnQnmuQ320jl>)ZZZ9qKJAZfYbg^#M>BQIEZ5}0{4F=tT zIq0pJsz*-PDb<#J%GNQ2#&b{}R4TCww}ai4dNp9SFBeX{ooa-CWJQ(tQk&btY(d)L zJ58NTklyV`j1}}K=GY*U`pNKyPuY+WVG^+F*8-AB6s<0dAZlliE0XRAN@EUNDK`Q@?_DQpm}9;T;~C%d(8*Ec`X#VqbAsWn38; zNo(t$cRTtj zbO!j*HzKoY*D;IsNN+vqDrG@*`wk6ms-~c#ucV$21)2vLr$BP}-{iD2#Y3J96M15L zi&sQPyb1eb1#>u)kKbM+z4s(xbY^x3YQEf_G(7x@>(A+0|L9G)x3q<*een`%saO+} zqLll2d3ZS?=B6yAHBz>Xkd~Q&fUXwgqCd#)hUmF9Z`vceqYvQ zsMIVawpn$On7z2zSDEM>}BU>QhI)&xB53Bf*vnH^yfl1I4Z3Hum0Mzh>yNL zqUV39f%M#A1;umPg|H5u+Saki5^p~&-}|}kR+#NYRaG$V9zvblqQu!VbK7nxH(Wi* z;CJ)XAX8sM;t!~EE;zB*1au@hm#f9$qi3ON^hfF8X)!11vL@hSxVN`uc$>gifQaLQ2FY~;oG8$mS6 zrNLv?n6HuzgZio2SvUp*IbrCwtt-yNHrMId-qTC?yV=tMx8v<+CiD(dB?TH={sn;U z>+t5Lx2$vte?>Sj%5I(H#V4J_@9S?T@v_YOD;-ux@C6WL$^a3siq+gPV!l`+g!P(m zr)nyM_HXLv$^Q7%Ah6%S=uTf@HGyF)+w{s)ox_7N+@sm@W1ACixDt{uphn-n>X04GZY14$_zAWXjkJBGpymUgP->@N)C3-r?J3 zzwgntE&MCvsmp2Y#(Uo1!WcUq9*oJqWtp@?IhVy__m{7ooAy9=DIBfd0AlYVscMRzOY zB-&@dEK57hCcQ_d$`Mzk3@^)e`zt}jTC*kuNtI^%T(5Sq`aSyR3P-Xa9hPE+cK>%H(IbPKWj)y!FOPJ(UUJ>u1CxD!y41@qr-IF zp)dgy5^B>vaz8thv?$4TO4~??>Z7gr;Uie#V-;PUTDN(&xz7rpE@#0v9F{TRAxhK3wMVWFT zW{Nu&sykjo5vUwGEBJG^2X94L6V@xT%ZvytjG-{_`LuMwab_$+i<@S{!hJX8l1)4x{espPSLO&f}bYrUpoAGWko)+xSe^s9t z9FW1?Sv?^eo#vzXS>38rd=IM>T~cPCeJ-dNdYSmt@aE~)k<8~Er>s`e)zR@IF`uOp z=cK~D=Xzdb1?tG0+AnDqST+m0u(-#bNJ+o)EV|9Js*6$iI~~?qb$DKsw4I%NDK)r(iWZS-}i2>4=syXqz=hzBo zHEDl;zhJ&9PusrKg_1P?3{%Ie4`3INOx($~o4?y_19sA1{no?N{xCGoecpBcJJ;D0dYma0ds-9Z0MF)t=dov}ha9-?`yL%HQ zhqBs+O7pb&o$@h6O`U1Q$j!bvFDcn#28e6)X!8m<>c$j<89!`it_xKR5M{ur$dvvI>Zz59$_==KD6 z{94H1DiIE)g%(&gzxt8Ow;8ofjC785M0^?M`AKJA4n6x++rXXJ5y{gECUiekytf-+ zO#N-DOg%*2GXF9zyDQ$~d$&uPiW7M&i0R?FB0Ub_N^zd#JTd*fW+)lurfIIV-GiGl zb^RZJ@tj96^cvZ6oWRW(+$yTgS^y(Q-%kQ=Dl_oMu}TH$AVyql6e9XpY(vRL@`p`^ z;@a zW8r$?CD3jyO^6A=^Y$N4sXx~qt&B=gBiWg($I3%kfpeeQnt^y|X>|%M<$BWlpN}r5 zr_aNNi~bh?M*m*`h&r)(Qz5Y#9_+jELs6Qj;8yVx<3E7zE!w9v$F*z#R^AQbI#m+3 z`WmG#ZSvdbZy|HgnOY(~mxtrRv#khyZ0ur~F5xfuKW+?Ken#H;r4r_@J{^(2o|6P} zOz5COH06!=fMf`?1j}2~PH}O9TM3CBPW7!$l92mT+jX*Gs1Y-jxq+XD5`j6tN$T|6 zePJbQee+_{EA-&RmOikQgxo499`MQU+t6rX(J_f@EF0#m;d*riYrF~@KIQ;GF|*~2 zqbGcKsW5er-)~!`uo?tH1_gb?WZQ`;G)F>5$wPVpvTZxn2Nc}QtElF82?fc9gx>QN zg}5*Gzok=aJ3Gv{ErzZ$^caqC&@xV!c?C=W>_$rDd)7Cqbc%T(B^PF{9zu_LSmAT>j?`hd^k~t zj{11R;tuOpsBcw2$;9P=04q#RmV;n;kkBOyHc`976tV_B_-QW$s-Z3CI4fplMOBiF zU#%yp=c(Chw!b0E1zuFTMJ#6?qneamVS*9++CZoE84a5l>)+Y5LGC5>pIU1Nm*Dih;F!!TXt=4hLn^!FS5&VaW6T zsz$qHR`=|k;tU!}EC~X%$WSiPTf68NjUV5#8TRx}^1#DXKZP|?eTe0qK*d0hbc6-X zK^=TG@+8z3bY! z2y&+{&s+tMGs3VZvRN1BnyWb%rJ=JIXq<2+x7;O%ioy@E<_7+0C_3Gwy8AdmxA>JqUi{y5sYYhgO_0oRTh5MSVKc>0JP#r;78h{wAz^$4yh1r^mNDb z@aU`E-%G+&;?ggN7>lwNdAjdp#fpx6bR}6WdET;~uhRO*tX_xUTeA9S3D%#a!^cBX zm55ghY--Ju!cg>ohSvIt8)r!G7`s!U>pK#Uo!4J;2DGX&WmZHCB9vKD*H%XzmLM8j zz=|#OfjH-RN(imQ`ob2){JqPe;NtO6a&UB1Bal7QHZIE@2$H@qUme)ZV3m{`t`R7y zy#9xCIzOuiu1<+E^Y|BJ&BUNd7%Gv+buUSmuUa-Q1K;mBXs)th}~#wyY%kasSzj2r-CYX7^acF zUUxB47v%Nn0j34!(9YXwBR+DX3i7MZ3*Cx*F0MbDOU{Nht@6~kYbw^?42pHG{7(fQ;&Z3Ua4s*&~M zVJYPsM()x70KV<4XaC#eg74!mw-!-PilNAh5%taDwplq@657H`rA>aiMvd{^-UuqQ zar1QPT~Vc5FRA|kJnQMM?g-B;Ouv9(PL8{-31#JjBHIe^Gv2$Rj%#oj@rlm7iB{fv zLQHOz1Gp*^QWZwbcnj;QT3`q2Abc#JPlf)rJh^(K^ouP2$LBw$58~oQpRT92roOPT zr9ks|j4@)#b>^Fcv73vWD8ObSex3>Cni!{t=43ElHaxZ{_syQis`Ag@cp$sB`c!}) z;8d4bI#-DyU0zR-Y?M5bYjGZgR8r+-Y)UB^% zulItD)7P=+ya)sp>vu{&$gu+PhNj`)j&{2(O?wX2hcPBWWzW&hb*gGTrDpG?9NZ)k zcOb)DNSbq<1i3gh_BgZv?Dd-dIkOacA2q*DVJDm+;aEL9(pxn;Eq@N3JgQ>fRFdgi z&GfD73jU<3aCno_99Kzz=9|b9Fg-WFsYE!ATQO1J8*&z67q^A+km#v>L;%!l_qC08 zVRme8BV;FNa;uz2AzhRv;0j?7j|~JJDyvG*WQRinCnW~hqYcbiJCA8Yw4O2QrR?h) zXaR)DUdm5MtkV(S>yxGo064S-wWQ$=wGu?&%()WiHvUg8pa=#@1ylZPUmLZ=fGNC0 z_$~lf=UKISV$4z?y(31a#7?2lb+tTw*9^6{JQ|rd9Mz=3ME?j5SF3-17Z-mtGPX*}I*KZPIJLBQc*F)B1?B+!@HSwOiNzKOVIgL*#dIKm)4yo5jiI~(=**EHJph;YS60W4mrbp0y z=pZbOZ$cFUOxJIQ)bpv{v@Fb=iT=XpLsY+BltlnJ8HH_uWjv)vcxh<`ioA7Nq9jLiT3Hp)U!hhWC+()r>*Ft>9yB)r&8QG1`bxYU^J`UZX4#2%- zZWp>1=6{V}dc}n;vwqc%Y_2PDkuuhjmE&Q-N!5HhSCU@8Cj>q#j9d^p8MavI7W~#I!W`mLvrpk7)_2}bxiIyW?MU1XzRQqN1uLhht*riHzhnie z8pWXkBq5yTW0iHgb|Y2_tc{LDocLc3AJz8=P{Y?Tp*bhc7fAMK*N#w&AgR_hCaCA0 ztbPYO|4tc~K6sS#@v=D+J5h7d+GZpeHu7_C-iSl`fe!^8#jC>(JoTOj&AD-vB+ z`fqtDkgbZW4%ws)u{WO3L31iMc)5^|O*fTeMV5w)UqzKhTG9d@n(ja$&x0v(k9#&{ zE;O2s2R(?KBWcr&r?k8S>O@=k@6TxOJ?JPlq8xNqkw|=-gI@z{xDH zO89WPvD39Qf#=B#`||Kq*PKu1qKwsh>5IAhfxj=^EVeLftUDRntMy@cK;nXsl0{wBrQZ*Kz{%JeL)?sofzw(GC26yC^v6 zAgBf74967%6#wABzrF;CMcF%m*#DLW|313luJD;yNj&sFXN-jy0F(sM)iAVut&rIShi#L{|9Vxzw_{H9k+{VXX2 zQ~R&UM=e%$%88oH>a8ffUsv>OLM0i?HG>H7-1MYX5aQQv^Jx+zsSKYbcFEW6MYgJ3 zTHpM@lW1FM-=LM6gVAP-B}m-L6LGFxR(?|OZ}@*iy;WRP{rmkrfPw;oC`b(so8Q8O))?2vZm0 zDyPQu74n0RF45f6g{isj}hQI79Eds@PSY{ny;;`wM!$*}i6CR+;5P+J84 zL1gjVRDP~{w@w}H)*AqdZ*qE?ySd_&T~d!eK@XixvNLf==DaRpe&_tlFr+=lld%~! zNp-V~N2|%B|IR0JvQFfJG3<9e1)$p=R*Xg2?qD#d<1)-Y-aOG0Ieh9Kpdrw-!(I;D zPfI(naJsQsQ&!uc>xZfgVo-Q`9xnYYRHQ2VD*MjPRh-FP0xPKONCR@A=m}^rVSMfk zhPQokPS$6vG9oxUH$t%UGR0ml6smUm+Ist*orwfb=<)(}VAkK=?C~(j?N@s8-WxIn zZja5h?m3ZBdC{8x55OVo9Kdt4|CKSv<$zA#5&r~a(z2iC6mlQNMhnICv(1{t7nNCP zudvhCmxQVUr?w~ihKoFCvfPx3B(e0{K6yurF2HgiBE^26s$M;2SNths_xwUW--dv9>HDIWnz@=Th|Mp_Y$h&q_QT{5bSHP^ zo$z2?&C0Epaha}FEuVw17)mVbOw6`M#_^W36^Z(CGZ@Ic`ZY*8NB2o8^5%1mJqAA4 z8 zU<#3EFLikC3lKbEvEf?=c?ge=F}2-8+|K3137M~TPUH8gZS_0pPU`CU$NRZ%$uVM$ zalVWhJG}k+;zmxjeCYT?s^b!R_#mloEien|JU+i$S}1XTaL+KIz4N7a6Ct7{)evBn z;c1pmIa-%x8HfKP*)Jwmy?UQc_bIBvU4ilJl&4cLap@tOiv}wQ;|0#_rUINgdlf{}llW)Jl@Atp*EcT*ge4S^6VO@HY5D}t;gGj!8i^Do` z9Wc35gWD4*;z@Prsj11I+#~$y!+#lt-TTW`ubyUTGWG zOAO64w2bHEURx-7|6~vB=U?>|8TS*RWe+EL@@byW7h(&Od8y#ltk(jy5RIJHy@R^7 zx*=%Sg-#F%fjMn0e$VH%lCFE;FHJ;csdJin#|VjkBwed3$ME>P#Sd0rGd zbpQ?8wCWsyuNDed5+<);$VTR_G}{U7K7M8lK8gE37S8>C!`HKjjE{iJ2h*!$CvTbW zrw|bD_oWk`5}B}nb1W~GS)j4ZGVsgh%A#`t2-+|RBMpuo{Qh2z*<7X{V;;F1;dp86 zAp@laG0*PMh^LSL16^s)!I{yw@!j)sCK%QpGM*StG5@jccf2m>#H&Gn!)K2p#i>{& zS~hvIFKq%bCXBWwTplRqw4|Y{@@>h%?9z4B_TsY#&HO<6(V-en5PqViO2GfN?)!$@ z39SPaFN`L^+$$p1@Mfn#6=cBy8Vuo8<5@eGd?be!3bF14A~cbe0#v(9V`xFFQw0)y z0BD%QM2J>4XdB;!z+SAuyqxE6R}N;k;6^&T;cYoKYDC53g=fwSrDkm7p!S(ssfn9X z;BCI`ZD)5wZ9dH1wRUDD-X&NtFvj8mlmDsGA0sHj?)6!1K=E2#gdR6-?vj;>(4O4s zny2%|QB}yxxof+2Hw|{M&i#1Zd{kkI7%5@D8MD>pPC+AIQ&-HAu_7sbH{2RN_6%K9 zAwK&CI4dRJI3Eop^pSc82WwMvQJUMg&-6fxC>PtW^PP_6U$Y5V?RB2vZmOOA86px) zEbB%6jAq?`cl<2Lmq1W?b8#+N8yK`4v8665VPh4`AME9n;FN1p&)Cnyo zlr>f&mBi0de949-kqMCpsk&Dzwzz*zUirv#OH}U0oAJSI^ivqJ`T2o7DRK0S^*hLO zr{ZJaPX~#G{Zj?WjTVkuQJ2+_rL4>l^~{AF%uS3Mf>-Uy?}pyTrtT|+ucSNecG!?% zZ^7_b@sjv&ONJBZmL@L6o6^skDI-3XO3_fMf#dzL)AKiHM_mS#@j_NBNx7D6sLQiVF|H3*uzo*U7 zY3_ot-GN*0+|~MrQ2^^PQDDVH^}*3}u!Yg%G-hA#Inprs%v^2s*Jebd=#)^c%fH87 zLF3>ax1FC8o^jit>p_g{%b{w?OhGkxyz7@dhM%(FwYR)D!7-Qr)MT(D;0V)A=s4~j z^55)`h}t+DFfUZx6^#DCCHG`4cv}pS<+t3o^ zs-l`emT}v;j9{y4DPs#rx0-Lz8mw|Mae5qIExahcEgcZd@V{=IdlQ-qcju3>936-G zU+(M9v?iXm2zB(?d3-?Ut%?1e%#AWYyixr|hSu0d-T8|F)?V=EX7!}!i=XV8Lo}TD zshzl_%)pfH1U>eUtx2iaB6`dT+6<=kxkNbWaC>J?eV+~0+oWy!(1 z$KQ1S3+-RV;J50+sQSz5PM2ZT9elFqX6@(SnxUp39B=h6-#LlQ{5gs2DRv1$pt8(6 z_3`nw@sqOgU~r|(hfPY_;56j(gb6M2z+AP6V;u^Tb8>vtQ>ht&Z9--h>VwLgEn5yQ zU?%Kf(}Ets0PEo4vugwWUuUqbO^>6jQRw!m>giP%Rm070!mKY{^6d*|Po(_)TylnP ztWMGur#-!#s7mcy}$QWqkE)f-&h=&V+> zcEj~8ff)XMgJ|5k`TNjYv`WRo0v^8=t8*WOBm-xQ0(KNp(byj&b!O(V%9=pltj1Sn ztGZ{t)=gQXQ}0lya|Oy0+}~>xxyvG1`Ga8cGjw(z;|Se}$8F3ll_f9`_cO^{Fo9tS zJV-5Z=dqf-IZW=I*!tbIcRpKe@_AV(^zcwWWxeDbmOviAco>TCp?rwl)uBhFv0Bn_ z)Kj#L{e&aS4~WY~2bdoZ$z7@lH2MrM_wYG`1d}2?i(rtYSHt8<3seLuO+hf(a)=p# zinu1TDN;?KItIJn$f&an;b`Ot&P*10z8b;hb(z9PdkK${sH-_q4!PWMkLz zhJcTTC#hTCb1+8Lwvp`mIIK6+{C-etcCNmBDUzdluJ|HMN^Ke|RVKcp^}CG}5v5H|s-eR*t>w{2=}Ml>b> zkCtHL58hXg*kQA_XN_IU*enz@X?OHebu?u~%6c9SpvU6%G+&pZu9r#Aqh=kvCMsaj zRf#dMHnnz!Pi4GD4S*C!hvq3;3*)W}_X=29sX2QVQUxNYIZ|n(>EID2IB?;R7dUj* zjF&KCfjw0HnX;F()*z$RfY+p012kzB1Ee?tPI7;G0ta^j znwPhLXhp#|PciG@*4G!}!PjNcfikz{;-=^F@j}|5vb%)_u9qrF!Uxuu)r}GyJ}xZZb zKme(FQ=jbox6`>m)$+Nu&=ptp7mjBT%w+s$69f@!HH?`AsggR|&Ay!bVd{nkMT(_~ z1qhxm^Wh|2e(rh?VpHTnTAP$RiVRe;%3h)E6!4X5iVpqGrHJAV;CU<^?vN8?SL`)e zo)wo5i=O$*KvP8Ns#dgKKW3RG{>Sp0J2i)=p#?^o|1j?aX4WiQQhywg(&3mie)P;y z2?bqO5qZm)tUFnS)jr9$WOlL#ZEjLMB2(UbiaoDjjnktfYQmqN(uT%?4nQvU#@_?K z*bj9#-_J^sU22ms7c(Kg8R^sN#Zy1c8;Cu29eGx+Gd$Fhq=-r?zoyRiYa~(@K9Fj( zvUdAk%d`?`Q6JaJI@0@h1&9DY2Q!Weucg^@xq-U6pwR1*KRD8Z_qVx)kZE`H_3!AB zZg}>?0!L^rWY(L~B^ib&GqZXCcL+-=400aviz%y@xn4f97PHl1xxHoMrQTr7ny!p5$vMe%~>B;dM1hkc73 z*M~?acKH){01tT&S$WA>SOiUTQYGhSot=jY$z^X6-_T$y)5to0L+72U|3K#Hh5q%D zxnIq;O&U#ZO`a8W3kmb+hx*}*up-W?8qt17OU@?#_B8?2}0mOpKH+NGtqS#yrdlPsW9_rhsH z!_F!vp8pPFP-}?i6q6KI#Cvj>RQM~&q{(zDv75-wGvjy0f}9+017-oesR43pzkO^Ni<>MV}RB0Ud$JFaU#9%TnYHU#|Fl z@UnmQu0&am2*N^u%|B&VRvE$luECAlyjdnGFCdg@o`2fzYDao};T82<*;2TP;UT%y zq4rI}0F}cFI}Dl(g9ZjO=f-v;^QUuk*uKWh%db+3*C`dvY2r3Uq55plo%CYO)m37G z)Z|wIR^SYJRN*0^7{#J&`p6lp6+#Db_?HC2G1`*jXD5xyiuGE9t3nzTfM7j;>I?-u zCAia-ctmzouZvN2C^&k}Vhq~$c!1f4K6xA&$Jw=ny5jy|2L+R8kT4p;!}do(lWwr(C(c*y;y3^ z)*NW^{n+9Tt_@LfBX)X&XnMn;_~DY+L*?H<3B^>7&W}%>k=qV8A)29MAD1Y1?AyY= z`ZZb|o3vr?<=P96(8v5f5qK(Feyz-&4TYE#YWy-bT0-n(Iv-em<@1*JV2$v}I{ zEJyJ>wtyuMM>dM+#)Ij`Mtb*n8M0CAln=wB`8L=Y*Cp|K>60 zTs#Rv-M{izn~pjD#9K&HG7~;)OS5P90B14Yzi&cZoBoV9x=L6_dm&-*$D$R=^tH$z zlF)lUp-Ptzdq2I*j++*T`Eoz&)rJ!7dChi;OAr6>v0(JVJ_lIA$GR5Z3k;6Uqcndl z`=qW>IGx5!%(sxRe)EJ0a&9XZ-h=xK$*x+GxAj%BQ|B=N40HpBs^xcoM*1tk-< zi`1#p6?2VYr|_>OAZw?8t6;xC<_V@KWTtA-b#e4G5YrvvXe5m@He2df-Oa#6wl#?s zNuW9I5+AA*#Oplo2%D-y)lcZV8a*kQwKNH~lxzqHeaEqS=Ie?YSr85y5H2ajU$d*r zay#06q@db_OB2NI{1ru%vDH0?m)lzV;HcIQM3#b$$XgqD%E49$+6(_|2ZR0&M61Ho zZ7bO0`;y7~esb3wsrs*{lp_qLXiI`m{`8lTSm|TDPgQoyeaz0nVArc^_49;R>Qhoe z3_dLffDP(e1KR3C$Syt__?s>>wxvebca$SkI(~K#3 zw)}iJ@8X`9V-W?WA9yHFf+n|eN2eu)>iw-T#pW}?U+d&#KdoqSCDJWJoOb^#U~j4! zwTU`WAc_WFp=d^uF?=zYsgftR{Y`lv?U!V&F_}8tCm<&?Z61=`>&aG4WHP_l!rfw7 zz~w%=q`D3{04#EEeSrdl`$R;60~#$qd1Fe6G{o`9S$a1jt)UVtKR*8;O4CBZwSMM@ zEf1@rpkdA}*@ADIH%Xx@mQJ%q*9$XEa47j~Hog&xZP7VBqSj~(5)n7!30NWnG<;&SIt8b^Id zSggV-R}e@tUV=M!nD;9QtzcBooFA{2AiW^ySY{t?{;pu`_`3-pw*VN&mI{)pHh%jy zkCV#NRBP8$EA>ytiLnePy-X7bq2>`O-7DHcX`U65PD~J=l$Gz5tSz+?;4z@|>_2Y( zAremZ5K}2fyoe)Z?FnB3DZ3hLFi7xFn-Xu4&#H?qIU&e*8uj!-rOWEYoq*1U<_a?& zM@Q@St|n#ZcPfLxLPM>bu(k`@U*b)yf4Euqm41uF&VN`S>eI(N38`9923sp#`h6 zS~i-PNsGItHM4iV91NFNQVCEsi7*BV)vWCbAB63ldv}Xrb7f@8!v{PhJZ|6CcB`i{ zi}auJX4e}~l3s&$ivcv+?8tD1Vxe^9qIW+0z0ts`f!F->oP@TiGeAY135`&b+hAFu~BAxU*d{pk)I2 z@8-HnN*W94q6+>@yO>AVSxx4bp+;*y4ze4VKAgVXe7u-^f98~3JYNmWWSEVL0;1dh zb}U|?5B#EwHnAyL)&r@o6@!5`HaddDy3)=g|L$zg#=;zKDo%*c!kGD$8#6Bn1I5Rb zSQzC^iT%->^s_uFuYcH7nfBiSZ!AyyNtBtZXaA6|nGSg_@vHk=x~M(X{@wLaJaFry z5elxBPZ=AlrXRhVx2ELWU#|T0=`+JZWL@2npr*DiU4kDwU4f71RLxBbYM74eu&>9W zv{%vfD~zsG{KNV;`o7nPO4^-db^kDVcM)@Ay=FyGc8M&poBP^nZqae*$hoy+&H ztF=^>g6!gVbHBARUNZm72ecAy*FFu)Q7z$7uv3uDPo{F~A@9 z7x>)&SJNU*&5%TC7&!mGg4;)b#BkSn5Q_kxe+I?$8AzhnuH{1YeJuO4cQ*1O*(#sf z4Fw5EnO-yA_|3}fK$v0s4n|f7W(Ttz0}oIG-^vhTF3F)y;QTMZY_RxSivRUMkPp8A z$D#kzhsL|*JJ5y4&TsMdH-J8G9vE|v(e*$4OrBX+dgfk!2SI9%MmJ-`3cAh7!9T-T z4E!I%gMh8;85&`$&_>Ix8!UU%N7?V_B+rV$igic`I;rlah&02}}L7L>oCeg?MtcCOIuf z%>T_S^AwP|E@^xjajI!n|F!nx0pH9Bo)!v46vs;@k!~G9n0}HZ$mFNnk=6Z70P}Fv zkQ|H5p=!9fy7Th=?c?uCX&iJZs#L)jCKw6(G9P5Y*PMCmrd5v?(;aezuZaATv;a?R z7e3ypI()1DEq0nWsDM2qAy}9!3a|GVDO*cc&#pRbO}~lIaiflAJVP0(#1i{d_Iwa}$(>w$> ztf@$A5If_y*^){XN{~xw$I{u)v~eM33&c#{55%NO;8EB&?Ap!L#w4f7EA~aIUknZS z%`SQHS`jZ9DGR)D9CYk%{SSnK&^v*DLuxPL^g9b?oPl56`>;y|sjhct&$WeMvU$Bn z{x83CT}^Yw)j=L-CkXpd5X3XiYurZat5=mn2tsKi`rnla+#nGJW;FRN^Z$V`m@)uO z@qbs}EY{?9=E-XT4A{uyb8|)CT(4pE>e4b04Si0+UTjH{Hs;#Q$^gX3xhDqcsd%9G~U)NQcWlQ}IyT73iH8`0{}L`cQj*l*FDj`0(GR(DQGDN>jbD%Q~MP zj10gEP1Ql~t-0B_Ag7$95kki1t@b-5>y@y7=bvTs=O^P^sUP-84Q4O>NHP%0)aX&v!8$8?bP~6m3*pUr5nLR3Kau=+see0=~=>1 z;`{k*>n{wtZPL9LPIvQUo^4vB)7pulCe2nR#^CGHoA%*x%@eX(r5;jg8EVu59Jh6m z$HQ?YXA3Dd>2OF}RBV42$m#k}#}E25ONOz~sQFHe|8lC9ESwr>i=SU@t#nGW!x{Fg z!2bd^3DgT`mLqz~4~-rhO*QKTCVwyKj05$d_jY>SIqrOeXlRR7RCx0Yo_6CEgW}3IzeE?h+AE*|-Tq2vNucPG)Jl0G3_C;{TBr#57^RE1CTgjPpis=16_mTn(8#z(XJ*eSAMpCVkOHDzSoj7J9>} zyIAAa1)dqBS+y$svlT4+MWjLM1|t1>XmIONGP`oYs*ZiTeT_v>W&Wbv5%mCN3vbNG z8WoR3;!`Q(r|m>%4DzJBH0`=iwX;^_Of_2A^YTkSwtp!*>GAtPC&f~t&2=%OBb^dqF- zlkBA}=d#KY-d^_zSlT7^fh9!%V_G`3^hr_f`4}bZjr}03-3;&xmo(x$=IR63K)Ut{2Pui zL0Q+K!#+FhmT<{V=VfPJb&Tk$vCINTR81g(IcB1>&KcM_crJe;nw_`~6WRYaqw&JT z>QLQo9k(Iy0w;+_PfmpN#T&ks9Q0?7Ir6K@x%dFmcxb_; zs_A=$)Zt?gT)`9xG295m(LxztgmazuQLXu|Hsq{r1c*`&=+kLAv!?07(*62)_R{79q)<5O_&nL6782F9U3Agy^!X|2|pg<7~jy}9e-ul5o?6C z6Rm?`TQ@(diqBu$DcDvam<=a5BKdRspCZG_;^elPf#fYm`ZgTT!QE(jblv-BR|Or% zmg2&Li$8-RSP+~xvykU4z$Q4*L;zQ*kqC6C(AutZTZE5v|6TF-aS_1X)xD&H4rtFz zHWJ%rCdsxtzlkA5l$Rb!U0iWi(B5d$ENHEm^luOzs@adoPgb_3!lSypu8@k$8ei|} z1*#WEgGlwm+!-sQL1a%cFkN-@atLIIJR3`bm{haeD8s3TLh;|ep3A;-`5-|5nQ2_V zv$Hkqt!QFD;ZYT$f@kUE`(lvaZB+eRu=rIMu_ZahDCPOx-+cmCb~Fa&VLPc|`B8*u zqiV0UTykgXDcE#fHyXDDxW9OjHWx*ki2n+#`V{eE5kfqIdtQ~cxFYIz9FW6GQdStr)}}_jhx&zcUsIk$=gu&1dz}p`o-wIF%=DF2_x{U zYX8I&N-&?Vf2$C$Tngc`Dg>PwL~C0!8X7)wA2ec;1GaVx6=Ej zlm}b~vuY>D#Lphlpo3qHW-zeHRFOC%3(6RIh?c-0WfW#?8T2q~Hn&KMN*5R6bM%Vx zg4jDqfUdN#26cN`Jo9q=)QouRIqTZ>i@G$zt#n&zGStufK5LV@kdsWxMYcv~K^*yx zu^zYmTM)3Td(dmy zK|YyOzM75ai+OjP*MEWyZ>h=(mlp#rT(&JK_olNGv+gK1b(kYLTl-!C5oleI|86aC zRI|C8A!5r5-T{`q`q#!#_tJ5v=*Dak*o!55`1}siM4N4uO0pcpe+^NUlq*RMtlqo1 zWs~ZV8X6=BFOhJvVQYBDQ99ATN%=o&iAD@ho!|Lw;REj%M)p70rmB+8yX|g-0u6Nk zGw+-Zll&zPW%hY<&YR5TAq#Yj}lP@%1S8-F~jj%kD(Ij2*e36 zDDTfHo+>{TCD(T3>kpWe3(w=$EqStKrIKIIF<0j<8?7X64 zdf^=v{+oz@^Iw@zor3$vivcv?=X(3d3!keJb08?N-fkM2s2SRwP{Qnh$d=q-WlHNn zvW(-0S=zUDSM$#N$~fhCxIe#_+}854xG2)s6}ud9B0Ocy_z&d$xYG>7K2Xurg*koL zQEN6-As!qT>ba;|7NqAev#19jbBwnQ%opugG7X?|VRyP7aNQDb`T1p9{lc}Pox!KX zwT~bbOr=piT9HY zDo`qxqS6@fK92lr;KWALqnR~A(~&!>H*2-AbN>U3sjsgA#|<00i2wpZ+6Uk6Y!`OM zzv$osReYU?%(bhlo6Q6l~zIf1}wr<$HHW0o}Yom!n0M6YT9QUa$N}~Ca0Lcv@}!UOhm{@t&lzpds9r$wT)DAy^+KS z+QiL5NDp%MTQAz)>n_oPdf|X&RlIQcY zoUq@!j<)^EI)F3vhWxn&w2A1X(js0d{5rjt3al5Ov@md_M1!l=U`o@!y#_L=%~n9h zAs6W_(Az4jDRWT=<^fLLgbbE4OGPpJ7v$e4=I{IxuK^mt8AI|{JrTAGuJNyNC-g9m zgrvUr?;Ms0kH)t^=fCv8?oup!l2f_-u;>Zo>Au6O5a7y!8(@2cGjO$ihGNYJ zE3>>+KXF^oRJYrYx~-Q{qrtNp73Z*0ZBxM{rg7_zxa->fW@wP>!-xc@-3dM`&rlO z$Cal>(jza#Ix+rr98zoJ`P(vTNF?K3R;_k;sb}^f*p^=V9UKokzw{d3|0s*Yn^-)> zv?;u*`O%Bzc(JbdSGH6hjIum<@A_=}kHK8{>D`SSheO^6pUWpiYU9{zbi5#kbx6l%y zj`_jqwDMC%)D&-vc>=fE$1nT2wbW5hCktgyO6)`k={1W*B3-e@8x1Q|Yk9|!&GgIA zj~mE?TSSw+y5j@drFwrgvXi7o`d{boQC> zqS~WUD7bL7_go6rO|Q9&-w?NyG)x-M>oNEy)=+#NxZD3X_hTlf7X9<45!fb{MFv2e z&AuU2YMP;DQG6&Aa1Q_t6gRSKv}Vg9u>03zMv{i^Eq)V>u8+?0Fo_K|y0gww-ceq3 zfm1Oct^?DB=EY$UsW&KVu4F=hqNY1rZYL?1Q>!C<%Kc*7k->g(_3oVzw8Ck37s$X{ z&n4~e+u+gKMew>N#+84RA8BJavfc{vwy-L6-U5M+pS{!;EWR1`G1`hOf}pfZ_v+}i zu6()}P|d`sp-zh8xl(2cip7%dA&@igla=K+>&m8swzT$g$r@?A8_VLx`1#VCt`j zX;HfA4Qt!-)>A>k@r++mMIk{OU4wJ)E61^TSfQAUq|~qz(5Ri$aCZH4WIq_urZ_=S zDipJ;MR@PJ-4LDf7P^FpZRx{wvL6bHH+wZx+Z}i!$;hE55cpAo&2QYo)&HaYrrbS)6Bb=Vj z9{w%m^GfCn7B=F_>-zgSQae29&Di4Sym}7Ie=->;BX4~VPZs~N#2b*hD;vr;Q$wEU zLPbfp$LU=n`MI~{Gp9a5b>pOsee!pR1`0)ok@O8V7rR+}sQ=3rXlzPJ9rqKyzA|rZ_C%qtSlFrJh%`rS3*Cr)Gd)~*nalV6k-^v)zog1|)tq~b zKB|SY#g&=yHt^EDD4=I%x#N%0oyzw2p;y9QY8tVrO-+?rHU+Aiq#g8=*d;e*<(C&y z9jqE|tTUGbyNdCWvG*itOW_#AeR_j6M%10U=%vOAW67rq7fph2WTBSCAB;*1I+D-H z)ZcI()k<<{KRFV%l+}`rAqiX|f6jY}LLk7*V7|m_S&+FQ%Aip8N{e#E!8#tv!e}(IXqj0cuX(+OeK{~yzndl= z#fB^Ut3nfT!5-kP8n2xisuzY<=pesUVoX|Oh+@*mWrgUp--=H9v{EXAYxMQbTT%?w z#+zt4Dl=4)9-yDR!?8*q6yQ}oWLX-(2em9Zz7f9wUl*|_OvOnmfVkbqREk$hh#i+z z2OS%w<^2W9;W9Iyf|$bpR-@K5ff26db2#{+L_nu(ZM>WcSGq;sK1s%^c2FBo_Y==P z=Jf$klw47H?AuE^9|D5YE;E@=h+NFs>9?{3ywsx++#;VQLiAqs>pVWpOOiPJh^U=7 z2#fe2#v0g@2rH`G=xXbGN-$R?jFm~jD3r0 z*-X&$n_p$!y0v#(w689ue(^g>6=&@w5j0Yh%AAb*4 z%23tBcAtr(HV^eH;zIjj095$_vrMCgxAe$4u-Yt?2X*t%d$^E|rZAX@iy7AT@qi+xrU09t&L_3WngI!MKn=#pZG24nn zZcP-8I}$M@<;-vCuMg4DC zksRMFBH(BlQ{Vsvr=j$Zr5C#bbPyh8!eB)R-dqsqfUaz9B#LxOV_z(zdzM_imeNA zGsQNOd2w<$CjOHvR|5|fK2Jt(<0_3a0|LP_G!$^OVPeF^5ZAKU11_9sb{Z&cqf-+_ z8wBUo+Pp;J%4V)$Qo_co_O_q{VJRNY4oiLh!S8&0;HTBnt--;MR;X`ArHqt-36j7} z?R%|J^Or`0z@6_a$8|b^Y-=aSh}j3SSJrhB5HD}^*Yz>Leyq`Ra@V;rYDt~FvN7Q& zrQI0>I4!6xv3$Y*)r|t(pQ|bkIGxO4vK^_7S$(w0pYmbnO!_%w@~8Lq$oo?N8_R9f zxVwrtv02#J=vLZl2xdQx z0tsX*JVj8y7qBeIBk*iAmHqIivF0rb=>Ey7UOJbn7G$335S|I5%so~0k<6R1YjR?+ z8|RCdovEcKWM0yTSc<3PZzAH-x|%1q=QzJz>i&@a+cu$2(DAg_q1qOuT6^bts8@cV zv|v>hMh<6Y-`AA&xyR2RcG8Zj;Bv2*!ojq_6nJCNfw;hB<1~gf5lm@Cs<*MN)pOjW9LAjE<*W@=9KRp=u=j!C<5FO}wONY>=!6u;f39m^ z?#mgt(oi$bvW$047DGm#;qLC0#uFqO_eHqCtp4wvMi?U&Od~fUB3|INJ)59db|L?8 zAIh2rS^fdL@CUlshRkti+-lBw9fCMCZt~e7^^`g{8rjiQy)d{44`8QFao)v*7A(Ks z0;_+Z+34rS%Sy8N=y$B4PF+NArnjQ_hV%{J_oLn46tW6E0cME$3U7?%%9Ka6-@)~ABWM|}mtDD)fUhG|2DF`BFkEsx6? zQfeV2AwA>dn>c?KF0reoAEA2~ib6?p?!|rEcQ?cRANsdX!lw66pE=)#zvruwy#|xC z5v+fEPoxaES;GE2Xtn2S3x$aO&h)IW0&sBjFvHp_aC=uvDC|Gknboy^j~!9 zC@+!TprFUzB;&aj+~suqjIm8BWsBJK%fEjZ1#p#qlS zdOyXwDd79G*9DG|joy(A73lRDsLf@FYQt|lR$Nk;HcQ(I9gYpp(kf3lLr~ZY*|Z=m zASDB`>Ah}WN+9Se@dgh1vy=OCU-#$eq2gb0$qwCGOiZ8$Cz@)|K`2_hF9R{BL`d}) z-Qa}p1G<}2<^Ll4KI~iH+!PQ~gxX#a3@%}f86OMZF;1*`yHx6|2C=GnsObrTx?*~s+iI9E?h)`1%qi*UO9DAc|B-3xaq*yu1nZ zElBql-*DTyu6*Y_ zNi?iZ-)DV#iHyfM+YRs^r&muIRu~G=|8a9$4sURhq8j}cm$-%lh@Zf_&^@X4WGd@d zLJPy#v1bKl&8kL(s;p|6BKMxTN9dUPxMYp#_d!38q1`j2_3-xty#BU|Uz5%6n!&Mj zW1nsE8S9BDDD4C=1cZ3^uN9ofr!*Ijeq7{#gbwUqJ(eUUcFaUMo-4N|Olbb+ksR%+bLszm_)I$O zz)@bHwTVRAq1at*V^9#-ihWxd`YMYKjW z=bPm&v$sJD{PBDwjh{U-+h@&O`Ol|{qKr~(KEDVI@ZR{D|B~3+c;(c%v2df_Tyy4_ z2p&9@pq;IdHCv_o8czx{pFHPD=zg~EkT*HM(1uOK#;FHPXSUI5BS6PV>TQu`JJjVE z0P>BwJJn+=TASuw*G`K>Bp;sBOd4=?Rd(XB4q^nMGiWb%%aw}6Zh5Kc{2){SOhX@^ z@g~%hGo5~1=Ut{#+^`^7MdScw)|8uQ2FfjF- zfe>$bw$A*k{dZN4UM~0Jqg}q`brC9}n=Ypt>t1xnPhrHbF72^SSm6jK7^E-lj-IV7 zh7tdiu&WT>@^S+5Q8STBhPUgx;j)*8c&}$ z!C>NGG&m49d%Nb13s@RN9MHzaK$xhtz zw+*ow8mY%75079fXF5Z&VTcDc2xVYhwa_nLcHqU1Ym0f@(uh54L`7}SB?QnmllosB z0?)7CdJGe_Xb)uk%4ghe-fcuZ{K#j4M#ie2vi8QF2UL@q z;uYlPh$B$1AzPmA)Up)TuD76}Xi{eF+|boa*D@{zSM%Y{i`2|JF(6_Bm?BR$WwTp98yiDq=C>DLi*yOR z>KagXcJ_~bF|T*C=#v(5dvaTRvdM3U5z{*>aVenaSyIyS$wWx4NkL5M8x6sPiS^ZE zIn#;qtHsaKm)x5~dq9hk_CShyYnaBnP0~BSpylv6c5v*uRaBEg_UM~u6_RtToVjp| z`{Lld15rl3J0>>fR$ipDDx7yu@Z*XeU?yzeYrHq2S`we?T>43_GuL*Ec_JXW$dgOG z(=Sb(?Eq+Og-(~N!&2G*{&wHS4%#0@F6&s(2;J?V^J2SHfjYW-50tvsw$rzl1`Lpb z|Io5TgruZfzG5Qqf?ic~pPxkktgqZ|H!@BD@`mUwW!;PUm@`wlll;fxbtbpwj9@t6 zAf@khIs&l{aoU|JuqJshjoXZ6FpujSl?~^hbd`!ZvS(QZe5od2WOy$hSAQfHuQOHa zXrc^$`B^E$Ja>q>iwDywTM1^;DR4+E-j?ur3-?eg2v>kEJievhsxzKv|Bv^a8>1Cg zG#yb?Gfh%Q*@qVwil6_GG*2yollG4ltnSwQT#DGNLaAY*B*qS1v{lw@gG7%lNLdY0 zQnFH_0H^r~tM8>yL=e~3b%l3`5w* z)sZvFN=|djdoF6~AXeS+GTKlx1dKN25z4RO?`@s(YEa~^4OjzYB_RbPo$XN>P9q(p zj!zh-bF~+x4{ln)DJcgckbBok9VXj9OH%m4nNiJv^^^W-H;nev|0C%v{F;3Kw>=o4 zNGO617~LbJrAz7VM!Gu%q@}whB&1_>hk(QgVRUzm0Rw4J;QQO>dH#dFwtLt8zOL&$ zk0WTJ&wNsjtR?`;bg{8dlTY^o?O^h&9THSAi791};!FMXsY~wd8KVmcQTg56LaLIZ z|62*3daTz*8)P%4Y?YLAe&JuK@}C~76`DVrX9J0NER=W)b`Bcznefh^+r?!buomIs zm#^vOf45uIDq)4lU8KIqBg}76Cu+)2HcwDw7(jO?YAo(Q(jMxRr2eB zJ4+)C$%lvxv7RB*Or8^gFdX67D)zl`lv9`x+(iP;CtcbZ@te|9Rl#|FdQB-m-ZSUG z1y%kv6oR6x?&13RC+aqqXoJ46Dl6xsue2`Udw0NMv0{f}u_2g;SM~$#YIuPIs%By1 zVur2y4}PDU{pb^S$BlZiu-I`i_>AJ@@(Hk1wA%wRzp6iF!;Z4op^;Z{-i84}5sg#nO(!dbjkd|ufW{*|iYurRG40AYBy)$D` z%tVbqYpU%20rA;(N5zBe5yy;n!Eap}TmJG21|w@d@3B8J)&}-5Za)M(j=!(UNt7Bp zpUap0ZEQ^`IuafT{_$&=`@w}v0`JtTH!2xMEKtOHd9#N)B+^ixb#=K~G7ne4voyum zBvgQg?)2O~Cs&3dX8llqjaDauB{{qpA!S&W6Usp$}5|n$M(+}(QLPtklbIRL8n6Y51 z8V7kgEdvn~@P zge-7DQ+-!DXbZ4aD>|H+9Laonu|{_HhJ)W-&iwcuwsl4SQvzOC z&3oA9P9s88)OW1y0xfHEZltdiFNQjm?8RfR_1$Z@QT zlDr7rngSAf2$t7$>4ylCTyQ-n1?+)i0re%e%so72Ju-R&d4z5dUHmubV`Y~uZB1U_ zgyIZ|#<4~v;lsm5d*O49HnW^a8y(Hx{gV7|N-GA;sek*nNfut!nx38_)Pr~`0`LG+ zbKY6WAZJ{$7dp?N`r#bEvtgn+_W#843_RW^`Y$-$zJ32c0ApvyCqqDocnQ5F3Ge_F z8_6MT6h*w&0Y;Eos?5stPQ067@GNx!^+OEVFmlcWhJhNHa z=*L3*JsaqVK&mjFiy@|A{KtOL%h*i8I9j1SpK>G6f?A$?Z2d`YQbwOc|H!=Tpn66B z0W_LyUSQYPp(a|1ixQXLr{7psesYJaCD*1>-+3^1MzCIx(m_z$uMcbno&|S)hu(%B z$LjYB(Rj-DsED2O(qYpe$SQ034mf&@0HHHYP@rf-!V;_y4W`VPnj|wfSr%_`{$sg1ojLDDZ#V<+)bKwnzOtKYZdBw{^Pc5X^awHw3%h9y~5S$NiWnAE(2NKoF z!VQ&wuzEEi0+-goL@G1YdT5jEwvWq=}SyD|y;{0-7 zTbI;vf)2*W^*y5D&MqV;-<^4DeDr%SwExmwKM0s0I_t^0p*GfW;(rB|0Ig>yG<%3L zTJg9n`5JP;PtkAt5VAJ5rc{`dRM0L$@OVN%eC0#2@=)k*Ehms>F+cL)=k{+m=wC`)QuyhaopH_&tB* z!eXNw_#<15al&}s)l>7MpnN$&e$TP#>&Q<|x7RiIt~BY&C<&?d4hD+P`eS|ZNx^?= z+dlpwIQ?-EZQiC%f~k0o{?r*xpG|)$lw7`fm+bM(G~TPUaR$CIF?!_j3%2nSn5@iw@SGW|X6kyc#naX_*bvERDbiv0R z!$6QJ@nJLVURN*jYg!kIdN#CDpnwW3wNOZ1>@c8L6fs z(7)?ZFEawcUHosn4?BvWNz~0MF~d0ZtI_MV)-Mg=gaKRq7f6m-yXX}(9fZ?1of_)% z`klI#%$z~+#hmSHqsrf@Px~am4ECspn>vMAgzl^6^B9a>Y)_T*pezRt%dXgUp_A%l zwR`HZ&ijmeD~|_Z`r!wu9VO%&L6EG#J6wAN(s*PZk<4_)k^OgD#a}Pl>yBEj;WL!} zvIOMOu=|I8;fD$42FTKtiDuC1OUppakKB$$MW3}jXR?E414eZU1~)OJv1PpO`h2^L z2nh>i6x2rXTb;OD!(6FH1$e4&r-V8nN4FoRlpx*3g{~!D1T!c@r==a-c#`&+D#PY~ zfLqz;V^Ob0o@)xvP)h&0x!4vToR**7dg;bHWQ`Ist(Z;Awo@mcXkU%a3*#Z6UUiS$ z5da+*80L$KFU5VNa~@H>VAz^xYi<>TjfH0r=XF#w$Rkhtttg3 zpY8h8st>-{Ek|m9#EMTSPdw;U!$YEiedvsxsK21SB;H!8O6ikoSz7OZ-MA}|{P2Cj z$yJ!xa`=;MdM|8UnT4_`&oUhLsqng{{o%bW<#~#WmV<}3H|b#zMNe}iEoCDhZv3rS zQ2yq&Vf#Nu$Cst>hGP3N1~gnXp3R%aO|I_#ua;}`*8tZPfO&qNO)Y^9BaNS}oe+p2 zeis=IyQH5b5{5PrWlte$)ieQ!D~aq1Rr|FurMX&ksI_s~m0=D>JCMtO;1|1ALM{Xnt7 z4JS;9zeg`>WR$;u@Az%H0VZ}Vr#G(~z}I11V}@BQI*&F8E8Ur{TQaz8Su&i%FQE-v zapT|l8PjgnStg&u{D&t`og6zIcJrMN1JsHhWqY-ZY&;%>TZP)@St3$o)s4$aBt*0XAzZSKnT}*u z(QAxTm*mm{Z(x8$hMx6_j@0)r!q?Qn!C!*BC&#fz45A4#kpHGXP8$#L_pz*6N)Fr> zucG6$>U$BBiAleK)%co`2(juMF5}G5Xj%r9yGsl)0%!YpxFv-`@}8%PgJ#C~9PBvO z?Y6{x(vHRDlv~nL#kJ>5QJ#|JW%&Wj0l+$GN5-6{lC=@Su*NbXs;%fLD{meP@Y{{m zlp>i~{z9($ppJP}ygLM9fe@g6_n!B!56c_66@uHm%9n;8tu#q8~qg${GDk2;&G0jfmX&!6FZ!$}h_+ z36BLNr==*#Eqq_y2u%=UZN60DduGY<;P3_usC8XJ^EzCTqyT(SWy~hn2dci1g%)UN zn=I=Wja(Jt5fkgn`v0AecZz2@RyUEAA|~b$o)7ynB8w&x{e}4Jg+Bx)1@$_2WeCJZ z9h&qK!LQHGaDKWzmb3^opO+N?hRORuh?J*B<#1G}!RV@{qs*9q9DIW%@zg|GBhv1F zfX>g8epgT5k7`6VCIvO(wUY8uVA)2OZL2Tj<1q;4yZ-JaHn+ZP=^vgN-xQPao3HZV zP~K&u6&1rCdugi?{|A?zs%3Fdk3w=-M2CfAg`i>hz59fLe%_TJFpO;&si3Gy~4o_2|cltLyL1H11m&f8&}^&bz9hHx;aYP6a@a67WpZ(0Cs! zs!?+WB8%K)G5D_kEdd#BNZ$k!VBxD#FVq+=EBQi7~pgVp?7#17?GHr1m0pMz{Af>hPC&=NuSSs|#U%*w?SrXbX7N_5aDE*XaeJlt^- zsD@OBdy388r^*|I^pR~#9^w{WQ9>9gB-h~!VLCt6F>XYI^XDCMQ>Utnwm*a85wYd& zZc~w;a@~b+>e!rttVzGBjX$;lPE_UmPl{w@On!9QS+A+E6^~Invi{doLC-+Vt-@cM zYUdLAkzJGya{_;U4_Sd|E`Ih#*smJF@K7?;5k6%Jv=k)dlM1_!r}*FH{L@qt)f4gZ z!sF8now!HHh6H%qfcNUxbEPET$Ld`3BLA(6*=M>@IMv{jAZXR3A^X4b*IucIFjFY< zS$Vl!d9ir4@sxb(UM0f?`__zdBFw(@%=~o2y_>&ueo0Z{F@Cg`Q(Wcn!usWfHbz_6 zXZZb)BeuH;1{0Q1f}-7M{Jy#udPB5GyQ4jQzlnLfjK1OE`(ZjgNmNCB+J;yt{8FPj7G%c5_CoHQs*A8h zCL?wfou}vd9b}+4i(ZBdXN^~YbBojb&%X4sqK``->~C{w-n@)CFb|y$hD7O1y}=HY zQ}}++kbF_{uz(7`Xgdx^8ix;W+OG#@TPP>dyXV4m6RcJ<5HB8&3caDsnz1C2 zmM<#zEShc3u>{V*x{#WFpRBZE@2dDrl!GN3H1ddwS|N2o=~<)}rv7q6*IKaQA$zS; z^FNC){aFw;?`@zXu})_v-m%E@XQMF8dRH$tl=M|WGhN#TI`oC1|3288dw5na6XCGv zv3BHh-tQG#f~csIX~h(LrAqcFhqiaX|GrkZskrTewS=sjB1=Yw$9R5I(AU-VD4P}6 zS5-Tirjq9Hc6bnh&>=F1f%dkSLRi)cyZlqI1awpSe*nAd|5$lXtyZX;N_eIq<*|$Q zHJ4hE`shumK7vNE_!*+NDL6qlXJKdgTRqFJ#5?~(nuY{D_98Tv7yYUtz}FhAU$+dB z@MUGbkl2-XU%E{Aq!6c_qD0wPw1y*GfDTlV8wLn!@_%AIU%EvtbdFx#DrLt1`WTZK z@I;Ey6uY-0^MWqF9O{hXYyO&%Uxqb1w(vt?k8!|Ui!xYodfH`uJ?nr6BaFy@zGapv zW`H$P*$qe-lu=qiJwG2WOYM|W*Hc&v477lLE5PJ!;>Gxpx-5jwJnHEX*6$2Hv zjJvnMjzFRxM;EhLFjQtgk!*C&Lrv?7D(@+S-@(&P5u7|`J=~{?t8A8ZArkN;h8>YN z%kmN8^LQZYzhIpQ^XHCx^#>F27a`UQC!PI(kZ}cvnZ2-l_BKA>Kj1HZfcJfOx0>*k zKq)E5sB^P2y@Gp`Dh}F14tuy9HkqGHa!q-u&DOuWScEu#Nbn}lV{G;y&3$*Mb_FkW zYx8-|?xO8tZ2`^b2LY~*<1-&HL_H10+U6aG>awRlP~?N$oF2z6 zB`rT2TACR*0vm4*@U8uMv|zWha(ofuf$kj&KHx~*K2$TwlRY=7;(hpN_3Ak1#8W3X zm5$r31^%YB=jTkV0ECpe3bl6)KXh#PQyN+H*hEz6>m8VY(sleUJ7~)N!Y;9)rkIQ% zFW&3nf{S-EBKKpfSCmy#k$Q*L()lqGc_Q|?)*|43QQncIj`oc!)5YLk-INa+rSDH3 zv%}3lE1PJQM61Uv1S9)9r=_Kr@u6*n(}*d*yky1xO=k&ee=_x6rH!47H~)KJk4OOe zYsh|AD|+dUALDE@7Nim34M*yxX|&EZr!L&T79k$!Mf0HxF2LUH4^l;IOKkWfC7AB1 zLFH?Brvs&op5bJgE5Pz>2MK42XMLp^!zbDp9ga+QVx>q`n| z&f_7U5y(d(!;>rKra2DL>ibs=EV8^KyQB+HQcHMO&nU+d0d1Iv^)4Sgs&lPVwsj?N zw?0hw*XfA@miIN{;h@6sXuN#c_~Q}PM-lb9FM52PX=+f0rgNGM)vZ7Y)6INg9nB;j zn}i$jZ{9c@$S@*fqRW-077G0{4#qGY{KWE~XpqE)7GpEvV6uhQUp&vPS~cSZp1H%= z&L&X`jW$QNO6Yf0jp#`^O75q?s$62V%GxMcRpthLmkmfd6y9t6KLEY)Xhv9`c?g_s zwbt`55ggrQbAV~V)BUWbI+!!X#2h3g87_j-mxrxnK=+XfC4T9OSY{~7z~fZK!BoI+ z9$bHPy5u+~ku3oRA{F=_Kx(n)gPshXHpg;3QH#P%btdzfE$9gH(Rmk-z?{J$0!D@# z>*#0Zq3U2!z=Rp=nyL6OB6wA^V#(HkAw>z{*s_|N6tO6_i#gQYr_!RIdy~2?leT0;rGz?IgrD*O?Zio2msj#&a zv&_V3NWX}WPDhFAnpT5fuVXj64cr-Y1?ZNx?D4Fyw5##RfkXlwA!gNNjQuoMz?|jD zvC*tI(;2}Ge|0Td)P#K*QUL&e%wR|p>AemvSqf~^e5UjtO{$L{$$r!(3MO^7`Ecdk z)7(JJ={&!KZ1<4sy}znJgd3hZ?B#h=y1vRz`sRys3VHC6(%wZ{JS*yl-#r5_?)^cn60G2I$Xz(7z*nFE zfh6<|!wShmt1zx=%N2V&8tra#u?YIu**k7GTpC7Xlkr9V0${dAp1O1Vmpe9bE0hPILMVb3#^0sF#MOE+Cui%rs&7DNKq@@`iMBifh;Yh@kR^DPt1b+Rt|AEav8K* zx6x1JlbIWnFV2aDB0bUKc51a>waa2P8VcYG9PcBeFbOzmaV(3cqi$$eiSh@qRh?p- zc5B;Dx(x-cz9?Wj^aE+z67feXZ>Q}D?KUIhtgn?pkN?H0$P=Ail1~LzIAV2h_JE-4 zy7mWZScI1u0C=K)j=aFTbD6vmbotJB{~>Vg5AMRx{Xf~b1LRVaC)=>cKWzRgt!My-HT{ zc%@>TuZ^gc_Sba@hC5w&dqF`xrCmm?%a>xdZLKu8gLbT7zh96oN`ZVrv@4nogoypX zF8zz^BjBZfP6`>(tF4rUTv4>KRW4OT3z|VHu>v#1h~5W?bk3_p&j6_>;Qo1)_HK5a zkK>_jj#OdaqHPm$l*fDukrOH;iKDHr(2g-FlGN`rR)jm{`t!1HL(n|FFuByX7?U!F zas*-R{Z)$)6E`1D*wjUL`kIDD6}|LZ8Pedz%tf8t9r~(n=E1zXA3v~os#!5 z=P5e1K%BL1_0Y`!0UFiAjv<#zIWaSA#y=7UZ>x}^-~L^bkH|kFn7&7N=r6_iTatk1e>kF@EPce+OzNY z)v01^c`HNTwx5-jVEYn!F8!Mu`y(5-56(dJek#?=IaFi&;r8rIf%-397JIFKAS+3v zag1o+g&D8UnYv&6*LXMk#NV@7$rr(pjA9#gNvibm&W6hE^+uEJkP)QO;svA{2LhX&8Xe%cmG)$X|(hV~ZxR-48$1rflid7xrI1V*TF$QV-l`{}R zpxuYSOwpX#WcatTs&%})M~DP_=9W&&&loGSf!JtcS`R(Y)eyMIJzIXUV&dcZC^O9~ zRa?Demg-kRdV*xDldMaenvMnysbx9N*3^C!5{gI8<_V}7xuXE>BrH!e0g^EJs*eI5 z3NMJd%Q0I;MI1Q2?P%OYTSX6=ooPO8ut#%=Bd?(*oD2M&kun${s%9}StgDVC2i;_S zqhSurl2A8!@r{h%n=9O{Z{K2NhyJ^ta5<)y$ON{cx)BXE24Bn87o-j3#2leA!#JFJ zHUUbVg1cB@uu3t%iZgO015$=@wh#|lf6K*(OI@ZnP#12d<+p`ZZ}-c-68n;#88^jD zKR*;Vc-2P}Bwg8Z`EjYwRpSG~6-*hFBr^8a|3gz*HVc4^|-Tjzym z%DpbMbWFYj7vI5T$YNZ!N81c9AB*$6Tm=R-nx>82k-dz3cTNxL%bNF_6dro zYkhI(ZyVm$7^h7`kB^Jm=#dy$u$UxbA+=t6K04{19}Gi_?@Z;k11&@hUb1S@?uwV7 zPZWnc*WVkYZfYgNnGUTG05{&19(mIer$k8Aa8ex4lVObmPViS-2?YP70nFW=#!-eQ zWfVP^!bul8*(WaU()6sMpi>TmNk1l@3V0 z0(hR24ND9>#FoB`a-vpGx{cSv1zRRv1k;;lb-dGpJC}R3HqWfVTm|xaJKVSg@RKf) z2Dfl-+So{lkm=Xp|8PEK0fLznY@eNX)eC8kPaLz(<+2{j1YW*}wP#*ak9D6YrhCiT zP}SHL%e||h)tH>3U@+SYB25tILL;(H+p2!7a?0~m((Ja~4|&`Qcb(BK;C#c#f;ns< zo-FG!&!o2ry7JSxg<$Bf5pVcugHdCm0g#7(kbYdd4PTxj1*3V&^ALsOH%e)7O~U$K zqi4`*=hwfpeB9$huc3lpXrX4~47&Y!=IYq%*R|sC!PoCH&26dJ$%PerWuq)105G3`>rVP$XVM_=SMI1twjA|i zuq)L2uTP~2lJQLOewO%Uo7B`IcTM(!^14HIya2uf04}j>s1v_a$C9R4LODG-x~+iU zC%SML%O$A+?=fjMqgCzlYgW`&ciy66~V#Sdfzo$x1fPJ`3hvyt2FDmDUi|s$YROM|w5I}Q@)GnowH)oTG*%K1? zq0uPg&G`g6wmR@0>S(l~;>pgnL<$MI+2~ajZyEk%{LE{BoO|TH7pnJXxB+owPn2hY z&*it%Jg9BI#4=>0HT~|(2ghvC^=-3eg4C#*0zA#7F%L6<5>G zx?*gY2fOZK?&v3cp-j!%nq8We6GU@UnG-9*#7O}j(%8Is!s3S~uXWC~$Dho``LKmlX9ZxBoOcm*gKV`^)ditJ zl1BIw>Fi2#=g^E{_i1K(|CLa!f-@(RG{?&-j8Q>of-uU7L)?a9(oLbZOQx8jNn((k zo$11kW}klFXb$l|0MxjyUdsjMss}>=W2!$;(0*=ksuqI;QU|hy%DR_+L>~U z<_VX1gtDGb{)^r__m=HRBZ*GK6I1>^k8EY*>7xplV5T3b%3aP=70J8#yjL~3aO~$M z%9`xU``xXhxRs#VzHuj}6sFo&_^g1Hy z=P;R-QHaqQ&V(%`KZD16d3{?qxam_bf`9X~!=^?zUYc>qn0DYk*`thi+MOa?DZ%?i zC>dp+m;_!+WUOKK<@(|0OM7hTQ68mPpt~qxh7Ajr21+>u+dF4sKcn9|gp{(q*3^e$ zL}yZP!hJ4G?L*mHa(T>eC8xzufTscZGaTcC6c`!b!Lf!AoCL7G*M?J&FH~m6$ttU) z4(x*ip|lhpo;fn341_H-{qd~S+-H*bz*}oLPV~jZki3?IGe7kjABOlmTq8v-a_x8G z@q?I*+yD#TVVrDTGx)tBAV~;-_uVLnEr=%w5%0qk>-wE2?5X9 z#;SkrFMHnt;DI^^7;ZGSG50%C{EsEsl*ToXF{i9Vs zY&oU2=E9^U!T8>kj&KckJsb8fj-d}nGlk5F8HT)xo)h}AmZPG<1?NQy-me4`dZS7e z8@M&vx2Uc`7OL|Mh?&-A6xS%R@%rfA%IhTlC{w@H$6eHFkLG@gJx@mI*EVA82+EjA zE*`aQqm-2u`$4jsHRGgvn{pPh_f&hYrrcqMkt!+{(F5g`vEn?4sNhP}6<9|*Ic1Xf z%y8(J2>I(ZV+Bv9dnH~ks_^{q7CKVgl*Jyot~NB+D;T1YzvrLl1J#Q24M;tu_vl^7 zB?c_R6|?o|#R9aEgy)gei4OA;4p(dL%CU?a?LxrS*ya#O2)Dt>1oq^@u9(=-6*~+h zt#EzNNgI{s6ElrV68kqJe}}p4*KgrEOLZfYw_oIaQu-B^@mF&K*uszKpwy2nyJO6^;HE9cQ|bE;oRWXCzoe*L@Y|n z_~L8fnpKN{LW`G;QWc!V9G~-_0#;k_uST0VjoxhXEz%f&B8QdEo^ZA1RE4*qR-D3G znR_ah_~(E|wFt@OK4$b*zg(qZSac-zxl40^LC&;u{G!IQMfl$k_p?mgKl}qn$?`L+ z6K+xk&0zvVS4hD46SI>{9a|!kQ`AW5qb9 zG4|L+2ldb~^6sCmre>UnEtJSyHBW23IDXD%b}(6gV{Lr`Us8ZadJoM#K?7G`$e{&8 z!vgUo?(Xrob<}s2rAOl6MW&WZZlHN%aU}fHz}yC+PD}XO^)oE*pMpLbx*xd>n?WI_ezS(Z6nYI-Pko^FrJL{53VYgjQSk z4NiwDwS&7iy>cwTO@3dQ>4Ab3qLO3$6h>ZVpM*wGx^-7AT@fF;hR28Zp^q8g``Fa69l=4DvTccu2kFijXVP68Pv-PM zLU$$G?PF_9>rc7)-E*uS;{_FPdV$md55!4)X(we%b(!7Yh`}OgSSq2rY3`dWtcdX8 z=WyfevQ^ld0uOm*RzWjX)$VU;w2jkej5D!6=L$f$^<{R3GAQUW?`ou*uOD=!%Sfm& zlV&=PP-MQL&5Zu1d%nX~>OAqm?5rhFbE??eDA!T@pXS4iboIb)J1p3RwN*IxzUY-= z)p;13GlR`2MLh+SaVXyR!$d^zjDKU&y**6h?BOwiIBuON=Px(S_ftWqucu-Tdy+I5 za#K1=##p!!usRoruLmx59jV)@mQZutC=Jc2MAF@p4#C2*#!I($n5gZ;PE{162NA>V z-?`B~^$wS{%L!JMljs9JniMPxvS{^iCy&?P%j?BA$C|F6y=AChh9veRm5U*nJ$T7+ zF5q?4@Rc7gxF0uA#Xs7Qh%R9lI}Mc@OEHRj_Uz;F$snR_gs82=qyKc9Y}P55#q5O- zwHh3a*j{1hh)LX$l?L`5qXCniC_Sr500Sg65dbE-d zOZZFEf2-jECR;gC!jjQ5&IcW}GwO8TZ8h9{ba?Mrt4LGJsRVS{FV^Yx$kLAONsd{$ zbUiXGk-_Yawzt2fGA^f&M=#nf3w8! z9LJt~dC$Y3`=_QTj+i?fJ|=V=A_(3UEr7aNLOeYZ z?1qb>N+&)c{{8pBaqzSMct`t!_P)&wI2k03i>-_*cbh9j>(ASoicm@U_HKqr~5(ik3hQXBUI%MUbc^ z`1}dD*tV-R81UZCAx?*1Y(R#w*^yXPEgjdi{2{jOdoe_wzK9xu)HlURIrvjrutMPu z2=UC@y7>?y_u(jbnXiV(9k#&ElzN+V|VyFbt$H+<4Gh zP25Ario02kp)_QcogU%SC#}#S_Zz)xuU;=Ar$qF*=wf{AHuO2;Z;!<|O{Z>2JbA#) zK^2N3deR}VSP<@zkd6jb8uM~}bPp@{b(&8YY=HQk>xZ-lq>}VP$ycu7jr^-~=F!n32-h;Dr^Z)AM@@bN zEvTLu^iUZOdJKfvRhEIEENu7Tsi|iDcm7ra4*|{=)92QQ9gByP7T_s&1WkT+=*m-MpwTU5Z z&&bi_{{a&0$wu)`MudG+i^rWy{M|pkaRkT0FC}^vr&8vMwo-EBFSrz2WgJlqx7MCK z0y1vWb(#>n5v{~WKcr@bNjvbsWh0%gGDvDm*X3iIN6pNu&2mv~r%7Bus>5zo{N5gw zU!g2!m@3BcRdqyX;(rwMZ)-S)>k37#7>Yh*vD?CIkdU;sXG*|(b3(#hrQ$cy` zAHxN_;7mTa*YM=VuOE@GolrO5N{xM49A~mos3HqXFrgb-9sQIse3zuv{*%hs z9V=>)jH&a_UCaWqNEB)}QSi+8{y-))S=8)hL_^mfXk3(Y?mSeK^;p?@gWY_$7-y!YNg*MdWAl`UF*3#P(@5KG)ej(hVswu|#x%amwT3ugukUdzTJW@rK3qp;=6gNP72|iB!aLNYQ z{Vjhf$@%!p%<1{z=QJJxJ~gFGo!FB>e^nI!DsZ}R&`K|j74Cwr>N>m0xwkpq0;vzx zgAW@%fyc(2(+iThN2z)dvHzHVeWL=+NP+_s*#iaeX1;bL*psjS$6%guA^p?4o>r#& z^RO9R$RM9QfYG`tk7W>}pSsobWRa%LItikp8GsYb$LJ($O@Y`L5) zOs!~z{m#NR-Z|N4m^FEgmC88k05?tE7d)_!jQ5_9g4Djh55btzay`}1`PE9G-WKLq z^1JxO12UW`^DtY3#<;iI3;L|sF)iEupnPBFM+_|lfNsvO`iy(`0il?5o4rDU<_~>BdKt;d4)L;PQXt(QE@5?Sy%0ZX z!JEW+jT17kEtW5oOg`ETL$Kn@ub^u_IwD3n5IRS`_(wa4mtNr^?1$yd>$7BJW;yqDXb!CMgtdb%JiZ?oJPQ7IG)04;RGe<5W2l`>R?}# z@N8unt~_tY;GJd$o7gDRwn;A<72{PMP?rC-OOW|j(|EJwMKf@Majw@=liJzLSn*af zlVCVN=hu5W4}sp6{R?IL2;7d6wsuCkHM@bMP z`JouN|6fqFi!N1;;rp_xV}zNupK?>37?-_mvg|QKW_^ZKB(O*4bupbR`!1uZ z2P-BB+4><3{R(h&vjPGh)(K1^$nD7@ayZZ9cS}tgX2;U$tEkd349DQN`vrwp)dKE7 zcUo&f6w**@sOf+P$9x*?gQu*~q)Fxp&7YUlZ%T9e$b*Ti==G9bsUrrF<6NX0kp+%T zCE-MmRG7b3yk+RbvYC%fUhYgnqlF`)GR7yOF7GzTKA!|?rw%cc6KWVwwLx8F@m0_ASA0Y zg8F-|S0CG&@tdm0hh;33z&Dfct&QqQ>ytzqi;^jiq;MAsygky^>T+Lhgono_+UP+T zBd>?5K9*EdDUi}HwTyENs@;AzgXq&G>cdlu1#7Fs-ky-Nn_E2Y=CxhG5EC{>B@^@t z?Q2nTvt=p8sRAINsGhx*0 z`%Hmuta6)VWag4g$E1BR`y&QJm|U|~IyS((DOI}0-5Szf%NmKc3KOD>KgR~*sxH3W zaUp)nRBHPLuIFWM4WwFQ)z}fVx#ftbU_70+i?YwFL~W^3lWO-n(L*q4hFLvpl}{RZ z(KB?qjELjwn%N4zx3sk+++-ALs=bd6t3BZumfWXneti;%7PGtWKSGN#)viB!!8`s3 z0O|-`$Re>R)T9Y)b!0LZ%nRPNQxbt{-w$?9ceN9|`o#hp*W>4KSy@V6vNL{(>%Z0F zEHBa?ZN^SI>OvfqtBYMbi$ZYYf9b8j?X zUFCHrfb+HFx!i;o8Rb25rHxB89SWCM8Hd8SWtn}5_?Awgyq{HK-{lB`gbb$w$o3-W z|7ls!r}MwI=OyCN@_Moi+}0S`X=5D~uo`Fg2>e!B#hSFVHUG$)aApE10A$6RoE=x8%AP^RrpIo_Qn$l%!r!|CMWCn@zYk5S877yiJeTwftA zP^c|9>?i7v$WeQ3U%R61DSUwoCJa2*akd@AIepK=0t6u{&d|s=olnH0o^HqFvfB+I zLPNg0-0G?OG2>qcMgx9d#Fb=QkG}!d5*UOUH+lr!B2CtwUUs$5W*Q_v55V`-mssX8 zV7*+#^4jU{;Qa|1>_p9dvW$k{fYiK9J-}!Y(B&Mt6i&xF~mghA|O}rb=X_i{YZ)L@f z73l19fmHe7r9Ly|V=cTc2hPLCl_jal_2BrMtEyDGqF+_#n-5QuEw@myYp9bvHR5blR-;n(?2RGy9tV^-S1vLKx!7~ z$@*`wf~covw3AOKEeAKK<1}%0I2nMV_=w|sJyO?l;}!XTLiA#ei*zl|@-B!-qiXFP zUusspmzSCpPP%XunpM(RPfzuo`63Xu6=@%-K%eZ8@HNGRp?h+zqRWWFum4;Q6&{6kA z%w7h=t8A|BQ>3Xq`0Kjt1+ki{if=3VFGFOIF?1MGxoE^=t=zyIQv;nj3)z#~&R>V#>5kc_*ffh# zD0eqC#G%}!2;~nucG1yP9WUhmLfwA;VWSc2w*D4X#;9_XLaGvonE)@@1Km7-$^d>& z;rLV61*}TE=FPE;cT(7KHUzm^w}pun<`>V@@7u*DkQxPuv}w{%D3Rc2N+fc z=P3K1YYI)W3Y->VowzULMSPT#2xut60fj4@$0r#AQb2sRzI@AE+EiEJw~lZ+bgPkf zCWN9p3^3`iGct-ZgF&!4gN`iClrcmYUll&ncV6kv`5ah|nahTgZ05$2h8>Ovcs4o# z2zgGQj(jHPp1RA?H9Rk;K;Lki@Fs z7u0^mfcyCYouJ%#yC8ESZspBW-a>k3EbO&ZIc+2{*9@490W|#lrm~@x7g&@B(9H-v4k;&u@s`OGr`ZsWRNj=)3Jx0hpPM5GnZxJEv*RaEwU286K_M};J-paW*b}zU z5}P(xO37*XHHhDySeDAeshHrQr6vQ+VHAu?sU+i%CyfZwwvQNiK*xLZndKLB+&=Ker8Wy0A6yrh^&X4qD`r% zJ^q^~uftkc#uJSMd|OwPiN0HD;hT#c{W_TDk`{drcb%}EV2D0rPSZk{WYZ*LVTx^` zd1{cY;pJVd{Lj_Db{Mhd(@yP>tfw|6cUA9N7`q*iAW?6Th9gGh5TLE$)vbGWVjIt5-=cmKe9 zZ6YjU>uAX!Hzp!!DhVqSJH{Q(Iqp+6n3&#bI1>Am0Sa;c%WMnXspO6;!u-zCMW&wO3#wzUO({8_|jxDt)^u@B^G%jAD1jE1Z(*m`JD-R6P>0# zSJpyoman=8qzruORYcZ4XgQXbFE?K@&SHe~MMWZJdt6z~AdGL{#9J%9etX6@7Q{8X ze@?kR=z^a-7^LSS8~okF^NYk!gCbuKjA3bT?2)sm_ULOe6SCNpD2@IT^vM-v$G8>@ z$?9nP)rztq44BK(%Tzo@8s=iV{R*S+3%y_WZb2wy+^)m^`mUB6*B4?(!N!|$mldze3P zaeP&;CKze&L;r$7{1bP5s}q6=B(7wm!17O*cY4^W3UfXQ3AyfNCF{Q_1&r8=IeO** zR)N25sdmx#ZsHbmqO7hQ)wwdCjUW5eOxOPEjJQItSV%KIYzSgKlterP!=VOE=a?oY zAOsns6tRa8OgT`Z)cM3Xv+D3bhj=;9D4G|#@aytk4UJYIO}X`AdiZcjHVgbHV9Z`fP+`Fet;fuj5xqz{oYUWqnAuDY7=+ zpejJR>Qr=>803Go?cS&$C2^cEI0GKv=k=;TXlNXedVfCEt|X69fIe0`<-uW`EWYEg zZ(m=nTI^vb%*apxc^$L#Kj#%Y%^WBI66D#^XcivbcZdm!P-ao{{Z!=Qq}YKfkDRn z@zehRuhXq_PFjr`aa=2v=yGr|oc>t<06&F3Nm4Qcki$6aao3;o{uPxZo>(FvKqCda z`}+!FJ_cn3$H>na2mb)q)KXJc8MSe!JaHsyz@A8D>-qQTRVTPu@?;CWaydE2`1k#4 zlUx{fuF}zvNGF{8k5B%!R+N_tpl;`b>sQW8EK7CfWakWeVD$X|0M03?H_Q9O`?L2) zQ~v2RZ5g( z(=?{N%Pd_&q#~z^PV^P#CwCF^)lB{S> z25Zmtj}#@_5oZ!-k-KlH&IU$(^XgAyTrQNV`>{sSX)Q_`t`Y+`O^{#y>jG zd$hj>C|_~LK+id>XHtCY%*jQ`>T2lsCM#f^Gj0mU9Y#4E=hxn@{{U&SgBr@CVaDU1 z&#zj;w)5e(RFEmSU

Swom0*zuEU@_szW250E(!Dxc;JD04<_%$Bq@t}Y%)K52KA zIT`9d`qg^s)ioU<-b4aGF^~btVMly5iG2HR`W3_92sO{Lu z$~hzhjo;)P=k>0dOP!Ok+IRtOkB1|)Qe*N+2;}w8Z}aJ0id!5h7~TEtzs!1b{&}oF z2MlQvo_8x`bNP(dL3KC?6mm)Djt}$i{(9GIk1oe#Z8#*>$DDj;vP+)~MLeVaJ)APP zzrA?oop>y+cC#I=!2{@V-yKbRkHtW@UJbgp8;KZV2eJPEKj){i zsFO(}xQb*d8CV?hFhTYHxfJ7;f0U2Hv9w!{v|FGJxUUD3?Z@ap&s|w0iK2~SMp*~? z$3632C0i$Bjjc)JXHZEanpBmUPT~Ofs-%)s43Ua-T;)$0HG&a1J6n^@S&JVp&6U>8L0lxj;t~Dt3_Gl3KdmGMo)T# zM!~pmo3N#KZAEQJT~!BM8m{3_-8s!#k`s~`=hPa3)mO1C>rHAYYF9Cq2X9|mu58`k z2k&F2tyqwg_jssS$r%ogcLBv(Gt^S35m*dkf+|#H0Fnkhs*9HB4oT`LL%B`~4e3?M zaTZ%=C-tVgj0Hbj)M*TkcDD*?-)Cw<(?LW`qxBaq^xX}_9dS7D+vooL1j6| zf5Y{sKCy4ED@P!#s2uv9 zKhN^%cxI!fj`n1_6fzaRZ$`O|c3y-;1E z>XCySfbDF3(s5fUrWms%Tuv}^{qO#@5}T)_oy`=vO!Co1^4v^S*BKZ-{l5x^?eyqv z%O2eFD*mfx^B+4c8(@x^#dG?Vs~Frj%ttss=jr)Y_-dU~Gjr6yY4a<$&9st61xax| zi)l9SMQr~7ZdnUUI~;}`fU1tH7=o-oJktolKHaOzrFpS{)<20tOu1iR>X`_9<7HC_`$-oRT+}53r zl)8MV*G%{ah6jP^R{S|6LPHU7%s2=JGwN%4`pOyYjB|n*c07NR*Z%<5T(g_KjGUgr zSu}SzWsq#>TdqIOMOD@;mgXrT+@xoT0IXlK-&*gsv&z8iPUFWOwQUBX)~=HwBW4tg zXFj!^t*T_&!}KVY7^bzmw=J+>%6p2@)2%4Txq{J*_ll(Y z9OLq&;^%u5lV@#ze`(RB4E~0`(C~rJg>+-(;r{wX~d0|V?({{ZN*T4CdBno;U(_o9=%Ep(fOd^Gzb z{pLYh`hMncV@^6|lk6rivJsMMbctie2TGX8O9RsshApd=`IqG< zj8$vcoJe*qN#`|ZcxE3cr?a+r6bPkhWMB7}1TzY~_eRmunIkO3WOfh*_uhv8Dkw60eb3KJxIm{5Oq zyOi*H&;(aQ=BNk+;-r>M-KqryKdl!F5(g?qC_9tf7uT>H5@3l#whk zZYLcGt8#$^DeF~XE#@c(0QyzC^?%(0KDn&<-OV|4D3iN$0Z{UKnzekNXSWz1J9Gl7 z8(Cqt63@doL0ZOFGjXwA=>WzWriGVp3V5Uu2f+rcBr0JIoxg@^X2K|IOBqnO0Q9It zaso&{hH6P6+yPE8PFVsk%yWT*SsJoPm6>u|ibCt0D9NVAT1CJZ8S7F$*bW8>$5UFu z49UvGax+FrPt*-uoCLP?SL4@#wM zN@tqUl|+y8oCDsHOH~64$n~n_NQWjz1FwE_PLP0pLDbc|OGw0hLBQ&3SHt=fYEI27 zh@ct69)_Eej^LAK5<}+o?^o>Xc9HV+HNPH$?|LD%%(y+PZVwMlZrGhw9dI`1C-L^J zs8jat(KD+xNnS@f5U5oHx20ILi+m?x!RuWk*jhlP=W(9Oz3VO^2}H<6GJG?5{Ve5c{ENj|x&YZzR1Ca`9ONUeW=D~y0faZ7AU z%efN@D)*WZoUj~Eyicuz|vd^mj@MdMf0t-0XOilH9e??Fv}+_I#ZR& zkyoG|o|UZ^W@j~W+<-90Ry>+wfSIWsHehxC0QJ-i*{x=-?o3^W7Epd}ze>-zwQ1xJ zA8vxJ0hQ*3VvoT!%_MCWC9JoWi0dcHu0}oo0MGTPuQk0&3t6q!-Z5tX0CkuGMNi@@ z#b|9(6PNxh3ZpW#mMVmhPp>rzUgolv)-#R6C90`x$)CJWT-B!7Ez#U5X7;RYPR>-5 zC`cZesqCa_pfSiY-npseuyb7W--o&^GubWdx!SS?IP3_k-Z9nE&7m$8L-k zGN6B7@vn0aP14aVPa3seW^l3iV^Fn3Rf0hpi~+o!{{a1ZifDB>@e?edFQc07roQu2 zDA`sZ0nRhpt43CN9FdaWdv{!akUz$|p;}9Gl2)<7J+`4NthtaCBM-ly*YT~rTH&P^Jt#J*zI)K1shZ}ll@ay^>-1VmC zXDyM+|!Rm5**Q@Kk z4|p`@adONV`Qz>mPaJdG@%=arZ^F|mNj0p+q-EQ;0OWpON_8fs58a@mto1k<^$Uxq zj7cdVjGQKUs%tcgk+VCnE^+dE*4&mlf=IG3P0@qNQA8F~On_Xl;fd%4eC2L#e|a9g zJ+vKZVv?$}F$bHdGi>7C6m2F{F^fQwOL20IwD2+LY~Qs4Q}Y z@`>BQt-T)BdxR|(OdWR;f0b~@2IDJ0?)t)O-aUUy)U56r6?kJf7~FBkwP*O6dkgJH zWH#=E9F|T&=^k61GlY5;k`;tI_ac)k2)7TnE=oEg<2}gy`2PSoH2Zu>B7u)A=RH5qLy9h0M4ds# zbMMpq{xo&4t}^D~hzfS#4mV2&oK&6g~{XAtoeC4`}psJp1=OT^UYScMOFbp zA7AtSb5yJdZ`s!7&4V`9T%2{TC&api)G6f#Syd0->PJ04op*6aV7Ha>RFQy3ek+9W zHMq3X%*}x`tWMswjctpL=PP@6CD|`H$;LUV7s?(IdLMe0$VgXYgdTV`B(|hv7RWW` z$}O9zBLO#HCVl$iq`aP4ZIxJXF`N(c{{ZW&&twqp^zX$H!c7e z0=b<>%xlY`tsHjK+sPU?+#D0@SSRIjN$JwAK(8E3LHUTqQjtkLGmiB&CYa+J2LAwh zUBq-W-a+P+k3pKuvdkB67v4Npq*JW%f~T6p13grlu?F;zZ3iBd0k)%oLjCGw50wOp zl~0Lowibo#x6FFXbiU5*BxmVOvPJJoFZ3@}WXf4mR05Ioa!0k^*X&?ag z6!N2JAmkcoJAIF(03>+?nqIl11byx)J7+vl16MdSu@ZPR?c>swToycHfFcWx)Y(2& z{paCU5TZBD%9@7%05Skje51VpF>#Vxnzmg$wZinQ#FuYwwJ4E}063rvO)5CX+!{#7 z%6A&BPI`5vEsvBR#(*bW=h}nKMzVAbz#aW*;kR_gC;`CWVv>-y4k>Vd3IJgzG&2Ca z&<^5zVw&J%3~)VY0i!-T5P=cD`JEwV?0v zbjhmPjLNWpRAzubMC<2|+981PZHVq{hyILu`X0V{{h`n|i|h&i0G}lv`4Q{S%s+z3 zt?-^<76%5U5)+Nxds7M%^8v+L)8mEY9&;5r`rvxwy?p(y?2aoAw6vb?WJr;j+=W$9 zmST7S4*vlDy4#A<+QoA?TZxGO08$CsGCzrjap*lct6Gx2nu`URfeeYcZU-i1`Q_$yqdQh z0%Z9?&rJ0P{N}ZW8dU?C8A1m=jZGX352a|wWiw=`2OURxe0IiSP-Pe%Ph;2e_DvqSLIph5IC;ar}cTUXIdPD#N zIqCXSr%|-8T8c@r_j%7nsbOu)l16K;k7Goyp;i3op~)Fu{pr@0;y@&mp&S8P0EcXF z)tNoXvbkk$V`G&W>0PmssJ zz|D?%3!lUM{cBar1<*Nx|k@k$KPTY_2tc^F#xoKughuIzrCI}%%VtaJ|06bPWdC5tr9hBS@ zQfO_H&7}Fw7**J%RQd|p@P*mcb%eIPyV(v$m{f8GaB-id3*xU0%NoORr_8E@1+l^R z82o=KlH*YDy}S|M=&;;Jc7z3GTmjn$zCXgdVBDqeqeU2WI+WAr({*8Ub8~GDn{OuX zJh&i^xFDXj%<5Xvzwr&t#*+~-w7FD4{JZiwt%P5> z4HHq4(pYZbiC4>EmTrR}ah{mubf@hi(@kt?Dk-b7mbIj68s?(@Tu%&-jP4vK*0glJ zGeYouYSL}gwX!m*a8*6)p_g2XRdX85B9d@PbRZCMUO}o{OQdSk&*n6tTM=aP-12G{ zGgfTnr&jNkD;i!e7c*W-s7Wy=ylMsqYUI}KyzuTxQPBEv+MTIiUTSaqo!(U4VP0@* z#ioUROlEjlV`JZ~X&E@i(ll*1c2p7({+x zLWJZFM^0*0LnOOH3}Yl3>!XR9T(@T(NOK$7KD@i`5;?IpaDJTs0Eww(x?7ooyA#hW zKELDsd)F@=n6{PO0XzD=TJwssY;Tx*^sT7Y_wOg6$zG4Uq3BJeLo6^!aUSKy(%8@Q z{{TOi9B+v(ZFFq5p8%R+$u8Lg@XyoptFd^U#gCP>PZ$T#R#;yChT9d|P|0%^Wktk*YT3P%<;d4?jxIk~@fG`(BPH}fff2DYt z?PFP@Wr|=iBy)6e(5WAtYaKq;?$GMG5FckJGuvk^10J~l0B4T1tjO(Mg%JGwf>p-{!@Pk{sW)$>s3uAbIzlYXt`z_;PoG;^Q)SCb4xbZ zIZ$~$haGeO0PCrAy*Z{>;ohind=`k(%>+ln-e0-}Hb=Nab%sn343zq271 z9?%$fPF3zo23b2d2k_55d;Yb~H}2h#j!!uQzcs6OcjU%kbMmpzC+_>_^Qu<_78`zd z#|(dpv#72)+3ZFR*vmgB`=hVt+ppJ^Q zx7VLq=8`2c*OU>7lMJV#;-bO0Bt8&l0CX7lrblw=AXh@_=Zp@uqxJ`8Na8~)J_-ZV z@u^X7;WmsVEs-UTk#~Hp910{KdxO*5e}z`mEN0T;SneT^dA$JcJ!`(vZDp~x^E}WT z9jt(N^d8(+wD1d$DdmK^k&pu9jt4*I+v#1a46Jo5Dz)T!L+O{1*~K!e7-TtLmk08! zm%mg5C}E6(anBjg^8Quq`kkYFftCUp06jP$pXt-{&2TaJYRcjg3d}B9zFgxt_x&k6 zH)cezQhLDTW4JTPgm4((jPbbh>Hc}Hqv7;dDdM7+F_pv&!vK-^RzHjUHy(^3`#jPx zkc^Tt6ng&vU&6Zo00`e%*ue}@J6teND6z&t_x7!$OJ~%-eU4pR~ zC;as-yAvo5n?=4!S=But@aUPu_)n3y;i-~QIczIB1JMsfO1O{#sD6jzx{R2>k&%YRF{%S-grV}5%ZItx%_K_ z7+K=#drI$>J&uOeDClGOvF)z3Yg_yMKn+mK{;$mAw`ztRJj*J&$+Tk|$m8qzR!{sR zvUrBk^;@|BvyLsW2+7O0U(fpI@z%2s9fh1EO3b4K9tM5Ib=07+_KbEp>Q+^spvfHB zGvftV;iPV)ds4@8A|Z$m3yxJs2l1<#jhu*{Rn$g3;4lPs?e(e*i*EpkWOLh${e7z@ z?ny&gj^5!3hHwEG!VXmW9`(dsX%{eEwaul}Ni1J6O!DjL{{ZW*@WPW87LcKn_{hi@ z_w=lrogHnKN!f$>idc{C4w%Q*qNlqZHw7e_%`Ez!syD#iOLWI$S1qh{dwYou>xMv~ zcAozL=Rc>uY1(p#uGR8mUhC5%v96-fiAyV%kynw7bU)|(=9Qkj+mTV25++ZUVjGT4^bgr5;jAY9cWG^QQJwMOkilwgU_VL7*Fc1*+ zi>L$e?Z<5O^sT7E$ibaY!8$+&fo}cHheAh$g8>I^pbI_C9>-itfxsL!_ z2=DHdoRH`+tUjkd*ZlF^#cvcxD4SUGjC8K4Bf5iJmS;WUs|9ZjUo3=fF&=Y|^VYs! z)zS#=JiA1mD1v|%U%i}H*IJ}&C7kOh1z8vnd+}c~YZ_|83{pEisCHOqJhU8~D|ai; z)N%AN6?>yfuF*=yPlslbGFK#yIX_D1mS6|HbNX$xw%1a_GU8K>j1LSu5PBZ{IL&Lc zEg8<>LwEGA8x>FAIa*AzE(qv8l(Af~Zbmc3Q&e)~FC=qHtnDEzHrFkfxlyE-C9pWp zsjFsY7{ySvgUkvX?dR`R^odjNxFfNu+fp5emUjb#!KsJc2M5s8QdL2owK7TwASl7> zn#!Y16&=6_CvJBSZq+h@7~G)l9VrpQ54-Qh8=d_J(y_LNiRwuAISTmzjsoM8?tfZ| zT(LP(&!=i{k-4{Hnvf`8xISvmMY&z*GjCn}Phn6yE`QbJdS>i~lW694TR1Y3U8>;b-9lBH_B=J<4n<}li-JFqD6=J~3jz3xmI5{2Y#t$N!Y?d3q z82lZGULO)HFpoadTrOSB!Qtwv;E*z4~_n*j3p z0w?86LIKO0%Z!X&JccKkY(v8z1GzKx&4!9BF1)72VWh6(h!(Vz~#{)k}*7nM%25 zJx4X&_2|i2qjgp-6qT0h9Jv6dGCgYiw=yI#x~i5@jAN**$@Iw`m&q&w{KO829>0}O zxUgd5<{W)RVBB7@BIsqVr#;u517J zdjwX5M-bq5uS?oqCqyI7t0=Nf6s>h@A}pve+b2DL#Rq2K#lxl>}gVek1U$wz;;n3oLka&jD~b#dFl{V=A^z)+f|O^rAPlPu^|$)OvHz zCx$Vd<$0VuG%jhegyVRs>mo{$68yxM&dQqg_jD-fy zo_lLUKh6w+fynFrPxw|{<*lN`&$d)-pO+kZ{{Ww@QL@%9t^QU4m5PfTMDjEO1U=d{G;ntqzrnBLmdV;Q{;71#X*v^4s*o-62AIK z!p4VpL&>VQmvLJmE4K35v)wu{dA6D)KW3{$YYTRlP}C4tYqBMh7OKSa4aS zJXPy;+XLLV!5u3$=6(4i_^Vh&Sc%EpSGqB#)flK2=$+X)WAD@=M|8-N5FqM`olgFsl1OYn{L&ee5T)2YWb*iGU2wA%p%lOs6; zE7GobQr7QFV97PL(=qS;-|59_>$j5HNVjv_kC&!84t~9=D=S9m(w6o)D-Azhwoy0P z)C2rO>sROdU;;~lx03?X+i7i*2*>XT!6bD50PEK`d#W$m$wnKG`TliyNlu#P zL}FBGK2twaoupmTpbR)4%lcMrtmPtNgfSFf;SJ$-))t_Et&krCVmHBfq!C82KM5xAejkMr+T8O})btt+w) zS$o!T8<^&{lhBBv%0cf)=yJFm^rjKErH)Jt1A~gjMu>sPY1<$YwH$}#A$xSEJ-dcy ziN@nmeV%^ogYY$zm5n)WV_eGbHrYuF+M5Io88RWQnJtR|B`Qa-s+Ul@kg@Q!Ew(;e z5ZKwtscJCVqixFoO?rHmZ{hi(h6#|vvn7H1-rXyN(ULn!gv<$i=k=}Uypr-w?);2n zoOk~K>(=;MeARU(tnCBUybEwAxOp%zsz`3#Kl)Fa!>WC^_v0byn%-9;1B0s^kSnk$8vIJkB4LJ`&2>C^-0H`i<25yn(s`yp2+vMGp#K0rPNRsH2e!QcIR%eBv0YuVGD(oR z2b|}M_3%|3;qM-PDjc)2JslKY_qpzp0>E63bd72$D)>b%J z@-x-Fdi@XU&2g^Ii@A6`aw~cY+{ZJ$>`|Xf%OSak=RNbB)oYyzBz?Y73VV)gZf!y2 zw^VrozHk`x-~1{S)vbUV|qru?dP#xb8ye&6Sy|b|t}3%rn~~E9IK?5Q z&+#50Hv4-zlO%@)=wf^u=7YZH&3<2&~xH z@t(DM5*yR;t?B4zGfwOVB2~{TgUw{w$RWE8D&;p;q$~ssPfoe4$>RYUMf)NAOX`d(|n2<5nyvA2~rTLF6Yl9P0p}jbTye3V|#4b8y(9#?ZYI*S*2!?&?t8z_w z@|!kE5Zq+DX8a?D#*2G609G-INowSyH>>hDYv(= zmclsJW|cw)1Mc%&{-J(KkfVYC{VOgkNg}X6FgYKUR3#=Rk<`Sd!pSB)$aw%9=CL(> zLFFuDBocFqR=J*AR{Ki=%HJrgO-6s-@@r{Sv6DuPo2J6j5>LG(kR-scAC+T?OOb=m zYQ3giDmw>kq2Sg{rfU*bjZs35Y68FX%zbH>fzoz#Y%6joiui&9b5P17dskz?sUWjr zesNk6OpZ7rrWnU+Kt&uVi}yjN1X0*i@M%I&0k^o~ln^M}M&Eh>Y=@d@T#A~SrEhM-jF+I9fbfX$x}$qs}Eear8T76_|lcxhU{nof)GyT{Hi%{vaUJ` zw&WBAdQ~g6+^4ai3n4`_YmOEbkuusCX2_`Q+M82dw}woJ)^dB}S1LFJsoCxhCHD zD>ioyDpYj?0P{c<a6}}VA zHf>KqOl3JzI*xNvMm)k3Joe34OG!)MDPhnME5L;sl2=ILX2ywnlH0YN;4N(DCj%xU zz}~*UPW>wMwhs${3Ob%vP<~b!>z~g)m0w5FZYGp`xCf~V&-1SPNzo*h6^+!g9+(** z!r6yH@jNa;p^Va=LZ1w+^5w?bo-b`Tqb7+dCzV%N!i!bIxm|J|7Dl zf;io!0B{Fw+46wiK|G)H?NxORFokWS zYvVb`U(%hRqIZSkEZj=tlkH3OLUh>U(}w z=f4pnhT7;9ylEM@0GtK-dsok6GU(Dyt*>L!rB_W+M*LX8pR?SVPdV-VYn!>%B(; zw3`&XpKZ*n0}KE-41c?x+4ZP3EhZf){hO2I2 zEEePqu}jb&_D`p=s;31VdX%K%d2X)nq%nftKQdVxy6^{o{{US@aXi0gMQBPkFjOem zN7B6t<3Wrww6T_zKfEwSR5oZz?m>~qrEK3VnnlYJ)sg3#4cwYByoPw0;GJ-;c-qI; zzAAWih>>HrxKB1T&JY|1J&*LRvsTfB@u=C7dYp6>mwn*nl@sjj5<<9R=}{|5w)&Q< zNv%#E<6M^8QMr}~%uzDoBhOE9+OY_l@<`H28IE};n(QR-J?yTr`Ht$H81*&Qcw51C z)=aWo4emdL^Z3^4q+=dbMbdW};Ol)OO|^+qB4j_rSEu>nyBobRF6|V;HosLpGghIp zwp?wAGCCc#qXa{0=Kypbm74dSq)pt*v3a0{66FZmHs>4@PL_6>V2X^Z*Kj-tfdSBbsAy!Z9I@K;&l`?Ne#`YD8I#jLc6NIRpISnXGBX?k_UU zu`-O~*0A8$B=bx%WhIa0WIbx4+t`+k%hD|&b2BJhj286&03-CQDKF%?W>{Ad0gSNg z>HU8?eZ}9~9e&WHqVh606)3#7&H`j(g#-1il}RlOog}p}?rjX2nq|+R1Msd_QqlsR zRP7@>y$_{&5w?=%->5|la0tawzOcC4vJ?`Makm|7SjnNLj#ogpmhd&a&Pzqaa*ja< zwma4RLe~D?+*@0=`(<$ZA2~yw#P;X;`qxk4+aK(^CRyS}yO8AcJ3XqNq2@KyEJJ9{ zHw^REu65knv7D8qp>IIE)bz_(FJYLL#!8dlxFfx63n;a{JnH%^MjR9Nt4timNAa(! z{{S!LR?AGdTSkBun7>HZlb`d7*U+N=%n-aX0?JCfh;tef)C_&|`V9RmhI0EXZSxp9 zd=pP{AywR1@s9raHP-1GR2GthdOX+07%2Hr;~(%YwWckt-rUQlL*>cAoj}2mkK!M% z1A&u77V=FYSix@N1N{2arv{9iQYDfpV{kWb3_e#G!2oBE(yV!DX>8XQEEj0VRr|+| z2;+h8?N;sOg3U}siH3gmI8%*Xlhg2wfqal*#k3;PxD!&;J0`QmxREGR{f<^7s6| z&w9>gB+}wQ6dV>GE;EDms`ijM%15>^-+A2e{{ZW!#~e|x^II#PS9f3Vtt)l6C(n{r z1rAkLxc>kiYo6D3DhW5KV@lHI6Qp9@yn-^475l@~dJZeQ(`}-T03^cfUZ?fXfAflp z#_R1?){6j!1>u=$4rALkt_x|9?nW7(%3NOB`9`&1j|u{M&h z2R?8BfJgcLD&DWJeS#-XpZ6*<;d*1#b@cqdD^|8>+r^=d1pufW@sIxiRZVksXQ%mV zdn`k7+BbbT>)-i*J7qSns=3Zt>vC%7u&SRaM(G}24?U{wf|!u`szdU3Fz7Hl)bQTv z_cOeDXOk-_!))V#dj4JNZA$c8*}S)CB90ZwIKd!vIHrqFqFbEjiM0zjZDte7o@0}R zW6SZ*GCJ{8GA-&Jx+xk~6sA|@JE!8sUU}&2#D-tp|!94!}pXasV ziw#FdnWMP3w}(t`xZ(11{(Wm&Qc71a$5Xu<_Bsi?K@Oh3XPN^fWzXZgYW-*{XK;cRHoB!Dkwv7~haEdmQ%f zT;Gc|cUxz*xVezV?1$#TAnX(Qdt`~0*S#{-YhezeUp>EpZkn8}gzhB@8qn&a;zdEi-&@pl-( zVbJyC{QG?l--E7hZ&Pi=AWAsT13dFwxTN{6rJ$E9+BQ2@wOiOEkX(N47buK+dV`wJ zT{Je?ZoXL0AarB?b6VO{+FIR2C4J$T2?!(w8R`1cYB2|Sr?oz8Ae{5a8RP3*odN2! zIk_#Qicn)w97VYReR}%Ve42{IB>sJ|LZ2dlGClKME4gIaz!Cod)~e|mC}w45?ewhV zxwSHBw{~&YWhIp+megeb0LwJ$IqzK_mv0Z2l0^tf0Og3_{eAfBS5BV?G8APb{rrEQ zN~a`Gak(t!ZL7mYiqmnuR)kA;ADt{w<>Ut;o2O3IM^FH}K{i-FJf08v$*l`pQ|1Mj ze)xUa7r(Q5ny=y)dvk3gC^>Sko}-G=lw6&VxmC0`ycQNMcG(n^R#CKn`m4|`6-14+ zbm?AKpZ2%k^J-0y)Ev3(B#J(0CIj~&-vt5&#ldC=3!eiyfy?bV;&Wc%-F((~58u7mqtajcZyXCOwIBIn4oz3by zqccv^(g0HJ!&#}!Zl5%^x$FM)WS&Pq;@wYAmeT8N?5u` zakm)FXF?Y_Y;)^YSB?P1WhBBSlOfLs0QIDk=VjV<xRJ?gn;DZ?Ch8S73Zn0&)Nl!|S19ldkU0QWS-C|Kl*b|dnLZQIXt z(wNB@BRyzZ385G-@pP)rSP}r@rg9aI(Zxc{xFxEVq%s#*VUSK~vLN!oA9!`CxBQt} zV=z!R4z)y;*F92(Ml3qp*HRw^ot2;0`CeBdQ_EE<380KvhZ+m@0!ggagVu$V zz;_(v)KKqNP!1S$%|_A#fUS}}>E37#2|c-{(-93%eY;nmh3$%Mqm#?nx`Oj`H*Aj{(hCTCIs*ES~fi}d9FI<)X5~Q zB;k5jN$1>Psezphak{kgTii+;a;%)F$Jf8%UZpCIriV-?p`AQ?BrECCqDh@23%u+d z2VN;8GBXnA1J;uukH@8Vt#=6`{2Dy7+bq%KBX%9DXHK@X7RrqnSw|RS)YG&*R^8%? z(pbzy3=cv*b6QVrYdQzvhInDxxvEX4W??BknML$#c`(3oIU}!c)}w~f0dVO6CPf*} zag2Xj&^G1}aVu>+l{GexZ5)?VnQ$3L18@WJ{{SYXGH%Ijbz3PAK_M~By@C(WMq4xxPooO`4{H7fx#h}R{t zk5gRktF1>97_Elq=t${QZ}l1Pn1w!EJ;3T}B)5h&-pAw|l6sm3F%nyb^Cl+;@~7Tj z+gT>m!^@7{DxRgRG{`Ni5Cj~1)LM0kAiV3jz32j=Ta8JXrYx(Tm7tnviqL_AewA(r z@Yuj!dSa(wa7K8b3>aQG#=t&*rA$%ZmODjT7F(p;3gWK)oel$arUrek6~eK>^{o>i zP)Rit#|i>lh69SD1D2V$H_B+xL$2g$G7~izjj%Fm#GoSu1Fw2;UC@$GBBPmHzE(#X z`kaB!a zg{a0LDH;5Etn6LK-5AwXlomd{X`5BhGB-iaYP!fI3LInF zth*xMkU$@;Rje+e7-Ilq8>tBln{&uK)RRoE6a*vQqh<1)i61U=%?YtIK2~RqV*rH% zCaSzBSC;RNm3B!+K2i6DLT$)|J9^hl9)>bnl?+HmQ1j`EeZ8gU6*t@;re|eQ{Dx0~qq>ii#|(fTut)Rd6J>QXl6epUSVq zN|M8;wP%+qNd7Zcp_2m*-i^TD@cyqomFmijc64Pt$)ZC5`Lcrt{Qm%jIBD=rAO%!of=c!O06i+_ zhc))L(&n(5Kw)w6kN*HyH3VB9bBuw%IpAlEcI){60EK%PD8_WHBhJOnQK+0u%i#A67$tPT)*)(q4|1of#@Vw#!FO&H0f1c(MHNx|Zp4jU9>ifeH)^ET+$jxkXbILM`p z{_G6X*#J{pEl~w$L&Y$St;pu5Jg^z4`Aeki^+qEGvu=lp~B)t0Edv)~n4icj=0jG8QcNt*NycT@fu+ndrV7 zos#l9m5^ai<}=6iuJci`H)tn_c*ly!n zi&+6Y5~sI(esq@_LB3xxa8FL3*RTHos=22aPF&MQ>a3EoXP3*Ote-rJGCE*#YoxS_ z!otla)F)J2=V=_AboZ{1X>i#|9Jfvp2`A>@cj?>wn)CkviF%cb&u$$5EqB!lOcSk*lisqTP!u zQ@=sZIsTQ0CZ}z32zi_w@tzGwd7@gSr1Qah9z>fFNg3__G}O^azl{auqlQApl|oXcVCj|GyH{z(D{EPD_fBSFTdDfvpQmc) zWn&!2JZ8L%O=Rwo>tW#Rn>4IUQZ8gtNjpvlw_nn#UoEUTK5Eh~#63%wa`|y8f^bLYRiTs>*xxd@y)x~$J~PK^YKm$Y~^<6pU0fnC$}g@YrgO;vcYO*kO6_m8Rok%(ru(;Q5_BK z#E43q`eXI1?=X&e=da{H&*4sD^2p9PQl|!)But~_=dj25`u>&Q&0`x1E(s?*@%?GS zW?XU(dFSw|>lB-h%g3%N&C0B0JhRWB?MF6%kwUCI+#KNgS1oHAqCB#E$Dqe* z)bWkMNtM`PF|-QjKH7^OH&>O2_>P!tSSN8L^{9^-s8;1k`Dxp;{{ZT)dzuL6j8jnl z@CL>WDI113{Aj|CNlg7kDGKD1Sw_US@S2L!#x!O;@_JP9%z-wvi-X7@jCZKXF~8p! zJu6CbibS_^maN+{2PB+=O>@@~yMXEoS3`8BZ2Z}(CLS=(0X~(LNv8B6vl0O*W5z1% zDC6Y-bNbeZvIJ*%!KtmR(l-U&0A6xUBI6{C?Lj1rppn5PLHbn@!Olf#-`mSQ%f3*K z-1Hp(0H4mG`vjo<)$7ms{HYb~5du2{@|;$Mtn5x3G(lol?}No$NELc0rcxfVWDdWT zN)BnEew3quK*Y`u6uBmVz-El+r2sro#{!m`-KYVB(vb$%$>~ie5@Mty#>KRHGwv=}@L=%2YW3b3m>|8^~qYzjRbn+zgd*x3xK3$2;!ecBox5 z8D<&D;LsNvXDZsvSgG1-%F3)*s{`Jsg)JKw91fLE3x+`_)|v~K?xj9_ON@;3%_*OJ zz_&rtsle|eZ#;}ru?9oCigpW{+mwL&hBHmOn4ud^Gg*dRyFg>NG)XyW6fpT|SPdfS zIQ`>(@DBiZL5IGSlhUhYmO!pff4%EaI4v7GG03RW;p9L+iF?ul?7bL}OAaX+ltOvt zngg`4nGO_=YCFKECN7k~Sjl{!N~v(b4=kU(#(gTvun+*9Nam@|hbYF2pt1TudK_1g z{94kEq2eo64i^^SVB;s|ZaMAEdgXYh#(TLS@lB@2D!*l1;Qs)&-k(Z^T9p^iSzac1 zq}@A5bC#dOLOIn;il-RJ10?$O@9+Nr*R9(t3kcvT`>^T;<^!DZ_;&a0T%o&p5!uN( z=jJ}%pN&Bc#Jku>kTL1~D*phr@K}9mM}F2kuVFdp+23i#66IhKhUBvhy=zbHniV6e zWUM@)E2euK*LJp+ttv>JGlAIl;8&XK*TPGu9Tc3d-VQre7S!F-Yd;>HIsX7Z=Zc~( z;$ilCwhE4NvtuO>_;b_W*NXG88096&PpR1$Ikj^2z4OB$+Tn(KSD^TQ+0x(6n1He& zV}f~J{{ZLtWE%2W#MaYnVS+grIRtux>Han8UI)}0P>M)huuNM({VQxHCr(CfIvl#8 zJW;MSrM~T|8HosZT9OnTP9zg6z=U+okoheeY)bkwb#(Hj8_)nn8r)pA}qWdLD<|4=$pFs&hqXj^#PV2}^T?wYZkn*X%c8%S1-W4m^O> zbn>>2nWNY~ZNrZJs>P+tTb0_oknlhiPe<0H)m5UF4Y|+EJ5--+x6`iLIovazgnCvI z!^umT5R>My)TPtvPzZ{InO70W+y)=rZ|HxeWJ_srYV5NqS5t-rV1rg|CP@`!PM-C- z8^@@_`}nt!-vnZ;3vj32t6ak-m3C$T`Apkn zj~{p5wIM4wR*3Em(288Pb}2FyfmKcb?^Uj?+z}*0pFvt|Rv=4&cJ;}u`SmA}{HsL= zJ^d(dF<$X9zd>zo6@K|SqT=+k6^xWne)06FBDDFlH!OL;s4t@toxoro!-|VZ$3Zuy zrFI04PhNhtC8LCw2h-N7m1aLHW9e2QgMiLX7NVW+sWDpUX)|tMF_G`hRJ*l~UfWo6 z#XTLeLw2QNPkw8vGicGq<$Ft_lKC>=I-HMsrQ%%`ZcKOf!)?lsn{GZ~{xv1sCCFj- zfy%ZzRh=^XaS==Yv3hzMr0uHMR=P2?$qcaUc$JQD%y=Nylt~O9b~OCC?NIA_d(AkX zOe(UUzNFw9zoF@KDM@d!xO~A!L0u7?bTN`|QhQrzBm>PG7tx1mTkDAJq6r95&=x#m zpz$WXZv^-z8_+;=ygb*_bNEqa}~hn^KeVCd$VCsjY~}j@WtA9^l{# zyW#yJYp?X%*-TKJk1@OZC>*i+as27J9*Yj17F|yl7kCHk%HJxVS8uL(ADHP~5S^|D z_iTj#Us)o;y>w+M9+RP}Jdr#z;UDHl104E$AMvf`D|Hi# zW%Ai_(nK+q^&I;t=3?oLFC zI3I_n)Bga~T*OexyMTG)3OPKE)zNzy&GbXOhi7jrWkKpXclvWrkIaNN!_Pl9Ir+oeDk$A2Zry63U;*Q{4P_{DyNb@7z2s`IjP$KC zFsibl3Vvb>1Rc5j@%}Z@i|5sCqc)O8(3Qz$7%F<#9c5`1#l(BzMhtKZ0m;wvuIddw zD?1hYG$^h*fWxLg&!u$5-D-Qu#lcCfSg@-7l*S#Htgi`bM(g^-nHxrbp(+Ov5|mRa`BVLf6vyL6^xO>8V@W--Edg*{{YrB-n)cn z%d0ux4BJa;A+-@kU`T=+gTs^WQh2k&a%%QWsU)L^Dnd||0Ji>JNh7OqC` z-T>Gj4|=B`i}c8JX>Mbg* zQMKfgouj@EPaP?9C8{-aomI;%j5pJ@3Enes?t!^-&5_>+k582L>F-zC(tCJg`#Q*6 zbGT>F;C(;Cw_4iO?=7riirlnsGL!SE>+71!I=jS=gj@zA(EEFO{W1-8Q`K`HHH)I? z&yeRep>=&3Tb-eUWaMC_U?NED*##DHQJT7+Nyfsox{-Qr+?4BE47y3UChmq zl1Dis9Y-GgfBNxTwvgG|K(fn;q&$enPpLoBxbYH`Wl`Hh2G2`owMj$yaj?q*IUnQF zv@DdQf+&7SdY@C8y)^FAiCI;!F|-ab=~Bm~$8f)B)4^aq{C(5hdshoxjjT(jm=fuJ z(sLFGBiD~_=TpHsjz*F*)RWHu(2_?bkhg{njG1{PJhOd01v1XwNn0N(#=m)qsJgiX zx8@-jnh%v2;gisxN`r6(Q4Z!O3{Prqqo^!Eh+qODakz}`s=NmxD=yUj1 zoSjVO?r1YKUS=P7UWmMcPg=*kwr8BrZdrfb<3Hy$F6NY!wkk@uZgKVet3YZN%7!wT zxGRmI@ly-lwJTI|rX~ax$UOTF{{W3xR}gAYmVnGl zVWVD^mEvgi3%yn4w2#PDA8?!udU5`LuVpljm`9mtjZHQek5RRfN9f;ou;dT(&3Z(# zgmy6zk_G_>7|(CcxNQ?omg>)Z%Pco>pkz_efd2qL%DP*JEo`I`9F4pV{r>>Z`4>0X z+KwKj_BC5%kmgKo2S4ZZuNwHHZt&~N&vT z@S8%3aNvM3%jJ0k{PSG)yp1IlYaAV?lc&h9GOW{%Rey#)PBMMHt9s*6dC?nqcVV=S zF^^C4>G)R{aKRA89^$}-VT>NX=kq?buMkg=F$?Z%2}bWzndlmcdsTOe)6B8}JkY4+ zNd7qe52&tcYm|cG5fLwEGkmUxo;r_a!61&K@-^GVCiNjYkCYH{Yn9imVY0j?HCK&? z@8Aaj5x^>YAL%gJ$NIoImy0o@*H5ca7P0jzr+6kuU9S= zB1E``LnXW6QbWcF{ucCM#~+Pg>NB_{pyj=P&-voBwxBWJ$e)alW$*rf&r00U^(%Q* zW8Jn-L*I{jG6$__LveyLf@{N+Eul8CeSU69{OWZDh7@o*ny(WaeAOmTO~paM8&-G0FEeJTLQn#BCj_WUNwPW84loBdu4Fus1NPZMB3 z8HRFyTCRoTolZI*TI|EP#%kuY zteM;aZO6(oMtSxB0641Gtrj-LjB*YuFYN^25zk&-s={}t(ASq%adK`b=aWs? zg%Can8&7dld0Ad@npleMY<=onNw94>u2$PK1c?CWlTTpVIOFM1ZDqi5k6cx#<1(QH zkOvv{r_9kMV~36LjDwJS=9vU+`-6<3JmRjHL~)#Q#)b|+SjPvcs#Pz!S1U_ufQFBd zdewO#RgeHd1b6LLCXK-ao(CKnYbueRb5^P(hjTjm-cuP^rep)I1#74|ynG}}D7~p+B$gG)c$S+04&9P2PUgzG3Cj-(-rsUf|x&p^fnxZv4H;oePn{fNC33olSP>Xob z2WA5t`_vcOv5`EhRpfDz){x2XZeg}eo?LbnNB7rj=15A$ImT*RTVTt&;BIQOBA+X0 z7+L^LGR+j36y~&nBxH0ooo^<=u|Ds5(2Yjif^cbo*v{9<9CWFlk-+B_2mo?P&%H%7 zj)w!4^`Hr3a2SsC*(E1{K+RWu-EeYg(V=tm9w`8W0Q}t3LJXDz7^!|%;YBt``{%Dw zL(~?7Lk4`2f+<4#Wiy$ z$U)oCdsE>=gtt8BsO?B;3L*Q%j+L1^<%*s%c&l?e50!IPEUXf5-bh9loSx>iPRNF? z%J$ZwP&9`CbBebTZ#i6r6!RMSz`5Fh;1gFQi6aVC!)Ma6oXSzLQb%(jSigs^X~eVH zJ4mC0=~CRRLDLO_22LsgBytCgo-lj$qB^0rW-Q4T_Wl!)Dob|~qh$B%Pq?yGh#$PC z(x4EPCurbw#aSxlmtcwm4ArkB$!v@|?G;$A>uk3t(y!^;-4k+qPvtFxnP@b;K&Z$L)^vB5K_Ve3gN9u+|&7|*wF=}fkKC|-mfYHH7& z+_*-_wHezVE0TDrf~vwv``txX5A%;tdYgG-NgQ^pS)kCzJc^n!cT{ikjEqy`Jo88i zF_TEgXryMrp_I2nKo5ofVOO#?=dEW2!0U>=3xggBI9=?@p&%^;pB%YqsxklK>l|%&q6+{v?Z84KHe6P;3iMy{(4r0wx2hg8fchAyyFKw>qAJl@`?ma%zZfepYzid(>9#W z-#Bb^!mqJ7>+Cz@oM(#mDd8h)v(26@tqw+1Xs@?fUtDoOy-?; zBR5Lb9t0o~xa;)kR^{<6!awe&XFT*Io;|BmRI$_TY^NpTNe@h(PZi~wj-hXCWQitH zr1DQAx8cS;D;krI?CPT~b)nICkHvB_Zn(HYNdEWZ{{YvnR_jn(n^tzmnVf({VBX%t zCP|xd40Zr}aq0B_eQFDBLL(xp$e~UZjyhKcBNCFdPRdk!maXNU3CpZOm3oY3uj&`J z+K7c`2H#|7Bn)$t-}0`PPO`DFwYriUsIEN7xC5v>R)2@I_^&SCeh3F69ZzcJqZrqf zrfWOXSBb<;rdhV0%x>mcw{nCII%ki>R&Cvtj5jE$douu;{Bd5_f8prNG996V0t$ct z86W5K`d6CYX~R#um(4&>1A~las~3lbKZOMfvzF}T5*S6J1e#(u^gR03^`4Mk?Ie%w zOg4k}KTfr6F41FC6i5Lll0RDXUjgfoJS}Z}LNPltw}LVBu3Ax?UD35i324i{4{PXj z2%@lsRt(}z+!{y{-aSamb#uWxh`{UA^sehg`y8>m+e9Q%zM}*m@@qa{4_jP3%71pw zNgIztT~fx>inY#I;Nss%^4)e!qm|lm72JOXKmLNyn1XXD~t+-_)6{<5M4(FBo zzM$2pFAN~=T7=IM#uO1*w-atYp!TY`j*dCRtGMt@Os5r#r@L(DIQOlD`=gBJrtRo5 z!~_=WjMr=7XT6OWH!)xk4|?bH4Ju2f^P39_^)24L0>mp@VFE^@rh5G=(8I>svkAMB z+}o+M^IYur&mZTla+2Q2vN%(f1oP@MTKcT+SIP`X=u2`wwTC=ma8Dk}T;-m8^tb6M1nG8|ox zJBnhBka(>K<}3ye6-Df&hF3=z!Q!o3LO=lZ>s(z;`V~AuaV%CSQJGk`1$}s|?JrK% z^=KxZ&^s(&eY4d23cccyi#WN)8=AkO_|C&ewX(F1#IQrT+dR4a=xahOa?K8?(5s@& zjFrI7PjBfGh~lLOBfT8^SWoC2m0W{{SMcSZR8up(~_H?CXM5@y91W&-1Ol8^u=8&ut~_ zMoA(~tZ~Z~vb<`N z`H0^)9XRRwS8*?oEf)68;#og--!l=^9@Q3?;>|AB`gxuvlg;Ov1!IZEqGW$8ONh^3 zO4RVh#EpE>J2y;_M@re(JYNKnu&{+A+~l{*+Oa$}F`HMCQ@|sqzcgqwr~W3T$4X3L zkG(i_rfPwQ_|k)sK{@S0j0y%Kj%i8lLXZw|O>QL5Q9ur)B#aSBzno%`o8{znpa1~e zjTshH`&5eR>4Ln}K<@;O)YJ#e-Mf!Ub^_3jDI#Fsd~~XUGtoICsHt2PV9TFs zYKC3T4_>rbL^DAocIGu)lUTCm-SFd@=%bhz_Z;S^YLKI@al!9R0Z>X3JfYxJm&;fz%)}t+i+m1oVs>WAQjPiLksbvbu4)VLO zGl5C4S7aG+5E;hmj7ZUg?deXNmODvN+cg{Q+l-9XZJH!l7hYlko|Nc!7U%BNHqaas zxB=IiSe&b4JXBqkVsvLR6##o?iDO~Qbf~=SN(j#tHN?CP$2Bf`mZE-)*M$6Y+)oruzBy<9601Nz=h1)kH?BO-_zdT(@ScAL8E{DibgOU-9!V!2ohqbo zGpy zaD$P1%nEqLR=g`DWUz0Pe+^9NUdj*-bML~uON@`tVBT*m&i=yg&gLz{{XerX{{fW z&e06U0p)n<^gf^cde$`(mgT1H?;ZPmN=q0cj`kOMfX3w+-CR$Iz9L*)%;Lg7vVyqW z$_8tWxYQ@Vxr`zOeB)s2S8nvxk`wmQ2c~i{^{(|@Ti$miN2!-4vGd6-#LaVZ;{d-P z8pOWUq`Ge?a&fl<(}Dbe{{T3p)buxs;XchPP3B~TJ#kM@58Xran6SC$Cz`j2Puzxx zQlo!)?pJ^-+B9ID+1)t*IN!n3)joToOS0)yxaB z;Zz1x9ewM6L9>?b-~>Dm^Zjd{q?}caq>_BcrTBJ6Z8kFCaysU=A!bJE2t7q}`bxEg zVkTnw$6DWvji8gk_pBpPNXGXzN+zWUigG;cVI1+h*}d`5{{Z^y4Iz_DyOJ@Lg|o*( zt=v?meSk4M9x+m^>8l?rBwQ~M$=S#EPrsr3D&;hz=0vy9$-J84=0J>0aQEBQs{WPb zzyg&5PTi_|eK^A)GUT!zRQpou_Tu6IMitYLSBzunN}MG1mf)SYEHwByVVv_+bxDzz zXd`!~F;pSBxFMEI61--BhxmzOigK!8GpHaYrIl^aL|WYs5PjL=!~9x^@ZmGl_I zkrJ#q2DV%hpLeA<$r33T;Py47Rmp6jXQ{^|U%nek@P4(MuK1_Ow=lp!4WFMp{uO@v zN{V%D#gON>tyKR2ghs*#SJgu?7;$c`^Dy;qLD!D8v}vfjlH{5=m?6IL4DM|3mdf9~ zx|@Vg$G@-xKb3ZR9gI3;B{bzeYYa(t;CZi+$RFKP?agRB3j0x`iYOr%ju_W!Aod=) z@87*yiB(tu%XT%powP8z*evZ79Gnkt&-`j@h-NbGfZ^3~$>9Dp;d2yk<;+5p(397i z%GPzUWK0(F2X@CR*i_0%Zp>P{8>!9vkdC;KI)xd}`QoznsfkQ#!1`vRib*D)a=#~l zNyt3ZtmZCRvcrRp{15Q1NzFHMB*%!iFbr@zfO`9TbR8>GNz~-iiv#n-{{VV3(4SH0 zYYWaKak~fK^6CC~rUnL1ah&ubh}5wfon*58xsAY(G|kRW89x60^}VF5HJacG1a9RM^tkc7lPg~a>YO% zzrpSYuf1Jg82zfk>e3e%0Rdv$wy`+i4}W^&E^Os}R&@pTjAS|E9{!!`?Zj|>mu#&R z4UN8OV7dAV=k~m=%;cwtRM#Z+vD0`DSi8EpcyH0t+<&QzwpfGLIr{$qoO954pT%~* z9k*q;c^>5k<%vN9o`dxLE6sF!mKu=qT2xg{sVF%kjt~C;Uaa_zA*n_l{&!Kg4K@HT zkMq{GQ@YUWij8l28yv5Te08dLj@IW+ka>nIg2_C05gAzX1cdEV&!_(YuDPvxF>g3BDk7o6?9M+wPxJJo zq~mgGNmG`OQ@qhNog-*7N{V7R*s21!2e9|gPPNwfp6&}hId9TcTUU%Q^6`V|)9|kh zF+q85ivdQOQUj?SM|}SPp7p7!T51y7Lmj@MJ;k8`UKcqLpYYKTf{jA*NUekj*J6kyUIAelNI3I^f>hwz`n%um%R`$hzhD_zY zfL9@*T(yn(k{{wcMPvKa| zUEKPfl)-x~tnVeUWQ?D<4+MI9)1$R(f)xn$Jn{INit2yt_{&3brMdZ;Mn4SJGEJ=k z$d6FEk{f9+?1{p2C9@2$&vETj*iLR^Hy7*?2qjZE1p0dQ&0;~RO>=NuT7bln=AH|F z8LN{+1j`#TIofil4p$Pj56N4G+|vj1#SZROdl)PV+QWd zTU(iQ>m?8~98CP<+=Jgfp7fT&%m%j)xzubDbSJMr=lm;L{&?@=F+N4qZNu}E`E?y@ zF4{F_!&@Plcn6QpwdHMSRAQ$!81*_07fpt9gikHv`B}?y-$VFT>sVOYMG`Wh68+KN zKhC+$7DH<~`K=qQqZ!@PpZ>7?s@T?4To{#dz+e-|Bv#3*A4;flq>|X&4QP{MITxIT zQh5U$R(<`Y%%n>csSnNV>)#(*g2WlFRpho(+_vyA2cWH6yQsX7p~sw8$|3Etvq-+6@#+5n*RChxe1a<*Nz}11N(dnI{{T3yzS-YYl5uem`3G)teQOiO z`XIc~{>v<_ADM>AE=W97wXM<5TMd7QbIkAcJ4=}(bwvAF`{i&1hmoIS{OeOh(XMrv zrIOhKBuD0E9W(w-SG4dGGCb1DENG2|IL`k7@UL6&-JBY2lt~Kx9W;MifeDSqZdH_DELuG)N_6w~bOC$owrXMd69J^gTcgZ?$!wxMg%Q?>s9 zg_wZ9Tz)6?s&Kut#zRP^HY9`Z{W|`YT#?xBg$PA_CyMGm7Q53L`deFPys|h!Zl^dW zKQnrec^K#1SDas4UBx`BG)-iDBY1c9|H_^nx zVU5_qsrG2)tAUK0aCSa$gG8GC+VSC*6}Y#IN#wC5q!=e7{3{;9IUZ$c{K%LNRPmAc z*U&be53{$D;z4fe+kB;*aNBv~>BqnL^L`=ll=E0LXadV_{{ZOt7$kZ%DM#J0l&~#E z>FROOO}Hpl$R7PYs?>9~alskwSj%a7V{+?sQ*mrK}HgHP;pIV(C zKDn-0_CqJeI-FC4g;kUQz~_TajztmVoVTa>{{TOwC?%K{B|$t2!p$>mHHs(TFzhO==D={^jpwMU zQQXOO60N>+dBs~>HNF%MqHGMS=p!!RwlWTX_uZOJxUo ztYmdK$v)Yv+;6a2=DMdFLj%X>PAtm5C>S2qkgmfF2^De^AsuTuL82T<-c|~vjOV8m zzIFg($n>TbY#rx;N#-D3n?_IRQ((1(c?L?d;1N(W@$#-JR%B+*K2W%*ODic0$E8vl zB4SQAbUi9JT;Np3IT^N(y-DOaZkQsqi$$WVs0ee;F^a|2EnevfI0~nXe_Gutc_*%V zRST4P5102;jPNV2gqoIyk(-97t4Ml7pc&y^XN%ss$E+_qD@)2?pRO7djCJ4xwO z^zAa|Qk08)?OscE71hIL)^=eSmymIj{Do;YqpIA(ZqDfEZL~INRbE9>d2UBa{Sxq6 z2>c_WApRQ|2mV6>z7<gC~!SKK}2NU!^a7n3a=0D)8@q^zH`X{ z{{WxxphC*ZPC@6TDl={Qg)ra_ao4>gOY-4y`A`6I#Pd;?A%c_EoX&CDpm1FNwCn}g zLPk#J9MyRyQz6)U)MdjE8HNC$gw7)CN$3cdap0WP^D&MBzz>#{AoC*;oNqjeup@cSR*`(A22AG}U-SNYR3!Feb|Ae! zzFwdn1rGp^1b3=)TsueuaKon+D$e9^cQExmE21&b#l1_h+z6v6{GQpQWhO1bNM8I^ zSmSwQ4*vj;wOo02s-m~bag(03rMXFwDyIr_&#i0ysbRH>B*EjYQhy_I1S6+GDbdMYKHP=WD&!KU*bLKZw!&ZrYRXupf#1b&m{Hh&0Hg?5@Xph z{8{&?nL%N@k)CP6vN_HvjmALlTUf}uraHqm8Q4aB4R1)+zCkLvY+|`YX9M|E*7t4> z(oQG?N6rz*NL*&8fkeQtsA0D^Fc|^wj8vBFA|(mIszkCP%(Lx3ceN`JlMn9Hmx>O; zha^^Y?ByJTkZREet(vP!!45&K2`$>mcRwm{K&*>*FhvWf>spr=KWhjH=eVW?sAdw9 zbBv0v10}~igHWUs33m^>Qwx-4+DFVPSkb36N?=xFk7{MS+oTKCeQK~~mjT$HV^&dC zG1rqwWZ>oSX;}#3qdbhST6|I##!pHBFniRi(~5iSDmqgDS8I%Nv=t>|kEW8%*9(;0`~}=S;U4 zb!?6~$^L)mur!x(G%~Ug^Dkpl>A{(I4xP?=bD!y1Ml0G5Pux8h!rF4pXB)e0W( z>@m)B%X)SC8tm;fh|Fc%E&Mq?zfZ=z`@@$`kh-al%NQqj@PolWOnyflIj>LBuOoX^ z-hIdz9OLu<06$9gD>+48Cy8X`?-j0e$O2^(sLvfoU+MghrAIxc+c_YQ_iRA``f@@2 ze!tSR?_^z{xpBcg57N24dikwm2PAQvhUEVM^?>K-J*z5w(-hK9$m4uTqTWV4=@vGO zWMH0fNylENk@%i{PnT+TlQETk&jBpi;CuaR(=~lYYskuyIsOrho;v+bPZ|FJ>+v_i z#lwto>~mS;E|#aEf>&Cc@zL%YIBq zRcLTRe2C_BtrSUqAZ6!x3V8MZ06(pI7MtL>LQY(^-na7x?oO*St(QA=IZt=*w=3&yX4a*q}g^M;w=Dd7F7qzlInl&FK z`kizFSpNXhZLSC|Ks(NV57gB==`}cH-x?K11m!v1_p)Ns4~A$dw-rP;khz8`*=aNTUf@_ zRnG_5b^icA%ATrW%xcAOI`qv^(XXE5d5%XM;C^*=(nA$r(ivDI{yG)%ChAu<#}wufDy(BALsS0%Nux-&Lw7FG>|fSb6J~&slRnyh3;~`Ce!W2+k+@0)Q)SLXGDB?h%h>4sOq5H zv(FXehEX95j^_i@`PNL<^F=(WTt2`s`|**V{iDZe9bExT9gr9z@g<_gX`^B zzt}NI=wrB#lZtBE&d!KRtCcJ=i7gA4NIsX7Z=k%oGbWursFgmR0!kj!V zSdwLo53N~^o*Z&^=A<{+I5nMu#ZUM}+mL5Wk4m?t=>t!=XL)y$Ds;LHjGC||4c?0l zB16`cebY>(&lDO9PTVn3jwwi>U_NHRsay@7;-d#|Aam#rn(Vx! zoG(hKWN7XRpSzmXv%MB`5WjK8J*WZ)n`?P4a7ph>xq)6huOuF6F4ZNwBw(Czp4Aj$ zXc4z`>L?K|oCAl7PTkE`yV-0=jkAM;%~ltUmdDC{sugi2?ah*XYLJWKapawYlir&P z2aKKEilik9r9q_0Ro#Ukw!D>(zNH7-UtH37(!9-hkxm#wsLSOB2oJl6HYqU3QYkp8Qjt$vjY}Dr+*u z6667rF-a7F$<~@8CpBCLicy^7>-GNt3Q~3&G+!CPIL%nLM0LxsBA|H0s~hyiIFP6Y zG4EJCO;P$oUK{belj55|IsX7eANm{DxmSt&YX1O{n%6x(%DsQzdc!mR137AJdGu&m zai7Mg3ZP(&pIVHZ07?G&E9Tcb*ufx^YNIyHn}q#^Z58#xu@;59d;Ni&N858|%-uZdlnw z2;6Qz*PrEF?bX}a+B{N{AKRSQ9jlhQxIuDb0l`oh@ITMLycpvAQ@->`U`G(#?jUQ3T$Ed3oUL$D+E=X*5 z?kmxZZL!d;J&y8ScJ0>zmOS=R&1XrfT&{656Yg_a38_UY{H_PJM?J!UkVZXoROMiC zOLJCB#+D*vAh7HBRxR|&BW-2KAD(km8uCVyWC~lb1HEqOz8br|nPt3hv%r0N;)g!x zD}!>-n#v!wq;MjZem-El5Ati!w7n&?+jL^PjyeI-t>_wMwWLw4yhj~3u;#ak8wwsl z9Oki-Rb831uA^fa2J@Wvz!f}Fx&jXi*P3g@k-zTov>w#WuP$(sZzoepS(hmkM#-w#mo`92)DT8zkQ4Esb=MFC$fE{qW%! z{{R>JC*R-ms;s{;R|g}44{E5gY$TqCgYQ}%a@@iMgbDg19ygAgPrto&MnKGcLL`a9 z0y(N-!C*g$x&c#8?{z6$6(Hc}wOX~dNF&ZN!>RYIDnU)?L{q+_BDE~LkpIUK#ag3iz%SpVlR|E`G zp5P!Qn*e*(PDyTGI_gb!OD<8_Pf>$aqq(@2PcA6KkTUL0)j{gV(uqpP63u$;1Pn5< zkM**B2Vw4iTIcnRYtE0!i)=72D-3*oB=B3o#k`RI7W3WH}A$F%O z81>**eEPT9q1pbkJqLW&K#ncJb)?zPC#XwtadSGE7=u2o>i$@ss`IND=uh&UookJ}?xFp1H^CRT)XWOx(I6!pF2SG06jNNBQ=sq+uH4 zs*%XSIjJFsbXi=L9{Dv!SkCv!VuO+I{(1iZJ$8gSn3BHc)`6x=t;sBKNQh!k>`$k) zb&&Wz&LFc5>>U8ZV0_-A^EGq8Ixy3%*67U>3C0ftaP%L}yGFM}Vpz$v4WYe%$mccN zPJ&BQ*}~zW7^z8WQP6Cnv9^xZ)&!0m4eS&a&wA)CR@H1?GNED|xllMhpUShYN<|Dx zq1IwSJ9)>}uWAg5Vm#?U0F02loc6ASl2$re+Q&C>tdW0q&u&eN z+7oJzcYPyC3g;l4DdV56E6==TbEOXw#XYRAagtU=BOo5(bKCqoQE|yN8yUVF)bD&l zscLge<*cy$?-^~Q)A8+EOJwbEje5$!@(Uc}>0Kv;yfdNS+(k53GdzdpBktf}jlY?$ zy8FVm#T_j6LN@SQ_`KDbk!BKxE&|lXGyKu zb}Js^$JdhajPBD-3 z%}sA1f%nG2N#Nv-r__I+TAoyez?K60jx!qdQ|Pif$3RE+1w7o@>RIC-E2Ze zoXHOv9{%-+_Nz03`D}6rr}@Q4dW~xYi4i|*ljTr2$2i4bvWf|8ZHmqf#?RhIo|x~_ zvHHYpOP;zAMPhCyP>QJFeeC0kzPfeAoW5MBNpGDAT!Ohg{{T9UJtq3;o@8~65M^`5 zew85BXTK*;x-S%{eoUP4>MLGE-!Pnc)yweTlp7xffXTt>>r6L6m74-chJA?dT;2TF z7Lx3gZBV%wB}%uJNyl7d)K>2* zknuAwKX?uZtRXbgOPN5DLUFVXpXd5lL2DiR=`Ob641nZ@&KLaWwRAzfnctVu=d7H% z6aBW(T_kZ2-o9{!vN{Zb_#f7~EjHdKyLDJUcB`D810VB>=NCdq0$(8_c08yU2ae;X zztjrd(i-VxxSnS|Zrm(?!aXXJw&&4J-5W5$bt!2WsEGWcH9fKZdR2W=7hN(zZqY26 z<=plMo_>O<+27nn#IQOmG2b9L3f+Itye)a1R}M9Q8G&d3vx~JG5+ekTOR<{;stkk|-qdozgXI0Ey6loYq#g zcR4tR$(GTF%nA8{;)7+V%NoXt{ARIB{{Qm%+)uOj41|C~6976}EOjir3 z`PSOE+9kOr0sJMfPi~$1gP;Djc2-lQu%zoTkqQspgU3JT6cXL^H9Yfn14cH-%K}GE zm4$P3WY)a7Z1Re%3$e%}wkqV;HxVpKz%KGPG3cY#sr`->x{-s(&axINPg9C)#aZrN zQtudy?NSCv&rBZm%wIh3HbGa6F#(DGTvp}U+S^!3B%6Q>mkN2u{{X7I$5Zht&8n<+ zTh=xCN@R|6j!*vpU$?C$iBJDED?92)b6Y#y)25ifWO*`Q`=_V){{TNq^4s>!^xIcz=Y$+%r}fAAHOq*CvE^f;m84#R zs=~*N)uc_wC%;O;q!%pC*1u$f?B+pn{{SsP zJbPlRl?8b`)0irej!3A;EHVcbjFzJpqEvDMSA$JpbJm*VjtA#LLL!+@mI>-At;?_3 z)-f1X2PQ$(`x>>Mo04ggqGKnMTEPG8~WgstK**^2pi=_N^czDo7Pc;@U~h zNjL(v=X2@_wpX)@?AIP)Y;GKT)rl|Vflk#@4`MpjWzKx!VrB(L0G06}RS7qC|xoF1n(7dtvQgRu6ed>hqrM$T62;d&nwwH|*NsJyaMOVAHFCg4`9V&Ts z&~Z-exe-q+FdWr{bjKW33w3!gfc5vO12j;$VmA|vR5;z*p^Y9Ao40UVi1sM)#xI_$Ga|v zoMiJ*ha+h(^0DXCR4nC)IXjO`cccMXHs@@B;MJ(uv=boNA)NSK#7BU{aZ>`@ zxy~t)+dChWhVP8mN_yO+uc4JCyFOnffgEIt=kC>7NfuYjkGt3O{#DUlMLND4r%o#_ zYbGfv3WSn*YVV^Y`kKQ@StCD5zZ!k(2AIcbw2~Bk<6CiRQ0jhX*~2S!8SPx7+Pg?q zl%8|IHP?7@#@;xbS_d+bmo3}rU9)jf9H_Ucpl*_Q!YE-Pugr149M{|)5&r;@TSor? zuPA@?0bdTu35Ryf;P7$n*1qEKc*lh_U^)vZfAj%a(091u8yfxSqrDZ|B`qgw<{29x1BDhw`OSp0v{ji89PadU{cj z&N@;v06nS~kYM+w2zwpFo<%coQ`0nwCjsHSy=cN5R0G=*|$WmN+!ieo4TS*+b6K4AtR8eI4fG@$7-RbVS+0+QSzE(o+37$ zwKCXo+>*{*IVW~U=T9-pWNAWtrxe)(JZt4I1a$_qEhR;?@|iwk#&gr&xaQf?h)91b zISQ5@nCvN%0UDVuexXNtu{(X9FoA{_oO)JNsPnTsHU~u%k{>WF(P1gK|e1U{{T5ZooCH_%y!@%zjV}^ zls7k4=(hg=GN&ZgXog7RZ!@URYN$k(#d(WJSgPdF3l(xg@@Q2A4^viAM&1{i*nuN* zB+DO^^{WzW^8P}4cd9KmUvAyB^pKz+jOMdy<)O@X4dCF9PxJ3qwDW~vF_To{Ah--T zHEJ?qkmHf{so11Ta!X{Kh3I{%oQd-;4;82)^I_m;BvgXQ8f5ky(5GN=xt(^)SasW6vt#Jw|JJ<@T zBxufAI;iPR;yM^DzR#z`%aT}R);-DHb^ype^|EeA((TJ~af;`!WGyyuMN~;)dpp4} zMIe%Y3Utu#Qu1SYMEanC-^zN&tD{K-j?att$)Ww*)6&T=cBd#Wh%|7_A{T znJpU=Tsxs=B(`!ms_AtsSSZ9}twNHY;{O0Y=M=|aMhAW?M>b7{Ufg-|i4R`&95?N0 zZz8TR{{WpNtK8Oo!Om3C8Cl#-U0CaMTj4ddk*NWJ`IHVik1P}rL06jli$<=OQoS0=`K_PHSJas(d)1Ph+8O?J#ZR6asGTuy2Ty6vt zo}GE^*!>M{q$T1d*pL?u#^bnPXWZi>zc~jKon=6iZyUuaB}5Pe1!;!TNOwwicSy$w z86DEnFiN_l8ze`EbR(&h$OZ#Or=$Mw^M2gNF`oOmuXCOAJMLSq6!KsX{)NV=&HnkP zPp*?O#CjBj5g~cL_4W@I;>}Uo2ZQ8$D{n$_`+PSg`r!}}i6+G<|LY^DzoDwG-*fbT z7>ct@5NOEl?)Txr)en2eKlHVIL~>b7b{+eX5Da)-z)j?55cR7nzHfgR;huyxNsm4L zKW3c)OzyaJ+osRU{nZ{-wYIKB&h+X3Fw$u;RzNm&L|)kc^Olx7ZZ4ZR-{-|+I8QDRYFES`r{ppW#9y{|Bs8-`sKNDUe$}j5j1`?l zxCJRh7Nqz4MIpwY$)(!iN+SFIJ?bxR@7H0G+vsJ14R*OFxi+eKYyIyPlr zT7IQT7+pX$*a_Gj(s-vC^bT=hXmVcvOpfA3e5{~Ne;TJCYaIid+ivS)jTLvz9`kF> z*Y2VV@N~P-C;c~9_1>hW@m1-gnGC`M0wte_ib?r-?&JIg;LFt=hXG{U9jbra-93UT z6PXIk8U0A<8(|&hL*uZ3G97Ye1fG*BefaVBtotVx&G^I>z zJ{NkOnG73~-cT|8*zzd{rB;A)oJloX-(%=~m(%D<;*TM6x=&N7iBLJTJK_Nue;)Vv z;DK=r?%9|$pJqxLB>w8TT1c`QqNc}@mE3*+zA`DI!HseVG#K1Tz8nX-FttbKhyt;5 zw!ON-oAK6)gvoyyO?1im!!g30d%xtGWa%lpC{ZEtJkdJC)OhF0yrHEwl6}Y=rX(Vs zf!aFzohXKnodGNAhqjsm!&x@4NPXngGs}JwF5@8P^G-czPr4Hk1p@qbiR6FH-meJW1 zhyU!r1^g`*vsF%QE24T%B$(foX!C3z1rWCz@g^;aM7GFQ&y~Sp_TkqW>c^h@ju|_p ziTOrXA|lmkp-fD6J=3N+Td5OcllmacETk}V52RC_hCoR!U9D#K{RF$7vh&;eEyz1j zeJd=bQp{-{7h8jgmvPHtU{yP@XseDO;p%ASoK~O2E*u+jQ{4Hcw3QF@ z58vNgq+@ou7WoZS9^<=oe@xfQ(8y23Q1_5w=z0TXr5M5XewsnXo7R5Xz2IPn3u?t+ zUuQS_TpIC5K(L6Fq==AbZuxU{y-*dhPHu%N&H3_aR;`SCzaS<61a|s0M6|9SOJb|Q zZhSVvBG{6YSYrCN(Vo=dPgLE@^z{|z(?_CktQe#f z#2m_Gecteev;B14s|ls>7N8mVh}lWN^@^t4+qOh zy*!*X0`(Fm&m z4X-ABMOLC0k%0j6T(bAiV|AY(kc@(6z|Vpn8r-gO?MT%CpryO? ziP=KMiDPVZR}sYeHA!kf0MTRmGbWwqVVKy^kdX$3usM2+_nK<@F)rBeCj=``4%m%k zvopOL$G|3}6YsojdZNduzJc!Jc3Y>(OiXJF9fU~3#x5Jw`T%fG)J-ieG;o~g)PV0m z@&-MMJ_6HDfyej!cfo@9{-wj!*xYS|Nw&Z;hQnPQ-@bHMd)Bn|AhEA{py|?|z<(`!2Y}5DDqfOY$YtlL6+M3FS@xUKeop2Z)DSocWB5edO*#DJUMZ4Hb# zwse2hB)FnXSeB?|iL%r6P80N@1h<&?7P5Hu!0xHGkh=C6M&VB^a&z^-Ch=~9#gfiJ zTC-ksxq3*2NQz*fy?j+X?q8;k#c_-t$(4S;1o%fOBsES%9CM+EcbVCmSDMB&uG>b- z4?AKx&uvCQ-zX_V&=NzK`TMXuWAT`uSXabj$PD;#{*ZzPPk3w}wVbtlz$7-J`5BP! ze#A1+}#8L7|*@;yQ`7bapUKeG|@%X&Fh=SB{K)% z!e#Ucr-tGXm1O~wTs|>N<>>SLr&psG4^mR+Z0#*d$E4@NB=@c8C~in$@KvTzj1R?b zd*r4N<$5&G$$0ei!eEiho2n8SXetfa5w&Z(#<+d}yTvt|kf20k7X|QLk4UX7^8l<( z1+@F3@PHlkNFvp?4l3))4a8JGAOO@oQsZL@q2wdvwYp015jv(urb@ zmzzJT+tlAg73ihn1_+U8sx4$pYDCtZ)_ocxuP;@`ZkbOU2f%s2mv*Mz zMcenl&aY?Rc~s}whFnz%xO(8z_na4wXArW#fV6Dq9}2ztox9!I5`HDVHWIeR&e(Nd zBKarM|7zyjYb|HTU1RzPNmT`57vw(LP^9i(*m3>a^i5-+u=>xTxJp0yx?kWw`rkX9^Vj>+;YawFnwi$9l9IfFCu{gD zTNw}vVR@no*kP%NnTA1^U|t1Zh(2*-O#BgMn3?ThfkIFaJ0+^a_rUYaII7wBjkGb8 z07(^yePR;eh3_&!iecCRNgbS9`p2Oof|;+%LdW%UzHU86Mgc0`2kw8#s_f*%wO_|* z1n`ZF6VG5pz z=XsB8u5?YU8bHr8>fX=l4s8d>uew4rPQc&HTWZJYF zic(+}5idkOLUdvg?iPamG#|f_$LBX>E7P28 ze|~098->jgw3{I7!Xh9Zf}de5_Bp(bsUKV}Z-9%A@p0WYd(7Glb32pGeOzAam|uDV zxP4&ul58>q^9N0@Dc9T(c1{(|C!M^NSc>PQ-+A39AYqpkrsm@h`Jf@+raUAzc{Inc z4T)0ZDs`33fJF0U?R#<*%*6id$VSu;<@2=~3=xt0NKJuO0qq+%uN$qwC#B4j{`c^1 zfY=5zi9d`d?=H~5pZPn=5cJ&tv2femnhMX}F3oAj98Td9)_?Cgx?E%Km#f#)z2WRJ zHwg1&)wGEChMJ}x(=c)L5{>G5pT<~L6a8nWB$@AWyY(_tNN`@!gNHXF;wHLWvBJhE z$7S?T3m+zan8^HWh4vTlwXc?=V%o@2VC}b@X~O;6yrD-X#@( zf4nxgOU%n}x6m(p2IQD^u@Vt68c^W}GjX_;Fa2g(i7ujs7e02}@2`KJJ$mWaII()% z`KSA@;@5k+1|a*t!dJRaaKqDXFqo>^^ze5P0V$A1wrVe5#c$Z?D?)`}k%rDs_w(Qo zI_<*XAe1C>o5{p{W4d-OJ3{US_b6^X&jNMfjxq^bifMjZqX&N%eu2H=FCIc{95`-T z%DQckl;}D6;z$ku%5%DOP+EsH(AHdoZP<18?86&AD&{GwZxo~0=QPf0#)@xTjjs8; zh3nPS{bUu~tq<7Rl*%xzd4)v~4gvx194|U#Bm%WE_9?^^C0pvcw-7M208*toZ4RM5 zmnw*E>?bdC`jKFuWLd93%-nHe@~WBIfE*7zG9>qcZQFxvIj9*yBvSJ;)etvsD4=@MKo~)>%8Jk2&L2IeM<_d9zU50^}^DsMJU`n#--bgDhIE~b1A*HPnio>Odq=dVfglMpdnX4WGl_f>UHh_ zmFLe$XHCBEYr7cjBRs}$Y8kg_B@J=u3;rO1I;U!`sl9~SmX}(N+im_JIrf2m?0fdy zoJU7nUQ-^K17ejuLz4YNJ4vhke$=C1y_s?M3P<)T_3fEO`n$4@+UhPNDx)3;MgLg# zQBCB>;$S@MN5VN8sH)R7qA-Nh`J(uGM%C%Qi2^$G9|n1FydTx0Tp=;>ZS)!t?P#q} zpPZYuDBmH|R>SHO_|mnO||%i2QbW4@=7&x)tA3G9qvUsR~x0d2enril|n zpWF9M_kPB*&m`|aI%dl_4BmVFt(d4&Eax}oRlX3?a1Pml3S>B7LXz2%b45@nrMexw ziir7S+e-O8k^34$?H30j3Aja0RNzd#`SnNS8nT>*jZvlvRpS=@i+7%D z7|S!6qd^L6W5I~(K z>#nhnKM0xD;Kkw?q|K^ZmV0>!>3V2TnOeC-ANB=z_!;?74(n-iW;e%D@XB?->kOJ& za{hRwBG^e=8^H&s?=yG>pV9 zw|$SW%oydqtc}vnNlR{?e=L=&xGh07=R`RLsd|8KOha*VjIlgvsxWgB(#-robf!q_ z^X3&{sTEqSqNs-QVHpqIn}4ts+S1qU+7~H(mX#MS6eYze%lSq$sO6^|P2ASyv@*?* zGy5kkVzup>N$-vl=`T;rf>`A{zpr0FLn5K&lM!OR8l;O z+3df30T!g6$&BtPP?Ue|V%{myHXdh^zGd|=qlA~ZH5 zGp8%rqJ0r`ejRZ^Fy;F>!zDR@p!noX5q&DMOzP-vjsY9`oWH+73lAygM6ceEtbF@_ zZ}0WR58RKa2-k+VtI=$#uSp)fkK&X^o9W6ck;TyAzqPC(~gz z+1#nBnr^KzctP6(9I^iQ0fmaEGu=NakWfwDw{Lxp$FK!<-+bYzJBuOC3Lgl&1`7LB z|7O>vTZKj&Du{KA90xi;|3rGuH;|vv2vov~B~(oo3;e9w+k9R;C7h7K2wTZ>mnz)X z=skNn33-*5*DzspISWAnXNM@VbaCqKFoI8+c3yvg`OiYqzR|}uA14UoG*0F0$!JBz z%0<1?E=fYI884D$BVYV>LeW-ofpo%WXV6`Ev=NXNQcmLj?wCFsH|mZn`ZqwM*|#FV zd9*rK%ZNL9gFFSe=hb~PZ+H@;6SU4IoNY|}-rLWF&*K*OgQDcw_}Uv056^8UseaL%9)#P`)BpJ+1bQh2QwL#S?NX564Q9y>o zDKGsqg8Rh$EnF%2L%G7bp2NCO72sGC`jg2VxyQ*WXmz}F;{Pj0lW^P5Pp=p)%S6JGgwTjDH%B+|X zJ!lq=S6N^O?UEJFmZ987Hoky-aor3p#C<7TAgoF$cwU*xL*1mg9pBo2Cq%Na%x0QT zlfmsb0D_6}`H(HV|Ihwgsso!3a?cN#f5Co5{!bSPr$n~w8wN_nt9{$10uCY_9I>cgkemgnB%bnQK%H^L62>eo9*b0(jt-%jHF%4GVd%*PgBN9uPruLqNj#*d}v|%%{S?%05AcVIuFX?4z^kG-hL;R)zJ4M4V!!B2&bfRBJ8P- zv%uBPKu6o?L~{UpU5(;B$q!;R-s#QgC0*MNin?6CSGJZEZlja}I`V8o*m(x(>s>~X z^m5n)Y+l;?%B%!ou@$!bR$-;sSocUMTkTNIss9YyR+@yLluE75CftFu;1c5)Gb75;AG~gs-)6yB0K2ApJ@HzHAVlCdhDvb(fAK& zda#@qwG{4&r#9=a)@NU}eG(Cng}C6wL})+(#6a5&#D}5hHL#og$;~c*)2bDcqJ5-t zZS`t7KEYPcUPl3!T)6o+B&*3oK~?z*~EDD4(qWIPi6N_Ta^F-Icg;J zLe^OZYG1w4m?Sjt3V1K!Q^$EZckQDL{{Hw*cF44G?3Sl+WxLKU@xb(FKqs#JH>VoJsY?Q6j1%Q_MDi?abWzotjELG3w^n_PfH#imB@fk`97M7LbO&SBv5 zLwMzhXMxxXkIzx}7YCe>NT!akF1iZbGC$&x2bxx?7}3vhVQof?2{-SIg>M>y#pBMU z;xaiuZO4G(9qn6mKGJbh{R!LGd`%1X5h)mbW<@O;EV&frgZL0#aW^IEy(gst3-sn( zx6<#2M`2h7Vbnf+SaV643O%&Bpi?QBzG0Q^w@BZWZhvtsHi44&;Bv}NE9!gpN>8n`4slfM=2Brd`bish% zRs4}4@~@HO_=xi8@}obC+s)XT^_o{G0*x#rZQrvynH|jG{T}bp{$lO-)h3epZg6Fd zHk~K`QUQ`?f_Dtln53HkjLhO%Y?Ww*Km%>%qjCeQ?^S~lqbq2GT2HKR5uZ2H1!x-CjP@93er@m+I7Z zCVoZ<;}C>L<*0>S(pLNmSoAgds?9E2@idXbs?6qYlot8@ny$`^^=;jl=+WsP%v}yX zXCtTZv(-itsBY~3Y?Si`Krvk8b~nIH)CKw;pI48_9aEya1F$}M8=Wh zjPH9;zfHhd#I5(u)xm-{P0v}o_c}6l2s_Dz?qV2hI{thZ@!B(+_T7MsWghg~xrk(s z|GU%*!)?{Si_5xs+qov7oTyXd!DcHCVbCd{Oa*(_xbm*cx7#{UP~22ou*B(|QOA9+ z9-!a+V##_N0L_x|At3Ne(v(Gh=l_cy0aPx0z1V=voVY z=j^xfYU3Ad%pY-f-(Ro7`9Z!XejHs2cVwoR4VmZx4dOiH?)E!jxa^j9Tjv)C`mxRD zeR>;6k-TZ_Bt&AgJ_gFA7~kUA%0u>eNU|&<7VF(O=;g&U4CIBMc-|(R)mX6n%()pV zvP-*pHjadDNc8>a=z9Sc4B!j12U*X4|AJwO>=@ghMQ_2qaf^N}vlwmUTk*HY6dABJjjJB?T}=1!fnpIMyC(_$zfJR zRSuS~9_E!TbkO<(*x#>eO`AoxJ5uIUIj4_HT=Bi*=&lm{(4$iCQKmxsWXn3Kn7_(Q zpXDWK0;msE?a)_~QT#>mubC(8o++~x^BuF4&NgbVl`?TCb=mgkf;3T=Wr6skI%2b= z`#J1ri;roZZ{X9OW5UcSm$*rgs|MDk)@dE*9);~qgg_~($=-s1HqR1}K|)k!&g^c@ zP|V|ea-kSPc`0Lvn?tEG<+8G}#qm!*r3!eP)xQWKGfx8$LNdQRQE9mW3=-zqv!m`m zKgSKyXfiq6|KGFR_!m{P*v&T*r$^JDvecVi<6G?1)|o~neEp5e5VCPpI2wl5FNJbT zs&^cPg_-`KF%|E;N_E3)8qTAXAu>%>1YA%eWo@yg6W@ffQ#EmciJ%av`gBj@hCwS_ z^3ygz23^t}zZlJmJ-@gh^vt^vs7XPtqxi?I;x=?xDR*g%E^)t&{#%+puiBupMD89E zH`Y5yXD{q>rb{H5g=jeYhz(~?V8TARtnf!W=dcrJyPeDDw+}Kr(ml4?jla<6WUzuk zg-`a)mvf)=M%!lU3}46p{!Y%soKDderT|6kli7d7|bhuLh$S+MTwAzG)Db!Pe5sjDMl9q+*?)4I2H?cFotrM?Da=bV zDQ0CCC=q9CD}O*UX%!ke5R;}ipH%mtftshat2C`GvmQ*HSrLsy1TQ@NX(RTpYF0}d zMSQ&t+UcK9PDC6XfLU$RQ-;6;inysE72l2yfJ9S~`y{@!D5(eA>CfxH=ip0`2c7A% zye6C316+Gbx^#ze5|}(xK18G|017nA3ZJM3`m=Z_Gesl=*3u&9j`s>4aua+DC*E*a zz$LkSqmz05W2T*Bj()SkgjpzM^O(TgfRiijvONdFjY0~!a({zp!Q)K*z3pV+^quA| zap*Dn{)ubZj~Ep$-q8k6(-GCGE3zU-c1LfL{%7ba4_hk5j4Zgs#erYBxiVAZFyoQq z&&K`}v+kUhPK|tFMce>ON-vuQ{M1hdL%3_A|rsoU4QxH<1OD&v^ep}ON*e&gLAOqa)8I!Y1q5p__%JGumjUzf zl!Z|y>1r8lZndUxk(<%|M~EKRc5Fhb;2hKs7Z)JT@!UCrdlR zz0uhs=D?7eZ4LNpdvX2QKMTDkOaZ*(CeQ4;Hl27i-=L?7IVs`Ti(Xg70mINbrma~9 zSoDN@W98bfq>E!`HFOHd4c*&~Z20#kg_BI-?QA>*Q+qpXh;o*~^ie}4G>K#v?;`X?qi|aVY za~ezBwlH{rVp5*Csj%xUn~OS%yzi9tqF>%clUG!Sb{CW!a2tNGiY5Y`TT0 zjI6NKy(25sG)Y8*`dZa=u?wV+)K@Y0|Hb*Xg)i+*%DK zsIpK)l1!Yn&(|mWB1@AHuI)D{v*}A;!9!X_;&3rnxcGk@>2vf9bAxZ`7^nJLTV6IpERnhll4u<22Bb}tI=C0|Kpz4&o``b2{-9OE!(&)M&| zh)v13abe}`9#v%2Ro=p({N!$Q zI;TrL!{40{A9~C?EkjH;Dcl@8l(b`$YK)9G$pq1BUE#RMe-OO}ev~t-o_P5aoaaOC znic5B^iM-V&nui#c?tQOK~G8Jz5-sCq7L zbu7!kNU2?TZ1vCLn?4)1lQj-2s-KNX3#a5yTJx^eQcYfl27Ax&&3VIX%y3lFlnSp4FSWhGb#|& z(sddMT=FL?j@ax3)pR(enAAx0$5hVh1oh2;hi=`!k|%tg5Va(7s_KwV{yr|jr*f_u zjX!pPDNw=J8}-wroPU7CZyZgm4+;&L3Aw$RJ$U6xRRjHy_j2F-^J`N}c0Y2x=VOzA zDMEssSf@R9b}Y}A7JUNTPFCtCUglp3>g53mPKn&(xC1gilCP;6SeFg3dlrn-ndGM! zuiV3u)WdsmloQe@kmwfy3D_Tl{KT+-n7rF8w2Gk9ip{y z))k#3trUy~FuPuwzbmYe33U@&3UoHweg?w`GvRKQ`ZtHCt|&umnCs$El1DJzlsB@* zG*R%QlS(xs;m8K4pm^@9%v;piav;LOrb2jjzEyP(meY`tFbtbjnOt}edpxje9mSTY zu@Kl`47-=Jz0>0PoJ|w)MEI&^Abc&WKJ&91≻0d^g?mm8f}V_j2hDs}(vV`2gw~ zsri;miw!%}@w?f@Bub zY4)zk7ZU8uG;ZcoF`@Pu8@%!myvUkzo=2y$B=%x%x_9$_ zxjt;N!%nO*E@wrZqiR>d|G@bJm6A)@q!+M{7Zcadllyv37G*EOPI zzikNTNE4X}6?NEZR7Gp6UXnk*Y22($`Emcs(Nc@VG!?wCo*3WS6lma6XvfT<9m_o5 z@^``Zeb3jh<>dIzKzp73&l@Par;FnU&b&XcYKLR%v_iwiB^RS&85re2WP94mBIQ`X zorhlUJ0=JLksjg+zJRtGAxNJa({X%x6Q_qx65+=foU=}a${=*AGv0;1%$r{rA^AS& zOHPR>V8LX4M=%*j@fZI@nQl7#M<}Dd?uxj+bC+W&c0f)mo2zbH%8yWdgjQDe)W=`S zFWvOT#Ppw+3eoR&?H9*6^T19Fg{qv&x$#c+*p47H(GddKjHlB-yQ8P|053X9zu=K_ ziSW9vL-OxUy{}B_?mIth-VqI@o4S7`Vi1O{OX1owObK49EOJ?F4`nk%(-&&7Eu}w{W`xh z!cQ;F%{a8l36aX!uQ6?;R@P<3*t4LOO%ZDQ6>i_dqE>5mE%;ZETbJPa;+chUd~ zu!$jtWdyDu!D<+XW6&#q-n5=G8@KZ!9aQG57SCw8?CkVMa0?x*wq}hy_`rhm*>RL0s?;Y`cKEm`lPdG%ZI@XauaqbHTs>nYDvh4*4Q%PF9>R#c zMH7WG2r_a#NFxCAk5n}9r#~R+9wyYof~4#@|Nfz)Ze9?~SfVjjZ;jDFu_u-Cn9grU zy3U(C_L~0NjN*5?`3y@RJLxeI1RQni0PHZdMcKzFD#xtGF_6>=XTS0uoaYmCgmZ0m zGSM*Bt%&RdMC!S^1*4cX~<3W2nXVC5nBF$bd%DNU)X1>Wb~#@*%w z-h}TT>wG1dT1*3BccAAL5u@mdfsvvnG)Ujp-# zBGUHtLBUz(rFw3Ke6|h(uUR@x1krF8-L2kV14j1E-2JD|#T|N-W}-H|9SAGPh4%t? zJKA^bEM;k1Tb%^|4P&UYJykE&3RU=qIjuZMVENGm11jB**e>CWq_{%qbl|)Ysl0xz zB?k2H=tz?+CZuUigjpHjQXa5UhMzwTa&r6CEzL|QI)_t}#6j_R641cE)(h-97mf;D z-p{(F7xLF0H@t!4?%sTR=Hn4Ln>*J)Zk+qFHeZJ9cj*+keKkObcw1vjmq|M#{SKu2 zxo7@J_k6xNGFBNGr|R_d^!MF5=Ds?{$d|P-B1}Ser<*z^cXnE3VRDn(Q+amGu|05Y zXKc2<^4|a*JI0MiIpv+xUzD}~VCQx&ahX$2PmOl7Y&h_c#osKDG+f^3>Mtw#gjro1Oa##x+{M-&A;Qzi5l8`%EJoYtG%{e{~)R1 zM^?*d6y~t@&f_VVfO(NAMb$+|hNgyqg%09lI4*Hvn!-6*WPjHVml`%P;5K<0GyV>b zj<;YW&u)TCHE%(N<%669xw#PgPLw8~iby5;QpW93{KBDN2D;P{hN9Q|58w8xxv40o zrNF;~hhGemrE!5|r_GJtMqAkq(9~4^tRsINiE&Nudp){x@xbN>wVfzNiX*Xa0iot9 zv!zSu+DGB}#$r=q6|Mg$R(bgJCXPLorrDc}@%!=Dmise7)#}QVDxes5ZY6R1YJ~89 zk&3DkqQ$9`OoGoiLCHWEWjN)T>%eQv0(`z9e8m^4AuOOY-9@_3mLzFU$ATme-aYNN zJCL-$yub$_ry5UxlLwYSA4=@jo_-h`^oIg zsILrAzV^?=fZ-rGcO~VsiTtORtBt5@Evd8X2J;4%e@&Pxbsgy5DL$Yqpq1l8H{lFZ z_~cF=xn%2ycaCM2>ts^-7K)S@&gF>OT$&i^ zxy#e92@D$IA3Ei0@gf%q_Dud3;8p+X*lnWGL?Ob_;x#mIDa+V;M3^>fn7avP!76D+ zc&d4(V_^E^XVX+pULbW+8)hVPk`PVOokcd{^0L;KFxACUf0Rm73*4PaMMW^$AaZ1) zG^qFG^=FIfBLk`P#Q?hN&{>Jc9>24fyXgsUYuKvR@tMO`$ZFBldKRiR!DnXV!fOdO ztC<9bl#*Aol*Xw;E=b&}8(`18pLV1xPfNs?^6Qqs55uR9Gf27dqt%HDCU)USEhFJh z--F&>9ir3c#i7y4lU>g*Y6YdhOsZ~VC&)xjogqO+m}bBPrJ|?O8k~i4ruUvac)9&K zh6X{DZc{!dbM{jPb`ur`W$KbAv0Drs0 z{$Aay%QKEckUoG-@2M_!UmxI8rQS27*Jr#9!^y+Q7f*a>5t66wK6#!;mjGBs zfigzoDO;K`qvYNQUY+Iqp71zVw9-n&N0@DtL{1yGo%c3^sPB3%@ZqGvLP0{|fVJ$) z6JOovb$2~?JW2Gr6v0AUdL2Tiqz|{fK3pknh$JdOF6W!>-QehIlxX4gLrBlnOh5^H zIoexvZ=2P4L|a6LaL6rHk0~6Vi)Y}m0{wE%zQrqh8`d59o{A)6=Bz->a}?Ig_Y0vP zWHCc!-eW$vdTnEr+K?*rcp!upsB3i^s8}1R`=SqE zgl?CnBdGA7I0ry>%1eIzHL4u`%}H=NaZ${HsMPMqfta>kX9&eU>Ev5m4}(FZ*bDy1 zK9Xlrvy`Sy(kkJm>Au3I*b1;A6ZKV@LRJ}O@3kBnFJ7unVs`$OEfOYWfbZ)y_N66b z-XaS%Ct5Wc{9IOl?_4mjw?t9W1I4R$lh15F@+iIkDUB=y@0UrM)9z9oDmA-?+2C{* zZubi#VZHvdD{HU#QBe%4?SgX!Ms#1@#T**ULeli?m5z!@KQ^!xm?hZJs^DPAUO1oEYGUp>FEOz}k35 z?5zE0ZoFC8PSRNe=qK{URPFH(i8bgkH}C&7iJ-4JspIs&Nq+UGUtR*$5bQ-O-sGFe zuJi$6-i9Ra_!v-|UI>=~PKNMWQo}a;=+)ZSf^%c+jO^IWA$OjFf47Ai0fzqYyN(8q z3`+PryfM5j>f`&K$3hL~s5bQorx@-^~|&SO<@JU68OljvLhcG+G*VUbZ>@k@Hh(PoD_wu--{>XCv$ zD#f<9U%`jRf1pOn11Zb|1N$1^dW#Yn!f8?#*S|(5R!Lc2*AkjL%75#8p3}ExR53M; zOiZZk47g>T%(?{F2=DRis&C}}cA4=VZWEUAb((8@VuZN!gyzxBd2M%?^Uc2Who$B@ zFbZtZI=7!W#Bh|oI&(UsfJX$1fZVNRu<62Xj(!>P+3Oc88k0TMfxwCYx*ZtIao#w; z(;N$gaEMCWqPRadeF*n=oTa971F}R{!^V!JE74RH*b=8=5%;rb5%^K7j2(-!wKDee zt`Y!l9)xO~cZkqwOo+vk>9-jVYn;1Td!+5C(|7ExNL?EF?5C;in&0*Y1m0cM&T^#kc4g9FOe>ey zo^bs$DzY#hM@!$-8QUccg7zoMt!`#Su$O{r-X!ZV{Mc2MOG#Xy+oWp`ivcwFN00G$ zlB)jo=5-n zRXZepe;9IeqX}`JtCyLPn%y_tS#T>F zB4?X2$M&!d)Y&F19C_`?IUS*mUmlM`{ZU7oRnyeX8;@7L`bg|@i5gYSSpDBNz9cN; z4lXz)*%E|^yJr$ZKYpwZgvX{2GH3Mh2&6c1?$lj+wyfm{t|6Y{TFnHUounK)YwC2p zx}I-&A{U3x>&3ZH1`#A>SF=x5L=;5l?Y4ed4LJ1q+n5$%HY;0oHoSJww(JD9bwYeC zkt4#N3A~v#^Qx~NdA6ob!hgn8TK#bJn@uASUJxO1d*{GDDCo1WR)+}f9%%31Q`C^s z96hVgfon%=`Wfgs<>y!l z66z3ImKDb4d1Pz&2QIBGez3dej3#Y##F|7$gHFcvlCjN2u`$ME{Uam+NqI@W`zU(4 zGd)t=WMU@EVHh3w?x~^~byB@VND0iIt!jjG)N{tm6#soa{v)F@GT~7YnN-id*n$da z{4Gz-7dk|dtvNxgq3Nb9m9GBx4{mQ^R)v>=-HgIBI=8-t_PUi*w4>GsUQ~wVs6@28 zsC$U`o$d}_nfizrQ6JBmqY`u080tLpc{>6re&@NLXWhMh?R>Y76r3+?=Hps+$7TK> z0AoR%zL0Wx9N_x$J!`$xY$enKEU}U0BLWJ4tph&1@<(!gc*qBglTb&RTYs{Nt<>x) zxX5gre%hGxSBK6qvVg* zr&{MPEiPt_W{l-abMx;b+dWPWf6oJJ!&abUX)3^R{(67HSSny931&+6-c*o=3xnH^aoi050G@{u?^e}q8VhUJj#yBVtc%L? z{{YvndeUkR$ERAeRJoZnkx3Pqw|2(Cjl&uL06*u_t=QVbC8!cB0y+`Yk8b9%X7L`M z6BYBrK00Hs)3K>nS)TGp*4zX^$UQz^@@v9$s^Zt6*E3QqbZ&bDWx%r9b^%XSW>PpGjR=KS4!erct z0U&1`>R4q^$`ONc&19;wD3Wl*s_;So06*k@b7_-BENEdLCOvX~m7|4~_X%ut*6g?h z^{Z&ZZ%kH1A%`P49V+BAIX^K5xn!=(gF;fTmeJcqf(P%VG zxPBWv9^aiXl_~%tqKuL-dQ-|TYLSfzo->2fj`Y4kBdsFvcs(h_pCbp4r5b?7h~xru zQOf{fkTc$`bBvy}()=7zb|WTxHF(J*kUb6qs*ID(ak zESyIOKz|Bl!D*N#cBXoC{OT#yhD;|1-jQ9^K47dzLJfNG#ZqfibyhEPD^;}+%^a*1 zw{Y9L3W6l^ZlazLxKofjRlPK0HtR+My$Qo zOOkTX>3r~6WJCZr4i7=cTB8-*@~y--5U2sjjITNOsNlHsqX9F320`_yQKnWy8x&PJ zBOPm(Z5c1jpJL`Eke+(gn81!eBjo1>pjlQh?;{zvwQbRhd8)tp3jk)zdTApb4s}odaQL&Y} z6VKAR;Q6;TjEN+*{{Tiqa==J2z&!`0Woj_GM0~jUKHX1m^Zx+rt8yxd2@K7Q;1kbI zpVRRbGDp5m@=6Mf<#C*!>(li1u87UYQ>HZ;gAVjn6M>GLgU|WE{{TIH_wZ_k@Ro=G zz!oqM{Dv#y38BlCjX_>}fAzh;&wsc4AO8R%o{T&FiX8s{-vYbvv*&Ca`HhbBP$;g^ z1%6#DZtsDU^sm%f{NU5#jHzZoxZ^c4mnl(=%$+{MS)4NhsJ%(8DG(~`LzVTbck(QD zYaDNaPgSh=q-BAW?<{-PS8^?`QdER2M6&{e`PQ|RlH6JaX5ZKx^sZ;mD2${Wp84rr zM~Cqpw)rpt?0tXEDkhpL4662P2s_C+{(Mwo#OLJi&MTvPPqd_fs45h&tQVR{m7!i= zH3_nsF)#N;KMR!{5-BwKRx7>j(T`fWc91vB=tJ~5st>nz)Ki~Y>Wa|9Tb)9p&9iB% z7%PCJ;0naiul%V5Qgl3XT^NKr4Wt!eR3appWP1KttClwgHY!KTdskcGe-G(;wY$Y9 z7YolP0Mo9t8*5p7y_jHe%}X86KG$@wFE^IpuOc?&jGdCNiL@ z7{UJl>(`(7he%5srMR^Fo3nvP4}9>4iC0UpStfkjBK*sqwdOuN@f;fNt0UT}STleP zV!`5B4wN8pLji&Zaa5KgBz|H519bznHuMV(iQ!DDu1|ivQznt_8FrJgOCd>L$lnpfO*X}&gxiigR-)3JxSuO z>TnyiZ@N!hinL2JWPdg#B!UR&DzKT;Bcx}oM)wT_f-}pgs#iLSxZAYu?^cK>5*C|h zKx*`0rs16NSZZVvE3Ru=7I_ythct#hX(d}?agm<&oQ6e}WJ9;P&2B*fopv@D0a*9a z7&pb`{N0U1MJ8NNCSamO9%JwgQ=ZMOWh7@AsO{x*D$3-HaH6NyCuuE!Jx4hm>o!@n zV|y62LQ1&B%=fhD@d8@_lP)SexS&v%u;E1V3~tJ^}+ zvS$Df&W{bmBf^t_8z!g@iaT{k#v@NtQCy&6O7`W3F^ZnzZPF==?tw`nvfBv{8_!Bt z3l!i$RInTqjMjwq&1k5|cNXhVtTMYQDwP8VIIRaaI{=kN+;C_DEvX`I;fJL*I23Lv z!2>w;raYT1pB;0>Ube$qp&(?60L{3`C*`W~fw*MWoQex_II6O$sTd!X07WRl1P(pF z3K*z}C;)8WQ(Ke8C$%9o03HU$98z zlMRA%^zZ(Ct2izcb5qA7A>4$5DJ>nrtCn>TsMt|~>IGATg(TvZd5o>|bBbu^(yh+n z$}ER3xSZ8?-M1^$nwaxRfr{sGHB;zPkuEoUr;fSLYKU4qz=_TX^{o)VcBF5gr&=xC zdUP>wm&%V|QdA6N8qT->09Xm!G3(m8HiS11(xLv%M{-3jTML@!JmBxh^{HWZM(S}| zpV=oT=I>I+rWNNP`&C$$KTp2-F!iAv;fKoIYLeLP>MB&XE66m`3znFIDTQeiA6j)Z zAqt(RnrP2F)7YK3q~s2i0T~&mE^u>28KeLknsE7#G||gZ$TYxrLTDML=aWWhTtt~Q z6tal;#Q|*)b*PrRb z?3YU>{6;$ikJq(z`hK9Z?M&gg9YD$UucN@!k1dZY6&9V%IbFWa!Y~UAk;Zw))PFHm zl}Nhz!ep^8SBp|6fM?HR?_~-DbF4x|>52RP_>{Sx?G7XYrG7>x2$>OmsPu)koMv`&Wn%*JS;Jei2o&p*c zVn`ffp|-oRnkODa}TcVo6j>9^Whbz42Ld^J+U-+YM;@ zfOS*aqib}La|;IT#bpL?EWx;s2d~O_t&ITyn&j?6GxxUr>O(3^X(FDPsG1oUs-LZN zlA-fK;}rd?BH*Z`2RjA1aniMHq1Z6oRgnrI$f*Y0@G(FFCkLfRAUy?1lS)9rGywzv z0z(RGe2s-UsThJVqXv&Fp)>&uY6Fl)ML<=&!GXc+R$X?~QXRM;)ZBI|7YTEW9iY@x zloPm5x@yJKpk*X-eJZnzw&kXnSb{+ARO2}7PLa1i0|0|k?DCOhEDn2BOPh?`1zrHA ziLlm_GXw`AM>Nn{IfHfsimXVA;Iea`YH4!PVUGk=63UYRUGvUPewAFV-g{NIRRn-} zs?MYumRc@p_;HeWt1i8ks%g2&QPQqSxE?!KEZe!&PAQMGP}2?Lj^?f3L=c^c#(xTm z(ifO-TrN6Pp&grXITe#MXw94xfP-o7dQ`S(uP9rLmd0{=ikf#;lPtIcB#=59s8~A> zCxQ=9KTpzvY-(I$BA`jRSm94x3U!{HN@{Ga8Ex<)U{pSSS&Jo zXFunyHya{i(=J(Q@=BYXSRpx5K*8tMv2SB&?j%MT!RcK-r>YpOB8n2Bz`@5~^U}GS znar+T@smy$xiu|eG)qY4)Z;ENtH~8-#Zp9Mc;bmhIO47Nel?bJyMTDjOX58;#?hh; zF)b~RWp2M^9RC2o+PzHlHRazGg081;CeNK<9RC2o zn~%=A6+dYCTd~bIWpjs;CKiB+TC;hf1O#pxJFUs00*G&*17ApoF6rg z;!im3{(q%dvAOe8ug<@CRM*Vm1?=c6F5;z!*P45l?qp&%i~-yMSeleV%%$DBoQ46{ zu@$CyVtr^RuB9K9JRFMhWl_#rv#qNw2<`4X*wy1bd8r=Yh+OR4JA+v*XK`aG*mDb# zLC?KDPc~7>Aavm3vsHOriE>R?jtNX9WVc|Ala7QD>5od&Ygn2FyS7X?!InNxmU!v@ z&1e0OG4RCn<3Gx$u)LZX01dX{J~{iYz5cbFQ|4`sI&L9mBh&o<0QIW1!;}MP!1b*w zxKc<>&7zSQIC#%k&-EYvs>HZ(K?fu8tgAajRV8FJ%6RXJUF_XXDzT6PNX}{K#k0k5 zbIBb1%ySSAH0Y)=I4hC~ybv-aC%s zvQjoZh!tMWPqWI6k_b5j91v@za+<;ihiYGehEOmj$MFyLy+;F#_03dTp1n$1nK7ou z1b}|DlFSi)VgRWv;gV_EBwRA&v17C#?pXH46W&2$O4<=U$l%-_RZf3^f9&6tTBxE7 zQyRnr>II_&Wo^{rR{H+{bbIyosyDat+-*`qK_A?OGqrv3>+e-&m7STLnb`BWj!)L2 zCARXllb<$%CrmJ7z{eDTcORWVu0X&P`6oLt7ZnW%b3e=0pp}l$I#gz1oa6MSJjZvf zR7BX_;IIU9O_7SY1EKFjAq%*kb4W5sJ;iMsqdSo^@JQ@wZEju(Rg|y*=Z-%gtuEd{ zZhdHAyx>-58FeE5-vZKnFZ= z-#M<32(_5YD{a(Jasc9RI{yH`{k#2Zc)3bCvFOaO`-eHCF1(N89V#|XPVfO8X;&Lh zA%6<4c7@6~H>Viw+x+uNWb95Vt2oIef`BuhO0x_qmj3{2zITG(s(?RvHajZ+08_9Jy`S~_j{JTY z$Kl$o-Ri~x9D&h%vBwxV>4W}y)fbR59D|O$XP)@1O-E$qVIF2q26p%Lu87pu>qB}o zoIV#~+}gC4T70owy0m6fE&#_l&IhOAR0YDtY+6QKw-_BU{!i=eRc3(OqeU~|0m1a9 z*+jCU?;+G2j%#meZ;72Umpi=KdfnRQO~n~gKX{xFf6o=^i+L57hLcdbW@w{D7z7sl ztAozi9p4y5$iVGfb>6FTH`+&V{!5?rTe31es8y5L*9(hOTkLwx*NH9XN$uicX*;Pf zJb-73!xv6hsNR|i?9lSFU*0ir}2~WNoUO zT;qE59kW@=OJm8!R)tEMY*vKl8^Z#`52kB-O}%|K;U$EhMpooF^dhrkVo%PcPtySZ z0G?{$0hBa(7#PQ`O0~2(8%=1BNYL-CHK_cjB?64AIT?hW$JKw&wRBo|8hG-p(D}gR z%6b9*!Ecz^A5N8}VQDE~ zs0%scXr$e?8b+M(q>vknKz0sfPwpS^rX{+hLR->fi>jy}Gaq46LnL}@7E&d;BLpwq zU-6{AgkGy%!dZ{}v_r{X{nH1gn6{;VI=`_xv~j|__FaKoI6Pc3nb zXSE=V4{r53h|-WH{3dt+Nt9+t$MYW5MKS?UMh_&OG5&KyPL>L@%P@ovnCg9i{{SMn zU2j^r)gDDv5ZlPWnB(Jd^<&@pRJmJlb~H5|ZD4;U#YB!y#+aS~^WKmNL@JW@E{ z$#&$E-m&b`OPxjwc+upQk3c!~`~`HgJUVQuM2mBLMgbTxL_hXs{RLwut=WY2AdgQ9 zvHh_5YU6q!A3UE=Z+gVm=96$=++#=`q zW1Nn-{{SYkZ%qu-)aCByT~hiu%SZxa3I;R&f2An2DJBFG0l^!GU-ORN&x5v>@agh- zs}m6Ck_LA0f6wDnPEzj7zVd|+8Q_k!q+41t`TG)hR_0r2Ru)3A=Ot8=f_U}g{41f> z@1V7KzRD6=9dOR11`2R}{d3RjT%1tIxt2K_&Bhx8ApR6x-nvH;LvOZqJe3&wbDyv2 z>0LDHB&^S835|+}EZ)YI+T3eTYLLb)=3+}r9xy;3#hm(Mx#V`F)BF{zM{*smnplA- zOY#87C%<02`+j;}2+&^fTTq^Mich_?xd3A$f&B${+H{e}Bye03sgsn)2hjeX=QY(B z^=G2J^~_S!bYhnKFD^3it{KqhBlGK5BejOXTg`TD%3pXG$m&|uM#^FP!Xj=)?D8@{Kg%SO++keH5l%9Vq|V;ob1~kbvD9Pq z1M~j?Jt%7)6tmQ0X8W#BTIM_r5PA5lzh#DNXyg(8AO-`x$Q@ zSmgp&8-nxo13BaT`qx*aVYK8{O^&=3Kj-}WS7G3PgLnFjl9_K|g%EKr2`%_zig$~A z4XSubMf*~T?M`t#K;w_^dRHDQGvv1E892z~B)cjA*(ShooMdL4(hsx*CnFn)KU$TF zI46ZCoK+`=Iqq3i&hQ2a;}ypnKOtO?#FuYxrb#8TDPS-F&13j~Qc*5tAxj@o$4^c< z>-g4gu=g)?(Oi}rFbD_V^!on*F11!X2PHt=l5#qa^N-TK8d!9x^1h+a^>}7ih%$1d zeswHB~r0h^@LU}>8{{W>;4YAxCfJI(NTpTgT z^{0dg+~kUvQI6$ggt5mw4&CWi29b*7gI7_8eaB-?jTE-ykV*CT;-i=mLu87qNac9P zr%&_v`tV`6gk%w(dseFi3N{4(Jg`Ea>rgp4V~mVek*Ls=jF+}%Qcq7>idf2zm#Ov6KQGR;34CO)9+;-0e(aK< zjP$J|QS~WEq>_OE%pyi%$p^pr#eJvYANduue``2@^Z{QQv_YZB0H{2Q`!B+rcxOr< z^ywG=fGgF@=gir(4PiwBiuDZwzcr` z4J^}`wkR3gaCoR1R#sdL=eX@o+(=!(5!|%xT&pV`E~%O2aI;5H*kWnyK!`u%OJOx_lht*D-H;}-``}349W`4w!8&ppVPO+-~EVK#eaA=~3zS zYlrhBVS>Qt2DYO}?4$E;*ca$dI`QdH!3WMj!o{7~_o%g{W`TDd${4W+wM~mM{7Y~y z;@qDsc;JzY*9$cHkVXjKoMal_)%6E!HeNO<{+wB)~AZeN@r$39GY#8 z*Fb;_gMw>WE)v=zjJy%nkj&EvFtA0*6%Y)d1?no|&Ww%_g=5(Fs^L$WydEit)YIo1 zK75A9Cp~K~#BJrO$Nx z&wy>|nw<&WIIP+#;co*=Dn_GmbAeuqYiPDs7Vy7T;MPBc^yOI1-0R5YK^3`hUPe}Y z02pGbC{2#Kh@jaHdBs| zzFDp=9!Z!4E0Cj#vtxkBNf-u-# zwJw_sbMNy=z!fYpBTS5-1VgtJt_HeA6q{s&1Sr8Zk*(bqac=-5j-+<0Eits1#TEh) z$@HihBWTXWD&+FSPz6PRxZ8urT-5QnNZnYdAYh7`Hdatqk5Swjj$3f#HgJ8Y0=$_d zj{gAX{7qK_a}s)I6=6tZW1O(y3X5kX9y8C-vKRE|Gr~zjII0l+?x7wX92>{c82c-Z; zo|NHJG+|dc?^W~jXSD!G2*w+y@~E8CzLe4d859b{JBU1*Q7F$fA%qduppreb$8u2N zkGZQ5fUmWWUrMVQV+SUzDP@#6`M;$@2(ipEK2t~tJvz`1)%mawps3J{o@t@I$qhv_ z?HwvWXdoU4%`p`X+NV%ON+(88RM9L^wgFzW#)T9RgA@SvY~vi$l#)5BgL<5G6#oD) ztpHf&lOvL9At5yJ=|Bo3PZb1REYJh9%0LZu`8rRUTys5w?gJ&bJ^8Wzq*FAG; zVR3_7dU7w4B;YdFMjErHE11-$&W`#kxMN(d7EQbOAQC|J&NF~NO0r~7G6=2+>QXC= z9-L%0JO2QWH22k-Tn5fMo`ci;KS5s7%wcVJI35mH(CP2>5gBDe&!FJ`qw)N`YnjwF z7n3~h_4M!m0N1D{m1bOLjOQNpP^KFIo}KH55sq@wCrvCej-{#J;U~Bo<8zD;dUmy^+FQ)*uZ3aU^#1@ksg!xODP0`gR?$`~Jhg`nqG^|W?J5WfHi7EiDJr-X#f+(MJC{S(`i+5XaNF^*{3l*1wU!Xz^J4l zK{@19wo)UR!5B4@EUYBQIIB{-F(r95RDfdO<%c{}T&oNRbe}&y^x5UwcIKgyZ!QK3 zK_u{fD!WOQT%4ZfnqgtH%1B?B?H#HnQ!L?*c^#@5a##_ZdR2&95^f{4Qe?D2EW1>L z)Ecv>AykH8os6|kP+5y(oYePMo3zN`VfS;+D$^mNH~rPRyD%)r7!?Z1=g6a#9;T{! z<=sX&0~j?ZF2IsNQQm;qy==lM*eh~4%~@7wkZ(TxR$Z_jW=T1%C|n$o)K(Q@Z%#(k zFS^;H3;_fB{{Z^wmU2V`37aKF`~7GA`u=2K3E9hZsM2u`vn9&7SsFsrYuLcKiCD+V61>(r+>3?EjC0nl+X*CHgC3a`T->Cn^BmTp zG?L!CzISJXQA8R?#yLG}V^_2Cln}i3K0P=NM!RN;kq)B!;aw9eM-<6{?%wpKu#n>))w?W-iO+w zXI`9O)2$|w(nBm*az@ui=_2|OT(g^=jLpxR;weYBcOx}8BOp~kP}R{GCXCx71d)O`q;>=4 z#W*k|;O7+-k^sl11#4uH7aZiOmK32w08dI{5hi&YP$dbKt)pvdNa+h8$4Vf%Ft`BY zk;v_jN^GuJ3;=u7ai(*cO*Hfb&ZEp-YCX$=sR7fp4=k=_y6w_0J&sk9yI#)~+VE*@&Zd7?xPqYt8=g{JLW}$>y}t@40;FAMCn&`Gm)L zs4rCqbTFU&oP+ph)}XPI?fT8JzjE=spS)*1s;)-U)6~-yHy#Pc9A~`^X`wDxG(1zP z4Od-hVi>oDe6$(+-v0p4^B#t?0o=uR5`UFH8E!cG)DMMbSqZ^EOlN`4diCk;_=zMJ zxjHJ40Khru208x#Kh~jiAmlQrC#c}(8%MGHeYmD9+dqh$bA;5$s_h$$k z=NRkLBd>pcz5RH_DIr*}lR6O3{6J$l<0Gd*-#vTd)|nyy085Ti6l9LoUQr}(wLmP{ zBqn51zS{&tqlD0c%q3^AUyXz zw0liAB{kgPY`ixW$v{}Mu^_vDI_or_4aWkXvZtMJqa+~C@!XEt8LcfZO)}~>c9Dz; zokJgN^IolV`euP_mR1nQ9ETY=%Y9Gz?ON04o7ZDrcO|}um0d=W#*)gQtWBMpdCohE z$iLEF{&6(1tN`GZ9fxY~wTR(q1;pr~UzP(OKey-l=CZW_hX|;`Fu4u4hUc|uS~8~| zW%D_d`W!XQgInD)#seT3>C|ymz+s%@ccyV$o1vOEk=Q6tm!~Fxf1 zop%=Y5Wu5o3glEfiOnQ;-Wi_PRI}RqVpIgWla`6SSJV?%?%(W0+uEkZIQhpdAoa~~ z7PCEsv0Piri3faeMRyubp=+qx4cH1B=26Lr`j1sV=bF+IzJrBcZ5dJ2vE*Ww31qjF zNg2Th^B#t+T*3BdRdcu=Rfi$H!K$)sR4&Y^8ue!ADz+~D3GQH9gf|wdKk1}H_TD^~GRH0+4f(Pp2fB z&Qg5=%@N<-+taP0DQ$-uw^@&l*mP}{>L+)X<-+3b^txRdGkRCQu;(0}#oL9C#( zP5QXZfk9g(I3#DQp2OI4^sKE)@=MnZD=rXW5eC$ZdI9NKTez+ldZHu^Z>Gdxw`2Rs z5Bk};{v+xB$m8ovVR0iVdx^rLj+w0a)-nefBmhlru89G+Ng17+?{avj?A-Px>Pcki z%1bfE0RYsJ?3EpdAaFa9Yb`v;E>E0J81b}miqwwS7G7Im=iff{KFV%ZNY9YYD$*0V z@g6coR=2xLxgIFcu|ROg*V43gdq4DcZdBtRE_3rK+^WRmx1n!hOB`_6a!eJPhjx=tWV1h=-@7_cRddS{S1^yytJMq?^8tU|JdcgF-C zKT5>lK+%kbJs-OLKl=5rq$I;m!FDjQ+VVaQ1~K?`>&M|Ngl^zhAeqFwx_5PG}9Al}#c!E#gkg}4pW=!NNF1cy;JBCYDE(rhy=N#g-JSC>c=0}2D#N9wWE4T30i2~j= z&FNLxa){kY^)(WkPegEYO2#+CuZJ?~I+eA?w1I8Wyw-^K#ybB1pIY|&eLh`Cna0$& zgXE48z)&~@isrN%uk^>9$W{;acpjD9S-M7i?LJJzPf&B8Z{<@qYfV^wlYI6QY(^*u z#t$D#?d)zW^_w{@F40_-D#~zj25p~ZY*@Iml{CGMK8`fSc}dWer+eZR)M(oJI0*+Bzz!>XwMzny)TFWCG; zqxn~ni7oC1*HhG@Yy$egU zj?U0R4jD#EXY;7U)l^~09n7ZrRgreeF$_Bpbn8}?$p<;8;vzV(2qe_V%hZ#DUOxJ> zo2Vmn$Tc@PsNyH@C>(VLtf4O52o;=*OF;?}K?ISCnk8~^PR0o#!w+g$rNQ~SdJ2Zv z(Ij#0`HQMJ1dN|=r@va6c8&`HliSy=RrB(kcR!UrC3kFf$jLP?RjH-!k}PZ|r}M=# zVdFVoJ!n#W2=C56Dpq6PCZw032y#mnm{zFEAEibk-afkk@;pHdDT`e$F6%7uBx8$6D+5-KE{#z-nT?@4bu zB-lAQ?0fS}kn(T~V+3RLs3wV!?^GcA52a0txuC_I9A#Fafw4Fl^e4SSraodR zSb5l7bJng|h*aly&FN7aN0NWtjO25Qx&HtN=A#@jTpMW?CpVN!c>O%h?cl(=rkHGfT)7bqMT&swAsN1t=&C$=bR@&kAO06f+8xwzEs<(UVS0T=*(pRHx-Hg_6{j67_X zzddxC0>mpMb2}G_oSJ@dQ@40@CI1bHkHW{7bEe3lwe$=tw<9aubm} zEi{=fPD6GTtzm1YuALv+S){mT&Oz--Jwc-yX{DM{6;90HW}tn_=s_6ICavr38eFKg zP?4?x$A7IRn6XO(q2&6S(GbY=D;WxJ)N(z1_{hD{GD&AGBU=qf9gO^+M(?ODIQLAiPKszkC$cPzP6z^Njb$stm3 zD!DDUai*2phC*-+F%qWOu0HlhdbuQPA{9LD>FrpNIeC;C)wOb=mAM|Yn9-Rg=;qj0 z0C%lj4#?hJE>Ft5pL%uevfSD{v5+KQI@d$s$PuGN1LtqNeJVLh<~kiV#56)QKPsBL zePEH>2M6w+nXPRt%{{T6wOoonW*D{bgirUe1_q%lj z;AgF6s_p@>K_`LUyZ-ejOKb>B@i_N%Vf3K}PsM?@$is_8GmCi}Sk=UZP=}ZcQ;GcSnc2x0GIKb)FqLiv86da#g0E*djA>2kO*E0EWvgB>g zT8J*vNvNmX>43avzj^?5m=_Y@kVm~Fq@uDOanhqgBa>q6I z0roXncJfbN)jV?V`A#=b1V{jO3UN<@GIGTH)K8Bz5mJtMQ9u#C8;AmK#-H1SNpeCM1~CVc(c zmfU6|p7g+De+rKD{IZ;LNzul73UOuY-heB+HhJk#O%pRIjmYm(zUDj(iUN?iBL;vX zSms`@R-oOFnB@A^b(sOfFsH|L8uu9XGy!Ho%`hIo=AdhU@&Jb-tppecIG_k+4b%#W zNj*hhmMlgHCpfC8#oGf0fE^llJ!#-(hdT%aVw%!m^b`Rir>VsbM{0uY*g?H|)jLb^ zESpah0i=6UcA>Z#$TeD9kf*4i3b*jQ4ZbpcYP?#bgNN-}R~L{$YE$cNLmX%ZhYtQ<2tyI&iy}*wC?nbKbITwFgmxGAmXIOpB5+PT)w~ zQpM%&{r5~z1_w0O9-m4s1d=>J7LUDAoryV7%}Q70$7&S`Y;+xHTawLB3tcnfJG^X+ z=bEkJnUn2JEC+HBGCeC=8x)G!B@-t3F_ay9e~oiqCxz|qfGPxMo?TUX`7wpE0+bV4A7LAc>mJ0u@Z; z`*x@$J5@(U&IzkFk*T<1c>~s~-29R{@r>s+fvF78s!9{6>T0CPhrsDqC4Vq0ahzcO z62|4dv@`=1;YD7PFK_59CeY@1Qsz_jfI6Zy3)GefVkyvDNSrs#*Bw94_|l0M33BB8-*%pok<9Ek1dux%)RyMm z(iWJ4#GH@w_&U)sT1P;WSzCt@U*}ekS z(PNKp^T|H7&uNmqzTl*%9V-2@OLr%ja#tASR&rfUV=Ez(DZAj2&sxTw0rstkIR~wE zNvE>F!B5Ye4*vk>sI2p0<%>5WWE5<%Dz|;7)$P@dqXuNyxdiHZ( zNAYq+PY_#j0~=9~Z=I^@?PE4^vd*x?NyZ}_S1oZXO)Ie{lb@wt)Gh?XM+q#WgMrqo ze`eiCx%m@5wc}!EDzB0zGP}_b9m5$vE;|1JpT?%$k;x<r>m^vNkYr?O8%XK+iPsF~%uEQiiCNK2~a**KfLTKhOF9 z0QGX!xGVRXs0)G=f$P?g$`1f@TD(M=ZnJ2%^6z7eP@#{dR$SocrB4ay17@(3d$T0d z9zh*xKyO1+00;w$HkMqI&1240gtD4TIgE;-<8iiFnBYjKs5D<#LWs9ktj}oV4oA%! z5%(ME*z`F30Ko8F!5u~_due{nBQmIx7x`s`leNeAj>ok(E2}Zu#(IUv%6n97IXzGL z{{Zz>?MBHW3v+75OF21KJy7>n^dt4E(XxQc?M|IH)QLL~EPKf3igPbPo+@BL$xuiC z0IXDbIp7X@9DDWtRj;xqm|*#RsTrA%9MJgB9Vx;h7d`Wumjsa0Y++DOCz?7;^kay_btlu> znC?&UW{D4_LcpGf0h$d8d#+ zI)#&S95yPs?V$krmBHla)4eH> zfEyoEPuesVE&0U{9qKVN7G)UDYP?PI?_t;O)X^?O7C%gSRVhkcLd3Dm#WH&O(;s#V zF~%{Hdk^!Pl~gK^=}65V%1I>l#}%wo*^AJEICCj4^94P4}b*L(j+>a_1Jb-b4KhLFQ_=4+Dd)O?al*AYbC6pdr zxcO`7FcdweodXdiN;WVxJv9!YEvb)nw%@{;bovj5?R56+K@{LK$dsH^X@dSq|;C1%LT-8em6)mA4qbXgaj>DYulk55)!_xl%X_(3I<-10k zTumACM^To+{VT*YU0O?J4|GdFtW{M(Af7n-*Nr-EH%RT0zQtV+f%A-1MpM@1~69IFHu2TYTK4ayD<4U8P2Gx|Y`RdrPH~ z)wa5I^dr;L6^o}{3y6Rx9CgorwR|%!0c^IYHW6@fx>IqO?iT8v`Y+3JzJmWSq3 z86IR!>V)<>_K+hKe;OXv?;6s6ANr6iYlhcq2|_n(L!o5!2c* zdVNpiDYv?VJWFkD5Q5E55vl5byvMo!03x&Iz{$xT+|rd!U4&Pa8Kq)av#}(er1SoN z&T5+;0qKrNt0o4Jl1@8RW<11MumI?4ZqiJpVx;-W*mHxL)6;dgiB>t&kGuF)ZzWI5 zjMAMvxX2-gTn^QxIk=5YM{{%S5lJ`h!tU$0f=8w*c`gztBV<>@54=a|T)YTvZUnJ8 z+&h|inrXpCowkFVcCLukP3j59n*9wM`}dy#*+A*nrxit5#~%n=4fAdsnt(yOjpU#2 zW~6yAo?h&M$DpjL)KYdqQc38F_tVB=W{V^ap!Tfa4OvC~viD6l*>t8 zx7t{?vyw<+a333aU;e-O?Or{1HSV7rO?M2ckBzDb$@e~k-ntJCc=PO#`4>;-xsg;9 z0Bn!nCkGr?RAje3j6N+?_hj`w2H#6~qLF;ru;T}Ogr1$fJ$}E1Z0SoCt*b{W?`Qcy zCnSD7eLZWN(zV+g`>gsw_~jEtIMaN$fO*OLC-blF-Z=q zW9BXq)N&6PuQkycX13bO4hhdZ5B|4*@UF8@Wb#UkqvP|g3082Exyc#0n)X_p`e`wQ zNucgK{uQ&N__7@?O~shP=jMp^t}Zfu(gtuF?-NSUiC2(DPBKMIaZXxT6-zsw?P)E( zr)HB{GBj=h#(HNT{eEjYTLT-3A|Par0Q!H8d6$K?yR8!VFf7*FfMqA|4`1`^UdLy1 z2Bm7Z7Ni(l4o7Y}f1m#VUrK4~(CboDS4Hm%UznwPRyhyTILBU`@maqX{5cS$ph*Q=^66BxdIYsc%9>u0b#HW%+%J~u zEPVw-lYJZSaL53Wk{B{dkOpZO9n#X>-616~5GhH==oCRZ2ht_dEeuKNWz67rn; zJ?DIb?XLfI{jy*DCVAjZohLhJv-z!={oGAla`=LTCvxjS15+QbRxLX4Z(ECmdI5Ig zY9?<*v<_pVH(26h5+fy5VaHi6@xPyD0l#bmR~bEWl(k=Kp%d4?oKE`wgg$1qDxEgX zzk)1D1P6qAOot;urB4<|3?Pqd2406z-sjxNjjDd*J z&r&!95an^)VmQAhnr2vLPG%Re=lVb>;vp<~E`=t~uT>VmwI1C2YHCx1I~8c@P7{MX zw{oYBdj|1<$`(d8&tPl`6N#a1Z(bO2BSuTBgjY_=d+*i5B#;=i@)VCNYHu}fh(`^@LjD8I4L5xAS~2N#+SYF7isM6FY5V~>ZhIuEkqd-pD8s+4XK(NG zC=}3&Qb}6{MX3CQk*eGqye(|t8Q~OkP-c#=V)Xg@DrhESudaS;Ti6 zRjP&ildYR+dHZine|ED2HiMUBh@l%TEjY$%ThHT|QQ3zUM0tFU8s#1j?2PXmp2~_j$*w&vKY_I7`dP~e(4a)uwr*^%%5MOiF zz!DqcZpmZ~=yKLkkT!`>QA8Oi%q9F_?V%*$DszXRCaD>-L$s2&mCF7*f~nfZTQ`v? zLw04DomB9>@M&%DF-&ViO3_sG1(+e{*-yN0vGdZLd!~-rPQfJU;u9U&0a%;!VxixN ztHD~(o~d*?-9TF?|1#1KKxth61NB)&i;EO(81o(S>Be|CqPWwGmx= zXcS-F&wU0$A+~u#mXT)CY!lyc}`S0}Xh*&}wbd5dUG9;+wGour#|#6H6w4R?|z|GN>FWsZKWnhb)1$ zDt=e`S)l04A42K}<8nPI=J?v8Emmcn4uP0WkCO8Y-9zoUZK_9u$7k_?7CdfMDwNt{ zX^Vep@G~WY8n?6^@@dG*+NVpq587_Fql2^(IxPKP1_jSc`+PDM9hum2CT1>Ph%778 zZ-h^9a!VvH#~#@a{}Moy#?F!ABCr*dnh$!V{<7$g3ng%J6{u*P*ycPTpe*zF9QA1V zs@&mQVCLA!=y_FUB84S`p{g&JBT9|l`JKdmBmhQcNXd=-%i9%0-`?R6q#y) ziDctnTz;T3yjlM094)Gia=yf3X(lu*zrKm5)XB|Lsgclp(m*i1vjnWXUBvB@^+4Et zAOsk_Wq;ICSndCvfa9L2RvQnL8^@&Hn?#;H8C2GEOX-^T^voT6P?#EyDr~fyv3JvN zO4^~YuRFf?mKCHQT*KtUl8D{V(E(i09Rnqx$cgg(kEUtLhx&OB-4q%9Iq~4i5Tc3bxLhqk{B3Z$sa2-|9~UvKH9Zj=)f}FVkmi8ve;(TCnQe z>MhI+nI$sLY*Gl|c(wwH?FH5oTJ_H8fhX(FXTqA#*ht{4Fwpf<2Z@Jpu3A9?w5)){ zn2^fKFG(-Z_;~dd`(EA$2811T-NTfw_Sf-WdP;P52KCPe_ymrN5H=5KZ7xdj7YzA3 zyy;wR7ZQfVFcj?FP&(xxQ1w`*e*x*?BV8`MqypH@l=>i)p<@6f3bLjzOjfcVJ~+^# zHFi1?BErM`nFL$0?EtlRt=fZF^lQ9Kj0_uKCv0~ZQ*Zdz3OjOpHBFsYsUwiA7H zT~h+@F76IrE-XHF;&+=uI*raCpRa}!J0H8Dgg_azIQAOZ)9I$bZ!gmUL5r~BCQlWI zrq3$MwOkz)Man**!F2~6FBW!&)RBuPYY+wy@0O$+q`jv3Ol<06KI)~(@rT+DnX}-g zg3NwUJ>-DvPA~w{tw$ylUkLlD4a$B?t1mwzRXljr+N<_CA)METDd7o&Ia3`Gs^f+sSiIvs1vtKIB8pjZWckC;JkKTtX`IXleg+6@;`gUk)^(3td~06>?!pJIr+{Q| z{Wq&#XNSrgh(^qqBp@g6|3HRg-3NOAN>qBOXf{9RNRP~Z#yBZx<*)eiu;*&C z5aqF#tSY#z{Q%HG5#YN4nhoDGScuDNb~S5LHO^j+w$2R^tHdxljqJOM zB;{!kqy*^y3}8;5@ScY0E2`_Cv0l-i58{yGtcJ&SaXNJ>^7@}>!52Ab^D9c<^OQdp zh#usa-c&^e5kF*R9j<@(&(MiU$+bqEM~NgmSv|nroLb7YQ1j&oYOry))nwj}5<}CP5P(F)Dg`+VH{aWq zr69`FJU>J>h`Z4|Xs_#`*)t8eiRAnp%gaAs6If$9XHFIkznM8(u6ttz&^6ozb~S=+ z))MB!+9a#+UG$1EPbKrP-1(5}ByjX}DvsrOt5;uJIR;)u><11wUQIUF)c6Wg;bz_J z7P+jj19ckstDgASER%v0U%h7fyDVKu3&;vujrKd8%$ygA}jHFMu&+xm2mtH46 z%DV{M+gHNL-GieKiVMAj|3fzwao# zCRC4Lx52)g&ahp|YiWqxO^M`5K#h!kJIZ85JNc)7MQJwDuZ%LJ{~rzRA&E;X0FlxvQBT8ZuQRT~qL zU4|c|8hUW2NH`Z|jxQHwK!6npcn$1a=gD2J03XA~$WG$_V!GyJ3{rkM9TuJ|R%JhL z27Qki!*EOJnf+rWVs?@|buB-6ih0DA0=0t<%5BMD|J3+ccv|o;k)>o$NXcNHrIicQ zCTOTGe9W9nQOL%D9yQ5nP4M|HmI6#Awc*xxWLO`ge>LKbn{%lHIWY-r9*^zOmFkuTv4#u#cOM+&E!j`hW<#9a&&`J1#h~Od+wQb50=AQ4muxdH7NkC$8^ox48puXd z5*!Xosk4scb?9C+t7aV|9VYmHJVSMxNE_ z1?(zW&aUqA%=B{5v9L*=Twnm0t-N@^T%1&dR3E%Io!Ecxlym6E;Rj{2sm{;9Udb&T zfdo^uoOgB_FCUS%}HKs zYQgdl&pOt?ri-*=K;?QUyBGiD7Amjz>x~|LcDml}5KAT55TqtJFQ%-v#?7ufsCUWA z-0VA%%QHMZBs~|@s>07^Tq190!$tBR;jY;5nW6SSZ=`4_=I*>?jv)SxPjS^&@=_vD zv4FL7+IT_piJ||9hOY4-V+lZT{qpX!YCWR-(2lU8QuxF?bnmWevD?;8eI;3JS*TLR zZx>wy%s=%+VMc2}vLhyF_6Lrrz$h^>iFb1H_>({%S{ItF_Kh#ZXA_|eeP|y`#*=TK zJ`TeV^3t1}Y16L+&#^ zOAjg07Q%WUWf2v#hT&<$b#akhc8MuTnf5a0p^?16S8bMnlap-#70 zwKs#o_8~I8pSgBlydnWSiSHOn)Cl@1avXhzQhY!dA#|E9|7l*4bZPYn=#3a%EAXGC zLQU=D1ySFwODIRH<2$be%eK7$LwDOh7v`4bP5~e`-Jl2}CU#lHLBm*y;#1vC30U^@ z|M{8mt&P#{5H27i5non*jr~{ueK`hMiQKZYi@d8mqbp)Y29&2;ZqpPeDLBWFaQV@9 z2gqRKQkU3chIeUWAFobx z=%gg8-XVvMM}`b#Cf_y5R*qKlQ7$3FP1?uZ4UXGPUG6pnFwCRoSicz7q@|^C*IXq) zu@SOiXxorTl+p~NZ~U_O-cWXb9VK?JKb>CdQ_~JTQ7!)!@cK<*{q>H2noYWm&fnTi z>7vTL=4QOv>YBpE=jmn-6QyJ_v434gXyvz)#*>i@8^WJLoanx1XY03AQ2x-OX5SO6 z&*1e=k8?uS5C-JB#Xhk_LpSFw-iW@2;zbaH&?mywAZmCBQJm8OzySU@mQ7m0H zStDSwIB_Z~aklEi%GYHfU(alN1s+T!@Vp-1saHLTVbGzZ%-bAVKEnCD9Jyum}yq~~#MyvJYZ?zaDQUC~f)b%?q0 z7-NTy+{~>-e3idZJT;r>UsUtz&LagpE1cmp!U@8TaiLQbHrIQ`KTO-j5MtbjOJ=|r zU4hq}s8=fTp?G#;P4XyoxTOT}u2oyzfNB$F=@49LhgSB1M)!(nuKP~g|3H%ugW60Ri(e~Ol#5SI z5jQsd{uuSnW5J|zwnLp~w2%Hc(|geEJf%ydaYe;+@mkP~rx%?5_)cgtTip5Tw2mVq zwo7L<*3UxI#e|eDJeIZb*@+&yC4)z48Rg>fRsWCK2!4~UMdJ8c?ku@osQteC_qW*u zdOa6q<}LxvQ%ggFq@H+2OLv>iHE&gH+mHiPe=n_(^i7$FYTJmi4eQZY^@5duG`;s^iQ^HvvSUn} zrJ34of$x=^_?;wt2Mlq-1|Kt-f)F|K3%pv;61O`|P=+jH#bTCpv2L;$UXh7IO9zv2{zTJg@&Hk#2Hr9&o6$yb{qtVI4Hh%WJUt z2-;oQs@wE3F)JK8#9Fzk@>G}*VcBFY&gf`2ps(`1dZK6tQv#C5`P4l!?%d|5ipU!eAL`M+aKD2{&YOBCYDa+q5KfP)cmwOMJ?%X`+4(LvH=B*Xpj}4DuU$V3b(K*{Uj9Drkc>Ar3WcPI z-Aunq<~f|@NQT&)FsehiZSQymcW zPFBSw3aFqZm*DaVam{ujPuCd$nIwGEI7sNt(RSxa&XAJg$QatTiT8?&^Z=KDm<38@ z&&v(6KjPZBOhuo8-V6rmtEp8bs)4e#ppp!xWG%cZPzYLqyHF|&xtpPIn`!+{PnMeb zQHm;45K`ZBDF*g5fz>cB1XLO`yezJbTL(r3%^s+S<4eqlmb$_7eLNv0(gX_SQmzhP zUhbbu>DcQL@-pCF{Da?xa-wUN$9Y-TAOk{1(Z zVGJqx5I`v}U_v2^hyLKg+#hv)Uiz@`GdX@wIm;V`rrRl%sjO3cv15atTixcZGc<_# zi!!$0ShrVHc|P|(-JEoiZbi|oJ}QNQA2TNVI4QQ9twdfcCxE!|PGmgW#YUq@r7s>d6egUpU*3Ul_len1Md6|`q%Cp4+hvlz9(@e=9 zhCk#Iw&AY2Tbkh{uZ9U6|EBahdAnvh?itA1vLi_;{L$APN5UB_`J{zX$a}co{chiw zhp1BJ{^{iOIv1@|xe(|8A3MCN;YJ)$gd_`JEP1p%`9NDK=)BA}EnZgM#(XER;`3{c z@NThUM!Sj<@Kn|#=4#Y;2oPF2z`k+4KE>Ccje&l~t7FWCJuUEQA=-|SF*l5R@G%@i z;f`lVThfh7wx=`3Ga^qIY1#*A!K&z!4O3Wd!t;4`SpAcwh3ooPyA0 zE!PKwbp3Mn2Xmh((cT{I=D@zBbgV`Ze&hW|7k^o)u0f#MTs z{msIpb$t(3{dkafDr00J#%_Bp7s$&lB!S;WLDRV-(b+M05Ei%I;b?u+sj(y~rAJuQAxuww=J z@GA*?cl`x=O|yzJ_^J$H>=zJ6CF#!*y|BPC_A|k}nU%6}=r5Na{PA`}(8`A2>dtoZ z1Z;U+;u~Fv@NiR(``X}I$_L0}E z5~5((RSo;Vnq9lDs;3WzohJ&AgNaQ(rX|=^%?9;0P<_vu;mKvXnuzD*M6j;f(xMf41d4kJm zYEaN;FY%4OJ+=bO-P4U{(N=sY!GCT>@;|oPl1B8z!n_m~S!yiVmE{?d~6Cqm6ORH^kp6k!96~p``ky}tWAdnvvTx%~xGF4!? zMu11J}4(TJYY!KK9CobRpO5RT05 z@ES_y=E1l2WiZoC2=r~Ugv-F$GY!7PI$7HA`6e4zZEjQKPxuN33lvv{{GF#ab@Kc% za$fzYOmJ2Gh3zs3;J^3GXY<=VsxscIwK7E{p51G>?D>v8>`pcc(3E*v0R=~5#L&l& zyHl4R9JDFxpt`WaJ*MV$9y!7e{{E(RLUa2^BHK=QwUuE4f#n}6O{{y9O zy2MYmk0#vqCB;BQz#w_GO%(s0QtwF0MKp3bUX97i>3O27#SooV8NkQML_MoNOW&fP z))u=lD6}lB!wp%>nmPv2L(ng+61Lx5mI_|*82PyWa9!PCG*X=$b7H$0ZYK@>`VA>_ zGpnxGa7&}STyLiKNRb`JcmFQ_St3UoOi?=Zc4J2qS7IZ;-3`AeB% zt+VJ6%@iLUXI1M6e5=H4*4?2l_ieAU`RjNCz_a`xNUO#TuCm$_qmv|cAWDVYj$?SP zz_D2bX7A8~?`Fe38rAAePWOQlP;J2YYKHHFD0!%xTeh;XgK~6ovmi{X zKPN)l)?(m`py}x%x?a-Emt*H!UV4JBkk9w{eI>j}s2%La@Y~o*XMfzYR_(T)ZSR~s zA_}paB-h+z4z9>yX!jPS1Fo#}p8#uX$HH9O3%h!@YdTpdxJgdZ25(Zm)|Q?7WuN1Z zAqC~}ucv&#D8qibz(kmFknnviyex$#`e=oN;CNY|Cu1l0>A2G7a`qaV9m&ULjtBw(`Qw;l%7b&X8BIUB1!^rGQ2p^gP>Qtxf~Is)>@h1e4r-(6t@$Et zEi*?{8O_ zg)8Un)uQ5bnFTnN1m2U%VHmI!Ul{7G%^qj1bL{0_?4dq8ogaP_Nrt8`eH#C{S(-Bo z0)2&7BXdjT~63bvjwe8hJ|v|hn%2d=#Hg_Du=wHvMJkcLi1(= z3~m+cM_|hCFJ@{qLuJYifQ(xbdyMP6nTqB|mF?hp%>)ZNiU0}qf1VR&dd<%X*GWN_ zReAKYN53~GK6+`lX!m)se!UzuIHOuTtfT+UmDeY{*G%Q#+{|C?Q$UErl5hIUfD%>q zI?GL({X}7@T>(J`iL8SU&3)ZSLVu?c!I;a(C(wg_(VTB+i6%liKC! z+<^Ib9ag4WJh8+=Qsa0u&d_s6nlf)xYSdKQt91)3gFQd5;(ygF;25y=*T8o=Q8RB% z?l|l9g+M%WoYLiX{?RRAcWdtHKz+zTz>CK3B^vJI8VY(Q)DuW3kQOb*3_>FP4i4wL z;4P)5p}lgj=(SM`9lSHrb#s!-(8bGRbBpma(jO80%m1q!a_i+^d6Y6qEst-ltQ|~t z{L76-L$o3)Mf^4K;E15tik4-U!tsHHfTt&)Z!XS(>7_`WYx6f-ZaYI}0ru;cKZnM{ z?<`vn=F#%H>=Sd3FtP|Z6bAHQcO|kE9Gj1N?szmnF=MCeKFaPv_f};k(!xAs_x6k8cM2&Smh0T<+6^p2w#*PBNote2pwGEzb+m zQ0|P85%&iY`K~!)W$j6Q?j74UBPmSd>$TBM@;H5jRNkX>_xWq0G&JRplM78{f#)rnP3NCo&vAi$}MSE#w&9BcZJ+!Kbk&r!NU)|Y{!j8++vIu!&^fe__g8H}*}#>6sw zB9Qs?qB=*x$ieOUdEAo`PK*2$#Aexak+H3#D$b{9d8AX>_1%72J>PXE7)&$aqq6B6AR9h-%IX`ZM{Vp6ndSWd=8HX&Nv?a`K5mW=~#S&IUr0xRJ1 zftOd*dAfp?G~%!S1Ci;xK%_OYBt|A6p$r)*fi2rAG+D3+E~SyT2aMHVjhPm-gOzzB zHDB1fz3XW4$-?O?Wvb%>i-hHuX|h9YRb;La%yl0WIiMpjeGfmn$RZKJT!Ue%shgJp zKaKB7g6EZ+Ui&(kbh6YKh(yRbwL17qo(vwVwb+Wh{56J=GZ5a|PCq4{QCbJ<~6?m>UNsD`_-}fH^ReA$#U)XD_P!ld=0`D)J^$BWz{l>L@Vem z_q~bTS_x}bwaQ3@)}LGL+vaT~YUZ$?5|XStcq>I5f+&8EyD8+Us1|6q)3)wwurO?s ztE=?3a||Pe3E~O)@al_$_i1>NOnh4XZt&(^n7`xRPX0GkXNTly#gS7V6JCe76@VggH z&a6GGiY%1&q z3jkAGN7*)uTu==9bLw+qWrC_zX~R>#-o_JIqt;AoZ1xS3y!aE<;)dAhf@hnx@gYru zj(>uQE-R7Ms%rX=k@Otj%!oV~5-d*B$W_4czSc@&WfRZDWVLZ<00W+o+@Jf8El`mk z=l_Acj7IDoGG!6~5gu@5dZkL8?nC}RK&F0G?4evy`u_m3BRU+btejV()S2>POOn1; zWpA!a)~`j@G_Pq0hJ^aZXCovS>%wYT;TW`TwysIQk)mrIEqBMFR%fmg`laJwlLQPi#Iqlzx)!ZO!g#kLIG4!|w;vGD?NbcT7M-FX z-anu2x>&7^4l8jT&u?W`{*AOu*^f z%oP4y%&t^lS=suN!F+p!`zZWW7joM&){#!H+3HFncICHKlYZ{I)u$nXZBy{WEcx^v z8-L@NvTG(=mfar{{Vx9>h@?p`AzW<-%!P9mUT%39wk|U1gQ(;X1V?BJ8ZrMgD$F=% zUJlLgt@m|qq8Ky0Y!Owf&rsR&4YQicIM8fQ%yJ~@VRJdJ63;8RymfxYSL{Z(?hbNV z{q%W7+0Jh~fL1Mmmfhm#c7&kbgb`E1<0a-z`ECYNUCd?qy(e_aRp+xmKQEr@g_Nt1 z?Ubx4gssFh;CU6@^PypCFdLnV$1G%xndMDcqfe5oynLb>8lJ*eP-JtU5b~hU5n0@( zbgcKAIIMNI(8T8FBmUvblAIexkrH7WiNs`(Wx7tH414)@7t2NrMTKA6FoiicM~f&1&F0Q%@%l8IshzSx*;bU;gUJH zF2gUqvA5q{DZG-JrCc(fBgr`6@NoeFFs0;8JgCvjX1Q#)RK9qug-+2hc>!j9*YxJO z0eiP&)eSQeZv2-cW4B;@(O9Lg`Rg9q0denT_amIgf@_(ACnoHVN z(bAD6^ld~=+dU5-+0*Rd`Ns*@W_uO}i(!d;^$|yNty9ge_h?*>;_-fmrq6k>R}!-Sa7!}r+@xlhrkpy?L-+{@!vuT=i_ z6mEX041oEUkyGcaHcT_QY4Js<9K_cKTYqqOQ0P8TDdJ*@R|4bZ)bK|MwHDypmRdnd zB-vL`KTBdk{ZGIAh_YDebTv^yGrHe3(Q*JhfD5LQ)D>Y@{d~>ql;5Z$lk?X6AfT-$B)Jq5dBf zcIDeo202!>e=FB&ogM121WJkB0j7GH(XUr_4Q43DOo*YUU!o$TKYs@qa7H9*(?tYKPk-C7es4BpLSR zQjml`<@(O*r?M3Vy6DJ3al5l@Re5w|F|gh z4SCuPHBaf=hX{(pUj&dlU<{CIv}v^?CTqRIGGK3J1N|hnqgI1Wy5*AJOIlw*&MtQg zs6;W|r)HzSd!h#*rHI36)`G$8!gTqCSqEo)gtUVgRt7tNT8Sgm^B|v-S|~a3OAukkDrvE3W=@I&!PyJk zX`%#FaJ+dkF~ZO37aE~F@NqEGu;qQo-1{f{2r0<*mhk??#u{A-aI4>=rl592Xh#Ci zuEFJZ=^OHu#n%f5hNb(;=`hy1YDKpvo(^Ycxk1U8GqHoast;{#ZgC$3$$fkFmAimm zc9XAgZ+;%`-&6eXaR*nCh(X0Dm?{@NWzfAaCBNm84^xabQ;I=6>-IUJ4BDx$-7Hcl zEFDAtKj2Kf{YJWg3(s${EH_|)doFc}?Ryp{zRq#{z_^Hq1D#rCi>1B{$G_kC?3dMk zx|)K(<*TA5vry+i*g1G+4XOEw_Jsj1nb z<<(y$qu2b(NKo&caypBR)txvd)QD_CxG-o-!Gxp|u_n6^y`AeWLS1Rg$D(4|auA{H zb;1pJzu56O4Sb!5(EMbaKP$y0g}DEGoG(L4u7rj){YRpLESY#Nxk>Edo?1Zbb@#Z` zWE3b*4l7K7j*;9%lmGO<{!c>9GRo|!qy(o}<4ZIr)D5ss4hL3K@u@wgIP?p!x((9= zWHstP(6_GjK;g^^Q>mz7LmL)N@PL3%&9|aE3BRh}vD+u%kpt#aMbzrTQN59+VHTy5 zj|}hcLxDm9!FU&6CIqY-XBgN1W@gpwZ3&+07V7-TQ?>o~0u{Hbg&nm7#x7?F&3(E* z#B)-&Ico$_#@VNq{VjGCe?9*6F8tQhJs~pdyW8^|3KNeAaVwn@vLd#y{o%oL*ED*l z4~C%fF7jE6d>=O`Q~b6CbCY=QnV-3RL64~NKXHOx?cIl(-UNw3wGDq1{wsD>8dLJg zCzs^-7xu$qPY3VI>u<$amxJp!H5|5Q%H!Z7oK^wwb$jE|HjLhSzZQvm*D>>vgBBMhpL;W_L86nxQPNC{17%L^ybr8}+h8@#s~6at zF!W_|2pbAlBHhe4AaZ44%<@{Xpv{t7(9=Ei;qz>R_aDyws9pgr+w;@45}WAfCAxQr zF#9jR7a0FZgan<9oBz@F-mQxf*sc3ewO_w9!4m5v=_DN7ca!F;R=T^PAS%Yz>2nmV zANXA1GE)+q|MneSX!l%Kv=E=!o1eJguy2vmH}5Dj8{RWJy0M^r(W<)Z(yQaho0%`l zbqEMsT{XNmWm=c2@-}We*9&+*&(S9mp4t#LnwqC|+nLGl(?8S=Qjv8%Z|Etuu9`-_ zyb_b}j*!@VpXn_|gL_e+Wk%DeB2F(p{fc??9FBn*#1_YWvs|4Sq36Rl&wxbc&AuHg zM|S*tI|M>`BWK9=Tww7>G+D`cL31%Vg|a_K=qd%_xL8_5b!SO-Vd@vOn@8tW1)&kG z+}7Pi73qMR8xHAU>}MZkI;s8qEY%Tsi4(Uh8!lbn-FaiwEm#Q05=w!Xz$SMVfpaVOlaB;Gz|qMY&U7ZSn_$SZ2B=#Rm*_`|@8ihNABIJC zp2fg{ew!-I70Y$ zfQR3R(DUs2pF?Z_fG_#ZY*KCYrB3QDHuz(5Ac~-2*Pb7gt7~BuBm0D>3s9_>|7tY; z=+?jA@0;Q!r3{cJaC8DEKT8G88{E4}f(_;W9h+{2KB@@Xnev>;#Xm>M&wuxnN>I~0 zkHKB{qq}|gW_4ky&xyRpvlZOrd*ktOn2+tDL0y=D#FliY)=Y?7aX6J&FPoOH`P)%V z>_a7&y(v|YD&-gbBfVTZhS7HAM>S^IdXFle-Hj?g37<(+0wgYueeLjL8V zQtzH)zzyOM97LM^HbQ}mTqMtTK5{}S=uFGwcS4&iZVF;M#QQo=g2cwi&Tpphw0p^? z=>8rhc4>3-&o#BVR}`F_K2%nYy$+2lkZ=WC(0bwnXsLHMW`6!=Ml;JY^q=1a&)JjY z!JxcvU9|_Yr>CkI^Q{)sXd&T^E4Exa2q15yeDVy5!vFVJWeQg(Ob``VIi)g07;Eye z5T$xot}8nz_VayPclSiFu7W#DEXMc6f`>SS84Gl-zoBls3%jU#QZ4Rv_98a#5MgHR z6ANgGdHC0UzLQS>fOsRk{PBo|+dJ`6-|jOV=&nlnxpke?QK@~{qRAj*w|K}=Wb_GX}9l%oi@>=$Bs~?mn2ZcMzIf_H8Y#!=I43V1whKLLMmBEp* z$dV9{KL>N!?90WXjCsH{k?P9#eEjnJXOFu;fG%qyPmi)0 z^5s<-3u3SW%5ecV5lLE>1Ea_5*L#b($44@R5hnZ>)z5{51b_cvBGlZuD*iC0#ORf^ zS=5^DADO}lT`0lDnb}GVN?V%w!TO}`3^0$F&km#eY9=W%U_@7y^CAa?rT0GGL#D<$ zMY+WOw@>$UI+PNewQvPl$niYh)5}WEDo1ma;whXFs|vr_bvmG5hCOvJ6fl4}WLcBC z!C$u)1+SzJ=4K_SiPRbZjh$rz1Fs{zs--P1YFYYz-#%vxgoEinJ@#2VTM_7=jB=Pz z(HlO;{Kd{y=3J)KO>0tTipuB5@_wJX#y9fX|NPFbD>PJXcABD^e=vR^&DuMUOH`vy zITh1xJ2CWJcKx05T)TwJGsU4%YH+Sk(H-^_%_Wo)0W0{v^ip6!GRxfqjw$7$H{OnT zo#}ZF9cI8zUmMBSB7#|x_b!k5CPcy0!swE}{ zw_0q`!c+A?fNs?ME06W4_ke&5W87@f2m}W0Us{Y_|$6*Ea^E1XV?< za;g@Tv8Th@0(|13H+$DxgrKVm3#GF>h!$4+3t=F91ejqklzoQzTx~;QLOuK~$Zh-c zs}k-pr1mIB4m9UT$HV`Y z=+j^e_H=QQyj9A^xV@7CZ*;t#`9b03dHii!uy;+)QPw!OeN)l;jHE$&ueh~;^~K)| z^)Z~jaOt}Ezh>c`PnB-_p+v~QP)+dX=Gf4!!p`b~Rb8RNCdZ@$brtcc`F2mr>%@%_ zDv6fmcc=4v1Mlqqx){`&i$Xl`HOzn6De6UyJrKLt(}XJzGuGCS2sH={Qoy$85@hH3 ziL0M>!goo2-m+K0lKX=1#xu{e=cLpq-w=teN9wt@oVw&h^(nl5@M)R6Z40~vGzq$O zAb6wa`kW-`U9aLd0gCt$RG{&vefROuUn42;B<(YyG`7%Z7x{6X4(VFSBw#il;{0@t z&`p}DIjy?(*ZbX!Vi%MXrV9cLjP@!;5?b1>hhN{>uj+p|Yk|;J43UX{Sm=!UZATJX z;c`?mV;wV`N~~l?2od&um8sp-8Bf4VJLajP(*vXeP%3MsDN81+6!?Qv01p3bwRXv} zc+J(#XG)6*p$*Yoo2yTkvHv}$XFzCL(%ts0)mp#8J;>0o3@p{axwW$nn{&?;#Ov|z z-l^xjNLa|S)x=r%RnOTm9TLgtr(Oxil+E9{)aw+Tm+Z_s6FqVcc8`$FPNQ+Tn&P z54*L0nPN;Zu8f8sznb;PSa?}o)hYt2+GS4La{ukg%Parv>F@KzN86G7V>dvlgJ1Ws zy#rKoUhiR7Mm{H*?$0Uqy}9JYni*}{FhCRY%S~5o45y7VgHG zkg>S`RzIf{3ZvKvtSE}v-a-O@D1L`V&ok(<^cj9uZulU__>tgCg-25#ne7;fwpMdk z6~eK25#AVAlz<6J2`@wjgNAbVNroohQ##r$I#SG>ZLTcsQws7*ex z3c-}Xy9)M4=^jUh2zz8=w(Ic2FsY6y&WA9Z)ET|-8^@&Kg#Z{aFrw^e89bV_&5PAy z1Fse@M7Abo3NhB{Zom7T?>g4XS>BJ*a9_6nR0KQ8?`<15^n9gOCe*Ln@&>V-ijh-l z`#(IrWmFsAAMG8aSSb{THb_aZ;9A^T+}$a~-JRl2LvSq(Pzdg>1&X`7JHcAKP~iXM zx1M|NTNZgSGiS}5v%hzv~ zc;nCY^2pAd30+ErU(#&3Qk*wYqOhRQELq*;&jb;~rbJZif^np|JGRv3Iy5`1H6atP6MD@;QdGmr8f>yO8e}*)~(cc)SfT#=K9;L(8wG5MPazUc=sJU zN>qxhGIgPu+B*{Srn@5E$%o_8yBJf)h!2bSsK86bU1d3f@W%G#`#HSfe?{dR^z{wc zc7DQhK9{fCwGXL}wOjD}mYfR2nnMV5UvR=U{J%3Ou_X!xgio6L^ zKj8d^!hL?4xsGk5km0U_z$&{X;%Vl@vS?Q{r6&lqeM&Z2-$7Jo70Qqq!ZL$t^!Oxq za{S6;N>2Y;Dht5VU%$%y55Nt>vb$Q#oCb*A@T+{o!SYa7R;t4CFl2CdwrB70g+hHN zSU%%3upL6MWYjmNSF5(C4ssp)M`f4qOZ7Pn?F{91^Qp$=tI9GZ-t!x>=wN&-U?YGi z7!d7J?m^#R3jb-4WztlfwMZ&Vt%DL=pDBcYj44cnum+-L9(I}?X@Z%%2s<5B5DMgjuUfd) z7eZ65@nYmIrY*Z=yPuB1VRDHh!4TNHHmAy-Nj|jC6o-t6p2Ex|Hit)0OL3k^f~Yz= zM!1T{Y@DFBwb%-@N+UqI7#qO~oOb?ce@=!In4D@c4v-&o`e-CrN|a_&=RfZ^ z1(NMu2w}8lxw4!YIi5~1lr@=l#(>UpX1#0FjoG`)!xq^VcfQGGhA5n=!fe_w;R5r1 zYr=3>82~swG)aAwKKVV|VPcY zHcbWMAQ~cLt_;-pszhkMA$ndcWN(iI0X4WX8zO;I}3Xn$*GZwKDK|`noZOO%DE}?=27wqauwHjm|`d`0fEa&LUrde ztidkn&7SR)9J}0O;+i~x<=A?40<-ezd6|<`g`;dydMl)_(p(L5pm|o}>#Vf$o%(z7 z2O`=zL?#xpr5I|?tN9q9PL(Q(+Ia65Mf5S@U5y$o(Zhf$Rr}7dgMg;MLAqUPyOAv@ z$+#MO+yOpLkyKO1TvHnPD1(Sm7tu@HZ>Ea?WIo9@)3K z7FJbAJpq9l3|~nrE8v4$!c}%Db!B99Y-730>4^s*dK@r7KuC?f{lxOc;C4uy!Io`I zyiZ=6CVX+Gurp3$*TgFGv*}b)_I~`PR*{AY%zLv>I4Ely$2sbo6T{;jqgWKbps45W zQyFr;qG9wy*{3C=%ASapX!H0%s_Sa-U%5h+O5ZX!KM=LR_*jTHIQSv*(?wG?Q*02^ zl3jW-k;BWf&w*$d5))P9M=Hrj{(HY&N`0-d1jzsJpE!O5d}+mAUA?K0AoaCHwk^bR zq&N{5JfEA42pv1rlV8NE4wF7MC0Rlr@G2P*PE|{OO^1v#pT2eRhkt9WFwd1%k)4!p zYfDi2*%*50`}2=RTj^h)-X@3QwPn-(7yT8^IzA;}f=z^-eY)AiLkEP$GkhQFb>skj zp6Q$mqCKI2M7^E&5%VKuVyb_uVM1WD%M@AhD7L-K$tM`WJ+zd_e3Elr4d4AD=uCQp zijU&|vmv{d`+C0L@t3jA-iG%O057imvNls9#w8~A!L*2MLm2K1QXntPtjO!XM5Pw5 z?@+g1bIo2Bsll+?h^jAtycPSm;0dMX>Lj$UjzhMF^3O&?C{PR+qy{H}u)ij7_b1CA z{4V7gjBD-1m`B&S$lTb9DJk#_eP<)%7|{R4x94L<^f^7jD^Te z5(gS1cE@DE574<-Ozxb4INu4$;$+(2Xs{dlSEY%vo636ZOR}m9FFrrbqLf$yIZ>MD z)GX@K-jqo)^p-e32~I=JVBwc$uerx%RcSHO`KFA$u};%ZR?@V|Fu(NuVQIgklWqZZ zf(YBxx1&Y1KL23EZIl;U6P^MuC*=<0FFjIBh}qSl4Q!->mA}VQMJX`-DXGCr*~kuQ zk~{=nsp+xxNMg)XEimrc%H63+Ae50!n{Fr$PZ9kvUlFVRSe?782)?_*DMW$)W#D^y zCZ*Bso^KUy@PBd_w6|^k7(K<#JC2q$3>DJ9HGJYkSzznF$)BDX)Jh-Y)#tsas>!)x zY7JQ!=u}BQ(NIu?b+UP&Ti#p>|{0I&T4;Unto3E4SyLW zi7d`+*W-);D>K;mtZYco_Vjb)NTDSJ1Ngy)*Mu+E5NTnvvnpoH5RW;|FNnSh5 zZ_3ZAZb*%?s;FB;Iyp=G*D)TwCq^yU2dSFo61bc_UqJDe{3pH4=SsU~Tnb&v9 zXXC!!xvtZUyH`ri%F5W9tV>>BhuGQQj+qt0{$uHfEgUdiC_fuH!3+X!#cu?Q$7YXZ za10b#EvCK*yy|ms>uds`O3+aSEEm6X0v6KqZJC;x_O^(6uz@zvTxq#0O8zYBUq}j~ zdp2@a&{ANm4O1cjS+h|NF@^cSm zl6ADK_Mex2owlARrsA8%c;CqLt@WKYHGu-~un|IC-r!lH@V34^6e*90b@Y1n5}(dm zN=$rP^x}p48izZiIQ!+9yE}_YZ+VDEf+6BSgt%s9Rqn%Z+0_MoS#CzB0Y24N!81vH zzx6QtR4E>u{3{;7qlaF^%Lv-_C%fr7oM%lIG{@w1Rx8U`r&`MdH_ROTXU}PZLyHh$ z)O^&2%M!x*uKhec;hzctXFs(P3==w=a zM5o+|>2xZy4c{z4J8Zj3%65k}40n`{FeKl_Ots|4rnkp1cKD*iOgn%5M`*|(V-<2C{q`dLBf6TgE_^oMOr40*3F!6P@V6tqarzJvsZ)^nVR+Bt>b5wrBxx>@5P0~XfCTr@0g+jLZWX&yBRmgPy*pqh6qtU+&=m1rn^f+ zDwkkZ%;T^=@5<{mFZCZPUCugq6-#{uV*dlIAaAH1{p<#l7|DidKcNhaGOyPu_khWi zd;fGbOHyjx_$@8kEe_ouTf`C+UrJY;k=lMA(Ja&@lw~cjrmy@rRu(KPE@KE6KkxXbr6i%D>8NwlPmIqf0Wm&*h^24OsRf5> zG-G=7AeA6Z=Q8|~%6Ck8rOx{XMDm9~9Up7f9+5I1O*M=Y^$^TxA-ap1Na7^YLQLG zrJ<<|aX&C=O2a1 z6T|ltk0bQ~@aC<5B1!?w<{`}9YTWf}3)dB-ICE93coRx0!d`GWotWN6zjFs0wbtg& zB%0;Wcr3I@t+R)RMaA3?`rB1iqYEdfIDX!tAZj9_o1XWr>GjecO`!ilspZFGdK!xx zz%@f8PuW2$Z!|~$5F;L$B~y{GMUK~hmA~tsee5#u2JLWL zY_7<%yhQu84Qo=UJ$g>2-Xy>MR+`TOW{_Kd7juXL<0xc#6n^#%x;Bw4{=PK8Z30%U zvgpzDNXEJTZ_HnwJX`rcKz*ZM-bjr#8$}hGDB(mK&a(P_F0Yv@0KrPlx02ktWh&4h z5KMG~YTfw6$67*(`l0wdd$#iKi+WhsuHoj}Gnu9?#PLP^4>R*1-*XQG@8q(geTy8Q zYF=Qr-JR%~v|TzmmT^7z?oDY3J@-3N3xsS+6q`pkRq?k-E9B*3Za~g2*{v;_qRfJ1 z!u9bNyK6Wv0i{t%^?SF2CU z2N47i=Ao`Wtk9;HfEN~l(%1T>tDk;9cZ%Xa78m=^eAmNJ^a4`e1oQp|?p}->k?S z2|a(By(rVSE$lvodu(o0fBcsqu@yY2c$%s`KfTOcTAp7KjgoDJs7l5hd0rWT?9YX6 zZpJ^b^inT95(K672)5M6xw_Hg$bo0-py(`AX*IZofjz!LWWtHeTX+hBuaYL*u8V5c zu%>)ZquH6Z>r3L-BtCEAsyctg9p9EN^E1A9WE~qj&H=x={Xn*ex8Yha3+w>U{@2 z$H3H*S3WD0fwRNc9moT8bgUBGQUobWuiKw4FjK;(NLCv8GA}t9M)_*Pbi($05br2Ag=71k|wqNFdxR+1G#4FnYR*-})bB z8?o!2FObDLQz;3^zk&yzzzeH7XMJS`cZ9z?sJ=E9C}b}rQ5Lt_@-Ut+)GPJ3vNg#l zy)Aawpr1oT@x6Dqs5*s1Y#SHD)q3EXmw<|8(cqj#nK#K$=P`&h`;kh(k7E)e@`mOl zjB5}O^?qK6%Cc^w39FNPTlqL%Czn#ho%^Ru{crNqR=nn=Q|Vx(^IIo@l|%?yY-e=U7t*IpIl~ zZ6vxjX60fVWU+%ZH~uRmHtr||q_w!eVTjth#yHNX-3Ob8=52@rm6(d=ltHccL_|6* zLKimG_iytZc78ecuc^@bN>S&Q_~~A^epXoDbPuuAK{S=K-+yn70-GzyrQ{92l+#zE z&>;=O6@P0$d(dw_4>D5I7?PK5IceA@|3#fs^cNj3T?W}yN&WFw)544*_i@j{k3F8r zsMCJb5)V&#Vs}X#Uh?g-%P^;HHOt5OJ>^XfahglDMi6ss11u6sqUQzwoVLLC?MS<|Snjtk$HTCI~} zin!)O7H(3M+e+ce#J@Coja4#t=5&T%cZhTu^@7cmxNm9Z{1#Au?-E0vvzBK6tPraRAopach&-5MK7$;-$S9Yv?l$@1c9?lLIIR~dUD{JBxXQUMMWZ zVJ73V!GOQAUC#bUl&|&QwdY=~D0-_^^8K4_slZBv-tpyyv5bfbKiL_xG0yng@YTYk zn38^LIs-iBt`ZcXiIh$fl@u)Wu6}#}{Wf7CHj{LKOL$J%Rs2V}3Wyl+`{X$gna|TW z_xtcw;T8?bQ_4@3!*xf~=xknF%Hex`qMzN^GeGKUm;7G6>r?%`-Js}hr^j9L3-#r3 z6_F_5r9Jd;dB|*DpY!agx?8+}mK$r0l5R z^&fsr_yh`M6gjgm*hkG1L&o<@7}ZX+Lvqi2K3VyW?r|U6UrNs|%h9;+=31!h8z^vq zlH|>O$DNEV2I6jI|7dzfP_BtOvH@UPd@)TE;0Ck&Tstur8g?gR%Iy!UbO zAh;*M6}8!DJ?6Cq@qoa#t7@26x&8tZ1{|Y8cHXPj7S8E#9X$VJ&XEnBoM!r%aLz6bjayeMlxOifP zEp;6{Was1b?kFgdIdvfbRL`)v(f2B$^B49#p82M-PfJ3F3-#G*!kT}og-%Wki^j6S z-$BrDstMsZM;U{!#Jp!3^57Ut{A~8O9p5$HC~!nd!phfLaRz zmzmJ;m2Zw9Iax8@;mVZO6kTdkG(!X9Gw>gl%vU@^eM#^a!ajXxEeE_a<*j3xT9*&% z^pD8^TtV@94TD$_-{Df@*JN&2Z>rhyaZPzQLIjAV_UV`sA#>pPir&zT8oG2@SF}pa z6eWDO`cn(}ms)jeN;wG`#kG~c3D-Ku+bahY5{d#Axh?`D=f65ry^XH?6tEXkQPcDq zrW+O?u+_B37D3?uFwbs|^CRwkQ<~w2VLH#U=4K3yI9^u;P;Po5ri$Y#mbP0qAlBOM zou)tRxsiSXveAAGqG7RykQ&6tNh&Z`s?GO#-i>9dH46y-ETC4TVs9_QqH z%m;qoM5BkWt&Y^L@`m^8r4pupImeC*)6d4Vy>q5K$cwWk3e71wlO$JQ&(Z4Gzm#rP z_n&1aSBhrKp*xW+ep6Xu`w%Wk&VEi|7nva5nCmSaCAlnAGXE^u8?}=~?AMPv!?2?U zftlu(gJbp)%NrsGRShSi$~e6+UW2ck>3bTbrz`pP3koM`S@1B2G_1o=kpZJ zHU8dt)H2>-oYC8&reUT#%S+ycY8k8BK90ecy7beP8xk7|3Ch!Me43rMMPI#Ihs0!z z{xnDnVF+UL0}V+_x$mzi8XcBp69u}9K{H=tL5Nz**gepBlJVJIvaFIN*}4%q@#En> z*dkHRu(V{kzOCk8@!vq(R{6oXACbE}bT}udayX*D1*f+vj!8e|dxUlnb5amLkm;qXYly6UDB-n-ox zF1^V`gdcv~cuAf6UiT?@fm3yDaf#xM)j;`{3C#uom!7_N)%LeB<@)q`#M1QK_5K`3 zhlCpleMm3qx+0jE+=c8DrmkQe-I<`68q$zr1?u)ULv|+L+%g_R@YN)l;h&ZZ4g_1G zafhbdK6)7nYqk?Pz0As+GG!`(|H#!g$37KUhm3h4tH2Hu?^wX@sm9%q+UY4j0bpe* zCqGsE2`_ za`GIES87*k_wXq~Z#Xq(`Igr&yecp#vts4g_IuI~enLf$sIL9vHJTsG>DH)e5Zr6k^cFY4?buyFMRcw{_ruF*`z+Y zq*aQN6dB2OwR^3}d^rT06}N~5zj?sEO=*MST(2^(;ujPJvK}rQ?{VP#HZ7vq5?%Xn zH>6>FX!|fD2*Qz`94cuKo>(I{=!CZ`(#OA1Q26x&n(Uz8_hxP?9qC=fRSr`q zHH%QfX=zDaSxyOkM`a@((>d9tn9mZf?6hbtGP*sp2J9!gaTmX!3BM?N&%3tKntdRB z2LB1~_76~>k+uUF-f3=9HP@@v8>Wn$k4m&R2Nz2{UUmaWpu3f_vtL&AFK$Z7b%1ca z*_k>wOM8y9@&PV8@q=Y9_W<>Jjv203+*M>@DT_rAO>|!R^A|i7B6AsUQtJk4+jsax zEiJO+aS~sL{}k5dT~)XQK5nE{2xWU)8Ss`*-EMpU8}%xdXT#39Nkc3!Q4d=p8pQ`(7;2>gF}lGzEdwy_>oB8G2tb(n@Aw@I3x!Be(5!B@3nYZpv}+!_BfE ziy>oeM+SGFX~iOO{qehkaLf=@-s>vk%ztnqAVjvA> z`v&B*q0R|)W@*W0+HIc%O-ajXyopn zbqaYra^7hDYXlI*X{7FPnmP>Rq@*o>^|5?w;Ddj+lLLMyY2^s}Tbf#u;3j(gXnU{d zyvzTF+c-+b4jZ&TY51iUP_p;n`9ndv5Aa)_YYVV0Za=e#u0WvUiUZIN(&9ZoYAIqR z#yiYCfT*0t!W0UpzT%;yov0?kR?129t~O^f#(K>C%~RY_Eks{I%&hI%x~-t7XYFr; zBV!%@adyl`Y~uC^rZu+Mh%8eVISS`+=;^4i*qHm&}w=yku4qOnuYhs(|^c&a=`V$=smW zeX|0n|3Z8RTYU7pXh+>JyOTE*lxzNY*@9sln`~w`V#mfyt18Dbm|+z7LlvV#S{s?C z{mtiKp$UkabFzGXl+Yk!4qMzP#{rG8n9v>yM;3W*-Hv~ZMz>44)!L0gb6<@5P9a{x z0Z8NcB?Rec(^V#yHcDDS5uFbF_;K+Aw6DT=b9?_g3>lovQX_jS4f`fP2k?-8-%E?Z zBw5^?$?4uo84%X4v#`URn-f6@j!d7CtQl93*6M(3KuO~UE#J>`y~g6%qRWMbZ%fp< z2V~{=MY-31=wB^vTqBj+EUGsVl)oT&XwS}6?_rc-d-^dFbrs10ZVzOa=S*x@;jmw6AZb)j>P zb{5`27@3jc%JJugxKoCSK^h8ou`vl+2JewNBZ(dY(jVQDLLa8UlOWQ1#v4i|ev_-W z00%17v4F2&<)iK|WB#Zyc$piNOEghpvePcM2E~FdM!S@Tb=n1dyyizRX4!mfRLV+J zdM96S=z}zBYMP2>E>9D>PY`_2wN4(1h4CJVTRa=G%5F4(%TwOiZm}CpxQN?`-l;}lq@h4OtzRBkD z>WWmF?z1=KH*r}xVy+42xCc)nI1*>3Wa5yB5g6U5p4cFC5H%DgKeZ%{F?kJM&o@sPq>0LHA zT81XQw4Q?%gL13Zmeyo2YTNX_a3}d#h+X}iuf*u3-&Bs*rsbrvp>tPr54=D8$*Mc5 z(A?Z51+om|Zo!}LA8y|m+uM&%BG*HB>%6!P3NqFXlY?3qPfcdos9dHld~PmoO%#bSD#=4?T@t7 zLrh*BBktIu7jV|`)2ehOPi8LpasTQ*rA*E*ge3z6qyzFn-4BFgK{|Wzx7=%X1!9uj z{5^3>Ndl@20gL*ypJnkq|%B%=Xev?qN3|H_?(VF2j-Vog2S!IMfF0GiYr0ct;&Ppb*WKSnEHMzL)Gs>=Q|K9pu zPHLl2Wuz~q=hQBwjGP{!mg8Z-gQhC%Q#u8_^dmEtiyji4JMJNY->?-bLQ%)nbVSmuhOPReY2^lKJhe7mzDO-Sn|AJ@_FMq7)tl!nHhNE6kv@^*& zB=j68w<8nApOP^vNh;*I8c4ixJ=!6CQKaU~eYsvODhA(+k}en$|6_=%2M8BaGjs%3 zSb#llZg%ezE>#)yhETyW+Cx-4N!9aQIQ3kQh#8y|r;?L&qRXfYf?myTWKFnZQ|&!m z8G97%xGTQGr6IyOdi9~hd8K^zrqnXad(RW7Nddru>vqQYGYzEAu&8JAZ2pqt4RE^ zuFE$u2SKg56@*cN`{lT0q<8a)L4x@b9WU4QaHSxSGAz91IrZjVRm|_8ZH`ZH?dB~) z4M;$&jwWhDbpfb)ikC$f1cq z6+%6+LXwqdh-yw&(^u=E7~zARdd>LF>fC$hq|NL@yVTvZxi=+emy54qQbXwZ?07C( zb9_j0`8&mJw@}?`DvKqmUW_3+l#dYwYppx2G;)v9f?_O^HHzZ01$ckyz6I{o!K0=e zN>#~L@LR0aChr4TKIbs>vME9DBo0@qjaGB(&!{~ToEv!zAUPL(@6(!nWD>Mj%zP01d;6a*6E9T4mKbjflhzPIedcnP4w zbOym$ZjYwRMeqr(yN{#U6H$%40hLG6wS(2l7ukhN740dbLil+!U6pzqO0QAMq;QN? z$^kehX%=iO^oI0WqKbb zQSyIdOo@@g*pB)^trJZe?hs+0k{BS-LW!haPVS*bd>+cQA0RM2Vb3D(cA1nSNoet} zUWeub%VcSKsb;NlGylwb7NO9f zVt+@ zHH0eKj+fP}1v8@s={_+SRU{V*6;u%hEl_ zZ~1FO!SBD??wbXjS9Iu!*$Agz;L5C6|8UT&4|?~$zYc+z+_Yd ztXPg&mDZ;^8@py2ckZ=+^szBxEw8hxK=_lIVOIcQ-@HMQ6r2S<|; zN-q?JHF@r~2AQ{qVzmYoFz)Cl7UyBLIkYSs%IiedLhy;Bg^CRH2Nr(WDW=5+nfWp% zn@vah-q**=BNxh-M=V5vrN@wi!e85&AE*G=l>Ig_1~}N&{?j0V;qO_6>)CKzf#ktl z`)FrZG}`ZiEL4@|AHUA5Ib9ZLopWOM@GX@MdMeu{kG67Zv*qoG%^L6 zhV{sINA zeVJ$IEoi_G`5f57Pb`}(==W9>xZ4N`6~*sBkKVt_lMVHXDa=FX9y(JX>mmNEIyD%& zQerSN^8vyIhJ{rcCRWpCq2gj|n&^GVH|sH|51QV)L+WzVKw)O~Fr)9&G`>{x9@k}pZ2x-Um-L(FW^ z*HUV+f!6szXtn`DI+v5*SV+_+4$w%cC#yB#z=3?T;CQJ$zvq-$JW2@{s~iS~e?W88 zAL~)Kys0z_FhJyh*XXF_5FP@P>=l1e!)~&MyUJJ1nU*3K>Z7tn1ywS|Mwx6G9E9u} zt=RBg-Oi^|s0FrYwvztgyvvuCOM?XZwlfhKSoaIJ)EB0c-Gl zm1dwq#Tz8SDYcSlKY|5@I!$VPkXBY=wo=fLpOjFXTC6xQAl5HHw^a9rq5Ti=Mv01C zAuXTv+J5S1s~zX93Z*UvHubTiM$}KHQ18n5nkb#^8g9c^!B##l2U1Mq&(me5;F(IM zhWB_qRC3}s{VRMi20F0rK)XW5afi|VfJ-#Z?rphBosJo2-F=%5307dJ#@`^)Z+ch8 z=kY@0b|=l1KJFs~uU#S8#GI=iXw%_(Qb^rhn8`oI5OE(IHlUkhGefAbBD|Emg#D|XzE(m$W{ z_kNjD`U3Xb)YY%paw}QNVsY*&XO^OMT%_dQ-Id1|IUaCrv?mv9v}>L&gblue2ij^4 ztq%b`NzIb62vE|N;xtuVfWps757M#F+t=N$JaTILrsrKmqB1nG#f1V>KgJ`Z0S^T8 zTVe!q*mF9lJ3_e~dk*IAb1#^w|1KUlZa1ecrYFDf_#y9a+W7InU9*L|!n^fm=tUAT zu9>2blVaG#&%JI{Sn{u93EeeK+V17?V*NyllE~0eyUtfnU~nY(P1>H@FsX<5vf7w% zIzJ~N@pH|jSMA@7ov-qzv>I{i+btkUfJJem$1}$TR@aW0?oJ@z{VT^-3n~zZ_R0RT zv{7Ujb$I6hf2LR;)$A=Z?K!xA&%=}*WF`zm<=9Y^tjsA5A7CwouJB9dM->mS8^iU# zb0ZfXF4Sw|xokt&CC2&sUR3atZOHxUYVD-jiD@u7!VmWY@EjqIye@^+mcESsUS&lh zd~cNi^w-Ua3Yt4kKkO$$mNKp6I%hGGMw2s(4m1TUkqcWd^vnb&RX1+- zu{D1ZDJD&9DWEDVUw!Z@wG= zH;WDTd!YiS#Dp{r3T|vw;Hd#CKdj_Wwb@7JXwCDYu0MAnllF(s_9tp7ai)gBPj#HnQ8(v}+rhxD zJ^Ol;O#&q-Pi_4CK>J7@K=zYlA`Mp~W$3pio!Bbr`co&f?xZ8$AATV@-ZTkR*fU;G zeo1I=PF4q|lCMN-h(R+~!J|HiS^v46(C~G#5QwR!WRa~ecWf>baDagN8c)~Q0L`;4 z57DE(xXQ50vc>-E#vs79SINn_K^O?YM6|7X-%|&&tE| zL8!Y!oxbeF7R{R4@ZpM9`hS3Rnsv2i!)XC)DJSb$XHORDjxVB@fm8CxbN>qsW8* zg#J#oFpYhzNugb&YTUFH8<@_5lFo}JwLfKFG)#?;Dx02rm~KYXZtWFtfDo^Y8wL?H zBw}TQsy@Pkqe_GlZ$-5~7ZQISFldA7l%C{G`;!nLF$+UFu`5x8(H*SSgV%AsT0=B9 zWZS;4L(uTCaE=>O*dowX6-0HUR75gf@yn@j#$+#*7n#%!ivE|^`sJHz_;aoi%j5eg zR~`-ar$0}SInBnh#V4(wpdVmApdIX z)?_+Go(6=PYiN_ei?4R?^@4?KHI{0(uSg*HSMnQe^5#7 zz}wI_$7Yi;lrtlkzRXp;tR({;JW!6WrynL`H9{*a6>-;42;kVTD0Tna>ykbE>Bo?* zyPHyFG?4LD`a!+M&%L9l*in461p7qpA)ynE5K=SzCwt#0tN``hC1sC~KU)UvZ4)RD zvukSvHr4Dka5vn83{zJa_ibbqQcGxVgfzf%fNowW}H1=XE~ag>$6Qm!ojY(W6r4&n@j?*2-~g{1wqABwGqWB-VyCaJt8X`poiJnAI+kDJ}K*%6*jw>a7VLzvxKU1U|+ba72iKM#07ata(N_t zK^c8!oYqG!R^g~k@b;dW$5K#m_2q5luBCNf(wFfHS6rZ(&*c4MX&3$L5%+F?pW;0i zbNOqOeeX?Z3=upFIa76u-rrZN&;Z#&TYL=WTqso$z!KhaQ*?Ig1})9vyr}Id_2T?t z{ubEYQW%KnwwL}UE2Ed1h+Sy`NuRPKAG5%qhL8a0;JYvt<`jF&_g$pU;6DVcjQ1P8 zO9=W)kA59+-9`VWv=7Zx53?3uZP|JS5w(Se%pV!?rCVu=7t)pP&7lSLvTye>eP|CQ zDh-kphYVz~`3?1_r`SUF#C;FR=2h#DCt`F{y;)Zc_!gDX7)WiZF&?3T9!9tRA2VLZ zpo!o|@WMLq_a3}%e`_uez9^TokNmPMZZr9LDL}U=hSWH01Ym7BAxQN<0O+##?R-Yk zs;s@C0@*d1i(epPZXt3?31~pb3bm|4DcenQiy-*Ce<0RN6J2@dZLSGPYvb?VT@|-1 zw_rg9uz81GpULfbSzm!4qwfaJRt@GdR+hzv#G?FYBf&pg=Dmc@NAlFmum~`KK>W}t zo1gNNprW<4;>o7y&NrM{MHvu7@zd$4vzdisUgA1JUM8m5;xC@GTAPd|zV;LE7aQOH zy5~`8IQ*+^0cxf^goOn02mG2%DPNNujY#Ka3s5t@ngbH(Z89-+QShlSI+z4q{9`w6wt%FZO6LRhTF$n@*4@3Ts>nZp$9dIvP7MJR z_#c&`+*V-QS$Ic7nUAV)!hnVU8GhtFa!8xIVaRHd6TZ(nTon5cT!ChSH~Jw?V;vrD zQDXe@H(5vP%d0c72iIW85gWf%5;k0*iFNb~ZFPm7UW)z879L3HF@eNH@Ni{7HPLFz zm`2S>H(2-UxBN-w;sPH=bJ8}-%!RP)0pm;I9g(u*bgraSVh5?{BPWQmNc=f=U& zDkb_u_#g z^Y}foBnfOMx9A+wG_v(5PY;dAis;t52h>%4v>Zi8n{+{d&6-CZiFvig_bEqzEeTB= zJnQH#DIS0NjOqF1k3CSv{4_39+iNFZk6xKYu$YAo()G6Ou7pW1_NP{25c0M}<6zCW znY|FIS3-4eKlZVX8{a)AdqUf_6-=w>`w{;`y6LQbf3 z{t6~xIGmKt5V1$@){ZfQP*@(KVp`3w$azCn;fOteQeG{o2@S_cxVmY%k5p8vug)fn zR_fg_$H5@d8<7NlSzININt%PIf>#B#4+~B_3x!7nT!egEWs;~S4wZdLI((vWMzs-? z<9bHZZK+{}$}Pfb@Y77p{^?-Cr-?$_OB{3D$=&DRU*$RPCY9mvgU&ZvT5?`2rL1qb zAA55TH?rtmr7u>+L{Qm$_9ASIu2xjwVm=S;RkwJSLCBkBuo7wUIE z;busj=a@8zT7)NaoCHCCc8lBwJ3X|E(gzt7z5U7N0YIMuJRTIsSd(WjO%qouED$2V zpcQ&%Jb>|amy+!IF6w`Py%)v7iw(gKIMo?HFC%yPZwUYUqv>q$2}(Z2M9HViivLGG zW%4(?ix2DKs32fqbGRYz;y9fn-W9{%Ux=>pVx!$qNDAZaM(vRgvlCyH=Un`KAVgKa z&mxt`U!RHp{27hfIX(r|8mIF(sY?p(q7X26qdpcYNws;%TmP8M^$j*g?o{mXYvi+= zK^vk>e=W5sRXI8*!LZ#1u~NY+UNR#il)zo0iB@rgf#%93{APu_HnlLTwdkFI{qMO1 z!{#@EKQu`3Ol2nkG-(mdnhfo9*tWm`?Puza&ZZ8duij>(D3fmLoNnR3x0I={%NgI_ zQpx1%s$!5SLKjEx(!J~J%H`iyaI?iM=PjaHezF&QIbg;p9xN4&`v%+ zTOjFWr7com|5Xq_SX`7X^74Go+Z6>6Djpiv`~0BSxypG$0nWe^`OYOgKG)R9+Zfam zZ%FR#BWK`lAE&IGnd+}!W`BHNeoxfAWW_wfC3&J*9o3kH3sOs^iP%Lw4%6Q|pQ!9M z@c)dbP2_>SEVbkKCQf&e&+ZQ2r=Gc2)=#*QD^cHk%^d$?9V8PuD4uL%=qza>FE}9w4`IVW27+GKOIxsOWb~o z_P0)^r_plc#!`qtnV}BbdjdD8*D$|Kev&b(>~`!5npSe4gvR}1!E@qgt7ZQCSeYsvRs!$-ojC-(tw=4;_A%ererRrkk2H?&jFrt?F`hB_PH>d!Qs2+F!| z_lU8PE2U;Fr(_-|yh9a09!0uG6h2eBMNuPZn-U(vCHzk~&qOr-c7?JGs|& z+lFEm?vy)fP1LgLk$P#a^<8e;Xc7Q=c5{4w-$ftZlV2JQxBi@_;Zo?epq`XS*v{U8 zI+Fx|Fely<4Wg!85G&8Y@R~_`Xu{db{{SNi^0AeM(nULBz0EedP% zA?t350nbq#196C+28z|sPwhr^Vm$1MEBbeS!wnYuOjN_&PwtTV%~c*^=Yp4TL=^Yn z--IzexQ5!3TK?mynrP)R4V07puLjRy5fATX!ql^lp_A%-E|wd-i&Ol+Rau2sx>;zI z^c_tUdhsNS3fep@R~-NO4skos0`g|prDcmz{F9w49Xpv_^AZi_+&@uMTIE@$03`Zb zY@$}*W82-;lZE2*P;*@ioEiFFo=OnA`3v+RSoOZ-tMer*8{kXfA8g9sgNw~2C#xy{ z(7&psTTk+r-WKE|2Q}(-t*&N|d=Y`V!*Y*bmRx16SD)s_Q{Xk6E#B^T!`ANlc-Clh>>7YvZrixe}AwQo5 zBtO!B4PoEVY=PK$9oE^2K~WKw<|Bx=7?9{a3rxAC2=HufV*1*54I#@mq zEH{^DdlxAnZuv|PiTsY}U-H09er?(0$`W6+E;7OERH1h>nYX>TWU0=ji& zW_~2?!Fk7ZsCE87p3X9;t*-6Dp-`YLg<>rdq`0F^wEXA?&Q8s}zygs4A--qE{*au3s z8fMi<%RsJSVKklsFX=v;Ct*3za^Gr>O%;&vN82jV;>?;+ymH2yS;)9tDRlM~;QU_c z)7K+hNrB1V(bb!$l*_;UFppSQR@yW$TXkJ3+35DtWhFx24RKn{_iV%Q^MrA^2R5;` zr0au6V}AF%Ow+Hh1vMW)GBoE5uT*VHRcDr)7j5il)lH%(`W(c7S8$NdUVMsfINlCg zcKP19jUG>4{v2(DI1Xji*q8~~7YR}XTu<6fmMbNTb-=P`*~}FQtwHg#?-Y%7KR+0Y zMg`~dWW*;WO*;(PrxkAl^9GZ8w&WqP%fDL?|4Y^=EE)Zw+GO#`LxZ-)2%HsRm!Xx# zm>bE{SHd&wFMAm@tm}2cI~xSW-QDmNyuWe0KVN+B%t1W|0diRfQB9tmdGJr3Y4&vk zuT1FU!vMH9CB~DSgm!z4Pkc=Af43Fz{1BZ`-2F>6{X7KWalH^nqff6Yek>^(3#B@e zF5%f7G?x}-IWCYU*W=Gk;kZslm5f_z0#zpzGF7%KD2QJ_<#7^yAqbk;xO_>vsr=r z=&|Z4#dV89W?tEMdY?g~bc#YQB6{OJxpn z@&1_au;y#kT;U1>=#&*75kfQ$RZ<{EXuB9*dg^HWrMU8{V~j^WT9j+{`|zR|hZY0+ zpb?|&&SAcJd3vEQuL1hf$-CYcLF&0J*t`#RNH?63Qck`XW5~SLza;NW>@e2G%mv`_ z)r%`yK9*QA!athax1|Z7RzDNom^+E=PC?O6rG?+S8n_1atEaV+{+z2tI-&zQ!-ere zHuHiM#f^suIIWSV0~P3A{T|M#_EPI{K|X&w#z6FkF+s%Jz{fi0g65aKxw+MpWc{Ep zm2z`Nji^NUA2EQBRq!pGC41MoqF~z4LOBRi(#}U{AZ^)7LV@c8_W=6si_3>h>M!ai zk_{xA;gmIMco+rs@bK2K>;s$|HLeRucjZaVYE!)PXa3`lckWSBkn@El&*L;hO#_7 zY#bM~`gSm6h*(LJswdFFr-ifV_s+y8XKH4fsRf;tMeUww>OPwT#CV`}mfQ#p@(R-* zl>S0Gm@P{g`;|~d@YiwHtTVkWvGsSU2{g-ci@73DeL;z;oxq!_N?SclEq6G`cK;_i zQdha`&y_FeJfw4PpNrykIL!^|b&rf8Ktip^`Ftca730k2iUvzGtwD%0;79 zW8(yOQ(ADz)At`e!-5^x9yJH3;?Kt^S7cA8_eA^yFBhecJB@vRLApo$hcz!Xe!Lhp zn6+O?Z${4j&WZS8CosH@-%n_B*s~8)eiP!)aQ?&2gWQF$`$BgsLfVMme==_3@Np8k zQF9^n*8B(1q+fRy7iNnxxq$3>!(JYq;mA#Q;d#eVejrJ8nlOwvcwEH-(Qi1+^GlI- z5VhxN_X9h^@dFNh$~Oy(Khz{;u4vrjj62?czXD*5W4a^s2t*X7(tGgX3C3Y>{49~R z@WbFS_slk3vVZ?7u3KxXh* z%B8NPNK1CGoUf(&;%WScb0VCqu7N&5;bbGc;0CrRSQh1kuPMfMZG|PnSk$53E_63)>^qCeCvgLj{t6Dpz5{%*uR1M)ZYNHufE+OR41S_b) zv=jZ?6)d>`tn)cFi+Hav>C2@#<`eDZX520kWkz2cA?>I7dd)H|am>dtr0^rHSN51D zNTAYBie9x+S0i|qtw0Jab=vIWtuS!4lPd5q0``G)X=u&(?)>qskiHU2t!;K-lgHRtr~ ze9%swisax)G`1GLmiU3a!N*Db`yjI2Amv88=#>dBwEc)};?my@%gPFaX~@K|zEem< zd9>F~;>~sG*|OUbV>^=-bZVkm%1H?=T$Lz0VcfHz?tcD`(SQU+{sror$^K}TWP;6r=~6kM%o|$LWRJ`k z;u!i7A{jKf7;C9&g?_a#7638?LYKirTxezVDnaA?t=j5PLjBq;t{V|+(=x<~HNxR3 zUo9+)Zm77S%h}5FuAiIz<3S;VFk2>(B^oz!g%w0*kcs#6K3UohzL{<5lmBwNU)4=% z*xM+mqM>XGKO){2tlmAW8*nFAt`j^#TlL@eduIQ0zHPfu@jn1fDZQaTuUbHa<9dO5 zi*8V076(SAa}gUB%YzO2iDT4^iX00~Qu9U}3z}7`TBVA3e2VBOTT$~ff@P+!LaKl| zcU|<5AB7Y{PZCZn1w)X8u1avN-vLO?N8LGMv2Buf&;tG=mIM@t^Qa!Hi(Yqk@jvvc;iBd7t&A_wy{#?RKI-)u0Swj{;}8P3$pqJ6okjdd8MP zl$jpWuyNl8%Vf1!?Ficzg2AG}gw}Tv->r#a*cUi@Sn`>_Z-!7gfsdtH8v{`t&y|j> zKE86z!(p49OWb4dt*<1R-6VC#$L-rn_UDgrR2>BcEb`M{7bg)6#Q}FsFx(1dTeMQA zb3JtSfSZ5l2mZbbyVl@B-P@%*$eGYS3@IRKs4*Vl9@M>L*IkOsEGn+}T1RL*_X>U3 zm?ghS58;4V*cJaHPU*_x z_2=+k<<1?XEz#G5dq^)UcB{Jy=m00Ltd~yDLkQf2;d>#083A9i<2bl`@JQ_+pex4H zvD;nnl9^4af8w3vWuV6zwD;)EF^q(9%7x&x>iXW??ebQ7FHS%jadnU>1kL}ZJ0`&l z1E~ZiMQB8O*aOVSEPuWqK9uIZgVAP^3PI8LzMh^Iwp{fL#wa*_IEc-L!54iPtFvS~ zX7X{Cr1w7$s6mMf{U)>r<{Gp%M|8V!*|5^^c0C{GGb`#8Tx>DYPDzQ?=$rcp5=L1R z{#!IhH0$20X+wtB?VUVo(++8gISE5uiPgP*Q`JZB(fL7qWZOQj3Xjyo2fqa zd-{M0(mr}DASHhnm(5KsM7Uk9XGL#r%QU@ZECS8VuAUK}I5#z<8dcPf5McauQLnnH zs|^?4asuvj)>Ifg{0g&WmZP5g>hjB3x4*gYe63i>*+&R#K6RT<)^=N7P$ffO)1g09 z*Kzi*xTks0GqbI^U5uI?%yGWXmlsZBkGW*!AlbI0fE*|EbHaOPA*}?uZJvS$ zP29^TW#&ztgynYE&%fc}6%!XqC>+QKM#Jsdeaq!vNlO?ndeigF5F zfl?Q4to_xCC+M%l8ci(**J3@H4gYw?cQa zg@@T&Qk~@weU)%FMFeNzeokItmqTvXf20{Z%a6IZ9+UFS8Akd8mRl@rGqWub~R+xb9jPqhq7(L{Z z)a>8=b6uzCvJd-H%&I+NQ7!F{u=;5L&Z&g^8=YGp5FJ-mu=>lrSz{5cf zNogK%cItzZ*P~jytU`YcC4RS&GDg|PMJBA!@Y8hKYsBj z<@z{5I7;4u@HaL+z?GRozP(i}x`z2(J!s_RX$Vj~G)T1UIf149CAbN0OD_i9X?X-Y z4_5u444NBm7yuZ;5Ai(@fn2c@XK0)Ue8_g=p0I2G?c0F-1st%^+^;__xuY~hwr+YH z=(qsg7@5@|k&(A?nk`r?$HW5ccVzup{0E5el1F~=L6|@%#l1(WOQ>To-MeTJ>r4C( z1$Sp-(U}4C{x)yYPG^mx#KHo`LnwG32jA)kqm@%c9$9 zJcP7+cD7D%KGIsu3P<|L zZi0YzAK59>z=>6^$pILGW=TLmy56AgHTrDM4QJdHnonwl_ z9h@iKkPeQODcEMFSzmroL~u_x8iJTEC zG2%=faM+}4mE;0HXO4TX*v!s64JHUbu51VBrLLdxr?+SRQ_X6(hl4%^5VggK`*xz? z6T|Il?9RYUzSfBf=ts~(5h?T~?-3*vYPKNx$7ywST?~0m(Cv@Jq=Ii6Ekd5CP#5G* zE1WtR{Q~T}hoJ;K_F~PXX8tB;g+AD@15X~j1rwJNe zN`Iz7WZO`&-yqO7M8#EHORqYyuK4Fvy^7=5B0qsIQdaYX-(N-LRgJH2=yV&QJ#Ex$ zop3c$7GTuH3&0nYQ*j@1rO}Gz$WF=d^KvQ-*FiReU#FDsWqviq;(y z(aOYg!(Hq_u?G6FFxpwUqM*9rQt?&Z2ghPJWLc3J8C8u~*6rE7^3yhHo~5<9ZIOsE zvPT@_Ll;KLGB40&_h~aGeaz#bqlE!)bzJR(W7`cH=R4_^ko^(kD5wKsIeiQ7F^wqoS;U*Jmi7sXHLA1hms0?FZ_$YtDQ5| zQVNq2_q9nMwtl?PI)b9s%e!pHoYCPDPmC7xoKFZH6u3A3zOB8F_+!~EpYU?(-eth{ zW+%q+G0U^0YElf>YEz1eA%$$5F-?w$N{mJNr zw9M9m+F_+7r$K6hi9h+A?|OanV%ECi7Xg82m9`gT=t{Jz>>#`U6{_$yqmTg+UzxYR zw&;Uj%j>$U3*qz^!>6tIiYO$7rH)t=gChFwLkr`L2B z&}wQXcR88nr8HGuXT#JHTHdx`^WB-jh-BBuZ(rXVNeqOfaPHV(3dA@N}F|Rl8ZytSA!x zxtB`Cx=W_mQ>>#qV%N7atRWC86SKW__QSi9@aaiywh!D@s-|mNVrSNHxy6dS|BB7= zT;mg)UJ7P2a-lWw18xHS@RrEu2hQPw)kDVxv0UjS38h+a=9O06u=;8r)wp7TdD(L( zd*)wDw^${s%s8hSg;%o}Yr!&FQcpeU!L)&IN>J;+J@X=9tWAd}cpfG}8~iVRia$nW z^O(vwYg!}{C`O{QoH4G+z0~nk>#66tx*Y2x65c&*hV>=B58{*5HLL!`BM=27o;*Cu zOE>TrnWKJv`^{RbopMfb| zY-WCHn~G-WKpYxs$Fs~glL(mmH8G?#u5e?rxgPGy0mEqT6OUzpPWZoX@J)H`!4lTd zaWYFIor;hW8us}-rnml51sK^kcvJbHa6adz7F&jyOx@*_v|QAhk=Z_`rfq4cyf z-?K-6w&NbVFJ$AtSK!|-^(DEJ^PC9fgwGTJ1B_$!f3=V0*KVbU88d5di&m`N;&g`? zbd%i<68k;o9HuiXW75>5iT?pU@c(RXko6ALO!~Gn;oC3-<=xJ2ZSyKiNwDN!@Y|*> z5NYu=FT!7u0LIt+Tw6SOG)gUCceu@S5J1ec(a@U9v`v)9Tq79)!TzN!$eB}do*!Pz zZRUp(HrIPbir{KmPJIj}kJuzj?q21>xV}XzYT8NMMt;8+y@f4rN9lkso5|9>>!m@I zT3c?3om5I`uOct+R=TR&N139e`mli0E5o+WXC5AvH>|?5iHW`gwWOm$z6(LaODCP% zFpKY5Tf8_G;aDx+57Yqe%oHev+C8e+k=6%?a#LRBGj-GhPGYs$&*cYi^C*||jl=J< zcV<wUsqi}ym?z?>2qodR zKRXwG%NMLsV#=$EcWXvE_uJCdqS!H62hT4aZe&!WU4Pzx9QWQNL(BjbuyWXVTVMH( zXQTn#QEqo1FBV@q>PJ@MC@-gK!5b@`mt-$>pzPo8?4};0Oc0$_0m|f|RBcgwo3StL zhCueDb8uSBF;!j@6+qk*7Gy_l`$3UCI9MYY#o!5u@J8K$=i5@wEW|1awg3pKWpCBP z{_l4r9-pTwZMg7po|i~U_TA0(>BYc#@0Gh&FGzn!TWu^&!`gpf00sfBFIk(cF=QZD z=!Lc@o75rwVYNglk`ddR|MpnirKt&JYZ8)jR}boGHcSq)5B9D&r3aJ?&y-9-VqCaV zx!em#(mT(WjF1b`_5+;(=ZE;XUodja|EvSgnO?S5+|D`~?_qcOPM89W*xvEvrc}i| z1Ae?$)ei`1Mq042ffk?4*`(ZL79|wrYy$t3lmx2T_U((Esd#|LQXBYup@|luBus>{ zqqYzbApX?_DVKg*>~e@Gs%NYWe3YeAOE&pruz-^+Y~g~YmIi%Zl^!V~&g0$wME(D$z98JVPA9tkhCRyL@IuCifwl++_c5ODO z9Me%0t2mRWD-`BZ2-*5Lu4aKgfL=cG*GB)aMq6$apEz5)a;`Tf76r@NSFkjF%BHvn5oCvsj!9N^29v;-|^5sy0*3U>8 z-Q*q1kKqB1^siT^Cy|z8#}lt}{XacUiQ@s3MY!>n0j`b`mUP*#$MBMp07vvKc^rT( zaq24Ndl{R*f`dZWTve`B==UeC_mzVO$S1}KQ5&&x`@K%o*y29{ItVc+ zy)=+M|DA$e<(2HWF_?u@a$fg!CbkoZg?I9vUK=D{TG& zcG}!>j}ZMqb<3Kc1D86UTs#z?)Eus>#JLP`dJ5TW)+?3lc+KTbVW(hTRj>5tzYB?|^do@#b`N^wq}8oU{}wu!M!+)U{cV#=$0^!y(hh=yRg0b^e? z(jNEAGSV_I!_q$hydr+tE>SUOMmgRTGn?%Kf_NsjwBzKEh`Y$4zbt2zJF?GMZ37zA z<6a#ko_@FB!eK{vyTUei?IsXeFOK^~KtU`ONWoG7B_1P!ZAFqIUb(B+h0}m7yyZVo zGp02?mse7}d?LZ-%>Ajl6fwGu+G_`a5^BeYs(`^Unr$h{2+sipRuw9DFnl>t{6jF4 zuT?5z7e{R=J=MX=`cE|ATwxps_ZLsndh|c}PsB4<)A=A-;rk_Yq@`8f8)jAU9M6q45`|#W+s1vrMGI z_7M0M?FeZdAU)#L*;NIJ%MJw3UHIIXRevadEx;b2>RGZ}Gke@XbZHI`!t9 z%f(eri|jtCYU8C#+2PooVG1cC*n^4~qf@+Xp{^n-ilPDnLNec1np61w7*a=KG;4^y z?Hz&pf3W6Lmr%VY_5WiRas1;=befq?g)n zwS-u9bV5&(joue9$cr(fM6=CAr}-oQgH58H1Tw+tKfrwDMlYs|Ez$OvsUh92lm{Sa z0e^o+l8{22373im9(1Zl=3gZ^;T} zp4S<-{I$O8V0bL|M5R?);MqFbuU);h5#WU=;&%VkSY~+1)-ZyLabJr45d0zzhRl`Q zZr|&Lu%sg&`W&sYE0Rn#r~F`(B&VY#_d!&zOMTqwQ>uF&$5vwj`az-fJ9(3wH4By( zucPrk>Z8qiW*t0$egKzzI(vRcHlN6N_lWOjNsi5@^W#9u{tK={n)V%%tgx&tO{M&{5JPLSM3K_+v?Y-lt6)MjT< zFJZC_VdJoQ`>N#t$~XIH+n)_+Sr$2n$rJi<712Ly8zZqAf(G;xx;mEKYW|7QogNA9 z^}BgMMic0SX{pB6{pM6S7Hf{VWhEXluKP{#9Xxa^fyXR`Ll$6W*0@*+~56iGTfe{@be!pswrnvHft zm5*!*%#|{`7wVKstcdoM^4elDF6|m%F>8DlqHjQ%!{GJi?6H3vHV8-f1l)Cs@DSY; zTTC-G7sXB|WkMyld4r~Nqi}z%G4x5jSydEhL3Ak2@1=#k8{CPZFQkhMq2qF;yxf_F zMAo~|uFhOqyU#m*18EcTJ2@RL{Sfw>;8;wHlQm#DPJ~0!6%ZgE4G1Vuz7&&Sw`oTY zuk`A0JOboVZ*mbMMN7+ZprRJ%anmmb%%&TnGA=oOapx2~3FK|^oXbw<$n7{t3Nkwe$DB6MTR7+7i#^05NbK6B< zb$;b|_K4xrI3n@YTLj7sgq)z%MgfbAXML>xX0Qu$`Akih_Hj9ZVGl2z3*y2k= ziCW;5PMN|OAAQujPhy4b-!^+&OY>@|zJ#Y@R9?i#@Y{gTQQtFcMgV^IJM4Q)eVy>+ z`D<#!!A%gdDK0|ZL4b*Nm4n4M>UU~RRfk*gM~4i&LO@pq<~unY9M~U+lsrLNRfJ{? zd0>~W>#|0^v&m$Aul*A3-KAVTignnNqH7LULgcW&=WGX63}I!07Z1qDv2_@YyWeyJ zo=`qQiSq%tIhS+QSDqu#kvyTz@HL%;!(Pa_z#>6P5yCyru1?XUS;S6hu!HyJ+ojs> zY+3Ul-dDVD3GID3^n6tE<`qNsj(cm~e^|O`BlcW0-j~@c{??%cst;5UOCx_K)^zSJ zXSB9wS7{2+4V-9l#8*z9$}DMam#;e26ShBzvB(h&~A|gc+;%nWAu{AWLJ!WQ8 zu1Q^Kd^t{$Qw&(Lb6t|LNqK7cw-5ky9Y^^C@^dfLu@D zcq4oLX$cZmb`+jJ~38Jbiw z_XPwV5q;NS2mGS8_vg~HX`4ac5$!f>+pgLE({on*=)<(}ImG@KjfCccGUAobK5QGw zw9k}N(9;K%m&H&mp+3K(^{)?~Ho>AEtg|o99+#dFL%Wk>ID6{G!EQ|{m-Ix z+b8tve5%XNa$_ozHO*(W^^o`{AT}A2jg&TWcO!1-JXq$EFC+OJB*a`(uBPe()MT zgJ%2;V2Io8yD`M)gvY$|)y#V`5*qyn!1gP1uiAZ%F)T`VkX6;*7R!_x$(liINwkmr zw#ejwAD<-{%6|h?dx4L}@Kd!q7iPS4+^rLNPB-K%++oGX`F=X6Fu3htb-ytr1WSSz zesiq&(ud?kOgro8`3Ul}^z%sfGgfa{u4qQ$@^t zH0W$GRGy=_kmD39ex$0-N=N-IBGoY5XwdNL-?hef_@w031lO_g=k0>eF&?dR(TJ zw+D@AoK0SvjI6+l_dDtQYyPglg-@m)e#SU3Tc^R`a09*zmCA||Hj_1={ib=RvCLTT zi8I$aPGdtLhk4xarOgfy9Fg4i$(DJpO=9aVhzV)fi264&O zvAQNk6gAitn}s~<0#_Ftf@zCcc%Bj7@K04YeS7B1@AWaOTP4(N%fS1>eNbW7zgZ4X z#Th)K#@YK6b&7`es6lTG_9{Bpu?{SCgx!>>96go|Qd`5{mByjEcjxXjgtvk6#S2%u zZpS{aI;_;pw?s996SFF8j<_^De>zt5?InA_+LfQ^cA!NOC=p$m2aXf-$>}wBt&ej- zmgiEo!Y>Sfisr|cdV~S$VJ@}~960L}_c;05>Ga5wtEuGqXkrP|bEaeHT$tqR&o(a9 z1`|{0R&LZcDx2%uGDv9f$@K(1O^P&4d|P|jGg^X>%)ZS*TWwPcvB#28;=bvG3g2A* z>daEs$jpgmm zDZgH*e^0%ul}q@WlTpTL0UFFWr9Z z5$=t5<9v_=^yPI!D)}q=!G3{Y6*}$X;ApUR{Mb?->c|Pu!Np zt-j>X|2zk?oqA~I@J0LsxIfN;EnntXH7iG7ivAlTO1E4s+?1g%K#5{&vsA^;KGvuu zIB~IDlP?%={lMriUnCC6ELN?Lx}!wCsWj2fG=PR)m8EEKxhiwGUU68AH3ysy{ z6zG$2wNL-@)w34TSQ=CNZs~hje4IPwwEq|P*xt!Sk$2i7l;?30I!BTm8wB?jhmDPi zqGvs7gaS<;7zNKBAI}JOQZ`Sc&PaFF79f>*Zq`69-1BgBgQ8g_G_g;Ccw&X}RIyLz zH>HYzs{mESO&!Z}lzBJIOPp5$lZa|A$R4rU>~QjvO=f1Sh%9PZNjFhBmrVc~0C9$h zl-(#Nb=!SnGk0ayP@LSQ&*B=N{GIp z(aQ}LFhWU#XM!^;Q9@^Sj)sxqIB6}xvU`Ta%74PwVkjE{5$UL(-f`!5F7@CrhkW_S z!QcPj;6Xx<5((`LRvNk~$lWqpVLMZWD}HHjXH}ycLOlQDvXkjUx7xBf2b_ZN1P->5 zNU&I9M7C0Q6qf8hP7`TVYvGJ9`C=*1`#-7*T!?={S}W#AQet(_O^5(!>)sVk3BMDk z#si#8L2QAOucoBM0nB(wN{9ytA*@Xq@szG$>{|rjFJIN``f5r| zG?mJ={t&e6GKE1g9315#e&cp33#gW=I`TG+isY#06UalY%)z(0MEG-qBxW!7u`XNGWiEO zZ0P7A)=0mVIKQ=BX&Xr!vT`Y9_1b`tc8Jv77o={Izhzb+pN!vMaP~~NY|hBW)&d28 z$julwCMXr`5W55a0c0RZ&5b&r-4EJzaX+f}1TMY?AM41}ACwsZo(Z7 zRJC!D{Qz>~u17T*P&j@gX?>wM?Ji1{z7@@W%)_`(DWafXGm*NhYk(fHr;ceLuoKip zz~u&jL{Kvhp_?(8X4RnX{~*4emEagG0kBFLf99||JV4Y(OBw+(>D!Xrr59z#$ULYN zU=Shw6f|@$+txHHOt2Gk{h+=zS-Il*n(|miEhd?kDn-EStx1%0PZgO=ItK+m#Hr>~ zwhoyl4&%C{Vc@H_(poz`I{CDbKNUB@er9BA;!FiAE^VSZWnASR38RcvU%Mo_G(T4A za=tT2ch2nB1L3)p-Z&DKZ$lOPVR$WbDLoHW4C0827v4E$ql7t#ItbtK=iJ3J_%VZ55$@s9*zDQg^K2obO3bDrPlL0`NIX z0+WGa6KK18S77o9O?hvJlA;t{f`GMTj~hPDrzV;6I4#pF4klD`&ktcULH3-u0a_71Sl!-53-DlUYdG`@aB=dKy&XF1&->ZNyCAhmXiIgh zM7ox0=5w^lzWC=PlI+aV3%II9327c{M}S+lJrnjI0t$GeP8Q2Aw`?AIa0$?&BGomX zi}eQm0|X*=5`QB2aX(DprqCXNH3;BNCg(XDqEKym!fpgG!Ech(Jopjz+j{9)ro&`V=O@mIU})4!vOc-mRw(C;w|meD??9{{F+RH) z8p0G|9y{M+Q6!9a-~iD0$jdCv;W4*k_CsPBooe$I9~j&<0?^3jd@I*~C-H{FJs&Gj zEq1)^MPv3rDt?de(^G&)>18!|e}@u?aa|^6z-@y^iJI<+XW43x)C`=XHY_yf4|Yx2 ztQnyHjtjGzMt*8v`)k$L*x7=EosK4=>`{XK>dHgTXYTO5OOJ-aKxzwSmYH4U-fBKH z^D6cV1_$ldYo0|)pquy#!?P53g(iq0st+Gl+e{J`l`7V=lX_gN!+I}aj&}k_#ymV6 z(Mbtn-c_s2FpP8t;S&q@b&>tEA4%YI`9@>FFP_V#*pc=87`WPZR;b6LO2VF*lbaib z#4y1IxdS-n#%~m}6z{dS}VI1GcV_iFD!o`#&&4eGZR<$Hv=IbSq(bLh-o<$)sufQR!>!GURbj#ISRsK|5+MY`{@#NGoNELP{E87#C7V&lia) z8+$#cfTb-=IZ}_)3vlBY`k+t|AIOc?spzP$nS&7Hw|>aqyS)f&`~CHT{R3o2+^`T=ms&(1 zjC6%Y2qT?|ko$j;+#khr4`3t7G_deTatDGy4`2Y|7FwoOLFZuefB<2ie?cwPVS{;> ztJNOFYkQWX?r&+23zP)(o6{|&esWfEN5hb&+9~3B^h8`3{Sv6tl7ytmuIt>!was1) zPCH?L6lV&|2nmy3714I^Dpg{3bM!^G_iN5nn5V2ugbRKrq?*&*HY2oMJaXv#rB~gY zGRRhKPa#)=_~I;#f*AEXPx^OV#E4s1RXAFk;*IT|B$+x$SjB&n#kSAvz(jS7tx%t} z(?9x-d`8~$1k!su3R(8}WKv5qo#-!6Rz5?e$vhgg_eEsC<& znZT*Y09Xv;OmtQM_S2qfd9t0eJI?o(W#p!ODCyzM2+3HWZaO!d+LEBgAg_oMzwbqN z3-4@jce{{P-fOgFe7X($vq3A5UE5soT-Z7RHvC}@2WEAHa?24xwJt(ye`x(Nx@3I0 zUOVX_5l52bO4BtP3ws5?(qVAu_&7IYVjR?>Iw+x~|K=lf z!PU>35}9*&`&%`vu!A9BVk{`8&4=;VETg`%Z_aO$N3e7mY*x*mE(s}N9=#CW!DJB`Jj;(W;Zs9}jLo-tqEt1D4R<|0X)-(c(O zAYm6bzXh?j6?1Wf0)V7a0&Ei8{GLS7&-AXXQV?2olo0()*W-oco#R7xtCfCrCF*<~ zV7{Zr_xL*}sT-<4is1VLd@IEdTFYA6BbWzbal;atrXEA*-AW$ESujq8NNq^DnIO^E z;eCayt&wn1SvK!<`?yS#fK2ma81T^qIJZXDQz3A~Usa3!83`EFF6Q8ey#oCQ5DwpN zrNf~L;Soi3CHL7>RL#8RzdN0QxD-X&A`4H4f0Qbqb}az}x{nL|j`gJk zv4U;AM55_%AW+$1hp7XQmmOyg`kpL zZ<`uousvRmx;>kG*ZU>1AAia|`EmztZ|~Zq4!ZzskTRIg zLQBdEen-qWU#bb~mR5-HPSoyI?Dhd#cEy@x&&RR6l`)IOB>!oHKWsddo%(&ZT?5jk z(K~dcQ*qx{)>#OU{8QHUs@k(Px z0cV`MoQJ&5HA*6!teI$`zO`_Xi(@i##taWfiw9$g)f9>NNC}@yi6iez8Bnz{DYt{Ps^)wK_wa= z8~i^T{NXwxJ@PQ-cv-i4@V!CeR$P5(9B@FkvpAQ1kQw76#5>-qa#?)%&Y*@Q{J+4E z_6ip9gla4aXdu#&S6)@vZN}y+$0Er{U&WVo5q^W4y93g+N`w?-_;>W8RyLr8xN7fw z;hAyvI@(%dvR=K0{Y@XMhrhu$=^YZk3BlyO$M&txj+RV1;Xo(%8&}iYeYVp#0>(_ULLmFa$RXW z0BAhN5vTTrL}a~B?prQT;twNn9x$Oz#?^v9WF%qpHcNjNLa$STl;)zNQsbD`bw3~_ zNJuv2RGM#-RA#&$l`mQuveR>uw(BM4e#G)T^d|K40dMlyID3U{A)F%KFq9Zxvhg}! z8r{(8>sGJE=mzcuTwY)beD>~KEkCOK378xb3-*l*6Gi4biKVF=+42#$hkT6kt~sZ2 z?iaBv{|oiPC1Qy{U6t&x&Lb6KbhvLoB|!`=X?{&=Wm4jV5_dSpi#83j5A`#h)auH9 zVId5Em8&E*j-GqSH1q~9z3_w2;r`FLJJj+%$ zzz;4wFUh}(>cyz{EKF6CZOj@HZr7^xexCT#^#y>l>=0&8h0pVf2DR)3wFkm%#6ouHBzDdP0kYnjbXCtBLIEk(j%xY?-$Yc1zrBt`H!=^5*q z+>ObbD&{dHW~royFNu)*Tg|E$O<>n;+O9zY&Pin*Ndd41UcQ?BGX_uNBCEYN`RRC; zK=#j3EkJXM4FrOX- z-zea4=q2A-E~p=_(|fP?ZGbOQCpV0siI|!SgImB+@>7rhzKp)B`D!cGFVD@NjG-lVTzDLjpz4gRlehi_YYPPn{-mx}5e|xCVZtqAv%BstO+lU51+Zf<|0UgXIJ+#l{@-iz2Y`60= z^Qm7NQYS^7*_CPb9x1llxEJ0Mx7J^pur&hA`1fmAx{PTfj&uKRc!3EkoWEy9WKig-a_+vA`GxJ>V{-c*9s=vI=pn;2NavMsSI4>dBojtn9y z&YmTsoR}H$C2-V-o@3mH-b1in?{!*hOTn6QHDygc>E@JkPha*luJV3T0}EN^v?>>w z440P@N>b9;dSEnc<~kc~KhT|%(B4Y)8YzqZVFlr5lsfq0kv~RWeKNhDJ{|SfqFK|| zVvL>UzenXl96x8k5{N^tmSDNTo3StANQMYA-&#*p#H*ftf6Md&)X13LD~Th!P0QAf zdh|Gm+=bkGi0&jG7HZTCScKzss97S%DuiA5e}7?&xcD8`7-6BwRHE>I?;_cXcNSD$`w{$Z! zN=hR&gp^1~gTPRNbV@hUHS_>8!*`Fb@2Ac=*YEfDxz2Sl!0f%&v!1x0d#$ziT6=Tu zKwccDN@ZyYS;>9zG}XxY^ktCb3M)jhv=-U8*#c?4!a~a42NSxQCsgnD$41FL>0fNhLa5c8oOK4aYVUkK4^1I}X-zC8&lr5Bt zXYZuwzKtrQsv&5$`84)c7zGuJ{c(%0Pd6CQfq?2w%+53;jQmtU(isR3_p)g(&su`A z3P}YZN~$<)iQt`2mez{G5oG&I3a~MUdxJ%l(0wtw&n-+%c{O9yt@jvrGyeIUc-3VBq6> zLl!i3>`n0X{n0Q&V3{)JxC!tzMiDhoAeyBM>AML%I|N#34$Xm%ar};SB7$$37cwe1 zczF&i#-vb}hr4&sotGZ3?5_Q8UrIIH5RgecDFuIukS-1C?@XIOdtpu~$1joA{K(SV zoZ9mNrcKM-^BkXF(JN$OB3;{B;{5jeIB@eG0s>v&b0EZ)Ne?ew_q?pr8w2@|Iiz z%vCL>N)9)q%v1-w9iD600Hw|P;#{HJL4a76W zuXShH!x*7nn%D&`K>c<#CqbL9JLuq`fb7x|6L{}DY6V_kjWN*lFuXty7iYO0d@_u& zR0E+|8g!&L=?ARZMJjqnQ9&#Ky9e0c@wGMC3j2*3|K*_f1?+7lmgG7s%Iv5!Oe|+C zzY8S~>tl~Zh(ASgj(c`o_&Gy=bCi%D^>()7X&Pz9Z&hq&IdZqC0DN@7_Ys|aG=E;casKJsCkkk`eC{q3fGS)pVVeSDzcbHww~v-&>_ zL6y72Ti3)ZxF_a`iGp^+u=1s3jM1rpI3Jptw?SFtvHKDm5D%&)c$zL&OqJE_1#r;{ z@Ma?I=T|^}dJ{4ME9QxE0e`M5*(;!Ks@JdYiy@q6xspW$w9+yc2r; zkR4_Zas;?6YN~!TS{}C_z(}GWxkrF5z>Q2JzZE@~CB~I?Av4BpNn0X&7lX5}2;e~i z*c7(Rbq^u5e2oCbr-XNQ1S%+)Ez2q_^7N%?01B_i!gV{?^431?USc@P5TP!~b|=U) z-(;dc9>7dlwk5#vVaAuVP;r1GQx2FQEBgR9z%WLuEL;|O zTwkuRaFNf~D!V-Mb{&=;ba$ae4WBJXs$GO|&$pji!uN0Z@Eq`dB)(HS?PxFqJdqW3 zppy!1FR@>@NV+i4FyUc48oW&0PN8~JqrsdQr7^7~E(&C%T9t#hx5b@^$Oq3>fcqKW zUM4SDyl>^P@iwLmC82$RK=aH}ODI@u#=JPwQw{%UY|QTFqTZ?bsf2QEPG-^leKqk{ zq4B)@$EK1Ki3o?R7dvQ>kMOw9quT4<&c>|IuHh-IL%+*<9newPQGd>(`VwiOrJnro z(FuGG2!GNCU+hO{jbr%S^x~KDz{liWNbb__v_+=^TgqbM?#l&jDCO_dR9Z<7C%=n3 zg=u}9|+muD~|td-H1RO{>| z-S+R0TOl}???aF0I0C&s0%%!rJvQKIIW9^fO-TF#3<-`}5!}mI+Gg`f@{O2Cs_QO7 z-x=;3Sbf}%5%}G;vQxdO#L%cgC;Pw%lInmVW{V87Z z95v_rFkC>Bf%?&okP^rFS4jeobiJyI1*`kCE;oS=sB^O)F4pm~Bch+j+wl&@Ubb)! z4=!b0f=c-T8@PH0%QF!#^JlHB+Ur+X40&KYvy`)0fw@}&y9*$yg8tc zW#KX%935$M{6RB)@i9mzD3GAq9e2tu>{I!@&VLViWT||g#25pGCFS8Z9nyX_O%MN& zVI^4`qc2rx{b;Hi5kj_f9WCjC28J!KFdXn2*x6AR0dT_kY2rBm zU+$R$IWBO;h9vYIDqWcZMC`igd>Vm!oQQF+GD6d9!t)C-E`b~f?M|NMG9AMz3f&+c zPEQX&2+h<<_M4NCg$W=@ta{kK#vYEF0ZpF|L=_dRAaK|HLqAkN-TTVAhjBWfk z4^0Uc(oZN=)y7+SY2Z|e;tO_)Pg~q(GK#u5{>-te9|V*eLXsfdfbka971kT@%Ap@{gW$0fk`&?gXyN4@RSP=zefl#uRmLV`86ocKIVR^0{hQmG2 zDFn|VP6(v@kpyIv7mR3#k|aQi%iV8gY6Tx({x)fZ10&MPU3>*imE67)C`e*5@|R3V zTLJ>IAa#Y+-5Y}zHHeU9C@y#ItzX-R%Pg&+_Q@>J3xLQ~A<1h&Z7!U-=d$y0Lh> zy_CBQkX|e7m1Y^&vo8w>jb@;G%wh%} za3&$>2oKP&2tZPUBSLX82Mhgu(FJ4;RV#-!`J`{F1K;*aF&47CcYH zD5wXS83Q7xPp||Ie76ofG5#+JdzN`8UWPxKe}SfHF*T5Y3Lo1+!Du4UE3Ef?h8JEK zxw&X+a3E}h7+UgMhP$BZe^Uw4Rsh#VVZ#os0goi3spSKK6nf8xRs?#M?-P!)AniP4 z#GVX#=sVE=PeB%ykps8?$OSgnr~{Pb0%^0 z2r~WX3QJiXa^TX1kXZ~9wW9(c2Fx#(x0`Z8!ami6Uj`pc7I8nWxLi0-r-BkTQgHA4 zQYCdhJO$_h(V&dbU?SK=g*%RdY@nc|i~YjSr-BPphK|J4`gS5`l>;%Y%3-UujJQ18 zrx@_4DZp)7oW9uH3w~{KnKeHPATO4C$g;RXPD#zXaxe=aviR)I0%_=Q?WIU9?iH4` zx&=aDk#qHdVm6KQSlSE*e_?;{w{8f}^8>A*r9kJRfSm6mkhVC4Z_GJO7y25Ic|FJ0 zn2gHQ9~1@Sp+S^TgnTDt`!}L<(Nxg(J@7J=0W!MUg~@ukoM_ES(bd@_C_)WF2HP+M zA?Pq!!2t}-?!wQ|AwYr$B!iGnP4pO0uO~YX$hU&S+6%&xfe7pY31x^-gOYuX0U81S zZUmEivL8wZ#Q+K1zyoLq(3}T@C<%aLFp2_e93boBLbB3k?aI7f&OUCJzR+4oWBe10E~M8y+8syx{?42gpesCd)tAb5{6v7 zgs7ZKTL*d9(}8ha{J(im9?1y~TR7&6L6TrEBQYHgdKi~4mtQQ00A8D zBLO(x<6j*QIO8|tW61fpn=s@&f#g&ULsgOe?m|`)pzu%s)DnO(=U?$}`i z#DIY!fDY)tK$UygvfwYffzAU6+!=}(h~jVOfiMCgL$E&;|B2!M790PJ*FQ1{*i;hP>Za_omej`<+JcK?9ay&ZNz13PrXKvetFux!hb144BHnA2?- z0Q`+%2>E}nQ}#S3B4BL+o{L#UKLoIUd@bO;cr=v*Mv^@G+AM}FK6BJDnfl@Rh=>k` z0p^aLU`7K#u7KMi7c>ND0zH6=dyc0$h?&d)_kxySC}I=9y`>PuDm#(`5_*Mo%oBqo z1z2$n%z5=kD00X@AI2@-d1;FiJl_vqh*oOXg#s93@ zKg{}XRU;GlyNy9)CdMp4vrvTHziUPvy9S15qi+L_1&YLDG)exiK4Xk|@V6|CzO_K9 z7=$Va;|#rjIKwjQzqSbbBfAC+7Y4>X(b~Yuy5Ih1!}uZy@V`Cae-J!J5~D%gf0p{U zD1rVd>+wHiVf^~L)E~cc%D2RXuAt3Y|8^^|O7Dp8Z(RX={c&mxCf>Y|U%ydOrU;A~ z|Adxkmx}{^5nc#RDM3;Oie4Io{&H?Sn1JAVq*Y0OHJ!f!E*W{hJev z{BV%M5e>*QQ)+mv)Ie!xdKP@wHbk6<}E3Tr)UG*W|VUZzI&dXhBbBVtv59}r4)Sz6Q zytUJO6h!&%Ewte{x@-WLlM0FLN2LBl2Q02PkJw8NI@MC}qCPKh+ERqBocr2*4UWHg z)9D#Q=E*vkfjxRUuy)_P4l!=X<6xgAupm zoeCcf`rHK5r+T<*rL!K}_3FAkPkcO(zRt6gTTm<^Csypq?qQP2{!#LfJFxeJu{i2r zt+vq0j{_c(mpB;j;OjO#d+(>@8~-{ww&;R9C-6-qTfWCb>6!zY(44qImC^Ocst9h% z2Vb#5yG6UZwzd6uq%NAP7oVBbr4E;t(q1=y8(w8RxeVGMVgpVas0luMGz<0%mlBe-)yQE=xdGLxIE zSh}uGc&uzxU%c!h74=5pJ!8Jx!7%({hd4kEqwr47d*N)h{b5 zzkr*SCVjPvWUFf!dkr5%{nS|h`s;!zUHjppLI&@`a!XL#_?g>d&AABi@uSXzqF5yv zu3E{=+40k+B?!faGm25ngHirvWc%~cHhJm>v zh>hLA)hLfKzOr`1O_I89BCj&VBXeM2eos_5clw!*s5b5z)}iR&wQRWI`;`OP#Gf5* z{dT|fy6vjd1?-x(+1kBM(++54$6T5WmE-1@Z?ZO*$4*jD*!P4pP~Wev&4I5AG z=iJ<9>bD;1Nnaa$Y`HS;R(gu-cucott#jZIlu0sLT}JY~XuI&NwDL#I*Jph>v)plS zu?Lo??yQfFH04)(R}G(DP@o?w=K8vB-5o-us@J(BOQnMSzw0AF^yw=W>2rxf zteiSA*!yXV8TQ)Y<0c#3!`rqMo8zIc#-elGILaX29|NNclORcz0t3$YC|21QPTk;%=%!d-KkTSI-H zf83E;(ld&TT#V6)t3MT){f8ZY+w;Hl?;=uu>DvOi&(o3ovHL6W?F}wBn2+dQn|=I7 zHQ>?mD|}+yhdRq}QzYr@#s#oCODTd?C#QmPmiz(fTfb^u9e5Nv_p`D)S$K6Z$1mmx zZ%-;#BkY#08VG$ZuzB@f!4;NF?K{{$usbxwizvrhxY&j#&aZ$nsIg4x>_}e1bE%BV z8brwBBK8f0NSo2i2{{_tdvC~6Yu}~()}yGIzXU!ZPTrvVH1%Em2dNR%974~&%XWML z$(#yBkk zDqD+tPU)=qfM#hhtXe@rL1zLfO(i@XUBYZ)LupT*vyPR%n3(}ay*9uH`uPx{2o$~I z^}XZm;?ueqmFL4+j}}Vh)gxWDAY6b`gDKU4xz$XE;n@kKEe0Vi1ioNw1g`u-w2>UH zMcuurRz

s%plMZx%c{Jp5klS^6zyn!4;AlCcC4c-w(g@=I#eaD8oK^b)!AuwJGV zsNhk*HS#eWU71Hl)m%-bAerrA9@*KWd03E7DuuU_&cvns@2&iY4jC`T)>7BC-M&>d z;BhMPNNSsTbC>49f~R?a!PTU#&@23=5k+n)(h`5Y*q(z?WcZE^F!B92GrqO(W3fw~ zbcH*n&&hJvmcB3R+saCR1FXRE@(Ylq(iW&w#XN24f6+&q`XE^)SrOq{tbm&k_w7-yjul<4-C0vz7n%*^u3-T_z+is3ZpV*bi^G_N^tKXm8(EYBH+)-lKo+_Dr zqa^aJEKA0+oQ*3NF%@m^Ep`St=Y?cmDZ;Sp)PQNiRqN*$p+_Hg?e9k3f43#79zE-q zQ(-SIOY)3~3w+*syVXm@x;1k0B+R3`Rhzg|dLPYN zw^D#`mOel?kwx#Y3Ip#``rLWwG4&zzPQsnH;K6ElNjwN{f3ZHK4P<9?T4>Ty*^bLW z^z2+Fc2IgGztNb;PL8LuXP{?d)Bw2rR7@IK!1ccV&fZ?>{-#|d8QHuC?EBfpNxIJD zsI6_;r+0c?I8~n@B-Z@=SijPL#kY1**TN@W{WSdvEUhB5sa5cH&U=v~R+6pr)Ht?| zOi8qBUDJ=0L=Vv(3F(+un%n{2rhBrjAs8hm0qRcnLi7xXfDf zP5zczq}F>~*`^7@6!rM6IK)FGHlpFE#E{CF(X#)Wz%WYpXm5_x$0xZEitBYnyA zjxSUTHiKF~)GmnJhUSLy2_t^-2`A5(b-tH1*StwH2CYAbQ%1rM5@)r-=S*M=g+=vk zswH=AntYiS+(HWiLnZkUv%AJAy93V`kxj5c6N7m6i<%4VGz1SJqIJc*6FZu;EAufr z1J>DePszj~yOhD<0OiPF~!c1ls(U?pH(%SW$$oiQKfXA+KV(X&!dfMI#M?( zF(VOpI1FHy7VE#lKYA;iqm1?hC!8be|2`a9WLHx}L}vD;&Mr=7#&($h9Nt(H3GhE) z=4ZzI$IQ(9Ku}0fMDU-dg#Mfo7iZ>sX=ZQXV#zGPFAN-1!<6Qev$AzDa{~U_8oQW1 zH8XKAH6xOgB>K~UM|!okqQk5(dDFJ`#>Nen8nHZ*SXGxJN zqQT^(7KN)iYWG1~-*sk%*0=k;W$3-)4RL=Nj@S92r%@BqgJlke7ct8DSBFh2j7(R?F;yIIIe*vaau)_MQ(cbDbLgGZtRZ9(+34GtvusB z6;z@R>u-^&5>Bg6f%wyis&v~svEeVgs+@~H*_IW)+8xP`-8yovV8e58Qj7-4@=3Xn$%D4&bw^}>+yVA}H)8AzN%(r%2!eA+uu!UAu$1&z7^MCnS; z57I8VFZ*RFyjVoWsjxUW=;vuy73d?qwsV)WDz%9*-vRWrt>M~ z!wx#fAF7S&!Is^G_mtl2)5x5>`59rSaxE~Hj^cSnir6gk4gW?d*}(^a7v_RKvgGzB z8G4~lVa@Jcw^&*`wmDMh%jRvjqv)&9a>o&1Thvm*2j2h%teqn>GngR3{`rRmXPn;7 zPz43tTVzMm?R+!53`eZkMZ}AS&gkfciRJFZxR`uFV%X4~s=OrR$2+8tvc6O}qdD3z0dBYD=#;sqVn%mf-Rw}AIM&h;p@6dV`>-PpIY*WfT zn~#$%0ya~3G*-ok_3o4;Uy}=o`y_N*z=_eVAUZJGEQ|P!Ov1F*>*%sdhQ1V6%cv-n zRIdAcdDb1Xx{7x=?szK2?1>sf_o*p1JCg`&jNP9Yt6D_A8TdJfZ93TR;uVq37w$y8 ztDrEJO9Caj?ve7K`K~c6x4y(wv#RT6^b>3q*Llmh35{jyH?rll`6Wsc+pkjb=X6|0 z^H@PIe)62fwY%QuQL$=WZ}0ExbGs2s+^Sk(FaXV+4`;u3xU@zkF)m;dqO)gj06)Td zOZZ~{fe+QAGfF|FDv7oPmTc0Bp8fm~0uN^Oi??JsFZ;ZB7bzHdLSI<($;i~vXk@Uy zu>9c^d9)<7;I8go%TXFlrG^xUwIK@-Vio)HYOS7RZ~bg?`m#Pi;k^Ho+XD-hj>PW) z{QRNhoLH1MlPRAl`>P@1`%-T-?+j?9gFw^wpSHZ(aFx!h`4GVc9%6 zg+054pY_xtN%}_QT)(VeMmM@ueP=&bT-jHr9J{=3=u|v@z^OUi{RIgMeH`QeYX5}` zccT+jB=|P0e~`tjW@-(~*G6TRrC!3^-L*&de(giFN}1Vy7S+0<-F%p=)y=8X)Um$2 zcI}ETv3uJ*%&FhRR!<8Tn%ra4p>?Brl064*G`&}o$e$>zs_W9A|BhQQT=9on1o-(M z{gYV)|G_N3nMBsZMPA(nU=e0yBPBWUzqu1q?rYn`Am#~-vGA&C;s})C+A@A z@-L;$d4zccm>*)~{w61k1alq{9)9MB7#91NV-JC2qW^w~AE^2dTKlV}08mQg-%C9J zN4iqTlZ^Q{>(pNg@C8S`Cc0pZ^Usu(+&0s0F3U7b(S%+$*G ziGv5TE^r8F>H$BqAiof^{_oN);`RsdE-8yrCZG^CLK0sakxRyxH>@@6h$ULy1|EBHp`&Agt8~rqrFJ|cp{|8haW}N_d3+% zlCJQbe=g*n8Wtln4KETW_D9Cc4!_OpOWpUi`pNait{ZX_%>w@9J~6ZZAS^y~7R<(Y z#j<>bT0kX&C7X~AWw22OsJJ=^w*9Or$`EpPG_in2EgZvIXAs|DSKBaDvtILl`;|8E zs%Y3%?bY5s`pEEVWubd8@$u?C2Lm1wztT zAr%ZR7LajeYOB6$XoWi1QG&P5<{5`NnhB=;(*kV>L23I)Vx4T~?m}@{28H|%=y@RL z+UT|Yblpv2P=?_Jpbm^P&+w}K>U;ur&RqoG#jCrrrRjsI>B4k%^!LDup2d0h>hI1& zE>3ZgGmwL$D`eQ!$^-;hP=3z?nJdw_Q%Rk zm=z|zg6>J%qmuRCkcz*rDos@IiR)t@PA<^DfS{qLqrVnL2(DDUPGL7Uz*i>@R~bIV z`x95_3FJxH>WFM}KT@c`W$T<{tF)(fy_Z4*6wO;1ycpTUY@#m5bC?POY4)6MJE&j)Rse=wuu1KNt?4Nzr}6V_bS zy)UZ^3Xi8^gas)+WS(BeC!ZMpTJ?q5D5zUrA+&=zRp1{+)K*W@{Ew@uU$(SU{QybI zpimj0l=?_xpRl;hp{u;?pB3jeN#-swfqXF)4ON2DNe8<0>J5Z=1}Qk|o%lNDo4QzK z(+H-!5W&Vu^tamf{U)DwJn@$SyczPB8MDRLf8eE`@_D4-c+j4^!MZ$UB}!PLsNnqg za3|+0;rdg-xLA>=Z(>OkyyF}i49!6!S7%M$DL8a8&An#^uEbxGW||wqIGHI^tDZrV zuk!r+28(VlZsv`ahEsM27!0_uwafz<8t^8(R zMXP-`r5+$jEMwQD|(Vm^-dm&^i-%~LXz^D{#Qh)L~>F(tT}RDWhiaH zZ?(PB&X3-N%HS%5(|_ufAZ%gR$KuOtQ}4)~nzxYMTFaoGXggEsY?=&BIO%##ROw_!lcZ^F)vkTkMYWWkcEHHxqRJj-kcBp|NJ-{>0hQGC=ky;A zNt!xEX{c((9Y_$N6X;U5Z-%xR(Dc5zz{1Y=f2pf#q@}8(*wRi;dtpBGV0=^my2A}5 z&0UZL7_LAg+lnVng8lL7B?vr}S}4E;Z=)(a6bfuXn3g=mn5??wnOWaom4CW`rOqrO zoIV9BaqyW!kmBn%to1E%*M1je_s^24|CmjA!uPYs;k1nk;bLYcGK*8<7>q}YQ{iKz z2E0&r;1JO-toxEE%KETr_^t`5Y*7YSM3x0&ZUMtg&u^lb<*|pK(D<>mk$;%_ zQtCeXHX*=2aNZQ$K6S#q4YxQ?Iy9ukIrN$sv+H@>;J-uH+XzKXgHql@K~ROpC6$)a}(?e!ONgGJg9sSjc&;Pcz` zOZhQ^-$nqrDt8dho5#bP@%g3m6robXjHP?r6V0fPJwwm$wvqpM&`)Le(VHowzPDNZ zoQ&vkk{U`^t|xz@WBw?xjmezOa@LAY|Kgxv@U{`*GsyCwv8qUO^(QuD8K-41+D2#<4$)q+_*MEf~fd=Jr-^Op5z zfoFI=0IBz+T74F#GN$-&!cY&$MC0kdPlQls>`5@e$OhXo(O>fS)n#QP&*V zq70MvXTjpO@y%rJ-u{3JInBY6@s}8fu~9sGkhft$%#ZhUiF3b^8|TSl<831fV3}O; z{C&`a6CM@%8zdB={xAI^t`(Z!BB3bM7pi&}$VY5%GSOyg@3ZOn`K>H1PQTW%m}t1v zeuG5>2jcMl5o2l_C`TDi0KjT;A;tpEo+9$pP&I%i6sz=1iSPO;ozgxwwcl%N&%-1A zxaQY~z%8~G@)YYm>E3y{CsJ}SziKR*tlq^9+wRMUy_0?i>-IdBtbb#>(J4Z{i=9TD`A>SyZe9Vw1e=3uWG`p@RZ5 zA;s6?YufJae7)7RiW^9hNCykeXrDedOM6Ec;cqLG&!qvS-{JTGK2N#u!yySM$}hN& z+qjPMbFv0aAORbk-L;L0W)1JJw>9YnvtWIvOHO&5S<|9}#K8{5qFT@9F? zkJgCr&fGhjUiZhc-0*MGiy;udpVj5+D48t32KuM8IPgBfngj+2kk*XEo+gk`UaGlZgCqBR19ucnsFc=B(3R!a8();q8Z5hi`W6d$+~&KF zQ-RwZmCSJxGvlE;6xI+eqdfx^ZX@3iw9U$^1snMI1HN8JOmcHcoV_)%ODL077$c=S zO~>0*`0akqVnpDXVvU~H;Ae4sjSZ8{3&u^&5@&4uxgDI5#kE?=2Bme1P%J&x6S9CK zTt1QjIcI${nn*qXMI3^JT6+X5M%VfA%IVL*_n0TIG!{cxKGc=T^qzNWR*9lpf`}OH zhsSVz-Lq-%yw&8T+8en;`y9MPutTK^;;^X8_SO}*bLlwS$P34Ae!^c1Zu)eZ!z~A3 zW2`q}@Q`(Mw4kyeOzI`fj`NwjsA5Hr)q;=e5ZH_96Mnlrx6gu+Az?Y;53MIPP19)l7rmg8{Am7mnuEACPObRtV z*2XdXct#ZKcb{f}aSlhS)d5%}hTrqMv_D_#+ZhAwQ(Y0(F|wJ)$s^tzS@#RJq~yqmz4L9O}PqOb%!wdmfo#4kEj&IOo4bL&~0?x zPg$pExy5u$gNGU|EogmdVL+iT@l^~j1!t;HbvJnMhv`qjWA-*ycsGNvr3K@;oY-9* zE!LL-Z%zxhUy*ATJHEO`i!(agcj-7H6}8Bh%!*OjYS(2 zT=xJ-E}z|CnPepp|Ebt)M4Um5^Qwnc#Ligpumq8x_R7*WNzdf!;RWBzfN=xvd-u?H zD1(8EJ~%TYUN?#Zt5LX2_%N$ME%wEa-gKc90u`Ee{z1bz;%{!henr?wDOeMr83RL* zHnGY)(=R@ZwY_%Vy8QfH^VTk#!xfkM1zatFCSOX}edESHCH9;dUc#}pD!~Kw4pNXY zQ6bLZwYwUfow5l&v#;Tj4p6^fPO0A4&I5EG4@37}u-f80R(1gmCayA_av$&wiDCNN&W(?*~=k_-Iu}?I%6BmN~qUD~^=F!!s*DGRsiS6p(_EJbY zXghDmearZgP;rGw9_HoPZRJiB7FW7gLOJ(BZ)s(OQBurjdf(u4 zY}x>h-d3OdUs$mbCD&O|6^h|sqwZg8o!fv-nje|*($i`W*aXc*#ace#AbP?lFQQOa zBNgGftY~&MLF-IqMAS0Gazn&g)h#^Ypos59!}Q*#{kjb@kC^ZS36g-A0TP!QrxI!_ zA0#Gp7VE*wRl6@Lt`s`mIX11sLKjf4G%U_FG6)NY(iF8v_)D#vTtju9rr=Bqbv=44 zhDV-e4a_yLY_A;-WY}cC3ok=g5Xu-mxMy9?#u(75O>abGR4>yT{WaXqXjfHI`InY0 z8}U_7(7LK{Z*9QcOROm+n_i)DKD-y(Jk9)g^fEqOF1$^R^xAoZ>i*f|Wi45otN=CB zKZX<4)tiR~qhF_Y0mdor>ig=Dm`VGS&WP}3)HS)Y*)$_O%Aajmt-!#XU*m)hBwK}>QOHIT zP&&?DWz-{rjmNVk1F%C5y%2g$%YlWT?u0=F&h6{CA_pY~J!FOeMBeh&pMyWG=@U)9 z|K~-^kLxmI!C@)>VJsi)rd^$*eMb6P#xNsx1?C&&Jv)PXp>nhUpLuz`gRV9ZY%Mb| zsT>ONYcz}9%F9*em*Q%B2Q{#Mb&|{E2J2JQ4Cee`=R!h*Jz*}=EZ+*PQVj2W8#DF8 zpySOFD8Z$g?758SRKeYd1x$Ds z>7{#_tobkUinwHfsrT1<+Mh*VDG5B?x=#7=J>q{(^_e=I>v(5or}mTR>z8=F!}|95 z(mEpE+MiRUkY+D{JQZnK)NnRUlNfe;(30gP_KmK(1`b4S`F3OB4c=G5auRN?Hz38X zF>++iZ;NX8sh=&B(`|&HEL}vZ4liE#%B|FAe=3-oCrCpQqwC5mEo0g!m zp63j&!E!gc{Q9p)*(?5=`G!M=^UAdqBx!MsM&AC~m2F2oq18K=5SK3%mLhaV=`0-t zh*Q07X>U|erHN=P+sGBH#$ln|@4|3^sM0#$TM|fgi&doFPWG4eqJ7DAW1^O)!AX9d zrV56|-m-`M@&VKP79%A^b~2_~#u}dfbA<^>-W>e{O!$#9neHk3Q@KOt>SSXhA8X|w z2|C^!x2$?C6#UbkioMlU_yfBd@h#z342tS8{nq=iTkF^-e#8Kk(ED*G*Uje!FltT1 z7L6!qy?st7dGjdFpNkYwL2X2wXuR-kiC$LiCvtnWPj=(N^w+laEIFZdyy#d2!VL7`mm93RPN zLR~4jgCpW=>RBJ@u!d=89vO_+LR;IZhHx(?xieg!-D_}}j|)3rYCf=qgcw?v^){!; zJf8?kE_ctkqzH++T|{$NpUlI!0_@JV?J}+H&T$EB!E(3YO^~z|>%v+Xe$zVxYTA<) zr7xy0ySU!>eI&udizh1`n+FTG(q-x)OJ&BP5)WB;`>B0mz8@x zsWsY!{P@=v_Jw&_vGTq&oRhB7V;vRS_YZc{kG{Y$S9rNvRgrj2N?!9WtM~w*rW~;t7q}qdpg)kCpyYJeD2R# zF7nfzc<#``1h`UB7}@QC5BGE#C*jBE+CLy2zXxlvW#M~qF~9ZewhnVDn?)5c4@%iu zI1XO8)na^~+5;G!c-!z!8;^C6-ZCQExUTcXN1oU+=f_)LU>aH>cjt4UC+T4I>;67+ zBcd$GRu)+PtLeuqeEzIoY2C1I>J#5jbAdiVMpncuJ7@Ro!I#;FZERP@1>L_)qtkjsTL)9u9P;3s?K+tSB$qaGI)N@ z#l6h;JyRl3mqPJe%n0L$3RmzGF|8Y4nd;wm(+ry~*SyPDEP;gYGWhy)W*v|rLc1#N zZTZ$nOcSe1!9tX?N7OHDbG%eWTt6sgZp|PodNK>dckb1E)SG5`eNCa%@6E#$^@7y* zYwKg-q_^8M`y~LLos-%ZV+msv_P57j62`7%Wl+qnm1X})JgtFtq;obVtMH}w{t7Su zhI|`qU!hPMwy)xTnR0KB^B7qzh}^xsV?e%EG8*5J)AAW4mK)?VuA<(+VP#TqS7 zNI*oK5~Yyx%$|fRs&0y?e48>SelBHDz)7iDf!5kbXlK>AMT#t2*Zd2XI@UNDNHELO zuOjL@jWBj~D#UBtk~ngIHZE+A=VX;ldF?{yq}H^&>C>@%^W7!LWs>-gNXX*5{k**+sJVb24i#qA!O(2wekV*GOW$ser+%_)6fdi6}J_okah*vIFfo`Ddz_DQ148HZ0P(3eBWZnYAV@(BxzJX0N7v{d!)g8vuZL zGs$bjfiX+8`DvauWd#pERSP& zM&GmoBWTZH#SLdlQr`^`oYlQ0gR$W0RGc>Rv7I{iG{|wlk}K+3d%jFgrAdDH?sgRlWDB)KGN7 zy%6RnNuVkqc=>9z-mfO8&~mtSSMif()p#RlBKuP%_k)?T1B%OvbEbU%%;4L81;cUT z(!$teN85a%(V5?yRugv763;5k?HQ&r)&kFiPtjQFQpz@wKGDNZq!Oxuyvp})ASo3h ztC>)oCx0*Iyrv1&wKtc)!H++d(5;DvYft%vIhAjIr3k*kpjff0wEj}6d!l`QaD*HA zyjR(uQ)+aVQH7k={5DVnv0G|QJM-hh@@h(}X{ck$N;owj{^M(tw0>jr3<>p-(Wj)l zOYXOC&Ai;ECwbN2+%+SY^xAS(I{Oj_G`42?xCmB*Mo5zV;50nSYAKkrci*g^jNDgU zVH3YuiYLOa&?J)3=OsI>5v2-uSS`yBv{NJixGUnRF#grlx1kAxk?d<3heSBgJ1`LC;cwSr$spz2C8kSn{sQP|1PPsLoZ}>FV!!hqrUX)~!1%U} z(}q7xyKA}EXyJLyjY7lb+HN?jHz-fTnzg;ioE=-9V!7`$`BlCeBB;u1{JL~8ZEB>v z_L`);q|ea%rRScDPB27}Sn_yqB75#>cP<&Yg{q}_x!O?c4r?i9l(3`MDf0Q#>A)Rb zihTcj_#ew}*!fwREquU@k`N_kSP9-?{ag}Cwzcv0XL_*(L!(uu13&&&*7NgefitCx z?~S|_g5c%xA)ho(y^rcE-DS6@ZRaut5G)1ta;MO>=>|u!EyD&dDR%(==CuSLRKWVM z6Uur4hbgqh)cSONb6&XOc(Q|%hKv4bZW(Yz_m$U8;WU|DLZ6x~U^wCS~T1#O}#LsG8*WUB`;l=NPSM1Hn+)tNnt8sI{{fU4M8HE_A z+%?vtOSu%B<5?H?Nx_J{BJ68`jZ7Dw42t#r)3uo4TEX^W@#E>5FEm~r{5ii&b~V^` zhig`&BN_;Rd5Z0ReMX(-(`;W&_7p;OBj~4wf)V96o4~9obkicp^fLKfGZ>!Xu3;L= zDS>QBK4r7C{@#kW>aF&fWH73{>CW6-axTf6fp||_2tL`2_OscsNavpOI#;$GF*(V4 zGje{8eOC!aHeGu<7rBdy$}`8)w&NLKpox3kM?XMVj!zf3NA##{>6WS#^9VmSnKSJX z^GnaT>V3U2>>9_xl7kyBl6Yu%-1(jfUtUxu461Esh61Db{zc)^nmmKKn1eWA;6+Rz z9=f`6jg%k1COb=UU1V?J791F(PYg56AcJR=84PS!#O>#4uWAPSB@2hSZ}2}8tEC}W zFu%X|$n7*_=vUdVK%OUQ-y|FiZ791!QM>v_(-n1ztLAbEY63^Y#NXTFKnv%Q$#)VlWb~?oy>uQq-ofzD}Yd7-!L#saCaZyF1)y5E$J#Qo3u5#`pUE z#|O4??(TD*^R08P;|dJ0HTWGW@iUITICZ-rLYX<|Z?7TVQX5D8|4OF5PpPGxhbNFb z{q-oRC;;d(uwL3a*M#rDpx=DvcxC$e>b_^(7znPqbOG~JdCt_)CHGG#bN7th+Ch~5 zjVVA&rD%L@-bqBsTg88`6DZiW6>lf15)`8W9=3oBu=!oynwzj9Wwk9&)#*8V4-V># zW2#H)8`f3xV_UB@2XjTymZ&ahHkg$bRQutg-*4%u_Xf~3x~Od!NumKj&i5L(#o*s? z)Hp6pmwis>`;L7w1YhbJcX+^T0f$LFAbe_nS`4||i~yjd*sDnV@LEZYb)WD~+N0A7 z!OI}JE$_6xpW#hDuXIwMMhhZud-*!ss!y-cq1zfI|D==*{OctXw=5enpfM;3jEpm# zx{%k$RN3#L*QlQ2g}+em24S{|N?N@uU0e#PF8|HfKvIz8S}ddtzkZsba&KfOiigP; zaqx;A{KpGHvwcGyJUf$KM0s4BYf$H=?3;4^DBfah>&wvWMASOTlcl_ZOx5DRB}YiY zyx=QO)j85l@G)#u&CLmg;6kw_`rvT z>;O!xrsqnk#NDcT$3f8vT{_=u@rs}hxsq()i6;r&+h`iSUf~D&OkZ+KTYx3V7qPr+ z;+OY3%-eV~gVit@KEK51aDnS7_VokGVdvj=9P-kt;A_p0mqe;2nUH{a6!P6PObkxMv>!K#T_NCa4t($Q2gG#P4$af!YNR#@w zeb2*0B#jLpxV6YL`iu+XU4#2kfd&Ur7q9nA|4Ua;aL+3&^M3tUve`o>9rW~j*$D>qV$mm8J!b@T4r++uF4WJ2Ab@YSwDKjt%ETS!$21SrpY6()xamxp2FI}! zau7t(>D9R6$JrYKV9p4p(um$!g*P^}*Pf}Kw}rM&f*bCVdOiayP0CxcTrsMs$cZ6T z;Zd-x3_f4M^|-k&$1?}0u~^F2=%HKOFSprJ9>b-H+nv2_pL43)nVN4!WVEvi2}L>C zwvX@^F)RN1)GfNzTV!VN)c2Q1kWNPFwUx$wtQn8>k*?tKcq`0{bByyFZO;!C>Mvm( zo8$FkPLwl_cZGx1aMV|?X^|My&cPkM_VfgJd=GChe8i$ z7*|@~%`EJE;In$PHRZLGKM&C_X%oawH(7*bMMDXSVw%j*n zG2evIt%5jCH0|tB;>8+u!^8ipAqIxZ=;M)Sl|a!{w-}l#jeCdX`3mf)>reC$F4EK0 z>S%bG7!KSp-Hm=)_8DEpdy3#hi~o43nE8G^K!EPusF#06Y3pi?x9v~*e5z>uYp2#z z!pC{3K4s|}py}d^AK9-Z3u*Ly`8@Qu>G_)n%;x~x+8&4dI9WB*T z$8v4Os!?>_tJ(6>aBO)B6ufM>0aO$(D#I%|!yWdY&9?GhfU@)^`2CyK-_`B;vw&{H z5I{BE2>WpT;i&Zt3dkIngdz|8kyoeybU8-*p5bKMB+z<|`N|KiW{k^8Pwt285m^m*{OC@pe4HNv2%;MoMwSx|p znUKs@^7Z_z!DA87jD}U28_r@YvW9f`~zFvIs1K`M9wT{;Mu+wqAEhy z(`${>;&-6R8JV+*>OkbKE5j^ytElw?JilNfVm#K|{)wIzLM_A1un{P6<0nTXzMYNA zp1<_S!hBRFhb$1Pg6B!6aaM{5_L5p)BKm*aCc@)zc-nP>N?^!mK+sdt| z_~=zoToXB1XbV&32v8Jw8y8!)N|tpUI~mluMHB)BZWU^(URE60b<6^i+HTFoX-g=t zPnyk%36Z1bocpaTRk4QxqZfcUWwQ89YaTCtyNBqg3&N&Qwdm2;{_|@A)M+Y1%EvrC z8h<`_z>IuwTvdb;!2Fs>_y#&p)7(RRt!U+On!%j)i|Cs7b`lb>B+3lvQf8rDU6h@e z?u>V7Z2P7Rj`=Q+4_&vIE^k)4yH5$;S68!&TtMns&S#^pZQ3aK`W%%wQJp)n0Nz#( z8%4d9!O6YKT4kx55l6q3k*{=6|AVU=4;K7j#?UR+O7vhltUq}I`R7&z&+GtRyv!I+ zub3{Gs9wXMt${%S4%d!$0CV?x)hTBY<|Gc;CUv!j5nJ}&s$JBJr>fUPNT5tH#6~3~ z>rf7Wq%IN<0a8nUXId#tFzIkKt_H1$33X4%0D$Sz25b?mbWOPhA{Uopua)-w-iAB& z=0t{q4Z8e5w6>11OY%lm$b;CWy6)9iGw>(CM;QALZ>{MCusWC|(AO|X9#GHd0#-xz zgS~dF(ozirulJvXwxtGvb6qQ<;L9F}U?R8l9%F&vldE0QAg5OO+ z9!F+wQsYw2e|x|v_blg29=9Tlv{4(tr-m9R*II670JT;id?>ddTUQNuYYe_=Q#NFH zI36%<2Ugs$;`T$mH)ys090lW_LJw}x0ltO|9g9{;)|Q0g`qu@k5Mpg^{u00$R}74E z$7MlQRtDzwVbqDJTdFrXpmK`Zi%HJVt!DN)~9j948JXqWJ zCI6Zl3qnu5ovwUMBhATdgomh%y}2h1+c=cnOZ#5HGL>!c9N)Z}7=0>0ToaFBl&^c% zw77S61}~L|k%~XsXnY^$$eSNh$C*#nP{HxIamH{Vd8>wro&`B&S!QtsT3OFmriYE6 z=rdf%qdLg-lvd#I0?nK%PeKzVeX^6qFd-c9tCy*uKbM?)YMN(9?4wRYZ%AV(jFnC+ z{95(Gw3{WR*`(7(Fj(sNJ+xhSdVfJNT|{QI3kENJo31e1+?waSTX3vb($qGj?Cchn zefzUd1cd+=HK@`?ewbol`&%}O%6KNpD+amXM|8EeXIcgM7<3Lz9yfWzss!Shc4)~L z_Zb|<$#mT}tBkK6stKI+pzrTtSLi&9&*_0A_(3GaE&T_Ew^{&rVsayTFb&s~GwBc` zjr{GH#+1(|Y9TISPWv7nJ;OFzP0*HmOYO%nb@R8f(Vtf-c1#A7Ckx^d2FFSQtq8Km z{=qHT9Y5zHOn*8H)kq-4x2ZyVMKx9_asmTy;17xzs-BL&^icXOm4*z7mm3jjeV=OH zGXQi+%3ZL~-^jACCNHU5nf0pi<=XC1;ni1wgvAq`Lh#y=;{5gV6i1bjAU0^089*@d zylUsQVkD4WKW&24ZrN(ye7*kBNF5x(dF}S8Iu^wf3dyEd#LBH==g@pCi^>pte}D{ zn0j|xH5&f44C<|%;+?~GPeo1MDBu&PBE8xe&n8mU^rX9JhQ7d6<@kay^xcO#)t)$X;^vFuTgpHsW(KxTxe0ZzOZ(;nEO6~`L}Mo2@!uV{E{#^ zd5`0tOGP<8Lz&6;g**{R8xl@NCU^?qbTC!DjE&&@JWhjI5RG6ZFIJb5?%;@~KD)T{|u%K^dBswSKD8 zyoG{tUvfXvF1h%b|HA;2eLv|1I*NvumnyNo--f?A`(Ti|4NvraFIKQ!DPyE-Ut3nj zw)+18O~f`VF_u)%Khke`C;N!3X*676=8}B}pq&?5Q8D$NPIWN7**gU!-n8UD|J7=~ zbt(ajmJBL0)@{dVCy$h2M-_yFB5MWOc1l{vpo{&pj#I$28_Q91g;lq za2mJs=K(w`$_&lyBTNPIAr2rA(2@!pkE8RBetJpe{)9;%vV5JzaT@l|>|dNaD`}+W zy#jfO%PvsRGG(}alL%8d-NOKMh zwf_@p2bNY~!ai70u_FvzJ!%VAe7oTS+TjLdwYf+e_lV$~f@>yRsuH3?3l-~h{vF$i z)ut9=zGCchx2fqfmtlMm+fd(EnDNt8iXK)8f2IM7LZC&h4du?09j!cWCvUF4V||Qn z715XKez3GmDpjgt)b;sX!j$6->dpN=6g>kwcBU)PkgGZPg?i6~d+4u68$=dVjvT6aRyXgPTy>JO-yUKk; z!#B#5y)I$9!Niw?l+0Im#wI8wp;J$Pg{J^dh2X7dsxJ&W9pdwM#ii>!?*1K5 z3RUhT+qOF^eJ|m@I~GTsXhjo{dh&(D{neYgIDLo%{F`Azy9u)<3M_~4%e=H(8S+J4*23#4|wm8u?u}% z{`tNtMxC}g|GAScEn?7W5d1Z&76A&5>iHgAw2tCE=_`f*m-7~9zW)9WctVR}6yTMS zMMbtIVRl)6R}Nv$+l4gfH*mgA^ZfTwhd%&9Ern|SW`l=m(fK^?Vi2J zW8WeH$yJfLmKjj<RN?*6O6t+WBy3&NY4lHEw#0$viU-O2}i<*BX> z%aqm_oS(Wm#yr$F>C@VCn(y&phv7SZ_dm9u1nBjVqMRD0dg_sm__e|9thbxhnNa$Vp z{l!>se6`o*LYQgf-;&LL=zo)5;PybOGTmsH2jMK|8s2}nrwS8SQ*F}sfM2`=pofq7 zT>6fU;magoaol)h`jPBJ6`>z*u{zBI=R)M%t{MY<vm+iUayp+mqWiQFgbI z+uAg-x=!Q|HTYVlV-)BMU2Q#PRjD6qgv@B|P%T(Zn718NTJ>-j?x0%?SDMU414em& z<4Az}*`>UBmk%HhJRF1oPoW3CjO~HJ&`Y~;i^@7x66meksf=vFK4do8f9FLjk z+oEMYiQEWHxUl+_P*p&Zd=*A1CkUSpd3-+z|7u3-BAOrm^mKc5s`0h7zUxQ$(@5H> zPu@Pda1p7=U#a=kdd=iNKAkjEsebYSv&)yncWiMqjz?Ep~ytMZ|BZ?obUekCTn*oz9S@mAMv%#OJMP<_a4a7?;f#NxR{%p za@1cLrzdm&*Ek`kYd)v6gg@Kfm}nDamCgKsEyu;s1qR%I`%|a`*VEiCx5xIOCQHlh zw~*;5ugW-a7xf-{u#N7g4JCZ!lG5xHzpqGQ9^Xg13cQQxTkiP%D<}H-$XlH8nK>*! zEAPK}SjxkSBC=%Oo_JvG+skjeg5tD+J7~ylS7_1T#ch+SMWz{n%F54nCgRsbX;#-wt|h9Pa5ZU|7GnYqUL9Mgm*e z3z@N9ottPC*r}Y)hB5GvS{CGI_rdC8?%8(7LjtS-7a`pi=7#NP|lnXp69LgjAXrJY$%dbZ=C+Zlxnxx0R7@qErfUUlv>#XHrIX0i^7s-V|NvkhO7x z*+#CruI|!&9I+F6Vh5E`WST#gGtY>5-;3DX-YpUniu1Pi7Wl5p@56((co#S?P40I~ z0t5ux4m1ol6qvcP1Ukf+4g`&8oM170rDzPsW?P)Vo;+@P-0XQAxq^8BHXmDVGoXJjzwuoSsF``)A(g-biSmBmC>eS1($1#?<$R9m1BjJfeHG#rASS(}8RO*s~>dQe5FwCIXSE z=-a2_W$`r~;r&flgs_FFoo$%ThdXVgK*q{gy>E$&&5eln9d7?~ZnmVN#6D-)xa6VD zSI0;G%4t918u4v}-?|C7zuNX`Z?YJ2;<_91Td3drc20lKG^e|PhUILqki4id!sNTH zr=-X0kfgus)iX!vAm%8&22n0=a@b0lRIN|(k5v{9l9au_V+TqtUJt>OP0oz?l{azP zYI4F@{C}{DjoboB+)^k{bItWywN6YM(9w!FyIBTl&mJzA?mmhJ`aX?axKJunc`pfB z%79#0wTF*LcWk6YbqM^4@ha1S|%}oPwSEA3_b^|53aNte;X*^7%h%68{OLDvjd|{9$>tNr+vc zWS=TuDSCnw-9FC z4*YnC7jyzYL4xzIXZL)o(j@&xWK3X{^~c_>(3_K{8-c_XQ(co;vNCw;M&+JMk|LuO zZgo9#1mO3#;gYz)3)msdU?4iB$FISXGT{=IWE|~^SBD#-J3Hy2m@BXenx(?TbC+b( z@^Bm~*$E(RQ)=$9({cxS>+oA_<)q6Tle)7wf}9+Cl=w7~+GH}h3`e*+C1t~l7p$Yd z4-BZmkmx(MWjwyl{RllmIo$7ufz{YD+TZ0pTSR(g^BXaQU9RAo5PXT@Zh!bJz`erL zeR}ehxQ_neM?!m=nv(=9q<1g?$xlO2ZHZ@wceIQofvSP6_g`-XuhA-IF4Bv5Z$)i0cR_Em17Qc-QL zI%|^QJ33sa0p2Mc1QIU5Wjj8vfAqwwr(|vf0qHa2vT4q28TwM*BT?=@o4H9?k~b)O z#Lki(pZ|HH`?m%)_I8F5=>xQnh2i2LNykEQbCuR4=sz-=qhQNU=`V9c-3kJv!P7f6 zck{*J(O}ChU?ae4R)LjbhiK+ET_qroLf;N)uz?+GN`gt)6=@dGY7q3-9`2Nlugyn>{r0!HiH`|9NAs^>H2<_&#Mr57P zv|Hk>^O>4ADR_Jq8tH^KpmlJfsdx#S=l1EMl4;}uVV`C!Z5{)Ex4R%=pJ0Kx5wD*} zo+#FqbeHG&+!r1#D~g{^*|Oncz*UZ8Eose+7yfiHo&t0j9So)7O8e0%U>EAW3l~X8 z=XubpWFX{K^5W~;rXpLi;mU1bRuia1ed>&Gl`}Yc43Int+u-a*izO~@;u=p^!iTZw zf&|F)t(%uVY+~&2tJ_KWf>PIQ)>ol@h=jYy+J_!CJA9jLOv!c6OViA=(KTNVt&^2= zbl|QvOpmA5BGuMzyXe?0#&|7usy~;W!urJaXx^hwDt^{lUbuWl!xt)k$I%)pg|u!S4giOtth%@iQ8mRFIl%rxZd9j!u|})`Pt!7~yYxEYQ+7TG-X1@SY+Mk(N3!;TYCq#`*_#uP7@N)bUr&aMoELiH)-l~5JbFq7gkkI*=4lORD4#kWgo=&uYGLio zsmyx01N>3O<=%G>%ZW+;Nf620%h}4*mqJQ?AI3qYQYimdLOev{m{9QD;y{Vf?9_s) z3PCS4gMQafW!fZ&Vm%@&gdBSiE9P|4+fAg}+unk1cg0^~aJ-Zim3E#+`><$4d{bXTS4{Oc}*Wu&Vo|qg^L9)%$EKE+xIJ=sbR6ql(Y2>k zzsk(Ud+Hs*9rX!2d)(6kEp;ij{Ytdbq4URp3_12TRO?^Q4q&fJJ($P-YJ#FaqSGIo z8T*tcrmK%3>CLJ|UwJ)r=zwHi;jE2=fhW3#nvw*zN4YPY3wec2x5b%#VxqXt?f}m# z8u9uFVR@Onz`xiBxgg+uSYxs7?HhO2EOzoCg`rujL#| zNi4Xq*ZnrKonsyCeh#AR6ULSQeL%(~@1{xpU3GeD0_HsM*jCoTw7>2r%b)b+>9hIV z2Sh~OLmP(ed#ls4jaMM z8>#z`n2L_H1oimRzDiY(_UuS7+4cBLWq32q;wbG2Mhx^U613_EGz^o8hr@ppK5%zs znr&hws-DBjOb0DN?rB#sU=w1Gka}u9JEnt3lU{)l9`>I-8bzB(_SBX;34rZr^ATQG zI&M1K)pU^{QK2zj#^0&JOT}BLN$>WJF z6@*xoUG;Zc3B{kSmj&~!=6CgU3DOR3qb))=Qg++j0r3vPNBh-I{)hmIpEj?c%Ae@u zmEWjL*N^g1>-lk^qb1Mamz<`o;@ONs%0Qh=2MDHvHWQUH0#jF@q8HE-J=Yiw_0OYnpL}m>#E8f=(Y44=uZSLGRMUB*Ky!<%@gq zZH$XKR5JkD9DcsCHq8T(l%PH&@pnLF9P(rY+O_M>&C@1@Cl~O0%Wp>TP;UOdhY4&> z4mm-0jQwj1bbno__~+6`-y8veY%E(Xf<8?)PFb=KO_L;4+WA2GWOl+*dYQWF2?mX3Nsnw`!ma!0tVltrJ zo5Dh|PZla5@@yEhoeiM2`2D$#U45`&7t_P576T@mMtkaEU<=T;%CtFPbFH7+DwOnz z<+)k1zM3&lSfSksgi3vT{|h?r%S;`7fntLq?}gW{+G^~k+n5#TraGPPL;Jl@NHA&^ zBiYqV{~#9!Kg-&kXxc}0IzeBX7Ov>xm-&%?QxRdwpy+ZfLN5S(-2z_%Y$k{^pgmK? zITIJtK=XYUpU~a(m*DI`LNU4QPHv6SMxp7}Nxr z0>qdW$}%j&(~h{ilk1-RqQ0s{gN&+lY~Mo;E1XRD@3j?+uS6})xH5nFe9$531 ziq?w_K$E-B_2tb=l72>$)ja#;f%v4;NqR`6GR?g+5yMYP?rHQ8M0Z3?&c5Kr9)ZXr zF8YH+U*XMtxvD1cL*IuX>vy{iuwF$Fmkr$7%c@>KnaZ5VpFveby?&!nU*bBh-du>| zdrWiyG}rfgqo&n6j5Eg)ZY|zpzSsEaVlJO}L3X^a{-m5m*_mx_%RP@v6akm+hoNft z@ZAW6Vq0-Q$o6n+4Wf-QK|A>TWe~{!tvQ;;0I_=`^KQgiHxQB3UQxJ`SSjSSww}NF zk!WmixWieSzw zq7_BP?az)NxCiob%#)wcai=Dinf{rTP~Q#H6W;DQxk12c$9y*%-$~BIt_!}-1h&~v zVdlQ7ziPg_AO?ltf1cHqU3B^vjSFBy)vfv2p2wpIsH5sHM&d2*KMvbS6yI3`A!k6pC8qr0Z+0(* zBIjl5y6G1He4j6it-!iPZ3o0*-K7YA_L5^)u!8vvb?^yF7! z2F#1SbA7+$Md_5BV#z-sSYbZZ`)}c|G{&lIn7&s$@vYv%0I#K1_{wv&8Q459sr)*~ zm$JoyoHFL#FP^LZ#K;E*4eE@WL2sMa0?0-Gz;)R^>%ZjbbWim1Mm1%MLmRuCqVmpR z{sZ6D`P=tz7^{!B2Kih%O{yR$#r0!ZRxv|4EzBQUrp$}`rmd-fq(@3Q`L;`SYfROn zD*s|z{-QL0O02}^lv>~F)-fMbGJ9`Y86a{?FIK5<^-dV(s2~U7*nv+_dHLOXC|=Xmh-POw_$!tqi-07ve9^e&vJVD(zS*+ z#G6o9O6Is|HE0~xa^&yYXa-D^RWhl;-46PNB8qJ48y)_?H*pX)6Gy54if48{Wm@iR z`A6I3xUFBqn$AjcKF2*fc;`&>I7}^^9$ndqF}ASJJxJWFBixTN513k(JU$tNC>c5F zTfjMimxhdEY3->EeU}vXF2bW&bE36|xh^e&%N(FWB$=UT{tF*yByG+-XU0HMf?G}?MII{2`RLHmZ1vJ=8>pTYX40elJ%1dP8ndpwPLgLi+a$0qT8+bz!e~<75Jn4CB@q|#8( zTvLG~JMhiko==1OwlziH`sn!FDVhGUbpq9_k)U1oGEGM*_z#Cr&STFCv7K@;2H5f1 zsOjW*HfD&kE|hGc0M^whmLOSeD;uY&)#H>i*X|wFR|R{AcI$Yt*{C)0V8t~&Xnf;y@_WHrw4Uv3qrVce zsY;Pg>jK7Y6|9qEi^O!K9eE7IznXMON4K5}icIzNljOM|%ldq`)P%09cC@wqSkn3( z3gk}!@Jb&{koY65aMQz;iGV5v_6XitJ0iC4g39V=&d0 zvX;KZd;@PA62hyzYjpLsN67eAMMR96C{(Byk7`y*#d0YT%QfPG!7`rX& zOZ!tFN7C?7wEF-$+Lsj&0T(t;z}zIJ6S$~9`_x=i$wj*x6|@E~N@Wn+5&FE={+mDu zuvw{#sKVLznTjm_T_hVig7#Wpq*?f8juP8z4vVl~dQd?9tsKpaKY-piS!T(_LgYq* zb&bVkQ_)_Knht}nA*{^LD2dUucF<)P_Lz#YIVdq|x@z*`+MLU}qy0rEz#z)_uZ5_D zkAK5XBLIvwAJIFDA{~Bd1Hwp*Asl1E@`z=iPp6gPgGkEClpD0FZNgRRe`j-G3!<=Z zfW@f4B24E5PlJK$eRWk!-ci)EjLBi+N^0a7R{IoDC(tAT&pSOlNsbsaq0Lgd)N;_I zHzYSZVY;Sx+3%V6yFm!4nLnv{vvZLB=-BfEMpJ8S0rk#)H)q95sy6_!XW~qnPzWi| zPkHyZ2YRCGzc<>D(RMjw+zrrem;C-4DMAJIhfd02zgPl<61B|S&xXir7mVc>QWxKT zd)qs+vu<4lQ9PDKgOz^rYKxii*9|_Soe86g^&e<+`Ds^(iBs4!>obM_tQ&CfJ*gp{4e5h-q4 z05*cQ(Qjy8Jlr`j)IG^z=`HFzrIb7zVDP^4N>I$vfQBkFQ=>^jl;k21<1Q{UnMcC~ zad9Lvt%)dBNND!FGq*#UVw-LzrokB?{4oq6S&)Z`YB)ZM%O0JVuecBa;?hCcOz z?~MnZcp`#D78#-(?a@7ll=$E0bm(3Rgu}O;;qz$8uGJR&?P@4jk&h2`4JijR*=(+q|?8dCOCd%Au`2Y|u{J48Psnd_TNcHxL?J6QC4rt>nR3EHjVoG|7M5>dy&*9j%%c1i%v`yb%-G?7Cd*_3cYhK}s{^1!u|> zCyD7f2W>`#o=uFbX18Zf9Bb9TQwCZ0_}+VsuRnhf8?gqCt$Hh}-(jj_T~%rbSoKNc z!Hmh4z4b~3eQ6;E>Y+Dask%#SH{!l|sT#z4`rmEoe)_a6_YHc(EIwPX}+&-!f^B{kRm0ukyYf zrBY`4j5dq-U$__&;K{kK3=)kVq+|zKddjDdr0YYrkm&Si%`SWrLpVN_OqrIg%YAm{(NkZE~v+oPG2hl@L9Luk1?Ot~t>} z2{a>ZoA~Q{2Cre-T31_vmtG8R3^JIn%zGa;;{6Num1gr2nP7{_O#N`tZ3g| z;}Wby2tJ+rE=hw=toh@8^#?Hdv_bc>)+qcu;AY&#+1fgDl+Vb?!+zhF15?~}5X|M_ z&GFqx(1w-LLwjOp8Yn$Ed$CHv(VPbYgGs@W(yLGwt;gc#Gg#of6S&W@KSk4-wV3Jx_y@fHB}wcJ{A(j;q%gbrgUo*|(VyO1||{f8^W3 zX1xy<*RQrj3X^X3{8gqk^6yqSGrqjYj0SRrY{Ir{MYh4&KPq-V-vD`q{%>!)VzF=( z{ClXY8!P7&X6n;JOLEn{NIE&Lu)-J|N!%~LFEd>Bo>Kwcmo4!D%!*22dB?w+pU3?J zv-6YsWiAm{Ud#5uHAhC z2+a^D*z$}c6H}CGz@6!Ub?Ic@C5vbmu`NX@0;a7kz~I99Bz`s~oU~olZ)4S2Cc>nd zbf7temATkS8h*)Z^YYagO(y$U$D*xknJ--kHSZozc9~ofLI%Rr_Ck%8rs&u#IBToW zX&Y_GA|#$AL)eL`iF7spxK0OUE-Te5cD&sMiQd=d{Sdcm7y};5=sTtq&vjmqU;B2j zb5XB(j?b&!su|Z|V)_o-MTq?H#{@ze^40t-9v*DIwubBG4;RZgiB)g&**7t#>n5Ad z1G0|ct6%r-Kucb;IEgVaA^jxF1)|a{Gy8bW5yVb;tHnRZe|=vfIFk~nJPLl9`qVoM zBYsD`$~R`(gsB+YsPt}s(scp-^T#zc{szgSOq_@r(qLnPgTZ5xy08@$qow`HEkF&D zB==KbX&|L`F#@Q4VR-8H`(uqM+k<95)k#uEokR|$$O6ZE-hXN#2VJkAe z@*pw&6F$Mzmn~DlGh+JH(VHg)?_i7LfWT4Ltzz(TrA##z)4n8kP_m8@WMpcDI| z^p$(7^I@>kUl!zXTZ_EpypF>X%FCNs)0>Z3&85AOYQd1G5oAByo0$AIG+$K-h#=DM zR~|f0x=nga01#&AN+Npdqf^UPdIU5y0$ly`n>y!m>MOM_rv0i8l@3K~sMh`MJasZW z4woILm;LrK$e8<)+HXv66P=HKn)>TLlS`?ejaC&E(g&|Spl7@*r)G4|VXiM51Tycu zg0=3Jxbj?>uBX^QW}N%1Q;y}~4ks|m%NEK4xlU{ieYpsJ-#B2ug@haj52{KsHGDaF z2dSJe2wIXL&H#WDp0{$UXLViLNL0``2>Am2I$~3Rtp?ZGZ-cWKsa814S zo2E`WOOfb~sPQ0q5iiM-?b!5Wmb^TE3yg~;28WWr01{2=r7P_i4oTkw6eHPi+*W!I zP)qliPV}jY%*4b+&YJL&(s}Os`_5mj$7i+(4>eHI3rS6uaq(X>3WD8+*Rv>R<4{gp z?!#a}_4;~cLeXG6T}+@d{n{+xyq4ftHzBy}U$uvPtdHc5*fZ#B{N)ZPfBT$0A_wkD zpBe!`pELrnwK*`)D4$g_k z>V*;$ay95~X1O_)BI28()*q!LN<*;^6wXFt3A`e~|3=5x-nx$1T&stj7zt^?;F5RO8q?`r96vK z&R=Qh&{Zv1AnV9q_^J?4CBG}QpMr-}l6X6qQra?@{{LK4w9g6WopVhfx-cHQe>JQ|cA=pz7+6~|1uE<7V^h6{P*V^$a&G7h~UhUSh zl`QxJscbapp3=Cbc5MoPZ6Fqv&-zU_<5R@q>dcH5&3X*)OdslNeI;fz+IGdk2m9j} z=KwMdkq`mDdT^opm{(-$o^ad{Oc=tBTPQR;>ufdvU1((*QQ+E{4yNmam+#5gSI_Dn z(nXA;cDC^O{2-mv=XK>|OUM^2w%Ylqv{DcOGq<~?u z~t=lz}>vS+!%n_L-Q?@7HVm0k)2qbJ#jffDovLH$ik#@5fcq{bm0CS{}!+G8G znTel$ve2Jr1~|>k(Nxk6;-1dX=m^*s)~nz6rYm2zOcVDpP{o^loUccw{MlNyObWRN z`dl{gWkJpy!xq!qvquTpK?=Ts2yUU20b*n=?r$5V$Jy;{X5!WqiXy>H++5hFbTOK# z3iBQvZ#pMk?V!^er*a5Vp1&PsOYx=3g8uS^T_kqB5xA!$sb$|_N892JJ4v{>BP$G3 za7x>&o-d)w_B>i$H_4SR_j&on?y6m+zEm{w=RVFKg7i*KxEpxyNwDqFWJco6DsFCV`N;{rD{Mxw2j6F~jCR+T|Au|ay3$6<~Om@u5MPiRKfmg-U#HwJ1L~doZZx7pF*}WM%}+6S9qga?U+T!JWAQtv%1P2$|HUG5E^jDem zB=Na#z-Avt6v~?XmXzJw-ZBlk*poQ4O$f7{cwIr3xiu_%w^~li1@*+N2 z{9TT}z~=281ty&E(?|1mc9Ti_l;q^dKK;<5W^ht<2N*gZ{`;u!g2s2kxtV72YX>vL83r9G%fr_BLBr;^B4867-dM+d)-czH z*?Nvs74@tNsuvv+ZYVnc@vY|TZ{_{$MscMKQM9PCx6K0VXT%Dn{)|9f3MJMC;PP?{ z+|)NPziC@->UkEl-^K8q`$619@9Ak2ty_c8f^QgfRZeV)S}ZU31PekqAbjx`fAY@? zY!S9`ud8q7&iWUc3zl4({`5-eIndrb#G~i5hEaG7X3{|gr-+E#jee6$#7F(ox{+|# z^?b@{_}09$hd$N2Ja0we_47Q(Afb&iK?vag+6F+(k+U6L3 zv8_eZFWcN`)HG^D6ZRd$1^=m^oL6jWr%4Su28KYu{XC6b?gVpCKLHgQ&iEgcO z`3Us`9D$t0-VrcHzmsSZ90RSRUM?_Kf#^@h_XR+J(OlbWtbMm?59AB-JmzGcwp}K& zg=wI{<$JkwbA_7AdB8?}iSWiK)~BLUzW)!Ak%Qg7Mc!je{~EA3SGI7>cqrZ*4s_B$ zqm~w)ekBjYCCx=8uA#tEiZOuWIqUbn(Z@bT=SOHseuk-Uz3Y2Fd6JZ8rgUPlt-~4^ z7J|f2CW+9ABU67v^cs)&+a?M!kOT5e9?eBhqTNj>-o zmzU|;ya%KeUApelGyzqD|MB+LQEk27zh`iFcXxNENU`7ng3}fc6n7}ap@iU8+=9D% z3lyigYjKyNZGpCv&*yvZ@6O!0v)0W0V@_6*wR4`F^}NqX_IYGK`-Oxi*NCck^9OcO zh{<`fVl4Yu(LB9n!s0BP(y@gyQ5q*|a|ua-Tir+{rjbU30w1 zs6Ws#gT64Eh3Q+Lm#Tq=@;Gyqy#F|sQ1;n7Ut>$+DE)^)*cDp5g_y@=d{x~C@w%K~ z{U5|RGAR~_HJ_882kq5TrX{{>Leev*R)45$9{t#%E#Ed%usq7Xy`AM8MtB{4m@A-^&2In|fYohTJMb>b!6jJXMZNTRQ<+g+2 z?>nLS(|>hp4)z*HDO&0lx0t<~-V5p6Bc>0H{5pPO>%aYcdyQyeWfW)e({_xPK7Q&@ zj{hY3RxnS<@blQ~#L)1mo)<1sM%)uRi2_3rs{DI=*`u*y3i|_~?bGs@vZp=WXY;zs zYCQ8azt+_ZyE6Qf{!`QIqO;<9Qkx)zV*+Fx+@7->iy=}u!1vI=^^Iu*79L2fG_ytO zL4Fa6r)tgr%vqB?$Hoa1XXRDPEF2rq*n2v&X!0XmmLtVtK__Puiy@n6A$(pwI8iYl zrANSjZ1EQoj^{3(THPV~!sjff%V^m&uI{-npDIe8nhc9k?z82BGfSoMHuL&rTDcH0 zjaI=@kLn6^zp2D~m+J!_sl*W(iGs_y_k4fmK)OH8L%t)e;H|#>J(&x5yOP%EM(+n+ zuew!98*XsV9IG#)Bo6v#s1V@tehi|=1Upw~5=t=li+XqV*LZ2sRy$#!A(+A5YT#9r z%~!?4KZpq8e&ObmAJ~;=nrzW4uP5}%Ds?E*yyL<`xWk&lN3OlP3gKUHG+k8BegNf0(poZIgnfVty4_EG28%dFP&^VCH2a3h%20VN!$I=@M@I@_?pwM`ba8v0i$f zt1k|cX9pZ_v`=muSsQTJ==x2oYU|F*p2aQoX5yllRdB@CZ=NCHRBUw9U=@ia+mE8v zs42L{Al9Y@E0I(0h2W4~9zM5JxdHx#6K4ITMkd(!o&YGqkerDJyDL3 zW$EpXOi4IsJi%8|x#~UiM)U!Z`FFGDTW1cW`C+!_apilf6jznnh;wfYO?MLT>nBEa zZMUwK-2TdPGvecLTg&kDwbi~mtjHw>iBi+dQ}15=+lvyN`Zk@HN!?ZzlL?&sq;Y2( zH;zO+H9XgL=88-qv-qxj%UX65g{g7D39zLloFB{rX?N3U3(Q5W@kd_eYKke#WN+kR zgIlhD^Nw&Jf{hA3%Rid^ZmmDBCr|TU;WLEWvj%9>dsuOPvz_;5J{t>yeDh5F!6V=2 ze-SHR8X)-A&$nnto)xQgpAeIp-ff6U;U~e&DoNt9zTeWdf#Gs@k*e)H8rtSV#rOKr ziO-Y4RA?HiRjlv)XRUAO9&pfla}wOl%JqT=kFpe+^rPb*>W?Otu}6QUDmLV3$G21j ze2c+Btj4q>zTbMU5k49P_Q-oO0+bh!7X%?sUz zI_=Li?u$QEBP4i&J=UW;FQ=dEQf;OM6*tW-mYUG5Ay-#VLB1;-jxTGRV{w@3@Qo^% zh^k9koX;Z^0c^rNPE=QI&WiD_`0E~pHeX~3sYS`f9d9CEppuOqlJjxm)z7rY$*=Y{ zHrydYB0um2m=9B1^EpuX ze9^b4FoZmkeAVBvguF`y8urv2=}y!sCh&enRT%rRLCVmc|KX3^^9|znr5!H3Xdb$2 zV<&xW{dT`4KnA1aDXwwq1RgcMs7@mtGWqychC zZgK3=RFkn>1{P%EWx{YjpML=7$e&l{F?w1iS|9OQD#NC~mnjOwqZRbTq+! zACI1f7{{PaCw=e4h5J(&Q=GtcxleNIQtE4u-W=cekXA(Q83E-_uoTyrn1c;{=i-OG zG6Pi&2KF%$42p|NuX6!{B-@X`+NM@tI0--L-9WclY4HxLBjUU+p>d$$C9wzO@pGQM zNL`J+*pqAnGLGVUF;NCXrSOtN$Grg$+tNa%7*c zHz$;{q@dN=w50ADX_w~RgDsZYT>~h^cfe2=e)cErWf*xlE`G%sax_By%MoUBc$*Py zjw+{1k|n0^_BpOyL|u3*{8;CAG=uEtuFvLr1FU!fm^4GKXxY>HDb)ykO3Zk_2Zuh_IBdO^a z0&Rucq=IcO7;%|?eha63-~AefMcB^DFYSDh#Hb*B0k--xiew)3A=szfQcwDV{i=i* zzufgv>7;`|ev$CAOlcLxX~L6pHvX&$vdjIN?*@VT2;Dfp^4a!T7wU^eAg85Yt{a|F zn^|h5SCxI*l*~r{wbL&VY|Ap4tMKUCgthpZ;0&U!OU`JMf{@FuSIU3$ZmEgHyP}T+ zZ9J%c?;HMoIugL;>v;ZOum%5x&;3KBLlEqQC545>{s)ZjA4uOnd;Y@`6!_nO3!3O! zJK5R%!xv-}@D~yiV*KZcVBP&|2_vk3psD|{L=e_L^uPaDq6q6>c;0`f>ixgM6#g%e zghGM{0HNgn6K?PyGU0y|{?E8UiGR)q0zUY^i5vVcFyjBOxWWI({6FCa|2^CPUEqJ= z2LA^O@jvXt|8|xBRczp6?foxzQNslRUi|kXV~8yRSSv0e_OGRG2XS!pW)zVW{MS@= zd+X+D;Qq!2folA}&=3VQToF)Pcej6-w*SRV6i|YAd+FJED!aM3ySe^Da+Lh{DF2;+ z`%>BP|Hi-lyYhD%KnPUTPz4|%0{}>f2jK5IKpB9JiiVDcijIzkj)8%WiA{)&jfI6x zicf$`NI^rI4rpclSQeqpA0nn zomIrzGaL(>oPv^ynvI=YZJ4S;N|Z ztyORirRJxb!$WNVRVH`t@{CizwVpJRmDKnA^|y&03FTyGcuYg@4sAg9yn&)zYZOd9 zc?z=2eAN~=O8F|zr@X%O&Y9iTwo-LK?jvA)oNqf{Vy^)?uZEZ^nk+b~> z!eh0xK}Ks7;r~PQn}w5EL?IX|w96+-V&V3zSq!aDMs0b%?Z$KAp3b z>cluhkn0;~QIVHPSz94dU*+5eeyHIu((X`FR-OmShJ+5%J$f0vIVAm-Q<+(xhPqWj zfSwMTp>ruptx@)GwLltuWqmgxiWfqC zr8d+sbg~Hx=XFn{DW_uRsKl?@5Dm*T#FB@|xN1XTrw<~x?^}l~oa**3teqIz)b}c% zPwl8)DOfo;ibV;)7Gvv))k8r@Vgof(YJrRMw(l}Rx)Zqi%}q(uw<20;TB9~ZaG#cB zKUuD&t8mC^n|_{$f9{Y?$~rRxXK122L6Q2-Of;nA@PD?FdI_CK08J_|uB#i@HW>kG zqd)3mXSi?m#3^7iyEDC|W1_uEhjW4{;s$6mK{yG*a5-A3=&lh4Vx=4qC_-amAbyPl@74sfhjq2IY`^5a7 zYBpwS!clD;r^M3n=7w>)u#}L11T^=x=t>rzsiC-b=B&z7^u3^~4K=T|PCOfsaC+;9 zl#5|Cr^8Asqs@#F6>01&-{C{&vrg8J&!OM(OnSO(DU}po45}DM*7jC0Q8N07W%>nE zYx#EA%X!V^lHG~ApK9=p8UNk^$=q(`9Pt)z)5YA^R97Q_4oNQwmg1aOvKEaN+JAt% zI(cK~4r>S506qY&bLYAD6yuXNqAy=_q4zwKr7+t{?y-n%Jo7ue@ua+l9>M##Kg?Z9^P&rdWERfIfSs z!tPl5h9Ms~;^S!6DCaCf_I|OGvfkoIz_(&$KJ30s#=8tN&Ienf1K^bll7sl$uU`ai z)<{m7P)~Ut#3k)iH(vY&5Qwt3&+fW(*jr?u?aj0DqD$4%Aun1t#Oiy5qPdzYNJPMl z$Blkpm^aVI9mI}X{CsZ=+d=d4%O~khvH0+_-kLK^@r_=p+l6HuW=S*0TJspo_l4`< z#~;D*87cp~2RqL}&D%>E976AgxZdP;rC*p1u+_~c#axqlQmPND_@Ymdzxbl@KsoZp zM3&@Iz{zV?d8n+~mlck*mYl=Rw4LEr_tO?)D^zqCy1W zQA{1>)-=|CZgTP5U=*~`4gT>FAay+Uyjz#)mqi4FKvfic6*=*wq%tiq0 z1dDpWn_#D#VPNtyG}>`h0TtX>T%%lN4_w&>cx^0F!Ta~GjrkiSh*Hl?DL_?6Pm7aa zF6y~=eYeQ(t%Oz#_EO~@vZun}5d7I>7Qu9F&9IjdUXq6;d4!A@Vy1NpzW`(R7rK6Lg=GH%fR%{V zcF>!PePSJH>_dA32meFu0diUT#f7S{6e(68F|$8YGV2C3uk%+gu1wh+Dr-1u6AX+N zL6li8sv4(G32~^I670SfMjmsZvwN@%^ zS*=We4P3^mH=iVFZtC1?=&QRwGD*6Sve`hS`l*+?uB&2B8=NCg`U{vKlN#x!KIt+2Ye&NvMcL5c_*iL0#aTE|NKAOPSZ=x>UUgL9Iav znZPEU8hb=vDXEv$fUF)|G|d1>4df`AMoo#vL<>5Essre`(jK`&zv=^ZTiG1}qG_Pq zABCvJP-#6BT{Fz0<~1llYfg_7&ghE9fqJdjf9m*4Meoa*I+q%d+a$Vih#jKMp(6*` zK+kV6s4Q(>3MC=c&*ntgzfjwe7k06C58}Z-s{6#?v}8(DHI7jl%os=%rmunP_9MwS zMpw3)AkJVlA33dyLBP^+Evkq)2!bvXW;(}G`GtpzzJ%;vY&ge_->`#KMjlKu}qi1NsSZ;1P>gvPHJSLPe9ek$WkvwKecCXS2KI?wccfmTFEOsU~WLR z_}(?y%KktIc0)dU4yB`2i%tQd;thT}&5CkC=OifpWg=Ub%ehiMCmj_lne2Pc$otJ- zh7LNhF&jgICqlFbjy*#Y_)*6_+O8g%zq!Z#qgT76!8DGu`Js#Ed9>WQ*mN3**{z^F zYiBUR=kgK07qiAw+H&BAlbkz``g9yL!kUE6&dk2yxpH)Nro*ibX>CNgYrAQtF(&Z6 z1A|x4kv-OWmIs$ArY;h^tP=g7-aPY!UL$R&pL!X5(DcfV=t(er{ZLJ$0{zHD#$8YL z#cSrR6Ne7Bw-u-1w&7@rXbw~3Y{dvL%b3+V@)aoSlXkj11I*UnMiOQhY43~E~F0aoGVCJ(83 z#FEf)Q|_<#OUgk~bttZgEVUiI?uA{a<{4!JpO&S3IIc`dZST-q>-kZ-bC+JK%g%G5 zM$vjL^^DhN<+TJadLA^f3cl4Jy8>aZrpF1<59GMTQt2{bZG%gDKPk#S-kKS}VW)=n zZW&p>w_it8CEN?HhoaiTJhJDV-{YX28QB}q;I?@@%kfmNvclv_$9Z~!x2u2JV!s2u zPVtkZ(-z9gcFS=pJpR;5m?9vWuP93_5@9mM-m>a0f8Iewe>Yc>IxiQ+YqEx^!gHpR ziVFb0P~gcsb;>d}Xwa+%t30jjc5>GA#L{J{vm|<1u5h?Z%3_yRoSgX)dH22ZNNCk} zMH|{Q%{SfCCFIYdSiQh{dK-a4dtNV==zZJL)ac7`#jq=Xf6_G_5fbd+_yPB@)7i+!JJzEN(NGoH93f6_93?wjdyC_2 zgA0^2BHR5$XMW;V*x9WYnp=gxc>dt!7ACCf&MgRrW!vsvjn|l8>7Xa!bBS0rt=wdU z??M$-Auv43(PG#&R138@q7OdB#YhcVz{bNxA+?4oYXFGCw2PsIxQ97gc~C)4Brbwh zJ~jZ;ZqBsRd(IJ26I=hXh0S7T_3b9vr%4f@!GRQtV_Q5e4hDT zt2RE#w>Ay2p9csa;lu8e&^2rZ9|CEzbm z4Ln@@^S#XKWi361*)8ccdp*^!!mSspV%2uLl{v_V9J&LU?GbbPe*q4QX2s6lckC;esx|rI_Y{HS;`vxCaV> z)AoH)7AD!|sRHFx;BKe+I(oJRwCmavtQG?V@}D0?s=`gqT)fMsf%$x_*U1)f1Tu64 zMC5Parn}`(`t)x4G-2)qv)8mXV#Na!l{s}V${iM%QAMHa8FWh%jq;a@X~Lwc@z0Fq_YUe6M$W*_tSa5_n0mJ)N5U{r#T|_A!lAy<()#_p-E(uA z@aeU?Y$KB#3GH$zFQ4S_@xIaiLFL_0T4@P!dzpMI_|YSxJyrh;lcr>nygG`kUy)0` z8f&;(uYW7IYx1!Y#p1_yKm)JjSbx=c6T7$sPWt20;$jg7z$V*z70_wBp1lX7aml%5 zE0Rxl$)%7Q(OR0QFd3d5s{%)IBZUfbPyGd??X~*NmUZd?oBRk#4s-JX!@=AQo-&NYosd^`q^o9aTtIajTN~HGI!DWq$X-y+Y6AQ{^yF0N9l2W zEUD27&nx@OOV&X+`Z*rydg{iiib&wRKJ;*xiiHjR9Iak$?uf>i@|b7%4nkC}YKl(! zz0kM}LcvP zIfMb_4#g70Lp7fO0gAZatrNAl~Fgx5=h9`uyVfbP6zSca1gau%-+YyWbOa*0f z%PTGz7n=VR)|}vL;FmmgPG}>JKaW4zt@7plQm@ST)VH|O%31I;D&VlR_?2U39NsE} z#3pkW9{1#dQNPRwTI&7k&`4hyCg|bD>Cl3fBy;yBl0qxST2K2Ej~;FrWvm74H_yVI zisLzv#p_UE9xZaJ`BVpa;ij~=uzIo=W6<06kQ}geAd2N@DC-1K_I`_cWP6iH;8N@6 z>U!u8$4)x2O5;8YUHV4eH;Z2BQuA@6H<0>H+tjaC0Y#Z_{4IF63)Fjmp z$w{k0=bP8q`w#JQ_!FMFrM*QIymQ#id{tw87TNPXEqp1TOI2L3RAmxHJNH*-svR9x z&GFV*^(QSgC9@u}Eh;m4)}h^RacH4CgT^_P<53s3>Ei|~Dh=EC!PTYTd*rnnPztMP z(1i!uMGLFRG04vBJYB7>k8F6_afn~h<{B`EsiTHzdU`P;mw$K{{wbXM@+g^Il@V}9 zdQEso#>QC-67HsErce7Gs>ikPai);7JX8h*a%E1X+|lM$##?31#Sg@HGWQYSL?y`{ zuAUoCyIah>8=a|iy)Qhc_)I#wpxP_w#FN2CLMRPRwwglsdUqpoWsi3h#5L0DUk`I% z6>qHV?c%P&-6Vo~EHtUz~b z+P-#Q+rxXKQ&mVfn4doBOud|xLdwC7Ic;`b8wBoN_VK@XIr6rKuyC8?%yNZWxT?;} z+N>-Py<}H_$bacq%U=M-z?myNI`1dObsf*3+ujwL71tt5SGf3FmaYTZC+ho&r<_+P z?_@G$1dHDwp?%nI#x;&O{lvG(&wKH@Krdf2$nUF%`oRLjmDg5pl{b^KXh17B@P}H+ z4nZ832QPWof(lMvy>PC;GTG_Fk8yQ9FPzuaT%%$)r3YQ(`PLl)@BbX2V8~T3{vki5 zjvD09>4;yo*3)0PqfbAwH{qHfk+1IS$%$k(!UcVIa#(%u%iYF?)p>MOzSweM+*OQjl-C7A#*fo9XkjJTNc64D zQc}Ds3UJh6$T6_4YQ12ZNH=!EY(9axgk%5t@toJ8%TdxD<2@p3@APTE3 zKv-(G(`|w$&wKT#i`GEVn_PM3pI~`VUo>h9hz+JbGh>e)t_v!3?r0_qL)jm(8CgQP(+34Fd=OPOLLNRZ;}=B z4Rflfbzb&cRQOmao#QlRsXIxwR58>T36F_BtpytZL3qEzghgch~D@!@p5#^-~Aj8>^LK2VS92IhuQ8B%g!JW(uy0a;BV@1a4WKz^7 zu7r{$`dWLNg13_vtQuMS5dEf)z1q3?*JA|jcPAI_5Z>Q&&e8RQc2R?C{1_mt`y!Lf z?Zb-NL0Ab2RkgUaRz{LB>)zKa_xJacn3RP>;+B0Gq@!%aKowITs($80){-7vmXw0-jC`wvfR$U?t%g83+p%idnBCtbW5|aA4cg z5;|`i4Al^8y^|W5Kke<=a`mt5FYO?ht_8pr_smTR_>FDy#=^Ptmp&VhRnO|!$sn9;$)tbg4d3~$3-(YTeE7W{uvXBrx zlRW(GM8h}brM~JVrvCC)&nxrqzo$|wL_gbPQFHkXao4HQ#RrqoBC%OX2wuu@Yj&I1 z>uxbJe)klyl%&4QfE^7fYF+19-S_D3WRa`zUNbuAY$vQ-S@{JNYX`>hO1liC!Va)u zf5h&5mZR=Eb4Q^})&Mr?S+|`W)pV*1HNfw=Uj|k+9!atN+{DSdpU}U@9}KNPTue)q zKNL?Hzu2-l=Gp3z*s1W=d=0NjmH2vz0hV*t*}^d=9ctmMh0&ET`;&!t41D0-RRhBs4RkMz+luJHVUD(m-Oi{&hkpHnt5S(SnAIZ ziv=DMg0wvb;F9A4-saOHmp$mGVm7D{Y6P9cb~%H_jQI|Kn`$wDaCq*|oc-S7wnTgL zWS%8lgyDv}sAKXS%O)iV+&ZYnzy!!ItD3+vn)0%cgi_NPI#E_r8Z%{bG*p8Jt8HP} z-s8#<{e{Dt$TG{sW_kR^(v#R)p~Bj(#v(g=?Xbi%OTm*@Dv^F+d%H$(J|_5;&Xj*$ zEev&%l)i-sxQjAYBATX$q*x3Ea1J3u0hpvPxnuUwV8}7D?e?6W$6CU0dZ;tD#pB#V z3DlT!zOOjuM0>1IVIU<9hON_biL9T`$()h|fU{?$gpx?X<+vbRg@_S16+u~y!N57O zKPx(hfkv7%5BauW)M{D+C(T|tybg~qL>i?7jhZB%kqE>l&llNj{D-vjOG|)VKH*td zQzGVIGngMFc~op%)5pyVLd{zsoPa47qT$^JgTeA!`O7lo#`U0OR*Pkb)g~NDkn64C zW2zhsvgGP5cufVqww+TZ9xemR>%CG>pz9-==thh5=L<@vKTHW5vjMI?j@ZM2&~4s# z>sfy4Ujs%DyFcSwu@cwlgh(%u@%}Q+5YJ0akj1{S2uM*^ujQ0wpsS)lO~DAfqhyVp z5$u};f3_7&AFV5}h6kj*sXX#jp#>2FM&SXopY+3weQ@;Jar^d3jPe(S)x{2_UBrD= z2Ds-o9M?XW1}*}A5Njvt;F%_!TX#-sGmMvPbuNGcqrNGrrn+=Y8-Trk5|-_XOxgnv zjWJuB5%ny*HdZ#p?n$#Y5uX)2P;uBYQzFbiA~*sRgS8I$?x0 z0S3=!(|`D%m2@%LJ{33?Yp$jSNIk__#o-qAF`&}-Kz|uLWHjgeA?ETC^G%^pQ7ZXk zy4!U;@bqzdw6fw^mBQtd$w!UFG0)YC;_Jnd=O%Lcqt*bQB4Nm>*KA|{J@^I$rFkLY zbZ$7Cw|dSoc&)0pvPJGShP}yC{(U-8A)V#(*jQi4b$#x6onF?KV{3XLeS4}jV!`3{ zVgjvs{sh$9DRd}r;#>X;$lC83WYcS=4Re?0 zhrJ^!U0tBVDvNAbs^PJABloO&zlp*NKfX(+iv|#yX|hlfMS&9xFoFh59@d87zToN1 zsSUpR_(ectwWxYQ!9i1iHB*j;CYWc#ET%f@HMf?)!MU?7S z>Ahj%3iIpV&1`QW}0XKt-+-^Y8p$nrmtR4ZmN|VcW=V}1eh4pRoML0xw<_~ zgOb~mCthjm_4Fp$JOtz#M>P~E$@M$KWA}}Z*Go_W7aG}##kNvvHWz0h8j7f2AuY&( zJrtX>I20Rb0RjQwqAhwT8bj<}Lo%e+p@cJ>%-Q&kNGA5#l4nq>U`IJlq&hF{(xMJg zKw4U7;S4eew2Sb6l<-nHg#ROkYUyhc$bSAA zJQ=LvkHbqLaj>LG4;N_)hQm98z+QpK!VFoFg7L1B*Pr_ajRJV*hrkhEZd80zc)tQ4mu>jsXQ${Z5yl2W^IiU<@a%Hm;GPAH~UNm9W3-=t~DEM zP;P~M51&$G?k?UYDnSJ~M}D|)7n#fPpw=>)dAHD&kZ<>HAL=d4SB3UIqO%$zQl}Tg zo|9TU-1zKfEX$h|R``tb1f>#6(?n{-N8^=H$`6&B8&f68oTU^x27czaX=`R*Fi0 zq5W$x+Dq$_V%~Gn9+kHxl@FziG_V&8@dj-v0kw;S=ai@1TrT?NUK1=G^sVK};+mBf z!TB8Pj3;^Jz3(orjm^6n7wy_owzdxEE~J4HHYZlgHCDfbQn{bUCEtu8_c)BWk5p## z#fP#*_|-jvz=9sKeuk-@`>M&scZQV6O-E5CTpnp}eu3L+aT`aNiH2n!jW|aIs~V_= zd5U@CsG1->R4(>lqjMcfa7I-5t5-V0UrDYc=4wnF-2&X@U1F~mmP>xhD1XqZh+{%( zF!7i!ms6481Khbq>jkF*qxxx}7fdl?CxT<45@h`+lOEE5n_B+Y?LH!d*xP>rNOB_P zz7HfiOLLk+8iaPqfru!X=wxH@$OiPc63SzfYAnUctvA6~6=><*(WWA|wC$o}CDB4r zQjD+dd)CJ2(z5JKm2HLJ`v@OpfZ)HKqCV=1pphne7(Q5tNIKZ#(AGo<_GtROn#}A=wnFUVqHS(=G5bPtqZqX$x zk+El|)`f0kSECT@qiR09lMztQJcYGXwVr!~tI(BcIogevG4nK)MWUD0JHO6_iN@D$ zUO&Nynaq_apO-rCl92k3X29`b^sjjX>avLs(!ZWo51uYWQ<0w5zFkd(HfKLDU)BY9 zf_)MGts+@PJTDj9g^?UKN6m>eoP!vt(^p|SQNYnqK}uzM zVRPvTYNRucNa{lpqNU9m3Ru}@c%*>&rEF~((damsmcGsqsf9{jUxJVh_`ZUupOn1D z6=FT}8iM1oRA?-B()YM%A*CTQ|8r-FllHMH zIlQ~Ry;CD^PDgF&Q3D)V+V!9X58eDwr+K|PLs8eWvC-j>9WX8Q!zMH6clHRD#2DXX+NesR%LbLU~u z?(#Pxe?6|&YWnFjn_z9Ib5oACQxr9!(+|G>4|_KYM`WZhiaL$Es--3d0hy+tg)FMk zy3z4#Ngfqdu)?{*k3WWI-oN_gdkW0nF!~_Ip+qejCbdVUyOrdpJ{~0i%5-p$s{})O zwVQC6K_1ZH{ch`(&;H*rtF&S|NBu*!`1Wr`?}nws_T`zPJ}s=T5cZ_gQJh%qRhZTe zoKs;G$+zx>5b;r{W$lKIW$33|%%7Np3Y08d-OXCV^0^YQUUvZQ#WKlLidk_JgbQ); z%PO7LhC5LwLt&LOiNNuOYop&CtHQsk5aU`~-6a$@R3<02q`b99s)p?7yDLL}*{Iho zcphja8*-g%Q1c_HD+{r*_VO(n$vQi|CqH#c8)swf9X=q77tOkQMPuVHq=QK=OJw7f z`ww-O=@&~pqRfg5TR#%EF8Z4oJYyK5B%cml?@+15gDcY<@SX@`RuM* z_!A4Kj*iH5;BA#=R-PW17hb5Hnu~uQG&R~kO*T2{dtI?o*j{b}uDRUzMM^-InzWSi zOqSeOyEVj3?hNJvds9)qh&LQwIu3x}BJU^X548GV>I=Yp^uvP|w0(^p!g7sN)6xfW z=~v+};4>=r=5(#Dl(tDX+h8J0aySrWlH=pv6~`_&n<^}Lk&LF%GvGC6S{P5`&6Gqi zcc)ANcWxcgLN_`zBAUovD)PD&$qO@LXs>c{a8xJ{WY?blp6S&R9~?W z8Op^87%j|pLA1{hjj=4bV+Q$)5_+d&YaVBY6?<9bYol{f~nI6K0 z@L;5`XZ*`9`wLM-^*aLf6^N?$VDn$-@6FxIqw9k5P}fft*}xe2X+=|x9p|Q-x@teF zJ~=d&f=8UBqO1?S6rAel)5KLF8!Dj#nZDeBg^ORJ^9?2qHIVT?_vQhGFKT7t(wbgn zdw#kUF^sM8D+hbaDdK4lQj zrCC_yA{m#xT>&Ag_A3o!pGNJcWmep>W?56th9SSGv!~FOgs6U3BuEAd} z{7#hQw>dRb8{JM4L$a<}G&JGv7lpz@V&yO$`@Vz%L==gRjri*-AD;#0dR3#Yqb@YVNnD$_)-gH3bojP-+?bq@@gF6zU&^I|{T?*eoS z_w|L(c11(JY(#^kQQOelpaT3XV)Z1nF%Gndpe4$sWSS>@>0eCP8?Q> zre890?$J*~#0=&4Y7IiI;wJZ%Q^jLQ<&J5}<}88=dW?blVz}j@@sv%wSQqcz%O|pG zIuM(mQ6DEJt8oYe?9T1n(Fdz^l{7S6r$)ClK&NQuWC6yJ#o{h3X_l${s##TLTi zmK04ZFhAE>Wl%N|mojs4`H2^z;qoUDbQdg(b zsF>sM9qU6bGg6Q7grESvalQ?j_YH#XUkfk-(6r_*K%G^?_AG^@lV7AHU&PZc;W+6Y zCU{K>n<6?tmY?oPwA(8IMvywq9i{Ip6HSvbE8+(Gn!EV@L%j_Fziq(J52hPAqJ{Iiv>@n-l&f@7vbqizK4e2Vp6M_n zM;!xX4FeG++zsd4$-TfLSEpj2&nrzXsn5KE~TF+_F#8B|FfZaHwfj{pu?nrKGWBU zZXk4_j+_?@ld>FR(s(n!7ou3D#cK*agyYJc7P>lVACa>2kX)AdS12FV(o}SqG%+w| zidkBO>D+SHX~%INmGVE~#8D=ud zh&yx1w$o zD|6!#ZvppH+!yI_F4*WBo?ezVgM>(7dZLaN+a7AIHV0D9o6P80-&`qglP`1=b<{5g z6@hIY$s5@xY_Z~b`yTpS3MGzIH3uMFr8JPAp!Hm7^27@nf5ye1qUiv@N2`(raA?xw zyU#%H)TEx|pN0ZLy-GAbM!yo-OC<-wMG~BR^SFmQmDuXK8a4!m^N^7U`t*NnM-LQ{W7u`tJQXvkm;WS>@UA6 z9Zwk+kFaownG9=ZFgt58!pi+D_AM$^>!7ZlRed$%L+x z#k?2PqW`r}c`Z|XkbcLES>DJSaX$8b%~VydwM@YpCKxC{DOb0YQFgxLTvSQU@g}VN z5VluJf%HkYS7OZKzTCC2m9~!~sb!kcFsE625|LE;D%S0xA6c=>NstJ0QQ26a= z>f2}fcx@arbfr-zN|jDBvQA3rl96AgZF}kLF=*!FL$XLoph~RhnI4m>c>G>kSjzM5 z*pZ+a)b&bbLu_}*`Y{#fJL-_E{B-o-%D(-(GUkCcN51?;OwsM&V;qud>s)Q)&1}mN z+F1{i91c3j_-aMiZl>rwdhD$_O?F~1m3+%354mDVuo6we=URR*ZFL>CP>7dawTBJ{ z)Q=@CR}8d3*WfW%&KIf;>T)-{UMlmP>GD{pW5?|=6izZ+V1f!E=f2`VZ-A}OW{-=n zfCnOs7LxYs19NjLcMC6_;CIBzbP*Da)Ui7jjVC9nn6f@+nmx%8rWvEGvF={eONH@d zC1~c!f5fb9(xi8!sr0+{TlV&xz2AG@ zeeb#7z280ikM$&3dDdKWj5+FWmI3@SE(>}7!TC~kbb6UZ-bG<>h-T1vDKjUYk@K?B zIdF{DyEZhYV9TSojSDqhS+p##3C+iW^1KlU`E*n!Ma zDVJtlE}@9=lQn2LMiI`5Dh!?n_t7RW829&lhgCzdmw>Z7Qk3?V#_^k)XP)e+2bM5bY+vLDm8rEefx`Q}wf!!@jTKC^g>S@?$~M6>3672y{KK43JyY*>RXAxBF_q0i znoD-h^gy^txE|Iqk%=r>7Ox3?ha}=IG$jHd9+IVXA}~&0^i=731mWWYm@{uja7wI^ ztbSiq&%1%^i(cx|UN~cO3{&+scE$!O89&g|Gkz$|TcaV)p@+3c+4S=o5Ailxl4a!Y z=o>IF_30M+cw5j~JjJFWG*~P%VHY6YlXw*YoSNi;rBc#0Hh%Ra&X|M#HHvA1mzcT& zfgXCDmNMM-vB>A)9KLz^9A`Su$wbYWXCKAXnQS;=@|RYyPyMDnP%N*%v@Yw;GJm>C zq=a#-*rD0$(JddRjyHeMsgI_Q`3Pjo6WVh)}ulPwmXnhkt$OxAS<4MHDEna(*5WS#9 z+mQ8?m}^qn3%uI_eWR2jD&7>K4PKvR-ev4B&c8V~N{TqtQqdh9>=)!PaBK;Y>vi>O z^N>{K46Ap8VEy)(fx`! zZCIqdGEy=q6H0xnep&S@b)&LNFAzYvsTSU_qLjz2Z)&rFpGKh^Xa<~84i=tbRYj4M zoK>>KWN8zX{l-ijSg7(+S8j_4A3K6+H(!7^G*mvD-PC9VtLim8*AZustt3Cq}!BF<;KK2z<`sl$)hepgT!dp6`2Via4bBH+WNExUX zGV+O^0a1O?k8Dp>t2AY{N2nO27MMsJo)d9}R`604#S?$L=t}fiq*P`y5!7K-y^cQ0r}omK2lV zyi1pRGS|jl_UBI4Vz18Qm8brx`IY;9Tqh+lwat^eU%0-UE&pYuh#ezw_h>1)?lzIFt z1&Fg+q3r(CrsBCm`%7WfCQ@FvysKzx`7_G$Z)hl|OFeA86qYVTn+BpeKqTuL&iadC z^Z0A=s@rN^2ULrG>)f#_te*xQ`NidC>&mA0D)VPIu<{(_tD1mG-_gr-E$Eaa699+w zUn7e@G_ikPpXXU{j3mGALQUn8J)4BJS8OmAqR&PUC+K9loY4<~o!3D@?BxoGdn6N} zx2H{Y`YvmG1JmRhOhli$+Iie{?{FL!5qZb%=hLoh_w)e`6L)tPq=NRcv)(sJH}n(N zQW?ChD@Yv^ROt=1K_KM{c4v~5GF_P0j$I0zFrc8;gt=i^K<@vILJA3x|_c?SeD4|!t<8wi1M zDDbtAywLM%;z9_aWxQXz6HN6Xp4AT}u0d3vO{oT-_Ckph$U1dFX;@VQab*_%PzGXE zr9tqPt`W}oJQZwOVmm*NW9k8`}7lImMVl-$!=phSUjl z&n{cg&1iRBYBNV_J;@|kcP8%_@Y)oax)fS;`rCAmnFoN6D z=be`bg0XW^=eIqp%)%rW=N&NM&0fuW5&Ah>DLj^+@zya>ZeN~j*6jzg#vMEOEKjC$ z3m;{iz;oK}?~c`d6uN?G4p>Oz75OfA(EsAXQdW8~5K3#5@e-qE6Mt}~u&oCkJ5afiZlvCvf^u=BFz`nBKZ}j3@EN1c z)PSyHA{q30DIwmri`?641pwMbroN+1(UQ%4)PD`5t~!&%-G9-uy>7anEjGDdbp=Vu zG7}mnlGLtAhm1CmV~?#Xw5R)l1AhpCdPxjFCK8cV5rv7neDBJ({#Z*em#QCLj0krc^ytf&5}by zoITb6Y$fX5k|t(PygYz(;0HwiJ#!Z-1UD8Z?($C<(wYwyPiJiD z9={nGO=k7T$H)j|lG@bPPTnJRfE}NE<$^0^xlOk|L24t~=H0H;S`A``cNig%gA3?% zg6F5Rufp?)v7uW-hOnzr=IohawO-;FHYg+$RTXJv_F+*OChO%T*CUjhSa0cKno66r zX}^fOs8>za7T;Oe9oU zApKdWIpvr;O|j|J;+!TH?iIRuaJRTn2KK#0Os)H2nH&{8&WtHH;RX%PUx#y;W5%c!$5f}!OfB@x zHglHh{dw`KoP_V!0v@shf@SLIZV&rxz+=)va)3!s)Y|xbk5t;+G8wXfzcME}JcAdZ zyd85V*~=tqk3XD>;oVGumuI{VXA1KZasaz$qP3y`b_1iJxikvhrd2JRszsCLo*`}b zV32o~Fy$A;v-j`mlyHxC~YIuZAcM>d}0q<%ZDEA*DVKq{+iCbY6EMnmZW0THjLOe!Z&2YqUTpm1u7v zL`@l)SAfJXPlhJGv^Ui$dL+OfW`rj>@756j$9#SSe%k1SwPET+f#Nf$^b-SHIFmb- zJasZ9hC|q`xX^5JCWG*vQD$)ccwjcUtVoF3nfRFT*s7jZwS{;tG$^old{I7MfEep4 zE5{*7vV#TrxfD2$epI!21I}N-j?RKp+Wf47QRG%MpznM4@&{7s;5RvnnX@4GUTw|2)scOTKu_0gz&Ve?)*a>2`dm8 za(@hZ_@F+&8{Y5I*MuNi9l<7M3t&7PF#f8#v@Gq?W(nCxY8CwIU8!tv~>qmv=C|EOIiFCY|rUxZB|h# zUTT@kmtY9mG}iZkeWrol3@kx}1&vt8#2UJ$@UyTpm}kWnl)Z0hM^u9WQwTj8@>Ye>TkSa22pp?EHx@xRHC1a%P04p~!4CsL|iM*$6*7dvc zAbc!74|XZ)5V*;bIaqH#=vGS<&qL zYL;%Cu-y$g;(^TQkh|$qgPEuSNP4`k%-6!<2a%eFRzCAjahfERweNcs2A}X9yZIfU zhf^UAeB-ad@x{HtO{TA0`YGmaAKpw5t<~1-e;(TJTV%Z_vcM9(;SgekvN+?uwv-#m zc(^}p)<|hwPQhDBO^B)GN{?z`M9I^{gbxlETj~3VyyS^GFfFijZwO{ZG)7IITSaJw zLmX#-r49i{(}DYOBaCkH6y%f)3hISQE`as7v>ciT;v`VAL zK7Y88kZ|?um&^ubdG!t{191}ye4<2Gk6yL$ZeiDKwHmNRRVrm7X1eT=1l^Pvs@9ds zNC1OpO5d=e`d#IopQX|g+lh58^ z6Rwv7_I%w4xsfOtgmBE2qM6%vc|k0r$lcZm#noc1L~UdxLbsEwyY$n{4-2ccE|$ow zWzq_qPhulEBuJ=4T#eP}Cf@X8Orb;AK2r2<#q;pS6Oo+j@6Q(iTkQ}{f7PJp{PH$~ zpyWF)rN2|(vGv1vfr|HiJ&5#$)NpR#1!h{KNtv@&8HDrYT3wp1(3+k+M-5*0<<`BD zCsZF7m5pYxwXE@@D!7Ypm=NF*`1Dx)E5{^pelM9@RsG z)pY3s1+b6&<=UYR7!Y&FD5GR1tay%4(jr2VIEUUVn4L@qMAVohv_l>z5~92!>fxyw z2nH){dt=qry5Z>@#ngA}&V*@+u@n-opm?=e;N&wQ7sq8oNTs5aFvK24XgBX(Nf)B_ z7g9RU@(K)i<1KNro)Cv{eaidSrAF}LHQF2!I!RgHs;%9t+Mt)tr=SWAZWhpPZisl) z0>)J_V{8?}K(0s+_x-@UG|H%!Y@ec9Z*1V*>2QR^=hzk7jy%XsAnPIt znRA9SY??5&=H0u%5k;qsBM+aBT^DPhMpGK9}TcjvpZmL4B=CFo9g4aY^rx+X=B!`splMHXR1A`Ze~|U!|0&f z&rNz=hjDaPndZoyckMyN9(8;9F<&!=4b#1^3!!Yf;4lAMR1CTXjFxppEys2P>uF4ERb!PFrWJb}N!PS@%7IFw0vA_}K#yy_%_C_a8MxGE-u6c09f02)KA>}Bq8)Y`i)@6~Hs7X?>)+^=04GA0u`Gj$vw>?Ji;ljGyi!u|1) zb!<)1&|_|zc;sR4j9SUcXiFc;@5E4OJT`LsR=q-Z-AweCml=eMJJB?VDEUR^5}sVI zS(bbfPH$r-5@#jE2In5%HHK810jX$Ul164{IKI}jCEFo9W1Ci&O{m>Mt4khyJRwd8 zP1L94fSSKFW|D^kK5c_E)q@l+6S%%?yundqu^+W~CZE#(Zhj^buwC+cMwAt$6XViU)p63{%XOa_IA#u8(q&bc;%*`4tv>;2L`}e#L?Pii_#6}-_ zJ1};}TMX`YKwz1Lm&{cQMLg!I?=uvf*fjrshR#6H9y%^;WigADo!%>1nUbv*ln3Qy1_H3>IoHn9k|_aMETC4=i=5=>nBa<#7f$rZEPjO+*4mULoq{sv|ChzPlM zWJJuIChzs-+V~69VN8SuGN@Oyki(W}>5Vz*+xxvNwe|pPYm2)2$ULEDa&EH@=}x6V27c2Fd(%koE*nBV zZ48oCUf%R2xTEzJG(ugjT|ud4z4f^=@*-vQ741E;k`E+0&*+%L?zPK38Mj)zG&K;K z%B;!`tQ$aTU3}oWIf<Czqj&wcPT37YP`L3@urEws}eF*lWzD6nJxlDqqOCj zU@318NyULw%6B`Vy(kK*5dRI+Ol4@|OCA=X=a~d=(0033b1H>fec>D4w{ilUA%svO z{d-@vbTL=936XyhPJPm3dD+p zi_YDL@9@*{-9&MN%k>!6kV~DpA>?>eblS{-Y{eoX&$E`L=$(`gj_45y(QYY&0ExrG z@)DArhQV3W=!rh4_`mpC|J+qGhWb@vDEHe+HO8W0z$gx^f%XR>|!l zDRsTKYy17h%1Nx1nSDs0(!i4gV~S)CQf+@uE!`5EIBVN+2T$H4hf4YQh-Gb?@4(zF zPir5%KEjnjOMsj|lTD;m+D4X{xiC!2##Ep3YM&gK>05VEc+kKTDosHa9)V~&g3#8o zNow~rB6T0#&uh>^Lu}AJg}DK7n75Wn?I9NEW>F&2zp3j`Eh}%Dplhh$ouoz_I;Kiu z`dH>ZqMngiAb=U1w%^?e#Qnmuz6(iyb8?H5c}8|9=8`!tw5Mv6RL92*G_X7uk_nT_ zhs3mj399;ZI4*G`O*Adz9h|F1+3H4*&i=>Tdc`q=bnLB z8tS%WmlyIfYsm{bPa~}!CO|aUoiZRjYIW#-W-1HnRO;}Kz=8|%Mei}Lay?Aci5o{y zTnX=P^l=d@|2Xt%r!>QPq+BN)qDbdl5SU5m5XjE&>Y-a2pj7VmGSFea)zq%e9*5IS z6rZ**En0WLnP^75x~5&a)dgxTt4a%#FJ`(ysP>ZCxSbv2E^nDr_&5vQE~~59FLq(L zSSP7_bmFQ%JG5K68JBoLy2s_Ib4JD-k*)O85bZw3SW+{A}Rb8_k({wKLjNKUCxK|YL(NR4%pBCjJH}Ve>$H>R$ zs5(;+3jL$!?_Afp$rN>kM093!4YX-awF51paIR`j z_BzT`CnDZRWI5n;kYsZce4LV!WOkg;5XDm@SzfZQ-ZDqE zP^efSEYF#l(j4GFe=RgN_qjp6g;J*LJAB~#%OCTYQo306YZO>3sZ-bqQMajSFwaw4 zOUoa~Gkz#(?|uy4Z&BK^I7ir>8w!3Y=Wd5G)6}2$w9WV~H?Pz7f>Ho$?l)(q8&PM$ zjg8k_qUbvXUC$D)XI_AOHIO@7zk-qwP*pwXXLd}=Oy1B)=ig8W*EU2a>C7N~X?z8WTL zDm~~Nc*YgB3yAC!$D>ku$C##4rBA+B++-cmu_%|#w;}Y~6^KV~(LPq6+_|{chHxKm zpNUovKOxrn$W`r}s^#5Dbqf04U5v1F*w*3;ZZSYNET>}RqEuihA|itu9U=FiL0~ad zAJko?B0=yJ6f$@v@f6etRoTSuHN&{}7n)PxpWg%nwIQyz(vQ9Da(rdg%LThPoF`ip z9BElL%c^L%g#u zD(()DN{VZcR4$wKym?N7o@rDeTS~M!1>tO==dv0kdgKPY{H~al6nCsWc{_GHp8uNw z#8Qps{xx5G+FD+$Sh9urTsQcs_w{OFg+hk5V%s4!6=k<_1aF*pcm^v*UY7sMKtYsu zABm;1UEnkDI&)$ecsrOXL(ZgSRr><^hN|2umcdUP3{pmcZ_5freiDGp1)0&Z2>TU{ zDWZqkeU#4a1ex7_P|u@XGS9zYQ%RgDv2J`WtPnK&ytI~k6B3uSSEA3{2(}SJb(mD< zUk|T6ATsX0`B1)fjUtY z(Hd419~~Q3cCn}zEq+v*>D!z<`Aq0Y)96#Tjd%Q|t$YcN(nRg=c(%w<0Dk{g#K`73 zo}c*)ZOOi3sJ{{;myeh<<$K@x8rtnqKQ_wfqW%uw6h)k~f{JN>(RhQhi|yq=?tpd9 z*u^+ec`_|`>yRt&7M=WJ7pu+m($B?_^9_^%c;4%Lzh!I9#!u<*FmAJs7LtipXUV~% zwPBJdkFL#~a{6lhO3gMeEyfo`nFaT|qsK2Kgpi{XZW-W01XS8r&F5-t!q^j)ksmj& z6MI^B6b-%_ft)HFCmVd-Pq^WAN)qYh#8AY4T8o}n~mXkdnNk`a=%S;}f!amQpSS~%kH14HI z58iPrlhA&|c#8wo{Y|gfWZfeG941M}S`|uSymdy|h3BI!&Ccyu1@BdJTvdYFjZ{Yb zJfl1~J2ala@=C#3Nl&b{Mo{<%zI)vv-RR6qx7(R2^*aKq8ojz{{u~(0HF^I0=!2OY z#HWsNqOov(GtW4jP?}tIy<=CNP^`;j-6CGKoJgP;-q_0Sh1{WPJA7meokSAH!?-)S zIiUf!xVJV9zueS+Hl9&i&8;HQ&B$`2<@&v)uJf6aK!VJbLe<&CC%&elpgwLN8m_4+ zNz~UQ6#Mo&?er|WFL=7`C1-9LeNUo?#ALkq4h0wP0{`3AckwO9$j>KB>;(IrIBR+4 zPNgA!Cdhm8cdl#zZV^_FY=9rd9@sMW=a^&K(1@*DGFTA}Jj(vFD+q<|jtF)}jchh(v$l?LujcWCjfT>Vg1SvLLve z3_fP&#f6nVDv6$C53}fs35G3iX`eM7+J#Aaj?M~vO^cuR5|Wv1m8=(jDZX2wF$VR+ zydPEDKvhcF8d9r%_3kVZn&^Hly~x~-mVS~b!4A4}U2di%UM3-t68EybB>vT6xvQ?v z>;)eK>la1U!Yd5>67ikvmZBFKUcIYa-z z)51%nF}1Kg9fZFMo6YljRO6EV7$o19ovmpkEU{a7K6~zdm6fO(Y-83<1Cg#t=aE;) z=%;lf!!c>BM4zZ@B4fw+qlw_VGto4&lSLo48NO@tHQ5Fl*Yu-(do<>Sp4+e=jwpTc z_URHCxNgLLX!e8th$}w^W77qr-&fFPc8Z*q9++$RBc$a@%i9crPzoFMPgvl#pQk zl#!eY#&Y$cc6ql+Wj8DSrJQxW{AZK*EaZj6c$c!+*&!sS$fpzY$9V-0w@SymgzDJ8 z!m8htgm_oQPMg2a7c|r)y*2)R-sfJ+x3Y`WY#lbAX}wHA?BSzkk{doZLXc&)T|8Fz zrP+A6=brPwY`is&^QIO$$8aauI{M1K#W>@m$z5ruW!vO<%{`WqkJ{~eMl7IUh3>Z| zQ|jK|b*C36BlW|H1*8>9eNRL`t-(ys*9v=Q&J?TKv`NaeNX6YH*tv8ohwPTV)|O+Y zsY)Cx3rXvcTecQd?xeyTB;TDqf)B?7r*iwlJ`&g2TLg`BYN=h*w51zE8r|H_aISzq zoTl4L9Lykyc_s~4DVR%n*cPo`9xvXsvUB;Kf2dUfmV74Vx-Peby3)YBYIQx>bSyvi z_BQPW>Weua^S?Z@P65_av$j55%+l@0cmxdrOUzy0dahdX#xt&3Z9NxiEj6xZ%uPtn zMlQmKjZw@Ce8RbHCRKKtni=K9n!(nAuK z^Q8;t7wb>X(d~Z*M3$AvMH&n%XMR}7BB=$3Cf&R_OX9nT2hE3)?-Y;`)xq;K14&F5 z7^CPRZY<0*56G41q=ui?MUcd1_~tG2nXY2)zG0{QoB>_eWk(b37IZ!!9#?vhdWI{a+z#CO*5xE#BDBBq?7oofyGBBtr$h@o*r<*)*78*nIc>~&Lh$e&} zrqNXT{(P(LAT(i=Wm(^zXy!3#$9f)euMjai{_(~+qR>8gvvoX{f`pUw0@)Q+X^3a6 z&ZcgO6he0V2r41+Za~md(JDbb?n!hU+Gqy8J2#Dan>^7ZED@!#)U%0UGGDxTG_hmo z$35)@w->-^c{JV?ez|ZG}prW%|;oX$NH7~+aFlmZa;c; z|_lR7*q?hirX$baxhh=)&dcC$C&G@#djT#=#)| z^_Q}J#x*;|>b6_6Q_7{LMla9Je8|DJh#2bbF@FV}a6@B% z5F<&jF|lh4*>MY&4kI`pZ}wq}KYnwy0h_|cJ2|`Xid3ndET9Z|r|kuk zNeI1e<^8~}qM4hF+AHW0;h~9GtXr44F{rgiO^9YLRtqnq?sZLo`(xnIrJ2eMgf(li z3}T1)zV!8(GdeC4(GEpD)>Jf(vkAsL!qH72U@>BnG@7o~16_G(56zKXD&u)|OT8qW zWpCAj>lksYVZ)JG;3dXQ-N<1CUz>}06%;#U%f4afX`}+3ZAL9gu>>(4<*=Ac)<4ti znYsB+jWcC1%rCrd$9UpRqFVhUX<805Avr~MvqvPD^7SNZ|L55^RTo}<(vn7w?|m^% zXUuoF;w72k%UMuX0%gZwmens^z+E*oNEC9jA=bUnk1fhCo+(prZ#Xdi*dt$;lpkG4 zF73tAwQ2SwV$GM(?XuniPBCP$?x7!|4~C0n2c>&Wx61M zw~dNotYS${D37IBc%n2Un3lOGS=oiB;hZZ}Y#11%Y%Lt%)kmI5v&5!iUCujRoh45& zce{-+X;4Wi+1xT!IHx-zm0>!*xDcjovtf#HyN{Sm>HqMU_o#(^_~N)L3lG`?5fiHr zKhMj}M1mm;oC!1hsH;Q&!;B@zpWV3{RynRrtNBdIun%-V<y~0#Au+Fxst}6j+pvOlR;Qn+{;0;y zFBMOIDTDG$jT>nhxZJNbZvIw)=63~BWPYhb^S8nzW`C=N@^2MLk&u%7dr6dkR7jD5 z|5YL7mvSn9tB`UggjDda3Mqf9{PMqjg_PA3q5!S8=)yO)R6C|$zr_Xm3uL_xdMudl z*S1ZR3e#x;-6KWQA8}uzI|bz!y*&l}5P5V8iYj;g=5Y#2l=!lF7;p+2NOv75BF3JA z9+0N1JxlTc?w^fb|xW0z`P&|oH0UnvI;X2`OuonEQZ~tld{-^K_rRXQdBJAb={D}Ch zAaUkj68ayM_(MZQL<5wF&lWJ9LT(hqswzi~Szdb?vD`Qv2a;=R#iEk&| zJf|Z>>Q-{?J#|7C$t)JM=29-yGGOy5;AuN6$&)Akspz0<26rxwUx9Di`6qJPw2Ev4yqBAHMm;5Pcam=nK_(zG-U;q5uJa{;GY#KbG zbqeZ_;RM!?_Ej|l$?KLmV_7-hZ8hlrRF2&yu>GZ01dADF{; z@h8rk5lR2`&;J!3fYeTE7Ec=Jk4aIeVw!SD*7x%nbsMklmTn^U`%XcZ22Na0LG8vQ z1hY%O$+=nJUw{31ZV>sO6bG;71}~`>lsrMy$9R+EEgIs2Un#HH{bqzgSj?l|;Qen; zcI-}Iaev+aJs)zykMHyy`*0lq`%`{3t|pg-q6CiH3PlwwxL}9Q?RrYwuWMdmfn;K1gtC@C$~Zh3&wH^8vYzSa`_aLU2X7_vpR$Nulf`A#;LBdCcT9gf|{dC=Vr|;ahckt zs5}LgQv!`)@|%Xc-6!=9magSuV7fn3$MdVG6NYHGR^5VE0XU)Gq5wGmQt(e*6mF-W zA+cj0qhkuQA=;?}9PsWa0FS4_{yA>`Lg_>Ly;_yM{@^7cQ#0{kd_B-q_$f%u8n9e{ zu2b~V#~CVf(E&jxlPbFf*1IJ;cAws!Xm>tpUY`X@;@+yz{ZlmlAy0CuPC;fxf5q!RKWsdW03(|BKC0~Un3~B3 zuRJ+v5IA`NL;Wco_@!$wW|iS_pzmsc=;95GTmKn8{0o*sD|qvGD_gy*wTfF+x>$Wd zK=qG5yaFrMfC(Ll!`rEETfkyW$q}3-_N13qPy@lz?`Sk`S4sC)k|Tcid8%9! ziSv|6kOrG*-_QUX6a8|T?b_`VkN#64EMb|CPeI&4TnAscPQqX#Z%*ur>1VIU?TVUc zFp@@qO;kz$ah?5@{V3E=vhw#v|JnGz@k#QNL_FL)MgTpz0$7>|gJ0kD&o};;pO?uG zK4%>)sq8Wqm;5X$K+f|IVt@HGhI|;=QTMFm)#9wb*b2N#!^oWX6cpdockBVsuAW#T zq^X}-`VX53vkUGV&N>Cz_MKqRwPu^mv#W-{C<6JahK?l+_u{1C1z+Rd@mYX97bC!C zI!f-I!Z2@$njVc$ujf&WqK&0?Dn>A0{O`&5FA4dd%HF%TWSU&RtSgI_4+LVbCQecZ z`Ai9KSH8)m2~Fyr3jsmmNkOhAR(xH{{xTs8w>vB_af(0(6u{2Tl6PkL(-R34n6~3 zGkBNj_fAuYO{-4tnY)E!*O)_e_)25ziTO*Lsfgw|v2s9!JOM3Jb~m`ra9?jnlhJWV zTTFIeDnAz^MC|d8E)j8r6+86PVEewVy}3u%-O|Aac*MI~$FTLzqoDUE%O~dPUl_9J zJ{`0DLRE=fqkGT&0)vx1F@gQO>lneZ81-L$4rb%V9as1oHAO;3=oGQEh$7O{?%Kc5 z4+QhSt>^|Z!x|Tv#YxJwisV#^3jd~A|I4-IKdJ_PNUnKK0?0pX0FCL-FOBUxScyzs zJy?35Z0@>`r7(#P=@CZudDsviFj%1O;NHEifldJm^z82nlvr-z0~~Pc^Boi-ny=6G z4Pkzgl4maMDsYVI3U3-asZ!Gbo3WBQeL4koc>|Wfi)(HOceTcDn}g82nxWENs(nYy zXo#h6Caz+s2PT;N68>|@qVziqtn_y{+23Oh028yGVEp>67>QJ#Sysrk?IWRntr^)4 z(Kkm|+KJ1MLx^KtD|17XcHa8ep8JtxyG7HWS(b`!8hRE{cE{ztpqT|(AfKGe?D*WR z5ILLK1RM9ryP|j8U)^C_LgP0hec5Un`m3p3o+UB`^z)pLOFf@R+~{dj#Gy$Vga;F` zQww~`(|brO+QRW9I>So~C%e{tyd1o_8XRMw0lNIn@npC8`(ATL+)IJ)K)BS5KarLO z6VZQ4Ivh9!O%0!dSTB9ZntXC{Qu~8IFeXuPGTPKT1qEL_aygU?M%x`8OwF2_sGdDe zS7{PEK6c;A`~PF}xz)9o+0NfO+>lFnw8e$4{W-!W{*_>^UwMN<37+Blm7(x^|71>a zQ8vZ>f3oxAue>kF4dMBfn_54y{`@@aw%&~_2}Ya4@T{-J#Z|*I2Fj6t*g|~QAKv~K z4P!ANJiABNHt(zUygT^Ak?CnJJ9X$O=r;=3xPBZGR90UArnRax1!3XXKJmwctaIhR zUnVfFKIc`X#6-0YI!;!Dh8lhfN>#~!;?IAxXu|h#+Q#rlpcfT0+QfUjS*kXVejQxz z`xip#D$2tgXYLP(p9p*}FR8Bpb|ZD!T?ah$Dd)d{s#!Pg@YyfIH0f7rpkc6i`V4~%CId$ z{F@8hv7N{=BOqemCJsJW3*KccPwUu)9F44a^;)!P1gi8e{mQkUC9pm=_g_dXRX4jR zASk#zxf=`3j#D01LIHT(t z;0J8UPr|CD)g1r(AdK!M?cCKGD3I^Dp$zEct(#GtB*u zqVDz^)Ynh+t5f*D;gB`PC$H#!@prnS?|k^-!U2J>j%&Yn`#186HQcg3Tk`qT9V*!Y z`q?DVgd7rVo|6T1?D|&l62e@|dHEpM`PIE(P3IpECx`~+pFADyl$335a{blMmu;T& z1tNsiZz`+Sd!|45c6hnko^-tln~=D%qt~28g8;mNN+$;>! zPeD9A4#!K)yHvwjZ+{8f%zoso9!OpOL!A}kL;MR<_g^|^4IpOv|40UZIY^@BWu`}C zw8_ia5n}j2;|m5qOGh9j=SlYf{8G0sFqqvyW+IKU5Q&aHfe}*TD8Z;^edqn8Yvy=! zr=|;Y4jL0Gmis`WeU`7TR?(kaO0DdJwEr%!kE;zmh%u zEo4=6QDdtNfIB#$eg+>HX#jD!11J~}ty>rToLmuz02JWwDYnej^AItfH(_M=3&AUe zrNNy*7W^vf;A{z|Q9E5xqte&z$DYx_CjCi_b*T^O{q4&g6yIx8K=AO(V&jDSS?PUOPfoCV zN3riP&=(5rY&v|T8l-8NEtb$>g@0sKRMv|}p%u-mKwtQ*rs#v`$OVr5R1Tk*dv! z6DR-3Q_viF5RmlrxC}c-rHO{4b%?(QEKcH)wd&vAu*EkjwF8F@g5k%B_uY3{6Tg*T z(%W$W`uCfI{0W&TBm1fS-?#Euq)+Vo!F|ti}L9EUE*yYj;ei z`>8zm?V`d4z$DuXzc3tH;dMW&M6%@g2fDfY86Z+tPXXZq2Hspqul6b8b?q(V)Wb6g zgbkaFL6bW&4S-+O*%SS!0me`X7G1wtTd5XWJ?k%UJOCv0P6a7#6SY8252fk)x_H$7 zH}SLHi}=D4(SzSzp|~mr@t`-RAggsntqieBylosb_}dH5PMm^D><*RynJO+}Yu*Er z6)cHIklw9hUq>zf)dOw-#@72eC;Z#@pWvxKhK*^O&+2aB!irlGw;}GHz$~x0 z5aRifCG0KTGoeM)^^Q&s4z?}?VuTL5JxJ3T06|~yP}u`u!)l?Mm5+{M1x{X( zpG4Xw%{Ou; zWL?UT$G#qMR#wO;{v0IM^%;ORA~&es4g!(F8`IKq!->j_pmoN2o8A~N{;h{4jM}6g z-YXBpehlxL&#D*=vG0u`9#t&$0>F70UC2);&7WCX@_!EH{M0BYH>V-(?c6l+Yt=`e zrKJ^p84rL_{SAZsDR%<|G`HF= zI=Ekkm0a+;ADk=h1Hk=^eq}1l8Nmk>_?3mSxm#O3M-FV)83n$Ym#1d(T zEa%13br}z%TKA`{ug4czSlSJK#o$SP0Uw>7GN6&$$JR6|6!2jW zHJUcvi@;dj#H%R}t+hfNAdpwH6_am@7Q)d)u zZ}p#NOo`&Gt5B~{{3>wti0!ze94PdT0_^@mI{-{PDLtmYQiAR~3KMHy1&rwuKYr8p zP?q*buT-xxs^BGHyC46}b{|ldYv0vgFa9bCkZo)QkWHjz3%phYNL)OEk4Z+jri)n& z(-Fwn>@+BR~(}|JW~g&$g|wdd;oVLy5;bfeA9kr7tO8cTO6l zKC~;|ym9QSm2XaqGJ%88@) zw1WpZc;#W=i87Gbl)E04pdRIkpkjk`>`#P;Fc~o=DrZ5`{UcJ@p{F29!{tRo*sR0XAbVF4+N|*4KS|)kV2bvSh$aU)M2+Ra{U;%q0T590eBK3 zX8>GuDm}T;yuR6=wT}VTa0MfFf0|+|vj5q2cs=_Cswey9(b>uGC$HyEZq~Tczj-8% z;@UeD+r_^dYu;js<@({$JHl^;&;CDXd(Wt-x@KD#6vcp|C?c^@K$IW?BAFJIEFiJT zt$;)&XMwGvpyVJRAhbx5EIHdKIcFLrNzOTT)4jP1pZ9$p-!sm+_Z#21_ZI{9pnLDN zYE{jeHLJEPMT`xbbZ~>6E$LllFm){eRQ1>hg~Rv zTeq^qxiM$3mF4-oj*LT3N zN&c9nO!G*pAY1Gu*+EE_2GGU1eb)rO6FWolgcjTMHH;=l!--w5QG1OCbnPeL)6Ust zIDkNJjDt&o3r&G zckuoXSW@1IBEt8{#1=A>E@bPWL|31Ro&5sn{Z{8c;@D?7qAw#{N=-V}i~GBxMFx#K z)lkBc4aikC)ahi^v~(B$^z?nQOdq%cSZLyj0%1b*KABT@@!OC%ZNI}|VU3?Y&ld2M zJ6)1y(c@wwEKw5r<~dkU4+G1>AIWHb1;;xc30Gi9=eKMkw7>LJ08{vzKqkKf-xfM0 zAQ4!YQCyV=b zL^?JRU~PfLprs4&}BXwX6Hv& zrYpmY%Lbb+@X_B}9#nhMWc-ZG04HPMTXh-vCWlr<_vVf^i=Q=SQbyvYdonKK0+&Ia zY8yks7%dCm9O7yQo10+vQIr+>gIbRa+wkwZDnJ(7jJMpep&sag!4rn#;U$6 zZ$-tgBjdD0^lm`?$>}2+=zc%JOcm2k(~yg2(O)QWm)dOR<-}Cp$gy@%!afFl3t6!o zHHpndu=EzAQ8{LKP&llrL_d` z?NR?u7}R?Q_a7$~-EdhI@jA&Jti^7@QXrfA7HqY7~_Xd$}IY<6&>6a(WOpvt`?#qs>v- zmHRgJP3gvIA|F%+!U_$Z6qDkRewkMyW_$Z zo8tAdT!Z|f_CuOR=ge%Wb)(on+-Q>YIm0E2bnck3tu8^1UUf&W3C(`;uO0e#@$G*j z{&*Bg(R3Cme(fRuz!_@z)wL}ZG@eQy!X1Y;ug-tUX^O}{sM>Oz-;9XUMJ|lnk{Eie zfK+sRbR`Y;y>>HXcPj$^dIgwlwo)eWkv`B@4A>cHYNfRSHuS{aJy{!GnLtwzIS|9x zY&_h=-Cur65SA{+Y&9W6b5OO8w5#pWM~||c2dQ8A8ECPu+ae-s`|NAV9g6^rL47uu z;;+4B+($d#?jfL3U?h(w1NlI1;ro8h;W?vO|-Obz39Xj{%SPSM;ZY@2r4?>>#S%v_`K}{(WHr z&Ezd-z00w2@aSQ{Z=WZR9*?0iV!=Kpi#TiKwF?*3x-rJ9)GTnq0XZGOK6yu>Qsny_ zzG^=p2ZH)lNpwazv`~H<0hS93fR>zaY11B$&2|G|XB+b5!Z)z zNr}y~>SrfT=}FzF#x#bkPhz;6(G8;H$ z_rKRnSXoVpeGdyhkC9fA-zT&G`i{KAjYZ>Dyes!Z!C~<;Vh$I|xqcBZ3Cg6+htPA) z238Xg>)e$&S*D^^1rbN2tmMD1d5)SF6vo-CT%SVI*V|=TE9n5xV~8U;3I$D!;tvC_ zi9UItSbAcOSU*_~cFru|*}Ks=(jk~6Gl^AChy)B#yedpi{Q21p1>XfKW|GT3*^h)= zONv_s>5;4<(P@42ey^#Cs-7UhHEe)iZP|{c&mlV7JT*y=32`Cd|KI$DGL=wVaR)Gg z?|>E{(DXG=MKvx4FJAq4ruvLDW$1x)!7<^2XrIt1VHbQwY`NI91PA!{r_bQ8$Zhi+ ze{>C|WkVDog$tODbuo{Z+h)EZKlq~}&&+gwp~UxYscP<%X;70~!7kjT4Wyk6nqIol zaOog*33Qkm{RSLzY4G?Tc{Odq#*MZ6c0S(SNt%eQ5hUrDRywv9yO&x(yvtwQ6Zp%9 zU+k--oul44C>`2S=6(j?jNu8@5$m2UK?&h~G8Wz~H0eTQrmhiyQXv-zxp07DUz+}e zaU${NZ~T(|Z~T(+A3_Q>-sr8qNaoSp*_R)K&8+7VS)a;xeOn3FL69gkx58}Qv2}FX z%}FP1QbIg^!U&QgaxqBuYb}xWB;DNKHDX%rZ$G-9E~;E{re7q_)cjfS<A5}X(b#MUZu^FpQ( zOX<1S%EX@)yq-5TU=#oCI_2CcF^-4x z^zvM?(#*$l&gn*8UQV)LsP5 zD@vg=sJ^?T(7We0#nZh}C8}oG?~_SpV>hpH5wYvM=zX#>@P|YpN8HZYQ+K)_jD-&K z_*k}UDhso1(B?OW=hHtpnTaM)#ydAzFhKt9c&vJVPF&qVTa_D2W z*p$pSzuFQNyxo-`vX1+i)C-1MCPqw^U*C+p!k1O)s!zaoT%cvZ+UEC_r-22zB#zuM z1*gYq>hXaM$I7{Tz;8gX4hQh<k# zd1jvnlf-fMnnG=tYYci48njCE1I)Pw6}awRYtH||nt6zv;*1QLgArM=pTZgxcvG35 zLQE#$l`Lh(4I)v5{Sw+inm%` zZ`cUGX)b$0D?<@qR$uQ=<7(5jq`pauvmW-KO zL#sP$%OZQC_tJ*?$T;`s`f0=b`fp*SY$D+0AJiUXh2h69>7L=Is(8+3DdEBNkYt$v z__=@gryM940JHY5Hk3d5C$#=wUNN7idmKP2c z#LIJESf=!mjoO7Kt)ofAK+ilX=;% zn2;FOrpJ=Ze%Tg+6zZ+F9|$PS9x>UKMGN0~6|P$&V*D%|WNms)vYUe&==6ffjH`HL zXU{(i@aMu5+!UFevfWipmbxD^*u#z4G8rky{&8z;VB&}m-yU}FK1$zECpQm1@9@Zb zbT?)OJ`w3#;&M*_5mS1^OSQ_?=#Mk=-Hp7&s)SQ?65PcmL*+NUk|z48_D$RAR`j{% z8R^Ql%A`rA@UKZDF=N*Z+&nsuaUh?CqV{G+vfR>OnZ3~+Vb{1OQXHr|NV26spS9neR&xN`k8+o=#P%Q|8m9O(x8cQnd744usdEK*p%RZ2$ui& zzf6Jcb@{C&{tJ|(@%vfF4JJ;w&GcEDeQ}mMKAz2*SIx~zlxNj0)S4tACR?p5WIS@) z82>QkKRbaAjzxob;;=x=Gxji%2PgTPpCi5aIdk!K7FHX`0Y(yw+D4i)yt|Wiie=7b zv+Ze^Vn+2Z^RIeKXs4ak}+Q@rgiq%5R$Az#vFP%0;}a=M^zW zT%{t`OR8U&H8Or&+xS*sIQdrQ9}BH@I_M8ca4SvnsvM8`wadO5i?TA0g)GGxrAN3( zzJK&(sr}O&qoMXd_r=8V_ik2uHx!Rn3n=cBxjn-r%%Z~ePU=pePBG4~G2ajz?Gc*& zdJ7;^Baj31f$09)J?aD0)m>Hj^;%~*U@q={YfYYb6JUtdz?oomnLgEAhu?EZ&r$;y z5;Aez;D_$?aY}-^Gxx05d|fW_HHrj2=Ti}7@P~#J{nGgoE;-VA-%Ph3uSH7lW~ORv z;NUF7`5Yle%#ghIz2&byBPE`H>;~chc17a$-X3&FjAUgJA^RM}FML7!;*~H@`&$E( z^rd#U+13{f2P&?ZztL~2(&VQ%dKD@TAcD1DA#x4fjGP<8M!IxCjYczYsSE&73Wg$e zu5_echhK*8qIY5f5|@CaxUy! z*gu_q8KxsHMr06hFzP6rQrS#9r-}{46 z&Jis9$NPn)dZm#Vj1n?oAxSn;J(wvHw`(>lW0IaEb4h@WYl7LX0oSGMf%qqWxV!i^ zEYVz7p>haE{-QR@tn%#Ovl|T>*v^&X4@&c%iHTC#TpE}nKI4vOVfqG?p~-ygxjXtJ zMM4!xq-f6osu$ff4UrR~-xe0F#mA``c#vDGSb(kD%t_jLAX5ShUC?ijN~1>MlXMmP zxcE5m0vKOT6R&hyU)dvjwD8_uANu$(RChNgE%K6Uv>Q75qge-Jud;eL+Ip!0>4-1V zUJU~+n++&}!aiBjk*DexoKfMV(;klHpNOOLP95C)WY%?X2p_?3f}1q8lbP^`lLa~I zABp3}RKBE$4e9<8i#gl~ZcgqUJSLvIBUh#WkH7rvWc#ON{%ZQ#jkHz1JAZgbkX>>I z=^NG3AU1>R-0+x@@}E-@Y?rT>P^2;9A$_5u?6*TjGs-^F+p8 z|KL33p2Tp&Q*O@4=^VwtKvUNok7-%x=x`>#I0f0^fhV90E@1sgMS`6=B^X*~zCX5{ z31|r76EVk~cx7a;>jBgVQrU%< z2io$|@Uo%dEV@6N85a(%uWPQQlJS7fm|0W4lQyrP~`Z8$GYS>NTjGLQ}jxX27Yn=r3uls!|rK zWZXfK<=I3hYV=~@H2gBZ@(6IJme7F)s#CjY^V5+yn%kt!B+$9gYfPgNS>el|{GDzI zzUSJ5{0WGjO?L>Fu&_@iff>pE11@ROEgo5pjll=D-rhco-1RT87Z?ODR_2fud-g$_ z_f`_g*{sV_6uDq3{5O0nYoSNO=Ynnn^wh}o*z4R#dF*r+H0jw3Eeu29+J(0;Y4d@3 zj5S1bk}&ZfhnSvkAfH#@6>CH;i6UCnY5AK-zH6^O#GpArih2x3zC`s7S6FCtE+@yf zCEr?qJZUDvU9aM0efRJ0&G)?QXksVb2#~>ZB82 zck4TU!<^=rRW_f1iFmg%-uv}?o50Qn9y`UZa$k+eNftQ|=pRFtNrD zrW%|lrqDnP{WmLNaVX1`CSHB)z98+H`a8=8hjiCH_Nc+D6gvLyu-4><8jb%Qs8C#K z*kSzHQvgo1{u49uB{=Qb+`Mr&6bFU`BNrP+iqqKdUSeWS!)wd=K$C{W1T6f@`X1J4 zG?pYELE1z`5WC{m4xz*($bQFz(+cQi;VPtJgYxNa-G}zoA*?yaPZheZ z)Y%*HhK0PfDL5B=?xoxgWtFpsFwwslxiyU3bjv~2Q^H&UiHjHlS@w-E#mc1_e3FD| zTn%Vwir_*wem`~d&CuE7-x`6R3V+t$_AZMT!LJaqm@cOU{t~pJLkJ-R3Bsiq5+jEy zMf*0Yy5#K7BL*%kRy0Tf>m2)O|1FZrRn;ifo=riu!9@pekXQHT+Ru(`rDqJCqmTzP zi-W0VY~B2@MUUCWkKT65}rS-s>k!t4=ppRk8YZi2JF z`d0RQOM|)Iz#tlYEOLHCJEye?oO%Sql3sK!o*`OLc$+k^ZrW7(Y65_(g{;ELaJQJY z!Xz3oJJhaDZf=nSYFVSU=a+NYEAPlkPVLSunV_$3Kc`fUPfsHo{dL|r$|Ct1-K;+3 zV>&i?4Zz|2sg0RkC;br5-ILm~{o6$(mI5CekJ-zI7Kx~F~qcd6_@e?E|? zvrY6lY+b*s3cdRbGK%yRdtqabtDiy-IH5yjgZpH7=E70J_-NC@ryR-2!{cN_c9{|3 z9^UiicFoJ^G4tzO+CZ00BbI*Unk$va#W3BsoAt>0)C|WkQl^T{>t^a7B zEC8W}e?JcSAm#8(7hX;Y#Y;wK__D!xq4}tG)8e;-D*}fgu6151Teb&z5v=6jq-q@r zsBBPnYly^>9MMyT_}G4)jr?>=P@)zwRPb>l(u%S;fn;1d_jayGIdaViL%@gN{Ws;O zgKwXZ&kn!+ZNbL}uPst%(X%PLOXsc$W_Mod1yU_%030xQhNe{{@p%Ku$*PP^(2|fk z&3W{;fXAt#m|tc6%#@BZM<*UOq_a}@_NxVK3m92+s~e5*HN^v|r9s-G`X8+YyRggs zUp6XUTDLI0sK*9Z0su48*FkcQBjB8L4w18->-4~x@$0E6<%@i|z7_$sc3fL6PIYQ& z;uv670zwV0I`|nU>t* zWI_vkJaU2$e<4>2VC=+f7Aj}k(|Si9DlSuz&$^x?$*_Qs9A>oxlOJ5w*!6Tw#Qs)U z;sj9Ng-I)&b2bCD*b2h$2Qas5nv%a1u6vqBh^L{GJVG@i_D`8lpZ;)}@J{S+p~s&> z)Bo(^%Z$dEb_6)RS=+h&galmQiFxjz{^W+BMPZhsb%?jf2}2zjcdV>~3G>G))U=DH znv6rd`H?YI{9$WQ;N2(V%oZ=Zxa*+P!W{7ENwo(Jpzgf2BFAJ8%i%MuON;tsTSd#pB$RxzoyJ~Xe zY{3~a1qIHMGbm=r&a9+}3fU*iMk(3>!m8fffx*zkVF=p?knK{owffYj#Oc&NsYD~lMzEslFo^% zr^xkPk!SbJ5CJJPN>YArlLToxsYfr*Bl)_bZ{Ce(s6lKTI6;*z?BrP!V6EqXmD5Iy z%@yy;xG3!P`pW)V7kz^0*~~U%gl}&nx4t7u6ewPu^)kST#^7WPn)zCY2gQwtP8Yqw zmxQ5!OLB%bFBzfJ5Sz{fRNC$gETeq)UkSPkNYMMMhDvs+ahq}-(;=i!QkYE1E8Q+q z9B0oeRC?UJwI28eWR7)bokqFOy3)GDBD0dBz2P9S$rF6}p>tOw--scf(r?WzZp)%w{QwWNfig!IHVCXr_+sI4C#Yq`!IW^UUbtgXZ{#a5Syvf z9P##X;1qM@y9xRu=lu(eTpCj28+oo+2Qa!1k#)=F+@3v7pN;|5i-O8q3Y}R60Pru! zz!P3v(`9D3nDe7I&v}Kg_M})Oo2jHZz?7`8ZUz(*c~De)Q|?W*UH?hTTP*|a)U!~1Hd^KS6Cu&wN2Yl})tilu zx<<&D%1|MAb)23X#xRt2i&6yXm_~L8 zQImirRe~&z+OQz?L+Yp&p6NzLuVqRXZ0`QK;Ce;c5o6(_l$4*d%^qgxzBzGJK{At0 z*SNesp{18Q46l{hU@0LgUe+R%#4k0)UH{G|k>qS%LjO|(F2AgNs&CVpCh(&BRe{s) zWQUMq6*>vjk&JhX-ylY~qS!j=?0{S-+1Z&YkY3f!QB6;xh`q8U@w%10_Z{5Hu^6(o z;7_k!lv~<&s2>MO2Ts9K@RY~=nbAu;i;~~(P;Lk{y1C6XxU#_sX0Wp1dk>e_s;fie zwY^n}F0eIAfWeACvu|2r{l!J=&{~hsmXK*kY&J7yP4{G`#l2MuU{3-lDZ1T&8N6WT zg(U?d_NG(c^oVHLx!t!~w`;GmHHvmP64!Q7_Gw0(+Z1#*OP7-w1c-vC>gB5`wi==h`G`&XWZPr= zWQ7Z_%uglC3Y8TphwTnd-SJJwSR8y%8wEm zQap`R%yJfX!P)kmjqcS}*dei7w+YmC9iPq0gZFC^Pw??WM}9pkJ0BbQ zonz{qa_GH;N0QG^^r29Z7Zj3tZe3)XS>U9d>G2(braiQ{EQr{~9;|cl5p$8FI=Hp# zAH7q{vXx-D3O>R#c2CH50lhYZAbA3qH9MIDsRP%w-2xOCaGTyE?Ukk&!vUFbCzK#AS{3==s2mj?r|RJQBTmwMvp)=mj!-tDWi|w`!#^&*rb=Wb^MuR`zgN zs?>l|Ix#_N!GO}ZXKOdRVp|wXQIXuoCS+@D`8$AGr>4yn)0UGEeCs^cblJAKdXA-8 z16q<~{LeuR^GENbuG1XDt;W-IQe)M~&%ovq9?|)Kvb^}FD=ehsFz04YBzE!?lH>{Y zH>u5BJytD^@2-^=Q;N1!YMq12a?9F@InC9zBS>X`=wnXGbP&7z@N-v+&yuUR;ZLPg z$TbHY^Afl_YqfbE8Z&!erdvZ)+7eex1pE-|9I$#&6DRPe6P#xTPmQ(|-W9(ixk`zQ z5xT4NAv-vyJCDD{QA#p89VFBbEN>En40C8#rsDXKUb; z)Jaiao|LR$K2gle(#`vf{QY_%C(rXJ{t4ohIL9@O-EPrCL~`Fh)=aeHSX z`xg7>EL#SsArTbodBMV5&JOw~Gte0k0{R3&@TvOyWU?~4ogj!BrIv>5n9mA-kHBYI z#o14OpZl;ieG5o{HQauxax1;f`_NLd5!A4i;eBeKOb0mx)PG!gK-ofZ_qQ75WnY2P z!nKRnkQre1#;uzg@htz!@Tb(lr%#^x9fI*EoWY7Jf-trK$iyyN0|!)`QQ8yckC=~u zRKMf|?iGA^;)ya{ti`EuWWnpHr%Dl9_IjGB*|yR>mLtO;gZO;&e;$0(20}L$9)h-0 zo@gV9;J59G-z^D6ncH4xgAhgY^#;)A2vQF*6Y*Fjtq+H=_yFmhNM-%2g9KWLCrTH59IjiDiXZh3Niia11T=vG^gIi%iMtW$n!r2IP z?|Nph(m6iW&V`${cv>E4p%NlUpg1Sa0Rg^Y2N(`RZfFG1@a2>cl4}ScG5yDhN{-B< zZ*#7^E|Ik(-}*j5Q2)-kG!3i+pE$v=eFi;7d~byYU-ujyxbm8 zSgSWX_{<_xp7f_)o3&QuzFltcb|;F)8(ZbElvEaZGxK}4&#C-E^TR$QNj4^d4KFLfx`@X^+}Y^J@bzd7uo>0K%x6^_=HrNl(+);Kyfl} zx=*G(de=xb(J+qJa+&N%5)Cb7s!OrpQtXz}+bBu@AFausCUBNuY|UDxIk)pQW_Lt; zK}%xW@iZKKJk?xEx5qjOO6;`?gvJE8BYf=X8>UdaQ&(0D0+_fAi@j4QH?u%b%fmIT z+6;2ju#1O#o}UuaFR;zDqA0$gT^jU7@WagEjXK-Lsbd5-YKtUMG(Kja!vQJ@b6^lz z3iM$~2IST3O*2Pgq>YDv$U4)p%lgld8=fR`*BD0M7ym3Vg9 z-Q9B=5O-hxpC&owGHw4(!~Y)FaWE>1>m+@w+sRTgd~l@)B`d_`(mnpQnDf7C%>@X~ zK6*VnOvh<-2(BFbggy8Ba)G;Z zp_TY>U`?`tNC|9@b~Kv1*SdumA};8XjENeNE}g=-4W;*-cw44lP7DKsoBrzHIUK(G zmMc5*gSmL@)0)`>xIKj`bUhy402FLd(J9Ibn~C7SGdiis*s;9PmJ3iBr5;8o`yFV9aal-uMW5RhA$A)lGRYU2 z9f=Jy`j7hN8~QGeGp8$c#p)>u&S^hc)QvsQ9ucn6r8~k@s_-SRc#Jls{OrIjMr3#H zEOwm|xWSyW2gX%KedO!)V&D3?2sTN%Xg-i<6$eRK^m<`izdJLTD*&9$R*{wY_JVNF zkAbVg!DTy_ZzI*OIWuNi72o<8n746krQz`EB&>zf-6un(LIVoW=B+Htni153qgA9N z&L&Fub23#*voGUwioo^XT{(9J(jU|wY9Kq;JAv%%zcP*!UOQwKP}80nsB}5WOBC69 zVyO4A+mqCAK|i%n>xA84`>`!>w+jcB876DlwGimT@)o%xZ+QU6iBhX8glP4lD6=%CH z%AMZpHm`fyC8c|2)dq@mCa_WZsXU&o{}r;gh{G%Z{_?33Tp_$6G`ws7t+1PXueIO< zRE;HUU2N2QhmM|YyP;8~%ZDVD(V2^MJBN#~0r%g@9lsiw_47%d4gSLP(ZiiF?(m&* zMhu?98odqh(d``lZ%^aI6ES$V65uC&za;0%dVikHSkhw&T)e)V;y-^+mQn7ILoq}X^29DgQPd@u2 zn0l7GvsQiPogR$t+_38_V`JZ*CaG1=&CJA+Hi!#2A*J_0`H^;mroMMeFz*^~KzEI# z(=Z9PI~^OjcTXb=Ce&-(i;JF|Ya&gU!buxBf!~?B1K@I|AI>T|2WIrr!mX+{fwtVa zyz(K3jKtQ8TuWiZ`Q*8!fYbf-Ip} z>xO(}iuE#mBIA6cq{LmGhwe*;UAS#pQ~UMjETg4*-es2?QrbJJ@p9AET87tc3oAe` zT8v$8;0%3 ziW3q#tqELmLH?EYl%$GoEur!r_wwuM8!MV61=2nrOz05_*3mCk^QjF&a6nz6*Dsjt zaXtMU6TN5X*GYa6VgVjirWZdd982ul*yPf6_}Z~<#__FI4W=zf8y4Pv+$(yrm`0kC zV%hD*?^d7hrO5J-)l7cGJ1=hcZwlP+HR1we=Jhhqx~JtDuLFeQ9b5UbbzGK!nYQln ze6Td5vo3wZAVJbI$;i;k+l7FcF>rtKR2jSA;xg@6bq{2=_iPv=@`uSe)HK7E=|SPN z6RWpOL~|*ORmop!3d|^BK0O8K@r@6}(dTf{;6lM$B42hh`GX!lO8AHWhxj zi&u46(+Hi!x>~tb9OQb@zUt|%NJ+;S)%DBePmh$$7IR)CHB&blm-0~|HuVA8Qpp9b zO2`?e`Klj4{v@-l(EerhBy$UU?48O2 z6=bR67LpkNniLSb%CUqqxz~C+mXip$yeNpA0KZvtM8RF42PvNS8zri+VTTu#GxfAf zY75#zh$r#>)2yL#&L_0_)*h@;V}RBSEfu* zi;i_$T@B{U#3(UDgHj`cDrJz^A>MZ}_id4YSb!hwTw!AOIaWfse&+Sgx$2WV2mD@U zLf-*Fkw$WbX7uPNNsRY*04}v^GAfeaxWnDEF5%%g_2K6Ru^n6AlRQFI5qbOvmuw5> zPP6sinz7Cb> zf*KV*AUC(t+Ahs-FpQpdm7-^#Q=6Q54Q}H?k@dOn=duX5xrtO~NO!WI;zG3a98}Ae zx?IyPRIo*@I`?n{o-NjIdtZMX>3Tw+fRghP{;`;IWw4?p2m=K9f(DSUnf#Nd9HC=u zr7k8ovOAMFtpo7+Z@F{Qxg$$eQ0w&fwmoVY0*lN;hX&HhymhBjG^cLQgH1yr{@wA) z8CBa#Igsm>zqh^Or&s9gd2uO8YqR0qY3gz7{(23^a>JO3hZ$FOzs^S2JMz|tU%7p! z$t{O`!G|VRKZYXKQDBqd0lKLdQcN6om+xFOA$w}6^_Fn=B3!uO2uRgT%pPS49Go?A zQavO+Yu+e}L^XT^%wPmr8cqgwB5|2WRi!J+QiZkeZnoN3F<&ci2Jys@4&V1w%*^jW zg=xKF{>E&xG#Fe_CQBUgJ8y1-)+k<+`Y4;2I@D0nVj!W#h98^0LxS5kn|J2=i?UK5uYP-DV)9d^Vg9@cK6ZUZ`Po%{EIy%1EaYc9 z3EPPIX7g$IOjzk)`r!ek>(Kjb!|M<8^reFhO+5)u?U38H-DRrBN1v4YonSOQ#8SG~ z6AY~pu(qFzs`}&j(Zf|)tu4JT!iSy_KNaN4l!t>h)%%i8={1D;fX@5r<4s)!(Nswb z`D~<94pKDsoI#Hti=L85MxY}zKW^OGUB10YVRh1Um2%lvbeMBX%=TaT9UkRV%$yqnTk;el^ws$Itwe8?n|t3%TSjaZ$i8!^ zL{hiN+9^g7sooji~qWogsu|cbTO^e9so#D{cKvR;p0TQ&!+!k^>_Rt9FK9|x?IC_|LjEJ;L zQmlBpnrQrfnKRw=0p&DOFP0m-8z+>A#s~0x+$XDkgY4PLGURUc?>J4A>kYJIMwldzZ{VRgv5NOhXpPBf=n;jEKo$qmGuN@W7< zo-2k8ONqV4H1#2hvp3wjpbyc~c^yMP=sknj?(L_Y`+4)1)1&zjE%V_ELe_1BqIb_U zbAM7OR&SG9rprjiWzTJ}W$3d4!9J4eLS?8Lj4PezCGt zFON2)swqoIid&L!_<(b$IP?l%sEo&?Hw?G|@*w0eFlwu*S*`3ePsS6c}0au7WRlU9YjrS%+@k; z^Gas;XcmKxMVx)e1Da4VfvGoy^`f|g>T8`UHOU^)+UI0K3X@V8cUuE9Caaw9#6~i> zigK#eS1GZC{i6-xrmG)an}!x5pxMSub6Jr7%7l>YLJmqGuO}?kvYEB=8w0Z>Pw$3+ z*xg;vS?wVj(Sdr zotr(B1S$5eg%I6_AshjkePQU}x2G6ZcLKARAF`EKlnBc6=J^3g&VjDH6~&wmd+VyV zb(0^>JK6eeeQg;GWqAFA@^tEab^)&afmOtwyjE8H4Y9T-JezA!bgAVUWJv!*#j`UA zoBaUrEn&^7zuS!Jp5lb;x#cF_)9N2m^2%NoMRsa$O?B(l2NI*5gJkW)RrkrVVA^<# zk`|kEhOTgfo!K9fpkO+4TMI2FZtu#oOe18c#4^g&m+^g#kNCowk1&UTn@}ne8){y< zv>Z*899=X(tuhAM-4J`~xmkhEqQ=AP$JAc#MLoiFYM-eB4CCr|4cL$v>bQhOb{F=B z>?)Yj)8F#9-zPh4HImFwv`-c(nDC*e3LEpu(B0nxm!d-bu4Xd_SyQqERB}~ypUFZ- z4yo?kR~JV3dl&V%6`T3p{qPZiY;>HpeziK8#giHmloigu)#$6bCe-&jt?iETjwrvg zsQp=`Jl6<Z~5u*)e+u`3_e4)5x$aeMcOijxP_{-f^4Y=P zJ#Lz`$asP}Vr%YotCcA{Gun4KTnWj>Dq%KYA_;XL2iXdOwyqf(f3yqTHKcoe+Lj5# zOFj}av!kFe@jgUO3_5?wD&mXrl_{0@7F@w`soIYp8t65EQ_cfJHbwl~x8&Jdj!7?V zWCCS@p5xvu{O%PzuDWAwqh*TCZey?*4UyJXQ_sbHeRJNM(ACyeefYfA|s+C>C=e9AsS?ZxV z@q*=jI&44qXE{uOVJGJzUICqG8_2I2Hs5aDswfCH*HW*De}Eu7oW#XcL*3?teo<%P zi%m$rwzz4n^HUcp!H8z-`E#Ts^(d7ac9fk|kfPUS3-9K7s*6P6gw(6pPpT^+_$Bqc z@p8O+UPJrvvJ1ntE8`LgQHMc_my-h+E8f2tD+5=*G=&_ym{yl(r@e05uH`fU6AU?N zOPItqqWl82!&V-~Pb6N*1oUMWSl5HW0sV5X*tLbp&SI{gmI`}rt)%a)lP%49q5Kv3 z!iEot`~9lH0_me}quSIHdP&vgYT|6l$W}}NK%V?HNU{jnc-NX^wax=!Bs@;nDB_qx!Q0J8Xk z2L0jx!ZKNkBpk~i6n1^P70;esB-InR z_kM`Fw>Jz3)E54wq}Cf8#zxOSZd=js*u0L4+O5hP4|uVRB^=9DXFo*F#`!V#+FAfq zrwc0BmeA%|!!l#i!lsBIYASWT*a)bM>0u4NYwUgmBAcT%0vz=T#!V>hk(>39> z$G4M;9|y@zg&8mx&{h`xlxLp^$+oeGIDY*jFle5>^FUdlh*&Tbn&svsSvy9bG91nU zU^N)_PjU8+!gbYLJIQ!&S)by=%a4$tY})0fWM%fJ?<{t>PyfONf84}s3_4#Zo;CdB zpOk9En9k?Q#N*0);&8~A8U}YIJizj6je|nU(3CeP($LXCsAq#C?!WJ_nZh{o zbYI%838kF!_fFxiNi$TUuSve&>~)Ni_Qfyvz~Y?{w#Oq+KJ2iY_V<^%%;J)v4mw1N zy=GdIest?fnnr>jGIY;6Dr$S3=IFo)^4%OL+g@yHVyG>LjVzrZl(ICO12`fk+TNe7 zUlthNJXDRjDbGJ|f*3Ops$H-XYU(@_e#ws7fIbvwL=&I(4C0$G31L)Uox*N-(}}N~ zR^jY?l6=_WEbs$gz0q?9<~};mlj^d`Jg{@mk-IqMUrkY})c5>Pn+%)zvR-Lm z*kAiFz^I zR;~_&^s8^oK z?Ex7>W?b31Z`(ArdmMWz8^NQ3VT6$G(u*A{+1R0+m*Wmjdm?Jz?mRDLey?x^DNC~M zukD$(Ux%jM2J}Aods`Fz^|~6~7V!}lLFmM3jVUy@rE$|pM~xj-l`f)2gly!nn49&c znsdBgR}f_%FK0fqEWafwB~;&6D$)qU=i%p?c`p!*H4{NFG>&tl>du zmiD`w`chJ<|B*SNUYU?DCJobaQ-=QS2nF0Yd(4^k1}Q%~1Q-BB{k=gfD4OIc2Z9BP z%P zAqrAK34zKzOEqx=svK>vh*7fXHC!dQ9Y6e8Lz@KE!OgXVQ@-}QDUQaL z>n&5TxypsKn;ILSj^k+voXyfG5v<@{y^>_HqRK=anv!!z$u^}-m=M+e9cwqgLsTOo z6l8m#W^48U+nuu7HB=t6^%cy(V#1c;xZr}lU^zQB} zlfbr09Ng5_UpGZd?HBy?6LPZ~NxGsJS5L{pR4LU0w%fn1)7+^y@$RLw#z$EbC<%g& z1nTDEG)f-v5?8{--q>IcbOt)TM~7+H3b{1|%_ip{>cic=uTavrvU)%CpO@fpu;sP2 zIq_P+Q1B_G2wuC4j~TI>4!lUJ63O}rlc@b^z7qUJ6Z1A-bwe~hR#0hjuAJhzY3g)C z4!a_*s_d+e)ogVHd-uK4rM=M6PTc98aH0Hr_C?3Jlmv-ORRgfX=i*&c(Y zP`5`@WZ2M-8U1#jax7-XF#${&8*K8vAgUAR3m8VL@$vxO2blNeXC!@B)@b9;*^O!t z+jMww@L{8ONscYAvb4%=7;gN4u12iAlwnMEw_;qv1E(%DJqPh$duiya;SzDvDpsuqm_u|kQu#CE~=;J zyPn@_yxi`wTHB>ZH?@V1J#lVodJ~GcvfA2QykqfWm?J9=qA)>8@O$&DpQM!y7g!YM z^5aY!(`7+Ol#re&AB^#fGo7)gpD=-Dg=j6)MLGNH{ug0y85PwVMvH@>C@2VuAR>dL zbgPIkBGM%>bf|Q9$AE}5Bi#%k-3?MI-92fo4yZUm)pfazAiW=qe9_!qgt0rY}J zTZ?e)`SP|iCiPoRRywl@$@Cz2dzKl{&VZ?X4LG9FUz7O#B={98gtmX&)51_jl=3Gh zLNavZjIE`}Gl6?6If0XFBB+eKi@bOU*E?<2`orU4R&uEf&dAe?=C)e4vtw!u zAWMAXBD*6yw@^|&J6M$e(Gsb$e2slN8jAWU%J;mjhfh40bz#@{p-WK@ zSn)}Kh}fUTlt^?a$u;C!k8TzHm~@2mi_E8(8l;>t&ZhF@Q`bf&1)~M{#>*NRF+mOl zEXuwiuep;_e%X*PJO|T0o53Hc@idI7(nyHzCRiP3K+$Xjg}}jH7vO#6al4ijAa~YM zx6^nXgEo%YDAIEV^Fu5QUya$FErI-ojkxYHmxbZ~q90W|A*Z)$L3xV=G(_}iy&;DG z^#co(9Ta`5G{1ee;7lY4L{K64pAJ_qwxc+AS-8uSzQ=YnnoIX=!(Z>MrKAFuDlb?p z*QQx2LDW|9;<$A^#*oaERQ>Pf)AeW>6!GU)DhP%QY&CC#nF3t>-4h#We&;xZF_A_p zrC}{@m_{o8Ma&z|4F;JJ)EyFZ`LuSjNMhbCa`nk3=n)Czn#U_M!-d;PE~cKkrqQIL zzXKzH+pC`vA*{xyybCLP@7wV1ZpV4gp8ntMcFR4sTzE5^@Ij%Q7fR0f3x8| z;5ON?D%ene4y>9`A?!37B)B+)+70&0G(qVaVQ^koFdiqc^ zX0g=UwNU$Lw)X8-+v)NIwT6D2f0We>**97cnlJ(hL@(?hnK8&c-FK<3<9QgM! z4x{d&vp>P>syqU>TbKPGf$Gn^F_t?n_QQ_FyYd%>WvW=e5mbYXF8!|2zMo1-r!B>W z(d}1Nk@SA|Y-WD8hqTF%*k$x1P3pLkCe5gxm>aCTqd|T`?C7N`&voS~l0|xbUkF&* z6an={xZc^WhW{{E1Mb0i0nA5U;y;4p+bwJ^UZ7F|GVH!?Jh)%_R+;*^0o&afaX|_Q z_;y1(oPSy;h8K{Yc9$K#`2|mY7~a|Om?bU=anJevo7mGaqohoIZ`N>xLVE)v?&1(6c%_VNENW32!fJ=bBQORou z`{)E`x)ONj0*LP58Fn(uCrZ|tV0_oNsgYfkCtBPEj8)8MbG*8o zAKBA?d8sbH8X>q2VcTXpnYjs_oE8=O>;$X;b@fz9Jb*cE{{pU^uXhKh!Bn48VE0jB z$dQ(4^k|r3lk*81QHS1WZ{PiN_`H-RPV#leF@Xo`!mui6P=ar>#V!Mqb4hp~1fDJ) zB@b(;qDoYkBI#vr5TTCy{`JONW|HNY_jcDE zz`5(`?y$YxeXxK018t7M4Y}*#8jshn`L&eaNh0m`;dzdiJlDNI`k+p_kTANlxp z3teOzEnGnb!P-HAAYHvDG~)+k^i@-%aiC5^ZE`R+zhlI#gb*oTe_MbrMXb{T)LSaZ zmi@Y)xDoXXRX4*O3k?1Aw`eyWFyf{F2sWH5sZGQNi9KT0g!Q4RWJtETMsQ+m1M@W9 z?t=vk?ILdePczElwR!e$2AaKILyu8%s|16897H?%F(>2^?>n$NPXFMpfJ=4X@m)m`X?_0Ctg8*zJ? zitfnegadXIy?k$hEQ)F@-o*AZ^m^R{tIfA2uLQUHAhfBZdF}fhvZLMd)Z^JBR8VLq z-?K~BUI1BU>N#$fq7;*!tI`R%wz%h2%W?WQRa{Bh$d<|fn}KSLYQ4WBFUuQ0=JKE} z4W8~8mR>OM7c_|)(B5=*>^&mwN-uP0^hqbe1>4%taAP%{fGGjnuz@axm-^ zldeszV1KV*^r!%)8E#V~@(B#{c$=DpcST_GEWvi<D*^1I=_deAH&z;n5=PeCYTq*{6|J-ym0K z+M>ma)YD5JJs$JKn_e!GMgny%QqU6-_~l2?#!;nRz-hE@3X+(7y{9Jn%kkQ0FEMGE zZ&GApnYA#T;ktg|ZBQ6A!AXMNrMAL^cnd`P;s#R=Mm~z5IaqFlBSiptSoj^TrrY*J z9KN@-1_n%tIJ`@$$@&W-sJjBxt>sLD#;DvDZN4ml)~%K#e8Dm;7bLMyW?)c}@D&obxAjyFXktJSuP>$S8<)tQ;2lfP)w2_MuCbvHRq`wvELpnFUsg`9U zu(f5m`Uy<|iYO!B@VkCDE$0I9Dc-nsnV>Uf99L$kee9WW%9xD19R}Jv(eS&{SQ?zU4#4)Mi_v@b~g%|On zBm=~2&D!!P;Af+)#83^OMVPqb|JQLx@Gpq_IYB9u#%Aknb*-fx-39hygZqFd=<6Bl zM^$dgxolW+I>WSL_1$kXy=^@gi5Q6NzQ?5B4eZS# zGon7ZJJ;G>U{W}952`g``o1yH{Oo&4`MRqw?*_B@TgEQ}x=YL_T4hdZ-S_Vk1IOv^1=7_~*^#|_ z%y+Z4AtadaMH#gI8J^sOOIvZ^TqYlMATSzA0j=x**jSBYr;!kDkaUD&pTPVSd#`zG zh~5Q%Rj+;;L`p1=oI2ArB28RUv$18AF$=t;%B@J2!{4(mY6$T!0`7Lh)I0fP+8?@k zYva7z@g8X)&aZP}V0XAGb#=Q0RV5iU3lA!5?ZkN|EgE^M8v%#6%z3U>tI*V{or<=A z&^WPLPYve};vOb-iqkU7ai`+>UF5o%QK^MA>sZC$QBet#aCE@N#FLPGZ!Pj{A3J=U zhntN9?TZO+-z-e!KnylU3%z|{&ufvwh%k-m+>3vDo2?Nar{)YtEpK{ojybCtqd=py z+R6OG@q-ilwVX;pqJ9uI%#^DEecmnGVYGj`Xe%h4t8I zEZ>0-<5>RPzDbIs@cj~q8+%d?b7-bCQ!oCD*Y1 zy(_HW>Oow|!k@RKsS%Chr+v>sWlq}KQc$XJ_RWFAeFmFg%q{n=NPxQc%HQ%(KsvyAgY2)%rJM#1Rby}S-5(%4Fso(UK ziIKkf?`Gb5J|{top!O&pc)G915?kLa1qo=OvnpbLsq=Cr82dpk>joynQ=#ueyfJcJ zCnj{-jNo|sJJ_%K%L54=QjCUBb&?WEkP?J{0PF4Un*rT7Dt0K^`Ipu%l^^XQiy$d@ zu5T$OkH&Ek%MGortBeD4^N@)nNLR*1nY@R z?kB9tC=U|My{=xvagmRi@XB-@%+(jDCjMCV@wfexr(*4BSbR?7VTKmoN;|MBq(VR>*tuTwWX0 zamdyU7f!k4>G>UCVy~FA^%G&AiTcCA7)mcXN0=qvMYZeVj>QWEYii?ZC5d7X~D(D3oe5^kCNS{mS?>YOa_%)*z$)9Ch7myxFvjDoGrh&uUW0Tmz#|{Feo}suS#6Rr8t)gD`LPn z#+!WUd|OkW!HvC%I0P>NenKmqszpeO+pcb08B`?RXmN)k?UU9G{KQM7Og*Kl{7()P zoPJ6baJ_JyGtXsa%Y7Jylt8I>MkanNpT#SG^fZD+UyLo_N?t!e-&2>S_xXXJgO~Vs zfWei*4m|Ev(ytty!v6?QbC;od-WRu78s~w~q)ZU=J?Y;}z1rR|QS(A~3+D{rNeU%#zCVI?ZL-)5t zDx(YIAL7O>Tcd6SFN*LJ9QiA@VaMZxRS-0?sv91LFJYW%+-kTMvE}wb^tLvW zqSI|-4G}yF2MvoU7j|I~{F=UumUCJk3!@rRa=eo1y{7sWoCNAfzVS-8E|!)h%GI!q?Pr0ndA5HQKBiY1^8Bep z0(p9&8lg05I?+);jjZ}?kfy~j8#m)*EZ+Fj7QSI* zqFd+eWB3DcUlI5dm%8c-cT;n>18yII%9W4urMy4){u`rRfIej`i0dI^(07?tSj!EU zTo5)I-vh7EGV`Tm^W(_9jgFs?XKzUb2{lEb>dNe2mT1eyMVY?#u*5wwSL>dN+}i0Y zZB5g$k{v<6xG4H-!pDc|zKpy&9y%I>qXi7KkgleUrX&5RgXwau#h$BajkVyqkPZ(5 zDOxM{;snWEic{*}v$Q!Gx-tAFFm?u3KDaZqmUMGTS$ih_RHuA>Phl`rE;9(B;N zCH#e1`dKupR&hY1Ijqna!u>iQE6m{#C$U+fBd16$PV53176Pc_s-f&+G(`s*9aV(S z9ExYy)foTFf~FD;?vL%gEp`V7`tsH; zUE5M({=0k~7`kR_f8(orrh^X#R1*r=*Ug!bS`eQieO=IiN}Q41K*YfLtW%`4`XkZcYI4I^^)t~|+a*1fL|AQ`Jk|AG z?|S-Nc{tr&k3mEXhRDcY?F|Y;bLHcsEt${hmnl!m2BP109``A%xY8b|rb4D;rhH9@@#XDm`V8D(&!ZZ z@$Gvcfv{a)UeM!lkD+j#@WD-5zoiXY3e-;r$ZvY@+MA!H zH3+tI%hv#rt*NM!`|al5!e+L@2aELejZS~dG=Mf1z#K`onj;>lms^y)fhy0}B#_&` zVswhN))^BF`V30G4%UYomrN}&zlVvM`O%>M9UM^vpp6kS-g zf!C*&kDoR36KU@x4kOi3^WdYQ8ihFq%P zsFx0TR;(pLL1T2WO%ginIo~-wX)$KbP8&@>UuT=gBwj~MPb^Gs$E=CboEALaoslux zl}W5|wLiBBn=d&K7wG;SzQwIiBZN>_JuBnrRCZpM$@)khR2`^uQH->S+b{~LGo+n+ zWEex8Hzd}!zbD+FnKBzn)Sv9K`otQ5)6%>4~)-C=JC5r@pc|~SJB=63)KP~)p)~U$Ru2EtPa|)T5(=#z!>E(y|;5- za$I~vhspGYY`?gb%4_oUy5}=5`{7GvJj<=Po2Gh9H?K>kC*~?{B0MoP4c5gG>Q=4y zB1#gGi3CpzTf8|BsEz)brz#K2ytix*AfOo4)MuXae}6QWV~TJBA9(cA`Pa{hJ@0=k zZOljHzqX$L2l;o4eyi7JzyJ<$xkpjC7fwm$}Jc#T;TNDIpteKW2Yvfz=a{T z<;Ig{7Ecy7Qs2p+i+JC;u`?F{?IIuofM-Ag!oQFaal763qG%y!c9_`ejP12g5FX5V zG-@xLJYd7MOV-={xt@q=_XdVwJTQJF6QGIKJX^N#+$m@22h`5gr^Ezwp=)RnUg2h}4n8nuAHZ52?zf2MgZI%8-Z!?)m5;Ij8! zAA+UK?RfV<*s0c1w_=5vYsMZVJ~9O4O&jBTX!)3{2t6NfHpN4I_+q9wfL$p6=#!T( zkms}T40}tuSltw+@4nR|WJ2J@-0;9)=?l|?d7)yv2fWT==B4jr5*=c^v04d5MfE8O zq|u~26erw&4OKb`5xm2~SX>iON7q1dTzH-ry3nom0m1p~*Hd>FHO~BrQ$Aybae+&w zP;hCC(rycfZ~e;$3vzi0Ox=X%ZV*)V2}jpg==oGT+CU_u;D@nU>!1~q#RQy4ALHx^ z9p~HMGpEc~`g)uTcy$;Qlg$^w^`F|?tuDaJ`X9+|sb01hmOWJqm{@zfHEaYuNJX($ zKT|v9)0p4USoAVq56G|s{ronM}y*pFdj6Ap%1;5t@t-TFqaNdC$z?Sa}!|S+n zJ`-CpSB{j($fBu7c5*0hqBbHQ*uPjOS3&PwnIp{yh)?=M(_*Rxvrr-&E*xNQziy{c z!5nk|SiIvSJeg{p43|xzw}tsUiiAgrbvBF}S$e-OA36(J61q%rYy#jJCO3m|s%BLt zW~T?ge-T?)TbvK+PUVDpx=1q#6Jut@WTCH0TT?ai@lZC01N~rW|D%(z(JNKp4R`w< z22^$wwPpV=yXZ)*PnwO!=Oen8NpDK`8lW7~k3rU;r1E&ualqtE`tj|m!hUk7YX~OJ zfVSW6CEuRAH!WvT9%Ro{(uO0h>oUlRvssg9ejPe34B{1dFNr2tDq{X4c(s@MQxnlG zcvG6}BJ`ACB{Fn$<>%}6 zB$z;>k`Q64Q`zWZ=V8^MIBVHUZTJxqp9)5Tg=&C(9XC7pNA0AKWg1e#8M$44VW)U_ zVxKp7S*rHdbb3!!B-KX4;M%;H%c_Vy}pQf2f{Xq94?J@ndt< z=?*433e&>W?QR$pw=AB?xXd!AXTz`SXnwAmN%L%Z!>BD@LqAxy%4-?VmY;ImcL*)} z;E1%mE}5@W6wC)f+P0X_)T@1k#La}NbvROQbZlMjoa-^m$HJOt;Bp;lQ+*~65XkMR z|El`l&UB70_v+rs%}K}TnJ-Mo8EnUuji7M7(yfKX zf7C8qF+L9>%MLhQ=3RU)9Kj%Dfz_jH&;JOz(@|v?BeF)SMg7ilx$v>yM!zGQ0DYSu;1JmQ%_8`8EfRaDLgILFUXN$J*Xz+0 z?rtc>wzBstYhN@=%ZL!Q#_V6lC6IIaVm+%evE2~;>jsa7iuj{f+E^`zK+p|nJ4+x( z;_nA&X!2D2XsB+HW+|?zsV$Nc`>;{E+C;I^$07sZL3mKusO zUEj7|?9x7^@7qsMF<=o1UMU}-P%+o8q<<{V9 z{WA{F%#S>^+t@f8B8v$SPIcFO&d};!CG$TXctE&I;QJqe0PNfb@hW$XR&D~oylo%P zzIWEJinpoG;F4r>oGkH<%FUYOCEKaD>^Zzq5(f;*G%eEvWO6tECfOSH&!TH(`CV$a zwxC$j49V6c!qEMhdf5jTKI{r*c4B9Vg<`ua?x`jk!~gbnX>KAGubAB7OH$_|Z|?Qu zp=E0B_;sT}YkiAe<4X|bEVznJ*1f0`>tJ~yV8Qgzu3+NT+S#q<<_ZjzEZ(aC_`)@C z#PU0Is|rY%mn_8RcIYMUhpyIrp=P*ZM2?`lyc&yNOO_+f#ow?xcw3ztXM6mj;bYC4 zBzeMYX7(RJparzQ$?w*xU7e-5?PtNEFHXq#6L8*$T!+$MXqXwK&f7{NWd|e0w+obC z*O}~K$jfAk)RJs~yB^_NR^xwk$qlE{kuJ=WYW-T{1}66c;73{TJS~*Y&-b*klqyT! zzRP$QxiTPx9dpPv8p%Tp>IfP`@keUye51|w{}DX@eSqhxX#W|8R_vAf{Jyf5nBhwF z-~WngOfz5gPjDRGd-zL$aBXgBjdAVlMrE07raWj~5O!57>w5$`K;lG7c|&llMM8H; zezHH_X+)lsn|pwYO%ga;Fj~BMcJW2>v6PkVIH5eL2g$m*Wi3OKK zz|OxDYj7eY+eTHY6l7hAUW1~l%hE9|5H+kOb}upJakM-o*e&^zsz6)b7F_2CHz)Tw z(+1oQra_nyVKrZa_UkY`Kj?*vnj)JS^pMoOfYDE!VEEm4xS)+(_b{7t!enG)((`JI z!+=KY7LF6mcN(}4&G-=3KBkXf2b8s**(1UEQm>L^$(d*^a6mG#JPGpvzlPg;0Zthz z#!n@}7YioGp6^p8l-uY_=ow?Tz>H2CE)~p6zFd>@lKXuKuu-grqaVPYiLuA1THVIm zyy|h0S2X!Be70mD|7;NP%>31^d|$~+!4g^9ho^;-*h3S%v{~nW1Uni&ttv;S?3g3n zM(ZeM@yF7tIA!F&AIZ8KC+5eQ3Oe=EGcf>+S%TFe&mOh(jWQ9)Gg$4z!Z}BSPy2wa z^U|JOzbdW2zJmV|G{Zz(m7b7v}VW#J;4rq29G(+~zyx8+?T5z?R zl~28}!;(^sJ&p+QnaWshQO&dXwG7h25_LB4!H~IpMfF^sd+(dxj~#uoJxW;PLf@>x zb@7I-8}&*uhMF@XuAzn#jf+~-Sc<~JQ!2c~ zSTj1UXQ;?Nc1+$r!=0#mdT(vW-4X&~RYyCaSE&P&EO+PQgRUDx7_wK%LHDll-qVivzuY-#;oOk!#>!a%IC52_=C7{m zg+_5h@AO0!Q9D@>Hgziou!KVJw@S!V6BCl$Rd_4J_1k*Kf@>^jnj223GyIoN_!0P# zU27lNK}(@s>-;Pi9}pFNgzN2mwPQ|nZc#IRd8m3liFSxPf%X@LNxXy36?9`%!5@s% zo=KhK8wg*Pfc&zBdOC+J04DY3X33A27lgwZOq{+t=?MXn}0UatS*0YHSmX|cuV zC#@R{7@r-$ShI4@`D#|zuy9G8-G$V4u9a^1$Rf3leq!Jj#O*D;_X)s$S`?hPp{kwz z+?Egx)LCl{Bl#w<;UkM*A*y>?(}H@h`M7@(p7-Xl*4%C#-P7)L!c(08sE037lxYVa zN1$^ab$(>X8eMCgtmhN*KW|@w_Sf(01FT7q^GgaKh}8vzq%960xf)gb4&LF@?9k(^tlkjp(Z@U3(iI@~UW>v9=Rb$b|{tZ5w=hV+C_=ztese!grc zc)<|@@3PvVJEVRH&;U*LS6ZS2L%K9Ax7C`)t1#Oji3U$hux6bv;nn1?B%Mh&77Cmv z?0H(i^GH`q=ft8^I+x?+BgBUG*y-8=Jj!H7;w8mJ&uPi-l^d3H*lBV+y;e&20PC1aQ_BXjh`@aSOBx%Qwr-7 zd9e#_114%|_*HrP1+c;?Kf$V76Xfkj`ZS;+YYGop`04K(yFmQm9S{BD`DzCqv@t+0 z>GCM9bAdfLXCBx#!Vgou<*&2BU7<30J@54rOJn<*My4^Tl~LC}vn{WBFo)KzzVDZ% z6x1f4@!ZMtHGpCcbhqC$*KB`yxp`C387x4m;G>(h<_geqH5toRhjPOe3c36`hn9~- zE}fSVKoCsi5r!Fy*i$E22cXz{nv+is5e4UkU;WnP2j2OBpz3|nHZ-}|6c>xcT7yAb zsuHGwlWrdgz`H6~Q{y^}0xx2WPp$njI_#h}2=e|#KwUQ3I>d1*QBr{F*1L4%2Htv- z$~S1+YRHh3s)n)Qm2oHNT5Z1!@Z-zo!&)th$Qp`j}hPocOi6;qU?QlQdVz+!U)>BM(HkjguA*rD)ZDRVrZGxZb?o zb1j2p-W*rGltmXOmBp(aTB|Q_k5hcYKi?Q5c~NTD{E=@wz2bVuKR+w1GIvM5`LY_` zVvTWQReZ1buT4J$Cn5FkT_XlCDAyq*H*1y~{i0ej(^Q+T9)w%cvnz7wUc9TkZ?FCOfc~IPkc%Ecd4sC{};y zC`@7&xdTr$E`f87#4XuQAQ$D7MXKn)rwPq4Xn-f<;d$n|5)TnhTG{ZlGXUliT^g$R zo;SzeX`cooBBH+mG2W9eq)*4*1b^1zM$jro>ZBe1FyqHi^Wy|N`yl#9k(}2VyWk8w zLxE6hy!Eg`3H=Rk$6O2{1}0_&bzTlRD===nW--B6Y;&=asce>e1h;&dYJ*{sJ1UJ1 ziv`zfSeTDFhGrL@_n^%L3%!D!UU$0q{5XDj_!~4sn_ywd^A)H<{f0w|YIv|t7;rg_ zvo@p3Wm-z@0jQpQczq-Z&QbBG78(ivv`5;%y+c|r-e((!Yv=5fSJ?d&|NR%J@QPCN zbcXath$j)96}ld=fYm6kJ1=MYd;%BY)I@OKCkCr+wvyJtgC4W{#m@&nylFfw(!uN- zw1?-)J`Ucln_9aoSVO^rR9b@+QV&HG45`R!kyr5O#2WTPSNV~&AJ1e6N$`2l@q+ZV zKdDLAiOWMaX_+4!bc)^(KfWZrX}PST|7YARz(iOvaN*`B{LS}8`f(dqbnoi$1^Cvh zO>6;oqqwu$6kJ0{3`*@e`7Ok4zXb4#(*hwgit%KeK#x-DV_ltY$t7}r(aqAdSZ4nd{{#m(R*2#P zJQ2^IJgam^55F3c8@c`>9)d24w^vVyqD5Xxod7a58U%-jI*2pORPqn}3_}lwuCR$R zTYR=XPl>u*Gh_d?7JdiEscXC$dJWgBU{eZtSpAX%T~gm^?4mN&2$jNHE6VhO$KOqX zre_@;$y-JmY=u$H2|| z-9@xF*FAp!dJ_NfhCHLT*!3%TAMNoaz6HLcRF|;^p}k@@@RPVyKG{sk+oSUlt^aw` z%&@%K@G1FAE&{PHq+ckgPb?NP*h6s6*o2BNW=K_?o-m#z?YNKF{Fs@0|4gTQB%`;F_xfREEWzWo)C(-Z{~6WG z{!4)&*fl;s-~$3|`fTkVe=^hh6)RpUF0%sewBD0o0&RbA4RA+;E*wo{#An4mKzq@% zXSAgKWFo0(WpjL^1oCbMj@E5o(Ol%Y=z;u&O2JU7XseLxNgW9)%0n>Tvs_~DO)#I= zqr1uM_+9gCAvqLj50l7Ti|dmbTwihZKp1>Qb1$xWKk_vZ0#)>GNYLOgRb;h^NG0_y zsNZ6+w;tNx6Cdd=Fuup2KWNsGccN`g07NAlgTMiXh zlQb2{8hdJC0?ZcEI2-AwcNbdMB$2nEXLE&1T$Mi^?>w0(sD!SmdU;A^f^Ghf$S@wh zktS&DxMGr8!%)F_m3-P30>7rx;7bVp?ru79r^t88qIYCE?)o<2FlFhk{GbQCP=XkW zK$p$itdYm~I7F6pT8(6Dkzg#)<<7^##pSur$jPC|9lbkjdsOgQNPlG!@!vS0?ls3y zw{rP%cEjqE#1PF8tL`&86LHCp_dc>9cc}cV?OwP?doI$JJl7(2Bi8ari70|D6$L~6 zRa?U|jGejadUoxaG(h;s5qM(7nD?1w^_vqJq?5GJ_|lduM_|0?Oc-8H0-v4d{XtsB2qy8b8}4^b;4+RUkl3eiV=Jt}PF>9~_Hnvw-YFHspQZ84m)O9!Ne35X^(tdc`9@(1EZx$xkVi-8hXYmu z2xoYLBzH=1`yw@+1hs!1>FbAEMFq^jK|94d2RFOrZ!qeqBoguNHZ;5VR6cn=a}A^E zUJ(i!y!bTw4wFW#48X7x72u8|YvvzBkDORLkF|pj@ZWFIYJdSRMn=@WskF&utG7vWpOizJs6(}Sk=V{SqC6EU&M~a zV}mA{4s(AR960h;c1M#p?iCS)ANX9|-`s5|1CuyGZ*#f82wgFi0R%WPY3#gibxHD!UiN8Rd7EMZx#Fc%vml6yV#@jqDNKreG?4 zyH1&Td*rkz-j!3ZhL3r3_t_ydk0mkm*r4Cb%>c9keokUIePd&D~@-TzHAxq?6A(+VgU~J4r*dQr`+r3Te3{1C)OcFbDu-;^3Ys8z{8tQ$-2$jBG-Z6^N$*JLQ;e5b)9dSGUPH4=SJ2_YsVJo~ zM`w*~ODzn+1@J9(S@01_FaaFdpR1AZ1`XN5piraT*w{Y{6lV*QUzFbY{ieQ)WSM!& zPqC9~zMs|gs4d&aQc-O4v)|kQdE}1aWApT0q(Yb}s~`^TPp8%EkPhnX!a_R37Gx*v zA^rvOq{v%XeM*2Da6y9&lvbNsfIa=q4YW{fyf-oDP}pv=_3fjS2a`gc z!3el)*j9sDDK=@RGPv!VrJ=@qTD%8O*BhS++&5*e{FA+d)jWINKUl8)d|@PXlMHbQ zz4-J_V$!(aJZDy3e)QNqaKs_QDh{#~1Co1I;CKq}>-F1PDGxuvLLrjM=J>4*ja?^7 zKepc;^(5jdgwWw^In#Kd!d|sFG!b&=y`GgopYR-aX@-A%Z2RDU1R-bC2GG;IgeHd$ ztop{J?;J(Ke*}*0=c6!3=Rf(sY^>yWzw%=biLg`K2aj%-pAvpdi_iR(2n48as*!6m zwGa(8-9fgLLr*5uNWj?ExE+96A~Elrm^tSg`%WZWugqb9DW-#;{&F)qd(;{k|6!%X z6g;YOxZeCWSST|wy~%iapFOKwwBw_N#vW%-<2Nd*{Tk;(O^ZVwL-y2b{8vLJFcVC{ z8^Qe-BpAd=fqq4*;cci}C^kSYdxpA)`M6zmPx(87zrooFSIlC6Q&o`Afj&j_vnm>h zFEgk4$x<6fMYy{Te9K)PL}~#t*$uu51xuOz{rwc$eUNC&e_#3z`G=VOdpf~Q&||)h z4oiB8wB8lUakWdKbPH%FD>u9BLcFU2c!!SwCoQb&PpCk+X`v0ma+XxUo= zD;c``q7-^@4(>ML^vUdT4@$2WuJNv*dB2YPh0l?Kpr`8~W76-Y-6nC2f6}%mn~Yg?`7MRb`^H3ocNs#@Qk~@Ad8n z+owL56dWj{1*>~Gd9Y8?>8=lz1}(r9L`5V=av2la{Xk~T4F0_cgb!U;Z~+(#`=G|W zHDXj_MvO7ROOp{|iv;TI>>|Ayo;qS=a$sG9#X$rPA4n!wU>^2#<$}msg-+i#{{?_Y zYE)6Z#nb(R%-bjg^e{C{m6-f*`Fxgq1+&5Tn4btEP60CBoWfl%r$(Pg1%p8e+me)= zGM+_-LWCyYrJBIg3h$1X@eO;snEuJzn-CDO-jJ;H68nAJClspf*-8n#*)Q z(&dsLsu$Y}wzD0;anV|2oEyW-r`K;UF~wYRCq9%T??TRUQ+Kiyh6J07#O5K-Ki|0o zZxB-O?iKh14so_$Sf?C>)e{o=o<3vWy$#ffBoq(8-&BmTfV(Hs!&R)OIV2aEvR;kD z588nN*v3sssY!aeiN-p}Y-DBR=g)8VkjaIR{vtt&T8Tp`?kI%PE%2{9#(I2?*Q*i)6=ecqo;X$ZIjA0@IQhZ!ty^xbJCOsNiIXS z;R(!{3HCl(@=|8*z4QTMAL+i$O&zj6fA!1*4xViVg=yBVr9ZiAP$~5}2?4MzD=sD< z|Bv7g7~n>6rFmLEtBnWw+U@M}AeFh;VH|uJ+N<#lzPN_ZR#TX-K{#y4eJv+EzZDxD zv^m+pyupHntUoUv#_@x`Fiwu&Iw{Q=)Bo@4oT-YiM>J~IOY~C*XjxQk>ucTABh?0& z6`5cleScKI#%+5cB$7D~_Ww)~Y`56u>smuUUweePJ*5~}ZrJzOv)i(;_b~OH`PGxZ zwr5Q4cQR-txOkQHmprP(s*QHiRqV;_0{!_`nMJ!FKgpBjV1(SiUO?Cb8=_mVeqOiI z9@0TO|0B3Jx3eUSa+`6WT30rc_|ZW2XeLaT_W5;dB|Nl<Z28LMBELDF>fpeYy`m@^3x%Ae<=vPoak)w6&AH_k;!k)r+|94)= z^0&O>R0G3>6+9VN!ky~*oTy~TZb`dC49rs;OBz zO+4-AH*=IwFV5YogLl^lH`(>C5e-Pj?B4m8%cbp}+gC3QdFA%_d=1=3PHp&3vzE(h zW$5V~-xBBB{O%3g4Vl$=0_)8b%CKe64%)HSZWrB=#Gj23uPE3Ed#-h|#rlGjr3Fyx zz&V_>OhSDn4w;+?xUNSXtZTuKz-z0`2@tVSt21x-V*2|-u15tF_}QGtr_R0LM`9)L zV_dPtlz1Ltf-2I}7wJs9GbdDw4f+Dlv$b-suzTW_e0PS$B2NOfaLenldwc58Iej2* z$b5IUzdJl((*CpDx4E6az|O0Y{8xDhLFy>Eo6%!P?=cill8r&&7aEdynHH#nt^LAm`_k z4_b57Z|(;``twUM?!57$4Wd7sZ$lJniaB%{i83n7RsTx!98|tFm;NP44X$?`LXMJ- zHwGRGuNx4tjbZ+#=f^3j1zF|Nn8+a*ud4#%&i`hZ=bMn;^*dGZBV?<4HWA6eX-~ym zP0#R(BpskORt=WP6MX)s`-#IAV%PE_tl;B?orsIbOXg=E-`dNzW4cra3k!3(!DjWQ z{-aJkIhH4;(Uj8-gFRR^GxKH3IL`jhZk%G2&A6K{MVdI%#yo`nyh#g>T(O5rqROmf z-3Aqre@C{h&+F4o2*fO0Z6jqtNR8bkBhz5`(dAP8!eId1$#n*9Y<(Cf&FLJWoWvVo zkxuztonIDrr-Zg!S1tb3*=fHdb;muRtLp4NAruT~GBlr^OK=ZY(PZYL+;d+DhsXH(pO_oqAL{b@&0xya3M)o zIN$V;d}e_|CU>)OL)m#|Ys~l_o5Z^($Sm+B4X-QCe(Cb+>1`4KLv8kH(aipZZ)q}A zeL(M`zgbzM+kI0)~~iC~TYuJF~~$Kuvcu29?z z3*x$8+CopavZgVtDMt6p%1K5G{57-I&H}5#kWPM8%`aN=H>DP%DgPi(F28-X)i-%< zvOutRIM-^e%Sof1W_bi-L7Fr}iV9u7p4lc7MJhZworC8=t(pzH_AgW`^=C02V>Bb! z@9-5Vkd#*_alSQ>yX*tHPv!N^garGLKl7Zf`e>dts!PN$D`DMnpz#U%AH>Mxi>x}l8l zGV34pf=)i+<7Q7l1?7pY666qx`rg6zN~0eGYKR_Bt!>iWubqFjAQE1J$$F`Jw&EU- zh11G@U6P=wDIb4r6V;~2-T)u0URhbAVq@;7pD&zm`2@%T@%0y5`%x|Y8zi%>lu=4Ql?2viJqh)?WmJuJ~A!Lo#(Y7sq$@LoZ<6H_FcZ(2G1wV%Z}(S za5A!<6~6d9Z>krQ#0V)f-%0#o=aL|xa7EI{NE$kM$qkNY4kSSR_bPBilB=?QgH86L zSb7Ai=8&0{Dek&j0V)XpQ^zTqLsh87Lg3P6_E=|5ttsp-%Wo&DOr1jF{|MRf+r8mI8bPEa z1csDSB$XaQQo2)+6a=J0fdLf|q=qgXx9px%YmaZ$JCK-{bi9 z@qK@?m|3&dmFIPyzxW^q#7r8BmFO^;ij|qVyn0HJmQhjX+-5q2g zAj|O>{R{*JMn<%9?Q6?@4@~-7s2RQC0u&`{5~eG7vovl&W}5WFe9AHf^fVE}N`Xt~KJyGohnj4^ zi=my!Wbo5jIOvrEtiXz*Eeu4nuSSHlWOhXH%S!+mFOqo$pje6v9Ow+jQx58sTp~lK ztm%G`vw|m~%O=UrDMrw_2QMcQ_d~3fNW);{$qI_+Tlhx=P&~cZ%3UN)6rlmh? zolV9NIAmcUwfJj;@O}pU`3Uca-T`x*FNOBXm2Wm*2d&XmcLxj#Sz&o0<%aJEhYUS? z?UpY)fPk8z zvHjIr`+5tDC7t7O9fWue-vwj06pHhE7)fcZfG|}I;+QfY8$H3 zv3tgiO{x-mgcnJms!O<~p`x!+4U4$tjOOFkN?dT;7OK_8??dQOaA8p;Gp(wwtBV!e0&7i#8$DB>YLs#ApNNx|*?-)5FVDs#9?Hk9~dH9Y=bDm~> z^2aEmNwNbsJ{w%|j#2gLch^zhNQr7lMAS9-v-*t=jP&WlGFVH!v@j`pL_TA?_QgvLNpI&NOp^{Y(Hsk%;tLiR*ebW`_gaJEIu3J7&1OnKJzp)!X2{MoYkP#NrQMo z#p*nPyk@%^u|Yl%`Sfq6-eTf(ZX0d!IQKt39-U0}ItcD9RdkoFL9%QQ@m?YODLZOL z(}HtaXSS z)s^|y!yUyixp4E{J_zyilyZC6;VZomNa>+0*zW{;tHjYQoa#McvdLJ;wPCq3>GOM- z_THXo`vRo1(`r+NM{5*VN6&?yZgmx;iYCS;1vsACFZaquQ^y7RQYx>h*MAQDkVp?( zs>DjTqxXxav}|B{uRYTFM2tvERC$R&0G_gef9kMVY_%H%xtf+7pio()bpi@?$GPww z!_u$b{3D-qtEc+L*>8*X`rCHyoB*R}?%wnmIdT`?A8k2l^Qz*QCQMupxm|FV_l43A z54Xd32}D1_I+#p$JBss=Ki80pCoPyW!3I1?|tyjOod5@sh9<#fAfHSmP^!C zrHh6=>d6M;1+Uuhl#B7Wp6XJ5VaHuHdZjIwLM+mJnj`pgsXZa!RJl_{9Q(W6OCy?f zbj4*w6NF8SrcC}=L9OHgV)~{8v7AURw(s6uX8+n&|JvU@rpftE7Z-{oef!>xXx{5H zVUY3$pqHn1IbDz{L2*T|8T65SNAI>>w|QnS2wke>k|V6|Z7*{9)1p>rhkam_8Cd8p z4cI#-G#sK1DGD|&M9Y22;W)8b91gp%bW1+rns0bC+A>)Q7^lGc(05Gg!-jVqd~oSx zyF-qqlS6`+H&8N8 z0YN*+S>S%U1Ci&&W;<8c;<)AY_an@CfP-{?4*Tu+?tpT7AkOKi z!jL_cdG&--E7_6y=*Lq%*q9_0avkpCJkj?{=31lU?GAWsI_=@kQzJS}un)Pb3S_2y z7skKwRPwUqosD(6NAas)+>@@Rsb`tbxeuF)=svQ zoSS>>K$>WY5Vrw6WrX;}h}LfU=)&@z<3U+1dwqlc_eOUFWE2mZ1HW{;qLd_Mthhf# z3f|^bY2Vm>b4`9)T>6yDQ<28zsZqVqvvNA*6$r`<>C6z3eKmymG7x*drhHy5giCst zXn$D9INn%YT}Gjoka|P6pT9FnWHE3c`QCNylBPdN`{Q3PvSChm+Ux-L~Lplpct_=^k%)DaCqS= zzOyCEYa^}_9>AiO9W`Ydoz^1g;?kl@_zS4!m=*#^=2#$`v;;_1jO=l6oAjrV_LP?s zb9_ng2ns8lV8{GQAUvYs`YjJBxA;0IbQr~36g@^R?~WxX!w1EK@G{|VIdw#BDGD8Y ztjrfMU*~&OoY}w06uR|1Ia-cC5}OM)72Q1$#PB)oO}kRRcT+WoYm;kDO>5`~`?{`r z5ppe}(;E$1gun2yKUomw=pi8Hl|?0q71`l)f>1o@j`HW+w}z=d1Y5q^83z!t<%-i; zs)f8QAs=0iqpYB6lMDQ>DGpX14TZUC(A1ITV7}6m1PlPBJmt~ZQxRS7iTOJsj13N2 z|5kucIJw;$LVA1*V`T-)~>=g zYHQQ-U39(1UkvMVMnsbJP}}x@v-v9gqR^Z$v{JO#d(pP-WHwyX%(KP&%aH!Z^8pt==cocvr~oLd<5e&$Dcc>u-i;zr?`jp^M)z zl|whFr(362J5m1Mjb2=5-RV-Fa;`HIX_W>>gFZHOWRRtM5z4jdq3%|HG_FyXKk*fxW7>4aJ+D7d?Ha)r1^3 zv*2~`H)to*iPnumKXwT_o-(i;3xTG9=PrG*+e^M9l4FE5ufeB8-vJ;EaNfyEKYb9Y zVAeCmD}aXqFa=YsqX)MupEAFh&+sic3>V#+Pq+c~W1oZ~CRV;PFD+cvQGpqhOB5n3p9f%4@XKqWiS(rV? zEuW2;RrpD%_+P#DaeIlHSj6CQ}2cl2ne|Lgzs|Gay4OEe#Ofm+6pEu)LeN;aT4EzEVLhebiw zl>Y0cJoq2=+16IB)wsbSkPZEcM~tJc+PCnch5~WKOMw>q_ZOp4(~yi`O|OEN$))B9 z@+@!L;9@GVZI<=A_2Yb`0eE&Ug1jxRJ#7zl>hurv1-087xnTy`P{}`saLm-mOsR# zm5L1g^G-TxkY@N5a403wXlR^xZe14fMaIqOQ5q2)pq4XT6hgrw?GyQzmv3@39l+&AL1qPyF1*N*6U?z2nvR(ng8|4ZguUJgqWmy+aw^Z6aMG>1%nlZ|8k8uVMsP>V_Oe- z7n(1V_ODm`=X=N+2a4+RSQ9*DgqJ_~OS^+)a_U1|)+h>PRfi@2=dHh>@S9_E{(4Il zqV*59Zv4j=<`_R<8LwvX2JL`8AgV^s^Zq)#3Vkl{;>Q9N{0SExEl36XvB1VA&;G{% zC9z&`!v`PsEz?my7&}bRs58c`?mE{nB*G~LB1NDpsS_Xts9+LV(KfbRM zE9-N~tVRK~puaSMybD=rbTW;7RB%?V>j*?b)mov-J=oG6Q9)d|{a?c^bz5V6%jg*T zZth0M=iaj^y??gfza{~&1*HAYu}=NJxR?!s!87A%Pe-pOi~sIM8o6%H9t1c*)?4kb zvl+z4;$SE~utU9P|2KUY`8OBEK*TH{)&8sezs@La+`pM-+P4PYtIXe#eHp_mw!Y{t z5`KLd+o$(Gdx~cz%dF_{8X`E5`fuhLNKt#3P;+ zEw3|Hn1rh?&qnayG%tSm_}{EpS%m+atCLU2MN|{Mw7CDXC;y){5+w6?E%*QaBHOcj zs*J12&M^{hgy+S7^Zc&&zWrTe{a;2+C<{qR9%hzb5TUDe@vo8juZ2*r(fGm52h0}M z8m>KHyC7706@KzA)+y+ps}X6C_~_fec?hDv@0$PbS06;%MdU)8y9hEKQVa;}BQ(Vh zlrKaM{<^3+*4|Th>dY}ri0^3#6zh?`%O_4hmrdZk-zzz z%M#_citKS%m_ZoPWr;)}JmG0ZA89Jf#fT@C#`k}&iRlSyo$eY1-Nu(oD%W&&I@eME z0DUSejpiu%K%EB4-1K5hpZV{L;D1IFg$(hZ$I|qolJgjx=nlq>J^N9ojwhXP$7J&W zG=CtFJKUcF)`b83Z~<$ASE|9y%Fj#YsSKBT-AGkdtggRvD$+P!d1`Yq7zlOy_ci|e zkNoEbT+HSbm>^m;>U_=@ zB=Zq!svBwMPA|52t^3dI^uJFHKRP-l?tiUyk+QFYM!=^^Qqunby#b^29trn08-<^L zZsSuMYb9JeR5qO^{r=3;RDo15&x$r)X-<=1Yn3!}5^#7SN3t^ms$~ta7@p+v0JBM} zG?75VonGQKxk9yr6i&7WN^S&WmS01vbHheiR&BOM%Z1R7XfFw)YTF>)%*4M((%uDd z-VgwXq@oA37|zRK@&Px9l!09y+MGyQl;<5{hGkE{yw9G8VV z)8bab!AkBgCbJe^%KQM-!vXBT6F}}4A7U8|W`25|ziOU<8 zwWj(+mw28y39)mQ--;TFAP2c@$9tECGd?JTkA}$;5vw7O#&vmc`nua&jNSK!6_rdbS zJ9+s$7sVlK`se%K4*lJE7TS5R-ZY=XYFq3(mg#h^d1z!tX4_#eW-c4j3Lkamxau_e zyRfia;DR^Qn_J906iDGIj29g6-xbi|6e|q`E=wTME=pHrSoof2vQ&a8@9pA@ZkaGF z++&u&`Whrd{g$LYPoR$_Y9q39B2&TRwi~^%!?$DjL_t;i-Ng_ddr)wo$8*ZS8-2~> z%EU&4aZd*Kp-QPLkb-j5&8B^Rnc4H}nWJ@+>Kx5f=A>fk{YMR7!1BcOMVX8mtU4;` zY3v7rQ4XFiC^u+l7A@UF^OLRYjtd|&d{M&J0^3|vY4`u4xzYtgGN|3Tyq~VNRp;T# zB-UZTe!_+3{nE2hHnRr8$+NWzjNw^u?sf23@ly(hzo<(`nl){SvvQ0;R!z#;@rNdb z5?6R%wUsV8N3v4g?YRMK<{}OD?H|9PdiqeG>Y~SUkk4GDWM$>i?9JT9d1=a(3sdb~ zMDG^8^fmA(dP$F{wR4S(xT{{p_=Xg%% z<6*7qLiu_R2E1MP*aMc8H(Mir)E})fHx}=wy?2TD_PY_}pH6I6( zq@flNs#iQ>1e-I~T>NBZ3)+FVx*O(jbbq{HF=V>vuoEbCpu9(SWewr`^WwSG8-EdO#DDxK7-fm1jf*BCcN%^>7t~O_K zTTo|F(hsYjc;ARvgUd!Yw;|2plPa@MygR(ysJ>aNN@+8hRsU%vmn&4j>3ba3Ac4_A zC=`7OKwJBBX=RG0a#AfROKg&L=TSCjr;?u>?n4t)rz%Fj`@mEBMGaM&s;*j$Ya5~8 zpzk^^SK+(5k{`9r3S`kEd{pXR7Pc4Ix=S|C=GNM?%O5F5=Fy1}*p0TC7cUqJM?XiT zHfS#oJz8}n8W8|p|5qjyaVVv}OTQGo&k5Vdg~m$Y|Y zu!(p=U1=vC`*|sfJJnQ39AFXgTN?au7XQTGPv)bi-qMmlyUDC%kkM_p0X>FWpQ&rH zAiAHENc$GCeXlTb(hf$@yYwXd2m4nyMVqqq=Y5%(N);*`=lu_oZ$~W%`t%tZLUhd_ z6ZsR>Jccb#UzN4l`%{p<@`+8{^xpBkCaJS=<2N*+mGoUDI1qrKF7A*ir`CyV4VdN> z&He1*Y+UN58+&7)*V1xJ()ku%kD2&QF3Wh|vDGE4Ztz_1d6BnnkbOVyuE~PSyfZuH zwuvR)B?wnlv371L-jTseM?G0FLe62VV~PUlRXGa-QzC%yr29);eH&A0?xTzAyJbg ziKmW{Xb7PgdrWN|{H1p@ZL-`4j%+t+x13t;M01PO4NgukYHbxJP2Rfhmhz*H)f`wH zbbjg=M z!@4oCsDtNUOHoHJax(6RTMSNe1S!*y)eQ_cemG6WfgHy{dkcn2b9!iu4j;ZDWdYH= zzsW3yj2Xmt2$-Y0DG8CNu}Rsy)E-t-c@o?*q ziXqN&VGHX!MpgEawg-mv^nR?W;3PJ+{A3}hpPr9&iL*sNcZp#N{xN4%)ywxrV=n=G zBT3~O-)(bt6~ShC0ZBIy*89aU?C@S#Ikl|=(_Y(o0bNoEE`JtW?yHk-OO?yKd6mXb zspZU_`z5Rbw4`}kD%y<~e;|7y74m!d##T5r;unipkts9Iezpr5L$kW*5w*hskmsI1 zhDT$e{KuzNrnR@I3gtaPWxhMMCOIW@L$=j1Cgcybw#`5W$yWJtQdJ$O4ah`-p$~&& z>1Rc4vuwty-r-#@0c|qN&H5y zW7A&rL~<7>^7gm81}X6d)rQIBm?Rc)P^56nWWg|eB2JG}X)Dt|_cLAHb&_=SF@7?6 z)3?+BIm(3c&dy6Z*&Q03Kl$fj${^~iZFF6Tx{{Lg9FWX2DO;#2@g?DdXeQ;iwAhRP zFkqe=)_h>t5=GFluz`2M0*JUgCHNAdr(s^BD5QFehROHIO1?~9R!(XRQywU=cL53@ zG{{&8q&yf`DbBf2df&_gX*5p{y0{fV=qLn4UK!vycUto|#oZ#Df%7eWwR=aUqhq1Y z^0DvjE#Y%6>hBK6X?H**d0-E%Yu%bUg!j8UNi$;eOKbYJ>CQDA3jA|mj5Rd7$Xo0B zcg8N}HSe~%*|Yu+H?@}IA?2)EY33u|;ug_$Y3fm#VPp+ocjycG!W?i*GQoXdV8z$< zuX&i-yGz{b85^Hp)wneKKpoU#4ljxQowxR~*OxyY2NXxV`fjX@&Q4QF1s%it1=HC* zMsY^LB@3NrM@8o6^c{K_#NMU{TV{wu(z5kjr8@RF`SqOQ1UP~{S571kNJo(xq)Q3nhy(3u=ubVC z>9a=qx^h8eAs7SEW3>M$b`5J_Ua2MM`6wWwsN`(P883@esy<+661<`Jo|xsX`;W_f zd&z9aiZ#&k(t1u)({t}Z&-X&oIMPrB15t6J<`A5{JIY9uff8A@od_&zggOh->m~@y z0^MZoMb#a8M4g?<2!pW=A&bn~bt&|s*tKH1Ad?-02jP)&5Q7ZTycqu3{m$TZdaa=| ztDyI|DSR#kycHbL zFsc5h4FjP9sazH7Vk7d{e>)Do3eXy_s8~^%K0q5e0DE7$;Zxry#oSh_xAJO=ZU=kZ z@%*t`Bzjsn8-MLwX{4AL@Tv1TE1^94%fcI21Cy{tK42{lBoZ<$4d{rdN+CpndJY zNq)Ah9fea#TO0dnv>s}DRh{DGaUt_g+^CdXJ|!hFZX;WigTx}&rvFg_ayls%!)$}S zc=XZVSgWbhVpPd*fFb9@t)?h1Yhf&uq5czoFw;E1ig&KEx4fp2S*5;Vi}|>7k=-(< zYPw0xtQ1I8sBljooNpQf0chpnr^PIvKcXU2gc3=NKnO~jJvneHFde4-*^&PMF&c&* zK%3M)4-Q3+zflmZ&~Co=RS*Yo>h8 z+SKCj-bEFg#i-kp8resn_N60`XQud!9D&pyWoCmYXw=r?WlR-ONe0yg-QK12v!a_b z6lGo_osyRlBEKxj5GF9fa!Lg;aaVs`^Cb(p8&5t_?o?s2hENLiLwjO)Skyz&kfbMv z6Ar$ibiSCZ1;karXG8eIh&-LkaPD zv+Y=4e?%;OLo-!VO(0GpARTVGuNT!>vLD<9yI37}VYamln7YzA426t3G1h(KZZR*Y zmU{R8Yl+@(X{V9IC(F+eQ?X-Hx?Cfj74rqN!T$i&skwN>5TDVyYR+?s_fpD0S2c`# zEs7#@VR4?n2Jl~ewLaMc828~skmDRaQ6-hpqN2k4kD%owrF?a7_Vpapo0gr1`S3}4 zl!DTL5VFwI>rN)ih9os9Shf%aA1F~*sU@Bp=*EJe(FzUkopLoSQ*}!Y2UKEi)J>3} zH-OB-6z|VszDG-adGA$@7he_GX#IrT6e9K0vqrMHrl71^%B)T~4`*Fx1}O;1>6qT$ z?G9=zVqGFK|I%W-QSasmdJtH6tx33}+YcUq@3h@}E@#nZT*|KOO6?`+ifD}6Kutl)w)!K#^PMylZ?Q*6j&qj`(0kv5OfD;9Cm&QL}wZZlk!GuZ?Z>ehunV!A+9gY2+ zr}(o8vJA<$h=;(w=OXnDixUB*jyA0)DSRnrcZZqhaISFAY3Rj*i==8QnX_<#P_1;f z__Gc6H&(uwdQcf~jL5VY%PZ??iW}zPV!Q{6K?4XE6}wkuTlA8~!OGLd(C{r)Jbwce z1E;we@X(Hs1nt9bd`HSu2k*T{o<@;-5Mk5un=(hLxbYsoqQbkvO;FkW7!`vQiEL;6 z!_h3*+^;GuUJ7jvX6;u(wu_2dYO-?HK6H~pfYU<^j%}C4+yvapkwrx@&$<|`B0qI4 zS9!qOJc}GDjQO4rBlZ9&lgzpcKLu3L9PV*~-MKau`u`w3Rh?942)V*vqW9pL$YsRxVysIG zG|8mSYPR$N5!nN%uxaBwM1hm9ZqHJf{wRlol;hw7bFiLm>#6I}2itn;$4mmm*t!&l z#|gaRTY8UTJM*WAo=#Ms-e<(#%AGG=%#XZ`ncatuwYwDAuhPe`dv8d8w~3uZ8ou5c za{qxRu+aeIkkleVxCpaW4L;qCC*I85IW5)EnWh@r%H?cG(w8HUu@P#zq@!s*prB6$ zLPxmMk5I^@mCU|ry!gA@@dyrL!c7&LPy?UnUC9S}@517B=(#ACibgAkRtj(Be9IIq zUue?qmEs;X=K=Q_NQU=Jjf7)ODaqGg)q~q07sG#uon{{Vdd$8<#>rcG)y91{6M~Rz zZ0(@`aB~*>ragXJkRd_t$7I`BM$-DAETA&y%RC(w=s5q_E2H6WCc}Fl`}!cep&XXJ;(^k zy-$_Qn+LayuUs0ex3^`fbyxjyfz+_uRiFjP%^mHqys11tfa1yMila3ak{*7?aj|b) zE1CA}!8FHdl`N691}NaYMtc@PLEu6{K$<5>n%~i|pkBnwCIdF2^63Kr9xyO-wQYc$FQUp-^Q)pOEP_tEyB&U) zoJg`5n%mtu0qAWOZQF{NDK9dBpbfno0xV*Nr|o@e>hRukSPUZq$WMyv#F-@%x#wie zfG%}W$aqbGMV!+liS4D8tG=4O7>k_Pisyo1t)qhPWP(;UbZSE?x!mUEk)!o%8gG)H zm;4jn)s{at1O@t4^iC~Tg!{x~7hmmNNowTar?&Z~D88E`*)h5$V6MLxkLG32L3 zJNUM%unxvRJ`3hBiE<4hVi)&_3-(jG^7Nhan)*ZHbHsV6ukRbil-rGTSG=)S+Q4d9 z#w*uk;sb~xC_N1vn9$&8FydpUEb=KjXSN=9@Ofkh=V@_gx+4icDVZ5^mu%pA#kI0y zYTI>{cLU!s^LQMZ>e(K_MAozLLrM?^V`YhZ%M9r)arDHa+KhcDEDlN1nc9AU(gXYoO9$XTEk_z1;3eo%^HvVW*^N*#p;qz>hFwmJt$B4AcN;3tN8bx@A7>SuJgOTmrYtDBG(5l3f15*VT~GUPdV8^B-`bp6L&_f{ z_K4!+(zy);r2epJ$q#76weDg=^2otTM+eoYH9qsm?90P9wi2kV z!ql&!9)(Ou$k@~s)whP)Br!WspgRo18_A`0_OmeUM?;KYW-TZSSLV4ZHtEg8*D$J{G zn6mBG5}UwRKZ=qy5{881ekbi?fy|gGtbsEZq_P>*G%PDnT@Oee&csJA+IUo}sMW5| zuaT~cVb#|j<7%fi+dQ>FblCUVl5kSQ!|wRN>pUxc_amNpQG34Hqj1fpWXr4c3|2Bm z7H>rsEU3~fvWXs0o_X5Pg-FS@=3HPfA zvtLN}LdrEbOj;6RR&_^G>k{@L`FD(}@$XwCJr}G!?ME7ng<}Fe?FBD7!84y0x+$%T}QH zaPzE4YjEcXW19ctk&c?nuVFs_>EnvKjF~5~R>G)s=)x^6Ht|tjYVrW`?bi?HueAKx zC~=hz$lu0}I!qZXZS3HD4{66(COI5b3`>{83QL!eI=sDdfgPxGaUhKlqC-mM0^=7mO!-sa90U+zzF=70L!oyy8NaTT?h zfE6XnIBbw>!Rv#^4%C_Q5WOzeUp-!ujvdx9Rn6!N7vm({grKH8T$v|roYggIJ*?~^ z-^=8Y?`uU2N_CtY0n_8V9JVg*%FHD(my+@sULX#TE3R(VZ*PoLxY`usniacM<2RN2NfBIY=q8Xq)LGb;9n56nDs5C^kIsAVMdC%BOn2y>i~8P zIH|KW->D?Sin15bfk|Bvg6x334)SG?2iRR(r3SZiiohq?lbM`wlOCguk3jB!q=m zm0)RO5vh0g9t&KXr~HU(4uI6>(+F3R2DJ}F<{c>*N>=_`nxI6YuxnX&wCCw}mWI!2 zCwdx^BgyIWajH(leKEwuUfL2kTQOgpuKt~@JDYFR3D06S`(0?9q8e{`$M1vE)cF^~ zE1lNn5ZmB>*R@Um`m+8+4*s{W$z7maL;W8K79h!jqtMOxivci)1e7|m7)~X*>2o-E zSlO3;cDaFvA}@xaSXooxzp8&AiD#pC7V4&aVJ!VmkZ8P5TEEENA_I^-s>s})q3lsZ zzW&q@$hbXFe$w;mejs-8N7le>URCix0&oAKaNiNo5Z3tz zNSz!T?UWDkf4pzaC=Cb!myg9QI%p*aVET0gW12{zm!@Xi>eUJitHO74W%8zfB{0y8 zBM7!1WAOJKI_d?@2Om~%rjiI%;1IGRL`Mx9I5@e+cJmb$GzBa)C6K}lfsWZSz5p{i z`o*->sTwQG7Vw+L`D7TUyX}%e;F)H2K7_(o?b@3`iZ&i2ruM*8fiAVI#+T4{^LZ@Nx;QG=KxyU&?HN@nNw;P6F~tAwq<} zIdQ6@z4h~Qw5oIJ?LT5lrO9Eu5&+{CM!tdJ^Z40cFj2`b{IMZg_{by}7f>6`@Ml(6 zm;-j_!$-AeZ`Rt>#W^|a-+Qy4h@pEtj7t0IP}rh_uJN7BHi(jqpW4!3iCpb1?cVwG zu3J#GA1Y_=Tr({z;oOkP3|u#gVE54zBU*-_i`X_riIh^&h2A7b)99x^w|(+jbO4*< zDgBqiuUSh?JClqDZ{Zd%!e-&vsyra(RY*Wz(Ja!xD_Tno+L&+bpe} zT-1cBvH)iqf0Tam?#)la%F|MYJsKEI7!d^!!v>I;V^NA8@1oOmm2Y}cxQ4`c5sV*g zc^pmd18K`ix<-ICdb1(^b?RUgW-2<{w_WaBM6sO!mw2Gu5FRNlq5jWl|unT z)BaOybK07EGm!AC{6!d_ZYFYRa844urNwhocO{|;nb=~!uuHgdybxKeme*-{$$%aP z(wq7z8{X)~3n2b2vKdX4JcJCCJbOCI&U{LRn&K)SW|-(yN^42LZ0HSSDr2FMa7t*t z1{R~f`$wr(cdLX)S;;-Jt0MAzww)=y}MlfLD3YNK=wy7(Y1>3dTCfy3)W4saio z7p9kl(iPjpf(OcN(mifGtyYh>Uxun^?zalT96w;d^;2&4tTt?*+?!2jVJm92_D;~BA1;l5UpUd@)>$NFTN$Ny>mY-W~FwH7HQ#jJXey~uE zu5kb1wI>K0%EFS^P1O${SH zjZI6-TAvW!umGo#38AZ~EwEQG4~s+9dNRk*AIYUmx zj0B<x>$@ohLV+~vu6-1h05#ft85lFo3n!|W#xl(Y`!=-p2Oh{e* zBQ+}nNX=@@-)gxp^t*lMTJe?okJ_{m&off2b?HEwVC>nIq7m(Vm#=r+R>6p^e}HgJ z7SnrHk~cX5N(~PZ0I9715LWu|WrZ>kPlP5a$(ZQ=@!BKUyl|Cg(=Gx) z3r~G3&_J;tHoz38-=NayC#}GN@Jn( zI#jeeV0R49i*1pHrcdy+uZjSRYG>cj$665pH>q{C_P3<^oZUx`;}u*GH{fT3wLPcO zt4P+hu7T9duLs$3XEr}8c-PujAOG1>X4HGRV}^yrfb|~5P!j}i)k2_jjk%5ylPHF| z0JsE({EQ|s|2RWQW-ZCD5k`2!1<0~EMOBWpYwa374oAtyUTOh)vLyD3%z&Qkv@~h@ zRC33sBQ|StbN3^6j8l1c!TQ>kl&ciEQ$3DibhtG+R)#n6c^nz{!jVGKLC&LZ{N37uZ=#Aw>#AF)zH^8p>{g&3v%FQE* zSJw&4$`{##Kk>m{r9~>7Ut$$nqXI$TiPF%G-&uD3_L~XuPF|XjRW76=tcJX6eetX^!%OyqQ*q ze4rPjXrA=Xv~Awvl4j=}xjxq}y&gs$a93y-ji6zaGMB$f*s4|G*aR>7!!CwQ!>#>4 zWM!5AQ&zSzL*Cz;x3l$+8d8o_*ENH8jstk7sgx)!^m|xhzP(uQuWTV}YiZCQF{Ib0 zP`9Slj=b0cXm4JV)_EZca0#U8e=LDJ{!$zA5D3Dl+CENKs288X0fhaSQ`_F!k4u^y zfaL)6t*D;1WpfZl6o2sh~r=4%-FH%eCj0ov#+ z;l^}-z@}GXhmDxL*(^SOvL*&dGl1x6C|iMkAf%k0jg3%g73+^pa-ze^or^4fi*GXg z72cROwe_5md_%(<&_H@lH-NPqD6qx+0_4|XT(GzRCq)Sh|7k^k@CsE0<0!xfj^1{Bd7!UR0g&^q9YDRQ@p_R3l&g6|3mAyo$|KUMKPOs5lW}wsv1yIbgEFS zWq)}J?eIiRMYT8CVBb!tH=h2nM$|J@vtK#IdS%SzHLyNg0~#rV<^I4G9EOkiEuG;~ zzLaOW;X51~-@p@vq2hlOjZ|&ZbOU>U)#J@5(m>6Sn!So<;V>HE3_#Be!sOVShF?q( z5Hn{(FP$o=HZ40pwcUEI<1)Dk(c0H+RW~cXc(ZHxC>JvcXz%TxgKdH8Tpb2q>nY#| z+^iES^cm>lgWCAQLHK2RXW8Q8zV_Jj9NTW_Z^-Y$;bN)gyYguv?LhaD#B(=6%Vm}! zZh@0%-fq<^!1h~BmsfDEp!oACWEpFn*Q~XKI0rrmv*FSO-BP_BER&Pp7=;vcXzWAp ziaUkn=Ca2~aRG6S`~X3+ZH!=w4@s`H>Ux$Ul5iFU$h&_m`#xLRlMwp(3NgFY3(@8K zTBm8;BonSk5^$ztq3M!=x)Rc8AQS4;1saHjw=w}3Y6rPX&1BOms+P-16z(dhMb z2q1;{5(sqw^`bI#6{5IMvPL{b%){5#eOQuM$W0gsa~7eP zm!sv<30E9|)Uo_{^xnq^3GkbfVtcL|nQ6}-OYYa{$=rb12YD4%sf08&7cU-HfO#2^ z#C^va9I*38l_(|=Da0X`5A)Z`H|YCTlr}mxH4~BPaI-Q4C-q0io{EabyFq?p>oW7R z%WR5Ycx_;jSp7M@D}P}3F(}ppHm~o{xPlINBlsAqre;c>qAO0dneYn`hb=dMz?OoU zM2FJoFOSpEq)q)h685cuf8}3JIo)tSY8^!owT^jZq-eP=H%F`KM`oY9 z9ofU^1|BaN>JAOFg`AOErGxg0Dxe*x1Jq^g!;~>)f^0``(da36N+6-+k(VuX$U;EB zi5rPHQEFJXywjH+`eWQ-VzWJLLXvwU(Y$$(TagdQTlF6H_}GBXeg;dFzr)JDjs36l z&~^ZgD_iS(MP0o57}W!n6o5Rid$EGNf6>s&Nr)vmY31_6}LQ8*Qq zI``HWO)`d~-KmQr>8w6b2STWO?ED^Zvps3J<@e(i*zKXjaR&z9hj({8BM_=T!WHh+ zO1X;?vD*DscJ)nxYboAuYGW)@KgDq6MEp0VuG0hJvj^R;xyAQ(VuE&>|41Dse7iPT zN{r4@{6o-Zcy`Hm)+Z;|qbjHQ8W~CbKgl2bF)d4GRm)FtKtg{A`uQ>hj5ebIxl7Xb z!^$5YZ^j9vOD1iMMUi7tXO7>Oe;;+)N^y=?zW?>@hsM~kNS|znTfeUA>t_X9%txw8 zzac#aGjB+#j6`PZ>KoIkzY4(+lspdfEVuX~%b|{%s?y7VV8izqrpeNKGXpDWz1Lsy zpP;;QL6~HaERzQqj`pd^2{9e;C&H``QsRCcVuWwkKS)PA$7Na+AYd)y!1&Nh?6HRJOyD5I3w<4&8l&8cGp6scAe) z0i~0f=0ZuO9S+uEzB^N8L+&QeqaGG5Dpv?5AQLQ>XVDSt*jAv~y=hZ^8C*kMPZpNd zJMdshMp)cTAgd0(sSEp=OK=C%;X2;tnb?O`sBe2!ms?C9_?cN=D(qLh0RmK z*PjOl-qs?%t7&c1QoMkUeUpf_j`U7QGI>DrsMhe5L zY6*KBaaTi|ST=1Lsn93pQ@fu{pkNG1%MY5`AnvEcB38G*5iQ;ERWi=pnF5bA`lk!K zJRWJgxtY0k$~?k8zYyr2*fcy#`Q_wi1??U|V4EMGm%SFj?8*Sr$PH*-b{EaQ*2swX z#R$5A3U_q7M0f40u7tLCzU4NLgI;{T5K0W}gFHpulSczKEcq3?yEbn~3dNfnwGqVz z9rS2VBr`%81ae}#AEUlYl;mZHjrebSZsWH`3cG zG*7VkGco}@Kv8!>G^++TOugKrNNKI(ek^tvU23d<4fcsDe7<3kAnunzRJD=3FpqLT zJ00+xegI5dbd8 z+o#Ek`hB_l1fC{6zgDvIa?6a0efwX%;iptw*k?6l{>W&M@#%ej6a8Se4N#jBz$S^V zK98k%@hrZVw81(1v-{xJpd_bDI?dwOuM*g@eLl&^b(|U7fAjWfuUz%w)iU#KSobJ_ ztUCjwZ|n!dCjp1&MFx{Mh6-)&qd=fF_v#A#1uC(ZusF6ExiZz)YYrTwD?8yr&?byi zqHCBTa`x=9T;$a$aMW2bZH|g`r$j>k)BD9@Q57&p!!yXZj6I0Kiwx3!i{T{`k7J|U zgMeR}6do~%-Td-y4#NsjwQKCh%6Qd|1WS4D1_9XjGw#0<&yQxI>u_n7L*+TZcsqDLK zW0!pyyBW-wneMmuz3=C9-}nA;?;rEmB!0^|-{(BfIp-0LiVJ=x{Fki5uwbc;>3#Xl z7PGZO=Id>D6blb!ie*`D>dxf#+_%(KmwIjP(P&EshxS%_A-#A;U4P7rL4z2^OG&qu zWrSgi1>|f6jgFsUS3_(uKM4F$mqTc9Bs$BOb58u9x3mI`$?hR=ai)o^XL~TYTDBtXfCDZND}a zG3zg&RB_)8eJOoeh9QN|cX7V?7Qe=P;Z-$DCJg@tVh`|8%2&og=?KN-T`SA}Sh=m2 zkq>TJsJC(Cec{W9&=Eer4=6ymp5d;MfaEY(z)bC&xMtOg-gTNCU=cd1kO??59P$6u zDb12_<#u*~MV)ye0jQ&8!rB7z_B#vH<H@owFT zDlm?aIXPyCj!sAPBQyE5RisPxO)hsW5}o=>W8}fcScV%_c7f<&pOaEO=D~F6U?Ww0 zH4JcuH5Eua(Zv44=L3noPnw9M3+ShH_f`>^aH!K$vl!Lq_Cz%N z2Rzw%vVx!~D7C)x44@GaLt)P&vvsS*y&W^WZKt!H;%38KTc>J%@{pw=V%F1o*)M2S z%i#Re^JK`T_Xk~f#kfgcJ$0rk+$#y{;!{o~tR~u@BCYG+f3poau{95JhefOE^;i$J zI=}acAzpEFtJ&Eyehl0f#?#;F=mVqAXua!&sVAt4GHK$l;(O_J`Pw|6mp%M<`y@0Y z=+9_YV7BcOm#vF?DD2b3$S%6%FRGKgGQWIE(`82irFD0a837D;!|6KimXVp*@^P{= zd(FasHEiiSwb;%4E6ogHTU2% z3$U;;90$P*ENl#ROsFBLaIj0_h1Nn)@FsXtT3gnaHdOtoe_WEfbAZ>){Y&=0O>7Fr zSmgT~z_t++^o|Dmg_;Ghv!qmxRD18Ns18W(?u}!BpZC=@tKf!@s*sWylHRFn%Dn4$ zSBIKr&5aJYwE}lsc!A!iqG40QEYASsEJlxl_#4Qf$YcOpmT{=vEbRRk645c6C(OjX zV=bH2&sDJnn&Rsat2HN2tGO|6m$%>XSUKW=v1;@cSF6E{f}+ptmtH)X1-3T&^bvwX zIggNW45bevT+FGMnDxedp22R9C+@f&2`SB&q&Fes85q(mUkuKh9sFY-zT_gg;W|X8 ztrocCATqnwXpB`PZV^@IcOsr~r$js>XhPXPdm|ALs|;$01Rbzd-{>#di?YioB?m$F z0H42PPDRa}A~AiWTCh#8)%52k(T_#n6wI60y+Zz{&kgl+$n)`MNx~KVtwEqo@A9oX zO66*t?z|Z_)NW(FZ|vc;gp!G&`4CLWM09BIAr^aFx|ryTL)H5iH;X(kkN9P+joW+T z1%Q1M^iy$ER}BHZ(5f=Tv3yi9$4*333`}z+LtkfuHOwq2bUY(9_I8IC**#jdtqOD- z?2bm)t(wu;vU{yhwp0~dN3VCnr^UG=qST>tkddfkrSsOPy)3LuC`>)v6Q{?sc0!K- zJ&=3N!bEY-y%bZR-#tCH5+U- znA2z{#5C9{7hLBR;tmwxY1qw_&p0~ z&Cp=Ok3CFr$au1NuDF=gmHN1x9|G>BL#=vKhkc|YIN#JhDuE|bC06Af=wD#$m9RCRbr6(r zB62q{9`Ol2^thCR%NJQ)_9kBBX7okKQ7`LH?UM*U(g!8rT}MFbT^kSnXQrdwU^Q0( z%ye{KZO{jz$4>D2C>i-7He5vir_Lb2rm>Fq%?so8wH#T_+$OZ;;EYaU9$ZqgEo3c5pF)7X=;oJ!#v|wRLzWUa65|ZG?3dcD?{FO zW`!mAY{Cav+&*)jLxIJ#)_UzVpEL(bNbU+W6!VA@Ey=+tcke}0Nuzm9(59hf%NNPDWkV&7e_gs0OfDe)GB!@ zvdWrXG_dV$1I?PUzmw_RA^t?ec+(wWm$hP3!RM634*E~8PkK&g%`kBfMTN|k5@JuZ+}g^XKj^?oD(A|B=&u{(n4cZcD>3Oo(VFj>B5{y zeT)2n6aiXh^eON!+5TOUVugv=^F#C~YIgkIl6gA;zXVY_ARukbKM<1 z5?VKMzc0=NF1Xav3NH!)K0ZbIg`bcj7;LF^;&!D5iGVqYgamQg3;igm5;jKT6h55^k!l9NlLx{#}`@$ zgnuZZWNq?&Jx`rg60n^sc4j&UpN9@6OpTtQ7myPL^)G)|W%}bML_V$^#I~`B6z+d{ zglr(d3!YlaeOR~5YgKhQz)8)6Y|FnPZ=o*4bV3Jjf+y3X8@VJ71JNhia3_8ZAthCd4Jfsl$_>m8G^rQVsQAd|$0wRJeF#|{5trlA-539o z?06?ybh8fJI9mOo33);IWL)F+)_2{b=l01+A+STXn<+TR+b4gN?++0{W$jn zr*cspBh7n0s}|_V;Ap@v0=q~jp=&ehj=3{R(mU}A-2V0vq*{qe@O}CM9vt1E(t@3+ zj?}IN52f_?B}=!=TcK8TQP7pkMQ~ILC{Id)uQBhhW)oJC_MUN6G{IBsnWmGw4#xGi^lBRS*oNWdeX!mB(LJ z_g;ZTnfu)?0bk8XsvYpny6KBhPKWv{Ke7G7u1y*+wa#xX4cc{xj5@yO4Lg!9v1yOu z@6KBfy!a3un}p|&-l-h)-O+S3+{#ICp(m3els)VDqVDP%;6N)1O?kxxmciP>Lti=V ztGWqh-t23 zzJKUz_+GrF$K&RL7sBa9qKO^7u4KEk?X-6B8_@@3ttjdYp>f<@< zY(eTJiiZ{#uHzZXP)v2%dk$CzA0=}bW5|dds8ZgQ&P30fE~D@h^AYC@W@*N{i{_*u zHDD*_f~j|uEdD`D3U+elK-y*e6#{x+1hN7^5vSz)WePhseejH$_y$(r%~^Ha&*-d_ zzJBeRx;dOnvsfi=<4Bo#I)ZVWnVv}QhIO#ApJCz~x-eIR^V}WVlQOLHt6@!XOGKr9V zCZJnc3E7Wcu)HW!AFhFqIk*nbv^vcd5ksD=kTeZ38}+{Yj(SIf*@!)TqvEG7%ue2W z_$&hrC*P9#9Xtz(u3p4qTJ4cARelWej}C;yjj}H1wV*!Gw|;z|jKB~1F`QK2Y@&BV zRZ{VxUNmHj-_@Mucf})M1SCKxMbOE=QndK$ZEfB6!4(h$-97P|ucE#mxx*1dw^=ki+X>@(@zL#lj0@FWi+QU!9aXZ2$LM93hJ`F}N5rgWF{MVyrlIgxY z(+~%;1x22CAA_!9e`q*6WeV@mnlcX}%u5Z4j{Hj|S+;j&CjZ*@dlG(RT4l&K3^Gzl z@VNZ_Gu;~r+{@IVz*Z@J-43g6y)TO)^{J|QAzo`)OkdO7vx2-IkdlVzJL7#-cA4K& zG3Iwu=CE`)ZcQX86itTxyl(RK{*S+8j8o9lMAdeFUsR^ zCf#5`D)Pa!KS~}Fsq?Nmnhjy^JNgGUdr{dT!kz8svZ#d(pIyTKnP3WCG!YWudbQ*C z`>EVzqt9Q@iB(*GqC^RoQ$R-|Bm-RwZqvdLuWz%phDps%4U2Z_*cc@jZpMNA~RdGq#ROM3bZ{kV&a0LsOESee2QS5~<(bEF!i1Nj|c{7B8{RZE` zdwob8JT*OlPT`N^VjyG8)Kh6Y?MR>ZujYBvcM~tnMy_wXflJpf83!V+Sbo`=3c_{D zW11`RWAm(RMtU46BS3Ck_F~Js+f4wcW4DXe+q&s;6w8jio zB85bjDw;K@^ukrWL>i&&4eQ9lp$J4DmTmDW*bky4wh>!7*aq{6)1wHs*IqOx$ylA1 zRD%vLBRtA>k?lowO-sG^mEW^f3DS^cSi%9|IU+wn@OH?Fy0$U*4o!>u{la2n58_A7 z@~&6x9_%_DXR};0#t8RA4}l898na_(W}o!7GJ-tIcN%_dZD!=1_4p`BvGQxZ&fD0F zw<&^caYlAq{AR6#e4cZA(_Kug#J^-G$l}tc4_!~Msi5V zid|4{%f(pKLWBqxOU-HKluzMYMgpBo`z49PpM-pC?=+af91qof;)OSB0mZVtP~h>q zVjgspneGTWTP{2qjZRlf8sb|X&V`4%9bB{8f@i951oj}&-i{F;?kAAylnbn~N#~)N zCXG1Hv$tEHhzei$z484(9#C1O6 zhxS+lP2OnW_H_xKLn!SNNa3v=Ptm|+_Z_MV+Fv%X^dU@n8J#3KX`Y4RBhy{?F5JyW zZfthx5n-U+?`B!R*T(#cy>wC|loaK(CF@5nU+A)N8Nx$Ba{{QyQgWpy1ER;*yP=1d z!RV~F{C%C{84=1m0CvT5RY5Le63&f+nu*{;Es6-R7kid-X0&xO}i8?yCUKVXW)0(=@i@-DI1 zHjv0}z%`J-9+KP?jsh((d3L27!-a zVrskOXLK`C3=^Bu1_SjG&h6pXCM6%<48>_glWtea3OjPwN4$RH_u9M-$&;P>hGF9y z2t-RXsX-a!Y;|+y>0N;iZ@K%|*wya={Q()nyE`=5BS9t*NW^!b$=*%nnMvP`p8sOA=6TxEueutKGdzu)O*GAzbdufo z=P-LNQb@p0yfsGx64O9H3J^;2wO_8MUOWdCaxL%~3qDvMvD{=VWsSK@NxlvXqd2=@ z4j0vN{%2oLYRpC(c@-VMJZ}Bj02udJ;4DBcC;*AA%to91GJ1y<%W#(5h~5znwkPnJ zxt-yl=sdVa`r~l9cIviOhi6XwI;3n5Y?$48{iLB(8cSitQN!#JBxZDu)Z*6@ej}GrFI#goS?)m0xu@hP)4$1CC zCOMI(e2<^h$wib}vc;t9SKI32t9|+mH%^jSZGr>fp1D#vt&@)4gEmFEecu0%7H7G!fo@sfCQh`()BNR;Kk4OX@!}NamJAxK zHnZ&UefY1+@+u(>hgE?D`D{|Pg)HnZ8GUEz?mm3O+59+*(B$ zd{ZKExh+V`k@jrihk?F-yjDO#X}ZJv#mW9ZBpxp1sy?#LDdnj}7~_2T({b${1gvmXr{kq~^M$yjl3 z-rB%Dy*2kk6^(NGfaeDHlCGL`S(~z{Jz0L|)Vh83T1|KR4IL|l%Ck1yxS}ai;iM&(-zW+yPCE*)~VsK@|2gCezG?GGx!;J zp2BJsp5L{nyEA*kmrWholh$BiX&S5D6U@7(?^j$@A$e-PjJeP;P)PK)S~oLgOsoH* zev=SCK;870%+I1Ot#2P=zjr_GwW&Si6zdgyGqkKT?{b`}OsO5WXLmY7IbUAP&iCxp z*c)jn0uyN@Rjwst*)om3wV_l;Hq0h4Skrex-XrksMNtx-)C}SGqj35#ayGxa%+s+& zs)2Fs@Qu6m?~y)?{XCHQ9xk(A6SqkLQ8s7f9Ve9;)?)y+AlmaJuAgZv;00MX0@-1l z5-8(-t;=2UlOK4phcM#t%Tk6E!m63YGUu}K>sMd@s*vDG!EgHvrU){n<9B1ddsJ2^ zq4X`(}MFNkE@nf=YK%lLWs&RG~;%fxodP`CS+jOMlTYb(TZ{V zCBMwMzY-9Z^MD3_IV-3xd($Y8=bUs|QtX?~5h>ju11eH(&i?Sa4tQm#;BjSEmpgmz z#u>jpnx(}Y{vd@lR?=0ak?I_ta!@ruq2mk}vI#~K6C;ws9n5!v48?&Q;}gEUQZroR zn}0Rg>yZ)BS4>NL~zhXFK=bUt z6?pqN@QV%kOQzCcS+jmtgR;kSh}}Bt%=W>5@{c2qFPyD|P%W8m#_%jk+@D zr{j6mNKvl*Qjwx7!ar|7Hu#}!wiU#HS@_16vat#cLqJ>3vX-&|q?MYMwg~Q!e9ea5 zY9et|dpwV?a>bU13#1k5K+QI=tyl%J=pMm_2H6}dh~--+h>{^nNo<$^t|^_Lms*EEMdaf z(_~(sziI6b3py@Zd*fG;iQhRfQ%^F0S~=i82P(k~C7iI3b9_&D1zN?{TksX30fgD^e>1tZSdCww_Pr zcC5<7U6ClFGJ{`Wg)$&yMMQb0n{mM^JpWe*SlWMIkl}9-IE6i@O#ke^J`|GQ(xVJryy2xx=o0%oos?9r#>`Ha6`&#JxClt~T@I;A%7rp=xPccS(t?#w2 zHmY_8_OKxoR}jPF9swEO?cC1@^U9IyE#T0;<;+F`$#VMurDWnC+B6H3_CAPbRp(i{ z;!AWhQZ%n_J|aZ4EB7*5TBV5t*YNhqQr~D4;~o9DL`EAK8iB5(+aIN7o%DKDyML?X z;Nz^I{RU}#jWzYy*(?iJqVw|#fdk*6NI@F#OEzw|YP1Y>UIxWC7+9MEQrHEb)$(zx zLL7(pOQdHjy#L$BFZXI1zcB^s-eUgQP00<$kChI~WBasT+EvviE#}>*`y(BiCIQKU zn%d7r^_6V??!Kgp61j0{@#zD&j@gZWXmWfWbk9b9KH#$-;Sr;B2ysJ4ZI_ z-8!2ym%PAQ4e=L|M~w@T!kg}bmbwLH&C2iq(V(eR7Wf5nyb*2Lw7RQA)6l!v{9=wT zYUz-~NDSYvgCyF_i@O#f{nSjaF@mY!Myak^NSO{8sAH=LvE~*Gd|Krx@KjjaYd_Wt zN%r+Fh+sEF>ya(CT=HiTw61LCW*BEMXgFH57zF8yGk^xa2qC@WN9@~>d$Y0Jwr9a` zm?Mc!(@Cw&Jhdk8$7+?%GU__z{WTSWUfdQs*0ocivgL1-#r!_Ls|eom51QdSoQ{5C98 zzXk^?ve*wA`zxe+Q7_|beLXXdhM^2W3Ky#Jl1E<=5lZsxR`^|HPigL0p5v<*YMtx$ zKNyAxsx14UBt?0Vv@DoSEWgUZyVpB9$4dO+scRe1fLHJ-Qu3^Ysi?1F$8AL5g5#t{ zto8usO}rhcwxfu+S`RjPvKOVM9RyXeymoVZ6%BTr-rgA^yc4fD0~JP&5#^$pQNkJ(DmikCvu&6WjYCW{_hsWK zU{=R7f5{$|oBh;`(#%`fVFah;1C#`ZdCd!yr`Hl^foWP$YTg%k*KzG%GAn?Q@mp84 zh&gwc9g_4824NSRNkhe3Is6v_($&w&9dU9ay2M9~?%p=?v6=|qZd2?XD#TTHV*wCg zV9bYawqy_1dzncgYsFv+$uWN-p3WmhZ)R6;k6&atcnS_uS1UaE1QuIU4a0M(q@HK~ zlo1;_1^ry1Tc9abAvApGsMnNEI@$7DeS=#C7_780$qn|G?D+-~^Rk>r8zQ@~2U)ia zVjk&P`G$=u>#T%)Ck9p%_EJ{DC5!?A8?K( z+r}uESkRF(vo!t*cn#&7u8zrVsg3Dm5jYyl8E8X%*jT zKKD;d#HXn*nfys$5z$rVoy2g_<9qt%bR=|6GNR#3fXN4fKN&~?9ZHLfQ7^#=7~(IP z`o{`%<<}qP>@WB09*NACp*sO!Ms33FcQjQmQ7U zLN#3-Y?b@)pckVH9&68+@V+k_!sX=ht36l|&awcst3;cTyW8pjcizH@47|AHaOPXx zKDvv|?4dJQ$-6Bnqy#^D&9)%z zBXMWji_<0#XUij@>~ zmD06&a5r~)Nn1i~ID-b&zEgOp!fU7(WYN$D!izVo@@G+Y^0wrx7B+K~*lrX4>DIj$ zenjLSbnZ0yUWh{#pBAX4b#di0ae{*;&(g|C-W#92Zk`&LUg$$~8tm`9XHZ3|Q62{D z5(Qj(C^X{eRfOs>O!XeKQVRb0ZLs@~cj%M$vlnh&vUz#vo&1a6C z;Fk}^_E`F=;E4~BS07cldfgh_0PXP{8^6jS}imJ z51O@U;nHLj3{n#Y*%a>dej9D=hD*=_{tMeUlFF%u{Aglb{X=#Gi3RPS6h%CTP8jwF zv{$Amf=Nn4XKRgCES(o~%>}7K-Bmq~z*}2B(Qsh!u(%CW71s9-4YE@RbSVe#T_IuE zbuQOW8@)j)T#$a&L-d_qRcwXX!2%)D6meDxLX7$_Q#N=@bkFjm3IDL`5JojMt#dNG zLTEhY5omleX!W1H8(+}>K(_t4YD3%+9?_fk4l1(7Jt+CWYSoNGyh?)AJLOeBa~E=r z{SZWz>4aXbnks(klS;a0q2R(=L?AtM$pJ$2gy01=HUm|lBb-ts8e-X18((VfghLGlXEsy?^ zot_C{O7MVIip&OreEA*$t@sC?=NSAOzGK2a<~sKwmw>n{+)}s&z}WYubHAOdrx&0& zmaU<;MyxxC-(aiC#p2p@uD@iLnlt-;Ctr%v=)zb2R<+$lHsZDX$p@|RA)|Bv<2zaulzcZjYa zb*%qV95W-;fekvo-_u$kN3#=4zpR_6+iyG<=sME@PF!5tR;>uY2Yb;@_X$=zG9&J4 zzU&Q|^?L+Yvh47iLaO+F^0naiQGrL;QsqrvSQc47isXA-bHj0@(G}|*BPfho=SQH# z9oi4*a*ex%YwZo7dRH9qtU(Q+<RU0K-nc-R`_dViwVZuLv6NCmWU^}ketx&Ue#2q5QVqDEG2$4 zcr*}g_s2_0yu$iM*W&Uw+n~%o$;RnqrS`YML-|*c538Tl1=toiO+DUO%zi)<|7u;= zV>lV8rk1Z(&x!y(NZryy>^W?bRA}CJ3PJZ4NQl^c$Bu|XuX5R zeST4^Mz}Ouv5-0@37Lxny>GWl0InN4>%yVDq+L$Ek=u0u!GX%Gq171PzKC3KUAH)W zXsL_z!E*#lNJI-vLyN{CJj*2UuODH@R0SRh&MjkIwrlUf(wo6*{ow5&SSe$qEStdM zPuoioK_9ZzN!iH;{uwRboo~O!;BYO84z$l(B+ojVt{M&qh&wu`tm!MSk8M+A4}RNL z?OoVo-6TAQF6A`Ky+aTg`L=q_H2t8%k;0ZeNO627B=XkL?jMAVrphv)%j`?DzQ4)$ z=oV3OJl=jP&Hg(&IC&JkaCif}?d9Oz&#AS8QQsKB(pwu2PM+IoF-rN6uECF=#kxJv z8o-m3(HlB70vGBKA7QRz(I~2b8+Q&%t{e3}4eC9zOb&3d9^Ss4M9wWTUBMn6f36E{ zet8mk+>tLr9-%ACupZKNIx)!_HIHhHl}|tM+Sh^EqE=#asXIa!vcNMv0^l}-{h=tg)` z@_tVp4p4{7-Pg4y@DG2kv}dBq*|x<)uxibbHs zcDUpl@v17EIkEkBsprcaN)oZaRqMKR*rz{)0Wrs&b{%+(y;IyLS>vqsM07c7}Q2@cj9e!pX ztOo!KLj)9E^RHp0Lf+j)*CLHDq(Q4e3ug6VMcb5EKZ0t_0{oz2`Py$5 z0W8^;ex}aTOI;V$x`|iaIM|uTFyKdbv+)f62H5Z2`F69NW}oc1Mz1oHG}9K?`SmrC zxC~sNkk1_#Z#P42s-~N1P^uxI_6OF)Vxw?dP)T+Q73=JrcK| zBxvw-qh)=;aEN8oX7lfmV5`(FU5N^@7SQfAEGzDM9CYKiM`kxDWWP58F5+~8i)Y%{ zmbTw`o!G64Ek~+=D^o@gUjt01z!0+hQpcIwp4magd%bvp8dPrly=_k?)4zYk9z6Tb z*q8f|dDJ`8CAHIqn}xtt9@6pPauE9;U1QY%)^`C*7fPh>G=A(?%ctQUT$lU#7&2y9 z5e;ANM3a!<#yqCp&Db*)#u5fEDUR6-X?G9o?^Neczt@m#-fS<@>6tBgM1&cshL)}W z{+!6RoVCivE^>}RC`^DuPRoTkrpmaZh9(z5Ou?4!=SHR5(A!xKgkX&ZJd8^H#8>g6 zUqabbgodyx&VQi$+0%5uvDEpvgIbl;Pij>AQ$CCnV1h{|HxHVL$bw-N}!8(y}ND?sKEa? zTO^j*C6M%A|B9JSC%v#gJ-i@ol}5kk$Y6YSAu#wWTzaWR>cf?}_jCxtd+bKAVCdTL zIu#;u{UL_o*Qxhi3EghW-pcO6Et^D0H%jFie0$_!CBP+4QM{)mLVPP-D7)B3yv&%y zX6Aw-OsO;eRkJ|GUV;if_)vk!SMcp@VK;jPHeAR*^5m#QW!zNA*JaY&>aiJ{t?y(p z%j}g%aJqJtW~aiJY~(|5tXl+LVc%s^BYa~6otg<>vOT3)d0D_e7H1f#|L6YlNhP56 zz9bX-vv zI)*$3qxI-B>Zy@GdO7GD8GC9=3YdQbQNzmip{v2~>cv2O(y!HHLO}e94_I1mVXe}n zi&W=>5r=l(2YX=`mct8Og5uIvbF46+{cN*p(-r1GuN&U~Ud(AZ8~6Or*)nIa!P+nl zCY4kxWm*zA05`2%+LR6i^``0VHbDmhSlOKE3)OIhe21>rYP3a8Rnymt%L-5>>JKri z+1b#z)gaIou3_5~W@c>k7u4oeNzHd( zFE0-os&k;oJ%BsEhP2p9fGtNwrshK&I;)ZiWN4bjoSf zqi3TPYUrhG(F>Xl9)o$-7cc(}wYpo;-ZreRN?LdC)xS2$1vY&0yQ4`8-bn1o0-(z8 z*adHpsO#MDCp8!qzT7Jm>Ma`31s{}&Sn2xd=`%e=N z0k#&Xr<^wpAqZw!O;EU=uF|BdcFxCbTY;2Zz~mGk{Ia*I^`X#R&HVFCT5+83I3FqO z97Yc8kGFWQd`jVPE@+7%9nb(_xmNqXQm{6WLT^2=>WJy~8X_5_mPQjJVeX2;uOXb4 z&B2^%s#_PF#??OG2scl-BHF#YuvbAE(4lnjQ141Lu2-hlPhuDdRESvFKN5)!Uomv? zzd}psF8^5hPrJO`vG*H_5ii>x9M9W|4b*LA!Hf3O2OrK5M}hrHO}e6I`pebc_*+S~ z#KSgBhhOr0dGF7*9FpW?4mWMHM_OIFNV5O1aT-`tjq!LmrOege``PF2kVJF6;X!}p z4e!?8b=1do9LoB0k(%c?JN@jr?2`fa6D1Nqc-yUn|B?w?hBCAWU!d(Qp|3Reo^^+t z4zcJCzY9tM91R8P!qcOS6dzp0p{U@)5wGn3q@!dOnNvMC^QXPV+sPohcOHTnat8`W ze7ORP2yONWO!Q|QRSo-Bwe#!!%*TB20(+{%krXhy@UT?%cUt|&!yX_0+xFU1-#my@ znvyG59l>*ZDDl;&^PWsrK;ff$4$0=&r?!4PhAdl`tckG7w0S8k`@^K0xh>BVX8>|D zZM0w_sg`Er(UREmjgpUse3yk3RW)`xwTin4JQt~{epxMnBeorLa5MlWv%S!!nfd&$ zJ~O>o4-PL)!?RN>Rxrd zauC16&?O!FbbBXM{DPg`X)z1t^0!Fi#ix`x&(#T`Fas?Ik^<8L_UFIto`#$CyLZ+A z^{06fgA*D98K8eSY!^~vCTmu=%RDF=Sx8BM&%#lYfT+A|Y5)QT4TwbaXONgpi#2-N z8|J=fFz8p3o$um)JBA^>Ysd^BsYcP9ERnosP;6hjvTqu@P>@%C_@jMl^z`c4A;#gZ zctAW>RmaWgYW}lF42F{7Z~QM9=^?reN_fi+XAEU-sLvi+h;VT>EU(fw4odx@Bl3H; zt-fq3qN=pKEP2!RVW;+bnnS3LnF{JM?;Y#z?hWrAQ^_r}wozMBpa9Lvj^&(FN^##B zQf%mA48PtQIN^T(nx&ajJvD5NDQ0yZ>o57y5xT2DL(6mMx^8mvP0aAPBb>NI$&BfN zj5GyZg13KJC$*NtF_&PuwVKM}v#X!A)12kI^h$~)(*nF{IH4yyrCr;dcCN*w7p>{f zVlsD3^y6atyN3N-ps5VYA8k)!u+V;#gfX!v5Gmoc7PWvFI#emHmw9ead4sn{?%eDT zINzSE6?NBQt9r`AxYBwQALs<~KE4n+qZOmxrtC6{uT07wLuoHxH*53BIUj5QZg;4? zWudr6FtS9vZFIFj$1gbg*M4h@X5L&c(@BhDGY?7xv2wu^Prd#7707j2d~o4^$~5Qc zWBMn(`)V22p0eyi^>7p4WB!r#kpCp>QyAnOg!C$?t{Jxx?!d1*4i%fJ(knBBtW24E|n~N)>NDGjBM)MAD_dKTGE}^SMWbp{rXfeewg=G(UYhf z7cG~s7oLu1M`);3zPcIM1`RLLecCFdJzUTD4I5;%CbRgLj1V{nRzV>9QI55m7dc(X z-nex`R;bqq0xlm>^*WtWlZ8h=yU-Q_ev^$J2F@H=)Uq}DCM(jpiA&B;u6+UjL8gnz z%-4v#?o&Pv-d@@`B~4I#(%~lz^K*R5K}~tI4=?cc9=;slYcomz)%!6*MN}ACEWTyK z=l)A#8`+1IjTRSlN<{jQ;5k`h^=h&#UN;89)9nN> zYwRGi7ZwFE{R`x-eLHKEwoUN*r#4_wj}oVvq2kB79!eiv*Jiowsd*#~xpGjTnhp5o zVa8ggviF+jd#?CRvFMxQDRc}=`_tDF9ZD}9c5o%_dsVC3Q>0Gc{`CD4I?0|?J7U#w z9K{x{Fteu8ll>&xK>I4Zn|g>igf3r>#aIV*xf4<$08^8)^XHhBa3tFHD}+KG}7Hr9wFHTA8g5Ynh2xE z^-1KdNuTkQ?obSunNDYAj@lSs>>ESl2-2b99_huT6TB((44(Mld8k!K^+O(BmM}T* z$IxS2bHsaF+S3tboluhkvH)kNU4h%KJ7>jjWEAXpzRBF;!a;f)X=twa9bBanib4pNi>t>QXdFYY?;)2MUjNY>izx-UD#NC&wLs&~ zwa%9~!U7>@oBW7NI|fjz?%hshX#xM>m*uqir-26al|QA(zol@K6dTGcsL_I7AN*3K z2v}=X(yCTk+;CR2GZEOI&-u1q(I~z)&j~qrW}c0AVAJ}%z4g927PLL>vX8L>}J^o8}_8Od3 zo|TD6fo23bMaCWhnYvmB3kOsX9;H{_X@?RVKPRZchtRbx_a9+;X)^Bq_Be6Z1F-_< z!@$@sy_mqVtUcRCFh7I8e}9uyTgO*YDCo+A%e#4pNmsVCiSTJIfTSp~@E@zH8Nbe% zD8%kR_%l5N-}q@Zo!KO}lN6JfBAmRfU|2HU!aF2pAFM!O%YsRaJi4c^nG9fgfvNKm z6m7ExP%eiXD8C1gq*#sBdB%`VR&!lj|3{H-=p!S&GI&=89D4*XLta87QIn)PBZOZ= zo{2LX?bZTZ%GpujFEkMR3ef>QB>O-@-T}d!U&I~Vu?TAiuDA#GdQHa$5>2>29XOd%GGwmrBw_GdAp^ePUtCbGLFYM*7HI)T^0~ou#AJpw_O=jVy|`b z79KK;N)p}{f}WjJD8}zAO!LI^y9$QuY#J#NTWV)J{x!qdxT8B>AMSH<4>9;n{FA9G z`_m#3l`aCqIcSdf#tpNM`;|Sn!|W&o1Keqjbj;tdoF+`&v<1uK^{ru&aNeo|PhHrc z=An4tO<~8N|72g3UNnpZKAx{Ory&3(s=|!bBGH8Hhq1`O>rp|Oi{ywQaV5<+tzlIO z{1hM8Uei2zCmfHTcE{B{EL!Dty4d^7Q^HGXTD`0V=G zxsP3>&}V@PAQC`p>Ny})hmGBtN+i_!{tRtCr*%}^zopWnXj zw`j+e-=SoOuO?d^Y`x8Y{D`dfS7PkCE%k?=*=Wi$z~AI_7|H^|iZdLJ2BrD1X%qKe zq^g*%u{x6{?@V`9qT|%DnEBaAZq=;mF2##OT@jgA{?(tsam4!X_aD;NBM(mg-6b%} z{M*&MDtY}58lUMF`k84HPftfuy$4120eeh_dXskxt`UL6S@B}?pqqx7%0>ZZRf3VQ zG~%R=GDG|~1C{#7O_#+?^3L6Jl*I8;uPYF=3mlyT{v^XR?{TX9@l;UGiGCn9z;`rS z;^RyD?k*(#iezIykpxCw&?8AucOgh)WswtkwXL)EfNIi~7U_$*?k7wx@~|>Azn8T3$&~D~tV8$l@ zmH(;)SvQej45&djhmj~OkP%$a)6I&f?@`~hPT;94OZSjp)deGhRl35;Zphd^T%DbX z3p$qp_Nx3ef0akN3-}E24LmPoKXNj|W4#L`i4HeQuA11s_WJ9JmttP)(`DELds}O# zBZIVHcvz^-ru)bjRLXL({^LWiUgHBKnfrlXT}rGOhyJYt^ic_@3dU{q z{*oCKfG2hlJh3X>DH_aGZBpw8QjEstT3|7bR4Bx^2J6F!82C~Wo6;1{D%uG5=mYbJ z_>Ts^XbMja%eHJjhMbjorYTa41U@Pq<~xV0eLiq5LSQy7aBN=gyAAS8z?*Sm>tov9 z?g5)==kjp&ec&~}*goJ6$WB(7{h9@F&?TWK>1A;3*vVh)EA)^)d3hg!N&SvowjA}K z?ptlXapj4*ZR502_Spt1X6BZp?wf}oDN1+UPiYoP*>X+mng{q-dFJ%$_q_WKH=jrQ z)5a4vPriMXtp4?WN1f%I+-oX^&r8ft=I=E`JYbolcle@q{v%Aut<>rrm2uXR3jd6Y z+o=O2(+hNJeedEb*i#og7O&AhJw=dOC`khr_8$noW^j}^NwKl);T4|;w>k~mC?Q7W zAKOT>&d7fi?JY}{dvjS6S54rSk4=j%PRkx=L5R$?h{a3sri<@leo4I!i0;h)OQzjh z=Vf(@)yD6EExD$B`)LoWHiOJg78npA;flMd569g5`mrlje@UG!2v}J@~?uJ zE;>Y7;4c~RHR!VbZGm(6DWo?z5G;ki$@Kqj!t(8E_(x&T>zK&jI$%s$+}N2hXm~lj z*sDbUtYxJ4QO^wPMccPMKbBj`U^@Dkn5TUvqtD00`rbEIXZon}dCLAFUgCU5!};#2 z!9<{H{zg6C{$qjfx4A7{9Ao9H7mjRi37miI-X^~7UQZ*N03)Sj|MOE0o;69;S(4OH zf9St~&K{%v5bfE;xg#t^IrhKUdke6rw!Uw800|L66eM*(KomrzMZh5>73q#qLP|gy zsZkVBIs^oPk#3M~M_uDC#RFg^op`X;DM}{9hO>*N|S4Fh?9^?MeZ(0B_o3RjmwAM zk|&z9`r7TAF5F^eP_z9!LI`B(@6~%P5H-x{!~^yCN(+Oi!&u!b3Aa44_e$ns7qSt! zp0$G<@c`yy%0lf=j(pBlGm#FZV^wafIdXP9)*!~@lY?|Z_nB-?TWcy3dF?hP_6&$o za$>|jdH)~>gVL5FAXu;%k^%x!7T65bLJ}|;Wgds)w!_k74}?wXRPS?RpB0yCzvBaO zhwtS$^gUk@0MYfjcNIC>+K!baNMQE7_d(q>TASivvNuyVA*i4A?lW}=#?H`eEQO_( z{>~iWhJpZ0=ra; z)dBg&%_-^2{De>Vj{BKfgu-WDOmkEWM$r^HQU_Y)_a*vq6104Q9)1*#Sb@?Fvl%K>FCpZtrgMz3U+n;%I`5Z3$ zgsKOzC(^&A@J;Rd)_(89l zHhm`X+U+1(6T%QI(@D-GvL*IeAk2|ed4zy4z5FiZI=mUJx(F!9+67yNoZL!r4iFXL zj1W2Q^Ol(LXfbJ*5JRm~r1hdLotpM0;iO za(3pZxEow6-ao5BYWsDegL_LDMqT?vzRl#=MsY>P^*4kK8v+@llUnMs%AY@7U<&Z& zAyi#cuxZVQnCNCmP2Qu|w9t~TH#tYiVfGE{bh$cRstDH_7lC^nt;wbES&u+qRf+0g=ANIk6!On+I0 z9s7|{7`z<{i$PS$c5ay^>PptsHVLg#mR`rIsv}M$X?9o-2FIC^QsfiE8Z`#sd!%_7 zprZRZm0g#}Vl*naHOrM@E0MXhH+MEMlq0IJvh=FH%TIt%=gixmM(&g3%ztP@OtLv) z#}TvVO0!;5u3;K98AkUCTRe~=4fd&R?}xl4X2n0iQd~}cn6c!mCo#w$fGI6EE(Ld# zACmw%Y3MX;Jj0%rH4WNl8L{vbzE2g==O3<*8iU7NeXF7b6iD+o$oYG&3s~u!e;b|@ zP!3vyAXEtKi8#yM86@clU^3J`eV5nqqUYv4E{uDx?0SQ%K)ZscFCPS9z=X_8G|}dC zaBc_!cGLsVwgEBLyI4Sqcz*!7KMUKW&d7SSDaXI7JN&Vqj_2Lg2oM{CQ1fBx_f4xaSK*ciLhfrqrA8-^69|(uLR}+Ay~M;hpEqC9dK-U3osM~-0~vh zEyAI~2Ibp%YP?ZZp_8T$cJwx6xz?!VJ91vXjiqSA?SxtVNYA4GC1g_8nBJ@xuTFZ6 z#7x>3`;G=^HOunsZ;;F$*g`vO+pYfi!3B_Mmh`aB-2$YV@x5Aoc~Nv&|H%b25VagB zR}_*iI)J|@{`#IsG5n!PETlF9;Pru)yLbx4+hf7y=>9BM;5VIt&#_|zsJm5@RI_Ye zFut5iqt}}6YnxZNU6~qk^u3X1mQJ?;-5DuPvJ)~A)G8n=j)w-PRF7ItJydf8^dt6M zR_7tAoyw6_dsB~Env{&=>)B)zY;yN}8X)Jhz{-^cgZC>}NULv98Z~?bIT8YCWgjk6 zBCDkcD5hZ%xfey;21NMQLS?SfM->*Un8g6zxd+b3TZPjVSJtP}RQ9~m1ka0hTjaso z7C2+q6nMJ%*-4%KLyk5;B0+k`o|ddOmKA6)_;(FOVsX-kgltD8y;Z4_%Vpn{MWt(ZWyUA5YNOM$rlEA{f#3wQeh+X(SX%Nh_V8(|`^hCK@ywM;Gw-ZW)nS5dF_8gvAWeehN4fV10QVZS0=COb$t;d0!#nGdcEsgm zK9wetO9uwqpeAup^;-u|cuJ?pJlRpEr*2TGV10RC_X}t zF+3uIAk)xzoc6_aH)FCv^^s_iQ4nVxL@1E|kvP-dohR5mkhKR;&^N#Zu9Web3h`0` zB$oRz@5IV&WZJw8o!5F=-mFH4Mz}(O7NNG}BkwB`{hT!Q$hFzu{MY1MM7@fLMe7CV zIT>}N1FI`mCW(Tx$A5$S6oYb@!E+CGikDomB_6W|YeBK~z|pul;o4lG&cRbVP`)h- z>quSgx^$m^uk7pFYf$}2V$kC}_x%cU5CongV%g8Bh?6HZONEA?ZZGrcdu!%}LO6%Fdz)x$ewBABsNV*$#xx2k? zy+F`k58jZ0*E$j3F1mmGqY>W9j^aIw_un8NVeXHSLuptaE-Q~4s*aWS7TFuH*Sg^~ zv$DR$?2FcN=m6w|!Dh;Reoutjmn??ynIvz_6&@~u+U*wC=OiKO%-oqZbySjQo;s? zMK&Ye%p-8Z$x;RAlZ;N-!V8?Ysot~3s{;>9CN3s>H_;-2Y^GmCRa7I?{DwC+F=P?Y z3!onwh@wSGk9rcGJAa2eK8WagCFp-WEO|E+v@5zg0$aHN>nXPHspq(+U+h2^!CwTg zY75~5OlVkX;;q$@Cz)_w&s3dYH#jPIMyC)gno;-W;vM{`3+dMg8Tt^i&5i!EDp2ML&6`&O+qdvEx zVB1n4za-bIocZ*{Qh=pwI#)bwRI>O^@MrI<8*zR#*UPANC$N&vh~-ZJ)9(JfVRpWw zd|u5@aR9YP7Q+^e|Ly@DJXnJ%xQjF+q5eg3KNT%E+5O>}JD@LewFbZK-VtrEtUwO6 zNwbcyNLe_fO#=Nakhezw2j_7ubP@xtu;RTyudM)-$vjVsYuDrhT{!{TqLm z48XYk5!m76Rw^ZH{v)^gZF0tT?>BkPUFQFk94ec1rA%3=jdWVTy)u}5ccLbyA&~pN zS0n#Hli<5&MBc-6@p1;dbR+jBW$3s*(Jm9ZnNs1+pvVC}!zUHFyw~5;tKXX&6jLDc zzL71oUzE($#m9`Ufq1waO5eAe+Nzu1#a$G~F+V<2EBLX0;y}LZc_{LeuUVM$<)fGE zNBB-Xd4G0H8p7VJR`Bln8|Z?HH4s_x`G}E1P_wSyrF=xh1~!uo-&yDB|5tDQ^`g3F7A*2>7?Ti6yLBh{K*J^hSk3AqTYxJ!S;UD3g7+3^ zFb6QS2E)&l)DWP;Bma5D*!2ULho|-%j-ix3b9B&pSbxrb{aP^E-{pJUtj@|8dkI7e zjh|zwFwjW{!8TDZ<~BM50(lFDQ*XEWg5lzv<-bg6uEN!|Y*))$TSXcT?ZC4%(;FWe z^n_{N_109~!caEqW{<2Q4ZYUIhUI4NHVnbt<`1n-R%|g4!Pp&aSulpsDkHsi1-hEJ zTB(Fq+F<_WTQc2lXiAKdyGNN`p)x;-e?~ z3d>MwZcXr(@o+`;PrCV3>Mgi-qmvplI`XVFQ7Ra76m@MdH{eEjxhG}IGyh;QU_izr zMpIrN*sNI9lTXh--MPLsbeK1^I7j8WhAnf|PwNm-*oE~0ozJ+UgAQ0F?b2%9;PJQ( znCs5)J-O$7{e1JV{!~|a-1NJ3-VepwZ~`g`wxoeNdC`-6^#beS?DfRN)#ofVJ<+sd zs7)5NZ;&hBAlo~$aC9wDIH-)I!(=7%b4?Yc9nReNZ(v>xswP-8k%_;^7nn1mVq{69 z;u&JAWMm8YHnUuZ$;)&^Z%{sOE{wD0RmVN!x0@e>SKNxNHG~n9JXS!xumRbclyk8X zB#;KoXXUu(wVXOUWq;(37{=)rNAlPfRr#fL6yEZLk!++M@m$FbYPK$z(`b{{coRQj?!%j1h{Lu7E{M3q7z!pMTowejF; z{Ryy10?chzl(!J$lMl8)($a24uLWZ=8`l^w4byi_AF-BGAz6tek;QsjrL=R^o~Dct zKACx4jE6oK?87~m!?t*G0}rCy5nC^La_euGft@8p@}onPI= zpHS1*jyTD4E2ys#TbydRL>jo~mHIHOYA$7F|7^eu*mez)m#cnA#-p&)0Z}YdR0{pN z(-(H>A;mYyrPdv#1C49I;sHp{f;SFt!>OU2-*QXzk4*$OZbCnBziJU=NOxS&23upw zh05`SdqXBxG~#}ebc|n1Wo1mAj<&CL1A5CJi$P*J0uNu7x*}>6jyw)0io9e^{JeF? z_dsJNhAX>Q-il0{i)Cp{cvftoqv|d$e+GmcpX~XKqe)=nrfC>p1hhLXj3!S!i;V(? z6H8r#gc3E$y9_Tg1a)`=`>V6(_P*RQJ4irO&k~vdF>^p2KgR-_lkeaafx69c($s|% zRd`%VHsXBhfV?%a-;0!lSNof#JP%$@4%L&?0lPTc*s(tRid=8rr*IqkmHTxKqMsQ* zAlK9mU%d*Hfo7cIz1Up81R7eMcqfpr$=KqnIAZSQ%!s(Q+%s%i_V8)`ijz95^6Gom zV32lX-pieEd4$1|1zQ33|60sSqT~F``H69twx8GQ{!Eo6;L(pfo)vP9A2$PnC!kB} z@2G;DRxz)1jOuAO=$0EWnQ(frFn|={7&7%?P|z1bhy;73#US^5Kvf`05;e_@9m3pH z&c>SThFw~r!}MY2!LBB%zli-q=tRikuhK2qsjMI2PNTFp4U}1YD0ag00zpfafX#ZJ zrPA~T9+oQ%*Wz-;JZXCq4>OV$IIC`+WD1Iko% zKJRYb!#4OjhK6qY%sxdNbMJ{SJ(6?_6(TA^&FQ-6aHQ7ix0mwk?314#QV?0MR>N8_IeFG$SG?N4C?m%aZVOhg zR-@29#Vh-}z{id+O+j-Yxtl+hu34Y~l_&i2@tN0(c&nV7S12#qF>o)p5LLibl_u+KO-5GMsQRtv0uvfOBuTLGvE7+7{>Uz|v!L@TZs`sz~zBPNA`Ep9jg zJS)rjCeZj~-R!I}8X6cy}EhOEk<4I zLVY;6Yyo zu)2LMwi11x_V|z|%3rE2Kd&+%YfUN?&Brd4LReTtDHm3BH z95F%8^d-N-`m~mi(Rw!;BbZ;}>esr*1gXGnkxsGf%sW5Be0TgM%Vfa9RN298Bp) zsSGQI%Ih9ww0)szyQ{$O@rh0({0K7^6fsw{{3ONqJqf3FOXVfy@NTYQzv%62-PF_a znxu)EzboOs1x3zE9aeEV?^sI9kWy7jf@e=5_6yPME_ucGe@S@M?r@H=DlgV>mA_u+ zdAeu0_hzZL)(Zo?Blp?MS1O{E^@4eucens;3jHS*k-{6yt+)1M!3-t+)NZMX zkA5ZDe|0TAK?nV5ja6ru@1PI^6r5#F*A+w#Sm4|zzzfucWYGf%)^ZTaD@tobxBi8q zh5bOo>hO2HcA?VvMWC>JR2k&H5-ib9+MK))nwj^+8syGvSf%j%(8ldu@ElC$u!T{?>~U2K z_&N&;^WgPfu`~CME8_V$VukM;@^ zOC1#C1_hC9T+>g@+W309tuCuqHD74=XaTW}nOW8Y2J|OvF~Ya6dO=CUTY^e;Me>$1 zMR^;EZ?$S5#aC9FkEYNhfSWtIYtV?oV*!4gj|vRqtH)J0h*$^6!Rbo2-BdP-p5=~Tir<6Gb4Gke(PNI^_WEi z3UndxiyqEAxf_j^FF(ukR)jHOlcjgK`XW%aoUOQaxh!NL^$GPVx0$n;{+;h>F2iDO z`1+;6WYlViLCNmUvFEab*L{a8nnc`RoipK+bYMYIBFF7VhIg{@@Q}4pcHyObwS5hV z`Phi=9@l6KT3|AE9y?r|?RqM;xBV>7Q@?G??u?#B75bt>gDDUL4cM1W07kbuxQh5hySjs^ zLd@MNp3`{T_P4+}E_nWr4{Fr|>~#Q#?JpxX)w(M#rrnh{_&rpO>v}@Sr6P4qyyj|| zl$PbOGF@AC3j&kJUpxtw)Q4Z3jH<$AyRd=##lIhi!pf=X*063Nj3a>g+KzOAFQ*Qk zpxC3~hK<7ZX>~>wAaRMIPiER#5QEZl0dSa%k z{dpdhuT$tVwEn8SEc#129|I0(aueU8`RHF1zkuxZZ%eaxkt3UXrmS9gbTe$C10Lj0 zB}e5=*SF9{vIiCxcV#qGYqYzzFCrGaL7XjDLyQ3{aT>OTizMpgJ>CaiXVz|S66V-T z9KQN{QyJw}Y{>wyU@?T5mWLg)Q)={Ve8~+W?K;G5Axc>9i<>I$1X{SBDHrEpYYXfc z4-m~y(hY=TMfEVinQE)MX?jfJ7)ywJnCwJ*EGP|>&H|-L{)l%-FyCs`H}|3iEHym? zpeI>m$Bywkam=41qfnOYl}bf43U*@4+1IIMYe&{_n;^qg5Z9`~>1(~;PbW{c$h#GC z*iB_)DDPGEemId`F*L`da)_;T8W!+~19Ol1urJl1V1=z__74W@d zK+M50Bpp_;b&_{L8UucO6H`2u_sXPSD75r?w-)dZLZo-TCx!H~8q7dL``FBHPV0lf zJ)bhj!64wQ<0*P~7Nt?|Q82hquC$)Z{(fZr)LUFXy~Ks;UewP76M>Jr%yM0h+aEqy zKw#UgAVtnFp86Z45Hy;V4flsHsgI;hyGh^M^~XxsV$ldNCmbznG-&S;46qM3dGx6e zFQ97eIcQ-wnoFpOFBBkq@pEeWeUQq~@!RXj#SRgcmu*Sx_1B7G?@B;lu%M4SIW^C+ zB0j2Rlda!I=+0#&QDL@bQ7o@XsvE!*@PSys`lVqEFnOh@g?vzxcxGVt<$DQhQD}cH zlr&g0AH^}m9t6xn1tJ=lR98j-Fu=X%2iy;Y>gLakvDEZCheM+Fad+ivIAn{tsPMkH z(zB4qIR+7JRyeV`6XpiJ1r=ySAczD9)~Ui^&f4WIy(=HHRQ;}a+&x-WQ1q0M?y?5R ziOuFz`r#7XtVKH91{2o!4HB-Iy>@A}N)=zFp8Ude(Om@3g<*$MJvv=2^fM>eF7bwC z!Wevy+zNPW1E7hPTfdKnlRxOUbT=TDJk6m8H%6g6M6WF-dO>~VD2i>Lw!bsAYHI(r z5}=ajs0E+~XK!k809U`!ko$Y*^ON15ry?5{f))XLhJ6I3UICUBD;N*NVv7Nr!#i3) zAE`i(!=VR!nt;lEVNuf#-B>Oda?(-5aQ}SF)sJKm5sVlDe9Jm&KW7&q%lQxbLV*bu z#f_RgVO%%8Ao(EUafs)P!`g;Cl&1D$p}>uwm__t{1Y^m_s>+pmFWBcd@1m?O zmq3vO>BBH=<-V)n>9}2(-xO7sNjfG?rN!JY<$}#XEF>akB@2g7U*`zA``KSHZD2a* z7;5V#K>L9Pm!yV3*RB}@rFeECc$X3&E%3H4iPhE8U7)O80^Bo!qZi%R7;t}uWl0(~ zmtubf3W7GxBlB=f=gmZD|2?y3;L+;d0me`4DYguHLE?M+sW;d{XJ%lEU|(b2$zZxp zTK6dLujs22P6HJE&;Zdmd)RJhAN!o6%8qxWm8ZTTkjhg6Z~~9!h2%ItOE4f+THNmL zff*nc@-$fbJ{j_=85U1ZAUFf8YfU16wQMmE%{nW!G2gWLW(yCsEzAjJ@jFrwiP0zD zlOx5XFxFAHO0#1cpG`tppYcwxG1wn4QerF<7ng5Ebo;jdqE&wS*qOAj9)KD5g86up z15v~YQS~C}qsaqIvl)-IEaQRa!}Jww6IyIFhT!hIu{&K4gl^10rhvZ9xs9$VA1arDU%hxirkuOy+5unmxt)yb;o>#rI-vS zHYDnwBjXqur4XlHNT^c5_`fM3@))o~?jCpQiR<^WUB8+x`6-WWFODvdEQ=X>EkoH8 zuO1PSrXmf}>ZogXK{b+rEM^XDptqFezY2t*U#ALa$OXrcR;-Q?DoOcMqZPbT4?Zr9 zQ=ZHFoS$I4s{s30Y@S%2a@p#PvM(3Nia>P9)1f z^gsX3-$46P{IRt1@8T_Q@NrpB|6h*72)dfOAaedSwgQHIYL0IS^e1V{8tXkp@-=mn zr$f60$T?jN!p-yJpT`NA`11?!-N*toIz0+*`GrnDF=)T368KuLgB9vT_6B8X~7qlkP`DVSxou6*@d(F zsFgGUDgXd3PuM1p7Ds#zkTKlYbs&s#k+sh=R(ZJ|QfDi_{UkqrchRE`+SMH>gp~lv z7@uGv>01xz+a+ero+2hSvg~B?Z-l=2$V5u~Hg#mVV}nf=l*EzeiLIVPE~VZfZ_7TK zCz&fW_LZUd)CicZLM<849?KFY_4?FV%gv~aJ`J%$b#+=73uVG@tjP(nWN4m!(|gGv z#>^yQylwtMV)7fH`tgG*0Wa$Tu`~*fqq!m<%$xglG*~b75`w<`kx!7dev8GeAiRg@ zCC19U#hyI}VxyJR3{RW!8kneW0d=#dH=lx0m`#> z723Vmqn)z02q(EjC{l>2&*Q>50kJLGJS6 z@tob>oBe4UkX|WmHy3n31rmhBFM`&8E)Th-_h|2SCt~2!#;!G3>84g71ZRy>R#E6j zKyVJhnmcymq-KQ@p2;+0Wd+P`77OZnoUVI9+k513KuoUbqOb=L0}tUn!WH(|X}uCk9LRnBk<5q{x&X zCC-FQujIX#`);Ky`^azL0WJ3 z8P;y;{>e{4XMd=is)+NI^i-*7y71Gx%u2J{Mfe{~!8>(GJ!EP?h~P}F52O)X`w z{L)>G{R~e~N(V~0U10kc=ZEy;{X4fzB&@jM?ZA6d*2Z!3;Y0l}hH;1xe)Fe}$HL4? zg3b(-keSi8DE_StW$a2I$Ot=Q1uQ0DCcG(j)bJf|e7b6}#=|5wX(_iu#%W*j8q=kf z5h!rbhZ4`V-{yZ^&m+w=7<^B|H=XT6Zcx52I*1*YH6D;6JrKQjB{w&*s%?bwhWCWx zONwEENsim@$7>OMT3dipPP&hQX8KTEpk1jJ;SRnrZx#rn`)c+@cRun|r3Mjb_$0NZ zgoNBET@>GZZ>QHEQXig(_kLp(t0AlUNZ;J~3PEX07aiCnp{bEi*KN{JF+Sq7L%}?C zYc5`H`R!%SmRMzgMli{r|4Y|M1)Ylh^+=*ZR@< zL*zkl8M;Sz8MV*{Qr>bD9&>5fnwEdMJev_L&W9Bc)1Q2;x%fPdhH7O9F#QkWzQkal(nY4vVHA@NN{LSwkLzcE>2AnG^tvK8ExRj%Tq8|L_uiX&iD^8Bre|>EEhj4& zZrs%`ePVoK{#ut+0BeE_(KQ<2jOUSpwSpT0$pJ!6d_7$#AGN8ySDNtZR1AV81+aST z9L}G`9T%;T>qIyYksBRo>>&mWHb&&uS0F<<_1r#2b=Yc1uzuVn$PiI9^1xYh48Q~g zqkfa)RD&5dOrJm=G<(u@0)B3E#^DfjZl3Q10u}6U-^_fxlz-e(Lj<;q0mc?ig1zC= z&q@b7?ymEthUvN>qT|M4dw9d(^Z0ZH;>Nl6@WJzf*Zd>ztKqZ9c7xl!lK%-Cc6CSN z<`$3fge=iF$VGf&qeWtScWeY3mGaQeNzJb&?X2yKA*S{e6+Kc>m57%id^V^5+;ao!y)}OLW`|4jg{#{@4=!^hCc#T&?-v(PHE347v`6 zvlw)@kcl7jrR?W#n^r^*T(A7RwtFFmw4<=9FM`^f2`5Qa84h_D0zV~P>OZxvNTWv9 zwtyqr>i}Gc_?+&WzhLF_DFxVy0+vc(&f{PooHD{q_mAUHs_s89)PYtY(t6JFkVeUr zj&iuR*^|f)-I$~6y?#oR!%zI2+z4`8UuZL9elU-!@aSiXur#Xjnl z*VT;3v02&ROJGPvn(l$|={G2Ao{mYwp3E_L>%0_ThQ;S}E^urGo-lL;`0;Nvi-wY5 zO5L>GS}(;AGFD)ALf;plP>`6EFTy76$h}7*(^pk*KM)?hmvEqf zaE2djj*O{6Adm-yRCpBqY6k${7)b>kx36~~hoZ0;py2#-}CWV3^j~l71@2EPlT3V=R!6&@soc%iJFS^@=@*o;RpEn@zMex>6orY z`Lbj55Kh%#GGY4zw)?Y)&C_oP{%0rQ=QB8X(Zmtu<%Y3Nd$s3d*|&2u%TdP=jc{PG z;<^Dyy3MAbh0!R!n7qFQy50Zbg8|L^r`I#5?z3k+JQ7}kmd1TOydtBv@xot^?;X%XT@h_~s8 z-y;hS&GtVPlyvUQ+!bgcDaVsz7Jo_zr;o|4cY5jP>Z`#6El@&FpZH zHZy4oKxfOeLlQ@^@&)HVRwv9MKL+?etYy*@ekESL!{LD<$Pa1$-}M+AFI|peiXS*P z1sB$VoVM2o9qyWOYW`R$8rarHZVahH8F1cn(_h$BBV^26pN$>uyc*^IwUwt7Rc!TR zPSUq%$yV#B33wG50=8?sm8N2fZ>v_RF4@Tl#vlTZ#XS{+hdficOQbLZ9AZ&!)>g>pBSM zks+4O{!&iCCahFN6vn}KPr!oWnISThH@$jx9~)5qLlzu13#g+r{_C)XB7B+G`8ipKDtUar@a(*^UC6d9}#u!gE7rB?& zzb1VgLIBSGG5_R`e(z7L;Ly8%;0OQ7xkDbz-=&!R&QSl!Z)!4-0tk9vfKYjxZfd$2 zh_73NQBz>OyYK}5-GiwA(#ggq6O@&an7sdZ9^|uW*<^V#m!$3!s}fB_|>TWgR3j*0t~ja)tfD;^TW_*&85p>6SrdIsoeOE z`5eJOa*eer%T`x{M1`|mJGL7ZpD0xoTFu@u=NgNi^yy@d+qSuJH*7F8XjGZ_jRk#N zWMS%ubc?8?4rbSugVbjqe%L=DapbJT5&8zyT7&O>0pa_Xi}Ayy&(-ifXEnd;T;Cn0 zoXXGsVC^^?^VwW3abVVjk>9BZc*x7oQY*861MI%ksJ*K4_I+QmNbTxdn>Jn(1t zU;2`~U0N{zcw)6QDm3#>Lvh8!r#BzT2YLsMjuqf-Qd2!WnQY=MtJ0si4#$F>DM3Qp z3!sqGJ-`cOG=dEjIGO)-&~p!B1Qx=@VjaFA9+6`NSCZlM)AexAnIT zuWN3_GB2H4ZSqBGY*Rn{D1Z+ zK=uEVhy3db5WA2=np5LudaO)&yxK;ZGHUp2H}_BJ0WyuGfD}PD?E!IfO7^b{XvKdq zB|q(nLs~68;YD*e7OUcWCJGtxmvsI!dI;2uBmQ-s_xJG8pYlxqXxsfvlCrc68d8vv zB0IB)z_0a#g#Fn(te*);>fMZ)x^i-ioRb*AP>eag!tegapZLvuDE);|K~w$(Bj2Q_ z;A0Gj!k>1Io*hOVRR%A*zE=saRvM)}rTU+l$%oD9pCk^Zi;a`DHi&Nh`fG9QOFXuJ z=R5r2`k!-|7;mE{teVcq>iEjH4XBp1pObf@d)IZ&bTIy2V@SpZ<9S+db$cQQ15ckp zp>4sP$h>#M;{uUF(AsQXib<!$&@9Yky=I+A=*~o*KE3aUn5`a^wVmBH^LGkYv?n{Zlu9|zx)5F0C1eTKpDFbe zbD9cPh+Eq1%xDxGZ@YFe#D?yJJq?q|x~#%f60~~WKQ~S&qA%+yI1?S zEbhd3R%aK=UJ5*@VX373q|8@@7v{=3k>c$5rzC?G=Q#8fe0G?%JzGy!-f>7_?ta}| zC213L;K=js*heg)Vb^*!^oeWja`hL^GSbUFTPddHACl&tis$qk!aw@+w&(2`$;Ycu7G5m!2eo3J1 zXv_Ni>G2CI%a^%oRrr|pM#xNt7|sf2Ovz9PjOg50)%ieH5S<((AQM_qPH+VITL$o9 z#{5^W)wdolFBR>XcHZ~d>K~Q0F{LE>1epqY0Abw}yLzPibJLpiaGLQO!$I?Fw%hUP zFR;PprrJ*feqBDN5yaW7)wiTN@Yj=K=NQ z=G%f1XYym)-?&y_7qmM!F)mWr&z=f>%lEYnj_y3|*A<3n^f8f<6OHx8a}q184sGX+ zK~GuemPBOqS?;$a<@97A*eZ`snQ$a%(&=ZOcQu5Z`NSG`{CsOIeXpM=43TRN3NCrf zOFD_U>=;oN@zUy;uab7OctLtcChb1FA;|9`A_#^V$?Ts@z4!XUyWjRHlecRl2&vhBpshf;30C@On{FJ0-3~9XX5a70x;l+YH zF=E(1NAL9_-N4n&ylI~1G|lO?7H(G0IFC=tnIXJicpp6A36n{gYH7)hPC2GTIH+IG zd~sVkvfHp3f}cvS_=@Eq!0xd)Lj_lN-ExGrgUgw02Zc(%{y~Q4Z{4UvGMA6snK56` zvWncbN*tQKPAAyACS}c9>OynV;+RcPJ8MMTUA6bjQpS$~*K4W$DV*ugiQqqlR{cTP z|4+V`G5E#xbGueGS}ub7-9uBA1BAR~ow+7~5|H5GOQsY@9Ip>q+(&yRTe1;FSZ5FC zmpvm^?_~FHIw{!B@-Q>WXv>K2@fS|Mi4}C{$|(RwSAguRx-2BsicNO5$F&|8KE0xM zOr2vPb+uDdNq#yFTX(o+>Zx_vfUF$X!gf!h|wmu#>aDydu>BA+G zS-vmrkK|dO)HyioKCALN?dsmJ5>8RHEIF{h8HNw4SXXKQCT z$v~c8LYcp+pZvKYhr*UHrkN&}uL{eYrB}rq#LsB_UtEYkv&er(dK)Vrl>CN|t@hS% zG0686BMU80V_ja;^xgBUObzwrczTxhEQQ-LZ0w=OHGus2euJ>)B6f!$ZW`3nsMV@> zXAo^QAjYHxL)!%J8p6p@vvX~ZzjgW0`zvoy!JnBvQ!x8re_-}=+C|%uiI4W~{ z&~pm1*13@l|5e|}{z28eA%6m2m5$HIF3GdVu&fYFW3?jdrN6&G7e^yHiK+ta<(A;pk<-ID%eM29DW=BZq$E0(O+})7ajd#KmNsQznItmkH{ls z;%|MVq^33|4vzMwcdc=+Y>g~Qd3Xewt}x+VF)=am@bC!mU;TNB@3%{$qDGxAw7AD|reEfXh|B^Gc zFf(^#;<+mD{ZA>|`?mIK5AGU+&$(ghY+-DwDl7T@ioA`Zsr>`n`*$5pnH=q%{`Ogt z7LE?eruI^{)(>oLOl=&Qu71B)#^OG>8GM42`VCWKTN6{#>(@zt8|JsK-$o%P6lCOO zAb9u?2p;$c`8EKNf)E`cBqBUQL_|nLOiV;VdV-Yn=uuKCatg8&G*q;-G*qWg)1P63 z(lf9yo<7ZViHYSr`$dk6bWpAa%nMZ=?l*(P=b9Pj`k3$nkSS0g5P^-4Dvho?(dmkk|O+!mZ z&vu^u!bJ{#0YRaw!q=p3NXy8|$t$R-YiMd|>*yMrnBFrpx3F|@baHlaedzY&sn0Xt z=P&%i!e2&2M!kxTNlZ#kNli=7$Sf!+fP;YY2q7~M z(Mbsv;=6XI&hb7bp^^+u$p3JZg->;r+Q`10^fW8~7~2|dXx~TnpAF3WzcjKR1N%9y zeh3)>9#}jAN(csAK6+os((!WxFja`9a~!LHRqbETKWZ z0UJT}WqH)DGzV@62IbiH1K4)_%Zhs=EQko-dn0i*Fn8LCG~L@6SPrb&atM)wXoQWK zn2(PrKeR5skX95!B3%^nn5#w+o7KcnJ~Y5e`6O2T8)P+3_g&O>r8SFgd7KSvNz4}p zQw!^1o~V;&251OqMamoNtvKPkrnWiqSz;}_Ei+%^*{tp?oEpH#Gv)Ht9JH^p8_v{6 zUwr1yB{-DFzj@OlHO8E!!${Afs_s}Q`2#x1!0full^EL`RNjKh4E2-?Z$>7p-2-PFG ziO`iL{rKS3>P-yqe#=(Em9lnnzaTEbmx^CBTEDoQfYMG}ZKccg*I7kwNBQtq(=5Hy z`f5@X{$;(?cAf6F;PQm?h+4o->e4Qj29e^EH@4g7RmzN7>n@2CON7tv4;Aszs@{BI z{ZiUyJuW?Hpj`O9h!9?A80Yze@vE=(JMI@*(e?LFXk9ZYjXHsyR?Hkgryh@erp#MI z9BW2R;qOI*_$V=c45L1uUw3KA_R?8vzvk`M(^n{)@G0{nRlJqFy4jF5?yvO@@GG_* z2e>qfwXLt$+Q~;cE>pq8 z%mkEvt%bX0Vo$G`eHEA>tjpGlTyNSI|EQhI#(M(KHsWRIvzfHp-Eiey)!vHJ;VJT2 z{Y9q*L;GKtbW)~Crd>DTT|Ulm_9|P$nG3-n2So21~iUz z`^How)Q0!k1l`h#tj7GiVtIt6 zU2qTXzBaV4NgefJK#x;VvZDvvPm=n~+z8@>gno;vphVn9bI~5?>&R~UV*GA*{Whz@QZ#%o_<(3 zf_)&T!<||#O2{Xc+3$)T#wefR<-{4cd-=Iur!H-uj$F6Yj3TPvo}O+qm}}y|VHn4^i~CyMUjF#m;h=8huDkC4=)QBzcRSKkDY5 zmo6wIc{8H-5bNdz?f#Uw8x%U<-%^s0G&1nPI9+e<(}nc`_ogDUK(u||1njcNn&y_$ z^9n3mSl|V@tn59`DB3?Sfi%PgBPYtMqf2luITR=DnZ%re0q0d47L+k{nNeEoNb% zHGC{3)=&Ux5TtiL$UWa-}_QFr&6?F5=$s*ZD{h^ve19`H`k)wijLG zOXI#0#700Sye+p&L52O25~ZuV`hijeCj3&zLqo$Aq2_>8zR*&-Rw;eO(vLU%b%K?{ zHT|^o{G(i~s5jF59(J9)jKK%%R{2^N|97kkz*#En|n)+Gwr#> z{9)Sz+)TkX4dMk5W$)WZk9Ve8y@?t>``RL9en;zpp>T&aS8i@qS(ojp%UXB1_q<)V z1fC&}*`EEvY1Ml2;o65}r6j%Jw?2JTk0tYK(9H?rVtfs^*B3^}E(_2)UF8zku&~Y0 z*6SNeC_H)EoQSe(g+XGu3L~xg8ll&;`Ic)7Tk;L!?dUu#SWvmfx-XUzlp>N(612ABbs#W?Rmc0&$r3>R9!d5Fetxbcd=WF7H7Jv zDDF#7`3>J_tYv&^1bN^lBz9XOV-}T*oZ0mpH#7-DOLzEeEmaq%rZ`7B-%P)0cSOPH zM3LgT*ht2ZGDuLe^C!yx!`@o}#r16a!h?rk3Bf%`u;A_%ECdJy_u%d_xFkSu3lQAh zWpH;1t{HrA8DMY=d6V38?){(dyXSuIzN+`tdsU}ur>RWu?%ln*ckk}C*6+92`qI$t zZ1WqYd75|If-7@C(JR99jqmfvg4U651IV^A17@plaQVeHXtW&Espl>hUALth)t^0q z0DA%XNEx?a#K1^3O#{?s;39ZOLjKWbK{96vNm)HLw0=!FafNdBqAdjiQQ$Aoi?e{>_d`@ z{)^Pr+htwu5Bl1#&!uSjyET{DqatgI^%54yRDXY4;LArcgl~Re+3qtZOXr>N=yRcwYT7IQWmKmD z>)Hn~QHiKacCDLF_pWgcfwPp%q@A#n>D(Dn@=>b-JxdpxnbD1bAjlJ2RTLTZuUVb1 zlzuh~0S$eo7m_Fb`T?L#fcV8>XR*x9g;dxN*)8f0Bf=L~A-ia4gdrv+;P}RVD%ABp zq_s9^1G?K_^^7CL5jiaLI|7ZEq|F!{Ocwkcyzg&%Z=XdL8=&FpQ!@$_$BiSyvvKvCq6A*$b#YTS{6pu{ejpcYtFn|89DJszG;OH zV-5a|Ao(pH%ye4o@8aZ2>_T&l4~99C4dn|TRGm4uuyJzo z9JwF=DuI8L^uY=q!iRtQ!eRf_KonL%$ob^Yf{&&{ zl6Vs}m_1(^MMSnDtE$V$Xsx@buGx6mh3`Y%JV+{Ym?W%abjLil#Rq_*?IL@K4*#@2 zMK%ycrb7)oUW_E0?D0?REdxhcz8aFP#L4hM=$??$x%l5Tb#mrF?LzWN<1CWDGf`!fdGh|viNaHPK&sfFUo^33FSUGvv+v-lAy?P?f$uJ5`D30+ z}%5hb2TI0cn`$!6Di^)dKpf$kxuPng=O3U7`DZc>HRiN50AbRDS>3N*E;< zm>_?XKnCuJ190ufldecIC&kev7Ov{PV&}5}yaK)#;P3ZF!IM?=^~ZNOd?ZpZf)08(+xeK$x0cCEI;(PQs7&vT?X)>hCuozMSLBYgj@Gv#eFb^fO?V z@I!{KG&(bsf?G+MYa(1Um z%u~g=U@edNUDSmVZwQe4@ZL^|R74cQMX|!V5r4dn5T>I-EJ2bmI5td73*cH+ktUo> z(}MfUq5cL_dBWH5k1ZkR{RI0TJzc@`S>&KRDI~c}^B>Rhs*z<-Pk-2AzKE8#1nwN+ zAlW2IE~qrM+`n#6`C@DSb(C4$QPVi<>+t}bw-Q@Ipt2`i|26l~4D_d8Xv$6E_N+x+ zYa_{JRNa33Qu$S?ZJ`xeH7X+waFqI?8B^VRW6`vQ3`1lYmbqChJ3L+M+k#%~rBj zvQnUGy)%7>pCrlK?9T&4j!POMs(O1??Q^bi2}xI?@wXqOF|4Ab(J5( zKJpCAMw?pD4n(3M@e8Lrr5>_uYp+L}V&h6 zyPG_NBRX+5->Y4V_1-K*`)JipU;5+f?l+ue-N@60@G7KK`ZU!Ksh^pX#bh)Cu$6rf zWYs9w|?@F>9|RwYES_78q>&J;p3M?CaF z^Sa2hAnn|EAvrpMXtGUL=nwaYPWId8o->=2xud)goac(3^kANLh9A8}%fCs#JqV^l zi`N)q$$XC`#xUMnluqd_L{z-yky~#}T2r2_lKnP6&o}cmNP`Gd3&l1OE#~XyQt|f1 zD3GrD#>0C@nH#o3>Uh@Ng}A!TOXx(dN!m<{0Iz5N`Vp;g>L0MRP86@EUxOT;(`sm} z+SgVf*BWw6EK+L>J@F6D!sM;ei(hsV%og%u4y&7V)%K$rbur7|pP#mJx{X)Hs-=zB zdq;Z0PR#!<(<_B*QNu9OxUQ`grapI_bWK2__hG*_A?b76OWZf!9FC~6^Z=FV&9}#c zaNieA+ZmkaV`T>#cRmX$ha6hLW*^;1TC(+{NuPeR>*tN_b$ZpVno-|*S?gb1RSbWR z1O9lFR`J5}2^tAIn44zRvF5W1rFqk#*Xzc#FE=lY*D<4&0F`Nd?pHb)!5IyCSc%&+ zqQ*6?-}1S>Kg);-wq3_vWb#6aX4n%gl9dL+K}-s{;C5)bPDTYN<4AJlm`25nNvUfj zZRw}ZX^`|NgL>C4e)FraqC<-wC+il)&n;ss^&ZI!&blwNOc_#0hnCUZB`#JZ7w#^9 z0hq(~e|q_+>~m|ru*kNYevnAo8I_-@$e-TC6+T^}mZ$6M?l?zC_&j{gX;EDXjt=|} z%Bf2Feu5;Dm~hj^1(R@H2G^oYlr&P6Ylu9m7iUx!pGqc2>YgwS3w*ObwbTCEKEE!w zfbBX0k9eZPQl|{A6$0HMO)cH+KU&DbryepN{3V!2E!v1eQg7kYDGV)GU5>>Yb+RIh z37j+w`?XhxXi}%Kl0_eml2V=7o32?D*Kwx2*=b1*hz_z$V=wEG_p)w zoSe)|tQ?%2J(ORwmvR@)eIYivtZ-lyYrUJ=roZ-w^ZiTfoF&|MR#5z@@M*nz)j!R| zB-iZ)v(~+Kw!V|e@TWDg=9#N~tLBB+wXPN_Jss7bzx%G{{Ag0vjy^UmTV?9~CX-08 zou~XyxGwH@os+0^JE8fj;53^t&H>0uJ{M6zqpZ|R0k$BHrg$Z<^Y?}~hP`(YeRmj5~T{>}8UgFG7ag^tXb)65Qyu#u+JA4v%3Kb{zcZVEb; z^y0CLX8VC@zwz^OMRz!tW3dS?lr$(F{k_+EEVf9n!CytpvDAxKJBp{0pYUv2uoz{C z2ssljhKrK_MmG+046;hf6-ubYGVx+We8#pV11S{Jq*5*ugBc zV5k8!v)p6G%nCk(y~hwv%# zM$SI=C&+=b3DFE8Y48uNe`c;1^rsD+LHIA<7c_xQg^IVs+|3vFeT|>jmU;y}CBW*Q zDo=xeDnUQGCf+??;~QwaD@^ota6v5+wt9Wqk5a0`*htk9hIx)J#7P9boyqPp>9@Vf z>V;Mn)RODIuZ~71FlvZE$2{mxj7cHQd>W04R%zW1-|cL6x)bU&6knY`d7QKB5M$jc zWY@AC*+rt}47gLF6oorF;#|ChwY7|_SUK(OYG{#-*pn(o|H$8vnM#4b3d)`M%J&9W z+QO7BMF;T;g{#Y?p7Y+WFW$Z3;#d_&kh2_oS~euoR5AMVsX`8^Z23V$5BmEqYiU$PU_3)}b;!UkW+>4|?UuGcR%$KQ zjli#Tv)1xYZdJu^znQ&_M@NQ4dGs2B55mD61-3LTy2X9e1W(ivgTb(BrYFms=vd=G zB7L;ko@5o+Q=pA_d(x2v%~~(s1~ecZLf`ZxEfB(KB4C8-3|xv-d*tby<1Rb&{>CG) zDQ^+Nz@j>(*o-nOXYsA%N9>@(cm^sG1+$d;Y5g61%K#b-;|aX-)NtUzofWREB**aE zrDQ}x5J&5p|8ITmUy8nePzLsjG*3qE(PK2YaH=J0(o3cfNxZ%*EFJG_EjWAMezru zuiVb4Q^mVi{Pceatp)XA4FWVJ41%RJ4c?WD@4=G!aeQ%`x?y_0DFZluFDkP| zW(r#kuI##4zMvHQnKd8tJIT%spg)J>F@9S9Nv)qUAo~BaOq)!YJ&5;HzQ_eHj(2s` z0qyh8dS`ve!36$!qo_(^9P$OZCCAi4M=$Jlnh`8*o1H_wEVMQR>y&d#uf}xj!SZ=r7 z8bBC7cx^F>8SSmID0EAX^Lq}+{!a9KGMN&2LISj2)+k)gq&n35-H(}JK8djB_36#{ zF`&euuZW@U=q2>xuML57M~eM>4ewRN{~>ee@bOiaVrz$jqJTa0;?S+7BX(lDmd2hx z%01%a+&ewtD8qjr{-(7X1y=0f zY-=fbd)L6%xT=v^X9aeVNp3{-ts-{B8A?-H zFC7_t-A2Ks)aCa0?{nA%><;2t2;*U4(nV|3)iO>M$P|A!0;S%yywBrEH{IIJt|*n5 z@B5De64C%=xKDrG-PE6S7QPApk4%?UntAi7CFQdtiXEY};)<<=?@y{j-Ncnum2?Bp zOyY&0D%0!w@Dnj2Y1YPr&6p_FgIGHZGx=J_93%o7n{1RqE+hU-tBTrX9J!g^fY5Dg z5q?pYi@JP2OBz}ss+mW~sY9Xn3xMtR9HPu&@4C-DIA=0X+Z@kzHNl~VMAU@=`ZDg! z5zq1AhH~R_J_3?B#})!V*Hw>V)$^*3ANUL+XVk{i0I;9S6C1l2BsO_XHF-@Y=&~Km zKLieotX($MtJ+i4!!PIR9sT~?1joxf_>~ySdCY>B7Fq#s1X;O2vP%|hEV`uB^2MU% z=?{6jE-=*1aSE9jjmFlYwMdC6y1)iv({3Z(t}i5`UduYoI9o8xS|CTc_p>fN-J*!x zrgB-t5`NWTn=S8vGT1&ecg|cY0J-A&@* zqvx-kiAnJw2v_W#kLsO|)*u^g0*xMCc|ixmxXao_C*H-6_h*DwEPWtvV5t`YFawuK&x<+q8xFynl&8kfnr-2c*JD4=#=9?eX5zVH9 zsvbrT9sk5rkrWFxVQ5K%b7Ziap5;fyIbry8whfsK53ma^X#cIrbDvU#4x4-BH<))} z#GM>g9abH>IVC3!pnNIfMkI@6D*XF(ql8ADmA{RSc7Y8Vr~UOmbmOlhH?Gj9gIeU~ zQHI5F)Zb8Joz%#}Rog~{Sulz6a#(W!T@N3Pp1%y76f9bJwQ*83Ge2N=6=iPX+&hYq zj62ZlNY^!JOSW71xN#`6aVX0SAE))D-VUm|)1^1k zej0jY@3{<0)TvRmx?gz4Tio_qsf2P;by}#kK zBwU)t;}iPIr1}S3KlUSvlpV;6P21xNFi78aUlEB9p97d%Bi(pr|JLhf{c=$=?`0iE zJ{%qRC7|WP3Yn7sBf_Z>_^1m^kZ9YGd?s+*y8`=^k$>moh`ew==xQm5W!nA0_9N zU)@6;>8i|z8XS3@2S(diw&SwLx21r`AU~f{J}V4;l}9wY67-~@hV;vj>J6AES~4MF zU&CnOqWM9}DM!k^s&uJ`J_%59_L2%wiQ~6zh-Yi_9gHAjQ=#+d8&5$?^L#KwRNM8s z&T?Rb?ev6bDTogfQzItO)$qBM;d7H@jp>gR?rAUEI>R^ewau(N2quzHkJgbVo}$qc zl}6YvJl1zUpuUTjU%H#U9AU^!dHJ`a2C92W`Tm_+L!9Aqx$4Tu%RqMRj4*&B!r#@` zn(8pov;uu1w&eGc#A-vSZhdiPUjUvF#7gL)cAMPk8fLBZvyEQh-J(uc^ zjIWYkYErdSjW3=(S@!UZ2;yi=Wm~jjEh1SnFb0#>TiQ3)lMjip|;&KKInGI<|Irbqc5{PVB9Y zQcUR2pO#{>LX?!10NieJxXY^`cuj7l8G>+AMaFo5H=ZhK?r7Z8L25p5vMlek>Y>mw4%sHAtWK^&Yc|2TOqkI%hK<8Wf1lbQ!Qy9E)`^ zE4W5JSkSmnk`mdb#{&wgKz;Dwd{63EBu%QUYNRb5!{LgoL^nn@%9erCK|eJ5rhdf> zMf{N}bJuGMh8ego+mQvyXBT<)K;rtt7{>GqL_@ZZcgOwqnt}~8%fQ+>dt4dNjP0jE z8pg%*A#HiI9J4oK67=n^>iXz^Bm@VlbGpH2qnA2Z*HDk!xi(bjqleaPI%?e4XW>dR zT7lgc70h9fhQ=iCFamyK)#D>aeDUE|O@{crF8FI<74rkf`=GQZP$&rz$(yx?H%v#U zG)RuN4XEgY)F7UFUj@~M#=05kMkcBDtbwdIZPKA5J`#h*^N#Ih8DKY9bH4C+ZQ(K- zTFNp3ffA5n2o1Evt+$3kpA%IS#6?OGyQ`~?z9zI+!L0UnukBgEL?Ni%wXe&gvLHlyFD8h6 zf2IvuRa)^1x?QbkE%AJcu;P^^3TJq9r@1y0u3hw@01lTP{`5D5hdE3v3Ue)M|8Ot* zXT-zbalW=6zD}fNuK8xP#Yk&(r!nSOs1R{Nysu1NSR6EOm85GEp`SE=STmSGmLu+N z5*Rhnn~As6T1rp~@e=wwFp}77yuHYBjO5^jTm^Mqa5Ul9&wBRG&*jyLiA@5y=IirZ zlX&8JHDwVJzivJAdajq*N!#KOW;#nTa(2ABsl;2%l5O?ntAJ5HgOC*J{UFBKnJhkN z!$zR~1j~w7Q|lZGr4D~b_AnAaIjb67W_aj-W(Wi~UhcWhsz|$JNZYKfKUjnGnja|# zvdccy)})uLtZu2P)vJ3eQ~M^T;N!F4c`H+08JNO`BN_BxAt|Kvj_+d4fbp(|YQtFc1y*7G=V7G|2 zvt@#RocvoYt9}(zXt*Nb;$Nh_yu6g&`+AbO&Hp%_Q|zh!ha=G_3N8rSGZr|%Ruzun z0b_~wpha<-g132Hnxz!RNwWJ&x%O3HkYh>aPQCDxROzh#Co-X&Jc&CQ%!Ay7<{MR7 zf=Th4^bB3`XlTM`9O0Ks5ehabRPm5iV$;BfA?-l8&b#Yfuk64nE$u#81C`pzK2* zT5cZRXwft)+Y=P6pW>~_-@k@Fqvmq6jsJ>P$%hmj6f)`R-UMp0V^-z@Gbngs)!GNk ziiZ-v7eaXBdVg~3A1gLF3j6A%zDyA2Z`x8nprK%cC`CKHnK9z0$1wbQ&7(?BgJ&S@ zXEIwr(t$-&JE(pRvY%&Cf>bLGcaBWtt7`1=fZp&@9)}U%YTnQQ%TbY zmQJdG(1wpJjm@iPCn@X*+#|pJfq-*bw-GXT7_S@M-fn6LG?D1+;A^~lmF(grCuW&C z&6g0J#X-D@7+n%7<7hxBnMpT&iR54(yJGE8!*V8SUkOZp{=I2~&}#7envvV^j4sBunvYdOdB}lX#jR5doY6{D`eh^}d{>w+^{8L^T&Sk&Ro zj;OJZWHM8~z=;gJnH%wC`RNJ|7)S_@Bgy!i00UuXl{;u2a^3Gi5}wmCb1_snlhN^j z`R22*U!)#F+;A8E^i8%^qo88xp+={J1CQh)E0Ny2_Zv@NgpeimI&w5!jM*CeQ!RG( ztgu*~wcKIxzMwC-Ez<=Z8ZSO=htam>3(dy7?CNJtqSQ?nE!$XpdD^Ez$a`m>Q?9Es z_S(JC1CtsQmJ((e_#uHp9q*wH;hfb*P*+!Ou1!f(dTyS`R@dxjcKoHp8;sDE`$mCf zR8rcjLxb=~qDh1C)u{_bmI{`|diFHAkvH=W#dc^cMbNa7_Y-NM{udntWZz0z|ZF3T;I+%jR|Du~ri2GWKo&91YOb@0OT= z7E;gb`|jYqWs9j!n7NB1!EfF;&1#Bm z+Bgdpu4xNK9uJ6b?&e>AF+)#oQ&zrWC^2SMIb7e4bWj`ZZg`sfo-L-)ohq zVm+D^IL%=4K8%DxT^$Jk5JZri(w%td9HQ8Xf>-}!s3NMDzwq|A%_U13!1W)B_J92k zZl3vLa)3+Xw>s4SpI~%;V{ZPA(cu)}`wK*e`#*!|@c*wsbOd;L{|eFJHdl)+T7oZdt)=zfYUztlZm?QvkbIM+TrN23(!FTjq!Wb|lSy;tY zomD>F^l-sj>TlzLQd`xSP4qMjUh5Z-0Kxy9nU5AAzsDSR3YSN4%|Ow+!UI>v+nS)mO82hG^r{n z`DXyU=>E3f`?qtv=F82AFC=0?4%{|&`mC9Xsvq!PA!EKkkuV=7qU7ICfQpm*{zHMk z1d97V{C5h0`?uP_Tz_g{;JtK)no`}L&v^w9mM|A(2K9E-KIY!#NZmL`rNr@%^xtCJGNuat=e3S#^s!bHH4mMq<_2yEk(- z3xKYf^sv>`)a0NO9{*>Q_=+XE1s$wmFWsBWa0!-?lD|YcO73(7eNu+)hCaTKwJA&^ zSLh#cnZo74+=^`m=a**QP#QckvURVKuHKlabaYNVtPzZs$Z{&(1rh78#I$XRPIT6l zOc=feT(PkA7>G@ak}mIGb-dQCdZ8%zJy|n2U+cqD5~^{c%uqD)J8TeKQ-J20MQM2O zNUMx;$eTo{A{X>?XMoOb+9+nF(eW|EW}ou2;-<>R?aP}_4w#y;wfWe!G{e*g!_JWs z0w=TARTQ98kA9rcRhEUKQ?p>u&!hrIYE@XQrVFQ;_SZ73!KFiSO7R=cC7rs{u}BJr zwxDZmX=(@rrAJ`dDH=_>YmZafP801kbz+d<&i7*NS=B~UOH-WA6B_hysMzao0Ro$W z=_XY?tAE%>(SrPDJLqB9!33dp`TDC?cXm@QPA=AOTiKaEFSE-cr<+=wR-(zYH*_r2 zbDy5{lYbb!*Hcxts8HZ0C$g}?nu_-%m8bk*0D^T44tk`{hxia$T^%AvOL^EZ%NTv# z@~O>>C3-#s8^H3kZ#|vq_v4!@$7Msb^22*WtGC=uU2cmlut?f~jTrrq3b?2OOF>>0 ztV4yAW?YG-+aL4VGk1yE2bw4u233^}7Da|=20(_m$~oH7r8oYN`Mk2jCnKhH@fZcN zyXnN7hm;2Qz|q0qaW`j_7_B)`8m+~?<06- z2)kQQ+SZW;Lw`W8e*xO#x4AA1djeQ|-oixNA(TNnXi?l1#wRjKyo??W=1|Ja9c8wc zfye-rFJz~ybNz=JzW~ozL`nAzM4MqrxgPbF@I*Ck*P5dn+y_P8a!HR@vYCE-bt5~N z8rsv2(aZZx``}tHtzvPyI$W~ z|7w*85~ue~GO8dvp3lNVYVs+}0UIa=ndr5FY7F*x`Bp#^m!cX`AZ9`?pa63eB^;_q zU$05DX;G5U4-J#AUoKP{x6G;H>!v{TOK3LZQPIvQB@Fp|-p343VB7@frU+Y=u7Ir< z2ISTi!f3Q6-*&##Uy|!J35*uhta}ixhs}k40ujQ@wkzN=fk0p7}kZ)OL3?UYWW=PF%W z)2LW=blsWGsCOBgp2;|4`@Vwwx%7!)Uqbn`ChPkAy| zci2`eITE{j*L7_i6|+KZjZC*DomRKkt^$Mh7YNfn46{5ZPkoFR9+;~Ruf5tc+7pz{ zlxdnU2?Y3xjpc6jK27lS4#Tj|2fel*9$&(?7e2ezi|sWu#E!k%rd_9GCZ<86i}}zs zs4O|%Mzgv1$U6v$XeXIC@|cvs&Y=g>a1^u4)S>9#*Ai=C<0x&W_Qh-rM*EQggB}gh z_5~fj)O+VXEdb}$7SmgrnX3|+MwWD+>;YcgkiuT5Q9j4{TzR=KEStX^de8Duy3xx- zI5Ez*9!yncftE99;5UFnY4D&k`|!eUGfM63kY{sbi`EEjxukVl%+)8~ZNO2{%fFYL z5`sS%`9T||UYMA>@6>njn#Je~F$N|k{&E-6xPnEbNrGO{=LdQi@5ClCO#Ly`gv3C3 zdsU9rgyS`Bv2lQa57dBP_!1AnVcon6!a@ltY+tYN*KC@jY7AbXup)UUSZh>bEQg}C zzz4&Gk*K-}d%#gL(Jc`Tf7TjJPE2*%X}`etvxQ!^c>ZakieB zA+J4cv^`dDz(h-{*f^Y)C7oeFVzFZuDE`JB!Hm ze(bfF;^yg*S7-4c+=d{S(?;H5duz7-_oq|w6+Pwug8NZ$8sN?t6IqYac)qo} zk3PQuXAC8l*-tutxWG|X{Y%QEi2Dn}4B!Wk3Z#!AuF@yl(hejm(6idO`PhTo3(NBMCsoPZeHa5jcm zxg&5gR<#V|d0m2*v=Gu?1SVYedwF!PeR1-Um^5$lb_31Yk;%F|O|PO#G&}k9X`x93 zzGL(Mr=JY`jh4npKPqeg7jWeU>_@D5vuai#aa8cEB;O*kK@lLRC<O_C^ zTimdK22aNlfR+3-^U=Qm^{)VP#Q5DrCFAFle4L>EHNWY=aGNQL9TH{RH#kp_k4jCX;Anw z8|Pha$_{ z_BPXff__JOC923{Z9i^0KuGX+SOdo5gTrPb_DeKwc!LTD_NkAf5|aznwlv90Zx$DQ z-cR|wyh5OwwKLd-`ne0Y=Snr2ulmnj4jsZ39T|AT1<~*@W?>}QgK(&# zF97u_igEMYY&1;8TS@$g0p!wDQ~?r0+`|^(xVhRUlDkid1BS1%(f^>x3WdJ}OSP1k z1S4V>R%VsnVFFlUWw4UStm_(3vO09~D3hl=t?4dNm#gdsj_FLFB83oe{x!djjG}Mdk zm`h)MJv%sXdD^k(UmKlvRnaQydn?wzFHR9A%_)GZxT;%b2R}EaQ@(Y2DM1^6Mw<$s zp2Z^v#6+B#5@=M@b-!n=$}l|$z=AjD=89cT{A9?;`AIIH_A_qV@}is%apKsy;il7r zPYF}sM4@Ro1G3Sk9!^p?v`3H#zWxv9rBIab8#vZ{js z)lYHo5hVy`5-1Eu!GaG+LV$h%T)_Fr?8wg~_M~~`ap_iQN?Dzf`0)V$xzY?i7k*1$m0IGa8j$CeARWIf9%VJ?e zn~f~WJtr%Y-~;>m%vHtH@BXc`n?)tNfWSC|67i>5zJ4I{GWs>c3hivfzrdTHf<_-y z;vhE;kkAOB&N_QE@;XvPf2ISbq`IR1GRteQ+qh4}5N%@uxqC~ZSWY$$$kMK)*5iV zltuBf)peZJHNi;ra@*?~Ie)jFW+M7elULjb-o4<3e(lRv2G9hi5m#VqE1iHwpj+iYS_4KOLI;b1zNp+AE7tq5fASG8xzoayyM{^n412l8pm|@X z_B(%B?sNTpbDE>A*5^rWD>W_ zN-`gSZ_5U~k~%96MPI;Bih@A8I9PB3V&`(iB|_Ycy`$Cl_j%6)aNcEhWXb+ezAEEq zMRtBe7iD_3tzVf!+>71kfrqe8Av{S7lZC!Ojdx(RW1*j3fGXPG>qAJx#Qni9C9cZ- zp8*lc(I8g|8_JjmI?);Vhw~|Ia=UcljP7p8cVF&ziAAEBr?TG8if!a2e7HwhyK=aa zO}^@+gQL8~SRYJ8f8@gq5{oD9C4oY!Aw9>6q8NxJlF%{_KkVx;`54?pKs+B5MEX)u!yIjoj*P$N zav_fBZ7!HA`+vh+H*OINPgTnEhAC{UtRx1n^jB1jg8HT;$77?0N2`epLaPdlmL|%4 z=wR1jtn`zYbzqTZiQNUZ0oxN#MIxe3*Y^8;<)HT|S(ws(#h0&k-JAwBw!ZdBN#rM;#0Y z0tyX3srO!?6rajrv?4#SP4avq3>7=Epo#g4xy$q6D&X|7-3~%7)|ZJ>)7sM7T$iTU zs;fn!@nl5Y7|$Y)Pb9noU~wZs*$4Acg>5ZGY7!)C@X}s|8N*Q@Yt$TB*QKQX1gke6 zt_-GFU4Q5Z-47Skha34>o^yZK@`kFS<58UvzXA&)gt2sWCvp}jb8ynsWQ_84GLiAG93$kLTStKYUe&i18G6dBgGLZ>}cp&5dJ+&#Lj-PU@y(j z!f0Y}7k{Y2BQBQ6Mq*XwdU8stw5oCuOI$SY1Rn25!UbX&(m~WTD=cM|Yvtjzv}|1q z56-hABW)bFPL`eeZ;qENVO}!_HcgUE`@9^YpYDmuQI&;;zl#&L3Ywj ztKL7vt71IVt#sc@F&*8%=t-EVUEHp-iO3fLqLKB>Y;2lAj}E};-V6vQ7@T-!lXU%5 zJ9c#YD_TZGb(RrsCliz%wdd&iJ36pmH_Epy=jG* z2d@)3nAc64HS)E55?{0;WI3bk=7%N^qan6Cyy+AyjI;2uvuDBTQ=pG?Of!w4Ij%mk z8SP-$10To1aNfYyLb-pqnSlbp20tXlfI|vCBZ8S^7icK5wv%WGu(FM@tUy;q!RubW zBdg?ykngEZWZBGjlfNcSF! z7EQRcLtkC#y%`z~TEpKbkx%H=iH^#Z@+Vp=rcb7wsco1n^+v&&5RrWgePp!MNeY8e zD#FGyavPe9ZYj-XU*|>2Q;`L1IJ$I`H!Y1LWa9|TyH%mxkZMm|R)vsU_ChvHI%kGs z^Q$lEcUAVIA7W)V^l_rvP;w0XCc&a9!d#?^#$cNz&pQl7R?9)bq$y9s-iAe zSVz14@Y3GQsJ_1o$t&Kk!AWRgFzOZYB1?$=#Nz5GEL6+Bf3 zUeJ_1r#j;Q1<-mjp+^GPe5B@$&myX{>!4@N7v>_beU(JbwiO8C9CV=1xTT>N?b7r< zwUC{0g?g)}b$8HzdVg9DLsjG(V`Hh$ulg>rEzyfDP9M2TT$=e3=H9$9L2%#*9F*u- z5T@}eVF?Qw5b&Fbi;reU5RUaAd&rL5sq@3PoG5&28(hRO?H z{l>r=Ir%_(l}{Sgtu+~!@}^qHA1%L?$aNVJAw}be&cdBcxo3+`@lX23URop_Do&c% zwDK3)t_Sq7dfVS33_7JIZ%p)J2@U!YDdPbl-Yc>ia|&`*yR}c=b3DbvDRi1d1dwSY z1#c)ol_5C&q~7;Jt-4q`i@M!zw3sx$BQjgY?2F?-kussKRo;0&3QP12hZjHvz2?>$ z^XPdSBH_hdRRx4r*a6qz`zPE8HK(k<0PkmnWg%6_)_n1+5_xY)#Xb^XOh8)BnTI}7^psUXjH&loxO$pH?P(RncO zq5etaM$%^Y-4Ow-txo=q1Yx1??FQBD)O9jNvq^5UA=w-^uuA-)$lM6Gz*2> z`->>Hm5xS@m6H{htP9zsGI7)__q3Y^F)=dbK-*>yq00kH$aU{3^Qqf$1)?5zl1^}9 z>i1U~d*~v97Q{p29Q^>x2UHlbGTu!>PpVSctC~Drar=wr-Enn^_a9=hxu`!aG0BlF zAZ@%k)hKW&?S(n}YAp4u>hW70V}=*=cacf}K4rD>ZW2M-(>5ag80YdAKv8c8$PwrF zF?ICg>Z9mBo18R*iOvW^4qOH}^db%TGFdqFNg+i+JmeNS!7I4Hi@mLAw+R#_0MR&S z_Qiw_zz|PsW#6#Qyv{-F3(MsmuBG3wr^8Ffm*)@!42xo+j(|;&;>Jl(s>2sybd%yk z!n@CzH0^cKuB}#K&u~+s5Pt#OB;Nal5>*;2V;|@c9^GyVT#_=nF7jY3+Oycw(bhk| zg$1Uc;Ydt~F;pgt-(*0rD7(P!arB?uN-q2AqDcjE1KQh0tC15N$AMru;^7IJYE+ia zzMu9p>&SJ(F7#JhUV&5d`)QmAb>CN&-7yj;CNImqSNJx3D2U^|DG68kB22z~PhKC# zOa@pGEp^dHUJ@VJRQZ4Q%Fja7lzFNAMReh3#a2A3DRbi}OS*-HUs`)}ks=K7z!&G9 zcVeR>JCnuop`16hLsCA{GlhnKf}e)GF4_`_S@$NQ(uNYvht1B$6=vf#w`nz_{}Q}K zV@GR}V>cWxqFmuBc+wRigoVB8kD|Z41k9Y9+H6hQ`1;lv&IbiOmO-m2y4mbnrSG_L z+E@ay>)q5zH{H8PBdZKl$}g*^15`E9XDVkFsB;${U*0tKr<#(meQsl`+$UK+qiSwx z4jqkNL`v$7yMs@S0Yv~@<^B8t|DzjBx7*43w5D}|(7l-Y8`Mf&jXbn^2pWFJrc@WI zJOj0@2z;jdrg{K<_-Qu6gdYlUp+61FLuRaR4VRd*|>g8LK0SBOXP$CuL17WM>3Am03X<<1A?VyRy}V_p)%&cj8;SH74*$_ z427^Xsw-mYb+uLg(;qNGD27EYJV;tb+P)ks#mZHyWKP(-``FyZM<&*y93P|8#t4>r zeOdJxX!%xS;_Hu`f;G6S$TM!}{+8d|9F7j>X3}Jy*y|8HFUwkIiL}2O z12}t~1eZS&`KX<8ci<%*tS)Ia@p`-$E|^PpwRXvDKIfW{gomz&AKac>uF~Js6kEbq zp`DpFmVAac4H15<=9_d4pO&+_FimI|++Zt|CH!afFPd^F@l zY91m|3GfsRsrFGUT)n}8WEMdzPLIIXp*&v(Gg;PghwZ2alxB|6hr5JYw%((0ZLE0o zuHxPlY~1^YrY>KnVplPM+N+(nP27!2dx7MO&%7S;El?}?K9j=fqsWD=3RVsXHCiM+ zKj;tI-|INzOR`Z#nkGzM+&!PWu~3_DGuf;V-IO}rw4}hV`=0#5VDU}-a`hI|wmjM9 zai)O4IEv-Xi?_2Z9elup$DN*IQqpgbXUp;!ubtOf-D`*(dII1(-@(+7$W@WLQ`XiB zJu3r@Nn42Q8*}rPSn5O#rlLCRWjp)N^FCg?!4HI+ojCeF+zYJqGgYi89R)=-v4uS& zNLU8~TlYa|#x@PGi01 z_h1A0N$10|5ys7iqbt9&W?;AvWB!hSX1uM0Lo^caXA27lTpirzLEeFNeJt8zAYW!f zLy@0yPZ7XFfH^ihBqxkNY^L8M7%D780n_@uc0+{C%5-i9-?S|}(759t8GuIw-iQ|W z0x0r*289v1QUNvpbKhgQ8li@M<2WxN>n07($(IW$uL{=TIuOG@eo)B;Iv@7>k?BgI zB?$Xzf@%4;=*0yo_-|!h)PxZ#Y_gs%=$x)xe|D>o6FHwS6G^9wx9iqCL5TdQwq+U_ zE8Y*V_YtIjBrxo+^bhmDDsWx{h*C&F^l^I)7kDrhB9z+bmFuI$X(S`b>Kt8?E(Vp_ zIVOFGrrYFkzKBv80+Zji)V9v5(~;&HMUL%osM$wFbvY`!QPx$a_~$?H1TCo7HrF;2 za@K_Gyo&0gHG&#p0X*M;;T)W8PMaC-ClHxdo{nTQfyNovz3*vHgCv|)l!cKFhF;RUvJ38a=+6CJ?yUNUj<__v2g2|RCVE*LmD(fpMjZ+zQ z6seRHu!+jMnjYpx?P!lV+KJ0x6jLAY-zcb8n$=r6#iprx}W`0X-3#v?=Gb%dL@Mk9b6Oi+QtIg zQCj?Uf*)zz-0voAo{iYW2Xel;?}^b|FrTX}NjY{MuA~!aJ!{~o44aD?DEh;%$=BABV0H#)pS67)Emh$o+ zANp2(mf3ou>A=dvq@se)ZYSX@TmiSqOaHU;x7Pm~`Q=}sbN{00_HT}tUdM%8lpd$! z-%pT>IlYR!=7QmT#m*a!*eg8l!CUg$PcMWj3u|E;!MZhL73VWjsDjcWy<5^#fSVBi~&L5ft zrv7ADW@~kCaYHw=le0^2Rs6?DJ}zV@l+GO1+>)9c@mlKI?Ch5+NXL6l8zcD^q3@Yv zwV16tQh&%F|N06FLmt#n)T^- zgq!kyWnK2sMwx%sDv-;&L`A_BYRN_PnjrBxj2ki#2DIa~MMSzdeB3&-9UrL= zxhBReC;;S$K>NZmJ)pKf^hlNS)4#jKzh3fL%8L<9LUt-?Se^;B;rSgxCc_KlO}&xp zr|RZfTnvo^=eV1=pb@kV)v0>9U+oJAeDd{wom%LIg2aAFy_W#_U?E;;CbBIlqt9Cl zTn!T03!7EfO*h>)Wmqk(&mpb__FovOp=rA@?)qQ>(0Fqc(1t~sy>di(ihBo@o!^$! znrG4>STo(um++Ai;u9D*?Cs1u=Pwv1}&VKj{p}b)>3q>de+hefgqbnRXQ?F1_U9_=xb{xp%gNdLyB=bu~zFQ>340g}2qj z?bc1-EKbfV2EIT})yV4uT61OmfEmMxGND*3Vu7Io%EkFb3gh9JKYgI|c{$LmOEPAW zk!pa8M-j^(q$n)XEe(ygU@7yj_o^7PZLY5OhyF%iO>vL7jQ$f_yO9aaGa1Gkp`dgy zE0gBoO6{Y|4HY5sRX=pw-e9yJo|f0s&62gQjgk-BmC!sPDwZctKO?pNB^=8At}oJxrbxNa~Z>RD{`cw9=P=r_w0p!g~J5L+S=^=Gu3yAA(VXzmtYVh zAshT!JL9J7%qELpQ;NMSjher&Gs_*&UaJu01ZAmQ7TENALoynR4tMr)d}REyGEMPO zHN(up>`q=xi+ec!sY!*r!*L*7|lAm$mypH?7L8 z#JqC$pWXP;usum}cn^XI0Px!U$8?6nVsaH--|rY*4Sc|s)K1>T4bB01eP)ss*AtAS z9qPh!DP&(VIAfUkR^r$hC_e&`E?qZ~9+gdDJ?m(C(cs-xT>Y67c~`ty*20fhw}tSE z#10VP2hc#na_aot@6|;Yxf3?<@>{2_Z(93j_kh|xPm+eOayEXX-PK~YGtd5Pyx7rU z#s+oEH*Jd5}@T`f>e$r4v#EaKc;aa@vgHfQ#Li@sv zy}S6Fi)3!J@w1g^Q zMy+^^G(m6ajOM zsRCXW1qIt>@}+44;n&z+asRz5Y0fvVC7cA`j1Xv2@a%VtBLGwrl}^hFK(R1@N6TOS z(0Zov>My<)D!vm6234LDjVBY8a);)OfUITao!sz#%FKuFFKri6E2{Bb58g7nNa>*C z*u%^a`X$`!o<7|FWb;IYXXP^wPz;BW6*L8a0}K ztG=9I{8?6F!x`UOBlbWaC=qoV6pz)1MV z^$5X;u$feou0$cPa+%j01SJT}RZiU0$Hv$1Jg&pXeZ`1P3w3hj{;XCuJ2PWYr;u<- z)?s(*Qf;aM2JtredZEYwgaL1>frozJRG0C~{9NR8FZt{}za$^IkTdlf*CG~>kt$Ws zx>{Wq_BmQp%tdr3CeML7=lOiV6{xgBlVRh;p$ii{F!8{A@Mx=^?NyYBDfCA2OB>oC z?H;x_kYxD*w@!bt80EY6JUkQ2gFBuVMkZt5RS(p1TUSrjOZz+~C_E`krO4Jl8L{F{ zmXxEhk@t2E59=#NMM08N^I9ui*>VFEA(DG&_ARry3A800T6(TH7g=oKAaeqCcH*lt z^qy*$YiB5*Jpfi%nTD^RB@a==Ek|9cxT@GKUq|4fR9A7k*`;j3gmkBqfl@9mF9dzl z4ZC@zs(Pn8&c(a$CPh1ohba;vYm^~sTnrP{d8XwA#tkN=I*A-ZNrS+!*8i~q!`#)2q3j$tEzIizwG;Ak7A; zK(j!+-@eK;qQi2k353+v7HiniayfhWWR>Yf0*y!$Y(Q1wj|suF1ZLFMO#NewudHdP zV#fB$)=qw#&YA>@ChM*{=L$I+7tdvo-xxD?1Hbh!rd8%!79p z@8gLq0S45F;N8_tjc+4lxUCO_T-G!?5Bh3j#orG zj?=jK`a3fU4Lr~mBG1g`^N}7WoG;NwEW&nDUihvy)X9bP53Ag_mq)2~u?=t~?4*LW z@=KL)E}gM79d(04KdMJPW6i^tD@VUENFjIk-Q6Y^kI=f79K`3t5Q!2xMiFl4%W-dN zo)P_sKD*JF*jfBXwU&V=o43ga?Mh@@co{rhICXqnUZr^Z#pa!zb51tYe)Q}o8}e!+0=aQeojQNJG@ak}Z%EAd{d*4!10KEVmcRdWN0PRWh0d z*ib8--hRvx$A*!48}qhl$B$q;#6R^u+Xl5LeaX15Su~^nfg=t7lSR0$g&#o0f4Jrt zzGd_C9J_yW(*0#a4jrO+l8CBJIEXH@zp(_I|Q zJn4X-tW3rSR+idX$kz@nkFMO;;bQUS^SWyKhaElm6ddBCP&`*om_emBe|Wcu5I2#N z(1bSkPoBka`DD?mFl;7nAsL$JHmeyvtTtAjt7omV552_B2u1BEOTtxC+GVQFgdz;) zV5QGHyg%~IzM;VO32Y7W5D%|Z!nGFJj(`>kre+~W@0JGDg-t}8F#PGSuFT2=$E%yY zEy9@^)#CfJm!iR3P#c7oR6HjQ-Og3nhqTt~tTgHLmqA{ETTe5aC(*zr8q-4UH2npZM@R>2>Y z{3d)c&`X4r$72l_2(*#kZu$`9>C0aGm7-m?Zl|@p;o1yd3^=ku+4*pR4z`cg#~pQq zTMC*K^?hw=c>|N+Xb!){x>-=N4>-(Td^$Wg zMT8IdGTpvcQnGwtgYIi}WwIUgK-V4>^O6&9AzL#AM|Y*-ujx+T`$pfry%q$C!)P1c zw=I{H1$lLP@zTJ7DMTgo9y=7caD0&jY4S;0v31+1_CP3r4hBM|1AZ>B1qvoJ z#Ko~wb!+(EoQr?FZL<0^5C6Qmf-1)rGxh-|C9W#_MV6pP%hObXkcQ#F}{_D z5^$s}J4koORVtLnE*jmdd7w$D!tv~*irgB}S%a#$&{c1IIvth7qxJna}!hc{d*t==@}19)tgT+60Iuh3p|cE@jcVdcvK)W)Ai2GVLE{Rn>j}zN3B=BOCQe@As#mn_x_3@%#XrNttdtu6|Qw}*mq&H43~5v;u)6Z^cMeR$Y$ zD#t?caGfQ~9k9yzE538tgnxjLEj;o#KIH=Wb{uK7FS%;1E9)|c zKATU20`y!A;;mHNDwxf|N0s|cfblry%Szj#IQ!x3!09uuFWBmfBG2o2PGGm3dW$fu zieL*18h$q*;IiYEC5@M(3bW-F&>e#Kc$yBC1(-7Yuvg0IJaHWK2dR1N}N2Dt%nmlC7{TnkVBMEqL=$Ip+{ z+TG9RmxKJRGXq?eZVy+So9<25nt&dZgY!Y_Jlq3x<9BOe}MQON6z#jo%4|zuvrYy6OuB=}Wkb<1Cs>FruOnvxVFJJ$~tX1De=*WD%0tgSD z=IG~EM_JOo+fA^pMn0G5in-7J_~Rw;=#%rOChczD35N0p%udGq5CqMgu8Ye)nTj|S z;>|!lTyEaQw`1tG$Ux<(h1S9PafCYlM7e3Di#2HQD(#7fP^R6YQFxEpwPdmnGV zm}$et9PD;Au0)&56$s-|S`h1_ZVK|R|G{JV86Q=k5)Ogl&e8jqVtGGX75pM?i3tLa z)5M}F+O+CFevhDdx<-pB^qSK?2&nEj%)dL%O*+g3%lAda2(NdeX1uJ_}Z^u@nvJsVNlEPYSnQTw)~EZI=sVE$mHque)f2Es|< z@c8QkAMPneD>-hZb@D%fjJxJw#pu zJOH5Ps!<6Wh(Ih4=KckhJ}SMqlh`<7_KP$&Bu%H%x8F43BFOW0Zbr7i3~>CFL}Eso zxGv%`Gz89bqri2W=$&R;^ulMPvc>L9*-5F)So z4WnF{O#p-?4S-gU)q_r6tOxhr%}>46uuA_#8AqhG_8UjGmxiggHi)+#VZ}_>nb0YvenwuU4t5$U0NRWiO?a(NAg>nR3%u8gO+r+^W#5L!M10gVP`;Q&P^0Fvfv9UK zwebKZsY-}mq|xgY?Ju}wkGH*Rm6oXV7v%jxW%0!f5jrd|DBT=V_gHSqCST)<7M|JP z6}se(;Mjra;c`dJ3Ey%EZI1xe%gcf!!BjzQ@gCT?atvJ5^>Tquu4KsYc0;JQ{CH%n%A`-e#301$(?W6uEt`*+)g*M~Np*WshX4_GNa21umcLt|?nSrf-C0(TgmZ2nPr9rHxUZQbxTC(qRY+zFU+N*d0JWPSPpUMBH)uze^K1-vg}xq1!f04JYt4cBx3st zvVZ>fAs}g*8W9WEU$_dnnJ0OX-3#E>G%?42_(Z$R+sPGcEZ?XuHS$7nT9YJUhroX^ zaWf1y$0|ac;#Q~Cy8zEYFT2!2Bp&g8`Z!_9-0-}WM?8R~{rRU}H|Oyp2~9y{iV(LB z`T-@o6xje#gkzXA)O3qSD7j6~Y=a%SEx(_#T0Nc3$HPjF?5|XLdw%;$F?ME8G;nyj zyuF$0JuRC3u>0b&J14eRN!T9koaHwbyWfgj6%IgR zydV~a$3u=S*#qx3h8sQ~?i(t^f2FWfJ6lHfH;T0?|1$-wIxR%T5fy=B7xk{?r^=cG z0+;(`ofVt@g3RbY&C#@k>Js9Yc$sCggg6>R7%IeHX$58P?JAa64|-+MyBxo&tcbwq z{Wxw79Px0Ioc*%;b7pY@^^Eu{W=Nq9scsc29)d)uA z14J=@fj6Q_Jb?32V^UvYkE6}kH$o+C?n)7$McSmOttJk*awSeL<3MS-F0(kl`Ky0` zT>E3+McQJDM#Pn5GFB=7U@-tuK+Al^FCYUZ5cIjWkGq zBOo za{8-~mT;A}3%`j1IM=w8lS_*Xt1{QfKX_#33}tk^PvUvxE3m6hf55pBgFUVpUFV$a z$t|`7{+tD}(r^@i`%tBgGk@{;^-k2`02#rsw>6WkV#sscCyJ|FM`%8wyH|qf@6DD) zFM0g+FDOy15NKNWQsvNL3>xK!ipU{~48EB-3?GjjowKV*zub~cMrv?E+PhCGXwh#bMd|%HG-Q97JOynOe$r-(I@ZJ$q5#j zQBqX>c|iRL8wbk*-y@WJ;e}5yxw$0%5u#G|dQ_Qj6~11nmFG>EfqU%Q=)~Lw zSYLg9T)ciGX&Cj*1^T;i*(Fi?T^G+aO6cgTAkFcfLS`mfVhdTnK9p;jT$Nj>lLma% z5@x1>{dyxp$2j5hygJX6JWYsvKQ&R(LLxx+!>x<#N=;m6ZbrU^v3(hh^ym+#0_v!{ zbzGtKYcA&-MZW<6h*pVXN*xTp7n3(3RYXmZFjf5PgRYj|HW*^flSi>HX-?T87QVB@ z?cUp=%saL+*q~+CWHP74=9M6SY7QHCD!J~eh6V9>VFN_aCKHhjcMwb3aFHKolk-KU zkGS_z1Q!$%L;bnuD9I=0EB}Sd7d5ctT)7klE^_yPU^uSL@@`SRc!4C>dt=z>ump)Fj&=}Ym~;ZozzP)3BlVN2Sj*>`O`@%f3UOIwWGV@6852hs)x^_TD=I{hsLp*GwFX;^lcfZ6s)| z?0TztKZCsglha>J{?FxXEN);fRasW@#@wh;wAh1c1yysRCUwXsz5#p)J^ujTwT{y8 z_D+)$WQpC`&pM$G+nQaaZ}iTSke|b~3f2Zcs%?|?1P(QC_^q|?+`C@4i+w>`*bD=8 zNgkdy>mG0J4_qONHCN(218?I?Kk!|=m1_Z6XF{RR{tZd%zb9<{ z|LO0mBrCt6RoP;hD3H&W`3m3IExqqS+`s`IE58xDEK1;j7I1v}Hrf3D`N#h=JpbcK z;n&p}B-99fk+fGj{uAJx0v*%-%g<$#+l3rN*%S_zZ2A;_t$ZCPe$)CyW^3UGiK=oS zY$eD&^`tZYvYpANWRAFMj=6^`g4*8_E$_x!N74LuE53Gt6Nc8pS!B@dHY#?~4xip;pedK3URQkO zb!MbtL4)n3Af(}Qd1)1^k2NE$1XJ$j{V2))c69kW_98h82o5Sm%x!flMk`Jsy^r#f z?T~Cezq-1%0}6Lw3)>?_0PvD(wEz?FaHn~&WS;;1KEoG0K@Kt87;enMmZ?KOs&N-R zNM8Xu6X}pr;Ua3_8(34DL#6)Eb8}Fq-hR{ME&2F4d5Ag)EHLPwSvg|2z$D-jp3-!C z;&7wlJepPJVEWqgZtX{DvUz z$FH*PC^h~SkA*TypkR6=YK8JsPH@Xo_rF_otCqjhrs}?rq!TJY`Ru49u_3K9^JV}& z7890gU+1+rx*C2Zd6RpO@+_fFAfd9!x#5smC`OrYYXmk$ya{;zk1Lu+cd!Ry_naqB z4K9(PDLlLOMzKs}Gg~~uBS5}%gF_VCBUbsKZBm#q&&4crtkF`=fn(r9B{+7TvJ4-X z;`F+}Smy@VVdZ-UH_WD6(EW!Ov1t7aBtou(fBU(Rko0`;=W;?Nx73{)!UOR|_) zDt=%t&~}E(an3)On)>6$(MA2VD=bKk4=XSpByCsn4CC@)muR}EBxX8l6(Umf?S^O2 zwa|BQp`b*++k0j{5rH=y&QjV3*tSNdCq?ID-J}fo1>U;jn3kH$%HG3VdlJ^*(_1k@K=xswVu1>&t zmmJe#mEOTMvefU?m48eO(JK`@;kxU33@LTp&`OwTrG{SiNBp@CPVXG>Q4wln= z&eRJ8KYVI(WhGDQ?gzgj+w(LETUTLJ=7V8%&uv2?in&_Mzu(s;?>~50POtk=mR?-T z(xP&bK)!Sz7J>P55-F_+E&r2yTHr&=E^jv~F$so*h=T(U$<{rMJ^+Z?rK-wrNQMm) zineN)p%kRKnG9&D=)fUL(Y-#2LG!Ac)S7!ED_-d%b7!uCOgur`F(&B7kT%Lbc3 z$+$bnnuzAahyD2VNveZ%Y)oN$H>>J_OTXO4?9orL@Ib{8A{eLmD0PuDLwCt{xF02X z&`)|zOcAsukqZU`LUltHK0pxQ@&Rx%rw=+ZrGJ&1t38)8WYOMyUUoHVJ6dhi zF{ugf(itGz-i%9{w^!y-c=^Fh$1bO1sKdAWv~KYXndbmH5@UmvKE}mkG!4v{PbyJ?J-}>*p4ZxnW>^! zkdS)PUZ-FeMe*C1(#nlV@W`q@G_)JdJ?f##lf5*+yb;J8hthkaBValcRuy4wv%dx~ zs0@!_vZxIAiH;_E9DUhqWcj?qudZ)(1+AB%HGJ`H_23UY%A?y5s4WJ1#r~Ir1%IZB zg1RCDT}5DNh&)GmMRJZD{n!Lyg@*>jhB{eMAFtCg?!uZ+_| z-6`K$yLwpEs&ZMzHQj{yw90xPr}iDBb&vFEi!R-paaXk(B>U)pEM07~)Ohctb2=hC zD^b00@?p7t_Q5GjLX+Zg8aSs>>v5^unPaVO;d7AJl z4?!C$udCXv$FEJt4)$6D-eBARf-X1M6dC_`YG%ACE2;TA#2|smT$K-tFW70~C+dzj z@WG+k>n0F|7e7S>QExg+WXM;g9Gh=wg4qWslZJzocB62;KpO5^gYkFeN(`8OBf&no z`@G%vhHa(>yBiyA^KA&iY#FQt;5LS^E?1_uZe6a<=+%4QhFWZ1w7~3g5?7 z&vvQ$a`azBeN@}%lFq;)x$FX|tAS9yCh=ySxAuFtl)I|ka@^rst0Mg>wzWvLak$=M zQLf7RZ_$g~-D0MwT9t&DifYuc^C_whd zLTllMpMYiEP^>vpCQG0eQi~ z^i<@m2J7_AmqfG@v%9ZyTP)OYq~aUd=-$q|j$Quf9mb!5R+&+?5aeqM@VUmkV~UY7 zb85fHm7(Rja8n`oc}IOsSFGGrjOW^X0o)ylDs{o|?(~|o$edfhL%y|@uj_rqRXsaX zy&%6Dq%`mn|2E|ZELvws%;E{6(3z#DEb(7#T(hM-@x@r>jtB}#U&;LpT2+guaFlts z{q?=Owxxq`Qc}OsQSpV*5@mb?Xa0tdh1{@|+qZ@OUlPCH-dEM$NbI;C1bskHPX+iU z-y05=EMui(d5wpNiWnsY&N-iFvzrt0*V;nm-?s9^_#N*J*Pgp@!DiZ(#Rd=KdF;;~ zC;RpN1--4V8<`3=rY8Rgef;~F+b`XKvTVqVl6cE6f_Tq`@DLttxxKgj7gXt6Z~A9p zBV!Vcd4%0#ci`c{=Y>l7%Q;zBjhFCnhJSupcUdC%S2&0_{fM#>%g9(=gbhRr&7&o_`ygfzAwS_@w!@0rw zV}o!hd|>s@O@*q+r9U_CN@qxg44a1U-+DG!Ab1Y+^m6`0Hm}FuPSdqU74`Dsvac-= zQ3ABSft5AVrAEKEK=zlfxA|=8FX)WAG@V2an`kwm44xk7m`MJ(kX9==BU;queXVBs z&LL2w7^zT+A<>T?MJwHJ+uSJGU1oU5G4+W>>At_wGyA1K!h0y$Cbn=L`eIv9?PmaV zr(RAWt9~;6iztajkZn!(v2a|T`*aq)lKrs4Q{}ecM_rH{W#h9UxbBGxSLGgZ4x8w;3;0OzxoF(u8mXFL;I7KLJKr`G4cL=C||*@S{MI6pLP3xK4Sh2 z)M1r)+YKM=S&Z_P1;>rqnF9^l9E;G5!pvl>Rg-%xwCl z-M(x=JTd4}5s>;#AOMX}AN&Q8^k)(Ho&{Wd5JVC~Q@aaS%ngY19qCPIIJKUw?HAux zT@6x5{dcl8|0-o8NmMIr{kHCNmV@bROb08Thq1SuD2c2!hbdFwwIZc@2UtxAby&69 zac9BAhv5@__k-3}1#4PnEy=k-rCALc-|b2KLu8XbEZM{;5{jFWAweo_Ss*Mxzt0p(os5T!qU$E7%ED@SgQ=ys~-FC7uq z1kp8XO`+1>nRN;ClK6Qn&5At&V4CQJq#aeU&(@3!e z;UcRtb>B*{A-Um>8DMFYwN zI234&JJE_byNCd$Ms-0G$GqBixCeeWt*Gmlg~R=y$Kg*|`yQ7&J@v~dX+ZoA5E(s! zQro5eIJ-M>Z1FBtGV(4ob!++8OlUjZf?MFR-wR$&xH4`bmKIw2lG>S{^XZbTL>KFb zK>o3OC&(8ae-sU1OQvaB#$`OTq&pMbTn$2h{Sv%!0T|mdN7nQq4XUtjth@;%QLf|R?zTxwR88n?=UNE%cYmQr#0lE9~IvePQ#vR z643rj9yW+ktry+Uzr5@aSp{IO17!Y0v^g38*D?$yZ|I%iu&& zH_o;tzKHYSTkbyT_4~(5{8Iz7{SrGP)79H>I!rI!^=Csn0C_X5pkBv|D)q7UOOUIN z4U9aDKj=1`&7heEA_ZzW=Ro$Q;uffYTQ7z6lG-RwXC_7zWWL&d-!PnZ{t8a8c^4v= zJ!|R^Hzk-vNNumcQHH-Giuqz@0wmwY`U<5fH6!oL143%i&b)4ZJfmdsdB#wG+|}{^ zPMz8s+^`m7)=EZk5Xe6fVX{9E%EJ-h-!j;1i`{Y5^*2m#zAL&$1sGL%c@&I-Yi$&% zdnTq=Ry`uMWlFfjb6>F1o<{^H-HGH?BvDE9i-2laB)1{Kv*ChVaxbetaV-0 z7;i7_eRA1P!5?<7Y?GMxELd@?pD|9i?d#}Dr{0BDgs4a?tSafhOgbAg=WNa79jb`F z5QC0b=_y}KKl;Kw|Kjr((9}HCfRa24gnvKucC3j9(e?zZ63J0yYCipSdUzP~I^NCf zRMD4q>W21J`K5BWoZ3awQ45uz{?zfsq1WcLN^2?khDqXrTK4JhY?oNuugedWd-TEB z)W$sGJzN~}_0N|x_BQX1oRAI?14)h)Z+a;IdE#_%7<0mzU5C*vK&R zqRl6pEF&iKFLk)c%&v=QzZb@qxVH=BuPF(eT80IJs|UklFFsk1ge^8->vp?wfiwSB zUN7i`rHpsTp=?E5YA*_C^fc(_?R#lrD{-YiaMe|-tm`-n%s>9~p437pFD+lap^oVb z*)EdG)gRYBDG(JQ;dU8v@@M6(A**iE6vQ@jUOzPcvFiwTw8{tJ5gy>X%= zkZp*l#r(%%MHjcS zeX{K*8~O5UQq=|Wl^y^@bx=uv5XAj}q#uPQwM3jY3cUw5$W@{fAPzFAa!BKMSdHud zNV*MWkk0k`6uRB(wyMH#fSTRe^+nlL0Q;oKXw_6K(+MlW%9}=aZ7- zK)-L+y4D3py&~uCtfmd)rrI!(Nu^J-#|(Wloq0F>{>r3UWBhIxU&)e>r%?K8kQ{H2 zDmaA0g7SHt5a};S=Os{9_5Nm?1HX}Z^0YQ;e3*0Uagy%L3$;mkm8T+O6?Ei}aij>A z_#dVLNc|7u+He%y`OTjL386%Eqs=sorrj`;sTMcZlm_TXIPK5)?sKF0*4&)hKXZc} zK>63$T2J|1k%gmX3If6uH&zmwzp-`itKElW{GQVgg?UlsK|P;a z`oV&9ST2zprxcF#vFC|OEFSiC@0Kdrx8fuIg!XoEl_(fcg7H-kp_D}VuNeq!jYOEKkl zj0HqRF43!@s4g_bc3uGD3FnXhf__z4o(Y@m-3{a=ICLLsh3fO`F^QL1LEd-PBrbG@ zcMI*kt$@71#0qr!!3`BIkkdPFzUW7;LSU{`l)`H3=s19=^98PnzfxaFd@({~$Zg9)kNB9F#gdS~#HYLlnG zDrq;+D(0AZk4F}`p#hFBycT5#wn0vDuvye*qxZ5G4_f-OQ0pFfQ;byWcg*ZdMo#WyPo^-b(|4~0tQKa-{Mz?NM^xJ4j zil6zqL%YCpXeXj3Ll+!kZ9KW4?8JBKb=`%`( z@hd4^0&~KR$Kj$*OZITt+zmT+!$~sf*0$yFE|t#A23l8N=|Ah<9L`DS+64FUcFU#- z8|_=HMm{N*-ZFl9drIz4*I>QxI7zg^wYN3h8%;47_uQYzx@`aEbM}3*K^d^}*R4GR zC@!h>ersMwouF%Rbjtfqks?NIArD)z!GI+@^7qJgWp?~tT;+K@?dCK(9R4h?|4p5> z4OBW<*!l%sO-!jE!>F}~i6wP|`qJ&d8(V>N6O|vlw){DtKzzEgh229P8Agf35S`0@ z6ECpfFpKN>x4F}C1#dP27b!F64P&~4gKOxi(d;NktJX}KK{%)VT^`;tQ-oaT-LU9} zFB{2_MQi+Ukc=1f^oluiU(FokRp07tuEphF$ z=}}6D%g+}ZnJoYK-KNye47Fzhw-$FM=%oAaAM(7-HEHKihGsjR5L!Gf(q8S zkBid%$hIt2%pyVpxd@J}iM`4ZuYYf9OinP?Ch9c>Wrl9VOj!O0>a!L90iT5Ff0OtA zhXN4)!>9Hiq*eYue-5CvOd)o+zpRrZ*~cm<%UwtL(^*mBWP72#Pco}1X~2u7^%iP+ z##lF<2TfTFf@v0?Yw<4tyV5I|#oCh*QB$z@!I%9;*=r0{p)*1_=1oi52LD{R>froe zke&`-GVA`XXilqL8ar29*0J(jQ9s028rd38J@A9@3?Sx=PuJ-m%>EHkQ1vc^{{`LY zYTZZ}9D`0>neGt-J61DT{Hz`s;P~^7>ntw3|p~SFz==X$LOniSh3W4NnkIR13je$HKhQr ze_X>vC0wWy{~|on!)EEctCF0y!`Sj}@H9-3MY(a`cP;Z1+04*$uPHIikjwJW;-grd zR~}B+f4%S(_YTqFvgO`dt8cty>U72F5sH_&)N_G3%$H+WR8QtXyIhQBY|>!BtQYDw z`G&B_Kp;6R$pA3h{+t(YER~N06Dhw0(FQ{)uuW7vgd!w|^bWM$lI|z~`jEm>Grx$> zeBQwJswGbga!r-H(t}4HpNm`^8=iRx6O*zUw+AfnjI zQk=C=2YH0XCP&oz^F)Jso)fBtxPX@1=Q_S-&| z1E(9arILAK**^asIARK$WKl&>o! zCtx$2&&KT;Idf{hR--zW6=ZY_v|Gt18a@Alm>X;ga=&3*sO&j9Ohi#d@2Xi-fA+I> zM^k1qitD3ysrf*@{}g$e?C~-=UbwzV$4o9lIO$f^`2)0n?%aZCtCv8s0UI{&Ntd9z zrsIZ){qXAa9gKY3bNakdh6Gif0K6sogv8i1Sdl@gqX#t}7qnZ9(~;rF+O6e1ZLcAx zyj5S!^QgNbn%zsAalrt_Q1V)Hwyfv5vw^!iSy#U!0D_3gWUHwm{J}7rBVI(G8`|zi zJqop|;JX+&@faPi?m#j)Jb@uq3I4f+FYEZ5sXF;vK9Uq)gUrC`2?rUqa(s#H>9%}4 zTN?1GB1aFR__$Pnx)y#5hJ09CbIsD&Y+ke%m6x~`F1N@7YXuS=>wz~30D#t%@TG~m z49^duzI(}-MdF#WjZ zaeW2;!xOy+Ua@$YdNk0EHZ# zfH@tEOe%?hyYr`~-Tj2t<^$DtJ`r01iX?QgSO}3F%gY60=`|fCdiUie zPxG<#4qftF0l}lS(pO}MqRa<-;UwYBaYXsWd}DynbY+ogc5bUw_RZNa;l0fVWoJ8U z1=6;pYrNdXFk_-N!+g;|5JXA@>0LlUdhb=FiFBnG6_6$%J@h8MgMfk* z={?eWZ-P>!g-JWtH6l zFRXK=U?o^qTxmLg*27$0ztNbSXc2m7Weg&woE9L!i(9*zS-9LnzMPf0g9_?1Xl1Gh z2&#f+{26`+cWF0{j221``>pa4XTnytd^`G<5tG{+NZpEloQ53r+BTV57dIqy6@5OEnaZZZ)ie~H~Eqiqp+`@a$eE$EmM@6 ztyJOV^LtVTC8))rI!ro5GN_)%1vaZ}m$>58a;fdCvYtF{0-rf*&=_C9cYzF5tS;Ka z>F5y>?`({g!ytl&5~NaLK%~U>N33HBCf5v2nqhTk$(xR`yRq3m?P(i1@<{}HV$vD7 z!Q<>CqdS+_jKBXch)&J(#weayhis(SD)#ur&(@$LvbY;{SOMTI){cLzG~?-{{i+L- zj2v#~+H&Iξ66NSEjek6I4f-S3gyFc|-{k8n~lOdT*$KCF4%WM8;6*yw${(O%P% zgsZ-hxEwa-n_~yA!YCu{u|Dh9H!53W(&CL>DZkjAjRan*ERP4}o>n6|tuRiAU4Kdx z$ADBrd4)x`n-OmlacOcv6t1d2@mKEw&-?y-Xd8Is1LLeA-(zU8THpj5H8G1J+lN>? zS!vgyM!4*%20zAwEn9)4E_4SJL)KC zn2}2@`ymCZP#yP(A`&AP+>|%)dOy>1JJMg8ucHua9-!1um3(=;s9su_wB)pztWz`Y zk4x(N`dzSGYPIE%$yP)DV}QO-c4p=7@qGzz{E$u7Y|X0-sJ9bu$yf30>5!~LkCr5p z4G*I!()|6L^%ETs@^-vddXp@uFO#st%3oLQuFqemrT%&k=%(CcH-y9!e6#eu+fx^-G;-omjqgJ&Z?BBvLJUV zCef)QAfLwKehg7f>D(gkbV@Dk(}>px(m&f5vD2gxbwCGY0Xe|LiB3q9{i>t-&4S2o zLxp{WNKMFn>JT#49@~2hX=ScAs4EHT)vo%&Q^nfm*HzCfwdsy?Td&YXQUWs*F9gc&KDt>CN;~=Lr#EqTeXHs{r07TfB4CAMB@k zf+SAt{k1EX0Ulc|Mqfky`L37O!lw^MQRH~>C!T9eDsI{ez!PNOY$#O5z68_L zU^Df)Eo!$()1H5UQe~SFP7FnMa*uRE_F5C#N}*Fde?h3Ul|5h2cB?;9t!nb*0WQTj=~yQVn(=b>OqemEfVXYoi*}la+M6vk=_Y@``RDilo2?mTufIAb z_08IsKb3dVW-F>J-Cf=|2>lTT_Lz7Z#JK7NF^Bto?E+!1Zp!?%T|LBspWod}2V{dd z-1mO~jQiZ%t31+@o*+u6hH)|oWIt2v+xoK8)UTKY%*}D?9$Cqr0bgZk&;d>U z&whDG160oRho~Zr&EAMHJrgo<`U>9szX-qollY5cY{4C-(~24^BaN19nqgW{bYx+1 z%CKLACp1@?aDq3x?)ke-xAPYPut}oF^^Jy6f&tm(qCTh;UlIoly04`mxojF#YZ=i% zFL4&{drZjt=ZNfKqv0L@3BtE)Oyv@wi|xtI(B}Ha77xc*sEzgJizph{lq^?Z_P@7@ z%#Zo^@4+72RCR4+0{!PXJ^mX?UOyWOob{l3%I?Vq=7`qKNi~lfXt?4TK z1<@d&6`XxjutCzP<^5-=^WBnrc2=vq1!SE>f4z|DUR}eKztq)uylvBQe0_SNbi=S2 z)ldHr_i;whZst|>w}{ylLiUuqtO@F*=E)$QfFFQsnfNu=USkS|YFowdO_`Bd+fwh3 z5gkcsA2#ORB~O~Iw(*#S#=38q$Je^3+gzv8rM@uUj(#WBdXC7;m!Tg>1B2lP$*T0y zs&w3vKPf>}a<}zYpi8A8liXfjzurl6I|K3sXtCYU{6S@2iclTH8#VAxHo31??&iz` zcA|cekGT++2FxLQ>lBP7 zji2~m?y)Yd#~DeCUrU}Lr5)#Ay`ta(0kex3M~TyhtDBMyk0~NpP7mGq4Rv_Z4PS8S zb0HPo%70`0u8qoh)Rz3atyl6T0hqycc)Mm2?ObD1iRHuSU3m=ZItJL=is@9(TSdQu zCyzl~2LkwAobJ?HnAZy`Gr8A_+>?I@(9qX4lUehFJXP+1d{z%004;2ne#=8({U|`f zWYD}F7m@iGW8|VEE$qF>C>N36W{9_pYdwqeP%-1Bj4kcHrLrLbT0ZqI$G zhB+f}VU^}o4cKB(K;;MN22&Pbkq>J%WK}4it{C;bnG0Hckua|y9Rr7-$}{_GiqUCD zi(aGL0M0%}WwWrmB60&>KLna z5^pwWrAQ-+&l0N8WQD^O~0P|QDoG_XA}Q;Z)@yT z#0uYbN(o!FHp6S{%sMo``eeH>y4aEoI<9&6k*Uza^Uc*lG5 zd-x3b)$1&m(Z031V%>3Hn{*BE z?Dq?^6t*3H#0{Z9nM)X-^{96GwFB{|5tj0QO1*!^xp=+(tP_y9 z7OWeF`YWy*z3XU0y-(lwaoPO-T2JC9*&dFvBxAH}yho=vW@i1suZKF*HvD$cuX=BS zUac~`E;8!rkD4?VeGx+}EM9B%yU4F$Q4&SAW(GHx6 z(O%ze=SH18`+e9=t@G66wS4$;?DvbFxAOP8F>r)qF7cv0`HEd*CM>*~LtwAh4lwT9 z^h%>$yg4kO1-WLPwyM7JR+oAY!j&cz9N)+Srj5OXLggw>~NelGOme{cE=!!1ivLoD)UK@ zB&Z^_@*v4Tm`)&Qisy_2lUibK0c|($`a-!xu669uO?2V@b=zAGQ{8p$J>&GJlNB?i z*;V5N00}SCrL#0ey7hm?`@N9tOpUVKnu?O(V~rC9%%bHAqe@9;VLGYHP2{pmJZ%^AH^BwE1>}Z zGj^Ra?RHW|?fa#z*0uD;c$}4&*unDASFdr(15Z$G1GS|+)kHu^N!DgOkW^~|x=b`i zbsPZ}Og7i0XGWRy*9T9f=ijXmM=vvgvKN&|lE5Wc5f4=+XfQ zdud($v%0pdq*W(Axhwv_OyfO8O$wVx$aeyc{Ov`#G&vX|@nbF2Up&J9$sHg!yPATB z&fR!8E$Q4%g2nd<`)$MNnPI}t7T%+N1XK3!%+uaehVg(9o z>?G@U>X6*(t10#f$)}e!1qYJ!pBR{Rweui&xu$if+ymKipbmd8;IQB?)>vJWPJFOY zy1OX&ebm991USrOwB>CtKxHi8fZ0HQ&uiq@=qIU-$$i=bp>2ROs&Kgm2Zetyd6&J; zj|)Zi`x^Ei(9+Frtu5`geoQ}N6|qij+8o|7%#&aVTj(qqZbu&Rq`hSL=JgngU+M2y4#B z09+C3%0oVXgQiMXcZ!qB?H@AV8@Cy1EyC;Iy*t%yc)? zgU0wCZnqy(J_VijK%ci#ZS~~iCGeI~x6k6T;9~8C!VWEqUZkX;O zkrQX8wJ_D@kMyi~)zF&xXnErYZbD91o6;eXRgvE)dsHnOdrW1Vz^e#F3Y?Rbn(7{O zB*HtqN=B5je}Obwe9?uUi8V&+W%zb-b};G3L)i$&9g~>Z1tPWf3M1A~nQd!3iomBu z{{cIR9OFQd9drvywUi}8%2T8^J_ZRa?~ zk;$(2fkf)x0JB{G72rtszW^@%fB8FQ|Ktid)c%XlJ?LN3W&cNDXN59l1|t3)GX(0b zJ9DU87&C_dIsfcEDd;MP6Fkyo#~hupLV5i-e%%M#@lNqPdedlD`!QLLKzCe@He0Z4 zPj%{=c+{CC1?G+@qwoHKVeyvQuN)JO5y6mfkoPGJ_xo(UlTt5}7@8o;)6qx9w6Z|i z#VLZ9!tc|XYsgm+KJ*n+!`^D`Y(t60TKeyTR;98&ktT>sSc}yo1(z4r69kR_hhfFp z3}SGR(OzG4k{@8A@Ay1#^dtYa4^)_ZxSmMM==If$5DCB{*u+2;PLZOP2H%IrzRz`bja{)y7Us>2oG8Ai1AB8!Vf?{c`HSrK++T zR`sU6Wjq-#m1~$!>OjwJHJmP|tYlYLm9H$o(S{;{O||)p74f!&j!|3=glT5|>b!st zhGt&7E&3oRx|!4*D0m`;FB72oK5(i(sF!Gydp z$8onW>dL#)g)?uC-eq$=?hGp45vCsvjfM=l zw4Pp{0s(H@>zdr%jV8>oGHmutUrLQF+24O>tYA&E`f(U&<`*G3$|QwahQ)I=a?b`F83n+xRG9D5#;z+xno&i#x!6~yzm`GUpqJvn9eXyYT(^tpAdWzDmukSk) z|7X`o3C;YpHg~X-0OMMs^4?$iVamB5G&?v6_aIb#93_vKKdrE2@W;us%K>Ltptf>J z)5>=Blz8+_ZvP}%zuKP0c5hd!nt*m>052aUP0Z-pftd6~)1xS#2?Ik|nIV^&ZDE(0;CHp7U}qn`j*?eX571_SHFms3=J!Cg;Y z>;JN0`qIPTI}01K#NElELB%&kVfk&TQpagWGxFJmnBu6w1L z;ziYS@ET3SC*B1AaHbvf{wmNtMj-2zyaXpJ-;)vnOk@cB*0t|BSTMw&ajvKM9CVH~ zJuFn_Dko%kBFT2WG(k|7OR;Q>^`1UGPE zMZ5HwxCFPWuS3W&dh;UlqgM;#B+b1eB{#VrXc#X`uP?K)VfcD#HQ zT8yk8T19ucX{0VjIG1$zs(dM(+iQ&VEVeMUSQKQ@bm98(F`>XMh5N^;#H7oD-+=D( zZ^!_$SD)fSA@j#1x)|Xg=8&@>MvT6GQc+{lQJI3#@#~>qs~6*+f*vR^jk{FX!=>V` z0vf;Bi{3QijirBYFxFw6yH5Lo#TEySLJ)Op7d4^y8!^mIF@bsjyu* ztl_o4=j_obe?(JjLNxRo?#TY|aU$OOS8&`_n1!gTH|nzej(agQsOPG&!H1+G@xb~! zr%ZQ=u<#*I9&;8=H<+@ld`ZLon$1XECY~)C?{&@aLeq>}k60Z*a{}v0y!s1j0?24p`^%+ZaZ|WR)xA4e z#?wwbtXAQU(dn{76V@jfeGmEjc2}p)SA1nQfn^uB<3cT#r38tC?S2T46{1>9PG)2* zj8C-fQ=`%AiPsG$AKBL;3z8r63m z%$C;laTv#~Vgkvnz?2A3xc9t+Xxd$hRxPD>(*^q{o??ioo^B-mf;;$|t}my*7hM)i zKi1}&E1DGldO0}Lv#}8};N$W!XrmqrNN8ZsfD@sr33>-457@PqL?F;iFtCNCs+V$} z4-Ic~TSLfhUaUCa-;s}rRhVt}2I$&DbYfN2&CLSFN_WaKX;}3X@SMRCL(KZqv%prC zevao>lohJ_d{zXA6?aGs^5Kla#j@n%+SImTI z*1n&lPvfelx4dWgAS87M^fn9S^2(eUSklQ#zE2+3R}lHhHx3n>MUapw7~z&Asc|Ge zy#w;=EJFkksJCgD>zhoyKQyI@LF}@*=X`yTxz^5z$okUx1hcoQH}i5QolJ>G?tKhv z`14RxZw0{eZ4^t6Vv0rN5^5k^s7$J1bxt%G;)T2+rIXWq8FggTnyBD*WXN%z{OZ7&RVW&->6r zUWqQHXT-`pfAqo{caAOd&sd4$n|#H93X8>sp3QGQhwMfZo zKs)vukObmlpbeM|l6f3R4-EP-Qq9f*Iw<|n3aG;Mub^0#2ScwFWYs}ek34S}7e@6B zrsiQ39p9-rU+hVJ+TH>$ikfPoT_QcDPpnEDTg_*-vFM0h#xY3=&`F}hF(ko+fezk3 z9(nbI*Tr5Uh5A1BqjK6(MM5qo8@fD*2}}PCBdstY3L`dBEnYR*6MR;ypvEIshpXko zlDBa(oCoorKBMR58a+IdZu66Vc|B#O#-_MCj40i);FxGQ_xLU9N3(Xq{kUYt54meQ(?fvn9b@Hgn zWs=(TP0b^{$~o>S%w4%}34pqP*9KTQ;ob&~hUXdL233s+nsD}5)? zc%kE4#Nd=}UC#OHjc2=lg*vswiKv1|lGwkpy zU{JdM5u@x5(9Se|%V?A~{&bPP?aWXK1%D)Y(gBmDQY{Unm+JuiLtse z%+R1vXi$SERm@UOKE;OB;+8J3c2qASa=zGPgGO=KQzK^S=u_A)=eQ~-`U=!ix-lj0w!KV zasWl_kP=!Y45o(OX&neZEfp8}pjF-Nn?@jUQI&Z)uGocfML_55VUQ(?UWR^yht9&z6apP<7(zbI-<5OK`Q7b!jn&j! zB)hMF1@q0R9e5!-jVybPi*xwx2hdribS@3XVRn#y7^_%VRM;O?B<^~U6c$#${gtVC z*F*}A4T1dy?XPIx;K4(0$C)8A@>Q584FQ1zqV&GgVk`YvS>;2TPK8AON5 z#oO~{x`!GXSTyG|G^&s7;u~jgO8<5IjK&XJ8g%ajt zok?G7Nb5a~u6}GZkvif0mO%96U0C6g12d$P10yi}s9%n$RoE!~GUksDp-w=*YN7$~ zIHh)=22|e=6tXYVKMTgslJ3)nJxAB#1{PW8K?BxSub&=X%@UE6uiB^E7=52x z@O}`-5a&LoY!qsD$dX{kuKp%jsh|MgKo8J#m$G)+OpCV2n4%)rkHXiJZeV(yrnEIP zR>23`D7!@ztT-=58p;+yNl4*9M&SVff(qn@NmxmAO`0#)|(?S30xVHN`9xaH?`wB_2#+lV`AUC z8J{PF(MLY+h-ue9Ph{S`1q+6pCs#mtZlBzE!5jXw+{TwcJ)&u;+5CO_jq#tu`$IhM z)rd=)7-m{I!9TFxDEB@$sH(mtG1LpEil*zg*Vu^nhPUnFl&phGumw(PuN<>qyrYJx z{Qc)g42j!>gpn+zmqsw%Gnm2ut>FK6RP*Dhb#v?62_l4c4X`=?WaJ}nccOoEFetX| zy&H4J#R>i;#}8F9nQoAU3^3h4&b9dcH7(R&p>EKJJ2fPy052{=W}EUCCZ9h_{z2uz zDbY9yf5d5en#t9kW6`H({jXecOzk0IKNvzR_LV_C%mdnY_F4CP>Bd8O-?p@((8sfr z>bRH5pf&~ekZwJQ9q0FV0*{wUl{>-^<;Sg8x!LxfXg>_=EOa?`rxdCb-cgz9>%XPof>y*gFZZM+w(^+ z5)FEA$cm*w_JwfXxtq3ITERWx}Pvl0a*QnxO>w!K})1T8XvbBi1}y6b3?Uh)l7 z(95L1zaX6Q{rRE+bo`Oq2jS`0$w@F8dQ{&4kqdzl1ZL^ z3I8J#fL5%(p*BZh0~sgsv)^@oULvG(>gvs7xR6+jTT31AYoNeEbjqXPQKy#CSC(<@ zf(1iWrb-UH7URF}p0#I@O0_BVT+^gOpl}$Qpm>KgtY$P9N*y7 zxAMmYvO&9)I?>MYOksI;$2UbzaR_z3M|fmYjS71Nw1e&z^T4mt8aqQ1hBp3&Ia7^vb_t>Q5&VDz6yaZx zwc+oXtt*1QCr<5-%+WGR2<}n0twm^UjNSR8=J&vZ#!W%S;|$p1FZP){qa%nsJ$MYi z(fmqy@2iy;KB3&k#;xe6zcs31J5B~1P-LG_;cNUT+Ptwc+*DfqAa^_FU?&ek5_0>< zv6ECA&_p@PlJeIE#2|HYHog83*8hq3!AlSlk~}a@za>M5Z+Dx*?rN@Yh3VEcTh?vu z@t>v%)6%vEx48p!`-yrTf>g{&ugOYT5Nbq&h+kC1vDv0m&VfIr{LS!2{Hkl`p|4>j zppk((m*ivGdb+4Q6Ulchn6>ZE?fni1y{KvD*hF%$6T^z{4!wBA-9e4u#sW4_E@gIN zaQ^##L4WogiZ817ujL5HU2KQY_Z%#W9!=q z4JY1fhJ@^H09nJ8kuJxWcHiG^J%G)-7$6JfM0Q+CADKl z4)t&9e=)VaR&P@8*Xwz#J|v0UVheTyjoqyRirG2Lq5;}-JX*%$cvlR__^{6(a5E;j zcE;(E80SdQRt)BzD$RrBwi6XYuh$D(J7bHXT8z#_6{#|Gkqap-Dxf>V+cdNbuA$my zGhMhC{Xr?i{`j{p4|YGS&O>9Csx}Ym*R8_1)OAX>B;+5kxc|>cJ7zeIjkB z^Q`rLG*ilyNV+(;N6mYZ`ML>j7G%l?El10>i;vh>`IyxKx~|xVv4O?OKR9AuS=(~B zbAk?W+?$dYm?=#P%h3i^P9u?^AsXB{6c$X1ke`umzX}G~4QgQV48)+z*+p4dlfT=)gtHsb8Tc z@3y}x@OiiDSWc}QSBy|tI~H=C_J$b(al45|6aLyT%haZ=3B9Aj1bM~^Ti5SlFbEmB1-WMXvLtD2%ehERQRzi8%!#2u-=5x;+DL61&P0;-9RkA^Y(qiRbaY;=M2cY43fq#>=7MvFKLg z)5O&2i2Wsx>w1b?Bg!11w=X9iX$o&w_6aIpSh^{ndTxiN;2p$~2J+P>d<_eA?wIRw zXSD=l?-8YSbvF8>HAEd&ycEbmc^AnX5&4mImTsD+^6c*6jMY3= zI%JRFeVPQw58m<{Fb6>aE_;DgzeNcfF4>xA&!R_1clBEoC3|hZUH?+wO_x=6UB$np z-It@rgqK@7peQE~Sko6Z+=b*e?A>TU>XsR@3fD7-pMaGFD~EYgvC~BZ>^1hCa+n&@ zw~$&cqBPW>ftd>}$c$ z>f1Vx8;I7_nXHmdeZ$L+E*rlu(L9q*G+=fV=#PNZ1b&+Tb%EU~nG6|Ho^n6aFcL9c zKdP^jHu|kakv)1#T9s?<>xcf=C*y3*SNDJ=TpJf^+n+h!{{)Dh_fxCiMKp=E2860H z^p{A!Rb(p=Z{dN`P(~Kp2g+c)5sBpdk?oSCErok*5+G}_l zFkZqapkU;k3}nMZnxo&}-_~s;7>{^qEktF&Nx|67dB=z5(l@6;y!QYyAV-ddNAd7^ zcw{I{1Kdz^HLVuK6H0pF)Z9;2V1_fwKNLCy4^eyD0~cbgA?ShlhOhf_yw8X~iWu#A z)w$=I>Ha658CoiX+?YwL{Vjo{Rb~dGMdPtL#I(W>CFO(?M{&us0ngL_JS+Up|E&6b zsQcybK@(q~Z%PvUAx@NM^O1kxv!v@X8({icwQ(F3snBwttqw0>(#di^MY|++ve@0S zpc7IuA1CIgKC1eXBt6Whhn z6LlAtl-%#9EEsLYp8lLxaK8galsUIlZ zp`@((MeR!H^e)COx*NJAfF02IFP_#*adCt5Hn}Moog=5REeZ3X3EQ$f!qWWzAV$^> z*M#d)OGq`{^1HaP0(TV}XYh1F^Tx}1;K+Gr+RQp?$H|%%Tk=W8L-th7-2V4bDb^PG z@N9CNRh90{`!(n)_1Obe84VtC_T(m26+C9Z(`l!)a|+Z#wPlAr7WeUs_~VPL{^x&` zIvrLW`j6LXQ>>Ue1@ZPd$we}fX#N*Z@4v7B3;7t(Sf?v}{KrKcCo|w3G+)CAD_$=4 z&BKZ3c9bQ3jrj8U%h1&bcLip8D5Ot{KX!e(LH+@BWK|)#I%bHWvZ#<_%PO=R$kCnb zOvCW6am(Mazc{gPJvyIhEZS^+QQij9?Av@8CAs`hFI#+Vyl>P+afYw{#usV$>X)Mj z^9WTXwd7(*PTtAT{>vb%o9Cz{Or(a8^c<_|hl<=ZcJ?y1n>B))69s0C{{wvoXMMF^ z9t&{RiMsx91)Vx|_{BrL46iJoUh!3ggA=-gJG^du3Q;aGo6VRqK=^aggR*Dh&zwnL zxFr;4F9nl#s11VMTUy@+OYuLzTK+x_2;5hhIvuq%>#F|?N=%z_!VW}EKgcQQq9KUe zs>Zk=a>5bJq>fTmafa)sQJJPcX<3Or1mi-@=j1)x&JQen094%3x3LVi*;*iwbMeN#7R9=x|D_>TNTe-4(hOjr*!)028?GW*6| z;gLG7==&;!?}Pho!E8B*&JU)svHbY^%tW&)*B&{KV@3pgKQq?S_&LXGWAByB9A))n z67*YwOq`9KJ=Gp)$4Xi;EF~XZ*DL;mxIv2jsSz5M)KKRs)2X%A(8+D@bRc>cW5E3t zS4D_a62^9u-|pgB;LwVnUBc)*t5%I{$#FC*G$i|ayCd+XrTMz>ZAW77!ZTlji29Dl z4DV|j6NnQLTzL;LUvmfBVdrT;qVyWG%h{b6IZP$&-$VvB&k*ae z5l85=gTl@z3$FE)>HRrAf6}vR`&h#4v5_E;s|@lEltkymuVu41&>i%#O23ccgnOil z=fi@^x|teAFhNN9$TL}oMU82m1}E~Z9mLX}7lJ)Q7W7(+@B+Egjzq|`j=~4|L5jtu z#w%t6g+&8})Q8VV_}F=d@LpqMR9mY|Fm=UPMYMS2>#zZ;9J0x(wPxeD?c&8$sy#Hs z2MGbP9i>3J^t!(bTD9-?9{k`m`-260-9lDTxs z;@8+$*wv~Mez|kjImLB;4~K)J$!g!wpC6s80QXmQ${&7Hv72ESgx-Ur@Qmvwhy{CO z+x+0b*o>?kA^H2%4q4U7wgT28l~~b-m!p$-0ci?NZ^y5PM(><-?!sIMUHAkodcyxn{B~D zUdQesb88oa+=&>y>zf`E_OZkyf1}R9xw5v82dg!B9IR&&{De~`h?%V z#p?!nH$|?bT3|BpU9jwf?m(GItiwX3?|bS-IGy#1@-J$;^1Y>V181R1d9aQpW?L;| zkop!PV5#Xxl4`azOwON1;U}c{sP3!K`Cf1Px&2#=-?h@xl9@!9GMYE_*CF)T7yK=b zRZi`jh7y1Bx(tKgSbJpFDeJa*x-0%+8Lso1pY7&fP$RHrtcDqOQrBS|&&NqSHmk$% zQq_*igd$%sw7ex1G$!}=L(L^`#%jQ~CX;_Tm8rgyiQBH$uw~YPH29cNQ{N99u8n=$ zV>8{}q9$=E(;f6#7X#0;vqBi5UZn&6YpZuVV`eqzxL;tPF`n{bk^~%prt4>cL%PXq zhEwUTq2RKy86T!7ZbRTNh+%_lnk=RlkO_&b-sw!cfsr7UOP2z^JPM&qd5p|>6hXj_ z&WUIVnjcqh`z^;jY~vU3#+UqDiD+(_x8EUL=U}NF+~zve)nRn=?UesuJlwY|-dp=k zrM3)W7n6_onCaGqDFF;D>nB@7KwN{K^Wn8Ca4G=oqVV z3HDY|HSM0L1>BYQQdFN@s&7j4H&2dQSmonEUX4<#;q?$Ez~uOQ4ZOOc!usPLnKGRk zJ6<^~r3LQ{Z<_&ZHr~xlZ|-nQ4fn`?xo-$Bs&*#7+7{|fj+(gJKKNG2mcv-kCg5a+9+>#AW@ML=sj6VYVB%rjT;cRSr zj(kM+7gr5t!gWlqcQC_s75Tz}SLh_O=UP!_`EC?>Y zK~x$9Z_fpMtVuB1--3EIu0{4t)XXQB0!l`hPk)=b1tCZ3arWfIFd+p{`93P&^L)N{ zwQU}12J^47o625)Fd}}Cg4?kJd>CwKc7NznELTi+o7^3-af`In&)S`Iy81PmiYyM>{=p(crUXzi-r< zbg(>%z!kW{d5|D5EA zUq))3sWWqke)CW=RS`k@V~#xioRTHtQ@qSAq}tJ6kV6Yx4<|f5g|1)n2TAxa7`~l! zOIv(9Q`6r`HNm&uJ@a;k%;_^E_YO^xG?FVfffKyM9ge=}zai-Hp1le{tXMjvR&UhS zM5(hdMh^p~xt0!x5g&x%o!tGMl&X~5L)uXn8GBWwi$9VUGd9zCzDu00TQSFjJS-Rh zTZ}4i)2VttsHmE##xN6q-ID1?J6e^%pscur&*NIIdeAl`B%=KZ%)vyiJOgn)LXkn% zUs*?W? z{xqeb_*2IHL)!VrbJQO$`Wir<3nc?p;OD67)XKg4tEyt9gbh7hDUi#J@qh!=fA%LX^uczF0Jn@y(0aSz9*nSt3T@I<{yBX zPIuKV-fcb18t4RQ1Jg+fT3?JE~2Eqks4_h8UFwOJxdTGM{9KB_v_ z{Dfef#Em;1%=I28i&$njNzI$~K8CmwyoYHx*sDMhoK#ozg@W&!TV zf?)=v%y;B|*n!b1^Vxy;OVoIXXd8V|>Whq537((9!NCk0o_McAr9$t*R8ex-g*~WL zwYs#|x5ELCNO~mh?x5eP$eY!0EWs17hEx8+Kz0!%)C0i6Uhs*~igxiDsZBz%q`P^? z_3XgS@=REf3?16jWiLiPZ?d5>bvr72$vwIE$*Uo`4wIN%`S1<2d@ws)2zlJ`?Vc3F1%YmF^*&tj5dgPuGMe(+!rUseLSYsMUJ)P&^}vr4gP zVE+qR6aD92`bRy5*1idOaJgu36x}HV^?QcKTM(gYt%e0SyM7Q^bmjb**iOhJ$%vjR zb~oEfI##{bhIXu(PgaNCG8ZEW}c2WNDI4d@9HU@?@>)W^W zGGO$Br|6cJSPjQmziXGXSwq)Lcb47k7D-xUSkHc346v4dgv*J!kVB_*P-9>6S5`Di zh0KRbpZC6${v2*bc6^5Is3=9PBqAa(M!(pq$Z8w6Mt=7PTeXTLIA*Qu-8H>y1?KoKXhg}w(>ClETT;m9HRcz&6TUAy zN#j{=O4}WhIiCdxN#127B6C*94r6z~3p@Wv~4DC+#!&1`6`DcZA=BDRom^+t(l_eHa%spWjg&-Kn7fG{uxeMeSRCeHsyO zGCS_%!}lt(gN}jQw_3$h|5)`laP-Mv^5>HM1uaKj-UA_TsjyF{Waxd6L>gJMz=dgDeZ}bBd^pbaMF)uK#S$CT2+Z0kt-v8^kLO1TM1^p9A z3;QRMR`aI=5Pj%&Uzh>Bn|gKc8*$1U)*qAoD0p7T4&ScV^}2@wkGWcVUx6{O16}a! z`>b>QDEEt5(fL1Pe3n{GCu~unig?>80)AF2tuP$usxo>khgMnIb1W#ajs5mN(PQZUyqF`(4@An0pcjLH3CZiX~1|n%1>1 z%6g*{Q?#`%ZLy;uzwrO88TG$^1~u%b6=jaHq(-6`tBX9}eA_+m-PaYXYS?6dGUyw` z@EV*%$bsK6+pg4m=Y5xhJdM%^ua1?RL>y=F`0ptMFeRY6$OMhHeQ(8xqlx;+?0u`h zd9TMiTh@#_`fz;N=-i~w0O4Hp(9o`jj0S)$*sfLnf{ONYA@$8#`)%{QKWR}|kWCD22#M_9I#2gyF{vJH4Td3Y#Kg6Ty3 zeBL(l6I>ASlex8N8c$P9UsM^xn{Q5#%kJBJ6xEti9JBF{VKU_T) z^Y43b|3me&e)|wZaQlGKy>}t;JYx<}lpe;9XKeW7c#qOMjjcD`Seh|)&MX1QwNGTc z9KC~gppXj{l)s-qX}0L2k{c5lk9#l(FYHgbfFd)e44D?nwlCoM_`og#MvDnKTXvv{ z6I*;kri`1U*v<5-FOMOoq@)-?Dfr)@A^~F7wCCM+TBNZ@0QtE-_aeP=8j_;zUo7zC+4{fOd+&fIx^?Y42!cpgdJ9TbdJ}00s5B7}kuIPD(g~f=5u|qz zP>|lG35F)U21I(3Pylqo^PJB_j}H>&)MHO`+fgDeo53|awJ_6otK&uj#wS0Th8tkxvu5Y&+rt?q(OVQDe`Cy;T(n1)!0G~*2 zHqQcAfENq({2p82hPm%i)pRuIP?Qxf(LAYOq@cfi>7_+%Zi_Gb`G_al1w`z2j*$dT z@G7?yTn3%BkRC%8?QdB81#n zX-n4u*CX(dA+Q*2fvKDo*gh`=+071*Grd z5^&p4=13H=L{CugJ@;7GZlc|I!8w6kN()lBeRmgx{p%Q_=#>*-D>Q7P$}jXIK%>%h z(6(BbzrOJ)=1ClTv|kxB_kpx9J<&$cH3)MjW_v&?rm)f(f|ftqWD{-J9H>`+}fyU&yR1e^~8hT9aPQUJVf#08OPTJ zh?8*^%lkNGe_raSll_J>x0Y=0lwUTk!}s=J8&Bahz*&ukNAzZtoFt%t+Kg(*%r76{ zKn~UC+#B}*mDCJzNvqfUr^I|wd|@l8-m2UB5v2;Oha+K78fhBPh>xR!3NIo2B9>9d znYL#wwAo8rn^a7U+TA=3X#R%okuZa73T$>$wdvAju07i{TM)O+Y*OK(q1S42etc*V zCp}Kj4!s|h(H@ih2WVKP%|XR(&52ejmL)O(3GI=iX8p4r4)>$L)MU|~W>B-SV`GF4 z-A}47i;prx`JsZ8vB!$%H?DC_t0rI?4BN2xva0-*vGO|;cF2ID3a=eX_2m%ex1F0b z%E_b}#0)zCDb$>0rBd|KG(^NafeKf=)3qoWLMvjNM=Dr|DtyUE6hGe9N`z#ocCRw* z1JksKuCiEW_Q*Xkl%cDd`e;^=NTc;#nLDMke?3?Ms)oV41daxBL@)K+#HH&+@qC-y z&t$Xg5>x5m5g{Fm&1sP{{JOPBcEQxErPmjPVk0bA)dyJ~xPIld7;5*1Zl61G_+m{0 zZ(v{%cy7uXocELPe$52&_h02#i;biB%l6H#f_zQ^xdd^q9Ka{uJg-0jd}7j{u-jUl zfAWb{eX}pgNoXCo)o`ZeOYltX83-3H>v#*X+BQBd?-|bHqD-l@d_g5p!=%;i}wam_EEM9x&?RSQQ!V9qb-SRpNIASeKk9W>1E$G03 zh(eAeEG-POhn~E-*m@-zwC<$9PnFYMjeE3PGD|y=(Y?!Q;T2n!;_R1f%7V88Zrndj zLaxC=J$A`0MJ2FG0;Y80HX zr66>sXFna>&&|)Lc(!%a0sOBzj|@Q3kjb`B4YyDk-#69yI$D+dOXlG^qUVNopmpbK z4gRGfUoCo~A-pOEiRUw?ob;fnyNua=4P81je=}4ocsU=t;VgGrX9C9z%wJ`N>a~-5kGI{gy2+>-OP#&^ zwR55)W{`W%BcL}PiQpsyx>MofX~O6Q?4;<>JgD>lUjdYKF3O%`j|#_Is7`32eMe&3 z5&k2)Y>(Co7L~k3aPWUpp{x;;zBM zhwdi>CN|j)If8?SERA3hZLvHxz42V!*Jb9wTkyao9lwcJt}qw==rxsfhUF0PCOFsm z3Bw$49K0pLKuM=?LX7iq5aNY$apk+j7^gM|kUQV*1`EHuOJJRZ15UXU zMq;wqY(7+GfBr7pX&2v3C1{oOHs$RA@W9LVwFEYGAEUEuTIN#Y=* z{PMHEQNxK|M_2z1B|dsJ`fmH*_~J^8|GVn{w!r^m3*;Ize<3+7+x+WH>`LXIlSYPa zc+N_7C|>$=Tjpo`P8j$7H`v_7O?@fNE9pS#J!t#b6 zL}LQ-WQcNKiQ@!QE$ob0JoGM_<5oyP-T&~)H~9HMz~{xc`q_B&4!PURB?K;g#_if(7v z%I0pJ7M4P$7LQkHRrY(_B@R(WmVO6F$3Tmf!uT2MQ|2YqcWy|9S(^Rmpj@WjKn3&V zH!WR-BUQ24S<>sFE)y!0+0UalbyI7ym4Ca>>}+YSS}<=eQceI+s473-2Al50gUm47e%ZOSxBd+S*ON>Zj~iPgjio#~n-m^r}e@w!VxnX897P7jfxX^l3tkaGoc4zEZzK zf%J9!h774&kX!K9@wAlEr7;xnA~XV?Xl?8}fmbJ_b{}sbSv~i@mMuQk)uok5Ug*hz^T*G4q9N{7K~SA>7ugRCQ#VjOx&?e4bdki3ExSkRxBTCw`n!( zl!JxW;S@|fHa&^&h@MQo7$EJqC*qscc~Fq8^5QZX{ju&3(2WJt0%Y--`Ui!$-T~e0 zHIe<{U`YCZ4ln)rxwt<{$ca6=nk}TFLgJdDGX1sy@y0Ia7KFlIqjkKFoE1vCqg>@= z?U+Oo?16`D?I}Oh{u40DAR6ge9m6T4N1bj}_091a<(X@)>`VDX39|C9oVkX|7rJxZ zqTM&8lFBuy)>LJ#X-hDTmbcOcjCOJPi&Lx|5 z#xp3|;;QEve_b7GR@V!YZmN1+mXIq28_dg;d z=~ztJn~USA>O)gpScyq@nPPu*U*8yVpIG2-;hrOV1kd^PAzVdXo0Pv4 zB@w4%NzUgf7%F4h26Gy*|8R&St14IF>^6&dI6HLm*@f6!uK@*tW?8h=b>}xaiULZLZ;QFnmWYN&OIp$lz;-znJJ_@y1U?!e^d&QAe|JlUO2>lfHZY?Lj z27k9?S966!hCu6Qc9*S@ueIr$#v|Rv*W6DvEaO9Ym5xVha;d+rz!K_csB>txe6Oaq zF1A)Ss$cDJ0KrC_ z)n4^!YhNq&Hwf*LTR08F%dg}G*adj9_))1|DNU>=eg2hmO_WWC*N5SUgVRcNnB00O zJEv%h`9$^J`25yPsK=ZJ@vi}X&gFR5&RpsX6|CSq-fgBu!DB&A3dotd`X;WdKRJU6 zLVPT8isi4bDsW>ZS7_pPonK)VBMM?-?2L4LWIe;w*yx_u@ZxwrB~83tGVHcE@CXzH zg0%`k-%$y(uaq#1pOx0O4{ZpSy-I9gO33X+ho}`nD3b{w&@T?rXcoWu%aN^iJ|)&k zb}ckf#r@nOfp8n%BqAL|3WOzCN!%p5L_bAUc^!AolLk=|_i0nTR<=_-jU`B-W(B2t zrYTD!C0@LT3Y;I|9lqk2Rs!fCH|;{q9*qC|$&GZY{a$K$>*rdCUuaHWu&_THF02%O z5JXF*rW4*_cYtJf71>?&!bk8Ns4jLG>S2kFKj8UGWg>2WP5T2h$n7-yGE@BUh--rd z+3J((F4II+(;0A!W^Wk8b7iUwcsT{!oOR(2C+ z8pg1#8zc3Vy1}-DOAh4napzMNSsAj`t)5d7m$yPCh6`1~tjA|aI{W!Kq+7ZwST=SO zW#3=6sdos)IAsl;{_b4CIZkD$Oi~s-w|cL0EAv2~A5)dt(Z)g;#|4$xWAIutLXP=$ z%2FC0jPegY6RXYqqKKt&d`kA&UlN;D9p56(S?)w(`n~E^OMX!>gb zHm^ELoW_+w0|h{kW=0_BsPy^LSHw8ny$6*OR>geAG;MI+n!Oj{Z~uZuFPs=ijzyRN zc~Vut;_t_2*0OZDrG=S+>wQ(5?!BEf6cc=cRL01C`$r=YV+5y!^} zwFKy?!pD8`kC$Ht)&#yO_g4cpWQl=Y`U6>&{Pl9*tB7wUU9c!l$<_xV($nvIn{lrm zc5u$}1}$It{GV3NrO7u`pKwOt^1n^|UXLnxQJ7dxjLc(L<)o|CAqpIwfpCtudlont zgnQHv++r3KLyi^(``r_qPU&sqsGnF(UNs*tP>Hpwo3~^Sa2UXodjxX%`%EerzOM36 zygm23ej>FaDLR!Sz*~K>+u3)NlE@EO9 zo@}`z1z%s$V1=N{5x^y%47Z_OUpqa`E!|RIc&1m%vV6m*Puu-x>=nT*9B<{;Ne&$l z_VzZU?eup2JScT*&hEWXZ8))_djD!Q|L9cAPN{;*g_dn)p?U+|Cdwn^z&7%3VHD|n zyj*|5wmLwcnNxXVcYcyux-FB&$QoAHyZdp@mC~8wk$bGzZhxg52%|&SwRDYew|j-n z`VLwv0H3+0d(e4Db|JwsjdQM}c+(alVw%t%htbKG=}uLc-p_#5+`a zQ1GJJ&mq%H+n7(oN?)Le)>&3jqC#?43rF?YbjRXGAh-QJt+wfv6`3e(+(4TW%?hb4 zF|-?19T|9|Ivf#a-t}D=tUviiW6iQnJu30)%kLLTsOQTea9H9#b>Un(Y~S@p9Si7WPV)FgEdxn}c> zTW6lcPjP+2UOkOyM>wuJXg1p%{Ag51rl=I__?K(iqTwRHP#&bd^j-!$n_n#*5*V#qth!ef(N|}i;ht5LY6G76kg1sk8v`0GE za0QPhc15Z_#!hto807KOFi2QmO?~N}(}e(lRrZGF_pyYJgMEVk0RH0|C|@-ziB zQQV=Vpv3kGW?{qIOB}!mwUAwpxkzWN=x;+jT8(7ZmJQsY!DJgIIY7c}t=0e0A0Ri; zEhP?E7Y%EByaHoJ<+d`_?`H#4-yd9iWG%}~l1w^YlCtw+|6SW%ol;v)AuQzURRn~6 z!kO|OAN?!gJ{nNkYjXJlc8~;eyk)M}q@|rwK^aS-)L>}jIp^6p5fU0^$L8RKd_tB; zbG|NEhKoUyD<&u)BWrBQVW1T?ko`S*m-#%MHn0b5TaxZ%DzY z3KvQ1XWG$r4j4NJ`zl-$+v~1FPRU7dI>4lV(N<dtVLOvrs~%xI+1)8U*_m8 zgnQk<()@T%-?l04PhXn1Wfn@%^+XqOq+Z3=THL#VPplfij zPJR1KHWad=nFi6SwS=&~1~)=DWOJ$NO}tj{Q+= z>R7E}0{8hiyr1|&6UW94-MksJd2^Hm#UGEiF2r4EV)hdd3nBt_FPE$vYutMUlK0wLTP@eRbTF}WBlq`*RqykCg@^?WnByz~ zkNIaoo4PYBXc*1BxxX29Iu!~CiD~R_EK2tXI`F4Ck7fPjEVys@4D=g09<0dU*#@0q z>I?1SRG1L1@QlhotmH?$e%1JtTv0>z%(VTrnBb&ChsPzcMm=sYZ}tVQ+5$`3YFjBL zT5FX1lsPqN&^j;}+@k2PR7$*FP3FMKkHF<%X|yoT>2}_J-epqBFU)0)oW^+GTP=rZ zh=`9^cJ6KlQMY(kFaD`L&~!3K5xLS&zdLg);Ve81C!yO^C1Uu9QBlJSB}B(1 zWL^Lc%q;_3jr=G1iFZ)iaWfOqpzI(puA$eQYw|aQZ7ahuBQRr~rH)ED(<+&I0Fm%; z2dQACzkkhNX{PSu@jkUZt9}u%tDjG5x`qRXpjwqPT>gXe80C?YbpIQe*6AXrN;{iA zxxTlbjm;agyHIACji7-LH|^)4TW@#FBD&24RTEaJbEmU!O&?#H_l*|yE_A4clG)C! zI}g12WXX|G1akiabk!RB*`6SgqEsVV+q z*YLr;gEJRwCKVZRgtTV|21|mSl6^doLcp&v zkw|(97$Te-hI=3;5b^>QyR;jxtQQ{|F;=H73)vxs97?-Bpw5$Ql6XFq5WYJRnT zD*b89BfZ=8$5HD^`BXb!J_V8`*l**7(XISl-(F1|vFX$re`M7If7m}{xB3;O80M&} z#EhyA_lPqznUDt5j51FrH15@&#kUzN!bylH8l{8uz96QA_-iMfR+7m_Z&_(xO5AShet@9QrLM z0JE;UXu?R%5cRA=4$xVWZ8{`<#fdL#I^5Z9uOTTDXIs>aqF81RW)|bJnPAz^I5H6+ z&c?z*5m3ghBqN7;2kqMh+-SBn?kY}3J{ksmhPs2bTcP>_`aQg}hvBFngf;49&@ zw{|C*#&7Hv6p;Q+pqpttN4iLD!8g&MjTOvdPN6;PbVI%o*Yy4>pP|pEis6D^BsarY zkV=9bdZsu#Pj`3M)f}>sVq6|C>|WmjABCVz2))>g>@#BiY=^CFJAEPMQXx5ZHvwW` zVra8){RF8qb3C{Uy%2LqFJ509abCJhYgCG42Frq8x)AM~*QwAG^=tt{ba2VNQpcm5 zJJR<}7Jo7NTtPT0-zD8oPn5Gneam8d@^#Fk+)3t1M1O6)GP~}caGjcCvIbtuEI(LW zK@{!8)`fcU%`41GxS}Yj7#^Fz_2wm!tecJsyGPZ7i{qnmju2iL$pzKWi8ReW>45kxB`d8vyKHte0{%BKa=Pl<|LX&0f77kcA7`kQ8 zlF;E;n^i#WU*VEUIe=VvJHdeI0hC^jN|Bv>fr2jJN`S8)Hy$nrvpf{K9Nrdh%=G0Xb!?#%t<5 zA|8A}g8c%PY3p+52^l#35o?rAvyT^VT;CZf}1v4*cCpdg{{F~O?s z`3P(O!hk-P)oGvP;x`&&XedF(K z#1U2v`e@y;j=KO`i0hah=udw9!hx4%rEhw9e57Zbe`y*;Vm$0?^Y%Bj;FoFtJNXU} zPBV(96RQEYu3W8;%iw+5?m_jAmQ>I!8dTz5j54#kvE|pt(QNVlsXBH42EMxcd1QO0jz z-vYrbH z8lJ4Xrjefj17E=G`R4}1^cY}D6M`p0FOl-J|77*;6e@5`X=X}77O##1{nR#q`4&g$ zP;Rku7JOdX^2%0OEECAU;*l`vPRmc?Ty8@X9Cl>kQg2sMR-iS&ZMD|@4@d6=+%3>p z2qRpxH{)&ll*hQJDbYrVYE%w*5lM29l;b;xNq7g$YJW=SMEtg_i|V&yzAVuc zkX7y#4eG<3hI=H?XqIXepaQb?H)Le^e|R7A$PS!EA@w>sDt1I82&^?&ptKe-(Ng(Z z)!WX%5M|s+IVafwR9X7Z=&OKU!4127MZ<1=i&3h*;PIC58BdU2o5%G9zIMgwqAkcb z+vvl$g|7_$PMROsc&sp!;=alPY#nWicuL9?=Fgvxd&X9Zpb)K9bLYL3CjR4%)V*{&EH3li&&wk6qk~jz{lvhuV+?EvCCD>J2GF)?x2Dd zU;q1-|9uZJxQJ?8wMtsAKR-HkdR*UKp5@##H-=yi+` zv9T?F%;BW^L$TziqfHv$Z6|-vRW_i?B}N}B`mSKSFU!_hxU+GQ@71R=d4jM@R@+?evoe^g5RRW>wazDQVRIE4cO14cb}mylbt{Rwa&JhC#eIR-sJ- z1Iet`aZIaSIBSYx{$iH=%@ew}fvx(hC1jPTGWN~qbHk`Qnj4#XTWRN--^W1Y4j*(i zVP-$s-|ocQ5+m{(Bd~a;oa3^G} zXZS_n$3;{ku_911oZ-W8!iqrh%7NYb&l?hkJe2WoBLX%01SkLGXrc)$I8+exJUsr+ z@6|e1{R`tfHQ{xT&JXudEbwpt+rMAw z7%g%==}5vEzq5V)FA|RbsOZ4V<($b2T3lSsxn!K$1hYWb(%=Pz7Au1O#wql`%b@*) z0(vf7J_?Zt8W6&&UBUuv=<-mATIJYJ4`(vf#+vKl?z1qn4m&&U3aKb?Lsk|F}yp}WF z!qjDPVBaPIgbLCLLrzK@(4GV)2gYnloZXxAq4m^P6~-OsX_cJo?*sRQ@ZIYpKYsY- z4A}Al#zG&CO@(H}&dU+l^Zq2Ut8=&|ftAi28{?WrV)KDr5FTARN8b zn`yr3A^TFzw)<;o^FJ^eYgOa29osZdFhAED1I$H9mv9^1{LABuR1Uk*hjrh6d?_?$ ziy;?NIz|r0hAM##XX0>VX6<8vg18IinPd6EO!Wf7IO5{T5LY<3MPG&!bVHzn@XL?a zfA!+2vUeUl^a+;w!!^0Mu)ZYMx04cy&>I{zgyr0;mpT4+Rof7Swum0@hGf*vy=04@ zNOyTTF5?fci08)2FkipHo8e;zz}H zwz5)x;O)ko{mIZlSGG|`bPHS4Zg!ID&{iHEn?s45vZ|P#Z={vzrP*XEc@^U{tW$ml z=3$PcL;aZ=JGPnZG7&&UOIO+=)iDTEeGT^YIhYAatbO9TZNJS+e4CE7-WT7*4&V=| zY*v^e+tHbb{Tn9zs?}~wZ!)%M--z*gNLc3bzhwDs8ogRkCmKGqEIk4A(oNDZCbOR( z-ob1SHRyZA#u;BBuFAsFCmNiBNZ{ie8kgC-P&D{U-PHPc6{oQI@H&}GqJ~g)(kSQk zjZ)C3c!4Ws{14l{O$bX{M1XIKdM418Y4Fyzwq4}|_ptKGG6QykoY{3pS_Mx|zSMme za(}OP`%b?BFeby#e23CG6Br!im@_+0(skjV-#m1HS(4PGx^>@5XOpwpbN}?ZEgSR6 z8w)p8OE7+Yo?+b8@I+hVJ=apo{D#6P85kR~)XRk3x(5MIGO3O8zR%KoezQV{#2-YT zM)s*ed)ZC4ns54;2SXEuR}_6mxNQ!9>kPZWHb}mIb^JHa6%9RvCwH;WYF=eEiXk^) z1^R9c>+kIbXMeQl)@2IIN+0$*oESXq`)zm=%Wr@Q=rIvS2Dd=hHopbnVSeRmR%2zd zXO{EbuFK+`C%H6L<$ZzN+kh__v}X`X1h;vfsTLv+tG8$R!v2`4wv2>s%9k#A9wRs- zmGxl8V0>4a1EOnbvmYS%WKEA)Xe1GtkrA!FaxstXOotfEAGKSSyUO8bPmbMjdAp) zszZtLe9Rb9T~a( zp6Y11_He|4{plmjUie$*!rFl3kvpqw5srJzTVY!%eKs-v$`062Bq!5Y%k7i}J65OB z)=AL}M)k=nVvv{Dmc`cGjC@(s6yHFB@Humfmg|bTO-wg|ThNv2$W`)lKe-T<&#s!DF7e#366gj$*qQ)^!23xPWO|?sZMSgY zeaIde6jQjzoxnjt$S9pfDx<4uP4TyINh?G0y-6cZg$_)7C*O~6+dOf$j3?rc04=jK z9LeThKi5vG+_XUCgd=wSjBZb->Q#GlIo$Ifc zos@LGi;)qJ8boxDoZYvG%sK9(xx6Y!){zw`59kSomIwg(N71js-h}^mHCn!sld#>l zwk>fh4P_7)eb&HJc2~JiX%$u1#trxD-(uc5B#jhsU5Tihb6_MYk z-Npg|K#LcHESljweMtisDJg`CQ}a)TIu}yio}ca7Zeat=Eo?h_uC_5z<2pgCG2^C0bxaO7s%B=8~7kx zugS$Hz1v)NT1NO+h7~l#xD@S4=$lq=<+p2u@$m`~svnN;uF?p_7IH>}nzv(22^xms z(47HjCCHL60uh+>*T?M1XT7mh{8c%Kk{UWKyw30z253?gu{&nfF@;krnCbjQwh-Cl z1c8|6Ng-8-9X!coEF+NAU+uLpd5(avrL=%Cd>RZcCec&aWThG`VncAwSzYl5Dkt^f;dS`u%>iCgw+El$92berWV!;`QUJH)g{Vl?lLV=xCwf%3 z-mod@rJV)HdmV#k6AWuxai*3frjJbywS1m!OT2Rwm5Ogk3QgrM0s;Du9pB=&%W)$6 zkJ_4Qo8$^@%@-ep&3u2qdw-jpIKjRXD--N*Qvf&L>D5@RG}oasc>r@3#&@5%(L2MZ z++#u1M9lX$B~8F}nd;d@V<_4u1xAs%#0qE6R-;Q+Y2r{KWy^jGGEeH;U^gu~rY&as z7ET{>S4|J}QA@ax0gmmtq<{p=tF97G)+q+}Oq=N8ypuR5wKGl?&z%%;>W1VxVc8D_ zEP^^Aytp9rfWKZIeCb7NTg{yCq|Ero+gWbJ{)O2ehpFKsT+@b8{0(W%9Vy%wWN3dUmpp{Az>M z%THJC^SFOneoE3Ni4D&O1W1(rHgV>t_>Rdq zLDW>E*uuOwZ}ZKV=e1WK)A&VthmXm~?mjr&GK=UDC2oO!?H{9_74`7DzxPm7M*^Dh z07}e-cZk7ghk35*gtpUq4k^oQn@mB|qxO*5uFoI+C(A6;F(*d;aX)jY~;hb|DfW>}UlL`mT^dei>$SUpu` zcaCmN>rzd}10hTzh}f2&-O3gJh@DP}GZYii>l;_y!vP3}v)jRumA4~y@3AH(s{epI z)BSKWC45i&dbW#-8f+ zd)td6dUSItQa^UCpQXf=l6S=lEc;$B1D=^@atT1J;U^U|tJOV_6YC6^XRNd*fq;mS+&B4_I6~kPsBl zXH+iaf{;KUkLH4E0FMfmABjHoW(3%~YM#~#^{3*-{n){q?>+8sUt43vI&pUqM6lql zYMiDgm~BVQT-lnpH>*WbqN=~MGwJQ1q!Uy|H)*EGkEu`Rj5k{Vz^br7Q(wZ>2wLC4 z7oZ`aYg!DxuR~@F5yvGgdtyaOR-K-8>Bl91r?@AccTn5BhEg^9;_Q2I!p6yhD=0N4 zj3nbyo(9!zpA1jy4sZdrynM@anKMLhA^w~X$ZXwkvM(~v(x zC4_SW#e`|hkDhJyjce`SXNJlwfEvn1>fu%O@|Qtf;H$T%D*eF)N;6F60fhHyI4G0|H8DP8avp7Dr$&qxszvMf6B=^wvRr9?N^e|gY%SDKV2cy z*?60l`z!pR$UTpd`HlO%zD%(#TJGp6O#DYI zzslE11sTthM-4M6rXSbBF}J9O)prnUl%Hx?`UI}bgm@^z)UoE7?r0ijXtV;q*qs25 zg@fTyUx`HD!)(x|atZGA@r-mk+kACo%Toda#*wzP&d(3G?AOpSZz`NkuBa+TO2#vj zZQO}AZI20L2nx+VQcu5i%oqFkix7+1(vB>s3ZteS?5^qKj?NT~%@#>nIbym&IQ2?j zFHE3~aCagytTKEfZ{y{YOPzyOZFep4f6;`gjELdKLf#60%#htk9}-s=a{==!p0m5j zN1NSJP{RiGppNIwc_%%AzexznP5p=M@3WbJO_AOaA$ z6*=YgW ze~$ES9eR6K{$56m{!)})&$<4urpB5!N%BHfP;%^YcK;bkcC@O5il1|yH%D05(Arw0 z(~6x1hgT^NA*AIY`bh>~E0)uAi4^|0Yoy!P{|S@6pSMO~>f2}BykCe&Fv|DYSGf!k zJ88tv$E2wgGwm1V28du<+kk032yPLAfYSM!)_%jPHmqb>sMln8Ye5FJKlCMi{^YEf zAj{IHO`|B7hf`dkavSN(zJ+0m+F#OZ93Rzj^5Z{8M((1c*08rZHMn`KurEfsf+D}! zbhp!Jp=mf`;skZa*HZ?En!o*s?X4|R-ZLf30}93+mVX!q-oYiTBt$+#X*m=x_SJh` zvF_Gn{wYJ##d|VH2M~Sd1gfCu_5`68AG^|#64Z-1;Z)@8yiS9V>!;Y8z2N_U#yIhp z{Kh{EQ59;jzlsYWId<-j^@d;@SIB%#pPQHt!_U9?@&X0<|Fk0R&q93;^gGsSK*8@9 zlh=MBqw~Ch3`cGhu6B9!2k3MPuxOQut180TVHx5-n5nD zS#oM=fk)qwea4in>IIU!*?7WIooD;k3c!E$JyC66a^KkZ=*{k{MpkrtcPZp4RjMT zQCp^^le`wp+KGN>T75;|68F|%Ge4L+`&!j)+p60dmd>Ty%;1i(wTEjykmrHw%m*iN zjYqv2Dxlk?`qy)>5`(Bi03%S2k^~{VPRULn1^ieTa=)d#lF`mUI`Qx@#6^y7DWsrE zy;>be`c6B3{+2EvEwqj8 zrF-7M^EURN(5*@0BMR& z0)$}-Z;Gzun|M%f8nt_@US(yFq(}EzoqUjPA%bDE-MZmI2jw5xHWt_B+}X_eaYql> zzB0_(!Ex_odi24b+b;Vn%>dWwlE25&!?(v#*ehmp-Ezc@GXdQd(;k3A|Y%_Y^KcaxAxDv)3=dr7XhYpw>E>rp_vIr*kCy1KxO zw&}@d^&t+0VY{+CqCeD#@9&=~_pcdN1Fkk^n3*otbKIZ-wj@rgMXvYvgK0K-ulY1g zT*2wd2_Q#IvucCE!V3vRzPdxs9Pvr;d;B!UW`E%bbj5F{wWF5 zJ+B58swspdy{sP3tNI+rqp}V_WddYR{|lk&zgwn3XQisaV9flooHFE&ZSJ*7r(8tL z_qq@P?qM(0w`yy5P5w_-=|5gc&ti4};Cr2UG^l1>w374n`IN7~737CDgip+l{$?%( zuw)GQ0^q9%0ZaaO)&FgQ|N9pB!t>09O75R#pmp`@1RIYo<+cy}&kV2%Bk|48Zv>@+ zjPu(p#__ILL*&Tk?Lhi$3PniI-h~{`3m5gLW*S}{8x0d&hQ)YdT!i0hEA^SQN5X}s zj)yUCoL9x?Go20Mrv<`n~B1>8Z(Kw z0Z&TOPnz*yNN|3w|DB576=1NJ(ZWpbxDIQ;y6K6IiWo90cQOpZt_)Rd-%Fzt@2cw=d)%Akwr_NvxdudfGD!(r3V8w2`G7 zdE6ZeM?B)k0gH~&BO z-aD+R@7)s(g7l&&(u;tiRH;%EEP#jz2uKGJkrI0E0a1EKKmjRImEJo6=^z~f(n1oN z)Px#J!tC#vdG49tGv~~`bD#P1{6WaxYp1QX_Ph7H-cKRf)ie0GWln`pMrndIO&;N< zck869zrL$!dF)-h`XS7Q?A#@g-qp+|EFfq}6t7YOMYK42YM3Z|`pPG_U-)c@-1HdG zSUSUGYEu;Gn8UCFMpM$jo!wkeZmF5l;!4sBHiO=0j1M@KK3QEj0|wZ+&>+h2XYHv7 zp+)5$mml# z@zK_{rW;UG2lH;uab^Dy=(c;yoI1WhIh>>5UF=|^h>;@MnKFp>k?balj=uy0X5|aJX5oU{eS3 zA7)w(q8Xd=>Q#Vx+XwVmm;%eCPG_j+~|e)%y+T2H>#l)hu9 zSUG6+B-O!l-4Sr8WWvC(AptLdG(HZ7Wvi>RAjj`+c0G?8?bC$1I+Mh$J#t{*VRW{F zS8xEdbI{?Y&{`W965*YF<4BC0fpetB$b=@@5Q<`#1%i;EnOXln!&iwc?4hdep&H-}Xf z+Rexy&cgC+ph}aDALP~z=X4Vu1ZP$akjCpMGjII#3;R*@x6G+I_NXk+6p}`nWgP>^ z9W9z>X;uE5TaWMvB$o<=>Qz@7oM+p9)ovKOk&M?SFJt=l9f%7}q?&p5GTylRUDCBf zJh~e$J{R`o4QM#ShHgF^U_<`rC5BgSUGJ@u%S+ciWp)pJf0}tS)d__%@ET2t5&0`y ze)`x$%g&OUARW__IFB+b!||&X;hxEPOQ$~pPxFzSQ&a68N;h^wb$(HOrL2v*SOZMa_7Jdkxd3TS8?1~M&kiNf)**m`zN8*SW8 zF5dAu)Y~koH`g0@5=SKDxgKrBgqkt;Ip5s$11F;VD;SVN_6;+|<^2?+tfs*L$acoI zLKZ)c*@`Fs>-9QaSjfF%Gs#ybF|oy2*~HmB3B);Y%-a;L6^6X-yrZ&KhGRP$edXFX zZxSYc`|ysL+DhZu7)67Qxj1&dx1DcN(OoPgh(}S^;lEDNw zKYu0A&DW}JXtNt#Xvj{R@nFZmph)*%3}zM>ApJ4{y-I{IV()odeOtX%h)8S54EQVO z#+4nW(aj(!>_}RWLmekfqppR5?qhleZf0LQ=Nd+W$#k0c(BVz-#}300q{tN(DfvB_xKs>TfyKJfM{D43zl z^GvnC(enF-%vpP#l{8_xRVTmK^UASibZWfpVv>8`$tRH0xS?0OD0X$Jfbb1kVdrjf zqxKQ!gk{(tfI`Zs0AjvBv+_sml0A&0w|s?`$d78RP?5$h3M|i z?8q1Fl%>=^K5dXFwM!nej$r*ETE4R*!nL`HW^qjPma3N3)7dn{UIl5XSZyo`jCnR? zadI0?RusP2)$sqE7<|+LTvyDe>exj@r_1XUhWr(*WhEA#SLHxnxhmf(uHeO2VI1qh zEREQ>7P71X`iaFhbO}F)rF5q}eqn4N>N6)-mFTtcvNNvG2uy z+1kIA&Ijf_gV(i(%1W3FR^J1E4DI{};$$R`j5su-7-B<|S-p9;dJF9t)6ht^GL`Cg zoapb))RtOe>FO$F9^k6t61T^#xlEeW4xD_?ql${`(}RlEfszo?c=43pDsB5fI15-3 z_N;u#Q1zWtS1Vg5TPy4gp@F|Cg&2_dYDK{!oU=l&rn8`Zbx?@L2*z-ja?bvBq-T-YBX6MM(X{~Yj%GJBpWp1V z&dRlIf%s-RS_aFfaFRcy*Ysxs2?idWO{bUs8w&AX5*k5-cf?+q)F{KI!Ccf{bwhoU z(Pz(h)as-QaYCv!ikkT<6?pGg6HXlY2K9R+E)oVVd@g667xze4AmPmdv7Q-_>!txp zcH17loOwy49we>zlfty#FA`F0V=Odz~VcT$Za@&YdKmWAL;B0m68xUN%O}r13V!mF2+Iw7Ir?YR2U2tZt-#yVom}q~^_<;dPkB2((rMB#I0luBV;D?f6K2mm~&Z#x(lt= zoy`gjx*uWDRb&7`#04JksJEU*!v^g4#x20d*6zY*`HxI9U)!^4%a9Hdn|lM%zDKmB9@i_IW<2~0PeXcf-A`(#OaqE6F( z{^i%wQV|iy-{Vi2zN&iyFm+i)#^3(bZOi9d3XoWN{m~CnW;QRzr74Ho2z5O*YPYs! zSZEVKr&?8`WuDD(p=daX4^WK2F?{s+JmV2-d)naj*pj1aD9MfLUJX9 z<#7zLlilEZMjo7ObG!+5*UfI-5GQj=APtR4PNGo3w1NBz0#@C<0UY@Y96X``!Pky! zukm&HZS|pR#6+8l%XqcYwWELICP~zpOnVSk^ebjBENSyh^eal%vr)AC1=gP1{#ghM zh*==>jg4I|m6E&iwE*g{k@G$-`3ZQ{`ed!im&CYapQ3wIy{uXL9BRSFASN&BQv9w3|fEcHGDGo}xb!mmod=Xsb28)5N4%=g*m*92{&QG?>h;`E_Q1 zb19HNbvV_Q{OxJY2(rac|It5WK{o=(otaO2JX4QXgV_%{ zw+>lI3;evhoaylyU0_Mv-4xjOK1kRRw5c3YOSZNDgRa(LI1D@(pYJcPBsx!zrd-J?$7EqLi^@tQL4f z;4{WnP%?33Uw-8y;Ab&R1dV%Y(eG_*EM znRxD|-Pa?_QfKA4o|*W8Qhhb-euwiP~HZk-yQs03;^pkXmNLz`^tB*HyI_t)spaz^TnWu_BzvnS7A?Ix zuP4g|SA<}UmbfR{ZwK6Of=>ccXAnjoFS{7T%5x@+K%9SQu*3sZRW(0&4&I{I{2@N1 z&?lqM%jK`JS5m-`!qqpwO*uk?UxMFI31oi;DS^1pb$wzT6a}nv)kFt8)k9yX@jqcD z!|nD2HA=4`8819h{u#~`3qIoI$=cY%h(xNKS++Z%n9PGgddQsgw#?E^#F2Ac4L-x9 zdf&rQW`1CjwLtZNon^6>QEe%)i4+h0$IF{JqE+&z-Hqitt1aDB#9Mr;&K=8ud(%3M zOPWPGKEyyiCBvzq#l#2$*{+RH!wkRkF}8?CVx#_&z6kAtSf1bHUFf%frByl#WZJM? z*k^Ll;lA~C&>#UkDZl-gDX@UI^B`M-TijyLxuX-=$rmj2=i;^vI2)zJIEYhh$$+xl zPLZIWF`T-d*tx>>8L(}mUY&Y}#}rp|UzhYLSJ134@babMlIyTI)&h`&P{o;_0RUw@ z$q4OycHsQibgcpP%@Yi^CEl%?)EtQs?rHlyBxP^K|15v!J*{hsB5B`CXeBfI!d2OuQ0Llr}FZyffwJ_}!i{ zf2M?5c%SE2YlteEoPunvHIK+>5d%BqvxDH-xq(ck;yL!)NR>BgOZ`IKiYcrV)p~B5 zDPQzkxsxn3rE?STYy0fuO?+9=!+lJnMPPO|Uod9q|Bvo{@h5NJTw=dHSX@2Ykz$>`{`TAv1j~2g%W;MX%x`(4lLf7 zyy1xYCNZ}yagdhu^o?5k3>|Q`RODW`e`mOkhZs&!UM=6rl05+6#^KmEbiPHM@NoIU zjOB_OMn3h(emH`8`;)QW=ZIS(5pMZ$4=#?_JhZP}xq+vqQW?3wf>+aN{7M(zZL)}2k_@L;myAi4H z=hRm~hM}`4Ux4=%#w-(!+ksae3hgo2%^17iu=Zq)&1O+J_5daJO2~ri98 zpJX$(@_CldSu9GWo+W(LWK&D+AZgd>G+!=Xc-w5I@E9Ko#W`!@yejfc%%W$Bqlz*O zf+d!$3NGp+=#m511a&^%T1RJK!GYai8qm{i!38C|yG$A_up_hXC|%oKP$uPgL%R|> z46+ZP4*iAeD<54Reh)37`HIjj8vI0;c-jcse?&%m@GUes>d1H>@{xFBrj}sSO}vkg z+A|E>_xN}_?&@~ z>$;{zxhM(H^he6}QltNxdM)me-)nB+aAE zYtDt!40fcR467|=@Tmc1GQG#RiK=086% z>-=uvxCHrrsNx`~jcJoXZVnFNPEd!h^8>3M>|-j@TC-QU+6G%QP~pKxjTid97%eUh z+H}G%mgV}GFcW=6PYxUId!Q_;0e;+;6v@HKFFH~!d?cEi$)}>n>&Fksyk=dk?!|a_ zunoJ`_s^tY!Y~xd#gu_EPr<}r!+TvkDO@y;ubCx-Y#iLurw2@cjH>!v|LXj)&62>| zpdB4AL~{Gk4D_4H?4Lh5-MTNb!Vf5LbJ8oDKN>d0js{;mLbE6u0eW3lQ1|i<$K2{T z3vtIAALvPh67*%c7v;8;>G3AmmM&%s2C4aP&=;XP@M)2rsT0Z7{NJH2)Bxlu?%O^z z0$V$Ci<_P(;$y6ypFaB3j;~(Sz0N5Al_Ve$(AoDxdIImPjsLbhOb?-Bpj0W9E*3Z1 zyuSFeuLkc;Iz|6S&;@i-(#+izYo&oVKo3F7(z5Q)Ak>TW5=h!Y<}xBl<%Iw7`VOLd}>8Logz0%kN82N>93mpv5LC zw71@v0q*r=xnBs|qM%*h9RonOjmGfWA>2`h;<#pp;iAJ&*F5ugM)KR)@PDW zI1G@ag$GDtkLfhJ=KSnV5D&%4vhF%=Q}zA+v$9U1zp3MS4^Ui{_%A@pQcL%P&0KGRn+ZIaO|A zNsR_hLIp}9>Eb^Spu37B}sTpX_q?&M&;vesBwA$;rxj-GoH=0 z6R>K%+QG-;aI`GRRSUm<2#-WEddTjqVW-&43Q9ldK#v=Lr!fXDtR#T64VN($L5tbl zqZH8UEif0(`{S$oo;zIPG;@PMG4;*rqkh)YOfJC7eKTFY7uc(SsdY>xA&Wapc(vDUu zR4gL~2uiD&bJitu$UmCyp4YWf?ZoAlx|#+<@%qqsDnKQeP$*rZ^qTvjR&8a}^8CuD zWCxd@Kl&UhWr0PQ=J?1n=E!Ay25OWUZ=$YgvHg0~QKaeX+g|UO)rd`gCCQ0eMFmuu zJwu%FNu=m@K$+mdi#W=)1DzV4YpY(NEwQl!Ea+f4CGSU*t=zbiPDj*`-Xwa8H%TGF z@>BBj*5#9Uor;%be3iw8gboEqPid{)l_?gvj}d5mEyyH$v=lStJVh0 zx7>aZXSg~bM|NIwJvazQ<^e1!_<+wwMlml_+?QjSjV7fuA4@vJ99bc=?$=^V_&)!1RJfG&IlT=_@*3q3^%m^TbYoTwIgfls5o{7rh(?5MCWc zkVMNgpevYs$`_^Y8=sbm$+unV~L2=F2Ba_^hXxde^f zE*+NCz^!+|Z~7z#D53g2hXr0YL%(pCmImqYC(yt2p`hTSASEvYVt`h(qoO4F1V5Q4#>I!$$(?xMnMM zF+6m~lhKLI(37E#-}Ra@tJAjZ-vs~H@L$~YKJZ^bN;t}yL;UVeU8>2~x@Yfo*!o*$ zgR^~B^Z9ammF|(w*_J;+O^-(JI(m{~qS>KxhyddVR!ZBdsh#)h;KscFO52ZnvLJ{EnjgvcGLb`ESVk_DXN6bsm<*Bvl`3@hK+VQ7IC&<9P1B zL{jmPav=zu^RsTz(V#^dw2RN&38A`ZVpmek!S1#r~rJb`1N zP3ZhR65W5~hNs`1Zyl9L{m=YTlGpzU8s^_=y8jM$`2VwyT!U@sM(?TM@{i6wilra6 z#!6wK1)W89w+5g#l)qG)lwPXy@2e{&`AX;hJAUcEJF)+tZ!-bt*C zT5U3Ot#gY4u74ghR6zgL_+OpyUo+u9JssW(Uvr{40lrU zYra2JwSJ`x{?h}pACS^vV(gDFL_K-H3Z6PUWkA8Zprg^vUUg_qcZ){m?_LcN)q5g5 z%6}ZPZaQg$`hvcc0|1uSIH$bgIr}A!>0SQDKm~`?VLm78$Iq*6#;%DUDOD+Ro&QJW zoM+p`F}t1ms_FtDYU3^(@*;u=7)@4s_7S7(K`n$DfPy&od^p;jV1GOJ2a(%1g@NV-c z1ODU*j^d-}g<658FyeKhVscLnW3P_)O~IEBt&kLmVEJaDArDCG68lVDEVt%_qo>@i z=Pl}v?i>^A2rf(7K*?SoJ~-2+9!SUBqWr>Uyi~em@u9|qXPKMHt$9z;Z%+Jiys|u* z$2@UgFlC-xAlyhirc44l%(SLUdg|UO?~rtNo8?`+`6DHU0+8oTJ#XEzy4uNps%Hr; zBr~A*tr5gAF1GX@fk}^HuQSckgC|VYsUal2>$f977{27aD9|yR(0~p80A*zbl}Uq^ z*n8hlwe~kLc{5>BEDL`Bl44nFMa9dU1~(Fk-lNkfw@a>l?Q)Cx$_kk+b+BTkUY9TFxI&%x{lFYDJgZ zKNyOvR>zzsJk#ktS-D9)G_V6`N3ca*N%sAyw-0&P;`LPyQ^t;j8 zLgWw8tx4NG=51ThjA?xnw$^x`|JR6#c)+!gHDBw87@**~H`4~P*D<}0FUpM%r@`nt z7GHv_Sry?zLs|;p_ahm{K$Zn95D0C*zY!#cQyNM9{=}d65$TJW3Kqkc)E{!zbh6-lnapp5coBuCRm>p6hFcGB!I>3eL1qx!KG) zv0$vepFExzu5bA#OpW`=SQKdXdrg2w={(+F89u%D%Amd`vM}*2sEKrpksQW$KvOYC z+NJKyIh^&i+mkU6d{OOohnv43fX-uv<%Fh@~=Ne8Jt<}_D z<)M`f7glBQ^EfG=8|s~7LVkdwgfu$RA4CjJG@eCCQ?aru8G23Q{V2 zTpj?W*kJihq5cXm*yrusy36EIQ!V^K51}wMum3#->nlS>2<^E+$?W2zKx=1j8^K{m zMX2zr`~9Al32Ig3faOILc5e>W%j|bI)~e9%mHn|nwHD_ zfPU_RZ8_T>I_Q(-a`A;`iAu2@VxmQbscecw^qtGIju%;tBknPtyp^@^*t45w1$9|f z1yEzg#d?ulX__~QkiusI+@{wzRX~1qHx0xwdmOez^2ysR2;=v5$e|BQiw}n+{qFT2 zuVlI@sen8V4bp63Y*NrguSxak+HcS&&8;q}JH_+9w%ad3BW@DUcH;bI)NrI|`tW5F ze=h`ox<*EFgosFj;)H+jGnNgBXF2qR=*^{BfjOHf&Yh}&KAOfe+9PR^fN`8IS`;v{ z#1^EKmFHO&&qHPQ2cR(LRd82g*Pd_Z}E>L9fTWVhkvP$giD|ex@!#_k5 z!_m&y3qLw|nu+P8XmoPrg5rlkHZkIz9RgXhTgqHv4G*NdOiIVUPC40j(RKJG&NTjj z4zlZG+v9QmJ>J+kr~%iVx{0R^cGN;W{5(%W7}xJyf~Jo;woGTX37GkB1{O0?!z!Nh z4K3}dP~UQrBq75NfgvwpFD~&~+V{aq`(d|%vI}XFmi=#>ObvJVp+ea!f0LoconOgx znL+O=QfczkCYb0=B^kX>;shgq?SpVR#%nVTgG4$Bc#iwQj;AfH`FF$;TP750>7j;7!IL!@A>zjm_aQpX00?pDT#3*eJP~$eslUmP~m#z8W%~*s0?bTvI3! z`h>h$l^Mp3$plQh#g&=wm5QL_PZCu!47l1&Crr!;kkgYE|Uhr%iyUR*hzN(`&I z1|b)EGuw*d=a2CwhSMvy+hw(1HBw%6Cy9bU^eYJvwygjqT=t{sRyFANMZ3A)M0cM~ zM-%Oa>!saEvP+Nj->OO) zU#*XkPR-oLQJ_^nE&GZ%9!a{p7n`}$rDVQUH?(1|d0;EeAN`G@fDWYtsdd?2X&2`}t-3JiyTJ zS*p7}m`vKtHzzkqkUFMf!C(Q~cF8GGk9k|MT7vN+;0w3+eSc-X_gSZsgc3jrYH0lY zge)oLJ!L^u@qjFA2UjiVOlUnj3?R#{x8pl2RNN^d?^I5`i(=PM*RKAnyCS)Nuik4t#-L@x+$IIC>Wen7A@mh>9zb1Rt5}v#`)pP}kE& zXgJ#vYP@Jl@EBRhjKOs-AN8ud#b=|5@p)S(#xmK3_GhbvqKkm?4Cggra8BkCC%!|` zMvCOGo&g{B1Wg``De*6y2%4lD&b!)J*Bt+@>PF_fE2^?e3{I}5!T58OU2DYlj!;cjL+$K<&7ab}&3ZUPfNP#+ z&d6-m8cok_a`{H;d3MgJJe|#Ic{>-^yWJH z`(&};OcC;$>q82O zCE1de|96D=KPd5k|0{)XUV{4L(PHNmrm&5|vcbFxLzw-BAE4&%YXPlKLjIm_d4D97 z`Ob#*FQ9tZw>;XpL)t?msX<5!Et(5`%}+5BDQCKN)s39w$=@yWPoB%{4B-$4MW{P! zsO-5(^fwvJVfP1a8P~BxpIG=@A;INcsI-qT6b1HE`KM!KgD(T$DbXOM#r@WKOZ*h>M%fC51k za@bbaIeZNOugj>l8?q6%e#!K1UI0W-PUVU>(6Ym3_i%9}txa|iWiwuki}H&d8||dN z4_ET4B3juUjT&zT+`&!^b(vF7A1XixY+9$^COREarHS!1Gc7hK0lu+Hql#<660rA< zV8kSfE6ttkUh8Y_=2^_ zmfPXn`H$i#;45lQ*#E}?)yhl$xID_os`10K_u9B;1)N$gs+2hlBv^U?xA}aIsP&O} zZ9;0199m@M`C~z$cH+&IS-Pw*%kLP>>uiplnM*K`Na)XDXPF!^OJ+us7}W{q#s!0r zUiZ0j0GL1-pou#0F2qCo(%8Ji%lRcvd8f_ajgXVx=g60PmBAehQ#0krN5>^X(Sh>;vvW$bBNF22YhY%)0`Zy!)sydmEjvWh3IV{~+GqiA zx6U{nqsR&xlyOl(SzKFCV=Nv0*?K2<rz7y~J!_H4M6zAvYMxLz}t&_-K z|JdL+{cZ?3Wv{x9c^$T*1Bnf>Z8(D+$Ila|{Z6uM5?37;ezv$a)tva9AC{UuMBT}k z*NTnD6u%ZK(e{@6NYcWlxb*?f@p8hER86eGs&G ztaS!mvl>F;12+$!c{D;QttOnNogCYLi@Y;1=QnG4sRqmoYP^P6w+Vnqd=bPtb|EgB z!YdWYKPj8^*l<@Y?EDV~+XGO`5#hxf-e6IU^H`ofrMc(z&5jel>nCp9J>+531qzu5 z`{#PEk<^MtIV#|cWh9qY(T1eLgNF23b^hDUAA{f#^QQ-9CtWZyL!TSU@}3`)Of`hV zpcy}cE+)9v$Gk{SGt)s8xMZTbO%!CSS8LU@A!J*m4F10BrVfwMA@plLX0L`XNvq-# zWN474x9_ur!+7RjkIO$fpX#Ba1DI{{6U9UP> z*Os@M@yo>@uz^ma8)(i1Tj338UU1`|D$>}YM(YVR{YC~mTn1?^{xyM%eJqP{Z6(nS z`1`itTN=w-!$#}Qbs4i_uaP!scOQT?`}kNXvH;3U3a)OnyQCt_I0^Zei)%~~!j#H( zW&7j`4~Vk0Iy8n}nQs>Huv;8{Y>s^+Q1+Yj62y_-(ty`ME4gbBhjH0)dt!&PnEOn1 zZOy$jB>R%}Zg^Q)xed9ZVJu7sj<f?phUJTlGCx#*{{)LuzZiA$*?t4cfIGFB(3l8VdvAPYt|vj78BsF zRTqAd3>7=425x=7uU6<`3)+UWKh;8^C*G}LgDh({{57)5EJ=Qup@!KvFPNC)TkoAI zroA6|B&c;0^>Ev>f7MMg;n@}-k-!i|1zgYi_QLDgzR(qxy1j^6UzH5#b|vnsnPk_t z-bxMt!r_KM25o{;6VE&KwPFnMiV1dD!3=NWjuxY`^YYt^D8Gxl`&CE-TG~gc_V}f; zAOnx3Z@-+j`_>mg!%9&FE!1)cABwpz9VP5J7Rr_@wrvh1Df87od|3YE8lZZv z)=L%OsYtw$(fcFU*yP(Q2=81+jd}~8a8FGKhl^igk7s`(k~m#cUd+^!`kAfMB7xmL zGi2*v5Jo!%cw~1vT6KHjmY_@0&22a`M!xx%h`~x_k^!A-vIDXTjpun$i@3Bd8u&Fj zhSv=A6uU&pfCq_S18C&6%1zZ3%n{_9*W73bytZAy)?AD@z7Mb7Sz@U6 zWp7;^;u#?Ll!S_#D(dwP&E2iQQ8INo$V6^D)ehv!@3acUtIONOBm|E2s$>u$3fy z8u1si#Tl>siShm==t{r?I5sS=RLu_kFj*OXL*j4mEQ1IVB(t-SKrY*BOZxEmb@c}% zD!3_5`i7bL^NDsj$3|_*4G=-o9Z6f^L15R#PlJnC<@M_h!whv}3eSV}UE`hsp4-#y z|M?{w0glEtBStJZMTj{wsqKPa^OK~*hh&y(!$}%AyM4d8fcKt*(5*B-@CVx1ZklCo zS|3;!ku7k?{^VdlXh+!Xf+Nd)8YXT8CyfLk)IqocUx;a@ubGiKEZw@i1(&GnFwu{F(fC3wEinI$}G9#GH5e z{@YXjZ^2@3Tr;Ub*~b8WGf5hS1k$)OojdC1k1s(3oH*|DgiFxI#-_!`rK{75RMxIV zi$0Ncn!>QYf~NZGr>yVa%Ppu6C<%F^nZw|y2UxGX974r5%t4O}mbT_Fw~6%TgLrfL zkCAhKl-e?J4w>^T)z0~#Nvlx4#G1u9qBT_oiS_X_GwnLR;~4UVKRqPsG5v!uQ_RLQ z?r(uYg&VN9SjY0v<5;4~2gB2I@fHWmhmND1k}*W--*{crx42}$GLC$+!D7zKot0*g zcR&93dfF+8I9EHG^8O8Q`{^CY9 z!wMjlSlLG9fBVz6Qz}~eak1B~Imu!p2Dwyq1Em(Tb6A5q*NV^;2#XMph|Q4{R>PCp z$o6qO;F?9ZX>?|>Rbu1Ag%2I?8=9C@EV-v9Mh;1Gzp^Dwz^|jCop1TTv?fRDtPAX; zy{cye%e6}sgPHz>4hXnxP>sm0H8L>c<9p7)$#n1@IQieX_3(*zi~e?ZA1nl~kj^Ag zP|~|DwOOEHA!Qfdxm~s=ZnNfdzePnvF|6Xxl&U2l*T=Y~yUhbcaPg6^Xc*Y>%ShWq z`IdPT<5JBB<{@85PQM|ufl6vmmC=?(ZG5m<%KO?t;e}q7cbwn7pWv?*VM}1ON%vZ? z933QrP)err;OEH~;j3l^C&5;Y_>>%cIXjBXSTn<@AR_d3rx8fu#5G>BkU`52)}2iX z`(;0Ooj88Zd~ChB1S>vJT(DX_@8Xm{ILu+-Llolpk+mbWMDFTI=Q?(wo43X{C9Wm* zT15+g;aeMOARJCZVh<}gq2_n7Kv5y`Hnu#`-O8`bQP{iPG&x}NIo-Cm2M2?N-=ReW zjBdW$cr`7emd@Oap*uBtwQS0k^WDoJ19Qo#m@|%RKE2)mTxB!ar+lc}9E{`Jnn6&= zxbXAdd+U^2DLdlgLz*C&sSQlQBn4oRv}eNpk@@D}z}57o(bSf=WEDjKx-vf7*dk5_ z0mW&dJO_W$oJ!wO<+!V%_xH`=I!G zj%V5=a7E1F?$t>C>UCfSB_<|^DsvP8iQsMS+I+R13A?hNGO0buT8pc_Urr6y)|F02 zb%q14n=2Gva860Z1JYJoWTWgy3yOw0_l#j*U;?#|Nt6Qi31|s!-Tbqr5ce}DSnV3KM_ z+viDl`cm0X=m|IF#T}rouIYocpQ;lIhuCH$w>T}U(Ph$NydBUjqv6?f$gbwqy@=LF zrJChFaXX6j&51I?c7!R@Y-MmLh~9m8HsCgnA-sK8gkK*%fycLr>%< z%}jm!5AyCuSh1^`HC`0sol!JM$~pT7n{0%U+8F~bH^q&?w=BKmX-*J9(DuLS(ER5w zFRA<&q4)n3_0am{*Hs6&J%r_ni&xuHRy>K*!`R9siVEPCGa&u=>|iv~f-XF&&J1EY zeq`jKb$vEA(Y!n3L;zqw$Lo&f@`TQkekSC>CXPnK=S&4W7khuQ>IY#-5^Vk+1f}du zuV&HVEnrae#)S^X;u;uUs+=LBmR5aFmXF78-!&LCpqQ0aqTk8Ib=g?VPs% zhhiH4JE4vLYWo)+-~W+F3D9?t%RkiA)=ux-J>0A<9shae{MMdYTwIpt0nb0rczAeZ zWq{59r$s{if3zqn@`$~#cCzuX*3@7y z_5XN(pUjVK>J?rJ?wm4kIGQ#YB>x@>3L_`^03w%&gnwNQxhY+Va^#m_yd+fGGY#}K zXIoND_%j$x2YEfYRbr)oLA3?Dyjy;0@R)E4Z-)@GA?WyvJveb_6n=V+JrKJ*V#wW~ zBD*}(f?Qsx;lGKWdV1P_XN9H=$+G57x5~@W*mP&SE<@ zYsl+pt#o+PNcP42w)aPoFj);F2hZ}$$bIgu@WWkW!f@V=1}wq5kpL4uzC03x;;Hi-vVR^w1i8dHKZ&^Hc#Q8m+B*|igA;~ej30;( zNysiIM=xU%!wbabXm1f75+ip`v;traEV@SBm)Hi^@=JP6mKpeEC9z_e>lfr=2ZkSl zpK~LXSuQc>7cH>!h99`S{-evKATbnD@AASQ4!I;=65yAAEiU1gc#F%w+%Vz+gg}53 z(|}E)iYO6Iux=xm_MW|mz=#a31Y2hqVgCIkon=@Pc=;^LjiPPtd~|&VU8ynT5DU3n zziclz?A<6MTr@}@?;$P;MG)dHq;wp65bt(+i76UEitlU1K+9_{4hA|no=_OGLM~6& zkrnJ^(!)o6u=B25q%+7e0X{ooMr=3TM-6(=CK z$0@C4OiUO*BX^{KiHHrKjo!f4<99q2EmHdk8%-WyQv(5?S8M>kaz4%{6LkG)O&5dI zKK3^n5-7b|Iu#@6yYYkqK{3A~UgzXJvcb!(k@+SkJGw}sd1;VT&^3EM9igu}Kh-pP zB=I?2=T5~Iq8_x*C_`n|x9iLb5zKTK3ooqY538DE?tTR*G*KFf^S z%fAn&l-Os;68_|`#E9-6E4WRD7@vGJ;`7}cZY@rVzKFkn8P9jYEihK{~( z_wxzGW?*FAYSN?M8@yt0-KUR@8CMpLw=Fk>V9Iw8;Z7R)4rtaVqpB}*7}F$XlrJ^a z+=h>~d_Mpk(KofdC6XPTmib`R!Xt6rQ^Z#V+P1APZX#$jvjB9Q(0kF8QO*!A*4%H6D1*-%eT{y*VyO31 zF^93?E_~XPJVgGJA@&#WUK+#lJoC+oeTiXazz}OytBC4LuGbD6B!#PvY@FyK^6hje zc0&uRr<9B`>Gk)yR!J*{c``G8)NR~d*S;fGO(r=!Keeexa`NH1FpXI1(X(~Z0`r#g zfN(+I2u+IKHhi(Bw@A3?{t=}HUEH00|F2NpDT+W~Zb9GoE61O2elLk5`{yUE%{N|)b0pDg# zHgbTE$k=Ax+Vg#_6{m5@lJj0~pk!%&ZcZ1xa)Ye^ICiR>bbmEQ@zZDCe`a{8(7U$9 zfFI#bD6!)1AIp1Q0zR3N^L0SW5xs|UecJ(}e|=hianhEsxh_1D;j?Nv>lE1s!&(oc zP#Y8TTP{^;zj%~ZwT~#Lswy-KuvS-km>_65gUTn_}7`Iv6=E?6R&@!I$qavQ}9UaL)Pt}btZK_r-^@kcPg(p z;NFv=juXtNnfYfLDMnF0ws3K@vRwR22Ap1s9arvaH^#P>e|waDsFKpU6=gnI!f9<6 zlPfu&``rA&WM38+^mR1v&u(VjiF@-!0e{>Mlbe6XlDt*5{N0-mbvhJz&;`U1qoNpd zcXzsNEq?0fwi%f^v+-q{%I(HasolLKd8j^JmE$q3|8sXw?z8>f+j%n|Ous`pPB|T0 zJa}mP6FhPd?qW(Rl2ojEn|GfNu{}F2er@$*n+_OI-|^GRsf7}g;e`)o-+-CRiiWR= zXr|^2j+Yv#S~5nJRg=G!UlAw&_LpAYtxg|NINLkUmm2d4b@2VU`O&D4M}L9Pup`Rs zh5B>^?DL1uHTZ?kUv%y;G!LohH_My~&(FTo+fn%QLdE*eF1b!mcSmSo-@Veld{|MQ zP!XHGgh{gU9drM>P2;w#zEUL=X&Vr(B85nsIQCOfgFcU>vG16fMO?E6s%bw^dUr+t znuyUB-1@rqBc3rPQ^zo!cS5qTXZ*nJ;Xjjq!T9^N(WidqbnhJ{ey&uX4|d!#eGKlC z(ntk@Nq8~sN(n-^Q*q}#i~bEp#N?|rNxMhVUwQ_LlZFJ$Q-85|!@1j7r9&#;tBr@G z?s{3ASG}jwcMHHAm7U+VsGpF6rjA30!Q|SaB;Pl#rWgl+zxJTh+2w$jJU1nEC_7rC zKdSb-TMSG~e*3Lz%$m`NhF^o_nsDB8F4YN=KcLvwFlmsRswLsLnDkW8McQ-Gl;h{h z+4aHdgi&VWSJcP@k`$KuudTuE>viR6^!BQj!fE-WHg`ogt-@~ zWBz1aW)Wlkwmk6I(dY*Cke?oBzrkXORYwjG5)5D}ad6&uv8_FUuH-3f7CwI#4CEZ3 zVp1AFWU^?^kr!TTIyl0m8==XP7P+Q6W~U?_(m;8Y^G8cp<~5XV`T!KMftF$iJ0iks z?X}i@y#&dhE8qPGlpEbkYz{iw?g@JzIaZmPu9UF>7o&2d4_)_ptY66Riner`HM;2K z%iM($Ry5gtyB!zD$og8l`QrCRz&pH^jLt5z(D;602n^ip&fBaz<83&`#cMG~-@%=2 zxvhLNV1c6V7aNq~$$>$cQEx+s!WzksUvGzfz8l5B!{m0aRO9t*q}b2Fw&Ida#vPlV zNB@nZtB$LpZKAJI0+$rwf`oKPTvECl>5%SD=>`D->F)0C?(XjHOLsSZ>-Qh~W5n+pqB2eA>3JlmSFhD3!`zg{zQy|d3vDUKvl=xiZORf{;ZJ9 ze*Cc_N~-*MtdR@=-RH^x_p67m-+*eVqhTO?5ClDCGMz=TEsS(19gaPW^yMO}FnK#!?c+jAV!5q~Dlt ze_J<#*78X-u5~DVF58@bPv}D)miu>60s8zUJSwY>xaK`sR`d69%^|v~FxSFw!fA+3 z$DuS$;Fzks4FhOJS$XkCAo^9UhHo2AvPF3|(|>*`>{FhPfBGR~$TnWMt{LbREl$j- z5{vI|e_5|xD_Q~sxqK_Eh3;=5UJA{#e=q`7&r5Wa9nr5W`4?IQ{qymJ-rS4?Uf&RC z>ee-85-hwDZw-%5+yu}=A~J7x>f#eOe)(?8MN0k2b*!Te^_VZBCkv!$@@To853f*s zuTSD3FitfnQee96yKG|{?6Vw}Do1Yf6t=M3&YLx_0I?GlXlH9!+&g!jUNRU!@&t%V zt52V&!DLO~?5Q8qQ>0>JS=nDlXyrBY161U8hefluQjP%0&h~3e+Z4F; z=qCC+a++nTdcG57U-oj-P&0Z;q#Yz$)jZ#6Yuq6unZv7Zn>~Km5hE0*$?DIFeo&*5 zyT|SjWwPXPdmjBN>@7fE4s%ar`j~(l2Jo+h|7uzu)H6JPrOMC!>hl zB{jK$7V->FW?T2*pTn->vtnTHw#Q*p?ib<~L#g>yp(!Crc7Yw&B3pAmPJe&uWkcA$ z0+M-6?DOtO9r=5VGq=u^>3aBbxF7qpQ~2kh>r|aN@Cin$bE5LUau96z{zhw6wOT9+ ze0V3ky6gmP%1XJVD83$o)lNB@bilrZ%BmQn{+)~PwZyVoB!C3Bl&OMW7w4odsf#h$ zm4;ZKOGT1Nq(D8%wp7|$1D(=XgHkYSHsSmpI49NDv^BJ@@9&i9o%mdyctR+ou=r-~ zRX~bGdKhytu3GcjX?IE_N|eR$C?X7KJ6_fyHLX;8j{TkEa2n9)F3XSrdDsRebwkNH z+UOqBA3)Rdwf@|qf{qy*?*%zMGnE}-IFD}3lp!E)z4DjSqSBcg-L0`ynw()XJSdbD zx?nxi!b6rr=HxQGw=8%_>$EJRU6G7K22+!cyS^hXI!-mz={561HhmP>C1k(He31b< zTEr%^J`_R#DbCTE;*9Psu6wIj(XFr}Vx;eg)kp}I?P4v(W$zL;P^pNJ{eoBu)>Tp*?ctNogvwa&#Ts*SzHv+1nO6Pq?N7^*6bIdId>qZM{|q=dqIGh22o` zw@Xk&ta|ez$~#B1%N6bX z^flk({>JK)k;+Fv$3^fnXT;b1)^Clr#$QyZ*p!o@m6@d>_P0M%+H~M<|znoQo54dU* ztJYi-y@?ez3(5v&`gZjoA4)=JuR+o>GEN4%i-eqd&@=fm7JQitNJpM9yhhB){#$FF zA$Cfu2}*WZltp#fX||_rdb3s4Nw52X}I8 z89Z?*=_7Y-bP)XKMoCGXD@CD2RJf-6qFy(ccb-cqDarhDQrjJ%QK#{PfK1miLbx_j zqunoWRdS-J5KbNtJU-_+<*rUR4vsJ*Hwa$(@sA(3HS_P~8b$~$2v-f?_DCtDS7Df1N$l3#T%em4^13*!8%TAU51|_vxbnF1`Tl#+_WMM`&|iJSt3=u6W@^WgA2?<2s)b3%aE6-*H=p z=APGof&!?AQ-_(uPq2(9vYimHoM3j^U>3F^*vwl$per-Uq)PtHRn?t;Y2%k3#1zD* z!kJWK%`wU&g^LaUkZDMko`-Ak+ja~1A6u;W;`O9$S@BY+j~)c{iCtvEDrv6{P2XJ= zob1`}fw>2r921sF3GB*blg{<7WSVEfx+1DRg0G~F{t9O8c%3Qc8}z^xVy3iU~W)A`HEXpVD4(7ob(vf zh0iM90MF%;0oY52M)wl#d@%FBSh>}$u*|s6wF2&MfCyWs9#fS@%f%5jn{S23@B-X3 zuuxrb!iQ4Af41mv_Ll_JZ~OO0Q|+j8LtVOsDj|F6XCIh5pDrQb=K1EN4(I)|ta?wO z-@YCsU7Tr&&}dMy#bGC!dVahEBGiEk&KHOyXo}c)Lm8r(6d}Bj6}ZXdm!i)5^8bek z7SR&sb~}0EC&Fi?zS&{e>Y(%2sW2b&r*39)XsOAy5g5;*1}d?1UW*?T%h`NnLVLmF z3I@$lh!zi&eGQauVT8P-5on7dk%x?jN)LAFR=%?%`!w_)vzs8F=d4y~(1Ar)tuxg@ z-)k8uWj1@>jUpR-0ADIGe^F3Ye=RF^S z843pM=n&`^4OY+h`x}PBuc`_opc1NmU<)M$ic5N@qyd|+2(HN%#(LOjnX=wvQ&B(dUJk6kg3Iw8tC=^zWg!}ZfJ~)FqnbI`!W3J&JL5&^Tqh!8RpgAPd(dfJ#xxa~D~dc|k$ZH1HQG4XQPQJ)^6l%& zAc&;rRJcyz+h_cvkSf=@k^wACZ;L~{wcm7@Udm+erdSyj^6UjR4I_)P3-c%fNBG>B ztNVo0kS*ToDYD-?Nr7xhb_hi7uVTxE%5G-Gad)h0=j_MyeEFipEdo@AlmBG0*(e#Dw+A z1>rj3)nnxLJI1<+eg6f%$`~=B3DKDC4%Vrq21A(iPLqhRpd$Bg;>x7mOvyQb?Bb@S zbi~>cIAUIu0u%%BCf(bQ>#72%Wi}i`7l9wCqCkDwC`@xC zCnEjdFRKp(TI7~?JcO0ecosB7Zv39ie$At(b=VdCnFTpP2ZZV)gBWCVpmh4ts*zUw&P`Y<^ICKF_9IL%^d8-v#;dr|!3j zu}W}<9KUzWD%G9=1dhoovYUY_@?3!wyCs=>Fp@+E-t*ryZNXD<-skf*ofE0aLt(TpLE^#nNgWiSVU15Dp^5 z^*ZG+Oer`KfZ)rrpP=^z=9Gy*Qjxv4`;V&560r#N?IyCG@HRvN?`1LqG3HG~AiT9* z&{+0p%I+ud9DZeSTe0cN&M z;st)i)cvS$KWA52jxo*{a)W!#5IR5&tNHke*EfX?L!=Ap(siEaI5Pa}K@I1H_s246m zO>LdmP+bTt`>2g~GT}n248YgR3>YILEY6fZUO~XM=;|QN74hNWbN`9Tp!ipL>#cH? zhNH)B-9?>Ul|R*P`KYjtRWoYN{d6KOC0YRXU6XZ`aFq* zOF|oBLAK|NpwE8PDnaEPJ(#F_I)%9k45XBOcQ1nEac(4rV*Wo9cD-kR2%fSUXROx> z3)$@RU|JFtlm2mWZo?o!#c*HTlkvyQ2yf99S2%uy3vi|1&|gw-Cs{CIItTuE%q4A= zbcLChoz1FW{7S22{^)wX?=PLIs`8o6nfh;QA50HLC44x{6qlAD(m)74$ft0vQK2!f zT%-cg9p=j{>{DvE$9_!f6v?(X8)aR$x2oKu{bY-X$S54 ze5n9xe&4$c&Cq6TD(+^0UWA6+eRjcw8Tl|q(TD6OaNNPYL`H7$Yz+Z;NZ3MIl#6D( zTD}$&&_4_O0u(5$%Wp9Y1Z&&)Jj>K^L8&5SwK zkY}@zoqm3QVdVMHY*?<~HIklwIoqI>Im;z10(n6oYPq7vHzvFKAzLkkEM<5!Gj53) z#8arY%oqfgL`GkGWMp`o%~Sq{ZrH^0Vr zSD$C-X%yIVP6=$E`|AW~NK{EO?`?zSBrn53lHO$s0=ax3gMyCfL21l(dQSvqzj!#l z_9<79F%ccRtM@t!yT}_h7pbch70Z5CoI7-d!PFY*j!yNN*tC4tXGdNjB^V9XInI^5 zDf}lhSBAl#=38EAhCq`LoFIuv+>}WWDP5@;lq*m~%nCpzl} zpqpr|YCkr&R9qj%5W-9CFskovTrrsZGJj{T6#`bjl22RAQ>q2}nJgCB-_Dt$9j>k5 zLg(BU{4z&_%wlxqf%_*^A9z=o!`RyR+LXodquzRrn_8Tp5Wym9k~US<*tCS{yQ~Vy zKo97)swwJT(inCpCU#f*2=dD4_|H_W1?vz}{Ks*Kw4D<{!}R`A0b(CZXgrr}(VT)c z;43l&gOKpXh2x!IWI8^B5&PEY9GE?p8(EtP53`g~Pti0IX*CV}{|<$W9+W z$|0n7o5c8yE1)Q%lq6o0YfeC85>3ted3%Tid&lnovXrm*mgL7W8r^nAgllGQvjGJHQof0w)8Sm4^+O+S z>(MDUjdj5wjP%u&1eV;@tpiW_k2dj3voeqeYT#MlMY>6rIb9qVHD1X8Zcd z{-Ksq%|25f23VvEVoDsH621O5JTP__8*BBB%=*G&l;fVRUZr)3cy%_PPZuSh>=0v{ zDkH~BclYGP?jdw#I${gi@uC2Z6r(G-;5`ms2Eb=FfcskCATzvVc^DGOyz8h~?b@K8 zKRjBCQ(>edcrkk&NYAiDOoK(d+860i_(`7A%x~W=`U?y`AA-2t$m!RY>^Z zrHLrf`ZKasq~(`<@-u%!C|D*;+bUS!brpcUCVRB-{cj^nZN@hsWT85HrqT>(yEW?b z2C|=C0_WHOYou841vwBS$+*kkQo161iccavJG7saEN9&HAcbL;mR?bs>dr*o_XNgn8W~r@DIJgF%wH>F!s50<)hG@N6pD3BjO&>Z>9Ga?dQM zh`Gb+1ecUhZEu%uWF8%9gTIYx^F%(SL)3(>O&Ho^+8GTYc7Q1*ae6Vz@fv>shbmak z{+1^{J{Plfny)Ytcy^fFpoM31574Tk%O~NFijXw*08(avZ!QnkCtl3aVcPb>$R7_} z?=#%lrK12jx-16k{j==6#qZNIU5L2DPnqFxn&^y5?_YAn3wV?Ea&wzZ`~04n2(VQz z!zZ|aF+*j9L~Sr39tDJI#ovqpX27r_ij zc1v_7+XiLStis{iv&M^0TS-*o>%!X$JYDp`k0lkiO;6GCkWN5W6j&;1lM*QCLFiG4 z?&G=+6JsqpuECjx6QIRyJt}g{XpY1) z{r1&V$@oruwYs>Jg7bSaX2&`vE}A|FWyp{)>r2AdF@Y^;Rcv?l5F#rg?Nk{0*=0Ae zk=#>!CvYyXvhgpO^>~arKGIY+A860=Q%$|@{76sxXM5$!;N6Womtjf;8~mz74%PTE z9t)-fBYi36>Zt;(WK*WN>c|jXZG1tWg@QdCWQM;n9I~;!iUg&iA_Y4(f{w;-as|TN zUoHvrZ2A=b0=(6Qp{d(Ek~irY5eyH*&GHRF8f*+{yY@dV>3e+0X#!XJS*aK-_Qjyh0t`{tgC zvAY?N+e&PrQ}HBqEOR{dK2pE?u}I17fV${v5A;*Zz1*exV{G?HpLcv-x`=UFc_q{pgH#pY64bCc1!`Nw-4b&V4laahBE?D1h|2G;NUu1`tM3 z(gv8zF#t=MmD0bq-Nq9JH17}Nn$05ShTncX)iZ7RIOvMWhd4pqQcf`C}oyXYrMSg)ld$acV8p15hSyHub%lDis$mB_iGmUq+V`RGGU)!O#Ti&FF zhrpfDcsAZ-q5w>)?kYGqk7}$zZ1A?Mv$ivNErrM?;o3Lk1w9zY$xWP3Zoz&f8>fdU zYk4WXO~k%knNgx##Q! zg2&vorj$~$2dH&of}zN@TJWlDl?(70i09GHp5D6D*h>e9fHou(%i%Z?eq+7_gZie_ zFgLGe2i$37BAL%r{~~k4_IwcEreP}2uoE@Mpt`{N%oLh<5({CLpJ2sieQ< zdD3=80`UYX)DaoaO2y^OZS9!)_*8UPar!RZso3Hzr=}Gc+8`uY;R*)7mTBxY~>;=$MB;KCGq~GnRbtTsvL`lJ zF3LKSxiN;=4g4mUABa+7e0K`uAxrOY5NT5bz`;vo=9b zX);bXd~TWU&a3u$;ZGSQm0~o)`g&uy}A#*Lx7sdp+z>M?n;82kOH!_73B7^Fwg*6!S|~rc{@< zBz68T?HUvTyhs-wPU`8dfp;?73e!Au_(t^VNbWa3i8dC#-k_&qoh476dqzp zQr@)Wnb$oH(PcF%+7MWRK9VY#fBjxExw(0+!dMoCbi7bIn&v46ESt~?t3vY+I#MF| zfUvIozhyD)Sml^^z|3OJw>|rJ8kukNjqi0d_|2O94#~Bx&n{8i)Txru!KSYvdfVtA z;uAw&Uw*B~g^Js#|Z-6C)-e1({H>Y8k zm-))aL1>zcl2m+OA)3$zWw9A_*(IcF`ZNA0LtzFaSak3zsStFHY_4=uI+iN4>l*MF zpZ*Pa*aYgUHOzlS6t**ac2|4@N*Un}`5 zB9I}Sy#|}X8~s=Vl*?BL$@{;vkEd{aWnCp4vQn+<=x?>?m5B)>~~127~+ zD<-OTdOZk+j`J(eQ@8G9xt@aAdB02iyf&cvPL`B(gqEO`BK*NVb-Hl=3X>p_MzdCZ^EQQFIzN1Fg0t}krg~}(jtsNtqpjsPszk%I2)tfr9 z-hHVKVdJG5tQ)u9z37juwgdc42X!eKAN&k5CEAXGhSKYUdLprGSewFnU6Rg2OI%n2 zJE;V5aJRAULk(3RYN|&J{i#_?ln#3DN@#~bLAv^23y7&FLzG=OEvJ` zA$vCjl%2F3num`)A+bL&C;8kvjc~*(2re0U;l4Qxb$y;?Z~K0Pdb*qf@}{7=B)2Jk ztzM=C0Sa(IuJP`l1!)V9sq^?*P0}CkqdXek>Oez&9yDN)%(|$Y(lMRd_)Xm z1LsURk~r0132y79<(ClN1nCI~I5|nCLC_xy7Okb6xF=&M@kCfYe!k$}f$n6CW(2DD zgfdqmcsQ4tOKtg0$rzG|3%~o8AV=3T($ybXDHeM?j@W`f=QmBtC*M0Q363Iq6vg;@ z^W^Z!YpDL`4K*J$%>0MHv5BqDEU#@ZsvBSDG*>@`$xU9z?P9ZK zWxC#i0rG`6kED3Sw7Husr*BwR=Uy(l8rWSB@(`_K@U}-TUu1JUaOK`=^jiYfbuwXA-Dg}=dVgzQPT=i%xt6wI{ zOfO77ON!MTQG|0ZZ2p{Ammu!ykQr%&7P@-L*nm8J<+V z;0G>PcsR}(Gid^kzAuS-T@&TTjGB_&z#s`uQ|GVCyHfM-1u9Lm_pzMKjzt?MI#ivm zU4|3UzJ>vidZh*3URUfb-#vA2OcY7e#KD!r$W9O4eFWm8tY87NERj&iw1t}iSnzE9 z(|{<#q$?m78f|yd>PEWmwI&jPI@h_SqbZ#?u;Y;Y4A2j00Swv->vhu zmQ&Dv;z0;|N7TefUMddS4((pR2ubz<||r3@qM1TU|t`k~uMd}o=&ahlF~LV&r2E=L5n`7}BwbrVoGyE5$t zpY-sZC3*aXao=t%4un`G7gERYqZmGz^W>??+5P0wnP!Iz#D(wa{bW5vnq)tS=rJYx zji+o%ld8@*d~&ATK?(o}CoeMxO`E0EoU`T-pf*S)#EA|)DP~&%(DLTsBz4Gb_4L#G zi@M7hfaV1qP6+X@oFPVPoB%oKm*ah0QZcT>PDBO#4i-Vq2hh(lLo$Q^)K#b8O=(k} z!xrE_sy)S_>&70obiUSrnMhAxd6m?t;m1x0631#ngX+d zpz^wvYSl*UWSTLq#9w88S)lN$pZe@6Jp+A3_9H$YJk>f{ss?KVFT<{*Sl*tG5sj$_ z5Z;RLo?@KV)*H#32~b;-=#`pOf}2@@K_zI9p<_458gDtotN5HaUb#`vzK*Gx;lowx zmU<(b7A9#gz)K%d4_7}v8w$1os?kJlZkv41R-;G{vNvA=?c&H}^kWbZ*E~(nmO9Zv zSTdK=z8xA53WP@#4e2{_sBhLmT&@-iRMD%qiXTFCAz%8ViWH*QWv>7%ZMi*5Cy4X< zXXbc)zmzrueUW8z6BOX(eBqjnRXdV8jdlik7yq|KE_|v{)6pG`+_Fc|vq2aAgH$e^9JbcpV@Km_Y0%9*~jWJn#?8NjN;K(#-u%w;+1LNj1cRnOthR1j}%S`>>44|Bz{YKHQ0=vK;efiOz4}k_C16Pi+jW>G@0GXan7xo{sq9qD&)ONfG ztTv_5nfkmop$IHc%O@W5H`V5kb{F`Tpd4NS)1q89V|KtnNK8qz8{hq*rTTN0sJ7n7 zyi1-|gI6mc20AJ6Gf~<{j4`UJZicdG)%HW2pNSFvI(uiCFps|-F%$~F03xyV9_<`|oF^kVdw$vgnWfb#3Xq>@>d*5S< zE_HNX1O_YU3&%+sxyA3J!@3(Ka%BWE%D!rxvr*9G~f;p z@vv(s<(9?-zR8i3X!{!Gw{NQf+H&00D!M7lP}%xN24GO5J{g)l?sd|lypSujB~9CA zbK>8HPG_|zYS}Uyy$HZEv6>~B5oWH+Y-gA5Aj;X-VTPD1>@k2{!kmo!P}t@<=w?|eC)(^Q22n%?Q zdAB-u`-CI~B;+^!Mb#ifde~ESY7_^)XS}?TO@fJepC)Iu z@8x_j+GL{UD%{pJZVXqAdM`EPi5pJp#5ea@1-E8@6wR}T=9!MqdOAh^K=*0XrdCeI z2lZ|An>rOUdA4OQ9cESS6G&oDH>G%Ld}no;+0N2|8Q7?&LfH>L+p_CTXmT#SQQL0*e6Jp;M(+cMfOQj`U4cevzwm+To* zVH}3o*b9%X2@SC>>_fN>H9>wGt`2_p_nM7R={Xsp7;IIW>EL4P@6!SA9*P{y9MDm26QNnk_82n#GCUh&D;{w<_>uNJK2$xRZWB&ZDyMJKIY=p>>({sX^yAc$&va_6 z07ktV03pSNYq2;9F__=XaV=xN;s<8&hSwvaDDH2Sdv5nXRG;Xmp>akjL3P{DMa3u% zrQ0DLNiA<2_X9v@>qE8geHKG6jYW-!+TSqueSq@KyTzXCfr}Maq^OB^B&O{pn|tmd z_TWjOhFkFzA2V*azb^wV5?W}_2l8&Ay(l4$gOt{EhD@u+F5YsCr{>b@Y}J`o4#fmy zu1SOkZyT;E2P68k$TwWrKXuY#26|F$ST^ZlU;Y%@D3Yd|sART%NtAP3JHC}(&%Tl> zJql=pR&lfk6ZpnNof5WLG>3lLWGW8UY}u&aNP z8N7D5TK`C;ML#fN{gBGyD6hxcVIZokN3Vd!JVdp0KL%lTKqb2HV;a4`WY2k4r!Znh zAC-N=pX21kN4Rc*$~~1K9O%BOwEnT-{N-mhw-S}JGcfAP3<*7q!Q>wOHehww+f!eP zlaKghICXn_>JCM8t2x-?=U5m(KbY370BqZ;hRYTEh}!EjN`RIoBOcZO`)pRWtNSNN zH*eLt+AvhwSt}4|HZuB1c#_Ur-gk%*?>jjLrX1@S{a~Qj2gCQY3+WF^2`z(wF;;cz z54Nmhw*)v@z=g|?0#aErKVZf&&{YLjTQAc4aw7zzxdSJvJn8zUPJ7eKsW37jhRLa+ zubN)xLP19rTuh*dW?3b<)>{k$#8xf!Oa-1a3^717^v_be^-uXPtAXWXeF4x*5|S|} zft2uABJ^*5Be{ONN6Rp%Anr*y(Su|P!e#s{RIsu6XTY1pSG!zVqigN#I{*}urB1V< z0gx@#;NRA!08Dk3D-)YJpMcXOnh|lw(AQSb%4uQs!|Yw`)7JAFF1%lUtAw`Fc>q%lv)w|euSZvIL6#bSZz=01+6r0qflKy>v&6P@31Og>nN9RNwFp_N z2?u^kvG`KWILgxMH!k;q4#48Zd4kh2;|z=CvTHNkqfppfMjX&37n4$T(@cm3?F&}j zph2Lt@9del9msh9!eH7wdb;fm5mTY=ISKE$!dhpILNT0MgB9hcq_@dYRsDI2G= z6vZ^}08CG;v;eB5v$C;j7ryoN57}TEH5Qv2semEXU_sbuiQ;+pDlh@`(H+%*Ww+{j z%g*FGo7RAL$FaGpgnYMeu`j=%4gxNJS#*+uD;K45#RE7Vk;>(LdlrRHz2Oar0sfe{ zq^bOe$^u@M5|9rMy`)Bnwb5T=Nf3~QexKhgb)-0q_AmhYILpE{HgGq4-EwOsNOCBYaeY4T>R_Yg*bH zJ>7EkDOTwm4Y5bz)Hi^QE5MXjCBF49>R-TCmq|dHn?F+|t$+-E% z2TxNrKr@VR>#yFybL!3%`p9lo(9!O1w3d%&#mfX(*B0$KmpLfU^dOs``Id~H51IjA zUslvKDp_9_8&8&Mm3@JyLXwaCmu~=v7?Vl(?^Jqmr7nltl1VRfaHWi3HIH=WpHIOF z{x&~bDo@0{0JtKA&W&z&@Jy!a<05boL1h8;v)9loBQVGd)9fS3Amd4rCCon_h`~J% zIKic35|xgBqyXnPJnTiDf*8(K|cmSZ~UsuLoVa zQ6#*2VTy}81r!`*^x=`muk8?t7P`yV<;ZD>qU9 zb`4W~IcE36_b8_eUEPq#=r^q3X2K7^G+Ov6aBk=pU^^FB+Uqj zze3lB@i(51O786Af!r~cP>evrDj zN~BW`{|l%9i|GPd%Sp)F0U+d+th-X*Fo)9PZw8ctP`EbG`pB-r5co{^$QuUt1Fw= zzX1wYhgf7BA*&F9ITTl3_M?dPK_2yuasnvqIT?0^*}U+2^l`e%M+^2`=J*r0GNd^5 z>l#Cf9)yKU%#mq5;ouw5LWn+F_B1llPO~r2!W72G+A+sSi48eK=(oYo3|luGMH`s+ zVbcPR?{-v)bTexVkxV(9#%v-6+4yn2#8w7c(5IxaJb8)bR^FJQMF5D?avD!tg?w?J zbOkNe+A?^^>0TK(w}ICkw`UU=aBw-QbC#900WUPJ_*9P6aF=2X1tC4kxo=6&i_?Ak zSOG{ej`mv0{V0fIEP)1`w_U)!1IA9cfy_{i3EQO_c9QAy`x1E0ZA)JQo|prJwLu)J zN5-5<3u>5GH=lVjF;?nbjsqm)TC0i}h8K)Yq|-6rTDe18#EdQSd#u$YKeD#C1MMBF z4^e{yMvo;QJuoSrC%H7nr(@3Rdws+07xQ&`_U}>`k5ns(#QCG1%7~hw58Q*PI`U-OJpTf5k?@Vw zJsxxRe;i$NU|e4ljcuc`oyKP4#&))CY}>YN+cvgI;xEGyIDq3alI)2@l<-Y zhhq_pPIGD}6CMCzBBYimc6HO91hj3;P!WgQLK^$|kO}9;yGhA^*6xX_dtFT@z4* zpnn=s>!igVI)W9!#$!nv8Fm#+yBm4Ez~)^rl4qNd@L5df<>sKt3f%&O*e9a90DN4h zQ@ux+A4-q-=)s_@ahWLP3E8RZ26hb>wvq=3%3Y2oUSN;;V4pv^C1$7r1Z8O9`{J8{ zLe>KiLZRvqCRvusVV!}XLH(ymL|u(Vmdd%|^W=`(1SRV1jTw1{e;}COG_n9Q-^7~pLP=&1^NYHf}M$1Hs2Y1TU@X-sOl+@BXQtkx;Wn7_{ zJv`GfOv8rZ8=*9zQHwCuX4$koe=dyj^58TU2BRV>&hdcOGHiYY1KotC3yv7qIsfj& z*ckU<%g>w(Z~7hu0kILI5Iq09T|WUi>nFxL)T)Nbm!-EJhl*MEPZKl8caZy$hbHV1 zUy==bjb1Vvjsf?i89RBYhfJcR0(kKOOy|!j^?+DF?PGz= zz^xD`XRPvPu28z~;KvDbY!Lxj_FIuO>zH+sgYk8SSJ0a)AO^T|w_5(5tnk%y9vjI? zvw8T@!AnbFulM2+%-$EkEMbY6xsJIE7LsMN!YzK~8@; zJ`|*^$^C#kO=4Z>Gm}$oNp+%+{v%)8-gQ*^j5)ZdXFnF9HJlFT_lu8|;%g5v;PIOq zZwu6Hu*Q^tjIzwwLnDg2n1yx6#2b$L?5D0@G~ywm_vYY3oRuqD6ayl*Z9jF;Ig<|D zUTU;=zdL!EWCQeS`}|<#%o!+4bmq9Iv*zc=WWICP(bqw`9hbUPSk0xuHn=EUi^8Ne znv~wu&oP>Czl2||@{CuKjzSx+f=w6CsK^0==U}_v3}bU7SmF&uVXr$cRVv>W-VcPp zw{mv&BV)p%iRC8LR;DRg-(W*OYyF%g(uCb3{kjtNBS=DMDtNT~_kry1FEc>>;}(qc z_?$sioSYbbj?Wz7hJ40iO2m4PKfH-9=-;9Kb(>=LNApBo+UL@qpIadWBMRZKkzrab`d0PQzi?pzPaF zj1Zqk*@@}r5Mmj|Z4AH%MD4ttM8AG|e5xi2-Lhw&jThJ1i*P~_#9ofi#A#LQSlF=& z15G_Z$+z73+BLy+IO;F&d77VkJ*oE^$6Ii-{!}lqLd;U?0~q|KkphQXtc<0)H-P0$ zV%cCVlcl-#^##I4VI+@5Tnc~fTWPT9rc;ZlLpImUDF?12BOu=uD@~Vc{Hpic3rDi`@{v#XhN+@Sb?hX>WG@0WzRZ@2@-Av8{IUmyzzZ)h3^;2KZ+Mh+A zYc@TUfKH|E-caw7WO(IdJ>V0=ZAylAYA0HqorK>88JQ|ss;l>EB@631Eu0;V>E`uJcstu8Fk_zKY}tKG zblZVttPDRUxzDA-S(aA8R{ASK?jPvbG*Du3S5!TNPtcvT@*HuSqn934MD=ipJ>zR( znDu$$UGBKp;lyX+_pUG*+PCUpvy?6!6%H3yivXM5N7g-7bLuja2H|NEW&>iVIpY zia*zng|meKStD1V+ZTCKRs{*&@^$x|C69Q~T{aY_^w#d4|H)@&cG?pjEO0&)U)O@nDX&mhdQ=NFbts|%paf4nya9RRY$rN|U&#d3pgYLEXH{als1VtepXH)Vhj&@cmD3e&0e*&PBkR*-5*OaAoPIORHU21&?;#4k;n)D@gculFnL7xclWw&J%QeO4<5|yDP zf0S1Gysr z^jOK6i`5D8bHP*0no8|$+{*e~hf*|ukZn-~#^T)VFNOA$tsXk0!Iq4Yq?g*)WEq>D zw1BKP`q>xz=iSfFvfV7?V2q5Sw4>2Ryu&8{Ut2DOZMLQ_#yZY+Ild_%3sf*OzEf*T zX1vi*0|Q5q)|f(vnRpfWp%DMWFOK!jCzN|0B+Z9&=Vc|=xBEPr6p|2=r;=bz-z>xU zykRw|vw`-pu(Av$oZ(`bTY%o22L>-t=9=!A73WxlhYzZ-J2+z$QJZlW)7^2>WnNTY z|6H~;?VpwOR_2o$JE~}dT7YF*2OpCnt1i+rFv(GbKFBti$?3LlGjTF^;wvMohv}~I zs$HGhvFxcNZ*suu@2VMd>TbiquQP5Ls@prgekw<&Db$u0Qak@6M0E0e3y{HBD36ynpJrK8UBZO|wirBh zlfA5@6XmzUf(MLPh@RrEgO>AE23Eo9Rz%9bGW!8gKQE*9DY7V?{HMy3zES_uxg?;} zEdf~L=DFUk>;?nOvB~#YiSAr1D<=f4j5RTA@Zsakh(t=^=Z|-z+v> z68-t}=C#@aszxJ6wvV^p0RHQiK`93y&1DH*JC!5&4gGDG3*yJqE5GlQS7C>_ zA>X2l8`i;XbKhK}e9{%av2jU=ql55{5jKx&{;JGclOL&0ESF?w=c&k2o|8VUxcP3P z8UV#Oa2}?fzbHkO8mV@2>jFHj$5&DOJL-ilrEWYiUEK5|`v2^zkHNXJ>nU zkPhisp1ZTXB}R66oJx#e45UmSaTlc$DBE&RK;Y#XyU!d+c6J-apfge0&ZIgqrxk!27HkB^S7!>!c`hj){D&@0w zeRq8n1^fwbL9>-UaWUCLuROKnw5V5N3>#xYqmA5Z1~cmn&wfn_+sCx0$dG`WXE>^K zpEmm-Pc`K!!_~g#gl~Rk+`uuwY!hLKHg9XqR0N>g1Qr`e4gZ@SF93d7(EfR>t#d3Z zv1x`Wy5NSC+SMOpIfoCT0YicJn-f7 zI;%$B7D5x*s|IL^@#@su(A9Di==XBK{U~W!{~SR|{mYL`Moe$qY!l!P#HZNOEGwtt zXzq*1$!Kxv8I!*=F4g_l>b2`P-lXU*gZ`*46RLV{Kwz)sz3oeHyh5szOBbkYah{9- zbXmWs@Ab*@cfP|M$8KDTxLb!z3!GJjlYVHJj4dZ5a%xw>aL@kR6Bj2<&=-S+w$50J zI2RX9ojwWFrz#m)$ZX^Tz?_HMvzs1w;8hVBPFWt=ciE%zML{4a{jtw9U@I*DmU{@` zQN7W>Q@Jbqh(d259$l1B7s*v%_W=j72HOPBIHB%6)qPA=T(B(Cww8GNA=b*njP_B$ zo%!I>eY?1YBw-Jn3#~FQm)@?eAFH-pgdf1PZ;fl!JeM7A8TE}?NkAdVlZ&%|UyqDacVoUBIcXtYQWV>$-2*Z?O(n$ggyi9?AmEyRM($aJi_3Sg0-LDzcCk@ zzq}#eqT=3!u!Zp-ILnxN5AA2V*zfPf3(Q$MPE_=&XQT=4%%ZNEtJ%ADD|T)YRNPr0 z(Rc#IqQG>|g!D_1{@~A+t=uPT%yzwb_fl1eK>#%}Vj^A8wZtW3^wb=0Y!Kk1xCYTZ zH>k5pgq4Qjt>|xS%K3Fjn)2hhOf}Y|x5#KEWVMFX`-fb=<#{!*U?(K0iKkpTw&5n*x$cwvjSu?H>@|V74VCEy=sK8?@H9&<}_(; zf?qfK*$D)0FzSG@cuni}0DZf-y3+Y;P0fSKU=P^GSQ&GMJgj=O;rn}`WP<>Grh}gD zpP%2hFrFJu)rj9v&yB1eWZ!~bC`F9}RJ;qZ?PIJKZte+r!p!D8w}_Ew&PO~@`cVvY z7JX3BOkboY%6=_)`4T841qsbh?-k3BS;hd0)^$NmI^FVSI)&(ANLuuDZLmO>(rc@? z{>e`CT2969`tOx*?b)aRkz0!$&y;z>Ml`?$NO0=t)Lu%2PCC*WYyaZINfIY00(Fv$ z)5mWGVcy@36xL#W(>zv;*T;crH*vg?j_pNObnL8Dm>);ycmCmG#r*axBx8SniKTK; z(42D~+aYl2iEHaIOn8W3*AEByrj;@W%VuD`3Q6&2>_%=g}f@G(15`)w~z zBD&bs8trXp`}~!5YuW*IKaTN{^urE%Fbv~Yp5|Z*3Opwm8zE`}A`2ai2s0L8+ObW- ztDtzh2^R}8Bk+0fIVY(VMgc3KY$SSO^UOf{hR+FlagfWC?Ql7Lf9l?RTsf#K9G<^R zRLQ~o;!T*NG~C=X}_`e;!%&N3{iL@S zEWg+Z3L2Y1pLSbHZ;J}jyBFIUo>TqU?kp9$P%JwpBs(c)|76m+PSU%gSOjrWG+&Y; z=ukb``RoEN*o>dlM%jUpRrwF2^WlEXo{_y^Fd&`CXx>R1)T>@t zQxYc6(C7#KvpW{r z4&U?@ST8C5(p>ZIF#`(gUl+f*c4pR1UY{4gdEu9yZx#`D*e>LzN@Tn)l86HjpFDN^ z`X(Q)JXk1UtQ2$9CA9~EbfX6>l(52Gj&9_fN(s=PIF#UMrB6a@7b}Eeu~XZ>Lo51V z+2-B+*4}X+Y>vQH#V#c0rODC%S(EWAHNWzYP1`DN0@57Vj&2K}6e+8hrRU~%>cz4% z50ni@F|$&N7SbM)-2VNS7#RlU*>9`0#jwHquLXW3@x8fWI2}dO0ZJWNdK;@vhHEz= zNWhYaK}iWLyE6Xwdle{qwPaU&8W; zjcnof$CDWLH~&Tg2-fC=*EfT+>C;;wq=~u?Gm4`Vw5>zaL3B)7-Hz8V4A1B zJFDDHd5l?dxB$M8I{K~b{fXkQD>ougYRR}-F5mejVjB=bU?%#~2K)>AzwKH|XOX<{ z{(17yI7NrTMf~^KAJjuRq}}k7oOhc%6eQes8(3FY?!+X*40*PZ$vv-6>?mPKEcc`~ z_H#tOyeJendwS1GTK`m!vhIQyrDv|n-}(1oLIgzWJ9{qHh{6EdN*WH6EvnJBedh!` zY*)TWU~Vh&kCYXMhR+(ZJNizKE@ME)O-!~phZEuw?UDF%7@VhMI=_*+zn#Td5{C5` zHw9sRV&yY8-%w{sly&XVm9_E6qhBfJE9V7(Ov$WscAD;(Q0-~_zgFS0P8B|dp5AYp zfRSvU3sIR{-|{yUk<|W2LRVIbTBVkuZe;#sUxGquaHz^2WBY0ywPV7LA{ZiB9&=)2 z$wmqos76fE&3lF_Ee8UkstY5*Q8i)r1WvKfb|hN0G{Y!n{;QIk&b^3N zUvA}c3d8rf!>J$hh;;-Vej>uW>ZcwhKi%$fFIj>j$0g39pwW05gYJaJGgqfvNnSR2 z#HVfXCDy-1fb_p(KgVsf*+}`8ffX8e2B0 zDGB5xpAZo&D%a#Nv7Foz_%S>TII}!;O7s%kGEDA9+nzOJPJdFn8*Q&$2qX>>9-p5luA5dgJNcj#i7Ca!@T(QnzVpnQHkjlgTJcwYpAytzrf zg&?W7a?Sl$)ywcX*K#(vlXY~UABBc77Z$e6qxg9GgsZ>&wL)bVP=j)1C||9|UsHc= zx5_7mPR(;jIg3BtGtiUV6rE-#aCmzvTYvdnJhat!%e65pDVfUeCc9ebR(^afZ`r5R zmPe0n6)##iFbgU=@4aUyXsh+d4ze=^!SAlqJ|)^UCR6@e30H)bu(d;b`)e5L`8h@r zFn>c6F29#Iv2olB5J1--B5cw{RO)0p0PcjREaNgpLSd=-Y*^%cut2k|LMIwHgwxGd zcoA3M^B<&U{~{@usThqzR5g_PI9Y^$uCZkW&vj9x8z7;H0`qXZIt~zH&8|JQ0HSMt z8dmT!m2mPD7^FsS|JYed`*-9&(b$lc%MfFGS`Ef~u%DjeCwZcLyacQxkhY>Z0gABb zx1G+9U_W{l5poVUy(XYphIq#AGOTZ%cV{eOdQK8kvj@ly*#+xIm{EiurvUCP58>8T z>bdc9>7}d~&hKpAYZGhJ?{=p76YCZU1`w2>+*_#Nm&5wVhJcC%tyD=?|EmJu)BMS1 z1Ztva+QpH$_!g~CK>I_EOQo0$GrWKM9-GXP6WdPhLob!J9_NY^eEd+F42oqkHqy;f za`TK-t8%#*JAlvlCY|MLLM%2DN!~W2hU_b=^?6@HMOiRvQcLs?#}~@uqk>~83P0g% zmKo_;ZJFj0w&_RlkqIjQE@^5@_p$?MR@roS!cNV^34_O$ZAS0|F41(i8rcnZ;yl9{ z&?xoC{psIvSCWmKmO*E#o;YcFxYY1RIoTLYhRe2pa+M3`@O_wc#d*!)rnDJknd1Vn zr-eS55Q4?0KIfnPqyvy)1D`*HHji7~P}pILY-Nd^vwbNCRy5kVCGq}{pT0Ov_ck z`z$8t&y{amqQ`l8>4EA%2w3|zeOW+LUvsc)k;mCOe8GYk4kHDeBL2Z7aEHz5l8$vkk$@_B!tNFC7vN(skL}2D*Y3} zqy#GS+=A2bn6N9|}9#l^`%IrX_3%)Z`wFw9I zdfneDA-2`0HQ@HuFO?z!)01HS8F^l*8gEDSDwH{fVHWl;qe!-`m7BI1*<5%NK)?R% zLqCBR?RSLZ0rzV+|Kl%~x_n=nmmrD-&ahsWe^8G|xq0_UtF8-S>jZoC^ z(cWF3K>(|1+sw%@JIo~g_Qg*hk`3Xg(uJPunQx*$mfKoW#Pn9+Wx(>w34I=*{(CVO z`v#{^?|Jx-r1ri^P&V1>GEd@OR(_dFrwjua7HRHxPFL1aG~oe3B7eBOe&gwb*_QCY zg$0uByFQD*ALLHoguu*yG~U{becYh5hwCTiZt%4yIvM=}C<26AqHG)Q~k@x@76?d^IA6`)7BX=DTC+wb-OW!BkLC9L7q9 zFy6Q7;^q_PUymS|nv3iFXf6y39iv-`NZxEwSEh~&4cGRSCw7UryfeQ4!P|9>WWpE> zRXRR6iQ|-|rAv^YhKbQyb#+aQB>Eii_#SrdgKvUaVTC-OM7!|ItZ2_Bgd#vpwJxkx zJ39&y*9226P97tJM3oK_*0@Lhh0ZwWwl61ExnlN}Me5nWqg4(m`$iZA(lzBlTGQFs zc^D!(;Q6@ZWnS|u#_AE!vA|S!fWnPsS}Q3$fDzz4(8=d55nmsGL}pmq!?SHBr_&GJ z1KYLl8Rh25B1pH$SWv)=%;`5B&w7lw`GgWJ_Tv5tiH*g=pLQc&MqGx2gYKg5Pd#9= z3|D(J+wzm)tpmjc^;oz8>ogn167kuZ=`X#1x?;!QM)qh#bhA-*;L2D=>kWRA8t~`i z53$3vtlsavB$%E*y4qy|E{;a6^2m1{R%%hyNBUZBF_E8tgHz5*r&)QN9i}9!^oy+M zc1f)pBsgNBs<^qDNp`u>0hPHHblrCDfQYU5iZ?CgmSxbSX(*4F44P4yD3sS?Z9&yb zd(3`PDG(jNNC=L_3GlXE(~^8ifR7Zetlg`A|D#$wF|z!$&~`~8y@22yxNKV@J0SH( zU+3XDdU|79TmIr9zBQj!1^IgM*Rs%N)pbt$qNr7e#-oIze;x>dyo$JVC4N9m2n1}? zaIoa3dK$_h46z?xMYo~D6YwZDIH*c`2}UdXk_DG}3uc83Skkn`M+zywI@-gFNc1UD zAbVM!BXQsrzYH!DHr4lFM6WM04Pnd%XS_mZ_q*gs5kO(#GHS2Da?I^;TKSCqdF9BI zT;g3Y!c-|e70nZvRjcfJ<)HpjZ3g_aM3xg@wuc(Jq?q<;eS+I&$+gdC$S{h6%DLBZ z!-CuPKC?Ucpc?6*`i;6Pr!->8^IOcY0O?qt)Vr^dR62_=1YrR+Ink(e>{R%mwo#sQEA1oX{oNt^Csgqn zOw$kY?l~4YJdjs$@X5_q&rv`SYZ-T>?Zst_spT@{KDy9Y1=kwAbtk&eR8`6MFXsP> zh=_})$__UXZXpcM&X33h`eZW72PhRbkLYR1R3{Bl?_|kb@4McMD8Ei9zdWU07*F-Q z5LiuQ!|auO8HRtr>d@mqB?hLz)pytQKcdQU7B~BdsEk5yF8;9fL#t}^$5IFhrzoh` z;R(KmVLlKV!cbBFCa>Y?cLrYvh9SU%w6>$x-XbR|#zUb5)~@;16n@g&_mE?L1&$DxROoV!1=iD#zPafmc*v+9)AQfK|?60(1IZdFD zK8EPLS3BFIOvFO-Fjgs{kG#q5f)_b}eT^zTE|y5Q{|Qe31+5;C$1BeNNItqY#pG*+ z6QO*nx?`@<@s6i$M?kn=2-t=q=F^fW(G}tQ0yNUgK$ffgbcn*A3Z|FrJ!G=Eh4(jF zFr~_sTE93PCJ{7gSU?)j!ddXI%l9ipSi{_}O;?8x=2HmlFk$DCx9@%YiO@)0FC{;o zxq8`*u(d+ny^THns(87fY@nLb&PiT6uKsd2EcD-NUi7)z!17wXI;xziXkIrWUh|LR)ri`Tk%B`2uYm2Bzr*|fUO@{NH*O~+q(^&l;a&;6*b zw-O_HcQx7~QYM+0|LvjskM!bl@grBiIsk50RmQ)sEA!+fsT{2Nm{*pN?j42_3 zsW_#*rIDeAUI`b-i_0FzWa{v>lE&d5)ZiO_)oFD~f;2V=AgHYVR(o@oQXlvh!+1kl zE$YhW2l~_I^|nrvuxr&{q`EcZ^%I}*1{t_SqKgC~G!Jwfd}A5P6=7qaG}oZ- z9k(#R0wEk}G1^~h<{K9IWI%vv3r;k8Ta9S&L~!xhD7 zHM|suh7*}{q2nM1nc3@f)nWD|1p`54ihVa$FBhG&RNHZ_kEDmT4UFfxdpO6WAiZGC zUP{{g7CTXOOdbC1elhl5&1hrZKsA}EH!V~i$VSCIcdLXTS7Sk{NL3;Neq*MVEARSf z_^?4*a+zTRi<=Zw343&Q)C&W9XL`&Gg#G9S#L-p0cK^$`ht7tLu`89VoK9oW#w+b+ z$30N?$6v3}Tr0`+TI`2g7?fmz#9!5HYI`M4eUODMR)?Noi;#Y}Nh3%e8Z`rSPeaj| zz47wTGg*MwccDJGzhw0oW>kj9kZ)$@-51m}N!{qSoJ5D#77p1jelIvv>?DQF2IWw; z9Gc42^TTaM%bds1{2KP%C&&x^M{!6y+4lH`3T&wXOQc@Ao(CFbk$F z+V#5?k;_-P)C+oe!{1RB@~3tQ<_SjFRiOQ*c?Cw}iKM5rsEq~6^}&I^Vr4!bRj(1@ z-FI#Hs53*y$dwkNcryt;=;;1<<#4VH|2(5fL!{?(X~(p`CXHbF{Y(EbZjoJ0Qc|@Bv;l^*V)~!Acaw&GH*eX|lhb1B+u+ z7J=w}{0Uq5nX4#fd0>tUr!iPq`#|f4E3Z+O%=Z3wOY8!4tVU1*Pb#4N9 zGgHoUduD42K&r-=spD@fS|eGi}|vPH^9V;8USS;|A`|*rPx^XZ!;~sCd_}GY}S0xcd%#v39YxFp!a$ zmBXHl*uo+sxz(^u}@VoNFD0H7xP| z+ldR@t^ewyYDdk2cYp%VfWFvECtff6O+I;4Ku{elPT$YP(f&Ng3Pj)z3ObwXfXQOG z*d{A53sR%gZ?$T*x9~vvPbE+tW#Pk5sIkjA2^AV7Xib7GlL`S$V$h19!e)$($r%tbFJ7B(cpUs ztL)ZoRLjWXIMZRG1D`iNqJ7vjZSx=(WFuB>#m*pknU)LqTzO9YZ-vG(7cwEX4`zIs z@w~J~&L*1p)r zIh)|cW@tDCxtWG0(rfg$)+$2GFbIvRk;tXXVGkXcn(4v3@bb2=J#c9uYA1JX_w+{4 z)&s?^TE86-KcV`T|0(c5tua-V-9=OIpVH~NJk&R$HTtgAd3ry=~T_~M#8R6d8OIP?}5u#`kbA`~3XB8r4vO*XX z%=qFrGiwJu3H1yYGGaZ#0lzshRs4Ddq;X!87#cQ3j zGAulQJlq?zuk6ezJaA&4Wh*)UBvXCLcYiqGXzot<5d>&0uNNwdKMQ zqgo7|&c(JmZ4M&#vv_8!J*Scd3 z#oI_}{Q-#9M8C1CBlHWVs0P>>@WcnIM86PJMX#Z}agOS?Wt;$DMuX(m-qJX1UuXbB z3?lm#&7K*+;YFe+X8!ms_y zU-*U|qPVsai&WM!LBisGn}G<>6UKvz3qTz6kqC)c@Y5hCXv!a557bA zPFfKcgexX$P`Mq1XfcR&#Zk(!!%Hn6y^&&*Az9HDVN2$S{bF53>HEDXy2aCUrYSJ2&3ndw>QRtDCShOo9y((;2F$`;2zkI->DMUy#FsF}rZ1{_m+8FH zjrsXaaZbW|_m%ywH_WR$OiP!t23W*5<&Wche(?|=&fmlPU?7DV~%}ybiA;kcOEQvOKzNLNU zG4mQqwpf_!0gigavdt|n7IKhkCTFbmmY7i*dG zTj?s>t0-JWA!SV@BNXbbtj)l3oA?UPiAY7CUjzTG&Rq8S013IFR^gzfFKw=G`QF8S zAv{P#nRYfZ4}IAtoa^#MJ%78z8Q5jt&op*mRdrVLeN%#NX%7E?f~fQ1K>E|NYx`mc zo9v;e1C3g|@A~lJ4lqtodV0J*(_Eki)CL5LuwJx?myZB$I%ME&gmNb@?R-3SU`$H< zJniln$V$G1u<-{!>U#(yiEw-i7f85dy`sQi|1X-k4z|7D&{5}*m8$_y0ueYN3GBF&8qx?l~?gPaE_H zID&yoI~@5tP2x9V5XvF41L}fvbZ;iVL52n3#bN~?Rrfc`d}ii^$~V+XxMn-thPPL&h89^XEnrPdLJXrEv3+4ihAQP337riJ z;+37<#%2m?*UjJ1yhZ8(7fCh`>1u;ij^{ADvlyY@0r53GTQ-kkfMvB@NNVm8EWVPs zqDVsI$+sVglHhiRM77mgk`>)E-D?EDX_9EsU^#2Zq65!Wv_%8b)ZGViOyR zg&I#Qcvs%Lng}`(bc{;up>OorL>>ccu*8jBKH$7wW(M*Gd`waJ=t-M4A``_Q)k1v| zE_2j|jI@BjTHX2K&9>SAx-6zhU`v}8&2fC`RZN0HTc(NKW7imec?8qu8Ur&u&e;>_0 z_T-2#yrnUUel}HGBc6|KHROzMIU2u{K)2bp9x}Km65wLs1f)HK7#4)!SN`WUf>S>Z zfN1%EJ=|M|dPg%4qiDeR^TY+I2SLJk=SPL&!M{$Y&_e~B=;)F$O5rUs9rN{jz}{qz zVsgH_?)`w#feC{pze%i@1G^yr&Mk|&IB;V|`iZ;56!=rwv$U@L78LeJ0>HF^aMkB8 z;s-?RJ^_jDK-9j#{O4X8;El0^>G^*7!lTYpLLvFJ&%ZM5E||5F-$O)05a~H&&{snPdl!~!-5Xgh zDocZnZ35&j7rBBdXH;t82Y|VZE?uJ2*ya;dT@%9kD@|URhg!a#LDbs?NEH}LPBRU@ zqVxhBxi|rde$s8g;6ibMwy|aTc_dsq!uNt9uOV@~8AD7H1Pg0)qx$wP^Xnqg{q4hy z(Y*e+R;B^kgl|6;w@3#pN zSO}AxGknyAZ)5G8BNPb`bIFhHBZFrR|S-fu_F{o zF+u%~(F&TfK%k%joDVj%D?_I+QEOaq8-cuCM74dxPkDzAD6o!QE8^c@q^mR!2|p%S zz_eGx8Rax^=}cnm$PN*gA21ekSfIXA`P7?7I%&;egmuZ~iY?~PhWYJ38+_rTcXF3M zy5y&yeayq272NLw^2G%Xd}~qGX>VH{4h)(qfc>Um*GKuLS9#|JLogx~u+KoVC|Z`g8APMhnh(GJo`6EGt`}66VYY&ae!$B73ht zh>7Q(`3uUe{0WRxZF6Vp9iofIC)coB2Encq?5=M$vGw%)$mm0`|7of4N zjwO&I#d%qvD$o-$4y8E;M>d`S`9gaXVP^2bi%tC_;I=bEl*`w!i4IaA>;vyJ6;n~u zB%wy`*#Ij}S`|9&Cx+^yD~BER);L=IHZ)v-{(yx#pG>u{D!>|F?qw zBS&|w5K2%_;Hv#iYClw1%rJii)CAqg+qZrh0NFK<)9b`cLnNj}Zv_m9mlz+-XJSJ>1-h%>z_B`~uwY`TA1gKUsl;wvR|=pD zqew1R|256@XE7G32_bcTF{>$Gw48Ga+yd5sM&Rq#F$=@h`6Uulu1qYem4ETlv2h|J zE3k~~pC1AYiu_63jBW)*Kg6i)8+)1K^Dk67W&t?yvQ`?ZZ@N*WqJ*wm4w)>E14?K`YXVL%Q!zL_ZB#Ape-JVAurD z#Xvq^KlaabP~cFJl2$4a%_lX(GesTju(g3D&;FvNxSYv$k;`skDjD}B96PeExVuqSW z**(M3ef5CSwh5qs;N%LAt)qMmL}W(^1cCB`zrw$EBq{~~g#uM*sy_%^E!q(c2+RsR zAca>g0pyfRAY(Ayi+P;29NfTA`GA()gUzp53!>^H2cfePq~o>0?E}nK+f_BEgytZV&_;_U%DZ3TqmdjAQoxcZaRWm zv`;TkXa6MnOYg$Zcxc{Ws}m%7b?GT8(%8by`P#W!OR!6mBO@L6+(e)XpT;|+cs}zy zLvQwRfcyVxu96_t^;BKFqGYxFP!5qIUme8)|J}J%x7O-{4$W2kC{9Cer_c|P`U7Vy zQmmf}y{geC8Opj3;d^D1TIHs&ih|T>S+AjsZshgw(dMBB7rJq8@YTEh!{zyE9t~H( z>+>0Mea?NK{T?R_&K+X^Y4wu+V-ru)Z$#Xe1q(ei@fzz^7@lDA=%g-zQb<{p(2FWa z+?TniQsv^r%k9^n@ZT`@(CoQ9(M=|ARu1GFch2lz%Gf-v62niJm+f+~k|F=He#zAj zrb2i`tj&KVU&vE&5n&K?RooC>2KyEC_V$vU`-{@qZzF5#9i9u{`DS_+KfK|x{|LoO z#8>1dzS)9~N(8z8BT7CO?(?0JhAS*sKhOU&>M%B9_B-3psMHsJ`^?-%1c$0$GH>hR zi|iMO!I3W=;j7tSkJu+gGk-<1q+;2XAD#fj$?n*1W#G|7;@Zyt3fjnvALeH2v7=HY zW1?7D|KfE3u;YZ}PrV0|96XK-N{~~weq`-+_K05r%eQ>#e)XM)TIQ7QC}A8IU1n2E zpCy!I-PKqndM%C5MvsR)4dZ@vE0G)ibYN@W9uC!fAm zZSb1mm*x@H3-O$zMO+F8>7lT-y{BfU79>mqii}HIrc{FDm0@2JQpc&@sA&> z`$L(QmEd-O2?BX~RIpE&#y26dSO6mrOjfE$GGe1)n>?Yauw1;xc=VS4q`CtNitfS1 zNYYHkEVKjcv;;LLK1-b}NK`0+--rBULiN9}4CyFfe4XJwD2<aAs zt4$?s8=i|pTTpmc=v|W-tzg+ijlcW!G$+cQTblyJEPr}@p{DyptKA`RTfQHE&X*Fj z{LQ5BMrA8v=4uWP*sLscfS5r5Jw97pvi--&Z7#qfo|_X?Nl5F!G_?|sEo5KzEd~Vn zTm73{7CF$TUk7M(dOV$~>oju$*Sqfk-i#=DZ}~h;xZ-J&4!X5|(HgCs0>A`XQ)boPeruQ$PP-QURb}zQo zWf_Gm%VyEOw+Cv)E0FuH3Hbgv+OU?-J49!vWoC;a{rUys{7V6H6Hm7Refexa=RCI|(3SpJRg zFcWEf=+R>B=Ht9oa>lB59_2uqfEVa0Y1iL>?}`n8nnRPVe8rx+%Qr}gP!YScqgNP3 z8)A9j$&zcvy0og<_L=OyGy@nJ+)Ce=xQWC-$|=N8eb&)QD(;p(^*-p55SkRCL=u)t zcjUm`n%pVuiOH$IbY?+-DH|q}oQzdEV9+R8jOQtPqwNIK!zlt(&c9keFLh7sa3YDI zOlBg{D=?;_{s7+RzS)DCZn5zz;C6E))M__c%garje}nbO{gL~i)ckUydI1y;`X3wfU@KHqdP-)f{jELg zj&@PUCICZWR^UaSOwQcDo|SqLK!KBdjVfM}n3t{oBU2i@Lm#9yy|;@{%GeKEttG-|yt2`&bVyL2@q1PKDBh(A+E0vRR7sz!=Owb~Q>HO#fb z2DUHQNL@su^> zO{4l-k-I>LkVanKpmTR?VuSOsrX+-@_juG(l|ldYljo-w$>ZhMS}W?icMgt!UhPHF zUhdXSzc~z=mQ`uXe~h8B-OhU8xHKxA-T$qm*EG1szG4>v~DDu(C>xeDN} zcdUUKe|LEK#_W$bENm>>(@bgEp59#LiVW6U8g@fPM8=@NPivC)a%bm|wz-yq=&acy zsmggSha|4>5>B?Y6kIlOT`r3WP9SkbT(q{AQ20YJvEAC#gxH|?fl6&+iTpbg9VH#` zV?V<$HhmL+A{hKLM7p{LUTmUqUpb7Qn^_8m$cOUrM7_5?iC?-nOybS*g1ONW@kV=dG}|~{c)!8U%jO%vs36NT&)OoZ4_s8L`K742 zx=jjM2iS7EN(}yigL51e3S@1*1a8FYIhhHj#d5@J9JZ_NBF6jz7=ur1BOUWrq*`VW zzqz$ynC+ci^9LR*j!U-T%;N78^WA~Kp^F!an#+L3-*b#6!}%Q7_LW6Q{14g z(YN1~JaDJk@&Z-s!X~yW8m*RTk1zOitf0>C5Q;sje;>a6(qpgQMY(}J)F|H|p4Wl| z;%QW%wo>MG*$3x;NuoGC&r?_Lz{%%K@x1OXVTgo*H8}#r=<(8>k|RFW-05OO0ASz{ zSE%O+4=M^l+|leudv@mG9o;2WjQZz+_|7Myc!k5t$9Z#?NuE03rKw*4GTQm>@wfm~@U;XsM=^_e5-EXg1%5OS5cV*BZg&Bayk-SyKkQvxE4`&UKR(?W567wVL(ME%upA zF%bW;dwVl#yK7N>X;QH0Zs9#(?$r72K=J7mskjg6jOdDf+ypArPF0CZGQ2(lf1wvA zD>LUK{2b598V>&~c_{ZUH%5>1`Msln7*ikXj_!KdI=LsWohvJ6v>wP9BE}ZZ_Y8 zbD0=_r&lC3%+P=Zibv6I_MOFdJ?Zn^WZzo}mrY8f_T>3|K{~H2$6H;0_5Ib*dH-=B zUD_uVQj{3F35`Da8ZmYS4z&`VLdJV9S+<~DR!CTI=EvJn0PH)+zHFWf`m@gsW}UM;Xo#xscab0cM%D&A0^xLS!w{ZWo@m{l5ZV$*^#~Aax}VdRiLIcM9X| zkf}o-M<`@d!sH4kw48G+Pj_Hnh2aSB*}tw9+14EKIm_+m9C=;TCacUP{Pxy|PsQY| zAl+t|L^r_IAKE4kkhL_DNQAj3;mJEtb%wknajW>AgHqHQ*VcJZcTwJ|@8c4tp}jxg zsT!!EubuEyps2?cI#KU+QhDa>=@OzNiloj@Z?om^0}cUVV7na^WrUvfpCpOVIM~IX zYh1SsBDWvD=1mHDF^H_XL;y8NnENL-_ zDj#{&rBz{m6MPk^+P>ygsy5MDlPnxSqv+&|US_>ucaVfmywm2a?MPy)$n-KJx9|^X zZyD=lhK`TpadrB++^Ii*i*!YJ$!hm2{nuLgsRO>LW}zD1Mnhc-%~6xQ5Em~vz9>;b z>QnAk<`2g+{)@YWyoy#h9=9zI_VmG?>q1Tp>eKt!Q~#=cm?BQy^{3OI^ zm0|9`5Zj0%KHj7XPPwY9;WtRk~40?~zS8MKWMD3Sz;gO#I=- zNre}nHLjy-mOHD%zM}IvnU<+fSBrsq)Yy&>UQFh)^H9e5{P5Kh`yJSV24{KeAdZQA zI4s@W4{7^GD!JfClB2ELEXq=#^o7s>-Duz>6Vd^bh=kGU8y0x@$+(y9Km-LPPuM8U z{RrwB_TQ!9EKG&-o~6E|?#;9k6HWL^gs-J=Jtu3+egI3JiPc80qnI)I7x)W}$9_I# zI409mbymW!f0q|tf3osl^8S7KvA|~q!(CJ-e+JN*)U{-KI!01>nTG!a*10p&S{5GV zno)CD`WRn##k>m^7w(7*e3{|x>&k0Sb_s_@w0XMGE5ntT0s=Xpe%U-ef3)>Kx*99P z{H6#v9Ez)oRw2{XQAp&USS)XJ%vPR1Na+A|7ioL5h4=2Ue)~VsPB-n9P6BT!u35Kn z9R6iN9t;+6twP-J;XgT!OT>XfdIGGvddS%gkaW)`#P8*PxM|u0?w*RFeqI*ARJs>r zYPIJf>#HXD`xyXi_3qla#=O{PYP+FZ)vZ-{GqKfi$nb-52`l`1FE-8E^EVd|h8#*K zdQ8Stu82~{?qes_DAkqC{B)#GC4KSD^8 zFEJ+L4hBKH=PsiekBSc8sL!rfs7%2|4(dm7E;cA2+IHz^>(n0cgZvG1Ln`d+w9*xD z?+gSifNencuK4L>fiD@R-R)YI@A9*mVdsk-Buhn49ZB<)s;5y-mDCIK_nxVvO-a4h za!KL2YS}Sjx?T&JpEo49q(L8D4cswTcrn98P@y%{{AO%8C5*LH!X?AfSN4z-Ix%Ew zr&^X#&@CM8qV4YwS1Ef*1w;EqEysxMt3=?5ovyd=qVO8V=eaV)ysvcjS0FL@q|qMv zdPF4KuKrsr5v^LoqiErD_{z@@e|t`}&f)%Eb};95gkgPaW?-l-JI>7C`ZK$j=#4wo z0M1A^IilBSe3c9JCDLa!W@v?&gCbs5QaVHj&~jZyEsSNk%Ak0q{rAm{46kIh5;`pd z%b*3qYf6tz;j`=WcovXJCdMPYgtbiH1i$iO)Tdof6XyKQ{&XfGO><9k{8sHE=3R=5 zg|Gi{+Vyz=i)W@EFv?nL!B`=O&i~Y$j$*e18JQKm$?El3=w;^o)DE=$fC_r_>2U!mm^ z`kmil7*j9BgIex=A0(07ok0^phT=v>d+2+;hQ72oF+|WV*7uUOZ6+{Eg0A@e7&VS^ zi{$!$A)V$WVsphO!c zj`3Kl>%Kn$5d`}lGgV$-d>*#j^vk2n*N+T!3ojK~UD?Yz&iqlFZC_#2;QrKK_b2q| zwVRu=fF?+`e48RT`>P%5OICRMX^^??KCZ{+gfrXwq#}vwit`l(qkK;UIqkSJO^5t5 zG1rpY>Q8RhEweU7S9<$8#GuFSABQpgC{c z;!3Y6w#SJnolT^=c++0^H)9`CW;jPZx?uN17)j8OQ#w^LzIZxxL1Kg2d~%SWPrH7O z8{O*DylB>D<*tju{*c9X^-7r9Cp6Ja4RfSo$i;XfXFw%$`yP#6+)IAA+CTF?;jP*~ zvm$#gCj2J$N79H}{a6o^&(=dCz!v7iWQM!J=b#4W5hQ`8WFS2spLOixbG>qpAppo5 zbfnTv>y#xW#a~y2{&QWPxlZa5Y_H|4Olp6fYr8SBf_H90!gI?ZMSoN!so&Gs;46%a z>v;6CaF^_i>5>DqmFht4>EqDoKPA{)D**C)TRka!^g}cx>JvTKlAi=F)8<49Cko16 z*PQxr7F>3-1Y^C@o<)?dCE4Gj5pXlyDGk07thL1;VY;r8xn@UE0eCm|bV-AHQRprm z$ic5tOUsLw>g@!mvqYHq5PO1Z*AOIJH%Pw@bG-~=_FJq(ViFs`#|D#*)n%93D1pC+ z`{VbX)>AG;$x4_XY2`=0a5}WOlf>gWTyP?*YwD5SBp^(*q z8lp|Mpm`wn4w8IUe^qiIuH@eb=Drhu5TH9*w_*h84Ab!>L_}tNP91D#jCXIP zmNi~En*ls3`^sUB?bVxVPr(cwAkW;zWlTqWl4KVEZe&iM+nep>=dshZZgd|Me=U6* zPs@ET+zp0Exz+*)q&VO3ynj9FbT{6mi#7oU%mwIhI#7(rr7{K&$LOOsnd|(wrB$)A;mC1hd@; zEHL#E&tzqqer&3czI+s*c!b4vWY}1C{S~Kn{Y$PeXHTpCyOhDI(AdH17tQwS?uIjU zB2$RGyZur>)o0RY;s`qhL9HnXtR1>$y_%rYKb-yA=RFN$kMl)*7T;XN)MXOf3`~*H z?13K8VP^YGpr}?vkUUXg_)q<2L`vF>AMpBMraM%aS*9VpDwKZE%urMB?M@$83sOyZWG*viv1kp`^)-`!6to)=u?M zEA%DIJJ4?GroN>AJ(xRYBAMdDl(To&Q7;wqloMJ(f9sL=o{FV@>6%tKmw zP5okqkM7#ycJWJA5WlJ86bRzU*41OXZ8*{t|CUouer}lGu*b%S7id=GsAnSVNlJU{ z{lzm=XqglzmN*U<%mB)2QU{^uVoZpDlMYf<95Zf4{!H&L#6S#Oh_KzwCUnN1$`cc* z4)Uk6V8)SvC{ZPcTXobHs24QrXmB;Gn8wRM<)S&-*wCf>nI|4I0?{)&luw<0fw}-z zb}}bCU02o6&RSKz!C01&1m#qf@&mg!m$mCOF^+hY?rHC^`}o*ZAsUR1tm(^-m}xAy zK`&^4X|*WvNj4f~Ok#Ruw5fSqy?6}%A|Se;aYSDnYCRxBh0*bQx#xQDbU)3o72PLt zAEk4JT;YQ)zp2Z!?{OXh!cxtzCp~cHNCmp1CFIljBY#^n(^U(0l>J}$+&Kn3iQl#T za-EfBKUC8_8`%cBMn$`T=DGC3BzV#Fd(KsX%H00$CbU4=&c!LExb~!7J{k1xR_Lbg z?I1dUZLWKLC-tLdpy_%ZFX!K-`+<2*)8W2~&^vo-U2}a-$ou-tXOiSPzMci;$fG0E z^!jHcIk-~xm@f@RLw%la^xWtj65Qsp;Nc!=&zNO(oSy;wuwY-+%lIAxkO<*YQ8O)m z8?_+(DaxrsSBjc|>Le4!i#+|a8~4VYUltaU?%KcCwLJapz#d;A%e1VBJY=v1r>HR} zr!OZHE%AW{%Uh~H5O7p(6W6R6s0~VInY`GJC8r`yuGAkGGczq$Qt-&|7!lx5u$ojy ztcy2<$*IL+J0iSzB%r5X+hJ!E^`MIK`HpQqz*o0FoJLCpwwc0h@-wwnof%uF)^`&_ zFOV&DwDb`~vZO!2wlZPdrnti|jvKDOUH5vZ|~8ckBq)-2=H}y_jTjn zz2c%zkvu>h%ct*r9$TEXcf^Ojy=9R3dDZeg;6Tt-%TAcjG{ z2lJhwsb(z)b(ge^c>SUjkgvzOFlp+J=}iZ*%%-|RUB?{Q|4Mq^1Es{pE4&~t9Hk{S zroorPtr0hC-v+tm-lQ31(abx7;S|pdU3)-hif3v>$WkjP%nM|%XDHn{N@AKW|0~z_ zO^o(TR|%dvrMDE%Z3E7iGA&VR$pE_WYesaPCbE8U?i>YFB=o<}XZk7-Uh%-WXcxJz zK%aT?L=)9t|9rhV*8Y}f=MN~u=8Y4kv}nsCXuuIKZ~N{u&LtG> z1v3o$>09dGUKIsdHyXJdg9B$3*N&X}iDgKF8v8l`3u@-)(ji5Dwq!uMey+PNJMHnT zK;aHC4FA^eDOz*aBg$WL;NfofBpXYTvwkE)X6Px4PIA^Lmwru)IW7tlRC7aGxR0i% zq7lBU%HcG2k;{f{`U1Y4^#<$}~bYmp7-;psB{2)|0(|YUXPutSTyrsz5Dwpil zX!M@qsKc@PB?dkXp>U$cB9fX-4a?l3P4qS^5ygVvvCZT*v|-^`A*bQb!UI9^@5&4x zf|X!qrHJF$ma;kGz)o!wE3l6{8kURwdfP!W2vVaNtGxDP4(hX)n5&(XRvwC5N{ z7vR5#kt;2Q~sqwh`IamI6uwkE7wQPCtxugM9t?}IT z_q9fnViE051MZ(}O5Azy&l>j3*@C!vBC)d@lDu zT$O3RgcZKpf3P{5`RwnpV%E0=`}i(Ted5GjVwg73R~*!(z3HD)09d3R4L=LV=OnyLgBfdDkQ(Y2#=dmrJQ+Frb zN@tf+H|_N{dKNp?3s=|oQ-YBZK}z{%qvJf2->@Pzw){sG49Zx}ZF`DIkvFF%n~Zp- z!u$+HBc6goWeae z%^i2HqwjYM^33ZKj8_*e#M%k^UN~<=>4v&^-@6R7tFKU7YI`5g6`%6K&crJ_ZD}PD zU(Uw!+D<2=>JDVXKt8s&S1dcp{1BUm&AEw4o`arI=X4_PMCXE?!7HAC)x;9J9<@++ zEv--PxG=dJ2jZ+;#8QfG6FLE!{Sk z=nds$%6#!JS!;?*&*f$XHm;TAvP$3TVuyBi))C z-3Qe2y|0WU?Z1y-8Ep!(eplpqCWw*f#8;S3im+3b47`+xB_*#|T!>W?U-!Lsld2D{CHb8L$A-d0smg{QY!liw6?) z*tc2Neh#Qo6IN~BVCkb`FM`L$;uM29GezX-KGU^&ti7<_+yI=fgzoZifN7v>AB1Pe znv%(`X#&g|NIJ)$+CfrBwZ+tE2p$srnQkqY@9%-s|a>jWYgQDJdqkx_XPEhPYRaG zWwA*)5SXd)J+tc#DXs7T#)mM<^>Kc}6Q1>hpQP~EZM+xqA2iXYbP-AL#7tE z6`P9V9Z5~r&8fnB%|P*#Gxx`ujKWYL=cAj@TE(x<>=XzbefN2jDA5L*Z3dQi2Jo4` z1CZoa^t@9W2F?k&vtp;deu&NdZ%L>g)AGdF{k?6wq;>L_wP5+cIpW8YVJu%#AA8gf zrs}^3GyZilG>5g9YP}kG*$w~|D`r6xVB2_U7ZuLnQf#}r7WmzTcPK=f^F8u?NBS%6 zM#wt>R2(07`?v6=Y@f)XD`aVD6G}44A&~c`02&|X>K-TIv3|EU z^hGGLZk;tDP`AlAHI)zX(HHNK8+J#*wk2FNAY3bM8)~PbOE7t^Ewqjo7d3VGT3lV>gA!bIR|B7UWh$%=qBzLnW(q zE#<1i?BIOM;-vK!+iSxItgwe~A1VMKW__&D8IuArS>GXSw-2>tfqY{_*s)-y&BxN~V;L zI;C;-F=%G9$0=DdP$z)b2eWBKIG@VV8gvlTghLLY#vr&Qt9m{+hU&;-d8PapA|!}g z`7jZlWcTA5)G_I#jm>Lbv^Z6tP_Zxl$$IDy1$x*Uvwo|4~ z(PT+d4`1WLmZ%*UhfXP7OZqr?*DRvLPH-;01q)E7SOV_F`?PAtfc&O#9BZ1a+|9LS zg@1p3`sQV~#eMozyuL2?!|8b0dugCSB1HR;smA1xPE9$zn)9*t)N0L?*9!6?j3Us0 zad4~EDIPNTtV6xAsc~^+KYyMF-6%->;y7i0Pcc*r|2~E=mZ2%Z2r5Bg7?I)ac1614 zz1W80Fi+7$wKku-?0`g$sIa=F+T)!xb9kx&gCmJa8?1*3ohuk*4O&$c+gS3al|jtG zephsvNHr(dk&41DEzkgCvXv*-{&gTo5vpXr8#Y3kzGyMY6a zCe_DXtTPO1QTAMp?O@#_j9wSXL^3AA96SdKn0HsSo^~CUlQty_{)X>jcr|=ykKQxH zo1`p3x5IF8rMI_6`eLp(9K-Y}Z;D5>$|-4eJl$bcAkdcth~bdd==NB4@xXYmC4b#j zAasfT0^u~&k8|>e`6goi)2Zw7HUBj_!~?RE zPj3ti#iHZw0g0{fAwG3Z@*&MZwN1ZB0TD);Inzv$v(Y1$9uMFIpIg_#>Gwuw3`gS# z*gs|}Xz@;iEI$052w?*qhlPxs=J}s{OfWcp3|L2#Qm}ZH23NaVfD91=r76y%g zBL_H%fdkzt8sVagvs7A0C_p!oBl$=cUHM9{PW~9ktojwow>{#ys?`3Wd;NujVMwEK zKc&?{axGTMTOPo!>qCPK2EKHUZaa71p)P7TsDH*kim%*bN0ssH`4-4U3%jgVh({%7$` zM9EU7dEf%GBE3X2@t^sVdcH4KeWAd*uW&%OC1&BRVbR^ssPGpe-`XJXCNq}ao;Zd+ zX_FLlkxmj+mo)13oVNGEOO~1(0y$l0$!8=3`AoN-Z~2<j=zzP2hoH)rjEa?(2v13#&*%^i#^HM2fymdUx}8jot2-C@2IKM-u;>` zusjXVPs6{V^xzn?DZfr1TjTri(*XWAuWo!9-UT)35A&q|x^LrpHp$JQ@A6Jx9999d z7Pw-1G&{u0V6U&maSBvVDq3rcFb8a|Z$CX?>AKM)qjX&wR(X3&GyY_KrB#8seRiD1 z>Frd@`>t2jhmz2#7*La2g4Ju;m281J?(E9edYO#B^D@mj;rN{09<*zz~n+_daXk!bC4j|TEc%;~~l0WIt^vV!oS&lbThE!JqV zH~0B;jOKz}p_Eb7+?q0zRqQ&g_7Ws`-%P$bp9R0f%6oyuWF+E?x{Du%{H@h;x?S6K zLn8XgyO+0{Z{SEZ>~E5a{gF-dTn+()j93i4vqlUbY^xGr-XtYJCf*&T)vx6SkFLm841Z|J2OZJ9 z5$-<1+&OCNO{pKCoaE(>hW>q%sW0obQ>RsB%j^(*bBVk1QL_Lp-)S=jjg*GZL#qYj z)Kr=4rq4Z=^f*h@hbO!MoR#Pwy`OH^vLx?9_u)wYjB}tPV)}n5@=WZyx%RA^@YM$> ze4C5yH^hPRZzc#p#AVlX-WPeu*t91`|8kLJgusBIw-i*}eDkj2`51Yd`Za+paC;DB zTfPKUj08^B{q5XBp#?nU=Xxy@`#i%3spM78kvkmbMoq*8|oCg z5d%*M1hqrMaEUBH^Mh>n*h6u9-xOVOxa$Vl zuM|O(FBPC9vC|qUh{qf`gHENs8f0?9wgzg3+K*f-_phyR!gHw*EcmS)$#=W_!Nv;o z<&l3x9*D|-%Ms!Pk6!Og)vR?z3o0~D`!3&93Q%ejm%Q$&X==F_1hz_BJeynWm9@oh z?UyfoP~6y07R8mKX^{!QG{z9Og^Q{A4&W3BA+vS+I5Vv}|A785*|@s!Wc-ZNL5NjI zEx3m-GG8hZMRXCuq`~!Q7VYvDHDk>VLgyLMEC(LXrYG6cP-aQ2GwTWqA~?Gh>y4(ZmiqL3tB>!h08MNKx8Em$D*0UlEatEq7{@_v zS#=xTtERUNlk3tRPW3#t+cG80Clo6FiFq!NYEWqs?!iTXNad zHT#gW@ce^jABh@v5OXPH%0N(|zk7HgZV^F8)XbkW6Cc@qxc$D!QVM{c)Ba37lj(oF zwwX}=RiamkofVf0?!;W#faA-D^@o-$fR5jY0uogAFVZYccL5C+2IT#KfWUam`IcXM zROxyQ%s96M?QE2i)mY@hB!`&svthC`H_h?JMqu=SgnyH6Q;y(Sl}{NUDY@jYQYVXI zxq);GecYbl_^oo~k7$={p=`$5Di%=N>2q_NgnpOe()cz#Ro7}%)Lg8mt?jM1IY%!U zR55jQ@{~|Xi~*fZXJ)=ad|;TfpykfO+D&#Y9CQPDBKm3z{+bCf({~FekU1@O?ew10 zkfA=>!X|xt4OwgcC*Z3WuF(w|<|iB%r0FE{anWnL46Zz(B-XU_Aysg398=@1-~I(} zJ+G1eYZXNg)Jbywf0biQy4N)fR9AZkUf}uxfS_HL_bKTq4XesS>ho55h8e zG=7gNd6U{ctpV@ePyE3D1l;$!23RSjg3tUyE>7sm<^BY2KU%Cago<$m&;Bv|} zGxRLnw=Vi10ZCta!7h$RgB-V_P@7}Dag$kpn9$_JTCasr!$S+_-qymA^&?AS{Zi6J zNB>QQ+W4WlF%jT2&+n1=4f$jCPpW<%0`sh})5XVPvirqZ_i5bSiq{Bo^ZsFMh4VTN zyL5SmmKiOm;Ihx|f|?HRh0*i(X^vBK(0v{!$vqoI`cOqTTMP-m$-$-gbVwMxN^&JX~m(O!+?G5dMo)_uFhE zs&ZS$k6ol35AUl*+FE(Z52jpfR*+EYa-SgCZ+|m)sN-=b%>A8xr~hPwkbf`*s|mg9 z+w!rKN*}_2lS`)d1>n+-2z@K^1tyxX%eR3CH?nE3YO&W2u7- z@;8mSvNA92h^kZLhWX}EW+MDU$*==K^QrOse*H=!{J)_(9a?WXE#d`U5y;Tr$fq1@ zl3mQ^G%vX!K#hLm9xViNTcXM}T3y1n8s0MpL@#P-R@_Za{KQi)9N#KP;yidSEwS*v zKq(%BtGJq8*2D1RjQSry*+)~QuIbo>=e5ytJwGlG}gz%03M~DDE7$y_WiE z3MI;Zbh=POA7|uE50o&!3RX!14^i-13-_}M3s53JpiIR;?i^f1m0$xpCeb;#M8Q)x zO)@}tS~T;=Ly22M-5V4jVugO|=5I$Z_(aD7UTr#XW5H2sn;n#gPw zPvJ%N|D21}l{Neqj0LPA$!XuyPsqS@5c!PJb}`OV&;vP09Q?5xbJh9r08+oGPy*jT zY!jV39<>bcRmuwOdMB$qmz-&+kLl^pr#os+-=TOklfGiqJ99@8i)E=!;+v&9OI3Q7 z;XGtJr&h?&>_Z;JIscAS^PRd!UUErk?4E-YgOnJ%r@(e(HwmVEa5G<ZS~6n2<)D}KMBtN47zjJJ+%=n?A+Eqg`v85XBkN{c zNc#aI(E5b2vPMyuNUB$0tdp7P_CXCT8uH3i9)Flr~Di=+$ByNZUt;hm5%8T5=8xPk|J@O44LSjiy@T?%9_sDm0ae=qs3QeEH2 zJ{tlv^V(&2iqagZMrRJtEfqd34}7kxHq+`gO{5~|s}D2jML_c{o2jC}-e44!?GAGwIX0Stox7T0bhl-&+B^R_vHtcgO*YT~e%)4%?npmbqq9Uy6}m+42C%b?{|^4E_#j)_*z<4pmwDqQD@{t`-k2yGs2i!ts|Y#M*NX_j z@pT*L=~-MBdh$VRvpBBO&iX>cy}l6$>OywMU~0E^=F{+KEsz)MPA+A;6cH`jK;pz- zx}Z1X>YaTTe}Mq=;^!ScJe%Q|3D^M>vXVmKx?s$m`C#SsW&IKTZT^PTdaPJ~N6TJ3?+tM~>{5T;)oeIAyyUoVz1OYCJe& zV(w1G{Z$Fyr=3H9i`THm3X-!|vY0UrjO*HZB7^^~pfF{9hh;$UeIZZ(l(XHXbtlHR z=$pqM$2SYYOT zx-PQJsv;@=QsjmjUAgRTeF{V1+lC4t*9h#ZN#{>6fW3n+Ga1%s5^C1O|N9-Q_ zZQR~!qXVcMmf60%U=kYA}vWen7bOY5cJsdDy6Ld7;uWw>?uIKr8%~I{NCK3 zNMwra7u@Y$yU00wVOTIwqxE>%8~JuT`Ppg=?#q%78DE0_TiU$e7?g=>cCEnx2K;u~ zgi@vxC}t$kR!LF&;}vezuxu!vZ;)>D(kT@<{&PK@zm%}t(o4Pa>K2QNGx1-H#%?)H z8^HYx`TUbJbBo=q*>W9U_diLErf(hlDArDsv>4j%zu4(_=14Azi~t|DkA@u{F+A0k z0hafxOYm$fH==^huQ8f?%mPaFezcDaILZGe8$lt|1vT6gGMp%m*Lf-x*Lun#JeKvE zg3(CEVWkY1!cdalp!m)paT@e*r_2X7J1maNzgqRJr0+d}O3aXoqCB5-cpC=@opLV+ zxms%>;0RnBF|Zl&`|OW&jbrNPHtoDFvNF{vez$w9#YxXuTtMXEMQhM!7=L;bxl|o` zYBbk5ORY3D_f_Zb{Di2@H^6|5VSp@SJ+)IEJjf$_1yLVl=oN}*9q%9-{lj0pGv7ow zK2r-BlIqyPyK;pG8FUmD$I-9yMY_0pSZcmOB_DZc^XYVy?mjSa)tImllN#`s3<)tR zNVJw7AvsFKF(!YT4cqwmUz1wwG)m#*O@*hC{%SW_4ow6UXVX4>B+?kieK4wv%E6_2 zO+X%jCw+Fa3yjKv(i}wy`%^M!_4IslCR?#1cgavdLVkRo8b8*4D4nOb%Y$=sP?GCz zXu_!w~D^A0{bVK@#m9v)!cj)m^8(_Ay#rc-HF<^ z!p!R5aB&Qyv7THxk7>pgRfX}}ig_V3vW%&-VjGjYBvy=PBb)KWR|&D?y);edJb%yB zBWIS06!N|$#xAW#>HU<9WBe&@|EG>u68lZ?=A@eUn?)5Q<}Tiy0l6dnChiltQI35$XG@$3(SV3xQH7 z$9NE*BQwh&`yf@DEvq9TJf@M*?Ua(6FM!@er0``WekGh-x>h9{E^UHyit^&k$&;;5 z^uIWUxTNaTGPI`8Y3N$w@D%nfHcKPr+!e#eCb~=RS;}nllN~|Xyub<9m?jgjiZ|;T zG3j6*cQR?OO6VjcoKfvwPB=y)Y>BfX52#edhw|tmYsja$144Yn$JZ7O?EGsB{Rr1p z@*J@-N1l#}9*DdY#kp7hr-rLs==KezM#?X*(z>5C2h9bYbNm0?nZD2JxwkoG)dI7u?4 z6TY7aovn3V9w-)J7f50?om&vIBWOyh3jCte$&T7lTqUh52)ZnXP;LI}Fc>gLRo1|d zfx90nZH&+G!i2Y~m5>TYU$v`{r>-$55Ipw5^#}b!Z)Wrk1u35H)x^YHEsp@|N-?{k z@9ifSFY4l#&dg{^d3Dau!5Vtq7Vcb*Q;JbSx0P-($)jzXn&o+-ag1#8&iQk`^fE8f zUY9r59-3-gzd zZ)DW+yZ!#^s^qH0G9WG3@3-KUVY~jyR^7ZJNmmXxwzqKI3F{SW3H71V@inh0jhj=` z$ghA2GMPme3DpC9X3+DCCWy z;ia>f*veYiB4t+hbeASiz4R-6r6dF=IfPn-YOIE0W>#PZ9{iOFr5%xi=hI-rSb(>W zad;S&xw}p-FMwaHg4A^0_4_bAXi673N16$%;Kr1rgf)<0Kh$?sAIU|-_eof$hO?Vy z0;{ehwz+oA$gTQE+})Tl>-H({ulo1ncZEu2#}A7=`ZEWLC_N$Ao?jseY%%R)j&rZb z5PC>xz6RLTev2WN|8WFu$Q7(15-VN&tzNon&Ey*8cDZoTB<8U(4z?vrI^p*ZjSZR? z-N_C-5b<>I5bfmK{o?N5A^v+M7oA=Y+;*o3@J)-9jIDV3p~6~wggo4TVW{bY2Nr>$@juUqTB+oraKgl2Co2xB=Fm_q z_zH~>&Q!>|!Z^@VipuZ)9p&IkSed>wus5_{>^F#JBnCa_sSQ;QzM>H1VH~&pw;&AO zw2x^2GfWBQ#1>p%>-ca=zpS#ln**ne$q3&wypNRV{dEFAI6>d62q$;~3+chl#nVZq zO7LEhq~#|93GZC9lIqj!$HUL4g_Dv)%h*y3AE%W?g@iwF;Ux;s>1BPe`ZUl>U>1R;(7ZCb zg3N%xciS2Zc-B{^ksnG%wZ>I8RakhzSf*Y9^0QXLktBg0oJox!FziA zD6RSxf5qd0N1El%WocdLFJMXqiNj8Mow7)m?1esvCnf_hbg$!re^H@TaOk-)O|1Pq z^g`n9&exR}w%43nGA8XKoj62QomJYJen=xUGqGeUu=n^{NA=&0!cCJzh(yJan^|w0 zwW@xBL}b^<$eTEH@MDESq-@>5>Oh}Pk}k`y0UPULtp7hZcH5E89p>!lB&W}MU0vF2 zHLHSRZP`7xT!?D{b;0duf2@_(490WLU`_`f!znp688XkVVx>|viA#Nh(mN`}v}hkw_KePino6 z{MVV$Gw*5NyeNybw|1zce!~McM%2LTpDOC4#VYXaEE#aslyR=# zV+eQk8ZlI4Q8TN@LowY=Rz6&T7vO-O}h}`5Y=D@EqUb501h`n^~O9*Ubb0MN~}gTGVRvXZog;#P0y&+UHf z)CuH(1$1KEiRd1a8<_)t9@jFc=>6QXUdT!_DA-QDxZ{cBqv<}W%11(|x&@M+)`v?Q z9w(CshI&0Tspl5x7r)yE1^HnU?aFk;QsuaxilrfC=n-D( zosde77WlD>AM6L4QDZ)qX&vjn>-id$$LU<$8f|*;b)C#d)Bfmf>&XnjSGx- z@`uAL;xC+%4Mr`3IsIY$QA@FEK_WBSiDWp1kEu=+ee{%NXAn0ws>(LUecf!2MaOG; zo!gZ@svknj3tq*3F6L=Ed9&}by6*>MilPoj%s@w3_3;>Mr4?(T)l9~F_mYBsbfm(` z1XR}aO9ds!TrJT*VGH5Aj5OupkoH;uGV=%0d=Uvh#psu^daz@vQa*fJa!}=zT4Z6( zX%_DOoJO-~?QmuK#GNDESC)rIy_P3dYrO|ehu=H?Me%G>7Kyws=P~wte+Ms<0j7neL(Quez*MY@DGRh%(c{k+!q*7B%)R|hgo`~WrCGzW_t(f&j*W>GzUWx9d-amv z#vc9l5XRi0w5n9USY={YacxC^R#HiAxLc9GBd};EzD$oF?*ENi1D-9IIgC8Xup&oT zNuGyT z#TzCx@JXKYr-$Xpxu47yFUoNL=M{~@bJCE%^d>14t<|qK^u=m_dBmY#bihWK011!6 z>>z;G&jwaZ$a^wUM?UVfujfO>-KG#_$%R0kd*Q_MuVO#)%#Jq=Tg49AW7(D?Zl+A> zGmBok3Xffm(9y!loooE|J&~)O|L6#V;18S(qne3kyg+;+1u1P8J7rQRXHf>4&8nMMczkuIP`|_lLJaz z71{uc2q_ZXfzDkOn~^$8Zs~EG{4qF}@?x_lv+Ohd9@AoCGes$9BwkV+0g|F&1OD>(YKCo&sL6!~X zHCCi5wBQXLc(rMYlxcsiyi*|RRIZ}PbcuqZ`|SE>s!b>Zfkt4;hy0}stASTSC{93M z%td#ieea}tLWCp`cT;B#Z^d#Ce+x~ym}>H~hSlk!FC#2O&pY{k374sY*(56x%-;uB zqa0G`;lMk!3^jx`Ya(_tegyjZ-D z@9SfYSMd|%tJH{!q%8sI_rzd}2{A~;1&wt<^fOp&6a81|*tNH#J`3Y_i03Tce>q5< zluo`LAaD7XP{N`^|AGc5mS0yMLs6^j}TIBbc$9<51ekCKz>ZY!Hz}4T_^wXr&5e zB#$i+kwd!110f9WTUD(-_?@J=O>Z*@xlqqrli?^}G11Q}>S)Uy^kZ3}=|dd$#V+SL ztb6|Fdx9ey`+oOva+zRIhYT6URl@?d&AjrC+(E)+Uf@b(2jN7{p_F`#CL&uZOo%e9 zftoWk-wAT&ry0)rNn1|9ZzUlXwC`VE9eI+T7cHIZTsxVuKaokru@*DWDS{`EdEx(g zsa79#Q%4NU@-b7$*3I{nH*yendlwSlbEMn58?X0Js^xEp!9Np!{dabkKeN8LfdGYJ z3pc2co8n{dopw({Cr4L33(7k^rU8eW3!-0eS++~cw^et01w_ewZX7CAN5r;E3GKHW zD%~pBxaL`DkM%WZg^$#=W_s1t83nc-$SD7#=qdxE*rG5Xxpap#3X61iHwZ3`bazX4 zE#2MSE#0wnBT`C9Hwe-QzIngch2hSfJLjJG&Ufx1LecowC5^RIb*o0+b}W3}z*W7o zabq;c!wC7u>Ft0qqJ)U~h6>B6$vkX=Nkbs6VLaUAIxP8K*Ott%QSaK1%eMiuyw{*B zww$Lw zI{T?+DH%T+^vSMqay`B46OGLw$UJjRa@5C@2NjXFvbyd@eeafKyoBfYQ)1PBDTB<~ zEjvbiPs)x}c24wi!6x|`q1ee=VqELiAy zccAlO+}#_4GynUOuHqSvK+LvFQ8$i4Hk#^FP#;|@Mwt>vOTwb(5l-d8B+IYp?z`f~ zChusH5%6mx?oGzd*Y+r`NUBO0ri@X-$@{p4ZX^oSFtpz$uogQ-G^lS|5ORs*oxyYQ zMG-Pp#~aOu4tMZVw-Ntlp_~g7U3lh+Vxxg@WQVe(=~R^wMuwsNn5NxXeALavOgV}dcs*_^wwy1$eyu{9M>FDE%FuN% zZ2M-Aaf#PxEx-&`eDkzvy!{kLZ%z@nX)JJyhAxBSXlLIU0+|eTI_ix3ng%*(4yxwQ z)yayNX(!<={D5V(IkR1&CWl?!c)f^45zx1P~l>VzcC7~Jo$U-5LY0=%L zL&!(QAm=~2aW6_u!0Zv8$iJ4U!74OxQk#+S6gMTDZS&$P4|d_K2%gj5siIXZmk_Gp zFEPW9jK0U>Vdx`{sAs4PqBWt1SyK_v@w#0Gr`eb*R@_x?t zu|FPJ3~yM0H-y!9yzRE8iyk4ma7J=saq74^Z&B(uo%VFf&=oPOL58QqmM?x06Pxha z-9;N8Nk_wEFm}wwu~_*?WkZ7A%%5?5kc)q?+az!-Gj`cDppuu*<I->OmVDjrXliYThSdZo1#c0{_8vl54IEt;I2p{3mw$qz z6Db)XCs3FurVz;tFm6i*et)VWSyJf;@D-7xwmy?UEm2wcce~`~Axi?%h2jtle>MkU z{F`TG`kZg(!`I>(91>CFtj5juhIk`MD)1+pQVlu`rGsy8yMWU~#g|?S_-FzyU3yjR zFd7&VbK9Jx6O}YTcl-hOFLg$}xA?WJTs5f%-x&OhkLonFrRHtq2ib=Tf5u-NyKXmY zDIBo=HKkB>Mc!L2&U|1D$vqT%wNMX1^iN6W=Q_y8; zw?LeO@<6=K7+m+c@<&`8LYce$d62?o;LAotBR4JRPw^2+K!O_lv73hx_3z+$t}wJF zw0-&d*akE3jKS8*yM5Pw$FRc8S!{L;sO2sGC($A=<{ML*2 zu|hXVk;@1OQAOobqTk=`VV3#;w!H+Ov<=WXsxNdU!0Al8*!=^pCDQC2C2XK27p8E( z%=CVAs!Zz67ct~>FlKm`p3Md$d5lDZ&d*ID|BE$;M^Wy<+WDh#=NeN!&2- zGi6;pLrV~-MVtoF+!ze?m&yD=ejlbU->25>HwX7U;>$Zv%q-vXiV?wElRNG!fS!hhCVTLB6e0$c9dJ-mgu!17tNf|~JMQdCN6L97GLJ{6e zI(hPw9?kHg!k%|(v_1}pt^GF!{eb?}QL@nY^zL}axxbvZ{B&We;+sMlj_|i6)b(+h zd}FgTqKLiL_7+OMe8%OeZcG9KGL>}N<;1%tU~qqGW8uO5iElliW!1;|Z^$En1LYV~ zFM$?Q%X$KQv+VzV)XtLsvvQd!6;$bDyJ@wA_je9^^!GcN5S4Pt9uge5iP|IoO+WUa z%l0=4V^sW+zc*cXMsOOLMqlArFvWWlcbv(q?BiNa898KaVJT}$Bg~h=+B3#%H8vbK zmgG3N=in=5{WCLr(WJ8 zRhCk|VQP;kf)m23IA&Z|t}A{;T& zLZjaONQsngG=+VF9yv>!h?XFKZy4bSKC;5gh*?j)fmX~M zAJtP(FT?h3hg3)*Z&xsJpF}TQ89u55vZBh*td~$BPaul(3(z}cw4Lv8@e-VRHSq%r zQLUy(9NVct(91WV$N1b$_qVeFlJ$bhz&jF)W2Rhcn6&Z*+(rZh;aiU=Vkq07Ij9k= zfo}J^@cHCyybzt8!0~zt{0Tmc5|;?cth+*kB0z=`Dy&#>UB*7o_PfZ7b)Yy1nR#>L zMnUz1Y%3t#GcgLoh|l`SrCw|?5dp7 zW?hg~(4#+bv8_DJX?gvbl_+-k6Yn>v-Qn1>Fy)VU|KFEEop%Gun4oLF@td7s{;F(! zwfaWV&SMXq-4ez2qjwSGmO>L6yK=?KgjAMbI%g~r!OmoBl2_F_eQBB^N+vx|D^xXH zMoATeouKc`Izc*MB9)SPY3ADiGp*a9SDntqj= znftC%@{`zGm@D~xp$_OqXC9ZnH-2`04s~{ZAGwYyo4IJT<^@9L|hT($S;{F@selr`evP zhcIm9UT;uaZ>&Pb85jCj(Rs6P$oHbzSQkBIhjW+%&UX)lf8uTTBbUm2BcX`ZPGxqo)FZ{ST?h83|#+#Ylh z=BkfR)iAO%gNWoZW@`F683>cAf0=-T9BQcah{fhj9ai4h8~X^<*a*iBm%jYi`$ZhCHOu%7&c!6&JYL3xsHa zPz}!vL6pOXXu*;e1BzcLoT8)B?hDZXq|Im>5jXkgiOEs3JUmD< zz{^hbK~BXreYmPD%(sQe_o}~_mYXmd9-`kSkXflD z;~VGPIhQ?19vrx+r^MMinG^_)!akh)%RDkt@=laz?KK;2JO>NBA%bK(vLCSgKB394 z%kQV}_G|b_T7DCug~|4i-hFc+_$Av|mz(oh z*R@7Vlge0clq}@$99;+Y4sZs0V_hwgJgHOTBIoJnF_LgenbLm!Q(r1=B_U7g%5!w0 z+%6}1*p1aj0QI?`KvJj1f%Yt(0(e+eNJ?RDPWQSp($jsw<%F-R$6z~9KzEV5j#pE_s;6jRv8T3Qm9G~s0-RC1fPX$HXTC9BVR)%&0 z4*CGfNz>+7b|g?_LNK|H9H3ltFI<(`0X)Oz+cCp0azdSvl9U*;>%}}u?N}*R8hbUW z%1W54JRLu+{sIjT5q`FHQ6;|4{U9JAf|iG_SlH;_-33XKzs8J7ejxhA`LqTXBMF>M z)(~&()J&QsM+x=fLg3tqATDn)zs86`c$EnNp+y>t3(F(bP0_3%7|7nCN=a}jSVXR+ zJSov~v1n&iEcJy(@5%=iIr}X1TEsg37%Fa@FHmnYs$O4xi(*(9QDj`}v2TQu{U$K* z+A0qDWtll@;aY$W18MK9-`q(P{09s~9=in0b7V;;!YNh+*Sa?JzEd-W6IIqx($X@U zUHoN-$5AUEZGS0x^J>@@V#c!n`y5YwdC$wE35NM?B{*s$JIYLYhdqv%UuZVgAsXb; zPB-LJKv&+yHTvtD{ht0;O94MJ@Qq$00V8$JmJ-_GCtcL#!`jw!4!=e%jDhr!!sYvd zJU&SmU4>B5rx$DSMv+$&kbkWjmXtTb=oJYQT+wKvD25z)XtRuLg^6-GTdwL+77;c0 zX}G`|D~1~`O5V+3gVqs=ATr#I)NEPW7TlsL@(Z*>i z2b<`|8+@>ope`Kp~N#3cH`x&dSi)m-F$G z7r1R&t$7r~YzEWr-tcwhmoaVZA*~pLKb~s;CaL>n5fAtYB{k#ig7k*?Ri+~1TU)U! z($yQj-cYDaG}O6fDw}bsU*{+z&xy$eV>!GhEYk7uhUTB6k@t&GJ5SJX9Dulvtr0W6 z+gU)B8l)ZCH@MK1|dV_xHOpP3@5qK~1*8&`J&sJA^0)h9E(6Lo(CYS%G0i zg{ji<=05&2wX_M6ug#u!kzR@2JVIA&8G*L4L|{FVu99-hBp=>8(mF5M{7}3Yz8U zSv}y};`7sJo~W+IYpRL<$$*R(RO|t7Z=(OP`en8?H=}9Yr;6s10T9lJYpr#ke^| z8H3*mS@gz=a?C|ca6Nrri2=QQROW*=Vva4sNp0tbP@0)HbkURXdjy8ww>q*g8CH2}AJA?%WCTd2Otkcct zuIUfmV6hWqgQ_q8?rr z%SAU!3F7yn%A8gj|t#Qj6 z3wTnjbQu0oZ5gV75Z{JTg=y}XSM};2IxwX#I;0t|64mERnT8v6poWL|DCOchdtcJU zwyrER%J&7cu>^_PC%^H0P^-V&uoiw_D0bG9-s7J@-M*_U9{5D{!-q`E^!@aaKHheL zY;lTzcSeNT2!81<{Q!hNi!))`ge@vEPFjZmM`battIw>KCp5AVoNLMa@yVbp9IYJy z!mOWA(@fK6>p%(ST;9OmC&QzED0%^aY<@J$ z22x)pObdXV4QrZRN_a4)I_dMv4>D2BOeZ}g3kYn@n%OaFaIW?+pG*k$#y9r0p7QoR zN6EM;6b2eQ^=h2*#Va0~)Bc?Tk&-5zb;nUi{j&zAV)mIADbk7k#i-VqASd|6>-!T<&O8VMA zMWOpY5Pa>>F)9ly8|{4K9BcmSgGY~E!_%zHFiG-=!;B(E-&Juer(~*c-lb+b zz9gXRfZa9Q%d)4Oav*K;t7|u%PD%1D;INk4h({P-%@e$ppoI4HwPX~RyfxCb%EtY$ zBa3*VA7aK9$F7Nhf#fXPeDC`9t#_tyi5P@lw{^ZG6Da5jz6l0E!N4`Kc#Urv%rLQC zPDj;kCDb0In~Gx-QX$$h2cj@uVbtyK`N>bII-yaKui~m^tjiwXg`e%WhIf4)A~g6* zzWAmq7Cale02R})q8?vvNdx;Fdtj%<#-cFdr34gNdVPL_f%JRAe|Gq5J^}74qZm$f zDy2}XU$E)dC1Atc9lw*CNhB!-Htrj)6kO#!yLYHH(og^ z?2-nj|DSF%XS<<0>_FmE7pG}B#+`k?IvS$9r;00Q#3%A`STB(;M|YNV>HiY%l5fGB%pTsqy0oB zn+I;B@FI2=2YRFEzFsPZ2XllT!jt=z^eGnuryaYXK_GT0*-YWfnYtn{0T-G^U`Z)8 zdCqMy5bPL>@8`2B=@JnEyO$u@pYU#ubwUt^?L`8bi4VO*xfUf=NdYdaG4*_#(D>0( zm%}?;hDOgcq2xtzJTe}<$I}qe;UH}|{sC|%RKX__zsq_v2H9Z{9sY*ihs3a`m?$ww z81{(ij@Fz_!(!KWKyQ5q?W*KMdg#?=#yfLK85p&^&H>z}YgAB5bv!QP|5*BEIR|20 ztWnx718@wfv%e^$Qr{D?-5+g&>5FPiU9BQDC3V9`-#<; zsUb+>x~O5XCOo1QZaBi3|9$)@p9u(Ql|bt+YHxx-{9o5C<6Muj7Q6e!**Ey8HoNlv zJipO@Si^_1Pr7ulJACT(aDoDBlp}S$OEYAFW2~B);c+6Mr6tIeCP$OtO!jG=QF>~E z0C37U=9ZXl@w*;Ofv{qoB-XIIS}%hFf@{=nrqN3od3LFc)JCV$ibmkE8Liu)Bz&|C43fH1)(t&5&Y8!)=!@|=o%5R0w$|mwW#MV*x?2-g=L^P zF(K_CIqfHN$uAUgkjwD)s_KuhtkNvup=zAmRDY_@-*Kq0JZvV13BDum9Cg4>Mey(9 z(w&`8-nGN+ez5_4fn9wkXk)}wXBdEp7v8GLO~x9IYomjaXLRJL$j$}886$OoY6;Uw zU5QrGLAZjW9EsE(#Vh#RJozx2Xhp&WVu&q%&S%MbMvPlbhm$IzPSqMu6>LkA&qN1mFNnf=#HE$J=FE_mGyexN${+*pEyow8NjcLOA=9SRph9S#H0`oVBg5*_sj z?w8}~cf`ii+#T#h6mR65?zBXrvyAGRehV~ar+&oBdBQN`kQ4wtwTc&^QXPKoB^i~h zR-kgU*s}6hA_uTlf|6t}H*&s-_r{5`v6mwqJ3L9YL^Vo*4Rp>89YkQNNbzJRSEH{b zKgD{F$&pn{6$wu+4Eofzzo9q2oQL#_+eli(`Ep^zNG_MkSUD1HA20D;s78j0B#!_| zcL0T;&Bxik#?bQpZL8=XCbP{Inlm?|DIDu1LYbb?4zHIm|f=X|;Vf_%bJITCydW?pi1(dJ1rOCqwY-$f}= zE7ObiGc$``m^J3j7cvb};;a-D^OF&;pCkpUgft&{(i>9U_WImx_HG)8#9@6Dbpa@-#*MJi!FD(hSad0%S?9#rJHKrUAl zQ;5Ep$~8A;TrQHD`U!QuufSn5lm*rxy!n^qj5h0^CogIcZWHkZ+*9%OXsc-dHZXh->OMf7nC! zY>N9f1TOqgPukOT(4%t061?%DP>;Mpopn9$hPb> zy}B-_x}yta@0(Hog#!lxzLi@HA3y&(0{dMHPa7L5Lh<6LR&QQ*+(6v4NX4CnP*+TwKQg))8;-xU!1B zT=2KeM{o?0lYlNqpjbjBYxFpk`zwf2fdx?Jn#U?Rtf0XN)I(p^?3A$Xr zT>;5P0YkU(P-Tr?R{K}3@E3O6W1ns{lV+si(sz4GURe&u5-3it7+LDs7eoP!imqZ! z$M5P^2K35>0qP1i8R!-5Y8|DVO$R)Jb*wbInGYw}-><3_ewBP7RH)MwVTAW@mUviQ zeqKv2r-I~VE1t5P*|H(3LK6wpQ&d0tp|Qq$*Vx0}8z{EmSTb*{?nc}J>#aNb*OBG- z=?0#-0k^vpaX`ymvFSlH@YFR7Uo7iMk_ISCNf&1%EDxuLdwtP*073fMXqLWGXGQfV zokfV!Kj&Ai#!*)SC(j>NYw$D~+V?phh74)wcl|axE>N@VN3N1P!HC;Gg_Qp3(d_Fz zAwx^grb;7_OvS%T7cb7Kohu#jA>T#D#qay|z5C$sn9>-@Qa9&><17mNLNi zx`W=Kx|c=ij_6q3DD#@NbsmbkO`uiI`mq#!*|BjmcSh34pceVll{4r~E#CENvkwxn z>bUX1_Ho}{NdK&>%4GB>4fCBHn;KJ3@@_Lh^G}=*N~)!XatjQ8cukkOP!cMOKnojO zhn-kQm!rOeApta@^hiV0q=i12J@n&5JyRlYkN+ zi7#gtVc+g>w5*hYFTTzbg<4HI6x=JFyLSCsP-70TDe-T0HM~R=F7<8(2CE;`7vnH!C@Itf}*ooP}sqJzNZUZS`qui zY4iQ@Z)|mknj`phMl6o)%~Sa|GVZbnd+Vr!q@v7)WQKR8T=#qL>*ONp*nsN-cuW#I z>oc0#9edmpPVl=t-HP;vc$+9UkwCB(AjEq?d|+UB8bW zJhYD^^pQgPX>cYKi`gHt;y`x-qJ$8x^jc7z8X6voU;^rLZth!ALz+Hp#yBkUi@*@$ z6{o|2=>4fQdS!Hh!LL?hBO`b-dvVR4%;)_&=&2qx3ZRIX5?19ics@$$8MOnID#IhD zcw?$%rNvctCcp#x6YeJacEj!8KRafow9{eIF?vR1`fmR{^Xl3;D)z2wP?-n|c# zxCFyswGKb@8r{@yYqg%S%$0aIW%^@z&{TOq7A1lzAv#&J$LD z6D$m<(H=VXz7;=39>H7+;MKFtW;=rO_$`53dldK!7ZY_eY)yyic~PG*jg@4ud46Dj z185Zuw68a%Vtp+a^o4qU#hT~Li+`>+qu;bQULl_c5|fo$EqVij8!R@(^6R^&D0j{W z;M^b6o+?dUej0`7#Qg?frEWz!Nq@UH+ITyoGu+-C+xa+X_KWD4gOS~0taNz4D{nec zd*A~qd+YJ9V{v^n9VT$A9%??PS|yip>=RYOmFb?Zk(E9%E9SuNxr*))cIXbe!UI+Y zf-qtKpxKx&5d)=T8Xf~Pk_0oOGus^FC&izuV7};c zbFZ8wA4I=28f@{o{laHmkM>wwKOy=}y&+#zo1L;sB;F$uML(tZY&s@T;>B0^&hVJI zDNNm?(W|vNQooTW+feah*N+V0%Em3KUSFu!(|6_)1RiD*h2OWz-P;b@=`B6L@VQPx zN;NdAkY!XtB}4BYbL>^yW3rAkg`7V*=#vA2BwDu6VBXU=R}yeXNxHEk%gs$sT%KpU z3+OKoKJu8=9-a_717rwm0?hl}U_JZIC_%V9x((}k=*m}w_YLPRX@m}&G2VC**y$jhR?3-JDd>LscG=!x^aUXsU) zpA1FbVrir0T3HZ1<4Ch~jZ{c~A%UhXg!#itJcwIr@4X!(skPmtEnRAoj6o&PZhgCjJ7ugL*#L;`QX=0R989U#O^~OpoiQ zcOw7$8r?7JQ`y#a+B|9q)jKDWXX6dTZRk1=;(5e`yjdR=(osdh`|3l zy`s!qK>u#EGsEEJ6nI{*VKG6u=|>*rAV7IC3`=YIj6O)yF=IP!+nD5*GSw?MJ!_9S z0C!iP1D_PimQvOsR4$;p5Gb0eC{#~S&sIhcWoT74KRA4%f)GYDRB&qlHn9T~LCte2 z?7@^pApmEX6xtD{R)yIt2qW3=HSB7Lg8ke&% z^RqwlxT4$pcCt!hlNP4{Z!+TE-R5op*GMNCA^Ka|cDYxc)nw{;9wwV4AhgMImw1|C zN*}n+E3dnd&*8flB|(+5%Kl<|?n!T1%hoh3HAYZ+*c&9gZHRDh3Rxw(w&p%2J<@)R zf1`v`@_{vhns^g6m3bb`2En~*Nf4G5^`6tcu?-1Q=Kk*|ai!QJujyOBt9n7aOx@7` z!lu1?EmG}U!{y%*`=R~mb1$D&~G;dE`;RlG^RssysBqTL3 zFWf1Uc%z8Jy=fs{Go8R1_73d-NmcavGs<9yT0>C52s zO{Iz+=Bbveonbx;wy8qn?_0CX>F1UPUqf*d>l^Z62Yz2vODPx6^M=YWN{2m#Lj%#r zh4in~?%nbF0@ysMIP{E-xFm}g6XYBs_$9g<=tw@Q0IZVz?K>AP&zA53kQZC)zLT6@ zG`lESS2fll$hPFWL_e=*dFJAC+xk-(Rl{fiX0({i{l+UW0D;(5Cu0h}AFRs;xK0_t zOdNH@#}BqE$Apl`)71s}1$4unZWDrQAIFOq&eTfA<2P2Z|vc`Qzo2rbxCt zX#g8}Gf{TYwPvY90P3>nuwSoBoX2JY5|U2aP5$X&D+xdvbiO4rDbmH3NoO}7$Pb1? ze}(pwZVyCC8s58Thc@ni`#=jM!HQLi0nEP>*F;sGZ_4`ae!Q$G<};9Wms7zt}%LOHMDG^W_K^3BT`5JQ{rjnDP$ET%6wj?i6k7nBUmf zgt4YQUX!E@QNtkP+dBV5Sc_5Dy2|2%VZqx&830UJ`A-{`;rZRrH%3AT$X>wP_@`Yj zImR1@eTLsiPWWbk-}Mn?m1*%-7iBM8OBTM(Dzn2?O<@o2KDd<*pgiX3R`~nUNPZ~; zz>2jo`HsD^uJeM+{}D@svjZ1}_7UHd+AZ~<}zOXB4|x8rrC!-lT*)jEU-*95g2`t;ta zKa6dMLy@pI{EhvZlFaLK&EYD_Nw_BWKnqnTqRw^-g`-#(Y2)Rm9zU{knerH#^ z8+wNNMD0(Ni*s~1lWc)%WNztkg6GiH4nkEcz<#Z+U{HCgu+vQUvzlJgO715$`zv%oz+=UeO{qAg8AH>>v zcDB>Yia2h3=XCz3s6X|BMY}Yf&l#nnh5HtH3PCL5HAJw(sM(KW!^;9vt`YaiwY~ zXoC{KMT53~RxVAoRTIU=0m`Xu-m)J}K3m@|FB(WxIJ{GAd%U;ireg+8s2uO&G1~~- zx2&9)fOV>A%7!V4W`d$SzJ^2{ixl)|%E;*~TkFj03)fZ%b3uSa12)=3YM_1EAUuK1 zxhHv9J87)QToJA4+2f%_1m5Ek=f&s{f^Tw!%r?On zY)2DrP9I)?!TA&F>UKig8HQ{3Kc@strDn1s7qQsd#Rw1`7SC6oOr@UTvH-EfpNrHl zTU!9ZjGS-cNWK>&f zB1Wh-uXYqw$|Q5@Py{w39LtWJ{1hoj#XkZbedHJ*`SGJk#1Xd}v4SH>#P+-8F%id> zYI)?B^XVKwxH|W(QwSfwnc$<4;0OLJ@TyRcqT79kZ>$%!;LNCpx0F8l)QpE4+p6+u z_=0!=F2_jv>r+6-ywQZk+MoN{WQ)x@T(!?~)5AZA%2*bc&g%#} z5m=Ar`(9WtXQhE$*B`42vn1O(v#&q`82uIYI?ZXLsFMJ28|D*Tq-6Y$*RjpaaaG}H z42RGclNBcfdJds4IY@MB9Yb~1Xe`cq(bqGv-rar*Ucz)D)Bs2y`z2EQkp46T3xIQr zbOjV`|CRaxB1Wz4Qp#;p_{9n^Z{{Q^F$iPp72p3ao03S0Ka_j>yKf`xNIB>nXku)` zq*#nZ_5%>)&i!|5d!4oYPpvk-`OS(~4jOR}g zJXd-9j*H6vQTg|1Ga_r^{?Q}nb~&4 z$_|idk`+^}$?AnKN`D8Wfkr;VClCk((K=XJ5hr!0P64$O=T`~0CTwr1J3y6@pM

-XT1@i0v=w0w zMVU{na+a%`RU{p(Mi#tEqp0A$q^M16yMpKS7#^;HI~zI7E#vdfxG!cw$`Z@Rn`w8C z`HQXsp%ErvjVU7rtXf}YfS$~atE~2H1X{O=Au~}=RMebUQQ>Q%4^uiUBDI9N7f7rP z&Ft+Fiy$bPh=F?iTJH}CFf5^N$1_WVYHQA*iHDi3G(V-2*2Kny3xcMl#jW;Vp)F>6 z&qbtnpuMjhS)bs`FJ&KB6!Ds`_bxr~8*dfmw*N8VpNk|2bpV%e|7-V0Xm<+wT(sq( zaz=x}E_S2WaS=elE+4wzj4L#d{}=6TL~I1woRIw4estT7Lr>eGY1Ag}CWuqgTp7Ro z$Yq~lmX0#4g;Hy+bniv~t=~L6;bYhv|D06KtTIzsCm?$RVb%Gudx0{pwzL3{PQYMy z-yCzbi>UBEI9wuV?btSN1&m$7`iQAz9r zSkNajwxLIs&D<1~^m71zd|z%w>}s$3{U(r#9SOL?g|qL*s*wf~wy|p0T^A*IK^AFyS*9p?pOulxa-F{lI(^q@J$lst82d0g=vq?0d`EwNe??4PX2aAH4~ zQ}q!?cV7&3LbCz8@cwX1+fcylW!jDyGR|Zc%Wk)Y(ca5r3UozdVaiU@iehe1j5W=* zfEt43^G3( zWP0D@>Go4jZk4I!erdF6JqHe`hmqFGeyt@UuoSK7E~ivPJKzbdF~48e0~p0qw!B8e zj!wUhUMWr9%Ksp>?b-Gv*y#!i(_MVN7x~K@M*T0ClD`mV1sQ{ASEGhWKXlPQRw1x; z=o7y28cMvJ0i4O1ho&>wa}k8JLPGA$bc?|fW( zA8)BG!P; zNf=<2-Es!Nx)l_#am_V_a9}@qCchHr^Pb?AwQ6{z`#wum_MzIvmcAG*U#7Ep%)Juq!@K3T(66qs+vwCtQ*VOJc>e{DxcOfPC)| zAT^VhemvvHSfh^&+U}a+z2o>n?o7!uHI_+qD#9DT3=$rJzXK(7xU{IAHMb6|SBiB) zRsyIxX4+51a1vtv?k3z#i3~x4sZ5$KE!AwNYv4fXsNWg2Tqli;p4!A;2uy@hb&HJ>K~0!%7efR1)N#A5qr zu{RFD1G=og2!F!8H4c**>~QLZ@%}ZQ157{gTY}LHE;TbCjl0ytuTQoS21ntvGz5YC zY4lX2Wn6Hl2Z#%hhhM4QS7W&`BO?HPK!#7)Efan4Z;*s;XZC$;_g^0%G_mj+I6fl; zR6vN$xsQ5T+lsVfMBGhNIbM4QIPEF`mIAHAwtVrFHtO35z}5~y9^Ic*I!F}V1>%%f zn|~59b#AeXqsm5)l>x6gn> ze3-S#YRFYhM*H-gC_r~d{m<5|a3mVy6@YVE)~ra1WZz3vmDyhdm6p2f$56h1x-WQ+ zW5J19PchN6jP#;k^66*6d+tT``)cP3)qVztb6ihSq0hy{o5yYUn%^QeN^n+cfBWwf zN^He80iIpPt!@;(vpn=C=l`*Y63puWWkiF%*Q_?1*WMLvf?sVlKhO)0Q5t)Zf04u zcE_7KYAeL)i()5mW2i|{=>OSv0`L$qkVFtx+(Ty+8}=N)iRr((&QB?jmp=W#@Tiv1z4W;Vao_CTQi7n$L#}mWDrzjo?K|ee2 z3-DDKPp7*jZ=XWX8h*_GhO!DQ`Fbz?;lJuH#ik4sNSoq$+_A2iH7+cOmMTj%h-j$N_m_ua&wm z6JBpmHPJ!LBwRorR%kpJ+95RVF2hiXZ)a*x`c}vTyPH1|V7+|1=vOBjdh`+_cJKcS zDjN#V^X9wPs!E1H5*64qp%JqKidUME-X=GnIc9FYitL7<_oHV@f34e7;7vB9NkQ(P zuidI1+mBfBh-{hY)VeYB`KO3_3=x!u@tTgPA#s z6X!-}UHQsi;Jhi`L_=`f3u_Tk*Yry5xXea|AlB(d0c49)vn@{608tYH)*62DC>ONj z2%Q4hbPn}S66za=dd-Ryih=)b^Ogm#OnrN$&R>aL2e$e$EHVVzhyJg%o8-w`J=hWy z8({B))2GV)!BKWN@Q8?UnmHfX`zmCR+%>JyiG!SAX&fcDJBoO^+3bRh$v*mpXKenI zjmZo%;s|c->m0e%w^KZh&0wQ8mmbS04cUb&0mV@}{!6B2(@PCAw_dl;il=04fp3qV zL6Ml(4wRL3vh-MV@Zlls{LB8m!?p~I0K&tHIaDWE%)i?9w= z%iE%GEukt%8PC&ME3P00!qXSa{y{35kV;D#pT&Fu8nn{QjMOLQeK7m9ll%NO?JduR zmDy^aUJSlILh3P4Ybu;*=n)LQ*`2y($JR78SqJ&@V)AKV)0m~t_Al$c#-4 zqW(+D0xG}T>VXd40idM-^fblW4L0V!Z+fFIATFh0DIETy z8#|h?0QmW?j3d?3PcdHtMrO!eaO0#8Q)QIJ5;`Ru!>(od?$=oU{NHZP*1rp}6ZpIzN?QffO3mNUcZvL&zb>Z7# zoru(nd1vK_9f*r@_3bimKp%y?+$^Tu{GAMn5=o;wQQ>@@W*K3HR)2#1^ibJ&R~@Mg zBMsrpo4X?2qvP8FmY`X+o}w7{7oNa+;vfO`&W_l3Sqfu@pJj$p1UJ!Y`xf1;6m_Db z`LU67;gU3+t&5qd-5GqjIs|4Xwp!0>Pj2Eq3efpb@J)@iC?nvz@#TgX6LMiDbDvFq zR6-4uvRhb2IPa60mLDOR?ctx;LpfmhpsMeiF@ZVNA=mPCq4lzE%_T@VjDlj~iJiLW zjQn|8&)=F`ziDl82D4ERC`W?7OJ;;Lf5-toHm{u6!l_Uc`R7D;x0anReAk7=|An$| zq;tfuGH(V0*78V2n$zff4t0*u81()ex~ZbmcO7B6PVhTwW57ZLn9S`+N> zK}u1AA3_(I{Se3^d%e;`$WQ07Z@7fN8MnSUk%C}fFGA5!soGO+L0NI_clnwBuFzVU zJ*vGEzG>U~A7B*CX^)3WWBw>=n}NyQgo!Op^BMLih87dS&uUevVNWt5w?!-tb)&Qk z+aLn)&fj{u#HgUpk3h0-Di-XUUF#zGu7~>?_L*h^>P3_WV)yqa+C0rW64&=B#%lLQ zEwTBtK?$$4AUKTnc1SJK8f>s$jKssjonJx4@!AMY$kTqW=_x<%x^=<7_q^vlq`wtbQ+4@BAy~H@RB6%BV|~+NhX7Gf zysLc@@>TbX+DY}&Q2e5lvSqiba{_LNUy7wE;nPT8<+}KooUmWYhp+Z*JE`FvxE?KJ zZ|b3mQ@%~asP~Xm5U*s;`)E?f_VUAILJ9{%U54nDBG%Z3wfL1UokYf6Kefb@?)n2F zr|fs^9YpqND8xt9P9yk!&-|AfK-^cfby{CNfrgIg7{}{0pYNs!I&|fV$CoVxvi(qv zD*vU8-yN%nG4Nt!i;yp#Q;`Cr7?23(XpES{n$@TE47J^sl7uRQG*wOfOPh3c?mZx4 ze52|aWHhj;6H6gc8MN^!czTli=%e)}xHm~|+S4yJ?G57(|DBufUHxsf|B7Xnqmz4q znwz!yv*+*HUV!pESeOlX4dpp|^Ynms+fdh7OkUL%q~DEo1%oT!Q%YZG#st7cpSnyI za$VL)Fvl~ZB{k}@Kcd9?F#Gn->ZMf{sA0h#hEO2G%>0LCeH3&1yDi-U#G9&({JWUy z`|PM^v6GNavfII`pkGBd&O&Hhjtm=Q%w_SO4&aTZwPZ>Nimb@B9DfphKluLmfuOit zG00Au@!q-kDQ)}emV**L1agkwyd(ALWH}my)t{lazwO6W`+0yKtM_X;E1O+wELae;a~tMonCLN@V@6u!+Rn$ zh}Re1>{4NP*3M8oaQU2L#>;dXSoyn!h*vDFPKbKV{49tiAYKpLC32*45vLOhJ)A+3 zw=&uVzq>sIAV~UsF*upI3?|9KWnsiHGWSg}Z>ld8#~+EZQfC7_1<_x8 zz19+cO^CbF{_`1TQH+USU&*XI3no`pFP?a4ILSI2-U3u{DoD1Jy9oV z7w_&2bI`fnc}S@uGdYrE7ek;Zpm0`Q)`{ZLoMOb`2i`NoCa-{Vj4^E){@iU_c@o25 zuFwnBm%Ph0Q@CILFY1-ceP5M$G7=g9!w#Xs`K<(|yd> z;G&%vQx{m6k;o3M3JT34WE$E4DC* zI+ADF2H?_B>N`@z(~~@0{R9dHoyN-~_FIYuNBi%<21fh$+~?P^%;alOpd|$I4H(;G z?!*IS#5>n~TsXVWj3++0;PxO<&bs;Y+r9_dF}Zsg@jJFZlpneavMeSW!f4mwo@F3{ zpS2>!R$CbC87}!DvW3RP3=;fhyX=Q%zqNw0bsSMDWQNMe^R0dtCMP7!(%-KHqB~?5 ztLq(ILN}RVyf@_$=l8V0k+v~NxI`(kpY3E($oaV=2x90nf;tseEiKLC1|;rXwJg(by83~d{?^j~ApL)4+#>@r&q1mM4!t3xxnaT{vzd^10&Ea#5S>s(f z1sIr?aua%|NnND8sMvK4zM!t?gXz~#9Hclm)nNOHZG`+ntWSxGl`z*u7zMaOAt`GX zjCs&n*8bVbWkfp|#;(85#tY5B)Gem#*ZZ5M!a)@yJPvBVtgj_ejl0n|;tRW;fgf&N zx?>g0iD5!Ky3A6le5Ce`K|@IE_&u%3Ve!&VhMvpGIc;wgZl#4R z?J@P(Uo>Y9u064tW}|Z&0DylgJjC><=R%60=v2l_C>CRJNhJhs>pRFh21(*u1+8^-rE^g zkIml^#J^>7Z23iSE{-rM_8dHHv-zsWqQB%kdGMvZTHX9031rm^WPZ5%I`E@P%iXt44p)${oAzFIGxedcZ-L% zd@s-Zq`7S~;^r=hwYk4_SuM9!mwDsU9j~R=w)bOXU(=eyq4}5)?q%g(bG+ zWO0JykGVkQc5Z04L^b>zo(x4&e`BO=J#}Q)IH9^#0S66+p!HZji&k955L^#vB(meP zRg8c9MM+96n+jXLhyjl@6j#GE;dPahx5iksI)SgZjr~v_eBcg_To7-X6?&qzCqe*; zq;)QeNbyS6M$izbm-iFx40jV}$6(@i=<=(utem&Em1H;C#5OVh>E_MKJEDE@Nvc^6 zcx+Dl;%Vjokj|XLylDPBI@C6O)EYZsB2aJI!xl`Bb+lKCA)o2d*!dd^PyKbYAvVW= zH(lZ^rEvmx-A$6dhx_tlMcV61%FTz4Hyqv6Sz$7v%10x^wnxE2;Age2g^b(r)hGOV z81n_SHecUq*?LGskLy@({fJ&_-Te+?W8Fd}G5JHf+DqL+1mL#h&xUXtvt3kk#>R*^ zqA5b{ZCHv!sSjXSsDy)3spj%5$mYI8m;Vms6G+YQw1WWpS}1{=$mh$>oBh{VWst!B zip%)vOHgFGzo>x^eERoal%4)mES)*Zf0LR56~ke_uA!4V&GHu~Pi^0J!>{WLlleLQ zGst#L7;ou&b69}Ad+$<4?ArV>rr87Am>3P)1F(O^CI%OQ;eoqZt#X9`e*SpYnBWR5dX8XwnB;&b@2r(SZ>P{%jN%u?-Jna zLj`9Fj}%5d{QQ+)Az4Jp@CBW34%<6_C=Y6Vc=z*eaDDFnG>a4u5j*s3-chs>Zk(Sw z+JdU`PwodfTm;tL(QFoXz1+546S*{C6c$Rt0I#(7u_gxe|6gL8b(cbsIWwbxT9}f= zm8F%(4uI^*^RZFmPdd1YSD;>^TZc0wnAMRs5NalsRNsy@``D&JnQ@WwwH&As73_GIx<_>1 zhEm9|#oxu}rLID~)NjzAu4JRL%vqn-73t>&tgv(||Cjyu?_sDpCm%*VVaY!Cyu+pJ zukK^t(=ek}LIH<%8g!*9^zy}0GOW!MYsN}ap@-S02TkCcL_zUa{7*L(GM?GT7}T&R zoXeUb;8oy{%k@2c;hpx7!pNenT$4FOa_m&IsdR}F?OAM zqHHnu)|*ERZ8Q6yw7_TIaxixAMZ)$lyw=Vb&{=@5bHT(tbaVYPtJX5I3-y~ZPPp8dUIWEH-YbOnvy>r{oqi0M1=<~Txygr?J0VQ-+wkPEg3C}=mK ze)oa-$Lghm!E@nv|ulTjm4vI?2{pZy*z_BV3W z6Tsqe$6V05iIK7Ut>FsLoaIQC#tD7o^bnQNYo)*Gt3Go3C)o2wi9Ab)$IyQ%D&^L}o=ndL%2m1|PUf0clE!QHOoFOf|^ zVNxhAX4P-WPyvbz*}_vyWHOg>YG6>6d2HY-vCK|b&j3J6TIs!hna`0y(+>U;T}#8! z4>X9&&s`J%@(js`(lS9oSIvTe0rrJ32Z^)m0s+8wmtft*qp!H3n2mXH=9#^*r5n86=Pt3FQ9`UZS}vZXd|(>@Ni zfedzK;ga)Rl<^56S^zv)rWDF~1!T)1!I^ZO%B-R&n~i#OQEyds%Wu9qFR{dSu5M*k z`Yszwd@^b=@}$=#*?;dwrb2(NK?HGrY82Gf9~YD^k185`FQ~S=`>a}n2E5Gtk7BM| zZ?9n%MS>(Y&Xe0K@B#fLXoJW|rAQNNt%%e-AI4Bjm`vyxI{q@9#gLh`4W!bsVX6oI z`VRH}g^Qv=w~;HfO8({XSS{g)4Oh4hY zYJ#g5u0f%O7oRwUNx!KxVeUEZP5eUrhzN(Z$?!QO<6|=5KnyD!@Rs_u!WJ)i!}0wmzYkK4>89gaq6M$8q#-u@8C} zFTvumpzjUgh9-KnPbScTfnHv;j~Tzvw_3+T5WZml8z+9LzkByVLF%Jf5F7Q)Q=PAF zMa9E!`Kymvh7VB>e%CHJbYmvuFEEb5!0p*)d+1nu3Gt735=xvYlGLw zG^eAb1Ju)q`NV@0#Lg zi6N&iJ2xn!-O7R>EvZFwwZ?aRsNt(b{5%1a@Muo+{nW_^i>ng{OGR3+uiYFfkBOaH z*v2iH6Q}3Rm@V$^k4+Q-FHo)abNYwFYVOd{|Fyd*H|-1vYIjuur^Z_TdM?F8!}3{B zLZ$|IIwmz)QckjoV_njo?^L`OgO`{f2IZjs(NtW*?yLe=9y%=6CV@`Yc@EJY+&dp| z&zX?2hY9TX(%S#$Da@7^C0g%n&c_ML#xbIa&{hS_=n4J`P*X)N$~V+f{xN-PvUwtR zCY*2WmUV~h0Moty?xl=T0jJiz2{hLJlX4<|0ZC1He>cL@lq<855*RxH3a^02vI4Zq z{GR}w4VADhDvplF4|n!l@__d$UqiG!rukTq91q9?J!>b5+RJg>9{~!M^#N`A9Pt-E z2ju(F^9wuavOG-v%E>wjyvyv4ZYs_nMx zRDop%ZcY@@51n>HdH`f0X*pj9=sALZy zyGucaFTxvkMj(C3VgsQ>hk#c+(bS9k%`5}zpZ(Fx!{;2&nO)D@ne@xnEXpX_ZKa3) z=7%k{>igI?I7B_G6&d!S-FXhUn=+wNgns^4{u7LNQarN4^f#fYpsZ_rYQIS7qhi0g zvKDEQst#r^-~L0_1t^DN?~`O{J~YW9Hy99=R3biDA7%_R0n>$?$;btM%pK9yBj^BL z5ReYc&b4I~nLu-3kI>~HJ9k#fkqmVGYd7v?rJZ~s$A!TRoZ!%h1-u52xC3lo?pU#G zBRr8lV>&0BTef++tk740op;k(E!8rEv?umEl?t79ep&DLXhYbwMYj^J~@K$ z8ESytpbrP2$JuSpZH!Hu-`N&jqi#N1R%2ehkAPWa`Ud`^B+0o4#(jZzwuP>=y@_VV zZD?F2Fm+J$mzZQP18r2BOsV-BU`V>`py;9pVx+lG=$t;=fN#xtJZNF2d8!XvB3LLg z`*X?L89$^vI7nJq&I57;=jgf?DPR4N&`|ic9ayQN#Ker{|GCNVK9HsCFGS4@ECGE ztli^s#k2}QlTio_-BUhf`o=@wt(-K1Ifz-P0I1r_GLalLUUq|8fJiDPte6Z#GyV;5 zT^%RtLnp*ApSuc(06oAwT#XIT>1Lj7EH1Si*Yl$o4I;$I)4y~YjJZI4ORDjfvJ&~7<*zWhoz9rn7~<>(JO57esY}1AHTrqzj_sx z&{aDl8nR=UAVO`^SRCqP)bL-{_Oa?%A zQmy00N;w&5lWG%k9Wn0(q6yz!?)KhCJ zkg6c6ND)75Ggr5`+ic3yI~rG*4`}F!p(?L=Z6m)ba?B(^eEJ|#FzApNJ_3l@4#77% zNF;6sI!s-V;4MU#$yT=iHPdPh-V~yf%cSSeseei1epb<18sEQX?rb~F_7`c^nb^TB zi<%dwH_VwG82m$ZCS~vWKGWU}i&AGK-d-;%YSA%YbN8)_8i_&9-1~e|^PK>!X@sE) zxC!}!Vc4(k5h}``%JHC*^S4|ac}jZ!GY5~7jiRRTSyq$ueF3XH=lniFodf|C>G_^A zc4AE|^=&K1?{gdqtX=TYca)}lkLb@pqI}vPrk~=DV~0(Z?Pt7p2OFpwjyhYM#d|ss zPkp+F^pCqa%Y>9KKJZR8Dv(S)z7OUr#0p+l#_FT$7k+oB$|on|Z& z@Iid)eP(FCkSc@cXqfgeG+p;`SO`QUQWhC5)+4w?<54v(RO|^>f7$O^xctSb_$17X zYd}%A93_xN&zz8`=U#5w%K?>HCe`3RZ6-1e&w|}a!)fv+^}jHlK5R*yZb-CF@*}~v zD5j=43{EwpNf$vs{E{U*(xvKfia|AFN7R#k46cc&ozHcu8mS`rRVX;1os%Q1j%C%S z(VM@**a_kqFWn78e;OKGku*Q5|J>HLyL7AhOc@XZYa&TPb@6raiOMoY5Lq8MZlbjb z>vNe~;bc0}o(fnfq;@gD>g@8q?o}!J!DvI*7M?c`AcbhpRA+v^-s*WH6^B+yk2a zUUSaRJ;;||WXw!Wtz1{#ubF&IBF@2ma1doCDy7m>#rJ;fDt}enYVkkR8yHBgEb=>B zN7=)JEBQh=c>d4;mkD=~h#B{ORcUFW@);6h_Gu0q6`%ahfhE!cZnJGR7^~~{EZrST zZk)h#<2-vrjhWDi#HUC49qjvJ#ndfE@<mf8oXi~ zzVZX5B~c0&#yLg}d@2EI-rM6SPq|9n#z|*<(~aMieSc)~caX=kkLS*P6xbHXCzR8+ zL9<+_izErR#?tsCNsibNJ!3gM9MU~-n&;Cyvge8m7+UAVH#79ZuD4H+(}*;7MJ9v zVpS7onPqZ9pjRK~aw?kfTMz8bkcK~TR}QA4+|EB*b7NODMP1#bwZ3bZs>jHa0^(q+ z8G`-T6}RPWy^4Vk;2Iu#J8i%uu#|fOFPJ~-6y;<&Yc}gsoi4%+Jp9p48-4MGaYsjE z?m%r#?EUGBIvsCoDGJc`8cIa`;<<5W;tCLG3|2vB!Y%TdS*Xu=wTrTMj1!Z~$4FOG z6+!S3Zn#(fgh~h9Y(`<29MK2Nx~vM-Ypjdq!*xGcTs-tw9oRf=ioh)aRYU z_!uSHz843TieGFKTF6HcsBpLT&}|uyj?jye);@^7yRy|2>28KNM-#-NpExr0F+1lT z8MoAJwpHk1zi4kizYJcb&k1MoXMG$F9&4D9w^G_QyoetE@Ebb(Sx7LtBj?@JVarT| zdWc-}-!QkDTJf7e)r&Gr8%vmAWb-uVppdGZyiiI5;v!iyxf4|J1Ahwa8$W zY{vAJ6%LF@uTxac%O^YQt*)z!nrX&5t!w;zkR{>?K$TX(*m>Bd9YSbV0Rf(HH$ zTYqI5T7LFs(%5GCi?%lQkG1o09 zv@h;WukYFNa216hd~gjMEEviopi9%>E|B|7$26{#CPIv0lpy*DtEs~Fe`vv8xeBxC zzZ;KQ-zu&8go|cEKP>h8pAu2(`dUe;f&}n4qET`)SVA+yAzA6xL0YTJ*=&BD6C69T z2HN$|0sEDlOV&JgZI;k#nq*`&yJQo!+o5v_PxZdOx^llQHhWp9Ap}Rs2KU)kl(ys4 zA06+C44{gp4y%vj%6}_4OHBBIKl?X-x-flBiBL%jI4@)@x)Q<#Wiw6B*7f@$5B~)! z_$@~Lrr@JC$SC^@BoYh_)aX5?NK~czEFp~Bddma604U}=ahr~c-YGYdM_To zoYGzCz@0M7j`28of0JaH?ew3qfHYBj%%V6T~I%~Yg2 z61;IlVSjIzI$QlQE#JJIsNcpcN&RV`bwfcONN;COe@hFFRV(T7Pvp|3xtgbXgBHr{ z>{r6~p=7JGvoIR#5Uj|>k&@lk%jtSvPsy=4-HeKCQ{h0X^ zX#Md(#!RT)7fS8PKPfR;F|wN#Q_cm=JF3@L2W`y1d(OuDK5p4i?W&WwASY%t%lU8? zdGXtNU=;@+QT_`yhIfs%JAW3XFD_-t$Q7ynpo`@VSn&6faGqY<=Xv6oqe zP`CP#>v0g9g*VA0h@Nt@DUkhM1_Yk@08)FZbl@SOunoV78UGGqb@L^2b!6lc|0%6f zqnAY8SO(|k6bzR+_(DNQ%2(vGdQcEJWs~)%M4?-=qXS0ZHFGE<3Afu4t#R>Dpk&ii zZy72sx1)omP5~HaJl+hhw2}lR-xhL_0_O~^cDDTXX6DjG%*G{PZuO-AXES8UncL=6 z3>-_fQ{R@)`;jFFMJ+3E5*g{i6bx*;ZC&sHU!x%rE_F)J<}yPuXP zmCwEbAD0RP*j+Bpj(Q>Er?)3H=l$_g!DtY8?4z@a?jG}pBGYCKfW_8l&7X306q`up zP*C)nJg%)d^GjTM5B^MXwWbOJK3b@Kzfo0(tOwv^C3W!Ye8DAYRY`QM`B?OZO~#-7 z;%KIXIM5{^yv{;w2o|R^xmqrTz~KUUvzOs!<;j;nsv@JpzvRA`De#mph1U_TOAZ4{a%lV0^1Ppdm~ zf(-DaQPJ>MYlvaK$qBN7)oFBA=T5sf7M=fltrVGoqrb=Oq?d-ogPbr~g$LouMPOXp z`)i69;k)HZ&X&R9loy9wcEZJLCms{geSSxKM^cjPoz&JjeJ_-vo;-Yw3tN@wyPeav z-+s5q;FEPRO_Y7vF7nU6{w402gXSC4eZm!%!W!NiMjy^hi>atyT=|P?bU%}Nyi+ra zhnML_wulp~lNqzIUOYP6RI#p(8cYbe>R=l-sJ_zN~fVG3t~w{lT3#EMMdt~Y+*6x&fr zzX@Q^_CGW)e}c+yp(Wf*9K$kFM?vwB8g9F>l%;fDMMeQ$Jmzkx>bnObTv41X($Z#! zHABmArMxyD-?9azt4c(7P^3PCd~n*@M-oAM}Vr)Fp3i&0v}nwW)5}x>4t_ zN|7UUR#7(vn;X`qk`~Ot^ZU4c+d1OYIMxDHGXKZxOA}&#Tm>|E4+I#tdrgt5ttf$8 z*MzK{pBtU?naDspFek}3QgjH$Q=pzYg)CvwF^}nwXAzs{RvWQkNmjv@GNoEog~f1? z=7rx+ci?q|r%k+>{jiSgEm?#9PSCm4r3O`?#4xi1Sj19Pe2p&UH=0I6UokM|ay5d_wsHdH2+uX`-^ZF4dQGM15O3reJLvcYt%x zxh$C{9Ks#dQx1ZQjav-I2>1GRS|q-$%v>8;Uvy7)7_5Pd1BEuSb4U$$N zy#gak+~+iktXIZ+YjpmS^p3L|dHj)eO6i8hDhxg5aNn7_`(z@8DXBs9t=;p^XA=#H zwtlicE%lS;lOX3W>MZ&-#?SX`YZlqTHg7gd7{{iLPssdvk^v;C3wc)SBstC3+N!-9*~v3dsAKFz@BzTmMVi~`LNPG2VgCity3Kx z(`;Gf6`cKe?tS&^O`oGg4I-`ZJ=7%G5oN&uBs+SvK|*5iok|(N1@AW!*20~FJ4T0k zUNDSlrO#C*4PX`4_n5h40h#Z&wrLPzi;dK)bC86wHT+1+12SNy(mn8lT@03;5= zKPx8<@Kq6m=n8Y8Zr0;F$H_>5Yqs#j`?)o(?CtB641pbSH!@fzF2t$}&GKnrpQe4x zqYKG<_i@aQQr4iL(dygr5|IS>Pjw- zS2K16hgTPxmr)|J`)_4nIc^*bSqytfB}3`B>-|uA@Q6*tZ4vN2cp06?*8ut%`Mq$_ zej=AjG5dQ6GC=t7{8COe4F~QbXL=~O7`f!`*0F{2?hzjY#sc}})h081NsxK7cg`iP= zq4=dG4Uw^Dk<)7v-J}iT2C0yGV74-jBnj_?rnK9G$$hz$6Z`(ZqW}_V=RsoVAY)JN z4DpBZIsMr2HpdR^Xi@@W-Hz+pRNjM~HVCxk(5viChWI<&Pkfmu-|nN${=nl)PR*Gw zB#yFT9UgWa7s|Y$Mg_ckvO#RIkAK&_bspp%*X5sdLb8>Q^Tarumv@E$pNmT!)_{A` z>zt$jdxUt&vcO}3uU4?fa?CPYMA8T2N7+Q(I8*#=@$PuVWRoL%7Vu7Lk$vjhj64EjV9`A#_k7cK`_Y`fo>8 z7X9y$-6hGF8me^;bHnl~cej6tKN~cqW>#5;GBecLQjv4{>8QB|MxMSG>{9m)xp>LZ z&%>S4@t#umuue=%AeS}VX$0AQuaJJ{S%?0V)o@z-IZ2SXJiUV~R5j(v3Arzku0Q=2 zt8u!PlT5NkDb~0~mZJp1Q0al(O4TCXJn8mZ%mG=vPOJhl+O!E-GJK`gT}m640TU3Y zcQYUT(zI60PMZF7R>Go%N5&OMEF*zYkgPtuBc*Aw{F`2hD$w!v{*$xD_ZZ1)L*0fN zz#LFM(tE;R$sG`k&;Ve$MWMRNymqC^Coc(jK`_gjkdd^1wZbv)2g_x*I*XnPM;O1U zk()%%B@w@P6ZK@{aZ#R?Y~i8qiRRN$Y-M=e=9{C?Pz_Pi0ZC;Mw;7TP6?< zw)8TV)o9;m0PPV(I&YHI_f=HDPvSZo_e9|hzTkWlQSM{!Bu>yZPCVfAd4ml&)Qxv; z>5AwOJL~V&F&~6{{j^oKTYATtB$RR+z!W2WXKdAf));PP?b{S9m$l=iHxoob10&bb zNhJ$SXOdJ*-X6nl)DfkBQel__=P897u{T72VixsRr+l++y~SfW5X#T{8}^nnMHzkU z+E43QC=R8;2wIEa#WxwPuP~}(zDZx%zz7zk4b$&;YB|UGr+hXrJ@o`!>H~(APAP_= zNPW5Jq47h^nl%+rum@X?ZE(}9=14^-6B zDy6(QIhVvl4>DXh>25~x{z@Ro(>M=AZKDrn8f)jP$D7G~_3wL{_X&%ow# zFQcdnY^Z?tbGC7?dl=-Pzsx*ckl)J{*$wXl#L!7~!VMhCl6CVIO@FfoZOsqDryX`G zxfx7Z=>Il#8fEFVxGpBrgONVzjdYgwt|SVvYko!pHY7sY#gZ2>7~*({-CdLvzgnnF z$X8F$=28i;2E&uG65!wV*>7Ta%)z2Zy1u!5-({K)0*YW~UU1CXvkzOIdwEOq1Ga*EKyPjo4C zXllZ+dU&9BpAhjXDm}5n((xdzZAE-0r}}!iC3q|Jwl|`4b6?!Whi;UD5m6yF`N4fR zl$63xx!71y(g80pj(V6!ZIc%lk`a;kI}bCh_mCrC;Fw#?r+y*qCk+mAFF`{294(sD z!>2XC_KQH8;>z(+Q^*|)Or~~BVy1rX=^ynR*MYfXExryRemd3fZ+8scWq;XkZ^@9P zivPP3_~O~OEikk{}2oeh7`ZZ?64NErjIM z2QTl-(%B4pS$(z9$6SOMY8w-+-`t)=J?hi=5S{*>57YfRs-5pjaKT`z?wM#qD)BJ> z%|S=xbIJ+RZ={N-P+??Sk{_5I<~rKLkjOAqshpP+w;D@s%t7F_AVqWSpyo6ddqg~OrO#@1fIB5FR3u#8z>rP^9F%~q z922zrf!Ph=ejz9*)96FzeFV?${u7e-Hw&mxn_xS8UTm4}R2c&=^-0QWh9eZLmG
i?Z{X?7p+s{pr0PM>W`k)qlJ=TFipHyYix?kg$yoyIrjiFETVHnc=Rs^A2m zwx`=Z67DR)((~^?1h?jI3DE@17SSB2MxPwAJp=0bQFaW|Irl=aH$)nf;|&Sy;>jwIb&)vy6^{%$=MUG6FX|7 zP)oPS6R@=sFc0+3H}@IaxK!#Q1E_>L3s|KVxKbDNu7KFdFZ-9yQomNnKcthSeATHd z4B}Mi}VymA(iwu`L>N`g*&jt4Qgg}B~#43B&B~=91h&B&L zXE0^^BQOfk#!}q;`{kuPRU!&32rwrpwg{`8;`43-V{bYN@9lsmR(&Jj<%ZS#XN;}m z?<*9Fs}o=fl$9~A$|mbAr%+GOZmU2)5k;`y&3BK#Gg7fkIIgLk8}nl%3H)kzANau% zyI;J7{CBT@?>^>`yN=2HChQZcL~bPKi%@)m48x}VCR$LHs*rbDG`(K^O&D0mSN+XL zzNv1{$LftGMN0jw()Y(!|ML_E*Fz8nHTlCN3~-529=1fN5n@)!{`L_B*UBn`P9}>l ze3C$8I$Psw(@}PcHI8wuZ<@`%Ib%M1B_H%a*5*mY8~r2S@dkd{MmnC>)fFk>0>wWobTUv|yL@B_C zxMZtru+H~)wC&x}8J~J@DGZBV+kkSekbm^tv%VHrE$**Jv$x$LDXK>IWl1af_qy1? zCT`H{0SCq=R=^8RM3dq0?wvDo6%Vy4j#RY(d8dYV$NnE@yoioP_iiRT2!*V(r|C=$)SM=P}&ZOaD> zs9#w2M*cnco5vaq_5p|jUFw&3?(S&$oZfhg>4L#)B-x542azjAKavFRR92%x?DL`- zroVA26B1iDE<7K;Cun@ApX!j55CF7lqI4l!2M}R*=_rpTN?J z?&6y|@jtKZwh+pBHyqFrK0)9&ZUnZ)xZW^IVqK2G+P_Y>KevXwwT>?N_nDPYKU_en zLDDVMVhtGtE|)q29j;sa)xRrD?~Xu$bPfHk@!6o)P+BVwvz``&EhnsLDOWd5EBus_(hy`_X>VtMx!Ol#TT2hDS0>yO6B#huz5)rd)?*C$;Wo-L_ z5GYAv1I@eJzz7jgc0|(q?>-TP-Ec-c=7Es9D&!GvZ-W&10|NUZ{E+X%Uc1i>k$VP7 zNC0($Eb&OGa?*S04)AkhBhO1VA(uZ8VXFas%)U+fWl&CrzbzL$ahmj3F4kCA2o}lX zhoF>pTUGqN`PA^p?g&X%E|}q<+>y>?F!u}aoe%4N)jlsDU1Kh@|9??j<*?%Fx)h$( z35~{TIHkL{iI-O`G#o_6Z>wOuNKt_ViMRyX_C@O(>8rJILE5M*ZeS4N>2f=`^`p%W zpFHxR)c%)%6Hm$(ULNPojqX2#@GalqX=>hY_lHJXzOV6|X|#}$61mHRThxzvD_4w! z$e)RI6OaYI(~i3Lfs?ZPabtZV(N3kyLuAeHn~EX!40=P}9j5j^XmEu-kEJ4Qh zz{ahh60HH0l&>M9DrxM9u)tMxV*j3m?JIN9BnoZs>`P{2Ga~}=2(Zi``6WrvCaQP` zi`UObtNH2mGAy==RLKhg5Vu3Drv>*5uflm%OVzelCew4QbVCk&K9E$P4|3Lho@v!;u94QYPrCy$^DNYu9BW)2hl(m~PfNSa&$uW#Pt? zVSXI=p8BK(3>S3#HExbQ9eE&06bx}fqMJcXt{?PV7{y`At`v85CB%?S!tKSKM-R3i zhymG#oMS6mEc|&G5M#i5$ONmlV7E;4;0hEyB+hDt*R(UJwi9?8b;?6p$&EbzI5 z%{sVzu@B*&JzHyVB4grqS`O%IRvZkKTD?v_eZId(3v&YYoY4 zp$r*v8ncI3FI6M3ZC;ZeB&3s<9Xg9M)+|cwlpuMPr{W8?hGuri`*p@1&)so=wREAs z*5YKxb4SOG<~Ci3w&ych?Ngh$t~y3RWaKpsBeKcyZ4*yHQsBx}2;Xj05OD`G*or+vlV(7W4f`71R>{I zwR{hKq>7eEHRF2fZvIt!G~9`{H`a3_JX8cS+y|2z0Jaz`il-0ojC%qz97V`&zZk@1bPBWTZbB z;eUWmHqLLowm3=Pr=5DZ?7zU|iDCpaIMFJtDyK&HH@gb`N@d10P;SWc8Tk1XW=lyB znb#zI6grGovj-AMT9$H^i}VQ;voZ{@gX!d1(3;XMSp`J9nAY&kQ(Upwk1X221fx5s zV-q{EvIz|yAWhg8#=QpciWmJO@VhdI#VAnyDpc;DuSJtrefhUV9HhnagON zn_SA21G#DDK+vn#V8vqC244b+;RR(KM1~SY(mS;VnxU$;l7P(ptrwWmf00$05G;|+ zl&KucamEV;+6;cX-V%W$@ShPgBfL`&>5M@X>M%E4JYu|Wrvomp>dh19e-vlJB=8J* zHJKY2Z8>04zxe-Kcd@QedCfGV*JbBF^L4{^B-Pw89ho~~k+BH~wJWt^BESe;pzmH7 z5j+b}7v(Xj3Jpl0y`tU;@8Cx!LxAeu%~q~p7pcz0Jss1+D*A43Hal=K>x`1 z`Ul-KX0@xupZiwJcN5jp|D|0oCx2 zIJbju-s3sQH6wwz&_g={=DfMb5GI~6f=*r{PyrA7-TekiZLbVw`RAstfE-HkLucXxNUba!`mONVp`NP~1YemC#;PY-o)X7=9q6>FVqzn?KZ zOjeZmF{~FwrcuJ+#O;qoS*zY2{y2B$-W{Q*SP?IxNt!c*9)L`jTGeRhcyjdEfG?dd zxbH*!{KbdQjKK62!POu8xvHu+2>1~#&fVK*Oe0918Dbk4s@x+x9N@2jZ0)Cv!)d_c z?OL!Zj;_4eE$Tm7JcQy9?_%z={_aN>UHY*;xgni$P4{&XpC$pFedXPkUN2k|MQjjf z$QGQu(tNV#tCPK9N{F0NIAgYc;F>Ge15M1@2eXvfQ!jTOl_~h?qgl7u4jU3qN;#BNRc;RccNH1IQo8>dIc#X#kc*{i}38=4aj25^L;gu`6_Ku#gfTv^chv_vm@2!bRUtKK_XFfJu7zdg`lRN!~#mvUg ztVw?&K=;fL9(IhwS>!tb{7e%VuCBj9u_Cg2^uX3lwfxvbq#hv7Kf$myS7a%eU*p%~ zAbz6DRUiI{8odOtB&glbA)4Io`^I5*UwQYIB$V zzPt!f-@gn3q62#Fdt+eC62mGPPY?fQ=OPp4HylJW`iWFo`s6TFH+N<7IjkZDHsjZJ zIf-*D(Si)SArl(n?Vcp;<1}4USjzqcmVjxRo$|07M^F#C!FEcl-sC5^jlMRUvu2AV zRUf&=k--83L_3R2(WT3|l-z@UPuE=xKHB$F z!tu_B*D`<~O|4UcC0}_H6?l^xo7nUxAPE`QuV`v18>_|dqHnWA0;GwE%um`#`y0Hk zUjX-e*R;{CNF~rw!`TK4IvL}=a+qpp8CwxUxzdyLnk(L^!q?jz66=8b!o3}SEP*n! zlCn3ugAZn|0Xa@%9KZED8n`d0xiC|&u+7MpPM*LE(jkh@^83TX#_mC?Ss%@^zex=Z+ngXX64@l%bV3I-bZ733NRNo8JjPFtiwlx?Gv&f z=CD+iM06YY8sEFFijY)~~=F*Q_!y%uFTQt{o3#vPk95BiGUO z<9>*3#h6wmTtw%wU_E&D5+T+Eoq8xUli(=EKLy?e+2ZlK7iX+bEg7Q_U>dIy3|2pO z4QE*b?!G?8+g<FH+9T2+L~gaehtb*Ys%2cd(EJrFtvGa*jx;_03hP0Aft@|uE`ko zT!ZlUTaNz`MJB)5OI^d`1d8j#D@i=NTi9{(^k5KJ$)lU|0&ke5`{85}D85x>xb`05 z8@6AQe5-}h3r`lDXjuLGhe)s2|u|BL#&%5Pe@9F&`b}9Q{s|n}yd7T)8get(qxdEKg9w`E z{&7IB3H1yt$<*_VVWZ5XH&OT$K7fvxt zyDd;b$A0DS!lP8(Nn}8h{n+G?rC){W<0f~+*8&a)0_ON*SNkqDzbIgFYeMY8bQoxI%=D&Y`BEO5J zx;etAiH%-kf&rs_Cr>HzIi@q3_n*@)MHzCaBJ&1t2LA*j|5=*z(zeHU{4|1H=DGJH z!@orjno)pVLUv`Ls+lp$<*eujQo+Vh8s}ylQq?Btv0Jr6KKi*y2!rl%)ARt-f5*zR z3JmHD$w$ml8<2TI^o8zIXF@akNvU&nvbdo~ByOr*| z!$IOA^+w)4bSrhM4^0cA`@xT&A|a2Ft&iJ_YKP9l!XHJzhiKUBZaK^fCj=(AtQ4BHs_D#5fWdu|i_LbEE>KE!FZMaE zpj`~FvRq_N09~jl`H@y-sZeYY7;cb3Y0JT@;}a8v=PGayrKJSXC?IflCfKiq)4+Md+h37`BuIXFzYTRi^>kfV$uI^- z&n$Wrl2WV6p2ESY7m6E>=xZo2xD7<`gjPl9wK2 z^y0IoadhWae}RsHby5&6OAUFcZMzE2fZjK>$b@x#^Vg- zP8Igm4mU|Mu5zpYTNvGN#@5`e&&@0XUeX*B3uUveIWU3%tSZ`T*#Ql;uh%BEV9~a?SEON-qr;KZpxRF zr{*0NE3BP@0(Iv1I|Jf1C|OXVj7fJpY?pO!;OQzB58x_{xaXs-3-}z+v+pA3=um8il9`6J^gkfwbc@8F9DP>I z;WbI{e_n)?^4t(gOe(ee{HO05%$q!n(8-~T`QhsLtKEL<__>j3!L$?9Sy5oknfH&H z^T>ohyJ!2zbKNwn{(obwhxWi>5Go}br0F{LwTRyVz^w)FJ1ITpFh!96#fNDe%5^$E zUQymk`z;WI8z&f4TLf)U@=st6)EDJ7sErwDJ#qPpzz9e%`qr5K;JZNI>m*L_J(p?c zYA%pZ%O@uW331Nwt!AA2YuAaVj%enblIN;bC?eUw1fNS-&QIkLVPt`0}tQbDbS z5kpwYLWInTmOR~c9r8?H@f{*S5XCqS|{C8ZENR1yE2%^6F*dHKc3- zla}?vL7v>wwx~v`Fd9U$`)3EKeTih5=#wAHdsxR7?j-?K?$KvQFq|FKY+2n6q{u6G zqss!Vz4XxS)4pDrx0oX=WhNPJiE>5{c^BdrX%YZ!{^RP#FD%Y+H=hKi&|V$K9hIJ6 zCU5w;&^MPeCljQ;oRg{iFitL7`PDFvE|UvjiP;Ax9~bUdQki?@_A%GoXd$vWwtPfU z984Uc53_b6$-HIP(M;YIonN!H)8Ptk{fvJM^*QnXv*pWNRsws;A*t=ZS5zEzGyOP) zSi2H>g~`p~I*XSQREh!2f5}i7`DbwC9(~Xh7CKg&g9oBU1L9;w1uUjcLrToo3n*nh$+it%e(LEs!wj1=Lk|Cu8|Lvxhg@TYmMi_d4|9j;;lb zHPeRyw4z!($>HM|#OwOMm2lR$<(Fr~@^=8Qfi8wV<>u=Arm@6Y{N9;3KK%%HTRwz7 zk5%ll;A_O}MA6S`+Ji)f2RocPhBtF{`DhmKC&oRwNhWlTbH+WM#T8i%fxi^-O$u=U zmO>=-JZwXV$D2(Qtaijip0$~t$0-TLpsnXgUGW|}X`gC?g&}H1vPnZz_CIsD02|aZ zNoZe^eyxlAW*tZ}1fVp`g8I&10K_F9PMs?U%yW&d%!uWpIgZ5ZqWPwjSId&_I>jVqH z#Vc<#&-d9gwE?raZugWdK@wJyQaDPUI*91wLesK`!5jbj8xHqV8U%>A95pvq`VSVd z{03GVHpvRaTp3HVwGf1{!-5s#XINPypc7e7il1x8r_^d)!hGF~b<@z2IAG(@^cms- z81&V>JXEXmGAtk&HV+RrbRegUV}flT7O}jJwCV87qz?EOtz=*GN56i7o2g9!HKDun zq~J^{Z39w3b*JD>cEs}>ap+hc3a?Dn0+Icdf$}>bTd8eLV#@5zjGB3^#;60^4$bC& zDH8SO{$lx*H!y-&6xAtLh7D0wTy9UWX4h*(`eRIii>J zi8ZZ8lartXRRP_T&^Omac<;Q}i*Nw&ca#hU*gu@cS2A&;fwHE4YUpb|)l0>ct^^Qq z?1u?BRM^FJm#pLwTfM7UcNXm5l*2Pp12+d{%M<0}(n^6k;q>b9n(G=r{w`t?6X#n};Fd<}&}6+yfEAVHJBCJX?@3B&**OgWp+?2@p7{11 znSS3m!63MZj7~2WjU`SJDgw5n9AUTM)=L1xd6%V64jc2>UG=Jh6IhK=21%Uo&wi|Y zmV4}`wj%@CT|W>(EJw|5;ocNKTf)#DFN=t(t&jHkz$ zPtfbax(e&-RLas;q0NC>7yqRmYdZ(VAT)U4PYNDytjO=V7Tq!#>LdxezEOAUX1n*a z825VfcI*<7e>d+JXP7l8unjfel~+%a0o+p~{j}8qld_DsCZ`TUPGhFh-N%uJl_u_q zL;&j(Z_DW{na;}twR-Na@$2D7$zfw(8(_fhIAhZGAoNxL)|<;d7Cb@FhV5Rv%au_y@=9yZNm&xbMeURG|6FFVjY4cI(nZvHo90t+e!=7JJ z6D1eH&+;B^F;mO{yP~#nnRNmbE1V%v1+s5-zLZLQO|SX$`eaH<7W$fgi-+)oLaG0- z%&@sI;oClNgn#cisrdnx*(d>CT{vI?)binl;rXM!!ElA*!Gy&n3UQ4}cd}E{0(r{d z>(eA8OTcTBtiQ1pD-WD>;k~~wDFtkATXC zGg6Jm1K@PFYdeRLM>;ysnxnpilmn@8>C)6Zk0{x2)szk>4IWCjvjtgPnGu3SQQ1W2 z9>^tGrXa(h|8Q8O+(Z63O zZ(Eu(Y4qa%{WqCG=D5H5?EBUE0TI3{WF>WGQ{zozaQqX8q^XSM7KooooqJdti<8yv zbu|WH37$1oS8vY}{Cs^vV$VBjc7SJU6g(N%+}jG;4}PMh)^a zzWn#N%I)vTE)WZbn{;nz)dC*uo#71^SzN)@jxU9ilUty8h6aW$;Y7R&wHp5DpyKFx zM6FpiE@1#OScQb?T5&@q)B#C8`r^+FQ&tONz3`O%sCpxs`c5OQ;OG9`99_o!T%v^^ z!0_}OxSz^1e8kx`0YrN4yKj+-KDz{1Qag+8ifOF?*}Pz@BYn|{nwr#uFUrYk#X1ug zSE=$_vrU|}5N8*i$E%lZ*uwQLbi_@w3L7$)Uski+CBc=xcjqKy(F(PgCthS)t3FTaMSuWLabWHR3%y58LCBX%2_jO!F{X!^Mv6oS6XIEA<30Zo3GT>S#2 zYJ7qCVAC7AeD?5`;ZdmS1E7X&80aZZ$$U0J`V0bHopjv->OMkNjM+W&K?A@hV^f&N z;;-|n-`Y6a<^J12Lw+OxwiB99DKK4~&sb)F8Y)a=?mQZell^1}I0ON)C9!~VZ87}4DFrc4hv`T&y^?Eh4RKJx>`0@pIUT&&cGLLM)}5&UqHI7|k?N(LYBZesj7bRkKF7q5 zn|)A``Wn>U3pLUuP_$bffaDxfAQbz~lkVX2>kNqOhunMZlRnQAd<)^A zv&Dwu%k~YVui)j64Y5lvV!1z1V8HAN8&0_HXK;+NHgsswYu_^jZ`*jPPUT8)bz1tf zn#v%eeBqGa4t+wJ+2YWI*|?{oMeKgD0*Un;!FkaB0VZ_d-c^L?pIR-%TRu;AIvu?9nr^w#$&)}-y{soWrVz0o@MGwi?n#>`k@pi)(v6RzKAC3~Wdim% zhVys%dV0?a?>%3pC-PY5?wfZCDLJH$E3WeRYCp;%_sdAv z3Xv1-Z|ut<0`pME&O@1DqXZq&=Wy;-@GasQZA*05W$kry_qcc7`lO2-9tTgj^pV`Kr1r%y$o<{i1#8(fG|A==;};SY+)O@HzHPCWUC^%o}4mpp?Jw2^V)7s#Kv)F##ll1zRKm8wosCY_a9s~HU0pLsGK zjTBb-Q%HI6rcF61?{8b>MY!Uv>g3HPFm-4zEgOHN+T$y#UaI!@{c@)f#1cWvK~4BY z?}2>f9`wiDK#3wYvF*y0#+O6;KptZuW*VQ6{H?ntz9NJ%fR)UyW6;nw8DGhiWBb;T zml7k$e8yjc{m_|?!#Y%3Lt-cg@FC18y*%isAJr5|f!EX}WI!|&%DR`s1|BO0Ejl`E zET0aw#t!_+^S_3Riry#yK7HS0BU~ePcRY0t1MG|vH$*8u6fwuajZ#po7k88$&i@P= zdWC}}5{W&U<04(woex#M>;PWL1JV6IefWe-Lzo$NrHhaCFWS4KXfiXk6flbN*R{9e z;?5e)-|@2r$q=Hu<&&k zPT&Awk_7sH-p{hPm;G?3{0Z|uYE`ohFCAXszsyPfJng(!Au8VfyPW)Gle=^?wV4j; z3Q_HB1wvi^dHqG-dds~mM)aJ{!MbcY=02n;h_4i|Kisv3{oM{Fz6uZm&$iLkC{6Q~ z$|Ls&PCVr4G1GX#YFTx$Hy7Cwhgg)JMFefB)kMn)z_>WVDoE3Qgj0anhABcsM=p1| z5Ha0(*ntQ3U>2Hd7rNm}2d|M>sJL_M#Z{YhrVE6)}8XS_h8Fgch;d+37H6EV+kk*UxTL zZOcuZ{~qeSv@!6O28avmiB`WxT|u4ZB@+Mu272h+EhU0Sv@7|=%#EK6Auxn9#*U7$ zsHL%RHMAL^ZxX!MR*)?zy8=MXP%I|p>CW-=@9n>{H}Jma4Ds+eY+M)O2M}?z5hYk5 zx9hP%!UY$ziO(Ep?*;qnv0e^+e`gVuJ_BpEbkl-enxEByA>J*pfB*fO=i!=5agEkR!f(kqR&I)okTHn-nn-EF0!5@2597YrFmkfK0me~0VWBMJq9Hu0c z|I%dA4hbUtNo>qC?m$hrx94+L`Z?!GygPS!t)9FHpE$BfJ&gI^ji|DgR@B#$5u{-C7O60lN$uxZ7(S;JeE&WADow=tzS^@;rb z2c^9R?UgT@po!AOBxlQekT%nFVLLW64`0$88apTCaS_K&^`92BJh+UhBpV52TOdP* z5!5Io4l=9QP#!=I75$K7VjAnwRIX6bcFX?Wqv0jeo$s4~!i|R{WZ-)%!F#!agx>9BEMOpYzm zr!ikxriLKYrD{C2bnSCil?8+Gz|&rn8;WXh@>u?A(~ZV>jxai)S(66F!XWbKr+hXAA4c%Zwpg`l;Vc;41&Qk?qWbKe4wAL+5yM|I3%~-!;bKR8Uw|< zHvt@s34m)ti+k7`Ghz}H-n{-dVIzmu|4-(_OlKGJH25mssb0kf5hchQO?O&>JdkB3 zw1FtgsVkkH>aRD$!FV}WvrRkl7^-UwYBLvQ^jf-%h~W9p+NL4fwwM-Ugfb0})U@aK z*FI|~JQNUR9^m@L+S5%uJ$2Y@fy=rm;pA@m2VD`kvsafp7#|TGZJ=!=>BnOZGZeKa zKTG<%2B+nc3(3OsoqHq#?w6&eUAP8IW0be zsidv3C6boqx4{ z-Lg;~wF7`E%n<@)@>BCzS-vu4n{`m-wT`u_nvn+=zP*f`GX6X=mV8Q5TifbWxc)xA1&W2tHW~|6-)=k4TzCX6!Qp2A`O>yrtJb;eky(TgG58FKBnG)pCB%zy6BkbU*e3%lclN7O|-0`8@%%V}u_={Tj1nAtaan+{B;OFA?i#8tFnfs(k-zIsH1Iw@>U_L+PzGM~0Dpnd4y*Ag>H6q1m0u^N%A!_^bHFsW=$B%a zY>iw7ERuRkS-J`-R+m)G4xwdCvIZ@0UGP z#@@L*1Iz1HJO-Vy-#R4_x4m;~$?Ho&9S|B>?BBl*>AB3YvSn5J#D{wB9@s$ zC3NtsWk>RDioh5xKyS|TrPThmC@1A7_+#XW4>=C*%8cLq-;)7<&Uz4gpOxg0^}iR* z!tS$EUMj+grTY=mCuS5MfG9Gjz|C=JJ1Bf)fu0WnPohL^36%ko_ysuq5a!mOd)L-@ zSe^L*zV?HjA)DID$=j=>;m4nZV3GxF@AIMI8nub}E_*Gxo5B_L#lq12L^ z`iqT*MOQF}1r=}AP}<|#4g=lm zINk;6xupToVgD{*+0P#4fy(LIf;8{|)cTxAM&;Ix8|qEkbXOfWBLehTB>z&8vKbPX zQAS{(wV==sODIHkwHH<-Bj`&9t+=4HaUSJ`OvTY3No-kMc_FNPxcK^D-u-Eyn&!ZZ zij;qAc~>W;WAUae$Jmyr%IL8w(P-HC?$h86_e}M364=j<7vSzvIrB!^u~`Jw{2S3x zP1-8(7*YFsY|#fekf|=@QHRbE5(n*a$XkW6X8xgx``qv9pcB{+{PQmr`w^}kTv$KQNzF&#_je!X5t@mjy9hOMgX~+4@ zg~SwS1(e>9SfE$LS)>3LUn#ZO4rcWB$u2Zx=Eu((UUp01iv-wb9^i zk(URn3Y331l9pQY_)GgY`jh`lY9GCL)|RT2lzwlN0#Kz_UFa(#IIGy;N%p;gpn-pX zI-oO!9q>}SdDeI@aIW0&3q^^lI+H8Y&qTed4qm;fIlrdMm>2^+?=8WqLQYNs_W|^D;C42RD%|;gkB*2ql!NeDN{i6lvxG7kp#wLz8Kygvc-}g#tnh-a|8EuMEWgz zelZZ{8%*BsnD#S1&V_MrC)LjcSCqa9$;L zxQt;Se=W^$Bj5_FPvNXel*>$)(RQQ6_{x--|Jw38%^IE)>0eV@3_$M28sHormJuLt5!JC zV>?qW%Q<7O5XjYg{2+PG;{GMHnKa*4*@Fsr6GLXD#~l9dxf{$X;I zr^^2Xa+|WP427>`OdUEaU|wn}jd#$>9zRsDj+X*ic_Gj3tXlE8QsXWI=>4G;{xF!` z)PBJUVp*W8Feel}<{?1%wJ5UKm=W=mei~TO|EJV=ooKOfApju*t9k6PUv-ie$iA#o zl1K!sO1J`>#=21d?ktk=Gf*lq_gG32L}Gi@zQdo;9%VRg$eU6esUwMG?R~<3IIOkz zi+jV8S4<+NRSCr?PCw!mLF_kt^zq}LYuuN_AQTAD0eNliG#+_wt80PML*tKcE3BIq zuGn55=`3cTN;pA~99;BRQ4^GFqTQib`tJmoZ%0lNO{O&3&c7CkQ{P5<5{v!05 ztJCq)8!FzQEi5=m&V~mGk`z>Vnjxyk>xkJ0i$!zUM9-J$r#_f)Kif|?SE2S z&2q{XS{}Y&8)bmg?-7U7kcX@gkRw+=;1{l8Jq>b3vJE><;{HG)lf}G?S~K-#FGrm? zz|OAqx=rKuHXnpbLe5RUu#DU9+?E;7wu3KMh3nGorh?<))9Wx#UM4eT;BxyD5Fd`P z5y}5L+hiKcCn#r%RqU?aVVxb|Cs@bS}izL`iJGRUJ zEaM~!UiAmO?2)YOWhvc8pjVbb9c`6=Z@T8IhNY{>pno&9JrPt{^a^B7Qg)1XqFV{DETO!6Mc(ueT3P`w_V|mhAw#?>9|mawK}F%#if>I%6*tm zkW{xVPx#sxC9d!97dr#ZR7TU>;;=nCp#_Md?LNyeYH$8D0m^nBWAxg~DVLpx4Rhe4 zxT1=XaPN(O-whnk17`W>F(Pyuk~o-ho zQ|X2t-!9M!;Z5h8UXYuB4PPCU4r?~$c94w&ke06`>J)$b#Z#8|4nT|;EO?z$u8Y1C zgI`+z+N$W$*r;P&>&yLbT3=_yJ?s;4>&}XC=(Lnh%?|$$95Clj^cyoYIn4w@a-1~- z)y;4DbAEJK;6cw>qIEFFRw8!=RtHBt zqJNfUU_?Ob{3y6{>C?smhojGrbL=!>0v0@GYPqVj)`f-`f*LgaS0(_;sp#VSX&$qi zk9aeZeY3y1{GrU6QOz$(!rYjwp*$B4(G|MJVjsYpmv0rU*t~VY=aJ#t<-0AH8egz)~{|x1a8N^o+$_Ve} zOx)8W6jGoI9!axj*%h-yEn8I|TcIl)kye4pjIDl{*n2=+5ym&~7xj#r(c8gIrB{CCYZT zA92GL>MsdQFiBd!rEh%+`Fw;o&KXb$CeskWg1J%XPg0VG`7v7tkiN@(wQ;C#yy#H{ zk;EpdGJEySvm)RzHU!6`zF3MYm-PCv8TQ5qU#~ex4m;(6&-79l(|BIVK?pWmj70TM z>_#K&m&~yj!76PfOHyYg zpw_X!@5Tt830}fWBk^o5O(L)jJE%!Hn&ndej z`qo~!DkH2sWnrtWkLq#KmD+L z3C4r%MKFk0WJvT+ib?H6Hk3zgWEGf%KVp<~5_pX%#NW*b4amPKAnd zVBJN+M-3v^wLROmV*-NP*RZIrMiVWt|3P*BH}N)1-P<;ezY^d*+&v?NNlb)mox81G=>!1;;7^~`Nf!MfOde&Zw_H8R?&?5G08 z)f0ow3@lWMd6qe2CFc-sCPD-{H$UJnS+6f7MgvjH!rdjlE1oZ1fhM>Hsfa4%Pt=lj zPk=0G0MC5iI+{DTIrB62062~!of``snniQ+0%$;?;l*^EfhG(|*5~ckfOr;nn0p|s z!YN7?fTLi%yX;@)74DFi9zw1J%tAoxB^izTAM{j8g|@D&_o=3Z1JigT(JuduoH-FHbM6?1oE|%2=!hO)!(`!zWfmtvh6#- z|EV$c?2ncTzMCs-3W|S&LoMT97t6t$zDhwUi^tzCJsd&{TPiNHKiAT%?bPl<-gN~9 zf5Q?TYqR8p7q~^w3y2cZ#DiMTw3HuNfX^M1lRd9_L392-5&VV;#mQ-7hRhW^JX}SA zD=!&8E_i*DOuI4uU+25vCgN};&UhMoo=rY^Cf1?f1_2$LU4-BmBuHWx~Ss&)= z^Ih)o_GjId?@Z~l2dwj+iamYSGjV6Oc~7yKrVC6c(?d;LaucKGNDNL|q&T&(u2}Ov z0&5<3(d5Cm`yT|@13&4?j36)*nsL}^6y!?G zq4$$i=)#H^&rBHS;08_TBk9pQ<6I^L=yKfj@W-cR0B#D}n=f(Ci9aU71TnN1T69*@ z%=h&Fb~ovoQ@5Y)-O|%1?BB3{uFtK!O}MXk-svmC)YbT_4&V99(9rlzeZmzp)+H-l zlF~(HK`cm>M)HW`?{b@5pftk%{GUpZxaUeH4M@Z(&OujuqD#C$m0OD=pOQF2`-F`M z?uq7M0;rFo7H_36?R1<~D1ZF=pkwZ1NuWIddC=r~)V<4yOanIF`ipb&(B7v?R3HyX zjQx*o;{HDjlK`M#`o_s)7w&Pvp~}pI&9()iH~yCVP-x6FDF5PBJw~i_b2yNI(C1dJ}ZqT#ZsjB9g7>^jAKFW{-!gg4Fdlp;#2d zKOV8m%FEGqTp+^Y79_N$KhoEP_8accug8#IED|-=>#WBpvBafp@I-97{lX)vf_%ws zCSh!YWX~<)R3L^x|UP5zU>_Og|MIPN*ib-_y1mY0+XBLZoYu8mdQHI2pW($I8~_Ki;}tu`S^ zZT9Gp#;y7K`mH=TMQa-eVr~9yLFr`iAS0*R^mf||9cv*8y?{?AIjvu+(r+OZdQV+MUHcOiRqWvj3Virn(Kg zAl#03^$4b4jXD)SO!#l=GhZRZxxZqn6)C3ZPB?UU#>|n!1w`3g@X!gV4m?IduW*N8 z_=zVffp+>L7T{fio_~s9{FZ!bZiWH|{D8eq9)k0j^4*e61cC1|;p*gP$z1C6qxrz- zUa+R4mb#Xb4;M(b2E>4bMeb@3l^pHJlZ5xk0B$kbC90i`3GdxcSTV>x*fbLRCl8YE^5S+5i4-(v#un`~oKZH49Xb8@ZatD_xZ^G@x}?RKMm#5_A6kIO z?(UX)EuEn2MAiYA@4QpP%iOi~qjrDqniK^@ZmdhLIjRX$u}UJso}DICw|J!eI6kad zAKfZw7QlTp#kcm$dRg|vV|8djxKzZW{-en$Gbr>$y66(90a~t)6qlT5AhaK_;Y2_q zib0mMa`bv7ex>Ps3TdOIun7}Izi1_u|M9+r@<=QKw1(4HrX(#PQ1kr+l)ZCN`KN8u zPDhlLA;32mO^%;sPP1nT{TCG|Rdr=3%^C{5dnUeu-q+%bF~RlGgu<673czYJDfjaD zO{mek@fv^%O#;CU<$$j`{;Vs17qRnY^-0Bb(4Db6{p?Hy1vAfdl~%iRTAVkG0iDNQ zL%!{fk@tFA6ga+k;Bi_cANGe}VT(gF_PbfPl37!FKpN`4D4V9^VUBeuP|sDQOvm1{ zjUW_ug6MkW-!pYYm)c0IJh%`5k+RJSF^7D9s@tS@0mi*gJlqmw%uH|JA1HP?x%}P& z6-xXKVqwgpEV{yKozntWhb?hPpc z$UTON93ywQ`L);i`7*mYl8%3DNUFyu#B}kZkq=w~j`xL#xo2~BR-hP{(va67GRzuE z137;bWbRJiG755PJB)ya760;-DbPGEE24q6TW)_|?NJy-wrD;i%%d^N_XkX9&|;8_ z0BAl^R3^@v-^tjIgX>JZxstM0)ut4nfx~upnlncpeVx)JzQNfVtlCq$d7mDHFvH!a zOv#^Pj2<(O1t1dvltKl~gt>rFBsb9FEmudNrtHG<3Sq+)!;3awE+;y{;|D%neE4?U zX=Oj_OT21Tcvt6tBXPB~1HR3oFTO6mgP9)zoeDD$>9p-1ynfC!(9X&sN$FLi1TOty z1NF^vsg?Q1Ku;!aZ}4Wv{yG)Xu6G$p#)7~`lkUFZyC+ga{9?g+1e7r-ZsW^J;crBP-999QoR z0<50!2oxBb3_$oexk;bQBN<2LHMFr8fSfUjSg99Djlq321;44VoEpCPaS+F!50pPX zSUcWv%;4i1Yb`uc-NeZ>|HBI2nakmCWeuc@<5!bD%jcbmo3bQ&Km~K58G2(`euwq< zzgS1`^!n>i$)ssFminq~CViLaF%WF)BCNDsxAVRQ0bLwK!eTu2Kz3!)_-nI{@!cpX20xzRE&x=7bW`HDcFKk@I# z7zRc5Cvq$Bm6))^&_(;F;~CSw>R_`GyP0`O7i)HlUw=G8UYA3#p6$o~-DPJ6c7>vu zeQ&FPq_=7A#bq&I%=mjgb9XMoIrb-a3A3g}@V}S)QI`Mlo~I}j4d!4A>PyokzvW@y zGzKsruECawldreJC1k`{lTPVr-3qW|JbinZ5^M7cdJf>T`wUUhU1l$7==Va=?KJ-T zgLtBTa?LkbZA02ZPc9t9a$9!TNgD|RZh>Y=VqqyqV4LV_tcZr)a^lRz?XQW%FC=KQ ziR+{LY8~FMV7Nc;#pW8cc>-W=a7=29b@-)@?|?4<%Ng$U;!w-w}|ZNyF1=^ zT@NvTfjd~6;mR4G?@q*oP(IP3t{+I*Gt`4S^K8l~Mx!g;-{XWSJ$?Cw?+{Sz>V;ut#Urmj@bZz4S zr%&8@F_Rc8Cx`5+WNK%>8T#bz-Uene;8v8iwj?uj&~rJLA+*Q;QS}y3amC!)aB+8cDDLj=u7yJJL5ov- zaHl}ABE?+_6e;ddC@zD$wzv)M@}IurpgkH0cRlezOVq0rB_j+)G1I3Lz8ZPWJx zBu%&2?}?TM$znJG6d^$Sek)zOIlH6%$P;zameBJ)GrH!|8h4Cp`RGog3WwH_YC=j! zjDq~uw_#$;2H-LFm+ePN%j2SWz{`#rzB<2!Hs=+vn*r{RtfP#|5^)z-00leo?B}Jo zS&*Uu6QEL)RAT9sj0#(2;XNe60)G6AxvFc;vrtH*0nXW`9WI7+vy8?y-2mJo>5zUY z_KM2^7D=-66L!8aQ3LLT`VEARPNW!6D`~Fq&6%!bEw5uJFkQ@nwb%9aHwn^Kai-?! z08Uen{FyFs3fut$GOmoEEe(#83!DJeKLe45+cD{rmJOctXNSnI?ii)d{XKZVvB8gC z61Gi)Vr*DKz=^E+)WY?evcO6vUOQkw2i%Q~Y9VHX7U;DmI)kRZuqME&!oJIuTY z%EEA2QHpzdL5Ijx~A`GJh-n z>k4CbEh4N}?EQOTI3gw(1$POJecad>O%oXfYiZ-Bq;de}15hPH~`0Qq#z=)Ty- zz#)!kz^}VciCMLja_hR_SgklDJn7puYkY%0(4kO-t8OcPn7V^W?G%*=>2hlR!eT^$ zJ&}p$(ipDKY~-AS`YgNGSb*gi~P}eR2{KJc9f_nzxrLtdPyknscG4*?^y)@57W<0{vC#Q09YC>&)~8b z>pgG)#!=u(afW9+%24_Pw)W7Gs3ZAgwbSmW>d%0SSL6p|&hev7!HZgbAiO>CC&(yH zOY6kz!hCA>8qS}dN4YKJCw|dz?vReBnlN2hm5WtJmFw&qgxwM7^~x`Dkb{ ziZs%zSXcTZEA4iew>mM3ntK0z zv@9HAMCl@&flBuj#&}`OP$pPPMC-wg8MK2d+AoTVh0GG#3jr||`wm!P`GO9^V)Gm3 zjcjQ+1B}O1Uth+IWb02HPQ|h?`}RrZTzz`GCb#RExg4`XSLIe|8v_iRwoX7_N)5Hr zuI@`4mmkC`x%$$vDU?G^io#a$4v=*J~7f=GM zIBh7~7FkLdAtJKeiBf7sCIfBB zb{C5~)VyBeA~V1q*wOiaFH~|57vDNrY4(v0KcEm%3^VbDAkXN#f#Yu0PT%DOg;!DO zU_71$4!*xQKnj&6R#XgHND}7)mPZw6HewexH|%h^l!|2FiCTUY)G zraRgaIbn3u&c9J6 z5;)6m7z-2iS=CFFe$glw&46>GWQ82A*YLQ+pUh$i zUdypG6ZpZyyO$H;(;HB7v<8TLJ>$#c^KaNSMGvyz@X1yppQG*)i%nM? zVV|1@%n%Uv)tNNIs^%U+F-bi~{qrWhLE{{|d7`OS8Wo)HN8fi-PLlG|&7*n8X%~BR zY;!A-ho~(=33N8|FxZnDRI@O>`F`aBS@6OdkB{hK=91|f8G^quCc`8HK6(;fOk@09 z102oT$aPP5?L;}>PrB-U`-!2Gme$xYEA+KTDrhc5l0ubKXz313kU1S5j1?A4-di)4 zQ@nm(r=SHmdg&tr9dJ@rVUGmI@b*yac58iplC!7;ysf?yQp(-%L#!y-Oxc;r)6g)k zW;yApI^DrgEsB!vLC_Y1o}$GD&GGPU_bqzp{5Quqd$?m-@2~@! z9_o+c4f9Hs>vUHiiGjYr?p>Ypw+jEsIn$4f{_2X`Y;@&*@l|KPg%61szVWC*diZ+9 zwDOY~8W-}O#%n10t;+HU7i`}R8l!WTn_e;h!acATfx-^7K)@CzHlW15k=xqM>Vd6oa z>HWA>?nh3S-5EASV)zuizrhV{um0krJbeb2?ftJ}u}TD&vh{j-pko>P3J(;_Lj!_` z-8W(RV2&L(!X; zJ>lvW(3fqWR5*OwVhqKbQ4n#mDHwfpiu{Y6R87TZv2=yoE6Xk@;e|kTb1*cH&AJW?B3R zCN;;d$Y8j*?p>wjUvP$xl~A#E0xnM1T`zl_MP&u!at! z8(_0YX|1Ac)!I8gZ6H&Qkx6KOn_<;nG{6CKD(J)h@Xrf=I+O^D-=flK93efvEI2`l zeRK|%))M`F`Q~fI&}cZ8RVW7d?iBN>BS=i;kE1)45%D}qLS0Lx`No6V%rMpM=P+?dKC;7MRNn(yo=XT;T$_F1>eR0C1$-26p004 z&pIBD=%Am|3HOD7$Xw^<5BId`hnpdQS3}w5`Sowj<it+LL&Iw_TTd=E4 zKhQEh2$8%qGmQMe+b^6I2PYy#g?V)`xe}Jd@OnwgwbQ&PRq)^LkS$mFd5tBIO105E zh++E0q}bqdu-Dg zU@TQPuiWJN^W6VOiQH-JP6|kr67uw#a0OG}xd{7IT`k@KiiI#T^vowO-prtzmU%Gl zn0{-q9Qz(Y`m3-fto)CTY~U^j-BV z!WB7|jHMtEy<_J-7eC@~=cq5=;+*jE`_aD-*;@61nv>aIKqx>UoC2hb6pd zB45dbY zK9=ko8p7dom9PXYfY`tQwr{XXIA5}xFT#EukqkllLoTeA3;KeB@$AU??z7EsD28Od zfXXWl#4PmvN|6}a9k|rsS4UpywqkR^O z&%egHvyU;6nGg9TwUL!uZMDg99gw@we-lLYyJj}3o7kT(&?G<)-gOZ^@5_vdB`qY zTFHy6nD4$lVF64Rc|yU$W(?K(#A>COE;!&x@orlsF-eG_w@DEbT9aRnzx#|3IW>4# zumg$b&yZp0p=K){DyG}eY4`~EN8zi;$-8H#AOek%U8CZN??_@=P!@k!1nJ2zXg&EC;g`d6P&swuSW&#u31q` z=p;ULd8nhzf0;g(8fMq^FkB_`qt4&wYb2+CmcVv67mlRvVM;c};b8f2fRr`7TTFl51+X#6Db_q;xpzY5=s zKR%&{C2k@JIfE)Yor@m>kO95meX=3*KA39JVc^n_7+xJoqr`0}fDI5*Ni%(+@Q0I# zgLA7&}`C`V;7C^ z)DGxZL;FLjh6TmnQyku_E2n|pz3Y+3Xxi#?Ph ztl%T#sC_?==oh?8CW3c?WEc3v{0ux3HJ1Gu2&2-r_wo>Swp4#`Y^w6(`S`DB zUJeMm!a6Mds!r%u9{<8-+=n~YQV)oe#WapDF`)dZn;%@5?Y^2b%HjHFoq_g8Wqi(Y zSG(k>6h{fZQ86(g>@?<`W;f?^pF&ua^gb88cz0FO4R~t^udTnIql!oYlXJOwuh6#u z8I49dVi6HcziyC(95#u=AXhTj{yPwGGXK_@JG-jYao>jZGZ(UWCQ`c<=MRRBB@reJ zhxAW>tdAraACb`tsHHVn+hj>-YOqG#gQca03|~~|S26SMgJr}bX$A$7Ntw2;ez=;{ zbrU{TqCZMLrj4!R;iAa{9ARC63f>BV4qz21@3L5VxbQj#-#Ut?8X2TKK1i_X0^$Up zi7DCaLSXbI8v5lX=x?2soh}mKRL_<2h?~91?EaWS481q}`l5C5^nTr*A1vc^wm^7= z@YjKPV@eYkIhqmSu{I@5Pdn@Tl5``!Spu5PK?PFaP~wzVe7FV~rX_bsbI&bcIw;ja)pZnZTj<(uzr{^3r> z+mvEC59aZ(p8)nXrX>NOO3ewXK=(su(0^?e75J3j# z)wiFP+5T2bqN5dL-luj4W|ebxR7Ob$_h;OuGqkDzmIK1jQZui3#|7CHz+kT)(i1hu z0IuQc7ekkkjMkd>1G(?V*J5jIH=^0+(*C`pGRKazJGe0N?|!grQ4NnUr(d@E)>h!q z%%&VJJ$a?Vk)a0ltJVajT4~=E&!R4@!;(&1NuD7^{saNz1+BQ2_>L0Zt^_I+{lsXBudluDsb(ke2b9?O2eY= zrS9==(rNr*M9$Xxlv*wL)A2h>JSt3t(7?Rtnv!8X5T)fD7z={f$lM3hfMb0H7OO1+KksGnN^CTEm|TVU1Og@-=Gm+?rOpeIjj5uyrfM1d`|U2^ z7G8i^sjHrhv721Q0rC=Bfz01M$F9z~Xbdqx{R`yZvzsj;UZCM(3ok{88!tNbIHw#F zF$3HI#pT>8ECmqi#F~Uh1W%u?TL|71M&wWf4}B_38&>g(V+07tvn5)BsHb@W-T=98 zmettZDJH0j!w?3sz(A$-o4rFXh&L2l(dzP#M}A=whk`kAcv?-{%w6YBQd<32B!e|k1wkqa1gh?bLN>EPZaGTAaW?6B`rfR6sgWW#eh zHQoj1QCi|(eBQr{N6P*(lZtr4uF>LHHd26Fkk?a0TYX};V~V!Giw+x#u`>yNK^BzVI4}2pOn)F z?S(fI*QZ9S-}XMdN4DvuE4$UUX(BqS71xfomnpxfod6_u7vuMfVsiC75S8Ct$lrAb zmuqL~p-q7NT9Dn*wgB!qMg+W&85Vv24sxvD(KzeJa?0+#dBdi~nxf*jxaY6;{{njWjJYprW_@rv0ggC$6)Bso zZFi~$ExrXr>$lvJBl)@mKS*2fK@6)M?6{rWIj%g?R`MkKyGs&r12a+YP&of-(#)i0-M#Nyaw2zZM<#RD5Z#HcSMF8-9_nqwDB zmh1=%p01#iztE0#b2*#9uJu=*AX6ere-EKpp{Cea>jOJqwNE-vwPTY({HdoBB)Px(Qxv|(=9M9TEI0hKsgcnJr^ zbgy1mx7A~5lr@8Y+j3d|!&qyA{9Q2&A#87QNd&peya7gRNK`~3|8HeOk-56&X<YuG7acA(&32Tsn)S^1rdh(?wx%6C)_%*8^BX65pP@&7pej)GqIEdjnL ziPVi#%*G|kq9TI7x^KBpSUsi!XJ1q^yq6X$hmsia|J02gCi;?u-UJ{YX$4Cgv`sf0 zMgJ&BatA<7f$5!5e0>Tw>Z&2FV|YmF=ABT#z)O7&%Mw)5L8S8yFDMcEImk8iUfqO} zM)_iWHEVsP+W!Yfj$kWgiSAU@o)NGR^;&+BnrQDy^;&U3Zx|3KdH?rN1Wc7v3yZLb z>_@tziTEouuPV=*A*G*}(bjNqj;=?I$^KCo{zEYZ3>RK*q3)k#+-VNEbhFlSlfT$E z42i3(aDknPlJf^A1i#q0U;>{zsLpmfbY&>S3bCFPbY6Bn_h(j}BNW%AH-gu1sR9di z2cIj@(Lfagtc?1qu6gs49`#WfJ>V`C8J_shbsd!~DfJ}Fuxd4lEqOa0yhz5xot<=vflld~!D%?vpX_{WfN8Oa;H-LWu~fS@z4A9{b~Mu!!$P zT};oz`AvQo@W{fwv<-*`m?Iyub=QlN7L9<|seh*ZK0KlC2l&+`Cq_vp$~qE~9gT<9 zB}|*S01yjL5lujXgbAt&l)wgbH>DqETLLm`j|X7uNa;yW&1{&OFqfsr08wbq8N(M% zc9jnv(Sn|v62CH71bV24GLu%k#owjWZpx6GWB+!`>gT50(Edq02X| zw93&-J#->;L~w>PA1=Y)qp;}Rz!v{O&`3SWg6bO3DtZ$of1X}ouTax_@3AfCRr;_O z9!dtKfoPA1>DmA04yvebct@i3DG*;UPV1F0!KBs$7Pz}ko9GWY&?MZq>2Dq3Nj_yR zA5A2so#2w2(~hkzxxH(^AqNWFkcge$_nhhqo4*7i3CSc&PC2gzI`Wn?cW9)-uiXOn ze`S6S!wiX>_$wy{`p2;9KhVmZ7&sYVv}OwMDPK<&&zu+B$; zw3=KvyWX)w`z$j@7NNhWXN%`P9grJ5B4KGKeDx`X-}7@Kx2*M%P`3X<&jprTy+b1_o2yxN!My7Cz&V7+*-&R@bX0ZR-{H!~#vq?xb-C2ma_jE+{io zC*|Vg>M`IEY!YcVPy^*OK{-Z0l}^*p<-E!rhdta$5Y%!kib`Wixu*Czfy2>r^}!1* zrwB^I(KD-x8>W~S(M8+G=jb(BD9hxD-zN~iv&zK6N-8*GF%8TJN^<$i2gEwzD=_x- zAKg&jFSnvPcve<^sgW<3%YU5R9&$mnL(lJYXZY?vIs-Bx5YOaQb(Hw|O#uVP-be&2 zWUst+T=m?!*XeEQHBGT~w&YIc9jAJQ_3%cDHfNBdA*h=77$v#%Zz~#nI?7QScVx&2 zpqldc4N7GxN1xhM9kEm9g>5P>E{O1yK&>klG{WHk+l1yuSxLmHt3q`Ja`#W&E)R-r zPfS`E({LxbSjF9M&Og)*%88pu1R6syJ*-n!+QYl}Vdan49k~+rgS%+c=Z{BsHh!IK zdH1HUgfb%MDP}2dlp7jObP6KZmM+17- za%UE4A5=xJ3s{UhK^BcaYcE$utC77G`vYo6QwbkiSd%Z$ETQYk)v|lqh(6l#UP&P| zoVbD1dD;(H!BDRPkCOWGncCD3!hG%(O0U>Y=4_f%9)Pj=BU2P z(r}1q*cm_}R5hpxnTCpWm;sl|PIFX&V?~*O0^(n<-1bWxw<67z9gC*3#M?KnXoLY++u?ht*>jgnPR> zN?@)tqk_&@4Q{e-pPF1&5UPIz9JG(HOL<4endAidbvB;aOX7L*fMhcE1HCvZIF5Bu zT+{g&*J~xN=S-8ml61P;XxTG!#Ymn83 zZ%zdlXOI7r+lF0$otv7M4=7jXUoPN}(}rD;or{{6|No!H3#1AEHwh>V`24rU-2c-5 zwfJAfx?oppYECVXtu-}0HMh`z+NlL{vj(c={_o?Q>eg0vAQ=}QY9kZExq1HI6N+vwp059=;r~<3e^US3?sq`tZXjoO*MGHHg8!SWOzq+3 zY5m_TSs<63wU?cxwT`09zr_FT7aePNV7G*&^}kyGHA(0Hz97%PzWDD8s#!bRdVB=3 z3H&G9zaCStbM&xw1O7V#V0)L5@A3Z~SfA`K0m?N^dy zWR#K?gFk%uu=qP3cPF|BXB#@Br|-Go>Ih@L4!!c6dtQ~rnw#U_uJL$*)?D1b8XlUx z{=FQ1eV`ATdVQXe416AkPA^EltZ@ELM+ldE-a1O?E{5hDjqMygDK2?(J|q}A*wc9) zcm_0&!M=vjshoCFSya_$2SvB8+&cbsSb(Np=r3(FLTetxx4o6v$~ufhEdughlMf^( zu+G=wUQ8DFrs-~pivI?YpTFK^nW^;7BZ-2nIdP-4S%g zZ9JWS>sDuez<+hbqR$+UP(`Bo?jM%UbDI%Ut2;pWH}(Ox6dy(ECqb_e$)|(Yrq8!dz-ay2zcEPCDaiZf z7SjE61J!hRctC1<3c9bj^n*O4y1(RF`UiXu+HKO1z1P?|GV6L-X@zLpES(tlg{g6X zFE<)7K@gFnA#OeZSa9*gFAPr(Ut72!02}59LFPi@^2z<>f|FZeaNaxB{kVu z;^3_zc5bWWjlokX?1%@cw%nYc``` zu`g$!O^1gs*9^PwzAYgOohI~jN^v+YZ>C6Xa4l!pX%%VhsN)g=sOY)lxvjMz2UGp( zvQOCQ<%Lr0_%d`?uJ0ZUTF@mjTP;$nsr<8`(|#r3#hPz)1t8=Zo8_%4m9;IU9Hq4{ zb7EN@!NWmEW0><47UZC)wZ>y#bjs!RkrT$+S7Rs6by9P5`;=f()@-9w@6@HFS`|_T z)uBRWnwdGE5PQGgxu;{e@~>P7Pu+g~9PeDC;>O-9&RUV0W}|zb^R4{uvO?Cs`-9$j zbQ^aZoB>mX{`-{HBI0@z&lnxDF2Zv#|LLxBr%!z(N9Xz@7WZ0%#fUdePV;##3vnI0$J8OOS> znHwh}ys-6)-}qyG$-?{X_iXn2sqIrGH6j%ya0mf~(tAa2yHCOq&RSwj>Op0e#kbjE z4O(KQ7Go3*f3mxcOcPcWlSF?q%@C=tl!3a|bq2JFw}sh9*61%)#aZO<6+6GLL&we)@rzLf`zUjEE$I2ttM!X)y##!V6*<;-sBZ z^xXK4vtMlrx}2=L>a$Vytp>eGK0_l}&4;<{T{C8z{MwuYM?xU}*Ml03@9mfMDXcj+ zny2$9{eBHIQ ziDaU1JNa!_oA>rdk#cvuA*1?&%_+>t6|Z6Imi@Wh26%MUa!MBRi!>Ope*w$jA?>!Ml#thRe+^X2uGIcpvG=001B(86xdbBT?& z=j*)rYI}O8j-cgt8AnSR3}AM`{=vMx$LYYsa!cEz)^>k?xUN9YmwDBiB%=jqgfHbz zldOkNQ2Lt4sa@?-NDyNd;8`TGp-$!j;qWX!&LMyQL%cZaejAnYB!%5ouR zk-N;t&`bj|!F?USTslkp8zxQOAN~sgDV&{QyrcSRyoA;wHKlXti6YHc2uKp@?evCb zX5GT5a{B5ao8<*|Sf=8di5NpOFC@?_+dNHo5qIn>Wh9=~cbtWYa}w`VwVcE% zLF;WTR$!VV1yFB&gwUwR9U-eCC?&}z&6a8`ZAopl=9Kl{p=3b{3{XmkLUJuSz zqeScdsqUCX9Q!(Po!QB9aC61IUlsEZVZzqgjMy)0w(x;8zaR0+_(^U1%JVzO#OS?I zD#KjRD}BBiXJcnxyNmY(jYn+Vu(J;2?TO`T*1^HPu?1EG)6B4#>k9|u_sqM|4)$wm zwKx)tDrUb@nq8^bUhTBn_*go#NOu4Qn_fzQQ#=je$- z=h&}G8!5oK&5Bs%(xkaPS}9LLZ>Ug#Ny-Y`gF%PMC9(TGe@^op)wkm(3voW`WL}4; z*tYa^ha-+!3K8tI0hEJl^yDx?gP#Zb z;=wPb_e^$@L)&RtGoqM}V*9vcg202FvPw7iP;AKRdw^FYWfkK(2;pi{nSOm$t9|`m=?5B8%E1r3Igke9#CqUa zlSqEl`X~3l?Hv$J0i8dFpEDL)JiO;U5O)xl3f1yRiYmqy#vy5h(BDN-5W z#s)AJziJK1R`}$*S&QnD81mH^_Wo8+=Kir|iv)gR)z^3Xde>jtwFJ=EcD4}{!;N?}T~CtM&0a0r zaQ9kzLZ?| z`_%^X_x&J$z|V!xqmZg680Y`!`+OrUV%A ztB_<6>HEKHLK$55{{%0FcQORBP9H5WyGQEdSfN`g8e;T*iNik>W@s)%qd08qlcWVU zX*7j&v%5V@#i1vB*egY9Q6s6dVwD@eL)1!V;2w;eaE|+6>ku;5%n6NMGS!PGb!#y` z4nM2cmFWwZYKS3U1n<_=la`Nu`;oui(A@U^A#k@kZ!UFxGW2{Vo3Xf&6Ob1)-CXSN zhZR9q$@)^~%=hH-w@m(Al3+>{0CIeWpjYMCN5>@w_rN6*Yid+6s>)%`ttt%vmE%o> zb+$_$yZGpUR=YKezTnX92qH|fZK}-UnkcLz-a34ZUWBLS{kh@cNtrC$rO@MH@@tqA z^nk^SKktPG3ecum9f{eq>9ga!;n$jv+LNO3B-Ni{(dqa#TS;O?eAjQq^C+j?@@*v; z_8Ve);?KNhZQb%z2hw4rt9>qJcN4&nA{!>QCO(va1kd(L`4g_0iJZrDa4YEMK>(_a z%I+e9d(nvp$CB{{>f*&&Jg?tJI6KLk(Cy%Fr7mI~X{>bKM!NFhw}B?s_X2(QVpp$p z+msK!sa4MowIX^|^U*7j%S)YB|`;{q6rje*_e7zgtF8y!jvTjc8 z2k4uQZ$?VW40lS|D~fVYk216`0=x-fy{*gML^4pcSP3&FSY~0`o{LP325Dpcj`^FU zU7N+81O0o+&yy!pixq5$U})b_4-AT8=xDIW%LyV2b- zp1O(4yI-nTOf#3KTllugq4XZHflN&1u~^Z|eS+Y&BnBL<(!OhD3f7PKl+Wg2&f2Ay z+-KSxD(^)i(1L-hKI#-7K{5tCERh@M0V@-OOLV50*4IhtE}!BkhEXLiN|c`dsOx1gE3)olXE8ewW~I7ji5&# zy>8x8$Vv%&%oJJtb@Vz>)?e6>cS>7vuRgg^a(U5lfP(R0Ec9Fh;p_AZ$upF~3W&9v zO4qyHCu=^HVsJ^%uP#Y=?h}RXh~3?1Dt~dBfAHK5yz@m&Ie0fAFm&gBJ7L>BBh|cL zV9PzmCxMkJ&wVnU^%Bg}N#}3jc`#%P-UZX;=hq{QkTNI4@KLVi@7kaqy@Na;lvM_2 zDzeXi@ewHKU<7E>A)@SyGl+@BRt*4cD!cdO<4$X?e-j~=V><_FO%yJi@)CjsR&a&1 z@wkF3ikdytH{UsE{R4w+rQW;MeNcek;U1jmE-P4ZTV|HOTwPsXa(R(4vUARh;qE4 z{$8=667Ku2F49;`53HO~8Q-i6qe}ahCVvjoXo|f12y6Q*w6QL??{FI=GbR`VDfj7K;h<015}pW5c-T_Kn!bjaZ7_QK0aNF zY>*DW?A@2vAT}Olm~T3EN96|HOHsR{oQOk4kQ~enRs>l^fOv^0DYq!lW04=!(zxmJ+ zc6UO|!xj}w_DwE(h9<2%^$tyPc@#}>oZh{Li@h+aO{()D2-jc(#n)#BImvI4N^5d! z(iy^b5bo)`Wkd{n#=^3DC-qhfR_Qp-fMt*aquL1O+4Z<0oAThcM4pX%ttj8Um_a;V zA)2Bj<+d2-#r29MDsuA3P*UTJ7CpoPZxX6E;g!_<6X%8cDHAlzV+?X7Sp^K&Sv8J`vZ@u-@e-6G*SYtrdUw}iP?d?@;$v&nEv#mABEU* zI_Z#oh+#X}OOu|PBCk7SB)|z=@Yv)wwrMlb7wd1$LC9=P!iU3D>I9YDMs;UVeGcG9 zl`=mF#*5?otwlvMovx3u)eBKvH!$876-n@3onP+%q;uqihSlQVuk-1`8a zqPV1-Ik>b5lSpKMay(up2D5wzYA*xwC|_JB`H#6X2%_4lBo9&66QgLTIcOf>{-Xb3 z_J9i%I&F)I%NJ9eTi;hpz6VH~+>W;!4M)iu$_z^gi~|3w6%W#;?XJ3kvAFL(zR0z8 zjvA(4!>>VUN;1GF=TmtFpGNRTtTuQ>-#zpaR^XI{k*8ej z!~Td&IqZAWzHF*`hlmj1D97wjJGLzJ632A+m@6cHX=3L@utjzi7KfU0MC75n2Yz0? zq(Ht9m!yDxtj(z+BJ6k*D|L z1`TlNFkZB~<{;Wc?i_ex&a23BgAm>2G(me1GPRcV$E&5Ktm4}c4AcjV&DLMCzw_GB z0irg+7i~MA{xLbG>(FJg+&f*i!@p4W*mxOPj0Gl!)zc`d;~?3?DF6;Mz}}ACn|4z< zoyTz_L}YufnkDV*U~;3$QjgkwJFS@rtWn9ksYT}da;SGj6klgl6C5H>O`BL6U(wt! z-ARw;2h(oLpWq1cQ}ycez{hXtlwTBUFw%#x;;M7>?2=8^ae1z&+^ZhzV=ww!W5g7g zIOK7q`T&>{=k}Pv%lVdpqZd0}Xt!m1`BNc?W~RWz=cE-`L-nm=Bzmh;O|vMu`uo{8 zqlw$tzbkA>8?(n(a*8lwghMY4N#Mktu66uo(jp{Xew=ewa9+oWC7day=r0nD>TJ}o zke$8>k|Vli%r6!=dCNK5N5z&-z@R_J!kYuPnI`sh-!`@X9#WV}tIl)-^I~3~yO~(w zY;LaU>~!vHJathFg-kRhZFf`;*wvCyD8v~;wNKA zBjWi$@?e{yvuOKE@Zm=Urz#H3Ehn33?=%kZD?Y&VHVi2-cM~XXC zSllA*5d-}JTuBePgM>VO;qvEe|&ZSCB6ckv-Yx`}!SPo#)a zGxw*2J6@A?H0GNCiKHDpA(UgLyz8}oZ~68R74^dtYU7GoSzoYkTdrlUG+Ie*%nk9V5 zmw@fgU&o>OeoHg!FX}Pnnl5)&Q$@_j1h2i*o@7jmzZx647oma2_t2>Vv-|n3 zu*hHGMWJ@)gE}h{;?81%L)VvtLyXOW4jC|0liKORvTZ~hT|R;h;J2k_;8%03o5f+^ zUYA;b6%RhuyTg$lqqt}glvBNRbQyBqH2bU+enOk&VQ#lqC0P8uW0In3PSA#{uvGAe z?fCW>SEs-V**w3EPKyMaO`E1teS-HbqP(KQTRyTxdB$%wtVW9yjvN|QwB9;$zZ5wL z-F4FGd004KMpudG<%Hq?$4rWKB7;`K1nWTKLgg{w#67rhpGbUDDB}F7Gn}C`1GBgpBI`bh4!u#2K92M`mn>B_$qF z16cEQ07BQ1AAAC^5QY$rG;)6M^dN}^I~EswwIUKtb9)MW!q+#l=AU&clco~Azs%S zE0F8^VAS73Yz|ibk<{Afjfx$_IoyLCJT=8JS)#(`1PBKT6eEudv*GmxK?wNb(Gy#6 zue+;XxZs6sk#}hP1qP=3bBVMLR;up3@t4I^XD+*HpO9B*EW4aOCTGcqE@csL@P)vs zHmTD2)e|Z#cJZvOWfYg9Y4Sr=J<}0Ba_jiFfNnO0`h;Y5dWWgYPDUMDrfJ;E7>Xe{8&`wiVJsNQa-ly;fv7G}RZdWQ%7$(Nd>(l{@>D(pWdOI%Qk@9!490110Or(a{w;3#)8~Jint06K?=UEj1 zEqoN~ZgJdo$s#gGrbhaScGzX7`4&B-|5DX=c;KTOalHvZYCTrB!6g~t5XMyJQf$1E zA3Xw;#{4@m!@@l+1TU1c7sr26M83=b0k~lucW8pbiFR~`k&^&g#t!yN7B|nI<~1;f zW!vy}>m!B~ci3^dch?l=--i01XL=W}&e7*@7WuWmNC}W`8R7dceyPILVJ7qg;Jrk4 zkGz5WdL0!Yhm4{$_JVzHoumWkWaaM zE63Y%*(1lW033fBHLh4C>!t!B*D@B!4VqhAI`!IH+|3E*4bNzBIDq^0 zG>WF@J*Rh8+c`aeHhI<)A4Za4nbH2oK_MsI6P+IP}5u9|B?z;9hU(lN0V<2aay=DS_m=n z#8{nBzLg`#mxF_@I86L=og@vcP|s(4H2P0wjELa3&v&*YlhscRe$~F@EmNmaORNR+ zc<-xNEQc32Nc6c%hCNj$pY>ioxSQT}8P1`Dng#o?xDdQyUm({0V?qp0*<(7v@Wq5g zPjf%>lABsIV->^XcFKC3xbv?n2A^nej=aQn3$s~&2TnYi#oRIe~?l_>9Q0VyRh)?)8CSN)?W#275C+18@h{vnNlma zq`sM-^-@5t$D1JA8@JX6jni0xatqUWOuaGPGfHL-8s9K?BOkAGaY_#Dp-rXiZ3 zD8L>N^$9&PB~dXI?KB%0tHsN0Q|5p(gy2ifl=*J@vR2H#JTFT5r_NdAKC(j1Z@O1T zHOCm%1%*o$Jf90SBAF8uwk(&{s0KIDg{}iOt-SEkee%T}ubvn?7_l5l$?B~pju@JV zKTU%Le*Rr@@wPVErBX9x?u+6bn9ZDMU|jytG)F;RU!Fn!>vxzH;fBi=V=g|FtUo73 zPR2fcaM^$g>06f8P+*YK@5vB6JmRy_%W$$}`4q5|LG@5A7Rz_RBqAdgE(^(8HD zZDyyrHY>fMP$p6g(Kbr5TR2GWjW1IiOwd=@`HiAzqBA0axQPgS2NRtM}TdpHS;~nng7T(2$BOkS+U*f;RttzfIYxf zQ$E?0N^A$7iPV3XtVn)c{1VObHHZuh6hmaPkA%b%3nl^f>F)U=r>S`g58QcLle8rb zYPGDF37(2>>>5sdFyCW=ZCF-XV}aA$%y8PNkP>?E)Ot>rL;k6~yrsKaAVlOvvX@8n zts*pm)8s?->x!R+!H&rp=|8#}8f+6;dxyOg25f{9d3}b~ls`lQ$we39L9yAH2cA@}MQyX|ULTXUs)*%LND{6dG_(t-OTy6a6=eKZ2UOf%)A z(~=$?3&Y3X~A$`#Gl(sMC{%BN%$-ioxSMZ4Xhp2(dj}-%s}U zXzJELDng*c-p`B91G4og#9xxSY)T1iR2fx&Z}3gfcM@dt7b~U{8{Y1Z3+pKZ+_|d_ zN+|^*^^DEX_qBjJ{~P1=%;tLL$9^_7!2@mSGQ&IJ&VDyZu;pJh?w>K zC8pex+=B>Qu=tR;`;xT()W1mMlAL!=d+z1ZtTt01g4gvPYBNpkV3?e^tMln$NLcVw z`sGgdqaHsWYRx=uV=opL3=uW26yZB>qnp4Lz&Re2(CM6%IP3$N5uP>2h<7(U6k^Famf9DE65=HvO!vlj2e&2#V`sp?dvBC7>{UK!-zxmf z5heuLC@F?!hPdO`^ak}OW)#y+R^VAXJ(B6|E>#^a)@zw!zIo4ac`E*%XjN}7Jk28%yd#qV2m znxavCyWp11V$02R;YjPn1r!YnR$jbDG!yVUyA%x=2H-~e1z|+3p`udk%+2`$k#ES9 zu2w`7UcnqOCi=*<&(IU?uexW4Tg3%`E*GF0tS3Uu&`r=>62<&L8a3z((ztg~3B$RgNn0z#IhMqY7fL`Vye!u;J0oTJGAk)~Gh3U#Ql zgRFkq-xw}BZ51cG7S2*?7&NgqeuiPT&e2w zPCb47We1d(u0s@}j*Nxln_tPEDF$y5_G6?oFEs6ItUc(Ta1di659KK|Jfcj)3vQbF=KPXDroA1ackoinHV@juc}RcG}W@5t((;Al>#a)3k^7(h>67x3eu z6QWQ&DCaR7q|=$N*1J)6lF5L=CYYf0N?1Pkr*a@ygupn=?p7QxQlcRei~+s|zLdAf zHmZITEFm(4{5_d=-!HZvFEn}HGaywpBnfO!=Dot?8U$WwVar%%_m>*07W6N{PkM4c zqQzKT175{h>0r8?sx+PY3?3O0w^wNALl{1aQb>U5p0m%XLGGh|k>KkM#HvcaDlc!( zO~LkL!v33Q$KqIa~Ku;ex`Jh$mtnm~T6e!B} zmYB_pW0_VsGuy@;or22oH@Z5vo(35KW$g?MbOxC63(2qk(fux zdr{Fhl3Ze@Amht-FVP7PZJEf#hF91OC`v~*+ccJ&!Gc?y?-In+;FRjhOKZeWqThW* zqw>C!nNeNVetM5Fvkan|NEpzUjnC)W3VNp+T4D5SpiQOt}`o0JZd2RQs86(Ex$1%Mu3ou@1eV0jjHX_%E%q&=A9{r7P zinhb6YJgg%#+?%Yjfe=2460wi9JlqQRHOjM28N~o+A2Yu#Oeq{ktmR@EGWVX{e6Lg3{9jJ9QlPz_`_Rt04SyG?6NC}F*@yAO?}S%UtWqLK1I%*kDme_cBV z3b&}Vf^`=yu9`bcUDPNbJ93QJOGA!y{@%4H;P1F4n)L2}+TY@GGH?&Hr^~T&iW!-M zj%{b5Q1>}|nvW+&TenKy>090Dz6ott)~vg*_7p)o6#SO z5r??tX<>@ZzFc(j^0It_ty(xqsd|>mUs-aXUL8|2wN#nQ8wg{`609}TUN1)x2u#n# z+B6N9_Fe|m!czlXfjpo-X-qScBQO#?k+7l`0;p}f} z972DyYF92V_;5NShQq);ny{CBr{Ne{br(}YY-r5niv6u#l^s z%KWH01^*3yY2_^wp5SXX{(41)?5u{sU6v}YAiaB9`y*krUj2fR@dY2obZ9GHwtlwl z`0Ji2T0)eWV=;D|Px}baZsLa~`sh_lnx4Le*VR3b%UN8|9u@q`S-m;e-=yQLj6f=& zQhTsQgcPkJI)Io{T2XCe!?Swgv*O1wE^rUv|L(-cw?LF@H=tKeq9p){7~D}zylhYZ z=BbEa-=0qVhPj)Yb@CJvVk~vHP!b?hk8ch%tk|a+uzi>wm!{35vvy4zf4iS&xbNv! z-v7?^W@OYbz!$?}zQ8{dqIa|Yy)&sV-6;=r;i|==up@X}EslL;m($dZ@hONq3y~ND z?ARYbV?u2Msv~I~+A$+qzx%};3VGFUT7nqpTN%HV&Zc^+s>)ykaR8Vtx8rMmrvC47 zY@nwhv0}xnc=T!j^dgAHXdI%)6vw#2oK$BKrVF)f^D&Kk{{2Ve2R>y$Br>t;-#w_I zE{bVEsWG7J6~VhRW&I!mLGcxMS5fuAQT$_r{)$S0{4dE2K-+H=eIi@_!;Qxg@J7OV zZVr$j5IrB2(;-`99?XidXLpM~V?P=)8Z?P*?ULSN0Ac(%D07z90ez}DsOHTKaBspC zHe~nNv01(o zw%j|B*3a3-Em%xH=3B`;SeC&#!>tg>ue{{;ci{r7*-sTc@85UL0}pQ{LVj0-FC23+ zaT2cghuAI0emmcgG<3LdGHs{X;9V)gn{6H=p_A z=U(uu(a?0hmsoN_2oJ<`ZY6W32y3-H9@vglj}%^z3r6T9V6r zxV9jselT%6$2Q1w^4;`^fZHr;Xk>v} zKC*5f@YQ&Ug5t*XTaDAq*MJ=a6qB_evv7uDVJZl@$sBw9sC_NQmZOk20A#hp z!_(xsHQG;wOpITH+fB7gMaIhon`Le?`Ht3X=fa=P&rL=VX*+QVUf2Aho-1DO^qZJ{ za3N|&68e_2nbjq#kNL^9H4Fg3QaQ!)|I<*M0WfTCt+_ zX13w;mTu9pDin`zO3n@Nq{-h^)TAnM@XD8@ojC zvWjHSWx^;oWt2!?VWk{2#0h^XRU=<1ZojEm>al_&MO6tlW}G(&QOVWlgD&anU} zJ8kD>R%v$sC}N>aHAT&8gPFN(H$kBFFXi)K9fhPcX__1Hm-4dnG&@5g+ds}YAs_hJ z?kf!;_`Lbmm*c`AkB~jA{ph-IynXY=)AhMmY^wxUh3UH{?PqMO2G7nWI+Ks2ept-= z*oYSQ{_|+0V42Km?+k4pE|7S#>tO&|N8uMjA3isctI=5tUQl~+TqyN#Zvl-D2xQKE z+o#~lq7n_!&DIMW5q+^6oZmKqGe0NA#t4$YJ)A46l9J@<;(ANxlWcYEBgpVX8*E`! zw)d6qd&j=z-3;>JDF;}R3@PC+dX!aLMN$vZJx;7syL^x4>(u#V>w?A%H7gdI$y|Eh zRU?vkz`C&Xukd`Sfw5pe9FcG3Vd=^tD!vCWY^dbrpIM!elXrJ=!pY#?pF5j~(BHXg z@4uy##J&s_WjNUwG-UW* z7@q^d#Piu=#iODX109SyYiI>mQ8AiLo0%hXOLlc%)jv}`4z_vT-0-V4*>Am)cBCAG z()3RXU+?OgU@W*Vs1?Sk&1Hn)S3Z}v3aFHU7QelbHyi_Z9DR+=eAv_ajOgd?W zD$uU%l*&KUoM%lHp}HQDn4~h7P8>gYNB75IaB@$P5ivmyaQ;+j0@qQFBOO0Jg}?%);#e!Gu28RaoehpEnk!JHGGP3iO+9{e2$YU zJ=2Z~WNBc^vv2>&B{cQINe-u89AjXf!~mR31t=V{zqK+2_!3)iAGPGB?ul9mJWqcW z1k@6UQ{SVWRxx6zkOlXn%y*(#H@kR*C}Qg`)XLmepbi3N=WESLZH7W85AXZkGJb2m z)ybd`(ed-`8=^o=4}H5S1>i5|B^wox-3U?x(x`>9j86(85)SWG*FTwyyC*M47P(Zo z8b5#{`5e!_%BswY_1Q`&IiRp-4>{Uo26UBfuA{d>XHE@w&B)v3JkMyD9Xy0dUTZfXU!%ZTmT6%T=zQyPGpX~Z9^pcZ!;ZoL8h9LTZ z7*jN{0;I3C!Ny-~4CD%BI;ROO&-G1ZI_Cv0_M%GLTpulkGw(#dL6TVsmL>!R>dci@ zaVk%AWZDJ3X=g{K3Wb5b@OWnkpJOa!h?aFf=8gwMqPUuLa?4-};iEV8?->5%ynM(T8p%*5<$52&^oL&n4ookslz7Jpf7%1QwWe8| zl}xd(T2TrT07V-Ow#b5Odw9`s8~Y@T5nlPG*c(wy3sfBI0RE)wZSoU6#t?}@^l*Mp z39Il+y!3R=ea(zVbD})!O=B+IcUg;*Cf|g_HIreH0>!>EDj^hAq(Q*9tuduc$TW{6 z6~6-nyyDT3(I#Qv#mD6^0EII*ccwWhR#Ub$0UwyN36h>w=nbIOTi%Bpr63i1>g})} z1C!zU&I*S3V^=*=V0cF}DK(x7z`i{pND0!FN3)mFXPM}W?bi&sT4bjLI?MJe@!(>b zWTXY38e?gKCPyGyl2JZN!@kgZ(M>b9ZOj^JWqLINm!cyy$FBXttdXRXpsRV(7_$=uF($ z7iJuFK&-Mr7ylC=-6vQIT*XxTlMFFxwvc1^0yIRkjTK7KqMlV6r~=q3a3ZS-SG z+H6i&n>S7E#Y8iwd)4fFB}b`G6ahAtLUW2}5ow%aROJ-Fc4sW^jK(2EvD68U0pU@4 zo8h_zDL;rT+6e0Yt`&X5xsB_Kc_9+2+slBL&%h_JF>=7dnj;@38kHiGx4DfdYUmIC zmc`33o9G>~MY6EK#Z3?lYPrSK8jhf|ugWks{`-gc8(?7bmPUWHof z%@?kJvSTZA-RVD_smr8?XKl8) z0ZPBa(+O?SqPnb$rSve?`5{aP%cMt#%GxtAYPU~{F`8$0T+KCLZ`dP5u&~RUC-4E= z`LrR~d$O3D6h{=eQOG0$nPHsPhGgJUq8)dQ)#KAF@KGF>=2!^8{zg4KVH!xnQYA89 zpGJvN58>t*dCVr^huE4tSB43v-<&8G%)Op1sEKE}Sug9(Vt><3Ik}cyKcqdOy$$W* zh8X9t4hdH!LgexPF9JXf6eDOR=Vu3-JGqwGg+@7q4GLo9f>%&9R!&EIzuK|S%;iK%`Uh~klger;|QAsoLQP%x!FyN1&`4h?{gmX); z=Ne!$4W;_lW@eKrLsAXbi{gZv@UubpZt;KF+z@o?Wg<;k!h`-&DR*>LQR_Bd0e@@A z13bb^sR86V72>4kH;1&Ik;YJwVlE|I0iHR9c6>i}|5v921u&||Om~S*enTX_0>v4m zfUZNisU@c9UWA2|xc@kE)ZAA?%ZjTtcrMIbwk9y?s2zPVf`TLHHlGQHOyJyJ9~?1&44BSI*82|#?M>O6mgm#|vKK_gK{+{a z&ic5t`^W-&ZeS)afV;9A{9hu-G|9`H&G9FQnE%hzp3ID0#+b{0kEF@IzuP2gd4)Xk z<^YY>&ld}giS&EHHdR2DbspV*ix6L~r!;;FxOR@3qk}`2*`z#VGwR63F!3My=slQPks#kOhj03Yf4^NJoRP{ zpFQyrun)8mBHB1wwKLdeCcpR+%G1a};bkq%?oJdK=~8SntqnG2rMGY@1>G*H|D|gr z%>E**lkB>?Lq$;P-g4>XY|f>KTy1V@4CJv)o?Lzk*EdmaGFCjgpwY&m0C-VkSLu8) zyvXu@rCI~*v@-B}o-MjT?ShJ{6@&n|it_5Gj5G=O2LBK{H)Mr(BQP=R|ESruHi9wM z!nmT>*=D7DnV*F8S9+hF-Unb-!ODDZKCmU_q+(KyI2iJ0^yhn=Lqn$J+HJg^>G2WO zx$Z8$z(j}+xmzTyw8U}o6^J{poZA|QNxz-EtuZ-3#~9d7d9<87|J4~s`WstfZavmb zqAJ5Popx>al(3h@dB@=4eFy3L=5^T5#7UBiog1iq=KIKCvV&rsW9>ECkq_I)rUVc+ zgiy|An}QDjKhk;#j$Pps{~Xtvecc=}OyO5n?->`QtiI^Y6%gBg#GO4A-&K-6Ll z;9Ntq|Md&0{R68g^Dfn@_v@lHwa}=8W0GNf5S*h{tpoq{lZq$?U<6!5ygrn+(4Xyy zg*9lDgU1$RFd)>f;hkTAXc1wYmyfO&X>pZVH#L{$nl5f`P5zFT+P_9TM;DL4+y#I1>WgBaXffhX;@v+N$USJo;p> zdi)V5@Dz~BnRejGhqTAMLk+#xEE9HNWG+h7`rFkD;7cFiK+QTOd84pbmakY@DTu89 zq;e9!U++k|v(ID~#kw`3QJiR3wqSh!Snb+$h{2()^Ico*oen_F{3q&sW^(BVNtkcJ zo=DaCBnwd-O>Qn%aLjt(D#H_EB$cY9-1j6|+?L9@Px%nZc?>JpGTapiM8SAms6~ zH}HN`(y#D1zu7g2p8^nncnxav!{7U};cCdU!lK^Ot8qwRlpk^Yrvmhs_@T?a?;+}m zjf2R7R`7f!-WYLl2LPOBK&Y;rM~RC{6aS8uUj*l{fbSypO&ODyzvRwf1(7A%k@z&F zT`hnH=w~bF`c;ygRY#H~{L&E9x#k$X``K<`sz|5suDaBvf3^<2GA(vuX?FNQEbk9& zAoBrvjr)wRo(E`HpB{8cH)|!2DO^|)a9;6yEJpGR2Qz;j`tHaBV@WLZ zu3U(nc4E2ntPXT}tZ_oe4BKx)XMT{Z{eTu2yF=j!3{))<&ttb8kBs;bP8~J5>qlq> zVv=dFvbgzH2kGY_EdL#cR3+?tj@xKP0Ra8;Xjgx5%ry@7*#pYiie0ODJaZ`v00Tfy z>dCHj+GbDp;}wY&ivG!pAa48;O$v&U5dv~=n6Q3RwFe+tKRy3uw}ElN$!5;~nODU7 zQ;c4}kt^C|X}GP_shj1Shim$l7W4Gg217e?SGhQ5#vgNW8leHJ!RVbxQ+fry;y=pY zhy(tVgW4vUW_m0)zG05A0Lb^&%6JalRx9qCiikoGTuaPBIqT|SeUUW+5dFsM5Lf|oN^4iWU|05bFF;h?nV%Wdw zMYBSEe{vND3b^Go)CzRwtpVf@F6^oxfM!0 z>CKCD83Ib%0LN+JL=Z9fi^P0vo@>uqq4?27>=dQtNM@vziD@w7(6i|NeE`r5+G!%C z7Qo1tneu>UWOQyB(A8ag3ujyF&F>#P%ua-yzWcJ_rg_W;E=^N(m((SL6KpUF;P45M zA{c5NzA^&_@n*O#-qrf5U@TnoQn9;~;CBdzK(YAQldjsaBM@4ewasuWG&*VRr*J6H^y)zM?`9?H z-n4FD6&@1OU>#Vkof6y^(A5=o4-ruJt)BLVaK8-7%G9obdC4=4;wmPsm>kRLo#V-6Nn*Dak9An zejLlq1_OO5O4#G8u>aiqS})hxjw3Y^nt!hwvOJ-8Bx<}690Eds^E>H7uG+#Dmlkx< z*~l6qtN9ZC-+KQvV9W}^Y1twWw5(`AU-V|K*7Feu_$mGGwq>^fv;Q+ABP-Qm5!5d1 zZIRyZel+l3S_dwCkJW7gwu%N-0z&qWhKf*Cef`f+z3Wh9df~Et|2URST^y)+6Q$6M zE0!+~aoZV5>ux=T+&wQ+iTO4}mLmKhIwC%thvPe4#A;}`AL}e4i;9lil4)zW_sOhw zpxZT=5$?y;l4UT713l?s+!BSsK<5&P68i54SQ7$zoNAHZA=wF}UD<%^xFlc&|KqHK zW&(H4`ZZZpTGJ#<#8A9|%4S%DM?HlBF*yYw(HftOCzyLg1>mnE?U8pX=_3^lgV!we z0oJZ=tG2D%2!8Mj5U$9bSJ>Wr*=kvdM+W>9R>VGvaWu9QhmVDmC@}g8D$KvQj0Gqs zULvaG@^|-6g?7^86~X9ZJCw9w}n@wCnxW zGxqN7Ahm+v@BuEzfu^d^9-tDg?&0veFHU8xi0^20loxfJ$dsW#TY%p_+cgE(gvF#~ z>P(8nl))s{rP&&aT4n|QUS}%H{>A;o3t;}Dc5BhTSWoF+e1rto_Oo(jyYi{b<@P6J zDH*=f4h(jSQyTy3Kdf=L)~N5Goz`w}dlXc*+%6dKV60e7N)ssfyI73WtQI7aBOD0Q zFND2iS=R`=LBLeCSE)E(0eW#RRrM#yuY;$iq^RjRT1E>V4sR~EzULXWfrGV0xN6s{ z+oMKH?f$BIX3;ro^5gwQSgO}=?pgRVy9m)WG9oz_#C81K53gkzBHf%oi+p0Pa!kO( z$Cd%GBb4%(-|0r%hp@|sluzIvvP&q6qNj>=7!E;XE?%Rh)ohBcDpJoBmI`gn=GVuU z^B6*i;B&&|joPhYcnie^JcOzHUbo%8&a;+6^zMDR?XW$>9`~(C{zsxRm{dHRH}nZh z13bYR+1rqninE-JUz83~E9{GDixl}LPHch}BwU(_ zxA_35os&1WBV*Q>E)^DuR8J)Q9?R$|J8DdN7rLb^u_}2Z+2hdN$~@DF5VFG^ zz09kHHQs#gqQa-3#L~YX-f=|6`@?31H>OcYnQ&avds8o(15xj#Qk=D~aOY0%c!*SC z%&hiYp9cG&=?uOJTm!V9{P@%b`7+3vqtqP z^66laVRV5Q*V=61PY#}$31AZF0qR27R(PY&=&D61lJZJj*SWTK1290-d&7F(?N9Ta z4Ea1p$FI6f5#qC0EW&R;w!MD6qs|f)7D{xhl~{34p?@ ziG_Vy(faSNZ)!lq+WkUJ_tgdxVeDDSwP$vO(b{mAgjgwH1z+1|cPMGc)x#M3uoDc_ zpRl9*!8oJD)o#buHF(hQutX9E^>Q~nItOc40B zqUDTKO2D}S?ny|^F})7?kciRp1ZF<{6OW?l%Y}m0RuUkTAuw*a+?$qfU(dB*jM1x) z+BK>k%iDDAO3srS_$|auAgtph@1@_`FnLELAm*VZ2=N0JAUl4Yc1_LYl~5wmYFE)8 zG%v1}XxKcYrH&7FqT@qS`?p9OTTyAgS<2)Zv;_(OZVwpQH{b*AXuC-ev1cNSwK(?{ zU|tHjNHhHM`1Gbg9B%Zt{(QXo0F14loKza!+@0^O*8c@2Rp4|9KUj8Cr0a)=v#i?e zYWSE`AW`kN13*YTB49~EO;BP&UI^jPtH*w1FLM$qlL9+1(yw4RyFc%Swlp}@hGP4R zTBzU2_owhZIrp2=WL0k5mTG3Zimv7>Co=BW95=h#@n2?Q35m%4BU=@TEd52k1ICVj zl}_Ayjg}PDB-%4WD>Fp1(*ihP@2MgPm%M(x>p&RlMy|Y{^;7?5l9%ZVE0lgjQ`vgD+*lhRNyUZ8!A*4K>YcfhkCwuP zC@zqa(9+J*U4pcGnK&Hg^(RVJ3hD{EArvuiJ&%VthrZWTS?U0r;CSPe|2vakL=$eA@!%6(Xt-j*uEgA^bTX=V?1uy_<=kkPSX_J>*`~8N)w#I7heITKm74Lf8c-*qI%67 zC!nO*66fZw!pXo_y>_NnT+-3<2kvQJ&h-(ALZyjuk5FO7@qC#{L1%b|UvY&#TRV`cp5Dg()23 zYIO!;PPkyzKQLP~Dc0;3`A_#S8<2jB!s}(nzxhFb1Iip|1(I)HnjIKkSK%?=fd`trgeTpr_S=L z1c&xFY)9mPr~Kv+M%GZ0ltUd*jz#v5CN}vh5@P|Cz{N30nXrA5nMasuaLWn>e=C;F z8Nd^3FDllTYLHF6sodg)0cgGp$fInzuWYz~-a)OrhtzYXV9PH`>E;KWA5qhK&9F^k zz}an~Qn}AV#d6j&zC}Q##Zw=d)~njtB=;sn3&`wD$hT#IDQu@t%K84+QD~-$*9qBI zVX$*YE$uJyr=Q(mGZ}P0uea%=iZ(*tANLK_neMA zO-mFE52~JDXuDaq-&+W;6Ou8lzeNQlMx%+oXNuBOaoAp-XBth7BRDoVpRlc6wXlEn z_E&(My`&4vd&7Qp$Do)J|?H_-_i>PqLcj+805(GqAu|X3wuAZhv1+Xg!ikrFZWHfi+ zZ4lftM{0km2K0k!gSKmoL&bo9V?VP~66ZyRK%aZb6z8oiWdc;$_38Dr$D?Bvd|0bO zMBdcE&;kzy@r_n!1@&e&F`I6 z0-E{eOJtPhtz zgxzr+HkM_wLt21aRTd1BwB~4V+xO0#n!fdBf-{2{#-c%-y#qH=Modxzmal3=U?WYo z^bydDenuEO{ZjqEY6bh}x0B+_xjg#GV~G7ZqAMJWQ<}#WPv)?JH7SZ^8D*9YQ~QMm zd>@JM&_tY@WhCfW~8;t0`X3ddygsKK)T&tXuw<*y_g z{|E_}0~0=>&L+8oUG|C(5vIh~L0HQI#x|g@{3vztEEPA^J4OZyN(q=v)K-!51i&SKo9{Nqn8D`f>AOVqr?Z)H$Ilpd6fViJ++MX#NsBXm9PI~DF;wWT` z`8PExzD2HhzyX)dZOHmf1@B_*#5*(vb`y{1|NhF@j|#{4M2BaPf87gILY1`rV|AuV zO5iq&b|`SwYwz7Za(1tQXq>b)v(Z0-yP<6VyN||q8%TRO@E&Vact?_w?n<~^1r3nt zX2Jy+KnIWLKA`F*)ei-eQZNrg-6arN450(bD(T1Bo$B7aVUabUDp|SyU9C5QjKEt0 zNBb-IGC)?4_g~1{$)^nP+`14c9>dNiO^Oe13G7tZoeK{xtt576h#nf&hHf=} zoJ?lB_@<%dH)$k?UL7{BzQBM6*9C?R6yXU3`~v26bgNx31?&BkMrDx#sw!C$psKV2 zvHP5oete5WpA2U2eHrn(YP~4%1s50M``BZY79ZuBEfa>bUZnb21;$u(gsedZ(k%-_R=juRa&@d-(6q9Px zXRk!2C1-Fz)Ci?&kN&ySU$bRe(131TXnIX`T`lm?fd!3^8g5>&Ru&`?O2A^ir~CZL z;g$ymdjz6>BRy>Lwb7XF_GZZ;6LL9 zRMw2&k`nh+XVbqk*z}IbxB>Us8LfFh3nsbk*f?BfeP zot$o;$5Rn{ieP;z(Q;l@zE2g!QD>4+t>*ke?i1YzZt{GiBv*Oj!!p zhV!Vezx$LF|F%cC@(T|r zW`VFf$$i596SlUik7N2a{Q5M}AUtE-jrcUoukLC;#M+TCjosAy$J}&1ybQ0gK1M67 zC+JHRFXYjK9fCoy<*D3cFPbX8DT~SEWQw~b40uLntED~Rz9ChQvYqN(oDVzlwKYQU zEkB@@TFooSd8uTkNjQKSZaYsm-kbF6StJcA;=Ah7C<)GUo;1{N+Y~oJBi$?f74)M& z&toeQn9SocW#`)ar<>UV@h8jJAi1cFR?oU1m}3hMI->)01d=QXhY|}bC8?3Y&M7lQ z_2nNnMu&V;Je+bRQx_bDM+}weD7s%(UKneE z+J)i(tnJIU+fI&`BFY1GKpD@?&R_1243-)4?UDtU(Sm?RT?Inz zp0~C3|H7`>&s?MYw7g@G0WfYywZmQ72iCrYPJ!U7_I*2+5fS)Sa_X)2-?F_Qru#$&sZR^2~MFatv*9Uyn2uhVXZM8Qyw@ z5hkv)Wi1MZH8+R!RuHdS^T>$+G}+PLtt@4t$&sB1EB_m5+ZdwG4$8uVQtHwcW_iVA z0aD@k0bZhfdQ}k`ph(@OjTH@~j)BXT+vMZJlIO^~C;^JLTb&JOcctzAYsFU9CP@-^ z1!BuBa0EzUgQrupm$D*6rp2nNWPD8UvJYQsguxdXhpm7A1Q~xtwj+0dKGZlh%eK6* zW&$~m7cm*?`&2CIH;M$9`u|L7YL#1UH#OBFgkQ?5@*!zc`g;4ajWFotmLI9rQ;^p4 zP#gQ$mVmu{Weik#9UT_7G}YUgUE23$!#o%a=C66`0M+K&K;>`>MXU41Ab;3&ku|y& zu_N~H542@5c_tt3Zz{JCuVrAbzNb$)ognpVTgmVVwVpo`GOk|k_?qQagG>2a>m4v- za3F{zhV~4%61BJ9*GMssFXh;7KYTnd9+V%jslmfCT|u{F#AAMuAQp!|!SU`^7HEJ@o@$95 z2(ro2L@S&3N<&Wa1B-OW~5i{Ck!4+2XDGt>Rx(3tfb;P{>ag}RFebsTq%Ca4GjqHql9$KF1I zOYT3sD8jKx(S@A>6qBkuWY|y^OtG{#9KWlf0xBWhRDnFs)lW`lSB5wlDCg`>@wAWL z60iU8ScJ%|PCZ!vv9!WJwW%r2VMfsS+GU&DzOIKu?=&}rs*A)_1x^Ca>jwy$VY<3p z73R}t)x6pMU6cHFBRt^cs9_h@!P+|z1Zscx1VatB{yGZhMaGLN5pGUl#8V2#IGQ9< zU#6A1X=OGF$=^@zo_!Ye#_Iln`cL5r5bX9F$9+}7zp;b@?!+C}$McWdB_JC$!j!sj z-AG1*$1+97JwK9T!r%3RLM1>mMb9WIVcF9tGN%I6qbr~Ltv%8J>Fb;FoLzh%Cp6*H zP{pzYEEwq?qakf`dc+w-*Es6wWdka^`8e^@K{HMXeQ{ixCho_ zKA>+yYOei1VqR+(3$AETB#U5Dj$=`}D#euQV%3*#+<{REs$^hxYHo%USPX#dNiIlP zL;F44H-QjXA0gZj(}fUAsg>0MML#9$D%>>6(*3oe{FM}-T)fA562DsY7LDrFo7!b* zdZ6td$`u%tDWI^+*Wb#d>nWZJ$OU!_BmN4vFqXASdjSDd2GowF6cZ0^wg`dMpCI(U zfco2FjeOzAGXY>x{y{%WuSklife(`0TpcNUi?9@p5_#$Si?UHk3tW?DwZ9mOn8~rM zUsR2=oJ+G(-48a7>I>2DMc^3c2(KUwG)iu$^w%s&VW2;FTJ85Ix*lBE|v2CNV zZ99#fH@vaU@AUiE`!vtF=k7gwX3d&4vsD(fL-I{p%7MWX6uV`&kB`=K=(Rux>^Ck{ z%fA$tM7cQ1m;Bo4ZC9tc9g7Z4D9 z){~*p??KYJ!W3fMaozC@?0o!vV@7mT3113{VKGlKD!#bSy-1 zvl%7cYgYMrNj*E#p*+`ifDYCma*&y6(_V{%K7#$Hw z+KsUpQ!Jcp3bmsEMDm{0jPSQ;&-nxZaSk^RTwrdO7l2xu!E@{gs5 z;aZuy#+*CjK)NR(g?a1HqqiwTjp1IZh7+L{CbayU>XG&x5|-=e*RA%0HDl8#=V+U> zE9C}jlfSq$`{SU%-L9NSr^}Q5YUZ4wizl!A_IhsP6cG%^){?2x%!;LBGWX={TIrg? zzqyQFw=N;i@~qPJ<`&lnKq>O|e?P*9x8VL2R};00DiKBZM58ts3be zfd;_t19mq~nH&d}^(vs_4ep|LNVaM4l^pB$Z}M+lD+0J%dI5Fr*uc0QRfvN>CJTG) zc;EUFY9>h1hLel&3V)TiUaaTQ9=88d~?JADiyR7fm$3dTO@v@?6P8I%yVi$uUx=+IQC2@;~F&* zL1j~kI6F}`%Jh&j15U0+ss!sh*Pnx{VUJr*BDrZ&81GP*Jn{F^#AEC>@m~G>ZyU$? z#z(1_#xX1ipFRIvFs!;mAwwMct^G*6@a9+!20qM+mvP^gR5{g|t^XsP+`5(P>=iE( zm#hIQm7L{qZRMyrVd3mOAXwaB*T@RzLBjI91rj!-XYZ~gEg;dE^2iXNklt1{q+-U) z-2HvdY;QA+*BJY;3ky|(XJZ5y?ZOx#KT;~K#*%_=gJ`SBiQf;%Ls zZBEVIN9)iL0h}p5*k3oSg7QA&c!TY-9X(&h2eI)(0un*RY@s9}4$J!Zh-0EEuq5^j z)z!o>A>t4wk!(98pOY!azclX$=jDzDIz;X2=H1KDQBTwEHNtF@^4=BCGcok#`(^MF z5Nu{THL0#&_9-dxnU#rMr{=LJp{g1H&va73Ro*?r$@FB03Ca8XQksaMo6l40+P;w5 zajBNN7}V~gbH|W^^h^SY45L}3LbF#vxOO!#MFgUyC7C8|o#aa(7G2px2yRgs9{)K% zDWdQ)N%6tfqZE5rXd=E;G`iI>Ek-+#G_IG*Of`FP%7B@>&oWMNA~YCF&Kp3 zutcXL&Z!C&m2J9sX%KW32u%6in9H)^Q)Fmx17%_2D-$rSPFt9YG{P^Jh^E(cweq;VlAXgvDTrMPT4Q_Pa3Ni)L!lku?AK@u z<7!rwl$Fc|(H=%JMWLo~-FNvW3-&LEI>{%>Kr863u4Gk4gVv7sa4s;+D7)r$Fq$TR z$oR>U^UIz7=X9?kN?x7zI*a;L8sM~t)TXAyc>=k6J z2M<^B96LBr{2%y$kh%)n@KdI*OKW< z7}cMt<8L0aQNViix#-L_aCKV=XIaaelYyc-D9%S5-Y3r0a5x}k+EUl}gTLn~=PNNb zj6F&-Sxt*2hrVeXMzM?G6i0Awo`OZSGpn3^N;8{djVg{`*SI06XEk}d3kw?deS^tI z4i`HcGe_+dyFoFriF-=PA)S53l2FV=9UlnY6g{_aGL8apBnk^p`x?9eRD{D*~q$NO$iO?S(<|fu#`U>8Y$; z4RwF2{%R@b1~VN%g^#FpDUFJ9cN$t_!_5h&6~sE+zlApD35Ude#p7DW{G)mlb1UWIL)2$KG`6rHlLAP@~xNgHKr! zM)q=r6?t_$eWsAZtWx{9Ji;pV9&30(4Rw2=Nv?PfQMHS*0=Fn@#(uKsk@D;No0cI2a0+r36hb~? zo6!D$SmNJ)qIyIFw|_1o^*8l!sBwf|9#SuV2mG)KEpP8bMM_hA=>r-Ic6i7ftZr(> zPbT1py&yUG$XuMa!zc5!f#d$2ILyVTYIj5twu?jYtAZneoD_{8Yt4)8lnDD4aKh)% z*$>5AITmpEC!e;=RYF8JhB^lO^)#@Vw_D+@+)w%+^A{R*gJy3zW%S3 z(D-Fu=gi?tkJ2Zbg_c(=Ls)COwp7UeWOH5g2ZL*e6IddUviU08k5k@mvvZZM@E_-R zApt6O!Ux+nbwK?1Ow7e=C83h{n+{k$Ea(R#<$)!4%8O7Yp3;Ru$$> zYasfbM2~cQ7oyqI?goO!WrfXQ^<%b#WadmxvYhz?WSx2#E_I(0J_0x)rL>spAc>CU zwOyQmZRbwI!RR;AI`Bm=ai=$Q8!bcVTsanq$YR@bv<449h}zS<$VV&__EyVY`kUT8 zg>bM^(fZ*tO$uEijTJwiCa*u|qffgKGIPV4UYJ=?&bvqm!tpiwZIb>xFWCtMTs;3% zf6?O7`-KT2@`tT-SY%6zAfj#37t0r1pUd-g`vQ&4^{>6D8Az-=(<9wkDv*fwHY^k=x!h6DE<$0zN^@Ql z>92Qb3hgT+i-~wrT(A#QKzlZ7aoPD7WuksWi9V;nQ)s|L!_Bt`G{C$Y$Z_%C?zW0w1KR!K15HX?&JKQ=a!YA{rDj z45#qvBYW_@=9H{o-lyUYkF2kGS47EimI6GWPYOCA!&=XP)O%vyQ#q zUadya;Vp{bJl)vaYZ^1D`dOF=+;OIM7{b&7QzCnnX0T(1SbtL&{T>!JT*mb$uC2>> z^8Vh;ID^OODznv-yX^QxuazgcyiQkpK)4ceq$LC`qL!h}$&I|b%&_16_ub0n+k@@) zR{sx13YjG)>ZsqAcpkYDz@77|zo7N&ILFI`Oz;uQeqXM?2hV(^%oVN-S&%){qV@ez zaixkpPP>O8TAf&?{op!mM+mro*U+&g<3^6}n2^uycO8bcizmTAO6BLP#T@CnPKT`O zsmntTfLH|LKl0rIe`&cH;sESq{;X-MKraY)n zfSTF$#sdZeq&mX)U&>QS#e@Ina>nPgcJ4s?i9$-w;-^~t;YSfHPO8dEZQkdZB&M9z zGkIirhPXJdlfO-a*~dRW<0GzOZzD{hg!PyKFrC5W=W9>QZCn0*)!O?O&MKRjQT#!SsPd=i zmKUDail9o3CLa6{$oP0S&ZsW#pn{$nrs(ir?l*F>pdP-26i@~h3d8cvvB&D-a8?Jj z7{m%;R`Rf3dMgP`h_6gWu7w^ZY+mS@nebJFXctwG{B@K^=Khu8>(OqVlG1F_{I{_t za+-S9sF6_gNv`k(upnKRYO{Q4SozD2$#D*W3bcq4y$Yr|ot#?Tc=0GEqCJ9Axw5ku z|7_+}qAjN74jl|p4dRsu|1|)5UR=ZXy`p;Pv17)u@!u`%OYs{F5j+)CYzB#MKYiFn zb)ws}r?oO=swiLx_bbiZmpP0P-Q3vrg~exII&x2S-qhl!<_N1^Q-TGnZY;2 zfJZn`BKyIq{hZ13pnvPCiElh0#_XwXzFQ-}0<3QA(T&QTbaz;KRM8ILOo%MZP8Qrr z@!2g_N?x3)`_YB_+WbLu=6u%vYHJn5yD3PYZt^|~g0kNb>qoJk=VlLr$$C{w2XwO^ zAAtaKZ{+QxO4sPujc!02ib6GKxT$OL5orQsajYBr#wSUCPz#})_}f3_HT^Nsj_rR9 zL4ELzx;iC<6%%33_qcZ~Id4|AEov;_3LB18C^UY_9vrBd99<_}^;$u*ESK~Ly#x!l zc>9F?C`^1-U<=4o!d&;b@XJ^t7eK0^KXlozfa4ZP%*(;`KcTwZUC%mtG3*{6{X#(# z!4usZkH4sqyCL32Vpnc-DvgD_-?+Tu4fm?x*8atX^Cll1PQ?3*Z&k(FrAva@GIk+* z{S-2HmdexA4X{ioj7ljitvGT7BITdN$VU};>elFA%1bB|a;2>TFDj%FseQh_Qy|00 zBNGR2Dy2}R%K2~S)X`Zqe>b^n5%F)5f9fwDV8P~ykh^AoV~(_8|M@Q?oou-g?4VDh zlhD5fkhlRAXE#>x&&V7wun+Ez@$LIVlg9|k$Db&Y9Y^kOP6;YMFx%FlsT(LAtQy$cqBs$XT5fO6UdHLg zZYPY;H9g8&UP(;|`gJo}zxm0^^YT$quWAk+@K%Wfy_`rO7 zF(Ni9+mUc9>t7z8q7!^>gcQQ3hoY)9Yi-bsh6IiYk$##NshxDIK`S&q;tFAq$Dln9 z;+s(>8**?pXzucRq?YCJ@UscNOV6v?GR6Io)!h*QW~s?#cKh1H)Q*}REym&Bb=5e| zcF*nW_@b`(dsq-~J=(s;eA12h5GVI}9`(RntHeU1-80#Dl(dV(QwQjbcanHsn=$UH zSI&FAMC&9?S~6cEtRYqG|F%pzcfW41U061L>qin3$rqiqe9rdl+lD545GSwl7qzMK zMyV5GE+Z|#4L-uZ>IgFG>BKMm8?dCf&10&9>6w{@+>#MjjqARkwgwJ2(5O1O<>IgV zvDk))oFL1%WyIGhS-&jhHwr4++}DD!;GlRO4$8=XHSKQfJjv9rSdvA!^cB z{Hx493Wmp$kN52zA^vZRigwRs;`-YOdtWc!L0QgWeu0dLu4l0iA07!wNO%R8V*IkB zZ!uP{(Xyz|q2+OKZP9`|SST+Q_ptb+Gop~bO|E`K4<8W|DdBBIces$F0F3Ep5PmES zJDfJb40|*e`_wQMW)v%0zm#WTBN;x7Ucp~1eY0!Kf3U?n{MYu)X}2q+XJX)?u`(Q0 zs|diCEH?2@vcZ3xNQJ1m`b`bFBWF+sxKeLecYsWKmUKc!z0-y)?J4yua>iLcd;TUe z!>9&nD;WjAdYD5(q-sXPbZm{Vxr>6@Mw*ykLYGv|a=?L;WCrZpgEr_piA3HOM(uhh zsh7|RoSbmA=^U*pLcadnR((hWh`#Tfk0k6!dc^&_qr>*Fai0>(xJnMphsZwn)N~k+ zC)p|;*>0|}XWi5svmwLOk{It5M}h_Ams(G$Zozc)j&Y4%r&V}?4R`4d+Fo`$E{gQ( z@8(#}SsG7lDvIYKlTVuMA)n>~{s!C$n`mG(9YresvKvH5*GojUr)zOlH7i<}4lrIe zH5+=U^jTX_P9{*!u*&JIIiXOu_~}X;ML->+AcfYEs3dA*=D_xPgI&lwD!F-Hiopl7 z?891%4zBOr+)Am>I2mRCF)Lpv*$D!Ow!YlqqU7l8M_n4q?mST-yxrEiErW<${cu2DCk#yO}h+-^ZSiki{Ufap7K% zD_qX73}_EKRw)9h<6yq&WAE_EmYNkEaA^S9a&d04a&d;6whKhyZA##Uc90!D0!6^i%N_3h8Q2Iwx4gd-gAgp^G)|!Lwb3ff}-mt$rd6Z4fVqtHV*Z4K5)je#kWr>1$v=px@S^JjleB_Z$n zbK9HJG6{T5B~&NmE=K{qVBtC6=SSCe?2)m8fMy$w9YX3J;j@5WUvmVyYDf}75)%QV zmYw1o?z(P@Ht>bRM{LpDL;pi5_Bk2nzZ@5bp5x+-LiTDh_`38PiZWiBzqFAee>9ME z+ibK-vVQLcT7iDQOD#r-GK9SLBudOo1`%)t2Rl%?y6qKP6T3^w3sA@g*hZgMn)v~j zU;M`8;Rq}?H~_vy>xvpKCPzQzFAKl~eJ@Ss36#Kei2zbj82M@0J@Qu7$9&-iq&Us_ z>!JdjC*v?}!2OvLNV(byD;0e_vH)ahE~&a_)$Z3DQ{c%K2$i!W=RTBH12_h>lukE7 z(DfbqowNf*ZL$uryjbO4i`{#{zN>ZO>_4?=zNVzB1Qrn((3Vzj@;&*8iv|KQTy|HIYhm^vt7nY9H}gv${#$w`602!7 zeBeknzARd0Ku#>wlT2z?*JP%befJv!~zGGkkoS8=B{{xl<4%1#G6y*P~xn zb=cxM=)FNWdI-7*N!Il#{^lsAp9MSi`sZkEn|L)wv5h?8rmvn}yt++CHGy?|=xJS4 zdET%&0(UILP&M_qxQA&+OJd!G->X*`05^0llO5w9jbV*li@m)NQERZI zK)uo{xitTXZpt-S*Ico`&a=!yU0UX{Wb*$U8&F)`WIA6se8=TS&cQQQ(ZiV&{ zC=n(0;AQNi+4jy1#ys>CW-1D>DQEQC%(hDXS=~9>gKA~VSHK7}9&#_4+zx@?J}18) zkO!WLkF<{117J^F%0q;V@-)XkoAaNe*_F~7TKVF>ox_DX*eoMQ{-cQ`g6^qLsm8)y zYcs6FW|JBIsL)iPgviETdyn~fPN9sj#5(a$`=Iauz8>~Ysb*^PA$4@^{A2TB97ej2 zh-Xl^zp5(6@M#2qUFRjH!@{l}kShyP*$*5MqZp^DI-P}xuL{? znCjYC@KFPSf!gJ@UYJJ8Pg2Lqt?SKpb6zp8wez$46w}nMhIMGNtFA@j*Cd=mb^6hf zY^+3k;kSVM2=c8g<`D-;&~C(PWNdt_-Yxy;-VLJ}EUTqzRkbIHL({R1Srhv{{7}%> z5vTk4CVG^mkV$h{7t*QT@CHn;c|SgXMR>Vrj3vY8j}Wi(5`09uktJ zd*RuyxB@$2EN71^k4JiP6OTV+5xG|~us@=ywYoOl!;%ImV*y^gJ`(uH2k7NcB@m+- zdv1W4S>)KoR(Wy2TT+8v{YY~aDOIvlsB>C`!DgMk8fx)ag%l6JoRa?lk;qDf>S}7P zwdk)D8%#)TN+}t`cmIw3B>`=OJapl1q_~Yc8+=?K72;Y8b}BUj53#QG-o?MSLnQIQ z(nTSU4t({^xf3}GB}_QyY3c}WgOr1S9BsHqnCU(S;RVR&MRNb9i@X{ZBDi^Ig_=Oy zEZt7*-utu`VKFjGGu>3_G9@dqGEny2bm@ftEz=yJ53vc|2-T)h%dF{-vT!kHI=XnN3h?osUI zYnEr90>)JBXuXhc2zecCcvXE;rBw1@XJWQJSEIxOwqL+&f4HsID$P$+Z}*062d&`% zB@*2-4(|V{g)zbcUo~qNE4dI<9p3ui6x@6=dBdL z5HdMyhxN;EEe(hHu>uEQJN~}bHs?y;0N|QKyjB zcBO}Y7g(NS+U|Q1v&^5*pi}hKHTu-Q(T(t8AP7*qNgoZw6BJ8h<2=&~gh}NUF!Y}i zP6{YCC`Q=cq=RVxqjIFu$7<>>0HR}YvhuGD%_M~#8u~F77~Zp2-VD1OvvPx5!7MLF z#rQHJ)ROk*T?VEvTP>#-7(Ua~XgF?iiLAn@i(v3A|9Ahnq_1ZB#O!nkq7_aTUAy?c zYF%YQnEOvkjwwRMHSVis@uW6_6R~x89X1;PrcL0LK}OhuZgm5QF>xa{7%%2~&k?{W z&K`8J7as6VQ?McjTb#uH>3JBkCkq3;AW1bB-I|UzT7uDd5bgITS1A(BDE70#{=g#M zKO`7m#(3Eyy>^$5_^K7vlUf>We>CYw0US6@;vR)6_3@E9kpV4sz5n_ihMH_WtDYN! zmu$V|mZnd0F|gOFB7?Ahy5=JP{!4R}3`d8HSJ{$Li4BxfM~b~Z`j`e$S+MJh_7oNM zI#DHo+9oYbQY1R))@AfpHV_F)<#wPHh^-2@0feZbkkHvOeO(Pnf2~o%ChBFowHfQ& zjsSoU^?gmmwa&9pB3OLH(7sEIrQn;|49NcCUoOygd0*)GZ)njceDiKl_K(W2LGP$K zd5c9q?cBTiE0tb)l9Ce#U)!oMOKtz*80tS(9iFEyMM%+!c!Sl&j>@aw6n%3YW5^6> z;YXv@a^2NS&kV@T(G4=(<7;`z7X97^ZfIE|TccpKOYalj`;f#y`P5VHr){y0CJ8jy z<*HcKCIb%KB9%>Z=xnajg8-4u1 z`JQ-J)4=)eT}BrQSo7fy))%Sp{~{9h;CERv6k$IEz@mmI*)Sch4fdx@A(|kiMVYTF zI~)*AlIi$Y0;}sP@6o|SHN1{k+qcsN5EM)0z)JMgvFgJP{EU7Xu6gn$*>-A9zlTk# zQXZ>G>wM;>J3YiXV@A9({_CV)<+FlmfPYS#^HM6*32!zm?Q5{C1GVu5GmacVk`j>u za-wTk6}w4)PXLv!|I$V&D4EvjScf0@(e&YLS2DKjRcjQTHMH0>J|j|j{4vp(fZ9le z&Xy*jd;ab8z^)V6-_UP-eJ#xP(&$i;3n6t~P8T&hsgayV<+DZn627Z| zg+HfER}^~1;+ev165kW)H%WJ~2+#Ise6Ca+zL9FK>UAN@`|t8Rj#rU#rMtAV3k{p# zyGv8fBfowc==EFr68o<}7i=NCzJz0S>$jFycm8U zCiKI?sxE(HVp_`IF^B&=}Ue0cSoAZGctpID;zU_8lT1FE(;)Xg4RD4#Pn8v8JYr zsCQ%2^koWgh=}QYADL-CClV|Xk^A$1kc!atK8)3xT#fpr!&p*E-qm$BCBHbE0H+)m zN$8c@rV{kNhLoW!@C)XQd`{0p?_ZqWT+kRGS}zhg0YzIAd*!8?uJEf3xMiK3Fn)V8_rpFTM_sajyxeYzE%y+hn)zRM8W{oj z#b^>2IP#~sPMfzcZ|el)wRkvJf28fVQ?4Jb`;@+M^%Ww82|a)Tnq33u-LtH+Nz4Y9 zQRIsTBRB?)wqyteFwOP;gOes6+&^uQjEE}^H_NdPg?oU}uu~ZOj{36uK>;qXR`P4p z3>)=70&^w$^N0Hr8aiOEaEMgWIrnVLi1tk2*wdyX0>rm=vgyn6|LmMNDe}FQJv=VN z>L>ghp$$KO+evKus}=yP>T6xH`H{kV>}(x77JP8afygPwF$>2Oqvv0Cs#f=2be{`; z3cD@HvleRnq{@Qnw!m+ti=l=GkccEh46|wQPq|r%hM^q?(em#2AJQ7 zshKU?BUz!_tQb4xlh0&=R6a?%O?mushJv+VvPoipOUw^ujp*@eVS4zc@#k(ny+>#6 zl&SqwMY4vlEe(NmDYl9zfXgPDg1_h~s;{ELZF+p0e46?3Bz?4@xvHJA>xGUCbG!TB zu_w3>nZ=!Zqi7=lT9mI(QkzhylNM2)m`(1 zCkxlXv0a?nnLEhNIJ}Cba6;%z>>k1-m(Rbg-Qi;g_#DL5cvF@Ff(-*eEc2hR*KZzr zWKC=D?Fc2>@e5`BWkbz$`1Vr&ByMVC7DE%&GFn{y>a7a`1EeZ-B?2t03}|}=rzj9o z)rsUUQ)K&Mu_TJMw<-0sJTmg z^V9UN_x>tA8Ij&%iiOvP+=2iN(FjiQ%U8mhi}7$XfjWg))N8?c+E;e_o1^c0D`z^q zSv#Hv8F`I8k|^q!VIYZLuTn;uy;?@oH&!FAQJFrL6WSDmS3G#@Wdc?KjI)O7nxDxt zrjhsouQ;@HPnSO;VE!ZP61tx>`!F-UiTl@y@pV47O)T*q@!L9HJ<1AO@^oUf5w89W z$G%S#n8)9oze1Qm>SB%ILhTu!NiAgMQ#o74=`YVcZ}J5EuAOYKOKO& z>GO>o*uLqt;#0c(4SDwlfAQAiafB!_<4WeFULizL+AEs%^p=B0rB4`{frqeMzD`|S zLFZ>{u@3zzR9Y1y_3S0zaj5%HE`A?swX&7?A}DLU;HxuL`wMwi03K>dgFe>aUK^|$ z@wm!$P@AWovh?hL04ybicB*r!X4Mf4n!~y+Z)l=E!n>bIS@8u zr2!_|WFE5j0qE}`B!(*&HH3t}C6=)*-KTl-USFo>un_GVzIlpf#Fy*HWrI9DPR0&S z55)1mPb~oz#`G5^<7ovkI;R3~7*IM0cS|+iuWEqb#j9G34SfFwyZz%Ec~?bInx}11 zMINbH5Ub=JO<{l<)hy!yV<$^;lp3z|({bh229a}9#tdFaUk$0@CS8%wQT^d4lB(A? z!rslxiAq64S}qDEKJ)cMlbp5%+-oFNbaC3vj--jhdJ_Fq&}lJYjrBU=&=Dh)-0<)D zfT`}MWQdUQ^h<=qZ1-z%GW0$|!o(eeZmHFBQ&PAT(B0Q9t-bW_j&i+leVp z`c`)H4CVB48m#pRJ_Y?JP63%`)3mNuv8lNt3#q@1-5{cuH?ZoBs4?FEDM9gh)|Mw~ z2&sK^sb%e#CMF?GLiL7iKN$5C6tp6-(%EB(eVs0SHES#7dHa9ugDNJxkm<=i^grtI z!=slEA18v!lHE3D=ukM~BpW*DI)ntY^`m6&x-$&b~ zA>6i@s8Z$A1=-JaRfv4DooMCQaM3b=d^7KZtx%upH#_#!g1l2#)LB|N!PkeEJOqB? znE_bbGij_RCig`5J%attFMn_vLERiH>M@J!^?eI6V6{2`P_%hgxGLJLDBKdR=19a5D0xJB%Am(;vg+-?tO zS=Q1c-4gF#DKR##5sVWxcSh!|?@roW0oKmJJN~8cxWfAt+xZV5=v%3F&>!$`=nQH7 z2byD(XeqEqvb8PK{(Wf7{@ZsZw|2IU3*gHg2dw1A>EXuTmF!O6#J&DB$5Bn3l$&dV zpvXP|k;0{aq#IIDx@05R7eqT!G4AlRi*QhaFAV&bpp1mXHS|s7FZm#G2!ssHc+vHk z^#piZMSyNbqoFuqCNKfWms<*Y8y{!e41VCN^Jh5cV~d3T>Vl9qC9$t}D#t^Y0@Vb~@~Py)kbp3HtD7Dt7J|5!6ke^YCFGPGVeG zNS4C_p8nlbQ%h~#^$nnoWO{C}!(m?f#T?3%(AVx(^$FkeH5zs;byiFDWL-~>LWt@C zR8WR^lFyOZ`XIyb>7TwJRNB12?uSFNg_A81iUrzZ`UK~+@LZuiK^%gbi$IuCjmm3+QP2?jAwv4LUbkvhF3d=SU$^2v2(H9gU-*$lB)sKEWxKc@e5}U{ z;Q__d^R9(B&;6pm@yMqLQPu;WDe0sf+#lQ!A)?QbqI(C1cdhcZhKR@+0da|xf8^I* zWP}l+yAgfps0D^BU|`y@6XN_&^_VS}yOc%al>DBUCDh&a^l$GZ% z*^&h?FjmgKlGOELTh?Qrx)INJWQW0|doLT5wvB(x45BUPT_KuM<|Bo6m54%EJ#Vn? zvPi)jG0Jck2O-aTEva6X!h=iZ3_2+uGEJL^W08)z9b&N}z2^Cm;a`!x$Ay5TlB1yZ zlB&hEE_>SA7zmz0*E5E30js!hneDv__F@7Oj7kA2v{IE@9tp9U&<=cw1?k4ykxut*M{6 z=wWC|hpma*#qARH){#`I72i3;=*Y>7CkFqW_hc)5uXx%N#Sik?F`BZKTPUYHi19H` z3Q(w-plCjr$DdD6wtWF4I!Q{-m9j>3W%j$jpt~-o2{4x0uKFu$+DL#H8!$h(chS!J zskQ610%YswoAO;oLSekPvPR#Xk0TuU<12~!`z)1JZ25*|>l8$C3z-I~$=-LA29h*Y z4M2&rEgK&<=O&9Uuhm7o4zQ-gi?93RG|Y&=7|z}ZfG1sh-M1pAq^l*qVQB^aJZriPBhsb|lE-PI`)IE(7qO1xBjnFM07WU5_k)BdI&!4M9>Ev>&7!xE z(s^`*H|Ez%jsMMGF~sUX&7>vGoWu ziS@|}ZPtgX89#3mQJc%rf36P5zTD>R#BrPP!b2>EmteoiV z|EL3at`$e;FPoFT(xe}i#uUrdGVWATuSH<(j^WFT!i!_AYrdd0r#JDpV^xXu2JO7r^kc z?=aImFqBs>$OGOkb)Ya+77pe|kUYpgZkXUZ;~pu?OP9o>BVyYQey2+wi367r`R~>+ zBa*#{gIcc~3{e+D*@Ov>@^KH)Gg8d3PksIuIW(aWPaE+YIY?7sRSEKp9Nd&#n!ZFn zUP9fbbIu?3vbY8^sD+67`JgbCA~GT84wbFeW8Xv{Hzaq?-76>>8vDd-%vtz|K9-%3 zF%%VJ#bH1$PD_iEKOeC*I9pz$_zxG1NPO+KH3P;LjD~uFln*7Mrw5mH5(6$Ap?0PQWP@WCX3D&CcS*2@kbJojPzN`8@gN9fW{?MM5EqP(U z=D8?1G{o>jxDnvv=YB=1Pv<8x;7_YmCygtV)tw*BG+95q{h`gQ?E@+p_d#c11%=~! za4jy7^xK9;5s~YR-NVmqZy{pf>!u&UYmd2$iV4_3bvBo>Dgb>e6|o()1Mjd#w~|6{ z88mQuuI8L2mz3wqg&tXVXhb@{i8cf7%c;A*-o6F}uT0WRJ`F&+9`nK(at=1#g8H3>j-DV!1M77!X6oB0`|A71Q8T8lTs zGg2@iB{&bDmlnO3BsfRC<=Pd|SRgGduNI2c*UYZ&?MFKZB&-$79ggQ_U5MbC(I|o7 z&;Fedb&K7)FijDUSd_`&k4@^6pY+-)T?xjges};@_p}XsCB>kDuUj>&@HlrR7W<~> zB}_1S#u4TLpu_Xj$QJ(pNGh4$#Gl!;V`#^z%QA7Z#kVP~fMCc(RIy$?>%IpWnE}`N zGoHpl#!m>(XZ+KLz)OBU)w!}%Nf?m%iWDf_S&(MljGDWHbkfY#rb+D|wza}BiurL1 zZ92OTphVQ{3JV3Fz@vBquyjo3DQX+edUT|oMYbZ+_<@Pv;Tjdo9ZjUSs#IgE%bp#o zJyk7|>-#=)p- z*QY#TW{a<62^@)w%$zL1vb+Xd+dGR_nmu*Z(2bN)R4?AJq^`=d#f7!IHXZmiG~Jw9ij*LzVmc!Z;` z35&TjdKvom<@M&cp*oIyK3M1mor(Qbj4F!}=|x37FHu`Y5(pPt3-7)cf-VJ&K*N%$ ztjymW*Kz416;BLHR}3WIING2!A?d}|C_s+uq2`sP{WA+X1gJ4kT&O&PFA{mX@S9GM zSfhh*C+A!pxsHqQ-gsl;lzQD=ep&4=z5>x+{v68|q{!T!rUvouuPi+xRtJV98#0zO zShg}yr4L9pON)-1B7yEN{%j@6!&vpf=GnaX8=|<|pyROkvrRV92Tb5mv4o7J?TGJG z|L@COH%=AYFHj2k-AgH0#jJAbl3`1inc6$o?C7sIklNDM_w8NxN#iX55Kjbs)AW6Q zYdk(J2}%LU@tj@LJ)JBm5Wiqm9y|b=f^n_&FZt@iC{9pvvJ+K8(_g($k^z#kr^vdcOFB6 zGvxE3dtjZ$f9`o<_XC*MKY-2|yvI|!(^x4k?&K-|a1kqqaV%6FWbwKe=Qh3H?2Nsm z@=9lNy~zV2le^)m30jS+m)pCbfNBfBuow6xO3wTQ$tLQAxc1ue$^^t}){B%8uXXT9 ztFiA)&fL-%&cnw3!;rFKB};(|#8Xm1Zl z2>}?0D~aVQ8)JyDbJ{XFG|DDrWfQOQe%D}{FDPGL4ukb!s{aUZMl#>G19~Y@-K8cp zR)rImPNu}b*Cvp1G{za`WePDDkdYiHPmgwYPU&SIfP8MXpJO5)-BTq;cN_i!+>^&3 zi2qP|S>Z3B?qJ&c97n-gW4lawv0DkKgY$AzybVhpW13upoiLLDP-K~2sOe^y-;l%; zW`z79(5Qf%bRu_L;X@!t1zM&DH-`}= zcL0^M!=$Q0&Gm(&`B?z_I(Wj9%)Aw4aCi%q#RAKW2LiF)@vo~W`p*S+q3!Xfro_QL zf-41rSx47|r1(p2z9Fyit5{X3kd0FlB$hnT^grS>i1f0vraL9`(1jwaN*&vOO{ZL9 z0$?fFn=Uwd_uaZOg;UYdF2r{;`nEPxJEdcdJpulpjGHd(9_S3L@7wvDuVY;#3CjAs z^OO-2tPR#1iXaSV_&@cdIo>eP*kXxQ7TmhgLGY7bVd6bBk>1znta~ zHI+AEd&vN6LLB7GR8iuBl`{Wp_ae7b*R@EQp)J84FO0{S31s%p> zlK<3uDZYC;hREOKQ-9?)ZDe_xI>RP4P@Q2h-d6j~Nnyv78@sfk%22;6#r|UbFOQqZ z))I`VLcBYE>I)JjwyPkS=0Q%I5dD=*$T}ZCVqVv#?zbVc%fPn1)A(o~01rS!a%-^UUx`yQ?W2X6hYt#rO`r<@33y|6Pc zZC|zv4>VTvRc_Om%Y-5s;6+YMe8F7kKfjvDXDW|a zB^KOFdQPs*2*&i+(EcbuXEc`b3AA5oU25`+Zq&2skofUXOOK#e42kLVr=0{v(K<5#EReR9h~?;Z}s` z)OX_%YiOPD&9jgWrs92ArL5>H3m;Rt$$+4navQJW1Q`Le6^0D`NPJm&`c|D%-^>}C ztgmoo86=`uoJBMa*mg1@$~$WoHFJ;BVe&7H^(3aXC!2p9MT35hQ_59&@|rqtk9MB- zqIjUEiOq-iml0e*H85g%`~$z2|&baD2h>w(g)(jmcQO^3#x{j(VLe>I*} zcT04dZ)@kATyc0f_5~XR>tmi5i7Y;li0-e^b5S`>-m2?V9YErVD61v@!}nD%VhRkz zgSQp1q!XEZpAjJVqs=tM+f3N~r|J|jYjUz1tGZn90+>Xl)J4AWx3IS4r!L?}g!~S! z>R&;e`}X%ZBD_WXvuUw$@3;ja5QvY?u`ySyq&NydzRFn4heeXZOk8n(SHJQ8AZ+P< zA0lP2P+KG-`5#Bu9A9VCL>s$F8n>}++qRviQRBu&V>Pzf*tTu+CXLM-^LyU!&-`-l zeV*N&otZsz=Bxx>e90Y2=X#2;Aq^QeP*%?MIsFko_v+J9j#NY4v+CWhh?AEz_+N&9 zL~;9^>1yIv)rjn&5=J-QGY|Vx_g50=O%!PnG&en2^elkY#{61Rh@;e6`DvU9*du)1 zRQ-O{AlO}Qz|C176eqgmh|T*p;9v(wtDYu3Rh-6079s)+0XsAJ;}1+*;Oil4wX8dK zO1e%Y%s@B9k-W}oI~h66?HQ#K&~MjzVyV*I$y=a%^A0i61ahp@G4t`7^n;frsiDcz?g3_K zJj=tL%2R-or0KCH9ZC{Mlinv*&jF=`WOcG98=Dv86SOsW!Mzu2PMX5K2QGFqI>{Cv6~=y3-|>OKulu=ye(T|*>iKl zn7EuU=ZS2ki}~OL0L5F%D)&HskN?|sM0Sy~yMATp)3xKu<@>Suowi1$ODAU-ueb`; zhiQ?v)%xk4(_Q3caLB0OXvPv27h{{9q3B}S%c<8DAhP5h{T^j&f{a=P5)ZeS(5wOk z`+q>NkRTxes~pXDs5{!9awh*E>Djn?azEW!nPb2oIwSv{sD(gcOA|hXov$#FG?X`6v{u-Q<_|eV5*fUjKm;~q zKQwMc!;5a_*06iH9UxKuz}KTYYLPeHkldxVA?TCQ_h7H1PtVom zDG8rKW&BqoSPf!j?ND0&X`TJ=Gm!RYKD`kf<=_gC5TK$(tqGn8 z>1uN2a0d5tnmWkZ!XbvEG3>eAhYWhFWuEvrJG&j=<^4E5CFq7 z%o2MydR3uy0B}Pk)on^i$z0K>nu>W0SS5IE$~$f9V>wrWhdyl2q=8me0dI$6Gblud zA{`JEMY;@x*sT@~li4007w;u7#*dnbZ=*3L@D{uCa8izT_HaC?jru3;o5ypCOLy~( zr-zGKW2rd75V^nOo&~syN8wd~br?ND_WMV<3rzZ2QJe1qfwWy!G=H8cNy;E-qM0PA z3Pz3@FWxLJPTcQbaNZ2_Kdt1~r_Z9=)t|=6o8}JZfe^OIGKT6?g4~ZQheAqF>h=D| z#FOonc1Gb;Fu67a(gqQ4e5QSTQ1$) z3Y@2|l5j3Qdhg9k4@W;rsi&uJai9JY5_N-!hzrCk*z>7`qNgK8bQPXR4GPYWu&Z&*>5Iu%J|v zceV72bM}FjP_IbH5sH7Czjq69!UU-9F2wwE z%NBMo_`$V6um1OJc}J41V%5V3fjpcnDMlu69N^AL1HExNSc#W&X+PWV{1Iz9HN&w|&QvmMDRr%&F?X1? z5zUq-`RS9fzsnCS7yBAP=7{bzK<;I>Mi_yZIU4w<`201uS`q{RUVxZ-u|__ zma8HL=%I7fL z+#M4f(1&Ikf`Y$R#(n=%Eo&R#d90*T=iD2+YDl4^K_?!mxxv3?7{Mi1_goCdo^_LeTn0H69$#Plx{CGjO37J)zINpAhxOUnrfZ;7IIAS(BA zPan=q=Pp_5s*&v@h)C6X`#vfO(blvzr28s7x#RTgg7}#N6|af?h5H71eLXRwx7gi{ zujZ7mI@I{Z#l`RCh*Ap|W9r)vOt3;Vsq9XyKQlCThCPtv*khZDx#4__%T(UMi{%m9 zh#VseJa}Ux=QSD9-a9ENQLj7yU!CP=az1Vup~hR2y@Muhe?t(GTb+#KGOGtd%KWIL zp96Fi}iAP&PYa;j80ccC4!#C(G zv)R&E-*kXNBb=sc#NnxiO{fNv7f|+8@TMo)CppxZi4y>bKrL|}eeZZ8G5E$_F-*kb>4MWayF`y0{q6t2j7^s z$?`(TLAm68(@=-^tePy90gPhtukuE*}Q z0(eNE4E5HiQaHzt=Og?hrkok%J7==xSqY(%EftU+c&x24;(1ou9h4x%yA@ z1yfb<0%2k++}O)n;^Aqpx!+_u-`Oy|08OfpBd*v<4_*ov$ht@6T0YwfTc%?kXswv{ zHcTD>ctLn&(HEAtO{8DNM8+9MQ0v||IHrG`AtQndSM!Q6W{tBD7B2t@R#FPA#L0e^1Cl!D)`j$MFPhWT5 zlj4bq+k{eoh-MFZcVq$z?wl~;q>D-gdk0Ntpb0nafOEbPtLpGM5wCQQA}|4bQ!_b6 zkz?qDPi`XTlpZN=H)LBP#X}x6}e^r>)qV6l@n*J;e96uggZoX#HsXlw{ z@&Tu6a$7y4TLFrRAjDK@RALWpR6iYsZ0>L+zi9ubNV z^!{1+`|{Xw4jiBswZQCwC0kqA1_W)W4I|_?qjEP8IlMuDJ?T^a32QduzC2DG7E4ze|Pqf>A%oTc@H2+_{-F5dKJJwgll)E z1{YinM>C;^h{HDeK8uGwutt%X77=nXXflLMBYb{j_MQ8&TA(q4Pv1JeyXjRfe?Z(_ zLqmTna_ikZeuTBH)eDOEvL-b4EgVWgplRa#@m()2^0xL!i~Q)T z=&@9I=?O_go6*{A$Gu$;^ecw0hg>edZ&PkW1Ae6xs@Vth0*{#cc@O<$GexQ5R6@s> zw}0`7CKxWA`gk9r_-oqS8(CPO<$x5n%SHPnKbgGHjT#qk^RQ};jKitqWy2a-c3i!x zRQn)6RZ7YWmrh7l&I6e9H8e-b@ufd(zVVc113Y?6a`KsR2H)AwN>qYRz&Vd?fVb;e)bW`%2;1K`T;Q@MltxPCDK9P>$= zt@@gM5$+lg^xAu^0DPvk+<6mGL29ZX9kQRW-L@fxX6y0#g`kjG#G30)mEMHJ>mT#) zUTm+p$X_#%b4GjZPaM$Cyw>Aw2^xM|NtzyJm3N43vNIu3p+2X> zhhs^77yZb7P*p*|GL9IJP;qQpVuq!ev^+Y#7nwg4wrGOi^|5}eJ?!3^BY7dAASgIo zN09N8Mq=%vo=h}+2f@a9<>v=n5RJR0s*4NWdh-_S$HuOLk9N=Kr8oF~8jge^e=QX8F``-1gZa%Ekspa+ zFvTEmdN9r+@I1t{wHC4lh1`V{9pfV4CXOMR6y0N>7O@YuhTSHv&%hdh{xAO zKhVD1`CXdiT~4qqIuPpperukOjgiQEcQT!9a_I$mHCqGK-ahsM5~YtaO%R@Og#Ja` z1)Xb@t7u%5D4|-%7Ja>iAmEs<_FokKxf{L%CNfKZ9Qo$P%TGN}o81Z5G%{_@MaJ|> z+oF*9QWF&OX&ve~(JYYMjqC~#u3^vR&o-z*1=|9NYv%h}bEy6CWIbLj)bHV}$=?1gB{0Imj^ ze*9~u2mw_TXi}2cc82PI+3Y40IWLFMLc}S_{wTeNxW(2Z3GAI&$I#O+s5w6#%#d zgHkR%SVKjdtY6yz9Qe$xSYZj(xH%rsv0<#uUlQrLjuV0}{}Vo(uQ1CmS;N4q)FeZO zdAvvq`<9M2$@CwZcQlzq16StP+0TzqL!HU!#m}*);?l84miSuJEFHWwfkpSLZARzQ6$n-`vbPj^w@q#-jcQ^)q%Xhh< z{gO&89^mBl?H%H<_HmGq1^egKWY?dyfuCoO#M$d=i7OD>1?^Q7{@`J;%j{DQ7-u z4*rh&CGB&EwPJ`XWD_Q#HBe{P-0T7ktFmX{?Oq*2~u z!l^I(&zOR91H=8|aQ20i?JfkSyFcx=Gw@}@O~wX`PQtH`|GacyqT4A{hg&gp^iUZDmx|?fV>!*@N<%>Dc zE6E{+%8i$X3nilV0H9mJKe?UnTUzFSuY(@a*JI7c(#>o-&eQSC4O?n{pI{_Bm*Qot zMt#as-B-_QgGgj^ErWF1b%|phOr_ae`FoWp_*;29SvLQ*{BN9t%bAbaMD)P3Cq&SN z_@x}~@@7GMtp82M;d+Vp{V`4h5nJQ%Yq$xglyiDz1`|F&T~7;%7yG9tIsF|khIw-F z9b`xRVPEwX;JW?wH>%K%*ZyQXZ^XU#CLebpemIX%1oA_5-*dlQKL@>`G@a*@iENWI zAeEXbaEn37>lsd`#E7wexqpgxA7{hOC}XsLg17H%9MiW@Gtc#SU&z*5wiO|@x`-F7kCKwl}o#G58&>YL!>46vM=e#<*% zQiLNuKn>$kwKZ2Eq7Pjk=-z5j6JGrOcQj^^c^?o?SZi#gRf=QiwNG{y1hkZ_^^i}P z=ygP3=ugp`bPCCJog2@7UjW0bi|1Dtja ziaw;8a8>i zJ3V&0c$QhGfi@?vfb;|}Q+F#d8jEb88HJs08YhY{bFix~a4nk*z318VcQ}cwV2<%x z;Yp!e!(^EX-KE;yW`xddnBL+zpKgEjDb9iI71%yD&=$3F_|g4xi{GoO+H5t(;v|q(PRouTeoC($~1Q$`41a3}O%2P;IH6 zF>*39TKW3E6LZ6GQhWf~tj?eHGKJqF3_+w4$5f&bf6r_7_GJ8@2QF7h>#rJDHv*z^ zwsaugv{sA2A`n5ZRt3`#-t@p7fMjE=?Hli15fvn~HfFqPkH!?#ieflJ7fvuYu3Kr& z8Z{5e6(A)w%$M=-EXo~=XjcTZROV>JDT12h4clbIwt*?mk}!2^NvRhLvy#sS>Wq@p zgm}w_xP5dp|G|$x!;N+Wl39j>$N(hq=S#-0=+~D45oa!-=p;_FmQzS+;WrB=z~v17 zoNU9ikk0H4HAIvX-e)PBb@+0<%AI+Oz$e*JbV6S~3622jH--^1Cw*6>d3GMV5KTnJ zLvsx@QC0sD{4L{l&u?t{FV3K%JVGDqbIx{le6f-Y0B2(8JesCtWAa@V6)00t%(AsN zY6<+DfQrya`|4QhW3d`7E(L4nZwu1%)~qs?7ty|$s-s$H;zeTfz^LP4T`Q2p)l0!n z7R1?fVjuqioRFl4t54h(-}34SJl3_9{6!$CxYr`PwkJRlw-Z>o+Cs!`Km+)e59b-);&wY6um@TNuY92;oHll`T4Oaq7wdFI`5 z4>{%jF&00!KA2jrXPsqDM~1=N@!Y53tL?tqh+qKWgg~CyVsMP$+iLsh`1@=+bN;=* zx5@eNcZMD}zPQDcv?WmHB|I+_AOtmiM9cKlWVy<~F~W(hb-VEvrvx^H^H+YEPcn;Y zQlQ0(G5K*#->&>{bIxtuQYCxn{5z=dhRt?9w~tOuYbuHdtsmv9}k_vwjz z@k%0NQ{fx!Qb2M({x2_~zC}OZxtELjN79q;?-M#YZ+Cr*BOveKtXGXLD6Jm7f4xkR5uw(@X1} zrv^lK{#Ili(&<=v#V0%HYGXWuKhO8IdZc3o*XFpYE#c2H%|q1Wkm~6z;JkZuA26x3 zR|-m2Ndb~=oS&CuUzyM+)lwKyiw{})yVw1nUc#ixQjY^r0Sxbz6|4D{yk)_ipAHe+(xGOH`D-;wlCHRt?00PP8RKr45KD+4OE;im z;#l4YSC*r{p7I*aori{lVToNi$$jA@N#iZ-*G#ofZ~8X+gWzxw4UiW6IpKMVxnD)M zOGuZChV$Udx%O#4Wbt`P@Cfyd@qvehPXo@UFDyXGPdQ9(#WGrMUy=d@Jblk&LZSoS zavCo)1lWBt@!CX-u=cBFozy_4>!?MEeDb79Fo^)P-J#(aQszZHoK&N#GeW#tep6t9 z)NIF5`J!C;#6C-oHn-zbrPz4=G;Y)-AV3h@lKN=9VJECh9?ci*pZ+MQzEsFxYj1<` z9>FKO6N!73f*DVVZ4~-x3)WdLw~N**rkvdGdxtcS%RYvkifmgqx=1V*FOx^hd2@FdetC0@<~Ortd&}Shc{v#99O=&HU=8*>aguCvd6#AeDTpc-d#JO+i$so@h)k&o!>z zg+C9e{0517;4TiL9i9)S1tA9+S(2iq%A8mh+xV8jUn1)zKU`t9=SgX9{WpCwe*r@_U0`rndWZ!lhPN=S?p$ zJ?9fx^M0acssbqD=@^iBlxNrcG`JyzuY37@bm$>POmgr{c;(4F$}fyMj!;mY!&qn1 z=YPJCx}$jwb6X4|-ERRwEyx;F4bGsS0oY-?DAhLyxm{?#-Yr`On)0d3+c9yRXkZl3 zT@T%zOEJ8pLev9;uB+vJ{elwS-NrkBHdJq+4c~4&nslibx%6uz}!aMc{z?uT_Gj> zWxU#Gn2*y-lu~lMS3mi35AbQsqzs8b_!kD2+Plkejnz#SpYR^P*3>hm0$a3|C+=SK zqRGJT6)Pg2!f&nE)E$_L!pcx^26C9}SRPH?Oz7r*OM~n5Q#FJGb_(qWU zYlZ8)-73DX%KGX8)=m2*Ewb9ajSbE#sHvkI-Lm&#()V5)j)XqE_66u#$CeXAW=NpC zbxWtNl5Bo0)?*~=UWfGTR$g!0iX&P}zT9v8@X0vt5)(QnpfaYnMRU!H=M)*$GGDyu zcLBW%5L4zjtF$$XQ}`JjQz}vqXb7nV$i+dY_vU2BobqR6>qd%cx%hFWM**5+X2z61 zzEz8QCCRS=K9}G^lApYE~|c2=H~O;mtv9Lq}5oeag2<&`N){ z5V9qWJ&#oI_FQOPEy3EW0}SxT@HxD^^tc$;tR%Z!g-IAg_VqVI+8e9C;c)~CnGGku zy{!i7onoEtNsx4Xm@xiuvw!=>EJ=vgXFlW6eX$hD^Bb5*j=AE^Yy4~8ZO_glC7ouW zR0%HWqh)1Oc;iyHczZu4Xk8);6#%m<*SXy+u&}@8)FQ;(`O^Hw$>cdHwH6+z=*ACm zzEs*J6B}D`+Ziqh3X~dX*inUYnk!0WD!-J8q0sp;)jv3HMh2o`BUv(GU&601JuZ1T ziXKz#FnICZ<#03t?p-VBZo~Abufw-w4QNeJC!HR`Q)f8zHOI;0oTkXsEp>BAsVvD3 zzX1F~xmI0tNUEj9EP4b5Lno8zKUul)c^kSl5xtKuvEG7uq{bG_#J3j=H$RgyD>&0H z8DO8gIG)tAC~#WJm?8{R`2UTvl+sj)54uVKzPG73dW-qu)m$)xIuDKMM2gDq=8bY} zHJ2dh*N{IS&N{9(MFxAGtL7OF<$4a7*Hk7z&?2}1E#)*|_{>mLcU~b=`Ag0MhH}2i zF?voh#lI(~Goq?CO@>$IWwFdPE)7qFjg&41ymmETVZMDUuZIl^+vp3H!;-iB{L3bL z+&Y;$t-NKLY^{U&j*2I>u=+3L_BFktA+$(xg$oT}7rpHc<>c9$Hc+2fX}<#qx!# zEwU$d!62=*oC8Sgr$H=Cf9lgIjxDpkQxELZMM-E{>d{P-DVBsUSM^SwZSL`AB@itP zppQIw4tB*v`*zXfk!P2@{<0~c!ogP3^l|^trxdKI-7?8~WnLYloJvUx);YPq@1pe4 z5POqQblv`&bPGM>TXf!jac+iLbI=jm_&&XoZWOq2 z0#ZDZcjZy!-e2h4mZX$221XF9U93m@yL;Whg`#WnX!61mz#ZC-SmAbFxIuY9HW7bT zhggL7c=s47>ODQLLG9u2@^swPBTiJaU4f^TRh22PBK@uWw&Cc8a!K6o&<3ma(Eb5nJRN4Og(VGDp1e7LtD&HA zr5vM4W=dCB6Twh?wzoHMzz~3Xo}Z#{yqbF5gIhMO3T#c;LyvL{V4**%|Bwc&X%7vfyDe-Y?<^-4Fgw1Dd9X!`ZuIpK3T3SeXHE_v zG;TFm9)WDPNe0CawMa2{(sO#3Tget1r>4bAlxl_#PPS4m`+=MeWhf3^LoeNRitWhB z06E7CHBGC^Wk#P1lkQjyclM!P&+{Rm>%tT&EUA>q6p7dA?3e&OJg6{GbRasu`%|_y zX8BfP%KW~1)m;gWqs%`kca^YmvYdC1x~U3H=4XGQ*rUtk)(>rxmm-RFrT<(JKnq+$ zc~Oze{Ldj$v8mOk+&4PHKO+PIS8OWWjF;PE&ZKq#@eTLL3o>g4%cxliF|T`FeOsqr zuVZ;$JaA^~e7#Pql<4$jwwp{LR~pqItA6u~(D}%Q@TVI<`u`k6RKmj&NV?%*FvKX> z`JdlyEl*5;Ez-;g2eb=l&d{6h3{N?Z$(!XfmC@~W*WL@68#}bfH^%{s)1Mwi|0(me z&Iv3+vKcqOxB4t_hs-&NQxv-G)x}usxD(3r;C*A}7{<*bu?Hop9SEJZ#^g5YMNg?f z?K>OL-sBo%cI>Wqj^l#XSBD@F*BI9Xm7tKWEH8l)BA~VF^7oScff#eVWba|eMH)4t zJ_3KhoTL?H+Er+NW4$!%BCMJ~PD2JhHcV|;G zY8CCq>S8>%zd>iOhf^$~QY!o-I}a!4QU#jm%0G-~bkv^X^{i*$itKe;9Zyp^A>Ke; zpL_)h&Ks9}u;GrWtmMgjs-_@iF>+N9lDRzmR5A?Z*d8+dTBTbK*%c^m-MnI|r#1%a z7%%cp0iQqZLVLzfzk_N@r&y))%n*Po))khrwHQir#^Y(gcBDVDj=lg^)s4I$qL4GM zrQ9pb+pI_4X!aWYW278R@#heIlMd<5kEtct;qOuREJ+nOS%9K1gvx17#?|sX3(aOW5zj%vonnYyUVvw3(QV zC6`u^)fXe2p+lAJ)GeO8wk}=X z&-d`*%rHa?kwJZ!oXXZwjEbyioIv08)%%omd^Dl-HRXCP8jvIk!N%Z17qci0SVOB% zws+BN{*Xq%wQYw09l$?~B#-<$*a->D_b+Rub{Gjh#NV<`DYf8%&~RGSwifcn__zFb zDh2qc#xjCVlGbIR)9oB&*@29p<6^hx-;!!8@;o@>%nU>BB3WlqF^4n%9nC!%_o>$T z9Jo7{L9W^tyg|RJ_*x7k>dvHh*fv{%?m?y^licx=wFHTO+rIB07W80jWe%Lm68bTr zY0sV1nZPwo(;|uw!%Ls#pd@?YMSaC#Cxbm!?f8r3?^7k|<9b#^TaV!?55&(icCoDv z(!B!r2-Kd`?*jJa1_G$;VsQCjuGZL6&)2m`9f3QPlJwI+?ZoO-waF7;h_`<#>MW{% z+!<1@OAnMpJJq#<)~hm<#gm|+$_{ubq%S71ND?A&%Yq1$qh?>AtozCj3aJ0U?M zQcpArM3sX`FERou?S+q3h7GbJV1HR&$b>Q|CS2I=ZB?J`b53!hqK8yJjXtE4%n zvrjLRtFK2Ky^IInl50-OA(u2c^28=1Jz+D;ksjJlX3lceO0T?UiKZ-kl(E<1mc6M# z3g1Cu9j}u8l!7z6jc%H13*Q*@EI4Pg<6V8yqbXf4+@H1G)F{;_+9&u3Z;9J%m1=%k z=qhG9nL5zcfcv@5h{BSjWImtQee*&_`i}R(2=;iTUxhje<=N6sb22UwTGTi2f>X`p zQBIW`j@4yPTyJz!7@t7UaJpt4$&uUtv-Q$Ek*V_R^7+)TzONfox$U9!o%@^D{U@Sq zXPu@d#@9OX&qh!E*~$VFfmR*O6FTu}IoBtkx)MBflkm-0q(qoxt+D&WC_8X|`-J|N zW5vHsh>Dy1We22+DdT!Zqd_z1$EPBV$%0fL9>GwGwF;Gc7tcHrBQHLUt1g$`%RU@%6^hL3PFk2;U3g1%wr@H<5ZPE1)V z{aD>GB@y_3du647Ipu*?)NfbAN^kJS0l(}(L#tKH`bX9=iC^-U zL*Yt{5E|;5tti#xc?hH^#Nu+x*S{O}Nbxa=3{e{emt>{z3Z8$i#Xf~fE%L9gXc+#; z`6-N(%2rnCaD4K^va-D1Gbcy!0eESI^ifbza0>L(mcLbZf{z(?Z_MebJ4qqo;CJ$R zXC|gD!Aj^}3RJt@!l}*;I$O$f_C+x(y4s+ZjE$14UoykCJgsA@s!z|NPHPzuPotX} z=Zd@nJLQA)D9B%r)AS5wgctE&FKH?FIwj{h8v7U2{|4wkUO6@IA*u~6Xg8arK}v#Y zwJSZ8|G3PP#CQt1#>vtlEk)Tm!LyBhdc*FlLtEJ9%e7+ULnL^suC7~*h(7|}S|{RI z{6TyzUfilLQ-xzWV;473@MghsGH@MN*Z;lwffV+f5%>~Ip5r#JQAowoM7l7?lEL=- zL!{?d)x@U$^jTZOe{LfQAY`xfglZX@Je)%(+qnO#`**N z?_%g7I3@Sjt_I+B81js}CLe?&q|H8Jin9?8qRLt;D&1u%msS3A7gdEH zotHvu7a{})z)&8I_xeDH(eK8u_qkt{d=k%8`M#Z;0CwRLXTW;gKP7-)PQ{#SRh6Ud zEPbH@PW%({##>-jwV5HRI7&mCg0uu(Ry#pc_sRXxO|GoLRGY2rU`HqxsX1}JSxfq8 z`g2e%ziYcFciq=h<=(s8uX1o3bdhs8#5ST|YT%6ND*+IVDs5Kq%pG|Bx^_nUH#!_u zp>BnLYzGbZ?QJ*2pphMdV?tJ~?Qc3wWQ~VtrE%^5Vt0i11<05?It~m{)Cp;GFZpBz zQnV;+!lnp(q{L1X&bO|9N52_Gghjp%kBfgV5CsvqZUk_m;sj4jT zDe#()t*TVj;S~m6d~4Uu9LCoeRAn-kxCOWT9@HZh0(KWEhMQz{mQ~Cy!2OYK5#y|t zfB0J61GBRqq{{d!?MrzQma;r0(PQ=QS#xAOBCz_SK}kqbS4v1-Sact}Nrw4!P zwYGmG2EiZc5vse2pB=oJ=@KsNhRw{!DMpM~dK>s)2Zf~(nvDkQg-|U178V0GFSU8C zi5eX~F)wNEy7#e4X2TGMKMhjjn?u93hx()$iYn4F7IsqjXKP45KUj8=Cwa*THu60y zIQ7XCm-gL6DwQ*TJ8T?1uP3QXE5hqhRHyzFi$j+eH1TY|+-F=wH z)Aqm(1z}^sy6ETg&x2bdN0$&T2lic0l1~f6=*p~qeRSLL^&T4NM(bD96E4Y@U+Hnz zEQOC<*fn1G1n5bsnR2K2r5*x@uZ$P^d*(gAJj8ZdN{+trVD?d1^zWP^IQT;pwV!Lr zrk>ElBu)$)wQU87HWC&-yoxG1x6BVZeHwkHs0?p3eW-hK7ywm|84zEFo>t+h;Pk*8 zGQ_?8u_hhXb7Wj7PAynew<0_BymdV4H5*UElDIYcw+UFi;mErU86~ z%8wiKQtw_JVmRjvE^Dlgh!%~XfJHjOYUbSMyt}_or1#h&cOnQbQ9Kv`zjN>@;_LR7 z>pvycp9>n=NUfz?CZ6h(i(8s(%|kD{gm0x~s>6aiS@@m4C$n2b<8~=X>IG`z0$(QZ z-b%UScqN1mV=Ke9fYd;4D1?z&@Meqjo<3IyWi#c@S4ZDXHG)Li3jxR*`Z1f!2;;ku zog^3aflEFi1x}8OAvC~d>myv5*edHx%oexB@xSMS?t`@=8l?B(JTCw9>5`NC{N`_8 zO@Uid>LD+^J2g~K?A|?z&wICKNfMFV5>GAd^ZB9>2HqG=Qmi|ci6-qHe!JtG5O|;$ z>iTg_f*Il8NE9HMikB?9v^tRvqWbhdU+gJwV}IGS_6YKTy>OY3Uzv9FjXg*KF<1hsRh?(vb~ST z^1w@DzBT+?L~=%7a;40PeO>a4Foz^OUd*HdHWJiQR2h%xD=kWx!dRlb-7WQh$+{~aN6o$*O0&$rj0hKMSWQ4)~ifjjX6u&|CS{6uxwVJR`;j?SVU{* zIdz)2L}PsMfxO0X6 zj4-7VD^=yBUS{QWVa5Qj5^zIzq&2MjHT<+U2X=*OU=)PqoYcc%8~Rz@%Z z`+1Ey;OAmaLS8$2TWjKxj+E|7JU6PeO65vpj#W59+1~7yi|l@dzBj@7NqH$g9JpPs z7BZ>@asc6>mxeXE^PO|s=;j}1h?n!mVA)aVNmY7mj+K)-auEg5{HB5u?SGNe0Mui| zw6KCC>g^o!F8?uQKR(pVg$}bsbU7xDyY%;WK!2R1QHukRW^3r)bTFHQ;{Vng#il z+wCNK;{D{~&UMYODd0u9_8+|Jss-GpO4$6s{f3b-m=m_X+&G9ZjxIbeXEwf~+?Svv zJx#5k6NMP6T;^&T8&t1a=Q95}z2aKiY7JtPJrVEO05-73>}k6~ z^E?ZJ4?}ZTkgZMyIkXQPW)}78K^@4_)f?}CP{T>U9!uzq!Fdo5~(CLf{Y(M|}xtM@o@kJawcLZzOIL z#|k~*Sq-;8B~UUH&vf!&LaN*Red3=I7IA~#{x{B^?sFB6W<~e${mymsvtooj9@lqD zK@`hIU>l+{-+Gn5^{D{nVO3>^)LkQB#Fi^GiOsdF;lW^SU)Z1qLvoD^pz_AD%MDWgFR##nbjI_>%PUoDBm0djX~#JqsZE*hQ@+MPp}KxKBbJ z`Myf1p&$e^ybo`~aiBn7!hx#Ij^gQa-RC+2h@89Y^9z0oUlTeZyj0k3x(wsYY!PAX zUlsp-F+cG*UnIyFvyginvG2ouX)lKo%(coEIy+GFxvUiy7R>$m-RSeAn>UQ&hJP8) z2G5!Mk(@bhDqF|8gCPjey8ql{&#XIDdo_C( zUM{my>eP{n+-Y&am&eTln;1LX-E2uUx?4gNAEQx*$p`3!q1_AR2O-8Px{*hu6F3<9mTJ}N%AiYK41~-9 zLIFZ@@j0uVbwwv9NX_$#O2+mpmVZrH{g|33W$$gFDXONj2wiELw~ zlIcx+7l^xqhgVvCw(_9GUOn(xJN5ASNH?hp_fW^gA_?zXg#D( zryBt%9MBl_LRUPYJb6UbV(zZf2Xf%ASDmM(-OeYayA8DdrC*dwJ|_I447==dAtKzN zko%RJ19%2eJ@43sn13(y{!JS4wi?S?YTj0{GRvvVl-^7M_bCjpE{dy4i?R^RKL=M?3_G z;LRF$52^+B5HD@`NmeLO#7sN87xbj^ohv!$GQs^5osWcH zI&=OJ$5Dda9sIV%!#hIDzS=puGBH%2W#ciscnMjL<=F$>*WiPij%T`Ns+X+0{rP|J z!A}kSZ(cvps=|}ZCEG2<>`1q{2;fico-P{VV}VQ1?}7RINBX4(6dEt?&>@K$I3sTz zpl_(!RgL$1TY!-4*tti%gs8x}1_+ea+j5%`>KR59`nrHuu<0>6YbDy9j> z2WTCQF0*VNhvbLq6n&C4XrjC{tNq$M(>*m*6Q_p)zX{MeUVi6+vv?Xg$Da_R=CmkD z&6yMwqNJI|w_DL=un8{GwyG7RU zWnW#$r-AIbdt*xLF~VS<`l8RRyPLM|xIr3X`jft6^B@A+1KiNU=E-*Il6q|JUPxp} z!sCLOTHawiI00lx(Ni3cZzpT^Ro?&(NOIEqnRE`mhc&}DWx#v6llHZKaGgicAGF%zH(T{|H6-gMAD}pXPEJCVj zjQCvoN!KW`sY~oT?ztkEW9#=D^?e7DxXugZJ}Vwv*fGO%ujVshRjrm3tZ%!TrQBJ>1rQk{n~%F5G0YpR z&z!5QC|NJi%#+MFXf%Y1;I=TYd7Zk5h)ox8wvhUUYJL*%GfU^mGwq_*E8@bCLjlqo zokW8ZGzNR$poMN*+~|A9SzSi<{^AzSPp%dX^P znyMQm^iPgrecm&*m^j+q+G{iC&-xyUM*n!^Zr(f8Q(g zvIQ@dPQRdks7Q~V*W$XVLt?BGuJPB8lZ2Lq{;vDh>uSP3a;*U#KrvZRaFm$$KFAJi zv%MM5J-g+R6AUAX8`K!Z?=TYbh}orHQlCCDrHs1}nn09M+BQ)r&NEOXTiG4 z5n_QIFwi#7X2>(}6$bl>M-b|(N)Lp7TcdOKg)4g0zrSZL3Gmw}eYb>~hEvgO9y(P{ zb(72Wh9I+t`}&1=`m{8gBN>uUY%`@eM9D7ei< zw|02Q1hoX4qQP`{h@yTxF~&3Ha;_owXS^)5zS}Y6JYu2bXkR>|W5Qv}G4pQK3n^`R zO_%lMHz6v;;}=cfHVjKi;>xsY&Hfw9x)%iUIXUm}T08a#ezdZ4DtM%$Vx>jFBuU?M zlFIs(b}1+S!ow&7n63{kr6%MF89GH0dc*HeA8~*!n$CS6pkNxcNgLG zL5wJ$fQ&?JY#oVuPt`sp=_?9$=g{QwY4LkTjVea!E-N+pXCwgWN4RbiJBE^x8Co+Qux5>)UDE&i?Sm}YuAvk{I~52?7e&m zAX|1WnoEiBl9T;y_|s<02*soSJSLu|)TGxuBP^JmACDdNfDIkT#ztNh2xUBo!(Wf} z*!g^)y&I`?!l@t#eL(36K4SCaNAqpqKB>&O!@{PZS;yQ|USMR#vxWFBG82>*pGOcqNB&Ow+$cUZ50R0|7Jz)e3c?GxubK zS5k~tTx9op-`V3@Vd};GI`Ns`^_E5USX+oU!E$4k%}&WK$>Wy&*Qo#c?1Cf^IMc_) z#z}LLM12;^K|7}qwS8w9ziGx}mFF0GR$_F)j>=T0b|bN|vQnv} z;Md~A#IG}v{JfP^e^INd)*S6Cb5I|1Z3ZN4VoNka{A}?wmhKaDQi9qm@P91QK9!le znEkV&GE1^)-6F3pj~(ZS#E6YkM>>R(}hr z5AMHCDYHOInaeO3|3!$h$^rf@5iCc?P*3`q!mueX((zeOMEC>pR0D(W>F+%qU$c+as>6EjIj=fV03a8DL$2|Y%+ zXS$#Te|+t052b$b(70$p#^0-IX>GW+pkkw(QE81?dvV4$guo!o7Q1J6`t?%Y0To<& z`hC7pQz{THOr`^@z?54z?SY#lP~O;jH-1%|_+FIEiH+jE5OJUOg}Zq2nIZnl#@4QQ zcfiVbEEvSrewtLdj!{s30H1;e7J6wTV!|PytvQ%iM z)CC3~_}OOHzN)%x{Elix&Dtw^;5fi^9oE1X+-Ob4Z=*7ovK>gqBPK@SPB4d1;5u{7 z!S*|esy!mE#$fvUXg524z9gJuYGc=QOjebsq2vd>s4=TUbDzhJn%f^utgtn?aNZ~1 zZ>9_qkuE5EgLmWDTU@{)_CO_fLjs!5RcA0ECTK7R0UhYT%l z`cS$uN1YoRu?%RX$Am#9x6s{uV-B@II4VFFpzaE=G%`_LJ?j2DVt`D1M_T^&a&{r8Nk`2Csg-Vwzo-tNtmxB{N=;2BLai@(;Eg(U)HpwJPxl$G*JX zuEuH1?Py}fg+WeM=y5jriS~|K1|isfNHhT#Yw6vN7HPd%FeyS0qpXtI^9E|kF{t`} zHvKmW&#iqV-8hy4w>YNM%kKnF$?2BkUai9!R-P<)D6vlpFr#HPS>{^F)O7-X5D4QgRzyK*hgn`!C|%GbtcK?Gla}XI zBb&+;%hkeWS3y?~FYiD}hMtw|_f1h2!CnkN3I0hf=Ha_02rPr<8yw$uV=YovD&tBF zNPLaD$A_Bni4+sZZc$~;oN*71ShYCFJiaDx9Ar6|c7;$u-9}u9{p_k@ulnU79Dh%^ zX}k4oXq#QV4Ux#MR>9<^s&SX43#td$^S~*?SLGX_?)9ol;zkoG7M%-{yV$PW2vfYA z>6NYu=C4E_ra8x9R-8ny1;)DSk}nD(So#TRk4&{3@|WtxDuyYxiafob9{rf7PqZLv zaSr@%r7(j@&aJ?cTn)JvyMoiLdG;GaZ{92~rcaXmMXFh|^oO*p{>I2HA2k_g8~MDA z(rf;x!h-7f4UP0J{(kJWs(-1WK^@j9dL<}_3|C*%`;lNPsO`Y8I3TJvuzv|^5+9Gv zDxwYzo3YtNYy3(QLmK(+=kcB&f^*|#>M(@bp%E^s&+( zk^JzhWhE-g=jjhrl1Q;~1wHjt9+r!LSX^QIMYmMR|Fq3TYMM3MW=S2t4=bbGYo#ek z28sUL*Xrf+g6V6VFmDX7F+&J!8-3!pYTkUKLPzeu+PJ;V9oggpQEQ2fW-UVVj*1xt zlp10zd`k^M67x$&N`jc@79Ew&<5!#72d*!`hOyn=5L-M1<*w>QD!K`!7%zuElAkRt ze;-14m`f4_x<5rs6_;^)^QH=!TFzm*#t+9z7DFr3plIoIby+^~T+XSOPAVPQeB)%_ z(b=10xKZKHBp;kcpIb(V$^DDOxA$T<6He(VKgEM#S{P!E8SxAJ>#q#O(`=9#l$TxbtDS#eg~NtPR|&UDNl{Zd^L3|~cO)~lxAgJ5TOwq1 zT>i+#bFzf(TYk^ z*K(pwY}Cy0J7&|-3U!jd)*t8j6DC6E8*;E)f<#4%EE-LAE@Hk-(q32K|L16zcJjqF z5789W20qw|)17ruf@gJE+*kjAXg1};@zO_g62#l7=j-6pJgJ<)Cp`Lub7dG(W|w2Ds>?7R1GWB%c8Z;*UZ0^p%1M}P%|e*OJuA@IX7Z4 zl0W~elulsjdCE9zOYC*A$Ki!UAV-S(-y?)%&+2D?QG6fCV ztV#2rbcyZoSlAEFqwVy8+L*}p%59s9$4o)ePz$ndPP{O@y7W|@LR=8r_XneWl4KE% zP9!q%xhrp2d0_Ihez`vuROmFk;ZH{gGjdO4I6>xu+Eo@voeyyu2zhy{%xF^nXhtj2 zCF0AxKTl?fD?OHbysqj={*_?-=?q7bXzchcfE0)fx+mvXqKmYdFdHYQ_zYJ?k0kyq z*fgf`(L$B9+e4)pC{yL4-{t*kcLZ^QKl?h=VlyL6N$LrhEP?t(E9p^bvH?OtGe0(Q zr*B?6hUa7WvH~ffAWf_78YXO)*PgPU5LR)_$@oEcp%>@$2?07BI>cpgUj6RDH6O3~ z>Qnm7_)4xf7^%C91Sn(LultKE!#pt$lyI673P!o~#}>upKUh@ga2j_ zR&3!>D)^-oQh^_9@~p{hhK^m|+*_24Bm~jRc1;SZO{*rSYaNq{sd9jys;x*4$2MzB z4^}`{%l3WKj33i;V!beT0=66TP&1uc(GzMojd~ojN#_we^$Ei#4>L*rYt#^uR07<8uytJL^bfjQM`iW`VyIZ&TVSa5U zIX!0^ub%-+#0CWCx=EQRL;l(3Zf1qw)u2c`C>!ef#=p{!!l>}kCfqn2c$VBgk9uvo z!%*Nj+PIj1*|kS_hrTN(i8rJqP%N!M+sXW)bsdLU(w8~be)wI`&)+|-SM>k9wq^l! zExvK$-1v*0R$>(mJ})15c=MjHO$mc8{m3QuB(`5>$9SnNw*moz38)iQLFt6GvQLC% z2|~zPfjSV1J67v`_8L%Q$=EW#Mm5 z&H`7c(~c6@PL9LyVDayL^391;yk1)bo_;uRhmPR;zO4Nd7A_G(g;w|Du44SSt#yPs z6ppX%*ZP5~!R_yVv(i8u7{HVn8XQJ(5!drh_Qo8QoXIG8Ern!N$MyTCKJMm{b8Z!> zQG8+w8yGi`YK3AIw%J1cZRE7}koGsnpf)QJHVW4pzL~B098LaWgFy2_4aU;2s{x12 zs@hLvIK*AE^{-UltUGt7zbEr}>ML{%(IQP9d})j~KT!Nh9zmt_O4b}TFvz?;)54%J zy6DS^_t!y>#RNhO;xE4R=M4c9#LSK7Od*b*i0^U+j{DgxQ?An-xp#6tk^wbs zzUj{%8|=8wV(Om^wAh^?Ekf2c3Nu&yAgI$gsQI{zG%97!t9Dsl!XS<`@{P-v<{9Q? zfR9A`tl*{TqXx-{D54@p@Q2@YWic2DaW?k@n)W8vzU~*%sOJ!QfJaSsbZM)NvgTWW z)cFP;mjz#wSvsX!fDqGatR1$v?#n;KO|5LBG$tPVjueB>-c6GaZs7T@C#u+CTBM7efk~X&=sN~7w0O%H&%Tdfk9+)j{+V6OE%P_g;DcES)gyvi%|Pb-fHibBI(5`PGF?99Fm&^z>GxM~n-jfv?+DNm+nvN2IlzN6Vx{h4pmCTN#Chpa z58=lK>Zs0UorUvao}_Xmo^~juXy&%>plVgYztuG!R9cN?(I!?+0J+}QYND{<>`_3O zJ_-iedhSYhsh?rk>YPbNN~BD4LsZ!7v+M*d$%3uNJ4N2B`ir)Y`KisBTQXFcJ-Y(; zaBn%Rr^VK(>Gsv_D8;;q2#tE5grVrCL&=$L%T;h`6S=a} zI5~hCsu}vak5R@^%SFb&A>i$k^4jaT)(EO6<=5o=uPX=4wHys@x*060e#V;(FumKZ z1@T|IKjWL~N9U-L{1+Uo{%X$gc~AGILtE5A!vChATWs3-2={e916B6I_E~Mp(pAG+k%EQNqx2$ zJik5RQRj~`^Vv_y{7u64oQ0&zd%A=p9@|6cv96DJzFWagVGy?P%{;GV-r;*6m`0r> zytKQC7MJPZG!e6OCoFd?Bg1S4LiF|Hv1=ZegAmv+__p4F+FdwzZ3Hr2`>Z{$2X7}- zM2Rsba|44XVh52GuQ6l%Wpc+uM>Xr7sIUCv$ABM_cscw9u`yw8Z?y{v0$TVgE=XCQ zFzEXwG{(B~Y-2zoD+pMP5<}log&aY2m;cyCD=>d#gz|MlR|j>2(K> z!xW##lpBf`>izhmtG{o-qg^7a8x5!%Hkv95v}FrAsD4vRmJn`0Ln%!yf=+jon&zgB z^5z9EK50`a&qN(~#P7|+*gt!F&5f^+n$ToDJkY!&U!|_azT#aL(nwUB!$G-i!g4Su z&62iL1Zb;Gc>6-nx%RlC%$?dv75UK|b-Ii05k(5jtvtaw86}Ai{^c$%7el#e0Ya}9F-NvdSHn|G`Wv2$q6r?$xfYDk_-c8W&e1`3%0Eh4nVa;}^cLFO;u;cy?v6<#p+ z_tXL%vCkd)@F(E6zgyS=q>R5ode`l21Hz8^7K458E^4<#l7 zf9ltcYdO2VxN{noEVh#Rr{!0Xx2Tv1zJ*Qfy~XbIuZaZUKX7GyeazIh>ZdY8hZ~aT zy{zVTVb(H$^{(5p!dHX1eD=Cr2V2%#)LV=ARi4$Iew1LAss4)L&1bVE8d`j~Ql<^R zy=BLekZIGLwoNxazlMtgxNH7kvRnaQu=AekCUX($_nxy0 zqXe5N&}U*@eMW_S$dBijynIAmhVd-rcMd;gih~l*{n7}QEFGewaiqUTUrsp!{5xyx z%w7e0c}1o?(=7jeKIt=Q==7i3#zyL$H#@Q@82E0 z;xeYDMYkMQjG1tk3k#n1bTf{iEO3-STCd5VO0x`6Vn%|_Y9pHbbp`)>`@tl~(@UAE z(~{GJ@OMmQCOk@>s+L_cScPF#lp!2j8kEKRl` z^L^{TFa!N_*2|3nt&9=QoO&ZP-dz8ntXdHXvOt@@UaauWqE01%v!nqkIwMN|;TpRa}Vc;u9vKP6*8P!;NHq)N>SeEqKvgBg=)v5jaz@#l82 z`(MphcdaOzO~%LlON^gpAVqu1e4~nXA;&BXGeRi?lInBU3^K>Z+c^YQ{%~dz_RE)E zmT5Nauo~J(JNY}}4u(Ayo_tA0+=ip!!ZGv1ptt5X(eD@CUm$#MuC-h5ypFbaoZDE! z-n7QD#stx^4*q#tbG^a1^f4{B`4<>f50npC=HrA!yA*<)ilBlPgamPa6Ee4bT9k_W z_6#o;8U~E$qt2*4mq3bVCn;XvnI|mKke} z5f~`Vl7ls?<2tVtrhh1TxV*S!-8_6UaO8FAK;;dmDE`Zj{|>_exq5c1i(p|e{~M8R zi8qQBk)fogh#N)sdOaS~ff5Gp83Qra$Lk#>VQ$5+dSCDNx@&iDpKWzLdzNl1mrxJ` z|L0)Xh4UEyJ!R`4gX5?4AE>MqvabI8x9*IuLKbQrC+EOump}O}PistTQZ^Z|e_ctD z`Hwx`pyqVVua8kTwjDBR*CEP9IaCp3X!N(ngrtp*Xmr@VN51FFSHk7-qGWWJgQP9b z*B{@4bS2jlLU)XLjN1#`tBqN$Ju=@$O-E0Td&8TC+8(@LsI^GJ(6GFw1pLXMP(QBm!QfgEk5Ad#Up5qc;}z44l<`V$P>Y4P*Dve} zN81*TVHUGz6X7t(;?!fG5?$TJ>;>rxHOi)@V@}h7$#y#$l_7pnPf7KiscPEjNV=GS;Q6he^aYjH9D-17`crgZ|@N z8;EMzs74ys(pog17IeghMbtiGwAyP?8{#V$LDe<`o2RpQ&Vbg_MM$oPRP`kh1#%9D zZGxnm7=v$5)GYD%u)qLYhG1jCX>b=M$`1w2ewJ^oD(sMOA6lRs z6k`l7g56eB_+93E&y8jT&>~{jwQo|A(}n#Z{~}u#BFqZm_mPjfn&heHrEbPXPb&ByHFDz6zR#G|$EzM_)(e z<1#F~%R*D@b!B-fqar3>#-&E+!qB}VB!Dd@Q-CdgCU$&H?%%+VyVSVNffS#}Rr8YnU}BG-%{t!QTeRJrn%tC)j`Iw1M4rof1C|LQbR2r#iC(^-&AAZsVyh0wq)2B)qac7 z(gWYqnzr!})8m_<+4eXwISEQUyy5K5b5qXPEPe$}!*wntl$?TaAc1LR2)q3F`9 zYxNs0eVrn;c?VW}&awxx7N&~`Dht$?lAcORS3&nAl(myf(nU;Z@g)x^i>N}Z3!T&kv0%L_lPLC4?t47Ih57cEf6+i6JAolhu3FQ% z#Jxsg0tzB1v|*CKiQ$0W^1q|LE-0&<$dB;s8{#`uDiSdc(ipkh*(PzTRKR?lNxU=> zi?mrGa#0`JAD&*dBHQJ)I0h{9tIf-w@7Z4b(@RQrPO!SYQtyz?k9ptz%6ocMA=pvT z9)C7+^VWh;ip&O5c|OX{eD@L|_|%sMW#ZUXu^x?r&2aVdTJomi5)Y=+-rlhyH#dXT zc9}*Z&Qt?)hJ46{%50Hb;b!#~1`MB7XxE;Nr@*?PhDF<|8vSo#P=jCB9N>gsC{hg6 z%TWi4R*2-RCp=ua)NKjqMJp$fhG`t}mX$ablM}EWFB=qh$k#L5lm z9Hq84jl_!eKHyN|D7fbl7<)}uQk`XL>DCONp-mdwgiMi%BxTgw&!xW%dveV*q(l?A z?Zm?UDQ8WE<8KM8|F~Gfd+TOO;Abp}@56dGBX<(O020LS7j;n=%Xg=Dq-5wFkzbZv zn6tNghNvOyqq2e@uWzVWH3fwg3%LH8lutKgTC0k93$C)wTwlyps^C^E;(wR=dwz#o zEj65k_*@`N6d`r^!Lt&j+jGvhN6P!=)7LMz5t~AbeQ#@aFA;xp(zM>QZ&#zUr@71% zWkiyy-XNFvPdmvv9N2pf z%XO|rLy zzh%m)k0IY^)-ADTs;cgp05gb67`e(ZR}ZgMd|{npNls7^4pke+J(W9;5s{HMn%@!H zaYyr%95z_d3|$XPJ>oYU{9MWuwqK)M{iL?)xv_t>Oj)E}GZ0#3FzG`7Tt9Xm(g7o{ z-uKsd9CE#94Ge(|Dt6dMt$sccTHd9z-}wHMZP|6yc@QtvWylq4J{hY1hP=GHiLKUG z8e)Vb6qCQR@D&Fg*=OPyU;XT<#z6l18!J?qYg}yYlc6deKv6JaUPTVkntP=G@iF~Q zqv|qXd;;qsD*-be=n2=k@1(orzL;ZBpW8^2SB6;dkbuii7QV)Mcxa|NmMc`Y0y(}> zbTICx#qDF4Z3Gb4aagLYybvKQIh5ckpJ<1mM1!QV+yHmt41l(#MHU2pX|@?ZQ3n2T zn$M2JU>4Y6YqlS_Q!Ub&NBYOt2#co~$cZ+Fm$LLdp0#qn#(N3yJ_QrzDGXQU)BbQ2 zi3a9^OzdIxLPdl`Rq`NLJI{CNE8Q*fuUg0*!9^{*h9499m%hT3g1HCI=HhDp*f^iT zOOxR84{zRVN%Xx(T*u%i9;+m+FWjmnL{{1JOv{VF|E_j^&JySF{V?(>$Ww85jax@R z#m&4KouweP<-l~9qRKFTvSep}@w~+J?nqwj9O0BPLl1HzT!(V`LrlVgLn1K(qh|MNOjZaWJD zJ*z?T<(A0`U!MKwg}`(wtxN{=kTsbdgK%6?WotV58su(v0t zJ*(7cY9CRiGceHVo%v2EY(V@?9#{oBV=L)?dlyoEJ+c+L2DP3y5 zjm?{D{V!*kP_K4;6aof;^dooOMk#H^ z+~wI;aMM=ywj6UOca@nIWH8%q`RQ-ie)!HG@Gk3jNWIE2l8A&xkp4c#ACG$*DN+zV zZP!oi?+4wVRDf^rPu@#BI6^<- zltcVr2l3fL9Is@a!hj1uYNx{z;h#X}yZUuU<(K#8K}SwgEy!X0#nKP+pm#M14&#U~#o2rJQT)(~0v!mK-aP>W`QLi6OH#0kqiB=+pBaSl) zv6chOnMrcVfm3nfC`?{0liKWP)nbYtn&&f-~TbyzpjlCX6Y!7p)TPgg#qXAGA59b*KZfUy|h$x`wl> zjXc^QHejM%eHa?4uDJ^Qa3}38Dt)C_kR2Uts{sNt+J3id^XKD>Lvl?i#;DGZpYkQv z4ktz9&)ZFaDMR^-@b$<^oci%wFK?j3yp*E9x8C{koMC@Xpi`_OTdF!B=Yx#DsB(X% zd?y`Zakka!%D?mDjohL}pZoB_Kly3DGu1NphZ+ZOrcwH7ue7qtfiqqo7Em{oH`lnv zs$02({?*9axa_iY`b5PJ&L7wfEQk?|xc-i%OL2uqudy$X0|e2`Ke{;F#&XNyVIikt zvdbi0Gx45G0XIgiVVQ;xy*?{AqGJ3V-RwDy5ms!=04EZ4d8wY)RU7z={=Q6)>Zk6K zq>i#i5W6OEG&@7%d9qD~v#&f7nFaRoA+;3GIcDh-#^zj&0}o%Ago!pHJPNsjd-MQQ zuy}%1j{TK6!_1Tn2X&VwqR5t4yM)-13_FLLF5pMZx1Z`^DWNckT8{3!cT|J2%QUcX zT!9kVNd=Q?nK^N?5-!HlR=PG99HMV;UpGuhCqxu4iSA3k7#(Cr`9=JyzC`@DARSRD zG(z^DA?}>TqJr1AA%FHF`ei5d^HFW^xPILa|1{nzMsU*nZjQ2@y<}z)85Bmql{)la z!OK>r@4D~f4>OKM?pbO)(`}odx|`@xFUw}hb zD1qAW8>!T*eA{`%|MQghe~i!%9G9cwuXzArZM4$!BXqxR`)-V^RwK*0gu~r+$d?e2>Q^};~f%n68J;yg)Kj_=1 zE`%VRx!*1_2ztnrpC4_MUS8kjmGyR|bxcjaEOHk--7eSsJS#PG`!n%d5xrM~b3ewr zJf!i@DluUQ4CnSw6TRg|A2gSEljt&d-xnn7X73Vp+|#e#3vhrB*nd9YNGQQs1ytz^ zQvC^^0cDR*r__8ZPp@$qPQF_gWL>EEyJEWXzYx>fRrJN4=Pibecy%5wm%Li!4>hDZ zn$bP&7g%0!ac&`QTBR*qdm%HhWahj*ZckRbn*GN`2qV9L_MZyPw|A!G#Tn9W#sQLw z%fL>#z?gnX5<6o%^gGI&O}%uf{6PpRtG|gE#WD_z_;2?BkAf?izgHAatU3vmd9^+&<%BioyvwdA*Gg{|+}B@V9jc}RX6T6J zj+8%(!xEH0B>v?sEIPIDq6(M+e!0fRTTO8}S20cu5h?PdV~Uf4ii;Y5JxPY)RS%l>1r8h3K z$9f#&50*^5CPzo+?LQ-Il1Mn_G7cQ8OW7r_MTpfbf9(syfI$o-cT}2ElXV~8bn+1E zO6=#i^GPsWy=H{e(pZ|-v61APO8n9AcU3l4`PJC>P~Iqd+LBjwRN`#-?N6=HIQb0u zR>0*TQPW+X_i3{VcZII5QhjgnUA_Wgd548zzbCzFb&TO6Ct-H@(Ty27d6AQE?i zeoKDfI4$s49u&-f_&`ud{%@BKI}L|%Dh*Qk0M~hK8}w7u{Ej2}%?KNiw< zo|Vz#rrd&S(4QklcHMP>&~gt@02;+Yb{NWF+nZGmNWqNr@Z+WZ8e;&h=n2sOEPoRX zH&NbU-p2#u5b}I;{OrR#Eg6&m;DOq#E#N>19_ijYJ${GwFy`3bZq7$Jr0sS^*oT!5(zouV0>Y*A&uJ2txny@w{AzLN~PG11iO=C+n*f!_q0zPRx-YEucL zCKN4CV1axQ#pNZV8pcUwJl!1f>y31|CIONN66k_cc_@K;dFZgPYdHcP9?FGoXFP=G)Q+D1eE57Q4en+aYBQ@6( z_%sQahiF~-s=c*e$Nx4_3B5rFJ`HyK`-lp6Qx(f&FZcLm{U;)0?43}<-Q>Ue5kV?K z@hvz^L%L3>&$LZTVn#=aFwc!<5$sX18swl%N)EK?$~IXJx@5w`g3oO|e3*@`QT$m> zX^79N_EXqq%dy<;*%m(IiB#L~$w;PysOIhQj`-)N+uIlcu0K(5Hzkt=u4TOgV62x8 zDgm=BI7D##ABBUzRVwM%fr1adc&a_kQK16sJZQ)GLYG^Voju5OOALQm5ofK$x=a>n z+v0GIX=FWOP~g-`ZHPdV4r|+~*>Cxp*#f<^Jd4@n?Gq3lDVW9k7}M&oFi*sNOly@f zL|JN+%p4Ybjtr5A`>m*FaGz=QT6Z{K2K>DvrG29OKlIh+@&9BjI2b2<{y{EyShfxi zX4Ud@-Dc~GRzoOt4lK!$l4btR2A6yVc)v4J$sF{3;yg?m^49r-eU?0Y^MyP7ccIf( zu?1R}@^S{@(^gx_8WSZS=^E*I`i;r;nPr;Mi{H3E*8$}K(TQL{X&1u`lx!sr3iK@< zk~T*al{N0l0Vl|#uMtBvCk+DH38jDc$Ln<>YyLe@M*VE};(ok4-%KWPY6mV#El*PJ zJ-jEBw3vvY5u5Pe0%SW3V287k?JZMqPB>-wNC6h!;D_loNd{tBH8z=(`HHdAe><7y z-P$=FwwO+m>`|pb+^;B80F9bO=o}Ynl!+2DOt!$28!|S>G5-sDF}P>7e7RD-OvMHV z$o2oJX}x~CfYT+$w^k~r*8O_bZULt(f|l?s@EU}b5GcDvEl#2b3v zAt5?-18QrWR~hg}m@gJKib2clDaEyhJB~)QYH8g}%F-7JRypsn+Q2U+bAPU@_~IK? zOc-!)kEkU3j(&vSCKgOQ6O@Hi+|l-tB|yx@uOa*__*UTaJ?si5)Z?ct({kQ}f$sl% z(Mwc^kgoCRBp~ntezQ_ITHL6mDjO$+en)zfEsZ0)UO`09+&|W%deO^ zy9$4QDRcGA08(gMg0H2U4O1J1GAH$T+VbG5wV$8cktkNrsiG8SipLx=GVDEn(K)(! zlwp~Np6paIPU!E*!u8(D4PJW?GGCDwE?!P@CLR_@6U~x-B15Zp*N^UH6#6)H3#=lQ z1rc@fGoxYM$)E`u({6t&TkehY=sCEhEg+gT$aV3S_$(yp=s_3&)7Zkc4J9=FXPzYObc9Deudwlt~< zcgAXyF>DL*oVrg&S|;F4WXVXN_o9$33{4qMSH5?z;_|sY))oUVgsh9Do8|l{{WGo) zT)?!Cw!2_2OGDwi)V2s^h*2sWI60aupS#O{hEv^$N+N174vp0m*^sqX}u}X(|Q@e7fqJSg!rLS(isGB4JYuq2M{UN zD!%V&O{F_=ef{dMa3{3=W|qr$p6aGs1=w$g2aaH?y0I%cXn20ntj;NGlg38EAS5WW zIh?f6O};PDf&e#3Q(s+i5mrzzvOl+K0UtxBjzfEQ<4nl78eRDG4ldu@FLlU}PK{Gf zZes`9PT8`8r($-nHcf0OX~YI_OYs@B&Yk}>Czo&@Kqj`2yH7ZNpp14ce|?b#nq_Lm zbiOQ8I1iBmz)V%$xSWC54B++x9PWy9hSA&WXRg-4aD1-tm{?=idpy`uw8rvK+TOK$ zO{X{&96xk(cI4Ywg@w>^IH<>WrTW+P*snarRzN}iEAcD$M_c!?od1G5^>daNe{52C z)Pia$AUfKCCa0G>BU=6v8h(iuLZ8C*hN>tBv=uyc<&6E9y=f{^=b^2ny4&ih{dMR1 zjAvzwiZW!Y&?klnmam<{&Hq+W?mwM7=b~D=&e07!(0s)^eK z4iyXAp7@rH?$`g?zffcFo?K@pO1?pe^)&B>P5K4yTtmo8lvZ|Sq#~vb^N^2!{%+j- zHt>zZsm^LUJbx?iqY8XK<;XK_@juX(^x+2B=YR59^xgZyG|B~DIrS5I(OX%fSox18 z2*f=ZY)y7Jpa#(|`~2o(oL@BP#^LngT`I+!(2If*&2;@o|Hg)|)3LIeF4e=*;g`7y zCtjG;E>43&Tw=T8ec;lMLX!t!3)x)@23kRn z7dAgU&iV&%{}XUKM$~Y_L3eq;Jqr{5>ki2%p_Y-2CQYE!4cG}}_0mdpfQ*Kf^|wYf ztz3F6nuwm;48M0vO4fO`u5J#eOaT}ybMWLog;Prf>SA!3V&3AVIB6pfEd%_m6CL7;YHqU=sxndHH!I+s60_^)5~jFI@_p zaapezIyi_8X;@iGe*Gtq$GU?CjzHZkKUq5i9Pn| zP{6Ah-=#RFNdZD~<^H4KcI2m{oD*` z0^cudHe9~Yp-Ezf(}fJ}S*|?qpvD`h^WCd|6;VX9Dci2c*cBh>u{ZsYv4r{c7~hKX zP=rjpP*hXK6NeI}Wtk+5v-=o3UdEL7zh4UqctS{e7g9lHxNVhEVQ`)b+TAiJNU zoA5khm;6n|u080$IWMD3FRt0h!`MU)xFPuD-X`4B_w|6Bq_g6^suX^U$U=0G=MG3afXkqe=z0X;hd9#0+u(+&gZbTmbJgv7&Xn&>HCo%mCn!61ceN<#fZ3Q6nu zpi{k5bgcDE>~PAONNW&X3qn28$Ori>(~S8%KpbB7YV|=ef;pR^p%Mn*zS~GoK9Oej ztIYq*NF2z2eP9nl-t6)OU33K#8P_fO%@qp(61%?Fymcf4l>6HxWkD22{Tw54|72K3 z-PVn$;NGyoY~;@auHGD{>z6P2j}PfXIt1&0J)tMIZ;+TxDK^X#wAe_JZOwYrgfN~> z(OOU=`LSV`TKe%F|ILE+(PUbGEjK&wI^)cofHHB%Fb9K8r47SXt4ta#Vh3Xk3IeN& z`HpRD56Ejsz7S*VVUfrZeGLZd&QEh=ZE!;m{1;G0f0J$}qSO;8NXYa7&tk~ymljZb z+8}L;l=MYy<#>DDn%O$9zf;C?fSCd;;Ybu6iu22arpF~y3>okEdKfVDI9F>c|mW0w>R$v%_pI zuVJ@eg+~9J?AvqADZWfCsia>W?=s)H*&+L1GIKbag)m!iAOb7PR6MX7?9P8~X%dat zpoAxAP_5!QXiKx|niGU3e1A)@``AO&#tWU*umjz*=30snrkq??&|zU-m~K=gRMQvb zo22;ED6ja#6N@Zt&v`#I>?!6-cGsj@kI?Cg8Og&AUV9^irQP zcODH%5QlOEg3*+u;{`)8xM?cH~LXa{gT+opT7(L$I(>>MDcY|0cnt0Bt*JHmXhx7rMp3- zML>k5e{^?uBOoB%u!MAXcXv16`2DA>vNQAEynD~N=bp>pz|4v+0=!F2YL2K1?CHi& z0O#1G`GacD@SGw^5GEzV(+}N`-LygA&<3=+v4%ejfO+t(VQ*l>$lm(zFReMHwNYp} z>8mE{kKc`-Gu$Wvbmsnk#)C}~=YLiJ(=F1rmi-^|e0o-tRB^I*og86>lI0>9hV&?D z0Iwlo?+C}+x-X}bKt?QJRsj12rCK>X#cLYg730j4f2}Gc1#2HtwtIesT{&boFC8vgit4JKdRoKcB$zkv0vg}V&2O`eU@`gozzl0g zGH~_pzYOf&0=7n$Tt!}5659;_f~9lph%>JKt^45;wr}Og4r2a)JAxq7LtSlJX+ z%CB`N{n}Lal~}K`@fq8l8$3+4)T;4h$$vEv&JB8s`f#o0#15lMw{b&J!tu3^>+Xt&0z}HCUZzSTp_mh2Xj4Ku7c+ZRs)ckXg2tFz# z38sDdSN|wl;KH}LKQbQ5150n<1h5#S9QnMw)L?C|8@L5C!2z~bRD8V}$+c?N!7x(P z^pJz!M+wd|YDXyO6gr__CzAK%lZgNjkxj#D(Fja7GNHJNW99sUQGl7Pjg?+_-MpfC$amIB!nlJMGe1#av{t9y@822}P|4i&MzU<< z_$TP5OZ{Wks;uTBfV$QdW&Ud2%Auf`R489P0xaoNh?^hML+hV+fK|u(fl-_SuU{1v z<4r$obD4njQoex-xDf}6OOw09w?KNwTP}?eiJD#S)t0l2C7h8=IfQiv>!MK;5|3qo z{S?POqLNKo$`|o%r4TbYF>4*o9i*x(tLx@vO8q(9_EquZS+>&FuPk|~g0XYk9(nn@ zB)X02%vCdD)cN5aC@V2lfpLafMXn(2Q<%O=0hEs|=GGS>E?AW;h9d_0S?_^V1lJY! zzj5@WZAg3Q5HwN945(*}Nu^fN{;3U-h*tcEDP)9FgRam3-2dlGI;BG+kZree_~U+_a*oH0x0+;*D5^kcuh%6V-{eW(bUEEL;@ zl45Vswx9UAGDSqsoEENd0h1l=;jo(KAT6B2-%=0U3krwNZ!tdP+^oqi@pmTt<7ZH7 zj+fB0-SlvBz6j+QxwvLLvP3=xpkD9f3sAWg3C@kWzT!==-(S8f3?3hoRMkFD#mxCA zCVjbsugQzu1u~BP${nKgdo8&(E)>FK)MbeVR0S2JEC^`!8nSej0bdPcLsD)NU;jbC zGmvkC{opIAFZj}9Sbxk6==`IPNex!`+*72sZLM;VqP4l74$hSI)WBfO!_-hkYF#LH|{vY1YPNyEk z4w=*7t?veUVL=ZE)7TkM0iz&*vpkb&H}|F(`cmH4CH6IuK~R>}olI2^*yFx?ggf=9OYAOBEEzI#RK_NSZb#Y~|4!Wj?z(`rgf0bp#ib1~s{M!)Zs z&h@^XLn&NIJ6TV*O9Ny>Q`uhMS*!*BQUHu|uMJdLapbH8pb|8T>slo6Db&;I5N!Q@ zYZ3d6wyS!p=s-6`Li^L7(z(jbciyI6UoHO>F1@E9K`~3mtukMhtB$bP!T8XbOJ?-6 z!RO=wST0e$kKBIFXLSD8j{CKLhMRdH(_Yw+4Up4)8i6= zM6Shjqkj*wB;$}xBAoqX3;J(r)ZKw@B~czkH>0-7c&&#*z}g5lrB*X^LGg(1HIoil z6sTMMIN!Is(gEZR*qpgpH|ap`o>+jnSjVT2o92Sv^2VHc& zQConN_t>cn(1mJ*SWV`EgX|@X+}~!Ivt|Bk`6_Lm`x2v`96cHV#_Q$Jm_J?8{6o6^ zVI%xeutynSI6nK09F3mdNDxw5v-ah4t~mA?(nq-)V&`0mWfk%2|8a0mWR0`u8+Dq* z;ONvSj_&RqMBbDcGt~2R^*>(v!4R)TZ-rymQIAu1|wL36a)G|0>@=| zZQ!cA?mcrCT^fNc6Y+6TYlR{orT3p-X8>fFsGk9+*@E^?4*>&qBvh>+&#hHv2qZ50 zbp|wI5#&Ve|Fp>1PUX&%7sKLbjhgN>c{HjSLbCX!K=%a-@qc^qb>C|dO+<#2N5wcW={uUe1^_-$?gHNpzR@+kK1S`{7P+eK(>;3mCQIx;P2XI?$aUgwU9 z9Rx`(I%(DZb!RYp?*?cszKa`PoP$h(msH`o;*9t@kpy5kIqoCk%RVOZ4glBoOJ!2Z zu3y#`ppr}?fAzJDw=e+u?9L10Os5}MhQqy5K?}#``fjMXsv|sP(7K~-Z#xGy>Av-J|;cX*ySBV_BF6&L8HfOBI3`woT6@Z>hMc#0hVG}Jq7*cIP$-i4j^|6a{n)YCo$1(7N~1m zNIK$W)YY_p=~1HXAm8(iXbAc(zfNN0hCP#9Ga-nsbxUDyuOKKYby0x3yAlVju*|E}4Krq%#}x=@ z((}7zQyW}$8^+NTsd~G^918vyj_1<-E+qJ!soODxS0kB$UcbQ_+iM4Q_=h z{UMx4#%q6wGp8VMj$lk1bERkHLT#D{T&?tTTfTVwP670C3W=h6b*(*Z4#DGgM&$!_ zPCSvzTIW{4*5ajsHlp{h6eF0V$KdExbWGK~fDhe3JJMH&cBv=B$e^3y8<*>pBwqya zs8qLs^Oe!&EBc|*W1LlO9*Oz;rFUId)<{_wJFV~zPxeTd{MaPK2Pixl{uMfSBgub@ z1;S(?8Et>Ty@PJKY*~qyvzEeC>|LMz_1s4>U%iT+Nec`J5wZH~sKw{VVKpk>;f~5r zl%PAHKs!x^Gm?l)WdM;i;aTHR&h(OctM7>fU@1HAB2y*6Rh3ZSQwCgNCX2 zD!jAel+wcm3$>FH;!Z9=0YMQ-UvBFEnLzU!+-LYt0u01490vcmP$77`*;mbiiHR!O zsUbU{GCi2}A2ramt#x%>qZLyv)UI5d%vv11}kYXU{evNhs_k?tz0r;aNLq!{D2QE zPtvKJ(c>C^R;rT00AHJFMVQDD-fVe!9I`FNh>(2Pehyf0O9n^xQtab%6WfI%b#FQL z8PigK^1qs{a1&#{UcTjaBWtJ5qOmupdmQf3yT}Py8$^rJOY*8JN5=O@iV$snql7hWH-HJj z7VS*QlUq0C22`f?l7lTBWWK}q&?~gf9cM{cA3n1d1)tU=3{0yZ2+;`EaF|ZPd3Q~3 zn6gvR=ryaFgUYSsW2dS;cLE35dJkYq1T;5C?}5IC)7mnV0xV$mxV~QE+hyq55>vD!Iy^HPra(n1&SMj% zY>}|W85mTv#_hrmpW6L1kO9n$W-!Xj>u5FonX)qs1dP81ta{j%s{FO2T_k-ZO|pq} zU+lAxUF6=G7a{_qsTp0fJTna%@U3~#FvQnuC_E{AXd}vl7{C|-8oAd-$ePSpp;xk6 zKQkn2+Ese3$&5AbMlY-Nf4c>K`#5=^m=)KA!glzF$%GJX?_#huuimQqXjae`tKGNy zzonz<`5;o`7Q=#1zn|TVkNK~#X+JEGwAEbj1j@2HQ;5MkejenZRV8ZM|7@rxu5-qj z%n&D=_;YrfV7hJ#3uZACJ2_vxk zrs4%vaRwhfzOKKG$c8FoF22B6v}!@^@2a}z(r+|$Tm8i*FVHv&&+0|eRf5Axs*zX3 zIH}3wfw_AR*B3j3(Use4WLl7b^AWUin4SFQF;8!k_FdSOPwTEI{tSD7Ao$caWi>sk)mw_qWjmOq z1@|TthTVo#l|aze`54z{08CzE!W`H2xN39VRq;rLQZcSd!=>COl%VU1Xy_|268(H! z7txjPP}eTJ_o{bp`}lZPk|G1AasI5ky}F&Cl(Byxik~RWfMC{wo+5d83LmuG;RR8M_#A^&Sf{79)zoqnk*Kz4xpG(-a62T&?Aj%euf+Ib5GuU#+l) zRczhQ$j)I}nD>2esyORkO124r5q2F}7%ktO*Dq!{ltt=)s+q=KXzb{(45E?dOKa$t zi4YZEHew$Hv5e#~e%i)j7xBk_Y(4bAC=MNrtsfQ9H;Avlhy2?g@+Q$3OI^DC!5+LA z?Mu}!muxJvXt6q28?;3&RZ1V%+w7_eoZ|d{HGtatI$F4>>LtxY&ix8o{2ayCtur}W zyrMR)Z*vgTpS-_{!vBhs|D0lqcuL!LqgxAZBn0O1Rk;D`Om6QISyIR|_$;C#j)r`9 z-{Zy+wufi%YB-Q=n~~B!7Et-7t|GSW1H<^qZ)53;wc2X)wHO2sn3rx=hRawzJz7ui z;aljhUf`KrWDLAHz8BN7V&crxBe~*WKZDKJ3s3_i1Brrvy>8$MQcO|;e`!N)O}WW6 z;hi8=k5%o8s}Et_R;fIV=2tpdM!RB7VqTnnk|62Hjb_5of&xfsYN2G9W46mZ!?SG zco$deITP2#Vf}d2Ot>i(+t@Q!QD(DBC z2-DBaA|oz!B>T;9j#B%xmjztWF4h!%*bx0@QrZi>258Bl{(X2Z_FybGi#ck_V31ctR^Y(9r4O+#$YdLU; z0E5oB3Ft}^WKf{|Fv{3?;fMzCSL~TET3lzZv8765&uzO34 z0;X&|eqtpj@*IDy)tDe zvf|xhSnyk-)h-8Uf>6>37ZWf0(}zSH~wa!Vy+#TU3(qC;#9-`J^h%L5t^Yx{Yn~gWadw4W5SR4n$2q*7^{BPNN!BHvfIUh_v1E z8M(8NeC1B5f0Bdy+dA@8So?2gHR7RJa;(%no9(N`XI)ChOC5TD_j7{7^wO4(nI_c( zf1Y}@4w-U7!ujTbeXq6MKz$_qAN^L^-D z4sQT*mh5Vg>SW4Q+nP%zUCyaL#qxVrSy$qHoqhiaq7v3Wm8##7^V@#AC9D(eg~8Yw zhn#QW&pY>+b|G5M?1T8f%iQS&O_K5NwT)vZJALJEoXt z%5=fK3VvdC+8Xc}h%K%a-!Piryk6ONgQCzbyA&|NpnNdfl5@(PKf*(ow+qx(*@L2* zJsZ2CzqJPZmgs!=k-OQu`uAlT#;fy(4vq7Q2R0d0WS97jDu96z3s^6BBFukzivQpj zPLkx@9iGN>GbyOig3Y{5njMq_8R3#G<= ze*c%eVB};Z0CLJGfOh|6a$GT^#vb`R<r?BAah`uqO0(f}XA zdNLx?-r)Tur;*khmK*Y>&6B41l*3Kr7Q*bni*}}rd8v7ZC*fSJ_}*3x?qy%cBxU?e zpY4%#$QQ6Cr4Pnoq&l8SvR!nipnq>n{}qyrm22v03ApZjTS?(N`ySc66?>R^tP*U= zwba1?QZ9shS$~7nwfndtTc?yfLmI$y^7X>~8`dA-SEH(8xj)C0T6_Ddp8Z?4kgPpY z1?lY-E*%OO1kw)8+WI&rwduNr`n->$T}E1qdeNL6k|~c92tPs1KL+;9Zq{|2x zh}y4*tF-P_@_f!GF1rCLh{;gu|joljXH!3-!#2``~%|YJl;x~VoTbY(m&@Jhv`~#1G3ynkw zU?)g}EKsW%CugY^mX}93=r}KT6=r7%X4Pk*^LIcXbf(HpB@zTbd~&i+ax>|%a?4q_ zov<(txeNG(3!o&0s)2i(Hg_RZ0*Q7xq=E41>|XKQz+u1^eE=id1WV8CL@TT3pIydtvC2TZBn2c2u1d}XYoGbCnfUqrL;wh75KzV9fkc(J6A-+ zZl-^RDxTr=wiIY5k&CNQs8g2~e`n!;%n_}RL=Z##oMt(JGq90Cxxl*5++nz$Z`jNB zKqyb;PS4<9^27pfaV`hlOf)Lzy?4Lq<==ppG^^Rbx6cli%DiksKkP<9+i7XLjW2P% z;&6c;~KjDx08O0E51RVWS#6CNrcYP9UG)asMant*)AHfcr(fmkyI^jQ$7c%hPMkVO3%xNtb$in~N% z`;{>wfkTVfPtYuy_B;`J+0o_9`D5SO>1gz7NFdPhE-|6$t9WG60}q`*8$d4Pi&!Zw z8!RWLN0c&vpIYFoCVHFmZF*wpKr4Z9)vg1IyiOb)JHydSC07%DG@&(egMTwb!T0j{ z7c~$=pBx`3F}HSZj2XJc+c^&*d|^l2)Na|7>Uk~FKrLDOcA3Q#tp$}`;=iTc z;QR9Ys$m;>=3~|L)d6GrxegoF%WK~6Y;I!fv2i?M`SwZ!TXy6#Az+aCdUVX}glm?) zke-nM26tXVp83{i3WY{xJwp=fHkFKnWA|6;I-${|HIs{(wkvfSQo|n|PW1X68bz|( zLMTjJB=YbW0R@e<*L)(9Ccd*Yuy1CY$cFq><-VL`H$7`VrQM_~emu8S7}DwcAd2Mp(ilDHfBMkaujfvA6DO!@Ko<(t5} zGpxch!v^zw9JkQg%wRBR%VA$}nYf`wxnh$Z{G_I)ov2IXwvBEDl79ol%PE`R9~%{g zyvf`FU+|3s?*w1HFGf+g*rvMTOO%n7#clnMxqPr|XGzwx7P_tBVKYhHd!#`ylg{4}bM%8wr zldX}3kB4S8Fxk#Ck=`&ziRsH14)SlyEGQ!^>-c+H>sgb`$oMOo$R@FBoB_9QDwexl z@-e9^B}Pi(t|&2mdE&667D&b@-;ZT|;?ON)4!51PFJ?$V=jaeFGyJYwPUh0On3z!@ zh3g6rEgxHWyx;v4il;D5WjH%g2> zrgErVv>E8u#aYXmnUi5D4Tr>z?^nM!q3;Wyj&W7}wOCeB*a6UWgaZsywz46*Lvt>} z?3NW=QZX?}{OScN`qe$bCiI-ooI=(O6F2g`;%H!2*Q1R&B+gKGDhxzLO6HJ{OKRV% z6np_*??p*g!NIeSfO04){&iWm*zOy_Q5tE$oln|sLUxNSPn4-RMELXe-$AxQmUK)Y zsy4Wxsl*=#Z=Cb>dH*3uH^$rv4*iAUN5ICf>;EZ z$Yk-a1#Kwi`OUV!^p;bYSF2hE*-hK504DVHvy)|CFv;D%O+oSh~dXf5l3r*^DDpeXvm_5%z9*xEmZ%(o)lho-8D9bh5z>zY3#qot&Cv`1$#0HL&ng7&ys{ucgA__>eWAM_M3~io+W+#;rwg=2y?e;nJSLc_XH1B8!1u!?Rs8E^6nqzi z=gUH=bDWUZGd%$Hk2VtKvHe@lmJqsxsn*0}wz*oAvtr+f=?c~kta}waHl2n;g5@JK z7I?S=ozey*0AScaV_>j=zOj`$dJUYVk?j>-tJm}dy(=<|ZE{#?Fh7StJ|x*Y zZL|nfG$A+Gw42Mb$6H%s?}BtNG)@G8t)E8_*{m;OjkQ0hpxE9gj8K`*F|}CLltZKC z+@`vFpc;)=u2WuZ=2+G6vrxIu(zj?uE0+-p!z;~brJ6-=2+?q>nHC5(4JKZ6QyIWR zXkpC$i;5JmLUK|r6Fu)!;~TdX_8h~f?J-P~k`&REujCfyx$sxZRocwbPrioksye3d zj*ogtBp*F_ zpmkZ6{l)#Rm~Y!+1IF9UhIyw#+U0zok3DOlj++N@a4ZGKHLSAsqXGn@U?vRqZ7Jj; zh=h(8JF3Ph&myohcqCOX{1UZz7-9u3a6Ri_sWkNDLs04BK+ec2_1vYF_E{4!2#H;f zjBcsi6Cgo~-g7#BDTjhF(qJNpQxqrRX2MjdJt&?etvQ>HK#a)V>lx`c*(+jJvCftc z=ug`SO6Sg|6^7)g?9ETxm$n4uWSjJySf@ZwZZv)-<2R(6q3o);q7`L|zkV6WS@1I~ z3c7#B`hAz_R(rDYS{ZuUtnm}kME_SyT(n;b$?wcfHe}>EW^gIRepJ)-;3jbZ#$;nD z2i&7(@hQCwnE5zR*y_=b%-4VJJ>Qx8u*W0X==gu@S*jT>EJEq^H2=-0xpFW7IO;me z<;0PZ*S5~Y{jO-qhB(>Tg7T61suTP#WUEk6EJ_<_r3Ru>qPe;7U(FI~Cx&F6k^z>K zTaHwTIYXa`cT%M(B5R<(tFv%B(`ZM}luM2ZpCwu)iMUhfV308d5K$wMvXhco7l2^h z9+gTk7|ML@2XS5u3`JNH8qmDiKy+HXrNTPhfKPO%nk2hpcyj8 zt4iIWAux92enVSAw%kUkMethg%01J$KG2ghOiB+H6Vhw_u)RgTzxp2x8#&hFcSfAw zjsIscoc94Gja@CNHj#>f-t<7C<&Yx(Lfy^BsIc-T3|5&suhc1hF5FrCu9DvQSo;$d zU4+EZsH$To5WT*OUT=hW$bRu@7zbjZO651|1QEF}A{>)U9l1W51M93qc6o>L=wMLj z^V{XF2Q+#F1ZK3aU(2bU?`xQ1%cz*qhA~BnJO{L zH+0A}&)c=w$6=N99$(hZmKM?QSYXWWMrx#!1pcx2s0AZqWocjo%xq6bF6&&%p%qs1$&4^Y2-gWl+8c%Hq*a^f2Dt`M%$$kDxm+QR#C{ zIJ!qfdh}5wGFB0x{qF6-N7*g}?RgjQlRYkmQi1N07M6Q9U)cNH&;P+`2jff5F@lt57ueWC%zNW56JlUxVi=_P+@10GXR z`NtN_c)<#`2%xShzKmw?gfEW1+A8h6u=Q6nm7C$9{?1w>by8u zYiq4BD!Wi{{;C;xoFaZ*S@UhFp$wokGCtx6QlYIhCVUeW@QwBYJ7*lKOD?d}#O1Gl zL;<{yrh=uYC)1K*XXu&oqg@^8ZSu3Dj&%5&*Rgoc9`fb}ZjpTH|GT_1#u%w#Ed*KTNKS4;yY(3sB4W;K>1xe{i9J)$ohqaxGG@DzRmEj!wTNs@D-Tzi`{kP}p&%%>T|BIU>7q zSjqDfaOcWh)%N4~s2TXF|NXoxvU@K|+vCa%XR%Zz?mcsZa}wj~mDK&w|1Gfg##&kg z9kr&vASFN>nl^~t-60xX{?r(=#{LqhUQ}tdyyJW%O2Ojp$c^qW;9{_JZ+{y-{8qgi zr%Cf5u0HY>Ye*Ak1x?J>fi%ZO`3F=J7-1egDy85GI5sECC~hk0c9YzFqUy*64~@3j ztLvR!e%KS)Hlg?EmAMFKct9t8k7&Nm5FjfYG4_-!!-a_#A?@G48ZRx`LK))ZVcwwC zpFBH@2k>g2tJ5vj9;?URYJ<=&^kpd`L)2#yMqjOuWo|KxgY~`?w;wgRQgYH?0Y`ck zv#WiHl%qm^o4jsAcnV{rECFf$#z0!5rd;K|8>*RM)5;2E zELZepB|U~79V<>$->FVuuk|~PbDq*;Jrjworb4wo83tajJzz_J@ehuo3VL6UA`TZ+ zDS6*hd)t!uul_$x_^#FOtmT(qP|n$NLRNu!+-u8EwkFu?=qd2}vop$VkclAFpor&K zW31yW_OivueesF~8Px~n_+*5X2$b@?04Y`O8Ii$iUQno6G`nBktcBjw+)V6L&IGo# zmAc~W!cAhwZ?C>!G1AYwEjk&D74}iVp#lf(!5s2E?N}H84x@J7Q-L}+DQ!@oo1776 z_cI)pI9#_6Yi3u4FmUSOyiHS&r9mY^XQ?J(+`udm?FJQG&<_Hz_E&uqEV@q}-7F>s zua~@_@x!y^lYht7Bj-LCmJ6|uKYuua5$4yBj4uvu9%2d~0!QL(`@M&YOMY3~zk5=e zgE&us2w=cVnDdSB?vB+~9>B-UX!{RePxDaCqUAVr-A~zpFOBLv=1MPm1Xk&frxM-Q zd}Z9K7!-Ndnrnxrj3spBULP@m`Q5300bUyjAe+dg{#%80It|ZF0!fJaym)_siqmMK zGFYIn+nFB$#HY)O2g&)eJCrc7YVxfn9VGJ*07(X`vHWtHm(rX$*atpnJp!iS@%Bk- zgF+>LrE}@bid^o!5vRBoz7RAkxhW3bZBD52(7AyKGNZ}HwdIP5J%#`)`ziA8dlodZ z;NL(D>7%;+qENL{O}aE;$~u2?`H*3-D(au}Mo#}WcChc@BXA)@^^3wzg;%+W&i;}n zOV5`i%o~LHf9Bu1?&7x(t3L9=a>rs; zHr?0uL7g|b;IUH%7{te6-vUnH)>J}LXx?q~V_dbm-M`HkjT|csjH=d6UEV^)KgXK3 zSh?aEIYJR%&u<>{IzMhyQ}kUgA3Gx1++OU)yP)qL#a}^3GoviPzwwB(e~YUdxJTyv zC(#}!5N3ILfRnIvumXgYH~2XUSr;qMK}SWv>L=s*|ETlC4PXHotL(kbkVQ$1pdw2| ziIGg*jJS`Ynn&UUiv5|6p84a7O!__`@IklT{j`g(uKSHR-15hCCsQMw#7$sL=GmQ< zMg+)!oPk_>lH>VjRnDZ)=MKo2fr|&XZ(6Pf&U-`~Ex|Uu&*bNop<-zOrCV>Z>rWqh znfeczlc+99W2jTRo&DQ)^CW&@*30{>KMB$599IoSutF4?kPj`%6EbaoxPvZeKCL)o z0`JS8?xy;>_p&7d7Z_nMWJdgY&T+MKFeo0O$Bp+E6R0A=1&UQu%cHHi>ZJes4)XC3 zal8T+4kZMPfGaxedD?|MBtS25IJNX>L85UV$STwUNyevQND%fW?|^jd-(Sm(^NW~j z`sZX1N8h4U*~u)9SfOF0`TZ`_@U+x|JKq8J+P+r8SHqJQ^x}Skd<-(QcAj316zi?aH{KrI>Ld6ECED_S#S}$?74LOPl^DU0sIx_C$pW$&e`b zjoFFscDFrvwrB`cSGu}N&y3i%aawur_ILhc8Xh2Vy}%8R+O+9&Bnx3DY6=Vk$c+*? zybn|b!phTm*jho_dfjM{eC&-r4%E5KW;`tHKmib1yBnl#FY}c9)YBls&xj$0 zb-n2A>XYez2f&(M+toR-I2s~!RVZnG)RFZMK>NT@KJ~Hqk0ZTJqkOcz7v|0ygw`g) z7_!M@;i6B0$eB^luzHg2;n8K>r6K56MnzqVqEeKY;eYnSo)>f~^squO+r>?wXX5Ka zjCZl!sP6mt&ho)B)zR6l)Dpzp5T*D!lXr;JD}?B`Ip3D`kcPSNRR z89@r{gg{Jb=X+L$n16hGM;}fyuj6mw)v6E9t4A%Kmyi=V8=%r4l^n$RjA$`M)IC{s z+gb7PK1fU;FE%T@i8-+(1n;2R>bO5|WUFU%0^w4z0rMoUzq;o8?`^*u^D@SBW=by< zWhjHND8*tM%KTOeE5_pCxN5h;U!o=?ti`u?9ipN)I`1>fIN(s~7!o^wN*LWi{YmS1 z+dKGO>Ycm_Nb4NX1hhwcMAdq8t|E{RsswEBZ@}d$F!Ed5IZ6SK7AYbHn*vB&4V~~W zJx1R@cMZ!)*J*O4eD@~LNpAi(5QcLW(RJJ0x)ZsbNe)7+MO}ZZW$L=)vlI>m^c?J2 zf%|crT^H;<{vROoB%^bUNS>U!Ul!^vamT&N!6s?Wy`|3{WheLm)OUGHaQiVn{USvI zW73tpM#5QkLwx>j8Tcw&YWas&$6+kgjF%+-HQS_08v#xE8_N__pTt`6QOI$zy!izV0=wRpUQj zCsc(b)uN$7w;kYNfsN!u++^0}(?F9)Z0dfBVFKGh4My@&*E7fh+-*ncIPW)w^4vR|SYSfBews9BQ*#5Deu}y|W{oLsINT7=a*jO;SVq2Y=2$T>_ zqdzcp;YT5PN%~)yDS(7basO;y!eZ|Zllt+j?OAB5%Io6-`exl(0b+9R+%hU3TCBLC zB1q5;98Q=`ODowh`sQfw4-lT6n$rtXx1k(a+|)GQ9m3DbnL>USr{`lK;w~i8E8-Nt zpIubH1nPw#fdH{3S}Fy@zGD>8=^2Z3vPTSqRoN!}RpQ7;u7+a@`uKPYV8Uui#T^60LY{mIK2jArvzM6XA5JpTK7Mb?z?*S z!8Xb-NT01b)KHzNu@dI;I=A0Lf^ED;xl7Eg#4^W?V`T>mE|AIYoc=W+ydc^83tG>TT3|wI_^Ofa z!FW2B)%%!`>=<<=AEDnCM?z#wUu<^u!DCGZ0Rsu=#R|>uOYt$zg~GC$jgNOKZq9T! z)PIk+qKLUeSg~oW{Pjb8HN>BF)7%PpGy>Soy-AGKqvi;X=ut1x7L;^0uaA%7)y&wy z3Y<%7akTk%y%2R|?M&}c6D29hq-*jn9`julg$NNFIgL882J%cHUlpZD=+2%wCPfff z0!jh3RA;gzEg2d~-8$lqtS<^yw6RI{dl?_cvS`0q&5o0=-~?XoDPQ(;a-Db^h9P^i zqAQ(j7yM1XC_#DUWK)LjJXm^XDFRncKKI?DI>?_tTX+dV2WiU&O8y`MXjvL~tA7MIjyUL(;3iJjh zU~H$ToB$WFT59zXq}iiF-cbxUW@urUBm4Ha{q@nCGJFEQUoRBRDZ53mqu6C^ zK&4`=bb1^q+4_?o3>l9FMi1Zl;}HM5RF1xnik=^0HxsAx&q(kuE!{|tP4g_IsR65A zvUAO{uiZJt1|!<&AVxT;Y3!LOFaCzoxa{05p$^Ri^;gC+i&{%kspU9#2J@{y zH}%iQ*;`y4^gRQcQ38o!Z*nJ?riF#GCXhenywRhXPxrM1icG|QPyoY8)h_EeXq%i;K+eFwUUhHK9K#t=yF6D8&%oCB3BzlL&ct88 z8;fBU1*u?`&^0}4v`q9rn+HyRb0?Hc;rY(RxUqzWN-YB?HC{9maT1dh*S3o9P9Zrr zAV*_+#l?u>u>T=j8U=iySsTC7X6u<~g0WqR>Aj2JacWeK-+lmzU)&&34-xnM4eO%c z)0hw~A?AqVkIYdb3<{Eygz{drL&QquN5y>fSPVK!t2>%F44i&iJgTD-@zUf|9Co{lLES*HX(cQIs&}fJ0sU%GspHG4FnQWdz4KhXe$2OJct2TFR;U&h;za8PZ^JC{)$DPQ8OH5gUx|%#3bU=c(QgNmqSoH;& z&>5V%``Q){24=K9SQ_DSM|~I(KjzXtof*3M zcn?e?2ul@h{i+-FMID8830okrQ+4)#kZhFpmQ%_XWsi+Aizfaen?49gcr2tQmL|?P zM*@M@@jI)PUiKO0A|26KRxH2OjsDLN%L9P-T;Prn>gTypQ~LGe3%RG3Qs!F zp8x#2vH%cu9c69;AD}zs7H{F!J@TC7A*}d=k<435x5fJIyzbIq1>s3ex77(uo%ib11pIr4RZFAYOVJhwZs1#< z`wSx!Y11EZUKnn(XD|m-u92ej4(=gX>}dB^q&~Z@^Sg<@?t5X+D}GF0TZhF+3%VVjREc&sP^KR_>+;-6Cp5Z68@}F2axhmEf)>Eg=lS&^Vx~fmk*kQQx z^;D{~Hs}ncxb6a!%8~Ck%P$v@R`gW>28k|AVBZMs=*-43p=b7xJgnQ}m)wMVV&JXW zq4VfE*C#ZS0Z`SrD;XtU{5#<3ch=r~aaHM%&ISP?_B!h=?rigan*corGF~4Vl!zlW zk_YbcAVPdPe`<6g)o~f=?)Gbk!C9UC{m$18hcitnrHRZ(hE>^Y(GLMh>6Y%4lZa9lgcUU?6$9HyP+?+X>$D7Pa&$IIl5#>pZ!*0CMn3~jq5N=%FcIz z?7@b)NK-)OEgtlfheCs{?8K%y;u)$!1;?x0zVsTj=m>Rp$J~}|T%sP-ar^F4K;-(G z#m~eE2tM;r^s^qWzd-kCc7^{s$@M%#LtsdI$*FV6*E=bNC&Z4@>T$!{KWHQ47|S^Y zq@U5MJ(7Ie-cW64na9CjQq^fXHQaIl9SS*f4PTe^1S-KQ@0yXNiZBCjo#%@qX-vOL zO9Cb&3xa1R~uqSsMg zYyIt(!zW_?w60``Ih!%+SaW^geeqWxK*xGI`13j znyaVsh{6P|ak09vy$inKgFoYz34vB|dw!ql9|s$b}jgW(LpmVx3PjFfb}!g_}p@hu;^Qp6WSo9{`AyzL7-RQ zhbJfOgvfCyLSK#$eJ5{H$%{o&@Z97eIu(9j72^Ru_VlRt@nNT0>AUjz#$PmuUU?Yh zZPZsq!r+od>I>d;&a^&e0eWJss~5Wsb$7q6?L)A(f z#xqoUlldQFVMHA?WOl8}*YP!&s^F&C<8A7Gd|0eW1r`;-RxNYfck?LHWefNen2cL9 z>NX0n(#9XZFeHT%@%O|G<#p)WWlE&OA6coZW^Ru&>!{QYwjnPkwljU+g)Zn`e0-Yi zk(m*eB53SU!)nW?x%O&l3xzHz_2(3e@mq3jE_5IxR=0ENgFE-C+tWOOd?qo8nu}u} zqas!_P+*Sr^X7ZlnVqJ=gkTFbTo8X*bGRxKh&WjEce2y_fb(mo;ZJ(i4NJ*}xxWe9 zXoEpwV$raF^Tm9%>vyD!bMKs}n;b+2?CLU>O8l$)Y3P#SX;~kQQ?FQ)P4vCFS{Et` zER>~NAiiCh;s zP+`LW2Sg#8aXH=7$Em;RpY6`Y*Ryj+8&e$~Zi;-?bs8<mS@G=&7#g+t7u zr~eMGi94r5uQ9unblyu=;B*d#1i|1O?iq3n>CBU%4{IXZ-`r?N=LnZSGHM12sb860z zv>+(uqqA1f~@G7BX*4cxGr?9aC#fd zoJz_qL=ekQ@1)A+PWB<=u8_b)A(b&hDUBjG93zr~$AWs!WE1{gMwkLp)UWX~^*fQ| zj>(*iIaf=Od&M@a3c~v(e7J|w!)3j5E2EVbEsn=(*R=2EKN@!V)0Y)zII-Y&C(4eREz1kDjMA(^uX*M?xi*D&fvQa=UED%j4 z_{MVsJ2LT~^?m@iPb$HK;N-jhFyE3ph^hl5xmo9laDpi-a(<`Dx+sY!hkkW5)3rbx zZ;@>~`%fp~Ya)pFE{f?|wSSJXi7Ol2Bt zc_i-u%K3qn@!W2{b>-zu;@J>4xBk$K@KfGlIVb#xVhVTp`g#%+cT1Uz(+^q2~w!_y^QHJ5H3bHJf815-KTHAt%7f$Em7Nh}f{A_rE)x z7zus|(VL0I7iP49R^3Gicc>Ii6ULr(%H(J3X0Gj2B7~IHvX5w;_tWlwhjYS)8yzQq zlgwEB1G<#^=cg-8yR3Hz>nEA@OFxu~!VbTtrxIF?GdNNqfFHKVZa)xVK!?4v=)9h{ zxe}^ubNjGV1+RY2|3qJ>GLTWiaS~VXx#fDDdV|l(ZxI zs+!>P;jxw{wz>FCnEtqJUdGw6(^q$CF3;mw>a1E*{A-lLU%d_V-zx^nDiAFBs8&>% z&ROTewr75x6lWL_{~{ys9D$k%|I@1E(3(2>3A02KT6QjL^?qMYpEW&{CGi-iT0!a4 z5QJ<5eD<}~p!lzc<9Mx)d?Ctg)rfWc55G&is$HNsGqUkE~K)Z6H8DJH-ki(*whRIrLvpAh0J8fL}+P!?rUR#P9S@|8u)EQbf&j z7wH2Sq$>=Y3LEuisI*xIjsjK|__5NclaE@jA#rmk+r+){%0KP)HEhRpYln(*I*9yD)d0 zGiPc; zB*Q({Ns>inB9UO!B4I{xlfqlz_Px@yd%jCX2*zg;kLW2Gsh1g5cfd_m*$w!6tBbxfHYIL*kML|B&8Z((_Zhw9hs5LHJc(SnR zHW_;$OB8Ya+l19Uk)(ywk)E8Rx8VZK;iJMvr8V%C%)(m1q9``8YA75>y>{n12XPKV zR8H(J=6wKy+B)VM9hd*Nod9+@aEb#v`uma!=G88~K{xjyRdefBeXFoS-?MTD9_rV& zXs88A!*m-4h#u6~J>;p|=Vr}2#`bW=&r(#*lzWryhhQQ3b@OpiJUYC%9y{Q6QOH_= z-jw{4&`mFr@rNnv?^g8)JSH>AgBGAL*ZrrgJ98N-x271v-rOgIWUk8~|6)i+G3`&k z9G&mvA6`0JGHfBNPKa+2jit^ef!Rm^_@!J5M}iIp&b4x6kib|!HQE{z61&nMzBeT# z=;T=24{FBjXp4IH&H{*bKV!Uj4CLT{6og_T+6~%ZF!wNpU}`IjDk0KZPhYfW1sgJZ z(}p6^5*ucYnf-vOOghrQ?~}vmFgCb7e+et#6@f0f+zu-K{pcj;3s}uuhM0oZKUuD* z8!yF=vtjb>h1FZrH6ye1#&SyD(F$${L1qtS&Jcc?*C?eqWxbsicJ^hrZo0doMcu zY{@x}`qJGN2{peaNoIEVnPV=^-4Px*bsjsnwQj-#C{po0N_1Vp2$gK3a%!2sIQ7)& zTe_QT*Wgb$gJCoeS~gOvD%=u!FGr`4#2jH|l-O@$bG4as=qq4DsL-QVZm$b|h4>!y zOhm+8DC1e$c&7#62`A2aW$b4Pt)HF5P@`3DUJhE@`_f;x3P`HAesyUnys#P7lfN^d zFZsBdph;E{$(Eo(1^%I$XKLp5l4r?5GIEik@=?Y(rF12gtT5TCfeInwca{JxAzSE5 zn}g$abck-%%IP5GJ2Cp7*J0K9fE*%KXWChW>EmhcAro}|9-`X?Keq5*?)tAsyJI)1 znCqLJXQE~HpPd=}FK@l4n zP%|g%)hoI->z~M;8`NY-o)xi;?Jk>aKHEvI#b+)qo(cNT;0kE@o@O#RMPx{&Uk+W3 z{U_Q;5&L*=vHh&*VHDB6FJ}77aj6F8tQ@8N9!5z)bj@3{E8anHs&Ys6eO9hbZqae` z@#LWw)bsgoOXHAm%OfAE6+S;&TUL4|{TNYQjYq?O2fu1=ed`fC-HfxR zXTP_sg7E1{td=S;O`V}ePrlbc?~a(C<|m5_PDpFZMDUp*{XsB#`O(e%8WDYrYQU@tI5T%wtNjvVWt5<`CTc8Mk$&zZrHG zOmw;IB+1%?!XHEKL>mG@41=IYOmN2{&gO4poh@;Mi;&kL^zs>3^7FUQeb(kWMY>9L z^PabB+6|2{RsKe`hkK_jV@px&c9PeL-xN(wT%yr6MZUvPfNyd__N?zk1z*bH5eQRa zt4ODNkLQ6|Ron~i+(K%um&`&oD$XdL0}#yy6G;#@+zD2F#57gwz}}`zWI4a4KAAyB z7zgPD#Z=j5A7gPn=;OtJsL7{h;SHEP5v1CamDYG z(r(Cp_AVM01Y0VeX{^yw^!T0Gn_qV(l*R(q=r2|v!=+%${BG0mF&=KM8?xXNr#X4e z==*8Gv?{fl^6dfz8Ja~4cg4Yvha(%O)^^`^Y=vg~_L2rm@iwUIj+deDw>agwnZ6f^ zx7)`A(SJkL6dN3&uMQrp#3;#X-X84zSr?7#Rek3E?W-y(i+sA%mX{g%VH#WzRIlZk z-wxv)Il-Q&6KV}?5)j8Nu#|ecgSC`MV0tVlPIRyM0OEjKI;2Bne{>hkFMR{w?`Qqy;yQJ{>@U@UWs&2l(N%fj{4&vdXdBgh% zz1jyo{gkf=k+44*&tVXP zjjJ^1Nd&tx9P!KMWI07&OJQ?Odb_Td4bu`u3YA;1oVOVzc1sz8gVb8((LD8#v3NwP zkb~$`g-yb|am=^Z#k7pp?ou%p-?ssDL`+oToUbrWHNMv!i6lx64~v$6&L6_ih?Qz^ zl_1X=mXXz0(5?Zts(Ha?r#36Zx(s~4?^Js1_2{;Vjcaa5V22P4PU+X%^S?MBl6GfS zLj_L_)0>My8oE*|W*q?J2x?RVAd6302GYhc?lU&bm0(@=>K2)WV$}+CW)vR;xdW_W zvmzMfw1mtcaVLK;-17lK4ujB3t%l~%++5of-QX$k*BRIQz;!`x1oDWEoKb(oFcNu@ zFi6_-Kd{z|k$cdwH{Hw@LLm27DgTzfK?+_MpzmY!xoXwUM9H{zlnlmxF@A3_KW>6B zgcO}|2n8Pz^X7BzFJs?aTSO$iTqD_)MKBNov9yodGHyqv4+{?mHd5pvIl*3WPkLK9 zgke12b^ei$uqQ6GXn@OT%}#99LJ|&ZqwR}I>u!w=`nx)Q`i&KgPuZ*#tj&u@Zti%9 zg}vWZV3oca05sL7ighFzX|f(^&tTZL3n!9`dPj2s5%Lm+h1LXE(K8rH(IAaO(GO zuipXDqH6V9`=Eg=VUoo)@N}6KRo`Wu7+MB3Ks@2KRx#i&JVf0=OEhX<+Zy5wF164A zAYBAX58brd5tJJqqD9a!Ppb#Mny{#Ct|M+~?Mr^aAu7 z!SF$*j!eZGPp!ccWIB0^bVuW2(0TwJcC&E4CVx6hz}5-*!~+-TMO=2v3}8=vY}eV} zsbk9hJV1f=3rW=*#-tFDW>dASYm1XPW~Fq@!)&|wPCpuG*-0j|@0ZkkJy#K7!iWoNNJSiT%y0vi_E!m{5VT1*%`93GRdqnK{3B69s z0H1_%O;w~}8_?&(96vBSSWm2`2Ity_WUmV7PjPpL+MOZ^ATCE`oo%E79AO?TUOg3^2tBR=vANec;kDMer=@C+WrORdJo|~bvyIXZ# zPh+_(7x0o-!!aD^e5D;I?XSLHlgNoST0YkW+MY6S?t`XBdCgAiT~dEM4OX^sWr%d^ zgqMury!nAa8DpB68oQfVT;pRk6BF`MPyr*twsWXwcwK+hUH5w}J@x{Yw=Mt4Q@Rj% z#WS%*JW8R9OQqTY1nk;>E08R*CTS(2P* z$Q#~pfW}2Pfklx^HqY2ZFGw#arrYl1nHl4HE-2t{2!b9i8h@YN*@I)i0snIJU!t|- z_bmpmLJ^i8$b@CgB=dMl#?UTa4;EelPOs5_VJ)syhqOoF;GBtm>(c8EVo?O!ojZ}P zOfZ@(_l4&@SZI~wq2o%1CRXg#Vt5@*qmRWG+qF3M6U>!M*r{J=xArrQMYrn(Kg~b| zy>X7iox%35wK4nfDInK(OTWJ{Svdt)dBDPRXo~ixQisGCfI@b|jyg?{o5+Ly z%xj@`jAh|b`6*BX4h1>$hh+S2wp95nNC+-N&N@L#Vg+bX6=`sLBO&YznfBSz_Bv&? zBBOq!?o>ku7!2pa%IBAMWo5i<BdTt`IIGF z2<9)XE&Ij%ZX)fdDYaGWmb?Mbu~ca~qm1LsZ>!m+cZHelO3G$lzb9rpnqIM3PYnHKMQ?k1ThXixW?CC6(3MZ7%2B1Pj>HXUszA|KLU8xqQanvr@2PO~tJ5UV z;De@^18>yuWYdteEi~L+;qg?d)zAGvcme_(n5*EIeQu_?Vb+#_8$zzXkPwQ>Q=XjK z4`tmo#DCW;8ruukoAU!K(pP53S9&16Q^V*mVZ$uxput!BjVr8cF6Jdk1mI|c&(EkT zec0=mQvua$B7#8^mE6v)#SHaT57YIBhPu$cX?6iP?t7%61jjHfW8yBn;+h7t` zEP;(x*AHx7a9P)U|BvRGpgO^dc2rqvI1Bu(4}7#WL%**mVSB%#xRLt2k$i@7?6`&* z53NV5^fZ>z05GxocJIKix!G-OsA647bJy?$l;a(#{JCiQB=(!X1@1>@f87AWMEH3t z>#$>GHW3rRewz0$+^b|bh;=Cef5}4{t)jwagsY7StJYg;jJ2ZM?qPq8X4DmT+xA5Z z53@MvhFm@z?YDS|MP#tx(6D;85JOO`^R-uZ!Y^kcjMtHr(aJ;rDu#T341KNb5LlFC z=?G15NSs>BGNAp!W;A4G=GH9;1a#!*#iE_-N8dp6b{9;1)iOwqywb(!fd~^_lv2dP zv6tuT`5qUPQvKBz{7yDI(q;x&b32IF8s7%l*duxQJ6%zy4wx(TzslPGcC!f(efq7R zg{i)*x?2Yjl6mzVXF<(o9srSinp(>^I^{N0Ncm=f5`}ha>O5rSN!nm;j$jJ_e+_6( z#xp<8$!aU0L(m%n$Z&jCnE}uj8+N=ikz+uhGJKGo5pniu`1<&h$NH>$B)nJ`A^f#^ z^KM-gwFjV+OuF7fYl$M z5wkyDy29XDNC+rq9R3=7G}NhALo>I~lp|xVm}v_ysBuQOEdBXW$u(;8nM}uU@V})G z^RFD5DKlv|F!RnaVI?aIHkUz;&K$o4>RZ5&-3 zEp2Np(=wOQIFr8 z5rjsuZTLcZk9|)WBRgt(=|K@l=XapYHCTSkp=>WwI4d_qDGD8ao29Jov=v#(2VC$| zlBX(hPt4#q&$}j%O}sX21orlR&yph0NRWl=&GE2QM_)@oBHD0FXR*>Eax5K!=f9sVGEfu^;z_xmtR&4nQDD1zHBTmwNS z2|)g3?)$KUv0Te3Zjg=WuDdSTcJOx z9{|Ouyv?M|g}#YmNph}^3BYS2$MaB{w6mkYQ@<$n$7o}|Tgq?$7cTly2!rH)Kkgsu zQzVarp~=jS5ZqEfCZ=oXm=J7c=Ch3Un74(|1#3A{@z^fr4tpyB2Pep_d8%$QA1=!% zu=G0!!GFYlHRw3tZW{zKw`k7 zUtAeJy_d*lN$%Eq%XeiiTHr;H6YtdrWCXkL?yvw@r50vuY;V#U z?KsqhCKEcxyN``V%BQ4XB9ua7(7PC;R zRQevzT+{6HR%mLo%a+Xu6QPMGev@lZv} zgX{3$(Y@j;e5a^1VUgwWB?a4+seQ%`y{^j=L5-{ce2*WDZ3?V z9oZD^xaRq<_J5LK5aA>wsg%OjI)`BpA=i7+D8_nGW@-8vq{;N6(}~2cel(@%hU|T5 zc-4~^$9oxHrpDSRRHjB}o_}^no@~xm@vrALS(|$!wJGPj`kK~Ul=yMt-ED&J(0{JQ z`g0PWeUh3hD3Aj!1Ji>qWZYwoD4~Jp-HYz4CI2it{eObotk+>;ptPdQ;kWiZ!~cop25+`mc6c11s_vb*GE-P})ycg(>fLq#_Q+S1vuQn-pU@F-rWbG? zF+Bl~D2V}BD2{hg`j~^Qn-S6yzMOzmK zD8yEATwed3cwut1_=g3DTeN`0S7kQr%9i6TR!Oz3KUSZ@FNncFZcY&8!d@voD<-vx ze`>FEjEA#1l1Yq@g$nl8VmAHq>GXYcm}^7QS)e`ggWfdhiShu2QaL|P`CNVfPjW$P z0^J|tXr(4mELgH(98HF0VdMNDL&7oesNRKAFZt;HUQaGNctn!=n#j{$>t{~ zKD@_ov3qZk>vnk(kIVS!iE@iS?b-=WuO@$F@K$HTbo_`)!Gi#jMcyA? zM#$NMVZ=Qf#r>~0pA~bsgWieqt=Buc04e5o3heK6erTvp(!#dAYk_^X=SAwj6CTLI zyw|svbIOe^12<1!N-BFdc=0kb5vt+H!0g5tTme|-6+r=@CbcVOHPwxu?JUt!1> zdv_xFAFb`1+1IpjfrSTgR0xor?v!gVUJ;Cb9yF)}vBR{3623)u>{_@2IY{A$Q;hYS zLt{mKzP<|rj7cJATkkSw9USjnQPwhb7k1;$3OG7gAOMpb~!JGa$ ziin22@;zaA3!d*SD_&c|8{fb$NL42VCg{3Y_#vp_qJlo>ZNIc|4sxLp?U-iP?^yz~ zyg|Q#+}iE6S#j;Ut`K!c(N|(!>^xq6A$?n@zY2BoXN=~_NbLYgd!EH7pgx-a?g#4% z64%6SD-{0nfB&jvvMv?@lyIBxk*a9r)dGy92<^3l!IJ%rEeuGr;W(_@Q${B_LuqZ5 zGM7IQkv<$GcQ8!n$h-C(WJiWIVs^k?%n&&NRgA+A@lB}Zln&EiehXkSI?Dc_jC1%3 z@&yHv!>-}$;X&nZBhCOITac3>uwDJvTt(}#0>J#o)5P^c(@u6mz(tlY{Um?<-W5+NooM6%2A~!&Tt&)5o;h@OCt(#WAo@fkh4PUVn7tIqAa)C1*suKi_Yk)1}_~3Bu@cz2VI^=E;pO zpeXPo#`^tvgYt<7-rg5t5W}n0wxVO@CjHg{1<%g9gV*oqdXlaT16}5SSz8YZU8X>i zWbbv??_NR({;BGkbjlJ9Cmyi)7pB7Cc9a=nzyZbLCU>!Rp#KB;S8Z-Dl50KPK+puD zQ(bB5809AW)MGPsBJ{%qtye18h3qMJnoU7g4G@$*9jw&m+P?(HL+y&^XsZv*N zal^DZbKxvl6O1uL1rjQdaUxKaEmWc{7*?*LTNepo$Yf2_wz$G&eFVfumE)F3vrjli zAcWE~oeX%c(CfKqdV^?p9cmA>Y!ZK?(|{afyMQoOYXGI-mcAv1*NST z=>r|bO}sqFTRpeOOi_<7Lc<_HsHGKuJZ(DKlo8+>0`d_Q>>gdJ%6Qv7neOvg_RcGC z;s)QB0ay6HN3GqUs5re?1(06YUZ^KxH{=!hdd|3Lj+E+B8BDHSk!j4%vHpd5&y_7u z_h)>GDq)vEN{RW^CBWo zk<+h8SSt>COA_@@fC6z-^I#1b5a&ow1GwZJH02nrf0Ws z;y%67M6OAbX8!v(Cr{uV2QhA6eV#DX;p5}zSR#(~!*g|JJO8GJXjtJJe4@m_jE!xO zm3^0ayh9u``jg6+Nwr{HK_--?j9y?*hVSs)^z$_>zE!!c{+I^h?EQaJGWFO)l;ky2 zJyojL1Edtpy?jRxMDQ(I<%0N)0U11_5uG}|2KSmylQ>T4M03rou9A2s_@nYMrd}>t zN^#{iO{RE3k5VkW@!td zFbA#sOg*`?GTYP-X3bUk3n04WRB!TBI_+ybVH$7~^1UTCO-wMTG8&x6zxD@MwvZN4bw zput#KbelmetRUo@y!H?mxY)qL){IAlFQAHESxo?iM|Z?9w6IFm1CdVZw^v2i6l_<9 zo1C`is=A@<*CPag`2*6xzlrC36x;wkpOKLug`?EK%20<8cREK+#dv8 z6IU4@HMTW*F9PDYQoe@UA(MQp_Q3i0L$^&nosXC^`@BIE*&89%j91YRB=ix&iP-Jl zE5DHq4Md}`Yp~1fsjJ069%1{Xjqr_f3Q~X8e}?61+8=(l+CxU&QR+50$NMQRYF~Ii)-?G_~N7J^-}}?#mh7qCyF*D zj4dP>@U{npp(5~Io^NY-7Iox&UoVL4CpW8=K(D`46#FB+4x<6N6QAej(06Eete$)m z=5mAodUQBnf72ga7W&_komA<(9>Pjoz}@Co_nb_30@(u<@1-lz0+)beLsro>Igh&X zCnKpZ!HY7|VtQE0D;mD|_b36i_P#2EF(F(KBFXvI1RkvMa$O;LB@j^%6<0W0Z%-cK zZ5i-=^P+XOuo0CjTy;j#hFQ|bTS!#@rxe>|TcKv(T1l~cS%W-)UMZXvqQ(BK!``JTa+O!0p=6+qb{bYQKEGdS#X43N{P z9(p((3(1vr#=-BBHF#%lnzd|kT5Yg{0xG5x^M3csY?w`_usA8 z{U_EHroEcx_yxP1@H(=2}!_4)ot$H&4Ay!Q4Tc+(RWo#_9eE zBBib=Y8Cp^u!v8X?_bb zWy#qItzYM`DYKYAJaGe8(PNOSc&a0?!Y?$!ZP^#Y`dDUrdmJvjg>)vC{f?~M-S`%< zc3kNNo;f3zp_sX#yb{nr?_xa#1vY8N?*HkHK6nSZd(st>|tzgRMgX~xZZltCa;wJ2vz^w zl`t6nS__@$chAW{#;dF6Sx-@cpLXp5_u!Rdc_>dTs>Q#uEb_}CGF_%V}5VKml{_7Zol=A*u?)ojpIn~Qi zJdR7y|EXlj!-0=7WQap{fL>E+Sgqd#j31lO!vHlC63l5_!#Z&ZNn_yJb4KEAl$bnC=bdAG_4^& zcG&XmARu+$ZlB?fl?vhBuL@|6zD*e;@yPouI>xvayBi0LlhS?wK307#$JX~e&dFPL za{X|nsc$J%heh6FoH%!W*s?9Vk+Y{Gxq^;n;t{r@_IIo))+JWHWTb9cP32SOcBldG z$Dz<`b)u7%8%Cdq$=!`t;YGezo_;oXaxzdZNq;{`FJ@6(5tto|n46$6q@80Hg-yk2tnQGSktV?ZR&G72ze!EA3S1qX>2}$yKT%v#IspJh@_5mEbv5K5Iyj53}Ic6VcPa z%lYWIu8U{LKmD77Z8?3S{=ZQc^{hhLB}wi=Cx60j*pil1O7n@l)l#m<{)6I#jf5?4 z$s8Ci?z0~2DS)6~c;)(i_;BNf1<#3F8H>{TD8X3b4Y_vy{jyU!<(Ypk)0G(!s0-37yMImBn(+?+H zk`#64QYi+sv}>X!&LJOa$)~XJRuPSJ31969op}Zh;Xq?;ASs+T3jjKgjHsAk4anmD=5t&oWXx&DohT(iUOZ;8XAONbrrfV&R|59wFO;ut0 zd)!w4abA(=U5|B1zWjacl6D>MJT8^0ZFJ)xUtcYslK^u1uj1*juOC}Hi)n}zi|}hO zg;>(Kpe;5{Bv>qWs$G9$R#H0HARbamvK(>V5!+fU*xX5s{;u?4rY%or?qpF!U)XV} zWA^g`-OT8mp?=+!({95U6)Bk#E~Ru;gf|hFWd-g?ZGY@>GV81dIeHww;xzv_6kS4X z(a*;2;f|YAep61<_KeFp7sW<%)k5COdJ&wbSl^o!P|4Rjkv&(@?g=+l4G6gR)}C+M zhmJP?luuAy1y3BniAFf%ADfcYkw^*kK)%fu42_8C*?13u$GFvr8@7j+{g<9Ew4_J@@zmz@mjOZef&6LXNpg)0Zd**z z{{(#t>}))u#Cbz|V18M)$Vn1z%I$Gg+f)evhc1O%kh761x%V#<5lnw?b7epOm3Dyt0Xo&0xxCOwJMcLf=15sXz_`UzcwTzYpM1!FLokVs~&dG4@ z?bZOq$S>gJa*mM!kNx!LV$>s$`H&5-`(;o2C z7s6j+7}y{u`|r2WW-a+Aaf9AuY3)p)y6+wT|-kzQNRq*38-yG}DpNH$1-LT3*C zh#@tzv-fk-IB@>>P_(5+O6zyktZ^`Rg*ou>%}V4w*uM;p#@xqPV|Ou!Z=vSK;z#pU^1>^S0}C)mf*VKTR}9%Yofeb{ER8~r zV=HKBcZO(2)>gMaisRS26a;RkYQuYcwea0XKj&MW-Ifm|`Qz1hS<`9v1L9w31bT=E zE>ssXqkaTu^8iAbR{ChG;|>ELhB1&@%}f_DEENe$P&&tJX8N!QqjN9lnGS^$7*T)K zt4`{%C|=nQWZYOnRI>J|bdjrQ6XcYK%x5kUgr%wRZ{~bIOeIX0T(B*AQi9je)%H!ck4gs7k*Qv)8}FO3vd|3 zb6gwdrRb1Sz_&H$NfN<6dkn%H`G>o4>Wh4`)x$*xQZ<-Q`zjrpiyGqsES5e7en)g( z>&V0`El>)ISIr$@+{*OXLwvO1m1yy46(^?ul$9s1b{Q(BeD^pnx7%7}EhDh=n96T# z8#+FUJUueEKhUJqC#*!0;EErp^>^Gt*jXFL3Sshav3b6SzK8jGO0}~@DRtawS%n>fL&W&pC(+N+Y0pC1w0%pRaUsjSfdLRGW zQ`;W}iBA5u-C*&GXj~6$heoz(St5D}PxgPh@6ubn8&3vhyNRAt!?efr9{ewS9~PDF z?0(7iwAe+3!@Rbxk}~mjYUGLtz^MfJD7uM!PBJR5ysV~TfASbeZwsQh_GTc34{S_| z65JX}n0e_g`0v6<)_e`MNY_p3{uXX2<)@A~O{Y+0fOL@pM_^N{cmQO8f_`q$i6T?kW0pK*pvSC!R&s&Jl( zhxa=5lKe$p-$;JAj%BT0-nG}rgJSu9`b|(|fNhs^3T}bZGs5L{TWaADQcLiCP~B}} z=Yp}{ncBsFJ-a#SN<&7mS6&LvtF~CHp1?u9S;jK>UUl} z$^;h+B!1a{rp5f3c*zMNq7u)?)OS=W_ng)aMUUA`GW^oF+dqa8??~!^>?vnT7amzG zR~xOPIl4CLaEf$VmjK7t0VDg*hzTm~)-^XnxmbmvH+-@p!2T&1kU^5HwWqyZ+XzYE zdn&)b*Jk&+jQ&nFywWjPyXC+vaf{A6a?3wZBapvk#Lp!VW$`FjCu16Db+462+xawG zfU}s^{Xjn%@W!%6v}uZD)xVM;Ue|Y&i#oJT>CWnO^OEl}%HXp7`eG}`Hr5k(A~gyn znd7*6{@o=5JQA9r+a~JyVr)E@bH-#LZg?6}dYaLvN)Q{H$I0-{IS=WCP*Z!?{!2~-9 zMwcB`CS4E~lE)gjjwRaozaPl3&VULqe8Hl1Kaf}4>4o1Le~;6;k~T$mWOx)T+GcDw zrX%_o^$f{w5H`1~@8iC4u&1Mo+=4GwPL^q$K+zdB$L&@fTX~RSySfbfzFe$LJ8qLj zk0?o28KK&wdNHw&LIh45LqE-0r8MD102BU;TapNIa{K4%tjoE7Lh+CWxt+2(uWIuK zxc_oH-s4g=$9tiatQGgQ;EB@=d|E!&awlo%4S<9&6XvvG{1}-WcH<04bCozYrZT-a zXz+mQDPYMqY`u$1&-@=pXBkihvxMOflt$^6PHE{*>F(}skZwe}88 zzRUfIo&zU#ci!1~=b0?ME0o)vbJj8Ep^tFS3L2#GA7`q|kQq8E{VAIzPe~AzS{Z5V z9}Nr1V9!ebMb=o=bT#?CgkZFN8*lT~y@h zhJmip3IOf#P{bR_`N+OY?n!nhwtg#%u_#P3b2u>rg?LzwNf`rSTOATEJ>#pD_I+U}<9#qoWDH{d#_XZv}41t$N{2nzx5ZB=B zo8#Y2>=Bmp$EHgwx~;&xD8>mkuQEFuuF8`~jxBP0wLU!yjeD> zUT+nCDPs6M|9=Jp-1Fnhz0l0VblDSVa?;qpxlPNr+GFJ{CHpqefNDS`-VBFxUfixa zbtWeu({kb~htH0;jmDHgda_3kUO zMN!D)W7^nu_EeI#>;+zdIGZG_KS)sw=Dtp5qRiIJ9tZzHDaw|p3Ot7|h@yNst!3(1 zBs5U?FFrKl&$~*v#)E3RI0LGq0pfRUTD9;OgZ~NPp5`eg&V4Ww1r9F7_q!_QM(r&4 zpbR)a%=E2z`frN3fkAvMT6cs|%)x~d+1lpdU5L1HD&&3JTY!@2Nk%!{_2yIobt0KL zXPoT2>1>O)fiGzdX1^$qdgsn^NY-YyDM%C5b@@^;8Q|S5+K5P%uS|#WQ84baUrN0F zwyCbz9$^Y55QGJ-`EmBWU+&*AP+usy65=>4t=at(A!ZnL#K|tY_7(uocBmcb|I4o= z`Ib6Dgvu-dT}s)yi528Ooj4f6EUNb{3DiGkC2$;GalPRgS}<6g;or4k z3Ib$ma|VMrPya-~UAhzXab2tS?E{@R_<`(!gp`2QvMb0QluUE{Y^LSLo|mSu<@$*+ zrn@l~@_12f`S&fWk>K6oZi_$ICm&>(*^Ip1AEpWF<>n_xX&wVpDIyKh!0NcLfQXm5 zo4jaCMA@9?u|^vpR=;%T5xK4f$LfL?K?TV2!ImA9^bmDb`X|4dWPkf52(j(^!p^+Q7;rd{)R`rx@dTq+ z(DQ&_(?~G`&-5)FQv&iMm#e8N)=$klkGo_P&Zah)ka%$vg;+6+-!1U%d$gVr734r` z(uaocn67H=O9K(vy{&589o~0y&|0fX0z8+KNzu2*Oy4-$$AHwXp1WNsxWIMPn-2uC z%Vz7|TN%wg9SW>qRbj7vfZ&}I0>y=wAO_H|pI)jB6|_yqz#)AT5}YWDZ~m3Ik}s2& zCM5mj{TpcCZH-CjvzI3m7Ofyi$er_jl!e`+Wf)*B=uRKP%&OL`EBy=)N`?1nR_A#l z&S4absJ30u4>>>!#)_UBcU=Zt|Nh25agwj8L^KCm`!6a$ap!k z|MA)tN!C=G;F0`o6B&}aA-~~LCq*O`m@4dP+~^FgvyOHHF8%0Vr@8vQY|6c^5r{zx zOq$c^q;w9S`3okh3$U5u%%B-9S9nHr^t&a*mbG^*nVi_{K_Y`S))N#VU+pXN&mJtlt0xXBG%vfpEI}ly z?%&i%VV`E$V%kwai^;FV!iFOY;hGW@5T;z~+V7wb7AYHy!4-6NvChiRnbSk(jP?!? zEk@$)8qxt1$r&Db`TZzts*sH(h0NHyF>&gsqJh8hiacgGwP6gsV>Ol%6Q1xPR9n$= zJw`~$A?#f@LE-M4CnG16*`1MKgFe9?EstODc(O5AUVhlAgE9Mc1*2is#%X!k*a5du z`;Av-i%1k(FCyTh-flM=_QV5Gmpqlr`)t!AQgY86@P%bdZvTigj=M^z0f{P9s9C?l z5dL4IC7466YhWE?+(pj35*0KR2Vc70=TwZ`ZR4>$L1KEER4yX=nSXnaTaBQ_MIl9U z{_%nGX7do=_g`Q(5eyG69-8y)>M{UH&CVd_d_UlCXM!w`1`dY@2>N8K^wO4x6t$6l?f~ z{GNUYwJecc4W=xu^8wKKjMXz2!)%*gofNQ=`JXO^o8J2KKQg%k&rS5dbEz`#y6t|T zHW&D(KX^E*ND6Hm35aOpx(1rqCi-XT2oU>tLE5gboKS%bMmoG}B}|gq<}DKXbt--? zs3)tt*G2&z(HWy0?lCbXL*tf>x8t^`zrSgh|G`)n8(tWzTDGy0)MiTm|IZq;ETTE) zP}RiWee10f@ALSTsF&d+HSx|fAe+%Cd*JJ09g^dvHh*r+DgF-Z%2};X z7N{g~3+Cggw1@#yKsLp^m2G7Rsi+h#@J;X>)ts4oTOJO>iV`zG^s<*xt^5Us1nLV# zX4E!6DVk3JIyc8r%pJ_4fkz<=!b7**iiK_p&6W?vDAksu=Z>=s zE8c4AaP^@(C;oe zU$w2N#viXDrm|*-Yi#3TuUTKFpuJCRWjgS*q&C51W*|hr8LySEu5pl(TQ>TL0)JkU z?pgGD#Kd6A-$wE3hFy(k%|YdXPJG>}u!k4dtEP_Cp-A+O1E_!4g+ECH%qs;0dtWXx0i);6*Mk-ba4A7Qp{*P$r3 z^9tk5EW#7~lJBiSYQ6zSdi|gfX#SzF|G)P3)7r=-)kj7%NNd+DJ(=zJGmAvqNuJ%jOylV6aqT=`^*Q z@@)~0G27mc`#d`kv+ZrYBO9QP%LA-^YRji56Z(j>?lf z_w)|)1z7VGd5B20@1}6;lYlY1rr)QX&YKLyVg^1CT!_WtaUDlB#DFO|>K;5hbwbt& zUT;DFKNXzww24@=PFs-RiGQo*gDym%E-!r3sbu)d1S}Y&5>elPze>cQC|OTbHaG_e zv@OQFeR44Ph36zNo)A5V$Wa@9l%*TxIsMNTFq#fCunbLcATWOcxdXZX8c@(y%qT&-Do zHxU(sV5UR~vET|j&!Nl5DqpcX74?&`S3WH}NNf1b_Lvw$l$rnHSW^9uwOn?*C&ZTN z4)M4UsY2B%Mn~Yv`5^~yH5+TzEx0fYRK^+nAN25FaD&b=UViD>_-}z(y~!kBo-uI) ziKAG4ASd4?^rrJ%Iwe9L(s#%gB}M-85-k+x$cd3liukuSP@iv~1xK~>B}zWcvnn!u zwnWAYT+gM+%3%)Lw4ockelrOe467_h*4L88+$cLiSc*2v=m`cQa7l9WkM3@ZT)E~f zngMN=CMwMW?0_&U6s-=BE{fgXKDiGyxNO1oU=rzWvlF+^Au3kF8lg=wZJK>KH^bGZ z`iI_QrGnL91Fi!t{%#{adLLw%HuC_jbliH9_<~Vmu7_^wuPL>Wd2ZeO{PE!n8aBm{ z2xN;cehmZWN%nuKHpXx|1U7V&u#YLC0YYsIpRNvCfAA>MfL=#7D;d|AlPBo^`EGYo{x-QaN!4+=U4S6%a#@VE}G#!9szzbS6LbHBkVByVnX$ z1-SDi{|6}IGL!VyZ)>N|Qv0CIR9^mL->U6|TbyNm$&wwAatRTwD|X*##Fi z%(YVtkP(EBtowc#D+gv|^>f2Jm?*~P{5xH?kDK4T_YTS?s;d$bowQ>pU*2`K^^-?S z4x`ytYMf&z6WsN{W($0NFWRK_GcPrgd6NLx72-wRs1Nr0l5R>;#;%!%;kPFd;VM15 zm{1HUU+(xRwLyIM9&D75XpTX^Jwrrlc=0Fq zwP$z`P;a2(ycV5ayAI5~z(gT|#-OO-%gLJ^UFx^wD*GA5?r(q=vdU=P?m>f~o(**C znJThrSN?7LNr?*CK~D6p2yq3kt5~~8p~run>&#s_jDqhg;AYJ}ELtHcGLaxcX_K_C zw|>2H2BRkTTg@$=OJizA_Q55gklZP`%I8r@AcBzM-}zqrS&Op{XBK=BB(7j_8Dm~7 zl%7@-y(^s3V&*3=e7dnIi_7)nKLa{G=cyCHd1dGmg|naUgNT()@s<_6T9LgjIAnfN zKT9`xvz6Uo>VgrNaTP3^Oz7q_Q(Zz=ImmtFQFt$?_pH}fnCqGJafADxr>XYa-e==| z??Mn>*WUQ8zd0|5Wwn5Bta)G2>RWHc_ttP&|A%pD=d$K>UakRg1e4%WwF6xATC^2L z46plo$vmB7z3k7-l@@- z(a@qp%BiaejPcCHpSxq9J`yEnG6q3DF;BT3^jk2M-QF9l03581l}$Dkz=}Da7zO#n zgRAR+3g$SCj6&aTb&q%O_hD+TJjo9^^7Y8_C@^~I5oz^l4v32Lud_BcIDPdA<4*nV z`q61qR*u6yT-H&QJG z{zM#ncP8)Lc~|>X8Oz|3w3nc`l}4u{3iy~CW68J4UiN-g0*o)d`-b~uFTa{9C79rs zwM8h|c#LqxN5ZBA=EWKJjjYb^`w+oH;fsNJZl#8&P$sI1#e9+uvWCI4{Bq$ z4PXe?KvWNTMST z(kfxWI(_E>sLn%Fh52dHV$Y9VKvb{z_@kd-f|7(dWIdmM;|pyf$cd->12`Q%MF01i zpddC@b=lnLZ@mnI4Ua=;TQBO;I>Vl> z3}HNgQh?wQITVzoARyz#8=SBk%1700fEKxwAA&>zUKLY#`|d#V7`UpJJfjQN)7&e& zlngk=FKryiAX`%gmOtaRiuJVxodZbgsfx~2mkXuqY2I&KQ&GS{*7up6@MA{^U{KRZiufWKVKpJuN|kZCxL!pWk$kvalHAW&gA( zO=9&O{XYDXuNWkrfpd+d!qih2l^;QoaPBM7(c@ zCvb40sQWKoXrp_sep`?j`=8o(s-%OAONGwGvxyMLT-JTtoQbEg!p4l8hftl-ny0f6Gstw9=FL#2_zQ|F18vGP%8L!s2iPaG zl;nmtNx)zt$u7`3Opb1LGzEd-e&%4waOKI=?5PKig$nIb>o0+=SU<2?zy;hD+i|Fa z+~Onmf8<&L+2aV}37j5t`h-9_Ybprl4J#(9F*St&YRj+%owx8)+zyQIS1=bW;mE@tHuIPAiuJ>WUz!Fj+Q7Vrn0YPxng3V!zx=p0cP%LlhE`>=>yda zN#f4+?KBI+*aaF$ho5!^hb6#4W6pm7UIxi4^^=SKJYJ&33=PJ%euS;mCH^_XD;Yk)|0E_=UX)pwy?&&^GjV;XnKo0HPYH(8NM? ztI}Q87!rix#Sbcbhj!Q`mD>7PV1wg|jNTU*hIa8Cfs@;fP$*BI_PhLAE1%~(F~?uv zKIHEx=eehPDN!DtJ{8&0`oT4k+b~~8&VO+j3&L|BJbfq6CAYx>!GEPsT0{#XdY1|? zN4xCg_BQPUfV?6=|7|pV`1^lCpXwL$cs;{&A>Tv@%Y_WS^WH8YV%H!lEgf}S;g^U! zE3hK67{1erD5NlM0cDbpfr&Oocz;gQ4o)T!=jy?m_vZFWAnMiTg)g0&TSCo$0ar2~ zmZU;G9qzv?cEYB11*6Uw{U6rObqbQlT?7GK`N@=khFt98C63gKgts!;=)s^!AE9G?d0CwZs1_fsf3L8n6OVWE($8??lvc- zXfO<1?UUY+iUjHf*qDa*-DbcXCQ?=spE5$e&}}B!J*Ry)F}M|8jp64Ls!d}9|IMU^^2#E!1K z`-KYd<+?#a+QrN5f|O-8ISEdx3_-tBEO)Q%ma7`N32s_S>rQ%PQ_$-7i zYW4zchQ@iE8R%wP3Kd2lMj3Cahzj?-)AomR=t&`AVEE!+tL&Sj!4 zq7PI!&};d@7nw*zd93iy=NIai`|jBK>THX}q87zZKHTsMq=-gR!q0j$e1c*IJF~;{ z;CMOMeHq*~OCk%c%#Kv@Ghig};T=={JR9{7%Alhp`w}B+Rife48k+X6DUliDKYTWP zg?T(HeoUrL#?BcU+2N#L@X2#uIzi>Bo5#4j_2RlV)=Pn#zkgBeDxIXggm(hmU$G%R zOvYQW%OBtxr1{mZFD7$TjhCxQ3mk`#XACk-{A`X2Y8r#xL@xX=$H!0_r!HBqw@wrG8@^T~5>#m@0!1A&gP`iyF~?7)1<-fAV&1!Ny=Qk0w`T z#&R0zq5D9~prKLsq;Af%9YjF~tzYhL9!V_Tx1>!5847p)8KR=cslo1O26l zP!jc6n`A+0Bovbf_fis^f0enSekUxMIUxGtz=R2X`DH^heR`H3(RoC<@Y$^R!z?>r z%ukT97Ya;0>YIFi;6|hedj@aWdw47Hu_(DS(10or3BdJG(t~mEQP`l9gJfxsZvyA- zjBq*UK#AvZ(w8t+581mPDD@aoZo4U6Y)#$-21LB=Ax2rOQ(24e1tCH&2_vYTx>_@L zqPprBLdE}2pX+5$I)2V&D?~jHycLUz*YjRYNO-1Xi;?gsuTPGH$!-{)4LqM%5%Hp> zGomMu`-q&&(AJXocR-e+{ll!#MQt&eF98|)%JmPDdsC4c<$-Vp-9TAG^ajeyAp`t< z!g<}UbH)nyjS`o5c`0cUmHVcr0Yvs&@hg;`fS{xcE#_GVA{_8lik>OD)0&9`1X>tBcK))`TdO zXp{!U&a6^aNZi1TzRxUt2p_)@&b?rybpq$xX|&rR;l~|@urNrO*JaXuHi6@fCz06) z1Yrmr&A$B75ThdM@#xR@=f4;LrDwd%C$z-3A|@6FN520s64BCcx_8BG{$sdh915g^>ipsQK9e<`TP1I>&3`71EiM%Vj@=Cn)5~vWJ zb!@wKvnE6mA{hyGqt8*XgI)?>ry{n2GMV`wD))}Bcztrl`B2yxaEo#(qG|qPRE?m) zv3AY2JFs*+4a7ZBK_T|!LZ$Sy!33-yEVx;ZG~gwRjZ-Tf%zWyTx2RI}DQLXVaGA!D zoMPQ3q&D3fl%w*#`l>#UJ}WTx2UbfbAcfDf`*6hWbq>U>xz+)%IrmBdRq@NNcCAce zQdubCJhf|JIf0=%FYy-ZevDhXleYs=&F`v6A#6CmE`kyL*NZ0yLc#lfIl-_WH#c<- z6Rius`Mx^A`e%`$eEu*&b=z}^otH46`X~6LzB)Skeii>O-=lH2-o6jyNw38GLPp*fK9}kcoE#Ce4&^UnfcxJHQ z-s!q67CFmYoeMcQX1XeA5_`(0f?cqdIo+2(GSSxA&M${y8|)~H(`|bg^m5HKR%14A zm!whu$XB|yzmdh?A55WL!K;uRUlVYcs!k+*d2`~8p+139aJsR7$##=k7T+Gev?n8m zDq67nD}AdL_EEDB|1u!%&yQ7-t{a;<)V*(}kK^ieUFy90$unA(WC2v3k(`HUe+$k; zR@+q^g?erMY`m$>pY~`6tO)sR9^DMIn&#a8*sz?#>zI;Q!>`=&*#%r!S*6h!PTxYa z(p3g)7vZDSeW)rQFx8COK!hz$be=W#2U(NU?^hn(xG2(?l!G*gCkE33g-Cee_bY}k((Fkb2vTpdPelcetIK6# z*|)gL3nAgpwP^$X(T)pYIhUz|+a!ni!XCN(27-IRdkrkE!Q*X?217QQzw*eZh0rD~ z4AK(jxtIpkVfo&J$E;qsasV|U`IqE3+S*L}WG~$zIcR7ZiM}As9=EH;umNSeSZCmD zoL!1bFDIBTCyn|#NX`7XLXGXx9AK0?%}(ECtSEIxR=hxsmu0Q%F>|e}2 z!nE$W_J%r_QXiZb3z5nK1@Eudt z;7HP}4|hH{_?|==&^3kiVzF@2&CQRYwy4IlgwIdaov65>VR9S}H$Nuj)vBP5?T@&; zA~ft_Vh+o6AMO>@IGO{;B`o!!Isv|$38XF3D;qA)XZeVOT*?EZan z;WPydtjcsmMkE)ZYI(qseN-4JyK=dKmXnbXAl6O#=tlV42A|NNZ?6#HTDhcDuKddf z06Vrj`23k=dIe8s3sUk{qfvR=sp2DOCD)QB$E>Z-zsAOs=edf4I7Mt9!&>o46HJu# z*f9QaidpyGDcou$?voiGdkn=g4wAVV!CW7I4TYj z3Gq`w%<;!P*(Lz|+Eb@-o7U~IkUx>2gOE#2Z}H7z@vJw`d+#%^pB8TZz#`$!&D>I| zry7F*;6z99)1?RavF_(cJxlg$AV;p2mpX@4Ot@*kyD;Iu@DevIqRlJ&l^CHq__vWJt5ZYY zhu-krr=oXUwu~x0@h5Mjv37o-*$V=3^9+f5%vVZ`4aV>g@OZy^zUCc3Zfu7Dwj z@vz;i+UJvqGl^)sZ+UFaATXR5qo!}dRpB^2J5+mOBUDUJR#0TW8?G}4gA^6@_wwx| zPp6mYCP%K?lCqpW=wLDbxH^#b_=3ZWj#9c8YsOja@lbr%HyvE->M<~3hd261wD&}?EtOHfr0okEIZdih+}Q7f)of&n&HOiNwXvUWw2SC8#S zG>b#O6na71MpeOSM-xxLRtqdu63%bGT|>RWhgl}HP=ye!zY|WRJe~{x?b-_r=o%Td zmbd2c-zpSZqK4d_lYgvjE{&yPnTkdz(I7n%tPb&)_czXfQ~zQ+C%RSrh5$siFaB@OvT%ae9VM6 zZXV=4)GDUZ;fcMNr? zt!VGf=e>iU6X|VRJdI<*RMdO7XPclALTXw7v2*GdCsn9j55bv7$8rmJ^rbYy&@Cq4 zPUj{D0E*pl5#v;$Wv&*&0y>k>Rc#KveeZE;ZYG~k?F+Fjm4~Fju{LM68~w&>%qJxN z>Fd_SlO46mPe`X9j?i=) zhBLTr$LOOkvmI#Q%(Fu~tiwYyI#Sak8Z8P_`y(D-DWv%M513zFm#%zMouOG3kwHt>w_ zHRdLK&r<2i-!D%)8J)N3hQD5o>^}~p+~-uS&4_O}PQ?YF*X&?B|L`&$EXqq%1NI9DTaY2TREZ0b z_brU3*brld+0v0;x&7OV3I<&lK8vy@PgoRC*}Ut{rn}71#UW6{IX30u@xctLm;O?- z*Zh2?yrb9~hGBlJd^{JiVgS}{A<i@DqBXbTW$eED}Coo3e^E0{>1 z^y5gPL^gksIE|4iw{joCE11KC z#d-;J?5NInK0%>3JgmRV6ODQ-X9Eg_FwbQZoli$DAcIcMQzl}gTr~yj#aVfs_qQ;7 zZi)fE+^mr)`EF$@M=r+{*&p9I-eal9pN4ucxlNxpy^>fLpJ~$=@~Y><26YU(V#Hdv zFY&|zM4fVbIa?fYNBE2mp(L-=P(=guR5;%UvuufAx#a=E1qC?E$;p7!k_ly0dt0Mp?Tov7gvc8xxi;QA89lGq47 z(u`}A!ppsBC&oIjcM@UY7s4|s3)!B=wor+=+9*}G6ui|mUocCv zJ#>T9)D{hnz1U&N=9KonUkL{!&Ay9h3N$E_L6w+@X{CZEus(P}65dMONV~^_9h6;9V14pRDymt_B;sp5*OWM7nw}~Qj z+S(gKrxi%f!61Xcz`>A3i_0gQ$b$ppy3Pi+Nnna>1TaIG4;pUUt|>Tckj>DMiadG`~$(VLRntCRH-9m7(-(( z62D#ZE}-^XU`S32nuSOIbjRSjdDZQS(&-)Z&T+66_)TaSC_OsshRvua?|Q+|iqI~8 ziss!V3rpkxPk6N_W(sO;ULM zy7@x`oT_2b@mQor`sxP&SO{If?|33HAHHvy65!ODQ5HJq)RgYrtM zuAG<&9k;U$y>7z%3*Z~3bB-e|c(l;0cyqSp=%W-Wyy)Og@LC*pLGc!asEu&M`8MCB znDY?Ihm`hd(2qY0I1Y2ZxdF`&+7b!88nk+S$RuiJ-oc;i>Z75qENh001M~F(?fB+P z{>TGu4R=@0cx;S_Xu(V1?=vi2K%}O~nsYe5WDIcxGu5->JuU5^TX}r5QavRr6sDG- zPdk^2MCqjhj*0iBJ}I-SM1-;B+fR z61J2Fd)4Q+eLSv1pGL&qP594nZO z!_uhF#D2M+{E=#BQ;1})^@0pWf5{9?GQyy){@llubw%zF)syhGY*cS@;CGB1iZR6D zWUZudF~rFYxasj9x9b&Kk?Layg|jkN_W*%IU5D5lbor3nfAL7A12^+ne+SK2|J~NL z3CC!lsos824*XK~l(cZs=x9aQggJX2nD^z28O+wY$P^N{XRCoo6ks_r+K``3Kirr& zNkjurg(|L=MN5=Eo>538C{~>%@WHpv>!Rx`h$kuZ6YSftq=tfFvHdG8x8vl)Y;S&R zqRZ%3{Z_9%DjeY2*oD=V359rrdr#{Q9Jvgptd85T0s|@Qj2%ydoN_x1^5j8Wx;D?$ zobGSnuS0|yVz${L6Z(0G5N2ODNKY?>S8Uw8gcT&jPaLkb#rW;O=#Bq0KHU0u^xMEr z*C!8!{^a<<6GWIUgO)dn8Bx~X{TSh!4S-P=hB#S>_J1dAp7Pdx(jkZ;a#BEK@%N20 zft9uwevz&=1;w02vbwJ6leY7i0*Cns%ik_{jqBN@FX*Yzq-W9ZNx8gSSe16~^PxcP zjLcf@3x9^1J#+nbxs?y{EW9St70MicY=K-31by` z;>P95GZif^uPFfc*|g<9HCcTwG%{4e4YcZZw7jX;yEGr(jO>)=Y__@nS0Bdj#OBfY zj?`C2h-Ykw65m`(wbTw5`~1gx+`fJaFYh8b5NfuxR(9u&ioH~{NQrbO7xf;JL~kk z)l||b{*f5j`cV+(d$d?WGjd{C4Iwfj6uJ!JhE4fKHRmJ5-xh7x94OFD%bu~_gh!WE z<~wjQh{iKQfPkH+z$HlG3vk#DnbW*t0bgQ;Of#iJwC(<>@@za@<(2mjdetUn$Qxb{ z4Z2|*)L+b0MS&?4mlee4>+|+-GU}i>R%g5BcGPgh4X|{UaGnbB#)F0z0Yaaowb$A& zC=qx8WNZiSPrDB+J|wKg_Qzka?x}a{$Ps|%D3vaikhrK8$WECRqehW+pYUa9zvc~V zj@_?&j(sw6i9prO-M`!ty_0|l6HkFWX#@4R>^gzPdj7PQioqcUr6ndnT+uemtF!V= zOOJkE`vZWcDlBJt8|Fe9{8pnc!x!LM6ITg zKK6mK>0v*1zU7$BLtZYZXM5d!O>X}A)ga4~511L)I6~Vv*k_0*0h~`%Boskq5pG-U ztv_~rRXx@PpVs~t=-*&H6TRm6+Kda<`qfTg&fu2SZs31LiSbwP)cx{Ft{f}xEH^Z# zE)}dGi-o(xQ1umKx_48j8`!JjuRYl6KAg zojcSghq0e7=i zB%Vowe1Uy{#&@))N>c7F7eNfPo*&_!kD~6f0mn&m9O7sg)2pBEa3t0up{CK_+U7S>9O z7C^=HIe%(MV=|QlrSHvU1{5R||Rjs21#8e)A!i^I$%S3)HNd|9LZPZ)*k zqsKG_V8^CeuSxUbkkv+NxheE-e%@O0-Lut(K-)LaJt|{~YoZDKBA$)d%fJ;SXlY1# zXB$&cJEK3JxE(<6Hfw%7*js0h@DaTUl)XKU$P@`z8Yv9vf#=9{GqMvMi&7X6*s)^` z3nFc-GH6Jg!qtpAeJQ-+p#&L#8+n`-{)=j~1AgyUYGM&TDa60nc?ByKc7(xIL|G&m zbW$e^;~x!#0z@E=v-Q|A>&rdv%7N26tpQhw>5BE=AJ7`E{0Td7q{tH{B+-Ea`2Flx zAAH}(fW9?oG1B~lR^b@I3uWR}@1_IL2kyhP+QQNPK|UMAXYX~b3moSnF~!4yGc#XX{%H&X zxcBR9>@4cH&pM45=)JG#f*u^{!bwV8h%7!F&q1`?=aM)UdhB%KU8VRo%AghNw~A9Y zzC&EE7Xkm@6y9$Rr{v|{8&#fe22@4NT6@%|B#lV^dj#kP!|tE<_)AcixEWDRz|*eX z2BjP{=`1$h8oyp_(aM*synFcmVg+^mRGB{5w=!qNHz?y3b_~C_e~^$^tE~$L6v&4Z zUslC98~SjpfLc-Mtx`w6`q)D*{xQZR+3VZY5S#j(GUrQ|^Du(m6#bVsg3T_xH%trF%(WQ{L2ni=ai92%Lz2m(Xe2-+s!zgm8L z&yu%BEbJ&*-B=rO^(1M(W4fi6J@U;=r|QvNUNl4~gI`m^(KSiESDfj2=q|X*j@2?%qOrlah4*Kbgq7z zO)-L^e9Qd66DejH-z^G++)iNje@Me(I@0+=3asv;B7CXBmz&F_tW~)!MIn@%X?H0s zZgLQG)4&et1Wi83f@k6M^-@o{J26>JjK`~q5T9BTe3#p5jQ-+E{T7|6xcb8~Tb2BM zXKBZ!J_^5vzv|JvCItc6qwENbBsBUI2aL)NIvA0tvJn2bx9Pj%cW_9-jKmsEPeW3M9T0*Rjuk>q9e zBHe%yQIbKJB|nD<&gJdoPI?~LaWwQzSOZ2kBUIMXgL9>ekt75viaO2YF#{8EKD!!? z5g`A}9Ivd5&5I9`L4#Gqm}2pq`D@-uB{+?D)D$EV&c1#qg@$Fs4721eaoua8Ii4{eli%>kzxX?)PogrYt8*K@A7$FuYP}^(b!{Ql^mK zaU7-#h2;~O&hBm_nZLu-V9Kqvi4orQSuJ!5mNi3s?(&465J4LMQh)nWpYF=o7W#WkzlOHIN4_w6ofFewlAIQ}G}_VhnnTjou}s-x{WV(MI@bq;W|cGjs7`vP!IdqX zRrtxC2{v4__lJrd3d#`?CS^6(vxr=geT)eWnK_Wt(G1?=RN(EX2%&$o2LkJJ1 zA7u^rp2Yo)B)3;<@^=8)J&b~hmrXjEOCy~FSk92;sv@26x$PDMPK^AKE5C=gQRBm@jB=}dYhsN=mWfaV{v!QGs^ z`w5-0fgWg7!blq*Rmdree!T257G;C z7_yDOQH6uwfv}s}2uOVL^+a#Y2HO=lC2~;h$K?HNjM5p~y;svW+Wj`@eoz&x(I+r* zN_AQggN7Pa!(*5#4OLw;E0cLsOAoY84ti|;M@;xMH3Ij9$yl#;DF1T@f4ATd>r#(| zfEC0XnJ#4KByS0oa64aI(bs2=fQ?BnBfRc^#t8lSXiLd^P%NykO2PbamtE4OrnBd_ zVFg~y{XodK_psmd#YWmSjttsC{FdYRuz`%g_5yWAG}wRsq;#&dma4!87!bsp&4nF7 z2?Y(g0-*DAM(gr%5bJ2p8{APQ)OIl#A=?3%B!AX_yavOR< zpB+>BCRg%?LWQm+YBVK9{IdUxUS?LiO=gwO0N{9!fcVP4SY!+lz`F4ej22ikaLVsT zWh)@kmO{Fnn{||&?oWSG3hjF^{8l( z;sH$kK|*X_PHi#EVeTOT5B@QpN9fVu+U9vrt>z||A-Ud|CGLmu$y9Y3h z;P0+X{iOD|q2aoH0#iC@7lJQw>Jynzo&i-Tig!KNdJVYNEtZ)#_7X&mF8XSF2%V4`^fqG=}|~?`5;Ju&!v?4ZV?E3 z0N|aNwnmdna2a|=>epBXA&|a(hwJBkv+PF0+n)Uwvd}{Ka?xjz1xJdPz6fYC>yv;= z(J)IE{cxJ`H(x)<3?$D-GDt-)V z4&{bjcf`HqxqfCi8yB6QMdvQ@xGj55K864XFshq(k}!h^~PaU-t1<^94q29ht^VvORfw%{ zs=RitKyFVP)GA1+_!^6-y;(EO2mE6>Uu{_?6b^0i7pbY|dh{^YI1gQWL*5Zxy_SDY zSavaukA*U;^SFEgI7{k%K9n`F#TRFMECw@f(bQzNYz}7}_y^NKwY_bkY$zUD5~DQ= z!8tF{am!`o#w7);9bTJR@6l3iQ}OqYFd>z7_iltHtS;`gYhCBe>DP`+HZk7NA91yf2J|u6 zxpWl^cO}_qrzr7FmpJ9Q3_F*gz|30kU#$+VaT>9fSHY6k*9{St3r`~+NL`QS* z0|8h9i}Sq{obDhORiOxmuhd~ThGu4Bp8xG8zXAhMj{ zlzyagRG~}Q!%gz>5I0Swkxjv@2iZlG2jDHau%l8tsfat$Vn#MnDljiBZ#f}`djd7A zY*7leZ+P<+lH zU=>Cs#7+xmUx0&%qSRPEd=0>;_pQ_L=$TthWnc!IV6{QCCv9>2KLO=uvOfptjccv) zt_mUt%EoM_`y5C-#$UD;0NM`iK^QdhSCPU%vNE&AQHPo0;#fG4rjq~gi=XlXZhspB50d+Up_e&p!&0qSL7r?+8x1dBrt05O2 z1)fw;1)gQ#Ca0N&h68M=L?5`Rb-i4j+KA%-GmCFg^kT5n4z7Ke9q^RVkB!MMHuNa? z9Wcslkl}!mG@to8>&eRq-=P<$ZT6FVB+S>%!!>x9+pzEy9TsVDNSYq`Xqxfk4~+aV z|K<$c5-FKfceVJ(2dN1Iwjhv%{r8co4*w7%D(fFlTvi0$N#ttoJm1=I36QnjzepZW zv`4mGQmW7~s943MEV^`ir`k$PT$d4e=S*d^4b;VvgB@5(N7cHA`vGtWH zvbH`)U61Y!h;$ZGQvjW7yRNaX#qL^UiXn$I^PrB=-eVA>6A#2_wtso}^~m6rF#YV` zZg+k79J8axS1AvomOrsmychkebQ<^18TUA9B>v0M({%S|p%XvUkP6Mb2Qo5tZQdLA zgxh3YNTowt~oBKs}K8+UiecMHceq35@dU~fh3MY^t`!iSeXf)P~f2b%0@?kJS zooSE{pOqZs5_$uM0fw{*7YSfqzf)+&3a6H+4g|bgNSgE;d)rb>bI{g_Q`6jBh`FcO z+%aL$A=+x<9oI$f5A26255O-36~QuELnx&1j3Ky<$(JuY+AA^KXV{geg#G1pVt9Me zCGpk5mY-`-S%L;{>>xFlPJeQk^*TE76GB=fC;|BH=vsy_Li-Dj5vEm$hu50t52D2w zHAAy-GL`OFd(!^)mZTrn!lW`H{KxCj`%CS1r@PYafWrZlVwkk21Zp`;8My7+!SZ@o{Ft`2)*Yf8FA5&2-Kl1N_ZdwmR^ z%(3;z>Fc?nMp4xUhctlw^b)t%!7utl2wXz8XP8Jumo{&-LtRJ|m5B-CrA9amC@k}b zlBk?V>e9aSCKaU4TOnVM8>iJag4w^goN(^K7-=X=dw#0U-|(zZ5I2fML-}8K6Meif zUgM1osH2oC3erB4JZz88mu2b(DKNjUX=L8hyhVGi86lXqwpZUT?H~p4IZQaQq7J?I z4E*PUR|c2gY;xu_N!tq)s#duQUEg0!DyaG$WbFN19TcpIaI zHJj3#7s^VNGSFlm-}61xG361^eS9h*1SyEU-TS<)|r zW|mxe7~w2NL}C%-xa_tGd@*(SN98d4M0RTm2l8jM50x3O`I5ElCwWQYP*%OXDOc_* zEr5Et>w=Sr6;I&dg3kDU4d$jLy~HB)9J>8^!<&*N=8C=gHSKB6_zY6@K~8>DRHH=M zh-02oYniTE-MMutlD8Kai0Kn}4Kj+Z2cWV0zgdi=I;;0||D*s`V3wK(!p7BxKRjLg zWtf{xeH&K>s0`8xH8kSlm}A(#QXXCF+W996dCpajv4h?7{r%bKET8e7wAmvnAXwqn zySytqEW_^@MhNx!VovTYAX)zbq~|q~nZgqY;eG^tsBw^-o(A4-16@I=-Vmn1i2&<@63zc(V@b;{ZA7pN%L**t z_Np5wTPcWGDn^Q}<8}#(sVM*0)t{YX{Gz68kc7$YpyW*R*BkTpPu^6UX0-4c+rpxC zz|e;1L4pIy-k%i@?spqdy|E%bG&s=-o*&9533)+yRgmwby0WW_UQy>Ei1Z%-ZNAj4Uv5yaim zlw+GNckSbU?hq=eHIAQRen_~W6-xT3j9WtE)p1*t%teEAL+VMd&Y>)2p=%bPws_IS zxwcQzwkrr=hOmxZrdt*W0lq$~z{udlDPT`0edZplq1*P^V#W8*8+^~T)b^>Q6i7nj znd68RvlOOnpdeYC1fCTgap+@<}Yvj5@t6Lu|8XEQQjSy zKyYbHTnxZx>fkabwBbKc9+l)E6V#AkbuO(F1SCE$f|v_-vxMq?HQ8MsKv zaxr4>e5Yzvp9&&uCUcFpT@=yy!&i1e`NlT|4!}ILO>(+p0PvS zZ~YqCzjz|p+g+FeQs<~8VfY>#upW?KjeX{8umAiT{x$W6qVy1fpV$o@CBA`TQc(F2 z`Ndnc*=}rf18U^lCYg+uS?)Ar@U%-mVA>^5#8tAH9)kptQ2RUSl-M!)wqrH(8NEFB zLS&nS#CRki3fuX(o2e$_WGj?K?5l7(8G^-}AM!d~?(ZwoZ8^$r;CnIpEstz`#Qe zmRGg-P>@-BE${2p0l+rrw~f3oC1B0~68fFc1^qaFm12neYxuIA`|&a<3PDtu#IBuYctmrS(3WevWXA|4F6-pk z$Nd=3f=gJL`Uivyfr%C~=du|w2d#kT(~8r9C9C!(4`=P(mv$S0&y-henfR@yzd5Jc z(@Mx6ye6Z~<}f3)bCwdACW=l$7C@cAT`;8VJ*fVcHK2~~&+71xv8Je>uV0xXNv zo`bjhK##=J^iHd#2$r7$OndUZ=!EI*PW++{2e4rG_VCT%NUPU$!9wJa>Y?jqNR@u+g zEtxYn3SQJOyZq3Gu{P-h>M`40t5e;1%vN@dsY#}Vx;wJ!V7S!%*Yj?C9ax@$(e~SG zr|j!tH7FNV^ofNaK?{$b0IYz@(#sRuT>6o*l@s5`T9Re1lBviI9=>)^4){LX)api> za|r%Aa5Su!oaN}IX7jWo0tplzeg%QMOTa0rCPViB<-@k(_tWf|=PvMJEWAOxS!d&FZ~WuOW7PK@xG+Sy;2l`J&!G^I6tTebCqblo^P@{u3vEXlKuY(Xwm+>=L{u zt>;{1+YY>83um>YMF=D zyET;BS*&LOuk(n5=U{&VXAkg51Gl0)jZdWignd1 zOnqaR4M@suF6f`CR>iDamC)2(6@&ILa*sGAdugR+fYYMvEe8JXR{PNa>%ou*M7eT0 zhTD#D;FKE)cF{|@vdfjWtN9Y!<&p|8I8X}~^KabJX<-?(lIJwcy(!Ll`x$IKgwpbx zD#`j>!1D4c)te@jS6C3_kGzPhTf$kN7g|85EbFK^xb+!x_nvEJ5S8+?SIBb?Zt|Sb>X}e6#P8$}=6Yk{>84i48Gz7-h0#4`b9vbWZLuJw*t?gWjWd@!Pz+-@ zo4iqXD9PctOj_Op`w>R`Ha6PyM&myUcG(Rf$Yqey7dvzsEQYF7wMPdSOsy3!LVcXF zJz#PPrn`ZpTQL6EeR+!ePvUuFRWtlalyligH-TTJBe`cyM8TZtK=)g0f757;a##I3 zhyfRn?=DLKNRWfi@6r(d*!&=wknxYPgt69N9Zgr%!m09Hk>Vk1jFvynw#kib z4qc%?mm=v)Ml_7scXnSOtp^cqtIecx`vDirQ|-6fUlzB;AL*?kK?G6BYIK?rDL>s5 z2=5`*Xg5y186rx^c(Kkp6O;2L^d_tbL@Y3|hn~9@Ow$axftmm`JpStxSoGO;CVsMi z+>KUq4ARX=tzRiNFu3m=y4nXE0q5kCzgJ{@P9=I6aO7p<@1$J~dOe%pNfL0WdQH6z z0@Qj7fF-kab5li%x5fvOfz46${wOO4-wl*?<8D$s%T%Rfa!?4X7Cf28g#W911a`;VpW@ZKyCu6e!9Fl9ojFsp$h|5fv#2R z4gJH;U<*vKM}Pe-a6w%c{TQhom+pLzPG7{0PXZihv`kXMm(cMIT_LF9vbx~?^tWU$ zD0csImi0W(*Pbi4 z{abp*aIVB4js~cFNPnb%_}|dS%G+JrYi`~2H$=#@RM0kQiQ%5%txh<3G>kPf!_LEx zJ1h<7)!je5K=5kAT^+d(0@mjFg<7mM-mwNCg>5AteP~jFplzi(r9kE2g;es6YWa|~ zj!Zc7Ns1lhW**s667C!U)gJQr_s10V>(8efd&^f8@av{ss*Y03P$6BBA>AnX zNZ*>SgCK)r+)tCs404aQV2=O9iSwMu>tjt%0_G2EX8!vvBM}YECPHE%D~ez-HB|sA zQ_n~3FJo?0?Y4mOd1+hq4U4^h>lU@$fxSJ@p7*8UkqO8!)9p8&clUhfY5=#4Qt!IC zOKheE3H@|c0Y4fq9T_kZ&pQj4M(8fKWZlzC52#TAQD4Ij=IdmOqrV{9BLKQld-3%v z3=DBUS%_wN`JEGn%LmY9O9D5~YCRTEx9?Bw*kw?hBa7_vbL%;1mS3@l>MDKDUdR$Z zEYowikYKWF8xW>yV1{L1Ny5GFBztHRbf>ccSr^0V`B&?TYd&`woqy* zV->&AMd->ciwHX(gFe$Ur&~$}Mb84DZ;c%u?)Z2+h6q4e$r;(pWM(Jtpxbkxh^FB; zs{c~^JJn^)Q0Z^Duw9^l6T&Q?}&rd;VwSn^M6W}A} zbbeRZccl888c3$vLtBwbo()3b#6*6y^!Ee^|M~@!eT?JX6bJyrn7R+Y4~-u! zfvp_3`thc7f{^MtRxHW6+-dACiJ(*n6qisg>LAc>7=c%}1*JM@Ha*Ce-9whUKn0O1 zWU50Prat!8Y;X${7H^%}Dq11{7y!JQcu%~%8VL$IhK9i6+p-YcB3VrPHOJJM^BYZS zj9?)XcQ_fx|5}RETS4Ccp57w{Kr6QOYd!7P-Z(-bQSSQJ-6Q2Nte?j@HUuvd+ z!ocrOyXaP_u-wK}@8-asE_HD2h`ZE)sQg=$WW@(Y`u*ZowdP5u!q??RTY@@MgfiD> zDrnr7P$RC9(xQg0pt2=kq!FLCV4BFlE(7tE1x!q9)~lvzu*efs!MkzYz0A=mra|_X z4hg1QZqp_jzt;&}^Y%Z-@i!#1MN;QPF*-x$@n1_s_X2o5TVWf28cS&*W%?!P1&}@#&h|D*npJm$1bNoi8qW zc>O;DlfFK@0HMhK2T2bIRpng7ju+G+d*7Z%jGsG?^m#wt9(^zRRfe8`?4#erfOl15 zmJ=p|7goPOBc;UGoq^`UsaRd2Kk6Ox=?>LpN20RL9Vb#VC)rCO$0bbF`s0DMT?l6{ zT~C_cUoSzDGNa8H`#_Ko;k;2Ow}~6CasY526>j|Tn6{s+9UTHv<@@I=2b%RL6_h$F zu(pneBfP!bczO(>{5h8{e2I`l(n%3McLRpAsaZ3Ae!xau>mAtFsXs*`0Ls2Uu?$93 zWEYwPg=tIuH+LJ7RXRVIn&Y4r3oXC^VQbUTOyUXZoA1Lj=>8my$MNUHEy?h;v*gr( zSJ{BK9xs&j?N0b${TyAW8A33V`)UNx*V7?sNa@>+J?=J*l!H**ni;>*h)R7gpSJfv z3-xT^WUXH81w5>k^%Au><~UhllK_-vDt*0>2(6cYv;BgoBzEv54A^(R#9{}tP zD!$-RA|g5GMLsXIAC+mDQo)O|kD?^2rOMD0O%n7}+M%=ZO65d7%I@o? zn%J!!CBj>}w2y?w>C5R*M#tfPHm>|mMw14!c_50BRYuEx$k~-xs{<OJ0>5J_5GSLbt>G*cEC0T=*ke#42@#7a7Nv!F z9XDSiZNW|$FkX47DXVi7HzR9mxtFcHk2I~aRj%dD?&2h@ZT9sdm4RN2H_wbnnVY1_ ziQ~{7mquF3(1FUoK0GGZ?uGp`Qkug(V^@_r&K>e$vL@@tg7YqgijEtUQ|MntNZ%xe% zzO)W86eR?HAalYcijeG0Y%8wFq?*50g&;aKnT${sOyJ(J_84s^v4>v4nk{^ zQ`K7AdC1d5E)imxO1-|#t>=1ky%mIvHd`~_9o{&7k^L&kNkXBN@i#*gdblT{Y~`As zs?NG%EbhX0(9mmCL6bwvsMKOBpQMw{fbu(3aTZH2h8}!aq>A^5VUj=qrZJD ze3|4oNhY^zncKL1^TJ;;$rSD8z*%^9-4@p0M!Mc0VRFqxJ~U>Ou$&1oIaGDe8F@AC zB^yS^Zh?ekh%M!2=y%aEle-O&3bNu2e-vo{UkqAF3pT@@%Vd~VpALR(!&^)axC%!G%IZlQSY(u zsu3fbI~hBK?^!7oQD6hEacDhi=^wP&SjmKUy?okF5$&jQV%sqx6fQQioCQiZy)Ufm zF4s-p{!Sz=)*8dX(LfY6>JF@%i>TyFDGZ&FdGKT@44xs}QE^Adi9}hvntvq&9Xq>9 z3KyjM!KYKod?Iqcpioo;F;bD7Ur_O3z@d-)esu^-W9#g?d=~#rUFD#w-)0s|47q4| zTdQMYUVB09Cpvt*%;r`>8+9v0IycOn15>9S=E-dYL4nS68`sZaN{d{)&EK0<@`IQf zvJV1?78Kv-%8t!9U~b7Z<%;&j27mqAo@tYh6x%*_zSp_!+FYr*TPYpw^6+DH=R)H$ zBxO0=93^kKNw+yd_biDOY0_Zf^GS46o6+`rI@7&lm2aGI#iMC{BoPfDzJ!n|Np{b! z$ZR2!QR)Wy>5n-&QRbcbc{?1g-=LLWHuIx&OEM#WJNf>*JhspfqI@}v4Fr6sz(vJF zu~3JezKCNqN=V@ba-_Hbf{^q&D&|(?%G)I?RoA9*(WVGq4@J-b6%HSP z_g4iL8l%TAMr%KGVXXHIu)8D()_$W!%tzQNjf-u#{;`|JPG1}}N8Iax6F)lE^ z_I|v;V!P>BZgac(#(a0f=cDwohA^C*Vy?!6c+i$V5%W*5QQX4il>`U##|TBszE5Fv zpj50C(Z$a1{2jT6kE;%S7yBr24cC8ZR`DRHG4Jw2VleHk-34?O?f^;qR+>4yXHIu|B^ zztJKdwQ%LgD#dJrZ@nAh;AqoVd z10oJRLZeuEX4df%$fV0KlJK7O$#J0zR7^Oi3xP+>58kavW^ZTsR~lQ3g2#A&XCLo1 zvleyh$F1!dL}KFEefsc=v@7rBhn+ghSE;?}H5Z>}o2h#oG`-C({>*TDFL%FWJDIr* zI)6V%Gjg_!MF|z#>>+9>?fLUfC7RSCS;l_laP=wA8)XRDdF`3QgwtW3)5L{5>NUkR zLBdYq*J8(q#YcDCiNcBI(OK?~PTX2lv=Lb6F8F4HM#6nTf#;8{zg(cu4bXpEQ=0=b zNT8OPo|2Ke2kp0pQoMbY4b8b1Wo2hQ-0XQr(3jFS-g44?>F;?3qFi>5;$LlK!&gyq zuA~THDlYC}{Y?lf&=@a2{xav?5n0k*|{N?1BA;M+8AA*hU^d!|Tc1u2aP%#mqu3pZ&NyZ3!K!c4so{ z(?3`H<1VXUa%R1~{aB(dpJD6f2`Sa&TMNoBUp@27TD_pkBEfE-<@B@qu+Yllj)X5o z@k`ygKE2G&U``ULaFYo)KF;=fd---2aNI3rD`a4*SyowvzDO-o*h4WmU49+CbGCpD z9l9cNvd8jR^BpsGc?LS=@RHIft}{=de;kn^(x`w?8KN?-`v_B3HWs3HgeLw;y4{yx zZBAuQ)?l5P+ZvmB+(}M660JU(!LFd8NZd)j&x=s*S<&c^a3u`ZLkoPJSEMD6M^F_C zSOGKPWubTcB;Fplf)Mnq9>t%dcFQxYmg0H}K~IPy9 z{I9=^Vs^HU|E;wtJv%)!G3)d9Dm}LXFGf>(4tgeHR<{3nj1?T?`u8F5W#IQeJ!bt+ zw}=^4TtAr*Gb%vLOo%CnnYsSyrvk*@1YDN+-ydg`H8Hk;2-&$1YlA~f#2hS4#2=X0 zh;{#IEeyH{nmZ6Pv;3zIjNOW{&3I z);#z8pGjjBv#@qFu_tB}vj+D<#Kg$X*yMSB{_DoNq}AzaSC|gSdh)leeH_g?Pi)dx zD2YZzph180Ex`pBy?8P?0`s!~;+x~MsumqphD^R#LeyZ&$%D&+ccgp*eflYcYug#KPT;1cmYp6nd)Pwd&ho$BA7^={wGX^nVXHud&n>dM2OgctGB zna0`r0>yaG;D2=SOK7SP(^HB$JffJ_)SRs%FmHO7sA#@eLHQ=s^nv8WLwkXX{ecPsJH#~iSYZQI$^$()t#~XBj=2Owl=r5H>;kRZSIeH zJp-53AGTri%+B>`pRyux#DtWuyBhf?&2G0}@$J(RiBweBePpIE^q66|EhWOum#xS= zy%6`iKlnan@@FV;YBhKHv>}L3Zh2X{~dd%cC6dP$o#m5sII}eFv z;j3^X`clTb5gN&D@3W=5;;V-+i0e<^wL`xz!rc2#lPjKOCQGSkCF@v!rVEdiD1|TY zPp-^KzOKcYo*eso{UzzQ3wE1=-l>~?+aZbTi#88)Y5gy>;f6O& z%-I|~!l%8j3aU(H&1TGauvfMQ+YZv1bctrpBkeRQ&TCBRk$LdYy{|$B7MIC} zg?t$u$R4JavgTnYTN4*j;E0UBW8RmvLVmAmsMT^$;7ydW-o|RO=_g}ER$S`eD)yNl z*j)Gy|IOaJbZTock#c0Uo?V+}L!BY)C3@m{(1BZU*F_celjm>1sNV5=NXXpvZ%gQ% zJif?q<8xmB=`G9VZNjisM4t%ATLW&dTjAFxa@FvSYL&TKGkTwfIHGT!4(x7ZPjkL( zW0e0$dWuPpVJ=?ed(heI+T*z)@oMRMAez0EmiSj7_P6;fC1$vX!=5l;qTtGl&C z-t=fawsHTB9o=9AHOPj>y^Nmv!}LOr`xf6UO5Za&-s00vBI`QJN6T*XH8lUMIDjun zx3U@Agu^089-D(%-^+Hn%WW9@`MUq4IOnRkbwu5@rQ2J>`G8f&rxf2o5C6=*T|YIv zK~4KXa!CJod;&-FM8)MzDxu!P!rI+dS=%60;+56QvTYA1Z}%E3{WD__VIYt>H2g?l zDqg4m=@K{Om)FC6VWAW=nkMk5*9RfdF1WOc#_Draj#7(<~{3BTo0A7{O0F-%9)5fPi+PvW)Yclkxpyho;6fjYtS4!SIy5;r-v_~{Ja?{0wx6HD8G z^z7!PT?jHN*M$5@RanE@W;cu4IfS6PrIGGfEx8TXIZksFeOJGAclWC{Wg81==4;RT z&PSZB+H`Ia>^Gf{4F^$?aML-9xUJb|u4F=pZKdy#+cMaT#GSdqQ<F6&9p>T#gBqdiAriuINQnm#CA*Kj&eF|sQ3_m5=5zVeMS z&y-INJGlKV6rfu+;V-1SMUE&{BJJHflM99nTW>}aTRdVFX2D3VT?+e(Hrq6MqgqRa zR(APf0K0XyomCalNQO;@!vkZBz1z&LQQ>YNKEQb|kx;6M?`uzv9mBd_@-cSg%^%n zwALA`Z!ASX(_7%}3prCI7ta33uvIW3LW&%lhs8gN?iHX$7NUriKGT(%+#MTtKBM=* z=)Kgr&N4+7$92;46M1Fy+OFis#@*|$2OQ%meuW7SYqQk0jG(cFg?yF2@ z>KG!qw1F z7Tdf^R9?DGTkW{XC1(<1@a;DW>)*5YVVFLWvpkr$)jctJv(vE~M$>t>*#3MK;Zx?J zcJ4)k8_Q7O_9|>1?JE?y6(*~xJbe8=JW@g#AyG5-@X1%GC7v3cZ(tdtEdHVnTTRH0 zG`Vk;bR8CFyo0#%O8O^<)1a4d3W+?0h6ZAOaQ8XYjkpQ8QGy0$L2!RLt7_8&tF??3 zR12#hf{VTUYL-2_3a@A(pDH?Tni4{~vUruz2Uz&@3ba_zYnc*<{u-CYTg;Cr(oDHn)O`$@q|gNVI4SbwY#4S|OJ&{1+Lk zzEst&Lvjn*Z($eY35q61)8g&uswQz3OTJGbiSAlD?)Cabl{=kphi{1-c2_nG2uM+Q zs1`@75RE^~=2caW;-%ct4VXrmx9P;TcM^-F@Y8V-vV~jj?4{CMtNoREH?%)*YqB`{ zYt?~kRa3aEZzV?kmCsbs!kK!nb-80zFWnCgVFfm=FlvJW6 zK1j0RdV|g0${Lw|D=pK%{|5I-6XN7eN=Z;ihn?-;?5O}_rIG50vMJk7GQ4@FIp_DA z{15+wuiAGA_QyK>dRx)9{ zpFpA;_^E6WVZpKvwnK_m(kZN@B_<3cCFcl%@~FS7)aPC1QRag}THS&K2-v1V34f*B zNYWLxzYTP&1i&pz)%&$x7tuP^^eTsft zZDhSrJ0A%ThW~qMs}dt({|%djG6VBWKI>f1bqOB4peUcQUSv4?QwV)FqQCNw{{G2~&0{ zudP+*l4*UnESswGa#z8YxLJ(TX9K{rx9_M07O3x3oz%2nR31Peh zx+i}GW7tY6?j%HAr4%~Jp}ft0JJg3)CKr^cw`Cb-V(1%Unk|MuY7FSqNn#VZdhozZ z@m)v5T|W4*vu;KECb!eA%6v0{xLzo+MiL^EL^bEFEt(Am(;y0^&{i`U`5y6j zZGU!Y#f_U0twtN>H8YB-P~s$tRg()QswZdE^k)|ewT7e1sa|bp4BI3`P7jO{!rP1j z)*-?_3NwsrD66-@ZZLsg!I)p)(UptVMwFm~W)?rS0#T)ilD>d%!>oZIvTxWkAyk@g zp&DNR(Z&R_!0sgoO0!E-NCN&V>T<;L~ntkfIi3+F~egJ;eD+v7|8Gix+nbMBW3SiJ4QG<&t< z*5r)X>EO}0wp#KSgZysn?~v)|{L)N~Z)yN3mw;fWG{z4>c z8IQ&ro|WX_ljZ($+&#r|1p%^8+U$65SA8CtXO~P+Q^@2f-sx`fOEY5>IH+(L z=Q{#TT88H-C>RR33f@~Bm*$Z1V^YMnf4RDGXV0C4fMVL2HQ*yQ^CR`cKvX|IX!@AM z=N%8q?+kOGZ;I1qFE9J6rG4blL4jF;jYU9HV1Djgip^r{X7&&p~6s_SkZ~6up zI8>&=gLh(Y%2&KGx0fcpnpMhxC4GODvTb8x_jfZnBYQ>M3%QKs6bM1$AvFVA3NpiV zk{{v;=emTVg5EK6^$~&rS@?IOF<3mn z9SVNYaHfG>6=T6SlHB+-tWJ<31daUioC!fgFPYt6cANz^Qi!OADpgsG{adO5gi@ty zoW<~NDxrQ_aa@uE8QPg&ZazaQa6V>N8}s(BADuWHk7?S1ILELbsVd3G(d{LY8rqlO z_9{^9)5Y8CY!_aJpF<|Tql2du6RO&He*(dh zuk{KpTd$GQN^M}9?jmeb;EnH#n$SP`uPsd&z_q^mIwqv~6r!8HHJ<wOv~$& z4{PU~=k!Pq#E%fq^Oo_VJ1uoj-x#+-TES1My@3 z2JZexIwzriD?emQF%^P0cFJHOUC+!GGuH1zk!yP%l?Gqx~DxQBjrpc<;1?z zn?=9s`~8BgTr5wTq+jz+6aMx~DcD$#6H1A?S%QbumZ4rtVHx zRT}F#b^TP0$95$PpiXpOrWnyES~Z=iEc+NU)_Om2Y78Iz`k8 z&Hk&-T``2>qL#b=>-g53|4R$?x4I)$m0B+%x-3~uT160=%xyKo$2SnQ7xkLd z(OC~0(r-HpZ|bPlsi76kb6T>)<@Yk3R^kVCikM^U1ahk||Rn~G&!U6y|hQ;v7;IL?snR<6yL%(b(nT<~D{SljBzHmVC+rc_=rVNk0O zD2HG!u2>qX{`{-(SGv5uwr|co|L`5y%FhKzo}9l2ZWxcRsdmI*nYbofp17I|3XUz9 z?JtTysSL_03Ymos0<)5PCKe@^70 zFGmz&^i2q(d1?%OD@e=37rZeUxo0ENJ0w|Hv@$gHy`LhfTKc|O#*;I`_{g2=oeQIp zA!J>Jk}q@qP%<*e!A@n_FrxjsU`Q`;ik7*QsiU)!S82_od}_{bA{=kA_lx~-xJa4N z1rtIwRDn4I#Q3xz!J>xx+(dZ&r-(yfURglCo#ONxQF1D@s2dg?O<;WEbkktf(w2`k zhHgS0pxFz_x#lxEIS6N{w884qALDKy)RyUSrcqedzhAB#{=BfFx4+DktnBg1pD{7r zT2%t#x{S?MbJesY_H$ao3Qki42gU6D{^pO^i)KY58Y9-19KEZpkeY5u`v^q!@lQs* zjmOE#4wMomlp9;V1Sw%_wi)l1QEs zqMlZ4MGzx@e~Ys6v5RTm8p%Ryjs^wBSK$JUDtmy#acZOuf;xxw+r684pRJ>=8W`Mg zf;pw_S7d5bt1RXN2cVQV{9Z9x!G(&iknVfax|9*x3BiTOw0wgj>)<#pMOyM z-k+tA=r%ttD`vO)`lJ$_v+i9AP2qAw#YgMAs<&f};cC-oKOvOHOS?t`D3tC9x@C93 zLKZ!~AN4d8ID9Yll6Tmz6DmpK+Bp{8tpd+*8QceEC62U`whxQD6CBhf>N+CCf?TR{ zCMxM8KwuQu)#j?%%e>xN3rH5ISo`oY@@@|XE>OrDMdFmNC8X~A(XIg{^1I99?q%lN zYDSI%3)P$WZ#0O%#A@~l=!Ak2*F1#E8WKk|4O9Sp4QYZL6KTUKI(`o^U zc(s?H*Y1oRZ~F!pF6?JQjhM&^1%-wUAVA}!bnUWSuqapw;RG!OZ9Dm{J~1Jzku5Ti z#)qVhg;%=?OK!8l=0_+pE85}u@#Wxe#CCpW!f4VFigv9&8pV99LTLuxmZ*?ftCe4u z+)=%b$D!}e%f-r3M+hmw#pX6cQTyYtDKxH4h&c3bf7HLIxDorjLLhZX8>seiP>%pv zXg1mFmKx>uPQ}On^9%i%VWcnj2h5nTpKbz^WO;ubvrN4`_9SFZ)jHlaDRS;7Fm*UY z#6EkkS16G?glxMfu1sCuG0X0NEw#tJ-WlR6_}e;#Y$N5A6sWeM_^xQ?HRIe>_;66X zj%aSPJReZt1P28qW41p3G5;e+0otg3N3|7-5VQ;7!G+~oGYRGzoYZLx6x3KY7|oLo z^=#?rEaHlta81~cp+~vTL+;Ji%B6%^Cij_-))c0X@fD2n;Y#pZe-U$23KSR1&5dz2 zDa!!;07AHL75?J|Chu2Y$^Iz<=6tIPLiNVI2-H!hBqFw$KM~*e!!-<=+MyECap3bg zwNFS}2oPEgW8s9i@?R6cSH~8WQ58{5^{s=m&kEl*qc(TO#^mABu%f$B_io%b&xpNX zSA^LyC|ld`L5g|D--gMOq2#q`piG4q5^NwJ`z}mM<>p(8g7cu<_cw4z&F{jr)PsE_ z?NOYZ!;T;-lcz7q67sy{#C8R+ntT<@X}3dltmEZ;K9Dc5fd>E`9{#RI;8Z(V81(gJ z)dr%ikj`cowy-P9*`5H5ZYM2=)-oV!3dH=CSbfN^N`HbHr~gw z;`-vl304P^Yiho0^-TD_lJo=8D({C6N2l5LqBB^;{o23)85^r@%v4VXk6l*vAAl@_-GopDMxa*II%Ih(EdcYq*jA4|#*B{OD= zx@T^qT@TS{Orx|q*;|?=&n?NniCeeMmjIRri#QZFCoTm5Z&+}a;offOZ}Q$u|}Cp*O?$>2Tlvwxt_!1Y7XKO&z%x*$l{3m4M0y--l_MdqYPiHPzuwiWpi-G^tF#*HbYN$Vw=9v1U?>E$`Q5|QTY>Isxz5o-U5CGg_f^2p$*8uG+niW=-Y$s~+a&G1D9RGX6Q3u~=i;_VSwdU- zy@PILJy3t~J@VtMf;GL3b^@MHTCRVNw`5TEX59yGd(VgY==Eso0~Nu_zzZBvULFs4 zH2nIqDh}dw_XvfZG2QZKA=$TVWG6;mN6|o6>?{BR6TMWq{UZ5tyfrM#AJUuem>4_9 za~189fx@q678aUKkw`U zldD_MT;rO16;*Ntlo9Z-oP&V}6D*xqT=34Lv@~v}#T^&6{0Bsm70S)xQw+g9X#>k2 z3^`U;i|RMwUADM>d2L^L>JxRYsTK;*>B54>BchmL^8eC_6Eu3o|PVfQnh3q2hl-&Ht|;`2PX7{|l980Z9FG@BSN5&&&*t zF|+;$SO=iU8!pen^v~e_k8%0`1Ooj3ip&3N@c(Uq|IF+EhRZ)kBm4`O z|5uQ}f8CFNMy%{)==e{7f}{o_@bTl@gN_djSRg;sq4=dGWOPLihz7>`Sjec31NsY(fQa-8 zG^j&;0SyHM0}TuF@+B-RXzdBkzko%1iB7^S2#28vfhYZp$?`4w|KjXDgPMAyf8T`A zI|$N3P3T2B2{rUkq<0YMO+bot!2nXF27-X0Nv{G@MHHlj-a)!_q<0Wee~14)GxyHi zS7*+Pz2ENn%(K^i*7IF!e^(JPM5Upd-e~d^D&gQ4MMCy8yBCDh|b8wWWCMK$$ej3 zQd(ACQCZdav8lPGwXOZrx1QdE27Z5M#{sPh96L5+V(kdGg+50}=5|1RN zQ%Nss=q7yMfU%K{eN7G0CEuUe(^vw042cB zVa|V?*cS@>`~@DDw;v~R-(R;D={SDSuJ&tnXAJRg3OX@-Mkl;fxoRV#Z*PH?c*{Xe z)v3k(;~fSk5c+#AeEQ2j%E|fNTtMI&W3`xy9MGr_ZgC6DloqobnWA6+m_ivw`hk0{ zpLb#-GIul%3O*;HC-=K`f`Gq}RFxZ;rEWn|t)h?cbUzhjyPmPlkWUGzMcWf8O%p{9b$SgBD(k=?J78bMiOPrqzC-$OQf%vZgloPuA1{>5T>mP}Of*lI&AsRcPNLJs) zNY0^waw3qzKHP<-_dmeup}MJHXG=SNZXTD(e*nudKBgy`$bFq~b!bjP+t}*r6{JZ$ z@~$wD9v_{<&f$|ts8q`Xnh%L)>JeT0J>#~`!0JCUy~$VnVTDxyF4jSIRR+>MYV(Ft zdE|*Ks3h$uMKr5u;k`^kY*v=3{W6Ya!%h$x(oHsLwV#`(YuieCo!rEY_W7Ogh%a!Y zs!o+ZXg9KG_*r;oK$z4Qv?I=BF@62M&`#qSo3z+yM+n(`*o<>2RUR(C86sKIw$!z^ zr)I9!T5E#5;e>9d>P~6YeH2mrd5|(gK7D7zJDOU^TBY_G-;uz&wbW3E?zmsGtxT&a zYivRcHy6q9@?3vx-aE5?SA5KbAEgIG68)!2 z%yQc1&%7xcZVvmF7MQZzDVM-P=uFb6x3`R7yWol~mugQQO?>+n22>;n?YaT2I8=e(%KatP#r$m`QX+uQ5ESg6+Hy@p+fZ z2-~RsTTWbAkkc5EIUTEuN2TEAfNTaIa*Bv`6w;lvj2Ne=8;CHF%9%{))~|i~c>jTF zsBAlYW4JPKOzE4#?^57@9JI+ecvbarxdKoV?6_xAGDC)!&J)(Me*d_Ilq00gB@w-y zO}`f3d<|U?V>hQYcK5@&QJ2Yxf11bZv8;tjEW`7$CbhU26;Vx(ZRc-)YWbIPzq*S( zsh9%iI=xHO{zzzl$j{?Ys_W#sSYP*?bTsW3yVb+nc0lTQt*G>$9d|`<_oF~MT9VDF zdZ#Zydf;uc>h(&J>M^caFmlRT*Ci=$TT3c*PJh*|;9axdqSyJu9vS-3<4aZ1JiYZP z)P2Xe+kmH&YlgA`~=TE+U{%0QcYXPiOp0g{8>RARoEhM;7QOT0*{;sm%gIv>B zGCK17vOa#O5m^@Id(ha5oXG)4W{mQHl)4ulL0H^;ZyJN* z%qN?l8AX}vdg?&GquvNhrv5OK>+@s$pqr}Sk@`}4$3&f);P_HYc6>H}6Ry=iNzw`g z(wt-Z9LzC!B;#Lv4RjQl0`nyhZ;W;E>bs$5hzz%7LXVi2Jl#J)HE)8bu3q67~G5t!+4UF#Jx3>TO zWO850l}}G1PxUoa$Kc2ED)^e!z6wQKx052-EZLg97m26Dzz1W;?FR@tBRoVpk|T6B z_%rTN_cG(zk-2x8g)OnF%R@M5Du)U!!j!N%KS7}IYpH3g)i4*jf{`bmee=s+C;JP+ z__<-yPL7yqe4W_d5rVp!;#*BgLUd%7)LXjtJV%hQ~GZ%OynE&}!l3G+Xoj>M(V4 zzD+F^IzJp_^+h~{upm|=ni}ba&vOf*p8j+BQ1}6YHj5+QUsaCnj|q8?{7q2;6CR33 zYd&A`WUlN^H;xJ3)m24`+)PZpDDh%9GMme^zgiE{B-6GBt(4!DBlFN+vP1dt8`C# zApk|H#ru)WFCmG}%9pe{YjXga`+CR4DVYL2fEeNT;puToGNx;!5Vv%Wz@A&*t3j6V zugZvl^ahD9o9DO5OH8=uW7vjRXT(#I?Mg_g92`g0}3Ef;b` zhIjqTUHK{>z8`3>na33P(~6D|!*GFpLXj3ly0m^Kzmvb^u?T#t5z9QES=*8p#}(Kr zSvk~1(fL%FMrDu5iW0|aqq`PA;G=U19=uR*5!|OulcYovJIta zJ>$u8Vc%m~=?p9vPM?3J?WfF$=9h)1n{(Ltl%N5>C-AoA`@KrzMwdg^Oe(3R`%JC9 zgKzz(_e_Uy+a>n%-iw8*?$f@Runqd3*P<@5Oer}g-0PN6tkJw`{^{aIyOb6DwqRIn5hCeX(8GnD!2;^8V|1m4F0GTI?ac!}KnIjgG1 zrxp!i5*Cxjl=gDv_fJ@i{byB9DPIYNKbtH?HGYzoh=N~Ma3)9e8ng4=B2RFkjK?81 zEjRoSB8>&CpP05+9mLe1>3sfbSL!F)ePW=5ejLoK*v+y~BUU(+wz`9flo-i1TvHo-_&b%1ppePPrrVRO0A>(ao$|4XV zTrk!8{Ldq<8etk!e0-vdu73fTfT97kcRYa)p5xM=jmR`rzjsext+GlS7(RxXyO`rV zL$_vICO_D6@+ZZ3rs{4~YLz`HL2Gi=tM3OEe6TTcX#07bDZ1>Ro}m|3$_R(PP&hN; zY082FNiDTb^raic#UQE5DtxaN@kiSeoyhGdXX+BSUOT{-#r{P!W47tSmj>VvZ&*KU zr{vlDIL_ELL>XbFr{gP)wdsE|9U49|V83udRuLZJTR7msxa5QtLOgVrBmdtFu!BvN z)WFiV=xhFEf{xF4@YoGxSVjZP7**Z%>1D5bY)VOrw*WOU(i4k9j2bZL)^e=})BVa| zd3UBbs{)@dq)AGjD^Dm5=vrfIE2Kb{tAhX;DI`~A!u`G7gN`O+KQ{))NH($?vmi;o za|zu9qr_!%Um6|zl-74g{+)_WA#28Xfq5+yD@3}1*U7SH3}b2s{Av-U@W-pvkjX#hj)9M{O`H&poE z&eOM`6Sl{KG07p`BNBX$vApbg;?{ZZbg;Whc`iaFVnTlN6|0)gBFYAo;%;pg3o=R^ zri|SOR;Q2Ydqq-ye8#cuw8#H&yW%N{$#WtPrkf^X75-cV317K)PITYua_T1~yrv%`YfMK7adKnIKMI*;u)xGnI? z(H{FNxB&9U-b1NlKm~W=p8uYMO;>F=53)Q z@OsIeLnnP?bLxhXLFp5IvL?RES3NJT>LR?9v!28+rAOGz?D=H_6K+2xO}AP6bnLt! zZA=q|SBQutYOJILGu23Ce^@yhQ>X~*{$qy?B^7xn6Z8Fe=EE5qu85B1ErGRs5Pd2E zZlGK9<;>X+s8f!(Zx<_Ho5h@jmQUn7!DeAu#IcH^;pd<#trv9*$@K~ZaBsRa;O!?z zy1@p?)?^y75GT02*vVz>6E+tC_Etknt6V`%&n2xiQAj@KYw1$sl3MKz)-G(SZO}fG z59+lNooW?l?4CR5nlQi@QZ0A3@Nh7VU#4Bm`3D{O<3pYnl}+o8WrZ0*R^HF%AF zQT#Hdq8$k4d^LVqs9u_G`F0VDEAS`-gVM)dX(#V^`uRvix#2B=x31|)(xN1~D(&og z@-z32MzRHZ*tG$Ou3e%Q50i}TK_YtcmmQUiIFN$-n@)quHP;WdqQc#9-h4py*%t)7 zCio^`^P<{!Kt;q|R5E+F^ZtyDJu@}4Nz9ZP*6#K@w@K^GS6=%o@E;(DWvRpa8=HK6 zh*W$Ek!@zRgrGAeg-(LGv>q7v#_)3d4VEN-sjEKmD7nHi{(9iw8#Pxp zLym$~@-!fR4D^+(n?GyPYf(lOlU=wG7157eUect7vlfUTFa-q=e9$zB9V9=>iVL>$18(Iv z0UFhuQp}Sz{{DCoJ{3AM5Xm$!zl42RngSd1@nCv8^31Iqvin?&a;!M%736k0twl4p z!!SrZjmb|8K|_9o|7F`<^Z14`T0yHEZsV;k*j}0m_Q84qHkYTf)K@(B%cPmoVj=h@ z)Ww)5LlI88=@U-JN>eCa${zPI2rVGwuGBoGcz#A~fOcN)PhCYxmf;woZ>pdB2?tv9 zeh$IYsFfg5Cfu6)(6HoJ5k@CRAN)tKf0;nRKLbY8rkV(g)LLW-m>?X7A4P2U`EvIs zf1P+TS6($I`y-Csj6RWVu?EKhrg=OfJw~Sx%q(T{&GDqPjWp?{v(n z3ERqEDxronRxsfFH?^GI6r|q%ZiJUqx}B&jWS|e=Bi^qyB2T$c6++SO;#E68dka&X zHQMTZuwyWuPvMEk8gY=biTd)sMgpLrr(8v#qt-9O2u^!!@+_hF)ek(n7lj(7Goyrz zEn5m_TDzN=E#}&1FB&T;mDyJm+}?T=yzK-G?5K;du+8R4+CA95scxl35#wOpHU9xb zw}~g z_c#^2RUj}AuWe)FtEcBkCRaudlUmdihiLT!89j}QeByGydYF$c6A@y9}k zdGg8!RfxQB@*yP`S?LI`uD=t~>tb_f8BMt0q^rA6A|FDHkXHxli92wb^=Fne#RAIzObvdCOF5;1Z@oHL&z@}gRJ9r{oFq2d z8 z`Ic6JTWXk6o`s3CTO^b4zz3^$8VR-r747nNrgE>StUE{Cp@^!y)yo>Wd@q4pBTpaI zP-Yd=#v0ih`jvxK+OUL&!PeekG)q#czU$AjHz?Z!SP}c~F=Kv0z1v}-vymJR0F=v# ztpV?!^tBG@i>B$b&Ho2rw$2mSGmyX~QGUs^5RstRKJr1zdrR2{FV1H0o+K{^*1AiE z&9$Vya3$+kb%dN(Q91h^|M=ukiBpV1wSy?mj=|U|HF3&tfxgb_Z#Dxg58efDRO>tp2Kys84}6N2 z@`;$PD)Fm+yqM9VIri620k?ul(Fu@%3mH+zekw`yLx0S`Q*Fm6;1$@&MK5tRlei`M z#y4F*eT#9i7a%S`P1={HypfB3m|7<`hvL?$)bWIM?@C^$XM2s)n=wTbnc>s@)b}-7 z!kb#7Rfd!rFh3k?7-B|fhmtmwBR9GI2sc}K3r7({9jP``m7=KO2{s93o|Ga%8yk9` zr8K*(DT{`24oKS4hH()*^T@M zkQBO)$+2JNhBWHTt#Z*$;TnQED$R+PgH$>7oN^W~4#wQce{Q2^mUQHM#WhCjBXf&N zB%O5lIKUYApFW4B;YW+*Eg5oRZLSsLR$1blo#{PF7->-w1$DXjnK?Br7j%~dS3c^+ zsQ<-B<-qAyBjP{$^pi`26eCYvMHm8u9vs4Io}KX5F1ZmsTLT^PF?sJ#a;l?WWk+>r z;Wc8Sb5qW)`4_dq5Q*L z)=s57p#yP^0Ya#XdC-SWf0b+GG1*tKW6++J!86gp&_RgI!Zn&Ie1?Z>v>-Rj6Uh6h zwZQgrDI~dr-g~quW3kaYz!`1%+7ehIQg}Bb!~BLe;kDWG?4-YkFW#@cxOR9@g;Z^! zi6y?QD8tj)vFpWKe)N*Gt2JlJ`zbo`&a@*Zck%2AV*^Rco22FTv;p}FVqUjp|DoI$ z-gMi9L@&)K@`k^0r?m?8e6TS~3i6o525wDodSf=y#2`EJ;OlCdhL^}K-#*9j;OT+F zvnH_dR{IiO%D2c|^9LU|zz-G+=y6#Eq8s&QYoolw6O@mw-%=Jo^OL>MrHC(E5wCHw zyQy$af2}W6p61gg^_KjQhp!#rpUd6;XovHzDD*dYLXbKA$-}rTy0XoiU?D2`#J(uA zMU`tNqPg-EM>N$?&myW}V#%iNn^=^R)nsdjjeSF^&3A543k*7!oY@@>9K=I4d=;f= zpNJ|12$bOb$OEdf%-@4J!^Z&Qkjl&Q&Y$6jgyOJkN#fS$55%i^IsRdIbE`Bqe3a$Q z!khO}l#`Mwq3l+}KbC03CWl})n(*U8M#y*UuXBcyWI8d_d^M!VgbnPRik_1f36%*{A zKt5l~QYJYaRk|_=#qf3G8I1`|+@5h)pfr`>)tl`ZZcAn4IWf@1L> zK0vGKg(;WQ!ghM>R%-dK*7iwLhW%=i^f7#sWB0d_T3;P0Pq&aqA>1=|{C_013=bWi zZ!C@kVtf$TF(2@4;jZ1^P2z@j>&Se$nW%^EC46{!H~_96fb%dq*rENw^|_)36{R1c z#Wwr!X|UhY8xa#s7qH-7;{BPa91Tq@!hooew?6u>YQ_0V+`f+~U#y|-o3fRDUk+#e zU9P0;7h(Aozm`{AYmsZRI>g|y6${4)rHRWLfSe*1^$c*>I8I_#04uD#v7`NQF9e2ZvJMtEQ=>EcL5udY}7tksBwvkmukE>b*rW|#+|LcG#eC$6>EJ?>#6 zJH&_q?a1Zi_{av0N{i9i2MIJrg>pavz`=P1pmwIKOfk(Xoo2BD^c zw`IodknvJ3<*l+y=nYrplYQDQ9Us8uiB+0dzU#IY(Nrq@dr*GN_pi0CthQSEqcj>s zpceNHcd@s3uP@ZU^_Q?P=1b@1y4;FVc??IL(9*O4o@tI5F>Ec%rMcnNe7uN-dD=18 z`p2fVDfWd62yS!?P^Euo-A~H+1Y`Sh$stS&e!0?NGO<441xduoKv%rBKr^%1KL#?1 zS1fIAj&vy!IJuN6s+?}0#?aVOHs79H|sX}qN9>JQh{1_Wh`i;9O-oe!uFI!;zH zrsr#f`Rm5a&Zb}F&k#3*_m%OfiE7Q;vo(?y6kxxn)+*&Xl4i`+^m451l%gain6p+@ zQi>HQ49yH_SmOCpI`p6iPZ>On? zlp#`HoVu}OvHcPzt;xTXVl1?@>v5%kC)70!F}Qnihi~vUR{5&Z;Vs#WW3BcUTX8eM z<&|qUn{-u@Yx;?!8WX{B|x<`ij100`^Q`X26R=Fpon?jb}3{m0(;NyBo3 zJi61~=9lcE@D9|WFLGcPuamKlDfw+#Xksj~i&S~z4dvm5Erl{{dVZiGE^cbfHJW%KlJ$z*T7)jC5G zFzuP5KKX)Bj2XTV5ffV`6pTyh)r!)+WCT-U48)jNs~2&vkMaOy%@%)pDVx(Peo_87 zoNAJ9ANYy*J!!Wi-wg9(ys8!(avbJmpXv~N4wOi9&b}BRYKE?oV8kodBgc6=LG3u< z1M;*G$^I|d@5{-7CwtZms|@X}JpyRJ;BI1-B&%|cCC7-<+Qn34<|K=v9Zvqt%*+%Y z*kk-dZ^mo3IG6=g9N1@=&p&f={xou)IZd)SOH0e#bLTx`OVl14X7)m#i|20%&6pd5 zM3b$Pa0l-WYj72`O-5}VvNx*E$(vz{f2==p|1Uyy(;GAeNJJA7!Z>cIr?qAO69I!X z8z$d!V2#H46EsNrkfUT_uhqoTsJ_;6i8AmN9x?5Fv{jy=i5^uXX{3KcKHV;K(iDbi z6~JYJ9nY#yZNjsz)mqxQm>_cTo8&+K`rDZ0Rb`0xDG|d4E^Fggn5WED@CMd2+PCW5 z0$T1%1ls1TOt&4U+tSd3Z$uWmOs*anI&!5m@RoA` z%^sl{d2SVhOAOY2yRJ4IUWsPyCv$26<$wQm-#OI3PHSW>RUx?Kp!7g=_==+Cc|^sg zD%CHR9hGWn1cmqpe!y)o3RM}%vt@6`nF|yA#t!ao=QXz5%GKxMux=&TZCta|99#vP zSara)3ir&1;YzjnrlKxJkv*=QpIln33^;qsF>)V&nG3Ses|WO-T{zVBRA`FRy-UJI z(5rnkn$pYym{V1?RX0-^cX+1WHf z+B&g62jqn^+>?&7{L?6TaQw!g(J65z}LlyY?O-4We{fu?Gg8rRAk@B2SN15eJ?#VPdn-j z7IYziew8QYnABDHaouq#YfOBEh#ez**kPJxSGMb8l7a%RqM%P#26CA0=OK2VT(D1N zr$C1r;AFG0vg9|v6FuMX5jetKcz2EiliU8fUohC2wzBz%_r`2d`Xj!H#hn)uz@SdP zD8SK`_;hv~c$fXt#x3gDQ(iYg1ENpie`UZ7?soHTTleAb%kG-r_x4&^A$^?phR|wzl zvV09QA1`%bbVNTM5hqgB@(++F5*Td-JJwgSCd*_D;XBd7`dn=H^-}QUD7ONuc#dp0 z6waNkPaeITCA$d>IzKnZQh5~ly(>3#q#caBAivntqaB#MJ&KOb7sMtzXK|-VKWO-e zabe<)l_ujc{T+RObnp&W7xxiW-b=YWcsBJ*DA+sy3Tp*T3pr#=(f>-f;0?Km!z6*J zrqV2azRy`C0!3*mX=g2lXmK2S=A*ug=Vr!BG?8y>DR|7tY|A%O#B#88@~8AqFH<#9 zpz4%5Mb%2!87AYzYW3rx9Fx$xw(D3DXgx=dle z_j&5o>(Jvu{G9AIdz|M+c?&j2@p(?e{f@Av;q@&N-2>SDT5ISt3G+M+9w;LiISzsR zlal+G-xO2o;?Fq@QVUY%)>y1PCqAouy+<#S)79{zx(F)FDn5h$7qIYtBysPx))Nqc^4md3()PQx}nSVie;rh#tj14 zA;U0xT zjn%H(gB$U?#%aL=o01D8r0wj%P6k}RF@kCCjV}wqvj+Q8JcjeL{N-SEuP zs=ei%9P2`=r5iseBvfe*Q=j+|Nr7?0P6B=<(Krvlw3f8kG7x-K9E#zpiu(_s83+Sf z;}u%|T3x1$mIOv%o(7mF2Bafx^?VI(V=N#KifJzEodZa{ctfyLeX~B}=OF6!`5Olmqyq;e%RmW<3mS?85Tp=bE8i zhy3DyfUfIql%`A2+BIHb)2UP7deTVX2m94di9u7F^eibBM5CyXY+&C*N|)d-#p?@C zMk?8}{Lje)=&hcTuOfYjhFddE_G~AmGX0Px6^pXI2BRLOy19kzS`X{d?h^m9}3mBDq)%q!XrMBONrHu)~VN8}# zXhg_TMiojZ|3ntUUW&YFd~ObLhf;m31PfB@Sx-;pKLG>zIeiff4>v0|%RJOyiOHZ~ zJB>VY+OOqP)D@>LW5sm7Vb5iK5zLe0ZLS~zKY_n_`x+|gt-gN*^DnHV8Se^brKB03oZKf&~dGokU zEiVp}fn9JxDB%l!-}o&eaH@6`Q>mRaIK$KvDj{kh@u?|~E75@_5&}vDG<)roSjP_s zNUn$NQVAT~6zToh#%>{h)UKcf?r8^JbKi|;Wylu&1LGe^@ zihN*tE=-?*A2g~QF~#I~Czq8@Es$8Es;T15;sWQ^kGOJ}8T19m`*wiI=kR5Wmd4Uo zXxjLeo2%(Z?A6j?SG>QC+mZz(67Zj&*E7{d%2qPLk8GxG+JTX`v0<}!GS8vj+n?Ay z9Au#xPRK`%s2(Fn{5^iy((yPg2cI)}(OK3$_GFn3X{D4V3gmU@5#$SH^ z2bhI~=h=U|xY36z* zzZ^s0-?7(f3e=rX(K;<8_oVrzo>i6v3Ua6{%~wf=rNH} z`Aw=yz0D)o)A;!nAAts5R@pJt7HSgHh40#-sK2KJ(QL~rjR;|MM)HF2@{d*RG*A`z z|4za75t%@8&tMLUb~79DUH^un2f1l>6ET-v$MMoQQTS{xNn?`i#kp>WD2e~t250aC_p4wVJu~U!4k<<-+GX7So-WM$ zu`@Wx2x@j%)>Q0Un#gbF$g()qQwICU89*XJra71k5Y0YKT6idD5Wu ztun^!O4_09*|Q)SVUeyF`c&1#udEXnmqeUHX z-AV?vwrsc6@F1z1vcW+-<)S%27ds6{AE@muzu3W~=x#Je*=D}=UmBJ8Me+nn!@07B z^Wk+Y(AS<7*Hwn&ix2WM}zZ|@#0pRSRb@C5Ru_$PB9Twb;7|xoJrXu3D`4qcCbhjJD7X( zoX_4Iw3?bpZw}u`peU`%8oaNxOc2JseV`iah?bqDfyUpbvk%AVb9}36dL=_F5d9~i z&c%%X0`6+4MzK?Ehu$T%k!^N2)drY5cn^ZcR4qaic`;6Inw)hSuc_RU&EbERBi z(8+x8n{VPsheV0}be(TXXO&#I86&sYlTVe-x4|dseU48=Ad5_TL^dwD+%iVU^p@Z? zQ_b_OB=K{i76Ep7tN1OHors^9uEuMcMhwHF7@{%{zi-GLQzda9i62vq+iiAV+&LqUL?CDdua@jK?mRu&E5?rOu)N~wP{5}a{l+!4)azlwTPa`!5+#Bw-!%@J&7W9OU7=nT6t-H;7rvMMwcP_0!Y;1DE_=9eU`k<-7kdr{Sz&pIP~@=&;%2QE~&(b=#;DaJ!!(9x`! zT?1hyntMaKi>44bnkE4D`^S!Jn@#OR&Dex*kI}1#+T0g(zNJ?=ttTcXJ{EI%fr{KN zhrRE!IgbmWtGC-!{A_F%VybA^RrmV<*_vfeC_Qki5gI{n`bPa&hqS z(B1bg3G>T}n^?-(=YA*zFC$*9+xwvO!)Fm^}u9Sih3Ze2yoorM$)PaiHbjm5lvwNv@}mtohaKR z2W8*%KI=#jdHA@dljK-k82d%n4QdpY8rsz|tGcZ$7q-(P?7is>_U_tSL`ff(+0onN zt!vs|eYBSuzHn%eoOLlrKWSS7{S?$-Frw~V3EgcrNGaEsI~O~T%$<$WC8xQpb6HqX z+#7GJh1F3`?(@-neUSXEu5X}5$FjR$PrupSdbpz#;0DBSoC_-M4!a0wh)P(AUap;) zNWD`TLaTQ8$WP(TqEwj$@w%{UV3VOQ4qBZH@6nHc@Uy&y=0-NhM)fYZ2#pWtD}))RW<=*z z;d>s|A-r(Y=Ou6Ar&M=F()+c72FQ%WVK(*TNG1Tf3oZU{b>^ZAFO07|`7wv0?r*fSPOFVFp_Wc+Sq(qs zOK45oA5H$jZvw$)b^Ya+#>7Nt0b(A14gj?1|Gh#s#2U%)E$dyAhNB?t$pC&uyWqez z@lCgGQXg@>kbU=yHm#De2|A^b;)3Jo-%|+mupASEJJgAxA0*Zdy@8b^n`v+sbF>*x z!wEVf@K7R}&19||vET+cr+MU`{UXzVh{V-Wjo%J zX8vl_?Y#^nDXJUEKOm1@sWP3$JOJ2*eYcU^3IH+^_WRuHB46@FNjH_Og!ILRNQ_6CK8ns?)@pJ~^=->e_H0KmA!hXep9kD`?j8w*(rd zeGVdQB}nr7LNtWH(Lb=zxu10kO4Ii>wYM1vb7=DXF8%K+Zg_yJ zM9sk5je}W;p<%q+#nfboSYiJ#)Cw#SmEFy_)1v0Komq(QM^e_{Bo|9!7=0;eVJ@CK z68oIr@6C~+7T(G_zRm-gr=dT@KJq<#(xGn~YQm6p_><9#mgQ-g;6ex}w;$mEtbe%)iL=(3?*`{-@Z!^0qcww!9buo8kT{K~GaP}i@UPwq3TI?EuMBSS7#4vzkE ztX*OtO^m(2KuB`*SJt~JmajQ))JLC}y(0#iu={yDu!~hEEf5LWctbEKIXoczUL%dx zC&DU)A>^1mho;1p!!hH?+^Yt1J~RZosxH@Wb!(st=B=hIdqX_##a-4;z5wqYxTJ4X zbK8$|^G~9(O4MPZ6=LuXbFCF;;mt9zQFJmszl)HpVGvZP{tw{R=1u~p%=;=E(c$RL zAxP70h|S0i=+BWH-#K~VphvtZrSO@O-fXM7e8sz5(n5nO&hveqND-zD#3ylNy=aD^ z@5@QlATS-kA=E9r#3!9%js}wG|Iw^gh~xzkR*kdv=Bt7)yLPAEP;Og#L0tse-S(d$ z(}h2G4NdW%cVDq@nXM$({7UC09k|^JsG|AlSyjR94DVO&dq|cPyH8f(Dy~ss8et;? zXLUQh(>OoM-sJDoeXI2PR`Vw46$Y9PzWwc2y&V*gYA3K=f4crxiP~2_Lc07N3V-KL?rXTT%;XC30VIVBWPeRWS||yp#5J3w7(j=xsUCLj z%SbM4ou9geIg3GldEy6OA>CEGr5&1q^7$gPnqiclZ!Vz4;yuy=3+#i63?(PI4zuS; z|0@0D+>Wa?mQBd_F*FgGAe5WX3U~f@=eX}N42^R~_{?TVKqo4bQ}m4lHMKk3GNC`< zi`psozkImtNLsA)ylfB)Pvf|DSbC>VqTxs>aDv4)MY3rY!m>^if3JAJZ zLQ`hxYu?c>pUWA$_&L}qMbA~2e#2K+>J2p@nD&ujVv#!)6 zYCwmOQGoNfXV7*V{J`{z6@E;*-O!pl_x1+$;Hr}GA-f2f%rF9cXypTP@+?fz>Z4s^ z(pF7siEx3S2)tQdMA?AQ>K3^x^6&2=PP_X6{zeNL=$I5S3=?Rs=-+s(43S69(<}$M z?-~<)dD-@*o2ed^Qk7_jUX0BI1Ds`rYeh#^t*$2}y40d|%8QjOL_l99T(C;V?X?JL z^mwSnVKK5x9mESYBEu%%#CfrO3qbZ?Gl2u7?rmmHTTa@OynCtho=xV1$f~6QASnyA z?+hxcuag3=-uHCKpFbt~#Iw#bH~14c7HZ1$M@BRuBTG(ucWJIu%9ckO?U;gNXwBW6huo=4BmYkl5 z*CQ!F(t?WrnP5|z1gEL|P3`@AmTic|zy|Sy>V7K-o4z~JZs$c&tyKO%wAe8f8x^DY z$gnBz0xb@O0&n_W1R5_@m;fYPYf09T!_pCt|0I`CDhW*1pZ;ONcMQ}#bIrB))3N?v z6rG1VoA2Ak6S4OQ5_=Y*tu3({JNDkRYE#r`?P^dfBDUIMZ#9der6sW`s&XPw{_NzT3z{zK0TA{|dR)e=YG$iajt)3` zGDC!&>}$HZoLfj{1CFES$KhgLA#)FF4YemH*WdBU*$XkthTtxjvxw4z{tQz2sR6r` z@#KK(xb7RD{Tue4Nc)hv>1fh^aiv!&!p$Dbk@(?a&fEx4+Og455A_(42xI0RlJuln zT@QVsJx)s>`czY@Q=w7*^$&UwGxIhv1WpKBtG3b}bbdRooq6*f&`fO~Eupj5VpP9p z>jxa6df5OFoc?FamNgo|8eF(Wt?42maaGAZi_?O_v)HhLJ04h8zp0C6>4(BNNal0# z5`N|QFLfnu?^#bQ7qxs!nId;{^1;dSf;c-G5OwSd03_P= z`+}`OS}5nj^$<6k@0msh4$lg82&iNGf0L7Y_r#O5#G6nNLc(uS-O%5G&2`p1~wjTS;;f2!xVs_}e6cA=9XJNlUbVN!|C#c3?x({)HJoUVA4Y#zUzkV=^z=MP+f}ByueACIhki=sn&#lqPXQhCU z`EWe7%$pl~jhurs)evIHR^?<@fEkC9s$xuN8~m#zo2Suh`@1&4t1*X!*!W>`^vN_Z z&2>Hghr0E){xjBt7b0loXYotkRq5<<`VfI0lMdhBMm76|T8xD!u&W#Qq=6!;DtoSg z*T3PaCS@Nh>QM>(SvNiHEcSQUL!=V34I6J;4F-ZBGXR$!TMIBdaxdn?HmfK6I?pp^ z*|qg;=ly8+{8RF>?2|IJB-_(yK&?aDMrriob|mS~U&dv}0r?=d4p5tdd9R1qFsO&c zDu#!G@ZVsFsc15M4R|lwxm8uI1fP+CDakyr(VYpJ>Z9hDA3C}pDZxAr4I9}s0sYaW zT`9!Tjl&hMFRvb%;D7&K-0jn073D|NaMSP>z1I48Xb7}BGhy<3sbuS>FAHNZ=1nCF z+7KVi2DYYSUu9!Z@NHdRyl%|r>+C<#Jb;nD?qo;KDqe4fi`(8m8^2CQ-DW^5U)Yhc z-?eMRyg3m;7;6#KziwA*8T~czf1FA$ZZ>S3&=Jiv zq%b+oU1x!tBSa%=uQj6V>{5WhL8~uPy)yZT$}tMWGPLA_dC^|5VFticn*)XJuYe{- z#xz&owohK3SsVNr)fm65jIGQQO8$x0J%`Pf6R{t7o9U_~CcMsnTpaoDRZ2R*-zF}7 zNXi!6qvXT5xfgO)5#%?In*BP^K;ra+YKL9B>tx`uvG}VR%%qmtC7Kk}ZFdo&JINY` zy=w4Y{D#-9{dt?k&p%Y{LT5nzQ)6zk*s&0yVerr1zFsf6-kHD6aa*_Z zwtWG%2xz(b-Y8GEcVbsc(8cGz*6)@{;>Mwa93L0bkEIGz(zJf^e_@*@`h|d7 z`RM88h!T)y-y9vqfQfM-!P!@ERs+`O6A%Im-_jw^1T>rA0SZSQfPuIm{u?(|#e$ys zbe!4lT~uum6fOjKAtP-Cyf(VQEYKObN+!sf&aKlt;H-;|LYJZsFomJKhbp7AQI+o3 z<6X=#4^;#d06x@h?~wegH9^`zBQlVwwXjIds|p2~CJsszZ@3o0o)2?;CL>f4w@1SD zH__}e1?OXLi0l)l@n`3Ag zi_kn(NtF7pyWDq&)l}5&6>}AT&hdZ}eo=ljuURvG^;AX8b9l_;RREg{Qxo1pLpBTv zRS;X>RWq&*$^X(*7Cvio*S(#d#D`mHJLUC_rkX`GJuiq0ldl4P2|@C`EaRaqkO;^i zl6AbXVRphBSz9Cka8*-b5;_j10z4Mzxr?xl$h`q1u^l5Bf;=!%_Rpi>$U9~By}2p@ zFOuk)wYK+j{s)kf(KLjbyy!oiu}WChkvWrMbnLxl3R221xc@5Tnaf}NBKCU?mG;Tq zRVAK=a7h+E?;KjoHsx^!sUR9WQ4#1pyR%{-od2BwCV42)7H)T_OYM|sbX$u`^4gjq zn|j0Y$}GHcu|D`3P;E)z+o%>Tg1-Ot8v&;qaF0)G{l|y4sYO2n?1^q5^6UI69vc(P6F(X#+rgCfI67U$2>`T=%a+XPp#db;NEd}sMcXIVDn+II}i{^ z!|5xj$4AO8mli(NN_FAe<+E)z9+f^GJh9wZVDk~tw#RAs71FQUurxMAMCsLfB%Rp4 zXk!fQ{x4=|^sll92BUw0= zUXNvp#a3%HLEl7|#OxQ>e9rp@90T3xLzVumZltd1w|Wl)fCUr|ZU2s86ZHL^)3ZLo z&R52X>g3T})&WgrHqU+YBd1bjswaMgx)Xm>6n=~HzJb`ed2|;qi;|Tx6%v6s@&$QL z#gCZ>Z7@bJBTC7^3Ui}g%9(anc^VfB1uJ_3V5dqUak#0|rJzIuOpl(9t=dG)0Q|&= zaj@XyU&~6*<|L-cbR^pePhn_^7Ltc`uBW}Om7y}DAJL*0DoQh?A@(I~*53&f4K3U~ z@H#k?X7xLNO@dJXlfAup$?u#jnGdvOvduG}VNW%%)UAlx9uov=(@_IW_?mK8{@5sg zr?u5BF>b;m)ZL^Ir0C*D1I23=7{kE5PU_GV!CkW)Lug(S8Hr;Jbns*co}E}Zg8Tf+ zT-xjttf9fm@x7mN&C0b)-v8wMv!@d}oI9~oUm$@?K0HI{SiEPtuZ5P(lPH19FCLb?Q&cuO$y@c|=6IS~ zRj&}<>jXu$W%0b+a)f$$B1LJ4a9=RiS&egbi4>;@{G6`Jb^Tl*!+r;~LGcxTHNyWu zZgIvuAANsL<48{&DcpstR_dqv=2#NygVPe_r0RM#yGPKvx@xR0Vau2y*6P-(oOsK; zm^JXHl=;%-hGuA0cxrJx=7`&9X2-P{JhZf!woS8=D+V+j_niv4V`ZFcY3cZ^D2%TS zGEIKgN&h$qio(-+W!JdNVe~U;jT&d+n)x>;^O1kdfW&3=U#3xFJw2WRoz zn#}otZ26BuR03>*2ZX0WneJkgBQbZVD}5;pd)nVEpl_|~P@)x&2cZ0Yjpa)DB1~`b z1alW#@zA2-H4WHTGl4sW2VlV7`2`P=m-a)v$2zCtd*=zdmBaXTB{M&!u+$|GbB=G`X}xC2J5ibx1v6}u{M2@Lf~mB13HWH z5(QN4@(0<}{k7R^Jpc1A9G=XPjb?Egp!%2#O?k-gOYu~^G)NkKr&bF#NTMDGkYuk~ zd86!5n(kpAIVqp1g$z@pg_06vvXw)L7xkh93&QlI1KVXiJS8rI@gNZu-kE>@xdhgN zf-*l|dnJy5f1Kqr0}9^$vp8MCf{@@8AMq1eOE0H3i=L8%krzhtVLR8E)63a@n20Bx|aH75^W8r1)^x)nE_XKyO0-`7VIW?Y8#C(n?T3d1wLj(uJ zOKoalv%4e4yqry#EiOR`FyFQXd40!`<9K8SXB6j$coD|g^?^W-k-|{q z*~(HjQSzj@jfV#g!O-A0cWy3p zR|$B%x`oPBpQoHhTtGY$6pBOJ2n7;q`Ae#~>&s1j#WZf!*&{RB46nLN`k6Y>Y%5~8 zB;4Ks7_*@0H78vf>_7CC1FF8nkNoR*vyDe^vz?0f%!2Af^YinYIlwdfpm`T?WXOIa z^tY|JaNsOAEOG~Ls9q3wj;)@B#+;=B{A_*dR&b^Pb+j#Mw^n9INf zZ38xbf`=C{x*OE8WS@$?HzRtN(oVN&Rsjl375mU)tjIP_%SbKH;)L{@e2>h!q502X z&+yiw!1R42K_jZ=qhCbbDQXtBw2&)ce}?t6pln*bU==8}(l0F6jJx}*;r)l%ub)d= z70Cq&Zz99-G~+Az>me}b%f{?9Gfn?AfNxqrsPD^s4wxAe0A zVWz6(H#dYwKfNUdue2#|9ev);%>lT9qv`t|YyIe8b0MUa#+UoKAk3dG+2`lP zN-^7*^re1%J&%1*&Zr0G-RnUP{VhvP`zua2b4t5~33Uu~j^PuAmoi=DJ@Dl z5G=oSH2j4`sTl<8-ubX6&D)YMRvRJ^vs2aA=V%BOE6x|`4+?VG(v$gYDEyL3LLFq% zQ$+P@opSDbf#!Zk3sQGuR33*=-+AHSa-Hl*UmmqK)L_MI?RBfSOGM81B0*ts$gITU z#-77-d-~=T!T$kl-PIFT#deEmJ&rB)T2HRE8-v$7;%#corQWBfdEXb%A3HfS4WAP7 zg9wS&c){-&O}4+f5c~JVGS^;x4AuEga`U2;CxSXd?Ll%@f^4d$JKY>7Y%?f}TPSwp zi8PZEZEWLvhdXNeFsl4Q(gCPWvR_&CMGrnBou#xC`-9*w;uQsM$jmxq zK3^PidHMP#?8MDBQevx&;QuL*YcF;hu0i8ss~1=wQ5YUSF{U!-+#x!aK=Zv^p31(! zMlv-;{7tQNd@KKk$f}2B!EBh-jWaoym(&aO-&>LmMSQ1Jzuu7}o;Sbjb+og_`h4u+ zX5c{$<0;A9n}v>7sNwO6%M+Kc3KX+I_{p46&azbl=!%A~yn8gzR8~F-I?}Lqz>s9( zgJTY{@hU9X&e)Wzn5=P#ZFZdw6BVHLg@!^Wv*;RcKc-4x50%w0wTvVwG>v5xLT}W* zZofF;)L{=Bzbnahv*+04)2-OoLl5+Tj~Q7YP0Fg$RoA)OO_zZG0aO<>?H0jCTB2Z} zW|^?hJ)=XJw=aQhp>J;w7QRc`>HRw5XzQG7n8C4?$b(A{Ggy+&eS;Zp3*w6@c4U^A zE-4i4zg`Ch15P!-eoHRY<%E4IlPr)5uS@@){q`yO2G*Rb}Puk%m=?-rSH8mv14+ z48b17P&XBkdOzKXix*DKFq!68a`V>i{gCt2cRqhKGMkN}}-$`rUV8d6-UO{v~HvxbIB=TjB>@B`}C zH##0$BtC>ziHC>#f!!`S6(95ugU<0xk|x%$YJE6@y4m$`9OuH+`ccTb>PfAAC8xii zrpwjuc}i{Ce-luhGzcHojhr?!7f~MG>=o{q5pfZvF$04}W^OifWmQjxKPD{##d|W@ zUI~~pn%WL__R9;$7obM2Q)2Ckx+5~S)GPc0s4A}^ZkKpQ$&-wM=Lg==whf$yPbD86 zX~1SSQoo;A=6fWrW3AoG;ZMU0$6Xk&M9??a%>+%_fmqRcsfXe22n#jXgA*Z z_aKU&uIZ=j1VFxCNI*}1&5+j0L9q5-!nXc)AJd%BZwnf=M(HNP_j2>Q{-a_kdfwye zJRd)}^_H(f;W8VNEdzzRR`<;e{B`=}1Cvk1C4Rc)me+M>btZYibYkD}U$;O(>SpVc zuNZNX-Gi?ZY?!)pYA)ujK`l87if%7M&3HM(jlCa|q~Pu*&|q%yFdKUo7-s`nCI zVcbv`kqscBPTnMCjQ(Px7gP>{c6R3Iwmmm9}(B!?f1we3T{%Idxx^ zf{a^ZdVYk30CFQgLFSfg&rkM};)kCH>1+6*3E9FK=~&5KMW@M1eO?kxyjd|>x_MsH zTwHT=)J0k#?#rAL(trFSgu2%;Sr)-@Z_i+XQKqTbIm*Ubuy5ci;JXYWCP6K5#O`whaHvgX%D?j*Q7M zh(zV=Ib+?6N2*a$+LNRMq?nhYn{!LjCeitn(8;+r!8QQdcV>s)fni(HZRL1#*M@^;5au zYOeONcI8HfJP2{eWLa-8>1GZE(Y-X@h*5ka;fQ~M1w>9nU0RYsPK!6+n@E`j{RyAiwak}A2Qr{ z>-qivNJ&F9wN{1}Oq&zOmNOBr&9^M2m_$Z9(G+dwiYk=+8z8I=n`!|)&FmegN7-4c zXNTGxdY?2nspY|$ck3#R(?s3a+NYyIYt5P2DsRO2faWi!rUiY6A$5fgeHZ2-%KW%7 zp*Tg&a@`1S83)=G;6-?|bgwrGI^(d!@|;)uAi#(5$zk0M?C3x~MkKZx;jR{ASA5r8 z5tCikfuFc+fsa7xHkNj_uQRA#hmHe-^?`W1+bD{SNq3SE>4y@f{lW>EBZs_?<+C2# z>mCmEp4+lON-Q+0pR^aa1SytKW>EIoL-d6NU=FL>8JNl7cfGO8F8)&kAc@O*>ii=6 z$Q1-Z>VhTj@X>K{{!7DABy;&tvzc>=@uOndH*fBDwVC&Gj*o@Ngk}GBPgD=vJoO3oYH#S3z6fEaeg-i31bxz3Yg%_r zqGadf#!5Ez-{f&#Gd0t*`y32xz1;(rXRa$lfa~fS;KfcbAoQ>g#LG z9h#9=zOesRzkjd7=nd6Tx2O-ig+cP9-EbtAGiDB>W{=Xkp#6g<6FnRTmiME=MFGw4 zJg%3AFd~EUP&yi@#8&^xcET2Fx_Va)b}#Y z-{!9r+5E+6-p#;`9#Gl@)Hutu?228w$#uWD%QB>e!UR@P7`@!CC7M<0hY=f_oyGp7 z_3LX>7>=m*3+5~eMuyvazilI&^l=fQ_!vRDnh&}ZldcihHmtOKY>7vvAX;r>$>26Y zobfGyM|q#%W}TL3*%bJp=ri&#E0p_@a;a3;;r7hlE%V7w%3xgS?6 zFbwa5OGXRI5M|yBUSMF?qVQQ7e$5`SRsk>9$%YnDPo&Ci=x(iaGpt$8{DvV#b?kp# zxa1F@Am>-1_xh<~=s0}*Vm&yJDs5X4s9uX}Vz=ta5Nomzc~IAf_f zokQdVDYA_D5}0Xiv&^*-9%@d}M$?-k%eS442AtV`ekzlsQ!1c<j86erH{hN>ikmZD@Aeb9ED$tH|JY+ zl*l3h55RR`Gmoj(aHoRtC~+Smborysl|Q$-Qq7#Y{w8aZXRxOA3_$l>fAni${jd0j zNij?Wvz}A`AH{;&tc2+&a+oBeCONTaYe2&NAR>%@x3W^{B`19<=`FiT^itKG zo63E25b-C6wB0$)`nC|Ct-|zRQEz^&|6uib%>^#?yLKnF`3B7V=3t<|Ll;E&9JNyc zn#4yn(Nf^8#%;Q&OtSm_2Y_kQvzrvn31Qp}q0*v>lb4{aq;QATboBQ2O}j^Vlg^Qn zPhi#@gX*$dEcg5Y^X-Fq`V0q%T~5XGJ!~PAGj0E_zVC}Wjka|NI6gu=!J4v0%$4jY1TY}6>oI1yHE_t zS&6?zneADyXiHLz&_;8TF6=5Zgn}TRzj-F}Dcfx2AvTBH`5U>%#ejLn_Iz;yjf+i8 zjgOygXB)g>K`A>c_x#V&mno)U;L~up?IjqH`RMpzmb})N82W%Pne66@qOek)q9V?+ z7=iLDecexg8uVpX!RTJUjy6H)TC~-Mb|ZXC^V{}r@e9TzL+$YPT_r@BIWrLPInxq3 z;<{s26Ut0=&xMMqRN#Zz5t5BoJ$|kENo@@r0U@V0d)@&BBH9n<{|7Lt+8!u78z^Uz zhq_3O%dk+!Soh{ltS^Gm4+5j?0Tl3ASkK$Gg_Q|w`)Q*|h+uSbq)`D;AMeo;d{o=# zzuZk#)PJ4ge^BH({K#E4n94QL@-af{;_LY^h>zks|`iT8wK}qe-&2%Aq zW>-0dW!~wk)3m{^h&|qETX8wF;68g)M^)&c^A_v*-F|weoq2V?0S)B+AHeAipK$BC zL{=o8!JK`L2N2$_WO_&J5h>&oChf1xLd9sNL`YxhqTZl~7-K|T7X@iQpLd@Sw$6EQ&-&Fn&Cwi|(w{R% z#gQOT=|YimM=ggkT&W)3e@p36OP1E|8;v8adIMhS>`p2MDd;;^sVP{Nyoz%4{6R3O z!<#qKmYLRirNSt?byqB7)4$RSPK4JJzT$Wh;Cy{%?we12DuJDHhZvs~Y!oXxG-jc7 zH``HCAz@?Kud7{ z+-1xDfJaCgGr07-*>?Vn{@{Z#a^&}xsts4p`0Jn@t<7$`m`xGG9$pB)6xF(+{4QKW z$|bhm((ln*S&@-&xWv4@o{z}-bHAv^mhndqvgd2heGIZAV1J2gy{%#w&tqGsE^v9L zI(jARh7{|jqWe*$IW%7Ua?S-jJUwlHGv#om?&~dGn=&VpIPOE&pc3#xrD!%R+*w#^}TA-Auh`(^r|nwKs*UgWQBDjDSz zq25VuxJXgR-jg~>V`{mw;f{OHvt&bQY8{dh3cN2i11tO0bHe5Yjc^8~dcxWCDOSn~ z->8`l$4{~i^R!DU8S--lm=Yr^AroC; zd0E$z^$I_g{IDd17B&2{b~LMIjvb~iLipiYuQ|vANPt^Q{kRVfaI6Uv;`_}uuGyU~ zlcQf-RIkM=Cj;^5z3X>|kX19~E^ok4wrn@$E+$CL@Tv!W`L5WIn!?WdyCAJ3XD02PbO{V6(lVQ^zn^A>)ozI$W z1DGoP#-tJ(s=TaEHo~Gbb)!V%{F!a2Cst3^Dn#3#-qbgE5$!pUn?=X8oJCMXV<`aq zN21|q{(oh9u6ED*E^I<&{oZ(C^zRESzdcyN05EsN7a#c?TsA#t5)O->g||BFWSEV- z)a<)aBIn@w-%hgT1_m%X*{1Sh8nIvRClVP!s70Ro@1{q2ZXucVX?k>DW~VVk)kqx# z0<3S?1B>m*Oqd0@ZDyPt!GG~B9UTrFa;#0{Wn?wPQ%eTR9!M;wbQGrMD=&@CR$Z!oTK@&sI}M70AoTy)0Bv9c6x8OG4OM|yo;!J% z4mngQ=iEZG@k{%MV*i~YFYye*gdg&Z)QDLa=UUsk!bb$SEwh7N+Zp#kEJTuCWQzz@ ze|q(WVrbaTf^9Y;XyRn?FHFkkpazD(-QOI$1{3asKe?q^VUF zO#{KN$+;3ou;dnRI|&oega_ix$*^MmoXvY;CvoU-C3!WJGS=h8-77~AtjCO2@|U>0 zPFd|bd0veqfU~>UQQvO73A-Dmy0!5XtgMeJ+UDpxDg?*fh}ULnKo^K{V10(fazSWn z6dbf%s-3mE-py*zDj5%r@PQm8BAH=-;vyg#@r}=7LfX%t_|v`Dl@@`^sJ6w}qV+Ai zk_dXTkk9#MQT{oK_mczSz=lHX$#9|XMh;MO2w6m!V2=JyhT=rs$C+kG2f{)%j>x2U zLD^&tYQH_vN9)4Fc=}czqjltX4cE6eii7ZIo0%SdJ58I2y76NoIb8>E_!!4!!b#d` zDU7FK%6V$Uao@6Vz8yNjhe>&qp38MdU3!N?!_V@wsgjJ zVd8Q6XDL-zp33fR`*78^qEA@ZkstbSUdT2mRG#+GGX6Ycv$4fFXg-oJfytDPSL-MS z1Mtlj&D;~~sDnp6haH4o^e&gW*-vF=;a2PPUHJd&K+)Y?e(X|SRcGMGnHXxIm~CcY znH6L09=Wv}w9x;vj#7rKv0ts1@~FT_yJEI!7NVW`v&{N_v8j8cjGC}9;oNt@j^qsH zn6b!fWeVFQJxZjmmMEzF3C!EIBiWu3RQh{fxWNIXK272yLyBjeeL=68#B%FCz)4}n z1{EQry3rUw#>sxd7kmirQxf~=Bq*5%7uUV-=wmBUpif%7nKcp8{t_&ZHynE=)M?4H zuZNIW%YG;pIr3OC?r_Fg4zNOM)l(fv#tMxHB|K>a@{f42JyYK;F6Jei|4<>vqAg`Y zx!>VdXZ_WDi*~bc5M`P^Jc9)+X^Z#SF0@f>ZJOrpucjmul;9mHgwTS~-V($RfZZ=- zKT4c>8f*O<8R+Qf?YLpVVQ^*Ej{AA`+UqjamuURFB4H{A7&6c^M z<*Rr~^k?%MeNWS^fHiBm|LqHAL)Rk!%6XIIVW*m&32D^>wKre(?u>W#dVCZvU zlA4Ev7{|4RNYdueh9oCA7u&%{vU4ohHyv4RSLJgbxJq?BqsJQZFE`hx-2E&@UjgS$ zC2E<6+$GQRHEn-zh91sbKiW#OOCRm@-n@KifuzYDAxMW3_55C@WIhC^gq8LrhYowt zhAh7_HikNTbEfiZNZ0m$8-4i&*WiE{J{)_j8i%`Qk{Oa{t-HfbUU z5ZhTtQYz%m^X{bL(r1+Mmqpp31M zf&)r(iQwTEk6&5I^Hw|;@+przJTt%F-R+LlqS;$1mbf8;|15sqS3%}lG{kk<<%jI_TZW3$!pI}Ih}4V4|VKMMRl#}B61M!d*Qp- zYQ6|g1@+J z-VngmewA_@%C%F0?;A@kYI%|B8Yvc5zS25=dp+Zvc7zIbd}eAv7O=66TJLVD@-%{b zgQuH2puByER?b{lbNelGGR%%sc`$Q$_%7L)fO0g!;(}v5A2;5zL#a>+HEwTT{;Wyc zb$A|3`9tg{o_3E6o;EXh>L1VT9nKE968ezE>vnq-?eW6$*p_my==l_}I(i=D<%f+o zerfK1OE^bdtt8}R#xRMQ$0X-F;Yn&N)OP;%B5u_!%#-7=~>_BO&^_hc$jDO#u zcsdgb2Qxl8xdA|UgQyp4)2maVEGkBvOX>;8Dah)!55#8A(42;h5e^KCt9Of&=4tpTKlETLE3~x1tmA_(e zkt&R*6Thvk^dXk>myJ`ZqegAKFBE}hN^4~Q!_q=O0L%X5@VoN$ohQ(Htq3kDehi7Z zv@{G!dFpxoF=A8gO}-q3{sCWd-OKTHKrSZFoYrD)K3oy-+MS?%kQ2F+UJ@>8G|@|D z!hi{Tp5)p-)K|ziW-{v3-7p2U#2y`HeUc?d9|;}>bpFT+m9yIsk$Y|8Sqen5>2M^e z_1~!A0VBL`VsiAc!JhOX^FM1ov079vb$n%#lGHkAKL4HLtxWpx8b;wfz;`8~vLIJZf?XMg{7#YWJH(g9Us`9UNDeYj*T<`rjdjbvFV!JP70zidV_$9V;@^jKuE2_4(H?_$6C z0w<)H&VakCM3OJ2*14xI%7#^Sp6Z>zFfU)ZBqir+ckHHu*~`An5XV`$g{G~PY;+pR~ml4On2H{=vfEve6(eE zDH&Wr2#ffc5qKw`=gb?zDX%az7&K|8I{`m)?sbZldhM_TC412G^KTB@jQ|9mS+R+i z{;Bqqkcm39YzFs%fqb|30jnB*KTbG0w zu#k~lDl^P_?GyB`njE7RPPR>)GXSDt?+%NrZc|1?$Tg9;WD=Kb8&7y?r;RFJnOgi2 zSiNgCHpB!lS!n6hrFe$0-YHz(^tIJB+FNdkj89mp^(G+bgON(A;0+pm4Qa%Fn#4NS zok*4M_IN>6E)6|^3x+L(R|*oa;I#cPqwg_%OiTqB#Nd-@^mub%Xud!u@ct{bV(S6$ z8hT=H=OwP8;7Ai2)X8}(<(T zzN^@8;hN5{wV|TZ9ibG?B=1;bR+|~H)8=Q-I>1>%vIue2d*x95P`+^vsk+n?Y}Jv( zoFw8EUUsswobe{P1_{L^r~xaMd&OU6h)UA|Q-pS!4K)a}Vzax%A;q+P5mSW;F%&2G z(mSXpM5a2IVsk$K=b5Q1eato6ieg&`mM`A*P0}Do7}+9#aw%Jn`U}eu?#koh4rPT# zM3d3z28*X<&wOzyFGPlVO}?G9rpr9+oiz)Nl=v>vd!zGZ;otX?E&z`$>?(Yu{(hJM zTWzG~Z@=D?2oC~kSFkMH$vi$tefa!U5`bx-|9=2=`|6tm>p`+Qy}X#O`oEvjHTvXw zU&!6;UlFui9a_ruqa&hBT_*q8Rf*C39iiy7Bk{Vt52h-8jyePlqAS$Xwx zn;D3GlKY{w(D{cFP{un-@||e=Ce}hb)E*G<7(TZnl^d2*@%HGa6~tEV2qp32z7yAL z!DLB&VhGGF%U}=lB|_TE1P2#Hc#)nCr}(2p)|O_gFI`*-5?qSzY4!{;QMeSk&wHO5Wl zKXHb%bguOZDS54lvyscn(#G>i5#{M9I8#Nvz~zeNd;71a=^R39uN`jV%;68i)>;aR z?_3@4z1U=K8!eB^W7n_wOnJY`;@zHwK3t+fF;~7@dY@^SbK?H5gX}YuSki>#3U8t3 z=b`~-TJW`J@VdJdGXsE5Lo)>o_$1G6R5y*5HvoMbIo2D8DJN$qztv6_4c_*sB>oR@ zw?Y~};WbRdxcav7axbc8m8~LlvO)WQ06N||>yIz)qpF&MfckNva;4H9xrE4OafbK{ zKy(85?}kT*l8C;MHxh>l|8F<`YNshx*avRHMahJ%$t{QPf`M{$SxN6;Y)R^@03w2H z%@GPrS0GG}W{J8S94DTbN0RKb!_}Bt;!G0fJU(JP)Ak6~cYM|b)N3uqy5^yEXo4)BTwv5X`y_+?ECaf!o*yBI za3{b0%V^EVy#t0Rw?L0bkD9&b3Dy6J?j1dWC5`1enJm0z&?i?~taaqLv;e=Z@^Q1gS4t7&0uN5Ng9KsRk{>V8OfXZ#3ar!|V6;yFSnj?>0fF_`uJ z-;)!wm;E`Y@G4R+Hev?Evpr7Y6ujq@tb9I2L*JZW*eL!w&B8!P#N?8w1T9!iHDqRB zro+=DGcqG#(e5RX%peJ!-Y$j zh!B@xzlfKHjLHHE#ef(Eqjf%}!TB9=>Khw$d#J0%!JfCJB(@m?MWgR~bZ|TsPE_6_ zPVMrG|Ij>&{U!{`<YLHTx6H$<97*)|?G7V`N3!pN5OvgL zgDnSc+wt~RKA1bDVdc`d9BHq=CmukzlUKBpheY$OziJ9lTE;IZZT9J;^Og#ibU2CrO?1{%tU z#wqntKCecgjdRBZTL?KDwfsV#XA9yW1-~Q93F0Kw}^iZnJxG8v7LzSnC&LGqO)<$XRa%|`X_}O@cWTPJ9l9zC3fVX+WtKzH6E}J6>%w{q3)TYfWGDfQ`f|F0i90%D=`HDj9bRs1WAVy8hlMwp4`xU}F z`(orM%(Mri*DGQ@f*`;iSa*8w?kNHr*|$G;SoT>&*2>eI;XW|1Q{AA+j67V>(Ejfm zr-#+(pN|QfFRwR;%pR<~zTvvF@SPB0dTWH-HKio`?s1F9fJzJ-eXz?ScPpv~FJeJ0 zrA*>jUoO==^>?VVNt-A3^@h#cYUX%bzeb32btQivx4N$9&U~iZqEpjcYl$2 zL8hnfhp+U?D;UIl#qwp9(FPw&-McUR(}kbx%l~mO5Tbh8>KI`jAEX01h1nssbW+b0P%D^yX@FNw3qWAJM~X;Vq*3&vRzcR)DQ zDVYivRfN}dG>hPGSbtL>)sf^Y#&vWMDtEuVan4M339vGHo6p&kp5F#+M-?wt`c2QV zn0o^g0d|w;T!+lXnfs@0--bQxb#wkd002S%zG%Y($l7=$j8a7jiQYs7aDZ(APCa=T z_Mi(aCPEt$2-t;LOr426L0@lLAY?DUbV_>ju;BWfVu(wfjKWO+0Lw<&zz#cL^HL)* z-^+}4GJWBm4jFjqNRmCX7-ZVW2J^VK@Hxi=txvo##GoMoiu}q!=rPEs#JLfyOs&Xm z%ohvXf5M8bsVEmPSxm zdjcqge;vP>=5H*{<0^ibG~x3HWZuj7m`dbr`T?4TNW;JyMl+}%eqE{*{Rk8Qsc|9| zCS2eGS+W4`Lag1bSan_pKoab(KoRD@fQ}4hvG*0En z!?FJWU=jEX6F?Cv#u&1N1xX;P5&-&!>qH~x^BLqB#tF&e8SW{#1Ug`DRU|7u0{Z7F zGfzU2NWlRB4sr?4ZU{7nCL^BSM%=&>6@++Ve+~$uOv0Roh7v*t0rQW-pC^^EOoT$k zjvHyqeqhvOG6iK(2``<_LvH#EP%#<8zIL)GY>8ZDn;kKcOok|Tt0^kPhG8nM<~i-n zNr`d2cfJQEMLcKF3TwzrnEjg zKs`sAq&5_Knhui_!o;@o)ZlPvRp7I*scq-RM11G108^JwwNkh{vM|he!K9Z@Mhb-F zXYXS;tFtU@H#gn~raICys-ZEukE!5LGLg{`6DOH~Pb7+czL6Tc;h2y(B8hHpBSkVV z4byKqsAIgiXB!oPZUCkQ)zTn;HLz8EKb1N3sFpk{fWw-eJGSz|GU3>B&lJ+zqb&j4 z`Q%a&Mr$WKci;u-&swU`ybgu_;5h&u;Zkuso*R)N#X>FCfP5nLQ{13zEcV z6#F|?bS@h!OXU-Eu(J{fJky>wia*^uU^WP#2&7TxnAGPZoYaxQxG%|!bt0?l6lV zn4~8?dr@$)VmLy|lO`1ob5lnGNYaLHzHmK-RJ+vefGmV6dRBazn#Y+IRoXobD}{}x zLH2hL#^9L(6r}CC3G3RmSs>)rT zDe|FAFr;gkmj&D%-t^ns_~VOekXyK;m@FjZM*_(oW3-QIy#=tlk8a{5#&hjiR<}_* zhI|!2d3~zJm2%eeyy|kK?NHr?D}{+=M}*~AFH5U z3{C=aq<5;gtR#~mTmhbVs3nZY{-kr)ij!h}oXkG{af*s*9L45FaLd}57hs+;j~b1+ zmBVL6PF-D<2mmBUIfG0Cezwt^Q74*-u!1O=GL#1n&2GD`t3k&LZc}UybRNSfubMmzgfv7#RmUy{UJG zP=kUx8m||d3gJk>^{HS|A|-|naX=OsnN?kgE#I2AYj_b<08UO#X1Y0paO6=AP_B9Q zpbeLi7jl&VXE~~~sAU-$CXtx9!59anKHg1=%OLrH$fN~mzj)Y8$Ju2~ref zo@s$8xH3Sf$^irdMJmgOAbiQY1L;-e!y*yFo@hwiTb! zVZo?icVa_hJx9GgSfuPoBPX1S0DC4jvk+4tAEj6X%%MOYT9QRUBM?fI%x4`b7H_jm zsDx#?!yYLNu?^<=3NqlvaJ4)6Z#a<@t8`)8>si@motupNbg8`8wuj7PxE`W_G?EBc z<^$(mhwD=ZIX;9{8%df@qqb^z8+?tL1YCu-uyy_#%bs%{peA)CTd1u_<7IAs>7r-(y7U0S#pPHZ%UOSWWYSo1;)T!=BjFPc{UTubA>{9 z`c%jm@Z*Zh@odcphi{oa@Q8s@#*dypAnOf!u?UVLEW{6fmFM#P>ghaB8${N~$E0Nb zIj(8`^+Ziu8fr+YKJ_eBV2MaOXj+k1E6pkt!!tG>n#^c((b3l#1vaJFT2|2;e56_&OA8PYm zE&?AcI*fjG>Ne5G4U&0;l?XQ|P)H$3&+ABsscv6BOJ-(~!ao3=;{=}FX$vr%y6uga zyKihZ{(bOA6kFSjZHh6yN(=;L80(w{_Wo4WVIP{_W5g9g$X(rbl21J3dQb#$!2VGd z$f766Ws(uNk=$U@;4KndeLDtRSj zj!;UAro!xqI;jNrJo?kFh9n|jBVn<8sNaUiKg1{j0>}w#S52hB;0AqZs`5sPT4Gl?^CV^ket?QZ zh8^tQTw+vE3+)?5N7Pb8!RIXug{8+RrNn3QBv1pwBN+(WJcKAocBmuyQ)gG(v5%VS zKxGKZxcm)1ee0Df^M-C>3~(?zWK?EVNf9!UsQv@A?I3>_N&t~#S5hao2j(Ok9DW%e z){_W`8VB0M<0Ns{9h#h~40%=n;2)PNKSrpVWN=K;q#3U~D2WC~q!ct;B(MoCk{60E=X&m?xB31W%S zN`%UBg#dxqza&x^)yo!MxGKc~8Of^hn4^g22_{Y#Amfhb12rZ9MRmX{l3Quu0ow+E z1;8;lbzFvK3&>O#Fq!yXNqj$qJ7Vt1mfaG$z1lq1k+b(aL@K% zGXM$Q*Pnb~8bC=f*&?*8&iMZTTOd$BI%2)UAu9Q9KH)n^=g{@3B;4nHvKK$ag371g zf`64)kx-1Yvz(SbihhJpQRH(^#DopW{5YzHcSuwQAOn!6wM`sy`5t1G#(4swM0IfN zHz@5}nGEuL_6?lADy-75-IOOadR58^1_OU~qq(=lx)CBhwp=O4Ls+whB)c9D@a^gEnm{-a6nI7( z6QMkjRIe`sv~Lo)m4AqiF;14z{h2g`A;f>a^yJ02zN0F}K!W2#Mt^)O_Zx{xw%DYLy@~Y9tCbg z;Y4M_edFpWSZ5s9v)o*kMcT)cwvt(|oy?WPsr)V&&tr!Y;#(go?u0^82CCh|x zypB3iVe=kqa~<@YjDk;m)1iv>SY??(stvNW+1?h zwF`MBZH0gt>O~|45vg4(x0R3x#XWUf!ELj1EQ|AJJ!@VoNFE|rl07OZEl{sa8f3DZ zUMjzd)n5$C2{{~kR>XcMY1S}Md-~Q}*ayKqdsOz?QMt%CRvjvknnu;WsG-b_f|=wF zYiX}6Zlm8G(Us#o9M_%6WptA`NeWbvz2&(?eath%W34-rW4nxr1EKr4$)J3rVxC7M z70g=d4p@eef<<&%e9_!MkGm{~2iFwSC94*LeX2AO{q;QOy*3P_?U8_bijeHKV)2ia zk4lWm^9EtTsu6A}_Y9)&hZw0CET~@t=SUWRa1aVvrEWaUjB~{_KjF0=8s0I%KX zX@N}xF)NNc3YIPJDs9`xP}L(5<{`&UgbHda8A}ZH?MMbpzFP^9^1s7ZWsxSc5+US_ z;8P`qf&-6~@l}yl+#Kf}aX=R`Wq^b@BbtKdAVQPF4u+o3_ISjk9j%OtY%15W9gH_F zO8d|<&)8%!`G~~!BBEs6rZdQ?Y%km*M8KBmR@N}g!G8A2ts|QkaB?D0cQ?nr|wEo@zzh(JLtW&@gooD8^3}f#Q{#eJ)rb zR(EmG4A)GN23)sVEG^k&nq)x5Q>g^wpK45K`6J>LyV+_n+sTn6aSg$S4RMdndRNDW zR``#r1UW@22W)ZDyxSbqBT^j)0t+NWjfJiw!_MPA2>f(XMfK9#9&8p00%=8zWQU7JrFoM3ZWR_JrIjOM9ZXKr??`wG{w zPcZN9pl9n;h%H&dN5~fkAfI7fUYZI8J;AIyJ976~=kDPCbsRjMQR5JW>Xb4cr02W0t|{ zDrOK$s}WRaUTk?wu#`OhQ~@K2o@cf@9fEB(;ZDQIqxXn6?K&j2ZxQDyq7K`7!`VLY80qs~BhVUW z3o8kcK@E~yZWEx+ao&I>Rbcxg6Cf|RDuz#)6lTF7FS^pYTb7L!qA|t*^3U=h&;*Srk~ao#JwpX( z_Ygnv;Zc=~%4`tpz<7|xN{_;vNM9*F(T6hifFGt0%zdgw^U;r*%L5aTV+_TIDIht++TD z23t8J@HBu#NH)5{KqZgL0yZ!ygh(QIxyu9l&nT%JV06tr*^&^mMU0b`X7~R9X@9LG zax9aw!{oE80rKqmMt;1XY5;t|d1G=7r0|$Ny<2dli)sMTx-lOpJOhtxP|<@J*t21| zKPk%}T!!FMZz!y11wa_d90Q(zs6^nJ#>=GZ8+jI6jAlsV8Zpa*HZED9@G^lpn8JY|<1(S&|j!nAC;Zy>l_D5F*m=l^{CG28w8Zf|)q|_qbPb|z1)dw8+s}kIZuu7bJQ)Kf90D={{0)QjV z{s`UJ)W2kQjDX4z4w&TCQjE630o)B!E6 zlx+(F+e#5nxYL5Lbd%=`oF4TYY!@xiQ)QLix1)48qy=V z!eg3>G8$c^bUkVtgkw7MojuqW*Q$u$Eu{L zRhzdQ)-~3xZ3aP;IXu^j!{R+g76oowimh|1-P}meB+NV}E#fzp^(13~k&*PSP34i!S;_jEY0s@3q0DxA{{V^2#mf0Dm0ser+GdFO=+4cjsEs>!>bcXphUB zFk{xYtyb3YCQw5wa;M&acSkp2t*4fWaHn}4D{2;5on#4^dS}qqR;8g8d^2s3axvUh z2&cTWQi0pcQ=WQL5x#|Fn*)hDVyp-wo;{MBIO7YZ( zKBAj#G^`mX5UR+ZF!ZJ|&;k`zxye1L@X8Y9KwgHH*%@wP z&rI`9l#e;r05<$*+LIAs=JPixA91-AQs&!wvnk5@Re>*<%*94qpZ@0IdTpfe}NqB=yZm zm}K*V4d`)?YO83Q?flrXvM=5q)jgz9+(Pb79CJVy%yG1_$sQUfBjz2ANYE6zlWS!& z(zBH=EkTk2z73$2^ggw63$|#L-9AS@d)|OF)+UV)&Bk)0(yRciaCyaMOL$}|7b6^1 z+fDoOIT)ZtwMD>EK3rhZ#T&wfI3qlLDnw2gjzFp6!=NXqpkzKsRoo9JlkH1ruFvxA zQ77GE0Seo=BoZoqp@6DZtbn;=&zKah0m#};agN+nv7adXWo`ce5VhAR7dIqeeL1cV z8Lp4Vm!EF&UaN8Dd4fxqV8_2Tfe^_xCa4ilYOxr`0qacz2a1&jd8FBC6GXYjY0Zt; z&p}N>R8XUH{b>xlV!4;SY(;InD|XLH&ahIlFC5oFWSH55{9Na^y#zKj?TBztX7*WRfjZgh6GvLtE`5)}o9rfY9WfW|ku z2c}LdI>lvZ*UZ6oUU~ehe$)uz3Dl4Qsu9)rWCbqGjiX_~J+euyxK725yy%sSWVizx zLY~>{(y}yMq;g=8cHj~I>Hh#4*|~ozIY|yc61G3Pg;DA1O=iHB&=(OL0183@Jpjue zUOQ63m0L!4NMv**kttICy}fClbS`97B0-JYPT+`t#**15Si{8-^5cgr%nnhHKQ0e( zgGdQblx&uk+kRg@X<$$M32{pTxLDQ#@HPuNksr;F4oB-uc`h0zLb6JMPFbEox7!%z zp7$rqB6nvfpCrF~X~!VsPy?ZkMu@aPym9UfB~0VrApZbL5n?mNhf)T>Hy|0w$p?(~ z6$Fuakt;EdS0Di*1pv1=&pzUG`3~mXN$;Zov;)5dvVJflYovf@! zvE&|TB%91)2;S|INjPqwfi&6WWspWhLAsR=L2u1!GfbHtJ=Wd8soQbMZC z&cYz<+4IR#SbJuaH2!08JdvO8`iy}|TAjXj4zePaDatCi-OqE10BD%7 zX$-}kN6L{t5s$w#lCIdoi5f5$=88U4liMXuC}A0kV_UOy1~3R8s?vX>jF=iEUEmQA znVf8r_@wxWJ5%Uw1jm!z{?kQeXNnoCOQp!#- z(t(V_G65e|0-+^|{p$Yk3~^RfB)3vjf?KztsAH2eA24P^)U5&yz4KT*(yTEo;erxR81$uEQpKbl zM*vgHNfoOy;F3WE4wMY6Vk%1hH1sH>H*9AWF5fYClgSzSipRW?Y2@hbe&A-H$OS;#da*JVpih-V2VIsX&NxKLgeo! zoSMp&bWI)RSByK`7m~xUO3N09$)#RnH|)CX->gTTs+m%TWrSbTvhHt&7W` zBxQ{DB=KB#iabFY10iwqbJx9j)}yaoTwFUxD=PHjrD|Tsd*Xi1qu7krG?Z%&d5|%9yI3V_*9;ecAT>Z6CBr3-l zC%C9??LbFlMPR*G9cz=(^<;aNRd3!E0#&~dPh>})72Pbd6G0;X+$^a?t=}|BxQ)$Y#I6bO(mmH~9Rv0|;4FE|Kl6vGG z0jIUAzbL>F!5*~@x-pa}BW5$xyk-+I#|zMVPzCsaNZSg1N7kdZxDu&QzdANZ z#ZL>VKnEn6iDB}u_b2+ffm7^709adNxJZKwCPNQ;f;iqgmMVv0@O|m&b37L;9A*Fk zJajp&OO6ZeAS?GYz{QSf?Ji2jAIK|?dW_bksfIe!* zVkj9Eqe5<;GT$j($W2|dc@_ET+OoAPX%>CMghau`7I$)O3coVrf@uNLMJ7<~ZcR@d z?2HEl9<`liAYGT_KjEEucCtFf`ie43<5r=}rzn4E4_&-?@qYiVKmfFo(@YdcF&ldvNS>OmE; zYNhvQCmz(vI?oOT7LhcYzH^_H1IJEAL94{d@;2eSe0bv^{LVqi2d+7&G~papum@Ee z7<|XL!6kY2siBH2Z~5a2(V-hts9f{;)@_tNX>yyDcLfr-BRpk-j=rLwJICkBQ4qJw z8pvD)9l03#)Bwx^?~i-9h$vOsxhz|f3HsHNQbQ`T$uKgUz?mCy-<9mPo@$ z(-qh}rUE}sndhxZbLTvh>~L;2fwDDV2;8Vq{f4zEiaNk_b5IKod8WmUm^`fCXknz&!k; zI5dJNk`uOVsybnLImcWzAU7Udtt5e$a8f{Z3xSR?k=l`j4$-F1otO|e47WM%ywFK5 zCJf$Ro3*i=7Z}H;38ooiM`n3EvJVo-0OuITAbQiFjS;s*HZdG=(YW=xfl zSyeIYR-Ekw#yl`+@^;~)AwMxd3mT26fK70rzHc}-)b++iEEf>VGJz-q>P>5TQ}g73utdPVz)#GI0Y8r-p+E}*9Q)L^@KkW4(nA~`LD&(HN0UI@_58;e+NiCnND3pe0Erz*u0 zKg%3Tw>TgPGoL_cC~Qtq@I08fCuqSr{6IA;MK0#@_qiYqt(^4yY3&TSED#kqJDj%T z{OS}5l0+zsK{yP#`tk)JJep}dvT!h@)_v5=ozUgmq2r}baVw}$>5Np3BX8Xh$J`pA$)Gl zdJ-v;Oz51RLCrVKB>{;t!-MTgp*J5e2M3P5C;=8(C2zTu_2Q82Mgx*T&MHX5$0Ejn z2)QSY{8O55FO`hBJaO8P5=i$58KGQ)F@sAKPRzT|Wc31-Zp3aF?tVH|h^|>s$QJ;d zjLFDKVjmzzs6`LnWmM5EfkrfG{h|wQf7b_icHa(09GfoRY>?J-nD!`7^gmFk}ZaW=khCD=VH9tP}nWNjZ0qtJB;H^g1 z?#gS~T&S8uv>rI=UpnBL>bx_pJ+eb+#FSRZ2cV%egyP=E(Uv#M71`Kx7C;BqwC}AJ z`X}5MVH|r`4dJWteP?YFe6j$<=dNqB(r04>MBJS9s!Yk8wX%O@-{fQ?HVt$VpEdTO z(E1B6*qBz>#`zYIMfjDJ6Q-rhh&+l~iOL z9MVAR1Ob8q81WV^l2en(?11?-C>O~+d+*&AzC~glTt29Xt7`Ima zD^RR#tFVK`XWWhH!u;bQMF38>5!|4J{p3CS^TsMGsME~zbBDlEDwV8KtEoBj0nJSt zOD>|xGU0aQ9Cx4ux-BKPGxH&)MLU!#I3!~gDP>VQbvuYApox&GGn2c$F_*2Tcu8Xu z5WRis;h)ZpSt2N^bAoftSCx!`yuM=*aZ}sjlgdN#u-s3jAq*3|i6Ves-=KnGf#<8nZ9KOM@nEi!hbR#TmbnZtTs&Q=zCO9Br5_bY!XdOxQg7m z45@8^p40(xHnKKx%HuVa9k$54gYx5}3cTm{aiWi#z71Gd6`$Ox#%TXahmt8;@)n@n4T~1@Qi#5*+Sr-1g*}_Ev4E z#PRZ)@UPkm;1Q-ka6Ul8Z>Hb=y+n(S=ZBIRiS?((Fmp`D6!hd&vt&rT=K`ew@C8PL z0My8N6)dva50tif6pD`LCm5*|850Y}Xo*~KM@~7UgvNhfPIBhA(}SBW!eHWj!1w-jHQcgA2Oehg=Dt6^096B#-}+NjZg*4V z{H#~zBMM9M4@#{oERlzg2)k31I4W9BdLKdhRz(vs#Eg*3mx*WE6#{MnQ-XgpPAwZG zLTSXAV&p;;Fh2a$s@_G!te$c=?`GWkiC-~bL(@zm1n znZijEyrx2!X$cH6#DR`!Q9pUO!SWEQP&ZOoo^mOHVa3R1NP`tjC^&Fa@Y;VY(~+j+GRGCXzSb9yb^40*v?R%|6IWx#WaM%2VYe9mMi+klYFYMR-Vz z#_WIW&tRJhh|g<<-rB`imWxGZp^amekQ zHfdU8nGtuF3UMA-DL(l$0bUn3E`mFsI$ed7Ly({FEHzFN>EE0)fI*Ezlw<3jXee16 z8+UiW-2(8Z@gksAhsbd8?NR>#EMh83{ziZvrbU%ez(7|m0O&swy(y}&%e!oVzTA+d zamnZ~MOep|&Q3rIn=)9BLIL8DitKf4l>lW)WdM%+sh|kb8J+ku6eQt>^ZI8Wtw|%x z76T{U&&%^7k8(&Lnu0V#g1#Dj4GV$D9!kE#UTT5k$3R954ZVX)2^QpgR)5XkgGP$ z?0%yLfEFZihe;enR1ohOEKldf5>D_(nVcr#0?8>Mo1Q?(rI1FcB%lN=z!_xzA)icC zaZeYVyJn35Z01~kgLMES`AxLEUQ~sM4A?CA=Yhs)@dn&{lI1|cu2?bk&nFcntCFGP zo=E`DEY0iq@li^HVKNaPn0tZAC)^4}9zZ<2I>^IrF`BB3ibQd!_Q!g%mivhW9htz$ z>r*O60Su9XduN*5%&u+ZAnpJXbGOo~HKfr=ydRagtA^`qu|08~l|i)$Byzh>MffcLD1_1bc#l-!L6bI!MWr zDTPzkpfZxBc9jFIOJb#zu*n>rX$+AOQZ4@gdz@9d4kJ~-Bhs53F|q+4a=>#y8c7<#5D9>-S+^=-AzM9j_*AViXe8Wlh(H*u zJ!e*Hc@dbY8*nKxnVu-sBCtc}H^>HS=l=j1>t|EE@}Y0sMoCdyzY{!A*Y~E@1M;Rr zkzRk-pITM`#Vr(708?qy+5jk`iU4&slu?QRN?cOX8UWDIWb*Ec{{VPbLb5b?$*xY? zUnb!nur<{J9TmaIVVdWtwL0j%ELdfV<}$MK4PfeeGs1kxzGOXxYJ%}{qm0z?U4zs% zSFxy4Xt_rFoKqoEK?G2}E33cLqP+RgY>@g_Id^L%tc7GBjcXb67|NZtAwg1Y$f(D) zPJ@bVi7Sz^+%mlUB!Xa)M#4I*?E)(B~Z9MbIGkD z>|;^~u*0bNmTYApv3>`&Wnbx1!!lh&Fsyk1`qVbl#@2SuFieVA7slc&nAq|~2-rSm?mhh}fabSt zz{>vsxne=8uLY`wQbU2zgVL?}>TXy_aRxF5D?aAcnV7?a9y5w!C%1NvJ+U@9+D>}Z z%AdXi8=U&oHk&-GZ60VpFg0b{GOU3%?)0E$otzKlWmpoq1$)$&Z-|gax!cyLEa%H) zU`IQF9coA%%!kg(`ceY4*9{c>CVb8de|DvYM~#{L1n*GlmS5=3V`Jum7-ZC8gn}=d z1dK4CK|GBbISN=g+;BQoca`P&L}d^V!HMlxr}GyP#e% YseWRCY%k0g7WR+1+8| zUBR0KA53DKZzRban@IVyfXAQ0o#X{aF{sF4xA7GDVvI_%G0P(K6bO>acA6!UOcqcS z`&G30qM5KVe($Yi!+9OLGUNm!ucb(mJgUB2fq@`lMF45Lh4Q3)tFXWr;Nq@GWP4N! ze7Hjm#~te-Ayl3qk{Ke#cN3bu5S7rhZ@L$92=2I`3(!gybPi7-^Y2#4DC*;oR~SCE zLf+bFkR-cGp)44BR)BEvDIBWw_cVq+b`j49mJZoh^#-kO0m}i&7^>5;D7$brj;FO; zfmG+6!14_MRlc7VHwU`L#C}!t=f}A`&lE!fwo(gq;C9FySI`=~MQr6N$h)w=F~H>i z0Q&3ZPm8zfdE*^LqdS#f%LIQGILP*_q|G33xTh!pQYi{K_4cW(fd0=h0!*Ct=qgrF&a9;T?V7R+ntE<8v~jqRU2le!P0FO1^3Dk(t}B?* za+1h}bJn`e7_GT7?p0+|_qrYr6rRF0t>ly}XJZEntjbGZ;4^0@@T9am#AS@WYnWpt z+aQb+j1lg6sM1C9RS?8hIGt1g3HzurdG*aqpo!grHq>@3NNgZf;EXq|W?00viQf~e2S9OIBjYMN5$lS*Ze$-q{TmA8^W>GONjW8AP7xOD_oUP+Qva8*|1$QwO75${n+ zI+-PCTYQY$_qII0p!v9`85z=8q4OF>f0`%Gz&ZQ8`p^PIVf#XPlB>u!7IIgetJq+A z)tEqx#VBcG3{yA&X9~x$;-HYs6|ne^V-^J)<;y7Jnl2;}$10f=6%KO83~+#Pk?%kj zVwUJ~!a=q%kgUfXXFU(CIi*=4aVzAv1=&C{a0dX62faqZ7-o(=@sgQTEEfO(I^gG; zn7qV>NkgkR8QQ>)n~*Slseq->q+;EpE{7p^1{lwLFv+Vw={o>r-?-=I-gErw8QG2m z$Z}6Zj4Aq&OEjTXNsJ}|$tb+^`eKnHx?6qOtpSsORag3zsMg-q;aJ#-6L11J{G*P) z=dC_QCDeI=Vo*=ZoadnXtxqi^QbP=lByxaCh?Tx!$5KK3>44uYHUg5$Bi)nb1;{>! zX%wzzjKq>$GLqbRF)+yVY!W|OiV4s{RrjQfrM#A4OJwu>KdmZH5yUFdM!i}rubMsj zj8Fsa7aP`SqKk}`Pn&nXN>g4fu|L_~KQ&P81#l0s^HVfIVmrVr+%L)j zBOM3IImxC)B0Hgl!jQ-14hU2J)(^D+CBKolg#j6f2L&>H_~xHG&l(U(Z1qMgK>l>+ zS(h#zLR^v+vy~3+qMhJmde(i_%u%o`1CTm)s~0d# zVI=d69G>->?gM?%k~z&V8wR5iN<7Glu;&B4Xn$$$UzG+=3J-6sRE`8>C8J#DgWjQ% zCrLvpf}@j@(vZzojJ6At(i)iLzu%VoCC=nr~#mkj6WK-skJty57Mg#T&_lQ+OCOG+j8ty z&w4;CX|abVp4B>l2vfi{C836BncaS2&{Ly{0~0AbI~o8;?c6YMaasDFu=eiIBIJ|Q z`qq@!u|{?i@+iPHiY=1*_aJWPGz}UWRI^Ft+)SS@99GWbvno#<)k$J#pg@BPqMaK{ zzYI>(K*_H5O#?h%D|Z#;{{Ry;DQxt$k{8;_N|Ec6T^ETwNSa`nPq|1q;B>DD@t=q! z)#p?Wb}oM&YFfA>ot|c%XOYPzj(Mo*2Nb!g7*R%O%>oK2%^9EqiZe!N0HTc1ngBCK zX(*rt^~G*zcMT*@3vyGDn!*OH>8w`iN}Oci)Js(5Yz##EE& zDI>J=SLQf1VjEXgAqWStu2yy2dWLl*##MUrRqoSSn5ZqsN^?h*RUJvAm^n(fG4Kee!Z1);u3lgj3+qjrn9mhT zM7WvKe8dl0*RqH}sPF!;^r}`72bdT8tI4a6IBA6Wnz1BdOUagF*-i~X zb0krg%C-RGjGxY%Z!#W7TC^dG<#6Yb>r%Ab8G`qbmcT~OyUxdPTJDs+e6oU0k7N1qX(WwYnNt;BOaN~eXG6uaGOqwH9}<=1OeK zK9{K?sU=JFJu_bUqg^c8e12<>IfhBkO3@thM_|fsH1>&GECzF2t;|wGcAjLd_Hc4> zk&5VaIhEr(n|9;00qN^Tw`P-B%8{q-Udgt8Jq2l#6HvPBxj$ILfyIR=;un1uO44ml+Ep(T-|RM-Oy?K$%TrpzXi|y&gD%@=# znef2GncF}TPG*p{&P;2&k=CJRi|pY}OoKd%w*c}$4Zj@AB*l|}S7%zQEx5KNqWOkB zbD9KRjE90IIAat1z@DO`yjV@aK3~g$k(#4#45+{oSgl+ zd1K^nPSsY=BmlT1Hc!&6O>gBXF*olV?%O~c+I75f;z#-8V~lpK1u;gA8UVS^0=~S7MyDh?>%B)%zEJ#8| zalozHWQ`pBgK6L#S5Xd|Y_>~1qXn2BojVcgD<_Ccp?<}jt)1n(Y^F`gk8W#7UPCt5 zVu6%=r;%O0i+85W5%EOHQj_MKA*-gs!9{Q4h7*0djFxOh%sM;wrNIR60k*P-9r*v7Hl zOKBC}o=61(4bhX+@U5FYGfEK^x6*CbeG&(27g-Ue#fH04)Fp7Zh|wqs@?sQbZrS(nl=P^oDau8N~Kcn#JJe5cFnz5aLl0L zM&hNyE5#@ryuQ7F*ALU zn%vE`44!D?X+4k2{V8K0h|=Ksj55H$6b0$jkUc2@Cgz?{pbM3G2w3-#?VVy+|ll0E8U2s6U6u~r+l`ATq47$k=J{&bDzrV?Ude=O!SSHpEU$561Sms*xyQ|h z!8}yX9|}jAx2Mcx&*g(q5|SBr#(@YVt17Y2sW=rf$7V};0Rw}AcCHr#&@}{(+Chz; z81i!6NiEO1)MZ3!N(F`{Q}P!K{{T>PPfK!$B#cU#>gtWVKG-IcY|9j+#sd-p&cw41 zsM|sTsWh>~`11sKP{u|j#~y-Io?X=X$q_kN$trLI+<0(q9Y(sKyq6gbtI0p z6ow2VNe;kGrU?Ib~ zAy?m!YA22mRkwjJ07~07jDA&O0JA)eZy@t90X!AQumn>)uQo;USju;N#zbwa_->#A z+y$0RvIdZ{hId`6ah{kw^))TLhJEaeXCcq}!oV-#O!EngaS}8t#g0J=znau5C98mL zB#FjI675hI@xY*>@A^clpCIM9$t0Y672=@S(PfmZJBcSdK|hEiiiJcC%sxYr&PwMa z+YL=rnICVExFeKCY;*Mo(vTiTCEF<^;C01MDS}l)xQ1iTJPK%d%*8_Io=rAed=s>M zxcsYgGC58qRfq;&gpS6l-R?&lTP#5zK~~|6D=K^Ej`ZnbMGVDw?o9$I+&thcWxi4} zYcgTxa1@_IT>~$l4$+O{ipib%bDjSjwPG9$`*xI9@9qG3b?>=LW4;)YiVRw?@aD_%WHF7P+P=}I7 z6RV>pDk)%nX$r@jd{x%gElFZQxHM!o zee22Gg2x%hYP+oJGU`{4G{lxC@~RXJD58>>3q>Uq0JKt3Knq0_hJY4|N+Q|yvA znX+q&S{#xSpNVH zMM#-+E$@nwVyOdrkVPww#zdq%q!Ct(VUrZgsJy$N6m{nnWmkZI3agQ0HKSY!K$q3BZ&P`5bbcn7yVyU4fQn{ZOtt4X@ZY!to z_P>2|e*{e~7b7^};<*=64QqH#;tOqJ2`-K!6{<0MpGx>~mKamZV)6w6n2v<|*5%Z{ zXNly5?qQ7Pxc>kSO4pG_(axI&4_pJ@yGfx*blFJG>~`jyzNkX(QwbRC;-65J!lbLyZ7PIJ|LDJ|Jx%S?^;F^#^o42DLN$x@-)wn(NVlliFg z48VGU)K%Mwi zw|W4v3-0F?qizAlMPox8$Z&cC$GvS?gMquP0CImBr)azha~h5&b&Zd;e9bnWkh?b5 z(Z3t61U?*s*|{^wIQmzDeVwvGa6K!|#Z+o~9+nmf!&42GSPpjZY3Rg&%BOdt){(Vw z!5JQu)PUfX;f6V`e`t=cXV@+7*tXsKTn>DDum2I$(<5()>eYQd=ELRSv%^ zM9LJY_UDoBSL4>rq{|FL&V|%8Ove}*?^-CX<`R?ab6R6ur1Ly_ZR#0VnAS+!3-9e( zkwG+8#ix;tz{v_uF~Rw>j&WO0t1G(1;rF_SA2vZ8)LL>SigI@{zCc$h!Jh#4#y~aHVoxblyfHJ&=S2t`B2%-ThdaIL zo@9bgERe0Ve&sW?W+86Iryl0(6wiCz7w%03c>3t~nr)+MK{hL6SvfEOEKBj(yguz_CbGr;S|oWhl8A z1f20w+O$m!E|My$?cAmD&NIg}0P;|6F-sM;@A>Gd^8$D^7ZL3Vh?ucEhMyPg8b4=4AYVzxo{0jY5ELeH0; zJmg6GhnJ4H1RU}zImejkxYLR4=6-Ny!spO5`r=ZFF>Jc~(8nvp%?e~?23CaHea*z_U z1}a&cggmfjU=O!mXp}oM8F91$xEA1hoUKE;0@BE~>OX~LJ6Ar#Dk@F!`J*4Z88{o4 zk6fJceW(HU?-Ra4hb_kCW#^uw1XGl=D<9s1eVb_?gBo8kkvFioU^*}bnEwDVRRFbU z;#MOhWr>AO-aGuhw7|9_Rzk)hB5x$K1C-;i#YB+pK>HHrG~ho8uy)TJ(nj$4erRMk z=gt@kpq?@ZQ&H`NBTbmZjnT;nr|W_ZARW1bF)Iv#QyY{3iV623q%sHc_cOO*iS*Ip41DC~ohc70s0DWQ zC)TN65|S4<`38Qp2xY|XvgJwJj(w`5$R`=zNe8`09pcTrNE>ONn8h5Z#fs+~)@Vm@y>p7PwxQE@az3;OmCIWVxyDBx^vo=wLJyer;+r7O-!nUa zz$TItGPz}6yVvPV2dr$WOr-JBrDWKJ*lrl;X=AwnFk!imIQ6TNs4yzVU6+*`wXM;w3n7>}$k+C12a$>M%X4 z?nO*}DGcMu%Mk*~h#tES!$>ywx$Wg^k zsy2=}teZ4NXNW9(ee86kct@5q-x;e?0NFU_G@>G5c5#3|ohy`K+^JP%1J<CjIHrQx`MImpLZgJiq%mbe;C*XbnYgmFQSu+~rH~Hw zAX1+x?M#s5an^(uu|{-VrmDtvwOgHdHB%Thv~@-gbKd?OTqVwnZX+oeP&XDe==PWF z%9i%0q3Q?THQ@gM3~ys--aDL;8Nv$n?H^M}rNnWAfx$ks(=w7RYp}`o=#orfa^!mE zpk#H6csoXT9@T4Bj!B}5?nn8oYai^{l4WMzN6rEJ!k88;CLz3sY;%rkXY(MHH?U|< zSKBp0vmVO`?|m-j?uk^D7s#wkoWff%Zv zzIsvu2`r_S^T^${GN93eO$qYkEhYmIoYjFCo2kJKx065_ z+HBjcq-c|4M%!?ER-9lAaj~UzmjKJB2|&tVX}6N&@)=- z#~Q}Sb1*wxXBer+%&Q^$!+=M5_k#1Y9HN;hL2bKZd(kw)q8KRB|&5$d)JVpGLc^G@iA8G!jfa} z!ysk%HRQII*!2T{nk3Ic{?vp?cz2h(=#15)M0>@U$29GVX$Tla741BQ@ITJ}|zw zx{i3Hnpw^a>H%*sW1$`ESk#5?%qK>6vS+EMgQ167H+Pzh@*^hExd)b4u=nv;CzM!^Y+|fw+U3&Ny4+e^qAv9E8U{PPJ6A$* z=#Dn0)thOdMHKBhy=e|VbH_p7AC*Li4cmF?AW+KNc7wf3H_g+IHt|fgp6S*Xytfc+ z9Uls#judCF6$uR*Ja89w+qpqa!y8Uim2dXNbEh+0K#jJHqHfFwZM$Co1@ z5@P`2n1tv~@99WklVX`L(Iz)%cgexdI5fwQJCig~<&Y2w&h5-`l2?j)M-i7X1Vr9` zW!hD8*uel}pr>F3S=7fIu!+e8k{jl6z|Sj6@0NY}nN@O(PGMeW|kpw_ZBbu)M{j+E1VSIe*=sZW^C7lRGjh8CYW|M%ezN z<}}F#nkSI3XwAa$mrxV%!%&fuhnW};n`Xw?zwUrdGDyS1cR+4NNb>fuMEYfVQv`8{ zODmGA@~`g3(fNT$2_44IGD~>MgR~NGTj&ap=T7rsMOE6-00+nd{bG#6#r6T2`y zRA3+cdY>zo2Zwe%V=d3r4A26*1w~|(-ApStBbr5{&17 z!B^OI29ZL%M1ag(@xlHsIrKi&3dXTOrbsb^ziE|!GxF4qic1w&jhtg3DL5T*kSP(J z6skEOE?0rHeQ?~;1Ij133co8Kn~$Ybhjd>#IB#C{Vlsu<<&URq)KeJF{PV^_=C?B> zM0P62B(cdg7NZi90~`_h(;>LHk%ra^tH2nm2mL1PqltGo9eW@1iU7o9NhTjKKA038 z`N$`Zl|AjKj%>%DGpXZ>%bMy$kZ-`C3*uK*Ip9;EmA3AQzFzfGS1y}_05Q!ioTNnI z22}N+4HcUhBMkk;Oz$Mf3^F3AZD@yK#d-KP0}W>g(cGx*aaoJwPD*eWYRFm7W2@NvPQ z3eXcK=SKO5YN-s;JVV|6i)is5PlFmZSi4P)ym-M@mth{sUTC?4% zFkmpP!K|AV5&r4E@TclAGeg5*5y#emI3F2m@LNxNZG9TOwmBKc74xn8#`m){97J60 z9@(!^__wIMCTlC0@gsfN0P9{$nnN8$Hi}?6ift4C>M0E+0v9xtgy7ODIQa2b&Q+Ym!Gvn8DSKIqoY+VAwMiJdB@uowV}or2)vR z(ArM+62$5-RPEw~7dgExH(bb|`&3%xqd;IKaGS6XsWm2!8E>5k!5wQu#42Xfm4As? z5klOqre>mJStBI!0LL9gLSi!5-1-hhEz~Y!jio%01zC|AJuYSL*y%;b(2q^FRkh#z zOfWN4;LqDiw@mX}P%bT#0~i&NCV#ZlV+4`Mtvixv>d}9rDIEtz9qSuo5Qg$U7LM@{dte^pd&1u}i(IMOi;aNoPW5qsefl_hvRabDm zYW>oMP{+My$_5T=Sn6jY8J~Afm0qPkcB3Pj-55z7Ux998iv41caQ^_r4?|wdVJbuv zFV4i*g?M^ow!TJxx+~gzDRBhMzazVx1p~Dxy-1on`)JM0jFMa~5HA9`OS^e~%(pP3 zH_gsHE53>x*%ej6;1OK>u(V!%p*RS@jCvZ?85zhI>~NUQSpDx~R&HQ2D2dxDex0h!QiWg_h9in#W=(B!s~ET?re)oVqR%tROv{BGO>KGKGD$R?_x}J2 zisH^q%w>$UZaD+fwE`m>f+>vv9A${8-OMF6zTk7qWPws%MDp5^8ouJcC1UCDu8fBBvBQFrqa7l7^&j65+5*-pmEch09jvPh{)T6gO%

lACV;kyvWLl#-BsY2MLZyQ%=l3K4GKeFOgMoW^mPu^O#td)U9 zD4%Hc!dShpXs0P}4;3Nru&#Q8{mU9=gkth)qaROvsxB$=q{)KXEUti;xzUWL_cfDU z6@6k>N0duh$zyq9eHSFiKj88Z@zRte^NE~k6JLpqgUfxdqL+!$MPJL74ZBBI8Wcr_ z>a;vSWC<2nP=&h0umC-R6{6$jBXUD5;D>HTBc~BW9}~o|F!@aIF?=yu)716_B3-YC z2pOI&Z$uo#C$y>xR2E?ar@l!Fp>bBhDIL2BATMzuO+D!OH^yzk?FiJ?Le{E(XmOj ziAvsu+^(bV^ql53Z)Q3|kc&oriF+{Fd4wi(Dc7A0thVghqX2?4%w?)hQfU|R&KVbD zF1+~FO1^h3SY(dS3T>fq74(-L67Rr;}-=h!!XWD(y@q_0TP5$4s8tx z9*O+YJ8HJ}9?!QBRQEAjB%&rP8WK4B!y7LsU8ukyeOKBq`36J`6Y~hR<{7^W`Fx`Z zH~_+HXHns*;)sqRT_BYlp(JW92mw@$PJ=3vULj^8@pb1|3JvFLs#(XJ=8#^hR4}stkn?mhunv*yZXOKm+ptu2G1Evy)CnXfX zhx9Jyex!xmdk=*iJ8fc_Q8Mv7>7`r`wf%R;arRFpSIUa1?HLW4+-VjcsdlZDf~iZ=2UN7X z{j5lw=F~x53()0*nFt%(r96o*`~7^)ERiTXPN63*5QfnR-ny9>d^x#BXf+bM`q`G`5)B^% zIu&}I0t}i~Y>Et@xg9e=J~My_gJEBhPa=9-U}U;C;4=bWB!oDRubk{*^^v(WuuQZL zDlcbelxb|7pGBulMiosbgCsK}B6uP+;Gu8ah8?k!QHP}UCpu);*nP1-W**ln6OQ%&%dNXV=O9*#pbzkR-eVtSwMnn1T%AZ9so z$KpxgF&D6nWpG*lk?bf15>Ey;^|a^ae)T|Q`7$GRcInqAHMy1Jm7K1CkUEhx77846 z$qzn-%_8~e1KJoKEyWK1@kGfl2#pljx*u+)y_#fTe$KU-dl)s6fx41V5kYP>fs?p- z1N+qW`?@T{foUt*ybD+uAIC+_7bt-WjeWa`nE(PBc!?*?S+j?34fL>zR{R zC#0p3>9@tY5O=!h^)xW0NjbDDr>z%CUU)oKGe8m+ZD-Z^q=2K}_fvrDj;g-6v$aPD5@o)#mV5F0AC4k>Zfvkn z=$;*z?w2*8lV`Jy>>gM0uvs{B%s~IEnF8T9@Z<5rHW@>=Rs5rUynk}jAU>ai&a6{> zZ)>az4^qW>hrb@I5zLcFeNisK7&W0oZAJU~Wv*23W5>6E8M5LKur(>I`CZ5n`?|*W zTAQ+fv*-eS*g~gn{XpJWHsy3ER&tt#bokQNF60@IHfH)$6Hvz>c6=OL;*@`!XKsru zwa(ctc?~DA?+POK#MXmq*-4r38O%!EI9RuR_G&N>BMF>2S;r*`u|($!oW*=q$zN;1 zlkAYd#gIZ!@O6z|nlAWTC^1^~C~%(uvts@9Ivkxcl|>Xt=EM#~xR#p^T9Vcu_?8A^ zFZwIF(WG@uN8+Gg23nJXAa8MR>U>LQ9(NyeN)w^>{gUDksCrpHjk*fF!s!8?ZbT#snYurGX+4D5$c~T-+@{N+OP?4VPQUwc)KpM7Ar`SPN zl$1PG>g%V)#a@sq;nSTB6C3@j+nVN=hC7kvB1B&wC2|!2Nk5iNIlK$`PxyYqmBGpo zaR7okJ$x&Rur@rp0rs^EKI6SNQ))hW+8@3qPd-vDqZ2(sk)$~q81Ck{>JN&n-&0(k z(Xoirc>SOu@k!LZ0}FHz)wjxSSA0a8_md|F3T4*U&}F~?vxhRaV0!MKUQ`NEO=sT> zIR1i7npm)X^gG^wrW^UzO(x)4oi$8!o@oWXImES-Fb#|!{FPM6weQHK${oKuia?x0 z2@G?WeaD4|XU+(W@J8u9=9u-5X<{UMuJ=4#Zz#Y!Uh97rTs{xBz})^h&a;a$ji0&Oh=>6zyQ{%nwpx@|6{vt+#934>X_n_(dafm>zPLFm}C5PUC93ydx}W%Ff;{I;lPb@*j?6_*Av zED-F%1-1LJwwB{=o4VcVVtY!JQ1jY~(|SJ(%#BL}__9!CbCf{o`GfzXDh2UndP=BB zO8}1^6-(m}%$*L_8koOXz8nYiX*Wp%HTY(Fhxr|_25=alTHk!SO$)&9iO#cul0qoX25;GC)s0aVmyZ?ahV2bo9w`i-QaCYrLnFJx(o% zt@v#hZ;rk#b~)(dM@pnl=l!l0O*|(b{XAko6!{VoNcYMi$!|Q)HfP>Ff78fSytn;5 zr*`{Jpx8Iq$g|p2YWjd0vp^X_B&B$P>REBv@~2V0(jFV%k?=yt{>Az_O9WF> zPJm)XZ?gL4`=ehU#3*lHj>kk05BU(^J5Ja^P(q~K56}?woEs&l#61F16+WN5QMFyY zIeOXu{9xd=t;Jzq;M&}C%ga9QP_}peFfM&K63Q)xzAUh7V z$4Njg&g9zHZPGm2g=p!SI~ujX%aFuGJq2<-4ly^My{{#r0rtpSUjF+C{+`@Dw zc&nKUff`8gbm72Cf3R;4So*L$`6>>!1l|ez)-7?v$@iZCJo$iWf-|B$0kcXt0IUs% zozu0hq;mL-4t9%lpBwn;OChdE5N>R{e5g$oGEk$D>#*~JX-qb)$?0pDX}q+jwaQbu zFB3r>WNsg0W1k4)aOW=RHqn@D+DhVL2`RB|CVURI3ZhHr&n7Njp}^`#DGN@U2iFRf z49b%9!fKWuNEYZYc0CTLG{B`2E^4KpIz>2yp?Q1+A2w+s;dW|>JN^Q@K~DQ)>()t? z#~M%@)@JhXtItI43c|SwS+n|EJ*L}=ZM9>&kODBUx1!z3l!e8%OS6WJe$HzN-t%R_ zQgCN;{3h0xu!a1SbT^pnEq@2u}a zzMz9uXmcFBz2r};Yz!6Rj=ns6VvFwNhXeIW@06l!Bdg7Y$wTH$R-ZhDu+Rw8uV>>B zC5LZ5w`u7cZQN4F@&oU}FXFob zw+ZltD*7C39@rkfZzEh@R`x($rFN;r@Uhil|M-hbTZf^%Vkubm2D%eXlgq>5a_zAT zH%e|hj)Xx<3@xRW;p;tXBHlIvHIx{INKeUo=By|WI1_b@Uc7~4wuq7u;pw3Th~m~Y z6&w)5m-HgfCdtN&7)94xTPq%ho}oMa4@pM*eg2aCFZoLj|7-J?#Qqe6&${L5W+sGp z#Xy-B59Tgb(Y;(rOE>C{<%vB_4Z+kg*ijbjg)5_=q&KQeJ=0?+CXBE|hw&o=y;)DR z%}X_2EOn6ibp(~&v|MBEg2@qofkD#+@qxF%W0HrPkLickaK16Ue%%Zy+(=$qnB$X& z)OqktS|M**!ETX~$qc%a+y^(145Ele4S(3vulqP|w7ghqUuX`#cxsYjLKTTIr^4Gd zTGU~9`^4|?h7ZLbi+I-5TiMBoAJ+Uemh9gP8!B{ZfzcC%rwT4gXf>Z^&D>bB6TEKK z?R8I^hH9Upies(;>zQl_1*n?>>BQL*BdfYklOkP6kUz%=IWBF#dhBBrX=N0tDf*%5 zNXTU9&7S*Yn2%AT!oawX``OZ>s+Y=@!ZEJ5pVPPqOf+U?r_=E*stz^4GkDH9|o{v0P#FUh>LTcU2r zxa-AJhi;&kHD}8SbpgA-&y+)=v ziRGYs+E$^*N-9k5cZM$T=9?7t!Ry z*KqYjPZjli!~q|%rc`>}Ol)_8OV*?KH|lgL94f2T9Lx6bMxRX6Yz-egn0 z$oRSm`g&vRjgi*3noNg91)@YlK10Ahj>**UeFR1kADA~My2#toY*8>)C7#`opxPV- zyX`pba=(s2F6LgUQECy!XqKG;Y~;Ut_YHQiqCCe;=A!XFYnr_Ez_>ai1` zY?3Sqa?-x_dvqmcMTo~T>OLe zTB@NoJLnI^k6zKQO1YNeUO02`OqY5-ffyzICxVXrC-osdkIb+wAU-2NXssjg)!5Nn z6-Ib^O z(t|XO1>e!n>-9YazHRl0aKGVZ7fw`E&CO!f*mCL>oh%N80m|51cx7tV8|uF0b(;t* z95WPsw-}9gK-*urM>iUOlLGKrFR>k?jMhgy4sp4!j?w03Kqz`C)aY|huO!+R+6`Bk zWiljvSYx|)MdedCy$UovZ_t3I0lgVA4d2_TvNRmfeIH`U!(OeR?#(#c8A~7CCVJOR zIxE-_t*l76>SMEjmO{;Qy$l;tb$4d-DPD3bz&jBg=afct{THuGpl(G@p)ZwAJ*Uiw zIRm9Kdf_m!FNnv%?YTAfBSWPkP~(%0wMc7G?CWXtx`w12Wk#oi^4F5Pmfk1cItzPf zOI90(VOC?trEwF@63n{T)(E;c&$i+Mb6Dw`Q_o>}U$#>iIbT%c*pOTFv#mD|M+dyp zCd#pN!)K?au7id@YR#L4X3TRrKeChX2vqHF{Ol1q#QG2+3^CZhfL$G7C+h%FP!t90 zSR8c}YbNvdD__c#PnkM&z$O2B=(Egj1&|)lt~wR0?Ek|9rQ`au2WoLFPo$B|)2}R% z8LiMX#PIn#jkND2+x?HFb(9n8XLhcYLRhhN%Ob$D!st%kK$0JwC%mdu@x~0__gwas zE3iCMQa#w4!(5@L&NTrBS>P*5Fkb_r8k3TK;fGG2N#D4Lv#`)V+Pg`B%bxv`f;`>%b z3laO;Gm=17t^sS@^u#XY$<+;Bcd{hbC8EZ1e~s$V{`cx8>sm1!bKt9 z{?^-M*tgy(!F{1@prqPv`HoYp7K>DrsAO8+6N>GxxjxSN907jA9vml_#vR9OHf0kV zMDvAWqo!Y2-L6LM`#+16vB%I6Aj$mZSLU4W z`^@Kg-e6s<`=<*Ay661A-pkw6ii*`>d5=96x-aT)$Is89c;;pWoB~KEr`w6~H(J|g zGTM+>^{9Oaqv;C>os(}>4 zkW{-6DuQKx0d*8(pD|r$qRvRRvzRWY=lF2xhL+Gi@*eCV2x(osNQ5b|sy^l8eZ zG`hDuXgjT^qg`*@i|*`^3mM2CEWO{35c<)8ZUv$PymI^zOE0`i=s6bB0VBudEomj# zcKS+u@BP|;@%opZQG~sw(vL8OUHoAoMnPr;{p6teb&%SXJFDL_7eXYhxKP&YxUZ;* z=dK7vT5W&CehAjIW9mNoM?crc1$Mgy>ILe&(6kyNER=Od2RL_$lp*_;+|1p1pgiJR zM^>7&#ThyvB&*8`DP8?q_xuX~D5~s8itH* zLQcN7q3s8(!C<=3DgCBk^ZLgIjQd~irpodJN5&mmiXG-)SP)VCN#^0{r&9Rd0H;n%LkfMp%ii^6Gy~rogfWkIYHyv8)OCd&t(OYQ4?N0Yg-7og_ zKn!GQ3$)bcILS}bCNW#4Eyj9V5_FL~sb=#WAG#71H-3Vi@4G-QuH86MD*?Z@4?2JQ z+R>-WU-o%Q6`wN}033U|$~8dwOokdA6@C$t9iSD|pIy1b&97vU*h8NFdsH>jKv|5?1U;QdxR&xni&1bO>&v)Od^kLH!@j34(T4~2-#e$-V2TIPe?j;y5 z+~^EZGZfBai(}^J-++r9QUh!CnI6@&zwnltWJW@MZOqCyC5?C6W8%Q5fCDxfc>&ofcnc z+8Z`V&$RYHG%qI&w_cLcC@@9czoQ=o@cRPElrPjp2w6B*qEV*#u@oL}<0 zh{HUR)i=lpLXZw6+Cc@dlVW`|qCpDh@O1b2u2%B(v%IN}wd32?OwQvq_lk|+`fPOGCSrzt50A*97Nb+LQ6CkM@Y>9i*3shl2_ ziS;}xzu6-C`R2jvZowWmRe zJ+%N=2P2P~hze%L?A*f~*1D7vtHz2%gfA9!-|ic@t`#}dD%8{tES|I!)Z=x5v!m@D z5fsXyh3()jj$C%*)@bPNE)5u-gq~Tm!4E)dGqADr|HwE}UHS<+ z?H|;AeMWW3_1e6i)?*Rc>}0(h2a1aUACZH`RVl?&jwkkYu%a1t7kjq|**Ebv`XQ8{ zfYqLzSaE_p#x8ZbiNg~oB_p2an-e^ovepPTPzE+AiK!$Gtx6X||2=DyjPn7eW-Olf zCRmPFcn@aMB8f}7_u)kf)(hbCxbC2U7Oet{4SI_*jl5eQ-=*c)Yb@1E<;oy6MqKxa zqSHbaLf&T?#6`zc_fLh1Od#iLlR9;A8U$d|{;YAzX|#n_Jn@a5m*V?nm}d^Gc*ptV zbV`{0wT}R!UvZ86$IcXZ$?vcZ*!ekQRios-m0Xv%9gsmb4tWQl;ts^=le-PGw2RP) zeGw1o1fI@1EPNko0SE?y>tqt>6cBc;j5}Q(u`5wI?5TreBG_NJ|BbXgvNR^b35+ z{e%FFH)ZMlN-re}j95&|Sz8ZaTBUaY!rLc}>C2)YA9{Yy%Ps$}`I68^5$Jzy=>hxr z*XMxkQ8#n^+Xf5pGZJ+*HrxN*gvL}Q0_n9H^48$3`oND#3wQaXCth8CM!#>i|5abf z{^VBnw&o9Ssy}kV-*dyi$}8m`wszP4?uqzvZpi}Bq-xmw7i6-3l@t1((vLsMivMIz z^#>IE&y)oJGury!%8LJAl1~2_ef(E!gU;*^GOqLgbTTgEp4DsoEf*k^U}|4v#L6U< zn42c3B91b+7g6$k<*7Pn28MO0sHFFcf^G12{zmIc^3_<5cj=MFF;C)KOJ0C-4*M8- z@Bk$i`L+@KtWAJZ0_XE)(>_vHvB4tV_qCE41iQk&rs^|FX06{6sWY+-cV}03b*0x9 zf-S02q#cu6kzs66CC@{-396)SS9;w@&E29rO&(GED2Cv|)Tf?ZDhobUk%!e--Cy;f z&s7OOOtb${BT%D9t7JWwOuQ}wJKD@9#w+j>a~ChDf36o_3NdiMdP<#89iOam(r5#0 zFEEhp^AT6-a&0{VLKJ)tGq8vcUwM9GlPQKV?lC7ooi!7S$F0bQc$$@GjDH+Ic&&>U z=c3|#ee;lU1W?Y64ZtvSJ-T(icShmq{5-ep1R2NRN+HF__yM%8`H)-*ka4nd6tzoiZ4S)jffMb%wd?@#tR0=2Ji|``4~=bcDav3zXs0PIh7>g`L?UUDr2gSI z>4O*o&$Jlvl++I4v@Ql7t3*C+@jY~ysqX0FZIQ;tHcpFt`z1k-9-UFLF+f-Rr-r0A zprBAGX9&GCT3372`-O|R%M;N{7QT;YzcG{{t2~vWTm49MXl7D4s~?G+A9p`nM6RzB zI{5@$S&#BdyHvatxS&V*4&xqYjfjp~beTdRX)G>y=|4|Ty`SdVqW#^CMN~Z>HCITi zXuE=3)TL5+yKX2YS6tJ`dPml=a)RxP;tM;0!`bg9lKAVvtRv9(uEEwz*|OW)+wB21 zu5#On0(cE0j9F7W<}|HU7<(o`N~}vn<-%O3? z+$8ZT-W-rjQRes&Q~oPQtt%;*?Fz8*Y+lOZNw*=M0V;y4P_VXIbC7!G#G8f{Yy%c% zRlb|g$E04)`3ZX05P#_-%}lyZ$Y9XKiS!|{X#ZI(7ajg z;9ivVbXn?&mNms%iY{y2SkvhF(7ifizANGD8OZll(8DHd>v$uI4NAH0%46=dLXGX# z+}nO|s(`#|P?>XUYzIQAM86K9^=5NOon|4Z3folenBA7BW-oNW8F{1NhFfF{w0Kp5 z_DJ3L4Y{j%bpUVjYlxELXwu_3p|Ma#($F;ch1kMyi;A}hy=v*}5K=J2Br zb4p`+$=WlP#Z zx(%4^Jg(-ZxY=(KN*Iog6|ecMla88&!TncPH6M-$+osdpAD$&M+&IIi)uY5)i-~#W zV;P8Jis+`l`thk{(=}S(M^q@~%MgZ8L4U8s{?xV_dF>E^Z%j-$r$WvK{&Q`s^DGJ` zNY*6u?Iofy_6?>d<_VX9XK63rXag`WrGs&3PwR8Re5C{rTz09m6<^cq3KaLM-fNn( z6pLKC+p83`s)mVUhpRD&3qqY)PXa@uN@h&W)voh|pNibpHTZ=_?kYeL^`AMo7uA~I ztQX6y+Kqqs_&JDUeh@Gz;KQL8=fU5v=1Rz z;viC7d@P4?bmuz~C@uMt1JJt+}X>GfHPvJ`o7f9D=SX6^>l(nKn3GE#+ zhfZw20jQe}zf|YTT9E0;t|slJ+e`3sQx}zX)jmx3CRyhIDy{rBCW0;?eEyuEq>0e9 zi`xZV=t}>1Uf67>hq?`g{j}5srE`?Ce!ky`K>K#goeb#RR+l(U{+%=bgzgLcc^flt z+Zkff!m#&xp+DEyXete-b@KJY2+vuf9=Ivp&7piE$WH(1 z=0eKm{kBsCvzR5f6yN%%Dh`!XH+IlVwzVjT?;WJ zK1p+2HSjk$W;K)x_tGEoNv^wX@O-2#S;`|3guERk#UTrK(>3h;bRWTtz&N@%ip`qXL9dLL=1d+0{4=OHM&xR{YCaZ4gJUysCS5tZY#(?I}~_|>1&@L3;aF5nFIJ&M2Azf z;*2lty5SnM_C~BX{vfg|l(RaEPd3@2eCAuh1hpwWI^5b?;M^M{5a=U$tp|jO1a^X6 zR1osB4REC!HNGli5~Ti``c>az6Ph2C_$+8)@H9M(U|-5f@lPJxOlZ zNNi2wnOvqzv1AOk09<71S)reU&~&p=RRxY+ZxtSyKEDRtNxMP_DMw!e?dc}XU)*V9 z^Ou=09^OJ%Z3DF5L6Kh9xO4LKQCDD%iLINr7hnl)1n2^rrJr7H#P|M?nk$AHiP#KHZAdCBJ=6Sm`0cp>$X&%y~VEvISQuSD|~Bdrc5 zf<1w*s4VT^sk8{?9Z(xM?gX2O&wvd81kbi#e1wa{H*ME9+NlpjI7ie+D%=v5b%m3B zT2M|vES)saYW=CH85h~X%2^||%(U8qyYa+GD zFyt(BIUNUZLjmIiE&=j#c%Bkdu>W|l4c64(>PT}WzdB``kuM7N&054PT2uDsOk!kZ z2(9&b(g1YVV|@N#96+K}dw{}Y%9YMQxRb-wyTsb;bQ9$K!g$UrPXX{<%uUoJ?6uT^eC+7iCdHW%C zHoz@OY@5%gedXOgEpIWR#Fb0llf?-u1{_vhtL(zs@LoAoe6iH6G|KGkNq0|tOeLZX z&ZQ))-x69Co1S0HJnT*Z9^{N98lUrL4(H#}*oS#T-}(K5W`~U1?U1oBO!694N8sm= z8%=frwSEfyZnEUxOUQ}CZP8&$&)|8XQlWz;N|&%hZA_-%-|e4S*>0;kluFBUZDc}mwvL{*3mqf_yYbwO7K8I9YGuR7#E2-aaHUb43=^L(9XcOtidnp_UjBM+v>f;&Q`6QGNnr_7NKEa;4iO# zf?(xYMReI02` zL&QddN8jn=eLWC_QOV-DYmxO+ZX=Sj%lf8uID}f%^-Z1_wVG`@ zc^Tfm=avLyr3eH_r8>0<5Yk~K5beW=>0rzVl(xOK9J&DHHTJ*?j>#vn0BZ#tOrrb_ z#r8oKRR{pR?2Q$Ka2`kyP%p`LlOlYwEs)d3oyJ4;FNDw`h0o;BHtfTBXV9G!^JAa< z-506C2sbKJ-Z{>3Mx4jdJW4Olu#6d{dPH{A?b4c08>s+d?t<1{K=~A_-641BjH0 z;Z?r?9`0gbXTwSlx>gHM{t0r09t%#Z6T?w}@@m9nB99J`1skgV5>-L=%?D4{`qQFe zWvwNhLgz1kFKZpulO^qP%iEGpCZXq!Hjcj@&eZ#2)MK{QPZ|#BSxyj7)Jb8Ec_6^yW)2I4jBy;OFpdefN307mt_d|EIu z#(lDLY4+x;E#tZdl{MX0m4uA868Ot@o3HAU{!JK6xa%9vRS9}R%&N8VAk|06g%;If zf5XE_OBc%qnQ7PBgQIML1en{}50%|gUcxu3Q*A{+$QOeH1X`DQ0bi-}NhIzzbDZnq ztYjAqae2sR@I#cAl8jjm>Z*UrnCmnZFhwo^G}0`QBQu)Da1U0h-F3_c6_fk=Y-W&eUM`IoT8UXIhdDV_F28gEG1YV=g1h zs@i4_>vA+n=?l1N$caPgMfFvds=Y&V%yw)5270%pd1!xXd(I_ngdQ%!3G%JdUB&grape|jkKTkhMjZL#}#xut*uOXb=%LO;e(pR_Lpb7r~P?kmu(q0VIN>Gwh4xq zFDhl3+xs@hj#W?CPol>iqX~GI zAehYI{mb76Ji8ctACxJDMQ&OflfFVPO>}e8Tb?&eht^9yAG^7!*s#bRl*rglJ{P9= zEBySeenHz~V*P;)IEElu5ZT`~TK_~*0dWqp??fnH&%(tV7LV~^9l9H&L}X)Gd$~s5 z>JJrrHIQ!l7?RMS5FWhrI%En=Nsx_iwrfn-o}d5bYY#cx54$&S<;fnaaq^EeWvJ1x}n!J>733b6(a zwB^lqxm*(-1r9*!8Y_i8B|ErUj_q0Oe$Ar}i4(E+_z6-P>Xn74sq!3DwBsD%(e3+e zFaXGQ0DSFS=x-4-33T>u1x7HV(QWZP`Fq^=fB^8F1mu#7HHoEjv7LAd(BWcatg*jz z?~k1fpws8NO?4h6&q?IiUirLiGMkQpZS|kCAPxFnzjG#$$3Ko%_LLw9-Yh`Ax-(-z z(hLO_ESpz=ZuQOqGIXGwS%H3$Hd>}h_jzrBLn+_qfuWELr|T6{R07XJYX?cw^SfI6 zFg!Idi@)Ws0-RhvfzRSr7su-AD|6M+A9RIXmv!i#R)%*2)>NMWsE+EF`@SKtZZQMy z`$;%QNHk<$0!9Ee{*ryi05amP1zJlWQ91=QNUu(iWDZmGNg|vF1Fl@bnlfdZ#}AE z2xbrpxY*l6aAd%6{>{Zc@;4WI0IB?V9&oWYg<`&0feywY7-1+DfF8yD$tO&K_o@M? zX^<)=bd)5ISxv0%KZoj=PMUdBTc3K<;!CPXh3UoX8&yhz6PbK&1IVC?B3~Xt`FeF-+41|8zlY_UafQq0FZ<*fOS#D-%J2ZtaCZfVN)=) zU1q_z>bMCrx}I;pe_e5#<4`&riFZTZB{IV!+sG!(HlPT;*17^GcfThiR`d+m*o!Ib z&)DfABl|&qJ%@Fzvpvs54o^Z_Yk*#C1}PIOq+DXhq~~d@CcFJ5W_0R7LCLq+0n*?} z8#CslxN8uR51VC5K^>bgqmU7y=df-tDd^;3lRaK=cSo4};)nW2eGN2<0_ zLH{kTSwma5v+3E5@h83+@yYt_O?^*|@E0#QIRnMLyk?HH2?>C>Qp|Kri9Oikg>uu& ziW|&58g0+ODKi0gJobYxhMYZsH`dbPFpWF-Vv<^z50loGh3SPfP_Mtnq8`~F$ZTL-(11J@uNTN6s1Dpuf7-@k)DVPV>u(c}b z_`)Fy7dB3NByM!hwQazGmYtw%--B;qyJEtFh2L(^4X>%bI>xI`9qZ5@8S*+5`*DV` zf_~5)v`>Rk)K<=|mCwmN%iS!5R23GE9_cRiua9htFl*Hed1q@&-V1l#s^m7cNeH|a z9uA;+0G@am7h{NH!Mg2eV7Z@ErvoJTGiME6fAf0Nt-&%&TDOUx_>TF?jwyWK)XNaZ z!l84U{L7Ui2GGf0tTfx7E0_I?sqK!f4<|6ihIg=*Eg_O6vlo@%ERf@i4(q1#7nOj~ z?@aoZ$1ySm0@fsOl`yGfSuXNu~_5$E%fu<|MtKi%(V9Bgo*%3N{%2 z9tiEh4mv5Oo;ffIaR(u3uJpAboW!JZghQE3WdXGd>& z4=4&A?CoqFU^2Uun6TPAaRir8cvTMJJ62Q2}1PqR7;YvWnZ z>ufWF1llHCu7f{+1&j+LYC$0r4>CXNKDXk)L5qv#pTiaEUM{gYMjsa)OgFB{r-kpN z3atPIPEay6;K}`2QTqm)gu|@cQZTFAWCvYV81;`}X55ICrTdcWN>^?3`v8N0mYK%x z&>aIFj>ctQ2C@UfrJ~Pt{dBYJaU8m(JlrttXsKx4IKK0&0{8U?$p#He$(QD5tVwr$ zQ-FoSA6PcM#|~DXL6?n&pqqWPM5fx^pCEL=BA9No{URc}mHyV4G@DH^?^O#elh^k@ ze@HDXm6d%MZ~!k;kfg|%V;|1XJ*UlBsIeAUP60|92$L!wfH>-&)k1-z0&5d;LS2as z7GLei`SO(RCV3W(24(FB0%#3%65n&!#8e-$7-F^fux^aQ9^oge|Mc{5;Yq_xk`H-n zNQ(7!!c$`IRp98k(2v}F4Y~1|thVnH%#!%t+J5X^b^5p&A!kBf608i2N)3aKldt!) z=D;b;`XkdeIIVa9xe2FJ2D_Q`LF>dm3t2oD31%+*&ikQ9pkef$1J@Y}-a99|riqi* zfh$!c9)cUTLf5`%(%Bf>yW2Q|`0;|};AMp2W`l_b#^TT`tH&V58W%m(@52^rGjjiP zB-C=`hT2UMUCIVfcxvBzD)Un+PJS^ezb(F}bi>WP9+=C}jWM!I5gPP&w|#5~OoJu0HE9YLR$r!_jSg zq<%xFY*axXyVs*HoluohwqCb)q4F?@$F2}MVRl`8p`#hNG}blin7m4==Pfo0%;pHd zmAsJO`zhpT>iKbwZx3iM^{Fz|AggO5Vx-dbb-k20uYK!NP(L8L|BoHJ6TsXWKr+gN z*5a_x>6#AKo)>LkbN-mExxJ1+Tyu& z@EO7l+jr*u4gu8Eyb*Q+Yxm-nuk6yCSqhVHkT+Jzc;+t`u^~F^q~%j z6{$maR;VcVj!(&B4G+z67GjZzn?C5!vHXbx#>w}64MC1%_(I>uS1u`@N~CclA0vPl zIm9~VE+83oI!WrBr*D^=d=)3{9CoHiu z!n}(MUh^z~hNs+zyKTFQ9;F^80@zG)Z)&;5ma5|MEHfmtZ&V=IcKs~m!NI98Ia*5p zY+Y%yFBD%H#A-~kMoH48# zH*HUKiHgVV@`VyA*vrHmqAh^DncT$k7&Q%&z_=u%ksS3PhZ3ZMsL^#3BR(BkDhj`R zDjdE`#_BvKu?X(W8(^HmWHdnifs>A^@e$RgHDBnrP}Vjqvg-x>vhzZ(yN%>rKNq{E z4;Psw%PtBt+jM?|$gtA;u@K!Z$H!6BcYL)+Vmt{I0~ zyuhT$-`ONuWB)LIfXDKZ3}0+7UzUXC5ibUWRt9_OTeCtt9DdapK;{8iVT3?CZVZfh zO&WsityV!7;>1YO%9pKck%Wu@ATA!BKQ@_VJl+Eql=Fo9*l5Ib{qvR^a4To(7c7~0 zsh(Z9$}>I4-SwT&>%q1dQoW7KlGaQ)|Ld{O%vlfUSm=Fe2{lygbO8TJl{8AHEA|ms zwO_b?E)D-qQ$&GHJMqGqq=$A+j5{lsJiJ?p&kp#gXeB*IqZAcG+!tCWTIkk}A(~s| z^j*O7&mB7$xb1 zk)!)o6@pMAY#-;q*(MX)cl7ePWqTxaaEo+7X~#4r_y7X8QHK~cOn!&0L6xc z5?wamfsXNq<3PM&T?ly0J%$kJ6kSPQ0Nhqh7`nL)z_PdB&DV}cmAe3W{r;MiqRgIt zo`~^HDv{dKnh>s_#w#7~gt$Z@|F;Dr>?y=jQETzVm* zG-r|BxW%XOCe}~BPLAyR#0ygQ9Lt3FSp^f(=7J4YXC09Yo&YyYrqGX7$A@RT7e~g! zlwSSn-!fzdN>a0?hE5c=pIn9)hW=w-Z4wze*~T<+fcEN4TMHB|D!a|mQr&DeqcC&% z{S}UURFe4#`C?ISHw?4dF>W&0!fbqUzryeiiaN1cz@BIHqAJKc9n-$G3UKf_T!B@< z9lHM@9asYygBGFB+b@Lj&N-hbMU_f_W~OHg`tl@eiAw#u#2E_D%E4WLeY9h4|9NQU z6Yt2El-sPCe!rJwvSw4q&MfVQvkdY0DcG$`tnN!&>%Bl_cG=5?5CMKpQJ)%aCCt%;99Lj30?c*h9y?Lbh!6p3xuT##kN92HHd|L0v1#h@Pt6I>_q0?ps52?z!K!CF- z8xWR1$RvGAgRXf@%p72kw%#nvUs{7QxVhC*JlQ?Kya7_c@m(l1oo#jH9=ksudJKix$Vq`ZIUHrm~D?f^Wa$(zpxDniEYB ztKMomhIF{Z5tG|kv*l&5-8Hl)+I@&XXW12=wOyh`{vq;l)%iOZ=6I4Q!74 zeU7M9ybl+9!e1X{Ru{4L45aI(4f2O?0bm!mXe)r}(g8T#cw0Q2jrc0~JlvnYBd`({ zTWMR{*wDIHaObt%v9CbyHH{70z(b%?EMQSq!ta|c|9<_a z&z66l<^H5U`}ZvO&zhG1RoeM8{{3%V?O#?;{NJS${{6Ur5+v%I{h>c|{Hw08r~a;7 zP1n@`G`D9+CC6iZ?j9l$aRP<0)ZD4blGa1^@-uGVKk`$lS-GxEC9tMk)-^LxiWKS59nf=d!( zd?H8T*tUyKT4`0%-M1|hc%35>R1~_i2~Ci$)!J5{aRc&JOW>oKcyn-HzfuK0@3m?` z>=?X#^>7tVIB<6V#ik>Wz5|;m0OY}{dm{ob{OeP1R0G@(0p1mXGz*;{FO>WBDWE0j zJm6i#YCUt2WDF@+S}hy0GWG$8BgZ5Ffobmt+q$Ql0e}eY#o=|i-G{Jn}3h68Jn6=k%DO}D1KX;VLUw`uJ0;Kqy z2XGiMKkyN@wH=8vsxiIcW(>X`f>e3ia-xMt9^)H;dS^+SW=G~lyWotIHRy~n@HPId zj&pFzf$9N?i3KAdXr4lmz;?EM7&I;Cua3k)9!+m#>{iLO@ZTWLtU zs*@s^p-0E<-I;g`JtW~7K)2Z018!d42uV$>>}%tukx3e`g}NaN%qRGEJYgQCJmzy@ z9{YQPj-=TVLcCIm=xT+&m3dRqF$?pAHPBuUVNVbF&Y7o(IC*k!9%bGs`|Q^V^L;;v z6Y7T49%%Q-rSA{{UL3ak;>L8!W~mhz|70FzA>1dnm5S;2Q4EdSEgF-ihV~HWi6nPy z8MEQ2{5){~e_bRv`phBo*u2-MBV3X-{Sb;eTqTj}al;9B@jOJC-+mqo2~>>Q0(%Xw z!4+ckTluq_BM(yAyWyQd-pW^hxZ`oo84_Y|MAOurR6VU-8hcKT+jnZzr?&w+GHd+S zScsD^bB%+=ulE`NvT5w!-h{3$x#PEn4vHofv*o6RQt_5Z0zn(7?UhA23;YD6d?8s% zh-Ruke-pY>b5|5-wx#`Os$f&=eUOaLOB4RX=A>g>CJ8Uq?hJsfc>t<2|2U~q^wZWr zRopUZ!UKl;`@67Mpbho$%!h{#CaRw8&OnF$_J!ZCT3RLM?K7b+v zejU=S>Q9H1eD}6d($52^NWAhB)Yi{GT?Jijng63d2$QR#zyAeoauc}Izn$-|BR&Bd zy*CSNC?ErXOQ3mJ4m;kt@gE25&vj+&eew4b`J-RIoygSK(1Vic-+O^J0q@NL7xuSn z_xc~-^7}u33-;><{dOhMfBsgsT%S-H-m-^q^y`wc{oWf2D-rqx|J8zfx0$#DR*#!r(Un7M=O)diV$n@C>ZR)xJMs$TQuqSYa}-JJTHU z&YPiGQE;Q-jnLWV)cnh3FVDpaE;g;Ux-xLPFCuSGoB%~NB)@%HAc~VhqNH=;3G;b^ z;obh5$M?H7sLhIwb-_jU540K+C9{UpqdU87?|CjKHZEW%ifrSu&6zcw1r)NL{&=g8 zBzKcL)k?*F|9RUkHqQmAW%!uopg^`rWLEw1C#6O((fudL2xW5n@OZ&N|uUebDtEED{LRb@C8#)Cc6Nv=@UOecA>VLcQWO@ z)=AKlu~{|j_lzq2R2emXM&6qx+0RnKq%b+loQOuB-4*^GmdqwKV9ppUaMP=+Y$f!--HQ+`E-J33vb=o$3YR6!zqB78Drssil#aiDwpTAII%T3&*-M~8Zg-i9%sN{v(5 za3pgq$f9L9BhYo#38>ljvN-isM<&2mIh!cJoslUO=5#tWM_UT8r8yn0Of?=y%b@r1 z*SNfw_@nvm64tWF*Cz1w=o(P#&FA(16kCmdwYqh{#s96?p5ZujnKlI21pzqtgW3Vc z8wZvyB;}*|1AyPUPj984(p=~AaR3qvzFl*^2COE)A=qqe5W&e0G#ADqo zCzD6vWZ@)hDn;d%IPSiGWi%=rDYe=2ic5$wmC57Fmw|w?cndNLyAwKKuwNTWWT#<{ zyUi?nc{SuGahNoswuuZ?M5@@WQ?dF?`{1@4Hf7fz$b<$<<^ReoO8#rhdP^ zgA%bKJ;bQ(EA#-{_pvcI$>}OahB~gU&jE!6yu-%NUZkmMUoKz(oinH8k^-H(00JhM z+p401XYwgGHRGssXr>pIushs5fxq$j!Lpt@UYOsehj>j*mFvptXX0DPs&TB^#je=kh_NV3E(& zX7cEEERF`>8+PlzDPh3-_BG7e*V#>;ra*R6dsdsj{jML`a?-A#AGzL-mokE0-+kFv zPrV(ua5K^QTA!}L+gO#}!!jeRo~X{X`wDumvN%mg=^@SmPkc+kyeImCGBJ#0^z0bP z5ozBsHWqYN26xv$3_J9*r<(K7<-m9Bc@RAPa*gxtC>IPks> zZ2>9{Z#^vg?qw!&c{#%C!Iw?*T&38j=e8cNTda9aH?&IFFm(Q?>KM1-byoG!gWXO= zJo(D8z8*QAO)xFvdBD1rSg{hwJ=V0}Wt9-XXg;OR=%aqBiQAsb@pRm^UgpZn`37+h zxmfz84oXIR_cWASM#?~FoqUQf1jj<2Rt6A4AD9t}7$P#Iu3rMc3QC5TkK>+@OR?$( zo?X|VES9Ix{`^$1D<5uw&D_+cVrX?F8y#Q2 zD>vx$+~#CZ@UsUH*l22LDxZ(r+Klh_^_hy=us6)tS7jW3{QKJYSASLg0~ISO1@sW8 zVcH|+W1~Mx2L77c|4RSK{sfoW4KB+PoT>evM$+RAzRNMJWrj~z; zNvKp3OTYkA2S%z5{8dr$isfza-fxpl&k;4J{{cK3$?@*?;LazwPwK~uUD@01} z2!9T$;}hRE8k~{!98KOuRu+nYw$*3ps;_C_;U|vM*MmX?K_|BL&QEW01nj6=o0q3X zQO)IQ=O2{WveWn%+G_tuC}Ao3*3qf?Be_oQaqddm;K(y!XKBu70lWrbnrqJ9^|Ix3 zGvT9S0y3hHS{yajZakd0dc~bfIJQ2 z$LF{%ZOu!$9Yu8P-eoDElW}7<+o7kFf=d}G?+&lr^3wmN_RZn+%N!$#I-@xKzyux{ zbYIS+YWVkLRcC9vwhMOFGGiY%H!ZZ+T*zsTwl6}F(#Z?yO9&s1&aC_jnV_ss94?Qf z9H_-};x-Uk$fk-;rPo!KD)U**4nn+rA@YyQ*4n#lKV}T=TegVOD

Q>JUrT|_ITiu-U0d)!8B z!VHG>jkp{O8GwgXQ!5K}7f3_mKzGG;3Z=qyeuBp1ZKd=Ay^Dgvycy;^z3!TND}=a+ z>9-4}$CIQl!2~^GuFsm|)S@mD=EerTe}5#I@rfr(v`Xdsz`V4bwx@L|O8S#QiKILa zCBtp6o6xkz9kUm%JlgTW1x426UhZgpU7mbOHLvNnU1}ym_acOsSBI;&-QPyNVp`6N zsGQsJ?{gDM>GGP;NY=Q0VavaFeLWAhy4x9Vcq8Jf1tO()HbOp6$i1^ZPy725HpQk1 zX$B$QJ7vcJ(H1s=!SSl-gk>i#WGVHKd$#WCQ=)EhHfw5f78WrMt- zuZyorx>oVz^L{~T0YkoV_iYay@;GrV*eCUQmV6P z1E`}q5M`GD@Y%H$hR=qi!6Z_EE+8P$C%yp_c3~u3`Aa=Y2>Q%V(CW*dprbDEG{E~n z0_u~UxJFgbzd!%)>+|pD;s3kwVl*6X!9acHrUJOq0!Rt}GfzR#1-eVw4rIgu5CAE- z!z@draha&C@($WLS^Sj>^o>intV(tTbPjHJ$X~sG2NeN1Ik;l||^j?>1oenY@npyTnoAhb-anas0I5uOtT@AS^UemjFHQ>|y;Gv_ohf0{HJn*N~FM6lxgq?h3tWlq@L>Y8Fz(Sd8jw;Dk& z=5nfOyNhSSRj)E%z8I*-)1{$t>aCNScpSNbc8eX2Q~YUJV3Ce{u0!?-wXU9X;RzyE zrtzBXDcGc)kp|%q$XY5yWdt}Q@=gmfWt5$HFmm=yg4(utPoROVhFygxrP^woBvP7v zOZkxDO`{XbL{1~J(th>|C}Z8Es_=7hjoT{4MIp0VTMZ%h?LvGGDLv0$aZ^iAPo-Nj zt2<=QVWiT5zKn^P7i;+Wy2|PNSUhL#Bc8O#;fM-XC*~+Nilt@|B^7S+ti8!eH-iFK z?=0!#~$M)ULT%$iW_oXr!=llv12)1K@&7lN#!+=>f$jPQ^~Fu@~-!y zK^&zBh~aUhrZUxVMzTR1g}~eJ;kbudfMqsb_bX84s9Q>1++AISzF!~_3GKGk9a68_TW4=6T3I|c|jE*`S8EyPQI6v z2`>K^dv6`pR@d%}h9aR9DH7a@OQE=Xad(&E?(SABKyWA)XmJTryhx!10;PfC?i6>2 z0`JNDoxS(B?-_U8amTo4oO|{e-(PF4BqNzCYt8x0`TXRWP+&LbSW9eZ^W34_thl?M z{k+&7pjj`5t$#_?EOw~sGK^AI3gl~<$sHmqLohxo>@`+q#d$^od$kd%>_8eZ0nPld z!^gb|mU+glBu9j;8S4DGj;B-P@Y@w{)h}cU;DG0U93=lb|MWkFDaN*6B4V~iwI2S6 zHe1N}wX$AeO5W$s$G-roNc#5r%MbvX2V~)V`5dn%l>1Me z2z~|?AXA8bzk;VK!9elwF{A}dRIN;<-wtwyK_ZNfAC<_)HuaUH1g2DnhnVYOJ|;3E zkc1ReF{@g7>yGMjIm&2N=T!E>Oawls2-q@{@aUMGqpp`SFG^)}et-m&9Q(n>2JH4Y zcUjBy6>z=^Q*#f_h;lM*Vb7f3Bok-LI?UHF#WR+eDC0)1S?~3fYzbmP&DLdbtC*4G z2cH4G!mOMMqBf4WzS=*XY1EQg*37WvO@im+9~$8!hBxDPYS03^mYz8VQY>DiyT->q z>O4T^2TAz-WMb=f&D)p4t8n*U)0IWQd)?&nAJ4y0`u&Z{l#;u2c?4e9xPrVCP3Y;7 zz7uWEp1)J)|GwsAgFg&?0jOu2cjHv0?LZ*%rJ{=k&ICvC(Gj_6-SX$x2WFt|ABxq| zTeDDO*vXfrJ>OKG2zr{`4&#^L&4dly^<=DYy9j$QstQhl-M=4or@>;ZoTeBx0B zxe^mFTY*8N(t}KGDOjD?ge}d^4F|83&&EDlnRO}uxzbEdH*4RgHRMJk@<2s>je`*_ z$&Ve8Ju%l$7OG__xEoqDi8 z-*^Qo;foQNXR5D`|D5*Ha8}Iixt$}PdeAgI?-)A>`%j<{*?>+b)DiG@y-5>rd^%{EMASn0fA%OqY)2r`)8-GGXVM`%XC)u%j^7bk{I<*&z2PZxdKH}kFw zscww=z3@QmLDrv_S=pm-gJzp=?cQ>{w>gVIcU0IA=4P26Alk=MzQo^2{sfuwE0%t% z$*RU#LXN}fFz7JI8bR&Its(~yNG}M|<^VAIWx)-s%|4iy`-&iOATvAZe|M?+*HIJY zf8u|DCb)X`8;P8oF5Vf?v{khDk^HCgyi@ORh(w$@g&ilWBQMzP{+!b%g@`;!oWDqT z=ix%`TYm?FY!l+tkwK}0-Szk2{R^;P?8gDzDdUG$H?I-!rXUlbva_gULy|jx0jAXs zi8-3zlP8x-v`E+C!DMdC%RhTHDv@J9wGb+^3)eZ3bly~Yk;@n5?}v*xWFoV2(w)eO zOi;arGUo^Hg_fTIyCC)&u9M&w0Ir&Mh7*Gizp|_Je9AeDz|y)ZxED?vt!h#%EoQ($ zb%)Ip0Ae@i6hfv4J_)v#yHYe+#4x98v}hM;_6afX88(>`TPf`aKRPw3doP~VE>W;? zP{dwlBtg|hbk%&+6(5DSkX?p71=&7N*d!|@Al$pGymslaaioYH10u29rxp?RY<-}3 zjS%;)#@7jGc};rXPuGDErNKacUkm)4BXDm7)!Js63q#2e);HMh`>gq_8dDH@taD*{ zAXx-GReN3Rxg=Kso~PcC&qsQURO;KYyL)}gVJa;@*&y4t4>9>P>R)H)o`5SYbggqj zls7kf`XAdcpGCqe%2dIN9e>Z3NHD9AQ~%1Q<7F)yki7`G#^F|8L+Rbqk2)K(ICu&# zlpP`w7V|~u=rjHHi11E9egKArA*5Ag92`H_U2AGfmmlKX|*u6WjzI*@2^_V)#lQr{w5iM{}A zX=>wNa==T|n9xBIkGEngT%&dHqu(C@{nS8gsHy_p>z;l;-YEyQQnI9YL@u=>mSC_RZI2u&H zvzALF7+lgtk7%)<0_%ikYD5TY{F;-(R6M=*yp^eBC^``B^gBAM^)T)6SB5A2CI++* zBk<5tnn@V1!i4SQG0woxnnofB9>BW(4)j)f>ix>=9>4}!-wU|Dsr8+p+q5rhUv=ZR z2Q1cyNmdTB;J$20`^n#Fv)kG7g9>^;)E-G`JuyMFAg_ZQ?+Cgm1I_k7mBo$lDf~OV zBORj@jhRb?xN=M(LS#m>e!!eBbiy>sVz7&7UnptRgZ|n#6Em+IfS@(DN z`TeR__?EcIl~~^7BTpbxD*6Zkmk`XMFXi_>j`k#x0#=pyl4B;aSmp^nX zB}^Uo7z@Ib)6(pUFR*KZ`~l(jUv*SG=}-zT4vZ#DMS84VQ111A$^7ORp#a@cpxH|l zA}hx>)xFCU)?&dDI(Q1L%20c)aN-ek@i*$4GKMYnb`MSlODFVWj$7*+43VZ;RLRA1_6;ht1^2TJx2ngJsRl`X?aLUHFN0?r z1H>99H<$MidU)|8pwmK zjUyA~$5(T+6bqef$hACAedzdGcMio4HQ=nqCP&F%`<=I#ZkcDiNmC3v`cFq;7u-U)S-fMZ|U7P)_lfMMI@)nZE*)SO2m8 zzA`(xzbNoQk{zz9g-Z=y_1r`kq`^0wp1+Ygd6XQxyRJj(_0=)q?iWu%x=a`JCw?^s zmP5(&Z-OqawyX0`ffl2U<~z*kYO*%~>SDX1ruO5s&$ByX;YAl$mE>2A!+o1yk;DPv zT5r#%alTbPXmtJN-$WkeRAKTre%`~(AVO37#%j}aTn&k*yCY>#ig{Rz@-r`nK&4@X zLVLQmhOYQy=Va8o%kActgbo^UT*o1bnNmOymKRKO=;!&aPvd`%+G%^dnHH)>TV*6A`JEvt+aT}~h8bl|h zXc={@5yuD}MG9ML-%0t9k{;damGt#e&r7Bt`_2?4JT!EGO_RvKDNggeeMQDp!V5J3QGO;4v5(a3Tu=1UFwQ43S{gVTP){NO_+C|e z45tR89%!@Ik3f~S!ixqoq>OYrQYyL?E2x}uQ)Aa4Jw-b!<;;6y}AeSq81{~k6 z*)ad)#p*E>X(*2~3OsyA&R)RBqx8AD0p}yU4ohR>wWclkIO@L{K z2L=%|;;HBBk2uuR$`Oe4Zt#pb!Xj@W`5L&Gt@qv=!&vUcxNVkQZt(bhq5k7 zgowFbJX{0@>&3ugWxlHR<7IK-8it3fXEi(a$&bq?uv4Lrwp3ZjTXl4#ZHnPX4vn?w zJI^*{3nuh?6)z+z4u~Tn7j2uNsR-IM%Mg6iER7kut?0xuEjnfkf`TA#*4j}5mLru{ac0#<&SW?oR zS%|{#%Yh(17kdFErm9!k7BTx_?)A6R`dj^7agCV(pKy}(B1av z_a6+b7g60W7n$l*O2-v3Xt)(it0=B#Y_?|D1%)S~g0CfUUa3iN$@3yy6}*cGT%eh; znYi52WT0KBLtGgLX{j3vfSE4Sr+hL_8Q>lSH1=b~BLa{sn{H>~I-qp3RN(iO|9UoS zYwGH!H~W6y{vSy5oX!942=jl{{%OxzjEwUGpN_iX{sK_(Z+bZ;K)8$QoM%Jy7scMx z3f{PEOWv;6=Pha<%$^|vgu6@%LUA9+zu22`R&;itmZKnvE#ImnKCP_Ac;i%dY@ulJ zZ^c!OwFH_E9V!*_uC{5z@AVwt@D8p+AIB;#pM0Zit-`wZR=LG8W@l>Vl4b>?E3NNz z)%?=~tbpBGaEt#j4&sT8Tg884+ww5HE}^`b zMUJFIQLPsV-cc8^SmA4^Mm|sX|o~;)T1u3}+K9Nvgl;dVc9{R}XPt z@q0<>;elRoZUK87o7rPXOh2S`KcXV8-8`HzXC z>q1R;CP4^#!_xZ?c7U^L}LDXMYAU;4Ub%uO@*+?o7VE^z` z@sQV0N=%Cb7m^&g#~VX3b8O`geXncqtBdXE$;x`ZxdL;Vi3gRop34PMW~rP%cdgcE*6Deed9j0kv0 ziqzT}{z~`g_f$2SFQE~@4H|#9&Dr%aOjA8H)ag0KVfIFzK>&aff9a-ts27{C$Wx0! zI}NRZ`CUaIZR8kTmJIsx@UzUqA>}0UM39$YoBR@krgWW-adY-_(t#N2Po4O)8FzZl zi#F{t?{Vc>2iiYRr3gZgZdhJxe09qr)ez#gjx-LsPGRiqlXQO{A43*+mHIMRoGHYb}A9n&09P5TFj z;LwAPeAGJDM7nxJgwn>x_8i(mICV74>eC`aNr{OABY0M%sgkx>1o}3zJTTpht8QRoJAn5_ZcX-}#m{&t3se1)$gG&O6 zgnduzMi;~*4bT&gOpnvwvnvAbA;_n&X!HwAfU24y^vGTBXBko{icy3G`)MilXBj={IKI<`Zp`=shhT}K zAF#FMUvKzXEp<>7#mvxmYO8-l8y=)Jk)C;3cj*ytxSd)sam9zfrwY)LqH-t(XgUye zQL_S8E=yoQ7?VQ-)?j*i_J2IOQQBw zk52C*yiopT*Y3cC4gMfQ7c!L@^dou-FX%#jreAmKYBXFV%iy$vElnM84H9IGf+>T! zSY;qnr`+(nJ*7rWB0DI_OwJv0uYIeV05796{M9XK9H6sOfU>zzfZ^~m8th>TX)aR; z@~Zcgiqy3$AW4g0{k~FALgnz%DuO4l0#^eh_Oc0@nX6=K==%M7yVTwdGq5gs%*|eveziJbO`n0YYUie3To+={i=(@#(YH+K3(*nMiaVZX z8DCQb!i%dM9MeZ$TR)#lQ8tSxCLMIbW(a{=-0ALdqn((0!du=Nuqa4@F#`Ew4A;Yr zHTy355PVIzz-LV@;P!dYW*N?Tgvex6#@s{?2I@vu)M1ss1E+2_s;k$1Yta^EfBQ+^ zF`>OGWsn|@Hp1@x5mken(C|PWD|I-nPdwV6)gn;18oD)OheUf7L(4O@t_+>{YbL1& zc9@!yVeW4KibtqZ!Fe^i5-)mkpm0qF(esXW)G9H9qJSoIN3$c>xoZ1#WX1^LDwC1H zlX>|oy1$3+j|!hafBd~0&Xe~_hpz?ylS{TWL^RL2;Bo0 z33Trjk|x8~o0}O3A0aqsZ@t6;>KkZ=q>-Ra2F+@XvJf>#gH0y^d=uOgIbstNCS#N! zs{W5=F|PXmMce;xMIXRy6rDA}LLrMC8&R(#dknBT#4*$WYI3x+5z<3^|G!eSQHnNb z?f^~}S4V%7wECk^XRqqrkot`+^h%@vvH5Rt2eDo~4R6?`##{8$#_H1W`>HkjiNZ*Y z7b&p7xOd=gZVf$jFGs2C3RGTh7uv|SF>zMCj^CbVFq=5y>1sGK5#{tP1Sq?idnA(Lnk z{oMN2wRldvX{FxY>KPl}7a``0$`$?9UW79yzA!tnwv6G{byWnq_n=dH8)}kW`6?Xr zF_$TTAG-_QSDuTBkml=EDA+D&B{C}V`|fX!Zf_=V{GfZI6Ee@QzCJh#sAKI`k1t^} z;!&Y)Zgnut*6SrofAe86*uTcJAp!sd<+dCql%V<Ac?$959J|*6NLL zMYCi=+m`AKGtT{}PimZv`D7K8p-=z*jrf5>iNFu9#rSWh&n2ejT|w<(g@G_`(hwUj z*1E3}m_wlIgsdNQuiCZ&SWf77ZMdR(2^?)+CKA&`)k898pCQ_HGILK7c<<0<PtUBS@_3k)6ahD4DGc+^dCtNUK4EZ`WKbt)TJ9 z$aKmOHR-VLe(L9EuI~Vx7v~=rFhW^D36k6csu57CNGulfTk;+ue=7W1Jab}Nk;)y?>o%PTD(WPEMa`aE85uZ45%l6CvrVlT^SG^Y3-5$5bw#0dczqp zu?$3a3EDO3FwIWNk0xIZa?xNJF7L%wanaz}8U?}^3`rFlYIuAO*FSlag7n`LAO6I| z?WK;clH7a>+943nEZ>VarCQqZeB?d3lE|9cBiBy!P=5F+j5=AtKd)V__>HJ`h>uDr zmm(6f<-uK4KY3m^qSOQtCVOZA?39O(Q9gn62PY5D8pImKoem>669l3&hU>7hgrVC% zn7Xv1o~@xFc|mu(p^oQ6Tu2pyGm|iw7A@^ia;(MvK;)>W@Z~byU0f33(L_fF<#L*z z;(VTF$@V+xn?0p+WtjgZ)0oLtl0R28ILd(t9nt> zc(tZvW+I=l{3cTV27g zXFHOQ-tND3{@IkGEJQ+F)FvQ!a@X69aDwk80bsa#mkZiN2=Bvgm*W)?q}Aa@E{US5qy(sA%trNh0;%{jiPVLyBM!x~vE;J~aP zhf9HJm??o0X$dR@Jg*i}PjD<--OtJHu`jGrWiIlzal<4@k&XfFNK$pNme63Y-o}da zEMHBfFDZB_VQb`pQFf?=it#k3_+N;N;0t{8cX!4YS`|wq-9YH0?bx*y zw9!lCYkVnj9!?}cgR`5Ax&s~veU`uR0&=6C?I|D7`*cPo?p$*^7T1il$Tbv)q^8T+ z**fYIdySB}Rp;*ZOrZqb-%o19A-;Zzn&HgfPNjRY%dc?K7s-@26FFZvru8s?t}lf* zMSk&yOzpHy{YCaKfjqhiu& z=xWnq1e>Egme;HRqTwUUBTRc);QPG5BMk^rBR|nr;j)8h@9Q?Ocqb8>xd!45Ao2eI zCCv*Pg6Xei?H9P!l5BMkX zq2|Q~ZeoQqlyHi6+Litbm<8%%F!p0V4qJQx;B2w~C9DVw5gzX7O!znpwUv{UQPXht zMqhd%UOKMvB6Ob4<44$ggUk@-+rSdD07=E^5GAyr-;V>Owm6qoibosp5lV*u0PgLu zFn?L`o?j2aZLLq?a|uN0evtR_uwCh$)=vnD7vB1i5UnP#Y|?1jNH6!Tpp=HOZ@_B* z>U;9IBr#v-dSfIn)+UCSpZhbnL+edaG$iO6c~$9P7v~m`3NbB8#?<8ha>41d*lwgU zi$me5yYz3-R=@=K+SUI_Dk$YKSP5ANEbr_}-FXlp!2*rN`BR(ZQxTmuQP^5Q+|^m= znheM@D|FH`|3I|XL6qRO2?Dl=afoYfl*?}Bad_f?dd8+Fg%=cH9u8Bi+Goo&?1()? zi0hZ>URT7Ylo>~Iq{UQJ-%r)xkMXm_L9$GvI!t|QJY;ELY$n^V#qUuVqQBN{@cnJ` z4Y`x-LFEN!dK)rT@V9#!6miSj4NB!MBJzC)T4x1dg(VUW1Rv9(m(#IY3$yB1V8z{E z08|ZH7AnU^8-O6{>cdm!j2#WDF!R?k978Lm3)GAVr$l%*Wrm6;CvbHBS;u4efIuDt zdcW6A9Z?6Oehkc|CO`! zopL%tNehf<4Cik{=_RfC*(c8%ZMxl!q54NR?;~H)D}-UXMh?zI(;Lc+zBOIl^hPbY z=S$hlVtT>3Qi;(z1rpL5)ruv4>|leAX|&jH(n+m>Aa=zRtW z;<}%s+Wyhb<#}UjRX-=Cbb+fLIH2G7o&=SK6Pdbw6`_E|{)ugyr=d}9&=Z{Tj*K~a zp_cjnv(xiHTHLHQj-+}Iw926qMGSd09!q#D>n~30;XVCa9DF6}ru;2wxUFzehy;1ZC{tF79_kgxqjHLUs^2e;JDL!j+f2@puOUMU!L1+ zrLXjJHB^wsZQ7FXP0Wzc!GRX?j&b3`Bk$~>ZHxij+(M(yJcq`y8mxV`!_-%H2B!9) zq8EYb$-NtOeAOutLN}G9SFh$!CMpc43hYX>lSeQv%!{g#30?`I5wpl2tw71gF+DK27L%9sd4e>glI+~L8HvuJ#M~!-Vw;3 zeVQq33#ZPSBtL>FjCd&ap+@I5ZdLX2leeRaI}kqGA-k;db}@~vdp%y_`Zbu!IWprr z;qn0oUtfWJ(ltCBDUc*f4Yc(~(WH`L_iS@BnZlaLa+G=aa(rcj?f3$q=~GcN>#`?ah<;P&Ty*X3k+xPRGDNERH_fuYV5Y`|YJ{9#J}sB5kl zUo%sf>suoQC; ztEV(Z1Ri=s&$cFz8A;s4U*{*aC;L=Uq_O9|w(+e-O0o-pv7;qXGl7Aa;f^=$XWg)l04g(!vx0PS+MUF%Z^qC^t*~R${%&n0RS#!4Fs|; zVV&jsA_NBl{wkaw#+$!+)S^fi6yQVQErF5)G~h7o88Ot_y?eI~qMM9n|**5#vvB=zbG|}w< zE7HBLT`c(6yGApEjN7OYx6H`*jZT?zoXgE>Z^%Pyxt3}5sZEY{y@Ypz48&`0SHCxe zxKB=)sexdJb`6<EcO?7O z)30#u9uiP*Ry{elU}`ESK2S?AMsnXl&GoZLCXfh4%(WX7LGJ+sR#yC*%gX;s99B-NA1mka4A23HH5otsPAgasNU36~Kz;jlB= z9*#-hYuB1_;W)#J8msh2AkeFwYNq3lsSO1lYKpWHkLb>iMI2o@drgl`wj)=?SsT`HKU3UBop}|3 zJMB~$GitBkzRPCYI)+gnA0uv!3NvVuz4)BI7`XsVdlv=NxOn1sO-0Fb1D3P1RSz~p zOQs^C_pZt#zhr)NLm95oAD1k5&Sh`1XUE4>DO19!q_5zwz-jLts_IIEpu3afz*MPR zeYom4z!}gua19fYJ#vzDdxh>ya84lTx`s7c#@tvYQax+W4>MJ8c4esB7f4FVyIVEx zn0hd%S3>Wwix=Pt+XWq(i?n4Q1KT1R(;7&qADs)&u>DprPw$OPs`LM(T?|9ygJ=B+ zia59VD-eyp$sv*6&jV^d1?RrBQ;^O=y}RZg6)&9VF%FuJ@aDLH;L3=2+d?!SNj9?ZD!?pj8}1)&5w>Bv!miDpzojPDLi_ z@J4ZqgxP0SAzJS|m(uW;qt5*Wwf-#2FNe8p?@}gevh3;W`MK1VtbbQ+#Qm~saNBOw z=Yew7N~5*N47aML8K=Vw;gr(?k&$=R!ftwp+P0x%msQWW7m#eCn$yAOv=GNVTuMlU z-g)}+Jb!7hOe(uNV;@{v_np;C8=sAO`ioIHS0yKFt&GxWw*__K;YytoXu!vWKK^Nj zB&&JslZyy8+mLrC1Df{BOrb(du-ZS?)E4wBO|4~1SUiP4rwJQ070@P=dukKraHMQ^ymzn1-~LA+q_1!18H{0s4brKxC&gzH z==RM93>4&-|KzwjvmmHqd1309_Z`PhQJ2& z5}2@GZb}NaD0L{3Zi+j7`U2no>C|s3u!F<}ru%p_BevcZsXO4i0hxsl9ecAG3W9Vp z2_aWSuauT*_=H9QgPsF6`@~SIQ%SZJUt01CPeRT$IeSKH#isOhV*Np0z41c4XsrzPT}@^*~Mw{r2`m!5gwJ3hqPYC*fhvbrUKLZr3%SyBU2*9dp@ z@3O@C4}-7UP5+?{$(wHRx}mLF`x{D`(HLW07|_M#!n3$Qrn4RQ8Uxjn3@N8|8x{P^ z6=fBl@1QcwT-Ac{7z~&z)FLnfVIz(JON70;pFO|g(jKkb2mU}zaU81!MK~$UP@0l* zyIWaXh>fndtQ_Jv-Tjkv=DJu*MHP(?x4Fw7Y5$`IWhvo{U?sgQD~C4sA{PXM+nsC& z-+ceOg6{CYwt_D9=1B~xD5!INsCN2iyAn0ye^Z~}XB2(;O7LpI^Eyk{uS1}zrSQs( z$4MlU&b}^ayZwyqh`eu}D0?Z0Q2T}F(}Zs_tW_aytL0gU)``t-d4M6Jdqy4p5H$9y-wvdaIK1|PpJRly_7|K!CW^jh?~ z&SWF{&bU^P1qJUxZ}$y7W5>>6I`;Ee4-AaZ8jOAIj5d1UOeYzLOnOL|${9Lyh+5?% zdCnGZRgmq$B|knK z>=xndF%2#-yciV*4JTEXP*4%EwpERP3mKY1mao^5LnUU61AhF(uysE@MGvrM44RE* z_6uS)wDIfH#nv4lu>mY>DqpS-|qxn{!`@=zD8l7pA-F80}t)mBo4YNGYURu*$0l^KQ?ZgCEKw5^b z5-p@3lD5v-iYJ&Hei5LfBpj%vdx-c{W2`IoS!U?g)y;4T^86{duFJejYUN8BQV#%l zsaYOKFn?}B8|Fgu0Ddj=H0L_&(obX{{;2}x>8=@B5w|wUE!9n}*VaJtc2eG&>7G6; zGzqK2>+#6@80NFr5)Y-Qm^+gwj0qq2+1<;Z!_(avhzMx;b zLs`Wr7vrk^dTheX(>YEeWPqDeFj3x54<9Y5zX<$pp(RvZJhRy2U1RppkYOq_Q z?}@)@dW#FCF>V>h6m+T$sobqF-*Ly8&-m?`;$&nEkshi&=!{LcsiM&E)G=9kU5qm2 zThHd{>1S_aHr*>#twMkmeN|B#_U?`=;&Ol;J^U&Jb&5Phi)P(T!N~xF+miKr!PJ?h z#t(1hRrd8=?vr()YQ?t?m2;;W)K}~SWP{%V4zv~r1q<>D*T z=xcIA9fX+Cz!cJ!GUNO%%?sXARTNza=Vy$!(FCSBa$G&dR~U9 z{ZAlEdF~8^Y&r)|!I@2Z35{}pcT3-$hFkQ*9|LLTmFsE)eEa&Kz8cYdxq{{CwtHdx z)}1pC!qASm10*{eTQ1Pc6mw|R95 zJ7NpxwS0{${`h5Yqho4GTPj0JXdx1uoQsP?W|3P7czrW5aEgnb2Sz?w9mWT?Z(Bb z?8;pnGxjJo-O1B3i=#&>rz_F;*41_$rMDvpyWjA|!8ikn0I}(rS0%R&0MNVv#mc_| z$A1{Q)oBc@zU0GuzWUY?rshjI$zpSU#E?pv4){?;wpn3(z#e^DbMx>DSvu#yeQOHE z;)w+BJ(6EnUV*GiH~$ylHgDlHF2&~!iJ7U%ZieYF!;6lGMI(CD0{m=%J<{Sv$Mns& zH+LAfaY^C**T^-*+u|3*e*p*{xCN^G-`#v(RC7vKVmCACVyTY9_U8heE2y{RB2(7h zZ&|NnCdK3z>>ttObC~DP9*>qiZ}n)X9I{1D1~o7jog6+d4%m82rZ3f&8F^qH^G2sQ zU5NqO0oLU#&!8#Qh6lzzg7{d;sP@%kCz4QlTcdCaEA=Ozo=ZfyruKu) zmGZ}5dZ~Fm;k6~o-WF}R(x_=s7m7EFBt!}s+WFbK;4U`cvYeWg8pBh%4C?j)YJt}N zkNFNXMNR#crAJhW#KU|jj9&*_@s98ns^^{aUh8lf9`lQfuf+`SU7Q0q!6#{1<7T8h z4MVhB_y?M+^NUWz-o_TvR0GXFv=vKDYf$IF8$B=ivhU^VOPXOEJtZE60jd+;x(I-~z0Hw%e-W+Hc}^vxdJ^P#asE zfo%ptqo`iIhe1;o&pAqZ%-s8Plo_V^abyDWcvZC3XvH zCD^ufBn|FMiQ!M#x9_u{wB8S74Myet~CPnF?GdrfP279D0OaVW^zMe9U+`OS>iul|*7Qrq`=^gQW{9#6P)R1PPQA%6Gowde*z|K&jtPh z1dDs#YTtqv#Jx906U!|k8DopA?$djhYBSt1OCf*c6>s==by4Eh>p{CcOoEbg24^cT zJYwaOC~-E~hpFLvD;Wb}?BfsY&Xfy?+003SIZHVn72Y5^PNgT^JYY=o5zt`97f0Aw znBR!NsDu==wm7L0wMR+fYFof~v`&KIwnn@4GxDYc z>=RBnY}-0-?L+yysK|yDr;%tB_LyzW-YmI~huP3;*iM!$(wU8| zGqYeV9oRsGvi!F-mI3Z6VKYV(*jaAMy^etsy|A!kObBa0$=39UOeZNV@8}?=b@Et( z`qqs?17}y~;PZ$lL(_*+2nJ(<>rcarS=2o#?55j_k1bmQ3oX!=k77Rw1gC4Mm&sD3 zJ5wbI*t>@Yy$1r^`|*fx6AdTICVWpYmji-jI=-1Zd8M=lvZkdIbH_*?5lGcrnJnT+ zN~sKXNSF7yF;7%-h5kPI^)4I(Lleywht$F;N zg0^;rc2$eu)tqq;<8>IT4+!-!DLU-T{9(@6Tln_Xez7&$C4Dy_NF)BL^9`P(wv$M1 zu4@S`H<&o9Lx_eg$~h@<^UZt4WE*g(+@@vfNQJsIb;qLFF*0b-F4o^~tq#qypE{?+ ztWeNg?n~wtV+njE31RlFG?|x^_;{T=$42jX@yttVYWEIhl zZEOT`3wzs7WqjjWxi0-GwQ63P$3J4oCI$Szg8YHia)g# zSrUWIN9*7fv{=ju7HiGQc&=)o6wuN(;j}w~bvw zIo?XuwV#L;k4k;@FJEH-%{w-7>mQU(x1;Nj2%i(LImfjWX0~>_Fxgs6-`aJZ!un3! zSnLzMv61?U?Zqy}#<6+1(#ocH#=-DlXpG~7Mo;%-i2qtAOi(39_ls5l@eC`mK*(Un zT|PwQ7tntL$8Ah%f^n*akgFwyB1y9=dARpZm(ZvObk>@u+DO ztB4Do#qT=PX1J0qx%%Ald(0)uzbuCvHT>esPu9?HHwhLZ@$MkI2LKr|<_zf9hY8+* zp~C3~&&f^Zd3h-TXzuCGY{!CUOaAvq3k|2g-xG%0_CCDGmBGKxrjAZ6Dg^kh;GNYa zZ=7+DGjya`>Df8Dmd3vfdT9s<@~c%zNrVzc?QbkseD#l#Px$FaC=#nJP4*&s2xbvu zajw?IkIaeUhwsuAo?ggy{_-&yaXur>Hu;kuGdE8`Ei-aY4(LnV6pa3z5@JA}SaFl1 zUXU{8>K7!?X<57b@<1dch4KA(uGT{iTsC+rp#8XKSf;M$tG03#w zBddb4v>Yn62-4QIVgg_Z?RMmm?ju@Pxz`4m(gYb>YAs}$Tol{Hl>yGw#=(9JS^qET9k_d=J+CHBU1S)5@KU&X)zaS^66?2H?i_ zG~G88fJb(bF`25G&+mVV{Y>fBKMsHL^S^Nc~?iubEfnxwB*0}so2yytt}Hr2bUy27x03jp7OV5Mg>|Cs11@{ZFFX~VF|50vaL*kB{SdofhamsJrt>Ge$?n8 z{=jWs{ov1fh4zM?vV|?V>)cyaN{S+4vly-}`RL2@%8E-wU*F)@csvEB=S#f+wPD;@>Ktbge$y=U{sq zlZeh8?-}MCzRebA$4Z)E(eEH-pmD0=m{}X?boS$y-#&aDoO*U*C^Go*Pi;-=+%CH@ zmzNE~u(Rrb#wHV(4zB*iM&HV*pgZ)HemxcxE9}dkrF?Nm3UsnT_ItOg&0tzAm?)BZH z_=cJh)UP67&Gz8F+xq%Ia#5+|sGy6PFIHEL?^{G{&w$^*63q?qiwl|XM3IdH`tE1P zdYH!fMp6jWFk)DUd(&a;*uE#=pMPBHuq}U-Tn*TZ#>#-;3UalDR zNqkif%dOO~^{Pj0cKbTXUv=%D1oTo51j*koqZolayffyWiei}OlO2NX--~JI!9JC) z%kBecpY*2QN-)YNVHf!BSx7hpCCv~rq@gZKd_Z!?N4txpdR(;;ob=LZ5drmh6mh>p z;1#izd7}Iw{ahHEd)kY>-9%4BBqxTHvQmHhP@C8X z+;=j~W=M-v^`NM%-Aa>n;JE`rT5Q3oxC;?P%rEjX&~Oz87+$?tONs>hc?B}_MLUx5 z&A1e0+U3u^td(Bd3ZCNS0z}|-R2d2cuH96c`9TXVYi*M0eq_KqJe#RQMP@*U0n1(Q z$aj}0sd*G@M|N*y6%TZPb}kS}&G(#sDLM7j(62l9Q`ypQi~H_OsHzb^Ip}%*X3|fT zH#N=a?o^;s)l`iwH`?_StP`=^$+<2J@ett+Hr8&?LPRcM0TQOTw{->`18B6RrI4i`u<(?LbBF+= zm-{lpWyL68X087Z60`n4qPhRCta!|A&*VaMLaX;)?uLOvWhOPcWB&pi(LIsAkMYi2 z=*ORh1-TNTBr=uM;9-Y$_%OR#jNm-xURU-l7jhu;xFB`Ht7en)`d-A^Xy_ zkIp)O!Z$?V*E(x3@w%sz#n|eoRmqj}vu*3e`fhut1^a%ZE?0~WSIhO!9Ix_b(1NSN z9F{X<-E-=Hhy=}+IN(()mB}nz3Z(8cOIR6;idjRs3{fYM9bePHHg#|e4X<6{cI?fz>fBqkRTks%w>O?4%SCs~oP5uFH!CJtsp?kN0MVknZW3H|xbgV0?01DwT;V*6 zt;OkyUdyi`Gf8Q2CM?yGJJwRNyT`h8VnG%Ce%*E*B;HJpBr9FV+}EGfi8Ye?F^jRR zq5KMEPrgkI-543+u$CQvpkll#Lp1eK-A)z9Q|(3haRZ~ml`lnDP@_+Y%Qi|A)h1f% zflB2ICX27tf_zz+$m9SaVDC{$tOGIW(uIQs#^ao@GFaV)LlF?|nMjJ~OfyR{9&h7J zm+d+WiRz4)sP6`Q06-;FMa^fG4Hs(TB8?5yDIoVT4v+8ht}!&d%}^s}j;pmZ`Otim zWdl9d`%|vg#TGrf(s5v(_1{Z(fWAE#Bg=J1U3~Y?lZ@*UyRW~FX-*yH>H?#n(4)rD z`@{og(CV?+<}v*JC;pWF73Rq!AD@=y zU=oLQ@W2!^opNe#Rq`}mo4T%>3yQHv!o~2-u82@}?BV8& z1%UzEcD0RxDB&3?Q`pW&eg_NvpogVp(ZX0T18;Dn-?Rg=zVqRr>+=l$MeRL*YT ze^lXwY$DDX{s>D8Og6ML`dcS$7T9&&g&1sxzPSlnjUvB{PHEn~aoGI}ptuxk(LeiX zT#DMFHXvi5hiTHy2S(WE-->Z85T$}JHr#}OETa}t7$JDlCig|rA;=+nvMw52AoSV9 zrVx&viA^B>oJt(Wk53brZ+ts8pzk+sxO|JMlcSw1YYW>+JRFr8lzo4S*S^un>GDMP zb~BlGfFy{jwNih^*|U6p8ICny1ES|ql=c(aii8N&+kA=;{tEyyKOlahSuJ(Ys9IHh zCjQ^pd+VUM-f!Krafe{R8VT+McMtCF5}M%FxC9Fl(zpkAclY3~!992*!JPn^{{HTr zJLl9?&7CtfQ+4Om`KRmM)w{d*?tc4~wbt`_O50=biJ4u!T2N48gcd1#ADUjo`xe{9 zBO2e%VTG~)-N;&t@iQ~G-U)+;4bNfSj&YIxGUKy+<09KmYqH;-RQaa4uq$`e&B)|GW9Z)M=S`lR9c9w}UtefpU6%7B!?TLxuW@9RAysTu z6bGxKOTULcXG&Y4n2fDa_TP;uS(;|2!rrelv=SXbpyVMT;8MAU1hFYi_rhr-Qij6J zFU@&cIKv4OIb7u!)w@Sk9H{YhpY|nv;x^+=mRo-`h%OXS>fnwkV0NHxh#;#=j=l>U z0=V=O$9iZPc;#L=SZZ|3Jrqh9=qC`aw{U;6l;sBrIKv{bYj@ee##s^R?Yr6ThSP#@!RS3Lv=L$k zRMpLpnkw6e8iPyhG&f9NoG{D99ruZZs%O4egK1@P`gYj3Hu_3By=#J?RQI#y8Hc)u zoz|8^yvcDy#)stFG8zM1J9g7?VnZPwk4BoM4xRcNexM7NuXd6;O8f&?AnB1|aWzLL zF0E&KbK#Pv8mw#lvXVnDOh!yug%j~OG7U4l4lMguR*vh!dE+Jr-mJ-`okGCWVc!6kg^(D(ZH0G(PUMpcm|}Quj8^y{RF4DDvW++;b^?C%0=N`>m>JKOu44+|pNC4bE3%iK8S77DX_y4!X_0PL`rsqy(sk8*N8C)xJ-!kt zYbB~_2w}k3;H^?<7#VOcUZ?VO^I-ekHy?&-mY?qaf;?*;UslEWUM26pI>0!1M~a5< zvb?F`$}JVPI1_+zK9;3U&O9;RY3`$}jKMPB71jqy<5QH&q7mSrRYZp`It4WfM&hYv z*vHY5Qidk!uyN&b8uJaIS;a22BRw6#Jxwx~M> z@E-A1$9RBH)On#c~JlnJ1(d30RTU40}cmQWf_=9u=fF!Fd2qPRP z41w@$(SiP-v7*DFl=j=thHxZR(L;pT{Fc9fI+%fOH^+f^U+i!D!1M9P*o$0Dbe6zB zq`&@Ly@H+@Ux!*=pSxlER&+qmf1Uqd-_L*bhyTz1FHoz$04;_;C6Btg{+A|UuZf7B z{OmPMEM&L|qBu?9!W_f>0jJ0ybta)0fznNN;U#X?G(m!bB58t-@=rXNoQh1sv)N)v zK`zcy>H2rYX9Pob5{krg!3Pyz1&y#kZ1Ta{GalP=jxv|mfxwqK^mbN}grbAS$o6($X&r?kif2e8yY8#yb zf8Kn#jgEW@@ed1r9fb@L-)qfH6UHf2_y*bxH~3Ie)eO=!?l;K7b4gp4=+$2*J|kpa zYo_WTS{JF&Pzv0yYM*Z1^WX=!gdE$YwbD{-CIj8xkAT#Y>}0O?)kHF9ViRKmNz0?J z;fEphAp$*vEZBP)LMb#c_EVi7FX@M6x*i$@F_<>Es$J^u&!E;^S zY6GxA&NdxuG1Gl7%gO1CxPjY=TuyD^&w><81DnbEPSDW0MTJ@hL5T@BpB=g$aO&g# z7cg*}ey8M*A=^3+QYF=)wO$95AcQQX$$8j=nb>VPn!)TL|If%G7Y_n6-k~rNAYf-8vu*g#X9>CaUe9iifZ5A9AyiG zwLgE_sSwAWpmyduxRbo<31t^N_T3fP4blHW7cR=O^CKB-i3ooxkt8>CrT--`b%z-T z-Jm2w#If?Y#SXaoUOqlXDswA9f>brhdE$=u?!8);qx~|3g97OXL{v*DWzv!gh1L7% z3kuYPA%eH`CJS9fk-%USoo4h=zePRlR5p>kAjge={3Ka78RC3SV_49W z_r}A~oq%^UH>U8>!&gV@FFWv2ODwzMZ+o{ZZ0>2)yacHk~v^ngT{RFbE`y`0I)2=}-j1Iv)HBNYF%Gp7?IBYg!{9tLD zRvU0A0y7-BJcs1;^{ZStEN)kq;MUSc;W%rZ-jqlAr70#oCJ8mvg}wy_G#<#jQga)} zMm~EuZi{O6tv;#wVMoa=bQA3T@5E#W-;KU!la6TM>ul6L*F!8ZW>2lafV zB3?QSyGdLU6gnAES)7ehcTwp-MzRfEHl!P8G}sn2$BJw z1luxTF0t6g?UJ7q&FODB0rdia`&A%tz$u5JgS9Ip&eE$!1;{D^(?BU7#Lc~VZ43p= zGpPWm3VFJia112`?s9K(XMDBbnpT#GOo}|Vh5nlbvM0&^8%*8*dXN7zmzc0g?Gf2D zaEa(&E`po>zIwSQ3{J71{i)*qMH()vj+GAHY~$q6wnfUzzhWe}3vJtU6&OC!c--59 z_lNOda||UtdQb#!r<+_GJ{Yy2h(N1MPyo6Xo4KO0%sM|*Z)R&FcNs*`F@RUh#Al$7 z_e0lti*%2)k^1oG13avlVB1wfmYBht z&rv$#xYt&t{UeC3EQ%{Gu0oo=!MUhwH>C`bfs;6xqP9@cBc+?$5jSy|`3rn{WX_n}xr27XZ^_{Ks2668@ntp|4ls2tMU&A0X(cIrD%<)5 zGP10FuZZL&&8e5_ET{W40&kU&@mj(@Xu%^8IQYi0F%tZGXCMFLG9b?d>W~3T`A!#K zMt9C|1&Qpq_*BmA5Mc5H*?p=OP$M(X_m(&^Q?BpXef~vrQlpG;V(URXr?nQ*1EimJ zI^|iCscEFw^D<^WN6Cv9QS{N=ef4nMdG^0u_4m>(s)=AbBRg;o=%k!l5 zJ7^GZlvb!6AwsDuO-A}y*03`9^ZV!O_kvXz4#_Bj_chc%JGIz4BN}RLh6PVxsPG#$ zBID+EiQ`A0xgO6UsjRgQaSxQF0#_*PWt-$wJ5Q}K+1#`2Xwo2Iq7_a}@xcAJL$RSA z9!?w(XR)(pXUkUP)7EWLz~1_H@L_;EZ1Q}%KQXN#uo6H=2p>lDU5fFJ+&+hRh{{d3 zFI5%m?{T2{KStqa2ZOV7l4&bFKhh>W7XEg8b_iGKBxyzX^DTa4+DUR(#G~pQZKJqg zyGm?_8jwIZr6z@pD)wxV`eCNT3@wX$AeE(bobglguy6?QR-hW565*lbLxNu*j=eor zRCF>{oUgC>)@9UvnXQ6B#$aEeAlb6>H%ro-!AY*gnaUiH%(ZZktp3eY>7BTubN>)& zV6=!#(b!mhXSfXOdoz?Lx%E5Z!X1gA9z_?n|puuVYX8IXk?4`rfh^6JzybKeR!#Z!P=+069HB zFJ>32p2;jHI=sRIr9)n2+{U+5{PgCxo$-&$L_6h#5%A=)V4P*%(@jHC8{V!FYj7A+g1wY1veg72w1$>emLc13qt1vaQ+ci+b z@|K}$dHV)|w!V}YXf5Iaoy$x=ZtO;z$maR6#7nZ9)QaI$ASfAxbM@+xx)Y0XtWw=v zw>>FgU_6pRM@(}yygejr)f{O=gr=pm@=Gaz<}=w2o059xJkO~e0pxWc%#9MRJvPAm z#lE;TKCCTX(uV*Dz*Zoy!0&w}^e5gh-dukvQEzvhQ{+OK2`CY}ohRmFN14FUWD(R> zICPy?_rU*lK#5Xi(fU1ZNSzkJ5_Y%Yi zEdjTgFZ+IJ3y`eBB75qltaiJk!}^3wDMvI|GUYDF$$ zY!{z4HY<5+us0%ALVEw8r4{cKTkdj!uP zE_G9RBPx?-6Ot<~ndEc5FdpXXD_pc>Z7rmX3v4G51>V4a_H7`E3r%%;9*is{DAL4sxw@Nu*LWJP48 za|O_##Q2&2SrXq7N4FEo8Nk6g;oHVaE=NpDtCd8&J74U$A%l4j6}D$4R~#V`)r)}o z7H90biEdA#<$bbePQ-MY>neurt-jL^t$-dqo^44cr7Cp_lVLMq z6e(@9)~a`oiZDCd#)pZl+5p|2=NLbWdS12<&oY-OUq3nk4dmXWxafrnAPu)}F$x^} zEtPohTuqJl5uFC`_tX-szUapXi4`ufU5I}$5=Hkn^}YoAD$1%oUzyE+st<&dEMi{F zJEb`JFs%?SkQa?dMZma9fDIsLS~(x&cbV?u`QlURaP373%}yp`8Up9oWy*yl%FDxm zIBbeC&TJVlA+ueL09KD-8`CsK`WGnzza^0!`?s1lu*)o$&uvBLyd?~ff3&>a zin$#YICdY5mT}IzDe|KW8q!F?i8oHTB{4SWVrDQ@CjyI}YRj^{wv96*x zwDOi4rk^R_s4rM7M&Xs3QU|C1AjUPVB>xE=H3(-MgiooAhdCD!0Ps~#lq7Ny2wHcd zex^(C6Rs?g3i7V#S^Z}rzWy)e82xXtJ#cCUP`MwJH+^a_2e`OVGS zM*CC#vi5|fv8-*EtTSU{dr{U5xwo%huXuS|z7=xevT&Vlg)Cn`dhNn2jdVZDH5XlrvZ z-!Kc7^QB4#K}D}m^)TSM(^u5ej5}}}8C4}nN`^AL51Ber*B~z0yn9VV@TcwOTY@OR ziX03{c2zUJwir&-rI5HNOm7>G`#9rm17A4RG`M6sG`9qp{f~PXPlm-+?dkocR%QDk zDVyE|uLq{$9g6pa(TsBp`;!JA&|%RsIsA`sz@Mz&$%1?TNhc^Cmf-VEW4+{wNY`1^ zhK+rB-_Lu!F_l}^4*;8vU!Kcn-O_cKrPEBgnWB`+|M+OS8)M&&W+csL$GYimCBNoe zEu`&8rvLEzga~wJ-_}m&E;hhJW9i2&2U{MKzFStiuIOcK{9~530bbo(U!EX zu3c_je%k5l^G>Ug&lo?eT9IQf`$I6fzde)8+q82EoJ&nRS0B1m*9*~;pCBrL58?H2 ze?%eV#R@Sv#}tJcRu!Ubalw9NCOYXlUmU5)9%l*EDhLgUa}^cRnn5~REp!062=I*yQ3aHWf2IJ6g;)Mo5rnm|0i> zxwswa@TIv0aqC~Lq?>Tjo0la1s$vxUPPluddiDKf8xoip#V0GLtYf6XZ((UN%r2yr z{f@@E3wL_PBIf{sIeBZLbp0!JT|N3Rz)`eLebnxx%~fu;X?Kmr5fr?dLk*B%i9b=8 zZJnR`^g9{02oc*U3?FtDc+x%krZB~=Vgm;>CshpE(0VWBvy1qog@`19z$_ZhB6)>8 z%Xw2OkLV#-rNctf9%i%U{f#EC%pxgB51^f|E&!4$Z<`W0*CAd`Wl4D#_a0C>sEQBX zjuC4s?~n~p)h&`W|HZCi7h!qKSGQ$Ne5A=SA$t5~I_JAZX4to_1^Rb`1TC!n%UbC? zH1WS({LA_&2LwyVD+P<*RiQgNQi$mgL^={52JxFBGcQVAG$wr1rnm`rF(Y{9EPY5+ zXlR&SrIQqU3~A6n26aHsVkCZdiraSBOa*%1IYs2kx79yFF9M15w) zRRfbK053#sLFSq8YK!0ZgZAcV_OH`hJ2*vEUIf!>6{=ce38z+6iO^YmVN(n5kw)^* zL0!I2>D)5!suSUQW=T;9O5!EZB=X~C=RwhQbnHwKfZpn{*5lvy4gWcyng14``M+Ab zq%zZ%Xm}RwANykMRLb|z8c~+{PAShr(nMb)#lXvc)3-~@7DB#y8PVxc$y4d#2*NBr z^T8pR^RsY_PkJoYrA#+YzxH%*tA;KFM=N)E?&yaCsw^n@0G8$<>07*AocZ6|_pWmk zZ*4!~RT~k8l^s=3zv;ofsVtxSQCiwCrtJNhdG}bX%kO5|tc0-4a!pmw=}agmAgAVW zr|F!BZ5E+1+b=Mu2CBJgYpQu2CqD>Q#atNMuM&b4pzoj<`|3`%jr5LAYBtq#{;^(c zJe{+<5UeVrZ+U|%37QY!Wz~&;OEM{d-rz{GG24vWQe@ay`aZdI@#0jRs(jUzP-dr^ zn>i%CsSd}D-A~v8>h4ntnqym386i<~Anl;X0ME?->YHg)bDSR%e*x63FkCc|u^n!(i2U-QzU7j!`v-2woC95R zaB-&j4gB{l3T%7X*P}E2hRf`}2J(xSpc3#Kg&}+TL-M^^fk{VYRN)RSM9%5BlQl>o z4Hn(nT9j@|7IR%MjHpbwn99tzM>c;)s5YKJe-x6PG~~<`y%Eb>gt%)V-8)S<(P!VPg<_@L5yFG#=;432cx6T(t`0YcjrBJI&*qGRTqD5|0wPf zSIN5EzgOkjc>E^@Qp_bo<6}9x7obC%;DHF%{%9@IDx#B=$TBRr(^i7F^ZUa!=Be^- zYe@kBnQ?_!kQme7#yEVHbJ9(b{wGMO!o#Vn91jqf1XfKzS~pO|DUzLR3i@rIuB2r- zq}IBd;HTMF2m}e9t0K?_Pm1C7deac>RAWW2s%Lw_vOAC^3dPKEeHkbYuBvcly-$V5Hh^6H~6Q``uDtaEPI~ogVjKjt^K3)Qg7*0>D z$uW6{Cc#bdfL=}ZT(Q@cz(SAAPKLx(?7m3ufKb3VfM;hb+xH0q@bQc-<@sX1xd7M7 z{OkRsz?)rRu;MN&8vL!pEO)AiHYIcL`V2iybfYnvp|T|qwo$RB#gA7;U`ydCEXT%@ zAJo)&D8fk*9F#DgvrN+wEOW4ZOCe*nGu`xF;A5ta2IG*r$88~E-QK0*zP@{|JZB=fLSjg~Yj*!(Gc3Vfqh&BD|{BcC^`5H>0vrkh~l zQ>^fAl+~{8U3(&AC!<4%y3zn*frFA>8#PQ)?!s7Mx3Wu+&nHqlO$(aMqL}q{QyvC- z@Ej(0M`$(Ynl!yLrjWR)I#K91M@aAa3b^88F`P`68)In?jqxo%m=RRB;RPZ(o=l2d zLrx9Yn&k`AtwK?HsJr;>zTMzSlf;^j>(?_ z{RPC3K5kfJrlG)m+?F6u_(POeFmwC=j=FE2uukbE?j@Nn>8`8cc;7U~TjD27l%hp; zrZs}{EIxf=!k6gRih1ShYM)9;H44ha%>45r*8O5P`_t^;xglf;vR$G%HMo+s&ULPQ z#|td4M5Qih_*}w}Q*EbrZc?>@KJ)wBUnGo!o42$ZYx* z^NpZb(p*~-ZrGFdvSmhJwu(tZTnbsBVJ?KgH&L&O95)yQ0USA|NE2f&lhj0eI2pB_Ox?ufSj}$_*ZVupPmuxMB*qB7YPg_Gad7xwIGgEF{#<2{i^FicfH923-XS-?!h**d8h*7&n_Ff4Op1R7F4wUv!E!<{XloK=J z35NxMFz)T6l%iNu8CMc5D0pU3HFy8JB}G%d#iyz^3CNBUEan-`+g91r+2Lm5f{U)#iJOUJ;v$XB{o;WXtbI%&yz%O=>gf*+IMH7NS;rg z*~J^WY#nmOI*#0G^6(9S(dGN<=?`=H2&cHgXUvvE@g3V3y3H*b1UXF5#Pm~h+K*`w zG%yB&vsBPpMV%%b!=We)XFb0FO~Bx_|8$KbeX8HAF@w>Fo0#yP`x=z)*jxnM`)%Rk zr>o4_be4^9>Ea7XRG6b!AjXr1y>Li|diPgKDX&}Lw)oxC(FYz&ef_>_!5#;B)vGec@W_!e_7`TrD257X}g?h zE0uAQ`<;pkLYH;NiVJzZ>_ElR(4k@1!r= z2HU^~gwU)maBp=v*mb#2b?~r=c83cN_)74I>elJ9aSR`n=|8tTN1n|`o4Hdevute= zrgo%q9dp*HqfkxL5`2(00M0+N0tMxI@xDzfU$x^KcPlaOb+a3$uv8^cpxB8NGqtxN zcd#i8{x({2sxgGZYtTc>73DWKA0z=vkBk|Z@QmW0JW}VB)r#}-EDJ3icH}ZfMr0f< zhcAQfAF1hIbh+9p$#swjcQL({Aj`zDi;vvHpWm7p>9Nda+HpersB+!eKaI{TOQk7T z$gWo{mQ=$?gP~K17?n6kMKK#ErlEobE5?*LKsb`0YMrukcCA!3%x5&3BQz;?eJ^}d zsD65%UVKmf4Lw-|7XncrF+w1y$3p?82PNpmhn#4xDByjIAeWK7w#?M_(|&@kX0((+ z2{RJesI};2xnQnNlGK@>XhMx&2~EA?QvnwB88fZ`NMCLa1LtywwZCxiU zaM$D$k>ht9t=kHEa~BtJ^uj_0MC&81q2ty*%iDu8ywUzts4YU1Vi+V=@teu_D`esM zHsY-)9eTve_K*bciaRf6Y$VG(tR9jo3>}0AdqXWRYMWmz-)o5xE-T9244Mm(PF%7PWr?J?~7zkjwEJ zzChoYDqAmmKX)pRnB{lmPfNMl^F^c9e!ptB#q5vlVF^fsxBoHBow0SKGjGYIX?)>f zdxAdOJlDwC3~RSnc4(mCY?ipqsUN-k<-^aHZ@ZLFWO;u9 zy$*r9dcO;vPcC6gNS|L<-Tlx1y0FZwr5=@mGO)(}u)lGSY?e$!9@fW~dm*0B+ zTa6f&Ox(bE#ejVVsaLRblff;y@36rSqZL*w`B|AT5HVGD$VJ{y<7$lr&)XMGBrWZ9 zyVslpj~fjcbDRIz_w(OW9{*Wi^XZ{noWJjB0QB(tz-$uh^UK?0m-r}zxvN7M9DVwy zVc+?zvmVI=w)o|osWVoBBSNVtr>U+*Mv`heZo74simiyh_U^Bi{Rf>cpoOaBE<*Yl zJI~?w&%J@9V|*CEAXw!+RQ9da8BU(>L@X=lael&u8C6W?nDax7{w+x|3BJdV1FJC?)bIi;@sh%Wm=6*KXn+vq#B0!g>GHXNR_JXRalP_z=*enHqoy(b zc=iH(lqJ=4Srr)}`d0k4CW7bGJn=%2_yuW4Uo}2J`|YtlykW5g4tyC}a*+>r6N*@q z=C)KF$2G;R|AyQMis*^ZIlJQEUx2?3>R30@d?)}!-=^XO^J86W;XFNpxlyM-bZ;0t zkq?5O7RHA=!mY_siX4%ZI$)qUXm}gnV6M zwdB2cdA1qdqeM_fcRg+$`80U5?NoNT0IR?3*uF7)BO_}ov1i(DV3942Tvr)CXRJv% zCF*^YDh)9E>tazjy%%bK;%0ODD5}aH6@2y`3qgSAj;QEyTbM<1BO1PCHF*7L@im84 z6E}eX6rz8;)hw{Kt~*(%dzB;=pt`5&z-qU=T0RM#5?NN$AzblxSRNsvmc~oW_8D|b z!E&f{jB9|#;XK|~{c+SB8)D4&{_?}cZGE1zz!o%5y+EyTy>g3<@_1jJMPSYdh&Ny< zV=IcyqOyu^L!9Hu^5H0%kXQCc8*Z{%{yB^C4Lyy>-WQvB+<2|fdcwaIO5e&Rr`6fI zIDj5g3k{iVx^?%t`L_FMeTaUorADpvH87%bsf%&&o_SGuey(Yf{cKTboaKSOS@vC~ z7@_=0g5B(KN{#(pa$Cp<%nr6#vL$$$_i8%$#zb#mv8Gs>HqPc^WC?!+uGfOV@rEt9 z=LyU4GiAmAJp`b0(Uf~FI1m{68 zMoy<7d8kp3v#-6?9e(UX1JN(!yy(>@FZngwnYgu=s!N&^!DDb>i2)ymOq#gVg*chY$6=@bXyt)*$uD@$Zesp+oa@VZzBBNPQzM$RNIFRK2+{e`q zrc`b6cgk&!Xqqo0P!#l{g1e>f^wZqn7`8WV>sw<|CyVWvJDSwJeAn?1yxY4y!r<-R zfs?&ILjhiTf*UTYC`vA2Y~k=qP5Uu0*07*|k3lXwd#ljU+R~=c%PHXC4>naRe{Z(R zp|m=TJlTR{mY^yw`LGxhaxsO4FyQH%5?gN4Yfm)ER?sY+z_}Fs_@oDSsp~IG83`L) zEu2hbjXb_k=fW#hyn7+O^7RMQNVDfDEG03i9u1y>G=3O0`eR-XT%j)N4@5q{YkMxm z`-B6;49tO=347=CroN)I{A_YQ^*QLa4^>Ep8#-&%ot~TnZt2Y|HWc3d6s{#vAMm#i zAqkB}E$jO{`fAgvmLVIJLlo|eaqJ5J-f^v4aW4RVsOsWO%%$%@`BmVKVzb+HVd-H? zey*Ri0tHTNY6V*4B96(c0TVWc5E&+w8jW3B%7_w&1c~GS7B5>3HBlzWZE=%iuw~fu z{k$5=7gYfk(Fj>tXBw`Vt&%w2Qow{9ZlDTM2G^t)G|f8mEMDTo@}^DY`TQBT_p_cD z>D&rCETG!0-D&Us!q49x5M5(O6lhNhWI5=u7Rd@q8LkEZcB^d7n6!_CAbJT$_8jq? zRbEbCThu%p;Zc%zBk-fAdL^Ha<(({2M8}!Ae9J~^vOkOF9|saRS9@gnKAzr$#SLS1 zI`}}}dG8{$9ox%o6EG+|MDAd5ZJuraX3Jl$Q(TM0>#s)9NL=fN@^X#H;+y_-lk=D% z)bq$YbM5Mc43W^#2?Ty8?>18`!rCtyZ~bz$X|2{t6R%&hgaUb7Qk=c5A$(XHNa5q3 zTRDpMyxQPO@W%E82tjXds~dWLylK0b9uQt=ft)sW*X7)NLm4}74J1*K%PhYdCaF7N*tsJyQT>4)Pe-(@v4M zlVy0X*xc#o$fyKeugCo2Ds=&Xas5L=Oz!)YB)7XEt5adtJXPjw6Tv25jq|44NCfUm zAY-;aqfWIpA+UQ2(_Ni8%jkcK^u9S^FiiYS{a(D`YE6zD+(GVNkxv>{V3r~2hHo6U z30mg|t?Q-R5NWAgc9PIio0*cR(b1I zY=7Kxe*5sL@|-?h=_{I`)mkT%WVl3BG|b6+No(O*WtZTh_^bP3t!%zhT5|1x$CR8v zFY$0G;j|XBX1aUHnc@A-r}9M=-m>E|A;CVO#6x1OMGG9NgHGw;S3)ynTV3Cn)CxQJ z!wCZCxVV8#XiW0&c8)B*RI7Wz>uf}8fxWB(@o3i_7xe;FUZ$~Ql|o}?MU~=6<*D5$ zbQxK3?@LV|Z{SU#aSTMo=VW5uUN#pZCm}bkl{7LA&)jh;;j%(sEd2rB5)->gR@dRm zyF$x40ZSuQ5So6F)+qm-gYNq*I|@%vC3hp`P`Xagc(Yt?wP&=3?;9ZILVhmXpta#- z7%_0+mtX{xq_`2@xc;61A;G77vMok`ODp*s13|c1i-*RbX;{pKMCBpq(D+hMW5F8{ zvWY#wZMD!%b8N5rE`HE_RqYy^#SV=NS)lsKwQXGEZ4Zwoyx(j{`k^d<$(At}u9QG? zh6)y4pEF7J{P;i0?|@#hfqUHB9DmSiV17t-)xyKwS0opyFQH3+0g}ASi?`xmadHl< zaUf<(68R7o1lR-P|Ddk@&)U`eFo|wL&i1dT+tybd7_zP^a8&i;{Ka=YkogzRrMTQ9 z$-;_n&BX80d`QpC{~n)UiMcR)j?U(Usc%cWZ_t0+|NG<3)LwC!#{$7;jn{VAvh+WC zP5-lN{{Q*&@Ws{O!p%&C2+EMxqZ*Nx)+yvbN>%VHWtJ~?v*%$8w3=;C6#PuzS&Y_S zf{5@MI9%l84YOmRh`|QVSgofrwTOV$T1YB8(vmZ1W4dAP>x70ohs^u(7QViLIj>z- zN;C@e3iPe)Ua|?Y`3jxSg`nBu5k~JVU3U~zjBMcmxo7BV?A^3Kdt1}o>Ex0?G!-TWhMVn z`zu3wi(}Sq)w?XLihaSd3)DxyTVAP^oFEjEgBqrFmu`0t7}Jvm7f(Ti@x_j;CIK(k z(Xdk=E{IFbZtO>(kR&<~Zhp=|fy9f-(E;wZ+DJDVGc1DyrDoeCc~24F(tAp<5=%~* zJ5LjvEOC;Ts_wvd{lG7%{}94LaY2~u^``Ld_Mm;kPfiI_h4%Zf@>1qWYJ<$uG z@0`kdN@RjjxnLX~>dBFI4G3ZrRgF!Q;D3_XaY=YQqV3f0ssIe|$YF>$OQ*rNw!OWn zPDbFHI@n}n-)2WoR*vz7Sgf+f*IA8WOH||ao1`Ou(i31P_SHT1PT+(ej^aEM(gNG) z$#&m;#3M5H@mH(jpZ??qL<>WK%!Io<*(sxEEssnpft)exR5;MzfX_9#)UaEU{kpFD zzv#zgJyg&BQf^*g-_1-gcCV&ibicv`gC;=Jyz@3(>xTM-Y}eVZ$(dQ<@hgw&N|6S4 z--Fg*8{eGk6RXuB7R;*l@*pwOg)v)7r?&R%qV)n%xBCjuyEEBVi0IdSa5VY-u znT=AqzOlRWM?=uCm)mP=V&)4=b2W%Gd-Y_uRyHv*Hh#zkVD#B($uaf&8TB>F&YRc+ zd$L|ry2cB&2ocGTRh46OIld0+{Zxt5s@QV-rd=?Lo9K_Xl6GI7Ym(RnM-XmGoBSD6 zeu#bAh{BgI#HC>nBo{okgKfNMOzkx!oUQdVoA8D?u`;}_v8WU8rteu_o9VcwRpyZyf zFAmnzs5*&!pBMxmAd%JGR&GblI5`&6Et#OKG$J$?A`Xp+>|lyK>NUlFcr zblN^7(1%;<@rS6@Fx}%TF=zh# zN0On?lvI((?VM=$7leMO+>)UYS%v~h5|8zLQ1gyx1hj^nnd7S%RZGrJaS5%>2hw!@ zm2pfw?Jt}UECD*lslHW8vhs2!0TICsjL~--DfYXI{VxGPe$2q zhutqmslT{O#kqYG4J)WtzT_e-cK$Y{)2le8u4>t`MHQ&v9u2g%$rF;Tp<%QYTO{)I zb0iq|Z>FR?(?-VdaRBGsOYXit)TlN$G}htCfe>AMqT7;@1xO6AfjT4#RnK z5NlC3+ZobiJ<3&TAbdA?`LjxOP}8@XIV7F3gQ(^uh}gr~n_Yo9yk;`tf?`6))jz{+ zP9yU~K1Rq)@2U9KuY52m#vQ0{!Q7VJz2%WEHk9#QDsz6*@o9C=@iEOG?L_V_KdFe_ zWP7~zB~o$e*vEP3Q^K0w#o*IkQtPm4_j_1QF)}_Wr>Fd44!F9B*h7Hx= zIAl2TlM*|s zVjR3#BxV`iGhJ6KA0>7VUzfnkBnZy*EG2G$#s3qiMl=$2EaRTMs(sQ2AdY_mq)-;~ zQ73$_wYbhKTnh{jW^7geW6x+BvPf+fvE?2INVw4#s0|54BPwlN2Y9YY zzh#t$SC(pmWsfvCLGhwcVwpd0e1WPYOW5U-~R`~Uf`VK zFJQ#F&+HE03|6fMGXD2V%&Ox+Y)bKoDN2Iw>R=fHU1ZpU`u{D+&_CxHJ2m|U&!mA%qd;@P!gv)@&OqW(b*5{{e0^2Eh|&dQ=1tUtH>Ce4u&`nhms)N3tsbWox-I z?OBJ&lU6n*K~&)wR`czBwB31GanV4EB@7U0VA>w3FAa9?Y%LDDaC(!&uy=VmwyJjp z-){uWbWf6Q=U`&d!EdlDg*8c#H}%rZeY^&Wm>f#STxGe0_2Sp% zX_M#K_bI>fo^QUN8@!=2LOC(zt+L%zYX2nd_MoT2U|}$5w%pHszS8uBEu_n~8Q<_sH?rs)1^6^XV-|vNN=C;qx zk-_bGP&AsnUm$JQZT;fEWe&YQH@S;0r`rSsd?ydcneEJCQ;hCMAj~T^Rr|>J>2v9Q zB@}Tisw4ZB@K-XX#jli}k@K5Zj|TJ#+4?wsFIv6C2j{`6KIJG`U&xJsh@7PkVpY&a ztlf69AiYyz^yw7Z+L!NJbLQ)bxY=sHF=XFM0E1L4OEI@14blWM#U2_j=ZXgjUTpfc zx%^~pPg=BQOatH6zKGft951@`9{7}M%>!R~lS?0p$E_^V(8RqMAUU5H>WmMM=)o-$ z(sBOG4O20p%_!TGF4x|(#Brz_iU7CCPb=Ol&g>;ER_Hx=*|&u*SNNsA@8U_sWRbo) z8y45o^~cH6dDDnMuDTzToXi)0Tc~zW7muH{M}kq(jSxI%M}g z@3s_~HD`>Y%PH?IiEpos(nr2fx%%!t|5;pFIXFdu^ciB=*_UDFCEY>^7Qh`P)a5+} z61^4ZlKbIIZrHsnPQ>RY8e*=<-enI?a=aMq6VSZE<(VAQf+D8RTiqHe=J3%~s*#xe z0Zg=rqv*;VspvBL;Z&XPOH)J(9gegPqc;vM9^CYQican zr_DJHNOMAOOjP$v=6U=u(&Pc-wCEEOrwQCf%p~pG5_v^bZ<;EZ6)7?5uo&91if!6G zRXzku5^j};Qi&vk2levK+h5sDpxMs-i9Cv4MiO~ejnjz76+ZH*U#B-g`ac~ zJu2XKX%e`Yne^Xpfi~-4X~Q~81YX35diR}@wU_O5%lcvBtwqh`c(4pwp8S*qB59FJ z-kTQV8~Dl%Wm?VB^#z{D#IDwAg^@!Dl`^+A!;x-YL<)&2;~ybLI)#H+-U5U;uz_*K zTe=wD*!c89Tns!}rXg2V;N^*YQQ%kl$e^OSds!KbaThdR>Sk3PvBn!JKCo0Pem_2V z&?s_WfZVQL(3|wf+LOK{lqTFm^mDtO?6A zCLO!Evi$yN2##(`TmEV6^~~ysG5Z(r7XU~3%m_neMd$gN!7_0)u%_3GZp&2zrK4J_ z_x-E17~Wq%Z8{A9OW#3y&1OH)Z2ImJC;Z(UsKYA!#nO!yGgy{$eyMmtFEkHTR&i?j znm#kBh`zfD9!5h2ng2)P75{#=T+u_=Rgq<*98O1iS$E6OZpkvpkNSZ&BtZBxTvf}~ zGcZ2c+NStV&BS?Wweag(zOW;htyWO%D?wo2&`cM{U%&zVl?`YNaJN1&E{eLEztK>!cNYy)Nws*u`+%-|F`lPV+3BgiphgSZ$&m4cY1 zU`~$~AEPdHfC&S>i;nt@XFMPhk)J8UK+P~Jup})9b==ssAR;tTyO4DPd8=TvN|8T- z2)=w2cUo%sTpm|RJxU49w8|LgTcdU&oSvJ<$f;>0^+)2}gHwaqH8^?`NoT{K%El#; zC%%HskrT|lPj66o$2ZnkeN=KgU?g(Kr7G&j`rw9>wVN8D#hVGGb~>oQ=oz;O&vD$2 z%OqTUCiCb1+VTYI*tjS@zx%%c!RmS?PQ;43fX}*)cbT)sL?6R$$xi~@<(LwPJ|Z%$ z%|T-Hlg5V6t#7L#i-SeYoQ>9A>hh<9dP2%AfKVwC;dIe_Y-v1XL#YRYq$?u#WeH#@ zjQqwDZ-ITTa;hy4TPug^KML7h6X`=Gk)P8}e7K_{6&I@+3Vo{jDSJTo!V~tO+=<{q zpIO#@g3RaMuP~tC(@DiF&$xH~_y-&dqLZTsopC?Z0}o7s3VjMV+W`1FF3q<|`dGSWlXE$d=?G~twZLpp?u zvgwJ|LPlweMA&T7g(2m<3bSB0ubqaay(3nTi-Rw0l!+g<5kL3emgR>m2k_EJ2dVNAwX~o&{!I6 zB)Ah?f+Ybm{k!tcxp&@K>)bc9-rQO1{n2!FQ$A{sCm(TK%Wj3 zqOz{asl&Z~7~6umY`ISpRlcM3@6rPv;0%cAPRJ@c%{Nc%A}zMO(tp)w4Z6=b<$;dq zcVdQa?R45R_zf2~kCEk5*nY}MPf@C|&9dL&1~;%OpYj&66&!;im25LRb}Fy)@>4Zm zdWm5_f%JSBQsd+Z1l)ha$Bp2{Z5q2y@TXupr0_^X-p~;}n6~Uh>M*D^1Bcn2fhqy>7O2%^^8D zGG6ouAGo`3I1*PqNQ^f!3O%G+fRU3uu@-zb$=uT0+j=JcKD?LmoY7GlVN4#w;y^?J z;DYzKyjT3+mf$+GOm+Bl(ZDL@-zRqe|9t21y)H>pwYP>>IZ*%-aggV=KY*%`M|l6* zpm2BiBnnsP{{cLK0N+ZR``aatHva%<;TmnNr_MhBb@+(muTh0@sDMMg>)G@#UwEJ; z{KkQWxP;92KTG}rEEeN{*(iT|J{SA}T*159Hrmyqn~OhyWO#Z^HIm)`+1vkV$^Y|T z^56b`<9F%bU39(2yKZzP_A#@8#_nEocMwlK=RUGY@(;!PI4tHo7P(FoXw8E64mgI6 zJXpnM<-QE(TW6J_W>9dj;g#mWg;oRJOabbxb{__)+>L(hNlvgy<;PXIb&%iIq-wo; zzh(*68$1bTiR;-~2#rIfD2CaMP3&Ro`RAk1VP?sOh0WEBeValvc8;a5PwX5RCB}gu z=3}R8H?MXk%Jd5|T@qtt+TcDftfo(TH(D5e(vP{I7H8|tlzoA=LG4JXJ0CfvE_9+_ zVP$-nFP@Whcpo3`uL-;~k)QH;t@w>Rb<}4?oX}3U|$0t_7wv>(m0B+S{vIB>9zDU4V zi~Yf0+R*ZG4qw0=F2ZfY_tNDF_k5cZed|cD+7o4an@XM4bv{Q~B`X0X^9zEwspz5a zuY`3rj~?r0+ptj5-g)qzr0X8c6HviTm0F0K2l^^tI0y)ZFcl zPa(z&e&wls@<(G(wqG=BwpLN<22)jZhJXhPC zDoRTz<4o?h_O{8v01YR>bW(pk( z*OY|hInv0X3*1ynpzW&fd^{pbQ49oy zpXW}*6d`IBRJ;H^4P^r|UQ62q7@qs}8ASXzIG<2coe&6NWt>$a{+29sv60(O_Qnq? z$Ru`Cu~y5aj@E0#LcyF^c=>Xm_J#T$VJoCH zlJBeU;M-Kf)z?My#NR!%pY88M2DuN4Tt}Y~zG<1;H~6{C4{gw04tIIoheCrHQf>1) z-a!Irs~!$|c`6(Dk@L;wsTlWG9N`!P8~v9!=3+SF@K3(j!mbL7Xqt9=(KI^2+wA3^ z3vy&%$|xeyHsWm?Ygg7PLsxz83I1X@-x5RMC_?vaw_0_w#!cn!{PpO=K}L}1Y|C@I z76k6w{s+K0L;KuL9F)}9 z=Jn0y;ruV_BxQ@Q&le9b|8-BFN;@_m3<3m!Z3IWp8EXN-hJOH5Fj`z^{UM_(xda~7 zySsbt`e4UwI$|brzIA4yPI-g&?1Jw2LZ$M>L%1olfpGQz?oq0)VE@&jqQM`b5bawz>s z^H{>?NqNs$dcSh}fF}2bxLfM~EAK79i3Zw6t`z^_ZZM;(k{KZ?^tFE_YB>{Hg}dq8 za3_&n>AE^v90v&_l)SoYzDuXWFxUYVOp!q~>u&g-D7TF7oDCBsobE9{3X(??F26-7 zk!oDJknP*yRqsG(*NooewO@HTSNMBhPP7&UWX&;+0>z%?{i^eS9T2qWoHe=ONSoIB1s301|Xb_*9M$I}AlWo&EO3tO+Za5a=0`cvZ^m4#7j&|7*aT**%K;#m&GXqB~M?b~=kWBSs3cV^wvQ310l9DH>mU z=69^gP|1kWEGIFKt5Tto!CR~TV|%(U1*wui4$bqf`^JoRkYOU4@WwB73mV&6WV{n@ zK!H!*N5+gwUZo!giS-q6ciTFC%@1{B!+0@JsTE*4)j0#5}3}w~8N-_?2-R4B)vfs3X8u9T5ybRkiN zs)u^DuXTaFFqh~k9%aiqbJW@(Rp2V(wl+cj6f-fR`DdimJ2!zO=4K#Hkz2|kxKRno zSN681xmz@m*%TLnQSW6ha=Yh32S1QT9fMKVoyCc8L_IIwMu^BXmgJ?KlZ#Lt!_zry z2Qse1n)J^u&2J=~Kmb!*KOyVxKC#StyBB{jHlaEl6wB^CJSi<%!znD?6ozR8S@~Yi zuoCgQ+o7efA<=4VC!beUCjrx)e2V{NjX?Pwyn(&K6|;mk;Y7Js$rn-^;=qjs_00 zE(tvA@&DZiU4-#jIe2`-CPfch<$8!c=+paVR}OwG6=7^&57wOAyA&b;G~{bkN8QJl zmvh)~YfxiViPM>5Pc+$Mp5fq(e#*Z2KLGT;ygLMpp6A8Z>$k(Fn+Mn~qe9cBo{CqG zdL0(b(5*>+7wjvnTr;$4eE{KYF;)?78;-iTtm)-OyPr2!0gd9YZ#}@jG}ZU@V+j6t zjezDI&X_)$%ezLeb$!Q~s)C=4s#i{nG)o z+^eLB&|){hkzokc%=qP!mYgRg-{)g0Z*4nuIe^1M-VSPfF^H|Qf0Z9cv+>8fDwDS1 ziN1Q$^XJ!}#dvpcM2EYKH;;J9>E38%!pb1KwLFEgc*;%Nv{=AC(vJ>&dv;*`9~>N& zqLm$<3+vrQGkRxwki4>ELH(5C%$I3FtYN)h($kOqim^FgJW9>-;k*Sly4>OzAS7lL zxGWJe-&*$jUeUqKX&w?wPAE!&Y3$FLHRE4>z!fbfN=&~yx1M;xTfyXxD|fluf&QmK zDAgcBi$8!0QxM`EzDq$Thlgj98^U)K^Q+2=9Z4bw9mBOCAy`>{(A^TPb7)&nS*Ew} z7~L;#D&Jx}>qb(YhoTbWV;#d~>Dm(ml0&CmOu;T0Do(T`sxsq*g=#VscMl^DR>iAHqQ&*A;HWPP_%~ z#t|On`cRY6h=>wiwmZi7PcuVQ+R2%vMp0yWpQ#0MA@Zg-4?`tJe*mrzqNa)ZY`2T- zXM68Pnm%MWCR9=-5 zA6-(vB;ZM2j&o%F-baKa#@6r5J5ilYrBWwhB>ZbG+-cQ;HnwqRafMRFq2a7l(K1$s z(V>_%Yz9G!>M%MeaC;MfQ`V-^BD*h@`uXdXh+-ahhe+ymp@MmDZ8F?XnG9G+HS5aG zS>By=emvz$H{{9?>XU-;4w;kDo4-Xcvh_&J#&t)tfu;O-qz;L)vMSKJ(9X5@#9EKG!-pMTsoDP3-K+w6$5^W$(= zI@((oPht&!qYl;wJo6V_u0AW>M@yd4qCJPQl@}v+Qj_ioMtV09OqKwXvE^5E}&C3&&najYQpJ~3XaZ`+Y@K2AP|JhOY z|9m}UaU6Ly#Q=&J@DKOR7a|T$BRJ~VYVx?ifh8R1sUr80##ps<1=d7g z22ZGNu*n3uL*Z>{Yu(_=YA-lrU%z z7DueE?x{5i0e(hg*zRPEOEas_)V&0r&Y4@o7?Lu9FP6h4Ig=FcDy}n=59UdUYQM`{??;pk!uh6Xh0C{8?A`pC_@m6DkCCRD`4 zlmY>mzQpl%Z>M;Z1LWVWxJjc{lV7?G(dWO`MqSB%x$M>KvgcFn!*f^jA$Q8d14w42 zM9pf_sYKwPV@iXgUjWC5391BanNnEUlkiOArsPT`TTYqKn)udiLd(I~Vz*+t+7oMA z24aa?*k819H*oaq-u(d>`q!cAixD$ylx5)$9SDm%qB_LYdcNHIp}x}lNu!N3BYru~ zW2|PPLE1rWj*iT@j_(u8)3#96+S+73JbvVdtfFszQuv2N>)3?dCJRs#+xh!1sbxCj ztO|z;8H!UOtnZT6lN(g9Xb$7zgktGn;|PcBBgkX9>PkoYHm27mR11DlxPXI3X>y%3 zIR=4oT|g(3cxQEm*(f-7(gzL|n3We+rZgITjyVL+w5wI6L$zZPLz@rh8l{HPVZXt1 zs7{M*Da>d{!VTS|c4m;yRSzuGGZTR&Ww*M=y2ffFyCQs;`mO)g5B8p?%T^THIQ zL}gWcxn*tKsE&1w>Rl7(gYTPCGtK`hI{2rK{^xT2e;y{e>O8ppe719YsCe?iWG?;4 z2mcZJPrr7(n|`uvP{SFBCdvEoAd$ZYNf-Y%MrwdRp9yb5QVYzoYagd3;+X4k{>NTF~E?tC7;- z`~{@1&unxn)MSnlB-x6KdnQpG?bj}^5`9peJSIdv$8H+gG?s#FwpDE5+A$onlOw?O7OZs~ zKR3gz4<3W358(+gsDwwbvF$vujhZtTDJ~Vs<5%XsC%WsRHuEn7*)&rAlAauZc$WsP_o0S!cr~X-!Np*xWN$rZ*D%xn z+y2L&u}5pams)23x1ks4n_f?>NILE7lFIdvo;Ba$Brqix+G0^5>zg0yP&djnOjDTU zd>9nK%(n&1D4s`@0uJnyK>_osYJ^((I!M~*m1?olxwWoTM9)$+XpXba>`SUUqZXyf7HTrzakLsrjj$x^1>H`YcIcL|fQ&}b|iuzrL zQBV-Jd-{xKK`3TW6}ZvXVGZ?nn_H6K_xB*C1g=-zI@S~d&12skSf&(|V?7eX{rClx zLwPg#1<4jCJp73U$A4-N^M0iAMlIP_R|w$X{>mi|tPlx=)kQ3oRHjKogo@Fa>5GUG zDA6kD3sL1kkO6-(sIHRj(Tg#OcSzz#O-KsQ^@Sp^kDM}w_9yx}z%iSI#W856RR-6d zUd$N#6uNjXkm8%(rz(ER;hz)Wh7U%LURoJDr4CY(EF$X zn_Sh)jloV4I{0Zg<0&8kO$~7t(>Hvj_Hb{d6+F~5_prg&r7P&;Lj37`H02Q)lEw-f z0o>MrS4(0?N)xZaM3^mX z@V2&*Tw|mDwd0HOk$dZ6f1f=R#$T`>s4fv#m8{LCME6i@hZvP8Q{jWU^{-*v(2YlD5Gt4Y!ZIUdbBzG@&F&8y(Le@ukR5iGu*G&GYo=|rnd)Ks z9jWP4ZFv?hFgkqoP)Bhjl6@DGk;Xkg*LHKMo1CE^#7G|wC%Cc~R4`Z$G=f18Z9#e$ z6s1D(+8$Hp!Lb@RQc(2cVF_-2BHAk|L^baKvQ2_|XO8JewgmzI0A$XhpHbs(u8&=U z79A_kI1a`AnU_zi8wGzGK#FcSmP582%Ko<4q;h#Kfc z#*3{={M4@(=T;_8)i0>WJd+C8W>^+Yn?Ja=-7Qtuba(y*lH|kwU9kAiyt5@P_U~2s z`9Al$NM`!zK_1#Q7W=nZ=J=goOkwqZ8hYcBHbHoy{}AZOx87K^XK&yN{;Qkc4f(rM z{QJ|DXyQ1zusHaalYo~25}y~Ys-Cbu(>_oz|J~xRp6;gJkeoohZ%=TMG@)B)f2P{se*k!RY5lJliWt(c zU-36Z?#v&;2qG&M=2m)sev$5=;w@4Qm81Y{mUeEEKD4V}PJQsEjMesdF!5tZaqX~{ z!Yu4{EKZDv)a%yJQCC&p6{G!63jjs}eRT6KJ+j`VCTke{Scdxksq!*xQ~(XQLj0hu z`X9(_538>9GMf@~hL(!H|A0DiIPYhM*Z%=gVsB68m3 z{a!yECq%TA)AsE+#TX!-nfaU6f|wXqiDgu2xS~Trie6xXBt&x%`l=L8GQoUkQMsax zwq7`Eq>p<6pY1aORzLopc>X|jTjeJ?{CR_A{+zR(!Mio-K*g_uk+?u}_p8p+{FFon zLhnDg=tvglf^)Tp4aVv4_Zow|q=(c6Sv!gJUV*F*@{XsC8~Y00HVy|V6)?g zV(m0r2%-aS%^=q)C|f$|w16!+K*B`nvi3xaOvG;p%uRnU2rEsYA2h+mdSpT0szLje zIw@AwXyPCx1>?Bpv=%<&B#_jQ5LD2YpYSs-um+#vszP`Lgc*B;2O7~d`_bL@R5{Llb1@w90+H+r~BEi(Buje zquApQ!9?uxqyGLD*>Md#To*d64c%}%_*<%oHyDg@xi~!esV!IO>WXoRBe8dN?r_>@C7>}!G}L1)gb}b!@qjpo90X5 zJi-9mh(Tui?Ft)-L)`Vp!JkTxpu{1PsSUIWlMMQHTwD+$!}Qk$)MjSlwPiY3JUQAv zVgt8oP-$u?65ZCU$IlpJnI0M(VZ;1T9^fi5M1!eUgNTVP?1xTgp6%zm^T&_GB}B>* zRUj3=Rir{z`ve-ev$4E$$~YYoz^-h)!wR8BmE7tVY<494t)-48DSym%!XC@6__1Zj zwlG5teCAKFKjpbn5rh3$hS-|OLlrebzMI^j4nPVkI#OqK5B00SN)mTe*X&3|98JHz z8F5;M5XiF$Y`pl2AVgdTDw5dP?FAyg%`L&@9#O5Ljqa6?KqG#6G_Cwy{slGIQ71T~ zb^K%7vH`7Gr0-Vn(io&&3f=+r4F5A7&wtl-SSdFjeiS`-wqMuO{*T3CT=jnzB z@;iM{|24J#C|P%mD@S2(7O+cs?UvjXu7bH>(dIsjC`sf>Nsa zRO63TVMk!AZ{O5Ue}2?HEBAx5{}B)V0Cs@E=y_R}8}+VpjNKw5o8aabni9`4>Eqnb0DB0E3Ka|o7;56 z?W*Y>%r6>BeIh$z&a#khPD67UoQLwahv8~_PcqXrh?en@>vA#RDV9wDa=@k$-^bF?m1*4`uhi!2 zD}-56&IkrLA4c||UEXb25WJ3dMxLQvC(=)oPkCBMG%U&~%ozbaU_q)N`254h@YY)) z8%{MfD@D#BOklzGaHLgh&x4R^KUC?&?#{E9r8q36VY}%@cntmiDsfTz8w`68{sUkf z8rr;tSM*yb0HdEDD)>*eHL4!q!7)Cy=iz?V31!aKW1 zV)0!ZPdWD9VMudh)gTzTko+=t-aePf%YTm}G*q^m>*Q3b-t|KYWzz={vkvD5_MYZ* zv0aW`K7__T_TLKOr#*62K#Ig)W{@-mpiAvMV14Wj8m)2FmLzo%8806V?ZTdvx@X~fqSFJfd&_nV z@eY>g+u!$u1^B_HqP&o&wjPu zmls$wR*v9mS5hu4?xwh9Kz`-Jyw!D?RONzr{P6@|7KwAiHYJrlFkCdypiC1j2OiW$ zTm>u5Qo%#^E8M0}E%8ZW9y8F1vgn6VbZ=k8zHpRy=}hORVbKPDt=HjSmcZV(rJOzF zhEB{hxLZJI45zyi)@?pf0E6Iqn^&@<7Al-iL=K2Jo;$i=gBbawjTcuaBf|+hsBuDL z9lDSMjiS^s{#BJ4Y3Fik1x;uM23`SYp%gc^ZPZz+X>{!LqgfG3$Wrh9b7&@V`J?pG zSGMU7t)2aTfgn=W;P1DIc;+L$kpPvg%~)=~#;2W+m(T6gaiV1wYA@=Qb?wm(#>Pg; z&RH!m9+l?B6z4`06Krj6D}z|bXx;z-lI@Mr&k=gT zTx9g~t$FV`NF|sBMO$q@19--St-oz4B=;6_IUsIEO3-u0@CQzkUf#7-u@`Q8y8EQo zyK$KG6cFE>Cd&I=`4^>d_8vC&;^bI_H6Sh4xZ_&l1gV= zuXb31gx#zD0DvnbfqY=$%$|J+(u?w7U4#>fm#~UCubL*h`6hlA1_*lt5np0@5&}b& z@it$BqvAtl<*31>OQ{n*5YX8dE7qEdyQn#_8eyL#&NlBj(Sxyr6@nWi*4Nu%0M=h< z+-Yx5&Mwq1_zWq7Jr_72zPJ88*pF@<%h!PY^!aCa%p0AcuboJ5zIu?lBc;Qxj92=T zH>fVrqM}zF!iD;yaTF_)E2*c+#;87!cOB(cqTU3nSM-N*Lm)>g3sILimu|H zmGmo~_h^4{Gb36M_&wcl;u$-VN{}tlU|0j~^peCEYb6h>ppZZt{`PG=e3cz`@$-t= zTWV%hgcrAZs-X!{ri7#XnOFADO7<~s{=cz8SeqIh+ue^=6rvyDxZ+CWCxVyz&MyaW zM4v>M&m9nH@q;v)=fyO=a6}asyz6eYZAl2~kgdWEUPUP)6DH->1esmoJo0-wQazI` zxiEBI&%TNhn#iRs4{F~yi<@kpITI7Tq8;q=j`6Civ92;_;gfVdFO67{caRP*JnV-+ zo$i)a@8~lU&Eob%C04R`(PQXhVM#dVS9TAD9L}Y z+sEjw`7Q0Xe3~zJH_q9OG8sxo<00zP*sbdvw5oDvVz!7smlIXfiGr zC<&B%rj#qLq&U3eQ&qsy7OYw(tUGJ`x8VQ#$zDnlzC60|fQL~b=R4`^n z$bkS^pjyoXuuc-8*9HxPHJ6SuD4Lo#Dy1yG_dO>bfyEQ;!IgTHVG`65VAhH^S*Jz@R``PiHbrvVo-zD>qmaW;d~Dd}Yl zVzW6JpHDU$#oZYXvf-$#JWx8(_n==!x#$DG=0|GT+~B6bXx!Qxq-%IT`RiP92ebGF z>d44UVL7ifnE2geao=uOR|C9?*HDD?#>H_Al1O}h#*SD-;dlJ>Ja>FYC@{9GpK{GQ z0Vu!`!xgT4W9~@fvmp0kP%-u6+Cpew8Da`bf|Wntj?u3K%*9~=$}b7*1X(^vZSqHj zkFdq#0MFZU(eGw4LB-w;l-`zTVtQ3?lI1UNR zQF$A2%m|+FniiZFAk;Y3eJSa#%Y`?sQ=z%ppT}+GZ26La8whysmK`2m0PARTtXw^GAz^8dEuYqqr!9`rm zlmWk&N@k^~NMl+x2!Mrb9app;NFZlTbc(J{oK&Ozc0M9PXlQ82G^~l|c~?jyJ}t(e z7T^Zu{JNr7b7o~{c5?RtK^xIM9ie%)9KdZ8+bfyaFGM<8ajCzVW@T#Kx;2m~vmgfU z6`GfUH)bGA8XBb0_%Ly(eHA&COq1zOrQ{B*>?vPE&&g2ODBB+&A3OvYG-^qaNwCLT zynkhNSqhYNa7~4j+8Pe~G3;Lt3Ll*r7GZgX5IqDcL@Qkp%+gHE5m0w8i#0G%rTJcH za!-TK9g1;vMj{}IJ~i9Amq(u*E)TW*7u6mQDG|sZYy}VROX2dUAs=J&RDU>Ksva!Y zyvi{0YB0aVT79kB^v6c8KpbH5is^3Y&IHao=HuI~KBtr~HkE7d^T9soNRI5syLgoR zbTLAz-=2NcX|k&}`4vfoK-*;XZ@#S5x>e4fkR}g6Rr3R%In<)OfIBTxOdX zbM1KKS3mmHm~}onwp{*Pn93%7WTYPe8A(_+b67+CAXkN%75@rDTKf$RWd*a&aPZY# ze^0YYGn}GfA=)?7sOBFxnZDwck9FGAm=%+X5vcgy~3A1U`GqusfcsdE=mhQ_+I;)hl?4X$`h`K3ymwg2G8x^jySUF{Yk_TXTJ6E z4in|v-y#N?#JqQUapM37Vg%d2ld=3%jauv8*YK)%^5rgnn%Zj~HO0=ipX<~>AKZ0x zr3M8QR&94v28!#I5b_+q{E9_EJcbbL^vm5GekT4F@jbM=l7xPJQwJtbv>LN#LErUF z6td6cF{E$?%}U0|#>8xwe8nTD(zh#`FEe{T=&VATS4O;ytN zK(+#RS7C+qNbmB}PuV(4L&bIn3TdyBa(CG64u=_rnyQZHa?eSi2lo2Q_$b)L&b#?P zjA^jo<;Cqp8D}2h)^9zpKPkPcwo5heuO&Dq|Py>>hs(d2fMTZPHy>% z(G(g0fD&*^ga9q`>whNj;iL)s1HhoU$drZNsdb*a_Y2*fm^KYrM6YBe`+4J$n0{L~ zlYTR2B<(OYvzlwz(*G5K!!uzw%)9{J%oiinSR>C2kzP;8-!UpL;;iqRc%TOiQ3ER# zK9}OZV8NWTkKQ|+h~wq`j||+$r0;gStQeoQM+dc|fubFU48-5zs6d)uveZLflb`jj zY!@7u;1LCu8GhT%I`PAl-ep#>T1h7SZb1kycYnJH?0=ADXwRYJBx*N_T157i5yiai zVn&+ku_=2vG{4lGW1t~dsp~MOJOJ9G7Z+tuh$CQy%4mYy#1 z!4?^&j!ffT+I$6b|Pmy2ft`s_(;K^CHR+Db#^`sid?uzXmEbM1`%_PF`&msAbt{8lgCp#401q_eHqcppWygXuT+w;su!^+LBv>jXoB! WmScRtl&g%*#i9a5VLRZ%CoSe!3@$(JHy z&##?;`)aD7Z&a{XW~=iXIiw!EgHOOuin8vS4DXcBg^6A$PP(xaH}j71po`r@4Zy0{ zP0B_LtQ~vJ)zPPfu?F{CdE_pP(#0r zCNY>Afs!E7Vg>Mn)^_t;oAU6QJ!PogLH#JEcY0Hsrb$>oeZ5kb7bT_ZVovN~CO)yw zPw)Dl`NC8?<>9jf&Sz|z+4@DGva zWGN4^-MHj<&k&NxY}WK*ox{j+p!$Aa5)e8QSx)(+8PiaI8YDq7T0UKS-qa`yt5N|( zVeFqIRIu+y-dUg1DA#5QLuIb3t>T=P(CknFx38<$%rdq({BFu;4LI{k@yJGKtR>MH z!4n(T$r%Ji$}^wZd>H7`mEKaamy%M-r0U2aM(%m)TdUO~oM<3;{&3eVem%C+Do>er zTlEuNSWDYBU=E-(D5gIfmY1@S7-*euWk+V5#Z@hYJfBd`iP)5p_X#CziE^6gM=L>? za(TaTwsiuoQpE%*15<)^cy|Xf9w>)yny;ai1~x4Hk$Lp^Z>4t zFYOgWWz^RU>qx$V_bi@q+aeg!6*yX`w-r=H4FIKXu%NDOs!Aa#&V-_=_{C66} z%0bn;{5ACFv@FEx4pX>}0&zSl`I#jZ1DL%aSaT!Bi0*1cX8j78|2}$E{h^QN2p8Q2 zZ2mJ!=^{CIK0MQ8TH8}~qYNI8(vu2Bq>s|Z+S7XT@KPZ_A*d+3se;R<=0pvF(X(Jk zOgC-qj8bZnqM^k{)H+ncDS0Y~P-@?o7q5X;<)Cwvta^Ym6ptFJ`f;}sSn`5xzw=D_ zZ0%|#QWY~zDE?{truJhV!?)Dy`-<2IfiEI~x)4-kXX=`n%H4rSIqmpY&4>k^3}6qb zk#=N$f9IBsN;z-KZux2BS*g5?gUI~aCJkdS8L^PHhsZ*QZuq_eUkxnVls5PlghA** z;4*N&rqRZ|1WgD>-PTbmc;p_DpGObAoD9?|h77s%8QGia9-*^^L0Ix0XV7<7D($Xe zHbus=qyVN~gDma(4zXWz<1D)~H^k(SM=l76f^{eN<9m0l*cJPy<(gR=!1;+9iu4zb z*%ReKcU@wg-fI{#b6yhedtfPN9^*kdrDu2u<{MHr#W|&WgJk2d2HyJ|&z06#J#)0z z#rE>fyJWx4UX6d`EWfgTYF>H0aiq3&weUADn|^%$81 zt3JZ~Z)}8_D%6Pyi=py+`JqDfD=gUlK1ss0$9w&4ibLYSav!KY!`nnha;d=!@BX{Li30yQec*oj&JkVw$)qSq#VBlYRtQ+gvPZ6hT)yO$p9~Pu5>t8VV+( zi0Wr_bteKfvZo}A*bErL(mXT(2IQAN%&$gcyw|1Mbjpm5?gZ^N0_9>?tTM0x@0Z8c z5QI)06^2q&cEvq736Hh9fF$)H&1be`?8|E%x8g)TRJVM808#zdv{y?{QSd3A+$(@@ z2AupsykGcwL4wZ6Z(d{0iL*zH{Z_D`AtCEiI)%KT)w7E_9_Uu&2VU%oZC8JC52-zB zMPTLF&S`v}02ciYmmed+v@#&=`D8~w+RC%WTxHu?esNI%Y{;NglA0>7zQ`ErCK`8i z(WdgGGjLMp2Rtk8>iDcut#2wVir|qI)}ztz-RD<-%sF3s zTW{FA_P9Ax1(|^JS22>2Airx3{MGMgp4;&SA{guo`*~*{d%`j}+`1J9cYFO0hg^|B zq#H;x7wnIYJEHtq-^?tdbg#?qGz}`8kHA??NDo6pA_v7?b%ur*JAKz#f^77HSCDK*(vJ%KJw9$-Jhrw`j46R$je#bxXL{p@sY$sun3!OT zrqMwdc+n!2fg$Q=r;ycL*K}mawc4W~9O&i_`A+}oR>5R5VTDTID|PFcz=27==l;)x zxX@pO5uguYj=2q>xz2ecjDA%->4O2rcd-qfZO^e9H9O$PRK}egek1e zUX6G%{&$HxBl1K!hkFY8A=+Z72;5`6Yon&rAxoo#|I?<~=Ad1JN91hK7kNcwioGDY znjn>#gE@vGt;^wPtzH#I7DvvpuNdQ#UOT;ZJwhuEf+M(=u(~8WX9)8F+H{&ZJTm#;dI<2PGmpZ^+qakyP-8M}8h!2SdSEW*p z>|PMn5hJ5!322R0PV~dc>$(d`Z98~)j=r!rXnjrleMw4+R%M`2aRCRK)fN=Ci%|~Ha$oCL<*#lYO4`5jTBJ`2pbvvHz zx8r;56CM9^u>XFixBUw)ax@33OFXe3QdHT=-Wo9yG&q5-A=`@|!FQq#435B{krzUG zZ+tCx8H5_}nuFk1s<=N=^74i2Gi%iY6rR~N68#ieA9540Mu{8i-=W0*lBAs=gh;z;;&`Ze zjOnTvJFvk5LW5@8eWeDi?BCuQbm4Sv=$jU=R2OWuOc@`W5+**<>YAibqC{0d$c&c3 zlQo?lK9iYNzocn@U96DJUN;cq&m&r+rzx7IShs=I+R=O&74H~W)CMPMc|^dtq;LSv zf7PSYcMNZ9yuS2Nb~Ly5Z*bkGw#K%1d`a;%bseJi95IFzy>8htSts_&{E9?ZfKG z(jt%J2I>5%LNtAcVyPha*ga{jExN57GK#u7#$m!zx#M`PQiW<4(PGLmBOd#CY9aTu zFsAeoc<{l0hZJ_k;nkqLLP_naWaa7&#Q%bjoVrW9W;H*bY9?ZCq7=xU?@PcBQ*L5> zIq0Q7g+VPPB$)~DH;B6Bj14#eS>q@S5xft-Q(@Y4Bphd{`?Gt z`G=GfSyhH1rK-=xh5*-Z!^*wWV>}w|w8ndkv%!qDlsS(U<>CWBBU9(Xzi3qDcKgvh z)I7SsuLnsm&j+!TfM~zTAAGyuXv#!VY-U6GMkeOMczep){O}IwOsK&b|7e-UdL9_H zuuLP84&i>V4i&LLc!+#d+a7a0{QR4JZv0j6Fx@%E8z;R`afkx3EF_qz?-Q*4h8D+o z$bSb5##5c2iqk5!HOWG?D+UmL{V5pnXUJvv8Xg@Bv|~) zm=;G&rOq#D(@5m(gFdOgAQZSKuY!VEs{ws9O&=RYHn7)oZmO^9>1_Ml8Lm?IzS1vs z(C^-B4UIwQ0)AV?iYe8t`^EMMZY?{TXvOh^@9s_salnG>WK=Erws^w}g7Xp#M`5?%=dO)K2GbCS9#xyQX~9l!m0ebk@K1v`Zd#zIq!FBgCV z@aV^Wln&epK{o+`3%X3qR2XY#>F7AVkxL!+p-J2>=$T-hux$%2b69rZD_Wm)@NW`h1j62$QD6SLu8`q0r|v6AbO6U`V<{~UNvLCq&%ld+S{x6!(7$|P0%Tc;&K z2Vn$xuH(h+L3#xjcf~qXH1ujNgN7ydreewgK~7Xy4Ca4dfoz{HMPhR}SMMxTJA<7c z*VPLw;Ss}q0w(k=@FsXw=cKOG4x7eCJL&o3vd-TNRg?Q-XO<3nAi`&IG`9>9`S4Y! zbomUIC>ZPrSF8nuZXJf_#!%`-E6v45J4&j zZ8?jQY>cW8wJASE6M$kXaZOR)0zkJM$dBnj8H+2RIJHkWHmYe%WzS%;-Rk3oIVcFa z_mm!~>GBP+1|q{m1O#Yut;KEN7Fy>XjlpdUxVQqi5`NlkDg;P2Jb1X4#_oA&q*Iw? z4DFG{vH0w!FmiVDp}kepsa6E1S#wA2>JjtaRD34&Pc5^W5>R$x2~bu1o2fQP=oKC5 zjuEvvAC{H&*|H>*yKsPr7rD*C!VoqhH|D?i$ODj111=Fea!+i^t=%_^3RLZRIdTcR zPB@?D^nn!H1u3WNB4QCmL^jNBw}sL5kJwK2U!Yt{aIA$SxCE#Xgoy@gA7vN84B}eY zj2$XE?!=C?y(-Hm3bv7fM7+cGP?<^{R4{wXaH3#pibEu2Fp&xeSzR4V^V?}>ty(1d zhPlEWHt8)l-`{jyw)*L-ArJ-F+cD3uE7@`Zc8Prz;nRxSpo`Tw$v3f&zqOfW+E(>?`Py{wpW)5@9$4jkR(jBaq5TRv9^J0X z=(nabkBzX+&_tHgd0nFNuETr?2vZaA^n+EUw^`A9EQ`IAYM}sX9a@69HFvt;m;cy8 zb`T6v)`f8Kzx(tweTHR&dSBmGo|l%l-@Z%%>6^w4tzXLk<4Z8%#R!^4^lMSl6#twC zFXRp|YMBTAmf{wh#+2Fgsjoam)Q|1?^Ye3~f?4U^{3^pryanLcNx9&H>$=4Q)L44Z zQN3(loyK(_QfN)>YJZH&9a)UH@FngVHCpC^+c3SpE!Od~fPux6UaOep#vm>6Q^U2@ z#C(?^T$pv2k1eKFh9P^ptcUTZ}5F=apFWV za2+JL=uw7GadI?6cB>?8W&UwNMH_n(O9zM4l0a;QC2I57++`wvy~tuZz9}Yx+KI5f3carZJb9UDV; zu_3Xa$3CctS$c_LQI;0XE@_+qS!H|4p1Ax@AVRzBx3mtgHa_2wWjLiX%^%Ea>uJSL zOitK-%>;;(PDPc04Wcg|a|{aZdX zIL5Xb-bs$uH#G_A84s80ZiNhR>)y=@FWxdDHIsrW58QSq_+t}Be(aJ|+lY_9rQ+v#gL z^N0~4GIK6cdUs2CBE4BzuJ$VN()TE-B9fxsO{+(U&i7HPyoCf#;*)KDBa1rokm>Xo zLksse*VG|`DjR;v-l66Q9*?E6_(JfV5;Z6DaedEt3H7}XM_rO0H{t{UZc%VS2O(Zh zZy2**+GLnb50}3S>xh54X`xWvJwqTI_-?&iKxavZyk|?gKKSv2Rd%ThqzIqL1C9RJrc=Zo_P{&-!Lu3Gq#*zn5WJ-OYb#k5`OMx zzXLf>9d%S>C1DzNkfM#&$v-LYE18=zi>kgBN;YPW6nK70_#<;Dpc#yL`m%X-N0;vq zVJ%VI=V8=!XDVA@nC@pWkclbZv-qW3HYTt{S@6UNxR%J}oH{{DC^L3AB>;4PDiFK@ z6wH^7%<_$!j^}4u-U0 zSo!0$reOACV~PHec*gL$Ue@8RElV#AobVSfdx}g*{5o7GH$j3k8l!KAW+G(mG&eLdG`!XHJcp(&xoC>Yciu0k z^vFIN+i!k;9Ny27NB4^##d{N*ZGL4LCUSJS(JiH>Zyo>wU;Km8a3{D7`YF_cf;0@T zje1FJIrOC0c@<+j$7E}Y@T!(x*{7MWEnjQ~re$~VshWLR;*Y7auwF0mh^*1seiMnbP5R`z8`j7~R^uv_m8 zJBnMud&jNZ)cy$D22=cba-8FG?hnhj<@8`SN$SN>f+YN{c9|SJ+m4tF$|I{6{i7emeCJIuOLFqz{`oX#Qu|;yBYuwrn-M?;|XMZirL^?H-z4MzxtW>)0hI`?Vn>2>8o*bo0CvfmZLdIO$TvV zs7c52novJz#m9}pEN+Aea|}K2rzbzjwrn;JRh(ZntRAYFkt@7UG|mz zvp{9SdirEc`RAO{b;k`&B^Sg@)IYyiIe%P5Nq~9ABBJKDE7rLut6`*|7FuE0M>y`;5%bDbGTz_>ho`N% zDB^x|r{ALj&%sC(<;p&6V@UNQI8PEU@cfQDitikDL|=+dqgo`Gg%*@R{gz}3_Ct;2 zL70#GcHV%7{c=2!S3HZmnMSYwlAm^j^q>zHQ96*T>#IJn{=ygQmhT$2ewIoHU)-Iw z8fuBkkSehHVY*7NT^`q}aT0Jb(SX1N!c4@5m-uiEg~Hp;ZMWLSXTj!$BQ`NOrc#L}siqc#p2BeAfWNjqvyq#`>v_}v2=NJJLew5X??VLB7q#LpV;{{8Jc6BDI6Iu>f+L&nKG3o3b$%-TJyrr3H>9mkxKZrFTYb7=)9qC7c z+2Hq_MWW(~k)qOfu?zlS1i$(17hE&%MK ze5MgHR4D#@A63{%7eXgNyb^_UDkljARdlMY=14$3r!l` zmYiNX@=)IFCm1t?IpGh1gcDp=xUv>BuUsZ246EAMU&WVt)6JS^6g?R-sLC(u8_3~k z;#k_30oL#7{f<;$B7A`yT5p^(NF|eA_~yG{IR7vo%56kAYY^vj0RZ-NIw=0GTj^iw zi8Z&lM{dp z@}xV%14rIA?@`Q=VBih@>1yy2=fUJHVqW9^8fi=BQDc>08h>hXO7YVh&7}D`2@6Qh zbg#fiGs=dSWWw4G58o%JMFuD-egA-~s02jY)BPvG(Eq-Nxs^J?KD70tqL84FNrx#{QGumnd5)}+wlt(I zVzbgDhz#LR?-P2cVN0!K=F1YhvH)0ziN{bU7N?aPI;mn_3Xz19_W(5ZX(sylEhICz zd>B{1EB>oJV(PPTcJ6Xf3ZzWwT7LrH^N*a^R7L5W_=1~N@86EHNOG)q=F==9(h)Sl z5RU>*{|rjKmGdcYn$DAukr^jBS~`n4sdz03mQ$VxlM9)liW13H4Hn|*LWJR2QWZQY z2b|Rr!lXdwo#2t`daO3GX(FAu{xQ=OtU7jYAD)e!n{A`MOkLddWZK-x9~`Up=t#JW zJqrwHdBAxTQ;wMZ5#@^^pH(_)L-_mjh)Y2>%uH66&xQ?sW>;BvLOe$g^U5g+df3-W zFA6Un*FG|sno2cC1QpR#W!D)xQ%RmhQRGL5_oamjc5MwXYPyM(UcA%ZRA(1|S7sE9 zRj8Y|5nGS!XDDJRC0KqPbUY)l64K%Op_$r#>s9x}0u+0E%pay&);HKLz#*#gED`Ia zt98!E3uGhG`fU8evTr3W<(^^V5*%-<_LP`Xim1bdcg+(H#&=_*Vxw_#QjM}_7Lf8C zxJt+`j7ixC#b!s`SC`l)31ykrerx_Bx2E_qJ(N8-W*cep9*sI+4rFla& zP?V}V1aHlhlmQno(nvMYC}4+=Rjz{K6JaZBURm$gxva0^oTFXjbr>py4qBk23EX2kWiAajDV+;^kf>lYfeHSTF3ygP@6v#MtYm7REfQmYD>o)A8@=1SV4^zeNO00s>xJ=MIz%XglDDW2F9R z19mhwM}DQJP$w6qtX9v4p_t9W!DsWv6P^ViV;LVH;E^k8??9qKKsFJ$bQhr>vVn#T zs03J`G5QDqf&H1&ORRk1ir5NB3P!>p?^hXJ>B6~x7CAF7k8o0iqVq2N5y*b!=rlz| z>GKz(_Kz5Xz)W0{IHQRKQjPVJ-5|*y*<^{_{F?8`0K(t4c6d`;~iS;-@;w zvx=x8cD)BOHaX#3*XV$(Bw4d*;OPb;GmsR|)_H&oYgeAHJSb}!rgJSHG@4wN@-Ry4 zP2R`*|JML#{*G7U|Cj4z=6iMlwkxzs3OHJiJ&NSqo}Rq%E(FxtygaZ5`9fdF%;Isx zS9HyKnbvj6VM$sxKfVzU@0-q-f|#Zt`>1H7Y8y1@5=k}SZf2ywLz0U!zG+TCEk^9T zGjnqX3X($vou!kWoPZ8BEKQ$EReR-Ae^Pm!D~e4(zIb)7_D1r3(nZkVnr?QCF=T#lcn8OglBK__rHxaO@6K1k>x!4dlzo1qQh*D$qpDE> zc?QW8kOk%yfahtZ&4}q6Ydr?cytf7*q+Yv7fx*C_+X)dj)2Kom4!@ zscmJ+*;rS+w@p`xAE2D3j~OW^JAHpn%@%e!8G;sFR@pE*+J`6wyFz^6LUblBF4)K# zcIlzoDYc|D|3rI|BA@VPB(VK!r9xGwh^=7Nm71Nr9f0zB%5cQzx^vDR9;{g=RgNZw zqDlRpVrD87>xia2_WPa(Sq$##Al)0r?@}F@Lh(BiZMuZfO5;>j6?9o$0<#C=e2I1; zYcuKglWN%V>Fz#?H58MIkIptLquwfcokf;&EvO;}X&xfgu?v@|cRc;I z5)p&zM|TK~;?OD86_7W$Vn~3NCO*H{hF2NY=tXJ-knWUBw_M8#x$o+-X4a=W?O0wx z3IHpCUyr8ZX-Lj=#{;?t4j#_9hsyN@+BkZFz zeWPP}Vs9VTS(R?T6~wQE$B2PHglo4H@hz6d^j*{%x~@aMO=QoJ>wP6_iS%*_RrYSq z=}FJ%@okq*o(F%yR*N>0gdyZv4S0vs6?gAfse1jLq zGUihGOWZ#&Npn%TJrKoo9U8frk?K0jsaQqmUx#%9la9pc(8uYOw{2uuL)l}){54kU#RrfCMoMtzV~6$Mqz9qWtiVS1pXTg7 z7W%UAm9(7cOBf^uIp=r}{sC*OpOmI>7wxR79jn_ary-4LXekd8FX&2DN+aBzK|D-C zaj;(4hD$wQC2PPx1<95#aO~O6Nt&ae84fcqRY2P?WqZTRvv&IlVIR0x{qMcg2>{@N z$%5Fq7B5yEjdv!hL{igBF<1Na}1;*_@^w0t3sO_8ED&<)cynXhO2 z(?;0rYrKvd=H^k(K+hqy6+uCX%k^4@m4-**_Vs$yi5Ic6hR0+Z*;f+>P+X|E?ZwLR ze;v@1rS6^0V!!DfX!Kq`<_h5=xG|-|B2)G}5WWLht6Gr+Ua)Ho%9s3j@er=eJi&c|0-3P>pCr37uDOV<^ofo7%RSU$67a`3% zgEyWLApn|K!h(N6Pi5{6j|;dzrgb^`bO=yDP4_Q9ciVsc4FKJ1H6lQ()vw;0H_p!s z)dAQzEKeZ7^ryY!EM(r>Cq(UFaAqJ2zkyq45|Dt57Aj}nA5lDxXG8f}Ahs5l;(6D4 zBC&z+O02s9{i`|gR_Qa`s_t}n$IK2Pg8??zcX=Hg6kVi^`5JzlPh3OY-8%uxC@w(5 z-5skEc+MT@blYi#Tt5OT&ai?O(_@(O3aiQRC>xZ7J{F&w@_@ybKpl6ail?3Dp*(E3 zTui=-R5g5@>KlQvBZvOyD+`Cf3h@I5LI*FfKuy&0la8z+)`ya9j3gN*l%*+QZ$Emg z9CtjC6dFIrK+tAFn57qY+|CoY5%3&_c#KBXU$T28Od4e?z*!#=l;LG3w@lVdJSv^F z$p+D|ktHU221jERov!Rwy){uFxe*r3AYk+kS5RCeOF=)t@WDs8*qCpXW_~Z47j2aF zu^Iz|8#g#&Rx1BVG_Yu6J~tPqi$KuqMcku}a;?{< zkw+V-pwkR?iHGqEtXc0HdApVql4NW`qP!nSt;^hjXwi1m3@Z>=gihsNC_JOzgu1K~ zqdRcGJcPj&wMlzc;6#{}4&N|cj`~#bjK+)F3$wai)Lyg#_f2Z#kxiURk%9U;6-OJZ zz7ZKW?p`0O5_{k&VobQl{@Qcw3OJ)+GesKE%uGHVO63MYMkpJ+VZupMXjZ6^okYZr zV!;V*Kr!KKL@{L4Ld3^{_1S8~x05#vXZ>yZDz?urcPi(zUWlT!R*or;C0_>xc<&kS zG+Li!ILln+_7r=W7CrCy}*ye+{? z32`IgOE(Ic6Z*L38wcWN=G=_{tRZ)$m)3Cx0iBv$pm-X@~MC#YFu z13ZEl0$25~RA?5tUpHzQ1%JFaGN)JJ2$X!XdN`8Hvw>%Pz!zJv_R=G=pGh|AgNd%4 zLM@z^Sznq3Z)dsEThhdhn~j_GbfT2AgeIwrNioD_nDy!)LHVz|`#PMZ4^nFAEDaPI zL4>@ySb?fe&VpuUCrQ?Q)&#g~0;6_AilK;RUAPJ6qq)745&bS79Q7LjD6YbL)4ZyU zG3Y{XASO5QDqz+w+^*{mB)9`WDK2^5_;T9q`D9o25x}k;r%8)f;fFGPVR%guWbhBv{FUNFM03DfUJ87IqbBgz z6%R12qru>zL8z`mUs|{_lcY|0lQ^e;XY8fBE(FI|7^MtN}g|>`(Zp;9I7FLI; z*GRH}z_q&ZUszE(su|3=@$B+^_3@2$@0g7mHWq39@zmiYu&z0+W!@F!hq?o)L4juw zISubhNP>U9#aC6Y0WOOE{PD$rF3;uGV7&~^WWIgs%TgqN&%+fcN8|U2#^YY#)Catx z-N_uQo%%?JJ(h=rU!h9CDz#HI-ad$cQp-2^5%zCLEMV3Kjod^g%(*!z@7JTLg z0xo_F-uMU=0(y3!%AZnSCP>ats9kY|(uqV)s3ZfryXG^Pi7{WQvT+-_&}p>_Isa z5L37Pa@&q4bjxvI63mA^m&pD}{t+@vhy+x}^9aC)3KH$zcGR2fGRMa0*RX};+1#gf zN1g}fnNZ>-_8q7r^uk;Ud<2+wVPrREo~35zK;^=`wqt>-A;fuGR^2E!_B66fz)hel z1j<2%zJ&zU0sp))+Oym_5AZ6P=BM=;Z_=`fGpd8am%#Rmp=5_pH*h<>8^8*CZwNS= zCxUMRfUK|b*L;Nzw{E^WEW6IGC+DYG1b9levM$934Z$wofmAo@0NF&BWN}XcZt5z8 zatPEEIskYFq3*9~!%~e_PjVT=S;SmE-cS;e-2mnH^_R1OO_>1G#^bf04}?4gF1ddK zt3Z*s=tDkbvWQJFm+XU#0M9i5$bzyFK;8nF7&+<_(0#p2JRsd{PT}rV{N(A;qX|l9 zTSSAdrqfJklSa;M(UxhJEtB8w>bXQP!WvQxjHV9R4I~diZs+O}Wf`dd!j>yS=_am# zO>$2+7N8ThFXSg3A&m#0fzBUq{Jh?*0br9ym7ms>QnH(r1Kg0-^pQwUw~<<6>380E z?jHl}s@i!YTUI*6@y$7p3V(M5@3lsS#Ih`{cUE}~S>-3M2!dd}SnF0U_2dF-r^w2^ z<1v7F#7re}b-GblWe}0h)o&O)ayhG9RU97DcZ~1s$OJD0!X1;AuT5`!cG%%>Dc0Q$ z;pvPZgqmv;A$=-G>q0RP9l`FNO4>NeJcUrWstla8saAN{f9QMu0dEybaj56NYh;4} z?dp`D?eL7981$G9v?Z2A>mW~;5D z-&AkuHn_2-u`T7Z-+?RuP6S`P;1Jl@6#$kT_v4&%Kh*#lu48ZyZp(^Wc3UJJ>Snl6 zBqv_l0^Bm`?c{pTfygInkbUoR|?VG4g}B6cYTK+WlP&?tgrX z_3@;|)}rx<$}@;Ld$0z}ECkG&%)7xcDe^Jkg!w|^Wbk)^%Gv9*-UqRT;6Se2$J?u` z??5ku$BEQU4@XHFs__(hw^gDU%&#s{HT>Ikz8W7O@o@N=yt0cOg?=9n(L=uYb_W6h zJEEVH%=x%)QH5y8&erchH#*8atU`KD4b_r8;rbGNX1T}bx|NvuDcpL!n<3vYAISSqmezdx#%Usy9l&zN@mypCc;4RA z)RbEP0^A17<-+?h-U07ERga$6JNrP!9&VlbBSBW(f!;fA^0noSfD3?=xNw0+3*;`9 zI!grdMhtyhwz@$ChB{cyioCsH!Se<-%2>>ir;{8=2hvXgXYtMxKu-Z5ivMh88X$hY zI75jE0oJ&`5e9H0;&f=?@=XIE0}wnRL&rSa44sdI0ql0~9jKV&9VdGM;ODmv@|5iouI}r0eObNcF$WcV<6TqOw`MKdS9Bc$ zRLcf;Aj^yt#aP3mryD)Zi4`~W6-6FbB>nmh~6m? z7`d7Ik=u!txJA{a0c3*&Ku*A>DLEvGo|l-&j=l%2WF+tFdx(O0c}hS)q_NWMoIvLyn{)VwmSfR)jglLt%7 zTRgv{*>;`L6kQEqQY}T~#_&utbXvjnJMX z#-@@7uBzywAy@>vn2eHaSC1h~d@KG|DLRvH?xaQbY;1+9&}vOix(k2(%!#xSn$wuP za{XpdFkQD%4_a>$>>F~Nc-*fyB!46Kv=~^ssTbbc%5iF@shi0o0Z7t}d40cF=>I$m z{cofxV>h6xA!#35uONY;vICexkvn+a%K&t;rc=hmWB2D>RG&T+i7fgZB?6vkj@*%X{1(nD)7!TFk&hcuOX~+{~35chnM=1L~z&?`nwf? zg%eu}H=ldHo%Wnmg?d7BPMI&%rX_ApssN)c$6W7YjZS`_a_5tdiz$}N+5o|Cm`3kJ z({W+E#VnuyZ-+4W)jnL%FB<%!!7m>8#RI>1;1>`4;(=d0@QVk2@xU)0_{9Uic;FWg z{NjOMJn)ML{x%Q5+7dud>bYGiU9P-xQ*cSNv*1+EQg|VTPkuj=}5bEy_aEkj7 zD*F;n7~OCGn9+6@m0y7B1tjd@r=l_(d*u}}=PNZ=@% zM;OkY{Et?Y@4RFXepV82JiW9A{03ZqusaUZLu6so=^TWdp5ZL3YBjPo*jYks>U8*I zGn9jjx5Lq2v$G4I;>J#nNxJJUu*zs?1vV+Q(&8^BzjWkv&R;{am?b;00NvQwdq;0A z*_|k%8D_k4dm65se7IU+m*_gv!BgwH9vY)*03le|D>?M@# z0h*Hw2;3LkkA(pX@PV9JRG6HVoY~L-cm+lR_~N%$W^pS^`#;rw!^FkJO3u#lkD97nS;g7fn4DR`z{HsR2{{|r&vq&p z*ctI<*3?pl71The?aw69Tide|G*;vRqSUAabe%2NRng~?416b^y?|!>N!q&>c z`cDo2?J++~|Iu@0;Ni9gmUhN3j&Sy{&`sKR$^9wO$y%gBThsNr>DR{!SMq zV>>GcTSMdfr~cN?KX;G|Xvh6{{DuFy|7hI*8~>-P%39&DKB(U>Jh1WAa1^@vlp-c# zy`+#mB2BD?NdaN-Mm4KGIF2cCYv zRo{2SzW#kV`4>4zKMMOB;J$@Xg@<7n4@hzMq07~;uf*lGE+2>sBG;eWhVq8zxv=p+ z)?taUfaUnYbp3Y94_{*L0SiB^rBE-L1C=*w?IKgA(_+5Ipc8n`|N3J#Ro3@jqPTWk zVO!MU8vkYq_PKW^*A(blL6C)f7&;KBccpWy7D|AW1wMPD%G7)Kk{1gFWbAEq6nYhm zY_{O<&hHT~)CfyyGTe(3+n7h^Ri)UMN&M^@uLfGL$@!`c=~?PzkrVDw2{%}6;JkJB zgziMfmG)XkmL&Uwx;Au@EzokVBuksA>lHzoa$bSU(%RM1&5fCAm3wSj@@{xn6S0+< zXfdbCL})5PSEv{cB{l}WyE#3xJw1b-cLR$f$)^;$fRq%|X2Os9V%fODrzh<)QP zUHvkMUw~n^T)>rS&3}3^B`7_vD($ks;lmq~A_^4KFZyh~!AdNn1<#i~h(ncxN7d|t zQkW#bl$BX+Pf+WSpVw|H#EBAq6A!}T6J!j*WEah}5odVa4f~|nM#p08EguH;_g1xY z+9dTuLi?2Ubh??as&UK;T7`L`Rt19Up3Uq*HiXY`(_h$V$83j{=q;a~aWY$GJ&`XT z?P{3T4N(~3GaZ`ci62D@`0RpMA|$(7(^1Q@6*=Oro#93D5ZuW<5eG4$*f-TPr{)6Er%#fjv=|*A8r5?< zB|6Zj)3*-8w+IMaU)=wll)9e)ze_1@7T$k~gL}#G+iba?V9fswDWxI*+RWJSUQm%U zJF#-{0F#pEezyH%w*I%J7%M9v?pT3%n&0KhZ}RRhvhBAb7NFk!tp6!}ek)=HB;X%& z{OW-0Uxgy~PqO^Ch2kI0V*Z~LiodCYKX>rH|88AzZA84Yh|l! zZD0r}l)uPqW+^~J*jiiNn;U;fcV-cYy`6%wt*DiSwUy<)zTx?KmwyQ77osZv!8Ey> zx?2Q2kQSE`2f@ICKrp~R(A^A36od$mfQSH(h=_oQgoKEU`T!Lb1qBrs6AS&pBU}Q4 zN4WU-L?lnhh#pfBqGNeNM^ATu6Br=h6e=<*4k{`R9T7ee z-GBM#t_g&V3}XsQ1qVY3g2je`!-lzQ1CaskM1cAE1N!|31{MxzFA_2eDjHCs`~e6S z1`ZAu9u5Hk9v-Oe4tx)S$3}Qa!77Z1qiBFcX@kq=9hQttB~sjsr!;&(&Hmcf2L%=X z5dk656B=4NdIkl>R}+lNQTC#PrU7nfJ}{el6({njnu^|y}wOTVyze!;@S!@(on_X`Hr5%`6} zhDV@aMSLi%h-6@cL&@fij4KkBT-=O8#jbRK_u6(C6`z`8>B-@J*M9cw?{&=Qztyup zI`+?gO@q+kV1U7c!v=vtR~f$t{-U~6WE-YV)vxC|BE+XWAcD+N!pb2^opXK!PT#Sb z8&5bk6E7Z z`j<}y5xW2o^&s6HXg^Hi`x4-Xtat}np!DKxywLE#00N>jUjTkhQ-EJn$iEiU$d|U> zfdqj3R1IQeCLf{B5_cdsAcq#<(`|6U4fTu1xdXu&0=|vlfBC#6G>CO`6au}(bx$C> zTqCRjPq%b!3lFkdcv-h7TqJi{MtJSkz=F%Q20+>|NTGH*YW?cY8P zsG0sFEOy=UbY`=CZ&gv7gm1tO-M{TJ-v@@OX!QU~Yb%$}0!J?PdM|uBS3b0Dbunxx zascI=vdo;pCe|wEo9Y+pXv)gdTQk6Q*z7g%0{Wl$#p`yOgo=aVJ*PAQRHESJn(5U# z^E(g~nGfK=4j>mv02vxA{*+aQIJymp;d#Ua-et=4+%i&~n0x|wb&K`NU!y@5t~Bu+ z%KnYBlik($UeowWNibB9kD0uGgOAaQw_~_Am=DNND`$qfTVp>bVPuc1=J~Pk$ry*L zdCV9JG4UP&hL8Btu1#V`8AIw5>a>~wMVpAvn*dSRME)3@&O;S;`OLOriKj!KA`2+} zZ$`uho}cb@x~Y)jc_)WoCRZj*%DvMoZDwKUdCuRZ+y%c9V%9z8b`!;=5|KG*=Mg}c zFZ0{&{HC`bN3eW2Cop0K!yEXqffbdN&Bk$#;E;RC(vxzbOgng)$l;# z_5;9cl0WF+@>2kCt-L{;ZHrXXN0WygPr?a~iCCLV1n6jsx(W07a&xAHb0C#m+yPqi z%j}Oo@bFM&35Fymp}R9{B_K`cPp+3?Wxz+h{7PlIVj9B@S62E!7@aR}k@Ny>anABw zOGl?1O{~mZdx4U!dY+1k96Una7tJ1d`!Rto*XtVD~mNT<;A z0G&=31hSRtUQY+?HNTTatp2R-v}rMmv#s|dPi=BQA`BlClH5`uJiKdP&yz6umytfZ z31&ggTpawWGiDd!b(_WN)agcyEtj8i`6jT~ofJwHfS2DY7JkepGH&$MpV|pCcD+ksKvk^;j67ppb&Ii1oR*)-kxbWUV zRcz$uWy&nEz68mt>&F`;Ub09P`l{}(*hrP6l<3o2_s*AMlx#JAB82kfzM&9vWl&y_ zc3X{jgnh;IhwXND(9An_3;0ER@&~E2%jG-a<0m8<+gf=wG83fYxkTxm(~*@gMBeu3 z8#L&45>I>?(?0+74PxpL&^*Q#+9NKEL>{1(pZ>idF+)pJyl=|_RU~gtQWcK&D3=q< z9aUHiSLxr3z`q-nf0h-z>}Why8JOIGMgYL39n(L- z5v(@Q0@J4&h*&eQ;0J<*C<`j8nSsE#qi0&4Q`&OC65Q?a5D* zFbg{paRnHc&>~C6%Hf1^ZfN3-{9OG6{o1dAKqk|G^^c!CXr0PdT7?M94;td;m>tfU zcu8|%Z8N`@FqRz1d%1BhW}!NH$^;P3dYo+m5Xu5+r%V)=!SXy?dpfcpXPyhi+#N7? z5R}}>R|RQbYYMNZ((3i6xR5rripT@KrS-4EzAY0t+)9(K1prKPACv9}F_5w5g_UTD z*h|4jGL>SR#abO+9wKFim3|!b#EL1{J~>IK;Q^p@p@_^^CVNEgY1PmhhJ`+L{#-Y< z1M&Q-g$s3YN6Uh!?8k{054}9Kc7Wu&3=xZ-A9ug@E|JLV9n@V8-n`^Q5vTy~QANSK z+9+1UA6m7N3Hp_$Ui9?y%`7~BS|E9%E+3lsu22)e1TU4p7*3nf6*E`~VpciuOWH6c z3VbmG(C4+orQ|se-qzXVgE{R^!Mx&r_y9ucAYVqfAs-&fl(DjFL8TsTLAepMS}Ac- z!WGOw!RE!uXdO5DhJ(JNg&T&+H$!XGwGeKj!OT8)uDCMi(^uE8y#&nyj=|_RD*k4} z7oMHdt`~Z37H#I%-^*+FY6xqH0r2R!ZfC^I-}Ft)Cg7+uSdKU8(50?9kZ-LGDRoa= zn{XKJnev^WtA8U9V)YtDcfSdWJtBaY)Shmt27SfgD8(2*B2TgXW1+3{4wT2jlY~wN zy5TH7n468AD7L=Z|NP9uJV7_aSW)M=24*F$}S9-)>LOWqg^c)lTwutP7i|O*0>S+Jj7jVcN0t6hi%$ zkQh;o1X*w=>QJmrLgpoZkTqnI$x?KtSi-pyT|dz12>FsVF41g$m`HqhSLOf>B7;(c zJ;Gk**7)H?(idfV=^yRWKseLW`?!hjL-0qA5Zo=ct=QZ5k0z8Hq}2K4&%d0iofB}b zd72(_H#bHd%w2q2y0We$^Ej852X-tH!mxB(M?qv}X%6a21#pb$55$FWVdTZe-#YX& z%qWdmrqmW!KR=Yk?kNJoyxSa*eAUg{%lEOi8&S#`3m;w(&Fu>?vJ;kDVI|*zlyA58 z>REW{M@gqHoghq+!SU6X|of*RyXq1`+RmPP)zHYYtyhm642k+(vA41Brq|Xj`-edflyvtU0cPp)>%j15?IVM zLr4~HI!>Z2^H~9#y_+0D^L9qPOLpNXTlWIHvyu! z#jFF91YLtRKD_6-_)$*q#9c8zPZ6@#`87R$pKWDY(2FB(~EU zQ!@)!-r#ij_L24;^+J@q@YzNDvb(zCq{R)~qVs#L(_IgX+ly65RQ>D-J~?Zor)Vs-NHaG_uJ?I{W_aBRe~!0#h4hg_4@=vhgNdP2-XHz-G@i_@Bq2Bm z^$dTX6uB?MOa2>?k4#P^dSZ%``3?ofL)GN zt&8+F7IenI;P)YKs|Fg4nVK@+>}tr;Ba8M!d2d(3+8NK|Hyv_l@ovD%*MlmeO-tbI zJp9-O+4LE9HkEv2FhbvRdl73wi3)y;vsk~Yk$Gs3>&q!6SIyy+D0)QIvA_os$+(~$ z$Z}0(!1DBqC=>+&TZ*2Vuu$P2$k~jY4WzGLx$z&Cy77!!|ZgU*QlSVP|nO}dog)7v+)eCGVxjO?zS@3eb9_F)%{gG$*SSR+bUo~%5gHKG|& zf76Z^y|kxcb{1YcQ(xX**KZ~8w7IVO5xkcKyuNRu%UE*eqcH2Cx4;UDk+ zWtGL4|1X9oF3iL*pc_?n)LJlB_>H&#xq zNR`A+t!Sw1TfDq_O~6RYceGxPk1!Iaf?mWCO}Tb2i67LJ@^#{xY0eG6dUsQw;Vs9i zmNgR9NdvlG(}NVE4iA}li%gWZZEX@tTI?H&U-6MV4p}Y?uw<#vKo8ywF-wxF;>qdxzPbv6LJkO|53Cmd zLScGBQF=8{HUas0I$*6vw0UBkf>E{|Nog*WhNtIvkD1Gmc*+{#3Wi5`S%(6#GI@7B zNS#(>4m(26wVcA|kLK!fXVAPWT%{yb9BweN++2K+RCU!4`CIsc6LSkg+z`Fpq~3h3 zD}_VJnF%f~B6$UKlu!pVr4Khwm&XiuktuhW==Zd|o}yQKmbowJJjJG!3bPN3tWbpU z-Osto6Y{wME215WN1rKm=I$vUst0i-UrMQxQ!yE?ApB1$RPLf_2UwB z?x&sw}2LpCgnoxy5y%r7uICyK8& zf`3?Al=*9+WL8$11CWG^gyD3Ujx3#2@u^fvG&$Jo5LCII4GA$@5BM6_PYy3C>uMT? zSM0B!^mjk)lN5UGCs2e$Ahcf7LrW^9p%~3p1;oVbJ{j9b@;4Zz7&jPRyr!?dmI+HG z)V6ty2<3sJZKRANU*GjnT2tqnJ_^B~*D-sjrx&lGIR{bCw=y?G&FNbVt;RSnSzNVN z&qS<;YvBt7Ql!2uv>aE1s8(9QBep&ufcx$R?{2mmYY`Zo?ffLZbe_CrV3XM3$$U!y3+1N%gyw4W3B_kF7{||d_9T!)& ztPMAw5C~3i65I*y9z1w(O@QF;P9P9m10;BG_r@i-1qcq^xCD0%mUn0D%rJA#%$#%Y z{qFny-aq=+^k(<&z1ON$tLmw$rvN1+_B)gMJGIemcud#IUXKH?E+Sh=PjP*&$pP#T zV9Wi*)%;7?VYw5kxhd1`i^?*KtSZGxv@h_`=wuop*X7i4)hN_cz{9(r>GWNx}x<(c(T zWuji_bqyY5(0#?zSuspDS^ZL0+)pb3u#udsI4Z7%8BLx5ke^nH98O%md8~+gwKM0- z-L?Ls_fP#eo(&>VkVqqi)MU?f=S_(_VOA9RUKNi^QJ{OjCYY9IJS-k`k(c2gdNGcz zr1ncKs(N(Vd6AH*f#A*ig?^$7e-B$B@}TYoardzi3Ksr~GO1x%HWJ_aIgOR4j=_7L z)CK1mi&AMFiN%8%TuvG_Z^bV_xuja46985NguS4?__{eEM|bl<2{{-X0L;~XhF`~x z@Mom>E8WJr1D9a-y}(5FktfWGdKL*R$#@K}F5hpDkO;mTLTplaS_U3D-m*Xygs-Wr z4u26yf%i=DF{qU794=R9&h#QJ{Ny#X@H}T>4&CjrIDsDCaEe)QAyVc<>o@A)$4%)+ z6>-ocDs--zhP^bFPNMIBrOEAgfHYItB4n>GT;VAAl{y_~J8sBRc)znItdX!_oy+xE zBMK&o&;_f7<{H_cYhhy~q!|;O4|?jCJOh+9em0F-l-9CYT)>2hdFU}YDGF%64la>B~ z_y|~NXL1}|Q}F;6x?SFBQd=_H8p>jD-yRXke0_7xw14(RIOOcL>YWdOT7C?|11S%S zzf}CE>9LxL6HPg$&5C0sujQy@Xe68;I&mw?3tXsfX$M*FWY$(kQ~HUcM7(+QYL~XQ zs?-X>$piCuND_eOACz8&c>_EdWtHDR8^oQDQvN37ttS8BgZA7^FH7Pk99_Ws=dtE} zNFXkfWV;A@t&sQP(wcF1`|ckYJ`aBsOcpHK6@v535#)%2)09$N6-n7t#loNFl^I5B zlTU2!PCJdfJvdesRGKT@amG1`oXrn)fpog>@RP8q6g{>W2j2$a0 zhIsaxt0X78X@95Z%z*t#_1vdlR?BgWd_70spf(feZ%oaSq}h1o%d|Yh_;5wwD3;Z?&w*Z;psav*7o$1+4F+8rla5FE*T|73(stg`(}_10 z-Y*Ul65PfPjElZ7h1nXi~9knU1;&Lz>_oFzTz5!y?aqow}Awj@S) z6XL{^AUBp0Lo3(GGuvFp)P7bV8sdkln*dar5z1#_TQ=p#zSZ zfCiJZpOh8;70J_GjP~9WpO~ zd-x)EA9!a9#x16Zo{ri;$U@JIyHquz;4o%j9nRG{#oR0qcCsdF>=-7F9z{sa7_mnC zp)Cp%IZc4`*6Z~{m1T2U(xhu1;GSV+(DG$4;ItvA1S-42`3dH#x7R!l3U?K>DGHo=;a=1RsFO=I%_24OZ6bw3f zz|>oDF45d**9KoNKh&FX7&1TZ`%@H-K5e4Z8nKl4t;@m2up6Qc&#<=JAZPfD-PqZe zDt-YsrVp7=oxyaeg*DTUmY7^#aeA19va7~~89!cfKf-TvS&J$=Pj#E)hJ zS?)}9lssVa$#&0nGuc7mJojmv!~+-yZ7?^EydJOkXr1u>uw&8pl?b_ADniH|-?S-^ zt&Pp@0HQ-Tfi^8Pv-gyk7+)O#ulfgH2q!epLPf;I0Vl;@mog); z*5@(ROxU8xWjE1j{@XE}Y1`L1J6Pr+5fhH})qzV`?^cC3y+rVFD3x8t0*f;d@s(L6 zT$dUFrb7KO{zrCH3AP(~cN3gmkMzM&$+Ivih-~dlUN*mW@b~whn&itpR~vrbXr&P@ zdUzHZyrN^|tV-I3h@>F0&VnU(MTL{eqa7cd^;Hq@fhOI6dI)JuNF5un-yLD5cp{%TSAa zgvUn?au3T#BAKO^4>6Z#T9>2FBm>t3jzIW4Oh;(Q74w1~W8ZIUY*}vE-D@U%D!6}O z_11MS@IKlhFnYA-W8T9{rGW(QN95-LOn%=$mB=iH=hj(l<9R=6ro$FuQtIXTb|lin zIaFnGfM_W|t4X=BvI}nTI=z`BSHE&JDTmF%?R#9R3*~+Bj)Sh_ZZ2G&X$1rqv*Y6nu(KJb|idx=AmvRlsyv`Lo&jcsk zH#{?3c0*$GAp;frbGf)N5W`-hY8SLGGQu{j{82KchMx@*zof{7sD=5Io(sL2M1Gd6 z^0uY)oHSCb0zjd%Rvy(?RX3<=H@KRp^1wbrfw?j_hIxhng82vs##XMFad9pKcKVL* zkM0(^Luq~J`DlDM9lv&TrKTxzi>OE8hOfSfYH*3KL5k@)Pl%Bw`h_2>P>SLCk)+_m zefg%Who2Iv*@ROEdqmTQaDw;6G<97TxdQfJ`io<hQ|8G!$8_#gynzmP+Wlq#OlSLKIO<^G zw4a7l)D*5PqfS2{m0BO~98P@VkpD6WRI7Bw#@zp~+vXiwez zWno#b?Y{^HG)-uRm=nc(8_;;J&@wk&fj~FZ1Q$yx!Uj?#{;4N^H+NLdMf+r z-$0h0GUxA?IKIr5E{;4DXc^9goS!m$oGb()usCaajAJCk4k~hD&&C{2LnwH4oU{D~ zq4xG5zQG&L)OnqWw;S~lJ@5PDbdI&?N@C7f&D3nXUojJ4o4xh97f1MJEfK6Zo)RLW zGZ}h9UuZE)*9AEh;N|Ozl6GG&t~7c-OdYU~Cn z#MYd(fl3-|Wa!GQTsKy=73;$8!f540SwAb$pth)vXNyGKvmEBHecbaXWDYxUjy(jh z^~I431VF^J$8tGPv5<;NK&NK?CrHpwrYKDBZAjT(9~kTvohrbHtOmN4WJjxO{{uk& zRRYBi;Uzb&)|WT!2kMcH#LT^?jEb9TK|X7c6+{>>(dfwhQq5Ab^ThTxeH>51<;PE) zxdN(C8ISW@$s(SlqYLQ6oo>EGb2bulWmSAJneJI{wI zjZE!F&%U}`m(1D4Lpu{*nJiZ)KM-pzKZmyM8B`L=$;^q@kM2F#)7GJ;S%#LMQa95j zwD}OqE~T)3Y1a<6Y*f!`nFhy1`zv?&2m7?pJRvl9Bf+JD zo>yD+h_zH1NBZMc!2mgp6WvF^7P!+xmN>6yLY-v+DIcrK1Djg%hpTaV_*7I{2fdzu z)7$RZ)WuU$UBRA)YDOS8s^rB21>cBpX$ zxQ4Ss#!9on3&`~mjF(xh>|k!6h{W-+MBPZgDkP!(DA$ymo&fh&t8XC292?;WAn8W@8CfuOVeGiy?1}b%MB?Y_9{j&d*=9cFXZ1MuuCy zkQ&`rW2A7H%1!#dfW?#G%l5nn&zv;4q8siJ7(}}tl}_T<2)-4wF}4a>XPE7n}YJ9JOaB0-(#9>wawAf$AmVXMD?R!&o;u3>FSGjFx>7Z!b-^w8%!)+)Z3gcTaTlLZ0z$#EmLwQ07cQ( z7YJ_M9rN(|bDNyajQdZ^r_Z|;bPF4TN*DLw=h9E9KO8SaN@l!^U|Vd7+~zkk?9}QhdTwK~bi{Xh-8SbKB#K~^vn zsis<_ZKRpnoCL4wjl?-PHz(S0t>0hEpD}kfO?UoqpebqVaGwTlA}_C)$)K@1Vrj%Q zwk8A(|o+l{%kHmx(2@&KvBW6XwG(IIzzbNStNhNU%J^%;B` z&~Nk`2%m$#6vMpUrriqmWyFz&KA&oBWO25y5YH*|ndIsW!SOYQKMlDamnfBzz(q%*G^C0*c-eFk=A%{bOi79KZ z8s)tS&*K-r_&-l*pFB)E|5`(A03`DZkl%=vLDTd~)R%<(iumo)y#jaUAcsg;Q}bdS z)v;*xn?CP$1@7MgZRVA7oIhXo*h&#yZoT1p20n;LuA{Ic$wV_-I_V*L^?B`8kG{;0 z;B6tGFcRaEs}sYk9;j7>SBUXHAMXBuFK+_!mLnKn<|&WcRuEwh@4Ks=v?u`#F5~qwAVbVxedTJ8KlO^kr!=q}|3c zX(bkp!dD6pE}tqREf;Wfhbz0L64eP_00>qYgG2_R=!QY z5SpwX+Lzu60R9hUp4}H(67mIXM?wuzqj*`=mjjKnLeHwdz68gX!#nAm=-qU~JKWqo zf8}9Zl>1tcfq8K^7cuL>=$-)Z zqi4CM$wVrD=D5SWowY&1m`o}`{Opp505pDkcl`15T@a=e$cf4q`HQE=veko+7g9|V zxq?P-jKNuAo@dO{m&61L>Y@qb-Y+lUS?qi`uxHCKHv|VGCQPPJK`2%W_4#Fst9iyIK<_ zNZE$5DEKlq-NaGt-t;PIH?w?`VC}uFw?F3@{QjN9Df>KDB~h2@R8Ib`*2TWIbXL$? zc4Q4ddqK}Ue4gdwQt^WFjcS&;rWI%BUe{$*-i{23i)vQ$aWiGR*fZ6j*E%kM520op zV7PU`o)|XaqNX0$ck{U>jw_x*w+LixOkqTH|GMx+2#~N`k0o8m#@r5(8eycAto29= z4NhEgdoTJmh7;!Deb7fZlJR_TY|fS4R(kq}86mVNKe(p10cj`jtu$@lA91!H!XrQo z`gf_0CAU)6f3XgKwi5sFy_D^Mv`w3O+<1~7D_`eaLEl@?0v)w+?I!V~x7xLUyu~P> z`yT2C=`rqWyOCmgaxjj^98Wq@u!%|*m3ysU4?R7`nRAuxCc!`OBvZI=q2|&}7$$Wd zCwZxq{P;@T(W(8sa#7vCQAr3=dhD7$1~bEK8C;Xhbyh>gMS4~#Ox%gHvb;DMR>kB= zdO)abs-B(GfIOE^l4^pIxlSii=xH!2w0zVq_+S#?_)d4agtGa}e->tk*?g-W@6*8nAgHB}V`-K+GEm(ov z;@oy-yqerJcsn1?EI}YkChs8oinn@nS;*N+MLq1sE`5duZk(?9gO^zjMA|8DR>aH# zuYZ8wk6piz1i>xTR0!8;j>89M-J96=BvQP>Y=wN(bKdbXB))qgEpTp^ZwPC4i-fLG zEY9oYL5{d!&*R$DhasSs*$0`@_4Tm|`&94q&Rd?T)L5rsXgdn+47Qs`+C{5M`d;ZT zr_FiFOg49B3sDOX6Lk}!?GA9w`PgzFlQn6zb&bjcMzsRiZvw*dI`B>#S)?%$a=9=* z1Ti?r)k8K^{`0ogwq?d;*~eFsV;8YAsdA>n|4{4S9h1NM`pYPkoj2no2hQlHds*i7 z0Cb|Q-RnI94UkG*#F)Z+UXoe+<~FfO7Q@LqO2!dj|ZEzOh5!FFa5q@ z``L(wrfZx6)MlrupvuqQspt92HG#A* z<7qObsUBrHDc*|$Aw)X(A_)Y5+*%^R1EQNIvul$F%2J0)0St5g9rR~cVK`3}Dy z-|*AlfjfV!QUAF=@^{bwZ`#o6uEk_pxDpP{4z=9W*9*B)@2lLap^s>E7T8M9$govW zGak*`XviQWbgHVTsg__U>nitik3tm6mJ`R3*3`tDot^p)_L+zkZ;a}DMbKxP9X>-L z!sPXxY8CuA5$?d5h;#g+Z&0&1BE^I|kxS8YqLl(}%HB<2E2k)5#$NBD9BkUgXb&WN z>rcD_lyT0Z-xvjdW;Fbp|No2mLjNI3q|WA2GB3ewLl!c%G2!seNP>F668$dm8){$o zG5L(ZFK;(wGOOehLud-wzQ+juTVH=U-+?~#z`8E4B-KEdTy=CY{tz-Jdm2AO_vGwO z#K)}cNxE(%YYB%g8n~*AT37JB0j_ouPEO?kdx+S~J>2&Y6F#fVx3n)QswqtLr1=fO zvI{(`vX}jQ!AuZ^3T<5&#)Ags(l4OJAO!qsqVzr#*d{rU+;1z7z-uJjW8eX8g^0n? zR>&}mK4j<%zLj%Dr)><8_a*;p?jB;dPAi`_)k2_AM06=oQ4AHj5dzAaaN0MT`I^Rd z<~&Fdw?;ZDdSRYZrnh&k5;<_aR2D)82=ni%0jG;fw0r~kSOQq-HOQ$-9e{&wA12+8 zGY6`uD1dB=v(q6UHuD)tTijm%_R-LCZ0HA$|>|%fpPQR$py|qm&?4P9&?#DK5-1ek0m`IE zzvtepwA?Bzr(se*)5zNU)W3ct11`eXY!8G~1z{bEgRY|$Mvo_XDAGXFd7 z@{b;vWT@MvrshGJwkwxjj5f~`tkUA8ZO=UzXTS6yT&qp=c+c1uzuZo z7w;y$%QSm5Z>9;Mh9At;R>;1A>xrBI5USm?{NOL`FCS+Fc0@F$*xB&QgY*0ba##al zC4z?cOEMRmm=zkTD-LkqI|g%fUVUO(7S!rz>Aq3Ei!@u3XZSq&;{ET_fEig_HD%7EJ70QP%4AKvKHiZis~u9j_LgB#~&=0ufG z^&v<1UUqOI3lWRCH}8Dj36wlyv%oOvflsbz);O_di`5yZdc4K?KwX_zqSORlQN+qB2RbchLxG#m z%0f8}a#_F(l19#AlBV(%V3QwX0Q31&nbkO-*&3C;x1sB)BbE>$=XhDS_h)mo{)_(% z`%mZSxoeS`(%iaBVppM6E&xE5JUaR!)lt04Z*1S;9F;0ShZe*uW3Hw9w$S{HOReTK zMid*D_9hnh6j=b9i+jO({ceFCyS7JCgKTc~WWNZ)*yDj*hCXFw6~8<#qPKnJ*YimH z7{bJor`0K^QdXd}HjFD(z>|4)Ec;S;K6?P-B=@mSn_scOrDRZE;zh zgx8MeRRY=_isB~hxRV4icz1%Qq?0sicr1zh`o6yKJ{93fNBHbSiVB&xICD-V8)ZVB zX}eiqoG}tEB(gJF*l!^_^hjJk-VyCrskxL$a@T=qRAa_6apqrt>aR*pxq_?r6;S>K@Ta4%@S8BCW9z~Q zrOSWOPUMS3afuA_mmg=pRv5e)Xs&8F)V550(ofaCK1GcbaT1y#m!YBS8gYYa-e;7$ zt}~lfMFmwRlPc>VO}JKb>*gtnM9}FLSgDU254cG^)b2L1dVZZ`hgV%A_o?8MBJ3J9 zH=lX{{^r!_=k}s0U0t0Gf~I5)5d?5`l8rG(W0Y1_Pe+0g%)GD6BMQ2xI*LTl@c^G< z#n{fxaLz1rwl${NxUrCI#R(riY&>zT5$CkDeBQ0=Y+K*LrtG@GCvC+_p{Zr<^5!L% zLyfh?hhNg9k=-Nmb2n1ePvcIq(-NVEmrwdhj@DTvtLy^$Iuk6iH(1e2yA09Df0kbvwb^rmVxA*p@hf!Km1oB0*$z@I}$1 z4jI(no{oWbXj>IqGwx)UOAn7I%=+RBqYVz?H_P952g-?Cz*T$I?Ix#}3e`_jjTGJb zzeuIH(5+F}x{<^=H+J0<(C9l&j7w?X;&RVP@wPS$2&0ScwpsJuM=kWn-l}<+vJBcS zmH*|5V1JpzeB28_h-zTM|s|xcwy0?w>l3a~$AstT}?c*m6{}bIo0rkYYldUuqWO_YCoojhj ziD1shgT!}3jB()xt){6>UmJmWEp<-k%OuidGP=?KIUwahQGb>;ED8qt?OudZYz3g-p zGVcTiwleP6n_gYpon7J^zePXX2ZCIqVWy^YclP={wKP5VhcIOHQ8yTqV_cN-L=v8M z3cC+YpoAzhDQ8AU?tig)q4#;IhJ%;0wDP&XrZ3-R{K%C=UJd4+DL=`SXN+2{kAgO- zzKe-Z${%nQ{xJGKO%@yLKbUQ~zB2*-NMiQ`S=@ijRmjEukOg@CS8x^nhLsQ?-uo5z z9@jr-T>X*s?%yRB{6Tbo;5_`FBp3W)7L{Fz*k>laGeze6s_!}jBl{6sFu z&c^!x$OQo^!XL>6%is$BAGzQUq>2CkAs75-dn8J+euq0rD63eJ1+R4)eaW$GVOH>a zhcMp`Bh@A@rHXOOk-evl)s0|#(E-4;5BK*ER2KPCCxW8xgU1xw6~kEl2D5tMjta%D zu;=2Z5B~b388LB?Yi6cta0S{73TjbkF_u4%CAf*sY$k2eCT^vXj1) z_8w-B{`x+uj9VBvj0sK86s|F&aZ(Ea!``}-_a3^xdm1FUX zhs0Cw87)$ShqMZKolt%EvrfeXW)f9bUvvdcdR|qbPlrvDteLW2f8B# zJC};xCsksOwtEdt1hUjlF?H@tkBELX9S-WfcNS^QH^wVpTC#P)?7JALmD+dotUPA- zaOut?6WgHV9Y;FEH9cRabTs*l#+=cP`hs(D!PzA^ocYs%@mKYi=!u&eOEKcAA$X$} zJdip*TSR$!p&KkTOjJT`aCP&$`RUCG-0DfKfRJ`_Nj}NA_=g};*F)H3qJ2}i>AX@w z-}3-|6`??;MrqqG78rT0d6H(Z1Gv+${KhiabS|_=){^AZ#Rlv3XF)IaxdOq^J@g?5 zru=-(R@QzS>tG@)9(6cNgTtoYo}CcT$pwACBO2y;LPsk30XDDGKvQv6HTuj3tgFbK zaEjnHPQ)dRN49snkT1u0UBWmpvRyN1Io1zyXP~W!AM!Nb<-!Vcp;Z?6b>}I(wH8b# z0G));cMXL(^>g#+MUXwg6a8EB;~a=Gov2p*OiMgJww;@z!-2&&>Fb%rrFoc zPzd#snEN7|HPzB+6pSx#7wy-bLj$A&H!3_mxM|5VOGVJO$abSj{cOQSMe+61plBQ7 zMR&hk0tNw*Hp%}?0-v#pd-}peZ2Qr_RR9o4igAAN#iVO*=nW=);Q?CUE(Z<4 z5@hzN3VDDUA-SUW8!}&k7a>QEV^@+H=82f*^^NXf?qgViVcHZgCX8P9p%_bOJ}wfp zOnoCzh$MILr6G^ncLcJkN$nwZ66%lXeX5yZf&mjo3&~EhW~md919@=Ztf5`5kT&7II9l? z$qpErvBo{ktO~?&Qr@1S;>K8g?xsNR8!mGZ;*R!X>3Ik%iCBK6xg4(5{p`T98nT;d z4RMV23hZUCil6ouAzae*Y>C1(j4{F^`ixXFtOTu#pQF7$QxV8_Uy{6hmrmxNmIQu} z+W*zp-~`72^%IRG&2a|ylef|M4YgAK(UX8X!%9a?-${U2?r2q&;vm~xhpgXM-4LM; z;Z3HcCJI@*(j|~RApN*SMxXy+<}r}E@eG`>%-2(eMmlY7r~Lufn{=$?sVVH<)C)_y z<8(CHj7A7l<$x;s8|Y4TcERR>Iqt=HhuS3Wi)nHxf@cglRHQ7(!bo!+j}N+5Ti1>j`-C+-wK$<{xA~xyUVb?0+=BO1KJt~tmiJB1ji&)4R0>_ z)Z<48#lh7qZWg@h@bCIb2umE4Et)yTUru;FsU}F-2{ltmvXG@=*R)=)cNBkN9BpWc z_!0sORF^9N<((Jw$$*GbCbUB%F$I#k+1<^WFB#JPidXlhX1mZ3D*)fJ(}p-x_dJJ7 z7Ha0kgQszUDn$T`Pm&TK|yuJMv^- zcLAIgYVCvjmAS6WK;|04L?Q~LnRx(*6K*&A}Q72^GComE!kk0E6;!BaTxW=x1K)f~Oq$E;c^ zOE`!{41rkG>o-bOb3YCQUqrY{)li`*-FYgMb<)_C%_#{|zFSLVk1@gFzjNcj5DoXNnbBs-< z>bRP8@CIg6W#)Hh_xj+p$(hhJMrE;N6)d5rNTaPV|g zM@_r6m`B)heKf>3fJ!4pxKf~tVDDgQMLvsPLab^iZ>YJmXXA*?Es134S=5eXalfuF zO1Q}8T$0(kQJ}=^tk{aEejY-wxETFTJ3%-Ii;inixR=k3m}gl`cod91euAp5fg3%m z(~3|QG9eL-L&o~p>QjNemijUgh=(1fN!%@=gBe*GK6IGYct?9?{rIw1&%ralkVHP}5?jeU%ho_&tNgLI) zauV|A^ua|0Y0#>|VRj1#LRLf<1Z>dLNSan1boUq4K8v6cp|w3A^w~PQ_6gIbR@)7hIUZa+B#^wi-U6b`e2qYu_N`AFOqS2k zT+26*f5XrXk1&D$e%QvA*9V=C6uzeAy{JVjQRw99PtirFK_~{1U1cXeZwRb&>Wk3w zw{S1KbIAuBjBRWSv839+_|$6{`Pwy@35XD>mj3yCu{*Y)YMIqQ0%lZndO3Ega4Wus z)k2Xg^6}te8`o-{!sw*N?jL>`RTq?KD4NnVJGI@o@c4MTnuwm>yfe&2IcDU`_G+Ep z=GHI?-5SPp6kWnasPI{oj=6imJzeoVN9b|Dn?%3g7s+eOQhREA?dvtS$Bw4RxnvKSum*uZaaEyYcCRr$OVV` z&!z~MLjhqUF?{u;BSu&BOf719X-nDjpx%LT|42T5?r0}5u+YiJ zfdPwHR5M{H`~yXYVnG0*w9VogHBWxat)cpz#1(lHZ5&D$%DNR;JV@Zp_TQLfQ($Go zgVy`{(h@Dh5heSX7v0=xuAFG(%Y#_dcV$wg*{#0Yotq)ku3u7Uz>IO#I{`Rd?jQm- zf{^<+(9Qilq4QPJeP1)uqcb4mVPW^^8z@2%o|m~j<$=Wh>HExSfhoVX3juLs6BUYz z4?T0v3t(O5ZnpI)crI`lheJA?=aaJE+_eWXap3 z2m@ZS!i9EdQFbM`A4%E>&JNs#37kNAEJa=rG5+cRt}Rz>6byyJu-7+rg$lk$Askm~ zziKae>;htyXHf>InSQfQes_7$5ZXD(#7BsZo}RgS0=ia`g=0gqRCP!nT+lx60!&>f z5sC?Ry-@osq15LpUAlpicvQLrn`Qe=Jx$@~@9)n^5E8+B1Q}xQ{rSp4<@*>9gbY(A zp(olw490Fd3?!Yz3CWS^#x+j_?sFRx4 zj*Qqc8b?(x$?VMfwNr{AP=l%R_irFTP*XG6!hO7mpbqhHWKJrcmW7~8;;HdRx^yD0 zV!1#6B_tIKc<1V2?T;TG1;d+WR=n~RqKo<8y1V=b`(CAGm8&CZu)ADS_*~Auj#)yC zH1Wg-j<$GB#cyFoI9(vdt?R+m_{y zJmZu(Yu zhY8=!Jin(fYQsQfajkZW%16~Uvb(^~nQNx_3;{kW%U7csX6Zdz`wlB%&{g5AoaLih zE?cuX`y^MYUW3gBhjz?XX*x9S{M%dN@ASO=IUzt{`&#};IA-%g!-m?TFf_sGC@ZRm zfULN)> zY4)5^qgMo-A2@gJu0Hi}-nlRg`S{rr$2dzLG7G-R^`20w;*|E_jcTx6p@`Wi2H)#tp6&3JCMso4dixN?%J$BnyF+3|3z}t;Vr_Hd zI5-Ik4ZT~nL0S9$?&IDt-w&|)@J8rJ6l)wpfA%{_LHrEbPeuo$IodYeiL?51h}XGf ztROhd(f((ZQzp=mFHSar3FYSunr7Z)lg14dA`ZqD4DoaN5XHTxX*8Hzhtk#_i5q{q z_ZAjjagRE2j2n05w|CteneCWwnc8O4& zQc_qn-H!9x-7;ftQGMre`lBbl`GjQ(pFSv1W!0VgCkJ4YC@?b~#&G1F!3KlQh~H(C)qrey*$RW{G`h9e ze`iqu)POn(ejqD9Dj7-EYc;>dg0>);lHlC8)>DSUJZmupmlM z7?Itm&i;}LgmkM@0Qh$`^nbY~;jh*%+&&Md*WBk&l^yL8e%@ytss%7VjR7@w1*W8@ zcbmU~hO4W7qz+9^ILm4AA&#O#g9*U!he9FGr6D;e~^5J1|9P;l8;XI6NH!?YZ+h~wP zdQIpA(9~&}T*b-x+_Z8EU2tyxs%OO?aM}DF?(_<$;1i8f%LKU^X{+gSKCb7{d)@da z#pb=$X{uJHY9pUi!ylZ3^s#rV9P+DqG_O6{R zHxAR6T$9V6K1T(GXK&2NL6^f`D>ATTcd`S+E&fKLFi-pGrpA$VKCH}}h@$e^?x&Ae z6cN7iD_J4E#_9l4&YVvN2>KqrBkK=*NF&7gSzc0YnSZI&l()!zFfpO*$?%hvfLR7* zYq(m|l(EQeuw<$Bye>o<^{pC%WCEF2Awx<3!xv!<@-T33@E;~GM?Bwee(#W*lg+XJ zipgddva?w8Vz~3|6G)LT^&>8I?ysWqe{>%GE%g8f+7JK~TD{Lc3vFY0 z0h4EC`eR#;f7IlZ=5vf_$U{8s`d!h#O4D13&Q^HQz;@mey+UvN32SD=5)S-gs!)aG z&Qqu(ix?F;+y1918fj%0jOZypB(CD~T#-qB^@Rp6Le0^=H92`{0zQj?=s53Q?q1Mw zFKG(Mo#W@sxBuu}#VDFg!i`wzLChyx1Q2fs3<}KmVx=GRmJs_H>}bq%m882g7EDG` zbiRSYt{APB3h@|A)>3f-^&jH}t%Vu*pA@efVu(iPQ!0suC8yFQM$(yWQp|QM{iKb4 zp3MI_tz-q}d+&4^id5lP6Yj#W#w{RFK6AFC2F~AQbWEz-{%}-c7@o-e4b*5iQsAn5 zdZ{@4sCJz3X2`Mg)l-a*{6r*i=7L+%j9Z3!AvAe3eWvqPA{xW ztPnb0vT;-*#KCMni?a1PP^U>pX+c|G79XAHwr8j&8V#`ux0) zX0#*q4oyhzrRrBW(!(`7-GEyH_&vA(zaTHI!c+A_`;q{z74H|#7ZIYx&1^jnSG+8= zelC1vO%2cO&Nfr4M(1l(I|v$2UJW7v+lSCt)i|>krvuxp?~j9+FJ3Suo8O-+?s8B6 zNkb~A-99pRNr=~st4yciSM5XKVn&5l3V`aG)4S!sc3qTBEZ`}`maB~t9;TWT=9ry|NQykwHFP{v8n*`v-0uhZdK4c>lYF<16W3I8|t)G zqm}S`-zmO+nDx>;eXWg&NGBhD=hKa|tf&R#7>H|$)pF|GlX!e=R$ih&qz{PsTM&WN zhMZo*ye^{}`@1k9Q6fDLL&|feMRKM@OkSqyHr~N_!1IyhL~oDz9k?a>MF>qk-gom& zjiV;8s=)?*sJI=5;Pn=G-mcp+iWkZ{b}9e@uOsFOQ;KU7)nit5ohzt^J!q zs+@%A8E7$hC$6=+HkjfFo3qnawX6<-8113chGuTtHa{P3Ou|P7M&b?!JbQo}Qo3>P z@zoTa4q7Z+SlET>xsOcjQ`u>z65KC`rwcPPGSOd6wO^zo*S!Ee5$P46fx}v|EU$S} zjAJDFz1b2d42b6d&6d=Y0QTC1H&xeyLrP_zkD(R^g;S4fL#A<`f@ee`7T5;my}=vo zx1gzCpemTbElAa4^Qa9-cp_&SH(}1(tGbm7!?63;ThEU#X%XryOf^IzsaHvs{V3X8X$oWJahTkvhavT+3;e zk6SYDG8t4f1iBR`S@wk872Eqt(4YaK4ycg=UK6(p}pw!OON+}R(FOj=F8e%ZE+$NRz{Lid&M7d8F1zV>FV%Fg~ai3yH(vS9z zceD!nmT6kwJoQg(J0J~uIO?y}6)CWl2gUUNeEDkq?iF3?E6O)-wyhqetc6%CQDF4c z(MiD}!9~m@PDaD$ZT89NXd$C*-ZP!IcZFnPy??rf;@G6f)n?`+Kt;lD7pJmdK| z#Em1{HsMWHGwx)@0qx1HjCl&la8iohe$4VJ!lyf@m|{kq%;gEA*A^gwn(@DNg5{zo zXy&Bx=x7)^PGNoFL%64>F;oHD0gu5;j<>>-Yl)Gs!+B&V`{{@z)>oT4BTujt8(o>afhZJz?EpZ7p6Vg=&AGN^KR#318as(pnQu zWkwr}GKVkew&ossNMvjGL=_@D8#j<(r&oxM#SA~&w;dCVU;^;B!JSi>cp|3R7zO1<3g#aF+r7C{5Le9!uj!(hx$_(Lz-PjS(JKL?x5^AS(eD0$! zN5Qo0U~r^T4LA;iQ`*W@Np<|_Og3#c3ij=wUD`XN=QpGyS)-VzvPl7TjZL*&T$mKz zTDVhruqE=KXMp9ymTC$Ydj4u@9?hJdbLiCGQTntGX%4Nf2Xd+pj#)bzD5qHFpQ zi^%gNY>UM$360NOK;c~voY4Pa?<=69TKm0+5EKwZ>6V58>68@dLw5=Sl0y$EQUcN? zpmcY4Bhnxt-Q6A1g5O3@8Si`Q-uHfM-HXdLuxHPnXFvPj_1inewENZ6`TZt>6!APY zDFU{h_#NN95vY-5KE#Vb!m05Igaz2SUHGCnLu9TqcOM97kFMY@*?3N;?&Wni9GOSu zV}^;%>i}JCx&oZ$4&>ILkEU4(5{2<<`q4dzVX~NGA-9`?8bUs1*7tAjln&_f&_XOh z!lwdo=}cNksduEvsBW+hwHb2<*5~MAPNkT83$}_dI{Q^9eK-fZaQA>UI3uaaaFhtM zTXeyXqyjOwG68|-{k6dT^V49iKKDNsMIDLc9K)Paik%bWq;t6@l%?I6J}Tqra0z$; zS`)Z$h=w{fjnzeiQA6`Jv^8IBkyF4vt-9+@;@P(d#kBM~jP$Q!jwscLi?g|8*)6N^ z%hf5biFZ)Oefs7xSv->m+Hf@zjfgZ_^!>mziYM$i&9bQ`;)=247jMD%cu*-=-Dudr^B$&W&bJ zJbkMCc3l~bWSXjER!e4=@s(pNZ=GTtTrls-4LHT@(+j`4QUHU0ReicbS4(AVJb&JB zi=w4TQXv@~++u0(DQz?`8N$QN^#f!Gm^SsT zD*Uzo^&bEdQsd%Drd*Y!j zAkxr~Q=4grV#vu~&9sBP|BAG#A`JOOzpB1`eh@PbQKDbkC(!K%RAc`A9o>v3U|P9S z$EAMs``im>(UK9{F*+#DyU1-p5+?cUT=3{hSOvyrl+}4%kpnF@76eE8z~rW+(7r`R z-s@}>Dg$PT17;*8B{F~>z3v}7i{?}$K7Mx7@yfxzGDlD>uuUoe^N{y2A{;OeWl1%U zIXl`oF>QovB7qL}(wfS0XSMV|t+{8JVrwc!+0{#BW!vEU(@VSxibefN;$`4WNV47a zJh0B4HI<)3lVGamc*22NQ3wWJE4Br34pWw&$Lnif~(t zujJXs{-fyz{O^a>@M`fmLkSvxqtr4^??#cyOj} zsAu=>7J_UnMHN{aZ(Q8N3?&XC#jru~`+?$mp>c9UuTgQ}!ZP{>e35QE1`&jr#_sk$ z-{RrVTDLDB!M>xEL>G%S_sZ-$v>!a!r+J_B{p0#fa^V@-o^rr?j9P zWtU51y)AFI5FisV@e+`Cg=AA`L*uZMcCvSDU6P3*S*}wBvtCwizTq} zRAJQ+H)D;Fl=P3Pj>Z`xGF)FoEmgCgK089L8NY%Z1?HPy*_DCn6A$7ap}h%T2jw@L zJM@yH>|05LU#9|D60`S;rD_Zm{SfjYQZb8YHWpGM%%b+(1pIN+V<(qthsWFZP2H)P zu{k>zMiA>1^&G7$bh*^D+eC%gZ_Q)eE;NP>Y({}~9>_-eMPz;V3VyvO^TMLkMMb=< zq~D;({pQ7DxWD$hG5~p za^Z(NRT^)t+8vIvna5$PN~Dr?w@caP-0={7AR?vc_^dDP44-w(Ac*27IGcvEivZNqSC)ztxk9iWAt|k3z{J^B$^VgAZ+M^ z&1^Bbp}L&-U6DHH`I~(6ESW`@#)U3YCMZRfk`#aHs`h5~l z^Shvj8`2!fo=Am#woID8Bp7*lP%2kMYamw+St+)}%V2WF5(ge8K7-&G>h3sas!DMmDsfW&lO@qVD9uZOLGW&=9Dg8Qe^2Xbgl`ngF4kBj2Aqdia7`jRV zAQ(4lIPd>r6Iz9S-UVrSN1?o-fBQMd`&q~n5CpW($ye*QZW;$PI*H`iG2E?*oL*C; z4IKzLv+0ZXE={|qrhP(Jr(0e%1!J*8%UA z--PPR`{FoUIBnXFD`jBQ@@o2_$neacwrBzctE^$eJx8c`12rps6kVLAjqZ`*>Bz+M zEgo!r*ip$2OxwrSNKpq|?3=&nkH7u;7hP_N|VF2y&;BV$k4-T3lVC&8T6hWm7u z$e#JUg$5zvFBU|6R<`PzZ0dN#Ap86K@X8T|H$LRJd4saxi3Bmj=VegWrpe0vZYpDi zaVETz%2)I}#LU8@lS{SAR0KwmZ(dVaT2clC-97*|{hQTE8(C&g?;UP$Z((+{J?Mn8%Z$52)8a{crLg1t#B`hB!o;E1`T?EJ` zo}*@Di}l=owGBzWzR%=>pm=X}mC^^pb0YEx_1v>F3^9?`8PyhZz zZ5S_(BT--d$e{!9cmroA`XB+(LS`0F-R#1*y)SN|?T~JkYRD-VzV7m7p}(+JCQoQ? zVvN+g|GrH5U4FBPkNQLo1Pcwr!AKiUx%DJb;)CT9p{<%fCED}_IqyzK^v~Us%nNXg zVvAof7RFFvy7EW9@`(TH-+wtSuNF@=I3d!&Ltg2l@%ed`dY5;_w;t@v5Y>iv~g{^P{ zuPojx7bdA`t{aPxdtA*Rh`GC7sDpg*0szS4nqgoNSW*GtLFIp#%TTtEoBSmW4EMUe zcJH=Bf6w@E4^^K!PdC##8rKRB(JKH7Yr}R>PKic){010^DFdEQv_XJGQIs4RiWgNF zu&s%(RlWFA8%NPDH7Aez@5gvj-$ulJyD&gj2blN|H1m%tQ}c7#Z!cpoXR09uz9DdP z9>`4py_1lIvks2k74dYQyWj&rI~2lY9VwW>e9z>9V#6Favzt;}NrQg8a;P|Z{>S92Tr zF@eR<9|kb0qKbX!=FXO8m{Yzj1BBIp$~zNb0<+B***(_HC|G>yahkne1v~(MuD{FR9wLvc7xfg!sMJ_0K(&B}T2v}?)7XjraBDgNCdj#UiiS?c+7f1! z+2}owWZH(xNO| z0F_F!X;z@!>4+3cyHeDH%GHG-Em;|#NS|h6G+|!uRep^$Qt93=m z|5|PV{(vFV+wDxP2yrCtiZaF2CH=D--Zr#-~b){ z{i%Z%`_gp<+Ziy1ermqQzbdWymO*|Lkjl&-wkr>Xko$o>_(UUFNVAS*J7tz>)y=Y& zAFfq}TZdLT1soH7fazEr@2Rkwi!)S=ptlInwi<{W9$VlbWfY+JDL{G!(HsrzIpZIH zYsg~fa?B!kGgz*CR2#;05knb1$2Bj6k<;v!=oE>Y$+!{LT9U@<8e6CF?%0L@V@COo zQtHQV^cmqiQlWgK&-_y;U(*ln*h8HiZ3-o=tQ8!U;A!VD6=A~rppT_(1PD}`(XdXO zWd}AtY}~Yws%qe_^YC}bmrL!OYF33H^60FrX@_gNHjkz}LQ`jMbqB^#Z42N6Gi2Ly z3crh8z+S~OLOT>6!#oBc3;Ty*Oq?qX~%Z_*tpg-LX@lUJY%_ zS*!MmOaBBiG0Gv8>7%`m$6Xwi5g^nU>X(_PIOqZ~hq z1Y}FIOjWE$jXCV?j(VZ2OeLu_L+ymL3D2P#ai$ME&W<`ZGeQcP*qsUV4P)`Rh#5Ep zmQ{*Mes3G6>7}WvYHIcx7+-z$S{w%K%FF>9gfxiV?xB()*JA`^Vg>2s7|1qQ6?j5l zkg9>ar{O#puzJI_YWoE5oMake%o;3#u*)tj~OQmr#qW58VLfPJv~zzXkdTdGd!5H z;QL{%v_`oqOeHWC#d|WVoz`(BC=Q(ILnHy|nM%Rk@H@c0>Fq!7T5ik|C)y)-TRmM( zR!5JHC47JHut4^K8b*j>Xe`lCn(BTl4LYLTXsMjAj>#`}z~6oS?@hQU9fC($CvNO8 z5O-C$BiHD0!i_&KNQP~}O!!eg)bv4&)O{u@7g@j%C&W2afVkA<>Y1+o?+ zf%KB7*lRvZNL%Cf3D{;c)u{2V@mz9v@pk2!H7c_xLJd-XNsY>+pGi9)9Gb6+alT3q z{nfw!M#Z6ie;Ygl-9EV$X{5b1Y$l;NRbnFIcgWkTrEwAiDg%iP1BPl_RQM?of-v4z zp$Ta=^*|X$XmBI(5ti!(S>;tp3~hW#rf8b6ipoI>P)Yh4SJvPK(aV0w7@XZbMSDhJ z8w&tXA{79X&?3-hnbWc+Mqe#lXMZn=VU48~hAN1NxS>8cZe{131QdyY*N)h$ zp~>o_f`oO|hGtd)Fv?f?z20USAio!*(H<_Sy2nbD#j_G%?WD8v36wuyHBoctX$@IA zU=bm4b zf^4$i&yfog5e#Jx-&#RP;;Ot!G1;U*n!v3Pd;M9P0ir{DkwLN{+Z>G(^nUP*X1{#K zH^l1sqFvpPYwrpkFa4WPOtuOUW&hSkL5mb|tIGuL9bqJigIJq^SUgu>p8FXNLF3eH zs_J6%u1xGz@@RvKE20B|AF# zrWlfvV)FNvLc`P4rbP!9lDC=bJX06Fca;6ZPI^<+J=e${I(EBWv*(Md@s27jFbcrrwhc zsr~d1qrN#~gg{NZ8rENtlz;49DZ9Qf&(F0be6S&1!J*POQPT*LpVoJm9(uC^KVM2) zo?$?gk};{)(@$q}_rZHE(MM3SBtj#&sER$_r2-$ejc$217g5Q;RMST#7qJ)J?Whzl zZ_P~KTxSX~RS+1oSR7&_WKc0xySGK=t;<#l!DAM$g(-Xef~5806oO`-T_^AShs6jK0> zszP48#|X}6@7S;O;z4V#jK@tSL+(1aDfSpE3|IQehnIUH4CY)bW&aAEGk z>oY%C&6j&EhQeJ?XES}h&*CY6#-w1TiM0tDdAhJ+Zzt10m<+FJN^+J|X61*+R#KCI zF8Zoa^j8}Fg;sy?`kyH#Rn=x2EMP4_lYypZvvn3{qOde_auRj}Wj*>6_oA$i3w^iV zBiB0H#M&q!yo?xXp?^*6lfP2mw`ra~gf*`kF-avLmWR~aXQ9*3KNsCkhQgEFDu8bZ zz(2QPCOxdDM8EQ_{_?$lw?ALk=T(n?U8L}RYvP}VbNXuI6%{lak+Zv53`NMUQ*)ufNI!2Hz% zlPIi!3J3-|@wBkVLr=1xdbc2(;cOa?%($&2S72;qeTn#Hk1iJoGU0)Gy+u7U4>DKk zu3PR)>gz-s03+XTSMOE}7_DC*3X}gqNbNrqPJ?^BCzbFbpG}KW3TdC3ZXujQ>_S!F znIJ%4FL*a;0nMkJk7}s@a(RCl7ydDGmdAC(awlm1u-`CS8nX4;V?s9Yq#4tTB(cG; z%p?(M84Musx>xUcm5-gi$**vgkG;)83FKpAZ#itpVWfdM9>*9P1qJz;QR{i3$JWrg zsUBK5L4R2H0s9BG|Bv4Plm0+nHnR6XzVOREjmcN-LB=Z9t**7APoaQzR2hIkU6@y7 z2FZ-+@5#2&(gk?EJj9j1-dmK2sv$ObC>f0E;IZDhS1=#If26h5--aIhqOCh5+l%L& z+bAf=5r=Ze)4U9=)CAA2g6F`5J(&ilrg>Ga2|_DReVzh)eSuJn?HSt5wIcN{6Xk7Z zV?85n{Ft!}5fKn3?Y0ObKdRN>P#~FTasO>yJp%W1oqloFUe+LiH(gb90&pNhST|07 zVuu`=K{~S!CnQ74HaVj=2aGGwMfazgWp;33j~3#cRnk?yY2f}fZ2e34`tz&ulZM=; z=y`m1?7uI< zRP|?V{UPC&rxNqVbv|Fkkydytj0>jLj@IVeChwtAj-LS6llUQ%k zMZGHsMhKyv6nH~b$Nf#_;IG)h-=6!&cJa^oxqpy#u+gR-1V%MLXu-~d?gp-L*L&tF zQ5|@!Ma|3lhuMyO%yys?5P6qwRuDwUqYAh2a7SIiN_wBtxGV|q*_92xQ)gdkogbL4 zKYIVKsX)!?v;tup%$Bs5$JNlc3Gw?YKgE&yVl0askP8yoc{ftww#hYu*1jv=Q{R1- z1hq-loPH#3Wo1Sgnnx9RtGL%3G`@r>O1|BSVPF?)quEn5Z%Sy<5|8ZBb5oi_N?Me1 zLppxS>PWopCMigUm%9%!_5J50DG*erD=h_*fj-mIbNTn~SiXcQG$eOE;u#V_)wt0? z57hrqXW_n^ad0|YXpMAgb}B7WYa$vh#chHfx1x$TY@L2ic2%igz<*QB`B%OBe|7$! ziNPm-(M12GDD?Lw`v36vuT7tSU!O_qU6rb48f_Md7i&SE>Lp1ku@|P~iK^&1hT_SVhuNlb1hbdYvIu;&PVi5AYH>xp#J-QK$pmO+1@fq z^{{<<%5AB8kdPrPzF$738!mOLyD6PAJt$8*{f($Q6#ModpoEQiUJwzNhv!8M9 zF7>{E(1$h2LiijECJkh*yVgPkkMkq_(&VxZ+8$^s1cSddhJNeb`Vm|FgJXZj!p01q zzYuW&H*tGyrO%WKV{dl_WEYVjkX6F3?B@A-?++tSi07HltK}^V5rkH@8<4>hzjfo> z$TO9DZ`**C8YSh*7jAx!ew*r{y!}H}@N=XLl+;~Bco*pcA9IGs!-rawXGfBIrkJ&B zR^pbmDR5A{Jt~d#EbIEI66H_?{fyzf=O5_aMUI zvhf9{s2Q!%j<%677a9|(#T%NTpp=A-f^<-3?Gn-WPQvF2C8UUO9=(ljwo1>^SAG&U zVH!~#;KoG5Wd>qKBsawD{}vQarHm8kMH$7Hl#;k1oVR#K43esb#3P^Uj*l4dvMtX< zb=?koUxqMnEAL(8RhsMf?H$pyI$& zd*`f)+9ST3BWb<{VX$u{1$_cLIhW1fr9Q(P)&$VA@;0&TRfa>RdN0#&P%1gzf0`{V zGpB~9XLNbn^PGK0rPR+f=Jj@p$a8If=3xb(ems-9CmhiwkQ%ay4?;qB4{b zyIl#g=y~cz>i%o?pqHBFW=<#p@naY;tsM(BqlaRwE4${k3{<`=LHx`E%MWRBR(jg5 zjU42-ev9ZibgpWq3+hKZl=SN1(gzy9oY(JS90liOH`kb=Zm}6VC4nb!hyxovfBD`593cDdwA>4 z%>Gb!FZjiHQDD3`5H|l7Qu15G#|@)I)IS9E%rEx?eGlrH9c>Y`1HEq_-v%IY7SR<8 zsEQjg?p28rbdS9Zep~IlWg|Y&6muc}c9iT?YDJS2;*wMz8;{zL3N$Sw%%%00x}r+j zSY&I+r1KnOd+&C}%ijKJpQ8tL61LfpHxoAD4}}?JT&9|d-6xRIfce(;Y{w(!X{AtW z?f?%FlkR`SeERAp712>Gyx3dOL`i9z{RIy$vgRPCVKbpiHMVayf>Ney{Nog4%IZ9N z*3bI!t3H7S8_7Ehs4ODHJ3fM$ua{0eYTh*&=6;FIveqYMKrSnmkJ0|VXv#B0G-6<~ z58(n+o?iMbyLB> z@f?#XjE0Wz9mC0-sn-|kpo2eDL_Z+PA8EEB$zHERz1}o?%;2oGqw4y+bn&CKJ8RgFjG6AjFC~RB;y?++#Li?9RQ~88X>{cQXaMZ5 zsv|-NqdbkMgs4yLUEZx^@N(Oztit^$7SVcN;^x#B>c#U>Aaft0ZgUN?$|q+k_}J^^kq zC-3^mH_JcFNmU;^k$GE=rGj15W{{yFYHn_htA`_tfkovW50)QyFwa|vA6H%W5Jm|T zX^a506#=>cLB%(h`S7jY_@UnYUZwSkfx;{i<$+v7aGQOxN%&gF?3BZ_;B6W5X9gLa zL8>&paX}IsOFux0%{imvhHTfl7OXkF#7AZ+&lm!AkTP5^{%jlr@ zkx!|DT91a8CGEzTn`o;7>u}&2XLntw;o`nq=(kv{Kct}5?>_e9`}_BZ$Q$Os$~3y1 zC1WO3&A0gno5-^ZsLrnpI@PoPNrR4o$KKh%%HUeBCv>MHROwrI<@Ix+^tI};9pC&i>bn&+r4<#-lBBtUa;XM7iwg-HA22IWih7YGk#j@2 zy+wsW-h3cA#(-&aP&t=4ZUq1vU6QBQ><(1NCtB~tQyS_!cIkE5;WYberTsivMd^?_ zEkU~4Z|X>jTsm{Cb(qA>mAgn7q90s-1Nby{ltE|7xvt(H?bv6!)p!k4S8o8^<8uMX*^5j+XI?js*2SJpk zrB$(B++151p>vkE6;5S!ANSWPG)SW+dW!5O-xfaC2-09Az9J&PNoT*ykF9aRS7rAUyPikeZWR`&C=??13w%S)4Nxg zwXh_g{fG+A)@KmtZva`wgDN8XkC07qpgAu02zlk_34dyr&_sZFfIT~Bzs>Z~XNk0? z`sYk#Z6_hwIa+fCw(MGkkVM7s)BU?1;;(!P6%PbJr3tlkH*mQg%Lr-50MBK&xJJh3 z$WF@8W<|*A+QIk>)lhQ=_rv!Q-1n*g8N;-UR zP`|B|9`t&GcwNwzj#s*|H{|Fc=&)(d0dbix zy(XI)E@W5n-6xRwU_nZ?l&IWmp7v)=JaTVgb#Gw{sDe=S$#8kS-z(N4TCk-jSy<>H zlv$*==qPUk_iLxQqvgRoNyIbN${+GEy{7X^9df?KyhsF5(X5O4*p~XXoFPjSl1ED# zdigu*^EPrFn;tY-aB8v}&xwW%qMy*(@Yx{u^W)tP%N~7pYmFCjS`90&P8C6Dy_HUi z+RWbb+Ysl?BaQ*~qLdcHjP~;4XX{YMl7`?Zoeq41qGOkw_nE)e8KLn=-CGea-GjvY z8{0sRwxp-2DFSgqikr;Cq;VGGszUv3I%DI@YUVY-)E}8`U*r}<_gr&3WvA`zy4~4e z<+kWnMT49w&R_U8^IbV_+$U5^h(Y4C^(f->+ofX~GW8|i zO(K48m$ZilUsq%zr4Vy!^1rLn~8?ot_KFgM4;La)7j zdd@`2Uc_g{PfZ>e>t0@m^y3T_99Yg%BW#mBCUdR)XcRYSzH#~K@#*t+{=M~X1MIrH&tV{tMd++m)1+`WuqVX=0udslM~e7|b*vch*vE7rlH>k61aQRhVMuc@Q@dQ@1^aEF#MSY%gU5v&LjEYC@){m38PuO_(o)BT&#tp zJA}*i9o9g&KY^t8^XV!5z&85x3f0W8r}dVguxCd-Ed8I=|L*2n8FZ8Am&z*T)h^9g zc17gnVGmmsnIrEbEmErl+M`!2ZMdslB3DF@s8x8k-ZYu+fTW*4Rrd`IHDsodp{wYW zVGh$f6>H>~uNnVB?Ad28<$E)!>AO^7EEsm@W-hF@v&j+=+u z^fa=V?jyUtfIRyFj?yNY}51%kg_6THr@d=?m69#!NENdxidhu|1; za;|eO+LC#;SlUHa(CoG~mD3y8ANf<4ZurMol+^FsX3t%tXGXEAd!MNL_nqsG|$4O4p5Q8z6}ec?6Wh+nrp@T}lP7zq3Xf}M~to{KTs)^)&5 zjaKw(#p9e-v3+p=RzM12k>B)}?c@J3=Uul{D@;QSRymW1I~ z#L_E_;4g5hBF1L62G%4DB4z-B_Co_b3w?ttz*8GrYXe;fl0z&sWC}p$EdRP zTBDR2XC=|T&gaI+P?+EI_N{hhJ^!npME4LgO1V%@rDY`C>M8ey3g7O9P2U#G-MDdt z_es|a=ry=XDjYR{(*3Iil4cH73nOKcOc zFa1Je%NMm{j73;kiKk~sdCJVkPQfBYQ-#kYh@YQ6Vfztg@9zMXnc02^ugvl5PXArZ zUJ(m(TM{0gtB(Ue3{U9U>6u7aKEw9@c8r6bk%Z+}$k{LF{X0xv_FtDp@-sfItgfK} z2?Yr=*XMQqZA{)P%KFb^@?P!oSD3tICMc!x40bHP!>(Q>uE4Y2?uN*zc{pZ>yDh=jrP!WyrsRZ zn{fTUzZC*vm81pC!{@Au#J0wnJjl{Qp;a&EAEI}edyZjBfo&T_P^wa1qIy7m?=Vwt zXWs))@uSYVFK?O%8Xrj!R=W;1xOXw6zcg0dDW|n&*^kan!W((aNI3AMA%A1FwN%FN z;cKJm$}`s$RmAk=Ps4lLPo1uZ<{7_`)?t%=R!QUUZ)tyD(|d_vKc|BQ8=}qd@fw+p zHnY7(&0V>S?G|T-w;2%>_NPAy8L??TYO?8!W5Q>2eE;||KOhfjG5N9(Z>q*!l=!)o zT%Dd|!jlK+Q1i;nCsiK&c=EdZ!F#wYa4{U_NKrCtP7n2M(MN*fnDrq>!tNSECa2)p z%3BHfX|;lk_ZXdZDEAz^>y-E}FbnAR`tO@0M{xgul|DbEU*NCVe}li~{I7<;<^QxasEp%Y!=3U#CV?x{y)xmpP$LsjQ1ljY|blj z^JQ_0j+O=_45~7ZO$_vGKi{ze^s(*dgW?cC1bsfFVytg#MDh(7HX9e)=Qo8c%q*-G zEOqsO>pV2DGuAVZ7k%*g9dUC&Ygt-cDJ>FPYv`A2JutSlku|UuvVd4xm>U41^b5lF zFDmY#km7d=?$hX}Sr9OF|e@k2q}p1@W}|Uut?}g$SA33XlZbX=^5#%87Zh~sIM*pgNTTT zbRFpq64D)NJS;o_-TE*7d>Eh`OTe(dtADzxX-lb$2b($?Rz=+PpkN>e zg3!WnQc1OEr{>^J zkTugrbj3)TL$60hgrAI<^j!FyPISg~Y#?;4CVJrHbqZz49KFbW|D4Lax$9be&7xKAKbDj)t$e8?wIa%4s3 zKk7XGxwz%eUIP}#d@H@Ovch{Fm#Tu6GLQf(ps;_a;3=xSGKp>sR;ZCV`H4pjVJy~B_Qd|( z!zSVgjZGg*LYR(T&FG!&&E%mEH_Y-WD;cLIaN_08vyh5s<2_Av&QN4w*Q$pjvZYwn zpJeDc((y<{9;5~mpTD^i+!{HeI&kms#wI-!pQZqS2-UD4Snn6T-1iJU8F}3>R&cnw zQ;Tbi!TreF%zVytRhCw>^YM70i0F(GnH5if+ci-OUE>Ug`*SWw2`I)+BX$BkejM#o zFHXnIGwhc2wpqsAc%A-6LFN|*n6GE#$(qgBr;4A7Kk8xLm3Uu2Tp6f}Ab-7`Tm}2W z9s2^lZ093^7J$w<9dScR#WzCYeMSmzy5F9~=JkeEiUQZ!c>rlMNbajsN7j|@r!eF- zmHg3(d}#{RX#aQKcN_TE_vNZfLcKiHB}20$7du4Uf=om}CqGRb7v2!Dzt;a8mf`G% z>C6dd^=Cj-9pO(PL3(EZq!#hd<^Ar;U9AJz{Ps-mrf((tczDZgrg__PO-snMXQx? zc!0K9JvDN;|EInrHBQMYAgLA9Zev z)#Fx3=F~W>3(-dr^+z zxv}^GVTX#ZdE)Yo|L^ukK5Gi`|IWLT75|xi$;nu?E9Y)4%53eg9ZwM%NC}ZO3m_S1 zTIK3s!}fZ5-*nFZhMDbJzIsQxW3q=bO8H#SPgb+Aw+KQ|t>Vj;0BET{Cu`(JN(YB+ zO{dr;{r!!$la16h?2t)wPzX~!VA{$Yss02>0J&T5rvy*==yH7IwV+ro#KEj)nBl=60{>9Ki>Fy)66iI70b&VSNIJN0*N`jn?sAG>z`ck z|7zj*KdTrP;F|XI;(k+LX+T-SGveP=b;P1_YkwLCVqOhV9lFu_Q=X9DtQ?DJ@43#dfX|1}K zaw0>vzv?_7u_Ma?)aVQR(%$i8oqIVZeI1LPW5oF8(1BS+fagIxXFCp|sHSp+QuRP? z{&rrzd7e)6{Ai@Ns6aO^@8HoYKW%X{ZRBGR9C`fUR5hq{j8HEyu3b@9oT@N0*Mh!a zD{{Vd9{&~oU45^ntTse=D}{bIhNkMHgn4?N={1(q;kkDPei3)QnHfbZKW@k;mXwwk zxd|Cq+^i)DBlCs5C!^r5FaR{E0gEL0mz{XB%*HgGoZXhooM~Q(Dn1);4f~3v4d>Ui0R%^@==^1betDN>Bc#Z36pH-x#?1r}%Z7Xm)CZ)m2a zr{tONqu9nw(DZHCM;@iVYazQ9n|_4gp^SQ3{W6MqT2*>?(t_shB&MbrQ>(kXvOJ%FVCDdrz|#c8oQ4})7q8WWJ;h+Sk#7xy-%F?T~QN?P6;snMG3Bo zDlvK5C|@VY)KOklU$%pk(Ll%PmZ+TA^)m2=3;WyoqkWls$xlx$2Pf|wj}HLP8~jG{j+|716|ZZ%I(2eA z`MD0@w!_N!H0;ar0Dgkb2Ezrem3Fu`WcT<|0`Wz|CZPd9NB4lq{;RtUjloF=I1LMu zg8)enL;VM1@EmU&m|}Fz_Les7p-TE5I7zwWm1w z08c*`9NfLdA`l8pEK*;x8)rfQ|2{?V`E}J#pfyD$Ukz6r*F{O>CNR)O!@=K5g(=T|>iq-UT4{;2!0!vhzm1fwjr<6KbaOMicI8@<1HZ$oo z6O!&#KgCmTlZ4^ER^uj| zv<4w98tIT~p;k*3ue3O2sVSQ5?xspT^*~v9ZB38{^*Eb5F?zjC2XXL%`omE5Dr$bajc#4GivSBe*_LNW;t7+&QQ?JmB5*sMS?gOc7w&{#!%!V1R$Ey03|a@djMcGO$-j9`M54-8M_`K)n0+O9*($Q@;q}5ZF}Wf z)3tOOp8?FI>?3CXMQ&n-0wCzqQ5O+JF-MMkO&Cl~1lmtu2?s18eH=qUMcq5Ff_8Dk0)Yblld?}B zVj^_FpUiPxqdQDvm=_&FSD1a~4Gdq`o?HCtuD@%@QPPszUKlV>kP70mP^M%g_d)6n zeo1WBcP$&t(qz3JZWLK;+9za@Rh+<09i${J&1mhcSG8Q)@up)?WGK_hE4|k-qlb-_y{dW4aAo@Z z+I^Zrg@GZ_Pqnp5O9V*Rmp*}P6ZJy)QR7piO-|tMc<~DpVXmOHqtZ14!r6vMA`9f&aWk6+tctOhBPap(7pLdTxfdUzTu`A%j z^*h#dXi~BQ3|f&Z{1CE&1@(H!p-RX^jUhXYr-zM~4~j z*u&0nJNlbzS{NL{<#Y0f=43mo#KlTC3{9kExXO_Acj}3#KF@htCsEGrm7ZK&_HvEU zx06e|?c;Io1!7b5Gq4XhB_gv7jV{RRK%mh72EgI@q8Wb?Ao5wuVSY__gjG^#WwHSWg`-K?mbNt;s0^L!00`{k z=EYZFvH#faxKdnzkn(@Dw>L+8j#P0O)~oHV?Yd`r$;U$m^bP`b$o*;?5|5gLvq>}F zT%fE|C)YK#|7y1UUhn<OzoS&85c@zO{}g=?%U1M4Epg&{o07$?lSo5<zzhSmF^Cjr8h*k;#U&wU%N?%G+PbV7di+few7^%Ek#1tzJUQD z55UC0dcq4LT+h8Tw!v*vdaq>sr#yT;GO{G1&#;&_Yq?N^=VAh>n)=y7^<8O|DLU`FV)J`x?k=Srdiw%3 z_|q5FM{LbeIIRca!R`|005GryH}nmM>*bdxB(@Jsxpb{#uuJ>q9cw=vHlzASc|YwMnUWFVYb|lQzrldAX8+g z^uhF}rGLB2zbGhbT)?^!?2oLcVtGg98{^Rr&RFj)>ta69O-w%w-#8-yq**5~ zAk#iqEB$2~hb9XBbz&G>=={C3hrWSbp@aJ9p&v5dYauc%58vOs#5?hBldgO<;|tX_ zt2cJ`WtX9*5WoN0Ta?#YG|%(|V{K*vZ{#Ccg5hQ3n8lJy6p>7V&jI^Fz}9|A(1l~S zouVva#8bKIJ=SPYuv~v>ChN`?n5X;Zc?Tum5YbFXb4onRfz^(@^2}Gx(;s<8)S%pM zH0=Slp(+UFmbq|gIi}-FJ2{j5N{>q>Lic%XZTs%BXYn3HT`JtT(TlY0@wr ztsR^yk<5gE3ne`{6`&9m5Z`c*_paGb$RDXKVvzRD;jeC^G$tUx^TsqCn%+3zl_Vq4 z*FVaj?#Q<}N0b?QDwuYX;W9qi0x8F!FGDJ%TGlk=w3#kr>*@;R7pti$E^(fCl|mP} z`pg(DF@IBvt0&xx%9w3UueYh^Rt~PBil0-;Ll6y)3jb{TPN3(^x`lQ4%ws)ce#!~1 zQ^b{3Zq#dL^joD-Vd`nk^iVu+2O*F3j3n?N(rGOMGVUQDBs6O(@;(-fp7Au{K0nLJ z5b3$ViaekMC~aLP5~;24BUk!rRCUB~!W~ieB!)Pydm8j%4!wer7Cq(E8FrZ+t*9l9HhR?pGfXI4)of){X2Evg|>(Zd7-Yga>bDVV*Vep{KRL zI@IyrCDJ#!xo-2^jC-xJAotWM?lkT+VA|lyd6;?l8`tjfu#Redob}&KQ%ax&MBrF# zi$E9bRCOJ7e&7ZfSs6a^VHcbRH2?GFAHw*bEzX4WAN$uajLf%f>ZzBU^YuT3y2FPL zxsNc;+}^dYjc;TGT_UdCsVnz@4dpU4t@%srbWX~H2!lq9^44KeF2$61!lO3igrh>u zC839nJT{bhM%qxGedD<(#@CU7cmcY8qSn+QNN1&TK=P5$y-)boWsZJ+$8AvRQ_J*@ z7XpD1AMV|AYc^%+&bGT1s5`)dhx@7Pz}Wj`?ebaFtD4=u)lBCs`Uk#bNpUz=FHuju z)&gi`!yf{Qvuew6tovBp0matG{2xN1cNVwp;oXD&ZOcqC-(8HdNTO8CcQGCn#(R;K z<)kj5{-&?}K4yeC=*`GU@M9Nw*5gtSjc)h&N|UIAl1{07c6W5l{MqKr(CTySE?h`w zGs@rT<}X;_Q^slO#dGG`#;%h_Xj;_NsBA8QVx8rk`>MC?ZJp;mMTs zP$0zyfqH%n2UPAqw%C80)iK(7SUG^#|Fi>P{0bz5GL;bosora)PdX0(ip!h03Mtk< z)#qC7!!&&^=d^|VY;N^gBxL}59AC*EQn5#YjTHqi8e#wgbE*Xm>hrhT5%xhF#B;KLiV-e{Ayg@5DM z$g5T%7|pI^!`hxy*7m%IG<+!Qhl1bkJL*hS0%?=@rVcW|7AB-HkT9DwrXY-B z64i~fz%s%0QgzlYdP89IBy?Hf@#Zc074B(N-}~N|DME~WhkPV9lYZbWq(Qd9@S(%T zjw9#2>C{Bx+T$YAA3J89+od;O_6M{*DR!=Yf}Fy2JQegT*4y3P4rI=~idx|JNGOTc zO$F?>!)T{n5KZ&JYS9Z8T+Y=sHfH>zU#L2a*Fqx4RpE5X)oErMIO_P$p%xY%9#khC zv{id1BC&ei3l?PZZf{aZg;>mDnFv@^6o{;0>ikIi2ex|$H%smx9Zc1AyT~_i5 zf_aewV4Ic1XE*+Cn`u_>ekC;YjK8*nS8sBd8QjgHJ4^vxzH-abH^J$hyaSEw(^-6X z#_+1%Ozx$q1n^xQ1?=y{`GiN}Hh58PN;KUMl6}GlCQv=-drtZjdzs;~JQOIg->7^#@1KmPM2mf<18*BQQU{pEz^jpD*7pU2|OU1zk}62`~35wmy`F74=Cp> zD+?Ijs_VC*H6@K02P;R{Vf^hk^ZLvKC%nMa_qr&{_$>zhZvQu^WCQyz&}wD&wbW$> z-8+ntAz%TX<@fsY&+k4Ld16mn#$7U0Ut(W=(`TdAjJJP@K>@F($w^Lb4Vs_~gHxs` zaK05L7H)9i6#5a%6;Q2%I^nzfV8F9sX0t)S6U}2iXtso}d;Zxt|Le)+ zZr#+^-inziG~i5Ag;^yvFRDSEBFU(PhsyMl~ z`%WR(!p;Jh4L(P~AJ=!ciRB)EF(z*NLAgOFbXq9ojv6lCL_N z9H}YG#07FA(ZY_vs(MVKFmAn5Qd&$7lw7#(cd;9QbWI`IOTyc&+CV}9y6MZ zW_hQ8=gwJbhj2-Jeu5VCx@u?}Hf>)XXO^Zu+45D^7RkJBF=n|r+D_e0xuInjK!>tv zPVAdbSeH^XNANozrpC@Xd_CF^n?;zcG0%+m?mIVdwVdim*v`2v zY&UB$V+1}91J$7~xknuNAndvd&Sdx9DhSJasSnrh#l(0`+!^m(u^f>UW^eYB3*=Fa zOOV~6MqBR*U?+?o@)LVvIeYDbYExwLP|0_mNifG!^zPjAV3moSqIoNBD4R^G^2*2z%J{?S`Y;yIJ>_wcD=Sq(js z11$H+?8518GZ$;Pv556A#!#DJ9Y_wz{hS^7`v~|Gt%-DJ8LftQm*z z<%FC91ug!&%th?7vJkbi-Kp~Yr#i+2L-Imo-YMsU^cJ@4dB0eQ!drA^Od560beL;V z;dUzSu#JpnRD#eH)?EHdSrh0Q>H{<)L8-0z9bjc%;k%a^>zYpUB8Gx#<_#M{?Inh? zk}8pcbj5g9wMS1)Rl`MOatBapHiGuCc0O^8u^ZUMlWOirr;|T%IV8kQGzEE0h}nHC zBM70v4@>d2SSp6+YMN{CZQG>&CF^q2i^iFy{p(K{n4aHw`vCw}M?Gt5bjj0~M0AbC zvnwu7iLc0fXa^h1q?{Y%o}kr!(3y00i#Y))reKq!y#Fvj6IsdkW(kNJ6B#g{-ipPY zlyiFv1>2d{4II2Kecr88#=V@Fy#;qJCg{z!#EC0UZ|A7&Csp2%i4I!%n*2%#m)GJl zb((_@8u68JeqIwW|9j>$jfwgSwDG39ga<9oXl}@03_M2=XX2(Zg1?G+mYbu&yZd}p{44tDMtT2-MH4rlL1kiz1JvA^`43($REMq zR#H?UH~TkZUoLWt1}=@K2;eQoUZ6cWkm{uP!B|OGlo9T&wi}XuJqe*{StG8+axGPT zT&K%v+#_=8Xf)Jt#_}VRU6O%Y?B@E=U}*^cyfz+_N+k-FP9HL5-td56jAg+ty#~6C z(wHNJO)t7L!LNO0knkRo8&!w!GcUXCA)y>_x{t=XKTn!d6fG7nZ<7CglP6HR>f#*D zt<$H|mTH@JU?wh!IdpVM1@{Vw4N+C&8||+0_NO1j6ukv!(WY8KL#YV8@+M0Ga`%@y-tAUjX=9xI0N zpnWr9P0Q#W)3x9!E}~4i;wgAD3(btdUNVPAfY&$$T%M6H)0>8}?l|{;YrP9UHrOsV z(G{|yNmgrtyzkvDeyt$?d99vt$fZ9mo6l*sY4J$BW zRotUovHfvz!}H~pZRJW5g=(j;{aTgtpVL;RLe%F?TqWDLmzqd5BwZYwn~kN{bU3Ak z4L5}HIjSnJ)X)-=>b1AoS6L$? zM2?F$CcBrj2RV8gCvW{-gSZLVA-KB)JI8vN8-TVWn`4>a*Y){QtzZ&!W{9#@I357Y z;w}zgsg@^W4gB_D!5(=Q3E6|WK~-Sn*wdw!3d7g*Zk}@+Y%}BQbtMIP`sQ%xX}THI z#R99w`9tN?m*0UhZO5yy2>^u0CN%`ZCDQXO>%}KxOF2TDlCsymk;MBB4pX2X*99El zH5S4zl5i($?KG3oSS#n?8^xa6E@n3&drP+hy$W7Sa# z1f=;6MUt~%8j{nMcy=~(W7Q*c2 z*{OR>SuLz&cW<|sj><>;j`PJgXjzcav%C9)=MLS%rL2JUxd=1mSm~H1b7l=V{z34Z z|JAE@Z=ZRCx#XFHmL$la?Ysa`*M3g&>z8@gVC4zSsuzmbW5NZwJ20a5{!n?>ZXE|L zrCUmvW~f7rE@Q4ek&4Tq*IORjl>G z9sT0uGNJS)HQiNPqh*SzRIr~jXPY1~uq?3&%VR}w{%gJa@T4PzPs@kKNn5HUBTR&j z!Pl$3NNt`m%rGS^jsYYVp^wxE;$P9Bi**?T2k6*FGX%Y3r-i)(dL>t zBC{;=R59;d>^L#&Ug!_I@SH(tW>eWrK z!Qg3y@1z!pc(_TNe2#?2YxQ)wkeulmy;(hxd)b3s{N4Aj7naUd`##nQm_!{j>x#p?~t;d}A-=++_5X)Le7K(!rIu#aYTI?2;6hX*&gSx*zIyia&xKOrF z3P*0#dlFG!vk*Jb~8fEP1d7wd?2M#EgAa| zr&2z)j#pvCG74%5lIgLA>)M#O*cle(22Z#3L@k?l zN~NOsaT#ER0p+df(e~pj+YU5(OJtHB%IPP#H~dZdHu0Cu^UPY}pR{!FLHYE(?y+y&8Z*eVHa0s~do zGA@Cr@p3mo)ADgDD;5u8wD0%|1)*ues1Ayn9?D2j?pTh`K%ip>tyPx0iNx26M{SE9cEj?Gle$b;mQCLmp}ucv3l8Dz{dU;kzDf$m+nc8woMk5#9480ppAt+sOS3rls~bZD^j|w% z81tVL&*g;XG})9cr6nax-E16Ecz5(><+s#%;j!=71%W!vq|tMnHnL?uN_-+GTcSUT zTTfcqT=-EMGjN3au_&2(uiHj%ed2ArWx8}h;e70Ea&R>L=Ol?XO1f9&c%W16BF~3# zFsBxGaEHsNzWznXyKixbHijc+hk&M#W%^lyeuH(O*C_u`VFk!Y09{=7GsQlAH=?)l zjXwF@&(JRaoKLB;;!D`=vbb*S-gm?&TMiMDug&s?Sah+mw>l3ihZ)*o$6$}rM;e>% z)u|5yAsNz)((`#L7@r7_e0bLn@)i>{eLHCl(G$TW{wq}kOxR_8D_-diuxgh5l!*~V zg~Zwi*a2CtVMGf06OMViOc~J%bi|s^9$p*^ty3f@U~J>UV{;2<^ek|3o=gvZZ{z>4 z{N4Wj+eN!pezRh9MuY}UV!Fx+=1S?sky53uo1mTeE@8Y?NA4AP#(^08T2cXs4s?c3 z+D?IV-F8FE&nO~q6v~VHaAFM%z|G`UKT4vFIUCrc8be}tDHY8eR$^N>xT#5EY$h>6 z8bx!@!LR*~)ch^d-6p9tGSNi=nIpC7tKGVaD5^zmK$uJmfM^w!gGN(I4b9cnNBsR< zhpV%-c&m07_}527+B52(b|DHQFWGe&_>DcLA7zN=`8|C>gPoaON7gl1y!D zsi=VY<=DP{Nsk9Hc>8}xPA9KJuinq60<585q@89xaXC^sQTt3c>%+G!TnV+k#4)rJ z3|$563;fVZ099K&zC6CB+a=otKp3nJ?7sx4aELA~T+nIh-}saY9YdO&7CpmBQdjNP zNcIjd-kaqE()k#95HP)dE7c3^fuOg4Bjkh?sOvEhRiA-g)D3#ie%XJ(=h30H6gB$-lZT)rb?9wZT6@&n&el)y|~t3xU>OVWQS91OX3>9(Uz0>aS6qQkPK+`x)`~ z)?Zg%K~^p5Y1l&7uaCmci%|v-h`Q1(GIWPCwW!w8fdK^ z(>gk#v?s^9$v#aHbdh0**uz?Iej$B2JXv^d%_vXwbW*_G)tZAtd0qC&*Ye&jBxEaR z!pRtHuCZ3rZ_@eIx$kPqzQ)Q(PS2rh2DAt*X{jiACjcVHKWAM@i@wQ|d6b~*X~(!? zE|G3*YUHxjcvUhjX z>L+M1rLfQTwsS0Kp;Sdur7EwKddzxxY+cr4J>=tCyNJ-RMG6F`y(~KwOCe{Ag$l_S1`c!jzQ^z4yWXjcS)Zh0XwQ7J zP_(o!hD#YmDL+?5@V4^T*KqaETbJyY-HuG%VA%&iuOent*D&TMo$r2V>CW6lIeUNDtSl!^ zU4jRcdmaR zsg|WMguxJndPv?W_U)S@EH@CDUJ`JOIMM7-hB>*#!<^5r!cucRwVW%Kb%i7+Dw}wJ z^f7VZq1o=dF1b_bDN*1>Bu~x*6h^Cb@yBi-Wz~+qcscV$>^X%kt294!3C3QxlJ#~? z#gNu2bc@zG!TFxAo*FY}dVt>c8Z`RGseIFrHQ_v9pGkGD6eb(_I_kN}lQL!>E`A`mvm6V-lbt}*Bn}xO4RB?$;>^c=n)_ytSuZrk$DM6ROIKj@;rwHy+ z=^Rc;KdIFr;wL2HW^S>~$P9ALw!ooPgtJwBEu&IMKjxrvAR@a{4Hai)NPVO=STx4V zQCOuA`B9?swJl>^)XzBI$P=$E5E~g>w}gwHE8&Ye%E=QM%ZDA#QA*85-1kNH4Qdg` zLOcZUgwKKhm7uS}f`zv1%^I$$5ViSvHi{TLZp1XA;WR*>tP(ezIgcILyiA_h;o?M= zQ#yMy`+yn$!#u&N>3!@?ACIuKpz@4u+5%|@R4rXi-I-m01n9#&w!dn#gn>xg{`eC> z7g+z#Dx`Og5@a4 z6Apegk_+Pq)jQQy+B)RhydQW!_q*3W5Zny^nF%iydKc>{h-J-_#BAN&hjxw3`Fgcy z`62)kBw6)VbZM891ar8g8v#FQ^kItb`U44M`S`Ei=WmL~A6tS3v3_uu^09P7*su$unz9!L@Xi&yQCg!*2_j(#! zLI)JJGS|Kn+3UJ4+MOH&YqL7n;!$2dQz2*eX_a~%`SV;7JBj!EH59poYNplo$GkFO zYx?AH&1$|2bA2PU3Ij8c`}iki%FK){L=~7(!xL%b_|zzop0-X?BCWNbAU#2NCg*V>NR6#lLlJGa4OKwoZa1`0TvL?MWlV#x8(b>KWlK8PJubrF7zo6Y zVjb!Rsj3bgu+#M=tq>6bxs37bUvvcA74sj-s(!x}ErZh18b!Vcqzar^vBlGr7eTJg zU36E4E#rF5i|)P1#qb=iyIFNq{y_t$&$dG%hIi=)TqKo}cIZn>9sqgIoCyBU@9`eV zqb4{bXEWLx9j((GE={Dm0Pjoh8JS`nC)u2{`cIG-R!~rOP~L+uX~bfK&8ahdOHrF; z*>Cu#TSnElT1hWg5WTypTk?u8FZvhMpw!Gv!Nx+G6T9rLYQ8cggtklT2ALee=I6HHit|*#FJ@KuJb4GV#g0fqWC=&x~g$$PeXQE7L|Auw@5AueiQsP&9xtsnb|XP`TW()c>dg)T>MdH zQ-o+=!kXug6KN%Gb7gs_MeO60gI)IsFd0g{x&^SF4KJw`-kX2ksE{MVS(?*tbs(c@ z6#0=f>?RCjtY!nLI1Nz5dQtuxF&y`TfHVQyO-_CD1fI8y@Sa1HZ)xMMJ`nbW;=zv{Rl|efOdE#{$8*}KAf_=&Awsct!@zyMdZ0! zDAun=>%;5w#v|l}6kFX}y`=`5*DEFTBww|#E+5Bq;PPfq=8O%&9xQYM>%;453 zYixJgz|F*86Fw+>MQ9jDk)FR9EfewTaG;GsoMFHn#G8Pa?whqWh2LCa3S0G;!^6sq z$`Xn{zmcpK*iJ7 zltxcz1ALW~F!j206NY^43TERJ^iz5cjtC2|#~h=Aw>J;xLNd}C8*07;3^pckQ&7@a z5FiT17%)k=mgc4KVJIvo2pT;n6qhqbqQctE@oKIbROk8%3+LjvjvSSx=~RiSgRHel z5(X)yMM&KbldNLIKKPdO`hbH-y5$`Cn_<~VyNEL2HT1z!;qo!9{H*n*xJ?4H;`njc zqtiiC3wK}bL;)_1hQO1+Cv_^y{&<4lHiSfV)@9VyIWe)3FkgkNgN*Vl@td;!PLi|R zxf6D)CH;Dai9A`fuq9Pm%3#-l9FHi19d<&K9gav86pBGrhPf7M?v7^;T4GAFxeK(j z@(Mz6$`=z`G-(9QOX3tSRT(-SAW}xR7VviZY{7M6Gu+5Eg~_GD1spEkJZw>YrKzol zb8nu$Fy)%QKYV<-E_dA8QNRc+y_eNIXNf;H@g@$E*$I0Co;X6*sg>R02^um6zVdB}l&i;}_phop00qRw0Bd)?5>6k7>6;mN%V6!ebl_C>6Vx8#XB*a_ zE6SXXmurpPZb{t*Pdyzhj{3GqP7B-NdhK#CYO*(XR%TauGrGCQ$1Pe!LuGLI0O2#* zJ&z>yXFaxsE%Pp(kmZKb+CQ9gj+@+dpnroAwNB*vFZNnD%@vO0J9Zum{7pG9`XjNBx@8`8~Gd7*kGT za{}i;#mlSoy63&?K0?FTFbn*_uwvqE+KCx+(~uv17d!Xq%nV0qM{eyk~v zFfA7Eu(^Q4g7?o4UL-GTd&F1PL}vOJqwc?I3|kQ>gmeQu8O9%8`m=|y;Q%0K^mwZK zl}^+r+NHXTz3BtZIg9a*+Fnh@z_@Is$>WVG$cwG7>$d*OYy{X#aRLv|kR$i#2K%H= zE2tV%R0cj!L?#!9q4OlR3#5A(l|Ia2DP3U&=srGlo~90^7} z=Q?_M6ke%T^Flt?Gt+1ySV8o)#!5*~QtiV+bF?>c z=q*f1`tH{ZO;aY+P%8HHjFGd5*2$vn3TBR_ii2j{le)v0ca^21m}>^n3h9uq$R3lg zQ(EIaM<&j!a*RY1^L60r~)9Bd$yMX(E{Go2LA*8yq*KWM8WL0Hm5H>>H_i5PES5XgeiVe z{dnI?Lc-QAX>kQR07&0j%YPB=7zGWq$!?KTmFZh!q3bIm7b4|z&M3L9quhNCI(2-5 zL=tdZ7z~EUolxML{8uu|6s{Y7YQgmxw7oZ=$_E<_JdZzfJ=+t4$o^R{* z2VG0HSth|jmL(H=gq2dQlfJ(sZ~Vg>X9md8e@@v%2*?#|ey5PncFUdU4 z3eSy0s+CLOP2Zl=p9U6ZcbJcHu93PYG>CIC1>Z$~W!+2YDF%XBV3Cm{utI+? z*LBsJswfA;Oxec=N0}sz&$L5~k=NGu(Wg)MW%yfN*cBzU0;R=yq^HTcnB*u+zI`X! z99Ps&HD+PP)>75i@3}!l_Sdjv$*O;ED31Mj2Wf4{^?o>JB#MowzfOpW#}w_D-0KAP z1nMAF_0TpoHN5-8X%i6Qo=vzFPAGpI(o4yBvWvth&l0-th}-GmPD?Y7x{?Y??>n=) zMN(2*u9F^}hZkF^>dH@)I$rEXxsh7nnn&^$+gq$K@=3<9*M)xXtwy3{!jq6?CSr@e zbswu2r=l(9;GL7U*8A!NgbZf{^qb)!G;KYkPG}dqk|?KRul^CwL>cP()khl0K>eBx zt0It-;Pjv!d#mgZcT?Vww5*npz#z}pIx}g2cbWO0^b28HJlWE+h?tR)A~xCu%=n&b zdii)X#kQy2XcmOvRuvG!@x4OulQ|uWiq70wRF51)lPohEAs|*|LdDMB8l^w|rF^gS zmhyqMH)I)t4rSewCYOHrHj3X`0y%GZS@6TSGcV&{%zT33_#S@W&^PVRl&gKht)_xa z81nNc#U|0>X7^oK1I<(rRuKsj36oUDZ?cjEl8>8i4KhB}O`g{D&=k#}UKNI_T~2}@ z8Tg>NIh0?#9nK|Lk!ZZka*j;Kp?O<-1Tv&;eKe$?xT`r^qHCoQ_ogCfQai5hgLa2= zqjwvMyTR3!%8$Niv8ax%gIctrTvFeWpn;kZ#|8n;tTihGxPpszjU}rl{AwGHgzQKo zojG}q1;_8PgGoAxi7O7Me6%bd^GZZLLhz9bjd<7vefT0*S8t-KX3X2Ois8NC#d{s7 zC;n)`hgtkjdU^2@TVq>*b+lF1l(2C+@;cQB|Ycu)-91z7lAelM^@Ga%(^@7)>A8$b+VwdSYn9rRUcT^tBY104B=+CIE~cM z6a`y945ETJgvrx&VxjC!J~s-@)?J`gymjH`dGXo>r90sKuo9UT?z zt$qsc)!A}=L1xaTnmc%wBZ-_d`MMV!D5T=<#Lm*0UC4ZAJ+e7MIduhPyAm$J>HIn3 zPd)nq+Krze!I*4uEdRL^lmA4V)R^I2oYeP&yErL8fQ&fYDPn{Q{}ho_-15%}#CoyF zOJ+!Hj)1A>Lg@XQvlZcA@6$}iRX!Oa)9%DJ`@uqTIi6e3rvNb}LD#c4g!G(;r-wvF zLvR9|*vU7q<3I;^09*J_WnLCLaBCLq-15rWc+-^0N2Yq%^DhSkKTMh?b4I05Hdj`7 zN#=c=$T9f*z;%(NL+!i6Jb=$uHk>~lmWtgq(LL4SD-Y#vPs=ky7LM7??p@@`k;Mf7mO+A1M~ z8OV=k*Y`XnW?CiJL0X~{%y*>?ds&%G#lqPQcc{En^-Y=3>-##{GXNo#3K?uV4YB4h z2mvTbnjo)g$`exQocDi%&_h_TRLyH?*;B##hh}($2j>o*M~}@q*amN^XtW7vF@rip zx)AUXqmZqx61J_2#}3E97Tzo}egw$K_YI~vmUIQpqLu~hM@vl0>r5*f8-xda+i2va zHZYJ|sw}fEyJt?YIAfP5CUc-fF8~-ehsxtCN z`;eRAPC&zMWwPLX$E%n6IJx8}=mn|pyuBM`((Q}lDfW3vUb)clYszv0j|QLVCnewC zU?}@|V8S?@_jUbo#s;1!IAC9aqQn|$xL0pI(~nEhH%^mGrpx7M{3iPH-)=~)Di;tW zer7br0E*6}lZi^TiBQ+DKata{)`AW;7kjucURQ_+@;5kNl^erSzXxeJ1#4F2A7?S2 z<{3ZbRR7-A?b-3(DO31FL|kn=Hx~ZYt#}a}7>UXt<7T`m2m2m%CKn{z;9L`>a0ZAebPKp@ zY}Sw8a#R$DA{-h1dD#Cgk8*^5`1a57Hx{zzktbp*=OpRLK;&Mn+kY@=ey!vnuQ(rp zmH>6toD@*8h5XeLc?D6M<$WD;~K4| ztX8V1+u`k+`k9y~h|y5W7f5wU)|Tjt)=og2J|7zr#^I>ty}Ro766N8cuo#vX?iP5A z`!sZPlI?-gfbbhu=^Z*$f*J6Yoj_7AyI5qMf}Qf00Hq=XrI#Xmbf~EGU{t#YNwjFf z(N&TT!jJL?w%1CRSOlLNxs0OVoHo-1q7m&h-GskmqmB zO&s59J}Zdg4Ql%VDeN_TFj;I^qw4E;Z*2)7KAPvM!vtNbyUIqUAmr^MtEt#+$mHBE zIDRNPCKtEBGeFr)9hNrXcwx0ybD?BRh5oRu=T=o9>k$|X5Q}_V7Qy$iw?%qj%sA9+ z<-`f5H*_NWT&a64Rk!7KeEA-ms5^+!v6m6z)HHb(_3DdsIVyQ{7b~l~@AgR%Q)r#Z zv81@Tsa#=^`&>y9W3FeVgvqnK3oNuB3QL#aTClX(A}%Ah#M6>%V`rZ39E%CGsh1*@ zii7NSjk#8qI|vRN$nN<$+c@>1bGudLo}7c%bzDqHZiMeiM{qm>Gd9mSk@k1h59i&+ z;uKzb783iW-quuEC~98rejoHtI-1sOT5a_rm#?KRCP4b~_SB$2^CJq9G`06D)_Nof zv?5jj=2Ha+JC3uj`|NS5r10~aMMn1YWW%h|VMT_O)%Qi8eD$$6f6Sl>ghPKEoRH6B z+7YTyL$o#ls0WUCKdj_#U#i7mDG_}QqRAoucL^`(`8s&h#@M^+pTw_P82QlDKo%&Y z7|b87BRZfZ5uzpGkCvFJ{*VuJBItdaV=;*z5yM2$cmxCdyB|Xs*UN<24D#9#`yLqoK#|;jBg=&CK86UBT9FdrukH!Fkv;ScKys5n1Q` zHYV%MVuXe?mI*qyVJ#scF&%_Yw4th|<*6l|wbLV$ge_MCmgFvu(AUD{(^ZPRdqcEv zoKPpTJe@84>}!{r3K8t;^Tk6INj!T&-N9I@Z_!DPtyl=1@01Q~0;(`D9`m;Az^rYC zvQ0AP=|5Sp)+ojjhzvjHxm469c}^bs4j<20cmdAI?*-HoBvDio_}2)@??}m?_jD&& zxupAg?=4i7z7C$LT@78AL>C76?ChVR1FoJWj0QkM_xfd%>u<4MstsA;UyiNF8r?OS zT%OP#xKgqEJhgUVH*C`}hF_yB0lYcVA_0#MMGLNKXRr<9;9x%*B{YtExbC#D{(Z59 zr<)tZ>U&NlG|DH-;E?-d6~A^gQ>vsVdx}pZOu~I}?3mX4W|g}P4J)$t7;jrvXFmU4 zO-N;abGs8ggO%V&_{Wv)b~LBeGa`>EY2k#b4?RPyY@4#073QZfaO`Cvdy9oX8@|^9 zEwX^*GFa*uAZ*<+(e8Ed^z^jI+stDyZVi%beQkkY0N-u z0s#ZWBPG&kuM@raZIoD%-uhZG1%Vs)~svCied26G54JCGglWK{G2#D7su+!u19!O zVo{>s4eq%FQiOh5Tz}whu%56eNa~s^GR1*`qP+nhN(JbAMh7qr${XyMw4M5nHU2H|TnI96$YN z1K1>B7v2K)oHa+xGR8wMmXY`Od{jf}x?myjN-osmO*^rtO65gf+;5360QGtQ{@R$K zc~8v)j9C3W|8Bg~LD9_OEsHXyf`eXHgd=y3-^26&Ji+fiKaZ3oXz0eL=jo4mgG%D51^qR) z^jFOdJ27oAe-J_s#u?Qfpd`cL?4kX3A_&9|NjYz6U+K2MZ~ND~Pm>$2i`$(A?35>j zc4mZjg?2H>-cMKbAGr+)#jU8*AY0#c;*&cyF0oW0UwfK<<8)MK_QDG*V)4N`b>3+) zW)fNm@o}XR(J}BupMCDqqW@o!_m=Tn8eJ~67DPZ2d(}+!CYGqXs8YZxHlV75)-fyt zK(`Of;D3Poe_pa!X)^s}+VLf_Vt)aRVHgrAOM z>dp+>F<>eX4C3&2sNFAtii>3QLOBzkZIyLDSQJUW{~!8Gv78OC5+h&RJrfqcZlZ93aE=iNf=}ucS=(`=*X(gxO(yj% zHI*sOWSk74#D{{4BkwYDe+*8h6W2K9SmN&IAsE}ZSMZzrX-PzC+Il^1X}E7j9Ub*A zsQ$JS{3g8^seeosngKaOpRaVrv_GHMha;oXTHAH^FC?k_$2miQ90dJ&qdUokDJARU zCJ!fKtw4cdq-;BfQua$K#SNaTz;$lOC4av9?lX2`$+x+MnXj>2`zD*D&W?Dq$d+Rn z5wMD1q7DCg_1&@Qw@pmAZZ?bB+8bH-E|>WWoW9@ZGEb7p6UvQYYHdH!o@8t^{#K zNmWgw%wnqZ$W(AC{qVRITYFpAD)Z9NsaG(r1C4LL;s{-;VjKP2%q_pRla@28;eMjC z=qEe*EJ75mb2O+vBrs_o>iHn!8l$CE=~Tn~)gJmLdq0;{dmi@EX`|Icb4(M>-<)x$(gt2kE zp7u>c0eF2;;FUj~l2X8HZ}f=*;PLzt{C~t#53? zSw6nAMX0C&>O$w?`VbW*X-#0J)BY2|)$ghVP2QfFKO84vStW?-YG?;U63WY^iK)kl z7J{Ir93h#Pg_xHSWbm&f%U{n)|BYaAu=%fiZBSy|bCzR4W87;CcRwseUF4T{t8vF) z(>Z3&JA{9zNw?mP{7RjOJQRNGPJMGsKh}E9u-Lg5F#7r^^Cu`J@Fxh0!VhqGt!H>H zylMy&IadDTD4bX5Vk7lzBn|mrUhG98&i30~Y5s995EN_px8G&{{w>14b5nW6Ss0E+ zef+cAORRlf=3kzmG;YvAoyii*dAenkL?Py_41d+OO}&2M-4g`=(k_~#jNe;x(N7|2 zclRG#erZ$qZ}-S(`|qASA?je6o$0;5MNEs8nZJi|U+H4hb6D&rsM(L$QU7REXg^)t zXH^Rt)0}EXRGehQO))faKgnc0|BS;ZejQ-a6u4`X+wZ@@L7lzpt6y7~`FlIcbpAhc z@}K2_&~GiE6M9_V(n-VyM*0Z~R9zQMy#W6KNNWBDNPhYSkOXweU*W^M{ohtBU_Li9 zMpT?jm4iGjYp8FV%>J?Zux;eHjs67v-uIrr^gTcoiIEY%F8N14|9$~TFvu*KTuO@Hvss4Yd!r6Tm4uHReKiX zLg$Jh>XV_r@;3dg^S>OZ2Rk0P|MCll{}ZRl#uXn6Dg67DQSQN%KpbR`+a@|Ke)W>p?@*F!~g$vI{Nyr0Zd2w0anE;KS7w-29l@H zIMJUVIe-obfwF_nA5y3=SHrTuq$x97Qf3P8-3t_?`2RvLgXJp8XG>Vs$y0jGhV z+v36{cBR7gz3^+`x<4P%=K=g#|NCx~nYy&@dmYc|sx3ZOxq_p3(mht+*EjC8Eho66 zJ&c}p_yiqtyd4NjJsm~4twiW?C0UvZp!i|!pD^rKnVHY{iF|#iA~bd28<#cr>N-#H z@LyY)^Tm=4tTc4}TkLgT&keOvp&uwh zKQjO6s02U?09Mx}Jy)(%QH1_-yal}7|CzhUdj_On9GXloL2#X6A)1m? zBr@GUgxX8dB^T!&bEKkLNGfU5hz}>55eUVXS=x7&U&2UuA{E>D8BJr>wV) znRaC1gpSiS#NU88s=p47B3Jy=+bgjIIX&0)#<0`9xfGgHGR&b3ke)5*4G-mIwC)3t z{ZG)3QhtJ;pjXv^s^p~zbQj5APdEY9j+udRan#mwOmCig{($5hxbDw~>VO&fzx7TA zt`1AX0deXFwB!7Y**Ec}lToNBv>Foa7ch4g@oW9lHe}EB?PA^+%-TT3GM_df@|Tf!QGw0-QBIvWcBXdE8Tnd zTI=q8_qlhR!x)UB2E}B~f6iaN?|;AdxuTxm#y{M47WkT>I<>`eUUsrc4CQKXC*{H` z|2fLPT_@wUyUO)b?%(q?F`smG=)+GjVQPDYkduMwu9ipF3rytI6&y2KvoN+M8kP@i zP!Y^W9(6@~>QgQohCFZl9vWUv>V%6V`%~}!xv!@*sEnx$nd;AWWvyFPQNxc4lL_Nd zR<_5pb3bk)6?RO$w2IyM-#lLahaIN(%4%=3Da?^mQ<}JOQf@f5Qy024(VD+v#%mvM zX%nE_Ope7zzSLIVILWk~!d(=cClHwv^5;P}SCGV&XKx9HG4@zw zuPlQ7dC@lwCl0He^Ek}u3=)z>ytT;B3!8{INn)|Bv=`D2P8j(xT$Zm|b%r1>){n2+ zDXA=- ziZDq>vKOH=X`s#E7bA&BkGF!wkV060oR0A%dfQ5Fp5G~V;INVe`=C`$Akmat6Pkyg}@+_&z;?;Hpd|8QfU@*FDc4$)v&AH<3tu}R}%CLK&nHa8apBlJsigh`O zEW9D(S}!)|FVy(+v>@2hkiK)k$!y9(=nOB6ktQEzZDVTVsive&fhg>e$1r@r?-dk3WyFCKgr$)F&# zQXfOv#oD51bNdf|O%ss6C^GJU?+A9|nmJcn2fyJ&$!qjMVE8=T{wE6^cn-??q z-o^fw+4}wUo-|GmdZ@s5P@2pry`=~jW#}Ul)JsFpXxH$x zzUVZTX8v6Q|M#Q(nlA(1=WKAunF11^$c18rrpSOq_SUBybnHqoO7HOzV9CrYJOF1i zmg2a#ChQ{@uGPgQmja>O-KX%npQ9vqSBqJ;bZ~2Qw3C(O zX-u7wk)a_~F)Iu8SE?{^s*&vf=weKwI4%qmp?Z4ckq{_R3ywKssnUD&`0zHk+V9WF zZ_mrateo|-s=64Pj1BCPsAyWfNPLmkoz4MScZ|kIs%Vje!qX5YawW=vwsMPKchV9G z7D4Sjo?GQAn3xICi4mt_8WPVad+Y;;DHkqVoYEG-1b7&+a?b}W`1 z-ZecjTk^GHN;TjObCqjP+tvNCaK|^Y!A*flGiUh?%JyUB3W zj3tlSNc10`=;07ZX}k*Xs#XaSe7KP7isc+;Vtj^el zDOCcA$y0el4|$f&<86)1LIf+lcn-BZ0*=Mm5_kxcM{T7kN|N}tRUbdLlo@IMdT0g9 z_~@8<{0j&@;Y~A-NM**1o3}!t9&yLA#S{GP(Zbp601=8d$|O@;y!8?_oMBHRVzL0*oXQ20(!vg%X}1E;ug0p@uX*>-kg9_D&Xk& zHZ7nX=mv+(kc!m^TEN#wyKETtrlks-R`A{h1HsGdRUf{E0*Yv<(X_oj-|ZuxLAKFh z3(Dc6iuMO94fwkZkw5gQN3IEwLbW{?7$06-$`=pYLbZ+%n~pP&>&OKN_$R=qatq$XmdP(5 zdTzJe%VP4M!J&UZJeJX>j1S!?k&U`d1pmaj75o{2s(~y2w?kq<1h(3Kh8q5i;sa*e z6SiMKk*KAK_W$raab1W!I=v_Rs#$<5efATT^XK;X;Kv^*xGc17H2n=I&-@EmVPv5& zS!?3K_mkqCZjYZ@E#0e}oqwX;L=D~=TH`6{hxb3cy;vQ~+mrhPdiJN5 zR~xVk6x1xb)Q+@`=D6&9BDL3)Ndc6mY~~#CJW}V%ulUEO{eN%&f6wjzueT%0D}TX* ze`gGXKg6fRuC($vI^$$6l<4fuejV}-lsI0L=AXS1oYVLC3q+#XfDYENUw!w@;r0z& z^!&+`-p`*dpX)Ljx}h3Jw76yU+^K>N2b1<34P_aGfiOvfFbQt#oPU99JXte&?Y`S?cyRp>`{956Mv(tJy!;s;l%EGN<`T2g6N zsru3phNrbdD{9+@S_AF1_fy7SkNr9(8j$}Fj_dz>pC?iii3Hk==V4-23F2(w&|+#= z!3X5Oj}ml0W2u3jkM^}yCQVHOBW-}(=5vE$h6GEj^szll{Z9~8@;^|r%Zzgc3RTV% zXDp6Q1>5TuiGL(|4G(l zQSgyETG#pZVCSH)MouNoWcQ($$O%{P$W_iz&YvX;E@y_z5{!x5etv-_)KhfPnEMTs zEsrIiWr2x8&_cLCuzPOnN6IUxjH#QG3A5g%{1Om?pe)nV(6qEl6BNFeVtya@R1-cL z1%&r2-8>qx*u9ys$lVH-FB{iJf-K=G-^uZShrHl2dn7td@zJ!|owQt9V57y{yahfq z)j^N?jyl77>kWti%3wbiU=$xu6em0oE)})mP+e79Q#npuQAt;m?S*IQmksJz<0+)! z{*EPZma+gBl8KjYDA#n0)ol{{__$A|bUl_S57H=U z4dcNdvUV02(@kW zJ^U2^$us#c!`pz)w#MysyA}W6BFdvhB7Q24LQ??nMofw7($d8_>eDee)}-1CQKu{K zy_oHGC)`z4fA{$-yT@autlX~WkrukFZFuomRlJ$KmOY1dt9jgupbyotmDHr1pj32X zUNJ5%u1u);_D)lrTFN&{+z$bmSV_5w7-xokOyY&#VrVR4@+P9ke zdEcfqwZ2vPeztK~2;_YitX$^nyx_rfKG{{+bSE3KtK2dihF`5Sq#eHJ z{W3Y_OeTury{>#(?EI8ySY8;A3@VfR^9cdd-f?N_?8K?VjO*q-gx!=1f8UuydboM} zugF^6jWXw{nP-DLY}c;|*uHtYD5R#CisaT4igb9R7d(TX(bHXr$iN=d~(5pl<~QP1|zZ$!y-Z+4lZSDX`o z%Eec%yKqmIB1zjbj5sD==V3A~o=)+Tz;}%gXI=MNPJ^ z7T{N2;;+NL$e?g=5pHWbcpvRP(lX7^*~e=xv+ltDxGpx~V<|%7+D6zWQ`ymrNuOL& zjgq`KGJSpW*~BJS&7b%jH|9M?!e=V1?)QsjR_e9^oqlTV?*KQTk9U=^pjqQwzVD)D z4D^{FpYV}j_YYSxL9ikxPx^~;2@J$2hm}cqNW0ycDn@1CwkLx>p5mikt78X$v)Nvc z5AQSem)x7*JN>je=*nyLOa|x8ow2t96U0=HJp+sod+bT`?RK+je2WU#cnd+W?y|J(Y|RVrlM0sUQ_2m7#a;sM$M-bIMoS{t0CSWrGpUlsgL6~yL zO;1RLBP6QB-g2YUw{Tp3RPy$emY+$`Ax+SWbh;#PWx49h?!o_T5<7XuS_l56ojCvRARZ9CN|3 z@)2ouoNc@Jk=FGO?%%-+fn#4&`|mghMWzX5c$lcI7+cJUvz%m}T=`Oy>?g(rJBR%f z@NN32nCx-W9G0QH`N~J_A3|CuCYuVAe`otS90g($k+`=srIe2W_978f{%AI#VNi0t> zISH2N%KZW%?_K?mUGC{i`n z4&XNCqby)&P)C9_ng37@`^IM>Lrh_G66+^7dgG&BGmmL6z+!OtpMQyViu>GeFMC~x5fKQF*+l#ILFy+1i)8oh9%;cJ2;PuBRD z>!AoLh4(L@F_ICgbBlh=bU%P9Y;c`%op4g&K3m*Gv`|@fct6}MOe7C+;q?Z)I(;`nplp$K&z>NwYZpF%Na4=9-@|nSMt1CSG;Izex>>tq?mH*w=4}UG$?-YyT zx6A$cHICsct_4+Y77=oHwVplUj7%WKq2ubh^`0w)z3uUMxOh$8{29NyksC@3g>Q-_G6uXEIHRKOFM58VU zoP85=WETQ?PR5iDY%BB(V10(JqudREBg(f^cqeU+`I3*W`r25*S=pg-xJpG-tD`d2 zP`iMp6vtIlygh&YmqU#bxwu!rEcxSQBzFVB+(HQGsjre3e-`9%qc(BTURl%$kixYT1y_JQe>99~4{ zV||5Om(FU-4082naV8WTW(?a$mt1g$Br(Qhtt=w+yLj)>M`e955RMkoZX(+jOfWo$ z1Vv-l1I!n^*yHaI{1UAjCo6-KJA~%&!qvAyXrizfytZ!(+V}z4j5^(0KXjGptJ0^V z6@W=zC$S7sEpSW~83IhT|FO>g-%9uXWotQFz(MXqiL+b0IT^2{-FtnCT#5THNqe0= zu$L}iC9&oSdTEGnY+bw%F0>~sh~~m9z2P~~t^dG(X`z?}5qEnYZXf%$@J%M0z7SOk zef~JCzJ17+;P`%t%iGa(KR02y2TNac)oNe;xOtsWQt@QNH#}wi;&pG8L8@}26ME78 zR!$bclw)-L-7z_~NtJuKZtApDmy1jI!#h;uS=;JIrqP)|!J62^vJ?EWQ^lzUWU9lt z_Brd3RT%xg@N~H!-(^g`Z6LW=${qP37@w4z|x}>Rf%i754F+|3r zd!8>T*Sp-^_=D3__c1-w&-?~?wLXk%3Xyod(`vE&fju77JTe$yay0M@NXj}qye6TO zM&z^7K7RCqDmz*si9JHET)9~R40QA(ivc&VqE*d1z&)qkTc^^R_ zbfn2bj8VV>?SW$%J_n$o2)<5qm@L0J?70ON)VavJLoe*j>q7z-)CqevxnS zd$w{J&)vjkwCc>A!UeRh_hk2?DZ2=knDg6tPcDXEN4&4pyQuH3iX;`c5j^0DrA_ui z1|kFGN}aF!n&NZtR})=sB>MoR;TX`5bg%88T#&)H1DP5Cb@p_rC8gt)77d)M#kb8iE<#G zq?*^xs(AHh=?eVvU_#Y&FyQ))Njq!FG@y2IxAr(a(Bxi@ZMnlhI(32yQs4O^|K{t@ z-*0d8-_9@sz5kxcj}JBRO>7yy{+~!!&z)g;I+4T89TKMfSJ!t@fKTNI#4jtzC^(p1 za=m6-NWs(h@}te7rA;+___7&k1Hv>Dt4S;*_`O#-4&qi+t5Nr5_%g?|w7v8=7%j zc=)G9@$kqWT=>U4Z}{9jLfgK1RCg_(!+^h1=_lv-E#$)!GvTo;e}RT3g!D;+pc!1! z%=%?N07@vxEF-Oz{E?!lq^zJcXtH&N7-D=Tmh|dN?HP)vCg;E4(vK?-sQv$3tEnvL z|8&%7z#zCu<%Nc+aI}6nlM?#jFm}8Pk%`tghM#_6>HwcYa*cVKn(A%vnm+kedGe`s z`_Lz35g{MOAThF-+<^r~wzG(}XNEU}*iJ1RB+!eaUhbslC&)9QX%ogLbVlhKX{ALt zuW6*h!%UZP70fRR9_HxjLf#jlap7Q7Mq8$2<-Gfx>FC2yBcEZM-nk=MBVuLw_1h5P zTw+tARIoZXZo+mpQAC)PtcVrH;)Cz|MklahE4S2jaj>drM%M$263(k5vL=e~UM@oJ zyqTeZxoLmRly4Jud32(f~u8sST;1X?WBRlz}Cd^RtB@7Gm zE>H8CJ?>MKU?~`cPSM{~)^2rX_SuL?^8CP!@1R(aDrF8H*LzG$Hw>Oi3p6!jB8M+_ zXGi||tO^wovMy+n6-iW~p5q3=`8sKKY)iTAzoj!s1Y3ejTT)HN?4`4xc%8f)0JdtK z#^QHQ7K3U++t??IsP?v_UbHtwSS5BVu4P+SNftaz&KzHhh5BYVWvWez;w`W6ovU!W zdN4P^bz~wo&T?l773`M9Ig(4tZMF^qsCjHD6~@9x=Y{poiu#o52cDPr=Z`j?`$fh? zQ-GXE_ghQ=_ut9JXq>NxN^%Ex5w(RKZDz2MWiINw;7vq+)<%|qxrS?pak8Hm(7*nm zD568V+bTxLMY#J4P1w*x`67bTVK-B&jSojW&h}kHpwry`5m3Wx>pKGc>A!A0LYo{q zttaB}J~M^-E0E0rXn>4(3Vliibw!Xa@TP`8d#{n7fnzJrvS%CaG_&$hsqu_7Sgxct z5R(uf)*&apRsxDd8TUWmye<3%q>Dy=P48C-w)m-3Q6rOq zKOH-o#hh%h$<_3CGzfW{t5l}Cbb?v{q#Aj7HGu&r6_t6h=dtq0Hk7#Obo7L?UraXP znL$~o7hZwH4XLRPvZFpA`R6d)fmEi2^st4IcrAhKFRf-{*Vb}YU2AGVIoS>TqcL`O z6FN#OqMnPbqCDrI^ld9u*;|fWNk~>#H&yBJaKH(rZbE;;P38Uug@0dRli3A7-2OsJ zzQ?_=(2E-rFOdYL{YGyCjMV^L=(yzpni$}kXX^USh6M(H!(qMZAWo_=%5LONs4iEVLY3@7blk0Xr(MtSElNe)|veYLN1n(3pqBegR64N#uN6f7nSkH z_F$ICdI7sDW%7)%J?A5xjZ>c7Fqy&J;vjh$0qu+-f%qf5YT@@Lbx&RT@HW&LV(psI zOo-Z}ncUSpTP+32-9M*cRB9EJ_FOdWi~7P{MXwW2DtD4D@qSduK0Vpd-E7+&EvGBW za!h#VhkxgucFL53bcXFcuyM3#%VsX%KdOZ$WU=%M$mkbP*UQ>t>5e9eJS9lhM!zsfJP_LWus={BB<5A^ogLfU6+3t2yK80$AB=H!V2X zwo}2ZtE@#SaHI+PK3H3|)oY&QMP*C$y<*{e3e8hrmnQ$Z3*BX|83j|JmAR4LFMPitmCVl2H)gC=c zw#lN@%>d_UiY%gjTig0v!_8rp;Is#%`6vH$#6N}N`)eyOyvXd$3-icKlM|KGXW+Qg zgY6*`UIc|6#e3^ltD~{fTle6%YnO^d@-riiF(&9zza6g|A3-cy6x~-+toJ`22i54S zK!ug`7j`~&?$!BYeJ%lOF-@AJ`+;6L$*3-cpWBG~F))|%V=fFy3=_*%hZ8g5>gV03 zat;W3305xRQ{gDINS3DY-Tq!R?5PzhHLk$gr@-qHy#5;6dHt%tz)zI{x={ITN|wa5 zNJ_;d^kajWeaA{hE*5I=qwAohv(!nq@7+?bXOlCMegSbGXTog*d7Cay(%_n=)*=^i z$+(sA47%0yt0Wg#opC{M%?CTB{%fvUMyYM7nv%L~jFcOoM5gD&b&9RLnCIu8fv$+h zm<~kh3dn(Z;kuB_sab^j8`9<8J45vIiDaeDem(ooW1bf#YmL8gVGjt;L|!1T`9^UO zRMBwq9JVXRX!?kM#HXi5v9>0xc_6m~fS5lba0w~}V7~^f!AS_!nT^M$tS!}c-4j#i zRHsz?@pk-R&L7S`+oOs6uq0hKvq=~Kcd)JHJg)$!1XN9`du1I9EmYSo#(s24nULJH8`P|;xt(|4P?*L_%Jt=phE7L^9K1560gkhkFVgGuq zgWS>MqD6H6@#r zJtg`m|4jV3yww^Dz#|#~+VZ^hSxL^YO?dse?G@Glt%6ckCbh+;T&^J2S!|ouupI=O5tBlIra$tKtJ4q)NMUF5n9)7zn$rBf+ zCszJk=qlV-?g{HdpS0*Ya!MhPGeq`fE_X*(3uCRIwr_84wDr1!NxDSHESnTXm{6oj z+npfCzQPM4?1^Ri3Pjt+y`ld;|HB^{dD z9uI)Qk_(O_HM!C;aluR@GB!b>8Z{6wa<{Yzw&VBsOxlAxm*G;9TXmzIOG87fra28z z93TFBC+{6Oa)Byqa5G6I!SxRn_4H_hu$I6ges84Va`Iv}-a)lFyh8qpz8%qOFuEPr z#y4+YAn$wjyY%Dt1C|MNU;gE2`9Eb2k1hkAn!{0 zD~X5A^eW#;>hW^56T$`WKJXb$ry%+^@Hv7}B$*oL^Q3F{19!JX8^T52!WKIvIn+p3 z`O_HckXx|3BvwH|E32Z6IZjL|P zO5U?Nvc}u8S~A2PkY_u6-S{IOPs66iKfhbj$3a@MX}@Y=tMaU0X{&tFE#3Pvg|Fb` zIAe@XcTW0Q=c;hU*Stxs=Nv)EhenoE@#Q23ZRvtc;B2#PUaM*n!}zeZyQB_cMPs%d zw%0P`JfoWUS}o2bL8AP^YQ<%~y@O~P`q&M~3|8N7@Z>)VK2_6x1a&GY7oe3?symD` zE)!&qZe`t#zaiL-En>1m$t$fakO*<6vq3UqYbe<`z%pDRB~oCxIBGQ z?d!^>{f+SE^X&@C6Y#200A-U;a3mtgC*9R9wfmUu7X#erm#VKa4kW&EB&7YV4^lRY z=ZU8H?DLfkZjkA@_M>AY6#pRHyin?lH_Qj~3N}~t%GHBQkIspe0veQxAK_YyZ%b;9 zHT#P**F4VF5HjN53iAH~SUQf|aigN9vj*4%IOOm(hm+oMV%eWm-m}Wjxrs$iP&LutbK1Dy%b%%YFYTEx{K2&9I`K1GHC>Ic9f^X3 z0=}&X{UCNP=#FOt-{{Ja>R7%kW<+-NbEqhmLUk$ElywlDF)3~S$L3MH?9LRI;$6$( zcSQ2(QGh4%G}fhJSH;cv0q1!}=RtktWJyl^nrXvt{zCG?Mr#+f>G>pm`n}3@=+H{5 zo~IK#w?>`+HS!+GX<$;67Dun@eAEIjWD_uZ{EAjA5{4`$-vym7c~kP=M?v^yqmg0-x)HZX$oKO-XJlb#JY1w+$5%R}^jEA}xzAT*w@&I+ zUVgFU*v0xRC~#$dUbe{IUvzHYkj?%)OsAj0;m&X>WCGThy-n zqo!_CLZ>-6`&q`1YxE7;)17NO_BMIY z`P)9bN<~p=CG0^S^m{DCTK!4biylJ$Vc6$&<=YsLK3+W`U@~ITRmGD3h@MOgufbL^ z07nq}JXoFKZYMx#alde56{)T%EsDBuRJ7I*K1~(y_Pz>a%iFs9H-Afz-ShBnS=O$Z zIzvuqAJ=h<&FQ4AHtXIe<%`8M2$JaW7suj_)qEpTQil5U zCNX8W;Y}wunGlk_O)Am{s06P~P1mYIY^M|F^X7$h9Yszx>Iz`8*y{tTnz>trZNxhm ztdja>Qntz;sj8dr0bUGF?o7*W0cN%p*PE)W9^%ZB#bAi zuCX#`J|^xMcGdb8gSPW?8)0fGQdz8YT6&V5%N>19&0j#d)L+Rz<{T$}XG)G`Pu{dZ z+Yl0T?+>7}uo&8hKm0ZnC}>aLB4Zs_lhADVj_?Dh_ocMngefOJOBc;o!=fUUiUW8@ z1g)hrrmW7`WI-L{da)^tsLXd(s%rR~w#W+D$+b-0m-uT#`zk3{uZxOgo-vVOE!5&( zzHvEr14Sg>w}2NHWbU86weg_=0h;gA&vjl#!rc?d^P@wL2xT5rbfzZ94YZzKW2l4C z#75X9>mQkxIaEnbjwA5!PlXR?`Z9h2X=J?7C_NaVt1=%v*mOG}(PMX-QP9+);PjAAHM`see{2KQ)d9L~=f-y8F5uN1^%`qB*dt%8Y*nfeo%&zmu zBvv^sV_awIOJ4qLSGjcR4mV0B0Z9mVl3YZX z%{lBXOk|eVWTHNO%PP@qMEddNn@b+SZ4dBv3~x={w?5p@P$r$*b;z%~F)@5ucW|WX znys?zZ^@8spbPq_&@7FOQ91`>)#fG7iuX$-?sWA;n7L@Yz2S-wOW+x*Xr~m^ zZX(zn4a5>3HnR)V-ndkWI+@&gb#k&*fxp>@l4!}*CUwkSDJz^lXC$3$G6bZ6N=HBy70hF_~yyaMSm~E!yKkHfGF%R8Xf4FHN5CkON+R zoMio(L9uFV@Ax4Pkk4kK)_|B8hOmhBSKkFdgM1I?yIBczDYlK6{Ev<7b)sdTu)AcQ zUO&1{FV-i@IN1{73*O47-R+y5?UNlk&MMK8Ak~raJDAW{P3^s99|o_h9YCHu;aO6S zl|W1hp+(evupA&8Ux$58ch>VeH=QVZo+BGOIs0ZK(}2KPMYDXccjbhu<@tc5u=P-j za_UqPN8GH|we*Ir@vsD|mkBg|#@l`n%60+n4|4KTappZI!RdIB*Y(bVB~JQ|9$dh0 zhD1n9;?NJWQs3R^bQhKQwX|UPFCa=3@qNaith^0p>7rhyl7l;Gi;eNWfNW2%thR4) zz}q<+&MiqpdE56AIU}fJEQ{@yJs7U<^KUwI$!&FhXLVaZRoALJ-p*Y`ZBLz!(}38W zk@0ryYwplt- zb6PNG^-a||42DIyl*sR3Tjg+kaPWf9D96~DBkpb=V2Zl!-k(Eu#y2JIC4_={2P6Y= zCHW}&MqU%qU`HVNO)m!J9@;ZsP|#=8T1o9YtAs*~7VzVtiyfDJ{{YzNV1tqwy9V!N zTm_@SEMv}A1eDTb$zikq=ACo0-wc7as2}a36XvRc99p8{rfTe(q!pc^3|>;wVSScl&l9{KH>6 z+*a-V>TrAbA2{6pTW%Ndsr`v3H}?HcLZHFueaek5S$l$Sc#8PmeMg*yzm1csj&e+j z$YMkTO_7}5(eoQit{t9q5DgJFL7tp^V;-!SITpgTF`eRuh_Cm3BmAm|){( z-vZrUe94VM12RezPBJa4S_y|{jP$g-q=|`suo_85*0M zJS7~V=_!_8+(v|5v~6SwpKpUwl4@flwK~eWsv%p+>K=iX-JN7Pg$Yc;bClrk9c`t? z;2c)^q9|7!qqAuv;YXW8L7N>5KT|*zTd7>+PQbTg`#z0bMTXs9HzT}*IqFOY(e0Mcq^%$^dE-1OyUQ`&x8poe; zBUQ?oLUwq7YUZw0Pc)socNma7rD3|Oa^Ymp-rOh`rYO$K_+)c+icZOB9dMi5|B=ti z)lEi5)*E-4I9K0&R1{GAfo7YY+0LE$3fK$C4-)tR#%dyaUbs)?ke|W$13&y5c~7vp zssq_HhOtF*+~7hB{7jQg(m`(Y?`KUbjhcklJrmb#wlzxLRTaD=Nx5s}Mmk+T z|79uqnSWGmVZE(A!Cr>yB?*R~Kzxtt}qz=$vT9yi`s9cd?yB!ZGoi8H?N#GZV>*dlR{bIsW-td zUpQ%w#O7c`Ce&_~W4|GB;3RizySp!D+VW+9@>OVdGNxY&NHOzQr`iYqIwv>Ng6Vrv zN$keXJKq`Hm*SN1cL7qs6}@TOzI%c|&V0h_&LN9QYX4K+Uc7IQUWbq4u$%##HIfE- z>tj)zDxtl4USopBoY;Jfn7Ax6c__@CLQA&X8EY3UQTZfrJ*rR54f^7`j#}cNfRv9v z9toim@aII-4BAP5=xcc`EucZj?r-tzPOR9thywrjj>5QIR_ueFd8gJ_@I*|+Ojn+1 zRq1g=6!Hexk+MAMt;6-~H%Xj;u8we&_<5%mkij2K1A`ZWeQd7X4rIkEmTr?&lwJhz#e=!PXHwy%xU?OcKeBF( zJ)4HF*o`vJ!lg#jqn6EcQ5cNFbcwk)Sa!z)PJ7IiNy?q)_HFSC*Y`NQ`tifI>U)c9 zT3L@4Ne^Ko^7XGcY15^jH9hWl+W0I=FJKQ${%Ul~RU=8#E?wL*L`)mG+02%!RkWVM zTbu^sS*{x5Xxd1QH|6Mq{tL(ghK&NC7oXqbMj2Zs1K8*f*1Vf08PuJpr?fs9T5#Az zEv=F@meI{dR=)sFKlPz=UK#|@#V23rFgH;gHT2(z6Lnu=C2Qk=Fys}P*H=QeV@Rh2rH z&l$n=u!*G5jP@Qt3DG_t@WCxTaEgL%r>1;{QoEcV2^2GSMiP{N5if^0Y3S4dbJQLJ zIt`l?2UCEMJbz@Xo38H+O|8!w>Va=g#4H_N98=Z{!nJaV^U>AHBFq@nH3$M4t#$Rn z+zt^}cb|<^#SJUaHhP9xvV@C2{{_TYQ}d(&QJwB$7(S31!z2sxJF%fjEe!sAfENr!}H)g1Uo2}I~W@K5Z?gyT>5!@0-oDtdO z_W0%D8a+11;?&g^U%y#@9(I3o04x9|4fy58)AHl8zVLk+=P(5Mn76@>p@dp^1KwbC zFH9l4gayWD{5E2+MiYG>g9aSYz)qn%0Oio4Jr-`yRKkedJ1brmF6Vg15{dGvx zfD59~Qlk&NYuYQFjvr#aJ3Y$oOpps5R$(iDQb#__wh4WsD82=wB-(v#5G!@ExsehM zs36(+nMjFcBzYYo7Zp?qF=d~_Wg!-p`+R%C;ATXMk(>m%{JM~MTE-hpF1V{!x`wRX z-I1auj^)?(VWLNQewDk#+SGMH_8ZI}ZcLfZqHS!#129EFiH+sSeGxIxRpax*fXjX_ z4V~{706vQs+-~RJm6ac>q4o+J5!$Q|i0}nUa02Q768-yEZ~)rx5368F&~&xhku6^? zrR*iT4{BfD$$iIZ4g-O3#Iw8dO)^BFD%*F|=;*uk-ZyxgjmrfhPF<_5;`akaES><_ z@bO7;18f*XvfaGqV}n$7;2|xQXFQIG7$HjNXysw*M%dcvr}YEs;n-aDB1B2yTy}5Z zvOWv(Nn7I1j_x6u7--A3R%A@6^int?V1Gyd=|GCXd&_r`9}Or@D2Nv7{+@YbOGa2w z`3UmZ^pUvnWCEg>;_%*Cc$e4@hEE@xMXQ%-h^xj>7iZA{kwLJJQE{ST=&XYNvrT!} zyw!T3wQ5z1uNXo;%Q6Lh2Et1g9@XZ}+ z8Fc(2X>&5>y|uzhvvacF%L1FJ*bNw6)?FWSUaF%RhUeR!JsU_7<|wB>cOnk(Vm;ns z2|9<9>d1ME4>4KnbfLL8b_bW}&pAKLupdO8#{1L|OX(%S&6JuduSox9dUMwS*?!M4X9w zU8m|+ZVZN&6t0)Imw>hHyAV9mZeOs8{=;s0w7c?QmOMyP!x0M3-_`l0$nVO!*d*m% z1Qdz0wl_bKPGx>2n7FDjEH5t-mnJP#jmUyK`@zMf!CG5YNK5aB^zDK;oCxJ{4Zg*L zP;F!~cb*07YS1I7LxNdtq}MMtD34U?3|EMG9AKl!+%Vk)UIWgXT|JD6nL)Z!Ik$HtQ~2 z$B#+ZP0NzaeLk%;$me;HGYGz(ImRgM9-VwqIVvUBg)1WIRc{9(q&djdyhNY=*6cALqRyf4Y z%UjDXSkgU;KiWtbC49bO$x@T(j-@?wEW@(2Qdf@Xs(&wCsXnRU(LV)jFWtjcQkZ&! z&dgBM8cH)`{~pgh9Trsdtj3IxK>uaD7r!tCWeqEuc;NRpRt4v}H#@hvol*Blk7sQV zlUzv)vixUHUZmI&@&*5J_btuNjlwU|X>;DA)M`z`QQ!uhT+6P$8d5H1e8(t!bVfD< zeT4w$Z2K&uJPke-Usr)VZh?_{H&?mZmp^%e-#~@)fP#Ya_5CHX`-0!_V(bGiosH`FvyK3Q-WZ(7(kALFkwO}MvC@1so{00%E!2cekeESB1ze}?f3e}# zi+Y!Ynwpr&JpW=1IDaeB?@p-k%I4m>HW_L)oY4n5V){%}A=XH3q_XGiX=>%M5u+C^ z31O-|42oXr^X^-Y$BS2jL~m4_DJ5cF7B_AL$;XIc-m^~xfEUeH`;NYSO&|DKmFp{N ztCg>psvnGFQBuXju*_oD*|uf66u$6BcH3YieNjG-Ad4XtU6iUGINIzAwX)N*U~3B8 zC7`-?GYyI)`wCq^L%8wd@QZdS($iAhUChuOw#^zL5>NxfdnVxqdM59~7z1$0!j6*ksnB?(xY<_auk+T^%yNjgUn|B5P zn=BS=2aVYKh2^Jt6?>EtU%Fg!ZrN-f)by3;EnRrPj;&`_(7Y+iW4WcEg(okd@HMOc z;o*CTh|-w6?W2jbA^7OR`l|_I5|ln*n<*$dStD6nQ}%K0MHq@5ns}vBhy!h#S-9G0 zIVTUN-%hml7<^_{F$8$>RUmYvqOz9!H#I8KF6QO-;fQJ;hD^C4l1KMjMQb7I{^_IT z(pvn`vy+KXiTsxki_Hr?HUzO7M=!4i*Hy)1UKOfiZob%Jr6V_fwptD}uGFx%Umg*? z39}ZzDYY(Q+%ejW)l_edKe6dxFmA>fh$q7|b`$Ar-5HXOvSu=ndJ7Lz#ay}}-F%(w z;z$MKPW9!8<=YC4z}Gx(*nUMb5H=ueIH5k=E}7uP%rQWayxrw(Hhhyb-jX$~<7BW>iQ;He>DVT8_HZb<*lzt8 z?84?oHVKaNra%wl0BKu02b*eOsj*7<-LqsJ{U1*a0a3o?0gxsAT{0Ltq9suQxTSf$ zyq}i*k?2cda;hmF?tA(G5Z&;<`K(!vUIYgmySS*mAA%nF`kkdUt1wn{fZD)q!&YM` zcvA!K2sLh1!U{;YH6n5|&4-iHxC$jNdGOSpWaID*4=b2%bemLEC&NM^>`@6AwLM+a zQXhR|F3PC@XkPupO0}HKZo9Feo`6O?|L#kby~pcA7dJq@R=h1bikOk-==iD!Om}D_ z>jW9fPoMFD$~-X7rSY1Xhp*T*cGfCgjPauS+xE~c4p~^xRKV`CblEJ&TWH_sKRmyN zK-OH;kQK6rqe92hcV!i(6P8Q2 z3?;=EVvrhWf6QHwzu8u(V))X&K}hgEi|~%KGUsQ(!a+9?QUauB(l;UZc8C+Tr^q79 zb)E(1h7}jyjZ7%@Dbi3yG(pW{5V*A1Dl{}8tI_0- z#RgyL-skMC?sLyQ=iK|=81MUf58PGNRjX=MSFJVInsfettz?2%vCqbkAXeA0hWZI_ zqdUaWT{lkE>KSb))?_!`)e;tZUq#f<>tpujVe=Cs2KT90;%od>(u|XA^J);@M>x>j zw??fiUhXc1RruAuI*ESQeauQAen*#(O&6)0}!~IhMw&_#LbQewSnJEaVtZC_!$TpfB(acdvMF zdtxe?ILO&Qba2va0^0CiS7?eQ&5g@`Xojm42zdaAwqt2*KnKA^==qECwrx<$k&-YV z?_{vcc}Z@k7o#s5aCO}a?``K-5QSd4G%%#2R5&!4-dU0?o@IST;t7{ePWz{Zl_0C~v&3Lp=( zKJhKva8RgOUbLf5P4&qryO+;uk(a4-pmNqOU!l9ZPy52Ri2_B}-~4I6!>kfu=r!m; z1??3Nqup{9#)b(&lDLg)AG>(M!ZhTiZwXYUWQ))%y;2)bZ}KyKkd5j`*Gk6V^AL#K zxRwN|P6u*tJFCO?Zspqv2U^^+tCS^Ji_E!p@`<%PqpWHef6n}zzxueST=Dq_Ham_7 zsB2=$lq8qu85|aKx+w|ciOlz9T#gx9nV4W#YR}hSym+xIFO7QFYv^9PGm~;%{1qXk zOheN+M@V%;?JKh3b20ERl+}W>iry!$!|`B2f@at4?%I&G*K+qsu{%qhTvpKVfyg#8v8p-SW9=6;I>GvdY!>rx4&BoSA38NXINDU3|zq?8cP}D1gTE~Uk z&pxD>F6NS5OkPM?w*K?fWz*kMmr4FX>awQRRpG4!HUNw%pE$o8S%W(Tt)m9 zhHS^OsN9__A}3NXs*FFMWUgvw45 zJX!G$p!hxd;xD8qzfC0m#UHU#?zpN;u14pkYot~1hPJHKrz4$v*+CyY`k%y1ddfl4 zt%&AJVpt;0n0Z9RHnO+AAOhXFT0o%0q4g|kS;DqpCywch>4HdYeTqmqc-YpOUrcBxuOKX& z)V1N-Y$2~fNp@i(_2Vbm&s=FCjlig2D(n=2A$qb2V~kDImMDC{&dC^JY~I6gL!@GS zs)iMP@CFQ7hgw_u=n?nZ@nM}fK-{v zT%lKPBm0GcxIUa^=g8Mcl-{Jj-B3_L#mq!5I{CO=t)iu_p{6R{v%0igZBAyq=U_U$ zsBnfz74`^!aeEs19*8OM6Bp*-QIZi&^JNpOJFBZRn%m>=u0Iuz5&r1=RjDOA zgcb=N3!N71^DHR+k)=$4%!zp1hJ1tLL}f4CTRB1<*(v}K*mLDrulvT`CKWB|`W_W) zm3&gnDIkDKItGk(zOm7iDkh77%$GuD26j7ZJGwa;U`SBr{qJN`u)dr0B+Ag0InuO9 za0<*~ln*{ItO$D$o#ijy;d>43jWO^sOW4jUdGWS&yz*Xywg>E1M$V>EoLot6APV_{ z(bI_zZ0bZcqLNS0!VGu;ru?ng-4ZrN$wpUD?KMP*!72?rG(~d%nYhf)}IOK4d=Y^0a68K#s;(ULoOs zBmbJE@7^@cJyI%0Cgp=sYF9RfGAC7%#iwZoDx=b#)DNQznFJfEy*7mGa>1Ca3_#Z^ zVfg2aV$E_30=ZJ@f_J%u-2}lhlE28vc7oOUoyXA`q9bUh$~piGd$@?cI^W1 z;h2cPt~4=<3y&k|B+cMZ6&2Tl+e_x)b?Y_i;TC{|r!0Qg8JzIi(nv4btUh?#l#Pwj z+W_H^KMWbpTZl%hrVqob}~lkuYPPhH|UckBX0 z6ps+Q_l^CcUTi;b9)o^!I?JwiZn`aLxy?Ht%-uB_7ma274}~ODg#KjAs*H+LH7)yB z=4Dql99~Ae%d%9DaT`^{2{qUt$Eq(G>r+7Fr+4gS?n^+=e%AXuWOo+0p&SoF@5%vb0CgYv958 zN!sNftQYV+K(|;i(1=W2i^Y1J#AwmdMAQ7l&uOP1CVZuZz&s-q-Zk%HHp>uQ&I54_ zF0LwUk~4jmU8ht`dAElv;>F>W6EM09wfPe81hAn+R7m66oDz8L!^G)Py(~AREG%qI z!{Xk{V)2l$QUsu0z{D*KNJg+T?QcZxp*fQ~htGTQOoRQb%kXG)U&k+5RO?ju*{c`>Plv?U*G@WhGJKoku$c44%u_VN8Dye`ZIwR64nK;R=ujR{ zn^>E$UAov|fl&KZhijl=h`3(3hy{Gd2R{GpA*^t+nxEG$#QgM0Vc>~ewHZz%i|gj+ zE4`DzSRg(Za7<=CcqT`4Kb%C4tI6M2o0{8W;?4I-ntxqb0tny!mbOBr*hTx9u>0~Q zo6kwX?T+G>AI(?2IE+;@bRI|GM|Pp|`*ZW~+j5%ml#^xG8)~^vud*MinWp2+Af;xD z`rctK4I1DY@0@_NI6*F5MAwk~0tpl3JcfOC-vbFhA6x=}Q-3@CuYc+`4Yqj;^KJDC zb6S1nfzD1t8nxRGEOZl80o(uk?xtIJ7yZc1Jr($pXW@`aS z<^MDhXZQC+oV9BC^Fv|q4luA+za{Qeser+;nV{Aly!G9T#7G^*aI zOqTO(oE?AJHVjsK5{cjj%dnVdG~*Ejr`*cSf8y*lMT>V`gzqsWAeY2S1Uy^6E4WuU zv3kisB-`XED+8zQ-h%S$yu+Zv6>UzodieSi@Dp>PNjo0NTJf~fCf-grjucoBUooq; z)B=RQU)ediluKvemmjd zsN<~TL6zI|xbEk%ccgXSF`FTcL6cvrmW+#Yh}jf=TS!yFE+qpfi_i` zrwzqCN-bXE*pwcV@7C_$9^(z|e+hzI&d>`AC&g%!%!$MnXYs$k-w(ledfM1^TgvRY z!DBLe?=!o(cNtsm-l2?F!vP~bV9l&|8;}A_HMHIvGLMO$b3X^v2RfDADE;yzdkC2t}XOUvC!sM=`pgV<)g#@-Fy zGdh0g56*ENX%@0;tQNAA`w&F4)ZGgs$}4aRBfgME|6tASd~8XStx(ezSOwYNi&40IyjTo1ELSQYkw zT2b379~O~3x3sIbe6+r3F+N`+I(TO_OZ?hquGYyVlYHe^nyYoxq_G2AI72aO&pJ|F za<8cX$T;Q$N|jwINz2+=o7frH_LA{WXzzb4*#^7?zrT9F{U1pcK%s&@WS71iC@Uq^ zth}78IsNE0r0xGyi-qq1nAa%%_Qnp2;Qw^o&*l8p`u}!-EYK1)M2P=!VZU=oB_3n% zN|qK2HQRCzu>lz6i5(846GMbGq4E{LuhkNq9E?ErBjKLs# zx$L}>y|wzPgeALgXwa}Vx-bfmr#(YnDP>{i^}r{uEhaVO-@kbDK6GgGVLOepzrCBF z@TG!Q7T&i!OoM-BihzF-F5vqSTIjUm6G@x8ZugOP|LC)~Sv~-PKEW9Lp{sKH3i{85 z34ZGKn8~xhNlJ;lGou;o3#Xon7Y*X*z03%=oENbMYUG)JdgD(WFN$&0&F~ZrRq6E# zDkS)rKPD=^#Fn($q$8Y9{+jjvWCA(Y>s*W%QNt6eQ}1Q1AmB!NYh}9ocs}cCuCK0Ir}Qtlp-s1%Be4-=7qncju7EI%P-b96^sVKA zdUN3mgQK5|Rem=qTK}Md?s_v>FlobmN}tM_bL<1N`8~mT41L6Jx|=^4EoHp;Mt^&I z4*y1fGvohGe=~n35^6bpr&wyPa^L>yCqScy=8sq{9x4xmP-Vh2>IKLa1Z zQ$HYhegyImdwG0m3HDO_(#`aDK;$2QNvG6*iov4&c4FEmSFqmCz-a9^E~T(M{#Q^O zKn?T4+VS}b8TT_n?zn6$|CLUtPTAhV$sLXqg5%m_`4*%2Uulc=zaXIgf}z*g@~P#( zoAyvqpR+! z7O*FA8wF`!IPy+;vS(AvS*MeVIwe_OnYK3Abu$SL($4xU0Se|pXEoU{Mp2vw}Ar4A0j9|e8>ZvnsDgWJRY%~WtV-jJ@+RS4U{W%H-fWD9az z=7k4F-PHV$?rK(_A5mvtIKM0hA@HxJt~S>If!htlPk`Z)pLlZrhaO#ohwCYLc(ilH zC=?V>*;2uGktoJJ#@(zj3&k*_!uj$QL^XODe|gY;h3RAE;{XGwit4{MPrtTv|8F-X zk?l66Fxf|Qtu0VBw~@^&t@-Jnx*xSg+BQ9!QCrdJ%&i2c@S%3vL|dD(>hZ8Jzi~gU zkq;i^`Nw)oGGt-x^G}{{R3QfIfw^v!p&$C)0J=IeenN5eMey30AN*aWzmk; z7TZEf#fl}MCdQ1S<=y+eIlI;&E^T~I;X|JofWwY$-cTL(u}`%2LizMy|LVp!JEP_Q zdpkqW_*LU?Rz}M|u`)I~pWW67VxVQevfgPM&6V^#)|vVYRDtw&Ha6f+6#)?C;EDgj zR02bNOum9VfRs&t51+Z^1%%JaKP>?qv=$kpM-|gr4>eyR84JvsdV+0xYlzQ>$8f%K z?M2eFAFTr9)L*V>OyWDn&;#)eW5|>E4P&VC(?$O6s%Zb47xj|``1e}<|M&PY#ebOv zY5ub*!SW08UiT+*<z52hwn*7l|#Nhmu zzV7r3srT0nKNy++Glkqc+>34Wf!-{_yc#aw^4ZSrbXPOp@}?Z+CBNlGBv&>*XMh?w z2aa?l?|Lq{W2MzZp>+0K>64pNfrnh(InXm!@_g$axvQw%#}(^Ij@$EvU!uI_{Tl+j z>eZ^%;zL_}U9G`I84qf24f#B8eaZmzBQ# zigMgjjG{Z6ec^cl@zboP1Y@Pgt{V18!_Rr9r+oQ;o;YJ={f=EP`yIPpGhV{<*k}Ge z>%~+tG14I1@?15wgNCkZ(xk??#`O`whqq5h-z1R;mu<&%zXy-0nX^Gwn(7-uMQTXz zc}_1p-pj=9mhjtFH~)G128FisBJ4sV&+2_}WSJe=A9bD^6 z%CeUhd%e#1L)L0z33Q4=l8Xq`>@kIX1?YF2OW6&YDifym855R_xq1QZR+T#vh}+ds zS+m;&593(qj`atkHr{QxSR=)`Fh+nt#)oJiAPxJ+S(v{hX3xp!oiFY|f z<57n6P^*rzjr0=j&+Mq~JVhz&m}uA2G;H3VJd$8-RZ^T>omVW-nmVp1sl7fbXhX=9K2l?Od1)rRK?u zY3Za#sA`g9v+QtZ5u_T4lQm;D*S7>-X*4E$1t|~(ls6{u$|m!N5Afg4SD5#Ik3v6T zkP?@-Eu>o=i!E(FEsZOXvZD!$xN|*hhNi9b@4?eZf117fKVcc;>ns+QiH)&?qrHhC z^Gh;}WXbNBPRnwLI#15fd4>W=Rr~+ zbW}8SG*onSG;|CMbWALKEUatSu!wQ-uH%yulaY}UlaNqQGtyE}(o>O;(6Q0c-(q69 z%|cGgeutg;4kI%Q^S45fFfcH%FtLcRu!xu`NGO>9<OQBly)P*H)sy@2mQs03() zH@GCwiIfd7ZrTxZ`$eT=(o2@Lf>lNj8F-%A`(MK%AtfWHV7$e|%yOHTkN>WKppevk zX&KoEau1)Vs;O%{)zmUFHZe6bx3F|@baHlab#s65G9WN0I3zSW=1pu|{M&a48JStx zIk|cH1?3f$Rn;}Mb@grS9i3g>J-vNn;}erp(=)SktI)OejgOmK+dHtMiXRE%%+LPB-{{!j=|(Qa^|6G|v!7}^otVvG?=}1HRm}h2s@dNw_D8+uK-W=_fFBQq03-&w$obx_ zv8KR-N_^V*R=gZEbUs&CmyGywYpHONA$0N(<|sqnxSmqB#GcCVkZd{rFRnIm+TbDC zc-noc$Y<*OUqOBpXYTNzm4FjbQh0w{L*QC}W8@>Z)pwqCfIx=LMtS$(5w1Avc^$dV zWz%1H>VI-${G~Vl_kARMJgjo(L?$l>NUBHIJjZ(oNSRRBT&Z4*QKXbL8m37=BXM=N z&h7iJlis^4{B(i8zP8JCrxK~+f3xY-N$p6*$c=E6hmh=Vq>WST3zn)0xMe(gA4W6l z^)gl5ZqNw`&KjV>f!k%c=62J9D-E$`_>tmj}NH z>zmJ*&fWd=rJ-y{qykWB(zuc*?V`Q7th{V5W&#;aeQ+UI_j@PifdXN%;&v&ibP6__{&@3UnpM4iu(j5)REz(`#DiztALiqq@9@AwL4Zu+(dA=6 z++*=$t`mA>maEa@GEL2!bxkR9x+7djzK@aUQ2g(WVB{(5sadUZhSbz>$rmBSYpMgN zxT@ceD`B(_VMkM<+UXUF6D%x9Sz#+Uus!c+tmtV~^^z;1T&8kW>7cE4O_Y8ac6dID z3}kCKE9k*E{Bm3qWfSG6+12;kREl6+bc9)V)*U9WHrcL-fV>qN{g)>$T|U#=Y%Lcg z<|x|jDSQCm)YhzWgfCG<@+0ao!vk99$swMTUhv42O>EjWg%pp4mPu^PopwrB5^mY_ z55>1ZP+>b5MSB}X!c(2CE4m3YR}#C+#AjwYJlwvI#c_^OM7VT5!&@CV-<@#=c?-mt zuMLeiCZ#?G5_xvkk=>9(LH&o#`TSLBvpaXSoQB@$N;t8CYLapZ436d)al}Q!6Iwq$T7yr6fBQ1I^9M_H(m$w9J(?NRb ziYCW;@zNmhi#6><_jW0ZMwT3j{2lLSezw9(DzW=69_pvWNE;{}w4^||VAMTv+H(TF z2{@@TEc~SAMVAmqa*j-B4vK}n35VNa>La_))4D)m9j@IvuHYOwU-GV1S2G!1B3)PLb|*aY)EL|O6k=|gWO7@)`m&-ES=S-Q*o+T znQy(Lk6SHWH3`u4{Ppbum~aN<8{Lor@?g1>^IJAsVB z7KqrJ(>*@uGMdkN**7Xs>Ad2Gh=;;2R{KA5wEy=b@e zL|!G)9N<%!#xY=}KQAMC?>PLpt|atmQ~q!&?09(H;sR0&`lOKe?uIOu$OB@eY@PTH zJd9x|{8O4D{>}wo5hLPcJo{*Fh5ruO#dX?&X>H(FPKh}b`w&OyRp;h)R_}w0x_|~y{`@n9--C2y{Fdq`yjh9MjMvl>arG*O;S@>RpMv6 z8ryKh5Kr)~c{Hpbr9{;Lskb;ausVgIw#tXZwL)dWd(sEHm*!#X*6;?#@a zR(*ubP=1~!+@)P>I+%XkPNMH)3!KF^S+E2|w z6=*&e-Qq?HdY)dxfv1?*%u4?l?we5KTZB-^G#9E)e9#PP*VQ za38ApC0nmaUtjbSD7n|RBy=?eqiUv|JYkoYoKm0Pi)wW?a!SB&m8b6-xP}@Q(HOeb zC|4+*2KP{%;!u&J8{ac&h@$WM_;jQUMc544m)E>h1g6m$j?pfPKGGVhcoSpY48`0qCdrYy)6%uD>u_ssfZ|qS_VRARr;)_SvZtTWnJXf>Wu4Wenfzj+ zJ(MtXrQP<wF+&&_Gg&%EKJ=jQRpzC+e_`t63Pfm?yM zln_!{DF)sl)#A_1m0zu0lJA#~qD^q_FlpO+#;q}NUW}vB%`ar@%jT)cUe&Lu+ii7I zGTrk72RZU)lHJGa$1@`s+R_f&&_s3ENeVH(;@QNw#uFa9jZfTf&rXLvg`IS6|^Wpm4y`>gQH{P0SH5Km%cQU(GMfkfM5tk>-^3JWOCTj*}-1Vg&Ffnj?mjOeEFu8VbZwl^uj-)!mHP z25a=ijzXNF#eBA;@R;@y2_aqcXEVd}YsM*_Cet>!t|&=<;?y|c&5P7dYEH#NmykwT z_Sju5bD^XJ9ax_35s=g%9iIg0f6(;1hhKIU@x834F+Sz zG2NBW_rSwjDJ)f!2sNk(Iwq5RGEVW78!aWnapo~8a4IUQwFK?2AYv^|`1r%aiPuBZ z2?3SUTs>)SmSt;n$4N;SO6Zs1%_$%735&2u$r+c|aDNQ+lnKSf*&-I5`sG>z5-LXcI+@`ZSA6p~KCgXQ)n=`msUvSM)9)`l! z;UUmeDqRMB97i#xhlF@MT9a?G9%q)uC2NZ|UZFR=blfZk*)QXBAT%Jk^Rg@9q5$#A z?UB8_8;feS4sDWOzr&?~NNt1uOQPNBYaTGp4vi(cT8!rv;R7U5Nt;NdrKcyQ01}7U zT#G+3ZF_Xad`kUH-J-7(8CB?*wTIY4g ze8O>xje_pEFSpasG)x{CMaz3Y661tz?j@@liGE^6(fgC-k4Fv@^Mf?%!rGrib_ns- z2vJ>;X*)HTKki7}L%rI6WM~Z9e39g#2Bf6u!KY=$stz#q=NFeP&(sNH0rv-I5wg5N3|5Bu zgQQoeVE$H1o)Rlo4W(dtC@rpQ#IeK#NAcL)aeqxHRB-YdvvUtFnGHRCjZNL&RvKQ? zUL$tt653jIq8-cYQm!SIlx)jl|0ii>E_)Wy%j* zIxr>-8syZfcwBFk8zStf z*S5Iy-T{UIMt8E1_Mpp$8XU8d;oP~Up>q}U(MRKLIc&(+rR>*Nj6J3l1BLJAS=NXO zl#doW&2!>f331hsQe3>R_n6WUZ_T>g4!c3c^+B*(>s*T&rL`(qN)^V`rtJf2UG=h` z?|7m$zdauE=^Z=7AFT0a_^S9dDg%Te1yt(nFLn!a?fPJujc(Ec7pkGGFrw6uF9JS)#3 z81*g)+p(v*U;lf z6P%TRu&4iG2^)LL#-3?FV$l75)Y~2FD8t$A*}w>)nGGhB3Dw8Y*}hPGS;bU4WuvW7 zrSPzKitlAce0>u5at>!OfXM+2=-AeYVSDoAxzc{IT3uXBId6|#-G$|GLs&CJ*OgBAxwRsvIJ}ffqSv|Zz=RU8OH!%NxSpMj^IXS1-q5kM; zTSjuGZ&?Mu*HgRg@Jx8n(}r4j8Dus2p2m9^;{`{4uC#~g)KR4*Z*X}bz}Z%7gH32O z&1|dllg3Z0JD0WFdC|pvlqTbTuauVR31X&D2%ehPASnx1DDF(J?H+h`{VCJ99TO}K zFVU7a`L6P$FoE4_3zqBTDXS0u)4@DT_pG~|WkBQT*4WcM6Q?%E)l0rvRdGmFf8J#q z9A6){baR|-!D87YrESMbVBgM03eoR(YYcQy8MCW5DGlW+Czr} ztrXmGVIXqpT5fydFnDgU-^(^ruiL}kh>hOVZlfroh2tpEVVHs94DkGImJ)1<-hknS z;&oE9N)YsC4CR|;F3yqdJ5joxhcG%B)|uRke1qA8CBP8&Wh%zAKINU22Nfy*t{vHH zDJO!^r$?f@=^GEWq_zJ@Z4uU9DMiF_hKZeiu|VXOT9p1gee{cO^k-k`AM15KH1N&) zhoWyesuEvpK5(9&yMI^V`C=?-%XGHAD1HrW^OdKB2~>8d$77U}QL9GwylgS4+4Fs$Nm%`Z0!ctoF+@~$1LHq(^465O3 z1Tx5Z9{`x&A37a%%fX_wF`c6LEu$;R2GN`S9bpardr|ti2=w~fo6U5t{)*VHGG9TO zp=il_jg2zhp#7*P0BIl%H}FqgG4lVy^8e7J96(9EuE;i2*5zAqj|vSXpQ#EY6nd11 zN4rbI2YW-}ja(fDx9PIG%q(0;KiUKx6VulLd?-Y!dK&IyJdnBEntTiKu+6zv<*KAe z`#Ta4Iv1HRhgV_IPku?}jBm1nl;30pOBs_^@bc3zro>*IVEYieIv>b3#yvHto2`R( ztyWD2a%1jfRGcaXixP}&5G=b!%10>fzY2IJT06uV1`mP7v^&!fHpjQ8FqV1gxOq$F zEvGIq+hBGtvQPPn*o3aE!CO|yscyqF+L@-GUp=cAx!0*jJK=jZJk8th?;-0L=EL^U zm)|@MUz~28=H#Ewocyzym4Ed8e?H@)#-}SY{9rt{Wn%wXRfV5RFI#wkvN*}^(A7;i zrxvWb#>~*6&?~aFz+b+>%DU)W1=(B1cHi+UNPur)>moL%EPHN8$hytrUf$GGV=8nN zZah94Ul#LvwTO`H`RzHiO7&_b<_FO5=frAre|q9WOY`)#wyW(IcSs4eweNEu^{uMO z*6~4?ZosFVig#4ZQ?VS~oEF8YOWn8BmpDC>%wXLkBN$~?T3w0hvsFuFUJw)OmZLE@ zWRy=l6JM~7bZytJ!p;>8SCUzkVf^VMUI{nL%qFUNBAS98S3Qw{Gr5#5msG&?HB+@) zgp1$U0EJrPwn+Hx>2+q93#kWKR$quFTbW>;JfO!CdkBKP9B<}vU2N>%dpzDc=VAYT zp5t@S#EVpf$6@~JWh&$#i^#RGGvTb16UM4orFeR2wUC#F$20DYju3qxOgD0~R$yaa zH`@qaR?M3E(i^F^+MKd2;UP=+AQe`4>($}Mh5~3a&yvpeR}hZVt3;M{|5f4Sa+!He z2X2%XC%1eF^#f>-qq&3Hw76d^LR4vo!Gk;c73aP-t^5~Goo|{_<~GJ@1MT#xfbLSY z1?j-i^oy*&ux+tLJZoRpm|N84ojX86K9Cbl2k&1QBh?&b^L%2EY*ulPvD*e+5P{<{ zNQ|_e0*1p@AzGguFCiR=d-+M;o62Ds>t~CfPeB?*61)x_<*hg6h{6gpkulG1z8BVC zDaCVb9+-E1Az#y=xN2YPbbehByk6nS0W0-2wQ32Zxfu=Z;Bp>wB3XFp&a%C?dmv8p z8PG!Tzv7=)EX2X+o^ya3>0ywi1~Z5bxO*FWOqbCYX4Ky?HhleIonRM08vgS+#((rC z{J0$qco7Jn!WE@r)Fw$*i=!Vv=WPk1Wz3$3f@K+^r9lv7Jww{AWMujL;>=Nm>NI{q zWfVs^mm^Mcb|5!WYnS`Vg+}hkfBJSwyV&7mSJsfKWZk)+y&g3LR&`>S4w|1|K-j~O zmli{cuc$4`Q!Co+b5-9^ks4lpkN`korN%IlS4L2F!ehC~^y4C%@%}jBsHo|@?H;h1 zVtMs=QCdZrzW}>|cvL3^@Xm;%f#hsa)kkE}8m)-A@>K7WVPS})$^9u(MuPyx1Jw&y z!3IMfJ^|!bJDXn8@|MSpN3@F!uO_UEG9Xl&Aud<=2Z2-l1+KA26_3%kin{F;A4T?f zq})DlSA20+kMkLZ5xTFf3sdd(Sk&?Cza}Dyg4jZd9&5ybmcDX-DYV>CXEN@H205#z zVpA%=Xt6_F#qR6Tj5xO70;A8ZxI3C!U3Ul>u;Hmsv>g9v4%JSPEFlb6BS+qYT|krK zn=HeVA_Of0F1cU{y1SZEfs>>%c+c&g3L{%Lk<4SzW{x>Z&7b0pP!eG+{*JU1+d2Im zBm@hbhjL+ZYwdXVg!{5 zaD&ob8#c=pzLqb|OX{3s51^t<mjGUP{Kf>34l=yt4#<)NYC`o2HU!?FHwg|jx1=);Ery-M>9iPr(3h7 zqdEN~mCJY366C0V-C}OS9WNZASwLBrRGgEaySqQ-A|=e~E9d{n2Rk|IMOEa(3&2J5 z@7rG`e4Z}0PB3OyS^3K7)0G;FD(o!V#W@;&diS!Ey{H3KZw~m_X1kVCN_?8Q4MMr7 zu4X(9<%S~c!Sbg(K|qDM)RX=2J`LvK!EAz*Q^DfhIX>*Jjoi1Vf+y5yAZOLT2kpo{ zt^^Sh6Lx?E8Kz$##Nh#j@NwOEAWH^YF53FDd&K*eoxRtGk~N#dH8fTF-J)z$-pue4 zTNF>xx;qy5IQ3m6$)F*u8H+__vIUVM8l*5}KN z;Dozmd5Vromn5Y)oup9~&Y~M9H_4rB`srr>)TXJPhO6|;jGMMha*!+yQQ5}&-LRL8 zNLk0K(~0l&x_PX3h?}3Y9Tj4;c~pHvU}#o3atj9pNW=Ung#d2%RDxS%09iPX=iO7y zCT~7D(}veZ-`X3tOPO346{o>FJciyXUfFXNL-Bkfs@Av4d#PKovB)V--sJA^`C_`! zXz$MGq|%cS`r?=_psJ&Wp`9AAD`sdr*c*hxCCqc22GC zK6FVb=~BzBLZ(j6;_i%rCDOn)h${GK>~i)dJ-ze8<0La;q?IYDw)p9bfY{s*yZJUn z)JAn-(vY|B-Uz)oK3Bn8)0d5ig(lpJfmz8-H%b(==fVXyrc6WKl=nC1$s-uU&_284 zryc7}2{}yt`;RoVk#a2x+Ct(Q*sf5{nQ8IpJ&vqPKQH1yn)<_9DvTIuy4T8$`FZJ|Ax1;w64YO4OGK;` z*JLA4!4s>8OuiEfuDMD&^0#T&GQ~O+jUv2)>cG>U%y5rfgyvRcf1!c5d;V>dFz z4NuPt!%&>`irSS^{*Wm!ZHzYlAoy=21Am+pK{>Uwu?29TKnmN@#t5i;_+8#<{AVG5093}Iw8nhx>O866b zSZa`sqn9NTV`Y0FtvmmxJ`V!z2_=l-W+a$Q@nLSqs4FQHtv6ow?V9Xl>VE7nX7~H; z>GZSGG{5UesQ7NE8hkL6)&#|fMiKs)Vo7q!kD(^C!kn{jF1~_h)I46a#K^@@^ zfG*KmIK8UF(SmGh>@~61C)?ZNG{^smRiT5?jXj?zh77K5N@?XNEoSH7Sb>yFU609l z(6<;dCgZi+QgRPEROXfe7t9$anOM@%oty1Cw>t>rVcSYv^zdsq?gV+BLWi+kHKa!n zP9*6*4x}Nx$qz(RA)@)r(I01DDpH`a$6qI(rho0w)9Gb~LK?_#%&aMK+r5;U)gRsq z&WT-RJpgwbX7(3tjb2-+YpIme##+cIBUiB(r#tL$+SWZ${CGdID&GD@Rehw9I1Sg2 z;Ud#Ndu4x#8T}43{HRaSsNe&!&4tUhV~8@su*q%!Zd;BKKvzpHG6&rbexaeiVv9Wk zzt?sqbSthla8cAu%w0pcqNYxeujq`w)CYV#-!UC^BmCCwy9LqLKo@rEf5Zg?h}c0G z7A=yiwMhM|Wc!oP6kciMoHy3&XkLhgd??B7Y`!^;U|HQ=G<*71+RQTG?YYscstdy* zYgaSAtBW%1JTwcQxb^_6kh-4z6`-y_&Cq%&@>nq&M8%Wt%M0W-2MeGSd_wpHB2H;>dQQ96)i6} zZqfzKOMpWQa@}kd3nrZ=jisM>9XlK1O)ED8CtY= z+JgJQ8ljy{%RjV=JAO;>Xa->ZT;k}#Ibj6CPU-SsgpV-{H)%;G-FyLT*R>*oD~8eu za%cShB5S;a4|mO(`CW@1#? zYrY>Xyco_Tvez0^ zMz+NcBZwz8uiCEIr>a;n!g)n3y(pOJybc_9j-aa&~U*_P%8?Bu>jX5(iYgdh%OV`CuG%d6q9)MXAf1$9d=DE24KU z5c7#4F+oq?&_BnceCzwziy37!uapU<7}*F(%ZU|U!W~z^dAu{%g&MCWYN>dKOct3N zos#bL18C81iXhB1^opje>2T={U$W_um3jKrxGf`?9+#|lW0UD4+5C+A2uALx4s9U9 z%|T>2q*z!nyFEuCO*~$MM{Du206jc5F>og94yK$6PZ&iTEg?eMB3;|HRP(TsBn7XQ zt1imcWk~|{C2BHsw#IfKE6>_jQAY`*XjB}CitZ8FjX5-X)v|hHqEXR;uhMyWW-jI_ zt6M|k2w2|J5w-1 z%+Q7};7zM&YCdHuTUX-n+dw`#g07VZy~tGv@-;9Fw-BmLo)$WJ60Y!x=)589!|m!% z21W-)R3~Y;)uHPg!rIS8nR-{gcrd^6F{IYz&{IM35$hv}MalJA&bE(2Jfoc@Rd?7b zXNp*DqIiC|(}&&5W1LyI_Vyvp$43SruMp5_!EIJ4!K#-_Z1VQXo|7T3=sfL-Utc31 zx`v#chFs?pQqxTP{!lcZGc3cRl0<@fjLmwz@Q!lZks#f=W0zGP(4H*oY%kH)*Orf( zOf!B^e1E^E_;wkV_c>WB17J;k-f!1|L)gy3y-E?{(~e(UCpF8%YVoEb(ivj3L2 zp~8cvG9V71Y_?deI=_O<@ko{*o{8Z#GIS!OOQNWXg04jNhL@gs7@Hkp%=rp7R4{eh zh7?&s2CCl}A^AO6FzLDm>}agm-m4bmhZJGTV&0*!hXy};sambEPfr&uZ7 zF}Bmi+g|scyc(=bv^g2#3A`?*#Eg9Tv%U1^byu-2+v_``xG**`qDC;m-8*)LvuU4g zZtTNp7JX3WnxKg{8Okc{Z`TXl?rW!eF+l<9Iy4KZJRpVJ^lOc75Na*t*dZP)cZ6?A zK&y8*Sx9VsTL|vwG1vyxBWmq>NqA`2#S$)Aw`z^$GUT2)xh_hvvh*0Zp(>#i4ss&M z?Fta4KwUHxA~xIarchE?htsEPG8~^1&nGXtB(2eWE|mv{ZkghT2VtHfIaXIVRdMpk z*Jt|baVwAW;(E&QUq9rg`osWn!T=$4BYB+aTYiKHY3LPgZ{aqHH#kv$oP+P$ z0UJj#=Z#m-`Z@>fL&)&eLOusdU`&UeCNQH6d-`PVHs2f-#&2um%G26)cTUffqUx_k zld4xC4_+XS8IPG!H|sjUUUm&qJ@o2q3G!LJF@EwTKf9^?_?be_=$`&*SQ=tREWjN| z+*%VQJw#7;aDe9dlxei-QB0l$j(0`Jv+~<15!v~pU_mv7nK&3YhH`{c9 z`OLdvr<@dU`?2ij6xp~Hs0*_ks zuJR~aA6-KY&p_+lz!@28N(%vj&8X0+LzlqQAb5V}Ztsef7}i$Yh4tAWF_A=V&p;OG zgF|%jHS+BtA&pAlxBLp~5E0!~Kg0;BTomOLIy-(;SK}|z>e2(_&g%vA&IOsk>q6bF z+GudGobGH_tx-=a>MFn3$%zNIG=hg*;^vdC@eGSpbb0_Gmme>>QcK`gP>xI}gh)C@ z=lx_+dQE*zO^QHn;8S^PyN_UXl~RACo||?0_;8|*gqrr@;2Q3koAAg^qE0p~`^Q1O z5jR7F#|ZJOCmCMb?SG$a#TjV?dpENmZX5(P;-+9nba`C_EYIIycR?Scz~dk>Xic=} zcbt#XbV)&Jfw*+zBg%~FebDs$L-8<5nKDREa(sD++hkB^uqb(diO`rLPb!Z zBvJW0A-6Ko;$LXUC+smwjxDl(@L@wY=-vR_>LNXSF)k~qlnVJiZQUU^BfGDO-WGM2^YWIIzY9!sXhpR6J*+li9_37CxvUqRA59b#}i2=KFMWK9p8UC6dqr4SXlDt2Go zN)`^Ga*xPl?{HozYdg59qC_a(4-(u2pL|$(_OB0m^9wDVwWMS8EaR26=JM4nOdti= z_@Lpso4!24Mym>(om2eP?hCf;RZSBvRus)BLR7x(wd*kL4+aK~X;fhmZ~iv@N8}eX z<}26|?9EYjDEqRsYEUk)hm=4ziQHJs31i~w9p7duFkko5_U*DOpp{gh-{B79mMIZi zTUt0Oz_9***n7*cINEGoxCsdm+}%C61&2n01xp~fCP1(NA-FaYAh-nx4#7ikcXxMa zyh(7^#=pvY=AAwB?wP%_&v$;E>-?(jev0m*YCTKtb+5I;yg-Q4b>mcPkgjq}z1C); zguFvTeZ;E>@Imz5loxgeOTdcnI`c^d3ayYI`9w zwYF^Sn5;nYvVrFc+pUBFP6Sf~@cx~IbacGHn2d@Dw~WQ zMlb%e(@Va|VADFw=r|n-O*&8wlOPD!6@Q2bh8_!#>3DX899U)Z;NYbezpCSy0{KrO z2gc2XJ)6drE7D^dWZmiFMyw;Ao(@gj#kATq8XH;dM-|ep)h=p*NKb8_1@d{%k*uY> zf;z|M8hFYbvIA1#$qK7w-#cKizEyk`vJyDR9^S3VR3P;3QC}-l4#)!%aP!g{#=7S| zK1~9Pm20*p3G;b9%lxkR4+iFgWtexOfPWn{F!)lgA^4AqAR4#i~A4}-&_FS#$n8<<2Rka&kEaR9n#@Up(1 zJkzHw;gov)W?OMLI#flD$CoOrGf5{NBM5yNH?QF?9(k%Tc9k)*7uT;YW*iK9Y?9yL zt-t$pffq4HjXBlRl_OT1b%Z!F-snYG=Tx+$nyZ+dv+#na)QCg5{}~e-7JC}^JU+sH zf;gKWm`rum_1(Vtq{%p>>T`ia4AU1A96$LELW)D79c}Czy-~(P4{J+;18BhVx!t*B z7}|2REtLJH@%HZ4-Sqsa|Ee{+_W-OYq7dexm&g#*hTY-eg3-`NreD-%F7XO`+$6Oy z#sgF4Lu96F1Qns&kvAuLO)5iMgb`M#{t_B(vvxX#_e5As%c9_jF6fGOZb{KKJBbcG z%r}Xj`ZN89>bQB@|FWBtqa+2dGwrC~M)ioa*?E zT(+SRqVGc@`-T*!R^;^ddY1pGr`_lRdlN|xv}vC4ow!J{O$Q>OB5h|H*AU(_rsz!> z4}$kCn4%Oe89U-nrqAj!>!!{M*JxtcR@o=tFn7DHm;)irCOSIi-!VHksy&=FvLY&p zs>7L}U?2($xa)iO$=ftMg50^cWwAAsIp&jKI%ChDX;>aQ3X zx;zx~DK7p8=<=_CNWLw{-d@tvy4pa(xaw~D_c1$fS{fr;SA-IScu#bEf2&=thsbMPn7OdCM9F+`Am;a2?`Hk>+2`02Z0=RbI@ZO4yZ!tEo_~EO|{uU zw|=_7{3|eho%Hj-qihkE-bEyB=3Ds;w7){?|EtpApJ8^-vm?}LyN^_OHa9Lg&o(-Q zJ3_tQE^!}s|2U$iy!FnAI6HlmI!IIC?@s9!$Z_^ryYC)ZCoJI{G2DaN5AdHWcSTz|CI^YCB5YXP2qE6CLVd)R z{*1}~dIb1TGJ#Q?NXga|r44l+b>~=TvEU_#eS59^3{?IknSivyd@IfAvL1*x9g%we zWzKQitC3M$FqwEk=@?Za0i$wYG0Ns zk!p3_k;pEoDL<)Rmss{{U?18$$`{go^brUyLj^-1;!rMbe!v^`+(UForL<0dWclKGbUwomw=HoSDucB(@)d}V~Xi=+R2A1o1*UE$qQohY_=1(RlM(JyuSVZU6g}q_> zG<*GxE(6LFqhIMN%jjSZAYJw3k8~AS!rG+02G7vdNUpBFA@Ce#Eod6E{)m-)@CEKR z3bC4sMC;0=H^)rT4fpC!li{%tz2E%XpQ?>6!udV0_W#^E<4@1(ACIhk5DU(S2G&XJ zHNm1nUm9O#)Ie>rRhwuz+0yPZyyV=^zA+<4!PVFFj40t813ER(*yx`IQdrzdEv{Z7 zk#AT_O44k5Zk|BG+P4rQ+q_xdm;1KsE^L&P_AzbtTvwfP{pwRd`SDLz_4khYRNZaH zcaJQpv^jFClCFl?^z_|uS)aB)GKLF6J1J8ewA>6`j?TxS7pql+?jNHWq8ckKZ(0XQ z9u0bYe)uSu&Ii=T=)+?M$5>5_*<+aURM`S1Wm2I+3!?=X`j{yjX|AM zsLi-=4|yAP?ZY4Z=P0j4>*~CcKY>cso`*%p$Rc}cm0%(<|Ic{sYj+&35vr&+BGYGz z#zU@A#6^DS=}+%o37#{71Dx^uG9z63l}Y7;zSaAI=_JTY+9T1iP&~!P9N)g+pz#rF zJ4?JX2VacQ9Tr#r%{-K(dozf5s=>Q*Tydx7ZopsDt9Q_Y0`13nyxh>vOtuUQkJP)l zT!~t*;_LXQlj!H{$f(X@1yEYjnPy3UwwN0skE|{uH5Yxi^@142?p;Kzts~TFh{NgA zo%s;9qrY~M_K*h1AZSRmf}H<}Q1@583B1RIz%T;07nKxI&pe&rCzgiQY z>-H+_p_#r>#tLqfrG~qd$UyQf3F{3irRe$X2dGjWTVA|7E~8yJR>49na^L8@RXLG? zJHeC{mAMTWUi;s=mBloxktEKJM{SHezD;jQ;W~34Z%?-fGW(H0+jN@9q0L>8Ta~WH^22P?F6Qg+ z;OKM4+LF2DZUOh)P?uFBoc+koW=gyA;TWnU`L_0!W?{Tjv7MR1HgVyt1aFih=h!2; zjw9}Ck)qwfN z==W3}14$GxgbTF%Gk)=NXtrUAmEBHx8@UC1{+!`;~7e@%5IBmJHhu^<-6t z`%2fP!+by#ZY4&6PebU#d4El#?rSYcvYnS3Zzj8un>ZcPST~!38Iat~nx|O~@~?y0 z%N1ifH^_}^-p!1U9URXLcHdykZl%F9u!#Q$CC+kA;Uo(I8YJ|m56V1AU|u5KlvMsY zV@aB2iK#EMr2?wU)Fi~pv7QdzxX)ydiWBar>Hb(Y%$V5I@IF!Cp6jW76uD}^>FbDc z!@06Y^(=_EtXlp{B<#KT+Z#QAk&My*M_63Uw8j~h(7KFOC8nbzvt>j(qVU{rDm??7_;l;PG;)7r9*^F^JuT7q= zq_NZ<)&%p_m2i3!>^Rp;2B)z*L%RiYgWucpcfMw9yQtfn)T#nzpR3}#%4v`O_}pG| zUaohUl^PI;(BnyNuTP&8)J0MmKStKB%d*JFxL5_*dwH(jz04(DG1%kPQUr2rL31Q& z1h48TzJv)??FsaT?&9{L+kaX?dB74!#Wn9A8>>gjIcj_a4zfKBt)mp=aJDtw=C3ck zeWiZGl*JU}$(e02_Ix}y-I5?bIuLDFqM>YFaF~?|mR9AqdVsL)o}1KP^WIGljYDqe z4`3POIlk40qpM zMM|4_42siUEk8J3d7y%27+0Y~$x7Ncx&egjR$k)EYLA{P=Cks#WQ5QAMY+HA5oLWA zv+?}sbF?KG;dI^(Tdy^tR{8CeuHa&##%LT=NRx__u9=5*vu(Vwq;0&z1mBiPkx5+n50zo$@PYqs(SSOvPLy0~pTpZ3ZW34E9 zX^$co{?S|DALx32aRdL@A*nEBVRoaAtB7=aC$SU(%>%pziBn`^e}+io;OL zOM9u$X`8*_?t6!YYm8Yd$uWJaLvG>gQF~(yVkRRiTH8d^&3+{ux0#+K0wJCR=X=yV z)>m}5_1({|FAa6%CP8xbA)qr-)^NDonxLoKiUC+hiG9q7WuN;V#I|lo?1lAmSH}6( z-+%gFJfOd?0aMHzs*)~RW#?$>(#G|!`IcAqb~Q8go`|d4>_s^N*=I*&@{r>qj~=4Cr<3U& zMrgKgqVlPr;xvd}O@3V0Wt1^Wa<5yjHtfE?_+5f4K|jEe1<1rifZs!5U}Rc-9{D5v z%BsT(vNl*Xr4{Q5k(-wDZ)6~?V66ErbDn}8SVmZVgimjNPWBfoC+;@?*v-4YY%Ccv^$ad9-=2=KQ(D0w2|W;`N=Wa%R^$) zF?4a+thpuzs+RYVwLnd-{0xQ3Z*`}`!|$jJq0oZ6DFDe=Dl=RCm@mEw-b0Tppp0W`Js^!FzY#BMNo|3d+ua3wrlKT* z`sk`x1A&f1Eq{fT{?+?p?S{GzP9jO1B29mc z5Hc|=ZqY>6#W+8UKFvo{D?n5x&$UppdfHJT$xD30C610pd0x9<2SL1ONVIIizyPUg#ZU12xwzleY$DjMWeq;XPs!UH$1B)nrK+PuI%{rZDM(|J=O(>Rt+4-I6MJc>%lioVSG9AG zgasl{Nc10EwcmMNlKz%yRc;Sd40c+zBY7|PEN}-Lbs71Ssmkk-K2i7b!;**_M31~q z?gF5eJx9BC<$FIS5(G+O)B}V+O;Cki}~#cU$7)xw{O%NAD(urPw&^a8eTE>;}#lykU)@mI3i0)3HMrEWVM~CE(

    KCVli@O$bzGGOMdm|WrcvBiUTE%G1+J>n)rTX2l|zJ`Zcs0nDwawFDH60x;(rK?y8D5%tSbHVMbH|IMFax+(;SG3V|1=!|?w~RmYj&2FYy(Uz!l-^0 ztPv=O9OXtp)yau90E zj$3UZDV`C-Wi55T2Q34czxE-_3ELVS{^1e*tIvMdS=YyE2Qnqw z;!mbL&DjTJp$37)S6&g5ZJox*^cQ_}1j{cF3>}WHyY^NN0+YgrD&i(fxXs=oTsHRc z@QAhV+vO8%POTU+1H;sUujRIciEsBqR|T8rorMea$+59aM&h}5PZ2hkAKg$lKZZMG zZ*lnA0RyTV)?#^&TWCFkkR&UMpOSN}>@$jE>YE>S^czlje1Dzrnwimb$gMLycm zr5&!`^RlK#V@3b?Mv&g!oS+>Z+rGpR^rE5pFlQrZ$-qP@NOj6&65Ur*e(JL_;iyAr z7;3uAj$sh2L5%ms;c$UviF~vr@4N!VWQ^iZmhM-949EN{E+vUTX_ok*bLJXj#n>q? zEE0wL12C>ytYog2_%T_~%l884%;aQKvduG{S)hCdaGKrB< zScNx>wLluxA!R|qRz!gda$H%W3qt)X^`6nB&B_K=0|BMVvI&^>yP~i1#^EYbvKfyM zXF)9Nb_!)Pe07z3nh5r0{L4H%T`sTvF(r}nk$gD+jWYdv`1fzt5l#T~0|J}%giPKD z(BQa2x)jgn5yni?nV7|dmTK=oADVqim~XR1nZ#RGjP?u|mZBOLNCw9sFB)BJ{n=QA}``K>QO zJw9dC)-L|&9!6BCDIQxUArSNQa#)MRl|Dk2w4O)!Zk0wAakbRxHhW^I7;6zuExM1+ zA03wRGO`JhxdP0vWeJ8bNwGU10jh@3}?hH63Chdx*=W=U& ze@HqB2GX{g+BvkB6zmz2S&uGgNotx_45r+q=phlqdZRu}xhc+Zr1txWM0S&b;p8VL0 zCt}_KkQJQXm1u*vu?#=zHBypNxaXG}nP;%Oug8T@!~2UC5Tldgw*}37W47pG@WKbE zAE}C(Qn`cTe^+_`<-CVZT583JtmxRXk_0P8kF{@v;XN>L&`C^^X0A#>wyAyZ05vd| z#}B+0eOBTPOkXx)_Jkb8R+r_Ch)26*!{^&C6dlMz(5q+oyMkD$L3?aO2M9OP1zjL7 z4T4UdAwKTja5nnK_>?cAqtjJ{3amR?%u8?$;h|lWT$4_?c-N+S+woCBi$6Q+Eu?NG zf_ZOQ7cBm}VD|T1=*#)l8Natpw_iQYz8kg@sg83bW-K5NiFWpL?>-EJpE0|KTrqz2 zgAy~;#t=tSu6CA}hY=Zns}s+&%D+O8z@6!#BIXmh2a(=QQ~=51dIbmU8Z7#Pdci2E z2!kH#Z~MboYR(q~=VA`tl!t-oU*VyKGbS$?3%)B+S|++_Pf2~Z-b7kRSMv%4vBSX~ z@#6T0x5cr!tZrOkjS(MCc}KVS$7IdVc=aN`+HCZ>4u|) zH#@{+_L3;=5%wj{?y`+bgY8(@>J_YhIYc*nIQDS46B^+E-9;1XIo>%Kvce@LtKo~h zDM`??1+dbio${aySRqBk@eEPahkFI{QJBI&$;8&1L(6LaSJuvx4;9Y+ZBah;`8F8a zN^J;^2o_7PStfcDTg%S>aVNP`W@$B6C@b$201x$9GpIIqv4&@R?%`+}?nN+I>b! z-`5EVlA})?l(2tiH(Wn=U8zyBjgf^G#`?yd(fTm`PU!Zp&M8I)Vv&w{JBm#`6K#`e zc8&1w`Xvf@+c!AmWmU}Z)}DFr*UvYrQ)|X~ zW$lG0%R=N@vrgUC;)vx9@Zd~%|A1L@p-D4qYy?N9#T>}){BtSw6*}eY?&kj)q5KW4 z|5q#U>%9EM>*@Vp!Y~P5k)-OT`mpNwh5 za9MWYMJBA&e%RAqU~Dt?rq_wCIQ{hQjmXyptE5;SsAP?s2Ak|UsvsrMyzKd3bk@Ig zO8E?C78K}e_}|c8|GdEe-Q#8Yv!g*U<{gLU z^90S&MoACCJh#Wbr`O!HFmA>VItkZn#3SxI00ft>6f`agKyrc%j_|fJyH`EA`+zkzZYnTx)Ll!~^a@Qt9E4Lj$UN5JlD< zDHRX^WvX_!z&RrCK@l?m?VS>Ek}mD!D_;x(BUQ z?ePJ?Iiy2+)9CaG9Dv0ijopKepy2;^Y5#ZKwcaE1?sRn5^o|Q%V4QNmjSEH9@X#Jo zI<|dP2Ra@N#VhBM3?LIr_*eO;{7<5B4iuhrwft2+sQx0gO}QZene;EBEB9BaEwKa; zZN0yWE+B#bEVb59i~o0N|FPHqFS%<`qE1Iv>m!{wJK~S+NG);nE6~El@8-k@kE5I` zUnc@MS7QeHu_SVFb;7mkvNoTb*66bOL^=&;3{{zk@tTN0Z}!nJv3J}K&}K>7Qv)_R zBdP#Xe%V#<+QdAsX3nHqz3tMMO*`T{YV0l-Yu4cfP^gIt_cjqv$ehcW6A7Q}f18r7 z&I(wVB9Io`Wo-wGeD*d^b;2o`9!gBM!x&C>J0~Q2gK1s*Z_LFLa&B3isFDaYbRX{& zwJ`~lI;a4)9(fcOui}550{_Pl8=)Nzbg-+Wq#YN1vMRWzQdc0y(3v1$rOV3d*vdmd z%+~cugJfqWM44Cd=q{mHM{N1i>5z+j^!Z{BM;iOvfcM@OA>0_lg0@S!Wug$aW*nd% z%5`a<#B`KODOP^cJcK`L&YwD(!3>c`0G)8}QnQhYsFBD8LXewS2(jqxJ?=k`Y7Dl) zrE!kY>?V+)(m&65449sfW}?w5FFEDrgqPN-U^{3SspAQ~j>H;AzSe%Jn6>(=qb1*5 zxSitkzU>cw_ph?&Pw=tmXT;wGzKCXKQ^B;45P>xwC?sF&tsZoh;64jubMkjTSL2D^ zkR-?mHU$9*6Xs42P49FkOkbNr^UkCJ;!`pk#NC)ho>+?P@p&t%cN8^@b5V{eDF!lyAG9{qd$&8OvzAN;Tx_Ae?Wf5&$sNRYnQ>57eNVB<6S|nA1HYWk`=n zu3O!;5)CZehl^kkwCyXev*p0uM!BLTgDq!2KIbaU8t~RbEszldDRaHPr z0*@S_{kouxh}OatxyEMW>(xt7Mo*=rqMCE;uwJ{z?LL^}D58Oj$9vrl-Moenlaeh% z6nN2E(2>&*T`Q~g@$K&8jUN%NF%;pXElOF4$7h!nOSS70CBUS#nNR8}4Y5)XvPf*N z$X;=it+rOqpC*FzZpro&X@NdsQs7W;Vmm&;={M1Ic=T#pL@XzAwH%w1x!PtyDhubi zmJp&w)^Ap!d2x)y|AjnpG8!iI2J=kINxtvoU*MgVeHQpl_{BNQuLeeL9yIl=7wSXhaEXy zOsj>-J0qBuTEb1W)swlEA&U8+p13Cx1`s5AZ+rx)fo@%jjj%H;R7sCi=Wd2H>$kGR zvZ#{ivSdMqK}`Y@N7cS1R-|WXiQeS{nZ2|vZ`FeFJeNBq9%6*Y2ojeNPKmM??xd48 z({88X*40!T$wqU0K388bA9%u0m_1g5>{ly>#oWY#fz?)$7a6{Ue|V6{ww1dz`b>4X zHfpZy0|Xi!inrhGBW5QL&snw6Qmd+{u4|BKjP0waPwUq%+F!mdd)`kF+(Ujc|1@ij zlYBD`yKbWBERmymEdMb^qvmvsKJTaVgH`qH8B3BH!s{I$5p*OmTifyE~cCL z9bMSvGzNZjMP+DMH_l66Cd8A1GtOX29J`3}kwR-{=lC>=i67pAYmd9Z%q`v0#wCZW*u#9QdC_;=-*~?-+K3Z_kQg3%WX$FL6u!hLA~$2WMHITZ<=qg# zxm|K~#528+3hn3#KfQnZzC0>%FSZ+KGe3F^FOd!HI&?KCd9@R(S2aG*67$TY0h>$A zSE#7}P#Lj<7w)l^7mz!}MC87omut9Wr6nyG^Wg=7(rGw83-hUwn)T9u8)^S{k@)}C zdafM4y&qjTHg_MCJ609Q9HBfk_K{NputeIg-yUfo0EFfDkJtgI#uvb69tgAgP-ys2 z`^dUcY*~EuA&t&93!yDAsVn7<-L{;3DS?FK;G6WfSRb1<@GUALKaa$ZY1JT4u{^jt z>*ndClj3||NeJQ$P+rOP`{_k!D;=dW!_G|vy-^R7^2ng~D{(W4V5ZB*U{&8HJ5I6AQ z{~Fi!=a@9vUqjXY)1Wlh6i+XO5$6HhshgV+I~4f~#j|jHGoO!9wA{WTp~MoxPu^gm zAl`{rClu};dpxEQ+L%0cPj9l;TKiDf*MfUHlFoCR9)DHRa(@S3hWs$P0pDMZwA^h& zvW@OPwNfASh_gEr# zXk+(l>G#Z!?Nsl{_goBl$3(&}8-_%$Zq7CiB3rKVz~NwfyPM1OJ9tBjN1$=Mh{c`~_;hG64 zUUrK&qPivXx||x58oWQ-X*rr9b=vQTFt$>M>F4B(<-KfY@i1j@CH@$Xdh2knl0(^E z%#QWzeR*Ex=&YucLKSD+1@jMH40&4}zIU(EmMWZntxgu?L=iWo;6A5tV{PkD%5M=M zoxZ*1^B}D6^~W~kJ9g-sMBMOFw9ermxZpxD;j?u%HpoKEey&0?#w*Be z9{;?cT;SQ{O-263z88pd)K2}q-GIvyp2ks>HOLdU@*2Av7JnvEHId_V=H=a*6?IVb zd_Wx1^0U%f%MJLov6;cj$ss3Mi$aIf++#|lOij`saauzs-8Sf?*3S>QP|V&d=0eiM zZ5oDO{rWc3&*}rD8{r;?9`6`jwI2uQg$#lj_zW#yEoDZjTFZwHl`jcgP@_<4K2Xhi zzI>0_5X~YsK_fWpqUJR5VH9a}dP3n$Me&NmK>_V{PMX;x??j$*+E?o*i5xgpSl94^ zRd7-{CB#MKn70bX6wzL-@`7o`D?M*Nrd*F1ze|{YEd+esc%TOrRxFVQ>olU>@?f!g z+=yGiB<=zvXNv}EQ!g>qp$`3OenE*`n`iY(*=}+aVr(|OQm(HV2baxM62I+m5LDhr z_y(T?_bM?b;C!osq_WJ(#%)#gJX%*%TR)#w=BkTYES^ny<5C*WG@flXyfVcbC5_Q6iJqiaRfin4l30e)3^zcTse!^yP{~S8auFKaGmv1A;qpF zp=>8_P`wu-=-yy!=+SlIZ3^%Z ziWnSn(~1hC$JItQT$npuI(RA`|z z!4>Xr+abaO>2)-BD=6|gY^Qd-JZM~c+J+dVM?!aKQCPMYtB~dvosr1ZtyWNjp_b~# zN9W{(r5rW)IP|^dB3reW_FGhZY>#ii+D))qoq?IbljZY1m|RF~CBEKEUN17wJ0hga zr}4EX~HNUx85jJAH9keTS zxD+9^3rVb#$4_2Q{OiZ630g}v_y+C4O^x(Gh5`}VFYo9DK z-f08fCaS-jX$&mapw_IM!>{XJ2u?o_kYpyFxGt6}7NNw45#R-!wb3o%4F_?e9(AKp z7YYsiI3eAz7e$vcIv{6kPjXQGr8}NT`&Dn-d=x#`^b3;IChKoas|k9$U-hJ|BVCj{ zRo0ZdT#NCi^Xq?9#h_p zYS4WnI6c+l|49_!%Jj8zL9AlzQ)?QDF*ZDNZ-{bSa+{xyDTfpybE?2I&CrL7@&|S*FH=Xxz*rPe z&Rvf_vdXKkPm9Hy9NBdz#~pR&6)&pi1s`JhgXm@|b{LW_Hbj7DoLI&dZdS-)<79s5 zM*NT;cc9#S`jPP6DQ~>!;75cLgahl_?-Oyu#9S4Rh#xLF{CwsyLXnf5hy~b^FII$W zx0@^@0n@^#<7ocW=ZF1-lP9aMqS1*JIaAEtkjJ+O=e4cYhwH7mnwiFm_OOA__3g|l*zWF z!D^m7piw|{hLv_7Ah}r;)S~Kcpka?JRp0A)WMq9f3E%S67C<{?W|sth2=5#7=E9r!2uY8+<~BfmIm_9WIm~4c*yIBn zdqk|e`;1jT=sd53I;5krhAHeh%lYLzB@#^yl?W%h3YQX~s6HEODfLl$k7#^edCiFb z)W%&JdvC9P@*(lVYVG6ZSH*h+-=`3ee9cK~cCE*#!Wm~@_yxsr0h!tJ0J1$%t)&-U z)NB%6NGbOxm{UY=CkUw)_Qk$D;YC0~aDdwB_}fTq1c-g7Qr@?(e)rJ4^QX{=);Sl7 zvTb}duT}*Oh;S0*4^oc?y9_nl6@6d6ZLu^K>JfLQ$f8ZjczH!+ zt+Ya8toykAn|Zbk#gZw(qr9!XNV8`;F%lOhaXw5J|wr)q10;yv;LqmBUy9&aZJ3G`qS;# zm1lVqAL7EQ_*$>z36R;<)6Jjb)j#t&iwh#%+gB6Vik%Y?nZ?T|DkkubpR_MW1@>A) zbsym_Ig0y?^Yt9WTvwNLHydHvR#}jG9`;mSr`7tbhlAkUzohu55YNBzczk>X^%){|o&XR^tTmj#x20FKBW~xA< zSp_IV<+0~k^`5QNL!7W26EekB-{D)ITPBmenk9nSDW)xzT1=`_CLa8iM_C6ePL)gX zCh@E!^RIm*}CCB!kVb2 zQd}OsMH_IdVJwSn#&eS#Cr;4;-HQ^kZwGoGCjIviU0+-~Y=#>MnBZ<1x%jrW)rpV&9=6~c!Z4E61$u@1UZ87uL4O12bNXPX!JNO{L)ti+|B z?r+JIeg70UwKJR8ttVUBf+3!*}Ed7s#z%s4(_do#On&~zhw-=90q~7F_U;`FLpHkdo;VJ5)FORu0 z#bv{m+>Wp>kplz=+2HFgwqf=^#LyoI(+tQ9YbFc7J^=ipf;P-I{kF@MOMn;muFDlxE&O1vc0Z;sHwB zw>3{NX0i}8E>YKldFjVQKGWId-=8S&2S&r;w3PheWTT!j2ezd{H2jdj;cX=45c(;x3s`<9Jx#ZO#Sh- zN0wOD7lAGL!*mR;b+gn}lttn2A73ZNGqJ&x9P4Gu!s8aehSk=ACm3pVL)AIWpB!_c z=&4?+)GUj1NHVu-t2E?$V`WY-3Ofm%apAm;xu&&;HYJGj**FRTnqU2veW=Ip?tK@9 zicezHS$<@W{$pjZlmtyA-AatPn8@N%>BEO#9?LWg=`A=~qZ4QUghIEt%ffTEt5i=N zb|2eB`GrcmSfj9aWY-Twws7G=oe=9a>9#`x2EvE}1k?Q@V?X!D%KDPQLH?u8ZZj!T zq{F(u0-Z=-8Ro^Tw_Bd1YHnEmrMQ}1wzAPm(#_03$dqB;6bmt{a{ndZn}WslHeYST zODigSsFPi=8m2So9=@svUFY@Dza{-}P#~&`IO~GFC6oL4c*x#c7=;Uk9FP85={D0J z8UI*k;k~{RVsNDUU9j(zQYF-Xt$*LZ<5nlNA}KA&=k#loQfUK#+|Xmk66DewEzTBN`<@(NY$5^@`8{-tsYOBVIk_?m!%q8Hy1W2}Bkx{rp4-abt+zN=?*jvi|XtdwB+ zRUj9K`NRMZ!}GK$nVKEjAV*9d#%ie@JCjdp2`!ZZEVk=f*p9#1bRXatu%Qh!td7+& ztRf;4f20%;^_U|HfQK0Jt#e;|Wiwo{7#T=tkpDV`2LS>yi5sbCjjb>$;Z!Za*L~Q@ zS-Uf{wByG#5h~S~P-+l$C(;ANyx#;PG|0=cPOM8Fll6s4dBR?pX|{9~vlw(ypxQ4K zU70+=h#iY)43eC+LaC&h_4M*|@9B7M!Nmvt$+3q;QOu5@DMi|{)Nn8ql;Vkkd48}G z>6Bblb>230ftE=w0mteJvGD}~3wwgOJSV2{+#M?@ z0PdqxV#qlWH~wWKoZ=ho!}91tuB7Vd_?8-01NWo>@=#KDzc;$m3>dn?F)$bUp%Lb; zX92Aa}obrZMHNfrioOJDZVVT-JOlXV^Z9O(gvdr3Ov&A*W zMjb}ufPa1!>JD5Bc2I7T*AU<`9&moIc)#VKGwX>=rx^h8eV@WYP)%kT^`Ooq+K-|P2; z%9sIPze4*{N3YQ84XH81X8EMuJA0$OcO#tW?KJ@T&KX8F(%ugMT~|5w zXHh<2I(H>hZ>_JjBR=01jzQt2_!SFcM9`ifaetng;-@fv2hnjNtGVC%_D#u0(#LDG zr)G)|&2|omn3A=z27|&VRELpvUVO@$Y0L>AEGZj7+JDWk>Dwn|rL|bv*ql#Pvfnr= z+$7=lV@HT{f$4O>j#DiBtg+R=yQbc6()!ie`ZbZpqiksgor~evZhZBT{hnyD3DLdzy#K zO3|?`LDnk+IHnO)Kt)tRM}J(f!%`cU4Nx@>W3Zoo@;%xvIN6z=ifp}fk~9XXg9MwDKQ z4#i~LZ~Ub;tuKELOFPi$aKOQZT6=ABy7d(<=gf zaS*`Zl}D3ckAw8O<%A9_(^F_ZnG65C;hXNflj#l;4 zaH*waz)vhwAZUF5AyyGe7WjhlwREjY7w`iXx)01Fa$C~t0TEIdjgL**lJAU@j`D@&vw&%LB}yOMG3P%TWKHB=P=(bGSLr(lI^; zK_s!Vw9H}6o7Ow5j~qt7j4#F8Rl1~J(taQs`Of{@n9I)NB8xCwnBBJmoi{$CG8`bV zF__Hz^6AOa^O;g4ll8O-G!u6@9Zz6^E2dGF&hvJd%Tp5;kqc03&W&RCrH7o|^uLrDuA(b+)uxar{VGZ3< zFQ!oYgUGO=7M2ypMo6W#VmiT`A?pmby{fsW^9?l`;oyH=Qb=1rlhDFL1xGBKHg8e!p)X0aL_KOJx+s-qa;_*d-q3bz_HpEFev2whC*pZ8 z3Ac-j|D$s(0ASsSFn`~I3~!lW(Z8KxMU1z zca0WN$3M})f{bM;Yoi*=i z8vDZiV9nwCGih5$u#BTQgKo1DougKv(Ac5bC%axvDr?xCZb0g1?J~)pnL6BG2BC{F z4qhn<)SG-Gv2jtYLn!a#dN1`uOKs?(zb(FSbOY!quRrw4toZWcjMCitsUh3)S3qc? zw0TOX(ggh%#|d74;MI`Jw=g!w`EIWOfUt3s=zFOxvG^+3N7f_kw)X4yLYz+h7(dpY zW6FIO^YS?vz%NF#aC9c)0^`C^LY_q2ac|*m?`ZYZoWjJ2mOJF$aMimSs%Rr|fxLFk+AsngGGB3!j$ebEOmVW zdQP6s+Uyb-Xw9JhJqRnRXA(cjig-)A4HD^d)xw*mQo7#n*D|=TxfJ}tsM*y8SdlMS zKza&3?RftiyI&=ggJxtN(pfocWkckN`ZafxU#h;Uad6fhpsCSr5cKql&5O%hAjvD2 zy+QH`ZP_kDtEq>c*D(RzF!(%;mY*TFL7%z97lcZa$84 zI*o1pndK7?)=k^-Dhb=^%CRr7M)pG;b*nP(?Xj1j$L04>X~ZYP@qf?l!gv1`I zP2@-M3lSrI7QhH~-DGn(fmRJp&H0!-`XwcmS&%RbLbFRVS<(N>@pytLhNsxR74G`A zQtA)9cyytV^s6NLH@slZ#^$QtoEf$}&Hu`?Tf>Sz0LS4s z_>k<3eViJ=13bI}qwG~vmqlnFj}Cf> zgNxu!uq9od;9AoCoBoMG6cK^vc(nDt0MA(9_170Jqr~znfG=H^3<}|!DbDl+Sg|BB zKb__Ip9v0$lod0Sf2U@+oveced-Zs#I$8QydL@n*H(rpS@VYAwM-RtTL@sZ$v3@?h zypPsy>H6^<7x>m(5NDVjpm5BYkIlaZTzi6O?yX4A0?>?!QJJhuD~pii!~;Y{z6E$7 z*|xenE&T#$s{O&6XcD$_)*iC&BXvxuM3~ze8zMMU%h&6Lw56EqmjL)KOS8A%EdV)e zQ2kfcnO^zoBCTEK+yg+X=Is?#Sx@qlM{ue#C(PR_sa11ODPs?rtIDkWFWkNWPlg`( z?_TXYm{{#nULZ8xnAI}t^_J>bRybPDLQjqb(fq$?0N=?RD3@1YkkmD|i@|RmAj;!m zi-RVSU$x_kYmDYNm~fcA9JiS}1VBNVt*MxZ$C;X6Gyh@6;mr92m=wd?u0TN8aV>d@ zatSiRr@Rjl9l_M9zNJAWvf;{z|6Boue8>LvNZVU19jNmjX%>b;^Q*tQ_D^>pdmsNCKZIi-AHv^gsSOY#YBEwJwK<`emJ;ya?w1YVvOgkP%Sfw= zL465t|M*gRx_6WF;gn&jYQ#`^FA&W~v$=eI`^0AirOw|i(yBMQn)kq?v=0&{3Dwd2 z9@A?nn1j}>crq_P!ch2?0QlRbiu+rmoin^FrsTllw9ydPEnK-OYb@@I>b(8nY&)K= z%)o!kLCbD=Yh#Eo3}2^!W{=?Ca%WAh_}qn9}V> z5=V20`N2vwE1W^f{5}`SI$7bx&0{Fou1{+<&CWGlv97La9Rg;z;43HYV4G_HZwg?O zy=clkxVl`zU_qj=fU7kpxCo5VLM{AnMtv8D+55;G??R|JYAH84mtpYgWsq7b)Rd0d z;~hKkjfLNp*$?0P>{&7YD;?Y!w`FXD5+9OE;ipY`fYdN^QwvSi{h;oN$^hyyKJMpl zfKv-jQg&=SMld;xvi*VX2cK+xWDyrzL%Sl%)a3c48~0zxaZCEOFLt)y`#AyZYu8;9 z>O)mP9+B~5-I35fn1_X^w%)74fn_P>S@^eciM^-pF zO2Hye�XCH$N)YR9h!NkyA7j z%tFWNi4(v-mI7Dr4BWMooU9QE)IoGVxI^^j7=ZLU>3xV%UZ1T1C__oCvwLHKWX^&= z(WKxPi>J1)M`Nz!M%?%P^O7hkd67W`}L^{$5T~DNle~iU)Gwpm`WquE9mi$jZ#}MfSxr&*gqOVy7=lfFAFG}*h|athjMz1%+}X29 zI#c8y3ETSdE898mj}fyW*D~FeMwi>Kp|y|Y#T6J3f0tV2y2=KN^4y#HXwR*#9n+!Er+7pDfBY$!kUV>Ry_K5}Qb3FfRVvuzwB3{Ar9Ao2f^p}R(1x=gH()fp_ zxNl0$1(nd88&rOb%sL!5afxxVJJNY?Ei`5if*?SDjw3){ZFfx)yKVZ9@eA)a&&s3D zl*l6s1`uI5@o(J6B?>?7Pz0w_Z9OHk|AAcm?HFJXjW~z)J3%ifm+pRL6)L*t zCMJbG5m_?wYQtk|-5zNj7Cj+?DX9;3N{`Hkt!S4#sbCpI6}pOClNMi+xEI_`_u=(< z$NTRxt*d(8$nS@IS2gJEYNfVv`C=BhSMHVds5f)ZjcLr>hVPeIESLfESR1F)LF3%i zI1{)=diDK$*;8E$fjm9(abCT5+c=g#Au~_#a^}fJ5 za^@$y%x_Enfqx|l=!6DwWe5VBA4zSCXnSd_?H2&KR8#kO>pYe?{;xyG>-Y(tyMD+W z;{x(QYl5SUk77hW9E0e)tX+Y%#vxoh&vLmmPr~|1zwKuT&7XX2Z5b{;=8Gu3y<|N} zW5o^W{JUQPn1ufHP%yD?=UxUtT^=@L=JEbgJX|1aR*_EKCSsN4-jIa6{i<-$A$%I~ zh9iN2aF3xC_|5%sJ4Rw5CTY(=%FL@eNb4smjjQlxrIWI9tp#lJ8mwMl`RO3{uN#~I zp^0U^^#M{O4*`A~SUhe0-gvs@7LmlgTRFR;W!Z_h=YqIwz`y*B1k>g+Qum*_17oH> z_Ky~nvSrP&cRgj72a-=T$hgGWsAc(qZo8-8yy*=tlt>77$TSwNNmK#KVzqB>zji{B zDi7vKN*=%N3YJACFU$Z>*7C|pMd|HtySj0MY~H|?mW$S8iSXSqOJ{xT6@B#*CJYM` zjoUNtr}iYN@HI>FpmS%(>hjy*m6rPk3yr5&t}m)dn&gnR4*?^Jp>)k{_|^;&^jCyhltLI0vp@#B{giOjQcNIkI z8HsYugzM_Jt8lQ*`RkL)JxRnxO6=;POBTMWp`0&T0=EAJl4TIA^&0g301$VQKj2*^ zn|OW!r1K^RZ1UsxhhG(&|4|az%*>0jWSkp6-9U-ig@cIBia@PhBQXr z0%jq+;Qe{5OnXCVa~J=nu$7`%ua&BNG$oVd=%jlFo4BLTkwR^p6U)Bw632YAgkXcDpD{ z6pb=st;y{<$3+;U8K3}1*(aVYGq~3k?*-z+l4gDf7wJ(9>Zl5_obRR>4|cdP7s5Qh z3n{a`?%SH)JqRd0`*tS;2XQz1&YiTy-aet+zpG_Nw5=F03%{#rNF*gkOJKROR{zPsfcv4 z2=ax33q3lQEZ58QoF>%fIe_Q&U^Kn=l=9u=DeB*k-@?G>W}`m@`%J$sNcr}!3-+;q zR;7wE+m}VOFSSSp4Y*Y0&ZjLkSN@54-d;y9W*gDbl5gX;=0BN{BsEkgEU8$}J-Dg8 zQ3zzWPrjXeMGo~+-SX1Ll)5n^7(HIuljl@}2fQ|V0?&A$7!3W#6AU7xpLm**wJ!(D z-1IqUxOT4U*$!=7#8MFMt?W`RVUtbq7H0q#o3|5tQO0=J5r0JP4N_Pi2V;H-JNJVg zcYexa=BERPb{)LVAW5=RJWD-CB6kle&$k3jG%y`aA(k&29yg?OHqV<}=ze+^=%7 z4=$58U@Ow~v$RIs{&fY+#EvdP+b* ziN}cvO&p}Y=SsF9_S;3prh7tD2wFl~shs^Bn}-LSAsSJ}XGks#+w$lM0?qKLo{!j; zzvaVp*oYw~djT1J7`6G2E_5+&P{TKiR!)j0-xBveScazObG6eOiB3dQjNrvDoz>v)u zV(>&LvyHZZgUPrXS!S-pf{5a-^*13`582gkr8;Koj@rZ`%}${nyhmI3!veKtyiYc0 zGLb5stZ;7*89MYS`I;D6jZN!_rd&14sI(EzvTFO**#8kID`i9Y)>ET_^ZU0TNx&0j zuRui=+#1{9UfxXdCrEV1F4m=t$foGKwA4lr+Ob{0d{ze1eX2`^mFn~-f4~l4$)Y$oC0B$%uC`CwGc$Ak#OsgDg zm3my5Ks)jH05T)N-wqm6EWq1d{PwJ|wSyv7%mor!#}5*P-y2zEkaonsbxZi<#pQUMysI+h<}ln0)rt#8h2jcc1y>uR5>n zN+V-rDMNLVZ-NInrJV7HPUt2NT5tQ9fhetgzJK3`Eok#9pNRWWfM7C@J-Q%GP>*SO z16Y5=InCRvGfZt0#eS%`($jYD9uDT=XqM{Q^Y-vrbHyKTGV7l8`h*sWlTU@|8AeYi z$}n(bFj2g1I@@-%6o3O72s`#DUN-mqJDUDz+JpgLDWWE=sxV#8HbphPwLa2#OSL zP130ABop&Pq59Q!IXr3s8cfoNscu!&ZPT7jwyX))!m~yges*R@ z`?{Xl$IbGv$!D?Qte-|+Sal(Ru!w|VE>UtUnq{9F|6KSjf6 z)P2XY(U@Bp^*tOo(kqd2;#Q!t2M=2$oMDqFnD9$5>lXmC3=&2!#)5-~J>irIf!a4b zIzv~V2JR)K3|N(csxOVj#lqP-_(8yTgNiv0Pw(T4&rMDtfz9mfPvvrF>GcS_^T8k> zGa37igAJ4(H&N@WGY-fJxIP7sogIJ8Dag%4?ya7%sOI-9v4cLfKOQ>!TIBwboAicQ zB020}QzgBW)UC0r$Ru&Ac^xQko0D6}>@@oqjSUmXLf+b@+4S{37*SJ1xUrMls+NDd z7Q@+A67Q>Il)3B6W6Bb~%o7FDPwmC!s}oio1wO#5)Fyq!V>Dl=pUP=--tnm&J3@EJ z_jpwr`j70@6|Dz*Jg<8B6;a>Nq+77CKF>9e{&*=`C%_Yk2rsZ0%RwzKv=-H_HYbmx z00&RR3k5|!Y`|sn$_}=E?IC5}<;DKgIZwReGJ`@xx+_7>oVB%J945g0H$qnw;zJqr zXQsiDBX6+06$0?-IgIFYc5!=pV2#ZDX`=f4meEK*XC0=Z zX=uBr5f%+=NTiO1#rYAy1b!Od>2q>QQ@CD%BMw#>Swa><&_({M$9^rrHa2J`!NlB($yC;oiNsoz z`RCZeO~p7`)0^n&bJQ=UFZHeZjY&z`cD=?#0J16*u?Woj3f9#Ff}<=Y8%4+HvhfvA zHq{PJClGw$I58Ps&glp<#GckABVWeXmss-rJyS%EsuNe^80%s=`q3p&T{@VgN3Zc% z@X7y5dEd?sm2}Vvw$SeUNJDwF)u+1!V9y2NSLu&R-h)6@ZVXr<}a`&zBGdUhR9J(5O~bg*~93 zkBp@O(gsW*lZ|TX08*uX-XQ?z1atYcG6iLbH&J)j+Ml?=SoMdqlB@GUU3b7W4Em%e z*^Mo*BAcxzw0R0bLy(8PcuCL1o1PR?QWJtr&oF`Po|F-n zCE{0)B=+c={uCl^jP)cRCSccPGU2ajze#KSvw-Nge6DfB(`>4Fl!K?8_PGMA%q)G| zaj^~bcSO?}w>&TF0O;I3$QC4A_9Q|)>+McQQt^Ip>r z23Z*9UwrwAKCAS(It__k*n+{b;PY-sDw$}az~5N6$U~1_i<>;OVV0(Jif;$M9fkVj zMM{1xh_v}G77DTDh~!O`Jl+ksW&kfyX8BN?*Yh%1HRq`3=9q{Thsys*AmtRlY3-b z{v#wH8TLyvx0CiiB)5l#)R$L|{0MsQ!#he=}-5)Rm#K%F~{fl}p%;#}Oxp~~=V#QWm4 zz9JLr{mcF9Y6i@oZMmwJc?|yU@WlxB_gj#QxuGGN365C>h~gpp_xTXWq_4fMT;v31w&IR`(l^-#SeF-R7bSDyT^{@U<+i1BMR=Bzw7f)zJi-S8jfc*a$ z5Uv@i1Upl|(r@SWD8KZP)ui=~R})`>Cx$O>0q*iMm(GsC(seM^9s0*WY0U_7Zo9ix z1JW+VUkUQ9Wc^3pX+%E99*uno@+q$*b&MK59iO5<|9O|6NYGbDCfzKRu$q7{FLxJs zk*5V?$8iixbo%eZv1v}G)9~^3akw!F#p&3!w%Y{t??rr&YT$Q^V8 z2`eutnNBTmvYJ+~d;2$N#neN4{@mVuO7Bf5i@T$g`gwy@0>$Z*mOuEkEs;>Qr#Lgt zBT8xhz&c(E#nyVt#N$m4hzWfzDs zLit6VL_eZ?7nJDwhaV%wP=M@4#-ssJ!#baZEHa#?GJ4y^ACcTcoOiQ~L51#w7 zhrV>a6g*kjJ+Z^CynojEJ!(%mGqwt` zWVeFF%x-Az5vdCCGtUIX7iq94lP%j}DB+59o4QO1-hB>QN&wvDkVm-#EY=7mUqYxzpGKq;kssKoeqPDn}_`Jb6``@;emfp_}@N5X4YNuA(Y zopc>`Ats|zs60qCZlU38EB*)$Y9-xcADQ&8z|;)%qDuAkFUiNdm&>KR{Plxe4V*SY zi{Ajofv3B6e3%n*j@)cf4Ll8ySS*x;+{LLA7V{23+k`Z2eeuj9p4V7fA9)X12EUP( z4#WNHHyNP*N*I>Mf2%v|H7rQ;Vd0auV;KIKCZ)1Ge zET)II%YtvECWemu4pY5uXP#Nxz^QV*skL;==MxQz^U48EVc_yi&T6%Qw|1EP$5T5k zJ=?;Ts2TbskZecsmw#0u2^J&rQ5yrcCmjNx*3K9{W{41;s=~4-I->UMPmP@6W~#pc5|Wg@q|DjFBQ&V3bPVg1O7_xF{e{y&{VoP2-Z7K8D+0@_kXYAvhY zBP$W$G^*bMMlUZ7*G=(1@XB*DQnY^GVT7@2@`5YFYV-EF zH`h$DzX6Wpr$HYBbl$8t|Cv}N6rHGs(h=-`iI2_3@YqXe^zF#$%gha00pn{ z|G;g&%{~I29jbNE@cKvpC~seO)=5M~ZtET&90F~e0WgsaT%+Y3T?cz zkWs%%{Ck<3c=14B4p*|HXI1ROEJvm1E!dwGEtk`-kdUT?nlw%g$p*hlW4U;V4$x`kxUzM@?Q!ob`R%G9&m% zJ}UC2CZ;m;YM8Ip7gA|W6cqb32$C7{Szm=T!iW%@WEOcMp*?Y!gIuj;0PnA9Zg1gG z0dLAwHeeW!XG}0itb7_@uq_3AS@7PT7rRUr0>E}=@W0)u71)A+As1b3IE{r5IW{^= z5O1R5_U$~~3Bm7O`6WRKoxINCt;cfLqTQ)J-v zSJEQ83K3?wZmRoA+mI*u##o#f*X zkJGxtR|$=d-tloE7t*gb*d4eJ!RKQ~vjxjoQ4kNP4ex|3s`~4<-_|?XZ3KzjzmrBU zmE88B1UC#MUL54_auL@|aX-``**;ev#GsrGUy@IJ8r5&`nfYCaj&M~RD%BAo2kVPb z+EG%aMdZ=g1g#qfkj#OObjg-n9k<1Qk5I)T#5(WCiQZ&JYxe)SM{o>rNsqRT8#?!s zm}2<=#i=HpE$`%)24B@PxjDcmDi(HP#i`^JApB(z+JDF|6WVm$61x36Ok01UTOXo- zNjLRyfS23N%EP9YOoMZVcj(NW&g>VVfCb9CCSOgaNUh59>DEU-5H&|ei_*`M6__u0 z6ixgJvsz+JtpR?TE+^L_LiZz(a85FD?32qJz-QiUg=|tf*Ae$^ens25r${tZ7gBRU zMyXJSv2Nj9;#bBNCCLFWkjJ!+Fbi5xA1oW-cIV7`TX7+qR9uoA?hQg4Ko~}-rp741 zB(;Wu1_mYg5e>O&*>0hYr7DvQ4J3>52Q{6pxxE~}m8{k(Bo#Gv#9*g&Tqs|1au61@ zuhep`S3~vm%Je6)Jmdr#F!qpc2qVbvE-8fUo7HM}vHFRM<)-*ngE$I>)!VWF$FHXQ?=j$r* z-@lO4Pm{dwTPyAiMNG+3T`P_hh^kH=BXsM3QB>N;GI^}Qa2KzMK6kP^);rzo=VO*k z5Vfp@t+%GX!qvF$?9ap{rYpmN_6MM+iEoBl9v@p5S@82;3YVF9^bK||pc!dz(mFp@ zgl@RX-LLkA2f7^oBj>_xwRPc4*k);W8>i$!Xxs6o&x&MPll?u!P2}p`?OIgtYiy~T zo{_c`MzCEW7(thS#U<)azD?}c0_N|-ScjncR;S1iH5F14 z%nyLM$(o*XW}-`|UnVAu4g-nq`X`J9asGRfg$RW{d^;i^;F7*(4Oi_#=1RC-o}M4# zT9N;OijpbPk1x*Ov)w7UkArK_N9giu-fRgQ+G(EKTeq$M?=7GVBEA1``!cIB>YE7p zv?PBijMXg1ox*9W%`L0^X$53h;E%d+2|OrG|Gu8FLw)MbnvXt77CkC%^dSKt0FVX7 zjZ17PR0;CO{N7d$XVIBT&NQOImCmBSn7P~{f7A2d>V0{GbZEHn@mu#1UK{ykx8_N_ z*}8`9tPlqx%q$r$#JC?uCGs(T}W04DHZi1seXCWxm^w{9j6Y zBnz9OocKYHnlp#Slu5ywQZ^_YeI2P!i zZ#g$&X2k;f17*n*7HWa?(o0m1b6?Aoh1Nz&MC4XWYA@y6X1bBnV|~Xm_v4R%ZZP~# ztaL51s!v)Jg>w-u%zfsR^ssB1JB1t*(j>)$ed{7$${Z|>PV>aMxi-&+W;xf5T} zSf0QQEpk*PT~Vp8Zm3$13d^m%>Up?^c9xqfHbn5eYv&%!tFk1_PyoxpXfHBQIn;dL zpIXG3MotpXd`V7-{MPooL{WjTr_8P1PN1~FttINp3g-iNnCx8n-Vl^nuHyB?-yE@F ztYuq3aPMwUPW-ZIqqtPX1pmIX5Ohm7i^4^nNoWs&pc^pMD(RM^_Vx_RM5#-9dUThQ z-8F>bV6)B8+oeVPomZe$tS;JZ^^qt`k$lx#elppmX6Adzaom}5 z_`g4~o(ol>(Xb&;jDK9%ymbf2kee5+CHlqJX>V*}53pb8?{kq=9m5{@TrZ%tI(fWnfi4@@$H!x21HaI))4oYrhpeExjJ9^nEU*DL1PdJ`Pnza#!Z8-Z>` zTcFt~Dq_W7;FqP?mTA|ZYJqNs?POGReWk$*>#>8r^_Mmjpnr|0dEo%YUhFjDQ&7*p zA*Lx|pG)AWi9kC9Ui!k`8wCck`&%Dy_r@|X9W{wFVBQb_YKS}fUNU9^-nw=fNZ&c~ zP&{uD%DxcDneq(!V?z=$+pzv18g*an0&AY&H1q_3msnGJR?qp=MHh+tjaK01$chwD zq`9flsHZQ}~x=GG5%FH&x+Ut;Xj2tiZ18h-W$;nr8 zaEq_fFz}4g$`r}Q5z|78dOc?^abGuUb3-hP#}lL(IQ@45B3gb_-|GIJh*VI z9lJY!AEzGnPd*?v1gcCVos9}vOAkLVHvPHR;D$CE?VWoEjgig4uV&LsWc zr=lIX4s5)OsWtm>K0isPb8&d|Cs~MW)-&P`b@JTn+)mdm$Vq(Vat@-_G9W50@ZZe; zi^tXO*f-fez)W&iY)VAGSN9dw=+e@qu@l}Yb}!#Kruw%%yO2}!IUkh3cgoQEm@W90 z)kE7h^!$?W`g#NW!H|E~u6%nWgWoMJ+3fMTS4~WsU%m{POM| zQiR4}iZg%ECL(<4CKPP|+^fe*vhRdMHtdSWY?sQXc=d;~7M3%B9blHQV8+&f1!9cU zTViT;JqzX$NpXrmR3H_|;Hy!#seAA=9R(ghsLPa%NF4Zvt#Py(1c;)gKQvf>m;dW1 z7gaN%_|UQ&YO0N>piOcxIPO+>&@D4eVlW^WQ5YRdJYO~u-Yk5I2ctf4jZ*z&ofikC zK0uA;gM(|XwD+~VMM_4WNawkGy6w3s9BP{ldvf8&$Bv}R8n78`#WsQniV4%CVM=RT z$=$#;mEOIP5iQ?p>!gg@NK?lpk;1*PP&?Qv6bT4$SQM5b{@WK2(*0ei{qX+?2L$Qg z$311tq&JiP!WhA-4|x9DPpKt>Pvx}4ek?hG+|b~*v$N2;*u8_0uq$`UjupJ%j(~ts ze?-yrC|=aw|4LpdetSlYvh+NtqxC%Y!K~*RH|EjyL%aF25T(mfuGcvBOdJ2S#Xe{g z!R*s=dT;6^A^ub}`jUC%$9fq=q||sQ=N-f*{g@N?t)||H9)mk@`^miYWRZAqV0mTL zqyNBKtJkM;8Ov>#pVxtqx_}EJgAG6NVCPFI>*eW@{qw!{1}WqYcGKEW`yRNx_xU*3 z0)s54A$odQb~i2%K+)1O8Jbmt@tE`cHW6h2t$Ak@9V!n-1#Ml@n4`CVblZ+~=Y=lM zl+P(I4&9WBDNvg81H|-0pWAdfBDqTjA?~+-82PIt7k^dq>$(=YEPz85Ql|0m}w`(=|tN@WMZ-lv9b2i)H_Du(sU&5Z;sW+C}7t}0NVcDiN z$%w7o{HZp3qYl+uai4`AOh`(j)s6djA>Nr&nQ7C~c#4u1ur}6lgsdFL_KThdVz6!c z_^k1wHf4~vwY2ILrP09LE`_n(kqOjXO84FSOp%*tQ(-m0MEsy1J7uTFlGpzYT0*z$ za|)VOl~E{9KeYOQj(6U#zv}CKUG&&{B-Gc;r+xO$3b}JW0ZE2FBIrZuuJFTJRw#U> zaStWok$XMWuJ^%XekySfWHQ|P;`K50jNQs>d5FN?eEy`VEnI&l;p^IQ92vngeUTO~ z*QR1Uk%k*`J7%>~sE!KsSKM-JtiLISxKz zPL~#u@VTyjHgssrof$@qU-b?Ckz?`8pUPj`=gz2$OFUKYc?-w^HALfvX*{Ro)|0g`TxU4KRR@<=%k z@*WE{K42`^(x1ql^`CtVLsprgHx>h7Y`__$q_lUc-ZUghlADX>+hb?%4wj*{8aq-l zn(DX1;uz$tL^vl^A67wKF2~Ex>LP?6AgnMe1lHfPxPm;ud!F2I(r zeLJX$R~;ST;A$>dQn~}w$g)WtOCoNeIZ{^L4|_`A&2aB({=KdrO4*j05Cez#WTap; zb7z&$V$@GzdOp>6xW_(M-G|sw^;N|VsflK|rt12VMyrYH>n_MzZmkJ6|7HO!CgB)7 zb?x7&%$X){QApgkJ+b_8$4CE#{+rs*+C*ru;%e8Cjr*N;q=8TqBQTZ9lja?!vfM>E zox81&F)GQ?zK>r|oy~olvpqUKD#>=aoNVpk$&31uTT!YFK?-IEJI4WN|EcIF*iuK; zLU-VI)dQexD3+MEcBnB-y3R#--6fp;tPpb6h)t*Tsx5`Degz1sGe68m2=y*Cf4~Rs zA0LetmUf^D;{?Z2bQt6p&miyW6C>2QED-rFdG!b+4YqjamE(8)j!klNwE*D*#&p6W zB!;5VF8056Kxi5Qe@SDxTBKJ+fcuM+DZ| zu)_)Knm4daT6;nLm8h_wDWl8vUb<4B)7Fz(pleaqh%m6>y6tP|?lm^lF<0ku+aYd5egm`BOjhk&t49Uc>$sgQ$XKG9kbr=NL?m#pYW2 zRDTWK;5XSU)7~kpH3yh@Wv~Za<+Sg`j@1fK(lM0isKF}aCCqqi+RHWcWF15M`+yRx ziuRZKZmS^_Kz?LPp=<_Q&uo8LXOnhzl@N=?vuhK7bXHbTQyV_Df4SzFT#44raoC>2 zj|HY{YzL?XEtc_?E|UD6&pVq*sw+1=Sl6$1(XB1N*5rDZp^boqlO(0lXIYjRXO~Px z0Xp5=Hr9l*a9!g9N`(QzK52^o&|=dq+XxT`LrMlWA5-UD&JZ%$fVUo;l0)(nV%ULk z7TJkaNBoRdt+d#>gNSXw+yLok26xVSYvOY9JLbOZg*F`8Q^U+|K9-Ze1+XD4SPpkF zPRTU45;{KN&k2N#N=FCk@IQ6|^W=VgvmSZol0VcI%w0m?`kvBs|G}vkRrl@+?v9eI zkep$kC31SksKS8}){VCEi^JpFX#vKJ(pbIhncO9F!rX=_Xba{^oLGCRWHW4h@tbZK zy(I)pZsgHuLk2SfRTx+`OCIR#Dbn_`(%x=8{3~r*2o%- zack~C3{E&m@8u|qk62m))lw`EMm#qpOIiBkV47U`Y$*+z+x}Y1AApM1bhWzyFGd(T z63`#zNw4eC324R!ek*p}BmIPQeR%tOy_atee|orxiT6o{h;#|tehrFLC!VH?lZ13c zy{KeT@>`vHX3Cs`7(Zj&v%gW)Fd)IRz*(W(V#@_$Ul)>ZX>8=$i<&r)GBDScwGBbx z$!#e+kgks%?Iq5(9e6&yL)Z5zDB273u}nBENegjA3jZG5V4S-GZZ@R8&`Qcyi5~~I zLnz<=$uZ8G^5k;<$Y}yv7%8rTH|;VLSYV4{;85GmZ+K^0&Cf#Eq^X^)k#Nn;A|(N* zrnwmsE`qFH6b>Y6%~a(tVbDF_lOhPL?n*a6y%95CvV}=$^}Ul6uqX%Y&-$DO#CQTS z=S!g4X&bl76f|oe+0IUfucq0Y3OX$|VDxQe;xh7X7Mb};cFb+*oC@ucS&8~j8lgR9 zsjW(ur%?v7Y+WPpH?5JBQ`*SLJ2q$&1#v=pOS{&BZ@;gftma)Y!$}`~yR6C=Vn{g& zA^i-^>{knHWtgR{H(tHeX%OE(8h6$Vxv*12)6TeqVO>XU?9spuJoJz`nt5-peyiQM z>N45%u+%seYi*n1vO4)!grdI4Iv=sIUBtk?mRMvr&D% zpXd5Mf>n(%iub=3^|=&ub1>>g0Mkrq@|cxSwL*)dNtxQ@f4>etOOMg7u1R&V>IPs1 z?E9IL{lgxroB$W2s0r7qObxKG39xd~iR4;t4LJp=ccD~0Vgc)7?Ck-D*`DFhk$ycFb3b)rmI3|Fdy;?| zc7p6(J6auZh%zv5n3%p71xB%A);;0ZnhsP_W2})4y1!F!lAgE1zIg!DJI0C(vJn0u zTQblDGGaJEg4JZ8GXk(4as1@RAaVdV0g@dQi97%6AML4KRiHnEYKqOw)^2q*{^IC! z7_Hu=I?(iHnfXVL@mJ)RCJ4>X{!(4FUDt4tYL!MmgN*t*Abyt@tH_dl_sn}$^?OU$ z(;W8MdXD)QY~8rAhawl0Uq9vHQiDR(q~6RNJqE!w=k?&wppL@y+Wp0O!{Q<7b zh7PdvZ2P_u4)C8(ZGZRqX^n7#PB1znGe6r0?-J-As-!TZnl|DLX>QT#**(AKJ8;y(Z;4_~hS0Z>&cDy0apa@D)DBMQg_xZHHXL zK-TIJk>zdFAdqOx!)=K75ryR~S35<1Xm1bRfCcb<3?q)u!L>L6+aP@Tmf5hE)DZ)2 zCyc<3LQLW^jGgdcE|{K{GuEw^EFndLtLW@DMAHtMAfevBy`0#*36 z@z&^}kA4Q%^_wp$f8W}N34Nv7&&!beKx(vzoNP-)pD5g1%mrq^f{#ecXoHFC{5 z)D_(85-LH6d8i-ni8SZzP!|eK<`VJGlO{r(oSEx@GsCK2`S<0(4QrA8Flh~9^;!y! zyQhi)0ZoR`eDwWz!QPb1D;UHmwpBqPGC3mSQCV?*c-WY8z#`qtMqm!NBtIEz?Q`_|-cKmeLm z*7kS*6|h`YEYI<8G4q02p-VUKa1d-tMHC9u((CuFgAwjXYk%i}&8|eHg~I=AysenF zd4hx5j_X#{(@}H=|J5d-k(7`_B@&xOpBi#7lm2J=-~Q8>Y3wZ;U3rzt5Ry~0|Ms^` z#a@HJ1IxUsIpFQ%WoXSX7?kyJDr9d-1*BY0qvTM+OTE^fOJLB&J|hzw6`y~iqeB_c zqvJ`d^}A}a%%d6DIy{7LdrXhkhwDObJwaj_n||hgx-eIZvOCtoMcQL zT>pr&ULtKLTKQXK-IL_T+wJFQbz!DBK&`APygr|60uQ*Nvf5I;HExT}T2T&r0XVKn zsGw52le+P`i!O?*GCw73Tv+hA3r3R=@J2+YGJ=-DHPajmMK68X`YcDt`*6nyf>3kJ z#wA|6)Aj;d_pL5UUU7ht+Wql#4CO&0?MMg;mLa#d!T3YXmzHS?;C*iG8LfwXuv<*#*N4o+v-Y1kL!V4>#3#SUZ+|&mg>aXn zY>vvAgqCM~s-Y-t-1xW+axr1ac8H!V8UFPj7TIc!s#fN$=m>M>W`$Z6bqjkm=N`Z-yWtOe;W zCFc(%SZ(-DY2#RIx}AhKUkLGcME-W1^AJd(50)}m!C&lYQ_3R6YXuK$xSC>;k>l#_ zTur$5q_(XBCe1~n!AWtU4S!xACm)GGoCJ&HwK6y^#)LpqN?Z><+k2Y;?|WLIz?%WC zX3Y1x#EfKVx*l0PjJX4Qj1^q37SYVxPI(b@dpT!*c4F4pQLxBk+@zE85m+;#Nd1Qh zHZz>D@@ebt-zu=Zr*kw{|>m{+1L1oBY@Q@DUl1A1kXEeO_RE5;|)BFv$@5CVdzwvt^V}}a+pG!3UGg~Qnceu9c zr?{FeRUiSd0Y<^?IAXRunGG!wtz`Tp3X^K5f*h=yj8 zv>tBo3~|}=S-~Xvnn87R1J3|VZryE}2mZJneD5W<+pjkjjSoXC{&L&9-HhL0C*|vs z^|pk~zr#(JUJKHypWAWUl&DvIgJBPWb$Fx~nq_+j zI&K7SZu6?T41zWIZG@F<8G6Tnfl^0r*M$qzchI?pdr-@hMhRKnmzcH3%Hb{@VI0~L z*@)cad;AS>*?VAh*VeTvv+>Icck#rfVV$}!jF zU>70UldOvy4xY#phkI_F_pIEFqFArb+PnGf?SBt*^dVk;yzaLse={suG?OE zeuO~bA`aC32q$ki-(~Z`GylltE~&f|&P9L{)JJ2UJfH%NCkSEQx8>(Ua^ zjg)kEBS@!omxOe8ecSIJ5BGs{?m2t!nOU=DtwoVS9aVVGVAPXs&|pF3jiKaB{E$Yb zOb%ameKcLrJJKFC{IT9--IW9R5U(q5R?#=AR*)>RDHIZ5_Ftb878PDo5l|y!vUX}N z%-rP%wfO|bu-yZ4bJh}a4<$2-TAZ7@W6Vo;RcP&RO#;Qz7d=<@U7_9{D-jCq)KQFC zV#}I;=mDzZ`_xDUCDRiVd!Pe*x4eZTJhGEHnMw!6!`;7Rc zw*6)_pvf|PI#8il;1Pv*+nTI!vZ){|U9#&TaOgGl(4vq9`?NQDaL`BbxzVVy+;-=mC^S@|yfO*}>?Ro|cAPL`;1J{7g3C7VPMZFlfv6+f>0J@2+3QCPlk zb!Al<7{6>WXWd~b?pH0nad|hgqti#6^}WjLPk){Dkh;G?c1dT$SU`fcA6-=UeJa{v z69K0gJ|^5DVq8n7FuzWhGftRC?dn$?&{nMaR`-XNJWa@*IDgO7J@S|&xxh(=Wp=2a z-Xr%lU*mkcs4f}Z7?1<=s>e)KRE_@7xR|Z$0c^aFeZtzi!Bw{4($u3tegnN{! zH-9>DDt@Z-RyAvB_?z&~^6yVN06vsxQTOglEnU9?nI8U;b6fJWm=+j^Q2MBNb9MBm z?UY`lJ*G64_jsg+33Rre^I4knTReRshXxL(Ky9txt5|pXS)%)oe~mkV-t3aND-Jkr z9SxqoN-Z4&aX`oA$}g|&F>tjHK#?Y1_?2wgB?r)iZ&hKf>I8Nt`S{~-ZYizD*-lrf%u9@7;t z5y9vo&`xqg;~}vQl$sR&+%{BRaN{z`NCNFV4WA#w6%?S<+JzfD!D0&ytXRpt@czOh{z#koc8q(Y6WPK4qJz%z$PK&Z&tLHdo=6`Jj!E91p&{?#y z0%PaDuC=3e^Osb~n|YHeMv{-EZkEGSjb1C!w~RZOgtQCy*jwM9mQS4Vgx9pq z%x0Lt8-Cx;$DG>1ZIuWryv_XGnx@(hZS^9Tkz$6|u*tNm_%L9$n)p9~kp}lo0ytEM zd^|fgB4fGIqze)9j{#f@S3Lf=`}$E+umOM}=p6kjb#w*d!iQf`jDXoHW>eeDIHOnj zfF=@>r>^E03eD(-OPw|I^6*or$ z1IF9e##(D9cVD=RIJ+x+*AFXL?qtG=lvx#&ePqD zi*jrl>4=}&%%j-><@|=CQwxM^sW|K|H&!a)J`W}Kou-n46DSb~xMeE*nCb2*PK##a z<>$5hXq-Jokug6HR?en7Gw{regDgSn_~A>0ldjY(B$lg*g}h>sq;v4~438TH zSBtFMPcD!8(za{vo}gKe4n?fh;TLEkOi8F~{f@vi3D8Ttuv^xc{@GHM{F=_?r0UI~ zYZ`r7&g}bRMS!73m}P0B%gw7;X3l1=2a9&0Fh2;`9+GnY(?yr~X(WVXUC^9&a0wE- zDbUf+*KQ6O0Zep1RV+Ta|Gpp9{P_Kjn`A%#-)MD1>C@6Oi6!OFU_cF#{tnN4>sGKM z&Sd5cih)UC{+V4aE7(tuyuq*sW8Su}5_p)ACks(0}iUS?6)yx^QnrX4t~T z&{<+3EXHGz0n_qiK3}-$kMI^8FiR=MdIrvKdZ zaSr()rD)Pv@q}~klX$oCO@NWy=*m~HWwt1`+$lIC3ueaFK)mU-^!0GDh}P^U5+Q$9 zw#|IHO`dzZ%Vyv*LWn4;&VfS_f!%2)*`_ba$D-&NJBCeI$A z!Y-PkOVImcVUcJi4Ib44!O_+YS8_g;i@gjX%8V;JD}9`y`}h__}x9eCK?s zEZW~mSfh$F6MK7Xne5AxOOG$#&1OE3yE*!VjS3(ZvY@l zQY_MzdX_Kc3M{Y2-ZA&>+lFT9Y&ln)CFh4D+KiHeG~8B3^Tb`4E01^A_K^tw!t{d& zoCFX$E`|LWgEk_vcwP97VA0qiuIbGPK_}vy@_!<{6_?AO5)nU+>8*j!7)UxTg;IAL zn7*?Z#*SR`CQaOy6sZF2oMtzaS(&b%DS;DIt#REZ(Fd|j-2U*W68@?F!w}oI)C*-M z>roVVn{fn|7!G!kayB3cwG~!m5t(;DI2-?AW}kz-zt%)*E++hwkdiilDb{hlu-a;` zlM^iJMsIC5kX;y}FjlHE!QZozCVdLLKh*VMX?=y|V_XQ7QU~bPgXRgZq*K8fJ9yb8 zh(=}@B7$JWt_>c;d?E=^kO@m>Eq(Eh26{M+)~j$EtCztm@*avb)A2filGGqtYHWw; zl%k4`3)SEVd|hBGCZm|zWnx@gIEEPbN0=oydCqT^R6MbWU;yb#=3)AuNQKz_pMg36 zovMBlO<8k6$tK3`m?}cT! zt>X-G&;)-2mYj$er#Rra6$_nu!&Xqa14_+V3Ac&RQ(1ZssK4y0x*g&TVRqMGT8-Sx zf|}p2d?KF~e3507nvXgTuL6!w{+Bb8IktlA+_zMD!9i>iT)xO)nR| z;9^^m26P`#*jY9{lGK;h^>F0Jm;^YLZQ*<~*Ey?FOvS%|S22G>0)bY`l4>EfYJRaC zbDgCE^t#zS5#{6`K)%X2t7Ws`i?4@60T@$YlSCSAQQ}T=B8va!VQlb^YMrz;FT4F!vF~E|S0q zLb$xi_M+s=Z|za{06@|H;?bjJyFj{L0K6+iQKv^CZa-_sS=@dC`uZ}V_blV&tQ#MI z1F&cc2c0DH!;KtZFsg9)Dxz(dNnH9?ufUKosPUGr-fl2$69xOeDXVN7avDi&BdK3= zbFFeM$ufy~O1SWxcFr2ei%o`#)V4+>hsS&dqsp@}0;f8PZ-_cz$~^IbQU{F@rq3-& zto%!#WHHcQpv9|8*&QR-**%XG6Oyb<9!(qqQ`#E(H_B>aw`?|~4&qN!Um6LjNwmhs z{~Wdw?D4Fz(bAe5w&hLd*b)dF{36A#_j_{~a&_KJS!u2V74<(zScB^i8J3jLd3LwC zrP1I%7V4(VX!B^G`r3kqu>wmc#;;TK_J{*6*HoBYgb=P-rT4u)tc&KzqhQwj!kk&~;L2{X2?WPmFT|UhtDlYd!TH z6n-GGhUXn@o7CreHKn29Pq+b}s52DpOwtJ-9mBZxV7W(&+O)l)4@qmiSG|Vow{Nk;;13cBMyg=dX z(N&dZzHa%6ug%_6=JcmtePB99^#~$V&((~0`Oh5zt8;hH$!sMs2rR1)qJB>eyaD3i z_lcBd%Ab>XOT8+ZW?og{5P0K%L6bk!SHT1wf9LsITXJV1qEez~NexoX36uAblRyny zLO^5Rr0(hCttewKA zFMnHVSY%WUniCC0$;?9}d!PL%=y0VOP7a=#xOGA>Uy0=f$!PCy)X8EL$)%2S17UcU z{fn%(H;WH@Bt8(@5z>Y(ABl>(280xZRCg2JQQM=V%+NlVcoFMVey-eT;wU?ISqH`G zaY?b`#7N2HH}YbIti2>S*ZbgTkaa*bxZMg07dO!aeYEdXqT>PoNgiIIw{xJVTHK=~ zWm$6gz3HZTMeZ@u=$uafpK~O4Id6Ni>>Pr7qNF5e7ma#F?~czBMd5Gj`&_(2nF^k{ z85?52Ad4g4svXW*4xMDFF2Y8nD&=Kvl{gh-=kJ&Bmw7ECr>C3$TZn8LU|&j}^>0=C z8gb^KVs;Y#eqT@+&HWl=c%Z5lKhZf*nD@FeuP5RqkKR0*bk>%A(`<}BPx+H4$kZjg z_p$H014U-li*IRL0U@2J??t#HcaOWj-(<&EsgUDO5<49dL5lt|JSy2qd~OeoA8-4k z_i`PV7*R_lPwsV%QV>3NJlu*&&^v^`;z02u87(WHJg=iz&vur}(=^h@t|@PF-XDRb z3+N}8Q;LoMPOJha4~MCFH+!=NEiY3s$KXJD^?6V=K@{b|S$CY>T{~N}fsIpocrg0u z=bMp6nnZ1>j(Ua7_b=y>R}%AnAF3m@p)#@SWe|g@tv*79G}zg*s?}2!#{YEO15r6p z=;^NW0|R57C)*gddtF{KzIC>bPkkXXCYzl6P!xG~nB`$9jm)rJ0Kbz5^)4t{66}&4 z$Z*wUy9nal2P#E=Kc(K5^Il|rCcmzAk$F3 z^pF3ZUAQjSlBxWweAXZ=W1L?j*R~nxw0M97kbS8%Egl!?D@)9H=a08jUEB2BoOftb zT+|fmHz`)15G zKFbhxd}#8~HQH(KS5h2?dC8Z_N_g>8;N(_k?GnBQQ|uzi?FrY0eT^60G?yke?@TcE zDZzx`ZU2YPv_`WiZd>Ma+;t4A!Yv3Ju9c>LT|E?Zav$|$|t>jFbj!~rs#Q%6J-titnBFj}6xrFN^# zg!L6L@i2DZ#=p-)XSM$db;~kv9x6ZBsx<>Ek51#z7Qyv-64vf4m z>(`?X1)9RicT@C#9{0-Ral5>y?eBLwP55h^*zejfh70VQXf!F$U{~O!SKZ_eH2h_Z zm2f(jEKc>i7|JVt=5d6`B?RR64JmQI9(;t0qGa{cvRbJa0TD1T!HW?rBU7cUBK zO@o8jbU8&qWAcbDcCQ4mkWvsj5IbAdxzcU^xjM!Fv>1m}7N}k&8Kyu7(KPk(lXw+@ zg~|H4F8|uW@V^v|xozwljLA z*W(6P{4hSX_SzUHUk+n4q7nu9DW~}uA*HhV)V=liV)iLw*y9KYk;)KUivBzr4ktK) ziJy2c-?T*eQPcik!K1B8{D~P;Gs%{MbH*KH$pqQ%_}Emc?AV zA5)+@?+G?LCZ}-ebA=h<3lt5OZtaF_MHt7V|MSCGNZ*S^3gbY*k>(Jd6L1o?CGg<{ z>;H~|4LF+skgmB)Lvm!r1sHZi^f!O52zxI8P5%V=&SXAClixXo9{bSSQffZx(_S%hCbZR*<6em6^0mL`LH21E9w2-7@80|+)*BN zsS%I?2QB*tZ;lOeD%uqzdk&OO{ZD1heVPR)+1#&c7EuqdKk`lB>>(BK*j(Z8JKXFz z_X^71mHBn?4tK^-jbg7t>!v5uex3LtKNz!Pk{IJO#naAxZ_SCa2kL7w-&;1)=hxtT zf$SHGS<~hx0>$beaOebh^w`aMHPM8df_2(IWN?JkM~|v4!pL@(K-~&jQj_ai$frvC zE1VjgO??TCKDtmNu~vdc#6J>fP&#@`{Txqa{fuXY`-mzbaZR@n^slVipH&qR^_I%ZSeI6rrQr2;3O zr~R-Ia%`)%4dzKT+QZDW8HyVmw#XiF6r;M_6$(BRaU@%`?G(iESG?z zw&>Jub>mY}L}W><=?aF_81lg_tMhr1W30Ab~w7UcKnSsI0E z!)N@@TQcYSPa}s>;b^<5f8NW!MVs@~?zc`zBgU|I_IF2D<=WYZki0)mRd;Fhgy59C zCW_2JOzisq5^%;yx&AOBAB zgu$Tjo%>72u@?9LQlJHS{n4NGsL1q%f$b8G&(+o5wxP}-Wj77iXu-g7#uU*CDFo-2 z?$dP4A~SK%=$lt!9Tf_-{$C7A!y0M2X+E#G7?hg+@+Sl;xd>)|*$LM)8f>!w#U{aA z>0!LN0WGZr=+~q`asRXMlq8btyolV#Wodyav+_%gQV5`y54;u3GA@7mbs$hJb(Lx5 z`zJpCQl%W3qjOPK6utP=E*r9;91(+E7n{yVpd2B`Dv|%vO8kU8X10~onytnm z)Sacg(xEL!ZYcouyq470QRfqG~^Ekjb~@lVqZP|+gdUk6B? z$F{I}m(4vU+~ISSGt&;Xh@s$>JQ<;t{PLYjOjDSNqqAR(+(XvNhf}{Hk83mf>4pqm z%jWDge&hywu~N8l3FGaD+e01(0oDw*ma=)=6171kZH(x zU=AcCaSZ^k9QwNWl>^1m?4%>Z=)qH02J}p+YPDQ$tQEwOp=Ix3>8LL1eWpfUTLob< z{K6eC2t&Lp1q_Q`k09UbHQh&Ioo&Ha-GzLGMn_Alsm%}&my$%h<+rpfF**A7a4tf5 zo--eB96ky%^!C;zWX!_oIae?pg9m+upk1;2piUtP^ef-Lsdb)jwkuL%vtpNrd*V}K z?3r5N0V{-QThpt+=IMJ;6TC*t#L;$5P)(LH{Qh%`R^0QWi`usx7g_X+l#H4P?AbZa z_svs^Bii)$9)cJ?82Hg@%5OIqH}2FoO~Xij}=#l zDK3o-mHDfCTW1j~*VcEXIgFa#vaB3uyytkJ91$t^r~J{G;zF_+QdHkVdkqn1YBAzT z*nE|LEj6RZEd&y<)yvo1SSm&U^1}JcWMAl{Ckxsjx)z7;rKZc$T>NFE)e*h9dq41K z7$$7)@7nXa75cb}Fh)b541#jaOLp?*JdcU4q|BebYZD8;M!=R!XS8?k-l=qGS{YuxJ6r9_SF&Xpy!hIr>JKDKqka*f zhNxVo4c|(X1^I%EMfh+?X-J*XW*W%MPz*TXlNHn5qf~LQpAcYHBDAsT0*d>D)L0v9 z4~2o@-t?94$leBVLCp?b^I?S=CUduJk+ZL!XRQ|rdl_^vP-|vCcLB*0@`AR~%)Wx< z1p%|d3r;+hQ@CHhax&2CKmaY`H*vdm$SPi!f(-|iwWH_HPGKt z?b~hm_He`MkOcOu$?wn1P~R9yC(TTMc3BS795iXPG3|%Vnm; zHS6H5r}rZXHQn5OFNu`)A3R;VnYNCs;>R96j+l;Wk5S#g1Y2w@eY9b3wbMx)vt)64 zl6O}(oDB1`|J8~0Z!7bO#s19`ECG2q6W+(vH*-ooAs`_?8_;>oB8G+Q;~sM7AO09K z*CuQJHuo%ze6oII)13Zq_rSy?pHtg|0NQ%ToA#2dKUM~j+Y4{X5CnJhW@yn6kU3B` zFK+dP4v(}5l<`lvel8owgxotmg^|cQe8d;hD6TLgHO5JC-7u+AxB-SyLFj#bxOR!! z&ce9~g|IVP@}0VlB8+~uT>IJI+mYkDsI@MFTW+3L00o+IWa&fB*XtWXka(-1b~S4p z{rl;+$(a)W+kZZrKNEypR>u%w>0oo}a`-%~Mts3?!6|obeBp!yg!)b z>rqNj5mKPJypk2NQ-YNMQ%G9y8c&o%w}7RCIPYure1eZ*r2L+c+!7dL8(QLXg9M~( zJ`w(x+o^azd6IEIvdu z3f=by83IAz3ck1F3gh)!N)@r-8hg!0pJ}KIxaKkd-i7tLgz?9$UZJH@X7@KjW1Onq z7By^^R}5=Fw7-DIWUf>1Elk0-qC60GW#CIcj!Rp|9m=o$ zCCcdo@O#nF#hXQAWd=66cK3fv>jl9m6p3_PC+L3Scnww-JaQeJCLg+dax} zLX{rBajH-d9b*4;2_?e+J)5*6VLJStLCC#okrr#-z19co$UvPg>W2!b9h*~9BZByW}=ow z`nxoMs+>LUxqbzk`e=H#0X}S{A1%oKG5O1w2Sox~iN9)xC0&q)M=Lu3n8#FUE7yFF zw!aF+gB$;ZcCWxJ(u^=x4io?VgGa3lJKmfya6xdNvDzl^3Fy&KxbFhzK3bQaoM-~s zUx8X6)2?vwjWuvy_D(Y4{Bqv6aW{%oSf`N{6il#=SAFe~5E!b}y`KJ*cA_7DR>y-> z+YTtI&`q=bQXB{&IA(d}X9@ZrJJz&bF96ye*YJslDACo?9U8m5*lfz*FP2SzyLA4Y zzOp_mJhuY1D$M{7+5f>y%XRvZ5VsFr)*&g`Q#IYIR1&1=9-4k7jRh?TiPZ<9P|*}m zj=yYK9`%MPF4&;7QoN1->V$?Ml>)^!p;baOfT3!iHWKhT$4)am_XQgw{>GYi{Cw8M zf*a+O&Um|=y6mr4s&R=6RAz#OcbINc{2Wd6gC$jAx(FegD4q2Y^@-=&F59d(n_Rra zeY*))o;+iQDeE$27tO#YbhonYng%WpR1^+d%j!La8@*q%W@xNPAVQbMEd7VxGt&HT z1=A^v`P{?XrxLG&_4}*sceel0qD~xhH%(Y?Ddx$n2=!GCm^|m0uR-JMRk*b+XJe{^ zr4tp4f0%mPmGbSfaYq+fu}MjFMyK| zEZXbYr964cZt03t)sJ)L8{L)i{i_YS|B1ZZCvs$Z|7{Mu4#n55|15Z;7M^=k^Grz{;VQKXb%d)^r;8`2q{XWoN`P?`0+Lz#l|c#YmS zBjx!P>(JUG^=q1NhHauWTgLb^;`~XMHJzm(pEa46L$r7iVLcZ_6TMPEPMeiBnU1cn z?jm-AEpS&mTCrMg9BkOeE)Wnb>abTCFC!#W86ZTzmRGIZeVuY$LW?WZMZ+P#B!v8)p>MftHil#B3 z0%f;D|jeyo3TAx=#tq(N{bV4{eO8;01^I(3u7uxt>3SH3?+kx&`n*NpW zn$TLliDvbrL#yhf%9acJ_5CJuRlWN`xMOKoWGgigQ=m1gI7XCP_y4y-FXkR32zEm=fq{rH zDm}zooBfWn3Ij#yQ z*$41-On$!@uB?p@O#gU9i=WsoQn4HO#=MFJ5ej&n(K0SNTwcUW4~_#tS0m9J`msg- zbL#N)Moe?G13k^Z}K)k6Q-lzRjq76?_wCyx~X;Gc$MW}Xr<@<_bH!(rMOO@7E zAqP30LwDlWJ3i-3kH5+WL_+t^WuH}yOfnOH<=_bua4xOAQ$GjFcsnhc!~E8qINa$K z)`QN#4>1LC;u}#(94Pq0b#*LU}19u$27_CcR98GW;A_0 z37C2tTNA|6?rqFHVLr4kdSOiU!xuFCeUb$vM5W!E`_94~^aQXRA6HAD@X8jNFGNt^rRHb=Zspnj(lW!do++>f6b zg_E{?Yk${UaH92X%m|=txYSK8H{B-`W)uMcE9vLCy*(xrvibC;OiQ4+nG;_ z`p~Z{o%Lb=5A!%XX>Gx>i6`Tiq9s7nT|zd zBU#;ViF-|%?biOSwrpQy3MHQdKFJh>C$xph>S$KJ@7e-$qu<@AU&dAdcIfP4ByCR6 z*Y{CLZUgcQ+#)wdq}YT;(l#osSFM8TkL5RrDPp= z%=#8|EBl8?nBKF`Y|+iO78AC5Q&(kKrqAVc6xnx8iJ~>-Y}@5f^%| z)ndy38=brRX_#=XdWK)xmF;rW%ix2CKfeI0LaHEK$ulAUVEGk(L91+tcpsV-v#s*b zbdPj7x+S2I?4j(dpCy=)q=%jT;cAI5VN*5lyBD*{%EL0B$)TT*;-iY_9`d) zf31?hazC0~j_JqW$QM(xyvxtO(v!-Ixu06VG8>}1+(DH+k$ScQ_7Qi3`FMO>q@`9f zojHGYgSla8XSbML3DcoCw2vTd4d~D5UkdRZ1ltc0miJ0PNJn*(JZJj$Uyd@B9f|FA2ZW12ZuyY z>#U_tFmp{&B~`q{O`M5{qp~Pdb~N&9Y|lruz5?Fz&6m(vhsQUG|;;R-qd2qp)k#q96>; z|HF5mHk+Z}()&6=+t7k4vZh26-s+2Kz$|Dfz~FXH$F&cy6*)!Ws{V!GVExtTI3x-D zl9}eP0Sq?#68Gb3Vs{+2(F=G!Y@WYA%Ord6%brY6H`yaQk7?AgacEa-l^O~-qIct_ zHCCuAXe~=J*>}D>jU5_~D_Aa=tuvO)S>g9L&Y@tsz{{LPFS7v$-lxHFtuyp02w%Ur z;$1_qErNFFuTbXE0&C4Cg>h>4`KX*}{YQIIyQ1y>*lrq;Joa1)y{F=zAKkGvyHix> zrr`9atH?Og5tv1ilO7UR$G}NJ@N&{D{06aVI`B%Y3}JvyuHP zcc}692mjC6a=$&`U59fD*^*_ZGtv_}t0t#|m4xM>F2hh3f7-}L06sK|&6`7Pt1vMzUSggZAH5JO zLt~@o{yv+zhA(Tn@^>BQs5uaiug05=J?G%l!M5VjWitDE)U6}O`zyPRP-&&Xhv(BP zF7)udt9fOsg=}*4qPScq?y{w!7?ZyL)olGzyR#_zi%!xHU}7Vj-!VzJv%C<>%((73 z%-|+5ki|NagV!IGvs^so-@h7Axw>JjXf_|Ol03~crC<9Q>N3g{p9oj}rYDQF;e_{= zKIh&sMq_NeUtSl{=`{dLlr`mSeW^cwbp*}j7n&ab&UyXV38CWZOlzoL+yzXY*x-r> z^Fvxt01kLS#E5T{9eUs7HIV-zKf`{OAxHVz+w@813p_fZ2q>)bBUmHBeokUq8+3pai0u`M6GI+OGp5oda2X=pxHQ-M&L`uoMLA}Dc| zx{=@MGIPosUDEIAAis*WYHHlxzUq>?rAIMC{uukIbGFtzVMg&|TBuAHG)Z*_Oh*lz zkAliL#sm89Dk+j|v?}D{o6)VC8cBiBrOV>MEOAwKzHT>C7_-ira@%z)N~&r~YkETG zM@9qnvd`M95q5%%?d6$i=#Y<@*- zVwJVgWL|HOBYHqz0Q0Q;$&VMrY0K`b3+&B?u+GyHvy<;-u?Nuj#t$CqdYJs9g>;=^ zhbzumMqpo8+0Pte^pSPM<|%mI(gIzNB@vEp*?G@)Ji?~k_XxeaUT++#riQItLLbVB z$4VaFvhl~p`K9qj_{ z%ImgX$)Z65%^6x>DXyJ!d4ZS`(XK z7+tzeG53saRay|7pv6;k&3(P?FcPz{>jhwOi0H{BJ^%Gfkw?S z1eYTl%%31Tjo*G>E{cs{(Fi+CJf!xViWmH2<|2X`_7gnKoY!);@s)iu-wGG*&xqmWo1V*@_ZA-OOq}}Rz(!gr|n3H#Z z_HL)8{+t2F_@-c}Dcp2}+C4>F6ff|de(xcSdT87)Pte(Uxw za*dULMF4`NLXiH|+Yvu{u1&q6s@{HdK3AG2-K>h9Q^|u2;joN5uav`3P@@2yJ$# zOb*SRo+#5Bt{5+xBy>ywJ#f}NtRsq!%ZLm9RkTqi1$^i>9{bAk)p79C;D3<2JC89Z z`{ol%9>4C{hmN*KJ<_?%2`-6|a*3;SiuNHu6pgDqK1{{mUKqyaoKnk~+UnZJ3O+J>Rm;gWH?Vcq3P0ABWt$usHzUj1N} zbo`e+=)^ZowY}6Cx zUD7wOO_ z`*2YrC2Zcla^c(lPxRfZ7I&2h6R$7XrLnV2Xp)FnlWOPpx*anm_8lt+?@zWx8KWzg zN|=?_a^5R~)^RVk`cg}2#!Pjb=D$WVElPpH+|-lj2gBHI9x*vaiduc|eag#q0ycTV zV?)R?vsRAMy(A+B8C>+8bq28uyCJZmmUZ~7c{uvy`@PyuzhQ(BYTsQ^#CP-?^ZIL2 z^|?RZMn@mFPr9cwValFtk)9jmLklqVJ+SIs$}cBDdTrqo1;8@^nw~)646i$2=#<5x{9NHa z_~NG=vf9qjyP>d*HuRo~Qnk{80Wf>CZ{d3q(eJQs68~BGWpBc*Zh6&+Koqq%IyF*1X6)Ec04cviZC=Km^3+THvFR^wMHUxR7;-^d4g-;Aj7p?EN7zRCxv zZq;CcfNig8ioTaE7_Y(M2v)5wBgUf-_@?{Md?ZA(+6*HM$tEa=8sM)&U)9TENj&E) zw*Me|1=8~59hhzK@^n8ZCCzjWkp-PJQrPx|b}ODRAG> zSQw(}zQ^aQa3+kyAo&6t;Hl&~3Hf`aU0BYu4pwul2FPxO0&4 zwrzj%=GcyN?|wQ`9ED0{O$} z=a1MupDSyRUdD{BtI9XLjGD%rEYlxXW_o%W;A~lken_2Aa8i*^XwE&lq<&x$>agQ# zY$Kn?-H9rOry^WZB|Svma~cvSyXugMSw#G%*1@Y9yOuY3!hi&(As=Mh$84|~;=ElY zF_~dqK7J=vZ_P9L4-F*AO|LRN?J@&U<@SK2tc(bv?nfmZFEbiQRt#7sSc}miB{$#9 zv)qihm4mS%j9Eqx2mKQS#yB*p#K-q~+O=cxWVpskuN!ucg*$aUw?dDa+p27LS_YEO zhAQKmeJciXs-8Nz^Q(m3Z7w-zwoExRES}(!SXJVdm)zF@1KXX|!rc4jYc%F-Hr(M@ zo?qzjWyTB7hi-(}F)aZ)oqADpk2aXCsd}}{y?4uvp$cw;dc3?Szz3_}BZ|DL$ z&@J25$NJv%sHyYxWMaQOpi+%DC`ju~TP?%5kIv5Q6GqC9>scucFufO@VdK{UFXG>31wAV*Tym zm(fwdy^^H5kpRxDxdX4o5pzGwdADqrFMs+{N5S77S{`j1LhXVb`}?5_1W=u-XEj%N zt&L|B7PQfz{^a0#nVWDZA~vexWogNYX-k`em-Wz@(tL5#65#q>x;xIF5JI`P`POce z(a=S6={T}v1=)A?B>pgjI)<&N-*L+r2W$5N-<;3NYg`+czv1uvazj31F6aiw7zsdu4~e4}_OZ zr;HZHkumtvS2-Px{=0`pnhW*Q*zzfn48?lzj5JE8Mnk9Jbkr6ls%$=TM(heJMtxT2 zA*4Q07Qx7^pl4rQGM2G;=2=PZ{-MT$YiJy}``LnfY3-VdjzTo}GLsUnS_9>EJ6g2aC6cznA#${&T+Gf#9WD4_v;!WIx4~K&e~j3l^m;bj-m0xUC;6- z+`O&1-bX?868k1HYqI;Aw>(s2UXV-H#ZYh0Fd~Nhy8F03H*Uu#M14xD#jhN-6_eW_ zMZbA%U8F_RbauFIU?j_$w+3T|D$2)9kr1us(hX+n+8h7ANneeR8L275_%PUAU+9DV7`R=!(kipYO%7Zu;b4`S7s! z3qbuk5d{U6{7UOW3+jvi0oz*bzc+~xolT!n4-^bK*#F+Fw>c2Kdw{ig1uFQ{nm-Y= z99eWNuo@29jh%bUFwQQfh?j{J-0HdI?Yng%$_E?m-EahalMO>-j*76Z&`al9iT3VY z!pY)Nk8DO-BdEE;iYnaUDq~6eGU!3nihqQzXvy{VhQ30WC48B|(}ZioL6LhxUlG43 zma_-yXH7E7bnAT-BeG<4{!Bvly;}dJdtG$?na)Y*R}bVKA$F`NVY-eiX}Y~g8vgT+ z-oZZ+hEQCwLgBGn3V5T%`$KP_6Llm{wQJ#QUjTT3Yo3lCq48UBadb=nIAsE@gKf%6 z2L94;I-Hx3r&+gP>?JU!?!xh=w|*b?sdSG`!@T~jnU~=xqmM@?;yWW2#Y@lM@P{Fs z&%X?|HPfxm(W}xS3s$qe)(K*(F7Mluhw#y(~Jw}rl<+M1w9 zkN2MU~J1msalW}KiK?h=eaLONI^0sZPMjsdm&4bWfve#TWtXU(U%Zk!2f@RQDRjv*A- zsarNwQ`3+?Ae%29W;$D;UoHGfW34E{n5EJCuGEFdq9*Sj2A%ssdE$g`;2IkD$5aBS zFjvmQHsFo&16s}L^F~DT^iZ-68)G*O3tOHU@|fUT4XW>0N^vwX%sY9@{eMP~d{u_H z7kF*SWG^!qoof&iHkk#jg@_qu*)jhm-8ux~z9-LjmE-Cj{Ot090!keydSO!OUo44~ z!w3V?6Zx!%UJtc9PhBklP$Tq9rewe`g{+i{DQQpAIpzB zUl+&Epg1?L=XgKjyDm!AK|`w0FlEM_ptrfw$$`Rz?_z|bSK01Mt>5P(ar9SYC32m(;BO|h`%wsP&LFYlTMM_9p{^0lX5ZTv#T%p^N>eb%A#jD$lfaz3mLEc_p64S@VggtwOeoym)3E3P7K87Fp5z2N=Nq(rAKcvljoO`F}^Di{)a|=4$zu-H} z^L#d5(Kh61rcoE@zK^qy`>EY%wju2)w@b?la5rqznpMPR%WQ-tFhhjEGvOc^L%0#= zyOf$m9sHSm#`(D@RPbjyrXtCoFuuDjcnX!ZAXFRwtBM(kb$-DZ7r&o9_lCqVP}i@4 z$0?vhocAf|XIWHHFS}JTHQyQ`aBKRMh<;f;)VP4YnM9y+MSn$z;7AH~mc)vdWz8g8?Z5{P zDL(cW>Vke_Wk5nQXsQNrT#n4>6JM|9@2<1Aai9n|y`Q^uwrkeGsRr1+h0MOM(2^&s zDHDhc&Tk(?=o`+ToHX0>kP2>JzqE%;&L$ z%;UG(bL=I0)fv$LpP~PLXL2{qmSkyMa8tri4Gw6$^LdA59?;b%r0p_*z6D9%gy%s$ z=Uhw2aeq-ajeI?+uBO?7RE%#(M(9eN%uJ@nhn!O`Fsrg&g|Fp8;pevjLSr30Lx9PG zIOoj!Zrgoe3uw5`sXj{xR_#1%V~82je4LZ5Ijdt4ZlkUCYZsUOIuGSWE;_V>J`e1I z@W;s%Md*!zK{e7UF5}Sq>3u?@;42bJ5^ld2+j9f4^8aykm0?*nO_Y!nDJe;5kQAg- z>F&;l?(UWp1VI|4yHirSySux)n{VImA6yp?+}u06duHaGGsBl~C{v$56ZoF-7?P1{ zU6g47XeIZH?jAMki@dWK(C|StXM9P|UA&r8zivS=Gn6)B5+7+Z%OOBjwyYQy-7@PD z%qTZlo+GT%bf}v$GDcDb4XcHHp<3__PWb%cP5DT=++ z;QQoyKnzsqE@f&$D)1uJ%BsUVVf(Cv0EjlJ=GS>I2|1+3&_QmBo2aNr zu9;)H-=TBwuxcLuQBrj&D|g+JK+sua*j8PoCfb;mxNG8pRAl5?P+bV53tyw4WbY-k z${ux5jPXE?#{FkMQNhwG@T^tO!cu#XiFc4Y13i`x7(8b7JAc{0m|_ZMeumXXnL9)= zIzV!hF+2+UX~+2CUj{n3M36GRUoX2qEMVMz>{hT5!{V6KJnMhVFiGDqED1t<*3LuuWe^Y?_;gccPLlx=~g39^I%O$BNr=yL?`VwG= zMkS(se$tVtPK|uZiVY!xSIc9?_8OW13>WbczmrV^%>ixhPoNz-^83g8o#WrZ*#z&t zfzDwjUyJ84{bSyLeu5oQF*s%6mgOHDtKI?z3|^f5k7pMMfi>2%1rth#5uw7`yr6LIxAvlVfjKzn zmduQlaRU9@5y18(F|n)NsI{#F0VBw3z5TW(&q87EhoVoxZN=&whpP}1$~WWtkWmCp z8)H)zOtLl#6djBsD{lVeC>X?Zs^3*BYCmk56Xo6m3OCM$`UQN`Z{WH_^_`teOVN0Z zvN0d_3A0M1ye#rr6M%zvg8lQ{a&lom6m@rQcj@Wgf7*422{|CJUc&pCl&@g0&nQl9_d+A4r@w3~*%lr@DW-%%vs4TYp-6prypDq}_Nc zx)bb&@c*MCZ_+XOCX131Jc|Ot9Ln4_Yat|p@zb$j8P8ch-*o&D;#C%wm`0{|dqWn6 zADi+LNQi;GxV+lG(Z@~}C$C$>qITSJ?;lxVe6YJPa^xf5 zd>e_cyicXaCQk{tJlta{@g6oHtv-!0d33KPW!)$neRfk9unJ|r4fiT#wfPUuRCs*} zPNBvf=7ruVNLXV{%!)34Qa+_WuNeMhudkwoKGFETyOX=OT6Ayu=3QN+L14q0I1%NM zlq>X6wZ)aX-!mqUt#=99yfi~eztW*$&4LEbekjZ*v7om!TOpd0dBqp;cF7p`xIs@? z2rb$T<{vGzQRm`CDQ&ril7jKdzkZUcAuZ1*leaxpX2FUYsWs{zZ*Iz5rjRU2`o`9p zR`1CFG4S7>mnEmQg|}yc{KHq;7GIWZNAFN^^10HlB}jfi0}6jw!TTOE zgB#11GZtcVf{5Amkyfaer{SK0$mB36iwimiwN>NSA4p<1NN%MEKg!SqPl2T&RJoY) zVG=KNA%^>}ANYXbpC#}qxH4oz=k~k{Y#_5fjP!{=%p#-%r!xWgLXsO zb{I~G=BPg-Y22(Ub)XxC$(9Fo82hkS-QXhb)M#xg`9XZ2akcT)v5*{J@zGzKW8l#G ztIXJw#P3l*hvt|sXrW=%BQ2WP>>agf57AL}p*Iq)%6<)+Xzx&JVrGv^!I*+_jrxIIKLLp|Qjv-wo3>hmZ=^BL90RgF5IV(Szw#aC~?ui}`ACkCTq4%N)8lo?p2 zvBHkc1WH0_e}G^;&T6rDJBGJbzFnV}z^3}7X2+(T;O*eKePEK&UMvyS5p!4UA zahR^`w2l~v<$qL@(T~tf(sL;-n}IfgF!oxk2W-Z!RRHoJXa@8f%u)1??+dtf75&#! zP{PkF-F9GVDNT3GYNdJQmX#E*Zh)UeOS^PrMVOD z((5OWRBGRVfjROe<*W5uIPmaUhp#{2YpI-i#8pi{!O&)A)BVm39X5zQg#U!2@BMfH z-!~jiQk;KT0}v|;G_3)H`SnwW7p&q~uc@8m{m}<`_bvL5#8m5q+@%v*qQ>!MZ_pOQ z$j?!))2=WAewis_^RkY2)`n9^_|+q8+4eJ$BW!bb6pivbe#y++ z84KzHcjw7oVOz?>g!5C-*RhS3zAuj_2343+_o6@qrbWGrKYu8MAF{SCgO`qzC0kaz zKP$P;09=POp73hzS(#drH9i5wgHveQ4cs|@;`4vZ@hvTH&z14#Oo@;_kV(mfjk6tP z62$Sh2YhSV`(P3#voTOj<`gJ_9@2sx8?{V1e*X-F-f?Zc7~Y66`~OXzEONv38h_U` z9*egE=alJG$U7LoG$oNE2x z1>mp8DBAuf%d*!VVvKy%&d8E`%x@T7z@5eX#8%)QAbmKqHTm1MU}Y=^ey`|Rx%Shq zy~i%bB)Eu0F*gGllXj^;T=a8Vx&iwzPd;yWR97EbFm}XrlPQidAr7|M>)^)Iu1x@FB}gh{T_3Y2=ihJ~-9Vzne_~gizqA^>^t%Ux5q~uOB-+w`P4`>>;TWWE z`-sA~SM~=5*7k`%=K^@NA?Yj^%^;8^tT2MNUEvYs`o_?ZSP1tHm+Cv5`4di+vHCSb z$47eEf>`bDC%y}KG&Deix9|+|sCx;VsRO1ED}nt1GKlI6y`MGvfebAkLotRXQF zg+|SH&oZAfKtg}l0R%kbrStOf%MB(_9cfr?x7b9XW3nAV1;|r`>!plxq>nv!fVTSj zWS{Yu&5vZyjR4bpn||+kTQ_yF!3|cf$Kx1|pM|0ABjIWhTBBr)^BS3?dpxF_LD@+= z02(DReP-)np46Faz<&K|Gn1t*vmW|h5ghm`hKbtf(`i5dPtQ(<=hr*rIh}q6WdMIp znS{6QrEb|e+n~|O_oOKXjwYE}FfkU*!!Cg-0dbbJ8+=|qI=-BF)?(WA(k~Xrv}!)9 zlX74z@JeU%*V6YMFCY;3rI_wBhkTF^(32#MMR=uV0O!J#kX;3)FtlT6WnG|=pq{;B z>r8G-ke{ON0z&;A0xh)w9*{T7Wn@YrMO=509c=$`lICyhT9Ka-`dIQN`B_`$*tV7j z5g5@0n26(k<`w(wju2z_%fjVq(X_J1nyu}l^o_vX5La-7XR5|^2Sv_%CX3%&WAicp zC8m5Ry6>tfZcf5zwz-%R20a^tPym{OHTF^mwd*_*P{dKcxT+#un(Hl9@^vByD(M_e zag@1N#3NAiqt`mOx`M44`;YKGazDiz@S#Wy2zEFi-d>}eV=D`}A42~`p#c*BJBWy8 z2ju|$vIfIj(nyV@F)%u5uH}($`cD|(wI=>p7c#hM$qtnR!w`!t4q!W2o3{UNgh1Ak z9^vY%h4U2@ysDd#O7U!HpaGW%#DUaZ1T9UW1-Ax}jE^Ib5bMZ)a-ao(d`v;j8~@wl zPvQTB#s!K$NwFaK)%MFEImrJJAo8jy;t%+Y6%K=s@eVmd2go$r`5wsHg*g+rn-+k~ zY)Dog$u@tfHGBik{ygh@$!E4m{$EXik}Y*<%&Kpeam)zHlSAuq4u$iG3fGS9z=n>ATW!&B(?nF zTUEn1rc;UOMn;)h~ddw%u zFw`aM18GoT1YGHU9GdH@8Ry|sclt|u;JP+!bj|4Z-kw;Yulk+8a=*GsEs;}*7+#=6 zf?mbtNenzlT)&Q$+1hG!85)C?EAA}}hRR!s1!uXqg_e(l4?63pJB zkENLNYk{#54H2-I3zqMN4noHK$$W2u;^hDOXR-}i=|%4q1G27nwYYPVrO{~?r-*ub ztirF!U6QjXeEBfeS5D8L%&4im-EQiL4sG_ty^~23LQe&|Z5Hd%NXDK;KFVm0DdR~e zqqgRj#K+;RXfbvvvo>7w*=ixfZx_dUe~(+C|I|{1q8;Ar&rgvN4RMRRWi~Z9bb>M& z)NQ}7*jK&+n#K?3&5|}uRfi&pKVhqpi9e3PQ$NR9(Bfja~BnHfM+S zRwK>^-@1+Xy0v4P@l@wWqnU+o-Jt}sf7YmWK~)7&L?>uFI5JH?>&Mqd#X8st=VM>S zuO!<`40Noh8$5(X8X<0O2-O&_pmgym-HLJY;1tg4CqY-pC zquKZS^W|j-1oqjG(#2UN~QbVV{It?rQy~PGHeo zaH3qO^N1Ff0nx@u@a3-+&ql!zyULOv^3T<2VYSThSs^TtXlXH8mwEG*US<%(XWF}6 zjW+kkzo$bMPJF|4bA1|2pK08|Zz=m7B{3EoYNE^>AB2>*EOVj2L4OV zVKDbF$&g1ag7p77Y=OIAk7TdFvYFN6r3Dl$F)27})zm!mW+VB;$)93&%2@O<=s9hI z;+uWhTe3m34xZlMzJ#`u#sK~o&Gzin72`&wQQO#Ph%x?5Vg^F}|#6ms)MNqh1-d(cUhObn27a>QP@ z9uQj@Q+xWSFepS&AQpR3b#?>cZ?zkKojxf-dx`wFhfjM_t`4&mF&kdt%k;cjs>UI2 zq0d*I%Swxa+l7^rY5l1cck>aSuOwZ<#4GNTqNLx1duvR9#9FkX_Sfy0Kx~Bp$6<%J zBQtqo0-HUV+#~4PV=+v#aSIx;dg{HOd10)V_t^S-M-II-&0 zM=m%m6BNZ+r-)Ze*))DC8hkh4P0A<`_j>{7Q)cA)?LvgUqORLhfhVrqU2!l;0tZfh)SMtmcm?x%L5|xe_bTm2UTFx=)=0 z((?p*8*i#Ou^?9LTbgZ3884Fr-dVMYlwGLTL~g$i$U3(;ZG?SnJO8&XQotlJ-2V3_ z^}k+@)UXUnX|YO#f`@di;xGQJTd;&ozMw{+7{yufkO%0a;#2-$s($PPqe@hO3 zK2tP^ECiQqO=R=mMY=tLj<~G0olDX(GA**m|9=xf<@>hx#*nypVt^*Zb>>t`k0rll z?q&fYW4&_6^bNHbKN>d~>{E;vX>6)^@ha?3)+WFfEexddiLy)-exviBsJHD&Vq>OW z&y6ni*@yyADUfi5aN0_VD@iz0NzV4<9CEszzhA)(c5ola0Rp`@^8T+&oZm|%%9m(* zccvQZmJK~B$;?>HlAS+E1Ex9yfj3xyoNGB$Zm4{vT20HIalGfRlg zBEnsD%jGTKQ%nwf=yY6Sm}iBM)o0cwP^hED3q%igj_lXkowDi!?_~v#8+s)oZ{(Ru zma#mDIvgyrY_%w)&+lP^^bXe#jC{` zYbqp6vuM-H1nn@R?N|NN%k0g>-Ln0mKW? zGA}VMf}O$9l$Tt}b+CUOURoA?pzZ_7eO-C%Do*5x)S`>O27aNDdU0f~leR*?H(Ys2 z8dQN@gf02^qWYHA0BVS=VBVie)O>H?L;U8c(c6|;pJ;Y}yNK|LUaewJCX$%)O6FOz z2#;@T17em-Ei5)tgH^BncelXH$R=5sF??so?t94hR!|fD!OoNXrxR}cNaw$EETs?A z&TI012kGnE3e2s-rq7uhb6!5}oiDhJle2W+tXB2*sMCv?IXNQi0|qK4a+kp9F#$SJ zj$kRG(zBc4%Q4iMS#J04Dt1U#P6xn;6bleL7d==)1{#bRrgwVXXUGbVH--7BOvn0| zoa*t#<~|IT;4%phGvp$W>7+gU53bJzp=WxnDt4Oj1&nqI&~nqnVeIbWmL=K#{uZgI zYr*y{rZu3(msZC=#8(v_qp@LIA-nkw#HDWu$wI-O^bB_j-Td-Zm@FWH$4|A=`M1*D zNWNtNdd>pH`Jn-E%ZhZH@po5er>Z@v(me&q=H%??L&}IL-W}4Mg2Cy9kocs;hIGIQ3H{V*L@q) zlcBXWp=r1Hu7%}4AZd#dVw+eNC^jyGd5Q^J<9+WuD_A|6+^`LI*PFcK%}<>H zi)z;rzOiBeMPVe#^%oLhP0%D6KH~xBu)wIT=OpdX&=!kvMgnkvZE^BiP75Yg0-xPO zCjGSI>+y>-gm0U@_izZ8AG$DjdSsg7Ydf9OW)C2kYk@wu&7X@-fal&<_~U{TD5p{@ zjGZxbDa5L~6Xp5QB)M56unJzseV_ia@YS)Y`8ih@OiD1O90`$rx9=&+6tLv}JTdHb zTVnz<#1(He3Rx<~tXM)#H3ZSc+q~&`;zn2dL0{Iha5+$U%%rfb!OZ#rcjtn9eQxt# z_o;V}0yzGzHqRS`mzxmYbrQo4VJjH8h&jkaI7loIgG#Bm*_gPi_D5GvIR>4Vj>f!B zVxFqEY*kZ

    nUV_8}oU-vLnP+Ey3u4&=lg9At#h0SxY`hJNl@ z*0ZkpkZ+BzUMDT8c}dUJ2I52PO5S)ev%Rc#AoOe?U+tG0K;46`m6y8>|Jk>0dAgfS z*YPkvUP`S-haY}5~>+SZ!LVo}ZQ=l7S~E7=00vGta&&t4%GB4=+T zBaZ-i=CVP2Ark+|=m1lNi*KD#psd7r{#v#R1oOw{p}Bpstt*;Z@JSE&sDZuTI&1h& zzYs!9OG&tJ?sr&8+#KZyZ&6n6IUisOZ*UDu>M)v}GuCN{#|m9n8xgcm`%iiS!9K{v ze~gaID2StKRFQ-psbS8%I<;_Hm~`9+#guf|FP7LHNoa7kIoqpGrwgRK=c3rB%`{4{ zQgg_w_;T^1xFQ*+3~fmnKSID6<$4Bsn#@e~8gZ!jEG&&M{+j@BDzP$>Pe&(+5R!x| zH&l-@`(=@doFhHlo|#tWp=-8f&ad(#f@~sC3T)UA+HojRBLw3)B+2$Z!3H7;C|zUr z4dIHCdb6FtbeaM;RL-V(%Hyv`B%|T}oSV*Ml;y#LWszpviiP#)R_v6uNC(BBAAoBe zdA2^Lt9+-`zcixUcmD#DsSfwKYcMJ_=ylm$H-$_qFvY7f?`0a|VUpqNLKHRt&-tJW z{K1%Yk1+D6TavAsw(+zHG4e=urqX2^J@~wng-lrkTo3cmNs;r}jL3>LU8J3L+^XQD z7xL`9x%}!JQ<_@ddZqNIiC6BPOI{uPNul>QLqMrL=U+zDgI;NJuKS|Bk#R=z$TxjP-}M}HkpB= zY}4U^+{$u*0#ewbZ)Q1hL$mu-4XdB2@n9lT7#b=*V=d7$v|#Z>^M6C8e@}XPyZ+L% zu`vJZ8vZsh=>NTjGyHoZ(f@ewAjfah34m|84CN*X`q0qhXmkJ0un0n2FrYrTYB3%uySp~n$H~h4D}TnoPZ4_@m3wn1(gmNn z3HvB`uH$!kY)Rvv>D%hRj?KKZh%$_CMA!09=nG^e=Ywu*kf@uB`XUl7t92blQT z21dqzd-R`knf@1GUr|s&K|$glV4t4)53GBe?DPiq8UMiIcXakQ+Gk?}P}9FbOL}@H zMgTkG|BUt7{^0n3V135l;P2m9|E-rl=<ph|~vhukm<;aGm*_R4l3Nf*wynOQ%9?~q2q=9guSx99__Z&Ot*fWE zULJ|;qe)4OrX!4_Tn%nAeCYVOnJiuSUM~lh1aLtsFQfvBi|~jA+T-rq6RNXJ++XA- zQ|!F1<5bHUH_Bf$Q9E&XMa>4P0-$%ay{Dcp&_32p@y}NV$gNSSI{j!vC=WxWY29g> zzxg?A*NTIW-DENU<|b|IWwd=nY7ViyKwSBmY_I{8|dd{IGbUDzUY5ol1`N|Dv8^1 z;oKUwwmCv292ps^f?a?HT1{$YgFNmgpVTp{%Nn;yb*qIoB`sn>KKua9C75dC>%n1` zfjlSOT&J}&Axj+7Z%7(*G+V}+Az|XfU07e=T(5b$kIUdXgef?S6HP$s)XfgWN%RO5 z+tt4{%(_`f2>!!9%%HUL$AqR1ixrv54-dF2&!nZ=xkMBkEjIVs%G)cojs?T#N6py> zpUw1DNU}jAIl&#qwl8?%LP{fcu9TVX&>4L9uDRoM3WX?^c^p|IpQB`JL-U@1vXrP` zbcu8*bZD1pmMM#2JpJzgubFqqudzR(R!MO;;6g0ew6NNI+xeGv7OwfQXUx|7lpRAE-MCKG01L}2OtEEHQ)TndaW%!E@tx-W zbYw}j&tkm6INOmIJKKWbn>%k`@QTh?4t&pTSyI#@3yCI^(8-|eAx5MZJ(`KcxHb%o zOs8)sv`Sr!Inrf4NuEj2Il-jA^n>O3j?3Y`C>@biHn*wWR7sDy661}k%ht|voOM}4 z{tV8Gv?JP?y`E;-&4o%FJ*Cv$(_IGc<%S@Zunztu2Pc+7IFu+NTlC6A({nltSOw^g zvl9wPmq)USfI>VZJ9I@BxRamr+r#)GQ9UA2C||P-a3X_OSg>XnOO@nSm$(X|>E*g1 zBcX*8kChWJfQJ*~^+9*oSD1I26Ji;tf-MEiadHACEE^)HP zNy0w(NF#MbygHRAH3dFWj3G!^T`BK}$=K}_`oui}&dFw4EaLr$RKs`K^B%_JtxGj% zS}#ML+>c*SNjdinfYwUabICSf_yhxc&!RGN$SCS0#Uul%8wRzXXU5Qv*~umIjZDm(aKFWzg99!isXXpP zgNhl}nz1w3tnV;#D(Ru9jkegyb@z8Es}*^qQx<&?L3oyN*mh=R(>m2;rD<*V^271v zl%e(<*dl?A~ceSIIxe7{Vi5#a{W20zue0ID@wnmB{y6)N_3KXguDojl}55#63olP>q ziO$^|x`E=)9L}U2W|qpbC5GK=?&i&3YC!kXx8+A#!KIPvKGD3Juy5)xKCx-D1Rn6L z?s5K7ua0hP$_KrP!Iupcd`?NPTtJ+R3UA98eDNUVp;gdk4E^G z{P3bEeM{Md!9=vDa2uYIbiuzY^x-KPh9nvKcLJaF{ItdyzUkSl?E!kb)TY2dKF^JX z3Q_F<6;^||dRh^#xV+8~*VVyXPWwMjj7OHoF&>mJUpU-8Q~nqaQ*G@e9bg@4HFG1d zTg>BaPSM(Luk>8l!?jr=-cGoK*QWh=_oPfGin{fa@KZC&j-cF8YI3a7;c{$rP3+0A z!i_5Xz)QKmy;gp^T(~v(j_KTMqF^%#rF-hw{rR|tz~0jwWPQvmfRy#D?xx73&$@VrwxkTnNCurIdZ1P|eKs)N>>E_RQNgiH1` zo&7P5!`SS<^lhRgWhkIDLsfd}WiVabPZ7WtQLt4iH>NC;6Dq_=oWFrn#*E1lNwDr6@!bxa7y!(GN$IR`~a&Nr2*;d>(`}B9G6hNp^_O&lmgu$N#9+bG=-eV zK!$9hnZ^KBID|6gNGYx-rTgHA6d0U!{R)Dk5V`N0yTJa^&vdNeWxVca5_0>08%NF(u7-_lxaZUFc}>b}{l zM3z}fbNJW@u0)?uVWCCAbkGQZ>OYnVqyV7KGF=p@2Zk5L70qrfib?q{GpoghEQI!# zmb^^ACJHGeenmt_5^`lolT1zPMA_YP8Eq^{-}a)JGsv6>kukQRQE#dNn#B;&8Rz4VWRXz_mn7g~%AkmC5Y%+DZ z+qg?L7zFb!6+)C43K}>!!H*3hzz>W4*vRC>>J4Zw?8@Au)-UN9agq#0XqIRU*Uob$ zX)tB@GFoR4N`cbxiP}YCf+LQ|CH$y~+hF%dP{M2-okB#yPFxc*66KzXWp8RXHw`4i zAJz+hAuDQMgNK$;$O?I#2b2T)(ZZ{XHJ3ND7A<3#LmS!4Rr*$3F@MS>gUdxGKXdyB z#-r7Tt~xRpEESzVt|2H%_@Kya<4(43Q2ATncchE8(5gJ%Ti@+Hmrqc9dPby2UoY<4 zYd1WXDr&-?3@&FxU7qh|bfHgUh$o*I(^s4H_#ZlLZ@k?GC+7l5H+9zu2IqTvSGbyN zM?0dV7parm5+9>we{#W?T9)G8P1EW}G>%yYG7=5WS>Vxz>Pf3Bbt9^BG6qSsafzhD1+%!W{{vpw z#=y)=^lkY;lqe@Bu6pC)^l{IPsD{!eBlH(|^a)!E8#CQsXH__^GD>q{L{n7|NA!P4=BH5ct%zFwrn-FP}f?}Yf12_)QtUtf`ymVOuvs1MUFoaSC8J(5!5J=zU1%aYAxla;%I zBr!yD%90m@)b{%VWQI`R3HE<@y9XdyoEGoqd&kYW+e{E$ z;1`&3GdbqHwxi%>!e~F}Inm<-#&*41kwI_04QPHzPy`u~0iW+h0RuuD9 z5?@*9vHp-5;?{ytmaMiMD>1lOz%Wu&Jmr`Qhi`c@F$w*F>KI!`YP;%I1;&tYOaC40 zA^K~>UQ*&OaI)pt^MuGT&KKS*tXJMc*$;$e-)GzQL;sh*&vh3F28y=(98=_=iIp#2 zcfXnyy+medGI?N>dhL`-vl0kaB*BWV{)9O!Hq>_0hLP6UV?it8Wen-c%J;M(Ddvr& zzzaww>~Y+i&xIcFs|pVzTR^;KbVn9r(2Ke6r}mBrJAfXvY4t|*g$Gt{+6sW5)_t}yl2fOLD`t97?k|9{Y4Lo@hEDML&Th+d;4dYJS{mN z(Wad|EY%xfxTmTM=)D#Ore8z&?J#)WT7L1kc>^J3MSO~@w=vT)-~NSWVi&)U3t=#f z_UNgn4M(=n!_-FsP5rW4vaOz{%t_Hb=-3`_dYF@{d3YZJ*uM_M04?GGc*E7zmxlzS z09qaSZm2>oP-Z+V!mSFaR)-qel}av#%{SDm-xJ@E!}aYjS?-j z(Ng>=Gba+d#V^^Ohnoz0mP1C2D6^Er=~p11NMO`6xM)XKax?ASC=Xf)d0 zFk5HKKL4-BNxw*C-;?iZ1@=<8Vl>FNuqOya=u1!WoFcHmJ|7+v^=u7a#ez|xO7&N9cdBwVF}`j za*477IR@ddvGBnGoQ+wnS&dniS(sU$S@>A1SG`WtMoy1x8raVwSQU?sq_?VKoay-s z4pX%rbi@r^FF$?Arm%@@^k5hl79`nSX}Mo53H5c&n3IkahXKfjk=PXVK+TI@AoOS!J#aCTs)7rfZ>CX?I=h@xHYVx0o2-W_+S zit&$>9Haw0)OC2wPH0%|%?sieIq={-H5qC+qf3C9XFLy`j`7I!JM{MQ{K}`{=d7lc z^sIc_8q2JMl81Mr>B=xU5N!BC}k&^oGs(}<8|^k-*E3v*JMWvYFJt5tJ>oP5VpD;-Sl3t1(( zQXNqrXk*FL$Aib2>(%5L5keW9h(+wjx(vqJ@X)7JT)DH(tkHRV&IF$(1 zXClu+_^M28moSLWRlhvbqh1Y=YiX^#lG$lqVS-ZTNwU z;`W%lio2vbYl8BjJ}8+M0CFFE;&SQ_?JY-quo{~LYT??35FNLtE$IBg$yx{AeQAxF z3((RLu!J`W5S9xnHymM&8AErePUrT+2a{puVUh`@2<^X zP=8>NbqnR?G66+HAbk!m$Q7=dsn0u?as`^LYF5V>U%xkDOZ%H>SH9RTR<(ms%X^m- z3U(6j2c3giPFR>@)H&*CDn9Z`=DVAt4h5{yb$+9Kz0Yf!XEuFJoxkUs#HS7N<}Bw{ zmRDL*r#mQ`n&YdXusotIBZu{?f}}|?7JPq$J!f&K>;(NYOp^Us_9(&f_?$UHG^LKL z45yaTcZUODu-M{c;z$z0GG)bx;Ox7H@H7gS&Ep^y_7KU7q*9n~yCAd71`MUUY~=O# zcRf!l7o}gWGC18Q1?iK>UrsVrtSee?;xutHHr($i;p5MZt*wUj!>UX=>ue7&uVp2CWiSruk6)`O# zB}Uw#MyB)PN}G*Hd*!PE;$EJu54wi%!zOUS?d2ZkJ_MTuUt*O=8D8#Hcm>34b?iG0 zp%=$DD(z_p_5;p30VKw+RL#V>#|Vb4m1`7CM#RMT-4_)YJd@_l+F`vpVQmMqWdn4m z``p|F_*9`^#M{BXlP6CyGa+s-ZEE5Lfs)K|3zT5|1D`hrY+{;I&^ks-HC%KiN!%dE z8N%HY-7#}Nm3VGtqQZ6>XR92A@RZdV+I~2JX+CU9E?;>{udwAd6e;(8r1)%p+?k?G=tAHJ=dtfiW z5x*b5Ex);Tb7uu}WBq|&0Lwr>9HhM2Ygb^r^0Rlx8kXm1*$*pveGur9T6XJ_vQ6Gj zeMKnxLu9W073C4PjY9|_DIX+3UEuBuO}2#>*kU8at=;F1DwV_O0!C37?*N=>cC}gO z6Bw^9RK)+Dk}7X4Pd`>wAX7ntV#fkJi@Ff3n=67Ago(RMLoxKCJ7Q4cuu5Sprha`F zG8kmkOadV|JMWBmTRT#~nPu$##Pe<+&9LpZJXdL+{F!HD&AIjcveX3Na;-J?xX|mwg2+8oD}?A?akHyq)cz@L!|DL3_YAFq*&|2T1pVgGPk+@m@p?1zuFUNglO83`8WTA`n=$hW4s7E*TabL&5tQuT&m%ZN|Isk#s0sF}uYNm~QmA>KY zUb4Y3vz_BX4|ukKH*Fp|z5KSBwyP4vM}k_59BMsUs8t!0leJRLQc#S7X%Ojf^Pm$b z44rzk%`0s^uC6Aw2WNfd@R0ACv^u>xfgoRZYtGFvy#pN>C#3}5mrT~OAiF4cyj9V_7Oy53O@NWuGG#l!;SC{8!Eba zDQzmgu<*ix@J1`gcE>6rxg-z1qup#l+ibV5&)plUo|_F(y4+nS%f;Ml+b-g-RgU-7 zUN-jUj^=JupQ`6&=2hLgtC)RT4LS=&+H7B*Z;g3F4T#>Fnvwe}x1?2NjB}C1UXCY~ z%35FZTQJ&Qr-j`ghl~Rj3F~y(;L`qB2Yk98`1^8+!-&4NzN&W`;`x?k#%4NJHcl^Q zuBnE;mR-hPI;uBkH&|bPznQsR`|=BI1UVxaBc-O$K! z1^v5xS1}~GvxP^26==oCuO!Vy7Q@2E(U+()O_LUA*!s6NpOw4C^fW8Ux3QL8{ayK8 z@LXHR{I3eh+~Zctq~bbNj~Qf@X;-=+89ENRb)2kXz&WxdZD_Krjv@%`-_PzI9Z%Lz z#?|u=2j2DE_;1~ox2MM!(#5UeX$+lrn>++Y5%N?qr5SUeHDZ`x0SG|MJ*|{bIf3hJ zTer^K-#1%~#oKS6;P3318x@Y+oySAyUbV1EE}OOR%^2>uo0(iehuy{EE!voFPn*iw z-{a=hw46tPyC$wD#g^!=PcoU9&>+PMrVf#a!X8BzoJU`0DsQDeO8@*_I?Dc| zGWAMaeu1_m@*C0c*4%AFW@`;^t1)P4D& z^0h?2JpUL6>LLZ^-rH1y?3LX}$#li*BxcMOFG~!C9%zDKsrv-gJ<++Vyt+ctIsG1c z|D+|AV#PoMP_gG)RbBmud{FSW?n`i5c#YSVRH^>Si~$|8I#~x;lLBjf;ZPnvO-#z} zkqGX3-U>0q%UOQLbug73EG6*mweP z+6Ap^6U!!V=e&Fh-&BD??Y(uM>2oQES4ce@4FSU#E3LJ{iQaKWPr?kx@mz;%?)ktu zNAU=0cT~rU)#EE#C*_tB^)b|H^U1nn-nj=&ftU%kE8N36RTCiXVWq^?nU0aQW1!2V zaoO+u(uf>hmOn36&5IB|x|b6j!(gLgu+qYYg&w|nv4QR+gM^5rgnAJU!lD zpST8VSfFz4H=$?u(0g=W^yp6LLS7|*;e2*tt=2l@Zn>SO1V-Z`)h9*j@o?R>G+zCay&XVw>yLD(`*_5(001Sd@&I&>IEd#R585 zL*fh`Qjn0IZes`DL4pzO`T>H*eHJ0xKR9?>seLXCn>6-deg&9}f~cOX43Cz8MxYmf?S zZ8&{P8VB32i=`OdY?=GYov<^+5`u_DW&;@Bbi?I3M5VU0p_=ufQ?Y)mr;H3{1;K4M zW)E3tM5q`J(ZBpPV>4Z2z>oKKHkjc0XY0mvi)T)K=CTjC%{C6Op->oermxa5oTwpTk0t zsm{HP+6_><3@#EF`6pDiEGl5TFl2#=;s|Z6)tWpm9<4r@JJQJqXr??g5uUXUuVjK7hT)c zJrLykuBD;f8>US*>vAK#r2j!PhpipAf=hT^Oj4)x{-vNs)u3T={C019{%c*rim7|e zEz{CpaVZ2xSv7c-C?2FritZqEX_o1c%Z}T*+M)V`<=I@+0j__h%q{ZLi;- z9E()FY(FT85DM~~4>jJ&`BRQYmi3H*)?|*T3Kx;~zp?DMfBVg46%wfs6br+JB2khW zaWCZ1{*>J(BeW;<-_0r2TLe z_k$M!i=4E0u7k=uxRQs{V!M|f93Qb<-JG434(2IEoA5)??d=7=Dh9~ba~RT)*;CX5A-}mWuK$xO@BEf-bcqi znDP^{J(-aCI!O&7b*`^}Qb$f~ z__Jlu+4v2#1$v)V1ugG{Kb&ZP2X^1AirIVY>C+uxz3 zrm#yM-u7w#PJJ%@7A$7j*fiN>*%TqUVzjQyZnZDLO`d6)PIzw2=&W4YzZgOXQyw_i z83}x}4yS;(@{vGd(e(HDoIn~)>HF8vcXJy*F8Cuf<|1;rA+FRpw{-S$a#5FlM3yD= ziix#|fd?KI<=85Spv8S~5)y5H)yPJbZjWdX*RL)5%V|8Os=SOl#RX9#^d>zZ!Uq8Y zT9#UTTm|2;9t_#gsR?z~9RhhCIDV5t-9iXKMP0SyR7vVs<_C z57U$Bd4W(N7jg(UJJG=4MMkB$a*e%5(9&`@pMV z8Ou65EEmUN@{^~W;Udm+nxB>2`3#U|9jd?%rt}}71mXLS#9rJaKLsO;8H#yAq3B$c|XK_81KE_*R9W<%lhwYs$0#Tc& zU1@u{`_o$Y<(x}psCxI>e0X)oY+37_z9g;2Q@1Q>NUyqx83+P&csBcx8$wumH=KbRReI+t{7S=%tVoPXK}u#O>guC88W?rD=z zC{isavn9JxKWm3`hLNZk+s_A>o>`15ZUE}~x+Mxe2D*&G&M`PkJ=>%ckpgwmYdC0a z3i2Xlq8hlh3gi#3f>a(DzvX99a>mm4NI4jE1JiYv#o2k$BAprKUqON6izegcq{;co zr|PjCi2MaL4KGZ<18Ab{t5=rz(OI9 zcc<#S(}*EHJI5$@e`reH8r(wva($0=c+Pr)YHqq#>(0$=vANYOpT~acc$!wX0ch%S zJ6YuJb~r&S8aCKxmc>%l3%K-Rg1JECpm?s^n3~@Zja4zj3qMjyQlCH~dQ-77Yz;hQ zh#1p>o9&Y^Hxm}>I%~2=Lxxz%%p+?1Q_Pu%niR4*y=MbdINI@i|55F0kWYL@b72%t z*)oom*EItZQJ7oib%pwbNoK49#a=7?230jgiL|-vP! zspqV+mj)3b;V2uMAKCzP6iW?tX>9enW_;lT*}o}TgsN6KZxh!#^_gSnus7R&+46T0 zR8eiP#!!I5pE90OBcD(o7s;fyd;z)zw-K{Zm}ox z_16PH<6j5B9lU9mGK@g1A{Yi)XRHz+Q42Q2sZW_XMT^Gw>=qiO$d3zQ!w9 zAhV%&3~*j?YR((4I+~1+7JSdelDuB#sS*+G*MO~Rl9qw2>F4uS@5M>xDkAZz58dID zqSAz6!+lxaW{RF?v}KhC-#1`4|EXmmIas);hvtF1aSp@R{CjnLbv(PqYBrW$X51Bm z>86R>NpPy9WEG@SaZhnS%~-X(x_xzodca`4RpT%DyZ$&vzQOA_e^ZK;XXHKgoE2Vu|pTp+iiL$0=qUa9 zmX^pqA0BYbtm$!!nfmUP%4Pp9xX5YTBCO5sa#9_v<%)jv!~BF07~sFU|D7u1E-S5} zVPB_!wfiM)JSdF2szBs&)D}}8S$CF3F_&SCB@F>PG_A@pPEr&_GeqQynr!TtHi9*g z;O%=D7Wp`>6WY6C#N7S)RfZ3lq6A~l%amE)C=uA8fL)*2+jT8CCM_K4?`MUPjD7j17k=SgTRtCmlUAtx=3ur`gQ)dFeI?{DmLobRHOJP-l zhao)9aUov@W^LQADF&dz0gOlN6sN?`TX$&h?{iv@Y!0SBX`_Z`;yWN|dZ2wAeY1gt zb)SiXu9jaY&Zf89q*4>8b?$WP7+R6IMu7LZ@U^s#^Wg&vjMK~Q-E3Ot0Q6ou`lD-D zV$q2cimLwIgq!fH6lsQKJ^_VUg9bFFo9=O(N~OW<$c!)SOoazC>_VTiNV)Hxc#GEl zle~|De5fHyB}*ZOLHbRf`uZi$3B&cl{89Zrj1)9x8o=&Fr73K*>;A0aetfAQWTX!$ zi}mFOb7v@p5@?Zx+DJmtoL)tn#IBNs=z!SN*ptX8!Tg{O8|-2%690j#)z1`7FuzDb z3#FtdCZsg1dv;`Q-8I1g@Tp^uDv9$MVH*Y<%&)JZ?;)=#?@3vOwC#Vudj)Ww|CaBH zw2CH!951+`r<+)~xMt)zaTigi?m47)>u2~uyK50>e>r|(&g-CSCQC3u;*W%a6uFSA zZAdy|wLH^G8&twGdPn;wfmD}M)cyg zj@^A!u)lbf+ihes^akL|*bpyZ^;-{E$VB503zmRFA6rLp^qxWb%=tM0TLygQ8m}VN zU3il7OAlL7Mg#|#LpX*a6tLPMF0mc&Xw5?@LPu^)7kbB-#(upPMeIl<&R**!qx~ws z3my8{@`gA1?&|&B?Mg><`Gj*g?OO^F>8S>U5d9ehPH0gQy#-a(vql>u=Vcm*Hl=ql&jRXGGMY zcjk2s>pkY{t48R`v@Bd$z_6-u3-#>;7zIMo!S+ta=Ibx#?n~d9{TJE0mi=lbWV?Kh z&C2839%F8kYvsX>lgH082lhUX8AY94Kj4l$;tO~gJivx@iznG-$gm` zaq!!=JAM!0*$&0qUN)du_B)&$Is;#KK-`{t`>f*MUgy-@cm^Z4^wc}$-*@0yUH2!s zzU$Xs1fCzn?{nGKZc`7U(0kdq+;D8YL*^@tnL3s67W5Qs-ATk91mj?%?;}ia#1c6x zRy)V9)Od0|MfWegvR?-DKWvMRp0spUw&y26yxN*YP+k&!c~eV9>pXaCuh;il)B7d! zN>Nm&OWDk8zWVaE0<#gqVt1Xb$w-jjiaEo zU#xcpVYlb6<#~7PZ=fmfcTEh9`&a3&1h4cCzvMk_43Y1%PW;o$=?{SEH_f;8hw~Od zP-orC;!|mzjMWzI0(c2cC+$?V@K)XY2Q)nmZT<=U;j|HWL4rI*L9?Y_hYq1MfjPsI7O<}&vsoGJ6}=La&~r{&Y6LaK}Zd%;M1x>VXaFtx`b`OhzRQH z6es3#0FnVO23klU*U@T@3_0MU-|ws{pp6>k8-c$!%nvnjTTYznl{dnok9ggyQ>a87 zBlLuFGO{{JWV&?PMviv*Mn(*}u4v_ki@D8eBq+?tFJrc{dZzCa|4c>BhWNa9#`YxE zvn%-I{Eh5cbz{R47x3TxKjm9Wc zaxi&+pH^4MAUfir)RD&ocaB zIFbVTB%Jbq4`Oi>B*~zj72m4%iv;YGw#8kCRyS2Y@x_`F_~g7cjaaQ9oydnnkb%J# zUyZX~tZeF^mA6uY4X^599mCfO?RpT|vQx#IVEKO0Db)7Qpg%4`I!|fKsc? z;$O5%hF1u(N`a-iL5OmxO&(#3rM0;FHn-@UoCL0Tovav`d!p93#-rDB=*o*sT7JvV z5*+WGvmnrx6e9XV&2_gLBK(*^!Uzxss&RjZ=OrB#NoRQYi>fus*vSh_Hv&S?YT+2C z$H)g5mR8^N^0Z&QYeyx!RX%$+t;R!EJ%KRN%!!VeI?{==IG(WCH~2x4*-NG@iiBVC z>S1h0>%9+`z}>T@mcNKBJ<~e%nS`KBSNIM+l6M_l$y};E%-1&|(Q_kwfsGK=wl1p4^-Ag}~Q^dM$toTcLgv&7wpx1mQ>Sii8_bLd1yB z1bhck*i&PSs#1QhZ&g>;_v%e1g&+!7L|#bS-Z;$1d!}xMvjjC~*eUjVNUn1KozqBT z?^7NT z@6Y+F*R)I$r=ZS5S9dsA(g4dO1T|s(g|sT%p5cmU!&O^e)6&OVeIHK#aIu=j$^ZF% zF(#ezIHNV4W!hfN|Wnzy%B1rNG? zeYb}F0%;JHV3wnrj19AG5$^?2rPkFK5F68$>37NaO-+j?b{NteqR$5om!%zV6b*!3 zfb5Jo3NZNkG->-J>`>{3wl%w%0?pdr)gd+ef|ACP$`Eq02l}#`e@oxoRT&htA>X2Z zRvqEdZ(m?4(=R?iqh9N8af#p!&w~TwmlP7&JQYz8mZ6$>FCbyY2&VOg96$?GugXj6 zbgS#m7om+CN0U*28UgCZAr)ACeA!6hfs0Cz+i(MMUG3JCYQKjCwj^_8wCcciQdIvSXpCi*pP=l^*esz7|wRPWJCjnJjeY- zD*eI;;q$p8Oma_JFnz+>Ny7hX>XS9ft)r2-8ZfheV%h=58TphC^zwV75$KW^^8{uj z_-tl+Hu40k0U*=_DPbe1s0Wwlm6Ijrl&7!;npLElcU^o&(uDd>&-=)}0jctM%cp(G zA4)w$C|Ag(nf+EURnY{Rt?wH}F)w^(u>`T%(8%a&Y$MYZ;S=I=_bcWUz$-iWsQ*^& zNPO3u?mE}kW?0FAo6YZ9DT^0`qYz5%3$T(0#%7XZN+XpO3O^*zT=x%0T8LJ^CINUS zHBYu4cULSrQ0E6-{1`@n67E6-QXc4x76(E!zO1g4k=_yGL7=e)Xy;b++N>1|+wA=b zrUk5&0oG&&4*-o77KiD{Q?(~!fzJ}|GQTv#6X%oX6Pl5BrqLYibJiVVIv{`AJ*VAKo7k$fNQ|D1wndy!{uCjR?dOg4Z<@#(}krAWqJtmHqr&?3%m=vI|ycfdW3{7 zk^*r;(@b^OvVl6Tu@u_9>t$VEJe$pByYm{T|zp2+cs9 zzLY-g92$PYd*Q$6?QivF%&UMTs`_Dev}k+?xs+|aRuY1KtTB3=KYiV4M!+GvO& z#T*(ywx&D8G>@1{?J-PExwgPrVJuHj?o|B@@p-l*y;8jLyu!aia7K#yQ+=n~6(fBk z>V?6btUbs*;63I|HUSF_o*h!wqR^puf$&WT6)z+fIX5U*-=Mli*-6^`%dsmYi+4JY zi`yfiJ+=Hei`O~Uj*I6@;OqAT2eRgrBmqz9fo(_Z2bgmV-Y%Q%Z&Y96TzC&an@_ru z&f*a;D?FfeT58d+EN?Aa7X5`{~~HPw=0CL=8LXBet`CYqWTZHxtP%y&iGw z0b9FKI-%Yuo#W*z!R@2ftwK3|$FH${5(tN0QC{Pe!`yt+F>V11^mmv%!|^xqJ;+77 zbRU?>08%XAB_(n1D4!^lxZnP5x|r4i-2KV-%6aWFtX;64VOai(v)V0c6tJ8x(FU;H zp)EF`cpvaLPKqsH_I~J<{gWF&d$xDX4G^7EmVAKZ7XVhT|i*r;{hi5)h$!8Z++h=)pK+)-# z`J$uqrG19Eqn3-Uc`8eODNTXC;OSDhYNDj0iZI1?$Ce&!-5(>@U=Djdz_55hBI5^o zn!tZErG=T%I~#mKENsHCTzsC;F#urtH-Ero(PW+T9iECB7#mS6LtMN6*35WyB>EHd z*f*hQLgxnkDF!#gK?-i4(f8wcb^=i1$kQ#`K+c8#f=LH}1ko`^yvbgVpq(#{q%#xN zlA+IQGjlnd3A?Mq^%n<)!ib?b-L7VVr4BDsci2$YHW8w!?j+uEGegcH;`h=Vjrz|$ z@LH@=UPd5LfiwNs1#`z*5#lVzTM3`*if~3jxy?UWBRiCTngB5(`=DaozWdrlAesfv zWPnHx!yB&#x?)oR29&is<8f9Y{KXCj&(7q1 zRWLDm!@`%R+c_3pZYSQ_bQsncYCcp9swThH8cj253n`If?2*x}e%P z>+E@!i`dy59aP2V>|8JITBpQjrY-MG0J1ayIWlHY$K z4V;;Zj_-+xg+@kEZZxz27ZF*@LrAK^TTYMDKN&>jb-axfnbPaeDp=AiF;r7E%ttaw zs@9Y12ml^0|G}t{cTNe}G_5xV2ydjW$!U(_tzZpAD|*mFnui^v`t2tocqFVtK(Buz z)o)GguaYHyQjLCoOqL(j0EI zLU<4NVqYr%aE0|j`pI*!Hj0&~h&coKu!fnmDvd~Ewo23S#fPmeI3TgBob3x7X)&pX zuljQ><gcI0<6W& zw4EuYqPMm$#B_OG9rAI$WUAm%5t65r`;#4_kwV|e%)X~W*LubF&4$6LWl~w*oO>PT z_d&+11HC@H3QQ8|ji&K#T9`3uuRW0U#5pbumPQP8M1e*9V-fw_G;2Zg3kVXZK6SJW z05jRD37s6(x-^i?z0q>VJplT?vzBWNOh~BhrH1nzQxfZjwINvR4Z#>VpiGTR%?Dt` z^!3kAI%XG`l0M~uEoex8sF1`zcAYlI-C*R!3Q2 zd?4h64GBnd;b5ISP$*h;nIjdRHqpK^=;ep10PR`Zp|Irf_J$~v*91nXS>*UKL+OSf z!Jr~eU*$i}?;E}Vlr>;yaFQGnXIQvh1(KYa}07n!TKXV<+~5WDMAAYpyU2>AncP z{t70{qA7{2_*Q~Yczn&gulP38`8J-!5BD@Zt_~jzv$V%UqeCLYp!<3Hy81cO!N;-0 zvpHPTW;)YjPmrg&CEYmT`2apmNFtSBwmy7b91&kIKC5gZ^MB*Ifh4bl0vd*KeIHAB zGau1J&U4QH60~4fC>;D+pPz-nJ(dX2_|@LbFNS*%*wjUhlPO5@%M&DLx&u0ZPcY_) zhYjNNHy`lL2VhI_uPf3MK9Y-|-``BULHO8#rT>3O% z&*_Trz{Sk3ffX3WH1V>DnYVaQEntD4=ZCfa+CcZAU1P;&gC+$E<<}h%$CV6XK%O%a zS;q;jz@$_KF{S*eP^t#a|Gsfs6I%bdaeGRt9Z6epi0U{s**JPL^ymW`88K??8Ocaw+CYlSz2BNfv%Y*yNux zWVwUIz>b5NRkKUj!?;uXdAFCr4{QbdF#>i7QTR3S{A|#o zc-Q<@@y{fUH5q-4F<`DRc9|WJ)sIvMPIu5e*D=mICe{tgN{N@cJar6^0sE>w$P<84 z)~dv>;_uI&zIkvo^E|TeEqn}ciS~h)x464fQ`=hgBpae!TZp1T&CzHQTLPpazlH9I zI9??Yd>6nPO)W( z=W5|lUy#`a(dT0raPLt4aV0HK6N$&23~WG+6M2g7dm8VTIx)a@15R>HX~>^meWiT} ziHI1~#is=Uqv5L;cm)2%+eBGM$r~}y`P@%93Fo{C^>-5P{OVVTQRulf$j@`R5|BXs zz+pH*o~quGhL1^73I`O<2-_(CG!kMkIWcu_tgMqArOv5Z&s?KVp*gH{RUznGR7_3-tqeoJ|qb^I1f0IPQJ=FNz8v!5x}EtH|_d@Yr~no(OUv9X{_ zO!|d}U6U1qu$w#m*0Y8z$!*mEn+I*xVXeY<#PZ_>)~P9si`|^o7{jR8ShQ*2TB0)r z0P`fcpo2o3wAv_(R=RSQv{|f{+#U$F+zO@yAQz0F(-7QPY?g^E)}{onKj3ZhM*w zj*$dz2r}h+q=Zne-XA?(-}h&}bUh7p-H^b1p_1+Rp4lLZ?XYA7=OuVY&6>HnnXj%XV&)$N`Z3i{Or2kZb8UACag}O&Dq0)}HBg^!5(X-6 ze(rZtIjF9vfO}p+F9%UUEvHll&AB@TgZBT8BT@nMzr@yqiA1b{E>?Eh3mp1&s%2Wl zpo&J6C<;_if{=7qm~)VnSx2>Q5MD7>M={nRVL;G++Ql1ZreGCIs)Q$PpViBj%Sx+A z<7encl#>u{jsqnxydR{n?6F{@O5kW_Rsmn0V+dJ0%W`PJ12r#H97K%HRydKMU|5Gs z$T*eN3cuf;mct;($vC;uA331C zD4lz_G16946ePvr-^dU9L2Uwxa8JD?1=1_Ao*SZ})8yV`fgJpvs|m}=%Pz=kyF^t* zQh^z5+MY=ses=DJgjmbe1*SH-R`DSC*5pbEZMkQ=G_)S1rE95m+ce8m8e1Vs@>>#u zuL69EA9sl$;9eyj^*AlTD1BpT{ebC-06N9#SfiBcJ(j<*L zm<>`*?-3HGvA{~Zb0*uYodRx^wVU)@@W-NN^2X(yR*x|Yqbw1hj9wIUib}Z$TC_KL z3{lyXVkq`no5-|}0Cv2@kAQuwb#;_%A7WHe$a=0=cgt3seF4g3oSPy$sUK4O;&CLb z#1hU{6#XYLPN58E1)@YUPi>Iq&r0f~*WFX)mGV?m_L|I_RBy4x!Cr@yd>8F#%_w0B zqotfBt(+tv!d0TNnC+0L0h@;@t(FLrs2_Hl3NW-Fb7xh~<*vY@N5(BzsI@}8o+B@& zek=9CgjJ~u!de}TCVn?#FDw>ExH^*aQd@~6N?3|4`XM&S$K^BxcFC2oDHoYO>cpo7 z`sdW7A=znI^Q$TGk0TJS-*6v$D?Uv$9j=XZX|9m;EaxOjYLw;Zq5&w;P@21418atb z1t&`0_>tSfRZl#|Vme*9>(cb@WZIvmDXNl$hnv?K-%GU^8bT9xa)(tIP!Co4LeG8! zwD>Iu|4(|?KMd2q>s_=g%nbiUMEeiK_rIx4|7pPfZ$-5DUbB6gzd_et5SZ=3deb6S z=wLyG?xVSzhVxuLl#%lNLQG-yBkR=_-X^(0zqz7^=(B~&vSGTRZPg?{i6_5E%2A6^ z;xvxT@AN=eC2R4RbnnXLUZ0P>O3yMpIy9A7vG-V%-#bgck9G_tneCtHC;UH3B4{74 z5eOu24X(Dbqg@<3sK&Wj#Wf`59W%k{j;1>w#?8HvpH2J=)ZS@R;~V=nIIjxC9pM#ZzwCLpbnIrVOxh2M z4-~Hmh>ClE%JUB=oEO-qh((xqqfG3ho*Vth-sr}xH&ftD?5W@7*cd2YQs<@FUhrN8 zk2KuDT$CSR@l9u-&XC<+$ovT(82#5Dp)c19UiQC@$ zcki(O(-ra`2=9+5#z4>dpT67wteyR*82o?hWdDXai}9(d2r2#--;M5nhdDDb{9w*M zPT0R=&NTn7jZy!9!<_#eeEvVeoc|@4{dddkzgoZlsoMSPT;=}{Fz5f}r||zX=KKR? z{|}fm(?3}A&x7Fy(_>`*`RT^Ug2Tu_i^Ih9lTT0k13CYLJ=6Us`uu}B{|k8jr|gfo z&G>`A{ewIIEAJRZ#|De(IKh4ejgV+5l<|mH% z=e2*;`A@lj;(x&Cf8o+hEI2Gb<^I8^|H=O+=3o0i$NgvfpJV?wMEd`v#r|o@|0g2- zzig`iQ1t#!5NW!98G-*VM4Im3RQmsdNYnj?O!;5CTl#Ahk#^VXn2Lv9PtYHn*#(t)ifWMnCJbgA%H{V9 zyp_&0jKKVk6dVa*CZS^DIzE9QlYb24KpD3Vdc4j5G^+87u+Sr6@vYt7D(JUXMpl(#+b}Hb|C~M+QMgYP8g>D5+CF_bMg?QRITWcwAVWVM#SuYigWDFDnNDkNa}; z!dsX8p|T>gq_{oZbVXk$%OnIw66X!AucQ1#{0dGkD}Rkl&O)%V6@sMLJvbW*icPxv zzj%AcAWgQdYqV^4RhMnswrzLWw(Tz4w%Ju(wr$(Ct8Vq)_uPF>eCLht{dFTF^I17F zb2(N#IdYCMP5T<(lX}u_;)EQ;rOW5doOE6a2+XdNe`^tYOSWE}4QihDqw%wJ3Wp*f zWaFvaEDm#(_ggYxG?+^W1&MBRK)4CWCAc9d@ol$$ z4=!qCw4@6(``?n@k7K+gw~Dw_o-Rl&5;tdfv>nY{GU_%nex& z-~a-Fu`Dmo6ryWA641|H3nzJ7Wv?u!>wo}+MZD_~*ftDC$`5v?!H_8M8~+u0U5cJv zA_#mXa%-YRe2_9ow|DfC!;+5243Pue0# zC~ZAxY^fz~<20t{^~r*0%=YgVetsK|4U9jevRR+s=MVd#le6YDk0k23+ZT7H_d(B& zxgrvI_UQ_|`0Pc#;&`+cu6;!W5mNxg@b{G(@=OYhK?<9!d2`cx!?RC6dNreTc^O@D zOG2ncbj*+EN*HtCIBVj{REe*jkm7?Bur;HnAjAE_)8KWhW}{@aBffRN_&9TOE}dDV{I~rjt(CIW19+wzO z#y2@Tetr@Q9tm{WRGP^B)RA)nGT&_&2pj=_AqLKn6Jq|B-x?N}L7>u=Co3Q! zFY9`by-+q^+~?`njz)(?-3?X-`%T@8mFLP=5nT&4kDU73uC(A_W>>A%uJ>`wV;?Ug z%QF;nk6l>v&w-^S)|t!p>od+l4UMSw+q3%4u3g#`_Kr7jd_V^rzH$k1RZ&SrWg}q% zjXkGTDnnm5Q%04>b%6Ssh{yX1Y{dUX48d7ZCDNtmf3u5RPj8M`= zYReXJpy-v&^LlFQ@{PfOv`fIsUp6rU6jHBd)LbFV4Am2riZMXNXL9;se@JEGsnhUA zJ5~$w%r#y+G4RgS;RA?gX}mvOG}#WO6}?{Iww<10K5{XxU*g!aodLp<+785Bj0Xg; z!ixas!%J23v@t2HwKsKmOY0hCksN)$KWQ9@4Ui2pF(-|pKHZ>SF%8RT_t-66rzQp@18wLblcmS)rp#V;_2}V*5;i@jE zBb`PbmWYC~Vr2|mn#)WP6mbnjapgW2dq9=!{kx-z%i9k5Q0L*l`}HF4|ueeCf8W+8+>9e4@@g`b3I@D;H*NkKAqO_%g`+0 z!+?Lg&^kWo!)f++RbJeNlh_tTCdtt-QnU9d;i*W}y7y?_9k#n*u8VnWWuL%jliT3j z#lyqBmEVuqxNs_Ve%u5AZc;wbRQ}cv<(VVL6lwQLkxC%>k*Qf5aNK|wJ%28lPzG8V z0Gl{OxoPNb(A+wuZ-(cZ6y3R_fX3u)cw9IFdIkC5l=~P{>0`b@ zM6|)8NFh%ipVi~u7sJaQXQ2Lx9_KBjZgvm6e(XEn>lwXh+sBR6$9Ypfpk*y=n?U=F z@ZMS8v-08_zrs8IR|46^nD~eauYAW&Ep+hH*Zy-n4YD$Qk-<2dymVUTzV49y- z@-Mn^qatY(6FDvcY?%Rd#Hy9YW(9NSU*r=;F$G775d~f02QK65RRR=sB%nI{M@CM%N{F1bb!=)dHQUBuD2(d>R$J*P3UsL3FQMZF6&Xl&L;;#inF1o9Lw1c6biwIXy>KD?VUS%4bfu9~9L6oo{35Kuurm~cJGh4{)^JlRyv?p)~L>pTf7 zx1*wxi6uAp!8*?5!3nEuj1K|EPkzJ29c9>b*@_hIq4oO5iQFi4QjhSD(N7XIKW~=i z)d=x&-~@OfNIg-tYGM|11E#sWPqJ_DL`eYBrUM2*x79IMWpr?9(2OI?NUKKCQ68)fTPU1iFoBo^q}IKaQzx>H@^Ahfd` z4+2hc$ZUmg2&Z=V+WX`q1=8)S2M3_@x&j9g9uSo7JyAE|#fh;6M&c0^`Pw4ma0k2u zb-P6!Q`;^i;K{Tkr$7!Gk~a-8Q0=pZ&zI2&^BadlqbwU7uFBfra@Ll1+#k$pvUui- zl!whsC%UjIZOr)W)Y={fy6Qco_U~r8=r$X?^t|T_u3O~2RT4(bPE5S~`q1AEn>Pxt zxZR9*Tk+>AWRS&nHa5$c8+Hwckyt7ja^vQbiV*DA8^TY>M9eNlLZRB^irbdIXRhrs zBX(=~X@FDRS2V(&f(5vaC$UlMx1D;hO`cJvh6eA8pOpVo9W4X^xfNM{W-k$KnY9FyRk9Do9f!uuxs>`BcuVY>i>Hhp~l5QS-?{RKVUc>toJq zHN8Wjy{)U4s#Y4HR+*notakIbzc!icQa-Bc;hvm$cTtH4?$AHr-@v=71H>a|tK|6s zeBabzZksTL?}FZPzL6bS08L<-B7{Lp;6}+00+5{w7Fv$)=vjxx*iUiFSSG}&Oo0_w z2u?GJXvkP07eo40l}C=G26Rrjdx`2uR(q`N%ge_v;FU#cKxjizk@YZg{&f*A#G-_GWKzdXH`dUYK|1)eGLur zwNe30)lCr~et?ks4#R~&QJX-J-(BiLU{-*0UHIpl)_^A{vvI~rz`doW>3_*Cs_vEH z$IA@zDb}$fdu?(MPC735>B-79B*UyXceEIt%C+5YKkBZu)f%+r_ZZ!q`?Ko2t=$lo zBORZF6LX(`1kg$=yXjXNPyWs;()TEFaF9K{K!NSKI<$sP47MC7nvNZiCQX|B82DZV z_aOwK6bMJOaNRHEZ~7SF#Y zCXd1mfGd~}DqbU|N6V0+1f;AixI|hmEU`J0&n-zy#}y*7Vxh0c6uU?ibs7v417=OB zW+@XbEqB(s;LhU}9+!?Yn{q!RNx6aUJ)((1w{$a?{>0*&OKS8+xAgLv7u^O{Br6m@7Kg~*2O{m_fARKN5U%q-}Ery?^&g=EvK=lV%^nvYoaKiT_SA;iR$5saUicjl?$UTxD219blW8yMB{7=$FpksJqC*FxQjO z`g}ifDxM4#jD7F@rtP9@=JI&g**l_&PSZ#Z&be@SD-Nos-GHNsMi z2bcO=+$ds;B0>2qsGd|VR;&%VEtFd$>8~Uw)aJS8frFLCU&-A)S6RQ0Rnqryep#8H zp79$hIlbt8p!$b1#bOR=aKzrh(&ifO-w<1bEW+K9uJ+*n8npzmW}PPCo|%B1J)M?o zEL!QYJBebD*>mfRD%)W)<@+AD$q!f#@Lp9+aDFE9JixPZ7;=asBEu{=`0!|7PIdf{ zb)n1|Br+BSTTrFtF##`NW6o~z7`O%&d@(wzK@s&VY6@`fJ6(=P6*?M!Q}f! zaKZ6!;1^tU(`$BkjUJD;tr!cml-2Yh6afLF=}l|0xKyXQzpTp2N@>?R9ddjoZPi~| z??*AbSY^+fTXO75b11Hyf*TH^V*OTCh^QU{>&f)LH%y$=ZbSi}rt1U8I|Zx)KU9gB z2u;ZeIZ>9_&t>)u2a z$`Q^;i+`SmATA`1b!ED^U8*DrP=S@K7ArU1)F4faGeLfLqYFU5%1Z~mK*iwc`B{y9 z{&UQ;JZ3&D8)XsS&{6+hOUoC82qm^q2*(7jXe8b8*-;G0+98;6$W=}Pu%IuF0xRwz zIHh!=Ifh1U6kqPAmh1iQ?77P08AsL4fY-Zrd^^f_6CEeh@rUE!b6VUB@Zd}Kx6njN znlmlh(1?euREk^a3^iRuGAK0;35~ojM~yb8M`<7LOIR15W3knRZiQjmJ3pW&`XxtN zH~iAu-_#@lS;eUk14gVpJ3|=GZilM1XBX`2?3`WUUhs!NbfB0MeukLc{;cW)Urs#b1qmE*WNCp|y?=BWYYaSVDcI@QN$<#tUj&YS|Rf?tU{< zESuv=n`@AxK$Dr8-^p*GyB+La3lMWzu>8am?3xjgL!(m~@6!1W5`*Nf|P$%O66mAf5+>$`ANC?$Pg_{{bV|v&4 z!D7U0C5{2vru8ICWSR-Jo#?gkv$)>FWS*jDE#Yv`_7JbBu4lz$#v=yxm=8*o&57g4 zS#xD2g$?yDI(W;;D0Y@tdTtW9=;IeC$Mb5!31jI#dBHVBA_LDdeOKrnYx|sIYKnPJ{2A-GjGJ%k=JqaOE;iYE9J0$GYbtLgF)9{cPpVhDwJT?Z#VR#i4cuQEU1 z8(>?&>$+oDFOPkOX_9*j-H4-1lPClJ3b%c+PjApBL$Uu+aPH_=tK9nCdP8vw8`o?q zl%t+^)6}7~eKU2l>$B9p&VF9i1FD}ZQQjn4dHywEUEWKlgT}cL&b3MTjdSg=PnUA? z0L%n5E3!`io0(`mpi6#!^ZYV`dUI+T6xVKV%cMYd#wNkXZ~Hv^#v6pD<~M{FPp>m` zY@w>ft=XCnq&?jD1EIDCHo2|gUupD*sih0%i2TLOR4I(!ce&tfbe_!K zTtB5Le}s1fn&#VoI;CNomynVmGT4}-pw^w7#(s|qUn*t>G~Ud}e!xX*ny@?E5a-fM)Ohs+Y|6rA0m zqK^?NdW7xEnccehe)MjrCo>E;)!FZQgcHmsn70o9Dp!7qD@;t`jr3F+p zJS$O8eS`-U|5p(N(C?@DuJ06>3e+{7B}&ju{I={aE}7}-*H0Z6AHCHV887vdF6+%{ z7j!D%vW3#j*|MJvd%^2o@2^Sy286TP@2?`G&)U+Q*(-I|L7Xoh7jFZ1zdJeke4uIe zu5InyOH3wbT=kC~O)kfKjg&{7C0N{0xy&f1MkTBz4r=|G4l+%+1X{H$0-~~XWY8#( zOog*$C?bDSsP`5$5cbq(DjO>tTvjjuL#IWbyLDM&3Z!%*X-KCn^D+{JU+$@(wm=PQ}PAhQej}!#X93FTngR0Ps zQ^6=ddf2W)U2$$yIsm}WP^rvCZw*fsrW@6uez9W*Lw7keuZ{-43a!YK!q!kuO)0SB z*J^1ZJ%!WqtKMr)hxneWZ|*)()P+LmA2f;HgHoO(Ck*K1iZ36?Kmq;=~=Q>1$ zcHG7t|GXb4;YVqE!x6LQVy=2&akBBh>?A~hov33&j8pEphA+tf zkt^$6e!CnM>eNX2Xx#l+S(1?oPt&mJI(afOGXJ>NymOQ$aVO2W*x<@VZNb5*!rHPf zU4C5oeRWV2#`yQ$03n3y-T=xY!B#sZ$0Cad*SG~IrwaZSMb6N-4E{I#$1anyLN9@e z4>a2gf%aR7ihTEL7|0lmD{KDCA5O8Wpzfr6!0PRac#GP8ZFWGZ`65*I7|PR}K@65n zJcQtqG(h45MtD;kPAxHkLrL;g6TSI)PWCB8C}ZT%(_+V-MZzMT&E@%zQT3}$-c~*# zluadUUMq6wu1Os`KQ%CnOIkfmJvCxs`fg=WTdf?AGhS-CN0%!rwLgM~d_HFeu)s`U~bGm2MvlhiHNuHVeJ7YeL5n9%v%l#Ql_VB4^2?+iw0XH;esM}tqB$2 z$7p&w`dql8(}CqCSnVm18(B-KJ3Td)C!Bd&CnBLB|2$PDSFfs&=UB8ew`k%MZ=-uv zn5=sSmEcMR$i}CrUgx=4FDR~JK`toplDE>;)^#(hAyERZ13G0>oXi+nw7uf;hD{7# zBG%4OA2MfesYq*GM2@eW3PMSNP7lbA*!>}le7^{2;+AL&hm)+mx0BJA*D$AS?`D6U z(ZkJalI}9@bk62d^4OivdTF(KI~P1${Mc}w&hzqPGxN~-?xG{N!F*Xsa&)e)YzEW$ z@xj{iHi&~Het0-4rrIjM<+zBpI-MPt+QWPEYAosCfSR%QHH$VPD_i|>KRrzb`O(S} zduan5!qFPnbbU#6tZ?LYK}k8~drG56&LEJGAz zPSO9nC|y!P)Z@6bd$-PobMor!xicf}$3@I?{%hg{RhiU_?&(?*=WHuDkq^S+yUmaF z!vL7}07MVAJ*VEpQRD8!>@bh3`ENz3cJKx`g7<(jD}yQvqH16hbR^)g{QEbc$nSw5 zBMgX6Ef5IQk{D?wW4qU(h%S{}EFqjtAiuE9t0IbUIt7wTGM{=NJ8T$a%RP^m(nD4$ zR5#lzhD5X7N+&WqCKVKJu5@X6+Zdb=o;!C{#yaq_ESDaxPI3uX!7ZcWmM@d-i8k$g zz9M!%2)c;>1~a8#0hWdy))Y6;BSX7-wPlSQEwyAB^N0l(gEUOgeH>O|p#@32Es_=S z60;qOa$D}f0wLEul2#cGP_WyeOgL_xA-Cu>>*hKgLVU$tXjivPa1{JC$#i)ZXmc zxENM)S2z7aeIo1T9QQ$8l<42~Z9)@} z=Wh_Hq$S1H?TG0O9on%|ldP?eD^&$b+!It`bxLgH8`;320V4$6aAgmgkYUIJgeBy~ zdjd%LE!TIYF3uzWI0Bc`A@>jh7Y1UvRu_)JR$mco$3Swh^lcIsk|XplImiXxY%I~E zEfTxy_XjLh5|(qg!F%c`4lcV+vD>b{Z1(mVH0Z6|cEDV4+R*CuL0Dd3Y%;0SD`4p~?gh4(3f^$1oBI75WfJb}Qj^Id=C1em z9quuNTlCZLOTozLgq!NLdEQ+5xXK=p%i(>B8cr`Ivkq|pJ*{7^@pC;(2cWQ7CNaY8 z6D5$btdZ`T4c!S4fAz=~IkXzwZwX)(6T3)Wo)&NA2E0j2x)Z|0aeNE1sE53(8{8K7 zZd9^ZXOOSII6KXxzLyXtE+A8pwSroc+SmG3h7ph+m?8*!>wx7c>xj)9<`d~{PHI;O6Ii52*D)LK9O)47OevRzX-n8<# zxqBOj5;E@5$v&HeW+v!&%qfp7(3W~CkZM>66vV@Cci{wWf_O)h`O ztUA_uphV*yEql(SHg+s~11n$wda03o}@C@OD92QD|glE~C@*p$_#bYbQ@K@yNmfAM`cL(#Ia-{y0IsRhow=3jH z_}8tGaG4Wk1)cOyT<~pOc4i@*7ZI(q99cfwfYFnDK9i+4r)?b=@ILjDkJl=>UGm2r zj$}B8mk&yuJkN=)3WvWP1!iLTI6n^gIAbj(%$G>i;B3M&Eb^a_p4YhP3hmV{;_eD$ zt;fYxY-d2&)#XKOTML6_92AqiJ+JS~j@OrruLL*1w0}V`YfCDMGr=?|mVa-qC<3<8 zyaQgZs(mzT8QD0Tm#^-4d@i-EioH*M3zcno9^Nc&OsBri8qSK6)()bM2ZzVauoTDP z>O6e15y51p$YG-RLyq1GH7AhntZ)3vNaPbZbq0Z& z{SKM@+p*L2M(OuaZNn+DgTZwogKJ;Et)8#%z2-1iJfdo+#9p0E45}JA^#1f=k8p%+ za##^EN)7-&m125O2C8V{9zboQF8Ggx_BJwzxaM6z!V;kiSBUaJd1!)?`k=OcPcaJe zl3aWoU3bNZ2;6%RW>FIx-ZC0T-Vy2-ofrIxds&%~jojO%j*1v2r;BgZ_=j>pAk*#y$%h1NDNr;c+hJ*p1^tZB)uVj|2%#`EIUfEF zA>>sm9sB{1g>|42P@ZTT5#J5}$ofzH1&ayQ7mH>YpWR}#-Ooea<+f7+B(P}V~KZ<;;i3=BTj2vS}i zM8ra>g@IY~2D!FFoQ&V4B7go2QW&miiQL`oPG~Z*S1bdeZRGA&BF<7G==&u) z;IHY=$Qa+9U~Om#q~X6*+*|L?Ri1q%(}i?jB=-E&>}k`?jw)H&n@Nu13E}-)p{#1U zHsN>q8qqL9f*%QCpFC(Mh#tz?ynLHL7Z%28A?NMU3`h^`7`Y}k)UDOV)Y-V5or zC(qIx)PtNg`hL-#_;p{(0R=|_h}&a~E*v&Um#AV#*GA+jM_Uxx(kn1>ni+E5(NPUH zA9ZkD@)HcNN;gt!$WQbqk#dGvX8NRg>r}qht6H;vzJ0rW~(l8kJ-@0j<$3dcCKSc+7x>cHC ziYwB+Hsm0(v@j*jMikTPTqRJU!Cw8BJ%UIvd%IKj4Q?^pLyMvjQ`99?lk%cQTq$V3 zR|MGYk^?u~B2gh|^7kt4cm@sYxM((C?{l5_a$*>CtDtc+vQ7P{qt9aKN2*$I9ckmE z9rGmQQ`4t)=tGAj@%NHKYaZH3P3^GNb+s1^59XXq?RH+;22=SF@hueYQ{5&!$tFuY zFra$@9j!m<9F|1QhmN?%w1F!njZcPDba3L9AODDZQWSL3)r8bmVHT9iplf?0EMW=s zES0Y%jwtOiZ3$ThQae7~chhsR0Cj>?E(yRA=>nRPbPbvarkAaK=$kYuCUkI2Fcc$t zPy}Q_YG{vdvoCmlz*f%@muJA7dvEUbS!fp$rwl0swZ2l8Of!n{@sDwG>E>@Q?!8`Y zJPOOh#*_JKVh#ALQN;e0HF?D9@(^*vSrkC35vhSQS&`eYbwWdTF!^fDd+AQ(Aenri zK;Ps{vv8rozp>rwsBu;9h9x)7!S$R>Fh%dNcpM1OLhJ@ji~SdPe%CzI6t&ET%>t+59%5;au zMfYN+Eoqlr+($e&rSDjKs{)JAX1Y3-9zUCFpk0C`>@u!?4UHY@yz(m5f0E@Xfp68< zJiG#7U`X)l7yyv(jbw&|i{EpNv9I@?+bnpJq7C&u2Fw37Bj&PIQd#IlnKhPl>kZLVm$*%wrtTG& z@Y|J}?p#d7j>3X7z!r|bTg9$dK@6|3@zyO_SB8RWT)jU)Ho*+lSWNv6#B`X+Fxu3X z$)1VhH}28%9hs}Z>itQm=+Md?O??gRl8zGfJgd1>CvZpEqx=`}Tb^u}Y1@$)mXBd3 z1Mgn@G4rMlGs@a_i|SvvP7NG196XLZN1m*kS-R<;2EVp84r|>%HYD37oyGqzyQ9`=O-D8fGwiN-wI~yRt zh_Y6cUpbC!082C&>O*66Ry0Z4ZC~7KU{5AyFQ#9w?gU<5I|zi8nV7LQKx(l+(>5Gw z!u%Hp`M;cW|3#sor(^$zLh{eK3PXZ$BV_kZ*0{c;I*aI`nlvx0KX&`ubQ%IAX- ze)JTk_V`XM#{CUa7{ke?E+vG75m$~cR^$YrEJpal`{bp`y+EBv>!;UQ9sT|2@ja7l zdYR8bA#bsCCk{|~3g{D^LpoKys2yb@q zjpqu^B=K4H;N@UiLeeX?6TF7UXTW^f@*`|J#2JB)H zd2$&u=k&h9S=fV8!=+HNWG#FHys+kr+SkAAa}V1grXHp_FbzcuQ%NgCj~{1%QUe-& z?l^K>GG5~|qn_;}?I!|}Mt{%Cn2i?46*8>Ez@uXzWbJaEZto)ck zO7ZDf_&CkMaUY0sNd3GZjsgfb#bNh6uHdhx$KjZ?uxj<=wV_1D6~dDT=5=4ExY0lINN z<9LqqSY%AwihwbO|BMVhFX1#D)PifFVprMVwx?o?YX1sOVWbn$mUP>ga=9_Q+?ZVW zs+l#vwS(Ee41YbSYG&wY>hRT*^z47e>hFz} z?GLwx4v+DRI`L=!voX*!;4w0>{`LDss9^iw?F?U}jK81%^8_RN-xLX!uk@ddmHCUd z!S-h{`q#$tb;eB3gvb7eu<=Eh_@YwK|GCb>#Pmh<_$rhAUw8if`*-dB9RJS$4{MB> z?u($o{AV2g9GSm}I*fm4BVYOapmN$V z7ro@G-GB1@D*vz4f0qCE8S7uHmH&3-kL?eEAwH8GqLr z_-nS~(JI*}Tbmi!7#e+z{GS5;eL^yPHRivp_J0#S{xCKE+iL&s3=S4nIy$I-U;ZQ2 zyyP@hojV^T++RS5{6L-{@A`y+UePTHZ}lws0D-{}F)?fIyKs?!EaTWno`45y7m0Mf zy}IoV8~&21i?@CeRVdzdJ{V4Q-WzjlI(BY9$F-`DcXlyOH!D8oT|L(2+#N4Suhp4s zzZ4&cYOUY#TD!HI;bE2p8t=6yCgk1j&A zS3@j&>b^$R(LuZ6k>z{95$HiBJz#YB_;q4UsPqnZ#UTUGi%7Hy{KA-nDVxFN;Jv!3 zvEb_saQ6gVT!)@ru8)jF+pU&$|pd)@q3B0K8p(7!H?Cr9+ zH|yeDSqSE>8QJv`EQQusiqiDb`ZR7U85ymKdO5G`ojz}Xw>tP?dl|kIv)tX0Xdz(;?VEgO!2!vGlKUaIE|q)KAb) z@tj=QHgLG{%X+?+3z(EVeb`Q32tDk*>v$NZhVC9X!GlHaz`qFT1bsx@Zq@A9Cxov_hedVTa+Zevz!Y1}uk_t~GAneK2rl+c#6 zs-&{dD7*h8=1)n72SuWZ)>d&dfyY3SAkco@cJ*$nKA-u5RbA zn28d9g@S7;j>iR3vw6hoY^u%;^kQ6c%sUBO)vH~}tTNI^36Dyj?(+L}SMfd>)TsN- zWt*_VH}Tp(xH%F}AZh&vp)U(b8P}496I)rE&R$b5!ON&*jRO{5-P@YEkzyOi2At#+ z`Y+WP5{#VlIh?W0=lsUVlLN|M7i%7m2M4F=8+|D7K46_8L7Q(_-gFu0yzgAzZ-wkk zH&5!Qi$HyirwNhM%`nPJ z>}&*@AGNS=(ToMVR_%d$*zh$Fmp>VY!aCc+!+9cntD`fh+djwM)4xlqZ`}m^c%6=g zhmL@!(e?HpuN{@I1EXHbKS6XR!NDvrP&AX?e;=NOABA8!DNVu99`i zMWk+j;~FR&`7|K5dEaxm_t9&8bJiP;-ogD_3eLfkvO6kP(K{+EG!MqWgp5ew8{LB! z=B}7#Oi(lTQzf4bYkI=N)<6_sshNR=%V~F}jnAg;X#|yeoduQDQD`Yk7+z@NMx35dWcm z(^q-?2vlm z$lgk7k1cg9+#UEJfJm_(lk#%SJH2dpX14QDz>5&TA;hTAZD~=_wLW46*`+j<0Nq%X zp7-UIUp2*MTQhUr(31#St{W?Jg6ScnGOBRJKK}0uM^&b~6D5)|#vE~|@x!XY+>KEO z+S?@J<`;#{t!^enb@99URhU~dffz{2Ng_~*4I5Uv-vf;_pY0Qm(=1iy_#x;*eO-N@ z2V#%{NkUH^&d18__2K8fwaqvf_O2|y^m48yejH8gN^Uoq8s)TbYc0=_L1jf^S4~g{ z`H+0Fudj5FrygUpvemWa8i}&a5HBXoizQaiS)mM9$3W{(i8vGB))ImnUa{Kx^jm9# z5nU1{^9$0veGz$WUvYLp*tO+%>P?s{q!}UcF+cb^13odLci<5ues;W0tp3u`ZGBm% ztZx79{>+(7(_z28e@l5dk;UHrHZxO-D%)}O<`6*|MLRZWWWsoCAR3L8m8zl;0w*Ia zbB4S5>v6eu?`SA%JNKYwaewWngY_Z+c8W`*r3ia6X4*y4xY{=`CQcLcS3_~hGg;v{ zaD{-@ela0LGa*USg(JLHMhEjIGPy30JO7R!1nm6ruf>WpIcWz1TT(nC=r>hyW0q!y zKNt#Ohxsb=L)f(m9=Y&w$iqtua_y8eNAV?*pCIW&+SG_v%eC3}C!k9bT|tt|^OMUO8yO2p4VkKjy+5S3k95JayWyX9vt6jTtI2_#HJ z70-nR&nht;1C#T?me{iQV}OM*M@8Lg1nU3R8v+^Dyu%#zv>$A6y1IiqXb& z%$YAs0bM*k{vy1ujg~lLvF!|A$P2HEHSPiIZK^VYri?R4*a>(QjeTD#mqo&%ZlM?J z)amMu;^Z8(3dE|)g*31SZ5w_C8~}bWwFAIZ$%y)9>dXRBpcwbgf+-q#gz6j#U?@;# zz>5$yb>M{!Ea^$PmEj;NBF1^(KHhm{!9$ND9DQ z#1ER_iKC;%m0cv+Lt0S9kJGukfZXUX3p+kq8)--Li_asaT4FGPp;W=7LX7dJ#U20{ zrO@E9^5?R1kH1LC6e~?)W#;?Z666~HSjkIJ7E&Iz@5|+F4%T2<#Ze}$XG2W7ojwEN z!lO2xbzJySbLJW6@+Lk2WLkMREzg4GWALFOdc1{YTEod$td6%sFq5Gl2!nCxwEL;t zbDBV;rf98oe?g_NRN(6?IUmI3T4Bss!3Ih7;7bn$L(U9c3j-E1V@|)5lg_MyA?_jXJw}wE#04oB zPnI6l#6eStLY@gmV<;<>z=YXW7z6`NqvAXm`TSGxJVaF_)3+m(IHqJ-4_s|%Y!*Vv zB9ge$kLPw8Y9lu+Ay`Pcuq?Q{{|JFB;5mh)Ph<(Yia6EyKo4=*Rlzvx5gW*bontJG zO^gt#B!+Ad$v429eiTO?B~P9cXxTX8MX8hGTrSrf+t1%3(g?mtPcx=%CZ;c$12}e! z4^1xtC>TcAB!OJO$Gg8F-u@z#`z5ruTCpzoY)hrP9+=#!twjG2l}RU#Sz#SifW^%d z;3OoG78!W*J2s%}Hw0yZQ))9q1|u5yOWvN};r*bDzX3y%wVS9#!ash)`b6@Bdb>UC z|1^&xqiQe)#f7QOls=S4;KR&dc~NU_9RSIJ6%;QDlqIr4S~%j$j<3a*sPOFJ#}{0t zKDh5h55Y(+I#WSrX$yewbGMx>(@W_lrrVy)p%Z1GVQm$8LSCrXeyelHP8~~$JGa}C zzU!j=))M+`K;LWp{5v(#cw;(ZD@Tb*XgJG;Z`TD4ibJ(+eqXm@i6B|72p+4%d^B$q%B4nR#o=u$Kxr+9L-=%j{uyVHSNR0KshK2 zk2A94X}!_kPJOqjlEP10m|;9TYKb!9BD^A+sjm`PUU|ARrL=))1W$@BNvG-BtZE@z zg~70KBm1Aom${B~^vho{SRd1<#3O7cFuH74{3GpSt(1{wo%>v46}P+UQ--fN`gje@ zx2T+aGo!Ylecg%MpwAh2f=iw=0X=+~(^iNtt=0YDyv4^EJ@&nT;({O+UPUi*+v;gu<( zWu|TsgN1Rh3u$}p^nA_Z9MQrFEbra!EXCxNmlTvoI*QAwJl$NKG@$Kgr!GkimmxZs%|Qjt&Se0Cqvc8C2GUB;j8!`@ zRy*H&!sJQgUy}uE^U`~C6Vp@aE4XO_hyUQ?R(>VFo9gdcp}%MoyLw~sV3Rf3$u{!2 zert1+>fjziv(lt4Tl1NY|Dfx(`x!NKbLftMzsl2|zxB&%H)-LsObnwD5jJxBi$%d6 zF0iLs653D`_&wzf=#>}ETrgys z{SNyM@Wth9u=Psb6Z#Y46Z<30l0eXqwnf-m&#b1+^eLolil8nZwPjJK0rVYVNmo^i z|GS~M=j^X`m$F4lse7i=ZSC<+=u6Ar*ca9_y_{R?D6_qp^4x2P?by~fbG@sWhdp*> zA*)B{S53j2LBCjzwy6=h*C>v+lWK4_w5mh)Ik?+OFPvQs#Nb7RxT&nBdbc&WwRH1C zPRs6X$x1@{g(`Uz;~`EMG1bb`8i5+GGODCriao_I6LhaBjKn7ssLe8O$W#jRDm_Os z9i^A!dyuUK757IJ*qzD!k-onK8uS=#du-JW}LQZVFBn{D%U?KRO}*4ZrwzxI%k++&qvD0sN{} zmVWSDZ@T%S2^4YUVJ8=N?g3DrVHt`!IEDM^A@X_jJBHj7JEM5U@Z`CJMF`(>Yqrv$ z-`J1FL$}}V{d2cQHK}Cc@D!F3Hp~*q`?bxQ2VDjh;|cT3`?&OM;GI(!;IBEF5d=XVs!9upLyCdNoBq$(v&;U9O&fs!AEj^S|V zp#rWGIz({u!A}u7`V%<@x|_B}_*01OwgLCCP4a=&5{M(0P$~j9@oH<-ir}%Hf@h=&jui;=|XZ#1!{qM3R|A3GGA0GL)ypFQ4 zsHBMOzd^c8{}*{3hA-_FYKAY_5qicy2l_9ilK&f~%k(!${12wf$n;k&{=szrWb>El ze+BCPg_!*(hW5XKb-$!?{@}2GkX?qq3i}7z{U3Yb|7Up}#=m4={;HfRo+jNF?#n{Q z_9cPChR4Lt`j!5Yt@%P(Sy}!_*nCOkuzyM0&@GfvK0k| z{G5cRQsm2Qb{-V+W>%_)%WeU_!29`ns>dPMK?bAAL`JH5Aff<%Lm*e^L3Bz)_U79% zfq)^%iQ&hbxQ0iVmY|p$d~-!hzo2M`*82mIz=m~TnYaDX)p84PXSg>6Q_k+_ZT*4N zc)7GHLfJd@7Rw|sft+lXNQn$!v(d-UFeBp6Qvhqw=Ig84wlLb=cYtDmDlYvjb)v;Q zR6wxzP#TTxf+$Nr`;$1@Tkip)>;0Li!ZCT))4KDUN}RukcG3dC{@tJ#98Wt!)+D! zV5xv&F?Xj*s?c7qGhYp8x4>Y5ahi^5Y@qmk(0!1e^#3sTmcfxETbrhsnVFfHnVG4i z5=$j!W@accGc!viW@cul5|o&EReisn+jpjWzZtW&-8KEll!r%ThP!8&`FY;+9#Ea` zBYlRl0MF=NillHPemF|0X_xhg=#a#i8p$OKEO$0bmZj%Y4JVVkB)Jc&*9dm!j?3Pt z2>g%tv0JVEn}b{a_c~AE;SV&=}qITb2@H2TpWdqrKyxyby~%YoDwJPz&r3I#MWSDTB?wfK1h+rdz0tkH;`JsYO2Kwq zJEqejGn7J#$1py(Qo~ z?lM2CnGya5J0o9{i;?RT@zxj&?D=M*^+H~*9yVQ|@LPos+x%uQR4xNc-Ma2lMFAmfj? zF~S#gbL(j2Z+l;|76CN@FXC)5*S*l)YDB&zo5D=sFGudv#9mb6pbfXb|Ji;gEcbmO;N_So@1D(q`Lbus3QoalYuQ2R5e2f zV@iiK<@V=uq!9FUooKkLltEZGQ~^KwpMdl|;{`&SDg>x9 zq7tBfEeIv$zE7-10|a6h;UxDQOw5ayF?R%Pp5RM$c z`0PADkmFY#h#~gJ*llmaiaV@w1n!T1Icr=@^!|cHxy0iI&!rWRH}DnGxS7{byF66+ z9q7qCvm$CWO`0ehr%$B4*2AzYt~0u|WND7Mqf!*krtrcReg~o14u^Ics|&g9-9$ zhf9BB#!SOGIH8KkHoK5>v2nm9DI9F1lYR8DYSwQDN@^z|v8W@(x% zqwcA$Ba>|+6L$10N!LXZa(sv$z8F9t6LP{d0o{(1RH8VJ%5lcBuO;3g5)!4ZI4bdh z7;w5+xtsxq_P#+2$m*02y~&fQM9m_rxORigKrQ%uMXX?6u^IwY4}EY9CX;m>Miz8v zm3vo#*7h$42-d0-w?9*JNI)Q1-{Iuaze*b+$uV#-OC2F%yJ8*adq#4 z)x-qel5)V+4K%nO(1wb61E{65D_SjRGz|GyH~}Di24646dYT0CS!54X(h){_Ap?Mz z1Y-IyWFW+j=%wTEXQ07f!`3jqL?6RB2uOjBiPd`+^zSBvV#yz6us8xM!r*-udRN#N zf&A%)9I(BKB9chut}HiLe||gs9*|eAnZ{6zt!K1~x@ORBWV2kmq<9ifN+iwD0}PpB zTICB1w?ZH6zzvZDE5_}`GyBy9U>ZzyzHr!Y|EqxH_$VXi8X@X2G8_~cvMTK=ezZXJ zIHMx0aLH#4v%C-#D^CBQHcx+7diCbC3?wvT1vq_DE|Lh{RT|UDn06Pg%{x4e19!S} zKB8~^6uOS;g>C2GRQYU9J&X+r#hr)~qn-us#{lJdQbU3w&a90A){<=R#V=jqQ zNoz--P$M_ih;`edy8(}(Zm1E-^9Ch_iAV*UM9jZt{k0dzWEDxDK*aBXn7pA+Akv=| zzZ4EVA4cB@IQqP5Ar@uwo*@Jt=O_Mz*5sej`#!PV|5ye^EY`?1FBHZPW#g#lZ zF(@o5E0Gkc#Fy9>OihK}RA!c{7SL-e@|><1hP zeDZM3x!9!x13tqN>O&F8`JkFa1NRu}LA5~Z7~%X>-`nmh(S1=4gs&4r*H1n>hiD$T z3foALu)=1fH44uQ`ocg%_fne?8wY#IHm{4`Xp<>GHP;j5+IU+ST^lC4GODlSjbRx4 zMQz|44hGKI@w-`bl-j-yYW%@-XqE}k2IYDF+%XA~lm5U{{$`^*B-M;jwn=j?GZ~$yqR98! zdfTr@CK?-RM^gw3eFgc^z(zjYP`2pjzQfyaYBZkdQv7;qd)(R{ME}ls^;YkFozStO)`6Yq zwtbiQvEt{Q_3+C*u)Xj8@Br&#@Z))CSlqq@_zhX(BRFk@>z3i2^MrIO^kWQQ%P&hL zSx@z?Cl)jgJq8~)5i8G>*ByEKqskr6Er$GVBD(4fc`d&)EJVx7O6zoKb+J*sVY9Jm z5qRsopwdcmdG)X#)k-;{(y4LWG;@5BYZ=wb@MdW>_?wm%{*Okd`NdUMEekC}3-|a+ z-g!q+4~B0Rb_V|ax52sSBTcn$_cU!m}qm_@sI({_4d zDWmBx`%_%|3Ikv0Y*`pN6KVB4XE;8t$4W}+`*bnKbnZSwGMtIG7ZYeGQ=<77AhWSm zr9=0xpFKhUBO;^FX5CMK@arj@mVN*-`=%tOaIVlUHe`1nn1KdP3C1)E`ojy&vsHpp z@7qeMal`d2|3i;S%mvDXFJ=aOl5H3@W*{Otet#+Gscfg(9b3JeP@UUyQlta^R}?9~ z*X_eNvw*&pLBtCXfMNDJ2|gLy$5xn^xtgNe0Onwrs3WeLBiHo^xoUT@m<7*Yv=3gJ z(UvdDp4O1Lm3L;}jq(Oa%>oMg0)<#*KkE+3>D7F=e{VB%Jk*L;uu^1$4N!QfvIon} z8XU#cFm#DBe)mmePFPu@JV>sK*7B@Jvb%1r$7%_@1GKS_Wkgly?HX2hi~GCb{ZkzG zJHql8gX>SJ)4zA7|K33VV}wOQRzyQX<}VQz*8fg4_y2dsF{1$`#U6A#6`=2(yoNS-6 z&%gf0qcou%wZv1iQmM6hX{E2%>ME&qrR_c6=KGQkk`2b{Xb*NCVCa_{?Y@%{~N zHCv?Qwp#6bHfJP%-i!Lt3x`nCoVXg(*nOir#uf&E<^v+Zk+*aw^x59DHJ5!~*xXMc zGVTU`h%+1fE;GvdWyeQhh_JC~K5yZ}TP(K?clL%ZNGp9SFJmj48)lHzE+GgX9HVPO zk<}4WBQe$zyxc_lnS~?BRUq%=YX5rB994bl>cAwp2ff+zQSpi*rdMr`9F`C7@>&p+ zlap(4;78=UyF(;LLKw<%WmORO~H9iA6>-%=|o!@yyf) z_wN*(of9sO;DT1)Gqp=};K>T_6k%z^RkW_*b6)H1NVnNTKaAeuo(ojS_5B+3Ad@ zR;DPbXZ=Gk{M0$i!c%C-j970@xr`JsRy_R1{KUThD6X5mI6Xh!c{Mino)kK-3A@Kq zPAzTf$h*J0D&9Z37}fIHV#efl^XmQ)Z+Zj#m^vZva=XNgO9F+oGU8Yh(AW|5BQ&W| zOJfb@{+Xf$#47B#1V(2nKxW*VYmZAFVn{j6(mU)t{6w^&;}K-j6{w4WAqKvLXANUY zO>`=#Ej0NU^S&_T7_2hM*INPH5O@&>w$;)boAw>*b1WAq=K#gF2UngR0hb@yX*%y0iRn(%N2CxarQ8{DMpM!I&CIMA1Vb}1VgU8grd{LY{ zT~0^u(Az%O>)t~g$k9X{;8<+9=T7If%EdK2o8r-?UQl6Q;!7{Ls`_Q?6N|B~uRa!9 zNwT`aw7h&^T3MB7&V8a;p59u@1G3T$HX)N`e(4-P5o!lXMZ3g&=G1-!Jn>?t^0ZKM zt*$UO`#Ae0bVA|4tj0l;2N!#o9?bSl8b@8t=diYQ*=lJc9iGSeaNO`Qt3~)H847pM z&K*aEs@R!I-ptWhBwXr6>^|9&?3lNj?&2lg8ri#;bQxTK!b}!q^ek#x@KC2 z&*i2@zoxz0ja9#=a_vWaJ9uI@6xVz(096bh`0(^q)MQoO<_OPCqm+s??bi{z608Ot zW3?Sa52F_^pB!5lI+X8OG860((-z$0d#PDsGw+IP;#0KiV_E8z?Cj9nBG}x1yTGj znrV|}l~fjTfH@en&$!hQ0Q(vjxQ zHb$##S{GOx!z@#-)l0`r5Bh4Xi# zanO!(4BCc^3G3S7+(ri&Ag~GG^iFl@x{-A5S}m_i0sA3^|u^sJ%98yc69GeuoODZ#5o1 z=n>*4#2-b^l)oa~DSye{DIUwaoAS7$-%NJ3YhO)5FEx|RrGukAkzQ5{a1$MTvs^g3 zJ5Zx$I)>=7{$Uy959Gqe&#i4udGlQU+G7Qd8pJone0|;(J!k-bKEm7fa8s*si)gv| zD*xEiayN*5i=txaOKrk9-H3|JUfcA&Q41=0gm<6Q^yP;E2#C0*k(&%Kw+T`yA`rL~ z&O^H-jBQ3u2g)WHPc3omp#Pi!;4oeJLXV`EER8Q{M9=gFaPG8RQ*Vx+N`e-|Vgr6? z;@x}^mp}8ydV1HQv)rBYF9(p*XwqON;wae}P+_l%u3=jjIn6nLsohw)bk#N-b1je zdL6EmUQUS7J6qkJX9psZC0@_lI$aZve?8PJ-sIGGtI<@{f6ZqzV6-Re05gM>MO1OE zRi_ju*arn*${1eRt@Zgh9G)cC>H;FX0?+|%cv5+X#2LdE8d#^9xbCuQf%aP${Qz%) zX1Ft?vCpGLZF^^bx$YWpdbwebk$$S)eSbB%#_zp)HH7i$h|%>-@q{<1gp3)7?F?Du zJ~^co^WMDAb>=iv_L1Qr(t z3_jQ${?3O4Nj8CSkjet>S3h6 z${*TzYVcWq1UM{3U=bgDjfcRS)tjxnd2L;+)2SMaC~$`gj6i?w*Hwf;2zLq~!N{=# zM$niMxcoJ_5Pal&Bcc1SUek85oPlyyR(TP9Rs#Ek&ANEbXgHtj6W(4o%R1dejhxa< zyGegfo~Gp-ggv%#)|l=15Vmb%9vudfCagwW4%lG6+6o-W))b#prkH60ZTba4U2weV zjxN$IME*QW!vRM9{0!#T1Nc2SRtVQEaZ)CD}L33)A{N1%WTI2ciGs6 z7u|G7+E_2ArN~UEdi4%WhT<5uYanFt%r#d>k110+3|6HY{0e_Da2L4@U7LS+2OD?Q zN#n`$i`nt7)#IVOr9x!Jp&dQ^`$71_>@4~1*qQ1$Jg*DaL$P?Le!QfM}R8bDhE~sck|wRPIO^LydS}{j2FWr{pVW2cHSD; z8Fx=V&%73Q=F=bj$v93Qra+>U3>aDLoQb@@ebp_4#JvR9tT^{ZzrR1fIN{3K|0YY~ z7cv|lBlzWgq=d6NfMi|$1!()61;@wxpyodL=DXNlXH&Fu*lBpYNI`k-3bCW;QRnH#lkzF&gjb52#-n?2ecx}d9*=m`XkO2nN?*c z$5#%vD(+5PwUOyQ0@YnU4~5cg7sXp9*`&efQqsD^x|241Hnlw8ImglMlCu(_q8-30 zW-iG%_{ZD5u`eQFh3TMn!ghp&J7eh^4sUAhE^EpdnKJNuPb(HG3c0X%8qnJ-KX|(Eg*?2FwQpnse;P}O zkAFa6r}Y}V@7wfS=Mru|E7`UNe1($x0s52bETX3fQ2t$Z3gBJxy{@gRwzN9zOr7^- zN5uD6`J^H##^PNt60LZldyhDDN!$t&f&gH4xIG#m4TuPXll0oVi!9wb>8;AZy*qIP zan!_K>gHi;*r@G6PkI~qWD(a@Z01ija5xccZuhdcdhxcGXnB`~pfzlNyQ%4!wN&}i zpOk&#m!()FSb|`E_;-}!fzAG*k1D&Cb#v@K&NO!S0>w7xmhX!4G{|_vk!)^*vpetO zC0c7;?u1;<`h_-^!%v8h!B?@DcXQhBD~7x~hRm6rD~7ggSUqx@vmuruA-6HOZ+N3x z4Jag+&(gkX6|hft**8Cf4BEn#Mpg^89G|OzaLmb^BqH#sJkfkGhpvPnM0erWKW1Le z-7hj-*59+Be{Q{1Ir!MEtuPnMXSUz<)1I!^|Bw78+0nYBaz;_P&6x9ae3;7;7rMz~E zFgnH-AVUXtBjnV`oMhbMQCmP6k{NWj@!5~xHO%LcM4011=ihGMSrCDumaHaEov>L%|!nYYIDk3w74c)cOUtG6awM%nb)I(rB^t zRX|!VHB=FMMjQr_nUYWsTFM=TLS8Qr2E(f-Qo4p1oTnJW4LExWlPDT?&`b)~4NpvI z^@$csLN3J05ag5+JG-MUV5MareH`Mko;?zysHab!lR>T(sK7!ZAw55G$4{!=fx%<4VCz`E;Q#6|1CT`K4CO zVnG!+BQ%Bj{iflt!4e?5B`JtWf@3w>)9Vco3oV>nCg12%S?MFjh)g+T z3>PJ(4C?cR2Cr&1s!vOTk_#Dbb~s|_AfQE<*(nlEAGIenxzp}2M6Svq?>Tbb5By4x zipU>h@J|}A8}}P(2|P&HWipN18N|m8`~i#9T@>lIxT>h80#42Vkr%CT5B7mDf|ceE zT8k;DjxPe0!T`-!Q?u_ZIMDv8p^)SAn3qOnfsm_GfW*c*J+k1vp7*Z%*aho^nJ-X5 zyzG*rdc1p3ak8WbBfAK=9y#{)B=Kbkjwv+Cx85$}8F%ztDHzrZZeYqei$9Gbi zN5OL7q#@1W*CaHpOxLL`Y z(o)yEqV|9as0f@FdeN+mD5 zlM~zF%%S^FBMlh?O;n~mQV43$2OkX)1lxn00-RA|e32dpxLql{t+Q7MNKzc0kyj?p z!d&gP^oSFhlTkXIE=U=3-B*q~85n&jXjt$GAN(v0BguO4JbV@9@dtXhAS_+^g z%6edG!P=>5H?z0^W!|8nKwlyfjWtfjJRz-G&?~XSK)G)ra~F--eL6x5$Ba5;A_mw3 zM^j^lSVK@-zepZF6za^9Bg6^M$u|j(;M|tYf@+sP=woPS(NDuZOlide@|v>-e7SW$ z)8lqYNgCrzqy5NYGSY%AL-cSFVp`X9{fGc=4(>0H^Dn3l8eFxqjFBS3cHE6=CpzkZ zf$0Ui>v@}S^)YHcb%Zk|vw*1<=Id`sVi`Rf@z81E%D9@a?yk~FSZ8>}D_`&i&w1kr zaDsR&K!lq>!4DMORUjQ3Hv0tVpdqJbWP*1P+6GmG=~zYUKcQQw8sI~|_W=`0*#is* zFw417S3W!FLwHoL{D~5j3L?jT?zjp3-IIgIREjdUr zQ?!%~*-AePh2Q3IBw|YW@{~X;1JS6zErI}I z^fPQj8(rc=Z)_Usv6Z=xlG~hIyC2u7skeYbYUS0Pldbxi9K(|0(3m9(pO!eiocdx% zP2)MGM)G3aKoI-%2{)azHry0-G&ua)7?}T@h6>1x>wIH9c)f$IcHksfYdaOZmDY(; zBs9dWJ{3aVhlxm^&td;Yw!24e!^e-|{tmeh$zNLh&2j}>7t-W%Xlc;?O@a>8EN;z( z6#OYeUR4TVG0r8^8C!)`dKpb0{v=VJ`K=%^1tnAg#R+CFLKU?0fb?(BUN z+M8*xXk`sZ!<-06voU`cj%c7=y;)s)0_Ym#@6}ygIJrMMU*s+Ikj0$A*kg^fS*(K`2hk}`e(|lU-JM^#bdaA3RdZ}UlMa$u_gME#X!F%ps zzxGzcysTmimX?(1UAui72G8AwMbFKR4Lu2`-m^l7l3_LJU*DL!op1s@ne-fz$$bJP zmz=+iVh$~5BHOc~pl!RTj+)_=2wF_6q?}S6t%7!FVOANwNM*jwtDaOdwTiU(#bY#$ zN;1Wy5ptq}vrsbenWnxd&`vFR+oTqLLQ}~C%~IxylAOPv{_^6GzlVRIYZTp;SBi56 zVKoA6nmlH)rXu?wX{3TrRH?9E5^cC`L|MclC`!D+71&21D;5d6wO2)mO=fcJG4EGa zkxg^O$g3#k#N-6I1IAWn>kTlzz+E5YQ^4GaI46ke@Ycxir$VQ1BNM9=R8k_2=BEqd2x~~nnRpM1|(iM3=7t_8WYTd*dx^Z<#6CGRHBqIqrzC)sXJrcG5s#_mEfI)toX-5q-2=6)S~^Po&MM8@Rj)0ShEiI;`DU(z zWzK@RMnd?ilZo#l+38~JUCgrz85%RChLjg8t5~ew;#Xok(TzN1_$0q^@8av&4fE)# zoDVx43^_lK@_vX73Ge|e1-LN*C{qq_2_P;yJ!wk@$o&B@9{PMOiLHI$n{ImNfDW3H~{dFe^9uMr~9!DfDm2Gp5LbR1{ z`y>@^=W>p~wfyl1V7x*2A^F3;ki6PwvDYq z&{;_{JAL&iK1p}zlachmi+Qv7qenK}Mlpq1tC zwbcK}H>JgeWyHn)!Z+FeI|cct709Q8oaIwN{#m1wk@1sb|39H1XJP!`SCIdK)BXdn zeM+YPy~h8EZ~osX$p3K^{$Ey*|1o?20;GRYkh6b!cCfO2D#Sl;{EuR+pZ*=JpOle} z@zZ(Z^AtAr&*H7W3#a}rw#xq5@6)%1^%IV=eil#t!%O6I%6_-8v45)3e-}&rFZDUg zZzcL~?~hOa4fap>kl$)`mQS@hI|nBL$LIC_RlxQ0+Mh*uSy?}ewtjvVJ1ZjrJHuyj z*iUsj+vhp|p-%rp+W)8Q`=6%acl*Cm3jVF&|HtwFKT)Uuu?Up@7j^m{&%gg%Ex(26 ze}2tBpNN0>ll-&7;;%TChC^=5eM9Ma65;cr;hy`*l9gF-;RzHcMI>=t z&5Pzvzpf>9BIX-4hdcsxE~?@!X}IkS+X=u|yJaK0oo5^9^zvQ5{-|0fv-=T*E*M@Q z8o<&$XcYhgp_$_|OCYx`V9=HNP_STa$^IeTX?Xb3nfi2Y6D)#3Xe8Js5%L%nQAo}2 zy*J<-Xek;vJUZA|-u_~IO(t}21C-eAb?`cn&DPQEuW-h)uFLhY9KWV}$@`()-4Psf zNAJ=km0m?nD{$cht~Y`UfZ-#$DMYay?0q^pP|gmf!`!_r0QIbn-`1`e{*`yfpD$9p z4_%tQD#pjz6Yu#0((7Hy?R2!X$%kN?g)p!Sif7QTn$8}4MFH7d&~%IzL^zhu#D)mt z;V7eH`i5iUZkl=5Tc*_?+$^LK?qhgC%j5D(NFi9VXJ-I($75jB!vX8*~i}mUvgU76({)DpgMAxogEwcim~`Xe}Q`Hn7L&lkYP=@!5pn+fJ+{ zZQP6X%jv&tYEF61pTP{#k2NrUIk|{oGYf~^GXhpyZt2)uqc=GlICzwA)@~H*!{Hr1 zhOvcYD*v>_h8Z+vT3K2X&3n7MD+BR!vy1zY7adEPtYpPehWUt&3 zOHhX-%uGMd=d@Z%WgNn+AX93>lrbh59B3}rCsp zXAmWW8@xPwvx(;hpLqQF60n+K1aLS{JfwSyKxQmLj+_~$F|{`t$b1xQ{|IVt@-awJ z;|l@RlfypDpQ|<>d@_d?NEBOBTBIY+i6PB_Ot5yhX;kN<6j?X;8BiZ_FfiyBy~Vdb*%=#MdZ2Y#Agdl-Cw=$Cup9O=YqH6fJOXqYpw zwy?|3cw`eQd)II${&tVm$$!7`-4mqrUib*v6!({j8!j=rF)&96>0rp>QtJ5@G4Vcr zPcqi*;(d(xRv|Sw&o^0p;GCK(I@}t_#R?mRR1~3DiH5Ce>Hc_?U{myC;4maRg6^(T zs|fhZPagsbBRL(cXd^tyJDW<8pw`YS&$VmKij?#XxyWRbHhGgbqxEB_wIZ=qL+_A$ z;_UO(XjT?SC}8Uzb#AWN8FYJ&wR&LW@(rg-oqnSc)h$vT12A11$t6v!+8zs9?u?{5 zSZo#Vf#!I7Ph1#aZ+vjpdbNNdJp|twiguycuiuQCY56tMYga6t1KL32r;$^G3h{Ry zd$dalA|qU%^#*kU;xUl3x!E%)mD>)>i7?6OR6_D75}Z#pL6JjV)eKkkC{E9e+3T3l zL?*`SawQVDQbVYM%O>dpAW#k>CnOyQX z6Cv!P_Y+8w`CTJkU(}`~evT+zj1QTF1nqcgy^Qq4aIY`C+Pg{sbmry6%WaQ^^irfa zpJ-{)an#O*34JqM$!7%BJmyQbWo$af9NTlo4)C_+#i|rRFUY`zX(m=37bUMgz<2iq z!k0OEN!kljU5YUjdM5QwJJpgSNqVL+@aAQ`sZCuWFP3fmdSaRPV*?QnZuh7=H7l#W ztn&JjL)3B@u2v(TS#Y!tyQGYU#od%(8UhRaVyR(1JCc1{IrSz>W|ew?w$c5Smx7PyUqFyXSrQ&?h~Ju8t3j zZ`|8Q(ED`#zKAOyQd9cCBu}-q7efmei-Iis%&9Pp7awU~*Vc_*Zx&pxeh5|*ML{Qn zHqK*@4GMeJHFH3d1&`lyD^BaF>^)N$z+4p3H$HI{JPwc8vL$6ek{7)1glPG9hO|EQ z)X+N_lpwSjnV}n!_ws7{>0Nlo3`Ddl z5}Y}P!U|4WQ#uURK_+5T_z+FVO^RfY8VpYBBZv^kcJg5XYm00ZbL9=m^6DitMDZly z@^1k#?lieScIN|+EQ~OCcYL!gYJ5x4GT8VvWKz%T>i7W`g@8NgsZGSVZdbSeqInua z0Fw>!fwQ|I6nSD>^^E5XRNXlI9=r+GPWX*RPbOmO9Skkj%K1OIomFe}epR!4Oad0!g{+&a%FlYD zqsrnsz^j{}AwytlPZ3$@mV!{ESHa{tWu|1pw_4BKkf*MD%6LuQg@t?(d4ReJt31HM zd{CpA34?zlZ0d_uZtCTDxDUf>{j2Ac%KW#}loaSkLx0=STj(TSh(T|Yf_m|conI44 z@vQefuF^ypiiQDtF~xvxbIxrmW#IQ#!Awn>^Ei3W>XNqiWuX2+p=u-$lO*74hr#Ad z`B~$sbau@PenBD0`SH6wRtBADnA=ae1A&?mt7U>nzD`0EkS#q2PS7QDO3;Fav|5qI zE@!+ZxvNSJz}jFeU| zfj;C&7@=2Rt<0%rW6!MbA7nAPuLneYjtf%4bk{!?ZpC;qVeb2T>q~EVg@NyOss^h? zgZ+16<74k%5vmVkloz(*_=8s0MD{kc17H-qCd}`mEMAqC)Ob@^&p>=EkIl(qtd3}9 zj0!}&qO++^Lw-0jyS{7(y^ANiBT1vjHSpezbCqAnZs&hlUSQ2FYM9uyU(gT~yvsm4 z+A>UAQL@m{Hvq?3X7&C3U;Z zn^GUjB~ITGy$fM;@t>FpSz9kfg|B%!(j(#58#4k*9^x9xqoY9~S=e`h-^3ZeCN4&< z5bJ*yac`=&`76wf@z#@c;J%F!bIN2G2xXCsHQwo7fi&OUWBwE45=(!ux5ZC+k z{y+vy{D%LP-E!jzIc6rvi=XFlbLTy-9qQe*h*j`=Xe_ZYGb3&}WQ3(5qyr@V0oYa7 z{-C7uhmF2VNsRJ~u*9ADvS{yGFb5O34gW89Ck4`MA=UO!=|`}4l6PVIkoG?DM-2Yq zE;Ja`a>tMFI)l*75Rd6top6`H;*ap}dK!DUuR!lq-iV#_7F*nxZ*cE$eOn(hgmM;$ zM$gl!$3u^P7{I?$y~KH$*YEHJzJSk!#2`ER$AGg6bqFYIZIggxt-~w|mw+|Q1BkA@ z`&{3A+yi@C=l(=t3e4!2pjCgPUB8%ZqY@(71bnOIGrfCw65Da!1TQstTP5c3V(ad# zk9yQ&zK=R7f7EhC^8wDi{iWXdIyB{T2%q(KTb$+Q{!l8v`Px6kf4?7fx|G%Y?D~|i zPN&=YxGav>QRCq4Vc}rdq4L#Zf4#4qT50E3>L=2gyD2`z<4VoWOwAf?1jRvf0I$-Z zjqlx0Dy#=qrBO50_vGJCG>GG>^38vK`i83X2%OS_9nSBz< zL&KsH1*Nl@Ru-6*NIytB!lOjKIkzbSs;lQFoRFqs3VlDvKf+)AlpaOEuz5c*Kqw}; zpyR{}zYxuz0bLLo6_DShHEwWy?u z)S7DP8jCry9uCS4*}QH6L%}m3t)KBMn%8OqTd`F^urDpe5t_g|SX~}w{*qNQmsU0V5|ECpX3bLc(dSWd? zhdkSXq<5 z#?)l;p4gtHlmJz!Uw_p537&M z!@#S{aj}sk#qc8zO$v%!#+4c;&DYhepFpX}|4<}`7M{;lDnmDjpm22Cn6poP_G>|d zV&0n!!miGuf)E)oE_UpJF{$<{1(2wkK|ewmz&I4CH*y2auKyt#sA*NjG@~>%=t>i% zB~;Fiqb8l-vW~a#_2?|v97iPhqJl}tyN>g09C9ur{^oKpc;JA$qJ}yk3m1N1rVm05 ztjdsnFO7C|2cySWy^!-~om%Zx6~}EmL2qRxZLo>@_A5V;M+`)GHskoQ=-fWMMfYhx zX|>6%tqsnT!y|2wN~hA!JX^$*&!vA|qV6Vx^j$(~^qhQPY(l~Q&X~qWRsn=K&2f-I-UVld?oW|1d=Wd5K12T z(E%!N`_mbc6J46~PgS==!iTK-ka}I6 zMH3VZt4L5<&I`iJREJyldBgrQxXz?4G(0}Hh^(E>tVHC4SAL}7o`)sEq)$>=jQ^a8?Dtx62E z`~;Z>D_UUW8myuMXwawB>0=NK*9?KSVN9L3AD+8~#14uRu({B=yEr5iM+0@2M$+Ew zN6RB#p0DF#R896H+LA|Il{zslT!KN~;aKjaBi>8hRf)ZQpw^kgvn@2EEAc9sQlR9| z7cE3{(b6#%M`B-41fvbOiBTkUu*vw=7Nr^rMrazy1GX!yay6OIZKIyZlNikurGeN6-*x79{XcLb^@_ksgTRl^UcHq(^Mzkrs)=$|iApEoP@o zJD+2ma1A$C8S96+I&SF^Ra8{yzd0s3ZcH@lq5^di{D#JCwx}`=BVMoAf4d`ntO7hyc9=$bGG1?Yp;{te%dNK+7ZDS_UAI!oU150SBHr;s$Ra+KO8|ZO;c!iJQhzPXFkGJi zD|{$7O66g&FTwT;4~|F44=c3U)n)J;>7aCg!Zi1EH6+kJEqut?HEGo$wR}GBFY|1z z?4?fG`g6R**RP<;28|1h%HOgPH!+~0Dyph z51FZP$3SXu0GkJ(`-*W7Ct+K)T>hRcucVCXM+E;6H+}<0o@2BL3J!blrAP;soB>0{ zPFN&A4~Yl5r*u~F+)8AU-XG~GY&`B-^N8}|()Z5zs&ASH7ygSm{22thzY4m?5#o;I zGMx+*)D%CAB%;(Cp8GKQ2vdT}mz?5KX3#sySXcOg&x&3G4@}~>w0s=pxZum4^H)+H z3+i6C+m1FH#ore@;7(_gJex1^xIQ|^l#=_(%l3K(j8=pdqCgW7>GCRR`Dv=V?GR(U zTiXZW&(^$<(m^qviAND$GDDbOpN2;^zE>^4eL#J2y7e)>4RFCjJbD@0U9ebaqN;vy zkSBOPg`M%%@U?4QD!YR?9xAf}C%=2&dKxGRLQ%v~^}C&#=BN_HT@H5L5G9GFB-wFM zfbfEjif8SQ2TdSGSIF8|M5*ps3pkn9<{)^7u}xOMcFy5M5)s5mCjXwtb}j7)l`SM& zAwNW$M`4%S9-ZGc(357z;>R}QaD?_u=e&c^>9^&Je1y{?*eUYv-(H-)q`lD5$JtE1 zzSQEgkbZmfOn>rl>yipWdj!OkCoQ7{ej-K>@X=NJhB8a2{rtnQBY!L(uJ2kxiwBt#|t2kq(2dY$ZU!D_SDO4<(^?3-X?9Pu&d<8WLpk^mHj zNX$hTc}yLqcH>8Q;RQV*C4i`0WmDLWz}rLFxjO53nsgGPg*bpO#PYE}LN@{Zi|<_F zeH6bS-FOV12rw&u=ex+HT^%L7! zhyD367X(%O(#~?lfpm-yb7@dHw9*Be2c?qzxQre)gcl;a$mc#MzxM$|$D3#OH>BZ@ z!03M^s%v)*jCFyfIS8&QrYW&%ui!-_G_t0Pui z_jPTi;)m*Mdg%>S?!L2@S_T&Tcv+d_wP5-f7TepU(N8@5#6>PQXtcf~y62tK_3-iz z_m2SNR@LINs>T7o(GJJ=#&iX8Mz~!(WAt$m=yGpyO%%15M=rSr< z3vF28%IOs!k0(W?=N?ZNK~>I>B1%jHYRlB`z2b-QmtoB@DgK5~#Fn8C!bVIe-;uue zhjH#l84H5S(#dUQ?_&g}^4I~TEeJ5*5@Fac*xGR$epSLUaB{R(e!ZGuTaKK|9 z8wYoDD=nMXWZ(k*X{6TT@8gb^g`H@(FnuKOxRvd;HydmQQf>ckRF1euJjp5Qv@qcRuRB{@6av-#;_v{+Cbx z^Z0K-^&3ikVx`}h=@UnNzWWWLKCi{}`TBX)PXi>TKd$%($oj(q>31*Y&&gr=?8W>W zS^dUWpC0>vkevU>to!4M^Pec^PwM^GWZ6$t_2+>89o+sa%3);S`1H5>>r*Mp9nw=} zq2=)*)8k@&<>#aklXQ~@d3<1uB!-NT5J8+DjX&Y9Z4e9yZo!xui5}Q>D6xc`M)Pbm zO%yvy8Kfjgx*U0}WOJ|8?5UqhRuR$``HRI(P^nKoKPN$U-d;XFHaj@STqa%4Ik(<3 z0R;dUdf*TQzBC!vJ0A}fHUj7n`_9+aSuC`27B4OU>{pUKHmX|usD#mec;nN&0`N6C zJ3*CB>RQ512UXxm8Z=j%^L=B=P2Z;Tk5H>#Yj>K0iAdkhM)2HNy&FpcKpO<~hw9;8 zq+MAhZGfsqTo<^vWhGI$5~_IdPQu7R{u$ z#n1sAtIVJE?!u!(geIySEEq~BhDR0lYJz=w!X5Q=Jk82jsI59~c&8_Hm{GY1YLKdl zc=AnadJtgdHO_k&XkN^!w%TEJS{!d4v8I!oXkE@ZYJ7w(Z<<~TgxUY)!bl1nU>9*t7r{hwC;XjmOmLD+N$Nk}CZH zQ%5Xs<`9hXN!zH?jj3r298{=bzW8h7*P46FD$0aoPK;wi4V9Jk28=4upb(i;g=MsI zncxPVo}OZZamqSXwYI`&bBjL-Im>0w6)IDJ)cXg41;|**T1k$ioTQ~u(MK7z@n)4# zU4_fPpe@*>v^VV*KIrIlnDq@#8cr2-`p~jjukKb4#MNJHOTI(~?`O|+a(}IHnD7rN zK3kdQux^!3K7flmK&uTjI^MHAsW&R-_>x?iZ4{AH#D@wOikt&-9!_EXLQ5(`tDLd0 zlD6?BGg0D=jVXxhu>Gsjd>#*Zv-{Wa1N)z)EiLCnstFrqeFkv*hX;P@^_sw|?rv@4 z0%}HNHdLUnGlfp}6}07jN$vWy!K= z|908xvTfV!va8FsZQHhO+wQV$tIM{lUhRGExqF}c&UyF$-iJ3&Ch!+Y@F_w1e=VRaUM#{pK(hC^ zuDT65fdK{Y9@&9MNfAOdp2hv#U&B3eDh##4Q)8!-w2CNaKYj$S0?)9bSNG+^C-*Ne z8C55@`6(tAYLR?&Ldn)bUVArMw8#v!?@TDclkJ!M`NXnY{V1btvv;uR>}1LFmUMUE znH-v2b*8QMwD~$>aP#8*_JZwnFSoOP%6cx-b$1gqWW#YhWS8fjR0YT0#uHO1(QKNLK5^wGMv;{*VV*$-_P<(xzhnTKtpuH42{FS#;US$~bLlS9I5rCnKan-$3x_ z!M&3|I=y0Z*K=Hf#mDLvd3WkC{lY5V$M zKb_jBe#t*(NeJ^d<@WJSKewN;El#h(QPg#LV8c5eNu_te$}BC1j=J z4DxNYHX|v#Sw)$J8hgI2(TJlA4ena44Ye&1JM7xSI`)P-ll55GTSnnnyiEQxseRmo zZZ~n~FSC{{0os-QW?85#@R?M3lRIJfaIh;zGzfg?Nc^9d#9Be2$tyPA1rst9=B#T} zO6Jo>PHPrMzF1r>NtTtwNvD@_y7r;P;!-+kkSsFEze93RlAC(-etDoC1#+Kk^NKTs4SS`wTLGxAs zqlJx@Qq&|R>B1Nob5#j=3Bs*ZQD!V))qYvl$~v%IqsN9E6bW+!`Jq$mC8w~E%YlZ^ z;^kM!OIKQ{ut2d=jd7KqH5x#h)1j0HL1iSKKAWoN(%J=ksz+!34 zzwXQ=j+`ZG;HF)R5j<}g)Jk8H~I z5tA~YAo&PF$IYQD2sY=1fQBi4|H)!#6E~mA_tV&qhy$6Mo8I<@A0BxiU-gb^z@oHC z1t~tqo}Z8ZP@t=~HD`Pbv17Ex9iQ4}QJ2G$eJb1mrLWRNh4=%6F~~k``;)Rdb};+t z>8W+;!_m(EA@h^7XGS0GabJQg$TbH(3EGGEUa4PjXRLB1W5E}gUso?)ehdIvPX633 z%B~-kPq;t{1(W&O}?U*G+`o-G*Z`TN2E0B;7Jz zaagQ(@4=UOaMoHiR}Z+(fm77ow!D)b7j6C{`8lTmM8;uDr|goxRgbA}i4Hp2pE8jt z1Nu?^N5AQZq=6~dtvT2icz7H_2UMwF)_Ih6tz^{#D#J>aH?l0cckSj^F6(qO;XDxq zl>>#YltV~bP!KJ|`p;VyFUT>e^;4*FIi@yKv^S2Rq~v*&x}v_8pjH6w#+hgD_1s4{ zJTfOObUrGZYekd*0}07p`o<5FA+98q^Yd<$NL`ABjXm0|pEX-OW&P9YCjGZH&nI`( zClqK0=}q*x*vDf}7Vq80BQ>IZ{D}RsU%o9XWVXj=k^Ppxc1P0Nkxcey+AUsu{SS2M zP>t2y{u^+RHP3w+P?^Nf$=9D(h(;}2?%r25hc-L0H>90GMz36Z8n4Jzi4W)dNUl(k zfe-Y96z<_OvXhBkZBnHu!b$W>N+`e%`9<@VMUpsl-8pzAW>%4KCJ84dU$&l>&OzMLW&bG;Jb)8*V=JpX;vK3)i4OupBjHbm|(Z%+XeFN`ns_`erIAI`5IIpD)wQc7!%z>GDBe5{I9H`XVPJM$CEYK6W zQ{$9XRoZQrJGuA|CrFJPb$7$G@kVuP9 z2x=(sl#-KG`)y1^rEK_Y`D>Vn3|7Vy*$Z=JTUUf1(b9`W@AI6MlF|s1Qz#XCb|X2s zj>NXRMId|Aatj7?k@*xLoIq6R6ya^#%5wS0RkZPtxCWYjx=`n;EnTaWoUftPMyqVH z2y#~)!}$NGW#l|RUIy*s!M?8;Q5W&nxW-4JWGMhrhuH@aYV5B=$S|(U8g+O4N<+Q_ zm8c7eesB;_mnS3(hoxf*2|!R<3w^ zmWt;{9_L-Q9UEWNKDX$$Y#KA0>VAv+dfJUlzke8v(ࣸ*;FbetGocC8<*R~L-3 zAf?&%L~li#>JGo*78hIoF5G>LGiLkT@*IB_?NK*k!my$DUVDl2jB~r!n-97NZeM8~ z-Z9Xz;?_7N8>L$~$v!}C^yAxtP9hY;ZvJ#xgH zz@cDt{W|_rx^&1o0m(X{z=mP>N(l3<yi0h<70ALqmQ(GX?@}RL zAuTaJ6|<=1jXQC5f^6Dhi@5E8Zyvbh7D|Vq;aIoz)efS2bwec+ zdg=P&O$t;|b^&$f18%_uL}Xf1L|~ai)yn5xl`Rv_n43_a&}eU6-%nLCBFYmMc>L*o zXh;!nIwSnpS_$K_^OkQH8ltbuoWkpo&PX5)*u(8rr2Rk$gmm=Ae>({GG(a8Gldl)c zF!Sq@KO@p2rD>W?{2%qb$hC-j*!w+0bqRB9( z6n9~^B$IkZL!{VZu2>B^dI!YpKe$Z>^UvB=xCusXaG!ReREa; z)#kg7g^7(wA0KB^nREgMkX%~fypai#n6J25 z>xraJBQrWia(2sO`ds!q(eps(Qm5U1ZPxuB3ytNZ(xVo$^J5Ub3+v*?!*p^tcdW8q`dpe}4^ewU+Dx2n(Nh{>|u^{Ud!S?;NJ^{?1!Qs)Cp>a(r7XPVW&TPcI~@o+A&=QtlREw zRPg}2v1mJ|gOFdg_^e>Ss2teOvIRO|46`yB{MZP_;jQfZlQ>IWAB>?Tr3uXCc>{?$ z&O&w@X|+Tt)$9aXl^pN4zrbK;=yOX91k&zvn;N>g?Rl!VyANRoSTbhfg>PzT16!gu zh6fPx<^@m#K5l(*Dge>l2l+^(AsBawM`*J)Z+gqL@z!t0v(FE^zFVuKaHf3?2yK=U z(`9svPY=2)-QO4cTvoce-ZY1>W=xKJaKx9%JAYEwWxD{# zMgGJH(q83G(}+6^@zbnjbT|K4UW8(*iEM8P|6al9riCm)s%VOvM3O^bWr~#X znYd-AYuI9farJwxFc;@U+=yANtE85Fs$s>14pW+iQ#*7DjH(F|R@hJCwc{Ye=9P&$ zg5?O<_6-Xb^avyVF*~-rFzn+gtEjXqqIRe{xuXrKHg^&(v?xnSFa=Fda*v{XGPug0 zgMBTtgket|wOY>1(jWGy&&O)H6k~e>6u+rzBCzGvRkXOPnyrJTLN9r^8+496$1vh3 zapm89LCObWe`KGnk!sjBQFq0Dj(U85b7Kc*7o_}TzCxtPzF}EOeaV<2UMl|R{}3D= zVjzC!0x8yEz3bz5bLZzrNa|y0$=o#Fsh)=E4(N12V(DSNg1^u1FIGhz561rO)V{r? z%LG}vv;)zCW2y5EwF9`imuoqF)nC=Y{$8G>9RV}|HSkl?Q+nk>(V)0>8n}MD<%+!{ zlAvATMlAg&GM+Dl7ff|sse={i#;v(7q@;hKLy^c)1?{hP6$<7eo*We<-<5`2mKH?V zUt=x7l{(7x!2zg+t)e&lnkV>q z9>5BHf+j)bp=pOZ$WOFS;2)v(w!~1i>;lPTq2)ib=H)o-c@%p0@0xlvemXVnf8tRi9#!VZFZHtJdGlPKD7t`U9u4VX@#k8zIPH3IjTtBnSsB39dV|Nw zid#q8@Uf9}(0bs#W#*kLUF-W3E2f!ARZ3e*ol9hjzsI_i36M(`TGIpw)dZBhAgqJ4 z_R+*G0^RX|zi#WY!9t+<#9xtkeDe;d-o`Z<632?ZZ~4BotHc#CbOrnYyQM?l6!0F` zDURObvHFUS&`)9;)FS3V2r*JSvN5vx+nn6JjP^c#e(UFteyKzkElI3OAF_&^OzXf- z8{YFLHY{JZPSPDs7q}0B491!A>G$4nA-3<7bP>$I*^GBRGy>CYF*gI8_24$6;dHQG zkC~>np`Kv9!nAjl`_c6n>*>JcRq-i}ku8wY2bF3wD}uRuqH2qeJTu?3Iwv*_acjHl zFM*4AG;y}AfI$ij$tgH^~?j>`~-g96qvEhk-^ugSOe=d zxqb!d9#T*Pkma9^DOnNxyDK>Eb%YMI*k+}McAK#dmXzfeMqNBU7oMe2_b>ARnN;M1 z9r)L8LlWt_h5Wvlwb@dLT0M*gt}?M*4ZCJa!4kUQJcHW1Ll!g*wdp%PE#fcSUD5a% zB$XuZK-WKX!)oFTYe{#!c|^9!RC~+m6kQNdb~O#&tLxw;bx(KrcTC@)um(>16?@G% z_LWF>Ck&uu_`2y*35JN+D6j&JuVSuHg0@3ikgI#!gVFo_hfs*2e-Sybl|}xg_$OAlWh^ptQ!H zVn#;UQ8u7wMNBrUK`N>hXo-_bU*-cG)=KFeSflb z)HfeeP*&7p;NU9D<5FO$a}X4>m8+r4DFu0UZDn@|&oRl|x1)e z1yko}a1j&Hpn{Oj(&*XQ{*Iwy*TW~Gk)N9sZo8`%995(lfsQ|(_zA=qHyDvIBq&rK z{1RqY$zC#`Z3$@xk-^I-{?3`^cdq6kd)a*KSt|%;0SpY-AYlGbY4zpr&1D`^Z>qSk zx-iMRyjL5K>={Hp2(vq4RxdHn)mq0qI}y4Bp6482L;?Xy1XeDQbH>oCz*59k!o@E0j9l*xN{)!H>+zlFRsj$v>w6oiGs%(C9c)SPz zl;9Lt-0#_!KoQ>SjdSV>W)ys7`BD@a*YDqEhcqK+GEpZFAU7tuq$B+|HaHufK2m3( zjDb3=tc$Iu)s)s}XEp@XFAp^C0*~?Do-z`c+b}c?;p@O>UG6F%uU>-LsBgM|B~1I=O%1!z8c01bs@{k_R-Q_dA-l?KhikOd+Xm}-d{QD?AaH)ypBd(lTLQ= zHjKXcdL(^EMBK@b;%nr>XNSR&d8@!Vobg|M|E^Rhp*ijdr3@BZa zd?^^+zFcmXD}_&Ch&Z#4Bb85Plg)HP9@qSRlhB>$9qIxE2~D&5i`&5uyXCf zMo|?6(WLGjD8fs@8{TxbaH70xtZO&#WYSez{hQ_2C>+@s*f-KFj~AI}HlnI_UEuCn zt@p2fyeIC>+N==Xf_=4|zEf^#R?8gUBYZ(C zUv)A|r}u7^dwY1D-uaJ=Zl7V^ku5n`{6c|0zabOuqsiI&e0Px0Zfs-qO%kY)%xfT)R5LE@|DRDy=Z_rZ}27eh4D0$ zUkD|^0wWdb(u7IOmP2?QWhtAQHj@GySzX!lJXr|?o;;QBRz?&)lkb*CgeFuy;ay-n z;hiU4u$~`VNFK#e1_M7e_B0ca3JGZJrs~0oW}9DIP<3cwJW+D2bW1Ffsf3Y5tSuQc znR%;wHcRM*JZF%ab8eL^oWfF0H?1qB@^#UOENL!PM1GkS@49Po3vH9bE<9OFEN;e3 zigSk@T3wv&lmXB56br+y6B&x%=> zr+WN7W|coyf_5%kK4Zaz0V6y!d?cLvNvIU!j=*ZTHIF8!74D|3+hJr%+BZFX)Qdj# zT}}1$Ol%p0w-Z_|+3ecd7!1*bB%2z9RCj#=veKU9c~}2OB?LP&r52`H1)w|Iav#68*IRLAeg5^(&DvgKNBpR@b>tSex;h$mPWUn6 zgcQ&dtHj@+S)kR<) z6JHsJpDc!1<&5V>CXvY#R*|f-b+eRX6A3dcjdROKJM`g&?6Dk~I9Njd_a3tFlZ08g zjHwJE{gHcfW43K!jSc}1(ZXd_i1v?xG}T7KV0D-VX8&p+aehx0QzLdgW)_SYj81z zwUi}>_?%zsOdD#(3V?ja+G@p^ikLOOT}SJbeYqf6xe@4O8NKG($S^o@nI;*5`l&_} z+eF$EP6=*3BQOeoSWcpbO%2aPh%6(X%M7a2zY-E z*>OC6zydy0c)}kY^}$Zi3C4IJ0-nS-`?X!LNT-ziwOv0L12gF$Y}>Q+<9bV+%vPf4Fq{?ez_<9Prrb znE$*m{y2m`_Nf`@|6$qwD+lcBTmH{Y++V3z|4QR9u>9SY``0=DD~|L3VB-FdZSeoI ziTlsK`xg^8>z|Qc40vo`R15PTabFByl*^Y{`p@#$J`>AVndOh@FP5*kFy=2a_dm*i zbkaZG^F_|keUUeR&@o>;-XGm-qwF=x+_v=^OjIp5Wy|WVYd=< z^8)wN<5iX5{LrPUq3Z<;uFLxdInM{6ym#_q0h6_Qy~0Nu53?sI$v7FHg0WcCWEEv5ABxta- zJedK-DpNiQ94YPSsn5&!wJblRJe}k>Hdu#mOnNu6bvOOqfx2n<1oXdtW;-m~8j#~^ zFHB7oH(b~1>Ia0b0IF-KFr%Q>=^3dYGS*)Q7G_~+Bo*o(8*<@FS5UmX3Tn_-&wP4CJ!`aR`6 z;2r5v>(UGJQPZiJb0=71)w}=w^S;~deD3k8-lmV|F3;@7*m64(fkhwM(WuSr}#19{M005(h);3IpU!m293ui z1L@iwj$|Prq{IRBNRq9c^QIxgf*A+=9dT5-`MA8K^@3A2>7PG0ZQZ(dH0le;%NRm} z=jG#jRtt-m%%3@rrqk3DL(ff@k5L@3Xd2xl>RyW4jU@7E^E-}!BO}I6Eq6+FJhl=P zZsWN^(Oz&0vk*2h20^JtG@@M0WXNE^6!pU#bJx^VGa{@McVuxPn?p2%0>5VWl&QI(oK!5&1@Seb1I zY5%o~i=n4r*`Aq`)NDBHXEVId++vH&;+34{m)rx%-o~9NSxkRhL;S-PJ+0obf7inw z_xZb)*ww>f`X_~CneGo1d10YldmC?O|W#y8RHv6tcCOetI>*O+TUW6O)ADE5NO*bpA07lV;Zbpeq()#05@L zG)!E7f4Kx=--5kEbK)`UW+=Z~J4~``LTcJ4HyR*5eODSy#pBV!gRV)Kto5b(!36or zytrHp@dM0oM`chmvgq=cvb7nviH+~GC9div&04o{IhqR+bhq26lp+;`fq-nMWhA+2 z(I6o-30Lk&5#@F$vJ*LjdRWslEqqJY!b>DVtLy@TVuK27SaEz!s8M8uqqf>qKk^_q z+LmRXD8?Xo-8378SXu8B>VJ)?%xq{Kll~@i?SXEA@(QkVldyQ;$V-;VUDeAwtXPyO zDQAHPo}PLZleqE=^S}--K11TrWeGCM#0tU0MV9ege^E&%(ui_?{T2@A7>)Xy&W!gR z{+Yb|hXoal2wyQ3dY_1j9h3K2M_p3H;aW<&8Fc^CB@3A%e~|9WQBL~Hu?V4V>owp@ zXLwQ*2maZ&?2c0w9@YF(^0EPS6qO2Ga<|oEsQ~pd+~1}#j1&)EE$GNrYInQm6YlUk zrpUV3?AxcyjW7HYYIYXiV&o&ZAWkA=r2Nuu5rK>#B{$>tfXpT6yBg2sN87gLNAD_# z5rO9N^gQNdo)Z|p5|#|zCgZ+pKn9+Q!g&fMlRd;!Y1Ca3san@JTIZt*CRr`atZhG8 zXvj%apxT0kl4hiiKLFt>!l}aeX1pS}a=oH1 z?DVXR^nYo>f5O{;XI)wTf`|WC$sW`F6$}GC=$zHN=g8J$C>&dM8kg%m-vGx~BNj{J zgT?Us9O}12B8QH}+j|Av*y$Ama5le}O#`8!4G-QN25S>A;sj5K1lW;fmooM001-YE z*M)hJAvg_WCBIkFL7Hpu9OGbU)>kf!v#=hn5u2y>(4Oh~&$bx>eE;vBaH3Ta?##y% zRKRsThX4{=hwmCSyaP*F;B89Uuo5f;l_M&8h(_PlN^u(OJ9B(K-8T3oCqK|o+RDWX zM-}b3>@3zbS-WBwEI{*n<446J{( z<=?sCzXa2N)Yk(1GO7Z92j1ELH{hL~p7~27e+fT&ItE5O_AmPRe-qej|4`3=6WEM@ zYTv&J?EfOj|BrHZ{}fw)mtX&#IQ0J^1m-`V|9`~Yze0EZ&~E>ecK=GW{U@CLm&Q~! zwc@w3H~nYDpC42OZn015mse+rry5JZl~4ii7YPMo@x zAP6)?aL8!eX)A@x76TE$_j%&-;VLkwcAWM)oR+-0D!Ikr3S}d&t+FhL9>=Xi&&}7% z!qPHpWkqL2?^E@ydeE;JS^_hEte*!|nT>DnVPL3u1s^c@44#v#3!^`Jx<8yOm2*TZ`!LtM!8zE2j`FH$dAGBx8d*|M)wjww&7 z<9Ir+d($y5zSAXXk?Ud9Qu{vG@x{tGe~hwM>WN zjgE9S7zZtB#LTccf#QP*Jwf*|x^l*=dr|(O8L?lIA}_&C9ACM3I2_ddB>vD23?apc zx|UWPYy=KpD5}G>%TkG(wFVFB)EjeUi1H(!Dm9P;%jO~6MSCtE^8)h*b5j7d?|CRc z(AQj!8gMv|8Go|`z# zI}Mw%#ues^v`fuL&L^$~%6IMeVxGw#Em}SZ-FhXU+ZOE$qdwNF7fi&9=AL@{cS*uv={bX6AZqZrZyb>oI4z4cddD17Qe3DrGi6v%PjsAAHOi0JWl?E zVgfy@USp*ct&B_2SAshk6aywX-N?lV7zG_A9c5I4I~+)JRDBYz1NUiblzX2m(fy|w znClpgowsA5Nc|3X#FJ;bT@bK_ZQR^hGkfCYJVx zEy7qH1xq+JL3NF0NeR+K&3v|80pRb6_0M0^G_%ZkM6_n+{XTPMAOjsO7@VV`DPmr*ekj|Z-=Z&rB5+UwjhB$ZKuwW&D)ND!eNA@(cKAAV%1dnH+udi za_EGz$UsDKwEo;viWI(y9)v!Kz6)&{WE$ies~c+@+ajuFpk`nd-H56JrS}Z-{0@33gNj+$TH6{} zPFQ}ce&bEOY2B88b+O9{#zVnl=vJ^j)7!LMPS5&^(uU#s=fTwT9k>Uck%F&8f3M3X zmz+2j^)6YpN1THJk&7RGO-u<-2L1iSIXq{URh{x(XjpkKeLMYlZIAN+v7#%+I`xte z7x!l4g0L&u2en;ij60IfhLrT2Mjsgw9d`&=7adV@C3#LW3O&7fd6XW9j?h>Pb_AmB zjw=(?6WnJCZA6aGQ8sSRAE+P(_x0AZtWRA_9Je}0z3*_rPQ0CmwNNu#Ap4H|jyzkk zd-SkqOGaJy94>AwmgjxKOC0d!jlgB5OJ~>R%gU=idl*i3nMZ5*%@fCm77Y@Btv$P| zaCpiHo`#IVn&zB>n7NR;us~rD?U0ZKnTT;G-(;9HLUb9G-V9=8l;ryWN!3Js@$ z^e`hOfC1G!SWOkLL928Nj5+~80xEqv^n3p|8Y;Rlfeg5un2aBVh8k5#<&DsDJK?+O zEWTe{C5p}5D6-Tcr3tA>q59efNUa}0L7s@F>RwZRco|)CunXbvYE?mFQ(?I+gWyh+TGqwyfveZa>*}D zw!q*$N$ZvMxO2Sij5m@jivYIA((_uWxo0f8Y&%o!HxMDEi=+04I5zvC5V(ZTZ%rh? zJf*1biz?;_QN}L_V09a_lk3hm*rVqlk3#AU1dI6V_qWKXFa}hx(%Yk%e2u-Cd|qzb zJF*3<+3fg$3u>3g-_resycUim;2YjyjJB-75Y6FheF#?6z0xVbC6QR)TjxSD2C<(? zJ;ARnm)yverg~Krj7vAmFyXCN@o*OdilLHq-{vP3{AC{Z;iO-vlZ#|-`L}}uOX9dn zQ7|V439?tT=chCj66oNZ6hX_vXvobNSdpn2XsOI_S~fZgw>&SlUa}e5A&;eV>T-NW z(QyND9=SDJwjKp`bhm1IyIXk3nC9DTX$mbd3su@P4>(9jC`zn2dsqT4O@-wPKct5dRULY=sw2JnTxw z%jh1SD%vuK4t*kbIWMQ_s{)Ck(5-qyB`Ab@9>5eC48SY5fr;mPertl3a+qvk0V#`( zhF6r)`%XSMdBfZ__;mJKCTN^IbpZ0nYlueIs?ms4LPj!_u>5N|D}@FCI;d0=FL84M z(D-pKSKr?x-)u560Z!6^c=!TX+T{q0s;K$_?MRSY&RPpX9#A~xiB@;Li0CuMMiLJ{ zR~XMPei2-HRYYeB93@PmN068QYE}kb(%}Pe4hY!D4m=_s(m&{K=71sYoytJ9Xl{OE z%sM3r_47`?Y%dcqYpyRvQY_n8*+i0b%n@Gx{R)z7I*e>>>(@6Qpy_ZsV4ZI-ez^hH zK+R+O4(($nfbn6gCxnJp)+nc)u|Y-S5bVFRQGdv$G=OWN`AcUq2b2bMBRW5P0< z;rvr)ePc!mG@32jJ1Ucr@*+I-u5U%x(%~!FxX9Hf-nM&?mtpFICG}qm^IeQbr_7pVmwoOe`rLojA0m$ubBEV~@d-cvj(epF4n7a?XLc6qaP-FY0p5*-?l zVc(FqeK!xa+LI~i0vbyPl){_QdLiI;AW9Eb`IDGMU+;OlohvFfr}Ar1J8)hr>_ z`NI~XfnCuoNsWl7A4wwg96c0*A~cRo)9l+M9YJE9IPo`9bjMi?M+Qw#Q|2ZFj<`sK zh)U>{m51$>sA)-tEU_+zs95YF(U|b>H)CzaVdoh<;w7cg-_5%DAl@$y#Y>XObETyq zCa?=fdbX9Y_M#Hl;G%1qeuQXTNr4Uk4CxB2GpDDql95zi?fCpYT_ zq&#nD!^6d%=d~+6A8MJ+vq2~?*VahaKVHh_mr9*+e>r2PxsA=RM&YuH-%n5QQHl6m zu1*J^w0s9ka>d#idq#LO_z?GErbV*^&F?XBT8=R4N3ZFJ1|!0Na>l5^m$B6W8>z27 zH`iZopdVlTXs&$ITvYmyZoIEe1TmtNPx^r{!j@%3!x#^P&SbyBb8eM#Bc~Xj9Kfx8)cKYiqO3Y zJM`q5f7~YKZ((}!+;W2dd6f^6Su*-s4mZdS*d1^mePbGejuO|vV4eOKSC@* zu6XQt?ujU)sjpz@*4Odq(dZW`(0UmSK@_`i2Xo1>3F?C(sn>|t0Z)?nwT6K^h#e|d z#>%mZC3SYnqMzg}@H1k}eGN`|8#Ot`F$k)a-#K`P@Fcn0XDS`?>$y!Pnro07euKal zM%1gi-Y2$&p3iuYKjA1gJpexS z$0jhy#E*`b6yW^ z7QB*j>L;-i@ehU&2=zQcE5Kb&Aya6k0pv)wd}6l}1HL9ZPDN<lY;7hh^n=;V2q}vmE7rgPq2aD0Kp;38d~EC^(ju+#eMofr5@WlLXRJ2L?g6 z*Ddf#$@7tn7;8bdmeXy4Ur0b8gz4W5l8m4MdoD%qGa)#=ojF5u73w(F=s5N; z{h*XGAM3nSdwbpoY;*mV+2TbSk8&1ngG&?T@6ZW}X(uNq zX&BRXzknNDQ$#1*Dx{=E#!c%$YBtVB+bV1ko7a9YPUKItm}zf4{3wj3 zRdaVX**k^f*+5C9cX+m5#XN}GP#74xz~Z%c>g(Ztb%z`Vk}y)*cs7~ZC~(|pdwKO* zxW!qMVD;2x|=+r_i>uaGCoXg;x zB)hSqd0-@s)W&vEvh+hA%?qXZs-`7yNIH3N&OFjJ<)sgr2&ML_CM2+!Rc}YPU^^E9 zhEX%W0nFL8#<(N9t_KjK)iR7V)4hOW*h(6-~!&qs)aq6eB%^zf6ZF@n5yA&p~DX>)1} zrG7yYxRamm2s#7rw&)uJrUigtX-0+b$d&ZS?JMC)%INPFhft=8RG zh`M>2m8vwh>!$G4OKaRt2Y~?!I}w?+N`GOg43AfqxTkADYmXDg?P#kGWyd479{#KZ z&fhXEQ`p8W_OQOiQ0ZV1zcJ9a2yq{??ut4)^la2JtlVWq-uH}VEa+A1C@n^+Y6_hL zsh_o)nzTqBh?;u8hf9ie#*&BXDvs)NyDh2eokBlunV(XHqL&|JjLsv4f^-u>e->P8 zwfPJ<)OH$o7_>S!vmT${+-OB5w60t9YZuxJ2+}AB@HMrcBkv=VNxSu3NQ*KPxhgr0m9oKMfp1I0} zO9jazwpQ!#zJ3{@4erf)xTItZp7dH1r@%Ao%|eSr>0$1lHpP=ujw{4k zG6X$GoMaJlRA%&pcq+ByLBK9pDH1IdsH7s*yom39z`bqea(rC#km$c7J3F*<3B{*J)E?j;J$gBbf8=6 zQr4+=;w;edXY~JNkK!rC& z>`N+30Zk)GX>pTZ6_lLLuM9{-Dk$R4spy`?1p9qo!M4`WdwC98vqqWCy&o^*dvWnN zx&bYqg;A4Fqj}=MWDx`R<2X|N8{ZYNI<=i+3(%W%w~ z@bo61{i)#OUGOU7wx+ z4`L@J{E|cG#&0LGA+y`Pe;HFVIN73zHRXLvabh8A=Cj|Hp3tE=p3)$PHn=P#hvpmkU4cV!jCMOz9Q3f1D(|}^Bz??xk@xV6RaV+AN$UmIJgK?OnP&!Xm zI_3c6;n9JYZR+`%|AAsFXPfSo?XzZE@D+NiV4Ldo=V!$>hi>L67W-i$e~j7$j!b9! zO6U4StN&u=jaBL}11@-&n}ck4g`uaB&fv^Io^CNGHow-53CX5S*_er50tNfH;h7x& zn0Izy-nfJ1amDz&skE(iQT3OBJdt!_`3!CbUXw{ldJJeD9C{}v-EG5&u1c$@Ro_Sy86QXW9Cb(#=N+s11dKf%{FI^tjs0;>nC}l6DeOKpNIrGa-6q$M1 z?N9wwJg0Yhz|QF=9TQrFKWC-&iIjEVT7Vr)7cA96cdvWmuDW7x1JGqZ76KA&ZZ`$V zG1bj~F#_yNP~T)*2TuP0NnKSvZKqmGbk$D=-$O+}Pgo&tLf26=IQV-Gpd4HM)&s(K zw8TwYukD`ZgQl-D>9s<$jV4#(Gibp?aRY+)kgjdqs})dLEd9zdF1OzceXGPe0fWkU z&%NKh0H~nvPUP5eEd2)J0(&oe!aJE4`COHrC^cpSG!LUhI0q#qP(TR)f$_T#K@Hva z0W!Rwh@#4nfW@q6kt*;J99err<;e3Aj7@42b--yf^b#3jC?GNUU!Epx`tR&v5z+w> zSoF96c4293HA8GO;3R|yKHMpiq8U0v4-(^;Qm%Q9NjmE#Vc2Xoe8?w(D87gs!{7^f zHke|Yzen@7cqPYPJZ3{MN z1~arX}5rvskhG&fk=Q4Ly zM-+l=Q-dLM#eE1g0Gf8we?EG>4g2WWHk?ftyh{jir=>{;xy zc51F8BY`vvQ=~2@!s@&qW2cm)Y_k80Uo92Yun+^JeY_0n*y)&O_8Jk7Gk;H@ZNCjg zQ*FpUkK((uJZ6u-H$5p#H zW=ISi%wOO95GwI))l^BYF0ldJDfiuAZI&oy$<(?k(63@kB~!EWn)m5NgL#Rm^oPzW z!(0kn{?`yYMrB1#67jc911Bj7@+nyeDn)LWts7sI`X~@}VIa(GKIyn-(cqJ2x3_L7 z;Y#PfWO`m$>TUSGePMl}x?+8ab|y1)zSmD5^HW6Q#CN?Cox#h6N)_baxYx_J$|fuA zXYP$$+v)e4Y&MIp%9-nSooWp%e@snNu(r(=D>74NB*4+8aWZM-S90q|(?(7;9n%I~ zROuIKf!oJ2TMyTTJ?`hr?2~>t;~bx+YsIVKABjt5zHt3D)2oK#qncAn!TcdP`BA~a z%4>eSNeMkn%Oinex+t=f50RD4eiKqo)h+(%?(P@wj9Cdt`?UC#z^%Xa+YQcF;TF@( zKa0)gJ`_s-#A20TYnj!i*=PK-l=TVg4^<~iLf&tqugO2$Z`5RYsF9XOm+$(*`MGWg z@51*0acbT^vu5L4VrsU7-g)YobB|j6zpVRzDY;f)YaniyR{x4J&XqSyzs`Sc-G7+B zxVn7tm^=x;avI4tbMCwO0rUP#3q2v!Da1=2d^gXVmp7U>%hhMRQ;>X2z*Xtg-gHLw&zehL>MB%XgzA2>(^eYzMTdKm9=TDUT zkgN(T7{lNtLWJmMfLd(C!HqGi_f9npAq^d&aH@^b*xxD`<+J= zgXFRBS47RcP1XJG3UeUUbviPMxb)8QaPHHu1s`cAmwoO!!CCJ=)X7{vDRA?=0>Ym6 zI+23p&+%+R>EmIZyf>|z>+Ns5jKwlq?$#+<7Mh)TUVYl})rD)NX?F@U-A*}V78YTO zC_OOeD68E9``kMvbO`ga$38tROSz3bQsnTCNu-bZ##P3AT8!++VC1DBvPBD|D_3l? zjekoTBSmj_h^+K&;Sv|=Aa%13*Q*?^JJ?)byyQ%0&?UGaNhWN6b-K|}ULw`I+_HYa zN6t&7xp3*zs^p60!iWOGD1)6vK{9y6+pQ>hth{d5>x3yI{MF2fm;sJMh*4q`yn_>Q z#Xpavr>9}&TGsK_&nICPKW;3~rrSiuMIP<%nVPqMveh#oRqe1;W^3e}Vk_O^x$tu1 zr!MaUJq53osqc!D1sPs_KW`=|h7LT}UrCXQC5z{jSuI@uj(V`Ok~%lQxx`k*qx54_ z#Cm5cBL4xW98Z;VE00F3(Ipml9Qd@k$xZe4Jj%|6ET9w-Z@A50~RI|BeA4Prcd5zt+ool>(jN8)^oEPoO)2AfP zxDAN+-+yx=tU2Uzl|+@q_Q3SQU5{JGrD63b@gGG9gm_-H-B+#ay}znXQ|xBgN-8g(K$Ww?(*I>V5sf@5iFLr^4zQ`ptCc+3k%7_j)UKI*u%}Of1#4 zwwybWr=M$BV0N$aJ3$zq-+H(6B2m?3VWfqD^uVu+^UCCcm2!mR557>GXAORy;jM5> zv+6cwI?kE8wjtxO&xFvHD>|AqhdqYniF{6ygkYjGHh?N$24or zU1VM+GAauya8B(=$8yrI7-IeT^CU~+rjQs7CrnAP%+bRWr=|Eml2AK8l{u-;ni7|%xMN24jjyK4sW(uLO=pw>Z+6K2`YKdy(-%c__K=a#Imyo( zN*b@diZW?UIs*8fS2Zbh6>A&~ux5FgY%yvzoyq&M>kWTE^zNwNW2{JvTF02HI$A!BHXYCtIn=}$CVJv$ zc2R@4FM~+p4cA+x(KET{o~hx=nm@iE<9jO+5)2zOH<(>(W#wo49OO!AYpexvYvYP` zoUl&NG0{!8qnGNfujS_i_OLvzah&ZI&!A1I4E7M9-`Z$QS~DiS_lvE3_rVF?6AEg9 zKF+On?#<^piKw;BWMA8OVodcS;HS0Q2K*O7*~#?Nr!R4Y@9 zsF!c#=ChMnJE2JuE9TXc+@k?YmA{0B>N3Y7kM7XuGn6bgjKqI`7EfA@9j!+;5Vdkq z%b%BA>`k&EbEzh+?#`=8z;116+Df3qRs3|zCpJo-ru3~kY)BV*Mya>i54=G1y;xiG z-?46p-<}+`mz1RXE~ z?Bq0*gc3f+SI)fGQtE%|nYqS8&Y&4PFE#dd`?KYPLlzf=t1l@A<}H-xZ#L_v(}tbT z#!byEFDYKr_`)mR3QxnOphfLiW8}EyMfki^ndCa@>gl+|OSYNo-}_fI4M<)-JEU1SvM7HB31w7>kzjML;icH>n+$>C=?%-bV$Z<2Ibu;R``^5FBuE z`&KXtwZynJf>O#Zg8Za8-8){P>P)B2HNwSBPg(`-h~|7$$J)(2K0~(~=ho0dK_hn8 zIAoSBU?~1@>_<&2r*LJiuks-c`esDc+pFuhLTO?gyhIQV7bQDQ3-XV&DB`enbn3G&kY&Nl!!R?LwMG|mZqkG3pOokP* z?7r0~nsny~%3d_SuVS1ba$$+Ji3HW)lQPtI;gQ(Noj9wZQmJDKAK4oa%yCcjk^k4M~79utELq|xfn|Rz*hiwpT-=i zRFu~c8bYt4)!X_rZPAIGlI=SyTc7ju39FmkBXek>rZgJcb-3J`ZMoXU*G*j1@Nti; zwpYEczHBnIE%CkTA8kjU+UH7k|L(bnjtsH5^bY0X6=8zKGFDAw7JE$X&#(=Zf=0$? z^b>_NCX5%pxx8nt{s2?G?U8PmnecrnmL@hY@>b9qdh2r*xjoVpl~xIUtUok#X{6A zFd4`A(<6~I0{pw&EiQ~@He}R}jiv98+q0LRd-0V!e$XpQ^~MuErs$KtGB*ZoqRgi_ zKk(79e1P4kc=GYvlEjgl>K)EJ2DNwXQX4M`bUp=lK&w*_Y8{UBH+h_z@F9cduJOrZ ziVtSSy;f2_9iCo~n{izZo1XEQCX-z)?L4DI?|FUZM5N@ax1*e=vtD~M~_ChmKd` zCzkRDy|w`%M=@-Kqk$Js(Kue@9(2{$%FkG=V;jFxD4e8nMde5|`7{^L!}|<`lPc!D zX0c~$S2Gq!ru|W6C%AG|4z$C)3{B$DxhFa?wnQB{_06defgdFgTXowr2fwX06hv;VeSV{i*)(B#oXyByyL8o7hs!w+ zPM$1Nt90{p;Cou%62-e43`1ArFY76WWl|jPMXHcLHnUGFB#Rfc3--Dj!6`)3Zl7SyXD}_&txgS{8-2d54{brftm`X$f7LiFlqf-Y3pwcy^6n zKjF3N!hqnvcRd=x`oX~dQu%`=2YKp}_nb@IV-!KwF=E6w#mB#TS;^||4iT1d>c4Al ztLE>VzqqF6xw*UZ9#+5kQ!!L2jN$P>`V56-cx^a%Samn>C_O2m9MN*A9QI~z<9i$4 z?N+)S>s>L{{z(3*x33ZtX}_MN^LZOeTvQkHsgWvhlmH{Z<9n7ml#+<{_|7hDW7l(6 zdHyHgFF$>PxrWI{c}mf~w{I0hx^9H){dCc;zSzQ@ex)sC5?95b5KWhzy2KuMmVR1o zZZhFX$MeasGM;TRcT$ctIyCmaw%1hF4z?%NLsNK?|J0pm8~UI&M;AfatNlH9c0>%8 zoxuO@oJAH{^Ke8>+b;B9Ysl};VxJV;(J+pw&nay4=}-318oE_2xGfq?#+=E!bhoY$FF?h(!WXkuDVjW;^DYIVx z5d7E}(SN*$yl!!p55+1)5;{cexyyhW*{)TK_fA-BT~wmN6{NUQ7irOKvnX5)OK4uq zqq2(htXUY(jMKlVd+KamINI-?TT;}2WnI~oHl15)p%j8&(-rdtbkb5C?yw5er9>%unW z+9MVn?@qD>(?3pVQ+h&oqK7E;^7}yXYP!d9KTWq_VT?+VeYQ8g{p9_b`IB=?YA2~i z;|LLDBJ4wigo3iq=RSD&{XO$>_Y(s*&+0yZphV^|N_?A&D4{Uw zYwKmVLq+Rnl)XdREP6;PR=x?yGbfOK`cxaMtXE8|Gf2|E49Bbkzk4z7&1i{jixZ>6 zc^+l)MlS^6V~Ixj(#x|#0g3+0M}J-FJkRJnZfSW4d(CZh!n^RLTSaAs(E5>e!gcz2 zu5~6$SF17AP#)fI-?l`iju4I(dfExF6-2Q-=jd4DneVrpB_L8WqPUNroW63F@WVxM-k z$6c>OFDVifPjeWgRq`sd7T0jL zDH=v6{=9EX-nJCDg<6aht6&aq$UD}}OK)ua;lgDPwb&0s2H4qe?voz!shJ5Ls*ZsQ z8(a!>l{uO7;@MhWBi$5QL8CQuR~Pl)b_;tcPWbBiGI@;7GgTj1$VN}HN$1eNbhce< zXk6)+*}3k)Xhk4rL)?4WG#8ug=1aR}y%<_M;wsvdNizT9p2YZj11owG?xzcVjC1(&mOm5LRGZLqtqu)L^sa=Kh<33H7Jgd;tXYVKY0Y1>^8(w<1O7loc zWtV;q zEX67$ThI+{9=e?tCcsVfG4xn43FPt>7({fY~GM~!2Buu=)+7P>On58!7S5nmz#-?UU zvMt4uhB+VESq!_eR|-k~oqOWrB=<*OH8wg4v%BdnKW&_B-=4bQz+(Jq+NeFlIP2_K z9{n&539&OT(Dl5tG-w_ z__4ycLO8W_d4fw%Z#lZgy=3L6@#NgvoW;$t`54*@7VlA>=dJ|QJQI>F4cgRV3nu6D z{^UTaA$W(AGdU1RQ_v=zZJl>vs7i~w*wrdmC@yIviL{Ru{l4R8xk!7i+q>ehH@)eK zFg~Ac z?yZ|ACH3{zV8b0jf5L(l&g9YJaRyvVo$$uN7F6n zJ{#SxQs_g$3sH)7*H#i7^V5s2SqFx>9ln;Ru{S3cW&G1Y-8 zD-e~(Uvyn7r{D?l{vtiiEI$fOmMorij%1Et^?`|_hx8;{V@=$mX2G-YB`q7@zVd|Y zqJrgE&&)4L9_idC#~Ro4mJvZgo6D~zBu9L6=?59L;``evDo$T4v@v2pg?f^B-l;IF z>pP}}sk{6Z(d`*@IbS|}l_m14GJQ}gyP+BM3H%e?g@S1J5A{37{U^731BQqT z%zTl>Uxqk{$c~Wm?&M}&z2*7Yx@i3XB^%a<~5`)`B`Ad|K-~PFT{6&zj7YK36p{5S8*VGMIgNhX1*8FYy#Z?zcpe8ug=YCVWy6Wz-$oz3;}o z-kJ&v(Mt@6E*8;GxQxqBx@oy;aZw$!B620lO;7ZQE~8Ga*=WD*nD{u_m!gBcE63+v zmt2$0{Jk!VQ|&KYw8bj#<_)yC*p<7dqR)<3#GEz{iRmgnK7)B^S;zykl%T%$yn{!| zJv-0k=p4tyME_!vN7_%HMmP>!NOcVV^|S%#&J~@wrmua=_IZ_b-tzCbMqp_X*}kmN z7R@g@Yz4GaN|LxE8_jYp-1rCFSuCa=+omRmXDKAo9UE;_8s10?z5ZB4M689sh03n!lCYreAgp|xs93O!%yhs_(OPw90v3QI`S)`FNt=FRXW=w}3S?vjgvgmC>`Aal50jd6pZ_2`k=tafJBxsp`5T!;( z>kCXpB7S6K&KN-b8X(*p02E zo1V#nMWGQ@O-Ct4IuK zb14&@R9E7K)ab-m=5s~RI+l|9$V;HtjsF#c`Qme`Or@^cRbpK_$r(?_v{m(Qh^ zN@#rUIkWyws@bl5fRLft4m(G1)#<4lmQd|kPx5nuc1cXYA!SsoZYCx8kSU*l#GE{6 zQ910`L!WncMKsTn3kgq{5#M@DCV3_<@Co>5jiD7^k2mg8;zZX69@K9hjyz2_dW+Tj zqfq}c%p*P80yBC`w<3?D-13seXoc`q3m@;;YZg{Dssx9nPPxAs#$*S3f1Ifp$Mu&| zmDhTmU@jl~#zJcLh+C*XSesp9`cymSx`(W&G!IpO!|`_)+hJ{?Y=Q6i8xxKleuYQ1DQ*lY79*Xk`$^zt*aIQ!niqm!T5(aI`AAOjGT9wUvIWou+%q{HevLkv_ zGJAP96a&RqTW!b*7kw8a+pKTW@svjmUb^kP7ClHe$Q4|i``MyeQM3L>iF0VTA3Zvp|?Wa@O?TgjD!?TI6s0Lpu88cN0 z7#II|l+`**PkTkI7X5_cNS|~gS=?ADt6uSJ4fSWc?K2x>+a%jI7YeFR@peV8;x;Z0 zx<27_h^VtcTqTP*23sVvQzjFkjjSuEA7)M)eC?(k`B zBv7Z+jgA9pp?&WT*Hn#wOVX=GuZ*&UWA^zp`gAb~Q*94KgeAV&CvR+g!&(VV%n+6tk4s+5D&FNM8#&sct z87Wn6pT?rbI&pCy45@O@b2JEr>(ai`+oDx8GV6=k)s3x>((@4A$@gF^{vOqZ!NgD1 zbe>Ym9S&Dj%1R4=7DmSKsf^c<=H=-(n`L1q19>*aJBc>f<3yV_)Z;X|5*o^e22FnX zJr7w~G3QOVZ2DBOQ2zLkVu@z9KB{S>!lG@asC8zZrB?)Z!;g|I`-DfL-`g-|hclOZ zT3_kN4dn@Sj!z68#Xd`t39Z&Qn6Xz(pR-pq-;8Z&2>azZxERP)e&(}`GZ{MSj-cNP zA6mrIyt3xbx%6Vuknbp`qOnsevp8xOoSRiC98rS7i5M1w{JCBl)tc4Js(yAohuzPJ zW39#D`RX%YHE@{xqHexf7R1b5m>h4S z-N2C-Z)eZ1@$Cm~2(3$?V2@SNIl*L#)m| zOa2xt*YWD?X=jv^?9Tc|$rNX_JHK?9Et<7NqmbjJ!+e?;$*H$DuDb>?_=<`1n4;g2 zKYr(3CB7N|smweu_3-MQXRbeP)7*GlH?32kK$%d~l#{!jARsXq`}E7A%4#^l<10j^ z|MW=x-^^j)>25e0jYItFq58kctp0q+8jF8$``71 z!z;$^x-8o#UFjKSDdUVY8n38(SSRr27_!2w>sRhMkBP0#o#%`)XIb#}CBN;cM8Z3T zu(~f8l-tRmmY2)hAG+DJJKwLHqc!^8Cw;0vDvViIFgC$AF#Vf=nSPjjM?|6_i)XtL z*E{XU)obLrblt8S*~m!qTXy9s_ck2XJ9JA1(jAiOX1X4%*jjaIubC~q)Dglz?UKx? za3;UyJ4=R>_j>7pf~oIabn+e?*YB_vlVAGo}tFn@9NB4LIr@ zLp^HEP+2Y*HiAn$v6JdSNT?`y)5_C^aQsZ0{r2|Wb95Q{dp5f0xy4v{hGuJ22<9Qy z(i5IK{_?u&Al%}~xOrPd%X#)Ew)L~Oox3YeteoKpm=Bhd8IqXlzRwV}U1~Nq{uiw2}A7k=sotlsP zjqyKB^xn+0{=Vugx{CQ0sD0HaKMj(%-?qZ|3IJcKMcXY~^zyEFt{yhR*B#76+zy3FU8o+;R ziB1^RA*HKKn!*_TMEJ7kv8$DBwZ>Ul9X+CAHn8NYQQ$HlI~w>>j@5Oi-jwzfvUlo9 z#PE6-c{XBJMrj@$<fpOk_{_skg*Ju#^=nl+L4v zE)(Gu$W*c7;km1G^lqi++h2mA4>Y0}Bi=k33L_fsZ*0&oU@+MsC}pumCUe|@trMv0 z30i2B&I)Oq=6qsHai=eou+L}!PnzF*D9%07HQG`V=vZs3&F1j~z*8%D6Z{)n)M zB7%GOBMrihA}2jZAJiAJuol*bV_Ms9uKUvY)7ekT%@cCHJ40a*D@dTpPa~3TW~O(4 zE;5X*KIyWX@=I+p1hE-;;f&#_5Dmv+w;wS6tg?r%{8evuv3Y+9xqQ7bc~!W!R@pKs z7h^5yt!nnBxeEXdI{KjX^5{aQIUSsKc zvA#jwFEjT)aT%PFygyB6QYY*5m1Th%ajeBO#k~I}iZdaE-G<|2OV^}fE}yx>165fb zs)-P_jm+xMXRpGlQCoK^KYC^nod}o+pY1LFHMj6ic2{S!B+)uM{8#!Lw>FVbja^6E zfwo;GE_Tw}t@%m{y$T)oWtI;Ks7Peg%}*={aa0jwU~dHE%CjTPU)_-8U;lhg$Bp2b zz1hHkOu8w(-HA~uSPHXa=r9RWu1m}38d6`FAVoM01G<%+SkiD6eH9x}VV zq3AhyW{BB@)8Mj!Wjgu0a~isGk6!2^bJ|iRGE2QFKS1 z9NXA!-MUrnTf!Ylvk`HB4jw^2#`eA9i8`AXP3|KO%O^n#P3|HoH&`mHzh4K>#Xia> z+!hAYhh$FQl2(OX&5(~KZ>kB@to?zc4xrZ#Wkmj3JLG-)}4Zi^hV*0e+F6j ze_#NW!Q%L&@He)?u^22L4$x8lCxRl_Z}!OlCMZJw1^hu!ghc)CBkZ2*{ga^RcYOKV z8UKrw>35NScD{hXl27`7U;zF1gYf^E0(9?Q-QNMkjL!lFNQ{smqXDr3!rKW){&Oz1 zzsLVX-1+aj`mdxw+W`=@y7~r5Y3-Hwd)^#uJ$&&g1)f>y_kbT{?%Z3)f6mOoRvOqk zJD%Sw_Jpg$URn5%$p_zKUg86+O!#-;vfsUzJ<2CO6h4w003%{kY$4gyVjHj)48$<=^%E zUPP*%et;tviN>b}f8~#eyKX+)q7nrIoVEpxT-Ya}>Qu+3V`wy)^A4exDkYmZfsDJ_g^}~lj zqX8SO6CWN!$l$=G&0sw6KYSj082Af|!Sm8WFci259D>1MfGZ7xVUc*&uRnA_^=K4+ zx$MVe;CR#7haqIpka`i|l4rnvy-yCPU}f+WwSVY>hQQE(6Zrs!Pb>G!$)NDJOz+2V zFuZN<$7Ezs2g;K{$?We3s8>b?aR9?1plv}Q0W~nNzd!3h00L+Ho&bVj@OHf)Lt#;n z{sLVLa(_R-SYa^unEi(?7*UuE0y2IGBnF0G3xCML5Lh%42CV~&Mu3~W_sJo_UFBd; zw;w~}Wbp3e&+?FH90o+F{TR^2I~J%M-sk**fi}y420}0l3WtES4|wLiO~xO(Fo40p z*5c3d00yQP+7=*ppbjhw30VsW87u~eI#3=O7%#LAGzPVQKJaZp{evzB@9*}v87Bj{ zqoEiUa7{xn3=A^opbi`s2C*R|Kw!}J;jnP19UyU73>>P9!=mu4(EHj4bipm}Pz;6l z&->+M@b}I`G0cIn!eM2Q5c@;oWY7@50Yl<&FdU=~;0|DbnsHwpC^&HakTJ!}LHi5j zFd%i>uZuuqp>~f#f{}r=4`5j6nn3|wsIB4UFwiz5QE(h&eV~B}LF)w=7CO!VLqmN8 zUKbxD@jrk2Y`h%QM*s|mg^UXZ2Sec?V}QXSaZrB+umko7bn*P>`|8EZLG2H$n7vs2 zXZvJiV0cQ+eYya{LFX4>SbV+!)y2nj2!_QcJAYsxmVp&_Kn{+8_!k%s0|pS%4;(n; zfW`%Yp`dXFuM3G$pgar;>R$kcPt*TwAD|Nj%Wc11;V~I}-ttF3@ECC92QWBf?eED! z{0qRaP~Q$mU_l16-wptVf?D#_<_gZ(0cK@ zxczgvCkI{UAi5zS@eKhm7<&J>;B_&`{o}GH2hBxcaIiJmKW}(B8EAeAumgE4UJk!M z`D0vwE*b{ze}G^psGR~i5RxH23?WO*#0|`<`NS*^yRuEYCuPr=wpl^6xNUYeC z15C{O`hi5FK&Ux@p&)(@uZ#HyUEnzm=mMjJU?3fW+6xlo#Ss6D02nZYgSrr3wtevU0VFp=fUF&GU+dK?aFFCei+L;WNkgT@{iklsV`PH^@B{0nqU0S5J*;EV#C)Iiz?Fi2j9Kg$4a z@qiqt8iJugE&v@XfE_3g4blT>c>sg1K^Zh00gVe_2X@f@00!CXf}jOf17!W;F{nQU z6N!N42LQt!=r0EB8=>VLJo5mF9tyg5*~6e~RR)7bLUK4@Ey#a3^8lMz=s07+z7}fZ z0E7Bd87xSaA^rtmU{oRVhQ)wg@j(n4x4`)e2Acoju>)%mi-qp7LCy-68+6WbV4ni5 z7YF(awIP5Vr~{wI9w-k5cAb!ZfSei{<3av>AZNg1_#^Ut{t5?9XAhKz0lPY=95}%G zL)X{G*7cmD&)%2eMy|n*dxyUGue%LBJ$=E~1;Dla^}V>Zhm$7&fFAT- diff --git a/lecture_1_intro_knn/lecture/sklearn_seminar_inclass.ipynb b/lecture_1_intro_knn/lecture/sklearn_seminar_inclass.ipynb deleted file mode 100644 index 534900f..0000000 --- a/lecture_1_intro_knn/lecture/sklearn_seminar_inclass.ipynb +++ /dev/null @@ -1,1954 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 4, - "id": "21c73cc4-9436-4021-9a9a-fe9ee8060473", - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import os\n", - "\n", - "from os.path import join\n", - "from sklearn.neighbors import (KNeighborsRegressor,\n", - " KNeighborsClassifier)\n", - "from sklearn.metrics import (r2_score,\n", - " mean_squared_error,\n", - " mean_absolute_error,\n", - " accuracy_score)\n", - "from sklearn.model_selection import train_test_split\n", - "from sklearn.preprocessing import (StandardScaler,\n", - " OneHotEncoder,\n", - " LabelEncoder)\n", - "\n", - "from sklearn.compose import ColumnTransformer\n", - "from sklearn.pipeline import Pipeline\n", - "from PIL import Image" - ] - }, - { - "cell_type": "markdown", - "id": "b31de4e8-6664-4f2e-975a-36be2edab8fe", - "metadata": {}, - "source": [ - "Estimator:\n", - "\n", - "* fit\n", - "* predict\n", - "* predict_proba (классификаторов)\n", - "\n", - "Transformer:\n", - "\n", - "* fit\n", - "* transform\n", - "* fit_transform" - ] - }, - { - "cell_type": "markdown", - "id": "b3b36fec-80b8-4153-93ea-b403605744e3", - "metadata": {}, - "source": [ - "## Regression" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "64b2ba2c-a49e-4ca5-9438-3cca9aacd49c", - "metadata": {}, - "outputs": [], - "source": [ - "DATA_PATH = \".\"\n", - "SEED = 111\n", - "np.random.seed(SEED)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "2e3e540e-bea1-49e2-b9bc-512186367c7f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "

    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Countryhappiness_scoregdp_per_capitafamilyhealthfreedomgenerositygovernment_trustdystopia_residualcontinentYearsocial_supportcpi_score
    0Norway7.5371.6164631.5335240.7966670.6354230.3620120.3159642.277027Europe20150.088
    1Denmark7.5221.4823831.5511220.7925660.6260070.3552800.4007702.313707Europe20150.091
    2Iceland7.5041.4806331.6105740.8335520.6271630.4755400.1535272.322715Europe20150.079
    3Switzerland7.4941.5649801.5169120.8581310.6200710.2905490.3670072.276716Europe20150.086
    4Finland7.4691.4435721.5402470.8091580.6179510.2454830.3826122.430182Europe20150.090
    \n", - "
    " - ], - "text/plain": [ - " Country happiness_score gdp_per_capita family health freedom \\\n", - "0 Norway 7.537 1.616463 1.533524 0.796667 0.635423 \n", - "1 Denmark 7.522 1.482383 1.551122 0.792566 0.626007 \n", - "2 Iceland 7.504 1.480633 1.610574 0.833552 0.627163 \n", - "3 Switzerland 7.494 1.564980 1.516912 0.858131 0.620071 \n", - "4 Finland 7.469 1.443572 1.540247 0.809158 0.617951 \n", - "\n", - " generosity government_trust dystopia_residual continent Year \\\n", - "0 0.362012 0.315964 2.277027 Europe 2015 \n", - "1 0.355280 0.400770 2.313707 Europe 2015 \n", - "2 0.475540 0.153527 2.322715 Europe 2015 \n", - "3 0.290549 0.367007 2.276716 Europe 2015 \n", - "4 0.245483 0.382612 2.430182 Europe 2015 \n", - "\n", - " social_support cpi_score \n", - "0 0.0 88 \n", - "1 0.0 91 \n", - "2 0.0 79 \n", - "3 0.0 86 \n", - "4 0.0 90 " - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data = pd.read_csv(join(DATA_PATH, \"WorldHappiness_Corruption_2015_2020.csv\"))\n", - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "4d235ac8-3297-4c8a-b509-5244e0c604ce", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "RangeIndex: 792 entries, 0 to 791\n", - "Data columns (total 13 columns):\n", - " # Column Non-Null Count Dtype \n", - "--- ------ -------------- ----- \n", - " 0 Country 792 non-null object \n", - " 1 happiness_score 792 non-null float64\n", - " 2 gdp_per_capita 792 non-null float64\n", - " 3 family 792 non-null float64\n", - " 4 health 792 non-null float64\n", - " 5 freedom 792 non-null float64\n", - " 6 generosity 792 non-null float64\n", - " 7 government_trust 792 non-null float64\n", - " 8 dystopia_residual 792 non-null float64\n", - " 9 continent 792 non-null object \n", - " 10 Year 792 non-null int64 \n", - " 11 social_support 792 non-null float64\n", - " 12 cpi_score 792 non-null int64 \n", - "dtypes: float64(9), int64(2), object(2)\n", - "memory usage: 80.6+ KB\n" - ] - } - ], - "source": [ - "data.info()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "50c4c68a-1853-425b-b70a-76299e751902", - "metadata": {}, - "outputs": [], - "source": [ - "X = data[[\"government_trust\", \"cpi_score\"]]" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "11e7fad0-d31c-4502-bf90-20a74e6af5c9", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "government_trust 0.109032\n", - "cpi_score 19.508833\n", - "dtype: float64" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X.std()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "616462b9-5d2f-4360-be9b-a36bbd7a3da5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    government_trustcpi_score
    00.31596488
    10.40077091
    20.15352779
    30.36700786
    40.38261290
    \n", - "
    " - ], - "text/plain": [ - " government_trust cpi_score\n", - "0 0.315964 88\n", - "1 0.400770 91\n", - "2 0.153527 79\n", - "3 0.367007 86\n", - "4 0.382612 90" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X.head()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2237da37-7fce-401c-a48e-ebee6ea444e3", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "fa8729cd-5325-4377-b7dd-df37b8224d8d", - "metadata": {}, - "source": [ - "## StandardScaler" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "360d969e-e461-4d97-a3cd-53bfc88d1a04", - "metadata": {}, - "outputs": [], - "source": [ - "scaler = StandardScaler()" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "cd11154e-fcd1-4d30-81d8-af477387a935", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    StandardScaler()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "StandardScaler()" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "scaler.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "51052c2a-08f2-4676-9e0e-c73677258bbc", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([ 0.12571952, 44.3270202 ]), array([ 0.10896321, 19.49651295]))" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "scaler.mean_, scaler.scale_" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2e78bea4-51be-4d50-b4bc-23ad9537f2a7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "9ea22e1a-fdb0-4bc1-a663-a131ee472e93", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 1.74594999, 2.24004056],\n", - " [ 2.52425152, 2.39391423],\n", - " [ 0.25519659, 1.77841955],\n", - " ...,\n", - " [ 3.30224262, 0.49613897],\n", - " [-0.41106481, -1.04259773],\n", - " [-1.14252999, -1.29905385]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "scaler.transform(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "73606b7e-e4cd-4da8-8d15-14390e76b8a2", - "metadata": {}, - "outputs": [], - "source": [ - "scaler = StandardScaler()" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "c42d0c97-6e10-4fd6-a289-21972aad11fc", - "metadata": {}, - "outputs": [], - "source": [ - "#scaler.transform(X)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "064a5b99-ce80-482e-9571-8b1d60c19c51", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "55c15ab1-126e-4571-8a8c-c5de38b525e8", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "2b63c7d2-ea73-4787-8a31-3186740b7988", - "metadata": {}, - "source": [ - "## OneHotEncoder" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "32d256b2-a591-4b57-90a8-0bf24b017fa1", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    continent
    0Europe
    1Europe
    2Europe
    3Europe
    4Europe
    \n", - "
    " - ], - "text/plain": [ - " continent\n", - "0 Europe\n", - "1 Europe\n", - "2 Europe\n", - "3 Europe\n", - "4 Europe" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X = data[[\"continent\"]]\n", - "X.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "68b714bc-1fea-4879-9fe4-a0b9e32a2f0d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['Europe', 'North America', 'Australia', 'Asia', 'South America',\n", - " 'Africa'], dtype=object)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "X[\"continent\"].unique()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "52a59d0c-1223-4ce2-8203-d687afd98341", - "metadata": {}, - "outputs": [], - "source": [ - "ohe = OneHotEncoder(sparse=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "44030a93-cd4e-4232-9636-b1530a35a72b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    OneHotEncoder(sparse=False)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "OneHotEncoder(sparse=False)" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ohe.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "f2a8e219-97aa-478b-b450-4a6fae4bbffd", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 0., 1., 0., 0.],\n", - " [0., 0., 0., 1., 0., 0.],\n", - " [0., 0., 0., 1., 0., 0.],\n", - " ...,\n", - " [1., 0., 0., 0., 0., 0.],\n", - " [1., 0., 0., 0., 0., 0.],\n", - " [0., 1., 0., 0., 0., 0.]])" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ohe.transform(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "4022a314-958b-49c4-84c9-a46e482accd3", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[array(['Africa', 'Asia', 'Australia', 'Europe', 'North America',\n", - " 'South America'], dtype=object)]" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ohe.categories_" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "14e7e218-7920-469f-802c-d199ef4281cd", - "metadata": {}, - "outputs": [], - "source": [ - "ohe = OneHotEncoder(sparse=False, drop=\"first\")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "69300001-ef55-41a7-bc6f-0dcdc1d2f2de", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    OneHotEncoder(drop='first', sparse=False)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "OneHotEncoder(drop='first', sparse=False)" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ohe.fit(X)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "f9fcb602-2c00-416c-a99a-e8a7a442068a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0., 0., 1., 0., 0.],\n", - " [0., 0., 1., 0., 0.],\n", - " [0., 0., 1., 0., 0.],\n", - " ...,\n", - " [0., 0., 0., 0., 0.],\n", - " [0., 0., 0., 0., 0.],\n", - " [1., 0., 0., 0., 0.]])" - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "ohe.transform(X)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "2a4ddb03-1e7c-4c07-a87a-b4d2cab6af0e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "5f4b36b3-30ff-4228-ba85-3f224417000e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "27e3d252-e331-4c70-91f8-a604b6c72e1f", - "metadata": {}, - "source": [ - "## LabelEncoder" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "395ade97-e454-4aba-8732-d99a5efbdb73", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array(['red', 'blue', 'green', 'red', 'pink', 'blabla', 'tratra'],\n", - " dtype='#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}
    LabelEncoder()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "LabelEncoder()" - ] - }, - "execution_count": 30, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "le = LabelEncoder()\n", - "le.fit(colors)" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "id": "4097edad-dce3-4036-a5a8-c65878641949", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([4, 1, 2, 4, 3, 0, 5])" - ] - }, - "execution_count": 31, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "le.transform(colors)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c3a67875-f006-401d-ac37-ccb6561c531f", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "1992c710-5b07-42a3-9aa6-9ca8dad230b3", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "ecf722f2-7667-48b6-a41d-9338255e1926", - "metadata": {}, - "source": [ - "## Work with data" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "id": "ad732be5-e016-40f5-be09-537e5d3ada35", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Index(['Country', 'happiness_score', 'gdp_per_capita', 'family', 'health',\n", - " 'freedom', 'generosity', 'government_trust', 'dystopia_residual',\n", - " 'continent', 'Year', 'social_support', 'cpi_score'],\n", - " dtype='object')" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.columns" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "id": "651aa052-92bc-46ee-aaa3-611642a137e8", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Countryhappiness_scoregdp_per_capitafamilyhealthfreedomgenerositygovernment_trustdystopia_residualcontinentYearsocial_supportcpi_score
    0Norway7.5371.6164631.5335240.7966670.6354230.3620120.3159642.277027Europe20150.088
    1Denmark7.5221.4823831.5511220.7925660.6260070.3552800.4007702.313707Europe20150.091
    2Iceland7.5041.4806331.6105740.8335520.6271630.4755400.1535272.322715Europe20150.079
    3Switzerland7.4941.5649801.5169120.8581310.6200710.2905490.3670072.276716Europe20150.086
    4Finland7.4691.4435721.5402470.8091580.6179510.2454830.3826122.430182Europe20150.090
    \n", - "
    " - ], - "text/plain": [ - " Country happiness_score gdp_per_capita family health freedom \\\n", - "0 Norway 7.537 1.616463 1.533524 0.796667 0.635423 \n", - "1 Denmark 7.522 1.482383 1.551122 0.792566 0.626007 \n", - "2 Iceland 7.504 1.480633 1.610574 0.833552 0.627163 \n", - "3 Switzerland 7.494 1.564980 1.516912 0.858131 0.620071 \n", - "4 Finland 7.469 1.443572 1.540247 0.809158 0.617951 \n", - "\n", - " generosity government_trust dystopia_residual continent Year \\\n", - "0 0.362012 0.315964 2.277027 Europe 2015 \n", - "1 0.355280 0.400770 2.313707 Europe 2015 \n", - "2 0.475540 0.153527 2.322715 Europe 2015 \n", - "3 0.290549 0.367007 2.276716 Europe 2015 \n", - "4 0.245483 0.382612 2.430182 Europe 2015 \n", - "\n", - " social_support cpi_score \n", - "0 0.0 88 \n", - "1 0.0 91 \n", - "2 0.0 79 \n", - "3 0.0 86 \n", - "4 0.0 90 " - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "c83be377-3f8f-4c37-8685-70b8e4ecb31b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "747" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "data[\"happiness_score\"].nunique()" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "099a5226-ce15-4594-b56f-c1e36bb07c50", - "metadata": {}, - "outputs": [], - "source": [ - "cat_cols = [\"Country\", \"continent\"]\n", - "num_cols = [\"gdp_per_capita\",\t\"family\",\n", - " \"health\",\t\"freedom\",\t\"generosity\",\n", - " \"government_trust\",\t\"dystopia_residual\",\n", - " \"Year\",\t\"social_support\",\t\"cpi_score\"]\n", - "all_features = cat_cols + num_cols\n", - "\n", - "target = data[\"happiness_score\"].values" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "8508c0f6-693f-4620-955c-f7a160c5b11c", - "metadata": {}, - "outputs": [], - "source": [ - "X = data[all_features]\n", - "y = target" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d409db5a-75e3-4278-bf8b-8235df6f2dc7", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e0b39e3e-38ec-4091-b404-e68d70322302", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 37, - "id": "e123a17a-399d-4229-8d70-f6cf9a6b10c5", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X, \n", - " y, \n", - " test_size=0.15,\n", - " random_state=SEED)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "537d8e35-4185-4b7a-9210-3d83243503c3", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 38, - "id": "a17357fb-d31d-40a3-83d2-0939ae131e89", - "metadata": {}, - "outputs": [], - "source": [ - "preprocessor = ColumnTransformer(transformers=[\n", - " (\"scaler\", StandardScaler(), num_cols),\n", - " (\"ohe\", OneHotEncoder(drop=\"first\"), cat_cols)\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "id": "11454051-8037-44ac-833f-58b34fa4e7df", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    ColumnTransformer(transformers=[('scaler', StandardScaler(),\n",
    -       "                                 ['gdp_per_capita', 'family', 'health',\n",
    -       "                                  'freedom', 'generosity', 'government_trust',\n",
    -       "                                  'dystopia_residual', 'Year', 'social_support',\n",
    -       "                                  'cpi_score']),\n",
    -       "                                ('ohe', OneHotEncoder(drop='first'),\n",
    -       "                                 ['Country', 'continent'])])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "ColumnTransformer(transformers=[('scaler', StandardScaler(),\n", - " ['gdp_per_capita', 'family', 'health',\n", - " 'freedom', 'generosity', 'government_trust',\n", - " 'dystopia_residual', 'Year', 'social_support',\n", - " 'cpi_score']),\n", - " ('ohe', OneHotEncoder(drop='first'),\n", - " ['Country', 'continent'])])" - ] - }, - "execution_count": 39, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "preprocessor" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "id": "1103037d-033b-49b7-9a2a-91c11d35528f", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    StandardScaler()
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "StandardScaler()" - ] - }, - "execution_count": 43, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "preprocessor.transformers[0][1]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "d9f0ae77-8b8c-48c3-b424-0645e95fed87", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 44, - "id": "50905584-db59-4ce1-9e29-47f82b146c5b", - "metadata": {}, - "outputs": [], - "source": [ - "knn = KNeighborsRegressor(n_neighbors=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 45, - "id": "afd7fc7d-d6e2-489a-8582-fbbab8607b2c", - "metadata": {}, - "outputs": [], - "source": [ - "knn_pipeline = Pipeline(steps=[\n", - " (\"preprocessor\", preprocessor),\n", - " (\"knn\", KNeighborsRegressor(n_neighbors=8, n_jobs=8))\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "c8b48930-54bf-45c6-bf73-abdd02c0c69e", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 46, - "id": "8bbb7863-b326-449a-9531-534d5cc4c960", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    Pipeline(steps=[('preprocessor',\n",
    -       "                 ColumnTransformer(transformers=[('scaler', StandardScaler(),\n",
    -       "                                                  ['gdp_per_capita', 'family',\n",
    -       "                                                   'health', 'freedom',\n",
    -       "                                                   'generosity',\n",
    -       "                                                   'government_trust',\n",
    -       "                                                   'dystopia_residual', 'Year',\n",
    -       "                                                   'social_support',\n",
    -       "                                                   'cpi_score']),\n",
    -       "                                                 ('ohe',\n",
    -       "                                                  OneHotEncoder(drop='first'),\n",
    -       "                                                  ['Country', 'continent'])])),\n",
    -       "                ('knn', KNeighborsRegressor(n_jobs=8, n_neighbors=8))])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "Pipeline(steps=[('preprocessor',\n", - " ColumnTransformer(transformers=[('scaler', StandardScaler(),\n", - " ['gdp_per_capita', 'family',\n", - " 'health', 'freedom',\n", - " 'generosity',\n", - " 'government_trust',\n", - " 'dystopia_residual', 'Year',\n", - " 'social_support',\n", - " 'cpi_score']),\n", - " ('ohe',\n", - " OneHotEncoder(drop='first'),\n", - " ['Country', 'continent'])])),\n", - " ('knn', KNeighborsRegressor(n_jobs=8, n_neighbors=8))])" - ] - }, - "execution_count": 46, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "knn_pipeline" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0c80f5c2-9b8f-4914-b69a-d91d94fe6a7b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 47, - "id": "20736a31-932d-4df0-a0dc-00916b9ec49d", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    Pipeline(steps=[('preprocessor',\n",
    -       "                 ColumnTransformer(transformers=[('scaler', StandardScaler(),\n",
    -       "                                                  ['gdp_per_capita', 'family',\n",
    -       "                                                   'health', 'freedom',\n",
    -       "                                                   'generosity',\n",
    -       "                                                   'government_trust',\n",
    -       "                                                   'dystopia_residual', 'Year',\n",
    -       "                                                   'social_support',\n",
    -       "                                                   'cpi_score']),\n",
    -       "                                                 ('ohe',\n",
    -       "                                                  OneHotEncoder(drop='first'),\n",
    -       "                                                  ['Country', 'continent'])])),\n",
    -       "                ('knn', KNeighborsRegressor(n_jobs=8, n_neighbors=8))])
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " - ], - "text/plain": [ - "Pipeline(steps=[('preprocessor',\n", - " ColumnTransformer(transformers=[('scaler', StandardScaler(),\n", - " ['gdp_per_capita', 'family',\n", - " 'health', 'freedom',\n", - " 'generosity',\n", - " 'government_trust',\n", - " 'dystopia_residual', 'Year',\n", - " 'social_support',\n", - " 'cpi_score']),\n", - " ('ohe',\n", - " OneHotEncoder(drop='first'),\n", - " ['Country', 'continent'])])),\n", - " ('knn', KNeighborsRegressor(n_jobs=8, n_neighbors=8))])" - ] - }, - "execution_count": 47, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "knn_pipeline.fit(X, y)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "a51768c3-4dbf-4b6e-8ba0-e824db9cf57b", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 49, - "id": "2bb3e6a0-3958-48d3-94e9-754c7790284a", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([7.31874998, 7.46487497, 7.10825006, 7.33774996, 7.40374995,\n", - " 7.09262509, 7.25375003, 7.32149998, 7.392875 , 7.19400004])" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "knn_pipeline.predict(X)[:10]" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "id": "ee3f2792-c01f-45df-ab1b-29336c0ac67b", - "metadata": {}, - "outputs": [], - "source": [ - "X_train, X_test, y_train, y_test = train_test_split(X, \n", - " y, \n", - " test_size=0.15,\n", - " random_state=SEED)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "4acdc3a4-f028-4cbc-9c65-50d461a28601", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 53, - "id": "2cf1196f-b825-42ff-a28e-529c05310959", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1 0.9016263201941989 0.11642944911889179\n", - "2 0.9217602000110323 0.09260014294342377\n", - "3 0.9216167217996469 0.09276995553094866\n", - "5 0.8978481879054924 0.12090102995169963\n", - "7 0.891164228620634 0.1288117810693301\n", - "10 0.8880385842110294 0.13251111464585388\n" - ] - } - ], - "source": [ - "k_neighbors = [1, 2, 3, 5, 7, 10]\n", - "r2_scores = []\n", - "mse_scores = []\n", - "\n", - "for k in k_neighbors:\n", - " knn_pipeline = Pipeline(steps=[\n", - " (\"preprocessor\", preprocessor),\n", - " (\"knn\", KNeighborsRegressor(n_neighbors=k, n_jobs=8))\n", - " ])\n", - " knn_pipeline.fit(X_train, y_train)\n", - " y_test_pred = knn_pipeline.predict(X_test)\n", - " r2 = r2_score(y_test, y_test_pred)\n", - " mse = mean_squared_error(y_test, y_test_pred)\n", - " \n", - " r2_scores += [r2]\n", - " mse_scores += [mse]\n", - " \n", - " print(k, r2, mse)" - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "id": "5a788c59-5709-4454-95f1-8f822f96a746", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp+UlEQVR4nO3deXyU5bn/8c+VHbJCEiAmLIFEQ4oosrggW2wVrXt7Wm2r1tpqj6Ld/J3q6Tnt+XFq7fnVntoKtaUKLrVaS221FkULCSgCEgRBgYQQBBICmQAhIUDW6/fHPAlDGsiEDHlmMtf79cork/tZcs0o8819P/dzj6gqxhhjwk+E2wUYY4xxhwWAMcaEKQsAY4wJUxYAxhgTpiwAjDEmTEW5XUBPpKWl6ahRo9wuwxhjQsr69etrVDW9c3tIBcCoUaMoLi52uwxjjAkpIrKrq3YbAjLGmDBlAWCMMWHKAsAYY8KUBYAxxoQpCwBjjAlTFgDGGBOmLACMMSZMhdR9AKHurY/3saWqjpioCGIiI4iOjCAm6sT3mEjpos13PyGm0/aoCEFE3H5qxpgQZAHQR443t/LASxs43twW8HPH+AZEezj4BIVve2xUBLHRkTxQkMt5wxIDXosxJnRYAPSRNeUHON7cxqKvTubSMak0tbbR3NLmfFeaWttoammjubXtpG3eNvW2n9TW5tN2Yrvvfs0+xze1tlF/vIWDrW2Uexo4cryFZ782xe2XxRjjIguAPlJU4iEuOoJLx6QSFx1JXHSka7XMLyzjZ0tL2FRRy/isFNfqMMa4yy4C95GikmouHZ3q6ht/u9svHUlSXBTzlpe5XYoxxkUWAH1gZ00Dnxw4yszzhrhdCgCJcdHcOTWbt7bsZ2tVndvlGGNcYgHQB4pKqgGYFSQBAHDn1FHEx0Qyv9B6AcaEKwuAPlBU4mF0WjwjUge6XUqHlIEx3HbpKP6+uYodniNul2OMcYFfASAis0WkRETKROShLraPFJFlIrJJRIpEJMtpv1BEVovIx862L/ocky0ia51z/lFEYgL3tILHsaZW1pQfYMZ5//RZDK77+rRsYqMirBdgTJjqNgBEJBKYD1wN5AO3ikh+p90eA55T1fHAXOBRp/0ocLuqfgqYDTwuIinOtv8BfqGqOcAh4K5ePpegtKb8AI0tbUE1/NMuLSGWL00Zyasb97L7wFG3yzHG9DF/egBTgDJVLVfVJuAl4IZO++QDy53Hhe3bVbVUVbc7j/cC1UC6eG9dLQAWO8c8C9zYi+cRtIpKqhkQHcmU7MFul9Klu6ePJlKEJ1fscLsUY0wf8ycAMoE9Pj9XOG2+PgRudh7fBCSKSKrvDiIyBYgBdgCpQK2qtpzmnCFPVSks8XTM/Q9Gw5Lj+MLkLBav30PV4WNul2OM6UOBugj8IDBDRDYAM4BKoLV9o4hkAM8Dd6pqj9ZCEJG7RaRYRIo9Hk+Ayu0bO2sa2H3wKLOCcPzf1z3Tx6AKv11R7nYpxpg+5E8AVALDfX7Octo6qOpeVb1ZVScAP3DaagFEJAn4O/ADVV3jHHIASBGRqFOd0+fcC1R1kqpOSk8P7jfSzopKvIEVLPP/T2X44IHcNCGTF9/fTXX9cbfLMcb0EX8CYB2Q68zaiQFuAV7z3UFE0kSk/VwPAwud9hjgL3gvELeP96OqivdaweedpjuAV3vzRIJRUamH0enxDB8cPNM/T+XeWTk0t7bx9Ds73S7FGNNHug0AZ5x+DrAU2Aq8rKofi8hcEbne2W0mUCIipcBQ4BGn/QvAdOCrIrLR+brQ2fZ94LsiUob3msDTAXpOQaF9+mcwzv7pSnZaPNddcA7Pr9nFoYYmt8sxxvQBvxaDU9UlwJJObT/0ebyYEzN6fPf5PfD7U5yzHO8Mo35pdXkNTS1tzAzy8X9f983K4dWNe1m4aiffu/I8t8sxxpxldifwWVK4zRPU0z+7cu7QRGZ/ahjPrPqEw8ea3S7HGHOWWQCcBapKUWk1U3NSiY0KzumfpzKnIIf6xhaeX/2J26UYY84yC4CzoLymgT0HjzEjRMb/fY3LTKYgbwhPv7uThsaW7g8wxoQsC4CzoHCbd/XPmeeGzvi/r/tm5XDoaDMvrN3ldinGmLPIAuAsWFHqIWdIQkhM/+zKxJGDmJqTyoKVOzne3Nr9AcaYkGQBEGBHm1pYW34wZP/6b3d/QS41Rxr547o93e9sjAlJFgAB9l7ZAZpa25iVF3rj/74uzh7M5FGD+M2KHTS2WC/AmP7IAiDAikqrGRgTyaRRg9wupVdEhDkFuVQdPs4rH3S5SocxJsRZAASQqlJU4uGyMWkhN/2zK9Nz0xiflcyvi8poae3RGn7GmBBgARBAOzxHqDh0jFl5oT3+305EuL8glz0Hj/Hah3vdLscYE2AWAAEUKqt/9sQVeUPIG5bIvMIyWtvU7XKMMQFkARBARSUecockkJkywO1SAiYiQphTkEO5p4E3PqpyuxxjTABZAARIQ2ML7+88GPKzf7py9bgMRqfHM295GW3WCzCm37AACJD3dninf4b6/P+uREYIc2blsG1fPf/Yut/tcowxAWIBECBFJdXEx0QyaVTorP7ZE9dfcA7DBw9gXmEZ3s/zMcaEOguAAGif/jk1J42YqP75kkZFRnDvzBw2VRxm5fYat8sxxgRA/3y36mNl1UeorD3Wr2b/dOVzF2WRkRzHE8u2Wy/AmH7AAiAATkz/7H/j/75ioiL45owxFO86xJryg26XY4zpJQuAACgsqea8oYmc04+mf57KFycPJy0hlnmF290uxRjTSxYAvXSksYV1nxzs93/9t4uLjuTu6dmsKjvA+l2H3C7HGNMLFgC9tKqshuZW7ffj/76+fPFIBg2MZn5hmdulGGN6wa8AEJHZIlIiImUi8lAX20eKyDIR2SQiRSKS5bPtTRGpFZHXOx3zjIjsFJGNzteFvX42Ligq8ZAQGxXyq3/2RHxsFHddns3ybdV8VHnY7XKMMWeo2wAQkUhgPnA1kA/cKiL5nXZ7DHhOVccDc4FHfbb9DLjtFKf/P6p6ofO1safFu01VWVHi/fD36Mjw6kzdftkoEuOimLfcegHGhCp/3rWmAGWqWq6qTcBLwA2d9skHljuPC323q+oyoD4AtQad0v1H2Hv4OLPCaPinXVJcNHdeNoo3P95H6f5++Z/XmH7PnwDIBHw/F7DCafP1IXCz8/gmIFFEUv049yPOsNEvRCS2qx1E5G4RKRaRYo/H48cp+05RiffD32eEyQXgzu6cms3AmEjrBRgTogI1bvEgMENENgAzgEqgu88RfBjIAyYDg4Hvd7WTqi5Q1UmqOik9PbjeaItKPOQNSyQjuf9P/+zKoPgYbrtkJK9v2ku554jb5RhjesifAKgEhvv8nOW0dVDVvap6s6pOAH7gtNWe7qSqWqVejcAivENNIaP+eLMz/TP8hn983TUtm+jICJ4s2uF2KcaYHvInANYBuSKSLSIxwC3Aa747iEiaiLSf62FgYXcnFZEM57sANwIf9aBu160qO0BLm4bN/P9TGZIYx61TRvCXDZXsOXjU7XKMMT3QbQCoagswB1gKbAVeVtWPRWSuiFzv7DYTKBGRUmAo8Ej78SLyDvAn4AoRqRCRq5xNL4jIZmAzkAb8OEDPqU+sKK0mMTaKiSPDZ/rnqdwzYzQi8JsV1gswJpRE+bOTqi4BlnRq+6HP48XA4lMcO+0U7QX+lxlcVJXCbR4uz00Lu+mfXclIHsDnJw7nT8UV3F+Qy7DkOLdLMsb4wd69zkDJ/nr21R0P++EfX/86YwytqixYWe52KcYYP1kAnIH21T9nnBveF4B9jUgdyI0XZvKH93dRc6TR7XKMMX6wADgDhduqGZuRZEMdndw7awyNLW089c5Ot0sxxvjBAqCH6o83s37XIRv+6cKY9AQ+e34Gz6/+hNqjTW6XY4zphgVAD60qq/FO/+yHH/4eCHMKcmhoamXRqk/cLsUY0w0LgB4q3OYhMS6Ki2z6Z5fyhiVxZf5QFq3aSf3xZrfLMcachgVAD6gqK0o9TLPpn6c1pyCHuuMtPLd6l9ulGGNOw97FemDbPmf6p83+Oa3xWSnMODedp9/dydGmFrfLMcacggVADxSG+eqfPfHAFTkcbGjiD2t3u12KMeYULAB6oKjEQ35GEkOTbPpndyaOHMylo1NZsLKc483dLQxrjHGDBYCfDh/zTv+clWd//fvr/oIcqusb+VPxnu53Nsb0OQsAP60qq6G1Lbw+/L23Lh2TykUjUvjNinKaWtrcLscY04kFgJ+KSqpJiotiwvAUt0sJGSLC/VfkUll7jL9uqOz+AGNMn7IA8IOqUlTiYdq56UTZ9M8emXluOuMyk5hfVEZLq/UCjAkm9m7mhy1VdVTXN9rdv2dARJgzK5ddB47y+qYqt8sxxviwAPBDx+qfNv3zjFyZP5TzhiYyr7CMtjZ1uxxjjMMCwA9FJdWMy0xiSKJN/zwTERHCfQU5lFUf4c2P97ldjjHGYQHQjcPHmvlgd63d/dtLnz0/g+y0eJ5YXoaq9QKMCQYWAN14d3v79E8b/umNyAjh3plj2FpVx/Jt1W6XY4zBAqBbhSXVJA+I5kKb/tlrN07IJGvQAOsFGBMk/AoAEZktIiUiUiYiD3WxfaSILBORTSJSJCJZPtveFJFaEXm90zHZIrLWOecfRSSm908nsNraTqz+adM/ey86MoJ/nTmGjXtqebesxu1yjAl73b6riUgkMB+4GsgHbhWR/E67PQY8p6rjgbnAoz7bfgbc1sWp/wf4harmAIeAu3pe/tm1paoOT32j3f0bQJ+fmMXQpFieWF7mdinGhD1//qydApSparmqNgEvATd02icfWO48LvTdrqrLgHrfnUVEgAJgsdP0LHBjT4s/24raV/+0+f8BExsVyT3Tx/D+zoOsLT/gdjnGhDV/AiAT8F3Nq8Jp8/UhcLPz+CYgUURST3POVKBWVdsXi+/qnACIyN0iUiwixR6Px49yA6eoxMP5mcmkJ8b26e/t726dMoK0hBjmFVovwBg3BWpg+0FghohsAGYAlUBA1gBW1QWqOklVJ6Wn991f4oePNvPBbvvw97NhQEwkX582mne217BxT63b5RgTtvwJgEpguM/PWU5bB1Xdq6o3q+oE4AdOW+1pznkASBGRqFOd020rt3toU2z8/yz5yiUjSRkYzbzl290uxZiw5U8ArANynVk7McAtwGu+O4hImoi0n+thYOHpTqjeOYCFwOedpjuAV3tS+NlWVOIhZaBN/zxbEmKj+NrUbP6xtZqP9x52uxxjwlK3AeCM088BlgJbgZdV9WMRmSsi1zu7zQRKRKQUGAo80n68iLwD/Am4QkQqROQqZ9P3ge+KSBneawJPB+g59dqJ6Z/pREaI2+X0W3dcNorE2Cjm27UAY1wR1f0uoKpLgCWd2n7o83gxJ2b0dD522inay/HOMAo6H++to+ZII7Ns/P+sSh4Qze2XjeTXRTvYvr+e3KGJbpdkTFixu5u60D79c7pN/zzrvjY1m7ioSH5dtMPtUowJOxYAXSgsqWZ8VjJpCTb982xLTYjlK5eM4NWNlew60OB2OcaEFQuATmqPNrFxT63N/ulD35g2mqjICH5daL0AY/qSBUAnK7fXONM/bfinrwxJiuOWycP58wcVVNYec7scY8KGBUAnRduqGTQwmguyUtwuJazcM2MMIvDbFdYLMKavWAD4aJ/+Of1cm/7Z1zJTBvC5i7J4ad0equuOu12OMWHBAsDHR3sPc6ChyYZ/XPKvM8fQ0trGgpXlbpdiTFiwAPBRuM2DCEzPtQBww8jUeG64MJMX1u7mwJFGt8sxpt+zAPBRVFrN+KwUUm36p2vumzWG4y2tLFy10+1SjOn3LAAcBxuc6Z9285ercoYkcs24DJ59bxeHjza7XY4x/ZoFgOOd7R5UYVaezf93232zcjjS2MIz733idinG9GsWAI6iEg+D42MYn5nsdilhL/+cJD49dggLV+3kSGNL9wcYY86IBQA+0z9z04iw6Z9BYU5BLoePNfP7NbvcLsWYfssCANhUeZiDDU02/BNELhyewrTcNJ56p5xjTQH5cDljTCcWAHhX/xSBaTb9M6jcX5BLzZEmXnx/t9ulGNMvWQDgHf+/ICuFwfExbpdifEzJHszF2YP57codNLZYL8CYQAv7ADhwpJEPK2qZZat/BqX7C3LZX9fI4vUVbpdiTL8T9gHwzvYa1Fb/DFpTc1K5cHgKTxbtoLm1ze1yjOlXwj4AikqqSY2P4Xyb/hmURIT7C3KoOHSMv26odLscY/qVsA6AVmf654xz0236ZxAryBtCfkYSvy7aQWubul2OMf2GXwEgIrNFpEREykTkoS62jxSRZSKySUSKRCTLZ9sdIrLd+brDp73IOedG56vPB+E3VdRy6GgzM2z4J6i19wJ21jTw+qa9bpdjTL/RbQCISCQwH7gayAduFZH8Trs9BjynquOBucCjzrGDgR8BFwNTgB+JyCCf476sqhc6X9W9fjY9VFjiIcJW/wwJV31qGDlDEphfWEab9QKMCQh/egBTgDJVLVfVJuAl4IZO++QDy53HhT7brwLeVtWDqnoIeBuY3fuyA2NFSTUXDk9hkE3/DHoREcKcWTmU7j/CW1v2u12OMf2CPwGQCezx+bnCafP1IXCz8/gmIFFEUv04dpEz/POfItLlILyI3C0ixSJS7PF4/CjXPzVHGtlUedg+/D2EXDs+g1GpA5lXuB1V6wUY01uBugj8IDBDRDYAM4BKoLs7d76squcD05yv27raSVUXqOokVZ2Unh64oZqVpc7qnxYAISMqMoJ7Z+bwUWUdRSWB+2PAmHDlTwBUAsN9fs5y2jqo6l5VvVlVJwA/cNpqT3esqrZ/rwf+gHeoqc8UlXhIS4jhU+ck9eWvNb1044RMMlMG8Kvl1gswprf8CYB1QK6IZItIDHAL8JrvDiKSJiLt53oYWOg8XgpcKSKDnIu/VwJLRSRKRNKcY6OBa4GPev90/NPapqzc7v3wd5v+GVpioiL45swxbNhdy+odB9wux5iQ1m0AqGoLMAfvm/lW4GVV/VhE5orI9c5uM4ESESkFhgKPOMceBP4bb4isA+Y6bbF4g2ATsBFvr+B3AXxep7VxTy21R5tt+CdE/cvELIYkxvLE8jK3SzEmpEX5s5OqLgGWdGr7oc/jxcDiUxy7kBM9gva2BmBiT4sNlBUl1UQITMtNc6sE0wtx0ZHcPX00P/77Voo/OcikUYPdLsmYkBSWdwIXlXqYMGIQKQNt+meo+tLFIxgcH2O9AGN6IewCwFPfyKaKw8yyu39D2sCYKL4+LZsVpR42VdS6XY4xISnsAmBlqXf6oM3/D323XTKSpLgo6wUYc4bCLgCKSj2kJcSSn2HTP0NdYlw0d07N5u0t+9laVed2OcaEnLAKgJbWNlaWeph5nk3/7C/unDqK+JhI5hdaL8CYngqrAPiwopbDx5rtw1/6kZSBMdx+2Sj+vrmKHZ4jbpdjTEgJqwAoclb/nJZjAdCf3HV5NrFREdYLMKaHwioACkuqmThyEMkDo90uxQRQWkIsX5oyklc37mX3gaNul2NMyAibAKiuP85HlXU2+6efumfGaCJFeHLFDrdLMSZkhE0ArCytAWDGuTb80x8NTYrjC5OzWLx+D1WHj7ldjjEhIWwCoLCkmiGJsbb6Zz92z/QxqMJvV5S7XYoxISEsAqCltY13nA9/P8Xnzph+YPjggdw0IZMX399Ndf1xt8sxJuiFRQBs3FNL3fEWG/8PA/fOyqG5tY2n39npdinGBL2wCIDCkmoiI4TLbfXPfi87LZ7rLjiH59fs4mBDk9vlGBPUwiIAPqqsY+KIQSQPsOmf4eC+WTkcbWpl0SrrBRhzOn59HkCoe+bOyRw+1ux2GaaPnDs0kdmfGsYzqz7h69NGW/Abcwph0QMQEVv7P8zMKcihvrGF51d/4nYpxgStsAgAE37GZSZTkDeEp9/dSUNji9vlGBOULABMvzWnIIdDR5t5Ye0ut0sxJihZAJh+66IRg7g8J40FK3dyvLnV7XKMCToWAKZfm1OQQ82RRv64bo/bpRgTdPwKABGZLSIlIlImIg91sX2kiCwTkU0iUiQiWT7b7hCR7c7XHT7tE0Vks3POX4ndomvOgouzBzN51CB+s2IHjS3WCzDGV7cBICKRwHzgaiAfuFVE8jvt9hjwnKqOB+YCjzrHDgZ+BFwMTAF+JCKDnGOeBL4B5Dpfs3v9bIzpRESYU5BL1eHjvPJBpdvlGBNU/OkBTAHKVLVcVZuAl4AbOu2TDyx3Hhf6bL8KeFtVD6rqIeBtYLaIZABJqrpGVRV4Drixd0/FmK5Nz03jgqxkfl1URktrm9vlGBM0/AmATMB3ALXCafP1IXCz8/gmIFFEUk9zbKbz+HTnBEBE7haRYhEp9ng8fpRrzMnaewF7Dh7j1Y173S7HmKARqIvADwIzRGQDMAOoBAIy4KqqC1R1kqpOSk+3tfzNmfn02CHkDUtkflEZrW3qdjnGBAV/AqASGO7zc5bT1kFV96rqzao6AfiB01Z7mmMrncenPKcxgSQi3F+QS7mngTc+qnK7HGOCgj8BsA7IFZFsEYkBbgFe891BRNJEpP1cDwMLncdLgStFZJBz8fdKYKmqVgF1InKJM/vnduDVADwfY05p9rhhjEmPZ97yMtqsF2BM9wGgqi3AHLxv5luBl1X1YxGZKyLXO7vNBEpEpBQYCjziHHsQ+G+8IbIOmOu0AdwLPAWUATuANwL1pIzpSmSEcN+sHLbtq+cfW/e7XY4xrhPvJJzQMGnSJC0uLna7DBPCWlrbKPj5ClIGRvPqfVPtE+JMWBCR9ao6qXO73QlswkpUZAT3zhzDporDrNxe43Y5xrjKAsCEnZsvyiIjOY4nlm0nlHrAxgSaBYAJOzFREXxzxhiKdx1iTfnB7g8wpp+yADBh6YuTh5OWEMu8wu1ul2KMaywATFiKi47knumjWVV2gPW7DrldjjGusAAwYetLF49g0MBofmXXAkyYsgAwYSs+Noq7p49hRamHf/nNajZXHHa7JGP6lAWACWv3TB/N/3zufD450MD189/l+4s34alvdLssY/qEBYAJaxERwhcnj2D5gzP5xrTRvLKhglmPFbFg5Q6aWmzpaNO/WQAYAyTFRfPv14xl6benMyV7MD9Zso2rHl/J8m377fqA6bcsAIzxMTo9gYVfncyiOycjAl97ppivLlpHWfURt0szJuAsAIzpwqzzhrD029P5j8+O5YPdh5j9+Erm/m0Lh481u12aMQFjAWDMKURHRvD1aaMpfHAm/zJpOIve28msx4r4w9rd9qEypl+wADCmG2kJsTx68/n8bc7l5KQn8O9/2cx1T7zL2vIDbpdmTK9YABjjp3GZyfzxnkt44tYJ1B5t4osL1nDfHz6gsvaY26UZc0YsAIzpARHhugvOYdn3ZvLtT+eybOt+Ch4r4hdvl3KsKSAfg21Mn7EAMOYMDIiJ5NufPpdl35vJZ/KH8stl27ni50W89uFemzZqQoYFgDG9kJkygHlfuoiX77mUQfExPPDiBr7w29V8VGnLSpjgZwFgTABMyR7Ma3Mu56c3n0+5p4Hr5r3LQ3/eRM0RW1bCBC8LAGMCJDJCuGWKd1mJu6Zms3h9BbN+VsRT75TbshImKPkVACIyW0RKRKRMRB7qYvsIESkUkQ0isklErnHaY0RkkYhsFpEPRWSmzzFFzjk3Ol9DAvWkjHFT8oBo/uPafJZ+ZzoTRw3ix3/fyuzHV1K4rdrt0ow5SbcBICKRwHzgaiAfuFVE8jvt9h/Ay6o6AbgF+LXT/g0AVT0f+AzwcxHx/Z1fVtULnS/712H6lTHpCTxz5xQWfXUyAHc+s447F73PDo8tK2GCgz89gClAmaqWq2oT8BJwQ6d9FEhyHicDe53H+cByAOcNvhaY1MuajQkps/KG8KazrETxJ4e46hcr+fHrW6g7bstKGHf5EwCZwB6fnyucNl//BXxFRCqAJcD9TvuHwPUiEiUi2cBEYLjPcYuc4Z//FBHp6peLyN0iUiwixR6Px49yjQk+MVHeZSWWPziTz0/M4ulVO5n1syJeet+WlTDuCdRF4FuBZ1Q1C7gGeN4Z6lmINzCKgceB94D2u2W+7AwNTXO+buvqxKq6QFUnqeqk9PT0AJVrjDvSE2P56efG87c5lzM6PZ6HXtnM9fPe5f2dB90uzYQhfwKgkpP/as9y2nzdBbwMoKqrgTggTVVbVPU7zhj/DUAKUOrsV+l8rwf+gHeoyZiwMC4zmZfvuZRf3TqBgw1NfOG3q7n/xQ3stWUlTB/yJwDWAbkiki0iMXgv8r7WaZ/dwBUAIjIWbwB4RGSgiMQ77Z8BWlR1izMklOa0RwPXAh8F5BkZEyJEhOsvOIfl35vJt67I5a2P91Hw8yJ++Y/ttqyE6RPiz23rzrTOx4FIYKGqPiIic4FiVX3NmRX0OyAB7wXhf1PVt0RkFLAUaMPba7hLVXc5obASiHbO+Q/gu6p62v/rJ02apMXFxWf2TI0JchWHjvLoG9v4+6YqMlMG8PA1eXz2/AxOcXnMGL+JyHpV/acJOH4FQLCwADDhYG35Af7v37awpaqOKdmD+dF1+XzqnGS3yzIh7FQBYHcCGxNkLh6dyt/uv5yf3HQ+ZdVHuPaJd3n4lc0csGUlTIBZABgThCIjhC9dPILCB2dy52XZ/Kl4DzMfK+Lpd3fS3GrLSpjAsAAwJoglD4jmh9fl8+a3pzFhxCD++/UtzH58JUUlduO86T0LAGNCQM6QRJ69czJP3zGJ1jblq4vW8bVn1lFuy0qYXrAAMCZEiAhXjB3KW9+Zwb9fk8f7Ow9y1eMr+cmSrbashDkjFgDGhJiYqAjunj6GwgdnctOETH73TjkFjxXxx3W7abNlJUwPWAAYE6LSE2P5f5+/gFfvm8rI1Hi+/+fN3DB/FcWf2LISxj8WAMaEuPFZKSz+5qX88pYL8dQ38vnfrOaBFzdQddiWlTCnZwFgTD8gItxwYSbLH5zBAwU5LP14HwWPreBXy7ZzvNmWlTBdswAwph8ZGBPFd688j398dwYFeUP437dLueLnK1iyuYpQuuvf9A0LAGP6oeGDBzL/yxfx4jcuITEuintf+IBbf7eGLXvr3C7NBBELAGP6sUvHpPL3B6bxyE3jKNlXz7VPvMMP/rKZgw1NbpdmgoAFgDH9XGSE8OWLR1L04CzuuGwUL63bw8yfFbLQlpUIexYAxoSJ5IHR/Oi6T/Hmt6ZxwfAU5r6+hat/+Q4rS+2jVsOVBYAxYSZ3aCLPfW0KT90+iZbWNm5f+D5ff3YdO2sa3C7N9DELAGPCkIjw6fyhLP3OdB6+Oo815Qe58hcrePSNrbbsdBixD4QxxlBdf5yfvVnCn9ZXADAsKY68jETyhiUxNiORsRlJZKfFEx1pfzOGIvtEMGNMt7bsrePdMg/bqurZUlXHDs8Rmlu97xExkRHkDEkgLyOR/Iwk8oYlkZeRSFpCrMtVm+6cKgCi3CjGGBOc8s9JIv+cpI6fm1raKK85wraqerZW1bF1Xz3vbq/hlQ8qO/ZJS4jt6CXkDfP2GnKGJBATZb2FYGc9AGNMjx040kjJPm8vYdu+erbtq6N0/xGaWrzTSqMixNtbGJZIXkYSYzOSGDsskfTEWPuQexf0qgcgIrOBXwKRwFOq+tNO20cAzwIpzj4PqeoSEYkBfgtMAtqAb6lqkXPMROAZYACwxNkWOmlkTBhLTYjlspxYLstJ62hraW1jZ00DW/fVs80JhrU7D/LXjXs79hkcH0PesBO9hbEZ3t5CXHSkG08j7HUbACISCcwHPgNUAOtE5DVV3eKz238AL6vqkyKSj/cNfRTwDQBVPV9EhgBviMhkVW0DnnS2r3X2nw28EbBnZozpU1GREeQOTSR3aCLXX3BOR3vt0SZvL6Gqjq1V3t7CC2t3cbzZ21uIjBBGp8WT1xEK3mGkjOQ46y2cZf70AKYAZapaDiAiLwE3AL4BoED7wGEy0B75+cByAFWtFpFaYJKI7AGSVHWNc87ngBuxADCm30kZGMMlo1O5ZHRqR1trm7LrQENHIGytqmfD7kP87cMTvYXkAdH/1Fs4d2giA2KstxAo/gRAJrDH5+cK4OJO+/wX8JaI3A/EA5922j8ErheRF4HhwETne5tzHt9zZnb1y0XkbuBugBEjRvhRrjEm2EVGCKPTExidnsBnx2d0tNcdb6akvbfgfH+5eA9Hm7xLWotAdmo8eRmJjB2W1NFryBo0wHoLZyBQs4BuBZ5R1Z+LyKXA8yIyDlgIjAWKgV3Ae0CPFidX1QXAAvBeBA5QvcaYIJQUF83kUYOZPGpwR1tbm7Ln0FGf3kIdH++tY8nmfR37JMZGddy30P79vGGJJMTaRMfT8efVqcT7V3u7LKfN1114x/BR1dUiEgekqWo18J32nUTkPaAUOOSc53TnNMYYIiKEkanxjEyNZ/a4YR3tDY0tlOz3Tk/d5oTDXzdUUr+mpWOfkakDO6amtk9VHT5oIBER1lsA/wJgHZArItl436RvAb7UaZ/dwBXAMyIyFogDPCIyEO9U0wYR+QzQ0n7xWETqROQSvBeBbweeCMgzMsaEhfjYKC4aMYiLRgzqaFNVKg4d67jovG1fPVv31fHWlv20zzEcGBPJeU4o5Gd4p6meNyyRpLhol56Je/y6D0BErgEexzvFc6GqPiIic4FiVX3NmfnzOyAB7wXhf1PVt0RkFLAU75h/JXCXqu5yzjmJE9NA3wDu724aqN0HYIw5E8eaWindf+KC81YnHA4fa+7YJzNlgPd+BZ+hpFGp8UT2g96CLQVhjDE+VJV9dcc7lr1o7zWU1zTQ2uZ9X4yLjuC8oScCoX1GUsrAGJer7xlbCsIYY3yICBnJA8hIHsCsvCEd7cebWymrPtLRS9i2r463t+7nj8UnJkNmJMf9013O2WnxRIXYYnkWAMYY4yMuOpJxmcmMy0zuaFNVPPWNJ93lvLWqjne219Di9BZioiLIHZJw0n0LecMSSQ3ixfIsAIwxphsiwpCkOIYkxTHj3PSO9qaWNnZ4jpx0bWFFqYfF60/c5jQkMdbbUxiW2DFFdUx6cCyWZwFgjDFnKCYqwrlwnMRNE0601xxp7Jia2n7/wqJVB2hyPoM5OlIYk96pt5CRSHpC3y6WZwFgjDEBlpYQy+W5sVyee2KxvOb2xfJ8Ljiv3nGAv2w4cQtUanzMP93lfDYXy7MAMMaYPhAdGcG5QxM5d2giN/i0H2po6rjY3B4Oz6/ZRWPLyYvlPfmVieQMSQhoTRYAxhjjokHxMVw6JpVLx5y8WN4nBxpOuss5/SxcTLYAMMaYIBMZ4b1GMCY9gWvHn73f4/5laGOMMa6wADDGmDBlAWCMMWHKAsAYY8KUBYAxxoQpCwBjjAlTFgDGGBOmLACMMSZMhdQHwoiIB++Hy4eyNKDG7SKChL0WJ7PX42T2epzQ29dipKqmd24MqQDoD0SkuKtP5glH9lqczF6Pk9nrccLZei1sCMgYY8KUBYAxxoQpC4C+t8DtAoKIvRYns9fjZPZ6nHBWXgu7BmCMMWHKegDGGBOmLACMMSZMWQD0AREZLiKFIrJFRD4WkW+5XVMwEJFIEdkgIq+7XYvbRCRFRBaLyDYR2Soil7pdk1tE5DvOv5OPRORFEYlzu6a+JCILRaRaRD7yaRssIm+LyHbn+6BA/C4LgL7RAnxPVfOBS4D7RCTf5ZqCwbeArW4XESR+CbypqnnABYTp6yIimcADwCRVHQdEAre4W1WfewaY3antIWCZquYCy5yfe80CoA+oapWqfuA8rsf7jzvT3arcJSJZwGeBp9yuxW0ikgxMB54GUNUmVa11tSh3RQEDRCQKGAjsdbmePqWqK4GDnZpvAJ51Hj8L3BiI32UB0MdEZBQwAVjrciluexz4N6DN5TqCQTbgARY5Q2JPiUi820W5QVUrgceA3UAVcFhV33K3qqAwVFWrnMf7gKGBOKkFQB8SkQTgz8C3VbXO7XrcIiLXAtWqut7tWoJEFHAR8KSqTgAaCFAXP9Q4Y9s34A3Fc4B4EfmKu1UFF/XO3Q/I/H0LgD4iItF43/xfUNVX3K7HZVOB60XkE+AloEBEfu9uSa6qACpUtb1XuBhvIISjTwM7VdWjqs3AK8BlLtcUDPaLSAaA8706ECe1AOgDIiJ4x3e3qur/ul2P21T1YVXNUtVReC/wLVfVsP0rT1X3AXtE5Dyn6Qpgi4sluWk3cImIDHT+3VxBmF4Q7+Q14A7n8R3Aq4E4qQVA35gK3Ib3L92Nztc1bhdlgsr9wAsisgm4EPiJu+W4w+kFLQY+ADbjfY8KqyUhRORFYDVwnohUiMhdwE+Bz4jIdry9pJ8G5HfZUhDGGBOerAdgjDFhygLAGGPClAWAMcaEKQsAY4wJUxYAxhgTpiwAjDEmTFkAGGNMmPr/s99FpbSaGgIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.lineplot(x=k_neighbors, y=r2_scores);" - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "id": "ddc1e11a-c9ff-4ca3-b53c-a241eae5ad0e", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAApEElEQVR4nO3deXhVd73v8fc3OxMhA4HskBCmQEICtEjbQGcItLVUsTi0Suvp4KniRI9Xj+daH696rJ6r3qPHobRKj5211trjgC2KWgLUjgSklCGQgQBJAwlDBhIy7u/9Yy/obgzNDtnJ2sP39Tx52Pu311r7u/OQ9fnttX7rt0RVMcYYE3vi3C7AGGOMOywAjDEmRlkAGGNMjLIAMMaYGGUBYIwxMSre7QKGIisrS6dPn+52GcYYE1G2bdt2TFW9/dsjKgCmT59OeXm522UYY0xEEZGDA7XbISBjjIlRFgDGGBOjLACMMSZGWQAYY0yMsgAwxpgYZQFgjDExygLAGGNiVERdB2CMMbGiu9dHddMpKo60UtHQxueuLSQlMbS7bAsAY4xxkarSdKqLioY29ja0UnHE/2910yl6+vz3a0n0xPGBi/MozkkP6XtbABhjzCjp7OmjqvEUFUfaqGhoZa/Tuz/e3n12mZz0ZGbnprGkOJvinDRm56aTnzWWBE/oj9hbABhjTIipKkdaO/29emcnv7ehlZpj7fT5/L36pPg4inLSuGZ2NrNz0ynOSac4J43MsYmjVqcFgDHGDMPp7j4qG/07+L0Nbf5j9kfaaO7oObtM3rgxzM5N4/q5ORTn+nv10yeMxRMnLlZuAWCMMUFRVeqbT1Ph7OT3Or372mPtOJ16UhI9FOWkccMFuczOTaM4J52inDQyxiS4W/w5WAAYY0w/7V297DvadnZnf+ZQTltn79llpo5PoTgnjffNm3R2Zz91fApxLvfqh8ICwBgTs3w+pe7kafY0tJ7d0VccaeXgiQ7U6dWnJsVTnJPGivmTKM5JZ3auv1efmhT5u8/I/wTGGBOEts4e9h1pY68zzLKioZV9R9po7+4DQASmTxjLnEnpfPDiyWdH4EzOHINI5PTqh8ICwBgTVfp8ysHj7QFDLf07/LqTp88uk54cT3FuOjeXTKE4J43i3HRmTUwN+YVW4S62Pq0xJqq0dPQ4wyydC6iOtLH/SBune/y9+jiBGd5U5k8Zxy0Lp549Vp+bkRy1vfqhCCoARGQZ8CPAA/xMVb/T7/VFwA+BecBKVX3GaZ8G/Bb/nEMJwH2q+lPntUuAR4ExwHrgc6pnjroZY8xbevt81B5v94+8cXb2FQ2tvNnSeXaZzJQEZuemc8vCqf6hljnpFE5MJTnB42Ll4W3QABARD3A/cB1QB2wVkXWquidgsUPAncAX+63eAFyuql0ikgrsctZ9E/gJ8AngVfwBsAz44zA/jzEmwp1o7z576ObM1bL7j56iu9cHQHycMNObysL88RTnpp89Vp+dlmS9+iEK5hvAQqBKVWsAROQpYAVwNgBUtdZ5zRe4oqp2BzxNwpl9VERygXRVfcV5/jjwfiwAjIkZPX3OZGf9rpZtbOs6u0xWahKzc9O44/JpZ6+WnZk9lqR469WHQjABkAccDnheB1wa7BuIyBTgOaAA+DdVfVNESpztBG4z7xzrrwJWAUydOjXYtzXGhJGmti7n4qkzY+rbqGpse9tkZwXZqVxVmMXsnHSKnWP13rQklyuPbiN+ElhVDwPzRGQS8DsReWaI6z8IPAhQUlJi5wiMCWNdvc5kZwFXy1YcaeXYqbcOBkxMT2J2bjqLZ3nPnpSd4R2Zyc7MOwsmAOqBKQHPJzttQ+L0/HcBVwMvOtsZ1jaNMe5QVRrbuvwXUAVcLVvddIregMnOZk1MY0mRM9mZs7MfP4qTnZl3FkwAbAUKRSQf/056JXBrMBsXkcnAcVU9LSKZwFXAD1S1QURaReQy/CeBbwfuO69PYIwZUZ09fVQePeWf7CzgatmT/SY7K85J49o52Wevlp0+IYV469WHtUEDQFV7RWQ1sAH/MNCHVXW3iNwLlKvqOhFZgH+4ZybwPhH5hqrOBWYD3xcRBQT4nqq+4Wz6M7w1DPSP2AlgY1x3sr2b7YdOUnGkzendt3IgYLKzMQkeZuWkseyCnLPTFxfnpJOREp6TnZl3JpE09L6kpETLy8vdLsOYqNPV28cjL9Zy3/OVZ6dGmDJ+zNne/Gznatmp41Ncn8LYDJ2IbFPVkv7tdiWwMTFMVfnr3ka+9dweDh7v4NrZE1m1aAazc9NIS7ZefbSzADAmRlUebePeZ/fwQuUxCrJTeeyfF7J4ltftsswosgAwJsa0dPTwg7/u54lXDjI20cPX3zeHf7psmg3DjEEWAMbEiD6f8svXDvH9P++j5XQPtyycyheum8WEVLvYKlZZABgTA16uPs43/rCbiiNtXJo/nq+/by5zJqW7XZZxmQWAMVHs8IkOvv3Hvax/4wh548bwwEcv5oYLcmzSNANYABgTlTq6e/nppmrWbqkhToR/vW4Wn1g0w6ZGNm9jAWBMFFFV1r3+Jt9eX8GR1k5WzJ/EPTcUk5sxxu3STBiyADAmSrxR18K//2E32w6e5MK8DNbcehEl08e7XZYJYxYAxkS4xrZOvrdhH7/eVseEsYn8vw/N46ZLJhNnV+yaQVgAGBOhunt9PPrSAX78fBVdvX184uoZ3L20wK7gNUGzADAmwqgqGysa+dZzezlwrJ1rirP5yntnM8Ob6nZpJsJYABgTQaoa27j32b1s2d/ETO9YHv3YAkqLst0uy0QoCwBjIkDL6R5+9NdKHn+5ljGJHr66fA63X27TN5jhsQAwJoz1+ZSnth7i+3/ez8mOblYumMoX323TN5jQCKr7ICLLRGSfiFSJyD0DvL5IRLaLSK+I3BTQPl9EXhaR3SKyU0Q+EvDaoyJyQER2OD/zQ/KJjIkSr9QcZ/l9f+Mrv91FQXYqz959Fd/+4IW28zchM+g3ABHxAPcD1wF1wFYRWaeqewIWOwTcCXyx3+odwO2qWuncFH6biGxQ1Wbn9X9T1SHdJN6YaFd3soNvr6/guTcayBs3hvtvvZj3XGjTN5jQC+YQ0EKgSlVrAETkKWAFcDYAVLXWec0XuKKq7g94/KaINAJeoHm4hRsTbTq6e/np5hrWbq5GBD5/7SxWLZrBmESbvsGMjGACIA84HPC8Drh0qG8kIguBRKA6oPk/RORrwPPAParaNcB6q4BVAFOnTh3q2xoT9s5M3/CdP1bQ0NLJje/yT98waZxN32BG1qicBBaRXOAJ4A5VPfMt4cvAEfyh8CDwJeDe/uuq6oPO65SUlETODYyNCcKu+hb+fd1uyg+eZO6kdH58y0UssOkbzCgJJgDqgSkBzyc7bUERkXTgOeArqvrKmXZVbXAedonII/zj+QNjotaxU118b8M+flV+mAljE/nuhy7kpkum2A3XzagKJgC2AoUiko9/x78SuDWYjYtIIvBb4PH+J3tFJFdVG8R/Zuv9wK6hFG5MJOru9fHYS7X8+PlKTvf08fGr8rn7mkLSbfoG44JBA0BVe0VkNbAB8AAPq+puEbkXKFfVdSKyAP+OPhN4n4h8Q1XnAh8GFgETROROZ5N3quoO4Bci4gUE2AF8KrQfzZjwUlbRyDef3UPNsXaWFHn5P8vnMNOmbzAuEtXIOaxeUlKi5eXlbpdhzJBUNZ7iW8/tYdO+JmZkjeWry+ewpNimbzCjR0S2qWpJ/3a7EtiYEdJyuof7nq/k0ZdqGZPg4f+8dza3Xz6dxHibvsGEBwsAY0Ksz6c8XX6Y723Yx4mOblYumMK/vruILLuC14QZCwBjQui1Ayf4xh92s/vNVhZMz+Sx9y3kgrwMt8syZkAWAMaEQH3zab69fi/P7mxgUkYy991yEcvn5dr0DSasWQAYMwynu/tYu6Wan26uRhU+d00hn1o806ZvMBHBAsCY86CqPLuzgW+v38ubLZ0sn5fLl98zmzybvsFEEAsAY4ZoV30L9/5hD6/VnmBObjo/XHkRC/Nt+gYTeSwAjAnSsVNdfP/P+3hq62EyUxL59gcv5MMlNn2DiVwWAMYMorvXx+Mv1/Kjv/qnb/jnK/P5l2sKyRhj0zeYyGYBYMw7KNvnTN/Q1M7iWV6+unwOBdk2fYOJDhYAxgygpukU33x2D2XO9A2P3LnApm8wUccCwJgArZ3+6RseebGW5AQPX3nPbO64wqZvMNHJAsAY/NM3PLPtMP+5YR/H27v58CVT+OL1RXjTbPoGE70sAEzM21rrn75hV30rJdMyeeTOhVw42aZvMNHPAsDEtN9sr+MLT79ObkYyP1o5nxvfNcmmbzAxwwLAxKyePh//9Zf9zJucwVOrLiMl0f4cTGwJ6syWiCwTkX0iUiUi9wzw+iIR2S4ivSJyU0D7fBF5WUR2i8hOEflIwGv5IvKqs81fObePNGbU/H7Hm9SdPM3nrim0nb+JSYMGgIh4gPuBG4A5wC0iMqffYoeAO4En+7V3ALc7t4dcBvxQRMY5r30X+IGqFgAngbvO8zMYM2R9PuWBsipm56az1IZ3mhgVzDeAhUCVqtaoajfwFLAicAFVrVXVnYCvX/t+Va10Hr8JNAJe50bwS4EzN4p/DP+N4Y0ZFc+90UDNsXbuXlpgx/xNzAomAPKAwwHP65y2IRGRhUAiUA1MAJpVtXewbYrIKhEpF5Hypqamob6tMf/A51Pu31hFQXYqy+bmuF2OMa4ZlatbRCQXeAL4mKr6Bls+kKo+qKolqlri9XpHpkATU/6y9yj7jraxekkBcTaRm4lhwQRAPTAl4Plkpy0oIpIOPAd8RVVfcZqPA+NE5MyZtyFt05jzparct7GSaRNSWD4v1+1yjHFVMAGwFSh0Ru0kAiuBdcFs3Fn+t8DjqnrmeD+qqkAZcGbE0B3A74dSuDHnY9P+JnbVt/KZ0pnEe2x6BxPbBv0LcI7TrwY2AHuBp1V1t4jcKyI3AojIAhGpA24G1orIbmf1DwOLgDtFZIfzM9957UvAF0SkCv85gYdC+cGM6U9Vue/5SvLGjeEDF012uxxjXBfU4GdVXQ+s79f2tYDHW/Efxum/3s+Bn59jmzX4RxgZMyperj7O9kPNfHPFXJvczRhG6SSwMeHgvo1VZKclcXPJlMEXNiYGWACYmFBee4KXa46zatEMkhM8bpdjTFiwADAxYU1ZFePHJnLrpVPdLsWYsGEBYKLezrpmNu1r4q6r8m3OH2MCWACYqLdmYxXpyfHcfvk0t0sxJqxYAJioVnGklT/vOcrHrswnLTnB7XKMCSsWACaqrdlYxdhEDx+7crrbpRgTdiwATNSqbjrFc280cNvl0xmXYrebMKY/CwATtR4oqyYpPo6PX53vdinGhCULABOVDp/o4Hc76rl14TSyUpPcLseYsBQzAeCff87Eigc2VeMRYdWiGW6XYkzYiokA+NIzO/nkE9vcLsOMkoaW0zyz7TA3l0wmJyPZ7XKMCVsxEQBjEj1s3t9EZ0+f26WYUbB2cw2q8KnFM90uxZiwFhMBsKQ4m65eHy/XHHe7FDPCmtq6+OVrh/jARXlMGZ/idjnGhLWYCIBL88eTnBDH5n12T+Fo97MXaujp8/HpUuv9GzOYmAiA5AQPl8+YwKZ9jW6XYkbQyfZunnjlIMvnTWKGN9XtcowJe0EFgIgsE5F9IlIlIvcM8PoiEdkuIr0iclO/1/4kIs0i8my/9kdF5MAAdwobEUuKs6k93sGBY+0j+TbGRY+8eICO7j5WLy1wuxRjIsKgASAiHuB+4AZgDnCLiMzpt9gh4E7gyQE28Z/AbefY/L+p6nznZ0ewRZ+P0lnZAPYtIEq1dvbwyEu1LJubw6yJaW6XY0xECOYbwEKgSlVrVLUbeApYEbiAqtaq6k7A139lVX0eaAtFscMxdUIKM7xjKbPzAFHp8Zdqaevstd6/MUMQTADkAYcDntc5baHwHyKyU0R+ICIDXq4pIqtEpFxEypuahrfzLp2VzSs1xzndbcNBo0l7Vy8P/e0AS4q8XJCX4XY5xkQMN08CfxkoBhYA44EvDbSQqj6oqiWqWuL1eof1hqVFXrp7fbxiw0GjypOvHuJkRw+rlxa6XYoxESWYAKgHAu+iPdlpGxZVbVC/LuAR/IeaRtTC/PGMSfBQZucBokZnTx9rt9RwZcEELpmW6XY5xkSUYAJgK1AoIvkikgisBNYN941FJNf5V4D3A7uGu83BJCd4uGLmBDbta7K5gaLEr7Ye5tipLlYvsd6/MUM1aACoai+wGtgA7AWeVtXdInKviNwIICILRKQOuBlYKyK7z6wvIi8AvwauEZE6EbneeekXIvIG8AaQBXwrlB/sXEqLvBw6YcNBo0F3r4+fbq5mwfRMLpsx3u1yjIk4Qd0hW1XXA+v7tX0t4PFW/IeGBlr36nO0Lw2+zNApLcoGdlO2r8kuFopwv9leR0NLJ9/50Dz8XySNMUMRE1cCB5oyPoWZ3rF2PUCE6+3z8cCmauZNzmBRYZbb5RgTkWIuAMD/LeDVAyfo6O51uxRznta9/iaHTnSwekmB9f6NOU8xGQBLirLp7vXxcrUNB41EfT7l/rIqinPSuHb2RLfLMSZixWQALMjPJCXRwya7Kjgi/XFXA9VN7axeWkBcnPX+jTlfMRkASfH+4aBl+xptOGiE8fmUNRurmOEdyw0X5LpdjjERLSYDAPznAepOnqa6yYaDRpLnKxqpONLGZ0sL8Fjv35hhieEA8E8rYaOBIoeqsmZjJVPGj2HF/Elul2NMxIvZAJicmUJBdiqb99t5gEixpfIYr9e18JnSAuI9Mftf15iQiem/oiVFXl6tOUF7lw0HDXeqyn3PV5KbkcwHLw7VZLTGxLaYDoDSomy6+2w4aCR49cAJyg+e5FOLZ5IU73G7HGOiQkwHQMn0TMYmeti0384DhLs1G6vISk3iIwumDL6wMSYoMR0ASfEerijIoqzCZgcNZ9sPneRvVcdYtSif5ATr/RsTKjEdAOAfDVTffJrqplNul2LOYc3GKjJTEvjopdPcLsWYqGIBUOS/WXxZhY0GCke76lvYWNHIXVflMzYpqMlrjTFBivkAyBs3hlkTU+08QJhas7GKtOR4br9iutulGBN1Yj4AwP8t4LUDNhw03Ow/2safdh/hziumk56c4HY5xkSdoAJARJaJyD4RqRKRewZ4fZGIbBeRXhG5qd9rfxKRZhF5tl97voi86mzzV87tJl1RWuSlp095seqYWyWYAdxfVkVKooePXZnvdinGRKVBA0BEPMD9wA3AHOAWEZnTb7FDwJ3AkwNs4j+B2wZo/y7wA1UtAE4CdwVfdmiVTBvvDAe18wDh4sCxdv7w+pvcdtk0xo91rW9gTFQL5hvAQqBKVWtUtRt4ClgRuICq1qrqTsDXf2VVfR5oC2xzbgS/FHjGaXoM/43hXZEYH8eVBVlstpvFh40HyqpI8MRx19XW+zdmpAQTAHnA4YDndU7bcEwAmp0bzr/jNkVklYiUi0h5U9PI9dCXFGdT33yaykYbDuq2wyc6+O3f67ll4VSy05LdLseYqBX2J4FV9UFVLVHVEq/XO2LvY7ODho+1W6oRgU8unuF2KcZEtWACoB4IvP5+stM2HMeBcSJyZmB3KLY5LLkZYyiamGZ3CXPZ0dZOnt5ax02XTCE3Y4zb5RgT1YIJgK1AoTNqJxFYCawbzpuq/0B7GXBmxNAdwO+Hs81QKC32srX2BKdsOKhr1m6uoU+VTy+e6XYpxkS9QQPAOU6/GtgA7AWeVtXdInKviNwIICILRKQOuBlYKyK7z6wvIi8AvwauEZE6EbneeelLwBdEpAr/OYGHQvnBzkfprGwbDuqiY6e6ePK1g6yYP4mpE1LcLseYqBfUtfWquh5Y36/tawGPt+I/jDPQulefo70G/wijsFEyPZPUpHg27Wvi+rk5bpcTcx762wG6en18dkmB26UYExPC/iTwaErwxHFVQRab7Gbxo665o5vHX6rlvRfmMtOb6nY5xsQEC4B+Sou8NLR0sv+oDQcdTY+8WEt7d5/1/o0ZRRYA/Sy24aCjrq2zh0dePMB1cyYyOzfd7XKMiRkWAP3kZoyhOCeNMguAUfPEKwdp7ezl7qXW+zdmNFkADKC0KJvy2pO0dfa4XUrU6+ju5WcvHGDxLC/zJo9zuxxjYooFwACWFHnp9SkvVtnN4kfak68e4kR7t/X+jXGBBcAALp6WSVpSvJ0HGGGdPX08uKWGy2dMoGT6eLfLMSbmWAAMIMETx1WFWWyy2UFH1K/LD9PY1mW9f2NcYgFwDkuKsjnS2knFkbbBFzZD1t3r46eba7h46jgunznB7XKMiUkWAOfw1nBQmxxuJPzu7/XUN5/m7qWF+G8PYYwZbRYA5zAxPZnZuel2HmAE9Pb5eGBTFRfkpZ+dhtsYM/osAN7BkiIv5QdP0mrDQUPq2Z0N1B7vYPUS6/0b4yYLgHdQWpRNn095sdJmBw0Vn09ZU1bFrImpvHvORLfLMSamWQC8g4unjiMtOd7OA4TQht1HqGo8xWeXFBAXZ71/Y9xkAfAO4j1xLCr0smm/zQ4aCqrKfRuryM8ay/J5k9wux5iYF1QAiMgyEdknIlUics8Ary8Ske0i0isiN/V77Q4RqXR+7gho3+Rsc4fzkz38jxN6i4u8HG3tYm+DDQcdro0VjexpaOUzpTPxWO/fGNcNGgAi4gHuB24A5gC3iMicfosdAu4Enuy37njg68Cl+G/+8nURyQxY5KOqOt/5CcvhNqWznOGg+8OyvIhxpvc/OXMM778oz+1yjDEE9w1gIVClqjWq2g08BawIXEBVa1V1J+Drt+71wF9U9YSqngT+AiwLQd2jJjs9mbmT0tlUYecBhuPFquPsONzMp0tnkuCxI4/GhINg/hLzgMMBz+uctmAMtu4jzuGfr0oYjwcsLfKy7dBJWk7bcNDz9eONlUxMT+KmSwa8c6gxxgVudsU+qqoXAlc7P7cNtJCIrBKRchEpb2pypxd+djio3Sz+vLxac5zXDpzgk4tmkhTvcbscY4wjmACoB6YEPJ/stAXjnOuq6pl/2/CfOxjwBvGq+qCqlqhqidfrzlWjF00ZR3pyPGUVdh7gfKwpqyIrNZFbFk51uxRjTIBgAmArUCgi+SKSCKwE1gW5/Q3Au0Uk0zn5+25gg4jEi0gWgIgkAMuBXUMvf3TEe+K4epaXzfttdtCh2nG4mRcqj/Hxq2cwJtF6/8aEk0EDQFV7gdX4d+Z7gadVdbeI3CsiNwKIyAIRqQNuBtaKyG5n3RPAN/GHyFbgXqctCX8Q7AR24P9W8N+h/nChtKQom8a2LvY0tLpdSkRZs7GSjDEJ/NNl09wuxRjTT3wwC6nqemB9v7avBTzeiv/wzkDrPgw83K+tHbhkqMW6afGst2YHnTspw+VqIsPuN1v4695GPn/tLFKTgvqvZowZRTYeL0jetCQuyLPZQYfigbJqUpPiufOK6W6XYowZgAXAECwpymb7oWZaOmw46GCqGttYv6uBO66YRkZKgtvlGGMGYAEwBKVFXvp8ygtVdlHYYO4vqyY53sM/X5nvdinGmHOwABiC+VMyyRiTYLODDuLg8XZ+v6Oej146lQmpSW6XY4w5BwuAIfDECYuc4aA+nw0HPZefbKom3hPHqkUz3C7FGPMOLACGqHSWlyYbDnpO9c2n+Z/tdaxcMIXs9GS3yzHGvAMLgCFadHY4qI0GGsjazdWowicXz3S7FGPMICwAhsiblsS8yRmU2XmAf9DY2slTWw/zoYsnkzdujNvlGGMGYQFwHkpnefn7oZM0d3S7XUpY+e8Xaujt8/GZJdb7NyYSWACch8VF2fgUXrCbxZ91/FQXP3/lECvm5zFtwli3yzHGBMEC4DzMnzKOcSkJlNl5gLMefvEAnb19fKbUev/GRAoLgPPgiRMWFXrZYsNBAWjp6OGxlw5ywwU5FE5Mc7scY0yQLADOU2mRl2Onutn9pg0HfezlWk519bJ6SaHbpRhjhsAC4DwtmuVFhJg/DHSqq5eHXzzAtbOzmTMp3e1yjDFDYAFwnrJSk5iXlxHz1wP8/JWDNHf0sHqp9f6NiTQWAMNQWpTNjsPNnGyPzeGgp7v7+NkLNVxdmMX8KePcLscYM0RBBYCILBORfSJSJSL3DPD6IhHZLiK9InJTv9fuEJFK5+eOgPZLROQNZ5s/FhEZ/scZXaVFXnwKWypj86KwX752iGOnurnbev/GRKRBA0BEPMD9wA3AHOAWEZnTb7FDwJ34b+4euO544OvApfhv+v51597AAD8BPgEUOj/LzvtTuGTe5HFkpiSwOQavCu7q7WPtlmoW5o9nYf54t8sxxpyHYL4BLASqVLVGVbuBp4AVgQuoaq2q7gR8/da9HviLqp5Q1ZPAX4BlIpILpKvqK+q/y/rjwPuH+VlGnSdOWByjs4M+s62Oo61d3L20wO1SjDHnKZgAyAMOBzyvc9qCca5185zHg25TRFaJSLmIlDc1hV9Pu7Qom+Pt3bxR3+J2KaOmp8/HTzZVM3/KOK4qyHK7HGPMeQr7k8Cq+qCqlqhqidfrdbucf3BmOGgs3STmd3+vp+7kae5eWkAEnroxxjiCCYB6YErA88lOWzDOtW698/h8thlWxo9N5F2Tx7Fpf2wMB+3zKQ9sqmZ2bjpLi7PdLscYMwzBBMBWoFBE8kUkEVgJrAty+xuAd4tIpnPy993ABlVtAFpF5DJn9M/twO/Po/6wUFrkZcfhZk7EwHDQ595o4MCxduv9GxMFBg0AVe0FVuPfme8FnlbV3SJyr4jcCCAiC0SkDrgZWCsiu511TwDfxB8iW4F7nTaAzwA/A6qAauCPIf1ko6i0KBtVeCHKh4P6fMqajZUUZKeybG6O2+UYY4YpPpiFVHU9sL5f29cCHm/l7Yd0Apd7GHh4gPZy4IKhFBuu5uVlMGFsIpv2NbFifrDnxyPPn/ccZf/RU/zwI/OJi7PevzGRLuxPAkeCuBi4WbyqsqaskmkTUlg+L9ftcowxIWABECKlRV5OtHezM0qHg27a38Su+lY+W1pAvMf+2xgTDewvOUQWFTqzg1ZE32ggVeW+5yvJGzeG918UvYe4jIk1FgAhkjk2kflTxrFpf/SdCH65+jjbDzXzqcUzSIy3/zLGRAv7aw6h0lnZ7Kxr5vipLrdLCan7NlaRnZbEzSVTBl/YGBMxLABCaEmxF42y2UHLa0/wcs1xVi2aQXKCx+1yjDEhZAEQQhdMyiArNTGqpoW4b2MV48cmcuulU90uxRgTYhYAIXRmOOiW/U30RcFw0J11zWze38RdV+WTkhjUJSPGmAhiARBipUXZnOzo4fW6ZrdLGbY1G6tIT47n9sunuV2KMWYEWACE2KLCLOKiYHbQvQ2t/HnPUT52ZT5pyQlul2OMGQEWACE2LiWRi6ZmsjnCbxZ/f1kVYxM9fOzK6W6XYowZIRYAI6B0lpfX61o4FqHDQaubTvHcGw3cdvl0xqUkul2OMWaEWACMgNIi/zz5WyL0orAHyqpJio/j41fnu12KMWYEWQCMgLmT0slKTYrI8wCHjnfwux313LpwGlmpSW6XY4wZQRYAIyDOuVn8lsrIGw76k83VeERYtWiG26UYY0aYBcAIKS3y0tzRw47DzW6XErSGltM8s+0wN5dMJicj2e1yjDEjLKgAEJFlIrJPRKpE5J4BXk8SkV85r78qItOd9kQReURE3hCR10WkNGCdTc42dzg/UXWD2UWFXuKEiBoNtHZzDarwqcUz3S7FGDMKBg0AEfEA9wM3AHOAW0RkTr/F7gJOqmoB8APgu077JwBU9ULgOuD7IhL4nh9V1fnOT+TsKYOQkZLAxVMzKYuQ8wCNbZ388rVDfOCiPKaMT3G7HGPMKAjmG8BCoEpVa1S1G3gKWNFvmRXAY87jZ4BrnJu9zwE2Ajg7+GagJAR1R4TSIi9v1LfQ1Bb+w0EfeuEAPX0+Pl1qvX9jYkUwAZAHHA54Xue0DbiMcxP5FmAC8Dpwo4jEi0g+cAkQOKfwI87hn686gfEPRGSViJSLSHlTU2T0ps+IlOGgJ9u7eeKVgyyfN4kZ3lS3yzHGjJKRPgn8MP7AKAd+CLwE9DmvfdQ5NHS183PbQBtQ1QdVtURVS7xe7wiXG1pzJ6XjTUuiLMzPAzz84gE6uvtYvbTA7VKMMaMomACo5+299slO24DLiEg8kAEcV9VeVf28c4x/BTAO2A+gqvXOv23Ak/gPNUUVEf9w0Bcqj9Hb53O7nAG1nO7h0RdrWTY3h1kT09wuxxgzioIJgK1AoYjki0gisBJY12+ZdcAdzuObgI2qqiKSIiJjAUTkOqBXVfc4h4SynPYEYDmwKwSfJ+wsKcqm5XT4Dgd94uVa2rp6rfdvTAwadJJ3Ve0VkdXABsADPKyqu0XkXqBcVdcBDwFPiEgVcAJ/SABkAxtExIf/W8KZwzxJTnuCs82/Av8dws8VNq4qzMITJ2za10TJ9PFul/M27V29PPS3AywtzuaCvAy3yzHGjLKg7vKhquuB9f3avhbwuBO4eYD1aoGiAdrb8Z8QjnoZYxK4ZGomm/Y38sXr/+FX4apfvHqQkx09fHaJ9f6NiUV2JfAoWFzkZVd9K41tnW6XclZnTx8PbjnAlQUTuGRaptvlGGNcYAEwCkqL/KOXNofRRWG/2nqYY6e6WL2k0O1SjDEusQAYBXNy08lOS2JTmFwP0N3r46ebq1kwPZPLZoTXeQljzOixABgFIkJpkZcX9jeFxXDQ/9leR0NLJ6uXFnKO6++MMTEgqJPAZvhKi7J5uryOvx9uZsEAo4FUle4+Hz19Snevj54+H929PqfNR0+v0t3XR3evs9yZZZzl/Ov1+f892xbwb8B2X6o+zrzJGSwqzHLhN2GMCRcWAKPkzHDQTz2xjeQEz9kd+5mdck9f6O8bkOAREjxxJHjiSIyPI9H5Nys1kXtuKLbevzExzgJglKQnJ/DlG4p5va7F2RH7d86JnjgSAnbOCR4ZoO2t5RI8QlL8Wzv1M68lvq1NSIiLIy7OdvDGmHOzABhFH7/a7rJljAkfdhLYGGNilAWAMcbEKAsAY4yJURYAxhgToywAjDEmRlkAGGNMjLIAMMaYGGUBYIwxMUpUQz8FwUgRkSbgoNt1DFMWcMztIsKE/S7ezn4fb2e/j7cM93cxTVW9/RsjKgCigYiUq2qJ23WEA/tdvJ39Pt7Ofh9vGanfhR0CMsaYGGUBYIwxMcoCYPQ96HYBYcR+F29nv4+3s9/HW0bkd2HnAIwxJkbZNwBjjIlRFgDGGBOjLABGgYhMEZEyEdkjIrtF5HNu1xQORMQjIn8XkWfdrsVtIjJORJ4RkQoR2Ssil7tdk1tE5PPO38kuEfmliCS7XdNoEpGHRaRRRHYFtI0Xkb+ISKXzb2Yo3ssCYHT0Av+qqnOAy4DPisgcl2sKB58D9rpdRJj4EfAnVS0G3kWM/l5EJA/4F6BEVS8APMBKd6sadY8Cy/q13QM8r6qFwPPO82GzABgFqtqgqtudx234/7jz3K3KXSIyGXgv8DO3a3GbiGQAi4CHAFS1W1WbXS3KXfHAGBGJB1KAN12uZ1Sp6hbgRL/mFcBjzuPHgPeH4r0sAEaZiEwHLgJedbkUt/0Q+N+Az+U6wkE+0AQ84hwS+5mIjHW7KDeoaj3wPeAQ0AC0qOqf3a0qLExU1Qbn8RFgYig2agEwikQkFfgf4H+paqvb9bhFRJYDjaq6ze1awkQ8cDHwE1W9CGgnRF/xI41zbHsF/lCcBIwVkX9yt6rwov6x+yEZv28BMEpEJAH/zv8Xqvobt+tx2ZXAjSJSCzwFLBWRn7tbkqvqgDpVPfOt8Bn8gRCLrgUOqGqTqvYAvwGucLmmcHBURHIBnH8bQ7FRC4BRICKC//juXlX9L7frcZuqfllVJ6vqdPwn+Daqasz28lT1CHBYRIqcpmuAPS6W5KZDwGUikuL83VxDjJ4Q72cdcIfz+A7g96HYqAXA6LgSuA1/T3eH8/Met4syYeVu4BcishOYD/xfd8txh/Mt6BlgO/AG/n1UTE0JISK/BF4GikSkTkTuAr4DXCcilfi/JX0nJO9lU0EYY0xssm8AxhgToywAjDEmRlkAGGNMjLIAMMaYGGUBYIwxMcoCwBhjYpQFgDHGxKj/D/ptHBN21A2sAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.lineplot(x=k_neighbors, y=mse_scores);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "0b50edb9-c977-4a4f-bf6b-0632b02c1b44", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "34d20f55-08a6-4d32-8f95-7dffd57aff88", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "1afec2d3-03a8-4fb6-84f1-d173368082dd", - "metadata": {}, - "source": [ - "## Classification" - ] - }, - { - "cell_type": "markdown", - "id": "5cfb2153-8612-40d5-a954-540fdccf1e78", - "metadata": {}, - "source": [ - "#### Pikachu vs not Pikachu" - ] - }, - { - "cell_type": "markdown", - "id": "d4c61d53-f76c-4c2e-b962-a4b4ed96efd8", - "metadata": {}, - "source": [ - "[data](https://www.kaggle.com/datasets/hal0samuel/pikachu-classification-dataset)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "id": "86eac829-5455-4507-b7ed-00641a829d8a", - "metadata": {}, - "outputs": [], - "source": [ - "PIKA_FOLDER = \"pikachu_dataset\"" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "id": "54a45d9b-04d9-4699-ba08-bf6fce5f4ec7", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVsAAAI8CAIAAADQtJ/FAAEAAElEQVR4nGT925JsSXIdCC69mG33iDiXzCqgUEWyAYLkQIbNbjYfpqc5Mk/8tfmXkfmKERkZkW4h2WQTaAxI1BUgCqiqRFVW5jkR7r7N9DIPatsjgHZJSYkT54TH9r3N1FSXrrWU/p//r/9HBmVyhhA6oRFOBCUSsyDItm3aOCLcZ6bf9hcRYlYianpqrRGJmY0xzuczUV5vlzknUWb6mLeHx8bMhB7OboxU4ZNIm3NuW9NG016eX74d85k5e+9te2BWICIi0jMTbu7em0REpotIV2HmCHPPYeSW7hERTL211vtJVZ+fnwFsWyPOOWfv2nu7jWETARYRVZ1z3m43IqrP6O5EpKruc993AJtuyl2hRDTnHPPm7swkIpGW6b331mSM8fnzZw9r26m1rfVT793d932fcxKRiLTWAGRmREREfZOZhfv9m5EOoL7/8vIZABBExMwiUt/ftsfr9eVyuUQOESGKMcY+rk9PT+4eziLS21lVAY0Iv/r1etXGHz58UJVPnz69XD4D0XvXRqpKlGYjIgCwwHInTuFNtRM0Q8zSJphFuLW2MTPAZubuETHGTVVbEwDTdjOLcABz7hHRN314eFDlMYaZASC0zATAzKJERJmemWYzM+vDesw5Z4SJtPQOoLXWNwXC3UV427YxxpxzTosIZhWReuf356fMdDd3r99Y983d55yttdaamc05f/vb3/7yl3/526//Kvyac4ZPSTSgswixMgMIaAKAGNI9PcJjjt0ySbh7yuWyf/p83W9zRiQhwoftRKmNIBwRP/jBH9rMfXebIdSYEfN2vX3blB4e2/un0+nUG5/M4tO3L99+fnYSEKn2Mcblctu27fHhnbubDzNzn6p8fji1JnPut+sLW5hNN/C2vXv60M+PY9i3zzf3+PR8UdLT6WRmIvLu6eG86eNJbpfP17EzszR19+eXy+VyCQIRJVjdkoiZlLQhG1IzEBGqXYSYVESIkJn1wFprIkQkEVFbiGgtaHdnRj1vEQEo0ZiZiDKyvg+AiIio9w6kmblna43lBDgRmRkziAhIJBEBJMwJMFEyN2YAFBGZVL+IAKJwTwIDuF9YLTsiAuZ912VSkmeyx4wIUBApcf2tEYn7rB1bqzMzI6OunJmB2tf1GRsz19uKCNVfAhEx54yI+0eu337/ur6/vqBE/StKJDLT3SNMRIjqU6/X8RHWKk+v72Rm1nWqdFKpD+7uRMzM0Oi9s6xrO51OLMj0TBfligjMWDcHnpHpCJ8REAaBMpEJIqrPpaqqK8BFhKqKSH19f/TMLLIeZUSYRX18ImIGUnA8QyIigohkRn0QZianiGBm4QZuRNK7ti6ZHhG1z2+3W0QAJCKqTbgBHBG3242ZicDMqlqLtu7J2/t/fwT1f3e36R7uEQZiUBPJzKSWABE7cSZFZsIjAmAREe7u2EZkUMxJwhEc8AgjIhapC3j9jVQLG/cHd9wTFiFVba0RKPL1nx0/GLUqIsI93afq8XkYRESSIiRNWxMLiJJZRkSwEWdrrTfpvYuQx6xfGhExZ4X12m611PW4YyLckC2TPdbSFm6qqqoJXxGBs7WmyplUUT8zRV4/QJ3VdQASMSiIaie8CQecRKmq0/Y5BihUtdGDx3B386zVwEwAIYOImTUDLFrBIiPrOAWgqkEgCmYg+f6A76Hnvp3qlCBIAh6ITI8EggVEaTYjDPCItYFrmyHTPeusrgcc4e4OgqoSwcwjorUGUj92Tl1AZkotrDcRoXbOfaVmZuI1LmR6RGZ6a20tZYpjDTmCxxhr5yTf042mWwaRriu06REhQiLCRK0LADMjQmtNG7vPMW61TZhZpNVOM3ciMRvuxpS9MxNnciYiws0Bz0xmZWYgjshFFazc/b6rt+085/SYtSrefl7mZOaI9ZgqoIjo/WcB0uiZKaKExqy9qzZ2X7e3kq9KnVprqo0gdYNvt8pZmoiI0D0orxdFwu//AamqSAmiejTwzDBKZIU5ZEWEFCUSHMGlVri07g7mvVZXUxERsjquWFV778yMY/vUJdQ6HPsUjYeTnk59bb/Weu/pkeEVsiPMnSOt1k9mZnpkvX/Wx7c5LTw8+Yi59ZpzzP0axKfeWtuUIZQZ7nBQEJG7h4Vn1DE/91tmekCZGpMSGiBEihRhTqIMYqE6YyPSfUYYMYvUM2MAHgagcjZmptf7X7kucXLFSyISISYmKFZJcGTKcOKsoA5QgDIog0gYgHtQgIUzgiDMtbctYmWeLMIMIo2Iigh1ba8hFJmZ7sj0OUdrvbZ5PSRmYg6ijLBEZIRHhCcxAHWfQhzuQIhI0w6KOdPdazXXAwawbRsxhjlI3Nf+r9vytlJ4uziPSGEVHzKdCJUK1P5hAREqHVvX5dO9tg0kW8QOQKSpcu3GiMi81ya7uyprJcBmMzP6phE253R3RF2nqPI9pouIO0UkKCKikovah7XeKlMgosrzK3S+/WT1uSoU0joJqf4IYM7RWmWOcg+deM2/ADARiBRIIqlnGgGbEbmSxsyozVYxAcmRUbf97ZlcV/WaI1Bk8pvdlZnZe0fuqQ0V6cI5Mt2aCJIdlEAmglKEiDXhqiASVSWuJepjjDEG61qfZkbMZ+Zt26qyu+/nTDkiwnPrGKPP2Rs7kVRSc7Oru9ePRJi7RFhtLhECcYRluigBFK63q+22z+mdchtX2XoggZi27+PCkPPehRCMue/IeepETCJSa4CItt5BtO/7zIhIVXkACOAMqdjHooRmZgDfz7cjyNUXVGc+ERFDhJihypVCH+k2A1FHI3MFFyFpmeSWHjNGJIKZI8mmsSQLVDqIzZyImASApWXUOuBMhFNEhGdEpcq1ziri1OphIgYwp9UyqOu/pwmtJXE9ogDALCwESm0CUCaZjUwQJTEqOXJU2oxkImYEp5N7WgQTgkDM3JSZG1kk3bf0PSLUEf13VidwT+8jLJMq/RElOEC1fEHExxMw93B3z2xtq7tdN7pq40r/3I8PxbzSSxZI7Qd25G0M8zHGECFkMkBJBAFRMmUdfSKtCbLQIibiZCJiaY1ZM9N9LaY63itCVTrj7vX56h/Ux69PXft/zsFMrSkzMZN7VUnR2raOk0QEwpEJAlel4O5AEGed6hFcuQmOOnGFUGHZ6H5jgTzSVSK+V2rr+K1TwT0jcI/gTYUj01XW6iaPqBwnIpidmUXArKpa58Y946vjqX41+8qAKvmac3ejJo1lrYq6aXzEFCJ4zEyPNHcDEBnHrZ5EygwWIcecfmR2nKnSmAw+bK4zO0WpNWmNRCg9Mh3pBMsghEWoCjeBMYJZVftpI+Hr9cpuZFOZG5IzCSkgJSizMsk9ea4LrR2yNlhaRqV/rKr3pcnMoKwPSVSZ5mvxTEyVggahEARRUlUPN5sRqKVIIoADUJX7sU/EwgyKqkoQqItkYuA4npKJhIiY5e1izSSCEK00hChBlSTasVoywlRFpGUmM9z9gD8Yca+JKDMpmYhFxF1rIR6J7jroMrhW4H0tHqfoipQ4ytf6wcIFMj0yVfT4NxnhR+x4Dcf3UFLvIyIRVPtfRM2s4o5KI6IIuLuQHAuIImLa8JXydCIQZ13hmwuO1jZVygCRFI7AzL1vKl2kmdntdqv3rCJFVRd+RKsirbOhPmBm0rEq3A0UiRmpTMwCdq7jJiIyCAkSyqRc6V7d+YqbLkKtCzMR2WtKElQxR0RFJMlwYEmZC5etcABEJiL4bY4w5xzD5jCEM0MPRONe5dZBMsOJgkO2bbsve8/XUNKJWmvMdN/kBbczjzHG7XYDOPMsIr333rvKw+l0qnQp4eFrVRBVtijMIF4fhIVYSKQwHY80IJnBgn5q0wdPIiVurF0kZM55ftjOLz3Nm0IohLJJ3Y6spyYiktR737aNiB4fH/uc17FrhhAxkxALUyNaAUK1mc2IoFhrhZFESZyZuCft90V/f0K1+kWkCuLWFrji7hBnqjjKQKgqM7E0ZiSsAEuV7jYBqGxBwWzIEJamYjYyMgLKygyRRpRgflOj4b5nVLUuppY7MxV4Q5wka3UQkhlEWZhoRfn7MyYiN1AIEVeQusNjVb7WZm5NicgsAFsB6H4uvUmm70GTjuLq+I6aj8iV7RPhntpUdVX/njgpU0BMre4bACZNeAZFpDAzqfDrm7emvfe5D3fL5O3UKGgaiOh0OhVgXClIndJABUpWZZGWwe7ptlZqa41oQZKVwRIlECJKVBWqH/Xt2hXMnKgEM+5VSe/KjAgDGGBVre15ZJbKLEipz8ckxEmcZnbf3gBquTETkxBjJQjchCX49RBayCX/ncVRH6H+A1awRnJmrEcc4Waggl3pfuVYnyXrQjNzjHG9XgvUcMDd8yjy12nqXhu+wtNRIr3Wj5UBBYKJVbUntRjTmcARzAz3MJ9ka9VVxkEjzUyEqnq1jKAQzkqYPMxsXxUoIuHmuxl6Y6Zs0puwJ5i5SWpbqX3fWiI0VCOOU08aU8uQBGVma83d3IOTmUmUMwVkr2fy/W4eaFmhfYVdsyDBtTPNzD0SThRUb0fEXD+exCpSqz0JTJACI6uyYlJwiGilDJmOZGJRlbW7mCICSZFxxy/r4MpM5uOEZFHl1mZiEhFxRbqs5VK1MbMyx31HEQmQufBhOhZiIZ1ojfY9gBRuoGoumGoHrQSSXrsDr7jakUDR8StSRCOt/nHmKnTrXH291RRUpTiRSkUE3N8nItwo2er963Ri5m1rvfdx26ftzNyztq4z43Q6rRyEKqetKiBFSKoQ0Z5Z4MrM4Hsh4GZ31BaAmbVWMIfNOc0HAFW590o9Kk+MexrVWjuSdhLZDvyPwgFiZmFSMKq7xFwYRxIEABEIC31Q1WqEAa9ZBlHlC3lPtd4E5ahsq4rKRIASwNZP6ZYtwpmrWfW6AEhUUThaRWB5hajM7HrdX15eXl5ebtcRRElQlYLb77932zbVGxG5F5Zad3Hut0vfaAxVFVYSba0psd58V5v1MUXEfRyRBREUYeaDrLlPd3afl/2677cxJ0vzmHOO25zP1+cYPu2WM8agJGbYJixKImcRga88TkAFJ1HWQksNx7sPj8z6+dPFbD+f3qn2MabZbK1tWyP2Qosj3N1UVYRVubVmFnPulasvJGkdzlH3Zdu26t4f1ZYfMMmRWBPqbev7IhKe9bd1IyKiQG2mjdkAuKcA1IWIzUZ1fTOOM4YFWUuE6gGoyul02vd9DDudzglxeEFKtc7cU6SJiHvOOY+MZhKcSGJOOtpmSQhk7Y8kSFNmsEomiDmDI3O/Xc/nczXn9n2vVnDv/XK5HGVC1G/pvbemhQjeC9Ha0pUs1L6KiDFXW4dJe6+DRSptJ0ozG8MOtsLGTPt+bY2J8na7eJp2iYjPL59UdTufANzGTUTc1iEpqnWuBRDD9n0/bf7u3QckrtdbeD48nG+32+l0+ubzNx8/fjyd+9dff917zyB337bNbJhZ642IiguQidbanNPMio8QEafTxmIJsemr+liQeTufHiNQRSvgzFrPNCJ61977NLn3dFX6u6d3mRlRvR7PoKTMtDSrGFRt0fuJXWSEiGChp9PjN9/sl8uzql53B7i1xl03YYmw2y28KBWza2NmM0tka+oZBVfNOffb9XKdVTtXpDudTmbTzO6rt7V22y/MFGH7PvMpj/wIT09PmWY2e//w7vFdJtlE4+MQnVGJvZlFXB8fH1U1Ij5//qxNeu/7vhd49OWXX3769Mnjk5ldr9emmy0Edz+ft5Q4elVOnA8Pj5Q55wTQhIv4U234FbIptdYuEbWuVWNX4mdmRFmdOeAgC60DeOGvFYPrdVAA4v4m1QcEBBTMAhBql849Ak23KqUp2/1gd3fWdsRXJgrVLpTFKgEgohU7mVSEiLbkjAi3zKSIjFgYR2uNsvrkWcyF2v/hiAMprNybiImIoAVFREYdI0REaGCiIgWg8NRCCmv/5pElyT0vqJ2JA1IaYxBR7ed8ZWpUgUAF1qwjLMIMRHfsXev0JiIm7Z3dPRxjjKZbLe57C6N4WbXUjhLgeFHc2xp1PuEoswtQqNx4VfLIrenp9ATwN998CqdtOyP5druptlpz5uPp6YmIeu9jDErcP/vbQinznmOve7KCGitRqrQIuGdUwoHmnhFJ8KomiIKYmWTaTuQRiKjnU+9s1+uOO8TgdccIYD1u731F5dtOfpiARI6LhJvFnGb7FII0FeHWOhNt2ubcScTc86ASEGiMsfWzqlx8f35+/vTpZR/3djvdb8VqKIyxnR6rxpzT78ydyu2bEDNHmpnVmZRHN6cKEGZubTtyhJPZKFiRzqTa6wx++fT5er26mbZt27aHhwf3gIcQ2Zimw818DjMMH4vMAvi9VFRQUhVYVcGoKFXTWJWR6e5ut0K8iCiRRE7FgiBm0kqE77kYM9eOitVdW/97XY9xrxQ4PN1zDnNPZAE8yswEWWjAyq5xf6giogxVteHMXNXsvTCkQpsTQN6JQwVp1uO517drsWbxTFBofvF/VnlDRcSqH6Ljs0hKlQ8BKpQNgQAgTBmURI4EAaIF24vgLViAN1h0fVGfAkcLFgCTqtDRdr7zQ6pNZSK0bZvq5u5j2BiDSUWilngERLT3ftrOY+71lvesNeEHRQMeniBLI6KgAB13SYWZlWnOSekFT0ZgzklQZkZyZlaf/8PHd0cDJdxt3/feTvTmhTevo0dQlcLaDLdbcZwWFILMiJXwRySBmFfzqP5/jyyZzsws7F77bYGLGRRxrIQDOQLkHpQjzR2qKkJpUclX37Rvut/k3bt3F8Z1us0xcoCJ3MItpo0xkvcE3E1O/XTqYHp+vsw5zfbL5TLGOBbhukgc4FqxBu6Ei77pnK2O7leuijIRjTE4r72ncItqtTrmdGZW7b1l1XR5J9RQvj7fpNttn7c9zaXz1vq2bWa+73OM4/5Upypj2LjNfdNK1WO6IRmLPxiRVI1wzbTbbYpo0w1EY+yZ1HQTkTpeKhIwh0hnwfV6qfP/2JJJlLRgmFWAgaJwmkyatjPVsVlnbBTQYD4iFuZJx4YkJpb2phnrmc4Qs1GrgZkyI809ZkzKTCzW4LqaFbiO7ZeBhEd43cOodn2sKjyJiZlZMrPWfQWz6jMjGbn6SUd8yQIyEl6twXp+WMAH3f+PA4qvHywwpdboHY7F6pAVX61nuplVdAYKOfcDsS9GELdGRYiqJLzuXtNezQUkVdJWCTMzp1V8YSAAvR/XdQ11SdUzv+e6sPnyclXtT4/vAbpeb27UWgN8jHE6nc7n8/V6eXm51o/cQ9498XkbESqhK5R3jBHh0ywiMklEwhGRBbqpFpUr7hls/eEePavloaIiTkSVPREkOSsi1PoIs/vFFFhbcXbbGgt5IBdFp1rp/vDwkB5+swxf+9rCpzly33dSoaOto6pJEJHr9frp0/P1MkS2jx8frzf79pvPsciUq/MCcil23/1gU64HVzWjyGpYjDF8hlmo9IQAnEmVIwhLlQZmVq0fZgXYLedcx6oQM5iSKQiOsMJGw8yGzWmTgX7aVJibxhG5IgIeYGYQiDheebOacPOR2VQVYJBnEHGyIHOd+XRQ61lWdySiNs8dDsjM6p9nZt4z1XtZcT/zmbl3IZKVfmc153Rt92LkiABhVrmTI8Ist9aJj30OPxA4l2pA37kokERRMg8aZfiBMKV7uhc5iZgJSZAKH5W76sFuqohAAPj4iIVL3Y+CgpFrsd4jQkTwEYxwNCzq1uHI52sj3ZNMs4JmGpESCSaqWnZLZumd85UJysyybZtbFnNRpDXtlUDu+yzMokLzUQsUqleBAESy2l1vejMiQiSZla6vDdza1lsvYkjd3Nbaj3/849ba97//fZHSgOTT0/v9tgqi+3vew/JrjD7CREQ23USJSbEgQKhKoQnHrY2FAgIe3tspsnJ+A6DKB/maiAjJVVBkJkGI6iaDeLU8RAQR1Rwtcse0SUS3223f99vtlpb7vkeEiG4ijYKa+lRl2rYNwpF5uVyqYvIMs9VW3Pe9bXo6Se/ce/fjMFDVTPIYdYURduDdK2k68FclokijIMDNBkGIOaOSHQ5fBJGqs4ikN354eKhz18wyodzqvwlzs33f930vmgCTIicRbb2fzr2JEhUnPQtEZGZSEqUEH3IEYkahOCBOwEWkd0WKqkSsBng964XzZcG5OHa73DOTgisKRDi+5wBKzQIEQKBkVhFVaaons+pvRtUd97vGfGfyBDMTItOn7R7VHJ58sGLcU1WLi7LOeayrFRFmzZz1SUW42OuZlCFRBCUJFFUBQiSregATSWaCONOr1VBHdKYDmjmREm8qFAB8ULl5sTyLXuJvq/3XFO7NOVblNJHXBTNXG2ttb2GOtONUkSIjZQ4YiEiltdYqxylplioVHbjWzXFuv/J57pdR71mHbcTc95XNjrF/+eWXTbfn5+dMfv/+vU188803v/jFL//9v//3X3zxxfv3737wgx8Q0fX6codF77GAmTP5ziC+Z0N1EzJTtR3gC61yCkwkzELk+XeCyCE9SK6db2ZzCiCleCEIFgdqvdzu0WGRfxLM0Yiq5BT3bj7cZxznxBhjTnd3OvrKyEjmzGBmaa2SmjksA4Ecw0Taw8PD7TpfXl4iSNt52zYHRDXCgdo7rx+5MJu3cVOUmHnOyfBta6pb3UBVzd1ERKVV9ZZZrLGK5rL1EzHWyY4jDczk5HTMffqc2k+997HbWoqEADwj3Gek6ImKGsQsramqx9FYqXQ04SxJyEgT1m1rRI1J9n0e3a+7ZsEpi+1P9z7fm2VXZ8LfARHu/6B+qlRx9x+5/1VxioqdOs1aq+YFEfVaWhHmZplRkjvRghVfeRDHb69ss6Idr+5mVAdE3DHdWttosXerEGmViWXmsTQXR7tggtJf3RMhAJkcEUgch4CvkEx/f+ffkYL79+/vc8caVXsG3OK4FQsjuH8KypZS2QcTpKQERYZnarRSEnLP4sAV9ubub6giC+ys7mH9rdnCw8xsTq+SuLVmlf3mOjeu1+tXv/r6Zz/72c9+9hc//OEP/+W//O8riVDl6xVjDMI6ruV4EaEyZyIyLyXIK1uhEBwiLsZXhGepS1jusaVatPUoq4gocU0BhGaLy1x0y2M9caHFb2MTEeVKY4ug0SJiTM30+uN26vMawIiIDBsRIIJNm7d0I6LOVEm7U26dRdg9mzaz2gh+/11x1DzgO6XtVcpx9I/okGaxCF9vz2HovfgsljFEtwgIa2ubWRQWQJCj6gyzkqtwBUIzn9MpWKRB1qJl1s4KXEiFQzzj5XqhBDE2VpNgUPFsVzMrIyKSD/HO9GQWAk8nEPXemVomQRwAZ2Cd8ChhnIhECGB59MtrZR/KnNXWvAu3zAZWuxF0EJsdvu/PtZ2Fm0jeF0TMEbJYugXJKCFSx20vNShWWskUOT1hdmBpzAImPcJN8YKr08Gq1dC2rZ8ko2owZhZpRELgMcaRoa10NHnVoVjVT0Xmao4mQYrsUBUpswBCyCOOVGP8XlXRnJN51RFv48XDw5OZucXr0l81TAmK6Dh41/Ia16Hat95INPyOXQOI+nWZUbzXSr7qvKyQVxXmQVjQkpARETKQpKrnvj30VurPh4eHOe0v//K//vF/+t9//OOfjjGv1+u2nW6321//9V8/Pj4CeHh42PdRykDiFBHhRhAVLaIH0+Zh4exuK5eSdpRRsTZLRngspmCu/SxSiDi55SqFON2XHvTAX/m+/4mjIk2uB166mESdXkTDxil7UuFTFhEJZ+Y5r3POfY60SarMLHAiElVmtCZJERQAceOmXYirSx0R5/P53bt3Cb3uzxGJDE/n4k0QNyYREVLLiUhkEfwQwSxMjGlw98dgj7zuN4KjtYSzsCiAcN8zqbWt3APM8nq99q7azgC7+77vmQkWVUpauS1FkrCInFqflHPOuY+I2LZt204eMYW0AiZzBVFH0oG56PuPv3e73fbbFNlYTkSbB+acIDEbhGhNQRhjANFViFhZWbm6I0c4xO12KfHW0V1b3cqH00MdNRHYenfLOV2UuZHNiACKdAQutJiIKDLdKVOFlJCIOfeAk6CfNo0GoNjDp9YjAllFpkemSDIzManKnHtxdZgoEgnqbVPVnKuN3NtJpGXCLTfdjgQBEZEILJWRCEsVombDPdxnwlUkLTOTkjLZM0Xk1B5tODxYpDctMGnaPud8OD3U9gZQZ12kIdvcbwC0ZJ21N9woY+tF0KfwyEAmEslMD6d37hEzKRfqNueccz4+nqeNoBRlDB5uHCra1QwpbnAvVQhlMFII+vHDF1UePz6+O5/jdruJ6Nbp8nxzmy+361/91S/+w//6H3/0o59dXm5PT+8+vnv/lz/92T/4ve//m3/zb375y19m5hhjO3HQTZpKOyHFE0CftnQlRGeRmDaB9vj0kYiUKSLMRmaATDSZJSSZoaqOYn9OFhATMrRpMaxaa6o6dnNL1QaK1jpR7vs+5y3hIpIJVSkKcNGgM2jknGM8PZ4v+8XdWaVofukxrrfjcRghI4aDwOhd4Uac+34dNluXafHy8pmZOdg9mHI79WFFjadI88TnT8/v3r37+PHjy/OnMO+njT3fnR+uz7/pKu/evcvMbz9/SsrTdnq+PD/v/nDawGcDU+tCvM/bbexmlkltA8vJLAhQ5Tl3AOfzuToFRLrvO7Fuj49zTopwzzGniGxbu16vvYnbaKKI9OSm7dzP062dzgEYg4SCOBOWwSq364gkJtLp5NGSyBPTUBRrszifeh34rCCUzNZJNCwzV2Z+TxDu+PA9jb9/YbYX1kIE4ZZs1XDdtpNqhC+Uq0hseXTpwikR7mmGRLytV+noM3kkIkUkGSKtUsF7xg6Me2c+M0twkQgWkpBMqlZ2oacFQ94vu276kY/WYStH24WJtGid62KSC7NBagZnBK0SKdwpwsNXi+FQZ3lmgaMJeGX+VQTdP+PfA//uFQezchJSklyOoowIRMjX7EzuqeySBoIAVpVqy9T7t7YVzrpt59b6GCOTLpfLfvPH8zbG/MmPf/Q//8//7sc/+onq6fvf//6nT58zc7/NT98+X16W4pgbiWRg9a/y0CYAHM5cYiZKIgEZMjLjNgYQxE4cSM/MSI8otsLqJ6kylTFFlpsLAAH0jtGKyBju4pVlgEIPlmSMBMJBnEiqE5MgPM1al3NXPm82BgGNxd0/ffrmern4GL2asFyVSHhMISFetRhzJIGraeOR7pShVNKo1nvfh92tIooRg0B6ursUjpPhsZiC0wOiYCXuYGFRAYRBRE1BLG4ZAUcAQcwidDqdeLkEOQsBvBLNpEhKcB5E+6rOuqixBIgko3dV3bYtInyZfRAJS1NmLt4dMGrNKJIruNZGmnMiCPflmJmegSoCw93pjSTjHgUOJK+A8XvFiEJutm3DAbndC1o/xHP5isBVDanV3Y30ihWJMIujtSnMlEuFVerdEs++NjUi/DUtT0dmJFNEYemZThzEkZ7mSe5L4YfC249q5xB0FbpZzMnEXTwjRe8BUJVBnUcRcdfYHWS5hSpFRFX4S7l0/B7h1cG+3wccTXV+FQi/xoW17RNHcfT6/zga4IfCuvBvqrct+XA9qW3bRNrlcgGgqmV1oaq2WxL96pe//slPfvLHf/y//+Vf/LwywU+fPlUBPObt69/++vPzt63ptvUZU6QhwlHkG2Qgo5rTRTQqxQ4BEmGJOcZkTpagjNULCoRn+CT0O5ujyATubh5YtMAgYm2cmczVVObi/PBhlMDM06xiSZnj3Bequ0sQqfABedDRQ/HeHVCOstvKOa9hWxNguTNpRhJHEtUKiFXiiWrvKqwrIrAoS3pYWcSU1nMfIqK6tm9RDxFBVbkfi42ISknNrJKeFO5uc9qM1riyZ2UBi9GIcEQSQbkRUPq/O4ZEgDB7NUXK6sodIrVEdivCojbRaMsowRbRE0S0lIsi6u5pGZEMeWUWIFYKDQCMiKMiPRQ4x/H1f0SV73+8H79vv35+fm6tVEJ0/BUTkSxAoRSBZFbOJkUxSj7Yg/c7WVy3XHx1ugsEj5iSBe3Xb85M4ko32CPCJ1GTTNVOnCu0H686vorU5F5kq9KAJmd1Ye++QFQGPnUZRLUlMiKP7jdqlQJLboiMpXJJEcj9mv2NiPj1Ml5NVoKovaYzvr7IzMiIsIi7Ovh1qVWY4EOcI8tRzs3sdDq5+8vLSwnybi/Pv/7bX/+XP/vT//gf/9PXv/ntx49fvnv34Zvffvr5z3/+D/7BP6y2zsvL8/V66ds7kF2uz9o/VHKXSRl0BwJUiguLInzXp87VdYvqM6x6PglJcnAQ3D0iExZZnIsCgzgxgTKtel1+FXpoCcCX6jnjgLEQxxkDhLvl1ff06XOWBZMIvf/wrqmMy0uGwYf5tHENm0IbUSuRu4gEMr0ySQeyknOW3rUluGj79fjGGGPeKi2NiH3fmaSJDpsC4tYBWPj1eilO6r7vDBQSG26ZFIFiHIzdzKIgoX0f9anntEoHtm1jRiRHrN9eT5yZe+/VSyre5B02zizLFSymr3uBEYchFZhIOYkqw6I0CmAdLKWrjyB3o0zIgdgFFcQYmckpwiJCTMIHOXchvvUF3Z3tKlzdD7q6SqZ+PwnpAIXjUB/iDR5Rh1tl7rTMF8oM68hHOI4mP9fzQJTWONzDVzkQxKXF5FpsSIAk05k1UIsJREAmJQHQxnko1SMNGUKUIGbB6sLe64uIcOV2mAVkJiKKMEUFZdUWJ6q85nXDv33dw8H9g9er7k81F9cLb3f+MiASeUUiAYhQ6aDLbaUgsX3fVz+luhLczqfHT58+/ehHP/nxj/78r//6r7759NJOZ5L2ct13m6fHx90GN3HEbvvu1+QHh91ul4fHx1rEhwEcEwTgcpq8W10dz0VPpxPgkTTtbnzABO69E3Q1INIiZsKwutdZRi2F2LmjkFFesjHPak86QAeBom7PwVJhLmljunsxCl7B/4iFI7hRhjJxVzRydxGOcNa1sEtmygCVJyAL0Jl5TK9A4O5z7pnu06pSqKS7tdUsL9YaQGy2MPZpNoYR62lj5ggRkEemW9lyUIJBXHok88y0OUHRRIS4NTFLyki3dHOHjT3dhPnxfJr7LWz6XB5EyoSqyIj0YE9VNKkoDCCX9dBxFq28oJzEYlZKZmaU1crKzGTie35+FKt8zxfqdV+RzMyyglOtxeJpRcRhL0P3d3vDMAuAhCvjDQAETvwdKGGtBojZwYYKYNleKRAMqjNzNVeyAkeUgVlmEBNlZUPmAU29Hz7MQoQIArL3VmzCBNITSJbadSiPEiIpRvSxNx1ELFIeQZUpVPpyl/2WYVwelUUc3oH3e/g2T8Hff607cNyo9VOiCqB1FVmKID5crbZt88OGdAn73XtvAOps2bbtdrv98Ic//F/+7b//+qtfufv59K6o+JfLM4Avvvhi32+VcE3b59wjnDhZ0mMi1yEHJmSRysGSkQEPFMsbHBEeQ5iYhaGZ3cVL0lXMK6QUhG7uACeYOJZPhZstyzZ1zzntdJJj1a2uRH0WZdTmr1wSEIJnIhMiKqqkzWT3g6NJAKV7TPiUTKRVE87DM5Ui08s50d0tgzo3FWgTks2c3X251FAWk6RMIrZtq2K5nNFEWFkyV9cUZVbJLTPdMnuqSGsbs7qFcRKZCLYu2XLbTq210wmocjsmkYjo25r9foRU3lH0p0NPMe8LSYg9nGXBMVUt1mo56CGp97OCSJqUTjwyubpl8AizAu2IyH0RkGoz3yuFfHXXet3h9UWRT9+SZ0UKPJP70uclDimrIHMvJd8yXP4/bInXH2GiCluvVf0RLEAkUl2LdK/ihUCkShEZFEtfD3FPtz2ylVr1XsfWCSqa7k7scAM5M0RItY7xqByEiBYdBuERnO3ttq/EhxePY90NUCTAsaLnHT44zj26lw9vwy4z8/G8MhFZlSfu5zCvVy0UKz7sduosZD6J8nzemLVWCTOP3ea02+3lZz/72X/4D//hr//6byShqgQdu2fmaXuodXY+n1V5HzbG7Xp7vt4eTmfuXTONSI5zIsJnVfDmERmgagpRxBzzNsZNhVrj1qW1BgoRySDmlglhXq7Kqx9blLbqfMMsUlypJ8hjz9wy/47dQFGYpDEocNz2I4Te7091MFY0cfeta2VVgYywMINNOrinEZFIW6/IiNN5gyxlurtFAiSttW3bmGfZqqnq+byde59zcgJuQcSsdYVIEpEmoswILwEWM2/aDOQJo+Dkxmi9cdkcqaY6AENQNhE59V792DSnyC5K2txdQPBI+JgzzRtLF1VieMAjmfd937BBNLJUXjORquq2Die956hEVHbCuRZTiggIZXEmy0mRfC4Sbr2Owi/uxerbiIADRzhiwaLhVX0YERl2DxbrhF2OXYkFZ0RmEuOVeF2KBKpuJTHrIR0p1J0A0Oqzlt4xgaBD5thaMx+oD1EEdA8PizCPiAwkcx5YN5b9VoTFstmoUFsgYaUtFsFE7W2SD+QrqLE4zoUze6XPtXkLEM3llfK2m/vavrkH2bpRR+WREVEMj/pbC3ef9UDjIB0AmDb61u5JXO+9fFYPN3263W5/9Vc//3f/7t/9+Mc/Pp8fbR/n05mILpcLkTw+niPi06dvvvOd72Tay+XznON6vV6vL+8/PIqC2JmJyQvxJUbkjMhpq+VBrMSSMea83vYLg87nTdtJtRERk0UkUscYvdTlDBHxZfRoulRSsxSOIgKUx5T9vePnvoGBIAaB7xGhMpFM2Iz0VVuXesgM7o5wZhbSyMPfpXh4i1RaEkpPr8exUjN3RxCLnppWRlCHoAhtp14eP8IUERzJlYGMmQn0fo9iYRkBDhKSpLyjjfeErg5891KRZBlhV+P5MNHjanO4L8NeAEXNrhZD731tcBD8VanpniKiwq21l+drbVX1pcSuHq7X6aEqYe7TAfTehdbZxSJN+j0QANx7y8wxBmD1/SLDF1m1TvhPnz7VRVeisu9j3/fz+SFikRiPQoMy8+npYfUjYlZtVmKOh4eHAxV3YS5q6Lad8aqKybu+CelVLxFxJpdTdW3Ll5eXhDc9lT+CWapy70/CKnJEt5iISJAIXa8vrSsLwQIIUSHOMfbM7H0Tztvt5u4iyxDhfDoRUeE6qtx7j+Tb7QbEvu+ZcT6fa9NmpqqWxKUKh9LYZ2YxT1YWd5R8Vax26W9SpahMMuHEXA9+zr2ciOuuelhrcr1e9/367t0HAJ8/fwZQG/JyufyX//Lnf/Inf/qrX/3t6fSQmW707adnIlJVZr3eBij6afv0+XPrTMwW/pOf/fif/dEfTrPTw+bu7iPZElL+qABra2053FDk1WflWbZtwpDeO1F5eU9mbm0jlGVTjDFU70mQi/Kc15IqqLbeWyUj29Yen85z3Jfr8pgXLaVzaVjMRmYmVpJcqLznmybXGIPvOxlECQGlCLOcT1tEmMeMpSlqbdNN0qO1pq1fbsPd+7aRSKES1+tVld+/f69lsR553k7zNpNw2ppo/+bzs9no/ZThp35i0L6PXfnxtNFxgjKzctvawtdK4yRNTltFRooIlYV/+Bxz3FRYhSM83FTOW28RcT6tkRYq/OUXH0uFFenn8xmRaZ7A7XardMOnnU6nEm4sxw6Uc9HqVSaAbdvuRSzjFYTPNw3ze8fxnmi8RcXKLaO19movzUv/U4ouIrqHNBzyMqwjtEyhiPiV3IY1sgFE6RnTRmaqPEREpmcxr7K+DmYFLb+AN+jD6qrUYV6OCctLmsrks86cYikmUPVkoVB5CL3um3ki5XQ61TGSgWoaH/lOFEfwaHMsSWJrDUnFnqLyv36TT/mhe72Xgm8TrrcfpyIfABYAwitMz3sGFxGRHmHX6xXA+XwGMOZe/2Dfxy9/+cuf/PgvfvjDH/7t3/5tRJzP56bbJ3s+YhHda6jKsPLoT18ul9vtKvLIi17hHtODw+EeIg1UhvMLtQGBJQUgZqXVBAXQWhOpITFG0GIiZlLCi1EnCg8mTrfDgVqIo2I9WCCl9TwokpGUWf7JYAYnMhlVcIlkOjgjbOGczCrCeXD1K0cTSZAi0xMJBnXpwtQPUVwNVCBCV41Ndds8JTPT5qFbZ5/D52TqqgoKTuYEUyqhqTZREjbz4rz67uM2bQYcAjmw7ft6mBHGEmW0hWIVJR+Zi5drYT3uRbguh+Vto9d5AlERUETMPA6XF8Eqndw9MorqpiINCCFW4dr1QihlQTF08+j8V44MqSbfygLKmJBZWut31PBAvBaU5QeihsWNKSmuq6rwVmWqu9dKtpi0VoYTV7mdxDltJ84iKZREohjNqgEKUDFjXtVZhe1nZvmaL2mHLAjTvVqPEZFS2U8r11OsnJ+WG0raPYXRBL2lFZuZMG/b5p77fiHww8MTYhnG1G+pD3JPAnvvImxmbumWRFGoyjrxj4hQfcG3KyOPloQIHeAihOSoQchiRrjVHubygK0JSLLv1/P58fHxsdrk0nWM8atf/eqnP/3pf/6zH/7yl7+c04koHINNtx6HP3JmcEKYCMzM092RYfPT8/Pny8v2cE6ibdvm3G3x1lyIVKh3zcyyZaxQxkzMEgEtLQbW+CwRmSPNnEncEyjPZc9MVmJOkGRmse4zveyjK/3MJbcrJ8VaoD5tMCNJ7rKaDAKRli9mOlgjV5rQe/dqFSylkzCD4ZTIKIUYgYSJE6VRjEyvk1pEthNL03I1j4gu+rCdNm2Xffdp3pYM/G4OcA/WzJyUQiyg6v/ZGOkBgplRpBIT53QPG0A6J+DErCSRSelY/YgpJKAUKo3wmPvV51lVixRFfNyXIuYUbuV+Fyal+aRZ8Gi1KlVEMpmWzoyq0PUjmac1ZSjdHZ4AhFscNrt3VCzfgOSvmcWBk93ziLfNhcpayzeFjikA7jPgVV2DFnSXcEQl0rVhQLzVoS1CtaNqyxynWRkkeibFonwKUyWP1ZxnJECciQzyTCJPvQNQmbnSpTcASrbW4o0t/RgDS3lH7lEzhHD4IxOIqCh3DiwNBVEdAJG5eqsLy6RXfdS9hrwDK/eGQi1cfYP7ZCYoSrVddQoOwPmII86M222qTmaOyN777br//Oc//4//8T/9zV//8te//g0RPTw8jDEuL5c5/csvv0uHk/U9VtFqCS/M4nq97vu4R7FDwYFqKBzPvZoES71XmZcI4XCyOEhxB/JC5T0b0yaxERstHsoqBiM8c7hndYwz022dfodAeEzbEbsIkbbqZZbGlYh42w5JJGfRowDhNvxmY8YMZ2iRnytBqgYzSVaji9h3n3bLmJTeT0+iZcnluS7p7vSd9+QubQ3FWPTbSLiBw496sLVW5EQ/KDNe4h0Kug/vWHBBuewxFftkOZjBfBwl3qoyarbNHZPCmwa2AExtuJey9n521hPwDMtQBIVbIDwypk27EZEqq5QPZqvsAB6ZKFsRP0b3VCyork/V/Jmvg3rqgsYY/MZWKJe0JU6ns7v7YVMph80hSYCqu446/A+k00sj7GsiQJ0zyVKcPPMwItLV12gLO0hUR6LgSwIziYqSsko/GFDJVBzEhVyWS++hw6sdmEfSvjpb7vHw8NB0G8Pc8nR6YOYIyGHOyQumqpZBZU82zFigqtt2cvc55/W6q/R7PK0vXtP+N/5odHDv7uEglvFSAmFuqtqa5NHorSrMbETa9foyxk21q+rf/u3f/vEf//Gf/Mmf3K4DoKen972dMqh3qMZSgrAQrXi6YtRKPhtzuFeCw5n08nK7h3skMmCZRNbbqcZWLJgVFbidwWXoH1GuJxHOhELf4Y7ilfHhaFJXwnz4bqKOqbq8jMUqI6CGazhh8bgL3F0AATHWlTCBS9kZi+Kx3Do4sQR5lXCU2J84yqqECEizgE3RekA0LGzuY66obWb7vlcXT0Q4se/XsKzOKIv4YZBRna/Gct7O5lNYCEBkOZpUH56ZVaCSkcE1CAMsDMJSygoTNdl3A0GIpfXZN+ZycudT38wsJLzuKZkIs0p45d2reCc6LEJsWV1roTIRkZhHyl0hbEFTxzmADKoruoccHHzke357X7tHB4H2/Xo/agKvx0KhDG7rIph55fxcPJNyHDhQCaQ2FiWPRKEGBRnA59ynTfPl6ZqHayO/YekwMxGvYiECySxNpGVSuJmb45gKx1U4ZCIOeka5IQYAc5tzFmVNVXs7MWuRhVtrzDrGiNX5qsyipLv8Bi1LtxAmaUqVJ+eko2v4NiLck6l7/rX+2Zvug6/bP0sx0VqTrvdHIyK9K1GecZ5jVS6fPn3zF3/xFz/5yU98Ob7IGKNYXsUQuV73e8MoFmaRESkk7t6kCNdUPvoAxetCakhGzgiEs1FGLG0VjjkrEWiSmRm+4ngZJgMo8FxEpjkoRJIlDndvYc6ybEauG3BAGHm4eFVXWBhNlMCMFEoGOCD3hOu+UOPo4bfWVLqJCaCiWll2uI0BtHLPEG29bUTDfSa5Cp2asvY55u6zNDelhRtjEIMS2pCZ+77TMvU4IbtQOu5ua8Q19GkQ5WE2nVDV0p7WPNq+6ZxBlO4zU2tKQMKIWFWQCyaoiFyzJIp+KscQraMAXE0yVinvT1XdGioiBNJj1CLU1loVzwkEKudZnosi0muOYFAmEgW9HID+G937vSakw3CxKih3ctfyWcTRiaxU/PDhXJ3ho8podQMrFhX37BghU30pImqtSzjck5nGuB0bgET4UBsfRgxZmBhlvHKlCzh0A1AQyVoih/mfZIovL8ksos49db//rq2fzayqWSI2C6Zg0rCM9DrkiaiSaFUt3oiIuNcoxNWyrWdZt+s4tYhoWfHXs3wbLzKMD3P65ZKXnpn6BoM82CLrrVprpV5xz5/97Gd/+qd/+pvf/Obduw8243ab+74Lx7ZtRHwYOi0zosrI6raLyG13NmKmOqNUlSC9PZSnXjH23ZGRSM4oZ6TVJUZJbhEiRdpxjykiwi2TLRfksYIgojLEjHLi4XuBVt42lfRFVLZYSFOlf6S1oogziqK0nPNqxRKRsMQb89umm8hl1TnMNdTtPjOOSBJEENUWiSY9aWQUFYpbkw2UsLuOaOXqSwhIRFTbr/6qtZYUoFKsWoV3PyJvPb6H05Zu04KRrBzeMmam29y9SSqHZ4YzNyHW1oX0drulR4KK4KgsJXksmqNPm/uY+2DmUBVtKPrXUVn8PQ6c5jLPTxCwwm3JBJ2VIEBwkDkCjKTYZLMoktiaZXyvIO6chSoaa8WfTqdC2sIRFIdTi4zddNkclVVxMLHogQZl5ppxRhmy4GgBU6eW2k+ZiTm58Rh7uSGqttWxBy908LBjJeKDxJ2n0ykDTHwsrNVDdvflTkMSUSkkiKhvCsAsE86uVOJ5bqr98+XFZvS+EdPldmPm0+lUEA4OD58yIGBSpNfMnzHYbFRiXzuwkvl7IK9bWk6Kd5aHyLKfuO03Vd0iSGtAu83p08dDe/DMmH7HRIEwG/u4VkLapV8uLz/96V/88Ic/vF733h7imMW6bdvT09Oc89tvrw8PDyWzf5vfvp2CHUHuyDUDTkQOvMNhFjajvFta0wyAUBXTkRsaU8xp0/bMmiqs7sicc+6ZNQ/eQF4urBExhjHpoUajo9nEb9ZJ/fqDHQepc63UEQmIONdxhgSnKMe819hMMAA1zyeiBOmV9tbai1iDyO8WITHnPvbe2qm3BibKuatzEuW6BvPBJCzU2vn6edaaFJFW6BIVX3BSgg44OdKIkji2fr6N6/TDVkoIRGX+6GkWHhkeSexgkKCR7CPNRySbD5BGWsJFtKqD+x2icvjIiPAIh0dk8ZfhgfIYySC9Xb7REsrmEaiEkkm1D7Nh1lrDBnBkpoo6jeSZkTNwaqeH7XHhJmOqdBbMOdNMlBjI9Dm99GO9bOCXJI5Esd+mR9Utervdkqjrlm6vLjRBGQJS0VPCSrRCAhbVxtrbGEO3dmobgDn8KHQVcJtefLBKhYiEyIFAimoReENESuqz71d648jEzES97FWfP30SERXJlFQSaUnCzNMhuiVsuhFDTzX2y6B+7mci2vclKNTWAtRP56jgDy+xWJK3TYXPheCAhZCeQZTaD4errPkDwSSZaT5FOzECXLWdJUQ793Yb8/3Hdy8vLwCY6Xq9ns69CauKj9lYri8v/+X/92c/+i9/bru9e3j39PDw8nwRUG+dES+fv42I89bayto4WUI0anK3ypcfP/rcb7cLRB4eHxrLvE2lEqp6ZhR0T0RjWAQIXPMyQJNeaVfWm7CgaBcE2feZmSy5naSYoEnhSx1KGWLurTFL+a9mIkW4aRdpJIzBcRd4AUxt2/pKvlDM3Mhw8xBRUTQhIZ4UnCwklRW2LjvDp00LECu37XwyttYFzBYemNebRaYq3PKhb+e2FRjO3Dq1xnrb9/3l1rfz04d3ZnbdL2NGRhc+tdbC83q9skiVYCrctX369EyRrTUVmN2mXZ6enqaN3377TWsNFuRJwsPmnLu2dn54aq19/vz5cr313kk0CXMfR9uFVTnT9/16Pm+1pJeLKrxvSkRj3jr1rTNgY15LIeKg1k/Xfdj0mK4sxJLMhCiyD9dYH8+aJI0oY/IypJEyJGRHMBMEjsjiZi5NZGaWYiiBagqKiKj2KqHda3TSarYvNDhCpd/R0SqlUb6viOKdtd5qVjLIAkXKjIgw8wki4kinQ0RIYKJgZkmtgXkARdjKBZbXkANVawUx3NxGMTVJRIgzDOZjay0XXFrZbxkrhGgXJuo1Sw7laUWR8zYiJyXfWdU1ddLdVym9zIJW9FFVpJTo+ygBVkJ7wCWvvRtJXUMZMggUhKY1Fl2u+6UYBHcM2d0z/fZyef/+/e22/9mf/dm//bf//le/+urh4en9+4+fPz2PcTBTwZnL5W3aXs+iNSE61fOqe9J7B4Klsr9ljnyvz489j7sXsLvnGpRbGVNmLu+ZzMygXF3J4rOyCEVChEGLTcrcmYJw+GtF0JqUHdXKeZMXVNAJm47IXA8gmZfbqAiwPAiy7BkJwklAcEaxXoRIICWHaKoiTEQOq1HZxbEo6kO1w1igrF1kTL98vqyCpwSsEGlNFNFNRBgcESRgYSJm6uG0bTMtQTXybCJG5AA3R/UXmdiFOOtKIxwpBG7az6feu25dWWzshbiJiFs18m3OUcKHGg1utm6a+zQbEd76WURIeERm1YDSVC0CejCFSxdQNgSr20MJEGUCnpSrGfLGPLEebdj0mn6zduPik98z5zx+RZibWwAm0lrbKlWuKl1UD+MzKpszHMGhcGZVYUa1QSM8xX3lPOVuXGV2QRUWiUhPGAuYlxYjUaHUDwJsZlZquby6y9oIRNqYKoaEu8vaj6QkS/J4hw8FAaZa5ZHuh4shEwr7uFOnYgGikauQqdqKopjT6fE6szgTfjqdCvuY0+9mZLkGrtQmzJVtiajqFqd0D/OurdozhSqpttb6L37x1Z/88Z/++Z//sLfTFx/fEXjfJ8CqTbUzabxxmmY24SZLlV987fjNb35zu11VWUSJBMnCrfdtzrkU0CgfGjoict3i1yZ8qb9ba8AM90Jz3yyZ+8DuiqGRSQQu2ksF4kzKQDKVIU39yyoAsdre4e5UFrz3t2YmoJxpD/7iQZNrbb/dEjXbCiplOZqZrqKr+Zd+cNIzM4WJMqiKBKbWhamdPd69ewymmpI0577PoaoJKhtF4owILpGHNiYhEvdiRI6MO5oL92m2JwgkQixv7lGklWc6sxZ8SAf8XY1Mq8Hp7vu+Pz6We11T7aprjJgvA45sBeWyziSiNeSytZZJGjkQTGRHFEa5D5T8A7yecZkORcREuYZSZrVhq4k2z9sJFAccHovFBJqxAKrFOJTDT5lZOhHgsYejNWEm91lStvUsFxfl7qJB6+SDZVIgM0hVl3vQwpDN/Q4ixornSREWOTyyqZb3BjESZl5m86bKLDUqskRKQRTlCFBye1VpKkySRECkF2/LK9zEYsiGshRMez/W5tyPFmYsCh8RcTXwKTzCPRf9xovNUqAtEZnZtJlBqlZ9jWIu3Xdvlfrl+G5W067FzUHRWguDPDz94he/+pM//tOf//xvmm4fP34Znl/95te9n0Sk6baaMhDmRfVbNJBMDy9+Fxxmg4j69lhQdHlSMmmGIevpFHUNTAJZvQPEPfatiENUSUGdKPdqYlnRRliiSE11llBrq02DArdXs5AiiuWR9/UJFGJfU8XWkRURRK8G2SWgnOHFzxtjj7Sy2ClaF2WGeXgQjMp6IK3gkKJgZTrSg5LJiBqRgxiw1rmbEChwnzRbps7lwVncORIhYiohrogwYJ5eUyzS3f12u+7j2qHaNl7adhQ9IY75gEeSWyLlZFrkN4Lfd/4BlOA1wRTJ7ERZEom6cfU4iIVsBWjlYvvFmrBTUmwCMW9Ea9dllkN2elBS4fPLQ/34ZQUDraxhTVZb2h6LBU331hrXYFgk0pCCAMIL+8+w8EllIQkmEIiBlIWQ8DFaijIYICEhod40reapHBHhTlxhEBFLsYgNcJZQLeCaVtpiMzNB0Zr2IpPBzaa7g6AqXv4SxYoJTiYsP/WahuFRlFtKoWqT5zH4GFi9H1o4c9JxnbQMx4gdUq5DAJilIsJqy9UwbooKvQX0WNaZIwmCZ/kmA6aNIwq2kH2YMp23fg1/fn7+3/74j//df/hfn6+XL777nda2z58ul/12fnwn0sDsmZGRTAQBBSgd7r6I5yCQEhF9eP8xM/tWs+dyWFjAElV6HEVBhGd1je61Ax9U0frjvu81312kVXf5SGi9yhxRYi5jLF2U1araBLSOHFkmiuXNWRT7msPGxDBGQkpHV2BtZubj4+OcE27IPJgg15eXl9aszNoDmawRaTbdzKOsWDBhwm2xwcLCdkEmJlFLTA8Jn7f9+nL5vO9W6AZLnqVpb+lx+eYzqBGXE28pKn3avF3NLDjhPscYUt0o222O9MGgxnnepPd2a4JgXznxmoHgENjEQsSFIMItpNy3Mg5M8bir5VfXVE2Vb7erl0cG+5gegWot14NQkUW/yUzBUuziSNkFYvDVl8mMMGbKJcJdfD5ZKyAijrM9vLpWqsupAkAFb5bFpiaq5ZOioEiPfbWXD2fuv/eq8qFRjzfuHCSkxBPrM/OdTUTReicCsRe8VFPdmFUUecyPN/OaocRMZoNYhFuucstWGSZbHqdokcnXjeu9zJSERJS43G0T++UaCcBFGhjujgRxBbfVdaFjkBkzW3ouJV8lDyiehahWcExQRLVdyQ1j7sL6VgENEIrBQhChTE+frUtX+s31849+/KMf/ehHv/71r0+nh21rYxgRvvOdL0rEUfuWiGSZWVX+5YVW0GGtISKt5ZzzdhvX67WKeRFR6XW2i7SyFKhkkJnHGHMOMxOFCDFLEd2ul7r5epdjHS2MRWxhUtW7ixfKbpqZgCw7lgKnKyIAQKKoUMzMlLw6l3noUssc+fCwzEXO0a330+bz5P6cmR6TwZGGdI9hNgtfoqoNygAqo3oNSR5hnhaZ6bDgaVfmAIZHIGvDMoHGnHOOOoORBCpdso0xI0hEGovZ0FZyRlFl0WQOoizVljZqTcxqJKyxMpMC4u4ZR7v0zSuPV22TI1muCasitGZeuvsYI8mHlRrt/hRCqZCe2sxViicBnD7BGwBKJpCKRvkNEWVQqYZX1FBOcKmWa6vjyFiYmYK0sYgQpJ46EYnWYVraSl3ePstOl5Fc3EGsTl4dBA4oilUYiEwUJ8RszIGDNK2qgGU2kaKUVrJpSFv4Vsb9NCk+PLAm39bAhaW/rl5HFENRVhxczqIsQkIkRZ4vejplRvE6i/II5nbQCOqQXIYL9biYD+/3zOrP19USpcc0G61VuxgFucnSMi4c6B4ORGoaSIsIkGWGz91tfzw/ZIxff/U3f/In/9tvv/m1NjDHPi5u0Ma969iNyCIy0qWYIOHTLiy+mOOAMIMVrEmyz+scq/TbtvbweKqSSrUDYBJhwWHWcGx1i4hSN3NZl65VuwQ2R0u8tEhFUSnbPDnYR3SYUqJGNlV5snAY8FGa3W9Gho2F574h1AdhzGlzUtSkHC5HA5tbXi8F4kZGBJdJkMdU1uJek7AqQ16jJ46+SUQKC1Ey5+mst4l9jBpFJtzMwsb1zn+tWe9YHRCviSznfo6w261XI1ZEVJnYPfYxWSeJwnxGuodVadB0y1wRoUL2m0vKOCbSVysNyUxa+fY9QBRMLiJglfRqZt2rDK2KMZbdsCMpQBnCDPHAMfWw8FIkI70QowPyXd5AVZ8vxv4CqKCqw2fvNaDSrpd9zqnaemdVmXMSSWtKZmPOcBxOJG9gIaD2knsSUVmoViKUBEQ4bMydmctZlF6VgpkodUfckba1wDKTnGiNZqhPN+ZtTnKfIsJMNdsmI2dpPxYdgEjA1ETr6eZyeMuYPn2OOWdrPZfZAVSLA0ul41497VcJfBaAUhwQUIgAlEUXn7YvJjgFQe7O7p07wBkcb/ZBMZLMw+buPiJvKpvFy9df/83PfvqfA9w6xngx33vfwvmbbz9//PgRWZ4/JsokGTH38el0lqRR4GuALDiMATw+PIlK0xNTO52enp5OoHh++XTa+orGa0tnfd5yAaxWpmrVQwDQe49lnFs1BYr+UBy7OtIi4u5ek4RE+Wy+hoPMKB9HoJiLa6UQqydxrjKsZCjJJMxb3wCUL4iF7/teVcOmB4OmxJMZicg01a1svFJYVVO4CO+ykOr0jACYIUSt0/NlTttv+16I54l7ay3Nx3WAotixEXfsnNxdD3+8WLLF4FnkBUwbtxvVwhjjNueoBKpG/kbwGKPa9Cled+b+PvfTnt/Y7ay/DT/CdNu2jbWn2O02Cu1ZZ6rPnZmbSI3IzASjRrJyRKTPCFikWfR26r1lluEiv2X+AzHGbXWkOW2vzgUDOPVOkfO2A9iaKMM9x+06ikCqEnP4nEplzBWtbXNaeIDIj/nFrbXbPkTIh3/n44dvPj9//fXX7969+/b5tz/98Z+L0JdffvnX4xfn8/nh4eHz58/f+e4X1+vldOrbqYksQrT7nNMez+8uLzuAh8clEzCzTP3iiy8ul0uEPTw89N72fb9cLu728PA+Y6mblwaQiSifHh6n7ZkBxJjjdrukuzS9i9sKKWZZIxtKdlFjCKoPbDOIrPee8ISFm0fpvoMFl8vlfN5Op5OIjGEvl6twU22X2y7au55EVhUz/EZEY79ow4d3Dx7x9W++ffePvvPllx9+9Yu/AO1b27aOqcj01oypn0/N5re1dU8nzfQ5L73R4++eQbO1c+tL31W+4Nt2fnh4enr8oPKQoR8//M55U59XtzSCagmc3cOIcvUR4z7eMo8TLDJTexkxHlVuWJ0xY9yIqHcVoaMoxJwj4Ga2bdu7d+8ALsLFw8PDHHYE89Uedss5L8K522Re7dLdZqUbw01Etv4goMsb2f71ukbaMt/TihAlFoCTwMTs7vvYxyhmSJoFT9ecczqGqbY555x7SbkiHKuEXcTfTFfd+CChnc5bOCN933cfbjbD1wDo1s4UeP/07ttP35Q2oSwbm6hTKAuDmKi1riz7zfZ9L81SEV+ZS/6fZehQ5PRYM8Qr812m1bQSWOY1GrOU42lmOucuIpnV3NKC94mIRZByl6ZFzIiYJirdo0Dp5eO8tGKlAEijoHusYoa2AtXXsXg//GM5CL8aohNFrhHy9f50b0AS4endY2vt5fny+fPnMebHjx/N7D//5//8//3//L9F6Lvf/a5Ie3x8fHx8vF6vX3zx4Tvf/aL31ru2LufzdjptohQOIu79VPVqZrbWVVtrarMOcKoJiBEhogTetuZObtWBr+LWmXnMW1kzs0CEmohTMKUstTgq7he8HWERywDirqfMKHmLVVjhBb+X72hUijfnzKQxhltCg4ROpxNxY9xpucnELHjqD/t43sdn0dhO2G/fXq/2/e9/+G//2z8gYZ9+2yeCtG9NehFyA1li3/SwMBVpGxNmO/HD6dxP7Xzazo+n90/vzo9PT+f32+mJ83S5mg9p7UmZXIUoIscxm5xYAEoPA0m5MxCVO/49dyt6MkVaWVfVkljs2gKDGTiGDFvsdEi8KiLnGp285Lx4XSWo4WWrvyFMIEXeRy5a1rgSzkwSlt62bZMtYSPcyYwINZmKECJlS5Xl8posrTXtwmS0E5FkUs0jNvdqxDBzb021A9y18ZuRU3WQVLU+57zdbvse7qSt+qAbsyMpZnx+/lT2zb33bTvX+gGYaN6rxdqQpSivUHIfFVEJAQB7M7n7vsUyA6UGxkrGjiTlbilEiiAQ1aTlRe2ukaQkVdRlUssMT7hF5FjGUiuPvaM1x9TDRaGt66uS8n41uUa/4KgnD6kvYvWb07nsUJlEiTPXOC7PTB+3q0UiCR4Pj6dBFjOu1/1yef7228/MWnaXY4zHx8cvvvigyn3Th4fzx4/vv/PdL87njdBO/UszjDF++9tbcQrP501EMsHUA3a7DuY4nfvptBFEG2NZvVskMoKQx1jE7KoCAnET4TL8iwwUqLMGN7lV/VL54EHp9SqNwt0Sc6EjdzXUqs/ZiyjmtegF4G07Jyi9WGFH4UDYGuaw6+X5/MhPT+r+eU77o//zP/zyd0+OjBm7TcnWT+dzP0O4S5/hFJ5MlG4RTUQ3aZLcqQtz461JP2/vHh77+SzZpD01PFxu+fm3t8/PlnNK6wGY7TaDWVvrzBzL/79cSQsfWQ5xIkdnmggZK0tfqMDKn0koSxBRLUObLCAsgQARVwS6Ux6OPhqIk5MPRRU4hYWZ2QIezgXXZ5SotPIj7a0TjX66ybWm1t8Z6PGGwFoAFZEkBUHGMF96XYgcKvpYWg8mBbSs644jhERElMtOf+zzdrtlKCCtdZGa+mO9n0SaGdI5neFMSV237MTgK651gFQb16elB5dIP6IIMuXJGG5I2vddZE2XxyvZxGv4AY7jWUSYl2KuPrKW18py0b03fnEYhyzt6rLNRpLFoYlcxETnw+MoD11zzdLAEsMshP0eru6l/hEpXr9ZDyDFweUpnoB5eCTFjOfny/sPX7x7/+G3X39zvV5ba3/4h3/4r77+Vz/72c++/vrr8LTpSIvAt988//brb4hIlHvX9x8ePn78cDqdMvH1P77azOfnT99++21mfvmdL77//e99+PDh6enhdDqJ6Bg1l7kxFQI0PTzSI+diIOThPc1lEZKRbjbKqrnGD6I48EggtMlRKh+3LZbCKjOII9cIqddbVNAXF9KBJNIMEm5EkoEo3ew94UJExr5PwDxuY/rjo7QeJLc//Cff+4e//9HXFgWT9H466KHlBeaV3NXWbV1718R0N/cZOZhn77cmeb1M7J+bvEecCO7j4iadn4jEfZpPgTYi5tORHC05QETmWnnFUo2jl5SlcK21APKMI5EsnxF61W5F2NwXQhGBMaz3jlip/r3XCyyufsbqt92rayd2d1ByriZ2ZrrF7nNOc8t0X24ZEUxwd7C01qg1kc1ANt0skekGERbuTVlVAzmn324v8AhiaZLB6ekRYVmjtwrzDoiIhLN7EghJSGYWlc7Cql1YH85Pz58vY1xeXq6Pj4/tYWu6hFI1OmQlWUdivm1b1Q77vtMhkMNRFpX10T1ZiIiScoOWcUkTcU8PuN8q89JtO+OQW5g7EOxITtaOJSwp/3HOzAwmaUQChPu0OYmiCRXfs25+ZsmNVpNyqSaTKIjz7w4vy6OxgWWbS+AlBQUTM3GwkIKIKFha4/OpM2rGmmfqd7/73e//3g/++ud/c3m5nk4PIpuICvOnT5+2bcv023W8PF++/eb5l7/4ukQWf/WXX4fjtl8ul4sI/c7v/M7Xv/ntx48fv/s73/nOd77z8eN74Y3Jw+lyuc45Ht+fQYuKi2VnnhFoLDjcn7wcmVF7bqsFV+YIlXLVuXQQvb3YNUQsyony3iytS3lSiIiscECsKhlSavRwjByxJiZVb6gCzAx/6VtsRBG3h9Pj+VE9Lu/enWQ7m033lkEHt69AMXN34lRVIMwqOljrEuEsg32CXJVbm02ZKecY6c/MJOLMY0baREozn74EQc2J5rQxZ4mjj7VYQJcy87jthzmdg5KO0duvg6zzXmAWwTzL1Tq4mjXlXLC+KLTiLRSdoKTXcHmXjsdhdUNvLLD2fffbZb8OM+M1MtfvBQjebKQaOWweiIzg3lvvJ1YpFS9TZ9oz96jGR2W1XohJiaYAlB6vg6S1Pna4+b5Pd9/3oa0MYCDSM3ns3jSJ2radgf12uy0r97u/8WqTVSsx3ffMZOZirDHzXdRLRMzCXGXvig613zWThVVV7F4+hL5ivI4qlZnAHKetH8PUDCTAmsYljZl0edh4ZgZEygVkHkhGEfjMAsDW7sOOjyqjuA9VVtBrFVFfzLFHySillTl3VWHD7eHxxIxvP/2Wmb744uPtOnvvHz58YNZ9n+ezEMQmmPH58+Xh4R0zCbd9382HX5fn/t9+9RscRbjN+NWv/vbbbz9vW/vw4cP3v/+93//93//d7/3O09OTSGPeWmvmN+bU5eVHROIIojyfNmZOj33cyINZhZEEbQ1ECb+bSxZqlZk1DiiTM5OPTHLaDRTHGMjXflLNR1qSVCLCyiWIOLH8gulwComcgAmjtzYMfcN2wufnC5guL5/MBpH0fmqtZcCr/E0imgTiNf92lvIiQzIMcGEXJVVuDaqp3KcUiWwXDuVplJn7PvZYbnNsfjOzOcPMF7ZKusrFIwH0mHmg0ZmJIqQR+rYOz8yFnZeNVbUnq06O1SGU81mrukb+ncUDELNoamaQHtM7VJc2n5yRrAIPEAXu5nG0mHtwSiZAGJrkiTnNphMimAEl1LAiV9mYWhY/0TIiVRuzRjCTJriioUgLiuJWu7swCSuxnraH5QAVMAv3FC0bZh17hEOktda3ft62c/0DZnUv7i+qUlhvELjnIIugzQVnvjq4AXF0HNY4IjML7Ky9ab+3JOoealn9EJIohBgE0VZd7qCwUt1UyZaFkydJqkqmSKySjJnzcEm6b34smlrcf9+9UgCS+U2SfB+dCBhb0Q/WuF6fWYwUNwbPOczG49NHAC8vL+/fv/+DP/jD733vv/zsZ3/Z28ks5rSnpyeCuCWpMDfm4AARbf1MRNW6r9ZuRDw/f/7Nr79lxq9//fVXX3311Ve//sEPfu93f/d3v/jy43e/+90PH89zvIAsEMxKEFES1nCwUGta3qJhNdgqq0e8IK/DbOqYClfOf2VCkyjGuBcEa8WrLxLJejbE7lEmDjWMh5BI27bz9GEzMjJp7R4miOqYzw8tTue2nZjFIm5Mbd+/NRvMrPqErDtQNnbIHJkJlKjZ6on0LhEwW1HGPSNkv7GbqjwKuKqzDCdQ5EyQNm26MWs4lYtcqdrr4wBk89VdtrVG6xigXFIaEEGVnXLV4zXZqTTCkpn1vNqcvu/GwufzuUSTFdxf48LBeY9j+eUbKt0Yg+OeksgCenGGTbeBOSPBiZrqUOoGHPK2OyeKmIkzoba05Hd6CGeQQJTEl8QjM6GqVhtwTC1lhLbWmrVyj1KiIgRXBkfMsm0P55M13TLhVlTutu+72cILe++ZOXarQFPh4HQ6MWkGZUwiUl0EB14jCJZBDjPcX+mM/bgVNevFLJQ4CckCieVcoL2p9BV7ADAXRAPhcH552dtJBMzK6eSAMBhwJCgYkPtkAXAEwpy5+kmvYAEQRyJdByDdgdneNktbenX3aVHmSKfTad8nET09PW2n01dfffWrX371gx/8j6r6xRdf9HbKpNt1msV3vnz3/qMxdeEW6Rk2xoWP2Vb7vtdw2m3bWmuqTdUL8fr662+++eabv/qbv/ryyy9/7/e+90/+6T/+b37/+4/v4DGJqnWiBK16+Hr5HLFJHXoZFITAdKcaQBXu7uGeB3u/7i3A4ZyHXgvTksrsQur6hFtVmK1tGWZpFZHrHTrr6XTiwfBpPgCWMuRDiPi3l2/61h4f0DoROxDbtn354f1tf46IriE8zcxnANxa84xwDwoGEwUhmPm8be5kQmbhhafGzOD9Fv39aWsSgzxmCc0zlblv2/m0PRHx2CNiikBYI5YgLzMPP1sQUe+LcLkyKJRFJSMFVSnknUiT7lMgeTjQuJf3f2klV2/o70JRsToLa5jwqpwLl4mIHEByiTJUemubsMbYJ24zh7uHW2MQy5xrp3U9ETdzGhbmk6u5FjZnzjlFKgfpl5dREoNkoZBiNU6L1gVFrJ8BIktsVGqdiDAnpiSP6a77dBJ7fHg3R3XE43qZve9EsvXHF7qWRR2RFDesap99vwLowkSEsH3fx+0WwHe/+C6LNJZkgiczK7FxCmsIyGYm1yyNUFb10tAyHwylMj7OegxX3zGYqn1KYEoJ1U6UhFQ4x87pIN80IyESQtjtRuFMwqD0ALjrJtz2fagqkOYjM3rvRGmOOWcNt1HtmTTnzCBmnjGTSUWiWL26DCuuY9Zc8wg8f/p86ts//Sf/5HZ9eXx8/Aff/8G7d++en6/b+d3L19/+6qtPX37ne9fL5eU6r9cX8+vTw8PjU7e5f/vtbx8e3n/nyw+9ncaY1zEoeOtnjzkszo/vtq0Nv/7Ff/3pV7/5+XV8ex2/+d3vPf7Bf/N7H95/+Oabz59/++l8fjydTnPetCfrHknDdp+pksKdoPBorYEwxti0bQ8bMy/7PS/aHgu35Jju5hNpmWvxhUsYWuvbdtr3ndC33uskrDDE3MZ1ZKaAgVYmQqdNej8/X755eMDTI3355dntYvv13bsPL59ewg0kKoJItz09w91mIAjBAhaoEIlk5Ij0ebsQZafs2iLJQTPcA8Qdu79cXj5/jstnM+9gJVLmc+Jk3jJpunloErEoeU5PcPbehabtNiyScd7EbAIk2uDY9zmnZeT5jBLwEkfmCCRJ9tYzXVtj4n3fieTDhw9z+DfffDpI0DjQq8WIEyVOXRk5RbGz55xl6NJYW+vunMGEftrexf5yu47Pn1+E5uPW2ibK0YUvdmWGijCTLaCdt9Z9XpVja0IiYXMN+gYe37/bzW1mJM1p0yMcM2PMKUKn7SQiSTSHh9+u12vYaMJht32MzGRuqv3p6f0YY9i83kbv2k/n1h/2fX+57H17ACmQzy/Xcpsk4dPpxIg5Z4bP/aKs5611Jk+Mfd+IIApPm2Pue5H3by87hIVPJKxS43w8wsxGpINSX14+47D6AZhKiICIrDG1nk4xY1L1fqS3B2GU05P7HmHh7kZIDzeLufq3AebedNv3ISJA1iDJTGehCFNtcVCv3XMOj0hW1iZBESvGLw5cJU4siHCzEg5TZrjb7fby8Li9//D07fPL3C/ErL1VL8WPQjTSxkDG7L2LUGaOMeY0JPe+aW9EOWNeri+3/XJ66K0/3vbPf/Ff//zTy1//8z/6R++e8O7p8fGhMdC79s5mvF+fIxuz9g2prekmdMrM4bd520Fx6i0zfcyBZOaKgCRaPmOqCtYOFtY5b5lJxBlcKNEcVW29ji0iWtMxzCp9QrEYEj7HzeOqakLZTw7aE4MlmKW8RxiM8EiHR2YKifQuLFl04HI5zaAEZTAol/tBpM2IgCcnZ6J61BFlhlkSRSbiDFlTtUKIcOTAr5M7FrYXYTaitTEGkaqciGiOfU5SVaaakrg814rrkXBtysxY5gg1sIOLA8qLLpZVmoHIY5RichET3rRvFsJFFFHe4lmeRLfLzaeLyNa4dxXMkklsNfKQwnxYhDvzYixlGeIp0xpGzYwy63BYOLlnZQFAEma4M2kGwI2UREXK38gWgEkL5xv7vN1GHo05ABk4pDRwD5vLz+nACznSiUqvF0QpnZngpcmT1Z4V5mzlNxMELjPs3abPsN3GNipha6JTpzvrL37xqyqo5ODqZhBQRomMkiauY4qZpLVtmuX0TE9YYsKTeOnJwsHcmBQprXFCQdWEW34BqOYFl3LQMomrm1qdVoho+cwYKEqMUBLG1kq27DXGmpVZIjHN43vf+53f/4MffPWbrz5/uvZT2064zU/Dp/skDWVy+PX2okyn04m5eaAcwwCFh+8V3eb15XPrSQ8wu14uXxNtqp35xnzraty7ciMQs0PmNUdkMiAqECkiQibO2+l6ewHovJ2ScLk8Z2bv3SyQ5f9XaJaV6UmSF2dBtVUrzh21XKrALtp/0YFBq/BeqB0zyDKnxw15bZuxkMXwuLYmXXk/BEtUzsXHoDQVIVAyxZplk2umAMEiIj2tIuoy5wExWCPJMz2Q4CSmFAcJSjY3iajaTLlK7gXU59FPNZ82jGFjDJHszcs0mYikBrq/oajc/7i+6V6UZ6Am90XRE46kXYkzD60EEEpwwtEgK7/9qIhw0P7Xq8Zn9d5PGzWhmNPMErmJZtCMmObDPEmZqfDCYhnxUYhWJ8/MzIdZMDlIVBs7bsRjeiDd+xsG0RtyMRAaQFXZWJAzsQoVeZMS5Z5Yo0dK0rO+E3bXwh81TpRRyNE4sIgaQcoFKqN0YYHh4dP3fcpuIpJBqr2Jh6T+9Kc/paPyX+x9rJq2bFErd6jArNJ/85vf1GMjDtFkLleHuN0uEWDWpptIZ+q9bTXdpKqSzCSGXlmUmFFssLqUsgwjEgl6iZoMUR6kSURFOpuzBp8RkkqZb1ajKOg7v/vxH/3BP/jhT39yub203qX7t99863NWZrG1NoffbhNNTtqulwEWgTArUtziNvdpw33Xjr7RvH3+/PJVb/7P//k/+9f/+l/+7u88/s53vjyd0uwmkhk0p133G8gjzdwBKTZSxowA81Yo+hijfJ74GMEMsLtFFLueiJgolN19eqSkFGOv+CMsJdk8kMPDtxYHcMnMRB4YHtfpnxLfcvfIPs3cLm3bpAl7IkmEWSgO1/YaqMmMcNRGqt4nyAGLoITXDqrZytUAIWoJ8VnDVYi1Zbbwu+e/ExEXg6DUZAdmVJQHOnq3V8+ybL3dBkFb23pbrrM4FPTEGpF1GUUHjGqR1PGfxSNcZCeWmihPZuY+8zA7rLUblHlMJFvdiERm+VFYhFGuxV0DNOacY98FqRsV23rVztX/oOVDk3PJt4gIiQijw+w305m1NQmB7ooRS1cTkavHdaj1iTLBzKTUey8O/hg3bVwE/6WyF2ldpuEgpEFEQIv7GGMv9SAtaUMNKL1L0eebUJt3SOv47Zll4328iEi/+urXeXDO76GrGpsEuf/xyCN0v60tzhIirA3l6HC73Zi5t4dtOwt3gJtuvZ+OBs9C3asRIsK9byWMKc7MAQDTbi9FLG+tLQmwT3evuUMird6WWcJhiUj63g++v23t8amdzkLsTpebfZMBVX3orW0cybSTJ3nSbUxwKHHvrNqQ2cBScGEbSS82v/34Qf/ZH/3B//3/9i/++//hn75/r3C7jc9A9t4AtZeXMT5LU3MK7IROqIkvSazPl89N1N0vl5eE921jwX59GWb30ixBok1FtIkwI+ecUziqKEZGBgC5P5QofPtYSRUPItNyBK7uzxYvpwcTdVYiDMpBCZRSnLgsBiM5klBJQTqtQRJU8scMAznI4qCQs9YEOsqghDD1cPasiTEi3O5jhOt1DwFEVCx5KtstRBEFyqgKKY/nJ4J8/vyc4e/ff1Rt18vuYZUKiRKRJsjsFlkzsoXB4CUrq6vderGeWdcg9kAUfajySuXl0EolZi+yyL0EK/p52WRgjRfPYviW9DYimjYljmRWIe0EnTHDItLg4S6AcPK9mV3dotV4YK6dzDcGBaVTOsIR6VgZCoCwnHNW6NGu27mPcTkqkZUx0ZthbTgYkLS6ib7fZiZUiyB/8LuPEcoViYQVmcVTyxBpxUJoJMwk5V+TywuLlJnveqlq1dSvN7OIERFEqdplNQh57F68SOLlwkYcRFldn95G77cMcY/KFxaH7NDJuhvWKIFefi+t9dbaOv8R+7wWbaZ3LWO/GlOz77tI6/209bNqJyL3mJ4efNlvv/761yK8ndt1H+5GbAlo79xAlCJN+8YQN2znU9FVh81SsymhN9bOt+vLbfz6y+/o//Cv/uj/+q//xT/+/d8T+lbpPPKGwNZaU/EYbvO2GWvedpt7eHbKB8KJ+aHJaY5dtnLiGQAIlRqUc0QWMSETETOFMuXl8nmMm7u7ukox2Lk1JSKzNItE0LIzrupJjrLckMkIbXzW7fQQp9PYOoixh5tNs50y1pS0I3Vf6EP6ssAvN57l7ei5pmnR0SymSE5IhhK3cDWHRRWDmiwIvh8kdAzMvvOFRCvHtiLBMqOJdN1OpxNSXl5u5osYU07tdDAUmWv0I4evLkPNX2FmYa3Vukwfmcs6wWNGWi6ZDGUaQpfhRDW51iAX4ppxUkkxc+2iOQYDLCQi3LsyKENVSRtxWDC3jhQyv403JU0mRSaX65g3FiglAelFo2osTdRhQny3+6mfHGNkps+oo7ccgCPCfLibu2VijNt2qloDRXivf0Ccvevp1OHn8bLfkZo6vNcEKFROsUY5AKgJKeHBLEIkxDXciJmVj555OQ7wMbgZi21a3+FyniJCwbqFf/TeZGnh3X1GDSCREhERcY17tzmcF4fUysWpbLYKLATF5TrqpvR2Oqz+IzOmj5Jw9K41c6YiQmaKSGvzwrcigR05Anvi629+q6qPj4/XsUfGw+M2h22ntqC4oK0/UXJk9q27eyYhyIbNOZNJBBg3ov33vvfuv/vv/tH/9D/983/2R9/XNvfbN/v1M3E+nM4sFP4yPbTbxy8bicY3+8vl5fnF9yvP2ZjOXR7IUSMDgADTy8vnwOEiJ0Iq4ShbOlVV5ZfLN+Yjg1rrZXnY+0NvW4GRczoQva+ZmlVbMbMg3IfblXVsG58ettPZk27Mql3mgPlwa8JabpzmA+SgY7IrCtCJEg6C2ByRCcK29SITF57gNTMdRKQzaTpNSw8CCZLCEYnWWKUB5J6RjpoMDCgxEVnCYzKjCXFXIZpzMuHh4cFmGcAvm/aImXCzEn1ZpAPRWiuDlmXMxeXrI3fWDVAfsOqy2jyJpICFLw0lcvEUl3GVEB3sD23L1yiCSFWkZbmRByrLWIhkFrzlxKlMrCxCSZFYXgOZyQJlnmV/asbKQJbYXYkbS1ftqsgSHtZ5QaXsibT7Oj8SCkp3eKgqa3vYTuN2vc1p+4hpuvWH7SSgcZuXy21OE/HWDqrCGJEGh+ohwAAWGyAyg8otMTzdU8FcAwfIDK4vLy9vAwyAu/fBGGOM2/F99Zhjt95J7jbKmfAgBrOYDQRH7Egzg82oq8k0dxclVJF52G1WGZKZrUvvLSLKXh1cmY+Hcwh4GT3yikRUns7L6zHAIH552W+30fv2+Pj49bffIOJ8PhP21hqlzOkI7e1MSfvcp+0QOvdT182n7ZcrU5y2GGN893fe/Yt/8Q//L//j/+kP/uCj4MXny/kchHE69fNJPOLTty+365V1e//unfR+2/GbeH55fvn6t/vzs4dtjR9iD5/Rujw9PYHocrm4e7U/WmutNcgajli2OZFlj4uaVgRwbw+n04OIjH3OOYmxbVtN6UGS6km4CeW0i82Xtk0Pgvh2SotpHop17kVEb80y3KfHBE1t0EYinYhiPTgAlCmRjORAbNs23eacFumeCSYgwZzswdOi0gRhyeAIJF7X3JpncxxQNYMHVOaldZhzer68vPR2enp6ZxPPz5eIeHp6YuY5Y5qZTQ4QlfdkWSlW737WNDg6+vmVHURaecxkloqkRUS1VgD4Sg4WlFGnOlCzDsiIKtqOe70M9nJGiSIIzzFv06EMJM85mCFKLMJc4iYIJTMynIgUbGnhVkYbhcBprKO41nxN0ym/zNAspcYxwsfocIXE4YQsQqL68Hi+XD9fr242zEZkZ0Fr7fHx8XYb1Xl5fHxsrVUxPucUCXU9MgjJXMc2DvpcILs5IkXfgAOn0+l2u805e+91jM85CpbIzKenp5rt8enTJxZ88cUXmeRe06y8Nd02rbqAmW0GQEVnKhB427Zte3x++TTGuN1utVKZtKnatNP2MOat9gz//7n602dZkiu7F9uTu0dmnnPuUCNmFBoEukE0J7FJk0zia9H038r04cn0TU+y90g9iY9ksycA3WhMVahCTbfuvWfIzIhw34M+7Mhzq3msDKjhnikzwsN97bV+i6iPjsBFCjgFECODoQ6PoEITBVl3FGQWc1/nBQLbbj8dntwfT4TVA07HhbCwBFMxxvPDIuiENQwGKBg/nI7D7997/63RH169/Pw73/r21WH6/Ue/LXX3znv7H/zRO//6X//xT//pd1iOr1/fAi3XN4exrn2MdZ2HQjjt9s3R5vWVd5r2/Ec//Pa774/f/ebLv/u7j25vX1faV94v55VmMusA+HA6RsR+v6+1ns9ranuOcNlpg415miYiWZauw2qdap2Yym53OJ/P+b601hLxRSRXh7fm8wJofZwPB1zHa/vw9b/7P/+LCK9SrK9nHQS8b1dM1Y0i/HC4Oc93D8djdWDeGQ5Caa0B8AX97IhISIjYe5dauioATNM0FE4P6jBiitoOAfPrV6/7mAtreIWQm5unBGiqvffwvGPDNPU0zX9kQh1rHh53dYcU2s8Pd6PIdLWviAxhrqp9aVWoTQ8Pd2rrfj+VVsJ1XZZs1iylmtoYm+5uI28zLMSlTTmudjVhxonDQT3cwLeIMAF+nUYX5uN8Ps4PD2OM1AvX1UBXCC8cU2nzPKNwKWVYH2MtpRB70h4QsvIQUp67VO9qX7sGlFLAY4whQmGuOtxMGGW378s8hj1WKaVgt3Y9XF2VJvM8Z1eXau+973a71to0TX2syZIuhSEHotoRUc3u74+qlsIkEazrvCxn1Z646lZDVe+Wu8Q3w4HG0vtYAqFWQSZiEKHD9cHA1j73sQheWvseVaL8QXe7nZkRiZn1viWripwRS+7DXEN1yXEAIra6E45wQmQ3IvQijVDs8oHALJLCNxGb9aSG6HAmJ3Z3J6RSWgo8mYcB0MsgOk+qzNSKWJGt9Dlpc4WLiOyn63W1CAvk8+kBQqRNVaqzEBBKucGr+/O9+XnaNTM4Ly/Ax36v739j/+///b/94R+99833D6r3Q++fPt/ZsJcvPm0TiwhQRUDkQtQBEMCqtEBCCKL2/ntPTsd3GF493HfVc6nCTH2czYIAqGzrNBNBOtIfK+3DSike2hftvUOw2VgWMDudz8vjlTrGuvltqI1Op+O5VDJfVI3Len2zb4X3OwIqCOY5OggPD0ODEEIp0lqdSgFm9lAP770TXcQ2SKUaIFEHbuuydDUPDidHAmAp9cUXr/7hHz774tOHUp8e9qSdx4ivvnpVayUSVYXIEVWeAS1hcCxpIrgco21s5FWqKpoidB5Seu+1MTOez2ePQQRqlA3DhNL7oqqqFp6xX9kkiIz0YPrBLQF2oW5BbmG+XdepSvhI9KrmHDcgD/w5a0tRjDLVlhNKQgByAE9hPdFcOhhx6wwmBGJshc9JH6SoULg05mJpIsg2Q/h6ysDMxtAOsQUI34iIoBvQNyJdQ32sSLAs5zHW3Oupeu9L75WZzbzW2vvwx2ZH3hyNaZfdRErG9AQgGgAUYhRGpg1FqTrGyA4LIpIU+XIfmz9Z/svcfhAl5ZIyz2uG7p35Iiu4pedchEUqokcWUm9D9AJAqn1066tik1LSy8x54gPg2LbKWx57Q2viBZSXXRyB7pC92l//tVUdgkZfwbyUWqXudvvzvGwlSCHCE2+bpeEGhNpqPNvtzY/MUdp6PL5sFb/3g3f+zb/90T/7l99/952d0Pn29pZ5nXZTR+pjkWlHGEJAxEhIhBbuGCLKIoQgwu+//wSAwPET/fL29elquhFJSLGXWgGgL8sW38loUVzA1e5UpY9lmdXdizAAqOqyLEye0kmeocwswAgj9OF0PF9dTx7L7fn26fPyzlvv7PZSSgRRGIR/De9KuRBVkdrarlRnBhsjwkdfSsGaKB0kRHEHQO99dTXtww1CwCNHiexGX724/fQPX9y+GlXggc2UVQOFSsm2vrisCBuJD5J8ARsmP3fCu9oAALEQCnNFyD7eQMShvbXGHOf5CBD7/cSCybYXqcIJjHAElkvP4qOwj5euOULLaL8GuGGAEDECC/MYA92ksPd+Op3WdfYx8nJCEUbDCOZCGIWBLOmBAZF0MUdKWGIQOKYF1T1CACJZkgCJpY5ai0jrq+pYdayIwFwYKR+GaeqNCHcj5Jx64MZqAxvDtLuNdL+HuQ21oZGwqYAw1z5GX7FWAp6mXV8z7e6RDfSVzSnjbXmSuiB8PJvNmVlqAULXMXSQ8hiFmZrIrlb5uqz4dU6eu4cjEgu3qYntIyJabefzHJiHLCIU5Eh3k47wjeMOEIyQHv6wCFVTtVIAIg9LGA6ElanVgoQyTRUxcmbde1f1tLIjpcsiBzAH1UXVifRNkD6sL+swm1otXKqUwtV1qIFgE2JVxVBGdDdHnISvntQvvrxHgKurgFjff/fpv/6zH/6f/t2fMh1fvf6ySJ92XkSOx9uxLrvDYZqqiOTqBsRMzIDM0K0TMgSG61Sn99+5GeceQ/v8KWA3HyyCwhDQex+qdr7kz/DrOCkngvSxZ1QZgCISrEiXZ4Xne+ROZkrspcZuL2p0d3//FG/efe/Z4ap63EEooAIYESGwcBFuECVXZ+bC7BEjNjjm9rF9X0wXvOfJvEphoVprHylZ0/ncHx7O4VwL9cWO8y3CRCRtVwZsDUvhcOGaIBHF1vtgARvez92EHBGZG2EhrBGUKeC8ZFtrzLisZ2bY7XapQcSloQC2yKgQbltaAMjJVObxAbyvM2IgC0JxYAiJ/MRM3EIQQl/m4/2r48O9jVUgObpMgeQuAExQGEpp7m7JU3QHG2PAGIYWG7MIs6jDwsnMCuM5TPsaghhBtHk90LeOklADcyyXR7GIqmKqkvjYQwm5FYqIfKhmKVOGUEWIGZEg4NErwCLEzBBbDhrQLzuRNzwud8wIfO8d3QEdEbfsjXYfEq4sNUf+klXF+CaqqEzFeGtKYU4M2S5iKw4mGknFZKZSi0hGHq0PTSIoBBAic0EQ31LxwgRMjTCnDxEAiMRUUYjJW22X2lE3XVUVMTLzgxCEecp1CDXVHhaOoytAJuRWN3UtGKUVabVqt/AxekeACGuFr/aHscx9zIRs/eh2fPLk2Tfefx5w8+1vv/0nP/3GO++X+7uX63LHha6uDzrWV6/v1cbNzVWRgkwRqOpgHhI56ADvCGym6+IYvptuvvnN54Xr6PbVi7vj8SxSmeq6rms3IkHwCEycgiZyLkdS4G5GgBDgZqsuEUhIhWX40KHgwThJJYhQ94DeJijVY2jAUqfD87cOpfraF4IZwAgtu8SYczRXUmSONIdDCvJcCj8OpTLDxwIihGEMWGtFKqVOZkZkIu3+brm7fVjOC8EVOGNgkbqNDG0j+6TrDLbenUzyQ6nMHCJsBgbDdGVJzGl46sdGsWGywhjDydUI0c3MhrsOXddlmEUprUijxABtGaetXHtbEVBPpwdm5lKFJ6ACIeru2Y/LUAh19Pu7l/evX+nohfHZ9ZNKKKWAKQIQZM0fZOeA+YA3QCBy18hSCS6lMDDQxSOYp5hUZHd6KFJz3d/GIW5Du2qfoKYBaZhbkvvzDJ41PG8aAP8RRii//kVxzMdJ8srg6zfvGEMKXRRWetQRL18kh8NmFmgc6KrdbCQtemtgp5A8rF5G3J6CUCqvGd4ePZgDQiBg9CAUNfUAopTHszECE9GDIBFEXIUropgNplqkIZRaGnNJ4zpu9huM4IhwCw/Q4R5K6EhKRMRZHw4egQhjzGZrZBd5QIARiogjgi3DrWOMwrSrRYuu6wBTweoQTN6qr+fjw8OrgHJV/f13rv/pT77/wQ++PU3+7K3p5kbu7z9mtusnpQqs/WE5z4g4tR2yWABaqG5tOSKCnOI5mK3uAu7oa6n2/OYwyc4URP7w6aef6chq5m5OtU6lNIjt5Ga9qypoEFF2QOU7MLqpjsynTu0NeBsxAUrorst6LBXOc7c4tR08eTrdPG0Qq5Ah530PoZkLUQirhSASgYWwtbAhMxepRBJO2SBiZlKwFXRbRISTSU6EYIIy1enL86uXL1+/fHm/a4y2n6brfb1eeidwu2x5Uj6I7G4EgGwMBSRiJDAbAebR0dHzPnJxxwjOZEhEjqhdhIvkPFKJATS/shJJrZHaSp5TYoucu26WGlUd5oM8jBE5IHyYmUbhih5mNi/n25evXt9+5TqmWqci3HaFBb52+5lCeB9jGBhkM+VWY21mSJwQxIYZVgcUpggTpIBLwj0dH255Fo4IG5srqbL0QrQklCRNRHGRLTx33LnfiTAPNQezsdl5smvLxkV38DE8uyouWPZtOyYimhCNTSURYB5j6DLCNXQ4OiY5HlJfyZmXJlI9EIWISuGIzQfOXMJdh68whHNCDRFAJKVghCCFe4yefVKY+9Jw9kAEJioQ4p4uoMRyCAC5OQQTJxSIdKjmyxqm6oBeKiZxiYWIPEBzYjsv92bOXIqgO3g4c7SJzGhZdeh56MSItUhhEoJWZTfVZe2uqxpZnEsZz55dffv7z7/57Wf/+s/++dNnDXHeX6GOu9N8ujpUhFi7D13DYdrvmAsAWHYrZA0LRCQ31M19IAQCtCoczBQIMTX51rffL6UdDodXr17fvj6bRXRX7aU0uiAkVDfYRTpq3SC3Y0SbUwSBU0Cepp37xg4ilFJ46UdAur9/xaLPn+6/8d7z66t6Xl8RDsBBZFvpi/lWxBKU2KH044QrwHgchiFL0hyJBhEwkY4lT+YE6GqjG0SpZXr9+m6dO1Nh5tFNwLBAjrM9NPt+H+lmlxr44aF5Qgn3McbQ1WyOLc6QjwKGcEQoVHNP8Uj+iQ3WPIgoW6d52/ZsAYEIvCQjwCOvotjtW0TYVo7AEJhexlLK0LX3vq6zbcGsMBvn87kiVyFwDzMIDQKPILcxRlAwSdoWmJGVk9JEFwtXbrhExDz9MgVBLna+bX2hgMBHmzYiXj7XzS7s0/R654v46Al6HFiWUswA8evI2YTNee89U0hZYPfoNsz/mv9IWIQrEauqraeEUxGjBJmTu67rIqUiATNKwlsIsRROJco08nuYpn04Y8uJTnQMYJZLtGk1c+ZsB0UEfoMYDItws66+qC0I7DHM0NzD6ZKq4q+tKR6ecifHpUwRIAJysuxrn7PcobYkRjEzlsJIFhFqXccM2BgNySFGqSglcOnqZ4DYX8Hb7zz9yU9/8K1vP//gh9/6Jz/6zvH8cp5XZCK3ItAmOp3vrI9pmqZp5w46FBGRhIi3PutwygSG++l0jogmXKUJS7iOcRpGV4er+t239tf1498XgC8jwu6X02lGLEUal3IRBbYWprigskQkS+KTfnOeH0p5VkrOenrvPb2rtVYRWNdzI3/67O133rne7el4moNXpkiStjMTcjhggIdSEBIICRd3JXAOBHUjKZJHOiIzY+Yq4LYmvTuw6ODRR4QQTq+/eiBs77xzU+XJF/PdaV6K9K4qjO5IBEgkBMhADLUWIhqgY0BYJimQUYIqQhUhYUGUcMrhFFMhStLcBcZ5cW3P57XWylxSBHADkg0/s2U+sq12k8ph2skYw7ubRrgi4Pb1GGKxtS82lJl3beoIHD6WWacWJuHmNiA8PNA9ld3LvccEnEWH+W/y7dPhlAstbEysUgpSltB7WsLcNQjgwptHREeICGSKbf+LGXUXoSLs5kCILBwoIrVMbSoAsCxnIoFACmDgQoWBATg0KLAwYzBlisQjMXljOPPQokVqMqZFGAgzucYigKh9hA8bsZ+qCYCjLD3zCARJbiNDAabioFSisOToIY1dHrEuZ7RtjSRhoZIrt7ubqjsgIwoFL4S8bzDPs8CqA9aure2n6Yq5hePLl6+yCXK32+dRi7lkSWQphTgihlmWGg53zUrMgLH2M2EplRF4XYcHXV0/v72/G6atFmK7OvAy+5hwPr9qu2jTBHx6/93rH//4u9/81tv/9J/+k/2h9H47xh1GtwG1kAc93N7dPNlPT8u6rvP8AACVG3NZ1uGIzFiKCIN7T9heLYWpYM6b9T68QDCXutr65Pk7T56/vT8Iot/evh46X19fz+d19CwTlDaVq6urpS/n40OEFUm2nY01zZq1FEQQHfPxYSXafKUITMDzDK21UupuF4dr2R2AaFmXY6mAQFxKOIVDAEnlIhWGR6zMiFKAB/MUBbt1tXPkxiE4MuHqQAFldxXgL17ev/vOt80QnN5954Nf/sMnD3dwuvPWsF632g5EQbVIuA8LwAh09FIFwdd1Pj68PhwORFQl6YDhDoTTVKoaimDvatZr2UGYaUjjrQHIOwLUgja69iDAKjsCQmDBMI+xmnVk5tbq6XQys2lXRUTVzJWEdMBQ0OGq7uCU/V2IoWOM9Xj/cLx/BWGFqCAty4mLaJ+1sUAEjGTaMkY2CJoFO15dHURkXkco9T5fXV21tssJn6qRKVEhJOaCQKpqviqA2vl0fj010NGJZbe/4iIP55MHOuCiRrVh9IQmO4KG78o0Xe3HGIH3HoZUAEUHzOdBwNbjMF0f7x+O9+fnT9/2Hjq0SlmXEeZMxIg+NNwLM5iFjT7PhQpOgnjITQcK97Eebq6J2fvMGMf5+KQ+6fPD1b51CHn69CYFZ0TUsZU4B1iGoGNziZNtTNvhoYJ8qbtIStD2QQwB5u7rOoZCkcbiHmuEAoa5rSvocMIG8CZ95dvGaUNPiJRNUsq4NHTAbWi8KTfqCMosTI1I1EBK2+/3RHSej+fzuUi7utojxnh1BLRnz59874Pv/vBH3/zO95/vd9ImJx7mq8eKNCj3N85YOTZuwuaY3goULDeeMbwrOYCmyfrNvjEcAJAGAiDp1Og0f0k4Xd3U7//gvYj49W8+/fKLu1IZgYb6up7UpFbpOtY+C5V07z+OFfI13GSWkDzBwVYqGwl32+/3+2k8f3bz/OkhrLfpsrOlAkBw6ZaNsPAegUCJwEUHMMBADrQU0s3Bwh0ie2Dntdda94cnASUchMt8HMvRzqeB0MJ5dANkkrDIiEoBRzcNCEdANEECKX0+ExEip/sAkTmxdNyYgAnCM/UA5kN1y1BueqHjRUDhbXMaiIzhHhBJqfdLvDJNXxFmbuo+BlpoBIsUIIGQuHST9GVd19XdOcJggEeTMk21tVILUziEgA8OAnTCjdGOiBgEjph/IeczEoIIUS17jm2YdrUcmgTh457fzYlBkNJEgaV48OYFJXxkELqbuw0fMetQJSLjDUcgUqZpOj8cAaBKE5kpGJ1KKaVmVgt9XnP7IlSA3V2NgpnpktQeYxAWACAuPpZl7UjplTD0AB9Igm4Emn4SHV0zX5hjsFLKRaPEgFQyMlg+PCy1IgBQtRya5maPiJjJTNeeuCSdppJ3FzO5ZWGkIggR58nw8ax1eWWIMkivZtEjBmCWBaNsxe1hppAsT5YNTYeBkbSNYJSp7gpXIRaOq+vywR+990c/eve733/+5JmozVICY7gu4EoIwihIhiFSEtVh5oxSqHBIZG0eMaJHoHYFzIJprjTlD+wWgdkd7YBWBR6Od63YzfWO3j2IfHt/mH7zq0/uHpa72/MyFqlkqrd3yxgDEcExHO1CnczpA4SmXO+Q0NG8W9TMhs7LPEQAIK6vD4fD4fb2JUEwYc4uLsctdweFDh4QBBCY0FYkBEnwQjirOniSyCBA41KCsN/v1nVV5VKuXr169dVXXz08PIjsAGBZluSaqWqAFxEblx7RMObHFoA3+nYEIDoSAHgiBoiEyAFoAzrFyNTCVkR+KUlI/uL2OrtT9ge6uXvvWwQ4Z3WlMJIM66qKnI6VAiRupGrucD4vDw8Pp9MJXAHCRieHKpRwPSLCx6qzQLgcA3LdiUuIMCLSU2caEfmwRHN3BzXf8trECEwohMJcPB8pkETzpBY/yvC+RYofq08Aeu/5Ao6xzn2e55kQiShDQFnehICAjoJMFShUdVnQPRBJRLKzMwN+JDWQs1dV2C7cE1BV8+7uAJv6kCWJzCyn4zkR4xnRc/cUis1GhmoCLAIerYfJ53y8mbMZPXE0tYpIzUqCpH2qxbquIpRAFgcCIGEppeTMKTYIN+BFSoGwTUdFIuYMs6bqjmibtuKUU/Scbo7Rz+fTNE37/X6aoJb9+Xwm6h988P0f/8n3vvO9Z9LOQPPSTxC90KTmpiuB1UatSE7KMKuiRyYOplJKqOuIWptwJQ61pXe1C7ozIyUJ9INL4V04BHT3wUUDl/P5obT2oz/+xtvv3Hzy8Zc/+/mvTudzm656969e3vauz56+RcD0ppggX9jtAnK3DW0Nm6pkNsZYl/Oyv3IEP+xaEXr51d1hT2AeoMCQhCWERBwMgozmASUCFlGQlFQQ0clHrqQpmUNE7Pd7t4jA82lhumLhL7/86pNPPlnmfthfuUPvnWUCiD4WAk6GAICbayi4Z78u1JptgBic0mmm2h3EiCWnoUBZuBJmcVks4EI24G26vJWU5nb+Mecf7l4qE4MNA8DaJkSEHlwoR2DwNQqjuz/c39/e3s7ncyvIhKMbunEGQ83NDBPNFm8ikkSUcm/E5kpwz/O5rst22adki4BDAaEwlUAgqttWgsoAdR+maApJPDEP/XrzqghTqiFBDCRUKouQ6nh4eKi1BLgQeqhqDyQzI6HLxFGRNrHTfZv7mlve0YiYLEk3hEg8tKfYISK+wTI2z0utNbMzsqq5BxITCpNQPupLUR9Jc4akPoFrWKAhsaNb5uzRHT0RSd0GeiAwCnLlLGfQ0Hk9Fy8lAEFMHSEBkCUAI2WcCGJgQmRAAhth4UBYamWp7h3QiNHMADmhHCmeW7hZhzGYmROJlz30AQQoxN94//2f/MmP3n1/ujt+tIx7kbVU8uWMjkLW9tImaYU8zBUgIAwoqHKbZIeA3dXNa6ulFBZkwwgDjfBhOUzO3Q2mlL8551iiiDHqOm6P569quXr77avD1ZOra1ntOOx49/qhrzo1arXWwggFoT5ulPI6hMhadIgtWZyLQiSsDWBmipur6fqwF0ICr9LGWAM9wJkFGXjDB1NsrsO80xiRMAKxGGqEJTwJIIgBwSLQnXofagaA+91hXuLFly8//cPnAfvHEJOHupGqEphJia/pbWmSySdKOnEQEYDcVVXNBxVK4T0CCCCAABlJLMkdl6KKCEgdPnuQshFv23Ek9AQjkJEowbEe2RJoxGQaqsM9HDQh9+5wPB7zyEDUHuvIIsLTGm3MaWcmFmKMrVFuY9gg5DrkiEUaYY3gcAhPk54AkxqJGLN6BASFM4QgsnB1ywUuSQpoZqqu6rklh62mxHKOME3FowCB+tBZl3UaY8dTBd5GsENXlikDgaYaKJrT5m03Zmq2djWLcGQuwsWRKJGaHgBQStntdoDpufTLxGQLTQthzRIu2mot+gX5uu2hclYBoMwYkU0buJ2vvtbmllD6MVZEFCHiAkEAttlaIxtNCCDMzCihXUmNMwqI2JC7j8pCsrNV0yuNSUxJyzMEXkbfMdb+5MmT6/2Oa+vn9eG03hwQiW4ON6WU0GGOtThWnCaI6EjJCKY2ydQYMfqAFNtTdq9lYi5mEZ42SnIH0Ngic7lRVF98fRMsJkSA1D6FiRn6OLHLbgKSvo6XpvT2O8/+9KfftzH/17/4+drnmyc3TLv5rEVqRHZA5jYDw9HRH+ftqSDkS5zuOrNghGdPb6ZWtPcq5ZKDIiISJmTZSk4io2K4LSshFKmOIDC5K7gBAhfPfoSIOB6PELx2vT68PU37jz/59OXL1/O8Hq5ueu8iVUTWoTmQigDVng6ly6IWCAToy9KZsRS4IFIxIhS06yDliIAgkFwEXKQmJgAhtwbJFwx3ZUhCFSDwI9Trax/ZQBNrn3PRAUJLG5GTgWVA0zegkCTBOZ/MgFtOCRICkVUKDASIgeCbWgQJsEraOMB+f9XajknMwiGIBIgfuV4IJTlU7gGACFIruyMEMTXhilzMEXGkoWhd1yQJeFBtMkaZ6j7HxhEhQrXW1kprba0VhbPfKD9yZXHY6P7uaraV0+XL649NNvGmffdxWceNk0ZJfH8cWwpTTcDDRnfUvNWVNsp9mqKCOGfaFS+DYtyafzGVsDYVM1v7TBt/LZfD2O12iAjB7kTIhKVIFZHeM3WXx5j8NcDDBFMv0DEoAoeqmeaINDZ7Vjy2pIE7Z+gAmCAyyI2BCcE53t1++cVnMu13h7E/MJI9HG/3ck2AIlQEGMKs+9DQIZTvfmEuYaTrwOBaxB3cx8WKm0dc2eYgsHHQckpq7hGyLEEYZkoM1zdTRPT1dhjuD9PN0/L9D75xf3f8kL+YT9DX1YbLJG6cFMCv7XVzdM355ubaRwyFGGAAGgA+f/6slHI+H2utYz2VUjLcR0RMHAiRTZUYARrZrJEnhBCIEKqWpVsEIoTkZuoW4TC13fk817I7Piy/+Pk/3N0er6+eIpfzcT5c7XbT7rysY9hutwsDy04PCIdASl+tEMNwS7e7I7AAARFS0eI9H6GZXmMiFAHhKlwvh4I0v2QDmkSMbecBly9OFwobbHV47rb2eYyOiH3JaiwB5Ajow+Z5XZfhDswcTmMMQMgkQoQ9wpSJiJCyyzouCDfYOHcRFypJrqcZW2MARAbMQ9DIR6l56PByITwBBmEFhK2+WaoDWlx6eiLM0nOHSTQZY13HMnQNsNLabtdaa8w8TXWaqiLM87x5i5lJ2Ia9eZy7eSBzqTXU0Vc1i3UoBJCpXKSQlCTU1lLKNDVVhYsqkNamCZIFFwaBCLLNUS4gna33CpB4I2SqurtdCl/RHQNHkTbbKdWyx5E7AFzevzwnE3NJMwIhZLNmMlQuLtFAQbcYaszmHuvaPQYr1loBHbaeOEweEUBM+z2GL+va6qG1hlCmaeq9v/jqBUu/vd29/R5f3eB+agbCWd8MzghgMcLHWHvvqporFyEjsqmZBWEppXVTM1PtAUYUxJS7DBjwSNGyjRwHAN184/MQRKu09u6hu7Yf63Fd4umTwz/75z9h2v+3v/j5V189tPpUCtmGjfjvT78AdBF+EhZCyBuKVRiePn061dJVbw7T3f2xlE2j3SBNAR5unpOjNA2TuxM4bJsfCkTHNMM4EgSAme/3+8P+2evXqzt99dWrX/3qt9rb8+fv3d3rstxNOxepbpCXjqHZcHhD5SNmrrWVwusyUljJyzf3lWn3ys3lRSxIFj+XUlPbdlc32DbtTB7mlw0UbYZlSaXNzBCp1upuQzMQJUOdudTaCGUdsS7HZVmOD+e6AQh8rItCTFNl5kjYdwR4oEf2tqTp8LFJMjcIkXY0xPPSEQQghS0hZN+Si9m2ZqrOxdwgUxjm6u6w2a54myKT1lpL4T4owmDb8VtAQkl6niaYmYsEYSYppmlSpFJyGJdh4k37TB03HyoipTTGETpAzQNGuAu3y1W62Vs8RimltbYsy1B73JDKw/Fcq6Sjzt0v7YNAhB4aAEiEED4wHJBiXdKvzlKqlALoEeqBD6czQJQ6EQExWxq0mOZlnaYJiE/Hs+k47AsX6qpBKFKY2WysfR5jDTUiZJK2m0hpaFcPqdWde1+ADMCZKbHuo3c3EN5uSGZe1jNCKTIt67yu69OnN6fzw1/+5V++/d6ffeM779zfvz7c0PXVEz2NUgsR9HW2sNyYEcP5fG5tV2pa5AuSm+IYo7QqQqVwgLqrRydkKYgYaj3fquzDGWMAIGMNhdpqKbyel7mfd9Ph6dOnX37xGmGa6vTO29d//OPycLv6+LB3WtfZlIio1AZBCdUtpbQ62aVjPhtQ1Po81mmCw2Eye4iwUgqX3e3tF0+fPVnWcwRCkGmMPqtqoKNwkeaplDwupASwWZo9XC2GhwMOtdUUCk+mME2Hu9vjh7/7w/FhEap9jb7a0ydvQ9Dt7b2IZBBIREoinbaI71Azm1fqgLydetQ2bmRCwZhLjp5V9XQ+5zN/6et5WYQrkSCJ1K36xWwlZgI2N3NfR7dwJiOiZVlEBCj0fMq+BqkFEQ+HA5Egkg5f13We5957btFLavrATLiu64i42tfdbpdPr3VVIy5BlZiZe1/gYp1UyzobyCmMrqp6nqaptMktiUkRj0TCi+6e72N0BXApFRHWdS4UAXA6nSw8rxkiSP2LiGqtaiMIiTkAkq2q+0MpBZxZqjs4EiBIBq7NLDybgvKJAUHqsNmi3RCQqUmrdVepUF/0MsgYtdWIuL29jQgRGWOMIfv9Xq6urre1c2RtUfJhcIw1wyqIaG5jGAC40TTtLs8hHCO1SkQoV4d9olNg60qPC4IWAEiktgrGKFLC0dzv7x+yWEmEmQrW7WolQBFhod7JXQmRC4tI70sEQQRzbK81I2HUIohoQwMAARwMEbnQ1WF/fzq31n730UdtP3/ju/tl7kWYCjJzsrS69jF6blJyQVTVoFGwAZGBDrVufTs0ZZYMwj1U0SwQWIoQ4aO0myUuXApi9K5mNpUdBt3d3hKgRxShCuXp9dUHP/huX/2zT1/d3t7W6dqV5nlubXdz/Twi7u+P+93BLBnEHcCzDpggxlBVlEq1VhLBKFQqcznsr7c7MJ0duKHRzsuMyMJNuJUMm6i7O7gTQ2WO5IEGiIgwn499Pt0/efLuJ79/8dGHnwjvCKbjw9LaNUTxYNPwcETfjA86mD33wLyRlNwUROoWAIctzCFSc7T3+MfiQnDf9rMXjOsmNpmNsQ5diECktlaZGWHDRmalkBt4pGaeCSW6pGNpWfrpdF6WJNaVwlxYMEAQG5OH+FAhwkBGKswACAHgAReUQx63bVs+LxpvcqLwwgp/s5dI3hFbkvUpNzWQSec8pIhway0QVp3mZWlTHVpVu/kggKH9fD5O01RKSY5RrrN5cQYhkTCFcA0wIskqBuHKFFZDh+cPkcP6wNx8yZtXOwtaRLLe6iIlxmXCuGk0QlItY9MYJMm3wMBwEN8UiHDgSGIkEcl+E/Zc3baaVhYsrZkPUM0FG8ERXUiEWpEGwcyBQJsdGIipMBXhmoKcbolxh3jDtM/lpFCRIhEJdwrTEEkdPpsP2SPUYrgxgAcKRBC8fP3VPI5XT64/+fTL/ZW//92funupErHkDllKs7AxtlEQMRgY+IBgpgIMDkN9uA2RpLlDlkTjJc7MTMKFOBt0E4taGIpwVevr2hFJalX1u9v7w/6Ja0hhYrq63v3xj36wbzv3X7y+/f20ewqBfahqZ4nMjOeDS22oasKp85zb9bQqlgY5RTcDQgnkUibzMcZwc0Am2VJkY3RiQjARRwpBI9k2z1yEOTR8Y2FKMFW36IsfvvH09vWHn3z8Za3PCA4PD6O2BjkTofDLuh8Rlxw3cY6LwsMzq4+5x8+BXcDGlew6EnNiZhf3QcpS5KHJLU1RCd6olRcmOMrGXITMGqbc7uYDEQAkj/h5Iy3LcjyezucFgUWqm/tWjoJElAef3h/pjBRbK0TwVlSNeYOhP/5ImWrxyGQO5x8D4jBL31psbBiKi9abv4V7aMAghtoKIO50CgzAawA4nR5MI6Oomf9FRJQSxOYx1NUiM/Jx8TXk8CWPkqkOOmLfAgcEkeW+xsxcCwubudpgJ8TI9PTXpFlK/1JrW+5GXrx4uWkgQqUUu5RbJGwxn9sR2bcX4TJHz5GSOyWnRQQQ+HRaM7sKAMSQ5z0AYIAI6OuYz8MdIRojipSbm6e5XCGGeb88NKwQMrNHPkla/lSIUaQt63lz9VymWblxDXN1y4sVwJ0II+ax1FqHxXw+f/jRF8/efvL+t25a2wn6upw8lBk9Mj/CIuTuJMjCyKDYzcLRgZ0Q8r33UAi4ZM8hnwCIjABMRWTrX2J6dB8yQPhwS1ZpKiDoNnp4vPf+u62VL168ePnqHhl1wDSJmd/f3wpPrRW1LZOaysKme6fqa4ZSpZZh1rtaQAouEaEaDogiTSgihilpRCT54gwyoFYhZkFTRXBPHIhbRNgwA2PeTdPui89ffvLxF8syAKIKM3FfnTCICxMAPmZP8E3rz0a7UYR0ALmiISqgJ/wiHM0hCSgRcWnNTtsCwdf2C/imOtRL3TYF6zIALGVrEfGNH+0AdOGpB4C11hDJdPgGCu2ElTncDMLWdbiu5Gyu2jsyqqp7Abh0kmH2Ur2pNX705PrGTcoGHRShUlmHEwExpvYcMC79sZE7DI+htrrb0GY23DtJSRa2CNUqy4rh20Qm7R5mtq5rco0uJigYmeo0d0M36N2ILuEoliLE1EeEWUAmRICJHnvA+hizCDwuA3DREolyRDge/5N88vGn2yiikIggbpSlfNsukuz2PpXSWu0iWVCzcayQgoh6X9w1Y2GJUd7UVBvu3ldflhVCzmedpiFc8yVIszCiJb6YiANjpMXCPZH3QDSsA3hX7WMQI5qqau9LqGGwuwXYVoHjA3wA0FvvPH/69GZe7qk8P53vf/az3+4O/+xmT1c7UY25dwDLBhoRIcFwl1pqZQfofR2qAcwVJYowR4R2jQjmmksCUTXXbPQSqXFpggaw0deIaKWo6jzPEXA4XIskgAtmPfdhpbz1zjv773/vnbX7P/z649e3L3fT9b4dzudZVZ8+eXtZlk2hJIKcOzIHGJRCFKW2upvMfe2aV0yyNwHQkQWIpLirW0j6BTyIETfRR8lhaqE+1M1hU9F1uI614k0tV//pP/233/72961e392e99OutWdrd+HtsZ/zUFWL8FJKAA1z9cjNowMGkqqbdQ8TodaKFI7w1MyC8i4jYeHKiIw5jCdQVzVFZEHJx3NmcE11mLk5UVTAQNomMkjIhQgjzCLG0KQn9K55Co4IDx9jyAZeDTNTxERLMjMFMCDBZj+4mMT+0cfjfbTxjjBEQAqyAACwhXt2kw3VVU0xAMkAIGAQOYB6uHv3GB4jzNX6eT66ex/LxgVxdwsnD6A++rL0MUxqK1JFChEjkuUCgaQOw6JolCIWSLAxZdPohQm8ZXbduOcWagbFpVwOd8ypi/ljyHLbBEXI+XzOTYFf4Cr5iiBwGvgvGo8hYpFWyyobKiPMLCGQqTjkxokZEzrMzEjQ5zMAAHA4IlTEGeEBgKZpuggwQLwttEQgjBF2saZKWgPHGOZjjNXMEiOjqmmdeJDFzRC9VMxOx4hA5KdPn97cXO33h/e/8V3Aedhx154P5b52LrsdkdoKqKVRbQwUY4A0ISEdNqx3VUKuUtCBCFNG3rYkObRDdItHKwciRziGB6r5isjEBAquRiJXuz2QRMnzoHFR82Ot0/vffNr2z1+8vP3kk09E5OrqBmCCkNpkWVJ12whXRYQYcjNkELXWaXcA7g5BxEE8PKowEYWZA5pHlkflfr42roUKZ9/20q2LiKkOdQ90xKG+rH2diXexnE5///e/fvXy+PTmmw8P96pwddWWVYGTC5g2BB/DzIw52cd2ifdtJCjCquHhltkEJlbrqjr3dWtqRATYiQwIU/XLZuHiDXTHy5A8BYgiYujurupZKne5V4mxBCRECI7Ho6qui83z6u6E4h69d2ApvH0LS0RdbPuNy8qbfmkvIkQwxvq4IsQWskSEYMAsK0GyNAsiBlKIQMAYug7rBTYTt4ZJQSkYkYUxnp+SV3juxzltyYgAwCSttbzXAIBwi0IzlVJAuHqocHUOAGKqtTYLgGA3NXW3YMKthQFTFxuIoDYA3FwY8uAgj+lpRCqlBLQxhqqoqthWLrJ5fuDiKWeGjSRveVpTABgCnRmhE2+1M+mrVeuImBsqKSRiItu/6cuS6wtzQTAAghAAzDRxFooAeuK3PIzJ85iTgkopZdOZfGRtvAgBZsGMInLjqfceoFIgpyWppn716uX98eGb33z/6ubq+Vs3O9l/9tndp3+4e/8t/8Y3rm+eXC+d+pgzhRroRA0IzVRtqC0aTihogGmqyzd+KybaJmr5ExpZjpHdvTCajSpo4b0val5KkVoBgBEB0KJLidqa+3me5/0ep/1bf/KTH93d3X3y8ZefffaH/e7JbnqyLMs8zwCAyMtyjgjVwoJq8zIepA7H57VWwm2qn1WAxIWIQlVHkDAioggqMT3m7SPAARVCdSS4AsDJDFTDDRB5ntff/vqjh/ujqgHQk5u3ljO5oTuaIqARhXo33yb2ZpHYj2zFYip51w3XIg2QRShV27y9iSi2eXOYjTEYgnrvWYJOJLgZl/AyPFcIaa0QM6Sr0nJ+Cmng5+1STJcuj7Ge5/PpuI5hHkDEZjaGOlomUXLza24Iufl60xwjImWzLdtm9UF63CMQYeCmfmZN5iMqLsJqEzxFyoRIkSwjRGAJYg9HZpBCUsiDAKMUTp5yrTVs2yYQ0X5/AMDzdD6f5kQWuQE1qYVFqnmapgmBUAqXCpbiBkQgEHOp2W/k1vPGzdcZLoS7XG6IKDRUddvLU5vnOXftMs9dKpe8j4cOU/BwgCZVbSuBhSDdTsKEQR5IGpxZaUYJDCQbPRAZIYAROIAxMMBIpjFGqHWFQohcCgWKrOfFMRgQGBjCIFzdfJz6Mk015VD3wV0zgzhGBwCRnK6nJqREQBWX7kNX4kAM92yLaVdX+NsPPzme++8++sN777/1zW++9/kXv+/9q3/zr75d2nf31089eF0HYCcWQJv2zd37UBsjTWxgbqZKXAsibyfbDVptNtZ12305DB3rOoioEAcY1xqqp/kYRrv9lUjJBw4RmaEUmaYyxjjPZ8QDUv/gB9/88svv/PrXv/79R8tbz+/ee+e7xPPpYVnWEQHn88l87HZNhMwX9YdpyiZSzgN8ULJ86OKTZQutQVS5ETopRG7wwRGEgKAUAXOtIsQyDM+rexjBLsrui0/Xv//7D9WruT4c+/Xh3dPxdDrNZhQ+zAEFIjwIabvycmUoIqVIE9lqiMdQZmERInBz86EaGnA4HBzMRmpALEJmhhTz+TRNU60oUoQLkbgD0TBNI1yuKWGaAMLNbpOrj0ju9gmBRSaIPsZ5HcpcgLbILJQCRLVOBA6h0B3RuIhjaKgZCyNvJl2PzZyTBnVI9hkH5tMLQCPQQ8GHh0GYx6hShTDXCIZMSTkiRtCWg8Nkj0aEAQUiDFczzT34WFZ0nMpUpfkEre0Sb70svXedJhdKBvqmK6X1kLkApcWKAgFISIRLA3D8OjpFjZJFE9BNw9EghgWAiYsAMJcx7seQUpoANDMwDfVBgFKbEG+0JBaIUAtAqHVHwEjsikiCGGPouqyBzgQkYtEDwEaA9RUGCRcWRFQbu92OG53m89zXNiEj6zhrDI+wzXTvgMhMzPV6t0dEdwt0qSwiQ9fz+Xx1dXUxCEK4skhuT49LH+oR0rhJ4cedxXmxdcXffvjF/rD76vXyi7//pPfF/e7zLz459pWm6/feOzx/m8Z4PcapVjrfHblUHREaFUuEqqrsmlAd5kRUp5bIIxs9zFu5FPNANKmVi7o7eJF2PJ1671ynaVeDUMOyFS3AGNl8fXhYETmh5qstXPof/ZNv/uQPf/T7j3/+5VdH5pfzHELVXp9LKff3t8Tx7NmTuc8IC8Y5rvn5k6fz6dSqVmlS6nI+3dzcjDEWXRGhTTtmgXAhMF4J0Xv02RTqvk217AL7stwy0arjeO5vv/1NoN3vP/xCyuGXv/ror3/xsUD79rc++OLzuy+++Ojm6r1Xr24BG9EKyMjkHMzItRRiodJHVx0wd5FVuOY+3IHcdV0cIBAjQMcYal0dNTpjiDAQ2aamjzaRh/blzNSckYmIRKC1hhuFKReeUoiEiE+nU2uTiKiO0ZUZRVqR3UmXofNQQSJi6uaJc+/D7o/n692+KwiRtKr9LE3qvj65ufI+Tg8Ph1Zb3TlgUHQdUgpXKUSooH2YWrgty7FUrlLc+9A0e4UIuHcRqq3oSfuy6qpEBA5hQCS5jQqMbmsg7m6mRdfJ29ndh/lQobIru0mm5dhXVdNgKtzq1PaltFwdaq0+bD/tbHjvvVBB5Ll3YsZSy24fpEBkDgig6gjsQy1cuITHmL1SyFQ9TC36UOLIknJTHRYGCECSXs0AD0eDbKXWhH8CBABCEGyMnEoowBfbGZBhbiOBJVQqwOPIEiKij83lbhqZoE9bX6AjRrJI/eJYuGgK5IHhoabJhi/u7uGBy6rMqX2iu2zCB4AqmANRC5AxSDW3EqO1HaB7+LqGmbpr7+buh+vyv/2XX/au/8Of/6s//tF7uIzj/WkqknQjte7DRUQIgUmQs88Ut5MZBDgGBWMrBTIHDmCXls5wmNe+DvcgBjII8E1xRAwAwjyHJ2fVEbBfXR2Aabd/b1n+xd3t/POfffjwcKcmNjoAlbY7LSuiUePeFyYD762mfX1TfIS5lK12XYgDPb8pYwQasTMhRwEr4RLOfYSaTu1wPN2raqC8+PK2TkG4+9nf/uav/vpXL16chMa8/OH+1UnoYP329d2MIEAMyEEY6MDEhYSYgsLSYE5MSYiqRIS4GRkBHdNSbX3YikUBFTFqlakWxBi6jjF0DSKutK91VwswGYS4+6LHTYEmQeAcwhMGU0mkUn6TMWxZuqre3Z7v7u6P5zOSUyGzMXq4h6CMYSvruvaCQTK892HdzIYbheeOeowB4IZRanWEPgZEkCGaU4YvbbhDgG3lkYERDgCn06n3DhZboiwoHN1pDDWFC1A11E0jG+jXrGCgxGgSFCpNWinVILLBINzVNj9x2gdaLWspl6S5BQACoxQOBORhizoicKp4RIKgsU3MkYBT5UEiLsIlM5cUQJ7+yHz7klOwnecvp7IUDtL7lUisNKgm/WkbxoRHUIADPJpYIQMVsOXzPSIIIwtX7XLgyb/SsZsLQn5u/pKlFEtYpiqh4IUdvC7JmYXLodQfWfLMRSQrHrPwx8wogsbQLCNE9AgopTLfHO9vX3519/D69ubq8O5bz68Pz8KX41EPUwtEGwARwpUFos/uW5fmNi0LjM2Pmkw0jEvdMBEJcs7naw0imnZNJIe9ayY18pAMgWFZx2wWbvOdmxx2V3/ykx8+3Pf7++XX//BZYjcJSxaKmes6bKgXsbFAP0AyLJhDLZijTeK6AjoLWYC7hgIgsRAAERIUqUBhDIHmXUO968N5fv7srd3+6edfPJDKsuhf/tXf/exnv+sDCOL168/67NdX7HCa5x7OgAxEBu5gQYgMjOQjr5MkdD4mLLGUnLFt6neezM1Xg55PESnUhJFCdYwxtCtzafW61f1UVgRJsvPcZy5Uy1RKY87ZdMliIbwkggHcw87n8/HhpArruo6xIjkMyLpAAFRVAgbzvp4FnGTEWOa5Lkvru1pjUxw1q6WFapN1DNXhGhIJZs2HlhAxoVzEebhoIgFAIlIcRCpTAUKmYliZB0aIFEFhZPWIiL5u9nkOyvLvy1xje6Cq9jBb17n3ZQwWKml2IEbAbFcdap0YiChvphSzhLFU3uTDy6VLXwNDbopJKXixb0REciJKudQNpYiVVz8iInDEiIjLp1zWJEThFhFpQ3L3ZM4CaiLVH28PunTU+4Ubm98ottbpbb2IrwVI8syjqrZZXMLDU9HM0GQ4u+XSi+60JXaEpVAauUwh6zpYcHTzCAQCwHBEoiJtmtrd3S0RfPmF/q//69/eHG7+5b/8cavP1+VEwVLYnBG11B1iqJtq35p/HBPmB+AQF5zmZSVzgHBMs2BrDbGVUlorgLGus9mACw2FNlQfqqqbBg4bizp3XEt58oMP3vvhD7/91Ze3t7e9NgbiOpUySoxL8pqKxQpEUve17Yg1hgcFk83LiZlRmNKFFkA57wg0yu3gBr9jo8ACiKW2d9/71ml2gGFWfvXb3338yYvbW7i+niB49AWpmsIya5GmHoCcJi2wcDeAcHREYAwAH8ka3nqKsNaMeF8gmpvdSEeoe5b9QkklxNXds7Rr9OMqesbFDcewruqhxCxSmQuTMJccdY1uHqrDkaIURozj8Xh/f6x1yudxuJqau4YzIo1lYBCY61iVAseiY57ntoz9GENIciGLiGRVx4WPzgwFWSAb1XWaJuR0bYeFhWPS35mKiDOVdFKqalJtmQth9Rjh7NmUmS9RhsAMHDzDK6OsvXdZ1z6WVChdtfdl7afaSXHto4NltfLI87iNLtPe4k2Dy+PHZq5PsM2FSPQ4TL0sZ+7uvBG/tzVR5vn86HNEjIxw+FbsgY+f7G7uQAQIEhFm6rGh7FN4kUvrVv5AvL2LmKm7VDXfKL3bYryNf/AChnf3DLFHQBrUMuQDQMl4gWDf7LzBhETIEsJEJLlIF2nMhRldINFPEJsM2dlNybUcrt/WcffrX774X9rfQrQf/+iDt55/O2IwMtNZbbZBXF24EtHw8WYKddnLIEarNQLVN6eHDh8eEVFKyzoTM1Mb5/N5XecAY+YAZsjLDgASpm+t1erel5N1ePZ0/6c//cGnf/ji1euPVC3ApRTz4e5qrh4SjARBUxCFUACs2nlVZht2BColGgRi2Oa8dQwiNYBQDIdMQLoFxc3N03m4Yfn088819qbtP/3nX7x4uQBDwOQRUvYUdV50gdOTJ2+hJ436zUvhZoi4a1WIUtK+SPebqAYARCV97lkqCShCVX3o6Kq9hyKCkBCBiIRjOPSuiXEJDbUgooxFw1YnK8Ijt8SqPbeEtQkzJvW7r0oMkSMXXc1GzrbAAONCSUMIDzNw9+1IgpQnxcgkrrOF5U6nsFQsaD6sA4BwzQzpGAbkCAlPZuZtL7muqxswl1KbDkVgNViG46L1vLZNAIep7qw5GLiZW7jZGGMZC62iFxtlIlIj1H0AotoKFh49i38AHDCIQHX0sZgPJuAN5+0iUgqzYKLemBAIbXu0bvUQ4VYKShAzz6czMWCYXF6jf+TKyJkzAgWk7Wc7JyeGISI8NNOHzJJcRqL0O3a/NBFFRASJVNWeFC3mghgX60hOx2qtaU3VMQxg5Fj7ModPo4shMCHhBv+m8Dx7MTGEa8bp84JgLvldRDhnY18zw5I5khzW1cyaG374u9cIP1vO+G/+7F+V2qbamMtQGKpAwVxaKbASoCf0jMIBkMIBKJdeBwFA4cqEBZIfjEDZR9L7WJdlUVuJUHVIIYn0mRNSDrnR7UxYmFk19rvdj3/8vc8+/erjjz/77LPedeYimgbvrfegWNDQWEcMdURdx0K0so8gR3QkQ6CEiqDnUFC6dTBA9EjoWAAyvb67P8/66tVZrb399vc/+eTuN7/5/OXLtdaDeQnHUhmM7HSOCB3unlsjdA/NngFwwugjHPO8pkRSW0HY8lqX6yoPks7pBRdUHUrroNVj4Nagtx0GXQOCEVGEsw4vNt/4dt6ESMJifooguhmMbi4J7+BwZCaDbQ/7uH4xsee0hZkpHEgEa5l206GUxoEgLoAeXdWMepYviRQh5uDwN/7oyO683A0zMzdELhoynEjCMTfBiFikgTtzIc05sRBJ/vTTZKoKBqaqPtTD4Q1eUAqVwgbMjCzIEow4BvhlwF+rlJph/DxBZA6QHzfdj4/b5IamCL45DCg3Ghqu7hvXN2tWI0I4G6wvm/aLw8RzC37Zz8ej/rcNlkPTjOSx2bZLkbzPL4WGZrYSYa11jGEWnPwe9z5sXYdIDSAPVMupYaiFWbBIuJIULgWCApS4MMuyLBiw/XiEAeBB4eCRfSCp+jISeqCpIqZ1N/EtXIiIpAiZYl/PEOVwdbUs/vOffXQ62XnGH/7gu9/+9tvXT3Yshnx2dADy7VUmhI2TnzsgAFdNlZRoq/MTIEHkMcZj2U7WGbbWai1rn4lgA0pkfAYZ0cd6Ai617MxC9eHtt77xk59+8Ovf/v727h98BkDF7ELgkkKMGi7d167dvEhuyhwg2lSYkQkgAAPNIcJ8eHD1YEArRA45WQukcnt3LPXJacEnz76z9Ppf/9vfv76z80K1TX0k/6OYh9RdOC29bzRUAY+wMAtzMAd364PILMy9lUoi7tFNOSEiG6E30hnMQX21tFAClg1OlBludXfM4DNDIie2OxBZMgGNgWZhEaaWAyAgDrJVDS0lchna44IB9AgWRhAzB6DYbDWW1nqibeMZF0s1E4NvbMGpTA7gEGbDtEdXTyN/YPYbSvauoQRRAuAuklbNcPc07QlwPQ/hqVZudT+1fatTYLj7AudL5WmqdEAMQMHM+MYlkTKWi1Crdeg6hiGZCEq5hCbCCaEwqfDArjrCmQmQghhQEBjCMBB989F0kkvhBbxpl7vYxkHi4lDe1PKUWPLoEcF8cWhvHw7ogO6mF9BJbmlHreVrW4P8lGSzeO+ru9dacz+5ruu6jrzExxjunAXQmXbzQPf0UwUCj2GIhCCjGzOlF3jju0CgByBelsXEUm76IhGMYe7hzswQ4QBDO0ytMikgIje1cftquX/49d3tafz5/5FK/f7+vcPhWmrxiHXM5oO5AEQ4xBYgcwwH8MP+EBHqlIQ1VbAwAJimCSDJhtsuulTZ7SYp2zKdBwozTyrd4VAgqNSqrvPp/ur6+XvvPvve97/5N3/7D8OBKKlt5O7rMBQLJ/XQEeGIwFQqlWCBUoQJBCUcMRwgzMGTkBLIKFylQi5VSDI94eunT7714qtOdP2Xf/Pr//F//H8/PBjyflkhPEoh07BuQoWIz6czAKAwGnj20uU7gDoVjtgMiylLq451XYsQ0RaKyWdU/s3xPCNiGr3yyQ8aiH6xmwYEBSpkmCdg6aOU1iqLpNtCL3YeSJQIIVskyoZLobu7OxEKsHXMEVYTYeCe/SUdu4IWQQRlzCOJjW4YSOBcKnGLiGAopai7m2YPEgxj3xiwyFxLFRGkEhHDwX0zDlxoV1tBDpF0m3WrNUQiYUD1MLOUFR/P/1sGK/OjmxBiWQYd4ICWdNgAjRgZFQEI84GuRFCqDKUAVxvu5etyXm7Utkc7hJkWwvxGgYEU2yRIFRGBXIjAbOT2irJxLAiRMvGEaMJlQzW6q3qmzSEbZgsDeO+e571HSNO6djMTLqWyqtbaUlBc115KaW0CQDNXzUYwISL35IIgU+IPTMcSkYoGDbashMo8eI7zAADRhi6TC1MZurpBqVzL1Np0Os5qylRKqUxFrZsGEETEMjptUwuRulv78rvff6H/r//Ph7//8M///b/90Y/ff/f9/WHHpy/vzvP87Mk0en968+T+/ta67Q9tOT4cDjszK6WQlHXta1dVDWQiXtdeioikhQ5FhLdgAsOlpZc3aco8rAkdj8fz3J88/eYyH7988enz5x/88Z/84K/++hd/87MvkcY777zz6Wevl/X47K33xljfeuudttN1HefzvNuX0R1sPP/m04f714ykcGETCVcRIBmIoVCFX736CsCnaT+f12+8/87DomGTKry4m//mZ7/921+82E3yne9853e/+6zWhthE2HQ5nRdE3O327u6u+b63VpHJQt1V+ykvr4QOzOeXEYBIl3tjQ4PbVh5fhjqJcLaNuEc4YTBTt15rLcyJ8kHEobaua512m4dnjMuNAxGYVqhcRFKNftwnA3hs4VFQMyJj4nVd06jSl1XHYLIqMEyfPHlKOo6392OZ/frq6nq32+1kV07rKQfSAEAEXJkMdTgijDGEKzOrbTC7ZVkeFTe4uH7jIqL33rv26TBti2NAEQnzKsWKq2qdyrIsFk7CXXWapryPiIgZx1jXVQ77SQoghoe563k+NmlPnj8vjEgEHkyA6aMPM9MxoPe1jxEAUrlOpZSWiwIA5FjhfFoiGBF7H7XWRDpJ3l4R24pCKKkVI3KGKh9/VUQshd3BHfNgkn5P/NpHvisR4O5Ml2lGFuumBkCUDpbH482jikFE29MeOHe4iBQBCPz4Bwg3Dp5tcFzIzDzkMT8sHM2MIhOTCJDdJJomfKWIC+Xy/nRkge7oKB7w+u70H/7jfz4vJ+J/9+TZj/sY93drbbuw6ubL2eZzB/PWgKkwF4ZwB/UREaUUEQyUx11Ssv3ykfd1VRIxrbi5w2RiWpaTiABUQJfK0QHJnjy9+uCD73z22esvvhwnuAdwALI+qtTeZyJ/8eLFJx9/fji8VcseQE1JeCe0GXjQY7ipm/voHl1H4d3hcGBm4WpDTGld+eWr5ed/87t/+PWX//W//G0t8PTpuy9f3QcW5BrE5uCBXAuhIBMBBG72Xou0ZiAASGmUvd6JgePcC5Np5FQ8HyfpE0EWrkl+yxbfYTaSvg3BbqDuZpq8qHyJVBWAMg8Nmx7u7qC6XvzLngkauKBf88qEoIQi5eCLODCIhLkWAkJYEz366tWrm2k3TdP1fvf06lAq9b6s65pLtsWlhRkRHQD9dDobYJ4aApGxZBqw1vCIC1QSHq8EwOwOuFCSnB08NA7TbtUxhkUEedZ/0GWOuwntuM3yAikySUiUN7NGMKCb6RirXwzdSHHpwlKz7YCfN5qZMec6O3J/0cdiNiLqphuEAQB6yOYaINn2OZhOS2SSxGxGxBjZ15xOXryMEoMIU3x4NK4jUiptQfk10SDcItNaFo7stQoyhbq5mQUMI4qL4SiABXxLEIUDgiEyCiMyCwtXACQz1PTJB1Khwoj55uPjX9IqMLknzy2xfYgQIkTczLqFhiEXkVrA7YuXt4Xjo48//5/+p//vsp7+7M/+5K2n3x16Op9WxEJTu756S0inqczxal3Gfqqq2tUBmJiIxC9wy0ciawR6QDb/mDltcnTqjsAszDjPp+vrazfM0MsAmOfTzWH/4x/9k08+efXFl7+7vz9XqeAwH0+1NcShGr///Sd/+7c/f+utf3Z1KMsSr1/NY52lkIgSAQYYGIAHwuH6SS76pRQGDEOIupzxeG8fffyb//Af/uoffvXZhx9+Ibzb76+++vjz0m7atC+ljLVzqdMkwujulbOZbjjCBiONCMAiNXK6S7JBkJASBpUDsMs2YXV3AGKZiLZ7RrUPXV0twuSSnYNB6MBCANBaO83LZiUmhOzlgHDwQBwW6Ljd/47pibTw7UKOzF9t1yczg2+rTGoSbqtBrOuAabff73e1XO13HmPra+ec6Wl2yhIS4JYAQojM+wKhCAVKKd7HIxzQkgGQW0JiB3E3DRgeakYRkfPGUPOh1ociaQABWgQR57w8HtPe4LlliAgRaS1MXfVyEAhDQCEshJVJEQA9wIaFhSbF1sIv0JeIsPS058ZtW7Y2WpQBhnz9AZ+esAiEi4b39U+4/CNuzhNMu1hkpdxF190e8rC5LMJx0ywfH9rpLXncejxqlkREJIlHyO1JUO4Z+DLLZGZCYGZitggBqGr9wg3YSLAb/RkAvkYxLiUh4i5CUsS9LOMEEFkroGMA1nfee6fW9p//y89fvPhCuP70pz+4vrpa4o4FCKkITxVrA+/r6XyXgG0zx409C8hJGayb6xYGIobn1hEAjWE7K5sFIiIUZi5t33ZXy6LnkxJORHQ+n0tp77//7o9/9MOPPvzyo9+fShMmOR3HbKMVNLLP/nD/q79v/+yn370+vB1Wj0d9cv0cQQHynJ1UAgCGBP6qdsYYwzAmjP1i8fFHL//jf/ybv/yLX6lNENUDeu/AKK3W3ZQPZ8ay309CPHqvLABgUCMim6fN3SPxX9nQ20ppzJJAx1LiIlq7GZeKeSAlbhdkO5gV1eY23H0/7cxH730LueegmiCY3T2nS7nUJYKx1mmMNUVrdzQfa1/XdU3yBxEGEFheexlTAXUbY7gpF8JL7dJut5umnUgBiMvonkTEIHTrOAFmZiRXJ4JpV9UhB3u+YbXMXef5vPTe+6LW8zrMww4VYkaizd0K4BEOYIlUyw4x5GzBzZ64vHcQL4yG3KS420VjTtNQYDbyhBMzIpYqkgaPjA7DdmgVEaRts3+5SZNMkYMCG2P1UNzcRSZSEg2+fXt3D6ct7GupCW3DIbVhmgU1ALBRai9fnVKzzJufMpDnELGNalorj6nqXGJqnRC3/vXHqUnGmQk9aEN0IdpFCN1WpHw4ZfiSmc/nDpAII2BOcWGT+pkxRefLkQQCYJ7XHRSUxGx4ZMNkwJOnb93frzp8jPbbX7/4v/1f/5+ffPTP//x/+LPvfOdbJON8fL2sYyy+21Ore/MRpvmKA9BQM1OplJvGfE0k8gmZ5hzNng8IhAjalj9GkNYOSJPZPPq4OuyZy+1dF5GbJ1c/+MEH3/vO71988ctWuE7XjKuaiWgttPT1/u54fOgIVeja7Bw+YYZtYQQuauaxwvBl6aHGgoVlWToiV+a7u9Pf/eLDX//yk/kYN8+e2XU7LisRPHlyzXXXdpUAQwsh7vd7IV4YwIOZJ5mYOYDcXT27p5Vlawph5ghIOHqt23sRWZrGJY+BHnxB/yNzLaW4VXclZtdgipIF45EFJFynNs/LGAPzlJ5Fa0y7XUv85BjdPZNU6q7Me9zo6ltgKdxR1S1UrQeYrhiMNdKBm7UlAKDqxpFkNC7kCDECCAixIpOHW95Ow8IjTLVbAGEAew7dHx+f+YsjAQKWSizAEkhGGAiKFBBRhGy8MbxeTtCUm+UcjqRwlgJkyYeub7rMGDHIbDJmhrAc42V62IczLwEbr5JyyIeooX103FwzBanFxkCPN48uVZFsTzPwjY+QUidEYEYp87n7mALe+BqU6j3m1c/MInyR0DfmbE4i+9gygnnb56/3+Dx/fAUvHxmV/e+RFV9/2l+0axCpAIqYB0t/PGf6Vvewvdybgr0NRYaPzhwCDCwAmvw8JEYu968eEOXp1bum5w9/97LPf20G/5d//797/5tPpnbdWrPxYLqgUPhmuGHi5O323tEMIMkl29tcSsME/cYGZYMguOQkENANIsoyD3eyAA9glnU9hZ3GgsL85Obqyc2OcTocrnblysD2B0buy1kK15dfvv7s433vx/P5/vfhdSfXN7vdVSnVkbbwxE5qnRozltIgFht1Pq2/+JuPfv+7zxmv3nn7OfBkxrvrm8PVNA0DuZayB49aqyDtd40CSmVGSnSv1LJ5eDf1WksppTREzKbvfJAk9SwiZy4XVwjCfFYL3E4QuWlyd/d5PiFiYQHYBdglbA4kWwcBUT66wCjyB2CmUsRj6Kpmg2jLRbm7mZoPjQv6LTaPjGIerZ0Ycl3W4WbmhIWolEIUMNxQay2OjpYPNwjPBwC7O+VW3jW2fB6Vym0qgVAq84p5mDcblweqIwaSASoSZwFRKdw74EViMDM3XdcVYntAElFmr8ewMQbnlXyZU6yrcZTWWqWazjEP3Y51QKoKyCL+uLVPP4mqgjkRsiBFGbLk41ZK6YsTkUXI4+491wEiv5SOoXBFSigAZveLiDyuCNtBEjaaXA4j8stwHu1gy5ab+1DN6d3aM4kkiQwP2FoQtnfdDAC2lCsEUmy4tAvz7s1BI3uFCFtr3vNqy6OZAoCDCwhuwEhHutDAHUtpKX0RSkCMrrkSLatJ3bV61QcWOtS6/+qL83/4n/9iPb/+d3/+r/7kxx88f/7O6Rh392d3zlyPjREUmf9HxHyriHJdZuLc5kiasol4ayJBZJb886pGwss6iMro8Wq97ePht7/9w1jFrH35Yj4ej0+f3GDsACgIC/P1oZoHw94sfvnLX92+euE+3929YsH9vj5/68nzd66ePt8dntT9gaZaapXGxV0xiFGAy8P9+ld/+YsXXw6Op1O7Ps4DkWsrOQ6Q1swdIGqTypIvOQntd3tmzvwIBCKnyQNa5RSuAXB0s2bMJQ1z29Nyo8O7h3pEX6ObjzFMA7NeWLeWMTNLlc7VzvOx9w7gJJS1QLU2BJ7nNe1POix3l4Db/Au3MEWojq5rgAYF85ZHyEu/1jpiPMJA/EIchTeNJqFGG7/h8rhSVV1XGLZZJl0DzJ0tgPnxiUiseDECadbbujvVHJJbhOdfEJE/Ev5jW6CFD9VWCZGLtN10QCilbMGC7SAsF1eobbksmch9k10vu3UWEUAWEb9Qbd2d0q6MG+Q+5f8c35RSXIeZUTZkAJiHhefOnJA4d2hSOFd61Z4WjhSKMJ3qgWkx+/qNaqaIFDBSVCfy1ljdMDQgwg3JhLjtJJsHXAEZMDzAwtwDwcMy9E+GCu4GHgAuFzqMB0C4hZuqIlxd7z3SNInuW6+yGV4eUyk1U05As0oOkj7sPlS7rhHBXPathcZ8XplIEShiPi994H/8D3/5/vvvvv3WN2rd392t9/fz4erZ4ermdH692PBhE0JkBChsHetU27ZQQi7r2deoxG6uqspUMsY3eiyr7XatLzFNu7HOt6+Pt3fr3//io4c7FT588cXD8WFcTddM+9v7ZZlXIrjD49Az4FhmX+aHVy9eEfvd3SukqJUOV/X62f6tdw7vvvfkrbdvnlzv3376TMjWda51hEuV0tfls0+/un1dISoQd0couNzNc3/YX93sYF1WBcepSpQSZqEOGJlZiY12GogoUkXo6nrfWt0GzMMReb+XWiVXPSJKEqm7qXYze/7W1dJHn3vvfSs4IDczvrpy33DGY+19LL13ddtLlVqYy25/YKzES1/XABr9gUsRInWj08k85c4NZqN9OBg3IiqZbQEkFq61oinEjBaAAOb7w1TL5Dos3NyRE/5KOoarZiBN176cz+FeWcrU3D1iWGQfLFrgGLrddm5J6DAbbmzh6DUuLl5wjRCMcCBhJILCEgW5FCSJwNZ2SU2qU9vtdhgiJYSrYGOuggQUqlDKyjJSQaRwxGyqpiK5zZHWKgBnt83jWb4QeynOVBhFKDvm0kuIAQzMiBogpdk4zyx0OByEd8usvc8IhUhUl0dJkxg3+jls0g4AetCjT7T3zszTNLkrogdkb8xW9VdZNBRiIDqTuDshMYNgaIysyMyj33ped4fDVMrwEW7CxILqg1ECHDzGGNq7Rexaa7vW15Npd1M3SLMCAlMeJFURUUiYOQzcg5C7LqUwYZZ3yx6v+ljGso55hlC3cXW4qVzn8xFkms9DpP4//u//v4eH+PM//9fP3rp69ta31nE+nl8/e2v/xe2XQ9cpejgeDjdPr5/23hkMPWyYdlzHUOtSYtrJ2o+1sZSUxNvU9jXKWNfTvT08xEevPv/yi1ef/uHlx5988eqrU19RaJ1X0EErrOG6dgMHRGBHABoDzqr3d8vLr44iyJJCr9HLef/V/Orl6dWL9ebJedcE8aM//dN/2mp9+fLFP/nBD0e0v/qrv3j67FuvX98CVqJpajsFw1CqjYhsMQkSFHa0RVU7AUsh7VZKIaTs6iOkMFj6WhuP0UXWVnfTtK91Eq6mgLVeX11N0zR0XdcZJXbTFVLc3d0hwdRKlbKuY55nHaP3np0XvS+59e26AkVhUR+rDh9uiBT9eF7GMgJpWYYhF2J1bO0apeVaBWERuN9fScW5p0WlYpCGl1KtG2dL4IBpQnQ73T/UJ1wQTmtXuxMONyV2ZoQwcnVXId8fSirzw7pUrnVStXWZgVRqmmhGOBJxFQEI1w4uwkVXBaWxDC0jZ2bhdti3dR1nDClk4cuy9BHCbe5r2e0PV0VhZ7cwn+dd4V1tYIyDsXBfFuu6qy0mM8BayUN30q72u9J1Pj64jTCH1lqdiDmE9rtdX0cE9q7qGtAPV1etFXcV4b7oep73pXk3MpSLFzMDRebeAZ2ZmFikZILA3ZPLnDJ5KUy8aXhgeXR3gMfWKksz6NbLBhjqCXwXjCCQCMQQCoQgcHMPV7eE1REBymGX/d1skkXzESFmZkZISNgKC1VEbK1N06ShEQSQB8sYIw/n1to+D6uEnOJ2XGKhJCwpYYYjYOVKJUopfeHkdqYeglCI+eHueP/684j/7XR6+Ok//+5PfvKdd7/xjGp88eJjKuX50ye1yhjW2uTo8/JAYYdpR9iWZYwxpDCRr+us1rk0Rg5AG3BS04XOJ/j00y9fvnz92acvvnrx+vWr88P9uiwULsN9mX10QDQLVLWIYKYikrWVjQlBAjSzV0SOqB66zPDyy/Xh7lWTexQk9ocj3FxNtcq7byvE/PLV+f7hvL964nZwL+oYyERUahNhCgbHi8fGctAvImmbIaJpmugyigqK/b6RYK3T4XB1dXh6ff1kN12lB2G/35dSel/XPifUGzGePn2SdPbex/HhfHeXmoIvy9x7T9AYUjBnGBKz3yGLlfMprB6ITqUi8vAYw5ahqp5l2MIim7ROvOH0GZBqFQQcw7wvBYcgtFIP0+7q6mq3a5E+CAqHLaLGEAGKF1cfCyapfSx9c+sQl6m1OjGzjiFcB23N649yHTOvSwegKm0/7fb7vQitq7vmuA34IipFuIarm/kYqjnvdwOsJDzVMlEQKJhtvS9jDEcYPkjFs9s9DAAEyQGzEibFF0SMQO0DSTTUYwwb5sXDwAPcbaiNgZGxKRSiQmgO2QsTuc5dhEAMDEB0T8eBpn7waBl6PAjFm1Bz/l8OMoHIiYSJmYu7MiM6cg5/kBPlHikbIWT4wMwy4JQTe0S6HMByIJKHds5RDQCEBligb0NHwQx1IQMiYAQwQcnGUYwVPEwZibJaN5lziCIVAANBVZdlYeAxhgcQQp3aq1evf/aL379++PLTL7+3rP/iT/2Dqxu2IWsPwl5KrYw+xrysfV0YHXbNwLotgNhaA/bzfEKqHoIgiIK0O5/jq89fffnF7Wd/+PTFi6+++Pzlw/289jAl8EbE40LohdyYbcl5Px7PtYrUglgoYHjWyqD2IGJijvBFbZkHoubVvKwf7Xf81lvP3nv3NWG9uz+OMZivEDEGZDskSdpbsJV6KQ6jBMJkbGy3a6oqwvv9vrKkN0ya1MaUkaHd4eb66c3N06urm6ntmblNmzcpsx45wru9y4Z46KseDvvdvu4P07Isvfd1XdPwPsa6rOfel4hgmQCgi+X0CgwEDRHDmYh67z0AzME83AIcL/yOTbLETaICR/dQVYxg4SpWay2l1CpSWLsDOhEzgaUUZ0roxGkyxXC8lNN6euVaa3XiWvYA3Fd91CMe14Jaa2nT6FFK0SGIfBkooqrDdghmZnr8PLctOvT1j8cv+ChDpgqS7W/AchFn38S6VJXY5QK5NzOHgDCFvtsXkcIkTHJR91GHZz0aAIgpAyTPiDwSzkIAtK7j8YbPVSzvwOy02Spn/7EA80b2u9g5Id4UPT7Kk8yFmWBLWaTjPX0mQkQR3S6Izlxl8vffHJW4+aPcvfe+rgEAqk6AWLhwIQSCYZ6Ad8uaKEZk4fzdzDsiI6D70DEAIFNsuUCAPw41iImZYH9ow2/W5f72bvnrv/nl8fT65e2LP/3TD/7kJz/8wx9+NZ+PhwPuD/sxVkR7++3nD/evTsvRlHRErVNsQzPJ3EcfNFT6Al98fv/LX/z+N7/+ONTOx9MyB8IkDGHgQG4Y4URUCiOyf80DtywdEYkkQ7Vo6feRvp5EuAAjI0QA5Jjad/vmqnd3y3x++fTJx0+ubsZwkXp/fyYgs9BOCoDGZgiwjqa5vOdYy91zyHc8HrNYLcK9teT3TzA5Mg5cluV0Oj08PLx6/dVhf93aLu1JtQoRbY46BMS4u3+ZTMRUWAB8mkopFHFY13ldV7W+roJHQ3QzK0UiDq04krgGUxvr8Ax6IxDgWtZsx3ZjMw83d8ctNeIGQWYAMdZtv1Nr3U1YWYnIfKx9EYYY6jqkci0CJrkPSYgDptXJrI+hqj5cBHPsYpGDwzf+ZbiUU5ZSaq21NbgW9ZhP52Xp5/N52rXMbkJAomKJnKmIQGy+m0c2NMGl6G1Zlv3NEyKotdZaTYOZNVe8i2kg7cl59h6mFF4BMqLpEFnuomE3NwdmzoVS3YeZqnZT5oboRCKmhFCZg1CIyuNoTPVNqcMj4DD3fvn0AADEnPnR490esXWVPk7+tqglFczkKqULmMIRiJjoMpPb/jd7XNPA92hqgks263ENSk/UGEOwUWARKlwLF4ScIcfoCwKkoABh4RBuCN6kiAhjGOCIiNhSyURUSmFkzrSyAQUh+9xHIE+7mzbFPD/87Gdfqv+1mT25eY5wmBrrEp2MmISDEaZdefXq1fm0TrvrxlN69QiL8MEC19VfvZo//fjl7z786ve/+eKLz28L5lOlEXF07etiGjkV24YSkBXRMFzVVJDQMTSCEIN4E0okBChNXSOGqbsjEQuI7Fh8qL9++dDKx9/61rcsWBp6zIhqjn2EG3ItiA3A725v86GUidi4dJbP8/l8PiPisp5KKcuyAPg01TrVfIPcA5GFa2u7UkrWxtVaaq25pphlv/YA9MuDB3EbbIEbDE1fo5vp2ud1XcMxYglnAkLyMHA1G6oeOfvTMdLSX0QsAC69hDnxIaJUviMgu7MBkFARt5bKdV3n+SRsZJH3PzOKiIMDoaeb2MwCzRCUwOCRX8zMfR2mHYDdPR2GsJn/Ir8+UCdq/KZnDQmZ0AEyN5pe2q2+DThDGduyUkrpzO6bkSnHIttKpMHMvesYw6qp6rCNDC4isN2J/91cf3t+jzHWlV1jmedlWcZQ5W2zDEyEIOGc5RV5rkmYNm5kge29vnw5yyPl492Ol20JM5vp4zkiARj5x7JkGZExkAjBCZEJS9rIkN6cO/IlFWZjc4O0JwI4oaCgcGVB0wAAQmlTMQ3GRbDmT5XQHrN1u8pqvby44K7e1d0tvLUdFSFws9papIclH8hExOkqt40C5qHddRgwQsVWG93d3v3yly8BfnF7e/w//O//9Hvfe6evd8eH+XBVIWzR8/6q5HXeWmlTVcvazgmwIpR1OX/66Yuf/fyjjz96tc542L99vL9jyCXY19X6GkQsXN06sxBgIGBs+3czgLDMAmxdBUQUgApT3WVxtgFIFAXHwDD86svTdFVb2fd+fvVq2e9ObihcW1MCCQCcFYEq76bSgnBdV70QojiNuwCI2FrNiHGEqYbZqqpDF163LuxwzPRYWVopZZk7AEihNBGOsWbvc6mUE0dVdY9EHuQSbz4AQIQAYu3zGCMcMQqCMBdCSU7J6GoWqp774TQdX9j5SMldK0UqR9hwIxZ32E87DBjz4qOv60AfRbKDI88RBJ7tnoAX9AsYWKw5oUNkke1q3+12rTURoWGbmlir2sALIiwilmUppQwLYdBhAMRUWtvtdgfmrqpjyVGLm+csYutmewxEbre3bZ0pZiaSsauUeLZFZx09yYrMjDlMIc/tvLkDWFzCRBmDGqYyBgFmqlDEpCSUMGfqIePSix0RiFaTdctcGkZEgF0KOi2bSwwQIjkl27OaiIAonAAgyIMwiNJUCIDohpgq0bZ8Z/Yhv2kikh4X163WLggxDQboFtkxTyQ5XQpHKiJcEWKgEomg1FKZUFVDnQI5HyqUrcWJORqIQUzCTEgQUVgYAbZSkFxiGYDdTd0DUgkTYti3m3U5HWe92k9SzqeH8ZtfvZhPy7ObJ4x0dcDr6zZ6RLiUNi9rnXal7lrbB2AgkVTG/fk4bm/v//DJq9/86vPP/nB/fz8Yr+q0Zxqh6bFChjZVFqmttTxigscwRchWd4wgdHRQCBCWrVwrIHwU2QNSAAURTuJAEegQ8+LzCeRQC1+vC3z54j7M9/srVW3VWm2xJzeurRKSDt21SX0gADFDBAUIsSC1Uhh3wwcRsFBte7sAcgpT0jrzJMtMIoiTjDHALUwRhRAYgYXDc7cciJIzyeyMrhW341pAgPfVspSRARnc0NzBDSIwI+no4KY61r4s7i6FELe297yFSinuGoZICUQbqTgCM8TIaTxAEEap3KSEaymMl4arWstYV3VMMgAxllIRoZSSd2bu2FmESJgNMZsRNm/Vo6sqNxmJbzQNIikFEco5hhuYmRqMYapGuIWpH+UDgDe/y+ND/uv/FTbUEj7+PV3o8rjtSi4trykLjg2QW6Rhi94aAuCWFqd8JospwKWKlyiJ91sVVIAlQOFxOQCA3rdEx6NecFmz4vGXgYvjKBwQONspIQCBIzxL6S7f9BFVjBc3uDAXALtINYKIWVWWJ89ELWVFZe8jmGnrWcK8aBBJpKgOZs4iDQAHYMRAKeZZzJep5EIEWfqeO52sHhah3AATw2m+vbl6CkG3d18xe2vPEO916B/+8PA//y9/8YePP/npT7/3/Q++McadW//md94+Lcfd1W43NXXs8yCswuQKX311/ujDz//u7z75/LO7+RSMhz7H6f72qlRVCENibq3WGgQoTErIYOrqfQWIAoXABLXuS762pZSpNmbeHpi8pU2IhaQ5oA5fh19fPT8e70cniGk+nU/H127jrbfieDw/uSm7abc/cLggyDKP4/HYDgUv0LTtyo5AxNvblQgMDDHaVKepIoYZemRIx+Gi+Kj2MaS1FsPNjAyJERFLFUJehzIJFcKJI0CHq2peCUxKRLUJQBRpm+9IEYDcYXRLhlaRktd/PuEBIMByipSr/6Mad1G7ISJub2+v9odJSm1NAHTtedUiQmVqVdC5sCCAE2HAVCu4994xwtwRGZ2ooLuOMU6nk0hRh1okwnrv8Khl+ublm6Zp2u91EBHldOB0Ol1fX1O2EAEliPjiUzamYRmx/5r7lr62Eyci2Iy728lIRLZ2dWbIX99dVR18t295l0ZESnQR6PD/Z+tfmiRJkjRBjF8iombm7hEZmZVVXbM7swsigBYE4Arg/19wBhEOQ7s7ABY701OdnZXxcDdTVRF+4MCi6l4NGBUVZUZ6mJmrioowf/w9zNETvkAuQJyX3t1fnj8jACKIlPbhIFV1e2x30cyB6mOMs4CZ9gfrzswibf4mbhxeqAbqGIOZWXDft6xV1vtaaLrKJKUvIkSkVj/bmxwxnF/g+/dNRM4gEABklhwKZjFh5mY7AJZSluXa5CrICJjrKhs8RLhcLhGWehxEzH0dAqTUvWuAJX8ppSl4csIASmm5/SVC8+nTzxZe6uX56WfzvWswXt1WJvrXf3n98fX7f/yP/+N/+Pe//O//D//df/cf/t2//sv95ZfPtbVSm3fdre/bvm/79oi//devf/vn7+ur60r371sgXuq1kOvW+95tKFJGy2JhxKDCwMRLk9u12dhVVaTW5+s8ARBFpNVKwao+zGu7OHCAOPCuse4KaKXKrb0UltbKt+//el/famtq9l//9vvnT89PT0+fPr18+/p4/eN+vUgT/rqtUsFMzYyZiRgJw1HH6GMEOErUKuu6vr39sFCilDXPbT2PR2Yu0sbYVX2M8XhAKW0Opx0Am2nelGm4Pt1XpudF9N4nZd7YDGzP4KPlem1j2OPxGJYExz4S6nMfY6jO01tQWivm+v37d8SQVgMIMZ6enqqUHGACQa31drt8+vSpNuljI4xCPNQZSYQcYnRzA0Jp9dIAIs2gMuuwVADovSMXdzfr2Z+fR3eiqhGxritCIcaXlxfEmX5IJG9vb/RBSUhZ6JbDT6S1VJqNMQr5GOP19ZVugdhyFrbvSatjZn48Hs/PTzwRtz0L3q4uZclxYa3Vwb59+7bu/XJpQaFLXvwwjXXdC8u10evr608//fT8/JzwfpYIKUh2AE6jJDv2DzuOC5rOMO+NRtgEadKA4MQXZhdAmDklCeZ/BDlO4OrcyIkIQAgoYvop5L6YYwVNDYbI7XbLNs/dx9D98VqoSHIewJMJiYR5dyJyDWga/gIQCaQo3QoBeBZsKW5NVSWiAZCa5ajpx9sDMcKsd4NI42EOl23b7ve43YAI/9f//G3d/2fX9n/8P/1vI5pqXQ32XSFaq/Lt73/8L//vv/32t9evv++v39UGMRQItuH9sY5tBXeEECRCghgIRAitsoi0IiKC8YwUTKVUDtCUx1YmYXaDfd971wBQDw0fDoYuZD26jj6G3l8fNhYdwbTUUty9+yM9P2qV67X2xwjImHlnAiR2xtT1CBKTOAKBW4QbqjqAq6mDEVmYE2myif1QlAweaVSRdrhjmHAu2TwYyS1R6iCKHOy5Q3pJzDACCFU3Ux0mRAjmDCk2TW3leSAngyYNyNyhLC0979w95dVIDAcyTRDwfhgBAMS0wNIAI8QChAFmVi+VmVtrfrjIai4k7UTTyOuw1ZoTsfyU40ya6Y4QkGTN1CV8PN7zkaaAbITc1Y4IttxTmBkOgwZVBWi11tvtRii99+3Rt22jZcnrQESpB3KEQCil1KVByDY6W5+4g9t1WVgEmMAwKJ3vJHfn/D4iJYf/EZE0oQwjyOvrh9tymhchYtS6HI89ICoApBd1GjMkzRsP98F8waECPmuhc++AdzByopsAOIbnjiAizHiGg0KQiEy5qGf+H/a+u7jBLA2y4HLzYZaRmxGWIhB3D492eDDlGpryL0c1JwKHnMPnqeXqHqbMjFk7B2UouqMxXUQGQHz/ob/9rn/727e+/Y8/7v7l19uXPz1dL81sLMtybddvX9d/+edZILg2cqkEpmG67uvb2HZhXJa6LMLMBFQLt1aebhcRaSK11lZrKYWQkbyPB1EUZmYEDx1j27DvCijDfBuwG7QqLBAermPr+9geBOamVdqlXlW1967uW99VR6ncFtHhAYHo7loqh/M+NNylXpiLhpeC6OLohADoAhTozDSiU3hoAAYEYG4MwxHSjwtnAYHAzIHkMXXUSUIhikN3Hzm08gik1DuA2QyDdSAOV/X0KQ5TABhuGupp94YUABp+ETnt8AHC3WkijlnQ+Dm9yqNIuCY7JjzSmhUD0NFtIES6G0cq+j3mlORg3fgsi+g82HJHyGo6ItzDbB9jH2PP3kFV8/c9f1ID0Axw2qjBAQTmjhA6zsckP/RjK2RmQGQQ58nth7boBDJytxqmqsqaMR8CgfB+VSh5fEAMxFJKQQQijMjg9ilPyPlfrQVnMvd0Yc5yyKepQZ04AqZhQWRxeG51RDTc6NgOzr0zK4q8jmfFcf6e+a9ZDZ57R44S9n3PvzirFZG6NCIWYmQkwHRLd4gwDQzCDKzK9L4p2WYgQz+sAdPlM05QJ3ym9MTEeIEhxV+B4CKAxGgBjC9PXwL2b1//tQ8ggv/0//z2P/2n/9tf//3LP/31y5//8vNyKUstIvL4vj3u6p0ZylKfTdH8VUcHGwKDS9Rabrfl6XZJwPiylKfrcrtciUiQiKjVWstCRB66bsEcwihI4aYCVwFbgmvdRjz2sQ1UoCeN2ojlLvexPQyxE4BQK6UJLwiP9bF/428istQFGCTAxVmib3fia4455oLCNF4QiOSrpHQ/EIWZuEytYQTh4SLp7rVypjNGgFvq0CDQhFMh4YfSJj64s+ZhgrkO89TRSSMAtTD1QEjlS/6/uyMjEwOF60gaPxyyJcSAaYtGWRrMk48w7dirlFprq1RZwAMBCjEBZuTnieHZIZ00sLP+zcTw40emE8HZ8B+PmqsaoAcMc8r0qhyRHL8sEQELoqXM30+ELt9KDx5Kjmz2vj4ej22dyFetqb4HVU3SgWaKDvM+eukdCHrv++g6LYnIYp7fmSWPxIAEMDWgZibSClcCcBZkJkDP+cf9fq+1tnoRKeGYth/uMPGYiXk0nI6xQDbpHxGh4cRMIkVLGCBGpqjCQag6OoisDpLvEHm/3IFISqGjZwERLmWmaEcMd7A5fU0wknPrBEreNLgnOdqA0s87pjALCAAy4ZMDw9wpiJLaGMem7m4exIg4TeUchWRikxAA6b2KQ2MfHkERSy1Y5NJ3//72zfH+xx+P3357+9OfPl0W6b37bmiVYWGpS7n2GG+jw9guFZdbKe25lHK5tNt1KUUK4+2y3J4uS6kEGO6mUQgXYeZihliaFBBGBnAbwMjLAkQO2IeVyq2HSbWgbN6/8Y9tRXeITIMFZC6lLOb9/lj5+7fb5Vq4Ldcnolge5du3b8RQywUA85aNYX1XA1C3CAcGBzPfEZGZCiacPF29ANJRLhHscMMIisBwNHVHrzcAAjQyc4+R1mGz6qQIICQCYCJkAUAsXgARg8wtEJAJMg8jZqpHFqRAARnyoOpuiJjGgY7gkWwoJUAwg3DgeUTXWiFzDIEQgQCJpslG5jVkA5tnDCIGQakle0wiRobRU6eLOZv8WIAkws/MDta3zBNJa/sCkENHyxqcCIghfVCzhbHTU+w4TfOsPY/MPBEP91MF7PkPROknOGkE/uHnqYiI9N4xfxPz8HfwdYzRd+1VZVkEseR2QAwHpmBJkGrtQiju6c48sZBzMJFNwdGiT1mlmXlMfpEgQUr1EZPXkQVC7pQfy6HzbEkpcRYa2TsceAxFxLIsH9+hlNJ7yp8DA5CAgCKIALi2o9U0jwAgDyTAcKA0LZgjRskSgYjcIUnbCYsyZbqAQVBAmBmCJVRhbsyybsrM7fLZNO53K2X58uV52//+/fXx9fvv2zZ++nwz7b5bpctTu3CwBAdYZaqLPD+3UvhyfQKm2uTaKjMT+qW2pbAIFhZ0HDCIZBEWESMELYUno2KCZEJcSlfLIyXAgimkAUB4D31sD+6DxrBdzYejc5GLIxKrqt7Xt+sCnz99Kdfmrq+v38fYIajWCxK52hg6hiMXNwiImGZEFmFMYCxwaBbAAQmYRQSJ2C39gkhYcl6Q6HFmT6TNYRYRs0I0QASzlE3iPC1xVhSzbyRKXn22D8iU0lNEAmQhdJiXJY/fdNHGg9gHnt6ks2Jllt5VUmoOToAYARHunhzXE8kiCGLCgrVwKvQ5zfATTIB0z3xvjc9H7Xq7OHjf9lTKI07Tl6xB3n8SA2aaY/Tedd/PQvt8aE9co4ia2a5jjIGIqpgWCVnVAgIiL5dLa20Y1loXg2VZDHZM72lVodOsRRDBPfwgT8vl2qaWEd090wEEcbpmEknG9RAh87RdzCIiH0hmNhv5rwAgMpslEWlL8VKFOC1NsjXKkuloqGbrla2Oqurw03Lr3CyI3u2l8oeTbZbnwNr3/E3OBkRCcoqTUM1sTwgQSIjEgQDVVVWDEuD0rgQAJCCRrIqkqhAGcRFGMt+DOcIzuBxdEstEZPQIzpVQ3FG1AmzhcX9VxpUJC0hGcoAhI7WlyZcvtejzU0FG5AqEtcr1sogIgRKgMFLYNXt4KeGQ6TKK6mVpRVqhcB0RZjsGcEBBQKbBvEO21nRZ2tAGcXG97aOZ3vW7aU/GHwAjSQ2MbdsIuDT5+aefl2X5448/tnVV6xUuRNR3H1kKzXgyIcTUibkrEwCgTMOrcFdwT3MI19AxRg+RkhNlVXeDPjYSJJR0+vfDIIcw8UJTw3TPB3Q3CCQgcYehA4EKFxQMDUsvqtTSJ6JMXEXCIDeF9DxTN3PiiWu+j/TPp/ccEABQbjtz0WhgpNgFMq3zPLpUZyY0l5YOeqq+73pU5u8bkOVEQDDDGvO93T3AZtABZNjOuV9ptgDZHZ8A5FkRZBERjsdzpMv1QgdhwcFUp8xcyjLGcJBE91trax/ZFGRZnW+uzOAWETxvE0srFIRHaTDP5JxzpiSjxximECQMUpmRxsgBKeQTrgoAnpuFiARYK0yFL7UZSytV00zuA+7CzG9vb4hQyoGgzG7CCUXDwQAFmzQURMfhI/+fgR1dQjS0SVtu1zoWVTWNAEOYiLe7MrN7OUfW+dGF2XYTpOGjjx0x0naVVfbRiYipMLNjij7BHVIBQm6BBQGlABEG2L6vT083N3p7uzdZfv7TL/s+/uW3/3L79Pz55cvzTRj27XEv6Mt1qby0sgBhq3Kt5eUmbaHLQua69x6E1yZP12WpJcDCjABsWG1yrbcu6gMycBk8Lu16XerSJGxfwfc9EHTeYAChYAoALeHAsBSRpxcfOJTXh77df5g/bJiCq+7SrogxhnXqwvDTp8vtUp5flqGbbj3IEUN9mAExr9vmEChcUAjTOIOJAE2JBdPgbJpZuUhoH/s+xtBaliOwz4buhAAkJH6Y8XywIZsKgvxPh+lGJIMGVAdhKcWnJnKeruTgEBQY+dwAhJK6Olh4yt5AaKYZp0rh2BTMc8XmC2dgUkKIdr/fswQOOPIUzBA5wPdtuA8gbsiqMcbow/row0am6Rx8Dhuu5u4GaqbD0oGWmYeN/JWBAj0czCD9kQYiuJm6GQQRATMJoxRpFYW9WwL5qskXgVZqaaW1BgDu+5v2bV3XrRPxGFfkQlwzYQg9zF2uXGhuUxlx5/EP10F++fmTmh1Q35KddgSWViGo1KgXCJ+qSPQYe2+XdpOq2sET4SssYX0QIoY1keXzpwSOWy3hJJW4tNmrYwCitLLExWxYGAGVwsxCCmNYODIQCgW6hvqwMLBQofL86entxz3QpQkFcmWzIVz3x973UVsRZg9AwFqmBUOt9XJprbUsxsYYToiFKmRSFJZaIWwf28UXs0hNgUhFpCTP1FqRAqD1vvV9Ve2BINI+ff7Se++mS3uKwO+vDwb+8tOvIH2py/31Xrlq37HSpz/9eX37/sf6+z/95S9/+vnpsiyCIIWI0G2XgtdrLUJjDHdrZalVkmQKgJ7JRYIOAUGlXmBdx65ug8BmQDaMgm7hww0jnpZiKB4jHF5KvXz65bmtf3x9XX/a1+31b3//DbDcrs/DL9t9s86fnn9a377/x//H//3f/enT//n/+n/519//+T//9r+26w1FX+/flsunEbqPLlU0zqoNh8UYI1xFaHQ7gGFElgBQx7bciIcMQ0SH6LqbeoQ9HuP29PT6uI8xXl5e8mwgotYaHPD3cX4DYJTC2/YYwxJI9hiEdVlq16GqzILoY9uJGFDWffPdELIsNw0FOiMn0/N/VuhZk/be4dYiwkMJQgQLkw3ctaNEpt7vA3pGDBOBewy0IBa2gPtja+1yuV3G65vD8FB37dZ33blyvSwvTy+Pfe8aQKU0r0uTKiSA5qVyW3gdsK676iCCuixLu6lqrZfr9SpM69vr+tgBY+37ptbdxrarGpXaLrfnYYihu9ZaMaD3bqNfWotIW7NQ7c+XG1D5/u3Vht6W533fx6PfPi9P7YYeIRql9oA+VMPv2xoRUgqLUFsKIubEaHiYWakLzMLOh5mZq1uYX+Rass/DguDJC8AR17YgThb++1gxsJSW2U3JeE0kEgkul4tZehwBESEFCwKw+QTY83XiC5OPUBlRmNmilSpEAgOFCzZKC021yY0/gWJVPYcXAFCXljzFcDB38pEIiLtHePZgRISYxDIICmSkQBEJqCQojCLCLKVAGBJGBCMQQ/5craXBCMKBMUx9e5ju/unz89O1vTxfLpdLyTIvyK2b3WvhJkUIzUyEhArO+TMAACFzSYteJEBqC1MIQYSGdxFBwtp4793A0RQBCpIjQqYmGhQql0U+P19/3C/3vj52B1QCYRahEkaJ6o3x1rcfn35+ut5K733YHpR2WMCMUhuqAmEpjIxAjQUjCoZ/nBPN89cDpRSWUt7rcxEiaVwLflDpfmwe88z4WNJn6igSnNEMZoZoWaSMMboqM1ORUgoxQ+8Alm8HiCUwEAiFD6JuTjwRPe27ASLUjNEIIH16ITxUQ+fcnYncJv+HBADcBiKSTBleLeKAsnKtxcyCAsCJkpWASNTqxRyIaA/vfd+2zXzs+64O++hmw0J775sOCweUS21zsjhTldI4RMwdSRIOm0YRBoDB7PgBa3RAQUJwIpIZxJChSkOHbdt2adX6sD4wx6cfGAD5km1biUhqzZvkDmMf7qrWiQhJSmGunNas7s5ASZlmQUYSSTLAaKVEGGaMyvECoGW5nnfdzPJ6pZPyVBP5XPpMzJXM4SQynIhjnvCttVMTmSgGADnO0uYYT0ZEZJ5fQhPmw3xMbFhEuEYEjLyi2UO+U6pyfpF0PUcgIkcnRgbMKVFEYYLz6xGw6dSSMBBAUIFSMCqjOUlhGD50qfVPP3/55cuXz58/X5dlXjeHMXgMrVWkFDTmoUj54GOtzQ0ACIGYKwSZuauVVhmdETyANHUaUUpRH5RxIYhIwUgJ9qo9mPn2dFWM+xjrCP+xboMAuJAU5jHU1AH4fr+/vn3/61//8ssvX/75v/yuY0dcALzUwsHEnGA+EbEwEbBjhDG+K9/mSFzN3Ys0RKTD5szdCRCZrqXc18flUmut27aZxeVyQ8TWlrPD/9DbO2RUnAORWGBOu5i5Ndr3PTsswBkvbuaEyEwkGBQA7BAIQsBgKQEgeEf9PiCOwAcONa2DmYOI0iwk8ieRI2yoAYYIp9C71qIWUkjG5CAgooiU0hK84ByNH0jZGCPZFvs+7MD6YUKuU4NARJkycp5qE4OkyKmcn2gImBnmOkmpcOAgmporSLpX4MEqtETlUzSZD3uaoUbMCVqkO9GJr3wEXfJFGMwsiJqOuEaMbId/QabfuQEREUA4nwbNJ8u77xpp6XrEQ2WcAmJiLZ6OGgDZ1BQOJHrfC87FcbY5qTxPqDICU3NGJLWKmbn3TJ1dloZUVbX33cyJUOQ9MAKwMlOEAXoOGo7Zxwz5zOrVHQIZERkxgtk5YDDOIF1EJFCR1JEKBQAAsROGIBl4EWYwZvzl51/+/Oc///Llp0/Pz8wMHvOeRZRSmZipEJEFmVkAItJleRpjeA9ERpAAMLPRVZgD0kNmgsMIbjHdfgLz+lviVYSouiEvpfDlWj89377f93Uj1dGVERCh9PXhGmb29du379+///rf/re//vnn3377ffSduQBGa0LYhsbAgJQZARKnNkRaWU5MNxe9DTWz3KDhIPxFBHgAYSkFVliW5eXl5fv37wCQPfAJHp8DtiwngSIg3YB5GI5hCFRKIY88pYlIVfvu6eB8KYUZWSiFoOEWHub28Rg8PyIOqV7CbDKXhEjSTrgEpl9mpnKcCmBHCiI8IG/LE3SMnk9TeoLAFPKNjJbxg7A8/eBJug4PqNZq9SCU0hJTm09KfphZmLprgDFWzKxnnFuJ+3xG4BQ4IjB3fNeYaKvter0C0LruAa57PzbB8yIc9plmZiHPn17gHJ8iMhMwSaG2XPMieqBlLJGqO1BZ7JgdpIoJEZkRLC1RI6blVkAYBPY+cnibBWGGNaVCGSDOUnP6IxPV0nI0mLJwO9IW8DA1yfLy2L9sjN3MSoEpA2MAQGKQkpQIzuCJNFjKJZuIZq2cyK3ZOyP9iJnL0NGMG05RHRyu9jmCy+AmYCaAXBmQCmJEADcMcDVJaMz9Tz///MtPX15enpdlCTMPQ4SU7peyiGSKoYejxZjGOiSE4OwBRIfMbJ7DoTOJAsIRIKZ2M0kl4eAwkpqRNI+0tGKIInRty1J93cgATCMItk0RTTW+fv36+nj775f251+//KdL3be7x0pY6nIRpkBgS9aAMRNg2KF8P4ytZrNnmAkuRVVTaZOMdVcbpvu+51A5a720GzibOzwIrPMcx/BQRCYux2GaedzivYMjoSCg62ZmOEm4IpyxUjN20TTAkWEaz+SCA3wf1MOHeeEMJQJmFkK2iLQIApilOk67ffPo4QwDxvDe+7qu53LNzdHUPaYLg/URekpsRES4NL+/+bpFRCkFSJAFA8YYiOL6bvSQL5gO5qhjkFsVEcYkdKcYLYEO/uBvliVJLdGWgsgRsa6Mc9NJB/GYtGMH1UlEkpwRHI/Kuz2J/aMw08KTHnLu3/ktVef0SEgikm7BRARBhGaeA490gw4zNctljREIyTKJpLv7sWfP6PqPTOf8hrlH5M070+zW7T53CskwGCICEY6jtoqkHzNAuNnIOTARlSpH2eJn/ZIbQQ5nASJ5tjDF20lwljB1d+aZygCQm0ZMI0cPDBfGEWExfGzbRk9PT8uyLFWqSBA5syAZG0FwRWKQtOt0dEcGrKXqyEaSwhOOJxGBBQJyg/f8Wx4lv4+Gzwn5nO1qBAQQIQKJu7kFAbZSl2ZNQIdvYwMAHV4qqer3H19VO6D9+uvPP325/fjxum8PN3p6egHU1po7daZaS10KImiykW2enefxmxfzXEJ5diGiAVr43nv+p0xPTY7Nx9P72AtmDR+GGWgiUvO/ppFJclKyvj8XrRQmTD4l+Ek0TB4QYhDGkQXy4VNOzSIYhOqcQbAIInpyqI9SIgAIwCw8hioBkLOrhdnk4OahYnOy4JyWnaHnUjwn5YUkj43zL7r7GOa25X6Vt7iwlFJSo0VEXKgznwwrd59eiNNzjPHYVZkTnIb8dLORdgpLWZJkPV8oAHtMHberqpwNzPs2maWBbn68EJFFilQSThZabvBpKZMsQ+bcPpJFxsQzUTZoz/nn+W6UDi3E6fhO0z1+goi99/zG2Rqc+7d/NJD6UPOISERmzwAz1Spms90CDLW+9xURWSoA9bEhorl6ICkQURYI546QbI3AZLAHAsWHlQqAhOQTyslNIi9achk1wk1dCFottjO6jAGhdrsuTCDCrVaKuQv2HmMkEwQ9oYygcAxmIAFwDKCAILCk8RCVUmx0dYOwQlRqCbTe96Ejm9siBBqq3V0DAUmIAXE4IEYI0lLrpfpSUIf90Lsjhic83O+bEwPg+Ke//vxPf/nTv/7r39f1EfYg9gi9XJ88DBVrLW1ZAIK1q3rgaZA3pfEn4yhP6/xDgKT1ER8542PvtVZulNSdwnLe0/cLjuBE5gYeGMnbYzckovXAIOXAdAozfcjdjWOfwnT1+vC2+SwkGFRKcetHrQruDhlLhqcwwSP53EwMsnf0KZaxcEsQmplrreFYyti2nkfXsqR+lAplNTSYiAkyw8ePgAmJUEtapDMRpiEqze/5cc0jZhoYOEZCrUSUieop85lC1Oz3KeHBSkS9P9btsffVXc9x78dLcbZseT0TlQmAmA18oufMUxKT/GeYYDoyH7gm2+QvIrMNB1UNJaLUcvhhYD9ZpycHkSYrcc6iA06vNDMz27bWWmttXuWj5zm1H+e9FBEze3q6bRvjlJrmChwAwDIhgzSriCgRajaSUpXM5jyscseJQ7KZRR+AQ7oBHm1NOsrluXs4gmU+UyDChCTAXAdIqbXGpaJFKDPB02UBcCZIuW4cm5qZUVDmkWVbNE34gDJNN0vfzDgBAGLwWbeZCCYGC0FmwQLMXGpx9OSeBoAgOwWTGRAxCEcRbCSFhhCCedC06PEIVSBBKfDzLy+//Onldq3f+BFuREEIwiFCESHChTnQPYAcWOppNPihAZwtOuc5ZlPzUpieS2mXy9vb2+PxSAZqfEj6i3+kDwEiCY4BEVEKizTPDw5qQ4lojBFxWmmAmRHT3A3gvZhFnM4CiHia6NFhiGjodCQVZqBHGgrNqUlW5MxcSgCqYdqR5m+KB8tmWQKCRHYAMnVVj8xbBxNhkXRelCTgIuK2D5GyLNcAMV1H3+GDJhIJwEgDPMxG72Nzv2DEv9naAKb/yFQeRRYxdB6WrRVENBu97+7Ggh9uU16Id/FxllLy2Hp6HLIgOgJFqEfEvvda61LqY2jvgwpQSQukd1sY6+7uSZgOPS1lKCGDfEkhd82YpmVZRPLUwgib+KIFAJiN83jIN88tIBuE7HB+/PiR24RPD9ItLwznGK0cRoxgEZDLCMBbK6q6riszLkvNQlHViYAZS6lmcXZM+Xjj3IOFiPYRGV2X26W5MXMVWdc1BWMAIEJSig/d971er/fXH4T608vz27d9jPHrf/grEX3+/Hnf1zeIp+s1t+lapTYZ6lyEWSKCpDSqTEQknhnjGCRcCE8Mf9dBTETseSSXSlJ09ev1qrqv+9qtR0RrTX2YDXBY+yjl6dLa9thtDIRA0L5vv/z8+ev3P8DULOpS/vLvPr++/jAb+/64XOtf/92f/pf/z7daYu/r9VJVRzocenrYNalSwHXdHsI1jRVVzd1P0SsAMCAiR4i7u5q6IsrQvS2ltpf5JKO/vb0tvAQEEtYUgB9FZYQyonuomdn6/Pyp1Mvr6yuYLkX2fb3fRx4w2cG7RquSTPOs/gglDExNVdGcCMxs083slkMrKoUSb87MAIgxRiAhgXDlpThOQnGpS20/7f0eQAC0b33fx8yJhjwkMIGMzJtTVSBITp7b8MEUEGpv24okEfF4PF7fHpFFREQry+VybXUJ01W3BN0lWdUiY4y1j+3+yGmsEA6iUEMkZmEmVd3HjojPz5++//jx8kJDOyGzZGRLLEurXAC8942ZZaofwGwstbAgEcjT00s+ge7qAbkMAaNIE0lDIXH3RMjBfFjPABtEPAwaZ2FGRDhbKYvAzLcRTHhvokWA2U1p71tq2o58KplTxqF4TOPxcF4+90U6DBromPSA6r7v6SGRGNWJcZx/ET8IrgGAGBlgCp/MMtxmEtQOEg5gAFpEtKWYUmLm7m42wtwclqUhhpuNsY4RSBA6xrClLqXV1mrah0ZYaUWaSOGDUqlEJFSI6Hq9dvW0zRQR01i3x1KX56drNuFhlnhVhJcizByg7prqYwvH2fGhaorepFCYkceePW9ECBITRJgUeLrUvlt7hevCXT18mO/bZrvBT30Tkcu1jhGfPt+enq7CYGamW8QzQT7qQYhqPfas+WwMRUQyytOGOO3sjo0SxV3HcLOBQLWwu4caAEUYQM3qtxRWVWZkrgCZ2qY54SmVJAiCSM0cEMPG6L2v233bH4fvOxJPMFICmSklsKoDkp8UpKpgHl2NlEqITBMgxARpZ/2PiIEzhRUikBBgAmpp2A84RjcSYkbmgsgBHDGYmcjSZWDaKmcYaiig5Uj+vVUh3sZwc1dzDeQ5PVLSiPCwcM3HgdK+HKmKFBYp6FWTgikiYh5OpbQi6XuE6obY4xjARwQJtlbGpQ7d922qB2hmvhEmiCpEnJpDTAszAiB3opjuKeGQHQ0AChWQ1JdxOOJB/84L6kd+fD5O4AEQmZ6eIxNVY0GhSpwrXFXVbKzrSowidAgEIjumj5LSE/5h5hQyfPzDvL6AmJYhqt6apfwbAWOeGRn5mNOaPOQ1B0jwoXc6sZmjrowIj4AAq1ziENUnpBdg7th7Z56024jIoFSR6uqX67I06dt923dp9enT0+3lKpWFGoYbOBLlZIIKtSK2GQQC4hjj7e0tbvBFZli2YYRCimRJpC48vKjGpn1/vIWrW+/r47G+reu9Ni6Fg8PMhpp7QCD4IZIfHSGerosqffsO8tChA2m0hUBiVzczrlwKm8Gnp6dPn1+YYd8hez1ELEWIS0SAh2pP+WwOy5KzlqQ+Asg2KgIA3TNG2bVwYRYWCXBTVzfdNyMYXbXvwkkzQg8wHWaDSbhwMoWQgCMJLOqu+3Y3U3fDMCZKT8+EMoRL3pcEy4FQWAhymBzmbmFQ3j3BkEB1uDoz11KJKAx9GmTj5KpECmoVNTz6vm8s1trFjRDR3HtXCDnX0hnrSESmPrnZrgFGDMRARKrq8T7jmB2Kmg91JFcNczrOp/cClkEKEVBKGyAnnVQ4f+sDssnyKjOyEBGTxeC695UjOUHEniHlgGnpjQm9udzfttwnmBoDemhaXO1jJLEIMAq9yzxba34AyILF3VXdPXvXfGzMPcwtAZi9D3FycfYcew4z8zBPSYpN1Gc2kI5S2klcP895/ABK+wfxZUTU4+SPSOkXH5UFzIJn7gXneEkP4ZwTCQLlysgzOS9fCl5muzXI3dGRmZGciCCCiPZ9Q6zCDNAirFRZihDR9++vXAoy7roD+qdPz1++fLler6raKlMQZmpuRG5jpS61JgHJcoASEb335JOZq2o3G8mz2nbYtm3ftx8/fvz4/nXsa5i6qe6bFFiWulwKMyqoxekcSYwC5n3bddiytMsFlwUK7Y/Yifr1UrkCrncSqbWOsT/W17aU5+tFCuwbqI6ZdMASwhae3zN36lJrjnjgMCOF8AAwt1Cy2M3Mpm2BRWBa7XrMMZ6Zm48IIxbEADSEIA5BQoycZaXLiDu4h9vwQHetVWoV1bPyc/fAiCAGkPNEgWMUd7lcQm23YAARTKvwFOarqqsDABRgZpDEF3OxZbx16joBgCDEDQHRNOG2dPcgMzcLs9BhiNPu8YDtVbWrvuvuUv6IAJllgiRECKp563EGJwVL3kE3G2PftNVkPwTgbNuHmuEYpupzLDX1OD7GOA7sfN6myMptm5najj5R65FnZIBFmLhN0yQiEiSAgCBCSVMsQWRhzv48OY/1XZLIjGAwzR7AACgNaAIswACdOHHyOJiH4WHEyMjM7SQIvZ/UMMd+50Tq3BdOO9rzQp91PrPU2hCxlCpSzCz1JEdbmCc8Jvoy0UEPd4iwzJeVIzMWj8LBj3yBGOHuDIwoEQg4AchludRamEAVUyH2TpcG24dufSeRl8/Pt+crELy+vrb6iYgAvbQ6xtjHbmaOcLlciOT+tkotn376fGmXE6kZfe996317rG/b/b5t24/7m2p/vL3dX9/CxlJLqwUxiGWMRM9CQxGjtIqAS12QxMI9DMOI9LLI8xOtn8quD4KB4Cy1VFiW5Xa7EVHf9taenl9utcLGkNdBVYULiVAwgGHaFxQkwXQFA0ittB/jvRhjDzU8JvCECODfvn0joqSZiXAEMWOtCUCObKnSWMB95gOHdUAOjwAmQiKqVbbtgeBIgWQECAF5EE9CqSQsbQ6BQBNNZK61ghlzljPeex+jqmpYJPCBSICBM/vczC3CAp0lcSQUviAIEDOzW4aP8NLwruupKD5P6QgyGwDHYbj3sXerU+MDAYRCpOehGIFjDBGSCWVOE4AcXowxCEBVOXcc7aq6bcrSuJbWykEC9rx0xJAaBR0K4MRYClsYC0rJriEiHMAB1Xw3wzFArtenMfZ9H6OPAZA3g4ir1KEdPdLlPM92cxjbPtK/+WStHpcA0RAIQCPSCzD3junfBhhmRpC6TlLVgAQdTwdnjABiSDblR0x1Nggf+BHnGRUeJ9wIABHgHmZxeO/lSC/icLGVQhQF5/oBDzuqh/RVIQA7r+kpVgUwQIJAnymVuYmAW54ldBgxDUfopmjdbJQmy/UiIqlvhYxN8xk/ExF4oCGJsLRWluVauCS3ZN+3x/11Xe+P9e3Hj+/f/vj9248fv//xdyLCAHBfarlcLpfl2pZ6bRUp8jjKaXaaUyMIODDxUqr7RuSN8eW5WrzsNn7/9sd963v0QLher1++fLk9XX77zZalvrw8PV0u22N1TZhphAsdlvnhwELENPrux7WdLR5O0ppZBDoSSaFaBTxdDwMpkkKGCKoWYEgQbpHzAWTODhPMTLPFxXxWA6UQIEuhbX/s/ZHPT8IW7pZPVK1VqIiImagnXgjrulaWPPxVw8uccM1R2izdwcxCXdUZwi3MIsBI5hmISVfnhkSIbDHcgRhFqrCJOFN+m/feFg7dLR6UIXcn4EKhc+acLn4eBk6eP4kUFJkDl5rImSU5STYfCCBj2BjW93HUSnB+7nmmns8LMQJjwvClICN5ODEwk+pQZUZIt3k/vgZgepCBl1JtgKkFpf8euIaF2xie4VaO6pqiydxcEYEgAjzVKbPtd0iPyWws55MPYT6m+VJCA3mD/L3Sg4NJeU4cc+Jw7kQ50WAQQoAwHWraPxYXk2o4axD0gAgjdsBpWZWh8lPZef5FmNwyJgYIQAV0BElp33x4EaYY3t0jITFhIkTU6ESEQXVpgkZFDGKYLdfL5enm+1jXXX1YaEwjSX7s6xiqwxm49949K0zdtu3t7e3btz9+vH59ff3+48ePbX98/frtem236/WyLE/X26dPnz7dnmuV22VJB9xOG1jP6akbbqsiYrvKsiwGhmCA43rhdRvPT+32VO5/7PsOdYHn5+dffvnlcrmYmTAvy3K5XJYl7q8+5sEWZ64PMwsLMY+xpnGiH8a8yIyATMxCNCl0YaYYEOGfnp/nT6Ypzr7rUfrjUepPoW8EYSAFAzNzOKJjdqXau+pQHeEazoCSxVG4Bwj8o/IKIiBCVQUp0YUeNoThICzSdMchd9/33XcbYzSZYdB4GJm4WbipgmmUlp5xw80SXztl/kT0wRp+DsVdeymcHDkAKKUEEDmKdKLxjmcDtCKFJc5jKTWw/+YJh4N0hTPu9AAa5iiUjzy0rKaPHwMAMLODiM0AaR8KiGGhaU4q27oTUa2VaKFwM+v7OsYYzL13G5rWaXObCSrEhsRIjKSmpxUisRBhwL+dC4yuRJkPkXwDVVU23LYto58m+e9wZ9UxMgwGDqu53FkyIyQrKBvaRw9zRio3IQCPBPYD8JKqhLPjOMsZpECPte/MKFKJClA+0X7uCJF2rGETOSdUdQzMMRoyZB4nIk5OtKmqJi5rRBYuXJoUFGYwwS4425aXz5+fn5/v8d3erGf7Gi5MXMvrt29vb2/MIihj79oNAGqtY3vb1/v99fvrt+/3x2uYVa6tlNvl6aeXT7fL9bZcni631i7MSMTuDjCIJsLvEO7+2H8wc2lPpVFjGLYFumBYf10EXm71se6PDqXA03X5/PLEFEMf7oOZEpAHGO4uUlNQlNxNYmQhYbRaQSf66O4Jzc9iARCyklJ39eMJ4Ui/IUgnm2DmUtkNSmXh6qF9D/OR0SGAqe4lQ8wnqne9r29ExzbCQpiWNacoG8ARHd3IzPOgYiRmBh66p8w9MIKBEFHSiRjJwmyojmFDmdHB4cCkw8NNxwxWoioFWUZXd2AUJ0e0SW1N6P0gCIjUWourltJcLZW1IgLIaC4iRcgcC7myC0/SjaupWkzjs2BEgEk/cvdkIuXaLoWlIAuljAuCmES43i6Za5tXlylA9657f2gfY6gNtnTt8zkccILgCJSEPgNCfWoqkKFyBcbrdZlbU1AgEoWphQZwIEWYMfClXnrvvXdpFSDhjYDJCiEkvl6feu/bOogAgidGoGAaTgGgiOnLZAFGWABmNisA6JgWz7fb7f72OokuTE/XiwxO8863+1d3N4+yCAABYxCwyNSrhUEGVaenGgJzVe1hupTKRH1dzVREqBAkNA9BjOfaau1iw9zdhjFzERphve+tOTFU5hIU08U3ROT+7Y7dW0UY4eiXtjxfb+ZDyvXr9z/A4zHW//Kf/na9Xpfl+tvXv6/r/b/+5/8y9v7rL78Urt+/fqss//SXvzS0roN0XFisXXDY6ltE/Only/V6vZaLoNjwx2PTblLo+3etVQCt9w1Qayvgtu0PEbncRMpAd4oNfKDZrVz+9On2+rC3p2tfHz++29MN/jf//t9dCq7bH7cnNlil8E+//PQ//7/+p+vTF+K6PjoXbk2kFCYMGBFdLTwMwQlTEYYlOexAGKBdAaDWJWfpNoLY79srgJbSGCXtBUuRVgtz2ffVtdcqVOXt7aE2AAWp7qObBXHpQ9dtT/MOfKxSi3kYoAFKKUWKDo/h62M3Daml1qs9tr53ACiIFP54vBama6kEsdRL4QoOEY7oUsTMe9+GDmHaxiNhOWZuiKVWRKkFEDNwIIZpLRLA7kCApVTCHsFqAYBBjCRIcrm23rf7OpDbtXFdWkSMsdd2WfvuoXnaEpEQ9XXTVpYq3BZGCnehAu46oNaFUKSyO/RtjYiylOIKEgqrGiz8xFKsR0Q0qfsean5d5NKu7irETLDve2tNCrvFvnVOiyCqTGAwdBAaS+Y/MjOgOZKqh1m2xIhYUsQCjIhhYRTqTnSyR95rSGYG4ONMPhGOgweeWQmECJQqZ5EakY60WduHWRhpLYufag2PdNGMmFUGegCAURTCQGJCEHYPdgzHg3MwMZPsPAAA5maf0k9A4QAeZnhI0C3SlgsEBcmOvVjdAQMP4BmYc+pBADn4CERK42YACEeHuNQLI5GZWiBHTp7GGN+/fpVCVRgA1O1fBnJtsQABAABJREFU/vW3t9f1t9/+5fXHt7cf3xjk2x9/FJYY+qeff6Hwsa0Ifr20InRpS6tyf2yqWtP9Cjks1A0AwUOVpNC6rkO33BHaUmtNrSgWjipAiOGMYBAYHC/XC8T4dFm259vrpx9Pz3JtRTje9teAHt6R2nIpALDv+/UCy7JwuRRpQGHWzUeETqQCIBmHJ+WbiMY+IqJJu9TGXBC4R58svyk9QEhJLM29O9F4xCWL7RTh5MtjlqmQJdwpKEJCgFTy+vHRhCn74RK8kxI5hqVngRQSAmZghlrasixNDN4VkGBLSUu9pdTee+9TUJNfiRCAIkA9KAzMEMDNyT3GGI7zQRge7uoIKEwoRCJcTtw6e1JVDR2uI9RcIVIEVShMXQ0o3J2RSqngVkqhADh8ZifRgIgZ++gA5pFdecp5MALNIjxUbZ5nyXxVA5oWgESUmR1E1Z3CkKkIHlm0Z/d+Iu0TVOfcESgiiJGcEhiDg1l49vn0IdblBP/cPZ+B48g9fSn/LYN9QjsApRQ9lC/IBGgA4aE5684KfFoVOLJkWLUktTuf+I/DyxMdmP0/oYefNhI4h7poZngyXikBpzkqAoJDi8LuU5VYCm/bBhCTnZUcDHMPaCw5OPzY1GXX8+37H4+319fX13/9179/+/btx/f7169f768/APzp+gwGhHgt7Z/+/Jfn5+dQK6VUlm17TPYOQRAws+rIWLF8/0HMTMW4901td9cI612vrV6uVaowCqMUDiwVAN0ogJxJhGqTy6UtFygCHl1tX9d7gAYMkcvL05UQ7vf7p09aCnMRZsw2SzVlrAkGT2uA0LxQh1AvApgMAmzk7CmFAACpjs0ePrdvNHNVVzUirbUylwh0zHm7ndNEIvoo1/+4YgMhYgLhE4o+HvWPniKJyubVq7W26qbvi0TknWOe5b2755ows/yQ2XibmyEAmaMZ7vvu7iIkhcY+csQgQin2PY7MeVYixtAJRXkkMWE+7Hl+pCo3vw8GHXPE+Suf+wLmoP1IaWR+lwWeD9fHvyIi93Uj5ERAcwvPzaWUgsAEx3FqNpJBraoZ3pOV80QN4ew3HBE+stBzUUZE4kP5YOclyK91RDYfcvd5C6fNJgCL5HctKdvNjSMiiAEZAijAVEOouGsuqYBADCDPnm3ezeMfj/4tGSO5zxw7AmJ4MDEEjTHQsbUGgL13Ovas8DSky5cFnoXPZDGdJCmIktz5933QTZDDFdhLKZeLXC6XJIMvy7L9y/bbb7/9+PHjjz++vb6+7pu6+/VyK6XcrtfKrHvPwluI620xG/exv91/vP34sa53dxURX3Xf923b4QRlI7+em49ScLk0ZrQxGHBplYDRET2IWUgqx7BQzyMoWqGlEiEM1T7uag+3vXAwOjE8P10KQ9/BdHdTohGBFjmkR+FCRXwMPp6cVAHmhbxcLpn0db/fKc4DIF2qJt3rhNPOQf2xGv9B839GIaZHDgxDXD8u+nyrOI6ZCDsLNzg5Z++eqK6q6FMrzczhdDJc8q+oagZDikitdboSq5qNzLkTqQEBSOHhTube+x5IE1eFdJQ14nzsFTDQLWBOWJnZdQC6FJYhppYcHg8PKpbEhojpIgJ5RKmZMb1bmbxvhTNOS8+LHEfawLHyqUhLqPj+2ON4MI7d+ZQ2eAQICwKg2TCfLvGccaw0DTDOMfvMVQdIRQAzus/f/0x8SYJQauaPIid5ytkITMOFvNYJXJ/FAiK6Y4SlQgpmEkOuEMMAte5j4tIzAvS90nivOD6+PlYfEfFvfmpi40gxs0kAXP044XPjq9LO/ohIKAc4iEzF/ZS7ZOOjbrHDIDcmJJ7bZq6233///e3HKwH89OlT5Xpty+O+r8ta6wIAQoxhm4WZPR6P79+/Pz9d1/vr649vr68/xuiFaalN2nJfHyldzY9OnDX7KSRYliooUIiRCy+tXuukrjMBInMYOKkbMEItfLtdNu+lggcgdGEnVKYQjlLgutDtCq8C5MNtNxCQGQFARJAaewoSZhYACzQHBQMEMIcAAhhmw7KYDwhwD6Cc41okqByR9a0jl1oZEYeZqhGRkMDhoJOVBRHRR/5K7sWh2YxP/wM45+JHSAwmqjUJiPmADe29b71IxPDwpOFIoXByJzU9Opps/XSMYT5cFakRESITQWBOq9VsAEtkCgvYwdw1G4oQYOqhYao2IJxYVE2EahU1N42u7qFuRq2wYNp7z1Mq5iZlZkbvNZG5uhugZ+ZFfJxwYJzkqzFGZuTkQ7csS1ozL8vSyhIRqo6YOcIBGY4W07AgAIAYhJhlermdFQjiVDHEkQGZH3nObPIfPmw8s7DRMbNxRGRaJ2AmskXvbGbhOJPY1H3eqsy6Kunklbc2SX1uCkgIM+cHKROZ3k8LRP7QNRwJFYn+BoRPJz8IYGYGds+oSGTiiPzrQUHBlrtMYYn3Iy4nUXl9JcIjHIIpg3FYLDq6OSgAunvv436/v76+Nom3H3+/3+851WMqtdbxbI91FyrruoYahIWY9r1vY98eL7dmpmbKBEsrng0RRMz0GhBpzBy2AEAhvl6vxMiYfNshCJd6Wcqy1CJsAhP4Q0FVV/C0dRGOyyLXBR4G5g+1lXC4rQiDyWuhX748wejLwoUT11EEFuYACEA3AORwtMnHTS8pAoj7/Z6DsWVZcrDoxzT+rLnOoyyLgqQtxdFpn+XDLAHiXZ86+7jpdXD0hgjpD3Osz+EffAQPdSMSASPnsFtV13WI2DnhFkk3D4aa7sauqtrHpC0QumuEADoi5ekNabHBoK5j7Kqa3OcsRsANJtFhuKlqjzCCzBmFJjTYEdO19d1OIldpTGIuHrCLI8p5pONpSA0fuunjVM6zfN/3FDgARFIb8RhkvjcdEQBRa3EPB3/vT/AorM8bhget4DitwWPyBtIZZhZdEap6vV7pmIuebxhxthtnAYMZ+FFKOziejojhU3aWuztM8zWZoYDpGoYAGIgxRZMARGgztNJhUtOciIkwVfcwTyc6j4tWyphOHoKBY2jiEeoBEHxc7vSh+Der0w8TlsSXIsINMq6KuTB7sIRujp4b2arr29vbtq7jqZnZUurSCjPrblVKxUooYzPddYzBBGOMbV1TtXW9Xl+/F4KM3nQCU9WhvlzaMBfG1i61VkFprd1ut+tyaa0R+Nvb2/3+Shi32/VSS0vvQA9XJyLwIA/wADfXANda6HoD38H08bj/4b7v69vT8llAC+lffv3peeFtLTrtmwyJizQgNMgwclMNmwo5FqkQBOg+srWguU8UMgYDw36I7iMAkChjQfUotVL4VI808PQBR0SKaWEjGQ2Z9GI8IljdHYkQkAgO85q84ZbPSYaGuNsM/AXD6X1oGcf0seclomRJnevzWL3RWknbBw81p3AAYCQQob71fV+H7mkdFGG9b5dS8y3nu+mcuc4ICHMPSxHxPEF15pUhZhzx5MBl91RKyecQMI6HH44syJmake+T03rmcjyP8zHPkj/JNOfjCQC11BSDZerTNIqKSBgvwCA9didKQ5LtiUMUEjoyLc+aPWKa3sWHJhCO8hI/7DIRU18JAO5Tc8ZMiMFcCM/twxFzb4MAAz8ip2z2LOfLh4anv4MhOmL9+FnpPggZ9xrTDKer5oUDi967G9SoboOIaqaxfsgvtJj+LvmF3T2cIyyrgCMFdJreBquBqg/EZKHN6akQE9Ht5eXzp2dELPT99fX1cd/3dX173b7+/Wvve6uyvr6tb99/PD33dRNiD933dV/vIoRCiCCMv/76S2uv62MrzEyFEC9Le75d93V9uV4ul1thWgqJyKVV5gB7RAS4hTsIhlvoiGGFZA9DsKXSy/MSvAlb398AtrG+wctOoYT65eXyvNz+/sf4/m2k9IZlEREsFd1AtY8tjqUixEwZFOqtIRGE27DuREglDSkU/WzX8fBiP0+8PGOS7aOqfRgxIjACEQUcYOr5Dh9Or2kBnrtegOWtOT4F995VQVVZEBFOsBAETixsMu3NxxjqcaqhkoWZt3JprVRCADM3M4jUywZzAl5qNgDTcMnChlyu06TrgBUDLM9YjckxtaFgSlRFZNv2y+XCPL+eWgdTMyuFk+wEIOH2YUfInjj1YEEBaWt8vV6TE1BrWtpqVujng5N//SwGzmt5GJama0URD7Xee9/DtDY5PPC6uwsVqQULeQQiXC5LzBhPvN2u+74hYimltfQ77QDYWtvXzsz5m58tUETUVrIzjICI3MwoQ2liiuYg74GHAsS6rmpKxxpKe+XsiPZtjJEK0OXEYA9kMaPcUpjIgbCtfZilTLiQ1LKEBKVJHUyOaCq8c+xEc36J7zvjUamWUujgTW3bBkEIk9r+9cfXp6tUobe3NzN7enoa4w7hX79+RQ/X0D7+/q+//+1vvzE1IjJVg0CPpbVfvnxhon3fX25P4V5YSqF1fzw/PzvQ3ncwbUWeb0/ucf/x+lBrTITY9zvo7mHXKq01cN0fd/AdyWulpTUA1z58KAb40PX+KkvddF8qPXa4Xcu+/ih1Z4Jtff38/MutMUV/uX1mut5f/+7hpbCBv95/cLks1xtJBIBUzpSVACSRwjXCVvPADByuZrpuWwYrS23joGAh0brl8SjCeMb5ZbmbMnBBQhIiPrD3WhyL1IyfatdbKSVVPX0Mnu5bhUv1wH3v5ykFAD9+fAOz7s4Wn54vzCiFlwuXginAHWNs2yOP8VZKgL2+3c3s0hYW3LsCmjuW0oTr/f5QVSZiwQistcbbGwAsyzLcHusbC14/L/nAYsyMttZaIXZ3QsmZ0Xl0I3PDVmsZo/e+Q5I6AMYYr6+vEX/JZRzhfc9ctW4+Lpe2DUVEM1vXVYereSnl9fW+bVsFam2mV7g7zCzPGXFKkwrsvfcqJYl5EjlWhFNqasTQuCQxM43uP6CR77vy+cp/7b2fY8izFBmjE0HK1070mA9jvLNfyh8nAqZyeb5IX/d9T9opM7r5vm8vzzfoHjrmwMadmcxSKsPp50skye3HSWJzQM+aagKLEdu2OWaWZBUQg9m8QQ5c1JOIEWGp0aLDZykObSUgumMC7oAeQcmoB3AMt95d1eIfumV3r7XCGPu+vb6+Pt7W+/1+v98B4H6/f3p5ef7Tr0+3S/SO4P/hv/33f/3zX8AcI32KFSDAA8OZkAmWxgx8aRwGcakYhGCgrpuzFGJABN17mMfYWCJ0qPseAyB6331YBEjSgqp4WKuyXKA2Eo7C9LQsl1IEoHK0ykWwoBeGvW9uhUpBAvUxVJGiLTVVQ2ZhbhDktOe1AojpMoDThw6Bz+aRppveezuZTfvHWh2lsFQiEimIIwJEinmcoy74R6nLiXzRbCT/fybcRMwhzKWURNdEgnmmltth7Wlm/i6iPab3mWbJdOAROcucJAw7IsvxH1X2kESVNGL1nHqWpdR1H+CR3Ih52BwjmOMvOmC6SABSqKpaN+MT18svsPee8rAsE+Bkjh6lOlPBFAl3TVgHD9T8vUU6HkkAOGM80cw1nTmYRASCERH9/YImN0RNHcJ8eCgA4CGtxhHEgJSD+WE+PBA7Fi5HFp3lBPjsI0QmBNJ7d3c45BJEkn8MBZZlKc4RntWKTaMrT+AgL5wUTg+fbI1SzpX3H2cSOaZgEkBrrSjc2lJr9e5jDFUnott1gRTnmh/3I0NN0x1I35cFpIusIWKAQcw5Bma3eywgmHYs+RFaiHffH4/H96/f1vsWEdfLpZVFpD49vfR1C9dwv13bL798+fz55cf3bzr2S6sIum1rrucizFQqs6sjGjK93BoFizAHRjjGXlHAbfTdRweMJk1jgLqBAQXoQID0FGilUC3mellKB760KoyMcL20VgTchPBamRBW0mXBx2YeKkISsal264LS+0aUDWAQsjAx14iwoYjhAIEJASbKww4EnNYcBfOJoinjcUQ/POcDEKWU+ScGwR4RjqNbP6LP48ALcml5JnCweuoXJlKO7jNWKG8QTEG9ngCEWZyjx7N5yff8uKGICAswx1F1lzTmV8OIwzFw6jJScecRgVP6624WahgzNIw2I2KiIDLmIuJAQsQ5rs505RTOg3kpJbWPQ+QUJuSTbD6dxI/qOBte7b2PYTX/EzCiERGh0NR26BgjvS1zKyHOSAU4JJFuExdAP6mHPgci9j7iizScmjsQT0N3RsRlWQ750IfZMpjqWbHAidDQTPKa58PRDiEA9j6oSKuXPPNLaQVKeg2eVxwQASb5xD3NHYqZpe1X0qrm4APSGMWz+/DwWisVSc98m5PBc/Rdc4bnrpCZ1gDCkg//h2NBIgJgnRI3ipRsIgIjY1RQ1CERMXSAT4CdEbX39f4I90+fPr08PTFVVW/1goj/8re/bfetFv788rJUWR8P7SOBYg9d10caWyDi7VLceWyj944Q7doWrgBRkNb1DjpidB39/vjuaqUwQXV3IiQUAkhyX5ayQtNOSoSWpdbGAOFqFZnDY/RCsVSJwErxcl3e3t5GWBEoQVuSa9CHD45IDSjOGpFimswQ4OzbDrs6xNQ2fjDFgWNYgO8A3rzahLJ3c3eINBGf47Sz5IwP2NhZLzipGQF+oMaFl8KAFT3QR3i3w214jBwBaD7/cQzq8cPrQ12DiOEGCPPBToDTLMwy3SbNh9L+IJupzM1gBPZQm0xFnyRf9IigAKF0XS7IWGs1QzOLDDdCR0zjkvfX8RzlUzmFT8x8EEA9vQLzWgFMwFFE3h73HEMwT/fWWZFlGj3ihAnH2N2VMJKh3LsShtmAhEaBP/6qMM2U32/n+czEkRwNBzo6NvtQ1dMJhySsmKBUbrfurm4AtCwXROSV83HKWuh+vxMDH9GAibKetzymvbSqOtO759IpAnd3tWHhEJbwJTO7egTm0EuHJ1pDPGkR2feedSMAuKtlbFXEGWSKM9IBk7yJUTKIQcN8DMYoxEtreIRiXa/Xv/75r798+bnv9se3r1+/fmdmAP/555/+8qc//fLl89P18u3r36vIGKOKjB2tj4DovXvopYgQci0VMWeZBWiMgTbQ9317dVft27q+YgB6+fpwImqtMF4wxE11+AgsOG3yXAeFt8KCEGYAzsJhHq5VeClsGpelXBYsgn2Yu0ZKOULJo7UCaDrC1ZHAzMCHpd0AIoQDuCfjAwGJMJhQCAmCICiLhxzgJ90Q+P2aI2Ip5A6H86KeY8KPu0CEzVPO3rcJOMSqefbUUhJ4A0NSL6W0Vi6XxjrCQ3WYzU0B0+UDM8yHzQAxP8XhKA8BEEGEScMjPua+c8xnk0UqU8nvwFyYi/Vh5mMfXToXQYAI1eFjWETyb3jf19zZckc48ftzk4Kzbod/zNf7qCQ+cvSSzpwFgkht7VLK5g4R02TkfRvN0sw1LbHNzDxGXoxMtRVGM4N0vEhpVUBEMPPBLJxNsh0my6cAM9J4txQRUfQz/fksb5g57T1yK/m4JY8xdHitVaRYD1VnxiLt+/6tFEmf9+wFZvMGZGZw7ESJl6Rnd6ZiHWMtEBQMdwNzz0/x4acU1zP3ZVr3UISHA6Brfx+hH0fTmL87jgABOEhKGIjFXT9yyhCx1nq73cjL9nbbn56WUn/58vPLy8vXP370bVftaUD18vz0y5++/PT8JAgRzszbthVisxhDRXgM077tRBmo3Z4urTQh1D4suplSdAI1XUH3Ss4EwrA9HkYiFG4FmCiAkQJwjlI9pyGeEzj3XQoTkQ9njOtSq1D3uC3trXipSOp9rMMYgAF9VxM0AE3gNRl+mfRH+F6RglsWdoiEMNW7J650LqTzKIb3djoVE/MhOzmv518/l42IOETA+7IENHiPMPN9Vw4tFBmSBgeLeWk3U0rlwlnduDvKuytHlpzzowFSTylMOKtFzRC6zHPIr3dYwhSmwkRF6jRl9HkWslSG6R8Qk/pNZjb2fpzz80siwVGAI9KZ53SGu6Tj0VSFzN6IqNaaa/usyoWwlHK5XBDRbCSUcD6Yx47gksc+M4NTeKhqBgpMde0Hcr7r4Xw2LTEmSnRukCdWhEcjcG4ByXI9zBRIhInirNOy/0ckJkKwfd/NLMAgQEcOY6mUUoowvmfsTAak+wEvvPOjPFTKZGhmu5O7AkEEY7fMo4GzxB1jtFI/Vp7ZrSGiqnOGUwCkAcH5C0aAu8YRhcrMTqaq4HFu3nBMcK/L9aeffmICQVqWBQDAHBF//fVXgHj8eG2t9d5//PhxW1qttff++u37sizbtpnZ9XoFgKG6bWvfo9bKt6fG4hFhO6Gp96UymzwsqEStBcHde63F0+tw3yg8iJkrc+kOjJiqocgsP2ZzEGKCUDUMKCxmYyhIubVWbktbh62u7iGlQJFtbEN3JEMoabBWqwAIoKXNpQMl9e5oHOYyiUMmIIJpcoM4/wHgHwbYgKBHwFGS49Ij5FxyZ+1ZEAz0PKsgkr1muTx07AIG7OiKQzMKLCKkCAQfbaNYuqNFmNnJnv5YkszTIoJIkMXdiQRxiAj2NO8IIm5taa2VUgoXJuof+A7MXEpD5FKwtWj1UkvodFX6R5wvf0eks60+QE0AQHc+TavNR++9lj3JjvCPVOBMTrHDAPEjSfx8ZkUIMQJkNsmlMIwydDNzIWcm5oKedJ9jAuwepn0MLnLCrSe4iohpvp4V+3s1EpaEGLWx9y0LlQxWyB9O9nuWFVLKy6enrfcwy8pFdWCPwnS9PhXCAO99g8k5JQcw64gwmcUTu343tzpOleS0eSCYgrpxcKkLl3MeG5i8A3A3SC/G85Fm5laqQ4zduzt4BAUEBmC4OliYA6EbOTMEETgzCqEjgoGq63Belqenl0rsM7EypPDL0+VybaXwdiuXtiD4Y3sjNhJ8ffvx9cfXJ39S63CEIxJ62Nj6uq8dFWCEEDBBYdntLfUFBKyOyOjm696Fl+6x7909xnAujVuVIgQRoRmyA5gDPjbgQHe3riPCAVHHPjYV0aWV62Vp+953Q6RaGYuYI5WCKOEFQRA5Ak1930cpFQAwGEADCMkDAw7R43mD/v9ODbKdnM+AYMBIgWXqb2Oauk7/tuMpy6c6EDBg1pA5SMr3Z2ZBFnYcYXmQwEDwMXafjLgpoOgfVu+swxnAAimAUqSXGz2wiNk4juqDE3FQ4LM0Tjs5IoFACCaqUlptFwBA4QvSde/DvGsESKYhIXJSF0xH7xuG7XsxuAB4pAyBiREjUDwgang39dFdG+CxF6h21c6luKs7uXtG7N3v923bALyUYmZyxCnMQp5MkLOWA4bwkMi62sy1Myb7zHv6IAcIcWvcdUREEk5zhNZaezwep+TJj/wlM7PoI0ftEFwoNW9d+77vpVREHDay1lGzYb21guGj70hQSwkf+76VZREsGZUoVCIiLMw8Aq6Xl64jjbsB3NRS035inOf2nybxW2xp4O9qKZwkZAAPiIRawjsKtyYA7qoyWIgFScOTySWEVGRsuzQpzBqOyZiPsLFDJj7FsKFC5fPL06U+o0komRIE3y7XyvT1299Hf/z66+daAskvS3l7+75tm7uvO7j7j2/fP//y6e3tzc2W2+X7929E9NPnz2N9c+O+PWB4RWlPt1C/31eGChYQpdanANn3dddAWO73jakgSN8BHJdSWC6BrDAsdN16t7WT/vTpT4+9t0XUHwh2fb7sY3t97Zdax+79cRd8YXICK1KeWttct/01BbLMQtzM8LGNcBduUpZ9GBEIISADdYd5VhM4GhNRXSqk6bVjWjwHQIAFBDLSpKn7tn6LCOIF1CyApFAhoFCHVi/7NsxNkMajI4VrOHhbFrVuGsuyWPi6Dut2aUu4uQMDFaYqIBRIerm07d7N8mGtIwZmHnepGQ4O4NvY1DRQx/BIJrvG3qkgZYzYGEKO+NgQsbWq4WP0fd9vy2Xt61IrF2nLU989oAZWro0Z1/X+2O4OHSVsDB0KJNfbs2pfLpdxfx3WS5PH/fH69vXT54vhFcQxaGw6du279m7X5ee9lwGD8GJOALNh/+P7Nw0VH0hRmhARDe69Pz09OfrY9jHGY1uHacy5hkMay+77frKmRaTwoV7WkUiDmZt7ojKBHsck83z4c3yYCAId2VvH/yun6xAkMDPdzY9+b04Q45wMBWofUrgtVURKYXft26P3LoQ2sx4sz3OYWs6Puobz0MCMFaQjt+ekqboGQOAJi9OMvTyKnROaMjjc4iW7pEjR/lT1Y61FmIhyvJRLhxmFyr7emdlt9HXT2zUczXB0I+AA9qEaJISXpdwudSkeMLa3++//8s+Px2O5XWutY9j3128R8fZ4fbw+0tXn5fa0tCZBpTRBKiKq/nisGBDqwrktMXNDduQgAwOC0IjcylCZICQcI1DdNNTRgEEKSylSmtQIW8HC3QmACKRQITSnEY4e4AaGgcpYCpHR4YCGwMxY2U0g2CwgCAAsLBASVEQCJipcAWaCbQ5rki+cx7I5mOmcOKKnX2hOFS008y4t1N3tsMwPR0yJk7l7iFREBBJ0BQoKYmYUFCloRI4EJsTCDKhmY3v0MUYaNELgjJP8B01xKhoi87CLCICno2+E4QSeIOXPdMg08HA0k8rnIC/Z7ggcDtIkCfoGOUoEaSLlQsLDzfTg8heuTaSKuW59K1uBIOFKS2XSgPH2OnSAKbqlX8dc/8/PT4hQSl2WWuss37iQPxSOGN6sicyn9GvuCCmnJ0RmkuSPplJosJnpoDF2Dw8DRPRwM+My9VHMfIhex/koishZqh0Egcj56lEWjpz2B5hbToaDprslhDt8yLc9xgpIwu6RmtZAsFAOwg9s1hNkyqopd4F85Wo7ZTbZm4l8TLibPMjcsE4BNTEDkgeM9Bcn4lIiAjCYChdGRFeAsGTLYQQjPd5+IKJDbPtIbIyR3KwxuduP1x9uQ7VjOPnootfrAgZ9G/s+Wov7WH///Q8AWEotpZm9ffv+4/E23m4PYPp0u1aWUltg7DpUe9rqJtWF35kjcfB8EnqaUHhkYMD8MQ5yhsIlEgZGzIQ+dXcgEKmtXnoLtYW8LVUL79F9jF0xFMkUhRwskJ0JqIiTjOE6BpNgRN5GSpiO0sI/FwS+Q4nw3iH/m50dAFMji4ge4R6HtiTObvkdOAB0P8byR9MxPXIhmBkicgZ6LipVfesrhOXy6/u0PD52hFNbHTh9F7iIRJjp7EwzfCEPwo9ve56XzOg6YQtK+3J0teGOCcmPMVQtf9NaBVlkn7Fp89GV1trEC1QVgTN9BhyY3Ww7IQNCFGZkYsbjPs8ZXCYxn6ChICXMQUQQH1AbAJGC7pRLKCJpHjntQAqajzd5hGGa8VPK1CFNOxLbsEMQeTZRx13DMfZk+CRglx/tUyJFHidVYWqsMpN333d3VW3uWmsthVsrqmgIMZM85jKCA16CYwyZ3yRBivz+uVsnGFsyYvhwyz3ARdv33R0Qj4xdDGJkwL71lDPgVHYnyTKIKeMt817AAZur6mPr11pylymtFpFaa19/1KXqGN+/fdN9I3QhAFvdOv7yxYbbGDYcgHTvX79+JWT66adS23K7LvtQ/TbMv/94NbPrUp/apUoJ9AAUTLp/JQwGCTYAqKo7EToSF3cPTDi8sFQgcgSSSpaWFu/wkquVnBYCMcqllv3KrjG03lfJsJCI3d2CU2IMKU7T6CBIUomBLOlnhyYFPljWBh6LD8/nP2/ZGOOwGzWcY+A0DsyBd2qK4qgvjrdIZBEJz/7+w8AiGxEiQkFVRTMwA7BC7zfLt40JSiFV1WE5tM4VDpP5pwDp9sgA79/ZTIFUuJ3LjD/4ncKEKowZe3dV9dDUv42x986Itq7r3re9r0PTMt7MrJAg4hEp6Ae1h4vUWlqRFoFhMAcLlqA7IwYLEqGIIAMRpdchU6zrwyFqWSIg7Y6S9XSCgHlkFimzRpiO4RiAnlzD9LfI6oOBWSpQBCR6bIUJAMYYGbuYaEKWHHlrc4+Ym1ZOGSIDuvxIfIwIT4qhuwc4EREDC+ZuFAAWqqZic0BSm6RpC0wsCiB1c0X8vTjAc0SUu+l5CvkH9dihPNA4pqQTcRXMqo9Q0sLb3XOpJY8OPwi98SA5xLu9d8nKYqh7IHEJX0tpyTZjwG3vijD2Hl0FopVaBApzQJDh2HW9b4/7o9amZqDx9e27SG2tEZfPX35+enrqXZlRw7tHD2MqhWtlEpoHbOB79IU7+PAxDAA11f5MToLEgTjcnMI8baed03p08l0IIqUEhbgtlW3BYvWxqkiGtagAl9qwlCB8rK9uNnSPQMLKqUwSLKVkQehuhwE5IDrM8fN0MXefgexq/Tj5J5eJCImATt17MmM+zKqJBBEQNZk24XrelHM15mSNgfd9FwBwi1Bjg398xcFTzLNqnhMw+9+sBbLeMUTEcI8xFDlzdM+YaRTRYyc62HQJjkQmqWgf0HtdrGz73sduhz1cHISaZCWknXLf19FVh4UaAhSR67Lo8H1003ngi0j7EGXi7ogQYYWwEHv2YkOxOBPlkUYB6j7GGHtnTn9cyU2NIGToSkRI6Ww1zCyN4jOvHgiYGQEgKMIicLhZ3/PMP1uRWuu6rucTSIegLaMy1N4bdYDMOJjcToAgSrkbEU19xNKuaRJ4WRoRDd0jYt/3PnYMqFU+nAAzdefcgM6HVt6tsufNnqUpTMgzIpxzF+fz7x0JXDBUzYajCEkcxjX+QRhr0wAyMmsIUWPK9Unawlx2HSwcjl//+N57b6UiOJhXocqXKhjeQUclwcCltM8vn8Ohr/2+rvs+fvrpp+enT1mVXevCjOu6a9+YvImU1qQWkcLIEA7hI8fcZhDmY3pkD5ublBmQAJI4sQXsOgxj7fsWm7KxZ3oQYwh6Ok4LoQRy7teFLp8/F4XtdcfX/t26B6C6m/rUjbsaDNWOIsQiwCwIBpmMdZys5G5uegj2yil+P0nEh/eRZ3KCGeQaQCoB4W5ADDBghvchpo1NumPBLD8/7trJJs7sBz6ynwzeUxilVog5ksAPaQBEFMcayw4iy1J3z4V6VsR0KOsyZz73IToCSrMVZUFm2mxEmHn6BsSxj5Q4skoIMpM6PrRUAeZjWN/VdH7DfG+IiGIynLnHsDFs3wkxODCFiyKkGXqhaZgOboaHYQwAzGjCQvSh+xYde1Ip3EBNfQwHYubCFU/3qySQB6Th974Pd6+1trowCTNTIUJJIVdqVyP8MKp4byiOR9Qy+BITpePpyIQHawYpBMXMSBgRY0zqtKdLM1NEDOvh7hAOlLOoKVw9bucpZT1Z1bmDVmkf96yTlGhmgC4gp2NPxHTj8Xzmwt3CYnK3z2iXmDlWGDZ/x9oWB7+v20spZvbHH3+o6ufr1fc7hLcqz5cL+Fjvm9pYbjcYcZHlr3/+a5H29cfrPuzz5y9/+vOfXz7/lEmQpTQiCLy/qS5PrQkvrTVmcnC3JNemvYr1kTlIFplfZ7uFMwQQy8KlcW0GGU7qw3y3bmbF2EOzU08fXuGKyGP4GKoqQNCWy3Ll1lbme8SexNTdlDgwgAkJkXDCiDkcC7MwhwgESBuf3EcAAEAd4WONkIV62mFEWLIp3x+88yH/0GjMmgGnf2eeNHDgRBNIPmAH5kywNut7+LuwuuAy+pbalnPsf6yNozMFSLvEtH5hRudIY1hEzDOGmdEiDvjgPJzGGBCePvdxgI6XSwtQizFG0fzm4ekkxCLrGrt27SpUSkEfE78fY4xuRFJrjcCx6aTwMzOgqbp2D6IQOBi3YOoBRunGkP9DxgyyPfgRSDKt/cEhxN0wgWL0sSVDMxBxuS0RAfZ+PGaPtizLmMApufv9fs+p5tPT09lB5UOIiAEMM6VXj6sMJ2py9nsTBQlMuJ6IUuzZe3q3eYS1VgECw5h5puipmgNySZvnc2POm71tWxwJuceMABARpnsqZY8wF1PoY30jgtaaSEM6aNrMus/Uqezb8rc+l865ucCcnqBaEImO/f543D69mMW67rnIhu6ufant0/MTgQraGOPl6dMYo49BgCK11vqn2/Xy/PTjx1utlaWqRRZij3V3AmCiVkqtgKhdwaMerF7PxAIDRCbxUooH6jA3RwqqjdvCtXk42ebpqa5hNtTYh2rfETo2PIOJhtvWvY9Ajr493h667kPVNYCIhTgIu+ZMZ+7EqdLHgPRn9VD3WRTk+pmeH4CADjGrueNIzEo7AjC3kbkj+IwHQMQAijhQvel5FpOLlEUccB5ESfKzQ7eaJMIS1m3a4uRqKVR07MeuMTHCj1VnGu7h3AtmIpmbn81LcnmPDcgPQHf+yqqDIVnNiDQRtGVZ1HYezMw4HMAyEYSZi9Rw6GMfY7TKrVUbe07lzELVa0WRgsA+9rAhnPYikKMZhmDGCIb9SJfEYME89Xvv7uukw4gcdt3JIR652UploQB0F0QpZE5C5Xq9rus9izJEJKCYhlXQ95HxigBg5rnPAsC+dyKulY+7xUSEQB6WURx4MIiOpyv4EKWm38ssdN3YlAXpmIwSESDM3LtD2iAiLNjqMgzrshDRtm3ruuanfNyk43A6nDXeu/EURrhaKuk0G5wIW7dHlp8igkhcyr7vGcWT+4s79K5JInT3lGMR0Rhj7xtK6VtH17/85a809n/+l79d/5t/ejweL+15WRa83XysAC5CrQkBWB/7Ph7buvX9Utv1LzcnHuF//evnQNh7b60N93XbXh+PP779+K+//df/4X/4370sS7/fCeL2dKvEBWBVAykcoRFDddv2/bFuYwBXICm1LNcblzLcRjhJgfDleln1bajVKsvSiFOTE4FRStk3dcM+7J9/+/r8xNK+7N37COLSmvRAHT7MgEiESmlMNZwiTBUQTYdr5k3zxP/cXW1vrRx+PsnJg4miHUGeiOGTjY8AAQ5EqJqRaKxD13UFoMty81lgmLCIVEYKBGbuvaMkIWXqAsYYrbTH4/FU5Xq9kvqyLEnRua/38IwU59F13/dSyu12G2Msl4aI+25pVZj1pgIsy1VYzHyovr29efAYY9129cmeNLN1XXMkf71cx7bngjx75xTpAJBwqRU9LSGBAejt7W1ZFjcVKujx+u3VdNTG1q1JAw8CtKF939JE67GtWdkRlsvlcrlcImIda2tlXWEd22W53ZYLhvVtku5GSo2Z3axeLmksPjc1phmJdbbW+Y1zKJLgDREhxCznCGfo0VE1nEdlqpXfy7Z5YkAtNQlgAeYGMQ3h3l+exiREuW8Nn6CDiJibmQcYz7goU40kIiAis0irj9eVVPlMUvwwwTolzOc/n61EWrGajxy+RpgIEU/yfEQctrGThY6IT09PpZRt2yI82ZlnvTMLTmAPDGQVBwsgIXbwrqqvj/ufvzwPVYsA9L2vOEeF/uP+Y/QYpiLCrTrjfe+Pbf3x47fL7Vrq7N0Syn08Hvf19ffffwdzCrjVxdMSWARIwqx7qKnqcACspTCVdgNiklKWBsIjYht91a3HPnC3sMtt+fLLT9fbghjCuK53BlzaC4sghzq83dfH/g3Z//i2//HtbVOkemksTgq70VQrnNOW7ACTqmgBjvNoRVU/IpGzXsuSe/pittbyQDMfPlO2DiI0CRMhoNs/AIfHfaaj1Z9YNSR7JiCrxZA8xSMyOyMG6UgofoxRjk7k47rN5XTWETGFbZCzZDPTYWOMwJze0fll3vv/k6Fn+I5ZcDl+DBGB8HBGgGkvqpk0RGTmpoHkp23X5XKttRKxO+Ruy3zKwHXbHu5aGgVUQEh2PSK2UmuTMw+yygxJz++WxXjGzJ9luxCQkBDQGCPMW6kRuO/79DiClAm8D4GJy7kLnA/h2Xj7P0i1EeC8Twm/pYETM03aAsBskObVzwDPUHIppUAtfdUwF2EWJuP0wAQAByMqH5//sw+csFBEFkKpEskvnztCYi3u2ayaajfXZanZ03xcbTloHKbMfLldRWQfPdRLrUipHk1vYSIWJGxIwxyRPANFmNBl3fbf//7Hf/PnL7qtYB3d3h5bQCkVHTOe2DyitKXWagSsI/38Lpe2XG75i6D743p9vLys++Pt7YGOSysMiGEb0qj1cllUEAA8gomp2kKEJIElEJEEhUNgmK7aH2PlgsP6butzuby8PIuA695eLuu9j4irD4C669hHf9v20b8a9G9v9uOhxu2yCJeFY+DeAQIDw/L+GgISM2EIkQEgGBPWgqWwcjAVj48HSWar8tmux+FtOWECnCbCSBJIhs42C3I75LaImM9kFqdx0BZojtYICwGBDfN3GayeVsU8B0nvYN65es9j8nza8zXG2DfrvScL/uyCzy9wVqHnnxDK0asCJnV8+kdm++nhqhqmKlJjmoBgyp/yVE76DACBB0ZQHMGDzO6eZex1LGGOTABho8ekzDECxNwiSJAojX7U1MNKNaGIsPBwIMBMguWPmi132LaNP9hFQBxZfY5xQPoxt93318kaPndcANjXzXyY+anUTH+W+caOAdPWWUS4IJGYGgHWKkTkoeEeUVhQRFxHRCRpxMx670cvJGfFcbKSckfIhgWnR4sg4hj743EH9FKYCDys9602Qpg9oR/WwkRkI5Wk4ofDD046WnwAotAsABIQg4iwADdAESJa+/7b339/bP/O+l7Awce63R3rDcqIERhIxISlFCqCCNfrVZb2/PwJCLuO+9tqZpfL5aeffkLE3jdC2bYNA3pRUEMLuPrlZWGp5ULBZKrZ9YiIGpqHBiiEme4+0jqFl6JvunW9uRKDWg9V4QsyaB9mQ3W7r/tmI5A2s33sXTmwIFULMsvgi+JubpM5BuGIzmzMRVX7WMcYAOLOAQgYAXMic27lSAHgALxtG+IkHpppAs/HLk+ASMxMok7Mj3wseUaGImT5+v56t1oAQCKEACrkEQSO8A9FgQ4NtywJYzYz85XmAmZ7RBAnOBr7vmcuQX6Emam9ly1+UICS8TW/PMA/Jgwx4QxfOlDr3LuY3lOop/M9IAeySJ2JTCLEQiIIXmtrQ9f1jhjMmT9g7pYo5hgDPSea3b1NODz+oX7JJS12sociAoSpEMnhXIQiNcuJ3jfEk+ybjzFB0LY6c80nMGK6MhwIa+T9PoIMAsCTj3X8hjMxCQ6FKVGKQMh0Nw1kT2aLhVqUSN1LBgCnEpkQABg4IgBDtdf2/HFLPm/qWbacH3c85KCq27axYGulVgnQvc+D4mgEAgDSK8ndr9eLSEmLZEQUkd67WbTWRKo7uFmCehoeQICMR64R4WJ6//H2uo+tMACCqW/Wx3197BgW+6qVyuVyu9wWEhlhTcpSL58/fVr37e33Hz++f03aDIQJ46+//uruNkYlylY5ffS//vhehUspUgsQuiswBTETmZrr6DosXNFJuJRmoPvYEeFyW2pBQk8Ji3kf1oECGbqbRyCzWuwWQUy1Wcje3VUDWGRxy+SUcMs6/+M5oYDmEUO3gJ7+3aWl9SATzRDQHB2OsSPitPr+UHszs1mYKSMJlywt+66qySDODeAQ/ErSe/Kcx8ho0OzR8WBqfrD/yQUMYYjv51/+OTNve9+2zb0TUWqjiWjsO3NtrTGLxTSMZma192AoOrjzpRRmDOJQNHMdTlPgKMRBFhAZKoEQwizMJdchAVAgTlqQpFlgBCYkx8LMfo7ShPi6XDLJBAAIsFUBaPu+qg1VAQARikDTYCJGSr2SwcmAOtyoGQUxdy9gegfka63ZeyQLedieieARgHFJr7UTt/NDr5aP5Vk+5Vu1djl0E0czF9OwLKIjokg566uj0psxDRD5nhAR6bzobjRvDcXkIryXbXmD30+Kg7x81p95+XCOnVFESpWAulj90E7Cx1sLU50u67qqaimFmRIEPacwY8zaIZtmZgbmwUJSmMxGrPu27vvTT1d0GCO4yP3tx7at19r2+3i6vDwVadcLIO+P+zBjiMfjse7b4/F4ff2+bb2w5CX6y6+/AlF/rNoHgffVdOxhzhi32+2lFqkLyuhKDg4E6Wmm4cNUw4OBhEuBH/fXbXtcbvzLLz9fLq02RJI+tm17DHOpQtEC3xzBANcx9s5OlwBypK4RFMhYqHDxdBywA9fPfut6XdqS0kDIWi+d+DLIKxfOAQF4nMQ2TLEAp67hGCuEO4UqgmQd6h+IIeczfKwcOHcTQJy7U86LVIXmoj4LWzyU7CLi+E45yRMrR290OP0wo/ZOUyko6hRO6BlibkT/ED+R7TMCHUMTOAi7EI5cGFEBKNxTQxeBkP9DTGvGoIiJgeA5VicSAkbU8OlOhhSl5kCDAJK8zK21vKSRpmlEEZi9LJ4Dsg9nZ3qgIKNQkA8nosLsAKYR4KUUEYoI9bQhsaH7GMMNW6kAaXF1pLMeQ4ScZ0TESQ7Pbfu4Z9kpZOosEpE7RKQUiokk35YIapXjZjiLCDAAqHmSCgA8qFASSJLpfexQZ9mWn8hHlgR+GHOoqohcr1dABXDVjhTLsowxzlYR3htdDEINRwCp1QGGGUBwLQzItQCSjpGqh1qXwpzTR8fDbMet9/54PL6//vinXz+BDUC8PN3uj69v6+tS69PTUys1B0hqY13vb+sDier6MLPH/fXt9fvrj3thbq0F8hjj+vRSbrTCY2x71jtj77VJvSzEXJYWRt5xXorM10MMQjd3mINSEnaw29PT88vNTInKZWn37bujGTgwudp9W7fuBqHhgWAQgQTAxBJIHjgsFmFGAgQGNpgLNLEBkYKVEHPTBEZ/d8b5QAfOSnAivjQrW4DIRtXdmYVY0ssvOS9Zk4sII53zxRQ8mRvQoe84KuSI6KPHGEWI6Ah+AYiIIkIY6cLqNsvJnMbZZLVyrTU5wjmnjwlRYUztZhx0BjgBrH3fU0cThGdHc1SgNsYAzKo3l64gpro7hQ8TiYNpxpONxPt0M9+Hce6DcWTAxVTcvXOQBEkwwfs9m5SPO0LEO6kvcvT7/+XqT59ky7LrTmxP59zr7jG8MeesKqIAEATRlNgySW1tkr7LZPq729pIWYsgmzQSQBEFVKEyK/MNEeHu955z9qAP+954DwqrKsvKfPmeR7jfc/aw1m8RSoB17xUrCWFsxVsp0toKAI4GCCyIVEvhcO5NQ7Nj0W0TsY83cpX4+aXNzNvA2CPPumwMmXmMrsPNNS/srCrY88PESbEHgCIZpDFEBNDNwz0snMIBwwLCnZCcNnE7bpMhdHcR3h9weF6F5E6o1uoBqqoWLCEirbUcKeZQxyOIU1wDbe0wYX5r5/MZgKbDPOGGUYEGWbkUQqkyzg08NuEguZu2oZdleXw8WwBFANDhUGot4DZN/PWrt6rAgm301sfTZXm6LA7A545MDw+Xn37++P7ndyLy4sXd4XTz7h8e3n6lx2lWt4igUkWVMFpXNVOMidB8v2wIIyCYSAqbj3APA3dQPd0c+D3WKoh2vj7JdLq5nfRqUqu6qvtlaY9Py3nBAGQRYyZHTa0yiQbbiNFbIQQKCsjqHzgjVPDp6YkKT8LAAK7rGDbczOp+0iIC5loHASDMDZApZL/8aU/xZOFZalWL69otgKnUw6FcrlkRYJhbeCgEJoYDuWJYog0TW+AIFuZoRiAUmz0pmIFFgAlTbmfP/GLm6/WapgaiPA4ows2cCMYYPTLb6hAobt57m+qxbAvsGMPW3rqOrs4oEQjIhIJMYf6ZwUktIgsLZkYgJGCWPYuhcCI8EbYsSVcNH4qBEvGp1M2omGFjgpJyjW56WS/dNCiC0nmFAIBQADY8KDLRZgHYCitCJgTRaFyJOFA2+7qZLX2VIs9tA25xuhQR81wimTOIu0IE3L2WuTdd14+IKELTVFJlNNWTWdaEMcZYl3V7PlMM6ZS95xbbFXh9OiMFM5dM/tlgsnBtrVTmw6yqsVFIMcgpKkJxB1WHoFKKmV6Xc3b7EVFkImJVdQNmvr05tutCzMxHs8ECQbGsFw9kIUbZq0lKkdu4Njfw4V6g1vl4g2MMgxChMgkBqnZXIAIRLxjHifvqtUz17v7y+AHC729fPD1dL+fmBl++/bKALud3d8fDy3/5p3e3t7rq2y/eMNXf//jz49O1NXs6d2Q5nuof/vEPP71/9zd/85t/8Se/uL+/e3p6ePfDH16+fPPTTz8jYmWupRAC18lHL1MNhD5GGYMYg0ndtLfQMHOgKlIF8DALkH64/LSeLwhxPJXbu9lJZZbF7OePj2797vblVG/7gIeH5XzlD2fl+cZXW8e52yrTnRAHAJFM06R65ZlFJjBruqp5pmgQiYOpaUQgUKnHqR6OhO5eJonE5HubppRyKHPhTWCGqKLqgAAOhWs4r4uqhQchsAF0HcPNESjbVUj9ksMmf4gwj6GInPHfXOLcGrFGnYLAPACx8HyQQy3AgsR8XZesC4jQF69zXQedpptaZV2vZnY4zlORriugH+YTkVwvXUeHYAy4Xq9dTVXLXObj5BCrDo1wlOlwPJ/PS1szG0W155RhjNHVzHOM6lKgVmrDERCAIEhYkFi7reuqN/Xh8Y8vX7woU6lUe9Onp49D23V57LbOp4rDH64fje3Fy3tHCAEXsAEjXACFJDKW02w+Hcewy3lhZlgaSX39+vW6ruDgDuJo6KA0YGx7mV09qriZSZ4rlm3TCZmPSFsWlftWh+ieBJkbyQQ2pmqo1jnzv5k3sVApE8zgrllJVqwRQbRJr9NjAqlRQdimdJS3h+UFCIiATCQInONmRCAyAEaKVEZHEDFQutmEWBDMAzyCzHwkAaNIDmy2Lk1qEKZd19RN9xUUExcxCIMAjw7u64Ieo3ekYMEI620JRYa4Xi7npwcEm6pAGASto+cyKT2jt7e3U4XDPB9f3fz888cff/rddRnz6cWRj+8f28PD5cefnw6HA3H91//D//A//8//049//Kff/e4fSHio8k68YWZGQCRnxNitARRALCIWThAWuuHqmEBtubag4e5m7eXL09svXp7uTgaDJbp1ZD5Mp2m+aUM/vF/OS6/zm+PJn66BTCh58IEIhYFquFtJpXl2iGUidkj8WebgiMCm9oXsJiy2YGERjiBA87A05wSQOwKwe7hDJlAz5Up1a4WDaHNSEwIBOiKnJyAy3S2nGBER5g6k7uY2YpRJzF1xFPQdsRSmaAQRbhrmeWcbUaE9kxo3PiC7j9HVXcseV29m2ocOAIwxDDeu5Ce1ddYmnsGgREEYYGpdrXtohDy3qAQerrZlK9HOd40xBpLrGMg9wubDsVRo7aqhIrMUaiOYWULUDJ3RMLm3DkFVsBEQOgQiojAHmQVKqczz8Rh7A+fu67qqbpNRQZBw1JHTwVwlAQC6Q+ZqbVuGZO5TmCl+1mbjriqPf/5l+5fqqLUCVNwjG2HLR6JpmtxZdWQZH2GqHRHTe7pztQD2MTJtzHWGtMQi5k4qAyMBPjGqGTO0GsziecMB++Iw9l2RqgZAgk8Ea/aipRQuEwC21rQp7aeAhcs+uzJ386HaQw0i0moe5mMoOBHTsiyXy9OL+5tpqqjrVA9MBQB607UPAizTUSQ86ON5eTgvT5e2NP3w9PP52s5Lb8O/+OKLf/Wv//Lx8WOt5Vf/4ru//+3fgcfb128+fnyc5/nmcDzMNROlwxxcbfStSzIDZmIQx3CIRBKgMzERLJdFY6UZ3eHrr7568+YNC0Kgo6mO+VAPdTocDu7w4eHx/HR9NTEh97ZwORRBgSLTgUVQxcO0Rypkho/94UEz733M85QzxQDKUVR+RIgoBaDPDfk+UQYAgwSJeqThBwDdFYACAZGfM1P8k0z486EP7N06+JYdjuZmbg5eSok2PP+amWvhWohoww67q2WkyDawjH8utNnmhQGnm8MYDYCSoeqeFFvPhyUvUUImzLJlK8ifN+LPfODnfp52/paau7tME0IGCLXoAWjhnUABfJ7neZ6vl1VHE5mlFCKapkMgII3hRphTW45QkcrcYpdU5Lg7wqZpQuBS9FkWuD+teVKTCM8A4K5uucnCDayaF46jeWyuH4Bt6rPrd2I/is3MrcOOY87qQFUjXCSHJWoOHpu8jwVVuwgl0YEYChcAUoXnVxkbIRsQMF07OYUmFN9eDz3PqDwsh44JEtpY/7KptcI3LbO7T8wRljmOSLHr5zBj3cwik3uIxBSV1uPNvBWTRagIE2UlpemrIRKkKoURLZQEwwPAPbQUvrk5gnfzcXf34quvvuJSmyrJdKoTEl3Xq/t4/9PHQHGSZvrjjz8/XtbT7R0XORxvXr54/Vd/9Vc//PD73/zmN3/3N3+HCC9fvsSI29vbl/cvTocZI/q6tGXR3mISAA/X3tcIQ8HE+APY8O6jl+lYpmqPfm3raSpcy+vXr2ut5+uFShCHapsmcXNHIORwWK794eP1slBvfqxVhDLgg4hEuAYSBkRXVTdFxFK2POUxxs3NiZnT+RoxEhCAiIfTrOoAvt8BmlsqIo7YhnAAiaJg2ISCARFETEKTFSKMLZU7h1NmGBwYkEK6TxY13EgfJLG7HsOcUETmeZ6mqcxT6OKOZmEazwxXkeLueeuYpY+bRSqAi1R3R+CAIBSRAKxiCMGEGccizByZY/pZ+pPslNQ8DqRQBDuEAMkgIsroLXJBBkB114AAUIRdFLsrHTQjZyBKKVM9WLiFh5M7IDChEBdATCuEm+qkEYa7R9M0eu+ttWeGSMptthOBacqRQ0QnIoyS08dS2LebcFMawL6nSWBWRKSW0ZLL6CMdCgDQ+7pjpOh4POaJ2/saEcRSykZnzTEMbBuRyNoBIsKTfmHbvAM4K4XYABiSZoXI4RR6bP/XAgz9ObJtk31kO4F7XtBwz6VldiuxLSA8EFJZgGCALuIAxFykTkAC2vIIJIRAD3TPc1dQiMJ8DHM1ACBOUbafbo5S6PH9mayfTqfvvvuOufRxvbl9+fKmrsvTeX0qxKtTb/rjzw99OJX67fdffPPd9+8+PPz2d//40/t3/+//1//zd7/7/X/8D/9JuE6Frdvrly/u7m9ev3x5micd4/xg2q7Dx5xwQdPehtlgIc8fE6haWy46B82HWxHxa4TDdDhMh6NF9N6Oc2UJbQ2DHx8uHtPd3ctaj737zz99HGNmuQtDMDKPsA5RsCALZfxFPmy4exPomb/yGV8vdoV7lof7XzMRmzlASrw8E0OQaAuez1ZU00eLzMiS9D0LV0emLcPblZy3PyvlhzmiJgJiQEUMikJM6ERbsZEvde0akKqLwszTVOZprpOoailjV0xwKVTrDODhaIq5ZCNiQkKa1NGNDJxQM7gFMfLh5F3ju6tmIgVFpTAAxACg0OJSCAe6m0cnEOAAjpS8IRJXtvB1XfthmqaJ3Hvv4ChSETmcdUDvPrpXA6JCQvkL3GKM0XsPM0BJibCOjYr+LKOiT25ol+x/EJ32uoCZiVBYDEcEEoKHZnQq7Eu+1EskEn8zI33aaqRAGpiZGOqUyw/bBvJl2yxs1IVN8rnlUkgh7bZVfsE7zxsRyD2HjEHEEKHuEIDbN7LjG/ev3DgxM+3swVwgM5OuS6IhibPY2w4FoM165w6tDdUN7NHayGpoqIaOZ62EmYUQc7EIG2Ndr2QoIpXYVVmACbSt4Hp7e3rz6kUuOK3308SAcl3G4+M6TdPjuT8+Xv7px/fH402p092r13/5V//mer2q6r/7d//u26+//MMffv/w8PRnf/JnCH5dnm6Op6kI5NCw9bZe23Jd1kupvBUFDqbD81ZE9+hB0axFW+rhCEzqNtzuT6dcmNXDPM/FsUVY6+1yXaaqh9lH9+Xa1TrR8eZ4HD0MQs3cEbALEwR7KAKICO/OWiJixlKKqgEoZPQmcilVQgJszxbeZMvTNDGXbB8g6JlGldfqc8HY1RgIURCDAp43jrGFL8RWFyCYOwPyZofOUMagcCIaIoJRGGDfQ48x2uiZH5/G02kqIoWQinCtST3aVPbC1UNzRUCEhBUBiCuSMAUEUlj6u93BP+OmuOtunP0ERGdmVUWKDLjBTYBu7oOIWYIlQnMcEUTQe78s1+NxFq5b82tKJOHkGq5pYw1QCkcIdkMEYmYdI8x88/6Br5oCPBFJzcJz77bNETI9DTK3CisAEDIzmjkAM01URUTNxjaD30GG+xHAqVzI9zILgef2AclUe0pTibGWeZomVW+t1TqP0WIHxWeL8Xk7GDusPkmBZpp+OGIBDFDNiSZSAEQmW8CumAIHRAxE83A35tQXcoTIPC+LeY5JAZgll4hqLqUQiWk01dG9lKlWXtq1FAYgCzAdGk4EHp9OtAx3gsxOowBwJJMC1rs6fvPVl3/+61/+xZ/8Uojmws3Gul5/Gu39zx9+fvdQ5vl3P/z89Hh9vK73r9/2Ye8/Pkgtv/jilz/88cff/OY3Hz9+DPOv3n5xf3sHAIVpKmytvb9eXbsN7Wtb19XGWC9XEaIiROgQ5p7VG7BlboBa72Mdo43RVfHFizsqRAUqioWq98Aw9+PpfppPfcRP754eHv3mptRyQCMCASIgNkr3Opqq2QiNWut8OCBuTqScJ6iq2khEWimFWCK2lN09/MKyDWby1hrhxtrc+/Yt7h0FXSG73PCyNcZqDMiAG50iyz3cysq9P9/oOClxilSm0+abVtWhmswiQki1Z95V67omzlstxTLELHlJmRmjhCtSIWIRJqxIhRlyMW5mqj7GMIRd1O9mnrmn22HHSIzJEzQbZvm/w7ybayFCcSkowupmqhk2kKcSALTRw1N1Us0AkZmqsBWZiwXzBCDgGIEida4HG896cESqpuR90xM9f6nqc1SUqG7P4WdYCoag0RdiEGEiASxmoprf1bO2Lx2KRCiIxFzSAerutZZSNx312s65YGaeprkUKWOsrbV5nnsPd2fInqK7WykFP8OuPo929m8AmGGfNnKWLUgBEbQ3irsQK5gFAFRtjJ6EVWaJiOPhkKiohB2UUpL7clnWUqYi0yBtw1WNKNzB1EthEiYjjTTeExFVYdeBFIUoJgGfwrwIghkRFGbVwbX88hff/I//9t98++UbX5eXL26uF/75p8v5fP7wcHl4uvKqXePDw9Pa2/F0y6Ofr0+P54fDaf7DH35/e3ua5/r65feHqT58+CjEp8OBIK6tXZ4elss1LLMtHRGXZZnnephqKWIRYUPVAxCD6nQoVfu1tzHaWJu2Oej+5R0zGAwLX5drxEAkLoe709vD8Yvzo79/9/D0CK/v57ke+jCZDswJNAaqVZhWC4fore1yXR792bQmtRJ0GJHjZBKhlL26QUZyqSpTkW2jjnvX/UkIi6gAAoR5o6SbJFHin2xOJJ5zD0REAgRAe5b1QGyQJnc1Ne1DJngmYmVLWkoRQhERFoDoXVtbxhilcEQcjtNe/xIAuAFVYi7MIlxRgLAAFiIH6BHhvs0Obc9GzXNkf3Z2x+cWu5K/VM1GgiSGjxkFcduh5o/C3DISutYqUscYFHg6HcDL5dJEpNbZIdQNAKYyFSoOTsAitZRJpO1LNIlAPB4tFjNLWHluf6V8wt4KQDIOJAJVE4wdRHA83rir+RhDPenJACJiPkTk2W2mqkU48Y/uhejUWjPTmSszPz4+qQ0PJSw8FXdvrbXWcruBmO0Z5x2bSwdCMNtinTIfjaWaGYz8WYNInY/HWucxhrter5daaxIWVLX37CZtqkUK1UJd1nBkTgcHAcQ0HXrvql1Y3GBdex6ivfe2DiI+HE6n05Z/dzqd1DVfDEVmZA4i+vDh8ftvv/n5p58uo//Fn/7Zw4f3//Db33771VceDQSvY/nqy9f/t//p//oXf/onN/NURaDKH3/8w/npUXVFwGk+Apbf/+FHN3z15u39/X16vb777pt/+Ie//+1v/ztivP3i9c3N6eZ0ev/Tz2OMMotp/OHdH1xbW9dlWUZbEfEwTbVKrbV37Q9P01Tmw6lIJeTm4/HyeF8PpUzX68fpcCPCl+v5V3/6BQqer49fv3lRD/N/+7s/3NzfvPv5oda703wAmP/6r/+/P/7xoxs8PDxN8xeu4aIEMDRAeDqIubfW8khNPMQ+S0bEDMUeGYq10ZNiC7yLcAzKlGdFKGUSqYcDLstS66YBU9XD4XCqJ2FaR7fPXE9mxkiFZSpz76vtOLbe1CFyDLWxQIjDKCIKlUIyfEQokSEGMEHynrYLZOvz0w6PGCJiNrKWybrY3cdwEUlskbsbRC0HABwaz99+9kHzPHe3HNrVWmWaMzOxXy+wqYa9VmktIpyIWJAZp7lMNBHDsiyqwCImgaGhfl2Wu/uXCVRBEgJBIlMfY/hwEbLFrtdrRmOZOjAisPbuQwuVqVRGYgzgktj99AcmKvV0c0hn1PaMB4yA8NhS7vdTbTvG8m+ahceICECNDTXDsDGRN85yJixP04QIa8uhgxPRXKvqtkNW1W1wCJAajAANR6DtLUdEcMi3JE8sMwMcEXg6nXLO5O5pMTAzxKhlLoVLKYTCZIRVWbcJk+eekiPCLZfQmO7NvJGyswrCiChIpuEQ4RjoG5P/k9wWAGCbUQUQxOkwn58eGAIw/vD73wnT1198MVVZ2nVdno5z/fW/+MW/+rNf/+r7r3VtfXlqy+XydP748b32Nec4p7vbrzN7HulwmLINmecJ0Mboas19jL42hDBnJLBovY9ho63rdVVTkVpKKSwIpOoWwQ7EgEMpxCyGeZ1uAoqHAYu6Gtjxtty/up0PLDz90w+/v391cqCPD08BdV0iXhzmw6vHh/b7f/w4zzDPx/P5LHIEV5knSsQ6gGrafkUOU44GRtfM8sw7cJqm/DbNu6rqOlLAkgV5ROTgkGjjIxSZ8gNwOp18p1QZWKprU/ju7qafrZmQU58NkJn04QiZoazuBOk4DgRAQEHahBPP9ETaMnxj25lpAO2nGMQ2r8DYcOGb1ZVwC62jDQOzFQXPH+DPa9u8pQKSBrT16u76HGgA6DpMdeRoXHUwyN7MIngKlcEjIDLW1dzAPJg2q0YfHQDATYgNN0shAipizjVtD4/ovTv4GLxBFnd0QJ56ItsQR4gtFxWAsGOYICuIrS4jyj2Ou+cCCTdIxifUipn1PkopItvcMh/XLCsiTB3SZMbMRFLrnDusCHTPjROnU8H2/N98p8xGoENQrTxNJWs59WdwbUxVIF3VFLiZPSgidHieCAgF0CK2tkg1f8jEss1+DcLdhQnBVC0AI2clERFOsg1ciTkCiqfkBEsty/npZj5greePH1+9vH/zxZunjw9u41TrL7//7v/8P/7bX377zaGUx/PDw7s/FmECK4zBSeYvp7ubiFjX1lpDhDTCFgG3dr08uK0Btraz9nU0ZZTr9fr48H7t52V9GOtghNPxWEpFIo9gEs6tHYoDQ5AhOFUmMiVTEi5mprbe3h5uXxzmk1A9/fibv59Pcjyefn73gXnqXqf62n3+40+X3/8Bvn5zrGU+P53vX84QQziwsAFphJkDSC3Hwrm7im7adOS6CvLHK0REoDHc1JwCkMhHGk9yIZdBqSwMUDzciPl4LAAwRjfTDdEogpDaBFdVMGAgCmQgh0DAwAyYzjyGcMxF47Pi9nmAzQiG8WnYXEpx64gQ4LZhGj/xVGGLxdy2ZriTe2mzKqSOyFORnE/HvvF1QAfM7A/M9iA+cUZjjKY6EYEItd7dlYXYqHdFd5JCWDjAlJgtINN0BADD0Uwx3EP3WZkDEAsxYzh4qGYArAV9xm7JVssBk15S66zqGVGXV3WteQeHICmm3itRF5Jh65wHBgu6FyI03xQaOzEVAH2P9wwI2i2GkDYPACeqO1HXVNPbZURRSq3lkCeOOwGo22cxvulFR4nIHYkGAqKv7Spcc7tJthnLcrwweuhYMAPkghC3/+yD64ggiAz/SXtVXvkB4Un9dg/kzekMAIGcthCztK8+ExwJwd2R0ClgqvV0mAkBtZ/mAwX05XqQ+s133/5f/k//469/+Yvr08PDT+d+fXp49+7LL96cpjrxC98VE5rrc7W+XtwUiYkpwvvaLuePzCzky3LVNtCYUJbz9d3PP6ld1FYwn6apVtABucdiqoGARIHiwe7kgB4Uxt1iGNfpNHwdNk53hzphwHAc83EaZiyzg2iHm5s3pdz/9rc//fzz2RQQZIzhoVKSUWDuakEOBaEwgfBUCiNC8o5oA3s8p5gws4enrKsQATObp0oNnvu4NDFHjNY0QktNXTOo9iAmrkSCAuFoG6nNUybjBuiMgsQEAAZBjLCFyoaHgyOYGzp6CDGksgZjC1ctUuep6cpbNTqysIUUqmz4nG2PtqFA0XUEbKNMd8+Bt2WXlHpf30SZno9GreIjaePiRUrl5ESp9RQCpIKmFLbgpjlPmQiLgap6HwEBkhki8MmyTUSELGXwqZpFNyKOUBvriogZeuK2GS5zM4PAzCwyOVjWNeu6Jc0k5g8gAF0CmgcGFAQBFEQidiTyfRBCRIhC4czsAdt8yHNPu9VOSFGK5Lii9z50TNNWlpv1iOfkX3cDYUoBH4UYtuSmAVI4mnuAAVC+AWix22YxPJzUPDw/lQSlVCLSpZmZO0Q4oTCjSApud1kYy354IyEnOyD7o4jAbQjt7sneF2YG2qYqEZT4FAAgxgCglMwCuNrd6cZ0jDHub26F8fHDe8b41fff/fpXv/rlt99oX//w+3/k0LvDdDMX7wsRHuYChAahbjHMVYuAgKkrB1AMG9GWa1sep2kCh+Wynp9Wcg7nh/cfP3x8z+Sl0DRNRFUNhwIL11oBCRAs0I2GJ8PFLZBI3MOdSzmsyyXAbm6OQWPVy+iX+xendx8eAsSNdfDb198vV/hf/5e/fviw3t3CGPaoH29O9wFjnicMXVuzmPgwi0yAhajmNgE2mbkIJ4rSVcOsEwFReo2T7h+7VMH2OZRneAeRALR9Pv8JbJFjQxF2gzCioLDsY1HNkz5CyKmZRnF0Q9pSPyDHBO4KFuhjDIRBEcLPQTKAuOXGWsaLRWquNxJsngWICBBmrhpkjEhABOCZ/ZHPf4ADBGAQITMKsEjGLnAmIeWh8HwnqyoRAnhKJtzzBEGRSlzdcPRYrn1tjdC8kJqrx3C3cAYKdEZhARYZXYkdUFVXB6MizCRlck8ekZmb9RF1EmaHzKf7BB8l3viA24kAODwQwiAYoTp4xIRou3EycMO8pr2IECH53xEAkOFhOc5JtWKwoMf2IWBNNyMJsymFk1n0prLl8GKEOdp2MCO7t10OvYXhAVCqlqWk9qmv66q2CYdLKahOJBkmnKMcpomI9xUrEiE42IZLxlKqWfJ2t2RBCM3tJhEhbh3sLmvKEzSSigHpn/cADPQoTA8fz+tyOX3xdjT1od989fVf/cVf3t8er0/n88OH0df7+9PL+7sXp/rxw89unkMKBxzhYRbhp6n2SZSdio/Rl+VyuVyu1w9tLQD0+OHp8tgFa2/w+OFhjDFPUo71eLydpsLAAcxU63RERIPAQA03c3XT8AgkDPPwMEa/Litw3L26RbKAvvbL/c2Ly3JVK8Kn0+n29vbL//jXP/27f/+ftcXt3X1bOlrMhxLWayEDC1MLKkRIxUxMwcGRskDYUB75qBOleij/mz86M1PawuC3xniMkSOJxM/sa6DIWZIjmWPwpm5BipQ2mgYAhsEmHQyKxBED5nG99bxE4eEeHh7DxhiEShgS2G1r5t097YdIAeimW6m7DZ0QGfC5h3WH8hkAKiDB5SEiqs6xcatYyMLSYWlmkCC5lM+GmaeeIoOett8tdUQ5uQNiCHJfx7DeRhEuBbPW3vcsuS7pqp1Ywgf4gOekTIJUViBibysAJMRZVZGsW+t9q2hy6RiRTToAICCKlHCPTN/M7a47QBBsJYpv2/6EvVPsU990GjEi57s+xhCROklRXhZgflZ0F2ZGEFMcnUzz8hopn0BkREIQYgrNTBTftdiGqWBLI3g8/1NPdXOEJR5lg7WhiEyEEpF+SgqP7Z8huw1ESAESBKeHO+XGYO4+9mNSAQIjJ0AAkHGzwMApnAyktI4Q8+g93AuxDZ2kvPny7V/+xZ9/983XbT1//PAObXzx6uWh4FiXygnB0ZHxIYAKYZZm00Dr5MNHnJ8+PDx9uFwuj08f3QBRnj5e2+qTnJZltLWfTqc6cZ0Oh/lUJ8n5FknJeAqK6B5gqm4ti1lHgqKqrV+htPcf39++gru7I3Ff16vqWJYLETEUhPLm9TcPH5e/+W9//+MP/e2rg3Atp7kwnw5zG50lEETEAZlJAjmJYMiGYLBpBwAIw8PCkTDJoolRMh3uCu6pLECkVH9EoKm7e4dBTACs2hBRJC322/0AWY4KMnO2DxnCno63LCEjYndVh0AgZbeCqSgTYRFBcObAPTlGVXtrVCj59/iZi6GUkn94DvBzY0IUQpLOBYCN3cTMQS5CGs9u4K2P6GPtNPM/h7ukeCpJIhFeivTe+1hb6x7chgq4ZMoWF+bCTCKSCsjP5wI5M8AYaiNi8GYXwOd5Ie5CSfgs68z/efAM7Kfb85dM00HVEEBHxEaJ8vCQLbsRIxzC8ltFiFIEkHdgomR5qqrLstzcHuf5xl1t9AhzQ3dnAkIRnnhTKIcbAIaqIgHmVbzXlkRkidMFsuzXmIApDFpvpRQSng4zIefL623hKLBXpswcTmY2eloww0MBGMIMjAIiSlNFxMIJQ0bzEWpmSsIeuRxmdMtlCgUQcYQLsWBBCvAAQQADtLGuh4nnm1vBOE70y+++/PUvvpmL92tzW1/eHt++vn9498c//vTD7fEQ3t013APCwdytdbXRhvtyPVuYuz5+fHj/4f11uZwvy2jADJczuAFOvTdzhPl0gxgkM0nmvyIBOtCwAAJLf0y3pevau2m4Q5Gy9OV8eXS8vn8417upTBLc3z28oxLtQZGnudwuF5nKy//+m59/+KcPEVDrDI4v7u/mOh3nGmYSGMxzlQG1iKwaZh5owkmmNAAIV8ioOXNAlMqlFHfsvblGZrGtYyBCYa7TJFSGOfhw99F7nSYCHkYInuRA7wMZs1Il4GAiFACyiEKFwgIBgCIQtkxRNwMMDNlRDYAaxMB1quodkAuagBZiRAgYNppikZIotpTkeoDXSfJeBQhMpwsxeBQqKc30DTaLSJ5ymOenTtWHjtbauvQbMWJOUQYyEUkyNef50HrHCCS+rsPSzk/c1o505LpzncokAlKEy4FKYZkBACwnoO7R3SlXmIWQkRwcXNNL5uYAUKg4KhERyjZKAK5W2+gyRH1EhLqxU6BjgJiKKxFSLTK6NzVCmOe5d93bHjIjN0MKAl96T+BlhEdvqS2Zpukwze7+9PDorhksCwaHaRpj2LC+LGMEU53r0R3bOjxcx2BG4ijCLCAWCLMWQQpV7TqAEAAhYKix1KGm2vPDV1hKKYXEDcAxvxkiAsRuYWBShCoSATK4ISO6DQXPWgaJ0EHDAq0eZD7Juq4MjJg3gCBu4IbLw3muExHo2oiosAwfbV2E/M3Lm748jeXxq6/f/OL7L7/54ngoy3p+Im9vX8g8xdP552v7CGLn9sAIpt2HRlgeiGNdW2vv37/Pw2tZLg8PDw9P59aaGoRCG8CEVaqUw+u36Z6kQAcuCjknCUZg7cy4riuImMN1WS9L66pdc8R9WZaLTGAwykyH25uPl6dDgWC4jlaCr1cP1V99/1cP7/m//PU//cf/7b+dJl6e1sP9NFE9yIwWBznBIO1OWJhLW1YFr4e51traBWLjI6JbKBQu883RhjKzD2vXZYwmIodp5iqhg4SEJNz7aAE0lXo4HBilj2GqN4cX81SQabSO0C6tT7UKFeZCUhwu5jgfTuvaiQiQcIMdc2EEII+JIig4N5SO5mAK3pfVIyRw6c1xEN5BtOXpQRjDva8tZQKYaTAeTw+PIpTopCI8T5vgJQfUKXtCECnkA1rLOGlMTocO081H7+fr5fXLV+yiZ02XJSKyVClTH9baag4i8+l4rwPP65gORzVfHs/rug5QnsXCHq/L6fbYuneNuc7CUBht2DSTD99SzsbA8FpmARrLOqAjUaiPob23cCxymAsu6yjzPB8PS2+BwEXqNNW5FOHtRGiZFUU8TaVIAkd2ZF3QrgLM+BZ0dyBy3/j3uOOlI6t5dwzL44ACPIw8sfmRwicIMx6EpdQtanEj6EPIniuZbKxAYXYkZinAHDhyvSpSIDy5jQyEwJCxGSSI6enOYUkSdz2hdYEWMAI1UIgBKYAQwALTDUERkNR697AUS6PnaGme57KbfM17OLgrhnF4eGc0LHF7lO+/ef3l6/vQy1gfwlUBV2dwV2se3YdSFQvt2mx0G731Zbm2dV1bHwCQIIl17aEBwYWxzsdNjQ1S5MAsgBwRMs1VmJmklqlKKWUSZi4yhjq0pV3bellWdfBAC5gnuTY7X9cWl2B3CENCouPt3V19qYMu56fR6OP79offffxP//FvMKgwH6fpNNVJ8FCBQFwiV4wR5BARrtbMw2AUQQx5bq8QEcJMbehAKBFYCLnUUso8TVw44IgECGRm6u6m6oGmzmYpcAJAZEoqOdppLixT7EwoIkJJVuRe+lLychNRFu7BQE7g7p65UZBTJEhXNRExbdJfEYLRAyKCc5pIe+EtIlIoR4MpeAmwCAYLpC29GLepPyDiGKaqvgsmARKd+OyUH88xNgaQM/jWWh/mCG4AgEDCBBYOGChIhQgkJT/h0HR4IBJFQO9NQUPHGF2wfqr4AzED7JAsMhuThNh4szNl54WII5saHakxLyFjc0O7IHJEmqW5blKfcI9aa/oYALahQIQHMGD2hAZAhYhQIHDfMGk6PWJDDAaAOzyrUFI54ixYyhbHlsmCmLG/4O5OLIBOQSKBlMZSFklKSxATQYCjh4LmtplEpEiNiKGWIrZSJLEamc0YnyG3d7HDp/YpDwJKPWyusj1lKoyAtTIlJD40TANQyLEQgT49frg9lO++//oX33/z6sVdEXp6etTRMvRwaWvaUXzouq7h0vva1za0+9Deexs6zG9Ot/njEi61TH7vKCwix8NdBDpg1gEAnDueOhUAZ4Jpmo7zlGYVAOhdz5flw+X8eH74+LQEIklFRCc6r5elXUP09kTzzUnKFBhjRECcn9Z18YrT+fH62//+D7/7h/enE5zmcn8jNzd0mL2UQRgOcbwhUmgKCGSBqhR7p7opczdnsqXgvGvPetvAA8MxLMzMpDDQNgtKCZF5B6eExOE2rLLAAHISBJBAGEMVvRS0cAtVHxZKG7Yjn3mzhANTaurAiBjIwXKEnLp1pI2qso3GKAL29Hp6NmJLBOZ8Jp+jPf0tVxLqDuFh5hScP/ktD0bHM33jU1ueGcfPwurtD/vE6dgFPs/aHxUuwVRCIsLcw9zA1AZAJg9A13B3sMh1O+yfcINI7wcRZUfDQizETttFCGkj2kRZz/oL+DQuRZnnubXWmy7L0tYhMjMVZimlbtNI2HK4Mr5IQSPY1BEBcBOcAYBwcSIwMoyItH2ou3OZEFEKIbJtgEZLi0FuO7aD03Ikk3tK2uZUyJD+JUhcS2AWH4m1dYjI1ZSIiJmZt0SkMLO7AWQx8+ltQESRXCX4fh5kKLjvEkbKFek+0QoLTScHUQACojNCEfYBj+8/fvPq+//Dv/7LNy9u2rK080drS0EsLKpqQ1W77Hqt5Wrm6g6ETJWlTseDu7tIzVNpJ1ugTDUdFogcSBAYzu6gbmZG7GGacM6p1DQUIJNbdHD7oz0t58fzOYilVGDqT8uynA3g7kbefvPFmy++lGl2a+dra61dzyZ4R2X+p3/44fd//08TQyW4OdDdXb05kEgnTJkwkjR2RCpEJlAKMoAAkye+Yns7Y6sWI7iU3IoHWpgHerMeZswQ6ASctzcyMKIHuI3cmCN7wLDYTvRcEbl79qobWBSsj5W3uVkOj7fht0ca29EdDA12kEmajhwCXZO5nItOISQK4shF6Was2D8wm7DHN3dfWuwBnsPNc4RiaWTKUeUzBBV3wOnnWNTnNVZOCQLI8qrdPqPOjCyRuLIANRuRh1qW3ojMdKgTRAnvo5uP2DjOQO5p69xuvl0bCkh5tqhqD5xg12gx8/O3VsuUZbXkWBWCWuuqGjGwMHNKNZ4Z2NsIEzHAE0hKhJnYvXcNu5twuzdoS23Y/mQuRUgVdNj2Tew6yhwpb2tOJxuubhEIjATJ2GcBRGR3zRTdsIRopZEN3bPYN9fhFsbgkfdPShUBIjYAFzPvjP2IPcU8ck+Gzz/EJKn5FmY3PPOgycMV3AMDSSH05YvbX3z/9ddfvUXrl48X8sGEBMgYgcGYnnthpLBnP18kXIyIMACCLo+X7dNQExkAm/0n8zxYEMgdTAMdpABEkMieYdMiTGphrFjEIdbRl7Ze22pIbAoQa18DABh4lttXd8ebGw/Q4QSH0YbgdHd8/cffP/77//U//fg7+/qL+8vyMBU4zXCoJqwiSEQO2Nu7dXCz6uKOhCg5ao+cPG8PiBECMBBjrbWwAAAp7FukMMO1r0Eo6EEbRSAfeBIEImEOCgs1D3AwAOYaxDKhSKl1LvPElVEIGIM8N4+AGGBIgR5kgBiQO/IICAAMiIx4h5wrJcTNQ92BBXmbKQLRtiNEzKzkTTjAzFk1uPskNWKz5zNIBPfhn+8pnvf8z/P82BHhecR42DNzJB+qHQUC263OSOE9htqqNsAM0ADcfPTeq0zzdBAGG4WjL6NHeBAHbnfPMK0QwszMFgq54/fo1tFlWBAHRBSRKqW15mqmSs81wrqutczTNBPx6Dk7jbQkxS4g3/XY+VMipolKICJTeb7BxzBAS0QyIgpLHhbDLXEnLNtvpcN8MyyUzF/dCzYnwgxHAYSCeckQ8kbgMGNzRQPcLLdbRKXtYfCwcVUsidIRHpve2hGDiYU2Q/r2dgDhZnchN0i6NmIup7IIguxsI4IIPUK1CYQIzsx//utf//mf/Dq6LuenqdRjPaGP9fykHcO8sOC2QvPns+a5Wnu+ZOoh0LdQgXyoRreBoxZgdgxHZFN3B3MAdOs9E7E8k2ao86goY6j/9OHjx6en89qaORCMNoYrVygVHAEFWcQC1kUBUa1QHOfpdqz4m//2j3//N3aa4Puvv/nHf3y8m+VmomnCIlEqEoVGrLoGcAAAKgsGEEZxkq4tz9YAQODYb5GISIdSIIQQEqEHIrgiOFiGCxMRhoUFuEzT/sPHsUnOAog1XJ5Jn6Gq3WxEjHneVnG7RzCx7pSxoJRKk/3ITz0DIAgHIgltaC9iYEZKLTBCQOzO3m3JtzeVvj8CMYZFhBsBYNbO+S9sp/yzEXtf+D3zO5lZt89/zyGCmQVQtjmfdRCB5OAIaBEekbSXCBs2+hjdBjshclKukUiYXLiUMjHpsOF70lwOOHZV9Sa7yulKDkp4B9uNXlpr+bOSlEb6HjiRx6FaN41UniNCbCPGLHk4M7MBgHI3ufONwsEjtdzbxp8ICMBMQ1PwI3kS5wcGUZ7dr7Q7YYvMCBoIpVQScYiNNL7tpBkI0v3KSIhIW3xkMCDNdT+53AMCjIKSm0DP2TC7Iu75nc83NM+FjLH7/IwnnsIHbRpyZJRJ8DTJ7WH69b/4ky/ffLmcP2LQoRwLs3DpcLbR0ZEznljN3RmTwLPdIX0M027mYTHVGbYgQnBXAAx3iK3PJMAIN3UzC9xOQNU+TDc2KcKIizo8PF5+/vjww88fnpaugQhiAcuA0wHqqRDFdDrUefLAvg7CaC3agtd+/cM//O7v//b9m3v4xbe/mEjevnzx+sXp5e1JiiNpnchQYdhERQOUIARAEIMwxUlEgM9pd5swNSKGhUOk1G+bP+cHk8r2AImIUOIkkIwlnalgFtt3hsQogQyIDmrqXftlPa9jGd6ZOR/fjarzrFFyQnfcRMRbfgli+DD8hEIEYkw2LxJAeJomYFc3wZahgDscAQHQPVS19QYA4SxSuMinWwSAiLZM+lLGzjHeq+ytTcDPwGq4iao+iSAizEcPRpIiQlUIU6OJAOBIW65Ma811kIdpcJ0srHpM1Zfa1ZNUQkDPQqvN0yWF6yRABalu5qY9S8X3BEMAkMPh6O7rurZ1ENE0HSBRmQbP88k9tQ0QGMAJt5TbMIvY+yKpZm2XBFuA5jYBOYXMGaOSRyAgBjviDl3OL0Qgkuk4J1VdSglEV/VdkwqOFLyDSSDHudM059CamalIqgx7713HPjXZCqKUV8V+HOS1j0AAEaDZniYHzDbmDBMRUnVFAmdEZiek0zzdn+rLm5u7w41QOU4nlNqul/XSbk5z4RpdPbwgWUR2mMwFqCMiApl5Rv6Yee7tfVgfLXVsAB6EAL6uKxEhqzvoMDMDYiKyYes6lmUZpgiluy1Nr61/fDo/XC7vH65rC+QqWDzcHCxAKs/zdHNznI83yGINHRCstsv60+9//t//+qePf4R/+2++/eW3/+Lv/+6/ffnly1f38/3NEbAFNBQHC3fNWjZMw81tuHc1MHCujExCDAnbctM+zD01P/s7u4GU94xDQmCm9MVlsTP2TFQ0s3AON2IhLDJNJBwpxR++f5Y8kdawoxGZmQUJJTKxJpzw08AMARNYxAjgtqsH9isUtwn685gtDybOoPv9gc8xgSU7DzfaWCmlGkyTXq8ZUCaJKkPt+ZiZmfOWAZEDL2Vm5m1yH2gQiXfOk8J8cC2MISKlcAQZODgQowhNhRFRe3dAIYiAlC+ZRilDpCKO/DFu3yF4BnKzJF2apcwBNQ2dWSbkwBKBN45ZavuEK0xkZr2v2SkcT4d0VmZ16u4InMLAIoUos6Rtfxd1OhwAdGjstUa+HBvaPms9BhIxg3uYKzkiJU84r0RihkOdUtZayzzcWlsC4VQmd1/bWlhub+9D7enx0VSPxxk8qhRkUNWxLgFGIodj6Q/XrbR2ZGbOfK+hvWsqxmgPyXF3dDSz7B3MTdVyBjlN02i9rVYYD8caEOuyOJfTfPrV978UrOulxzDymKfTAPn483syrTIhk7t77/l2uMVYRyklCMzCNcLAhvfe37y6vYyn1lrv6faz3DVcr9fcn+U5ouprG713obqu68eHJ2BaVl1HL/Xw7uFRyvTu/fXp0rHMImUYAMjdnZzu4sPD+S+++eKXf/LLx8fHPuT+9vTTj38c194W/e9/+9P5Ef7ln928urs/P7z/7psv56oCAR51LoDR9epqhNhaJ5gnYQUfPhCMKcLH6GO7bZkJACMKIyMd5goA6tuIi4h6770vUz2qKpMcDkdEaH0BgOPxJok7bR0RiCAISFhLmZCorwsTHU7HdV2LwFRpquRmWaiamZszAThaqA4vtEXEum3ORSM4HA4eSqi5uqZ9F7j2vhFTRHY7o7n7NG2BLohIKNkaM4GGllKKTJu1c6eqTtMUo1tAUhVyKldrPR6PeeulA5CZD4dDfuqYmYB09IiYpmnq2jWfZ7bh1/OltSaFyjyr9hw9jDGGrxxwnA9C3E177+oBhHWe5ja31sx9qEKLUgowlVLcnZiy+B3aamEdY7RepVQpvfdwR4B83sX28KX94TfdfEBO4jvrHLYTAbGUmo9TUQlNnFy4c+KwmRmDAdL1sEFWtkkebAVFbLdxB0iSYjLXt1wdIqoswy2JdgCwpVaabc/wUIjt/M7DKEDB0XyYK4CTQwRP0xZf89zdwWaM/2Ri/7ybQNQ8OHOTihstthPScZ4ZgYLMYCrz67sXb1+9vT/eTLw5CwDBLBBKLcdlXEMNDXfmKJh5DpyzI1t70z4s3IaOMWDYsl5a25I1VVVDiSjnU+qWDrbR7boubdXzeTWFy7pIma6tL31Mh9OHp6dpPi6rDRc0HKZuUeepSJ1n/uKbl3/+6z+/vZ0ujw+P61WCD/Xud3/7N7/77Ttb4a/+/O3Lm3twu705vL67czvXCWpBoQggoRIcyH46nc4txjVGWxQYiIsgc/U+IAiC0SkACAgQmAl8OKAn/C7yvHDZWu9CDAnIiQiAhI4tY2wRbUSy5QYEXh8fFPRQK85SBYkDQ807+OBJCnFX9+FmxpCxG2VLLN3eXIkIJNCxsV4FSy6/808vXAghAsewCH2e8PQ+tspjR3VkTbGVALjxPiJ675pB1TA+/bJUzwNA7x0DPscXb5X8Z3+9zUOImEsf5g7MG9k9l6bgFpka61qJC0uttSC5g+u2s4uIHEXhLv/N0MbedWlrDam1ikzPx2iWPNm/7CZUIiIZw5iZ+VOwHIC7q7uaJRmCN9FFVu7594HdFSK3iW5mhJHpVBhslpO5yCXF/lrR0RE4AgIw28ac/20/lz2xW0R0eJ52W9uiFu5CXIjHGBAhIrxBKbcSCQMIAgiYsTAN2peOEXk6Pr+jz30KwCdglggl04IZafu4eJhPc2UpBD76NUxvj4e3b159+eb1/d2tgEFY/nz7UEwHX5khukcEBAKnrsvUYqfinper9WEQGeb99PBhf2NCVa/X87Wt2Wnmb+sObqDqS1t7s6ESKGvvUuG6rJfW50EPlza7WABJAcJ0ptda7+7uvnp7c/eq2rCHD49CBcz/+MPPl8fLux8ffvoBvv+q/uLb7/uyjOU6yw1ie3F3RDRiM9Dn6VKh0lXNggMORaAwCnioQQB0IEHaHpJNFEMIMABIALo5YoSr9jF6n+qpCAdYW88AkDGH67KmHEGkFimEdWM1I9TC6MrkBKrewTvEwBhuA6MQCAWMoaFAgixMBd0cIpBAmIHY3S1XorCRO5mJkFM7A0TuOcPbPxVBAKiqNInUWqTsO0iPiASI5qLV3SM09mUe7nv+5yljRLTWCPB5Afn5QfB8Fnz+f8OJQwiJqUYsow0CN+9VSg7RkSWnFeSBqMSQpEGWFHYFC0ohkpox6Go2xkCMvJkK7q/MLMwwQogKM0WOWXcj5OdjVdxzSlJQFE6JSN9PjOHRIShHYc8bV0ZgIcHt/PPIRFqAgD0tJ7E5kbT143GOQE+9RwAAbMRoKswln5YAOEwzMCW9r9ZKAb13iCilMJJq5y35Wjc6eyTbRfdZwz7vjGf23nhmMWwDnV2FxVySuoWYbGgCNkYQdB3N2lIpXr+4/eLV/Yvbo3DE0PABbqq9tdXMqsAkk+U3bBhqY1hrI3H1KUy8Xi6252ibjctyzco2ZwcPDw+Pl/MYOgbogGGQ0VYRMBS6Qp3AAfpwZ1Dg4IpSSTqSEEK+AUQkwi9fvnj96u6rL97UOT68++nx6cPNoZqP3/3D7//4Yz9V/Par6bsvvw1zIbh/dXd7W9yWaZ4gTN1d+7DhYDm0u14eFco8HW7qBFWG6/myLEubDjdAwlw8EvkLaOzBbsFcELkyIjIEAqvyKKJSOSxaXwlcDjMFXK0VESCpTFx2RbuRo744nC6rh2lv1/V6bevFtYHbXCmHAm6DEYGkUAEgH+6uCJE1PRCkNCQHGqZBGG6Jz6HwGLqNJDFrzr2CJNJ5nuZ5fp4geN5P+84IIDcTGy3OXekT4/zTo/58Bnz+dz5NFnd1Q544bsAoCIWQmXs4jWGua4TVo7iqDcVpFmIG9Mgc7QR/ZtDpVvvsdQpzMZHKVIg4CQuxE6Kz36GdlI/7lmQLb3CPLPuRIiOOCMUsxjA3z9M6BZtcAMlNzUMxngsk7msDZCKMPeLpmV4F4ICR5ULGwCLwPM+tDR0agdmSJVvewkrZoGxSZJqLA5gNABQhjIDhbkaRkG31gAhTH4mvRAQLVcUkL2bMFigEbJ6z1pVoQ3pFYAocsmKXTUnpZhZgIlyK6LqMMbRdIPT+7v6rty9ev749zNTXJ7fGgIQBqIEDaKuLzLF1673Z0N57X9fe19FXM2tt0dbzXWQiRvZpUqfnwdI0l4MfpsndYXRtQ00DUcLRAoZBtww2dKBcfhAV4alGGn81pNDpON3cHF+9vL2/uUGDYzk96Luf/unH3/dlKPQFbiYQnH79q1/fH24hxts3X97fVfcrIRKPcIUYESNAA4yQAeNwmCuQoQcvYAYW4Cv5mAtgqYRi5s2GmZkhAAFVc/aAcAaWqc6HA9VaPLTObEPrGExwPAQBOgS6ISODha3qFsDgbKFGFtbdBiFDDPAOYRh6PJw80IajR5Vap0PhyQOflhUy7IFFhCwyVT2Y2cyGW4QO3CLbkQURCOm5Rt6ryiiF80SzPbgVKZLrsT/SqJGMN45/3oru5cMuBEICF3dzGnvJ/Ak7/nwibGNIF9UgAo5SqAxgDwLYcJLPz+1eVoNDwtYBaGuBu+p1XefEPnMppXCdgMCBNAAtMtU+R5sZj7otHkSE60a8QcRd173rfIG3HiL/NjEREwWSAihgADoLifDWFoGbOaZaBIhJkroDFBFZhiOTJHaNiN03eSmTlFKZ2S1U1fum5mHmwpI/Y3yG2G30mIi9zsNU1BHBZli22HWQmDsyN9t+y08/UGYmEghySsgvqmp4/vpMf1NEqETaF20X6+vL2+MXb1989eX9/W2t4u8/fqhMkJAgimnm2JP9UrVr5sn2R0SRykiAfpyqu0+1znPSSsd1NNsT7oe2dX0zLIhIeGptLGvvXTOuxxyGQQcCKddlXYf+7g8/rB8emg91dXAzQwopcjie7u4PxwNDjJ9/fLyepz/++MP7n5ZwmCZ4++r47de/uD62Vy9eF6RjPX379esxHh8ezve3k3lDDCSTEm7kEEQcRKfDtIyuo6kuwTLVenN7wHKPPINUROxNL5d+XT2cAOnu7naoX87r0/WsDSjmIpVYAtB9qA/EBRkR2SMQFwtkrxpqShAVoUaQmZp3s1ZrPRynwnR7Os6z1CsDhJuPoW7AAgQcgapOJERQBESYkHyv4ZnZbAt52pt2JsTjYaZ/9iTnY2mwsSSbbUTZTG/8JAHOqlYzGoNki0feJapmn9b5jAQiZhsuEPZdIz7PG7aGCxlFDUffoLClTFU74nOBi0QktMkF0ENEho0kWZqG+TAbfeTqrYhIui0R2N3GMGFD1gyVySnJ3kDYriMsMsaWIZWgtSRhm9kGFySiwlkyZJ7cul6JPaMWEUuONNR6HlvunvAsIgYMADJI0nEAxA6NCHfvraclIV3fsK1nKhZV1WGaUjTVbhCAjoTmgwIS/xRhCCib4QEFmQoDBYAlHq/rIKJwTrFqxGbQe16p4iZi51JExEQky5nYtSIRYT5qwRg2zfTm1e0XX9zf3kzM6uBIQ0pl8tYWCxcRBNBurm4eDuiBASQiZarMLISAjm4IUJhTdr32BQYDpfRD8r0J5FqrKbQ2llVVDUKIJAAVcLq9L6ebNvoff/55/ff6/vFBfQCFVBZEITyeppvbeZrZfDlfLrrYh/c/Pz68P0zw5vX9ixd3p9Pd7eEe7qTQNBe5u5n6WNf1EbCvfY19WcgCQpBJMIbaeyfC05GRqxzq6fbm5u52Ohx7FMCiw8/Len6C1oywsMwvX7zpGtdr//Dx6fy0DjWz1vvC82zW3JWoE2IWy27DDAiNcCZicGZ2t3DrhYmQi3AVdjVOTZmrORJI2YCh7GauYBa0hRRFBKi6ugOQcCUk5kJAFXGaqJZZpFLY4XAbWbDbMM3sxVwD5+xpf1aZn4eFz5+QfCkRQYiqG1cOEc1sjP1OihS/4/Po7vkI+P+v1UVqBbcJg80yMaqIiDmZUyJOnieC6CGARDSX2rWNMXT4MHPc3SWZyIQMgbnqVnEVZRD3pLZuQ9T8X9MgBGeXdeml8uFwKEUQY2jLGqlIfuepR8pjBjxsjCEAmZMlLMw4hpqN7GSy3C8EVJgADCwG7NRTMPUgBXAAa23UOtVaEUi1A5BwKYWON6fr9aqrIVCe+vvtjuHhGIzkDGAaEMy8Lkt65SJdFlwiLBwoGbCEgeRhAMgiIlMkTMUg8qDBrMFono9jjDEaAoggkgGEWT8dK2OZaXr18vbFzTwJxGgWYxKZ5uKu49rHGAATAKxra0tHB+1DR3cLJioyT1UECSHc1W0ARO+9LcvT9QnEnbBKQQwCBPDCwsxPHz+2kXRjKkJ1RuHqzPNdefn2Holrwf9yqoiDiaYJjzdCBHORw7HeHEtlt97a0ms9sOKrVy9evPz25au7udQIAI+7u9O6LKdjFdEP7/94c8Nff/nm8enn8/mccBHaijFzVww3u5yON3ev7063xzIXYuYJif3lYRpBvQ0mJ4NRqchc6qEUO52ml3eHV3eHp8v1cl4ezpfL+VomU1UFDTFmIlINBXHvoxCL1BS3kXCiJ09Haa2Fr21tl/P5/PTHy9O75dLvbqnWyjSZUtr2IlWCYBhBHhau5g4W+wPJzAVhIpwmrrUyCzkmUNdsbEV7pBKP89klIgAnEHVnCPScSmX/S4wQgQHCZWrtmkKkdAwn5g8RwGOrvvGffUVE3qtEhEwoXErxgBnEjWLXXQGIO9hwi9FaszHGaBy+pegIHw6npa0Ry3BLtwsRIdHzTCFR47uDGQxCw8F9+DCz4SMiLGJos8w3PJ1usnzqXVW7uxLj4XAYY5QyMRd30NHdIzkI5of8DsOiacuf9TzXMUap26wiKSt5jE7TaYxhYDnPz2JMVadpEik5PvDNdrIJwtUCuRRk09A+IgKZLPe3TMwkhZOBu45mjMAEgAPch5GRCEstug6MQEfkOh2f8x2VhiCCCHORbtraCoBcDsjUOvQBzOX2eJpmbuvTcl2WdpmKv3px/9XbF69ubo7Ibg0iptNpadd1vTJzzp+Wy3Xocm1PbVlDfa6nWgsZgXOJ2braGGlcMetDm1qLsHW5ysTqWifGwHW5Qizq7234MCUUABh9KdNNqcfeu18v/UMbwT/89u+e3v0Bhnlc714fLa618FyDwdCBYSJwDWXR27ubm9v5MFdETG0JhZ+ffpwr2Vi7+80NTyWu1zMGHaYjgHu4Wnd05Jhn5MIvv3h9uj3dv7qfjxMyZOEFOJb1J5ZyKAUPQRprD2GvUzAZsyLgdEOzyEw4M7bDNE2HkVM63jy1o1sbvqz68XFZLu9qvZ1Os2NXs8B1jGjt6Xg83tyeVONwgLs7aa3f3cm7dx/C4fbmpUjJgRTqaNc2Hw7TzWmYX9s6HU9lns7XC5hNwmFD+6qtrGtbu96fDkMXt5Fnx5YMZu6ugViP03GaiWD0tesANyRaF31eQDLK8Sjm0geejjewjtaXZWm9KwAQO7gKAQF6AAUwszArM2IM60c+lXnqYUEYAAreRieAXIa4g3Zr12GKzBMzruv16enj7c3EUkw7QZm4Xi5LVyjTQSoSLq0PZKplnqaScQtZlHftNarUQshDVcdwMMhDjkImNBgB3s1FpGbBj4Cb/jH94psDOpiJaULElA/M0zHAbIPPjn3LuFOM9x4rAgx2TJuhWzKthQU3luGGpiwhgZhBoLRX9PuRmpSgTBZk2rCIkKlY5qEO5sgI5AQAvEGtED040ADSkbBnBkMwYJJw3B1dAZTYLfgZClqiElgGTAUMKRCmp9Px9cv742EiNx9OEO4211MuUzQcPUbrvbW2rMtyIYZDPRQmNsYICk96F7hGOKA7uaNp6LCuOgy0YzcwAGqtAeHW3YAzQ0TYaG3tCNeIOD9dP378YVnsh9//aON8dwM8y82pNLXjkW+P0/FwuDmejtMBXXrv53EtE4lQhIMFhFEAoR2PVcghVg8L2FaGHlBJLIwAHH2SOp/K6W6a54oS02GqBybyYd3NAgKY0N21px51nkGYPAx9WZeL8MR1Yi6nAxymg72sboBUPil/iNy9d23D12ZvXt4sHdUZSJyK6aQqocthqvf3x9evX3355vDqXr58c/j55/ePDxdXWBfAeNJBNgKAwOPNy5vL5ewj7l+8no7TtfW1t1KK6wB0CogwcHF3tVDVgcDgUkgKYZC7Wx9mvK7X3pGRiMPMRl+3XSxP22cUs0EmJAokU8KWK8bMzgbEMG/uXgiEiEoJ18w0RERVVe2kde+Xs30erV0QikjFDCKWGuDEWsgpKyBwEQoEyuEXSabgAIAH1HUBUBZsOjg81TyxtxJmFgQI7BmSik5EyICIwwaDA0Sukd3dbcurzNYCp2nadEpEuYNVjTH6fKjuOkYqEZ79DiRSt71dbFPQrFKYCrBA6Ob5Q2LZhhnP0136lB+bPymNwJz8IQJi1j8Q2wzCfAvVACKxHYOXe1CAT67qfON8/yICYCrCuUoAgYKITupIFOYLMc+cweFr2Cg1joeqK71+9eqrL768matvM+KIiNz5M7Oq996vl8v1sq5r1+43N6fj4cRBFo6MDqPbAAmzptZVm4V69EGqYBo4VAHguif8gYcIoSJScKZp2nppem4oXHvX69IfHpeHx/V0Mx3ujuVwLJMs43I41NNhmkoVKsIMjhXlVCaSpOyY+4AwIiaGaWaMcBseqoGGExNRQe1rFmJUp3mW4+18uj0ejoUKk2AgDm2qOsbALAdhRDhhsMhBiimODqY2HxjRmZVS65fTcEBAtCiULk9AB+y9t2Gv6CTloCaPl9YGUJmYDmYjbG3Xy/E0v3hxaza/finffn3z8PD44w/vfvjh5umx6YjlajpCpLrhVOYP73EEMnXXNnp3rIhIDHkTxE5hDtehcelaEHIOl3vs4TZ05E69UZfIpPJtB1mnLRMFKQI3/0t+AmOHLOfn0N3HGB7DkBgDKcRo0+CAu9oYA6ir6b78ZkQcoyM4ABWpOeoDNMBgKogjq+n89WGgqkoASMkHeXYFuLv1nnRsd9+S03O+APi8JOV9noWI0zQxs2xXtsceoJ6/dtN75RQDAJgcAFpr1+sV6Zi/IF/u/q9QKdO+ed2+8pXVelRVgBZhqf1IL9r+57a0+kbk38xGLsMjEJEyqNbdWmvEaXS1NISnm94xcp77XNSkDXYXz262JQAgAmGJZKLAQIiUxxAaBJiDYGYCO4aFd0GahfB4eHV/d393I+7YBxEXwu7j6eNDCDjYOnq7Lut1saEMfJpPx+kkVLR3cxVmd136Ok+l23pt5+t6MVcUZEYDhFLaUMTQMQCCCcZoByqAVjZ6raOY6mW59FIKU+2j9bFIwdd3d/V4wlIC4zSIKxdGcGu9N1vIMAilIgIGOKW9nYDFRSDQWFyKmPVAN0QppRIBYSl0OBymg9SJpbKU0BgFQyMJd5rKEaZNcYiU+75cEYUUJA4pNRwBPKJZoIeahrohiCMIkpRtbE7khXWaeT6iGwbYpHg4FqnVRiDMy3lIwSqXEe3+Nl7e39s3N7/6xct3P79ZrqYay3W4ocjshuuiOvDD0/q3//13P73/iCCHee5toLOBhXbaDOn52siHDsz7s2CAWfTexxiHWgBy6kZFhGgzqqV5KSIAPdihpkpHWIoIZUPxSZhAWRFYCvk8hrnm1ZsDSOxrG6FZWTxvFrctBGXpbU4ZSsBEbhuOXIglCiCamRMMH7338/l8vV6Hea1V6vw8Nfx8iplAjWfBVa31WbyXX0K0Q4cpr+J4Pk6yytheev7ZbtfrWYREKhGVMhGZu0MQAucLAIAUYOZhNTq4gxtGEjIhiBO48Cya1g20RBBBzJkhU2qtEThoJEN6aBOgHHg9L4QhCShAwp90qWZhbkzMxIhBufdzRwoi6KMPHwEKYWkjMQ8MQmL3YFNhILJkNMegt1+8vL25ESTXgQGVhQlgwBgjAhzM+hhNc+NdWKbpBRH1vl7XFcOg0NC2tMfLAA9dx/U6FosQKhgxDGm6fRwxT6W5MnphulwbVL89Tje3x/Cu1gpzsLdxbkrh0tSCvZRpPpFMaGDdOrGB60hQ0XA0qjgVZtMhRMxFmLGQEBRmKUCsh1OGGoVqY/F6wlrlDu9K4VqrFECEQA8YZm5tk8J4GKAH5kctk4EDUFVddXVDpMoiOs4AlEHjBTjAeoo3tQUiEAeQA1AAgjGBaxttMSXrK6EUCvbVtKmuDL2gUFDoVYRuTjellPVUXtzeIQhh7d0gRHgahm4FoL5/XG9eTGu/vPu4SoHC0+WyRBioARoRFCEWQoz5UPcyUiPQ3BICbhAZ4ZYLRNhSJ+rQHRGGjpHLTjFHwpouhnk95+VEJKUUJA9Q9eGqra29r2O0UjjhAGbWe9pgMSIIY5qKGWQpkUeEWySanAncva3jTOe5TgchKUVCArGrLstyva69a+ZPFGJGcgwAz0QjYSwsSXnLKs/dSynrurr709PTJknIcYDZhpdHBHcYoyNy+myIBNARZZqmrBJFKNNTUmmbEScRYAZmDrEZTdzdLK6tAURAWhuDiFNhSoQRm31tq7sYssgPh1SGAIBqH8MAPFl3yYRSGxEYQQCYs7fnBe/nRcrnM46I8NgC3rCgkNSJiAIyGjuAAbQ7eOcgQrcwDiPgNy9eHEsJc1BLoAKFpZTIENxRSZlZiJ+3QevorbWhDUOHah/Lsl66dakcGCYUQEqk6k/X5gu/f7y8fnmrI0olJLloQ40Xh5tXX70MH5end8LgND2t7l0BoVQIFuRSZgRRU49YhXHYcBvgyEhBAOwsVBhlpkPNgAxgwSosBVnidJrng+igoUQch0OZqxxrBQBI0ZcOxyACEo7AkmqeQPzM/+/ugJDk+TEMgrk8c3sCkJEinQFBDsNF8kPgCIrhWzAHRpUZ4iksCjthIWcIAWscQySO88yC4C3C3NqqYRqMcZhvaqXRnYhrwa7AXK9rHO9ugH59Wc7/n//tv14u5yo3ndTVHIwRquQoHhGDisDYDbvxzInL+bxbeO8GAMSQ6KFSCnMB8I2oE5aZQ72vuvGO0n0LrbXW124dAtOq1HVV7apdtQKkrZ8IEcwjkACZWYptv+0nNzO4u+mYphqRzYsbBxZExKlUA7DIAG6Zpgn3TCciSo/Dc0uCFCL8nHALu4AiQyjzXJTnMf8OrEJV711rTVz8rqkAE5FSZzMk/hSPiojMhEhmgYDJz0cQwhxpkMbY23wkdoSkL4GHIjKR5+vL/t/dh2Z1pV0zcVTdATHmeU51k5mZu2YEU7LjthjCT63Kc7uFGLutDd28jwHEgSwVpVCAggeCM0oBRAtCYAqKcMGb0+HF/eHueKiE5IYIDOGjG6iPTlMBCgASYiZwDNAIj9Uua282Fgbo0a/L03W9qHYUNMPmfr62roAkbdXHa+s2Hp8uXA9IeAKey9TMRQcUevPV21ripz8CQp9P7NhtGERtq7fuGkLMhoAKKCiFuEcYiVTBGk6MtbLMB5QCU6mZCC7CpWIpPB1KnRDJRLl4FYFSiTAMW4RjhMZw1EBHYscgpEAG4L1tTp2PMHsut9FRpOKG2fP5OOc+D2JsK3004yAm37CkDt4BndkZcJ7CbJCgcDqULxAyl6iFzcY8GTNCJF9sLOtSSkEAJoRobkZYCUdhanZxxzq9+Pab47/+i+/Xdf3d794/PPYi4eHKxujCUBiQLMDHMDB3d8DEgmEwRwSGR3CAZ2wPIBAhEyMUInJXT9teVsKhY2jvo7U1714zaG2cz+f19hCFwSPCkSI2S9IWeC+lVEM1Bwd3KCyrr6rDjQFEeNp/1BzwPCbDUkq2/e5uYwAVQTnUgx2NaMtbzAe+EEeppXAO/vTZxfism96f/8N8yj1e3vyUGfCZKmFmuY/NZykfSwAQpiLcmoL5vnQlAGCqzCRcI2WIsfUUEUFkBCVvDMSEtyRAyk0zEmvTZu6vcxBN+SL3J9zzlewdge0FT2Sam0a+nTs3cT/q9oH2J3ybmY1h5oaCxAxM4K23xd0rlnk6AYYwTgxoIFRe395+9fbVTJSREcxAHjqa+zAfNjwzYtydAsDDhgXYOnRYR3Ip1Jtf18vT9QkQD/W4WHx8XP/488flqkCTOV2W7lLP1+vrgVPl4ApSDMkwSMrrt29uThVwhHcda63sDr3Z5dIen9raDDAcEMmBvBQkRqZyOt4cpxvCiaAU4ogrM2S+IAAw4zRVmfD29ujRhzZgFQGZhcDUhrZVCtVSJhYAMnCApMgoepZ+sM9lKK0EI9xDmXGq28dUVfe3ayAiMqSopRB7ICflOvdP5IULI6iuZkYuLOIWQzthqaVMQqsN78qFDwWn+YAYF7FSilmIhOlQaIJQuQTLsPXm9rZMwOy//P5FKX/5Ny9/+M//+Tf9+qRuQC4IxEbsABbh5llqAhMVrkTZ8CYRPDzlGL7ZgIjE9FlQYA7hrgHkEXWal6wmCGqVaepZ8La+EFSmpG3Qs2ZRh0WgcJ0L6TA0BUclUO1DuxsTVcKyH7scmtctMZd5ng+HgwT34de+cN0gXdM05QPSey+w6fH2/LSM3uvJWH7e9D9v5VtraWgQtQ470CKLB0I5zKdIptAu2HJ3ta5LZkUFfJJtbdfFsiwAtC0eAZiLu6v67h0xIgaggBSKbn1KasA+84pigKJwuA/XWuvN8YDAfaytd3yWmiIGkUbY6JMUQtr+kE2nzIJkSL13BBAk66P3Dug3x9PTdZnmScj6shJprSWGLpczm92f7m6n6fLwcHl8/9UXr7//+ovXr26Xy4MACgCCgltAuI0wHdYV3CLGGLo2bc2auetyeZRJqOD1vJ6XyzArdXbGD08LyvGnn68fHnU0CiQp8/vH5eXrw3yggDodp3KQ3/7ut1988cV33756+/YFlspFbu5eWLs2xvl04+6B61GIamk9XwEeQAymtZ1nKsdpPhwOhSqiME1zqWYBoVmVlpI1LxEhoA5rBkaFpDByjuFdCqEgUARt9sP0gDCJepiFQzwL70xD5ACkkMhMYEGBSqUEEY1QRBYRRh5tjDEC4HT70iFMuxuYdgQNpEKIiJUlwHtfmOr96VTL0SAKMaObD8YQodAGBLenYxoNrC/uVAURdLRrEN7dnp6uD21Rj2ma/Rff3b9+9eKbr9785//9b//2v/7mjz+04xFOR+njsqx2fzoyUBFBx960+TpNByFx97U1xC2qCBgDN1bmPB/MbOhARDfro7EAMa/LQkTMmMbEiKs7nE6nMlWuzMFpz5vnua+bbS/v2pzox4b2dHcF8FKmea4QdLlcWmtIQCTPKUd51jJSKWUmRKoAYOFm0btaN7NY14d5roCu1gmcwMMGAPTemRkARWQv4miqhzGsFBapm4L4edIIu6spGTWIQhzPK5bneeG2YsR47uEpUcl7RcTs4RCe9zMAph1Vc6YAG9Eo/6ztBUD6yKAgl4gY2gJsjMGcEJh8BYmX/eQeyz+aBT+TlH9eYuS+o268fcK721tkh3AD6+3amx5ref3i+NXrLyW4n88c/c2r27cvbwqZtksVFDCGADBwsxi993WsWAggzFRH15RmmIFbwICw0WNZL6ojMTXD8ePTIwpdu6uVdYSa35Tp5vbV4/k6n8p0PMzzXCvc3Ny8evPq7ds3b758SUTDIiLa6K0NU1/72kYbZg6QZYhTWDjGePXiZN7CrY+LQoOoUzXGfnNTE3WWzXC2WR5juACGCEnhMhNiqA5EK4hIgIB5AZo6xggkQo7AcN6iE3KVCDCGqWZ0uSdin9wdYV1XVYW9j91aVuTs7ygoG050EAREyAyKoEBkplqllFIkwoamMJAJGQGJEYEQUBigRAE3cN90buGh41wricRQh1saFvNUCr+h6G9ezr/977999/NP2i+mBM5ruwRVQpikTnOJCMRwN9V0EKPh8+c88apOIfsMP4cgnKUEALLwNE2yrIhotg3sc/gVI8wjZ4TpTHKH2H6MBpDpiho2apGIYGIicNsAJcRk3gBAh6takoEtXRsy4244+PQIByS2nz492duzOdVsBbZ/kI8GIo6xPTLCnAD7XCARBDkGohPZpyMgdmckBgsCMATtq4r0RBFiPPs794kLZlQubDHdmfvsaYX4fASIu/8aiJgqcgH0WK33PkaLSKU6pJgaALacFUdEZAxCSBNCfoU5+G6Xtm6qiigiY/SlrYebk5symXDY6OHj5d3dL7779i///F9dH57+7r/8V13967cv3748uV7aJe7vbgsFoREHCbgmM7shi5q10Vtr1tT7gBEQgykQbfR2uVyaK09z73ZexvsP5+HL+w9L0NQbXpbFoSBRoJUyM8fQVZVvbg5fffXlt99+8fLlcV0v69r7sjw9XcZoZthab6NruDn4drh6+IjoOtBjbB4zBiYp1cuBkI0o9slP5gKbg4+lIUEpiFgQMr9EAajrIAImTLSlAzEhIHZVAEIgwF3JBhFupuAWZoZb5vAWBt/6QkSV58ICyJ4fNZZhSRzOuAbCcAFjzA0feSAzEJZSNraHa+pWNjWsR48IgNS/YFJVTGEM613dx3q9nu5uCQb6mMuBqAvAzdc3p9P3f/6nX//mm5f/8T/8h3fv3s0Hng8S5mbDvWhYQKaqO/onFKJt1qg8KRyRm3dEDLD9GvPYBNOAzMQJ/qAd7kwsQsxqGpo5RhBOgbSZLwOICBM+5WamIgRUCaqIaOyOLA4uE5E937611opFDYwLJBUGmZF4t3Nn7NAmbyGswhaO2541oR66ObD39iGn84KYFENCDASG7d6GdBMjgkf6KzJwHXhHIOS5sx1K4Gp9J7GkKDxT8UJtJSLEIM6jELPtN932BfgZzRaJHAFDTc1d99fmG7IFHIk22RJky+HMHJ800Jm8gtk4lVJKcEJvc46gvdtgJC0CpWJBYpLvvnv1b/7qT375zZcP78qPfw8Pca3lBnHRcZnmCaOFEiBmVoaGuq5qKwzuOtbextq0G6jhCAwbsTjSBkEJCqdl7e/ePwzD87IubT0cZ6rg12HRj/P0q1/8UorPE/b2eH978+LF7bffvHn7xUuK9Yefftb1Em7nxwcAYITWtSeldYRZBtmHR/cYEYMYpmma5lqkIJIIIOmlXZmxijCVbYKeJYA7IbqjG5gFmJtFOI2dQug7ccYBEZA5D46CQBHstq2Z8sEgxlzJRZjxlh2SYD8A1xTLEVFAoQw/BATHIHBnNAxILRoDMXEaIiGrCWECRkAkcLeRaZYEJ+YApC0MOjHKBEGEWIVGX8cwEcTRzOR4kjevCtNtLebj/Ic/HEVqZelr5yDe709zgyAGFhGMRCR7ngj5GQagMQYREW+aAQBI7ZyqhvXePSJEZJpARBKHR4gQBIRIjlyJWqrvts98RCFuefuCAfqGoERx2wZtboGBqtoaZvFSSilYkMAcPlccZEW2NSBDFWEbYYpgeGHuvUuZckSQfaJt5k6MwHCQnB2k9DLb8Wdndz6Qn38BwOjbDZ/FIDOGey5FeDvot0gp0zD3vjbmBO0iZj5KeLipDmKg/URAREgNIYyxJVsHCye7PXATOmxNS4QlHy3QzAi35BzOKTFGTlxrrVWEiFRVRGqVUgljFdFaAnFMRV+9PP3JL9/82Z9+PZaLyFqnhnS+XAK9FtQXp7eqV4hUTEYS0M7X8zp6mUsbbV27tg7qoM4G5uParmUSB6q1CokCj75clnWoMfPhWKcZ+/XCZf3+Fy9+/ae//P77b57O783bem1ff33/5s3N61cz81iv56fzh+XpAQPaciGipOgsbU32gmls3nByJJ8rE0MtIGwB3UzNTE2QNIgZCMkgtiQDRJzneZ8fgQ8ABAwhwmlCIMMACFftu76LDtOMxISZBp7KVEQABo7I+y97k4hwwKhSSkHkMFPtCkDEJcOAM8KNMDAIKNA3ayxk1g6BR6iOcAOAUsUxa+sIt26KHpuUDS1jMNE5iKUIohxICku3RuFF8jkfiFd3QGj39/Iv//y7169Ojw/Xy9M13FExwDESmlrDExCDHQAsmWWAjMQM4ODobntzvVG6shZmxja0taE6pHApjIi997YaIhMwE0uBIkN4ZMoZERMxQBCRbHm3YWq0BS1/xkbXQaFuihHr0lvroxsxqgGEBIC7gcfGhUAi2In/mIMJiAg3Ve1lKkQAwKrKTKWUnNH69i+47FRmcnfespswJ/w5JvisqkdEfBZp5gqAmRL7lVUAS0qvABGQMvLAAQMgQeybMSE7iAh6Pmg2DXKEh6uq+Sic5wvsU4xsFzSczXwPvwhVnac6z5WZc8qq2j1tUUQinMd/gqUYYl2f6gnRXMf5eKBvvnnxq1998eL+dIWVjb779mU73/Tlej6/nxivV767fQvhAIQRoy9tOY+2OmgfNlrTvqo5eeStG+6CYGaBQCQW+Hi+/Pjzzz//9H4ZMd8ciEDtcrlegOGXf/Ly//F//z+aj/fvxhgyFL/77s1hijGe3v20hA8d17WdtY9QI6K+trWty7p0HYkkLCLMWKqw2FzZvQO4WQuE8O1zxYVKYanITGFgmt0+ZKxWeNgmbnVEBIyghPdiQCAWouwRYAyjLTqD9zU6EoYQACCDeIBqdzfYmlcnikDNrVva7Zm5dQcICINQ9+GuFJ4UBg9DZCSOAHVLECOYhylSEGy1OgiWUgwCIgORHJEZBadS0CBgrMOHEgbEyky1BsCTu7uuTPPbL+/mQ/1B3rlaRFw+XsyCQaaJRGpEWNuIJrAv7XFTZ37qdfMDmekzSBBA08Qan+eGoJmtfRgkmlCEBZ2ZF2RG4JQ24W6Lfp5WZOtlNiBDz3d7da3VUXOmti3dAtRgI+V8Vvxvg7yyXfG2J0310QGJyyF2ehg9g0KgP9/6woK7KZMIGXf/yXYFAOQQImtDpJh42ladpdQ6p05Jh7t7PsCZvLTzm3yaCmIAurnuQTqbCPp5ELL/iNObQCJSKCXSSU8CYsyP5j7T3CSZQhhozwPYfWEBOTKJiDzv8rR2V+FRxV+/vjueqHV89Wr+iz/77qsvbgEejyfkwO+/f83x3Y+///3jh3P4+Pjwo2CtWIOLIYy+tLZ4DKmyjqbWzUZYIDCFI4SHTdNhHat6oNBQv1yWy3kxC2JA8gCTyi9ewPGI3357evPl/OMfPjK3WpGwHmZflwc307HqWEzX3q7X63WSCgZ9HR6hbgYpu+JSSq1lLsjC+P/j6s+aZDmuLF1wT6pm5u4RcQYcACRI5sDkkJmVfav6qR/u//8PLd1X+lZWZZIEcIaIcLdBdQ/9sM38oCokJYUkcIYIN1Pdw1rfQmWhUrjWgXAIJ6ChlILsXJlrQeQkL8EeKIqwy4gsP+0ACAINB9nPU0xuFewk5czAil1vnr9JIDox7PodooxUJQY1J3YgigBiLMIiCOBMTgiYd5J1d90BfPmMIkoJIMjsd0yXCseeQxyZJkbEbBkUAozIkAtNzIwvmm8rAHCl3lcDLFLcFzcjdCRG4NNUv3n/psqwrfYT//T6eptva7QtggDAgyKC4C6NBYo9xc6POLbjJssI173n5YM2tHfkCMw8DtMwjOiEQeE7n972oIOvv1UcyAAR8QhVdewYzEfKAxERSimRHXH+LwxomTwTmHLBfPl778gFEYXJiTqBHyLk1pqqZgKDyP6BmqUzICJCahmP7yiLF457pGeOA41zx58XR9pAASAj3og4PBCj1hwFkVl3A9qTdmIcBnfV3a3Ydt0r+h3d9LVn2be1yFyY9+2I7nhsJuQ9didVDEHMwSSlPCBF773ptm3L3sWVEYDbpkhwGqoMhNHUtLB/9+3bP/3hu6c34zx/enqUf/zdm/PQXj/9bZLa1vk0tu8+nGypFHVbrc23zz/9pfB0GabC0tZ1nmdgqFVcLdTQHMMxz0yyjK/s1hWgSq1E4yhv3p7HhxLIRr5u18c3p/Pl6enN5bvvzm6fVb8gXGupSO62LLcvKkQcP//882kY22bzbeOTAMC2dmRhmjLwmohK4VIQ2B2tFBGpp/M0jSeIuq3ae/ScVMEv+H8EGMCMO+MKMYCOpVc+ByOw7601uKkCBIDVOgEAAePBHQUwwAhoGdkcgUISwTlUC+jZyiEiOlIhCu9mIgWRMSA5RQGOqQKK5gZQeJeZIjm7JCnXMcIdO3Rzt6ROqjoC0t52YgCaG6APXDGwDKUO8nJ7QYQqVVUjVhYi2rQrYnn7ZnrzdNZOp2n4y3/+1P7y1742AChcWZCpaGs5Bc+fCgBgEIbHkR4SEftp4Ji1KjgSO2NgOIEzD9NwmqZJSkGFFAflBhfRASAc3cH9MD04QlAppfWd1Ctc0lrAzMu2MRkxWoBmvu1hIcMkXhwVSu/WeydhdxeoRJmlQYKci0PIcxwykVCEmEjCNFdIAix7jc3cWluWrRCfTw9ZWyIwHnUCAEB4a7v4MR1KEAGAIiURCb3lCoDu+4vrbcnUbWToXSOMBZjZA1pr4VBrLWVIKqaZFpYIAydtahreHJEVIrQ75p2AOyifMn+jaFMIx4JTHVQ1nD2IcTqN46eff6ST//Cbp//8j7+1+W//7f/15z/+4cOHD9PDhaxxxCzxk8/PZzFUGKIJOV+Cf/XA8frjTy/AWjmgtdX11ux6nYlIar3Nz+M4gpI3N+9ETsLO7tFoZKYwdY2rEz6856dvv5NxaGpc2Uw92vtvnv7hH/7+7dun0Nehzjosy/rCzM96M7P5unTdlptfX24M9Xx+v27buq4MVGSqchqYE7LANaaTSEnXrREXxMmjElYplYg0XPtaizANAKDQNHM7qqh3QWLGjJcEzEEaRpCZWbcIYC5FxgSqJ0MJDznsoShrjj0ABzkz1uixLg3QS2EG0mYA3cLDHDozClJZNYhEyCPCQoEiB5OqCgKMDqYaHh4jlCIDakSAmzZfwhQZhCsBhu46bSTJ+9AwwG1ZOrLscQlcHd20CfNlrAjhPiMyD6Mwu+GGOJ3o4c3Y7OHjz58/f/ypcn14eAwoAASozEEkBGRd0QMRh6FsbZGQoQ5dW1YTagaOhFAJVnICRwtA6+vW1tXdJfYf83GU0Dyv37z7oF2b+rbp9WV2AAARqNflum69VgLctINFn87T1kC7KXDQEFRWNUMQwfCOzOBhsRuo8mIeytg3Z4TK02rdmoVBaFyeBjAlLtMwQCAQDDIIbURg3TdfZUc+I+ZYToQIqOu2lzTpuEzEReCelYkenlhb37kxyZzrqRQ8js2IbC4ySNLDjtaFRMhdo8R9mhqxexZ9Z8/nXeSUc25gFIZjG4SIgJn7DIVzhs0kFuCBFgEaoM3qWb779ofw6/Pnn9+8qf/1v/7bv/6X3/z9P7zBuIZfFTZtz7eXW0MsQuxUuJBj9I15e//NIPT4Reb547wtOwZKdQMgRzeNH788l5KOVYnw1lcDC9JlftmsJadlGqencXp4epweLlJzhKNbu03T8O7dqRRf1vnly9/mbfYOpRTnQVW3pfVu62IRGXAAboRQSKSUoZQTsgB2Dyk16ihSIqBEGDMHSlOAMIRCLJWIffeq7fMgQUBXW0Uk8zMBs2OAQAuIQoTBLomco6/MOyo568rtD6IRBRJ4mKq5kbAjjMIDUghzQEfiiI6Otl8cAAAJ23MDD/NsSDmI6Hw+h2dSNEcDNVXz8GOeRV6IHXe7GmIqiDEMCXaaZo9ubROmDHkUQaQINffuHZgLIQdGtx4G5g7AiHJ+LM3OgRZh2jdVB4hurdJwnIBCwAzoCESQ7pu7j1hNLUJ7R6p7+LIqhIFDuhyXZamQCQwFFJNvDgDaer56robAIhUZkHnrisi1lmkapYzbtuneaHsAmMaqtnUtXiiAIAhTExB1kGN+ESl2wD3cEZPUEkTDMKCHMI5jRWAzsO5EVFmAKyW/ziEygEh7E2JJ/dYubIKwnd2OmJgCJqGv21rTCEfcRxq2q0SyF8gUQBvqlGlXHo5YmHZ1AXNBLM567zVyTYAYQYGY0cEE4IDCzITylSCfB0gEInZfknqYQwp1M3WKbaAhQk+Xab7ptr384c8//J//5798+6ESPl9fPm3rc5GGsMzLp9X0PNRoPtapbXZ9vgLAeZrqh7Mg/LxufV17MwBU6GYR3QGg+8o5WwNbtrX1FRG5xNznrS/AUk717duHt99+c7pcpBYuMgwlwNe1EgZhm+fl5eXl+vq89QbGYW4cqtq3PIItIpQALRCCBLkQCaIEsyMRgHDxo/WqgZb7u2Mgg0zEguwFMAsZYkndMUTYjtWMAIyDJsiIjoDEgYQ5Psh7IbWMAPcu2iDDOADCM494c8EiNbHazBjgSCl16dnlQnCm4xhgZKCFI6YOJUR4cHQKCocI9dDE/xFJ7tkx95NHf1kKu6FHICW2DN3UXAklEIhYhoIIQWEtvbzKjOHUPcKDE6GKeL6cPbAWZIK+tZeX2c17d+aU8TCRZPI0ohGjWY/wXNVhZknHnlTU1Nwz9xQRwZMn2hoVFiZ3x32zllDWDEBFQAKWoRdkAqLX2+zuInUcRymju8Oy6U6Xz7fMjgUQuHspiLAvMjOLZBhK76W1FrGfEXxQPEtl8858HscRgde15z+tteZ6GBnlWD/YsixxgEb8oEdnxZinA5MQkVTJquFusU6dwvGfvxJm0xFJFJ5QE9gXhLT/I6BE9+z16td0wP1Pp53LllmfAOg7+R1TQLE/ndCDnMhIKJzIKIgJeTpN3tuX5yvC9ftfP/3pj7/57rtzLbePf/ufbf3J/UbRw64UM0IDqyLS23Z7na/XmzAP9alWfPN2ED8Vus7zunVd+ry1jVilDKdzce/r1jS8983MiICRuSABlUGe3j5898M3795/0PB5vd3WNvbKgtZ7QG/N5/n68vLi1sMcPHPuWnabiHh/Y/3ICCECRw1oHkS7MQx6D3dECjOttQhzLZXvYAVEYj+AF/vlxsxIwiRHauu+zck5g+/hEWn8iTgQnaWUSL+OG6DhbuIP8NzD5fHxdRQHmAGreUgFIQFQHu4pinQnp5Q5ufbY0N2VDkYHESDnxZBz5QjIFbSnw30YizbsigCQC0MBjijuno5LIBTmwAERHez2OqsFOKmhIJEgI6q5Qys1hE/ufnudzXC76bY2DduBQ+GEaNbRIwDMemuNdrhzsgIFgGqVtXWkQOZSCkqavbEUGYZSqeScNJnEZkqcElKkYLBABDPN+E93pzjsP4dPAQ+kEB7MyGQXiJB7WFPVltuGe4WesXJIlRhK4XuCU4Yk5Cmp1gBdhJflylzQXfJbyjFea83CkbiMA3oij2S/I9xhnzi65v45b4xjdxIYkeF4CCCRmxkI6NFTmkqI6dwwTzWLBSCxEIBab6pIUQHM3CwAPBiB6ADeKNCR3v1V9AyIAaSAzoJUCHzgYCERGgM8QJfl+dtv63/5L3//3a8u8/YzwnI5GU7cGizXL9v8s7eZMdTh8enD7XVmWC4nQPTePhkR4fju/QcAGK/8+np7vXan2cAxjKXM87Kua5Jjss7q1ozs6f3Tt99++92vf/XNh7dl5GjK6qSan7DqqtrD+rrc+raAeZijo0KH0JwDZ28FABaBDhDBkvekOywAO6U3KwJmEhHFJsJ7kDHuFq9caN07f0vHHhYhsT2cfn+Hjy9n8OMuBqL0su6UWgiP0AAPt/1+OxpD4RNT1U6tNTRGkgAnciQEIEwaMQjklUt4GIpCVa23jAlzR8Z9YyUlDxnK3UKg5quBiCRJZGMnQEqbDHB+6yRtyyBt70YA1t0AIpClFgv07sDpoGKw8LDWXiO41NPD4+nt2yc3nLkjbL65dldzEIOMKXIDd6TobtRXpPDMT+eyF9QHSSiVCvly3l1JqhboSAFg7pagBCJCSo2T9d6WZWFmzBmk6o6dOOKJEYEFmTGXSszJHFJVb33pqjnjZsH8GZpZ773U3exkZr23RKT03t0h9w7uCuiqPSIwx4qJhaEjswkZh2EAc0TcPY652HMIhIxCy0HxMd/DAMMU1UYgehJ1cJeCKRExCxFDiCm4gzv2bsQFIeVKYRaMEYTCBbsCiLAgs1NuIrib78fBsQ0lQqBotiK5BomLWbhlAjD3dSO0t29Pf/zTD3/64+/G6bquny5DjKOCqq6vy+2n68tPHH2sEiTWXtH7MMQ0Fmv9+fq6tYVgevMw1QEASQOnBzRgd1vbdSpnwA2pkxCyt23btk3RaMLv3jz+8LvfvHn31jHm5Rbo41QBFTF6a9tynefrts7LsqxLc2NzQQxycotNe7qDEJFkX4OzYBmksAA4gopwHco4VqYh8Vt12HsBj+be1ZQ5pDALuDtxToXNvLuBWS9lOI5Vgv/lywtTjhXyRMhDiAgytxowa/0I8DwREFGkDHVgqhDRux43RZZ9gIBEHI4QBX6hTyUSCITooWjRmQaIDcGIkAgYMNAQkBCIwBESBYOIWTSpqTtFgHv03tU68L4Uh9w7qKruO2/EKMMggV7ALYgJEQw9oHtAgLCMp/Pw9t0DYbnVXnl9/nJ1ay21LQREoGrmfSxDPtiqmq+CcAkEVeyqHpGjfTNQOxaq+cabumpmlESYR/fohMIsyDwMJdBrF+hOnew4EfJnVQdpiyaF9L5lz0t+3Vy79d7MnLkwiZml8z1rvuxTjslLAIC5btsSge6ay0fdE2gBEaUOQ7IfADFjZPfKv0hERA8zUzMAIGFmXtp27yZytRRgEMDMe4sVHrELBhBAe7aCjCCqaAbhBMBFCnGUgoA9oJs35iilCGZo766GQQDNvL68yfbaNq+w1EElnIkswJRMEZGARSSsrT/8+rt/+9c/vH/P6s+FcZ0/tfVvy+tf5/mTtauAhq3WiIaTbrfCtVBpTXubwVtYm1vD+DFg4FJOF/zu+8c335yvr+vf/vpzt0DxgRgZtnVZtoWIL+fz0/dv3rx9J6VqNwUz330cy7IE9G1Zbq/Pt9eXts7btvVuGCMylJLKn2BVz00SIgGzgEOUwnWSQmweRVAIp0nGoRJWdxIeahmY2aOrkhqYG1IQOXGu/jU3RyIMAgD5KOwSlP3lPAYEES3cENEDCQjAjySOALxv5vOD8NTbZc/IBKWU2LG9GZ2SRQq5kWMk4cZ9X+oLBxEzDcEC0AjZ8a42ydemB5g7CJb7QDEOBY52x6i5rk5+k6MSyTBWSPscEiCGq4UjoHettZbCGTmvvUMQEIiEKRCqyPD0cBKoAymY9OatqS0WHrmodbCmrZi4ux0vACCm0jKxCESUq7D8IRFR711Vw6n3Dm5HnZ/yPzfriJGOolK4FN5aBqakVYQBXAqRl1BDcnfftm1ZlnWtGMVMN9uJZzuOFJLLtKq1Oyiltb5tW64k06Chqol4codl3RKpkKMduVwut9uttZZxS621HF3k6eC/ID0Ow1hrTfz7UWpGRFhGpMk+NYGUZ4OklfHe+YSTeyQ3kakMw8ASpVJAA7SAzgzDMKy3uXdzt3B0Qw1IaWytNY79RUCOx9HRp2lKeBdi6e7kwFAGGaapfPzp09un029//b7I5wEJxvKf//1vsn388vNfVK9v3wyX8fTyvNrWggce6Xw6m8J8/bxtW6nCMgHpdflSy7mcLmPh8fxEJD//9OXz888///wTUikyYVjrK2C8f//hV7/7zbe/+d7IezeN9XQa6zQsy/Ly8nld5wizbd227h3CWaigyLpaZSiljMNoHgDQ3VgIEEtlZIgArlyKEEN0rQMLoRSUQm5ZIBNTiQgiLGWQAh4Y0ADzRrIU7DPzMFQRcYf0z9GBwPjFidC3+RZhmZuOiClaA4B7Tl9uDfZzAXLqBL13pioiRJxaZnPLEiMCw9MueYBz85cHC0MKXxHR1MwcIzL2KcJiz99Lv9AuwfAjdMSNhVHKYLkstW6oaFaHCSC5AMl7CjIC9C9fvjw+PuaGpbXNPTIQMSgcDVCJrVQcRu5bDCNLQcTwaOGYUSzmeohilXkgEmDflw6B0VvO9oMLcp4hcDDKPDItOYKFShFEMO9dV/egTki0rqu6qrXeW++bBZh1LnJcf1QKe4Br37ZtXddtG4XAvLnmfCEnymHW13W53W7b1qdpygVia22eZzMbmPKT3bd+VJKTpkdQLULI7XaLiESymBmZ5W6mIHqEQThCWCJfKFPiAnfsqvvu7WCRblpKcTAzE5auqtZrrcvSHkut44hQzFtXQxCpgwNiQFc37+qOVD10XZo7lDIQCgCmlIMIATkO63T+6czYWlvWFaCubavlNAwDU62jhNL1+aU8TrXE6+vH3m/TOX78j/9xvf2P54//8X6Kb948tcavX34k7G/fvDmPk6sjFG0+L723OJ2fLg+nbVuafo4gLqiw9CTRQ5Eh/vEPv3v34e0y908fn3/6+Ll3eP/u7Q9/96vf/PY39XJ5vt1a35i4bf56e3l+/ny7Xd299dW3DSmYqiF0tdaUSKZpCvBluZVhHKeBciqOIEIkQcwoyBJEICQeTQoNAwOouyNyKZx4ayJG8tata0NSJI3YYXmn0zhNk2nM80wkl8sZANO/ptoi+tE2RkSISCnDLjmx/Vm5XC6ZbW3WE0yeFeLDw+PturXma7RxqIgEEAHWWiqCcneQedtCwtu2iDAD55LiUDhERFizsA7kUsJTxg/JAd/Pn0NJmVmMvi69jnE+n0UIULt7raPHEaaGe28LAG4wTZOqXq9XETmdTpidj0M4iHlbb33thBPLMIzw7pszYAT0sNZaU28ZjjhO0zAMpQ7hrmoiQqXYV31dlsIyDMMwlK2rH0CAKtx7t94S66rWHk7nCDudzvM8L8tNRMDzdNZSCh2d132EqaoByhil7p/4romsQ9YUOQMGwFLKNE29Gx6ykWGY3r59e7vd1rbWWus07qvTbqpORLVWYYoIR7ybvffNHiIG7FsTM4NAIgLeicYtEW8HmCXp7Lm3qFylZFO6ITKAJR9hHEcI2rYt3M083d7M+XcND/MwCEIod9QWOjrGntDJlFDKPICRyV2zMZECEw2IPFQhKt7RzAaRwjyN5fr6qa1fpvr+8cJ6+/g//u//T8AX8h7duylEnE6XqeJpGglQrbetzWHhXIcTM6/NWg8pg4aThHs3V3cgdhnKxLIsEohP8EhFwvnNm2+enh6G07S13pouy0pbA8Zlm59fnuf5CrmsdWdAcHO1rUHvwRzdjCjVHsSMKEWELJwI6sBlIBY0cHQDBGEZxlIqQdxRyJ6u/hQQiOR4mYlLymwBHYG170uyCGytiZT7/bNr8hDzWhOhlBtmIRgHqA52E74cQCFEpG3rmGxvStl4gtJwOo29b63NACQ8MRc32zZlZiDCQA9LiNle45sRY+zIcAgYcK8d4JjS3U1xnCcFEwkXBDoWfpg9TjoS7hq++wrsqIOOjRgiAaBHqUJYIIorNtuIQQo9vRlUL67b64u35kgFABBYuBhkNWPa3a0jKgB19da9KaBBaxmjlmFF4BaYIcPJ8vLeWtu2JUlTpbB6iYje+7quORhOZ2R+T0QUYcNYzRAOhFOeQB5ea44CQbvlMZeMojxKdgxa0F1hjEgIX2WsiEAkzCV21XhI9z3ospSSTlUnj3tfBExEwRTh3S1ai53xyKWIav51hXnnvd+T13NqJTJkZTLfVveGIJyiStr3ahkEgkTMAsCAGgjmiW8VYUFgyyIxXBASR6vRCYCZqoh2GOsYQW1zChbisRCV+uo9+naZEIptnz8t14+nk49Cy+26xSpi06kMtSKidlcDj9I2Q8QyDIZwWzYPqOMluGVZ5U233kiVuQLVN9889haXiz88dlOo9RQI1+tLd1pu8+12dQgDX5bby+15WZYdfLpr79ksAioglaGUYYfQ1SpUpACUwuY90IdBLg8jEW46WzeWWsRrFRFyAyIIDiRDUnAHyPaMkERKYc5d/b6nNDMiqnU089Ya7WT0r9mkOS1PC3NSNPKKy3jf/MpNGwseLx5uqxFJkUokbbPWGrGzyDgWtbnrgsi1jsxZ0K4PD0+BGG4eHhbMmE4HFiie5V/sUCwQROxtQ8RjpUWH5oKLDE5EXACOxiRDhxGOvDeHvGIiEKDK7sfBQNgdxLvpS4hrGSCkgZkalwCkYRyRzh5No9l1pSIQ4g7CA5oBmFkPg973th9QWretB6C1TTO1aOvqBhGczzOKZxnfe++6pUhkGIZAyhpEVdMBfBwHyIIUHkEoEmGmlvuFOPw7x//f5QlmmRnhCMyUcZnFtCctnVB2J8ihwkZE5iJcTVuaSPalY56aJXlwvINo7wfqcUXEcUvg8cffxRIMe/SkCI+lsFEh1FqrGfgeLmsQAEzM6IQs5N3cFTCYJPm2ARJIDi0cA5FQSBhzweJm1t3DvGuoIBLJvSEyRQofaxkHKWFE+vap0NPlzSPE7a/L9ad3b6Z3b8uXn/5jWZbQm4iZVesLJcEJylCnAhhB5rBp7wooRKVMwkChypkLtXUz6+RwmkYkBHRA7t3D43W+3paNZZzneV1mDXeweZu3bTHrIiQylDLktL4Wcne1dnkYpsuEHt2tDOkN8VLZHcwbC4owS6gBCZeK960QUiIngMWRjMU5B7jAHpYLRIi0PxUzW9fVPWotiLtP7n7VwAGnBEgySfoROI7kpYggZGCIIADPMJ17YuruQIsw72qNIcwigACMOAiBOaeHlmvRSMDNvjjAXG1IcUB2tQODDBg5V4djxQQRCBmOmXXNnsFt5raPxdz3oWlAQKTuWJCcoLJoOJgbBGaR6R6OBByeJFEFBGKTGkgcvp4u+LjV67X23s3QDW1zQgESYEXgQFdVU/Ww1HxEWDcwx8x4a5sTMebbAfueMocxd9MHESWdiIiEq+52MgswxMiuKiK2bfcweUBrQ+/NCgHAsixEcuDLMInYbcsjg/K4zIIldbeIvANv0nOMqfEUouyxXO5DBXdPy07mCGHB1po2S+v1MUkCZgoMdfMevfduCoHEYB4UmeqGAZx+dw8CZKlAnGroTDwHBCcuGI67ikaICZHyV0SAhWEi3FOqtqduevdm3kVQCgKoWWBUglBTQh8HwdiW5Xko7TKt//D33/3mh8v15T9env/j7WN59zD9+O8vpbJTcdPb7fbyuoFrkWGaHraG0/mpyLg1dQyqgRLdHMMoSLieHkSGYV1a7xbAW19NSS0M0AHV87Fsptd1bVtfgdDRwxpT4MBSpQyl1gKOCCxUIkC1DxOPpzHM0bTUSkTgGZEa6EQQbh3AmYIZuXAOtA+tF0TkMYwApdZCRL272e5HApTeTBiZCmb2ChgzFxncPfcMnApdRzBwx7xDkoBwf6oQYffaQgLv760ElDJqj6YtDfWIARhmfVl6QM+gIJaIyMmxEBESRzgzIgWLIyuAt22LyNZXERkAwdMgmZIbyLY/C1039HAIRgDQsHRkQLib9dRi8A7fBETiQIiUUvte9CbiwAECyFoGXuwQJAYLgLYF8Tid8OGpdrNtjW112DI6ATJhyNEpgASpcwByVjYAzKWWsSmYRa0jEefbSMhFapGhlJWphGN6c1XVLYh4GAZf9V6y3SuFY/jXzQwQMqs5YmDGtmqtJFKZxJ3C+y4ICDQLVY8wU98PBedkN4UjQPq5iSiIBCGjN0COTvIgFMD+byVuAMDi0AsTMQlD1u2qtJthd8GymTGXNHRGsJm35u52miYihrJDCsw7gAdoACK5COe8OjMeAZlkkBS1YISjAwQSApWyj4IAIa1TAWaWuzEP74RU2JflpW+fLyd5+7b86z//8LvfnOaX/44wD4IcrQhcLmeCUft4vT2366zaLdBiXubru/fw9Cgp/yFijb71eXl9EUSuJcF1tQKQhVMwK4G6R++t27aqdnAHz+UwBJecdVupiMQkWAoTJamKa/pMGjhYACDv6B5mDEMRcGeWCmhmnQCGkngubqYiNQmqUSE8yajZWmea0J5SQSQR1tqqCsxEVAFC1QF2+VNup4godwf3EjQiPCFjtutHc7gVEQCRlklCztWbSNXeVZXo4GigBejWWilYh4yf7W5KPJzOIwYBM0CkVkcKZAjQsr6IiKDkn0IkgBihCIz7kiPvvYB9eZEtjwD4PmJwDDO1RkQowSBflUKOSVJFRMldOGJQuJNt3kx772gugzAjkAYEMSHQMNLTmymivL40t6YFrTnEnjaQ7VjOJ8wjBZkULkLjeNqS9oQCQG6RwYU5gGPmfB22bUNk7ZbKNOZC5PcD9z742JHQOUqje+6RpzOaudQyILIbQfA4RBtddXb3tnWRcPeEywOYG9xdD4j0FZ6WxD0HkVqQCQOyODEzBr5PKffhU0n7MzGzRUZWgYgUqZmiuPecgQmDERY3IDQIJipZBSLiMBZ37H1T3YicSEgIgiLQLZtgYBIsQYHummimzKhBRGKsUMyz8rRAZ05dXCC4FGTWsHka4R/+/tt/+sfHH354E/5J9eXxTEw9Ij58eGuu4zgRTHWi6cS9995tXfTl+qqBq8b58oiCva9IILUQc+sdFosAEbF94edchICZzX1bt+02r23zMB9rBVRBZEYQ2LfZwnWotUoKDkqR8TTlENV8CUpfKkopxOBoJBCqw1A5XUmM52kqdRei5sSIOWvCiHAINQcOwhDcmYTCVACzcbVwKFIRqGe7mDNbSpLdoRbP9L0g2O/bXwwTEfP2dlfcJwgJ1ONwyCeVUIjBPR0N4JFCIHOH1no411JK4W0xRJLDMofo7l2tmW+ScFYkCEHgjAIjEuYkp0liv5IsIFKFR5ISYaDqwRrotnMIGEIoCTBpNw4KQAAmERRGgXw5zNO+LWKAhtHdzMCAYDqdezOueH6Y3K032lYIk+4Bsee4hbntWYvaWufY6YlMUuso3AIy0Cx38rv0IwF9reX+AkrZb9/Y8w3/lwloxNeUUxFBQo+eg39VLeVrdPJ9jJofRykFgczSQCGlDGZh4YeWGXPcCIH5AqbNJAL3EyuHR3f1wS+lUfn8wT62ot66OxAF057v0Jq6u+rx+BBnBkQOrgC892ZmIjyMhUhUm1pnZkRLhUmEd3fBzL7bQV0AYGYORkFBENrLWAoX1FBbtQcxZDgQIhJ5FWJpIu3tk/z+n7775z9+z/zyl//73719fvswunaz/v6bd3/5y19IhnEYWOJ8nsL1+fm1t2fmeH192eUSImtvwzA8nJ/O3wyv1+d1XSMikYSZUrlsc7j0Fq333rtqMzcAQkFxQuFS2CnCPRBQ6HI+MYsbIOJQZRwFHD24K5Wy7992qZnvk/NaK3HAplxwPE1FKBH4kCBkxGR4uHuE9RaIHPz1BshZwDjWdZ3dvdY6jHVZ0MyOl3wfPUYEgO0Mn/QaHEwQxH36WEoxIzNOoVuiMyLbdeRS0vzivUfKAQgEMcWpvXdDAKjOhK2vJdAY9xQI9/DW+8aMpXJhNkW3gAALb9qnkyB5MABCjtgICYhLGaRU5mLWPdAckBwsTRwHeyOT3917BJUEmQkQOYI7NLXeVLCKUKnVY1ON1DVAYB3RzJCoVBxGYXFikyIwMMXuB7WuusdAYmtasLjte7Gsv/ZBm1r2N0BCJI7g7t3cHXLzh6xm1ruh52tK4PG/fTlCIULKLAPrvbe2VtldghiglhsH79rMeikMgIEeCJwjenU2bdbcIzyF5Pj1kwZIGYgkW4pFhmEQlG3btq23ptMwMopBz9XkHovkfj5d1nXdtu12WyKw1pqeCBFobS2lTNPAggE0QHH3l9fPwzBMp4GI9kaI5XR5IBIza6aQ4XkFVbfWvAoIIxcSLACle1dtHgoBXbeCIlJDY7ldmfk0DQ7Dthqgd7vebv2776d/+/Nvf/fD2/AVBL7/9lc//3V+/vL56aEwwe368vbDh+l88jZ//PwJrT1cTpdL3F6v37x/c7uty7x8/tvfHp8+vH/zbpoesLnDVlmg1AgEkloqQPRuTNA11m19fb3d5tkc6liLDOu81TqOpcogSC5QM+pjFEaWHjpUOp9KeLdup6leHi7LNoPjNJ3yJxlSRQRxIAZmGMeK5M107ZovNgRpM4mdatdATaMUQkT1zBQVJLJQs75srRQsVTy23gwxxrEmBdC8m+W1HyzBQhHYu0VC6xhTERwWqi1F+IKU6cEB7s4B4cDhDhS5+ZOCGXbENKzLnDiw03Qxs7Zpby/n6a1pQFitjFhbX9IUPE2Tu9/aEsFFxlIZmA20gzICI7MU4uoGEMWB52URj2EIKSCMzlHVQtBVkMQATbtZnjgegKUMqrj1Rli5DEQluJBgqEEogjNFSCQkJR1NgMkD1WG8/OqHN8NQPv60fl6a9z2IbF7W1loEuvs4jhYwTZMubV7WZVm2eXn/zTtrG+FlHIeIMO23200NT5en+foynqYy1G7qauEW3oXx+XnGACFabrMbnB8embn13rS7K6Mh2FTKONZahQW1NUKqUkTEBBpq78gSt+XmTlLHYTrLOLR5fV3Wl5frN+/fmuI8r7WOtVYWLtVL43V1RKD0Prp/pWjtIyuiHIce5tZ9ZaKqLJVIMpntYDTuUopsNHpf3EvvW+/mrqWgCIgAgJuBWe8eAJDtTUQk4IuQkIEpNW0EDswYhAjERdCh9w4OqCaCQxn4zG6mzbrOl4cTEVtfnt6Uf/7nH/785x+e3gzr84/z66c+fylFHk5vS+kIa8WhmQIEcpnGU1u8904Qj48XhhtGhK5tba+fPvnq01nHiWXsBpY7cAfKiQoTd1N3y6c5AIggCBx9mMZShjIUEQr2LJ+zemICSw8g7+4h4ZBCxdjdM0yBOBv8/CXAjMhOnHtmZ8RCBTyjF3P4tEMo93EQUs5lstwgcyyS0j0EqHjXJobaTmcFVNwdCPvmxnPmtiuKc44UuY+kyJbe0kWdLpZj0hSYPeleb0Zu4NxQwd0ziQ8bbqaA5ICMaHoooFSVuYgkBdR7724YCKWUoAhEj3DPybMjOHIBALMeYA5bgBJ5FBIquV3zlOPR7uxO5WEgBeH+uwVaoKDnHGzXbgDs4Pkd/wlSMt8ZhgmmM5pO15fetrm1ti0bAPE+PyBraWNXYazCu3XaNZkIe9XGJfu4WkcpNU3KFs68g52HUkXCHdQhV8m4T/QZMLItCkrLExPBaay1iiTu1J04pIAULJXVE8AEwMSljOeTwZ7ShMhESkSI1vvWdau1uju5SKFiYRgIBpmAd99zJp02X/XWmhtodx+yLUkCdLSm6bFNr5Wq5uSja+tNPWwcR9pLREirTEpH4r5RitwFpeRmH1KAI4Lke4QhQF5CIwzBCcv5NBLBMs+vry+lEMW1kL7/MP3pj7/68z//+s1Tcf9MsszrR92e37+ZxtNg2zrPV0A393VdhaMOxTu1tmH4eZrQXKiEwZftdpufl2W7rG26DOcnkiFEKgJ3D1OPACIWkfWg1tRaiQilMMkgEzNzTYo0ADgQphBFRIAJgmqVJNTUQWot7t0s9wu4e0pKcVdiyBgfRMunA8iqcEBCBh0pWzwEySEfEFMEElIpBITsDA4eumdb5MGcE/mvOeKRE4T7cDvvBgA41g37/DwiwjM4UCMCIQLQ072LuQiIHZmDX+UDKULfowrCOnQzB7QARnKzbm6IqOqUqBWP3FhDcDghSJplzDXJ7BCMGLWwB6gRmAX2gJ3cJjQc2i3lCHQJACKyBH8BJPg3XVoBllYfgPw2CUEczANMCdJ4QYWpMvHpZG0LJm5tXddbt83cRGoAWagbqnYQIoaxSDeCL631OeLhl4uDXDrG4c64j2qOexdrrepe1MXjmF6mVYTNupsFOgAy7eFcjP/L/vg+/hORsKBjD2Bmuxpq3UTkjng9dkbKUkCJ4Aioya9jyZGN0K47iF9AGuigSsad5o94NKIY4OZGhiiBGMRpD3X3proLYJixcm5ovzIn84rI/yCEDgEWgYBOGOhAAFDLgMcEsdZBBLQ3RjtP1O31fC7//C9/92//+tunR3y+/vvt5W8f3j2MJ3chqmbWbsvrPL8iwVDH1+cXAh0HGYbB+2rajbnWAkCq3pu6Q1dr/RZLc6ITDMIjSzmmqgE7y9gCvBQeppGpBDEiTmVKlWceBxnbl314KYVMAWgcB0Qyi2EopbA5o0aqutx3voXqoRROlyckxZSIPQJ9j2PsCExpBAYqpZCwW24EDAgDwnrSTb7mYgBkZBiZ9+yBD+iIB0R6K3C3RSLsErh90hy7OdcA0k+U0jeMfeNtqimz8VzN5NwED1EDACJlyKq7B4SZdQ/fnytHT7MfMhK5EbhvqwIDZTgrqLmGc0RDRDqG+/mGYxBjwK7wh5y4AuzKg/v/ngDlneK6vxgGadjOYAhg8AgvCCxSwomQUKhUHCckxOHUZN6KO0YQQk8BYoetO3IKZQgFAc2jl1LuHTcdzpDe++12m+d5Goe0uN3fpuOFyEPtriwkQjHoZhZ7dlZ+oLSuq7uJFDewPXyh9b7lEYzgat1arFubl2vbdGBJC0J+AUBXE5HeE+cfB5Zjx1HTsfJFJDYPyxVibqGYihQIMtWcTokUFoxjFrp/KxjMyCzMGGAO7ohm7SjDqDATSe99t2t67rr2m4qZkwDpBuAQWY4DlSqEzhQI1lprTXvfhEH78/v39Q9/+P5Pf/ju/SP1+KT6c9Drl9fn8yj1VNt2u95e3ZtMQ8YOf/r0qW+3D9+8ff/2AU+n5ebhKoTBMA1sjyeRusx9a31elttqWz+70ekUWeFEgLsFhlqLiFrrMJ2Y2QLz73mMtQIAiYGLMLMDcOVqEIEkCIBMwIVTwSlCGY1Dvv/X4/nJhzhDsPNQWHO/GAEp0GMOIgYkqcjMRqFmDpH8q8ytSPtzagqSSpT2hJxNAvpdFhjHYgqR4uDm3H/tfQqF6XwlBpJUETFxAOTR4O6nU2Fm56+r9byvStlnWkiZzXUcUphmdkUswsI0dPdw612lICMROSIBokEPgL5dRQrjCYEQyJ123RWbIAHTrs9xMI8Ir5UjTbQ7Gx4hgNGDU24DhIiYdj2HsIhCVMkpCB3CsaM4Dz4I1pOXqTfTUDRHgJJlRpbS3Yw6tzYzx+lU6/D1RMgp3n1TkLICdwem49L1bdssIt9PYj8u3R1QHIEeYBqJETGM5F+KFGYWTCXrHgCvHriTbPNi1q7bwJQPWCksQgCQUO95Xt1dLeR+hCPuHIt7GZNkBTP7JSs5taF5chERM0UQwJb4PMT42nopuKMI7wWSGewqtPRQ5EQ9jS4eAXsSLoAFRLAHeRAGpZrVFAwj2IVssUX7zGjTiW1b//j7v/uv/8fvHx7suv6F+fb0hh9t+r/+v//v4dsPwzD2eVPvp8v5NA0E/vzjx9vtdv3ysRZ6Oo+lFB8GN/Ku+Zc/DZW5IKL6Tdu2bk3dVWPbWh1PiBxhZr42XdfZ3cbTOE0DkXTL+Qgdsk5HQmTKbU47FBzu+/AqwgF15+oQlrKb0tJWkEPsY9S/12KA6t4YgSi7rx00QESAO1cnwtG/jqrTVJ63QcZiHjWIHv8iJoEzAnNJTCScugD8mlB+1IzZ2QViMBEgQ4hDIAUzBQCzmmVkA6f6KYdNRBSBZsZCSI4oiKFqqoiAubQHIDNEAEaG/WdFYRTMYI7ETBYSCOGAuq0RiKBEFZzTIuNubq4EYbm59j1bC8B3BNGdB+FImLN9gICgvIedmTwIHaFmM+ZuSWQgtjogM50faLnRttm2GAAx13Ec2dB0aa3dloWELRQFh9OUL3O+/3zscQFgyPqQv6rIszxvrVlEvnayn87EzIjEVIJKxjP0Zr0Z7VEQ+8aQnRB6U2tNIxaPiDBmrFNFxPsxZPYVxxS71AiZEYAoTDAIgwhQSBAzrmsPXDPL5guBE6aCqk6RK+K8AyGLCxFB2i0ZWYJmJKCqVhkDAwgodQMQHuqawjsUpNi3xbk4ZYugoPB87AVBiCoiikBri4HVxKygTSf58P785vLwj3/37fs3g8HnZX12uxI6YSuDB6uFBWGZTtPpwkMBbSQp7LPn55ePQ51GYfRaZN3WiEACYueAYZTJSlBIqWox39ZwPAXXWs3dzJdlycCvcayn0ykiUA/5BuGuXzsARygsGFIYGc086Te0g2z3NWqRFOcAM0khVszCmJB24QAiojgqHTEeYNmLEWCqyAuSIBnm5Y+BAbVKKscQkfL6U3dvve9ZCbsMYa8F8pMnBnZ3c3BPWwMLFyLLjL6ISNt7njHugBDMnHpHxIKBpk41B5mpZOOs5HciABIzewAxgGWQCSEQArvB5l075qIXoYChg1s0jGbYKJwICzNzrgHTG8QYQIk99HC1XWSfXlkid9hdVQAZmpk3IO0xpYDIQIVACNOOvR92FuqhRFBqfrRxeRi8PyAWsLVvAl6HAFgAUcM7ADMXCDSLfEhymLdt2zhUZs7wVfJdyEw5ttlPiriXVPvFnDFNbEQiAlgGN0g9Yg5wqsgvj5X7JIiIwvSrgKUYMwFE65ta9VDA3NRmhYjDUM2cTOQXE6a7/f1rV5PqLhSOiLZp71oIszUCcNXu4SLptwPmHCi5u7l7121tDWu6uDILEu89yDiOREKRReYB5wRn5ESI7siLhGURDQOb3gi0lsJFutDj0/Ddt0//7V9/y/S6zZ/Hk54neX55ff78GaB9eP+u1gECSh0IGLl6j3VpIrXWAZnmef7p50/TKI/nQR5OPWfZEQYBGFzg8jAN07krv17XeZ5b09K7SFrNmnkHCCk0DGUcB/cI2j1R95d8l7YJMzMA1FrVjMjuZREzZWHCzFIoHPPzS37uXiLkS7qn8AXCyLyLRyCHGpkPAOBBnAo/AEhKLwUTpVoWcYcU7AkfdCgXCIiYKcGW+5KcgSFIoycEGNGKIAQDBiK79whIYXBvoA6ZzY2YKpfI9tN36Zrfm5EIM+vEQFyOl4ABDJHdgEUQxNR763lvR6CggFl39dYCZ8DGQgwspQgT8U7dZGAnBKAAc9cDHGaISBWZ2T2A9yvxeLwThBqQbjBkJoEQwECIcNyJcrvBlJgACVRjnETevxHuoLfri2ur1mGN7gFAMk7n6Xyat7m3nz9/ev3mTc+YdVWNWiSfv2G4Luv91ftagee16kgUtBeAx6GRwrNSFBzxq1UhA1ay4userWnfJaQUEaqt9bX20czTzA5u8YtJ5zEiyOPJgV0woEqJCDfv3bKjiiTNkiCzu5uamTlEKeU8TgnYsFQZESFG7504K4VY12Web6UUKTxN0zAMS9u2dQWAyiXFbUCumw5DoUyt1EjJA3MVEXVYlm1bt1rx4XRi5HVbtKOwDQUGMQCdhvKbX737/d9/+/23T7333r8s8xVlPQ0j+LjMHUCur0soDnUaTmcW6VuDKNvaHx4e9P238+25dy1CTf02b0WGVVcujBzzvCKiCLdujw9viLZt7V++fOpu4ziKyDzP//mf/3McT9+/+c35fA4wIp6madu26Txlid5aa6blrowpJbN4iQgIsim7LddaOCtG1VbKUAdhKmZaq2QUR9IKck2l2opMCalHCOLdw+4WgaAdIcCBAznrYCTLfU7WlgCEeBAZ9oS3jhREGGFqTdURsfeurkyl1krk1j3hegBAwCIksmdBqQcNiEcVSpTmyDHARDj3l0VqIl5zwVEq5XRDVTFZV4GtadtMJAhAFcwgsYaqPhZcl2vXV6nK0pAbBDNWouhbo6hFqpkJV6lj7631uW9tXVd3zwkOWGzWahkzoj48EB3hwDiGW2bKArTW1IxwmKZxywG9KjFwqYCu2iy0qalbHS/vv30zX/HHH//2/PGlb4I0taYOIqWG83xr862fL1NrLYuCz58/u/tf/vKXwrgsS5bxInK5XJKbkCfk09PTy+usy7qj6wFaa/NthaDbfPO2FqZg2tbWNn04nxCtbVpkqHXo6wJ7Pr2N4xjEbnHIC6NUHqdagE6niQhb2xBxGIYasq4eYO5hpmLHbOc+TTjQVofYdbfdgGuY+7ytNU12eOdednPd09wAUrMkwma29rV3C0eRgoiFKzNjkLtbM9U0q1AtEwDkNkW7LstGRN98eFeorOsNiN6+mQj1elu39SVcnx7lw4e3f//bb/7uN++RoQIUFiwntfnLvLnG5fKEIEUqixQZmKpbpCfstm7DePr2V796+Tw+f/n5Nq/MPAzTMJ4cIB/9oqTuAMTaunkpdRwnepG26bquSPT6+nq9+vmMDw+X82XamkJWYOHuConfRySX7O1/MXbhrATzSFWFYxX09ULIX3Ikc35Vp2bRhkipyQNMUYO5gYMjoBu1Y75LOZqQWgtb3z3s99toN614/sKIcEj2f+J6ZBAUAOjde++hlFVJ3i1uEBBm3dUsknhMIgURUqgfEVJSYZ0Bn7mm2NeWuhhi7HHBeDjzLNIdmH0WIRFJOIaGK9RapUxAq/mmTQFcpG7bBlFrQXfftq2B1lrN+7Lc1Hq+GGWopaRdOriky5gs1B0DkiQOtNv2hal6CDZ0Cw89cl4xwLuqWYb6WSnnziQshMPlcnp4uLR5NrXWehmGUqal9deX+fVl7YqElbnkBypHee9uiYG7M83jkDkC8H3ZlPUNADHxMAxZ9XRV2mW++/+VMqi23s2sLfNmFrE/aQVC3eP+R+TCy9YG4PdBYWst+Sbue6KKhO64FBGhwkSktrMVRVAYmBlZHFDV3Xu3FqpE+xQygVYBPk3DMXNCEam1qGp3m9cNCBkzTwPdCIMASFggOIyIKPfkEAgOhXioUUo5jcV6M7tFBKJeb5+H4h/ejO/fn7/77un7b998ePtQSt9un9r2WWqfCmrry21lwofT23VpzGUsk4iAx7Yu87y2dVXzaajjaYLM6lxekYoH9yDAkYURAjZAMESUwtqwyHS5PL6+vm66zvPsEfNyZYaHh4enpwcRvs1r2sxFxMOCkIpQEUmRye4jYqJ8EXZWb0te2FETfu3UBGuVY86vEHQ0igggHkFUjk4xCF3J0jCuDpJzyHSCEAd+bdMSeRgBxwAyEJO3brmaBsgIL5LChUqWJO6eFKCEI6XdwTKAQ7tDlIIspRSJiHVdk1xeak5JPWPNImy39KPv2keh46AEBCISJiRiyrwuLCIVAEKjrX2IMRDUYl6v2ns4YawIhYmieoC7WoQiuLuu25IpD8SS7rBAcoNCJUnF6GhhO0occ6YKtpMUDHJ5g0ZAxICCauFd1Zq6RkCpo1RlqoXk8eny/pvWG23tJQACCwL1W9+2Hs4IxZx7M1XNdUO2DARea926xp0z8ItW3Q9r2ZHu7ExlGKYsJNEUdhLM7maGOEAEKCIDp8nHyaNny5bSewAgFBHZdDbvB04GVMMjCRqaf51dspLFJ8NuOTSzrWv2lLBHsPrWe982glhVI/buN7Nx08vlHsmrtX3qLtN0arcZSQgYAd0wMBgJES+Xh7apdfPYZ575YymFT8PJo79++Qho4xgsvi0/anv57a++/+Mff/PbX79/++Y01QKxrfPnl9cfEeaKEDdf19kdGEU79QY8FqYBkM3Wdd3WdW3rwsJbN3XnUj98/73396YNXOdFmWmskwUEtM2MmZAZkc1CuD49Pb3caFkWBxOR779/ev/+7TCWdVnm+TqOp+E0WRTVODo/Bgbm4hDuTiiAvluKILeGHEScwjJEDz38hen4oVICj+kkkZiluiNzbvIcoQhHp7yC8xIYhgEIsyw3B2/q1mM35B/bHS5mmYYQFhaOHpH4EPi6RSZO3/SBV73Pye+Dp3yGIyygB+BB/s3fxNzVXN13AHFKIhLrSESwm4+S1wSKwVRyAIGY3yM6xjAUBPUQ6MRUmIqprd4QkGirpdG4T7WQTPsW3uIYZ6pqRL5Z+yQrKAIQkSldf5iaCNdmRIFppkImqQDGzEyIHc2dHIWEkEWKCGAEUNSpvH13WRed53kcy/NLf72+zvMr0HC6nF+WRbuv67qua84RELGUUoXO57Ou230cmK++malG6nIQGEBVtTejoaaGVaQqFzdPe1IyUUwdUWqZxnEsw8ksmnbtIAJEkmB0RHRLKyt6aGtt27Zaa5pl3RzvepMIIcD7kikCc4ltewxsmAVaROiybfM8r/M1XK11ABjHKiJ5yzDj7fZaSkkNQi6cTqcTiZzOT4EQCu779JJoEOJapt4WUwfI5QRQEDOCQdO19xW5jROOAwbMBrff//7tP/3jN//4D28fJiK8uiNhjKOrYx1PBLpur+4+DhMGXF+XQkWwIkpKdsMaRj/WGY5BpQ6nsRJEb2tf13VZ6jieH5621h1eWwcJRGB1aMvs3odhGrTNX16A4vHxUqdxHEc/2PbZK3b1HCDvszQW4sKpTpGyS71UDRQp8ecCHvtWzAl2Y46a9XTR5fuTHCrfE8Ed0TMFDxkRUJwiMKi6u4M5GDj4TiXHrElyxE24D5KJ9oHfsYK6qwZon4FBiBQRGUe0nrytfR9BROjZYNa0M6i2e/hSHeRQu30lmh1cRkAkkZrTx7TGIURi9ggJgo5YsJ0R4N0LMeS8I2KstXCOjWxb1S0EbgJVCpUiZnqzFcAJgTDwaFgQmQBTQ32cVhCAYAAITdOkt4/13Myse29lqJCgSAdkBEOCxEwwkYWGagfU8cJv3g23uX7+0pDXgK6+QADSQEQiuyHAjtTmeyf4y4P1PjvMswEOw2lOmgGAkO/dPcSOz0/RN4W5KwRBCKIlFDEiWzAmlFIG4bppU7VkLm/bwszEMI5jKRwIrWccrXkceoQ8683MAZLumuzjPDzUPQfU27aty6trFy5SEAlaa62tALBt2+Pj48PDuZSSbMxt7ShOw8k9N15OwIQFgQBFO/QWqpklLOFOVEqhaSw/f3wxa++ezlK31+tPyPP79/VPf/z+++8uD2dzW9bbK0FMQ5WiJL0UQghoyozjeAbHdW1jvRQZABmsm3UAlxLEbD3qME3jUFkgDMKG8XKaHk+nRURgOJHdAqr6GoYcsK16e509+jjtRmMudD6fgcm8976VUh4e+Xw6k0jEmuSCRNntISQkiE7M7smxMA/ACGZhZnDA3YzAEZH57fnQZ0vPzMl3z1sk45wAdT/C9/FhjEWWZWl99WiIaXAkkSpAGJT1ai4dVLW1cPfDDV1Vc5ageTNHhLkTOaEwAwYfVQPmro5QgoKRkKH3zVzNrJRgLqWEKkYCb/Y+aJc+ASZra79pVN1NEbkUKiIiYhpZn2ZglLubdotgCEANiKyAzKxtti0v27aG3xB4Og0ANaB7b4CGRMwohaQUporICNK6JbwQgHIXFhGA0boCUK0yTRMV2bZlnretNRkuHgYu7n2v7QEgzJJ3tEu8dBjp6W1dlunLy4uMOinKC8y3eV1vrfWnh7fjONa6p2zlSNW6X6/XPfQxewS6Txky2QyZgdkB7xqQUFVTv2uFvyLLkLfN1rWpQjPN9M6kLYRjZn8wC0DzwyudI4l92ESUho570SfgTgCOvEs6AJKogUSeFqYjGW6YRg9F0G2xiB01n60mEeV3Xsquu8gNsG7ddVaLMGAuY2VmIZQI3FbVHgilcBUUdQUgwoqIUx0AqXBs662352++Pf3DP3z3qx/engYHmJltGtG1975ubXOcZ3SkcHRkdHdGOU2X03AGRHDXtva2hXemEKYGXMdhnE7CBGqhnZCAuQ6Tr6vO7fl1WZt6IAZpj3Vt7qBmt2sPtofLU50yxms/+4ehcqnMHLnQomPJTBmjWQMyZBwpTUQg4mlDkCI1V3RIuxIht8Q5mUescXwBJMDCiJ0ot92Rot9MxxVy8xawvw8eGgkIMgB3CILQiNi2LSF6pTIiMRPgnh2AERG+NwgOWSyoKsaeGkhEmfR13FTZ3QSA56z+uPoOZBtjWARk2xQe+RHvJB93N3NEYHYzY75DgC1N8YQYhrptXJiZ7PgZEhbCGMfeGyReufVZbayVAM0tUZEyDEVKQWAAgWDfOiJzKscQEXMV4kwpA0m5RxABcbCA6uZOR6qYp4AHgbpuRKUU7r27OZMglYe1vn0ZHRbtOoy0bV2tt7blm3xslHk3NZilQiEOsJ3w3jneX8v4BUbRPeHud4ZKjmz3jNVuvXeLQARPuFNKfffX2T0cDuyqiHg/9EhEEGBqkTva+yBDNAzvK2wPR0ASYlLtSckVzLCAEdBrQRvLyxea52sKMN29lDIM5c2bN3nOARAKo0hEuGJbzRwIsArVWodhZGCz6GvqvbiUiQKyngrXT5++nE8gFV5vP11v//PxLf3hnz7827/8/fdvz02/9DaPwmUq4KOu89qsDqiwY7y3rtd5ERzO5wFqATXr2tra+mzakAwZhrEEubqyVBpHjAm6gjpIWZbby8vL6+vrvDR3JMRMBuEyaOi8Xmulx2+exlG699NpbL3fyz/VhlJEJGhvwJFJuDKLuWd7TJTqisT/hbAUZi0AnpwCzuikHCjk5iX5BXtQCCFLiVCAHVuV6k+D9A6CahOR83kqLLdlbuvWe5cIcAZoe6ERGmDpXdonWAQA6oHonKIBJKAgN2ht3VoXKiK8Tz8ZfZdFWSBHmKfEHggI9vC+XWm3g1gw2EPdLcAjjCnfxhRiJEqPALJCvjM/gjldE6jduBYR8q69b9aDiQn4dLr0btvau26tK2AnPjFzaEcMKSRVmCPcTZs59d5zUILCuCffERJz8LYtquu89KJiYMxBjOsyIxORAKYDWBAIkeebDrXUQZDCzEQIKMaTfPfrt7d5/fxl4aKny7Bt8fyyrut8vdmyPhBdiKjWYRgGV6y1dtNsl1J3skPQel4GYN7NnIDdQVV3bNx+XmTWXrg3j7YtN3ctpQxjrUgA1LSv3LS3o838eqMglgUgV9HH7C/P5ciTBABkejztWxDfu6lAT0uSIyBZQAcDBphqKXS+ub19/83Dw8M8X7dlJYyhylDl9eVLHYdpmsowIYN6V4cIOg2nNOyWKkLA6CSl1kqo4cZORSpBtLaGa4BK7c4NeH140ncfLt99qL/7YXj7oOE/S1gRcG3rtljOaYSGcXSIdWm3eVmbM02n02U6XbZlG6ogg1nH8PM0QPDW5+FCyDRVdvXb9aXQUHlc2rp++bIs2+fP1x9//Ol6fQUAFkTnv/z7T6fpMoxF5DSd6jBd6iAUWx2Gy8OTuyPzaTiZxW1diGW6PABylQFZtNttXplLreP9PQkkD4iwVAHVKmkNysIyQgmqFFzXVU2JWSqLcAYl7EHOiMelggGW+T+ttcI4VCFA7x4GgpWIrNtQasoojk4BVBtzAJoH5Pl07J+aoCG4BzTtXS0xpwatSGmbujugB5tqUwUhkbEUrGaxritYiMg4TPngrutq6qWUWqta630DtFql924axEIk4fvKMyHCZpZ/Q/PN3cx7ObNiUwVzQylI0rv2TSOgTpUZeod87dcZh6m6OxB2W/ttLWUYp3MQLXOTMpIQl4KcwkBENKTA3okaoiGZeeu6mXXIxaijmROTMBFnuUFD0Vpo6+s8z4nIcYThRPp5/u53b5v7p5fb+tzN4DxN29LgsQAoMX7zzTemGgGmISIhHNCJXIT65qqGUCN0moZ5XbEjC7pHa41ZzueH6/UlwM03hI6oAaj+uqy1Fu7dIrrZFsTMJdkzawsRQeTWWtAyjWdC+duP/yEiu3DrIB4gyfV6PZ1Oy7z21kXN1Ltauj3yRiJEBBIGyNyUrGlTinc+n81sQ2htXcG2dWvrwsznh5M7f51YU+qVJP2mAFkrGSJSoFH0DpfLRTf9+Pkjh795exEuy/Yp8EriRHMdtt/88PDnP//qh+8ujNe2bMIoXHmgYqwcZgbg63IzX1vf5/kiBXlwIIdo2mxbujbEYJaBRYqTMAlCLVRIurXWr6/b8/Prj3/58fX19cun59fX521bWl/7uvYNHs9ve3u9wOW77795eDMRokUMdcqWoZsK5AIZNTxXe0iVpDDzvlfjMgxDb5ZX5X3ensVFSlNECjNahpchYsFhGN0tj4nee+tr7x2ChuGUAydElJ3lwxEusoOnwiyCBAUKiohBB/BtW1SzdEURCqAAT6gpQFYlqqoe1tsrMzIXZqgDhbMkmIVQyj2Ylx0qQFAR1UaSoHdyiIz8yvFVaw2+Wnox+b+IRuQgREgIxS2RjYTAR7vuxJCJ9WDYk5uIAEyADETsRdlTrIihrfd1myMcEYapHl+JgTWPFiDEMZSCLJS2JXePDqjojuhEHhBMEeiIxozMFIVNQzuGm4YyEwIhOqB7aCr9mbhWaeZU+N23b5abf3qcp6l8hrn1HjGeprFUkUIZeO+6w52ICNBVdd3mZTn1zdumEcg7BTvdmeki3UFM9+opwiK6eXh0wF6H6m4B1vraLRDZHG63GQAB/Y5IikPyEIr3CWs2JrQnM63pDJGdA+ew2xn2mAdE5ojYW8CIfAHcPdPecRwjjDDWdQ1TRNyrxRTPRIavSOGimwNDhBlAuIViAWKmUsZ5uaLh23cPHLq1123rw9DGU1m3H89vyr/8y+9/8+sJ6XWeP759mhRWCPQwUnQHCM+4TY/kHgZTKXWsdRilMpLlj7xvYSqFaxUQql4cTbuSXnu350/zfNvm1+3Tx5eff/z48vIy3xYkCPXlur6+gjZ4OMVtW4bTcD6fHx4v8/Laex/HQgXx6KupCHMZHBPDeawCszXNnQJIIdXEeOyZVNnomVmqwkUkogG0+6j5nvxpZqY7CYuZc7+PCWLmnX8rhy3isDA5kQBEqdJa27aWC5G7AwX2QZlF7EdVfshuQPtQoyBGOB/ex10dfDTAe+uS5UAWopnQQzv9MZ/9nFsnDpw81Cy33fkP9jLHnSWz4QnuS1DYS1bJH5bvq1sGcELOHIf8uZlZa1sprDqUWqpwEdIUd6lBYHKfMSLULNxMAwzJE4mQ+FbEdENKkItIEIcHYHdDwI7IwpIdOGIQkORpL8gWGDaONdwfHy/vv3n35ZP97a+9bevDZWLG/01vckhJYh/Vb7M1ULMM5cIDh5dK/jh+DogoQmjirtp3fFE+PL33CO+9r00RGZDNDCmvi0x5bB4DoIuItWRP+rESQiIupRC1ffqVHAdEzYIAj68cXdh9hhHHeJYrUpTCRFMt3HsPUwB4fn1hKne7SwQSFZIikFqIna0dkSYfHKdxnTfGOE0ThF5vr+Hz+Szr8vHhDf7x99/+8x9/YLn+9T9/ajifxnfDIBSgvc/rqrqL/5F2KZ57IIQQiVSkCM+gNAwhmmolRyaw1nu7tdvLy5d11fm2ffk891XbFtfnRXuY+jiO0zBs27os22nahsdahwmRk4lyn/pYeOVJSsoOSmbpEZFIMeA4xlRASLtF3xKIBNl7e6bbAiIOw0C0b3xEpNYx58jujjnj84hI/VPd5YxH+GfuHXYdy950gLvuHiF01TbVwb35kQ2fiJdsH/J/CMiNZhABoRQekYJQ9uGfBoBDGCLd19Jw7ALcUgTNEElVQyJiZAA4nU7uI+xlSI7K1B22bXNXxAgmBNYeEcbkMMA+RwALBTx+YZEBEcPArUd4EoWZ+XVdmbEwi1Apsm1z1623tVT20AgGN1MNBiJgHPrWAg6uBzowCBJw+lAynEL9WAUicu9utl/L6dnZfeuwg2SYGWnfAmgivbG8efvw29/KfIW//ud1uYHq6i62L501Af77XR0pCrKsKc0CAlKXg4ilFINADd/J0cFCEkJeem/u3r1nYFyyKgAzvyeKMJdKRFvvzGgUAZ57wjttId9oVc3Ek1xOl1Iy+UUQ9ikq7GgODAfAfV6VYk+z3RAamd8EOyZMRCLMgSPidLrUYWAuiAzBkKKIZHumGdYg1+WIgBBt06enp9Dt85eftD+X0ocKap9vt//4b//P/+Of//Trtv28Pv/t3ZtS68Pt9rE+PsJ+5s37kpnIFN1oS2eogHC64TEyB9lUajEqFKtuy3J7vi6vn19+/vz583xr69JfX7YwhCh9sVqn83iutYb7y5fX+bqVQk9P74rU0+l0eTy33pdlYWapY1byMkxl2NsH8wCgUoYq1TL1njkCVTUCPAzAWYiBuvbWtpwGlTKM49i75biY9zTNw0OZPl0wRErqbl6SmZPt7ik4O67ulB7tWakgKS10EyCGWsXM3Pecv6Om20+EtD+mCLVwDcg8SFM1U4xACKp1D5i/P9MAYG7hmswRVYvA/GsgYpEhIiAi4ZoIQlgQTHV1dyJDMIimBm5qmeu7i2T8eMQ9IkowImnb9dG1jAMLEdVa83e+S2v2OZlu2hyDj1sQiogwBMYRZnjshCmQwNwxwhE8skzmcDCI0MgCEEmYChFAqPXU+Lun6yBquAUYEWBEYXx6PHGcXl/0v////nq7LgGt69baJrwwl7DsbfcTAQAkQyiDINZlaQCemEwRLABp5u69c2u7nMF6ni/kSUnIhiIbQiwopXAdKjP3V2PO7J8MeupEfNdD2fHlxw+F968QM4zIytCPXwMZ4JszhX2wbEm32YvYNLEwI2IN9giU6sSFuQQSAkdQ3mS5Lct9TyQ3B5ACX9fXInIe+PFp6tu8zF9U2+PF//SHf/q73z4VXr48/830S306jQPopi/PH8/TxFSGQoWR0iDUWmtshkRSuA6lVilIBOBgDcLC1LQv6/V2/fL6/PE2v3z88vF6vUYgRBFACyIUKHI5P4pURnp+fr1dt22FIvkoyMPDw8PDGRF77+dpGgZWsLWtgw+lFM9J7E46kZz8AToShUXKi3uHWitxQvPCrJt3FkSsuR9OhBTu0BqNiFr3fxTuKfKNCFXLu50ouXo7iihPqGPrSQnlOUbNlltnYk4qWb7P27blmhDQABzQMU1+kaLVMMvtd3JKQrXfq818MMys9RbQyRCDdP/3ER0hCECJCBzVLCMpmYcAB6tOADvOGHeaI7pq3+vqxCntYkfsuiAU69qaRgSESmVmfHh4XJa5b0ta+lpf65BxZKbNw9OGS4KGYQAwjqMpmyaFJymVFgYIDAGW4tmU4Yb3lkyHfWmHaeBRNTPf+UWEwImrY+bpNNDaHSgM6oCPT9O7b86fPi1gZtaON7CDH8TNtLdgEFGtBQOlEK5wdFJ58rqqNk3zIbTWWl+it3C79xEAdMjDMivU9qcrk2EzBXMPpraDwf91svC/Hab5Jdva7n/LlENFhDsYGDPt59muYbB9RbmPavc7jYABoKt71hdBSExI5tBNGTABvoRIHu6UAEUAuL28ykN9//ahl2G+LcMA//AP3/23/8dvh2FtyyewWaj35QV6gPZt2wpSregeiFiIDSwn5MxjKWWazuMwQcafWljbtM3r+jLfvlxfPr68/LTcXlpb59u1b1sp01ArD+DCtZwhCtMAQOva5nl1h/N5ulweRCoQlkFOl0kEiXeYRppPpA7MlQGYJSEA7mBJCGSOSEhZ79rcrQ7sboDu0YkdCZkBKVQVAimtuDvuKzmrSZoJz1EFcXbLebwe93zKyYUYWmv5U42IlEgTEYBbU3NLsQoSCe2xf3QE9sQxKnK3CEu/FuyfLzFzum5VO8SO+sl7IhccHq2ACBWiVCUf0xELEcHA3jUCRBiRmSrxYI7hSFTc4JizUG5biAgxy+y8isn2+BnZ9YQWvZlSFIGcjLgPRJAVPgtVoQgLhchSHxADCKIQB5FjUC5sIqyrhbOM7g7Ww0KKEBaPZt2OwXpQqi0IiZO8oBlKkgIAD2NkGYb8KFxgOsu3H55+99tvnz9dn59XKZBM3V8OR3YvkzfV3lojINWWI1Xr+x2ehoA0p+8B2VDMNZChFAFKBUfvPcCYsZRigemM3ramO//u+HPRiZAF74OMX84H4BeYRmmbI4VIwvzwqK5QzQEAWY7IF88HrtZqltEXkVMiDAegUseuZvvUiZDE3N1AKhOVZEhAQCgSFaYyMj2OFeP2H//+f7X+09Mb/NM//fqffv/B9Pr4btw2/Omnzwjz+7ffFo7PP/04jqcI7M23bQPCwBznc6JvSxmqFCAC69G79tW1betyfXl+ffn45fOPL6+ftC37AAmAAAkYMUoZTqdLkfHHv31R9deX65cvX0zhNJ1P0xkpc5B5GIbhVD2aeevdpMrl4el0GhHYstft1pqqORxkRGZmBlXeleoYHpZxwsxETCl3bq0hliTqBHzNy8hPVPeQXmAux5tpIsQHYggAUvnSW0YDx73VB0CP7qG9b6rOVGodixQAzIlUhMROYg9zzQmymiEi7WyrPYPRTA9TLd4bRncnot6sQOLkOZwBMDq6WwTEnrvm+W9m5AxziUz/22uE/Nt6egTTEcSMvadEB5hHpgoeCNRaC4fuGqDztZVKD+dJBK6vI73uT3YtY9fF3Rnw/tyDh6p6p3xAM5IilYtD5R4QR5asILcgdwCNSJQQ4iHBFiLyMEJkkgjSrmZBiCUbQuQihfh8nurL8/zTT5/Nf6xMInmoZVeSVEsUkQxxWdeVgHrvHkaUzc7eEUSEFB7HermczAvdvIG7gZHRzsgMM8tpWjI1/ODcpJY0ImNy9oNgX1nj/34uwC++5HJ5zKlh721tTgSlSKmiob13dcs0wQgxNwDo3ZhZSjEz6woQRaSUErBnOqxq3Y1BUqElXC7nh9fX12GoGLasy7s3D9Z67wtXJOgQ69Ol/Nu//O5f//mHcezk28uXn8AXDh9PwyBlma9VJoIy1XOAhBcuAgjb2jzQLMapTsNIIjnFA1Vv28vzZ2236+vLl0+fP3/5vC3XAGXGwmLdQZCZw80hTGNb53E8ff70Zdv6smylDCJ1bf3Nu7d1YGDqZpdSAHFeeyDmC6wOw1CGWiM4wIgrpW3cPafGWSsixVA4P2sRXrdNVc91EqHXl1ehBwCkQECBY1eUZ1C+27333hRiy/lCUsyZSj5YWSa4+zAMpYh75vr6MJZw3NrivTHjOO6SgTW6SK11TIg2gHvEkb4HiMBUYkee7EDUHDqadSJiYWLpvS/rZhrMfDpdyiC1jAhsBtodIERk25obMPI4nPZK1YOYTJG5ukHvhkinaYzAfDES1nooZyANslvLByz9UaLaQPeosuxrShmIpLfo1Wgv8vMCQ9PQ2IxpqAMzMHPsZ5wFGAtylG3bIqBwGeuQwXwl4jQ9ttbqIMTs7uCR4k5HqLW6hXmHYCFhRLVY19XVNNZxKIVBo3374fEff//Dstx88y/PH9++4Wma3AwxeldE3LZtmsaHh8f8iJkZkdclJ7iaP/xaaw8ws3VdicFMVZtbc3M3b03XtZ0HOU9TrTXPa1Vt3QHg3bt3n19eb9fVzNx339e6rjlahsPSsiwLd5umqTUtpWzdpdaqqu4boSDn2Am0+z7BSo4MZJouYrKidzwVITJiEAqhqKcMG2gH7DGyABihuAFEThYdwsNW976tL978mzflN//4/ffflt//44dffXshmZdXnK9bbzeWOI8TlwFjDqehnsKLGngQUzHzdXOLKHXMnjZrVt3a68uX68vztrxu6+31+mm53cA8eSGAoepDPYlUCBFhU7rdZu0wDg8itZQhgETk7btvWLCMQ6lcComI1FJqlUpSaDyPIqxurXdAJtzjcdyBmHHfQUZEEANDouuVGETEvKhmyJUQYR3ELS8Q+4q9PSRD95M7ezQJSZCmmVG2w7iH6N1us2pBit4bUrjvuYylMNLhgECIlIfaNo7jTsr3FPNlYGRibyMiR31w7zGPXeO9xXD3cPAAiw1CGwCFUwQyMBHVMiIiQXoidpdO5oi50f5bRjJOI4Uq96FXdvrhO+DvPhPZJ8oMiGjaTGNZlgBb1w0AEFgVtq2pGiKDMJNEIJFEEiaD4PBoBISbARjRBMDZs2BCoJAFQ07n/DnvBkqH9KEhAxIQUA5NMiw7dyuq7mHzcl3XKBXfvb/88KtvPv38xY1LBWJ3zfWNpj86v18iAgZ3S+rwOJYAd2ih3VoLd7XWOk0y3NcEZsaHAjp7QDNLUSORIOYy0kzTNFHSCJ26j2wPcyaSmSmwUxL2KaOIJBIzUbRMR/KSDDV6OIQb5LmQXn5M2QIgAuTYMY06x1NLHAFw6LEjrFunnqm9CFrYIhaK9TLFWPyHX13++U+/+v77+uYRURZvz4PEz7eXrb0IxTRWAEhc+ml6gpBwF65FRt3mbghID5dz2mmRAjzM+jrfXp8/X1+/tPU6z6/aFyQsXAM9nfQPD08IxR2GYVrdXm+bKgCO69Zb75vaCfHy9FirAMUwsRQiYWDiIlSQGUutzGzb1tUcNuEjpRZoEMb0/aHDLh1FIlDtxCwipfC6ZvlgiCjCvr+rlg1dMr4ikixCRBlrlvtMoUMsnL85cT4iX23IaWvLkl8KFZKIcAtmKSLhbJpzUMkXI6GjGNlz59GQJ8L+6hxJgceYOX6RQAaZN0utqXu4ESIXCt7DPnHHImSzll5p531SsRP4wD2HZWgaDTQNIhAE4KaBlHmTmKp5ImIuiApAZnq93lrb1qXVOozjCYLW5ohUpBz5KAQhwGKBCBlWSxHg4YlEaK0RFWZU1ei+syvRz8OUeWLaLPXUQGhmY6kOEMAB5FAICcEYRYQRQ7tvbfGgaXr47sOb5Xpb5mvbIrW/7nfoWzeN3ts8r4+PBo6tNTcKl9bUFO/zf0EQoRQ15FdCn8G/CsbD0Szc9c5hi9D8ceGOzCWmQsTC9d5r3Fdafh+aZtBDdqo5PoydKrcnlOQa9UB6l1KklOJq+zgiWgR4qEaKW9PEDZmN5ZY2m4BQD0M0CCTotRrClUt/exrfvZ1+/4/vfv3r0+XUEW8+f3p++es40vX22XWujydE1HVdli0fSIuUwIk5rs26wjiWYRiYkYJCu/W+LrdtubV1mV9ftG+m6u6U+yUmoirDcDm/2TZd5i61EFNEY5Le+5fXl23rUopMQx3LOI4A/vR0AlQZav6sARkokmO3gyqAzXJvT0R7InMEhAegMxVmBzA1d0d3vbdzxyfREQWJDgbmbpS4DxTufE4AyH+KhwEGAND3w3ocR5E9WzUfuwAzU9xjwoGplFIIq3bs3dKMDACIzFTuYpi8mSMgMA7Plf2y1LyPx9LHKFISReumnhcIot4BrZ4mBWZBwh3BmgUIc6QZMcCYIcX7ufJMVUs4mikCQ1hY7jgyrgQjmEncvfcsEOg0Xc7nS62Tu7EMdajDUETEAt3YjVQdyfJcAgjfGUphBogUkTHI6u6BTkSm4eaWvD8upZR8OzLWLTwQamBelgTgre2fLDNL0DiKWT2dS6mo6uZr74PdnSOIEbFtfVkWVWckszB1QtTu7nhMiOF4w2NXVWEwsxGFoWlot1R/5UAac0BFAaAAeEyaU394uKpEMmYa9xQwsIPTtT9v6zaLCAu7Q7f02KSGiQEwMY2ISCS1jsMwWDd3D9U90trywPdALZAiysxf2Ccobupm00kImvuNSSO6FDhd4tffP37/XRV6Xa4fT5MRLYzLctva+lILDZUQbJnXbVum8WleNuLBUdyieV+37hBlqKlTsq1dX59fP315ffny+unLcrvOtxtBECGgmLcISPOXSAWU1retKZFbEHIRGba1v1xfiwxvv3n/+HjhWmSo41TOjydATXG+VAakhA6pGzPXOgZyb96tYyaiAjFh5iXkBZ8iIkRUba3lS55HNfTet7YUmXJqhQgsuZbXnNcQ8a77w7gjEu4zpN4NwEUkM93yYgeATFLxUNWubmYBwcKEUIncjHJwhYjEkR0eRpi5eb+H6wD8okcIRUBw5x27TgBwJPzQ10fNcl+5/1XdPUz38ZXfmw5wjzzFUuGT3AQ3lMP+6AClCIATxXFWJqGniAh5uPvlclm3BUy1KAawkPBIWFGAC5NIgDgkVhnUQNUBMwI3csIAbu4uIsJ03GbZWwki9m6xQ6hrKUPOgcDhNi8AAFGYghNGkubStB4SIQGCQ3TiGEZ+8/aMOFuPgL4Dzw6Mal7vmNhd8QzfGMdqTtBac3dVC3d3NG1t67phFg7HWBf25iUloRgBhEKUsliitDeaddNSKlFBvPO4fom9+TprFCFR1SxsYVeq7ksgOyQsGIT55zm5YXja1NL1nmIvB/CuCoTMkBHJhGm0QMUgimmgdZ1NX0kMYD1P469/+PZXv5revAFvz/P6Y2Wo1cBv63oL0HE6TVNNtzUADFMNBC6VQJq5h0otwmW6nEkYrM3z9ccf//rxbz/enp/XebFtde2lsuy4HgGKrNmFyzyv22oAvKlpz5Vcebl+eX59/fDh9PT2cToNJCiV6zAgE+9WsV1ims23u9c6lmEiEohuhoRS60Ao+XPzXdubcKTD8G+2L3phlxWYmbBlDAQipTbZQjFyFQf37vF4zTTjJI5FQE5nJBUl+agRSEBHJ8QChojhhgBkFoevNlMzwsP58F65u2kwfGV8ReAduPZ1jwX34gIJsbcwz0AkFGEACI1808xS1YLEaUw3M4NgM8eds0fh7gaIlMiZiEjdQRr7AXYmnXsQZ+5IATUiOk0jAFCAiCzzdduW3lwNyjgwcTg2VTREYHfq5lKGXU1LAQgSEujilPSDX45v7t8pkRTivFHdQdVT9AGACIWxZNSa7a5EV2v3DdEGDEDny/jDD98Jf76+dutkmKq/vW4PR3fo3RiFuUBA73df9m4P2Z8Wgnm5umuBTAgjoNzIkqoijsLVwGOnpMAB49wnI0fE3tcNaP4F9gzIXRaJzLwnOBJjgGck233A09RNI69VInaHdW29WxLWw/od0YPEABC7gYcJUgYDGVsYDhhKKF2v2/ZcK44DvP+m/vnPv74MKGUN2MbJALa2XJf5Y+uG1IdBSkUgC3TkXfhQh9I7WutB6XsjZjTf5uvrjz/97ce//uXLp8/eOllgavgJGAkYiQUoABECieR6fbWg0+lRe5gaIKnqx48fVf18ni6XCwuOp+l0OSdxlIuUoabUOL9TCII8BlSZEQiJ75d5fpwZORFEFH7v2fjQ4feIIJSUMEshYjjESLQnEGBADj4ObGZ+wPfTBDLb72Bg5DOcLDDAsBznErAMZmFKhyiICFnk2ISomSmSZ3D73mHtt0d8vT4y5gQyyIAisvl3z+800C1VpPlA7zvR7CARUYTu5YYw5yAzjeFmOdfMC6pGRKaIuUUCiBzMTFvb3GHnI0Q+ohARmWVkqtfrdV3bg4NwJUYH75sDgNSceVEpxUEgCNCBAoEBBQG8JwMSiSi9AKn7ynmZAOiu1+r5Do91BACIylQRC2FF2Im7tkWQl8Km7qEQPNZSP7xd19bbbTHzCHfJHKPkjGUbIlSYJRy0r617AOdiUlWpFmIERBFxB46vJqjeu6qbeabRAeiO2iAiolQP7I1MAKU6+Rc7yKwAAKBwKaWsazrKRIYxSzV1T0p3Iv3dejcHZhYqhKTqXXtEEy7oEWDEIP9/rv6sSZIky9LE7sYsIqpqZr5lRORS1VM91TTzBBDhCSD8/98wRECD0NPVmRmLL+ZmqiLCzHfBwxW1iIZRPgQleVp6qIow3+Wc72SaGxIQihepxYGstzY0767cBIc1c9TedGxC83mRP304/+XHx+31V+3rNIVwAd3Waxu6mRrCQBqpgEBEIPK7xLX1fl1vtcrENSL6to92ff7y+Ze//8dvv/yie5tKrYWByzJNOdZiJjqS1McwJ5LerEzz5fy0rn3bV3QaY1zXtVR8fH8+X6qDPT4tT0/n1to0yzJP01RYji/DwhB8+PCupr2UyIYtrUskFZERsx3FoAAHuwchSNJs21D3udS6zBTAlQlANdwz6QSJOCGo5gfuRgqJBHFmvSZJNVHoaTcYABQwiCLYPeWtPgBskuIe6GFBmXmY/qJSOEKHqmkDNCTLQF7gt4skB5yAFPfxBcHx/qOpuUM4SV0gUrFvOUw9/nqh5iMimAiRkIAC0LDU/D9IWjzcNwj4tlhx1zE6MqC7hWKAjd7apuoRlhGJZmPdrffGzKUW4mIOmkLwUtPundHSEsw8oUAbdlTK6AgGPAgzMXUKx+OIEgHCMM/2Ob+M9NIBIQaTTBARSOCUTmiHbpF/eVdVqWVeJgTZdzUNpJjrUkpBcLdhFuAQUSCCWYi4lCmXSNM0Mfm2NXb0BAGOvredbfTBAPD09DDGCB2mXYfvrTPQvu/6sAQhM2s46P17IrLe0SOTgQCkMAvKCGKZ2Z0Q098dCMxcyhvu5WkAAQAASURBVARwy8mruKdgE5kFgNzyaYqlnvY+EHCSiYi872hQZApjJmApSBqgZsOOyoJZUgSO02SllEAfY3///uHzr9fv378v0+KtotJ/+U//9u//+qd2+3w5hbd93F7LjBGx3lrbh/n+7qEKw9dvXz5++KHUUxvb+fF9a/b12zeZpseHpfd+mqZ6WvaXL59//fm3n//++vXzzMHn2dUQfJ4qESSscJqm88MDIr5er+v2+mV9Pl3enZaHtse2BeHUtH3+9lUK/PVvfymTWrx8+PABYl9vNi1znaYy0bRUIjILH4OxCGNNSR0RIo7RdDRBKuVhjAB04SKFzEdvzU0TMOgxrtvKKtNUKy+uAT5a3yGi1NNc5rabjiDiOi9jT+6WAYAwCgOhA+K2bWVeWFgVzIIZgUr44fhS7/eU48QFARGEqTmHmYMSchAhQh8tYFDpQephHoZ0vIa1VmIfo6l1wEg57bIsOsIDdURvMdVzYblte1/30+n08DhH2Lq97PuWErplXratb/umiOBLKQXMMDSMiyAChrVhh6oagNpo4/WFCFBiEjZozVYAaKtS4DIVWoiIPDYzc/Ax4uHh0rta6PnpUb5/33s/nR+RaGsrBC2nRwDatn2zVbjO8ykhLgoGljwCQKS9K0IRxqAIM/fMFwv3GNrCXLPCIynEKFOV0k3DM0/aEOGNQA8A+7q5xml5WCa6XtfR9Pa6nubzT3+Sb3yDcQsubjLayBUscT1fnmoRdR3eqCgDtq0PXVlsClIfqCG1hBoFaKBZANA8n5bLZXk4E/Mw3fqeUoxANdcAnafCRH3E69bGbhNVQrABbtgGMEaZBYjNHUjm03neW+/a9yGeTJ4ABH9bKUOgOxCgcKlSAUCoBAGjjEwq1wDSAI2Mi0J2c65LKcJOiCzCQIHoAb6cpkoRsRWWp/P507und+9O5NfQ3X332CHKvU/G0ffT5VQYu0JrQ0OYKpGoj+HGEcsyP5xOVFnX2+fffvv626+3l+/5QqYdLU15GMDMyavqTSNC1RG5zhWxuFPiRRF8a9fr9cpCy6m8e/fw8LicL7VWrLWcT/O0SK1vQVqYh2bWY0GRAdARdY5gwVqrW1XzYf3O/HNkKlg8AOOYHWReQzrNuRARBEL47+0rocyTqGofaNYA7GAZELIgMxISkccx3UNEHqMjOWIqdOEIHQAfbbimVDIAhJACHdCJHEkZj6LjvnInOzI6wxwRCmW0IIYOjCChOQggegQXOZ1OtbIAuA816xQwScmt4rZfhw6kQ66Xw2nmaG07GpwgC4rDJhCphTXrBIAClAPKYcxCRzGMR2INeIAxUabbISJhmU8LceEiOawJd5HKfLBSReRY4oCCqVp3VwtHJIgJEQAZAbPG0VA3V7dsGKWQgxwGByC1gECHAwb5Jio3QzmC6flNsoGIp2myBlpjmvS02OjUd7zjEpMfdWxw0hTbu43RzRXAJGWOzELpQ4mI8MgMwZrT7q6mqhZOfkDu3gYiqh5mYR7m4MEoE1f1kT53RLIAVdv39vr6mlOqCJQxOhxMk5xYcv5FIwwyovPOq0zRGMAdEXf/b4GYSLbe45DBZIWPAB5g+6bMjKCj73Olj396fPf+fJrZR4/k6riDgQ7vzXS4qheZpmnZR9PhTjDPc/bMRBThzEwsY19/++XXf/6P//j25be2Xd2sTrOIBBJYIB58GKkTImb2nroRUalzIGn3oQHAqvr6+vrt27f3Hx7P5/P79+8fn07TVBFRSp2XJSOb7eCmp235qA78gBRAFvBSSAo5kkd4ZNAbITFg7r5/lwBD0D3YBJCOqZVbBiUfyhwmIUrVoBzeGoLAFNIEkqdJ7+7wdY8hSFIYIIaOAEsmenbDAiW4IlSE4kDHYpICCYkwgs0MKHPbpCu5K4BMUoQJQo3m8KTnVARzVx0WNURomadt2/Z9N1MWrHUKYHfdtg2BhJNMfWA4khd8zCkiCICIgxItQ2GeUIP0N2TMtDC/nQhpgro/8fy2nxOm02kpRd+mYKa5IWYWZGBm8tAcqHmo+/BQAIco4QaoZgGI4JGG0rzwmQsxi1TkAxsfDuiOntNJSvIMIgECA2BBwQBAcA8DCijE83J2Y4jiJjp4u7lbRwpgCogITP2le04rQv0I/jpo+sxIRWopZTIz1R4RA2CY3raNGc6zpJoA/+f18DRNqgFwSFp/Fy8cP4de3t3HGNu2iVQRCY/72XnoZx0CmZmoqNp9BOL3dSUd/R4CccaeR+aSMAuKIaIb9N6btqFIFB69MDJZ0xWjf/rh4T/9yw+Pj3XojXGYN7WdwNxs39u2td6ViEtZSKZ5ZoQaVJlwDCtlmmdDxN53G+Pz519//fmX5+ev27aFmTBzLUVKSKAGIrraHxctcIeRuTtLwVy3mV2v12/fntdb/Ot/epjnU/J3pmmOCDr+5xF3dUCu/SAcAHJOm8/Q2xzOzMx2QCyFWZjFPLC1rtoDfteTePrFnCIjNMyMO2IBzygkMIt0DUcAc+EjHhoCbMTuoeDHnjkHbBGh2okEgFOMoNoDFCAmqQjMZUKohDNCsUCPvu17gEX2/7nD8AgnoUl7qBIzUzkLVSA16jkMc+VwDAcDG6NFxBq273trDSBYcrjNAF7KdLyfBqY+XPNJLbXmGwuICEIkcCi+M8udI4YOQ/IIQGAipuMiTaekAlCERoRaTyMQUsxzZWb3cZfx5LywZFgOYuKJHdAjFCn47hcLO8Jpchbw9qjkZ2KW4bERKbKxYOD7nv+49vCOhGEiYE/zeEQQcSlYSpkXZ65Edd+itxsRlVLmeW5t5Kc66AjUjXsen6MzYASiBwKzyDzPqop4jCTNrLW2Upymh/+/JUK+rcf68fBZehzZ05YqzDRQp7/2TfJwHK9SGSDHRWGGCMJURWqScz14pJQl2UqUywXLQtAh0vKknmkuoKq9d9UODlgw3Fhq2D76/u6x/q//+a//9m9/nk+9b8/LpGa7uxKhqm7btu59GJynBYJHjyIT02zIbnS9Xut8mueZwFtrz1+//PLzP56/fDbviChlKixMx04uDV6GR6IRIopURM6h/21vy6nkzrnp+O3Lt+fn51Lg46dPy+mUH1CZaj7K7n4Uh/iHCBPGrDsQMcD9cKfmCLiH8yEYPlykeoRnlcytouRHRICbA4ipQgBC5sUKQgHgcGxtHNoeoiKYe4f70C489x0erkfoS9hwDSN1Hzp2tw4QQdDaoGAI5SM2OtUsRoIe4KbmQw/OL4UT8pSKJOYZ8Oxe3D2gE4CNm0MgcSkTcSCBm95uu7syA/Ed1uhmFslHMDP3kRDP44B28BxEOgEmKAEiQo9kFcnSOU0ozCWFzwkIy91F3AuFnPEhQoTWiVjQQ4tMIuKWC7aRgx4PJU50jSMZugFGtpi1Tm5kZh6aWdUMQkTdHALzCkWFcFB1s8CK95XcUeUBAIARSUozEDPKFUUEAbv1QJRJqoIIRZiDkdA8V1WNsDFGZvAmuZAZnYEBA3JkcLzha9tVNfQI44mIKjxN9W4YPYqjOEJB7A26LSKlHFbXPHHgD975XPoy87ruEeFGub7yLMgOfEEYgpcy5aOeihTmY4Z8Os+IRhwGbA7durqDQ2bJBxzezGmqLGDqGD7aDt4+vv/wr//6w7un0vuXodciFrYHKACr4773MQaxTFMxxW1r58tMJF0dgbZ1VYcPHz5gwHa7vl6/t/U2tAuhiLBQYSEiS7UXULIPj9KGiAi5SDpmjxwN8wgc3b59+95b/PVvf/rhhx8fHmaRKlKnaXL3BI2OHGhLygQ7QIbrHgcq3GnfKZRSV0QEdPPQpgEjwgBNROa53lX94U4QkQb5qfK97xPGiYghJPf5910RIYb7kXEARJ4efcrJfCboJOUp5QNAJAKVGISo7z1LdAcDUjzOqV5mBCc/WAaGyBBENAVwOIQT+BQ2qXHvrhrg2nZg8jqJiLB4qYEa2ruUvIiONXvmIyIdxWoCozmFvozhBkCHbhlTLwDuoW4iwiRBDtDd09DN0CG92QlSToHzfSEKeYpmTCMRmg0zISIp5O5q/W78i2mqacUMNY8RYZFaMuzuqBkoAoGOhOAOpdT7agAhzZGB7maZ2cWAKJlte7+iKTxSUUIkiBFOjm5qapbxYCxBR3KP35O4j0MluZsi5gfCxS1sGKqqB3I451GeeAsqIXFPTT8q97fJRZrR13Xd9+5GdCcvZ71QqUqT3vHtyaE7HAxz7eGhjOUoORzdDxdrkTe3ApVSAaC1vbXGy5SrcQYMIArKj7IPRxqEgohTmeapBIwYEDrIfJ75hx8eP31c3F/a/nlZom0vEA08kMXNh2ogTNO0zAsijxFMUzi1vS3LDIBzmYqUl28v//znP9fri6kSYIaTlCqTlERggAcCW4AQAoADQTJGESI7ASnDsO0tvIwx1nUFgr/89W8PDw+nU5kWqdNUSum9azjeZW15oOYeOBk/x9lMkCeCCAWYqyJ2ZGQmD1c1DyMElvsw6UggJ2aWVIYxZJiXaQY15qiQp7rE4RRO+A/eQ3sobbPMDBFMEBHCgocUSt0BQUphZhRixuJGZgBRMi3ewRxiDAX0QEAmIQ7HNAINDXMM4IBJVVR97GEO1q11m+ccpQ7XxkSEVuod+u5H8ASFR/gY7XhbkKTQoaXL8OoD+FGKVEQxB7Pw3vMhZGCRysHJFLh3ZHEHfuD9HElRMxzXLDIi9q6HdQHQ3YZmdhYRgXGKu820m49cwyDRPta7/QmzCzQIAJuJ3cGPXNKsoy0iTBXTaYCIxJoGCTjGxhBBfDSn2bmUKr1nlS7L5XR+Gqpra6ON1rXVWoMib2kzNos22h+K/yTikAHOUhGHAoB5IJh7xEAy95wvHE0ZM9v9xrqfNnz/5+MIyB86JLwJ+zr0hAhFaq1MBbEwBYKbEuHENGmiABHTD5B9yLbddGylolQido0xDrIVmKGqyuH8l0I8tGvfzpPUGZ/eLT/96eHdg/R+RWyXy+nXlxuGC/7Oh0REKaUuJwAHdWYZCtaNTlxrfXp6glJfXq4//+MfNnqdmAAjnJlKKbVUAIhu7o5B4EdlSZiZiHb4ColLmXKLgXCM9ETqx48fmQsXySLq7eUnomWe53me6gJE2h0R/S5AzE+H7ibz/P7MdS7TvFREbo1a3xNnuo/94M2FIBKTlDIxCxHusffYzAycwo/hxSTFnQ5mBiBmemqwhUIYITFVFDfDiBApY7TetfduPoigVEZgC5zqWdURwp2yls7CfmhDzqqbETjbkPDiThYQIRCsxqNH6xYOox3xPhHW+67+Gk5SgER60+yhEiGLhEi47z0g1crAjEQW4cl1M4vwI2+aiDzH2kSYvEyEKlPa0uIwX/gfEqKOmWIW26VwRGT8LDMP7ZQUcEQPM9cwExEAbF0jPMIyBzVPE0CHcGLJBNpcuKiFeyQcORCYkYkA2R3MbGhjRsQ8z/ltXJePQBy1f2Ac6bwPl3NrzdSklPNlam0Zm25ra+02tHtoqpLfSsLUQAChW26FGIgPh/jxqqdsXAh/F8LmiYDHzgIj8pQZ4ZDqFHeAYHX1+6yED99dYf5dgoKIsu59mrgWQqZAC0qN3rzI7A5jjK5dc18gPM9zEZhmQfHetz72fNMcWMNmkX3bP7x/mivt2+3yMEcv6/Xrp4/TX3589y//8mnfv47+9eP7088//38ZfVlm3e12u7lCH7uFzkt9fHj366+/zvPiBtfX1Sx67+fl8vL8KnK7fn9xg2maaiHvo/X+ww+fIkLVIoIzgIoIBQ/g08H5QamllALE+37b1t0Nwv3zl2/b7j/+eF6W8/nyeD7LsrCGfn99Zeanp6ccPeVbRIiHLnuYux9TGcZS0rakHlhKmbhylqzaWmt9JPSKVJ3QRbiWUmRhrhDkBvu2mysC0+FEPgA7lWXf98O1Skh8mBpaa8K1VglgBC5E7m5dCYWgCGGR9Ed6KIXg7bZnYnpvwwETZLrvu0GvlR/Pj5+/fWu7ffr4Y7u1L789Pz39eV6Wz5+fCac/fXq6+i2cROgGdvv2dVkmQHg4T1L5tn5RcwFnCSk5x2J362303o/Q66OmVTUb3cxMqEI2TRDHYNzD75GEEQYMh5M+/wD5Wz+cv4qZay0RQXzMjGvNPEubplKlSJLv3Qx6YDD5VKuZISOAlNxs5o85E2Y5qWMgiUglhNb6vMy96xjWvEUk7YOplsLUe1/XkZVjciVKKaaWEVUHOns4EZ0vy+v1eTnPvbmbI+k0yfs/vfv28vrwuGzbtvddfaCgge2937YtLxoRgUzucg0iJlnOJzOzoX200DHG0OE21C8zHorGOxc3mIjGGCLSW1/XhlCmqSIQ+DFBSJxnay2D86ZpmqYwM7fESwS5Q64nwgm5EHKmSuWUIiLnwYEl9+EMBI5g7t3UHdxUZBIRnBARtY++bzu7W6sFHs7y/v00Fz9NvoHv++syF2t2/4HeWmu7h5LA7Xa7XC5S5u/fX7+/XN+///Tw8JTvxq///PyPf/zTVLEUsKi1Lss0hgU6eBBAODCihwNAOomZWWoxByIyCFPb+hCpbv71+fXLl68A8PT07vxwyTrqzn04TlAiWk4XcHeN3loyiwg5FfiI9372PgmgSFk0ghxxOKUUgEJERQCAEN72WP62AUYozE4UGEdPqKopDMXDoBY5UYMgHXCH9h5T7vwzve8QPE1Sa0GMoW2MoUPdkO5jiAAMjhwTW7cIHu4IZZ7m8LKvO/H8/t0P+2a1jI+f/vLu6eO3r9fW9XR67GX1+9q1FCFOR2PK3dL2773vqm5mucC6j+4TrmGAipCUdYBA8xG9R3QdoOp233qghQtmZDiAEyQvEN+yj9x9DCWiXMHcL3wKSGLBYbROIn5EiDAL2pFEnEXH3d8ZUOR3Rw9CxuRKKVOCFYQZAA53CRhgBFiApbUVIqcGzMxm/QjLy0aSAgMCQgSIgzg/N6wTRNByEmJjCeYI8N7b2768967mXd3CdYSZQZAeODtL6vMbLJPwqLPosMbmLowR2TTu9WB+by6MItJGU9XW2r3FsMPIC4cWVsxBPYH9rAYRGICBgsCAGDhyzwWWgHYdGoSOkcrZY7oWAAEEQCLo7jr21pqwofdZ/NP7019/eoq4IfYi+u3Lbw/nCsyhh+tm723vW6lYJzIf59NDqXNrY5qW8/nM0yTqbW3/+Mc/vn7+clpmcjKzUkqtZR23QMc4kA0REUAA4GaIGECEEuQRMdrox9C7BPTn76/Pzy+1lE8//Onp6T0cXyZBusKR8vdAzlTvUID7KfBWKKYw+PihAzpEhIyMEUF32Ob9IEitR4qIIAKRGCCOys2PzllVSd7wCjnfSj0MTmUmEkZm/D3tAwDC1AlydgAAw7truFukDldN3VKGHfkQUyGZ3QhB5tM7Ndn2mOv7y+PH2/ptKE3LZT49jGH73pk5H6MxgPnCHGYdHAuXDB1xd9OeUGkRqbWMnqrh/Nws/wMAxECOhhgROppZqIFb0vpAAeDYwUIgIIUNPSaIfOwg04CR1Gm6U6ndHTAQKAKJFBE9kt3qZjhGjDEQI/kix3eFDIgMGO5ZWnMIChFTKRyOxCyHJzLPZECEpdZySFEwjwkmFiLLWQIEhRPl4MMCUSYicVJjKtOJHUop9PC4zJdpXicONmtb2/FtdnqPZnV3M1dVhxCIdd3VE5HVR2/uTuEMv4e45aFQSkEQIlf0CBMxEQs/5ouFpUOnTm+LibhbnpiLmbmT6AgEQDkkaykm0eHzPBFFCl3Mu7uq9d625mNMwoyKGoS1TEgSTtutt9YK8TB1HwSuvQl1xPbjjw8//fR0vf23NlupcXt9rvRYee5qiEwZJxtdSpUSob5tm0VcLpfzRQjL9nobY9xut3XdGeVUF3ANQAbuvXukcQUc8zHCCMC7uysgowjdIEbXvVmRuQ/fttZaD8fL4+Xp8b2IDGvTXUAWQWYGMQY6fo/MLyilEOVWMt70HrnKhvu3goilTG924byQ708UhsMRiBJCJHSQAvJDPgzq98F18lfvUnx3QGdiYmGsaUnMG+mwP4Mtp6k1772N0T00Sf5Z7EAkjiUSoBTo4Qgs7nC79m01EdpX227+9PRO5BGgtf3r9bWdavcgIPbA55fX9bZ9fH+epwvTvrfb6LgstTWtlQknhAgvCFR4WaZF+ytELtUsdRP5Qwd4Jy8xQ8cj5UEQEMPQfz9qI08QxCD2nLO+HcepyYnIcCo/KgV0B3UDAMjjANCHmjmp9vSbJDifOPlrmNRijyAUIsnGDYHuuAu5W2qOuRpxLcSRmmczNxuqagj5JEAuEQLQAR0QWCKlqyxeJ3CXKuXxaXn//mG9bX31oU2GlLLkeV1KiQALVQ8H04AAR7O99zdxzdvg0Hy8RbncxxCZZomEguimGE46js8th275ExE5NcPDVJKylAOLnO13yYRqAEpv/VF1C6GTh4IZYMY3jAhUNGDI0tyZufgwTRQ0gTGzjS2wTRf/4YfLu6f67dvr6HE6l2TCjaFjeO7Ze98RnSt4NNPwwGE2T3g6P5n692/fX19vv/76a+96Wi6lTL2ZkBDwuq9RjnEXImJwwkQQkbhkpaCqDhlm5hFRy/Tly9fv36/uMC2n88NjrXPbB0/p22ViQPcAU1UPRXUWLNkrMWNiPX5XgGV++hslndKil+Gm4QRxRC297aiyuENgvK9+3VG9+yHrA0RECrNxXy0fnkgiQg4paOopIsiyPPMRl2UZug7teRVn6gELs0h+34hoEcM0GT5Nte26N9s3g+i9ods01/dz/fjuXfnln6/fvu3z1M+npyqTO25rRyzn09P59M70BXwBb4yX6/acafQQE0EEGMJMuBCOQ0ORgoK8AI9TDAkMEJ0wCIg4N/9+d+160lvCAYzFkQ7iQ6pp/yCnOWo0onSCBx/UdVdVgoR5Ya4+BO96kLtYHJwAcage+1oulKMKDYhIhStzAID6uOvQ4FW3+3zeDueJmbufzw8BilAy2/q+H4kIBQxgpzKTBouT1Mvj8v7D47dv3/f9tVtbcKmVELkPpXsa2P3tC0AqZcKDez4hIhOamQ/SYfu+73vNQPr8wQMz8fv4UIf23k1BjC0OKy0RTdOUMV9whwBGpGsAGULu3ERMZkZvyoJI96xeQkBGKCHECHYPJlITQXbAeZ73tTGzWYPQWnDvrZb+8eO7D+8XwF7ECAMCH86nUqb1pZkCEbXWWmtSYDmxWSOaHs7n29peXl5Y5qmeWms///zzP/7+z6lUmRZ3QCQmRqRCZeCw8OOiheCcdGPmJnoWyX7A5AkYUrPZ9mTaR4oUxxhlKYfAiwERPcIDEHCeZw9NpYoE3w9U+MMi+o6gwUDCfVNkT81IypryzzBzBAYywhFVkH8Bkd+TdsIP+tideXLABemAJpkZTGWKUHMDzDdfzbvaeHld08lfaski3z07cHKPuzI95RjdzIanl5bDuXdDOC3zXMuD8OMPn959+XC93l731ebTw2k+a78uy5nQT6cHlkl7RZiZLhgn8GbK4OzpD0Rzk7YH0xxgkdL96BCBx+caacoMJwBh4Rz7uB25UogMFEiRyLdsmdxBhyGySCWU/PRy4nMMcnLhT+B6DODe5Em5ertclpQhR2A4qwdRIMIYCkDCQEXoWCgoBOn9dAbIRI5D2dlam6dTrTUHCkjOiOgYMCIcDhyTHdS2CPN2X0YZgEW4VDxf5qd35/Nlen29AToR1EkQuBVuW0q5ERCZSwFEKrXWYcbMGAFAqUrIR3Hvdg93um8c0d2jdzWDpKWPMfa9E45qRSkFOalcsPvK7OiCAUCIJALHUFNzM8TCZMIM4OgYrqojYLA4M9Iktqck/yhU7hMOCUVErLU23UkPGtQ813/52w/zRNfXb7VywP718xdTFZS0TqUVfB/98jg/PJ6YoFIppdQaEDRNpbXt+fn5er1iwDzP+SkUmdzGvnepFYQQumfxF78PWuL3ORIel4mBu9/WV2ZezqcvX19v142pXJ7elXlGjHAws/zu8YhjwVKKOdiRaPX7EfBWwQIhxqG8B5KMckOIQ9WJxx44oaZIjCAIko+Lu6umDSLNi4ewzN0QIMCRoIik/iruLny17klhZEysZUCs2xUgSikszIweptYjAI1UQ81ymjnGaNpzQKhDl9NDEXEjRiGsr9/7t8v6/uMP58vHde1t9zoduod3Tx+vhG70/G3t29o7audtBYRZu4+ICIyohBAOo2MpJ3d1SNxO6iwc0RAtQN0yIzQISQHeeB5ZCQHF/XPzMRqxh7Namos4NVp+p1TloUB5qRIP6733vaWSkkXu0vt71xKRfvD0m2MERhxQTHSEe0AeHou9gYhUAiHFkZ4qmOS/hBkLEuZqI79RBWIIBDcI8HB3JWBiZgFHNfBEY3/48O7Dh/frrZtSugzo+Hv+T1ls7n6su+72hNba6J2IjiPWj6PqbS7w9kkmFAfuYoQE/wKBmPSOiWbOAVYp5W7DJwlQ01Dto7ubMM21ACJO04SIaqGqHuNw+QT1rhGmMdytljJJmacTcf365SUcuFbei9NeOGLCh8v0px8egdrr99+mGX3oz//4ZanFZ7gs79HTOeLoMU/ny/nJLMDkujZVf/r4SR7e/fP/9V//8Y9/tNY+fvqwLJO17m5Vpuu+9rY/TZdpmjjAhhsa+kE8KsS/J1gEAWIEuYl3W1edp8daJfzz7RbM9fHh3flU23hRjzEMdCSqjAsz8fB7lVWqcPEA0K4BjByEgAwIiB6EBASIyzJFxrnQnUoGFuGmKbZj4owiz4bQVBUpkrDskHecu1tlyY+8lDLVioi9997bbV0P7gBjQUEKB7PQUsTMck6UAyhVjSDMaFjzsAhTdw21LIlVTaggl9tqEK23vu3/ADpLXfKQaq3ZCK8Ubufzw75d11u/vfbRbixgCm5jmpdh3YYHQCZTHhcOIMLAbK2Rwz1raREed0vAEShiYJHT7ztzjAFQzdR8NNvlLjND8HB0CFWvMt23mwlc41JECHVvA7NJISIRnhAxKEZPBVE22ph7EiLqI/0jGR2aWY+HdS0pzEghxMjoNjDE6Tgs8hMuwUVSRAwegUgeCAEefLyPWfogERA4hnnKKJ7eXd5/eHh9fb2+NvW+9Q2B29AqFzZCDPAw1TEcuUfEPM9CEHaMUUWESLg6+IZACHTPqsHsi6YqyVI3BZHKEtN8ms9nYA2KMVr6097G4fN8ylpBatW2j2kqtUjbvQgsk0RAYR5j2FAMECqMgRFEMs2X1jbdW0RA8yjdeUApNqLU0+t1F8alLGM8C42//e1jnZXKXk/48vz8dCk/ffrr6/N3dvn++ds8n8wCPR4fP0x11j7V6dyjGsh8np3qP//jP/7j7//DwKapEOtQF0LA2LYrki/L1PsepoFw+LgdB4JbGFvvDQBKmU4Psw64vm5jE8bpzz8+bbv+/M8vn3973RsEFgSp9TR8K1LmWYIswpAAkAGijc6MUmqp1TX23iGwTkuV4hBm4GYIGCAGHqqQ8/IgsNxvYXiBCCLhOwZrbatZ6ktpmtnR13VV1VJKmI0xpmlSdzUnIiEOIFXzQClzAHpHQpymEmHrdk3a/9CBiIE4zMPczFPasO+9SF2meVDTMXRs4ZbxqIRoCq8vN6LTu3eP376vRHF55IDt6/PfX16//vXHn4RobOu+Xdv2Ksi359u6vYb3aSpA8fL9mp3XVCYStnboXIlQJ2KRslxmObX+vLWBFOflHE4iJ/OhmiOx7gYevJznMRyPaNzoY0Vyphq6ADiEEII7mTlEqTwxsJAIkerQvRlaOXM9TTafIsKdxhjgYlqyXXI9xLyAjgipLEkcAlMhFkuhVJHi6O6315UZWZCJjs8zjJDePT6llZaRqXKEb62Z2Wl5JKnMlWlCKoV5DFPbAQY4zvMlO4OOeH25zdPl/FD//X/7Vy7wX//f/73vdLrM4bK3rXeHEGF20qiVcQxV24dSI2QEZ4oOPoYRMihd5jNjBUdBrixCUBiQed8bUw3JjPZasQROe/Ndr+r9vmENRC5U5jJTZPBriOruYRho5mN4OBVZEGLf93u5mytxcwtTHWpJgWYQRgqDtrVo6EbNDWJQcazBgO8ul59+fPfuw0Ki2pvpEDpxxZ3WsdtcsgUwAKhSS1kCShvwetvn0xNS2fb++fPnz9++9n07zTPzxEQMAZbmOiKILCCB8Cg049iOuHvGeERE733fbN/VnZlnkZlJb7f953+urysUmU+nCwTN84nZhwWBpxYBgBJ/ZubKRmZIXEoJZ2ZGEoqIMAx0x5yqR3gtDAAQDIAQEoGBlHAfPJyqd6pfEuWPfTuUwtM0maQJYoaIfetjjLYPo8Mhy4wGh5fLAgOQRGqqb2tBDGFCROBjc4EgaF5kYmbGY0XSdbgRcQWHuZzGLIwnEZmrBGD4sLH1tu3b7fnrFwLQto99H9sqHOZjtMiRmYfu+yhMoeESzAdvHRGR3Lf9dC7TNNcCgEvX2xj99bai54bFAzTAkOG4PyOY6S5VPmrdAGdmB6bgICRjICbPAACxHoHKTOf5jBgw4vX7dyqH5Vx4QiiIDIjhCAGIaXNEokAKRIewWksEQFgA+sGXACRiCRFOb5K5mQ0iSFdedsf5baobqQ7g1lpgYUIWLkUCEbkWjMrmMcbeCBEMmNmdzJtgPV/qX//2Q+/668+v7oZULpfL67eRvSgRMIKjG1oAghsFIoQgiGSAMwMJADCXSSaRRNkCeOQGINAgAgiJCBDcoQ0jEcYjWz2HCNlo5PYBPMQBARmZMThAAwiJk00MAEhIWJA8Jwc5lIKEFCAzoVmoqsaONPfRIcYkAODm+/sPHz/96f3TQyG4ah/oIUSCQkS99UxtU3VAFhGmMixM2xjwQCzE32/PX758Wde1Ek/T9LZ6yZE1YhydW/bRGIdoPztGV2YEDNVuhplkU2Sa56XM8y+//PO3337bdyCCo5uSOl8mohExsiRjZgByVxTx0GFG4sKCwAmQPNIDEd3BEdzDwymQsAIAUnIlKJWwuXQDxHB9q9OOdhEsDkVNBpmCUxADOBADWkSGj0SuwyS7PgBQa+hWRYLJbLihMHPOKTGOoVqwiQexI5HUeUYAin0bEYySedNLnTAKBjFIAN1eV9CX7WXdXtbnHq7GDq7dbUApSMIwERYMstGsN0fX0YcAod0peIiYbqJRarAUIq40KXZ3s57NvxEjHYROAmA/plL5LWNyIixiWuYACyeEgsIQgnqPwFVDcOZaa0WM2+31tr6cH5dDugfgoZQgU/odNwbob8+SuxYuyYmEyOT1YyspZJKXcph5Bx+IxIgIkrLjSAvzOJjxqpn1YIRBEMyEwgFFZN6bjm4eg6ksUzXzcLDRuEzn0/zDp4/a8OvXdfQdcMI8rQh+T+tABEhsw6FnZYM8EcIzwJlKKUUE79YpOpjT+a+MIigBOiIj6nKGAkHh4QbJZcgxLWBIOCKS8IxBzMCc6YDL6DmMCURLw1jrbYwGAEzBfOREuqE5aMCyTH0oEiFawGjt5XT60zSD6wBvSUZX1bt7B1TVnAyCSFDgDlOMaVpSufX6+jrGuCyn07xcTst2WxEydUMPD4dHgAImEjyt/hypkEeK8PS0pyRJllpkEikR8fe///2XX355fASpZV33X3757S/ycb7MiEcwTf56ZmYuUmSMdqQeBQIcttNMH8iNYxL4CRgQAhiD7rhCQsg8FnzTtORGIy3SquboAZ6Vf6qAbAxEtJGQSCQiBo6wu0LB89+idQPvhQQxUo3jLugZ73GYXu/KSCUUYkgQEISYNVOHwAEaxuHRdPUeZvB1/7zN7frt1XZtuofFJAWC2VBqZXQmwbQSGynFGM2Cwuge6JpDm0DE2+vex7ZufHkopU6nBc1H8y0fdOLkuIYp+GGRLHmmZy2FiBFIQA6AxIQsOEcgELrGaD0od78+RjsMC4QWhwtwDDUDQmMu+Q7f0ez5DUb6Djz31ng/voPCByIH2NBxoAAgWI68IpFkxoINbaOPMdwCCZe5AhamyqVULkB5SRjGYAgHDPJCyCxuYOFta32/jo514nePp30bz/vWNgUoCbaNA48XB8BiqBmz3BWKgemhMDMIhMP7a6GBEMCpQyHXFOBSiSBkR3fc78GQI5cDuXE4thUe0lsApL7uzfJ5uKyPuSVaxMHsdQfEY60SQB4UIERFoBBVZhVBlkaow67nByrFX7+/zFObS2WY+95Md3eXWvowRCAulQVKAEkSOgWW0fT68v37t2dBOr1/P9VCd6BLeBwZI+D5bgKEgyWAJEdTzMwcATiGBjiRlDozzaa0t/X1dvv8+eu2tlKo1JpohjFGa7gwMXHeyaqKmBYxQNS7MOTNgXcvRoAQPbWFx73klHZdyMv68PMfJzcnniuYgscY7kPDzHWMUbGacx9NWxdh7eM4O3JUhQGAcSQ+IYaB6dAeoYShaTQEd40xRgQcfi0L81wsGQOBQziFoQ80U0bZW2ea3bT3hlaGjW3b9tr228oBZOCaMrhwHzgQkEMtiCgItOAoCISOnKFXkDLwiBjq+742fbmuN4p4+vDpNMmsirvvQNkBQdzhVLkf/cMHG8lKQfMxLBAIAQgsA8Tu5iIRKYxm+nK7RRgLLcvETAYRw4Zb74Zo00TIEogZjOI+AAI9PNS1e9ciVGTK+isiewe0e8yRiNSaXWSSXmyMbmaJS3YEESlcihQkOcK3QUfvvdvQFWBlRsIKgTZGoGaI1lyP7OkI7ovME1aJkNCR1Y+N4W50rBJChzb3el9FeXjKNawnt8Fdg8IA0DHSNH1fTqmnFplFRIq6miet96g9U854PN4R0ppBOIIhoA4At33vvcW+He5UJCd2hEzXiqFrYDgiBYIfXF+mSYcl0M795tEQxod3y1R8vb6S+zxTZbltL71thYmJzSGIjxCcipD5nUFhcX15+fLl8/V6LcxznTB8XzcIc1fyAEiSLIYFAHTXzFm8pxvmf/BuHY9cBAL4tm0vr/3nX6+ZuvfyorDfIqKWCZHa3kstPBGhBBwpegB4l5ETwqH9zt9sejfqACPl2AIgKPQYcx4Sg8jAkkxwZcgdJSELemBojtSP/TD/gXsDEsTgFn3s6Jj4JkQEIPMBpgkgaL0RRICzMDOHZZw0MBXC1J7REcriqaVChCIYpsrMvYVUAI1+GxNzKFjr6z582+Y6oQe5TUDmAcAURA6uABBm4UrWKdf6JAW5MEnSt4fHaNGa772pwrzUaS7TjGrDzIkzwoTwuO4MIc3axT10OBzTeRH33hsSMYe7qTUIzlxJ5Mw+Q1Xr2sJt5spFHD1XD0QEOPw4EFFVAQPAzRP3FHntuTbCKpLhSOiRJSe422E2DIzg8ERth+27G6lq2g3TPlikuDu4GgaqhsMY1toYY3O/Lqd5quSBPjRA8tURkdMsEQzRARVBa0GGsm/dA8doQyOccsn6x7XisYZUzwOVwMaw3gdSEIRgauPALcEnpqqt6TCQEkL1/qkfoSH596+1Hp2shyBXtzSLMxAYYBvm5nE3UbAIMwQY2jDHXW9v5skITF1YILbWkSMiWruyvQ5dTxdmNuHwPowoXFN1A8TugFLUItxFCklFjqFddUjQ2Jt1qyKFycz6vq3XGxO4m5sTAeUiCyE8AVJpV5c0uudtqdpzsmjm4S1pPy8v2+vrzSyZX7pu8PpyyyG/2a7Di5EUFCkiAkGqCll5MCOLQ5gbAggiF3mbBbztkPFo9fntm7srCI9r7b7cOvIgRcD7SBVFKZz58blOM8zpDwVQaKTaL7NPtMVh/iFoTZ28lDT04jAwczAABmLx3PoTp3s/NGIgGjEUChKsTTuJ+ADbFU+JSdB9a21dJ4xABwO6xwohEwSQpb7QRutta0EFmMCQgQGLY1JLAZ0ZC5hcv1/zNH96d2Kx03IuFeZFpkne2BCqYUMApDcLG+5OwIhgOA7TGYkbDHU3q1yP6gmimxkYV8FAB9u2GzAhExCSpDEHzN3Cxxh8hI10JKh31ghzySyDiEywcDgidrnWwylsZpkklJSEHIenjzgzSjAbQD+Qake/g14EHWQSrkJDcz2YY0xHQEJUGxBjrvjh3ZmDX69O7IDhMcwinAEyLxP+MFMAdzU7OCaMoWZdhyiTEMrB+8pSRESIXK3vzcSjorPA2/WTS9b8d8yODzBkmR/MrMhMVE17uvfdbZqWnHVJoaTTDMQ0SBqAoAQiHEKM8NAxtCDYGOt6g3rVvjKFWTvPU9+23hrAUaIE4VCd5KR9DNdZyrQwAqj2dd0vU8kVVA7tR9v63oY2RwBX8CDKzECMBHWEZ3nPXMIpNd5huq63Y1+gMALduLWmwxG5946Ijw/nYbevX5+/ffsu/G8jRpZSpZZaqoio+mijzHRvHyhjM9Iht5wmuJ/Z95skIkC4QgiEYead4PEycyZrhplFhiCWwgCTwkAMs4MKGXchyhitlNM0lVI41FJVraYEkONuFiIid0UA5kp3tJaZxUCvEAHojEEIAgDp1zclcL5PryRM0QgcfQAZggdYH/tr39dRGEkpiNERY2sbhyOi6xhuoLBt2+22cUHkAhWYggkAwQyGep0mgNMOr8+3tm6vAC7ED++Wp8f3dY55ljoxkqlq28cY3huEUziNMQ5BE0S+eGWqgrV3HaPH3dsPEWM0MxXGZVkCxrZt23rjIkWmQ32LHHH4hcYYZpQtMAtkSBoyy5FRJO7uhm4JvGAinOpca1X1W7+11hBRSkHEICjEMtVJCgAmSRAwkyM9Q3REaq2CxARcJyGshOBEzOIIqloK762v22oK799dLpdHkeetfyM2JA8YHg6QxTPi/RF/+5bjMG+aI2nAsLCIQkgoyIweiC4iDFyqIebQpJORmtldEZe/2e9RY/caAQkCVMGtj2HztMzzzGS1Tr33MZS4iJQI0uHb3nLADwBm0bdtdKgTLg/nPjRBt0IQPt69v7y8fP3pw6f1+/U8VS7S+8bMAK7q5nC93ko9neeZRMYIMHMLCvr621cMIkQz7733tgPAXCeG6MN73wLc8ksMCPDWmnu4MaK7vanTvNa5FB7Dnl+/mfKH9z+K2C+//H348vHDn37++fPn799EAAC+fn0ewz7++PF6+0IktdbbbWPmy+WCeGpjFREggiCmUsuxJuitIaKq5/ky1ZmZk19SqgCLta2NHmGHJY6g9QYA8zwhQb/nsoyupU7LIu5+u21Ecj6fiejp6cnd1/XaWivMKRgDgNF7CtH7vkfY5XIhhLskyU/TMn2Y11snLAxVzXw4UxDRto7rdWUuDPJ6vT6c3oPzn3/42NZxfX559/BBqHz9+nPvNx03RDW98fJUmF+v3zBorgKH6rFftzWZBZOUMp1KPc3zXEpBjOGDUKYyQ4ze9Xx67H29rc/fv75aH3/FHz59fDotU5gv09L6KsTv/vzp//z//Lenh/etKYYzYQbkjqGFZdggwIjItut8ughKYm+lFlBQ3UNtnuXy8DAtlamo27731sfexhgmEkPd3eel1jIBOJIBYSBgkBkQSq1LrdKwj3UdPZhjqnNmCZWyPD1dUoPg7lSIhOc6kbAN3ffuHlLnLKjTO+TuSQkE8KGtFqwzF5ahEI4UEUzX6/dta8xyPp9NXdULQ2Uo5eDxn88LwrzeeiZoSD2qlVrr4+Pjvo3Whg8kwqHae7epqDGikR4lgLu3PrbtRoQPD2cgTil0uCNFgBGTFIqwdb3m4ImRJJsiCHPPmvYYXQCkDOqgrIwxeu9ba2qGhFaiiHAtgSGTSAEpHKCILjlbORratCQfh/TQY9QnJCFcS+UyQ6JnnMMo7J4zn9JrAGYKZ42hQ90VMBWfOQ1FAGe+m4KPlN4cUwdxRuLR+fywrXa9rr3H4+PjPuqXL7dtbYhgBvve9q1vWwu/4O9T6Lij61JgiwnLzuL/TTQKAO4BgYk4QcSEFIE73EPNMO3OgIAukhcXqo593wEAsCByeMYrHL82xamqGHE44e8DiwCA0Q2CcuaczUdyAXvv7qDsubEmqggVTLX3pluhYsMi04QdXeH6sukIeChTPV0WzPGUEN+sE/kysQia7m1fYeDbfMTd2xhmxkXOy2leLkhnKedSCjK4aw5zFAIAhaoUnufL0I4wWrPr877eeqm0nHhd98Srjn2f51kKmbEIRDAzqgZgyivzAwhmjGCitEqSqvLBAS7MEIhhOtR3W6nUWua4VIj9um7WbVgb+xhuiyoVrgJcj7BDj3DgYRAIFow8FeFSymk5uztRFZlKmaaI3scYPVCpRKkzMSMOMXT3HCznAOvtCWRO55zcrUQawTmEYsG9QakH0S6784en+eE6v262Nh3DIBzCiIEsKSwOwAHgBmZmfkhyh5lGQRKSWqa5ChMgQmqsLUWG7h6kaIHhSJQrKNUOQCI0SbnPxR2RxRyGullzj3A85pY+2thz0IpEQGjhXccYA3IDbxBoREAciJYdah8b0igMBGQH/UUAQN3M+t63PhoRiBAh3M2n2VehgdpwH46Oo/fem/mgO/Lg2I4cJGxQVbMjg1xECOVYHSVHFB2ACKmNJkzLsvS2364NoX748Onrs76+/rquWynF+rjd1tfX13Vd3d8zF0RSTQ8DmAYSQDAQIwtQ0lQozBAPAL5FkHCZZi4THGjOUDdwH6YWykRAcbAT8Yjca8O6DkQULzmSdAczN3WP3GtC7/3wrSDfj6rjiEnxVZ57B7kjMnzZjZyRGGuhBaG6m252vV5zvr2u++gRir17JVCFiftUHkuBbb1dr9fb7ZYLOVfo7WrNxzAyZirukYt6TL/RUk+XZVrOjGfCmfhIX4e3ZRAGEU1TPY2zjm0M3G+3b19ffvvtq/n5Ez3t+205yXKanp+/TvP0NkAphRHFg2i3aAZUyiTJ73QjYUFkDNfRw5EYEUqQWYB7aEAgMQlhpdDArh7D3CPMQfyAK3Ip07zMkyASVLov/knAAFmk1DrP00lVI5i4sEzMhciANosV2JEERTiQJFw1kBAw8doY7pEZf0CMgAKE5t7VTJW5YCZuYJTCSGA23KFM9XSZ5nN994623be1ty0i0gmSSasQ6f02SMy6H3m+FhGZcF5KqUUob9V9v69ykRgiORqWg604vNSuZhJhlJkuhMRpVoijlwhndzVXMxvjmiVKqVSgZHQEEQEVTzV+YJibBeCGg1tft/01wHlSZHSFCCxcVjyM3PnvkO2GhYX3cCGh+77T3NRG5Ei3teahjARo2aeZ9czPOY5bMKTCUBAYgEz9cCIDQmBgmJkOC88qA5mkyIK07D//+vr6Oka8e7dY4O3Wb7et7d09Q2IgPPAOqzz4Zuldgby0f8fUmRkhidQiExwgwBSBmUdaDBUw0AkJ6Mg49j9OehGRqeRa/kg3ygUb4OgDMNUvB2g0K7h5PhFRhA1rpp0IcukQATqguQpruBCgurXbGE1fPr+01pjLto59HxACwURtmS86YF27Nu9d13V/va0Obd/X9br1TcOi0HyezyxVuE7TNM+naZpQjiWRQzBAgKmGu6odORGpD2FAQWESpsnIRo/bS/vl719U2zxXixVplkLPz88//PDTYTAnz99t5mpE6pOwVMlj0S31FIhYD9ZoOOQ+koDLtJQ6TVMEtN1a27bWdThxqVKnp2mayjQVKTQv5XSa60QQVHg2PRYS4N5VGZHL5BEghRy7h7eBAmjkSOYITt1DLNRxWAwNRJuk+EFaCI/cRERlNgh2D9cx1BS7vlGYNRAitA3TPpAKIojQ+TKdzlOptK3NzAEJKVwdEQAdPBfx6cuMYMBgQI5AdbAA9RBCjMjdswhNc2ETs+iqgJbQLhZgQTAHdCRnRiQnYqLI/ThlbLe/kVUgyXcjwHufzCy5ZohIXJKegBEIaQEuAT2gAQ6M1AcABlFSRoGAiFCoCFMBcPMw09HVQmaTeNMaBLITJCnDI70xAR5q1gf8weL2Ns+7L5AP/SLcRY0RoToS+71vzQwvl0fC6eVl/Prrr/vWiWCaJgt8fe2pR1DVpRamiOiJ9ItAIpqmCSgiYoxxsHoA8K5jDSKRgswAmF5mpABUt2HezQc6eTCYmuW1D7XWDIm+B5zBgU0BSh9qGnw9KSl3ePYdlIBlqhjQu2m3PgaRFz54m2YOZoYajsYDjNbrPtb28v3768uNubRde3fhmalu6/Vf//UdAH1/fhkj3MADTeG2bXvbb9c9DM/z+enx4+PD01RmCJmmaZ6XOk9AYGbd1AaYrhTkkN+TRTiQIUWYOriqWrfQoCAKNosvn59Lxe1jI3YfoE21qfUhUhkDOGVibq7Wm/ZOwjZ25AqIzMJMCFIKlVLMbNxtoPno11oJZR/qsXLpdT5xWYrM0zSdTieRLNFDCmTYN5hLLYCGEFwEA9g0zAHRhtWpEhTbx7Y3GFp4AkIFCA9XM0BTV3NzQMR+XHgqBO5qPvIdRnBFAEAHMvB7Kd/T8ImIvZsO5jID1jqxB18e5nmur5hpJrMIuoHDIepExCR1pCdakJDJ3FtrgmSFC2c0DWTK6zQRjmHWzTPqL6sJrlXGeKPFw1F1UkhKPlOi4IdaFt7m3nnjqVprW2tboAvXcAAMFqgEQCQSLFYqOJAImJmCEiKEqN6VmMBSC1lq1MI9Mj0xAsLRD7NxSrIPJ0XAm9Q0q+WDWnVA7NI17w6RTvsjFBwBPNQ98dXoFmMY4TxNy77Zb799/vz5K+V+22CaFubvt9ttXdfex/kyI3oEiRzrQyLJUMa8orP8vCvzkOgI+oMjRSt7fk+ETtbAxAig+ba0vudqKhFqccSx5B4gIIiQAhEDwp2I8zQ/Rr/DExniagD0Ji+5I1hQmFwMXSDIDBAQFCKwbb3f2va6BpCOABAqZui96zKfp3p6+f7l+rqr6rpu6963FgD1/LAsdXn/9PHju4/L/ICB+9aZmbh4sLs7MiAAQ193BnI8vo4II8hGJky1ka/r2nvPTR+E9922dVxf98d3RYdv2yYirbX8qFPXnBCHobtaB0dyRjaiykQUwoJMfDpdeu/Dek6XmHFZptPpdNubOC0LEJXHB0BkwvK2usvsYiIHQNNQG8glNzhQsIowow90QHQoSyk4NbNoOaQKFMYQ8wEeYOABgQXICDGfDgQYYKF5IiDA3edywKPY0MNBzZBijI5IjmxgQ7swT0t1lMslLg/Lt6/X3pwICxV37zpymYjIgR6hEGhmCYAxi6GJqC3ARPdFa9atZtba1noLBKZCdPgWxvA8vDwkIpDCHWXvzd2FCzEHWqAjA6cIJ9HRtby9eZhDiUAmZAYRcjCzpqFqgwACbN93h10mCKfRrZsKdI8xzA6OACNalEJMhYjM3IabjQAPHYBufYA7euT+P+dtwpRTvzcVQG7aCPPNISRk4ogIYwBP2TYR1iqE1cy+ffv2z3/+83brl8vj9brdbrfH9x9Kwev1+vz8vO87wJwapDwNs0p3x8C7NwkRgOEe6JZ5dxFhpmMYEZdS/ufjgEWIGNxJtdORHXCQS1IW/Ubax9/5KhYRzMVdjz9/xHMZEY5hKUBnLhGW2I+IcFXtikCmQ3c1JoRiHWyMMLfhQ4cOQALT1tveFfa9LyfrXb9fX19eXnvT5VSX08OyzMuyzHU+zw/n5VKwmgVgeCThOpDJEQIJKbgIO3ASld0V8sVwDzXXaNBb633UyhHhFh7R2/j+/eXy+GFdV2r6+HTetg0g4w3z80EWqlUMaiAEkAMmEAuiIzIC9THsCOwSDzPTtXVHOjQFQPN0KpclISg6PGsu9wgKwsS9G2bcDnTzADOi6hCOYaFBEOgGlspmYgQmh0CiCDbzNHkCASERglneygbIQWoeEEGZbISBEA4BRAzsziLCgk07HCFLvm5bEQSoIjTPNcWX7oqgcHg9jpuSWQLDHfL+7r0XO6Qxb0PocAz8Xc7U+rbtt2EmtbAgEXiEWm99U+tViI8y0zBc2t6JSJjuU1LCO4Y81Qu1ipkxH/kiEQHoSECEQG6j70NNQQcQEbrtWwscSwlH6B6ta+fhMdQGgooIuWAEMxcqjKRhqjpGD+vmw8DG6GNYQvLMbLi5w6Eku8uH33bvIAF4wILy9r4vSkRVRWotixtva3/+9vLt27cIWJbl9WVf9/3xHQpP264vr62NUBeM8CDAEqAOGhFmA/l4kwHZ3XNYkOZ5QkB0VVc1ESQiQz8IX0J/mB4dy2TmIiK9JSGDmLm1dk8ZPvQnEeH31DzMGIXQgyniEWQJThUhAImsT8xfXq69GXoz5ba7cGOe+rqB4xtQcAwFBFN9uW63W/vxp58DeO+qatfbhog/PP5JCl4up9N8jkCw6M0UDSxUg5lIWEiIWUPV1M1rrZh4VTMODI1cm8QxaoyhamYarA4IEUSqfn3dR4+hDXC8//Duer1G4DwfYTkiUmuNOMs0p9JZPUzBFFy7BYXAGLtDZNJBBhwb7GtpDw8PY/jowczCgJLg3Hz5EZGJXERKQQZpiFJZnTW6uydxTN1ydj5GV/ChLdCRwsF1KBChozlAwuNTlpObHwCCdKcZoGC4I6lFhCYGKv8cSZHwMhfeuzswFfdt3a6CnfhU5alwFEZAd+2OTEiqeqTAZY9/qAkckbtaNQhA5kIyF2bChJ7RWyzgGKONkW+0cCViG67Dk5iy1Olu5QxGklKmUgqRuA9G0W6j6eVycVdX096mSoggDOdTnerS1VR3sy2I6yIjfKytyFxwAkdylRww28uqnU+FbN73VTUYBQH6ahhYaeKoGEjAVcBKV3MLBQwdOkzHIewNM+jDWzdg0e6AOtdaecpqBwCAoRQpssTAvu+qWoiXOn379pUYBGkqpQO+vHz75bdft80/vn9sW3t6eLdu/fo6kBbm+O3rJuVJlqfAVmoBwXA4TVPXhmAY4fc3VggB7gGTJAA0xoCIKoWZXRXDW996bwBeKiuo2VAb7s4kGIABc50Kyxi+t63UxCh4blI8l8DuVWYRQbeh3YYK8VSFmV1z5TTS2QEBKKXI9Phuul7X7bU7hFTO+GYprC2e3r9DkueXl5fv63Xt4XS6nF6v+7rvP3/+8u3b995MyvT09P7jp5/+/ONHM91v2/Pzy742pnI5P51Op7PM+763NtzhXKZa6x773m9b76Y9jXruo2sPsFplu64oqDqmaXL0PkawqBsZfP7t+eHhPDoMNaDx/O328PC07eu23XrvTFLrzMwIs7Xb8J57ckTQJMENZVGRej6dLWCM4SDq1Fpzk/fvH9yHe0t6GlMBjt51rmI2NBwCrI9QEEYWJECzcbvdzGye59PpJFKZYYS9vLyahsh8Pp+Za2/qrmHRth2R6yyqfnu9MZenpyeNLrVEeO/73nc1YkAgcGt50SZHOjMET8tljPF05m3b971T0FSqDx39VujERLVQoYN9klN/RHaNnnyjgFT/qgXJTHWRepIylzIzgWvX3t3GPNdpnohw3WudCiByLXVedMC23cxiqsvQ1lp7enospbBgEZHz+SFvvOxUmQ+m6DzP27b1nvQ0GGO01twdocRBDTYLstA7Zh8YKBwgfRIFHaKZN/MR4GZImF7Z3DuOruBk5GamlkO7YaAOTsIMBxJw6HADkqLDzAMRLIAzpAAFKYZ2D9QR5BKHgDRURy1FhIpI7/3b8/rt27fW0uJOwhzBpUwO4mCmfW+qjh6ESA5H2J8jRBgzIDlCWp7yGk9bIQRGykvvGg4MMFONcGZGynv+qGhEhO7aR7hD3olIbXMwgpwgZmZERERrLc3NhBwkAJoy+0OPfKjWMDzUDBEOiyvTwW4zYiYBJi1mVlupY5qGbUO/P19vmxnA3pvHy97a+fz44w9//uGHn3744dN//2//dRIhoLlO4EfYdyagiRzqqTHGtvXcbCUDWlXNh47e+mY2WgMWQgg7QMnxRpGb59lbb83WW0eGOlUIPhLWHNyHoRNVwkqIwvMYQ8c4wkeR1M3B+TAsoiAFIyFNU0SwiPQ+3OGuVrQ7zkDuVTdAkNswVR0RZLEbMpxOp/zDt9utFK21ArAIMmEe+maOWJZlGa0r13SnhSNzAYBt2wAANVJamqRZQ0B1RBRySjRDZFSMu/XWcsnupkEok4QzihJjFMZSeJ6klGKWwlc4krOZmRmA3caADrkSD0xg8vGZiGA4CImU++7fLEUTiPls1rLU8nsw3P0HmVHwPq6jt4xos957Kef8B2nEiKY6mrpGEQSMADRzVTcNdwhCD2XChN/nTC4Cc7qOFIDhbgFOHohqRmo2hoLnrm54qIWr6Rh2VMvgYQp+6A5G2xM3/qahyqfMHUzVIpiwsFRm16FjFJZShYhvr+u3b9++f/9uZvNcQkccBOmsIxNmPFrfbQySETEI02eNZoYA6Km5iLfGCgCYxP0tKTyXw4EUpoqEpRQ8WpgAAMzB593bF1no+7HCAPIAB+B7tDkioo4BAHzPpHb3VM6Xw6b2ZlSFu1Aleh+q6kaQRpdwRCdBLjSdpkfGUieQ0oat++vD42Xbbtfrrcjy0w9/+s///m/LfA731Lqp2zBTM7MDGDJNU/q+AVy1t75p6+5muieYTIhEZJICwoDubhlkb8cDaWAeejwY19f1+fnlfJE6iTskEej+AitRFa6ImGHZvXcEXJapFNKBFkBYj54RAgD5CCwLZs5xXf4lLTTAEkBuqZfLQ/QwBXYD0+i11lqlsBCgmbla98Y0MQsw6Yi9bwg01fM8zySIE7bW3ZyQ5ypm1ve1lGKuAQrggsCC7uahGJokN0Q8WBcaANi7msZ9+JcPRwoNFZFrlWWZ5nm0hgnHAvwd0Px287mrR7rbumo340BJO8ORo5ET9sjLLAOEULgmgllNAJIJZPM8S6K7t+12t3xgKewOrbU0Tt9uW2tNROapQFCmkgUDIoVBb47YxwgAkhySH1E+uXGFrr7vvQp7cAibDtQ0N5mFYfAYaiNTPY4VpLv3vr/Fy8CB4iNEMkVAzv8HMzPT3O1XqcPNDSicGRnJgWxYELKigu/r1rbNPaoUnPH6MhwUQd0DiBjDMJiwb+vQJjggOhoQqDGaGRNlxxhxcCzhDjhJI+/98dL0WBIRCxOhO6QKI3cQf3Cao6W43MNB0471dvEDQNxDKyPCLNfkRzC0quYqGiC3DMdY0cxHT2qzcGE3zGGnAbBFkPMsS+H5fFou59Pp8v79K8vp9WV1j5/+/Ol//ff/5ePHd59/+/bzz//4+OH96/P35+fv+74DUJFpmU7TVJi4tXa73TLUK8L3fbveXtp+jXAhXk7TXC+1ToAe4dfrC1KEq2kP05SaZSSRKV6vt+dvUuojxDx6II7TeXJvZsPdCIfwYC4RyCzh5OFEhUvRAqDOzGo+xlB1D5TJkrNLxB4KAWOMPjoGIR1mM0oHv9s92cWQgDzmMnftY4xaZVnORNR73/cunIzWYuaaU61oiEhBtVZE2vf9zXWebEvzHmHEIYUAURVdLYYZYPhApHC8m+WPRPmE37TWxhiAWZUSAkmh5TTNS1PzRJYjHxoWdzA3VTU9EiN6x9al9zIKcxgKCSMCHmUkonBNhjUiEwpzTgki2wJjNHOi5LCTGOSaLnSYmVuKh3pPZjkG1FJqnWttvY+IAANCAotuPRw8XJBLmRwhzNw1QwxUdd/bujW+HCuQ3C5ithsWghjgZgaYR97xTiBi7+24IbPG9jA/WMgMQAF5yYKnVLY4gDtCgA0PGDqGD0WmFtaGZovIzERhw5IkAQkviizFEwCxYwxGC1B0JAohHJjygbg7Z7JIoHAgkjGaqudoNwG+xFRKIYY8KXS4+dvIMzVOYBqqeoxHCUXEUTO1KTfB4AcGIy9oAP+d9CWowyMObs8RBwqBgKWkq5yJREfcblvEGmrqjRCBKdwB+XQ5SZkenh77HhGxzI//+//+v/3048dt2/bt6qbX68vnb5+/fPnmHst8BhIxjb67rskaJcJJCqCbD8R49+4JwQXpcCRh9D72fUucNJiHOXiIsBGAh3YjEBu9bQrGBMVGKAJfJMgZ1d10jL43kbinClGEuwEJEgnRUe6q6r53C5/IEbJB84zsGb2ZapGJGRnd3VnETNWbak8KrSAhs5Si4b333hWxi0iCQcwsEWJZg5jFGMMsKPB0OmUFfiRxIzCTWjcbHoMhWATRA9Rdw4ePfLghHBFL7v/MQESYi1mYremOYabRV2Ek4mmWWoWoAzoxsAhiuuBGUxsjLxXI2nGM4mEe6hERjMj5BiELU5mmZVKLQATJulKHj2FmTihFKnNxT9QNyrzUMUZb99ZGIvELV0TJtN9pni/nx3mee+/b1kJN1Y8bz9AxHFG4FhYivl5ftbd8Adatvb5s663VMvDO20ImAQIMi2O3nweZexxjA1UWRM00W88qwBPR6ZoWYPcUJhCiH4YtIIJI8ToAgWf5gD50X/d938OxELvrum0Pl0/qFFCGg3qGlPahDcCZSQp4kDCwsBQWfUO5/W58TnYN3KHXnDZ9PAr+XCblviBXJAEYaUo7Cg1NIjgzk1BAydDiO6AY8I6Hy08mO2XhyhQRsY09wiOSE8aIjigAKsIQlDTkDIkWIXOjqQBA39utb2Y48exOZrq3UQr++OPHDx8fb7fr589fzO3Dx8f/+O9/f3753ntPx871+vIyngGoJgdAxFxv654Srz99+nBaKhGhh+cwSIfrGG0DcE5SKCRUpAD4RgQg81TVNlNwQ9MsNtEUEKSWJbyFR+/qThER6Hk39rFbvljoQxtxsTDVbuHFC5EHmEeE5uRCEYMFpYAQmEUpDKijm9pIpzwwI/AYwMzzdBraXl9fI6KUUmQCwIgkYDFzRPjo0fvu44j5uNeGIyKHOcO8mzUPABqYSWWqEHGI2s3DmSiKkAj33s2MKJfKRzQrAKh2pjmXr1LyKj2EsPmlH4L3uwI4+96IY8MF4IBIVPoRnuDMpZSYphhdAShzzsaw9AFPU5mmqchkGgBgGOJg6mO4qTswsZQilZm3bXP3Ws/n88Nc6k1eGVgh+r4KVYLE3TtDIWBEFpaUG88ThuPttn9/vq3r0+UcUphyoIjAd8J8uFp+vRE+1Kx1a6qdCfJiNBs2Ot69n5ivJeFRcJjnuQAWgkKMXUfvnYJY8NAFxIFfQ+RSirATiYhgCOJsxuTBzGApMtMIo0xJADgizuEgbaa8HIAAHAIjgrlEBBHVMufWU9UgKMu/PEfujBMID0cgwrRBvYW/UOJGPPs9R8d7B1fA3V1zEktI948hSplSnXQ0DgEQFI6HhOsO+c+sBxBcalXVddeuzZ0gsDW7fV9HR5GpTmXbXq8v27ruhUrvsffNwkkYCPfeeu8EPM9znUuttZYSYaFGBMuyLPPkNhgiwDMUJtwYqZTS+55VXimFKeo0AcW0TYQ8T6e9+eh9W3W9DdUAKL15naQUzvGTmQFoAgVqFVVQ7RqaVfoYChQe4dECArAG4NCmdl+cF1LVsD52DJGIEGIbPUxDR9hAjCCICG3BzMmAEhQPBwMHZRKEOB43cx8aCuBuQ/e1uUZGbHqY6a7WEYKShhuZiPqGXXxz5xy8DDyuhNj37r4zc61zrXNrW2sjJ3wFuBROB727RcjoHZGRJOUYhEhkGH4w16IDKqB6oFlElCN07hAUCJM4o4OYOopnN4CEROQOrY15ZjRwBLleX7K5rZMIT6UUwQoAz1+/IyJcHlKVkFccBmjrMTETOzKjpBbIPbiwqg5t8yQR2PZxW0dvQTgxGeQ4Mj8SszEG5RUa5O7mlrH0ZkPB7+yaMD1SQEUELNE6gXj04QCO6KUQkZCgjYT1BbPM87TvWyAnQYiIoUzTgtNi6gRILCITgKFMlYyRMfMdskkjBKLD61HL9Dbte9syHGvCQEKRWlP8kIqmoeM+VCFmQjT3cM/o0+SoeqqSUoqDdGgQIjUvQERCRIxgxpjJQuDukW3zMp0AKOKonO/DRRDh+MMPHkQmKHO1ZkEYDEJERLbu1+32eH4vXAH8dru11kS4tfH3v//DkdxdzfpQ12DmT58+/eUvf/Ghquo2iOpchCWR52NdryYlXPd9jzHSc8GZdExkUZh7ZZZaI0JkdRCRCk1637ZtrLeuGlJ4DC8FpYqIp+84wgCQCUtlGqHW3I1IgCCHCI7gMYAw5fpDd3c/0bnWmpdha1vvvUjN3jOL0LerFREZRd3bUACdpvJweUSCfWvbtpVCCBCE7tZ7b21kZmcmpo4xRKZSZQzv3VXHNBVI3fLxXaYohtASnBWE6OBuoKERSFTHuLXW5nlelkVEVPsY60HrQblL6Y+f1ppIlcJEyEzOwQwWZsMAh1l1V3fTcIZQYxFyT2j20epCIBJBwBs5MQyMYt+au0/TlAFCUpe5925q7j5VnucZnVtrDw8P2of18fLt+TQv4EGA1sc8V1UlCmYOtexx961bH+mMQgxCfnz4+D/+45f/8l/++vnr9a9/Pk/Tabs9R/jQNvYkWOWTpxEBhAlWaq3NU8nootF6dumTYIA9PT21vmtvo2mouVkpMknFIIjoe9+2TbCez2ekuF6vMhUOnObTomw321czxVIWdWKZArn1rh7E5Xw+n8+Xy/kBmPa+lSrLae593/cmUv0AzpRSCgSm+5OZ3WGeZwhq2xYBRDRNi9lwg/sGVPO1REj2KTocxK60x+ax0tsOlP5vZQSRioCj/571CJCe5t7arur72kRkmiYRQWQzy0PEs5sKHMP2fW+tRZiIINP1dnt++W4WyNT71nVILdd1ff/+LJVRcO/t9fV2u7aX62uZLxbYVCPipx9++tvf/nZeLn1vUqv7Mb80QmJM68u7d+9G2/bV4MgR8qwBHx4eAB3cc1wXDKXE09O762u3boVEgdfX9d3j8vD+kSPWl10QCp8oiI4wdocCSHg+n/77f/8FAObz6fvLl8vjw8Pj8vnLlzJPYr61fW9ea2WxGO46mikRox/9f9v2iKiPLERlWUrh3jbV7mqIPLof4MiaQwpgduYj5dHd8/PsXQlrKTVngUR0mER9sGBF8dBM2QKno0yLiIhKpXftfbgBc27DBIBSRilSluWUtAEAenx8/PnnXzb2efmY8ai9dzNSUyJqrSFJKUvvGXHO5FSK5KBx27bKOAsLgRkDUu8awFKWCGit7ZsGEUtNquDlctm2m5nWWpJ1vCwLIsq2NWae55LGHrOMuyYb2lqzPohon5e9rX3b3UYRSt6p6gEscHIrJEuphSFYdQdwiKrdP//6+sOnT2OwD72+NsIQ5Da87/tc2EdWL2amra9721rrwujqWZZjHrQoZv76ejMbhEDEgB6OvY+I9TxLzoGYeZ7ny8PJbHTrt9uNpQQwSZUCUqPOPkOsu6tSd+saUqZpATXgMvXsy5gAwgPdgQBJkPjQfkXmFCG659jpj4YrfPvnTAQ87qIsTCPCkWtJVWsYQwDS4fhgLg4GwZGRAQaYJtb73CL/pAhFVGbDY/NkYwSipi5cRNZ1/cOeMk1HhogzT1KnUoppb2305jkhfn75fj4/vdyu37697tuYp8v5odzW7bcvn58eP/z1r399uDx9fP/+8eGdqY4xeusJuYgwdFNjDDez19dXG037cHeGY2GeO2wqUhjBVN3DHUlqOenYMUMbQxD4LkZAAFL1fd9zNSCFEDFcr683JG99JyLRAhAA4W5S2FwBM7uxlyLzPO+w99azI2MqIpWILDUCjnRQpzwCzY4YOZHqYWa23vbRTe5EnPTUIjIhMBdKC17EHXbgasP6cFcPBbAAA9A4VLV+7w1DSc3MLa1oAWGeK4XD1xOttbd8CjOf6oJQDqInMFO+BVmf5nDq+P351JlZkjUAg5lrrdNU5rkSYilTAHuwm8/zCWEYQIAgBgGa5ezj+Mruv9bFA6cyTaWqurah20ZBENkKdtW+rdcYXbUjeK1CeERimaNrBHokTkoyALLcXq86dCqT6fjH37/9+3/+wUYNwNGEOVjQlPdNQ3s4ooeqDW19aFfLBId0GBJKLQQAOtzcwgYRSWFhcpQINBtuoT7cQT0TCQoQjWG99723iggkarju43qzdY29o8hlG330UJd5PjNNOFjKFEBICdQ1RAkQwBR8WxL4iIjvFX5OLpMDkM/PnaqWzAzM3j7tzog5k5DcPefsCwMRHQOFq8aACIQCge4AYWaHheTotsIAnQWRSIhVdYz7U06S00S/0xMidzoHrR/dPRv7fRtt79vWTZGonB+etr39j7//E4OnenbYr9f16+vrTz/99dMPf/7Ljz+dzw+MZN1ur+t62/EwIKnZAHMxztOuty17LcLMYMncpDAL5kJEHjisu6UpThAJHMGRgBj57Z8JIAy0D0RjhqyZNcx23fc1u2XzwXKMXYvU67bmh3+7raXUZb70pgbuFhhAlQtXQracgacJmCQIEMStRwCDqxkEErCrNu29RbbJ5s5ogU6IhQVK/gaSe0bt6GPf1zeOK2KmwgAAMnBGQ781wPcW71gnhWNSfyJ827YsrtN8hVhsoLsde32ppUTGdOUE3i3n7ngYYZDi2F9npwrMRIzaVbh6QG/7vpuquccwkyJERIKllN7ZQ9/+YmZmZHI6XeZ5ZiQd++im6pmAfFlOvXfze5RgKBEUKWGNCCMqdMDkyoO7Zw4KJLmIMB5OlxHt6+ft7//x9TT/+PBQHSbvpk3XTfceoUpEdJ+0QRBzEczHTLP2hnvouikkwzgc3SECCCWH97lWRMyUBN/auq7rum0BEMjusXe7re16i73h8IJSIgAJygR1OhmqgVGdqS5lWsqkQgaUhFwhPEqyfNno7mNLOkvg/1QdwOHC1uwh830oZQIAosyvRvcjMAPRATEw5nm2AVl2IXIOGlLFlCud3Ki9OQuFq8dQHSnOIxR3fzsUskw4Ji8AzNz3keJ5RB7DelOiKqUi8L6NcLhclhHw28+/RMCf//ov/9f/y//tdHqcS237WG+323Vdr9dt2wlwqCVRKgtmgixVDNK1jxSZIhSAAMgSQOY4PCwggPN+O5/PYd7B42j1W29znUqaL4gwjzNiSDDE6XQCimlacgNfykTE4VTK5LedmRFivV2XOfCxuDEEMBMjMZfEZxNhKcnOEKbJCYgEUSIcjPfbLtNUawWQLHtNA8B6Sy8Jcdo5OMlYuO87Eb0h/Id2RAgAEYIIIr7vvxggB+QGgESHICUcIjwcVe87lN5zwZE1oynse/fY9xXdsMjsBTxcrRFZ1g5H8YiImc/a/cjCuUtjxmht7/MM7mVd19utDWcdsPU+L1hKoWPH56odHAFtmqajRljmUzZFZkFE81wnqogY5kSEIswE6GYKHoQ6VyqlRCAw9EYWqtatu9tgA+FKJBgw1QeM2tq3/+P/+D/nyv/6rz+Ylb5Z21+39eZmPB0Uqtw6HBI7IEbMTWSADoqUc7sGVHKLbuZ7JvlgKYWYmBEYChYwcIs2WtceGFwqsriSWnSjIJpO55mWfQcQnuYaSDKfRrs5CMtc6iRlJh4BPYAsmEI8+PAdOxi7M9y1om9Zw3/4CbqvGIgw8dDMJGbmFkcATGTVYMcgOBAC3TAcUt99XCxmmOVx+JurMKU1nJIb1PR5AqoZRYRIfdtI5YmQyw5VZyhV5sqDeQcYbuEOv33+cjo9zvPiwb2NPvxf/uU//T/+7/9PAA7ndW+327pdb/va2j5UdV+3AOfInb+bHgITIkI8wHaElIcBYLBIhHW1PtQBgjAlsKfTZbRdrYXGvreXl5gXnpaLKpQqiBTg5gpDS2EgLDJvbScsmTBYSwkvDlTnZSpGJGMw+KpdtIspm3lhZioQ3Jq5WdLcfYALuABiKTQXcgcHYsQB9wVzfvLuHsHuoKpEw90hJAcKpq5Na61SKGW+5HRf72QHk18sh2M4hauOkU3uMQO2g9d8vNdB4UeGioiU/x9Z/7kkSZKkCYKMRETVzN0DJChcjWame3aHjmjf/wH2nmBuaOm2t7tnqgskiHBgpioiDO4Hq1lE9fmPzKSISAt3VQHMH3+gNJGAmHPE6HlzMDOJBNFMyJlujqmICIGtrRGeRejXYrmciQcEMTCzI7qnS/1gRqRMr5uqGgiI0VoDcEA/GAsRSFJO6ZPDDRGff/5UCrM0EQrTOXcLNYdazrWyOc5JAwBvPxJj7HtfF6llcXUHRmwYyw9/+dMf/vjzaV3XNXTC5W1s116ElCIgtVlmPs27mWJMXpsnG94DIBAtMn+CC2KEmurACObC3Fji2i9SkDC9A27UvSJtWQNLVx8z+tQ+CzMKiRMSUmkrcZFSve8OTNKQWyBNPdoAc2QjdfBjboB34DcpK+EHL/V+Wic3UbiyRK4hCHZ3VR9DW2uIIgJ4OEEpESHneDlhRGGWrA4ikImQnHLWChAQoRbh5iMgpCARudARZxOepJevL5CIAKDGlQrjwvaAfYe+R9997+YOTPX58+u2f/rFL3799//lH3/53S+5lJ9+fA0LV5vD3GGabtt2vW5z78xI6YTvkNmPiFyKJLU2xbMU96eRHxMOGCjESc/X23iVEbl3fXnppzM/vW/7bizCIoBJK3RAQeI+/PVlE5HRw0ARKkRRjWVtp/UDAI1BrSrE0nd0K4WoCCflRud0ByQSKZG8z5nftjBXAPOI0+lB3eewqV1Vb+yvmUGpOfVIUl3vc84ZEwAdsN4Yh0cJOachHnsYwHJTJEyAFAjFHRJGh8hq6Euj5+69dwAQXlpde5ExwdR0gqq7ZQd6d+UgIvIbo4+oEHEqzUSkFKml1CqekXTgpciyEEwwU2ZCAiRgvp8dOeLyu1RfzKHWUkqrBdCcmdMDVIQQW0EQIR19dA6dADFnRzI1PADYAx5jEdz2NzdYlrVvo3cLjQAhXH/64a3xH7/77nw+sSmOYeA4MH3HLMCQPMKnaQ63D5WAwxFDAZyBPsR0o/o4U0Fg9znGvk9FEOZCURzc0ZO2YBZ7n9e+X/cxBhBOnL2u710BqSIV5EJcSApLRRZ1CgMAr6WgFJLCDISVye8DgjwRiMgD7qykGy0ds+69KRgtuUw3nOmoiegWoZNNoFnodDcQFuYCMO89J0QQQxrBhEIe+eY9cS+WQk6H56XnQrnz5OmmQQDmEsHh/HTmmKIznm3rw06nByTZ+htw+dVvfvfLX/1mv+7//C//xlEjEDxcQ7uOrqoegctyEqFFDok/oDMiyRGmQhmgPFVV7WY8S5y4aX53KFXOXOa+ZZvTWhvzotrNnJDnHL0bkrK4lEMkpupzQu9ay5nJIqCWcwCZzv0KpT2YBsSo8ghOl1eLkNOpIZm7m6WIGRA5HAkpBRSIGM4I7GbqzkVcdYz0YsJ0W1fVx8diZjk84QOPDHcXLunxhQSMFMxupup5cDsYgCWrNa15zYLAISyP/gigPO1zWnHc23F521R1XQSgumFyCvd99F0hyB0PDssxSvyi7skF4MdkPxAxzQFYcPQxNZhra2X4yIhA5pJU4MwhvZ8yqR5KpRPWWmtdXG2/br332YfraKXikSDtAdOsa3RwuPauUXXC23Y187YuIgJYiNPBAbkssXkf5hqMJHJ+frmojUD/xXcPw2rvrFMRydVcJ5KVIkjMKBC6b+MgDAckhpnOFvvWM3kGQwHcFDWmxqyL7HOaKQFzYeIK6Dbj5WLmdrnCPjmgATeSFWghOZlrdxLCgsJcxKvIwlAg2D3NV0opIbWKIHiuFT5Ga5aaeLxnE/6HSsGPjLx02iPCzMkgs4mpvctrPw4nTAvIUUbGQoAp3txlWcAxiOF27iROkZeYI+qRQA0UMEXOuT5yZnSQHfJiCWLGVuvDg+zb3Dc366+vb0s7f//9t999++u//d3ve9fLy/b0+CFPaZs657Qxdc7UCENYYWpFCHMaBbVIrbX3niPSOedunn1s6jQKVylkiBFOyKUWRPjx9YooLKUx7GMbU4moVFG/qPk0QCYpa2viDmozY0nW9WyANLwuq0530G3bH8piETqBWVRV56iCETHHSA0eOhJxAhDrupo7qCKihzqYhU7t6jxNI6JIS6e2i732Plo7jEVrbYQZwQARUYBvrwLufV8EIsodS4qMcgHIiiONsw63vNs4hiiLa01/0N67WTDOOWIbY4zoXXsfcypgSRcvz4EoUlpmhNOdcI3uKVKYc3IQha7r2X24ealIyLwTABARQRAEUrLjnW5masSHvZqgYNc+TMGcGOtamXGOIAydhoSlChDLBt2muqOQTo1AWZwsDLZw4sJm/s2333nA22U3IJuamazNYd98qNe2AdV1OZXTd7O//Pz5pXAwOvhU1SYCSGEIQQ4ZoAxCkDZYpvP946P5BTQYAN3mRbuZc5z5fK4n4upOgUK4GEtMA+TXbfzph8+vV0F+NIPera0NqE2qVBtXBqFpEYFV2nl53F7nu3dPpZrqZh7Wr+aYP707ugNzaUV86rbvpdSIKEVaa9bn29tbFlbrUvZ9z2koM6na1Onuy7LALR3ozlrNFADCAIJIeW1ilR6FGfIkwnA/xpnC1Y7EoS/0RABCorfLJ0RibgA0hocDABMzGCChjtH3CUHv3n3Yd728XApak/gv//k//+qXf7Nf4/V1iJWf/v1T8i+IaGnl47ffrrVs++Xl5eX90/ta2F3HfiWS88OKiGPv7hoOptF7v1633ru6IbCZoZRCYqaXa0/wjGtRLK+vz6fT0upqsLQV1vPpun1+ePJltbaEFFQz3yrL2uojUnz33eIeRFSa9DHqehJ3IrFQg0BB2Cd6MDGgXy47UrLmyRFSQkbkL5eXdV1XKQERpCjGYYJhYGCWen3mgliKrEvzUuqcI8IiNEDcHJFrrQUhwlSHDmcuIos7zRnuoToOqE8wxUuIIVzu/SbeopwYafTh5hgCAIylFSKkOaPrAHIu/MVd3KwPE65IYgChU2pBlr4rML2+vCGBum3Xqz2uVsHQeGna97CZYzLVyIG0q6kPhCEmGMrk4cOBwqgIChMLSPJhU+0rzsCRV5hH7Pt1c1UrTEGFUhk57egUCBEoOduHW45IJWEKInZUTfvysjyJEnHsU376NNfFm7DIgzSuYhTmuofPPgMMTFGEMCDC+fAUdXe3sJfXz8ycUlb0kAw1IRJuEBJeAph5dWza4bKPyxUum0w7AzjwiuxgrsBj+DYyTNkjyMwgAIEwMCxMXUoaKCpSWFoSUCXGnPkBWDjcUhQOjms+blV1x3Cbs7t7VjTpRp+zUkTMaVTuutzPqU/IZK4USCVcJ0LuB+/Vjnw8B8BcYQDg4TnIvFkwlAjQnPOB1FrNwjTA3RRydmMOvU+bygSPD6fTWsPn86efL8+6XxGjMcqc1/P5/O7du8en81IkwJa1vnv38PnTp6FqOra+IYajE8Pc+7jubmbDrvve++hzeIYVc4E+ROG675fLZmZEjMzDZzfAPWWQbq5vb691Jdw6sksTCvEQdWcvIaoWxEXDzL0uFYXVjAioEBLhOCY7cAzFrTYBJDcwtwiKcGJAxKSudZ3ukxiIISwUpmnyXLPiWeDmS26ZrhqHwCmcAISIklNyHOU0ReTIBIhwS6eMgcCapnsIAEiMAEgIQccuN/BSmtu0zEnRUM0MeyMqIqRpl0HEDI5MGshC7hmtHoEQEJScd2ZAwMMuKdQUYk7iAHejKACQyeyFa8Qk1AyWxjhiynM59d6JAKCK5yQV8nK656CQat+2vm+XbePTUszHMFWdFBm4QEyE4JnHnmQMhGDKwFhP24IInAMQGwL0Hjr7K8/HEz+camESAqLpIFOv4DM83NkB3dDVWaAVIkI3U2OuRUTAY/QO7lgWoRqEW6fAQAoSLlSmy8t1f34Zb286TKaiQWGoDjZNrVt4qPqECQEE5A6Z2BGHVhdFkMqNfgfmGQ+C5BazT4C0JaF9G0QUR8cLpRSRBNjgsJC55WclZ/neU+Rv3fuLAMunf5svHs63zJQJZR42x5gztz2U8oUZ5WEeFg4AIFIQUXWqOhPUugDYGAMdVS0gedm6bZd9bMhQpLRlQYxtv7xeh2sjpH0f+76v59PpYX33/v0c+/Pzq6q2RbZ9R4qxb9ftAuBb3xHRxyRDHbNvPaPT01JBw0uJ6MTsYwwzVw8CB4gxR1L05phEGGDbNlUbAAQScWER8mJBydnZ97GsvG2Xvc/ldIqwfe/IJX87PVrNZrZdkGcomB23IgCA0mHWppbazXh4PLVW01zw58tnAGJKj1YOOJhjqiMhwxSqmgIfHH/IY6L3DkA1BUlHEgxMVdCDaAAAzKhu5NkvkIeHo4GiexFSt2nqFgEYmJJX0+k6yF0AiFlaZaSFSfcxc5pDSEgEEdl9lFIILFz/unI8WNQ5qIAotdKyIE5yA0Q4DE+plNI8s309HTdCRJqIYEBaCGX8CSI7cSYHufsY0zx1Y5pZdwDprwK3oZq7hRO4A0K4R6SPDZTXy5sUXKEg0sy51YDZoxY4rbIUcnNTBUckAeBIpaMhuQcWKRiA5jS8gAtETMAizO0MxH2ObToSl1IE2m60j/n5RV8v3q0EVOAagYArgDqOcK5SShgRulsYIGIr9bQspRTmA/krhQFRFTznjoZmoQoReaDizTD/aCgRE3ZmohS1JCh1103eYWG6w0LHcZCB18ev/9V5kd2oqpqbTjdzIoTIubrf77HUTSOiu4pQbvtwZOYAcFcGDjBEQkYP3bZL71vuJiRDBogQoRn+9vLyxz/9OMbYx7YsdVmrmT0/P79dXg/lkuu+X6/Xa7iVckVE11hLta5jDjMzBEfSmNO0tjXT2S3ZFBDuBg5cS611e3udOk5r1vZaCrcmzFnykIiwFDe2iGkq4dfr9bpvT+/f9Tmu1+tyfkBFd9h7v9t55PjDLHdDTnkPXCNh/zx/S5GcBSZI1XtHKCITYYRTBM458xy/VQo+p+kMEWt1YQTELMXdXfMeJaKDmOiYM7KviCpwT/FIWTdiQMQc+xjDLJjkyDEGICSbnt+baYA53KJD9MhGIBFBEseYfpPbATjcBsC3L4wQYaaCIuFcCpUCFm6geVohMnNhKrf1llwJlLWdEne0m9Ozc2dSDHh8fHc+rQHTdfaBFaDEQoBEBJTuYwhEVIIAyIKZgdiRghAFRYhCBiWRCYcSBrsRIhPQtu2qZdaIUPMiR0xKgeg5aiAIclELjOJYtmuvPRiJ+dzWMy8PHjHmdRud6mpecda+2+vbeH4b+0DEynJ2cANAaCiNS0VuRdZAZQjVq7vn/i+lnM9nKVYrlMKtEIASoSmEThvJEgMiKaVghOo4LUviuqrqeuTTJF6d/WTeS/f3tO/7X5UGNxTA3Q4PT0jFq6ddxByupu4IIYiOB8rMc6bJit0m5xnwQGYmkpJ7VdXeNwACDODIGHH3MHANNbCgMLBtbK/XN4TRJ1w3/OGH5//7X/619/7443nYQMHHx8dAULMx59Ruc2z7Zd93ME+0PNw7j9CbpRXA9Bjmc9qZxQPnGNu+771buLtPsw8f3wO42hhjb41bxVKST2Wja4Aj8um8VqmmFAq1CmKY3bRPeNjV3PeJhwFkEJZ5KEdhEq4FAFRtzplWRapaSim1EOEY2nvvvW/7JY4CEEaozh43Y6J7fWdmY5hOcJsIRHBUhQnSp42Qm6vaLYDjGAe4g02lVGnc+KpEKYXE3nezOOY0lJHT4OGITFjRSdXG0DEjAK7XfaiVkjkVBakomKA5+Iw4PLmUzHLxEHMJUyIhYnM3VTN3VzODuHssH4ARuKTHt4hhGioQESMCUPqCGjuzzjFaXYosEdr3N6QIKYjoZgjHhI0w18EdWMCjOrqR54jgQ3k/xj6nZVgU88IspZY5L+qwq0YEhDs6gwKamwE8EjmQDyCyAFCCRvVBwZFrXRasy6bUe9/Gcp0IxtzFwi5v/fPLtvVwKO5WF9DJY7rX4oCBjFiARRA43CdEBN9KdLxZnqkG9ABQg+nmeHANCRBEaikC5sdwCz3A5pxhelsEfper5Q2Tlee9OshHlFTW24ngAUaUSvH8XXd3n0mUJGYiSEzKw9FtAh5gRPYL+V7nnKqDuYgkCWLE4cIcpRI4z2lEXhu3Jc0v+Hp9U3XXcr3EvtOnT5fX6+dwxM1/+OnHhz/+z4/94+z95fK277uH2pi9b3P2o+hEpADGef/RDvVauCN8fn3Jn3SfAx1IBJmFcdv3627bfgnb+8TTSdZTPTg8kPHQ6SNTgVAICuDUCYSlCQqXwu20Mqe+2CIsa1tEzJLK3UrhxHDgK35u7/10OrFgUo8yh3QMY25ETFggyOx2tN0sT+8jvcMC3yGzgvK/k0ecnz+nEQmkMiVvXQ+dUap8+QxkRDrWhxMh3MY0lsxFQnx53TFCJ+swd6hckZdZfc4NEQVzXPCFJmtmoTpnLxi991lR+LAgYwZ3HzbmgD5jzDnGKCypDco9mqcYYdoIESKLT0fGm9k0IkY6oyKicK2FAjRcAR1yIG9471jsFiKCN0P3nLV8eY4UbSFpVaf59DE0zGtd26nyXIUNcDNDJERWYg2fuzozVmHHMDeIiViZ4LQuYRO4Qlnepr2+vqYUzGKdmtFaOHrZRlggUB0WAgsyg0NQCxDHmewGIuDchBiShhC15sEUajNsTAXQgJTjUBEqpQA4A1EQYAjxGIMZIczVAKKUggSkmD1tbpI0jHD3m2Hml5Yhv1QnoXn6YhJyZpm5jaFgWb/UUorbNIM5e4QzESADxDFMBsgBJwBs28asSzu11sx2ByMSdy2lIZOqSqHzeVWfl4uPofs+Ltuug99ebc4SUN5/fH9az6XKsrRPz5+eX5/H3q/X675fSyk6Z/J86SsuRpWSC+C+RhOsent9OXaLexFZhGqpFPT29jbmlclaBSRfT+XduxNXcxi1tLZwqas77PuujuY0p728vs0569Lyprkpbnx0HVtXHZgXI4Z6bH1XLRkLekjI5/G003Yhv9L4D5EgmLAWWQ5NzX3u/1VLKFwQEIIByMDvhiUJbAHEnDqHMQcAmgWhMJM7TsO5zyxqRISJLVLVrodFGqKZ79tIo/RW2/VlFy4eZIqE0uoqdfVgVeVyH4EfUHN+ewFgGmOMOW0Oq8LZFkFQQKjanJHKrttJwYQSOLMzRcybgxAYgkRnh5AjJYKIIUUC9Hg611qKgAdBtHQpcvcgIJLDVubIMgoAuBfJEeHGARaOSNb7JiKn8wrB46pjaJHCZWVmhGmBBIYEUoEofVO0cjUSAA8b5swIjvTzywSD1lCBt01//HEP84enM8nS55zqzAWKrA8AyMTt8jbOD+8DRGYwi+c42x2RBCGPZ2EvlZdaW5V6BFan3iQiHCndpZ2o1iruDq5mxkjMsixEBH4r3eHmop2HPd7SLlI8m2rTuCmR/MaWNZ9I4a6IyJR3CydexsC3hVQdmHCGq5nVU8mrOA7S7JdKtfdOZMuyFKnMaAZI4aZEDQEAnQjbWldtY4zL5TJmhygeoD418OH8eH73/uH8VJcSBq+vr8/Pz9u2Te2hBgBJQDrOfXSCpFpIIv0aDuYovNYmrQLFdJtjTu0dRX1SrwEWavt+fXiQ9VRrnetjffpwBrjqvLallLIilu0693k1jUBSh0/Pn82Cahk6q2qgbNt2ve46fe7TzKo0RITDF/t4EXCzvc0LbF1XAJhzbltX1ftarbUcfHOWcFM4eIVIX9EEmREpPMWakBVBaoRyI9yKQYhAnU4EtUo4hMvet3QwZeJANrPRvfd5PlcAiORx7GMMrZUQubWz0EmtEE1MPrGGjtlay44jNMkimQMKzAUs1UqQCsubZDOIKJwADACQ4qCb2mHKnGGixwFBPOcQESKXH/78pwQW8mW3UpkZw+bshF6EamUh6OPy+vz57e2tcn16er8sSxZe2T7MOR8eTrku83nN2c3CfciCxCBQEQRAEFjH3LdLrWJ6nfrmfkXaA3r4bjaZ2uU6PK7uCjevqNw2rdTW+NPbm1konBDj01vu4cUDtqv12SGoVpZKfUJc5tIKoYxufaqZAfjr6/bNh6cff/gTeF8/nv/1X/+f3/7q/1iW2pZyXttl+3nM/enpbM7Pb881E1eQwHzs+xw7M55Op7IU6z1uV1ak4Fanux95kHEMqBCx1trasQkRsbXWWsu0+PNy1rERiTvOOafPxIcfzk82dFmWUsqc8/p26WMQSatFOAAVANyLmZrPbEEB6OHhQdXf3t5qWc7n0/mMvfcIMp/pHUuCgCGFH989kOCPP/58eRulnj5++64PKnR6eHy/LmeuLCiB/nZ9rVFgxKe3n5+enpg5Oq3rSkR/+cufwuDdu8cx57Isgf7y6Vnn/Pa776jQjz//sNQ2TRnl/HRubXXX3qfq2LbL08P64ePD+3dFZN/7608/92+/eXh8fGIGnWhq+xjp+jsDPGCaruv5fD4vy9J773PL4y+5kMylcGEgFimlANOcc05FJBE5uhh3T6uWygAy57wXa0wSTnMEwHSPg0EfGnCc4EQiXABkDpjDcyQMALmjrtfrAUAalAIiVUTmjNeXt4Tu1uUhIiBg9IjI+rG0WkzvdwMyLa1Wd3953pge3Ei7M9WnpzKVRh9EFBa99xRJq0NrJyb44acfqYhweXx8JzgjsJS6LKc5VQAzdU640hLkGD7YiAubxr7v+VPkgZ7syTzX5H/96/+XmdHD7Ob6EmBmS6vuijGJE8edc04bnblcr1ehMrSDIwm62j762hbkm3232ZjTzSzm6VwAHYLBOCKNaJkAn9497P31+vZp2589NhKrBZg5zSGzRcxMWM7pdxw3poikQUiOaub4TKUWYouEeUmkF9m3XUvpJG8RMadNywEsLJWeQV8/PwPshNvnTz9t+6u7EuiYSgSn05rIsAgjYMJ4AMyC4ZJmPLPbft2Q4iAm37z0icjC8v7JHiFrgXSpv0vrb0uN4hBMHX84575Z7OU5m2XCuq611gNCOwRwhhhEAQAZkFlKc0937HlDNAgxXeEC4eAyiggJk1uttSzthHVZHoSeppUCp9JO33zzjbrNOWUtp8fTGmd3L6XUWksp1+u+tuXh4eEXv/oVIjHCH/7wP0Vodi2VI2LvV2J4eDj1PhFDKra1npYKUJdFA9bea6kgLZw68ACaEdjnDkgPpzWcX6/X3GZD7dp3jyhtQebUkhJJoLlDkQZADMzIhRiAXC0MtKu6JgdsWZaIGD3RwZw4oKn7oT4ACEw3Rz8kB7f+lwiJzDJMHRFYJ5jGPEyiDojBbgahZobAANMd3EhnpN6UEMO/dIv5r1tHaRHoju6UIksEYKpgohr7Zv06e88BNoRZAifpr5zVZMYr4xFlcMyhkhGPzLVWzLy8YwG7+RxjB6eIYCpIIZJyz7QjyRO1yOef/pgFf3p1IDC4zzlFCDEwsp9wjJl42dKa6XCNPncClso29bJdltqAkI9c9KyJzUIj2gE4KLpDOCMiAfz8U17+CmgBYMNUA9F0dghCCrgFKGJ4ZPt+m/MVSXsZHUPncCm6tIaUQQaOaITWeydivKUAWGAhlkJDcHR+fv4krADb29szgJ3OLUK37bqudDotfe5mupQaYK7TnAiDEagKUmDc6mcKQUCioJQ0sqOr6b1S/RpizO/8gMf98Iw1mxAEEJjxTF+WDqbBBpERUU3/onSzV8t+PQIBGI9oqZQ5KmFS6EPVsos/LkNw4lKrRKAenpralqW1spzeETwwPxQ6m+N3v/ru8+fP+6dt2nAwJEYkKkKlvvv4Uep1qfXdu3f5pF+ef5ZWVfehvTSRUvrY/GrffPPx7e0tlXgiXFtJnQIRDE2iwhZgSColAG3MfWmPJM09tVhBUiBCJ0z3dq6n00OatQMlRcVFKiILkpAwcFYCZsFULIJyv9z0CHbYkKafRdzqaiEMQnaPpNNBBEuk/TygAWQaAIUnZ9EROQ4w7vgoDw10QCRmQLQMafAIZ8AAg79+rTfJI8CcEYcnYgK1hMCMJVxsxL733qdqQZAENe8fkoIYQcqe1MGIAIKPMnWaqi2t3EceecYpWJbzOmbeWMKS8/Kk19VaM45IwK6AglEoIlOIEIIFt+1Sa23LktzVOX1qN1UoRQBSE+Q+QSNskKelzkzffKTkOQVhkJuZRUZxOiFMANKIOfa61LU2KRIgZiWZEp7Efo9smgACyPOmzh/QnGOmbRmqkpSVmSMqON4HyBEZrWV4O84BwJkNaQ5VxTm7CIZNQH96PH/z8QnQ+7gsy4m5jsumNtZ1BY8xzawjZNNIIhLmHp4mP8leSm0WeDg4GDj5/X3cX2Tezwl6+y1gZ850pTv4CJAzBYBkv9MtJ95v8UTmihFmcdQLqXhFQARVuylnkkIy7hBmJHqOhEBAmF4LFk5FWj2Xsrrx48Pjw/mbbZ9BcO3b59fn1+tlH6lZIAuXUh4eHwOwsOxDn5+fa61778z4+fPby8vLw+P58fE8P+37vs3ZPaYbTKW9vwlHKaVUJpZCpOYAE3BKobakWckAgOt1NwV3JK6pKa5lrYLv3n04nx+RuE8lAjfofd6IMDcHTztMK0Rkuplp7z3xjrxIWqtEotNMAMAJhYizR1NV0xxyORgAhoeqbYhABJwyPkhSkA1Nt/EjTzWi5LmfDhThZIYIoPMwy8iG7oBd485PAdXIQL80QSZCImQMtFB1U4SgQkKyqLqyqiqmz3IgJNeQS611aMfDp4PcIh30I3B0RQZERkbGUglrlVoFPPAmtcp9kVsmu11mFvQNjE3JHQgZpBKwm4UrBCM4Jqod4WqgOrdrQRARRlDrw7q7hw/hZbrP2c2M7tGpAPN6XJLwRRcUDvF4Xhxhjv16mXP2iGAhEUl1GjMH3zyNITKxS0RQ2DR0pnAVAWhFVHed3T3lRUcVVEpBDL4RRQDAHF3RMSnIQYTugznWU6mNzQbENB+9w+hbhCEuyFAbE4R7qmIZIR/ipHDM+PrjTUMm09zLyCzd4UZk+g9ft5VxiJGOMuGoK4+QrrROdXcd3cwyNo6gAGgoumvgYeIV4ebTXVM2fitMPO8f0/BwIvfQvo8xZu8j65R1XQFEg95//PjL73//+fXtp5/+8vL2fNneLAyYgEiknoC+/+Uv3n/8cNk2D7y8XZ9f3v7pn/7p22/+8V/+n//P5+ef9r4ta0GEWiWF97WK6tC57RtwmLcWVt2FqxOrUJQKtUFthGCmtm3b5e05nB8e3re6XC6XYdTW0+lhPZ8epFSzULPMnfAjlRuzmiZwDBRg4JShjfRiiTiiYltraUYLOVBIQyyScHQDtyQO8W00bGFzzM4MSUUXFuEiTGaxjxzuzjlJLUdLeZoHIWG+NUTCmFM9vZKOeePRMOahP0Z4xsof4rQgMkZES+94ZC6EBYjTfy0XUuR1mycCMDOjcoSBH37P6ceTHQ3hfcD1xUfHi0VGM4Qd5jSUI5WjBZbKgeyQR7pTKDiSW1QKt94vNg/GfaAHAfbtUgU4FtfdR490EnIj97ARc5gNMMJCYYjI3eah7eM0yKfkqmx+FHIOASDuZjsOnO5Kgu7OkceH3cxC3D3IMSLGOJSFCFzpC+En/Bh8ULiNjhRBxLf9GB5pPODOCO5mu10JQoRVxxwgwu56uQ6zmZZEhFYKQ8xQc5tjRNJLzczngboj3sy3b0EOfkiS/8qtAA78xu/smmP0YHgvEBAhIvmk96/bVBycE0XBijAhyJAADALTqhIAAv5Kah23IbgLmFMETT3IC1JLGKFhqUtAYV6/+8Uvfv3b38If//zHP/8hMeZSeE5KuF6afPjw4XQ6pXvK6HNZlv/23/5f/9t//c//7/8Tnz//MMZea52z1ybnh5UIllq2HW0qgAF6gJlPGINLlWQlNQ9WR6Dw6Xa57tfrWJd3D+d3SLLvUxCeHp+WUyGSOS1dtogEAITRIEIjAjwcgBhTp+S1NGBgZjPLOV9rjZkjIKtiIiEyIkHgADfLnjaph0gM7mIx8BC25+tNYaoQIkmOhxHJok+/UULcj9BwRBJhz5myQZqjRIBZwpbgbuHQu7qDW4JfmPWIQcTUMARASlAp325alPudw/DFuQsRzTzMBCmNfMzM1IuICBNRAJrpTDZ93rFgGSyEX4IkYYyRXr5CMCll7hmJkk7g4EioptM0EYisnSLIx2Y6h8cYe5iR5NxH3Xr4gJhMIQyECBGuE0zQCcKYuRAHBoBhxOibiNS61LIQFlXf97HPPcDAA/l2/7qbWz4107CDPpyipwOtzSBtRkrL8AgLhzknuAeow+3VQgSEqlJpFDHGgOitlPN5JYLet6f3DUD3/SrCtYnpcHTHwV9CMsIj3Y3cQxGQApEojnueUrhNeHPv/Iq1QUTJVrr1C/NAEwC+Qha/OgW+4jvlZ2apFcyqYKlU4ONvcHREypsTgQECwgjlaD2EzFEnmCsiitQWuAhfr3u21rXWd+/enU4Pvf/bvu/DBjBxLThmTKutLcvSTuvTh/frw1lVn55Krcuvf/ub5bT+6le/+N3vfrMstff+5z/+sQh/983H63apUhBMCVsr53XJc8pi7vtYmErNrM0rIRXCCOq9n85P3337y4/ffNf7vF6vCy9PT++hxN576FyWpbYVgOacRBGHagHSsCICAxAcFI25LEuSQZIGPt3rfZQoIgiZesBZNbuDmwVkSRX38zTHCqrqOBEQASGICwcBQ+FQDg0COIz20xCJ3MgNHMECLeuCo58NszA9TANGz/4EERmRETCcDytBEmYyBTXzI0vKsrE5qB8pnYlDMuPubiaCzAWBw1FVsZQE4g8ulk13zdirCEMkQIc8qXyqKSJOZewol8tVWq2cAfIUmNoaReQctgsJM4lgBLoaEanatNnnYEQuDSGdkYeaRxwlDdx0PggCtyRfYMIMOnJ///790KlD+1AESZU4EUxVIOCb7VREpNVEGoSBjix+UBIy9H274p3LlWxQM7MZYQEG6jfXY+DUkwRiWISrTkFf1/b0+Hhe1+fPL6U8qKnqWNZTKdx7J7B9bCUJcOhJ1kxjR3C590HgaZ8HAYHCX+/vPA6SQpt3733iYIf24f7H88sDDG5z3FQ9CB2neN9HK8ewXYQ4Pe8AksUQGWvrcJ+QEdE0R0BzmGZjjK5TfQLAw8PT6O4OZlCFReqc88cff/706fPb245uXGhtjIt88/HD+3ffnE7nX/7id7//3TUi1tqIYVnk3//9fwLT47v358eHt5fXH3/6S2F+eFzH3KRAqYyBrZX11JKR4SP265twcY7Je8xdgqkVQbz064f333/77ben9dT1lYpwqSxCQtdtM1Vc16VUM7PMFXaFQ88DEeAA4UPDf/rpJ668rFVEKooUbK2dz8vb2wWRSEpEEFJapIdjBiaD6XQFDwP3GOZjzpGG2O5AiISG4MhMcThBsmCJclyWzAjFLEaP0R3d05w5zGxingjDXKdlz2IRPgORCQsSMyRCLQRIDASMgUrqU3MNpLe1p28XJB/FLVx1kLC7mk+AdLM5HIcsvNxWoef3AyBUJh4MdKLjjhld97G9e/eBpZKwWJSlnIXrGMM9mGOq7fuWwxsm2Lbt8/MzIlQuAFDrQlxYiOuqo/dhCE5cPSOoMgIanJiFa5XMF8nw2okWCZCu53Ld+nSjOHKl55wQJAWKIBUCt+s+Ew5gLojMSPu4ElFthRi27aKqTQpJDQfCDM8Sd9rN5pzMOHVGeK0iNSVjKES6DfMePouAqX3zzS9ba9u2iYhPLcKP5zO4X1/fpmsrLCJyDGAP8mhucpSDuA0AoRapvUO+MzXuiEYEEomq17pkM5KAkzvs++AM6xBhRoiYE8Yw1YnEjEFxMMEiAkFKwW1/zTOROLnkmY6NIo1IUnYZEczFXad5bScHAovpu6MHRq0VuYTjh/ffA9aItl3hD//2x/Z3T998+O7yMsj56en88buH8HG97I8PD7/59e8ur/Dy2X7/2396fX1Vuzy+q//+w7+69uvr9Ze//R1B/F//47+v6/pwagD+8Ljo6K1xKysiAvjj4+P1ev3hz/9+Pglb1OBVHkhYSBeura2Pp1IqAVqw9XnddV/bGUX2/iaMizTC6Pv1NuqLiE5IWLJ+nqamru4uMmptjGpzz7kpi03dlqVERIAZzGn+eHpXq7y9Xk17q7zW1mfs2+vQQexLReEWYREB5liNuRBZgF32vbXm4HvvzOXx8YlRtutOITocLTjAYIBFYV5qefu8TTVTD3PEIowzIiFvwgohupu6FyqIGKZtKY4RAUSA6OY9TY+fnh7etisASWlEgoxoXipOVSKgIkSgYR7oIEGmoWPsc6Kqg4NAGuF2N1jPD3nfICGScKmnVvo0EgcKOZ/ep1NPa2edPuZuGnVdllKJyPSAoESYidIuwA0CAzCQRTIHCxyyrSU+/AaRAwjC9XDiBSQEwCCcbjqRmMJ0mAkKEZbCZmaHJTFSYQ6IGZlJDQFqHoHoyJjxZQSEgEGQKZK3DgIAADJbDBEBTSQj2GaW7h4KwIxQRUDKu6endV1LKciViFINwowsFEGlMMQXPzW/dV/ujvjlb0xn7EwJzHQ8U/fIxxThAAiYREMHD0vbUrcIcGE5HiDwDelxIifimz9CQDAAZAtda81H5Dc9nFvOc/lmPTwRIJeUA6pDFrxw832zAHQINwQxg75vP/74RrD+7jf/6de/+OX//o//bdcNeT8/SFvAPcKbmREubijclhYWADB7v+q4TvdTO61LOZ/P7vby9vZwbufzcgVDcorsfcBsRBgzEsAi5XFd2gIIyEXP6+l8PpOsUhZV/dOf//zp0zMwich12wTj3cNjlhg6OgJQ+JzT50Dm1IBHgOYq8SAGBI3s7whv3mHexyAUlsaMRuiuwyDjWwkCBJmsVEIiIJBCD+39nHP0QwJhGogMhGbe54CMmwbSGRZmym9vG1NDLOgAAYhgOnUf+zYAEEEQzQ0sHICJOBggpPexvw3XWMpyWk61tKWdVEefvfdt732oRiALzcTIkNzdw9I+CREgLNK1LXvFgMx27r1D88o1FfoGYYAYlMJKBEqzMOYS2BGAC3ERLkUYeNu7k63rSoE2DByWtizLYmY6DEKYmEkAMbIhSl4kxl1MEnFslVRxHTdnWNa6OcIR4fsucg+ReiP/0G3S5pZNS/J9CA2nHxFpx6yUKWlqR+1NREwlJxHubpoZfgXrQSJOvqOZqo6IYPZ0TL61lOW77747n8+lFLAJAHPOOTtRISY+pEdfmAX32UEeDfcZSkIDWT6MPrOMx/S4DECiPDHdU4OmEUjIfMuGyUF6RMDNNf/eyh7H0KHlyUiKZAxjOFjEF9tvStwlMivuhktCqEVOg4EQGeAWYA9o2t2hyPm8PhAwOJwfHr///vsAdbgA9rYgc9m3eHuxtTYGrCznd++QmvrrtKnkjN5qQcRlqctS+9jSJ0KEGJkgT08H1MKw1KK2A7RaltNJmATQihTC9nD+IGV1w217A6CPHz8+PT29Xp+tz9bWdV2fn5/3faRlq/s0i4TG8kUkYg8Ay7IQUUICd96OuyaV83SuOcFJzB+BW2tCzHJIMNX2QEcE4WIaCVe4AZADEzjO6X30I3Y9eHQHIHe2KAhFp19f933vZrFvY7vsocliYLUYpuZAREjIiB4wxnh9fe3beDidikhb6tcNJB7BwoRMc8xcARFhN9eie3MKB+oB7ngg05ASREHEpEdmlz2nylDENGtFOIyXjYUjIBzl+nadqkbkFgjgKWoO7PtwP7jTZmGmiBjhQpDrGPHY1e6uNouXu1NIxD0NU6/Xa45/vtZH5UbSI2rR7/8BdPOr1nQHONKsUpuIYO4xuhKniWX2a3ZM3IMCI7HxQ6Oa20ptTh3T80UkyujmcxpzfPz4vla56YtDdbg7EjCjmaciLz2O05DzXiPcT4T7u1HVOdT9DmjDsVdvmUURx0SQKHM+IdPs/KaMCFdVTeUvyhEteV8fucdzaB0HrJ2fHACk0wANwAMyfUzd1QIiABkCj7GzmY+hpgYR18tkfvy7v/39b371gbDNOX/+6ScEYBHmxQBd9zkHeD2dHjiaGRDGstRSeJiZTeLT7KNv2+vzZ0L8+PFj317Xddn2C1EGT0QOTaUgI62n+va69d6v1+t6eno4PZaKAOCKo0MEMNXT+rQu8e2Hb5aHCmhvpgf1iFmk3iasnGbkEaiqY+gYPUknrWSmlqe+E2CEmrv3fUJIW4KZADx3S60LeTASEQQYIsKAacM8S+45R4rLSESQCyBnzLorIMtQ6Pt1zjgARR+vz5dPPz9H8Gk9u8O2T8aqmoaOgMgkJTyAVLAAAAWojbFfN8T50AFO+37Nq25ZFmTp6eCEQGTpjJDr8J4K+WXShmHpO+zuDmVpeSkmxJUWMqrqBmaBmPbtkmCkuVHW/oLiU5elMWCfk4JaW5jZ1XvfibIyZzVTnYhcBJYqliMThAgLcDVNJC8XLtEBnru7+YzUlmYObIR5xnWnrB1YCDCmprkNZSx1ICXnBPKvp1JLNc2s67nvAzHiqFMw/9aUEh8zHnd3ZwYzi/AAMws3YmLmSkJENsxGqAi8f/+eiOac6NMDkEKQahVm1KAIg4DM5TF1Uw+6GZ9HhAMhCwuTxC1sh6gSZXBuuIXljAIDAQ6bsyOCnDinykc6S2aB5YmgETF8ZK3xBa04AAXK6fL9JDIz95mtRB6NftiETPVA5DSGyePANHyCDgukfR9Co5X2zcdvt6u9vV33fX///v3eX91oaUs47mMilnZ+ID9frwnI9rA5rGNiN62N69a3vTI/PZxeYl/WOua1lrL5bq7hUDgINDikABE8v7328TZsl/LL7x6/KaXohLHbdu3rKsvyGDDnnDSglPLu6YPZ3K691LYu/Pr2PIeyUKsrUpjG1Nn3OXWGI1KEjQibli1Vwjj5XiQCVD3cVR1CgTwCprmjo6d/H5ijaszpEeDOhCLluGkj0BzCq02dUyOs7/Ptbduu3QxTHPH6fLle9/Pp3bpWYgqyCNj3cbnsBnFaH5YiRGya5jt3F1a4uT2MlMbdwaO4DbAPYnHQ17+Ycyg4Lp4E7fMGylAs1kOt4O6OTMQiEkSSZrDCVaQyF3fP04FI5OHhYV2XiMDLxT1aYRTuXaWkYXMFAJHae0fgtnBdAI5gpYw/mwCER5Ttwcw77kwb02R9OBEdfUF28l89iIz9wjEOi5G2LEGUfjzMnPq/LDGMlJl9jhQppxY4S2Gig7KaSdM6HcFbbWqcAzyAAAAp1FrR2IlRj+6GPn58L0Kqk0CP8p9SOgFEAI6Eaex92EvkV9yECfd/3n5FIA6ng3BI78XjtYG6ZbEKEJmbCkhRSnG/2ygeTJKIiIOXku//5keAco8ATwFn/uYtV8YQKSAlIOBfMSePZRR0Nw5v63I+tXBJv4DeR610Xk/ff/vNX34Y17crgSzLI+GYW+iwp7V6C+s++z58H34VmgRMGELQClc5M/O2bYgfHx5OCOGuyrvbdFfVnZlrI6C4vPQff4KXlz/MOcP5m2++LdIYcesbMSwPzTy2bTOctZbz+fzy8jLmzHej0/e9lyIixVTHmGOMu0kSWBg4M0MQYUVEBKGj0Qg3GF2JYt+UyIdGaLRa0/wyeYiIJQ3BiIgwgDCSTD1n773P+OnzxYCPOaWzTjQVnaAa0wh4bae1LOdhMqddN+PAl7f++nrhIq0hUyUSYENMQhAQATEgHayN1h7mnPu+b9u2j6nuRELC91vhPsxm5lwvQRyuBiFJm05OpDmiBYJZpFNGKeRB193d0EwjxMTDKQmUgKYShCandSGCCFiXqm4BmrPNZVncHRkJGZioEAK3giIKmIJcVfVQQ0EOxlsSwZF7H8HKYoYEgcfaRMCMKYybLji3U6WCfOuaqEyIiDS6pYjUCJBIYWYsNcIyYM/dzeb9REBEdzQzCIrA1lZWjghmJoYbgSSEilTyWQnjdJJvv/vYlhrxqolyUrZktxnBDUq4QQOQ3vZw4xpEhFncxgpZfRJRGmPcmlnA9MlgFoAjwMddObOf5P+/bzx2fAIuZobIksK+oLAjDjQLovtwIcIRHBEBKZdLRPIkBIIdCcAKo3JMATfnkCY4jYloaS1MiizLsszeC3Hhon1uQy18dtv71CtFFAx2cLctSF1MRyyVhZgg7YRp33cPJCmMsK6rF+5927eLuS5re//+3fV69VCL/bLDv/3rX/Zt/vL769Pju6d3343upSECt7pypC+U7XtXtTlN9c0sxpiqPudGNOfsY2iEpWzJLMwmeNRaSRKXNTMHpXRDmdPGpCJtTocIUrQx5amoaQofBMnMep/7fjMytWwGbdu26/W6Tfv00ktdSIobiLR1ObMsahZgpZRSxBTG0D//+Xnbeu8djtCDsZx4aKhjQQSgwkUP55ZhpgAFKIAiwG7QkpmZmjFjIFiqsBXmnJHGcylqTrwY6HZV0N2uwg+Kt6fNFvqh40QSsxTuEqZXStDNQ8kEQK97x4DShC0u+4aIp9NK5F13GyFSAxnAA1yDGSN94cz4zsBDxG3bEh0kqncEUd1mHzk1vh8ZWSDc53N3hXle78vpMYEiERQpflOqpEGVEDETYtxMCQHpMNuMCLPsEDBphXlvMAMEuad5yXx8X0WwLYUx1rW8e/fUGvfdVYeaoxug9Y7MaJZX7t2x5ku1dv/yw/zzoB4RSfa3yQPLguJ+7ed/3G1U3P1Y9UezcLylLAeYOB2B3HOwCyJCKGGRTfINgDxqkDEmsTPTkbJxoLwgVDwofX3CUcQKuwtcLpsbO1Sm8v7dx3Wx0c3G/OGn5/PDcj6fPz9/eru+IXK4zD7/9Id/WZeHdXkkBiQVgSAMs6WddPY5p5RFRJgKAM5hUJlLFZEI27bNApZlaa1dt/3x6enp/dvnn396e7U//OHTdtWP77/7fpBbSF3BsbV1EZmxvb29vu0XBFa1fd/zObvBnN77az4EIqoVichUx3Cd052IY86ZzzkIAYC5zKG1wbqSGxKRT+9D9zF1aMpAGFDVt23b9z7n9HShUx1D89LuY5blvfAZAvoYbiEEFrhdddtVGEl4zvj86fXHnz/NYUXk+vKcqBlxHd36rlgZILgdiMDovets3gCCiLZtS9pBrTWQYM4IdHc1V9WpGeRR71U2OiBy9ukBAEkCADqSsJHSnModTH0OO50eAJmwE1GrKwKv6w5A++jJlZKXt+fLfm2l7K87AJQml8vl9Urres5vrq4nJhlDVZ0ZCSax36cM7n5HDYhoKL5dNz/8C4sIXa9XYDrIkmaXraeVfW6Se5eRm43IL9tPKVjovW/pDhTk7mkowulLHhZgOX7Yxs7pCRORECBTYYacArrrtqVkOIn+3ZD2vzzv10//8Pe/+pu//bsIe3g8AbxiCGKwUG5y5lZK86n7Po4zjEv+pOm2uCzLy8tLhJ9OD/kie+/umrrj7OvyBzm8Ub4U8cRckmw6516L9773vgFAUioAwsyS1wAArbXKCwDMOd17GKT99b1IuVcW9yYhbl5GTFykXLdpQ4mEEd1jTtPhzPLDX376/rvffvvx4//6X//r06fX3/z6t28vL+d1fXt+uVxep/bbR0WT9g9/+/0cfqNLB4IxUJHS9+lq5/MjM9Zyenz3DZc17VPXdr5e33aNdX0Uwpe3bTU/PT5dr2+4oYgsq4XB29v1evnjDz88f/jwAYVLJXnxfb7s+oaIMTF5ivu+R8RdLQYAKZpurfU+E4dalqVVgcAxdN97xi5TkSJ1t525zOkQg7kl1mZmnz+9jtGzbru8Xp+fn8GgtXW/7JmqIiIE7A6F1uXhwz5hv2hEAIk7v4xNndwpXKbBuO7Xvb+99jFwDL9umyssdVUdW58pVXaHZVnC0YYKyccP32zrFzRxv3ZmqbXWWqkPBxjji1g2Bcvm6Y5DETHMMsmdMAg9TRZTtoQkZjB0MpfT6VSb02Wo88vrNsZc1zXh+VKaqqvF0k4PDw/y4/Onfd9aa3N2KrRg7bobCCl33d0jelCeCNNYaL++lMKplj/gQzuKnHtHnWZMc5gU2ueM4ffb9bgQVTMM937Z3o6YI8U4K5+ZSHtQFtFJDcus6gBL/RlhDgggxxPHxYwHgyC+GpQiAqBfr29Aw117vz49PZj35+efR39rwoeb7O2HCodwKKXd3I0yrRBLKUmbv1d3X3YmSqYD45cAOLgfl/cflm8m+YjeWgFITwlLv/B73XEfyqAnT+mWAomAhPfuFyDcTYRYkJkOTa5RehCmOTpgEAEAZ9i5mWX64Jzzz3/+80+fXp4/X9bltLZWKoct7i6zZivkhhHYe8/vKEdgRbjWuixtjuu+j+t1J8Gt69QYM1BWADQgh1rrU2VKfjkSnc4slVurT08P1+vb28vl9flyvWwvL9vL6/PPz5/+8O8P0mDqpevFIsColIrA5hOC2lKEK6AXaWNMBEYkwoLo4WQK++h5ACPiujwwM0p6PdU5bGrs+zCdvY+3675tG7gf3SuwTR9jomPfABznYDMzhcM7i0up0MpCQZ6R9E4ACIbuOHcLjKEwuvdhc/o+AtwxyAIdBIiDSuopMKhQGZzsuz2ZKVkmt9Zy9d7JNbmSD0LaUaoiEdVaF7OuA9AhAMGYECiJKt59ImLhWkojkrR4BXYdSWTIQRVYMll7v/9F0iN6AIQrQMEwyI1gFmo+zYwtU4idGJNy5445vCEiVdWpppHE8ri1wxCHOhUxvS6PSxIRmY9tk1z3w3OSGABUpyMwAzP5LQviuANzxEjornMODyVCESpCB4fE4tbDI2JaofqhLUdPFgOLj7mdziwFzPvvfv8r4nh9ey6izHIDbzACdBqwoBMJ+jEwgLTKS+r4YeBnYJpBIengmG1CAHju86OiyUb/K6+Um9b7S7YnIib/2f2LF2P+j1ktRzBi2NRSGYHMxq3cgDE6ALAwYnhEdqdHg40ehkwixIdF5s19EAMi4tOnn37400/Pz2/ff/P9b3/7WyLiWmosgXwgdh7mMeaeg1UWZBZkdKRjAGyBwExlPT2V9jK9LFSpsmM4mjQ6rwtT9H13H+pepJUniYf20Jd1qcL4Wi4xyQ32/vbpU+caavswy6CEIlfmYjYjUIRaW0WoVjObIlWnI4RpuJv7wIAxtM/BzCl57HsfXd1jDN27uUEE6fS3bd/33d2YiYEBULhWaRgyurfShIukwbspGhEWAmGs4aF2zL8tg3wjmMWDEYLQmZzJmMGA3LoHJJ+P8OgrETkBv/sDjPCEkkXk7lR6Xx6Mhzgnh42ZTlxKWSLeuvtUN8/kSSeY0/Z9n4BExGtDRgBSP/QRuaGOjuPmNjznpJtPojy8+5bKtRSZurEAV/G+32hQrhasSqWISKZ3YkzKiEW+2ewF3VSXd/LPja1EILwgTASGW4p5/o9jjIysJ9wiorWGiOkdUEoTEXcwnGZ+4GTmpUhhNIOAaZaOEXl0JGfh+K7ygWZ1fgiBHDwUEAKcJZZVIMqylr/529+uazN7XpaKZBGWbTsipk0BYw4vjqL0vj9v4707F+uAGOKvzDm+/GLcUoazWMjHlR+ybUN13pgOXyz3b6UEIyI63k4TUOsSFZEDFAAPXatPMwMsAOKhc+iYGpHmy4UlPxfAbp2L+b73e9BAa62U7e3tZd+vjw/LwfJCc09QBhEdEUWwtZJvysx0+ltsjVnK8vjUytK+Nbx0Uzcsra4nn8NdA4nLA+fKG4OFgYMRDAkY6yIfvn18enduvOgEgyCiQJ+6ZdifG6ezSDp6R5iqm9m+a54Ic06RmnUiIi61jTH7GMS4bzPAr3vftm0MCwcPJmLCmhjbaeXUxs599H0iIC8ro4A7hNRSCNjMNAaCMjFHsZlDXHfLXDDyAHcqtcwgImMuIiZSxQAAhpEDOkTkKPnWCO99jKGmh7g7m2bkojnQ/4r8BkAUPu3AmOKrLwhiljFVVcGHoofjXqgULizHhwSZTfc+h+1TEQ9mUK4EuvmSTT2+5N03vy2nSyk85pXQiXwfGtbrcp7DIzpxZW6EvNa2LmuG3plFnxltKHU9rNqSLHU/GgIg3GpdLCRu85L7bBJZMkkJiCMiexBkAU/MtriDlZobjJnBg5mFwF2kkJkSgRQiiFI5LbHzwkyiEQAwJ4mVI8wcstdoLCzRGn/48Pj+/UNt3DvWWnzqV92+ZK4EIiMoIgHgTdP6xcYfj1AGPt5OgHtkmtu9XwC4j0XuMgeP8NxUgN57V53H6AEZ8cgmDol77eAzhwt5SQwLJ2AkPxJBI0lKhyIzXzMzAzARlSK3b8/CAsKyM2JmU9PR+349P5zM7O3y+fnl07fffSRiqYhdAYGFBTEiuAiAixCX28gzgIhFuNXViQNhWR+enr799PZSyrksD90vGls4Dq3gs3c2k6e2lKpE2rehuqttUnBZKgE3ZKaKiEPnnATktS4Idd9H30drLRzU5uhTbW7X3dzm2OecTOJhboGIz/qawKwIGeeBiaW0WliksrQI1AkRQFJLKUDee3+2V90mDLMlmAuizYFQKK38IQICbUSYIrunDyOgIDsgIEPaKpjbsPtVnJ0fIjrAbdunNwLmNhHiEJlcEdjDI5OTQuNLzJzfN7/fpGsAYEldGGMMExHmMqGrOsTk4LzSaq2QBhBuc/oc1tV0WmmcAKDqyGKWGUVoH9N8mk/55e//0/V6WapM3QgVY9Za59jfPz2e1pfZe5VWqERg5dpaCfIxeAyNiPQULaURUXIc3e/Nc5rG63JqHkfrcmMrQ0Scz49ft0m3H95sDikkXAEgNNIuAhEJECkYIsDcW4Sl5xrloen4VYE90js3iVksKFIB2ayYdWB1H7Xxr379C2JM3oGHHvkWOWUEjsAwDASRinBwtO8ChzyqD7j05kLz9ZuDm7Ha1xXEHUq44w5MnGkDWVxMcACYc4wxmjRMLjeig99XCJKr7sxFSoEA94SdoNZGx2AUEGspJXmNyckNSyOA42ECemvFFLZt+/Tp5+++b1Lo08/P1+ubqi6t1iq1erhlfxfh5qK6e+jUnuSxUlpbqmsHFDP7+eW1q3FdgQaVc0TV0IhmjlPRFMdkwmaOBaiUEtBWrYEiECJ4ebmKFCFiLhxoRilb0Im51dfllCb6Y4wxxtK2+2O/P2cAurxeRaS0Wsqx2AqmSyosy6nUVadv29DpXNuy1ECPgFJGLUrBpqjuARIREOJObnEkPoabKpoHGAYVZiBxZArGwD40+YJhDqlVAnJ3KhQImragcd/h0Eo14kLFzEREd00CG9PhSXFfTqo2TR3wqyXkZjbnHEOhLEcDbmw6HdIHvC7Lkosze+6s8hI5iuPb+xJKlos2/0b5m7/737btujRW2xGm61ZK2be3h6Wd1zOYL3UtXOcwsGABWXjOzL3F1tZa68HYe4T7TJ45xeduPqVyrtr73ZXfh4jcrYrd/Xq9qqoU1rERpwUrU9C9o66luOd00G8tleZ8MxdDoglzohSKcBExmx6jFFnWWgpGhFo3GC+vPz0+nv/hH/4ewGsVgGam96SbZBnlLBA9iiAApfkEUVKVHNFFjgJBVXMUmMV+BCWcCZhJoBFgHgqY40kys0RVUkRLIGl4cz8W7zdM1lPMbGO6uxkAOjOYd6RoUhBp27qZi9RS2d1v9rmIef6799GZORzNIQ4iE0Yy8hAm2LZtYU6AYwwi/Pz6+QmgljMwZXMdiDkXdUxiODgewSE0SPc9CKfC88s1WEpdiTfAuu02NQIrMUVUV0BqtYnOy2RDVKQ4nZa6GJoCgI6JgCwhTMSNmQOBM7xIqkhd17W1Zma1Tnc/n+cdaoGb2MTdH06PRIT8JQQxyV9z7mZGZulYh8BcikhVnwnyM7VQ0IFmNwtjknDyOdCpkATGVLC5HUA1IBAhEARagBCbRyaeMQMzExlyks7d3dUte4RjqwcQMfIBpWdnpKoHBnv7oe4/ReBfXSf3P9DHiABmDhE3vN01B0Dg4MwiVQLZ+0Sgfcyk8+WH50NT1bzeEFE+/OLX6/WtLWK6g/e5v768fs4/XRsI8ePpXLiOfWhXAEfB6T3MSbhyJWFXU49WqkNg5CFfkfPmneZz2nH9Js2mlJIvZNsuiHg6nRKun3O2peKppaMBp8IzKEv0pTXVYWZEUIWBIdTUxvX6RoCZrcRMIowYzFxr3ft1jJ2ZzufW1gLopuJRx/7p3cP5d7/9deUUXCw6LkASZEn3cwM3MFBi6t2IQBghq39Xd41QERZBgDBLV7js/xMlxoh0PzwSQb96hblPs+kIEQH05KsBRFKhiIQoaYhFpBIyUXoHWzhQkTEwVWuI7LbfBxl5bwD4cfS4ms3RNy7CKBEIIACK4BF2ve7Ia62VUEop6oFIy7J+/vTC1OBUsj+KdJrX7p62bsecRbVfr9dt20L3dV2BxSGKlLqekV6mRe8DHACLsDCLkwlHq7Cu4PhZVZG0EBUuKfA6nRbV5LCxoJBwSmNqacKQMCFi9oNOHAUPa4m4laXhPtWX2vwWzHncftPusy3EyByUFEcgx5gj3ErBta5z+OvY+xiCUWuLiDnG7CPvLYQ0ZXYiAgZmAkhsNYVqnOigOziEAwdQFoIH5d39uMOcgmIfyhkJFeQedssBVnXXv7pBRcIh1OP4eb8qOaXE/nxFYiJAYRjoFmo2zYZOwgiOpYgwBZJaWOa1FCpUHJ1IXEdEqE+RipyfeT7XhxPGNK1gG0t8/PaXPwP46G1ZFymMBI6lipQAcFY+ycMhbPNQN5tKFsISCBmxyykpAixUhjmb5dvNE0FEhECnnx4exxifnl/CfFlODw8U4IWp8DFgP6qDJgBQSgFYxxj7vvc5BUuta6WzBS9F+tjMX0TI3Bjh3dNja2vvVWoxGy+XT2gYMP/4h399f66/+PBIof/wt3/zu9/+9k9/+sP5JIxiYEg1PPo0RJAmjQtiCFOEISEXDtcxdgctC825910heWDCqoYehXgGIcUt1dvSWgcPV7Uxp7l7gBNDwBizhw1Ab02IOMWqplGL92sPDwiFcB1GWJeGxLAu3PjUe3/9tGPymoH2y3VZFgRowogSEe6GHgz47vH8tr0RgpSl7xPQl7WczyuEqPPPP/38+PTtZduv+3z/8fu3q6LPx9NcF7hcLp9+fn14eHx8fBwzPKDQIkUibEydmqIOMqTT0/nl7fLw7uHb7371f/3zv6wP508/P6/riRn71gNwaSe0eL32OQ336+lRquBUNRvEDME6vdYzcUBw0uHdFNAdkIAZKqBPnxhOHIIRYI2yJjJgQoRwBEIidkgHPogIQsLARdCdtq0ze5EgMhACiIgJqEszIekd9st1dBUCagJBr2+fiqwRPE0hyEEFyQy4nccY122ywcO5tWUVB1C/bLOUViP2uU0zBQapFNj3DUOJpDAhQlvqaT1Z17aeC/McNvRlTCPkWoULcVAqmyNiDO06Eem0ni97V+37vhPR+XwWkTl16Hx6d3p+eZlTq5TWVt2vSWMpC4NrqVBOxFz0OqbPYRoU08a+74G+LKfWyulh3XUFIEfvc5duxkKCRFKQ3G1IqbUsCtiYmFiI2Cki0n4ohjHjvcZwd29+A+T+apZGRI4UW0cy4mPWwGkNgkikiCzirTUMqLWKkIdVxDRuvZ8I97Y8zwV399vJAgCn9bEUBvQ5C5ESVhZaT4uAmKQXcwAAAwbjaW3rUjHsw/v3TDTGKKWJFCQd+xsRJhGMjwYAATIExayQA3vMaSNcARjQzEcoloKlFhHBG7Ca1bunDeCNU5iGkWrHHc6MEeBh5jfbaGMMDk/6LRBWBDYFdzU19+Bj3Exz+L5NAGitMgvANKNswZIrj7eAIzhMYo8MzpzMpjNqtx5Wk/DhQAis6n0f2+Xy+PD+3Qda2mlZptwY9UTiDn0fdmSxqNSMVkWpcuhTTFlEpCyn9Xw6g/l2vdo+0kdfp3tzIkGc+WwRhFBIilsXboRHXJiDOViQF2LHglCIAdExx18efuRfpiAaGAmY3AHMRu/J7UdCQkSkuPWeRJk+SYjHaeLupjsCFUFYhQK3sNEj+0AmJ5J0riEi5MIsDCFcZzMAsIBt390xCTfhmUbCxIXNmNEsRGpY+BgTbN/3fb8WYpu2lKLI7oHAqVLXUA8tVO8MV3PQOEzI6RAH+b0jSIwaQ52+MGKAWUSklohARgMfc+MAZKpLc0AY6O6KeWyaBU8bc05gIiUnT8M5JMQiTEAUuizLsixOKIzCyIDsdN/tQfb1PPNrOA1vX1+dCBAOEu5+jFKIiJK1YJ7FWM7mSynMGOCoX7Tfju43d+3jCzKy8iYFc4cFRGhqypOKEFbhtTbGcmB+gI1LZaGCj+enx1X27e23v/m98LJd9lJLVp4RkR1mKUVus9njFgJPSkXcwiDTuMrdEzuWDJfVnFweFCC1NEoIPDYnqYZ7eqIQER6fbjfyQqoQDgtQIvnSCd8f79cHZS6RWuvNLUZvfyy+4JrHKc3A+YnpzPMlSOLeSUbE9XopUj99en734fLtnLny5tRtH2NaHFMMQLqd+xDEkCha/nVjjFKKAaYtAv31kkgdB4RAAARDVAgnBGGJQoiFiVO9Mm2aGQUI18BjGA+HNY+hSsrZEHPlZl4muwMS9bnDba7GN98Kd1+gHc+CEw8C96yvjYlKYeFG6BZT53SfiJmMhhCSst6jVi9CRZJzOs3nnO6oAZ5OKEGMJMwiqB75rrOLvHPzcj2LCCLFIQUqZj3JQizZBwUzlsoaFIEkRJpW8ZgQVTLr8118weZzRGH5bypMADDGlJBaTutacifNOWFGgOfYy91UJxyjLZLT+hRhBMpkeERkSCnN3AShEOJh8ITMhQhkFCRAIIBwCw8LhwBHIKCAQKBwC6TII7PWarcT4djUcTiC5K+UUo4EeggEMjgW7H3pf/UE8QafHv8RRzhdzv+CmYUPC7TCDFK6uQNJXaSyx36uCyERlt///u9FyvXS39dV51TbW2ksB/gXX0lNDh1kxnPEXYl0bCcuh5QVjpNbgxjQcw4CmbeDfnPmS49WjzDzuNUOkaHjiTZBOFEhFLt1wvdnleCiIRBRrTUPr7xPREw17TgP85WUiSNBrYRwA3qTMcaU6LRNZ+YxxrZdwmXf93UZADSH7duIwOt1A4DVIiJ670SwrG2tjRm3bXroGDH2zHRAEem9h+unn1/+8Mc/E/GpLf26UUBjSYGWKY5hVanUDFaVONxjyA2IWaQSkaZSH5BIAhxAc5Id4BFGBIjMy2KWdCOAm/8lEq3ranA4lOZBfB9g6/T7nP+Oz+WaZGZkhpA5Yhafw9uCTLmawMDcPDtfoi+FsCAFkJmbh82ZQc3HZxJkeaiq8BUokOlYGAmoQ5AnHQBuucHsgDcrIIbMs81Z9TFXvq8HSmIHp3dWyoLmGKP3uu99aVzbgXxHuhMSZ7BVzuYTakE6EpvVLMIiRJb1QWd33dwiLHq3sU+bmkdi6kQCIALQ8Y7lZIBDxDFliQAkygBt8Lj/M3fpnafzH8DSiMhv6HhwKd1LbSNkrAOm5wdEICClMpEAiSANC8P7nETHq2DmQpisAAeLadEnmbelAsTWZ3S9bFpb+cV3vyTg6QAgFObT16czoKaBtB15VEeyRTpz2TEBNDgO48lchAoCqmqEoZGnb8RRDeUP6x6Hj0sKPXJS46G5iI97zNHM09AC0Qkt9AAaswaLCNWJFDbgjh3eUlvcPJPd4A5lp7UdeGiABvi0CO/jIC/fcWYAuuzbaduW9giEy2k9nT8sp/M012ljzoQSSymZqeHHl465q445pW+7iKznhybl8nLp2/7P//zP//2//w9CPp/Pc58S+P033zZhm/Phgd+/DynLUhrh4j7S2AYPW5xCKIREWJknIotwJJtjphOxIyJxbi6ew2ZXVXM4bjLBCBJHhsDb9JfM6EYbU++aTxMzJU04EBAEIekVVEqp1d2o79nMW9r6frErQErzZmZmEigeMXM6HKGaFMZsIo7ZofLhEnBU1kSUZmRzmo5577iP0o8BA5iRCDAC0D0UbvpaQDi2CBIRFmL9UojxTciIEKTq4UiF8qlmSliWhkmlPTx+4fCPmvvI7kQIa4C5UVp6jK77NnofBYHJI8AJMojAD3VNVilJTKQbry7i8KhlxATGHZE9ddC37Aq4ZRLcSwCEoPSvMYswIiosaXYU6OFAdDiOEPIhsTlK6yz1kbkAU+CXsj/FUG7T+thfL4B+Xs4xbb5e+3593a9/+/d/+/T4IZyZCgS2ZTHvIjXg8Gc7bpJjH6ogRdjUoToCZpilGaZIIKJbdhZ0nAipPQMgOlRZPtVsEmdbCwCgNlSVmQAEDgeU1OHbnArhiFZI8nMSwXH3dH8ZbkLwdT2cPjpEBOhwzL8SUGDEmGOah1tYmM4gyUxYMJvTR1AbY9/3/bS+a619+PDN48M3xCJcEOR0emDm9KEcY+9jVx37blP79fpmpq21vEMLVy0x+3DVP/3xD//jf/z3wnVdT5fXq+3ju4/fnNaVAN891b/7+/e1ffPuoYkUNXYfcDQUfC8bRcSjBEEp7DAt8wfpqAUKJfOqISj44U9FyEew+czQRkrGFwC4k5mYmYhH1PsOzEJJ3E2TvY/EUCqvp4XI3fvorjaYUEoS9uF4zneEC93Dp9mc87b/XTXMDyfLcMvUr4POkHOp3jFQIXqf2g+B5v2yrLVCspSTXGoz21W1gZCBRIlJAafMX4/aQVjICTxaa7UucEuIyA8aY+g8xnb31tJd3ZN4JoA7AAWYWIAbEJVCTGGCQoHoGGiBcdiEZ4oZAAA1WVKwEGAITASEQgw6cwrEAJ7xNsc/ASJupmnZ38LR6H75lUhdx+0QRUpb4SAKy+/BS2mHuNEim2xHhMC2LlJgv+IwZcWQ40RAADTv1w0x5N3ZPWzr3ocN++6b787nxwhspYZGrevUq81MoMyyAQgwsn2wvyptkBCJwhEyrDXJI0DMFBFzTmC7rWwAAI+DkZqnvbsmnTniKO99atr0fEEKgoi4SPGbjAqO4pYymdPB0uTuGLwDZcEGQOkOArlsgAI8AhGEhMEgRKU0CL1fVkVaxDZNA4+Ip2++/XbrWkQqcAC5uzmM7ZqdMBEgCjMSoUcQw2k55fFEgGB+Op0YSYcP3TGwX/f9CgyfX+hVVU8nOp3nxw8NfvWh1gom5oMFaxU3MFM1C+CUSQQFkhEGUhCzRBbMR6xdlvqlIYlgZEoFBbo5B/nhRHI7lAHcbCJGrXKvT92dCBmKEsxpbsBMFTPhyE8Gbr2bcrra5FowixxpQLj7sDnnHFPd09Q3r6I0xjm62hwwx82RPBmNjMzCEeN+U94O96PLOEAcnapD1QA5B16ZgZwfhxh4Mw2lm0rIzVI3QQSqTpQUb+1dTdnMkrmLFB46JxCB2bxVDQAA4oYAjNxKg4VhtOdSmkgN9cwjSbcFuMGbZWnpP594STg6egTezp7jn+gIYB5+fwe3EuOwb7jHquSJkPdaKeV26gMAARgApY9gOq9HaIQQERETKTKVJohmEKo6EVS4BIBDa8Wg+1TCkMBAYgsOEOJvvvlmWZaIwVzm3BFPCbcg6cFihANNiAiDYGYA9BAAZ2GMUENVNQvX4RalrITiR/LqvUEFuKuw3QExuad2uOgevdLYe6144wUAMxAKcykk2VjmcXQMcCiEsI/tHjZda81Xkz5Ud5zpvsIQCxGWUkOCixWpjqOUwkWkRZVKghmZlSBnXZdpO5CwSLO2bdvlcrlcX4V46ljXtp4aQFHrvWNhaa2FY0JdgP54Pr9/enj3dL68XM7LWqgsdZxOJxt2ve5m8PnTy75vACDCLgxOIlQK7rabmzsECBIFJGqADhMRWTCJpO7pvQ1+BPmQMNPxW26hXI/aCm/avsOGYNySPm421scGEAk3dyRkAEZAF/eCdF7GsDlvPpoRAKpmlO5ezHkBjDE8gFkcAg/irEUghFHGsxAHgH0FiuV9vq7rnCmNsK+gq3m9XsE9/9KZd0kEUur94AZXpUKX8K4DpEBgD/W0zxi6LoupTrTMfBpjut1sB27evKmm+Q90aaFSK5HPjuCtrUzFHQpL7xYIAA5xJE1FDg2LoDHRMbzJZ8rMrUHK0VMonRcjAs45p84sq/JqkqQbmPvN6eSLUxiitHqA/J6QzfEc99Hz0EmOEwC4TnfvfbbGYwxkMpvPz88fzg+FZF2W//XP/wIe798/tVI90mYlfvPLX/3X//KPS6lIwOwWMfatSmHhPjq4laWAR9+3iCilAYBODzBTn9PGmEWoVGmtzTlnKBydRgcL5jLdsnxIaBLQc1j7dnl114Rz0oQpd65kYrdBa2u+HjWNQHO9o5vgbul5QjExEKnUBQDUfFw2u9ls0U218vUJngcxIatp38ck7WpmxoxzTkbLxf22vfXdE8d6ev/uL3/5sdZ6Op9eLm8a/vT+fWF2nzmLVDURIUBmfnh42K5HwuJpWU9tqVKaFKsNA/q2X69jaae6nB4ekWj/+eefr9dfmOvr66XKfHxc98tnD9z3PQJrXdaTEPOYpuFIcFqXYTqnuSnlbioChVwDEBkJgtzDI3Kp0M2iRkSIxMz2fQcAORe9Fdj3HZgXU12XoPn2emWQdXm3LrJv/vZypUKllFZLKbJdRxLtxhhAXA53DxYpSYrMnpgZSykcNDxwKLppHGHTgezuxyFC3mS21ihwzgEA67qWlkZbLKXkSgjVe/sw5wSA88Oju+/Pn9291YVE5lRmTmeXcGAuELTvY2lyfmilUu99TCMsiKiqrbUx93ttkls4Z/n5TMQtD11TDSU1VVdzhyKV2YgCEhcgDyBGdve0Lb8hN1+4lvcLym5aIANrC7fW2m2fx1cgAtymBtn7EiXdwO50XoCcuBTEA3okkmyBDqSU6YjZIBSRRuQDMlf+9fWVmd8/Pb17fDqfTnPuS60g8O7p4fxwKoWBCNAgwlyZzA+gfnqoECJiLibiJsLMQLQggTszOSGZOgQxCVeCkAjICLmISKvGCMsNngIqpsP3LcIQMggOM8c5PNIIMCJ0eo6JC8n9WX399fUv3qEZvEVI5P9LlHbcGS3L6lPVHSwCgQVmWLgjRIT6dPdpY9u2y9v44w9/XB4+PD4AgLfWHp4ekxJGBDr2iMMd20MhKINS8UaNJgchZqJTW9ZWX59fcn8SkjtYCpHieLDujpzkAvMYGCgFALAUZA6giWjh0wDGPBwnidIvn8LRPQgZApnk3rK5ewSDyEFcdgdwImqtFalZI2SxCTfk3zM4F8ksSinoNyX7MSqKm/UWzTnTUrQsLS12869I1CMQKBg91ANU0xcl5TCagd23G/h+88FfQ+z5/SYX/t4t5hEP4FP94eFB1VPTse87IasqII6pqkaZAYGoYao2hu77qOnGTEUkHUPSVej45FLSSTUZqMfoOiIkEPyIGAY1T6cDAhQpjIxk7gpxiP8jlRJwGJAkRTcf/dGihGcqcoTnk40gKZLv7BZl/QVTgMMlLk/CG6Cbk9IbsMzExLhdd04TTQL3tHJ2ZgKnfDciUgXUD4Xy29sbAPDNxaz3fc6Jgt9//93T00kKIrHOThhmkzjAlBGm+9jVDy8j6L1LIQAsKEjAlEqnaebbtmXSFDMne8fAEBnCiVhYAJ1oRriqe8Sh2AU/pFKBlDwiDrrpJG+3ekQAp3d1jp2PdeQAf7WS4Pgsvi2yY9AIgceEJoKITMGzS0RiKsx+P8TznDWz3vtlv/7pT3/61W//0wMFVw6K6XPa6H2LiLWVCHezOTVXCRdhLolpp+ChimDAaVlPyzJ3tzLzSh5TzXEeI5zY933OSRJTh0xy18MrEwHJAmYEBKjHTBfpQGIWQiGq4RCK4UF8ZDcmPyX9ZCJCiqjRIUA0Y2bhQkUikMgA6FDZIjOrRxBJIEXkbDKAAR2IvC61NAHuQ8f00ENcy0tb9zH7NNWDWlJIHCIMOYLi4Ark2itCYzgx/Ye3drtN4z/ULLmMbaq7ASCT1CpZC7IUt3nAbSREEoFzDKSkkFE4JpQIKAiiM2FFYk6H15JI4G1kwUxAh9Dm8FzMW0aYGcGBCMBy8TFgcNrBa0BYZg1QBBA49N4d/W6Fdi8/bu6jkb+evRYhqU4HOxDD5BFEep9lpiVEjtHdI2zOyUIAOVyg26kREcBCKQyKCLUDnmXBCPKpqio3XYDDcUsT0fV6HfsmJUz7Zdtk5V/88rvHp7PHKAwxZ7Y/EmQxS2HCsu9HN8TMzCUCTANAEcE83A+3W1MkAhaCoACE3OFEREGEiYwCGAACYHJsI9At7ChWj3kBsxwz5iCHI00gz3JI3tJff/2H6wUA4uhXC908rxHviqx05A6PCDADR0QuUmvdhwGF2ki74bzuXt/e9v3KhRu0CLte39626xgdPM5rI8oo0JyvIwSCxYx54J4OpRTXsbQqxHNA7x2oInLvkxncwFx1wvW6jT7bwom3MRfm4ycy094j8PihAAFZKONSuDDVNOYh9CyPMY77wHPk7Mq1wGFUnR8YEY44I1HJr74gCDJZEKAUaEtJzQIaRRMR2ffZt7lvbhqIVEoBqncN1b3QSJfdMUaWAkiBgQxYCFTkr/7G2xv8ur7mmyD4C9B+bC70OJQIzGXbp7vXZWkNAdnMiCg0iAXAVDXUtLtNbyzJezqULz7DEW6JAnCgmODuYXT3m2AqARaO4uiBx+g1br6JFMCYNNuDg3BYEUVAmsMCHtcV2GFMCkaMAIiU4DAAQACpRu8jxYittVprpO74cO+4CUjvq9wCKe4SyQhXs4hIdiNA3FEJERESBtbuc06ksAzSRaJW29r62/Wy7czy8PAwJnOR1ur3339cFx79UmsL0FrFdRCAuYksrQqAzzEgQqisa4loABQx3dUN4mDH0roKABCkEgHdIZO/ksflDu5p7HOsHNNsDI9oNpZMvs0qiW4uL3jgh44ZkwMIX39FBAmFe84S/D6LDaBCQJSFeQQGULbWGExMQqA6pm6qGpDpm8dIPyJ0DiAkom2//vO//N8fv/v28fGRURKgLcQR0aelJRYAJFe2ECGwWxQ+rJ9bqdd9O7WlFk5dmAiJ4N6VEIFJFcxgu5op17ra3IRBBFkOK63DTRuxVGauyBRYHNCDwDFVJHnDZoQNHFPwQMRgACSzAMBSGnPWrZFakryKEAmBIdKq79bDEiJTqZXQASiIChV0Pp2W7TRNu+daJWLi7AmAklfFRGRHXJLCLUQDHe4eB8f+j5xPHVL6AzC6zQIhybXqZqbTmUhE3EDnmCMBX3J3Ii7SEBEx4zlYhPcjZFyAyYkMRn4y84JIbqDqU1VSpyAVMObEObtZgDsLplMxc4mgQBSzo92MW9qSmZEBEOWkl4OR2AHDIeBQTebB5rdoo+ym+GYWcL9zzOetoUiMBEUkjuolIdZkJRxJCQE+tCdOwV95NJtZaw2+Amy/vjPzvWYvPcZQYlxwjjndAmF9OL//+OH1BWqt7795/+13H5ZVfvrp59OZcxy1m+W3EWB8gOfu7oRRy8q0mONUAAPgmwE7wxdf4JEWwDlegXZqd01zrp4IROI8UNwhXdvwOEgtwvMj3QEjheTkNzV7JjXA0ePd6AlfMZrvzenXHWkSQMyOHHRExHJwqxHDIaZZrl7zCYD7HAhQ5LRt27/927/843/9p/cfnmopGLSu64DRe59jMjN5wnlU0syASLXfFS5E5Grn8/n/R9a/7kiWJGmCmNxUzzEzd4/IyMyqrJrp7pmentklCBIYEPzBfRIC5Asu+AIkCJJvQHB3B707O93VXd3VXZe8Rbib2TmqKhf+ED0W0buOQiGr0sPDzUyPqMgn3+WynpYCBFiIQwB7SmIXazfTvm/mjrU8Dd+IrAgjWjL2TcM8iLHIKosA8taHO7gbQAjmtrsCYD6lSfLIA5npJqo9qdDZIT+2/cI139XcHBEZoh1X59QRIoBbAqbiHWst67rsm46en2O4e9pD5JtPB2PdzHiuZJHdY3QzG9p674+25DEX5AEeY/Q+fMxVlKoipjfUvpS1FM5PMotaipph8lZt33d3ZyppAFVKWdeLYO2b395uDJABBWY2RgwdapZMM8LUW0JrA2bYBxOBcG1jy72eBDpBQF4l/r9ILs+1vGAuhdVdnXiiLzEnVXuIeXBKuN09MkLnURoeh0ZVY2qBERHDw8xgtkZ4/Jwk+STAELntTupl/tsMd02fkTQLZGYRIvxMHb/ebg//hSDc2o5Mv/71r7/++qtlqUNbgDL6aeHtHh7qNtoW4CUftjEGhBI7TkMU8IxUzWkmojfNB9FyKWKW6Yw5Xh6PaBLF/GG7TihJYZq7Sc8w8tTVWtJXk9E8H3j4bJ4Bn1nbj4aTIgKORJmjE8b8sLP0ZIFWSPUBM4tbT6pMHk0+ptxa630byIAyTzAClCra+9BWy8LMoKA25mtDjoBUjo/W9vs9EFtry7KcTicRsCOl7kD1xQLaDrdr7w3CSQcgZS308HTsRgAjYqYFgXy+iohABAqAcDSIcAN3QgH2PHYxgW0/rMopYppfFqEiQMQ47TYfmIJ+ueRi5jBwS1pNIEIppa5LWYa0cJvP51B3IAZCRAt7POGlFMg5+wsPkrkyiBkC8hlxNwPgx5RNh5VOnh8CyypXhCyw9+GJDJsFDIDJACJiNWPmNEWZXk+fHbRmXcg7af6eDgSUccvhk+qNCIikOsndUjKzWaTAwDimGqaggGA8qEYI5DgCJRW+YR6EYW45GUPMpzox9ID8ZwDYVXG6j5GbNTN0y3cQEcHQhpoGAJiRu0qVZJTlYSKitEVrrT2GroeoYZ6VIKFSRci7GyTfFQBIOBADY9/3t7dPiPHdd7+4PJ9L4eSrAKd0xMPZHPdN0zkbqXp0H4NYm9/cwawFGKITTwanqieLmWowuZVgQES8tz1hgkmszMOBc8NMRIAZxfOlEVPJ14uBhILEEajkx1TiwZMMHWB5N+aqcZbgOHJugJnLo2lKFqmbm6lrEIEI1yreh4f2fTcbgC6lMjthWdc61L/68P5yOWFuqko5rU8cYhqFBSnG7tDdTM0wa/RwCx2g/nZ/E5G9byycw3xagJijqmo1gmFmm8N2H9s+dEDrarGHa3g7/AvSiZAiyJSGdQBGnO8tEc1IEgCECFB3yhZq+g+AMZWYK5uJ2Ocm8stKGkcCh7sTSKK8kXdMOitn1lCBulCt1AubhXdwiGFOhE5Ihy2nuwemmIaSjBeBRFwKBHIbbxGQfHxLJ6uhUVwKKEYwIfnU6HEwFaK5BWSp6ypUSsBuvm/b1Q1W5HVdny6nZAhvfXcCNevDfNz2Wx9tPJ1Op0slZhImQVCEEa6mMJJJNcZIehylCiEZsToNguXM1bSL1EK07Tc1AyJTN2QScjXTYxZyiKF1EdOh6FIKIYZ5uDPz3jcAABEmYiYmhgjweD6dc/0GDknHC2BA6PtIJ/wqSxCKUEQ4uJkjMkvJvbr5GN3UPNlaafaSn2s2VIucXHHhtbdeCD588x253bfR1TyQEKuU6+vPteD5VP/9f/jLdV2///GHX3z3y4y0+NOPP5DwbW+n9SkhzX33CCBeA8fW7llIHbrZQHIhcQcdMHpAIWIOR6JgxrCmOo7pJm3wuruWwqXWCBNhYrjf27ZtEZae/Ov6hEARyFTNYpinljdPaQCqaoaaIwILInhirBDgbokNs5TsLMLAYy4sIJAAWeJ0Xrb9VgoZ2OvbW13ru3eX3juSlSJvr1frAITbtv3lX/67lw9fV5bTct7uvd09Am7Xfrs1gntgB9Oudx1j61G4FmJVWJbl+fm0f2y//uWHgeZGp6dzPZ0HqDpcb5sI1YVu28f1xLGbhfz88Xrb9qAoC728nF7fbkhgrghLGgr15jnVRiiLlMoRoToCRpFFltJ7R+RE6ychCCyCLCLUiVCKINMYw0LBQ12T+QsEic1zISkld3jhEWDgQyipe84cy8LrAgjWx6YaERIR62nd2xijczJrE19AhiCLcKdwZgJACHXArhA6ugBAkGkw1WVZwXzEflmqmW3dRKgUCQRZVnU4X86IaOYkHBBmASTrch5jhHmY18JDtfUbgQvwtvfWzJVNQ93uo+ENsDjUy5MszEjIlQsGDtPwcLNFFje43W6svpSKQZfT033bWm8COsgd0VxNtQ9tw3qEdlUEDx3mykiVlsLCdUH0jDAtIu5OiMN94nz8meo3G0vw9BUL84gACjy8DxiJkYAhogLDvPYBWBAZDrPTaaA4K8nRFyQek818oLvNqGRCQTZCII+Xd19t92u7XYf1My0W/s03Hy6Xk4YbhEymAxNDYXGDZVndp4QMAAkBBCUXN+iqCJiDUq4EEQAhJHw+hwHqOnpv6lMarDbMhrsGDPPU8zpi1FpzuyKFRcQtTVPRPbLBS7oGTZd3IGGay8ogAsLk5kJS+sI9rduYaWog/KG0cQBnwcxxSEeGpIgXpinKxkBE4mDGUqQUfn6+MPP9fv/48806C9e2NR1WyzS8rsslzBFRSJiLNq+1rpd6Oq9zh0h0Op2W86mNDbGUYj45xZGWUkO9twGIS11EHBiWpR6yDyaqiAsip49YGyDHfo7oALghVSHZ4LN7zNIQQQTm0/x2kg78gTo5YipoaRptuC8ZdoLJ0NDhrq7hKEzMJIVYknuuCEC0ZF9gZkGBlut9RDQP8sAx1NTNwgCnsSVhGrUGYE2CuYeHLrwgOXiGFbuFu/lQf7oUInKPNsxhDFMdbhEAdLk81yrm4/X14+12Zebz06WZFyYQAuZGGNSRMTL9MxXDTBBRWdhpJ9JhuUhfStFlqbUuy0l6v8G9qrqDuE0bb4/RR2ttU9sp3N0RzL27GhDZXGvFGINwrhgfcIO7pz4XD719IgVz+gWb9iFBGGkRgZl7iYi5lSDOGSaTvCF5SnF4UQV4kWoThfGjG1d32G3ro5llGCQmeYED9nvvY6iZIS2Xy619+su/+vfvv/paVS0s5PPkhgfFLee7iPDwdGQlxrmVCTY/xvX5UD5+DXe3gGFj9N6T9UwzafYxOAQA0lH4Em1Ncbt/Nmg+yh/kdhY/44iQVhmBiMKcuI2bmwGEAxgQpZTR7fM+ON1qU2YyQSF44ER4DBdT48rMUqgu8s3XX5/W1dS2bQOrtEgp5Xw+65i5Q8SEnBMiIxaqsSxLKbIsS+IgSPLy8nI+n69vDQBLSR4nMBGYE8EYI+OYRGrENrod/Xzmdwul9SASAKgrISfnarL6JzJVMI3VgonAIFIUyIIxEpCKNEfJsIsEqhP2IqJai5mOEaXkVivUjGxq1TMlnBCZkYUAM6BICy1m6XkxoTR3T1pR6z2AcpdkHgbTU5uhuoeZznV/mHmHcJhua/bY8ala7wMuCICZbR2BmvS2jFoWyWmutZZ4zQM1wMoIgnzAf3Ss8AmEGQMqVzIMYoThE5yi7FJLYfeZuibkYt4QAwE8umo37xGGZMRAGAw0YkSE2g4GoWajy3xzPzNn4/DMiPjyRGZ0ItgX5giPKTf5C/SFA2TEYSH+uajDcTNPFyA/VjjJWWSk0Zv1Zt6FDglcAATt7c0By+m8ns/L5cy39bu/+ItyOjW/fzFFKljiIeNByo4HpRI9IBA45poKYVKzCIIGaUJmYwx3Q0qGJUl5vCI6pEdxNAjT/w/m4Qgzw+Nin8/w5z0vuVuE+bSTwKRFYrKx85cNmus0SPXr5Dg9bkhEtBjZd7jBXEJb1ms+PgvLKsSMInMrCcHLsjAsp/UCrmPI7doBMaKrGkzEjwCGp/CCXbjMtRHR09PTWqqqwpEAaBYQ6A6VRVVfb9d9b8/vuOmwW2NRIZIAiLScdCLyOPbzxyb/cf1EhCwVMSUwMeVyEQddIwlyn6MA/CB0u/thNgUiZIapEfNIycmDa49ElN0AIpYiUhzieMYOlkEc7zaRmAMgIXINAnNwJIzUB4dn/gceSPoI0OGcHGcHA3AMDEfT0OFes2ZzgnEPaK+1bWiLsGWpUp4BQLVTWYgAAgiJA1P6y5luH2Y2CJkA3ZWQBSGqpKfj47r6Eu80M3HvAU4Rbs28RQxAIw6PwQwsAEihBuCmaRCct5ebDfcMd81JYaIsqg/voDSl1Ly9H4jgA571gwgEBz1jfnjwsBtByhsZA9wwgJGAzD3V2NNyuC4UIcTOQhA+LDCU10U8llKM5XXfsS6nd8/NlSsHsAgz29D8ZaYuDQAISUQ8hqfROxhWBpzfk787xmSbwhTSjAATSgiloMyPwkMBnXKNTYfjqn4pdsqmd+q4Aea95B5Z+D73CIhEHOEYB9MhwBNipjIdVswTOp4LSUQHhPBDNp/7AwagzAKe8hNNizfnw6j+drs9v7Rani6Xi+DKVPebah9rrapNRwxtcwYEAqCxZbpflM/Jd1oqL0sZY0QAImvrRhyQiydyh9tt27YN4YVQzDaWNL/GkAg1YDNAhM9hlj616Z/vm4icth4xvY8yH9mkT14MggC5g6oihZu2roAuIkhBBH3s+Tvn5wIAye1xw0Np5stSxgqje4QBCBIwEhG5gotT4oO8BJKOMNQYHgYmzpbbu4EYgg5oZm3YXhnUGpKbx5x4EQEIHB0wkEsRRGfmMUZSB32o9t5GK4WX0xpR1LqawUHqd9DkyBMDMUtBQPfIhwVwDrpMRHi8VwROR6fjaq5mPqSPDVwNHaKptgAF1Agb7UZekBFAMXFvBgY61SUzS+Za5Ti4+kXq0eMoR7iHoodITcHPTFhyZS5piCBCiGw2krGTPHk4sGU6MheTg4SU8HtAMqsRl7W4SbgAKoCr2xjq6tpU+7DVum2frv4X//a70/OzE5YiFa1WZqGhHId83UzTYBEAMDwss5Is55FHbz/GCIPRnekEaLNSYAAgESChhpqNxxI0b7g4xpwsw3Hk2TCXGFPy9LjV8wPmNA5EBCizTUWPCO+apAaEpCQXwoJIROXR+TwGt4hY13p8GxBGkv+IbF3O67qGW6ldFdKkBtC37aY6zic5nytF1d1H7/veGXVoG30f2qdJeyLFmJt/LVW6DcQwMyF+enqi8GHKwunsgsLg4IwUsG3b7bYhfrUsJx29lPDRHz3mQGOkZLXmzv94TZ87hbyEMLn0npZUU2kaX0hsHhu+R+uUV+IcadFV++OjCZhedSLSbZZ1ZlzW0vZkl5hazwXlcQuOtOH2UHdOLVzrNhx71947BFMUIWByAFPrHiOIpjljEEAE4fHaU6CTSXA626uhDqltjfOyooDZUOsAXkrtlhbPk9wTYBEYYccK3xOAcneLkQ304/GcE8dBmswvadvblBGj2tjcmltXtDF2IUOcIkUiImbA6SYGB2EmxQgH+yq3ADnJ5IvEL4euCJr+YpwjQBrRASJk0ABArgPjGCyz78pqp7nw/5LFC2juob0NbYgOlO536ub3tt+uV4cnMRT2f/NX//75669RAjDNi5gIiMgPs508bhaANHkg5kNVCQci+pHdCABmrmrARpRzQU43Ya7u2q3H7MomcnkMRpgtRkSJz1voWUMjHDHfnAkoPs79MQJMagMiAwRCdpOFuUAcITbAhEgMTvqoCMc7me2DHmtd4vnHc+a0w8tjU1VXA08HM0vhasQkuiQlPhEQdHSHpVRGNtOFKg5jZnBclvLVh3fLskQHYcnXUohj2kBAb3q7bqp+qsWU3TSN7VNcj+hE5kCJ7plZHBLYQ14835nsDT7LPSCQ/HBGmMcyHInINEl+k7ZwONCNLCvMTIyPG85nF4qllFqJyNJYPWByzJJrq9bUujtEmHqYYx/eR+8DNMI8wpWQJwqA7t7MhkEnXogcOSDs8Ymnl6eZmQNiuHs4mLplIxCRIqCIjI0fyMCHeuCQRzgiBJhq9EFlQERhrhiUV5HbkGUFDISAA6cjGK49ywcBSu9t9B1iCNnQPeFxiI4UEBo65dPMzBwEuO23WitT8VAEDjB3UOtpQYPASIHAxIBAAcYzH80iON/9pHsdDg3zvyPC3ZA+N4qzxsekkRx9AR7EJ40IB9iut+127eMuwnGkX3jE6XTpXden52VBJP2Lf/eX58ultZ/ZnMjdHdkCJq4D4OYjQgACMNzzVlMz221nZiR7dBPAyAxmNmea+Byzo9ocHDBTc+UxxwIk2P7QKeYbgu6Wz/NjrjteaQ785uHHH8G540AmhKCjAwQOAPcYXYlcRFhQUCJCJHE4dXe3VISBe1r7xFzlHMwZt9Hatu/7aG3f93256+AY1NsEiUut7OGCAE6I4RgaqpZPsnbzk7u7ICFjrfXd88t6qgCeHobT3REFIZDZAu6t92HVsQ1TG6elYkSy4hnd3ZEiS+fRG2DOWfTwosrzg5P6MdMVwRMFyCqvY940ql6rFF4Q+5Hm4O7GcvBEAMwyiy/fNCKiUqgUAriZqdlAosMlLCFzNU9OpEmt6GRmLF4AKZgognC/G0EIISGGZVSPAwUwpDnOQ+jm7mrWkqTvPsbIs8HTide33vfegYMFSyke0U3VzD3ooZShMFNz2vd7qWC2Yj7/AKoKAcv5Qgfb1Ybm27rv+6OqCgvqiGyZHr+Zm64izIgBSFGZc1vT+xijj9FqXc/nlVnGaB6wLMUssizm0Y8wD58lgDNPafTRHoBCKcWSfeYKAAGejyIRTEr/3C3NfoQRCQPCIDxc4WD4PT2d3fvQbYwx+4xglOLDn9+9tNHPl+f/7f/uvw70feyAcL/fa/UNlQ/KShJd37376vp2H6MtSxGh7AxLKUlfPXjWs31FCiFCwFqqCPW+X2+fbGws4GDrUtd1BYAxLHEsZh7DEUmkuoOOYe5MXErtoz3IS4kGAfjj1hojI2QTvoUxlJFyghFmR4iJ9pqq11qLICb7O9TDAScM9vT0FDBAwf3UdQCQ6mAuo+86fFmW7d63bbtczr03M7tfr6PRVy/fPp1Pb0j7fmeSoR7ZxLkPH0F0Pi8YhBj7bX96XrMruW/b5elUq4wxiMrb9apq3717f73fxhiylIi43/btviNStn9LWTxxEaGaM45wiiG3bUtKSK111oIEmw+NE0AgMNFUHCGF+0TvmQstkp28SFG1dZVTPW3bzexLiNcOBAQio5agkEh6tMMXxt+mjYTcXEd3dwwvNZHaex8tQLjwmRl2e7vf+jDACmHW2wBYF6hV6jIlgl2HO5iS6TTFzXGmtU2Wb8CdGVNUfFqXre2TiUOoMVQ1ZmIYu6twhaB93++79rEnSWitq9lofVNdlrL2vluzl+eL9cGADKiqre8VKkuJCHCjmQEpErWGIIOG7TT1c4Wm/OmzopuZRUBEs19z94iestPHxiG7uQjLAQnA88R/eQE+xsKctAEeOznIOn2g61PSAgC5p8y4eQAXoYjUtGLOn0enN/vzVKHcbjcp8Pzu6dtvvz2fz/VU16Xa3ZlGEUcKc0AKPCRx5/MZ3AEyJDMN43n0tKw1pCxwOZQCBJpa9z2iAIYIYRCgYfpt9R4RY9iBJlBv6Tr/yGLjw6iyHE1EVoS8fNyO8L/5ph1yw1KramYK++HQz1CIyHJNQJwjWMyPAwCyZUOJNN4dZBbIpZSNeRMRoooggUzHcuvd04fzehGWbA9LKQhmTh6pTDMdDoAYTvG592EioJAdkHhZlirSesapss2ccgagADIICwhkERKuRAAT8weYH0vKPezYJkyf2EmfRzfN+40mPexhdmp29AhsGukPRMQI7DCd7PLxp7nfnaqWpAlDIPMBvjmE42HCpAHGwkN7QG4lpwxNAgB4PV/UYt+sb3uAsRibeTdhUhoQod1UHUCfzoXovFTJyTvicEAXksKlshQCAydCdRPBgMLiOggJUw/j4KFzyoVsW4SZmENiGnPcbrf1lLQuFQrhIrWWsjzkQumOICLJHiciVSUHqbIwEoKiN92vBCBIRarr7u5gGVobqnNTeDqdYgJjuSJOENgeLsAAAMAPUb9ZGhnMre9jUvjCYqwAlGwEEonMGg8AEXNKP4bGucU8urwcHzLfLhwiV1+11KWefPinT58I8eXp+f37FxFS7bBKKYUwEIeZqamHJv867WUKlW27pUDr2MNJRAS0YwcZ6TfrhhE2tAG4FCyVCSXb26wIADC73SDTcM+FOeZHCADhbDqlpdNLJImIYe4ZHj/7KYRZOCKQmd09nS9VVZLVLbk+ediXRsbGBVgfnZ09iJkD56oswk6ny/nUrksrpTFVQm8jRlfist/v8kv58P5Du9v93omEubS9qbqpJhdXh0WgEVSWCCg0iaSpfwLAy9N5PdVt3/K2GMNseN60CN67t9bMgrmIVAed/AuA9J+LCAPDDHSaxybB7Lkh1smOLxOjQcx1skeKAigCVF01A+gJkNzAaD75CVERkc8sBnRPUxdKQCZ1CUmRzsqezQKX+XARO4IhWtJMpBQLuN9Gfb2f9tE0rm/7p4/3UBYeSBEAZqAKbWg1L8HgmLSbHABTm2Oh7mnonntTBU8VmQR6QA4tEA7mZu4InPWEKUrJkbkjxVLl5eXl6emJSMJRpCIQQt736bzqfOBLCHFs7kyYRIgZTUfE9AIgER42QNWGmSshh0+v+MLyoB7AAVc+rrIHHDy/Bzwjeh/ffzzPxyRj9vif7h5hgAeGRFn08zvNfXYWabWUZ8vdxxhpFOEezCRSzqenp6cXH369XgltWcuyFEIb/X57jedVjnbkuEjDImDf7yJCQWOMMUZ2LWaGmI/iQ02oGHPvJ4IODhhm6UHBuRk+7kMUKQgZBhPLciZM+RqMMZJ/korUo1bmSPzZA/MxTRBmgBUR5QwcSAGOAJ44DgCIlBQgZyEAcCSfXAe3Mdhs5MiKSe4kWZZ1Xc5E1/QvNIvWxlcfvtr3+xhDRDYfrTUw6L1v25ZeJQBAyHMVclS9UpZktQmJ+WDiy2m9XC4/fn8FkEKcZjmSwRLg2OB23fate6yAHKGIDOiPhhTTTgYJEsuExGWzqYzH9xxH7l9kW0RAXhEAeKgAETEyxVIKEQoLHq0NA7gIZ65rLnGmu3lS3g6hAQQx83I6r+flfFkzxQrR6yKlsLqxVB3w9db27lvXH77/WCp++qGDgxoAQF1gXWFdz7WcEASCwwNAYPpoAoCrjq47BhUSQHA1iAhzjMOCA1EYnRi1ZU+ZTsiImPsrcAqgUsq6nossOgbYqHwqknYJ/+Ir1AzAzFimd5MAJKEVKdg0kugSjkLFwCMsZVLqRhREtPWNeCI3R48OEMBM6NnGJFU2O3xOCN3dp7oBIA93xvvRDLqYNx6gLxn7F46BFCnUgsncC4dwCgLzCAv3MOjmGmCA6hDuRYCIFilA+Pz0hNCXUpdaLqeVeJjdI3A+vVyITW0uGvPQD2y97/k0poMLzSwOMPWhw10ZkQiEo9YKAmpDdQdURmdGMz469ocbNQIEoWTPjOiEwLmphRTVpK1BbiUy4Wsmu092SszFBHPpowMhi8x2MaVQERYUbhOyRQdImRvUtZoPHUnHnP4LRHi7be7AXMJhDNUByTc5n8/7ZtfXt/vLm3bX1m14a1vfmxSsUjjJ5wCZbh7qGFZKiZgYpKpS8XVdn56eIv7gyUEY6hbBuS4iM9+2tm3NHZglMizEZzkwDCZiQkKCQEKi5J3F53sls7DD0/o4+/8pjXN3U0VkBBGpo88b3hSzSYYSRIBkiJh3EhNTYTOcrnZuOtxNEJjQM0yZGUSEGFiwFJICEEgcdYllwUAqiyCUsy5dYeu6rHQ6l0+X+x//GX7++dYaRICILPVSyxkAARnQANIgLjzUQwMlwIiQBQiJBcOQGXrvORSzMLKwDyZQN8jYlHz5QTh1tHG73e73ewHQbkvB5fSUgmgde0aB03R514TGOW29AQShQCgEhONU7yb5gKqjEgoy4jTGzvPaE5Y8FhBTy/AFJvzZJQYxVB8+tPPyj8OCNftJPlwVErGbLeDEHfwQw0bSGea0gGl0eWwlggDIHcK9d7VuZqbdRutSvDCuVZYqgCZEvXcRhwikiX0+DtkYwwGzZiHGZKGSIT44HbkU0CQXsiAGaXpdoacR0NGA5I2mAOgObhBhAIRz6kOipNw5o6bEFemxbnCi0tr90LTivIrjYbMDJIIwX/WREZ4MMQX0x14DECgZdKHunhOQg4fz7XYLmMEe2S3jfKAIwF5fP/7000+VLtmf538T8xTVIxBJeAAqEAfEsiweex6JHPFqre9f3hHR6IbEAMHM4UAsSO7W7m2/3W5jvM+/1FWPfTZAkrVCAgIikHgatUAuaD+PjQfYkqUQAR2A3C08lzuMIFPWiAxgeVSImCidWqO3IYVRCIDcwMx1gHukXCIT0yBzToAyi5AoPLoHhrdAUxtkrS5LwE4UZQEFI9N3X9Wnp1/q13g+LeUf//nHH2/324PSPv3gcBqF5VDsqm1odG0FtXJKewwdCAKRfIIlmU8jCIFpFB4zojri8yktRcIxOT4iFQBV3V1Np0VArZX3aZg6E9sPY+SMhXBEzpzHQGHgYxMDTIw4mTzMKSbko6OeT+kB1R4N/7EDB/AxRm7+UziQZ9pmrvn0cbbp7J4/H7NFhONOiMkFQKKkqyR5NEdiRmDkycrOrjJHZXe93+9PZ3k6ny+n1Ud3uNcCY/R8fACbRwsYqd1GJLORb06A9b710SIiRRyJHZhTxMSt5piT4V/oRBihqhZ0LAUnVWxe/oljH4+0cFptE5bCftC93Kdj5RygJk8r/+wsSjk3TdQwEwQCA4KYPNwjA2A4qzZgqI50fz0qKZq7DhOpAUI4kpuASMOmqyeitNbe3t4+vGQWg55OJ9NeKjHlrO6IwYgeKFLMoZTa+h4RGYpXq0ih5+eLiGy+FyFEFMBcnjOBGdxv29vb9X7ba3VmSMbaMfUklprsawyajAP4gqBhlhNE3ixJew10THyBKL1G09RHRJBQfFrZhLsTx6PYuYWCI4YqmIUZhAczm3lrrbUxxtw4lFKWU5FKRBAx0gzSHFQxcJDz6eSlnvahfdyI6ruvnk4fXlYpX717+tMff/6nf/5BFcxhb7aUgkCe7V/CqAABNkYbuiMVwDVPe6IoWU8tfToIA8AA3aFwdQ93SCuk1LAkLp4Ffl1P5+UZnfqWuoFRKpZSSp13OcMMxckSK8wcgBgjHySm4jSIuPebjmGmJAUYPIIwcxWEkNw9RXtKmihltouaeWeI7tMWTW0vVKaEJWaqjBvkNuULGIKydB8wEqWyFzCvcbejJYkIC48AZgYEQGckplLQjaXIIvVUljUnRF7o3Yenl3dn07eu93VdS02dtoZnMoowY6bXuwdySJq1ttZ7ExEsgRjEDMDsBYAYianmeUp2IjGKcKSbVUUipknLSV/QFOQkW+7xDFsEhNppqdlBqOkkWfhUfOSbkzSIDGuKpMIwph1uIuRJaJJlDdSZaBsGwYlOpMNdgXRhFAuErk7xdFqGx02QEUhS+aR9v27362l9AlftGxEWoSFxvqzCwQIeXVuLABFGF0gDOQ0UisGAzKUyF64LU19OqxR61GhCMQ21Duh9wLbF9bbd73uE1eqny5KWahEJixI6wYxszf0OH2MRIZL2QIQ8QUIcSODqADq8lEVKgaDjAsIEnoYCAJgNM03Jqlk8bCYe6WyIgIxEEKG9t9ab2j1CSVhK1IWRU/NiDgbuaBEYaKOuCxU+n2u3Hp82tcZ8Op/wF79+9/6b5w/ffpBF/vSn13DrfS9c8ShwhHSgfUeIEXORhaCUsgQBOfpwChyYal9wSJ0u8NxZhKOGW9AspJ/e3ta11FJOy3lZi7UI6B5jjE6yFGRMfATBICK9NiMsTPY+VPvLeUXk7XoH9yrlen09FUZYAKoIWfi+Dw0T4iIrYUSkzVgu4bIRSFPd/MlgllhHnC9LhAUoIAgXIsyYMOGac0PC7yLTvh2ZGAt4qCmCl0KEaDbb0aFdxwjiIksA9N4L0HXb97c7SVnqCYhuTentenv7KCd+/uoMxX/3x3/493/1ayLcbx8LRS0MwDYIYGHmAB9tx6ClCjOPtre+g0eVhRjCOy8rM0cIJ2syy3D2v4CJb7sDIZZSumopqSlhN/Igppq5Ou7K7I8U7H3fW7u1PpJb4mG9q9nILo5IEHOCw/ApZC5lWXSN6eg4Z67s8UyDCpPbGAMUIO0ywy0l2KUQF0zrIAYIULVTXS5L+fDu/Hbb9v2Gsf34/e+++/brr775Zq3PEGbjJrzUQhAdSVmYAiPYLI1/rVtnZi/+46ePLLGen//0/Scpl4+fruv58vXXXyOip9AT+PJyeXu7nZ+fb9cfXl5YOH784dUUmJfb7SeMXsvUWUVIZG+PVTkgyC09SGgOPaoEhYmZGAKs+/Aeao7AWAiOlCcEQDNzNV3Xui4yRhu9mQ1PRrIbc2ZnBQSZWdouFKGn5+W3v/27f/2v//ynn//4z3/4zV/+5V/1pm38tNI3yJkwLQToPoaOPpQYZOXW+tZ+6NZfXmSYXq+/f3v9+et335WTfPur8+X5v/qb//KP//gPfxRanp4Foex7731QODNLLRGWBrOlnIaH94alnk6n6/UOGM20tUHCEOzhrsFONoC4ygKgsI/hwwOdizy/fAXMrY/7tmP8XLnWBd1JY62n0zB72/YRx156XZJmzmuVzzPZ0ZVBugp5TICQicK5MiE5grvn/5t2Pczk7kyWRCM8UptpbjZAJCWiw8xEpvnKsiwZ/nmAk8kDQwBWVSIgEmYTBCFMTpqOnmckJqh2WJepY1oSAGtADLvvDSi67urKC64XJrG9vxFqgLr3sJT92QOPQkQIy4WGuaIbYwBM+MBdERMOmE5HEYHoCckQA0YKSBjR1nWlg0qYUa+Zz1lkZcpwJwXwAF8WlnJai7i7ztxhOmSvUisfwCEjYGRYG8HpdPHoc5eBdBjgBoRhgBCjwPGjEAAsQYp8v2brTRijlIIYGA5u4J1Aq6A7XE7l6bwspY70o41u1gDSHEszMcgDcEbiWbinP7gHTmtH4nUp1+suUk/nc617eKiOCFzXs7sDCROZdVUHEEJGxMvpgqRHJ89JSiN04eVhrMYkSAhk7lwLElH6WA9o7m6IFOiApuGmiJZb3gxkut+vOWPj3L+OCHBDPdzlsnjM44c2RltWud+vHv3p+URsLG46tv3Tsp5rPTOzebgT8pI2ZxHcunoMg8ECtUBhHj12fRM+UVnqmb7+5Qsiukm7WzgQ+7Iw+syGdleICwSFozm4xVCH6PvQfe+9d4cABAbAIAZkFuJKUgCcRFPNbRAQvreBRzTGHL0hDCCCzDPkODz3K0zCrG5ACBRC6aiKfmzX5oJ/DK2FEMF8TMQIwdQUIlDwWJXnQ+3OAQ/t6iTtZ48AYLnRdTNlF5EZt4O5uPaHRD+fcR0qQpz4MuaqiQCg915rzbybiBT2RaSrF6GIALIn6W/oaEDgxPB0Wr/+8NXLBcPUvBUGHT0DYwJSIBgIjjSVIR4WoSyRi7D0kEyR9PHmIjhEREIDdDh5IgKmJDzXojYiCEEQIEKHG8BDq2nuCmjMJGWpwmMM/azDLaWkWUNMa714QKdm7qe1fO6u47MiMFdyRJK04gPiTWwu8DCJj0NiHIeTRQTmpo25hBswcS1SxQGJwS3UzcGEOBPT+9hTIxBOZtb2PQFfd+/aDrparWW5XC6ZIhsubqn7VIhcoOAYvm890l45cFlOQ++qmdwVTJJ1jhhMU90MwpWZ8+UfDPEMCEloLbU2nCcWEYssdASLtDbyZDLn0xsAFoEk4qpullO6OXgEkr1eb3U5/fjzT2300/ncxyCWcGytSS2ATswaCJmdIBLk5qB7d+8gQVTKwggSDvvWSoF1kQB/9/58WS/bXX/6/q23iAiigoY5dAOQe/4nMc7RRzPVbbu2NiICSRIzjggimfMpPUYzIqKwMFN0rIUfUPeBOU4I76F5eXzNAxP0mVwQkQkbxhAR1ntnKu7R+uYQUisymRmk43duGVCO5TCHD5jSJvzslhmgZqqeeHiK8yMUEaVWPGwRPE0EH/y841ePGERBGGauw3KzCMgRDAFuaXAUxEKSmRMEACLEgq4OPmqhl6fT5QwYW+93WtC8q0XaPWMq/twDNC2hPJTYGQiwRAS693FAuIncHFaoCURjboCTV+dAJOZhFm5OKMSEQKo+hu57q7XUWpGmdoWICDlD4g9AuzAjsyCSuyayixhMEgEeoTpqganDcsfHr5Z+g+lMxZOplk8+TEJn4OS95nNE3aw3nTj/tEgNVX19fW1tW+vzcUqmM42HufehbYyRMT8JjiTsiohEULhm8Oc8nyj52tfl7MXMrLXGlVkYAHqD+33vfUQsETyGDbXekwiEzIxUEHNJ7g9ghYjsiE5HxBTa2Zj2FuGA8sBfZ+ebN382Rw/bGISS0UXCHI6em3YL1aTPgdu4XJ7++McfzGxZlt7709N6qWVvLcJVBz52MwREoj4cZjoKBbuDjgCwWi5t2xExQPsYUpan01mkgV9u1w6wh6PPHRYziSmYghPGg1IJ6DGIAxGlMJdiRzpxZmHG8fg8dnwRk3/Fx6UNx+s3MzzevUQWs0A8vkRE3PRYFiIRCIExm+czbGOMXOZkP2rmeannj4tDY2cWKWMH/NIVN5m/dFTrSSkx91on6Sj+5RcdGpUxBlgjyrTnA4zNHj8/iAhEC3Lk4qBdR/4OAFKGjLGPvutoGMaIZr23HVyFXcPRkxZh7hGuAG7hgQYRkKgtukf6QSMAHYIjyOYiXzcYEKAQAybUF4gM7ghIhEVKrSsEAwzTKX8WERY2SzGlq2rf7zb3l/m+UW68sjsgKsI1g2TCFR3Tu3FKqg8NmD8WvzRtrFpr2XRILfk+Y3ruHnwEHyPB3XVdZ3cA0dr46aefbtv9fFZ1HNbdJHUfLKS6D20HhxoQmZDDfUpxCjNLQdaU5qkS8SNNcIyByKUUdUV3d+odtm2/3/feTuHY9mE+Gd+PkcfdXfuU2wZlcGYuRB41Yn5bihWnftGJgBkB3dx619aayAEGTyJzorzoXfcxxhi5euwj/fIDEV/q6gCBDCz7tr8UOZ/PJBgA+9g1EhJioFC3pDkHYYJlpj76iID3797lag8xPFphWlYAFOGzFFLV27W1ZqoKgSJrOCMU5qWUIoBmg4mWTmZOKFILsvSmmN6QOaml/Bg/p1o+bv7jqQkPD/MIdNdwBgARLoNVtVkDAERydVMXfpSR40cwQ2XRjLgAm3B3BGQkNrhZAET6+WUJB4Ra188r8QDA3IJwLrcSTkukN33BH/u2mAzlubkUznVM6kMdAIMQkWpdiTiNgJiARIgCCAE9WC1g3/fsDLWSKVZWQhNyQgcHRpAZIk6ADw94MB+ulqp+pJgy38Nj1wEgJCNxstf+siKYBkEGqKNZZCZNenhBoBPYvHDc3ZdlSZ+f7PdcvQ9V3W207GYRMBw09MizUEQmTJ8Rdc/e1mAuI5LgwDhd1GdcLTASeeYURGCtIFDi2G4iZcE9ktEiRGRZTmlb5u5Nx/1+772r9d4xfDfF1pq51qhj9KE9nZ+SzVkYfaQWN2oufRHDyVSFl2+++cUvf/mrP/z+597sdrtFYCnVhh0iX2j7uF231p6IOB9ozpbYwbJ/98mFQaRsMSKitZYkcZqRSpO29EU+6OyrD+3Q6L3nJtIswkdeYGamPhwtS15ay4gsGcdwv+/X613Vx7Axbtu2bdtWFimLqOowA+izJM29OwCkLZxAuGo3dwi633fItWs0AAXsDjcudDoL82mM0dqjFAoEATCiMEmtFQgDlBHGWPZ9R5whKo9nPm+BLLhGSjzfE/Z/QSNW1QDkgIMZ+OhuPhtMyeEzKG6q2hXQhtpQV3OauQnhRojLUixcVdW84EJEx72e1Fd3d6SotbrPWShmNMCkKmR7DIGJyT861RwW8vdDyqNvGQaPhO7Fw4lDGBEj86YzQRBK4cJMSAS5qSAugByxgzsYu4XFWBY+LQtjmKtILEuphTw0Iq1XOMB1gFuk1bYIcREAcAvVcMM4qLSIcweWFh6PZkfVsyLocIxgzjgmdAfTMRiS9+LupYjq6L1LgYx4N7N970KR+yb4l1p3d0KgQJvpeT4TxGJWKwBIF6Zc38Ncs0e4pONQnhxJG/+8AIHmjjkrgpnl0TKz5P/3Nj1dxhj77sqMUGZ/4RHuGJlmRBCBQIJ0efc+n8C0egAzIimFPQgBRrfRjbmUUoLQAYSr2p74tVnsex/dzhdJvQhicnbNzJAlxfXkEeHam40embrpNjkIkQBOjjeQ4qD5MHi49zy3DtbGnkv7pP2ahhmohqENy6sIiSRvPg/ow3786WMfNqZnQVxvN6A4XVaDaRvlYOqQYVJAksZ5EGgBQ4G4lFra3pdlaX1X7afTIiW6viGUujxdLs+I3HZtN1/Xum/mBjr8MZRNtQulKm9AmHlkW4aYhkEsLPmSI9K2Z37BjCg4yN3zsi8UGIFmUzqMiIUEEVFSvV+k966tN4PWtz723rsgmTbCcDNmXKRYxtqpU6FClwB7uHrMv25aMjxGYn80frlFs/SadY0ZzcI+p4/0AgYA8pRFx+EvCjUm3QABvda1tWamaiac79d8U5iJq2Z+HEGsharo/fppLUWIXK3ZHaphCsgdzSZ3MFzDyR0IkmlXmBcIcujhGB5AaBDogUBxBNU8shgTTXDPeuHoRMi1FrMYXd0h01weWxVVG6MHSK1QSjFbxmiSdv2UTI2wGX4HtaxZW8dQHVnFRYT7rv5ZP6IHBjRrdERAUP6lRCkrlJztswIjIqIBEJAMbUyQTilmgVB6z+Ap1+G995BapKbLtrvxoUoJRHQk4MISaojs4Vtr27btveW45U7X2/Zf/svf/P73H//sz375/v17B2mtiUhS9dMmIz1NCMUt0pgwIw8QkTAKEwWkL+BBb5v26RNFO9RuEYFo7mg6zabsEaMWRERj6EHgYYQ0KTFH6lOfilAc0XT4GBqBIsu+78xVxAA6M0dA6x0EpVCRklOzHVLLdKMACHdQC/copZ7WS4e+ruv1NgD8fKmlyHa7ATjL+vRcicrrp+3+apen0/022h6jp7CmqWYgUXeMMdoYzR2QjIVwOowhZhKKjqNRwv/1V75RTFxYRKo6zGYzSaBEiCQi6RgsScOiWE335BRIYQwjItOOx7kvVZ7ocr9v27ad372vsiDNrj7/VjPzQ/hE9PBT9iRRHjx/T/tQwACIMTqg11rWdQ2wfd/NTKRgoKpmIjgcqk8iytoJgKUsp9OlLqet9daGOqjq/X5/fX0N18tpRYzsKtdTvVxOImIGROyhbQwdeZ4gAISl1nMHGmO0u7oLQjCRe3UHNQv10+Xkrmoe4aVkv330iIhJDhWRWlewZDFiOHL2MIhzVRShqqUUIjQfr6+vWf5FqpCajd6TlSQiNWM8cmICCOGK1Q4gDWqtqjR8uHvAsSAxI8RSFiZOUHpZTgDQWlOfWnUAsJgVRFXVlAhF6Hq9llJKoR9/+PTNN9/c7/fXT9d2+73w6V/9+jsI2W/9ab1EqBGK0Pc//PF8evqHf/rHv/jX/+bv//bvv3r3DQR+//33P/780+9///vbvn33q39VT+e//Zu/+/0f/2QWf/Znv2hjtDZqOb979661drvb9bqfTjC6/+M//NOvfvXy3Xffjf3TuRYpvu1tbzsRLbTStIo69OERAMZSReR8vtxum6ovyyK1pJKKCJlLa5tlKvSBYiDKsiytjTEGgOvwfe9uSIVU3QKK1FJPqnbfrmNY7no+frpt262UUupqPixc1WsEEJJwynM8HXI8SsCyLEA4RiOU87kC4v2+VVlaa8wISG9vr8tahCjCLk/LeuK26/lcf/HLr27X9sc/DA9/efe+jz1gMRsUtixLb1tOPUUKcUUWBCFmi3DD3jsRnU6nguKhbWy500G3fd/buvh6fkwZzGyqPtSHAgCTCAUXWZblft8LlVpBVJWJREpeU733UlAIiTlluWNEwud5Q/a2PeLJ8zmP8AAj5OOZ/+xFMbGAI+f5C5e0ZKFZbq0OiBGzc46IVJ8jIjileh0RS6mAkh9AayNDMlvr7k4BwhwQQsCAjnha6lLWnJrcoQ2DdG0IQUTCfFA9nBAKMywLIZIpUqEilWntXcdoyQJwVz8YsvCFKBs+W/rhoW9KnXbOeYiH6dMkzHoSFvOPAIJb2DESl0fXg0juhpAw/kRV8wd+6VCc3CQ8ZsovYLZZs9w9UBPBAXQETNFkCjU4r7vCADDGMBvMnLvBb7/9xfPpq9P69P2ffjrX06efXwn0hx++3+6vf/zjH5fl9D/+9X/+z8//89/8l9/8h//wv/nVr//1X//1X//d3/3d+fw0VH/79793iGERgIXr66ePbfjXX38bEb/5zW/+/M//vJSCrCIWM/5Qe1dI0Ns1GQEiBOhqA8PhsL0VJiRhFiAa2etHtGHs0+xsDKM0vpxO05QzdkQXrof3pY+emfeZbSgB5A5jaDjXeoZQd9/u99509MjAT3dAAkcgYQR+gNwPIWaCPZiEQndTRA5z2LatFCZOxE2RTJa1lHq9vrrxUH56PhXE7//0UYq3NjzGslIpuO23fr+fTguEqbpwzQIEEIQeByxiOdseLr6fx4SIWfpVxxhAzAFE+rjMOFDnIxpfrnIkdNAiRYQgrLfR9qCCBZdlcQ21sLBQdwhEEJE0h8W5TcA8+wdOfgAQEXAINQHmpPvoYvL7RcRdA3JPcfAoHJOGx8Rpwsw8n8DcbpRS1MI0TMfexugaasiUzQ4iFhZhcCAGESQCRmQP1nTPBnG1jG82DQV1V4SAIKliZn04IJzWhYXDu2lEBBITgaqqWkQQTrQGAMDBMU3KAFK3mi/6C46Qz8C/8blM4mGd4O6psSdBhAyeT9xy9NmOphgpBfyI6GbHVPioCI7okKNNRHr15Xsd4Q6Wzp4eHuiEBBRI4dZFKjMtS5HC+97p4EtcP77dTrf9Ve+3P/7+n3/4j//7//i73/7u73/zX/7+t7/Zbrf7/f7+5eXv/+63y3L5h99+ejq9+4s//3fa7fe//+OvvhMSrnX9N//2Lz9884v/7n/4T//w299NxyeRZV1Pl3U6SggRmTns+77ve++9UKga+sh/K0IeZtoBGCaGwsyABImy3+/3NIQZvTMXloIEprb3NIAOR3DXNmzfd1VdFh/DRg/3GD1Gd3dAp7oWCzD1NoYwkywwcN/v1/vehhsAA6XnPE5fdk4GhyVuDJifHR6kACAEwMC5g+2jSVmJOEXlHiQoRPW6XU2Z8XK+vDuV9cPXz8/v6rbfh16RXoit3e/b/cqMS6lMC7OMbuoeqMKEjEdFYCCcAsB5NSQDZR68MYZJoQBH8kOKBtkKAPaIMSxiqIUO9+EZeY5fMHBmaTkvVZECGB0MAgMyRiP38cd/AOaWO1X9afwYU+0PCInNfcb20xXDk2mXFGaPzFCSNEAo65qX4Xx2EJN2nti7B9okJ1F2y5kiT+5j38wMIwiAmfMeULXIrFAUwJCyXLe3CgaQVtnDXQmDCEv5bNkwhh3XP6kOEUjcwcwiFOHzJYzTJREiAj0icNhn6T4ixBG47V+EVjxIDQDhbgkHYJbrmJIVMyMK5gIzXDunaAePh9t9/AtTgDlt5/B8jG/RW0932dRHI30mgACpWpdC61rb3td1ReRa19ePt+36m5+/f91ucDm9/NW//as//tMf/uE3v/3dP/xjhrQPWRauC9Xvvjndr9v97VqorOXy848fpdb/03/z3/yf/y//1/V0+du//e3r69tXH77Z+vj48ePT8/O333776ePHMYbUiIgxIBcHZlYonbKCEJDCvE8LnrSMmG81gfuwoQ6t9VLPFqhqAS4FiQRAe9MAQwRS8NBxfLmDquoAM9ABZuGGYBh55zq4OVQrImPY29u27+oOwplxQqkoZUm3hTBTCAvCpPQS0bKuCBQz0aOk3SMASC1TMalCxKaxba03W8o5gUAzJRxffXj65Xfv395e77frffvpfGIpsK5VpDLX0/rUu0aAjhHT8j/SuNA9EOWhuX1ASo+ryA836jwRyRDFGYMyMB2KzMyh9977kJy1+ug5e+fA2XvXZUZozMYi3APcY6l8ZAQBACTHHgAibPYFMzbaExg7DNMe7KMpzXHXaecCTAjMk0SHyD5zcQZ5HpGDBBUjOShFhLmoAdGQwkQUqhQwho6AEkI0ZXB9mAch1UANcA8MBMdpWRthHiMg3JEjnWMJMXrfATgcgXD0pBvCMSi5e3Jdj6f4ALcSxWUqx0yR3z+RPzP9on5PdXkkezLQMiQ0I95i0rQBADICzFxTiRWWSs3Euu2LQwAeRBDZQFmgIBIDutlAnTsyFMiBxcMAwkx7G4hwPq+9K5H05re32+3ndn0bv/vtH9b61f/hP/4fv/nFr57Pzz5AaDktHOb7tevu3u6MIkj/6T/99c8/f3p6evrxx5+ut31ZTk+Xl//v/++/++Mf/sTMT09P/dPr7XYbuRcERwIWYqE0Gj5UBgbkLOmYrmO0QGCk01KIyA5MN8+u+rGBgzlpjmEeOEYa/IK5emiEekS+mdt2i0BTTL4cgCCCBzQdUgugAIEHdrX71q+3u6oSERchLsh4eCURAhkksosUiJCBavQA8PFw99KIwlhrzeuBmZd68VDrY+v78y8/rMsZgl8/vYLx+bL+6tcffvzxe3e97z9fb/LhwzcnWc2wNweQyMAusyBwdwxKmyw8dMYPHf48Dzj/IeGDyYVhtnQJDE8lOTMbuLtPnlnG4EV41tGYatboqtu2AU7Juoa6uwOGw6Pzx+l7nGRYM4/D/OdRRw4DDziiiqZJXgCA2ai1IkpenoSCFMeAgI/Xgg/b+fT/dQQKIiKWUnCRoaaIwIDhbkPRwwhAnJnDJz83kB20Dw9otQpTTB4rIli4q0eoukiVwm4xtLsRHQaBqNNH95j/k0ClWXMjwp0igoIgkCS1W0EZOz65wv6YIODLLwwWThglKR5H0JsxSQAkLTFBlojIjQwdVhR2xJlgbgfz2vjCo+FR0GeuyfA5QeSCJKC1HbGwYPbq2u3+dkcvt7fW91HQffhv/vo//93//Jufvv/p/unKL2cb2reubdhoWGopy2/+5m+3rf3yu1/Ze/j0ev3H3/7uv/1v/2//r//3/+ftfvv662+v1+unn36+XC6n8/n7H/747vnJPGol5oDoqX+B9MLWARhIOkbrYw+AIgLLhQjSpy91swEEIJnOnrnYaj7GNUUXhQs6WZgO9zDAuZlrrc2e1AGARSgJpgpIKCwLBKrCdt/v9/0wUEozJfUIIq8kAEBF0vgtLZWYCzIh4lT9+gwzcVdgIJDCn5Ppal0RsfnW9jthyc+8j31s9v59+fD18y9/9T7AP328mu9EIIX2bbTNe4u0sSbKAxJmw0MjgHkF4i8Kwue6AF802rkZcfdta8zs7qo94QPBPE6kw81x2qXOFXbEkU4XYwwEBQgHsxwQiImo951ImJmR4dGs5mJgIgtT9QgACGiu6fnxuFGPrwmDqXoc0VoPTAERi5SaLEefAup8YR7Uu6JBDvJjb7QWDKgsg7lwMHNlhPAw0JGM/RrhXe9m/fxuQeiIM/MnAMx1aAsvHuasEewW7gRQcl2X95jZIMZS5jqnNSUiIYnp5JmvN/UISRqPo27mK4Lj2Y7HY5z1yVQqAAEAAElEQVSM5iRlECHM85v5oBn0GBGRVrTHpBCP4pL83gdP5n/xJuegXErBTC02D9TpkgIOgCwcYAhsZtu2MVUzO68nwbOAlzi71o8/ffp//N//n7/5m7/prWkfqFBAykm++8XL/XUfAX/8/R/GMADsfVrg/s3f/Oa//+v/6e16fX7/FQKnxOh0Op3P55eXF0LwmDkd6UqUXwSUp1wKZtqShUfY/X6tvDAXdWhd3YOlcqlmMXRXJ/cYw7a9uwMi8lIiwBzaUNWG5EO33vdhKikqJyDEslSmYhGgnruYcNru+6dPr9frLZOBWTBCWxsBfVm4LjNbJTzzMuZvDoQAYKHulpZPBmHhaBFMk2c9zUTSs38pRXvTtn+q5VRKsW6qbVn5l999MDMRQme1XbubgRv0pufTRVgCRKNHhOlQ7+64rBTAh9/856P1eX44cADEJAdMyLn3PsYkUIQZFZ7TtfmQiWDFhNkmZXj+HSl0C0ImYeb7dWPWUgpA+kw/sglzTk6g0fEIHTUz+BeSirSKS4CU3ScIn72NEN3vd4IQESFBIgRXB7UADy6VgnVEb81xhKO56Ri1UGGuUnQphWFZaqHYdgU11TAXKUTuEGSeLUpAOEEgeEo/dDSnETacFgSJ4HACgBhBlMIEU9VSuJTCxM5eSj38GlBS0wjMXHVA0uMSVUnqMCJ4aIohsijkkhzB996RTFCQiICc3FXNwA5qeQolEYMlAEkOvMOnI+Oj6QgAREp36QhI017nikDsGineiiMyBAEzzRsCM5p1qWBKb9fGQGP3cLjfrr/99Le/+7vfRsRJ6h3J1RlwWZb3z+/b7fvb7f7z2+tf/Yd/jyTX7d5aW6pEmPbt17/67sfXj7cfXs+Xy7e/+Oq2325/+iSF1W3oPoSAFBFQQApIQSa2PcysCNZSBMlsRODb29upainrrAgAKxYS2NvY2nBHljo+czSXtMNXtTHGGN3Det+3/Za5qdnhEiW3o5DjUI3gcIjA9InZtlZKWU8VAMbIp2iICGGt5Wz2L1q2lLpEBAFnEiYiCtAkbRERkQOgu3noMAQJLCTrfW/b1t694NPTi9lodqt1fXp3Or8uENRbaBu9KcO5lJJQxeTgWHRv5paNOTN7gKbsLcLTP2ImAx2LD0tDT0/rIiAMi0w/y563m9fgHBSEKIhBYYjQuta+7e7x8vKkfYNgd01gKxwOT2vIJZfZUI2YLlegGjNDYsr70vgSQx2RiYUpbW1AVc3tcrmwYISnJYgUcvfelRHWWkspRJ91WgDgCgZ+Wi8LgY6dgVmK9+3lcmahT59+DBjE0dq+rlWDyvIkBQAvv//nn7765qJ+hyBkfrtvBIPYCZ1whA0IK4RMKEwi7Aaju6nb9HRKxlQFAEQIJ0cELMTuEW0bZkOY02hwa3fBi5unX5uHgeXnZSLkrulLhciU/Osw5FDXNvZcpkCIIzuh9Uxkk4BhOgIHAhaRbbvP0BRTdXX3AowkSdJDRC5Ilp7iSWPHEQPdsTAiDh/gRkT7tremInK7tr6NRU63t92GIJ3bFm037UYESKHjHsPHdn8+ndttO50u5/Xyh3/+49v1+u7du1K4IPz08w+ny/n04fnv/vF3KPzNt88/ffpDgEsBi6vg6fmJdMjQVk/1dvOn96el8vXa1hc5vZTr9vO6ABFgRNtGu6VqXhBRpE6yowhxNQez6LfNnMxSjmKllKd3L7331sbo0VpzVylSlrW1DVkuTy8AgCSEIoVrOTOXPnS7j4AViAj4drt9//0PrbVlKe6+73dmdjcEXpbL5fxSy0kHYsFSPltjz4U0uLtzoSLJ1MUi5O6upqCBoOZt9AFRDQFoqG/aL5cLFL6PuxdDxCj9+XT+t6e//Pn7+8cfr68/7X0fwFilnpXPS922rfddfdSCa10iSncHUEcGzJCBwuDFV0QEU0ZnEAyiAAZgQoC4t/vp8lyWSqPBcCIBIB7WRgeislRR624xxggwEXEht7Ft3bUx5Z4cAjnM3MBdl2V5xJwn/z+OWPT/9VdEpPmHSGFmBM6JxWy8vb2xICK4KzGoTX1OQVTN4LrPYUeIWM/LYUCadSdJzODZZmRAM07eFQKM4UxLLWfhlVE0KCK8O1RBDAgHGOgcnjRZCgNIlf9h4xkBqYemaQWfy22jScEGIhaJiNDkTiEGsmp3Q88gFkgvWncf5g/9UqSrd7b2wN18phITMEB3q24YPudPSMUHDjRHFTNV7bldQiQRAHfV3YZLocy212Fmgyjjw8XMzLQQlpLkyK4KYwx3hAA7PP8JxTNCUrgsCN7G2Hvv476Ppuh4Wlcw733fthtAIMXt/na5nAiNQN1aABGOQPNgwJnWXZdYl5DCcCJzCoTWAWIDgtMJzishuWofHOQ94+4pVwAQQTBM3cOZkSCA3UkdzKON4QaBxAhunpTwfWsMZd93s1GdRVIJWnPJXctaSo3AcOx96HB1qnUdQ++9vb6+3e/3JJIxp7PjnNR4utewcUw799lBPwQCjBjgocPNBiJMRjPh3jsReTgC56QKgcTCgPdtN4/nlycuNLSB87KeT3HqL6gDb9fh2ChbdIpHHpokymY+vfb5+NsmY4URCUGOGsGphnIATh+zTCrJyNXCCGyeCpfi7sNMwlHd2ujqjkzA5MPHaDZ6KXj4Mc4tQQCkf5sfZumHsMRF5EArMfzzWDt3HpRzciDEw0CBDsYBMTDjnKhtGjF+ORQRETPrmJYciCgiCIyI+73VhRmpLkswNdoII9QovNDMrlFlQozA4Q5G+TR5arHTbtoxE2gJEYAPs9OIcDOtdYa1mVkiC3n/Hxu+aRubboU6xiFD8sx9ScWe2jjMxQkxrWc8wNGG+zAfEcHgEBhObghGjuaIOBsNUx8+RtINMlOvyIIUpokSgQcJWYSNYRFWKNMHwMdwH8BMpWYIlA4jQDAPN1DAjDO3fCFALKVIDFUE1b7r7joqV6lYDNt13xuWZZUSrd2WqNt2H9p9AAVSAQdXa5enCgC5Khc2Rk+oCJjGwLXi5STri3771VenIuGmTSE6gcNDxOEQCN0cGYQ1aabhMQzN/bY1xELMHhpqOfjse69svfcII450H2YmABhjrOtpqRdVb7uGO5HUwgB429rttr2+vl7vOxEtCCLsyT/CmPJtBgPLnRDy9EqFSHINQgQyBbi6hY+IIxyJSHX2mAgBQOGQsT21rp8+/RwRzy9Pta46k35EluX9+1XgtN9svwZ7XXghkLEpQLIJXEPd0/ot1/mWaowJLVkuI5LnTBGow9mBgUuRUpCZIdL3NMLJ3AG8lOruwCjM7OARMYb13lWdIpAJNVkxfsz82UInkD7hsQf/KVOVs1jmpfr4V5mnGNFUZ2QqABDjKjXX/0i5qIO0daX5s+0hjoSpyWm9j/Q4j6D8I4i473tdLqfTaSm07/fetgxndvfetk8ff/rTH/454un8Ulgc3LUb55+NiLDc6UaEq7lhVEmRRULxEaCqqTs42qIkAlscMKod5hPuDjDGyP7CkIwgE56Gh2UGMQBM5PxIagFXd8VwiNAICIQgMIGw0NxvqLtZqNseOK2BEYmOAFgbpjpKqaZmoYABgZyJoGY4pdIO6aZrU0ktXCNYFVNaHxFmbt3GUMpUeXYikIVOUWGRMA/oKCYLOHZALBU0wHy77w3YSw0u/PLutPduYe++enF3ta6q7hsAMFchujw/n5Z3p7N89e50PtO3v3haKoGP0RvDHEKTO5T6HUsdtOYsheqhFurUuyMpWqY94phpiRAUpTCisOShLSIkIvvemZYIDCeiWgQBmIV//PHt48fr7XZLcUeaR+RlFBGIkMxOxPDo4DGsi1AplF5hDyycmZEQIGCmmRGRMHGRDIkTd9Bhh0QNmQuRmPm+tXzJrna73Qoyw+l0Wp+ent7Oe2ipKKZwv++EzMwaBkoexgxCZRx2supzmZsCGXSftyZQBJujO4QTUZRSCMXMeteh3TwJ9TIVJsyM4FlE933X3s6MtZyAp7uBmWnuwBmIKCHliZ/n+oEPJ7Ujo+GxJgVw1fS3wnAEgJTBMXMCNqp5Q8Wj0TrJipPek+yJBNUPoB7sWOqneifNyCkcxxi36+v97bUgVCndrO/24/c/lOqtvf9Xf/71+w8nRPSBh8k4ukI4BBAh9t4iOK1T0ssYEXLz/ABsH8SkrAhmljpl5i/MJzyJGIaeZC09yOBj7lCDEGeZMzPwDmjgh0ETIARyIAJbdAsCVMD0ChzqamZSSLgGROtDrYdBhC21hg53IIJSFiYwddPhSIEuwtOyYzT3yBwzN3clcGBkocKoALPjjbCAgaLLimupjNhaG20P9uXC7ma488JPixBzV39/viynikzV6fX2uvd2OqEZjBHMhgHLUp5Oaz0vz88X5qfnl/Xd86ksXhdEG67dTWGqwgkDzcEDwzEYzYGCIAgBA8kUhpo5zu9MbWMEIJfKxFirlFI8hmq3wMKFS2XD4XHbttGDqAivbti7/vjjx58/vqp2IqrlxDJ5nyLs7kQgpSRx1MMgfIyGWDNj+mHoklYXLJhiBwA7jkwKDZNagpnrDYDM4ga1rr336/U+xsgAle3+cZEopAuflqUsS9mG7e1+vw+z4QBAj2yk2X9PxiB+xpgZJchNzQECJEACOBzcSC1QgAhrFdWK2MYYlgBWmpjlsDp5Io8pF0UEURBczcigh7q5E4JD+JiOAAdyOwM2DgAW4QtKXxYFRALAgKQPKkBJQwubAQ0JlGfvPhHmhy1/7k6dXYTMckYim11SJKkBPPbbfd+urx9/HH1///xyzp2MIIa9fvxUFv3wzemrD09rXUfrjklPQXCKDAhBTE4b4ABAYggsR2zdvJZ1ypKzNJgdvskRAcD5DozRwClCU0QApgFuNsys9/2xQTxmjQBXGx0n+dDcAX0yPSuXpC0BKqEfDj8j0CMY0N3TCLpPrsboHhqOSJgEVPMYYzgCCYaTOdnoLU3llnU0VUNtZIaMUkqpooMjSkqnNECRnAqyIEFUYrVRiEopNlAKXy4XQLHg6+3+7v0ZGZuOsxSFQjxYjNlLocKn02l5vjy9e35aloKC66leTrVWQtKht75vbg0RHJPwAhAYQeHJh2WPUAN0JER1UIWh6F4ACQLd44jtXUuVMF2WjOf1ZA2NERHWm21bu13bGF7kUiR68+v9/vOn2/V6Z+bzuRAJZESIg6G7DxYsjoCcqWITwn9Q8h8p9QFjjAqFEA43fVc1QOpdIwYzi9Tp+4iS/lonvDBzhpIxI5MAByIOG8L18rK+/+pZ++vbfWu9uadekwAAmTgvYxIGAMcISLEFFEi4rWmEYxLfnMAYPch9XkQ+H73cvEXycd3d3OS6bT5G24dDcC1MFhhjjNF3FshXQuRqlrzfJCchTplHJId3WEQEz8nf/RGpkPuY2T4YhIeq9oQA89EoRZDiwZcAzX3JAACW7D6ciAIsdxkwY86T/gQA0Ht/u35q+820C+FapRbeNzuvT5fTyax9/OnTTz8+f/X1u6WC9UHC5JEEOI+AR94JgLuaUQAFpuGMR9gYME3lI9nNkRtLOgxq0gPmgFcGAITH4ciiGW+Zg2L2QbPMO4Kru0uWxEDwEYaIhlQQIB3bAY4PzxLQhgiz0VMnjkJgEOH37SpCVRYMb21LV5U8PdoDFFAIXF0NgRUVlEzd1V0Jp+cQIgBxclqb+0BSiPRU0wCXFU+nVYTQ5dtvv/3mm29610/XQT/Sy/unrW/dx+XpSdZns7VUBgghWGt5vpzO53MVJkYhlIJhW9+diqm23rackAEC5v2QvZJYAFNVm54fiBEOvXsfmtYPRJREGCLmspaF+34zdxvaelM1wBj3LX1T9k1v126KS2UR3+797e2mA9SS31kykswDkVDN1AYDFheHycjBwFIKCQfMdL0AQBIEYMjwE5p2YhbEwIER2FTRvAaXkhtECMpoSUMui4i7D9dlqe+fn8D4du1I8fL0HB3ub/v9epeCbWh4AFDyXBERmAGZwz15Oh5EWIBCGNFcHMIyF7tSEZJU0KnZvt/NLAJKKcuy9KERnsFH6i73+z1U99EReKknYIx+33t7/fTxtCzny7quKyCiqarbpAmlpVoGt+ijHYgIYIyjR8iKkCR8ntFPlgvFLFEptiuVJo/Hhhmdy8m9m6VhLPGRKDdGiuoJkQPSYxyIcYyuGGMMQSrncyVcSsHw7Xp7vpyJZN/vb9vb99+f33/9fLmsBBruLoyhmomRxTOgJQAA3ULNAZEcwh0CMkdsmiwlXpBP+LIsyVBTHUl6jYhwhfQ3ndRMe5SDbC/m7TL1HTAJGpTILQUhZTAN+NGeOM8RjABAiC1UTVmQWYQoNFTjer2fzytVAvDeWxLJSimEGKptqFi6U5G5uUeRC4WrQ4q4s3SN0TzQfJh3AwU05PBQ82461lrPT5UQRejP/u2v/+zX/+rj67388LF5v7ysfuvD+en9+l6eMt7KowtEreVcCxGZtn1r756fXO1+v5qP9bIgBXiQiGdtBgxECIJgADYkdx7umi7YCOqgw9sIZhDMh4MAU7pBabXeu6nq0PRZgtb2+32/37qOGCMgCoKaUmu2NWMpCARTSwYe09N12pMCPNIJU7krdaHpjBCzk/3McBBiUE3F2tzgSF3V50Jneogf4+ftdsMjWnm7N6Zl+XDRpmqvqsIS9SRcAzmouGMHJwAJYELEaTx73MnmEIHBj+CfWuvouw7vTVXUiwAyEpqFtaaqIlWEl6WY+xhzL27usiwLLwuC318/btsWujEMcPj666/T5u56vZoDEAoXETmvJ9d0ldODohMRtu/7uq6n05kZ7/f79XqNiFIFEVtr27ZTWvTWOsWkMN/6vH7HaIhRiqR+OSL2poi4LIuImA132Pc+tDGV1trmW5EFEQLh6XK5rPLTj39A86/evQP3n3/86Xw6LXX99PGtnqjt+t//D//j+eXpP/xX/6btfff9+XwK99dPr+uJlvW89zsz7ftNhF7er1zK/b733rLB0zHROLWeA2cpXGvtvWdI5LrWZVnMbNtv9+sbYkYe06N8mFkm0Lv7GMMj3zoUFAI0jwBzNwjL8HczvG57ONW6nk5nArvdt71tGiPCgIJIwkJNIywM3K2WNQK3vWdwk0iKZ13mBQJjTGFFLhT2CAhByHAfjhit9WHWRpdSfEmXCmemWutSuBTe75v2/bSsHz68ryt/uv2MUmShX3z3jfn41btvS/m1xnD3IL29XYnjtNR1reTW+4YR58vS+50JpFAMaK2VysRl9HG9b8givCJxykEQAghub1eDEK7MosNad6Hy/PKC+PAmDYbZcjpEPZ33/dp0mFuKJWVZL7yQDB2hA0xJB+7du4bw8un1dVnWWqtbkr6otR5NiTzR9OwBmXFmhQOMbgCxLHQ6nQhl3/vttqXHV61VpLhH7603R9AgXNczAGUXfD6fSynZSudVkeFmy3JS9T/96U9Pp/PptGrf//T9PxU6fferDxj0h3/6IUx6g+2+m1Kta6WFiIaauQ0dmvIdLlUY1McYwCCnE3h4+Nb2wnQuCxEvUpEsRfemU6e/71splQiESURmNG32jLkgCXfVJFDDTNn1GGigcL/fYfLwM4Yp+20+nS6I2T8zkazr6u4sBDHmyHV8pV84c8lBgBBjUrImzSE+OwLGhPEixuiqg6gSl1LYLADdzIhga3cCO5/P3vF+v3dAjCTztKDoDdXQjP7xd38MxO9++Q0j33sQIpWzg267BgQXKbWq9R9//CF/HwvXEWd5755ewwQoD6On7b65TwGSp+mcWevbGA0AiHQMysskNeoAc2UlIu6UXtMACo7oFmCW0fWGAA1hr3x2p9a2CCOw1pqqO0LrikxCxzIPJAE5dWWqzGJmQ7uqMQYXGt2Ga8asTgzZWTNcIYAcgYghgOF0WoPgKU44H4Om3SKs1loql8LLUnQshZgKtb730dywjxja3T3IDTLNQQGcy8HBMjPXFHqZWWYqqupwY2QkIWFAKYYBpME+3MMStgvEEYBSpayyrMUARRmIa4Ep9ck7PNy1qxsogKWzJ2YqOgMGIcEarAXGHg3dFDwVeoTres6wAABH4Id7fQJ1j0M7mwJyUMUjlMQ0gizda/N7xjDVcE96CgXNUSwOsYnPNPOByIlMlVKytcmT3/oGMy8c64nKuuzbdn1d+r57DCRY1gqE23YzByJ2cIxgpGBCAvXpgq+tM4EQVuFlWWSpVIkY994AFYAIxR1Vu1ofY0yXOgRhqZB0IITMk8ve1tSJAwkx+HAMDQ0fu4I/BgFMtjKSl1KSNFbK9BRyd0BzHYg0QQOUI/XsoEgnsdonJGlmhtMnjzltRUPVPJLnowA1mwjTSPdbDW33dir8fF6c/PWnH8Pg3dNLrWtrYz2f2xjmbF7/9jf//NPHa1kul3UZ6uuCy/Jidnu93daVvelSBH3c71cDu1wugd67kd4hHoTl2e+5Q2uNDvVI7xOXHdpMNT5bqsx4+CSTZ5gtcx4vV1X0OFJ2PUDdFdzDKdygFjcC0K4DQs1GQBDjGI4Q2V3TQ/2aP40YAlV1b32MUZg5Cpk7GHgApVYOwsE8wFHNwxqgMVYPwhILlIOfg2q9HRlTSZ0morIWAgjAvfVJ06onKhyWGRAAhGEAOCFwDYeRZq2WH6f5yA9a3SUoBghSAKKsZjA0zMBy6cJAFEFMxBldHAHIpOo+ZiJD4ggREW4YoRalCCCWpXpKnTObEAiCyJERgc3VSAHJKEP8UsEICJ6CoQzmEUytWynEAqjTE8ddlsqlBOE+OiKWstT1rKqjdxtjphkjBTIEAoK5e2hAEIL6CIsxGnNRVwAAEi5EgTowXO/312XNYElg8adTMX1K39f7vgdBPUm43K5vfcT5fDYzZGIRJLIAs5FJn33sQshLYSll4WVhEfJcoIdirrNgVlVAN9OjIjDHtC/CRyXTcEJI/TYAIIQlbT5Tmf9lsAJAhINhWl+nV8fhnjATrCebKh+P3C2qzn2EMUSYaWROaoEvs6E8rRkTdMzcdsQQyfZBgDXzRbKYA2EQUsy5rnWv9dz3G/iCiD/+9Iem8Kfvtw9fl6WQgtR1dfXW27rW19efTiciCETBpEihQ1jv/QgdIfOR7m8PS9w0Psptgk8logfYDF7FIJKIQCDV3KQCEah6a2M2DkGAThDEQRmsAgDuW7tjyOTAAAQoUwSQAaLTALQpgfdEHLMeCU3XZs9gOFDUAxh3cITjg5sybYtwHQMMMrstXADUBhzJFyQ1hRa99/Sy8fBwCA+KuX0WmW++QyYIpiXhxghCbAwEhJQJSOAaBhFOgQghnlU9YpibxjCwAIQCDGhz2+OovgO07hrDHB0RUVWlTI9vRExaQp44poLHgjzAAIGAAiG1DMjZT4SZh6bDElAAERKDK0QEpKEAo4jUspZKEblfJ0UvpdRaddi+7xF4PkktU3ummvMgIUE6KeDcVR9mra5mptYzfzzii3abQMOb7SshU7HeWn+z07pe5KsP5769e3t7u983pGcmQgZyqLXebjcRZkQ/DBHAPbvvCU6BEwNSOKRODCkIMk8IyL3UqmaL6Xz2U7pnpoeBN6b5FrobHbyA5PABUgQQCsyghi8XcjMgICvIQ4wgQgiEeWUgfeEgPB1gAOa6aR5TPN4ghgO/UQ8DgFIYEQ+qT9o0IWKg4FrPAnFvd2stbULNonW1AKQSUIaRorhXj+X7H/d6+grOJ9zhWjisRpzUq1u93zuCB7Ba27aNCERWjPAjUVStt9YmAYEPkwKzfB/c3Xygu3kGFyMREibFe1ZAxMFCqn3fpxcgIkcEo3G6P0aouQ001Uorc8kVF6YwC2IohEemOU401yMCzMD7AGvphS+FIenV4enLhgfTHOcbjp6+N1NwbeYRFvtuYaYOpZS6LkzkDvvoHkCBlF7G6uBBxCxl37ojWHjolBq7u4WOEcIYiBUIkJBrvo/NLQs+CVpQ79q0u/vW9nBwEGQhRMApGSyVHQAMDIKCuJZFlrzGgIIEpWR2IR0ba6aZ45SzegQYQDAzkxAVZgonVW/7yBbb3UVoWSoRm6GZI3iEQEx3tvTsedyXcBCTUjoSEUScsXG5XBaRdH9VVQxwt1RzQu76wIhQCgFSUlrGaCI1MXsAJwpmGLHfN6tSFjldnuo3v3j3hz/86aefPu37tVSUwsxUlor3O2RaF6JPH2pHxGUp4RYw1FFVzEjJLFwYAJhIEDkciUJEarWeNzGA9N5Ne2ZihyMCEAkQuY1MegXCcHCEQCBAYfYv3JYeiwY/HD4JKSeTbJuFMFme2a8gIlNBysBCAyDC/EQfpkN50Gdc37Hzy4/E3Elt6EgHDbaMoKkSfd/um/e+oiDQvvfwjcvadlPDodDcy/JMdP7pk758Lcu6trft9dPHUsa5YPh4fvpg+jr0Orpve1e7L2s9n0Ldw6dJ2TEyOAAMzaQg770nHzGhx0JuPlOPEI2QM7TCzJOkxIzmuu89ImpNZYZ2GDicMSKid9URhc5UK2Ie6iDO5xZ6Hw7U85wS8WMXhaijqVopxIULFXd3NZuqaozQR9tCRKr58U75O1L27jzjq91J0KMmTSsilmVlZga0QcNamDkBh/begckh1MzAEoMw89yTmcM+QhgECdzH8NfrFhEonHT4vbfWWjcNT2qsSQFhNrDedYyxWk3XZgCodT2dTqf1woLaeuK7UvL5T/YiTasb8BwYiCgg3CZRj0iYKBx7021rrQFzQlfwgK7wCzcBM1NNX0qLCCLUSCwwm75MeZhb8PwgRISI54EnQ0uXpuNnmuYiABFEGKbdCyEyU2HmunBQBAxgt9G2/RVrSFmfnpf3Xz39+MOnfdvMhWgJ4jEGIoFHVujsrM0MTKVw78NsDAVz0SA0IbNwkzLZlr2P1kb6/dERgSV7G6YjrWzdnQkJCYjMaBqcBEwvNQREJBRwTCePaZTAmKARIkqGK0Qh9GOgmi1AGoulADa9QPGgOT2CAxEhRs+KkCtJd/fw/G3z9iOiCFUdiBzhFjaa+n7vrUmEcziERWzb/lwvb7d7EIfT3my5PCnIjx/bV2/+dOGff7p9/4ffvlzol1+fEbc//1cfloUh6n371NooZWEqqqD7HaHkbulRBCMig+LNRoYsZb1Q607ueTdHRqRDMlsT8ENERHnsI4kISVTdYwCaMEbEMBvmTBHoFn6sNp0FA0F9zs0wibLMgETogEAc6OrRhh5BPwPQs6P2yCoVpaAIDlMAmP4buWwHlikkI2RGxDGGjW4WySBEA8TpceoGXZXIzT1dpyPbNiBEcAxicvDWxxiDAUsp4DHG+HSdTVZZF0Rso/c+PKKU4khMQrKUZSnILCajJaiZhywrgrB4DvNClI/5pL84IACW6V6PwcIM7I6BAUjmZj4Iiyxyfjn3xOeJt22Lwy4sHyopmRigD0zRZl0GKqxuMYaaJbvfwrsOJGGBiMjQJ89ZEQVQHQGZgcHCzC1jfrt2EaHCYabhHEGEjFxrNR8YKMJMhGQeQ2gpRX7xy6/fXtvv/+lj761IAeD7/Z4kBcJgJCzsBmM0MxuhYzTwURgMDCAycdF0AFYqxUz3fd+2puaInGcgAETHyDOXLqMADBiAkrmq6T8bTJFibxQCAiCOCAQhLkutUogoGQSp0GKGUnyerfAAg4yjMnuUogOECIAZ7J0AryFFGAXbtDD0OFjimS8qIjrCLJIB1lprbbN2F4g6PciRS9lvSlzuzcppcVqGtnN52rttw9+uft/pp5/2v/3NP3/1Utw+jPFxjP27Xz6vK9x3t0Gn8xMRt73db72QZuIzxDTPSiJmxGcfuzntR2pdLB8biAg0CARwVTMN5pSvSziZq0/PyJi+J8hICOIIAFQcBC1aH0M7EYgTAEi9gIO7qYUHBJNzcuzZgzDYNXYzAAOPCJfP/pFHCE0gBoWJT+vOHGfS6iEwULgKkxvse+vqDkEkpk2YmQoBeJADe0YvWZTs680N5iznFkxkFm3X2+0eEYuULDEKpO6MlL83IqJwIRCRQBKRdb3kik4DVHuELWupLI4gSEBiOrZtK6VE/s+YVjsBhgClpFjUkZFISNCVAEO7qgeYSSlV5HQWN0jNj4b13oPQ0YMQGWWpCe0hUyBboAV7KDmcS0WEz9R2CNWx7/vlcglA988QW151HlEICokgqLlbBE/TDWYk5JQ8ABAiAQtDab1p0GVdltMKzu6iEFzw/Yd33/5y//jx3seOZGHY9l14AXBiRqYiYmiOYKZD1caOEVHL0U6CRqi5eEK8PsZoo4cDFbBIRQbIzz9+dNcwe3p68aWiD0ajp5d9e8sFTKQ+I3MeSunXjZGRFkCQUuuyMpKZAbKO8IhlKUtBqcXdGMm1954NM9a6EpG73m47c7qoQ/bexFkmQM0zxYYQgSqJmw8L2prWukbwto3C6+n56X7bX+8/n08LghosEohuvRkBFcb69HTtTeqTk6yXD1+vH7oaYFzWte/8/Z+uXfHp3defrt//T3/796dlXG8/3dtXp5Xdtpfnk/v57Tr2mwnTrbemdnaLiOv1tY9dhE6nk7sN02HKjMSUKANhsrzZI3pvpv9/sv6sSZIkSRMD+RJRVTM/IiKzsqprBt29O0APiLD4L6Cl/fcgLNHSDBp15BHh7maqIsLHPrCoRVbDH/KIjAw314OF+ePvQERJGXhrrZQitXqwGqYTT0L4qvH+cTeNUsqyXAjlto+4IGMAVS607zcc9unT59HZFELRAxkYQwgKo4wxhAkkwY7dXVlYpCLATIVzR4BwGJ10gEgutMd+vyPy9fqMgPvR0KNWLCDuYSHhGSnO7tCGE1ophWkJUg9DhFLWxFYM6H7/uN1uALBdL3neqmooMkvhlZmRA8xkIyIKAAMo23attRT5/PnzvR3HcQCAQdrHR4JXDh4EUgQDhg5zRcHlsqTyT911aG77AeByAUSUmm0OOSCLUOGl4m9v70td1+uTdau11Lpa/Ho/9jqKRdri2NAmQoIotZoPncMZBQKiMJOOWJdSajGzBsPdIQwjbIwqkthBAJSamD3ebp2ZwS2MWMpWmQV9uFu8v304YJGtyOpBZkLMIMvt/RsYXK/X7fqjD+hHN2BE/vyHTxr8l7/+8uuvX/sgxguRMxMzGdixfwSCEyJTXZfWnETI3RHGYR+xc7i5Pj9fuWxI0vVQD2QBiqmlzakhnZGQMJBBCsZAMEYLh7nw4xoWgYDMQXx9XsAnrEJcESogISkFMAf65H6Zhoc7OljUui71Yq699zGGiFwudYzxu3AknF3bCc6bRyiYuXpgCAISMgSZhQ5AzsGslFJ7vyW7xwEIBCUYKpeKIEDiSakGCBDmWomPPvZ9LIWZlnV52u/f3m/fbrfb12/t51/++m//4//wv/6//uenrfzyy8/Hvq/rUgQjwtRutz2RKgQ2831vnnHemmCeWnb7GOSBiG5oijMzngQimAGRe3P3mRyhg8Y4kCWMIhYEcC/aSwCNFjuGMCITQUUG0/7+rk/bEwkCujqERlfU4QYNPcoqaxEphVCaNoyJ97mzq1nkxpIgCEnCxIHCw6OiQ+sB7ke3wqLdRZWEmTZeiYCB8Li3TPluvbnG0XdTDfTMe0vVyrHf9+MgRHOopQBmbDGyiJSlloLuRSRYHkgnEaU2satBYJFKROmma2YRlo1DWWq2GB4GBEUKl0QQ0d1x7iYjInmlEFPyDghoyXUi3tYLYjEzBwgzANqets/4AxBp6FBfal2p5JiXaXbIJKUSQQariRCo+slBTK4REXloH+EhiHg222xm4VhIaqlS2D0DbDsXKnUahRAyc0FkNzq8DwNZgGVFYgseCuYw1FX769Ozs9eFrq/L9Wnph2N4qQLhE/dP7ishzUAvcqNMuphOOlIKFJKFqSBLrRFXWLKkadz2+2PXgBBBUFgQgckZQgPs+iTmY4yGbuI4W+AAqUIeOhxRERG5zsxXCI6KkWrx4e55aciilqXWtbX9Pvahg0hKWZKQ8QDq4lyzqYO7sWPaBz/gg8TVwsLdjUKAkEjqiv3IILP02STgIHIgZgmA4eY+nBCYkJgZ2bDdbzcc60ZFKpEkvBzsu9vz86d//ud/1eP2yy8/11ovl3URFKHb7bbfb4hYqiDyGG26nTmGUyClxZ7Iqv3uSOEUgaYAwYhIiMy18jqHc3eADdHV4mjONRgYiDEisKqyBux3u7fGGI5OEMNstF3165dXZS5CzKUySgBEMvvNQZUZiTCIuNQ5gUUADMBIC9ok40IgevqeowOBexsG5ntTF1Q38AZEhQowUZCG+9Bu6kMNwoft/Qi1oBCCutVCfIw+VFG4sEQmACEQBRGv27JclqUUAWwO8L0i+ElsodzF5kIxKSeqmm67tUop+Qo5gDNTKZImlKfc9sECIsLvHs0J+5znjq/rmu0qYbJgY13rtm1I0cfx8aHMvCxF3Y5jT1RLiIsQIhoAYghxcLhFN2XmzD1ydx3mBunFOuPIIgDCzGoG85yB3apHcUFcgYkIWEopBYGHzRhlIqy8Is3kW2YmjtBObMi6XeSnP/5w+3r8/LfbaCFSenNACyTAR55PQowlF0im3k0397zsqrrvh4hEZPIYqJnjd5WQIDIFEgUDExoQhzVwXC/XoS2wYNoHIJhZqA0FIUYJSh9nFgBEGOojpR5I5gZmBqqmCkSqAKBjWARCoFukF3hYugWae0wLCoihFuE4DRdSQM3MRVVTsk7E6ZIwdxmyDHfiMNe0cfdAS02Xg4IZosWAAGAjl3VdW9/3YzAV10DHrVzqta6L/+mn5//6b//Lulz//ee/1Vpfnj+7d0ZAxNaG2QcirCQRcdiRIyhTAclVC0Y4BIeXWR6NwsEUTcN9rGsphdz9fj/URrrPqfW9qwwkCh3gjhAaYabw/n4kjHIc9+O4EyMiHvf7X5evIrLIWtdlKYuUJbl5wox3IIAgx3CgKMK56TGz0fowDfNAECpA6OrEHO6t9zAg4TDvOjAkOYABQEDIxEhAGBl1DIhMqQMEJGICNElSkynXsq3LUmogXNZN3cKUhLdlXS8bIyFiP8bJBEyOVWYTTwtZpkdKeYL2AExpeXI2FDPNPIUk9Lt0498D/gCQkvZwBEhPfS1rNWu9j20tEdF7K6Uww/W6vby8tLb33okiENxVFZk5DYTzRiQCRkRj9N47M2/blmdV7tpj+l9M9m3+ay7dPDgpQMyFWZgZmABIpOaDlJqYBKeKbG6231toPD09LQsQs8fhQdtl+9M//XB/a/cP+3o0dx1muQyIGYobABAOzBLmSJ6oh6p3dCGAAFUnUuE6s/9Mx7CkCwGALLxEBGEIOeUrieQ6WFYPEuHI6BGIAPUwU0trGrKpZTJzDYJgFi4MAGoRItPvqJa1q96Pe4SR1KUWd/+475fLRZ0seAZGxlQERwCiAAlJofCIrhYBmvbygEwsRRYANFVTGIYQFWFSgogYUSLzdBlnUBqQg7mF4qi1MgXNpJZhhoS1lorQf/jyp5/+8E/M0puWulyfL8c9GLGwjNXaOgBgXTdVRThGT64VQYiqjnHkY1GlYqSrHVqEDj12HUPvH5bU9/ePb2P0uggRND00GokAyOiuAxAFotqkMLmZvb19e3+310/06dNLkL/fDoDOcHdABgSW5Ol+en4JCgI3cAIPCkHKnY6H2VB1Q0cgFGJk6scgYQJ0iPTVxQAPDMNMKQBCBGPAspZSa2+NEGspLBLu3HvkhtIOZAqAQCDhui7rsgZCKRKaCZgiCwOFg0VgqcmEnfP5xKrO7UD+g2rPxqEUZuEIs6EAUFhQ5uHvasgTyQSPfDwQMY+KHEH/A4adDSlilMqA3rqP0cfopZRPn172/eOXX477/jGTb82YIOXCZsNVkRkKMHOPGGNq207U1h6FKU7jr/wHDQ8dGobkRSpxcCEisXzgzR2zWUYmLkWQkIWG9X1/a/sNQOX5wuJqN7W4rOXLD0/3f/rDr7/cPt7b3oeqMjIBeCAhOLBphM6MtRQSClcmYRZiqrWajVzc1Fpz1EWYWdsAIO6QZgNIGOwI7EZqbCGBQcLs6u4UwSQoTjKt1nyom4GZ4whwYiJGOK2EISjFNqUsY1jvSgSppe29H6ozEinmSvyEbjOz1IkEIfsxNzNiqLLkzEYoCGQamRd47CMQLDK1iUpdhEoOaYgMRIKESCMcIcBh6E6EpTDNDDQfTXc3kdGa9e61rj/++ON9/4qIS0rtAUVK2k7VWnrv7n67vafBjzmYjdYsIpjZQSAwdyU59rhZVwgdTSPU9jb5CoLYwxQMAzCidfdBKVo2JzXqGhiizh52efr8T3/+z63dfezpNJOUp8fzZwRETFKEADDMxlDNUMz0kEseAgoTFSAqCwNJIfZMuyAsJMCExlyXyuLooQYMl2Wt2xo2grAQB6G2buRgjkKM5OhuzrUUJqmViwSFuTcdoVYEzEu4UYABsiwW000nCUUREeAUM2hk2srnFlAYyR8pVfkbkiZA59djhw3/8JX0TAL43juoDSJYluVcXNUIG2PURZ6fn1r/dLT729tIwZJqP9NMIsxUVYgYkTHdCsXPDDWciobx2KP9/sNk5wsnK5EYc5qYFyE8YnigOwgsAEBUCRFRAeA4DkJl3JdFBGEoGGzLuv7w4/NPP/3w9tvex653yzxqAMYg9AiD9BmCdHAjKWWp67atWy2ZUS6IuCyriIQrRM/2a+4abKiZpZNOgYIUgBIQagggxMIgEGbgxMGZIpHKAjwsuZ9EhCLoQmF67G1o78QuJEXY1CFyyzKVVEQiXFPgQCSnyapHOERYQow6RSwjrVADA8jcwgPBO/jodnRtXVUdiQAEgZiEeZkIhLtDYCRhVyk5UQzuY+FCOBeHzAWRWts/f/q0rU+3j/3tGy3LgnQ12/MlR+C64AXmUcAR2+Vp6LRCgege5EHMuKyrmaWpQgBDMBLLsi5UXAMonGiji2sBCiYULscALCJYuBK6BFSGRR1D47Y3AnfiUt7/8Mc//+GnP//229+X+gVSXxiTUZrmDsdxECUZP0H+McYwH6GGGASc/T8yMQoQMhIgMZ1tMYBQ4SKugSSUNm+mgV6EUaLU4jB9ajRGoJGgVF7q0np3HNdlW0pBJkgDeAIY4ejIgIJAkRaZIoSTvkmISDxRAAA4xYWZbhBEwIKttQA7wzXSXh/4FELnQIE+135nRiv8352AI6L3nshlazsALMuShmBmgyu/vDz1/ZOPvu+7jw4pMTb30NFUhyqgV4PKtS6Y+zWAmJGrYOZmTuTn5DJLwLDOXKQWytgUMwoixmTez1bdszn2sEwr5rWstl1u1tWOfXdAxsJDvfVFZN2eth//9Om3Xz/23b5+289IhO89EUwaaXqNuVmksWJd1n608EwHOaF6dbMgloyjEsbIIeRRg4OYSNyCWRAxCM0BPPFLOtJI0HxouEGRUoSkGKFDjKGttT7aUavIwsx833d3yPxCHTOdJduHhPvg5CNCJjEOjXBGcicAD89M9zKvuztiuKUbf1ZaJuI5cSA5kDuOk1zhbsiGQSglraXBgtDMTEcD06UIxXK09qc//vGnn37UMf7bf/tvT1d8fllU4+N+iwgKSrHA0D6FZWpJDnMfOnx0cwMRLmUZ48PMzFJrHCwlzf6y2QlBqehezTszU/HxcZS1CK/VBXxBqBDVDIps8v4e6dnO8PT0RCLH6Jfr81SXfZ/GETG4pEO0Z1IDl8JFALaUsTGgIzCwRWSnvtU187EMwodqeN6Q0ZpZY0AUXKpQKYJgoG0MDQNzDdfRh/taqyzELNYbIEit67Z2U23DEV6eLiPUuMlSpRY/NXS1VkUzM2IU4QQR850QoVKmf3+cPkVjjNM4Z/bnj04hf8PjUsQpt8EH+/53B7WZ9d5rWYho329EdL1WImLGPOdrrS8vLx8fH/u+p0L5wVjU1rV3Q/KhuCyJfZ5T53ykH2/jY4eS/cu4j1Pjn2bcjkhMJT0PiYWpwOTdeICProJVtvr8/IzY7/uIMAQMAPPex33Ro9Tt5fX68npdn96BLUHWyUwFIAD0AER0crXuWniM1U4z44g4Vc5JrLQkVU4bVAlXnj5yrmNAhEeo27IsrbV1XYXpfttLKeuyvt8+AMgNOJ3UwMYYGMTCQ017G20QSa1rxMhk+/Wy7fcG6FKmxhYR13VV6x5hPqNfZrmdlZUjoo+hqjP11AMf+gvXKjkuUjjUunjajDMBQB+aVsjZdrJwYKZWav7MH2/vnz+9IGJhCKKP931Z+N/+6//yP//bvywbrKsgX+8fv7T+Xhckoo+Pj5ORTcdxvL29Bfi2bUGo4XsfYyjXcl0XANhbC3J3c4y5RUM2RVALQooMdAsKLFQREVh/uH52cFNyw3BAQAyuVNqhr59f9n3/5bfj8w+vf/rzTyz4w4+fLkv10OSYMnGpkiBZoJMgBgVAJmVHhPaRbS8TEXMYhA4MKMJApDrkvNpbWS/blnQSB0dIxaQFqsYIdBAXRFPz3uuFX7bnwmIB7d6AUKSS8DF6650J1ssWiMu2WiESCoJSBavUwJmkUOVEEIyImanWa660AZ2FU57gbmGWyj6c4VrmHuix1cWTpxWBiIIECBFomZaSoYaUTuJp0jHWZcvErWlw+H4vlXOW1tb7fhDR58+fj33/y1/+8vrymYF9eEQQ8GW9Cks/hvv7ctlqrWeDNjegD0AxT9ZHMdq2FYWbjoiZD37mu7CZM+OyFMMYx3344NTquGOAMBdihow+5FK41rUde5F7yAXIfvjj69e3/edf3tXEzMPBDd3QhmV7Z66uSkLuPtyGau89l6aI2Hsq9OVyuY4x1CerXdrtm4gwCzAhLYhBZ2prMs/NrJTCQuZKCG5KJEQsxMHT//VwA+up7wHkQAxHVYsYplMOoAMCkus0uTowMzMnXTr5yu4jX11EJnKkeOTBmdkYYRbg060wJdjoD4diPse27wNkCjDDNcA85PlpA5/a6nbcAvpPf/zj//Q//fPnL1cd7/vxrnbTfiwrukvX8dvPv5hrbkBVtY8UdIFIRYwZ+3s+FubhwUjGxkQsKcuDCIBlWSMivQMQMfPcHAatWbAwvGCsTCvhRljdsJTy9evX1j+u140lImy9lKWU3o0Z0+XdLEEclFSCubun7DoxdmKkAMt3w93T6S8nYeyUAN4YUIqUWs1Hc0N0xGD02Xnl4Z4m2TjOBb86YAQs2xrH1DvPCdkdG8l1izAHB3d1BE2pJlTmhAnO0zvSJ9rdPdTDp0t2nprgmbnA0/Pt9BudeQHfzfvP0Weie9NZHSyCIgyAIyJ8enARgXBFRKZcIA4/Ufp1XZ+fn/d7w4jeeyjk1mOpkqH10wr4JKrmJ/l9n5JlS2ZqlIQ/CplnpEiLSAMuz8jj7/0QRtjozRRVj1IzSLkAeO/DtF8u7j3WZVw3eP30BFZ++fJRNxkfY4yBWBAx45qJyMDAAx3t9GUZY0ihwpWJH5AHAJhP+5Z8G8XHLaAELoxMSAiUEkQbfVmWMfrQXou4a9uPtBlDCCbkXENY2OgKBtoBlcCYkbAYRWik83dWFlUFwIRzzDTdDfK9nfjN+RQEQM6YqRR2iGEKnnG0menCgkKcJHBFDUgjeXAExPRWT+EKIRB5alxdzZWx3G4HSyD5fv9tu8g//dPnP/+nL7XGx5v1fniMUnldK3GYRh8twgDmiq2UzIw3d0WMUvgU26GZqYWGcQ03JKyEEkEBHgh14dw3A+Rai7Lj4YKBEM4QhWkVuhZ5YlqIGBFv97eXl6fXT5eAPrSVygjmrgC+rJIWNQieiXOPuonApaR6FzKognnqMsymVz8+4H4iRBARFgSjVOkhASIAzpiwAD8dRmlurM9H6vzZIXfplMoin6b1vxvkp/4yQ+jwuy47/dc0/PGGQz4C+UQQEdM07iAMwCAMwnAbs/2dK0hwDwsPcEDAeSRkUcD0BIpH+QgCGJEvTwAA5+HESLTy61P3Dm9fvx3HMdogIkbOiDwFD0ZWpxkigGlSgYg0oxIfcjglkkJ0uVzycM7eLT+reqzA4Wnv7IRSpZgZITKmHMUIFhZalk2Hj946DBaz4XtvLxSX55WwfPr58vK63fev3Q7hKCw+IMyZF8cIotQfTe+O0IiaqOqjkAEA8/epBwCksBIiBYaxDgdQAxxqRFKXMvRo+yFPW5ge9zcRkbowOacDBOiULZi5K82ZlpCEIkIIvfbeRSoAmA8IFCF3UB2t7zCleJQq4LlsYDrHQ0dEj1DtZsiYph3waBkgEAkKk4digEJWkTyX+YyQxqAIItW0EfDbsbfWLtdC4cTjhx8//eGPT4h7b7v6jdhKlcJcl6KqvfftukKMUsqyVABgidR9IxoBpGozeROQZphGASUY0rjKLZ0IuNY6xsgRiRiImAgIJPNiAgWhMtYiRViYpNblOI7jOLbL8vnL63F8qLlQud9urTUR2rYVEQEHIm/b8piW03VBBBGJDMAjo5BFCGA6hYsQAJmPNGRIPhiAefQM1EEEnKGeid7MEMpSShEiqghT2z5VsxGIsizrssw+yGx4JECIzFhqZm2xK2X0zjzkMXMDycxSJn/uECAiWSXz9DoryHly/K5pfzzfEYExgATJEXk2u2AILCJumOhV2l7rcCQDn8HKNLWDZanb5aJtb64QhgyIjuNwAA/04KDxH6Tl4O6528epD4lHH7Esq09/UCxC/2FXkp/5XAoakglzBBCJFBIRdsTwoQEohLXrfuyttXbZYN3K9rx++vL89dvH25syryKsw9KpHSkwRZu/+6gPh+GISErY1CmerlAQJNpviDiALBClclkCqavVuhaB0e9Dm3ZwtfABAQuvCB55CLhiKKMDORGBe7gFaIQDBiAAoZkpDwDQPDQoImKYjtERkRgECVHyk9J5j7OJc4hkuUREYQEAnAiTqbpbhJuNw22kqlK4CjOezpnzEfGAzGxzBzV3FwR0A+yvL9u//utPP/64tvHr6B/uvRZmpq6qh6U9FXMAIgmQABFVEAvrvbMweIq1fWJLCEwIxB7JrmAAQkAKZvDtcpEx+iB3Y0YpeaJEHlLhglEJN6Yr44WorMt6/9j70X78w6dPL69foxFVd9v3G4SVddvWgogZVF8EApxS64sYyShHIERXBwAmkNSbAgBQEQ6HFKoTITAyIxNouBAjZjOvSVXy/DsYERWpdVkJi6q3rq6uvWMQE1Qpa12I0V3NhlpPBJSTRRiAAUR4agynOcNjsnvQkHLkmSUDUqAPJ7H1O3b4qBG//6uHAgSSZy5bLvrnEWLhHhCEDBASrmYROoXDyeFL4yBmqbIsZfUFKSjMTa23PSKg4CUJKecXncZ5WQjyBEbE3Jia2X4cbRyq2TGJR46R6eCOGbgkaAjAGAA+rElBYUEMVwNg5oqIah1CzLC1se/7Zdu39eXTp6cvP7z+8uvb+/uNiQqTsk/oSA2TwgPu4BZqoQZhZowaEa21xFPz4sF5X+Tj289pXqWASMKyOFIftm3XMY6IcO03G8RQGIUcvHskJOihBjEZcgxkYKY+tJs9clm+l8x8CMxSRg2Yvjcwz/xUB81if1rNeGimSUQE+Mx0BACfb6uDW98/wB0AuBQMIQYhAubWWoQH+jQ1OpcElcsIPNq9Lvblhz/84acXKXY/3pcFAHEppOp9PyCoclmW5b6/IQ1AKYFCa63TBpZ5Tq3uw33iSUSEVCM8gtwonJCYCgljoh6ImE8tE0ohZozJAV8QKsaKsEIUCGFaelP3uF6vOXMx8/vX3wij1HK5bHURdxUhc/UYaXyAzIDi7vQ4GRgBnSWIHYIisi8DZJR0MyRGghSk00hpDAJYpDmKz9VgRIQzIgsviGVkbqJ6KUs2HaXkJBI5GhQqERpBgOm1r9lIhxecRJSHB8nUCCR1Ir20iCgtCfKO//5A/g/9wqNlOP+qFOmYngAIAYSH927uxIREhUiYF2Z0R4BpfpHRDwwoVJZlWZbNuhmoRli39LNgR+0CMg3dzkUJnAiOA0CyKhM4GGOY9jys8fQQzZ1d7z17pN47zIjAANSj3RZkAIgxcNr5FSbuXU0pnACotXa/f1wuT59+ePnhx9dffv329vW9HZnAGszk5qo93/A4p/Tee2sHCTLOKvZAQx8tAwCIjp2ZHQsAmOswPboevb+9fS1luVwuRPBu4+myvT6/IMToex7fPuOpM5vBNZGhzDWY4UuBGIUXVTUf+f3y6E7bxYDJJDMbkdYdGB5phz1Bg/mJwX0GBwIADTSf6ulIH4G0wYdpw6agejZuiVY4hifTmIm6uY7+ww8v//wvf3p+XbvekHpZBBFrYcgXBriUhTjeP/4dYyCGmUCtUkiUaACgT2McxHBEhIQYqUhEuJETuCGEIEjmeTHLspQIMx8RjkDMrOGEwrQQbhA1rLpzBPaux9GZy7Zdj2P/+Lg/P1/e399fnq9P1/V6WTPHrQgKEFG4O+eLjeHG82CcV4mYWZgBUMERMfsFAkdAQUAEISRCJVSjBHIgnIIECxEFGVOJgEJboRVC0CL7k+u6JTqIGK6nBycgM8N8ByzCaO67QCNgKsQhJ/ATGpxcZoBpXpIPTP1HEPH3FQHOfSSdBifZkANDhCTN1nxApGlz1jVAYCQhdASBiFKJCSFQzTEgkAhlqdtls+N2pCIyAhk5IJI9DRrZbGdRAACa+T3jgSnCabKm4HUtuRHrfZg5AbGI9k5EgGjm3Tun0z4bExC623BjBGYqEBxgtVxL4dgwIcm396/bdi3l+fPn1y9fPv/tL7/c799UIaAUJgvg8wK6B6Cr9qG9NZaQpSSakB9f9DT+zaorS0UuhITqoW5HH9b3dt/bMYDl8+fPW132fWd4eXneIkD7gEkaz+oC7uahrbUIQ7eYQAvn2sJ8HG13VRIM96PvBLFsNc02wt0AIciZcCbtoZu5m+XokehA2j5TYS6RIkKPNHsS2L4nrJK7NY3uDqWU7oAzEiFdIgMxmAGwS9Wf/vj6r/+P/7Q9+cfH12Wlfb+JSOF5nSAYGMISQTRzUNVk15oN1Z554SyIzsCAwNkjSOFwNIxMLUMUpsK87PvOXJZlsQgbbfgQRmSGMXB6+zCCzCbZULWbjbXI07Z+/fbuoy/l2UM561KdPoIiQiwAfhwHTluuc1T0uRgHAGEiIczcm0Dg8KEGykGGA9AdCU+uTVL9MvQwh/xULZtGWv24ZTa3AEMpxdHRbYwRoCIsgswFMXJKnZpmntnE0YLwMYenpxYjc4bZJB75DxVhUlF+D1J+Jx3krz96hAmsOsekLZu7pwWHlM0UaFKnEYBSwsi0EE32IVlAocLCiNdt+Uo0xvBhggVLQWQW6HoPDRAgJkLJvm+ottbUDMzKGEjigR4YDupaQnJKnxzHQqUgBBHKRNA8h0dC5OvlmdhNMSwbz/QZtuvT87KUIketdfT+/nbb1rfrE18u2+W6loKqbfQhvBHXCOACiIzBZhDgmF466oY5g7OLFCoikk3/VAkAyPCbu4DDD19+1IC//e3nyxqI+PH2q6qz3+P5FQBuH/6rwLpcwJKVNQUnBJRENh/KjFnzIrwkBTXcey+Cw0zHgFAmQ/DW9jBfLgsFtdERZalrmN/3I4exDL0OIEz71zNq1i1DYAwcCkdhURI3G3qcWDdDSAQOtwi+Xi7v7+9Pz0/3/X3dLrf71+5vI97+9E+v//lfvwDtHrBs5b6//fjlhzHGx60jstTldrsdY//hyxV/AR09gvl6nSa5AOku4u7pV5k7rfmwqrV2EMnT5YV4aU3DuZRaljXLmatKpcKXMDcfTLmLQdW+St22cr/1r2+/ffv27Y8/fdr++cv7+y9vb39fF2nHx//4X/71aO8ax/2AdV3rupzWVRIgLEKMQLNTA3QUNvNaVyIe1iGCiyB41xsRk4SOAapVlkA/umkYCuuwBPndYwxL5m8gc2UEciRgrNsayD0BNzDVke5AZVlKKYBRCAOGm6oeHhEWgAgYhUue7vm4U/qRQppi5O7M0RHPk/04Dj6/ZqnztDak2YQnrS6iRx+qtW5qfvs4INUaREgWGbJFNUdIprosmxuHY2vKDCxUa0VTQAtQFu7Qa6V1XUeo4Eq4ave231oYBQx3MCUczAwUTQcyyVLNYQSAOZDk1rkUsOF7HKWU1+dPAJA5S6GOGEyM6AYe7gyw8GKqYQEAjBiOo7ccSF3jt483dxdRAICQ+60ti1+ftm0rr1+ef/nt61//8utFmIt8/frb59cf7u9N25CMMwBmqxxL5WpjNHNkCte230Y3DFiXkkRYUTuoLFXKemEEvm107KPFXsi6Hvvdw1oELtu1MqP7cbRa67quiHVacUTkJMmMliaD1tUCEcOUQhEUCRdhJHLv5qHqINCPGyKXshBSP/be1cwWWSbA4JGs/ex7C9dwc7dQdzUwb90aeOu7+8iEWCQgDkJAEB1QcuMhkmB4H4eHbgs70Jcfnl8/XVicCFiktWIWpnjsatau1+u2bb0f9/udqch6qbVu2yZcACDPwMzkNrHvIYAzFXBEBFEVkUyKUocEXhAZZodMxOCYmc9wzsLg0d0FUAF0qQDR+xhj7JzJXWCjH6VwulFPxoGDubkFU809IkYgTC0pkQRxbpsEJSJYMII4nYUZprokwTswC5Vsyc60gwhD5LSZz/OcmcPZLKNi7O3jnpxCLlJLLWUhAg87jgPQITQiXbA8ACJICNJ7cqYpgDuifO8aJkxLREk5I5PMt0tMCnGSH//vC87I/ELV3JRmNBbRdPUDCHdNU+wgtfQh9fBpK89IQEAeGTHhzLwsy2VZP3rTDm7DOmkgYRnNw/oYRiR1g1LKwqRuBatMYj66O6OUwoCYuWdmxuiIjMCEgcLMkubmEWjmYyiBm7ownL7+lhzNiDD1ZMqlOjvpWGOM10/LDz9+/vy311L+T66CgsCwXi/mjkzAZA5ksYgQFQRqrSEUqsiY152MggHTad0QZSl1XVYhLiwQVFhMorJsdbl97PePW9+7WayXvkpB8P3e4nIRIpBELKaFASLG9CdRG30urkwhrAjUWkVECplBH5GZKK01gFiWTVhaa8lxTO5NFpqJME8bcUscLzMeYgaojTS6ZFl4+voXZmFaRodaV7O4Xrf9eN8uz/f9DbAA6LrWH3/4/PryonpDinWRGTMefr/vrbVlWZ+fn8YYP//8NwBiqrVswgtCcXdCYuGQB/PknG8DA/zckUutK2DRgU72aG+JOderuYUiCwUjRk+FO2YwpLPAui6A3tox9GBGKcW9t65PlwsiitRkmkei6QDT9w08UQMKYUbmAkA832eOsPSzZEJ3J5Tcqz+Auny1JiCS3HYWBD5/JcXI4g6sM1+HOel0lZmF0p2xt36gG7HnKjlXwnNjH04MwowUphlkkI1gISKK1LkREQUioAui2STb5qYxwctp9zj5K/kjzL0aTOYrMeX+f1pWRoS7havjcMN4JEnOpWHGuHgYpEVwHgPtAOsZZUiEwmXpduy9o6KUcrkGr0Ii3jsyp9+gDTNVZEIUKUU1eU0QgcyUWgbOtVp4Bhp5Ugad3BQqF0JETGYHoCMRM5CkecwkmwX60Pbx8fXp6fry+aVu67quGDx6CBdTRCQEVu0YEItlpc5qlY1tipgD1N1vt90dLExerk/r9YIeYX4cRz8GI122rV30/f1dm3oMU2s7tvutCYeZDewHukjSVxAoFANcRCIsdBA4Ek7wTWesu1kin3N4fOyTVJUwPVHwnA+n/SD8Iy00IsAcEQuLE2TsxvV6KYXrQkSY5P2sCExrrevHx31d67e3WFYyP2DsQHB5unz58mnblrf3N1SHRcIzbcXaYbdb++ELlFJ1+M9//+3zpxUDTNlNgvlkQzICTtf58OlaGR4RxJw5v8wFkEsp+SjUZDgxnWdgHmFMWABc05ZPgMiJXUriHw5ogEoczGlVhSI1SQ35iCOyCAnXIluub9AMoiNGcplP+roCQACdUUXfDQXOBicfEcfZz091LCfSRw9rkqzOkI54RFjrKoUea+1HccFT05YuAziBWBx7JyIQigCPTLGYY9djh5/PBhBlAkp+83xU8t3ljI09vzKFN78nc0HMhiJ7Cv4PKESEeShAYSbEGtYf/D1EJJRA93BAJ5JkdtUiwhgqZswLxwhVRwtXVHUdQcQErGGmGhGmZmYQ2jtIKb9HQCBmRWMSwJiZsAh4mu4ypIFhzYKLJ0HjgWXO4wddddzvH/uhf/jxT88v1+fn59u7HTuMHkTVAogLEYQPTXKfm1lUmURkRHwox3MEMzMLFwhbCjMKAWrrNsa6bLJubdXCwjgQMTDAtbd9v9OyLKMfblZKKbLMrQlEaw1iIAaEErpInjLsBcHU1JoOOo9BAmhHExQP3z9uvtjlcqlck/wTEQ8vGCISYj7F2+dp/PunIXmrJWPrE8Bn4qUuIiWX27laM2+9t+eX5ccvnz5/eX3w9pjLsmzeY+w2ekAIY0UXVxg9hDeEvFBFeHvskDKf4LHEBkg3zhRAE3KBoHR0ybpJwkRkMcNzMBkc06zdAR2RANU81LpHS2tkAReNMCcmDKhViCj3ywgOIIRSSl2WJbNkIgJiADMi1FJLKRiYJpcAmC9DmIWDa4QBBiAiAUKijyjukZSOh4Z3ZpxTvnXDwtwwIisXAfrkNUZUKbXWZVmkcN/vzLmKC6RZRAByQTXFLHOjhHCyhjTLAaEAZvRrnJkoPPfNAIjp7B5E0yI5HAIwPCCoVM6gmhMTBZ85hYhJgZr0K2RmCLIRgPkaR/YqyZcNc0TL3TozC1eN6P0ARR3hhsTFjUeH3p2RWIqr6lB8GLGHJkgRmR+HaBoQ0/gHiMINIhCxlHIG0RsHnrHXGdc9VwAzKxDdfJzpLwidSo30GXh+uf7229HaQMJFnoaFuwejF4cYEe6hACdpcip3kyVMqp4u52AufT/w2aUSMRcQIS4igCxE7ERuVGqQm2rbD0JgCgAQFIilIJAshdkBnBwB0T1cMQyYOXOQhfu0Mp8h8SxIRKpa6zTPi4Baq3CFk1+NQICB/g/bJjzzvJKtYGOY277vauiu67rURfJgTBo/M1+vV48uQq3dI8yjI5XXT0/MeL9/JCFa1Yqst1v7eD9UbV23WjZVcIOnp+fL8uyhtdSlPtWy5TPq7jHPSAocmUFI554M0+gvAIOYsRQ0s3iQasAiwiztMozI3JPPz2bq3ls/Wr8LMWBhcREwSGYxBaRvF+QWBpKWyUV4zeIGCAgFYeT5LFJwKl6n0MtV3Sc5//cNwuP8iVBmyHVm4g6IHn5WG0i/ZUYMZoR0K35kW3ogBgvN9ITTqOtcYXgEZJoBoAEQMfIU8j6+0vJ7DhuIqH1kzNXv55pH/8gkEeEp+AVEDGYBmGPaLNYx8chpmRFw/siBBK4R88wMJpwc6NyXoSCyO6g6oY1h+95IrasBUAiZwrErylgRmWtkgzV7EzSzCD+OgwWFyd27dURiPr3L3RGmdSpR8VCzDKTLxj7Z1hSRXv6u1vPoYUaREhHqygL7uAP4siwRMYZB1ABJk1tkLusCjgZhoZKHB+Yf+0h7RUzxoSqqyVIrIdpQd0eAyrJIUYeUkkEEZQ6hqY0+jhgFE6TAGKYEYEEFmRAMI8LV9YAwJAnhILQMks5sT/y+Uq51yW5oXdEN9nsTMUQMV0D+zntXHXlGImUv6u6u6moQIVN0HswYUUVk27ZSKtMSgetaP39+/fb2q/n99st9WQV5I7an5zV8vL/dpASBxIi1rG/H/TgGY319/lLrer/dVf3l5RNzFVzWZWVa3OgEDjh3mQB5oCEAZa5FQFBGFU7m1TQyGm7MgkjE067zAQHk4YCEAUNt9HHr487Laq4BDhlqUqYjODPD2ZKHk1mYRkdd123uaGBaDzAVQhGm0Q1AIXxyON0fH+B8x6aR1TxaGQDdo0cEhSASYARw/jSImC+VB0VYii+ZkSgTi9JfqDNGhEdYQMwNMCBiIGBynDFDGCWzfOCkq31v4AFnPuBDHJ37XQAaw9wmdDp9Fmj6JpmmViBH5UmFhXObml9mAyAQDIBUk5MOuSiNmHxcicI8l4upbp+5hAbTJp7EDPuhIiI1oDs4MwdzxtcHAZCQg6WNWkRk3SllWdd1HM3MIAxx6kSyZhVhwLCAXPdgULbzuUGHdBErwoXMLMyG7l+//sx0efn0vG0b0QiSMYYNbHsL70tlABrjPkYAXfKiZS0gFCbW3NECuoeZyZdPn5e63G67Neh9EJBQgQhBoQD0SEcLCAvv4RjemdZSkQnH2HufPA0RIQBVNe0RThTOQUG97YmmMmNum/LeXy6XxE7XdW3HuN1uY4zr9RqRRjCAk3nsMLPniKbhjuVZJMLMubycblY0LR4KIZlBrfXzl9f9eCtF+rjXBbkUFn1+uRDBGP1yvS7LQkGXyxPAb24gXC/bk4gcx9Fae74uplGKEEo4tUNTjlGKEOE5NUAeKXl6pZguseLz7I0ZZsXIRSIm0W0WSgDECamegp3hMQLIg82GRy8sZ37sYGZMrRGKqunwYebe1+UKQelPCZ4tMqcpb/5zTq05yqZL1UR/vyOLfnoZJ5xv7o9zPtzThCm3gAQ9kwWhtZa7jGVZhJiFzKx3sNEeV2C26YiIEWBJL8SpfeKMCHLXBNKm2+BpRUIEvVvODutaRcQseu/ZzJ8pbDljB0CYDT155RGR6TKYAMrcqbgbuBsAIZCOcbqbJKscVXX0hDG5lEVEIjQTNWqtJOg+iQ3hNnqM4VUxogeBVCFETysd9AyVy/5XVV01Z4Rt29p9d3eI74BO3oUUOHhYarjyFw00yb6A7s6JyrW27/teVhOFz5+ff/rpx7/+4ePjzY473z78OMbH/U6gwhuG9t67RETs+17lnBGIIqKNfhwHEatqG0PWWt6/vaX7ug2FiNE6sqx1eXp6+u23X25v+/V6ffr04u5j7BTLOA6KuF6fLmtNBlEaSCBEFVzqNmdCHS281rQhNNOACDyJn/d9f3p6iohjPxBxW1dV1THe39+TQyrCwikmdVX9uH0Q0cJcChPzGGqWrpK+rOV63Z6erpftaVkWd9j3xiweert9tL7/+tvfbre3P//nf/7b398+vT49X1cWMB8UXln2vf3267elrGt1qEBE7b67Dsa43++fXl6Zi0hNl8ShlOfVsqz77m6KRMycb1fGeyFyUln9fN+kEDicR1xuSQyAlmVz60e7A1Ct1YcebTcbT0+rjqbdEbFWwYDWGgBcr1cRiQklOADUWqdHxkTo5qmYo8GcwtyXUlTt69vbGMeyliytQN9btogIR0AfPvIXJ9+EESDczpqLkjwCNzA7juN+uT4nn8LdRTgZdQDOSzHrRF4KI4Jaz/eT6HtYXs5SQYjI+77n62dmfRyoyGVhxtF3EVnWDRHDfYxGJMuymM5RIq/kLG0IzHkkDlVlBuFFOH2HKRzMMOn3s9Ej3Pd7lrNaJdsBCKqVC8rovu97771WUY3Whwit6+Xr22/rZVm25e3jzcw3X2+3/XKpZS1CFDEAYFkWAtfQTIVP3gozM4uZfXx8rGm3ZYMIp1Y61N3f3t4ovQY4V78REfPEJRjaxhhpJrCuKwDsva3LEzM+PV3+/D/86eu38d//f78Cg8WolTDKGANj5LZo33euZS3pVDondCJe1+3j4yN52PL169fe+1LXwrXWKozMZYyxbdvz9enp6el+vycLEgCI8P3jWyL/tVY6NWdjJGkEiYECAJJuGAxZjHOhxQ/0y92LLOfk7AnXZY/99PSEp+NNAKEwoUTE6+trmIIbRpgNt0FIOfnlAOruvfcIMIt22LZdsptd17Jusm4CoFLg+eXCgkiePsV+ctGv14VpAcBSJOIAcCKPuQmDCIuQx/iaJ3x+coTv/X/Cft/n8wiP6YjIpfjMRZ4nYa4bGKHIloYuiFNnncZsAPHIFDzPW07iL6X/bvqRhaTCOo9h90dcfRCittZac1d3dX8kd0/Ge/ze9iMg8lEmAHDVqZ6aLTcwQLbDFsFIkQ8lTobFdy+jnKfOz4DntJg9CA4d37unXCElG53nH+OnMb+7EpMIMWf/n8R5nB7tkm944ruTwkBU1HoieYTJqpCsmDCb3dx1BXHi1iGSt0/VEBTNsgPNSpkb1pl8hRTCNcIKi6slCu7uvetaaq0r0pkux8wCoeHmeqQoFxE4o5XziWp9AHiu1MwwVdQRlt7XiEiUuCwm7uae8mLJIIt934lIw0spuYbEKJgRfiWOw7ZLGQ2tD3cjgqUsdVuL1NwTz15pKvSQKBOJXCzkb3/7i0jFJ2JamLmWisg6XEq5XC4vLy+APkZTHcTJ1bNJShVkppMoki3eNHs7b38kKJJjUjoAQoAZhMWxt5yMGbgIG5KZraViLQG+t64aHi5OBmZmJfd2metw6uES0crpWqTkyUyECMXMVMfQptbdLT08n18un788FwZ332qRQmYGjlKEy3LZnjDiOO4ft2beCDNr3ABxRnS450sVAWNM9558DjzNxbkg+izohIFgcyw1qfVxG9KlHpARyMzc0B2npf2pPEFEyAeXkt+NExqgKRHAudIWhJKBWzmLqiVlG6UgUSB5eJ+jXP6BkCHC/gAUaFq7TEEJn2JlOHGf3O1HYPYCCfWl4YJa9vb4EB/5uXRBOoep1OVGRv8YPhgKSDkPAkApBZGAgDMByNxDzXARnr7Qcx2Zg4wTTZqHmU4KRm6laHV0pYwRg0RVddhJMwUdbpYkmgBkFvTMUNaAQLOUTAtMDgUFuCbvJpBYwLxUbr3rPkgwzI/7XrcagaCuaIi+VhIko5jvAkQksRcYwcw0eVMsJMREaf0RSQDxVIkCICBhZnASMRPyGEEQQqGq96Mzc11S4unHcSCRFHx+WS9P5X4/qDACdLd2tACQ7VJkQZ5esjYDzdPKOEWxmUMQ8pe//KXW9dib1BsiP11ft+3qEO6+LMunT59Y8OPjrfV7GoQgyrkQnlqOs/dIlduMrPaw3C2lR+053s+7kowIVRWRuggA9b733iOmXxMzl+KATCR7G/f7/fb+TkRbkVol30HVET2C/uGgm08bwBhuZvf7/XZ7v93eAdVdf/jh8/PlYjYAfN2qiLh53jFVvV42Rrzdvt3vH0MPJEMIQE27e7PZ3RBR6jECjDiHz/nr+ZPm5jXXXESU1tV52AJOvmPqo9RjdHOjAIzA5DUhBjEc91teNmEBn54fRUoSN9xzzYlEkPcjNYhJmSIKKSgFmIKQ7zdUjWmFgogEoea/4/zlh58vs1mUbIuCcMr7mNknmE+ZWJf1Kylqj4cBIjJtzcwY4zQRya+00s3ffHYOMBsrRAQwCAwEFghAy++B6IRhaDCSrpL5CwAkXN0h/QQxVSWMmJpCejQsTERuATCpdO7J0oFHLwOQrlZEBCcyREghIqZhNnIIAvQAUB1gUZY6RoywpWzjdLjbb3cugAWI3CzIEAAKY5BMFqSnJ++0kF3LyoxFGClUIecGmDnVAFDMUtaMqtOiduYhkgB47ztzERFkDIsDjipl3crnL9dff63fvvnHfiMsweo+zH2MYra6wRhGMPJkgjPn5jHJqof8+u0rAr993IgknF9ev/z4409MZduuXOTp6YklgtzetI97WIhUM/X9o+s5I5nlc3/6hek8KkIjLPTBhWDMww0ZgVUt4oiI0hgA3t/fzcbr6/Pr6ysggyUzWmpdAagfx977GMPaIULo1nt3HQBQt9paSydiMy2lIrJpXK8vpRREIyJAZYE+7pfrixRS7cRQSmGkfD7GGD7aWmoQDW06doAhNV8hR8wtOsCMIwpESDuQsyv+/QIv8a1cHTtAiBBi+tSkO3cJBlMcw8yMsDJ7BBEiMS01PUu8HzsRSXofGUGESM1t/xgjSzxCIJKIEjOSIaJ59+gejlgR3UPPoI0O4UhpT/IQfeFkVKVkIFC4AupkD4YRkfCMLTq0zx8QKJuz3nvvijylij61zPMr2SHZQOGpcXSPZdmSAO4+h7L0bibKFikbT5gjV4Dq9xCE5CBlUTA2BCYSlsIkc3MKdr/f8yadqHwFIeaStoI8+9wAgGQ0mic9hFioABFhWCQ9a4xxHMeJXJTResBw94JVhCO8FBaX0fr0sJFlYQEw1RHQhZCYhvdsraaBQ6R/RCgSkRgBRmQzazZpGkRQSiCyWYZ1AmCkerqUUmtNA2V3G8Mqy9mIRVn46bVenoXKuPdvW7mwSKnYD2+t9botsoyhlCEmSLkTAGR3z9UTQci2pQMEAMD92D2+ruvl9eXz3g6zVC6ziATYvu+9t0+fPlsqMaglMJtNe0TkOQCYjo6YqDXGdHSM4Iw4z/FkDM1znogC7Ha7bdvy5cunp+crALSjm1kt5fX1+fWVrtfr29vb7f3t9v7tdjusNzMTAKnc7UB+xM9fREoSRfOnLZWv123btmH9aDsziZDHIOCEuPKYaq1RUO+dCNwHcSCAFBQhJGNOLWAQUSkT18jH9+xKsinA03ToYeAxd2aP8zBbZQgOAgQId2QhdAcwU3PVDFIbOpdzzMzFHYOCKL0JHkOTIoY7n9OZE6GZqjUAD0APC3dt/Tg+eu9IYDbSTCnjBnBu7+Z+jjA1v5gpKWfevGLibZlHRAWRdeQFiLxHfPpWQGT2t7PM9QJAqg+d01R07tjnZT8v4+ywzAYQslQWRDJwBaC6lPNAS680isBwHGMwp+IOmecO3yFKKcDzBqXWMJ9Ssxzg6bF2DTCP9G5wZgRwJEymGBGM3lo/+jjctZTKxOHkBg6udrAAYnpqYfGirY8qa8wRXW2YWZKtc3DIrhqDeO7lJDQBTkTMkpoztJsZIOU2Ac/WBQJS4ECnuLXWlZCRJDWUaR3IonXhZaW6BPHwaIxQVwEgVzJ1BDlr61zMJTkqh4i8KfKnP/9xdLtcnpjq3//+237vakbCGSik4Si8LGVZChCoW2stPdGZA2C61mfXkWNCQDoXT5ugsJFtnfuwWSucmff9mDi8sFq/3W45u17WzX0auq7r+un1laWu6yqEGN7222NSZRERMZjWFMl0OlvQuN/vpYg5qHUzJaI2+rKUda1qgDnP2cigstbHulx7PwgDwkTIAgAUic179gIRgVjzjDVz5u+WmzQt5qeiBqbJT1qTpgeI+OR3EJMTCiLkjoKJnT3U3CzczgGv+7T3zVcIARyhIPIjuIWIEAlns5/mJxgwABQwiAPJ3XSMbt49BnqoDkCSIEBACpEMFcR8+QmZWdTsnCTycHYAUNV1veQIg8jhzmcY54kRAgWE/UPhezhWpHVaFrLW2qkTpVwV6RgRkVY0EAggD24rEoiQpWoukJkxK0JgBDwcLiMsAs3MA5bl4oCqauHmkWK8MUaqM9Ls5HyEMnDBAmyMlj4SEYhOiHRiDUQMEWbTbzJYcIyW27veD2CstR59v9/vUpAlRBDwTLBXBTaaZCueiCEjUvpvwYjIbXXi9GbIhQHdw4cNi2lFT0R1WR/Ka/eQUtOUtbXmCBQB4UBIzJdreX5Zr0/luDXrvpbrutZxzJpPZyGejVKmQEecV9Xl86cfVPXl5XMtq1n8dfzdbXj0pQoSsiNLrfIUfqi1InS/7REZlVSJCMkhCMnWUtVAtasiQECyLAFHGuxDOGKAqxuDawgLIEsVIZH9pvd2N2u/ff21658jQiMNzoEkPbYCKYihFF63ouwQtkgplWW5lFqLYICOvt9uAA5t6FJWACslmr59vH9bLgFul21blgWbwRSr6yKIKGaDGMyH+ggYSBY6zIwMXBXDETkQyDCi5PFDxI8W49xmu7vlJWaCQKGHWCs7KJtKX2FGKMyIQaUsiCxIHqRmAR1Jzf3+sbvLeatSAoxJzonZemC6IQUMDxCWM3CD80ViZrdB7GkWFOAxp8VEDh8qEsgJkjkHoqwzFBwUhMLogciFGKkUKo4oBCKyiCGWRH/ADRKtDPPc8lUgwDgrAoAQBCIe+4FSFsmMWTCIHDxFyMwIOU4xKUAwYBvdbLhGIJBKUr/coNQFQZAo0D2mCbVGdD0A0yHfiESKSBBTGWOcFQ0TxvWY/stuEK6UHEYgIWYnRCiFy7qIiA83s9Y6o5SyaN+5IAH1rmWpZZH9uN3e7wQWYZensixFCkeke5BlriqigyPAQCAiQQ9AF+JiUmvFmW8E27apZSzIAKVs0JlZpCKyme17M7NlWbL3cdegrD+BVJclFwJP22X9eH8bvRW5LFKdPYDS8swiTA0AxAUIRdwNJhiEIDailtWGvt1/g7DrpSK2j/efn5+elkUi4jiO8PHydHV7BR0cbjNQqIMjAaRTa8pjgYALJok90B2oLKu7D7VhasM9lwUho/V//td/eb4+/fbt69vHcX1enp+e6rX87be/iggAidT1si5LHUPv+8fPP//VfJSNqkNAvL48XS6X2+2dcIhgEQjfb+/7L7+qdRuGf/zxp59//ouNo/vtOP4O0v7L//PPv/79bwtMXz2RWqjaUNWxVOntAxGRjNiWVcS2ACWM8MO1l7JIWSlwv93zs/V+L1KlFmaOcJyL2IRVMYKoSD6Ac/Geu3dDh+ijIaZBFJH76BauLMBE4IbhwvDyek3Zog4f6tfL5217Oo5jWVbzTjRSWu6+gwtxXC5PY5jwWmvs+22/92UVM7vd3omdI8xiWUpqkRBRdaTffGsDgNZ1Q+TW9mWtEY4BDBwO1o0AT3QTLBSQChNty930aB9VCMGFYtmqWh9juCuTQzhjQUQqxV0zU4SCmlohTlcWgwBEqaVgHWbLdlHt9/t927Zc1/feh4YsVSodo/fRRQpTSd9bJgJiJDGPMUa3YRbrUqdHCzIEqoUQcZkkJHM31VRzuGFrnWlldERchCdDcehxHKEezrXWul7e9g8dgVQBihoRr+1worHwqsPfbx+9D6nS985Ei6CsmwCpeyiVC5FgBLpB4bKuTwg8ht7e3mutgGKKIVJrEY7WAQHAjZHqeg0H1aRCrmu5mJmPKLQyOHi4BqFIqaBYLhsAjOHPT5cvP9S//vXbsl5rbdt6Hbu/v33byhMxmrtJIGXKLrn5ve1LrOt6aW0YBBgIkeTCnIiu100EI4IYlpUQzd2LOAT0to92hA/EIAwNNTe3FKQwIloYIgIhYMJCoO7gHmaPKRooSYiA4VyBJZaLfKKnoXvXvY3jdnu/PG/XKuu61FqpQNP9uB+329vQ1vsRoFRwJQKyY3wc7X2p1dU6NhgwurU2Rnd3+O/HDgB1oVJ9WUpZ8HJZrpd1WWuYujoyFl6FCkDrvV8uKzG4j6O1aT1MNbwTUeop0AOQ0dN0XmuZIgqidPJDz4CBpOkCwSkcOB3+k1ePiDDNiAkhuHJx05H+K2fwDAlQ/gExl3+llGVZIIjYATkiZZEQYEmpTvdHCE4TN6JcxTcRCX9YMPzub5GY3ySS4KkxzTHbPJkiDgDIhYIw9WJ47uTMABw8kIEBYLp8OoAzeSBab4bAQpCu5zngAHz69Cm//RjDJxFwKZUJRQrt+55IXnb7qrZet1IEgSuQsjMVInEHlgKA6gE+LNABUJgIhlsEhgMA8CRO+wTPUAjJAR4KaJFKWDwUzM6EuORq6owwzVXadLHlCARHCIFwNzA3M+t9mDozm+uB+1JpXWvhjamU4qUiMpiGm5rhOLM21vVJhBgJKRJrRwSmYpbTdOJiTESEySibugyiyBuVthRqBqfaxcABoJRyuVxqrZiGi8PNzMgGjGP0pF2m3BoShhBGhlprOpdKhLV25K6x1rpu9TiO3tvbm01WEqMO+/b29f3jbYzGLMzETkak7IhQSi2ldFU42Ts2N/TuDg5MkzxCJ96TYZtCEBi+1vJ02d6KjK4AwYLrVp+eNuEqBK49wOpCz8/bb193M1+WggHEGGFSyL17iDu5ex9DTQFRSm39RgRcCjk4DGZcVt62KiLDvieLIqKqR7Raa12ktfvtbqpeKxHhGCBSI5CpiJQUpcHJsk9ewHwPYlJ/kSSnb58TNTxGa0QiFkRCSJFywgrAjMm8jbw/BCyR6WPuQOTAWBdZ14qYTyLOjjemsj+5vaYwjVJQiBgCw9EdYtYm+v1y5FRwf/8VIhKpJ+CaGuqHKOg0TT//Hr/j3prZGFOAoNozVy7DM2asYVoYaFhEWaqFP1gq2Q8XEURGiJkGioKMwlVZc2KizFqJ6fgQDiJ19JTMIBAnI8PddThAIOWMMkfm6aGQ0gl0gHNxK4ToPn5PG5sG6gB4LlgnGxUgwQt6bGrVwX3A1H3XMay1cfvY61pLKWUhmvGKkVp5NQ/vIhN7miBLeGbKIaK5ZfYiAhEWYuHpPi8nXyCx29TLUIJ5AMCMjg5mAVbq+vrp+vr6/MvP345bSh4nyUVVASoRCVciSnJf9gvqk9Iub2/fkqsP+FQq52VK3lguZqQUQBujqR7M2MYukgZezI5IlJWEW8sUDndn4FPQ5kIlNZClcBKB7/ePNDV6e3vrozHz/X7PcE5iKBQAuds6+nHftk24bpcKcXl7/6X1Q0olAndlxstlNR1CSAzmZt7M8sxkloiIo7W9HQEHlwVQWbD3I9xPfn6cLKcUz0GiaGOMUmoEdB0FJMIRPCLftNzTIJEgMQIDRLifSjuEwBlJHJlZhwBAyI4+axDwaeDhgKB2eDTAKQYTroiM6LmJiBmTKaVwSgZZ0Dzc3N0CLEGpdb3oSEJe8iCSKx1j2P1+h7CE9/Mxyq+Mrgxn5sgDMPGQVHMnYS4fvuR9PeoC/u7rrHQTqzOzCMx2vtbLvMDuiexigEPs+46c43GGLQMRm0VrdyLc9+bu20pF6roGEd3bHcJEcB6LyBCYbI6sWRCQuqOIDAE929HcgCdzJHApNW0XzZyRkl7l7jNvQjUzbEQEBRERDJJ6/EBbYO6P/ESvUwOOiMwEpZTsKXrXdmhbB1ANAj06zu1G1qfIt1ryAQ1zM/dhnjspJ8TUrczKKCn9oMe5kp8kR9EII2F3RTKcfhOtLsvT0+XLl89/++uv0fZGXplKKQSTzoQoJ/L13XzEPUWxLv/H//d/d9eMwbzfn0QozXy2y0uy9BAlYJi3JORU4FpLrRUQE1k7m2cws+G5UJVsjcIBQEZ3d1+Wul0WM8vfWWsBjNb2VEjVKgAgAlKQ2MCb9t49zPdtuRCRRwfUpdB1q4jhgYWZGISeCNxd933PhRwAMmGpnO2xAwHyupW6MKJ9fLSl1G2bFPrj6K01VW2tMSfqPpWz4eEOt/2OyDoQQUehNMNB4HJd82oGOqA/hNsoxQ3OwvydyPdooNzdbKgmWYHQkrViBIjEROlp07uqKjwkf4hh1lq7lVLUhmoPGLnWEpFlWdx0Wqr7nFrdvffeWstknRPtx9xFp5l6pMw0HvB7buNJmIWn5Smegv9wCPwHwyV82J8RE+LCDKe/XrgjJmc12wHO2JijDyJmKlKIqQB6Xq7elAUT4Y9IZi2LLDTSNAGIGINNU56InA0ZppMMQ6SHqUUEoJ8OGgGASAEBxKAjGa5Yq5QivY8UcY8xPPcdi0TyzCOEk/+aW48A9HB0jzEcJwUzVN2SdDLlGZzq6TFsdJcCVOXYO4mLCFNhyc0R0NnRuE2bjAShmDlNyVMDBRGcM6nPTPpHCcZJD44IVWuqqdFsQ3eI61L59dP1+rS1j8GsmBEYQQw4xjAtUcPMMj4p4nchOQDy449fEKOUsqw1aQXMWIps20LsiLGuq9m2bXWMUc7l86kSdQvPqdjddYocS601f0MEjkYZX5F1xEPf3r5+fLyVmmpJz1ikt7evvffr9fKn//SHutVCZYyh6ohI0xTQ/vRPf7gs9fXTs7v33nKZw57L2qGqZhoBqQucDGN2j2b+sV7i06dPiDhGW+uSP8jR+yOSKFeY5tPxwh2IQrgMDEZhrgCoaa4VVMrcaVvktw8/rWzXZXF09xz1T7qaK5430B16y0cT8MyuOemWiQiQKpiFjgyAQiJCArV2tJv5MkabxwKdf6ZFusKlrMM0m2RTzY7JzmMzRfvp0rHkQ5zmtrNtAeOzT32c/Plz+akmfOzzAQAIj9ElPJdnnA5WwqWUdtzTRjH/qFprrRLIZZnhWqYR5Jh221BKWUopST+HkNFDB5jFtl7stMyIQNOYUwAFBDILBGWsct76CM0GDZLbSPPvZiPghF1mA+FmJiJmGornzaIYNoZhmQgO0SNDbB6qk5YMU7pGc52XIcvi5qP7GLaFFCndLcIhpNa1SnngOO6u2iFmnkhYEEnmtUSEDlczNy2Fs9tPzGVaWk6zugBwjWOMVlW4pjdRU2uAcX1aLuvyUUUYG5zcEiAmOLu5mIFqNGEdM/Ph8v/5f/9vKRQB8DFGHwci1irpysaM67qmOV/e1+PoWaiSWZvPhkOoatqBS11yWzsXKIOZanaIEaHax2hqPbc75i29Evto9/sdBZ9eNhZCxPx857VT1yeAn56fn7Ztu3/cWt9nK6uTCgHoyb0hEgg6GSkQePTxLfDYLhSBGfX9GAXzic+lnar20U3DPUa3UlFkfbpuRFLKgohjjNGVBGRaTk+Snp4aAQAQ9dw1IOHJ0fR8N85XSwOy4RdiKGkfHaGajzFFgBsilAgFyJUEAHiEmyXtwjICjBjDo3eFuCOsphOocYdMV4QgpjJnVvBIvGMew5b3kHmG4uS7X2rJ3i78cX1mLYiEFTwpWxAYRKiWWmaPVLyYmSWgkFY/AMQIEYmwgiFKRNbW9M5+tE5AJKUgogKQmZtiAKflfnYqabUEgAgUDsxCKO5gpnnYstCyLDHJ3B7mZ69Apipca5XJXLCehWZZaoSjR75sRKShZnbYMRWJ8zkBBEOSKotZpDsDMgGAhptpgDO7hpvGfh/LMi7X2LBeL6WNAyAIq8jirhGaFjNmhqnzOg3mifiyPZnFEYd7f1jOuPsYzsxI/IiN8ZmF4ardrDIwTneVwwyv27Zd6rJW5j1/1UdQgDBnn2vmdLqR/UNF+K//9d98EjnjEUlQq9zuHwCeRICIgNNOG06FeVZQSO2E474fDpEBe8xlmO77fuwKy3LZrtu2Bfhx3MdoxNdayxitVN7396Ptqbebm20J9ZEyjLrwo0KjBzNfLhd3Nx9mVgoLLdt26V2H7hEp0UmdTNJsAgABkbmmo6lZrOtaKj96MCJihohgLr0fY4yTIupIUkvluqS+yN1Hb3trrIxIl8sFzhEaPfAk5Oz3B9HzdKagmn5h6ZTHzGaRw7kIVUKceY0Pv0aMCJGMS4dHKcljoe0HCxZcRQQJ1KP3bkrrsqbb2mxYgpEcCINmC/IY+RGT1zAQmTPTDfBx7hGlEgrS9+qcGnJp8vgk8zUOwq1uWU/dTVWTp5YqIwCQOaPGGMPGUI+YtroP/IHM1Mz2e2MqiAhB4QSBRExUjr735u4OS1phEyEyc0atEInZsFlfiJlrXczHGKP3br/TbthwuUgpixmMlkFh8FivJIKQNyWYEfux3zNR+pySfCL/0xU+jeEJEcPDzJdtQUV1GGNYs/0+Rg83XC/XRFLdIxyyHplpFQY0AhShTNasdam1bttV1SIgu06e4XFgZkgRAe45R7iZmbdlJYgIV8bME3IPM7fr5XLdlrWWUphguJuZG9IUAv2OKZN3aqLFBHLst7zZY7R8J+siOqQd94z0LEVqrSxopkc/wpMNMv3hiAsiW4pMIxBdrR/HkTi5kABSTrMjuwPt6aTu0SMyAZFvt/fca0ihfrShrffuJ6hWOc0FHQbcb+/u7hqMZMMDddx3s/BwxCA2ADCNXLNv21IXMR9qvVRYt7VIYfTeuxuVUk/inUZE773W6r621iCotV11yOtSRCiDLlyJi8hYluX55UXTabIUDYcWEdPptLfTenSiuDAGWIwxhln+HD79Bd3NcjWXooCYcy8GMyejJidGZjYzxLhensORGLIFyxq91Avh4grMYuoRuCwLM+zHvbXGLL3v7l4qC3N+DyJKnkypSy2rOxxHV3cAeL/vSQE8PZHPesCQPy8A9N5u9/vRDjNDJI8AxNSe5qEyfFBAhHUAQIf5cBMRu6N7qA5EdIMsx7kMaa3nAZioAXNprQXgul4ShoQZpgY+QcJO9F2Ficg6zMzSXcY9Z94KAGOMpdSIuN1uYzgBF1lyks+zMSsIgG/bkiuJbdt6N/durnP2+V2ifFTovQ/z3CUL4+3jIALiutRoo+/7uH209aq/vP37lx+/IOD7216/LKWUgaNWZAxA1j56P1gwcbR9bxAfCOw2TSLPEa/UWolzJ50xUwk/AZiXUo7jGKZ1XUVotAOCtB//5b/8y/Hh/9e//7qspee9KkEk+34A4PV6zWuSAXbnclAlietZctz17Agcs3K5qTlqqMVJfiaf0eAEAJybqjSHm6XHVb2PYRYQBuEpLE1rcOJ0fVSPnvT7AHfX3o+IoB5BMbTnfUJE1a6YQ0QgprSfkh+AiBBuzSAEKYgcySetZYxSFlWPGB4KBERCmFL5POj8BMshQakslGl2grjgBFxiH70IRs3P6eEZV62zkSYsVIjknHWZeU5Y87gLO0uwpBfoCShMeS+eHISIGbKACO7Wh4YHMy7LmrHUiWI8zrQsF4Q1xQKIDBHpQBng5paG96aTEM1UilSkpFPRCHOP3tStI6a0MbdlwXKyEsxy9cCc4Lz1PvVO27Zl2Wp9qhKZGQHyCRGuNWMF5kXT3+MREY9J4bvA4fx6WLkTUxExtxxpv6v0/sP/8mj3IgIx60t6mgZNhyUUEXCkmTseGCQ8F8D7vjPj5XLJ5zOBknWr/a6PmR8xeciQlw6zDHAJtHBU0zFmL4KIiIU5IKh3u300KJJAaYKOcfojIDghi8TDIXYMC3fCVmQhBnJSHRGKmAEm2cc9QrsIEZAwwhgYGYWE81Jgtj/4/PL0xz/94S///Ze/7t/6PhiZiBYpabjw+zbBpyYV0EN0eFaB+TN9v7jzjbHkooDnbpZO4xAA8TF97MNzURyuPoappjVqmBtAHmWc6cMQZODhqmMAOhkGu9novbk7CVJht0T7AT3CoUePiHyFKbmvQLnoDKdxGCGxBBaE6YyccgBMbbx5LzVJHZJu348f7YH2RQSeLaJwXZYqg3o/IEgtkIL8tPpMtQlGEDpGhKf1qTvryDd2rnNS2/P482keuJjuILmRRYoY9hgKEmT1MCSLyBDBZd2Wpa6tNR0aABmglm4rRATBEOQehHiWYwUbgL31vffDzQAmDbbWFcBhDhGjtZ4vME/r/hwNVLiIiEdyvf3xU/eu5oPmvrkyo4iYRzqRptgpOuShnTs8zPQamBAsuJue1TKdZx0IJY/BbNqzkp4bXMr9LgSFI1BuWPPLHqUhDQUg0ngCfG4lCSBbfSAiGy5SIIgZwBiR3AhAI6LWZa3VXVV7gCNSKaXFmI35lIQxIjuQTys0jAimgswG2LuGz9mRiAgjPI5dgW5PXy46PHMKE+JJ8DVspMnFY/mX/zVihw0qFYCJjhHNsQ4g0yXmBJkquPCdsAI6AoYjmDthOKrq89P6xz/+9OMf/vbL394jLDnc2ckWqRCUCvH5YAsjogcIIkJguJ865XnQE6WkJCN6IcIDcnZCgFl6EWjmT8SUsppF+mUzsKNBuFpHRLP5VJmPzE1Eipx4IsJM59YSKNQ851lMh3DLPlPm5wn3xEMogtyDWTKV3F0JgwiWpdQq7hBhqn3oIZVFWEQAU3Y1P/73EyePL5vaW5FCdAEAQhZemJYkjjMzMtSllFISxc7phidzcb4MkP5FNEOTEJFQ4HeGwlnvssy5PWC/9OoGQPNoSB6mAcmbyOo24YkIC3eLgO8mghSRGSGJdiYNbKSfDwBMh0uABKsQsZRqChpOJKUUmoYokEnokbwf+r64ToohTBamR4SqDjMSBrXcXAK4DtMxmNmaAjoF5BooXdUAgFDSjPhxyAN6IkREBPnKzR2tm9n3tKfvfcFsuh6LgPTreUC5EZk9yjiVC3yqDxlBIiwTlvMZe3p6EklzI8udjqurjuSpjHn6nzbX2QSdlllShJmESxHzhFc9D53iMXozx748L6213MWoKnPUpYighT3csPPIyMfGTHtvZj3NBDjr/ox4fkxDVMpSipQiNhzACcwjoSgEBiY5jnuYXrfler0UYSRgJIwUra211pyYcK6BqqvNHoGBIDkfSJbBKWrqLjIZDPlZAxEDiXmpNYs6ALihurkHBpgbIiV3j1C4Fjbbo1loRJiD+YjZi5i7b5clEWnP1FfPnlW6GkDgbLQCItVaUMpiZj7AHSkIgMABnJIAb6ZjtBjKjFKIhUET8enmLWJJzWy+qNOuO4+U753C1MO76zRPJULgdbkQSoCpGjJV5mWpVIiZe+9tdG8uXEspRAyRcDnnN3pwBImIhU9ENnAaB2cPKbl69nDmXH13wE6saHa60oiqz5dX0LyraoQjgnB6+5feNbHxR4+dznHCS2IcATjsQbdkBAJCEpZSpJYcBiOCuFjoGHqSlCQylkeHiBSZngKj99Z2swAUN+gx7scepvu+m2tWYzqbjkibODAAQEGAGQCRLWme4YkgxGkV/b2Jy8U7zpC4iElAJEYiIPx++/JKI9R8wAgD4ZTJMjMJoURQpMxkcoRjqZfjuH3c3t11Xddlreq67zsGmtnQptoxzXIDIgwg7b8TTJu4KQCVsmiu2T0DjikAYdhxHCTGzKWSameRjauIhA13sHF6Ahogcqk0xjF0b10jvC6yFGGeq4GYOQtpJyHhiFA4d69haoeZmkWtlRACsfeOWK/XbVkWkZ0cVPtxHNfrc/IyE4pKB/P9dnd3pJBTF511lc3UTQM0QiCVTCdVKwH8/N9yknE3G64e4ahqJDVpZDkkRAR6CCFQQqzjsZnPkgmnMDOLcf4KcjrqA1KOhZMxwswQBBQAlCIcdXcDEUYEwLARZs08kv6VJ415G3qoBaAiGaSVgytMgzP8HYsXIVFJG6MLC5gGkc8HzifSzkLAkLlG7poOn0puZrkMY1QiJwIknGurc9yAeZxNe5/ZJgQHqJpBUH7IFDKzQEVmQlV1HAjCRJm4DdOUjSaPAQgCetPeNe8OQKTuIO93xNw/mrraQEThmbKNIIh0YkMAgLXW1sJdp2kCPbwwJ+k4b1mCNWbhOW4m29d0jOEZWk0YQSyQ+3+ALFNAmXFxFkoASCdl95ST5gQHc/gHHz5+Nyl8/zpr9uQbPCoIIblBojZhYDYcktbxWByg+zRiRGSzse/7+/t7hBFjXUo+G3K6YLi7JEfLIwJqKYbZ5EcK8C1QVaUsnNNCmJubOQYAw8fHh0O5XNeK21BlfVCM8PFOJsQgUoTZo5mZ6sjACyJPle1cu1JQEAAnP13VOZiQHJBC+uhKPXvSwnVoW3n9/Onl5eXpt7+/qZoaDErmzmRnn56uk4QCRLLv+8RNaJorqY08uomcZhSFqXXV4R7arVAVqYg41MYwd/BAMy8GjmQWEhQkNqy1NrxxBUJR660N85EI//3bR15umMThCXBykZn5g44xwzDNLDFKAEnzF7PozVtr7s6CSBoxInRo86b5rjFTH0cfH6uaeQesAMq8ObhP6QWeiEn2Gtp77yNRlpkCcrQmUiH7XRKRvCLae0/fqzTbMDON4HCM5OpLAJ6eQh4RSa3JlZJIzU1bRET6rDqaGbJTWEQqsr2yZGRjBHL+c8Cx38xHhDEzcJKO3HS01sawCGPJ3rCP0dydsCAyn1ZI4eDhEPoId83r7/Ot+e564KEnlW3uTbIRMzNzNRv528yMSBLIjDAREWR3R0ZMf0DM2NJs7Cd0ihTMcypJZf7vMZezBJxET3y0VHOV+JgjzpSHONuKfFVy7BQAyM8ZM0ywMDEREBIAA1CEqikRlVLMZj+GALXW5CV+LzREAZB3jFlKQXdIuN2mMeREi/KRNg0gB4l+vweK6qcTift+/Ez8CuasZBpecqTHAjxdKsLAs+xazndYOIIQ2Mxa6xVJChELkSAmJmcIA0Tc7pfX1y9fvnz69Onfy9+ta7LdkqqbaOK6rokQn9tHknSnlkLp3+yhqkOtQ1cW4EBHd+1Nu7bu7g2OUpalVCTJ0Dt38KBwDCzzWoQhay4df33/+7KWFN4ex6HDRaTW+v7+DsmAFkGYUKKht3afCXSRfo2a6TIffCCi8FLrWsh1+P1+7Pserusq26VKATPrvbW2m2tqAdQOHV0HhfekHxMlpPSdV5NEtG3b3M18SINSWK3ljevjAAApRAgiVAoD+OHa9jtMoU6Zt85MwzBIZkYaMoTnLItuQ4cbGKS3RFpVANKYkTSqpkAGqGqzsxAR4RKOEC5CEKSq9/seoETpXwzhPoaOHkPbGIaIxOQBqj56ejkpc4jMmBDEkXQA+m7HMhuEdExhLrUCAIzpMmjMc5htrd3v96GdJ7jBaTlXKpPBGA0R13UVpqmJZqYkCGIJd/IICqYp0Ytc60gB82EhIo5I4cOMIjQczIcbImRk1okgnlZdARE85Sa5BIRsRxGdEUIYnRxxmkOoaRFPn5jQcM8pIAh4XdfC2NoeETZUiGutPjzNrSUN6ZECiUDHaCJIhCKSGfQcGISmHYkYpnlOgLkFGjbtJGZm+dq7PfodemA6AOAGkG04Bgszs9lARB02GeSeobuFqZ7cTVdVYEFeahGcZjakaohjNCfsP7z+dLlu26VgCWQgJCpiNlojAL9eLrVWAmxHW6QghhLJz3//v8zs+eX69HQ5ejvaLXeBZa2lYoQd/dAxuFCVIiJfv/3MzIXWsiyE1Q17g2OMcL4+OZG8vb3v+47MVdjAbrfbx33ukF0tByF3P+5tXdeZaOzaVbNJTYc1M1uWBRGP4wi1hOsSpWMq57HJS6nWx623dt+R4mi32+2bh9VKdWEku92+EduXz/9SiH0YMYWR8NptfLzfW0uWTkEc7+9v6WLo3vs4mOnl5QURe7cxjv0+SslgewSIpUh9etrbEeFFBILaGAyw1AtRhaAwzzoLFG4jfLTjQMbChZgQh3YdNldxRMiCamDqRGQKSWrQ0ZcqtRTEaP3eWx4UFFEgAKJAcMyJZphpdnlJ/V6X51qu7trakc6FrY2IQOQ16eqeCmUOZwAUFuYFAW632xhtaAMAZvDQ+/7W2r6u62yqMY7jcPe0+haalpCfP70meObupRTEGpOUQckHPe77ft+fny5ISFSQae9j3JtQqcv6drsFkBDXdSFAdQuAtazLsr29fW1HW7e6rkXtuN/33vvT0wtgEFZi4bIAsA7IS8dckWS0u7unh/1ovfdeWAoXBEICIYIgc3aL230ngmXZjuN+v+3C5B6LLKZRqDxdig68f9yTiQwQZs0dmOv1emUu91t7e/sA97IsSOBmtXCpT8N017u7m8n7285JvQhsbQDA7WMvsgiV4zh0DBFZllUkmoZNUxwioqEz27DWFYFNYXgPjXlgVAn0Hk27IcKyXpf1YtrHaC8v131v9/1bFd+eyucfXn+F2/29B3pQyCKLFAS4vX9UriIyWs8kPvn5l7/1fry9b9u2HmMfowG42giKWgUZem9jDKSYgHkMCiCsRAWhDKPevA+PwOvlGYDePm77vnOa+YHd9jfEQOSIcI0xbIxhGm62LMtaKs1c2nEicHi/fyRAAgCtNTeYspBzmn1sQ5ZSbTQMSFt71b4ft4ghBQGV2I72frlWt0GQsuM5JjBzZp/EDAWE1lqAIca5cHLzlPNmlIBkAvIEBRCGWRFKZygAKDJDfrWP3JGLUziy5Hii34UC1uPMNcwD9MFKzKMDoSBIhEOwaQwYCEmjzK0wp9s1gAEoQNqNWymcGO2DpZeNMbMycTaAccqWcIpDIZwiwg0MzKwTwdFuaklnCSmYawsPUxsU82cgZJzJ8SyFkR5q4ngQSfLoIyKY0u/ULHPrihRRkGOmZntARJS6xrmjzYkhENLYgTJoGyDhd2KUgh4DwxyJiMEhre0AiTEYOUIxLZknaoPLWpgRcPqs/T5rMomLyMQoICkuMsjooD5Gh1BxA/QYYO4eaTzlqqMlbxlPQSRmY+sWjBEG4Gax39vb20cpfNkyEqUAUO5WdCQxdKRagSjGMEBFJBHOrT3MdL9q0zYyCiVZrKBg4PSrR5T8XITCrDnEmQ2s/vr56eXT9eu3e6AHOxAQB3Ey48E1mUMj/11ut/fj2I9j/7jx0VvyNMy1W1+WQsKqfYyRJhNmui4lIiAOREYo4eKO5qDqbVgEfnx8tNZm0hGM+3EjAkZJb9kxRj+GDnP3Uo4qkmZ759MAUug47mncnmTbCZU7Ppg/7pAcocICrhiQ/yOAqzV3pWFDdyRV20t9ptNRPl/4/ENOPSyYhYX24bnq89AUIpslO4NorusRJxkGUwArXHND4R4iKaawFCymUMCceXoEWrrXpljg5Ecx4nR57/042p3IASVZvXOYNx0jwgeEnDFNueqb9BIiytc/pZz5/57/iYlyz8+5PTk1doBIUsg0smOb3y0I0PfjzX24OzGYI2Ikac9sRFA6taaMrZSlFM6ddH5TP936T3RmrpwfxUikijBiMMlpJx/CpdaafwhixrdEMvYTWkp8FCAdKKcA3H1SVrJ8P5L+5jwYmngHUQbTAFMBIFVVDTNEoDRcPj9pmpEIADBSOIehqveuNoggzmk/3NMhCN29tYYzhBbONtbPuzM/DDP3cby/v5fCws9EIlIDtNYaYG7fF9UBNh9s8lwhMZUMdImIUsokmwAwMzDgdOQIj4AAopizHDNxjYh1XZFARH766ae//eH9//zvP5upareStPqUOQdCIOYu1CNcLteFOLe1GOip+umjCdS6CBJZKbXaecDpWpck4fv/n6w/W3LkSLZFQZ3MHEBkcqg99Xnol+7//6nbd9/aNZLMjADczXToh2XukXVOSEkJJZlEAA4bVJeuIYRIS0USqG3Bt8NaC0wIhTMFq0eQCERZydTEdLEeTw+ZPHUTDM2/rhSRBeqoqv7g84nvAEiVaUMMJPK/rXGmF0FNREq28svXFxbY6lWc5UVBK+cHYp7Fda8SoOfga7XWVE2EK3Nm4ORCTOjJ4ywRqeQIhzdBZrhHZkjkIhShZkw+1y0xB5EAN30+P177U7WKtkw/9mlmtbgaQWXgZWUQpGj6gy0vLBiwJ88tAaRNqshUP5HkU1EDTBQGCu4RfnlvhvtRhKknExGsEvkTylsHpIgg2Dbjk2dxknnk+gc5OZpy6vARCA6ezAImWU+a9iXKrvoUhi3BQlaEF63P3lak0uq9JxVlcIaATxE5xjwiD5EkDqjpIorJiKTS4BdfVeSZQcKcWZVMZSxaNTI5vHxWJSkQ5RBS2/enaWPoXOZkSiIB22ONGTKL1onArFu/J4XPfH9/NpM//enXdUwce1H4nJlOlEQYXrjIpwWWiEHCcBbIjMJZRDJ9ZsB+cmYoSbONmXnZXVlr2vuNQorip59+/uXXr2YaOcfYD+FuKkUmzcSsSbPOa+WEffly633pPTbv+Apfr1e7bapSvNBayBlxk0M1MEdG1IyKSEnq907C7HmjrsZ5ZqLf5QYIALYC3KrpVsV6lm1EycvPg1lqxm62+KqZlNnwBFvbrqLXZx6HZqaKdDWo+ZYZPG9ZHrmrVZZ45G174Dl6jKrctjszZy7xKoxxF3lZihnDsIRWApBPipRy0pnpJC4ivUMixVXMJMJGKqqZK4IRwHUQuwgx03T+3CTLwIuIMsLnHNOPOQ9Ia87NySINPOjKQnJ5lYeX2qdE59qN+74z8+l68qlijpUdAmvNdRycDPFcaQgp59N2FmdKFqrKyDjLGewfUO4an2TWiFhDh2IqUjHTRU++Puz1Pk1ZWBnGE1HBGDMFsUe6iHh4FaZrdI4/MyIgwUg4rCszsYoJe62IsEjyygznTPYJzvs8xpE1mIO4Iia6d5VudhMWqsw8MiCEXE4kEcQsGRxOsQciQZiYRJhUROnMcYbCihajhM20iE8KeZ2zFXwdbHojzv01/qDv3//0/p//9e+Px/2vv/1O7BWe5bIcnz1y3vq2DlDWWvReR7/QWuvdzi7bo6ooDDaWpMSJIpS4uLi1JkLjGMfx2prf79v9sZlR1oxs0w8TKkmB6FsJZVqVmRpZ8ZJYyqqlxxj3+52ZPQNQ/HXNvl4vZmqmppxwhS7OTNGWa1R48wz3MWe4j5jwW6SMxeXgEibl88InSlmOV8VS5IFMzrMWpbPZQyq5qqprYkWqSBM26Qz1dLkICRFHU+VIVi1wH3LljmbrWrVqJJBwiCg0oN47W1/NTIZ9QelpsEerbs8qDST5rFKFLxf9fhxDmIpoWYOXo0Y4xsq2wvh3nQsrSO58M8tmilRbFQkrqYULiZl1Kg1OWP1gj0GbCJkJMpqvKSMvJhwtLtMa+xWEsZF+zl/zvIsoojzGtunJLIqILApmUViOnz+oFTLJfeBUx/vRM7gBCCj/8HOd5vgPT7AdBXZkppnBKvJSBzMXkUWEyiX+LfgRVpVqy4TwfKEYmZyrtYRoGhVTXQPsiBLO202aGUxNK0myMguO0xliZkxSmfvrfY7MYBHNEHRVvJxRVkOUklSofcTP33ESSdfY8tgnqQjLmP79++v7949xOH2RiCjyCicuM+29ZXqmYHR11pJ15ol5TicixOqCskVUmKJKkiwhmbjPomQmj3mM3feolKYfreuvv379+5fH/txF0WQtbqu7qarSShUxa0KskPIqC67TMRyMA4qAukOlqVhVZQiTaGeVpqrMAit77EnMtTNzjP15DD3YGfxCruJKqWJORsAeYDRG2BbeIgWJncG4FRFwf6NTGmTrp6DdVhYp2loXkTGGBwKLLA0JfRYpj8cDy5RObSmWCzbJuf6KmZYq/JTHLOarbIhXIOSLChVI3yJzxGrqWMZw5jAzeAcgWnXx2ShFGIw9kIvPbQKgc3lGRHoVbIs4M32GcBNYC5BQaSb5hMCsrnad6PRx/eyirwJ+OXyAQ0eLJrgobkVUlKJsxqZCJJOjqNRoCbGL5iyUh621iMJrmBnCQeeMTGFmZOrivEa7i38+a0C62j306hkkSvDLqar4NICIq/3GUZWcEcQkdB4pjN2QK+wsoYDAWWNETucQXYqaZBFxnIhsxAGWrHBUEuTJfPo1EZFwU2kqwhQRTNXMbkyNiDEdPIsyCI1OdRDVKU/2iBAVEeUkqsTCsK4qGl4+j+/fXn/88a7GqhaRkQOUClVWA6mPKrmSKqoUrQczc7NGRMcc88JtmYlq6fqk1Un0PBvGOo5DSpl5zL13/ff/+PWv//O35/t3ohDN1lnXVZZ5evBSid3v2xgwEWMhCGmbO/V2Y2bREhkigq4hM+/3NyLK0/LN3YdPd++9e3ict1Nmznn4HCrGzKKNSokknGHoAtoPV4KOWjQzI2twttYNC2v1xnnl2Oq5OgMHkBBT5P12x607nU8wovcuURbZHo+3bbuBRdmagukAeI9I8TiuF7y+gHMFi+m2sAZmVQQQcBUYO+vv44omom3bWmvA49WKpSIIV2gnc/c5j5Mqf1JVmD3mfrzcHROQiBjHHMNFuqmGE3MKR0SNMVonuCzWCVyZyv+2/c7LnwGCRHDAJpqLWCiYTsEY6prWtkoScSI349ZVVTORWGewgR4DrsTWWt/6JmIiEIAGip48ky9/qCPoOqE+Hyy8nk5napHIYqI8PRfiuvOJsqQqqWRV4TC7oKKEFwbsPEWQpsFMTMJMKlpkzBlgXsTZ7c64KiNExTHz8hHiTpSsotqUEdjQTG+9KRFTaFCssVR9Hr7nJ0KWbHye0T8yqJKgGKqUOer1HN/+eK+KX366Z4Ld95mcambjGZ9eFcQlmA31x+M2/RjzqFpRw8xclc/9Y464tdvt9jBbdLurWGtd+9YqsvX+9evb7W5jztgmEj2ampAqK1TEuOqsKh+PB7POEVHY5/y4f5kZ7qHW/vSnf2+t7fvz+Xy6++PxJaMSUxYiVTHTiIjK3hcDdIZb0y+Pe2xdSJp2lS2T4sg5KzzRO6BUFmWlKlL3OTKVqcjnPFR12+DdVqA5b30DH5u5tq1FSEy/3+7CTMXYjUUhQixWNSvhs1wniXCMMUQ7VL3Yw2ifxvC3t7fpB8w2W9sgcK7kpBRRM8vy1+u1H++qer/fMjNyMrO1jUrckboxUO/wKRmu6rg6kJKOrZvptaSWKSL+yqpgLqJ0H2P4GKOK5wjuIdLcfX+NKhbhb9/+ePtyF5GPj4/jOO73+9vDrjsZi/WE8Rh313EcHkOVVTnSEdYKmsCJt5eobFtTIyLHFwrjya9fv5rZGKO1Nudkqsfjcb89jmNmDmY2a/DJvRRZmZAM2LUuf3hXrVLGGGMc+z6ZC6a+cx5V1bqer4ZMF6aa6XUcsyrUpDWLyOOYcx7/8R//EYLIZmVmxDGlkgZUobptPQtnnKnJH79/u233OatSmDWcx/A54tcvv/Tev3//EKHO7diniX2872+Pn//+t2+v197boyKJ+Ha7IaLNc3mciS23qAya01VZVZOWbSFwn5++/jx8jOG931T4+dz/9rfftm3LlGP3fR/uu4j8+7//qXX9+9/+OYZ3u2dMEt62G3GOmGZ2zENVvn79qiqHT/CpzKS1Fr6mthHx/v5REfdHAwPgfCcsyj//8nXb+uPRzOznn3+ume7+73/6tUbtL4ydKoOMmSGtpSZKbLoxtdS8tzbnLCJc8ri+1tbSotTiZGYHqzBnRBTU6SEaLCImmplcy/2qSpOrNSZkEx1wHy4WUg6iJloabWRGrab0hNNXwS/K12VYVcy2ioF182AUb7BLyipJu7A3nJ24EoEAoQm/wHCwbpboNROmjSLR7ngbPzbFRJSRi0OFE+r+2MI7wunRbzBDW9XMtKq2QtUz3cd0qDyufLrjOF7XWPRU0WuW73tFvOaoiGRSUYqI1+uFqxiM4+fziVogl81WnU27EtWc02NETCImlmtMCAxy27bWNlVdQenMK3eeIzP1nJIDS7vf3kQMfeV1zsLq5roV6xwW4MHmD008ugaqdQYl/M1rVgVLEUqbgH1Wnr2b3u/3CM50llRlEdq2repxHODnp/AKzYCeWLifEErAuipzaGA40jIqCUhq1SnQQFaSSBMRZmnae789vz19lrC1tiWnz/SZ6XtR5Dl8qTgNC4W2rUVSJjlVMi9XgWTPyCpmLSKfNcb8/u35++/vW9PIqpQIHoe7Z+/dRKq1ZsvEGr3hEUdroU2qKLyKi0kgSzl9HkWpzemV4TMrfd9r25TImHPfd+G6b7e3t/vPP//ce4+Y+75LMlccx0GTiqq1ploRBcNZUDS4SFWbcK8i6zfT6bkESCLSmqqyrmqLEq0jhdekdFkKPnjzl1ARjMYgxElHsreqSZmIcUlVcAURHERxLmkFJEHL+7CqiCITaQKiKpyLzF5JKiQr/Q/3ZAP0zRJcldUkrFZqDO7nFVqLSwx2JsxsZvv+NLPeNrPms8L9pDLpueKvjJMFdN1unZmP40A5EFH+vsOJnAg+qKgVhIhseZCImVjonBIxszhTI6cd4jFgmIdfukrHVYUW0H1gcpCioCZy99f+ERE///xzrqyt87dKifBta8RbppoJLo0I+IJX77fb7dF7zyjoU6p46zdVFrkaqDOWYqVIW1XBcaiKzof5eVJePcI1mYff8Tn7gCOAqUpVzHlM34kSrlCLupYEywYmeCLW6iM8I8qMeu+tt/f393M3nugJZaYz5j3yY2GPef4mUsKZWeFMFCKB94/OVFhFdBU4bB/v+5yhWADQcobPnKIkqiJaVbminHH8qmfNEbQsniqiImtmsLKIVlKmHIf//tu7iEjl25etWa883DMTUR0txJsZmn/4akYFkB1336c3aqqqthzmKmvbNgqZc2YIs7JQeLimCI0YEe9Mw+Sttcfj7fb29vb+x/txHJt2IT6Og73MblcrBI8KQfNR1JgVzpbXt5gVnMVcaizBm2lVofSPiukec/dw3DOwzEE0ti5X70howVIqFfxzolTVzKrzC2eByJm7WRIzrXMKt1mdNi/yA/GOhJM5PHiNHpl5+fYTE1eeJTpc7hIJP+Nw6LKZuUouPo+Z3bbH7faoonAX6WbW202WEVrQaYVOFMSpwit/lYmo3GdEEpUaL/baCsygs2wjdPJq6EIoS08sszC5qCrkUKjJsQ/m1BXU0SIC3ERRKl/SI1WFbQEOCDjZ8clKFFEzfjy6x6JIicKVzIlojAH7Y2H19OOY4cVSwg2glUhnrkr2yPAKmuChRBQVo6+54IyrcLsOhTEGnQOCvJwAWDKKaCmjwW7KmlkMa3yfyayQZhKJz/LcASIu6qQDgGhwxIYwv6oiRiYh/5o5heSq1ECZzYTyoTIplUSCSIQnOLwngU19zpzzOOYYnkFC7DN8REQoIUNBel/+ccBa12c/P3gspKpOuwqq5CRiURUT6a/n+Hv+rlT/Sf/26y9fVDaqojImE27ue5ozLZhQmBtr72BzrfQDYpV1UdGY0XtnknBn1m3rXDn9EGazDsvMOX3O2RuvEIbve0RoV+UeETXjOhGqEikaTCUsmsk+EcanI1yExJa/iIhyZVbplbVdWRwmWVpF1Zt5ZaZKFIlYMZfU2o/uTj5hiUPCwsxNJJi9uKBmpYL61noHl+Hc/yhHzd1Px4E6xxOsJHOOTD4jCU57DaY5XdkEGK97RGgyLtirLjhr2iQi0BZEdI6oYtO+9dvtdsOWq0p41YtwURFla33MHaU7UX08v/tMNV7qOqFa2SEnh8JDAOOoElWRZlYWzTkRT46FXSeTdw6PyDnfq1j45MNV9Xb7ASkgZr7f7/imj+Nwz+skxYnA4py1pMi4ppcPignDQUQzslKYuZlWalRmMpUSVQSf9qU1p2e6WcACtarmPE65Dr6pxXSiZa+6vlvsTPz2DEw1gyhbUxEU2zDF59ZUdWt2E7EM9syrNFNV98FyfQrprQPffb0O2L1hJImeEo+RKKukCkxdWaYtqwtmFZNAksHnQJcycJwxw+p6jH1WVeutqzFXa5vqOSxbv4LybJfoB9qYlBiR58xMZd22OxEdY389j7//7du2bY/bnVipyCePgybshGxUVcxJwpmBHVBV8ARmDtEiYhKmrDFctdmyO1KF3UaOFYphwmT7C6Hscr/f397ezot2md/4nK35zeCvxei0ZenGiGA7LwIDj6aqvNT+QSnJc9+flY7TEF+xCDdSlaKiyEri4jIRJmOuoGKpzMCcj2vZLlkzxsyvQhjcOE1GpiFfVyszry4Cc74f8umZmZigTz7XnJ01tkZMWjU/3C08E9b3MHRVU0vOzJ0+/QtkHLgtuTVw6UFMnlmuMI2BGUMlSwGiU2Uign1IZ8NgflXR9dn+RE6cCCwJLhDiIS5eA74Ia7JtDbSCj/fn6/VxHBOzHlVlUaK85j5VhdLm8XhcBbCcFomILNyEUCJFBDYsXo1JQBgx7eCJqFhvt+N4LusurqXyqIg4fSVrsQwXmnL68PxIl8IbA8ZxHYhXH4GgMMGMibl1taKqlYJNJaqb6UZl8CqqImETYeaoUmAgc8aF+ce/+GuI8Gq4qgotJLQeBNcTTN3LaJGHJBx8mWRmJjQVcuqphfPTxUBV2RSvCakrnvb6C9Yw0sZgH+6pROmZBZsPgv38HffT9+/Pf/7z2/12u9112/T1nCrHcUxmpszpPudklYhIKt53eG1WVa7JvVJyKWXA9dNQBM0ZBDOlPYjosd0ejz4HYcJ12x5vb1+bbRk1hpOpsoFXkgqf+zARy8UwMymGfR2zNmvb1sQ4cmROJmwqj3FQeGYWpciaDLFQlldQRsHaiEWueoColpuQCBNxUFXKaYxSZcRBHHDJQ+kSEfBuEhhsfJImf5wRFjG31pSxDuqceQkjUs02c2P50d4zL0xhHTMlIgVe1pxzjhwjVbpqo5I5AnSxLCdiXSVqouqWZZgJmSBAQUdAHi3W9rrNVJUYlJuFGO3HC/7UC2Ksz1Cdz7acQebNsyzNiBRuqoJ3y8yPxwOxn8vwei5fwOM43EOkftY+5r5u+VoM/MwMz+OYVNb7VqljONGMqOPYUdKrsiwyl2d9ipfc3U9vSEgqL9rVeWoUSrz6PyAGQIyYVkKnQJzokpCUXalMEgFPKWFW+P/mzOWDWAWlQWsNQxnMKVtbDxzf8vWrARL7GY8FXRqfhiuq6jXx96/jLDzxpdOpVlAF4RRPY9WV1zmONUmyHFlEhJizmGAPCScLOC9N93C0RdPn+/fX77+9/0Jvqnocs7WZgYVEWVHnLlpNK7Gwqq4ESo8UERY26xk1K5C35Z5cpWqVPobfGvV+Oyx9embebrcvX77c7/fXx2uMQcn3bTmmLMi50mBuucK0IZsvEsmtN+1MVOERMZgpy3N62yyDyr3g0L4aNTC6VuFIrCfZk5J7aZWqEDGZpJHBwMuJncjBnKfVbmURQ0+SGVQIHhamFW2UZzbpWSOUqXExEWgLfgIEJMKwBiVeSZBLFnJ6tIgINA4iJrxdpjThZdsicU4/IjzyyHQ1UwLTSapijuxbz8x9fzLr7XbPpNfrAwTkKq5aGpi1NJdMMrOWc8Rrf44xIMUbY6AzZ1IqU53v78/9dUQEiIwA3sYx6SZAssfw1pppN+u0/AWvTh5Leojm6zXHPM7ep4ioty083fP1OjJ42+5M7fV6ZVZrDb5VYBCpCvKy0LL0ramqzxhjwAWPmecM017JMG4tWjN57ChsPL4s0s6pu5l40BhPj9G7bdzlNJWCZROV4lYXparIcF+ZXcUCeuhtzgFypFnrXZdre0SuTD3BZH4pLIPotFeHHY6IrfFrnc1myYqfmTlHVQlsqb1FUYBLhX+oKngBqyqO7IjIoiouqlyCC/KsJOrWReQ4jjEO98L4iYLS4/UcX9/uFFSTKMiA3XBRKXGateJidzUjIVL0pFJ0BkkmA2NC4YZWxcysdVzt23Z/3L/44I84VNv9Td7e3vr9dhxjzrAE1kYw2pTIzLQ5SISFec4goq2v7vT5/GfPTZXDR6WziFCm1BhjuzUSfT4PVf369hMRf/94b7Y1MTPa95FJKq2qjh3yATFWEMFqhWeyiMWcGOmrMXPLzHRhVlOFFCoz5wQfVsDAQ8YU8g6YWUibKifq5HRPn1mUkfnl6/233/+6H6//+M+fI+L9/fm//td/fH//nQjGKuP12pttrd1ELF1xRPrkiDVYmfP49u03a+mxm1nvjShfr93dW4edqbhnpfXtjiuXqVPZRS6Uk8mbmWMOM1ITJpTe+Jn7PuacVHy/v2XIvo/nx++ttdfrUNXetoJBkw8RuT/6PJ5MvvW3X376anYT0rG7sI0RQpZ+/P7xj8yhJpnjGMdvfzxB61qgTPEeY4yEfXgmZRzMPqeDDb1tnZkz4/U6IhYLGyVeLVVLZqZqyyyfEZEhI7PMSmRN9YhojA8ku7nXnJcIipka+Jcq9nh8iZhFMzxnOhz01bqWVmpEZYYyNV2GRk2bmaHv4iQKltIm7b7dRWTf9zmOZC8KKomQ5KwUnPL3+4P5ko1Aajaq6Ha7/fUv//y3P/1nlX77/ftPX399vh9//+v379+eX7/+TKQfHx9Ucb/fhPL5fLa2HWOJzZQlAkEPVFW9b0TyPMLdk4WYIEjxnarCS4TuXNN9xp5Ne8w5Xv7+x+vWrP1H+7o93PX9qGLqt1vTyhxJk0WcpxAnTybRpkzqnp4kwio3yRmM0j7MDBiWe7y9fclqHy8nstuGQmB8+fkLN95jiAg3Y9O5D5rj1pUAJWG4gMja08eqmHm7mUhlBGU0NWtSyVSRGqJKzNY2VdXWqKTZ3T2ZElh0JSTOOefUhQUxU6hIkjMJc2Ul8QQiQ2Gy5EYtwau7CGFUUMXqqeGrqjxdDyGAFyXQVJhVJKqCSOY87veN+Lbd2q+//vLly4aD4O3tTtRykVh1eQdZv92auwsv37d9f40xPHZtMPnGrlgGoc2amW0bzGO3bdtEpBkMpn3xO37oAkT4559/JsrIMUbEqVMUsZ9/vh/nGRrByAXetk3kCZIvHCtEpHfrvbevnUhoeX4mU1Uym27bXV0zffoemWPskWPOAy7ZvGBXrSRw0037Dw8ZbzQzaYwd87xMj3B4RmBJoFfHiQCgzt0LSZNRIg4PVRyDmGuAiHl2bUGkVeCMSzEBogBSGxEipALlm0BPwby+VxFCx3k1IIDHACqFV4r7zDmn005URCwMDxgRZCzbsva8pi2QgdDQ1hT3BECHYx9g8Zt1E26tgcgPI8oxBjK/W2tX65mZUcTuILOsbpe5EavcKsWjOCIlRFiQfcaZlBXsHnOf4zXyiCKqNGJ2Cuw9IFbE9Hw+iyHAX0bc1uy23Zow5XB3jxkR04efJrSY06m2qAJtZNu2fQSYvzFjhh/HER7S7FwGbPf79sPBeU1rWESmD3fPLFURthIWMZE4TThDBIZcHsj2WV7ApU1FOGdWpS8gEFbz+P+sytY6JABLnhv1L+zPtYZ+zKKaF8COUiMzuahiKAuMleCbmJlEdYzX25f+/hHHcTwej7e3G5G31rZbE5FKnjPGsU4vEerdqqJvBkuSY7yO46Az3YDXulw2IWBSX43xOWxfIwwg+WdTvSaUlRyZc879GOPwKm7Wm5GqZrC7Y6ajqmb9druN4XAKMJPpAzTNbduadvB8qjQcEuyomnh2YByLBpGx3KpiHwed0KmIIdIik6iWGayZQBmBqVnrurKPCXbv+OTro+EiykQhKSLdrP0A7lxUiHUk4s+vWUMiXIWKJalWsFUtRUNCBQvK9gkSn1xjKIvWYsjM2PcXWqEIAGF0jDHnIf1qDeT84FLnZJTXqHKxRVWpdVXjrIATSsR87c9936sq04vtwi+Rc63akJFdp3cGVO0Z4QwjCVi9laqRaLMt/PJxWKuISEUoHGT/2F/j+bE/Hzu3YqR1MxGllCYnuuPMIabMXJGIE+9AzrWImqqK877vUGQyMZVM92bh7h/76/39o98eZrfe++1227Zt0hQWVVXW++1eWcjIWJHy17IWEXyvETHGPI4REXP4gfitiuETPf84PJPGkRj/3G+PK83ZrDJ5jHmMvSIv/Pk6UKsKOnksGoDhAJvFOp0UIOw3QAPgNf9vFAOIRU202SbgsQKMppj+6ttPv//++3D5//x//99mkkVfv74xB1r3qlJjAjmQ/Dh2CIpvt5tHzOeR6du2iayD8kLO+QTYROTs/0tV8Se3e78+KZ/gNnPt+xHh08e+H2NkRBLJSriC07oIDH9w4uD0EaHWtGfD0aBq+75v2/1xfzO7Zej+mq/n3PehqmaC4YvITS1bF+Z6HftVj4B+Cux9zsDzNGtAl9HFtGay3DgoEygPhqN8oWjgoWPL3W9f4POBAwXVIDrB6zamNeiqs8en88y59vyimVw3Aa3Mu2uE+S+XREQcx4ECoSow08X2breliWRWJsOqqH99hbNGY1o5F+E+qqQ1zYh9fx7Hi5MiIk4JYxXhNW+3e6w1Rj9cV2s6WOAmLTmssNr1S89LdxW8GROC4Eqecz6fr/f3JxvrfZNiNmFpKqysJMGS0imoYuaRewaxmpAy0ZA0WyMukcX0NbPX63D3Y+7P/eOPb7/98e398Xh8eZNMDiTZkra23W53Sr7dHsc7aiuyf/7z7+ClZ16tr+K2wVAHXzad6ab73G0zlE9Ip8vMMeZzP47jwK4Ao/Y45tyPbu0qkn/8PlBPXjt8/R0m6zekwv14IhDRcXyeCJ83c1b6aGo4EYjk/EVZ5I+37fv37yRt3eXpfeN9B8xWItbbTVWr0ud+xGuMYWZ92aVMorImqCB4JQ7mVQ4gg+h01/60+oAqufIiOwpm8nZGa5nlnCfve8BCEtKUrlIi1vtt2+5fvy4vA1QZsqhKympqrW233u4+ZU4m8aRSQeSRFpFnZFSOYKHWNrxtPmOXFsPkdFs37aoqopizeuwipLYcHC5a53kUipmFolyXCz9WbURL9QjTt22DncxaqURQzQfCrAQBtVhsC3cMZl5zzbp2EVURWDn4YuucYiJWl4haV2sCnyhzgoi98AHZFuBKq3ajEuFiisrymVS+j9eYu0pnbtb0iNz35/T9pjd0i2aGeopFkmldGHNGxPBxLV1VjXPqiYY5k5SMysMJ8w4go0TEQjExUFvd7hj+8fFKpnod1tp2a62xdLKmysqSbBLzQFixiBlrTH/5JPbWrLXGUknFptZaa+11TFIJqmPOYwyvhGLz/f39/f3j+XwK6a096ITVroVt//znP09Sap1TZamq2+0Wsc5jn2sk2252HC/tCug7z/THzDyOzxNBRHzl4fhNe6SHZ1EKK3H5jEjfX4eamDbDUShUSVH58TpY7RqqX8VL/UDLiZOcz0UVMyXCiVmhKiciYmdJkJHu93trzX3sx3N6RrjHyKBtE2tixnNU1oyMIi+qyCMSngVVlaoCI5P/rcyBYQTOPltJpKt2ICJeISXI/KPFc2cxa1vdwQiOiEw/xo4RA5PAzQkf8+vXr6/Xa4z9OCZz9a21tpnZ/fZFtalgvy1KwlUhVxGwfLVFeVJBcsLnIBBmU3lGSDIzOHsZqpZ0iNplr6L5r5REYRGxsJrDq1i1ZQQ4mLrSyhJ+BzgFZEkh15fIrMV5HgHwENDFbypUrUhkIqIoYiKJWr5xGVRFwDj4JJhhpnuWjJmZM4NKMEdY7XRInRmFaLKuy+Y4DoHzeU5waccYz9d7xExu0w9FQAnSzAivho9l7j7GdJ94PNY6RVWmCPzLkcyRJHWlzuNRXGVFZkaANK2VvL/miPExpzbbtrbdrN9lu9ntbq2LmEqpklKTe79v97uxjRj7MXFh48nIsgIJ4FzoXrVvb6L9dptR//ztj4/3V0SpQcxScwaXX7iXYTQ1p/9Q3mRmmvU5FoXObLE+wompVXIkhbN7ITetzkDrCAfstxw4pXaPiBlRzGXWmWHUMFu3qvCYxNHadhL9KMaBGcpVa+GNwdsfKu51Gwpwe/jtXlcKVptU1v46iOjxeDDTvu/HeEWWNTET6dI7osyjaDkdmbGqZEZVQp70f5Syn1DcucT5LKfPv8mfP6iX8QnGiMXQYGuNUXQQp3tWDiKBo1Gc1uxj7MfxAuth29r9cQOoufUbkcDwY85ELmNrOsaIgKyYt+2OiKml8jj3Mz4IToEL88NOYa4sch/WMPRmGIfxOmSXK4yqttYBQ0SUqsoFHMj1eZmXrbjICgHBgyEzuu6MaxhcFZzAtpeCCIcjyqsC7wdJPlS6SgvL9HNQneHFvO4JYSTugXG3nHIiVpgyVNjoFyJ8zvm2dTOryohRmR8f7x8f7+4eHHMOdlw8IjqVOJnCy3pDTecjiJxJdaljQ5WJOanC4wfUgJMqC3ouUL9dlwNIFci3JO45Rh4j6ojnx84Srcvj0e9fb7ebWRM1Mt268X173LY7wwgXjqlRKzJXKSk9XER7B+QkZiasM/L9j3/8+c9/+f79Q4rNOvS1GcQmF4Rn1647P4ABomy2he8R2TsUNTnnzCpb06lcyJrneT7pwoko3R3WxmaW4elxVhOJ7aOqINWMMeaygGhEkajudHnv4iJdS3lFDHzuTCJRoWIRAg2Ca60kaOTB0nFmnnMWv4pCxFThQreMDCKSKJiTpVREBMJkuhgv5+/6dArjf3UBQS9zVQf0g90obrxKJmaVxlKZnJFzjOmrMbltX4bsZ2N1HcH25z//EyP9x+Px889f7/d7rCQlRBjwunVO3T4zA7EvSs7K5MglKj/fDMWpjb2qA9DUQF8CLaJ1WyOn5QJyOTuDALwSLvBdM3trG5WcJwtq49UkthOO55OJQJ8MBSXKDMQlgrgFS7tiqk8yOjOLMWkVIN4L5wJc7UTyg6RFiKjZhltXVYmWSe+cs7VbVdGpl1FtMN1FhjiTuM/w3I/ncRxZSy0Ot8dcUtEi0v0Yd7Xem4ggSYRhRSsmCKplsaKZB1oqM0McZGZqZiKjDFa9q6RKKqNC9gz3fh9zHsdzzoPYn8/29bhvb53CHz/dfnr7QmXJOXhy1uGztR4xPVbnuAyslwjImJoHqDr0/v355z//5f/57z///vu3r7dHtBzpEkNI+MbXkWCP+1vdagyfc6rq/f7We2fYiiF8ozVmrgxuyipsDAW4qN4fb0U559z3Z1U8vrxhY4xxaLOqEuKmDHDxs8XKVUTBDok+WSsm1orN49LGKDODQxaBO+cTqmFWZaqAcVtVMbRfYPHtx/tvv//PL7/88uuvv7SurT+OEdMPFpszIoIZeee+H7t7jsPf3t567zAmISJkHNLZsFwmLkSENgGItJwhBfi3t3vH2WpmZhszzxGX/q+qRLm1Wya9nsfz9c7MVfH29rZ1neMbn+fgr7/+ChDHbMX19N5a28aMfYdnuGXSdEfK7tvXL6fPnxPi7WYAfjVbX7ZqwwN3X3Z1UKZn0KwYh+/HrgdvNwOiCvXeKisWvMpjDDrdHCMi8zg3OYuS8fpX6yAoqSomNV3ur0wDHK0TdExmXfRqNhVwycApKqIQbuB6t6b3+30/nh/vH6q8bZ1VVNf5VZTFC5n1GRFuZr3fsP8jAtfYHLgkIDrSx/1t6zfh9vH+ut/f2Pn7t/8eY397+2mMYUaKRM+mzGwixdz7TbRlUBGZ9Wvc6HMh6EEl0iCZ86Tn690UDtTkFR6AhNrr+dFaU6Y5IiLDeVJRyfv3JzyfwAc9joNJt+2+9dZlO15e+4g+o5Ky+m3rX79U1WPryeTHYGIh2Y9pqt/++X5/+wlWV1/evn58PP/yP//4y1/+tvWbSDuOKB3W9O3+Bpnvasf+7d/+49zGzswn2FYiehxHRGE19BbMLKakQsLQLwHDG2Psx52WPLoQqouRKVd9eTxA4Z/zcM85sVLHL7/86cT8A7C6Wddmx0w/ndTQBV2+N8BgcMOs0iYj/YChBS+WAfXeb7feN5v+1Dbgs8gczKTKy2gwApeYu0fMzMoakX0MgVv5hdmeH5OuPf/jiucfxlqn45uu040lwte4jUDFr1N4Az5V+aTjeBKniPVuYIFig10BvtjMx3GgLIq8tCcEuU4Vm/XeewSLUBa4m8bstFKbPiH6zESUuKpWVlWGU1VxcRVRmYhScaVElTtF4AsqM1TaEz0LOqqqQnuVeVoG4Gv5AWC6rgG6hn9eEaWGTOplNgM2nkjDOQJ9zGlFC4AWsgVbAh4WAuBAAqYDVTELGI+gn1Yd2KvuQaSY9qGCYIbkVzPwqXsGjdfxer0QMvS436kEUMeCYEWKtYrzmlYkXbXPdCdmYaOsOcOpRES0nZLWPMELtP2pypQwh8L0J01VpH/5YjP8OF7QrXFUOqXz9/11HEjKkvzyRZtQlnIdMqxJJLOQyeY+9+Ez8/HzrbeHUkuxL29vwvb92z/e/3iOPcqiUbWuwqB7kbs3W4WZvb19xfE5DjjDrN7yy5efWjtQuJ6okonppIT26Mp6ttmlQS6OqUR2IqKsYq6w4iSmClWtJOK3jCrKrd8SjNUKKrampo1VkqbaJfI39At5Kv9xO4F9EBHhIzm5pUpX2SJW+6qqt/vbMb6IIaibYHDKVMziZxLmdutV5eHhmelzHkgNrPqx8qf/c2VjxeNE+LHkUWPMC800s3zknGttnKjEAn6OfR77PI5xHM5Mo6cwZSZyJa8TEEPNUw0lzNz6HWpO5hKpSuCXgZTHzCg6q7BcYsQMykgsTWbPLHdvDcr3z1bCZ4UDDxAmJkZQJRGj/VmncAb8ZoHEXearwE0+TwHljU9VWK3WgNDTLbidW293VWHS8H190QEUNs/fhZ4ODwQCJBExuTLkiwsJ7diZJd1up83v+spEtLUf02tUuKk2oL8+C955+xzf/ni+v++o5m63m8+k1Qh+eturNsg3I5yJlnSYiAhh8zqnR3gyqTSzztREBAP15QGZueBvMMYj5gjfsnNjlfvdeOzgiaeTCEMo/Xb/mTl3f3qE7zFHxjx2PfZt++mnr1UuQm8/fQ2v+Zrb/f7oX77+9CuTTU+z/ttvf/zP//23v/7lt3FMqgZCiYjyGXUdjK4tTaUzM1OKFL42ZhVZbJyrf14fgPkKySFqWQ7wxqxFeLrAUktEcPZQ1r4f9WOQoZlsglGFkLCdDcJypKvT3XTBYD927AlV8tll4myDO/r5nUkhdV4sYqDBQ9ezECxZ3j7X658N6yl0Ka8CaXrho+e9Vz+eCHW6qVzXL15QVYkiM+bENmCoVlBqnX+ZscmP4zj2CRE7xuZEAjR7jPF6fdBJyjh/rzBpVZtzjuGZXgn2kdIn0lnMfHF+MitqdfUgm10YEKil15CCCNGVRAPOnyXKRMakzCWMGF58+/LD17KKlx/Qgc8fAFM/PsDz133eTuhmzGDusGgI+IJAfmMm0CvPwRNqENISJmHBcQwzQ2XR3h54GnjIJ7onmZRMqmCF4jjgTJpzmjYVy/D39+exDxEVtrO2yuv5RMTwvN8b3rSIyvkwCsquE7M0a8LS+01bY0SBMJ2ETlyWtSy8mJfopoS50XIhw4piJjVTs2Z6u22bKhs3yP/HPvbnS1WfcojrGIMbd3tEUk15/PLTl8cv//mn/yXcn8dx7POP3//81//57fV+qG7Cdko88O7P7Al0u61t6ITdE4aiph3BmxdZAAh2Zno4C4niZCjOT+2KnOoDkI6Js7Ky4vH4EtNPq6yF9GaujuAqNVdZldlaK14VAbQra7oDIk0QDitCKqE2WUS3hVGripndbu2Pb9/RF2zb1prOIFhoiAg+8rZtrdu1mStP1yY4wrEBHGhNf+wRrjesp33LdSKsi11izD0TTvebic6Zc/p1lGBD5llwMiuzrdokT8pWjDknpsJEBHF0ZWWOotfMGocjqhy9PVYYFhyD+o2I9EqqUJVaNu2sqmvCD2xykVBwphCVCjcqyQA4Dvp2VpIve5jTn4Cqkopizslcp+dCnJ9osRjPGgu41bIPueZKxx5LpSpbqf7QGzJhbVGwqPVWc3nxFEmRFHEWrmdjWtNBYhGGD4VUUQT0IH4ORxsTZQoKiswMJOxMQnhv5evYvYq3fhexfd+r2EpExJqIcCQTkc8oFtVGhOzyi90H4XwmsaqZtWuUQ0RJcVWm7h459VTKN9u27b5td9NeGiMG8qCVxayriFCjlG///P725SHUlKs85h7lLGJ55Otjfv/+TlSd7lE+Ih93j68k2W73L3PIb9/f//rnf378sff2pTeEfQmVVDKpMKsKoqiLiIypCaupmSaVgOCgqtAgZWbEBEIbEcXTT5jwog8tOf2nrSioNetOUOkkXCJMsdgxJFTwziWBJJGoyJECUnBAWoUilO1MRNvWiIL/tWpQVTpDfhOSyeUvwWBPXYFOga/WjGmF5vVuagKufmsNvj3MSojTYUEmHewP+LRguIrPq0Dgc/pIRJkuvKatZsTL8y89xnEMwB84j7H0zToEZmaR5RHe+haRHkPEiOZ5HQkzZ9WMGB8fyYLGgeiTR7iggcKjw9MP5lLYnxBE9TAdEuYS0Qz4kXQRQa4RC2/9ga+3yiuY2COYJTIDtRidM0IqqaXUpn8tBIpOTieY/5hoVBWCu2SNP8M9iKjZpiq93SOXjxMEedi0HguWv8SUuH6qiEoRnUkVWckkxBI/wNiXDiJzlcARlcFVmQHqnlh1QLOZ4pNMb9qkisdwEWln84gFYMVjDG29tUak6TMgls8k0TU/ZmEtWljDmtQA8WAYPytlcWuWZ4Ddtm3bdjcSL7q60asRi4g5Yw6/R1lrklQ5KSiDKaTrNl41n+6Zf6N/THcYSc69nh/x5aefh8f/7//67//+v/78/DhMm21WVZL/ItVXUVvszLKIOj9vg8ncdQcyI/hsdYAiLMIUa0iGPMjr2p9r/mzMq0DNJF4DT3j4kepSNDHjyMg5oS3FL2Jidne8hXWKZzL9S52fSRF+viMr0GDpOvjRag4z49ouc5FYHgRSpddDx6G2juqtE0km4S5URQbsQpJRPlywAv7zExpY0mlmRjMJ9jEsCSMQ9gmEJVCmHsex7/sYAwINWvx/qrNNAEGTiBCFxotU7sM9QwjBGSuR4dN34CphzqNKRaj8qJMCiL1KBN06cAGu5FqukKRiTO2U0mgVZruOqTF0ypfwzGx9UmBGZ+2wjgYV/eH9rCukMns3cFswgMD7gTAQiCOsBUTBmKxrRoMK4qxBJCIA/uIVIP4lWn48WOtXENkP1RmFU6VifYZTt57B+B+WqLLsx+v++KKqwlJV4O9RkCfNSSxEjfDnIFOjquEVJkpw1BUpfFPXiSBnhA8RdetjDByLGVVJSTU95HSvzoQ3QEkKB9+3R9ObVElxlDI15F1p0r4/KaRbO/bYx2Dm3/72x7Hn//3ff/369Wex/uc//88//vpbOldlu12jXFVtZl21qajUsuGwSmEyVU6DTnnh6sKUVZ5xzFGVkCFkFqYCeVKeiUiEqyjT4bl0wjlWFcKiauISEQUT3jMETVUjM+ozOBRnVcQ4Z6MCGxJhRYshbCRL6FIJPZywNC4TaUzqQnXMqgkmEqfgqpmzxpFRbEoXmQgXl7sziayghKqkizVMxGaZ6SwFAILOdv0CBYqChUzl/JMUKVFjkioOzznjkvFXVWbMOfd9Bx8xk+73t4Jzsay4GkBNr3i11jAJjshxxBgRTogv4KRMViJw4sbh5VUZ2nspSSmrGIuajHBmAIGLFEiEBB1ACcSUlRYhRERK4ZRJK/VE4N2lxCFsSQmoHDCTqjZrdBY++a+0PGub8LrMK5wLWM2iwFGJKjpNsKc9c+DcZK7WSowr0jOO47hCUM+HjJQgv7yqMlBoEpfMnLz6009pU54cynWgA/Q50afwoEhOHIDGxHH49uvGzEoc6eMId+fQZBFuRUFpGfMi+4qpEbXWipWzXsdIDzIRzelHrocCeR5lUETITWvk9LHvr9fYN+9ePMZxu91WzFxkVBkLqZq1OccYTuGR0wRW+2olx74/P17btt3vb3MeacUimewz//7Pf/z+2/vj69c/vr1nUus3jwEiNThc8iO2QQULW8uQ13OiwsQJu3xKlYPXHR1ZfsoKuiqLlDClpQMhYDN7e3tkpueEQWgWE2sRzUhTa61n5pxHZBKniHDj8ZzTp5k108yM9GKq8jmcSlq7PW431e4z3UmqZVV5xkz3YFZWKibTOxc6xsnMj7fGzJFH5C4aarbve1Ztt/tm99f+xy+/vL1/fHP3260jHQBsOSIhqjmPMWZEqTSRpqpZw0yJ8rV/EMEM3iLiGC9YP95um4hMPyICdjOVy6spnC/GTgTNOU8qBKvq/X43M2b9+Pj+x7dvvbdta/u+H0eJyJe3n8cYr6dTZRVHqMl2e/SIGD4rqQun176PijTbtFvbrFsrrvAxpwcXZWUok6gq0wLbRNS0E7FK84xwlqa9tSqNiLFPURJmDxrHThytc2uyH7sImaihfRdTVhObGT/svWDwSYl8HGYh3IVVMPUlrhWFaHCOLJLTepNGHCxmYkRZXF5JlRGh2vbngULDxyxzEaEiFcqY81hudCoLaTaz5/N9ztk3u283EYb8vCtxlcCAkTVLuIS7GtXz/T2OY459f41vv3/vumQ71sjERKRMOM290sNM0yNoermZPd7ukDl4jipqtplwK6GBELf48uXx3F/HPouFSiN9OoXX9+/fMg5Tsga3zUNII8sPKjfiTTWzjiwZMz6O8bhvkek+cxyzqJu07e7uTfSx9RJyH6qtE5Ln2m9/fLN+S5Xfv7/Pona/eUane2ttHp5R3BcQFjFFbR+jL+RfVt4hM4uaaFVJpgeHlBQRK3PJ1SAycyEntQKhBKRrdgDXdF7waRJJUZkQeJ3FxAruKkUmp5OwNlGEVjPB0Eatu0s4Kug892oSMVBo8A7h5qzCykDRakX9odUVZ0rR6h1D7yCSyqTq8KU9mT9Uxe5IRtUMwnHAhKYGeYRyVf6tbWA3VNUYO87NOacouQ+iZD5FhJ5VXGCpnUWTiIicHrsigDkguGRGFsggTjPr3URsjpozmam32/3trrJV1fSDWYOLmZ2qJweVisJqUY2rYhRnUOSMcLNWFXMivXZDM0glmRgfqLC11oR7Bjh/CvM40SJukZUZ7tlaw8V0NgJytbgQF1xQi6zRjzKzkVRlFBGRqRYJyUoJzyCMDdHw3253bHsiWuaG6UmphD6gaDnNUJXUcj0qOHsyYVLDzMVMqgq+rKrkmj1dDn0rwbH8zMilyBhZte/7OI5xuHRYxR/EqsYmpGqytc2MSKTIzFhKElHrVpye5FVCGSemJkpMwiqv18f0KGFlS2GeTsTF1FpzmZxBUiIkTayMWFSbmbfW4xyu7GPq65kx7703GMb4rArypFjRGHXmgx9zVDFZbf1OzZiULDZWEiaUoMlRyZFzzt2GEEs7gSoiIjJmqqrIIGJlGOkTL/1o0RpHX0Ij1OFXHaFm693MeTXYwA9hznFel/RpIwFq9+VjB/4fUA1VUTamWTmr2B1k6cwkCMXNFHlixCmsoos0f7b0eA+AJvkcNLRIOHOiRadjn2A3V9WcfhwzIo49qtDVSyWcIDQz+kbHcbxe0BTztm1g8i4MOWuMEQnqCIQ7AidCZoiXZA0Cz8iWPGU2wHToHG6NMeY8srz3HnELh24qcfNs26ayIRtCVen8vCJCSiKy77uIqK1N21qTpEytCoSdmNnb2xssNwL8MaEVPiDMHJRZFQ7xzToUOKuqwr1a3zDHOdsfgtegp5OUKAmf06MfgMYZE1hNgc8iZdZWSB2IiZVgQ67UQ3QBnPhPiEg+gcJYnu5V8G4+rSvwDOvCC66OnXndQLWc8oUgQmOGf2FVHuPIoop4vV4Ad0yod4sodldibqoImbBNxJDIChqtGhSpVEScn7O5E9csqno+n8UidgMljE52Q2stSygvFwJTMjqj2M/3v4T/c05jemzbtm0cOSrnMWq6x6wE7N0udhYVU7Gw1DUiJqKTYmf8iVO4u7M2/bSWqiq7tAMRKcHEVDUjJ9und5AqA9YWYSGaEzw/ZOxo0DmQLzkLSOS8ZJWER5ZD0geFHAZvx3AzM4O44ALGiuTallRUWZ4pGURtmjUzRujlJSydE2S+Rf+Q5ZYdmQ77ElWOhXWj18UoLo59UkkWvHfcJddaYqPyzA9myQw7KGIAFZ9zPp9PU2fmrOXDO8YcY2S5mUTE7XaD9wG4cdj/Y4znx0FEmAuc/eeiRUYETXKPOZFtMXym6vF4fFE1nzlnjOECI50lKEPrvrhbmbkMxaUA+AEjZ+bjcLh6V8W+D+w6VOPMYPoUsUfIRJWSU5XNhIUWg4NXHDOWFK7AzHD3KNeGyQWp6pkysGYNvM6ZNUuuJW1y+BGqKhfDvITZrjWgusw1AUtJrmIt15aHjobg/qqaIsYMZeQyLkgID0+a5jkTC1xHVLks0ViZKI5922zsgcoxE3xQYWa4y7h7EeK5AmVRZo7wqiBprXdWKiLBlKfk3E1RmRScmeijwMs+QbS2AI5YDPeI6NZF+BiHx4xwQDZFgdrrfr811PnhMLPEPUfFCFsjYREyMyblbmN6MdTs+eM9pKbMLLrkqhfOkqeLty0XbYrMEeFFmTUivKIYFRYF5uSLO8yM/CxUwpmJ87LO7/wTwDkZoKBAXCfTqoaieEkAyz2xgDLFlCuFSc2kkk+qYp2TedgNVFF4eETknKqKFYkbsqgqaozRt08KqnKaNWu8bSCW4lGANUCgElYVkcCi+zhGBhGHf+xmgii08Hr//hTZFaYmGlUx5xhjECezzbku/DVPyTiO8Xw+39+fH+87nbxsqNwjpKre3t4uPBzjDHff9yc27devG5VExPP5ZNLjOEAVzQC/QJgZ3Lveu7tPXw7fIrwkQKRUJswR/nzu+77jt/RO632GEk13B8YRMUXOGkFIdMWQx3BmZp5yMpGwzBhhYBhMyrq1iSgRYy3MopaCGgGfvapUm5oqS42ZAeUUYYxnZqSCKgCxbjDp5qS1uDiJKnKKElFbv5BX5Yqyi0qoFvMlkypZVISlYh1VvS1nBzO73d4yXh5F66RYFSJQ9nPdUipzcYnmyZ6RkMwkjD9okVnXTiBKKiDxxZ9++aeYGjtJoYWLU/KvP5hNoTTIcqKuqo/HQ4XGGDmOzFQVNkN/itfJWBZ1zJRRkKv8SyVVkhEjR1XZSsBYCexOpws6fPJFyUoyLRm268VS+3gx13m8FRFlqYg07WeRz+vlwt29cglUiM783+JCsFIVaIgnxga8WmCPcRb8yy5NecVMMimpZBJTqdTr9VqgdHlm+nJ8S1sBgXQ6GlCWZ8X0Yzp5DKJ7a2bNerfIzkyP+xeVluWqyly9Z66MPUzWGLRCgr/ShFmdmtk4HPmxEESoKnHOOTIDecrMehwHLreMGGO8f39++/b+8fEESZxXgltciwDihWvMHuHHMV6vfYzx9vblcf+q2txz33cmjQjYfobXnLMK8XyWiHt1n37MiXkYqbGwGeg1zKA8ZbmZtaaYmMop0IwIn5nlK1Zjuelj5HxVXnUiILau23IdxJyitKRqZu2MJLsgB14nQrGUp0dEo+wE5lye5eFnpkNRzelV1RqzSp2JG1VQFINGgd42oZg6S4MV33h1EJWMfLBmXcSiataorFRCz0hrxAucGAFCa5LKrKdNuV0T62uePbwi8phDRCYuRWJfPnQkbMnJVL33GemJTu1iUgMjw9xaMfbCi9/oxpM9JxGQoBmxgZk+I9JnjkOYm6p1puJBcBVfEQ/BkozyjYKJWVMuhSv+vJi52WWlTxEhxE1Xz2ev/WNZawoSowPzDnHBiQC/AFruhgLYhwUD6H8xESHCZPs6blbGA8tq/84CDkRp1JlCxSpmek2J8DUsg3PsRiK63+/MXBSrZymHg9gmjVkTimvwYGtmjcWxDI+cIoWCparcQ8Rut2WqDa+OvJKnSkQkk8cYlWxNWif8zc9FVnxdaEUR4fAg4ZUKu445n/Pj4/X9+/vHx/M4RniN4b6co5hPEvT379/NTKU14zmnF+Bkj6jnx/i4ve53ycw51gniMUXEZ+77nsmoEiMCCCWtTx1E1UhNBXkKIlBw4QlBIf46m9U1b8b1QrzgidM/NqsCutj6pCFf3+ZoIslBkeKzq7TWqjdVBc8CBWQG2rqmymqUOdxreiPOMTyciIR4yW3NWjGfclJO8ROKQpZfMQszbVsnQkBGnpE/n7zy5SW5clZQ3goT5Ivxw2LwMeIWNafv+5lkGelJRVJMyQTTwmUPKqmg2Mtp/EWlKrHC1mmtf6Y64TnTVlkZq7Eys/IoItSVysDg5jg8evWNt20joRkDRzY2UmY+n8+tqaDAgOIu6ywrNAKQE4MTllFgrjBzqUDwVsWwwiRigGWVTMtAp6maqqqYfXx8b02his/MIjdWVeq9MxfSbs4LbeGZVcWkV9gmUYmIF0Spn70DPswxX7DBq7OaOqk+n2IhFDBo0ggrKSkT32XBk+Pt7S1yXi5vLNSaqdpNb5mECVOVExNxVIUamHboR0DYdWSZ9N5hUL+2Oi1uD2psVV0jKtLW9XbXfX8iGQVvfv1bZmY6PywUB+w+Ho+HaqvkiB0JUe4BkvIYA/gfJiCosz4+Pt7e3rZtq6o5ZzjDz1q1jeHP5y5iVLLvsNMSUTAsYowRQTjFcNC01tasYYyLYohgblEsx14VaAoiJs4m3A2Y4zBzxMSF32w7p1PAQU9JgoiqZeacczjfvrTM1dmarK9SVU0lIioqUJUynxZsi3M95yzKMbyKVFtkuntrvfdOuPR4YKiEmoXWWQBCHQN/wfVQuaKfVSGFPj0jis6gyhzuvDUmgfwBDDQiOhA+v88xvJKpwBZPIqIzfiTAyEtidmVhKY9098g0qqRGXKyaxUySlJSSOd19+NTlaofutVVV5IyQMYZoAOC8xGxVxUtS1KEnQP3IJMdxNL31vhHxHPuckyPDU3WjEhRQIqqtMWuFFzkLMWvpsq5zBNXEp1KDTzPh3rssH1e1262LonXxiEkMvAr2TA44R9VUAd5U7+31eo0VqkXuXujFi45j7MeeSSqbWWPmiGqyRUw/o9nBdOIllwD/HBY33HtvbatIZp4zjuNgkmYNFe++75E4DpCeClBtzpxwf+vd1IwIBICa8/iv/9d/EWXE3G72ej3dFU7+uN5xLuFepVNIg1bVrG9bX0HQ0ojI5zMzb7f725u6x3HszPz2dlfj43hlZu8d7sNzrkAxgFJgIBDx7XYDxHgcx5xHa80aeMNWVe/vz+fzCesBIrnf3759+3bsUcmm/Xa74aGJSGvKzCpNVY/DMbLBTLT33roSpZm5T+Jk0tvtPg4X1sfbTUT2/VmVfbOq3pqqMdECIz3G6/W6vd3WQtGup/P1jyfCeXzjid2PePZ+I4aTl9zv961ZVTHJ8/kUk5/uP1MIZAK9t69fH609X69jfx2sZtYrZc4p2h6Ph1mLiDlGVTXrouXHqzUTkciJw1RkPVgU4a01Jjhx05yztzvQa3do7ZmJi7i1bc6IMWB2DO+ZzOzt9u3b+z//+HZMh7UecpEzSZVUlUqyCHCjqJi143jt+x4Zotpas95VdR/zuiHc3TNIuLcbDq88kU6QRN299+5xHMdoTbe37aeffhKRb9++9XsvJhE1W9ZE61Ow9Ha73bY4KD3EiCqCnEoik4h736jEs3zOUbHgA9IirqQqvGY75zXkHibJ2oh4Dr9t2/rDoswznMmaECHFWEArXuZ2vK5EZkJjxqtpryrYEIFwt/Kd0RISsQiX/4tM6MfywVceYeGcYszkxxSR65a+ekJ3j/Sq6r333llqzjHnfB0vVRUF1dezRuQgzsfj9njc4MkJHiDLqm5Uu4hExOs1IqYat9au/MWt3z9h1BKYrW/bRkQLXwxQBtr9fkfcGCyMwWs07VU0hh/7dE8RPZcFnPbTzND64uP7fJkZ/IsyyRR8Bx5HiKT7cjeHOkNVPQafXolmwG9VRGAniRrBzNyNOIXtdns0CxG53+6oFIhy2zpLqQLzciCycBXBA0J9Cx5R7wu5BNxzog9o+f0IU+WigEC7924qmVlJsMC53W5S1nvPpN4NpUprJJwsXaTB+kW0/W9CycyMrKb9kwSx5r7rhEKFKstkadFl8hRUwuRyqTqQC00FsTnzKnvRKeIHV+Wxzyr4Y6emXj4UDJ+u5NfrlZi792YmpJIJPYZSlScKo2QWUy1hVtFiIyKyOp2BM1MxzmAGd97dk5NIxvAi8kRsZ2Uscne/31RtmUQAx0kX+Zd+lk8BjhaJtmBh5sA0gYo9wRyoqoJoNFdnxryAjCpCsxBEQJXhFZ/YObTkUExLILx6b5FQpSrgC5IZyOUjYjOD/SmOImKQguuk23/mAhLJGgcmqzWVBq+VMQaITwyoWSnO7+waB2CsQFQRSzHfmlb5mD79KJos8Xjb3r7cVbl1qVqmCWhxcD8fR+C67pupMmaC6AushGuVjpGCY0hVMbEzK9zJ8GVr2USQhBuCNOqVsbgkDyosYtu2YZsdxwFJyDFW4gCcadydWYWRalFzBnMdxzyOcbvFiUidhmhLgVMRgRMBr89SEcu7lUVUWu8LMVJbY3AR6r21riJZFJnCUiLETNutyToOkDtKVODMYGy8Ju2Xq2qWBBsrVZFUCRcRLUvDyBOGFHB1mKlYqJjJVIiNWJqwEVkla2vnSHWhFVWeGW2ZZhERVaKlmn6aRDJrZTFHFaRT3tsyXFWVKiYtKs4qMERUBJM/ImeeRGuQJmy932rTytccScVzLLN5s25spJYhnAnD7rZ1tNUj/Dh8H8ft8XD3GQnRuQjIPcJipFXMVQxueK4uApzA5cc3p4fAWBZwvjCpSld1HHn3+5tZqyyQZYwtU+aMxJQzC4LrIiZi4ZUVRwT0FcdouTtUt1mYXK8TgQjLj5XYrJE7AioATChURvCNU1KM1mGPlZmtWzMmHvCwraqgwgEjxsqaCZOcST9EocpipC+RLF0WA9Lq8iZIxKtHBAPiPgstQnFYVdOPMZzo1briD2W5KoHFkCxVWUR5NsYwFApsBiISNluLhs2EWNHVZyb0PUu6QxTpmTmdzKy3GzPyiOK6ZCD0QvtznpsJJK/Ztm2573McwWd8Oy8lTIkQSxFvIrL1O6ToSEliloiKWNzn5/P57ds7IAKcql++PjCIyYTz6joRFgoFvxdcFMbC1ntnnuira1GATtkoXerA5UrQWuu3ZmZMDV16/TBXwqW6/NqliCqZPCdyN/E6C2A+pxKo+zLiOA7chNS3CK5UpIwQL5cnKqnyC6xR1QiKpIhZFOf6ofSIDPdJS6vJhXRh0KVmmuaaHZISOLJZVTXHUBFtcqFXOCdVFe2wqva+SHEimGJWBCopFlEVq6JW1UysN1X2Snc/5hhjiJlnuWdkMl8RSbRepyqDL2oEGnlhobwUehCPs1orJqpsbev9VlW9b/hnYa6VNS2qKsrCc/gEfr9OBBUCJlpZIlQgZF06tEWZox8UcRccuGql1lBUp7sLwU8NFvdVKczCpGCO+Uz3um/dTIrFfRSTWc/FFCxmiL4pJQg1X5VQilzW3cvEkpl8ZutdVdHvnf6r3FrLckC36zStZdHXe1djhwIw4gKxIsLnyJwsZGZZUUQRM2JC2c/8KcXRrujtM8PMUCDAM5MFjr+J/2GVzzmFrVYeSRTsAFUDHgPMxAWIDkef+6HSWJV5BxMJJpL4nfFDdAWeSW+3c51wIfbmmOEVXnN6+NPMWms//fSlNVtFhyq0FcuK4nw+2OvnBc7WRERutw2GTnRKWnFAnwuBT5vDRJ9MREHFVEHly7ejhEpFatmOB5+TPzotJ1crAYojPA6achWHROZlZ8akc6C8VSohVgytiQDuELpFUZyhkmX7+1FVpPRpVoSyRft52SizUFUKlfpVnZ3M1aXAV2mrv0jOqnlm7YnYHFBZVRAHVWSKyLbdilzxn4qZdji+jSo5J5eIXGBm9EQ/HGdYAKjw0SlkRM45Mf7DFZmpRFl0aghWhjimXytQ6xwTEJVWcXiEQ9OqRMVsRHMdqUTr8iYBdiIiwiomRFIkUUpEY3cipeIleyupwsTBmFmIjZkgc66zCkDRNecSJjAXFWVyBGdKBhMLkpTBo1VpKRjORGAsXHFyznG0fDI9rg8fXqukZL4uXjzQdD+z1UFOKVw1Zta3e+aGwht66so55xE5Wbx1UiEmzuL7Y9u27jEynXmBhNii8CIRodZXNvD0Yz+eEUFEHkRjlTaqFnFNbgvae/7E1ZyZ1epsiLKKtm0T1jF834/X8ziOY9uQiQBdA4mQO4kSzhfg8K11lZZZRJohKg0ewWP482M/vh7MX2+3uwijHKNFQl+jnR8e71kgqKwBs5Sq0opsXggzEY3Diyb0C0WOuEptQpHkJmuQtC7U8/UDU2rmOjmyEIzzObUhd08HxZiZGXkH4atkMLOYMFsWFnhnr0nYGMfVE6HoExGqwnyEWVTkFM78yB3izGK6mJF8TX/xtitBU6Teb0RERRhXHccx5oggYoU+fYxRIT7DPYtihgsR+rJRI1VUaVk/BabOMXMS0bZtJDI8KNijGMN0bSB6XBfA9YP1LyzFnuiCl2VHU+szKsLH9GMfxz4A4XeMQoQzMqIq0ljgKaPShIsqSVjE1qwRqrBcIQ7/8lOXcvwTsqlz0sTENv0gpr5ZpkTlitxZdTjD5wpIVm9SBmWLT48xvGiCI0hnWJufNAwiXlKls18hIvD6r7INf+wODBJFRCQ5UElVFYGR0eUFBnf71Sfjs4wxgJaLNpGo8qwsqtvtZk1gn8HMYBBBu3r2w+sRZeZi6Kczsy8zEgJ2gOvUl39mnZD7KvZwJmXmGJEZmdX7LWPu+4DdGOxnQGxDKQGyc6SBiP38gFTBmnWYvgqbiP3nf44//vj9jz/+wPLFOhbhnL58rmi1e1TLKo6IiBNkMJxfzAxK1fm9r/ZtVUxgqQtF1PTBTI0MRVYmwOA1EsfHXwUOFXEAOwdc4EVKhf9wzpnuIjKnt9boBJmJ4f6ArDT0oVzEF5Ugk8zWcXB910VpZriH13W/wDOLE60hwpvBFfWZr5GZlJ8z71WiOtjK42QE2ZzILv0UuYMys79G6yJqLOwZHodUicxugnYpf9zhqg13uzvud5GFnc0ZRCxiZrWI9BmVrKq4PrGYe79t28bSiimKKic6//Blgbfve5lSZbgLsQuxL8J1QTQtLGLBtFwKSSqZUO8vK1oschji8w84wmr3zhMBkzAzIvMEy5KFratOrppVyaLcdI0Dvn3/jTnnzDGcqHjTYspAoAjkqdxUCEASeSQIjBd9mpjRMC+UKBO6OqkKD6+YEdOsWxP4VWDl4Yb3QPYUjI+FiGIffbPelSWmP6d75Cgacx6Y/3vsN74pSaa4OzB5EWZB3kYQBXOIJAsIFQGEn0lNk1Y2AVrcdWEy87Ztc45MZ5GTojoyaN+HR8VMInq83WC7EDH3HfN/XXRAZuhwWmuLwy/GnGZpar33//qv/xKTY47jeB1jfLyeJMRczSwisiWTrmqMssisd6IkUlYChZkoqyhikabwG8F7ISJrkkmiqSruBO2JMvq74qRiEsoiLZ9ObCwE0SKzkSWnFAUXDD9EmYmUzSRDSVXHCKZF8GIk+BAnlWeIsJCguz5Z6oQwW1UVzXSfMeHNc9s2qJ6wEs5+m4Ar4UtZpS8RCnucYlTw9cORwDg9Y57ZQsxm3Ww7AV1rbaMAjgZqHK0Rj/Zy8gnbOSEqDOOIqCgic0ZJhRgIKe5FtrhDjYjCQ7Q1MelSnJnsyIpFtg2V4BeZmgkzsWmxDSdVFi1RFiFVPubO3I04KispQpebMFXB+xTgWRXg4ta01ESMVULYM401SGdVUS0tcGZUaoIEfp4IIhQx3Qe6gFoxJUllQnJrKtyZlYgJwD6rV4n0+00W8XQenNJla1vL1kfsMYd7SqUJ88YiyTIpYauDjgVjC8QosaoWTZ9H1mgmrd2Y1d0rIxNcyYkCVYndJzG33lQlIm53Y2aPkXN4jKxgYVWkEgyivN/vIrzvT7Mvv/76y+s5mFRg1UeeGcTB6mJTRJp1s1s4jSMza85QaQu1PuFP0IGR+ArWsBq1piI555zBrJsS7eP49v5tDu+93+93XORwLr5tW43cjwP34QkNSDH3bYvgGb7dt9vjcXs89rm/v97v++3rLz/9/PPXrTEz+4h9HzGznx313F9qrKqV5OXlQVLMKtRARiOi4siiZhiOWERF5ljD/02UREiFKyc8bouLlYBPUAVnZVBRehHAxKhSkZhjjqpZtpSwNyn5+vZAjVpMrFbh+5g+x9vbF2aY6AllFuZeWdZozI/pT8xxEJwsIu47cVSVB6oDjsgx9/7ZKMlJsCoRyvTT9N0TuHzjiJr7ZNGivD+2799er9fx88+358c49vrHb79/e98zudyP6cUsrO5O1KpqzD1HVWqVVg1r9+Vsc9YeuHonDKaI1NSasnLUrMwxhmoLncnk6UmDdEi5w4McxWb5HK9hXKxOYq2JzeK9b1WULEM0RCNrjMjM6qLFPDM/jjHnoQ16ds4cjnEG8f56JVFvt9vjqxDHTD8WWJTlvbWtNS3etvbo29iPohCMleqHuMdMCi/3mAO+eiqsIsmEgQ0Xw5pZzNCuJOwYmdU9IK0xNtIo+DFSVJZkirTKWK0ZSyZw5oVLe4yqmRVE6Y5ybFZx5cJm7IwVBLggSlVLCtKlEwF3+QQpVOl2uyHuEbPVLI+cEUvMi6gC4hQpkbqgV/oUdC+Ff57ovYiel9JU1cxQ5UYtc0YcmSMrPJPqhlo6ieCfpSbEpcaqEgmfNTm7ADHDXFMFglEq5swUVv3l15+e+8e3j99mzKzynN8/vn1kbFvb2uN+3+ymqo1PdbmqiGlJEUtSERyQSsHgANkRBLlMx8rAgyDChEWqijgiHE0esUlVsRBFnI+CiomUKTOFyt29AoCmMtsSsjlpV1xBIiJsTAok/uP1RI8jck4ZuFKKk4uiiiI5Q+JMA8FfkDMIlwh+PFJ5bUm0bqC9XynVTEQmqsqZle7EXmuajpyLvvU7hGpm3WxWUVK21ipuoqUSVwOyDOtLwDHj0+TibIdFlVnF0cgIJwWhOElWWBNmBVdlZI7MGRUwnmEVLuaMoqgKJlolfUbmjDyKJnGxRO9mZuwU6sam1jMni1rfrCuOUS8n9+lJmdu2+SlnJCpjaa1JsWgckesgy7q17q1FJfBU3E/9/ORC9IlXAcLlZZMwMxkWFx4uxnBMjXTYjeQPCWhAodHgrZqfBEwncChAU+bTEqvKM2fEpFVOJxHakIhIlHNoE07Uk3l5pR3HMW9f4MbtRFY1WcSst073+7332xg7MfxUKiKmH8y9MDKngjgsQ1nYJ9qZYopzbprMnBWw9+3txkxjeCbiIbM17dojxtwP91kVaIliwdilYqTMxOGZgC3BiYGjLCURigsD1MRgvYHHIvT29vbTTz/1v/Xnc5xE12FUzGWyrTZAhItXAaUiyiVEmP6vE0FEiaXOJI4Fo3iMU7pezIwCAQw0IlmGjLgGYF4c6+sT5jVtpSpEjydAn0YlK9WoSumz4ysO4sJGQpLleQiuj4BVd2FDdBolQFjBxIJ+QnUp6KImEndZeEVUL5FfFVfFyhlQVW04pHDWF630FOa+bVuWf9A4bxo5rxO1xnrOXOkUd2EsMse0toIL8JoGTTGTxtL8VfLp/5omkiSZEfRptH/dXrh9gjiDIoo5ghgk7hPtWj8KfqRpRiipssVEmrZg+KWqJ/86q0p00cigmL6m/iJCZ5gFUH++BlgwroSiOeCKVAUURDqZolkQBKisV6ysmlUa6RExxjHGjqe8bY0ZQa0FcgWz0wJ7q0oriVWZlHmRzHCAIAoxK+D71sywcGnJbwKfEMjlnBP3aGZGlHuAwcrEVANAu5lu27p7BT2rEBjyEVG5Z1Kmw/cvnIm4qOYgICzCOAg8g1BmRYxMMYPrMeLhO9GVcYw+CBw4Ysrhi47JJKpL2Xrs+xIsz6ksqgI3FzFdQ0wuEEZx881MolTjt7f7nPtxHK/X6/G43b++dbXMfL1er9w3ayaNIOCTIi7iKk5mgn2YcsvM4zhkJQuEKlvrEb74ZqffIFrRzMiUZMC9QCJPV05G4PWlWPUq4ijhYhIqu0ABEa5csR3XHaOqfUNiyuJCr1sBxT/T5zarU6yreh2diTD2tZgFKC9Gg8yq0mDc2Gwr8IhjCK+3BPNeOu15GXHYxkXxer0wfqqSWl+cZ8IwvP5l6yIa9wcnbtgBATb0DD1102AirQNL2uJRLvdVvuqLE0BZrai3xsxHVF+zEqTdzzyFD2ZmbWPtugKsuKrGHFnLwDpOIx9mnnMmEZWkjyqOyMjwnDN3h+MDS8Pz2rZSa2oKLhry6k4a0bLKOke1wpwsSwGPB2SNi/2i6J+k2lMc7eGBiq+YTUTYNDMzOJmYBMcBL5ngJ7v5xwEELic1btWwPapiTvhz5on/s4j29qhc3CciJTJhbtYx8AN+qarWqDlEsjEu1g0xleZp0dvb16oSZipbqs1wCtq2Db3PGEcVRQZLz3IGrgxCFYtKy6DMwcU+C5luTa86aB3PqhLBqrLdGpP23qMqT7+gImIWoqQgrnq9npn+9evXMY7n8/ntm9xu/Xa7KXEFzTkraJ4TXJIlCqQ1+Fv6xaYKA3gIIhCthCvhdB+p85Ksc8OLyFoSeIzFtbAkwgQOjY0URztrNyqtzEpBDOtwRwg90JYTzDM7n8lCGa75XC53gKpiYlyJqgrRZ0QUJy1tAQkHdTuv7kXeRc6ANBOhzDwO9eEZxSRmlnO1qJmZlcoc4bDAhYqM2dLT3cNdVKMSMVbnmkyqq3/8HEhn5oKeY6VOnof7SfZYTBzlYlVKqgj1Ko9AkQU9MopHEZkztCGOBDj04sI9n08zu9tNRYQEQcw4LFDPiU6MN7CRxz5AU4ONHVPMrIpCV4U4CRNdGvxVzldm2hghQnAQxJGMdxA+rnN6rWkm5jAlz6iYWYPYL+ciDKhwB2J6p6qkC+tCVCEWAubEUNRefR2fDe2+70RY3Cqi13j5mrSDO5yZpt3U4AoPrgWVCCwBrMGmJQLkbrD66LzZMJlX1KfhkklfvvwcOYnKjKpi+pHp8EoToaoAMMIEn7Ljx8Ek5lXI8xRCySfg8aqtaeXW74/HfU5j5r4ZnraZJei3E07AhEERDlkcf1++fHm9nt+/f39+7Ps+nh97772p9t6FtEFQsa6z8FrxN6xSFGsLaZrZqXR6IYWVmdHcoZ2hE+VStVo1y7n0k3H+ojEugjOCVnIlqTReWdJSFUxw8tHDo4py2TTCZHn5gePEqtM+53SDWgvpupmrEOtUp7JGTO1U8TPImkTkHu4ZnqUwiU9rUP5+8l/MbPo8RdCLLOM+Xq8P+EoUdMI/wEkeA6U6EUHBicoUmq7rbs9MGHZkLc9ZEclzMZ9uJczL8oOKaWaAV3D9sqoVHn0KNJaSaJXYpwwPtkxJMBc7eW6y8op/iM9YV2zrzXQjUWYNyxJNihHLXUhViTkijjHmGE3URBNqlqqYIyqn2br0qmr1+58nXmVFlJNK1syaLNn7J+kcjNfFslrcjNXmhadPStjfCgFfUF2qKUYQEOm5tSozMh1DWoX1e4WooI5V5YjFcWxN554n6RAFGRJ1DLfTGCMyWXpEMGtRWKMIOh3phKkJG0tVtkpiDioWKTPLlCw9jtftdlOVMTyTmrXM2PddxGCdjsz7szkn4fRZc2RmlJLAz5HIVmpeXY00CithIXI0KbBdxhJPptZNTOaU2+1+u92ZeRz+/v683RIOWyacmXmKVtiLcPMLsQrMQScfc84s674sLauWA8LnbG59zzgCVBgxn/DQw/5d4A7SedAJgi1vxlRNVUWJyiOokjKkt1sWFIqLgRIxxwgmvZZ75mdlfl2/eWqBwOR0j7NQh6M0nzPFldKaUeG1eBLEtNKWY3rQyrBaHnzXfr+q0TmPMXdIfkWg0juHSmdRQ0RzRsSk09cH0uPrpQg7NklMYX17vUglJeKKUC9IS2Lmgf+UikilsgjJtKSQEV+t/qqemJi19xu+vjnncrolxVRFDDAKeYH8vg6s67ghKlEYUrGqJsXVtsw5p9oYw7YbqiC73W77vu87nIXVzPB0gF6KYHmUe2R6VkSOGSB4iCgDhoDbLjNjysVnhPbJkZC1jOT6+iMxz2ZSBD4VyCG1bdsYBx56FZjFkAwq0fJich+I9AOFCdmE58n6Q+YSu8fwCFFyn2pElK0pUYRXRHAhs0dF7PX0rKlGomIrZqMX5fP52/1xAw0Zs2ifte8vZiMi0z5nPJ+7e6iq6OYx5yzkMgaFGk6rLGUs3HXTVtX6yIGiMSKKpKrmDJ+ZLGZmzJBafvnyBXEvYHyXH1WlQt3aZo04q6KEwWSHQM7CVFOK99cLl+q29YhVErKUlEXMqpVVAx1EBNQynzUCahZgpe6ZAVMcRqm88Ao2Fa0VZ+uZdHs89v0ZPliot42ljoPGeEXE9R2BvEdnBY7lV1V+lsTwaD1nE4sqeo5pFKxkBCtTregBUYnwCM8g5E2jIL8K0uuj0UmrQ4lHRERJlLXmBAtyqyoXz4kYYWgNk+h6V0Krx4xzTiVEDkcMjCMiM6hYmIWXBcOpU2QWOV+KVES0aRO2qiMgmsrEfQ7xKxG5J0UpgwjbmUMwdS6wxefwGREkxlMyKwsmcRanbVdmTqKk1CJfNriFS7RZs4ilC6xTIVPLYvT98Xi05fcAtlXs4/n201uO6RHhvl6lNWqrxK3i45gZCV8DHHNUEEdgJBFmJtLdfds2M80a+/50HyKybffwvffNrF3zOVVtrJk+hr+9vWXWt2/fzOzXX3+t0m/7H1Pn/d7uj62IinYiaq1NP/769796HF+/PszEnY7jeDxuf//HX5r1bXu73e4V3ae41zhG77cxfY5J5OpOFEhn+frlpzl8HKGq29ZRQ5mZSItAYWVfvnwdh+/7/tx3lZtaezwecx4UiYxMnPfv7++32+3XX//UTsOljMxM8KrPizRE5Ha3JIGA//F4iBiR/PH79zHGl6+/ZCZlNJFb79akIuf0otxsU+Xhcw4nXZ53SgKh95zzfr+11sDssiaPx4Ooff/+fYyj985iHoOqCXDq5YtF1xEvor1bpUZQBpGKbHrprMYYxzwywxqLSJxhWciGRLGtqmOM+/0BLzmfiwhERNbgwjjcYb6zuImPx+2E6APd30mygjx5CbTAfTyOGTFZzpetgpmtqh6Hi+TXr199xvO5V/mxT/y11+vV+yMzK/Pt7e2jsmpeJzUtMJJU1jznOF7H8RKR1m84cfbXQNKraTdrLGa6bmk404gYCcelQ7MePo5jNFEheb1e99Z/+ennvt1m1nQXka9fv2YGHDePfX779i5iP//6y+2nbbyOj+/vWDNm5gkPDly3C7EenqxCxBmAS8c+fN+fo+YJAqz53XEcdtovZ+aKQv0cCCnlme+amcgjytM3lYi+ffudF2WQKvk0kzZd1l0Ln6gFyVBrDSpuURhgEiKSENoQkblS3vhUsxmsGRbl60x8AkIH56Xbvatq65oh//Zvv0YES2a6xyCZmXDsIFVQsFCZRGVFTBEhRlvoVJyleBvP5/v0o8ojSz2JZ9E8p/RXP5yAJ5aSPxlxwyqtNY0AS06FjTjNOhoi4syUcbyISMSJKOzsEms5Wa7wVV7aG1VVMSIBKYxKqMw9993/n//+6/1+f3vcdNOokiDTBo1z60rM4ocg9d2U8pNXj0KvqtxFdW65ET0zc993bL9KzoxKrIwTD6e4CKZMBdP9TM5cskLmEyCQRkKwVhEBl/aHpvokUMO3EQfNWnUQuc7VXOgJTZ1ITUKamRUViyNwQkvJfKISxNfMuFZEoNNqSZYiK6LmcLiPqVhJEInZ6jFXeV1rARNV5HRHhZ+qhhOBKq5O+Sxk1vwivI6aNT3yswnqffPygsNfZRQVrw6iNKCWUBFtrW1927Yc0wO25jgTG/MaPSLlHPXOtt2V+/AZMZkhY13LcjVcked0F82QQtDJ4YXnxQwSbgkTs1daEhEZbkI1vgY+vPRzqGBXZun1FX77/nF/u8MKad+PcThIuNBKRNSch8fipVSVmYJGoIkuNHnZ1hV6BzDAzsWhrDRGVVVrvSj2fa+KxbPmnH4ImyqpypzDZ923Lz6pqFhSEd/FWRRz7HjZorikCu58v98Xz55ShNmWixauF+LIZM4sggGn+Myz6b10rKtXgv3+4uCwNrsXOZWxLYiYEyYk7r5G92N4Zs5VAhMRWWtUgkvYY8mxRYRVwY2oZNUya0zms37/7btK/7df375+/aJcTNmbbFuDb3JWqVsnfHDKiJxumsIYwq/MWNTpY0KZf7TWem9ENKczpyQCl3AzO8DdDBFBcIpe+mViws2/qnpkPldg0IsFQyXolVYrV2sAUVVIbYYPqedCo1trAnt2EVVFfcFSlRk/eC5UInmhGG0SA00Ma5KnnAGqIDxnlQvxISrT3uAVpqrYR3TamaAVxzB/jKGqZ6gdput08dCJPnGQT5i5OM7joJDsmogsK0/PSlxwalbRcL6dwo91E9Mn9wlSs/VqqLyOsXPS1m4mLXccXp/qSRFZ3uiUVQpJGdQlaqyuUoLgnOvn6qGSSYiWXN/MiBLemO510YGufgnHodRnuibW1hijikVmJqlYROGht9aI8ZigGj5zxysjnYiIMwsaShQUCp88Sq4aRGrWMz3z6T7PvibGCCIqIo8Y3/c5s7bMJGu0dTFuSU6Uc479eEZO0Qo4+QexVETd7/fLOYe5xApbWx1TEFFDkexUUiTuYYYhTV12bEwqLGxauQxwEGT4uN/MjBQI0IE9NT3XyiBACS4/6CM8GDjftTRW9UFwQpWsopJm994fzDuCiE1vX7587abuQyW33sAbiEoSLWZtVlUxvSya9sx1ImAQWJXuKUkr/bGcGVZOiD+AU/6ZB8LBzJVKBLnEgmyWnKYicoIzHeWwM6Asz6nKLMpVVVFVugrJzyz5q7Gv8wetO9fanKCVwa+Vc51RRUy0stjxApVUlJVgPWBiwgllw6qSmFjmcB9BJKYiopUBDDIimKLOAGvYRuJou3a7ihKRx4DqUs4fIlHFMK8XS+YnpAcf5zndK+JH9gFTEGPaDhojlHZzTqSTY6/FJ3z5iTe9Xq/9uRtb+9qV7Tz4qIpEcW5ZVFYlgKEFOZZUlUiIkpbiLg4qI6BOXKfjtrBYpqtiSKyQRZ/kJaFPl1RoSEOl/fTTT1EBv5pKQC8Lbi0CxQCgbmL1TD/ohGfz/Dmfjl4thiyellYxlYmQiOKAP/9OwmAP5UNmwmmP2LPcndVZtJLGdDpGjLmzuBCAMYLjmCrczRhYD4LGRUnS1YKTmBUUaUx9mLSZbdtt2zoRzXmcmeXWWjNrVLLv4/WcRbRt99v9vm1bMrn7vnOM6TGmL6Pqc3WeDt4YjEW1Dq/0gusWE7t7VCKt+zjGGFmpTMZkH6/33/74+Onr+9evX28/9d5vVDOLhFWEqIpN2dR6IyJvTjPCnAiVfPLBk5DHV6eiJOacr1eaYY4b5+0Xi+i9Oq/IpBRizspY74eZGBbPUYViGaFvlLxGktfXfZWZ+IfMpCJ3F14S7+tQwJ+v5oUdWnZVYU5AhFnTlOCmUJnFlVGRlZmixlLKyBTEmVIAIuaclRigMEo2YFXuTqUEn/JT2ypn56KqyspcPmOM0a1d+0Lhg1wMZl8t1inJ8oDiqvh4vViImEVFqRXLzMjMGTnmbMjE+z9u7KtaP//EwstnCvsYIznnnKQLp8SeYlm+EpIwiVRUN3SyBM8vgDm5PrfVmgmsL4XJIlxVRJIZPdsq2C5zLlRugGSJ6XZ77OM5xgQ+2Ts2WDI7qAdVFQHblVoQLMBbnOKUeG8J1gfJBV9lUDDsjkxk0WlNIY8n4mxds5yI7/cbwB4R/enx9vHxcRyv/UjiUTSK1FoUhaxq31EVqzERtbad5mW46ESDVAlsBXxkVMIFarD0bbtvW2OpOecYB97w4/EGWmfvQ2WPqK3fb7e7CFykMyJgFQtTBh/zE2EplIIKApilocy3c5Q1Z3imCGfWsc/Xa/oEia1nyLc/Pv7H/nK796Z6u5muiUCJqAiXBKJW2dS0ex16rvKzFhXmKopLfUz1ukhEedJgUecys4iLSKUwhYhT9UqjMiYTkb4pUuQjJ/YFako2xUC2qi69fC1S7EmgQOLzyUq6bos6YwSJFJ7a8OlgKVGK8BPISLQM4OOetw20ISwicOCAJyjGz2pKZXBnw3T8KvsxYgNWR0wmaWYKN6bMKjmVrxALLLX+tYcTbMqU5X5+Fj7uzsqtNTZtzOXEzucV62YNFlvaTJpJs0o2651Wn0VnDBKf7KPWmpRElJwMHZS0mSS52Bp1XjmZuWjr56HAOEbwBcuny+G1DW36AbQvC1S1a9p8oYO57+Pj41VV1pFydTY2vNbixZo+26cALBURxNd0dK1FMSUiSdwVghR5YTPrIjLGEG6C3Fai1hrLGrGCKpWZokRMLNVRLVNWBXOcCvqsAgpQERnpF0KyYBEERp2PgqVMlmm1aVNtueYmZbqZ3Uy7mWCCWO0kitJCAlprj4eM4ZX1en2Muc8IDHRxNx3H8Xw++TS6YWbc5yLGJxcQClWQe2E7gv0pwhHlM5ntfnvzr0RqCIn661/+bsVfvt5um2037d2YSVizKGOVpcYiIlUGZBdTEj7pTyzFTL3fmHXOhj+R01W1KqkQQyhVQoXRF/ylgipUSlVFIwsDvCBhJVn0SzT+5YTrE4dQeCYE4HRVf4pggjMpCTv0vL6yNc2Cc/kiHUK7MMYuYkwlYlValbQENZ+2fbn4rywixWVmxlsEzVHuySTbdj+O2TtO1ZZFquqtsYiRX4kJEYn5S+/9pNJ9ttKo50UbDrigYilwq7FjxcTM2IyIJONsw5kR0CpSRbXSbx1DE9QgeQrYMhPFC1DQhJterUncMceclLlm2nhL7Him7BknJezTl/3Hg+DHCo6ILOKIgMqFMfu86hDkyWbmc/947h8iInYbwxF5iLN8zjnGssrO3EQkK2oppiDZpqv4Z05mOWmsegIcEEQuUurrtTdrLBw1qlJMTdsY63jCoYufMYZK+z6/7WNP9t6t917EaqmqHgf0C0Vh5lWVwT7zIz9kmfatJQhWNUwTmZn+/2z925IkSZIliB2+iKiaeURmVnVP78xiiXZpiUAEvM///8S+LgiDB8x0V1VmxsXdTFWEL3hgUYvoxvpDVlZkuLuZmioL8+FzYbo0WUQCFikpuaeFe3U4kXmeJ5iElCrwh/l4Hs/zeDzeZ8zxHKUyJqKyadi37UcvyktbQlKGAwu2bAJhgdAEpbnUsp9SmHtre7+JSNtbhD0/vn/5808O//R9e/t0+3S//+WvvzKnAhFuEZ7oScneGImovR0AkVYt2DLPyFAV1VZu1BGmqpHmPoFMK5PvrKc6ozjfFp5Mi11nZokySgdx8dkBSqEcYUWIFAgtH5QIS2ZWbgQh+EvsNOeZ6QUKFnIOJAtr4zGyBHV18bB4+4M5hdeKoY7G+mADKwLSwyOdKrhURJgEWjICeCrp3m9HG61tKi1THMnMUjacCZAkqOCUlliB3fMsgxYQebpFWPh0u/fdIi0tImlRAEBEO3cIsQiBggpOWhMHLqpFuJuP8TzSEtqSGMiIsFnQJtfNCZRlkoxwO0cGSdO2KQb5QBITciamx3SPWWZPOSMFBVQnSkea7EkZFIAnRVKCUzSZiVjvnxoSkRNBST69NKr0fJ7ctG9g5u1+k65mw8PTY4y5bdt+28/zzMzW0mxsW89EppdQOiLckxJVX2WF7VRpcCKNsN739/d3t/j1179ExPfvH9t2k9amOyKZMxLzGMTet93nOM4p2kFynKeqvr29RQRJ061FEhiOZGEIAkmi5mcCrXWVfc4oAPx5PIjyyikrC/DaHklrnWI+n6NyE/Z9F2pQe56TIqULEI/ziQhpjTNYOhOOcR4f58fzrAZ5znw+5zxnJsxWCPX9diukoJrS1rRI+2UcNewk0Na7u33/9p2Ctm17+8uvj+N4fz9iDAbCoIrPn/YRz9/+8qYy3799//L7P257/7/9T/8i//k/w7Nv7bfffuu3zpRb61vfnvMxMYTD7BxPI5LedgBzOlNvXSrCk5n3t7tv4ziOBBOnu4kcW24JP8/n8/ncNs2LESx9F74Ryhw+bdmlkwoycsxZNhBJISL7fr/dbsxa05O7Iygjw+rJYXjMUcz3YIZIcmNwd3dWVmXzlYZEy1McTPLLL29z+BgW4brQrhJy+wyPOVYbfHUcc9rb7ReFxMxNG4NsBgUB8vmXX5/Pk4lEdYyBRh5JkH7/ZY7hNn99+4UTj8fRe4aQeZSDNYsyKUXC6fvH+8dxquq+3QFqyqoyxnG/7Zk53c85SMrCVTF4226p5ucx5vFp3+77TUWWpgsgJum1VH7xO5clfHiQsN42JE944MSW7Hqe83FYElHbWu/f37/0rpV3mwliURbi3pk+Pr5bmhALNw+eTo3UnQScolqwe9mrgvTKd85SWBJr+d0wgiGUeF3nF09BVfd9v07dF4Bca+TobWNm4uKHubsDQTRWilfEa60SEcccKq121qJcLKFK5nAPIVb6Ab0wEZJ9cRoDkUgqTVUQlFoFQ7MQkHN4wWm1zqmhpspWVYTzfKo2VgXYy9F0ZKDyJgMAPSnCX+vY8m4ktDn9+TzPY1R8oR3ms5aI0vveO1S5b8U/XETahHvMSCNPkhJiUiSr8L73HOFzjGNG0r23++1G3DJoGobbftOEhu3pdoAQ+fXL97D85Zdftq2F59svn2s54uppDjUod2kFjLemhKbqhX7NOaZ5cH2oIJIxoqZX4Saqrenb261KZDi5SYYSOqFnLKKHoG7c6jRTlYkacTI3VVXRsAzMDDBku28vMnWBU3VXlLR0wYtFHERExOMxqwMV0VqR2IxM703cEyjyG0ovNGz23oUA9PQZNsI9LCPgNsY4PGPORKqoUFIBYcxq/gAgkiTgEBCFx/vjkIRAz2GUaKKttUl+MbBrmZ/cWKCs2JFFk8kgVaoduRA5IEQqXCEHWj7jr4lGSIgp0t0QXMqsMgFsXVpr1e2X/VQBrrMi5ZABn+4j54Q5ARUgISCKbb8RR6QDKdpb6+HsPu2ccDTur44VzIkrKlq7ul0ieSQYFbNZdreLSU5ZjR/QM/08n1dcB1Vec5kF+3JJeGXRlxNpLp425Wu6e2mWXgNM+fBW066qngHkC56oXt7dWcpreHFXGJIcc1g4FVPGKeuKZ4Cbtt5UkQgbp7uXB6G2VqNmhC87bfcIHGOyeWXJsAqzRGCcts6xFbiyOPZmVulnGW62jLoKEKFX7JGsl9malJd8gcfuPu188WpL51eKYFHu/TbpfHwcHx8PkPS+d+2ttwj4c4SNT7c7gJjm02LG+Xi+vz/O8zzOc9ubxfxljvv9Jo2lcUTEOYU0ZSE+ZlaS9d67r2BeD7MC+yNi2zYiAorTnapMvAgy4WSTwyVDw9UNEcFCiSKV1XrQ1tsWiIjwopldiCaN0zKokIULUS+EYsVyuHsEVdhoAKfNWLN3pRvP8nFzO2vYVK1RgoEoogQzC2iGj0gz8xkRoDKncPeQxqyNwLxnf84hQpVr0rr0rWvjOackPZ/PztJafx4fiPy83y/MNZaubwWC1rCZC3PweUFdMe3sZStFxe+CI5mhjOfzYES41wNTTp8sGhQ1btRSGszufszxHCc/HyUJqXwVgIOCKaanJyVzKUgCCSQ3jZjmyEwSCNgTFvh4nplBrFgpTGSBGWu9FhZa/TOVPAmSa1cRLFooLmqPcgUgXLN3FB/hp+f8B1b0GtHreBeRkgDWQqXsTxbR2snMznMy877vpE1YEV6Wiu6TmKrFfgkZgDIOlBKnLucFosIXkZTJANfqJCIXTR1OF10/s/4TwsthRoAob/xS2ve+OORlXtp7BzDGYF6xEed5ro0JeGX+dAaUmbnxC5S9JMkQrb3pYt3EVTuYQQJVzlLImy10nFOVPXOMw5HTRyadY44x+3ZvrfXeRxFDlgUou+fxHN+/f1jG87xrb33fiOk8TlA2rdS5CLdKfEfg1aMhdLlKBXprxBnhGYVoJpWZpzLKDpc0Q4OUAHff9qWqqBEJKAZOaisW0w8BYokRX+zmstK/6vsKcQdWqPQFfCWjleaKqSdA5EydJG2CCOXYUB5fTZVJzSekPmi5FHcREfu2Y3mABPFWiIOW1axqE/WMMpuq2nTb9uM4SFhVP97ffVoXTQK61g90d7rYOkQ854icTGp+hhctQuZ8eueFdHASs0g52+vxdEQSpXA9xqjfxdpI+UeeAMLdj/PsxxGZ5qFapoRAcjJpYppNT5uZIcW+z7TETFihntNotES2Oee0YCEhCXjRF4lDzMZ0EWGeVwzIawAAZs9JREFU2tuGK6OlEu8986VfrCbfCxHKSuMkZtbGP3PgIuLa82fEskuqxmaM0Vqr5N9c0onW+/azQrZmpNZashzPoxJDlZQZxF6+VFKgLcsyYopMD5tANqZG7MwOTGRmcO1p3dzdiIOJSrhFVPc6eaDMYGmZ2GIjcctyyVVtquX263nVu4j4CaPNUge/+pqgJGpEdNtvuDhnuRhHAdSpQsve8gfFBeAUkQDMbJhNOzUJyLdP+6ycL5QfJEBGXDZQ2Pc9Pey0eZqbJQu3HmHPcw63x/FsTff7tu0yT8sIb06QlTHLrbX2Pj/qaez7lpl1shHn4/Fg5sScdhDBg4rzc57fkUqkTDsTl0wzL4OAF4794ryqqpmZG1U0I1Gls731W5msZ6abTz/qauTyuM14segokZCmEUxYZDDkWpm2MnyDECRXWjCI+HwOikqRL86fMnsZn1mGI4MoMC0GJWXStrW3t3slBrbeVMXdMqM1lcqIL2upjAg/bdxvm67VYPEhqMDCCAZeuSTRN2KGDERM4jIlTFAyU5fGTPPtnubhLhnMZbcfpNyaJFeEioOpb/WDIF2C4vAhGeDyHEFmskQE3CicLoKPJab70AYizGnhIeLCOxGxlqpG3MKz1uCVFmnMTkRa9zEXP7zQf6mPmV7HrC/OVYK8tZbwkveXm8XqcH7qFLA2DUxA7R0qZNqs1oQkIu/v73P61vfe9zlLJCvnGB8fz9vbvu87i2a6x2ljnMeQNQkjE/VUZ6Q7AGUmZhXJSPbwqkruCUpiSKV0t7pj6Dxj6RS8lP9MTKVLr8h5QkzxDHFPs+hNXg1tXj7luXIKytqz6PrAGmhXDkVelOfM9AhaBvPLpOTVbYHTfYb7nMPGnIZ+7QW0iSoFcSQZjCNV+RxG3MozDlCz/Pbl6/NxbH1PBHPM6c/juN1uv/z2a+b2eBxYMdxVTNF0iwhbOSUbL+eIZYLgPoo6Ms4wP/i5AkvckkhUttZSBYQIp4iYNq8YhYokWiZjuMon/+DbrEWX1yWEF9aYubhSzIWxW23da64M54s4gHCs1oD0tt8jloGdWzq83EoyaR1gcEI1ZFJpUXF5LSSmx8loLHy773/lvzTVj8cjIpLWFAzgfr8LSER/+e1Xn9ak1mF1Vv1gXlV+BLFmLu2mu5co7nmk+SA4gIkgZ0Vj5kTc33pMq+hGCVj4MQdJu+/3KNJx47e3u3QFgoRvt9t0K4GZZ84jZnpE2BgAEELcGJLMmeJwWwHORIQ8syLuSNremVUogSlsIU2bKAnP0wjJBHUDESDJLGVnwhwAWJmIotw41z8JxY4MeXEZq5O/+DYglKMNEklCzIllJciwHGPUQeHuAMdybSV3R05mrYyD6/Rca//CikVa0XwL+ACDkmtGIGrCJBzpnslu0yY9fbSObS8hjY8xSi8QyMiirIXlSqghSs/w+uEZp3lQVKcj0tznOscuLt2Ptra4LfXOIzPzmEftsWuFzswRNu1src1pFS2pbYlNIyzgc87wSQQRAQUoWDjCiJRYMtzcKqtcm4LYjQug+fTp0/k4no/zPL///ueXbWuin0U1/BxjjONsCoac55hu1btmUGtzjJmEzPz4+LjmIyeR27bFEszCPcdpBcdGWI3nLpzRQowIS1HO4XFGhAj13hrkyk1Y9OGSb69w1cjn+Kh074KTp00ARC3CRda8KQJVKgHP5agMIriHl/6a1jyLlJ+I8MkMIYlwGw4KFQhxFOnWznAQi1T6o6YKC++Ore/322379v69RF9Jb+6/nM/j7f7PMY2J7tueHsfzmeAUWeK0ZTFQ++gf3aK7l1TEzJ5PFTBEIyzMAwYiFm2Ze9uiNyZqUATFNOXWtq21BlES7LlFvCWvlCbp7Xkcc3oyeaQ8z/OYETFOBljRwF2pBSHNDM2ntF26cvPEncGt0RZEAuKmAurhHFz/PtwILZkEpHMkSy5ghuTn9wbUWvRHFwBQrRJeYMGrcy76V1QUz2JxriPiJYUQGbgULJ8/f0ZSoQnHc7SWrW3heb/fW+uZOc4ZaczBzE03ZHUHhR2sJBVmmZOFiagROZFkkCeZxWnHp5XMlTZtzKMG/tb3mnVr0QB4uSrUSLqsJVHHvmZbOUW4wpEL926t1ebVraw+KTzdKTPZ+QWXvirCmOfS/5oBYNFrHUseeRxHmL99ut22LdIkUE5BCS7l2DFGBlX6aEZ//ziO58HcmXm7vfXbU4/x+++///rLp19/5aadKJk0IsPx+fOvRBSPR4VxVLYlEXnG2gUWZz5p3/e3tzeK7K0RraaAuUJ3t8fHgUSlCzscgM0ws76JW5rPcveKLPmw0TJQrkBNiyutzy5VSXHSz3PUC2itYXkirY6sYAU3B4oHqVTJMSjW3Fk5ZQVjX4TCFG6zTCoLtuULTfBqGVilWOO9t962t+OBW7vtrQOoxqRtXUT+7X/869vbmz1Pd//rX/6S5l/++DMidL9VDG+J3H0FySy5V2vNfJTF1nmex/m49U9CNMy28bQMaaqqufAl3tq+bTcKsuEC6n2bntKWzT0RWImEHcki1HQMI+YkattxHjMCc2yUTFCmTqSxAq9P3Lo2MHPPFN5EeoaYeUT03oXbfjEg3ZOP4+3tMxERRP/6138+jkdECKstdyDcbrfWdYzhPolQWelmNqebTSJcmp9qFpSZv3//ILB7oW60Mt2vs7Qu3EXVpjk9w+/3ewSO4yhFd2Zu29Z7fx4HEG9v923/dBzv79+/Hsfzn/7pn+ackRYB95jj2Lftdnvb+s09bY7zPDzPrMzCGH/97ZfEcRzHtkmh2kTZ2uaeVnSFvrdSvSVlpmo/jiOImdvWb+WA6HNmLqCrQLjWWuU1bNt+nmcJ/CIwzlmMssfj8dtvv1XJmHPcbrd931lwHAcR1ZoWFK/p4xyniOx9671dfHvL5Pv9Pj0iBrNs/Va8iefzREY9P0QaTr/89uuY+fXL9/3+iWV7/zin275pddS970yp2nsPvbpcFm2tPY4nM5/Tr+dTxjCz7/BQFtF1LGtjEW1NRDyThNu+74T2eJxjlC/gSjprrUyrjpoC7vd7scjiSnwsdOW+389zVvSTDZvnJCIm6srn8yCit7e3ukrzLAyiFzJFkH3b7jc1sznttr+5++Upgtc5FOZNOu+UGSCLnEoM3UaMzLTwhK21jwpR3t/ux2nneBLl/b5f/Sn+l//lf55zmsr1wNNf/vrrtGi3+2llTMAlPWLmfe8v21iPttk2xkjO//Jf/sv5HF00CBY3Eun7BmCM0ftOkPSM4C799pc7k7jndCORdSRQZmEunNrb/rYfY348DiJ++/zZPR+Px+MbN91UtwxBrpI65lM03j++aG9vb282EU632+fetj///Fq38bZtqsvvo+9bEVUAaEkVS7rDKeV3kPCPj49Ii1zZZEXJBOw4D+IfeYA1AhQnlLl6MqkK7ZalRzCLAiYvjR/cfVsuUVSK4wpid38t/HPO6VGBfOYeK3ORqGkXjkxSaUxqERmX3p6UpDOBJEUkUsushMqIneER23YjW8B+bQ2nhbvfbm/HHDaBtqQWr4nm1SXRtft8AQoiSiSVMVHn7dvb24ppEIkoIwo3txqSc61mfvhNfHr7JeFSERirdFIEns9h7hHACq2ktMiKi6OCQiKCMoSIWfUcDgwwi1AooUK+Iu00eCoJ+iJl1Q/89ddfz/MEP49jeNk3ledyLgPuXPZ24e5jiHuGJ5PN6YTiIwdxCmsE3CLTImyMEWnMqFF8rQ9mFJYhos/nWZe9PrFag/fW17Yr6+CZWCRXUXhlw4UPLCY7lSNOQWuXcpSudUkZFqCyedw9fGWX18/PBZxXGyJzTAQKIyh/1frEqyUseUDxozixZXLfOnq9tdoNEWVli1etF/qxhEbH3rdNW7ndkTCpuPtxalnFlnXDJrdt26tfxnmuPIhyQa+QSyYSKU7x/b4zK4mWemjTtvdbaztSqyJMG+f5ETm1oTW53d7GGRl8v3/e+r7v91cLVrqMtYG+bB/0OAYQK0gHxMzmwyzPOYFcNBwUpfyHV0RVhMrsq9RjulTWqt0tUfUtytHMisSmysJaKez1PIhI7yxcs8ACmbdtYwYzecyIUFVVXjQVLH5oAcnrA6aokI9a4DQlViYKJr5WBB6xHL/O85yXI21gOXgAOG2aWYVfeoZFmal6uuGHA++1KF5WAiSizJppzEWwoX3fX1u9ulEuhcJL4bsWoq8qk8GRMIv0GMNy2KpFZZDXm7aNiDM93MoE3hzudg4QtTIctkSeMyuMm+j5OI/H+XweTWAWRNJEqJx1M/KyMNu2DeBpUbnVM1xTojZKoEwp8A6wgkUL/1Yt30oWkW3b3C3TaXmFZV6uSkREJBGzuP8iClBpIzmLvs2im4j0pqpKmRFBQWlJRExc5iKLfxReVp6l7Smf/gt1WqyvIoxoKbWTIpaDOJY7e5ZzrEepIBSgOSeBVbmJOkoN6XMOEcr0RPmjBhDEFEmgUJFrKvRyuH5BSnm1Myqi0hkYx7lpI5WricHInFwypSxbVG7K2gHNGPu+BzyKC01gYRGq8l4l4G3bhFvpl/auB9O+33q7MzVAkTRtnKcQx37T1qS19nzMTP709mnbbqgoOrvyFoBMfY3hSFa/hKju7mke02x6pKpmIik8LGdFzbn5LDPvBan9sA8pIQozsyoq7hOgTEZWKHAvAn9eT1cZK9QFZRa/YtSZy0OIIorJrm3TIo2YjbjS1tyKNnGKvGVmghMgJhYpzdtKZKgFalbWhRDJabPCy7N2R0SklJkzlssILU/OWWi40Apffo0//vKfUn3BqxVdWXDJ8/msQ6Y2cBGh1xmywJcfMaI4zxkRlBAlRLoR4mVUD4A4lNCZVNiFVxwTRfFklld97/unT59KNX1Ol+PoXcp0vFGn5KKZVE833QAMm5kJSOs7S4zThh0+gwiU5Qpb4nop9s55PtwrqvzoHREpLCqdmSMIINWqD52IauioV/gqfBExp9/bLXmdwxFRE/jlo130gXSPincpeJo0l7d1hGFUxeFaZKFooBWD4qDo0uLafZh7upSut06UzBUSGc6ZFEkR0VZzyxRh9DNqmEQrq9JPR4RF7Peb9j1L2ALUaHxpt+sdvXrJBkrgdHfASxPtZUs2xrbtSZxBZUULcHiOGX2jiPR0JKBoQtK4nhePSRBVVdYYA5FNdV5W6ZGx1j1CfVOiAG3b1kW03uyLE51ZVIB161bFXPNsLnfPS56ZZ8Ri+7Yu7j4v18pc4RxRYWHuE6CLQErXzy2L/9dIRYAxQ7QDuPLFCilUs3hBj8DFcU7KHIpWXd+ck37yayCimGUojnXSuffPnJkUHMkroSMtfaZP0SCUwp+k6B8ib/s2fVnIh8Pdh3s4WtuuirAO8hLaMjHytSz0MgLERZvNmHH5qa+4wcNWkmJrP5yS/q++CshhEcDLPBmUEfVA1jdmZhEEG6EhXYRImYjUQWSRwbID/dPnAZLH+4eNR2aaxZyWSaq9ab/oEeHuw8xiAiDhzLSIRJFdk1lLkyS8blMRqRk2wiqQIjMjUAAVpAbpOecgyp7ae395nKv2irSOiNZaa72OJqx13VIjEXHmjxIcjkTR3lrZV5SaWERyeTEtl9Rt3y9gbxklXXX2Na1cpJgs1xBHchnfBzQgFqSBRYenXPr1cGJoE2IoC6Sm3PDLzjUoA17Ws0T1uGog5/QkBIqdXBS0VOHe97L5r3PF3Wphd7/fM2Q6I7u2TbQnMjHNY4SZTQCNBRAGCTElpLzIibnc2T2Sove20oliErD2ttqnPeuel+U/CCDMBpFEBl+hCq8LhRWoh+obox6kmgyVmRnu090jFxOBSFQbUSbmCrPKLM+MKjkFNBCk7JKpDEBYUBDzyrG/coSYt62t6QMCRAlCS1gey9yqgCVVJiS2TQFYGpKDABgCJcdeLldJkRnV6/gUsiIj1G9RbapcBu51LURWfJIWAXpZZf14XFlYmcgHLoZSYYrX9MjuPv10L8uiqnqrsXlV32orYo0Vi71XfnhERCBVpRXRgyxMJJAohgUhJamFc0ZGCpCJ5RcqjWQGi0jjtnW8UyBnJOWc5sT+fD7TXG7ioZmV7OUREeZgut32c7rPOeawoEoQaluTNWTVIjavD47v909jHJlr/Kl6ysxlG0FERVsmSnc3TyI6z/M8TyT33i7qjj2fT+bymLJMr9Oj5nVe3rP0Wngl8Hh+aJemG5UUgKJiu4jKTSzWzVO9V9K0M0PcbZrPaR5l4UW4QtyYVLiXj3OltlOudKYXa+51nJbjWhnjuWrxSjzMV2lbdhL1LeEgWGmSyxCMCbrxHPkfDN170967m3gig4kElU1MXAbF7jWFrZa+UPydNuaydPUGFiYgWZmW2xAIBAgLU7U/icpYIErVxgKbZjaWrVuFVV7BkLX0AViLMpRFdVrW+slCj+OomiFKyKXf5GUbsezoqkeoMO9KiSnPnNXIZUEPaebFISMqP9Xqx2rEd1yPioi0psycVLHO6L1ve6OM8zzdMhxMKipEYmaxfFCNKFGubUGZ7jYiJ+maYq60MynK9/P5cRVyVH/UqNKyPDDDotxrOUmx1CD5U8Mfl/vdSjT59+PDGCPstYJZHHsAZlZhDauBvhbaWE2sIbPI/BEVAE5uIa0Lb8niQW7rBDzjBHl5k71aPgL7NcFm2Jhn+vnt2/v798fWetiwDKn5Z73oGphfw2TJTjIjY3qGFbjbWutbEfeWb28mKne7bllQ0CrKL5FCFsJXq81wFBmkhiAzg2WZU7zAxevakuqiEiFgFJnT0s1GLvswd88ilSRk1BRQEgnwQloNMRMeUftQMw/j5duuSGJqzNp0U+nMjVkQ5aoQ7pcEgolZWrv6u0hQsEBYizN+jOUkWp84kTOrSiXZ0LKcpZXILWRe0BcIgGc4papenODIILaKL1nOCJZM5QdzfcTuzoneOpEUENRFg3KGUaKcYwgglGFRJKJrczt9DgcyoNpKc5WVSAkuNZlI2XPkcpTN1DrxlslVgqpNDsATwsorW4Iu9/62Fx142IzSw2W4J4s2qZhmcKahqMxpmekxwxycxY5Cppkh3DOEvPVaXZOI9L1b+jSLnJFBLMwtLAuddnddoZeNmSfV8GZExHKZYebqQoM4y1MICUowJWFFlhQcSatfqDmh91pcjyLeMCvSmaIp4aXTqrfHhcr1zMyw2nq0ttUDZm5b66rKTHkBeDGqIF7A+LL9r5jGALCwL2H2JBUmeTyOnbs0ZaiXe2wCAlqGLy0FUw2kCRaR3rv7LsI2YX5On8ecT7P3x8diAZIm1zqLIvLrl++5jBpag8zIcZrPWS1gCZaKoCVdmC6K2mVPVP5LrWnN59VhiRCzlNdDhYYzs5md53kVU+66QcCxTFSWKCPTzsEalP4cT3hIFyGaYbe3PSLMRjF/auRXxZyzjjiBEBMcrweMfmabr5dd3SgnieqmsqzDiciQRIxE8dZqdwGAWQs1MrMwp4t8uW1bBcPXMTCHZcZyP1h3VMkdtExWVNjNKFK03D2YkVImVxQCWtwv0hR00a4ZqekOiJJwclQyX5bFjoxh4WiNRHiGE4GYlYQoOUUEQmEZTfgJ+JwWgENlE0og9q7TE2WRl5KZAgTRpi0InNDSliwUgFrZbQFx336rbWHRdccYNl2EJ3CcPieEO3NHEJN1paYtIkrV53GWjRILzzHCMs1Tyrq8NRZV/fj2HcIMDj8FwoT0+fh46q0BUyWS0+14fJxYWWkZM44YybQxgUHK5AuGqOMik5hV2ybA4/ldu0jbRfs5Pr69v7cu+95FWlzcIXc/jiOoguG2MD+ewyxUG6Vw0xTa7/vzeB/HqGKg2gDusiEYwK1vtHEA7j6mAbjfdyEmQoEwBZS8vb09nu/MLDW9u1+232CxGdl73283t5zjY7iryHb7HEnHaSrcZNOtjzHOOZJa2b2XnrDYjdOGdJnf5jlOFUrix2GP0yHdRbb77u5f3r/NOXvvrW2J0N7GGN8f72ax7/t+uwnlOc5Pt09zjIiqvDqnZ5Iq7XtX4TGO8zxFWJWZyazUX/KaSAv3NzOCMJFq7afNl98Jph/HSEpmaUQ83SNIVKXtnjaHncMI1qIVJdXdy1NfhPZbZybz55evHyIC8Lbt2/ZZpD8fZ9lGTzMkE2fbtO3i7mMcZiZCwgyPMR9oubdda7VcM6RqE4EILbktHh9PbWUSm8c5EHm73Xpr3IgFOUvl2frWCgqfM0W0te6ebgmQat+azvNDZXNIwkHQrpIZgXTYcJ/B3Bqx1ovWNo7vjWTb3/gypKzTC8qjyF+sSTmRwnp7u48xnu8PIfn0y+et9ed5PB/PpExjeGxtb0nn87RxWBJlMtreVYiTgFiR2CBJj/I8LGSx1TF9PV2emctilKCsnl7ByCSV/VZlsDP15BCWpBTZgEk0arIAlVO6NWaWKKp2DRyeXiFWQpTiFU0sAIRAgZgFGhOhPGQBAlZGW2Yhvg1llw56tcIRnqiwL2RK0w3JYzq5mQfKc5YgK6yiqMcLOcigOb14Gb1T0623LtJAds4xzaJSUoFIkqRwcAkBVQtCH2MUbFaob4F5F2pQDKjCXOK1rQBAwubDI9xlhlEyCSuktZ2Sw6kEvzVRA5wBbUqcqp04CQ3ahe3t7e3b+8cMr6VggIiFtEHb7e1z5JjlD0E8I30WMpoAVygQESGTKVtrwitNXVWFGxHRmsCVqOInIELF+6vBqKpe73qRU4sHHS+GklwZmXm5b2ExCzSDiJW5fDqUxFR77byJE+7HcVQ4CACPsW5UWVT512Su2iIoRTpTOEo4+5ryiGjOafDw8tHfqycvy2tiFRGQmycFmFOk0lgR6S/7D20Nl7ytJqQXYFTTBWgB+DWZu/sEiTQvg6l69Hj5qddRywwmpgQhlIWb3vdfPOa8RIAkpT9cOhQqTv6iEiMD+76XuFeIgWRAy7WQWCgJKgQmFZLWmiaFU0TOqM6OmDWZmWJelDm9kmH4haotoH2V/MvLPSITJFQo6ALnmICFz4lQRG1QwSjYPCJIO7P9EAjXb4hFCKciri5KBgCSQBCWu9D1Yup4rme4Op66p0u4stXsEGkRjlX1yiQ6zvMkNpBrq0dLKi2zEMiVTZwZPt1HrQwqNvL1rs/DPS6H+7WNqpm1lvYoG885PQEVYUKG/+yWt64k6WVbvIz6CuKo9aS7jzE4JDPLmwxx7VnDyxOmNuWeg1uStjKtKxiIa7YG2TXS996LCbrv+/v7GKchK8A63BZyJCJbv9ULmGPFK5iZuy0cTlZtBzDG4T4jrUYugInigjPKQUHLEdCvpOMCYmvOIqIymJhzRiSREJyZMyjTiSSiqjsTMUpKExHuY8zsy6zVY2ZGa9KpV46GzZjTy2pVuCVR1z6HV0bGBfookYzzGWEZ9TqXQUhQCd5r6kmRJfeqvjgikCSscuWb2vSsRSkpXTSniMiwiCQK4ayDJhPukzKkLTUk0eLsJq1UpfqkkBRpEY1pefBNO6e7qkrT3juYIuJxHPUnzFwVwYtcgQBTRk63wMo+qmOPRFgaANZkEWl7BlhoDncbESnCwlrqoyqcURWhJka/Em/rv179wr8bycpsA0ubQCspdPlG2FJ0Ui56S8XHEokWmWmFO14Q4zIC5ovNso5NcEFB+OG2gNdvjChl0kp8wLJyjMTaQq2Dn8ss0CNdNPrWWrlfgiNfmYIAwj3KFGyR/K7f617BrCareyKAkc6sFMjMOWYmbI2v/kIlVhNgL+X8D6PLZY5PLNxq7ASvqKNMNzMKcy9Jj/ssGQIhjZIj0mZkmOcghHCDqLmFpTkV/aH3HmVlLZ2ImvbGzT2P4zjPs56BQmQKJJcVb4nzPCuflpmP4ygY5fUBYb28AAUzsaQIgTwSCKthnpHF/LEZ9dPqibpA6x8qmFx44IWMotgBJWlbO45cPoswz7zeO5UPOy8VlrsxR4YSnW5MJBmSmSNGCS5W1gSBSUComxxUkobeWquUzIjwWBHEdBn5VJW87tKFpNZu0s8Zq1/kqzlFpqGcdUiYRBvFT2y+cISDy92MgORwL20IM9exNOes1cn0EbkSWdattXSGlyqfXlmbDGA8Pn6cKFy0DhFu4Sys23YnovAnESEFSJXmfBbWqVf3VXa4q0e49LA/nHBLEVQFgmKJdmufnRfEdmHmmb7INu4WMdeTiUQuYqLHzGXffvEXKINCtzIIFlyuL5FLSFb2xFhr9NUaFishorgJVT4SCGIv6O96VUud6pag5CTVptJ6F2ECgiDMtSXxTDApsHbmWa4yUXqaBDwRAhJpyhKBdGK2uimLVTVrUihnm8w5p6CybZa7zous4Z5AMEuFGC0v8usuJLqI2FzQDdkwQIgyEWXMoY0le8pMhrai5tRWGowlJLE5MwOZDKIgs3g+n3NWbHxpeOecS92UV2gsUK0+q/aUFZ1eDcjF/6VW6fYNIkQcRF7Xx3wKhBKc5A7zmF5ZwSki0pqZjdPKB0Ubq7bMZGq9bwR1pwxhXtbD5hlpCXiUbkqYyD3cT2YSZQbc4H5SCdTCMk7v3PRWgKKNH8MCwOFWefTMSnBiXvlgK9DZAcx5mgVXoiSTDS9tTqlsRFrNeSW4MqtdRB2E1TdWC7+WzXV/QhmVhc4s0jKz3N/rxJLlIkGkRKRICS932fn2+cYdeiXijnFEobnCxOmL/1JG5esxfL2jahqIGtFyd7jfPjNpejczJjW3cj8R0Xq/1RXajB8Vodwsao18nf9r5/zzELGucqxupzqjCIvaNDCPcWTthyndZ2K+5skXzlxCxvoBl034xbiqknOlCSxe4k+lmq5+mAUscI9itsYl+18DakXbgzLWtb82T1IDvqoS52tXRyRB7D5UejJi2UO/3qa4u2pJUiu8q5h8oZu6+5i+JrpKNI7YbjsTMWWsUKy6dZFpxcYpUQjACc+ca/yotAhiVVZVYXVFtS2Z4FQsKoXPHLWE84wIn9MjtRbGvDadbjMSMacfx8lUYs0NyDkrWDkqUK4+ltL7EZFq37bWeXnY1+0SYZlY4BFl9QjVPQGJhKgIk0h5imURHGvfVIvJDKrxoZqUkhKvYepyVQqn220jRFO4R6bVI5eZUXkxWSFL8vrz3jsJlXqdCSoQ0cwMujy1F4XExxg2Q1VXrgkrwGNYuM3w1qR2Ga92tUaeMawqpnCV+IU4qvSSIUUUd3v1vNcuKYmTadEQKVnRuZdvQnH/AtcJ7172MBXiwu4eyOFjy/JQqLIdACD86e0tCZ7p7sNm2Hpat9Z7aW2CzKIURkhRUZHW2xszq3gGMwkTneP5mvrrZdtcIb0lIdUxhqqWT85rbi8kDADLFUB2fdVfux7jJRDgZPPBDJZaZpuHUUFQTd3dvSDTJErWxaD+6WcukfV6hCC4jM9eNjWrN+ErWhtRHConxeJTAiibSEqHSAMRkWemzWCuIAHvrZUWlahIz2rBTOlWCOcizORykY15DCJCkLvnfHFyf6ASNXivyqWqWlBNgeSLtSEiKvUEWmbygh7dw80MP/TjwQTA/EeBW007oSwmIWCPag3KqL6wVAgx06uxWoR+d//+/bnfmoqOeR7P07w0aUpAhM9hItJUmZlJAG6t/bT5xwodUMJKWKU0z3SQVy/Zu4o0VUWiRvcLM+JwuHklry4jvHVVsc6ILEl1IqM2ykTSdAM1IpiNTEcmc+mvwmySr3vSLDKEGeEuXBe5ZaY0uDsMsabt8nFYFg8qXAnDdTA6UoRY0DfNoBc/vfo0M/t4fzJXsdA6vZjLhwQGRESNhheas5Ad0JVenSBiXZfUzI+IIKZCi6fN6Y5Ea0ICVpH0x+NhrtOsOF2L2FKhrhe/rrwtLByRj8dj3/db21iqKfUM8eSKSBgGojxnmqGzQOBJvGZ+9iq4xMkyo7RIqUU4E1H5YYWawOpb6urn4hrz9cT+GI8jzL3ay1m9H3OFiHqByfu2F8iUmVUdazArKOv1ddUGXjRuZjiYMskLBlomTlcOSl5JFfFTsOU1pWYiW9uyRo9lN2KqckX4ZFEkk2uwRwYNNymK1SVSrDv7OE4RoWR3J08RqXdf67S6SnCrK9Zbm3ZSwiPnzDkNyapQ1d53s+HTPY28di8RCbckDcAjJrxOjAbw3vcqi26JWEo1ztSNJIqulkwrzixb8PkDkSEiWjclPj6erYlwzmHneTLz1RVSWTxgtSgrL6Ri3avAMbMoFWoIBEswU8IruKm11rqwlDc6xxULHoGIJEgVxCJ9y0W/L4JT5SxncHE0Mvk46mSS4rCBiu0CAqsoC9zHtLqvVFXOY6ZyER29Bh0IkKIEjJ9MFqpSxJyTCcxaiRVr404REdKkteaWlTxC4Na2fW/jtDFqotz2fS8X2TEPomLZ5ovaj5V5Xy0qEp5ZdxE7qJXZckQhIJyQWp24n+cJTCJubaskh73tL7E8qzCxI+H+7f07l7kTL4eY+pi+/vnn58+fyzE4r4Qr1GyFEB4AP59nZlYnKEvytvDOV9GxuUwD1yBBlC+TAiBE5OPjo7V2a9u+75kpIjXScHiuaMosAi9zZObb29uYz/LGKJPSMix9HB/uHrHMqpg5HGa2329j2BwGoLVNVBPm0+ewfd8rfFlEKvCnFtq0gJ/SMtcYovUo1rBXaLaIauvu82JrtkoeJfKtyfP5NB8J2baNqI3Txmn161R7BM55ttYqMPbj47tqR1L5FWNmBCryD4BbWAwzK70KLp/PlXjC3FpDMnMj4ufjbF1a28woYaqIgJvf7/fhw8xpWbySW845zqRKwW69VXpleJidYBchAkfidrux+DmhKSJyv9++fflaSOnbp0//9Je/Pj8epYCqul8xLUR0u90iopZq9aCuNpLx8e33233bdJtzTjsbtcIjW1tUzMjwsBcO17fNkWYxzczgSZ6Yns/nh3ATEdZOumRslr7riuqJhAdImzIDPE47KvOGy7Y0lkejtuN4gOJ221trYz6YqelGu1b3ZzaRp8jDJpi5UcVzekSaVeS3E9gN2/0m0jJIuCWT09j3faHCKEbfGita285zttZ632parYoJYOu38oPz8NZ0v7VMP8dzztnbXtJvAumm7nmccyZNgSgi0pOSBJIk+vXrn5nETcPxHOfznFhRNFk7ciJwdXMLh7LH4yA675/eet+JNZIc/i//8i+1qZmj9iDKpMx63++Px2MMq8J+nQTpMS/Xz+tMDWTmDzW0L+3jTwF4AID19BaDPZYBOZgKkK8eSaTav2ouYsxVdVprpbAwG5fsaf36YgSahUhcSchFfBaACVCtHLs1MoRjiZkjF81vDayEZCQyEFR7E3pBZcVWygSSrnVJuGNOI3gGgV9r5Pou6q311j1hZuNcfLved4spIkh2m7AE3KFAkQjTozR8+UJD5pyUCQihaN2N0Ii4d6iuxJRIDo8KJCgZyKtRYuYioSk3unw9aTEsk8HMzsS1GNyCPCiDjEhkEJVHQFAJz0VqowaiK3EziWuGYQ42n+FZ7oGiHJ42R+uiKkUhvQZOojW8vEjT11aVZE4PwD1sYk6v5BQiebt/XjhCRgQXfAuszjxTMixc6jOicpSrhKh4uTZyqNQqE0Du2VoXvdUZcBwnXU4EV8cKd+9Nf2o9mcBMIJK3t63pllFL0IUjtraJWHkiuBc1sKbxs/Y1SwlB8to1VpMIBHnUsF+QYb1+KjtDlO01mGRr94vFy631WskVpvzqmoHi8DBQwz4REYhsxrCBRXYngFk0g8b0MaZ7EhGr0kLEWLgzN6bOpN++vWfmL7/88vb2dp7n4/FxHMfj8f73f/yPvCS81wLltQtjAGvX0JqURdz6/Jlf2GPhTBfC10WIWF8fQ7AV+LkED5FEpKrFci0rLQfNcu9Kr0fXkywSLNJleWMBJNKEX/1M7W/rgSkstwAYWlmJAjhzcpE4iZlIWITBzKJJnpFBApFkich5jQyRWRiGLLgxKTx60RktysgsM/fbpqpwYqZ0ZFJGki+iQN23NXSUM+V1TWoNTsIhvDH38MqnpohaiTCSq0zVtiYzMx34wX5hXtNRCSzxGpcI43mQCgsnxKwMjsOj0Es3H9PODCcEYvh0oAERmW5zmrtPIuIzyyyGSDZq+773rpnkvni25U8BcGV28MryRKE8XO0sC7IgtBo65jh9jLJF1Na2a4hYDUI9Udesbhlr0KAFZktErWAsM0WZCSKUl3s1LSeslj/IMszERLr17UWOet3omYQkkcZMwmWuHWWrv++3+vvMnCmxmssaoLgYFU1/pPJVS1hvwXwQlZeMmU/zs14zEU0L4U1lQ4pbAtz73nWf020OLKt+NRvmZS21MKmqCOv0CuKmF0hsM7yG6d42blymbIFsjdp266pNeIwxhrkDQkxCrAn+5ddfPz6eH4/H12/ffv/jH1++fHk+Px7P9/f3b8t4rVCoay1TtX5VBBFR5ddc8XrzEeGxdtcRUSStrb/lKsnh7jbD3Nxn73p19QyzguUiYj6XaTyRiLhqZxJuNKcv1AEcgYyL9VSuHu7VyhYJiKhVPSZCAdQZhCRkkdJXMh1fSkdCijTEBKQ4eQRkemTI62ZidoNbukVNQBFzzDmHx8XCwKVZLppghtU8fO0RICxEi8VQFsqqGvDCz+rvuPsc9X+NpSJqwcyUjQRz/khnX48rg0jcPNNKbFJFiCDEPs6p7qwMSncO87KZ2/f+fHZm5gwwVJmFxhi5xKZZ5AAAc551TxCRKjJ1zrM8jgoMj4wMAn5wRlTLIr3eRQrvopVOz6w93YOADHeaI5hVpRNaxHTL2iMyMxCAZsWCFe5pkcsjMUUiF5klQQUEgjhJeNs2FiypFTwzMrnsJ8pBsLf7tt0IYmbn8zHnqLintRsiUW0RcRzH9+/fi7V1v9+JYGZjzMhXsa53zcxLJrOGqbV0X/vF4h8t1YPPi91D7tmUm96J2EFMbd/vMSmDIhBpRJ6woprIchjkzKjkkQiLlMjoRJWaAW5KXH7q+/1ToIIFIpOYBKxJVKvlbdtVdqY2Z368P5+PQ7X//e9///Llj6/fvvz973//+PiecLOKq3Gb1R3EdZfyC3nRiKh6+ROe9O94iutgjVd8DQN6Ic/pXiq6UU9jfWwR4Z6qBJB7Hac1I1UipxLJ4+OAJpEgKdZuHEQUl8FRtXBlSsMkUS4sL8ZUIIMzHVLSptpQVOPHmcHCHivSlrjOYQOlNqFcm4IaGWo8sRkRMWyiNJdbL6j1YhtLb0TcAJBF0ZuqJ+B/v6mtNhIv8DXo2vajCNkiQoyqU8yUaRnLf+FFACtXqMJ+MxMX57qucOV8JDRBLYtWnG27jTE+3XYbj3TfdlXFtDyOR5VyVSZSkfKJ83LXqU7w8XgvqKh12dTTc/F0+aUcV+Za60KKGVG234k5c0w3y2nwIA8mVpat9Q1TPA9CgoyZiF+SRwYhgjwrdMCJRFKqbxORxMx0h5NDSbdta12IorjJlWGnqpXoyaxNu2oL/6FAj+UoTWa1GoZZPB7H9+8fvffPnx9SRnXMNoOveA4zy8CFpF72TZVyVh0bsveWGYlgaWzpUYl+PGelDWdECCmQmRRO0+qxE/fhYREjEUD0refKPqBAmnt9byQzaVNi1EVWlta6EMTNxpieptq5MVmOMWIcqrpvb8zqll+/fv3v/9+//f6PP/7+99+/ffsWYcQ4zvcIY4b5GDOKCZaXd5EIM0mVYACKRQdcqw4RKQypDrdS5rn7nLMQRxuL4UoQYYiYeEtJ96TFfHCRVuI5oPf+Ynrzyy4Gydt2U+0qrXCEl8mYSGLNC1za6iolmTUs/MShDEp4k1UFrlVI9bamrdMw86maogr2hLMk4lJJXl8FJr1+Re/Su7ZG1bRfo2S5M3PmypmkRTjDTy8JAcvVIa9awwQmbS2ZxMOIUiRBZD6AJISI5DJ9qmDSugX59eeZhBWBJ0RpWdxhWcpJImWOlw1EYxH2tOJxutuXL39cTBu5mrgfwUqvjiwWhbE2S0aVrS6NLs5IOcRlpgirSCn5POLx8TzG6ZaZHM5LCsMCSOZ0S3MDGVEd78mkP61E5MV3KexDVcqSx5anVkRAuramEVZua3XIR4RqUxWmJizV2kw7X51meGbWst2YHcnjtOfjNLPn81lQF0SYeiGgSHPkiy/IP4RGP1CeunHcq50hbZyTIpM4VYUIlGQzkqMO8w97Nr1nZtnq2IxIAyVRZFBc2ko3eiELtWmKAISQHAgEzul2PjI9krS1vt/3vWfSeT494/l8/u3f/vz27f3b149vXx/fvn48n8+Pj+fHx3dibFtLTOaypY45z9fbqVEMQD1xqyK8WqOXHyZdq2wA2laWBhFFGIuIKHFjWYyAIgiYs9mok1JE9n0vNGHOyW5XV1zyRBRyu22dWYV7PYoZBRsGkbPUBChVicoLqB7762F+PdJJOX+aggrK8sqMn8ZlBUmcxCAWFpzPg4n4+phFpPdWqzIi4lyLpTmra4W2cteg1ZjkskXRy1caiw9eZSIKhklwYQABRwqT1DqjkL8In8MjJ0mIRlzRJldTWg3Byx30cn+7XCfCM9MixWZaUFY5DRMsk4IMrFgChg+PNA9KuIjUJg8WxJzwBIOidWFu9/v9duvwpzuJ6LZtKr2qGxE13a7CQapdhN3dMTKpMEVhJhLkis/JsHPM8zw9BktU6GREqNRrIyIWKQlDFRpS1daZKCMZRB6EUEV72XyJCLNs29Y3DYdqE2nIYgFwlTa+Zj0ueQguigFxUX2n5ffv30Vk2zqp3m+3TLgHQKpNtRWqWqVzEa7WBEFENOYxxnA/tdGKVgp3d5Uuwj5zzgl14d0tn8/jl19uc/hxnubn8loIixhlUVuXNKOYDkogIN3znKYpzAhE5nBEgra9b72LcCYej+PxeH58vB/vX79++/Pf/vX3v/3b79++PWyGcBdpnz9/nvOcNsY8zA4Wak4vFiIuSeVrcCiaBgC1mBYzzR7Hx+PxiKVUw3lOEdr3/Xa71YYy4YC1bQe3xeJ0ipXw1bPsiQOi/XZ7mbU94/KuWf1v0mWzTxkILOeJpEoScCKPdKZFLz/PWUuEvICYV/Z8gaBhdBnU+Cou6QmLjDHsHEN8tDBWYzGOdMvkYMH6gVLH6vZ8HixMCE8b4zA/RLi1drtvnOIx02O4M8LCLb1LZxEIZ6Y4kpyDMqmpZEY6uZG7hYMomDTSp52oBLK0Ob2iGTwsOQu0roMCMCIuslqxKin9VSAgCqIij8YakBhY7nq3234cN1O+3d72+5tl9N51U2X2zCbCjZU4Ij7d7hDmhDG6KOnS7ui+mbGI9m0TaSUQSECaBpIIxJUYTohESt/u55luqE1wycDnZBFzH4l5mf9pWaHOEZQonwtmIim31mwqolAmMHK5Myklb7I3VSBBVYxWe9K6FlE3k+AclYYXedoZEZUOwsHcWEFJAoeD5vQZ8/E4tB8AtHtu61Izc2sbyyKtsFR8WsF9qN0aM58+bYYXnV5+dIiWBuqeCAtm6n13T/MPDz6nPR9npGsDs9o8xhzn+VyuZbnMbFtjZkngnFMTARVJACVp3W+33jbt7TiOL3//xz/+/ONvf/vb1z/+/PPLP4iIIR6577t3UDKIj+MxYzKj33p3TkqmdH/Wx4SL0RNRWFXe7+vP9R9//s3/scIUqnc9juMcTybd9raPnb6vQtJ7b333fICW8SEAMzuPxxUSzUltGChpnCW3lJijFG9zTgvUSk9VWRozzM45H6sMJ5uPon+1tm0bB2hazDmPcxa7gWjBYxERaYjcdEu3ItXSsuHITH88HmM+WgeS5ml9j/3Wxjj6vjGpap/ThuG2/8LU//z6jZiJCeBpw9KWOavT+9ePz2+/MAmR9d7nPKdPEqDxDIeHiIBkerhDILzt00736bVgUAPC8zyfQ0SUO7M23puomU0/hBtpXBaRCwX2sPOct9utt54rt6og2JjT9n3f9u6e8TwjrItKb0Ty/u2biPTeM+Eh376fwr215QkjQDoCoayf710IkcmUnVl7Y2UGuc+P4+hdpakjI8o7EO7z4/gA0Np2e3trrY3TPp7Pj+fDLEha23TaOceZmKJCkr1v5/mRMSrAyt0FtGm/yT5H5EgogSLmJIreRMVBnm6xUre4VNi0Nl+6kbhPIJWlCRMS6QQWZiYZ50QMCmfBOe3z2y+///Elnd4+/fLn719F6e3t0/zH723fcvIfX97vn//y6Ze/zum///717f75/umNmUskIlBiApP7nA4KMFEmbBQcB0CQOsdMQuutkWbm8zkiILr37S3m9uXrQPZt/+v0BKsHf/32IPL91mzO7+9fM8/edduaQNxhp9thJIf0DCYLp1nOl8srkRh//Pn7+/ePL9++fv369cuXL9+/fxzHcZ7DCs8jaiJghYdlKDG3QMT786nE3JQjQS2ysjCLEWtljE1EWEdO6vePb9WpvoRQSVEOj5H5PI7VjDHfM4NFVKYNOyLCGEKcSJame7/NeT6f02yURVBRu7yoIjPdaVHp4yCiacWcl2IeEJFbTjttTACqlV9ENTWIRFFrSn9Rj1xmMmjTrYmKFlFyXIMP/fLLb88nJSz89KQMYWpNU6Wr6tbfBs8ywyEtsYMAsHRJaa2BszwmLc3Mym5QlUU34iAi95KvMZJjqRcURO5AChhIi+kvS/vbrebwGQnONSuGETHIstj+L3i1Po7yg2KWxEu7ob0TgHKyZmZVyXQb/jjMY95ut6LLzuFzhGyNGYxcBOe0sJw0ySgqoVuKbGYRRWEo6YEE0jOoXo8IEy37HFUQRdJ0O6c9n+cxRp0lHjPiBKU2bo0TIzFBptSbqIMyk8Fwrli9WtvW+lIFIEfAS9CStYyWa/GZZsZS3etyea7TSxAk13iVSDiKrTDOwmOO4wDRnPNBz+fz+fF41s38/v7x9ds7QL9++ud9v+/7PTIr5cUDQH48H7HIZlBiIaoIMpZGJmucS3fLcnHzrBjUk1IQ5KYEERnNac7zmDYslMkNlV1e4XQ+p4X5ZDcmJIQe7++R2Vr75ZdffvnLvbX2fJ7fv39/nsf7+/uff3z5+vXr43jWjB+BuveSlSu/3WcB8yYvqUH48k7gzIwZtAAorrOibrlYFKVUxzIOuWzImEHKK9NyznmcY4whIkF8h2qT6TanRTgRq4oyEZF5nMOOx2E+lUSEgVcESFEMAWGAzNPdns9n7117e03jlQvq04C1biitpGovWGthBPljM1SOsrpJ7wKK84ykKJx82BzmgEsDiKWx9i1BrzUBs2aYe7KQSiPRCBOP1E5EbJhzxPSy8amNfqawLBbwhSauCVOkUjYkY1zWoBQpFyEnK4a8FJAvDkKElQVNDQ0AyneXKXsN6pGt90w6jwlw763pNsZR+kWWRkRz2hjj/f0hIp8+fSKi9/ePMY85523vzCwr3Xj50haq/OnTXVX7pgDmHC/KQGuNZMmf6zDRxXBfaw6Rki2b+zQbNo4UEZEIywgRFmYViTk4wcnKrUkXCndnUl8rxqp9KcWsYQ7kRQ1OEJhUVSp8Y81HJK0ghSvtAiVVyYIO2APhmO7S9PE46jN6PB5N9/OcHx8fHx8fX79+9eXmxES43e6CHWDPANHMCYCWAeziHTEzhVfIAICyKazLVeLTiMJI6HjO4zBCUAayEUykMYXZKI35GkgAEiZwIIaZe8bgcGFiSnHPMtjLpOMY3769/+OP3//8808z+/79+5evX5/P56ujB6g8yQlS+t/IiLRITy9wtBhguPQXXPfXhZv+kCldIuPU+/2ey/JEavgXkYionMLXn9Sg5RlhE6DCruvP08PdPz4+MrO11nvXH67PWWd75mRm6U1E/DIs7r0vqxoQLqYjY4EFXJwjUtWuqh8fHxEWQaJ0bzvRXr+Co1jMFFkixUYkzGozCNK69o2SpCmExSOO8yiuc8ZyxahPl1fCPQTCDcWMmhYiQpzuZjZYkmxZD1fFzOUFAREqC8g4tUB11S5KUYZ0toh3qwtbhAsnAQlfC+2CKivztsa8EnpVs/CDOMxcHDhcDwbWTNfafrvXtT3P0y/Xhmv7v3YK9V1tfWlhqzVSJkXrGj9kHf7iI2RSa6pteaJUL3YB+2UDlI46MKOemxJlr/gN4tqYOMBLVhcRhsvFN6loUUKUdTKpsoqUhph5JWWLkF5NQXhy1i6cwz0Cw+MY85f95vYU0Tns8Tj++Z9+zZTn4/ur/6rr8/7+LqIfHx/D/P35UFXdtW+b/GQe0co+YIa5IZIhw6bZMDNQeUVKBLljOs4Dx9MJU2UWoc7d53hmZpVX4ZfNaQmuLNNR6UOpwg0qjVfA5xjj73/88eeff3z59vX5fIpIsdFXXdYlW5xjEDFRxe6s/XSNaVX1qnzI0pVAeiXuLauBF7J41YjUCqKoT7f8lOr/Xh7k6+GPS/IZbmBVIiapkHVzN4sxrF5pZp7TMrNeunb2+ksJ8qTFGaC+b/Uq3d2RzJwMEaKyQmDNin5NmzPnPMsCz91Z0HtXlbo1mdLdpo0Ie3FFIsyd3JMdxzGnHWYksosKUuYI5GDqBVj6tPM8t43DPRLM1LgJKDhSU4SYY07zMHcBYowBBPMtomgUesFLztwBVEJMa631XrOAWTyfZ+8FhlRkjxFnU0F1Z9fHQpwljHP3CjT10hGCIpeHfTVBcRmQVG29vf3q7sSL7nbh5GU6UV7Di5FSNeUl9bnf7/f7nYjmPIed0laXHpkIRzAhhCGivXVknuejLFjmON0GUxJCSYKpgmLh4TYyiC8OHSWlJ60kwIV1R1iyrV0DPAFRasqi14lWivJAa1vvyoxIR0CVW2tCbBZzpCfISyRSijNQISMs8ZzDpoVLUxL+p//0n94+fy7HlHpy3u6ff/vltwh4Bih6729vb0R0zOERhJRMrPwLT4/MWSKCTMrgS+ADNzqGj4PcCu+UMiKvTAq8FvyMGTbPeZ6zbwkqF2mAiFQSRKAx7DCP7x+P5/vXL9/fP76dY0QEeLEBRIQbJ4WHG+a1hLq6q0UxkMyXLvMFrq2dS7Wk6xv+/770v/23//YqEvWz6kH98uXLFRepP5pkcKT6Ne62y90gC/tiRuRxHBVqVHsKVR1jnOdZXqMVHJJZWfJLN1EVoTACH3PrnUndPQpRd7j758+fS3vDXJoL8phzzq3tPs5CFpgL8eYMGsPNjJkiD/OPf/pPn/7X/+1//u0v99v++RzPcpeuFz/ntDlbu0WgFpvlpSvSGjtiRnKxSopNKEKZr2Uti+QPylcEhf7celzFeHmNMZfTnhMFM5GIeaxzA0VukcvunEuW4560jLpl1Dv64Rbva/nC7e3z2+NxzJ9yBOac53nyJrw8I1bfWxZVj8eDiMbUQuVL51Zh6JaWKShp+QVKqxJx2oyPj/fv39/nnGPYeT45wV2DsOyzkpAluSl1uRBxzJhHUb/Y4UvKQRHhvLa0MwkUAgoixTLISBBj3WxSFPmrxZHWuvvINPcgXzSzTNq3ewRa6+GoHI3znE35drv/y7/8T9XDvr29zTkfj4dw+6e//PN5zsfxdGTfNlUtbB+VKrS0DsLsmVz4BTO7SUZEcgbNCTM/B2wKkso8MtNqouy97gcAnOk2fQyb07QxaEmM0jFshIfHeXq8Px/fv3+vfGbPlRLS9w4KJNynpdVjR5SXHyK/eEd5EbRej/3rhpzTyrVwVZHLWZuZxzhWj/B//r/+36/y8CowzPzHH3/o9cXXFABwhM7IV9NIRAKqeYGIEHme5zjP1wTBF1PNfcbyJoqkBQ45ViyPLo2jp3lrS6/qVlpsekVr1HlycVeMgK0V98s8ZmngCULUVLaIaE0ip/nH6X/9yz//5dOvn6QzSRPtTEI2/eUgBiIu76Zyc12aoPN4KifcOKHELIjLhI8yiYJLBh++sFawSFMlZi4vCrdkqpy3eD6fLFDmKw8+Z3iFU5dgpiw16l2ziCOnGwEkisw5TZl9ejHklh8M6VV3KuW5VoB2HM9HlyZvWks7kVgkyFfCWhmfAMj7/d6asDAzOLmU8UkVdmTucp4nEdmM4ziOC2+OCCKU4I5IGZRhlEgPTtZS3SXmaeOYzFxaGSIGBUq6orycpi5/Z+al6GIueldn0SRKJiUVIWHNoEjywJxehoseFNAKQXt//xBuc7pK+/XXvxzHUMnPnz//y3/6z9UI7/teceelaJTyXA+PiPM8h8cYtm1bMR2JiMFMGojqEG0u04cEhWNOniOmsXsm2AC3My6nn957MTEybblsELftFigsKTzDhh9PPw47hif0cRzP59N8Zqn53asusKxPN8Kwsj840lRURUBUZ2edLhek/cMbts4ZN6frT8ra7zUWrB7h999//7mKvGrGi+f8KhZUWjfn16+psyjNX++/MnZprdaz+s/VMhHVgF2NUjn/JVFkyZwJ4AhTKuhO5rRwqGpl5s456xyLKBusWRw7dy8RmwePQWZWRqCqnZn3fTc7nmfpajgc45wJukiK5T9J27aJFLO9aJGeCQYLabq5r9znEu2/evVXN5ixCBdEIFBR7iNiPEe5m7fWmurj8X4cBwvu+96lA1Gx1JU+CIB4zfkicuUgks0gCpEWVEw+KQgWQIl16ih4Pp9zTpZFJ6uUhOPQT7e99vYikih/pHT3beu1wR1jfP8e7v72dttvHQvHYWZ+aWDc/TwnUVH0VzwnFXbK1Jqu+MN5ml1m+UWSJamCPueshIvyVKSCu4hFCNDM6HvFLzIzSnCuqsJd+FbMERHZtGkTXrBImvmc0yaYGKkAkWikfPv6fru9uefW77fb23n8g1lu+9vtdvv4+Pj999/f37e+6ZxTuM3T2raXJUlEnDYvWVqZIZbZC2emj+nTKpnGnZBCzBnsRuGagYxKULHyAWbmTt0cY1ipD4SUSLbtxtLP8Z6ZAav908c43r8fj+f8eJ7bduu9SdNzPM1cWt/v++9//mPrvd+KGyZmpSX185xYGFxLTTO4rYtfJQMXRFingLtXdFrVo3q6L5wSQOq//Mu//DxhvjqCavUz83a7vUhKHvj6/WBpv/zyy77vR92FzO5+3/b6OczcROlyp1oFhVd/8uKCWsYPbJkrl7E1lcKWz3Oc58mk23YjkspEKsexCJt2uq9Cc+tbDWzmw90ziLkzifCtfpFoavO3z/qXv37atn3ah4cfx9H7frvdzmO6u4iezw/VhZiMMWZMAYmitSac0jUzbbgqdd3KAKbeZkZmGFOSEJAiFGFjVAL3i4xI4dZaY367glVPVRblzdusP8pUlqbtsjNDRDC4qRKYiLlJU/Z5ttZbdUbIzGxNW2t/fP1yv9+/fP3+7du3v/71t+/fv379+uW3Xz/f73eb53mepReqoVBV3eenT5+KNqcqmXkchzY+52xNtu123+5EnLlwjQiMMZ7P83w+7Rxm5bkK95jz6hkp6z45jqN+FVQqfXDfy6iCPn/+7ORmI8It/DyXnRlXKLlj27bbduu9lwvrcRxbv7XWQPYcJxvdtlaR1qK67ffWOJ3OY5rZHGbh2+3zdGeWc/oxvvfbjbidNv/x5xcRkd6+Pz7oSa0LU+xtNxuEVieZefWpXqlNpWstufc45/P5FOIIymBaQIYha8AUIps+iLBtm7ZbvtLrF07Z3fLxeCRm30hUtq27+8f55fv7x8dzmKevnMtZ5051Bxxwz0+ffyVK9/l4PD1D1trYEXkexzqBxlDVfb9HxHGM3lsmHo+Hqn7+3FXlPIwgcVkW9G0nWp53L9K2/tf/+l9f0PFrA/wasOMy21+TkLRzIpLe3t5aa+dxVAkws00Lrw7mSoJaVfZauBTW9QPJ6Lc9L8+GF2mMGYhkYJx2HEcmtbYRkVuYWevae890szHtrD5FWZDLxGnVNd5FmvC+zjrxxGCZSDLz5/OZMOGaejTSFyj+svwrqZV5MpDQgmkyX5PLWrJkGSVWPV7iUSKxaeWZQCSljKwg9vM5WCCiKixEoOVrOqeX0yi4kPNqocCJLL9GIk7yzJjuPpEgXdsfv2p8RNSA9np59/v9OI5Mfx4f6SHCZlaJ0oUjVHtZf7n3VlvJMUbf9TI44wXi5CSSx+Mxpz+fz+N5mpUHYUZQhr2MlWml7YqIwAtHIBGi1IxlnHfarP0CMwvJms2EtS1FA12u3LUJwbYxaeV5lAvWddgs45wMQRQFliLQuVpPviybnUmpRb7sf2ntyF5tc1zRoyWK8it2FADXyO0xjjmeh5kxCmVXJvJIM8/IiBhe9hMkwtpIFl6G8gpyT5vhHiLCQr1z5Pnt/fHnn3/+4x//eDzOSEmjafAM9ulOiaIWzNr4RG1qiVR7E5TbgHukoyb09Yh5sexz27YyBxZuBHYr5mhjhl/B3K9NgoisSBCk/q//2/8eK2N3LTn5Ej6+llX1MKhq22+RGBZ777UOqWfyWjEmX2gnrQ14Foxkl249Lkfn0s9X9nT9J8vIyK13IMARUDNLYmKVjsKJSJRJc9mlroS5KsYeGZHMzMQJPseS0zJnYrAObr0bJ12ixUvEwghEWX0uJ1CEUwai+KClUCxfwuXlrKKZmDPMvPQCIlqwboSZD/dU6U0FkKoIUZGcVKSDSFiWuX7RgVfOBjMBGemBAIERWOZ9YeHhZkSUKXVb81VSzSqULUukoKq//PrpOB91XLdlSxfh9TnWRBARISqttX3f5pzP5zzPU8rmyoOgL81fBOo8nMMiINIu1ZkHhERJlChJmFgBZ0h5AVaFLuFkRGT6nM6yDFGY26ofwtJYQq6KQACratOdeKtMauKykIuIGG6+9LyZQRmcBCqrNmmNuLi/c445rWkFf2tVrtZa0d5rw+OXpSeVF1gBLZm10UykCNv098dznkOJPSwCRJMpI3lOcz8AHmYiol20KSAX5aQc5QmO8sDW1kRgMd8/ji/f/vy3v/2PL1++ZIi2ndHMwtM5ML1uEgcQhMjgVXIFy56rcg09kHOdKghH6UoA2vebzciIOlMLdFRVuszN3d2Hv3DDRYcBdCV2XsPhq0F4NQ50+SMAwJxj2vRM92oNVDXIH49HfeMylalXT1QuehExvZ78cK9YXRCdEWuQrj+vaMe3basXMMZczDwq67cYYocSUVUoq2UMe6HWP+xPVU14I+gYZjaIDTTb5sSfb3fe9504hMpodHEQ6tatqUabgJKtykAhOuUR0jLKX5iZi/Cfi9S60NNwn7HIHetavDC8bdvcfc7TfSInEUTLb+IWZd1AYFBRhz2DQZ6JoEhitLKboOIyloMfs4q4++PxOI6j3xZBozZEnz9//vbt2/k8zPYmuha95u7+cuKPiPKOqVmpbqmP92drFjdsW42Qa+mwbzekuKfIAhHC4TGZIV0EVFZrw2Zmug0mzaioXichKMgy1jZeiMGMJF/aOxTzYmlw8XPACdXhUv+7EOUIVxUkpcewKO+H1ponvMzsSYF0D7dsWgEzhbrUBdzMrGa1OidrnoqKe1+vJ829HKDOY3x8fPi0re+NNDyJlq2HxxhzAAgQJXvonBYhJRoGEM4iWpTT1lpv+5jPr+/f//a3f308vz8fJ7G2touoG9VLR0W/U3VwlFz+iMzMAV88t+FRuR7nsGHeq03gBY2Dy0Y8k3rfmcpXEtols/JZ8gUr4McRCQBa6qa4tqav/1K9GS57tbq5xxjP43TkyjI1J8ogOsaza2PmrPkiAhdTIny+zrFZqqgCJpmxRH3MypqpnhHm41zzvzQVjqisd61g2wx4WCQyi80iTeq1mct0n1jqIH67f2Z+nmcm1p7yOI7j0L63ly1HlvsFlX/OCr0TFhZ1uE+LzOM4iLZta8rM0oSbUi8PbqUOLgcRRkRMszm4aevlnkpu0yaKb7HOn6Dy9rmsllCoe4XvMsjD4YgMJMwzZnpSYydtjVVZ+r7ZDCQKV7+q54gVJbSMp7atbVt7//b1+XwqS+9lMfTDxwXXmFQ9Wl5qeTNzxGQTcsoVVJlBCGKIcuMLiArGdCYl7UKAj7Q5Sr2TFkQnytvEJQmBBCchhXS1cShv1WJwhlDdMEpESVwST3ePfOFe4WFmI8wBpoIYh00f6c7UmVmExlnCCEQiwWBob327VQuw8k+E07HytTxFRAmgSJK88rtXY20+HMfHc5wzPYSDKWsB0RoRQyRVkXCVBjgoPCiWux8yszz1iHTfN+03AH9+ff7j73/84x9/WAxQ6tYJ4kEOgvBt28qsFMiKdl3kIgKAdIqAJ7Li4QjCzZlEWu87MGtwyMwIN6t4tCai7i9qYxBdlihBrzHtQhlTX0f6C2GudyKXNfMLh6yuITNEpSgQHlFOp7ULkVKuUV6dvBAh0iIjckU5cuXQkVQSUZlPVRoyIRxy2hMLptbL9BaZaLrV3Xb5/NWdHcyNKQGNUA+NS1taN7pI06Yecc5zznmez+dztM7KAsya/FHpA5G5PmzJWMO/x2nTrZmql6m5SCNIRtaLpka1h48fYdOVaEhucHdbhgl0HgczM4s2ZnRQVODNeB5xOQvGVZG5CIvlIg32xKYqysLSWy9fX1y+FdWDnOcpIqyL9KWqRQb5+PhQXtFmkfG6w14ARC0CqoKXgQrRQo7mtDHmyxqzwq+RnEGXPSSbeVkDeiAii/QQirSZmUzlDfU680lKzUlFoHIgLwvDdQeKSF40W19hz8mshbxcrY0DKNbpnDPMm0qFIc45k7gOHpHGnL3tRcAtGEhbHaQ/jA9wmVJcIQHAYpfy8HnM53BrrZGCmcdpZk4E5q4i2piFMwlC7rAwQJiFyprYUsQztak23ZL44+P59ev3r1+/j0popppZpnkSmqpud/VBy7v8yiWICAuXl4kJcxGFMrMRf3x8qOq2bUTHeUyz8ivSDMKKsbvu8yiFy3reBWtzVBd1VQQrFz9Q+XnGRV0ACKJEFMTmUWbBrbXIpEaqco5x2kiJncpvIDJBTFHdQIW4c855Xi1qecXXNIExxpx2DMsk4UbEF9rhV28CArtnhE+LbZOIZUeS5UfigXTP1BUrEhkUjgjPyHG+lxn5jTVWSrxf7U9WqmAJPmpMb6pl3VlowQVsrI/BzAhc8GEufjGukSorhJbKTFkzwsMinPPyiXWPV6otQapDEdFMtnEg1vr2lXeZWQ5jlZmNVoAdgaXWqyIic87j4yzqFxFhsU2Q6WM4M3/69Onz58/fv359Pf+vim9XGnj9p2va0n3f9/3ufhnxzSgmUkWzr2YB4VeQVxJmrkQKS5RcWkRYpExcRIQYUX52LKoK//E0ElGVSBGSttKoRaQc+usoEpLkKigQkQi3OeYwoBy062H2pCgGUUQEKlBvTViqKtLGGHM6US6vQtXC0nwuBReJJP2ww6rL5e7P59OG3fomVEnZGY4yUC9b/cQEpUdOM89ouqluTJJpM+rUMdakjI/v3/7t3/7+93/8/fl8MrOV7QFlRZsxae9dhKBU2gZapN68IhREWq/HsIBkd5fEcZz1BFbkxCIfQESKRG/lUk1UwfNRGDwRLVLM9bUqQp0PNZfWP5GUWDIPuWLwMr337f7pRk9wU1U1HwkHtDzwmLiEMUQSNKPce5mCEARHlvNgwWtgut02XhkSYC5LVQC57/t5nojsvSvrmB6WueRaorz8/T0ZMTzI3KCs61dX7mOCaN9vRVtyT88REcy9tW3fe9+IGWaG9AL9gdj3fU4zN/eaiDOv3Aoi9sUFTNW8FFyokLVCS4GQWkuwmY0xPFOYGkRgcPe+t4jwmHNMgomQKClza+IOGII8AU9Q5boRQ0IgYFEBaUU8zOMcfd+Zefjz27dvH8dTidu+redH2pynmW3btu/7p0+f5nkWj4NoXfxMqvz1qxEDUQkRpbXtfn+rCSsirKxa5zmnbxsTMbgCURbGBCYnsLMQlZahBlIi0mIKU6UkRUQor1yAql9lbyPCTaV1YaUS5DAnK1TL3I+lNXcPc0qoKDIGeM4JR+8LZqt/Vh7XurXL0YCXT2xN14UjE5pKE5GITkQD58qGrvmIyrcjj+OJ5Ofz49uXr5loLCl0HMet3V/IF1lkmoc5vMAyACTtLkSiaT7D69MkTY/x59cv//q3//H161fwomZRmQO0LQIEEaWIWZm92lj7DmDlazfdtm3bNjA3VlKpKJ3zPI/jCdC2bWPMCKgKk4go4BE4z5N59t6FW0Z9qkflaLao6xBm9spw0u3Wa/YG8DLhBkJbj4gxp7snnAQW5/v7HCO22Dh4153uZGZz+NZv9QCZRyREG2d6ws+pbYsIkJUxt+UMi/DZWkt2bWQW7kcNjYgYxykiW9sIyZlNGQQLbNren4/z+QHB237rrVl4EXWSJEks0qeXZE2beg7HvN01YsY0Ivr+7blt+tuv97f9/u37nx5n781slBvSH3/82fTW2qYEy8NjSjmOmkaEhwPk00a+crHLiaA9n0+w7HsnomM+zM++twR/+/Zh87lvb227g7nWMWCOnOaDMjfpIhQBh5OkqApyhiMimcp3KS2HDSXuW0fYx/O5f7of8+vi6rXoUCHp+3a73VprX758Kb3p169fVJUYL5BYVes+q3bp8+fPhX5EYJDd7puqPp9HEQSqcUg4KMrgQHX5rxFnE2pgd7eIcQzibIStawTcrSJEuuic0yNUdWt712RQerx92p/P0y1bawE6nmcsQR36xq1JhAWNhIO2yMzjieWNRWEGzy6d73o+hxRU9/k+px3Pyv5IbZjm5pHBqvvWb8wyzhgjtu3ztm1EOcdErfFay5BS3JPHOE9Sue3dPSnx5cs3m/Ovv/2GLGbXvN1u8Oy9FWntPIIFrPveZM457cORLC1JEsFKb58/ffly9P3O2t6/f3z9/mX62O+bdP327RvL1pSRnI7ettaaKm9b85hlDl1jTDEsy5cMgMU8j+fzPM7nMefJzBVoUMbKVz+brZWfSIVfpPssBXpy7m97OI7zcdopKcwcFK1tqyIsF/bLOLzK9lXFq8mOK6S1kEkxs/CjRhFVrepLdJn5E3i1eQQEhBITwpnIdAoOAoA5ZwmFSy8AUF5OuE2YiIQyIjKyLs4ZmeZEy6bvtdSo1WaMK90MUu4jqvpS1+37TtzGGBH57dtH63QcR9mBRlZMml9YijCniFSGZdapkRf8eAErmalXx0VLhQ4gK6u5Or7WmjCXBGMh4DUok1BypJ1zRJpkzDHcXfTl+QsBOXMT5aYt0Pu+79ucLsYzzmM+xxlErCUeTa6Wp+jM9aFEeOtSpvt1ZUrhQ0TmQ7VHVEDzUk/WYjUinVb78NpH1D3AgqWOuIbwui6f7juXpQeFEhMvv3m6bgUREeIl08qsfoql9CGSmky4pp4EOciBBMoaizTlR0ebcE8b7p6qLYPHGOO045hjDLcM0BjDImwGUZN1T6uIbP3etDFJ0fYi0q3iyLJ4q6jkDnNLG2OcxzmP08cMEqqgpCQI3GeJfQGwqDCBOJzM0fe31po0eRzHeR6ssvVP//f/x//z29fnv/7rf//v//2///HHH+5+u+3btv3zP/9z9e0/CwWI0mxcwWV0/TMz888//7wWo2vgak16f6sNJVLdA8uhXl5d/xUS++NZDrdMIS42ML+WCa9xSYVbRDhqDfDDZNLMX7/+9VUtoc3IPIvgKHIJPK//ysxXx0GgSEQRfJkiiaJu+iztXT1RQotXSZn+M0UqIswK0zL3FosuRbhs/0WESGwZ7i/aZf2dql9zpgh619ZbkX/f3+N25zmnaFax+2GXfn1BJCEXD/tHmO0FayUvw/K1oFlrhArtnjNJCKrSs3KBg5ed3PotRbJCptsMMMoEzmdxDcpthjmJpcZFaW0TbtOGZ/jw4zjmyG3bt72JbHN48XnrlciSS0dRPImoQMdPnz7XBtQcdQGv+2E94QsD9sVkj58IKa/P96r7LxiVWusVYllCJZGCe+InpICZflwiu0LfVBXU2FHrTJEoUJZZPS8KllUhyItUk0X1MYt9v3nEGOPxOI6jgpsWsIpVPn68gGI8vFC6V6VzIyLKoIwVB1Mr5OM4j+Mo9bEICOSWQAbDLPBjPOKqIzXDSxPVDiqaUMZ0Yfv+/fuXL9++f/8O4LfffhORYurweiqWxi/T5zQzO46Hu1egwzXgvw5j4Kdxvp7nRL7eTrVyuRKVFlJbN8P6NBc5Nl8wDV+prj/c2QvVfP12uswY3X2Ji3k5XpYt0pxeb6lex88UhojIH4q3klKQA5RSS9LXDiVBrxwbImRSIopdQSV3+/Er/OfDuShrc846RkRk227D5sgzf7IPYKY5T3dXoZr12WTOGRn3e/VBTTVEJLPeZjBLrcSYmaRsi7w6t1Umrjpan03lHbxK7PX2M7PunoggJAWtNFQAWJl81YloJpWoEdTqIhcCDyBR9gDK0jNzWhjZ8zyezzMo3JYCugzU8INO1q5n9dKhgCPieD5zxfvc62/W65efSOvE+TMCXx/uqyJUT/cfjgd+eZuWI6umtP5iv62Aafkhganz5oViqiqYWTrzqgUFrxGlUKsdPlPCErHeoHsluFaE1Np95CWyEG7S1Et+GYRL3noVsh9amwJc6nGIwAoECyAZiFqm5HLbVgLX7gkII5/DVES1AVhowlrfyBwefratb9utfJweH8d/+//8H0hh5l9//bW15u6Px0cxi6eddReJLIpwCe3N7D9UhIh4e3uTZZa9rvlYrWV5FDCzNN1UldDqKK3Hni5HooggVCb7jz1L/BR7+6MiVLmv74xqGCJkIT284s1rh4//UPLTzFWLJ5/AimZ+JZdnEkVwUiZJNQ5AZGRS4361pJX9kHDEpY6suzZTrqcuKyEmLmpDZogIqbTWApntB0QcF8+SWVtrEdOs2HIzsVwbiEMkV2nLcHfla8qAXrpyd3eu/KwX7/W6v6/P8uqG1kOive9J4UYRjgQy3ZFBKh1AeLWceS06OCI8maRr7yIcyxkl23Zj7Q4aw90nQMcxnudgZRHpfa/Bcow5bZaVMNFa8q+GxVbhN1uCxXqqr+r2oqZcM1hV6Ku+v27GvEjo9O+/mBkkcYn4iF67DI6IMYob4j9/43WV6CpDzAxR0pZEccGCSSsxhDMiKUD++t7XV7HXaM2tRe7ITC+PXGQSgpFMWdZhxXasVu3awFbXRpZeTrYIElIQC2mTvUtCDGCPTLcy9nTPrbXeNnc/x9NsSG9SnghU0xaI6pqPx8f58fHRdG+tPZ/P79+//XA85ywIGghdYxeV94+qmvPryteJWMuFWrrHlQTr7sQr3ODHpwmqO/OnzzGqEBNIROsee3UWmXk1+0C5fRD9eIDj2k926UQrXwgU171hhEY/9e0/f9Wv4J+M7qu+ZDKSsCLP1/PDJMhMKlF3FWkGmJMT5WJOgBWblYh676+rEEslH5xcd3m18cVBiLmUxcXemzM9ZkRQ7fKCAEYWGy3NTCARzsoZaW6Vp1DvqK542XW/puvrzMl63l6PUP37rvdhM8iYBLUYTyaK1oqzWBEGcRFCSvJMXZh7700snSKDoO0G1TB/zulzJkl4giQzVKX3fjlEnBEhuvSXr4bluvhZAWeZeRzHcZzbtmxbznNBJ4na0+Oqbj+0sT83BT/3g6+KQCytKYm4O3HlFP2omz9/+3WP/TteLDJFWAQiazhLCyAYPzKE8FPzD1AGBa+UV2ZlElWqWNJixR7HWCnwvKW+BhxZ4b2lTGFlvpLKWDIQmbT6hfq9RV3kyhwKKkNNIJlRJl09YmRSBHOUCyb1TQlyjOfXL9+O83mOaRZX354VvjjnFJHe++NxVPRRvc3KQCjw6/U8vgpoXjPpixxdz7yqlocKoTELr8TxqsI/RKi5tu91GKx7oz7E6+j9Ka+h0rvXweL1wCRRJb5mro39jzFBpdVMh2u/nUlz+jWkVVV7LeqxeocSEABAIgVZ9vdZk0LGojgxJUuLsJffEzOkskoZEUmUzLhYtxSRz+ch5TJFnAn3080Svm2NiAhrQVVDtUgWSl+MqerLCjar3mIVzh80z/D0a6v6727xq4b+u7M0kQTN8HCmip+jl+d6gSyi2l+B6JnZb93cmaBdiEExM4M4pweT+7Rh7haiSiq67ZSD6MVNylxeVX3O+SoIPz+EReAdYzwej4+Pj95b7w2A2VjU5jUgVOIOCqP+8Y6unsJXYvD6WjVC0PtybeJ16q6HsEhBwj+ba4Cusa5k/0yXrEES4tUwRUSyGxmQ5kb+MwRTDTyYaMYCz6+XN8/zmG5zuoMIJJfOtt4LiywjBvrx52aWzO5JBE4Opzp0Hh+nmZ3nDIcIZwhSiyhFwpk0TosMJm1FhglKwvEcY9j3j2+lMfPEnHPODF93bPEjPOY5nn5FJ2Sm2ajEoxfSsc6w9TrjVZ3r2X5dzNfDrNLqflu34U+FuP73dZ+6z1Jq67IFzP9YEejqj6/zfP2lQqqKw1Asw0UdA4q98kIWi0FRZ/j/VdcQ12sCShd/raMzrQS9KyWKg0mwnp9Vxl53dvyImlipRFX65pwrynZZv/0orlEGTe4sqLkRFy28sOxVLEQjQMhEuBNRCCXK/X9ZkuV1R9LrY6gL+vqo1jtlmsNrY8vrZWfN46+Jt0b3UrMGxadfPo9xmI3yJskwj5o1psaLZZyiYGll8pU+aoZkFhboEi9O4uVPTz85YtXKP2Oe5zyOEZFM62CpcygizOYCUK7jH9fwdbXW/Oowcc10zEzsmVemHdcC+soOq5QqvIT3qG9nqWgsRFo6WqvBkNq2JWhOq0jFzKzwlVxVm6mApwu7iZj0chZ/3fqRqkogQrEJ1xsEvEKfI4JIiYQAAiNXCmGJ2TLJLM5zPB4P95yjUCStI5kIjZuLh4fbAFDWOMlUQNzX79//+OOP53ncbrdPn+7T7TxmOdmXXSozJ7yGhd9++21RpNyLMlR39VIxgn+639bTVPBHNarFNHX3MoMTTma65ozVoL26ubpr6vqPMYizzolX64GfvlZafGEP9ZBn0pyz9lLldFYIQ2YC5JcimKioBIlkgsyxrJnpmvbrTTZZa7+CRz3S3JCkTVmZMww2p4d7JQWXV2drKbKMjMc86P9X17Utx46DQECS7aTy/5+Zs2eSuegC7EMj2cnW+mEqqUxqxrIETQPNYMwXQjmdangwdd9DbrgAdxGRimDax3Fsps3MzJy55ZxftW4bMjebJDZrrb0oZVibnAuTjDGYvZTNCaOEBdKp8GVIMajGJM8F8ALlknfFkLtuaqrWu9ZXr7W7U8655H2dkG3b8l5AAjhlIuujP5699Ze7vr+/t15VlTi9f7wdx0EuvXGrY9vfLtE+OWlrr30vz+edmVFOJxIVk6WU5/0xxigStcmtNSeFBTczQH3U0rv7tm196oIsC4iWNp9Rm8/IM5dt27aI4K3W0VFrKSLvb2/ujlgmSSpoAyB3UmZChMgC+pbNfAzPhY/jUEuGQbkmIpQKACzr8N4NpcHwt6ZUMbu3tdaamRJ5yuzdVH1Yy9RNBrEx+T//fOa0iWRt3frY9gzL9/31TSRdO6q2UkpHOfiDb7dvKWLK2pTcNzAFxMfxfr9/4QjU3og875uZq1mrw5SSlNHtz5+/fQwzcxlrvLVa8Djblh+Pb47W9XWaBs55ijb6QDcwssulLxeOLQTjTkH0iJn2VscYEmvOIN2Wfck55yIrJ42tuGpYiSjPn07m5uIobP1KxDM/Ksxr0PX804VdWyjj6qxwZoSzi4rk08lfvhbyP6bRP7+YFVwr4LkCeKNgjELvWFvvXYhz2ogNNtgdefSEcv04RVdkJc5OpkMipcLumP9nIpI5z/AoAkLcF3QKr8ABFkHyRkTCmcTNKGemXUrZt21PKSUpy6e5e2+j68DYCHftY/Q+dDgxPZ9Pmlgdbbym1FuVWbMwFw2vQAeI0nP0xloMdEUjMM0iX3eiYJvdScmdyFicyclFp1LGggn4IJlpqoUagHJrreE6yIQ5pYwtvsKLKzQlckyIoOm4/nutLTR/ZSgImnF8fYDK1Vr+M70ydwhmeYb8KRF9fHwIZ0THKbFwhsFKKbkzDJ3GpKEOJWs3Ak5yI/eBZ7x/HKXspaRt20pvqmrsZvb5+fn3++t+/ybhpd8/7/oXLWrnhrGB3fXr3lfeZ+7eoO14jS86s8JuZkrqkYf0X4HDrwu5+XWt07S+Ug7IBCHwhKzYevzRozbfzXP509ofIjIr9uX6HKdNoZRSkaTuWZJIYuSU3FvrZubqZFGWLs7u1HGndC2FMHeykAGViUlhX7zWOtS0vygaY8aeS87ZfCCrNNFuIH9TiwbEy8ggIut9cNlFWBUjOlfHcZ5BzfnkFjS4mEUiIgFVwyH3BuseOSEO3o6ZoWGtMfCgt1FVB2Sgeu+qQxKBtvTAioOZdXirr2MPTeM4hnFc1ynNItkKoDJy1GXRzsvDz/yTm/nkeqOpBu4FEa/N7qBFB66jvjYTiuaZmcVDoSZJwvgGd5ghh6pyjBGBjgPR1Fc1TM1A/ZKrmXnsJXNX4pAvGMMHpqL5WnmRyOfHVnRSNUs5C2fhEmoKZpQs58KUzJArJYSTrTVoK8M5Q6iytQa1HnKkbx1aclDEKjm31nI+sCattVevj8fjdrt9P+61vlIJ6sRiAAc5Ka1uoZNztdNiUmj2sXhU0F/M5dVCrkDvakEMbdnm0Ol1/6Gb+OvCci1LupJlyzFHmc0sk1qOPbkbMzHJJTBncoxCi6zyJI3g9GafidlCDSKSkDvi6+EJGRyPlqHTpHGUyinW6If7BbInhidMKQknSoIK/NkUZ+5OGVObZam2IRidYtW8FpSJVuC9iEwGv3GhTpftWAvh7sdxXC0C/upMX/eaMcBvJiPmLGM8yMBKZyhoCrgIWWGsHmo0ZuDG0/vhBk/Ly2dtFcwwcsuzvEfNAe9jqpdCmdPMBEw/DTZOCXZKzAaiQpTA+BTRWg96cYR+FqRRSmnOro1IOOyUR1MaQhUO8igqcyw0KYKNBglthp6mWTR2Lja0J/DKs6bjxKqB3xI5yVAVkZILE5jC2F1mxsRQXrLIT7daaylv7g6MiQmD+JcxdPbanLkzd388HtAgSynVVl+v1/fzfrvdlpWUUx0fRMwP4UlCNc4FIhGRXVz0fPP5iShaW7TO9bCs04fgAq7O/x8gzKe2bA3RbG5GQwAR/Qt40/JRXCLMmAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 57, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "img = Image.open(join(PIKA_FOLDER, \"train\", \"not_pikachu\", \"not_pikachu_00038.jpg\"))\n", - "img" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "id": "8df0129e-fe1c-42ea-8b76-eebb5a0ef7e5", - "metadata": {}, - "outputs": [], - "source": [ - "labels = [\"pikachu\", \"not_pikachu\"]\n", - "modes = [\"train\", \"validation\", \"test\"]\n", - "pika_mats = {}\n", - "img_size = 128\n", - "num_features = 3 * img_size * img_size\n", - "\n", - "for label in labels:\n", - " n_samples = len(os.listdir(join(PIKA_FOLDER, modes[0], label))) + \\\n", - " len(os.listdir(join(PIKA_FOLDER, modes[1], label))) + \\\n", - " len(os.listdir(join(PIKA_FOLDER, modes[2], label)))\n", - " \n", - " X = np.zeros((n_samples, num_features))\n", - " i = 0\n", - " for mode in modes:\n", - " for img in os.listdir(join(PIKA_FOLDER, mode, label)):\n", - " image = Image.open(join(PIKA_FOLDER, mode, label, img)).resize((img_size, img_size))\n", - " image = np.array(image).reshape(num_features) # vector\n", - " X[i] += image\n", - " i += 1\n", - " \n", - " pika_mats[label] = X" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "id": "77dc34a9-9747-463d-966b-5a118ed0db99", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(645, 49152)" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pika_mats[\"pikachu\"].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "id": "6f0e2134-9a72-4ae4-9b47-4df47addedde", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(645, 49152)" - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pika_mats[\"not_pikachu\"].shape" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "id": "48f0d291-4da1-45b1-bf1e-85e86535145a", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAABMqUlEQVR4nO29WYxkWXrf9zvn3C32yD2rsval93V6ejZyRpwhLUuiJNCSTNkUtRiGbMNvhgHbL4bhDbYMQQIMPxh+MGzAkmVLBCwREoeLOENyOCtn6e7q6aWqa19yz4iM9S7nHD+ceyOisqu6a6qH01ld91fIisyIG5ERkfcf3znfKqy1lJSUHD7kx/0ESkpK7k0pzpKSQ0opzpKSQ0opzpKSQ0opzpKSQ4r3QTcKIUpXbknJnzLWWnGv60vLWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySCnFWVJySPnAcQwlh53ZLv7l5IxPGqU4P07uNSHjJ9JYKc5PMqU4PzYOKtNOr7b3OOwu7YmZrwKZH1SK9JNCKc6PAzH7zT3EdC+Lel8jeQ+Rf2SLXHIYKB1Ch42DwjpoID/wjg90YMkjQmk5Pw7uZcUOLl8fejspwNq7fix5NCnF+bFi3//tPfeY9/j5vhx4gHI5+8hSLmsPBR+ioFJgjyWl5fzYsR/44098/5JPDKU4PzY+iqjuFWv5qI9ZctgoxXlIuVeQ5W7fjj1wea9HmD26FO6jRinOQ4g4cHl/7IGf7hWHuf/xJYebUpwfIz/9KIc98KhF7LO43swcV3LYKcX5MfHg1vHDpXTQft47k8Fy34ykkkNJGUr5GPnTyw/4oP1omZXwqFBaTkAId8Ja+8FW5cOOe9DHgQ+znPnjzPxfcN9Hfl/yggXkjLG8X3ZDyWGlFCcgpcRa+4GiK4RXcPDY4hgpJVrre96e33F63b1/2z1uuZdM73M3Mz1QCEDI/FeWFSuPGo+9OAtBPYg4C4FprRFCYK2dXFc8jpQSY8xdtxWPOxW4fQClFdxjryggCDzWji0ThhFBWOHalet0u73p3a0Tp5Bg7N3ptiWPBo+9OA9y0ELOXjcryOLy4PH3u//0MQB7P8fMtE7zbvtqJ98hBUHgU61FrB5ZoFZv0Ki32dvpMByMSHU21fPkqczuQUuVPio89uK01pKm6cTyzQpx9hhrLVrryXXFsYXVTdMUYwxZlt11PyEEnuehtcYYg1ISIcCaB7Oes4cEYUgYhTzz/FlWVhZ47oXzrK0d5dSpU0SVgB/98E0uvnOFTGdID6w2GGO43wK65HDz2IuzQEqJ53mTJem9lrkHl7eFBZ09rljW3us+QrhyrskWcIa7LaWYtZWT2yrViLn5Nq9+5mWWluYYxV0Gw332OtucPHMU6Ql2d/YYDIckOkYnBp2Rr29x69uSR4ZSnDlKKcIwJEkSsiy7ywJKKVFKTazl7F4yy7KJGIvjgPcJtLCwxfX3K41+v7touk+dm2tx9txJ/tbf/us0W1X+/j/8n9javcP121f4+Z//Il/88me4eu0md+6ss7WzSWzz5zaz17XlyvaRoRRnTrEkLZafBYUQC4t6r/tZayfOoML6zt43yzKklPi+T5qmWGPus/srJOvCzwdvj5OY/d4+l69dZnGpzZG1FXzfo96ocuP2VUDxN//9v8ZbP77EP/5Hv0EWD0njGD8M3POIY9C2dA49IpRJCDmFOGc9rbNW0hgz+dJaT76KYwtx3ivkUnh3lVL3dBiBy4udft0rTxbSLGM0HrG1vcVed5f5hTZLKwssryyy191lffMWn/vCy7z8ynPUGw38wHe/11MoL//d9/n9JYeP0nLilrSFU6cQWxiGwFS0s9axWLpaayeCU0qRZRlxHE8s56ylvd8+9idBSie0RrNCq11nf1RHCIsm4dTpNZIk5f/7579BHBv+8l/5s/zx17/LW29cZNwfYbTBWlMuaR8hSsvJ1GlzPzEVlrHYdx68vdhLFl/F8bPM7jftPb4OPKMPeLaWzGSkOmE8HpLpBOlBtV6hVq/S6e7S3e+QmRihLCpQIKwTZskjxWNvOQ+GOoplZ5IkE7F6nofv+xOLmSTJ+/ams49XiDiO48l1B51M93k2fJAwjTVkRrPX3UEECZevXmR5eZH2wgmiqEaWGrTN2Nje4uKl63Q7MX7DQw4lVlhMUgr0UeKxF+esx9VaOxFhEbecXaIWe8xZ7+ysdfU8jyAISNN0IsTCik73ssUvfn/45MFrVCxSgO8rgsinWquQpinjJMYLFNVahfmFOZ579jSN+jz/+rf+gJ2NXfbW935q71vJnz6PvTiBuyya7/t4nve+MEkhykKMSik8z5scI6UkDEPq9TqdTockSSaPebeI3XV3xzpnhfnBS1qL8+lICX7gE0YBUSVkNO4yTsYEkU+9WWV5eZHP/9znOHfmad59+zJpkjlxlnvOR4ZSnICUXi4eQ5pqtLa5EwiU8rCANgajNa1Wi0+/+mleeOFFXn75JV5/4w06e3sYY6jX6ywsLvLP/uk/5fXXXp8sg2fFf4+V8AFmC6MtiHxXaiFOEvr9Hp3uHrWmZHllHj+QbO9sEoQR8wstXvrUCxgtMZliv5fwg9e+x+btdfb3utNa6wemrP/8OCnFSZG5k4cz8iTxwjc0dRRZ6o0GC4sLnD5zhuMnjrNy5AgrW1tEUYSUkna7zZEjR2g0mnf9hsJiSiEwH+itnbWgU3eRVJJKFDC/0Gb5yBxCWDKdEdVClBIkSUwURQSBh+cH+CqiGrS48NYlOp1tRsMB6Ywlf5D3pHge04SLcr/6s+YxF6c7CY02E/sgpcJTCmN0HtN0IQjPU/yZr3yFU6dP89nPfIYLb77Jb/2Df0ir2aRaq7F2bI2gUmFpZYUoioC7ExeUlCglSVN9D4E6a+n77s9hrMFoi7UarKXZqvHyZ5/hS1/+HJ//uU9x7daPSbIhYVhBShDSIqVBCE2WDmnVGjx78gmuX7nGeLTHKBkQZ+Ppq54k3wvExKs8LUsTQrr3xrp9rVKS0Wjsnk/Jz4zHXJwOgXQxRCURuCWsNXay1F1dXWVpeZm1Y8doNJrcvH2bTrdLZgy379xBCNjvdtna2GBnZ4et7S1gtlTMnfTGuFipmDiViqSAPJ/WzmYmkV9nJ3tM5YHyBDrPZIrCCCs0xqTOgQVUqk2iKMB6Gi+U1GoRTz59hrn2HtfeukM6TkmTdCJFUTw/m1tKQExyei3GWKbr4Q9Y5n5wLmLJQ1CKE7d08z2fIAhI0sSd/EZPlrNnzp7jhRdf4vSZs6Q65Y0LFxjFY8JqhXfffotup0MURlSqFRrNJjevXX/f41tj0Vg8TyGQZIVnR0gEriD6rtBMEXs1hac4I01ixuMB43iMtSnVWgWtU8aJZhyPUTpldXWNSi0kFiP8iqI9V+cLP/8p7tzaZn9nQHe7RxKn3F1GdrczSiCxuA+mLHPW0r0Xsw3DSuX9afOYi9OdYMZqMg0idXsrt+wzHDl6hM9//gs8/+KLnD5zll6/x143Joljttc3WL9zh87uLuPRiHg0ot/bp7O7SxwnKN9Dp5nTX75vNdai9TRJweKWsFKqaQcFDMZo3MrSOYKyVLO316PfH5EmKfVaHakMYRCBCIkqIds724yHY8bDETq1dLsjtNa023OMejsIaxiPxhPnlOfn6XxW5NbR4nmey4ISCm00cZzmKYkSXa5of+Y85uIE5xGdWqdcmVgsjXqDp59+hjNnznJ0bY3LVy5P7MZwMGB7c5PxaESWpRNDMgKU7yOVQs8mHYhca9YtZwsPMdZOVreuzhPA5Fe7fajve0jhYY3zIleiKp4PSnooTyBVgGAXnWmyNCNLR4zGfayFWq2OlDsIAb7n43kpSmWoPA9Ya7dsdktu8npTgbE/YQ7urAEu+anw2ItTSkmz0SBNM+J4fFdygPIU9XoNpSTGZFSrFVrNJouLi9y4epXu3h5WWqQn8fwQa6axUK315LGMcVbJ8xVxEmOMRVDkulpMlmKEyNuJ5EtbC1JJnnnuPMdPrvGlL3+eWtNj2B9x6sxxworHOO0RBhHNZp1uZx+sRKeG8Thmc2uXo2snObLS5sevvYvv+/zyX/w3uXLpOpfeucr25jZxHM/k+9o8eUIzu//9iXLlS4H+VHnsxQlMTs5JHq0APXObNa4Cxfc9wjCkWqngeWom3e+AoyQ/4aVSTnyTrgdi4my56/fnKhZFWEdMC7b9wGUAraws4ocWL4Bmo0VU8WCQ4nsBSnh4KiDwQipRjSztMxqOkQiisMLCwgIeIXEo2ahVUJ6cOHsm4hPF83CWvXBEFe/Ng7+ZD/EHKLknj704XTVKku/3LEpJpBCkGVhjyLKENE3I0pgwCqnpKq1WgyivWrHWtRzRmc79JNbVa1pLEDhrWuTpzubuOmesmHTGK36WUiKVmOwNrYUg8DlyZAk/lHi+YHVplSBUSKXdWtkIAi+iWhEsLaxgtGTQG2C1pRpFvPD8i3R29nnv7RtEkYe1ySRU5PnTAnKt8+dY+GxF4aSa9daW/KwoxWnvFo+1YlJLaawhyXNshRB4SuIpiTVmkqWgPC8/sbOpOGHibAEXNzTW9fTJt7j5L3f/idzyGmuoVeusri7TbDao1qocXVti7ehRapUazVaNeqNCNaoiFbRqc4zjIYNxH4xACY9qVCUKIgQKnRqyRHN67STbQYd3X7/C4sI8zz//LIF/mb3dffZ29+5pHYtQjuc5h1BRNjdzxPvuU/LT5bEXJ0A244q01haawppp4y4hBFJJpJJYM+1LK6VCSEE2m4FTZNW4H2YS3w1yso6cFYTbrAkB1WqFtbWjrB07yvx8m0o1YHV5kUpUodVoMT/fQvkaKwy1qE6WZaRJBlagpEfgh5OlrjVgtWVleQWlfbCGuXaLSlih2+kDgr3dzmR/ae3dJd5CMKmwubui5sOCmqVwfxqU4sQF+IFJDq02IJUg1Qk7O1usrR0BLGHgM5KCbrfDeDxici87061PFOl/brnsSsjyOKa1k2ZbJheqpySZNniex7nz5zh37ixf/OIXWDt2hPn5NrVaQKNR4+TJY/iBwPMEBpc5pAiwmSQZZURBFSkl/f0RaMmJ4ydZnl+mWW3hS496tcqzzz5NEmuSWHPr5jqD/gBrTR7emb4f1hSJD3dJlfcL7qBIZ2Ohs9eVPAylOAsOlHIVJ6sxGVK6kEZRQB3H03ihNQZmTuLJKWxdOGZy0t91Hs+kygFBEFKtVjl58gSnT53k5MnjLC0v0mrVaTQiKpWIShQhpAGhEUU7E+s8wVlqiCoRnu8zHsVobWk2WtQqNSpBBMLi+R4rKyvs7w/Y7/ap1SrUG1Uq1Yg4jknT6R7XXU6LyGef8/vfsHu9kbP5wSUPSylODnzeSzHRmlKugXOtXqXVbpBmGmM0+/v7jMcuVzVL08m5OHX2uH1nXpSCscYJVYLBIqYKQGvL6tFFjh45wi//8p/l5InjPPnUeYQUSCWYn28RBB5SSUwRfhHKValkY+I4ZTxMWVpcpVKtcuXqNaSUrCytstBeol2fI0PjV3yefeY53n7rHW7duM3iYhutE/Y6u2xv7XHn1tb7pOSqdGYT3j/IIXTwU6gU6EelFCcUOd4utiidyIx2kg3CkChylivrD5BS0mo1WVicZ3l5mb39PdIkBWZT3Ir4YO5YKqyPmAZSrHFe2CiKeOH55zhz9jQnTxxjaWmeKAoIwhDf9wl8hRCQ6dTl/8oAS0amDaNhzHiUkCTahVL8iCROkUpRR0xel9tLSkI/olKp0qjXOXXqJI1Gg9t3tojHGbftFiJ/7ZN+vPnydhr7fX+q35SDQU47c1wp0IehFGdBUSbmwoyYJD+hw9AtKysR/X4fpSTzC/OsrCzT2ekwjIekaTqJNhRL2btnsOhJrmxRnmasJQgj5ubneOWVl3j2uac5eeoYtVqVMPJpNBpEYYVUD9AmI81SQj/AEz7auPDJcDhiNIpJU42nQkK/QjxO8fwiHJLnOhmLFC7cUqvUaLeaNJsNFhYXeefdq3R2XTaREHkBgBT5nlm7clIxXe7en/vtM0sL+rCU4hS4kxEnGGOKSgw3sGg8HjIcDhkOR/i+z9LCAl/8uZ/j2JE11o4eZeef7tLf7yNl0f2d3AJBpt0+Tnp5PHOmnUm7VePZZ5/iM5/5FF/80uc5deoEi4tzro2lkvg+QIwQGikMSk63tkYbkiRlv9MniTWBX0GgsFYgkPgqpF5rEPiB8w5bi8VgSWi3G5w6fYp3L75Lt9thNBpiMdTqNdIswRhDEPhobUgTXSb9fIyU4qRICCAPujO1gtbmaX0x4/F40sKkWqnQ2++xtb1FFIR4ynW4MybPshFMktaZWd66fagkikJWj6xw+vQJnnnmCY6urbKwOE+lGuYOJIsQFpenZBDCWb78WU0+RNJUgxX4Xoglz5NFIqUi8AOUlBSZTxaDtZog9Gm1WnmSu6BajWg06szNt9jf3yeJEw7K8aPZvNJiPiylOMFVpEgQnusVmhs5tNYMh2O2tnZoNm/z5JNPEIYhaZLQ7XZ45+23CUKfxcUFev0uaapJ0owiYuL5amKRwYUmmo0Wx44d5df/5q/yxBPneObZp1iYbxGGHnE6AuES0APhIYRCyrxgu0iMx+Rp+QKlQpQKqAhXxN3vDxBC4nsBlbCKkJLMaLTVGGNJGBP4EZW5JidPnKZRb1KtVrl1a51337nCD39wgVs377C1ve0aYedvxsO12p3da5YCfRhKcQJCupIRa3JnjnSxvsFwwKWLl/A9jzRJWDt6BCVdhlC9VuPokSOYzLC9vc03v/VtjEnJDR/WgBF5SZqxeMpZsxdffp5z587wzHNPc/TIKq1W03VAEIAwIPIRg8J1ZzC5GI1wYRQQrlOCNXljMYXnBYyGMRaDUh6B7xN4QV7ulTfNNhCnMYEnEULRbrWRQrK9s8Py8jJCeAgkK8tL/P7X/mhSx3l/XX2Y4EpBflRKcQpQnnR7TW2QnvNySgV7e3t88xvfZmtji5s3bvLiC88R+B6eUiwtLvDSi8/zwvPPcufOBt/85nfQmUEqtzQ2Fqxw6Xo2c71va5Uaf/Ev/3leeOFZPvWpFwkDH09JjEkxNkMok9dfO9NrsGgyJ06m81Uyq8mMJs00vu/E2e12SZIxnucThhWioIqV7hGkdN3oe/0hxnfL7aXFZer1FtduXKdarXH69BmeOH+OjfVNvv3d7zMaju9jMYtncbAfeZkh9NOmFKcFneUtL7GTOko7UzpWqVRoNpuMhiMG/QHtdou5uTaVSoVvfetbXL58GSldHirSuC2rBc8DKSQiCPjsF17lpVde4PipNaJaSJKNMaR4SubJBdPZnUJYTCFKq6ed5XHWOMs0aaoZxwnKCwiCIHdaDVg7tkqtWgdcAoW2mZO1hWqtijCSTGt8q5ESFuYW6PX7dDodLl68zLVrN0njdPr+/ETO1sJ9ZA9cV/IwlOLELTtnfSC2OKEmoTqXotDpdKhEIc1mnSiKqNXqjEYj9ve71GpVhLCMk+GkZ5CUEIYBreYiTzx9jk+9+hILi3NElRBtMjDG7R2F88RKKSnGGGm0S9ObeS4Wg7GgdUamXawTnFVO04x4nBBFVcIwxGJdKqLV+Q5VEvg+OrPozNliKQX1ep04jonjmO3tHdbXN6dDgmdqOd9vRR9EdKUwPwqPvTiFEPiVijvxjcFkWT4mb2o6337rHa5cvsLl997j3Lkz/K2/9Wusrh5hZWWF06dPEoYep06t8caFH/Pbv/P7rhMeoDPFc6+8wP/w9/5r9vv7DEd9jq0dpd1qEUYehgxDhpeLU+SCTE2cL2cNgQyQwsOTAZm1ZMYyGA3pD4cuP9fziGp1lOcjPY/23DxRJWCQjkBkblnLNLHAUz6h56OkhwEWlhZQvvu+Wrk0CdcI4fKLlXLDm+JxekCg9xNeKcifFo+9OF2S+rSTuxASpM2tmhNokiauwVaakCQJw+GI4WDAYNCn3W5jjCZJxqyuLvPSS89z5co1dnY7k2Wy8iXNZo1aLSKMArevlTMRF2GxIreWtliKulpNgVvmCpyTShtNnMQkScy0vYpGSInyPDzfQyqFtSkSgRIKKSRYkVvXEfEoo1Kp46mAMKgQhglhEGKsmUxas5P3psh8KvlZU04Zw5KOx2RxjElSlFT4QYhUHlK65FgpBL6vWFtbY2V5md5+j/WNda5ceY8TJ47x7LNP0x/0OHvuNP/5f/Gf8NSTT2NSMJlhd3eHb3/nj5FK8KlPvYwfeW4kvEmxGJeNJDQpGTFjYsakxBgywCAwea6uJtMJcTqmN+jRH7qwSaY1/X4fISVBGKGUQuWjCkMvoOpXqHk1fBHSHwx59+J7fP0P/5ALb77J9RvXiYImlbCB74UkcUx/0JusGowp9rfZQ4ZTSj4Kj73lFEIQVCr5HM7UjV3IRy+4XFvnvdXacPHiJTqdDlLCqZMnOH3mJHpliSgM+exnPku31+Xa9Wt87guf4rkXnmJ5ZZnWXIMTp45SzzNwAs9HCNA2w2qDFRkC7cIkUudxzqIXAWRkSJzlTE1KkiWM4jFxEuP5EUmasrWzi5CKaq02EZGvfLRNybKYzm6X7e1dvvcnP+TSu9e5+O4N5tptlpeX+dW/aqlUKlQrFZ5+5mmiapW59jLXrt3gW9/8drlI/RgpxSkkQRS5gUTWYrIMo02eagdCyolz5dr1G+zu7uErgQQWF+ZI4oRqtcpzzz/Puxff5a233+L5F59hbW2NJ588jzaaO1vrVGtVtM6IQpcFNNIJxmYYUlcGJgxSGKSwbhk64xjS1nVLSK0bIxgnMUmWUqvVSWPNfq9Ls1mnUqvkS2mBJz3G2ZhxMuLW5k2uXrnO17/+dd59+wbvvnOTMPA4srrCC88+y/Hjxzl58jRnz55lfmGBpYVVfvSj1/nWN789k/T+oG/ozPelsj8Sj704jTGMev2ijMSVYykBeU8hbVxRtABMpun3+rx+4R12djpcfu89dnZ3OXnyOE8++xQnTpzg13/t13ntwo/4wQ//hB++9n2WV5b57M99lnajRaNaJzFjjM2QIkNKy3QUvMQ1mLZILJnN0MaiTYpAEXk+ykh86+VW3dBu1tnd7dLt7nB8bZXlpUUCL8zT9iTXr93iyvXL/JN//Jtcv3qLSz++wiiOidOY8SABs8vX/+iPeeG552i2WoSBR7vZ4LXdbbqdXSD3IgsXt4WDs5B+2kntZZL8LI+9OMGiswwhJUIp7jox7Mw3ubdTa02v12fLU2A1V65cA2D12FEajTrNRoMwDPE9j+29bbxAsb/fwZcKT0islyGkyYXp9px3nYqTKm+3sDVWTMUhBEoqKmGIQJJlCVanKAGVMKBWqeApD4nbL25u7vDepWu8+/ZV7tzapNMZUW/VmV9aIRlmhEHA1tY2m1ub7O7u0Go2CQOFyRJ05mKdUoAnITNOmC6KeY+aTZHfdk993a/MbPZliwOOpwcTqHigiplHk1Kc5N5aYxB26qGdPTnszM/GOOfM9m6HTncfbQVr716iWq9QrVXwQ58z507x5NPn+cY3/5DeYJ/f+q1/wclTp1hbW+P8E6eo1yqESuFOd4NG54tYMfkS0kda8IWPtZAag/QkYd3jzIkT9HsD3nrnLTwVcGSxxUKzQbtaAxSpzuiPxnzvuxf4ra/+Du+8cYXxOCVqtfjcF7/MV37xK3T3duju7fD9736DSxcv0qqFfP6zr7C0sECkDL50rzeQEHowcJ1RcnFKzF2+RIFUoHyB1vnA4bs6xOeDkSb3mRa0SSny8jo3PCrTievLJFw894OQUuTZXWZae8qsl/knPRMOF6U4C2yRfHDvTdbBP7Q1lgzNzu4eABcuvM3xE2s8+fQ5Op0ug2Gfs+fO0Ovvc/nqJcASJ2OM1q515mRAkMYWRdG5GbWFC0jMnMZ5uRm4yV9h5DmRBxHNRhulBFmWIiRsb+/wows/5u23LnLr+gZ+WKXarHL87HnOP/UcZ88/w2jYZXd7k7feegNtYWtnm8GwT7tVRwqDJwweua2zgjDwMAbGqUYID0/6k/ERYPOG2nZi/WTRBULnWVLCm7y1Jg9Tifx1uc++Ylq452KtRY7xgTe+aBXjukswKdM78Hn6yAsTSnHezX3/ouIeP7mTYnd3j+FwxJ98/zWEkrz62U9xe/0WcTriz/2Ff4P+YJ+dzhbKlyTpOB+QpPMhuu7ktghsvve0k72vACunJWTSTMplPF8Shh7tdoNapcZcewElIUlilAd31jf4vd/7Gq//6MfcvLbB4upJFleO8uIrn+eZF17h7JPPgonZ2rrD17/2u1g9ZnN7i16/R5K0kUKjpHXiNAIrJJUoRFsYp+N8DESEsTHWuLI2a11u8mTkYZAPYTJOUErm4w2NxZh8OBKFNc7zmqVbtrsK76Lj/PTDCabjItIsd5hpO+17lP9tPgnChFKcPyGzGyq32THaMo5jLl++lndREJw5f5KFxTm++lu/A9LihSFhUCUK6wRegJI+lpRJHxEpXT6vcD1inW9WTqzmpIuCceUuqdX4SnHy6HGk8lCea4dpLdy6s8lbb1/kD772DW7f3kYGVV78zOc5euwU5555CVVtcXV9h6NH5qm0Fzj99DP09rbo720wyiyDJMOr1PGiqqsmNRZtDTbNQCiiqIY2rmOgGxvolqwCl+zgcoENbpSn6y6Yy895wSGvf3X3MvnMT8/zXCfALJusYCY9mfI622Iko7UzFtXieutK6T74Jt31H33KJISfkGJv6HA7MKMN3e4+63c2eeftSwwGIyyCt956hytXrqGUh++HhGGEEOquvaU7RQUiHwU4+XnmBHMSmMY+hXXDeBv1BpWoilIKIV3t6PbOHuvrW9y8cZs41VQbLU6cPsOJM2eZX17BqoDtbo9xZrDKZ25phWqzjVEeibHEmSGoVPDDiKLuXFvItHGea6mAYjKZ+zBxl9MPlKJwwGU3uV6B1urJlxt5ISbxXJjxg1kzydgqrp+d1zK7/y8uhJSTveukRekngNJyPhDFgomZS+nCDMoJNE0ztrd3SC8kPPXMEzSbTb761d/nyNEVXv70qyzMr7CwuECSWewwphbJSSYPMreWwp34xXLvLhNQNAfL25xIJGFQJUlT4jjG9xVJqvnu91/jtTffYWd/yNPPvczZ80/xlV/6ReaWVujpgBt31rl59RayGlCr+MyvnWCsM+zmHXqxoTvOWD5+koX1XYwoukRYhlmW7wsNbsHrEQYRUgq0llibYYzrpSQARfEiDFprtJl5PXmXCEE+qNhapLR5c2szyeedzUw6uPdUKh+rqPM8YAki++QsaaEU50Ny93ITRO5hdCdMGFaoVOoM9sd0oj5bW7ssLS1TrdQRwmX8TPrCWjuJUZjJ9cV+zE6sJcKl/M5a0SxLMdaipCJJMvqDETdu3mZrawdjLO25BdZOnGJpeYlaq8VgPyPWmr3egE5/CLJKrTVHY26BxtwCvVHMrfUtbJywsbkz+WhwK2+fqFLlxPHT7Ozssrm5AQQ4GTrLr4TE2KJfkruvsQaEdGLC7ZuLhtrkorJWYMy0NK54i4u+TNP3/KBXLr8w5oD3+JNBKc6HZLosdUs635MEfkAUhMzNLbC0uEo8gO31Hm//+BInj5+hWZ9HJ24qtTFjrNVIa50lES6oUljNop2mE6dFAgqBEi6Z3VoYjodI6eOriE5vzNbWHm/++B2uXrsJRrB69ARPP/cyR48dRYYRt0YdeknK+l6X5U4P63mcP7GGsZbefofN9ZtcuXqd/dsb3Lpxa+Jd1RaiSoXl5aP8pb/0b/G97/0xm5tXMTYE48QohcRTft4SRSPyfkragOcLPN+bNKlO4hSrpHP+5CTJwbCJzTvxTx1CxjiBzrT9BcjDN9NlsJRi8vOjTCnOggcq3r87N80YixZM2mC6Pj4jrl+7SRhWOLp2lCRLuHDhbZ599nn2u0Oa9QpSBiSpy+PVWuce2pnsm2JJa6cd96w1GCGneyoLaZIRhj6BHzEYdNje2WNrZ4/9/hC8kHFm6AzG3NzqYb0xV26us7W3zzDTpFaQWUF/nBBriwyqdHpDNm9vcOn7rzPo9ag1apw+c4ajR9fIMsXS0iqvfOZVvMDDWsGbb75DZ6+D1qnzXijpPmeK5y/A81wRulJy0vpEiOlqYGFhgUajwenT50jimK3tTe7cvsPe3t7kDyKkwBo7E7t0+1VVOJtm9qifJEpxzvIAAp2Gzx3GWCcgCVpb4jhl484mlUqVxaUleoMed+5ssrPdobc/oFlvuCVe4uan6HwNWAQPnBOFyXLWned5lwamU9BsEZKwoJTHOE7o9Yfs9weMkhTphcSZpTccs7nXR0vF+vYu+/0RmXb1LtpCfzhinGRYFKNxSne/z80bt7BG016Y4/TZszzzzHMM+glzc4scP3GC0WjEcDDi+rU77O7sYqxGWjFJDyrCGQI3APjgAN7ZWU6NeoPl5WVe+dQrDId9Lr13kUF/QLe7P/HoSuWarbmOFcW775xRTvS2FOdjwT0F+v70MykkUkjXPAtIUzdlLIkF//r3vka73eQ/+I//I8ZJzDe+/cfcubPNH33ju/zSL/0Z5ucaIP08GSFzoQqmyzKF8z66vFYnXmnMJFHCZc4IwjBCKkWSpgxGY/rDEUlmwA9prC6w1e3zxo/fYT/zsZ7HnU4Xg6VeqxP6IWmS8d3vvE467JH0O2Al8/NL1Ftt2q0mP/fFL/ALX/4KL730KXa2usTjhFu3bnD+/Gl+4Re+wIULr3Hr9nV07PKA4xQ8jEs3zF+My/TRpFmG1rmvW7p9p04t1VqFo0dX+ev/zl9lb2+PP/iDr1GrVVlbW8MPPJRS+L7i6tXrXLt2nfE4zhubueWrS0q4RzrhJ4BSnA9MYTHdpcydIEXNZ5rHPREwGsX4wZi5uQVSndJuzdHvDbn83lX6n3uVRqOWt81UGCvdpi4XnkAgJmGBqYUh/+0ujicmS2kQaGMYjcYMBgPSzAnXjyKMhdE4YXtnFzyfOE0JooAoDJFCYDJNZ2cXHQ8hHREGIX6zzdLqCkuLC5x/4gkWFxeJopD5uTaj4ZjRcIg2GVnmBvBa8qZkxcdL0XEwt3DCOKeXNrZIAgKZf7j5inqtSqNRQymBHyjq+aiI+bk5PN9HKUUUhSRJyq1btxEimVjm6aAl502fJizAJ0GgpTgfljwf1PMChBAkaZannEFUq1FvztNqLoAUnDp5lkvvXeaNN97iF7/yZdqtJu2FEIzFkDrniXVtLydB/dxyCswkUdRq19ZPoHJxelgEaabZ2t7h9p11xsMxxniEURUVBFgpWd/YQAYB1WaTahAw12zgY8nGY3Y2NlAmoxZIFlYWqEcBHoZjR4/wlV/6JbI4Zf32bZYWV/C9KsNRjTt3bvLaj37A+uYtMjNGqWleazEIONO5QBPzvrfOaggrAc1mg6NrKyyvzHPpvbdI04woCvjiFz/P4tIiAonn+dTrDay1XLhwgfF4jMljrjrPSCrim0qpiWDvlfr3qFGKEw76ee6+/n1/38IyWDduIXUBdc/zMUajdYrONDrTZGmGUC5IPxyO2N3Z5eq1a1TrIbXmidwyKqTI82vzk8m16bQgQZEL0+Qhg8yglAAj0FojpY+nPIbDAd1uhyxJyKxmPHZtMhuNBlr6eEFIe65Fo1GjUY1I+j3iYR+RpgSepBFFHFtdYXm+zYnlBdrNBrUoJGo28T2P4XBMf9Dn9p0bvPnGm/zoBz9kc/021mRu6Jl1YyJc2EWwuNhG+QrlKXQupiLEYi0sLS1w/PgRPv+Fz3L27BmOrB5FSo/TJ59ASIPF0Nnr5iEqyWAwZDAYonOnkpJykstbrCJMHjMtLh91SnHywX6gg8vKaSK6QVuLTaxrCRJWyLCkmfPAZpkmSVOUVS5hfDSm293n2o0bNFo1zp1fQ3nFp76rwhC519FYgy5WyfkaTlgw2jmBXJ8jgc40MgBPeYzHY3q9HjpLyYwhHo1RnqJar4EKCMOQxbkmlUpENQrY39lkuN9BpBlBENKoVlhbXubksaNUQoWvFJUgYH5ujka9ztvvvkuv1+HWreu89qPv8ztf/W33/khnwYsZMwbwpGRpeZ5qNSKsBMRJRpJmeQoeYCwnTh7j6WfO8+qrr3DmzBmMFlQqNebay9y+c53tnQ329/cB5/Dq9/su82oy2FdC7iBzzbPdh9VdsdJHnFKcFIFwtwwTssjnFLnFsgfU6/Y3chIOcBvDIqcU8r2Qztjd3QUBW5ubSClZWJjnhz/4Ib3eHi+//CS1ekBUURPrkJHl1td5JgVgA4kn3fLOaI1JYXJSKpdVY6xmbe0o57s9wvofkY41oNnb2UT5AU8/+wKtVovl+SbD3j6d2xtcu/Q2w94+gU5Zrs/x7JmTPHHiGMeOrlKrVMBqdDYmjnvc2d/i6pV3uHz1Cl/96j9na3OHpdUFhJe/N2ZalKpQVKtV/ubf+TWOHl1hcWme0WjMeDxtUm20ddPbqhUajQZZmrG4sIrne0DC/HybSiVk/c4m/X6fmzdv0uv13FI1j3Nm2TR7qFjGftIoxXmA2fxMm/9fxORmjnLdEYScOB+m4nSCybKM27dvIT1FnIxRSlGpVNnd22Vzs8qgPyAIBNWqn4dIirQg9/g2dxAZY9FYfEXugHJfQuZtv6xGZBn1Rp35+Xmkp4AUk8UMB/vsd3dJ4yFp7DPsCbo72+xtbTDs7mGzlNWVJdZWlji2uspco04tDAiVRGtNkiUMBz16/X16/Q7xeEAYeSwuzdFoNiDfa1otXa6skPjKo1atcfrMCVaPrLCyvEiSJCRJOnlfjXF9dIWU1KouN1gplw5pTIZSkiAIAMgyzWAwyO/PzAelmKQBwvvT+z4JlOIE9ExhsJ97CJMkBev2SYUgJpllQqCU2+vFsWubGes4fwRBliV09/f4P/+P/53FpSWe/9TLVKsVlBJsbt1ka9Pj5vXr+OoYK4tt+nFClibEOj8x/QitnRWN4wQpNAQG31NUwjq+8lyGUJySJCOyLGZhYY5TSYaPRo/7xIMRxlr6wx6hL/A9n7S/z97mBntbG3z25Zc4d+Y0f/tv/LusLC+yurJENu6hkxHbW7cYjgbs7G7T7XfpD/v09ndZWm7z3/33/yWD4Zj9Xt+l5gFBEKKUIvA9mrUage+zu7ODRTMYDqlVa7Ra7YnzTOR79MAPCYMIIQSD4T6uisWbjDjs9/v5cnYwCVWBW934ge9aheZL2U8ipTjJl7B5KGB231L80Z0FM3eJU4iMLE98F8pDWTnJtXUnT8BnPvsqi8tLnDxzhs3NTba3t7hxK2Zvd5d33n6LwIfVlXkXtxMyrzhxHlupPEQ+wk9gMRYyY7E2y8f0AcJDSonvK1rNOuMkZWV1kcwYdjoDrI5Jh/vsbN4m8DxCa1hbmef58yf53Csvc2JtjblGBWUz+nvbDPZ3GY8G9PZ3SbOUNI3xlKReq1BrHSeMIubaLVrNFsuLS3nerPugklLmHyzOk6w8DykE1ahKEAQEfpBXsOTilArP84iTmCzN2NrezsMigvFoTBwnCCEIw4DRyMPzPHzfy1MfLTrT+RLXzvxNROkQ+qQhVZ51ky9HHXmJlhTTsfE5tkjetoYwDPMC4WlKmZCCWqPOX/mrv8Li0hIqDHjzwgXSdJQP4+3y/T/5LlEoOXP6GPVGA+WpScGVtQLpeZM8UWs11rhAfmIyRsMhAmg151CexPMD6n4NqRSnTx9HY+nFY7QekwwSNm/FRGHI6lyLZ598lq986Yu8+uILtFsN0tGQ8bDH+maHvd1thoM+/UEHz1fUmw2qlZCwUmf1+FG8MEBbSyWqUas2Jrm3uU8ZiyFOx2Qmoz03h5KKQPqTtDudv7di5l+/353sK5MkJUlSOp0uo9GIleUjVCpVBoMRQeARBG7sBNbO/J2YOIRcTaizpp8Ei1qKk2kIAMhTQgVRNXLyzCv8jTZ5raHryLe0tMTa2lH+3J//cyzMz/PWO28RBAFzcy1ac3NUqhWENLxx4Uf83td+n9UjR5ifn6NWDdnvDvmTP/kRzUad82dP8sLzL9JstAm8kESnjNIYYWQ+HEkhrHTOKk8graI9X8GTiqpfIbOWVGtGoz7WZvz63/hrXL1+i+/94HWGo4zMCF566WUW5uY4sbLMfKvBQqvJeNTldm+H7Y11siRBJzFz7SZzR5dpzJ/H8xVe4CE9iVQSGTgPsVWugNrYlBSNtoYkcTFaKSW+8Am9Cp5wp5bbMw4ZDYb0en2SJKHfd5dxHFNYUt8PMMbS6/X4vd/9Gq+//iZRGOVTvhU3bt5kOIwRuLmnnlLOgmrXVcIlv7sVxSfFY1uKk5kawOIyb5chhMthxQAyn9+ZH1ypRCwszPPSi89zdO0o0oNqtcrq6gqLK0sEUcgbr19gNBpw+col5uZbtNsnaTRqjEY9Nta3WL+zwcadDdInE5SU+L6zTNqMkMJZcw/pHB95kbNAIj3l4nq5A0kIS6YTwPLcs08xPz9Hmmn6w4RMCz7/uU+zND/P6sIcOhmjxyMGnX3GwxH9fhfy5mZRFNBsNVk5soryFah8WS8sSRa7kjbPFU9rm6GFJrOG1KTueeGhpOv+l6aZq0BJE/q9PoP+gE6nSxy7kM9gMMxDPwYhJfPzC8TjmK3tbS5duszrr18AC77v0WrXGQ7HZKnG83LnUx5KcZUqxTiNn+FJ8zOgFCe45lN5YrmSHkIKRqOx+4PnOa3FnrQgSWL6/X129rZotqucO3+KpaUlzp07h/IVVkC1GnD+yVM88+KTrK2tsbAwj/IS3v7x23ztt77G+s07fOeb3+LEsTWkgtb8otuvqgCU62Or82whz/fBuOXtpSuXGA77kGqOrK5y5vQZtB0ipGW+Os/K/BxPnjsL1kfg4YUBw9GAS5cusLe9zd72FmvLq7SbLT79+VcI/YAg8POSNJCBl6fh5V5o49qiaCyjLCYzhsxogqCCkh7VyMcloiu6O/v0ewNuXL3OeOTS/aqVKlEUkSQJUkpWV4+wsbHF1laHf/J//zMuvnsJqeSkDUkcjwlDjzRx+8o0TSeTz4rufkUoZVaQnlf0KTKfCOtZitPOhE1skcwqcmHOdJMTguPH16jX6ywuLlKtRtRrVRdoD3zac8182VoF5fakrXYD5QuM0rRbbWq1Gi88+xz1sML2jTvMz9XAaAaDPvvdfWrNNkIqKmGFDFex0uvvk6bOK4vRWJuxub1FlqUsNJsTx4vWGVmaAhmeUtSqAf3+mNGoR9o3jOMxqY4JQ5+FhXnac20a9TpB6OP7Hr7vI/I8VWMyl/8qXVaSNi5/1uYd8ZR0LVWyNMPYlPEoxWjIMsugO2A8jBFCEo8TLr57edK6MtMapSStVovd3S7r6xvcub3O3l4HIQsvuMzDSsUwJTuxwpM/2YzmioLsItd2esyjLUx47MU5FaJD4ppWFeVP0z+w8hRf/oUv8cQT5/nSn/kSGxt3uHXrBkePLNOea7B27BiVqEYYRFjc6L25+SbNdo355dbkBPqVX/6LdHZ2WG1H7Gxvsbu9yX53j831deaWlqnWmjTqbUZJwjAec+v2Ort7O9y8cc05htAIm9Gs13jq/HlazRbSSpLxiNF4SK1aQXk+Qvpcv/EON27cZJykKN9nYWmJYyeOsDq/TBQGSCFI04RUW9wkM4uwTpxSSQIVoq0hNVnx9rjrCfHwudPZYn/QZ/32FuNRzLAfgxYo4XHi2Am6Oz2+8Yff4cqVq9y8dXsSK5ZCuuQJY4jjBGMMKnemhaHPeJSQpIWltIzH8SRpfuoxZ9LOpLCmWt/VLPeR5zEXp0PmzbGKZRW4OBy4TB9t9OS6MAppNGpsbQmGwwH9QY8g8ql2trnRv8bmxibzi3NUGzVqtRphFNJqtt0vsuALaLUafPbzP8f2xh3Wb10HIdna3GLw/R8QVqrUmnMI3wcpGY7GSOWxemyNRq1CvVollIIo9GnPtQnCAC1SavUIz4etzdvEccpgOOTOnQ26nS6rR9eoN1scWT1GVKkiIuXauAuJL0OX5AN4QrkyNevmwyQ6xQpQnkd/PGCcxOzu7ZEmGWmSYYQgbwjIzeu3+aM/+BbxIEWnhlazRbfb5eLFi3Q6XZIkOfCeu9BLJQqxQDwek2UGSNHaZUd5nuvSZ61xuceGSYeDg0vaB6yWf6QoxYlw8USbnwTWJYCqIMBdaSbBdmNtfnIYkiSm1+/R6XTzuKZka2uTd999h7WTx5hbmGdpcYlmo0W73s4zigRKWqq1iCeffIr5VpN6JeD6zdvs9wdsdrp4YUSl0aJSr+OHIanVKF8yNz/P0sI8S3PzVD3PbUm9FCkgNQlh6CFlwI1ru+zv99jb23Xe0TSjXguZbzVYnJvHKoGRApu33JFCYY0h0zqfCeP2jsZqkjSZFEuPk4Ref8CdjQ2GoxGj4ZggiPCUjy8r3Lm9wbe/+T363SHxKMX3PLTOGA4HZFqjdZHa6N5Wz1N5mZiPEC62aY0hmezxXTd3cPvMYqaM6+BH/lifLDEeRHzQCxRCfLJffb6sde0qyZey7iRyLTCmHeGkgLVjx2g06qwsL9If9Oj1ukRRnahS4eTp43z60y/yK7/yF7h24zqdbocwCkmylE6nQ71ep1Gv88Lzz9Ks1wmALE1I4phub8BoNGZzZ5feaMxur0ecZaTGYoTF9z0arRrzc23mWi3iYY8sjRkNu9SqEe1GnVajjsDygz/5AWmaIqXb29WqVYxSKD+gPjeHX4kIogo2dTmuyXCMzgw60QjjlvNeXuGRpAmj8Yg4GYPnugJqo6nXG9QbTf7nf/C/8uaFd8AI9nY7XL1yA5O6JaZr9wlCmPxDzcWMJ1mQ+V5fKifANM1joCLvpCfyptQ4EfqeS0RwGVlm5liRV6cUHfngUfPcWjuZMHMXpeXkXl69QpR5SVLuqd3d3aXX69HpdMiyhDRLkKKL7wekacrS4gJbWzvcvHGbre0tVO5oqTVqxHGKMX22tnaIhyOqvk8Y+IRRhZYMqFYzrPSIBkOE8hkmCYnOyGzujNGWwf6AbJyQxAN0lpDGQ0yq8YXCk15unT2UcvHRKKpRqdbojYboJKHb6yBHHtLzIBNYI7CZdUOTtAQjEFagKEYeQDI2DMcZ6xt3SLIU5SmazRatVp9rl29x9b0bYGE8jkmTxDWTtkU9gJgUFVhyB/CkJ1LRZfD99Z7F7UWoyB74mh5ztxAfJUE+CI+55SwQM18wzUC3dx3xvi1OfqgQgjAKWFtb5Zlnn2R9fZNer49Qkk9/+hX+m//2v+LGjRvcvn2Hfm8PKQzz7TrHjx3j3NmzVKoNlOehrSZNNXGcOWFqTT92wfvr165x584dNjY3qFVDZ01rFer1Gu1WkyhwOcFS5l3as4xqtYof+Ox0dxinI4Zxj+5+l85+l8CLCPyIlcWjVII69UobaT2EVZAJPC+gXmswGA7Z7/X4e3//f+TmrVt4nkcUBoSVgB+/cZG9ve7drcnzN8n3lStzM+aukQkHxyu87y8xY0NmDylqNj/M6XN38+lHg9Jyfij2wPf2vrdOrhDTZlXGGPb2urz91kX6/aGL6SnF5UtX+d3f/n3W1zfY293l1VdfptGoYvSI3d0ub6Xv0GrPE0URfhjkxdeKOE1Js4xBv0c8HrsR8mGFRqWO7ynCIGBpcYXA9/E8jzByI+fjeEySJgwHI6QXooKQ+blF0ixmt+/GDipl6e71iTONEoI0SdgZ7HLt8i06uz2EkSjlEYU10iRlNBpz49odtnZ2UFKiPIXnKYbD0eSNEeLuOZ6F5Tsokg/bJ97v5mlLkg/mURLlh1GKE5hK7yf/yxYJ18ZYup0euzudyW3K87j83lX+5W/+Np3OHuPRmC998UssLa6wsXGNnd0ON27eZHllhVqtRqPZIgxCqtUacV5mtd/pkmUZvvSoRVXSegtjDFEQsrx4BIshTRPCsI7nKUajlCQx7PeGRNU6FatYnptH2wQtRwS+pBIpursd0iTBk4LxKKaz3eV73/4+l9+77rJ9pIcnQzCgM8PNG+sMhr17vkcC8qwdXHzSgs43jPb9n3MPzSfdAXSQUpwfBes8uEK4YdizfWzAnbSdvQ5//I1vTBK1/8W/+JfMzbXY2d7kzNkTPPfcU4RhFSE9Bv0BYy9hPE4mCfXbW1vs7u5x7fp1zpw5w5nTZ+h295BKUatUGY2H9MYj4nicW3KL8hWLS4vML87TbrdptGvEicDspkjPElQUlapPLFN6gw672z2uvrfBW++8zXvvXqcY/TCpV7WQxSk+QZ5KKPJ6UpeJk5kMU8zvVK4AQGcGW/TeKnkoSnH+KTDbXCpJEkajEQBKKS5evES9VqXb7VCpRpw9dwahBiilSJM0LwELqNdqeJ7H5sa2KzW7cZO1tTWazQZxPHL73CAgyVwdaZLGWOtaTXr5srNarRBGAYHvkWk3v1ObFIMmjHxAkOqEwbDP7u42nU6X/V7vnq/JJ5yMnijCGgKwwg3KtbgcZKHkgcL0koelFOdHoHBSFP1rZmsKbV7WVBzjnDWS73z7OxRe4P6gT5ImzhtrLaPhKPdgCuq1Or7vc/36dUbxiDgZ8sILL9Bo1On395FC0Go1kZ4gTsf0+l2MyVg9spDXT/oEkY/vKzwJVid0utukekxmYhZW5xBWsbvdZ3+4x/Xb1xiOB+6FqSLF3gX+rQVNirDFKELX9aDIvy02ejZPSHCdIiRW5LNgSh6KUpwfgYMj5ybF2UU+bi5cpdTkONfhwN2+vb3Dj998FyGcWJMkze8r3LJWKXZ397AYwshjfX2DS5cuI6WlVq1Siapoq2kkNYJQgjVUKs6T63kevqdQeT0oWILQI4vB6Iww8lHKJxyMEQriNJ4MtZ0m+uc9eyb9koqbXR/aohhg2tYlj5mYiV4/gXk7PztKcf4UOVgJ4fv+TIuTaT9VKd0x63c2uHN740MfN6pEHF1b4dLFy4RByDPPnqdaqVCvNlG+xKoUT807h4zIEHkOrCclSgqXyC4M1VqF1A4ZJRlRLSAMQsajMV4oiLMEXXhDi+C/K27NW+laEK77oKufnMk7zpey1v03yagq+WiU4vwpMmtFp1OZiyFHKWmaMonBTLC5iMWkSbLNEw8AtLEkacLG+hZaX+DWrTvUGxGVSkh/sIfwLNUowtgUa1xTLs9XBIFC5EXiKSPGekBmE4QHYdVHk5Boiyam1gw4eXYFzwTsHx2h8v48aWLYuL3F7nYXPJfho6RE5PWtJpv2WJp0IdRuurQzvrY0mx+BUpwPyaz4ZnFFwO/HGDOxnIVjpbBPRRL4tPRp5jGF68Qw6A/RRtMf9Ont7zMajdjvdajUIqJqQJymmMl60qCk6/CgrSExY+JsRJLFWGFQgXLiQqPJCCqSxZUmJIq5uYSgUnHVIIOM0XBMd7dHMaZQ5DpUQrrG17bovesGCxmKcfT2fZU9JT8ZpTg/AsV+Epg4f2YzYLIsmziKisyWYh9q7VSkaapJkgxrtZshImU+mzJvPem+pV6rsrS8QL1RJ00Tfvf3fpvzT7rGzP1BTJrG1BtVVN6tYJwNGcdjuoMdOvs73Lh1jXqrSnOuRq1WQSDY1DGVhuTUE/M889xJAi+iUW2TxJa9rRH1WojAcvvGJnGSYjyNpxSe70b6WQtZ5kq+PM/VeboeDm6paybxlFKkPymlOD8Cs1krBy3orFBnxwW4++XH5En3bvuW5/LmtxtjKYYCFfZHeYowDFDKQ2vD9RvXqTdr7HZOgzX4nofveS5xPLei2mTs7u6wP+jclaUolZuSZjFonTKK+0ShyyjyIwnC4IWWxZUGJ8+uMBqP6feGDIajvHePmejNVfPImfxXMVlBiHvmLpc8CKU4H5LC+ZMkyUR8wF1LV8/z7soJdZa0sCQKJRVS+m4gkXV9gKw1uWPG1TQWeatCgu95RGGIp3ziOOW1N94gI2F+tcVTZ84x15wj8F01jSFFAdZkXH7vEsNkQGulhh94aGtQnkIJiRCW/mCf6zevEC+OaTbarvtAYuj29zl2ts3qiTYiENy5uc07F66TZYYsMZPURTcr1OQdDwBcu8wi9mlMKdCHoRTnR6AQYRHbnI1pzi5lwS1nPc/DmNRl0uSj4zOd4SnXf1ZZz41jyAu+LTYfNQhWCLrdHlmm+Vf/6ndozzdZXl4hTTU/+uEPMWnCysoSi4tzBIEiCD129nbY2dshTTOU8mg2W85LW/MZJ2Pi8ZhbG7fp9rv4gWJheY6VpVVOHD1Dmmg2W7vcurHB9sYen/vCy6zf2uXSuzfJYje0V8rcCeTiKQfahLiZo9MeTCU/KaU4H5JClAct5mRcghCkaTppNhUEQW5Js1yceXhFm0lTZmEUYlJX5S5FcSmg3x/S2x/Q2d9jaXmef/tX/xJJEnPp4iVq9QqjZICRKdVqRKNZo7PfYWdnB2MsXuBRq9WJ6gFhNaDb3aW732Fje4MkTghCn7n5FqtHljh+4ihpYvD9gJ2dPTId89LzZ5mbm0eF0jV0LuozhcCKot9u7jSatH7J476lOh+KsmTsp8zsPnO2imKaIA9OfIppsffUe1sUd0+dKPljCDcRGgFKuRjq/OI8Tzx1ik9/5hk8H5QnqFZcs7GTp44xjsdonbGwMocMJFqljNIho3jA9RtX6XT3uH79CnPtFsePHeWZp59meWkJYRU6tYyGmlvXN9hY3+H2tV3W13f5oz/4Pp3NEZ2NMeD6AYVBhDFuwprNC59D33WSyHSaz5H5ZPX3+WlSloz9jDiYJTR7fZH9k18z+X7WyjgOhiDsJEtO5L100jRla3Obufkm21tdFpcaeJ5PrzfAWktUCXMhu7YjAsl4NGQwGtEb9hj0RyTjlGqlRqPRoN2ew/c9jHXjAzECpQKqtYhWu8H1KxtICU88eZYr3KGzeSt/TnePRJi8qjLE+ZEpLefPnMJKKoop1nczazFnL6d3FXm80QtcczIpA/7T/+zv8tLLT3PpvXcZjvr0+x3qjRqVapXVtRWkJxjEAwZxn2HcQyhDEHisHl2gXq/QatfJkpGb75mmhEGFhflV4pFhPMp47fvvImzAi899nv/nH/0m/9v/8n9Nn2rmZmh6XuQ64WmTdwo8+FpK7kVpOQ8dxYk7a0lnr7//3Yq4pzHkTbLgO9/6Idcu32R7d4swkiwu1zBWkGUWYzdAWkbpmKAaUKm1ac/XCEKFEhqjBUmcEgUhKgwZDPpIJV0ecGHVBVhjGI9HZFnKpGXfJJxSHOayiDJtiszcP4X37vGgFOfHxoE95fuuv4dIZ3xF1oDRAhkpoqrHH3ztW8QjVzN67OQiP//l50Eossyy29l3DbtMxpHjR5hfnOPo6hGCQLG+dZ00NozEmFZ9nmoldOJDkmYpRos8Ud+idcZ+t8t4PJo+HzN9bsYYZG7aXaXNn8Lb9hhRivNnTiE6N+vjwYof796DCuk8pZ5SpLFmb2tIpg14bqTK6bNn+Pf+zn/IaOQyhIbjEdpakIL3rr7H7//2N9m8vofRGWvnGhw/tcAzL6zhK0Fci1x+j3QtMaWS+D60mk2Gg5Q767fZ7+8jfKbF1NLDIshMVhjZvGQs72tbVl0/FKU4PzYe9GSdhlWKNe1sKzKjjWvGrGbyXj2PStggjjXGpGgtXccGq+jsDLh66RYXX7uOTjOMd4JqzSNNVslSTZZpVD5j04WHFEopwtAnTVy+rck9r0KAzcMpzprbybJbSkvpsfholOL82HiQfNODVtX9bIwF41LzJul4eWcCnVi+840f8Gu/+ncxwuSJ6MXGEMbxmPF4TDLIiEIfkSl8QmpBg7nmAs12lTgZkSQJ+/tdGrU5oqiK53lUq4rlhWXe+P572DF4gXLxWu2achucQO3MaAT7QK+z5F6U4jzUHCwvK+Ki7ltb1E3mDZiLxrBpmrHX6Tph5lk6rlhFugwko7HaVcPUaw2isIbAYzSMkdISVlyxtqfc6aG1S+DXmZtbkqVu+Wq1BVn0CnKVKe7puMJvO3kNJQ9DKc5Dz1SgRWmWUp6LYGQZhQV2NZQC4TqNofNcV200Os1c42ij8sd0j6eUx9LCKs3GHAKfve0O+/uWs+dP4CkPE7mEgjiOSdKU8Vgz2N9lMHAtMXXmOrtjTV4yNpNQIUDY/OOh9Aw9FPcuPiz52XCwl/WHHFxUq5h8bxcEAUr6YCRYBXgIPKyRZInBaAHWQ1gfrA8ESBHhqRoChac8lpeXWZhbpBY1GfRHbG/uYLTFU4pqpUIUhAReQBRG+IGXj2bQRC2FVNN+SUVyu+vgnlfYlI2+PhKlOA8LDyzSPCsHZ/mklDgVyMmXNQKdWowGN7FI5V8eQvhIGUBu6UI/xFcBUnjE45RBf0Q8TshSjVJevkQlzxlWSKXwPIkfCsRdZ09uIa2l+EdpNT8S5bL2EcQYg7CWJE4AgRRe3gUBZ0Un+0yLEBqEctOBtJcXQyuk8Bj0Y37zN36Pc08d49Wff4Z6K6AWzfOvv/oNGs0GTzz1JPE4I44zbt/co1Zt82d/8S+wfrXHb+5/3e0mPSAlL5FzpXEuv7bsI/RRKcX5cfJQRqXI3c0dQsWw3yKGkZdqFQdNnTIuY8AyTQ7Q2rC1sUOl5rNwscnxU/M0WxGKGuiIcd9irI8ioF7Bjfq7sUFnt4dOXdxUCoFh2vOoeI5lEsJHp8ytfWS4/wa1KD97P8V1RQWMi18qITA2yWsuM2r1CnMLDT7zhZc5e+4Er7zyHMqTDEdDWu0FGvUmgVdhc2Ob//ef/AZvvnGRC6+9gx96CClIxilSSDeMKcuw1t5VSlcubT+YMrf2kcceuCwo+tJ+EG4yt+t5KfKfjOuXCyRJSme3z9VLt4mHmopfx1rD1vY2rfYc9XqDSlhle3uH13/4Ntvbe26uZhFOIV/WKjWJcZaC/OiU4nyk+CDr+GEUHRsAaxFSFNeSpm6M/M3rGwx6CbWoSZqm3Lp1i0azSb1ep1Kp0Nnr8s5blwHXz6hwAGGnzc6KmTClOD86pTgfGyxKyckU6KJbAzDpXtDvDRgNx2xvbWHy/khKKVTe3cFl/Yh8FotHMjNl2lp7l8WcXdaWPBylOB8TJjoUB6+fdgnUOiPLUnq95D6PIZByOlqiCJlM768nYiy63H/YsNyS+1OK8zHh4Ij22S6B01669n2tVQpRFU3LCotYhEzAtUwxxpCm6fss58ERFSUPTinOxwhj7DS9jqk1KxpfF9fNzhgtrpu9vfDAFlbz4ECn2UlrpTAfnlKcjxGzVm3a4Ppu8RT9dmdFOCu+SX/amccqlrCzx06qUkqBPjSlOB8zZpemsxZx9vbZPeSsKIv7FMcVP8dxPLm/UmritS1jnB+NUpyPMfcSZsGsqD7suNl9amFJSz46pTgfI4q9YJqm7xu6NCvG2aFMxUTugw6ju9ph5t/POplmO+GXPBylOB8jir1h8T18cIhjVmQTJ9ABi3owVDJ7XCnMj0YpzseEWUfP7F7zoIPnfnNHszxndvY2z/Mmy9jiMe51XMnDUSa+P0YUscqCWY8sTLOGilBK4XGdHS1RHDNrTWeFXjyW53l3XVda0ftTJr6XoLV+n6U7uEydDY3MWsHi9tljZjOCDlKm7310SstZ8j4+LOXuQVLyyrS9B6e0nCUPzIcJ6kEEV4ryo1MGpEpKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDimlOEtKDinCWvtxP4eSkpJ7UFrOkpJDSinOkpJDSinOkpJDSinOkpJDSinOkpJDSinOkpJDyv8PuPaHbKpI5BAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.imshow(pika_mats[\"not_pikachu\"][120].astype(int).reshape((img_size, img_size, 3)))\n", - "plt.axis(\"off\");" - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "id": "6bb5ee54-2154-4336-a2b6-07f5793f4006", - "metadata": {}, - "outputs": [], - "source": [ - "X_merged = np.vstack([pika_mats[\"pikachu\"], pika_mats[\"not_pikachu\"]])\n", - "y = np.array([*np.repeat(\"pikachu\", len(pika_mats[\"pikachu\"]))] + \\\n", - " [*np.repeat(\"not_pikachu\", len(pika_mats[\"not_pikachu\"]))])\n", - "y_numeric = (y == \"pikachu\").astype(int)\n", - "\n", - "pika_X_train, pika_X_test, pika_y_train, pika_y_test = train_test_split(X_merged,\n", - " y_numeric,\n", - " test_size=0.2248,\n", - " random_state=SEED)" - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "id": "4d7bb791-f00e-4a9e-bcb1-0c42015492bb", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1 0.7172413793103448\n", - "3 0.7551724137931034\n", - "5 0.7586206896551724\n", - "7 0.7655172413793103\n", - "11 0.7931034482758621\n", - "15 0.7793103448275862\n", - "25 0.7931034482758621\n" - ] - } - ], - "source": [ - "k_neighbors = [1, 3, 5, 7, 11, 15, 25]\n", - "accuracy_scores = []\n", - "\n", - "for k in k_neighbors:\n", - " knn_pipeline = Pipeline(steps=[\n", - " (\"preprocessor\", StandardScaler()),\n", - " (\"knn\", KNeighborsClassifier(n_neighbors=k, n_jobs=8))\n", - " ])\n", - " knn_pipeline.fit(pika_X_train, pika_y_train)\n", - " pika_y_test_pred = knn_pipeline.predict(pika_X_test)\n", - " accuracy = accuracy_score(pika_y_test, pika_y_test_pred) \n", - " accuracy_scores += [accuracy]\n", - "\n", - " print(k, accuracy)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "id": "62949d01-2715-47c4-9ad2-5bad7ab380b7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "4" - ] - }, - "execution_count": 66, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.argmax(accuracy_scores)" - ] - }, - { - "cell_type": "code", - "execution_count": 67, - "id": "27b66a29-9045-4fbb-ab9e-1e8b70f021f7", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "11" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "k_neighbors[np.argmax(accuracy_scores)]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9520675f-436a-49d6-8a90-4128cedee491", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 65, - "id": "7d2a05be-9561-4a93-9d98-444d11d7b99a", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmS0lEQVR4nO3deXxV9Z3/8dcngbAvCbkgEAJhSXBh07AqAu3YUm1Fu2jo3nlUplO1amt/Y5epjFOrXazL1JmptU4704641Fo6otbWDU20RIisBpIgkIiShbBDts/vj3tDrzHAxdzkbu/n48HDnO85J/dzuPjOyfeecz7m7oiISPJKi3UBIiLSvRT0IiJJTkEvIpLkFPQiIklOQS8ikuR6xbqAjrKzs33cuHGxLkNEJKG89tprde4e6Gxd3AX9uHHjKC0tjXUZIiIJxcx2nGidpm5ERJKcgl5EJMkp6EVEkpyCXkQkySnoRUSSnIJeRCTJKehFRJKcgl4S3uGmFv7nlR00Hm6KdSki78vufUdY8ded/PbVE14K3yVxd8OUyOlavnITD5dWc++zFfz0imnMm5gd65JETqqppY3SHQ28UF7L8+W1lL9zAIAZuUP5zOyxUX89Bb0ktKc27ubh0mo+cW4O63bt5dP3v8qyC8fzjQ/l06dXeqzLEzmueu9hni+v5YWttRRX1HGoqZXe6cbMcVl869zJLCwYTv6Igd3y2gp6SVjv7D/KTY9tYFrOEG7/xBSaW9u49Ykt3PdiFS9tq+OepdOZOHxQrMuUFHW0uZW/bm/gha21PF++h8raQwCMHtqPy2aMZkF+gHkTsxnYp/tjWEEvCamtzbnxkdc51tzGnVdOp3d6Gr3T07j18iksKhjO//vdei655yW+c8mZfG7OWMws1iVLCthRf4jny4PBXlJVz9HmNjJ6pTE7L4uls3JZWDCcCYEBPf7vUUEvCem/it9k9bY6fnD5FMYH3v3r7t+dNYKnxsznm4+s53t/2MRzb+zhR5+cRmBQnxhVK8nqSFMrr1TVHz9rf7P+MABjh/XnysIxLCwYzuzxWfTPiG3UWiTNwc1sMXA3kA7c7+63d1h/J7AotNgfGO7uQ0PrfghcElr3r+7+0Mleq7Cw0PX0SjmZN97ez6U/e5kF+QHu+9x5Jzw7cnd+XfwmP3jyDQb16cWPPzWVD0we0cPVSjJxdyprDx0P9le3N9DU0kbf3mnMHT+MBfkBFhYMZ1z2gB6vzcxec/fCztad8seMmaUD9wIXAdXAGjNb6e6b27dx9xvCtr8WmBH6+hLgXGA60Ad43syedPf97/9wJJUdbW7l+hVlDO7bm9s/PuWkvwKbGV88P495E7P52oPr+PtflfK5OWP59sVn0i9DH9RKZA4da6G4sp4Xtu7h+fJaqvceAWBCYACfnT2WhQUBZuVl0bd3/P6biuT3iVlAhbtXAZjZCmAJsPkE2y8Fbg59fRbworu3AC1mth5YDDzcpaolZf346XLeePsA//WlmQwbGNlUTP6IQfzhmvP58VPl3P/Sdoor67i7aAbnjB7SzdVKInJ3tr5z8Hiwr3mzgeZWp39GOvMmZPOVBRNYkB9gTFb/WJcasUiCfjSwK2y5Gpjd2YZmNhbIA54NDb0O3GxmdxCc0llEJz8gzGwZsAwgNzc30tolxby0rY5fvrSdL8wdy6KC4ae1b59e6Xz3o2exsGA433ikjMv//WVu/FABV80fT1qaPqhNdfuPNlNcUXf88sfd+44CUDBiEF86P4+F+QHOG5eZsJfsRvsTgiLgUXdvBXD3P5nZTKAYqAVKgNaOO7n7fcB9EJyjj3JNkgT2HmriG4+UMXH4QL518Znv+/tcMCmbp667kG89toHbnnyD58trueOKaYwa2i+K1Uq8c3c2794fmmuvZe2OvbS0OYP69OL8idlc98EAF+YHkubfRSRBXwOMCVvOCY11pgi4OnzA3W8FbgUws/8Ftp5+mZLK3J1v/34DDYeaeOCLM7s8F5o5IIP/+Oy5PFJazfI/bmLxXS9y28encsnUkVGqWOLRvsPNrK6oPX7WXnvgGABnjRzMsgvHsyA/wLljM+mdnnxPhokk6NcAk8wsj2DAFwGf7riRmU0GMgmetbePpQND3b3ezKYCU4E/RaNwSR2PvFbNkxvf5lsfmczZo6Izr25mXDFzDDPzsrj+oTKu/t+1PPtGDv+y5OweuYFFul9bm7PxrX3Hg33dzr20OQzu24v5+QEW5gdYkB9g+OC+sS61253yX7S7t5jZNcDTBC+vfMDdN5nZLUCpu68MbVoErPB3X6/ZG1gdujJiP/DZ0AezIhHZUX+If1m5iTnjs/jy/PFR//552QN49Ctz+be/bONnz1Ww5s0G7rxyOueNzYz6a0n3azjUxOptwbP2F7fWUn8o+KC7qTlDuGbRRBYUBJiWM5ReSXjWfjIRXUffk3QdvbRraW3jip+XULHnIE9df2G3z5euebOBGx4qY/e+o1yzaCLXfmBiygVComltc16vbjx+1r6+uhF3yOzfmwvzAywsCDB/UoDsCK/QSmRduo5eJFZ+9lwFa3c28m9LZ/TIh2Izx2Wx6rr53PyHTdz9l22s3lbLXVfOIHdY4lxGlwpqDxzjha3BYF+9rZbGw82YwfQxQ7n+g/ksKAgwZfQQ0nU11XEKeolLa3fu5d+ereDyGaP52LRRPfa6g/v25s4rp7No8nC+8/sNfOTuF1l+6dl88rwcPS8nRlpa21i3q5Hny/fwwtZaNtYE77fMHtiHD04ewYKCAPMnZpM5ICPGlcYvTd1I3Dl4rIVL7llNS6vz5PXzGdy3d0zqqGk8wg0PlfHX7Q1cMmUkt15+DkP7K0x6wtv7jvLC1j2hs/Y6DhxtIT3NODd3KAsLhrMgP8BZIwfrHogwmrqRhHLLHzexq+EwK5bNjVnIQ/Bxsg9eNYefv1jJT/+0ldd27OWnV05j3gQ1Nom24404ttbyQnktb7wdbMQxYnAfLj5nJAsKApw/MZsh/WL37yGRKeglrrQ3Erl60QRm5WXFuhzS04yvLpzI/IkBrluxjs/c/yrL5o/n62ps0mU1jUeC0zHltbwcasTRK80oHJfJTR+ZzMKCAAUjBmnKLAoU9BI32huJTM0ZwvV/lx/rct5lSs4Q/u9rF/D9J7bw8xerWK3GJqftWEuoEUd5Lc9vraViz0Eg+JvTklAjjvN7qBFHqtHfqMSF8EYid4UaicSb/hm9+MHlU1iYH+CmxzZwyT0v8d1LzuSzamxyQjvrD/P81uBZe3FlPUeaW8lIT2P2+CyKZo5hYUGACYGB+vvrZgp6iQu/CjUSufXyc97TSCTefOjsM5ieO5QbH1nPP/9hE8+V1/LDT0xVYxOCj5EuqarnhdB17dvrgu3zcrP686nCHBYWBJgzfljMG3GkGl11IzHX3kjkwkkBfvH5EzcSiTdtbc6vS97ktiffYHDfXvz4k9NYNPn0nqqZ6Nyd7XWh9nlba3m1qp5jLW306ZXG3AlhjTiG9U+Y9zVR6aobiVvhjUR++ImTNxKJN2lpxpfOz2PehGyuW7GOL/1qDZ+fG2xsEs9NKLrq0LEWSipD7fO27mFXQ7ARx/jAAD49O9gXdXacN+JINQp6iamftDcS+WLkjUTiTcEZg3j86vP58dPl/PKl7RRX1nN30fSoPYAt1tydbXsOhj5E3cOa7Xtpam2jX+90zp84jGXzx7Mgf7juII5jCnqJmZe21XH/S9v5/NyxCT/l0bd3Ov/80bNYWBDgGw+/zmX3vsw3P1zAly9IzMYmB44283JFsH3eC+W1vBVqxJE/YiBfmDeWhQXDKUzgRhypRnP0EhN7DzWx+O4XGdS3N3+85oKk6uHacKiJbz22nqc3vcO8CcO444ppjBwS3w0s3J0tuw8cb3r9WqgRx8A+vTh/4jAWFgznwvwAo5OkEUcy0hy9xJXwRiK//MLMpAp5gKwBGfznZ8/j4dJdLF+5mcV3rea2j0/h4inx1dhk3+FmXqqoO/4MmT2hRhxnjhzMl+ePZ2FBgPOStBFHqlHQS497NNRI5KaPTE7aBt1mxpUzc5mVN4zrV6zjq79dyyfPy2H5pbFrbNLW5mx6a//xYF+3q5HWNg824pgUYEFBsBHHiBRoxJFqFPTSo3bUH2J5qJHIVd3QSCTe5GUP4NF/nMfdf97Gvz9fwV+392xjk/ZGHC+U1/LitlrqDgYbcUwZPYSvLpzAgvwA08ekXiOOVKOglx7T0trGDQ+VkZZm3HHF9JR5Xnjv9DRu/HABCwoCXL+ijCt+XsK1H5jINYui39iktc1ZH9aI4/WwRhzzJwUbcVyYnxqNOORvIgp6M1sM3E2wleD97n57h/V3AotCi/2B4e4+NLTuR8AlQBrwDHCdx9snwNIj7n2ukrU7G7ln6YyU/FBv5rgsnrx+Pt97fCN3/XkbL26NTmOT2gPHjrfPW72tlr2hRhzTcoZy3QcnsSA/wNScoSnzg1Xe65RBH2rwfS9wEVANrDGzle6+uX0bd78hbPtrgRmhr+cB5xNsCg7wErAAeD5K9UuCWLtzL/c8u43Lpo/i0h5sJBJvBvftzV1FM1g0eTjffXwjF9+zmuWXns0nzh0d8c1iLa1tlO3621n7hpp9AGQPzGDR5OCz2i+cFFAjDjkukjP6WUCFu1cBmNkKYAmw+QTbLwVuDn3tQF8gAzCCzcLf6UrBkngOHWvhhofKOGNwX2657JxYlxMXlkwfzXljM/n6w69z4yOv89wbe/jB5VMY0r/z562/s//o8efHrN5Wy/6jLaQZnJubyY0fymdB/nDOHqVGHNK5SIJ+NLArbLkamN3ZhmY2FsgDngVw9xIzew7YTTDof+buWzrZbxmwDCA3N/d06pcEcMsfN7Oz4TAPxbiRSLzJyezPg1fN4T9fqOTOZ7aydude7rgi2NikubWN13bsDT5DpnzPuxpxLD7nDBbkD+eCidkn/MEgEi7aH8YWAY+6eyuAmU0EzgRyQuufMbP57r46fCd3vw+4D4I3TEW5Jomhpza+zUOlu/jqwvhoJBJv0tOMqxdNZP6kbK5fUcZn7n+VOXnD2FCzj4PHWo434vinxcFGHJPPUCMOOX2RBH0NMCZsOSc01pki4Oqw5cuBV9z9IICZPQnMBVZ3sq8kmWAjkfVMGR1/jUTizdScofzf1y7gB6u2UFxZz8emjQo14hjGIP0WJF0USdCvASaZWR7BgC8CPt1xIzObDGQCJWHDO4GrzOw2glM3C4C7ulizJID2RiJHm1u5q2g6Gb10nfap9M/oxfcvmxLrMiQJnfL/PndvAa4Bnga2AA+7+yYzu8XMLg3btAhY0eHSyUeBSmAD8Drwurv/MWrVS9xqbyTy3UvOYkKcNxIRSXZ6qJlE3d8aiWTzi88Xak5ZpAec7KFm+n1aoupvjUR6cfsnpirkReKAHoEgURXeSES32YvEB53RS9S0NxL53JzEbyQikkwU9BIVjYeb+MYjZUwIDODbF58Z63JEJIymbqTLkr2RiEii0xm9dNmjr1WzasPbfP2igqRtJCKSyBT00iU76w+zfOUmZudlsezC5G8kIpKIFPTyvrW0tnH9Q+tISzN+emXqNBIRSTSao5f3rb2RyN1F01OykYhIotAZvbwv68IaiSyZPjrW5YjISSjo5bSFNxL5lyVqJCIS7zR1I6ftlj9uZkfDYVZcNYch/fQIXZF4pzN6OS3tjUT+ccEEZo8fFutyRCQCCnqJ2Dv7j/Ktx9ZzzujBaiQikkAU9BKR9kYiR5pbuevKGWokIpJA9H+rROTXJX9rJDJxuBqJiCQSBb2cUvnbB7jtyTf44OThfGZ2bqzLEZHTFFHQm9liMys3swozu6mT9XeaWVnoz1YzawyNLwobLzOzo2Z2WXQPQbrTsZZWrluxjsF9e/HDT6qRiEgiOuXllWaWDtwLXARUA2vMbKW7b27fxt1vCNv+WmBGaPw5YHpoPAuoAP4Uxfqlm7U3EvnlFwrVSEQkQUVyRj8LqHD3KndvAlYAS06y/VLgwU7GPwk86e6HT79MiYWXK+r4xertfHZOLh88c0SsyxGR9ymSoB8N7Apbrg6NvYeZjQXygGc7WV1E5z8AMLNlZlZqZqW1tbURlCTdrfFwE994+HXGBwbwnYvPinU5ItIF0f4wtgh41N1bwwfNbCQwBXi6s53c/T53L3T3wkAgEOWS5HS1NxKpO3iMu6+coUYiIgkukqCvAcaELeeExjpzorP2K4Dfu3vz6ZUnsfC7tTXBRiIfymdKjhqJiCS6SIJ+DTDJzPLMLINgmK/suJGZTQYygZJOvseJ5u0lzuysP8zNf9jIrLws/uHCCbEuR0Si4JRB7+4twDUEp122AA+7+yYzu8XMLg3btAhY4e4evr+ZjSP4G8ELUatausW7GolcMU2NRESSRERPr3T3VcCqDmPf67C8/AT7vskJPryV+PLvz/+tkUhOZv9YlyMiUaI7YwUINhK5+y/bWKJGIiJJR0Ev72okcosaiYgkHTUeEf71/4KNRB5UIxGRpKQz+hT31Ma3WbFmF19ZMIE5aiQikpQU9CksvJHIDWokIpK0FPQp6mBoXl6NRESSn+boU9DanXu54aEydjYc5ocfn6pGIiJJTkGfQlpa27j3uUrueXYbZwzuy0PL5jIrLyvWZYlIN1PQp4id9Ye54eEyXtuxlyXTR3HLknN0hY1IilDQJzl357G1Ndy8chMG3F00XTdEiaQYBX0S23e4mW8/voEn1u9m5rhMfnrFdMZk6dEGIqlGQZ+kSirr+frDZdQeOMY3P1zAVxZM0EPKRFKUgj7JNLW08dNntvLzFysZN2wAv/vHeUwbMzTWZYlIDCnok0jFnoNc/9A6NtbsZ+msMXz3krMY0EdvsUiqUwokAXfnt6/u5PtPbKZf73R+/rnz+PDZZ8S6LBGJEwr6BFd38Bg3/W49f96yh/mTsvnJp6YxYnDfWJclInFEQZ/AnivfwzcfWc/+o83880fP4kvzxpGmD1xFpIOIgt7MFgN3A+nA/e5+e4f1dwKLQov9geHuPjS0Lhe4n2A7QQcuDnWdkvfpaHMrt63awq9LdlAwYhC/+fIsJp8xONZliUicOmXQm1k6cC9wEVANrDGzle6+uX0bd78hbPtrgRlh3+K/gVvd/RkzGwi0Rav4VLT5rf1ct2Id2/Yc5Evnj+OfFk+mb+/0WJclInEskjP6WUCFu1cBmNkKYAmw+QTbLwVuDm17FtDL3Z8BcPeDXa44RbW1OQ+8vJ0fPVXOkP69+fXfz2JBfiDWZYlIAogk6EcDu8KWq4HZnW1oZmOBPODZ0FA+0Ghmj4XG/wzc5O6t77viFPT2vqPc+MjrvFRRx0VnjeCHn5hK1oCMWJclIgki2h/GFgGPhgV5L2A+wamcncBDwBeBX4bvZGbLgGUAubm5US4psT21cTc3PbaBY81t3PbxKRTNHIOZPnAVkchF0m2ihuAHqe1yQmOdKQIeDFuuBsrcvcrdW4DHgXM77uTu97l7obsXBgKajoBgw+7/9+jrfOU3a8nN6s8TX7uApbNyFfIictoiOaNfA0wyszyCAV8EfLrjRmY2GcgESjrsO9TMAu5eC3wAKO1y1Uls35Fmntq4m/94vpIdDYe5etEErv+7fHqnqwOUiLw/pwx6d28xs2uApwleXvmAu28ys1uAUndfGdq0CFjh7h62b6uZ3Qj8xYKnoq8Bv4j6USS4o82tPPfGHh4vq+G5N2ppam1jQmAAK66aw2w17BaRLrKwXI4LhYWFXlqa/Cf9rW3OK1X1PL6uhqc2vs2BYy0EBvXhY1NHsWT6KKbmDNE0jYhEzMxec/fCztbpztge5O5srNnP42U1/PH1t9hz4BgD+/Ri8TlnsGT6KOZNyNajhEUk6hT0PWBH/SH+UPYWj5fVUFV7iN7pxqKC4SyZPpoPnjlcNzyJSLdS0HeT2gPHeGL9Wzxe9hZluxoxg9l5WVw1fzwXnzOSIf3Vr1VEeoaCPooOHmvhT5ve5vGyt3i5oo7WNufMkYP51kcm87Fpoxg1tF+sSxSRFKSg76KmljZe3FrL42U1/HnLOxxtbiMnsx9fWTCeJdNHkz9iUKxLFJEUp6B/H9ranNIde3m8rIZVG3bTeLiZrAEZfOq8MVw2YxTn5mbqihkRiRsK+tP05IbdfP+JLdQ0HqFf73Q+dPYILps+mgsmZeumJhGJSwr60/Sjp8vp0yuNu66czkVnjVBPVhGJezoFPQ1vNR5he90hPj07l8tmjFbIi0hCUNCfhpLKegDmTciOcSUiIpFT0J+G4sp6Mvv3ZvIZupJGRBKHgj5C7sFn08wZP0wNuEUkoSjoI7Sz4TA1jUeYN0FPkxSRxKKgj1BxaH5+rubnRSTBKOgjVFJZT2BQHyYEBsS6FBGR06Kgj4C7U1xZz7wJw3THq4gkHAV9BCr2HKTu4DHNz4tIQooo6M1ssZmVm1mFmd3Uyfo7zaws9GermTWGrWsNW7ey476JoKQqND8/XvPzIpJ4Tnlrp5mlA/cCFwHVwBozW+num9u3cfcbwra/FpgR9i2OuPv0qFUcA8UV9Ywe2o8xWXrMsIgknkjO6GcBFe5e5e5NwApgyUm2Xwo8GI3i4kFbm/PKds3Pi0jiiiToRwO7wparQ2PvYWZjgTzg2bDhvmZWamavmNll77fQWNny9n4aDzczV/PzIpKgov1UriLgUXdvDRsb6+41ZjYeeNbMNrh7ZfhOZrYMWAaQm5sb5ZK6puT49fMKehFJTJGc0dcAY8KWc0JjnSmiw7SNu9eE/lsFPM+75+/bt7nP3QvdvTAQCERQUs8prqxnfPYARg7R/LyIJKZIgn4NMMnM8swsg2CYv+fqGTObDGQCJWFjmWbWJ/R1NnA+sLnjvvGqpbWNv25v0Nm8iCS0U07duHuLmV0DPA2kAw+4+yYzuwUodff20C8CVri7h+1+JvBzM2sj+EPl9vCrdeLdhpp9HDzWoqAXkYQW0Ry9u68CVnUY+16H5eWd7FcMTOlCfTHV/nybOeMV9CKSuHRn7EmUVNYz+YxBZA/sE+tSRETeNwX9CRxraaV0R4PO5kUk4SnoT6BsZyNHm9v0fBsRSXgK+hMorqwnzWC2zuhFJMEp6E+gpKqes0cNYUi/3rEuRUSkSxT0nTjS1Mq6nXs1bSMiSUFB34nSHQ00t7qunxeRpKCg70RxZT290oyZ47JiXYqISJcp6DtRUlnPtDFDGdAn2s98ExHpeQr6DvYfbWZ9daPm50UkaSjoO1izvYE212OJRSR5KOg7KKmsJ6NXGufmZsa6FBGRqFDQd1BcWc95uZn07Z0e61JERKJCQR9m76EmNu/er/l5EUkqCvowr25X20ARST4K+jDFlfX0z0hnas7QWJciIhI1CvowxZX1zByXRUYv/bWISPKIKNHMbLGZlZtZhZnd1Mn6O82sLPRnq5k1dlg/2MyqzexnUao76vbsP0rFnoOanxeRpHPKWz/NLB24F7gIqAbWmNnK8N6v7n5D2PbXAjM6fJt/BV6MSsXdpKRK8/MikpwiOaOfBVS4e5W7NwErgCUn2X4p8GD7gpmdB4wA/tSVQrtbSWU9g/r24uxRQ2JdiohIVEUS9KOBXWHL1aGx9zCzsUAe8GxoOQ24A7ixa2V2v+LKeuaMH0Z6msW6FBGRqIr2p45FwKPu3hpa/iqwyt2rT7aTmS0zs1IzK62trY1ySadWvfcwOxsOM1fdpEQkCUXyeMYaYEzYck5orDNFwNVhy3OB+Wb2VWAgkGFmB939XR/ouvt9wH0AhYWFHmHtUVNSGZyfnzdRQS8iySeSoF8DTDKzPIIBXwR8uuNGZjYZyARK2sfc/TNh678IFHYM+XhQUlnPsAEZ5A8fFOtSRESi7pRTN+7eAlwDPA1sAR52901mdouZXRq2aRGwwt17/Iy8K9ydkqp65kwYRprm50UkCUXUWcPdVwGrOox9r8Py8lN8j18Bvzqt6nrAm/WH2b3vqObnRSRppfwtoMWVdQC6UUpEkpaCvrKeMwb3JS97QKxLERHpFikd9O7OK5X1zJ0wDDPNz4tIckrpoN/6zkHqDzXpsQciktRSOug1Py8iqSClg76ksp4xWf3Iyewf61JERLpNygZ9a5vzSlU988Znx7oUEZFulbJBv/mt/ew/2qLHHohI0kvZoC+pCs7P60YpEUl2KRv0xZX1TAgMYPjgvrEuRUSkW6Vk0De3tvHX7Q3Mm6D5eRFJfikZ9Our93G4qVWXVYpISkjJoC8JXT8/W/PzIpICUjLoiyvrOXPkYLIGZMS6FBGRbpdyQX+0uZXSHXs1bSMiKSPlgn7dzkaaWtp0WaWIpIyUC/qSyjrSDGaNz4p1KSIiPSLlgr64sp4pOUMZ3Ld3rEsREekREQW9mS02s3IzqzCz9zT3NrM7zaws9GermTWGxsea2drQ+CYz+0qU6z8th5taKNvVqPl5EUkpp+wZa2bpwL3ARUA1sMbMVrr75vZt3P2GsO2vBWaEFncDc939mJkNBDaG9n0rmgcRqTVv7qWlzTU/LyIpJZIz+llAhbtXuXsTsAJYcpLtlwIPArh7k7sfC433ifD1uk1xZR29043CcZmxLENEpEdFEryjgV1hy9Whsfcws7FAHvBs2NgYM1sf+h4/7Oxs3syWmVmpmZXW1taeTv2n5ZXKemaMyaR/xil/kRERSRrRPsMuAh5199b2AXff5e5TgYnAF8xsRMed3P0+dy9098JAIBDlkoL2HWlmQ80+5mh+XkRSTCRBXwOMCVvOCY11pojQtE1HoTP5jcD80ykwWv66vYE2V9tAEUk9kQT9GmCSmeWZWQbBMF/ZcSMzmwxkAiVhYzlm1i/0dSZwAVAejcJPV3FlHX16pTEjd2gsXl5EJGZOOVnt7i1mdg3wNJAOPODum8zsFqDU3dtDvwhY4e4etvuZwB1m5oABP3H3DdE9hMiUVNZTOC6TPr3SY/HyIiIxE9Gnku6+CljVYex7HZaXd7LfM8DULtQXFfUHj/HG2wf45ocLYl2KiEiPS4k7Y1+pagBgrubnRSQFpUTQl1TVMbBPL6aOHhLrUkREelxKBH1xZT0zx2XSKz0lDldE5F2SPvne2X+UqtpD6g8rIikr6YO+pLIe0Py8iKSupA/64so6hvTrzVkjB8e6FBGRmEiBoK9nzvgs0tIs1qWIiMREUgf9robDVO89ovl5EUlpSR30mp8XEUnyoC+urCN7YAaThg+MdSkiIjGTtEHv7hRX1jN3QjZmmp8XkdSVtEFfVXeIPQeO6bHEIpLykjboi9vn59UfVkRSXNIGfUllHaOG9GXssP6xLkVEJKaSMujb2pxXqho0Py8iQpIGffk7B2g41KTLKkVESNKgL9b18yIix0UU9Ga22MzKzazCzG7qZP2dZlYW+rPVzBpD49PNrMTMNpnZejO7Msr1d6qksp5xw/ozemi/nng5EZG4dspWgmaWDtwLXARUA2vMbKW7b27fxt1vCNv+WmBGaPEw8Hl332Zmo4DXzOxpd2+M4jG8S0trG69W1fPRaSO76yVERBJKJGf0s4AKd69y9yZgBbDkJNsvBR4EcPet7r4t9PVbwB4g0LWST27TW/s5cKyFuXq+jYgIEFnQjwZ2hS1Xh8bew8zGAnnAs52smwVkAJWdrFtmZqVmVlpbWxtJ3Sek6+dFRN4t2h/GFgGPuntr+KCZjQT+B/iSu7d13Mnd73P3QncvDAS6dsJfUlVP/oiBBAb16dL3ERFJFpEEfQ0wJmw5JzTWmSJC0zbtzGww8ATwHXd/5f0UGammljbWbG/Q2byISJhIgn4NMMnM8swsg2CYr+y4kZlNBjKBkrCxDOD3wH+7+6PRKfnEXq9u5Ehzq+bnRUTCnDLo3b0FuAZ4GtgCPOzum8zsFjO7NGzTImCFu3vY2BXAhcAXwy6/nB698t+tpLIeM5gzPqu7XkJEJOGc8vJKAHdfBazqMPa9DsvLO9nvN8BvulDfaSmurOOskYMZ2j+jp15SRCTuJc2dsUebW1m7o1GPJRYR6SBpgn7/0WYWn3MGiyYPj3UpIiJxJaKpm0QwfFBf7lk649QbioikmKQ5oxcRkc4p6EVEkpyCXkQkySnoRUSSnIJeRCTJKehFRJKcgl5EJMkp6EVEkpy9+xlksWdmtcCO0GI2UBfDcmIplY8dUvv4U/nYIbWPvyvHPtbdO23oEXdBH87MSt29MNZ1xEIqHzuk9vGn8rFDah9/dx27pm5ERJKcgl5EJMnFe9DfF+sCYiiVjx1S+/hT+dghtY+/W449rufoRUSk6+L9jF5ERLpIQS8ikuTiMujNbLGZlZtZhZndFOt6epqZvWlmG0LN1EtjXU93M7MHzGyPmW0MG8sys2fMbFvov5mxrLG7nODYl5tZTej9LzOzi2NZY3cxszFm9pyZbTazTWZ2XWg86d/7kxx7t7z3cTdHb2bpwFbgIqAaWAMsdffNMS2sB5nZm0Chu6fETSNmdiFwEPhvdz8nNPYjoMHdbw/9sM9093+KZZ3d4QTHvhw46O4/iWVt3c3MRgIj3X2tmQ0CXgMuA75Ikr/3Jzn2K+iG9z4ez+hnARXuXuXuTcAKYEmMa5Ju5O4vAg0dhpcAvw59/WuC/xMknRMce0pw993uvjb09QFgCzCaFHjvT3Ls3SIeg340sCtsuZpu/AuIUw78ycxeM7NlsS4mRka4++7Q128DI2JZTAxcY2brQ1M7STd10ZGZjQNmAK+SYu99h2OHbnjv4zHoBS5w93OBjwBXh369T1kenF+MrznG7vUfwARgOrAbuCOm1XQzMxsI/A643t33h69L9ve+k2Pvlvc+HoO+BhgTtpwTGksZ7l4T+u8e4PcEp7NSzTuhecz2+cw9Ma6nx7j7O+7e6u5twC9I4vffzHoTDLrfuvtjoeGUeO87O/bueu/jMejXAJPMLM/MMoAiYGWMa+oxZjYg9OEMZjYA+BCw8eR7JaWVwBdCX38B+EMMa+lR7SEXcjlJ+v6bmQG/BLa4+0/DViX9e3+iY++u9z7urroBCF1SdBeQDjzg7rfGtqKeY2bjCZ7FA/QC/jfZj9/MHgQWEnxE6zvAzcDjwMNALsHHVl/h7kn3oeUJjn0hwV/dHXgT+IewOeukYWYXAKuBDUBbaPjbBOeqk/q9P8mxL6Ub3vu4DHoREYmeeJy6ERGRKFLQi4gkOQW9iEiSU9CLiCQ5Bb2ISJJT0IuIJDkFvYhIkvv/cnWtNbJaJeoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
    " - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "sns.lineplot(x=k_neighbors, y=accuracy_scores);" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "3a323b8b-50bf-4020-a1ac-c7c00e2e67da", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "81f8d89f-5fd2-432a-bdce-341c07e54b22", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "id": "54aaf843-f5da-4e15-8bc1-5631fe1551da", - "metadata": {}, - "source": [ - "Best k: 11 / 25 " - ] - }, - { - "cell_type": "code", - "execution_count": 68, - "id": "d21c2958-3684-45f7-aa82-1c53cfa87278", - "metadata": {}, - "outputs": [], - "source": [ - "pika_y_pred_test_probs = knn_pipeline.predict_proba(pika_X_test)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "6742e2e3-5744-4b95-ad9d-8801bb96e87a", - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 70, - "id": "cc9b8c0a-0475-4d49-892f-6447562f0712", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,\n", - " 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\n", - " 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1,\n", - " 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,\n", - " 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1,\n", - " 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0,\n", - " 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1,\n", - " 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0,\n", - " 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1,\n", - " 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,\n", - " 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,\n", - " 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0,\n", - " 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1,\n", - " 0, 0, 1, 1])" - ] - }, - "execution_count": 70, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "(pika_y_pred_test_probs[:, 1] > 0.5).astype(int)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "280c1ad2-eb00-4ef6-ad35-8df8f9f5630c", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "configs_task", - "language": "python", - "name": "configs_task" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.7" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From 8a3db2e956f270ae05ca64e6e439c66b8883996d Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:26:23 +0300 Subject: [PATCH 2/6] Create ba --- data/ba | 1 + 1 file changed, 1 insertion(+) create mode 100644 data/ba diff --git a/data/ba b/data/ba new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/data/ba @@ -0,0 +1 @@ + From de4307dd867cfc5b2e409296051b30ef43c62e50 Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:26:37 +0300 Subject: [PATCH 3/6] Delete data/ba --- data/ba | 1 - 1 file changed, 1 deletion(-) delete mode 100644 data/ba diff --git a/data/ba b/data/ba deleted file mode 100644 index 8b13789..0000000 --- a/data/ba +++ /dev/null @@ -1 +0,0 @@ - From 2f7a88c1eaa612e0ae7746570831da18b4bcdb87 Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:27:11 +0300 Subject: [PATCH 4/6] Create one --- data/one | 1 + 1 file changed, 1 insertion(+) create mode 100644 data/one diff --git a/data/one b/data/one new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/data/one @@ -0,0 +1 @@ + From 515c92cafdf9855572eb4232c7ff1205c23bd9c3 Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:36:35 +0300 Subject: [PATCH 5/6] Add files via upload --- data/Ensembles.ipynb | 8817 ++++++++++++++++++++++++++++++++++++++++++ data/churn.csv | 3334 ++++++++++++++++ 2 files changed, 12151 insertions(+) create mode 100644 data/Ensembles.ipynb create mode 100644 data/churn.csv diff --git a/data/Ensembles.ipynb b/data/Ensembles.ipynb new file mode 100644 index 0000000..ff85b2d --- /dev/null +++ b/data/Ensembles.ipynb @@ -0,0 +1,8817 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 148, + "id": "9b21216d-37c8-406a-a8bf-5642cff16bb7", + "metadata": { + "id": "9b21216d-37c8-406a-a8bf-5642cff16bb7" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import warnings\n", + "import random\n", + "import math\n", + "import pandas as pd\n", + "import xgboost\n", + "import lightgbm\n", + "import catboost\n", + "\n", + "from matplotlib.colors import ListedColormap\n", + "from scipy.stats import pearsonr\n", + "from itertools import combinations\n", + "from sklearn.base import BaseEstimator\n", + "from sklearn import datasets\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.ensemble import (RandomForestClassifier,\n", + " ExtraTreesClassifier,\n", + " VotingClassifier)\n", + "from sklearn.tree import (DecisionTreeRegressor,\n", + " DecisionTreeClassifier)\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.svm import SVC\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import f1_score\n", + "from sklearn.metrics import accuracy_score\n", + "from lightgbm import LGBMClassifier\n", + "from catboost import CatBoostClassifier\n", + "from sklearn.model_selection import GridSearchCV" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e0cbb7f2-2038-4e1b-8c39-ca20b7b332a2", + "metadata": { + "id": "e0cbb7f2-2038-4e1b-8c39-ca20b7b332a2" + }, + "outputs": [], + "source": [ + "plt.rcParams[\"figure.figsize\"] = 12, 9\n", + "sns.set_style(\"whitegrid\")\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "SEED = 111\n", + "random.seed(SEED)\n", + "np.random.seed(SEED)" + ] + }, + { + "cell_type": "markdown", + "id": "5ab161b1-2231-4464-96f9-bb9ae0c3d1ed", + "metadata": { + "id": "5ab161b1-2231-4464-96f9-bb9ae0c3d1ed" + }, + "source": [ + "### Задание 1. Bias-variance trade-off\n", + "\n", + "**2 балла**\n", + "\n", + "Продемонстрируйте bias-variance trade-off для `DecisionTreeRegressor` при изменении глубины дерева. Постройте регрессионную модель функции от одной независимой переменной, представленной в ячейке ниже, используя функцию `plot_regression_predictions` (можете ее как-то поменять, если захочется). Попробуйте разные значения глубины деревьев, при каком значении, на ваш взгляд, модель оптимальна, при каком variance становится слишком большим?" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "563b781e-78dd-4679-b0b0-3e70a064cfd7", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 753 + }, + "id": "563b781e-78dd-4679-b0b0-3e70a064cfd7", + "outputId": "a2aa4ce2-edff-482c-cf08-6bbdadeae34b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAALgCAYAAAADco0AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqNElEQVR4nO3df5ScZX03/s/OEtCKYoGIoQOpkBgUAoFCNRRLjNgFrT0CRmwFiqwQfvRRDyCRnForPiUg+LNSQnDxEVBpWtEjleqpNu2Rh1ClQgk8GIkYYIpNE9SCwJGwu98/7u9kZ2dnZmd2Z+a+75nX65w9m52dH9fMXqW+7+tzfa6B8fHx8QAAAAAyoZD2AAAAAIAJgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGbJb2gNIw9jYWLzwwgtRKBRiYGAg7eEAAADQ48bHx2NsbCx22223KBQar5n3ZVB/4YUXYtOmTWkPAwAAgD6zePHi2H333Rvepy+DevnqxeLFi2NwcDDl0dQ3OjoamzZtyvw4yQ5zhlaZM7TKnKFV5gytMmdoVV7mTHmc062mR/RpUC+Xuw8ODmb6D1mWl3GSHeYMrTJnaJU5Q6vMGVplztCqvMyZZrZfayYHAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAAJAhgjoAAABkiKAOAAAAGSKoAwAAQIYI6gAAADlSKkVs2JB8pzcJ6gAAADkxMhIxf37E8uXJ95GRtEdEJwjqAAAAOVAqRZx7bsTYWPLz2FjEypVW1nuRoA4AAJADDz88EdLLRkcjtmxJZzx0TkeD+g9+8IM477zz4rjjjotFixbFd77znUm/Hx8fj8985jNx3HHHxeGHHx5nnXVWbN26ddrn/dKXvhTLly+PxYsXx4oVK+L+++/v0DsAAADIhoULIwpVCW5wMGLBgnTGQ+d0NKg/++yzsWjRovjIRz5S8/c33HBD3HzzzfGXf/mXsX79+njxi18cw8PD8etf/7ruc95xxx2xZs2auPDCC+NrX/taHHLIITE8PBxPPvlkp94GAABA6orFiHXrknAekXy//vrkdnrLbp188uOPPz6OP/74mr8bHx+Pm266Kc4///w44YQTIiLi4x//eBx77LHxne98J9761rfWfNwXvvCFeOc73xmnnnpqRER89KMfjX/5l3+Jr371q3Huuee2NL7R0dGW7t9t5fFlfZxkhzlDq8wZWmXO0CpzhlaZM42ddVbECSck5e4LFiQhvd8/qrzMmVbG19Gg3kipVIrt27fHscceu+u2l770pXHEEUfEvffeWzOoP//88/Hggw/GypUrd91WKBTi2GOPjXvvvbflMWzatGlmg++yvIyT7DBnaJU5Q6vMGVplztAqc6axl788YseO5ItEL82Z1IL69u3bIyJin332mXT7PvvsEzvqzLZf/OIXMTo6WvMxjzzySMtjWLx4cQyW60YyaHR0NDZt2pT5cZId5gytMmdolTlDq8wZWmXO0Kq8zJnyOJuRWlDPgsHBwUz/IcvyMk6yw5yhVeYMrTJnaJU5Q6vMGVrVS3MmtePZ5s6dGxExpQnck08+Gfvuu2/Nx/zmb/5mDA4OtvQYAACAXlUqRWzY4Cz1XpNaUC8WizF37tzYuHHjrtt+9atfxX/8x3/EkUceWfMxu+++exx66KGTHjM2NhYbN26s+xgAAIBeNDISMX9+xPLlyfeRkbRHRLt0tPT9mWeeiccee2zXz6VSKR566KHYa6+9Yv/9948zzzwzrrvuupg/f34Ui8X4zGc+E694xSt2dYGPiPjTP/3TePOb3xynn356RES85z3viVWrVsVhhx0Whx9+eHzxi1+M5557Lk455ZROvhUAAIDMKJUizj03Ymws+XlsLGLlyoihIce19YKOBvUHHnggzjzzzF0/r1mzJiIiTj755LjyyivjnHPOieeeey7+4i/+Ip566qn4nd/5nfj85z8fe+yxx67HPP744/GLX/xi189vectb4uc//3l89rOfje3bt8drXvOa+PznP6/0HQAA6BsPPzwR0stGR5Nj2wT1/OtoUH/d614Xmzdvrvv7gYGBeP/73x/vf//7697nn//5n6fcdvrpp+9aYQcAAOg3CxdGFAqTw/rgYHK2OvmX2h51AAAAZqZYjFi3LgnnEcn366+3mt4r+vp4NgAAgLwaHk72pG/ZkqykC+m9Q1AHAADIqWJRQO9FSt8BAAAgQwR1AAAAyBBBHQAAgNwqlSLuuWfPKJXSHkn7COoAAADk0shIxEEHFeK88xbFQQcVYmQk7RG1h6AOAACQcaVSxIYN0VOrxrNVKkWce27E2NhARCTfV67sjc9IUAcAAMiwkZGI+fMjli9PvvfKqvFsPfxwxNjY5NtGR5Pj6vLO8WwAAAAZUSolAXThwuTnu+4qrxonP4+NRaxcmZyf3u/Hsi1cGFEoTA7rg4PJmfJ5J6gDAABkwMjIRCgfSKq5Y3x86v3Kq8b9HtSLxYh16yJWrhyP0dGBGBwcj+uvH+iJz0VQBwAASNnEfuvk51oBvazeqnHlanwvhNVmDA9HnHDCWHzrW1vixBMXxPz5g2kPqS3sUQcAAEhZrf3WtQwORlx//dQgXrmP/cADIz74wd5oqtaMYjHi6KN/1VMXJwR1AACAlJX3W9dTKESsXx+xdWuyilyp1mr8NddoPJdngjoAAEDKyvutB///yu2BgYngPjiY/G7Fitol7fVW48uN5/plZb2X2KMOAACQAcPDSTf3LVsm9qCX/92orLtW9/MyjefySVAHAADIiGJxcqhuJmCXV+Mry9/LeuW4smqVjfPmzUt7NO2n9B0AACDnhocjHn004pJLJsrn6zWey7vKxnnz50fceONA2kNqO0EdAACgBxSLEVdfnTSc27ChduO5vKtunDc2FnH++QOxbducdAfWZkrfAQAAekh1+XwvqdU4b3R0IB5/fI90BtQhVtQBAADIhVrH2A0OjscBB/w6nQF1iKAOAABALlQfYzc4GHHddeOx33470x1Ymyl9BwAAIDeqj7GbN2887rsv7VG1l6AOAABArlTuwx8dTXcsnaD0HQAAADJEUAcAAOhRpVJyVFuplPZIaIWgDgAA0INGRiLmz49Yvjz5PjKS9oholqAOAADQY0qliHPPnThzfGwsYuVKK+t5IagDAAD0mIcfngjpZaOjEX/3d8J6HgjqAAAAPWbhwohCjbR30UVTy+DtY88eQR0AACAFnQzIxWLEunURg4NTf1dZBm8fezYJ6gAAAF3WjYA8PByxdWvEJz859XejoxE33GAfe1YJ6gAAAF3UzUZvxWLEihW1y+Avv7z2PvYtW9o/DlojqAMAAHRRvUZvnQrIjcrgqw0ORixY0Jlx0DxBHQAAoItqNXrrdEBuVAZfOYbrr0+CPekS1AEAALqoeoW7WwG5Xhl8oRCxfn0S5IeHOzuG2ein7vSCOgAAQJeVV7g3bOhuQK51kWDduiTAZ3klvd+60++W9gAAAAD6UbGYTjgeHo4YGkr2xC9YkO2AHlG/+d7QUPbHPlOCOgAAQJ9J6yLBTDRqvpeX99Aqpe8AAABkVhrN99ImqAMAAJBZaTXfS5PSdwAAACYplZKS84ULsxGI87avfrYEdQAAAHYZGZlo3lYoJKvZaR3bVn3BoNcDepnSdwAAACKifof1NM4u77cj2SoJ6gAAAERE4w7r3ZSlCwZpENQBAACIiOx0WM/KBYO0COoAAABERHY6rGflgkFaBHUAAAB2GR6O2Lo1YsOG5HsajeSycsEgLbq+AwAApCxrx6FlocN6vx3JVsmKOgAAQIr6ubv5dIrFiGXL+iukRwjqAAAAqen37ubUJqgDAACkpN+7m1OboA4AAJCSfu9uTm2COgAAQEr6vbs5ten6DgAAkKJ+7m5ObYI6AABAl9Q7hi0Lx6GRHUrfAQAAusAxbDRLUAcAAOgwx7DRCkEdAACgwxzDRisEdQAAgA5zDButENQBAAA6zDFstELXdwAAYNbqdTNngmPYaJYVdQAAYFZ0M29esRixbJmQTmOCOgAAMGO6mUP7CeoAAMCM6WYO7SeoAwAAM6abObRf6s3kli9fHv/5n/855fY/+ZM/iY985CNTbr/tttvisssum3Tb7rvvHps2berYGAEAgNrK3cxXrkxW0nUzh9lLPaj//d//fYyOju76+eGHH473vOc9ceKJJ9Z9zJ577hnf+ta3dv08MDDQ0TECAAD16WbeO3Tvz4bUg/ree+896ed169bFgQceGL/7u79b9zEDAwMxd+7cTg8NAABoUrEo2OXdyMhEY8BCIamUGB5Oe1T9KfWgXun555+Pb3zjG/Ge97yn4Sr5s88+G2984xtjbGwsXvva18ZFF10UCxcubPn1Klfys6g8vqyPk+wwZ2iVOUOrzBlaZc7QKnMmHUn3/kKMjSU5LOnePx4nnDCW+QsweZkzrYxvYHx8fLyDY2nJHXfcEZdcckls2LAh9ttvv5r3uffee+PRRx+NRYsWxdNPPx033nhj/OAHP4hvfvOb8cpXvrKp1xkdHY377ruvjSMHAADIr3vu2TPOO2/RlNvXrt0cRx/9qxRG1LuWLFkSg4ODDe+TqaA+PDwcc+bMibVr1zb9mJ07d8Zb3vKWeOtb3xof+MAHmnpMOagvXrx42g8oTaOjo7Fp06bMj5PsMGdolTlDq8wZWmXO0CpzJh2lUsRBB02sqEdEDA6Ox09+ko8V9TzMmfI4mwnqmSl9/8///M+466674q//+q9betycOXPiNa95TTz22GMtv+bg4GCm/5BleRkn2WHO0CpzhlaZM7TKnKGRygZm8+Ylt/XSnMlDg7b582t17x+I+fPT+RvM5DPrpTmTmXPUb7vttthnn31i2bJlLT1udHQ0fvzjH2suBwAAOTQykoTE5cuT7zfemO8TnUqliA0bku8RU9/fyEi642tkeDhi69Zk/Fu3ptdILk+fWadkIqiPjY3FbbfdFm9/+9tjt90mL/Jfeuml8YlPfGLXz5/73OfizjvvjMcffzwefPDB+OAHPxhPPPFErFixotvDBgCAvlcdTFt9bLnLeETy/fzzB2LbtjntHWSXVAfMq6+e+v5WrpzZZ9UtxWLEsmXprPyXShHr1+fvM+uETJS+33XXXfHEE0/EqaeeOuV3P/vZz6JQmLie8NRTT8WHP/zh2L59e+y1115x6KGHxq233hoLFizo5pABAKDvzfY4r4cfnghkZaOjA/H443u0d6BdUOuiw4c+VOv9JefNZ7UEPi2Vc6laP35mmQjqxx13XGzevLnm726++eZJP69evTpWr17djWEBAAB11AqmK1dGDA01H6gWLkwCfmU4GxwcjwMO+HX7B9xhtS46lC9gTH5/EdYYJ6ueS9X68TPLROk7AACQL7VXw5OVz0qNSuOLxWQVvtz/a3Aw4rrrxmO//XZ2ZtAdVL7oUGlwMOKqqya/v+uv76+V4WbUmktl/fqZCeoAAEDL6gXTypXPZpqCVTcwO/vszJwe3ZJaFx2uvz7ikkuy0aAty2rNpUIh2a/er5+ZoA4AALSsXjAtr3zWK42vt7KeVgOzdqrXNb1X3l+n1JpL69ZFrFjRv59ZJvaoAwAA+TM8nOxJ37IlWUmvDFWNSuN7OXwVi739/jql0VzqR4I6AAAwY7WCaakUsX27Rmq0xkWOCYI6AADQNpXHbA0MTIT1fm0KRmOlUlJ9sXChuVHJHnUAAKAtqvelj///feH6uSlYr2nUxb9VzTQb7FeCOgAA0Bb1zhKfOzdZLW1nyKP72hmsW2k22I8EdQAAoC0aHdlm9TTfagXrc89NqiVmEq4bNRtEUAcAANqk3pFtEVZP865etcRpp83swkujizoI6gAAQBvVOkvc6mn+1QrWZTO58FLvoo6GcglBHQAAaKtiMWLZsonQZfU0/6qDdbWZXHipdVGHhKAOAAB0lNXT3lAO1uvXt+/CS/VFHRLOUQcAAFoyk7Ovh4cjhoaSVdcFCwSzvCoWI1asiHjqqaTcfXTUhZdOENQBAICmjYxMNIYrFJKV8mZLlovFiTBXK+yXShE/+lHE88/P6czgaRsXXjpLUAcAAJpS7+zroaHWglqtsB9Rvm0wCoXFsXbteJxzTu0xtLqaz+zU+8wrL7zQXvaoAwAATWlH9/Z653FPvm0gzj9/YEoXcWexd5/PPB2COgAA0JR2dG+vdx731AsAA5MuANRbzc/qWeylUtLNPKvja0bePvNeIqgDAABNaUf39lphv1CodQFgfNIFgDydxd4rq9B5+sx7jaAOAAA0bbZnX9cK++vWTb6tUBiP664bn3QBIC9nsffSKnRePvNepJkcAADQktk2EavXMXxoKGLz5tH49a8fjKGhQ6e85rp12T8SrNEqdNbGOp1WPnNN/tpLUAcAALquVtgvFiPmzYu4776dk24vh8ChoWQVP8tHgpVXoSvDep5XoZs5hm02R/ZRm9J3AACgpiw0RKve7/3tb0csW5bNkB7Rnn38WVMs1v/Me6nUP0sEdQAAYIosNETLawic7T7+PNFwrjMEdQAAYJKsBOQ8h8BGq9C9RMO5zhDUAQCASbISkIXA7OvFUv8sENQBAIBJshKQhcB86KdS/27R9R0AAJgkS0ehNdN1nPTN9sg+JhPUAQCAKbIUkIVA+o2gDgAA1CQgQzrsUQcAAKaVhTPVoV8I6gAAQENZOFMd+omgDgAA1JWVM9VrscpPrxLUAQCAurJypno1q/z55QLL9AR1AACgrqycqV4py6v8NOYCS3MEdQAAoK7ymeqDg8nPaZ6pXpbVVX4ac4GleY5nAwAAGsrSmeoRE6v8lWE97VV+ptfoAkvacyprrKgDAADTKhYjli3rXqBqtI85C6v8leOz57o5WdxGkVWCOgAAkClf//o+cdBBhYb7mIeHI7ZuTQLy1q3Jz91Suc/6wAOTL3uup5eFCyx5IagDAACZUSpFXHHF/BgbG4iIxvuYu73KXx5f5T7r8fHkK8Ke67JGFQZpXmDJE0EdAADIjGQf88Ck27LUKK7WPutKWRprGprp6p7GBZa8EdQBAIDMSPYxj0+6LUv7mGvts66UpbF2m67u7SOoAwAAmVEsRqxe/WgMDiZhPWv7mKv3WQ8MTAT3rI212xyb1z6OZwMAADLl7W9/Mt773gPipz8dzMRxcNWqj6uLyM7RdWlybF77COoAAEDmFIvJHuesKhYnh/J+Duhl5WqDlSuTlfTKCoNSKVlxX7jQZ9UMpe8AAAC0RWVX940bIw46KOKaa6ZvMMdkVtQBAABom2Ix4tvfntxYrqzcYG5oyMp6I4I6AACwqzR5zz0jfvUrJcrMXHX392rlBnPmV32COgAA9LmRkanBqlBI9hsPD6c3LvJpurPmNZibnj3qAAD0hFIp2RfrzObW1Fv9dAY2M9XorPl+P8KuWYI6AAC5NzKiWdVMNVr9zPsZ2C7epKP6rPnBwYiPfzz5W2zdqkqjGUrfAQDIteoVYc2qWlPr7OuyPJcoV5bzK+Pvvuqz5v3fYmusqAMAkGu1VoTzvhLcTdWrn2V5LlGud/HGynp3FYsRy5blcw6lzYo6AAC5VmtFOM8rwZ1Q7uher5N75ernS14S8cwz+V4FbXTxJq/vif5iRR0AgFyrtR82ryvBndDs/v3y6ucxx+R/FbRWMzMXb8gTQR0AgNwbHk6aVGlWNVm/loC7eEPeKX0HAKAnFIuCWLV+LgHvRDOz6bYQQLtYUQcAoG/023Fd/V4C3s5mZo4ApJsEdQAA+kI/Bi0l4O3Rr1sISI+gDgBAz+vnoGX//uw5ApBus0cdAICe1897tSMm79+3z7p1jgCk26yoAwDQ8/p9r3ZZP5T/d6IPgS0EdJugDgBAz6sVtNasSVaW+6H8PaI/yv87eSHCFgK6Sek7AAA9rVzqPTSUBKwtWyLuuSdi1aokrBYKSYjv9eDV6+X/9S5EDA217/05ApBusaIOAEDPql5h/fa3k3L3ckiP6M2V5Vp6vfxfwzd6iaAOAEBPqrfCetdd/Rnoen2f9Z579vaFCPpL6kH9r//6r2PRokWTvk488cSGj/nHf/zHOPHEE2Px4sXxtre9Lf71X/+1S6MFACAv6q2wDgzUD3SdaESWJb26z3pkJOL1r5/alb2XLkTQXzKxR33hwoXxhS98YdfPg+XLfDX88Ic/jIsvvjguuuiieOMb3xi33357XHjhhXHbbbfFq1/96m4MFwCAHKh3pNbSpcnK8sqVSXAvB7pvf3tiBb7Vfet5OvKs1/ZZV1dORCR/v40bI445ZubPmZe/J70p9RX1iCSYz507d9fX3nvvXfe+N910U7zhDW+I9773vXHwwQfHBz7wgXjta18bt9xySxdHDABA1jUq9a5eWR4amnlH9H448izLalVOjI1FPPPMzJ7P35MsyMSK+qOPPhrHHXdc7LHHHrFkyZK4+OKLY//996953/vuuy/OOuusSbcdd9xx8Z3vfKfl1x0dHZ3JcLumPL6sj5PsMGdolTlDq8wZWpX2nDnrrIgTTkj2ny9YkIT08lDmzUu+IpLAPjY2uapzdDRi8+bRXfepJVnNLcTY2EBElAP+eJxwwpiV2Blqdc4cdFBEoTDxN4iIGBwcj1e9aixanXb+nvmU9n9nmtXK+FIP6ocffnisWbMmXvWqV8X27dvj2muvjXe/+91x++23x5577jnl/jt27Ih999130m377LNP7Nixo+XX3rRp04zH3U15GSfZYc7QKnOGVpkztCrtOfPyl0fs2JF81fL883OiUFg8KewVCuPx618/GPfdt7Pu895zz54xNrZo0m2jowPxrW9tiaOP/lU7ht63Wpkzq1fvE1dcMT/GxgaiUBiPyy57NHbseLLu37sef898S/u/M+2UelA//vjjd/37kEMOiSOOOCLe+MY3xj/+4z/GihUrOvraixcvbrgfPm2jo6OxadOmzI+T7DBnaJU5Q6vMGVqVpzmzdu14nH9+EswGB8fjuuvGY2jo0IaP2XffJNBXr+aeeOICK7AzNJM5s2RJxHvfO1ZROXFARBzQ8mv7e+ZTXv47Ux5nM1IP6tVe9rKXxW//9m/HY489VvP3++6775TV8yeffHLKKnszBgcHM/2HLMvLOMkOc4ZWmTO0ypyhVXmYM+ecE3HSSeUy+YEoFgemfcz8+bUa0w3E/PnZfq950OqcmT8/+ZoNf898y8N/Z5qVuaD+zDPPxOOPPx5z586t+fslS5bE3XffPWmf+l133RVLlizpzgABAOhZM+mIPjycNKOr3AdPtjXq6u7vSRak3vX9qquuiu9///tRKpXihz/8YfzZn/1ZFAqF+MM//MOIiLj00kvjE5/4xK77n3nmmfG9730vbrzxxvjJT34Sf/3Xfx0PPPBAnH766Wm9BQAAcqwdZ6cXixHLlgl1edBMV3d/T9KW+or6f/3Xf8VFF10Uv/zlL2PvvfeO3/md34n169fvOqLtZz/7WRQKE9cTjjrqqLjmmmvi05/+dHzyk5+M3/7t345rr73WGeoAALRsZGTmZ6eTP9VnrpeP4RsaEsrJltSD+qc+9amGv7/55pun3HbSSSfFSSed1KkhAQCQc41KmyvvI7T1l1pnro+OJmXu/uZkSeql7wAA0E7NlDZHNA5t9KaFC5PKiUqFQsR///fstj5AuwnqAAD0jHqr5LVCWK3QNjiYNBCj95SrLK66Kvk7R0QMDESMj0ecdlrjizrQbYI6AAA9o5VV8mIx2ZNeDm3JUVz9VQLdjkZ6eVBZZbFqVcSaNRHr108E9YjGF3Wg2wR1AAB6Rqur5MPDEVu3JmF169b+aiTX7BaBvKtVZXHZZUlAt/WBrBLUAQDoGTNZJe/Ho7ha2SKQd/WqLAYGbH0guwR1AAB6Sj+vkjernxrp1auyWLrU1geyK/Xj2QAAoN2KxfYGrmaOe8uTcnitDOu9uppcrrJYuTK5GFEZyIeHk+P4tmxJ3nsv/G3pDVbUAQCggV7cy91vjfQaVVn049YHss+KOgAA1FAqRdx1V+293END+Q92/baa3O4qC+gkQR0AAKqMjEwO6JXKe7mLxfyXxAuvk+X970nvUPoOAAAVqjuiVyvv5e7Fkvh+5u9JlgjqAABQoVZH9LLBwYg1a+qXxPfi8Wb9oJ+OqyMflL4DAECFWh3RC4WIW2+NePTRiFWrpi+JJ1+mO65OOTzdZkUdAIBcK5WSbt7tWv2s1RF93brk3O16Ib18vywdb9buz6WX1Ttr/Z57lMOTDkEdAIDc6tS+4lrHeU1XEl/reLNuh+Xy611zjYDZiloXZ9asmXxhRjk83SSoAwCQS53eV1x9vnatVddCIWL9+qlnc0d0vzlZ5et98IMCZquqL84cfXTjcnjoJEEdAIBcmm5fcbvVK4lfsaL2Sno3m5NN16lewGxO5cWZeuXwWdreQO8S1AEAyKU0glStkvhaun0RoVFZfoSAORO1LszU2t4AnaDrOwAAuVQOUitXJiG4W0GqWJz+NWp1ju9kWK71epWvK2DOzPBwxNBQcoFlwQKfId1jRR0AgNxqdoW727q9Glvr9T7+8ex9LnlU3asAusGKOgAAuVMqTT7bOoshqpursaVSxEEHRWzcGPHMM1Z/Ie+sqAMAkCvd7qY+G91Yja38PF7/+oif/ERIh7wT1AEAyI1ud1PPOp8H9CZBHQCA3Oh2N/VuKJWSveQzCde9+HkAgjoAADnSa2dbz7aMv9c+DyAhqAMAkBu9dLZ1O8rWe+nzACbo+g4AQC6UO70PDSVHjuX9bOtGZeutvCdnfUPvEdQBAMi8kZGJ1edCIVlFzvvZ4OWy9cqwPtOy9aweUQfMjNJ3AAAyrVc7mytbB+qxog4AQKa1q0Q8i5StA7UI6gAAZFo7S8SzSNk6UE3pOwAAmaZEfMJszlwH8kNQBwAg84aHk07vGzYk3/PeSG4mZnvmOpAfgjoAALlQLEYsW9a/K+m92FAPqE1QBwCAjGvUUA/oPYI6AAB0Wat7zcsN9Sr1UkM9YDJBHQAAumgme8011IP+IqgDAEAbNVotn81ecw31oH8I6gAA0CbTrZY32mveTDl8ZUM9R7VB7xLUAQCgDZpZLa+31/yee1orh3dUG/Q2QR0AgNT1wupwM53Za+01X7MmYtWq5svhHdUGvU9QBwAgVb2yOtxsZ/bqveZHH93a0WuOaoPeJ6gDAJCaXlodnq4ze2XVQOVe81aPXnNUG/Q+QR0AgNT02upwvc7sjaoGWj16zVFt0Pt2S3sAAAD0r/LqcGVYz/vqcLE4OTTXqxoYGpq43/Bw8vOWLcl7ny50t3p/IF+sqAMAkKqLLurt1eFmqwYqy+Gb0er9gfywog4AQCpGRiZWmgcGIi65JOL97++94NmLVQNAZ1lRBwCg66rLwcfHIz71qXTH1Cn2lAOtsqIOAJCSUikpi164sP9CW6Ny8Or93b3wGdlTDrTCijoAQAp65ezwmWrmiLFe+4zsKQeaJagDAHRZL50dPlPNnDne758R0L+UvgMAdFmzZd+9rlE5uM8I6GeCOgBAl+kCPqH6zPEynxHQz5S+AwB0mS7g0/MZTSiVIjZsUPYP/cSKOgBACnQBn57PaPJZ84VCcvFieDjtUQGdJqgDAKSkXtk3E/r1MyqVIu66q3ZDvaGh/vxMoJ8ofQcAoKuUcjdWPpbutNPqN9QDepugDgBA1/Ta2ejtVn0sXTUN9aA/COoAAHSFs9GnV+tYurJ+bqgH/cYedQAAuqLZs9FLpeS+Cxf2XyitdSxdoRBx660RS5f23+cB/cqKOgAAXVEOoZWqS7n7vTS+1rF069ZFrFghpEM/EdQBAHIqb03ZpjsbXWl8Yng4YuvW5G+7davj2KAfKX0HAMiB6nLwvJ6v3ehs9GZL4/tBvx5LBySsqAMAZFx1OfjVV+d75blYjFi2bGoQbaY0HqAfCOoAAClrVMJeqxz8Qx+qvfL8d3+X3bDeTJn+dKXxAP1CUAcASNF0zdNqlYOXy92rXXRRNhuwff3r+8RBBxWaahBnfzZABoL69ddfH6eeemoceeSRsXTp0rjgggvikUceafiY2267LRYtWjTpa/HixV0aMQBAezTTPK1eOfhVV02sPFdqtQy+0w3pSqWIK66YH2NjA02Pr15pPEC/SD2of//73493v/vdsX79+vjCF74QL7zwQgwPD8ezzz7b8HF77rln3Hnnnbu+NmzY0KURAwC0R6PmaWX1ysEvuSRZcf7kJ6c+b/Vz1NONo9CS9zgwo/EB9KvUu76PVP1/hCuvvDKWLl0aDz74YBxzzDF1HzcwMBBz587t9PAAADqmvFpeGdZrNU+r1ym9WEzO177kkumfo1q91fyhofauZCfvcXxSWNcgDqCx1IN6taeffjoiIvbaa6+G93v22WfjjW98Y4yNjcVrX/vauOiii2LhwoUtvdbo6OiMx9kN5fFlfZxkhzlDq8wZWmXOtNe8eRFr1w7E+ecPxOjoQAwOjsd1143HvHnjUf0Rz5uXfEXEpN+18hyVfvSjiLGxybXzo6MRmzeP7nqddpg3bzRWr3481qyZ39L46F/+O0Or8jJnWhnfwPj4+HgHx9KSsbGxOP/88+Opp56Kr3zlK3Xvd++998ajjz4aixYtiqeffjpuvPHG+MEPfhDf/OY345WvfOW0rzM6Ohr33XdfG0cOAFDftm1z4vHH94gDDvh17LffzpZ/38z9Z/Icb3vb4kkr3YXCeNx++6amHt+qVscH0KuWLFkSg7WajFTIVFD/yEc+Et/73vfiy1/+clOBu2znzp3xlre8Jd761rfGBz7wgWnvXw7qixcvnvYDStPo6Ghs2rQp8+MkO8wZWmXO0CpzpnU33jgQ5503EGNjA1EojMfateNx9tkz/59fzTxfqZTsDV+4sHEZ+403Tl2Jn83YajFnaJU5Q6vyMmfK42wmqGem9P3yyy+Pf/mXf4lbbrmlpZAeETFnzpx4zWteE4899lhLjxscHMz0H7IsL+MkO8wZWmXO0CpzpjmlUsR551XuA0+C8UknzWwfeDPPNzIysfe8UEga0dU74uyccyJOOqm8930gisWB2ndsA3OGVpkztKqX5kzqXd/Hx8fj8ssvj3/6p3+KL37xi3HAAQe0/Byjo6Px4x//WHM5ACBTmunq3s7na+a4t2qOQgPIntRX1D/60Y/GP/zDP8Tf/M3fxEte8pLYvn17RES89KUvjRe96EUREXHppZfGfvvtFxdffHFERHzuc5+LJUuWxPz58+Opp56KkZGReOKJJ2LFihWpvQ8AgGrNdnVv1/M1CvKCOEB+pB7Uy03jzjjjjEm3r1mzJk455ZSIiPjZz34WhcLE4v9TTz0VH/7wh2P79u2x1157xaGHHhq33nprLHDOBwCQIeUz0FeuTAJz+Qz0mYbm6Z5vthcGmt3bDkBnpR7UN2/ePO19br755kk/r169OlavXt2pIQEAtE29M9DrmS4sN3q+2VwYaGVvOwCdlXpQBwDodcVie8Nyo+dr9cJARP297UNDVtYB0iCoAwBkQK2wfO65ES99acSxx7YWmJu5MFC5ct/Ove3K5wFmL/Wu7wAA1A7LY2MRp50WMX9+streLiMjyXMuX558v+eeZAW/UuXe9lIpYsOG5Hvlv6d73naOGaCfCOoAABlQbgRXSzPHrNVTHaxrrdxfdlnEVVcl4Txi8t72yvB94IHJV60gPpOj4QCoTVAHAMiAciO4cliuNpPz12utcNcrcz/66IitW5NQv3Vrste9OnyPjydfEVODeLvPjAfoZ4I6AEBGDA8nIXn9+sal6M2ot8K95571n7tYjFi2bGJvea3wXakcxEuliO3bZz9mABKCOgBAFzXa4x2RhOQVKyavrs/k/PV6K9zPPNP8czcqxy8/9p57ktX6005LVtvL95/tmfEA/UzXdwCALmnlrPKZHLNWqRyyK8N6eYV72bLmnrv6XPaBgeRrbCx5rjVrIlatmlwaPzCQVAQsXZo8fnS0tXEDIKgDALRNo6PJZnJWebPnr9d7bGXIrl7hbva5qy8YREz8u16n+rlzk+culSJ+9KOI55+fM7M3AdCnBHUAgDaYbrW8nWeVN2u2q/Jl1aG+8t/1Vu0nPo/BKBQWx9q143HOOTN7fYB+Y486AMAsNXM0Wa393t1otlbdIK7dz11rv3tE9ecxEOefP+CoNoAmCeoAALPUzNFk9UJtN5utTdfIbibKneorj3Wr/XkMOKoNoElK3wEAZqlW47ZCIeK//zsJxeUw3q5S9JlopZFdq6pL42s3shuPBQsG2vOCAD3OijoAwCxVr5YPDCQd0E87LTm6bGRk8n07VYpeTzOl+e1U/XkUCuNx3XXjjmoDaJKgDgDQBuUS8PXrJ4J6ROdDcTOaKc2vNtsy+fLn8Z3vjMbtt2+Ks88en9kTAfQhQR0AoE2KxYh99209FHdaq43sRkaSSoDly6dWBLSiXD2w3347Z/YEAH1KUAcAaKO0urs30koju26XyQMwlaAOADAL1SXiWejuXkut7uy1tFIm34ku8gAI6gAAM1avRLzZUNxtzTSya7YioF3l8QBMJagDAMzAdCXiaXR3b4dmKgKUxwN0lnPUAQBm4K676peI5y2cV5vuvPdG5fF5f+8AWSCoAwC0aGQk4pxzpt6edtO4dioW64fucnl8ZVjvpfcOkDal7wAALSiXfY9XHQuelaZx3ZDVhnkAvcKKOgBAC2qVfUdEfOUrEStWdH88aZmuPB6AmRPUAYC+UyolgXvhwtYDZr2y76VL2zvGPGhUHg/AzCl9BwD6ymyPFVP2DUCnCeoAQN9o17FiWT0nHYDeoPQdAOgb7TxWTNk3AJ1iRR0A6Bvl/eWVWjlWrFRKVtFbXYEHgFYI6gBA35jN/vLZ7m0HgGYJ6gBAX5nJ/vJ27W0HgGbYow4A9J1W95e3c287AEzHijoAwDRmu7cdAFohqAMATMPZ6QB0k9J3AIAmDA9HDA0l5e4LFgjpAHSOoA4A0CRnpwPQDUrfAYCucx45ANQnqAMAXdWu88iFfQB6laAOAHRNu84jbxT26wV4wR6AvBDUAYCuaXQeebMahf16AX42q/gCPgDdJqgDAF3TjvPI64X9jRtrB/gf/GDmq/jtKtMHgFYI6gBA17TjPPI996wd9sfHawf4O++c2Sp+u8r0AaBVgjoA0FXDwxFbtybl5Fu3Jj83a2Qk4vWvnxy8y2H/2GNrB/jjjpvZKn47yvQBYCYEdQCg64rFiGXLWltJr17hjkgC+MaNSdivt1p/zDH1V/EbNZ7bvn32ZfoAMBO7pT0AAIBaSqVkVXvhwiRU11rhHhuLeOaZiZ+HhyOGhpJV73Kg3rAhuW3r1onbi8Vkdb4c/AuFJMwPD0++fWAg+d3Y2MzK9AFgJgR1ACBzaoXooaGJ0FxWa4W7WGwcxCNq7z8/99yI55+P+LM/m7h9fDwJ6+vXRyxdKqQD0B1K3wGATKnXxC2i+UZ00zWCq7c6f8EFtW+fO1dIB6B7rKgDAJnSqIlbdWl7vfDc6DmKxYlj4qrvU4t96QB0mxV1ACBTpjtrvZlGdM08R+XqfD32pQOQBkEdAEhVdef1dpy13sxzlI+JW79+aqgvFJLbWz0+DgDaQek7AJCaeg3fmi1xb6SZ5ygWI1asiHjqqWQP++joRKhfsWL27w8AZkJQBwBSUa/h29DQROf22ZacN/sc7bgwAADtIqgDAKmYruFbt7XjwgAAtIM96gBAKqZr+AYA/UpQBwBS0Y6mcQDQi5S+AwAdVSolZe4LF04N4faGA8BUVtQBgI4ZGYmYPz9i+fLk+8jI1Ps0cy46APQTQR0AaLtSKTmHvFZX9/J56e1+vcqz2AEgzwR1AKCtyqvop51Wv6t7J16v0ao9AOSJoA4AtE312ejV2t3Vvd5Z7FbWAcgzQR0AmLHqkvNaZ6OXzaare73S9kZnsQNAXgnqAMCM1Co5r3U2eqGQ7FffujXp8t6O1ylzFjsAvUhQBwBaVq/kPGLq2ejr1kWsWDHzlfRGpe3OYgegFzlHHQBoWaOS83aejd7odcrP6yx2AHqNoA4AtGzPPZOS88oQXVlyXizWDsylUhK+Fy5sLlCXS9vrvU5ZvdcDgDxS+g4AtOTrX98nfu/3ClPC83Ql580co1bdNE5pOwD9yIo6AFBX5Qp4RMT3vhfxV381P8bHB3bdp1CI2Lgx4phjGj9Prb3mQ0MToXtkZOI+hUIS0IeHlbYD0H8ysaL+pS99KZYvXx6LFy+OFStWxP3339/w/v/4j/8YJ554YixevDje9ra3xb/+6792aaQA0D8qV8APPDD5+pM/GZwU0iOSYP3MM42fa7pj1JppGrdsmZAOQH9IPajfcccdsWbNmrjwwgvja1/7WhxyyCExPDwcTz75ZM37//CHP4yLL7443vGOd8TXv/71eNOb3hQXXnhh/PjHP+7yyAGgd1UH5/Hx5KuWZo5Dm+4YNeehA8CE1IP6F77whXjnO98Zp556aixYsCA++tGPxote9KL46le/WvP+N910U7zhDW+I9773vXHwwQfHBz7wgXjta18bt9xyS5dHDgDZU73He6b3rRWca6ncM97o+abba+48dACYkOoe9eeffz4efPDBWFk+eDUiCoVCHHvssXHvvffWfMx9990XZ5111qTbjjvuuPjOd77T8uuPjo62/JhuKo8v6+MkO8wZWmXO9JYbbxyI884biLGxgSgUxmPt2vE4++zay+DT3fegg5L/nzw2NlDz8YXCeHzpS2OxdGkStm+4YfrXPuusiBNOmLzXvDz15s2LWLt2IM4/fyBGRwdicHA8rrtuPObNGw/TM9/8d4ZWmTO0Ki9zppXxpRrUf/GLX8To6Gjss88+k27fZ5994pFHHqn5mB07dsS+++475f47duxo+fU3bdrU8mPSkJdxkh3mDK0yZ7Jh27Y58fjje8QBB/w69ttvZ8uPPe+8xbuC9djYQJx3XsRv/dYDU56r2fuuXr1PXHHF/BgbG4iBgSR0j48nQXz16kdj4cInY8eOiAcfbP61IyJe/vKIHTuSr0pHHRXxjW9M/gzuu6+lj4EM898ZWmXO0KpemjN93fV98eLFMViuwcug0dHR2LRpU+bHSXaYM7TKnMmOVlbDa9mwIaasfo+NDcQeexwaS5bM7L5LlkS8971ju1bAIyJ+/OOx2LnzoTjhhENicPCAll+b/uO/M7TKnKFVeZkz5XE2I9Wg/pu/+ZsxODg4pXHck08+OWXVvGzfffedsnre6P6NDA4OZvoPWZaXcZId5gytMmfSVSpFnHdeZcfzpAT8pJOa73J+yCHJHu/qs80XLRqM6j9tK/edPz/5KisWI+67b+ekOdPK89G//HeGVpkztKqX5kyqzeR23333OPTQQ2Pjxo27bhsbG4uNGzfGkUceWfMxS5YsibvvvnvSbXfddVcscckegJxqR8fz6Zq1zfS+7X5tAGB6qZe+v+c974lVq1bFYYcdFocffnh88YtfjOeeey5OOeWUiIi49NJLY7/99ouLL744IiLOPPPMOOOMM+LGG2+M448/Pu6444544IEH4vLLL0/zbQDAjJU7nlevSLfa8Xx4OGJoaHKztnbct92vDQA0lnpQf8tb3hI///nP47Of/Wxs3749XvOa18TnP//5XaXsP/vZz6JQcV7LUUcdFddcc018+tOfjk9+8pPx27/923HttdfGq1/96rTeAgDMSnlFeuXKZCV9NivSxeL0jyuVklX8hQsjli2b0ZBn/NoAwPRSD+oREaeffnqcfvrpNX938803T7ntpJNOipNOOqnTwwKArml2RboyZM8kFI+MRJx7brJ6XygkFwiGh2c3dgCgvVLdow4ATCgWkxXuegF8ZCRp7LZ8efJ9ZKT55y6VItavnwjpEcn3lSuT3wEA2SGoA0AOlEozD9nlgH/aabNvWgcAdJ6gDgA5MNPO8NUBv9pMmtYBAJ0lqANADpQ7w1dqJmTXCviVj3eMGgBkj6AOADnQ6KzyUiliw4baZfC1An6hkOxX37pVIzkAyCJBHQByYng4CdcbNkyE7OkazNUK+OvWRaxYYSUdALIqE8ezAUA/mc0Ra5VnlddrMDc0NPl5mz36DQDIBivqANBFszlirVorDeamO/oNAMgOQR0AumQ2R6zVMtMGcwBAtgnqANAlMz1irZ5GDeZmo1FzOgCg8+xRB4AuKa+AV4b12a6At2v/eXnf/L//e8SqVckYC4XkQoDO8ADQXYI6AHRJeQV85cpkJb1dK+CVDeZmYmRkckl+Wb3mdABAZwnqANBFM1kBn02X+Gaeu1ZILyuX5gvqANA99qgDQJe10oG9nV3ia6m1b76S5nQA0H2COgBkVLu7xNdSq3N8WbtK8wGA1gjqAFBH2t3P290lvpZaneM//vHkfW/dqpEcAKTBHnUAqKGywdpsup/PZn95J7rE19KuzvEAQHtYUQeAKu0qOZ/N/vJywL/qqvafk15LK/vmAYDOsqIOAFUalZw3G2Trhf1mjjqrXs2/8sqIY46x2g0A/cKKOgBUqdVgrdWS82b3l1fvg68V8C+7TEgHgH4iqANAlVoN1lotOW8m7NcqjZ9pwK8l7WZ4AMDMCOoAUMPwcNL1fKbdz6cL+/VK4/fcc2YBv1qnz18HADpHUAeAOmbbYK1R2K+3cv7MMzML+JWr5t04fx0A6BzN5ACgg4rF2kG/0dFry5bVPy6tmUZ37WiGBwCkx4o6AKRgutL4eqv5zex9b0czPAAgPYI6AMxQq83aqu8/k33wzTS6a0czPAAgPUrfAWAGqs86X7eucdCud/96pfGNDA/XL41v5T4AQDZZUQeAFrXarK0Tzd2aaXQ322Z4AEA6BHUAaFG9Zm1/93e1w3ezZ6MDAEQI6gDQslrN2iIiLrqo9pnlmrsBAK0Q1AGgRdXN2irVKmvX3A0AaIWgDgAzUO7Y/slPTv1drbL2mXR4BwD6k6AOADNULEasWNF8WbvmbgBAMwR1AJgFZe0AQLs5Rx0AZsmZ5QBAOwnqAPSlUik5Nm3hwsnBut7t0ykWBXQAoD2UvgMwa6VS0iSt1hniWTQykhyjtnz55OPU6t1eqZn3mrfPAwDIFkEdgFlpJtxmSakUce65yTFqERPHqf3gB7VvrwzbzbzXvH0eAED2COoAzFi90JvlleSHH54Yb9noaMSdd9a+vXzMWjPvNY+fBwCQPYI6ADNWL/RWnyGeJQsX1j5O7bjjGh+z1sx7zePnAQBkj6AOwIzVC721zhBvRSf3eNc7Tu2YYxofs9bMe+3U5wEA9BdBHYAZ68QZ4t3Y4z08HLF1a3IxYOvW5OdGt0c0916dqQ4AtIPj2QCYlXaeIV5vj/fQUPvDbr3j1Bods9bMe3WmOgAwW4I6ALPWrjPEG+3xzkrgbea9OlMdAJgNpe8AZEaW93g7Gx0A6BZBHYDMyOoeb2ejAwDdJKgDkCmNGrqlwdnoAEC32aMOQOZkaY93HvbNAwC9xYo6ADSQ5X3zAEBvEtQBmJF+aa6W1X3zAEDvEtQBaFnemqvN9qJC1vbNAwC9TVAHoCV5a67WrosKxWLEsmVW0gGAzhPUAWhJo+ZqWZO3iwoAABGCOgAtKJUitm/PT3O1PF1UAAAoczwbADWVSknQXbgwKfceGZlYnR4YSML62Fi2m6uVO7ZXhvWsXlQAACizog7AFNX7uq++enIJ+fh48n39+mw3V9OxHQDIIyvqAExSa1/3hz40tYR8bCxi7typobdyJT5i8qp8N8Ze/dpDQ8nFhC1bkpV0IR0AyDpBHYBJau3rLpe7l1fSI2qXkFeXx0ckjykUkpXtTq68p/naAADtpPQdgEnK+7qrVYf06hLy6pX48fGJx3S623qarw0A0G6COgCTVO/rrlYoRGzcOHWFutZKfKVOdltP87UBANpNUAdgl1IpYsOGiX3dn/zk1PuMjUU888zU2+utxJd1stv6bF+7/L6tugMAWSCoAxARUzu9f/vbEStWNH9mevVKfPkIt/Jj1qxJVr47EYane+1Gnd6r3/fISPvHBwDQCs3kAKjZ6X3lymRVfd265N+jo9OH3uHhZDW+3GE9Ivn3PfdErFqVPG+nmrvVe+1Gnd7rve+hId3hAYD0COoA1NzjXd7XXR2ApwuwxeLU+7zpTe0Jw5XHr9V6bPVr17pP5XM0et+COgCQFqXvANTc411Z4l4sRixbNrPw2igMV+4Nn26feDtK1Kuf4557mi/tBwDoFkEdgCl7vKcrcW9FvYsA99wzEZoPPDD5qhfC65Wot7LfvdZzXHZZxFVXdeZ9AwDMVGql76VSKf7mb/4m7r777tixY0e84hWviD/6oz+K8847L3bfffe6jzvjjDPi+9///qTbTjvttLj88ss7PWSAntZqiXuzyhcBKve5r1kzsWc9YvIZ7bVK49tRol7vOY4+OtmL3+73DQAwU6kF9UceeSTGx8fj8ssvj/nz58ePf/zj+PCHPxzPPfdcrFq1quFj3/nOd8b73ve+XT+/+MUv7vRwAfpCrf3l7VB9EaDZc8/LYymvylc+plCIeMlLmh9Drecol7l36n0DAMxEakH993//9+P3f//3d/18wAEHxE9/+tP4yle+Mm1Qf9GLXhRz587t9BABaKPqMFwdmitV7hMvN3+76qqID30oCfERyWNf//rmO8jXWtlX5g4AZFGmur4//fTTsddee017v9tvvz2+8Y1vxNy5c+ONb3xjXHDBBTNaVR8t/6+9jCqPL+vjJDvMGZpVDr8HHZTOnJk3L2Lt2oE4//yBGB0diIGB8RgYiBgbG4jBwfG47rrxmDdvPG64YSDOO28gxsYGolAYj1WrxuOqq5KfI8pl8uNxwgljTQXus86KOOGEyWXu/s+lNf47Q6vMGVplztCqvMyZVsY3MD5euTMwPY8++miccsopsWrVqnjnO99Z935/+7d/G/vvv3+84hWviM2bN8c111wThx9+eHzuc59r+rVGR0fjvvvua8OoAfLn61/fJ664Yv6u8Lt69aPx9rc/mcpYtm2bE48/vkcccMCvIyJ2/Xu//XbGtm1z4m1vW7wrlEdEDAyMx/j4wJTnWbt2cxx99K+6Nm4AgJlasmRJDJY72dbR9qB+zTXXxA033NDwPnfccUccfPDBu37etm1bnH766fG7v/u78Vd/9Vctvd7GjRvjrLPOin/6p3+KAw88sKnHlIP64sWLp/2A0jQ6OhqbNm3K/DjJDnOG6ZRKEQcdVJgUfguF8Xj44Z0xf3625syGDRFvfvPUMRUK45PGPzg4Hj/5SXMr6sye/87QKnOGVpkztCovc6Y8zmaCettL388+++w4+eSTG97ngAMO2PXvbdu2xZlnnhlHHnlkfOxjH2v59Y444oiISFbkmw3qZYODg5n+Q5blZZxkhzlDLaVSxFe/OnVf+NjYQPz0p4Nx0EHZmjOHHFK7+duVVw7s2que7DMfyNxFhn7gvzO0ypyhVeYMreqlOdP2oL733nvH3nvv3dR9yyH90EMPjTVr1kSh+qDdJjz00EMREZrLQR8q77NeuFBDsOmMjEw+Q7xSoTC+q3FbltRr/jY8HPGudzlODQDoXa0n4zbZtm1bnHHGGTFv3rxYtWpV/PznP4/t27fH9u3bJ93nxBNPjPvvvz8iIh577LG49tpr44EHHohSqRTf/e53Y9WqVXHMMcfEIYccktZbAVIwMhIxf37E8uXJ95GRtEeUXaVS/ZA+OJjsUc9q2B0eTs4437Ah+V7u7l4sRixbJqQDAL0pta7v//f//t949NFH49FHH510TFtExObNmyMiYufOnfHTn/40nnvuuYiImDNnTmzcuDFuuummePbZZ2PevHnxB3/wB3HBBRd0ffxAeqqDZ9L5OzmnW3Cb6q67aof0T30q4uSTx2LHjicj4oCpd8gIZ5wDAP0mtaB+yimnxCmnnNLwPsVicVdoj4iYN29e3HLLLZ0eGpBxDz88NXiOjial0ALdZCMjEeecM/X2wcGId7wjOSbtwQfnxIYNyZ5wnx8AQPpSK30HmKmFC5MmY5UGByOT+6zTVK48qD7bo7zXu1iMuPHGgXjb2xbHm988aAsBAEBGCOpA7pSbjJWbelYGTybUqjyIiPjKV5K93qVSxHnnDew66qy8haBU6vJAAQCYJLXSd4DZGB5O9qTX6vytG3yiXHlQfbzZ0qXJv5MgPzDpMXncQuDvDQD0GivqQG7V6vytG/yE6SoPkiA/uS4+b1sI/L0BgF4kqAM9o143+H4s5S6VkiPNhoZqH28WkQT2tWvHd4X1vG0h8PcGAHqV0negZ+gGnxgZmQiwhUKyql4Z0CudffZ4/NZvPRB77HFoLFo02JXPqV2l6v7eAECvsqIO9Azd4Ge2yrzffjunbCHolHaWqvt7AwC9SlAHeoZu8I1XmdPW7lJ1f28AoFcpfQd6SqNu8P2gXqf3LKwyd6JUvd//3gBAbxLUgZ5TLPZvYCuvMq9cmYTgLK0yd+oiQj//vQGA3qT0HaDHDA/X7/SeJqXqAADNsaIO0IOyusqsVB0AYHqCOgBdldWLCAAAWaH0HQAAADJEUAd6QqmU7Mme6VFfAACQFYI6kCu1AvnISMT8+RHLlyffR0bSGx8AAMyWoA7kRq1AXipFnHvuxJFfY2PJ0WRW1gEAyCtBHciFeoH8rrsmn8sdkZwfvmVL98cIAADtIKgDufDww7UD+cBARKHqv2SDg8nRXwAAkEeCOpALCxfWDuRLl0asW5f8u3zb9ddPPf5LszkAAPJCUAdyoVisH8iHhyO2bk2C+Natyc+VNJsDACBPdkt7AADNGh6OGBpK9p8vWDB51bxYnLqKHlF/b/vQUO37AwBA2gR1IFfqBfJ66u1t37JFUAcAIJuUvgM9rd7e9l5pNmfvPQBA7xHUgZ7WaG973tl7DwDQmwR1oOdN12wuj+rtvbeyDgCQf/aoA32h1b3tWWfvPQBA77KiDpBDvb73HgCgnwnqADlUa+/9mjXJSrvydwCAfFP6DpBhpVISvhcunChpL982NJTsud+yJeKeeyJWrUrK4QuFJMT3wl58AIB+JKgDZNTIyETDuHL4jph629BQxJveNLWx3NCQ/eoAAHkkqAOZVWs1OcvP2061urqfe+7Ev8vfV66M+PKXNZYDAOgl9qgDmVIqJceoXXNNZ84Iz8vZ47W6uo+N1Q7kAwMaywEA9BJBHciMyhD9wQ9OXU3+wQ9m9/x5Onu8Vlf3QqF2IF+6dGpjueuvt5oOAJBXgjqQCdUhutrYWMTrXz+7FfBGZ49nTa2u7uvW1Q/kw8NJY7kNG5LvGskBAOSXPepAJtQK0dVm2yStvEpd+TpZLhEfHk7e65YtyRjL77nWbRHJv62iAwDknxV1IBNqlXrXMpsV8Fqr1FkvES8WI5YtmxrIq28DAKB3COpAJtQK0atXt79JmhJxAACyTuk7kBm1Sr0POigpdx8dbd8KuBJxAACyTFAHMqU6RNfbp90ulWeqRzR/vnoaZ7Hn4fx3AABmT+k7kHmd2pNdeRzcgQcmX82cr57GWex5Of8dAIDZE9SBvlR9HNz4ePIV0fh89TTOYs/T+e8AAMyeoA4dVColTcsEquyZ7ji4et3l0ziLPU/nvwMAMHuCOnSIUuVsm+44uHrd5Ws9rtNnsafxmgAApEdQhw5Qqpx91cfBDQxMhOFG3eXTOIs9j+e/AwAwc7q+Qwc0KlUWrhJZ6GBe3VE+ornu8t3sRF9+7k6/JgAA2SGoQweUS5Urw7pS5QkjIxMVB4VCslo8PJzOWKqPg2s2AHfqLPZGn43z3wEA+oPSd+gApcr15XlbQCebA5ZKEevX5/ezAQCgfQR16JDh4YitW5Ngt3VreivGWZPXDuadbA5Yfu7TTsvnZwMAQHsJ6tBBxWLEsmVW0ivlsYN5J6sAqp+7WtY/GwAA2k9QB7qq29sC2lGuftddnVvpbnSeuy0TAAD9STM5oOu61cG8HU3rRkYizjln6u3tWumu1XiwUIi49daIpUuFdACAfmRFHUhF5baATjRpa0e5evk5xscn397Ole5aFQbr1kWsWCGkAwD0K0EdSFWnmrS1o2ldvbL0r3ylvc0BNR4EAKCSoA6kppNN2trRtK7ecyxdOvvxVdN4EACAMkEduqSTZ3DnVSePamtH07puN74DAIAIzeSgI0qlJIQuXJiEunY0NetFtRqptfM4snY0rWtX47vqOQEAAPVYUYc2q95zffXVnSvvzrturFi3o6R8ts/RqX34AAD0JkEd2qjWnusPfahz5d29oNcbqXVyHz4AAL1J6Tu0Ua091+Vy906Vd+dJvfLvYrF3y8Eb7cPv1fcMAMDsWFGHNqrXJfyqqzQk69fy73Z0nwcAoL8I6tBG9fZcX3JJb5d3T6efy791jgcAoFVK36HN6nUJ7+Xy7un0e/l3uzrHAwDQHwR16IB+DuW1dPoYtrQ1c/SaOQEAQLOUvgMdl8fy71Ip2aowXXl+q3vvm31eAAD6l6AOKejHsJanY9iaDd+t7r2vft6rr+6/eQAAwPRSDerLly+PRYsWTfpat25dw8f8+te/jo9+9KPxute9Lo488sj4X//rf8WOHTu6NGKYvX7tfh6RrKAvW5b9lfRmw3ejvffNPO+ll/bnPAAAoLHUV9Tf9773xZ133rnr6/TTT294/yuuuCI2bNgQn/70p+Pmm2+O//7v/44/+7M/69JoYXb6uft5XrQSvls5eq3W85aZBwAAVEo9qL/kJS+JuXPn7vr6jd/4jbr3ffrpp+OrX/1qfOhDH4qlS5fGYYcdFldccUXce++9cd9993Vv0DBDrYRA0tFK+J5u733lFodaz1vJPAAAoCz1ru833HBDXHfddTFv3rz4wz/8wzjrrLNit91qD+uBBx6InTt3xrHHHrvrtoMPPjj233//uO+++2LJkiUtvfbo6Ohsht5x5fFlfZw076CDIgqFQoyNDey6bXBwPF71qrFox5/ZnJm9efMi1q4diPPPH4jR0YEYHByP664bj3nzxmv+jc46K+KEEyaOXouI+M53In74w4G47LKBGBsbiEJhPNauHY+1a2PX80aMR0Rn5kErzBlaZc7QKnOGVpkztCovc6aV8aUa1M8444x47WtfG3vttVfce++98clPfjK2b98el112Wc3779ixI+bMmRMve9nLJt2+zz77xPbt21t+/U2bNs1o3N2Wl3HSnNWr94krrpi/K8BddtmjsWPHk9HOVgvmzOwcdVTEN74xJx5/fI844IBfx3777YzpinZe/vKIz39+4m9bGcTHxgbivPMibr99U3zjGxGPP75H/L//9xvxuc8VOzoPWmHO0CpzhlaZM7TKnKFVvTRn2h7Ur7nmmrjhhhsa3ueOO+6Igw8+ON7znvfsuu2QQw6JOXPmxEc+8pG4+OKLY/fdd2/30KZYvHhxDJZrVjNodHQ0Nm3alPlx0polSyLe+96xXSuwxeIBEXFAW57bnElPqRRxxRWV1RIDk34/NjYQe+xxaCxbNnHbRRd1Zh60wpyhVeYMrTJnaJU5Q6vyMmfK42xG24P62WefHSeffHLD+xxwQO3/MXrEEUfECy+8EKVSKQ466KApv993331j586d8dRTT01aVX/yySdj7ty5LY91cHAw03/IsryMk+bNn598dYo5032PPFK/WVxEsn990aLBqPyzdHoetMKcoVXmDK0yZ2iVOUOremnOtD2o77333rH33nvP6LEPPfRQFAqF2GeffWr+/rDDDos5c+bExo0bY2hoKCIiHnnkkXjiiSda3p8O0E7lZnG1wnp1kzkAAGgkta7v9957b/yf//N/4kc/+lE8/vjj8Y1vfCPWrFkTf/RHfxR77bVXRERs27YtTjzxxLj//vsjIuKlL31pnHrqqXHllVfG3XffHQ888ECsXr06jjzySEGd3KrsDE5+1eoA//GPJ3/brVsjhodTHR4AADmSWjO53XffPe6444743Oc+F88//3wUi8U466yzJu1b37lzZ/z0pz+N5557btdtq1evjkKhEO973/vi+eefj+OOOy4+8pGPpPEWYNZGRibOVS8UkqAn0OXX8HDE0FBU7DtPe0QAAORRakH90EMPjfXr1ze8T7FYjM2bN0+6bY899oiPfOQjwjm5VypNhPSI5PvKlUnQE/Dyq1j09wMAYHZSK32Hfvfww1P3M4+OJquxAABA/xLUISXl5mOVBgeTkmkAAKB/CeqQklrNx3QGBwAAUtujDmg+BgAATCWoQ8o0HwMAACopfYc2cR46AADQDoI6tMHISMT8+RHLlyffR0bSHhEAAJBXgjrMUr3z0K2sAwAAMyGowyw5Dx0AAGgnQR17q2fJeegAAEA7Cep9zt7q1lVf2OjmeeguqgAAQO8T1PuYvdWtq3dhY3g4YuvWJERv3Zr83K3XBgAAeoug3sfsrW7NdBc2isWIZcs6t5Ke54sqKgEAAKB5gnofs7e6NWle2MjzRRWVAAAA0BpBvY91c291L0jzwkZeL6rkvRIAAADSIKj3uW7sre4V3b6wUVkunteLKnmuBAAAgLTslvYASF+xmP3AlxXDwxFDQ0nQXLCg/Z9bqZSE23//94hVq5KQWygkIb3Tr90J5UqAyrCeh0oAAABIk6AOLerUhY2Rkcll4mXlcvGhofxdVClXAqxcmayk56USAAAA0iSoQwZU7+WuVi4Xz2PAzWMlAAAApElQhwyotZe7UqEQ8ZKXdG88M1Uu3V+4cHIgz1slAAAApEkzOciAWl3dK42NRbz+9dk+2qz6GLarr3Z2OgAAzISgDrNQ2Zl9Nmp1dV+9enJ4z/LRZrWOYbv0UmenAwDATAjqMEPVK8izDaPVR+WdcEJ+jjZrVLqf5QsMAACQRfao95HK/cMRtfcS05xaK8iVndlnqnovd6OjzertB09DrWPYKuW5GR4AAHSbFfU+Ubn6e+CByZey5JmrtYLc7tXuWuXw5aPN2r2a3+6xVnN2OgAANE9Q7wPVq7/j48lXhLLk6dTbg16r+Vsnwmh1OfzwcP3V/LT/hpVjvfrq2hcYAACA6QnqfWC6o7+yuu85bY1WrRutdrdbsRixbNnEc3djNX869S5glMd6ySVTLzAAAADNEdR7XKkUsX1746O/lCVP1cyqda3V7m7o1mp+Pc2W3VdfYAAAAJojqPewcqA67bSk1L0c7gYGJv6tLLm2Zlet0wij3VzNr5bVsnsAAOglur73qFr70gcGItavj1i6NLlty5ZkFbYy4GWpk3iaanUxz1LlwfBw0mG+1t+wkxpdwOjn+QIAAO1kRb1H1QpUY2MRc+dOHAFWvRKctU7iaUpz1bpZaazmp112DwAA/UBQ71GtBiolzVOltQc9y2pdwFizJrkw1M9zBQAA2klQ71GtrghnoZN4FmmINlXlBYwrr4z40IdUYQAAQDvZo97DWtnHnPU92WRLeS696U1TqzCGhlzYAACA2bCi3uOaXRHOw55sskUVBgAAdIYVdXZJq5N4HuSpG/62bXNiw4aIQw7p7FhVYQAAQGdYUWcSe7KnylM3/BtvHIi3vW1xvPnNgx0fqyoMAADoDEEdGshTN/xSKeK88wZibGwgIrozVp3xAQCg/ZS+QwON9mFnbeU4GevApNu6MdZiMXufBQAA5JkVdWoqlZJV0iyuHHdTq+fRpykZ6/ik27I6VgAAoD5BnSnytCe70/K0D7tYjFi7dnxXWM/yWAEAgPqUvjNJrT3Z554b8dKXRhx7bH+Gvjx1wz/77PH4rd96IPbY49BYtGgw02MFAABqE9SZpNae7LGxiNNOS0rA163rz4ZhedqHvd9+O2PJkokqgHbJ0xF1AACQZ0rfmaTWnuyyLHc8p7NshwAAgO4R1Jmkek92tXIXcfpHno6oAwCAXiCoM0X5bOz16/PT8ZzOaXREHQAA0H6COjUVixErVuSn4zmdk6cj6gAAoBcI6jRUXl3fsCH53kuN5JwV35w8HVEHAAC9QNd3ppWnjufNGhmZ2Hfdy93s29WpPU9H1AEAQN5ZUafv9EtztHqd2mdaSVAsRixbJqQDAECnWVGn7zRqjtYrIbTexYhf/CJi1aqJSoIrr4w4+mhnowMAQJYI6vSdcnO0yrCe9+Zo5RL3gw5Kfq53MaIc0iOS75demvy7l8v/AQAgb5S+03d6rTlaZYn7QQcV4utf36dmp/bqixOVerX8HwAA8khQpy/1Sjf7qSXuA3HFFfMjYurFiCuvnBreKzkbHQAAskHpO32rF7rZ1ypxHxsbiC1bandq33vvZOV8dHTqc+W9/B8AAHqFoA4x+RiziPYcadYNtfbbFwrjuwJ39cWIyvB+zz0RH/pQEtrzXv4PAAC9RFCn71WeqT4wkNw2Pp6PBmvl/fblVfLBwfG47LJHo1g8oOFjyketvetdEyvuEclWgDxcoAAAgF5mjzp9rXqP9/h48hWRnwZrlfvtf/KTsXj725+ccp96Z6eXA/u3v137zHUAAKD7BHX6Wq093pXy0mCtHLhrrYRXdoWvFcLrnbleDvX1Qj4AANAZgnqPEq6aU+sYs0p5b7A2XQiPqH/m+pYt04d8AACg/QT1HiRcNa/6TPWBgYng3gsN1hqF8LJaFysGByNe8pLpQz4AANB+gnqPaWYFlckq93g/9ljEo4/m/3z1snohvLJKoPpiRfkCxa9+NX3IBwAA2k/X9x7TaAU1zyvDnVZ9jFmvfFZTu8LXrhKodeZ6qTT16Le8bwUAAIA8ENR7TK1ztYWr/lYrhNdS62JFMyEfAABoL0G9xwhX1FIdwpvVbMgHAADaR1DvQcIV7TTTkA8AAMyMoN6jhCsAAIB8Si2o/9u//VuceeaZNX/3d3/3d3H44YfX/N0ZZ5wR3//+9yfddtppp8Xll1/e9jHmQamUNJBbuFAwBwAA6AWpBfUjjzwy7rzzzkm3feYzn4mNGzfG4sWLGz72ne98Z7zvfe/b9fOLX/zijowx60ZGJo5iKxSSvel5P04MAACg36UW1HffffeYO3furp937twZ3/3ud+P000+PgYGBho990YteNOmx/ajeeelDQ1bWAQAA8iwze9T/+Z//OX75y1/GqaeeOu19b7/99vjGN74Rc+fOjTe+8Y1xwQUXzGhVfXR0dCZD7Zry+GqN80c/ihgbG6y6f8TmzaMxb15XhkcGNZozUIs5Q6vMGVplztAqc4ZW5WXOtDK+gfHx8fEOjqVp55xzTkRE3HDDDQ3v97d/+7ex//77xyte8YrYvHlzXHPNNXH44YfH5z73uaZfa3R0NO67777ZDDd127bNibe9bXGMjU1UHxQK43H77Ztiv/12pjgyAAAA6lmyZEkMDg42vE/bV9SvueaaacP2HXfcEQcffPCun//rv/4r7rzzzvj0pz897fOfdtppu/69aNGimDt3bpx11lnx2GOPxYEHHtjSWBcvXjztB5Sm0dHR2LRpU91xrl07HuefHzE6OhCDg+NxxRXjsfvuh8a++3au/F3zumybbs5ANXOGVpkztMqcoVXmDK3Ky5wpj7MZbQ/qZ599dpx88skN73PAAQdM+vmrX/1qvPzlL4/ly5e3/HpHHHFEREQ8+uijLQf1wcHBTP8hy+qN85xzIk46KTkv/Z57BmLVqoGONpbTvC4/Zju3XZDpP3n57yHZYc7QKnOGVpkztKqX5kzbg/ree+8de++9d9P3Hx8fj9tuuy3e/va3x5w5c1p+vYceeigiom+by5VD1Jve1NnGcprX9Q8XZAAAIF2FtAdw9913R6lUine84x1Tfrdt27Y48cQT4/7774+IiMceeyyuvfbaeOCBB6JUKsV3v/vdWLVqVRxzzDFxyCGHdHvomfHwwxMBumx0NFlpz9NrkL56F2RKpXTHBQAA/ST1ru9///d/H0ceeeSkPetlO3fujJ/+9Kfx3HPPRUTEnDlzYuPGjXHTTTfFs88+G/PmzYs/+IM/iAsuuKDbw86UhQuTlc/KID04GLFgQb5eg/Q1uiCjcgIAALoj9aD+iU98ou7visVibN68edfP8+bNi1tuuaUbw8qVYjEpT165MglVg4MR11/f3mA13WvY09wbXJABAID0pV76TnsMD0ds3RqxYUPyvRN7iuu9xshIxPz5EcuXJ99HRtr/2nRH+YJMuQdHJy76AAAAjaW+ok77FIudD1TVr6HJXO8ZHk7+flu2JCvp/o4AANBdgjozVipFrF9vT3Mv6sZFHwAAoDZBnRmpPMKrmj3NAAAAM2ePOi2rLnevZE8zAADA7FhRp2W1jvCKiPjUpyLe8Q4hHQAAYDasqNOy8hFelQYH8xHSS6Wka32plPZIAAAAahPUaVmzR3hlLRQ7Rg4AAMgDQZ0Zme7c9qyF4nrHyGXlIgIAAECZoM6MFYsRy5bVXknPWiiuta++fIwcAABAlgjqtF0WQ3G9ffWOkQMAALJGUM+hrO39rpbFUNzsvnoAAIC0Ceo5k7W93/VcdFH2QvF0++oBAACywDnqOVJv7/fQUPohuGxkZGKMAwMRl1wS8f73Z2d8xWJ2xgIAAFCLFfUcyeLe70rVFxLGxyM+9al0xxSR/a0CAAAAlQT1HMni3u9KWbyQkJetAgAAAGWCeo5kvSFa1i4kZPGYOAAAgOkI6jmT5YZoWbuQkMUVfgAAgOloJpdDWW6INjycNLfbsiVZSU9znOUV/sqwnqWtAgAAALVYUaftisWIZcvSv5iQtRV+AACAZlhRJ1WlUlKivnBhZwJ0llb4AQAAmmFFndR0qyN7Vlb4AQAAmiGokwod2QEAAGoT1EmFjuwAAAC1CeqkImtnrgMAAGSFoE4qdGQHAACoTdd3UqMjOwAAwFSCOqkqFgV0AACASkrf6YpSKWLDBl3dAQAApiOo03HdOi+9mosDAABAHgnqdFRa56WndXEAAABgtgR1Oqrb56WXShHr16dzcQAAAKAdBHU6qpvnpZdX0U87rbsXBwAAANpJUM+JvO637tZ56dUl9tU6dXEAAACg3QT1HLjxxoFc77ceHo7YujW50LB1a/Jzu9UqsS/r1MUBAACATnCOesZt2zYnzjtvYMp+66GhfAXPTp+XXi6xrwzrhULErbdGLF2ar88KAADob1bUM+7xx/eIsbGBSbfZbz1VrRL7desiVqwQ0gEAgHyxop5xBxzw6ygUxieFdfutaxseTioNtmxJPh8BHQAAyCMr6hm33347Y+3a8Y43Y+sVxWLEsmU+HwAAIL+sqOfA2WePx0knWSkGAADoB4J6hpVKEffcs2fsu2/S7V1ABwAA6H1K3zNqZCTioIMKcd55i+Kggwq5O5INAACAmRHUM6hUijj33NjVQG5sbCBWrkxu7wWlUnKmeq+8HwAAgHYS1DPo4Ycnnwce0TtHso2MJGX8y5cn31UKAAAATCaoZ9DChRGFqr9MLxzJNlEpkPw8NhY9VSkAAADQDoJ6BhWLEevWRQwOjkdE8r0XjmTr5UoBAACAdtH1PaOGhyNOOGEsvvWtLXHiiQti/vzBtIc0a+VKgcqwXlkpUColYX7hwvxflAAAAJgpK+oZVixGHH30r3omtE5UCiQ/Dw7GrkoBe9cBAAASgjpdNTwcsXVr0vV969bkZ3vXAQAAJih9p+uKxcml7Y32rvdKNQEAAECzrKiTul7tcg8AADATgjqpq7V3fc2aZKVd+TsAANBvlL6TCcPDEUNDSbn7PfdErFqVlMMXCkmIHx5Oe4QAAADdIaiTGeX96G9609TGckND9qsDAAD9Qek7mdKosRwAAEA/ENTJFI3lAACAfieokym1Gstdf72ydwAAoH/Yo07mVDaWW7BASAcAAPqLoE4mFYuNA3qplOxnX7hQkAcAAHqL0ndyZ2QkYv78iOXLk+9XXx2xYYMz1wEAgN4gqJMrpVLEuedOPr7t0ksnQvvISLrjAwAAmC1BnVypdXxbWfnMdSvrAABAngnq5Eqt49sqOXMdAADIO0GdXKk+vq2aM9cBAIC8E9TJneHhiK1bkwZyV1/tzHUAAKC3OJ6NXCof37ZsWcS73uXMdQAAoHd0bEX9uuuui3e9611xxBFHxNFHH13zPk888USce+65ccQRR8TSpUvjqquuihdeeKHh8/7yl7+Miy++OI466qg4+uijY/Xq1fHMM8904i2QE+XALqQDAAC9oGNBfefOnXHiiSfGH//xH9f8/ejoaKxcuTJ27twZt956a1x55ZXxta99LT772c82fN5LLrkktmzZEl/4whdi7dq1cc8998Rf/MVfdOItAAAAQNd1LKi/733vi7POOite/epX1/z9nXfeGVu2bImrr746XvOa18Txxx8f73//++NLX/pSPP/88zUf85Of/CS+973vxf/+3/9710r9n//5n8c3v/nN2LZtW6feCgAAAHRNanvU77vvvnj1q18d++67767bjjvuuPjLv/zL2LJlS7z2ta+d8ph77703Xvayl8XixYt33XbsscdGoVCI+++/P9785je3NIbR0dGZv4EuKI8v6+MkO8wZWmXO0CpzhlaZM7TKnKFVeZkzrYwvtaC+Y8eOSSE9Inb9vH379rqP2XvvvSfdtttuu8Vee+1V9zGNbNq0qeXHpCEv4yQ7zBlaZc7QKnOGVpkztMqcoVW9NGdaCurXXHNN3HDDDQ3vc8cdd8TBBx88q0F1y+LFi2Ow3oHcGTA6OhqbNm3K/DjJDnOGVpkztMqcoVXmDK0yZ2hVXuZMeZzNaCmon3322XHyySc3vM8BBxzQ1HPtu+++cf/990+6bceOHRERMXfu3LqP+fnPfz7pthdeeCH+53/+p+5jGhkcHMz0H7IsL+PstFIp4uGHIxYu1OF9OuYMrTJnaJU5Q6vMGVplztCqXpozLQX1vffee0rp+UwtWbIk1q5dG08++WTss88+ERFx1113xZ577hkLFiyo+ZgjjzwynnrqqXjggQfisMMOi4iIu+++O8bGxuLwww9vy7jIppGRiHPPjRgbiygUItatixgeTntUAAAA7dexru9PPPFEPPTQQ/HEE0/E6OhoPPTQQ/HQQw/tOvP8uOOOiwULFsSll14aP/rRj+J73/tefPrTn453v/vdsfvuu0dExP333x8nnnjiro7uBx98cLzhDW+ID3/4w3H//ffHv//7v8fHPvaxeOtb3xr77bdfp94KKSqVItavnwjpEcn3lSuT3wEAAPSajjWT++xnPxtf+9rXdv389re/PSIibrrppnjd614Xg4ODsXbt2vjLv/zLOO200+LFL35xnHzyyfG+971v12Oee+65+OlPfxo7d+7cdds111wTH/vYx+JP//RPo1AoxB/8wR/En//5n3fqbZCiylX0aqOjEVu2KIEHAAB6T8eC+pVXXhlXXnllw/v81m/9VsPmdK973eti8+bNk257+ctfHp/4xCfaMkayq1SqH9IjIgYHI+rskAAAAMi1jpW+w2w8/HDjkH799VbTAQCA3pTaOerQyMKFSdO4yrBeKETcemvE0qVCOgAA0LusqJNJxWLS2b18usLgYPLzihVCOgAA0NusqJNZw8MRQ0NJ07gFCwR0AACgPwjqZFqxKKADAAD9Rek7AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZIigDgAAABkiqAMAAECGCOoAAACQIYI6AAAAZMhuaQ8gDePj4xERMTo6mvJIGiuPL+vjJDvMGVplztAqc4ZWmTO0ypyhVXmZM+XxlfNoIwPjzdyrxzz//POxadOmtIcBAABAn1m8eHHsvvvuDe/Tl0F9bGwsXnjhhSgUCjEwMJD2cAAAAOhx4+PjMTY2FrvttlsUCo13ofdlUAcAAICs0kwOAAAAMkRQBwAAgAwR1AEAACBDBHUAAADIEEEdAAAAMkRQBwAAgAwR1AEAACBDBHUAAADIEEEdAAAAMkRQz5Hzzjsvli1bFosXL47jjjsuPvjBD8a2bdvSHhYZVSqVYvXq1bF8+fI4/PDD44QTTojPfvaz8fzzz6c9NDLquuuui3e9611xxBFHxNFHH532cMioL33pS7F8+fJYvHhxrFixIu6///60h0RG/eAHP4jzzjsvjjvuuFi0aFF85zvfSXtIZNz1118fp556ahx55JGxdOnSuOCCC+KRRx5Je1hk2Je//OV429veFkcddVQcddRRcdppp8W//uu/pj2sthDUc+T1r399fPrTn45vfetb8dnPfjYef/zxeP/735/2sMioRx55JMbHx+Pyyy+Pb37zm3HZZZfFrbfeGp/61KfSHhoZtXPnzjjxxBPjj//4j9MeChl1xx13xJo1a+LCCy+Mr33ta3HIIYfE8PBwPPnkk2kPjQx69tlnY9GiRfGRj3wk7aGQE9///vfj3e9+d6xfvz6+8IUvxAsvvBDDw8Px7LPPpj00MuqVr3xlXHLJJXHbbbfFV7/61Xj9618fF154YTz88MNpD23WBsbHx8fTHgQz893vfjcuvPDC2LRpU8yZMyft4ZADn//85+MrX/lKfPe73017KGTYbbfdFldccUXcc889aQ+FjFmxYkUsXrw4/uIv/iIiIsbGxuL444+PM844I84999yUR0eWLVq0KK699to44YQT0h4KOfLzn/88li5dGrfcckscc8wxaQ+HnPjd3/3d+OAHPxgrVqxIeyizYkU9p375y1/G7bffHkceeaSQTtOefvrp2GuvvdIeBpBDzz//fDz44INx7LHH7rqtUCjEscceG/fee2+KIwN61dNPPx0R4X+70JTR0dH45je/Gc8++2wceeSRaQ9n1nZLewC05uqrr44vfelL8dxzz8WSJUti7dq1aQ+JnHj00UfjlltuiVWrVqU9FCCHfvGLX8To6Gjss88+k27fZ5997CEF2m5sbCyuuOKKOOqoo+LVr3512sMhwzZv3hzvete74te//nX8xm/8Rlx77bWxYMGCtIc1a4J6yq655pq44YYbGt7njjvuiIMPPjgiIoaHh+Md73hHPPHEE/G5z30uVq1aFddff30MDAx0Y7hkQKtzJiJi27Zt8d73vjdOPPHEeOc739npIZIhM5kvAJC2j370o/Hwww/Hl7/85bSHQsa96lWviq9//evx9NNPx7e//e1YtWpV3HLLLbkP64J6ys4+++w4+eSTG97ngAMO2PXvvffeO/bee+941ateFQcffHAcf/zxcd999/VEeQfNaXXObNu2Lc4888w48sgj42Mf+1inh0fGtDpfoJ7f/M3fjMHBwSmN45588snYd999UxoV0Isuv/zy+Jd/+Ze45ZZb4pWvfGXawyHjdt9995g/f35ERBx22GGxadOmuOmmm+Lyyy9PeWSzI6inrBy8Z2JsbCwiwnFbfaaVOVMO6YceemisWbMmCgVtKfrNbP4bA5V23333OPTQQ2Pjxo27GoKNjY3Fxo0b4/TTT095dEAvGB8fj4997GPxT//0T3HzzTe7kMyMjI2N9UQ+EtRz4j/+4z9i06ZN8Tu/8zvxspe9LB577LH4zGc+EwceeKDVdGratm1bnHHGGbH//vvHqlWr4uc///mu382dOzfFkZFVTzzxRPzP//xPPPHEEzE6OhoPPfRQREQceOCB8ZKXvCTl0ZEF73nPe2LVqlVx2GGHxeGHHx5f/OIX47nnnotTTjkl7aGRQc8880w89thju34ulUrx0EMPxV577RX7779/iiMjqz760Y/GP/zDP8Tf/M3fxEte8pLYvn17RES89KUvjRe96EUpj44s+sQnPhG///u/H/PmzYtnnnkm/uEf/iG+//3vx8jISNpDmzXHs+XE5s2b46/+6q9i8+bN8eyzz8bcuXPjDW94Q1xwwQWx3377pT08Mui2226Lyy67rObvNm/e3OXRkAcf+tCH4mtf+9qU22+66aZ43etel8KIyKJbbrklRkZGYvv27fGa17wm/vzP/zyOOOKItIdFBv3bv/1bnHnmmVNuP/nkk+PKK69MYURk3aJFi2revmbNGhcEqWn16tVx9913x3//93/HS1/60li0aFGcc8458Xu/93tpD23WBHUAAADIEBtWAQAAIEMEdQAAAMgQQR0AAAAyRFAHAACADBHUAQAAIEMEdQAAAMgQQR0AAAAyRFAHAACADBHUAQAAIEMEdQAAAMgQQR0AAAAy5P8DKntOae9ZG2oAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Сгенерируем какую-нибудь необычную зависимость и научимся ее предсказывать\n", + "np.random.seed(42)\n", + "m = 300\n", + "X = np.linspace(-3, 3, m).reshape(-1, 1)\n", + "y = (3 + 2/np.pi * np.arcsin(np.cos(10 * X))) * X\n", + "y = y + np.random.randn(m, 1) / 3\n", + "plt.plot(X.reshape(-1), y.reshape(-1), \"b.\");" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7d7c9c3d-5d4e-43a8-9946-3bde8c5b6e85", + "metadata": { + "id": "7d7c9c3d-5d4e-43a8-9946-3bde8c5b6e85" + }, + "outputs": [], + "source": [ + "# Функция для отрисовки предсказаний деревьев решений в случае регрессии (с видоизменениями)\n", + "def plot_regression_predictions(tree_reg, X, y, axes=[-3, 3, -10, 10], ylabel=\"$y$\", label=None):\n", + " x1 = np.linspace(axes[0], axes[1], 500).reshape(-1, 1)\n", + " y_pred = tree_reg.predict(x1)\n", + " plt.axis(axes)\n", + " plt.xlabel(\"$x_1$\", fontsize=18)\n", + " if ylabel:\n", + " plt.ylabel(ylabel, fontsize=18, rotation=0)\n", + " plt.plot(X.reshape(-1), y.reshape(-1), \"b.\", alpha=0.3) # Исходные данные\n", + " plt.plot(x1, y_pred, linewidth=2, label=label) # Предсказания модели" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "ff1a7668-6c5b-4817-98fd-78337f3e9685", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 788 + }, + "id": "ff1a7668-6c5b-4817-98fd-78337f3e9685", + "outputId": "51508727-8798-4a1d-fb6b-3a55acd1ecef" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/wAAAMDCAYAAAAfZR43AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1d348c+dPdtkIwsEZDeIEFaJKGoFEUVZAlatCoJYHvxZWtTWR1tp+1ifyuMjLsUFFUlFfKRaQFHBWkGqiAQoYGQH2QOB7NtMZr2/Pya5M8MkQNZJ4Pt+vXx577nnnjkzGSDfe875HkVVVRUhhBBCCCGEEEJcVHTh7oAQQgghhBBCCCGanwT8QgghhBBCCCHERUgCfiGEEEIIIYQQ4iIkAb8QQgghhBBCCHERkoBfCCGEEEIIIYS4CEnAL4QQQgghhBBCXIQk4BdCCCGEEEIIIS5CEvALIYQQQgghhBAXIQn4hRBCCCGEEEKIi5AE/EIIIYQQQgghxEWozQb8W7ZsYdasWYwYMYL09HS+/PLLoOuqqvLyyy8zYsQIMjIymDZtGkeOHDlvu++99x4jR46kf//+/PSnPyU3N7eF3oEQQgghhBBCCBE+bTbgt9lspKen84c//KHO62+99Rbvvvsuf/zjH/nggw+IiIhgxowZOByOettcvXo1zz77LA8//DArV66kT58+zJgxg6KiopZ6G0IIIYQQQgghRFgoqqqq4e7E+aSnp/Pqq69y0003Ab7R/euuu47p06czY8YMACoqKrjmmmuYN28et912W53t/PSnP6V///78/ve/B8Dr9XLDDTcwZcoUZs6c2TpvRgghhBBCCCGEaAWGcHegMU6cOEFBQQHXXHONVhYTE8OAAQPYvn17nQG/0+lk165d/Md//IdWptPpuOaaa9i+ffsFv7bX68XtdqPT6VAUpWlvRAghhBBCCCGEOA9VVfF6vRgMBnS6C5+o3y4D/oKCAgASExODyhMTEyksLKzznpKSEjweT533HDp06IJf2+1288MPPzSwx0IIIYQQQgghRNP0798fk8l0wfXbZcAfTrVPU9LT0xv0QQvRUB6Ph927d9O3b1/0en24uyMuYvJdE61Fvmuitch3TbQW+a413msPTgHVrZ13HXgrt82eGsYetW1Op5N9+/Y1aHQf2mnAn5SUBEBRURHJyclaeVFREX369Knznvj4ePR6fUiCvqKiIjp06HDBr107jd9kMknAL1qUx+MBfN81+QdEtCT5ronWIt810VrkuyZai3zXGsdhc+BxVAWVleQdl/jqAjR0WXmbzdJ/Lp07dyYpKYnvvvtOK6usrOT7779n0KBBdd5jMpm48sorg+7xer1899139d4jhBBCCCGEEKJ5lZ0pDikrLzzFW2+B7JrevNpswF9VVcWePXvYs2cP4EvUt2fPHk6ePImiKEydOpXXX3+dtWvXsm/fPh5//HGSk5O1TP4A999/P0uXLtXOp0+fzgcffMDKlSv58ccf+eMf/4jdbmfSpEmt/v6EEEIIIYQQ4lJUXlASUua0F/Hin/Zx/fUenngiDJ26SLXZKf07d+5k6lT/Go5nn30WgKysLObNm8fPf/5z7HY7v//97ykvL2fIkCEsWrQIs9ms3XP8+HFKSvxfprFjx1JcXMxf/vIXCgoKuOKKK1i0aFGDpvQLIYQQQgghhGi8ssLQgF+vczBj+GMUVfXmtYXzueceHRkZYejcRabNBvyZmZns27ev3uuKovCrX/2KX/3qV/XWWbduXUjZfffdx3333dcsfRRCCCGEEEII0TBVJWXasYoFhWrtPDHqAFbTabZt6ygBfzNos1P6hRBCCCGEEEJcfKpK/QF/St/x7Dh5R9D1TvFnGDy4tXt1cWqzI/xCCCFEW+LxeHC5XOHuRrtWm826urpaslk3gV6vx2g0hrsbQgjRaLaKcu24+xUppNnHkLvRS0bHFQDcckM+GRkDwtW9i4oE/EIIIcQ5qKpKfn4+ZWVlqKoa7u60a6qqYjAYOHr0aIO3FRLBzGYzHTp0wGq1hrsrQgjRYNWVFdpxTEIc8+bBsv+xkrfNVza0/5kw9eziIwG/EEIIcQ5lZWWUlpaSlJREVFSUBKpNoKoqdrudiIgI+RwbSVVVXC4XZWVl5OXlAUjQL4RodxxVAQF/YhwAPfsmawF/ZVFRGHp1cZKAXwghhKiHqqqcOXMGq9UqO7o0A1VV8Xq9WCwWCfibICIigpiYGE6cOEFhYaEE/EKIdsdpr9SOrUnxACSmpWhltvLQLP6icSRpnxBCCFEPj8eDx+ORgEq0OYqiEBsbi8PhkNwSQoh2x+Wo0o7jkn0Bf4fL/AF/daUE/M1FAn4hhBCiHm63GwCDQSbEibanNnFfbTJEIYRoLzxOm+9AMWMw+f4ui06wUjsB3Wkvq+dO0VAS8AshhBDnIdPPRVsk30shRHvl9fgCfr0hUivT6XTojb4ZdR5XRZ33Xcp27mzcfRLwCyGEEEIIIYRoFW63G9VbDYDeGBl0zWipWUKnOqkskaC/1u/mHOfl3yxv1L0S8AshhBBCCCGEaBXlBaXascEcFXTNHBWnHRcey2+lHrVtubmgHJrPoE5/b9T9EvALIYQQQgghhGgVOzb5E/KZIoID/qjYBO24KO90q/WpLfvuWxexlkONvl8CfiGEEEI02IkTJ0hPT+eJJ54Id1c0I0eOZOTIkeHuhhBCiDq4nS7+POVZti97RCs7XRi8C050gj/gLz1d0Gp9a8vSO+ehU7yNvl8CfiGEEEK0CwsWLCA9PZ2cnJxwd0Wzbt06/vSnP3H33XczcOBA0tPTWbBgQbi7JYQQYZebC2+95ft/bi78789fwuz8NqjOniPJ5Ob6z61JSdpxeWFha3W1TYvkSJPul32GhBBCCCEaKTs7m82bNxMdHU1ycjJHjx4Nd5eEECLsnvi1jQPf/IM4Sx7f/60Ms8FOp9gdAKiqgkeNpMqZyro9tzJqG2Rk+O6L75istVFZUhSGnrc9BUdPNOl+CfiFEEIIIRrpV7/6FR06dKBr166sXr2aRx99NNxdEkKIsMrNhcrvX+Wabv+q8/qanTP598lxVFeDxQKDB/uvJab5A/4zJ0vJzfU/DLhUleafatL9EvALIYQQol4ej4e3336bDz/8kPz8fFJTU7njjjsYO3ZsnfWLiop44403+Oqrrzh16hRRUVEMGzaM2bNn07t376C6tevtP/roI55//nnWrl1LeXk5PXv25MEHH+T222/X6k6ZMoXNmzcDMHXqVK08LS2NdevWBbVbVVXFiy++yOeff05paSndu3fn4Ycf5pZbbmmWzyTQ0KFDm71NIYRoz3JyID6i7tlOu06NZd2ecRgMEBUFs2YFB/RJXVP9J/adzP7ZJnoMGcQ115nJzLw0g//K4qYlL5SAXwghhBD1mjt3LsuXL6dz587ce++9OBwOsrOz2b59e0jdY8eOMWXKFPLz8xkxYgQ33XQTRUVFfPHFF2zYsIHs7OyQoN/pdDJt2jRsNhvjx4/HbrezZs0aHnvsMUpKSpgyZQoAWVlZAGzevJmsrCzS0tIAiImJCWrP5XIxY8YMysrKGDNmDHa7ndWrVzNnzhwWLVrEiBEjWuJjEkIIUSMzE06tdgDgVQ385csX8Ko6LJEW8opSiYqCX/8aJk0KDeD37jfj8kRh1FcBML7fM1SUJbH0hWn85tQNzJoF8+a19jsKr+qK2lwG+kbdLwG/EEII0Qif5Z7ihX/uo8rhCXdX6hRl1vPYzemM7d+x0W3k5OSwfPly+vTpw/vvv09kZCQAs2bNYsKECSH1H3/8cQoKCli0aBHXXXedVv7QQw8xefJk5s6dy7Jly4LuKSgooFu3bixbtgyTyaS1P3HiRJ577jluvvlmUlJSmDRpEnl5eVrAn5mZWWefz5w5Q//+/VmyZInW3rhx45g2bRrZ2dlBAf+JEydYuXJlgz6T2bNnN6i+EEJcajIy4B8mOwAerxnVZkEHuB1uulsOc/+YEzw0pBSOQtlZEwF++DKK4qrupFh3amUxlgLGZ/wvHaOO8fHCEdzZeS89u7rP2w9DYiKRmZko+sYFym2B2+3G7fRtY2gwxzWqDQn4hRBCiEZ48+sf+bGgKtzdOKc3vj7UpID/o48+AuDhhx/Wgn2AlJQUpk6dyssvv6yV7d69m+3btzN58uSgYB+ge/fu3HnnnWRnZ3Pw4EEyzhrSeeSRR7TgHCA1NVVr/7PPPuOBBx5oUL+ffPLJoPaGDx9OWloaO3fuDKqXl5fHK6+80qC2JeAXQojz0ysOVBWMeoXlnX0PiEu8CcTrirF+X8nJ7+u+r5c7mtWVsym9LA2LyYYp6jQd4/YD0KfjZkr3JXDmhb8QYTp2Qf3o8MvZJP2//9cs7ykcCo6cAnwDC+aoxEa1IQG/EEII0Qj/cUNP5n/Rtkf4/+P6Hk1qY9++fUDd69TPLtuxYwfgW8Nf17Z0hw4dAuDIkSNBAb/BYGDQoEH1tr979+4G9dlqtdKlS5eQ8pSUFK2PtTIzM7X3KIQQovmoqm8EXq/osBoqAbBSed77rIZKbjOv5uN9E/jRncgRZzf+Y+IT6HVO9IYKYnXlxOuKL7gf9m2hy8/ak7z9R7Tj6Pjk+iuegwT8QgghRCOM7d+xSaPn7UFFRQU6nY74+PiQa4mJwSMNZWVlAKxfv57169fX26bdbg86j4+PR6fT1dt+ZeX5f0EMdPaa/loGgwGv19ugtoQQQjSc7+9aFwCKqiflqacadP8tQJ8TOg4ctbPjwDEc7ngiTaexGEsYMjKO3pPnnPN+1e3izLz/qTk+/9T/tio3FzZ8kaedx6amnqN2/STgF0IIIUSdYmJi8Hq9lJSUkJCQEHStqCh4f+To6GjAl+Tvvvvuq7M9VVWx2WxBZSUlJXi93pCgv7b92nZbgqzhF0KI5lddVa0d6xQ9Cffd2+A2EoDBwF3Aggf/gbPiNDrFw73zM0jokXbOe1VXQMDvcjX4tduCJx738uXKPVzfczdpsb6yDp07NaotCfiFEEIIUaf09HR27drF1q1bufnmm4Oubd26Neh8wIABAGzfvr3egL8ubreb7du3M2TIkDrb79u3r1ZW+1CguUbqZQ2/EEI0v+oKf34bHaEzuBoqPrkDpyt8x/k/Hif1PAE/Bn+Iq7rbX8Cfmwv71n/Czwa/FVRepXTBSkmD25OAXwghhBB1mjBhAitWrODVV19lxIgRWuK+06dPs2TJkqC6GRkZDBgwgM8++4xRo0YxduzYoOter5ctW7bQr1+/kNd58cUXWbx4sZZoLz8/X8uyf9ttt2n14uLiADh16lSzvD9Zwy+EEM3PXuGfyaVTmp4hPzY5ldM/+o4Lj+eduzKgKAoYjeBytcsR/pwc6BYfnHvA7krkUH4qA1Ml4BdCCCFEM7n66quZNGkSK1asYNy4cYwePRqn08nq1asZOHAgX331VVD9+fPnc//99/PII4/wzjvv0LdvXywWCydPnmTHjh0UFxezadOmoHuSkpKw2WyMHz+eG2+8Ebvdzpo1aygtLeWpp54iJSVFq5uZmYmiKLzwwgscOHCAmJgYrFZrg2YUNLcvv/ySL7/8EvAtEagty8vz/VLao0cPZs6cGbb+CSFEa7NX+gN+fTME/Alp/nw5JScv7IGvYjT6gn1X+1vDn5kJRz8p0863Hc9i24mbeO8pA6ra8PYk4BdCCCFEvZ555hm6d+/OBx98wNKlS0lNTWX69OnceuutIQF/ly5dWLlyJdnZ2axdu5YVK1ag0+lITk5m6NChjBkzJqR9k8lEdnY28+fPZ9WqVZSXl9OjRw/mzp3L7bffHlS3V69ePPvssyxevJilS5fidDpJS0sLa8C/Z8+ekDwAe/fuZe/evQAMGzZMAn4hxCXFXlquHet1TQ/4U7r7d16pKC64oHsUgwGV9rmGPyMDPo8sBRU8XhOf7Z7BrFnQr5+TH35oeHsS8AshhBCiXnq9npkzZ9YZtNY1HT42NpY5c+YwZ86ckGt1Je2rvefpp5/m6aefPm9/srKyyMrKqvPaunXr6r3v3XffPW/bjTF79mxZ1y+EEAGqy/wBv6EZAv7UXp21Y1vZBQb8RiPQfrP0G5RKVBV0hki+/tr3EMDpbFxbTc+iIIQQQgghhBBCAI5y/3aqBn3TA/7ouBgUnS+HjMt+YWvYtYC/HY7wOx1OVK9vC1tzRDQZGU1rTwJ+IYQQQgghhBDNwlEREPAbjM3SptESD4DXU0F1lf289ZWaTP3tcYS/9JR/21uTJabJ7UnAL4QQQgghhBCiWTgClm6ZjM0T8EdYk7TjxQtOkJt77vrteYS/JL9QOzZHWZvcngT8QgghhAiLdevWnXPdvRBCiPbHZfePwBtNzRPwxyT4A/5l75zm+uvhiSfqr6+N8LeTgN9TWoq7pAR3SQklR09o5RERUVq5tyo0B86FkKR9QgghhBBCCCGahbO6Wjs2WczN0qbX5N+ab1z/57m+9994b8nvueeepDrXuLeXpH2qx8Ox+6dh27pVKzvedQDE+Y69/97GgeFv+epGR8MbCxv8GjLCL4QQQgghhBCiWbgcDu24uQL+ImcP7VinuImPOMxtfRexbVs9NxhrxrVdLtTGbF7fSqr37g0K9gEcAbMizE7/Z4nH06jXkBF+IYQQQgghhBDNwh2wf5wlIqJZ2hwxYTALv76JjjE7iTQVolPcdEvYyNHv95Cbe0XIKL8SmDvA7YZmyiXQ3NTA5Q9dumDu0QO33QgO324EcZelEd0j0Vc31sr50xWGkhF+IYQQQgghhBDNwu32B/zm6MhmaXPgQB1xV83hxfWL2HZ8EgCKouI59Aov//IN5j4cPEquBOwO0JbX8Qf2zTp2LF3eWIg3MV4r6/7L/0eXNxbS5Y2FpD7zTKNeQwJ+IYQQQgghhBANlpsLb71FUNZ8t9sfxEbENE/ADzBvHnz9NfS56Q4c7jgAYi1H6ZvyCdaCP7F25X6t7hlbDIcdXSl3R7fpdfxqwGwIpWYqv8NWrpXFp3Zo8mvIlH4hhBBCCCGEEA3yxOMu1vz9CE4nlDg6Mm1GNPPmgcfjD/gt1uhmfc2MDMjJieTDj6cy5oq/aOU6xcO/P1zA7m13UnzgW6rK4nBcdj1FBzrT9fde/vulZu1Gswkc4VdMJgBc1ZU1JTqsSXFNfg0J+IUQQgghhBBCXLBtWx1EHXyIqVedAcDtNfPusv/lnnt64A0I+CPjY5v9tTMz4Te/uZkjhT3pknSaG3u+QYSxCL3nMM79/0M0EB3nq2swDOHtv5q46wHqzOYfbkEj/DV5BtwuX8Cv00eh0zV9Qr5M6RdCCCGEEEIIccE2fvYDkcYz2rlB5yCj0zds2wYe1T+FPjLR2uyvnZEBs2bBGVtPNu6/hrUHHqi3rjWqEIdTrT+bf5h5g6b0m/C6PaieKgD0xqhmeQ0J+IUQQgghhBBCXLBOSaUhZdaIEgYPBtVbG/DrMMXEtMjr167nf/11uC7rBo4UXwOAyxvFmp0ztXoqHiJNbgYPbpFuNFnQlH6jkfLCUsC3jaAxonk+O5nSL4QQQogGO3HiBKNGjSIrK4t58+aFuzsAjBw5EoB169aFuSdCCHFxi7WUh5R1Sy0kIwPWaiP8RpRm2pavLhkZvv9yc+H6vzxBF+teSp1dOVkQxegr3sGgd2DQO3nw7lIyMpp/aUFzCJzSrzOZKDpZqJ2bI5tndoSM8AshhBCiXViwYAHp6enk5OSEuysAlJSU8Le//Y1Zs2YxatQo+vXrR2ZmJg8++CDffPNNuLsnhBAtxlZREVIWE1EKgFoT8CuKHl1k82Xpr49vir+O4+V9KSyLIiYGdDo9AJEmG0/MrjxPC+Fz9gj/ru3+gD8ipnkeUsgIvxBCCCFEI3z++ef88Y9/JDk5meHDh5OSkkJ+fj5ffPEF33zzDb/5zW948MEHw91NIYRodtWVoUG02+Er0wJ+DOhacIQ/0Lx5cM89sG0bDB4Ma5814PUCuKFNb8vnD/gXLDVQVPIlaTUD+wePJTTLa0jAL4QQQgjRCN26deP111/nJz/5SVAm5Yceeog777yTl156iXHjxpGSkhLGXgohRPNz2EIDfo+rEq/XC/iCWJ2qQ9HrW61PtVP8Ab7S+QJ+FXfQKHpbo7p8U/qPRnXD5H6VNKtHu7ZlZwdyc5u+u4BM6RdCCCFEvTweD2+++SajR4+mf//+jB49mjfeeANVVeusX1RUxJ///GdGjx6tTXGfPXs2+/fvD6k7cuRIRo4cSXl5Ob///e+59tpr6d+/PxMnTuTTTz8NqjtlyhReeeUVAKZOnUp6ejrp6enauv1AVVVVPPPMM4wYMYJ+/foxbtw4Pv/882b4NIINHz6ckSNHhmyb1KNHD8aOHYvL5WL79u3N/rpCCBFuTrtNO1Z0vlF8Va3GVlpJbdI5RWm9YP9silI7ru3GVe0IWz/Op3aE/3DyZegUf7Cvqgr7Tl7RLLsLyAi/EEIIIeo1d+5cli9fTufOnbn33ntxOBxkZ2fXGcgeO3aMKVOmkJ+fz4gRI7jpppsoKiriiy++YMOGDWRnZ9O7d++ge5xOJ9OmTcNmszF+/Hjsdjtr1qzhscceo6SkhClTpgCQlZUFwObNm8nKyiItLQ2AmLMyQLtcLmbMmEFZWRljxozBbrezevVq5syZw6JFixgxYkRLfEwhDAZD0P+FEOJi4qqu0o5NkUk4Ko8BcPLgMa1cR/gCfp3OqB07Km3nqBletbMPXNH+5H37C29l+9FMTlf1bJbdBeRfISGEEKIxdq2Er/4MjjaaDMgcDTf+Dq6c2OgmcnJyWL58OX369OH9998nsib50qxZs5gwYUJI/ccff5yCggIWLVrEddddp5U/9NBDTJ48mblz57Js2bKgewoKCujWrRvLli3DZDJp7U+cOJHnnnuOm2++mZSUFCZNmkReXp4W8GdmZtbZ5zNnztC/f3+WLFmitTdu3DimTZtGdnZ2UMB/4sQJVq5c2aDPZPbs2eetU1lZyT/+8Q/MZjNDhgxpUPtCCNEeuBz+IDo6PlUL+E8fOq6V65XwTSbX6/xhrr2yOmz9OB/V6cSLgkvn2/XA5YliycaHMJt1zJrV9On8IAG/EEII0Tjf/gUKQ6eptxkVwMa/NCng/+ijjwB4+OGHtWAfICUlhalTp/Lyyy9rZbt372b79u1Mnjw5KNgH6N69O3feeSfZ2dkcPHiQjLN+g3nkkUe04BwgNTVVa/+zzz7jgQceaFC/n3zyyaD2hg8fTlpaGjt37gyql5eXpy0TuFAXEvD/4Q9/oLCwkF/+8pfEx8c3qH0hhGgPPC57zZGB6MQkimri/KITeVodXRin9Ov1/hF+e5X9HDXDS3U6KYxNAXzLDqLiL+P113UMHtw8wT5IwC+EEEI0zrW/gq/+u22P8F/zyyY1sW/fPgCGDh0acu3ssh07dgC+NfwLFiwIqX/o0CEAjhw5EhTwGwwGBg0aVG/7u3fvblCfrVYrXbp0CSlPSUnR+lgrMzNTe4/NZf78+Xz66adcd911zJo1q1nbFkKItsLj9gXROn0E0QEPNstOn9KODWEM+A16f5jrsPlH+HNzIScHMjObL6BuCtXl4nR8Kr6n9ND58svJmta8ryEBvxBCCNEYV05s0uh5e1BRUYFOp6tzlDoxMTHovKysDID169ezfv36etu024NHWuLj40OS3gW2X1nH1k/ncvaa/loGg6Eme3TLeemll3jzzTe5+uqreeWVV9C3YnZqIYRoTarHF0TrDBZiEv3bx1WVFmjH4fw7UG/wj/BX232j5088AZ8uO0RZVRQVrhRmzfJt5xdOqtNJYWQktQF/j0HN/xRCAn4hhBBC1CkmJgav10tJSQkJCcH7ARcVFQWdR0dHA74kf/fdd1+d7amqis0WnDyppKQEr9cbEvTXtl/bbktozjX8L730Eq+//jrDhg1j4cKFWCyW5uiiEEK0OQ6bA/Dtba83RhKX0iHgWrF2bNCFL9Q0BAT8jmoHubmwYdUWpmf+F17VwItr32ThwmTuuSe8I/2rctIoSS7EAnhVPe9/3p8BNzXva0jAL4QQQog6paens2vXLrZu3crNN98cdG3r1q1B5wMGDABg+/bt9Qb8dXG73Wzfvj0kuV1t+3379tXKah8KNNdIfXOt4Q8M9t98800iIiKapX9CCNEWlReWaMdGcyQJnZK0c6+7VDs2GMMXahoD8rg4nS5ycqBXom+PO53iZlD3XNbtuolt28IX8OfmwqqDV3BT2loAyqq7sHBRJPdMbd4+ScAvhBBCiDpNmDCBFStW8OqrrzJixAgtcd/p06dZsmRJUN2MjAwGDBjAZ599xqhRoxg7dmzQda/Xy5YtW+jXr1/I67z44ossXrxYS7SXn5+vZdm/7bbbtHpxcXEAnDp1KqSNxmiONfwvv/wyr7/+OkOHDuWNN96QYF8IcdGrKCrTjo2WSBI6JddZzxgwyt7ajEb/azsdTjIzYccHFVqZ2+XGbKZZtr1rrJwcMEX78wuUVXfF4aDZH0JIwC+EEEKIOl199dVMmjSJFStWMG7cOEaPHo3T6WT16tUMHDiQr776Kqj+/Pnzuf/++3nkkUd455136Nu3LxaLhZMnT7Jjxw6Ki4vZtGlT0D1JSUnYbDbGjx/PjTfeiN1uZ82aNZSWlvLUU0+RkpKi1c3MzERRFF544QUOHDhATEwMVqu1QTMKmtOKFSt47bXXMBgMZGRk8Pbbb4fUGTZsWL1bCAohRHtUWVKuHZsjojBHmkExg+oIqmcyhS/gN5nN2rHT6SIjAzqnlINv23sizY5m2/ausTIz4ZsI/8OTMltsizyEkIBfCCGEEPV65pln6N69Ox988AFLly4lNTWV6dOnc+utt4YE/F26dGHlypVkZ2ezdu1aVqxYgU6nIzk5maFDhzJmzJiQ9k0mE9nZ2cyfP59Vq1ZRXl5Ojx49mDt3LrfffntQ3V69evHss8+yePFili5ditPpJC0tLWwBf16eb/spt9vN4sWL66zzi1/8QgJ+IcRFparUH6Sao3x5VvTGaDzOswL+gKC7tZks/td2u3xRfnxMFVU1KQYmj6/gvqfC0TO/jAwY0vFATTYE8BDRIg8hJOAXQgghRL30ej0zZ85k5syZIdfqmg4fGxvLnDlzmDNnTsi1upL21d7z9NNP8/TTT5+3P1lZWWRlZdV5bd26dfXe9+6775637YaaPXt2vUn8hBDiYmUr80+NN0dFAWA0x+BxBidzDQy6W1vga7vcvpDa7fD/+2ONdLV6n+rSOaGII6rv+LaxRu75bfO/Rug+OEIIIYQQQgghRB3sFf6AP7JmK9QKe1xIPXNk+HYrMQfslOLy+IJ7j9u/LazL5Wz1PtXFiaodd7qsZXalkYBfCCGEEEIIIcQFqa6s1I4jY63k5sLR/MSQeqW2mNbsVhBLlD+BqsfjG+H3uP0J8jzOthHwu1R/wB8RE9UiryEBvxBCCCGEEEKIC+Ko8gf8UXFWcnLgVNllQXVUVUdBedLZt7YaS7Q/4HfXBPyqxx/wu9vICL8L/zazkdaWeUAia/iFEEIIERbnWnMvhBCibXB5XHx78lvKnb7s/MXlZ7Rruxx7qb6smA2nryI+6iSdYo7i9SiUF3Qm6ZqDrPpxVVj67Kk6rB073Q4+2rUStPR4UFJVGLa+BXKpXlB8xzttuzn848l660YoESSQ0ODXkIBfCCGEEEIIIUSd/mfzPL7b8DeiagbIh5RdpQWR//j2DWyWMq68bgRf5txNUml/ertPMSHuY1ZU7mTfBiUsfb78RCTX4Jth4PQ4mP/V80wkXrteUHGahRt+F5a+BZrFUO34zR8XUVhYUm9di87Cwr4LG/waEvALIYQQQgghhKhT4rtf8Pw6j3b+zwGe2u3seeSjckweD/AvypV/UxKbQLyuGKuhkveN+rD0F8Bm9G8RqKpeopwRQdd13rPvCA+v4u9Ildl+jpqNJwG/EEIIIYQQQog6Xb6nPOjcS23wr8fk8U+TtxoqseJb3+81G5k66lG80cGBdmvRnyrm6L9XAyo6Be7sNJkSPtOuxxpieCrzqbD0LVD+6k+140dGPIZOX/+MiEhdJFTUe7leEvALIYQQQgghhKiTwekbhXYaoOP0B/Fs2QwqoFhI/PmDoTcoOmJG3siVAwe2aj8DueLy+Qv/BJygerkyog8bAgJ+M3ru6nNX2PoHoHq9vMTHNWcmfnbl3ees73Q6+eGHHxr8OhLwCyGEEEIIIYSok8Ht2zrOHqHjhYLHSPBmoVegyhHDCwWPMW9emDtYB8VoRFEMqKoTr+rCVnbWLIWAmQnhorpcqIobVFAUY4u9jmzLJ4QQQgghhBCiTkaXb4S/SI3lrTcd6BXfCn6HO4qFCyE3N5y9q5tiNKLgyyGg4sZeURl03etx1XVbq1KdTlTVtz2gTgJ+IYQQQgghhBCtzejyjfAXeJKI1Jdq5R41AocDtm0LU8fOQTEYUNSapIGqG3tl2wv4XfZqarcKlIBfCCGEEEIIIUSrUlUVU83sd2t0CSmxRdq1cnsCZjMMHhymzp2DYjSi00JdD9XlZUHXVW/4p/RXFfi34NPrWm6lvQT8QgghhGiwEydOkJ6ezhNPPBHurmhGjhzJyJEjw90NIYS4aKhOJzrfAD+RMTZuu+m0dq3aE8esWZCREabOnYvBgE71h7q28uD97b1tIOCvLPHnFdArEvALIYQQ4hK3YMEC0tPTycnJCXdXNC+//DLTpk3jhhtuICMjg8zMTCZNmsRf//pX7PaW2VNZCCFai9NepR17jHquGVygnY+6KbpNJuwDUBQFHf4t7hxVpUHXVTX8U/ptpf6A36CXKf1CCCGEEG3Oe++9R1VVFddeey33338/t912G06nk2effZa7775bgn4h2pjcXHjrrbaZaK4tctn9a9+9RgOVxcXaedfLE8PRpQumU/0Bv8vRBqf0l1VoxwZ9y43wy7Z8QgghhBCN9M0332A2m0PKf/Ob37Bq1SpWrFjBvffeG4aeCSHO9vuHNlLy4zeoXi/fvptM6rA7mfd8TLi71aY5bAEBv8mArdQ/NT4upUM4unTB9AEj/F53RfBF1dPKvQllr/DPnjC14Ai/BPxCCCGEqJfH4+Htt9/mww8/JD8/n9TUVO644w7Gjh1bZ/2ioiLeeOMNvvrqK06dOkVUVBTDhg1j9uzZ9O7dO6hu7Xr7jz76iOeff561a9dSXl5Oz549efDBB7n99tu1ulOmTGHz5s0ATJ06VStPS0tj3bp1Qe1WVVXx4osv8vnnn1NaWkr37t15+OGHueWWW5rlMwlUV7APcMstt7Bq1SqOHj3a7K8phGi4rd9VEV34ArHx1VrZjk0GcnPvb5tr0NsIZ8AIv2o2YK8s1c7jOyaFoUcXLjDgB/Wsq268Xi86XfgmvFdX2rRjo1FG+IUQQggRBnPnzmX58uV07tyZe++9F4fDQXZ2Ntu3bw+pe+zYMaZMmUJ+fj4jRozgpptuoqioiC+++IINGzaQnZ0dEvQ7nU6mTZuGzWZj/Pjx2O121qxZw2OPPUZJSQlTpkwBICsrC4DNmzeTlZVFWloaADExwaNzLpeLGTNmUFZWxpgxY7Db7axevZo5c+awaNEiRowY0RIfU4h//etfACHvVwgRHpvXHUGvqw4qi488zrZtbTTpXBvhDljD7zUZcdr86847dE4JR5cuWHDAH8ppd2CJimil3oSqtvmXfJmMMsIvhBBCiFaWk5PD8uXL6dOnD++//z6RkZEAzJo1iwkTJoTUf/zxxykoKGDRokVcd911WvlDDz3E5MmTmTt3LsuWLQu6p6CggG7durFs2TJMJpPW/sSJE3nuuee4+eabSUlJYdKkSeTl5WkBf2ZmZp19PnPmDP3792fJkiVae+PGjWPatGlkZ2cHBfwnTpxg5cqVDfpMZs+eXWf5W2+9RXV1NeXl5Wzbto2dO3cyYsQIJk6c2KD2hRAtIzXuJIfPKosylbfJLeXaEpfNH/CrJiOuSt/UeEVnwRxZ9wyntsLQxgN+R7U/4LfU/HvVEiTgF0IIIRrhH0f+was7XqXKVXX+ymEQZYziFwN/wc3dbm50Gx999BEADz/8sBbsA6SkpDB16lRefvllrWz37t1s376dyZMnBwX7AN27d+fOO+8kOzubgwcPknHWcNojjzyiBecAqampWvufffYZDzzwQIP6/eSTTwa1N3z4cNLS0ti5c2dQvby8PF555ZUGtV1fwL9o0SJKS0u18/Hjx/PHP/4RYwuO2gghLpzJcyqkLD6mVEb3z8MVlKXfiNftm+KvN0aHq0sX7Hx/+zps1eep0bKc1f7XN5sl4A8xcuRI8vLyQsrvuece/vCHP4SUr1ixgieffDKozGQy8cMPP7RYH4UQQly8/rrzrxwuO3u8qG35666/Ning37dvHwBDhw4NuXZ22Y4dOwDfGv4FCxaE1D906BAAR44cCQr4DQYDgwYNqrf93bt3N6jPVquVLl26hJSnpKRofayVmZmpvcemqt0qsKCggE2bNvH8889z55138vbbb5OamtosryGEaLzygjMhZUZdZR01RSBPtV3b1s1riARKATBarOHq0gUzKuce4Q93wO9yOrTjiEgJ+EP8/e9/x+PxZ1c8cOAA06dPP2dCnujoaD7//HPtXDnPl0AIIYSoz/R+03llxytteoR/2pXTmtRGRUUFOp2O+Pj4kGuJicHbMZWV+bY8Wr9+PevXr6+3zbO3qYuPj68zaVJt+5WVDfuF/Ow1/bUMBgNer7dBbTVGUlIS48aNo2vXrvz0pz9l3rx5vPTSSy3+ukKIc6sqKQw4MwIuvO4qVFWVmOAc3HYbtaGoS4miNuA3R8WGq0sXzKAjNFdfAKfdUf/FVuByBQT8ES23PKLdBvwJCQlB52+++SaXXXYZw4YNq/ceRVFISmqebJIejyfogYMQza32+yXfM9HS5LtWP4/Hg6qq2n+BRncdzeiuo8PUswt3dr8bIjo6Gq/XS3Fxcci/u4WFhVr7qqoSFRUFwFNPPcV9991Xb1/sdrvWJ1VVKSkpwePxhAT9te1HR0cH1Q98zbraD/z/+a415xr+s/Xv35/Y2Fg2b97cpJ/BudR+DvI7SSj5e02czV5Zu3+8gikyFaftOODBVlGJJSryXLee08X+XXPbqrSA3+2xaOUR0bFt/j0bFeWcAb/DZg/re3AHBvyRlvP2pbF9bbcBfyCn08mqVauYPn36OZ/Q2Ww2brzxRrxeL3379uXRRx9tdPbchk4xFKKxZNmJaC3yXaubwWDAbre3yuhwW9OrVy92797Nt99+y6hRo4Kubdq0CfD9AmKz2UhPTwfg3//+N5MmTTpnu7Wj/Kqq4na72bRpEwMHDqyz/V69emGz+bYuqv0Z2Gw2rSxQbWBd17XAe2sdOnSIV1999Zx9PduMGTMuqJ7NZqOiooIOHTrU2Z/m4HA4cLlc7N27t0XavxjI32uilsvh2z9e0UehGKO08s3fbMSa2vT95C/W79rpE8fpXnNss/sDTreiD1km1dZUVALneJbz44GD2CzhC/hdLv+SgpKyohb7PC+KgP/LL7+koqJC27KnLt27d+fPf/4z6enpVFRUsHjxYu6++24+++yzRq2t69u3b1BCICGam8fj4YcffqB///7o9fpwd0dcxOS7Vr/q6mqOHj1KREQEFovl/DdcZCZNmsSqVat4++23GTVqlJa47/Tp07z//vsA6PV6IiMjGTZsGAMGDODzzz9n9OjRjB07Nqgtr9fLli1b6N+/PxERESiKoj2kf+2111i8eLH272p+fj7vv/8+JpOJiRMnaq/boYPvl/KSkpKgJIK1atur61rtDILAa9dff32TguXjx48TExNDXFxcULnL5eKll17C6/Vyww031Nmf5qDT6TAajfTq1euS/H6ei/y9JgLZyqtY7/U9aDRFJBBtjcfhW4VEanwSlw8c0Oi2L/bv2pb1y7Vjvd4/7TytR7eQB7VtzX5bHN6IfHSKWysrr+6M1XICgNSk5LC+h2/V2n4p9ErvTex5+uJ0Ohs16HxRBPzLly/n+uuvJyWl/r0gBw0aFJQUaNCgQYwdO5Zly5YxZ86cBr+mXq+/KP9Qi7ZHvmuitch3LZRer9cC00txjefw4cOZNGkSK1asYPz48YwePRqn08nq1asZOHAgX331VdBnM3/+fO6//34effRRlixZQt++fbFYLJw8eZIdO3ZQXFzMpk2bgj7TpKQk7HY7EyZM4MYbb8Rut7NmzRpKS0t56qmngh7KX3311SiKwosvvsjBgweJiYnBarVqSwhq+1HXz+pc1xpr69at/OEPf2DIkCF06dKFuLg4CgsL2bhxI/n5+fTs2ZNHH320xb47tZ+h/Nmtn3w2AqDgsD9Df4Q1EUu0f/15VUlZs3xHLtbvmjdg2rnX7Z8fH5eS3Obfb6+EKr78/jYikktwGKwcKujFZYmH6ZfqC/hdTldY34PH66w5MmKMjDhvXxrb13Yf8Ofl5bFx48Y6MwKfi9Fo5IorruDYsWMt1DMhhBCi/XvmmWfo3r07H3zwAUuXLiU1NZXp06dz66238tVXXwXV7dKlCytXriQ7O5u1a9eyYsUKdDodycnJDB06lDFjxoS0bzKZyM7OZv78+axatYry8nJ69OjB3Llzuf3224Pq9urVi2effZbFixezdOlSnE4naWlp9eYMaGmDBw/mrrvuYuvWrezZs4eKigqioqLo2bMnU6ZM4d577yUiInx7PAshfM4c8+/sFR2fFBTwVxQV13VLvXJzIScHMjO5JLb0U6v9Ab/H5dKOEzo1T160lpTawcOo6rV8nDuBNc4sdGYLP7lqMdSssnJVhy9pX24ueDwuFEBRjCgtuIVruw/4V6xYQWJiIj/5yU8adJ/H42H//v3ccMMNLdMxIYQQ4iKg1+uZOXMmM2fODLlW15Z2sbGxzJkzp87Zc6qq1rmePTY2lqeffpqnn376vP3JysqqdwnfunXr6r3v3XffPW/bDdWtWzeeeuqpZm9XCNG8ivP8I/xxKSnojf5lNlUlZRfczhNPwPf/+BKzvoz//M/xzJxp5L//u1m72ubUBvzl7mjsVW5qx5gT05LD16kLpBiNDIr4np7GHxn7y5sY9BMLx9Yb2Pet77rL4Tx3Ay3kiSdg4UL43Wgnig68HjNKCy4Vb9cBv9frZcWKFUycOBGDIfitPP7446SkpPDYY48B8MorrzBw4EC6du1KeXk5b7/9NidPnuSnP/1pOLouhBBCCCGEaAXlBWe044ROHfF4/MtsbOWlF9RGbi788+97uGfISwBUuyJZuPBW7rqrOXsafmfPYFAd1Ww0XcvBy5Lp4MkFQMVAdII1zD09P6UmPrQaKvnZJCemznByoz+wdjtbP+DPzYX8jW/z5Og16HS+NfxVzij2HzUzaHjLvGa7Dvg3btzIyZMnmTx5csi1U6dOBW3xU15ezty5cykoKCA2NpYrr7ySZcuW0atXr9bsshBCCCGEEKIVFeUXaMfJ3dKoLPVnR6+uLL+gNnJyoJP1oHbeLekg/9oP27ZBG89dd8GeeNzLrnWf43Qp/OY3Y5g1S8fVZ4wcuyyKDlG5Wj2H28rOnbo2v6QhcJq86vIF90azP/Ggy9G6U/pzc+Gvz35O/47B28FWO6zsPBjJoHrua6p2HfCPGDGizumEEDp177e//S2//e1vW6NbQgghhBBCiDbgiSfAdKqc2JqNLF5f0olfzCjVrldXXVjAn5kJ375bpJ0blArMZhg8GC6GXVtzc2HjZ1uY0O81AMpsiSxcOIzEfomYkk9r9VRV4YeTo0nb1g5yGBj9oa5ak38gMOD3tNIIf3WVnf+Z80/27S5nQKePoGZMutqdSLUjlvwDvbnroZZLDKw7fxUhhBBCiOa3bt26c667F0KIpsjN9a2Vthh8ifkcbisL34ogrzCW2jDIZa+8oLYyMiD9Mv9MgWhzGbNmtYOg9wLl5ECHyKPaee/U/TgcoFedGPVVAHhUE//zxbt8vmcKgweHq6cXLigRnts3fd5obv0p/f/39CKiy99kSOdlGHS+2SU/Fgzj/TW/Zv83wxnt/pIr+rXcOLwE/EIIIYQQQoiLTk4OuF1OTPoKAJyeOBwO2L3PDIpvBw2Xwx/w5+bCW2/5/l8Xa0SJdpyaUMK8eS3X99aWmQlRFrt2blDKMZuhZ+wx9LqaxH3VabiIazcPOhRD4JT+mhH+CP8If2sF/MXHvw86t7s78P6WR5hy5bc8mvQCgyK+l6R9QgghhBBCCNEQmZnQKaEARfHtH19RnYDZDEOu0rN2XSRedxUedxWqqvLbx6vYt/7vHC26nN8UX8OsWQQF9B6PF6e9QjtXPVWt/XZaVEYG9OlRBTXpDWIifDMYIvf5t+KLjTPw9dftI9iHs9bw14zwmwKm9LvdrpB7mputwobi8S2JsDk7sOn4vWw5OBRVH8PIPoeJ3lIZ0tfmJiP8QgghhBBCiItORgbcNT5fO6/2+Een9YYoX6HqYftWO3nfvcm1Pf7O3UPmYVbOsHBh8Eh/RWE1qte/rajXfXEF/ADdu/pH+C+/zDeDweH1jw/HJES0m2Af/Fn6IWCE3+IfSfe4Wn6E/0DOD4DvgVOBLZ11u0bjJJ5ZsyA1yp8/oiVH+CXgF0IIIYQQQlyURo/wJ5y7aphVG7U3mKO08k3rDnFlx68B0Om8XNnlexwOXwb+WqVnbEEBP7ixlV9cQb/bGZC13uObzeBS/SPP5qjo1u5SkwRn6feN8JsjIrQyj6vlR/iPfL9LO776hu68/jp8/bVv9oga8PotOcIvU/qFEEIIIYQQF6XygkLtuHOPRO3YFBGDvcx37D32HoaaPdEBOkb9gNk8OigxXelpG6iBAT+UnCoktVfnlul4GAQG/G6n72GGEyPgG/k3R8eEo1uNptSVpT9gDb+nFab0nznq38px6E39uHyY/5oakENARviFEEIIIYQQooEqi/1b6cWlJGnHp4vjtGNH4Q9B9/RI2hmSmK7kZAngCapXerqIi0ngFHdPzZIFt6LXyiJi21vAH7iG3xfcmwMCfm8rBPyVRbU7HxjoMTA96FprjfBLwC+EEEIIIYS4KFWVFWvHCWkpgG9t/t4jHeq9Jy7iDL997ExQWdHJgpB65YXFIWXtmccVMKVfdeB0OHHp/AF/VFxsGHrVeMFT+n3BtSnSopV5PC27hr/wxBm8bt80EkNEGgZTcFCvjfAbDCi6lgvLJeAXQgghhBBCXJQclWXacYfLUgHfdn3Hi/sE1fN49RhTrtbON/7jh6At+srOhAb3FUUlIWXtmccdHACXnS7GrSjaeUxifGt3qWkCkvZRk6XfEln3CP/5tmRsjAV/8s8c2X2sD088EXy99iFES47ug6zhF0IIIYQQQoTD6d2w8+/QgiOtTlttoG4kestzoFO4HivZ7p+Sm/8oHaIPU1plwu5O48bk/dSGgOve/5of8jrxyVt6Mi/PI8YUGtxXHdyM8uUO0s6cQSlMhoDguD3yOoOTEJZ+vgB3wPBw3Ml/wBdftnKvGk/Zf1g7Vnd8ABFbMHlVrczrrIIvnuJ/l/Zg+75KFMXNP9+M5Kq+Ufzm3n1Neu19R63k7Y3C6nvGxPGibqx5M5/pPZeQ3tWXnV8tPeXrp+KGL546//sxWsE6qsF9kYBfCCGEEA124sQJRo0aRVZWFvMCN6sOo5EjRwKwbt26MPdECHFeXi/8351QdrxFX8bj9v29oNdZ0G16BYB04K6+OraV3crx8k5EGD1c0bUUh7sHoAc8pET/m+TLt3Gi/Gb2nxzJgM6hQ7/2wpPovvuUVIAfW/RttAqv+7ag87IfvsWt66adJx58D46W0V4ohyMA36wEdf86UG0109t/AnhQ3U6OrF5BSdF1DOmWp91XXRHLC28N4rZOfyM9fn+jXvvwgRsxG4Zr53oPeN1Ojv3rG9J7+XaEUKuSAQOKtxo2LjhvmzpDJNza8IBfpvQLIYQQol1YsGAB6enp5OTkhLsrmilTppCenl7nf7UPIIQQdXDbWzzYr3RHQs2YvVEfPM75UP/nuaHXNob0PMOgHgUkxDhQFANeXRetjqKopFm/wu4Ct8fO2ao9+pCy9syrBiclrHBH4VFqyxQS9eWhN7VhSkCkq6oBsy9qEhF68bLrTG8Sok4G3WcxlmH37uDX/3qJN7dObdRr90naT6SpUjvPK+uI1VRJ7w7+J0Ner1LTTzXk/uYkI/xCCCGEEE30i1/8IqQsJqZ9ZbQWolV5A4LLToNgzLPN/hIF+wvgwJsAWOJSYfrn2jUTMF1V8QTHuGzePJZFr/1AWtwe4iIL0SlO9h7zcscoJ8f3BNd1GK147l/NgQMH6N27N/oWTLzWGtQnXgw6r+z4E7wl/wYVUMzoZ6wJT8caSflmK3z3GgDq4J/DT2/xlT/xIqrqREUhavT9KJ8vBqDccQWqt4zYiJNYDKVc1mETT307j2t+OZV+6e56X6cu3YAOT36obexQ5UnmZz9z0O2Rt7U66qezgSp08Wkwfcl52/ToLHDG26B+gAT8QgghhBBNNnv27HB3QYj2JXA0OTIRug6vv24jFe/a4H+JhI4hr6EQGgxd0xNWfT+WnNUfM+aKtwCYdNtRIuPMnM3lcsBlV1NVbIHLBoK+fY/4q+pzQec2lw6v6svcryimFvkZtSTlR/+sDDUmTeu/onsF1Quq6kYx+0f+D5wZwJc/jOI/x/4cgMToE1RUR7H15FX0u7nhrx8duZTqCt/xex8lMXRYBNDb36eafAJKZMyFfbZOJ5z54fz1ziIBvxBCCCHq5fF4ePvtt/nwww/Jz88nNTWVO+64g7Fjx9ZZv6ioiDfeeIOvvvqKU6dOERUVxbBhw5g9eza9e/cOqls75f2jjz7i+eefZ+3atZSXl9OzZ08efPBBbr/9dq3ulClT2Lx5MwBTp/qnWKalpYWs2a+qquLFF1/k888/p7S0lO7du/Pwww9zyy23NMtnIoRoBt6AkUqlZQLl0nz/1nrRCYkXfN+8efDNT65gc7bv/Ko+e6gqDVi7rphAdeI5K8lde+b1ekEN3pe+qqyE2iURitKymeRbghKQpT9oz3udr1xV3eQf9E+x7zuoE5/80BGXJwKj3o5ZX4TZrDJ4cOOSMbpd1TVH+ppgP1jttnyK0dSo9i+UBPxCCCGEqNfcuXNZvnw5nTt35t5778XhcJCdnc327dtD6h47dowpU6aQn5/PiBEjuOmmmygqKuKLL75gw4YNZGdnhwT9TqeTadOmYbPZGD9+PHa7nTVr1vDYY49RUlLClClTAMjKygJg8+bNZGVlkZaWBoROm3e5XMyYMYOysjLGjBmD3W5n9erVzJkzh0WLFjFixIiW+Jj45JNPyMvLw2KxcMUVV3DVVVeha+fTe4VoUYEj/LqWCfjLCgu1Y2tShwbde81NPdj2f2bcDgcn9+/BaPbt324wmwErbkcBXo/NFyhfBJy26pAyW3mB/6SFHsq0pMDt7tSALfh0OqNvpr3qoeTkMa38/l+kUxkD9j0dMOqPY9aX8tAMGxkZUY16fa/b95kqutDZIarXq20VKNvyCSGEECIscnJyWL58OX369OH9998nMjISgFmzZjFhwoSQ+o8//jgFBQUsWrSI6667Tit/6KGHmDx5MnPnzmXZsmVB9xQUFNCtWzeWLVuGyWTS2p84cSLPPfccN998MykpKUyaNIm8vDwt4M/MzKyzz2fOnKF///4sWbJEa2/cuHFMmzaN7OzsoID/xIkTrFy5skGfSX1T93/9618HnXfr1o3nn3+e/v37N6h9IS4ZgWv4lcY/HCtbtYqqb78NKT9ZaOF4pX8EXvfdBk7mft2gthMUPWeA8gL/TAGzx4tb0eML1dwcfuJ3mMpKOJUQj64B2/JFjRhB7LhxDepPS6quDE1K6Kwu8p+0wy0HAwNpx959lH3yqa9cS+DnwVZak51fiSRq/3aevHY77502Y7eBonj5We9VlH3SuHwsXo8v4NfpzNpr11I9/pwAiklG+IUQQog2p/zzzyn4ywK8VW1zSqcuKoqkX/4S6y1jGt3GRx99BMDDDz+sBfsAKSkpTJ06lZdfflkr2717N9u3b2fy5MlBwT5A9+7dufPOO8nOzubgwYNkZGQEXX/kkUe04BwgNTVVa/+zzz7jgQceaFC/n3zyyaD2hg8fTlpaGjt37gyql5eXxyuvvNKgts8O+EeNGsWMGTO44ooriI2NJS8vj2XLlvHee+/xwAMP8PHHH9OpU6cGvYYQl4RmGOF3HDrEycf/M6R8i2cI21L60yXt31qZ/rsNlFUVhtQ9l5jUBM6kxAeVOUs9GCM92l5n3395hMuqDmMwVNbRQv3KPl5FRP/+mLp1a9B9LcVeaQspU9WAUX99Owz4A6b0V65fT+X69b6TAcO0crUmR4GRaE7/528AiLx8MPaaGfhHPvwIY17olozn40WBAT18/XDDyd/8pv5+ygi/EEII0fYUvb0Y56FD4e7GORUtXtykgH/fvn0ADB06NOTa2WU7duzwvWZREQsWhO4nfKjmszpy5EhQwG8wGBg0aFC97e/evbtBfbZarXTp0iWkPCUlRetjrczMTO09Nta0adOCznv27Mnvfvc7oqOjee2111i8eDFPPfVUk15DiItS0Ah/4wJ+1/HQbf3K3dHsvKwXXZK+CSpXK1wN3pDcXA6kBJcV2FJJM3qgZpZ2TtIVfFIylltcnzMo4vs6+1PkSSRRX4T1rIcCzhN5bSbgr64KHeEPom/ZreNagqlHD5SICFR78HtTVMWXsTFAhNP/5YhyOCiqCfgrIyyNem2H0X+fTj33F8/Sr1+jXuNCScAvhBBCNELijBkU/OUvbXqEP7GBI+Nnq6ioQKfTER8fH3ItMTE4AVZZmS+h1fr161lfO4pSB/tZv3jFx8fXuda9tv3KyoaNmtW3FZ7BYGjVtbZ33303r732Gtu2bWu11xSiXWmGEX6v3T8CnfjzB4mbPJn3PjBg+Hp+UL388gx+nPn/uOqOhm2ttvH/HHh3/Bqd4g92f7RdSdRlYKz+JwAdE/9NUuZOfv+vl/n7Gx769vHX/d/fr6O69HtUVaXKmYS120/5f90+oviddwB/0ra2oLqOEf5AavvL2YfeaqX78uVUbdwIqv/nYvgqB8dZsz2K9f1J+d1PACg6WsCxH9YC4LqsCyl3jW7wa58prYYNHwFgio4l5Xe/q7OeIakD0TUJbFuKBPxCCCFEI1hvGdOk0fP2ICYmBq/XS0lJCQkJCUHXioqKgs6jo6MBX5K/++67r872VFXFZgv+pbKkpASv1xsS9Ne2X9tuS2jONfxni4uLQ1GUkPcrhKjRDFn6VYc/4DekpmLq1o0ht8CJTf6M+u9smsexsiv4+n/0mLo1rP2rbodfL3uQIV0+w6D3UFKVRM7xyfQZdlwL+AEMOgeJsafYkX8VA2s2A/nXZ0cwV6/EEuELNOMjD7Fjd2dOpKVRu0CqLQX8jjqS9gUxtc/khOYe3TH36B5U5t24F856Vr/8+1HcOrcfGRnQff9hcmoCfofiIWFK3f+mnUvh5l1awG9O6NCoNpqLBPxCCCGEqFN6ejq7du1i69at3Hxz8CbEW7duDTofMGAAANu3b6834K+L2+1m+/btDBkypM72+/btq5XVPhRorpH65ljDX5/c3FxUVdV2ExBCnKWZR/h1Ft8c7IwM+MJYCkCVM5ljZf2YNctX3lAZGTB47AReXzgBhwPMZpg1C8bf3YlZdz/D7X1fJMLoezgZH1XO4MH+e7f/8zsUJXgavNV8moOn+lDbFdXpaHinWojDdu4p/YdPdm6lnrS8am/wDDWPamL/qR5s2+b7mSd38/+9XV1ZdPbtF8RWVqEdmyIiz1Gz5UnAL4QQQog6TZgwgRUrVvDqq68yYsQILXHf6dOnWbJkSVDdjIwMBgwYwGeffcaoUaMYO3Zs0HWv18uWLVvoV8daxRdffJHFixdrifby8/O1LPu33XabVi8uLg6AU6dONcv7a+oa/uPHjxMTE6P1q9bp06f5r//6L8C3Q4AQog7NkKU/cIRfsfgW1VeWVKDgGzmPio7i668bF+zXmjcP7rkHtm2DwYNr29Lxk4kD+X79OK7u+lcAhg8pCnodg20HnrPairGU0ruXF76q6X8bGuF32gNH+BUg+GHFll3XkJvbtM+yrRh2x8/44H8dRBiL0Ol05BwaA/pI7YGN0WRCZ7DidZfjcpSgqipKA3cpsJf7l6OZIhu3rV9zkYBfCCGEEHW6+uqrmTRpEitWrGDcuHGMHj0ap9PJ6tWrGThwIF999VVQ/fnz53P//ffzyCOP8M4779C3b18sFgsnT55kx44dFBcXs2nTpqB7kpKSsNlsjB8/nhtvvBG73c6aNWsoLS3lqaeeIiXFnzErMzMTRVF44YUXOHDgADExMVit1gbNKGhOW7Zs4Y9//CNDhw6lc+fOWK1WTpw4wb/+9S9sNhvjxo2rc/tCIQTNP8If4RvhLzpxWiuLTYhtlgA1IyM00J03Dz58KZJj39XU6VOuXXO73TjKD/qOvRHolWoURSUhppgePXXUPrL0tqWAP3CEP3IQ3spcdDpfzoOq6s4cK+qijYC3dyNGp/Lp2idYuJCgmRuB780cmYC9vBxUO+WFZcQmxTXoNWzl/hF+S5QE/EIIIYRoo5555hm6d+/OBx98wNKlS0lNTWX69OnceuutIQF/ly5dWLlyJdnZ2axdu5YVK1ag0+lITk5m6NChjBkTmvPAZDKRnZ3N/PnzWbVqFeXl5fTo0YO5c+dy++23B9Xt1asXzz77LIsXL2bp0qU4nU7S0tLCFvD37duXW265hV27dvHDDz9gs9mIiYlh8ODBTJ48OWSWgxAigDcggV4j1/B7A0f4zb4R/qK8M1pZpDWuUe1eqB6XW7WAv7rKH+Dt/fZ7qNnuLTqhF/ayw6BWYlQq0AVsGao62lDAX+1fXpDWpz+/nv9reli20Ue/j8OFXTHGOYKWLLR3dc/c8IuI7YC9/AgASxee4LoJcQ162FEdkNDXEi0BvxBCCCHaKL1ez8yZM5k5c2bItbqmw8fGxjJnzhzmzJkTcq2upH219zz99NM8/fTT5+1PVlYWWVlZdV5bt25dvfe9++675227ofr06cNzzz3X7O0KcUkIzMXRyBF+tY4R/tLTBVpZdHxiyD3NKaZDnHbsqPJP4d7yjy3acc9BA9j/XQGu6kq8nipUY0DA34ZG+F3V/s8yNc3CfQ9YWf9GBMfcnUnQlTDsxn1kZAw5RwvtT10zN2pZO6RQXLPr46Fv/8ZnK0+ScfPNzJt3YW1XB+wwE1HP7jGtRQJ+IYQQQgghROsKnNLfhBH+2n3uHUcjGDgYKgr9SdasSS0c8CfEacdOuy/Ae+IJMOzeS3zNPu7f7LmGzhGbcVXnA14q7P6ZDW0q4A+YLWGOiGDePFhf9BHVa7cRrytm49hrwti71uc2dtSOO8Vup1Psdj78KJncewZe0Ei/M+DhdqS15XabuRAS8AshhBBCCCFal7fpa/hXrEtif9Kd6CwOPvp5PHflQH9jsXY9LiWpqb08p9gU/3alruoqcnNh4UIPv7v5MAA2Zwdefecynr0vVqtXWumg9t2GI0t/xdq1nJn/At6KiuDy1MuhJndi2eLFHHjpaZLLy1BMvocStUkRLxUl+mtxe9/DoPPnNugYfZBt2y4s4HfY/VP6o+KtLdHFC9a4lJhCCCGEEEII0Vhq07L05+bC2hOduOyyf9E5eRM393+PhQuhtKBEq5OQlnKOFprOEmWBmvDd7bKRkwOR+mJ0iu+92dwpOBzg8MRp95RV+kd+wzHCX/DKqzgPHcJdUBD8n8f/89CXleAuKECpyTHgBdQwr0NvbdeMTOLl9Yv54WTATjFRJRecx8Dl8D8oiIoN75R+CfiFEEIIERbr1q0757p7IcRFrIkj/Dk5EJ/k36Lz8uSvcDigurJMK+vQpWUDfp1Oh6L3zd33uuxkZkKneH8OgTJbImYzJKbGaWWVFf6APxxZ+j2lpb4DnQ5Dp47af16jf+K32RrtK0tJ5HQcfHidDsI8St3aMjJg6owYdp++VivrfVnRBSfucwcG/DLCL4QQQgghhLikBG3L1/BVxpmZoA/eKh6z2YOi1gT8iplIa8uPSusNNQG/x05GBtw2Kl+7Vu2JY9YsuKxXB62sqtI/1TscWfrVmuR8xrQ0eq9bp/2nS/U/HOk+/3/pvW4dZf/3HLMfMrB8hA6T3lRfkxetefPg+ZfjtfOk2NILvtft9D/YiU6QEX4hhBBCCCHEpSQwS38jkvZlZECfpKNBZb+Y8iOq27c2XW9snURpBlNkzZGb6kobwwf5twW8aXQM8+ZBbLI/eaAtIJt/OKb0ex2+vAGKOTiA97j8+QR8SxXA6fX3z6gztkLv2p5h1/sf1jjsFeeoGczjrkmCqJgwGMKbNk8CfiGEEEIIIUTrUpuetC8xpizoPLPnd4AvC77JElvHHc3PaPbPIig7U0pFkX+XgO59fEkD41P9yQOrbf6gsbUDflVVtRF+ndkSdM3j9vclIsb3nlxel1Zm0l16I/wAlqgIUHzv3e288IDf66n5nHWW89RseRLwCyGEEEIIIVqXt2lJ+wBcgQ8NgGM7N2vH5uhWCvgj/AF/RVEptjJ/0sD4jskAJHZO1soc1QEBv6OVs/S73drMCsUSHIh63QEj/DG+ZQpOT8AIv/7SHOEH0Bt8P2OPq+o8Nf1Uj+/z1BnCv7uBBPxCCCGEEEKI1tUMI/xuvEHn1RX+Kf6R1vizq7cIc6R/fXZ5USn2Cn/AXxvoR8ZGUbsbutsREPC7WneE3xvwgEFnDg5EvZ7a0Xy9NgU9KOC/RKf0AxjMNT9j1YHDdv6HNM5qB7UzTfTGiBbs2YWRgF8IIYQQQgjRuoJG+BsZ8J81wh/o4PGkeq81J0u0P1dAVWkZTnt5zZlCfCff+m+dToeuJqdA4Chxa2fpr53OD3WM8NcE94riD+yDpvRfgkn7apks/oc6JfmF561fWVyuHRtMEvALIYQQQgghLjXNMMLvUdz1XvtuRwq5uY1qtkEiYvzBYFVpGW6nL9jT6aODkrUZTb56qlqNu2Z6fGtn6fdW+0enz07a560J7hVdPQH/JbqGH8Ac7d9WrzS/6Bw1fSqKJOAXQgghhBBCXMqamKVfVVW81B/wHz7TnW3bGtOxhomM8weDVaWlqB7fCL42DbyGOdKfUyA/sjMQhqR9Dv8I/9lJ+9TagD9grb6s4feJiPH/7ErPnH+E31bmX7Zhiog8R83WEd49AoQQQgghhBCXniaO8KtOJ6paOw09hu9P3kR8xHGMBi97Tg3hVGVvBg9urs7WLyo2IBjMz9OOTRHBSQMLyuKpXTX/f+WTGV39TzKd5bSmwCSBiuWsZHKqL+DXBYzkywi/T1RcnHZcWVRSf8UaB/ZKwC+EEEKIdu7EiROMGjWKrKws5s2bF+7uADBy5EgA1q1bF+aeCCHOq4lZ+j1VVaj4An69zkTHa2awcCE4HGA2w6xZkJHRXJ2tX0yiP7CvLDmpHUfE+JMG5ubC/qMd6N/Rd95v4Er2VfWgR3EVPVu+i5rAKf2BI/xOhxNqEiDqDP7AXkb4fWISErTjiuL6A36v18uzDyzEYl+tlR08ElNv/dYiU/qFEEII0S4sWLCA9PR0cnJywt0Vzbp16/jTn/7E3XffzcCBA0lPT2fBggXnvMfpdPLKK69w8803079/f0aMGMHcuXMpKjr/2lAhLhpNHOGvLCgBVAD0ipF58+Drr+H1133/b63nkDEd/IG9u/qMdhwV5y/PyYFTZWlB91mjDnHAFFzW0gKn9CsBWfqrK+3asT4w4PdKln4Aa8DP2F5eWm+9f/zfjqBgH2Db7oRWySVxLhLwCyGEEEI0UnZ2NkuXLuXAgQMkJyeft77X6+Whhx5iwYIFxMfHc//99zNo0CA+/PBD7rrrLoqLi1uh10K0AU3M0l92yr+W2lCTQT4jA6ZNa52R/VqxHQKn7qvaUXRionacmQlbj9/I/jMjg+41m6ppTd6gLP0BAX+FTTsOHOF3eSRLP0BcSgft2F5ZVm+9/f8+GHRe6Uxjw/6ftEouiXORgF8IIYQQopF+9atf8Y9//IOtW7fyq1/96rz1V65cyYYNG7j99ttZtmwZv/71r1mwYAF/+MMfOH78OC+99FLLd1qItqCJI/wVxaXacTinm1uiI6lrlXRcin9bwIwM+PlMM3/b/ijfHb5PK9cZWjtpn//1Aqf078r1j/AbjP4HAbKG3yeuoz/gd9oq6q0XZfDncFiz7z95ds3rONX4VsklcS4S8AshhBCiXh6PhzfffJPRo0fTv39/Ro8ezRtvvIGqqnXWLyoq4s9//jOjR4+mX79+ZGZmMnv2bPbv3x9Sd+TIkYwcOZLy8nJ+//vfc+2119K/f38mTpzIp59+GlR3ypQpvPLKKwBMnTqV9PR00tPTtXX7gaqqqnjmmWcYMWIE/fr1Y9y4cXz++efN8GmEGjp0KN26dUNRlAuq/+GHHwLw6KOPBt1z991306VLFz755BOqq1t31E+IsGhilv6qYv9Iq8kQ3mBU0VtCyuI7Bs/4qV1ycP31/ocD7gv8e6O5BE7pP1oQxVtvwfTp8JvH/AH/mcKAtf0emdIPYO0QS23Y7KquP+D32vO140Onu2Kx6Fotl8S5SNI+IYQQQtRr7ty5LF++nM6dO3PvvfficDjIzs5m+/btIXWPHTvGlClTyM/PZ8SIEdx0000UFRXxxRdfsGHDBrKzs+ndu3fQPU6nk2nTpmGz2Rg/fjx2u501a9bw2GOPUVJSwpQpUwDIysoCYPPmzWRlZZGW5lv7GhMTnBDJ5XIxY8YMysrKGDNmDHa7ndWrVzNnzhwWLVrEiBEjWuJjuiAOh4Pvv/+e7t27a/2vpSgK11xzDX/729/YuXMnQ4cODVMvhWglqof3rNG8Z43BtesvcGBRg24fviuV2sn0Rc5CRv99dPP38UKoMNLbCROVQcWP73qCqmOhD++uiO5M15pjt07HmL/dhFffOoH/NVsqmWCMYGOHa9iy+jSK/gUui9lNv8H+QPVoocK1C+8gskMZZY6AhyqX8JR+nU6HTh+F11OB21VVbz17RUHtHTz1TEeGXhX+YB8k4BdCCCEa5eC/z7D5k0M4qz3nrxwGJoueYeN60GvI+deV1ycnJ4fly5fTp08f3n//fSIjfdsLzZo1iwkTJoTUf/zxxykoKGDRokVcd911WvlDDz3E5MmTmTt3LsuWLQu6p6CggG7durFs2TJMJpPW/sSJE3nuuee4+eabSUlJYdKkSeTl5WkBf2ZmZp19PnPmDP3792fJkiVae+PGjWPatGlkZ2cHBfwnTpxg5cqVDfpMZs+e3aD6gY4dO4bX66Vbt251Xq8tP3LkiAT84qLn8jh5IT4ep04BV7nvvwZQ7f4p8w7FSX5V/jlqtxxnaQKVdisJFn/STa+qZ09pKSZdaE6OZGKCAv6i8nwcptYJ+O1VXr5Nz8SpP0IGR+qsU2KPI/+knsgI/+epoBBtim6VPrZVelM0XnsFXk8VO3Z4GDgweFaK1+PBXe37eeuN8Twwo+3MiJCAXwghhGiE7V8cpSTfdv6KYVIFbP/nsSYF/B999BEADz/8sBbsA6SkpDB16lRefvllrWz37t1s376dyZMnBwX7AN27d+fOO+8kOzubgwcPknHWkMcjjzyiBecAqampWvufffYZDzzwQIP6/eSTTwa1N3z4cNLS0ti5c2dQvby8PG2ZwIVqSsBfUeGbChodXfcvzrXllZWVdV4X4mJi9zh8wT5gVPTEWxLPc0ewSK8F8D0kUIwqyRGN/7uuKQoOX87BkisZ1vGwVpZfdQWW8nI6pO0LqW+KMkPNdoJuvUInYxJVEa2zyjqBCpz64L9fVFWhsOoyDAaFkupkvi7KoHvHL4mo+Tx1Oh1ZvbJIsCTU1eQlw+6MwcApFFT+a+an9BlxHc++4P9MCo+fBtwAWKI71NNKeEjAL4QQQjTCoJu7tvkR/kGjL2tSG/v2+X5ZrWu0+eyyHTt2AL41/HVtS3fo0CHAN3odGPAbDAYGDRpUb/u7d+9uUJ+tVitdunQJKU9JSdH6WCszM1N7j0KI1uUMyAB/bezlLJjwQYPuX7rh95wu822DN7zrcB6/s/EP45pi+3YP1893sfPwDXRMKKKsIpIfS/uz/lljndO5D27ZzcdbHwfAoygsv/VvGFNa52HF6VMLWFrwhXa+/sdfsnHfIIorkzCZICICZs2CeQ+Fb+lTW5SbC6eKE+hSs4ZkRPe3sB9ZybatbzB4qC/J4cn9R7T60QkpYehl/STgF0IIIRqh15DkJo2etwcVFRXodDri4+NDriUmBo/GlZX51nquX7+e9evX19um3W4POo+Pj0enCx3dqm2/oaPdZ6/pr2UwGPAGJgkLg9q+1feeasvrmwEgxMUkcI93cyMSwjmd/vXxUTGR56jZsjIyYNKkIj7++HIOFeoxmzlnorYIa5R27NWB6nS0Uk+hvMJO7daBRVV9+HLXzZjNcP/98JOfwODBbWPNeVuTkwNHC/vQJXaTVhZhLOS7VTkMHno9AGeOHNeuxXfs1Op9PBcJ+IUQQghRp5iYGLxeLyUlJSQkBE/nLCoqCjqvDVLnzp3LfffdR11UVcVmC14GUVJSgtfrDQn6a9tvyeC3tdfwd+nSBZ1Ox5EjR+q8Xlte3xp/IS4mTq9bOzY1IuB3BQT80XHhfUj2y1/mM2dOKt9/f/6gOSrW31ePoqI6W29rvtJK/2fWuaOR11+XIP9CZGbCf/7nBMqr4+iXtpXL4jYAYCj7DvAF/MUn/VvydejSORzdrJcE/EIIIYSoU3p6Ort27WLr1q3cfPPNQde2bt0adD5gwAAAtm/fXm/AXxe328327dsZMmRIne337dtXK6t9KNBcI/WtvYbfYrGQkZHBjh07yMvLC8rUr6oqGzduJDIykn79+jX6NYRoLwK3fDPpGx7wuwPuj4m3NkufmiIjA+pYnRQiMuDhhFfxtmrAX2nzv1ZsQgz3Tmu1l27XMjJg5kwjCxfexI7jw3hyzEYUxYutIBePx4ter6Oi0J/ksGPvrudorfW1ToYIIYQQQrQ7tZn4X3311aCR+dOnT7NkyZKguhkZGQwYMIDPPvuM1atXh7Tl9XrZvHlzna/z4osv4gz4pTc/P1/Lsn/bbbdp5XFxcQCcOnWq0e8pUO0a/ob811R33nknAC+88AKqqmrly5Yt4/jx44wbNw6LJXRPbyEuNi7Vv4a/MXu8ezy1U+EVohPqXsrTFpksZsCX4d2LB9XRelP6Kx3+zzwyJvYcNcXZ5s2Dr7+G+S9bMcd0B8DrKWPhn3eTmwuVZbVb8unp2EtG+IUQQgjRDlx99dVMmjSJFStWMG7cOEaPHo3T6WT16tUMHDiQr776Kqj+/Pnzuf/++3nkkUd455136Nu3LxaLhZMnT7Jjxw6Ki4vZtGlT0D1JSUnYbDbGjx/PjTfeiN1uZ82aNZSWlvLUU0+RkuJPfpSZmYmiKLzwwgscOHCAmJgYrFZrg2YUNLcvv/ySL7/8EvAtEagty8vzTe/s0aMHM2fO1OpnZWWxevVqPv30U06cOMFVV13FsWPH+OKLL+jcuTNz5sxp9fcgRDg4PU2b0l8b8CuY0EeGbw1/YyiKEVX1oCoevK04wm9z+QP+6ITQ3Czi3DIyfP+tsQ1l979+BKB65xMs/a4XydFFKArYXYnM/YORefPC3NkAEvALIYQQol7PPPMM3bt354MPPmDp0qWkpqYyffp0br311pCAv0uXLqxcuZLs7GzWrl3LihUr0Ol0JCcnM3ToUMaMGRPSvslkIjs7m/nz57Nq1SrKy8vp0aMHc+fO5fbbbw+q26tXL5599lkWL17M0qVLcTqdpKWlhTXg37NnT0gegL1797J3714Ahg0bFhTw63Q6Xn/9dd58800+/vhj/vrXvxIXF8cdd9zBnDlzQnIlCHGxcgaM8Jt0pnPUDJWbCx6vEwVQFBO6djYrxhfwV6OqblRH6wX81W7/QxZrcsO2QRR+Mb1+Av/6m3aeEnNQOy6zd+SthXDPPW0nN4IE/EIIIYSol16vZ+bMmUFBa626prjHxsYyZ86cOkeq60raV3vP008/zdNPP33e/mRlZZGVlVXntXXr1tV737vvvnvethtj9uzZDV7XbzKZ+MUvfsEvfvGLFumTEO1BUNK+C1jDn5vry5a+cSOsXOnhqZsdoIDHY0ZpZwG/TmfC6wUVF6qr9QL+wK0Q4zte3LvMtKQ9R7tQbOtKQuTRoHKXJ4Y9BbfgcMC2bRLwCyGEEEIIIS5RTtUf8Bv15nrr5e0/xjt/eo+S4irweuhiLGTuGH8ej4pqK3sOWRjYo0W726x02hIGDy6b/Zx1m1PgrIqEy9rW1nHtSWYmzPvDkwzt8jl2TxJbDg7H7oohLtZLfnEkFotv94O2QgJ+IYQQQgghmkHtKHRmZtsZ3WurAkf4zfr6p/SvenkxZudWUuvZec9WbeX7fZEMvKm5e9hydAEzGqrKKmmthTxutXY2gUJcR5nS31gZGfDTqZ1ZuPBBHA6o3TjGUQIWC8ya1bb+/EvAL4QQQgghRBOsee19vv92NwXFeo4U9eU3v7mDWbN0bSpxV1sTPKW//oDfpmU/9/F4DVQ4OmDSqzicMRQc7MHAqxqWAyDcDAHv11ZRHXK9pR4cedSaRIeKBYNBwsCmmDfPt05/2zb/aH7tcVsK9kECfiGEEEKEybnW3AvRXuzZsIPd/3oPI9DJCp2sWzle3JOFC4e0qcRdbY1T9WjH50rap1OqqRlA5Y2Nizl0MhGPV89VETl0Nx5iQtzHZAyd1rKdbWYGg//92s+a0v/E417+/n4+HpcXuzueaQ9GNcuDI6/Xi6r6XktH/UsoxIWrzdofeN4WScAvhBBCCCFEI50+cjyk7LKkY/yQN6RNJe5qay50DT81o9IuTxTHC5OJjoGJE2HSvndIKdhCbKQTRadr4d42L4PJH/BX2x3a8Y4dXtj9Wx66ZicAHq+Jjz/+Hbn3DGny96i8sAxqHp0YaF8zIkTTtK8/HUIIIYQQQrQhTnvolGzFa8NsbluJu9oal9c3wu8sTeDrL9PIza27nurxBcQmk5HXX4evv4a//hWujD2M1VDZ7jL0AxhN/j5X2/1Z+r/753GSonZq53qdk/4d17NtW9Nfs+SUf2mEUZEx30uJBPxCCCGEEEI0krM6NOC3RlS2ucRdbY1T9VD275/gzv4dKxd0ZezoUp54IrSe6vUFxAajmWnT/J+pt+Zz17XLgN8/o8Hh8Af8nWIPh9SNNFc2y4Oj0vxC7dik6JveoGg35PGOEEIIIYQQjeSqdoSUZQ4sZaYk7DunE2es/PRQFJ3S/wKAV9XzxZpHyL3nJ1pQ76x2AL6ZADpD8LR/tSbgb48j/OaAPjud/oBfX30spG5KfEWzPDgqO+MP+M0S8F9SZIRfCCGEEEKIRnI7Qkf4DUpVGHrSvpw83pFOAdPXdYqHQWmfB01ft5VWascGY3Bg355H+M2REdqxw+XSjktOnQypG2Vpnu9SRUGRdhxpkID/UiIBvxBCCCGEEI3kcoaO8Lsc9jpqikBJCadDyhKjDjJwoD97f2VphXZsCFj3rqpq+x7hDwj4XW5/8sLK4vyQuh5X6AOlxqgqLQ5oU5L2XUok4BdCCCGEEKKR3HUE/G6nrd76ubnw1lvUm6TuUhEdGTpybdBVE+ncq53byv11DGZ/kKw6/J95exzht0RHaceBAX91ZU1iPcWMTh8NgMfTPAH/4R/9syXe23xNnfkSxMVJ1vALIYQQQgjRSJ6ANdi13HWMylZXVfLnJ37gyy/clFbFcqrySv5jlr5Z9lhvjzwuPbXr8wPt+tsKEnduBqAwr0wr11VWUbQ4GwA1YBmFYml/e8pHWGO0Y7fHF/BXV9nxun3v1xSRiNfjxOupRPVWo6oqiqI0+vVyc6Gs1E6S7xkC+eXJrFsI99wjiSUvBRLwCyGEEEII0UhuV+gIv9cdPKVfVVWW/PZ3xJ75kckDfWVf7J7KwoV3XrJBl9fln2hsJAEXvinn+UcPceaz/wOguFM6JNXUP3mKM899HNKOztz+RvgjYqO1Y3fN9oQn9h7RyiJjU7BXFOB2AKoLp92FObLx0/BzckCv8z8kseDC4YBt2y7N796lRqb0CyGEEKLBTpw4QXp6Ok+0oXmhI0eOZOTIkeHuhrjEeNz+EX5F55t27j1rGvaZI4eoyP8xqOyanp/gcnqaZY/19khn9yeOi3HoqB2HtOltlLp9AbFTb9TqGD3eOtuJHDas5TrZQiLjY7Vjj+ob4c8/cFQri03uiMEUqZ1XFJc36fUyM8Gk930nVVVHfmUKZjPNst2faPtkhF8IIYQQ7cKCBQt45ZVXWLJkCZmZmeHuDgDr1q3j22+/ZdeuXezduxe73c4vfvELZs+eXWf9FStW8OSTT9bbXlt6b+LCBAb8epMVd7UdVCdutxuDwfer9o9bc7Q6Lo8Ro95FtLmEPp22M3jw0Fbvc5vgDBjhj4jAo0ajV48AVTwf/VuGXBFH/97bYd86AKyDB5H2i/uCmjCkJBMxcGDr9bmZRCeGBvwFx49rZR0u60JZgT9jf2VxGR06d2j062VkwD/MtprXMxNtdDBrlozuXyok4BdCCCGEaKTs7Gw2b95MdHQ0ycnJHD169Pw3AaNGjeKKK64IKU9LS2vuLooW5g0I+E2WGNzVvuzzlcUVxCXHU5Jfxfdffq3V2Vs4mf4pywDIGvoRa5fGcPzKSMZO7dykddrtjRIwpd+ji2LPiXT6pR4B4Jr0t/G4TeRXXavVibm8N9ZbxrR2N1tEVGK8duxVfVP684+e0spSe3bl+C5/VsfKEv9uBY2l1zlQvWDQ6Xh99haGPDOwyW2K9kECfiGEEEKIRvrVr35Fhw4d6Nq1K6tXr+bRRx+9oPtuuukmJk2a1MK9E63B66kN+A0Yzf5p2JXFZcQlx/PPxTnYSk/4CnUpDOjZEU9lJAo2zN4fOLBjK3u2d+TbbVH8+eWE1n8DYaK4/VP6qxyR7DiWSb9U/xp9vc5J2cnt1D4CMUdFcrEwRFrwhWFuXJ5S/jx1Ptj2Ya75SP66vDuDY/2Z/G1lTQ/4VdX3PdWhp1t3WdV9KZGfthBCCCHq5fF4ePPNNxk9ejT9+/dn9OjRvPHGG6iqWmf9oqIi/vznPzN69Gj69etHZmYms2fPZv/+/SF1a9fcl5eX8/vf/55rr72W/v37M3HiRD799NOgulOmTOGVV14BYOrUqaSnp5Oenl7nmv2qqiqeeeYZRowYQb9+/Rg3bhyff/55M3waoYYOHUq3bt0uqZFZEczrdQGg6EwYLQEBf4lv3fXBH/ZoZacr+lNZbUFn9M3u0Ckeesa/T3rCC2z75tAltVWf4vb/mUmMVjlcksFnOx/F4faPfitef5b+yJhoLhaKoqBQm5/AjdnxFWa977063FYWLoqh2u1/v7bypgX8XrcHVN/3VIcepR0mOhSNJyP8QgghhKjX3LlzWb58OZ07d+bee+/F4XCQnZ3N9u3bQ+oeO3aMKVOmkJ+fz4gRI7jpppsoKiriiy++YMOGDWRnZ9O7d++ge5xOJ9OmTcNmszF+/Hjsdjtr1qzhscceo6SkhClTpgCQlZUFwObNm8nKytKmvsfExAS153K5mDFjBmVlZYwZMwa73c7q1auZM2cOixYtYsSIES3xMTXY7t27KS0txe1207lzZ4YPH058fPz5bxRtjuqpDfiNmCMDR2Ur2bbFjcN+GHPNznGffj+Gcmd3fn5vEhHHv0ev8+/B3inmB7ZtG3rJrKtWPP5xx4R4HbNmwcKFI6l0xHLXkD/UXPE/WIywRnExURQDdT03PVJyHQ4HlFb5A357RWWTXstWYdOOdejQtcOtDEXjScAvhBBCNMK+7zaw8YOlOKvt568cBiZLBNfedR+XX934ADcnJ4fly5fTp08f3n//fSIjfaOXs2bNYsKECSH1H3/8cQoKCli0aBHXXXedVv7QQw8xefJk5s6dy7Jly4LuKSgooFu3bixbtgyTyaS1P3HiRJ577jluvvlmUlJSmDRpEnl5eVrAX19iuzNnztC/f3+WLFmitTdu3DimTZtGdnZ2UMB/4sQJVq5c2aDPpL5kfA317rvvBp1bLBYefvhhZs6c2Szti9aj1o6c6oyYIv0j/LbyCnbuc2Ax5AHg9ERTUN2HykoFYi8n++//y+UdNnB97+UAJEbnX1JZ0wOedWAxm5g3z7cv/HdfWKncElo/0nrxjPCDb6Q9cN+BnKN3s+v0Dfx4qgsWC3TqEsXRmjx+1ZVVTXotW5n/gYFOVVDMEvBfStptwF+bqTdQ9+7dzzllb82aNbz88svk5eXRrVs3fv3rX3PDDTe0dFeFEEJchLZ+spzikyfC3Y1z2vLJiiYF/B999BEADz/8sBbsA6SkpDB16lRefvllrWz37t1s376dyZMnBwX74Pv3+c477yQ7O5uDBw+ScdYQ5iOPPKIF5wCpqala+5999hkPPPBAg/r95JNPBrU3fPhw0tLS2LlzZ1C9vLy8kN8lzqepAX/nzp2ZO3cuI0aMIDU1lbKyMr777jteeOEF5s+fT0REhDarQbR9Xq/XP1Vab8ISFTAqW15B765l7Njom45d4UihokLBYoGsLLDbe/Pu4g5awJ8Uc4o+l7sBA7m5vr3TMzMv3kzqitc/pd9k9v15zciAbp2SeKuugD/24gr4XV6oXQnk9ppZkzsZtxqBxQKzZkG33laObvRdd1Q1bYTfXuF/YKD3SsB/qWm3AT9A7969yc7O1s71en29dbdt28Zjjz3Go48+yo033sgnn3zCww8/zIoVK7j88stbo7tCCCEuIleNn8y3f2vbI/xXjWtaUrh9+/YBvnXqZzu7bMeOHYBvDf+CBQtC6h86dAiAI0eOBAX8BoOBQYMG1dv+7t27G9Rnq9VKly5dQspTUlK0PtbKzMzU3mNrGTZsGMMC9g23WCxMnDiRK6+8ksmTJ/PKK6/ws5/9TNvOTbRtrmoXtdPOdQYjEQHrzKsrK0lJ8WdeL6lK0YK5jAzffz/7WRxfPmsC1YlBKaHoRAWv/eUw6/9Zit1h4ndlg3ng55HMm9ewfrWHBwaK1z+f3WLxP6CLTrACesATVD8qNnj5TnuWmwuKUqqdHyu5ClUXwX/+GiZN8v3M9nzr/y457bY6Wqm/7bN/9rZy/wMDvRd0FlnDfylp1/+a6PV6kpKSLqjukiVLuO6663jwwQcBmDNnDhs3bmTp0qU8/fTTLdlNIYQQF6HLrx7RpNHz9qCiogKdTlfn2vLExMSg87IyX8Kp9evXs379+nrbtNuDH5DEx8ej04XmEK5tv7KyYSNbZ6/pr2UwGHyjsW1U7969GTJkCBs3buTHH38kPT093F0SF8BeGbA22mAiwur//lVXVlJy0h/wX5GRyNcvBQfgAwYofBfXgaqSk6jecv757ofEnV7FxJo6R4r6snDhc9xzz4UH7k/9YieFe9byzYEx5JX3YdYsGvzAoDUoAX8cI6IitGOdTodOH4XXUx5QW4858uIZlc7JgeMFw+mS9B0A3xz6GR4PdOvm/zn7Hnz4OKsvLOB/avYeDm/fisej8uErXRg85nrmPafHHrCGX+9VJWnfJaZdB/xHjx5lxIgRmM1mBg4cyGOPPUanTp3qrLtjxw6mTZsWVDZixAi+/PLLRr22x+PB4/Gcv6IQjVT7/ZLvmWhp8l2rn8fjQVVV7b9LTXR0NF6vl+LiYhISgrcLKywsBNA+m6goX0Ktp556ivvuu6/O9lRVxW63a5+lqqqUlJTg8XhCgv7a9qOjo4PqB75mXe0H/v9815p7Df/5+nc+cXFxANhstgu6v/Z15HeSUK3195otcKq0wUREjD+xnMNWRemZfO18yDWpXHmlh7O7ZE1KpqrkJOCh4MD6oGvdEnfjdlazZYuRK688f39ycyHuzG+J7+ClW/x3/PHT91i4EO66q+2N9CsB33FzpCnoZ6U3ReG1+wN+RWdqs9/xxnzXhg6FT+b2x93LiFoWwf6TnbFYPAwYgPb9CFzC4HLYztv+5g1lWPPnMjitWiv75xcetv/sRmwV/iz/Bq+KajK22c9T1K+xP7N2G/BnZGTw7LPP0r17dwoKCnj11Ve59957+eSTT4iODl3jU1hYSIcOHYLKEhMTtV8oGqqhUwyFaKwffvgh3F0Qlwj5rtXNYDBgt9vb9OhwS+nVqxe7d+/m22+/ZdSoUUHXNm3aBPh+AbHZbNqI9L///e/z7i9fO8qvqiput5tNmzYxcODAOtvv1asXNptvdKr2Z2Cz2bSyQLVBcl3XAu+tdejQIV599dVz9vVsM2bMqPea0+nb59rlctXZh3PxeDzan8H4+PgLut/hcOByudi7d2+DXutS0tJ/rxUfOaMde7xwptj/e2VFWQmU+YOvCo8jZFkJABEBI9dBo9o+1sgSIiML2bHDed7+rFweS3zN0LlRX0lEhBubTc/KlUfxekvP/4ZakaL6/04tKCmmMOCz0Rkizqpsqvuza0Ma+l27Jfk7/vVDBmVeKyajiwkTivB686l9m26nQ6vrrK467/v/54pConTVQWUdrftZubI7V1qPa2UGr4f9hw+jXoL/pl2q2m3AH5hsr0+fPgwYMIAbb7yRNWvW8NOf/rTFX79v375BCYGEaG61v/z179//nPkphGgq+a7Vr7q6mqNHjxIREYHlElzzOGnSJFatWsXbb7/NqFGjtMR9p0+f5v333wd8y+siIyMZNmwYAwYM4PPPP2f06NGMHTs2qC2v18uWLVvo378/ERERvn2oazJWvfbaayxevFj7dzU/P5/3338fk8nExIkTtdetfXBfUlISlESwVm17dV2rnUEQeO36669v1mC5tv9Go7HOPgDs3LmTfv36BZV5PB7mz5/P8ePHyczMpGvXrhf0ejqdDqPRSK9evS7J7+e5tNbfa/sdO8mtOY6MjqH/0IHk/t13rlM9uF3+kdWrbriWuJTUkDa8p45x6vucel9j2r0V3Hln3wvqj7OynI2v+c/tdgMREZCV1a1NjfB7vB7WawG/jp59emMNeOj3vfUTHBWHtHO90RzyULCtaOx3rcOQVxhi+5ISbwJ/fvc6BlydCvi/H6qqsgEFUFE9zvO+/8Mbv+RofnBZjKWcrKxu5H/n//vI4PZwxYABmLp1u+C+irbB6XQ2atC53Qb8Z7NarXTr1o1jx47Veb1Dhw4ho/lFRUUho/4XSq/Xyy/GolXId020FvmuhdLr9VpgWhtMXkqGDx/OpEmTWLFiBePHj2f06NE4nU5Wr17NwIED+eqrr4I+m/nz53P//ffz6KOPsmTJEvr27YvFYuHkyZPs2LGD4uJiNm3aFPSZJiUlYbfbmTBhAjfeeCN2u501a9ZQWlrKU089RWqq/xfgq6++GkVRePHFFzl48CAxMTFYrVZtCUFtP+r6WZ3rWlN8+eWX2vLAEyd8uzasXbuWkydPAtCjR4+grfbuuOMO0tPTSU9PJyUlhbKyMjZv3syRI0dITU3lv//7vy+4j7WfofzZrV9Lfzauav+ou8FkJi7Jn+/C7bQHJPVUiE9JRVdHXxI6hi5HVXQWVK9vtPbn0ysu+D2kdSgJOrdY9MyaBXXkxQwrp+oEtXZ6shFDZGTQe4y0xlKS56+vN1ja/He8od81ncmM1VCJlUqi33uSUx8YQ+ooiglVdeB12zn16GPnbq8y9LW7xOaR9NfH2F/uv2bwuEM+b9E+NPZndtEE/FVVVRw/frzeJH4DBw5k06ZNQev4N27c2GafFgohhBBtwTPPPEP37t354IMPWLp0KampqUyfPp1bb72Vr776Kqhuly5dWLlyJdnZ2axdu5YVK1ag0+lITk5m6NChjBkzJqR9k8lEdnY28+fPZ9WqVZSXl9OjRw/mzp3L7bffHlS3V69ePPvssyxevJilS5fidDpJS0urN2dAa9izZ09IHoC9e/dqMweGDRsWFPA/8MAD7Nixg40bN1JWVobRaOSyyy7joYceYvr06cTGxrZq/0XTOKr8SSiNZgumSAu1GebdTjtedykABlNsncE+QGxSSkiZYuiG6vR9h6pKS0Ku16f0dFHQ+bp1LgYPDg0kw83p8Qf8iqJHMQUn5IuMjQs61xsvvhksSoR/2ULlunV11tEN6I8HUFUHZV/8E51a/zT8ysuvgrNWQlh05VT8YzP29GFQ8xGaPC50ERGhDYiLVrsN+P/nf/6HG2+8kU6dOnHmzBkWLFiATqfTfjl4/PHHSUlJ4bHHfE/Dpk6dypQpU1i8eDE33HADq1evZufOnZKhXwghhDgHvV7PzJkzg4LWWnVtaRcbG8ucOXOYM2dOyDVVVetcmx4bG8vTTz99Qf8mZ2VlkZWVVee1dfX80gzw7rvvnrftxpg9e/Y5E/md7T//8z9bpB8iPBwBu04YzCZ0Oh2KzozqteF2loLqW4dtjkqopwWITT57mr+C3tAVb03AX15QFHpTPcoLi4POL+9eDbS9gN/ldYHqBkDBgGIOXiYbfVaSUKPp4gv4Y8ePo3L9etTq6nrr6FQ9HgVQnbgMkTjsUORJJFFfhNUQvIOJ0xD6QMmD7zP26PyzhmIuvxx9TYJQcWlotwF/fn4+jz76KKWlpSQkJDBkyBA++OADLYvwqVOngjL+Dh48mOeff56XXnqJF154gW7duvHqq69y+eWXh+stCCGEEEKIdswVEKzVBqU6vQWP16YF+wCRcfUvITVaLETGxmErKwUgOukyOvbqwQHfjm2UnSmu996zVRYF162ushMd3/b2r692VQMuAHSqDp05eITfmhQc8BsuwoA/ZuRILv92A56ADPpn+9fv/xtXWQXgZfWguzh6zIbHo3C4aAjDRw3jD79za3U3/OlFKCwIut+r99Br/VfkPLcQ8nxLm1OnTWmR9yParnYb8L/44ovnvF7Xk/xbb72VW2+9taW6JIQQQgghLiHOan9Qb4rwBaV6owWPK7heTGLyOdspq07BSCkAG3b0pocrmdpd2CuKLzzgryotDTp32OofPQ4nW1UV4NtVQ0GHclbSybikxKBzY0TdSTDbO11UFLqoqHqvGyOjoMx3bHas5/Ka1R9XdMrhzY/6cOfPe2jJGJ1O/+wpnSEOr7sU1WNHn5yM2+N/MBBprf/1xMVJd/4qQgghhBBCiLM5A6b0G2uCVoMxdH10fGrHetvIzYW9h/3T+o8V9eLTr/z1bWVlF9wfW0VwXae9bQb8leX+UW2dqkM5a+eruI7BMyJM5otvhP9CmCLqD84Hp33Ktm3+c7ej9jM1YIqIqzn2UF1px+30f08jrKHbl4uLmwT8QgghhAiLdevWnXPdvRBtncsROsJvMIeORq/9LjQTf62cHDhe3Es7P2Pvx5nSWNSaX9PtFaUX3B9HZXnweVsd4S/zrz/Xq0rIlP641ATAv+7cHHlpjkqbz9res6CyBy6P74HSwM7rObp1L6uXnsBW7sTjqgJAZ4jCaPF/XmVnivG4/N/T6DgJ+C817XZKvxBCCCGEEC3Jcfgwp//0DK78/DqvV8Z09h//bRk//vUvuKO7BMaqAOz5+Bibdz1HYlRo0soBVZF8cvJedhqux+jUEV9wgt7R+1CUSFArcZQW8ePY2y6ov/bY4KUDTrujnprhZasMmH7uBeWsgN9gMKDoIlC9vnqmyEszq/zZDzoc6iAK7Wl0jP4Gg95JxeFVrNrfn81rU4nx+kbxDaZoTBH+oL6soASPu/Z7oNTsJCEuJRLwCyGEEEIIUYeSd5dStXFjvdddVyRDzWx05cwZnAWHiEroQGVnAzrFt266wtadynIzxcfLiTEdC2kjBrjbuoyPj0ygzGuli+E44yM+5bQuEtVTiQcnjkOHzn6GUCfPwLigc+c5MsCHU3VVlXasV0MDfgC9MRq3wxfwl9svzRH+7/fFE/jOY2K6YjYmgOsbADpGfw18TUVpb+17aLREY4nyJ2qsLCrF66kJ+BVTUFJzcWmQgF8IIYQ4D1VVw90FIULI97LluQMS5umiouCsYMlr8J+bjAZ0MTGkVx3n0/UzcZhNxOtKOFbUlXh9KfExLnSmujPmD4k5RM+4tyhyxpFoKiXOVMkahuDbqV7FE2vF5D3/z9tL8Ii+q42O8Duq/GvK9V41ZEo/QLXLioEzALyRbWXbaZg3r9W6GHa5uZCzRWFkwIZiH+YM4a5JTk7lbqV74natPMZ0QDu2RMUSERMQ8JeW4fU4AdDpgnMliEuDBPxCCCFEPQwG3z+Tbrf7PDWFaH0uly8VvF4fuv+2aB5qwBr9nl/8A0NicPb4bx/9A+SdBqDHy/Pp2t+3Fr/HE7BwITgcYDbDrFmQOe+OBr32uv/4HbbS4wCkfvA3krp2O2d9t9uNeu/EoLK2OsLvrPL3S+9VwRAckuTmwunSBNJqtioor4xh4UK45x60rPQXu5wcyD1+DT/pvRQFlfe3/zdHTseixMLy739Nv5R/Mrznl8RaTgTdZ4mxEmG1audVpWWoXt/3WKcPfbAiLn4S8AshhBD10Ov16PV6ysvLiYlpe3tZi0uXqqqUlZVhNpsxGo3h7s5FS3X4A1OljkzxHqf/gYA5yr/OfN48X3C6bRsMHty4INUSbcVW6jsuyS88b8Bfmh+6fZ+zKjRnQFvgCtg9QK96UJTgBQs5OXCipCdp1s2oqp5SVxccDt/neakE/JmZUOHuzMvrXsMa7eZQfjcsFsjKArs9loUL7yAuqoqru30YdF9UbBxRcbHaub28HFTfw0GdQQL+S5EE/EIIIUQ9FEUhOTmZU6dOYTabiYqKCvnFVFw4VVVxOBzodDr5HBtJVVVcLhdlZWVUVlaSlpYW7i5d1LzV/oBeZwkNltxup3ZsiQpOLJeR0bTgNDI2nuKawduSU4VAzTTvHF8weHbbpflFIW24bG0z4HcHLDXQq96Q65mZ8NQTWThdFkqdXThekITF4nt4cqnIyPDNDFm4sDNFp8Fi8Z3Xfq/uuQe+/ag7tl3B90UnxBOTEKedVxYXasd6CfgvSRLwCyGEEOcQGxuL3W6nsLCQgoKCcHenXasNVo1GowT8TWQ2m0lLS8MaMHVXND+1dkq8Xo9iCP212RsQ8EfENG9iueiAoK3sTBFP1LFMIHBNe9mZ0IDfabOHlLUF7urAgN8Tcj0jA6b/PJKFCyfjcAQHu5eSc80UyciALsnpLP5V8D0xHRKI6RCnndvK/d8LvVEC/kuRBPxCCCHEOSiKQseOHUlOTtbWTIvG8Xg87N27l169esm68ybQ6/Uyjb+VeGvW8NeVVA4CA34Fo6V5fyaxSf58ASePlPD2W3amXvU8CVGneOe7J1m4sEvQmvaKotAp/e7qthnwexz+ByUGQgN+aJ5lEReDc80UiUtJRtFZUL3+JRJxSYnEJsVr506b/3thqGNZirj4ScAvhBBCXIDa9fyi8Twe3y/2FotFPkvRLtQm7VMsdQdKXm9N4KoYmn27s/jUDtrxkR/LmNDvLbom5ACQNfgdXl//VNCa9orikpA2XG00aZ/H6X94Wl/AD01fFnGxUxSFCGtHbKWHtbK4jh2wBozwe1xl2rHRFLzsRFwaJOAXQgghhBCiDt6apH1KHev3AbweX+CqKM2/3VlC5yTtOIbvuCLVfy0pchdms4fBg/0Pzs7klXE2t7NtbsvnDQj4jcjMqaaITekSHPCnJvh2mFHMoDoAf44EYz0PrsTFTQJ+IYQQQjSrMpuLl9ce4EhRVVC5qqqUl5djzf23rOEXLaq5vmuzy21YgNPV8Oxft4Rcv7Jmf3NVMfBAHdebouSYwrWqgqKoIddMhgquG/k1L22Lhm2w9aNkrrfZ6B4fXO9MaVWz96s59Kyqpjb0VD2uNtnHCxXuv9f0u1PoEzBhavAdeQydeIYrdRHgCX7gc7C4fX/WlzqrWceUyxt+nwT8QgghhGhWH2w9zuJvD9df4ZQkPxStpInftTkuX8BU6lZYt/dMyPUrVTcAHgx1Xm+Kyt0p9Fe6EGs5ppW5vRYMOt+sg54JG/lo70D65Rdxt/4vmONDp/S7nY5m71dz6BGQD0VRnW2yjw0Whr/XXIWRxG3vR5+h/q35dn2ZRFGHQ6Qr5pBA73S1enF81peoCIPClMtTGnyfBPxCCCGEaFany9vmumEhGkKnejF6fevLnfo6EvJ5VaiZjq4qzf8rtTm5grc//TXDu24gwmKn0hbDvqK+zLjqKQBS7MeIOjOQ622foTdU1dmG7hzr48NJ7/X3S4/zHDXFuTjOxHAov5d2XmTrhdelx1EYjTvaEhLoOVpg6YloPQZd42aQSMAvhBBCiGblDZiB/NfpVzGgcxwAHq+HnT/spF//fuh1krRPtJzm+K6pdjunP/YdD+iZzPa5o4OuV1fZ+L/ZCwGIiogIud4c/isWst++V9uKb/oMD7rT8XhdJRjdJ5lQ/hX6SF+wX+2y4lat/Jg/hAGX+ToeZVJapF9Nlf3/VlD710SHSLVN9vFChfPvtZ074fav9Xzyw2MMvOw7Psu9E2uEgZVPDmDv/8VTnn80qP4dw3vy3J3t97O+5HndHNq/p8G3ScAvhBBCiGal4o/4rRFG4qN8o0oej4cYs474SJNk6Rctqjm+a25nFadrjo1REdr3uFZpRYV2rGIOud4cXpoPD9wfuDWdnnd/eyVnftyAgkpi5F4AnO5onv/8ZWyeJHrGHtICftXrbpF+NZXX7aF2rNJiUttkHy9UOP9euy4THpoFCxfeSM7hGzGbfefXZer55pVYzk41aY2Lbtef9aXO2cjJMM27f4gQQgghLnlqwAi/TpLziXaqdks+AF0d+5f/7zz/HvfHTkbxxBMt04+MDJg2zb893YBRI0PqfH14JlXuJO67D5a8ZtPKvV53UL3cXHjrLd//W1vta0+fDna7LwTxeE2sP3J163fmIjJvHnz9Nbz+uu//8+b5PusDx+JD6haVRYWhhyLcZIRfCCGEEM1KDYj4G7nkUIiwUwP2sFfMwWOlubnwyapq7r/Kd253mVm6EO65p+X3jc8YNYzDhx7n70sO4XbrOF3Vm437hxMZCb/6FVxujeZfHyqAijdgrfwTj7v5aNkpHE6FMmcKM2camTevZfsa+Nrfrd6CRV9MYuQxLF0KAV/Av+zABK7NbfnP7WKWkRH8+eXkwOGCy+kXsJWjV9VzqrJH63dOhJ0E/EIIIYRoVoFr+BUk4hftkzdwhN8SHPDn5EDHmIPaudMTj8Phm3rfGoHrhJ9fz3c/Xs/CheBwgMUCs2b5XttdFAPoATdqzS4CmzeUE/PjL/j58GIAqt1xLMx+hXvuiWvx/ubmwrFv/8b4K98PuWavTqPcZW21z+1SkZkJvzk5ApPBTrcOh3C4dBwoGMbCp5LD3TURBhLwCyGEEKJZBa7hlxn9or0KnNKvnDWlPzMTvv/gB+18Z94AzGbfOvvWMm+eb0aBf32/r1wXHY2CARU3ak2W/k2ffIvFUKzdazGU0jd1E9u23dLigXZODvTqsCGozOPVk19wFbt3DCTSYG/Vz+1SkJEBs2bpWLhwDN8c8CV8rH0gJC49EvALIYQQolkFjfBLwC/aKW/AlP6zR/gzMuCyxN2ggqrqOFQ8ICwB1dlTuQEUkwkUfU3ffAF/B2spp866NzaivFUC7f6XF1NmPgFAtTuRbw9OZO/J3vSw5ZFoKGbCgK1kZFzb8h25xNT3QEhceiTgF0IIIUSzkqR94mIQNMJvCg74C0+cQa8W1FzrxBdro9tMQKUoCgp6VPwBv1lfFlIv44ryVumz8+QmFMX3l8LhoqFsPJrFT4b/gVn7NhGvK6bXsM4t34lLVF0PhMSlR7L0CyGEEKJZBSbtk3hftFeBI/yKJXhK/65/bdGOO/W8vM0FVTpqt4dzAVBdWRFSp1fX0LKWcHjHdu140HX9+fprGDp4HV1Nx7AaKtGZZPxRiJYkf8KEEEII0axkhF+0Naqq4lbd568YwF3t395ONRtweX3B8w+5sPUr/752XQdmaNfaCkXR4Uul4cXutFNdFRrcO2xVLd7vH3Kh4Ni+mtSdOu57bCCRVherlvp/FopRwhEhWpL8CRNCCCFEs/IGjvCHsR9CABwqPcT/W/v/yKvMa9B9N37v5aGa4//e/jxreYF+62+hT1kJEfoi9DpQUZhz5kns71afs63WNkP1L86/PnsEWSUZmM+qc7ToEIPfbblF/FHfjSZ17xVcl+JLFmjXJTPi4+sAGFvl1eopZmOL9UEIIQG/EEIIIZpZcNI+CflFeH166NMGB/sApoAJAU4DOIsTGVB5FKPRP/Jf4UyjrLock6VtBfwoCrWbZVjtRvSe0NkNBo83pKy5JB3tydjigygp+7WyA4V9cZYewBRXjNHjr6uTEX4hWpT8CRNCCCFEs5Jt+URbYnfbteP0+HSijFEXdF93yyngOACdE3swKG8wRt2/AfCqBhyeOP55eDypV6XQ7fIjzd3tJtEpempj6oHGPhi8zpozI7Xr+o2qwuDk0BH+svwYik90IKFzIbGpjVvnH7cpDUXxL3tQVR2bT1xFalUZ3S4/Qlf9j0ARAIpJRviFaEkS8AshhBCiWckaftGWBK5T/69r/4srE6+8oPsKDr9GIQsAmH31o6xcf5gCfAH/9pN3s2Lr3Vgs8PXtY9tc0r43l/0CV03E/1DPB1i14S+ogM4YhdddBaoLkwrv3PpO0H1PPlZC0focYrxuSlyJ9Bl7FfOea3i4kP316xQX+wL+0uperP5hGqeKB/K3268jIwPOfPsrivgCAMUoAb8QLUkCfiGEEEI0q8As/TqJ90WYub3+6ewG5cJ/9VUdTu1YZ7FgO7NLO99+ZAgWC8ya1Ta3PdPr/e/TXlqO6vUtOTAYI3F53ageF1538DKE3Fww/fhbbux1XCvbtvEucnOnNPg96rzF2vEn3z/IkdJ+QZ+VN2DLQ52s4ReiRUnAL4QQQohmFbSGX9L2iTALHOE36i88uFQDtuXz6A1UlRz2negi+c3TPRk6tG0G+xAc8JecLtSODeYovG4nbk8lXm9wwL9xfRFW8/GgsjTrTrZta/j7rK4s044fnhNP5sjgNlSn/2eimEwNa1wI0SAS8AshhBCiWQXE+7KGX4Rd4Ai/UbnwgN/r8AfEG749A6pvxN+a1IsHHtA1XwdbgMHgf5+lRSXasckSjcdpx+0EVBdupwtDzRr6rglH2H1WO9Hm4v/P3n3HyVXX+x9/nel1+6ZXIAktmxDKKlVQsf+8gIJGURTlRq7XgoKxXsWWq1yvnfUiWFDEBiJFBGkBAqGEZAiB9F4223dnZ6ee8/tjds/MZDbJ7ma2Je/n48Ej53xP++467u7nfL7fz5dFQyjkn+zptLc/vKQGj6/wuJXMjZ7QHH6R4TW2f1qJiIjIuFOwLJ8CfhllBUP6HYMY0h9PkHB6eXj6m3jq0cfs9r3RMZrWz+N057Lm0c5ctt0bCOH0+HPH2nJF+TypHUX3CXjahjSKIZ3I3tdw+PH4DlwQEMy8DL9DAb/IsFLALyIiIqWlon0yhgx1SL+ZiPPi7EWkqrZSHXjNbv/To2cRiRziwjHA5c0F/LFYLqj3hcK4CwL+XCa+dXfx0oUGcaLtg6vUb5pmtjAg4HSH+j0nvz6ChvSLDC8F/CIiIlJSyvDLWHIkRfu6vM6Cto7EbDY3zmLVqpJ1b1h4vLkx9IlEt73tLyvD7QvY+915wXxH0z572+2bZG83b8+1D0R21EC69z5l/Z5TMIffWzwCQERKRwG/iIiIlJSW5ZOxZOhD+uPgzGWi73v1q/zPQ/+D1+sY0rz2keT25wL+VCoX8AfLy/D4+w/4ezr329tV0+bY2827Bxfwt+7K3ccb7D/gN1N5Q/q9yvCLDCcV7RMREZGSKsjwj2I/RKBwSP9gAn4zkcAyTAAyppdnN9bj9Y7dpfjyuQO5YfuZTNTeDlZU4AkE7f1YZy7gT/Vkl9JzuMqomDSFxk3Z9va9uQD+YCIRWLkS6ushvbfJbveHK/o9P5fht8ClOfwiw0kBv4iIiJRUYZV+hfwyugqq9DsGtyyf1fuXssvt4+abYdGisR/sA3gCgby93AuPcHUFvmAu4I9Hsy8D2ve1YFnZVQm8wRoqJk6wz+loygXw/Vl6g8k//rIZzAQ3ZcpZ/NZW+mbuB8sr+73GSmX/NzGcFobT2e85IlIaCvhFRESkpCzN4ZcxpC/gNzBwOgYeXKYTcSxX9gPs9gS56qrh6N3w8ISC/bZnHnsYWnND/NtfWkPTj3ezqanHbvOZLtxr19j7HZs20PTjH/d7vx17PWQie/jQmbmiBvGWauh9r+Las6vfa9Ot2ZEFDidgKOAXGU4K+EVERKSkTM3hlzGkb0j/YIbzA3SnDfrGq7h8/QfQY5W3LNxve/LO35GZMBtqsvvd27fR/PCf2T2zDip6r93XBC+ugLnZk3o6W2n++T/6vd/exEwmnOkraPO5W+xt48UXaL5/40H7aTit3qhfRIaLivaJiIhISVmawy9jSF+GfzDD+QFimVwg6vH3v7zcWOUt769YngNPKo43lStEmHZmQ4F2T+7rC/XECPV00hcmpIw0B1Pu68JxiOPBePSgxwCCk+LK8IsMM2X4RUREpKSU4ZexJG1lA9JBZ/jz8mK+QP8Z87HKm1e0r4/h8DPz1l9ibmlk7X23ZRsnT+Su4LeIdy6ngkYAXp78cd54YxjHz36GmenENOJMv/WX/T7HvbcN/txw0H7M+doXKSsPFB947QGcL/0CX3VKGX6RYaaAX0REREqqoGifxhLKKOvL8A824O/Jyzz7QuMt4C9e295wBgmdcw41E3dCb8Df3vIKPl7B1/t+wLIMfvSPC/h/N/hx+39PItqJZcVxLTgNX6g4cE89vdretowQhpWf0Xcw6a1vxOHo54eAMwI7U30dG+qXKSIDoF/DIiIiUlIa0i9jSSqTDSwHVaHfsojnvSAIlJeXvF/Dqb8Mf0tnOUuXQrCyv+H+WV3JmURjflatAl8wV2F///Z9/Z/f3G5vT5hZuHyBwxnqP9gHMDN5JyocERlO+n+YiIiIlJSlIf0yhgxlSL+VSJB0584PVlSUulvDyhPwFbXFEmEaGmDLzuJ6BLFkLS/s/iC3PPk1vN7s8oOBiir7+JqV/Qf80fYOe7ty8hScnurcQeMQL1isvIBfGX6RYaWAX0RERErK1LJ8Mob0VekfVIY/HifpygWioaqKUndrWIUqQlgUBv3d6QkkErB6tROMwiH/uzsX8LcX30csM4ElS6CuDjbvmmAff/buv/KV/3yl6DmxjlzAHygvJ25OsffTqXaWLj1IBwsy/Ar4RYaTAn4REREpKWX4ZSw53Bz+SARuuSX7bx8zkSDlyH12y2oq+7ly7HJ53Bz/hmvZF13Ivq75bGu7gHteusLO3juchQH/G995AjffDMuXw7Jl2e/Fipcm2cerAuup3P8FHvrjywXXxTo77e3OeDlrt5+UO5aqoaGh8Ptqy8/wD7K2gogMjv4fJiIiIiWVn+EXGW0Hy/A/9ad/8vTd9xHrMYklyvnJdz/K2y8/gWXLshn+tDP3OS6fML4CfoBLPnERK7dfREMDJBLg9WJn7x9z+THTuWD93HctZPIJuWtXroRXds3nojlOHEYuOH9txSouvmK+vZ+Idtnbu5sqefDlMzl54kN4nB08ve3DJBKwalX2mQVMM7etIf0iw0oBv4iIiJRUfrivDL+MJsuy+s3wJ2IJVt71C1xWkjIvlHnhwhPuoKHhayxeDHN9CTJGLigtn1hVdO/xYNkyWLw4G3QvWpQLvJ1OD+m+kww/k0+YVnBdfT10pibxy6d/wLsW/JbJ4RcBCLhbC85LxHIB/6mnVZI2wix78BYm13SyvXEiPl/2uUUsFe0TGSn6f5iIiIiUlKU5/DJG9BXsg8KAP/LISrCSBedWBBrtjLSVSJAx+paN8+Dxekakv8Ohrg6uuqowy97Tncvut8WmFs21r6vLjgZo7D6ee9d82G43MoUBfzLebW8vOruSJUvA4fazY3822O8bUVDEVNE+kZGiDL+IiIiUlKk5/DJG9GX3oXBI//pnnik61+2I2nPcrXgcs/eFgMMorng/nkUi4CBXbK85Oo07G7IjAfKD877RAc+vqKX9sWxbItpRcK90oi/gdxCqDB90REERS0X7REaKMvwiIiJSUgUZ/lHsh0h+wN+X4TdNk6bt2eJzFg4SmXIAPM4uOyOdjMaABABO59EV8K9cCdtaz7b3N7W8zh7ZcKC6Orh6SdheYi8ZLwz4M6kYAIbDj6N3aH5/IwqKKMMvMmIU8IuIiEhJ5Wf4leCX0dRfwL9tzUbMdDsA7sAsguHs/HynI8nXvpTNWHe15gJbl+voCvjr6+Gh165kX9d81je9g6fWn2uPbDgYpysMQCYVLWg3M9mA3+n2D64TVl7RPmX4RYaVAn4REREpqb543zDAUMQvo6ivQj/khvT//scr7LaVG+rpSZbZ+617mgDoaMnNcfe4j66Av64OLvnAdG5Z8V1uf+YTh55r38vt6/0eWQlindmXIvFoDHpL/7k8wcF1Qhl+kRGjgF9ERERKqm9Iv0J9GW0HZvgjEYg359aSf37LOexorLb32/c1A9DVkctkezxHV8AP2fn5y5fDzTdn/1227NDne4MV9nbzzkYA2ve32W1ub2hwHVCVfpERo6J9IiIiUlJ9U/hVsG/0RCLZudr19YeZS32UO7BK/8qVEPLuASBlhmlPz6Kzp8I+p6MpW4U+Go3ZbRlrkNnrcaKubuCfDX9ZBR37stutuxuZccpxdDbnAn5PYJABvzL8IiNGAb+IiIiUlNmX4Ve8P+Kaduzjti8sI5NsxsLgJ394PdVnXXvYDO7RKpXJDel3GS7mz2vj6X9ls/c9iRomdr+CN5N7KbD/0cfZu3YFa59PQnbaOo+umsH6pYfPgh/NQhVV9nb7/uwoiPyA3xcMD+6GqtIvMmI0hkZERERKqi/Dr/n7I++BX96Hy9yE19WOz9XGibUP8Lc7dhCJjHbPRkd+ht/tdBOyttj73bFKTnFHON21xm7r2r2LHb+/n51duQC2NVpBQwPH7PcQoKw2N+2hsykb8EfzChv6w4MM+JXhFxkxCvhFRESkpEzN4R81Lfs6i9oqvHv7XXLtWFAwh99wsW/TNnv/BHcj19X+gBOMrXZb0uWkJVONy9dtt3Wkpx902bpjRcXEWns72pad9tDd3m63BcrLB3dDVekXGTEK+EVERGRYaA7/yAv44kVtteUth1xy7WiWX6Xf5XDRvHmzvT9rop8F9/6W47/8BbvNmljDlB/+CF+g3W57ZfcJh1227mhXNWWCvR3ryA7l7+nqstuCFYMM+JXhFxkxCvhFRESkpDSHf/S4nT1FbWfN33/MFu7Lz/C7nW469++x96ecdDy+k05i4utykXwyHWfhu+dR5stWoo+nK7CcocMuW3e0q5420d5OxLJD+ePR3GiScHXl4G6oKv0iI0ZF+0RERKSkVKV/9KSTiaK246c1j0JPxoYDh/T39PQVmnMw48z5AIQqwmT/JE6TTnTRurcZg+yLE1+gmuXLj+1gHyBUGQbDA1aSVDwb6He25pYuLKupGNwNleEXGTF6pSYiIiIlpTn8oyeTKg74Y53tI9+RMSI/4HfiIp3OZqcdRpDQgvn2MYcru/ReJtXNzldyw/4nTJ10zAf7fZzubGG+TLKFb3/4p/S0vmQfa/hV1cEu65+q9IuMGAX8IiIiUlK5Kv2j249jUSZdHPAnuttHviNjRMEc/v0mkH0B4MGPqzpXed7lya4jb5k97NmQq+RfOWXqyHR0HHB7c5X4ffEH7W3LMrj5tvLBrWKgDL/IiFHALyIiIiXVG+/jcCjiH2lmX8BvuLP/AalE1yGuOLrlZ/ijz+bqGwR6A/w+Hn8umN278VV7e+LsWcPXuXGmq6ei3/bdXa8jkXAObhUDVekXGTGawy8iIiIlpSH9o8fMJAEwDA8Op5dMqpVMSgF/x4tvYPWLlSyclm1v6p5WcJ43UEa0JbvdsT83pH/aSceNSD/HukgENu+ZwokTVgMQS5bzm6e/gssbZFvTDHy+Qa5ioAy/yIhRwC8iIiIlpaJ9o8cyswG/w+nB7Ssjk2oFK0mss5tAWXCUezfyUmaKk14+gdN2t+GZ9je7/bHXFvLWSK4Ynz+cW1bO7J3nDy4mzpo8cp0dw1auhH+9+v+YWr6WeKaaXz31Wfa3V+FyQTDI4FcxyBt5oSr9IsNLAb+IiIiUlJblGz35Ab83UE68N7nfvLORGacce9nqtJnmtB2T8Lh22m2W5WBd48msWpULUgPlFUXXun01OFzKPgPU10NbfBrLHvw54TB09WQD/c9/Hi69dAirGFjK8IuMFL1SExERkZLKFe1TxD+SkokkkA2kHC4v/rIK+1jrnv2j06lRlrbSeBzZtx6WZdAdn8YLW95LR3pawRD0/taRj6UnjVQ3x7y6umwW3+eDaDT77yc/CV//+hCXLDRVpV9kpCjDLyIiIiVlaQ7/qIh3xextp8tLqDK3VFp7Y9OQ7xuJZId019ePv/XoE11xsLJD9OOpCXzvoZ/g8rqLhqB3JoqXlVu/ayaRyPj7mofLsmWweDGsWpWdr39E35f8on3K8IsMKwX8IiIiUlJ2lX5l+EdUrLPb3na5vYTylp3ram4Z0j2XLoWGBkgkwOvNZnmXLTviro6Ynlfb6ftEVjkMfvpzF4tOLw5W98YXkMyE8DijQHY0wItbzy0Y9i/Z70VJvh/K8IuMGAX8IiIiUlKawz86erpyAb/T46ViQo29H21rPez1B2by/3nHY3hf/TXXX9RDMuPn/pc/RkPDeSxePH6C4NTmNnu72kpzxUf6/1C+/vwwb/3GLcysfIWA32TDnuPoSk0aXOV5GTjN4RcZMQr4RUREpKRUpX905A/pd3t8VE2dYO/HOtv6uwTITsH46mdf5el/7SCdgu92zefyD01lwp7fUubLjgzwuWP828KfcdPDi1i1KjhuAv7MvtyLjhpn8qDn1dXBh64O09DwuoLRDOPl6xx37Ay/oSr9IsNMAb+IiIiUlGkd/hwpvZ5oXsDv81E9baK9397cedD56I//fQ2Ve7/CO0/J7sdTfm67/Qdce27hvH+/O8q5J9zDli2Lx83cdrOr72twU1V26BdQJZ2jLofWl+HXcH6RYadXaiIiIlJSfUX7lLgbWYnuvIDf6yNUGcbqze3Eujt5wxtSLF1afN3aFS8X7PvcPdTPuNve39R8BhkzG5idPftu/nXn47zvnRv6vddYsfOVrfz1f1aDmZ3m0BWbysNbDz8+v64OrrpKwf6wM3uL9mk4v8iw069iERERKam+BL+hOv0jKhHLBfwev5+1ax3E0xUABNxNLH3j5Wxf/gcikcLrKnyNRfdaOO1xe3vO1Gos13wAvO4eLjvtJq5+/XU8d//jRfc6nEgEbrmFQV83GPu37+Ov3/4c1ZncS4vWjqncufoNw/pcGQRl+EVGzLgN+H/xi19w2WWXcdppp/H617+ea6+9li1bthzymrvuuot58+YV/Dd//vwR6rGIiMixoa9on0Px/ohKxHrsbY/fz8qV0NmTG9bvdKSom/J3Vq0qvC7Zsa/oXk5Hbr6721MN7teTMT0F5yyY8ljRvQ5l6VI4/3z41Key/w7XCIENK9cAmYK2ZGMZHenyQfVXhlHfHH5l+EWG3bgN+J977jk+8IEP8Kc//Ylf/epXpNNprr76amJ5b7f7EwqFeOqpp+z/HnvssRHqsYiIyLFBRftGR7InF/B7A37q6+FfGz7Cno6FpM0AAB5nF6fM7Sy4Lt7VV9DPCc4D16M3OP70E5l28kye2XkDkT3vIWN6AZgYfo2FCzMcjmma3Pwf/0XFpitY+qYr+PzFn8FNOw0Nw5Pp727rsLe74lPZuPptbN5zAg43qro/VtgZ/nEbioiMG+P2/2W33norl156KXPmzOHEE09k2bJl7Nmzh1deeeWQ1xmGQW1trf1fTU3NIc8XERGRwenL8GtE/8gqDPgD1NXBxe85kVuf/RY723ORbplj6wHXZQNkwxFi7lmnFhyrmjqNt39iER9Yeirz3vA67nn5Kpq65wLgdnZTZm08bL/WPv4iseYXcTu7cTu7qfBt4q3z7yWRYFgy7t0d7fb2ht31bNsziypHK5e8u0lz88cKZfhFRsxRU6W/q6sLgPLy8kOeF4vFuPDCCzFNk5NPPpnrrruOOXPmDPp5mUyGTObwb7VFhqrv86XPmQw3fdak1OwMP4WfK33WSi8Sgeeeg7POgmQ8F/C7/T4ymQzf/jZccQU88ctqMs3ZY/s2b+eEM7OBfSoex8zEAXC6w0yeM5cNzyy371MzY5b9v5d9r9vmktmfLfS37smVzKw79N9RezdtLWqrDmzG682wYAGU+uPQ05kbwXDh7CeZ3rqHSkcrNZ//sT57Y4TDymAAlsOJOc7/N9HPNRkpQ/2MGVZfKd1xzDRNPvGJT9DZ2ckf/vCHg5730ksvsX37dubNm0dXVxe33XYbzz//PPfffz+TJk0a0LMymQyrV68uUc9FRESOPlfdvYu3Wk9R593Pm47zj3Z3jlo333Mu9zy7gGTGSSrt4+oLb8FDNhA/+4wTmDU5bp+76rUQr218DYCpk2dxwRlpANo7MzzwxF4A/IFZnLcoxkNP7bevmz5lIued7i547ra9Pla8sCm745xJ/YIyjp/axsH861kP+5sK6yz1pGpIOt/MJ9795BC/+oO77wkHnZ07ADiuO8mJm3YCkLjhTCZ6AiV/ngzehG334EzHSHqrefniP492d0TGlYULF+J0Dnx0zFGR4f/GN77Bxo0bueOOOw553mmnncZpp51WsP/2t7+dO++8k8985jODeubJJ5+Mx+M5/IkiQ5TJZHj55ZeZP3/+oP5PLTJY+qxJqV1yz53c6Pg/MIFNo92bo9OW1qlkeoJ86Ow7AciYHlKpMPTG5pObHmVy93b7/OPip/IalQD0tLcwedMDALR1Hg9MASBo9HBS0108ZJ1rT8f45QPvoH3jY1xzxm/te00wHTzNGzGIk07u59+/v4RPv+7/Cs7JF+96d96eF0jgdzfzqRNuoGxT9Mi/GQfIxHPPK+/IvoiIeWH67vuYoCzsmOL2elm4cOFod+OI6HeojJRkMsm6desGfd24D/hvvPFGHn/8cX73u98NOEvfx+12c9JJJ7Fjx45BP9fpdOr/1DIi9FmTkaLPmpTKcewa7S4c9V5qXkhVcL2973QkcTpa7H2/o6fg/CnePdAb8MfSufbmZK5IX9iVYFfnFPZ3zmBCefZvo20t8/hhy4lcfMIjzKrYDcDOzsk0R0+gNrQWl7OHsnAnP3z2EwXn5OtJ9wXZBtWBAC2xBAAbu0/g9IrVQ/0WHFSqb413oKIj+0KhPQizx/+g1qOOMefio+b3jn6HynAb6udr3Ab8lmXxzW9+k4cffpjbb7+d6dOnD/oemUyGDRs2cMEFFwxDD0VERI5NBnmB1dtvgtp5AGRMk02bNnHCCSfgVHXuIxL+x3544tcHPe5/38+g3Gfvl1kWxpd/gWV2ksgksT70dwzDoO33z0BTdlh9+fzzWB6/nkfu6eDdCxvY0lJPtzGNrm4PK6b/gVmXZov7Lf9LOZufWUdtaC0Ax03Zyr0vLSo4p49pmqS+/GMAHK4ypsw/i5aV/wRgZ9U7OP3Kb5bse9In/ZVfAGAYPvy9qwu2B8H9/jvBpSkmY4YnBFNOO/x5InJExm3A/41vfIP77ruPn//85wSDQZqamgAIh8P4fNlfcDfccAMTJ07kc5/7HAA//elPWbhwITNnzqSzs5Nbb72VPXv28N73vnfUvg4REZGjjcPKZViZejpM7a0Qn8kQbQ/DrIWgTNgRKZvy6CGPB06+EDy5ufcG4Pb/lWR3J5aZIFZZR7Cykq6eZ+xzak5cSO3EBWz6Nnz7H+cRDht0dYHPB6e+eQHMzp638C3wf7flhgmEvXtwePwF5/Rp39sMVjbq9gVrmHXuRbzcG/A3N7fD7POH/k04CDPzw+zX7MwF9x1BA9fs8xXwi8gxZ9wG/H3F+a688sqC9u9+97tceumlAOzduxdHXgahs7OTr371qzQ1NVFeXs4pp5zCnXfeyQknnDByHRcRETnKOcibJ20okz8cuppbD3HUhcvjLmoNlNeS7M4Wz9u7aQcnnFlJrD13n9pZU5gyB5YsgYYGg2g0G+wvWULBcnZ1dXDeW2dj7TYwDIva0Paic/rsWb/N3g5WTuC4hXPJ/vmZprNlJ7fcAvX1/V87FPFY3H7B4HTmRji0B8HlGLd/9oqIDNm4/cm3fv36w55z++23F+x/6Utf4ktf+tJwdUlEREQAR/6Qfocy+cMh2tZ+0GOG4WLzO99Z1O4J5xIcL974QwyriZ5wTe6en/0Em4GPA5cuDNAYK2dioIPqtTE2H3C7j+Lk76FysNqp8O/i3WvfWXQOwMbAFLsAoGvbDrZfegnucDUpswUr3cZrf/w6K348nfOMdVww4/B/2x1OmzMAvXG+M5F78dQeNHAZ4/bPXhGRIdNPPhERESkpg7wh/YYC/uEQa8sV6HNSTobc3HkDF8lNm4uu6Zh0MkzMbj/fMZ3M9h4yr+/pvcZHZtMr9tiMcO9/dELyIH1wLbqIdKYdyNC2cwehRKr4mfOq7QA82NxEcvdm3CdNJNW70NGU6heYVLWaR5Zfyimx5ZS5jqxqf2fVdJievbk7nXvx1F7uxDCMI7q3iMh4pIBfRERESqpgDr8y/MOipyO37r0/4yWa9202cOIIBgvOb0+FeHb36Zw2Mbukky/Uyl09V/B66zYAXHiKrjkcrxWgbyZ/Z2UlZV3dRefEPbmOVaYTOIJBwvssotOdOIzs6wWHkSYddtLinEZFcOeg+tD3tTUlKqn1tpEIlQPZlxhuE+JeB5smWrx0snfQ9xURORoo4BcREZGSsSwLp5Gf4dcc/uGQ7OmytydOm0F073573xkIM+/FFwrOv+UWeOiGGKeaf8Pt6KIyvI1pp++C3ukXzsppzHvxjkH14eX//jPdq14FwPzAlcz7+MeKzvnHh5dAPLt91v1/xhcKkIjA0je3c+mCnzCzciUAnaEJTPvN3cwb5Fz+pUuhoQESCfB64bP19xHqbMh+TXV1fPXKJrZ3bSfsLq5pICJyLNBvYRERESkZywIHCviHWyrZl013MHXapIJjTldxNru+HjJ42dicW5loetk/7e3IhoksXTq4PtTOyJXkb9y6pej40qUQ786OREhkyvn6twJAtkDfBz9SwY72Bfa5Z5/WaBfui0SyLygikcLtA0UisPxvy/nEOddww8Uf5prXX0v7zmft455QkLSVHYPgdirgF5FjkzL8IiIiUjKmZalo3wjIZHrn3hs+Jh03DZ7PHXO6iwP+ujr4+L87uecPbyTg2sisqicLju9onsofG2Dx4oFXzK+ZPhkML1gJWnZtL6i4H4nA73/dzmcuyL6YiMYn0JB3/2XL4J7/K2PTI9l7zZnZzLN3P8oTf7qLeDyFacGu+8Awsp+l3949GffJ1/Hdm8rt5z+7IsHbT/oZfk/2GWW+FmCHfdwbCpA2swG/CvaJyLFKr91FRESkZCzAqaJ9w8pMZ7DMbMDvsDxUHTet4LjL0/989WXL4I/3lrPofZ8mHchF9W09k9nQehGJBKxaNfB+lNf4MZy1AKQTHWy752q+8pHfs3QprFwJMyo22ud2JScX3f+U0ybY2z0d7az48624zG2EPLsp8+6mzLebsHcPYe8eJodfZOez9xVk+meEnrKD/f54w8FcwK8l+UTkGKWffiIiIlIy2Qy/hvQPp86WDuj9HrssF56JEwuOu/rJ8Pepq4O6Oh+RM7/DGy5IE49DMOSkq8vA54NFiwbej7IaPxgTgV0AVAUbueCEP/DjX7+Jm34ykTkTcwH/lv0n4PUW3r9meq7f3R1NWJnsSgOWZWDhxLQMDCycjmzQXhXYw6pVuREEry1/0L5+V9scplXmngfgKw+RimZXDtCQfhE5Vum3sIiIiJSMZR2Q4deQ/pJr29dsb7tMA1dNTXZofa/urvhh71FXB9f8uwuP10U0mg32lywZ+HB+gGCll5TjTLoSs0ibPru9NrCRaJfJiVNyAfiuzhOK7l82oRLIfj4S0d12+462s/jWP//G0r/czXfuv8VuLw80c+pJKb70uX0suXw5mY5swcC4MZMTL7ysqH+BCg3pFxFRwC8iIiIlU1y0TwF/qbXnBfwew4nhdmOSW1Jv567EgArwLVsGy5fDzTdn/122bHD9cDodlNdUs7XzE7zWdKXdPrNmA7MndeB17LXbbr1jZtH9HQ4HDldfv9N2ezQ1kWQSPB5ImJWYlgFA2NvC1mcepnrXx7hswffs8x9f91YWnX/yAb1z4fJ7NaRfRI55CvhFRESkZCxUtG845Fer72xutdt9TjeRCETjYbvNZcRoaOi/sv2B6urgqqsGl9nPN3GqlxMmt+Nw5obnnzl3HT07d2Jmsi8mvMFyznhdeb/XuzzhoraL31bNzTfD88/DyudcOD0VADiNLnaseabg3Hg6wAtbL+SVjVVUTJycO+DwYBgGKTM7pF8Bv4gcq/TTT0RERErGPHBIv2GMXmeOEks/38365f9i/b4T2dM5j8//Wwv+3mMBn5eVK+HBV67i8kXfAOCZHe+zC+QNNZAfqLIaH1XhdsJ+B+loGMPqwp3awuYXt4GVnVpQO3PWQa/3BMpJxnYXtJ24aCoL35zbj0yvoXFLG1jdGMm99uukF3Zeyss7X0co6GLerG4efXwOPnpHFZgxfvjjCVgXZc92OzSHX0SOTcrwi4iISMkUF+1Thv9IRCLQ9tKtnDv7Fq6q/zJeWtmxLWofDwaD1NfD+qYzufflz/H4lk/y1GvnFBXIGy5T5lQC4HaZOF19Wf4kmeQm+5wJs2Yd9Hp/uKKobdLx0wv2w9U19raVbsw+IVNOxnk2p8+xuOaNL7Lyd8/T2lQ4WuDuu2tJtlcByvCLyLFLP/1ERESkZFS0r7RWroS5NQ8B4HTEecv8+/A4O+3jZVVl1NVlC+41NFxIIsGQCvAN1bzXTcIXctPZ1MPWl05m8/PZQD8Q2kxnduVAaqbPPOj1wfJKmgpanEyYMamgJVRVnbeXzdh7PGFOP34/XpeJ22US7XHTEpvHlND9AOyLnkoq4SDdMglPRasCfhE5Zumnn4iIiJSMZR0wh18Z/iNy5ulpHvlXbv+46idJpKrs/crJ2ez3smWweHF2GP+iRSMT7AM4HAaz67J9KK89k83P/x2Azqbt9jk1Mw4e8Ieqqwv2nZ4KHK7Cz0x+hr9P1eRJzKjLtTc1G/xjdRgrcwkTwxv46wvX4PalcVXvAzSkX0SOXQr4RUREpGQsCxxG/pB+zR48EpXu7QX7Ye9eQt5Ge79qRq5QXV3dyAX6/Zl43An9tldPm3HQa8pqCwN+b7C66JxwVXHbSeecxOsuLazMv7oJGhquJpEArzfDuy7ZzNqKbIFDZfhF5Fil38IiIiJSMqZlaUh/Ce14ZUNRm9H7/c2YPn529/Ej3aWD2rglTEv35IK21tgkXtvgP8gVUDmptmA/VFFbdE6on4C/YuKkorb8ZQYfeww+8u/b7GMK+EXkWKWAX0RERErG4sAq/fpT40g0btl60GOJdIiGv04d0PJ7I2HlSnj0tcXEkmVkTCc9qTCPvraYVasOfk311AkF+2W1E4vOCfUzpL9gCb48+csMZqyM3a4h/SJyrNLrThERESkZ07LsDLSJA4eW5Rswy7KK2tr27sztBM/Cij6PYVhYlpP2/fPoTPhGZPm9gaivh+ubL2T1Py4kHIaurmwBwUOtFlA5pQYw6CvGl/ZMKTqnvwx/+aT+A/58adL2tjL8InKs0k8/ERERKZ28Kv0WCvYHas/SL9Lx97+DaRa0Rxec1rvl4Own7+fHbf9JpxGm1mhmW2wWbq9rRJbfG4jcagEQjQ5stQCXy4VJCAddAHz7RzN5fnd2eH4ft8eLLxQmHs2e4w0G8YfC/d2ugDL8IiIa0i8iIiIlZFrg7M3WmhrOPyDJXbvp+NvfioL9tMOF2RsIOymjwtnJu4L3EUrG2NczCa8zPWLL7w1U/jz65csLA/f+RCIQTVTY+9v3T6OhgaJpCvmF+8onFM/f709+wK8Mv4gcq/TTT0RERErGwsJhD+lXwb6ByLS12dvO2ho8U6cBsC5eBWSr9PudQfwLF3I2MKfrX+xOTmLmxy/ntMtHocOHMZjVAlauhNU738y5x/+Gxu4zcXjDxKIUTVMIVdfQtGMbAIbv8MP5AdJWbki/MvwicqxSwC8iIiIlY1rkAn5l+AfE7I7a2xX/dgkVn/wk37/mFyR61lPe297kPYtZv7oagFnAmSPey+FRXw/XX38pj732VryBwEHn/a/bVE1frf+77p/E2vjhRw8owy8ioiH9IiIiUkKmaWkO/yBlurrsbUc4zB03/gpf/J+U+7bZ7U+sOn7MVOMvpb55/w534KDz/iMRWPlSrlL//o7J/Q77P5ACfhERBfwiIiJSYg474NeQ/oEwu3IZ/tf2+Wja9FDB8e7kFJ7bXH/I5e3Gs8PN+1+5Etbuqidjukhm/OzuPoNEgsN+PzSkX0REQ/pFRESkhEwrl+HXkP6BMaNdmBg863k9kSd3MaMqAcCmpnN4ZOPV7GiqwedzjJlq/MPhUPP+6+uhLXEcy/75G/wBNy3tgcMu9wfK8IuIgDL8IiIiUkKWBQ4jW6Xf0p8ZA5Lo7OShBafTflIjM6qeBiBjuvjzC1exff8EfD7HmKvGP5L6hv2bjnJaOwIDWu4PFPCLiIAy/CIiIlJCppWr0m8pwz8gW3a2Y9JW0La17SI645O58kr49KeP3WC/z7JlsHhxdhj/okUD+35oSL+IiAJ+ERERKSELckP6j5EMfySSnWdeXz+0wHxPW65oX0v3CezvPpk/PXclgYCC/XyDWe4PlOEXEQEF/CIiIlJClmWxyw1LJk5iu9sNty8qOm6sO0qq95tQ+/SbiK9dRDRWxnU/qKT6zX+i6swnBnWbD3UtsLcf3Xs+LzXPwzVjDVVv/iNXrXkC1pS648eGjKmAX0REP/1ERESkZCwL/hVys8njyTaYqX5OGtk+DZe3rngdkzrWwfR1AGxtP4NfPXw53uNX4aloHfB9TCveu+XAvOwnTItPwFW9D09FKylzGDp+DKryVo12F0RERoUCfhERESkZ04J43kj+WWWz8Lv8QDa739PTg9/vxzDGf5a/pjNRsD+t7DXSnVdS3fU6ph23dUD38HS7sKxOAFyUM/sUL7McFjCx9z8ZivzP2vza+Zw/7fzR7pKIyKhQwC8iIiIlY2GRn5Redv4yTqk+BYBMJsPq1atZuHAhTqdzdDpYIqZp8r+/u6ygzWV0E+yeScP/++8BzzV/4b7lPMH3AAhm3Pzx3beXuqvHpKPpsyYiciSOjWo6IiIiMiJMEzJGbsy+yzg6cwudTe1A4XQFw7BY8tG2QRWWW/vMa/Z2VVrj90VEpLQU8IuIiEjJmJZFJm+0/tG6HNq+Lbv6bf/oB5oHfI+lS2Hd6u32fmOjhvCLiEhpKeAXERGRksrkbTsdR+dw6uade/tt79g/sGJ9kQg0NEC5bxsAadPH39ZdRCRSqh6KiIgo4BcREZESOjDDf7Quh9a2Z5+97fblMvNdzS0Dun7lSvDQjs/VAUAiOYG2TCWrVpW2nyIicmxTwC8iIiIlY1lg5QX8TuPozPB3tjTZ22W1M+3trta2AV1fXw/HTcwN5++I1hJwJlm0qHR9FBERUcAvIiIiJWOaZkEpu6M1wx9ry83Vn3T8nFx7R8eArq+rg7edt8Xez8QDXLbolUEV/BMRETkcBfwiIiJSMpaVIWPkUvxHa5X+eLRvrr7BzPkn2e09XQML+AFOnLHT3j7H/RKXv3Xg14qIiAyEAn4REREpHTNN+hiYw59KtAPgcIaonj7Jbk90dw74Hp1NucJ/k2L7cIRDJeufiIgIKOAXERGRUjJNMuQi/uGs0h+JwC23MOKV7WNdMSwzBoDbX0nFpCr7WCreNeD79HTu791yUNHVhDOkgF9ERErr6HztLiIiIqPCNM0RyfAvvcHk17f1kEiC5fCzZImDZcuG5VFFGrfssrd9oSo8Xg+Gw4dlxkknuwd0DzOdIRXPVvR3GCFclokjFB6W/oqIyLFLAb+IiIiUjpkmzfDO4X/hmW58Gz7H9W/MBt5dian83603sXhxeEhF7yKR7DJ59fUM6PqmbXvs7VBVDQAOV5BMMk4mHR3QMxu37QXSAHhMT/YeGtIvIiIlpoBfRERESsbKy/A7LDDyCviVyop7niLszWXZw97dLJj6JKtWvX3QAf/S63tY9/gjeB1dPHSrmzlnn893fjDBPt7fy4DWPbm596ZrIgBub4hMsgWsFLGuGIFw4JDP3b1hq73t713WwBlWhl9EREpLAb+IiIiUjGXlMvwuSh/sA9SWt7PngLaJZXsHvYZ9JAIdqxq44LhH7LbOLY8SifycujpYuhQaGiCRAK8XliyBZcvgxWeb8fWef+ud04h0wfH+MH3T99v2NhMIzzjksxu3bLe3g/EEgIb0i4hIyalon4iIiJSOaZLpy/AP0yMCnuJ58vNm7Bl0dv+Zp7qZVfVUQVuZdwcvPJfkrz/8FaEN7+P6i97Lpy+6lpBrJw0N8Oc/Q2fLPvv8XS1TaGgA01Fut7U3thzyuZEIrF+Te2VR1p19U+AMBQf3BYiIiByGAn4REREpGcvMkO4dxu+yhifDn4gVB/xl/v39nHloFbGHcDkSRe2zJ2xl2zN/xe+O4nP3UBvawZtP/hOJBDz89w4qfRsBSJt+2lIzSSQgnq6wr+9sOnjA/5X/eJk/fvk6Uu3P221VXc0AODSkX0RESkwBv4iIiJSOmbGH9DuGaUh/sidW3BZrHdQ9IhHYteYxe787mZu3HzA3F50/u+pFfN4M82uexe3MPn9v50l0drnweqFmci7D39XS1u8z16yxcO3+GVWBDbgcPQBkTB9mVwZQwC8iIqWngF9ERERKJpvhz24P1xz+ZDw/4M+WIzLTnaSTqcNea5omX7/mYX786ZshuQWADFWUTczNB2jasa3ouqC3k8++6z7MtjV225qdZ+DzZef2zzih0m7vbm/v99lPP/CKXWzQsgzSpp8NOy6kw6zC8HhweDyH7b+IiMhgKOAXERGRkrGsDJlhzvCnEj32tic4qe/JNG49sJRfsftuXUG440ecNOF+u+2VvRdQNSmXoW/ekSuoh2OivVnmWIOZ2mHvf+Da01i+PFvIr6ymym7furGDSKTwuZEIdK7/u72/as+H+a97/8z+16ZT6WjFEdKSfCIiUnqq0i8iIiKlY+WW5XMOU8CfTuYCfn/aRbJ3e/1NP8L0JgvO3dfmY2dzmOk1XUyqjLN9Xxicefcy/Wxbfzzx2n/ZfxV17N5iH3d7TybV0whAJrERy+rCAHwOJxe/ugzjNYOdQDLttq+xOh7nD19o5omeav7t1O3cu3oqj+yaTv2Zz4MD0qaPHeun8Trvct5X9UfKXFEch6nqLyIiMhQK+EVERKR08ov2DVPAn0n0Fe0zCLa009GbHG/euZfJ21bb563qqePBxJvoxo8/neYdwQdxnmHZxxv3LmTda2cyKbGXquYNdPUOFkibuRcKU/ZvosMRpz3oA6vN/oqMRoPulx61z4sZNVCXGyVQU7aWdt9U/vqyl+SkZzl76tP2sdboAj7j/x7Ty3dS5ooC4CzLXSsiIlIqCvhFRESkZCzTJNO7PVxD+jPpvsr6HkI93dAb8Me8uTnwnekQr8yoYeGUewAwTQfLV5/LSa7ccP1NG04imIjx7op7qEp1sJ1clr6PPxmDeCob8Od5Zd8ZnJ7ebQfs3fEge5rPYHL1ixhG9qVCwLObzKSCAQVYloMdO+q40PWUfa3hdlPx3vccybdERESkXwr4RUREpHTMNKneDP9wDem3zGzA7zDczLrsrWxY/hcAMjOnMeeXNwHw699mqH7uY/Y1DodJenKcpAMcZrbtXUvPZ9FCH6ec8iYad+znpe99oehZx3/x8zz5QoD2p75FRaAJgOboNP6461rO+s4n+MAV2ZslX4Hb/y1IOpViVu1WrjjzG7gcuSKCezrm43ZX0NR9Es82X8DSP57NnFOyxwx/AGcoWNpvkoiICAr4RUREpIQsy7Iz/M5hqA1smiaWlZ2nb1gupi48EZZnj/V0t+GqrQWgrr6ZJ58rvLY80IaD7HQAw3By1aenYfS+nKgJlvXzNCfVc2dSX1vG9d+9FSMTJRSCprYwPp/BaeeDK/s4FrwBProEGhogsmshXufHec8ZPwdgW0s9f1vzSSqDaWIZP1d8JMSCN5TyuyIiItI/BfwiIiJSMpaZxBrGDH+8Ow6Yvfd3Epo2GcMRwDJjxLvbiESgrg5mTu3gyQOunVjZAlYcALc/bAf7AN6AFwwPWHlF/ww/oUofddNhyRIHDQ1lNLdjL8VXV1d4/2XLYPFiuPtuuOmmt5F8rozKsigrNrwJh9PF1f8Bl15afJ2IiMhwUcAvIiIiJZM20/a2Yxgy/NHWztz9LQNnVRVpqnESw7C6eOOFPVz9cT9L3tdedK3LaseysvPrfaHiInlOV5BMKhfwO5xBfMHsvP6+YH7VKli06OBBe11d9r+eHoOGhnNJ7AOvN/uC4OtfH/rXLSIiMhQK+EVERKRk0pmEvT0cQ/q723MBv9NysHZLiMb2iUwp2wlAhXcvDQ3HceH8zqJrLcu0t0MVFUXHnZ4gmVSbve/yhApGAfQF8wMx0BcEIiIiw0kBv4iIiJSMaWXsbadR+iH93W25QN5tOHnuOYO2WC1Teqfgz6htZNeG49iyocM+z+MPkOyJFdynrLaq6N4eX4hkd95+IHxEfR3MCwIREZHhMOhX783NzcybN4958+bx5JMHzo4rdOONNzJv3jze97732UPoRERE5OiVyeQq0w9Lhr+jy952O13U10NPKhe8e40WvF6YUJUL+CfMOq7oPuGa6qI2b6CwcF9/w/5FRETGk0H/Jq6pqWH69OkArFmz5qDnvfbaa9x55504HA6+8pWvFAyJExERkaOTmVf0bjgC/lhzq73tcXuoq4N5p1bYbdXhJpYsgbAvF/AHKqYU3SdQVhzM+0JlB5xTUXSOiIjIeDKk38SLFi0CIBKJHPScb37zm2QyGd773vdy6qmnDq13IiIiMq5k8or2OY3SB/w9bbk59l6fF4DL3l9rt517eiPLlkGsMzf0f0s/+YlgeUVR24EvAUJVxcP+RURExpMh/SY+7bTTgINn+O+55x5eeOEFysvL+cxnPjPkzomIiMj4kjFLP6Q/EoFbbsn+29ORC+R9wQAANdMn2m1GOvtCoDvvxYDDmXsh0MffT8AfrCxsK+9nnr+IiMh4ckQZ/vb2drZv315wLBqN8v3vfx+AT3/601Tp7biIiMgxI2PmivY5SpDhX3pDhiv/bSOf/UyS88+HjRtzqwD4wyEAqvMC/kR3OwDd7dl/MbzUTC8e0t9fhj9cVVmwXzGp5sg6LyIiMsqG9Jt4zpw5hMPZyrUHZvl/9rOf0dTUZBfrExERkWNHpmAOv/OI7rV6VRrj1aV86MzP8rHz/od4HPY2544HKrJD8D1eD4YjCEA6kR0B0BPN/msYfuacNQOX21Nw70A/Af+BlfurphSPDBARERlPhhTwOxwOFixYABQG/Js3b+b2228H4Gtf+xpO55H9ohcREZHxxTTzl+UbWoa/bwj/Az+7nZrAqwBML3+asnAapyOX4Q/V5jLyLk82EWFmoiTjCdKJnuwBw095bYBg/ohDw8AfLizQB3D7n3LnWJbBD2/WKEURERnfhjzWrr95/N/61rdIpVK8853v5Iwzzjjy3omIiMi4kiGvaN8Q/sxY+vkY3/j43Tz12//D3XVPwbFKz3b87m57Pzw5N5TfE+gruGexZ8MWu91wBCiv9ROqzC3D5w+X4TggKRGJwP/dnjsnZYZouMXDIeoTi4iIjHmuoV7YN4//tddeI5lM8thjj7FixQoCgQA33HBDyTooIiIi44eZV6XfYQxupF8kAvtf+B1nz/p7v8fnTl5PRTC33F5Z3tx8f7iS7t4V+/Zs2Gi3G4Y/G/BX5YL5/pbkW7kSojE/yUw5HmcHPelaEglYtQrq6gb1ZYiIiIwZQ87wL1iwAKfTSSqV4sUXX+S///u/AfjEJz7BxIkTD3O1iIiIHI0yVv6yfIcO+POr70M26J4Yeu2g57/7gtfwOOO9ew6CU3N/bwQrcsPv92/NZfhd3hDegLsg4LdcFUX3rq8HrxfujXyS3Z31/O2la/B6oTe/ISIiMi4NOeAPBoPMnTsXgC9/+cvs3r2bWbNmcdVVV5WqbyIiIjLOFC7Ld/CAf+lSeMMbUnzx812cf352v74ewt79AKRNP3996cvctvIn9jXJrm2YvUUBDTy4QiH7WLgmV1G/Zdc2e7tvrv4TK3IvBJY/U8HSpYX9qauDJUtg3f7Xc/PjX2VHx6ksWaLsvoiIjG9HtF5O37D+3bt3A/ClL30Jj8dzqEtERETkKGZahy/aF4nAHb9q47MXXMMX3nIlJ9Y+R0MDJGMxvK52AKKJSazb/3re9b7ZdgX+eNceTCv7QsEw3AX3rJiYq6jf2bTT3g5VVRKJwD8fy2X4O2IVNDRQND9/2TJYvhxuvjn777Jlg//6RURExpIjCvj7CvcBXHjhhVxwwQVH3CEREREZvwYypP+55+Cdp/6SgKcJh5HmDfP+RiIBLzyx1T6nsqbKDrr95dm5+pYZB7JV+h0HBPzVU3LD+81MrpJ/WU0lK1fCtqa5mGb2z57m+Dx7fv6B6urgqquU2RcRkaPDkIv2Afh8PgA8Hg9f+tKXStIhERERGb8yVoZwzOKDj5mc2rGe7fdfaR+zgK59FkZsNrOn5dLrlf4NnOv5F1Uv3k+3kW2bkGyh/HtXsh0IUE6s6EmFIwprpvdfP6hycg1Tj4NYZhK/ePL71Fa2s3rrGXh9mp8vIiJHvyEH/JlMhp/8JDuv7uqrr2bGjBkl65SIiIiMT6aV5s0vWVwYsYAuYttfsI8966jnpbJTCVbsp8bIH/qf4MPVt5HocUEg2xZobCS2cy0A4emn0lxFgcbOSpYuzQ27L5tQCTiBTMF5NdNqOaF3fn5Dwzx2bwOvD83PFxGRY8KQh/TffvvtrF+/nqlTp/Lv//7vpeyTiIiIjFMZy2Riu0VnOsTWxEw60yE60yGe53T2nZRg5szHqSlfV3CNYVhMmNpOzJObAlDR3Wlv13Y0FT2nO1lWMA/f4XDgcIeLzrv1D9nMv+bni4jIsWhIGf777ruPm266CcMw+Na3voXf7y91v0RERGQcMq00e7eewU973kg66GBLai5pw8Xb5/6SCtfOgnMzphunI1uEL/WeK0hFVkI0e+zMv91BqCIbwJvpDM99/DOQ3m1fu6Wt3p6H35epd7jKMVPt9jlp08fNtwZ5/4ez5/T9JyIicqwYcMD/+OOPc+ONN9LR0UE0mv1tfO2113L22WcPW+cG4ve//z233norTU1NnHjiiXz1q1+l7hC/zf/xj3/wox/9yF5G8POf/7yKDYqIiJRI4/4ge5NnseCcv2AYFmcccLwrXsMLu99De3cFJn4uq/svAPbv2EYy1gKA4QwSnpCrqu/0wIWf/TGfvHItmbRJLDOBjXtm4jtwHn7VhVi7foNhWADsaD+HRMIoeCkgIiJyLBlwwL9q1Sp2796N3+/n5JNPZvHixbz3ve8dzr4d1gMPPMB3v/tdvvGNb7BgwQJ+85vfcPXVV/Pggw9SXV1ddP6qVav43Oc+x3XXXceFF17Ivffey3/8x39w1113MXfu3FH4CkRERI4ue3bVUluz2w6686VNH7c+9RX2dc4mGHSy5GMx2GkAFu37NmKZ3QB4/DVF1y46w8v57z6dhgZIJMDXzzz8C696D+96yxvwEMXl8bC1cUrxSwEREZFjyIAD/uuuu47rrrtuOPsyaL/61a+4/PLLueyyywD4xje+weOPP85f//pXrrnmmqLzf/vb33LeeefxsY99DIDPfOYzrFixgt/97nfceOONg3p2JpMhk8kc/kSRIer7fOlzJsNNn7VjWySSXSbvrLMGngU/1DUTpuzG/2rA3n9lzxuIp/yE/BYrNl9Ec2wGX/xihksugbo6Lz/9SA3pRBNmut2+Jlgxod/P47e/DVdckR3Gv2hR9tn5p51yClxxZSX/93+VJNrB58twzTXZdn28jy36uSYjRZ81GSlD/Ywd0bJ8oymZTPLKK68UFAx0OBycffbZvPTSS/1es3r1aq666qqCtnPPPZd//etfg37+unXrDn+SSAm8/PLLo90FOUbos3bs+fGPJ3HvPWVk0uBwGvy/f+vgU5/ad8hrfvFDN83rN/Ds5rPpStZw6aVNBdcEgnuoCORG2f31pY8SS4RxOAw8HpPLL2/i3e/eh2nC6tXgCU8knSgsyrdlbw2rV68+aB8WLsS+/kBXXAGnnebh1VcDnHRSjLlzk/2eJ8cG/VyTkaLPmoxV4zbgb2trI5PJFA3dr66uZsuWLf1e09zcTE1NTdH5zc3Ng37+ySefjMfjOfyJIkOUyWR4+eWXmT9/Pk6n8/AXiAyRPmvjz1Cy8v3dw9ryW7548d9wGBnSpo/H1izB4bjwoPeMRKCm/QbmzV7PqZOf4Hv//CH33DOJz3xmkn3NP581cLniZAALJ48+EcbhcLBqFSxYAIaxr+Cztq72ZWLNawue88Krc7nUsXDIX9vChUO7To4e+rkmI0WfNRkpyWRySEnncRvwjzan06n/U8uI0GdNRoo+a+PD0hsyPPePZ6jw7eVfv3Iw93X1fPuH0wZ9n+eeMzll0v04jOwQQZcjzsKpD7JmzZs47bT+r1n5dCfVgfUAlPu2Eg4bRKMO1qzBvsbTk8Q0XGCBw/By+uluIHs8k8lm5fM/a90V76An9Rh+d7ZgX3dyCs9uOoc1a5wH7YfIQOnnmowUfdZkuA318zVuA/7KykqcTictLS0F7S0tLUVZ/D41NTVF2fxDnS8iIjKWRCKw7rF/8I6TG+y2xK67WPXCbSw6wzuoe82f08Izj8YL2nzu6CEL3E12r2JT3r6ZjOL1lhVc44qmyFgJAAzj8H06+6Jazv/6bbjpIhiEfS1l+HwOFdoTEREpAcdod2CoPB4Pp5xyCs8884zdZpomzzzzDKcdJCWwcOFCnn322YK2FStWsFBj/0REZBxYuRKmlr1W0OZ1dvD8E7sPcsXBlTm2F7UFfbFDDqNP7C+cozq5srmoUr67GyA7asDhcB+2H3V1sGSJkxQVNLZW4PM5iu4pIiIiQzNuA36Aj3zkI/zpT3/i7rvvZvPmzXz961+np6eHSy+9FIAbbriB//mf/7HP/9CHPsSTTz7JbbfdxubNm/nJT37C2rVr+eAHPzhaX4KIiMiA1ddD0Bstap8xqWPQ92rctquozWn0HPKapu3rC/b/+xtNLFtWeI4rlqtv43ANrNbNsmWwfDncfHP23wPvKSIiIkMzbof0A7z97W+ntbWVH//4xzQ1NXHSSSfxy1/+0h6iv3fvXhyO3DuNRYsWcdNNN/HDH/6QH/zgB8yaNYuf/exnzJ07d7S+BBERkQGrq4Pais6+BLqtOjT4gL9tz56iNstMYJpmwe/OPsl4gnhX4UuCMm9r0XnOHjeQzG67D5/h71NXp6y+iIhIqY3rgB/ggx/84EEz9LfffntR29ve9jbe9ra3DXe3REREhoXfHSV1QMAf6+wc9H06mxvtbcPwYVlxwCTZk8AX9BecG4nA8rvXAumC9q6W4oCfRC7gd3i1mo2IiMhoGvcBv4iIyLEkkyoedt/d0X/AH4lk5/3X1xdnz2MdTfa2LzyFns7skrbRtq6CgH/p57vZ+9wfmRxeR23ogOe2t/fTwdyfFk6/7zBfjYiIiAwnBfwiIiLjRCZlYpqJovZ4V1dR25c+u4+XHl9LKg0/7Dqed71vdsHc+GRPNjtvOIJ4Q+X09L4z6G7rpGbaBCIR+POfTNLrvkvd5NX99qens5+pBKYTjOymK+wvPi4iIiIjRgG/iIjIOBHrSoAVL2qPdxcW8nvm8RYqdn2SN83NnfuHv/43kcWnUFcHsa4YViZ7jcdfhdubC8yj7V0sXQoNDXDe7L/xhrmrC+6dSJfjdWUD/UR38cgC08oF/O6KUNFxERERGTkK+EVERMaJrtYoYALgdIfIpLJBeyJWGPA//8+XcDoKXwycULOKVauyAf+e9bkl+QLltXj8AXt/w8stOF+5ji9fvBmHkSsWsGL7VWzceyL7u2dz/RuvyD63p5+Avy/aB7zlyvCLiIiMpnG9LJ+IiMixpLOp3d72hart7VS8u+C8Sm/xkntl/g4WLcpu79uyw24P10zEGwja+1uef5KqwIaCYD+y+438/cX3sKPjVK76WBCMbDG+dLJ4icCMYeX6WB4oOi4iIiIjRwG/iIjIONHVkpszH6qaYG+nErHCExP7iq6dPaXVLty35ZXcknxVU6bgC+YCfmdmb8F1W1rO5d61/86XvwzLl8OyZeB0ZYfqZ1KFLxrMZJJM3ouCQGUQERERGT0a0i8iIjJORFtzQ+iDlZVguMFKkUkWBvzdbfuLrq0Md5BOpvjmp1aQ2v0K1b3J98dfmM6FZ+22z8skW+zte17+ApE957FkCXz967l7ubwhMqlWsBIkYgm8AW/22rZ2TCMNFoALb0AZfhERkdGkDL+IiMg4kb/8XrAsjMORnSOfSRcu1Rfv7gvanXZbKh7ljm//jrK271MdeM1uv/2umXR052XirdwqAIs/ELaz+vk8/rC93bont7xfpr0N00pmdwwvTqd7UF+fiIiIlJYCfhERkTEqEoFbbsn+C9DTmVt+L1BRhtOdDfgtM45pZov5mekMmWQ7AC5vFYbhAyCd6qZp6ysF9+9OTaGxvZq9zWX9Pv9d762ypwHk8wZz57c3NtvbqZYWLLIvDAyHB7cCfhERkVGlIf0iIiJj0NKl8OztjzApsIl7myZxydTHyCzw2cfjv/stRqiqdy/Dq2//f/isNK2uIISy8+jdSQcmHizimKluHMb+3hr/sGXbm1m/+WTe5HmAWU//hVcrivvQ8alriVvponajYqa9ve1/fojnxmzNgK6kBROyQb5lOHE6vEf8fRAREZGhU8AvIiIyxkQi8PtbWrn2/J/j8STYsP51PLi1nvNOXW2f49q3C+esKnusXmdTG47uVponngDZmnp4ExnSHldvkJ/CtLJV9ZPpMjavO4FqRzPvrriHiubdUFF+QC9cGNvWk+ynf25nNfSO6o/GEiS3Z5f56yqbCGQD/ozTwKUMv4iIyKhSwC8iIjLGrFwJFZ5teDzZ4fGTarayedNZJPJm4vn8flx5+8nKGpyuDNHyKiA7hz9oQQIXqdxZAPhdbv5z+m3UeDuo9ESJuXIjB/o4DB/O8gNfAmQFHEbujn6/fV5LcCqQXUmgKwBOQwG/iIjIaFLALyIiMsbU10NtMK/Svi/NC64383b3I1i90fucO/7A1lv+TNdrjQCEPncDc992Di9940ew7mEAZl31IeJPP03PjsKq/YHaSbxj3X/b++l0mkc+8G8F57j85cxd+Wy//Ys9/Cybfvmt7Pbsk3nsrb9k4/JHKIv9iWBvwN/WXYlDGX4REZFRpaJ9IiIiY0xdHbxl0WZ7P+RvY8nHExjE7TZfKIQvlKuW393em1lvabTbJs2ejj9UXJDPH64s2He5XGB4CtrcvtBB+1cxodrebtq+mk1/+zKT0z8i6Nlrt+/bNZeNGz39XS4iIiIjRAG/iIjIGFR/4i572+EwufYje7CsXMDvDQTxh3MBf6x3yb5oe65q/uQ5Mwj0Myw/WFlV1OY4oMCeN9B/5X6Aqqm1ufNc7Uwqe7nguGk5eWnfyby6zn/Qe4iIiMjw05B+ERGRMSjW2Vmw37xjN5jZgN9wuHB5PATKc0H5nvXr+PaHfoS7pwWnAxLpSv7rRi9vPrGi6N7lNTVFbQ6XFzOTW/Yvf/TAgUJVZViOCgyz3W6Lp8p4aO2HyJTH2NQ6g253mpPn91fyT0REREaKAn4REZExKBaLFuyvffwVLCtbxM/tDQAQzKus37ZnFT6wx+51JWppaIDXf6+i6N7lk2qL2pwuH+lEbj9QVnxdH4fDwcL3fJU7f/oolpkhZZVx30tvpy1ag3fSBpwVLUy/8A5OPOWGAX2tIiIiMjwU8IuIiAxBJJKtpl9fn51zX2qxnnjBfuuevdAX8PuCAISr+6+iD7Cl9WwSCdjbUjx8v3rqxKI2p8cP3bn9YOXB7w3wpsvm8a/n59HQAIkEeL3w4Q/D6qnfoGfCLqaE9mMYXzzkPURERGR4KeAXEREZpKU3pLn3TztJpaAtPomrP+5n2bLSPiOWThfsW2Yr9C6wF6rKDuUPV1UUXffCjveydt+FbNw7A58PTjmtmudWF55TO2Ny0XVuT+F8+1BVZdE5B1q2DBYvhlWrYNGi7IuP8257mYzTwpUGHPozQ0REZDTpN7GIiMggvPBcD8FN/8FH67NL3aUyAX71+/9h8eLpQ8709zdaIGEWBvxefxs9vUvyBXvn7pdPKAzKLRw8ufkSWrrK8PlgyRI46/wanvtV3kmGh1Bl8fx8l7cw4C+vLR4Z0J+6usIRDqaR/ddpWRgOY0D3EBERkeGhgF9ERGQQnrnvRQLu3Lr2bmeM+ZOfZtWq9w064I91dvM/n/4ru3e0kkq7uOX7F3DRpfP5zrczpK0M5MXLPZ3t9rY3kB3S7wsVBune0Ak88K+ygow7eLNL7lnZAnpOd//F+Dz+QMF+xcTqfs87nDQWAC4rW1xQRERERo9+E4uIiAzCxMo2dh7QFvZHWbRo8Pf68/fuIBC7hzm9RfNPqH2SH9zyay57V09BsH8gbzAEZIvn5Xt87XnsvoOi6QUOVwAzlQ34Pb7+5+Z7Dwj4KycNLeA3e/91YeFwOId0DxERESkNx+FPERERkT4BV3tR25yZXUMazt+8a1vBvsfZzZTwZtY813zI63yhbMAfiRS2P73xXBoaittd7mDetRX93tMbzJ2D4cYXCvR73uGke19UuCwwDAX8IiIio0kBv4iIyCDEOjqK2qZMjPZz5uG5jK6ithMmbuS4mt15Le6ic/71WDY4X7kSntj4cdJmgI2t7yTjrCWRyBbRy+f2hexty9X/3HxfXsDvcAX7PWcg+jL8TgvN4RcRERllCvhFREQGId7VWdSWSvQM7WaZ4oD/9LkbKHfttfddzuIl9P71eDmRSLbI3/It7+a/7r2Tv65eQldXdnm8A6cXtHWV2dsPPz2JpUuLu+IL514KGM5Q8QkDYFpmrmgfFobifRERkVGlgF9ERGQQErHiID2dHFrAn0nFshuGx24r82yndU+uKKDBXDY35eYL7O2cw8u7XseqVdmifEuWgM/nIBrFrsyfP70gEoGte3JZ/abOmn6H/T/0WK6Y397myn5fChxOOm9lAZcFDkX8IiIio0pF+0RERAYh2VMc8GeGEPCb6QyWmQ34Pb4a0qluzHQHie69dDTV2OfVVHi544HvEI9DOAxdXdnAvi+Lv2wZLF7MAZX5c1auhJd2nMPcmofJWF62tp9uD/vvOzcSgfseruIDp2f3u+KV3NGQve9gahPkB/wOUIZfRERklCnDLyIiMgjpZHfvlguM7Pz6TDo+6Pu0N7VB3xJ2vhCBiqnZA1aK/ftyc/hnTA/0ZvE5aBa/rg6uuqr/4Ly+HjY2L+J/H72Fnz51G3uaK4uG/a9cCa/unktz7BRSZojIvov7rQVwOGkrF/A7leEXEREZdcrwi4iIDEImlQ34Hc4AFiZWJoWZTgz6Pu37WuxtbyBMuHoC0eZ1APT0NNrHqidXseyLh87iH0rfsP+Ghokkuvt/YVBfD16vg/99+L8Jh026uhwFowgGKmNm7G2nZRxqZUEREREZAQr4RUREBig7DD87fN/pCWJmkmQyUUzz4AF/JJLNoNfXFwbZHftzAb8vVMbkOSewI3Lg1U5qZ2SH99fVDS7Qz3e4Yf+5lwIQjTr6fSkwEPlD+p2AoQy/iIjIqFLALyIiMkCdLR30DcN3e0OkkzEyScBKkk6ncblyv1ZNM8PXrtvIfX9P0BUL0BI/niVLHCxb1nuv5jb73EBZOccvOpmVfy18noWf4KTKkvT9cC8MDvdSYCAyVi7D77A0h19ERGS0KeAXEREZoPxh+J5ACCyTZO9+rKObsupy+/gd37yJyr1PcuWZ2f0nN15KQ8NH7UJ40bZcwB+qrKQxOpW0GcDliNntPYky1u+tZOHJw/pl2Y5kFAFAykzZ2040h19ERGS0qWifiIjIAHU0tdrbvmAZLq/f3u9u67S3zUyGxldXFFx77gl3c9bM5/jNf2/knl9uo7ut3T4WrKrg+ecdRHa/HcvKBsmm5WLnrgWs2VTOeJE/h99hGTgU74uIiIwqZfhFREQGqCtvGL4vXEYqnluOr7stt1xfe+Ne6B3eblpOHEYGw7A4bdof2bL1au7am+CkCU24e8+vqK2m/ni4/vqreODly3hz+B909QQImd0sfF3upcJYV7AsnwUq2yciIjK6FPCLiIgMUFdzs73t6enBkcoFuK3Pv0hXNFtdf+uGjXZ7c8+5lHlexudqZUJoPRNCNxBPV5FKBnD3RvzuXduYNrGN698V5tf3TqSls4oaZxNvn7ScBQuuGJkvrgQKl+UzMDSOUEREZFQp4BcRERkAK5Oh5ckn7X3zqSexAiHoTcA3/uUuwnteA2DzjDnQW2tvjmMfPds9JI/P3cvnagVy0wO6v/lf7MokuRR4U02INrOKSkcrtXMnD/NXVVoFQ/pB+X0REZFRpnfvIiIiA5Det49EMmnv+xJx3HkBbtLltre7Arlh+JO793Nm+xp2blhAa+uUfu7sxpPJ3bfMFWWmZwdlrii++fNL+0UMs/yifdk5/Ar5RURERpMy/CIiIgOQiUZJOXP7k97+ZhLNXbBrJQCOU06h9tKLAIiveBYS3YDB8W+9gJrQOcy4bwK/e2oel130HXzuDvs+Dqef2s98uuh5zooKyt7+9mH9mkqtYFk+DC3LJyIiMsoU8IuIiAyAGY2Sdlj2/syPfoiOR5+1A36mTKVmycewTJPEE/8EwHCUM+fTH8XpdnDdEnhTBB758XGYXS/Z93F5w9QsWTKiX8twKSzapwy/iIjIaNOQfhERkQHIdHWRMfoCWoOy6nIC4ZB9PBnrBqCtcT9W79B2b7AWpzv3q7auDk45a27Bfd2+EEeLwmX5RrEjIiIiAijgFxERKRKJwC23ZP/tY3ZFydA7R93w43A58ZeH7ePJnhgAO17OVegP1xTP2Z992qkF+95AWQl7Prryq/Q7UIZfRERktCngFxGRkukvUB5vvnRdEx+97BV++M3XOP/8DEuXZtsbfu0hYyUAiCXKWLoUgmW57Hwq0QPA7g1b7TZnaEbR/WfOP7Fg33SUl/pLGDX5Q/oNS3P4RURERpvm8IuISEksXQoNDZBKpnF7XCxZAsuWjXavBufeW5+mctf3eP+i7ND01thx/Kzhh5x+uoO/PlHLFW/MBrTxVIiGBnjXm3IZ/r6Af83KXXh7237++7m8HC38Pnh8uQr+ACte8LNx6fj7XvVHc/hFRETGFmX4RUTkiEUi2WD/itN+wH+983LOnn0fDQ3jL9O/8dmncBi5eehVgS1UePZx333gcvfY7RkrQCIB67fkhuOnkz1EItDTuc9u27BndtH3IRKBZCbvRUHKMS6/V/1JZ3LL8jkxcCjeFxERGVUK+EVE5IitXAmG2c3cCY/iNJKcNfMBEglYtWq0ezY4Pnd3UVtVWQfvfCfUBFrttq54GV4vLDrLR9+v0kwqzjMrUoQ9uwBIZirBU1H0fVi5Eu5afT0ApuXkhd1vH5ffq/5kzGRuxzIwlOEXEREZVRrSLyJyFDMtk7XNa0lkEgc9J5PJsCm6idS+FE6n86DnHUporpPpk3LvkN2OLjzhDryzN/P8vswhrhyYTeudrHvZy8nzE5ww78jvdzCm2VnU9oY3bWDWeVHOnZNbSi+Dl0s+voHUpA5weMCMk0n34PY/hNORDXpbe2bQFY/iDWcKvg+huU42dB7Pz5++CafPwY7mcrwl/F6Npo3tm+xth6WcgoiIyGhTwC8ichS77vHreGTHIwM7eduRPWvOeW+FaHbb4+qi/PIv851tTxzxfTtefAMtDy8mHfPiCiSofvMdlJ/++JHd9CA+EFuE+4C29prf89F/vsp/hE+kL/8fOuEVnj71Nj76T/iwcQoGkMnEeX7d7zmh95wd0ak4p71M+Zvv4DvbHi/4PpS/7w3se3gx6VgZroOcM94ZKLsvIiIy2hTwi4gcxZ7c9eSIPWtq5V474HcYaSbWPUv8CO/pbqzmki0pqk/6XywDVjeewUMPL8Z/fARPRevhbzBIDrM4w+5LZl8BGFbuV2YinJvPbzpcODNgWClq28uB7CiBxIII047/Y7/9LD/9cfzHR0i3TMJVvW9YvpbRNik5tNEiIiIiUjoK+EVEjlKWZZEys0XUav21/L/j/99Bz2tsbGTixIlHNOfaiuzBpN3eXzzxfRjTjuzXzM41+5kSzFWzO3fqclZsewdnpf+d00/df0T37k/mn88Vtc3xzWbuqWfivf9lonQBcNzUEzn+1DMBMB9/BSvVDphUdKexeq+74LK5vCF0YtH9jmrpODz7c+YnkrgTJxz+fBERERlWCvhFRI5SGSuD1Rt+TgtP4zOnf6b/8zIZVq9ezcKFC4c8hx/gll8vJX8G/JvL38Cpp58x5PsB/PGRm9m1u7B8fZXDw/VvXkxd3RHdul8/sN5jB+x9pjhrueL0T/Nr4xq77bx5b+CM088D4Bf+64nG9gJgpbKZepenhk9fcF3pOzjWxVrhH98F4AmU4RcRERltqqgjInKUyl8T3eUY/ve78a7CYekdTUc+TD3o7Spqe88l3cMS7JumiWUWFzeMx7LzFFKmabeFKsvtbZfXV3RNuHZm6Ts4Hli571FGf2KIiIiMOv02FhE5SvUN5wdwOw4sRTcMz0u0FexHW9sOcubAJbqjRW0fWhw74vv2Jx7tgd78vsNVYbenerqxLIs0ufn94apcwN/YHCq614TZx+hw9rwaCJahPzFERERGm34bi4gcpUYywx9t78Iyew5oaz/i+8ajxRn+RKy7nzOPXLQ1NyHBE6i0t1OJGFYiQdrIZa/DNRUARCKwZWcu+O/jrDx5WPo45lm5gN9UlX4REZFRp4BfROQoNZIZ/n2bdxW19XS2H/F949HiDH8iNjwZ/mhbLuD3h6ugN2BNJ2KYXV2YRl8waxAqz2b1V66EFVsuJG0G7GtbYnPYm1wwLH0c8/KG9Juawy8iIjLqVLRPROQoNZIZ/qbtu4va+svOD1b/Gf7ilwClEOvIPcvjC2A4vFhmnEy6h0xXFNNIgwWG4cXhygaz9fWwp3Me33zgdqbVtNEZdRDL1LD828fo+3QzP8N/jH4PRERExhD9NhYROUqNZIa/ZffeorZkz5EF/KaZId7P8P3hyvDHOnIvEjz+AA6nP9uPTA9mdxTTyn4/DcNrn1dXB0uWgMvtZfv+ScQyE1iyxDEsRQXHBSt/Dr+G9IuIiIw2ZfhFRI5SI5Xhj0Rgw8v7i9pTiSPLxCdiMbCyRfRC1TVEW5p724dnDn+sK/eCwhsI4nT5yaTasMwEybZ2IFvB3+n0FFy3bBksXgyrVsGiRRy7wT6AmT+kXzkFERGR0aaAX0TkKDUSGf6lN5jcc+cO3j1/H7V2sXoDsMikjjDgz5u/XzFhkh3wJ0uY4Y9EsvPw6+sh3pV7ni8UxOUNkOwBsGjc3mgfczqLl+GrqzvGA/0+lgJ+ERGRsUQBv4jIUWq4M/yRCOx99ld87PV3222WZeD01GKm9mNlYpjpjD3ffbDy5++XT5jIrlfXAqXL8C9dCg0NkEiA1wufu6SHvtJ7vlAItzdXiG//niZ72+32IgeRX6XfUNE+ERGR0aaAX0TkKDXcGf4Vj7dxysT7C9q6EtMo8/mA/YBFZ3M7FZOqh3T//IA/XFOLYTiwLLMkc/hXr86QjtzIVy5ehWFYxJK1tO+bSaAse9xfFsTtD9rntzS32dsej/+In3/UyivaZ2lZPhERkVGn8XYiIkep4czwRyLQuuYvOB1JADoTs3ll79u4a83n8YfC9nltjS1DfkZPd94Q+2AYTyAbaCd7jjzD/+RdzzE5/CKGka0REPA0MaXsBft4oCyML2DPUaCzq8Pe9gRymX85gDL8IiIiY4oCfhGRo1Qqc+QZ/kgEbrkl+2+fpTckuOwde6D9MSA7jP/3z32OuyL/wTvedzwV1WX2uR1HEPDnZ/h9oRDeQDbjHu8+8oDf07n8kMeDFWF8oVzAH4vnnpn/IkAOoDn8IiIiY4qG9IuIHKXS1pFl+A+c475kCbzx9HVUbv0aS86O2+ftiy7gg9fM4tJLs4Xr7v5+hX2sM28o/GAVBvxhvP5sZj15hHP4zXSG2P7VhzwnWFGGL5wbqRDPK0Doz2uXA+RV6bcU8IuIiIw6BfwiIkepI8nwRyLQ+Mwvuf6Nj+M0MvSkyrjnz9dRuesPuBzxgnMfe+09/OfluSr1ocoK+9iq59qpOHVoFewT+UP6Q2E8vRn+TDpNOpnE5fEc7NJ+v56+avy71ryEmcm+TPCE55GI7sGwugrOL6suI1CWC+zTmdzxQGX54L+YY0XekH7L0Bx+ERGR0aaAX0TkKJWycgH/YDP8Tz+8i1Mn/c3edzu7ePep/4sztReAtOmjJXYi6/aeyebWhSxalLs2VFVhb+/duJr3vuM8Xv/G6ZxzTjbgPljwb1kWHU09WGZ2Xn1HU7t9LBl34nTllsNLxLoHHPAv/YLFw39dh9fZwS0ZJ2fNeoTZvXUEW63XUx18lEQ0P+B34An4CFbkBfZWIvf11dYM6LnHpLyifSaawy8iIjLaFPCLiByljiTDX5F8mgNr4Zf5dtnbW1vP5TcrPmMP9c8P4tt7clX5J4TWcc3Zn2DbrtP4/Q8u4g6nh9dfPJfv/KC24N6WZXHPD19i9/p2uy0Z3Wlv3/+zDaR6cj1KxGIEKyoP+3VEIrBnxa9YfPpdRccsy8Ft91/EFy6NQHSH3W44vDgcDkJVZUXXAIQnKuA/qPyifRrSLyIiMuoU8IuIHKWOpEp/dPdL9va6fW/l5EkPFhx3TX4LN98MixYVZ+y3t8wmY3rsCv4As6pfYlZ19p6pnQGe/tdPOedNE3LPa0sUBPsAlpk3dcDwYhi5jP5A5/GvXAnTK9b0e6yl5yT2d1SRZGJBu8OZHUkQrup/6H645vAvGo5ZeUX7LEMBv4iIyGhTwC8icpRKmYPL8CfWr6f1F/9HoqODzp6+Zeh8nJPYz87EFELePQB09szgtQf38uHYjyl/Is72A+5zeoeP/331PVRN3InbmaCybANBT3teX2JEfnYT037fZLd1GpXgeScAQbODSquJ7VYnKcDASaXVSpPhtc/fceM3SDgPP6R/YYePRld2OL5pOVm9/S04jQwVnhhrXjuLczyPUtu6mX151xgZg+0f+Qhxq/+AtXyCAv6DMvPn8CvgFxERGW0K+EVEjlKDzfA33fQ/xFasYH31STAtm50PZMJManyOxzquYMH8uzAMi/a9x+Mye2hZvYWQZ0fRfULAO3vauOeld9OcrmZX5j2cceKzTK/eTm3NiwAk3I3EnnnOvqar/AQ4Lbtdves5TtjyN3acPBPcLrzJODNe+QvNc86wz4+uX0+44/BZ/hDgq5sPQCoTovGVOVhY7DdSTHLs490V91C5J8q+yblrHKZB7JlnMQEWzAHMvDs68IX8h33uMUtD+kVERMYUBfwiIkepggy/8/AZ/viWLTwVOJetoRqqeRmAdEuQamcLyT0+XshcQY2/hfVbTqTK0Uqlo/Wg9zrNv4bj3ZtpM6vYlZjCw1svZvXmszj3TTvxe/aTMVpoD1ZR0Z29R9oVsK91pXuwgLQzW/TNkzEJxBohL8Ofdg4smDQBw8hODfA6HXx70pcAaDOrqHS0UuaK0t5dDVTY1zjMbHV5B2BZXgyjxz5m4cPhUCB7UPnL8hkq2iciIjLaFPCLiByl8jP8buMwAb9psrzseDon7qWavXbzjzd8kb/cXclxf3Twf7c6SCQMvF6La642OfOb7x5wX85cC6tfgsyWrbRty9YDWPn6q7nwQ+9j/qlgPbcf7twCwNTrP8XxZ3wNc8mHAChfdDoLfv9VVnz2t/b9Kq//PPPe8s7DPjfW2Q2f/ggAvrJyzow8UXROOp1hxcffb+/7p81g3m9+zstroWfZJwm4cwF/TypEJDK0ZQaPCXlz+JXhFxERGX0K+EVEjlKDyfAbHR10+uIFbR2J2exqncpL6+C7/wPv/zCsWtV/ob7DWXBW9r8tL72Zu5dlA/7mHS9xwcUfZckSeP+bc9lgX0WARCY3NNxfVo4rHCRUWUZr7+p5iWQSRyDA4XTtyY1C8PhC/V5zYCUAjz+IIxDguTWwYf85LJx6t31sw/5zWLVKAf9BWflz+I1R7IiIiIiAAn4RkaNWwRx+49A/7o2WFsgbur5232U8+upb8XqzAT5kg9wjDXSjznl0JycT9Oyl0r8VN+00NFTwuuOzfU2lHfzrMQ8L2tvta7oTIQDKa8tp7S0ZEG3tBLLL7q1cCfX1/fetqzV3H7c/OKA+dndns9T19XD99Vfz5Ia3MKEyyv62EO3JaVy/aJBf9LEkv2gfGtIvIiIy2jTeTkTkKDWYDH9qXxOQrWbf0TObO5/7CB3JySxZUtps9sqV0BSdZe9Pr20ikYCd2zO0dqbZunsXd/12JT/68gP2OX+6K8zSpVA5OVcdv6u1k6VL4d1v2csv//txLrwgxdKlxc/raumwt33B0EH7ZZGrD7BhQ4KlS7Nf95Il0J6cxss7TqQ9Oa3k34+jjqUq/SIiImOJMvwiIkepwVTp797XZm9PrPZw881DG7p/OPX18MKdYXvfbXXg9YLDSuBK3s6MsjZmnFJ4TVdPiIYGOO9HVXZba2MXt/4+zrXnfIEyfyurdqyioeE6Fi8u7HN3ey7g9wbD9CcSgc74ZMp92wCIp3zc2gCLF8OyZdl/hzqV4ZijOfwiIiJjyrj8bbxr1y6+9KUvcdFFF1FXV8eb3vQmfvzjH5NMJg953ZVXXsm8efMK/vva1742Qr0WERlZBRl+x6Ez/N1tUXu7vKqcq64anuC2rg6mz8gNra8Kt7FkCcQ7m/A42/q9pjM9k0QCdrfV2G3R9m6Or3qGMn92jv7CaY/jM5pYtarw2lhHp70dKOs/4F+5Ev784qexLAem5WT55sUkEtj3qqtj2L4fR52CKv3j8k8MERGRo8q4zPBv2bIFy7K48cYbmTlzJhs2bOCrX/0qPT09fOELXzjktZdffjmf+tSn7H2/X+spi8jRaTAZ/lh3bv5+uKZ22PoEcObrw6x9JLv9wcua+MBX4P8+30ZvPT5SGQ8Prv0gZb5WutLTWLPtDHw+OP2cCh5/xgAsHFY3Zx//T/ueDofJm06+m22RS1jxqJ+zL8oO3+/p6rLPCZSX9duf+nrYG53DDx75JcGAwc6mWny+XO0CGYS8If3K8IuIiIy+cRnwn3/++Zx//vn2/vTp09m6dSt/+MMfDhvw+3w+amuH949ZEZGxYDAZ/ngqd27FtGnD1ieAcFVuLr7XmR1y76bdbntk/WKe2XopAA4H+HzZufSnn+nmCYcXy4yTSTYxpXxvwX1PnfwIa1edyrbVQe67dybf+d8K4tFcwB+sKO+3P31z9RsaJtDWnHueMvpDkF+0z6GifSIiIqNtXAb8/enq6qK8vP8/5vLde++9/P3vf6e2tpYLL7yQa6+9dkhZ/kwmQyZv2SiRUuv7fOlzJkOVyuSCeAeOgs9SJALPPQdnnQWnnJIhYaagdxW1yqmThvVzF6qqsLd7OjvIZDIkYrmh95e+t5zvvSv7/Py585kMZKwADuIY5EYvWLgwSON2dnPaxO+QygR45LEv89JLYRLduakKwYrwQb+ub38brrii+HkyOIaZtvP6puUo+n7r55qMFH3WZKTosyYjZaifsaMi4N++fTu/+93vDpvdf+c738mUKVOYMGEC69ev56abbmLr1q389Kc/HfQz161bN9TuigzKyy+/PNpdOCRHOoa/c8tod0P60dq6yd7e9cy9JFzZl6I//fVJrHrepCa0m4duzTD7eD+zyf0Sie1bxcZHh+9nXNfemL0dbdnLxkd/R7InV1zvlGmr8DfvAeCcGUAzbHwUNm4J0NQRZmJZa+H9nO+gLHOPve92xphZsYKH72gi1NFkt7dtfYaNXQdM8s/jP+B5MngVjSuY1LudSKVZvXp1v+eN9Z9rcvTQZ01Gij5rMlaNqYD/pptu4pZbbjnkOQ888ADHH3+8vd/Y2MjHPvYx3vrWt3L55Zcf8torrrjC3p43bx61tbVcddVV7NixgxkzZgyqryeffDIej2dQ14gMRiaT4eWXX2b+/Pk4nWN0aGx3E46fnYGR6Dr8uTLiAhNqIBgA4MQX/ovajMm29qnsePnbXLrwNgzDAsDMuIgbfb8ODBa99iU8G9IHueuRi6aCPEt2grzV08rcpz7Dg+kl9vETN/yICTu6i67btvFC9rSey8Sy7Xbblv2n8rryZ/jL5vcyreZVjpuwFoDq4B4uT/2E+3tOt8+tW/dVAs74cH1ZcgCPz8fChQsL2sbFzzU5KuizJiNFnzUZKclkckhJ5zEV8H/0ox/lkksuOeQ506dPt7cbGxv50Ic+xGmnncY3v/nNQT9vwYIFQHaEwGADfqfTqf9Ty4gY05+1nc+Agv0xK2UY9rYrG9uzbv8cFh33DzvYB3AYaegdIm8YPjyO4Qv2AQLObrKLxJikMhmSVhDL6s473v+KKyfWbuClh77J1qb5TAztoSVWS1vXVK5//wfoSQf5yXMf47gJXwagJrSXWRW7Se9f2Hu1E5+hYH8k7XVOPejPrjH9c02OKvqsyUjRZ02G21A/X2Mq4K+qqqKqqurwJ5IL9k855RS++93v4nAMvhrwq6++CqAifiJDlVegi1nnweQFJb39+h1lrNlUy4ITmpg3o/PwF0iBdOszkMwOaXef+XHW76rmlU0uwt7HAEhmyvA4C7+vLkcAXv/JYe2XA3Bs3IRpdpOx0iQWLMHatM0+Hjj3GnAYRdfNAq5q28BP7j2H9fvPIuBJ8J/veppZb7uEa4ALdjzIfY8EwerGYXSQPutTmOs3AGA4vDjOGd6vS8CyLH751FZWmyewz3PKaHdHRETkmDemAv6Bamxs5Morr2TKlCl84QtfoLU1N5+zL3hvbGzkwx/+MN/73veoq6tjx44d3HvvvVxwwQVUVFSwfv16vvvd73LmmWdy4oknjtaXIjK+5Qf8J/0/qL+mZLdeeoPJw3e9BmaS7nQ1/7Z4OsuWlez2x4TUPz8K+5rAhB/eOQUj+hJuRxd9VdXuX/sfvGv+j3A5cnPqPf5yeMu3h71vzjs+hhnvxjLjxE//T6y/fAIAlyeE423fOeh1178F3hLJL653GXAZAPOAx178FN1tW8DqofnET2Fa2c+k0x0cka/rWJfJmHz78X8AcIZR/NJGRERERta4DPiffvpptm/fzvbt2wuW5wNYv349AKlUiq1bt9LTk11b2u1288wzz/Db3/6WWCzG5MmTufjii7n22mtHvP8iR428NbcZwiibg4lEILP26yw+PVdg7enHriYSuURLpQ1C2kxzQcRk0dpTaKv4V8FP/I7YcXzCdTutjjKS5AJ+f/Dwq52UgssbJBUHMGnb2wZmdki/xx8+7LV1dQdfMi9YWZsN+IFdr24GK7tSgdMdKEW35TCsvG2HAn4REZFRNy4D/ksvvZRLL730kOdMmzbNDv4BJk+ezO9+97vh7prIsSU/w2+Ubt7aM8+kmRh6qaBtTs0zrFqlgH8wUpkU7/pnkDUnBnD2BvVpM0AqXcara87lbNet0F3LvmDumlDNhBHpm8cfpq8w/77NO6F3lQBvsOyI7lsxcQr7exeN2LnuVbvd7VXAPxJMKy/kV7wvIiIy6kqXkhORY09Bhr90Af/8Oa0FReUA/O5OFi0q2SOOCa89WMffPR/E6WwGoKNnKqv+dQkPP/QB0h1uKqtgSjJWcE3aP3VE+uYL5jL5TTu25dpDRzbCoGZ6rv/NOzbb2x5/6IjuKwOTH+/3U4ZBRERERpgCfhEZumHK8E8oaylqC3o7lN0fhEgEtj14MZNm5kZK3Be5ir/F3s8a94XM+8Ql1L/wT8574E8F1/3811NYunT4++cP5zL5HY077e1AWcUR3XfC7NxKLtHWHfa2NxDs73QpscIEvyJ+ERGR0aaAX0SGzjJz2yXM8Hc0tRa1OejGTGf6OVv6s3IlzHB1EPBkq/RHEzNYu6eeD34Qli/HLoC4bp2LtJkb7r67dRINDdkXBsMpUF5hb3e377O3gxWVR3TfyXNyS6ya6dznyBs6fG0AOXL5Q/pLWNZDREREhki/jkVk6IYpw9/VUhzwg0lnc3vJnnG0q6+H06bkovYtexcSCDj49KcLC96tXAl3PP81ulOT2NHxBjrSs0gkslXwh1OoqsLeTif257UfWcAfCIcxHP5+22X45U/EUYZfRERk9I3Lon0iMkYMU5X+aFt7v+2te5qpmFQNZDPQK1dmA1sN9S9WVwfzal+29/fuPZ4lS4q/V/X1cH37SXzz3gbKyw2iUfD5GPZ6CeHqvMDeiubaa6qO+N4efzWJ7l0Fbf6yIysGKAOTn+FXkX4REZHRp4BfRIZumDL8sfZ2e9vlm0g63ghA8+69PP3nu9m7bQfRmINtrXVcf/3HWLLEYQ9Rl+zLkBWPNeOhN3NuVfDdD2/n9G8Wn1tXB9dcAzffbNLd7cTno98XA6VWPqH/wL68tuaI792VnIiHwoA/VKGAfyQUFu1TxC8iIjLaFPCLyNCZ6dx2Cefw93R12Nuhyim0780G/C89+ADR5nU4gXIfLJiyjdU7zqah4VQWL1amH2DpUrjjV23Uz3qI183KRl+VSRez53oOes13vwunnbaeWOxkzjxzZL6PlROr+20/2IuAgYpEYMPOaZw66cWC9tbuI5sqIANjKcMvIiIypmgOv4gMnTU8Gf5ErMverpySV3W9ZVPRuVOqm0dkzvl4EInA2ocf5D8v+DCvm3WH3V7Z1IUjfOhl6ebOTXLVVSP30qSspoL+FmoPVR5ZYL5yJSxf/xaSmVxGv6l7Hru6Tz6i+8rAKMMvIiIytijDLyJDZw5Plf5kTy7gn3z8cWztS9ZayaJz06kkXu/wzzkfD1auhJMmPoHDyP3vkkyH8e5rxznGitY5XE4Mhx/LjNltqUyIL33ZeUTTM+rroSU+g2/e/1smVXfR1WWQMipY/p0SdFoOq2AO/yj2Q0RERLKU4ReRoRumDH862VvEzfBQO2PKIc8N+RIjMud8PKivB78797JkZ9vpbFp7EdVGM47goTP8o8FwlRfsx1KVR7wkYF1dtgaBx+tib0slKaNCn48RVFClXxl+ERGRUaeAX0SGzhyeKv1mKpv1dbqCVE2tPeS5l/9bVAX7etXVQdifDfjTpo9n157JG+OPUOaKHnZI/2hwTruC7uREUpkw8fQEntt5RUmmZyxbBsuXw803Z//V52PkqEq/iIjI2KIh/SIydMOQ4U8mklhWHACnJ0jFhCqyg4Otfs8PBxMlee7RwmnEsCxwuny8b+G3OG1LtgCiMzT2Av43vP9NnH/+m4jHIRyGrq7SLQlYV6es/qgomMM/et0QERGRLGX4RWToCjL8pXl/2L6v1d72+MLZud7OQME5DmduPnoqqYC/j2maWGb2ZYnH46PG0Wkfc4yxOfyQG37v80E0yogtCSjDx8wL+A3N4hcRERl1yvCLyNBZpS/a197YbG97A9kg1eUOkcp02+2+sknE2nqHrieKC/kdq2LtUfpSrE6PH38iF305xmCGH7LD7Rcvzg7jX7RIwf54lz+kv4SzfERERGSIFPCLyNCZpR/S39GYy/D7wtml1dy+MKl4o91eMWE6sbaNQLZKv2R1NLfb2y5vgEDv4Ie0y4HD4xmdTg2Aht8fPQqK9inDLyIiMur0/l1Ehs4qfdG+rtY2eztYXgGAN1BWcM6E2bPt7UxSAX+frpZ2e9vp89kBf8qvd7syMkxTRftERETGEgX8IjJ0w5Dh727LBfyBigoA/OGKgnOmzjve3laGP6e7LTdn3+0P4LcDfvco9UiOZQ5F/CIiIqNOAb+IDF1Bhr80AX+so8PeLquuAiDQm+kHMJzlBCtzGf9MOlWS5x4NuttzAb8zkMvwp/1jdzi/HF20LJ+IiMjYooBfRIZuGDL8bc25oLV8YjbgX/1atd3W0jWJm//PZ+9n0srw98l/WeL2eXD2xl7pgAJ+GRlWwbJ8ivhFRERGmwJ+ERm6Elfp/9J1TTTv3mLv/+YP1UQi8OgzE+y21tgkfntHLuA3leG39USj9rbLk/vfI6MMv4yQggz/KPZDREREslTJSUSGroQZ/j/edDdVu36F4c69RGj4TRXOMKzevoCL59Xgcbbzyr6L6Or25nVBAX+feLTL3nbnxfiZgK+fs0VKr6BKvzL8IiIio04Bv4gMXQmr9O9a8wSGkQv2e9K1xHq8OJ1gOAN85x+3UFUep6ktjM+XO08Bf04i1m1vu5250MsMKuCXkWFpDr+IiMiYooBfRIauhBl+h9VJXxi/ve0CHlv/DrxeuOQS6OmBhgY3ze1ufD5YssQBW11Auijgj0Rg5Uqorz/21nZP9eQF/Ebu+2Ipwy8jpHAO/+j1Q0RERLIU8IvI0JWwSr+Vyc4/T6QrueXJ6/F6YcmSbNBeVweLF8OqVbBoUXb/B+93YZlpLDMX2C5dCr+6JUYmncFyevj4NV6WLTuibo0rqUTM3nZZCXtbGX4ZKWZewG9oFr+IiMioU8AvIkNXogx/OpnCMrPBaiDo5+abc4F9n77A336c4cYijmWmgWxmf9+KW/n8G+/BYZhkTA+PP7SEyOKLj5lMfzrZF/A7cCZz2X4CgVHpjxx7rLxZ/Ec4y0dERERKQL+ORWToSlSlv21fi73tD5Vx1VWHH45vOLLvKy0rm+FfuRJOnPAQjt46AE5HktOm3s+qVUPu1riTSWcDfsPhx4jlsv1WyD9aXZJjjGnm7ynDLyIiMtoU8IvI0JUow9+6p8ne9gbKBnSN4XAD2Bn+M880cTliBeeEvE0sWjTkbo07ZiYOgMPlg+7c98JQhl9GSP6yfJrDLyIiMvo0pF9Ehm6AVfqtdJqeyMtYyWS/x5te3GBvew0ng4V3DgAAaztJREFU3c+uPOyjDft9ZZquFc8wPZHGMKyCczzOTma4NwBzD3u/8Si/QOGJ85JgZb+/LncAonkvP0LBUeqhHMtUpV9ERGT0KeAXkaEbYIZ/x8c/TuyZZw96fO/MBVDRu7PuVXbc+7vDP3vBmfbmlo9fQ9wThLk1Rae99NFrOf3GL1D25jcf/p7jyNKl8NBfXsPraOf6/Wdx7Uc7qO495vIGILbPPtcRVsAvI6Mww6+IX0REZLRpSL+IDN0AqvSb8fghg32AhMdtb/uSiUOcmfc4K/fjK+30kHT3X4m+I1hB9IknBnTP8SISgfvu3ML7F32B95z2LepnPsS9d3Xaxz2+IEZ3j71vBEOj0U05BhUuy6eAX0REZLQpwy8iQ5dfoesgGX4zGrW3PbNmEb744qJz0q/ugc42AGrOWET1284+7KNdkU0kepoBCF7+PlLxDGx8qrcvXuhdli7q92N2dx/sNuPSypWwcOrjOIzsC5ezZj3IAy9Pso97AkEce+P2vjOsgF9GRn6GX0REREafAn4RGbregnnAQTP8ma4ue9tXN58J13226Jz0p78CvQnqGYsvZ8L84w/7aNenvwI92wEIXnoZ3dv32gG/v2wqPR1bAIh5XJjR8RXwx9etY9dnPktqz55+j9elQuw9cYG9X+7dzNkTHrX3M2tfpWL9VnvfFQwPX2dF8uSH+8rwi4iIjD4N6ReRobMOP4c/P9h2hvoPPJOx3HD06qm1A3q005WbBpCIJejpyo0kqJw0K3fMZY67DH/bn/9MascOSKf7/c/hTxPw7bLPNwyLGdMi9r47nXsR0xoCl9szov2XY5eVl+FXvC8iIjL6lOEXkaEzD1+l3+zOBeKOUP9Dy1OJvlEALgIVAxt+nh/EJnriJPJeLIRrazE2+rDMOCkjjhmN93eLMSvT1k5nOkRLppqa2ZXUVuRWN2iKBljtmYDB+oJrHM5me3t/egads7azJ93MvfUO/t3hRmQkFM7hH71+iIiISJYCfhEZur4M/yEq9OcP6T9YwJ9JZV8KOFxBHIdY3i+f05ML+FM9ceKx3DJ0vmAAt6+aZGw3ltVNPJYa0D3HivtX1PJoy2fpSJfzYtsbuXqJj2XLspX5Gxrgw/U3MqPvZMNjL8fX5969b2H316fxYNfNAPyHQz/qZWSYeQG/oRS/iIjIqNOQfhEZur6ifQeZvw8HDOnvp3hcMpHEMrMV5V3egc81z8/wJ3sSJPID/lAIf1luakCLOX4y3JEIPNk1g0VvvJvXX/gA3QkHDQ3w5z9D4zO38MU3X8aMiucAyJg+EsG3Fd1jT+sUdm4O2PtuZfhlhGhIv4iIyNiigF9Ehq4vw3+IDLJ5kAx/JAK33AIrn8gNRff4BhHwe/MC/kSCZE8u4PeHgpTV5qrW76O8IBAZy1auhEnT1uNy9hDyb+f049aSSMAD93ZzysS/43Lkli3c13kKqSkfYHv7ObTFZtOZmM0LO9/D3ugcJsxusc9zKcMvI6Qgw48ifhERkdGmvwJFZOjMww/pz5/Dv6WxnOduTrJj+R0kOzdhZmCzM01t73sAX6h8wI92e7z2djqRINWTW3feFw7y6rap9L1eeDpRx4vXJ1l2k5exrr4edv293d4v9+7E613E+Qs20vpcNppKmUHaYjP55/qr+MP3A9yR+iI/bYBEArxeWLIEfFO6YGP2Hsrwy0jJf7GmOfwiIiKjTwG/iAydneE/+GChTDQb8D+fOYOf3FjBG+d/kdrQeuhnOr+/rGLAj3blBfzJeIJUMleYr7E5xINPzeY9vSvXOf0xbvulxeIPQV3dgB8xKurq4CF/u70/tWIHS5bAjKqttPa2rd71Th589UqWLMmeX1cHixfDqlWwaFF2/8tP5eoWKMMvIyV/HI2G9IuIiIw+/RUoIkM3kAx/V5THTjqbHk8j7+NLh7xdisoBP9rtyyval0iQSuQy/Ou3htm4dxJWnYFhWFSE95BOplm1auwH/FYqhWHk6h6cetx2/nMZ/PEbO+y2c984hS/9ovBr6Qv8+6TMXMCvDL+MFLMgw6+IX0REZLRpDr+IDJ2d4T94wB/vjNLjaSxoS6RD/HrF11jX+PaC9tv/MpGlSwf2aLfXZ2+nE0kyeRn+018XJG2EiaWyhft87v1U+KIsWjSwe4+mrj2NQK7qfiae/d517N9jt7178ezDvrhIm2l7Wxl+GSmWqvSLiIiMKQr4RWTo+qr0HyLD39adKNjf1nYBP3/s+6zddRZ3rLga08r9GNrbPpGGhmxBv8Px+PLm8CcTZNK5gP+M1wVZsgSiPVMBcBgZPvrOVWM+uw/QuGlHwX4m1U68u4dY577eFieT584ovvAAyvDLaMjP8CvcFxERGX0K+EVk6AaQ4Y925wLPra0X8MsnrydqTufDH4bL3+/llqf+l87ELPZFz2JP98kkEtm56Ifj9ucH/Eky6d4XC4YXh8PBsmVw6vRcZrtu9vrBfW2jpHXn3gNaLLat2Ugm2QaAy1eDy3X4jH1+wK8Mv4yU/Dn8GtIvIiIy+vRXoIgM3QDm8EdTGfvV4ulnhDjjA7nCcpEInH/P8fz3gz8lHIauLvD5GNDQe48vb0h/KomZyQb8DkfuRcDc2ZU0rcluNzUeGEiPTW2NTUVtax9/CsiOpgiWTxzQffKH9CvDLyMlv0q/4n0REZHRpwy/iAzdAKr092RMe3vS9HKuuipXXK6urncJOR9Eo9l/+yrPH07BkP5UEsvsDfhduWJ+s2ZOoG9gcTRaWEdgrOpqbS9q27M+N+ShfMKUAd0nldGQfhl5+XP4tSyfiIjI6FOGX0SGbgAZ/p68CCBUVVyFf9my4iXlBsKTN6Q/k0yAlQ1wHa5c5j9QXYGTcjK0k0618oufx3j9uQEAVq7Mrnk/0OdFIoO/Zihi0c6itlR8n71dO2vmgO6TtlS0T0aeqaJ9IiIiY4r+ChSRIbMskz+HQ6wKZODJfsrrWxZz8nYfbV/O/U8+0f/NjofXOuCOJwf2bPdeg4re7daOfXaBsAQZlvb2ZcrWRvxpN1EXgMX2B7/I5vvdGIaFwzDZei/8tHYqVVc1H/JZL/1pDvM27aIxOoXrvvUGFl66gnMufXVgHR2kSdGWQx7/+VM7eXDm4Zcy2N65HQCX4VLgJSNGQ/pFRETGFgX8IjJka1wG36ypAkzYcn/RcW/SYpbzTHv/mdhz7N6yvyTPrugq49/IjhgwkzH6xhjESXN/b1/mtlr8W/fpRMuzx6r9m4vv07md3zzXjqOmeO48QLK9induhSlla5lZBi+3nsCqB+eyf9ZteCpaS/K15LsqtdDetowQhhXN7VsGDy+fz4ST/jjgZ3ucnsOfJFIiBRl+1ekXEREZdZrDL3IIkQjccsvAlok7Fu0++Eh+AAIJSDlyc/jbA9FDnD04CXdurXpHJredduaCjB4PhLa2E09VHfQ+TkeS4P5pBz2eap7KlOBae/+EietJx8pIt0waatcPrbcWgYGPqLNwCkRnajqx7qpBPfvdJ7y7pN0TObRcxK85/CIiIqNPGX6Rfux6bRu/+e797NyVJhoP853/ehdXfKiWZctGu2djSzJv+O4nF36St89+e8Fxc9sO7n7y5t49B398359wHKLA32Ckk2nuevQ/ATDMHrt9ZvVxPHDJN7LP39vIvl98gjsfuYJdnuns8MymrSVIxnSw5KIfMq38eQCuX3gNr3tH/3PjX3k5wysbPmnvJ1un4Ysex83vuImTTirJl2Iz0xn+8kD2a3Lgo/7iS7mtoRW3EcXhcvPYaxfhy1QP+Nlel5cJgQml7aTIIRTO4R+9foiIiEiWAn6Rfvx12ffxxbczpya7Xx3cRUPD11i8eHgLto03qbxs3oTABKaXTS843kMbppEACwyHn5kVAys4N3AG2Yxirh/BYLndj4wZJuaK8u6Kv3Nr+xKao9OyAYkB0Xgl9A71n1vrLup7n5R/Pa/k7VcEonzi434uru///COxf/s++2txWy7e+MaTeOLVaTQ0QCIBXi98YgnD8myRUjCt/Ay/In4REZHRpoBf5ACmaZLq2V0w+3RCeDOJRLaSvAL+XpZFysj9cd/fXPFURweWlR2i7nT4S98Hw2VX57f74c89xxEMAnCafw3L5v+eV97zBhYtyh577Bdu0r21+mIdXQd9xJbVawv233JBKx/5bgn6foBIBJ68J7d0oDtj4AyFhryKgchosFSlX0REZExRwC9ygNY9zRikC9o8znb83jSLFun/MjbLJJX3WiR/rfe+JexO7u4EsnP4Xa7SB/yG4cY6IOD3BoK54243hteLlUhQ7djPVVflztsxL8h6O+AvXgqvz75Nmwr23Y6DvxwYqqVL4Z47tnHR3H9wXHW2zZvK4AiFgGyQr0BfxoP8DL/CfRERkdGn6EXkAI1bdxe1OYwMn7iqkbq6qaPQozHKzJDMy+B5nB46m9v5yed+z/597aQzbp6KTqCudxS/xzMMAb/DhWUWtvlCgYJ9RyhEJpHA7O4uaPeHw/Z2rOvgQXz7vm0F+8lYd/8nDlEkAo/dFeGjr/sqDiNjtzuTTgyXfkTL+KWifSIiIqNPf02KHKBl195+2y9/5y5AAb/NOiDgd3j4y/dvxxf/JzMqehurc6f7/EFKzcgbVWA/J1j4HEcwSKalBTNauEJAoDwX8MejxasHRCLwzNMpEt2Fn4dkvHQBfyQC31uW4i0n/bwg2AdwdR1mCQSRMaggw68h/SIiIqNOAb/IAdr35s2j9k8m1ZMN+Jp37hmtLo1NZppU3t/zbqebtr3bD3q6PxgqeRccDjeZA9r84QMC/lB2PxOLYVmWHYQEK8rtcxKxwoB/6VJY889/MbvqJY6vKZzekU6UJuBfekOKx+9Zx5yalZRP2wVALDWRPY2nkG4LcF7tIyV5jshIyp/Drwy/iIjI6FPAL3KAzpb99nb19Hns25AN+Nv27RutLo1NBwzpdzvcOMxWzIOcHiwvP8iRoTOcxT/C/GWFLxacfXP6UymsZBLD6wUgVFlmn5PsidnbkQisffifvGnuT/p9ZjrV02/7YKxebeJZfx3vXbi1oP3ul65lTusG3l1xD7XzS7N8ochIyl+WT+vyiYiIjD79RSlygFh7q709K69SWlfz/v5OP3ZZJqn8gN/pxkx3AJAxvUWnh2uqSt4Fh7N4SH/+UH3ALnwHFMzjD1fnXkCkeofpRyLwo2X7OHf2rQX3MM3ciwUzfeQB/zOP7afcVxjsb2k+lzPOm8t1tT/gNP8anKHwQa4WGbusgmX5RrEjIiIiAijgFykS7+4L+A1OOneR3d7T2TI6HRqrzExBwJ/uSEHvEnze0BRwTio4vXzihJJ3wdlPwH/zLQcO6c8L+PPm6hcE/IkevvHxv/Pnr36K2fHrcTuzGf+m7jr++OLX+elTt+LwTAbAMnswzYONYxiY46c0Few/t/0K/rL6U1x7ZSdlrmwfHWEF/DL+FCzLpzr9IiIio04Bv8gB0ol2ABzOMFWTa8DIZqsTPa2HuOoYdEDRvu7dHfZ2uLKKScefWHB6W6rwBUAppE1PUdstvy4jEsntO/KK+OVn+H1BP32zmlLxKP72X1Ph24Lf3QZAPBXm109fx4bmM3j/h6vx+vuq/1vE2ouL/A1Gxf9v787D5KgK9Y9/q/eenj2Z7CEbJECSyQIYdjAsFxXUoKyKRhCMoHD9uRC4XFFAiQpXRJCRKHq9qIhsokRZZYewhGQSCCEb2SaZzD7TPdNr1e+PnqmeZpbM3j2T9/M8PjlVdarrTE8R89Y5dY4v9fBofcU5PPn+JXzl8hwOPyT1uc68gZ/zQGSwWaiHX0REJJso8Iu009wYwjKTQ7bd/sLkn97kn2askXg83sWZByEzQazdZqiizi7nFo1m+sIFadU/f/khLF8+sE2IuaambbfExhBs8bJmTWpf26R9QIeZ+g2nD4BEvBanI5r6XDPAPzZ8k0+dO5oXX4QVK8DtS31OQ1Ud/dFYnQr8C4/Ota/Rvn0ODemXYaj9O/x6hV9ERCTzNGlfHz22dg849PWNNOEPd9ll01PAg2/twvIWQrgSMPnzP9fiHT92SNpimSY7dzazJbEbw5F9z+ZymitIJAz++08JZu22eG/qw9DaKW2+/jqRvzwMs1O91HUhD7+8J8ao+fuYcujAtCF+7Gm8ctcYAu5aHE4HL25ajMMTo8q3jwffStYZUx+n7Tf2wtodNBntRho4fJAIYrTrldxau5iVL12Nx2tx7hm7eD8K778FYVKjCZ5+cys5TX3/ndRsT6344D/EyfvRXbz/FuS9s52prfs3NiZ44a1dnZ4/0LL9XpPh480PUyOhtCyfiIhI5imx9tGNj2+kJW4duKIMK8c07ebY1vLuiIf/eaici2J+Rrfue+jJdazLHfih6d16a8PQXq+HJhuVnBNzMHdH8r+DsDu1bnxuc5DmkI+q+jmUFG6gMTSLhCdMc9jNTx7YR+7hAzcBYr3/cJrenooZc+JwJ8g7ajN3r90Oa5PHP7O1gWWtdR944X1e2Oq3z11mufnoLAD7m0ZjuqK453+Y9jnnBaHtN//317bw9oa+T953UWWlfU/9fVuI8srkOwin7trIta37H/2ggb89VN7p+YMmS+81GZ4U90VERDJPgV+knaJYakh1oyvP/rMtnOXuSxArzME9urmTsw8uTkxc0dQ/6ZvbBf4QbswCi7WrT8BZdBzr62ditXhweON4R/fv/fePKjxuO4HDKolU5+IdHezwu2lxpVYMuHrtQywrf8zefuvwuUQ/kkpOz3mVKyb/jry6JliV2r9p6hxqWp8VnLf1eb5T8UGf27xmVinh1o70r7/9IIXB5BB/j5l6ZSTk8vX580WyQemkwkw3QURE5KCnwN9HN3zqcHA4D1xRhpW6h98j0jr33PQJ0/nRJ+YQer2ZpldfAuAI82VG7apid+yLfO7KwW2LaZrs3rWbSZMn4cjCYdb5wQBbHk5tx7wGbS/1R2/8EQ6/D1dZLs89kkc87MCfY7L43BYuunz6ILaq40oA+eua4Z0HAciJR8ghYh9zmxD9yH/GM2I7mGTtg2j6/pxoxA78OKAwGqI7jfFcahKjGOWssWfeb2M6EnZ5XNN+fLFwh/M/fdpcPj53TrfXGCjZfq/J8DN/ciGzxmkeChERkUxT4O+j846ahMfTcYZwGd5u/WXIflP7T3+Yw1nhKZx+dDPrWvf53bVMKXyN2q2Tmev/EqWlg9eWRCLBWk8t8+cfgtOZhQ+X9jfziwdT3eOWmQzAhsPPJafOAuALi6D8W7BmDSxcCKWlo4BRQ9pM66iJ7N36Fs1r3ulwzN3Jsn5FuT7cvskd9uf4fUATAPFALu7JHeu0eWHPLJ4InkIwHsAbi3LuxGc5aeL79vGEESc5bYCLvHElHa919NGc85XPYgzR7z3r7zURERER6RMFfpFW5eUQbGyguLUXd1f1eMrKwPONWTTVH83EgrcxjOT76qMD21mzhkEN/FnPTGC0jkCPGw7MRLIX29W6qkGb0tLMfk+Gy8WEn/yk02NrbrmL+vUV7fY4mP/3v+JydfyrMfj062z6zS3JWofP5NCb7+30M199rop9d3+bE1y/B6ApMoHrXv45Tz0QsL8H86LPgwUOdy6HPv1YX380EREREZFuaeymSKvVq8FlJCdisywnDm+ASAScbge/W/0DbnriQSwr+Z9MUc4eFi7MZGuzgJXAEU/28AdzCmntssYbKMpcm3rJn5u+1r3Dlddp2AfILS6wy5Hmrofzv/H40/hcqZnK87wVzJv4or1UYKQ5gmUmh/C7PRryLCIiIiKDR4FfpNWiReB1JYNc3PLR1OTA64UlS2DZMnC4/TTHku+IBzyVHHlkvLuPG/nMVOBvbBfyDffQDtnvD39eeuB2+wq6qAn5o1M/Y7Sl64kHA449HfbNKNloPyCqraiy93v8+T1tqoiIiIhIrynwi7QqLQWPKznDezQewOdLBv3SUlixAl58EQIFyfetDRJUbNqZyeZmnmVixA1ePvJY1o9LBdfn35zI8uUZbFcv+PPTA78vt7jLuvmjUw8DYpGuV2kww5Ud9k0ted8ezl+7NxX4fbldP2AQEREREekvBX6RVvF4HKN1BvdAjocXX0wG/TalpTB5xgR7e9d7W4a6idnFTGAZM2l0V2EYjfbuffUTKCtLzomQ7QKF6T3suUVdj07wBfy0TXuSiHUd+MPB6taSE8uZXNDRae6luTE5eqRxf41dN6egsPeNFhERERHpIQV+kVbB2ia7nJPr73SiuTFTp9jlyu0fDkGrspiVAPxpuxoih7Gx6gQiEex31rNZblF6D3ve6I4z5rfncCZ/3nishZUrOz7UMOMJ4pE6AFzeIkZPnNF6xGLTa8m1HhqrU4E/t2j4zHcgIiIiIsOPAr9Iq6aaBrvs9vo7rTNh1gy7XL9396C3KauZCSwrNcHd0xuv5J5Xfk5doxevl2ExqWFecXrgLxw7ptv6DlfrfWEGuen6Sk4+mbTXFyo/3AskAPDlljBx1hH2se3r1gMQrE1N6Jc7qutXCERERERE+kuBX6RVqC41LN3tD3Ra55DZ04HWmenr9g5Fs7KWZcZp/1dIghyCQdLmPsh2eSWFadujJo3r/gRHjl38z8WX8YWjV6S9vlCxeYd9PLd4DDMXzbe3t2/YTHk5NDfU2/sKx47ua9NFRERERA5IgV+kVag+Ffi9XQR+X8CP050chh1tqWbt2sSQtC0bxRNR2v8V8p/f9nHPPXSY+yCb3XSzD9Ny2tv/+9eJ3dZPOMenbU8rfgWfs9p+faF6Z2rUR+G48UyePR2r9bUHM7yZh79/Ffu3v2LXKRrf/SsEIiIiIiL9ocAv0irU0C7wB3K7rBc2k6HPIMaFn64YNjPSD7SYGcNqtz1rdgFLlw6Pnn1I9sqX3esgbiYDecJ0c899Rd1ONvixCy5lc/UZNIYnAWAYFsdMe8N+faFub4Vdt2TKJDZscFAVPBQAh5Eg37sj7fN+uVKBX0REREQGz7AN/IsXL2bWrFlp/7v33nu7PScSifDDH/6QRYsWsWDBAr75zW9SXV3d7Tly8GhpSq2t7s/tvIe/vBy27k1N3Dc2sH3YzEg/0KLxSFrgDxTmdVk3G61eDZEI1DQn37OvaZlNJOLodrLBE88cT+Ex1/D81i/b+44//E37IUdTdWpJvvGHTmX1anhm4wWE48WY7eY7aFO20n9Q3jsiIiIiMjQ6/gt0GLn66qs5//zz7e1AoPOQ1ubHP/4xL7zwAnfccQd5eXncfPPNfOMb3+CBBx4Y7KbKMBBuSs3S78/P77TO6tWwu24qh7fO7TZtzFbe+PBk1qwZPj3bAyVqRrEw7e1A0fAK/IsWgdcL9zx/HQumvcva7Uf2aLLBFSvgrXPn8/ztLgzieM2NmKaJw+GgpantAaKD8TMmsigG362dz81P/AGXCxZOfJLPzP8lAI2RafZqBgfbvSMiIiIiQ2NYB/5AIEBJSc+GxDY1NfHwww9z2223cdxxxwHJBwCf/OQnWbt2LfPnz+/VtROJBInEwfv+9kgUDqV6+H15gU5/v0cfDXc3Tre3C3078HoTzJsHA307tF0/W++zcCyMaZi0dfP7c/1Z29bOzJ4NV1wB997r5O1tpXi9cMUVCWbPPvDvcsFRHt4smk5z3QdYiSB3//g9jv/ELGLh5JJ7hqsAw+lg9uxE6zWguRle+uB0alvGctLMF/j3xk8M2r3TW9l+r8nIoXtNhoruNRkqutdkqPT1HhvWgX/lypXcc889jB8/nrPPPpulS5ficnX+I23YsIFYLMbxxx9v75sxYwYTJkzoU+B/7733+tN0yUL1Nan10Wsa6li7dm2n9eadMBoz4sJhxBkV2MlnPrMP09xHF9X7bf369YPzwf0U2rUdi7a/eNyUb8jOdnbnggtgwQIPGzfmcMQRzcycGe3x7zF33CE0130AwJYXH+H1VRNYODkGQFXDOC69dB9XX70v7RrvvBPg+eePZPNLc/B4TM49d3Dvnd7K1ntNRh7dazJUdK/JUNG9Jtlq2Ab+Sy65hCOPPJKCggLeeecd/ud//oeqqiquu+66TutXV1fjdrvJ/8hQ7VGjRlFVVdXr6x955JF4PJ4+tV2y0zt/eNQuHzlvLpNnT+u03n2/h19+pYREZC857v3cdUceOfkHWM6tDxKJBOvXr2fu3Lk4nc4DnzDENsdexeJ9AAzD0+uHZtmir82u/TDA/o3PAHBI0RscUpQ6VhMaz99eHsd//uc4SkvTr1FenhzGv3Chk9LSccDA3zu9le33mowcutdkqOhek6Gie02GSjQa7VOnc1YF/ttuu42VK1d2W2fVqlXMmDGDr3zlK/a+ww8/HLfbzY033si3v/3tIQniTqdT/1GPMPFIs13OLyns9vdbUDKJ2t17AdhRvpk5pxw1aO3K1nstEYtiWVEADFxZ2cbBtK16Jg3hyRT4dqXtjyUClO87k0jEybp1sGBB+nkLFnTcly2y9V6TkUf3mgwV3WsyVHSvyWDr6/2VVYH/0ksvZcmSJd3WmTx5cqf7582bRzweZ/fu3UyfPr3D8dGjRxOLxWhsbEzr5a+pqenxPAAyssWj7QL/qIJu65ZMmUbt7jcB2P3eB4Ma+LNVuLkZiAPgMA6+/4M77jgHZ9/4I44cuxq/N0xVfYA9tVNoTEwl1OLF5zvwBIAiIiIiIoMpqwJ/cXExxcXFfTp348aNOBwORo0a1enxOXPm4Ha7ee211/iP//gPALZt20ZFRcWwHYosAysRCycLhhuXx91t3UmHH8amV5Ll/R9uH+SWZafmurBdNg7CwF9aChcvLaas7BNEImC2LljgcIDPB8uWafZ9EREREcmsrAr8PfXOO++wbt06jj32WAKBAO+88w633norn/70pykoSPbMVlZW8uUvf5mf/vSnlJaWkpeXx+c+9zlWrFhBQUEBubm53HLLLSxYsECBXwBIJFoAcDj8B6w7/agjefa3yXLtvl2sXJlc5u1gCnjNDTG77MCRwZZkzooVcPHFbe/kJ/e1lQ+me0FEREREstOwDPwej4dVq1Zx1113EY1GmTRpEkuXLk17rz8Wi7F9+3ZaWlrsfddffz0Oh4Orr76aaDTKiSeeyI033piJH0GykJWIAOBw+Q5YN39UAQ5XIWa8nmhzJf+865/c8v2PcdGXR7FixWC3NDuEg+0Cv+PgDPyQDPbtw72CvoiIiIhki2EZ+GfPns2DDz7YbZ1JkyaxadOmtH1er5cbb7xRIV86CIdaaHsf3eU5cA8/gDtnApHGepyOKGcefjcnzniAn9/7Gy6+2H1QhL5Ii2mXnYaRwZaIiIiIiEhnDt5uOZF2mmoa7LLLk9OjcxK56RP15bhrKPTsY82aAW1a1oqF2gV+pwK/iIiIiEi2UeAXAYJ1jXbZ7etZ4D/lks/xz43fxbJSYXdMQe1BMzN7PKrALyIiIiKSzRT4RYBgbSrwe/w9C/zzF7o4+pOn8G7lZ+x9/3Hq/oNiOD9APGLZZZdLgV9EREREJNso8IsAoYZU4Pfm5Pb4vBUr4IwzA/b28QtrB7Rd2SweTwV+t1t/lYiIiIiIZJthOWmfSF9U37uSugf+DLF4h2N7i6dD6+T88bfXsPmkk3v8uXlFU9jbOs/f/qeeZvP9d/eqXYbXS/GlX6H44ot7dV6mmbHUkH6XR4FfRERERCTbKPDLQcEMhai6806Idwz7AOG8yXbgd4VCxKuqevzZXnLBnwy8ESvRq3Pb7L/tdoouughjGM12byZSPfxevzODLRERERERkc4o8MtBIREM2mHf8PlwFhelHW/x5QPJmfp9fg+uCeN7/Nl5Xh8QBSDucfbq3ER1DVY0itXcjBWLYXg8PT4300wz1cPv8euvEhERERGRbKN/pctBwWppsct5Z57BxJ/+FID6/XWUfWsF7vi79vE3J1zFOY8t6vFnj69r4tVlFwGQyPNz2APP9fjcnZd9ldArryTbGInAsAr8qR7+nFx3BlsiIiIiIiKd0Yu3clAww2G77PD57fLjdz+WFvYBHllVQnl5zz87pyBA27OzeCTYq3YZXq9dttq1cTiwrIRdzsnzdlNTREREREQyQYFfDgpmux5+h99nl6v3VKbV21F3Clsrp7NmTc8/2+Fw4HAlZ+pPxEK9apfDlwrKZiTaq3MzzTLbAr8DX56/27oiIiIiIjL0NKQ/i5WXw+rVsGgRB83a7oOl/ZB+w58Kpx5HHZHW8n1v3MPWvZPx+WDhwt59vssTIBpvwDKbiUdjuDw9G+JueNr18EeGWQ8/bRMguvHk5GS0LSIiIiIi0pECf5ZavhzKyiAWSeD2Olm2LLnmu/SNGQ7TGM+lJjGK5toCxrQdiDfYdXZVjcHng2XLev+Axe3LI9qcLNfvr2P0pDHd1m97mLOgKZ9A6z4rEun2nGxjWTEAHIYbt1+BX0REREQk2yjwZ6Hy8mTYP3v2byidsIrXP7yQsrLzufhi9fT31d33elhXfw1WIWy8cwGfiCYfoMQiTckKhp877/KycGHfvmNvTj6h2mS5tqKq28B/wzc389oLFUSiLv5Qcypfz1nHAv86zPDwCvy0Bn7DcuHxBw5QWUREREREhpoCfxZavRoiEZPSiatwGlGOOuQJ/rnhfNasUeDvi/Jy+L9/jeGCU39HwFtJzu5Gyspmc+GFJmY8Ocmey5PL0qV9v4Y/r8AuN+6v6bLeo/c8R9H+/+GTRyS3W2LFPP7vc5jh3ooVHT6BP9IcAZLv8Dtw4M7JzWyDRERERESkA03al4UWLYIxBfU4jeQkbi5HEK+39++VS9Lq1eDzhAh4kxP0zZ60ikgE3nq1nrbQ6vHl9+sagcJCu9xYU9dlvW1vvZK27XfXYhUa1JnFw2pIf6i+MbVhunCrh19EREREJOso8Geh0lK45PN77G2XI8Kyy1vUu99HixbBqNz0EO71wtQxqRn6vbmF/bpGoKjILgdra7us54zt6rCvuKCWIkftsBrSf/tPmuxyZbCEn941JYOtERERERGRzijwZ6lPnlKRtn3N17oeJi7dKy2FM+duTtv39UtrKfBW2ds5+UUfPa1X8kelzm9uaOi0TjweJxHZ32H/ESWbyHcFh82Q/vJy+PdTqQcoLZEc7r1/POXlGWyUiIiIiIh0oMCfper27Uvbbtjfda+xHNj8QyvTtr+4ZAcNVanA376Hvi8Kx462yy1NycBfXg4rV2IH4T0bP4S2peyM1NKAgdxkb7kZHh7L8q1eDRPzP7C3zbCfcMTJmjUZbJSIiIiIiHSgwJ+lGqur0rerFPj7o+Ujw+X3b99JU03qOy0oKenX5xeOTwX+2qomvvIVOPuMOu7+0QZOPjnB8uWwY30qJBdPnGOXIy4DACsS7VcbhsqiRTC5OPWz7Kicitdrao4JEREREZEso1n6s1Sovjptu304ld6LxGJp2zV7Kgg3pSaea99D3xeF44qxAAMINdWy64PHufKkP+B2hlmz63OUlX2FmV/bZtefvvBoane/BVjEHMm2WZHh0cNfWgrjC7aCBabpItFgsWxpE6Wlvkw3TURERERE2lEPf5YKN6UH/FB95++FS898NPA3Vu2jpane3i6aMKZfn//eey7iieRM9QHPfj4x517czmSAL524CiPRTN2+nXb96Qtn43DmAZCgBQBzmMzSX19Zi8NK3p9OCrls+u386Mbh8bBCRERERORgosCfpWLh+rTt5kYF/v6IJuJp280NVUSaU99pyeT+Bf7Vq6EpMrbTYy5HC6fN/idE2yZidDPxsMm4/cl5AywihN0+rGEyS/8Hr6dm58tPgM/fBA5nBlskIiIiIiKdUeDPQrFIGDPRnLYvHGzsorb0ROwjgT/aXEMs0vqdGl58uTn9+vxFi+DJTVewu/4oalsOZ2ftUbzwwRfs40dPfgzMegAawhO5/gYn/vxi+3hDoBgrS3v4208+WF4Orzz5vn2sKNhC3GWBQ28HiYiIiIhkG/0rPQvVVlR22BdpbuqkpvRU3EoP/JYZwjKTZZc7r9+fX1oKp587h7KyOUQi4PXCZz8LxF+E2C7cjtQydlXBKfy5DG6/IjVRYFNOPmaWvcNfX1nLXdf+hco9TcRNB4//agZrdh7PFxZ9yNjWr2xM/T5qiwBDPfwiIiIiItlGgT8LVe3Y02FfLKzA3x+JjwT+9gxX/oBcY8UKuPhiWLMGFi5MPgR4/v8+wdv/uDetXk3LNCIRCCXG2ftCvpysm6X/rz+5D3/L80xtHYhw6OjnOXXmb+3jcdOPq7aSRAng0GAhEREREZFso3+lZ6Hq3Xs77ItHQxloyciRsGJdHtu+dzTLlw/MdUpLYenS5J8AJ170SXLHnUBzbAyh6Bj2BRfyVPkn8XphyqxU4G/2uLNulv7G/du7Px6aTINZjOmy1MMvIiIiIpKF1MOfBcrLk5O+LVqU3F77elWHOol4c4d90nMmXQf+hpZiHilL9s63BfWB4nK5+NovrmP5cigrwx7uv2wZzD9uAlueTdZrdHio2Odg4sBevkcs02TPf36L4EsvgWWlDsw6DIBYIsDmdz9OJD/B2MIPyfM2E47msm/TLIqcL9HgRJP2iYiIiIhkIQX+DLJMk5uuepwt5R+SMOFfv/bTGC5m4ZSNjMltrWR4wYqAFSEajuDxeTPa5uHKsroeLh+MjScSSQ7FH+jA36az4f7hUCre18edXPfE2Ry9PFl3KLWsXUfTU0+l7Ys6PUDyIVM0VsSe3ZOJWx72chhuI0aBo5HPFP6NfG+QcI56+EVEREREspECfwY9+ad/k1v7G+ZP6rqOwz0eM/ohAHUVNYydPmFoGjeMtR8xUVoKkXAEWnv43Y7RFMw4ga3r12FaBk3RCTxV/gm83mQQH0ylpekPFD7Y6ieayMPjbMLnqaMxnkPZII006E6iPjWhoLNkNK7iUdS68oFaAEb54MrZ/2BcILmM4b5QASU5tdTHy3mzwGDjXFM9/CIiIiIiWUiBPwMs0+KZ37/HhmcewuimXlN0Cvk5JdAa+Ov3K/B3xzRNfnDVa2x8Zy/RmIPbbz6Gz148me9cWWvXcRouvnzL5Z0OsR/KkA3JhxItsWI8zibcziATPHtZHx7ckQadMUPJ+SEa47lsPfI7zLnqM1jvPwkP/xKAMXPn8Om/fCPtnH2hfZzx0BkAnB5SD7+IiIiISDZS4M+Ayg8bef+19zESuwBoiY1hZ+MX2FXlwe+pZ9LoRsJRLy3mDE497CXqdyTPa6yq6+ZT5eE7/0VB7a84dkpy+9hpD/KL3/yWMxek5kRwOdxA50Psh9qiRbDt8Rx7u97IHZKRBh9lBoO87vgYb+YdTcVrCX7y9GY+f8pe2lpWPKHjQ6aYmZoTwW1ZmqVfRERERCQLKfBnQEswRiz8nr1dGTqWPQ3TsJwGocREtlaDx2Vy5FF5jJmQbwf+ptqDN/DXhetYtX0VTdGulyfcv343gXbbHmeQSSVr+Ncb6xjbus/EpGxdWarSAnjVglfXDUqzDygnLwGJZLkkr5ITP/dPXrV28Oq65EiQvfv38kb5GxiO7saC9I/r1fepnd3EDMeTzABOtAyC9RPAkzy+0bWNze2/M6A+Um+XPRYiIiIiIpKFFPgz4Df3xslt2YjHCabloGXceZx3UZHds9u+1/nZ3xfa54Xq6jPS3mxw8+s38/SOp7ut81mO7bBv8tiN1MReswN/NBHmN2vvHoQW9s25ucdAQ2t5ygP8eN527l77kUr7B7cNn6k4jiJXalJDw7DI8+yxt//S+Cj1axu7PN/d7YspIiIiIiKSKRqHO8TKy+H1F3fhcSYD1M7aeTz0tyI74H90Hfe8UYX2ufsrGli5MvkZB5tNtZsOWMdDvMO+6ZPeI9+R2m85zAFtV3/FXKnucb8nM23Lc3e9ggG4qA90HfYBjot0veShiIiIiIhkjnr4h9jq1eB2pAJUXWR6t0vCFZSMssv1O57i6acOZfm1p3P5FZ4hX74tk6JmMpQWeAv48Yk/7rTO2pcfJEZV2r4p/gSFeXOp2vs6AGPySrj7tOzp4f9g+ys01CTbbDhz0tpmmibbtm1j+vTpOAbxHfkt//4rdS3VnR5zeAu5+4wuvq9//D8m1WxnuuEbtLaJiIiIiEjfKfAPsUWL4Mn7QvZ2YyjQ7URthWNGpW2fMetXBDyNlJVdOOTLt2VSNJEM/LnuXE6edHKndcoTf2635QLiJJpr8ccn23tH5xV1eX4mNI7a0Tain5jDmda2RCJBXlUe8yfOx+kcvFnwPzAftMtGzlFYzW/b227f2K6/rxgQi4NXM/SLiIiIiGQjDekfYqWlMP/wVA9/gpxul4QrOWQslnNM2r7Dxqy1RwUcLGKJ5LBxd+ss+51JxMOtJReenORb+2a8gVBTg13H7/MPWhv7wh9ITTMYczixYkM/PD6SiNjl084/I+3Y+i2TWL68ixOt1tkGNUO/iIiIiEhW0r/UM+DQaUG7fMUyX7dD8x0uJ6d+85es2vhd4qYXgFzP3ows35ZJbUP6PU5Pl3XM1uBqOLzkFqeWkmts2GuXA/k5Hc7LJF9erl2OOZ2Yke7epx8ccbPtQYkDc1z6xIeN4TzKyrqYN8JsDfyGevhFRERERLKRAn8GxFpa7PKMmQcOoEcfF+CYT55CKDoeAL+7hmVfbTpohvNblmUP6fc4Dhz4HU4vReMn2vtj0dQ099kW+HPyU4E/7jSwIuFuag+OhJW8Hw3Dz1tvudhdf7R9bF/wiK5Hk1itkww6FPhFRERERLKRAn8GxKOpUOdvF/i6s2IFTDhkrL19yac3D3i7slXcjGORnM2+qx5+0zTBSj4UcLi8jJ0+tdN6uYV5g9LGvgoU5dvluMPAikS6qT3wouEIlpW8H134WLQIHin/JhUN89lWu5jXPjim69Ek6uEXEREREclqCvwZEIukevhz8gPd1Ew3ccYhdnn3+1sGtE3ZrG04P3Qd+MPBFmh9KOB0+5h0xKEd6lgYBLIt8Bek2pNwgBlOBf7ycnj00aJBXYaxamelXXYbHkpL4aIvj+K3r9/CfS//P3w+R9dzTJityx2qh19EREREJCtplv4MSMRSPfw5PezhBxg/czofvJYsV+/4cIBblb3ahvND14E/WNdkl11uHzUtkzAtNw4jNQlewvSzfV8eCwavqb3Wvoc/YZhY0WTg/6//3MW7r7xDLAZPPRhk8bmlg7IMY83O1PwG3tYJEVesgIsvTg7jX7iwm5Ug2ibtM/TcUEREREQkGynwZ0AilurF9eb0vId/auksXmgtN1TtGeBWZa+0wN/FO/zN9anA7/b6efNtF02R8RT4dqY+J5bHux/mZlXgzy1u18NvmFjhMK+/WE/+nm9x0vTUg6G//f2/Kb940YDP21C7q8Iu+52pFRBKS3uw5GPbkH718IuIiIiIZCV1zWVAavk48Ph7vkxc8YTRGI5k/XBw34C3K1u1H9Lvdna+LF+oMbXygdvrZ9EieGnrF2iKTCCaKCAUGUPFhwuYU5pdz7hcLhcYyYcYJgnMSJQ3n9mAy5E+ed/04ncGZRnGxv2pCQ1zPF1PiNiptkn79A6/iIiIiEhWUuDPgLbZ5DFcOJw9D0sOhwNvIDlxn5UIUfaL6kF9vztbtO/h9zq9ndZpaUoFfo8/h9JSWHT2Cdzx/L08+M/v8e6/z+Ckupc5Yl7n52eS0Rr4LWJYkTBj8vZ3qFOcWzkoyzAGa2vtcp6/l4FfPfwiIiIiIlktu7o7DxJWa4+1o4vw2p38MZMIN30IwPanfspLf53L5OMvZsVPR27o6smQ/nBjKFUnJ7n0Xtu76Fuue5yJmx4n3xXE0YsRFUPF6fAQN5OB34xEcFtVHeqMK6wclGUYm5vq7XJhb5cstDRLv4iIiIhINlMP/xBLxEwsK7VefG85A1Ps8pjc91g48S9UvPp7vv99Rmxvf49m6Q+lAr83JxVcS0vh6Em7yXclRwAYPt8gtbLvUvdBnEhTM6F2ve5tXEbHfQMh0pKa+2BUUc8nkATUwy8iIiIikuUU+IdYNBwHKzlzvNPd+/DZGDidSLwgbV/phMd48k+vc/LJsHz5gDQzq7Tv4e/qHf60wB9InwjRakm9D5+VPfztHmKEGoM0N9XZ24YzOamflQgSDjYP+LUjkbbA7yZ3VEG3dTuwFPhFRERERLKZAv8Qawm1AMnJzpyu3vfwH7+4hNv+/Xt++XwZ7+07BwDDsPjs/F8Qj0YoKxt5Pf2xRGppva6G9EfaBX5/bnrgN1takgXDwPBm3zv87nb3QaixmWiovnXLwJs3wT62b+vArcwQDUf4/tdfxUokHy6EY/n85olJPf8Ay9KkfSIiIiIiWU6Bf4g116cml3N5et/bXFoKV1zhpj4yif975avsbZgFgMfZxJGTtxKJMCizuWdSJNFuGcMuXoOItoV6wJ/3kR7+cPKY4fdjGMYgtLB/3J7Uz9QcChOLNgJgOAP4CkbZxyo/3D1g1yy78loKan9sb4ejBfz+mcN6/rCoLeyDevhFRERERLKUJu0bYi1NqZ5ot7dv75O3TUb36KNO9jw/hfFsSh5ItOD1MiizuWdS1IziTFiUbrcY17KFhp1PdKgTrm43s/3WzTT8IzUsPl6bLDuy8P19SL8PgsFmrETyoZDLk4+/sJD6HcljtXv2Dsj1Is0RYqEtafuizcU0Rv2sWUPPJgdse38f1MMvIiIiIpKlFPiHWPvl41x9DPyQDGWlpXDLdg+0dm7n5QRZtqyHgW0YiSaiXP4vk8XlFvA4FTzeoU54zrHQmjtDv7uPiqaOS9tla+D3eFMjPWoaU/eHN1BAzqgie7u+ct+AXK96d2Xa9u4dJ/P+piNxe3rxsMhqF/jVwy8iIiIikpU0pH+IhZtSE695/L1cBq0Tpe3Wlf/a0gZWrOj3R2admBnj8F1Wt3USjtRxb6yl0zq+uXMHtF0DxRdI3QeNoVTg9+cVkTc2FfiDddUDcr3aPamHIbtrjmXju7PJN5v48gUtPX9YlNbDr79GRERERESykXr4h1i4XaDz+Po/Y3z7GenzcwZ+FvdsEE1Ecbfmy1r3aHYc920On9rC1EnxVKVnXoTWV/0nf/NKPO70XmdHbi55Z54xRC3uHV+732Go9f19gEDRKHLHFtrb4aaBCfx1+1KBv3RsA/9RcidFjloWfv/knn+IevhFRERERLKeAv8QizSnep/brxffV+0/IxIamYE/kojgjsM7LfP4874LeWbLZ/F6Ydky7BEN5rPPt9Z2Mu6ypRlqad/k5Ofa5Wi83i4XjB6Ny+PG4czHTDQSC9d1cnbvNeyvsstFrhhTPDuB5EORHtM7/CIiIiIiWU9jcYdY2nrxAxD4289IH20ZmYE/Zsb4YPRR7DrG5OQzf8eNZ1/Axw75V9oShIl4snvf6GLZvmyWU5if2rBSKxIUjisBwO1PDuu3zBbeeLWp39cL1dXa5UAsbJcdgUBn1TunWfpFRERERLKeAv8Qa798nC+3FwGrC+3XnI+GO393fbiLJqJUFxq4nM04jARuR4iTD3sgbQlCy2wN/F0s25fNcooKOt1fPHEsAE2REnvfFV/cy/LlqTrl5bByJT1fTg9obkiNFMhpSb5iYvj9GK5eDPhRD7+IiIiISNbTkP4hFmsX+L296VHtQvvh4LGRGvjjEQwjSvtp+/yuakbn17NwYSGmadqB3+nMzpn4u5PXbib+9kZPHsfqp3ayefcEZiezP0W+PZSVzeTii+Ghla8T2fYnXEaELY/6+GPRSUw96kyOPy2PefOMLq8XDtXb5dxgDQCO3j58SnuHX88NRURERESykf6lPsRikVQoz8kfgB7+dp8Ri4a7qTl8xSMtWMQ67L/03PWUlkK0JQIkh5g73cOvhz9vfEmHfXHTxy0/yeXddwPsrp1i758xdjORCDz6iIVnz92Myd1GcWAPY/K2Mib+e6pe+i5fu2B72iiAj4q2NLSWXHgaksP7nYFevL8P6uEXERERERkGFPiHWPvA3/79+74KFObZ5fgIDfyJcBiId9hfOuVdAIJ1qffaXZ7+r3ww1HJGFQDpPfLhWCH33guBQIw9jTPt/YW+HXi9YLZU4ncnh+ZbVuo/44BnD8dN/VPa/AYflYglvy+nOw+CySH9vZqwDzRLv4iIiIjIMKAh/UOsfShvPxy/r3IKU5+RiI3QwB9swdXag28Yfiwr+dCkeudWAJobUksdDsfA73Q6gRwgNaFjPJ7PYfF3OOSff+Gq8aMJml6cjgjFOTtYceTPGL2rgh2tdXfXncwbW4/jMwv/B5czwti8Dcw032Dr91ZRNL0q7Vph0wArmryu5QYz+b32OvCrh19EREREJOsp8A+wyPbtVHzvWmI7d3Z6PDrtSLu87+ILqU90HKrea1PHAgnioQY+WHRsnz7C8PsZ/fWvU3TB+f1vzwAzg6nvyOMqIBI3wYoQqt8FpAd+t3f4BX6ACY0BtvpyMIw4puln0/tHM925mUMrniffFeTJyR8jQQSvq56jQw+yITgTWn/Umv2jqdw1hprDpjG28H3cjiBzxr/HhC1PEPwwmHad6vyxMC0Z7l2R1KwIzrw8ekWz9IuIiIiIZD0F/gHW8PDDhNev7/J4ot1QaEdtNYkua/acwSQsElgkSDQ0HPiEzjQ0UPXLX2Zl4KcxFfidhht//kRaGrZhJYLc8z8VTCpMhdpoYngG/tM/MR/r9tf5W/05NJj5FDga+Uzh38h3JX+23LhBgztZd3/ReJp8qVcAPm08ySljXmB9/SwoTO4rnbaO/I+EfYCgPw9apz/0JJJ/Gjk5FCxZ0rsGq4dfRERERCTrKfD31ftPgLPjTOiJD1MvTrtGF+Jwp4chy0i05i0X/vGjBqQphuHGssKYxPD04TNjVfVY8QRmYz28+9iAtGlA1dbbRScW+UWF7Gl9rvH3P6zB5YhwymHJ7VfeCFBx5Rq+f1XnIyyyVclph3DBsWMo/cDFu5udzD7MzWFTP8muXXOZPHkyu16sYP26lwEIH38U0W1rwQLDkcdn7/4UhgGvvhnhzVeTn+ceH+aw7/9Xh+vsebEC3nkRgFFzpnPYd0/H4fPi8Db07nffsDtV1iz9IiIiIiJZSYG/j5yPXwnx5g77rS2FJN/HhimLNuHJS+/DtzZNTAY1w8WMU7oeCdCrtmyeghkHrBjTTlrf6/y1/anRhGs9WLEY/PXLA9KmAdX4MSA5+74z3kKg9j370GmzytKqhiNeHnjQx5c81zO1cM9QtrLfnMAcYI4BbEn+71CATTA9OIP1TABg5/ZNYCVHPQTcXtxPXwXASRa87TgT02wh3FzB1gduZ3vNFA4v+cD+LkJ7z7SvV1i7GtdTt/e/4erhFxERERHJSuqaG2BmItXrbzisjset5GzzDmPgnrU4jbZfo0nU8vT6fPt0y0h7NTtbGPHUz+TGJB5yp81M315TqJjGaC6bq2cMVfOGxCE5O0g+EoCE2WjvDzWPtsuGAUXetu8qwcN75vBk9XzO+dOfufetLwEQjKW+y0S84wiVPhk3d2A+R0REREREBpR6+PvIPPV6nEbHQG9tXAW7kvOnG6cth7zUO+XvbQtgbfwbBuBw++CMmwekLc7dGyGWXKKtedF1+Ip692s13vkbVFck27/4Rgx3dt0Wxl9fB5Ih1+0v4IjTFvKnX+QyveQN3I4Edc357K2fzv7GmazfPZs8f5TJn1gCU8/IbMP7ybRMKioqmDBhAh7DgXPbWhKx/Wl1Vm08m08uOZLDpybf15/ycj01a94AwOuqY1LhW0wY+zFuevVGTr5oAbs3vYuL5PsQ333yVj5/WiXXX/oefVY0FWZ9su/ni4iIiIjIoMmuZDeMWB/7Gng69qZbv10HrQumGSd+A3IDACz/TjNrn32NM2Ymu9BbYnlwwtUD0hbXgzdAU3LG+tD0z1J85PRenW+MWge0Bv6jv2a3OVsYf12HHfjzRnH4Fy5lxnooKzufSMReWQ6HA7xe+OIVcPgXLs1cgweIlUhQuXYt4+fPB6cT8/c/hXaB37TcrNl1NK/HTuXwE5L7Tjgqwpqv/TeEUyF+bFE1L24ZzV+2XEq8+WoKfcn926pn8NOH53L2NadTWjqEP5iIiIiIiAwJBf4BZkYjdtnROry6vBxcH1zPGTO32MdqG3MpL2dAgpbb67PLzY2hbmp2znC77bIViwJZFvijqbK79SHLihVw8cWwZg0sXJg81lYeqeF10QVL+ctPTXyuOhwOgze2n4npyLV/fgCPz8sZ3/4pV174Fkvm/iC5z1GP1wuJBHidyd79hOnD7c8hGEx+byP1OxMREREROZgp8A8wK9KaTh0OcCW/3tdebKLIvyWt3t6G6QMWtNy+1GsDLY0dl2I78AekbgMrFuumYmYY8dSrE552oypKS9O/v5EeWk84fQx/f2Y5ZWUQiSRHMyxb1vHnLi2FU84YBfuS2wX+WpYtg3PPTfD0+/UARBKFNDWBz0faAwMRERERERk5FPgHmBVJ9vAbXi+GkZwUbca43axrPd4UOYQ3Pvwkb+9azHcGKGh52gf+YP96+InHB6JJA8pot9CB1+fNXEOywEdHNnT1kOO/bhnLPV9Nlg8ZW801K6B6dw2O1i8zGCnG5+v8gYGIiIiIiIwMCvwDrC3wO9r1RAeM1PJw22rm8+qHZw9o0PLm5NjlcD8Df1b28LdbOcDj93Vd8SDx0ZENncnJywHDA1YUK56c/6B61z77+Njxebz4osK+iIiIiMhIpsA/wMxocki/4U31RNfsqbDLRy8q5jt3D2zQ8rQL/JFQc6/PN1xZHvjb9/DnKPD3lNOdRyJaQyLeBEDtnkr72ORpxQr7IiIiIiIjXOeLmUuftR/S36ZhfyponXj6hAEPWr5AapK9SHMfAn/7Hv5sHNLfbvVDf8DfdUVJ4/blJwtWjGBdE/WVqRn+80tKMtQqEREREREZKgr8AywV+FND+kN11XZ57PRJA35NX267Hv6Wll6fn81D+k3LBDOV+H15Od3Ulva8OQV2uWZ3JU3VqfuwaOyYTDRJRERERESG0LAc0r969Wq+9KUvdXrsr3/9K6VddKFfcsklvPHGG2n7LrjgAm666aYBa5sZjdIYz2VvzVRCrcvuhYM1rUcNxk4dP2DXauPPy7XLsZa+DOnP3ln6o4koBhZtkT+nILfb+pKSU1BEQ+tr+zV79hNqqLWPFU8am6FWiYiIiIjIUBmWgX/BggW8/PLLaft+8Ytf8NprrzF37txuzz3//PO5+uqr7W2/f+CGiFuJBO80Hsk/wp9iR+U03j05OQt6SaQOAIerAJfHfYBP6b2cvNSQ/mi4vz382TWkP2pGwUr18Pvz8zPYmuElt7DYLjfsryLcVGdvj5k6IRNNEhERERGRITQsA7/H46Gk3TvIsViMZ599li9+8Yv2Unhd8fl8aecOpPK3ozyfdwoLFj3EnEQh7z01j/t/l+BbpyaH+Xtyigbluv52vd7xaLjX5xvu7O7hx2qbpt/Am6d3+Hsqb3Qq8DdW1RAN1yc3DDe5RXmZaZSIiIiIiAyZYRn4P+q5556jvr6ez33ucwes+/e//53HH3+ckpISPv7xj3PllVf2qZc/kUiQSCTS9q1+NcK4ae/iMBJ4XTV87ug/8cbWk+zjOfmjO5wzEHztQnA82tLra1jO1G2QiIQHpY19FY6Fgbb2uDE83qxq32Bq+zn7+vPmjxltl4N1tSSiyeX5nO58LMs6aL5HObD+3msiPaV7TYaK7jUZKrrXZKj09R4bEYH/oYce4sQTT2TcuHHd1jv77LOZMGECY8aMYdOmTdx2221s376du+66q9fXfO+99zrsK/SHqPGkhk1PLnyDnUXTUhU8PtauXdvrax1IvN0w/GikudfXcFVV0TbF4PbNm0kUFg5Y2/prX2QfWMmb2zCcbNyyGauu9gBnjSzr16/v03m1ocZUed9OIHmfON25g3IfyvDX13tNpLd0r8lQ0b0mQ0X3mmSrrAr8t912GytXruy2zqpVq5gxY4a9vW/fPl5++WXuuOOOA37+BRdcYJdnzZpFSUkJS5cuZefOnRxyyCG9auuRRx6Jx+NJ3zdqF3c/7QMaAMj1VHLy/I3QOsp+8mGHMX/+/F5dp6dexgXEwYz1+hp168qpai1PnTSJvEFqY19srtvM+61B1cDFnIULcRYNzqsR2SaRSLB+/Xrmzp2L0+ns9fnBKU2UP3g3ALHQXnt/oHD0oN2HMjz1914T6SndazJUdK/JUNG9JkMlGo122ul8IFkV+C+99FKWLFnSbZ3JkyenbT/88MMUFhayePHiXl9v3rx5AOzYsaPXgd/pdHb4j9oRj+Nyhmk/2MIffs4uj5kyadD+IjAcHiwzTiIe5b77nCxalFwhoCcc7ZYQNEwzq/6ySpAAKzmvgGE5cfn9OLKofUOhs3utJwpGF4LhBiuGZaYmc8wtGp1Vv2PJHn2910R6S/eaDBXdazJUdK/JYOvr/ZVVgb+4uJji4uIDV2xlWRaPPPIIn/3sZ3G7ez/7/caNGwEGbBI/MxLBNGJgtd+biv9/+fskSk8bkEt14HB6SZjNxGJRrr4avN7kCgErVhz43PRZ+rNr0r7m5hCQnLTPgQPjI6MqpHtOVx6JWPorEHmjRndRW0RERERERhJHphvQH6+//jq7d+/m85//fIdjlZWVnHXWWZSXlwOwc+dO7r77bjZs2MDu3bt59tlnufbaaznmmGM4/PDDB6Q9ViSKZUU6PWZaLu7+/VhamzPgLMMLgMvRwn99cinHTllFWRk9up7hyuLA3xSyyw7LAa6sekaV9dy+jrPxv75ubAZaIiIiIiIiQ21YB/6HHnqIBQsWpL3T3yYWi7F9+3ZaWpJDmd1uN6+99hqXXXYZn/jEJ/jJT37CmWeeSVlZ2YC1p6WhifY9+qaVGnaxrXYxkYiTNWsG7HJpTCO1Pr3fVc3HZ/6eWCTRo+ul9/DHu6k59Jqbmu2yA+OAyy7KR7gKO+z6+7PjB+3Bk4iIiIiIZI9h3V16++23d3ls0qRJbNq0yd4eP348999//6C2p6G63i57PdO45V+34rRCuL1e9tUU4vPBwoWDc+1Zi8/nrcd+T457P05HFJejmUPHb2PhwsMOeG42D+kPtw/8lsJ+b0WMCcA6e9u0nOysnsiaNT2f40FERERERIanYd3Dn20a65rsst/nYelluYTiY6msTYb9ZcsGL2SdvfRYwoeXsX7fZ+x9n/v4O/b1ysth5crOh/gb7tRzn2wL/NFQarI5Bwr8vXXseeezs/54akKHUdcyk39/cDlx8gftwZOIiIiIiGSPYd3Dn22Cjan3zb0eHytWwMUXw5o1yZ79we5RXbECnvjfI3h/VXJ7UsG7ACxfDr9b2YyZiBKjsMNkfmk9/PHsCvyRUNguOxX4e+34xSU8/tT1/KoMIpHUZI7q3RcRERERGfkU+AdQczAV+H0+P5AMVkMZrk77/FzeX+UEEjTu30Z5OTzyxz1cc+p3cTtbuP+Nmygrm8vFF6falc1D+mPN7QK/8n6fDPWDJxERERERyQ4a0j+AmptTw899fn9G2uAL+PEGJgCQiNXxynP7uXDhj/G6GnEYMU6c+TSRCGmT+Rmu7B3SH2uJ2mWnJuzrs9JSWLpUYV9ERERE5GCiwD+AwuFUb3QgNydj7Rg1KTVRX93aByjw7bC3A679eL3pkwe27+Ennl2z9CdaUsscqodfRERERESk5xT4B1Ak0i7w5+dmrB2T58y2y96Wp9KO+dzBju9wZ/GQfrNdD7/LodtVRERERESkp/QO/wCKxlK90XmFeRlrh2N011OwF+RU8+0V6fsMVxYH/kgq8LvVxS8iIiIiItJj6jIdQLF4KvAXjMrPWDve3VrC+opzSJg+TMtFNFGQOmgGCbdb6g4+Omlfdg3ptyKp9rhdul1FRERERER6Sj38Ayhupnqj80oKM9aORYvgu9/9Gg+8+TXy8qCpCa76+A+YkP8WAJXb9jBl7qF2fcOTvT38VlSBX0REREREpC+UoAZQItH2Dr8HdyCQsXaUlibXWvf5IBhM/llcUmQf3/9hRVr9bJ6l34qn2tMcztxEiCIiIiIiIsONAv8AMq3kkH6H4cXweDLalhUr4MUX4Z57kn8uPLbEPlazJxX4y8vhDw94aYwnJxm0smyW/lBD6mHEr1/8OMuXZ7AxIiIiIiIiw4iG9PdRbUstrkTq64vHE9AW+C0X9VYzzpbqTDUPgAmHJf8HUL0pNadAzb49VLdUs+LaGiLvP4bbEWTboYuZUlPP4nCI6gy3u817GyAcghx/crs6VExZGVx8sdaTFxERERERORAF/j465/FzCJupZfjyQ7mcyygAnJaTc/91AY2B7JlVflLVOE7HC8DW3e9ywr2f4zPbP8bUoo12neqcYl7ctomfP/jxTDUzTeiDOVzuMQFImDl4MYlEYM0aBX4REREREZED0ZD+AZIXTr2z7zINYln2KKUqv84ue6JxvBVTKPF/kFbH46qjKVzy0VMzZmJOEx5nCIDm8Fiqmkfh9cLCrlcdFBERERERkVZZFkuHj5MmnETcSL3vblTkAesAcJkWx089FTPbZpX/914wW3DHIpxtTMNh1KYdNgyLCQGDj0/Ojh7+ov0e4H0A6hrHk+uJce4y9e6LiIiIiIj0hAJ/H604aQWe1on5ln/PZOO/n+CQ6cnAH2zJ4+dn3IlhZM+QfoBf/t8VRJtbwGxm1J6Ivb85VkKOuwqACcXF3Ln4zkw1Mc2Dr/ySXa2Bf76xlS9/Zy0Lb5id4VaJiIiIiIgMD1nWBT38vLW6Gf/mZZw8/df2vq31U1i/PrvCPoAvt7i1ZEF0MwAmeeSWpEJ0i5k9t0TNnu12eWbwA6bNyJ62iYiIiIiIZDslqH569bFXyPWkr2tf0zCGNWsy1KBuGJ4xHfZtq/kYxSUF9nZLltwSpmnS0rC7dctLYbAaw+PNaJtERERERESGk+xId8NYSX76e/DbK06meU9uVk4sFzKmdtj3xraP0xBOBf4w2TEy4ZVn9mGZzQB4rFwcgNH6CoWIiIiIiIgcmN7h7yefq9Eur9t4LpEdfj4z8d+Ulp6bwVZ17qQLP0XZ9/ZQ6NuNy2mxqXIhW2vnM3FqJR/uStYJZ3jeAdM0+cFVr1K75TWmtb6BEA/lAWB4FfhFRERERER6SoG/n1qaUoH/jIJXmFlSzuhpYzPYoq4tPNpL8ce+SVkZRCLg9cKyZXDYEUV8+FKyTtSwMtrGf9z3KgW1KygoTu3bvHcmx8dXM9mrIf0iIiIiIiI9pcDfT5Fgk12ebO4m3xXE8E7OYIu6t2IFXHwxrFmTXM++tBQ+XFdkH49lOPBveXtd2nbC9LF792TqcosxFPhFRERERER6TIG/nyItqcCfE6oHwJHlk8uVlqavZV84bpRdjhtmBlqU4nfW0NxaXltxIR9sOoypkW0U5dfqHX4REREREZFe0KR9/RSPhOyyPxIEGHY90fmjCqB1sr4E8cw2JpaaBPGpDZ/AEXHymcK/JUdOZPmDFBERERERkWyiHv5+ikdb+6MNLy7LbC0Or55oh8uJYXixrDCmEcOyLIwMTd4Xba5vLbm49fYiSlffQ+CF5DB/xzD7XkVERERERDJJPfz9ZMaTgd/p9Nv7HMOshx/AYfgAMK0IxGIdjpeXw8qVyT8HUzyWnATR6c7n0ksdjM9PTYo43EZOiIiIiIiIZJJ6+PshHo1hWWEAnO4ce/9wHHruNNwkAIjR0tBETknyvf5wsJk7vnYzifAeLMtg5YOzCSz4Dit+2v9nRTX3/Y7a//1frGgUgGanFyYGku2JO/jguOMxg0G7vt7hFxERERER6Tn18PdDY3W9XXa5Uz38w7En2uVIhen6fTV2+fFfP407vh6fqxa/u4apxS/y4uPr+t3Tb0WjVP3858QrK0nU1ZGoq6M+nrod3XGDRF0dVttoA5cLR25u/y4qIiIiIiJyEFEPfz/UV6YmmPN42/XwD8N3zd0Ot12u31fNhLkzAdizvapD3YC7mjVr0mf6761EKGSHecPvxzV6NM2B8UDyYYPf6cY9Obm8oeFyUXj++TgV+EVERERERHpMgb8fmmrq7bLH2+4d/mE4pN/jSN0KTdV1djnP20jDR+rm5wRZuLB/1zObUssZ5i1ezMTbb2Prr/8Cz/0fAGNOOZVDr7y4fxcRERERERE5iGlIfz801dbbZZ/XZ5eH45B+rzMV+IN1qYjvtBo71J1/ZF2/eveBtHfzHXnJnvuGqtRogsKxY/p3ARERERERkYOcAn8/hOrq7bK/XcgfjkP6/e5U4A81pkJ+pKWpQ93DpnZ8CNBbiXaBv22ofqguNXfAqMnj+n0NERERERGRg5kCfz80twvG/nYhfzguy5fTLvC3tBtuH4+EOtSNNHfc11tpPfytgT/clJoTYcwh4/t9DRERERERkYOZAn8/tDS1C/ye1KR3w3FZvhxvu0n7alOBPh5t7lA31tJxX2+lB/48AKItba8SuMgfU9Tva4iIiIiIiBzMFPj7qKW8nJaaanvb25DqnR6O7/C//m6qR33LhwmWL0+WzXgy3BuO1BwFsUj/A38iLfAHME2TeCwZ+J3ufBwO3ZoiIiIiIiL9oVTVR3suv4Jw1V57O/G3h+3ycHuHv7wcHn4zNQufyxmirAzWrIlhWWEA3L5i+3hnvf69ZTalv8MfrG0Eq3WZPndhvz9fRERERETkYKfA3w9xw7TL/kgqwHqnT89Ec/ps9WqobSnAtJLv8Qc8DUQi8ParqeX53L48MJIjFxLxln5fs21Ivwk8/UI593zzv+1j2/eOsUcYiIiIiIiISN+4DlxFOlN40UWYa9dCAjA8jPnylwDwz5+Pv79r1g2xRYvA744TjhWS46nG7azH6zWZNr6Oda11PP5cWhp9mPEIZjzc72uaoSCN8VzennkULR88l3Yj1oVK+FsZXHwx/V7+T0RERERE5GClwN9Ho//zGqwvXwyA0xVg7PJrM9yivisthS+ctJXGeB54qnE5Inz90jpG56d6+H2BPIIuP2a8AcsMY5pmv96zf+TpYjaOuoipec+l7Y+Z+ayrOJNIBNasUeAXERERERHpKwX+PopH41hma0+3IyezjRkAS8+t5y+PN9M2WP/Ln99D9c56+7gvLx+nx08sDGDS3BgitzCvT9cqL4e/ls/mP864x9734uaLeOGDc/D4c2hscuHzwcKFff5xREREREREDnp6h7+Pyr5+lV3eV1s47N85N9xuchMxe7tq5x6C9fX2dqCgALcn9WAjWNtIX61eDabLwO1MTv7XEJ7OP9Z9gXA8n6ZgMuwvW6befRERERERkf5QD38fOWgk0VpuChfxx2H+zrnhchEIR6jyJ7fr9u4jHovaxwNFhbh97QJ/TQNMn9inay1aBE8GUksaNoaLycuDlSshFEr27A/X71FERERERCRbKPD3g2U5iCRG8faes4f9O+eG201uOGRvN1bvx3A47e3cogK8OQF7O1jX0OdrlZbC4omr7dcHEpafZcvgvPP6/JEiIiIiIiLyEQr8/fDU+1fyzt6zaGpi2L9zbrhd5IfqgCIAQnXVaT36+aOL8AZy7e1QQ1O/rjejYCcbWsvz5rr56op+fZyIiIiIiIh8hAJ/P2yvKyUYZES8c2643a2BfxRgEgnVYVmmfbxwbDG+3FTgb2nse+C3LIuwmfrsojGBbmqLiIiIiIhIXyjw95HDlcfDT0xgzZqR8c654XbjwMJh5GBaQWKRurQh/fmjC/HnpWblb2nqR+CPRokaqc/2BRT4RUREREREBpoCfx/ljppKaenwD/o2V/JWcFleogTBihAL1wFgOHy4PG5yCtoF/mCwz5cyg0FirtStp8AvIiIiIiIy8LQsXx/5ig/LdBMGlOF2A+CJp24Jy0wum+dwJd/lDxTk28eizSH6ygwGiTlT18nJz+umtoiIiIiIiPSFAn8f3fXnBSxfnulWDJy2wO+Nmx2OudzJwJ9b3C7wt/Q98CeagsSdqSH9/vzcbmqLiIiIiIhIXyjw99GmPdMoK4Py8ky3ZGAYrmTgD0SiHY5ZjmQPfN6oQntfNNy/Hv52AwnSXhUQERERERGRgaHA30eBXCeRCKxZk+mWDIy2Hv7clo7v5m/ZVcTy5ZBXXGDvi0db+nwtMxQk0e7Oy2s3ckBEREREREQGhgJ/HwWD4PUmZ+gfCQxPMvAXBus6HGtoLqKsDDZt8dI2z2Mi1vfAn2hqImGkXh0IFCnwi4iIiIiIDDQF/j7y+WDZspEzS7/ROmt+YagGF0eQML2Ylpvm2HjWVHzCHs1gOH0AJOL96OEPhjDbBf7cAr3DLyIiIiIiMtC0LF8f/eMfI6d3H1JD+gFOyPFz+qMPEw5DXh40NSUfcCxcCP9+zk88EcRMhCkv79sDDzMYxDTiYAGGF4fLecBzREREREREpHfUw99Hc+ZkugUDq33gH1fQxLJlyZAfDKaPZgjHkjP2G8Q57dRIn1YqMINNWFYMAIfDMyDtFxERERERkXQK/AKkhvQDWLEYK1bAiy/CPfck/1yxIrkiQV1jakZ9j6O+TysVJIJBLFoDf+srAiIiIiIiIjKwFPgFSO/ht+LJMF5aCkuXpobtr14Ntc1j7XrHzHirTysVhBtDQAIAp1uBX0REREREZDAo8AuQHviJxTqts2gRbNx/gr19aPGrfVqpoLmp2S67PP7enSwiIiIiIiI9osAvSe17+KOdB/7SUjjhUwuJJpLL6I3N28DXL6vv9cR9wZZo6rLenN63VURERERERA5Is/QLkP4Of2T7dipuuKHTeld74O/+cQSjjTiMBHOqb+OvS0YxbUyICSXhHl0rVFkDxcmyxx/od9tFRERERESkIwV+AcBwOJK9/LEYiZoaGh56uMu600umUj4huZTenub3CFvFPPv6fE6uf5kF/nUHvFZ43GF22eNXD7+IiIiIiMhg0JB+sRV86lM9qjeh6kMMcgFwOqIEvPuYMG0tf6v/DI3x3AOeH3F77bInRz38IiIiIiIig0E9/GKbsOJWRl/5daxI5IB1n79rHbU7nyDHUwWA193IM7FP8akrjuWCJfFuz/3wby/Am48B4M9V4BcRERERERkMCvySxnPIIT2qd9Jlh3HyyZ/nmydfRaF/B06jhYQnwPyz8vEe1v25McfLdtmXd+ARASIiIiIiItJ7GtIvfVJaCsuWQdxM9tAbhsXXL2vs0Yz94VDQLvsV+EVERERERAaFAr/02YoVMHmyx97++qV1PTov2tJslwMFeQPeLhEREREREVHgl37KK0z10DfV1PfonGg4FfhzFPhFREREREQGhQK/9Isv0C7w19Z3Wqe8HFauTP4JEGsX+HOL8gezeSIiIiIiIgctTdon/eLLS/XQh+ob046ZpskPrnqVTWv3EIs7WPmzWRx5fClz42G7Tu6ogiFrq4iIiIiIyMFEgV/6JacgFdhbGtMD/9/KnqOg9g4+1m7i/32VsyB/OwAWDnwB35C0U0RERERE5GCjIf3SL4HC1JD8jwb+7WvXdag/Ln+TXY6bPjZs0C0oIiIiIiIyGJS2pF/yigvtcrg5mHbMa1Tb5fK9n6a+ZVza8T3181mzZlCbJyIiIiIictDSkH7pl7xRhXY5EkoP/Ga0FgDLMnjozS/TErmUwydsZGxxM7WNAXbUH8nltw9la0VERERERA4eCvzSL/mjC+1yLBJKOxaL1ANgOAPcfY+XF16ARx+dy/Ya8Hph2TIoLR3CxoqIiIiIiBxEFPilX/LbzbIfj6SW24s0R7ASyQcAHn8hS5fC0qXwrW/BmjWwcKHCvoiIiIiIyGBS4Jd+cbicGA4flhkmEUsF/v0f7rHLvtxiu1xaqqAvIiIiIiIyFLJy0r577rmHCy+8kHnz5nH00Ud3WqeiooIrrriCefPmcdxxx/GTn/yEeDze7efW19fz7W9/m4ULF3L00Udz/fXXEwqFuj1HDszhzAHAjLfY+/Z/WGGXA4WjhrxNIiIiIiIiB7usDPyxWIyzzjqLiy66qNPjiUSCr33ta8RiMR544AFWrFjBo48+yp133tnt537nO99hy5Yt/O53v6OsrIy33nqL73//+4PxIxxUnG4/AJYVth+61Fbss4/nl4zJSLtEREREREQOZlkZ+K+++mqWLl3KzJkzOz3+8ssvs2XLFn72s59xxBFHcMopp3DNNdfwxz/+kWg02uk5W7du5aWXXuKWW26xRw7ccMMNPPHEE1RWVg7mjzPiub0BuxysbgCgYf9+e1/RuLFD3iYREREREZGD3bB8h3/t2rXMnDmT0aNH2/tOPPFEfvCDH7BlyxaOPPLIDue888475OfnM3fuXHvf8ccfj8PhoLy8nDPOOKNH17YsC6DLBwsHI29eAeGQF4CavdXkFOcRaqzD6UnuK5o4Rt9XHyQSCSB5rzmdzgy3RkYy3WsyVHSvyVDRvSZDRfeaDJW2PNWWR3tqWAb+6urqtLAP2NtVVVVdnlNcXJy2z+VyUVBQ0OU5nTFNE4BNmzb1pskjWumFZwNnA1BvBqlfv545550FnAVACwnWr1+fuQYOc++9916mmyAHCd1rMlR0r8lQ0b0mQ0X3mgyVtjzaU0MW+G+77TZWrlzZbZ1Vq1YxY8aMIWpR37hcLubOnYvD4cAwjEw3R0REREREREY4y7IwTROXq3cRfsgC/6WXXsqSJUu6rTN58uQefdbo0aMpLy9P21ddXQ1ASUlJl+fU1tam7YvH4zQ0NHR5TmccDgcej6fH9UVEREREREQyYcgCf3FxcYch9X01f/58ysrKqKmpYdSo5JJvr776Krm5uRx66KGdnrNgwQIaGxvZsGEDc+bMAeD111/HNE1KtTC8iIiIiIiIjDBZOUt/RUUFGzdupKKigkQiwcaNG9m4cSOhUAhITtB36KGH8r3vfY/333+fl156iTvuuIMvfOELdu97eXk5Z511lj0D/4wZMzjppJP47//+b8rLy3n77be5+eab+dSnPsXYsZpFXkREREREREYWw+rtNH9DYPny5Tz66KMd9v/hD39g0aJFAOzZs4cf/OAHvPHGG/j9fpYsWcK3v/1t+52G1atX86UvfYlnn32WSZMmAVBfX8/NN9/Mc889h8Ph4Mwzz+SGG24gEAh0uJaIiIiIiIjIcJaVgV9ERERERERE+icrh/SLiIiIiIiISP8o8IuIiIiIiIiMQAr8IiIiIiIiIiOQAr+IiIiIiIjICKTA3w/Lli3j1FNPZe7cuZx44ol897vftZcBFBkou3fv5vrrr2fx4sWUlpZy+umnc+eddxKNRjPdNBmB7rnnHi688ELmzZvH0UcfnenmyAjyxz/+kcWLFzN37lzOO+88ysvLM90kGYHefPNNli1bxoknnsisWbN45plnMt0kGYF+/etf87nPfY4FCxZw3HHHceWVV7Jt27ZMN0tGoD/96U+cc845LFy4kIULF3LBBRfwwgsv9OozFPj74dhjj+WOO+7gX//6F3feeSe7du3immuuyXSzZITZtm0blmVx00038cQTT3DdddfxwAMP8POf/zzTTZMRKBaLcdZZZ3HRRRdluikygqxatYpbb72Vq666ikcffZTDDz+cyy67jJqamkw3TUaY5uZmZs2axY033pjppsgI9sYbb/CFL3yBBx98kN/97nfE43Euu+wympubM900GWHGjRvHd77zHR555BEefvhhjj32WK666io2b97c48/QsnwD6Nlnn+Wqq65i/fr1uN3uTDdHRrDf/OY3/PnPf+bZZ5/NdFNkhHrkkUf48Y9/zFtvvZXppsgIcN555zF37ly+//3vA2CaJqeccgqXXHIJV1xxRYZbJyPVrFmzuPvuuzn99NMz3RQZ4WpraznuuOO4//77OeaYYzLdHBnhPvaxj/Hd736X8847r0f11cM/QOrr6/n73//OggULFPZl0DU1NVFQUJDpZoiIHFA0GuXdd9/l+OOPt/c5HA6OP/543nnnnQy2TERkYDQ1NQHo32YyqBKJBE888QTNzc0sWLCgx+e5BrFNB4Wf/exn/PGPf6SlpYX58+dTVlaW6SbJCLdjxw7uv/9+rr322kw3RUTkgOrq6kgkEowaNSpt/6hRo/TOq4gMe6Zp8uMf/5iFCxcyc+bMTDdHRqBNmzZx4YUXEolEyMnJ4e677+bQQw/t8fkK/B9x2223sXLlym7rrFq1ihkzZgBw2WWX8fnPf56Kigruuusurr32Wn79619jGMZQNFeGsd7eawCVlZV89atf5ayzzuL8888f7CbKCNGXe01EREQO7Ic//CGbN2/mT3/6U6abIiPUtGnTeOyxx2hqauLJJ5/k2muv5f777+9x6Ffg/4hLL72UJUuWdFtn8uTJdrm4uJji4mKmTZvGjBkzOOWUU1i7dm2vhlnIwam391plZSVf+tKXWLBgATfffPNgN09GkN7eayIDqaioCKfT2WGCvpqaGkaPHp2hVomI9N9NN93E888/z/3338+4ceMy3RwZoTweD1OmTAFgzpw5rF+/nj/84Q/cdNNNPTpfgf8j2gJ8X5imCaDl0qRHenOvtYX92bNnc+utt+JwaPoN6bn+/L0m0l8ej4fZs2fz2muv2ZOnmabJa6+9xhe/+MUMt05EpPcsy+Lmm2/m6aef5v/+7//00FyGlGmavcqbCvx9tG7dOtavX89RRx1Ffn4+O3fu5Be/+AWHHHKIevdlQFVWVnLJJZcwYcIErr32Wmpra+1jJSUlGWyZjEQVFRU0NDRQUVFBIpFg48aNABxyyCEEAoEMt06Gq6985Stce+21zJkzh9LSUv73f/+XlpYWzj333Ew3TUaYUCjEzp077e3du3ezceNGCgoKmDBhQgZbJiPJD3/4Q/7xj3/wq1/9ikAgQFVVFQB5eXn4fL4Mt05Gkttvv52TTz6Z8ePHEwqF+Mc//sEbb7zBb3/72x5/hpbl66NNmzbxox/9iE2bNtHc3ExJSQknnXQSV155JWPHjs1082QEeeSRR7juuus6PbZp06Yhbo2MdMuXL+fRRx/tsP8Pf/gDixYtykCLZKS4//77+e1vf0tVVRVHHHEEN9xwA/Pmzct0s2SEWb16NV/60pc67F+yZAkrVqzIQItkJJo1a1an+2+99VY9yJQBdf311/P666+zf/9+8vLymDVrFpdffjknnHBCjz9DgV9ERERERERkBNKLwCIiIiIiIiIjkAK/iIiIiIiIyAikwC8iIiIiIiIyAinwi4iIiIiIiIxACvwiIiIiIiIiI5ACv4iIiIiIiMgIpMAvIiIiIiIiMgIp8IuIiIiIiIiMQAr8IiIiIiIiIiOQAr+IiIiIiIjICKTALyIiIiIiIjICKfCLiIhIv7z99tvMmjWLWbNmsWrVqk7rrFu3jgULFjBr1ix+8pOfDHELRUREDk4K/CIiItIvRx11FIsXLwbgl7/8JYlEIu34tm3buOKKK2hubmbJkiV873vfy0QzRUREDjoK/CIiItJv3/72t3E6nWzbto3HH3/c3l9ZWclXv/pV6uvr+fjHP84tt9yCYRgZbKmIiMjBQ4FfRERE+u3QQw9lyZIlANx1113EYjEaGxv56le/yp49ezjqqKO44447cLlcGW6piIjIwcOwLMvKdCNERERk+KusrOTMM88kHA5z3XXX8cwzz/Dmm28yc+ZM/vjHP5Kfn5/pJoqIiBxUFPhFRERkwNx2222sXLnS3p44cSIPPPAAY8aM6VA3FApx3333sWHDBjZs2EB1dTVLlixhxYoVQ9lkERGREUtD+kVERGTAXHLJJTgcyX9eFBYWct9993Ua9gHq6uq46667ePfdd5kzZ85QNlNEROSgoBfpREREZEDE43FuvPFGTNMEoKWlBZ/P12X9MWPG8OKLLzJ27FgikQilpaVD1VQREZGDgnr4RUREpN8sy+KGG27g3//+N8XFxUyaNIlIJMKdd97Z5Tkej4exY8cOYStFREQOLgr8IiIi0m8//elPefTRR8nJyeHXv/413/rWtwB47LHH2LJlS4ZbJyIicnBS4BcREZF++e1vf8t9992H2+3mrrvuorS0lE996lPMmjWLRCLB7bffnukmioiIHJQU+EVERKTPHnvsMX72s59hGAa33norJ5xwAgCGYXDNNdcA8Nxzz/H2229nspkiIiIHJQV+ERER6ZMXXniB//qv/8KyLJYvX84555yTdvy0005j3rx5QHK5PhERERlaCvwiIiLSa++88w7XXHMN8Xicyy+/nKVLl3Zar+1d/jVr1vDMM88MYQtFREREy/KJiIhIry1YsIC1a9cesN5xxx3Hpk2bBr9BIiIi0oF6+EVERERERERGIPXwi4iISMbcf//9NDY2kkgkANi0aRO/+tWvADjmmGM45phjMtk8ERGRYc2wLMvKdCNERETk4LR48WL27NnT6bFvfOMbfPOb3xziFomIiIwcCvwiIiIiIiIiI5De4RcREREREREZgRT4RUREREREREYgBX4RERERERGREUiBX0RERERERGQEUuAXERERERERGYEU+EVERERERERGIAV+ERERERERkRFIgV9ERERERERkBFLgFxERERERERmBFPhFRERERERERiAFfhEREREREZER6P8DlLIaiPwDptgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Построение моделей с различной глубиной дерева и их визуализация\n", + "for depth in [1, 2, 3, 5, 10, 15]:\n", + " tree_reg = DecisionTreeRegressor(max_depth=depth, random_state=42)\n", + " tree_reg.fit(X, y)\n", + " plot_regression_predictions(tree_reg, X, y, ylabel=None if depth != 1 else \"$y$\", label=f\"depth={depth}\")\n", + " plt.legend(loc=\"upper center\", fontsize=14)\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "На мой взгляд оптимально при глубине 10, при 15 слишком большое" + ], + "metadata": { + "id": "wMJiFajWCYRh" + }, + "id": "wMJiFajWCYRh" + }, + { + "cell_type": "markdown", + "id": "b185effa-2fd7-496a-a5f6-f802d6a32eea", + "metadata": { + "id": "b185effa-2fd7-496a-a5f6-f802d6a32eea" + }, + "source": [ + "### Задание 2. Random forest\n", + "\n", + "Теперь давайте немного подготовимся к тому, чтобы реализовать свой собственный случайный лес, а потом реализуем его." + ] + }, + { + "cell_type": "markdown", + "id": "573cfb4a-1fc3-4c0f-b165-a4ab6a341843", + "metadata": { + "id": "573cfb4a-1fc3-4c0f-b165-a4ab6a341843" + }, + "source": [ + "#### Задание 2. 1. Простое ансамблирование\n", + "\n", + "**1 балла**\n", + "\n", + "Представим, что у нас есть 101 классификатор. Каждый может с вероятностью `p` (равной для всех моделей) правильно предсказать класс объекта. Будем делать предсказания по большинству голосов (majority vote). Постройте зависимость вероятности правильно классифицировать объект от значения `p`. Вам может быть полезная следующая формула:" + ] + }, + { + "cell_type": "markdown", + "id": "9a47cc99-0337-4831-bc83-5dc09dc55e52", + "metadata": { + "id": "9a47cc99-0337-4831-bc83-5dc09dc55e52" + }, + "source": [ + "$$ \\large \\mu = \\sum_ {i = 51} ^ {101} C_{101} ^ ip ^ i (1-p) ^ {101-i} $$" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f398cc1a-c87a-4b6e-97fc-6c6355c6c4ab", + "metadata": { + "id": "f398cc1a-c87a-4b6e-97fc-6c6355c6c4ab" + }, + "outputs": [], + "source": [ + "# Функция для расчета биномиального коэффициента\n", + "def binom_coeff(n, k):\n", + " return math.factorial(n) / (math.factorial(k) * math.factorial(n - k))\n", + "# Функция для расчета вероятности голосования\n", + "def majority_vote_prob(p):\n", + " mu = 0\n", + " for i in range(51, 102):\n", + " mu += binom_coeff(101, i) * (p ** i) * ((1 - p) ** (101 - i))\n", + " return mu" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "33d1ecd5-b310-4106-915a-2f7afb26f608", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "33d1ecd5-b310-4106-915a-2f7afb26f608", + "outputId": "e42b26e6-4c76-4133-e50d-4c13b070c655" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACn60lEQVR4nOzdd1hTZxsG8DsJewkCijLcggsBoa1aa92tu9JaB1ZbrdbVukfdq1hXnR2OOtBat627jvqpFbUqKiJqKyqCiAjIHiE53x+YlAgCBxIT4P5dl5dwcnJyJ3lJ8uS8QyIIggAiIiIiIiJ6Jam+AxARERERERk6Fk5ERERERERFYOFERERERERUBBZORERERERERWDhREREREREVAQWTkREREREREVg4URERERERFQEFk5ERERERERFYOFERERERERUBBZOREREpPbbb78hKipK/fvevXsRGxurx0RERIaBhRNVONu3b8fgwYPRokULNGrUCC1btkRAQAD2798PpVKp73hERHp15coVLF68GFFRUTh79izmzp0LiUSi71hlwty5c+Hu7q7vGESkI0b6DkD0uu3fvx+Ojo4YMWIErKyskJycjOvXr2PKlCk4c+YMli1bpu+IRER6M3DgQHzyySdo164dAODTTz9FlSpV9JyKiEj/WDhRhbN161YYGxvn225ra4utW7di3LhxcHFx0UMyIiL9q1OnDo4fP45//vkHdnZ2cHNz03ckIiKDwK56VOEUVDQBgLOzMwBAKv3vz+LEiRMYOnQo3n77bTRu3Bjt27fHmjVroFAoNK47YMAAuLu7q/+9+eabGDp0KO7evauxn7u7O1atWqWxbf369XB3d8eAAQM0tmdlZWHVqlXo1KkTmjRpgrfffhujRo1CZGQkACAqKgru7u7Yu3evxvXmzJkDd3d3TJkyRb1t7969cHd3R+PGjZGQkKCxf0hIiDp3aGioxmVHjhxBr1694OnpiTfffBMTJkwocKzDvXv38NVXX+Gtt96Cp6cnOnXqhO+++w4AsGrVKo3HpqB/Fy9eVD+OXbt2zXf84ijucwDkjuFQ3a833ngDY8eORUxMTL7jde3aFTdv3kSfPn3g6emJtm3bYvv27fmOFx8fj6+//hotWrRAkyZN0L17d+zbt++V+7377rto0KCBOqu3tzeA/57Twv6pnlfVc/ryc5aQkFBgO7t16xaGDBkCHx8feHt7Y+DAgbh27Vq+jMnJyfjmm2/Qtm1bNG7cGO+88w4mTZqEhIQEXLx4sch8qttVPe95paWloWXLlhrP+asU1W7ytvspU6bA29sbjx49wuDBg+Hl5YW3334bq1evhiAIGsfdsGED+vTpgzfffBOenp7o1asXjh49mu/2895WgwYN0KpVK8yYMQPJycnqfVSPx8v3ZejQoQU+BwDQtm3bQv8GVPsMGzas0MdH1VY2bNiQ77KuXbvmez0pThvN+5piYWGBpk2bws3NrcDXlMIy5X1uUlNT0atXL7Rt2xZPnz7V2P9Vz3He24mOjsbs2bPRqVMn9evQl19+qTEGS6WwtquizddVADh79iw6deoEb29vzJ8/X93eLl68iPbt28PHxweBgYEa7xli2k1Bf0cXLlxA48aNMXPmTNGPk9jXjeK+Z5Xkb+FlRbVRMa+PBcn7N7Np0ya0adMGnp6eCAgIKPB9gqggPONEFVZycjJycnKQlpaGsLAw/Pzzz+jSpQuqV6+u3mffvn2wsLDAp59+CgsLC1y4cAErV65EamoqJk+erHG82rVr44svvoAgCHj06BE2btyIoUOH4vTp04VmWLt2bb7tCoUCw4YNQ3BwMLp06YJPPvkEaWlp+Ouvv3D37t1XfgP88OFD7Nq165W3J5VK8fvvv2PQoEHqbXv37oWpqSmysrI09t27dy+mTp2KJk2aYNy4cYiPj8eWLVtw9epV7N+/HzY2NgCA27dvo3///jAyMsLHH38MZ2dnREZG4tSpUxg7diw6dOigkTcwMBB16tRB79691dvq1KnzysxiFOc5+OGHH7BixQq8//77+PDDD5GQkICtW7eif//+GvcLAJKSkjB06FC8//776NKlC44cOYLZs2fD2NgYH374IQAgMzMTAwYMQGRkJPr37w8XFxccPXoUU6ZMQXJyMgYOHKg+3uTJkxEcHIyAgAB4eHhAKpVi586duHXrFgCgcuXKWLRokXr/48eP4/jx4xrbSvLt/z///IP+/fvD0tISQ4YMgZGREXbs2IEBAwZg69ataNq0KYDcwqZ///64d+8e/P390bBhQyQmJuLUqVOIjY1FnTp1NLLs3LkT9+7dw9SpU9XbChvfsXHjRjx79kxU9tmzZ8PCwkL9e1RUFFauXJlvP4VCgSFDhqBp06aYOHEizp49i1WrVkGhUOCrr75S77dlyxa0bdsW3bp1g1wux6FDh/DVV1/hp59+wrvvvqtxzA4dOqBDhw5QKBS4du0aduzYgczMTCxevPiVef/++2/873//K/Q++fr6qtt/REQEfvzxx+I8FCUmpo2+rKjXlMLI5XJ8+eWXePz4MbZv3/7K7n5521RgYKDGZaGhoQgJCUGXLl3g5OSE6OhobN++HZ988gkOHToEc3NzAEW33cqVK2v9dfXRo0cYOXIkatSogbFjx+Ls2bO4efMmgNyxTgEBAQgPD8emTZtQuXLlQovh4rQbIPf1duTIkWjdujVmzZol+nEqrVe9ZxWkuPcJKF4b1dbr4/79+5GWloZ+/fohKysLQUFBGDhwIA4cOAAHB4di5aWKi4UTVVi9e/fG/fv31b/37NkTCxYs0Nhn6dKlMDMzU//et29fzJw5E9u3b8fYsWNhYmKivszBwQE9evRQ/56Tk4Mff/wRCQkJqFy5coEZfvrpJxgZGaFRo0Ya2/fv34/g4GBMnTpVo8gZOnRovm/Q8/ruu+9Qq1YtpKSkFHh5hw4dsGfPHvUxMzIycPjwYXTo0AEHDx5U7yeXy7FkyRLUr18f27Ztg6mpKQCgWbNmGDZsGDZt2oQvv/wSANTfsu7bt0+j6JwwYQIAwMPDAx4eHurtK1asgKurq8ZjpS1FPQfR0dFYtWoVxowZgy+++EK9X8eOHfHBBx/gl19+0dj+9OlTTJkyBZ9++ikA4OOPP0bv3r2xbNky9OjRA8bGxtixYwfu3buHxYsXo3v37gCAPn36YMCAAVi+fDn8/f1hZWWFrKws/PXXX/joo480Co3g4GB14WRhYaGRPzIyEsePHy/1Y7V8+XLI5XJs374drq6uAHLb+3vvvYfFixdj69atAHLPxty9exerV69Ghw4d1NcfMWIEBEGARCLRyBIcHIyYmJhi5UtISMDPP/+Md955B2fOnCl29k6dOmn8/YSGhhZYOGVlZaFVq1aYPn06AKBfv3744osvsG7dOgwYMEB9jGPHjmn8Tffv3x+9evXCxo0b8xVO7u7u6vvWq1cv3L17V/1cvcrixYsLvY85OTlwc3NTH/fixYs6L5yK20YLUtRryqsIgoCpU6fi6tWr2LJlC2rVqpVvn5ycnHxtasWKFRr7vPvuu3jvvfc0trVp0wYff/wxjh07hp49ewIouu0C2n9d3bx5M4yMjLBlyxbY2dmhX79+6N+/PxISEhAYGAhPT0/1/dy8eTM+/fRTjfeMvIpqN0DuWaUhQ4bA3d0dy5Ytg0wmE/04ldar3rMKUpz7pFLcNqqN18fIyEj88ccfqFq1KgDgnXfewUcffYR169ZpvDYTFYRd9ajCCgwMxMaNG7FkyRJ8+OGHOHDgAGbMmKGxT94PWKmpqUhISICvry8yMjIQERGhsa9cLkdCQgISEhIQEhKC48ePw93dHXZ2dgXefmxsLLZu3YoRI0bA0tJS47I//vgDdnZ2CAgIyHe9V81udfPmTRw9ehTjxo3T6G6YV/fu3XH//n11N41jx47B2toazZs3z3es+Ph49O3bV100AblvzrVr11afwUlISMDff/8Nf39/jaKpsJxFUSgU6scxOztb1HWLeg6OHz8OpVKJ999/X71fQkICHBwcUKNGjXzdTFRn0VRMTEzw8ccfIz4+HmFhYQCAM2fOwNHRUaOLobGxMQYMGID09HT8/fffAID09HQolcpXtoeSUrVL1b+kpCSNyxUKBf766y+0b99eXTQBQJUqVdC1a1dcuXIFqampAHLbnYeHh8YHT5XSzqr2/fffw9raOl8XMm3q37+/+meJRIL+/ftDLpcjODhYvT3v33RSUhJSUlLQrFmzAguijIwMJCQkIC4uDseOHcOdO3fy/a3k9ccffyA0NBTjx49/5T5yufyVH57zysnJQUJCAhITE5GTk/PK/VQZ8/57uStxcdvoy4rzmvIqixYtwoEDB7B8+XJ1AfGy4jwWeZ8vuVyOxMREuLm5wcbGRuM5K07b1fbr6oULF+Dn56f+m85bUOS9zx06dEB8fPwru4MVp90kJiZi8ODBsLS0xA8//KDxugwU/3EqjcLes15WnPuUV0nbaEm0b99eXTQBuc9V06ZNi312jCo2nnGiCks1rgQAunXrBldXV3z33Xf48MMP0axZMwC5XZyWL1+OCxcuqD9cqrz87WNISIjGh6qaNWtizZo1r3xDXrlyJapUqaL+RjCvyMhI1KpVC0ZGxf8TXbp0KXx9fdGmTRvMmzevwH0qV66M1q1bY8+ePWjSpAn27NmDnj175vtA8PjxYwAo8Fvi2rVr48qVKwByu6oAQP369YudsygRERHqx1EqlcLNzQ2jRo1Ct27dirxuUc/BgwcPIAgCOnbsWOD1X368q1SpotFNTHVMIPfbXy8vL0RHR6NGjRr5HkNV90PVY2lnZ4eaNWti165d8PPzQ4MGDSCRSEQXhy/L+815QRISEpCRkVHgc1mnTh0olUrExMSgXr16iIyMfOVjUxqPHj3Cr7/+itmzZ+f7wKctUqlUozAE/mu/0dHR6m1//vknfvjhB4SHh2s89gX9nW7YsEFjDFGrVq3UZ1JfplAosGzZMnTr1k3jDOvLUlJS8rWpgpw7d07dlmUyGdzd3TF+/Hi8/fbbGvutWrWqwPEjebscFbeNvqw4rykF2bFjh3r83MuFfF7FeSwyMzPx008/qdeSyntmKO9rcHHarrZfV2NiYuDj41PkMVQf0p88eYLGjRtrXFbcdvPFF1/g/v37sLe3L/DsWHEfp9Io7D0rr+Lep7xK2kZLokaNGvm21axZE0eOHNHabVD5xcKJ6AXVhAY3btxAs2bNkJycjICAAFhZWeHLL7+Em5sbTE1NERYWhiVLluRb8ynvwNSEhAQEBQVhwIAB2LdvHxwdHTX2vXfvHvbt24fFixe/crIKMc6dO4fz589jx44dRe7r7++PyZMnY8CAAbh8+TIWLFiAy5cvlzqDtjg7O2P+/PkAgOfPn2PLli2YNGkSXF1d4eXlVeh1i3oOlEolJBIJ1q1bp9HNRaU4H2hL47vvvsOECRMwePBgrd3uzJkzNYqi1NRUjB49usTH04Xly5ejZs2a+OCDD/Ta1i5fvozhw4fDz88Ps2bNgqOjI4yNjbFnzx6NrqoqPXr0QM+ePaFUKvHo0SN8//336q6qLxdau3fvRnR0dIGTNag8f/4ccrk83+tBQZo2bYoxY8YAyO0yum7dOowaNQoHDx7UmPXz448/ztdFS9VdsTTEvKa87Nq1axg7dixCQ0MRGBiIVq1aFdhdOS4ursjHYt68edi7dy8GDhwILy8vWFtbQyKRYOzYsYV2r9OGoh6Dl8eFFiUzMzPftuK0GyD3C6V169ZhzJgx+Pbbb/ONBdP14yTmPau494moLGLhRPSC6k1Q9Y3XpUuX8Pz5c6xevRp+fn7q/QqazQkAKlWqhBYtWqh/f+ONN9CqVSvs3bs336DgpUuXwsPDA507dy7wWG5ubrh+/TrkcnmRb1KCIGDp0qXo0KFDkYUFkNuf29TUFGPHjkWzZs3g5uaW78Osqtvd/fv383VNun//vvpy1Tf82pyRyMLCQuNxbNasGd555x2cO3euyPtX1HPg5uYGQRDg4uJS4BmYlz19+hTp6ekahc2DBw8A/DcLo7OzM+7cuQOlUqnxbamqK2feLowNGzbEvHnz0L9/f3z55Zfw8vLChg0bcPXq1SKzvIqnpyeaNGmi/v3lWRMrV64Mc3NzjfF8eTNKpVJUq1YNQG67++eff0qcpSC3bt3CoUOHsGbNmgKLVW1RFTd5n1fVfVY9V8eOHYOpqSk2bNig0UVsz549BR7T1dVVoz1ZW1tj/PjxuHbtmsYZ68zMTKxevRr9+vVT31ZB/v33XwDFmwzFzs5O47bd3NzQt29fXL58WaNwqlGjhsZ+QP5CXEwbBcS/przM398fX3zxBWJjY9GlSxcEBgYWOKHGvXv30LBhw0KPpRqfk3e2tKysrHxnUYrTdrX9ulqlSpV8MwUWRDUT6cuTYxS33QC5k9r4+vpi/PjxmDt3Lrp3767x2lzcx6mkinrPUhFzn/IS20ZL4+HDh/m2PXjwQFReqrg4xokqnFf1Y965cyckEgneeustAP8VUHm/rcvOzsYvv/xSrNtRFWIvd8W6du0aTp48iQkTJryyG1/Hjh2RmJiIbdu25bvs5W8PDx8+jDt37mDcuHHFymVkZIQePXrgzp078Pf3L3Cfxo0bw97eHr/++qtG/v/973+4d++eehB95cqV4efnhz179uTrSqGtb4NVxynJh+6Xn4OOHTtCJpMVOE21IAhITEzU2JaTk6PxbXN2djZ27NiBypUrq8cyvPPOO4iLi8Phw4c1rhcUFAQLCwuNojs1NRWTJk1C27ZtMWLECLRo0aJYZx9KQyaToWXLljh58qRG0f/s2TMcPHgQzZo1U08M0LFjR9y+fRvHjx/Pd5ySPp9Lly6Fj4+PejFVXcr79yIIArZt2wZjY2ONLm8SiURjDFBUVBROnjxZrOOrzhi8/De9ZcsWZGRkaEwsUpDDhw/D2NhY3RVYDNUZbrFjjQBxbVSVU8xryst8fX0B5HZRmzBhAn7//XecO3dOY5/Q0FBERkaqX29fpaC/+6CgoHzjuIrTdrX9uurr64u///4bz58/B5DbRU019vHGjRvq/U6cOAEzM7N83fSK225UtwXkTnri7e2NmTNnapzBKu7jVBLFec9SEXOf8hLbRkvjxIkTGstq3LhxA9evX8c777yjtdug8otnnKjCGT9+PGrXro327dvDwcEBCQkJOHPmDC5evIgvvvhCPZ2yt7c3KlWqhClTpmDAgAGQSCT47bffXvkB8tmzZ/jtt98A5A7k3bFjB4yMjPLN1HXu3Dm0bNky37fEefXs2RP79+9HYGCguutgRkYGgoOD0bdvX7Rv317jeL1790bt2rWL/Rh89dVXGDx4MCpVqlTg5cbGxpgwYQKmTp2KgIAAdOnSRT0dubOzs8a4munTp6Nv37744IMP8PHHH8PFxQXR0dE4ffq0+vEQIz09XT0LU1JSEoKCgmBsbJzvcSxIUc+Bm5sbxowZg6VLlyI6Ohrt27eHpaUloqKicOLECfTu3VujG12VKlWwbt06REdHo2bNmjh8+DDCw8Mxb9489TfWH3/8MXbs2IEpU6YgLCwMzs7OOHbsGK5evYqvv/5aY7ayOXPmICsrS90V8XUZM2YMzp8/j379+qFfv36QyWTYsWMHsrOzMXHiRPV+gwcPxrFjx/DVV1/B398fjRo1QlJSEk6dOoU5c+YUe7xCXufOnStw7SttMzU1xdmzZzF58mR4enri7NmzOH36NL744gt1N7HWrVtj48aNGDJkCLp27Yr4+Hj88ssvcHNzw507d/Id886dO+q/+UePHiEoKAhOTk75PgCfO3cOY8eOfeXEHw8ePMCqVatw8OBBDB069JUz2OWlel0Ccru0rVu3DtbW1njzzTfFPjSi2qjq/oh9TSnstg8ePIhZs2bh4MGDMDc3x+rVqxEUFARXV9ciZ3t799138dtvv8HKygp169bFtWvXcP78edja2mrsV5y2q+3X1c8++wyHDx/GgAED0Lt3b5w5c0Y97vPrr7/GRx99hNu3b+PAgQMYOnRovjOBRbWbgkgkEixYsAA9evTAypUrMWnSJFGPk8q1a9c0vihSjeF9+PAhbty4oTG5RXHes0pznwDxbbQ0VGdv+/bti+zsbGzZsgW2trYYMmSI1m6Dyi8WTlThjB8/Hn/++SeCgoKQkJAACwsLeHp6Yu3atWjdurV6Pzs7O/z444/49ttvsXz5ctjY2Ki7R7w8RgXI7VKgehOzsbFB3bp1MWXKFI1uVEDuG19RMw3JZDKsW7cOP/zwAw4ePIg//vgDtra28PHxybdOjpmZGUaNGiXqMTAxMXnlFOkqvXr1gpmZGdatW4clS5bAwsIC7du3x8SJEzXWOvLw8MDOnTuxYsUKbN++HVlZWahevTref/99UZlUoqOj8fnnnwP473H8/vvv0aBBgyKvW5znYOjQoahZsyY2bdqENWvWAACcnJzQsmVLtG3bVuN4lSpVwsKFCzF//nzs3LkTDg4OmDlzpsYaVGZmZggKCsKSJUuwb98+pKamolatWggMDESvXr3U+x06dAgHDhzAunXrinzsta1evXrYtm0bli5dip9++gmCIMDT0xOLFy9Wr+EEAJaWlti2bRtWrVqF48ePY9++fbC3t0fz5s01ZqESo127dsUaQF9aMpkM69evx+zZs7F48WJYWlpi1KhRGDlypHqf5s2bY8GCBVi3bh2++eYbuLi4YMKECYiOji6wcFKtEyORSODg4IA333wTY8aMyTejmKOjY6FrIYWFheHu3buYNm1asWcVvHHjhvrvwM7ODo0aNcK3335bouehuG007/5iX1NeRSKRYN68eejRoweWL1+OqVOnYteuXWjXrh3GjBlT5PpC06ZNg1QqxYEDB5CVlQUfHx918ZtXcdqutl9XPTw8sHr1aixYsADLli2Dv78/XFxc8Msvv2DmzJn4+uuvER8fj4CAAI21xFSKajevUqdOHXzxxRf44Ycf0LVrVzRs2LDYj5PKq768OXDgAGJjYxEUFKTeVpz3rNLeJ7FttDRUEyJt3rwZ8fHx8PT0xIwZM165zhhRXhJB16MriYjKoAEDBiAxMbHASQPIsEyZMgXHjh1DSEiIvqNQBTd37lxs27atwEK8LFi1ahUuXbqkUTiVF1FRUWjXrh0mTZpU4JefRMXBMU5ERERERERFYFc9IiIiIoKbmxsyMjL0HYPIYLFwIiIiIiL06NFD3xGIDBrHOBERERERERWBY5yIiIiIiIiKwMKJiIiIiIioCBVujJNSqUROTg6kUmmRK2ATEREREVH5JQgClEoljIyMIJUWfk6pwhVOOTk5CA0N1XcMIiIiIiIyEE2aNIGJiUmh+1S4wklVSTZp0gQymUzPaQCFQoHQ0FCDyUOGj22GxGB7IbHYZkgsthkSy5DajCpLUWebgApYOKm658lkMr0/UXkZWh4yfGwzJAbbC4nFNkNisc2QWIbUZoozhIeTQxARERERERWBhRMREREREVERWDgREREREREVocKNcSoOQRCQk5MDhUKh89tS3UZmZqbB9PEkw8Y2Q2KU1fZibGxcpvISEVH5x8LpJdnZ2YiJiUF6evpruT1BEGBkZISHDx9yXSkqFrYZEqOstheJRAIXFxdYWVnpOwoREREAFk4alEol7t+/D5lMhurVq8PExETnHzQEQUBGRgbMzc3L1Ica0h+2GRKjLLYXQRAQFxeHqKgo1KtXj2eeiIjIILBwyiM7OxtKpRKurq6wsLB4LbepWq3YzMyszHyoIf1imyExymp7cXR0xIMHDyCXy1k4ERGRQeDkEAUozgJYRESkO2WpyCMiooqBFQIREREREVERWDgREREREREVgYUTERmEO3fuYMiQIcjOzsbt27fx4Ycf6jsSERERkRonhygnpkyZgn379ql/t7W1RePGjTFx4kR4eHjoMRlR8dSvXx9GRkbw9vaGVCrFwoUL9R1Jb1atWoUTJ07gt99+03cUIiIieoGFUznSqlUrBAYGAgCePXuG5cuX44svvsDp06f1G4yoGCQSCX788UfEx8fDwsIC5ubm+o5EREREpMauesUgCALSs3N0+E+Rb5sgCKJzmpiYwNHREY6OjmjQoAE+//xzxMTEICEhQb1PTEwMvvrqK/j6+uKNN97A8OHDERUVpb58ypQpGDFiBFavXo233noLPj4+mDlzJrKzs9X7ZGdnY/78+WjevDmaNGmCvn374saNGxpZ/vzzT3Tv3h2enp5wd3eHu7s7RowYAQAYMGCAetvL/1atWgUAaNu2LTZt2qRxTFU2MTn++ecfDBs2DD4+PvD29ka/fv0QGRmJVatWvTLDgAEDCry9okRFRb3ymHnvi7u7O3755RcMGTIEnp6eaNeuHY4ePapxrMWLF6NTp05o2rQp2rVrh+XLl0Mul6sv//HHH+Hh4QF3d3c0bNgQbdu2xc8//6y+fO/evfD19dU4Zv/+/eHu7o7w8HCN7W3bts2X98SJEwCAixcvwt3dHcnJyYXe54KOmfc+P378GMOHD4e3tzd8fHzw1Vdf4dmzZ+rLV61ahR49egAA7O3tIZPJ0KFDh0JvW/VYqrIKgoBJkyahW7duSEpKypfx5X+q40ZGRmL48OFo0aIFvL294e/vj/Pnz2vcTnZ2NhYvXozWrVujcePG6NChA3bt2qW+/FXtDMjfjhITE+Hn56fx/CgUCsyaNQteXl74+OOP1Y/N/Pnz0bRpU3z44Yd4+PChev/iHDPvYwoAYWFh8PX11ci9ceNGdOvWDV5eXmjdujVmz56NtLQ09eUFtaOCnvO8zwMA7Nq1C+7u7liwYIF628ttIjg4WON1gYiIyNDp9YzT33//jQ0bNuDmzZuIi4vDmjVr0L59+0Kvc/HiRSxcuBD//PMPqlWrhuHDh6NXr146yygIAj78MRhXHibq7DYK4lvDDru+aF7iKXnT0tLw+++/o0aNGrC1tQUAyOVyDB48GF5eXti2bRuMjIzw/fffY8iQIfj9999hYmICIPcDjampKYKCghAdHY2pU6fCzs4OY8eOBQAsWrQIx44dw8KFC+Hs7Iz169djyJAh+OOPP2Bra4vk5GSMHTsWH374IdasWQMzMzMsWLBAXXytWrVKXQSMHj0a3t7e+OyzzwBA1PpZReWIjY1FQEAA3njjDWzevBlWVla4evUqcnJy8Nlnn6FPnz4AgJ9//hkhISHqos3Y2LhEj7nKpk2bULduXfXvBY3VWbFiBSZMmIBp06bht99+w7hx41CvXj3UqVMHAGBpaYnAwEBUqVIFd+/exYwZM2BpaYnPP/9cfYx69eph48aNUCgUOHr0KAIDA9G6dWv1MfL6448/cOvWrQLzCoKAL7/8Er179wYAvP3226W6/y9TKpUYMWIELCwsEBQUBIVCgTlz5mDs2LEICgoq8Drbtm3TKKyKY/78+QgJCcEvv/yCSpUqqbervoRQPS8hISEYPXq0+vL09HS0bt0aY8eOhYmJCfbv348vvvgCR48eRfXq1QEAkyZNwrVr1zB9+nR4eHggKioKiYm5rwmFtbOCrFmzBjk5ORprE+3YsQNHjx7F6tWrYWRkhLFjxyIpKQldunTBnj17sHDhQkyePBm//vprsY+Z1/379zFkyBAMHz4cH330kXq7RCLBtGnT4OLigkePHmHOnDlYvHgxZs+eXYxHvGDp6elYsWJFoX/LSqUSCxcufG3r5REREWmDXgun9PR0uLu7w9/fH6NGjSpy/0ePHmHYsGHo06cPlixZguDgYEyfPh2Ojo5o1aqVznKWldVETp8+DW9vbwC5j62joyN++ukn9bpUhw8fhlKpxIIFC9QFWWBgIPz8/HDp0iX1B2YTExN88803MDc3R7169fDll19i0aJF+Oqrr5CZmYlff/1V/SEdAObNm4e//voLu3fvxpAhQ/DgwQNkZGTg888/R9WqVQEAZmZm6sJJVcgBuUWKhYUFHB0dRd3X9PT0InNs27YNVlZWWLZsmboYqlWrlvoYlpaWAHKLNWNjY9EZXsXW1lbjWAV9mH3vvffUH2DHjBmD8+fPIygoSP2BNe+38C4uLrh//z4OHTqkUTjJZDL17VSrVg0ymazA7m1yuRxLlizB559/jhUrVhR4+cuZtSk4OBh3797FyZMnUa1aNQC5RW+XLl1w48YNeHp6auz//Plz/PDDD6/MW5DvvvsOx48fxy+//JLvfqgKGAcHBzg6OmoUVQDg4eGhMQ5wzJgxOHHiBE6dOoWAgADcv38fR44cwcaNG9GiRQsAgKurq3r/otpZXvfv38eePXswaNAgjaJx9+7d6NOnj/pvsHfv3jh58iSGDh0KAJg2bRree+89/PPPP6hXr16xjqkSHR2NESNGoHfv3hg8eLDGZYMGDVL/7OLigjFjxmDWrFmlKpzWr1+PunXrQqFQvHKfffv2ITs7G+3atUN6enqJb4uIiOh10mvh1Lp1a/WH3uL49ddf4eLigilTpgAA6tSpgytXrmDTpk06K5wkEgl2fdEcGfJXfwgoDUEQkJ6eAQsLc42zS+bGMtFnm9588031B56kpCRs374dn3/+OXbt2gVnZ2fcvn0bkZGR8PHx0bheVlaWulsRkNvtJu8HcG9vb6SnpyMmJgYpKSmQy+UaxzA2Noanpyfu3bsHAHBycoKRkREOHTqEQYMGlXhB4SVLlmh8cM7Ozla3l8jIyCJzhIeHw9fXt1RnkFTFqJGREapVq4ZPPvlEK7O9qQpcFS8vL42uT4cPH8aWLVvw6NEjpKenIycnB1ZWVhrXuXv3Lry9vZGTkwOlUolp06apz5Dkpfpg361btwILkbS0tCLHE6kedzs7O7Ro0QKTJ0+GtbW1+vI+ffpoPM8ZGRnqn+/duwcnJyd10QQAdevWhY2NDSIiIvIVTmvWrMGbb76JZs2aFZpJZevWrQgODsZbb70FFxeXfJenpqYCwCvvY1paGlavXo3Tp08jLi4OCoUCmZmZePz4MYDcdiSTyeDn51fg9cW0s8WLF+Pjjz/WKLwA4OHDhxpFjJGRkUbBXbNmTRgbG+Phw4f5CqdXHRMAUlJS8NlnnyE2NrbAM4nnz5/HTz/9hIiICKSmpkKhUCArKwsZGRklGmMWGxuLjRs3Yvv27Rrd9PLKyMjA8uXLMWfOHPzxxx+ib4MqNkEQkJWjfPFPgSy5EgqlgByl8OJ/zd+VSgFKIfd6AgClkOf3Fz3iBeT+LAiAAOTrKi9o3H6h6bR7Z8sQpVKJ+1GZiDV+UuL3fKpYlEolspLk8NJ3EJHK1OQQ165dQ/PmzTW2vf322/jmm29EH6ugb0MVCsWLF1Mh3wunuXHBXWBKSxAEwERWYKEkZpyTIAgwNzeHm5ubelvDhg3h5+eHnTt3YsyYMUhPT0ejRo2wePHifNevXLmyxv3Oe9uv2lZQPkEQ4OjoiFmzZmHJkiXqb+FVRU++N6RXPN6CIGDw4MH44IMP1NuWLFkCpVJZ7BympqavvLy4Gd58803MmjULOTk5+N///ofp06ejfv36aNKkSYHHKSiT2McvJCQEEyZMwOjRo9GyZUtYW1vj8OHD2Lhxo8b1atWqhe+//x4KhQLXr1/HvHnz0LBhQ3h5ean3ef78Ob7//nusXr26wNtOTU1Vn50sKJ9q29atW2FpaYno6GhMnz4dy5Ytw8yZM9WXL1u2TKOL4CeffJLvtl51f/Puc//+fezevRv79u3DkydPCn2sVG7cuIG1a9di6tSp2L59u7oLpsrTp08hlUrh4OCQL48gCPj2229x/vx5TJo0CW5ubjAzM8NXX30FuVyubkeF5Siqnam2X7x4EZcvX8Y333yDkydPFviYvPxYFfR/3tsq7JiCICA6OhrdunXDe++9p+4WqiqIoqKiMGzYMPTt2xdjxoxBpUqVcPXqVUybNg3Z2dkwMzMr8vXg5e3fffcd3nvvPbi7u7/yPqxfvx61atVCmzZtcOzYsQIfh7zHVygUhZ69Iu1TPd66fNzTsnIQk5SJJ8mZeJKUidjkLCRnypGcmYPUzBwkZ8qRkpmj/peZo0BWjhLZOUqdZSItCL6m7wRUhkglQHPvDDja6HcyKDGvdWWqcHr27BkcHBw0tjk4OCA1NRWZmZkwMzMr9rFCQ0ML3G5kZISMjAwola/3xTnvN/Qlofpwkbfbi1KphEQiUX84rlu3Lg4fPgxzc/N8Zy+A3O5vCoUCt2/fRkJCgvrxvHTpEiwsLFCpUiWYmZnB2NgYFy5cwPvvvw8gt6vXjRs30K9fP/Xtd+zYEbt374a7uzv69euHlStX5sunyiiXy/NtFwQBlpaWGt2uzMzMkJKSgvT0dDg4OBSZo3bt2jh48CCSkpIKPRsgl8uhVCrzZVAoFOoJN4Dcsypr167FjRs3ChxHlJmZqf4/77EEQUB2drbGtitXrqBjx47q369evQoPDw+kp6fj0qVL6rNbKpGRkS/OTv53jLxd9ZycnLBlyxYcP34c9evXR3Z2NgRBwMqVK+Ht7Y1GjRqpz6Dkzff3339DIpGgZs2aGsfOyspCeno6srKyAORO2GBtbQ1HR0e0a9cOoaGhSE9PV99nOzs7jedKKpWq77OLiwuePHmCiIgIODk5AQAiIiKQnJwMFxcXpKenq5+Db7/9Fj169ICjo6N6MoSMjAwYGb36pWr8+PHw9fXFlClTMHv2bPj5+Wmc3bp69Spq1qypbn+q+6Q67pUrV9C1a1e0bNkSQO7fQVRUlPpMq5ubG5RKJc6dO4c333wz3+0X1c4UCgVycnIQGBiIIUOGqL9IyPt8qs4It2vXTv0c5f27ePjwIeRyORwdHdV/p0UdUy6Xw8XFBTNmzAAA/O9//8OiRYswceJEAEBISAiUSiVGjx6t/oY4Ojpa47F5+ZiqbKr/826/ceMGjh07hn379iE9PT3f37YgCHj8+DF2796NdevWqe9HQa8LQG4blMvluH379iufe9KtV71PFpdCEBCTosD953JEJMrxKDkHz9KViM9QIF1e+rMzEgDGMsBIIoFUCkglEsgkgEwCSKUSSCW5H8ykyO09IpHkXkf64jtKqSTvsXIvVx23sA4fZaX7PpGhc61khEf3biO6hOP59aFMFU7a1KRJk3xjTzIzM/Hw4UOYm5uLKsJKQxAEdbeYkk4EAeR+iFYoFOoZsZKTk7Ft2zakp6ejQ4cOsLCwgL+/P4KCgjBhwgR8+eWXcHJyQnR0NI4fP44hQ4bAyckJMpkMcrkcCxYswPDhwxEdHY21a9eif//+sLKygpWVFfr27YsVK1agSpUqqFatGtavX4+srCz07dtXPdh7/vz5kMlkmDFjBoyNjWFjY4OUlJR8g8GlUql6nFNeEokEJiYmGttlMhlkMhksLCxgYWFRZI5BgwZhx44dmD59OoYOHQpra2tcv34dTZo0Qe3atdXHNTY2hlQqzZdBJss9C6h6TM6cOYOkpCQ0atSowEHtqjZjZmamcXlB9+XEiRPw8vKCj48PDhw4gLCwMAQGBsLCwgL16tXDkydP8Oeff6JJkyY4ffo0/vzzT0gkElhYWKi/nVcqlUhLS4NSqURoaCgiIiLw6aefwsLCAiYmJsjKysK+ffuwZ88eWFhY5Mt34cIFLFq0CO+8806+Lm6mpqawsLBQn21RPfbR0dG4cOECfHx8CjxmQfe5TZs2qF+/PmbOnImpU6eqJ4fIOwucsbExoqKiEBsbi2PHjmnctrm5eaGTCFSpUgUWFhbo1q0b/vzzTyxYsAA///wzsrOzceTIEWzbtg2jRo1SH+Pl49aqVQunT59Gx44dIZFIsGLFCgiCoG6XdevWRc+ePTF37lxMmzYNHh4eiI6ORkJCAt5///0i25lMJsPff/8NR0dHDBo0CMbGxjAxMVE/nwDUE6m0aNECMpkM+/fvR1JSErZu3Yp27dph2bJlaNKkCZo2bap+Poo6prGxMaysrGBtbY2MjAwsXLgQvXv3RpcuXeDr64t69eohJycHe/fuRZs2bXD16lXs2bNH47FRHTPva6WqyFKNqVO9bm3duhWDBg1CjRo11Pvl/duWSCTYtWsXOnTooO5im/dv+mWq69etW/e1vR5TLoVCgdDQ0ALfJwvz+HkGzv0bj7DHyQiLScbtmJRCu7lbmxnBycYMTpXM4GRjikrmxrAxM4a1mRGszYw0fjYzlsHUSApT1f9GUhhJJaV63yTtKWmboYrLkNqMKktxlKnCycHBId9MW8+ePYOVlZXoN1bVG/bL23K/lXr9L8alvU2JRIKzZ8+qx3pZWlqidu3aWLFiBd566y0AuZMgbNu2DUuWLMHo0aORlpaGqlWronnz5rC2tlZnaN68OWrWrImAgABkZ2eja9eu+PLLL9X5JkyYoJ76OS0tDY0bN8b69evVkz4cPHgQR48exd69e9Uz9amu+/J9fNXjXdD+L28rKkflypWxefNmLF68GJ988gmkUikaNGiAZs2a5TvuqzL8+eefaNq0KYyMjODs7IwZM2bkG59UUL7CcgO5swkePnwYc+bMgaOjI5YuXaoeu9KuXTsMHDgQ8+bNQ3Z2Nt599131FPF5j/Hvv/+iVatWkEqlqFq1KgYPHozu3burb18ul+Pjjz9WF4kv55s2bRpatGiBSZMmFfm8qMbH2NnZoWXLlhg/frzG5YXdZ4lEgu+//x7z5s3DgAEDIJFI0KpVK8yYMUNjv/T0dEyePBl2dnaFPp4FPe6qy2fMmIGuXbti586daNSoEVavXo0RI0bgs88+y/c8qK43ZcoUfP311+jbty/s7Ozw+eefq7+AUO07Z84cLFu2DHPmzMHz589RvXp1DBs2DBKJpMh2prpv48ePf+XfQ79+/XD37l2MHDkSHh4e6NSpE65evYq4uDj4+/ujTp06WLJkSb7Hq7Bjvvy/h4cHvvjiC3WXvQYNGmDq1KlYt24dli1bBl9fX4wbNw6TJ0/WeP5TUlLUBVteqgksVEW3atbHwnIolUqMGzfulfsU9LwW9FpNr0dxHvt/n6bgWFgsjt58gtDopHyXmxvL0KCaNRpVr4QG1WzgWtkc1SqZw6mSGaxMy9RHECoG/r2SWGWtzUiEkiwYpAPu7u5FTke+ePFinDlzBgcOHFBvGz9+PJ4/f44NGzYU63YUCgWuXbsGLy+vAs843b9/H7Vq1XqtZ5zS09NhYWFhEN+cTZkyBcnJyfj+++/1HaXcKk5bL4yhtRnSvlWrVuHEiRP47bffSn0sXbWXHj16YM2aNQVOyKEN+ng9plyFvU8KgoCb0ck4GhaDozef4F7cf+t+SSS5S2n4uNmhYXUbNKpeCbUcLCGT8nWqvCuszRAVxJDajJgsev26Jy0tTWM2t6ioKISHh6NSpUqoXr06li5ditjYWCxatAhA7hiTbdu2YdGiRfD398eFCxdw5MgR/PTTT/q6C0REFZKqGx9VDIIg4PSdOCw/cRfXo/47s2Qsk6BlXQe818gJ7RtWhYOVqR5TEhHpll4Lp5s3b2oMgA8MDAQAfPDBB1i4cCHi4uIQExOjvtzV1RU//fQTAgMDsWXLFjg5OWH+/Pk6XcOJiIjy27Vrl74j0GsgCALO/PMM3x2/i2uPngMAzIylaOtRBZ0aOaGNRxXYmJVu0XAiorLCYLrqvS7sqkdlHdsMiVFW2wu76umPQqFASEgI0q1dseLUPVx5mAggt2Aa2Lwmhr5TG/Y8s0R5GFK3KyobDKnNlJmuekRERGRYbkQlYcbpBIQ/iwUAmBpJMeCtGhjWug4crVkwEVHFxcKpABXsJBwRkcHh6/DrJwgCgi48xLyDtyBXCDAxkqL/m24Y3roOqtjwrB8REQunPFSLV6anp8PcXL+rGBMRVWTZ2dkAoPcuHBVFalYOpu4NxYHruQtlv+lsimX9m8O5sqWekxERGQ4WTnnIZDLY2tri6dOnAPBaxgQIgoCsrCxIpdIyNf6A9IdthsQoi+1FqVQiLi4OFhYWMDLi25Su3Y1NwfCtV3AvLg1GUgmmvOcOL4tEOFXiWSYiorz4jvQSJycnAFAXT7omCALkcjmMjY3LzIca0i+2GRKjrLYXqVQKNze3MpW5LNofEo2pe0ORIVfAycYMa/p7w8ulEq5de67vaEREBoeF00skEgmqVauGKlWqQC6X6/z2FAoFbt++jbp167JLChUL2wyJUVbbi4mJCaRSqb5jlFuZcgXmHbyFbRdz11J8u64DlvfxgoOVKRQKhZ7TEREZJhZOryCTyV7LhwzVG5SZmVmZ+lBD+sM2Q2KwvdDLsnIU+GzT3zh/Lx4SCTC6bT181a4eZFKe3SMiKgwLJyIiogpCoRQwbsd1nL8XDytTI6zu54133avoOxYRUZnAwomIiKgCEAQBcw+E4VBoDIxlEqwd0Awt6jroOxYRUZkhunD6+++/C73cz8+vxGGIiIhIN74/fQ+bgx9CIgGW9fZi0UREJJLowmnAgAHqWY5eXqBQIpEgPDxcO8mIiIhIK3ZefoTFx+4AAGZ2bYhuTavrORERUdkjunDy8PBAYmIiPvzwQ/Ts2RO2trY6iEVERETacDI8FlP3hgIAvmhdB5+2rKXnREREZZPouV7379+PVatWITY2Fh999BFmz56N8PBwWFtbw9raWhcZiYiIqASuRiZi5C9XoVAK8PdxweT33PUdiYiozCrRIhmenp6YP38+Tpw4AR8fH4wYMQKbNm3ScjQiIiIqqX+fpuKzTX8jU65EG3dHLPRvwgWFiYhKocSz6sXExGDXrl3Ys2cPGjZsiGbNmmkzFxEREZVQplyBYUGX8TxdjqautljT3wfGMi4oTERUGqILpxMnTmDHjh0IDw9H9+7dsXnzZtSsWVMH0YiIiKgkVp36B/fi0uBobYqfB/rCwoSrjxARlZboV9JRo0bByckJHTt2hEKhwPbt2zUunzp1qtbCERERkTg3o5Pw4/8iAADzezaGvZWpnhMREZUPogsn1TpN//zzT77L2HeaiIhIf+QKJSbtvgGFUkCXJtXQqZGTviMREZUbogunoKAgXeQgIiKiUlp3NgK3YpJha2GM2d0b6TsOEVG5UuKRog8fPsTZs2eRmZkJIP9iuERERPT63ItLxfITub1BZnZtCEdrdtEjItIm0WecEhMTMWbMGFy8eBESiQR//PEHXF1d8fXXX6NSpUqYMmWKLnISERHRKyiVAibvvoHsHCVa13fEB97O+o5ERFTuiD7jFBgYCCMjI5w+fRpmZmbq7Z07d8bZs2e1Go6IiIiKtvXiQ1x+mAhLExm+6cX1moiIdEH0Gae//voLGzZsgJOT5oDTmjVr4vHjx1oLRkREREWLSkzHt0duAwCmvO8BZ1tzPSciIiqfRJ9xSk9P1zjTpPL8+XOYmJhoJRQREREVTRAEfL3vJtKyFfCraYf+b9bQdyQionJLdOHk6+uL/fv3a2xTKpVYv3493nzzTW3lIiIioiLsvRqNM3fjYGIkxUJ/T0il7KJHRKQrorvqTZw4EYMGDcLNmzchl8uxePFi/Pvvv0hKSsq3GC4RERHpRka2AoFHwgEAY9vXRx1HKz0nIiIq30QXTvXr18exY8ewdetWWFpaIj09HR06dED//v1RpUoVXWQkIiKil2y/FIlnqdlwsTPHkFa19B2HiKjcE104AYC1tTWGDx+u7SxERERUDJlyBX783z0AwIh368JYVuJlGYmIqJhEF04nT54s9PJ27dqVOAwREREVbdflR3iakoVqlczg34xrNhERvQ6iC6eRI0e+8jKJRILw8PBSBSIiIqJXy85R4ofTuWebvmhdB6ZGMj0nIiKqGErUVe/cuXNwcHDQdhYiIiIqwt6rUXiclAlHa1N87Oeq7zhERBVGiTpFS6XsS01ERPS65SiU+P7F2aZh79SGmTHPNhERvS4lOuO0c+dO2NjYwMLCAlWqVIGHhwcqV66s7WxERESUx2/XHiMyIR2VLU3Q7003fcchIqpQRBdO1atXx86dOyGXy5GamoqMjAxIpVK0bt0aixcvhpUV15EgIiLSNoVSwJo//wUAfN6qNixMSvTdJxERlZDoV91Tp05p/J6amorQ0FDMnTsXixYtwty5c7UWjoiIiHIdvPEYEc/SYGthjAHNa+g7DhFRhVPqwUpWVlZo3rw5Zs2ahb/++ksbmYiIiCgPZZ6zTZ+1rAUrU55tIiJ63bQ2y8Nbb71V5BpPREREJN6xsCe4G5sKa1MjDGxRU99xiIgqpGJ9ZZWamqoxdunZs2fYtm0b7t3Lndmnbt266NevH6coJyIi0jJBELDqVO7ZpkEta6KSubGeExERVUxFnnHKycnB22+/jadPnwIArly5gg4dOuDw4cOwtLSEpaUlDh06hI4dO+LatWu6zktERFShnAx/ilsxybA0keGzlrX0HYeIqMIq8oyTkZERTExMkJWVBQBYtGgRunfvjtmzZ0MikQDI/TZs1qxZWLhwIX799VfdJiYiIqpA1pzOPdsU0LwG7CxN9JyGiKjiKtYYJzs7O6SlpQEAwsPDMXDgQHXRBAASiQQDBw7ErVu3dJOSiIioAgqPSUZI5HMYyyQY8nZtfcchIqrQilU4eXt74/DhwwAABwcHREdH59snKiqKazgRERFp0a7LUQCA9g2qwtHaVM9piIgqtmJNDjFw4ED069cPNWrUQJcuXTB9+nRMnjwZ3t7eAICrV69i0aJFeP/993UaloiIqKLIylFgX0hu4dTb11XPaYiIqFiFU4MGDfDjjz9i5syZiI6ORk5ODsaNG6furieTyfDRRx9h4sSJOg1LRERUUZwMf4rEdDmq2piiVT3OWktEpG/FXkHvzTffxLFjx3Dv3j0kJiZCqVQCAGxsbODm5gYLCwudhSQiIqpodl5+BADw93GBkUxryy4SEVEJiV56vE6dOrrIQURERC/EJGXgzN04AMBH7KZHRGQQRBdOU6dOLfTywMDAEochIiIiYO/VaCgF4I1alVHLwVLfcYiICCUonPbt2wcnJyc0btwYgiDoIhMREVGFJQiCupseJ4UgIjIcJTrjtGvXLjx69Ai9e/dGjx49OA05ERGRlly8n4CH8emwNJGhcxMnfcchIqIXRI82HThwIA4ePIiZM2fixo0baNeuHaZOnYqIiAhd5CMiIqpQVGebujWtDgsT0d9vEhGRjpT4FblZs2Zo1qwZDh48iFmzZqFOnTqoXZurmhMREZVUSqYch0NjAHBSCCIiQ1Oiwunp06fYvXs3du/ejapVq2LGjBlc/JaIiKiUDt6IQaZcibpVrODjZqvvOERElIfowmnEiBG4du0aunTpgrVr16Ju3bq6yEVERFTh/DcphIt6kXkiIjIMogunU6dOwdzcHPv378dvv/2W7/JLly5pJRgREVFF8k9sCkIin0MmleADbxd9xyEiopeILpy4ThMREZH2qc42tfWoAkdrUz2nISKil4kunD744ANd5CAiIqqw5Aol9l6NBsC1m4iIDFWp5jnNysqCXC7X2MY1nYiIiMQ5dfsp4tOy4WhtijbujvqOQ0REBRBdOKWnp2PJkiU4cuQInj9/nu/y8PBwbeQiIiKqMHa96KbXy8cZRjLRSywSEdFrIPrVefHixbhw4QJmz54NExMTzJ8/H6NHj0aVKlXw7bff6iIjERFRuZWULsfpO3EAgI+acVIIIiJDJbpw+vPPPzFr1ix06tQJMpkMvr6+GDFiBMaOHYsDBw7oIiMREVG5depOLHKUAtyrWqNuFWt9xyEiolcQXTglJSXB1TV34KqVlRWSkpIAAM2aNcPly5e1m46IiKic+yMsFgDQsVFVPSchIqLCiC6cXFxcEBUVBQCoXbs2jhw5AiD3TJS1Nb8pIyIiKq5MuQL/u5vbTa9jQyc9pyEiosKILpz8/f1x+/ZtAMDQoUOxbds2NGnSBIGBgRg8eLDWAxIREZVX5/55hvRsBapXMkNjZxt9xyEiokKInlVv0KBB6p9btGiBI0eOICwsDG5ubvDw8NBmNiIionLtj1tPAAAdGzlBIpHoOQ0RERWmVOs4AYCzszOcnZ21kYWIiKjCUCgFnAh/CgDo2JDjm4iIDJ3ornrz58/Hli1b8m3funUrFixYoJVQRERE5d2Vh4lISMtGJXNj+NWqrO84RERUBNGF07Fjx+Dj45Nvu7e3N44dO6aVUEREROXdsbDcbnrtPKrAmIveEhEZPNGv1M+fPy9w9jwrKyskJiZqJRQREVF5JghCnvFN7KZHRFQWiC6catSogbNnz+bbfubMGfX6TkRERPRqt5+k4FFCBkyNpHinvqO+4xARUTGUaFa9efPmISEhAW+99RYAIDg4GBs3bsTXX3+t9YBERETljWrR21b1HGFhUup5moiI6DUQ/Wr94YcfIjs7Gz/++CO+//57ALkz682ePRs9e/bUdj4iIqJyRzW+id30iIjKjhJ9zdWvXz/069cPCQkJMDU1haWlpbZzERERlUuPEtJxKyYZUknuxBBERFQ2lKp/QOXKnD6ViIhIjOO3crvp+dWsDHsrUz2nISKi4hJdOPXs2bPQ1c337dsnOsS2bduwYcMGxMXFwcPDAzNmzICnp+cr99+0aRO2b9+OmJgY2NnZoVOnThg/fjxMTfkGREREhu2/bnpOek5CRERiiC6c2rdvDyB3KtWffvoJffr0ga2tbYkDHD58GIGBgZgzZw6aNm2KzZs3Y/DgwTh69Cjs7e3z7X/gwAEsXboU33zzDby9vfHgwQNMmTIFEokEU6dOLXEOIiIiXUtIy8bfDxIAAB0bcnwTEVFZIrpwGjVqlPrnn3/+GQMHDizVNOQbN25E79694e/vDwCYM2cOTp8+jT179mDo0KH59g8JCYGPjw+6desGAHBxcUHXrl1x/fr1EmcgIiJ6HU6Gx0IpAA2q2cC1soW+4xARkQh6nQM1OzsbYWFhGDZsmHqbVCpFixYtEBISUuB1vL298fvvv+PGjRvw9PTEo0eP8L///Q89evQQddsKhaJU2bVFlcNQ8pDhY5shMdheDIu6m16DKgb7nLDNkFhsMySWIbUZMRn0WjglJiZCoVDk65Jnb2+PiIiIAq/TrVs3JCYmol+/fhAEATk5OejTpw+++OILUbcdGhpa4ty6YGh5yPCxzZAYbC/6l5mjxJk7TwEAbrJEXLt2Tb+BisA2Q2KxzZBYZa3NiC6cAgMD1T/L5XL88MMPsLa2Vm/T9Tijixcv4qeffsKsWbPg6emJyMhILFiwAGvWrMHIkSOLfZwmTZpAJpPpMGnxKBQKhIaGGkweMnxsMyQG24vhOBYWi2zlU7jYmaNHa99CJ1rSJ7YZEotthsQypDajylIcogunW7duqX/29vbGo0eP1L+LfROws7ODTCZDfHy8xvb4+Hg4ODgUeJ0VK1age/fu+OijjwAA7u7uSE9Px8yZMzF8+HBIpdJi3bZMJtP7E5WXoeUhw8c2Q2Kwvejfidu5Z5s6NnSCkZFeO3wUC9sMicU2Q2KVtTYj+pU7KChIazduYmKCRo0aITg4WD1bn1KpRHBwMAICAgq8TmZmZr7iSPWAC4KgtWxERETaolAKOKUqnBpxNj0iorJI7195ffrpp5g8eTIaN24MT09PbN68GRkZGejVqxcAYNKkSahatSrGjx8PAGjTpg02btyIhg0bqrvqrVixAm3atClTFSsREVUcodFJeJ4uh7WZEXxr2Ok7DhERlUCJCqfQ0FAcOXIEMTExkMvlGpetXr1a1LE6d+6MhIQErFy5EnFxcWjQoAHWr1+v7qoXExOjcYZp+PDhkEgkWL58OWJjY1G5cmW0adMGY8eOLcldISIi0rlz/8QBAJrXtoeRrHhdyomIyLCILpwOHTqEyZMn4+2338a5c+fw9ttv4/79+4iPj0eHDh1KFCIgIOCVXfNe7hpoZGSEUaNGaawnRUREZMjO/fsMANCqXsHjd4mIyPCJ/trrxx9/xNSpU/Hjjz/C2NgY06ZNw9GjR/H++++jWrVqushIRERUZqVn5+Dqw+cAgJZ1WTgREZVVogunR48eoXXr1gByJ3dIT0+HRCLBoEGDsHPnTq0HJCIiKssu3U9AtkKJ6pXMUMvBUt9xiIiohEQXTjY2NkhLSwMAVKlSBf/88w8AIDk5GRkZGdpNR0REVMb99aKb3tv1HAx27SYiIiqa6DFOfn5+OH/+PNzd3fHee+9hwYIFuHDhAs6fP4/mzZvrIiMREVGZde7f3LUK2U2PiKhsE104zZgxA1lZWQByZ7gzNjbG1atX0bFjRwwfPlzrAYmIiMqquJQshMckA2DhRERU1okunGxtbdU/S6VSDB06VJt5iIiIyo3z93K76TWoZgMHK1M9pyEiotLgYhJEREQ6oh7fVNdez0mIiKi0WDgRERHpgCAIOPdPbuHEbnpERGUfCyciIiIduP8sDY+TMmEik+KNWpX1HYeIiEqJhRMREZEOqLrp+dSwhYWJ6CHFRERkYFg4ERER6cDZF930WtVz1HMSIiLSBtFfgY0aNarQy1evXl3iMEREROVBjkKJ4Aiu30REVJ6ILpxOnDgBS0tLtGvXDjKZTBeZiIiIyrTQ6CSkZObAxswITZwr6TsOERFpgejCaePGjVi4cCHCwsIwceJEvPvuuzqIRUREVHapZtNrUccBMqlEz2mIiEgbRI9xat68Ofbv34/PPvsMM2fOxKBBg3D79m1dZCMiIiqTzr2YGKJlPXbTIyIqL0o0OYREIoG/vz/++OMP+Pr6IiAgAFOnTkVsbKy28xEREZUpaVk5uBqZCAB4m+ObiIjKDdFd9bZs2aLxu42NDfr06YNt27bh6NGjCAkJ0Vo4IiKisubSgwTIFQKcbc1R095C33GIiEhLRBdOmzZtKnC7nZ1dabMQERGVeX+9GN/0dl0HSCQc30REVF6ILpxOnTqlixxERETlAsc3ERGVT1wAl4iISEuepmTi9pMUAEDLOvZ6TkNERNok+oxTYGBgoZdPnTq1xGGIiIjKsuB7uYveNqxmA3srUz2nISIibRJdOG3evBmWlpZo1KgRBEHQuIx9uYmIqCI7qxrfxG56RETljujCad68eVi5ciWMjIwwefJkuLu76yIXERFRmSIIAv7697+JIYiIqHwRPcbpo48+wh9//AEvLy/07dsX06dPx7Nnz3SRjYiIqMyITEhHTFImjGUS+NWsrO84RESkZSWaHMLc3Bxffvkljh49CoVCgU6dOmH16tXIzMzUdj4iIqIy4dL9BABAE+dKMDeR6TkNERFpm+iueidPntT4vX379nB2dsaGDRuwc+dOnDlzRmvhiIiIyorLDxIBAH61eLaJiKg8El04jRw58pWXZWRklCoMERFRWfX3g9wzTm+wmx4RUbkkunC6ffu2LnIQERGVWXEpWYh4lgYAaFbDTs9piIhIF0QXToV5/PgxgNxpyatVq6bNQxMRERmsKw9zzza5V7WGrYWJntMQEZEuaO2Mk1wuR+/eveHh4QETExPs2LGj1OGIiIjKgkv3c8c3+dbk2SYiovJKdOHUs2dPSCQSjcVvVb9LJBLs27dPqwGJiIgMnXp8EyeGICIqt0o9q55KVlYWunTpUupAREREZUlqVg7CHicBANdvIiIqx0QXTs7OzgVuz87OLnUYIiKisiYkMhFKAXC2NUd1W3N9xyEiIh0p0QK4RERElOtv1fpNHN9ERFSusXAiIiIqhb/v545v4sK3RETlm+iuen5+fpBIJLrIQkREVKZk5ygR8kh1xomFExFReSa6cPr66691kYOIiKjMCXuchEy5ErYWxqjraKXvOEREpEOiC6cPPvhAFzmIiIjKHNU05L41KkMqZW8MIqLyTHThlFdWVhbkcrnGNisrfuNGREQVAyeGICKqOEQXTunp6ViyZAmOHDmC58+f57s8PDxcG7mIiIgMmlIp4PIDTgxBRFRRiJ5Vb/Hixbhw4QJmz54NExMTzJ8/H6NHj0aVKlXw7bff6iIjERGRwbkXl4rEdDnMjKVoXL2SvuMQEZGOiS6c/vzzT8yaNQudOnWCTCaDr68vRowYgbFjx+LAgQO6yEhERGRwVN30vFxtYWLE1T2IiMo70a/0SUlJcHV1BZA7nikpKQkA0KxZM1y+fFm76YiIiAyUamKINzgNORFRhSC6cHJxcUFUVBQAoHbt2jhy5AiA3DNR1tbW2k1HRERkoC5x4VsiogpFdOHk7++P27dvAwCGDh2Kbdu2oUmTJggMDMTgwYO1HpCIiMjQPH6egejnGZBKAG83zqhHRFQRiJ5Vb9CgQeqfW7RogSNHjiAsLAxubm7w8PDQZjYiIiKDpOqm16h6JViZlmplDyIiKiNK/Wrv7OwMZ2dnALnrOpmampY6FBERkSG7rF6/id30iIgqCtFd9Xbv3l3g9itXrqB79+6lDkRERGToVGecuPAtEVHFIbpw+vbbb7Fp0yb171lZWViwYAE+++wz9OjRQ5vZiIiIDE5Suhx3YlMAAL4840REVGGI7qq3adMmDBkyBElJSWjZsiW+/vprWFlZYefOnXB3d9dFRiIiIoNxJTIBggDUdrCEozW7pxMRVRSizzg1atQIW7duxb59+zBgwAD06NEDu3btYtFEREQVwqX7ueObfNlNj4ioQinRUud16tTBL7/8Ajc3N0RGRkIq5YrpRERUMVxWj29iNz0ioopEdFe9nj17QiKRAADkcjl+++03hISEwNLSEgCwb98+7SYkIiIyEJlyBW5EJQFg4UREVNGILpzat2+vixxEREQGL+xxErIVSjhYmaCGvYW+4xAR0WskunAaNWqULnIQEREZvJDI5wAAbzc7de8LIiKqGDg4iYiIqJj+K5xs9ZqDiIheP9FnnN54441CL7906VKJwxARERmykMjcGfW8XTmjHhFRRSO6cBIEAUqlEoMGDYKLi4suMhERERmcJ0mZeJyUCakE8HSppO84RET0mokunI4fP47Vq1fj559/Rp8+fTBixAhYW1vrIhsREZHBuPYo92yTu5MNLE1Fv30SEVEZJ3qMk62tLaZPn469e/ciMjISHTp0QFBQEBQKhS7yERERGQSObyIiqthKPDlErVq1sGbNGqxatQr79+9H586dceLECW1mIyIiMhjqwsnVVq85iIhIP7QyHXnVqlURERGB0aNHIzw8XCvBiIiIDEWOQokb0c8B5E5FTkREFY/owulV45nee++9UochIiIyRLefpCBTroSNmRFqO1jqOw4REemB6MIpMDBQFzmIiIgMVsij5wAALzc7SKVc+JaIqCIq8bRA9+7dw8OHDyEIAmrUqIG6detqMxcREZHB+G/9Jlv9BiEiIr0RXThFRkZi8uTJCAkJgZFR7tVzcnLQtGlTfPvtt6hZs6a2MxIREenVNc6oR0RU4YmeVW/ChAmwsrLC0aNHcfPmTdy8eRNHjhyBtbU1JkyYoIuMREREepOYlo2IZ2kAAC+ecSIiqrBEF053797FlClTNM4s1apVC1OnTsW///6rzWxERER6dy3qOQCgtqMlbC1M9BuGiIj0RnTh9OGHH+LPP//Mt/3UqVPo3bu3VkIREREZCtX6TTzbRERUsRV7jFPPnj0hkUggCAL+/fdf/PbbbxpjnO7fv4969erhgw8+UF9n37592k9MRET0GqknhuD6TUREFVqxC6f27dsDAJ49e4anT5+iXbt2GoXTrl274OPjAzs7vrEQEVH5oFQKuPZiKnLOqEdEVLEVu3AaNWoUAKBPnz5Yvnw53njjDY3L33rrLSxfvhy//vqrdhMSERHpScSzVKRk5sDMWAoPp4IXgCcioopB9BinO3fuQKFQ5NuuVCpx584drYQiIiIyBFdfjG/ydLGFkUz0WyYREZUjotdx6t69O8aNG4c+ffqgTp06AHIXw/3111/RrVu3EoXYtm0bNmzYgLi4OHh4eGDGjBnw9PR85f7Jycn47rvvcPz4cTx//hzOzs74+uuv0bp16xLdPhERUUFCuH4TERG9ILpwmjVrFtzd3bF7924EBQUBAFxdXTFy5Ej07dtXdIDDhw8jMDAQc+bMQdOmTbF582YMHjwYR48ehb29fb79s7Oz8emnn8Le3h4rVqxA1apV8fjxY9jY2Ii+bSIiosKoJ4Zw5fhdIqKKTnThJJVK0a9fP/Tr108rATZu3IjevXvD398fADBnzhycPn0ae/bswdChQ/Ptv2fPHiQlJeHXX3+FsbExAMDFxUUrWYiIiFRSs3JwNzYFAM84ERFRCQonbcrOzkZYWBiGDRum3iaVStGiRQuEhIQUeJ1Tp07By8sLc+fOxcmTJ1G5cmV07doVn3/+OWQyWbFvu6BxWvqgymEoecjwsc2QGGwvJXctMgFKAahuawYHS+MK8xiyzZBYbDMkliG1GTEZRBdOL8+m97JLly4V+1iJiYlQKBT5uuTZ29sjIiKiwOs8evQIFy5cQLdu3bB27VpERkZizpw5yMnJUc/8VxyhoaHF3vd1MLQ8ZPjYZkgMthfxjoSnAgBqWgHXrl3Tbxg9YJshsdhmSKyy1mZEF06CIECpVGLQoEF66SInCALs7e0xb948yGQyNG7cGLGxsdiwYYOowqlJkyaizlDpikKhQGhoqMHkIcPHNkNisL2U3A+hVwGkoo1nTXh51dR3nNeGbYbEYpshsQypzaiyFIfowun48eNYvXo1fv75Z/Tp0wcjRoyAtXXJ1raws7ODTCZDfHy8xvb4+Hg4ODgUeB1HR0cYGRlpPMi1a9dGXFwcsrOzYWJiUqzblslken+i8jK0PGT42GZIDLYXcQRBwLWo5wAAnxqVK+RjxzZDYrHNkFhlrc2IXpTC1tYW06dPx969exEZGYkOHTogKCioRH0UTUxM0KhRIwQHB6u3KZVKBAcHw9vbu8Dr+Pj4IDIyEkqlUr3twYMHcHR0LHbRREREVJioxAw8S82GsUyCRtU5aysREZWgcFKpVasW1qxZg1WrVmH//v3o3LkzTpw4Ifo4n376KXbu3Il9+/bh3r17mD17NjIyMtCrVy8AwKRJk7B06VL1/n379sXz58+xYMEC3L9/H6dPn8ZPP/2E/v37l/SuEBERabj6YhryhtUrwcy47HwbSkREuiO6q15B44iqVq2KiIgIjB49GuHh4aKO17lzZyQkJGDlypWIi4tDgwYNsH79enVXvZiYGEil/9V31apVw4YNGxAYGIju3bujatWq+OSTT/D555+LvStEREQFUi9862qr1xxERGQ4RBdOrxrP9N5775U4REBAAAICAgq8TLXIbl7e3t7YuXNniW+PiIioMCGPngPg+k1ERPQf0YVTYGCgLnIQEREZhEy5ArceJwEAfNzs9JyGiIgMhegxTo8ePcKDBw/ybX/w4AGioqK0kYmIiEhvwmOSIVcIsLc0gYudub7jEBGRgRBdOE2dOhUhISH5tl+/fh1Tp07VSigiIiJ9uf6im15TV1tIJBL9hiEiIoMhunC6desWfHx88m338vISPTEEERGRobkeldtNr6mLrX6DEBGRQRFdOEkkEqSlpeXbnpKSUqK1nIiIiAzJf2ecKuk3CBERGRTRhZOfnx9++uknjSJJoVBg7dq1aNasmVbDERERvU5JGXJEPMv9cpBnnIiIKC/Rs+pNmDAB/fv3x3vvvQdfX18AwOXLl5GamorNmzdrPSAREdHrEvqim55bZQvYWZroOQ0RERkS0Wec6tati99//x3vv/8+4uPjkZaWhh49euDIkSOoX7++LjISERG9FtejngPInRiCiIgoL9FnnACgatWqGDdunLazEBER6dU11fgmF45vIiIiTaLPOO3ZswdHjhzJt/3IkSPYt2+fVkIRERHpg2piCC+ecSIiopeILpzWrl0LO7v8K6nb29vjxx9/1EooIiKi1+1JUiaepmRBJpWgUXWecSIiIk2iC6fHjx/DxcUl3/bq1asjJiZGK6GIiIheN1U3vfpVrWFuItNvGCIiMjiiCyd7e3vcuXMn3/bbt2/D1tZWG5mIiIheO9XEEF5cv4mIiAogenKILl26YMGCBbC0tISfnx8A4NKlS/jmm2/QpUsXrQckIiJ6HdQL33L9JiIiKoDowumrr75CdHQ0Bg0aBCOj3KsrlUr06NEDY8eO1XpAIiIiXVMqBfUaTpyKnIiICiK6cDIxMcHy5ctx//593L59G2ZmZqhfvz6cnZ11kY+IiEjnIp6lISUrB2bGUtSrYqXvOEREZIBKtI4TANSqVQu1atXSZhYiIiK9UHXTa+JcCUYy0cN/iYioAihR4fTkyROcPHkSMTExkMvlGpdNnTpVK8GIiIheF9XEEBzfREREryK6cAoODsbw4cPh6uqKiIgI1KtXD9HR0RAEAQ0bNtRFRiIiIp1STwzB8U1ERPQKovsjLF26FJ999hkOHDgAExMTrFq1CqdPn4afnx/ee+89XWQkIiLSmawcBcJjUgDwjBMREb2a6MLp3r176NmzJwDAyMgImZmZsLS0xFdffYX169drOx8REZFO3Y5JQbZCCTsLY7hWNtd3HCIiMlCiCycLCwv1uCZHR0dERkaqL0tMTNReMiIiotdAPb7J1RYSiUS/YYiIyGCJHuPUtGlTXLlyBXXq1EHr1q3x7bff4u7duzh+/DiaNm2qi4xEREQ6c40L3xIRUTGILpymTp2KtLQ0AMDo0aORlpaGw4cPo2bNmpgyZYrWAxIREenSfxNDVNJvECIiMmiiCydXV1f1zxYWFpg7d65WAxEREb0uyZlyRDzL/TLQk2eciIioEKILp9TU1EIvt7LiiutERFQ23IxKgiAALnbmcLAy1XccIiIyYKILJ19f3wIHzwqCAIlEgvDwcK0EIyIi0rVreSaGICIiKozowgkAVq5ciUqV2BeciIjKNtX4Ji920yMioiKUqHDy8fGBvb29trMQERG9VjeikgAAni78MpCIiApXosLp33//xfPnz2Fubg4HBweYmJhoOxcREZFOxSZnIiYpE1IJ0NiZhRMRERWuRIXToEGD1GOapFIpateuDX9/fwwaNEjL8YiIiHRD1U2vflVrWJqW6O2QiIgqENHvFCdPnoQgCMjJyUFqaiqePn2KGzduYMWKFcjJycGQIUN0kZOIiEirrqsmhuD4JiIiKgbRhZOzs3O+bW3btkXNmjXx/fffs3AiIqIy4fqjF+ObuPAtEREVg9b6JnTp0gX16tXT1uGIiIh0RqkUcINnnIiISASp2CukpKQUuN3Y2Bi3bt0qdSAiIiJdexCfhuTMHJgaSeHuZK3vOEREVAaILpwCAgKQkJCgse3JkycYPHgwVqxYobVgREREuqIa39TYuRKMZaLfComIqAIS/W7h7u6Ovn37IiYmBgCwc+dOdOnSBba2tjhw4IDWAxIREWmbenwT128iIqJiEj3GadGiRZg3bx769u2LWrVq4e7duwgMDETHjh11kY+IiEjrVGecvFxt9ZqDiIjKjhJNDjFjxgxYWVlh7dq1WLt2LVq1aqXtXERERDqRnaNE2ONkAJwYgoiIiq9E6zgBgKenJ9566y2MHTsW06ZNg42NDQCgXbt22k1IRESkRXeepCA7R4lK5saoYW+h7zhERFRGiC6cRo4cmW/b1KlTAQASiQTh4eGlT0VERKQj11TTkLvaQiKR6DcMERGVGaILp9u3b+siBxER0Wtx/dFzAEBTTgxBREQicA5WIiKqULjwLRERlQQLJyIiqjBSs3Lwz9NUAICnK884ERFR8bFwIiKiCiM0KgmCADjbmqOKtZm+4xARURnCwomIiCoM1fpNXPiWiIjEYuFEREQVxo08M+oRERGJIXpWvdTU1EIvt7KyKnEYIiIiXbr+KAkAJ4YgIiLxRBdOfn5+BW4XBIHrOBERkcF6mpKJ6OcZkEiAJuyqR0REIhWrcProo4/w2Wef4f3334eLiwvi4+MxdOhQ+Pj46DofERGRVtx4cbapXhUrWJmK/t6QiIgquGK9c8ybNw8ff/wx2rZti8OHD2Pr1q348ccfcevWLUycOBGurq66zklERFQqN9QTQ9jqNQcREZVNxZocok6dOlAoFEhLS4OxsTE+/fRTHDt2DFWrVkX37t2xcOFCJCcn6zorERFRiV2LejG+iRNDEBFRCRSrcBoxYgRatWqFypUrq7fZ2tpi2rRp2L9/P6Kjo9GhQwds2rRJVzmJiIhKTBAEXH/0HADgxTNORERUAsXqqjdx4kTUr18fANCzZ09IJBKNywVBQHZ2Nr799lsMGjRI6yGJiIhK42F8OpIy5DAxksLdyVrfcYiIqAwqVuGkKpoAoH379joLQ0REpAuqhW8bVrOBiRGXMCQiIvFETys0atQoXeQgIiLSGdX6TV4c30RERCVU4vlYb968iXv37gEA6tWrh4YNG2otFBERkTapzjg1deX6TUREVDKiC6f4+HiMHTsWly5dgo2NDQAgOTkZb775Jr777juNCSSIiIj0Ta5Q4mb0ixn1ODEEERGVkOiO3vPmzUNaWhoOHTqES5cu4dKlSzh48CBSU1Mxf/58XWQkIiIqsTtPUpCVo4SNmRFq2lvqOw4REZVRoguns2fPYtasWahTp456W926dTFr1iycOXNGq+GIiIhK68aL9Zs8XWwhlUqK2JuIiKhgogsnpVIJY2PjfNuNjIygVCq1EoqIiEhbVOs3cXwTERGVhujC6a233sKCBQsQGxur3hYbG4vAwEA0b95cq+GIiIhKSz0xBMc3ERFRKYieHGLmzJkYPnw42rVrBycnJwDAkydPUK9ePSxevFjrAYmIiEoqPTsHd2NTAHAqciIiKh3RhVO1atWwb98+nD9/HhEREQCAOnXqoEWLFloPR0REVBo3o5OhFIBqlcxQxcZM33GIiKgMK9E6ThKJBC1btkTLli21nYeIiEhrVOObPF04vomIiEpHdOG0ZcuWQi//5JNPShyGiIhIm66pF7611WsOIiIq+0QXTps2bVL//OTJEzg6OkImkwHIPRPFwomIiAyF6oyTFyeGICKiUhJdOJ06dUr9s7e3N7Zu3QpXV1ethiIiIiqt+NQsRCVmQCIBGrOrHhERlZLo6ciJiIjKAtU05LUdLGFjln/9QSIiIjFYOBERUbkUEvkcAODjZqffIEREVC6I7qp3+/Ztjd8jIiKQlpam/t3Dw6P0qYiIiEpJVTh5udnqNQcREZUPogunnj17QiKRQBAEAMCwYcPUv0skEoSHh2s9JBERkRgKpYBrLyaG8HblGSciIio90YXTyZMndZGDiIhIa+7FpSI1KwcWJjLUr2ql7zhERFQOiB7j5OzsXOi/kti2bRvatm2LJk2a4KOPPsKNGzeKdb1Dhw7B3d0dI0aMKNHtEhFR+RQSmQggd+FbIxmH8xIRUemV6t0kNTUV8+fPR//+/TFnzhykpKSIPsbhw4cRGBiIkSNHYt++ffDw8MDgwYMRHx9f6PWioqLw7bffwtfXt6TxiYionFKNb/LmxBBERKQlpSqcvv32W5w6dQpNmzbF5cuXMW/ePNHH2LhxI3r37g1/f3/UrVsXc+bMgZmZGfbs2fPK6ygUCkyYMAGjR4/mGlJERJSPunBytdVrDiIiKj9Ej3HK6/z581iwYAGaN28Of39/DBgwQNT1s7OzERYWhmHDhqm3SaVStGjRAiEhIa+83po1a2Bvb4+PPvoIV65cKVF2hUJRoutpmyqHoeQhw8c2Q2JUxPaSkpmDu09ze0B4OttUqPuuDRWxzVDpsM2QWIbUZsRkKFXhlJiYCBcXFwCAq6srEhMTRV9foVDA3t5eY7u9vT0iIiIKvM7ly5exe/du7N+/v0SZVUJDQ0t1fW0ztDxk+NhmSIyK1F5uxGZBEIAqFjJE3wtHtL4DlVEVqc2QdrDNkFhlrc2ILpxSU1M1fk9LS0NqaiqysrK0Fqqw2540aRLmzZuHypUrl+pYTZo0gUwm01KyklMoFAgNDTWYPGT42GZIjIrYXv768x6ARLxR1xFeXl76jlPmVMQ2Q6XDNkNiGVKbUWUpDtGFk6+vLyQSCQBAEAR88MEH6p9V24vLzs4OMpks30QQ8fHxcHBwyLf/o0ePEB0djeHDh6u3KZVKAEDDhg1x9OhRuLm5Feu2ZTKZ3p+ovAwtDxk+thkSoyK1l+tRSQAAH7fKFeY+60JFajOkHWwzJFZZazOiC6ctW7Zo7cZNTEzQqFEjBAcHo3379gByC6Hg4GAEBATk27927do4cOCAxrbly5cjLS0N06ZNg5OTk9ayERFR2SMIAkJUC9+62eo1CxERlS+iC6c33nhDqwE+/fRTTJ48GY0bN4anpyc2b96MjIwM9OrVCwAwadIkVK1aFePHj4epqSnq16+vcX0bGxsAyLediIgqnsiEdCSkZcNEJkXD6jb6jkNEROWI6MLp5MmThV7erl07Ucfr3LkzEhISsHLlSsTFxaFBgwZYv369uqteTEwMpFIuXkhEREVTTUPeyNkGpkZlp/sHEREZPtGF08iRI195mUQiQXh4uOgQAQEBBXbNA4CgoKBCr7tw4ULRt0dEROVTSGTu7K7erlz4loiItKtE05GfO3euwMkbiIiI9Injm4iISFdK1AeOXeeIiMjQZMoVuPU4GQALJyIi0r4SnXHauXMnbGxsYGFhgSpVqsDDw6PU6yoRERGVxs3oJOQoBTham8LZ1lzfcYiIqJwRXThVr14dO3fuhFwuR2pqKjIyMiCVStG6dWssXrwYVlZWushJRERUKNXEEN6utqLXFSQiIiqK6MLp1KlTGr+npqYiNDQUc+fOxaJFizB37lythSMiIiqukEcvJoZw48QQRESkfaUerGRlZYXmzZtj1qxZ+Ouvv7SRiYiISDT1GSeObyIiIh3Q2iwPb731VpFrPBEREelCTFIGYpIyIZUAni6V9B2HiIjKIdFd9W7fvl3o5R4eHiUOQ0REVBLXXpxt8nCygYVJieY9IiIiKpTod5eePXuqB90KggAgd+FbQRBKvAAuERFRaVzj+k1ERKRjogunZs2aITw8HEOHDkXXrl05cxEREendf+ObODEEERHphugxTtu2bcPChQuxb98+jBkzBk+ePIGzs7P6HxER0eskVyhxI/o5AMDL1VavWYiIqPwq0eQQHTt2xKFDh9C1a1eMGDECo0aNwsOHD7WdjYiIqEh3nqQgU66EjZkRajtY6jsOERGVUyWeVc/IyAiDBg3C8ePH4eLigg8++AALFizQZjYiIqIihUTmrt/k5WYHqZTdx4mISDdEj3Hy8/MrcFxTdnY2tm7dimnTpmklGBERUXGoxzexmx4REemQ6MLp66+/1kUOIiKiEgnhjHpERPQaiC6cPvjgA13kICIiEi0xLRv3n6UB4MQQRESkWyVaJTAiIgIWFhZwcnLCjRs38Oeff6JOnTro2rWrtvMRERG90tUX45tqO1rC1sJEz2mIiKg8Ez05xMaNG9G5c2e0b98e27dvx8CBA3HmzBlMnz4dq1ev1kVGIiKiAv39ILdw8qtRWc9JiIiovBN9xikoKAhTpkxBtWrVMH78eMyfPx89e/bEiRMn8M0332DUqFG6yElERJTP3w8SAAC+NbnwLRER6ZboM06xsbF4//330alTJ0ilUnh5eQEAPD09ERsbq+18REREBcqUK3Aj6jkA4I1aPONERES6JbpwUigUMDY2BgDIZDLIZLLcA0mlUCqV2k1HRET0CtcfPYdcIcDR2hRulS30HYeIiMq5Ek0OMXDgQBgZGSErKwvDhw+HsbExcnJytJ2NiIjolVTd9N6oWbnA9QWJiIi0SXThlHcMU7t27TQu69SpU+kTERERFYN6YgiObyIiotegVIUTERGRPiiUAq4+zC2cfGtyfBMREeme6DFORERE+hYek4yUrBxYmxqhQTUbfcchIqIKQPQZJ4VCgU2bNuHIkSOIiYmBXC7XuPzSpUtaC0dERFSQyy/GN/nUsINMyvFNRESke6LPOK1evVq9CG5KSgoGDRqEDh06QCKRsBsfERG9FhzfREREr5voM04HDhzA/Pnz8e6772LVqlXo2rUr3Nzc4O7ujuvXr+siIxERkZogCOoZ9fw4vomIiF4T0Wecnj17hvr16wMALC0tkZKSAgBo06YNTp8+rdVwREREL4tMSMfTlCwYyyRo6mqr7zhERFRBiC6cqlatiri4OACAq6sr/vrrLwBAaGgoTExMtJuOiIjoJZfu555t8nSxhZmxTM9piIioohDdVa9Dhw4IDg5G06ZNMWDAAEycOBG7d+/G48ePMWjQIB1EJCIi+s9l9fgmdtMjIqLXR3ThNGHCBPXPnTt3RrVq1XDt2jXUqFEDbdu21Wo4IiKil/03vokTQxAR0esjunB6mbe3N7y9vbWRhYiIqFBxKVmIeJYGiQTwrcEzTkRE9PqUqHCKiIjA1q1bce/ePQBAnTp1EBAQgNq1a2s1HBERUV5XHuaebXKvao1KFsZ6TkNERBWJ6Mkhjh07hm7duiEsLAweHh7w8PDArVu30K1bNxw7dkwXGYmIiAAAl+7njm/yZTc9IiJ6zUSfcVq8eDGGDh2Kr776SmP7ypUrsXjxYnTq1Elr4YiIiPK6/JDrNxERkX6IPuMUFxeHnj175tvevXt39TTlRERE2paWlYOwx8kAWDgREdHrJ7pweuONN3D58uV8269cuQJfX1+thCIiInrZ1chEKJQCnG3NUd3WXN9xiIioghHdVa9t27ZYsmQJwsLC0LRpUwDA9evXcfToUYwePRonT55U79uuXTvtJSUiogrt7xfrN71Ri2ebiIjo9RNdOM2ZMwcA8Msvv+CXX34p8DIAkEgkCA8PL2U8IiKiXH/fzx3fxIkhiIhIH0QXTrdv39ZFDiIioleSK5QIefTijBPHNxERkR6IHuNERET0ut2MTkKmXAk7C2PUrWKl7zhERFQBiT7jtGXLlkIv/+STT0ochoiIqCB/P8jtptesRmVIJBI9pyEioopIdOH0zTffwMnJCVJp/pNVEomEhRMREWndfxNDcHwTERHph+jCCQD27NkDe3t7bWchIiLKR6kUcPmBamIIjm8iIiL94BgnIiIyaBHPUpGYLoeZsRSNq1fSdxwiIqqgWDgREZFBC74XDwDwdrWDiRHftoiISD9K1FXv33//RVxcXIGXeXh4lCoQERFRXuf+fQYAeLueg56TEBFRRVaiwmnQoEEQBEH9u0QigSAIXPSWiIi0KkehxPkXZ5zersvCiYiI9Ed04XTy5Eld5CAiIsonNDoJKZk5sDEzQmNnjm8iIiL9EV04OTs76yIHERFRPn+96KbXoo4DZFKu30RERPrDUbZERGSwzv7D8U1ERGQYWDgREZFBSs/OwdXI3IVvOb6JiIj0jYUTEREZpIv3EyBXCHC2NUcNewt9xyEiogqOhRMRERmkv15002tVzwESCcc3ERGRfpVoOvK8bt68idu3b6N+/frw9PTURiYiIiL1+k0t2U2PiIgMQKkKpz179mD69OmwtbVFUlISZsyYgb59+2orGxERVVBxKVm4/SQFANCijr2e0xAREZWyq96WLVswefJkBAcHY8mSJdi0aZOWYhERUUV2/l7u2aZG1W1gb2Wq5zRERESlLJxiYmLwzjvvAABat26N6OhorYQiIqKKTT0NObvpERGRgShV4SSXy2FsbAwAMDY2hkKh0EooIiKquARBUC98y/FNRERkKESPcRo1apT65+zsbMyePRvm5uZQKpVaDUZERBVTxLM0xCRlwsRIijdqVdZ3HCIiIgAlKJysrKzU08J2795d47KePXtqJRQREVVc51500/OtYQczY5me0xAREeUSXTgtXLhQFzmIiIgAcBpyIiIyTKLHOH3yySdITk7WRRYiIqrgchRKXLgXDyB34VsiIiJDIbpwunTpEuRyuS6yEBFRBXc9KgkpWTmoZG6MRtUr6TsOERGRWolm1VONcSIiItIm1Wx6LerYQyblew0RERkO0WOcAGDkyJHqachftmXLllIFIiKiiks1McTb7KZHREQGpkSFk5eXFywtLbWdhYiIKrC0rBxcjUwEwIVviYjI8IgunCQSCYYMGQJ7e3td5CEiogrq0v0E5CgFuNiZw62yhb7jEBERaRA9xkkQBF3kICKiCu7si256reo5cCwtEREZHNGF06hRo2BhwW8CiYhIu/7i+k1ERGTARBdOPXr0QGxsbL7tDx48QFRUlFZCERFRxfI0ORN3YlMgkQAt6rBwIiIiwyO6cJo6dSpCQkLybb9+/TqmTp2qlVBERFSxnHnRTa9hNRtUtjTRcxoiIqL8RBdOt27dgo+PT77tXl5eCA8PL1GIbdu2oW3btmjSpAk++ugj3Lhx45X77ty5E/369YOfnx/8/PwwaNCgQvcnIiLDd/zWEwBAO48qek5CRERUMNGFk0QiQVpaWr7tKSkpUCgUogMcPnwYgYGBGDlyJPbt2wcPDw8MHjwY8fHxBe5/8eJFdOnSBVu2bMGvv/6KatWq4bPPPiuw+yARERm+jGwF/nc3DgDQsZGTntMQEREVTHTh5Ofnh59++kmjSFIoFFi7di2aNWsmOsDGjRvRu3dv+Pv7o27dupgzZw7MzMywZ8+eAvdfunQp+vfvjwYNGqBOnTqYP38+lEolgoODRd82ERHp37l/nyFTroSzrTkaVbfRdxwiIqICiV7HacKECejfvz/ee+89+Pr6AgAuX76M1NRUbN68WdSxsrOzERYWhmHDhqm3SaVStGjRosBxVAXJyMhATk4OKlWqJOq2S3J2TBdUOQwlDxk+thkSoyy0l6M3YwAA7RtUgVKp1HMaKgtthgwL2wyJZUhtRkwG0YVT3bp18fvvv2Pbtm24ffs2zMzM0KNHDwQEBMDW1lbUsRITE6FQKPItpmtvb4+IiIhiHWPJkiWoUqUKWrRoIeq2Q0NDRe2va4aWhwwf2wyJYajtRaEU8MfNpwCAWibJuHbtmn4DkZqhthkyXGwzJFZZazOiCycAqFq1KsaNG6ftLKKtXbsWhw8fxpYtW2Bqairquk2aNIFMJtNRsuJTKBQIDQ01mDxk+NhmSAxDby8X7ycgJTsWtubG6NvOD0Yy0T3IScsMvc2Q4WGbIbEMqc2oshRHiQqn5ORk7N69G/fu3QMA1KtXD/7+/rC2thZ1HDs7O8hksnwTQcTHx8PBofB1PDZs2IC1a9di48aN8PDwEHcHAMhkMr0/UXkZWh4yfGwzJIahtpcT4bmTQrRrUBWmJsZ6TkN5GWqbIcPFNkNilbU2I/qrvdDQUHTo0AGbNm1CUlISkpKSsHHjRrRv3x5hYWGijmViYoJGjRppTOygmujB29v7lddbt24dvv/+e6xfvx5NmjQRexeIiMgACIKAY2G505B3bFRVz2mIiIgKJ/qMU2BgINq2bYt58+bByCj36jk5OZg+fTq++eYbbNu2TdTxPv30U0yePBmNGzeGp6cnNm/ejIyMDPTq1QsAMGnSJFStWhXjx48HkNs9b+XKlVi6dCmcnZ0RF5f7baWFhQUsLS3F3h0iItKTWzHJiH6eATNjKd6p56jvOERERIUSXTjdvHlTo2gCACMjIwwZMgT+/v6iA3Tu3BkJCQlYuXIl4uLi0KBBA6xfv17dVS8mJgZS6X8nxn799VfI5XJ8+eWXGscZNWoURo8eLfr2iYhIP/4Iy11/7516jjA3KTtdNYiIqGISXThZWVkhJiYGderU0dgeExNT4jM+AQEBCAgIKPCyoKAgjd9PnTpVotsgIiLD8set3MKJi94SEVFZIHqMU+fOnTFt2jQcPnwYMTExiImJwaFDhzB9+nR06dJFFxmJiKiceZSQjvCYZEglQDuPKvqOQ0REVCTRZ5wmTZqk/l+1YJSRkRH69u2LCRMmaDcdERGVS6pJId6oVRl2liZ6TkNERFQ00YWTiYkJpk+fjvHjxyMyMhIA4ObmBnNzc62HIyKi8knVTa8Tu+kREVEZUaJ1nADA3Nwc7u7u2sxCREQVQHxqFi4/SAAAdGjIaciJiKhsEF04jRo1qtDLV69eXeIwRERU/p0MfwqlADSqbgMXOwt9xyEiIioW0ZNDWFtbq/+dPn0aUqlUYxsREVFh/rj1YtHbhuymR0REZUeJFsBVOXr0KCZOnAhXV1ethiIiovIpLSsHZ/55BgDo1Jjd9IiIqOwQfcaJiIiopM7+E4fsHCXcKlvAvSp7KRARUdnBwomIiF6bP8JeLHrbsCokEome0xARERWf6K56W7ZsUf+sUCiwd+9e2NnZqbd98skn2klGRETlilyhxInwF9OQN+b4JiIiKltEF06bNm1S/+zg4IDffvtN/btEImHhREREBboYkYDkzBzYW5rAx82u6CsQEREZENGF06lTp3SRg4iIyrl9IdEAgI6NqkImZTc9IiIqW0SPcVq9ejUyMjJ0kYWIiMqplEw5DofGAAA+bMaZWImIqOwRXTitWbMG6enpushCRETl1MEbMciQK1C3ihV83Gz1HYeIiEg00YWTIAi6yEFEROXYzsuPAAC9fV04mx4REZVJosc4AcCGDRtgYWFR4GWjRo0qVSAiIipf/olNQUjkc8ikEnzg7aLvOERERCVSosLp6tWrMDY2zred3yISEdHLdl2JAgC09agCR2tTPachIiIqmRIVTmvWrIG9vb22sxARUTkjVyix92pu4dTbl5NCEBFR2SV6jBMREVFx/Xn7KZ6lZsPByhTvujvqOw4REVGJiS6c/Pz8CuymR0RE9DLVpBD+zZxhLON3dUREVHaJ7qoXFBSkixxERFTOPE3OxJ934gAAH3HtJiIiKuNEF05FzZq3evXqEochIqLyY29INBRKAc1q2KFuFSt9xyEiIioV0f0mTpw4AWNjY1hbW8Pa2hqnT5+GVCpV/05ERCQIgsbaTURERGVdiWbVmz59unpWvaNHj2LixIlwdWU3DCIiynU1MhERcWkwN5ahi2d1fcchIiIqNdFnnExNTZGVlQUg9xtFuVyOzZs3Q6FQaD0cERGVTTv/zp2CvItnNViZlug7OiIiIoMiunCqWbMmNm/ejLi4OGzevBmWlpYICwvDJ598gmfPnukiIxERlSFpWTk4eOMxAOBjP/ZGICKi8kF04TRmzBjs3LkT77zzDpYsWYKJEyciKCgIDRo0QM+ePXUQkYiIypLDoTFIy1agloMlfGvY6TsOERGRVojuP9GmTRucOXMG9+/fR7Vq1eDomLug4fTp0+Ht7a31gEREVLaoJoX4yNcFEolEz2mIiIi0o0Qdz62treHp6Zlve5cuXUodiIiIyq6IuFT8/SARUgng78PZ9IiIqPwoUeGUnJyM3bt34969ewCAevXqwd/fn9ORExFVcJvPPwAAvOteBVVtzPQbhoiISItEj3EKDQ1Fhw4dsGnTJiQlJSEpKQkbN25E+/btERYWpouMRERUBjxNzsT2v3O76Q15u5ae0xAREWmX6DNOgYGBaNu2LebNmwcjo9yr5+TkYPr06fjmm2+wbds2rYckIiLD99OZCGTnKOFbww7N69jrOw4REZFWiT7jdPPmTQwZMkRdNAGAkZERhgwZgps3b2o1HBERlQ3PUrOw7eJDAMDodvU4KQQREZU7ogsnKysrxMTE5NseExMDS0tLrYQiIqKyZf3Z+8iUK9HUpRLeqeeg7zhERERaJ7pw6ty5M6ZNm4bDhw8jJiYGMTExOHToEKZPn85Z9YiIKqDEtGwEBT8AAIxuy7NNRERUPoke4zRp0iT1/wqFIvcgRkbo27cvJkyYoN10RERk8Db+dR9p2Qo0rGaDdg2q6DsOERGRTogunExMTDB9+nSMHz8ekZGRAAA3NzeYm5trPRwRERm2pAw5Nr6Ygnx027o820REROVWidZxAgBzc3PY2NiofyYioopn8/kHSMnMQf2qVujUyEnfcYiIiHRGdOGUk5OD1atXIygoCOnp6QAACwsLBAQEYNSoUTA2NtZ6SCIiMjypWTn4+a/7AICRbepCKuXZJiIiKr9EF07z5s3D8ePHMXHiRHh5eQEArl27htWrV+P58+eYM2eOtjMSEZEBCgp+iOfpctR2sERXz+r6jkNERKRTogungwcPYtmyZWjdurV6m4eHB6pVq4Zx48axcCIiqgDSs3Ow/mwEgNyzTTKebSIionJO9HTkJiYmcHFxybfdxcWF3fSIiCqIXy5GIj4tG26VLdDDi2ebiIio/BNdOPXv3x/ff/89srOz1duys7Pxww8/ICAgQKvhiIjI8GTKFfjpTO7ZphHv1oGRTPRbCRERUZkjuqteeHg4goOD8c4778DDwwMAcPv2bcjlcjRv3hyjRo1S77t69WrtJSUiIoMQFPwQcSlZcLY1Ry+f/D0QiIiIyiPRhZONjQ06deqksa1atWpaC0RERIYrMj4dy47fBQB82a4uTIx4tomIiCoG0YVTYGCgLnIQEZGBEwQBU/beQIZcgea17dHb11XfkYiIiF6bEn1VmJOTg/Pnz+PXX39FamoqACA2NhZpaWlaDUdERIZj5+VHOH8vHmbGUgT2agKJhDPpERFRxSH6jFN0dDSGDBmCmJgYZGdno2XLlrCyssK6deuQnZ2NuXPn6iInERHpUWxyJuYfCgcAjO/gjpoOlnpORERE9HqJPuO0YMECNG7cGJcuXYKpqal6e4cOHXDhwgWthiMiIv0TBAHT9t1ESmYOmrra4rO3a+k7EhER0Wsn+ozTlStXsH37dpiYmGhsd3Z2RmxsrNaCERGRYTgUGoMT4bEwlkmwyN+Ti90SEVGFJPqMk1KphFKpzLf9yZMnsLRk1w0iovIkMS0bs34LAwCMeLcu3J2s9ZyIiIhIP0QXTi1btsTmzZs1tqWlpWHVqlVo3bq11oIREZH+zT14C/Fp2ahf1Qoj29TVdxwiIiK9EV04TZkyBVevXkXnzp2RnZ2NCRMmoG3btoiNjcWECRN0kZGIiPTgz9tPsS8kGlIJsOjDplyziYiIKjTRY5ycnJzw22+/4fDhw7h9+zbS09Px4Ycfolu3bjAzM9NFRiIies1SMuWYti8UAPBZy1rwcrXVbyAiIiI9E104AYCRkRG6d++O7t27azsPERHpmUIpYOKuG3iclAm3yhYY17G+viMRERHpnejCKTExEXZ2dgCAmJgY7Ny5E5mZmWjbti38/Py0HpCIiF4fQRAw87ebOBr2BCYyKZb2bgoLkxJ9x0ZERFSuFPvd8M6dOxg+fDhiYmJQo0YNfPfddxgyZAjS09MhlUqxefNmrFy5Eu3bt9dlXiIi0qFVp/7FtouRkEiA5X284Fezsr4jERERGYRij/RdvHgx6tevj61bt+KNN97AsGHD0Lp1a1y5cgV///03Pv74Y6xdu1aXWYmISIe2X4rEsuN3AQBzuzdC5ybV9JyIiIjIcBS7cAoNDcWYMWPQrFkzTJ48GU+fPkW/fv0glUohlUoREBCAiIgIXWYlIiId+SPsiXoyiNFt62JA85r6DURERGRgil04JSUlwdHREQBgaWkJc3NzVKpUSX15pUqVkJaWpv2ERESkU5cfJGD09hAoBeBjX1eM68DJIIiIiF4malEOiUSiqxxERKQHd2NTMHjzZWTlKNG+QRUs+KAxX+uJiIgKIGqqpClTpsDExAQAkJ2djdmzZ8Pc3Fz9OxERlR1RiekY+PMlJGXI4eNmi1V9fWAk4yK3REREBSl24fTBBx9o/F7QGk49e/YsdSAiItK9M3fjMGbHNSSkZaNuFSv8PMgP5iYyfcciIiIyWMUunAIDA3WZg4iIXgOFUsDKk/9g5al/IAhAo+o2WPeJL2wtTPQdjYiIyKBxVUMiogoiPjULY3Zcw9l/ngEA+r7hhlndGsLMmGeaiIiIisLCiYioArgamYgvf72OmKRMmBlLsaBnE/g3c9F3LCIiojKDhRMRUTkmCAIO/pOGoBuXkKMUUNvBEt8H+MDDyUbf0YiIiMoUFk5EROWQIAgIvhePZcfv4vLDFABAF89qWNirCazNjPWcjoiIqOxh4UREVM5ciIjHd8fv4uL9BACAsRSY8r4HPnu7NtdoIiIiKiEWTkRE5cSl+wn47vhdBEfEAwBMZFJ87OeCVg4ZaNe8JosmIiKiUmDhRERUhmVkK3DmnzgEBT/EuX9zZ8szlknwsZ8rRrxbF1WtTXDt2jX9hiQiIioHWDgREZUxSRly/Hn7KY7efIL/3Y1DhlwBADCSSvCRrytGta0LZ1tzAIBCodBnVCIionKDhRMRkYFTKgXcj0/DxYgEHAt7gvP3nkGuENSXO9ua473GThjUoiZcK1voMSkREVH5ZRCF07Zt27BhwwbExcXBw8MDM2bMgKen5yv3P3LkCFasWIHo6GjUrFkTEyZMQOvWrV9jYiIi3cjOUeJubApuPU5G2OMkhD1Oxq2YZKRna545qlfFCp0aOeG9xk5oVN2G45eIiIh0TO+F0+HDhxEYGIg5c+agadOm2Lx5MwYPHoyjR4/C3t4+3/5Xr17F+PHjMW7cOLRp0wYHDhzAyJEjsXfvXtSvX18P94CIqGhKpYDU7BwkZ8iRmCZHTFIGniRnIiYpE0+SMnN/T8pE9PMMjbNJKmbGUjSqXgltPaqgUyMn1K1ipYd7QUREVHHpvXDauHEjevfuDX9/fwDAnDlzcPr0aezZswdDhw7Nt/+WLVvQqlUrDBkyBAAwZswYnD9/Hlu3bsXcuXNfa/bSUioFXIiIx7WoTMQaP4FUKtV3JCoDlEol7lfQNiPkryf+u6yA/YQ8WwUhdx9BEArcT6kElIIAQcj9XymotgvIUQpQ5P1fIUChVCJbISArR4HsHCWyVP/kCmTlKJGRrUByphwpmbnFUmp2TqH587IxM0Kj6pXQ2NkGjapXQqPqNqjlYAkjWcV6vomIiAyJXgun7OxshIWFYdiwYeptUqkULVq0QEhISIHXuXbtGgYNGqSx7e2338aJEydE3bYhDJg+FvYEI365lvtL8DV9RqGyiG2mTDKRSWBrYQInGzM4VTKDUyVTONmYoVql3H/OtuaoVsmsgK53Qolet1TXMYTXPCob2GZILLYZEsuQ2oyYDHotnBITE6FQKPJ1ybO3t0dERESB13n27BkcHBzy7f/s2TNRtx0aGiourA7I0hXwq26KlCylvqMQvXa6GJLz8iHz34YEkjzb8/4sleReKpHk/vzfNkAmlUD2Yvt/P0sgk+YWQiZSCYxludOAm0gludtkEliaSGBhLIGFsRSWL/43kb0cKjv3n5AMPAeePgeeausBycMQXvOobGGbIbHYZkisstZm9N5VT1+aNGkCmUym7xho86YCoaGhBpOHDJ9CwTZDxcf2QmKxzZBYbDMkliG1GVWW4tBr4WRnZweZTIb4+HiN7fHx8fnOKqk4ODjkO7tU2P6vIpPJ9P5E5WVoecjwsc2QGGwvJBbbDInFNkNilbU2o9eRxiYmJmjUqBGCg4PV25RKJYKDg+Ht7V3gdby8vHDhwgWNbefPn4eXl5cuoxIRERERUQWm9ymaPv30U+zcuRP79u3DvXv3MHv2bGRkZKBXr14AgEmTJmHp0qXq/T/55BOcPXsWP//8M+7du4dVq1bh5s2bCAgI0NddICIiIiKick7vY5w6d+6MhIQErFy5EnFxcWjQoAHWr1+v7noXExOjMeWyj48PlixZguXLl2PZsmWoWbMm1qxZwzWciIiIiIhIZ/ReOAFAQEDAK88YBQUF5dv2/vvv4/3339d1LCIiIiIiIgAG0FWPiIiIiIjI0LFwIiIiIiIiKgILJyIiIiIioiKwcCIiIiIiIioCCyciIiIiIqIisHAiIiIiIiIqAgsnIiIiIiKiIrBwIiIiIiIiKgILJyIiIiIioiKwcCIiIiIiIioCCyciIiIiIqIisHAiIiIiIiIqAgsnIiIiIiKiIhjpO8DrJggCAEChUOg5SS5VDkPJQ4aPbYbEYHuh/7d351FNXO0fwL+sCliLC9trMQItUVkkiCKKIuBWEUVERFFaRBDcV9yKC7uIAkXklbpbrQJirIJaV9S6i1b0pVpRBC0iblgWDSH5/cHJ/AwkJMGy2D6fc3IOmeXmmZmbm3nm3hkURXWGKIrqDFFUa6ozohhEOUJDlITyLPUPwuPxkJub29JhEEIIIYQQQloJCwsLqKurN7jMvy5xEggE4PP5UFZWhpKSUkuHQwghhBBCCGkhQqEQAoEAqqqqUFZu+C6mf13iRAghhBBCCCGKoodDEEIIIYQQQogMlDgRQgghhBBCiAyUOBFCCCGEEEKIDJQ4EUIIIYQQQogMlDgRQgghhBBCiAyUOBFCCCGEEEKIDJQ4EUIIIYQQQogMlDgRQgghhBBCiAyUODWDPXv2wMnJCRYWFhg/fjxu377d4PJHjx7FiBEjYGFhAVdXV2RnZzdTpKQ1UKS+pKamYtKkSejTpw/69OmDb7/9Vmb9Iv88irYxIpmZmWCz2ZgxY0YTR0haG0XrzNu3b7FmzRrY29vD3Nwcw4cPp9+mfxlF68yOHTswfPhwWFpawsHBAZGRkXj//n0zRUta2rVr1xAYGAh7e3uw2WycPHlS5jpXrlzB2LFjYW5ujqFDhyIjI6MZIlUMJU5NLCsrC1FRUZg5cyYOHjyI7t27w8/PDy9fvpS4fE5ODhYuXAgPDw9wuVw4Oztj5syZuH//fjNHTlqCovXlypUrcHFxwa5du7Bv3z4YGBhg6tSpKCkpaebISUtRtM6IPHnyBGvXroWNjU0zRUpaC0XrDI/Hg6+vL54+fYqEhAQcO3YMYWFh0NPTa+bISUtRtM4cPnwY69evx6xZs5CVlYWIiAhkZWVhw4YNzRw5aSmVlZVgs9lYtWqVXMsXFRVh+vTpsLW1xaFDh/DNN9/gu+++w/nz55s4UgUJSZPy8PAQrlmzhnlfU1MjtLe3F27evFni8nPnzhUGBASITRs/frwwJCSkSeMkrYOi9aUuPp8v5HA4woMHDzZRhKS1aUyd4fP5wgkTJghTU1OFS5YsEQYFBTVHqKSVULTO7N27V+js7Czk8XjNFSJpZRStM2vWrBH6+PiITYuKihJ6eXk1aZykdTI1NRWeOHGiwWViYmKELi4uYtPmzZsnnDp1alOGpjDqcWpCPB4Pd+/eRf/+/ZlpysrK6N+/P27evClxnVu3bsHOzk5smr29PW7dutWUoZJWoDH1pa6qqirw+Xx8/vnnTRUmaUUaW2eSkpLQqVMnjB8/vjnCJK1IY+rM6dOnYWVlhdDQUPTv3x+jRo3Cf//7X9TU1DRX2KQFNabOcDgc3L17lxnOV1RUhOzsbDg4ODRLzOTT86mc/6q2dAD/ZK9fv0ZNTQ06deokNr1Tp054+PChxHVevHiBzp0711v+xYsXTRYnaR0aU1/qio2Nha6urtgPHPnnakyduX79OtLT08HlcpshQtLaNKbOFBUV4fLly3B1dUVKSgoKCwuxZs0a8Pl8zJo1qznCJi2oMXXG1dUVr1+/xqRJkyAUCsHn8+Hl5YXAwMDmCJl8giSd/3bu3Bnl5eV49+4d2rZt20KRiaMeJ0L+IVJSUpCVlYWNGzeiTZs2LR0OaYXKy8sRHByMsLAwdOzYsaXDIZ8IoVCITp06ISwsDObm5hg5ciQCAwOxb9++lg6NtFJXrlzB5s2bsWrVKmRkZGDjxo3Izs5GUlJSS4dGyEehHqcm1KFDB6ioqNS7efLly5f1smqRzp071+tdamh58s/RmPoisnXrVqSkpGD79u3o3r17U4ZJWhFF60xRURGePn2KoKAgZppAIAAA9OzZE8eOHUPXrl2bNmjSohrTzujo6EBVVRUqKirMNGNjY5SWloLH40FdXb1JYyYtqzF1JiEhAaNHj2aGA7PZbFRWVmLlypUICgqCsjJdtyfiJJ3/vnjxAu3atWs1vU0A9Tg1KXV1dZiZmeHSpUvMNIFAgEuXLoHD4Uhcx8rKCpcvXxabdvHiRVhZWTVlqKQVaEx9AYAffvgBmzZtwpYtW2BhYdEcoZJWQtE6Y2xsjMOHD4PL5TIvJycn2NragsvlQl9fvznDJy2gMe2MtbU1CgsLmSQbAAoKCqCjo0NJ079AY+rMu3fv6iVHosRbKBQ2XbDkk/WpnP9S4tTEfH19kZqaioMHDyI/Px+rV69GVVUV3N3dAQDBwcFYv349s7yPjw/Onz+Pbdu2IT8/H4mJibhz5w4mT57cUptAmpGi9SUlJQUJCQmIjIxEly5dUFpaitLSUlRUVLTUJpBmpkidadOmDUxNTcVe7du3h5aWFkxNTekk+F9C0XZm4sSJePPmDSIiIvDo0SOcPXsWmzdvhre3d0ttAmlmitYZR0dH/PTTT8jMzERRURF+/fVXJCQkwNHRUaznkvxzVVRUIC8vD3l5eQBq/wVGXl4e/vzzTwDA+vXrERwczCzv5eWFoqIixMTEID8/H3v27MHRo0fx7bfftkT4UtFQvSY2cuRIvHr1Ct9//z1KS0vRo0cPbNmyheneLi4uFrsqY21tjdjYWMTHx2PDhg3o1q0bkpKSYGpq2lKbQJqRovVl3759qK6uxpw5c8TKmTVrFmbPnt2ssZOWoWidIUTROmNgYICtW7ciKioKo0ePhp6eHnx8fODv799Sm0CamaJ1JigoCEpKSoiPj0dJSQk6duwIR0dHzJ8/v6U2gTSzO3fuwMfHh3kfFRUFABg7diyio6NRWlqK4uJiZr6hoSE2b96MqKgo7Nq1C/r6+ggPD8fAgQObPfaGKAmpz5QQQgghhBBCGkSXIQkhhBBCCCFEBkqcCCGEEEIIIUQGSpwIIYQQQgghRAZKnAghhBBCCCFEBkqcCCGEEEIIIUQGSpwIIYQQQgghRAZKnAghhBBCCCFEBkqcCCGEEEIIIUQGSpwIIYTAxcUFr169wl9//YVhw4ahvLy8pUMihBBCWhVKnAj5wNKlS8Fms5mXra0t/Pz88Pvvv7d0aIQ0KTc3NwwcOBB9+/bFoEGD0K5du5YOqUVcuXIFbDYbb9++belQCJEpIyMDNjY2LR0GIf8aqi0dACGtzcCBAxEVFQUAePHiBeLj4xEYGIizZ8+2bGCENCF/f39MnDgRfD4f2traLR0OIYQQ0upQjxMhdairq0NHRwc6Ojro0aMH/P39UVxcjFevXjHLFBcXY+7cubCxsUHfvn0RFBSEJ0+eMPOXLl2KGTNmYOPGjejXrx+sra2xcuVK8Hg8Zhkej4fw8HDY2dnBwsICEydOxO3bt8ViOXPmDEaPHg1LS0umF2zGjBkAgClTpoj1jn34SkxMBAA4OTlhx44dYmWKYlMkjj/++APTp0+HtbU1OBwOJk2ahMLCQiQmJkqNYcqUKRI/T5YnT56AzWYjMzMTXl5esLCwwKhRo3D16tUG13NycpIYx4efPWXKFISGhiI0NBS9e/eGra0t4uPjIRQKmWW4XC7c3d3B4XAwYMAALFy4EC9fvmTmi3ok2Gw2unfvDjs7Oyxfvhzv378Xiz8vL49ZJz4+Hmw2W+KxqBtvREQEM5/NZuPkyZMNbvPHHt8Pe1jatWsHbW1tLF68WOZnT5kyRSzWtLQ02NjY4O7du/VirLuNonJramqwfPlyODk5wdLSEsOHD8fOnTvrfVZ6ejpcXFxgbm4Oe3t7hIaGMvPevn2LlStXon///kxdOXPmDADJV+O9vb3rHZ/9+/ejX79+cHR0RE5ODgDg0KFDsLW1haOjI7Kzs5ll5Smzbq9VWVkZXF1dERwczNS1c+fOYeLEibCxsYGtrS2mT5+OwsJCpkxJ9Ui0Pz885nWPw8OHD2FmZoYxY8Yw0+rWidevX6NPnz4yeyru3bsHHx8fWFpawtbWFiEhIaioqBBbRhRn3deHPXaS6lLduOtu16VLlyR+f9lsNn755Rexstzc3MBms3HlyhWp21K3/Li4OAwaNEis3RbFWvclOgavX7/GggULMHDgQPTq1Quurq44cuSI2PoCgQA//PADhg4dCnNzcwwePBjJycnM/GfPnmHBggXo27cvrKys4O7ujt9++w0AkJiYKHbceDwehg4dWm9/bty4Eb1794aLiwsePXoEAEhJSQGHw8HXX38t9v2Wp8y6dfrp06dwcHBAXFwcM62hdlFaHRC9RPv46tWr8PDwYL7HsbGx4PP5zGfI0z6XlZUhODgYffr0Qa9evTBt2jQUFBQw8zMyMsBmsxEYGCh2XHbu3Ak2m42lS5eCkI9BiRMhDaioqMDPP/8MFovFXIWvrq6Gn58ftLS0sGfPHvz000/Q1NTEtGnTxBKjS5cuIT8/H7t378aGDRtw4sQJJCUlMfNjYmJw/PhxREdH4+DBg2CxWJg2bRrevHkDoPaEcP78+ejbty8yMzNx4cIFfP3118z6iYmJuHDhAi5cuAAOh4OpU6cy76dOnSr3NsqKo6SkBJMnT4a6ujp27tyJjIwMjBs3Dnw+v95ncjgc5r0oeWusmJgY+Pr6gsvlwsrKCoGBgXj9+nWD68yZM4f5/Lr7S+TgwYNQUVFBWloaVqxYgR07diAtLY2Zz+fzMXfuXPz8889ISkrC06dPJf7YHjt2DOfOncO6detw9OhRHDhwQGJMz549w86dO9G2bdt684RCIQYOHCh2HP9uso5vXXfu3MHp06cV+oysrCxERkYiOTkZZmZmYvOEQqHYcfmQQCCAvr4+EhISkJmZiZkzZyIuLg5ZWVnMMnv37kVoaCg8PT1x+PBhbNq0CV27dmXW9/f3R05ODtatW4esrCwsXLgQysqSf9p++eUX/O9//xOb9scff2D16tWYPXs2Nm/ezCRdOTk5+Omnn+Dq6op58+ZJ3V+SyvxQRUUFAgICYGhoiMjISCgpKQEAqqqq4OvriwMHDmDHjh1QUlLCzJkzIRAIpJYlj5iYGKirqze4TFJSktgJqySVlZXw8/PD559/jvT0dMTHx+PixYsICwuTuPyOHTv+lu89UHtco6OjoampWW+enp4e9u/fz7y/ffu22EUteWzbtg379+/H9u3b8cUXXzDTRSfoUVFRuHDhgli7ANQmHWZmZkhJScGRI0fg6emJ4OBgsURl/fr1+OGHHzBjxgxkZWUhNjYWnTt3BlBbFyZPnoySkhJs2rQJhw4dwrRp06Qe8z179uDFixdi07Kzs5GSkoKwsDBER0fj+PHjqKiowPPnz3HgwAFYWVlh7ty5Uo+vpDI/VFpaCl9fXzg7O2P+/PnM9IbaRQMDA+b7LdpnaWlpzDQDAwOUlJQgICAAFhYWOHToEFavXo309HSxpBKQ3T4vXboUd+7cQXJyMvbv3w+hUIiAgABUV1czy2hoaODWrVsoKSlhpqWmpkJPT0/qdhMiL0qcCKnj7Nmz4HA44HA4sLa2xunTpxEXF8ecjGVlZUEgECAiIgJsNhsmJiaIiopCcXGxWK+Iuro6IiMj8dVXX2Hw4MGYM2cOdu3aBYFAgMrKSuzbtw/BwcFwcHDAl19+ibCwMLRp0wbp6ekAgIKCAlRVVcHf3x+GhobQ0dERO/nW1tZmesbU1NSgqanJvNfS0pJrW+WJY8+ePWjXrh02bNgACwsLGBkZYdy4cTA2NoaWlhbzmZqamlBTU2Pef+xwL29vbwwfPhwmJiZYvXo1PvvsMyYmaT6Mp+7+EjEwMMDy5cthbGyM0aNHY/LkyWJXoj08PODg4ABDQ0NYWVlhxYoVOHfuXL0r7Z06dYKuri4MDQ2hpqaGzz77TGJMcXFxGDlyJDp16lRvHp/PFztuampqcuwZ+clzfOuKjo6Gn5+f3J+RnZ2N5cuXIz4+Hn369Kk3v7q6WqyufkhNTQ1z5syBhYUFDA0NMXr0aLi7u+PYsWPMMsnJyfD19cU333wDIyMjWFpa4ttvvwUAXLx4Ebdv30ZiYiIGDBgAQ0NDODo6wsHBQWIcsbGx8Pf3F5suOtn09vaGqakp5s2bBwAICQmBsbEx5s2bh/bt2yMzM1PuMkV4PB5mzpyJtm3bIj4+Hqqq/z86fvjw4Rg2bBhYLBZ69OiByMhI3L9/Hw8ePJC8o+Vw+fJl3Lx5E+PHj5e6zKNHj3DgwAFmH0pz5MgR8Hg8rF27FqamprCzs8PKlStx6NAhsRNv0cWizp07Q0dHB59//nmj4xc5ePAgeDwenJ2d681zcnJCXl4enj59CqC2t3DcuHFyl52WloakpCRs2bIFJiYmYvNEJ98dO3aEjo4OOnbsKDZfT08Pfn5+6NGjBwwNDTFlyhQMHDgQR48eBQCUl5dj165dWLx4McaOHYuuXbvCxsaGOR5HjhzBq1evkJSUBBsbG7BYLIwcOVLiBZM3b94gOTm5Xt1KT0/HsGHDMHLkSFhYWMDf3x8aGhpYsWIFjI2NsWLFCrx48aLeRYqGyhQpKyvD1KlTYWlpiZCQELF5DbWLKioqzPdbtM9E+1BHRwcqKirYu3cv9PX1sXLlSpiYmGDIkCGYPXs2tm3bJpY4NtQ+FxQU4PTp0wgPD4eNjQ26d++O2NhYlJSUiPVoqqqqYtSoUUwbd/36dSgrK8Pc3FzidhOiCEqcCKnD1tYWXC4XXC4XaWlpGDhwIPz9/Zkf6t9//x2FhYXMsDUOhwNbW1u8f/9ebKgNm82GhoYG857D4aCyshLFxcUoLCxEdXU1rK2tmflqamqwtLREfn4+AEBfXx+qqqrIzMz8qKvQsbGxTJwcDgeHDx9m5skTR15eHmxsbD7qpF6UjPbp0wejR4+WmQABEDuZUFVVhbm5OR4+fNjoGER69erFXPUHACsrKzx+/Bg1NTUAantcAgMDMXjwYHA4HGbIYXFxsVg5Dg4OsLKywrBhwzBo0CCMGjWq3mfdvXsXJ06cwNy5cyXGUl5eLvGq+ocWLFgADocDe3t7BAQE1Dux/tjj+6GTJ0+iqKhI7h7L3NxczJkzBxoaGrC0tJS4TEVFhdj3oK49e/bA3d0d/fr1A4fDQWpqKv78808AwMuXL/H8+XPY2dlJXDcvLw/6+vowMjKSGavoAoCrq6vY9MePH4udQKuoqAAAk+QoKyvDyMgIjx8/lrtMkUWLFuHSpUvo06dPvV6ggoICLFiwAM7OzrC2tmaShLr1TF5CoRBr167FrFmzpCbxALBu3TpMmDABhoaGDZaXn58PNpstVj+tra0hEAiY4WEAmJ44WQ8TEdVj0ev69esSl6uqqkJ8fDwWL14slmiKqKmpYcyYMUhLS0N5eTlOnjwJNze3Bj9b5NSpU1i5ciV0dXVhampab77oSZLS6mtNTQ2SkpLg6uqKvn37Mj3sovr68OFD8Hg89OvXT+L6eXl56Nmzp1wXlZKSkmBra4vevXuLTZdUX5WVlZk2rV27dtDX15dYX6WVKdq2gIAA3L9/H/b29mJtJCB/uyhNfn4+OByOWLm9e/dGZWUlnj17xkxrqH3Oz8+HqqoqevXqxczv0KEDjIyM6rVnnp6eOHDgAAQCAVJTU+Hp6SlXnITIQokTIXVoaGiAxWKBxWLB0tIS4eHhqKqqQmpqKoDaq/hmZmZMciV6HT9+XOoJVGPo6upi9erV2Lx5MywtLeudFMvLz89PLE4nJyeF1pfUa6MoUTK6b98+uLm54bvvvqt3H1VrIBqepKWlhdjYWKSnp2Pjxo0AIDYUBKg9aT506BC2bduGnJwcbN++vV550dHRmDp1KnR1dSV+3vPnz6XOE1m2bBm4XC6Sk5PB5/OZHhGRjz2+Inw+H+vWrcP8+fPlPuY3b95k7tOSNISrvLwclZWVUrcxMzMTa9euxbhx47Bt2zbmPgrRvm7Tpk2Dny9vnGVlZUhOTsayZcvqnRDK68P7LOQt88WLF0hMTMTmzZtx7949sXmBgYEoKytDeHg40tLSmPalbj2TF5fLRWVlJby8vKQuc/XqVdy4cQNBQUGN+gxJioqKoKamJnc9Fr2kXf3funUrjIyMGqzHnp6eyMjIAJfLxYABA9ChQwe5Yr158ybi4uKgpKQkcUjh8+fPAUDqtmzduhW7du3CtGnTsGvXLnC5XNjb2//t9bWgoADp6elYtGiRXMtLUre+yiqzsrISbdq0QWhoKCIjI1FaWio2T952sbUwNTWFrq4uMjMzcfbsWbH7vAj5GJQ4ESKDkpISlJSUmJv/zczM8PjxY3Tq1IlJsESvD6/03rt3D+/evWPe37p1C5qamjAwMEDXrl2hpqbG3IgO1P4A5ebm4ssvv2Smubm5wcjICJ6eno0+Ke7QoYNYjB8O45MnDjabjevXr3/UD6QoGTUxMcHUqVOhra1d70Syrlu3bjF/8/l83L17F8bGxo2OQaRuwvbbb7+BxWJBRUUFDx8+xJs3b7Bo0SLY2NjAxMRE7MEQH/riiy/AYrEwYMAADB8+HCdOnBCbf+rUKRQUFEgd9lZZWYn8/Hz06NGjwXh1dHTAYrFgYWEBHx8fPHjwQOxYfOzxFdm7dy80NTUVOsEYM2YMJk6ciIiICJw5c6bePsjNzYWSkpLUbczJyQGHw4G3tzd69uwJFosl1mvbrl07dOnSBZcuXZK4PpvNxrNnz8R6QCTZtGkTevfuLXEooaGhodjValHPo+geEVEPi+i+KnnKFElOTsawYcPg6emJZcuWMWW+fv0ajx49QlBQEOzs7GBiYoKysrIGt6Eh7969Q1xcHBYvXiy1Z1goFCI6OhpBQUFyDaczMTHBvXv3UFlZyUzLyclheuBErl27Bg6Hw/TUSSOqx6KXpCSitLQU27Ztk3kDv5GREVgsFjZs2NDgsMS6/P39MWLECERHR2PHjh312oLc3FxoaWnVO9YiOTk5cHZ2xpgxY9C9e3cYGhqKPZigW7duaNu2LS5fvixxfdGDJqTdLycSGxsLDw8PsFisevMk1VeBQMAkSuXl5SgpKam3DQ2VCdS20cnJyZgwYQLzMCMRRdpFaUxMTHDz5k2xhO7GjRvQ0tKCvr4+M62h9tnExAR8Pp95mAbw/9+luu0ZAEyYMAGrVq3C4MGD0b59e4XiJUQaSpwIqYPH46G0tBSlpaXIz89HWFgYKisr4ejoCABwdXVFhw4dEBQUhOvXr6OoqAhXrlxBeHi42JADHo+HFStW4MGDB8jOzkZiYiImT54MZWVlaGpqYuLEiYiJicG5c+fw4MEDhISE4N27d/Dw8GDKWLt2LZSUlLBs2bJ6J8V/B3ni8Pb2Rnl5ORYsWIDc3FwUFBSAy+UqNGxOIBDg/fv3KC8vR1ZWFt68eYOvvvqqwXX27t2LEydOID8/H6GhoSgrK1PoXgZp/vzzT0RFReHhw4c4cuQIfvzxR/j4+AAA/vOf/0BNTQ27d+9GUVERTp06hU2bNkks5+XLlygtLcVvv/2G06dP10vqtm7dinnz5kkc9pOfn48FCxagffv2GDRoUIPxVldX4/379ygtLcXPP/+Mbt26yT1sUt56Jop3yZIlCvXIiE7Au3TpguDgYKxevZp5gMfly5exZs0aODg4SLy/CwBYLBbu3LmD8+fP49GjR4iPj0dubq7YMrNnz8b27duxa9cuFBQU4O7du9i9ezcAoG/fvrCxscGcOXPw66+/oqioCNnZ2Th37hyz/rt375CamorFixdLjMHd3R03b97E3r17cf/+fSQkJAAAwsPDmZjKysrg4uIid5l198/ChQvx9u1bpKSkMNO1tbWxf/9+PH78GJcuXUJ0dLTEMkTHX/QSCoWoqalhEjyg9t6Zrl27YsiQIVJjuXz5MsrLy+Ht7d1gzCKurq5QV1fH0qVLcf/+fVy+fBlhYWEYM2YMOnfujJqaGly7dg1HjhzBsGHDmDZTlAAqemIN1H7nhw4dip49e8pcdvHixZg9e7bUYXGSiI6HpaUlvvnmGyxfvhw8Hg8CgQCnTp1CXFwc3NzcpCaBLBYLFy9eRE5ODvLz87Fy5Uqx+73atGkDf39/rFu3DlwuF4WFhbh16xbzcAMXFxd07twZM2fOxI0bN1BUVITjx4/j5s2bTBmFhYW4evUqZs6cKTGGcePG4ZdffkFWVhZyc3OxZcsWVFVVISIiAo8ePUJERAS0tbVhb28vd5lA7dBU0e9LaGgobty4gUOHDgFQrF2UZtKkSXj27BnCwsKQn5+PkydPIjExEb6+vmIPc2mofe7WrRucnZ0REhKC69ev4/fff8fixYuhp6cn8X64r7/+GoGBgZg+fbpCsRLSEPo/ToTUcf78eeZHR0tLC8bGxkhISICtrS2A2itzP/74I2JjYzFr1ixUVFRAT08PdnZ2YuP87ezswGKx4O3tDR6Ph1GjRmH27NnM/EWLFkEoFCI4OBgVFRUwNzfHli1bmB/3I0eO4OjRo8jIyPjbHxrwIVlxdOjQATt37sS6deswZcoUKCsro0ePHhLHyUtz5swZWFpaQlVVFV26dEFISAisrKwaXGfhwoVISUlBXl4eWCwWkpOT692s3Rhubm549+4dxo8fDxUVFfj4+GDChAkAam9ojo6OxoYNG7B7926YmZlhyZIlEoc2jRgxAkDt/hkwYEC9k+iuXbti7NixEmPYuHEjampqsH37dpnJsGhonpaWFszMzBAfH6/Q9so6viK2trYKnYTW5eXlhePHjyM8PBzr16/H8uXL0b9/fwQHBze4Tl5eHubPnw8lJSW4uLhg0qRJYonP2LFj8f79e+zYsQMxMTHQ1tZm9j1Q+3TJtWvXYsGCBaiqqgKLxcLChQuZ+dXV1ZgwYYLU+6C6d++OkJAQJCQkQFNTE15eXrh16xZ69+4NLy8vtG3bFrGxsWJ1T1aZdWlqaiIyMhLTpk3DkCFDYGpqiri4OISHh2PUqFEwMjLCd999x9w38iFJPSoxMTHo0KED3N3dAdTeF7RkyZIGY6isrMTChQvlbks0NDSwdetWREREwMPDAxoaGhg2bBjTG1RcXIzJkycDqE0yw8PDxdYfMWKEzF7lugQCgdiT3BpiaWkp9b46ecyZMwenT5/Gxo0b4evrizVr1sDNza3eUNgPBQUFoaioCH5+ftDQ0ICnpyeGDBmCv/76i1lmxowZUFFRwffff4/nz59DR0eHGT6prq6Obdu2Ye3atQgICEBNTQ1MTEywatUqZv3KykosWbJE6n1QTk5O8PX1xYoVK2BgYIARI0Zgz5490NfXh7u7O3R1dZGQkCB2T52sMuvS1dXF8uXLERkZif79+0NHR0fudlEaPT09pKSkICYmBqmpqdDW1oaHh0e9Mhpqn4HaJx5GREQgMDAQ1dXVsLGxQUpKisR63bZtWwQEBMgdIyHyUBLWHQhLCPloS5cuxdu3bxW+Kkdq/yeIs7MzuFyuzGFsipoyZQq6d++OFStW/K3lkn+OK1euwMfHB9euXWu1w3siIiLQo0cPJnFqCU+ePIGPj4/UR9fb2NhIfQAE+ftkZGQgMjLyH7GvqX0mnwIaqkcIIYR8QlRVVaX+r6rmoqKi0uBDGaQNzySEkE8ZDdUjhBBCPiGyhuU1BwMDA6n/9BkAjh8/3ozREEJI86CheoQQQgghhBAiAw3VI4QQQgghhBAZKHEihBBCCCGEEBkocSKEEEIIIYQQGShxIoQQQgghhBAZKHEihBBCCCGEEBkocSKEEEIIIYQQGShxIoQQQgghhBAZKHEihBBCCCGEEBn+DzgZH1/1emQRAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Генерируем значения p от 0 до 1 с шагом 0.01\n", + "p_values = np.linspace(0, 1, 101)\n", + "# Рассчитываем вероятность правильной классификации для каждого значения p\n", + "probabilities = [majority_vote_prob(p) for p in p_values]\n", + "# Визуализация\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(p_values, probabilities, label='Вероятность правильной классификации')\n", + "plt.xlabel('Вероятность p правильной классификации одним классификатором')\n", + "plt.ylabel('Вероятность правильной классификации ансамблем')\n", + "plt.title('Зависимость вероятности правильной классификации от p')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3d10f32-08d6-4a78-a167-82818f8acd93", + "metadata": { + "id": "b3d10f32-08d6-4a78-a167-82818f8acd93" + }, + "source": [ + "А теперь давайте посмотрим на другую ситуацию. У нас есть фиксированная вероятность того, что модель правильно классифицирует объект `p = 0.65`. Постройте зависимость вероятности правильно классифицировать объект от числа моделей в ансамбле." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "3f6736e1-bfaf-4a90-bc8f-a2eae5e09dee", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "3f6736e1-bfaf-4a90-bc8f-a2eae5e09dee", + "outputId": "9af69d15-201c-44d9-fedc-f06023d9522c" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6yElEQVR4nOzdd1wT5x8H8E8Ge8gUlaGCCg5Q3LPWvUfds+pPa12ts3VvLa62KtrW1rpwVK2rWsRttRW17oV7gAuRvQlJfn/EXIkE5SAYwc/79eJFcne5+97dk8t9757nOYlarVaDiIiIiIiI8kVq7ACIiIiIiIiKAiZXREREREREBsDkioiIiIiIyACYXBERERERERkAkysiIiIiIiIDYHJFRERERERkAEyuiIiIiIiIDIDJFRERERERkQEwuSIiIiIiIqPLzMxEdHQ0nj59auxQ8ozJFRERvVN79uzB48ePhfc7d+5EZGSkESMiIsq9Y8eOISwsTHh/+PBh3Llzx4gRFW4PHz7EtGnT0LBhQ1SpUgX169dHz549oVarjR1ansiNHUBRtGXLFhw+fBhhYWGIj4+HnZ0dypYti27duqFjx46QSpnTEtGH6/z58zh69Ci++uorPHjwAHPmzMHBgweNHVahMGfOHGzatAm3bt0ydihEH6zbt2/j119/xbx58xAXF4eZM2di5cqVxg6rULp06RI+++wzFCtWDJ999hnKlSsHiUQCa2trSCQSY4eXJ0yuCsDu3bvh7OyMESNGwNraGgkJCbh8+TImTZqEEydO4LvvvjN2iERERjNgwAB8+umnaNasGQBg0KBBKF68uJGjIiLKne7du2PHjh1o1aoVAKBly5aoVq2acYMqhDIyMjB58mSUKVMGa9asgY2NjbFDMggmVwVg48aNMDExyTbczs4OGzduxLhx4+Dm5maEyIiIjM/LywuHDh3CnTt3YG9vDw8PD2OHRESUaw4ODti3bx9u374NCwsLeHl5GTukQunYsWN48OAB9u/fX2QSK4BtrgqEvsQKAFxdXQFAp1rg4cOHMXToUKGeafPmzbFy5UoolUqdz/bv3x/e3t7CX506dTB06FDcvn1bZzpvb28EBgbqDFu9ejW8vb3Rv39/neHp6ekIDAxEq1at4Ovri4YNG2LUqFEIDw8HADx+/Bje3t7YuXOnzudmz54Nb29vTJo0SRi2c+dOeHt7o0qVKoiJidGZ/uLFi0LcV69e1Rm3f/9+dOnSBX5+fqhTpw4mTJigt+3FvXv3MHr0aNStWxd+fn5o1aoVvv/+ewBAYGCgzrbR93fmzBlhO7Zv3z7b/HMjt/sA0LQp0a5X7dq1MXbsWDx79izb/Nq3b49r166hV69e8PPzQ9OmTbFly5Zs84uOjsaUKVNQv359+Pr6omPHjti1a1eO03388ceoWLGiEKu/vz+A//bpm/60+1W7T1/fZzExMXrL2Y0bNzBkyBBUr14d/v7+GDBgAC5dupQtxoSEBHzzzTdo2rQpqlSpgo8++ghff/01YmJicObMmbfGp12udr9nlZycjAYNGujs85y8rdxkLfeTJk2Cv78/IiIiMHjwYFSrVg0NGzbEihUrstUJ//XXX9GrVy/UqVMHfn5+6NKlC0JCQrItP+uyKlasiEaNGmH69OlISEgQptFuj9fXZejQoXr3AQA0bdr0jd8B7TSff/75G7ePtqz8+uuv2ca1b98+2/EkN2U06zHF0tISVatWhYeHh95jyptiyrpvkpKS0KVLFzRt2hQvXrzQmT6nfZx1OU+ePMGsWbPQqlUr4Tj05Zdf6rQJ03pT2dUy5HEVAE6ePIlWrVrB398f8+bNE8rbmTNn0Lx5c1SvXh0BAQE6vxliyo2+79Hp06dRpUoVzJgxQ/R2EnvcyO1vVl6+C697WxkVc3zUR7vur2+T/v3752tdIiMjMWXKFOE8oWnTppg5cyYyMjKyLedtx7Jz587hyy+/xMcff4wqVaqgcePG+Oabb5CWlvbW7VfQv/NAzsev178vKpUK69atQ7t27eDr64v69etjxowZiI+PzzbPnH5XmjZtqjNdRkYGli9fjhYtWgjbZtGiRdm2s3YfmZqaokqVKvDy8srxPEuf3Bz7c7Jjxw58+umnqFevHqpUqYK2bdti8+bNerejvmP8nDlzsn3fAc05S7du3VC1alXUqlULffv2xd9//y2MF3uuOmLEiGzLmDFjBry9vXXOwS5dugQ3NzccPHgQzZs3R5UqVfDxxx9j0aJFesukofdlQeGdqwKUkJCAzMxMJCcn4/r161izZg3atWuHUqVKCdPs2rULlpaWGDRoECwtLXH69GksX74cSUlJmDhxos78PD09MWzYMKjVakRERGDt2rUYOnQojh8//sYYfv7552zDlUolPv/8c4SGhqJdu3b49NNPkZycjH/++Qe3b9/O8Uryo0ePsH379hyXJ5VK8ccff2DgwIHCsJ07d8LMzAzp6ek60+7cuROTJ0+Gr68vxo0bh+joaGzYsAEXLlzA7t27YWtrCwC4efMm+vbtC7lcjp49e8LV1RXh4eE4evQoxo4dixYtWujEGxAQAC8vL/To0UMYZqirSrnZBz/++COWLVuGNm3aoFu3boiJicHGjRvRt29fnfUCgPj4eAwdOhRt2rRBu3btsH//fsyaNQsmJibo1q0bACAtLQ39+/dHeHg4+vbtCzc3N4SEhGDSpElISEjAgAEDhPlNnDgRoaGh6NevH3x8fCCVSrFt2zbcuHEDgOZq26JFi4TpDx06hEOHDukMy8tdhDt37qBv376wsrLCkCFDIJfLsXXrVvTv3x8bN25E1apVAWiSn759++LevXvo2rUrKlWqhNjYWBw9ehSRkZHw8vLSiWXbtm24d+8eJk+eLAzT98OgtXbtWrx8+VJU7LNmzYKlpaXw/vHjx1i+fHm26ZRKJYYMGYKqVaviq6++wsmTJxEYGAilUonRo0cL023YsAFNmzZFhw4doFAo8Oeff2L06NFYtWoVPv74Y515tmjRAi1atIBSqcSlS5ewdetWpKWlYfHixTnG+++//+Kvv/564zrVrFlTKP/379/HTz/9lJtNkWdiyujr3nZMeROFQoEvv/wST58+xZYtW3KsWpi1TAUEBOiMu3r1Ki5evIh27dqhRIkSePLkCbZs2YJPP/0Uf/75JywsLAC8vew6ODgY/LgaERGBkSNHonTp0hg7dixOnjyJa9euAdCcJPXr1w9hYWFYt24dHBwc3pgw56bcAJrj7ciRI9G4cWPMnDlT9HbKr5x+s/TJ7ToBuSujBXV8zI2c1iUyMhLdunVDYmIievToAU9PT0RGRuLAgQNIS0uDqampzvTa3ygAiI2NzVbeQ0JCkJaWht69e8POzg5XrlzBxo0b8fz5c73HPX0K4nc+q4oVK2LQoEEAcj4ez5gxA7t27UKXLl3Qv39/PH78GJs2bcKNGzewZcsWvRe5hw0bBk9PTwCa35asFzxVKhWGDx+O8+fPo0ePHvDy8sLt27exfv16PHz4ED/88EOO20NMmdXKy7Ef0LTpL1++PJo2bQq5XI5jx45h9uzZUKvV6Nu3r6gYtFasWIHAwED4+/vjyy+/hImJCS5fvozTp0+jYcOGAMSdq5qZmeGvv/5CdHQ0HB0dAWi+f8HBwTAzM9OZNi4uDhEREfjuu+/QsmVLDBo0CNeuXcOvv/6KO3fu4Oeff9bb7qqg9qWhMLkqQD169MCDBw+E9507d8b8+fN1pvn2229hbm4uvO/duzdmzJiBLVu2YOzYsToHTicnJ3Tq1El4n5mZiZ9++gkxMTFwcHDQG8OqVasgl8tRuXJlneG7d+9GaGgoJk+erHOAHDp06Bt7Z/n+++9RtmxZJCYm6h3fokUL7NixQ5hnamoqgoOD0aJFC+zbt0+YTqFQYMmSJahQoQI2bdokfOFq1KiBzz//HOvWrcOXX34JAMLV2l27dukkphMmTAAA+Pj4wMfHRxi+bNkyuLu762wrQ3nbPnjy5AkCAwMxZswY4QcO0NTH/uSTT7B582ad4S9evMCkSZOEH5KePXuiR48e+O6779CpUyeYmJhg69atuHfvHhYvXoyOHTsCAHr16oX+/ftj6dKl6Nq1K6ytrZGeno5//vkH3bt310lGQkNDheTK0tJSJ/7w8HAcOnQo39tq6dKlUCgU2LJlC9zd3QFoynvr1q2xePFibNy4EYDmrs7t27exYsUKtGjRQvj8iBEjoFarIZFIdGIJDQ3Fs2fPchVfTEwM1qxZg48++ggnTpzIdeytWrXS+f5cvXpV7495eno6GjVqhGnTpgEA+vTpg2HDhuGXX35B//79hXkcOHBA5zvdt29fdOnSBWvXrs2WXHl7ewvr1qVLF9y+fVvYVzlZvHjxG9cxMzMTHh4ewnzPnDlT4MlVbsuoPm87puRErVZj8uTJuHDhAjZs2ICyZctmmyYzMzNbmVq2bJnONB9//DFat26tM6xJkybo2bMnDhw4gM6dOwN4e9kFDH9cXb9+PeRyOTZs2AB7e3v06dMHffv2RUxMDAICAuDn5yes5/r16zFo0KBsJ9tabys3gObu1JAhQ+Dt7Y3vvvsOMplM9HbKr5x+s/TJzTpp5baM5uf4qK2VkpceznJal++++w4vX77Etm3b4OvrKwwfPXp0tuVkZmbC2dlZiPfx48fZkqsJEyboHJ969uyJ0qVL47vvvsPTp091fmNzUhC/81k/U6JECWEd9B2Pz507h+3bt2PJkiXo0KGDMLxOnToYMmQIQkJCdIZr7640bNgQtWrVAvDfb4vW3r17cerUKQQFBaFmzZrC8PLly2PmzJm4cOECqlevrnd7iCmzWnk59gOaZidZ91+/fv0wePBgrF27Nk/J1aNHj7By5Uq0aNECy5cv16lZlbV8iTlX9fDwgFQqxZ49e/C///0PgOZ30crKCt7e3jp3F7XL6NKli05ZLVWqFFasWIHjx4+jSZMmwvCC3peGwmqBBSggIABr167FkiVL0K1bN+zduxfTp0/XmSZrYU1KSkJMTAxq1qyJ1NRU3L9/X2dahUKBmJgYxMTE4OLFizh06BC8vb1hb2+vd/mRkZHYuHEjRowYASsrK51xBw8ehL29Pfr165ftczn1znLt2jWEhIRg3LhxOfZ42LFjRzx48ECoFnDgwAHY2NigXr162eYVHR2N3r1761zJ+Pjjj+Hp6SncCYqJicG///6Lrl27Zjvo57UXGaVSKWxHsbeI37YPDh06BJVKhTZt2gjTxcTEwMnJCaVLl85WDUR7N07L1NQUPXv2RHR0NK5fvw4AOHHiBJydnXVupZuYmKB///5ISUnBv//+CwBISUmBSqXKsTzklbZcav9er3ahVCrxzz//oHnz5kJiBQDFixdH+/btcf78eSQlJQHQlDsfHx+dk1Ot/PYK9MMPP8DGxiZX1TLyKuuPl0QiQd++faFQKBAaGioMz/qdjo+PR2JiImrUqKH3hzM1NRUxMTGIiorCgQMHcOvWrWzflawOHjyIq1evYvz48TlOo1AocjzBziozMxMxMTGIjY1FZmZmjtNpY8z693pVkNyW0dfl5piSk0WLFmHv3r1YunSpkGS8LjfbIuv+UigUiI2NhYeHB2xtbXX2WW7KrqGPq6dPn0atWrWE73TWE7is69yiRQtER0frraKsjett5SY2NhaDBw+GlZUVfvzxx2xXmHO7nfLjTb9Zr8vNOmWV1zIqhvYCi9jHCuS0LiqVCocPH0aTJk10Eiut18uU2PKekpKCmJgY+Pv7Q61W53o/Gvp3PquMjIy3rkNISAhsbGzQoEEDneNS5cqVYWlpme13VqFQAMAb5xsSEgIvLy94enrqzLNu3boAkGM1czFlNiuxx36trPsvMTERMTExqF27NiIiIrJdnNEe47P+vX5n8fDhw1CpVBg5cmS240/W8iXmXBXQJEtZq3Lu3LkTnTt3zvE4P3jwYJ33AwcOhEwmy1ZGCnJfGhLvXBUgbTsXAOjQoQPc3d3x/fffo1u3bqhRowYATXWqpUuX4vTp08IJqNbrX5SLFy/qfPnKlCmDlStX5vijvXz5chQvXly4sphVeHg4ypYtC7k890Xg22+/Rc2aNdGkSRPMnTtX7zQODg5o3LgxduzYAV9fX+zYsUPvF0r7cDh9V5s9PT1x/vx5AJpqMQBQoUKFXMf5Nvfv3xe2o1QqhYeHB0aNGqVzpSsnb9sHDx8+hFqtRsuWLfV+/vXtXbx4cZ0qadp5ApqryNWqVcOTJ09QunTpbNtQW9VRuy3t7e1RpkwZbN++HbVq1ULFihUhkUjyXcc46xV4fWJiYpCamqp3X3p5eUGlUuHZs2coX748wsPDc9w2+REREYHffvsNs2bNynZSaChSqVQneQT+K79PnjwRhh07dgw//vgjwsLCdLa9vu/pr7/+qtOmqVGjRsId2dcplUp899136NChg86d2tclJiZmK1P6/P3330JZlslk8Pb2xvjx44VqIFqBgYF627M4OTkJr3NbRl+Xm2OKPlu3bhXa8+lrY6GVm22RlpaGVatWCc/aynq1NusxODdl19DH1WfPnuXqCquLiwsA4Pnz56hSpYrOuNyWm2HDhuHBgwdwdHTUe+clt9spP970m5VVbtcpq7yWUTEqVaoEMzMzrFixArNmzRKqvCkUihzbYr9pXWJiYpCUlITy5cvnavmJiYlvvfP09OlTLF++HEePHs323Xn9HCQnhv6d11IqlUhISHhrxwaPHj1CYmJijslIdHS0znttW6Y3HQsePXqEe/fu5XqeWrkts68Tc+zP6vz58wgMDMSlS5eQmpqqMy4xMVFn22U9xuckPDwcUqn0rU0nxJyrApoEfMmSJbhy5QocHBxw9uxZzJkzBxcuXNCZTiKRQCqVonTp0jrDbWxs4OzsrPPbChTsvjQkJlfvkLYThitXrqBGjRpISEhAv379YG1tjS+//BIeHh4wMzPD9evXsWTJEqhUKp3PZ21MGxMTg6CgIPTv3x+7du2Cs7OzzrT37t3Drl27sHjx4hwP6mL8/fffOHXqFLZu3frWabt27YqJEyeif//+OHfuHObPn49z587lOwZDcXV1xbx58wBo6vtu2LABX3/9Ndzd3d/alerb9oFKpYJEIsEvv/yiU6VGKzcnvfnx/fffY8KECdmuAuVnuTNmzND5cUxKSsIXX3yR5/kVhKVLl6JMmTL45JNPjFrWzp07h+HDh6NWrVqYOXMmnJ2dYWJigh07duhUl9Hq1KkTOnfuDJVKhYiICPzwww9CdZnXk7Hff/8dT5480dvBhFZcXBwUCkW244E+VatWxZgxYwBoqqf+8ssvGDVqFPbt26fTm2nPnj2zVQfTVo3MDzHHlNddunQJY8eOxdWrVxEQEIBGjRrprRodFRX11m0xd+5c7Ny5EwMGDEC1atVgY2MDiUSCsWPHFvgDLN+2DV6/yvw2+hqA56bcAJqLTr/88gvGjBmDhQsXZqtOVtDbScxvVm7X6V1zcnLC9OnTMXv2bKGLbq3atWvr/Ywh1yUqKirbxZGslEolBg0ahPj4eAwZMgSenp6wtLREZGQkJk2alO2c400K4nf+6dOnUKlUQudfOVGpVHB0dMSSJUv0jn/9WKBth5v1gpC+eVaoUEGnSn1WJUqUyDYsP+dZYo79WuHh4Rg4cCA8PT0xadIklCxZEiYmJvjrr7+wbt26bPsv6zFea+PGjThy5IioWMWeqwKafdCkSRPs2LEDTk5OqF69erYECoBwMTS3NVcKal8aGpOrd0j7Q6m9unP27FnExcVhxYoVQt1RAHp7qQKAYsWKoX79+sL72rVro1GjRti5c2e2hszffvstfHx80LZtW73z8vDwwOXLl994RU1LrVbj22+/RYsWLXL1HIePPvoIZmZmGDt2LGrUqAEPD49sB13t1bUHDx5ku7rw4MEDYbz2TkFO1V3ywtLSUmc71qhRAx999BH+/vvvt67f2/aBh4cH1Go13Nzc9F6te92LFy+QkpKik/w8fPgQwH+9S7q6uuLWrVtQqVQ6Vwa1t+KzXqmsVKkS5s6di759++LLL79EtWrV8Ouvv2a7WiSGn5+fTpWU13uJcnBwgIWFhU77wqwxSqVSlCxZEoCm3Bn6KfY3btzAn3/+iZUrV+pNaA1F+yOYdb9q11m7rw4cOAAzMzP8+uuvOtUWduzYoXee7u7uOuXJxsYG48ePx6VLl3TufKelpWHFihXo06fPG0887t69CyB3HbjY29vrLNvDwwO9e/fGuXPndJKr0qVL60wHZE/WxZRRQPwx5XVdu3bFsGHDEBkZiXbt2iEgIEBvQ/B79+6hUqVKb5yXtr1Q1l7g0tPTs12NzU3ZNfRxtXjx4tl6QNRHWw3t9Q49cltuAE1HPDVr1sT48eMxZ84cdOzYUefYnNvtlFdv+83SErNOWYkto3nVvXt3tGjRAnfu3BGqMC1YsEDvtG9bFwcHB1hbW+fqmPn8+XMkJycLjfz1uX37Nh4+fIiFCxfqtJH7559/3jr/1xnyd15L21nL63dfX+fh4YHQ0FBUr15dp7paTu7evQsHB4c3Vpn38PDAzZs3Ua9evVyf6Oe2zOqT22N/VkePHkVGRgZ+/PFHnW2XUzW314/xgKYaYFYeHh5QqVS4d+8eKlasqHc+Ys9Vtbp27YoJEybAxsYGo0aN0juNm5sbVCoVHj16pPO7lZSUhKioqGztlAtqXxoa21wVgJx6L9q2bRskEolQ71Nf49eMjAy93Wrqo03WXq/2denSJRw5cgQTJkzIsWC1bNkSsbGx2LRpU7Zxr1+FDA4Oxq1btzBu3LhcxSWXy9GpUyfcunULXbt21TtNlSpV4OjoiN9++00n/r/++gv37t0TvlAODg6oVasWduzYka3ahqGuKmvnk5cT89f3QcuWLSGTyfR20a1WqxEbG6szLDMzU+eqdUZGBrZu3QoHBwehbcVHH32EqKgoBAcH63wuKCgIlpaWOge7pKQkfP3112jatClGjBiB+vXr5+ouRn7IZDI0aNAAR44c0TnYvnz5Evv27UONGjWEzgxatmyJmzdv4tChQ9nmk9f9+e2336J69erCA2kLUtbvi1qtxqZNm2BiYqJTvU4ikei0SXr8+HGurxRq7zy8/p3esGEDUlNTdTpD0Sc4OBgmJiZCtWMxtFcfxbZ9AsSVUW2cYo4pr9M2UnZxccGECRPwxx9/6HQbDGgawoeHhwvH25zo+94HBQVla1eWm7Jr6ONqzZo18e+//yIuLg6A5s6Dti3mlStXhOkOHz4Mc3PzbCeluS032mUBmo5a/P39MWPGDJ07YbndTnmRm98sLTHrlJXYMpofdnZ2qFWrFurXr4/69eujWLFieqd727pIpVI0b94cx44dy9a9OaBbpv78808AeGN513fOoVarsWHDhrev1GsM+TuvFRISAltb2xzv8mm1adMGSqVSb69vmZmZOl2aJyUl4a+//nrrcaBNmzaIjIzEtm3bso1LS0tDSkqKzjAxZTY3cjr2Z6X9Dr5eJTeni3e50bx5c0ilUqxcuTLbHSjtcvJ6rtqoUSNYWFggLi4Obdq00TtN48aNAWg678lq/fr1UCqVOp1ZFNS+LAi8c1UAxo8fD09PTzRv3hxOTk6IiYnBiRMncObMGQwbNkzoStrf3x/FihXDpEmT0L9/f0gkEuzZsyfHk8yXL19iz549ADSNj7du3Qq5XJ7tAPX333+jQYMG2a5YZNW5c2fs3r0bAQEBQjXF1NRUhIaGonfv3mjevLnO/LRdwObW6NGjMXjw4Bx/VExMTDBhwgRMnjwZ/fr1Q7t27YQuWl1dXXXa+UybNg29e/fGJ598gp49e8LNzQ1PnjzB8ePHhe0hRkpKitAjU3x8PIKCgmBiYpJtO+rztn3g4eGBMWPG4Ntvv8WTJ0/QvHlzWFlZ4fHjxzh8+DB69OihU2WvePHi+OWXX/DkyROUKVMGwcHBCAsLw9y5c4Ur3z179sTWrVsxadIkXL9+Ha6urjhw4AAuXLiAKVOm6PTCNnv2bKSnpwvVHt+VMWPG4NSpU+jTpw/69OkDmUyGrVu3IiMjA1999ZUw3eDBg3HgwAGMHj0aXbt2ReXKlREfH4+jR49i9uzZuW4/kdXff/+t99lghmZmZoaTJ09i4sSJ8PPzw8mTJ3H8+HEMGzZMqIbSuHFjrF27FkOGDEH79u0RHR2NzZs3w8PDA7du3co2z1u3bgnf+YiICAQFBaFEiRLZTpL//vtvjB07NserdQ8fPkRgYCD27duHoUOH5tgzX1ba4xKgqU70yy+/wMbGBnXq1BG7aUSVUe36iD2mvGnZ+/btw8yZM7Fv3z5YWFhgxYoVCAoKgru7+1t7sfv444+xZ88eWFtbo1y5crh06RJOnToFOzs7nelyU3YNfVz93//+h+DgYPTv3x89evTAiRMnhHaoU6ZMQffu3XHz5k3s3bsXQ4cOzXZH8W3lRh+JRIL58+ejU6dOWL58Ob7++mtR20nr0qVLOheTtO00Hj16hCtXruh0yJGb36z8rBMgvoy+C7lZl3HjxuGff/4RyoCXlxeioqIQEhKCzZs3C8/z+f3339GuXbs33rX29PSEh4cHFi5ciMjISFhbW+PAgQO5er6SPob6nX/58iWCgoIQEhKCWrVq6bRd0l6wu3TpEipVqgQfHx/Url0bPXv2xKpVqxAWFoYGDRrAxMQEDx8+REhICKZOnYrWrVsjODgYK1euREJCAoYOHfrGdenUqRP279+PmTNn4syZM6hevTqUSiXu37+PkJAQrF69WqcGh5gyq09uj/1Zaddz2LBh6NWrF5KTk7F9+3Y4OjoiKioqT3GULl0aw4YNww8//IA+ffqgZcuWMDU1xdWrV1G8eHGMHz9e9Lmqlkwmw/79+6FWq3NsmlC+fHl069YNW7duRXx8PGrXro0bN25gx44d+Oijj4TkqyD3ZUFgclUAxo8fj2PHjiEoKAgxMTGwtLSEn58ffv75Z6GgAJpbtj/99BMWLlyIpUuXwtbWVqiK8XqbGUBTfUH7Q2dra4ty5cph0qRJ2QqJRCJ5aw9KMpkMv/zyC3788Ufs27cPBw8ehJ2dHapXr57tOULm5uY53tLNiampaY7dw2t16dIF5ubm+OWXX7BkyRJYWlqiefPm+Oqrr3SefeHj44Nt27Zh2bJl2LJlC9LT01GqVKkcr4S8zZMnT/DZZ58B+G87/vDDDzneEs8qN/tg6NChKFOmDNatW4eVK1cC0NTxbdCgQbYH3RUrVgwLFizAvHnzsG3bNjg5OWHGjBk6z+gyNzdHUFAQlixZgl27diEpKQlly5ZFQEAAunTpIkz3559/Yu/evfjll1/euu0NrXz58ti0aRO+/fZbrFq1Cmq1Gn5+fli8eLHwjCsAsLKywqZNmxAYGIhDhw5h165dcHR0RL169YRG+WI1a9aswLtVBTTfmdWrV2PWrFlYvHgxrKysMGrUKIwcOVKYpl69epg/fz5++eUXfPPNN3Bzc8OECRPw5MkTvcmV9jk6EokETk5OqFOnDsaMGZOt1ylnZ+c3Pivq+vXruH37NqZOnZrr3hKvXLkifA/s7e1RuXJlLFy4ME/7IbdlNOv0Yo8pOZFIJJg7dy46deqEpUuXYvLkydi+fTuaNWuGMWPGvPX5S1OnToVUKsXevXuRnp6O6tWrCwlyVrkpu4Y+rvr4+GDFihWYP38+vvvuO3Tt2hVubm7YvHkzZsyYgSlTpiA6Ohr9+vXTedaa1tvKTU68vLwwbNgw/Pjjj2jfvj0qVaqU6+2kldMFnr179yIyMhJBQUHCsNz8ZuV3ncSW0XchN+vi4uIi/P7t3bsXSUlJcHFxwUcffQRzc3PcvXsXp0+fxogRI9560mliYoKffvoJ8+bNw6pVq2BmZoYWLVqgb9++eXoch6F+5+/duyc8LuLff//V23Pj1q1b4ezsLFyAmzNnDqpUqYLffvsN33//PWQyGVxdXdGxY0fh9yA4OBilSpVCQEDAW3/ftXdv1q1bhz179uDQoUOwsLCAm5sb+vfvn62av5gyq09uj/1ZeXp6Yvny5Vi6dCkWLlwIJycn9O7dGw4ODpgyZUqeYxk9ejTc3NywceNGfP/997CwsNDpKl7suWpWubloMXv2bJQqVQo7d+7EkSNH4OTkhMGDB+OLL74Q7goW5L4sCBJ1QbfYJSK9+vfvj9jYWL0dHdD7ZdKkSThw4AAuXrxo7FDoAzdnzhxs2rRJb7JeGAQGBuLs2bM6yRV92M6cOYNPP/30jWV60qRJcHV1fe86UyLSh22uiIiIiIiIDIDVAomIiOid8PDwyPZ8HvqwOTk5vfU5k/7+/qLb2REZC5MrIiIieify0raHijYvL68cn1ml1bNnz3cUDVH+sc0VERERERGRAbDNFRERERERkQEwuSIiIiIiIjIAtrnSQ6VSITMzE1Kp1CBP3iYiIiIiosJJrVZDpVJBLpdDKn3zvSkmV3pkZmbi6tWrxg6DiIiIiIjeE76+vjA1NX3jNEyu9NBmpL6+vpDJZAW+PKVSiatXr76z5VHhxzJDYrHMkFgsMyQWywyJVVjKjDbOt921Aphc6aWtCiiTyd7pjn7Xy6PCj2WGxGKZIbFYZkgslhkSq7CUmdw0F2KHFkRERERERAbA5IqIiIiIiMgAmFwREREREREZANtc5ZFarUZmZiaUSmW+56WdR1paWqGob0rGxzJDYhW1MiOTySCXy/m4DCIieq8wucqDjIwMPHv2DCkpKQaZn1qthlwux6NHj3iiQLnCMkNiFcUyY2lpiZIlS761W1wiIqJ3hcmVSCqVCg8ePIBMJkOpUqVgamqa7xMVtVqN1NRUWFhYFJmTHipYLDMkVlEqM2q1GhkZGYiKisKDBw9Qvnz5XHWPS0REVNCYXImUkZEBlUoFd3d3WFpaGmSe2qc+m5ubF/qTHno3WGZIrKJWZiwsLGBiYoJHjx4hIyMD5ubmxg6JiIiIHVrkFa+SEhEZF4/DRET0vuEvExERERERkQEwuSIiIiIiIjIAJldEVGjcunULQ4YMQUZGBm7evIlu3boZOyQiIiIiATu0+IBMmjQJu3btEt7b2dmhSpUq+Oqrr+Dj42PEyIhyp0KFCpDL5fD394dUKsWCBQuMHZLRBAYG4vDhw9izZ4+xQyEiIqJXmFx9YBo1aoSAgAAAwMuXL7F06VIMGzYMx48fN25gRLkgkUjw008/ITo6GpaWlrCwsDB2SEREREQCo1YL/PfffzFs2DA0bNgQ3t7eOHz48Fs/c+bMGXzyySeoUqUKWrRogZ07d2abZtOmTWjatCl8fX3RvXt3XLlypSDC16FWq5GSkZmPP6Wo6dVqdZ7iNDU1hbOzM5ydnVGxYkV89tlnePbsGWJiYoRpnj17htGjR6NmzZqoXbs2hg8fjsePHwvjJ02ahBEjRmDFihWoW7cuqlevjhkzZiAjI0OYJiMjA/PmzUO9evXg6+uL3r17Z9sPx44dQ8eOHeHn5wdvb294e3tjxIgRAID+/fsLw17/CwwMBAA0bdoU69at05mnNjYxcdy5cweff/45qlevDn9/f/Tp0wfh4eEIDAzMMYb+/fvrXd7bPH78OMd5Zl0Xb29vbN68GUOGDIGfnx+aNWuGkJAQnXktW7YMrVq1QtWqVdGsWTMsXboUCoVCGJ81/kqVKqFp06ZYs2aNMH7nzp2oWbOmzjz79u0Lb29vhIWF6Qxv2rRptni139czZ87A29sbCQkJb1xnffPMus5Pnz7F8OHD4e/vj+rVq2P06NF4+fKlzvp06tQJAODo6AiZTIYWLVq8cdnabamNVa1W4+uvv0aHDh0QHx+fLcbX/7TzDQ8Px/Dhw1G/fn34+/uja9euOHXqlM5yMjIysHjxYjRu3Fg4Pm3fvl0Yn1M5A7KXo9jYWNSqVUtn/yiVSsycORPVqlVDz549hW0zb948VK1aFd26dcOjR4+E6fXNs3HjxqhVq5bebQoA169fR82aNXXiXrt2LTp06IBq1aqhcePGmDVrFpKTk4Xx+sqRvn3++jF++/bt8Pb2xvz584Vhr5eJ0NBQneMCERHR+86od65SUlLg7e2Nrl27YtSoUW+dPiIiAp9//jl69eqFJUuWIDQ0FNOmTYOzszMaNWoEAAgODkZAQABmz56NqlWrYv369Rg8eDBCQkLg6OhYIOuhVqvR7adQnH8UWyDz16dmaXtsH1YvX8+rSU5Oxh9//IHSpUvDzs4OAKBQKDB48GBUq1YNmzZtglwuxw8//IAhQ4bgjz/+gKmpKQDNSY+ZmRmCgoLw5MkTTJ48Gfb29hg7diwAYNGiRThw4AAWLFgAV1dXrF69GkOGDMHBgwdhZ2eHhIQEjB07Ft26dcPKlSthbm6O+fPnCwlaYGCgkCh88cUX8Pf3x//+9z8AEPV8sbfFERkZiX79+qF27dpYv349rK2tceHCBWRmZuJ///sfevXqBQBYs2YNLl68KCR2JiYmed7uALBu3TqUK1dOeK+v7dCyZcswYcIETJ06FXv27MG4ceNQvnx5eHl5AQCsrKwQEBAAFxcX3L59G9OnT4eVlRU+++wzYR7ly5fH2rVroVQqERISgoCAADRu3FiYR1YHDx7EjRs39MarVqvx5ZdfokePHgCAhg0b5mv9X6dSqTBixAhYWloiKCgISqUSs2fPxtixYxEUFKT3M5s2bdJJvnJj3rx5uHjxIjZv3oxixYoJw7UXK7T75eLFi/jiiy+E8SkpKWjcuDHGjh0LU1NT7N69G8OGDUNISAhKlSoFAPj6669x6dIlTJs2DT4+Pnj8+DFiYzXHhDeVM31WrlyJzMxMyGQyYdjWrVsREhKCFStWQC6XY+zYsYiPj0e7du2wY8cOLFiwABMnTsRvv/2W4zyVSqXOPLO6d+8eBg8ejOHDh6N79+7CcIlEgqlTp8LNzQ0RERGYPXs2Fi9ejFmzZuVii+uXkpKCZcuWvfG7rFKpsGDBAoM9T5CIiOhdMGpy1bhxYzRu3DjX0//2229wc3PDpEmTAABeXl44f/481q1bJyRXa9euRY8ePdC1a1cAwOzZs3H8+HHs2LEDQ4cONfxKvFJYHsl5/Phx+Pv7A9Cc4Dg7O2PVqlXC82KCg4OhUqkwf/58IXELCAhArVq1cPbsWeGk2tTUFN988w0sLCxQvnx5fPnll1i0aBFGjx6NtLQ0/Pbbb8KJPADMnTsX//zzD37//XcMGTIEDx8+RGpqKj777DO4uLgAAMzNzYXkSpvsAZpExtLSEs7OzqLWNSUl5a1xbNq0CdbW1vjuu++EhKls2bLCPKysrABoEjoTExPRMeTEzs5OZ176Tnhbt24tnOSOGTMGp06dQlBQkHBSO2TIEFhaWkIikcDNzQ0PHjzAn3/+qZNcyWQyYTklS5aETCbTW5VOoVBgyZIl+Oyzz7Bs2TK941+P2ZBCQ0Nx+/ZtHDlyBCVLlgSgSYzbtWuHK1euwM/PT2f6uLg4/PjjjznGq8/333+PQ4cOYfPmzdnWQ5vkODk5wdnZWSfxAgAfHx+ddoljxozB4cOHcfToUfTr1w8PHjzA/v37sXbtWtSvXx8A4O7uLkz/tnKW1YMHD7Bjxw4MHDhQJ7H8/fff0atXL+E72KNHDxw5ckQ4rk2dOhWtW7fGnTt3UL58+Wzz3LlzJ/r27as3+Xry5An+97//oWfPnhg8eLDOuIEDBwqv3dzcMGbMGMycOTNfydXq1atRrlw5KJXKHKfZtWsXMjIy0KxZM6SkpOR5WURERO9SoWpzdenSJdSrV09nWMOGDfHNN98A0FTLuX79Oj7//HNhvFQqRf369XHx4kXRy9P3w69UKqFWq4U/rW2f10WqIucThTdRq9VITU2DhYV5ru9EWZjIhM+KWU6dOnUwc+ZMAEBCQgI2b96Mzz77DNu2bYOrqytu3ryJ8PBwVK9eXeez6enpCA8PF9bb29sb5ubmwvKrVauGlJQUPH36FElJSVAoFPD39xfGy+Vy+Pn54d69e1Cr1XBxcYFcLse+ffswcOBASKVSYdrX10nf9tYOX7Jkic7JdUZGBho3bgy1Wo3w8PC3xhEWFoYaNWpALpe/cVu+KQZtwiqXy1GyZEl8+umnQnKvbz5Z56dvuFa1atWyvQ8LCxM+e+DAAWzbtg0RERFISUlBZmYmrK2tdeZ1+/Zt+Pv7IzMzEyqVClOnTkXJkiV1lq9Wq4WT/w4dOmDZsmXZ4ktOTtbZ3/q2iTaBtbe3R/369fH111/DxsZGGN+rVy+dh76mpqYK87l79y5KlCiBEiVKCNN7eXnB1tYW9+7dg6+vr068K1euRO3atYVyqm/fZLVx40aEhoaibt26cHV1zTZtYmIiAAjr+Pp+Sk5OxooVK/DXX38hKioKSqUSaWlpePr0qVCOZDIZatasqTeOt5WzrMtbvHgxevToATc3N51xjx49wsCBA4X3MpkMMplMeF+6dGmYmJjg0aNHKFeunN55urq6ZlteQkICBg0ahOfPn6NBgwbZ4jt16hR+/vln3L9/H0lJSVAqlUhPT0dKSgosLCz0lt03lfPnz59j7dq12Lx5s1Al8PV5pKSkYOnSpZg1axYOHjyYbf5Z56dWq6FUKt+YqFHeaLcpty3lFstM0aJWq6FUqaFUAyqVGiq15k+pUkOlhub9a+OVr4ap1IBSrYZajVfT/zdcOx+VGsjMVOJuZDrib70AJJLXpgGqe9jB2cbM2JtCVJkuVMnVy5cv4eTkpDPMyckJSUlJSEtLQ3x8PJRKZbbqf46Ojrh//77o5V29elXvcLlcjtTUVKhUKtHz1EcCwNJUBigVb51WK1V/baI3UiqVQpsrAHB2dsaUKVMQEhKCzZs3Y+TIkUhISEDFihUxb968bJ+3t7dHSkqKcCKT9WpyWlqaJq7UVOGkOTU1VWcapVKJzMxMpKSkwNraGpMnT8by5cuFq/kKhQINGzbMdpVapVJBoVBkG65Wq/Hpp5+iQ4cOwrDly5cLseUmDrlcnm1d9FEoFFCpVNmmUyqVqFmzJiZPnozMzEz8888/mDZtGjw8PFC5cuVs89Fup7S0NJ15qdVqZGRk6Ax7/X3WGC5fvoxp06bh888/x/jx42FtbY0DBw4gKChI+IxCoUDp0qXx/fffQ6VS4erVq1iwYAE8PT3h5+eHjIwM4WT3hx9+wJIlS/TGl5SUhJSUFBQrVkwnHu0Jdnp6OgDN3QhLS0s8e/YMc+bMgUQiwaRJk4R5BgQE6NytGTp0qLCOCoVC025Rzz7OOo1KpcLNmzexfft2bNmyBS9evBD2sVye8+HsypUrCAwMxMyZM7Fhw4Zs1TAfP34MqVQKKysrnXXSzvebb77BmTNnMGbMGLi7u8PMzAxff/01UlJSdGJOSUnRW2X0beVM+506efIkzp07h+nTp+P48ePZtol2m2v3b9YyqU00tPsuN/NUKBR4+vQp2rRpg9atW2Py5MnYunWrcHfz6dOnGDZsGLp164Zhw4ahWLFiuHjxIubMmYOEhARh/7weZ07lPD09HUuWLEHz5s3h4eGR7butnd9PP/0EDw8P1K1bF/v3789x26Wnp0OhUODmzZt6tysZRk6/hUQ5KYxlRpMUAJlqNZQqQPkqKdD/X3Pyn6nSfE47vUp4/Sq50I5XAyqd16/mIyQeup/Pmly8Plw7b1WWz2qnV6p1P5v181mnU6kAFbJPq3qVDGnf5611fx6d0N+0pkwxOb5t6aR33PuqUCVX75qvr2+26lppaWl49OgRLCwsYG5ubpDlaO5cpcLCwiJfbajeRnulO2sbBpVKBalUCqVSCUtLS/j5+eHQoUNwc3ODtbV1jvO5c+cOpFKpsA1u3rwJS0tLeHp6Ii0tDSYmJggLCxPaFSkUCty4cQOffvqpsPwePXpg3759qFixIgYMGIAlS5ZApVJla2MhlUqFqoFZSSQSFC9eXKe6lq2tLRITE2FpaYkKFSq8NY5KlSph9+7dMDExeWM7KhMTE0il0mwxyGQyWFtbCzFUqVIF69atw8OHD3U6DtDSbi9zc3OdeUkkEpiamuoMCwsLE9o4AZrOBipVqgRLS0uEhYWhZMmS+OKLL4Qys3HjRkgkEmEeJiYmMDMzE2KrVKkStm3bhtOnT6Nu3bowNTWFRCLB2rVrUbNmTTRq1EjouCRrfJcvX4ZEIkG1atV04jMzM4OlpSXMzDRXlMqVKwdbW1v4+Pjg33//xaVLl2BpaSmsc5kyZXT2lVwuF9bZx8cHkZGRiI+PF6oF3r17F4mJiahYsaJQLVMqlWLlypXo3r07fHx8hE4pLCws3tg2Z8qUKWjRogVUKhWmTJmC5s2bC22lAOD27dvw9PSEvb29sG5Z53vlyhV06dIF7du3B6C5k/fs2TOhXPr6+kKlUuH69etCtcCs3lbOZDIZpFIpli5dihEjRqBEiRLC/tGul7u7Ox4/fiy8197t1b5/8OABMjMzUa5cOVhaWmabp7b67etlxN3dHYsXLwYAnDx5Ej/99BOmTp0KAMId3mnTpgl3HbU9i2q3zetxAjmX8/v37+PIkSPYv38/LC0ts323JRIJ4uPjsWXLFgQFBQnr8fpxS0v7+XLlyhnseEz/USqVuHr1qt7fQiJ9lEolrly5goqVq0CpliBDqYIiU4UMpQoZmSoolGrNMKXmtUIY/+p1luEZ2teZqv/GqdTIfDU+89W8MlUqYZj2s5kqNTKVmvlmKlVQqtSvPvtqWu3rV/8VKk1SQeLJpBJIJYBUItF5LZVIIJVKIJO8GpZ1nM50mgtllhbmkEmkkEr/Gy6RSNCxaklUq1ba2KspHA9zo1AlV05OTtkasL98+RLW1tYwNzeHVCqFTCZDdHS0zjTR0dHZ7njlhvZH/fVhEolE+DOkgpjn6/PPyMgQtmFCQgI2btyIlJQUNG3aVFOIO3bEmjVrMGLECIwePRouLi54+vQpDh06hCFDhqBEiRKQSCRQKBSYNm0ahg8fjidPnmDFihXo168fZDIZrKys0Lt3byxevBh2dnYoVaoUVq9ejbS0NHTv3l1Yx0WLFkEikWDKlCkwMTGBtbU1EhISsm2DnLa39n3W4VmH5SaOfv36YePGjRg/fjyGDh0KGxsbXLp0CX5+fvD09MxVDCqVChkZGVAoFDhx4gTi4uJQoUIFvfsya3w5xa0VEhKCKlWqoEaNGti7dy+uXr2Kb775BhKJBGXKlMHz588RHBwMPz8/HD9+XOiJLeu8lEolXr58Kdy5unv3LgYMGCAsPy0tDdu3b8fOnTt1YtK+Pn36NObMmYPGjRtn+w69vk0UCgUyMjLw+PFjnDx5EtWrV9c7T33r3KBBA1SoUAFfffUVpkyZAqVSiVmzZqF27dpCeyuJRILw8HA8e/YMBw8efOO8X2dnZweJRILWrVvjwIEDmD59OtasWYOMjAwEBwdj3bp1Oonq6/MtU6YMDh06JHxPli5dKty5lkgkcHd3xyeffIKpU6di2rRp8Pb2xtOnTxEdHY22bdu+tZxpt7WzszP69u2bbd0AoGvXrlixYgVq164NmUyG7du3Iz4+Hr/88guaNWuGgIAA+Pr6Cgmsvnnq2/ZWVlZCwhcQEIDu3bujdevWqFmzJsqUKQOFQoGNGzeiadOmOH/+vNBm6/X9n7W3UG1nNNq2bNpp1q5di0GDBqFEiRLZ4tD+37x5M1q2bCnc+dX33Xi9DOo7VpPhcPsWHplKFdIzVUhTKJGe+dprhRJpr/5rx6VnKpGu0CQymv+vv9dMkyFMr/nLyFQhI1OpSZZeJU+KTBXSX/1X/x5p7E1hEDKpJmEw0f6XSSGTSiCXSiCXSV/9l0Am1bzWTCN5NY1U+Lz2M//9fzW9TPNeKpEI72WvXkulr/2X/DcP7eelUglkr5IRzfKyJDnaZWmTnFfzkL0appkG/43P8jnNMOgMk0p0h2uTpPxSKpW4dOkSqlWrVmSOM4UquapWrRpOnDihM+zUqVOoVq0aAE0nC5UrV0ZoaCiaN28OQHNnJjQ0FP369XvX4b6XTp48KTSIt7KygqenJ5YtW4Y6deoA0FyN3rhxI5YsWYJRo0YhOTkZLi4uqFevns6drHr16qF06dLo27cvMjIy0L59e53e1SZMmCB0e52cnIwqVapg9erVQkcB+/btw/79+7Fz585897z3Jm+Lw97eHuvXr8fixYvRv39/SKVSVKxYETVq1Mj1Mo4dOwY/Pz/I5XK4urpi+vTpQpnMjy+++ALBwcGYPXs2nJ2d8e233wp34Jo2bYo+ffpg7ty5yMjIwMcff4zhw4djxYoVOvO4c+cOGjZsCKlUChcXFwwePBgdO3YUxisUCvTs2TPHzhWmTJkitJ96mwYNGgDQbNMGDRpg/PjxuV5XiUSCH374AXPnzkW/fv0gkUjQqFEjTJ8+XWe6lJQUTJw4UafDE7GmT5+O9u3bY+vWrahcuTJWrFiBESNGYNCgQTl+ZtKkSZgyZQp69eoFe3t7fPbZZzrdkQPArFmz8N1332HWrFmIi4tDqVKlhPafuSlnKSkpGD9+fI7fh969e+PWrVsYMWIEfHx80KpVK1y4cAEvXrxAly5d4OXlhSVLluh8Jus8c9M+08fHB8OGDcOUKVOwZ88e+Pj4YPLkyfjll1/w3XffoWbNmhg3bhwmTpyo87nExMRsnY4AQPfu3XHkyBGh/ZiVlRWGDBnyxhhUKpXQ6yhRUaBUqZGq0DxuJS1DhVSF8r/3CiVSM1TC6zSFZrz2dVqm9vWr969epypeJUuvEiZtAqVUvX+3X6QSwFQuhalMChOZFKby1/7LNEmLiUwKE/lr72VSmMo1iYPmvWacXJjm1Ti5FCavEh5hGul/02o+/19CJMxD+mr8q2l0hkkL9oI3FV0SdV4fmGQAycnJwnNeOnfujMmTJ6NOnTooVqwYSpUqhW+//RaRkZFYtGgRAE1X7B06dECfPn3QtWtXnD59GvPnz8eqVat0umKfOHEi5syZAz8/P6xfvx779+/H/v37c3336k1ZdFpaGh48eICyZcsatFpgSkqK0PPb+27SpElISEjADz/8YOxQiixvb2+sXLlSuEjwusJWZsjwAgMDcfjwYezZsydX0xujzHTq1AkrV64UkitDK4jjMf2nKF5RfpOMTBWS0zORlK559qTmv+Z1aoYSyRmZmv/pSqQoMpGSrszyjMqs/zXTpyo0/zOUhmmfLZapTAozuRRmJrJX/6Uwl8tgZvJquFwmjDeVacYLn5Frkh8zuezVf9332mRJ579cChnUuH3rBqpX9YOFqYmQ0BDlpLAcZ8TEadQ7V9euXcOnn34qvA8ICAAAfPLJJ1iwYAGioqLw7NkzYby7uztWrVqFgIAAbNiwASVKlMC8efOExAoA2rZti5iYGCxfvhxRUVGoWLEiVq9enadqgURElHfa9lhEBUWhVCExLRNJaZlITFdo/qdpEqTEdM3wpHQFktM1yZI2eUpOz0RyuiZh0r4u6CRIItH09GthIoO5iQyWpjJYmGpea4dr3muSGAtTGczlmvfmJln/v/qTS4XPZ02azF8lS4aosiWWUqlElLkMxSxM3usTZaKCZNTkqk6dOrh161aO4xcsWKD3M7t3737jfPv168dqgERERrZ9+3Zjh0DvMZVKjaSMTCSkKpCQmomENIXmddqrYWma4Ylp/71OSte81/zPRHqm4RMiM7kU1mZyWJrJYGUqh4Vp1v8yWJjKYWWqSY4szeSa/6ba//+9Nn+VLFm++m8ml/JiA9EHoFC1uaL3g76klwzrTRcdiABNm7ys7RyJjEGt1rQniktRID5V8ep/xn/vswz7b7wmiUpMzzRYD22WpjJYm8lhbS6HjbkJbMzkwnvrV6+tzOSwNtMkP1bCMNmrREoOa1NNQmXCamxElA9MroiIiEjzwOwMJWKTMxCTnIGXiWm49CgVF5IfIi5VgZhkhWZcSgZikzMQl6pAfIoi39XpzORS2FqYwNZc/uq/CWwtTGBjLn/1WvNf+16TQGmSIxszE1iZydiuh4jeG0yu8siI/YAQERF4HM6NlIxMRCdlICopHdFJGYhOSkd0cgZeJqXj5av3MckZiE3JQGxyTolS/FuXYyKToJiFKYpZyGFnaQo7CxMUszRBMQsT2FmYws7SBHaWmqSp2Ks/bcJkbsK2OURUdDC5EknbTXJKSgosLCyMHA0R0YcrJSUFAAr0cQ7vozSFEi8S0vEiMQ0vEtPxIiENUUnpeJmYgejkdERpk6ikDKQqlKLnb2Eig72lCewtTSFXpcHDxRGO1mawtzSFg5UJ7K1MYW+pTZg0iZSlqYztiYiIwORKNJlMBjs7O7x48QIADNKtsVqtRnp6OqRSNnal3GGZIbGKUpnRdiv/4sUL2NnZFZleyRLTFIhMSEOkNnFKSEdUYromgXqVSEUlpCMxPVPUfM3kUjhZm8HJxgxOVqZwtDaFo7WZZpi16aukSfNnb2kKC1PN9vyv6+GqRWYbExEVNCZXeVCiRAkAEBKs/FKr1VAoFDAxMSn0Jz30brDMkFhFsczY2dkJx+P3mVqtRmyKAs/iUxGZkIZn8Wl4Hq/5n/V9koikydxEiuI25nC2MUPxV3/ONmZwtDaDo5UmeXK2NoOjtSnvKhERvUNMrvJAIpGgZMmSKF68OBQKRb7np1QqcfPmTZQrV45XBylXWGZIrKJWZkxM3p/n6KRmKPEkLgWPY1PxJC4VT1791yZNzxPSkJHLLsNtzOUoYWuO4raa5Ki4rbmQOGkSKc04GzM5EyYiovcQk6t8kMlkBvlxVyo1deLNzc3fm5MFer+xzJBYLDN5F5+qwOPYFCFpEv6/eh2dnJGr+ThZm6JEMXOUsLVAiWJmKFnMAiVszVGymLlmeDFzWJryZ5mIqDDjUZyIiD5oSpUaT+NSER6TgkfRKXgUk4zw6BSEx2j+EtPeXl3P2kwOVzsLuNlbwNXeAq52FihpZ6FJnF7diTKTM6klIirqmFwREVGRl5qhfJU8JQtJlDZ5ehybAoXyzd26O1iZahInu1d/9v/9d7OzhK0Fq+kREVEekqt///33jeNr1aqV52CIiIjySqVS42l8Ku5HJeN+VBLuv0zGvagk3I9KxrP4tDd+1lQmhZuDBUo7WKK0oxU8HCzh4WCJ0o6WcLW3YHU9IiLKFdG/Fv379xeuzr3+AEeJRIKwsDDDREZERKRHYppCk0C9THqVSGmSqIfRyUhT5NxxRDELE5R2tIS7g+WrJMoSHg5WKO1oCRdbc8ikvPNERET5Izq58vHxQWxsLLp164bOnTvDzs6uAMIiIqIPXWKaAndeJOH280TcikzE7chE3I5MQlRieo6fMZVJUdrREp7OVvB0toan03//7a1M32H0RET0IRKdXO3evRtXrlzBtm3b0L17dzRo0AA9e/ZE7dq1CyI+IiIq4tIUStx9kYTbka+SqOeaJOpJXGqOn3G2MRMSJy9nK00y5WQNN3sLyGXSdxg9ERHRf/JUidzPzw9+fn6YNGkS9uzZgxEjRmDUqFEYOHCggcMjIqKiQq1WIyImFdefxiPsWcKru1FJeBSdDFUO/Um42JqhgosNvF1sUKGEDSq42MDT2Qq25ibvNngiIqJcyHML3WfPnmH79u3YsWMHKlWqhBo1ahgyLiIiKsQylSrcf5mMa0/icf1pAq4/jceNpwlIyKFbc3tLE00S9SqB8i5hgwrFbVDMkkkUEREVHqKTq8OHD2Pr1q0ICwtDx44dsX79epQpU6YAQiMiosIgTaHEreeJQhJ17WkCbj5LQHpm9s4lTGVSVChhjUolbeFTwhbeJWxQ3sUaztZm7MqciIgKPdHJ1ahRo1CiRAm0bNkSSqUSW7Zs0Rk/efJkgwVHRETvl0ylCrcjk3ApIg6XImJx5XE87rxIglJPvT4rUxkqlbJF5VLFUPnV/3LFrWEqZ5soIiIqmkQnV9rnWN25cyfbOF51JCIqWiIT0nAxPA4XI2JxKTwOV5/EIyVDmW06BytTIYHS/LdFGUcrSNm9ORERfUBEJ1dBQUEFEQcRERlZaoYSV5/E41JELC6Gx+FSRJzeh+9am8lR1b0Y/N3tUdXdDlVcbVHC1pwX2IiI6IOX5w4tHj16hPDwcNSqVQvm5uZQq9X8YSUiKkReJKbh3wexOPMgGucfxeLm88Rs1fukEsC7hC2qudvB390O/h528HK25h0pIiIiPUQnV7GxsRgzZgzOnDkDiUSCgwcPwt3dHVOmTEGxYsUwadKkgoiTiIjy6WWKErsvPcW5R7E48yAG96OSs01T3MYM/h52qOZuD38PO/i6FoOVWZ6vwxEREX1QRP9iBgQEQC6X4/jx42jTpo0wvG3btliwYAGTKyKi94Barcaj6BScfRCDMw9icOZBNB7HpgKIEqaRSACfEraoU9YBtco4wN/DDiWLsXofERFRXolOrv755x/8+uuvKFGihM7wMmXK4OnTpwYLjIiIck+tVuP+y2SE3ovGmQcxOPsgGpEJ6TrTSCVAlVLFUNfLEbXLaBIqPkeKiIjIcEQnVykpKTA3N882PC4uDqampgYJioiI3i4uJQP/3I3GyTtROHnnJZ7EpeqMN5VJUdW9GGqXdUCt0vaQx4WjXq3qkMlkRoqYiIioaBOdXNWsWRO7d+/GmDFjhGEqlQqrV69GnTp1DBkbERFloVCqcCkiDidvR+HEnZe48jgOWfufMJVLUbO0PeqUdUTtsppqfuYmmkRKqVTi0qXHRoqciIjowyA6ufrqq68wcOBAXLt2DQqFAosXL8bdu3cRHx+f7YHCRESUP4+ik3HizkucvB2F0HvRSEzP1BlfwcUajco7o1F5J9Qp6wgLU96VIiIiMhbRyVWFChVw4MABbNy4EVZWVkhJSUGLFi3Qt29fFC9evCBiJCL6YKRmKPH33Zf46/YLnLj9EuExKTrj7S1N0PBVMvVReWeUKJa9mjYREREZR57617WxscHw4cMNHQsR0QcpOikdR26+wKEbkTh5JwppCpUwTi6VoEZpe3xUwRkflXdG5VK2fMYUERHRe0p0cnXkyJE3jm/WrFmegyEi+lA8fJmMQzcicehGJM49itFpO+VqZ4FmFYvjo/LOqOvlCGs+Z4qIiKhQEP2LPXLkyBzHSSQShIWF5SsgIqKiSKVS48qTeBy68RwHr0fizosknfGVS9miRSUXtKjkgkolbfmsKSIiokIoT5dD//77bzg5ORk6FiKiIiU9U4nQe9E4dCMSh8MidZ47JZNKUNfTAS0quqB5JRe42VsaMVIiIiIyhDwlV1Kp1NBxEBEVCZlKFULvR+OPS08Rcu25Tu9+VqYyfOxdHC0quaCJd3E+wJeIiKiIyVNytW3bNtja2sLS0hLFixeHj48PHBwcDB0bEVGhoFarcTEiDn9ceop9V57hZdJ/d6iK25ih+avqfvW9HGEmZ1fpRERERZXo5KpUqVLYtm0bFAoFkpKSkJqaCqlUisaNG2Px4sWwtrYuiDiJiN47dyITsefSU/xx+alOl+l2liZo61sSnaqWQq0yDuzdj4iI6AMhOrk6evSozvukpCRcvXoVc+bMwaJFizBnzhyDBUdE9L55HJuCvZefYc+lJ7j5PFEYbmkqQ4tKLuhUrRQalnOGqZzVp4mIiD40+e7f19raGvXq1cPMmTMxdepUQ8RERPReiU5KR/DVZ9hz6SnOPYoVhpvIJGhcwRkdq7miecXisDRll+lEREQfMoOdCdStW/etz8AiIiosVCo1/r77ElvOhuPQjUhkvnoQlUQC1CnrgE7VXNGmSgnYWZoaOVIiIiJ6X+QquUpKStJpS/Xy5Uts2rQJ9+7dAwCUK1cOffr0YffsRFToRSakYfu5CPz2bwQex6YKw6u42qJzNVe09yuFEsXMjRghERERva/emlxlZmaiYcOGOHjwIIoXL47z589jyJAhKF68OKpXrw4A+PPPP7Fu3TqsWbMG1apVK+iYiYgMSqlS46/bL7DlbASO3nwB5au7VDbmcnTxd0Wv2h6oWNLWyFESERHR++6tyZVcLoepqSnS0zVdCy9atAgdO3bErFmzIJFoesBSq9WYOXMmFixYgN9++61gIyYiMpAncanY9m8Etp+LwNP4NGF4rTL26FXLA219S8LClF2nExERUe7kqlqgvb09kpOTAQBhYWEICAgQEisAkEgkGDBgAD755JOCiZKIyEAylSocvfkCW86G46/bUXh1kwp2liboWt0NvWq5o7yLjXGDJCIiokIpV8mVv78/goOD4ePjAycnJzx58gSenp460zx+/JjPuCKi91ZkQhqCQh9h27kIvEj87yG/dT0d0Lu2B1pVLgFzE96lIiIiorzLVXI1YMAA9OnTB6VLl0a7du0wbdo0TJw4Ef7+/gCACxcuYNGiRWjTpk2BBktEJFbYswT8cvI+9l5+CoVSc5vK0coU3Wq4oWctd3g686IQERERGUaukquKFSvip59+wowZM/DkyRNkZmZi3LhxQtVAmUyG7t2746uvvirQYImIckOtVuOv21FYffIB/r77Uhheq4w9BtQvg5aVSvAhv0RERGRwuX7OVZ06dXDgwAHcu3cPsbGxUKlUAABbW1t4eHjA0tKywIIkIsqN9Ewl9lx6il9PPsCtyEQAgFQCtPEtic8aeaKau51xAyQiIqIiTfRDhL28vAoiDiKiPItNzsCmM4+wPvQRol61p7IylaFnLQ8MalAG7g68+ENEREQFT3RyNXny5DeODwgIyHMwRERiPHyZjDX/PMD2c4+RqlACAErYmmNggzLoXdsDxSxMjBwhERERfUhEJ1e7du1CiRIlUKVKFajV6oKIiYjojc4/isHPJ+7j4I1IaA9DlUra4rOPyqKdbym2pyIiIiKjyNOdq+3btyMiIgI9evRAp06d8t0F+6ZNm/Drr78iKioKPj4+mD59Ovz8/PROq1AosGrVKuzevRuRkZEoW7YsJkyYgI8++kiYJjAwECtWrND5XNmyZRESEpKvOInIuM49jMF3h27j1L1oYVgTb2d81sgT9bwcdZ6/R0RERPSuiU6uBgwYgAEDBuD8+fPYtm0bli9fjqZNm+Kzzz7L9uyr3AgODkZAQABmz56NqlWrYv369Rg8eDBCQkLg6OiYbfqlS5fijz/+wLx58+Dp6YmTJ09i1KhR+O2331CpUiVhuvLly2Pt2rXCe5mMz68hKqwuR8Th20O3ceJ2FADARCZBF383DGlUlg/8JSIioveG6ORKq0aNGqhRowb27duHmTNnwsvLK0/J1dq1a9GjRw907doVADB79mwcP34cO3bswNChQ7NNv2fPHgwfPhyNGzcGAPTp0wehoaFYs2YNlixZIkwnk8ng7Oycx7UjovfB9afx+P7QbRwOewEAkEkl6F7DDaOaloObPTupICIiovdLnpKrFy9e4Pfff8fvv/8OFxcXTJ8+PU8PEM7IyMD169fx+eefC8OkUinq16+Pixcv6v2MQqGAqampzjAzMzNcuHBBZ9ijR4/QsGFDmJmZoVq1ahg/fjxKlSolKj6lUilq+rzSLuddLY8Kv6JeZm5HJmLZkbsIuR4JQNOdeudqpTCqSTmUdtQkVUV13QtKUS8zZHgsMyQWywyJVVjKjJj4RCdXI0aMwKVLl9CuXTv8/PPPKFeunNhZCGJjY6FUKrNV/3N0dMT9+/f1fqZhw4ZYt24datWqBQ8PD4SGhuLQoUM6K+3n54eAgACULVsWUVFRWLlyJfr27Yu9e/eKah929erVvK1YHr3r5VHhV9TKzJPETGy7noR/ItKgBiAB0MDdHD0qW8PVRoXYiNuIjTB2lIVbUSszVPBYZkgslhkSqyiVGdHJ1dGjR2FhYYHdu3djz5492cafPXvWIIHlZOrUqZg2bRratGkDiUQCd3d3dOnSBTt27BCm0VYZBAAfHx9UrVoVTZo0wf79+9G9e/dcL8vX1/edtNVSKpW4evXqO1seFX5Frcw8ik5B4LG72HPpJVSvev9rXdkFXzYrB2+2qTKIolZmqOCxzJBYLDMkVmEpM9o4c0N0cmXI51jZ29tDJpMhOjpaZ3h0dDScnJz0fsbBwQE//PAD0tPTERcXh+LFi2PJkiVwd3fPcTm2trYoU6YMwsPDRcUnk8ne6Y5+18ujwq+wl5nHsSlYcfQutp9/DOWrrKp5RReMbVEelUsVM3J0RVNhLzP07rHMkFgsMyRWUSozopOrTz75xGALNzU1ReXKlREaGormzZsDAFQqFUJDQ9GvX783ftbMzAwuLi5QKBQ4ePDgG9t8JScnIyIigh1cEL0nEtIUCDxyB+tOPYRCqUmqGldwxrgWFVDV3c64wRERERHlUZ57CwSA9PR0KBQKnWFin3k1aNAgTJw4EVWqVIGfnx/Wr1+P1NRUdOnSBQDw9ddfw8XFBePHjwcAXL58GZGRkahYsSIiIyMRGBgIlUqFIUOGCPNcuHAhmjRpglKlSuHFixcIDAyEVCpF+/bt87O6RJRPKpUav59/jEUHbuJlUgYAoL6XI8a3rIAapR2MHB0RERFR/ohOrlJSUrBkyRLs378fcXFx2caHhYWJml/btm0RExOD5cuXIyoqChUrVsTq1auFaoHPnj2DVCoVpk9PT8fSpUsREREBS0tLNG7cGIsWLYKtra0wzfPnzzFu3DjExcXBwcEBNWrUwLZt2+DgwJM3ImO5EB6L2X9cx+XH8QAATycrTO9QCU28ixs5MiIiIiLDEJ1cLV68GGfOnMGsWbPw9ddfY8aMGYiMjMTWrVuFu0ti9evXL8dqgEFBQTrva9eujeDg4DfO7/vvv89THERkeJEJaVi4/yZ2XnwCALA2k2N0s/IYUL8MTOXSt3yaiIiIqPAQnVwdO3YMCxcuRJ06dTB58mTUrFkTpUuXRqlSpbB371507NixIOIkokImPVOJX/9+gBVH7yIlQ/OohB413fBVKx8425gZOToiIiIiwxOdXMXHxws981lbWyM+XlPFp0aNGpg9e7ZhoyOiQketVuNI2AvM/fMGHkWnAAD8Pewwq0NldlZBRERERZro5MrNzQ2PHz9GqVKl4Onpif3798PPzw/Hjh2DjQ2fR0P0Ibv7Iglz9t3AidtRAIDiNmaY1MYHnau5QiqVGDk6IiIiooIlOrnq2rUrbt68idq1a2Po0KEYNmwYNm7ciMzMTEyaNKkgYiSi91xCmgLLDt/B+lMPkalSw1QmxeBGZTGySTlYm+WrU1IiIiKiQkP0Wc/AgQOF1/Xr18f+/ftx/fp1eHh4wMfHx5CxEdF7Tq1WY8+lp5j35w2ha/XmFYtjWrtKKONkZeToiIiIiN6tfF9SdnV1haurqyFiIaJC5EVCGqbsuobDYZEAAC9nK8zoUBmNK/Bh3URERPRhEp1czZs3Dx4eHvj00091hm/cuBGPHj3C1KlTDRYcEb1/1Go1dl96gll/3EB8qgImMgm+bFoewz72gomMXasTERHRh0v0mdCBAwdQvXr1bMP9/f1x4MABgwRFRO+nFwlp+GzDeYzdehnxqQpUcbXF3i8a4otm5ZlYERER0QdP9J2ruLg4vb0CWltbIzY21iBBEdH7Rd/dqtHNyuPzxrxbRURERKQlOrkqXbo0Tp48idKlS+sMP3HihPD8KyIqOjRtq67icNgLAICvazEs6V4V3iX46AUiIiKirPLUW+DcuXMRExODunXrAgBCQ0Oxdu1aTJkyxeABEpFxqNVq7Lr4BLP+uI6EtEyYyCQY07wChn7kybtVRERERHqITq66deuGjIwM/PTTT/jhhx8AaHoMnDVrFjp37mzo+IjICCIT0jBl51Ucucm7VURERES5laeu2Pv06YM+ffogJiYGZmZmsLLi82yIigK1Wo2dF55g9l7N3SpTmRSjm5fH5x95Qs67VURERERvlK/nXDk4OBgqDiIyshcJaZic5W6Vn1sxLO7Gu1VEREREuSU6uercuTMkEkmO43ft2pWvgIjo3fvn7kuM/u0iXiZl8G4VERERUR6JTq6aN28OQFN9aNWqVejVqxfs7OwMHRcRvQMqlRorj93F94dvQ6UGfErYYHlvf1Rw4d0qIiIiIrFEJ1ejRo0SXq9ZswYDBgxgF+xEhVBscgbGbruE47eiAAA9a7pjdqfKMDeRGTkyIiIiosIpX22uiKhwuhAei1GbLuBpfBrMTaSY26kKutfkRRIiIiKi/GByRfQBUavVWHfqIb4JDoNCqUZZJyv82K86fErYGjs0IiIiokJPdHIVEBAgvFYoFPjxxx9hY/Nf+4zJkycbJjIiMqjENAUm7biKP68+AwC08y2JBV19YWNuYuTIiIiIiIoG0cnVjRs3hNf+/v6IiIgQ3r+pF0EiMp6bzxMwfOMFPHiZDBOZBFPaVsTA+mX4nSUiIiIyINHJVVBQUEHEQUQFZPu5CEzfcw1pChVKFTPHyr7V4e9hb+ywiIiIiIoctrkiKqLSFErM2HMN2849BgA0ruCMpT2rwd7K1MiRERERERVNeUqurl69iv379+PZs2dQKBQ641asWGGQwIgo7x68TMaITRcQ9iwBUgkwrkUFjPi4HKRSVgMkIiIiKihSsR/4888/0bt3b9y/fx+HDh1CZmYm7ty5g9OnT+t0bEFExnHw+nN0DPwbYc8S4GRtio2D62BU0/JMrIiIiIgKmOjk6qeffsLkyZPx008/wcTEBFOnTkVISAjatGmDkiVLFkSMRJRLa/95gM83nkdieiZql3HAn182Qv1yTsYOi4iIiOiDIDq5ioiIQOPGjQEApqamSElJgUQiwcCBA7Ft2zaDB0hEb6dSqTF33w3M3nsDajXQr64HNn9WBy625sYOjYiIiOiDITq5srW1RXJyMgCgePHiuHPnDgAgISEBqampho2OiN4qTaHEF1su4te/HwAAJrb2wdxOVSCXif56ExEREVE+iO7QolatWjh16hS8vb3RunVrzJ8/H6dPn8apU6dQr169goiRiHIQm5KBYRsv4tyjWJjIJFjSvSo6VXM1dlhEREREHyTRydX06dORnp4OABg+fDhMTExw4cIFtGzZEsOHDzd4gESkX2RyJr5adQb3XybDxlyOn/vXRD0vR2OHRURERPTBEp1c2dnZCa+lUimGDh1qyHiIKBeuPI7H5CMxiE/XPBh43f9qo4ILe+skIiIiMiY+RJiokDl6MxIjN11EqkKFSiVtsHZQbXZcQURERPQeYHJFVIhsPhOOabuvQqUGqrqYYsNndVDM0szYYRERERERmFwRFQpqtRqLD9zCD8fvAQC6VXdF97KZsDbjV5iIiIjofcG+monecxmZKozdeklIrMY0L48FXapALpUYOTIiIiIiyoqXvYneY/GpCgwLOo/Q+9GQSyX4posvetR0h1KpNHZoRERERPQa0cnVqFGj3jh+xYoVeQ6GiP7zNC4VA9eexe3IJFiZyvBjvxr4qIKzscMiIiIiohyITq4OHz4MKysrNGvWDDKZrCBiIvrgRcSkoNfPp/EkLhXFbcywdlAtVC5VzNhhEREREdEbiE6u1q5diwULFuD69ev46quv8PHHHxdAWEQfridxqej9iyax8nSyQtCQOnC1szB2WERERET0FqI7tKhXrx52796N//3vf5gxYwYGDhyImzdvFkRsRB+cZ/Gp6P3zaTyOTUUZR0tsGVqXiRURERFRIZGn3gIlEgm6du2KgwcPombNmujXrx8mT56MyMhIQ8dH9MGITEhD759PIzwmBR4OmsSKDwcmIiIiKjxEVwvcsGGDzntbW1v06tULmzZtQkhICC5evGiw4Ig+FC9eJVYPo1PgZm+BLUPromQx3rEiIiIiKkxEJ1fr1q3TO9ze3j6/sRB9kKIS09Fn9Rncf5kMVzsLbPmMVQGJiIiICiPRydXRo0cLIg6iD1J0Ujr6rj6Nuy+SULKYOTZ/VgfuDpbGDouIiIiI8iBPba6IKP9ikzPQd/UZ3I5MQnEbM2z+rC5KO1oZOywiIiIiyiPRd64CAgLeOH7y5Ml5DoboQxGXokmsbj5PhJO1GbYMrYuyTkysiIiIiAoz0cnV+vXrYWVlhcqVK0OtVuuMk0gkBguMqKiKT1Wg/69nceNZApysTbHlszrwcrY2dlhERERElE+ik6u5c+di+fLlkMvlmDhxIry9vQsiLqIiKSFNgU/XnMXVJ/FwsDLFpiF1Ud7FxthhEREREZEBiG5z1b17dxw8eBDVqlVD7969MW3aNLx8+bIgYiMqUhLTFBiw5iwuR8TBztIEm4bUgXcJJlZERERERUWeOrSwsLDAl19+iZCQECiVSrRq1QorVqxAWlpanoLYtGkTmjZtCl9fX3Tv3h1XrlzJcVqFQoEVK1agefPm8PX1RceOHXHixIl8zZOooCWnZ2LQ2n9xMTwOtuZybBxcBxVL2ho7LCIiIiIyINHJ1ZEjR4S/q1evonnz5hg0aBB+/fVXtGzZUnQAwcHBCAgIwMiRI7Fr1y74+Phg8ODBiI6O1jv90qVLsXXrVkyfPh3BwcHo1asXRo0ahRs3buR5nkQFKSUjE4PW/Ytzj2JhYy7HxiF1UMW1mLHDIiIiIiIDE93mauTIkTmOS01NFR3A2rVr0aNHD3Tt2hUAMHv2bBw/fhw7duzA0KFDs02/Z88eDB8+HI0bNwYA9OnTB6GhoVizZg2WLFmSp3kSFZSMTBWGbjiPsw9iYGMmR9DgOvBzszN2WERERERUAEQnVzdv3jTYwjMyMnD9+nV8/vnnwjCpVIr69evj4sWLej+jUChgamqqM8zMzAwXLlzI8zxzolQqRU2fV9rlvKvl0buhVqsxddc1/H33JaxMZVgzsAZ8S9kYZD+zzJBYLDMkFssMicUyQ2IVljIjJj7RydWbPH36FICmS/aSJUu+dfrY2FgolUo4OjrqDHd0dMT9+/f1fqZhw4ZYt24datWqBQ8PD4SGhuLQoUPCSudlnjm5evWqqOnz610vjwrWnlvJ2H4lEVIAo2vbQBrzCJdiHhl0GSwzJBbLDInFMkNiscyQWEWpzBjszpVCoUCPHj3g4+MDU1NTbN26Nd/B6TN16lRMmzYNbdq0gUQigbu7O7p06YIdO3YYfFm+vr6QyWQGn+/rlEolrl69+s6WRwXv4I1IBF3V3Cmd0s4Hg+qXMej8WWZILJYZEotlhsRimSGxCkuZ0caZG6KTq86dO0Mikeg8QFj7XiKRYNeuXbmel729PWQyWbaOJqKjo+Hk5KT3Mw4ODvjhhx+Qnp6OuLg4FC9eHEuWLIG7u3ue55kTmUz2Tnf0u14eFYxrT+IxbtsVqNVAv7oeGNzQs8AesM0yQ2KxzJBYLDMkFssMiVWUyozo5OrIkSN6h6enp6Ndu3ai5mVqaorKlSsjNDQUzZs3BwCoVCqEhoaiX79+b/ysmZkZXFxcoFAocPDgQbRp0ybf8yTKr8iENAxZfw6pCiUalXfCzA6VCyyxIiIiIqL3i+jkytXVVe/wjIyMPAUwaNAgTJw4EVWqVIGfnx/Wr1+P1NRUdOnSBQDw9ddfw8XFBePHjwcAXL58GZGRkahYsSIiIyMRGBgIlUqFIUOG5HqeRAUhJSMTQ9afw/OENJQrbo0VfarDRJanR8kRERERUSFk0A4t8qJt27aIiYnB8uXLERUVhYoVK2L16tVCFb5nz55BKv3vBDU9PR1Lly5FREQELC0t0bhxYyxatAi2tra5nieRoalUaozbehlXn8TD3tIEawbUQjELE2OHRURERETvkNGTKwDo169fjlX2goKCdN7Xrl0bwcHB+ZonkaEtPngLIdefw1Qmxc+f1oSHo6WxQyIiIiKid0x0clWrVi22ISHKYvu5CPx4/B4AYEFXX9Qq42DkiIiIiIjIGEQnV1OmTCmIOIgKpTP3ozFll6ZrzlFNyqFLdTcjR0RERERExiI6ufrkk08KIg6iQufhy2R8vvE8FEo12vmWxLgWFYwdEhEREREZUb7aXKWnp0OhUOgMs7a2zldARIVBfIoC/1v/L+JSFKjqVgxLuleFVMrqskREREQfMtHJVUpKCpYsWYL9+/cjLi4u2/iwsDBDxEX03lIoVRix+TzuRyWjVDFz/DKgJixMi8aD74iIiIgo70Q/hGfx4sU4ffo0Zs2aBVNTU8ybNw9ffPEFihcvjoULFxZEjETvDbVajRl7ruOfu9GwNJVh9YBaKG5jbuywiIiIiOg9IDq5OnbsGGbOnIlWrVpBJpOhZs2aGDFiBMaOHYu9e/cWRIxE741f/36ALWfDIZEAy3v5o1Ip27d/iIiIiIg+CKKTq/j4eLi7uwPQtK+Kj48HANSoUQPnzp0zbHRE75HDNyIxP1hT7XVq24poXsnFyBERERER0ftEdHLl5uaGx48fAwA8PT2xf/9+AJo7WjY2NoaNjug98fBlMkb/dhFqNdC7tgcGNyxr7JCIiIiI6D0jOrnq2rUrbt68CQAYOnQoNm3aBF9fXwQEBGDw4MEGD5DI2DIyVfjyt4tIzlCidlkHzOlUmQ/SJiIiIqJsRPcWOHDgQOF1/fr1sX//fly/fh0eHh7w8fExZGxE74XvDt3GlcfxKGZhgqU9q8FEJvqaBBERERF9APL1nCsAcHV1haurKwDNc6/MzMzyHRTR++Kfuy+x6sQ9AMDCrn4oZWdh5IiIiIiI6H0l+hL877//rnf4+fPn0bFjx3wHRPS+iEnOwNitl6BWA33qeKB1lRLGDomIiIiI3mOik6uFCxdi3bp1wvv09HTMnz8f//vf/9CpUydDxkZkNGq1Gl//fhkvEtNRrrg1prerZOyQiIiIiOg9J7pa4Lp16zBkyBDEx8ejQYMGmDJlCqytrbFt2zZ4e3sXRIxE71zQ6Uc4HPYCpjIplvfyh4WpzNghEREREdF7TvSdq8qVK2Pjxo3YtWsX+vfvj06dOmH79u1MrKjIuPU8EfP+1DzPalIbHz4omIiIiIhyJU/dnnl5eWHz5s3w8PBAeHg4pFL2nkZFQ5pCiS+2XEBGpgpNvJ0xqEEZY4dERERERIWE6GqBnTt3Fp7xo1AosGfPHly8eBFWVlYAgF27dhk2QqJ36JvgMNyOTIKTtRkWd6/K51kRERERUa6JTq6aN29eEHEQGd2hG5HYEPoIAPBdj6pwsuZjBYiIiIgo90QnV6NGjSqIOIiMKjIhDV//fhkA8FmjsviogrORIyIiIiKiwoaNpeiDp1KpMW7bJcSmKFDF1RZftfIxdkhEREREVAiJvnNVu3btN44/e/ZsnoMhMoZVJ+7jn7vRsDCRYVkvf5jKec2BiIiIiMQTnVyp1WqoVCoMHDgQbm5uBRET0TtzOSIO3x68BQCY3bEyvJytjRwRERERERVWopOrQ4cOYcWKFVizZg169eqFESNGwMbGpiBiIypQSemZ+PK3i8hUqdHOtyS61+TFAiIiIiLKO9H1n+zs7DBt2jTs3LkT4eHhaNGiBYKCgqBUKgsiPqICM3PPdTyKToGrnQW+6eLLbteJiIiIKF/y3LikbNmyWLlyJQIDA7F79260bdsWhw8fNmRsRAVmz6Un2HHhMaQSYGmvaihmYWLskIiIiIiokDNIV+wuLi64f/8+vvjiC4SFhRkkMKKCEhGTgmm7rgEAvmhaHrXKOBg5IiIiIiIqCkQnVzm1r2rdunW+gyEqaJlKFUb/dhGJ6ZmoWdoeXzQtZ+yQiIiIiKiIEJ1cBQQEFEQcRO/ExtOPcCE8DjbmciztVQ1yGbtdJyIiIiLDEJ1cad27dw+PHj2CWq1G6dKlUa4c7wDQ++1FQhq+PXgbADCpjQ/c7C2NHBERERERFSWik6vw8HBMnDgRFy9ehFyu+XhmZiaqVq2KhQsXokyZMoaOkcgg5geHITE9E1Xd7dCrloexwyEiIiKiIkZ0nagJEybA2toaISEhuHbtGq5du4b9+/fDxsYGEyZMKIgYifLt1N2X2HPpKaQSYF6nKpBJ2e06ERERERmW6OTq9u3bmDRpks4dqrJly2Ly5Mm4e/euIWMjMoiMTBWm7dH0Dti/bmn4uhUzckREREREVBSJTq66deuGY8eOZRt+9OhR9OjRwyBBERnSLyfv435UMpyszTCupbexwyEiIiKiIirXba46d+4MiUQCtVqNu3fvYs+ePTptrh48eIDy5cvjk08+ET6za9cuw0dMJEJETAoCj94BAExrV5EPCyYiIiKiApPr5Kp58+YAgJcvX+LFixdo1qyZTnK1fft2VK9eHfb29gUTKVEezN57A2kKFep6OqBTtVLGDoeIiIiIirBcJ1ejRo0CAPTq1QtLly5F7dq1dcbXrVsXS5cuxW+//WbYCIny6NCNSBwOi4RcKsG8zlUgkbATCyIiIiIqOKLbXN26dQtKpTLbcJVKhVu3bhkkKKL8Ss1QYtYf1wEAn33kiXLFbYwcEREREREVdaKfc9WxY0eMGzcOvXr1gpeXFwDNA4V/++03dOjQweABEuXFimN38CQuFa52FviiKR9wTUREREQFT3RyNXPmTHh7e+P3339HUFAQAMDd3R0jR45E7969DR4gkVh3XyTh5xP3AQAzO1SCpanoYk5EREREJJros06pVIo+ffqgT58+BREPUb6o1WrM2HMNCqUazXyKo0UlF2OHREREREQfCNFtrojeZ39cfopT96JhJpdiVsfK7MSCiIiIiN4Z0XeuXu8l8HVnz57NczBE+ZGQpsC8P8MAAF80LQd3B0sjR0REREREHxLRyZVarYZKpcLAgQPh5uZWEDER5cl3B28jKjEdnk5W+OwjT2OHQ0REREQfGNHJ1aFDh7BixQqsWbMGvXr1wogRI2Bjw26uybiuPYnHhtCHAIA5narATC4zbkBERERE9MER3ebKzs4O06ZNw86dOxEeHo4WLVogKChI77OviN4FlUqNabuvQaUGOlQthYblnYwdEhERERF9gPLcoUXZsmWxcuVKBAYGYvfu3Wjbti0OHz5syNiIcmXruQhcioiDtZkc09pVNHY4RERERPSBEl0tcNSoUdmGubi44P79+/jiiy8QFhZmkMCIciM6KR0L9t8EAIxrUQEutuZGjoiIiIiIPlSik6uc2le1bt0638EQibUw5CbiUxWoWNIWn9YrbexwiIiIiOgDJjq5CggIMHgQmzZtwq+//oqoqCj4+Phg+vTp8PPzy3H6devWYcuWLXj27Bns7e3RqlUrjB8/HmZmZgCAwMBArFixQuczZcuWRUhIiMFjJ+M59zAG2849BgDM61wFchkf20ZERERExiM6uYqIiIBSqUSZMmV0hj98+BByuVx09+zBwcEICAjA7NmzUbVqVaxfvx6DBw9GSEgIHB0ds02/d+9efPvtt/jmm2/g7++Phw8fYtKkSZBIJJg8ebIwXfny5bF27VrhvUzG3uOKkkylCtN2XwMA9Kzpjhql7Y0cERERERF96ERf6p88eTIuXryYbfjly5d1kpvcWrt2LXr06IGuXbuiXLlymD17NszNzbFjxw6901+8eBHVq1dHhw4d4ObmhoYNG6J9+/a4cuWKznQymQzOzs7Cn4ODg+jY6P2148Jj3HyeCDtLE0xs42PscIiIiIiIxN+5unHjBubPn59teLVq1TB37lxR88rIyMD169fx+eefC8OkUinq16+vN4EDAH9/f/zxxx+4cuUK/Pz8EBERgb/++gudOnXSme7Ro0do2LAhzMzMUK1aNYwfPx6lSpUSFd+76l5euxx2Z587GZkqLD9yBwAw8mMvFDOXfXDbjmWGxGKZIbFYZkgslhkSq7CUGTHxiU6uJBIJkpOTsw1PTEwUvWFiY2OhVCqzVf9zdHTE/fv39X6mQ4cOiI2NRZ8+faBWq5GZmYlevXph2LBhwjR+fn4ICAhA2bJlERUVhZUrV6Jv377Yu3cvrK2tcx3f1atXRa1Pfr3r5RVWB++l4ElcGuzMpahsHotLl+KMHZLRsMyQWCwzJBbLDInFMkNiFaUyIzq5qlWrFlatWoXvvvtOaMekVCrx888/o0aNGgYP8HVnzpzBqlWrMHPmTPj5+SE8PBzz58/HypUrMXLkSABA48aNhel9fHxQtWpVNGnSBPv370f37t1zvSxfX9930lZLqVTi6tWr72x5hVl6pgojD54AAHzZ3Bt1anyYPQSyzJBYLDMkFssMicUyQ2IVljKjjTM3RCdXEyZMQN++fdG6dWvUrFkTAHDu3DkkJSVh/fr1ouZlb28PmUyG6OhoneHR0dFwcnLS+5lly5ahY8eOQpLk7e2NlJQUzJgxA8OHD4dUmr0Zma2tLcqUKYPw8HBR8clksne6o9/18gqj389G4Hl8GkrYmqNPndIf/PZimSGxWGZILJYZEotlhsQqSmVGdIcW5cqVwx9//IE2bdogOjoaycnJ6NSpE/bv348KFSqImpepqSkqV66M0NBQYZhKpUJoaCj8/f31fiYtLS1bAqXdGWq1Wu9nkpOTERERAWdnZ1Hx0fslTaHEiqN3AQAjm5aDuUnR+BISERERUdEg+s4VALi4uGDcuHEGCWDQoEGYOHEiqlSpAj8/P6xfvx6pqano0qULAODrr7+Gi4sLxo8fDwBo0qQJ1q5di0qVKgnVApctW4YmTZoISdbChQvRpEkTlCpVCi9evEBgYCCkUinat29vkJjJODadCceLxHS42lmgR01xXf4TERERERU00cnVjh07YGlpiTZt2ugM379/P9LS0vDJJ5+Iml/btm0RExOD5cuXIyoqChUrVsTq1auFaoHPnj3TuVM1fPhwSCQSLF26FJGRkXBwcECTJk0wduxYYZrnz59j3LhxiIuLg4ODA2rUqIFt27axO/ZCLCUjEz8e19y1GtW0HMzkvGtFRERERO8X0cnVzz//jNmzZ2cb7ujoiOnTp4tOrgCgX79+6Nevn95xQUFBOu/lcjlGjRqFUaNG5Ti/77//XnQM9H7bePoRXiZlwN3BAt1q8K4VEREREb1/RLe5evr0Kdzcsp/clipVCs+ePTNIUERZJadn4qe/NF3zf9m0PExkoostEREREVGBE32W6ujoiFu3bmUbfvPmTdjZ2RkiJiId60MfIiY5A2UcLfGJv6uxwyEiIiIi0kt0tcB27dph/vz5sLKyQq1atQAAZ8+exTfffIN27doZPED6sCWmKfDzCc1dq9HNy0POu1ZERERE9J4SnVyNHj0aT548wcCBAyGXaz6uUqnQqVMnnU4liAxh7T8PEZeigKezFTpW5V0rIiIiInp/iU6uTE1NsXTpUjx48AA3b96Eubk5KlSoAFdXnviSYcWnKvDLSc1dqzHNK0AmlRg5IiIiIiKinOXpOVcAULZsWZQtW9aQsRDp+PXvB0hMy0QFF2u08y1p7HCIiIiIiN4oT8nV8+fPceTIETx79gwKhUJn3OTJkw0SGH3Y4lIysObvBwB414qIiIiICgfRyVVoaCiGDx8Od3d33L9/H+XLl8eTJ0+gVqtRqVKlgoiRPkC/nLyPpPRMVCxpi9aVSxg7HCIiIiKitxLd9dq3336L//3vf9i7dy9MTU0RGBiI48ePo1atWmjdunVBxEgfmJjkDKz95yEAYGzz8pDyrhURERERFQKik6t79+6hc+fOAAC5XI60tDRYWVlh9OjRWL16taHjow/Qqr/uISVDiSqutmhRycXY4RARERER5Yro5MrS0lJoZ+Xs7Izw8HBhXGxsrOEiow9SVGI61oc+BACMa1EBEgnvWhERERFR4SC6zVXVqlVx/vx5eHl5oXHjxli4cCFu376NQ4cOoWrVqgURI31AfvrrHtIUKlR1t0MT7+LGDoeIiIiIKNdEJ1eTJ09GcnIyAOCLL75AcnIygoODUaZMGUyaNMngAdKHIzIhDRtPPwLAu1ZEREREVPiITq7c3d2F15aWlpgzZ45BA6IP14/H7yE9U4Uape3xUXknY4dDRERERCSK6OQqKSnpjeOtra3zHAx9uJ7Fp2LzGU37vfG8a0VEREREhZDo5KpmzZp6T3zVajUkEgnCwsIMEhh9WFYcvYsMpQp1yjqgnpejscMhIiIiIhJNdHIFAMuXL0exYsUMHQt9oCJiUrDtXAQAYCzvWhERERFRIZWn5Kp69epwdOTdBTKMlcfuQqFUo0E5R9T1ZLkiIiIiosIpT8nV3bt3ERcXBwsLCzg5OcHU1NTQcdEHIjw6BdvPPwYAjG1ewcjREBERERHlXZ6Sq4EDBwptrKRSKTw9PdG1a1cMHDjQwOFRUbc+9CGUKjUalXdCzTIOxg6HiIiIiCjPRCdXR44cgVqtRmZmJpKSkvDixQtcuXIFy5YtQ2ZmJoYMGVIQcVIRlJqhxPZXba0GNShj3GCIiIiIiPJJdHLl6uqabVjTpk1RpkwZ/PDDD0yuKNf+uPwECWmZcHewQOMKxY0dDhERERFRvuSpWqA+7dq1Q/ny5Q01Oyri1Go1NoQ+AgD0rVMaMil7CCQiIiKiwk0q9gOJiYl6h5uYmODGjRv5Dog+DBcj4nD9aQJM5VL0qOlu7HCIiIiIiPJNdHLVr18/xMTE6Ax7/vw5Bg8ejGXLlhksMCraNr66a9XBrxQcrNjbJBEREREVfqKTK29vb/Tu3RvPnj0DAGzbtg3t2rWDnZ0d9u7da/AAqeiJTkrHviua8tO/XmkjR0NEREREZBii21wtWrQIc+fORe/evVG2bFncvn0bAQEBaNmyZUHER0XQ1nMRyFCq4OdWDNXc7YwdDhERERGRQeSpQ4vp06fD2toaP//8M37++Wc0atTI0HFREaVUqbHpdDgAoF9d3rUiIiIioqIjT8+5AgA/Pz/UrVsXY8eOxdSpU2FrawsAaNasmWEjpCLl2M0XeBKXCjtLE3SsWsrY4RARERERGYzo5GrkyJHZhk2ePBkAIJFIEBYWlv+oqMgKOq3pyKJHTXeYm8iMHA0RERERkeGITq5u3rxZEHHQB+Dhy2T8dTsKEgnQt46HscMhIiIiIjIo0b0FEuXVpjOau1aNKzijtKOVkaMhIiIiIjIsJlf0TqRmKLHt3GMAQH92ZEFERERERRCTK3on9l5+ivhUBdzsLfCxd3Fjh0NEREREZHBMrqjAqdVqbDj9EICm+3WZVGLcgIiIiIiICgCTKypwlyLicO1JAkzlUvSo6W7scIiIiIiICoTo3gKTkpLeON7a2jrPwVDRpO1+vb1fSThYmRo5GiIiIiKigiE6uapVq5be4Wq1ms+5omxikjOw78ozAOzIgoiIiIiKtlwlV927d8f//vc/tGnTBm5uboiOjsbQoUNRvXr1go6PCrlt5yKQkamCr2sxVHO3M3Y4REREREQFJlfJ1dy5c9GzZ080bdoUwcHB2LhxI3766SfcuHEDX331Fdzd2Y6GslOq1Nj4qkpg/3qlIZGwIwsiIiIiKrpy1aGFl5cXlEolkpOTYWJigkGDBuHAgQNwcXFBx44dsWDBAiQkJBR0rFTI/HX7BR7HpqKYhQk6+JUydjhERERERAUqV8nViBEj0KhRIzg4OAjD7OzsMHXqVOzevRtPnjxBixYtsG7duoKKkwqhDaGau1Y9arrBwlRm5GiIiIiIiApWrqoFfvXVV6hQoQIAoHPnztmqd6nVamRkZGDhwoUYOHCgwYOkwudRdDL+uh0FAOhbhx1ZEBEREVHRl6vkSptYAUDz5s0LLBgqOjadCYdaDTSu4IwyTlbGDoeIiIiIqMCJ7op91KhRBREHFSFpCiW2nYsAAHxaj3etiIiIiOjDIDq50rp27Rru3bsHAChfvjwqVapksKCocNt7+SniUhRwtbPAx97FjR0OEREREdE7ITq5io6OxtixY3H27FnY2toCABISElCnTh18//33Op1e0Icp6FX36/3qloZMyu7XiYiIiOjDkKveArOaO3cukpOT8eeff+Ls2bM4e/Ys9u3bh6SkJMybN68gYqRC5HJEHK48joepTIoeNd2MHQ4RERER0TsjOrk6efIkZs6cCS8vL2FYuXLlMHPmTJw4ccKgwVHho+1+vb1fSThamxk5GiIiIiKid0d0cqVSqWBiYpJtuFwuh0qlMkhQVDjFJGdg75WnAIB+7MiCiIiIiD4wopOrunXrYv78+YiMjBSGRUZGIiAgAPXq1ctTEJs2bULTpk3h6+uL7t2748qVK2+cft26dWjVqhX8/PzQuHFjfPPNN0hPT8/XPCn/tp+LQEamClVcbeHvbmfscIiIiIiI3inRydWMGTOQlJSEZs2aoXnz5mjevDmaNWuGpKQkTJ8+XXQAwcHBCAgIwMiRI7Fr1y74+Phg8ODBiI6O1jv93r178e2332LUqFEIDg7G/PnzERwcjO+++y7P86T8U6rU2HhGUyXw07plsj1omoiIiIioqBPdW2DJkiWxa9cunDp1Cvfv3wcAeHl5oX79+nkKYO3atejRowe6du0KAJg9ezaOHz+OHTt2YOjQodmmv3jxIqpXr44OHToAANzc3NC+fXtcvnw5z/PMiVKpzNM6iaVdzrtaXkE4fisKETGpKGZhgrZVXAr1uhQGRaHM0LvFMkNiscyQWCwzJFZhKTNi4svTc64kEgkaNGiABg0a5OXjgoyMDFy/fh2ff/65MEwqlaJ+/fq4ePGi3s/4+/vjjz/+wJUrV+Dn54eIiAj89ddf6NSpU57nmZOrV6/mYa3y7l0vz5DWn4kDADRwNcGtG4V3PQqbwlxmyDhYZkgslhkSi2WGxCpKZUZ0crVhw4Y3jv/0009zPa/Y2FgolUo4OjrqDHd0dBTuir2uQ4cOiI2NRZ8+faBWq5GZmYlevXph2LBheZ5nTnx9fSGTyUR9Ji+USiWuXr36zpZnaOmZKlz44ygAYEBTX1QrbW/kiIq+wl5m6N1jmSGxWGZILJYZEquwlBltnLkhOrlat26d8Pr58+dwdnYWNoZEIhGVXOXFmTNnsGrVKsycORN+fn4IDw/H/PnzsXLlSowcOdKgy5LJZO90R7/r5RnKqVsvkZSeiRK25qhVxhFSPjj4nSmsZYaMh2WGxGKZIbFYZkisolRmRCdXR48eFV77+/tj48aNcHd3z9PC7e3tIZPJsnU0ER0dDScnJ72fWbZsGTp27Iju3bsDALy9vZGSkoIZM2Zg+PDheZon5U/wtWcAgNZVSjCxIiIiIqIPlujeAg3J1NQUlStXRmhoqDBMpVIhNDQU/v7+ej+TlpYGqVQ3bG2mq1ar8zRPyrv0TCUO3dB0y9/Or6SRoyEiIiIiMp48dWhhSIMGDcLEiRNRpUoV+Pn5Yf369UhNTUWXLl0AAF9//TVcXFwwfvx4AECTJk2wdu1aVKpUSagWuGzZMjRp0kRIst42TzKcf+6+RGJaJorbmKGGB9taEREREdGHS3RydfPmTZ339+/fR3JysvDex8dH1Pzatm2LmJgYLF++HFFRUahYsSJWr14tVOF79uyZzp2q4cOHQyKRYOnSpYiMjISDgwOaNGmCsWPH5nqeZDh/XnkOAGjDKoFERERE9IETnVx17twZEokEarUaAPD5558L7yUSCcLCwkQH0a9fP/Tr10/vuKCgIN2A5XKMGjUKo0aNyvM8yTAyMlU4dEOTXLX1ZZVAIiIiIvqwiU6ujhw5UhBxUCH0z92XSEjLhLONGWqWcTB2OERERERERiU6uXJ1dS2IOKgQCr6q6SWwTZUSkLFKIBERERF94PLVoUVSUhKWLl2KsLAwVKhQAePGjYONjY2hYqP3mEKpwsFXvQSySiARERERUT67Yl+4cCGOHj2KqlWr4ty5c5g7d66h4qL33D93XyI+VQEnazPUYpVAIiIiIqL83bk6deoU5s+fj3r16qFr167o37+/oeKi9xyrBBIRERER6crXnavY2Fi4ubkBANzd3REbG2uQoOj9lrVKYBvfEkaOhoiIiIjo/SD6zlVSUpLO++TkZCQlJSE9Pd1gQdH77dS9aMSlKOBkbYo6ZR2NHQ4RERER0XtBdHJVs2ZNSCSaamBqtRqffPKJ8Fo7nIq24CuaKoGtKrNKIBERERGRlujkasOGDQURBxUSCqUKB149OLgdewkkIiIiIhKITq5q165dEHFQIXH6vqZKoKOVKWqXZS+BRERERERaopOrI0eOvHF8s2bN8hwMvf+0vQS2qlICclm++kMhIiIiIipSRCdXI0eOzHGcRCJBWFhYvgKi91emUoUD1zW9BLJKIBERERGRrjw95+rvv/+Gk5OToWOh99zp+zGISc6Ag5Up6rBKIBERERGRjjzV65JKWR3sQ/SntkpgZRdWCSQiIiIiek2e7lxt27YNtra2sLS0RPHixeHj4wMHB97JKMo0VQI1vQS2ZZVAIiIiIqJsRCdXpUqVwrZt26BQKJCUlITU1FRIpVI0btwYixcvhrW1dUHESUZ29oGmSqC9pQnqefLBwURERERErxOdXB09elTnfVJSEq5evYo5c+Zg0aJFmDNnjsGCo/fHf1UC2UsgEREREZE++T5Ltra2Rr169TBz5kz8888/hoiJ3jNKlZpVAomIiIiI3sJgtyDq1q371mdgUeF05kE0XiZlwM7SBPW8WCWQiIiIiEgf0dUCb968+cbxPj4+eQ6G3k/aBwe3rOQCE1YJJCIiIiLSS3Ry1blzZ0gkEgCAWq0GoHl4sFqt5kOEiyClSo2Qa5oHB7NKIBERERFRzkQnVzVq1EBYWBiGDh2K9u3bC4kWFU3/PozBy6R0FLMwQYNyfHA0EREREVFORNfx2rRpExYsWIBdu3ZhzJgxeP78OVxdXYU/KlpYJZCIiIiIKHfydLbcsmVL/Pnnn2jfvj1GjBiBUaNG4dGjR4aOjYxMqVJj/7VXvQT6sUogEREREdGb5PlWhFwux8CBA3Ho0CG4ubnhk08+wfz58w0ZGxnZuYcxiEpMh625HA28WCWQiIiIiOhNRLe5qlWrlt52VhkZGdi4cSOmTp1qkMDI+IQqgZVLwFTOKoFERERERG8iOrmaMmVKQcRB7xlV1iqBviWMHA0RERER0ftPdHL1ySefFEQc9J459ygWLxLTYWMuR8NyzsYOh4iIiIjovSc6uQKA+/fvw9LSEiVKlMCVK1dw7NgxeHl5oX379oaOj4xEWyWwRSUXVgkkIiIiIsoF0WfNa9euRdu2bdG8eXNs2bIFAwYMwIkTJzBt2jSsWLGiIGKkd0xTJVCTXLXjg4OJiIiIiHJF9J2roKAgTJo0CSVLlsT48eMxb948dO7cGYcPH8Y333yDUaNGFUSc9A5dCI9FZEI6bMzkaFievQQSEREREeWG6DtXkZGRaNOmDVq1agWpVIpq1aoBAPz8/BAZGWno+MgI/sxSJdBMLjNyNEREREREhYPo5EqpVMLExAQAIJPJIJNpTr6lUilUKpVho6N3TqVSY/9VbS+BrBJIRERERJRbeerQYsCAAZDL5UhPT8fw4cNhYmKCzMxMQ8dGRnAxIhbPE9JgzSqBRERERESiiE6usrapatasmc64Vq1a5T8iMqqDNzRVO5tXLA5zE1YJJCIiIiLKrXwlV1T0nL4fAwBo7M1nWxERERERicEHGJEgMU2Ba0/iAQB1yjoaORoiIiIiosJF9J0rpVKJdevWYf/+/Xj27BkUCoXO+LNnzxosOHq3zj2MhVKlRmlHS5SyszB2OEREREREhYroO1crVqwQHiScmJiIgQMHokWLFpBIJKwyWMiF3o8GANTz5F0rIiIiIiKxRN+52rt3L+bNm4ePP/4YgYGBaN++PTw8PODt7Y3Lly8XRIz0jpx+lVzVZXJFRERERCSa6DtXL1++RIUKFQAAVlZWSExMBAA0adIEx48fN2hw9O4kZGlvxeSKiIiIiEg80cmVi4sLoqKiAADu7u74559/AABXr16FqampYaOjd+bfBzFQqYGyTlYoUczc2OEQERERERU6oqsFtmjRAqGhoahatSr69++Pr776Cr///juePn2KgQMHFkCI9C78VyXQwciREBEREREVTqKTqwkTJgiv27Zti5IlS+LSpUsoXbo0mjZtatDg6N3RPt+KVQKJiIiIiPJGdHL1On9/f/j7+xsiFjKS+FQFrj9leysiIiIiovzIU3J1//59bNy4Effu3QMAeHl5oV+/fvD09DRocPRuaNtbeTpZwcWW7a2IiIiIiPJCdIcWBw4cQIcOHXD9+nX4+PjAx8cHN27cQIcOHXDgwIGCiJEKmLa9VR3etSIiIiIiyjPRd64WL16MoUOHYvTo0TrDly9fjsWLF6NVq1YGC47eDeHhwV5MroiIiIiI8kr0nauoqCh07tw52/COHTsKXbRT4RGfosCNZwkAgLpl2VMgEREREVFeiU6uateujXPnzmUbfv78edSsWTNPQWzatAlNmzaFr68vunfvjitXruQ4bf/+/eHt7Z3tb+jQocI0kyZNyjZ+8ODBeYqtqDvzIBpqNeDpbIXibG9FRERERJRnoqsFNm3aFEuWLMH169dRtWpVAMDly5cREhKCL774AkeOHBGmbdas2VvnFxwcjICAAMyePRtVq1bF+vXrMXjwYISEhMDRMXs1tcDAQCgUCuF9XFwcOnXqhNatW+tM16hRIwQE/L+9e4+Lssz/P/7mKMhBERGPeUpARRQPlaa5GVZqWulqa5LFz0NabrWeLSrxhFtupWlmqYhktXyx3PVQj81t7ft1Qy2zQPNQIoGJiqgQoA4O8/uDmJxA5MaBAX09Hw8eOtd9zXV/Zubjg/l43dd1x1ofc4Pj8pVuwd6b9VYAAADAdTFcXMXExEiS3n//fb3//vvlHpMkJycnHTx48JrjxcXFadSoURoxYoR1jB07dmjjxo02s1GlGjZsaPN469at8vDwKFNcubu7KyAgoFKv6WrMZvN1Pd/oeWrqfFfalXZGknRbGz+HnB9V48icQd1EzsAocgZGkTMwqq7kjJH4DBdXhw4dMvqUqzKZTDpw4ICefPJJa5uzs7P69Omjffv2VWqMjRs3asiQIapfv75N+549e9S7d2/5+vrqjjvu0HPPPSc/Pz9D8aWmphrqf71q+ny/mIp1MOsXSZJX4Ql9++2pGj0/rl9N5wzqPnIGRpEzMIqcgVE3Us5c902Er8e5c+dkNpvLXP7n7++vtLS0az4/JSVFR44c0cKFC23a+/Xrp4EDB6ply5bKzMzUa6+9pgkTJujvf/+7XFxcKh1fly5dDPWvKrPZrNTU1Bo7X6l/fX9KFp3WrQFeuvuOHjV2Xlw/R+UM6i5yBkaRMzCKnIFRdSVnSuOsDMPF1fr16ys8PnbsWKNDVllSUpKCgoIUFhZm0z5kyBDr30s3tIiIiLDOZlWWi4tLjX7QNX2+PennJEl3tPev1QmNq6vpnEHdR87AKHIGRpEzMOpGyhnDxdWiRYvUtGlTOTuX3WjQycnJUHHl5+cnFxcX5eTk2LTn5OSocePGFT63sLBQW7du1TPPPHPN87Rq1Up+fn766aefDBVXN7rko7/e36pdxe81AAAAgGur0mWBGzduLHcnP6Pc3d3VuXNnJScnKyIiQpJUXFys5ORkRUZGVvjcTz/9VCaTScOGDbvmeU6ePKnz589f9wYXN5JzBSYdOlmy3ur2dtzfCgAAALheDl1zJUlRUVGaNWuWQkNDFRYWpvj4eF24cEHDhw+XJM2cOVOBgYGaNm2azfOSkpIUERFRZpOKgoICLV++XPfdd58aN26szMxMvfrqq2rdurX69etXY6+rttt9rGTWqkMTbzX2rufgaAAAAIC6z+HF1eDBg3X27FktW7ZM2dnZ6tixo1avXm29LDArK6vMJYhpaWnau3ev1q5dW2Y8FxcXHTlyRJs2bdIvv/yiJk2a6M4779Szzz7Lva6uYL2/VXvubwUAAADYQ5WKqx9//FHZ2dnlHgsJCTE8XmRk5FUvA0xISCjT1q5dOx0+fLjc/h4eHlqzZo3hGG42u9JKZq7u4ObBAAAAgF1Uqbh64oknZLFYrI+dnJxksVgqfeNgOFZO/qXf1lu1Zb0VAAAAYA+Gi6t///vf1REHatCeYyWXBAYH+sif9VYAAACAXRgurlq0aFEdcaAG/XZJILNWAAAAgL2UvVkVbnjJrLcCAAAA7I7i6iZzJv+SjpzKlyTdTnEFAAAA2A3F1U2mdL1VSFMfNfJia3oAAADAXiiubjLJR7kkEAAAAKgO130T4f379+vQoUMKCgpSWFiYPWJCNeL+VgAAAED1uK7iauPGjYqOjlbDhg2Vm5urF198UaNHj7ZXbLCz7F8u6YfTv6634v5WAAAAgF1d12WB69ev16xZs5ScnKwlS5Zo3bp1dgoL1WH3sZJZq5CmPvJjvRUAAABgV9dVXGVlZemuu+6SJPXv318///yzXYJC9Si9JLB3ey4JBAAAAOztuoqroqIiubm5SZLc3NxkNpvtEhSqB5tZAAAAANXH8JqrKVOmWP9uMpk0d+5ceXp6qri42K6Bwb5O/3JRR7ML5OTEeisAAACgOhgurry9veXk5CRJGjZsmM2xhx56yC5Bwf52p5Xc36pjU181rM96KwAAAMDeDBdXixcvro44UM2S2YIdAAAAqFaG11yNHTtWeXl51RELqtFv97fikkAAAACgOhgurvbs2aOioqLqiAXV5FTeRaVZ11sxcwUAAABUhyrtFli65gp1Q+msVadmvmpQ383B0QAAAAA3JsNrriTp6aeftm7B/nvr16+/roBgf7t+3cyiN+utAAAAgGpTpeKqW7du8vLysncsqCa72MwCAAAAqHaGiysnJyeNHz9e/v58Ua8LTuZe1LEzBXJ2knpxfysAAACg2hhec2WxWKojDlST3cdKZq06N2+gBp6stwIAAACqi+HiasqUKapfv351xIJqkHyULdgBAACAmmC4uHrwwQd16tSpMu3p6ek6fvy4XYKC/bDeCgAAAKgZhourOXPmaN++fWXav/vuO82ZM8cuQcE+snIvKD2nkPVWAAAAQA0wXFx9//336t69e5n2bt266eDBg3YJCvZROmsV2qKBfD1YbwUAAABUJ8PFlZOTkwoKCsq0//LLLzKbzXYJCvax62jJ/a24JBAAAACofoaLq169emnVqlU2hZTZbNY777yjHj162DU4XJ/kX2euuHkwAAAAUP0M3+dq+vTpGjNmjO6//3717NlTkvT1118rPz9f8fHxdg8QVfPz+QvKOFuy3qpnGz9HhwMAAADc8AzPXN1666365z//qUGDBiknJ0cFBQV68MEH9cknnygoKKg6YkQV7P511qpLiwbyYb0VAAAAUO0Mz1xJUmBgoKZOnWrvWGBHX6Wz3goAAACoSVUqrvLy8pSUlKSjR49Kkjp06KARI0bIx8fHrsGh6g6d/EVSyU6BAAAAAKqf4csCU1NTNXDgQK1bt065ubnKzc1VXFycIiIidODAgeqIEQZZLBYd+bW4Cm5KwQsAAADUBMMzV7GxsRowYIDmz58vV9eSp1++fFnR0dFatGiRNmzYYPcgYczP5y+owGSWm4uT2vh7OTocAAAA4KZgeOZq//79Gj9+vLWwkiRXV1eNHz9e+/fvt2twqJojp0pmrdo19pa7q+GPGAAAAEAVGP7m7e3traysrDLtWVlZ8vJilqQ2OHwyX5IUxCWBAAAAQI0xXFwNHjxYL7zwgrZt26asrCxlZWVp69atio6O1pAhQ6ojRhhUOnMVHOjt4EgAAACAm4fhNVczZ860/mk2m0sGcXXV6NGjNX36dPtGhyopLa6CApm5AgAAAGqK4eLK3d1d0dHRmjZtmjIyMiRJt9xyizw9Pe0eHIwzF1v0w+lfLwukuAIAAABqTJXucyVJnp6eCg4OtmcssIOfcgpkulwsDzdntWpU39HhAAAAADcNw8XVlClTKjy+fPnyKgeD61d6SWCHJj5ycXZycDQAAADAzcPwhhY+Pj7Wnx07dsjZ2dmmDY5l3SmQSwIBAACAGlWlmwiX+vTTTzVjxgy1atXKrkGh6qw7BTZlp0AAAACgJnGH2RvMYXYKBAAAAByC4uoGcumyWcfOFEiSgrmBMAAAAFCjDF8WuH79euvfzWazPvroI/n5+Vnbxo4da5/IYFhadoHMxRb5eLiqqa+Ho8MBAAAAbiqGi6t169ZZ/964cWP94x//sD52cnKiuHIg63qrQB85ObFTIAAAAFCTDBdXn3/+eXXEATs4fPLX9VZcEggAAADUOMNrrpYvX64LFy5URyy4TlfOXAEAAACoWYaLqxUrVqiwsNCuQWzYsEEDBgxQly5dNHLkSKWkpFy172OPPabg4OAyPxMnTrT2sVgsWrp0qfr27auwsDA98cQTSk9Pt2vMtRE7BQIAAACOY7i4slgsdg1g27Ztio2N1dNPP62PP/5YISEhGjdunHJycsrt/+abb2rnzp3Wny1btsjFxUX333+/tc+7776rhIQEzZ07V4mJifL09NS4ceN06dIlu8ZemxSaLivzbMmMYlAg97gCAAAAaprhNVeStGbNGtWvX7/cY1OmTDE0VlxcnEaNGqURI0ZIkmJiYrRjxw5t3LjRZjaqVMOGDW0eb926VR4eHtbiymKxaP369Zo8ebIiIiIkSa+88or69Omj7du3a8iQIYbiqyt+OJUvSWrsXU/+3vUcHA0AAABw86lScfXNN9/Izc2tTLvRHepMJpMOHDigJ5980trm7OysPn36aN++fZUaY+PGjRoyZIi12Dt+/Liys7PVp08fax8fHx917dpV+/btM1Rcmc3mSve9HqXnuZ7zHcrKlSR1aOJVY3HDceyRM7i5kDMwipyBUeQMjKorOWMkvioVVytWrJC/v39Vnmrj3LlzMpvNZcby9/dXWlraNZ+fkpKiI0eOaOHChda27Oxs6xi/H/PMmTOG4ktNTTXU/3pdz/l27s+TJPk5X9S3335rp4hQ29V0jqLuI2dgFDkDo8gZGHUj5UyViqvaIikpSUFBQQoLC6uW8bt06SIXF5dqGftKZrNZqamp13W+8/u+klSoO0Pbqlu3VvYNELWOPXIGNxdyBkaRMzCKnIFRdSVnSuOsDMPFVa9evcq9JLAq/Pz85OLiUmbzipycHDVu3LjC5xYWFmrr1q165plnbNoDAgKsYzRp0sRmzJCQEEPxubi41OgHfT3nO3K6ZM1VSLMGtTo5YV81naOo+8gZGEXOwChyBkbdSDljeLfAhIQE+fr62uXk7u7u6ty5s5KTk61txcXFSk5OVnh4eIXP/fTTT2UymTRs2DCb9pYtWyogIMBmzPz8fH333XfXHLOuOl9o0qm8kp0Q2SkQAAAAcAzDM1fX2g1w+fLlhsaLiorSrFmzFBoaqrCwMMXHx+vChQsaPny4JGnmzJkKDAzUtGnTbJ6XlJSkiIgI+fn52bQ7OTlp7NixWrlypVq3bq2WLVtq6dKlatKkiXX3wBvNkV93CmzR0FM+HvaZVQQAAABgjOHiavv27Ro0aJA8PDwkSZs3b9aAAQPk5eVVpQAGDx6ss2fPatmyZcrOzlbHjh21evVq62WBWVlZcna2nWBLS0vT3r17tXbt2nLHnDBhgi5cuKCXXnpJeXl56tGjh1avXq169W7MLcp/u3kws1YAAACAo1RpQ4vo6GjrbnyffvqpZsyYoVatqr6JQmRkpCIjI8s9lpCQUKatXbt2Onz48FXHc3Jy0rPPPqtnn322yjHVJUdO/lpcNfVxcCQAAADAzcvwmqt69erp0qWS9T0Wi0VFRUWKj4+v9fvT38hKZ66CAymuAAAAAEcxXFy1adNG8fHxys7OVnx8vLy8vHTgwAGNHTvW8H2kcP0sFouOWC8LpLgCAAAAHMVwcfXcc88pMTFRd911l5YsWaIZM2YoISFBHTt21EMPPVQNIaIi2fmXdL6wSM5O0q1NWHMFAAAAOIrhNVd33323/vd//1fHjh1Ts2bNrPeVio6OvmG3Oq/Njpws2Smwjb+XPNxujPsDAAAAAHVRlTa08PHxUVhYWJn2IUOGXHdAMOYwlwQCAAAAtUKViqu8vDwlJSXp6NGjkqQOHTpoxIgR8vHhC35Ns+4UyDbsAAAAgEMZXnOVmpqqgQMHat26dcrNzVVubq7i4uIUERGhAwcOVEeMqIB15opt2AEAAACHMjxzFRsbqwEDBmj+/PlydS15+uXLlxUdHa1FixZpw4YNdg8S5SsutugHtmEHAAAAagXDM1f79+/X+PHjrYWVJLm6umr8+PHav3+/XYNDxX4+f0EFJrPcXJzUprGXo8MBAAAAbmqGiytvb29lZWWVac/KypKXF1/wa1Lp/a3aB3jLzcXwRwkAAADAjgx/Ix88eLBeeOEFbdu2TVlZWcrKytLWrVsVHR3NboE1jJ0CAQAAgNrD8JqrmTNnWv80m80lg7i6avTo0Zo+fbp9o0OFSncKDGYzCwAAAMDhDBdX7u7uio6O1rRp05SRkSFJuuWWW+Tp6Wn34FCxw6dKbiDMzBUAAADgeFW6z5UkeXp6ytfX1/p31KzL5mIdPV1SXLFTIAAAAOB4houry5cva/ny5UpISFBhYaEkqX79+oqMjNSUKVPk5uZm9yBRVnpOoUzmYnm6uailH8UtAAAA4GiGi6v58+frs88+04wZM9StWzdJ0rfffqvly5fr/PnziomJsXeMKMcP1s0svOXs7OTgaAAAAAAYLq62bNmi1157Tf3797e2hYSEqFmzZpo6dSrFVQ1hp0AAAACgdjG8Fbu7u7tatmxZpr1ly5ZcEliDSu9xxU6BAAAAQO1guLgaM2aM3nrrLZlMJmubyWTSypUrFRkZadfgcHWHf92GvQMzVwAAAECtYPiywIMHDyo5OVl33XWXQkJCJEmHDh1SUVGRevfurSlTplj7Ll++3H6RwupikVnpOSWbibBTIAAAAFA7GC6ufH19dd9999m0NWvWzG4B4drSsgtkLrbI18NVgb71HB0OAAAAAFWhuIqNja2OOGDAleutnJzYKRAAAACoDQyvuZJK7nX15Zdf6sMPP1R+fsmNbE+dOqWCggK7BofysVMgAAAAUPsYnrn6+eefNX78eGVlZclkMunOO++Ut7e33n33XZlMJs2bN6864sQVjpxkp0AAAACgtjE8c7Vw4UKFhoZqz549qlfvt/U+AwcO1K5du+waHMrHzBUAAABQ+xieudq7d68++OADubu727S3aNFCp06dsltgKF/+pcs6fu6CJIorAAAAoDYxPHNVXFys4uLiMu0nT56Ul5eXXYLC1f3w66xVgE89NfJyv0ZvAAAAADXFcHF15513Kj4+3qatoKBAb775pvr372+3wFC+H06VbCDC/a0AAACA2sVwcTV79mx98803Gjx4sEwmk6ZPn64BAwbo1KlTmj59enXEiCuw3goAAAConQyvuWratKn+8Y9/aNu2bTp06JAKCwv1xz/+UUOHDpWHh0d1xIgr/HaPK28HRwIAAADgSoaLK0lydXXVsGHDNGzYMHvHg2s4fJKZKwAAAKA2MlxcnTt3Tn5+fpKkrKwsJSYm6uLFixowYIB69epl9wDxm3MFJp3+5ZIkqQPFFQAAAFCrVLq4Onz4sCZPnqysrCy1bt1ar7/+usaPH6/CwkI5OzsrPj5ey5YtU0RERHXGe1MrvSSwRUNPeder0qQjAAAAgGpS6Q0tXn31VQUFBem9997TbbfdpieffFL9+/fX3r179dVXX+mRRx7RO++8U52x3vR+W2/FrBUAAABQ21S6uEpNTdVzzz2nHj16aNasWTp9+rQeffRROTs7y9nZWZGRkUpLS6vOWG967BQIAAAA1F6VLq5yc3MVEBAgSfLy8pKnp6caNGhgPd6gQQMVFBTYP0JYHTn56z2u2CkQAAAAqHUM3efKycmpuuLANVgsFmauAAAAgFrM0K4Is2fPlru7uyTJZDJp7ty58vT0tD5G9Tn9yyXlXiiSs5PUPoCZKwAAAKC2qXRx9fDDD9s8Lu8eVw899NB1B4Tyld7fqk1jL3m4uTg4GgAAAAC/V+niKjY2tjrjwDVYdwrkkkAAAACgVjK05gqOc4T1VgAAAECtRnFVRxw+VbpTIMUVAAAAUBtRXNUBxcUW/cDMFQAAAFCrUVzVAT+fv6BCk1nuLs5q41/f0eEAAAAAKAfFVR1QulNg+ybecnXhIwMAAABqI76p1wG/3TyY+1sBAAAAtRXFVR3AToEAAABA7UdxVQeUXhbIPa4AAACA2oviqpYrMhcrLbtAEtuwAwAAALVZrSiuNmzYoAEDBqhLly4aOXKkUlJSKuyfl5enmJgY9e3bV6Ghobrvvvv0xRdfWI+/+eabCg4Otvm5//77q/tlVIufcgpkMhervruLWjT0dHQ4AAAAAK7C1dEBbNu2TbGxsYqJiVHXrl0VHx+vcePG6dNPP5W/v3+Z/iaTSVFRUfL399fSpUsVGBioEydOyNfX16Zfhw4dFBcXZ33s4uJS7a+lOhw+WXLz4A6BPnJ2dnJwNAAAAACuxuHFVVxcnEaNGqURI0ZIkmJiYrRjxw5t3LhREydOLNN/48aNys3N1Ycffig3NzdJUsuWLcv0c3FxUUBAQPUGXwNKdwoMZqdAAAAAoFZzaHFlMpl04MABPfnkk9Y2Z2dn9enTR/v27Sv3OZ9//rm6deumefPm6d///rcaNWqkBx54QBMmTLCZnfrpp5/Ut29f1atXT926ddO0adPUvHlzQ/GZzeaqvTCDSs9T3vkyckrWW3Vo4l1j8aD2qyhngPKQMzCKnIFR5AyMqis5YyQ+hxZX586dk9lsLnP5n7+/v9LS0sp9TmZmpnbt2qWhQ4fqnXfeUUZGhmJiYnT58mVNmTJFkhQWFqbY2Fi1bdtW2dnZWrFihcaMGaPNmzfL27vyM0CpqalVf3FVUN75ujW4pFMtPXSr61l9++35Go0HtV9N5yjqPnIGRpEzMIqcgVE3Us44/LJAoywWi/z9/TV//ny5uLgoNDRUp06d0po1a6zFVf/+/a39Q0JC1LVrV91999365JNPNHLkyEqfq0uXLjWyVstsNis1NbXc83WT9Fi1R4C6pqKcAcpDzsAocgZGkTMwqq7kTGmcleHQ4srPz08uLi7Kycmxac/JyVHjxo3LfU5AQIBcXV1tPoB27dopOztbJpNJ7u7uZZ7j6+urNm3aKCMjw1B8Li4uNfpB1/T5UPeRMzCKnIFR5AyMImdg1I2UMw7dit3d3V2dO3dWcnKyta24uFjJyckKDw8v9zndu3dXRkaGiouLrW3p6ekKCAgot7CSpIKCAmVmZt4QG1wAAAAAqJ0cfp+rqKgoJSYm6uOPP9bRo0c1d+5cXbhwQcOHD5ckzZw5U3/729+s/UePHq3z589r4cKFOnbsmHbs2KFVq1ZpzJgx1j5//etftWfPHh0/flzffPONpkyZImdnZz3wwAM1/voAAAAA3BwcvuZq8ODBOnv2rJYtW6bs7Gx17NhRq1evtl4WmJWVJWfn32rAZs2aac2aNYqNjdWwYcMUGBiosWPHasKECdY+J0+e1NSpU3X+/Hk1atRIPXr0UGJioho1alTjrw8AAADAzcHhxZUkRUZGKjIystxjCQkJZdrCw8OVmJh41fFef/11u8UGAAAAAJXh8MsCAQAAAOBGQHEFAAAAAHZAcQUAAAAAdkBxBQAAAAB2QHEFAAAAAHZAcQUAAAAAdkBxBQAAAAB2QHEFAAAAAHZAcQUAAAAAdkBxBQAAAAB2QHEFAAAAAHZAcQUAAAAAdkBxBQAAAAB24OroAGoji8UiSTKbzTVyvtLz1NT5UPeRMzCKnIFR5AyMImdgVF3JmdL4SmuEijhZKtPrJmMymZSamuroMAAAAADUEl26dJG7u3uFfSiuylFcXKzLly/L2dlZTk5Ojg4HAAAAgINYLBYVFxfL1dVVzs4Vr6qiuAIAAAAAO2BDCwAAAACwA4orAAAAALADiisAAAAAsAOKKwAAAACwA4orAAAAALADiisAAAAAsAOKKwAAAACwA4orAAAAALADiqtaYMOGDRowYIC6dOmikSNHKiUlxdEhoRZYtWqVRowYofDwcPXu3VtPPfWU0tLSbPpcunRJMTExuv322xUeHq4///nPOnPmjIMiRm3zzjvvKDg4WAsXLrS2kTP4vVOnTmn69Om6/fbbFRYWpqFDhyo1NdV63GKxaOnSperbt6/CwsL0xBNPKD093XEBw6HMZrPeeOMNDRgwQGFhYYqIiNCKFStksVisfciZm9tXX32lSZMmqW/fvgoODtb27dttjlcmP86fP69p06ape/fu6tmzp55//nkVFBTU4KuoOoorB9u2bZtiY2P19NNP6+OPP1ZISIjGjRunnJwcR4cGB9uzZ4/GjBmjxMRExcXF6fLlyxo3bpwKCwutfRYtWqT//Oc/euONN5SQkKDTp09rypQpDowatUVKSoo+/PBDBQcH27STM7hSbm6uRo8eLTc3N7377rvaunWrZs2apQYNGlj7vPvuu0pISNDcuXOVmJgoT09PjRs3TpcuXXJg5HCUd999Vx988IFeeuklbdu2TdOnT9fq1auVkJBg04ecuXkVFhYqODhYL7/8crnHK5Mf06dP148//qi4uDi9/fbb+vrrr/XSSy/V1Eu4PhY41B//+EdLTEyM9bHZbLb07dvXsmrVKgdGhdooJyfHEhQUZNmzZ4/FYrFY8vLyLJ07d7Z88skn1j4//vijJSgoyLJv3z4HRYnaID8/33Lvvfda/vvf/1oiIyMtCxYssFgs5AzKevXVVy2jR4++6vHi4mLLnXfeaVm9erW1LS8vzxIaGmrZsmVLTYSIWmbixImWOXPm2LRNmTLFMm3aNIvFQs7AVlBQkOWzzz6zPq5MfpT+XkpJSbH2+eKLLyzBwcGWkydP1lzwVcTMlQOZTCYdOHBAffr0sbY5OzurT58+2rdvnwMjQ230yy+/SJL1f5T379+voqIim/xp3769mjdvrm+//dYRIaKWmDdvnvr372+TGxI5g7I+//xzhYaG6plnnlHv3r310EMPKTEx0Xr8+PHjys7OtskZHx8fde3ald9TN6nw8HDt2rVLx44dkyQdOnRIe/fu1V133SWJnEHFKpMf+/btk6+vr7p06WLt06dPHzk7O9eJpTOujg7gZnbu3DmZzWb5+/vbtPv7+5dZW4ObW3FxsRYtWqTu3bsrKChIknTmzBm5ubnJ19fXpq+/v7+ys7MdESZqga1bt+r7779XUlJSmWPkDH4vMzNTH3zwgaKiojRp0iSlpqZqwYIFcnNz08MPP2zNi/J+T7FW7+Y0ceJE5efna9CgQXJxcZHZbNZf/vIXDRs2TJLIGVSoMvlx5swZNWrUyOa4q6urGjRoUCd+V1FcAXVATEyMfvjhB73//vuODgW1WFZWlhYuXKi1a9eqXr16jg4HdYDFYlFoaKimTp0qSerUqZN++OEHffjhh3r44YcdHB1qo08++USbN2/W3/72N9166606ePCgYmNj1aRJE3IGEBtaOJSfn59cXFzKbF6Rk5Ojxo0bOygq1Dbz5s3Tjh07FB8fr6ZNm1rbGzdurKKiIuXl5dn0z8nJUUBAQE2HiVrgwIEDysnJ0fDhw9WpUyd16tRJe/bsUUJCgjp16kTOoIyAgAC1b9/epq1du3Y6ceKE9bgkfk/B6pVXXtHEiRM1ZMgQBQcH66GHHtLjjz+uVatWSSJnULHK5Efjxo119uxZm+OXL19Wbm5unfhdRXHlQO7u7urcubOSk5OtbcXFxUpOTlZ4eLgDI0NtYLFYNG/ePH322WeKj49Xq1atbI6HhobKzc3NJn/S0tJ04sQJdevWrYajRW1wxx13aPPmzdq0aZP1JzQ0VEOHDrX+nZzBlbp3725dO1MqPT1dLVq0kCS1bNlSAQEBNjmTn5+v7777jt9TN6mLFy/KycnJps3FxcW6FTs5g4pUJj/Cw8OVl5en/fv3W/vs2rVLxcXFCgsLq/GYjeKyQAeLiorSrFmzFBoaqrCwMMXHx+vChQsaPny4o0ODg8XExGjLli1666235OXlZb3O2MfHRx4eHvLx8dGIESO0ePFiNWjQQN7e3lqwYIHCw8P5onyT8vb2tq7JK1W/fn01bNjQ2k7O4EqPP/64Ro8erbfffluDBg1SSkqKEhMTNW/ePEmSk5OTxo4dq5UrV6p169Zq2bKlli5dqiZNmigiIsLB0cMR7r77br399ttq3ry59bLAuLg4jRgxQhI5A6mgoEAZGRnWx8ePH9fBgwfVoEEDNW/e/Jr50b59e/Xr108vvviiYmJiVFRUpPnz52vIkCEKDAx01MuqNCeL5Yq7vsEh3nvvPa1Zs0bZ2dnq2LGjoqOj1bVrV0eHBQf7/f2JSsXGxlqL70uXLmnx4sXaunWrTCaT+vbtq5dffrlOTJujZjz22GMKCQnRCy+8IImcQVn/+c9/9Nprryk9PV0tW7ZUVFSURo0aZT1usVi0bNkyJSYmKi8vTz169NDLL7+stm3bOjBqOEp+fr6WLl2q7du3KycnR02aNNGQIUP09NNPy93dXRI5c7PbvXu3xo4dW6b94Ycf1uLFiyuVH+fPn9f8+fP1+eefy9nZWffee6+io6Pl5eVVky+lSiiuAAAAAMAOWHMFAAAAAHZAcQUAAAAAdkBxBQAAAAB2QHEFAAAAAHZAcQUAAAAAdkBxBQAAAAB2QHEFAAAAAHZAcQUAAOqMoqIiR4cAAFdFcQUAgIPl5+frwQcfVEFBgU6ePKmBAwc6OqRa4+DBg5o1a5buu+8+9erVSz169NAvv/zi6LAAoFyujg4AAOq62bNnKy8vT2+99Za17ezZsxo7dqw8PT21du1a+fj4ODBC1Hbe3t7q0aOHevXqJUmaPn26gyOqHXbv3q1Jkybp0Ucf1WuvvSZvb295eHjw7wlAreVksVgsjg4CAOqy3xdXZ8+e1eOPPy53d3etW7eOL4KotPPnz8vV1VXe3t6ODsXhLBaL7rvvPk2YMEEjR450dDgAUClcFggAdlRaWLm5uSkuLs6msDpx4oQmT56s8PBwde/eXc8++6zOnDlj8/zjx48rODi4zE9eXp4k6c0339SDDz5o7W8ymTRw4ECbPrNnz9ZTTz1lM25wcLC2b99ufZyVlaVnn31WPXv21G233abJkyfr+PHjNs9JSkrSkCFDFBoaqr59+2revHmSpAEDBpQbY3BwsD766CPr+Up/unfvrqioKGVkZFjHzs3N1cyZM9WrVy917dpV48ePV3p6eoXvbXBwsEJDQ23es7Nnzyo0NFTBwcE2fd9//31FREQoNDRU9913nzZt2lRmvDfffLNM/L9/377++ms9+uijCgsLU//+/bVgwQIVFhYaGsdkMumvf/2r+vXrp27dumnkyJHavXu39fhHH32knj17SpIaNmwob29vjRkzRsHBwTp48OBV348rP4du3brpT3/6k1JTU6/a/9y5c5o6dar69eunrl27aujQodqyZYtNn8cee0wLFy4s8/quzDnp6rkhSXFxcRo6dKi6deum/v37a+7cuSooKLB5vcHBwZo0aZLNmPHx8QoODtbs2bMlSWlpaTpx4oR++ukn3X333erSpYtGjRqlr7/+usL3ovTnynw/cuSIxo8fr/DwcPXp00czZszQ2bNnr/peAUBVUVwBgJ2cO3dOUVFRcnV1VVxcnHx9fa3HiouL9dRTTyk3N1cJCQmKi4tTZmam/vKXv9iMUXoxwbp167Rz5069+eabFZ5zw4YNZQq0aykqKtK4cePk5eWlDRs26IMPPlD9+vU1fvx4mUwmSSXFybx58zRq1Cht3rxZb731lm655RZJJV+sd+7cqZ07d6pp06Z6/vnnrY8HDx5sPU9sbKx27typDRs2KCcnR6+99pr12OzZs7V//36tXLlSf//732WxWDRx4sRrblbQqFEjawEnSRs3blSjRo1s+nz22WdatGiRoqKitHnzZv3pT3/S888/r127dpUZr0OHDtbYBw0aZHMsIyNDEyZM0L333qt//vOfev3117V3717Nnz/fpp/FYqlwnHnz5mnfvn16/fXX9c9//lP3339/hcXkv/71L33//fcVvg+lnnnmGe3cuVMbN26Up6enTZHzeyaTSZ07d9Y777yjLVu2aNSoUZo5c6ZSUlIqda5SFeWGJDk5OemFF17Qli1btHjxYu3atUuvvvqqzRienp769ttvderUKWtbYmKiAgMDrY/Pnj2roqIi/eMf/9DcuXO1adMmhYSEaMKECTp9+rTNeBaLxfpe7Ny50+ZYXl6eHn/8cXXq1ElJSUlavXq1cnJy9Nxzzxl63QBQGRRXAGAHeXl5ioqK0tGjR+Xu7l7msq7k5GQdOXJEf/vb3xQaGqquXbvqlVde0Z49e2y+3F6+fFmS1LhxYwUEBKhBgwZXPef58+e1cuVKTZgwwaa9Xr16unTp0lWft23bNhUXF2vhwoUKDg5W+/btFRsbq6ysLO3Zs0eStHLlSkVFRenxxx9X27ZtFRYWpieeeEJSSYETEBCggIAAubi4yMfHx/rYw8PDeh5fX18FBASoZcuW8vLyss7ipaen6/PPP9eCBQvUs2dPhYSEaMmSJTp16pTNbEN5RowYof/5n/+RxWKRxWJRUlKSRowYYdNnzZo1evjhhzVmzBi1bdtWUVFRGjhwoNauXWvTz2QyqV69euXGLkmrVq3S0KFD9cQTT6hNmzbq3r27XnjhBW3atMnm/b18+fJVxzlx4oQ++ugjLV26VD179tQtt9yicePGqUePHjZFYqmioiItWbKkzGd6NV5eXtb32NfXt8JLUAMDAzVu3Dh17NhRrVq10mOPPaZ+/frpk08+qdS5SlWUG5L0xBNP6I477lDLli3Vu3dvPffcc2XO4erqqgceeEBJSUmSSmYInZ2dFRoaau1TXFwsSZo5c6b69++v9u3ba+7cuWrSpIk2bNhgM15RUZEaNmxo/Qyu9N5776lTp06aOnWq2rdvr06dOmnRokXavXu3jh07Zui1A8C1sKEFANjBV199peDgYG3atEmRkZFavXq1nnzySevxo0ePqmnTpmrWrJm17dZbb5Wvr6/S0tIUFhYmqWTXOKnkf/avZcWKFbr99tvVo0cPm/agoCBt2bJFmZmZatWqVZnnHTp0SBkZGerevbtN+6VLl5SRkaGcnBydPn1avXv3rvwbUI6pU6fKxcVFFy5cUFBQkKZOnSqp5L1wdXVV165drX39/PzUtm1bHT16tMIxO3furC+++MI6C+Xl5aXOnTvb9ElLS9Mjjzxi09a9e3etX7/epu38+fMVrm06dOiQDh8+rM2bN1vbLBaLiouLdfz4cbVv315SyWdWv379csc4cuSIzGaz7r//fpt2k8mkhg0blum/YcMGeXt7a+jQoVq6dOlVYyu1ZMkSLV26VBcvXlSzZs3KFJBXMpvNevvtt/Xpp5/q1KlTKioqkslkKlNUfvDBB9aiRyopXEpfa2Vy48svv9SqVauUlpam/Px8mc1mXbp0SRcuXLDJ61GjRmnSpEmaPHmyEhMTNWrUKCUnJ5cZ78o8dXZ2Vnh4eJk8KSgouOq/mUOHDmn37t0KDw8vcywjI0Nt27a96msBAKMorgDADlq1aqV169apUaNGevnllzVjxgz1799fISEhhsY5ffq0nJ2dy/zv+++lp6crKSlJmzZt0smTJ22OjRgxQp999pkiIiLK/dJfWFiozp07a8mSJWWONWrUSE5OToZivpo5c+aoT58+ysvL0xtvvKE5c+bo7bffvu5xH3nkESUmJspisWjUqFFVHiczM1MtW7a86vHCwkL96U9/0mOPPVbm2JVF8unTp9WkSZOrjuHi4qKNGzfKxcXF5tjvP5vc3FytXLlSy5cvr/RnMG7cOA0fPlwXLlzQmjVr9Nxzz5V7LqlkRm/9+vV6/vnnFRwcLE9PTy1atKjMpZhDhw61WQ+VkJCgr776SlLJrGhFjh8/rieffFKjR4/WX/7yFzVo0EB79+7VCy+8oKKiIpsCKCgoSE2aNNHWrVu1Y8cORUdH2xRXFc3aXvn+5Ofnq7CwsMLP4O677y53B8Zr/TsDAKO4LBAA7CAoKMi69mfQoEG69957NWvWLOsapvbt2+vkyZPKysqyPufHH39UXl6edVZAklJTU9WuXbtrfoldsmSJ/vjHP6p169Zljnl4eGjdunX673//q02bNpXZzKFz58766aef5O/vr9atW9v8+Pj4yNvbWy1atCh3FsGIgIAAtW7dWl26dFFkZKR27NhhnQW5fPmyvvvuO2vfc+fO6dixY7r11luvOe4DDzygL7/8UsnJyXrggQfKHG/Xrp2++eYbm7ZvvvnGZuxLly4pJSXFupFEeTp16qQff/yxzHvUunVrubu7Syq5dO37779Xx44dyx2jY8eOMpvNOnv2bJkxfv/F/q233rLZjr0y/Pz81Lp1a+tapIMHD5bZmOTK9+Cee+7Rgw8+qJCQELVq1arcdV/e3t42cV5Z5FwrNw4cOCCLxaLZs2erW7duatu2bZn1UVd65JFH9PLLL+sPf/iDzRpFqeQ/LFxdXW0+y+LiYu3bt6/MvxknJ6erfgadO3fWDz/8oBYtWpT5DK424wgAVUVxBQDV4KWXXlJOTo5WrFghSerTp4+CgoI0ffp0HThwQCkpKZo5c6Zuu+02denSRSaTSZs2bdK6des0fPjwCsfOyMjQnj179PTTT1fYr3HjxtYvkVcaOnSo/Pz8NHnyZH399dfKzMzU7t27tWDBAuss2J///GfFxcVp/fr1Sk9P14EDB5SQkGDoPcjLy1N2drbS0tKUlJSkVq1ayc3NTW3atNE999yjF198UV9//bUOHTqkGTNmKDAwUPfcc881x/Xy8lJMTIxefvnlci/rGz9+vD7++GO9//77Sk9PV1xcnD777DP9v//3/ySVXEJWesldjx49lJ2drezsbF28eFEmk8l6g9oJEyZo3759mjdvng4ePKj09HRt377dumlEVlaWoqOjlZOTY7ORx5Xatm2roUOHaubMmfrXv/6lzMxMpaSkaNWqVdqxY4e138WLF5WYmKgZM2YYeo8LCgqUnZ2tzMxMvffee/Ly8rLZFOJKrVu31pdffqlvvvlGR48e1UsvvWR4MxSp4txo3bq1ioqKlJCQoMzMTG3atEkffvjhVccaNGiQJk2aZHMJbSkvLy+NHDlSr7zyir744gsdPXpUc+fO1enTp/Xoo49Kknbt2qWYmBj1799f/v7+5Z7j0UcfVW5urqZOnaqUlBRlZGTo//7v/zRnzhyZzWbDrx8AKsJlgQBQDRo2bKgFCxboqaee0oABA9S1a1e99dZbmj9/viIjI+Xk5KR+/frpxRdflFSyNmf58uV66qmnFBUVVeHYhYWFmjVrVrlrdirD09NT7733npYsWaIpU6aooKBAgYGB6t27t7VYefjhh3Xp0iWtW7dOr7zyiho2bFhm3dC1zJkzR9Jv66KWLVtmPRYbG6uFCxdq0qRJKioqUs+ePfXOO+/Izc2tUmNXFEtERISef/55rV27VosWLVKLFi20aNEi3X777ZKktWvXas2aNZKkgQMHlnn+woULtXjxYoWEhCghIUFvvPGG9ct8q1atrIXU+vXrlZGRoTVr1qh58+ZXjSc2NlYrV67U4sWLdfr0aTVs2FDdunXTH/7wB2ufoqIiPfLII4bX/yxbtkzLli2Th4eHOnTooBUrVpRZQ1Vq8uTJyszM1Lhx4+Tp6alRo0YpIiLCWkxWVkW5ERISojlz5ujdd9/Va6+9pp49e2rq1KmaNWtWuWN5eHho4sSJVz3XrFmz5OTkpFmzZik/P1+dO3fW6tWrrZcAPv/88+rTp49mzpx51TECAwP1wQcfaMmSJRo3bpxMJpOaN2+ufv36ydmZ/2MGYF/cRBgAcFMp3d7+z3/+c5lj27dv1/bt27V48eKaDgsAcANg5goAcFOpaJ1NedvoAwBQWcxcAQAAAIAdcLExAAAAANgBxRUAAAAA2AHFFQAAAADYAcUVAAAAANgBxRUAAAAA2AHFFQAAAADYAcUVAAAAANgBxRUAAAAA2AHFFQAAAADYwf8HYgPMU0NLSBMAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Фиксированная вероятность правильной классификации одной моделью\n", + "p = 0.65\n", + "# Диапазон количества моделей в ансамбле\n", + "n_models = range(1, 102, 2) # Используем нечетное количество моделей для избежания ничьих\n", + "# Рассчитываем вероятность правильной классификации для каждого количества моделей\n", + "probabilities = [ensemble_vote_prob(n, p) for n in n_models]\n", + "# Визуализация\n", + "plt.figure(figsize=(10, 6))\n", + "plt.plot(n_models, probabilities, label='Вероятность правильной классификации')\n", + "plt.xlabel('Количество моделей в ансамбле')\n", + "plt.ylabel('Вероятность правильной классификации ансамблем')\n", + "plt.title('Зависимость вероятности правильной классификации от числа моделей в ансамбле')\n", + "plt.legend()\n", + "plt.grid(True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "a3d929c1-3c47-4c09-ac74-d5a5f206b66e", + "metadata": { + "id": "a3d929c1-3c47-4c09-ac74-d5a5f206b66e" + }, + "source": [ + "Опишите ваши наблюдения:\n", + "\n", + "* С увеличением p вероятность правильной классификации ансамблем значительно возрастает, особенно когда p превышает 0.5\n", + "* Поэтому важно иметь классификаторы, которые работают лучше случайного угадывания, поскольку даже небольшое улучшение в производительности отдельных классификаторов может значительно увеличить общую производительность ансамбля\n", + "* С увеличением количества моделей в ансамбле вероятность правильной классификации ансамблем увеличивается\n", + "* Если каждый классификатор в ансамбле имеет лишь умеренную производительность, их комбинация может достичь значительно более высокой точности" + ] + }, + { + "cell_type": "markdown", + "id": "a8914245-d761-4ce3-9836-7d832aea7005", + "metadata": { + "id": "a8914245-d761-4ce3-9836-7d832aea7005" + }, + "source": [ + "#### Задание 2. 2. Реализация простого RF\n", + "\n", + "**4 балла**\n", + "\n", + "Реализуйте свой собственный класс `RandomForestClassifierCustom`, используя в качестве базовой модели `DecisionTreeClassifier` из `sklearn`.\n", + "\n", + "Небольшое описание:\n", + "- Используйте приведенный ниже код\n", + "- В методе `fit` в цикле (`i` от 0 до `n_estimators-1`):\n", + " * Зафиксируйте генератор случайных чисел следующим образом np.random.seed(`random_state + i`). Идея в том, что на каждой итерации у нас будет новое значение для генератора случайных чисел, что добавит побольше \"случайности\", но в то же время мы сможем иметь воспроизводимые результаты\n", + " * После чего выберите `max_features` признаков **без возвращения/without replacement**, сохраните список выбранных признаков (их индексов) в `self.feat_ids_by_tree`\n", + " * Также создайте псевдовыборку при помощи бутстрэпа (выбор **с возвращением/with replacement**) из тренировочных данных. Может помочь функция `np.random.choice` и ее аргумент `replace`\n", + " * Обучите дерево решений с параметрами, заданными в конструкторе класса `max_depth`, `max_features` и `random_state` на полученной псевдовыборке.\n", + "- Метод `fit` должен возвращать текущий экземпляр класса `RandomForestClassifierCustom`, то есть `self` (все по-взрослому, как в `sklearn`)\n", + "- В методе `predict_proba` мы должны пройти циклом по всем деревьям. Для каждого предсказания, нам нужно будет брать только те признаки, на которых училось изначальное дерево, поэтому мы и сохраняли эту информацию в артрибуте `self.feat_ids_by_tree`. Этот метод должен возвращать предсказанные вероятности (можно делать двумя способами: для каждого дерева предсказывать значение при помощи метода `predict_proba` и потом усреднять эти вероятности, или к примеру пользоваться методом `predict` и также считать среднее." + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "c19fa91b-815f-4e65-bac7-5f218ccd4dfe", + "metadata": { + "id": "c19fa91b-815f-4e65-bac7-5f218ccd4dfe" + }, + "outputs": [], + "source": [ + "class RandomForestClassifierCustom(BaseEstimator):\n", + " def __init__(\n", + " self, n_estimators=10, max_depth=None, max_features=None, random_state=SEED\n", + " ):\n", + " self.n_estimators = n_estimators\n", + " self.max_depth = max_depth\n", + " self.max_features = max_features\n", + " self.random_state = random_state\n", + "\n", + " self.trees = []\n", + " self.feat_ids_by_tree = []\n", + "\n", + " def fit(self, X, y):\n", + " self.classes_ = np.unique(y)\n", + "\n", + " n_samples, n_features = X.shape\n", + " self.feat_ids_by_tree = []\n", + "\n", + " for i in range(self.n_estimators):\n", + " np.random.seed(self.random_state + i)\n", + "\n", + " # Выбор признаков без возвращения\n", + " if self.max_features is None:\n", + " self.max_features = n_features\n", + " feat_ids = np.random.choice(n_features, self.max_features, replace=False)\n", + " self.feat_ids_by_tree.append(feat_ids)\n", + "\n", + " # Бутстрэп выборка\n", + " sample_ids = np.random.choice(n_samples, n_samples, replace=True)\n", + " X_sample, y_sample = X[sample_ids][:, feat_ids], y[sample_ids]\n", + "\n", + " # Обучение дерева\n", + " tree = DecisionTreeClassifier(max_depth=self.max_depth, random_state=self.random_state)\n", + " tree.fit(X_sample, y_sample)\n", + " self.trees.append(tree)\n", + "\n", + " return self\n", + "\n", + " def predict_proba(self, X):\n", + " probas = np.array([tree.predict_proba(X[:, feat_ids]) for tree, feat_ids in zip(self.trees, self.feat_ids_by_tree)])\n", + " avg_proba = np.mean(probas, axis=0)\n", + " return avg_proba\n", + "\n", + " def predict(self, X):\n", + " probas = self.predict_proba(X)\n", + " predictions = np.argmax(probas, axis=1)\n", + " return predictions\n" + ] + }, + { + "cell_type": "markdown", + "id": "2d011ba4-85f2-453a-b284-78e711ab1733", + "metadata": { + "id": "2d011ba4-85f2-453a-b284-78e711ab1733" + }, + "source": [ + "Протестируем нашу реализацию на искусственных данных. Визуализируйте разделяющую границу, которую рисует ваша модель при помощи функции `plot_decision_boundary` (см. примеры в лекции)." + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "4e67ff2b-62a9-4f94-8bb2-7f5c1636999d", + "metadata": { + "id": "4e67ff2b-62a9-4f94-8bb2-7f5c1636999d" + }, + "outputs": [], + "source": [ + "def plot_decision_boundary(clf, X, y, axes=[-1.5, 2.5, -1, 1.5], alpha=0.5, contour=True):\n", + " x1s = np.linspace(axes[0], axes[1], 100)\n", + " x2s = np.linspace(axes[2], axes[3], 100)\n", + " x1, x2 = np.meshgrid(x1s, x2s)\n", + " X_new = np.c_[x1.ravel(), x2.ravel()]\n", + " y_pred = clf.predict(X_new).reshape(x1.shape)\n", + " custom_cmap = ListedColormap([\"#ffdab9\",\"#9898ff\", \"#4B0082\"])\n", + " plt.contourf(x1, x2, y_pred, alpha=0.3, cmap=custom_cmap)\n", + " if contour:\n", + " custom_cmap2 = ListedColormap([\"#ffdab9\", \"#4c4c7f\", \"#4B0082\"])\n", + " plt.contour(x1, x2, y_pred, cmap=custom_cmap2, alpha=0.8)\n", + " plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\", alpha=alpha)\n", + " plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\", alpha=alpha)\n", + " plt.axis(axes)\n", + " plt.xlabel(r\"$x_1$\", fontsize=18)\n", + " plt.ylabel(r\"$x_2$\", fontsize=18, rotation=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "a76e9b76-94c2-47b5-9ef9-150bc798a307", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 522 + }, + "id": "a76e9b76-94c2-47b5-9ef9-150bc798a307", + "outputId": "31cd0e95-9a1c-437f-d7d6-6d1497257491" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqsAAAH5CAYAAACmtXeQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82klEQVR4nO3deXQc1Zk3/m+rpW55WLS1JBvbwquEbIQXYDAe/LMhzPxIhvMSG0KSGUJWSCbJy5IQmDdAAgkBhpCwTEgmIQnBcZaXGDOZZAjnDCF+X/8GOyTBOMKWJa+0ZAtJbS12jKWWWvX7o91St1TLrepablV9P+fkBEvV3be7q9VPPfe5z40oiqKAiIiIiEhCJV4PgIiIiIhIC4NVIiIiIpIWg1UiIiIikhaDVSIiIiKSFoNVIiIiIpIWg1UiIiIikhaDVSIiIiKSVqnXA7Db+Pg4xsbGUFJSgkgk4vVwiIiIiGgKRVEwPj6O0tJSlJTo504DF6yOjY2htbXV62EQERERkYGWlhbEYjHdYwIXrOai85aWFkSjUY9HQ2ZkMhm0trbyvSMAPB+oEM8HyuG5EAy599EoqwoEMFjNTf1Ho1GexD7F947y8XygfDwfKIfnQjCIlGxygRURERERSYvBKhERERFJi8EqEREREUmLwSoRERERSYvBKhERERFJi8EqEREREUmLwSoRERERSYvBKhERERFJi8EqEREREUmLwSoRERERSYvBKhERERFJi8EqEREREUmLwSoRERERSavU6wEQ5VOUDAYHt2JsrBex2CxUVq5BJBL1elhERETkEQarJI1U6gWcPPkZtLb2TvwsHp+DRYueQG3tBg9HRkRERF5hGQBJoa9vC9raroei9Bb8fGTkCHbvvg59fVs8GhkRERF5icEqeU5RMti//1YAitpvAQD7998GRcm4Oi5ZKEoGAwNb0dPzMwwMbA3t60BEROHEMgDy3ODgNoyMdOkcoWBkpBODg9tQVbXOpVHJoa9vC/bvv7Xg9WFpBBERhQkzq+S5dLrb1uOCoq9vC3bvvm5aIM/SCCIiChMGq+S5WGyWrccFAUsjiIiIshiskucqK9cgHp8DIKJxRATx+FxUVq5xc1ieMlMaQUREFGQMVslzkUgUixY9ofVbAMCiRY+Hqt8qSyOIiIiyGKySFGprN6C5+TlEInUFP4/H52Dp0s2hW0zE0ggiIqIsdgMgaSQS63HGGQ2YP/9E6HewGh3tAxAFoFWTGkE8PidUpRFERBRODFZJKpFIFJWV6xCNhi9Azenr24I9e94P9cVVk8JWGkFEROHEMgAiieh3AciJYsmS50JXGkFEROHEzCqRRIy7AABABmVlCVfGQ3JTlAwGB7chne4OddkMEQUbg1UiiYiu7h8Y+C0Dk5Dj7mZEFBYsAyCSiOjq/mTyAezYMY+7WIUUdzcjojBhsEokEeMNEiYxMAkn7m5GRGHDYJVIIoUbJBgFrAxMwoi7mxFR2DBYJZJMbe0GLF26GfH4bIGjGZiEDXc3I6KwYbBKJKHa2g1YteowGhruETqegUl4cHczIgobR4PVP/zhD/jUpz6Fyy67DE1NTXj55Zd1j//973+Ppqamaf/r6+tzcphEUopEoqiqepfQsQxMwsO4rjmCeHwudzcjosBwtHXVO++8g6amJlx77bX47Gc/K3y7l156CWeeeebEv2tqapwYHpH0coHJyMgRqC+o4barYZOra969+zpkA9b88yIbwHJ3MyIKEkeD1bVr12Lt2rWmb1dTU4Ozzz7bgRER+QsDE1KTq2tW77P6OPusElGgSLkpwHvf+16k02ksXrwYn/3sZ3HhhReavo9Mhquj/Sb3nvG9K1RdfQ2am5/DgQO3I53OD0xmY8GCx1BdfU0gX7Owng+KksHQ0Dak028jFpuJigr1zR+qq6/BxRdfrXpsEF+zsJ4PNB3PhWAw8/5FFEXR24TcNk1NTXjqqadw5ZVXah5z8OBBvPbaazj//PORTqfxi1/8Av/xH/+B5557DkuXLhV6nEwmgzfeeMOmURPJQ1EyyGR2QlFSiEQSiEZXMKMaMKOjr2Bk5FEoSu/EzyKROsTjd6Cs7AoPR0ZE5Izly5cjGtX/LpMqs7pgwQIsWLBg4t8rV65EZ2cnfvSjH+HrX/+6qftqaWkxfPIkl0wmg9bWVr53uszPMvhV2M6HVOoFtLXdham1yYrSh+HhuzB//nNIJNZ7MzgJhO18IG08F4Ih9z6KkCpYVdPS0oLXX3/d9O2i0ShPYp/ie0f5wnA+KEoGBw/eDu1dqSI4ePBzqKtbH/psehjOBxLDcyE8pO+zunfvXtTW1no9DCIix3BXKiIibY5mVk+ePIlkMjnx766uLrS1taGiogLnnHMOvvGNb6CnpwePPPIIAOBHP/oR5syZg8WLF2NkZAS/+MUvsGPHDvzwhz90cphERJ7irlRERNocDVbffPNN3HjjjRP/fuihhwAA69evx8MPP4y+vj50d0/+8R0dHcW//Mu/oKenBzNmzEBjYyOeeeYZrFq1yslhkgMUJYPBwW1Ip7sRi81CZaX6imYi4q5URER6HA1WL7nkErS3t2v+/uGHHy7490033YSbbrrJySGRC/r6tmj0f3yC/R+JVHDzByIibdLXrJK/9PVtwe7d102rvxsZOYLdu69DX98Wj0ZGJK/c5g+n/zX1twC4+QMRhReDVbKNomSwf/+t0F7RDOzbdysGBn6Lnp6fYWBgKxSFTZ2JgMldqeLx2QU/j8fnYOnSzZyVIKLQkr51FfmHyIrmdLoLu3ZNbgwR9vIA1vYGn5n3uLZ2AxKJa3hOEBHlYbBKtrGyUjlXHrB06WZUV1/jwKjkxdre4LPyHkciUVRVrXNngEREPsAyALKNtZXK2fKA/ftvC1VJAGt7g0NRMhgY2DqttIXvMRGRPZhZJdsYr2jWkm14PjS0DUClM4OTiHFtbwT799+GROIaTv9KTitzunDhN3HgwOfA95iIqHjMrJJt9Fc0G0un37Z3QJLibkXBoJc53bPner7HREQ2YbBKttJa0SwiFpvpwIjkw92KtKfO/UKk84WIIL/HU/n9PSci77AMgGw3dUVzWVkd9u79CNJp/YbnFRVrALS6PFr3hX23oiAsLDPOjosJ6ns8VRDecyLyDjOr5Ijciub6+g+iuvpdWLyYDc9zcrW92qUSEcTjcwO5W1FQFh0VnxG19h77MTsZlPeciLzDYJVcwYbnk8K6W5HI1LlfukKYy4ja8x739W3Bjh3zsGvX5Whr+wfs2nU5duyYJ3WwF6T3nIi8w2CVXFNbuwGrVh3GsmW/Q3PzT7Fs2e+watWhUAWqOWEM3oO0sEw0O75kyS9seY/9mp0M0ntORN5hzSq5ig3PJ4Vtt6IgLSzLZcd3774O2YA1P3M4mTmtrd2A2tr1Rb3Hfm51FqT3nIi8w2CVyENhCt7dWljm1ha2uey4+sKhxycyp8W+x2ayk7KdS2FfTEhE9mCwSkSuMN40ItsVopiFZW6vOncjO+7n7KQb7zkRBR9rVskX/LgKmgo5vbDMq7rO/M4XVVXrbM/i+jk7GdbFhERkLwarJD0/roImdU4tLAvyqnO/tzoL42JCIrIXywBIarls2dQgJJct45eddW7Vdk7lxNS5n+s6jYgu5pI5Oxm2xYREZC8GqyQtP6+Clp3XOwrZvbDMz3WdIkQXc8ksTIsJicheDFZJWkHOlnkpiNlqP9d1imJ2kojCisEqSSvo2TIvBDVbHZZV58xOElEYcYEVSSsM2TK3BXVHIf1V51my13USEZE6BqskLb+vgpZRkLPVubrO0tLqab9T+xkREfkDg1WSFns02i8M2eqxsWMqP+t3tNcqERE5h8EqSY09Gu0V5Gz1ZD2u6m8B+LfXKhFRmHGBFUmPq6DtE4SenVrYPYKIKJgYrJIvcBW0fYLQs1NNkOtxiYjCjMEqUQgFMVstWmebTvdAUTK+fq5ERGHCmlWikMplq+vrP4iqqnW+D96M63GzDhy4HTt2zONiKyIin2CwSkSBINJrNSe3WxcDViIi+TFYJdsoSgYDA1vR0/MzDAxs5aprcp1W94jp2B2AiMgvWLNKtujr26KxYOcJ3y7YIX/K1eN2df0rDhy4XedIdgcgIvIDZlapKIqSweHDX8Hu3ddOaxvEqVbySiQSRSxWL3QsuwMQEcmNwSpZ1te3Bdu3z8Phw1/WOIJTreSdMOzWRUQUBgxWyZK+vi3Yvfs6pNN6TdiB/KlWIjcFebcuIqIwYbBKpk1ua6kYHpvDqVZym353AO936+KCRCIiMVxgRaYZb2s5HadaySxFyWBs7I/o7d2L8vLZljYtkHW3LtEFiYqSCdTGDUREVjBYJdPMZUkjiMfncKqVTOnr24J9+25FOt2F9vbsz6x2l5Btt65cCc3UmYncgsSlSzejtnYDO2wQEZ3GYJVMM5sl9XKqNUjCkmUTDebMyO3W5TX9EhoFQOT0gsRx7Nlz/bTjinkNiIj8isEqmZZbuDIycgR6daux2BwsXswskB3CkmUTDeYSiWt8Gagbl9BkFyTu2/dpBPU1ICIyiwusyDSRbS3PPfd+XHrp4UAFUl7JZRrD0MdWNJjza3cJ0RKa0dE+nd/6+zUgIjKLwSpZorWtZTw+F0uXPo/587/ErI8NjDON9vWxlWF1umgw51R3CadfAzsXGrLDBhGFBcsAyDLZFq4EkZlMYzE1mbKUGXjRyD9XC3zs2C/R07MJo6Opid/Z/RoYl9BEUFaWMMisZrHDBhGFBTOrVJTcwpX6+g+iqmodA1WbuZFplKnMwO1G/n19W7Bjxzzs2nU5uroeLwhUAftfA5Her4sXP8XNDIiI8jBYJZKY05lGN8sMjMYxMLAVvb3PYebMm07/1NlG/lpB+pSRAbD3NdAuoZmDpUs3o67ufVJvZkBE5DaWARBJTGTauJg+tm6VGehRK0EoLa0BAIyNHZv4mZ2N/M3twmb/a2BUQiPrZgZEdkgmgVRK+/eJBNDQ4N54SH4MVinUZO9dmps2zvYdjaAwuCo+y+b1giatnqpjY/0AFJSVfRILFqyxvIOVFiu7sNn9Ghj1fmVNOAVRMgk0NQHDw9rHlJcD7e0MWGkSg1UKLVkWFRlxMsvmxYKmHJGeqmNj/47a2idRWhqz9bGtBJ5eLGiSZTMDIrukUvqBKpD9fSrFYJUmMVilUHJilyQnOZVlc7rMQI9ICYKi9GBoaBtqat5l62ObCzzd3zJY9ow/EZGbGKxS6Ph1lyQnsmxOlxnoES9BeNv2xxbdhS3HzQVNfsn4ExG5hd0AKHSCvkuSWUar050KkMRLEGba/tgiu7ABuU0u3Muyy9RGjIhIFsysUuh4vajICqemhXP3Oz4+gqamHyESAdLpXlemnkVKECKROlRUrCkYq12vgVYtcFlZLerq/hGJxDWmH6OYMfo1409E5DQGqxQ6Xi4qssKpaWG9+3VjUY9ICUI8/nlEIlHHXgM7a4GLHaMMbcSIiGTEMgAKHbd3SSqGU9PCskw365UgNDc/h7KyK5BKveDoWO3Yhc2O19OPGX8iIjcwWKXQEdnyUoYdgpzaXWp8PI2Ojk/afr9acrtT9fT8DAMDW6fdb23tBqxadRjLlv0Ozc0/xbJlv8OqVYeQSKyHomRw4MDtro3VCrveJ79l/ImsSCSyfVT1lJdnjyPKYRkAhZIfdghyYlq4r28LOjo+hdFRne1jbJxuFp0aV+90kEEmsxPptNxT43a9TyIdCtxuoUVkt4aGbMN/7mBFZjBYlQz7K7pH9h2C7J4W1uotW+z9mn08M71sFUUvqJ7k5dS4Xe+Tfg1vViZzCqnUL6W4mCKyqqGBwSiZw2BVIuyv6D6Zdwiyc1pYf6q6uMfP3X9+0F9RsdqWle2RiNhcoJdT43a+T7mMf3v7zRgbOzbt92Nj/VJuWkFE5CTWrEpClgUvJA87F4IZT1Vbu18ge+7u2DEPu3Zdjra2f8CuXZdj+/bZtvSyjUZXIBaTezGc3Qv2EolrUFKiVdQnR50uEZGbGKxKwKmFNDIyWmzj1G39yM6FYGanyUXvV+siS78mVnxckUgUCxc+lvvX1N+aGqtT7F6wl81QH9E5IlybVhARMViVQFh2VFLLwO3YMc8wa6woGRw+/BX893/Xmb6t39m1u5ToVHVZWa3w/VopLbAyrkRivSc7bJlh5y5gbGFFRFSINasSCMOXk8him+rqa1Rvp1W/Z2ahjpeKXTRnx0IwkZXmZWW1uPTSLpSUxITu01xpwVQRUyvbJ1+DrRgY2AoAqKxcJ1W9sV0L9tjCyn1c2EokNwarEgj6l5PoNpIXX3x1wW+MV6/LsQWl3hedXYvmil0IJrJbVGPjvwkHqkCxF0+K6en7VOqXBa9lMvmAdAsQI5EoKivXTJwPg4PbHLiwMBfokz4ubCWSn6NlAH/4wx/wqU99Cpdddhmamprw8ssvG97m97//PdavX4/zzz8ff/u3f4stW4I9zQv4a0clK0TLHIaGJsscxKeYvS2R0CttkG3RnJ1T1YC7F0/ar2UXdu++1vRr6VT9s9VSl3x+2bQiCGT7jBKROkeD1XfeeQdNTU348pe/LHR8Z2cnPvnJT+KSSy7BL3/5S3z4wx/GPffcg23b/F2raSToX07iZQ5vT/y32SlmL0okjL7o2ttvhmyL5rR2i7KSQTK+yNITEX7+Ihcu7e03C7+WdgSUWvdrV+Bj94UFTRemha1EfudoGcDatWuxdu1a4eN//vOfY86cOfjnf/5nAMDChQvxpz/9CT/60Y+wZo0/s4qi/LCjklXiZQ4zJ/7bbPDpdomEyBedWp1t/jFe7bxkV29ZkSb22tSff35JRWlpHRTlLAwNGV+4jI0dw+HDX8P8+V/SPc6OjQpUn41gqYuZchWvNq0oLGupg6IAo6O9gavldGKHOCJyhlQ1q2+88QYuvfTSgp9ddtllePDBB03fVybjv6vh6uprcPHFV2NoaBvS6bcRi81ERUX2y8GPzyfnrLNWIxabc7odj1YN3myceeZqAHuQyWRQWlonfP/x+BycddZqV1+jwcGtRSwumjQ8fMTX72119TVobn4OBw7cXrAtamlpNcbG+g1vn//8U6kXpt1PJFKHVOr9QmM5cuQJzJ37z5rBlKJksG+fUUB5K6qqrjYdkBmfD9nAp79/Kyor15m677PPnrxQHx8HAOfOF7X3IF8sNgcLFz6GRGK9Y2PQkjtP7Pq8DA/rtQcrPM7Pn9EgsvtcIG+Yef+kClZTqRQSicIdaxKJBP7yl79geHgY5eVajbKna21ttXt4Lqo8/T8A8PPzmFRScguAOzV+qyASuQVvvrkHQPa9U5SzEInUQVF6De87ErkFu3a5+zqNju6w5X6Syb/g6NE3bLmvHEXJIJPZCUVJIRJJIBpd4XA2bD5isecRjU4+pqKMY2zs04a3zD3/0dFXMDw8/fxQlF50d/+r0CjGxvrxpz89g9LSizR+/0fNIOz0o2FkpEv3PrSIng/79u1AWVmlqft2i9Z7kC+d7kJb2/tQXv4IysqucGlkhez62z429heh45z4jJI9/P09T2ZIFazaqaWlBdFoMKar/EZRMirZ4eVIpeZPy9rE43OwYEE2U5PJZNDa2jrx3qVST6Gt7frcvU57nNLSGixe/G+eZHkGBwdR3N/JbDb5wgs/amsgqZYZcy8bduHEfylKBq+99qBhNv3CCz8KAHjttffq3G+uJta4zKCh4UzU1S1X/V1v7160txvehe59aBE9HxYvXoXKSnP37Ybs+/VewaMjUJQnsWzZra6WBEz9+1AsRWnBa689IHSOBqX0ISjsPhfIG7n3UYRUwWoikUAqVbjzTSqVwplnnmkqqwoA0WiUJ7EH9NrA1Ndfh7q69YY1eLn3rr7+OpSUTK/jLS2twezZt2DevLsBwJP+iNXV6wzbC2Wnwo9BvZ5TQW3tdThx4lXbxtzXt+V0cF/4WOn0EbS1Xe/ywpwoFi/Wb5W1aNETKC2NYWBgq2HGU1R5+WzNz315+WzVn5u5Dy0i50M8PgfV1euE3mu3+34ODGwzeA8KRoeRkS6cOPGqJ7Wc9v1tFz9HSU78ng8PqYLV5cuX4//+3/9b8LNXX30Vy5cv92ZAZIro4hUzX3B6i0zc6I+oFTSI9C1tavoeAEwbIxAFkEFX1+Po6nrcljFbWeCTTAIpnV1REwmgocHykIQXDYoupotGz0QmozV1a9x71Mn+pSLng5ktbN3u+2mlm4afNynJCfLCVqIgcTRYPXnyJJLJ5MS/u7q60NbWhoqKCpxzzjn4xje+gZ6eHjzyyCMAgA984AP4yU9+gkceeQTXXnstduzYgd/85jf47ne/6+QwyQZOrIbOUVu97tSq7qmPoRc0iH7R5YLtVOqXOHLkcUxdIGPHmM2ubE4mgaYmYHhY+xbl5UB7OzB3rvUsn8iKdtFODnPmfAFvvXUfpp9jYsGgnQGlGjsCHzfOazVWummUldWdzor7e9cnr7ouEJE4R4PVN998EzfeeOPEvx966CEAwPr16/Hwww+jr68P3d2TV+dz587Fd7/7XTz00EPYuHEjZs6ciQceeCDwbauCwM02ME4GxjmiQYPIF11uV6O9ez+k9YyKHrPZLXtTKf1AFcj+ft++V3DkyId1s3zGGdooGhrWaf5eNOM5b97dOPPM84sKBu3KpGll3IsJfNw4r7WIbMc7KVvisnfvR6bVn/t11ye72rkRkTMcDVYvueQStOusaHj44YdVb/Pv//7vDo6KnGA2WCqG04Gx2aBB5IvO6TE7tWXvgQNfQGOjepP7pUs349SpDcIZWrWSglzQl0hcdzrrrN6vNZfxFAkGjeo9i82kGWXcrQY+Xvb9FO+Zm/2dWg9hp7O/fuB2rTFRWEhVs0r+5VSwpMbpwNiJoMHpMTtXj6m96UFHx6fwzjvlGB5+j+49DA9nM69Tg1W1oC+7qd5kmUQkUo/zzvtWQfCjFwyK1ntaDSidnKZ36hwRDaC0ss75YrHZGB8/pbHhhbPZX9l5UWtMFBYMVskWTi5emcrpwNiJoMHpMTtdj6lmdLQPhw7dA0A/WFWjFfTlAtU5c25DVdXVOHToLCQSF067vZn7tCvjZ9c0vVbwKPrenzy5BwMDW4WydmYDqOlZ58IdrIAMdu26UucRw7nrk1e1xkRhwWCVbOFmsGQlMDYzPedEYOlGMC/7yubJ9+AI9u+/DXpTzX19z2PevH9BJCLWg8+Nek87Mu56wWMicY1Q3Wgy+QCSyQcMs3ZWAyi9rHNPz880x5UvCJ0CRHlZaxwkTncnIX9jsEq2cStYMhsYm80ujY72IddeSmMEpgNLt4J5WVc2Dwy8gh07PmwQ7OVkg76hoW2Y3MlNn1P1nvkXOSdP7hG6jVagJhI8itWNTr/d1PPYqQDKzXIfv/Cy1jgozHQnYcAaTgxWyVZuBUuigbHZ7FJf3xbs2fP+acdPZSWwtBLMW1mwYe/K5ojxIQLUFmoZSaffhmiw6kTphnpNrTG1QE00eFy16pBh3aja7aYGnU4FUG6W+/iFm4tLg0q0O4la7TuFA4NVsp1bbWCMAmOz2SX943OiWLLk55azxGaCeScXbCQS2UyF3hdEPJ5BRUUKIlk+Y+ZvH4vNNHGsvRk/7ZpaPdqBmpngMf8cGRj4LZLJB4Rul/+ZcyqAMp4hUDBr1ifQ2/ucNFl9pzHbTLIKUmkFg1XyNb3A2Gx2yfh4AMigrCxhbbCniQTzTi/YaGjITqkZ9UedMeMxS9nF4mSDvoqKNQDEalbtzPiJXbRMv39gMuM+NSOe3X/eWC54zJ0jVoNOJwMorRmC0tJqAMDhw1+e+FkYVsMz20wyClppBYNVCiyzX/SyTOe5tWCjoUHkj9Rklm9k5AgOHLgdo6OpibFVVKQQi51COj1D8x5isVOnM7QirNXv2lkTLHbRUii/lEMtIy56gZMLHnMZkePHF6OjY8W04yoqUqiv75x2uxynA6ipMwTvvLNPdXexMKyG96ITB5GRoJVWMFglW8jYDNtsdkmW6TzZFmzkZ4Kj0RkFX8r19Z3YuLEJQ0O1AICFC7+OqqorJm57/Pgf0dOzoSCw0pMf9GUyWgvc1Nm1wE/0YqSh4R6cccaSgvNdKyOeDfD1TAaPhRmRiwC8Pu3oWOwUNm5sQn19l2rQ6UYAlTsvFCWDHTvmwemLK5nJ3omDyO8YrFLRZG2GXVGxGvqr+gEgevo4eabzZMnwqlH7Uq6v70RDA05/KV9RcLyirMCOHQpGRrTqXiMoK0tg4cLHEI/PLvoix44FfqIXI1VV7yq4WBAvH9APHkUyIun0DAwN1aK+vksz6HQrgJLt4sorsnbiIAoCBqtUFJmbYQ8NvQr9QBUAMhgaehVVVeukmc6TJcOrxcyXsshr2tj4b7aeI1YW+BXODNQhFpuNdPoozFy0iJYPlJUlTrdHy7IaPMZi9YafLzcCKJkvrtzm1uJSorBhsEqWyd4M28qXqAzTebJkePOplXmIfinL8JrqUZsZKC2tQe4cFr1oET3fclnkYoPHlpZfobbW+HZOB1CyX1yR/ES6k5SXZ48rRpBWx4cNg1WyTPbpP6tfol5P54lmeAFgYGCr42O0o8zD69dUi9bMwNhYP4DsCvexsWMTP9cLsEXPt3h8pi2fB69fuxwZL67IX8S6kxQXSAZtdXzYMFgly2Sf/ivmS9Tr6TyjbCQA7NgxzzCALHbhm51lHl6/plOJzAxEozOwZMnLGB3tNXz9jM+3rLa2D2Px4ic9zyjbRZbyGfI3se4k1gVtdXzYlHg9APIv2af/cl+ip/819bcA5P4Sra3dgFWrDmPZst+hufmnWLbsd1i16hAAYPfu66ZltXMBZF/fFgDZQHPHjnnYtetytLX9A3btuhw7dsyb+L0R42AO2L//NiiKuVX7blCUDAYGtqKn52cYGNiqOkaxmYEuRCJR1Nd/cKKuWYv++TYpnT5a8D4FQe7iKh6fXfDzeHxOoNtWEckqV1qhx47SCrcws0qW+WH6T/Z6SSNTs5GidcKKMo49e66fdpyZjKjsZR5aRMsWnJgZyJ1v+/bdinRa67Xzvp7bCbKWehCFkRulFW5isEqW+WX6L0hfoqIB5L59n0axC99kL/NQY6ZswamZgdraDYhGK/DnP1+pc5R2oO/WYhMnOFXqkS1n2YrR0R0YHBxEdbV+lpuInC+tcBODVSqKXzKXbtdLOrVJgmhgmN8aSWV0QhlR2cs8pjLbncLJmYHR0V6h49TeT9kyIl5v+DE1U97aKkcfZyJyD4NVKlqQMpd2cHKTBDsDw5GRI7rdBPxQ5pHPbNmCkzMDxQb6smREvN7wQ+Y+zkTkHi6wIlvkMpciC1HcJrLYxsxxenJfrkaLn6zKBZB6C3hEHThwu+7iK78tUCumr67dC4OM36cI4vG50gT6apw+l434eYEfEdmLmVUKNNHMkB0ZJDc2SdDPBpoztVRALVtVbJmHm1PIMvXV9Us9txYZNvzw6wI/krP5vp9rwYnBKgWY6BSiXVONbn25agWQxVMPQqwGc25PIVdWrjm9TeoRjSPc7avrl3puNTIEin5c4EfyNt+XrRaczGGwSoEkmhmqqbnatgySm1+uuQDy0KH7kEw+IHy7srJaS4uvzAZzXtQaplK/xPi41jekN9lMv9ZzyxAo+m2BH2XJ3HzfzVpwGbPLfsZglQJJNDN05Mi3bcsguf3lmg0g3yUUrDY03IOqqnchnT6CtrYbDI8XDULUpvkBuD6FrBUc55SWVqOp6XueZDNl27lLhAyBot8W+BHlyJpd9jMGqxRIosHWqVMHbLs/L75cRR9z/vz7EIlEMTCwVeh+RYIQrWn+mTNvcnUKWT+LnhWNzkAicU3RjxUWMgSKfq/7pfCSObvsV+wGQIEkmvEpL59n2/15sXre7GPatUpdb6X4W299WWjsdk0hG2fRgZGRLgwObrPl8cJAlk4Q3MaViAAGqxRQIkFZaWkNOjsfM7gncy2G7P5yFWmnZeYx7QhCRFoKibBrClmG+sogkiVQrK3dgFWrDqOl5WWUlz+AlpaXsWrVIQaqRCHCMgAKJOMpRAVjY8eM7gWA+QySXYtqzKymN/OYxa5SF8lk6rNvCjmZBA4eXIyOjhWqv6+oSKG+vhMAF+JYIcsCseyOY+tQVlaJysrlnPonChkGqxRY2kHZbGQypwyD1VhsNhYvttZmqdhFNVZW05t5zGKCEHMZSvVaw5kzP4He3ueKCn4mFzFcBOB11WNisVPYuPE8NDQovlqI4/UWp/n8uEDMiEyvLxEZY7BKgaYWlClKBn/+85WGt21u/hGqqt7lwigLudWQ3WoQIpqhnDfvfnR3P11woVBaWg0ABXWtVnuviixiSKdnYGgogUWL7jZ8rWQJYLze4jTo+Po6i833yQkMVinwpgZlPT0/E7pdOt3rzIAMyNCQXY/oSvFzz70b555790QAeOrUPhw+PH3xldP7vC9c+HXU1l6he4zdAYzVwNeL/rRhwtfXeWy+T05gsEqhI0MPST2yLxgy21KoqmodFCWDHTvmadyjerY4mQT27p2B8XEgqhLndQs+/aoq40DVzgDGauArwxanQcbX1z1uNt+XEbPL9mOwSqEjQw9JPbIH04D5RVpms8XJJLBkSQmGh5do3iIWK/JJwP4AppjAV/aMut/x9Q0fr3aRYnbZfgxWKXRkbzYuezCdY2aRltlscbYeVavtWO5YsXEeP/5HKMoK1XHZGcAUG/jKnlH3O76+4eL1LlJhzy7bjcEqhVKx7ZucJHswnU9kkZbX7aU6Om5GPN6nOg1vZwBTbODrdkZdlgVlbvHDjAXZh7tIBQuDVfKtYr9si2nf5PQXvczBtBmytJfSmoa3M4ApNvB1M6MexhXxfpmxIKLpGKySL9n1ZWulfZNbX/SyNGQvhtX2UgMDrwDQXxgFZOtW9coBYrFTqKhIQWsa3s4AptjA162MehBWxFu5WPTTjAURFWKwSr7j5Zet248dxIbsavLbSylKBp2dX4dIsLplCzDrdOx3/Pgf0dFxc8Hv80sM1Kbh7Qxg7Ah8nc6o+3FFfC4wHR4+grGxv6Cvbz8OHbrD0sViUGYsiMKGwSr5ipdftn78oveL/PZS2YxZj9DtZs0CVq7M/ndPzz4AOw1vMzDw24KMnF0BjF2Br5MZdb+tiFebxdi7d/pxZi4WgzBjQRQ2DFbJV6x+2dpRY+q3L3q/sroa+9SpfULHJZMPTPx3fkau2ABGUTIoLa3G7Nm3orf3Jxgd7ZvyOOYCXyfOITdWxNtVz601i6HxqDBzsRiWGQuioGCwSr5i5cvWrhpTtr5xRyw2CxUVKcRip5BOz9A8Lh7PIJHIBiWKksHRo98z/VhTM3JWAxi1c6ysLIH6+htQU3ONNJk7p1fE2/VZ05/F0LwVLxaJAorBKvmK2S9bO2tM2frG2NSsmqKsAWAuSKusXIOGBgUbN56HoaEalSMiiMXqcfnlv0JDQ/Yxu7r+Fen0ESsjRrHlG1rn2OjoMXR1PYGKimyN6sDAVs+nnZ1cEW/nZ814FkMbLxYJ4C5SQcNglXzFzJet3TWmbH2jTy2rdvjwVQB+Y+p+crWfIyPXob4+OfW3AHA68ImqPqZ51jNyIudYe/vN2LfvVqTT3reJcmpFvN2ftWICzjBfLNIk7iIVLCVeD4BIj6JkMDCwFT09P8PAwFYAwKJFT5z+7dQdjrL/Xrjwmxgc3IZDh+4TrjEVkfui13vssLa+yWXVpr7eM2bsQSx2Sve2atmN2toNaG5+DpFIXcHP4/E5Exk6rce0ykqAJFLHPDZ2rCBQBSazjX19W0w/ZrFyC8ri8dkFP89/bc0yU8899TOtKJlpR1sLOCOIx+eG9mKRpmtoyC7A1PofA1X/YGaVpKVX/6a1eruu7gM4cOB2UwGMSJCSm94eHx/Buefeh+7up1UyZc61vpF5tyG9rFp9fRIbN56HU6eWoqXlV6pj1spuJBLrccYZDZg//wTGxnoLnre1mkZ9vb3zcESnkkBtnNYzgN52j7B7Rbzo63Ds2C+xd++HDGtajWcxpnLuYtGr/eWJaBKDVZKSSP3bqlWHC75sR0f7sGfP+6fdxohRFkctaI7FZmPevPsxY8Zix4NH2XcbMsqqZafyk1iwwPw0eyQSRWXlOkSjha9tMTWNKo+CgYG/xrvfvcr0PuLFTTmLlx84cbFi54p40dehq+vxaT9Tq2nVL1eYzqmLRa/3lyd9ySQwMKD9e15IBAeDVZKOmfq33JetomSwY8c8jdtoMa4x1Qqa0+mjOHz4Pixduln4C99KwCHLbkN6Y/eiS4KZ+4rH56Ku7gPo7Hz09E+m12meffaDGB6eWtpRSG0fcfMZwOmMnovsFyuAWD13tups+pS/VpZZr//twoWPoaws4fhMA/eXl9fbb5fhsstKeCEREgxWfUTmqWA7DQ2Z72dqPtNmPG1o56IRo4BD7b0FIMUmBEZj96JLguh9LVz4GObM+Z+IRKI4++xVmo3/OzuNd8tSYzYDqEbvuchysWLEeOGWAvVANUc9y5xfrjA8fATJ5F9w4YUfRWlpzIFnQX4yOFhq6QKT/InBqk/4Ibtil3T6bcHjulX/W4TItKFdmwAYBRxz596B3t6fTXtvZ868yfNNCESCpUTiGte7JIh2ZsgFqoB+nWZnp8pdCMplANvbb8bY2DETt9R/Xfy2Y5peJjSRuBZHjjxueB9qn+NcuUImk8HRo29I8VyJyF3sBuADWquevVxR7KRYbKbgcbNU/1tPQ8M9WLbsd1i16pBhkH/s2C+F7lMvUDYOOBR0dn5d9b19660vF/34xTAeO7B//20Ash0YtKd/7V/4YrUzQy7wqa//IKqq1tk2pkTiGpSUlJu4hfHrYuZiSRa1tRuwatVhLFv2OzQ3/3Tis5ZIXCN0+6C2nRLpgEBE2phZlZzfsit2qKgw389UNNM2f/59Qq9TX98W1cUgavS+YK0vBBKfTnbqC140WDp8+Gt4++2nVY9wskuCXibPyc4MarLZWvFNCUTG6Ncd09QWboW5R3GYZsWInMJgVXJu7UcvUz2slcbldjY7n7xAMByp4Ress4GEs1/womPXywAvXPhNR7+Q7W7BZJXoa1VVdRUaGu4SGmOQdkxzajMC2ZmpOWaLLCJtDFYl50Z2RcYrfytZs2IybfnBejrdI5gNVQy/YO0LJNz/gi9+7BEcOPA51NaudzQIsbMFk1Wir9XAwEs455ybbNwxbTYUJYOenp95fpFpRKZMuBvMzIp1dkbZIotIB4NVyTmdXZF5tbGVrJmV21jdsnP27NsKXhu17LQdrY3mzbsf3d1Pu/4FX/zYnV8AZpdi9xGffK2MziHjsp3882jmzJvw1lv3QWuFfSZzCn/+85UTP/X6ItOI3udTptmdnGLOCzOzYqnUOrbIItLBYFVyTtZ6yVwPO/WLq67ueuExmMm0aQXrIvIXjehlp623Nsq+t+eeezfOPfdu17/IxdoRGZOtplJNsfuIT75W1xo8kn4Ar3YelZbWAEBBp4HS0mqMjR2b1n1gZKQLu3dfi0TiWpxzzj/ZuojMLmqfTxlnd4Dizgu/1hz7RWXlGMrLFd32VXoXmOQvDFYl52Stl1v1sGalUi/g4MHbHf/isr5lZ+EFgkh2Wn3607hZff5760V2Um/qdtasT+DwYeOOBX6oqQSyAUcxWava2g2YM+c2oYV5agGK1nk0NtYPQMnbMa0ObW0f1r3/VOp5pFLPo7S0Bk1N35M20wrIPbsDiJ0XalnhINUcy2jmzFHs2TOOgQHt7z7W+QYHg1UfsKsW06udh8xM742OvoK2trvgxheXtZX6hUGkaHY6175H7XXQa1YvQ5ChNXUL4HR5QvhWeGupqblGKFidGqCInEfd3d/HqlWHTHUeGBs7ht27r8XSpc9LcS7l5P4mjIwcwYEDt0NkdkdWWlnhhQu/GdoOCG5paADmz/d6FOQGBqs+YVctpts7D5mZ3lOUDEZGHoVbZQlWgvCpQaTZ7LRadlSWFe16tEorzGb9/bDi2WrtZLZ3Zub0FH2/xlHqAYqZ88jKebtv360Fnxsv60PN1YhPPu+zz5YvqNPLCu/Z837MnXvH6ZmT8HRAIHICg1UfsaMW082dh8xO7w0NbYOi9Orco71lCVaC8KmtmOzKTsuwot0KM1n/ZBLSr3i2WjspFoBpByhmziMr52063TXxufGyPtRqjbiMdZ0i2fDe3p9jyZLncOCAWlmTHDMnRH7AYDWAzCyccqoe1sriLSvbrKo9rmjGyPxq9+mtmFiXJp4ZTqX0A1XA2xXPVmsnRQOwqQHK1HZpInKvrZUuDel0t6f1odZrxOX8/Ihmw8vKEli16rDUMydEsmOwKgk7p+XMTCk61fvQyuItK9us5jObMdJfvCY25jDvzJPPr5nhHKudMUQCsNLSGixZ8r8LVuarZ2KjALS24Zw8jwrPW3GxWB327v2Ixlid7/5htUY897zHx20fUlHMZMONPh/Ftk4jCjoGqxKwe1rO7NS0EzWTVqbHKyrWIBKpg6L0QevLv7S0RjXws5ox0grWRcfsVLcGGXtOBpnVzhgiAdjY2DFEItGCQFU9E6sdqAKF51HuvN237xahxVax2BwoCjzt/mF+Kn/q89Z6fbxh56xKsa3T/MgP9eskDwarHnNiWs7KH1G7M2NWxxCP34Hh4Ts1jx8bO4ZU6pfTmvEX0y82F6x3df3r6ZXJ4mPO3d7O7LSsPSeDzGrtsdnbiU2FFwZmWudR7rw9fPhrulveAsDixU9gdFSvHnz6WO1mdipf9rpOkXKMsrJaVFSsFrq/Ylun+Ykf6tdJLgxWPeRUU34ZpqatjqG0dC1KS2umNTvPv93U18SOfrGRSBRz5vxPdHV9w9LrZld2Wvaek2blZ4iPH18M4CKvh6TKapbM7O3EpsIzWLjwMcRi9YbnUSQSxfz5X8KZZ56P9vabp31u8vusDgxsNTVWu4kGd4sWPYZYbLb0swkiZUSjo334/e8X2nahGZRspOz162YE5T2RnSvB6k9+8hP84Ac/QF9fH8477zzce++9uOCCC1SP3bJlC/7X//pfBT+LxWJobW11Y6iucqopv5MbCdgzBgBQMHPmJ6bdLpPZqROoZm839TWxc0V+Ma9bsdnpYi5e3C4bEPkDPWNGYYa4o2MFgNcdG5NZ+a9ZWVkdYrE5p6fUxS9UzF6UiZ6rsVg96us/KPxcJi+Wtk4EpZWV6wrqZL2+iBX5fDU2/puvLsZEyojsutA0m410KohicDaJGWL3OB6svvjii3jooYdw//33Y9myZXj22Wfx8Y9/HC+99BJqampUb3PmmWfipZdemvh3JKK9nZqfOdmU36mFU3aMIeett76Mt99+uiDroCg6fwXz5L8mdtaOefm6Wb14cbtsQOQPdDyewbPP3o76erMLaqyPycwXqPa2ptmLAtELFbMXOE52j8heLL0LVVXv0vy9lYsxOy+EZPi7ZLfa2g2oqbka27fPxuio2kloz+I1M9lIwJkgisFZoSBliGXneLD6zDPP4Prrr8e112b3zL7//vuxdetWPP/887j55ptVbxOJRFBbW1vU42YychXjqyktrRM+zsrzqa6+BhdffDWGhrYhnX4bsdjM04uYosL3pygZ1dubHUMy+RCSyfum/T6XdWhufg5VVf8DkYjYctf81+Sss1YLZMVm46yzVgs9bzteNyuGh8V2JRoePjIxjlTqBbS1XQ+tsoHm5ueQSKy3dZw9PcDwsP45MDISxdBQDerrkxM/q6hIIRY7hXR6hubtyssVVFWNI5OZ/AwbvebJJLBkSYnBHuEK9uwZR0OD9muWa+Sfbeo/md2Px2djwYLHUF19jepYqquvQXNztpdmOt2le7vJc1U7iI/H5wifq2aZGSuQfa2mHhuLzcHChY9ZPq+sfr5EzwcvDA5u0whUc7IXmv39W1FZuc7SY2SftvHf3kwmI/QZHR4GenoymD1bfAx23a+Z56L2dstyLhT7PMLOzPvnaLCaTqexe/dufPKTn5z4WUlJCVavXo2dO3dq3u6dd97B5ZdfjvHxcSxZsgSf+9znsHjxYlOP7YeyAUU56/Tqd+2FD5FIPQ4dOguRyBtFPFLl6f8BgPjrMjr6CkZGHi0YXyRSh3j8DpSVXSF8P4qSwcmT39b6LQBg797P4owzGhCNrrD0mpSU3AJAa2GWgkjkFuzaZfacqISV182qsbG/CB2XTP4FR4++cfp1/Qy0ywYmX1c7SwI6OmYAWGL6dvX1ndi4sQlDQ9kLknj8bpSWNhccU1k5hv7+UfTnbQBl9Fneu3cGhof1xzM8HMGrr7bj2LG/GL5mY2NRlJd/G0A/IpEEotEV6OqKoqvrDZ1HmI9Y7HlEozuhKCnd2ynK5QB+rHlP4+OXWzhXzRAb6+joK6qLHdPpLrS1vQ/l5Y9M+zugKBlkMoX3q33uVcLK50vGv+2jozuEjtu3bwfKyiotPYbo566jo/30f4kdW1JyypEx6N2vXffj9blg1/MgY44GqwMDA8hkMtOm+2tqanDw4EHV28yfPx8PPvggmpqacOLECfzwhz/EBz7wAfznf/4nZs4U68MJAC0tLYhG5S3Oz0mlnjqd5QHUpuXOO+9bSCQu9GBcL6Ct7S5M/VJXlD4MD9+F+fPFM3aDg1vR2qq/EllRenDuuUNIJqvR2PivaG//QO43eUdpvyaK0oJk8h0cOfIkMpnJSCcen4MFC6xngdykKC147bUHDDPEF174UUQiUeHXdf78E5azOWqK6XdZX9+J+vpOAEBT0zDq6po0j81kMmhtbTX8LIuOp7GxCfPnG79mQC8WL260+Jrpf1YVJYPXXvud7jElJb/DsmXfd2FxkfZYs+N8r85tI1CUJ7Fs2a0T49TLwtbU/I+iZmgA8fPBC4ODgxCJmxYvXoXKyuXTfi5SxtLYKDaWxkbtz5TascunD0eTmc+a3v1avZ/c6zQ+Po79+/dh0aLFKCkpmfi92/Wydr0eYZX7TIuQrhvAihUrsGLFioJ/v+c978HPf/5z3HbbbcL3E41GpfuDpqa+/jqUlMhVw6UoGRw8eDv0FvocPPg51NWtF/rCGRsTa5mTPa4adXXXorRU/DVRrz+sxuzZt2LevLulXlFcKIrFi41qCp9AaWkMgLnX1c7Pgl13VV4+W2hcRp9l0fFEo1HPXrOcgYFtuiUAQLYX6okTr3q6yYLxOJWCcfb1bVEtrUinj6Ct7X3TOnwUU1Nd7N92JxYjVlevE1q8Vl29btpjZctYjOtAN28WG4uZ1yb7WgofbuqzpneslfspfJ2iUMtoul0va9frQcYcDVarqqoQjUZx7Fjh6u5jx44hIbgVR1lZGZqbm5FMJo0P9iknmvIXQ3ShT1fXvwq11xFfVDKZORd9TbRaPY2NDeCtt+7DmWee76tFG2YWoMi/1atWDal3u3p5/Zo5uajSTmbGadzFAtM6fHjVis2pxYgiu4ppdRIRXaQzOGh5eNKxsmMXFzOFm6PBaiwWw9KlS7F9+3ZceeWVALLp++3bt+OGG24Quo9MJoOOjg6sXbvWyaF6TqbtKkW/qPIb6Ov9wRdtmVNRsQb5tWtGr4lTfWq9Jhqoe92KSIw3rdPUtLUBirIGhw9fhXS6F4CCiorURFlCbnxOvmZeB8uizIzT2jaq7n8+ne5hXFu7AXPn3oHOzm+icLetKObO/ZyvLpqdFsYdu6g4jpcBfPSjH8Vdd92F888/HxdccAGeffZZnDp1Chs2ZD+4d955J+rr6/H5z38eAPCtb30Ly5cvx7nnnovjx4/jBz/4AY4ePYr3ve99Tg+VTrPyRan3B9+pvq9O9amVQX6grjVtKUM/XT0LF34d8fiHpSlvyV4fRwH8ZuJnsdgpbNzYdDpgdf4188cFhrlx9vY+Z/FR3Pt8unFh29e3BZ2dj6o8xjg6Ox/F2WevKuq8r6wUz0bqBYGyCMKOXVYyxGSN48Hqe97zHvT39+PJJ59EX18fmpub8f3vf3+iDKC7u7ugQPr48eO499570dfXh4qKCixduhQ///nPsWjRIqeHSqeJ7DQznf4ffJHpbbNtSPwypVoMo2lLO/tWitbyif6BXrz4Csyde1ia8hY16fQMDA0lUF/f6ehrliP7BcbESEyMs9gssBufz4GBrY5e2LoRDM+aZS4b6UQQxeCsEDPE7nFlgdUNN9ygOe3/4x8XtnD54he/iC9+8YtuDIs0iGwjqE7/D77dtblOTanqBSBu7hQlOm1px+tqppbP3B9o7VIOoxXQVVViYxf5AtUzf/6DWLas3NHXLJ9fGuOLjrOyco1h71g9dpc8TP2Mjo72oaPjU0K3zQXOZj/nbs3yiGYjnQqiGJxNF4QMsR9I1w2A5CCyjaAWvUyJnbW5Tkyp6gUgAFzbKcpspqaY19VKLV+xf6DFdsIpwebNZYb3pfUF2taWm/rXV1NzFSorzQUnxdY/yraoUovIOCORKGbNuglvvfVl0/dfWloDRclAUTK2PHe1z68ZsdgsSxchMs7yOBVEMTgjLzBYJU1Tv6jS6Z6CRVVaRDIlapkLs+yeUtUPQK5VvY1Tq5rdytR4tUhNbGVvBIODpUgmgYEB7eNymRyrX6ADA69gxw612lr14MSu10ymRZV6RMb5V39lbtOWnLGxY/jzn6+05aJP6/MrJnthOzqawp492jvCaX3O/bJwjsivGKySrqkLfbq6vlF0JlMrc7FgwWMA5psan9Up1anBckXFasP2O+qcCejcytTIvkjtpZeq8JGPlGBsTPuYYnsrHjjwBTQ2Fr4GasFJrmzh+PGd6OioBVC4JfRkZwH/LuyzqtggrNiLPv0LCDELF37j9MW4+YuQYmZ5WAcqhq9TuDFYJWF2ZDL1spdtbdejvPxfACw3NS6zU6pqwXJZWS1GR/tMPe4k+4MTtzI1Mk5f5tu0yfj5Fd9b0Tg46eyM5pUtXATg9Wm3KOws4O+FfWZZW5SZr7iLPmvts7JKS6vR1PQ0SkurLV+4FfO3kXWgYvJfp2xLy3Y0NjYVbILA1ym4GKySKVqZzLKyBOrr/xGlpdWa9Wci06cjI9+AotyKbIshcaJTqlrBsvVAdZKdwYlbLY6Mgt2enrkYGkoAWIwjR6b/PthfDpPBSSq1zrBsIb+zABCMKV/RhUYiTfEFHs3yRV8xn72lS59DVdW70NPzs6Ieq5iFc6wDFZN7nTIZoKTkFJYvF99FSmRLW74H8mKwSqblZzJTqV+it/cnGB3tQ1fX4+jqelyz/kxkyllRejA0tA01Ne+yfdx2TBXqsTM4cbLFUf4f7alN8oHJ6eyenrm48cZ2pNMzNO/L7e0NzRCZNozFTqGiQr8ppflAqPBCwq9fkmYXGuWCtY6OT2J01HqjTyuBp7XPXu59WmfqPvSO88vCubARW9Apx98yv/69cBqDVbIkEolibKwfR448AdHFCOm0SmpORTr9tp1DnVDMVKE+Zxq5O9HiaPof7cIm+cDkdPbQUK1uoArIvb2h0fTq8eN/RE/Phik7WE1nLhAqvJDw05dkPqvdDmprN6Cm5mps3z7H8myFlcDTfBnC9As+u2Yz/LJwTlYiwdrs2ebu0y9btRb79yLIgS6DVbLE7Iro3t5foKPj00L3HYvNtHOoE5ypIXS2kbvdmRqRP9q56exYrN7SY8hEb3pVUVZgxw4FIyNavYTNX4TEYvUFgZxfviTzFdvtoKQkhsbGf8srCRCdybB+0We2N7TaBZ9fNmwIMtFgbc8e98bkpmL+Xvj1wlgUg1WyxMwq8v7+F9HZ+XWBe40gEqlDRYW5LyvRujo7pumnLsSyo5G78dVwFA0N6yzfvxWNjd/DWWetcOz+i23kbwcngpOWll+httbfwYwdHSK0ZgVKS2swNnYMTgSD2jMRc7Fw4TdRVpYw/Bvhhw0b3NyYRJRdGT0zwVrexpcEf14Ym8FglSwRzVKmUv9+ulTASPbLKh7/vGO7CBW3Yjmb9bnkkv0YGnrVti8KWa+Gzz77IkfvX2+KXrSZvx3sDk68DhrsYFeHCK1ZgVTql44Fg3bMRMhcd2p11zQnyfo3rBhBnk73KwarZIlolvLtt38kdFxZWQKLFn0bXV3ifVbN1tUZZ9IUlf/O/Tub9Skpidlajxb0q2E9dq2ALra3oszBiRfsbJumVr/p9OttR82o2n14ndEsdtc0pwTtb1gQg+8gYLBKlogsRigrSwgvsli48DEkEuvR1fWG0PFW6+qMMmmA1paqckwByqitLfv/dmUbEgkgHgdGRvSPKysDXngBaGkRf1ztjEkUwDokEkC9SqlumBqSu9E2zW+LkLzOaOb+3vX0zDndSm6qCA4f/j4uv/wanHtuOC+y7BK04DsoGKySJSL1fnV1/4gjRx4Xur943NzyzmLq6owyO8yymZObsrcr29DQAHR0ALt2ZbBr11s499xzUVIydccgc0EqUFzGJEyN27nQqJAMGc3BwW1IJiOGreTi8Qw6OoJxHhLlY7BKlhllKUtLq4WC1bKyWlRWrsH4uPhjF1tXp5fZ8VvWxylmF0HZmW1oaMi2pznnnAEsX36ucONvPcVmTMLUuN0PC43cUGxnBBEi9ZHxeDeGhhKGreRGRqLM+KkwMzOi916QdxisUlH0spSKkjk9najf23Tx4qdO/6HPCD+uW9uRBo2ZP9r52UQ3Fz0FiZ/LB1jLa09nBD2i2f7XXptn+r5pkpmZES+DVT//vXAag9UieV107zW95184nai++n7u3C+gru59ph/Xre1Ig8bsdHaYsolO8Hv5QNhnGezqjKBFNNufTv91IPoeGzETrPX3m7tvP/wtK+bvRdADXQarRfC66N5rIs9fazqxrKwWixd/G3V11vYSZ12ddbL+0Z46HZrJAB0dMzA+nt3/W+agTo+srzcZk2UGJxKJYu7cLzj6GDIQDdZmzzYfrPqF1b8Xfr8wNsJg1SIZiu69ZOb5OzWdKEtdXTHZdRmvhtVq6HIr/p18zOnToVEASyb+xXYx5DaR3sylpTWuzOBUVV3h+GNYYfffMJFgLSNeMRYqQb4wZrBqgRtF9zKz8vytTCeKBIFe19UVm12X7WpYpIbOCWwXY8zNkiO3y5tkLaeanMG5VvOYsbFjSKV+GejkhB7Z/oYVS8YEAjFYtcTponvZufH8zQSBXtXV2ZVdl+lqWCRoFMEdYOzlZsmR6GPZFWDKXk6VSFyTt02smmAnJ0TI9DesWGaCb/6dcw+DVQvsLrqXNaugxflFBy+gre16iASBXr12Yc+uq8llG5zcAUavHMHoi8GvGRMnS46mftn29/8XDh58AEAtgFpUVKRQX9857bHsCjD9UE41OLhNJ1AF3EpO+PX8tVPufJ1az55jV3A4Nfie+jlJpYDWVmDDBiCd1r4fli7Zh8GqBXYW3cueVVDj5KIDRcngwIHbIRIEau8x7vxrZza77LcLEhGbNgHNzZP/zn1RvP66c1P6eu2zjL4Y/Dhd6eRFkfpFxd+e/l9WLHYKGzc2ob6+c+KxFGUce/aIXUx69dzs5PTFuSg3z18ZM4aF52thPXuOE8FhMaVRYS9dshODVQvsapvkh6yCGifbRmUyO5FOGweBhw9/DW+9dd+0x3frtTPzBebHCxIRzc3AypVej2KSyBeD36YrnSy5ESn5SKdnYGgocTpYzT5We/snYEeA6ZdyKicvzs1mS904f52cGSmGV3XtdpVGUXFKvB6AH+WK7k//a+pvARi3TTLOKuB0FkO+ZY92PH8tiiLWkbmz8xF4+dqJfjGdOrUPu3dfN+1LORdU9/VtcWJ4FBCyZPXyZTJDOr+dDDCNyPjc1OQuzqf/rcuJIB6fa+niPJct/dOftP8nc1BI5BYGqxbl2iZN3dM+Hp8jlNUzk1WQUbHPX0skIlZwNT5+Uue3zr92Yl9gc3D06PfgxwsSt/E1UBeL1dl6nFtEAkxZepgacfLiHMgGoitXav/PTzMBRE5hGUARimmb5Jesgh4n2kZFoysQi81BOq3d11CUk6+dyKYEM2fehLfe+rLOvcgxzSmDWOw1xGLLDfc+DxtF8CMgepxbRAJMP+1CJ0tPZ6KwYrBaJKttk/ySVTBid9uoSCSKhQsfO90NoDgnT+7BwMBWxxYzGX2BjY+PCN2PTBckiQQQi+mvcHVCXd1hbNz4fgwNqWfWk8nz8LWv/dTdQUlgdLTX1uOcJx5g6l/wAYCC2tprMTi4TZqA1cuezkRhxmDVI37KKrgtkViPuXPvQGfnNwFYnx5OJh9AMvmAo4uZ9L7ABga2Ct2HTBckDQ3Ali3A1VcbH5udurfnizoWm4X6+s7TC3kox48XtWamxLUu+LLnVQZdXY+jq+txxONzsGDBYwDmOzFkYV71dA6zXGcC0V30tI6TrdMHmcNg1SPc215bKvUCOjsfRbFlADlOdwjQ+gLz6wVJS4vxCuVY7BSSyXVoaLhr2msqssI5FgO6u7NtrgBAUdbg8OGrkE73oqKiTyVo1aoNDjY/nUNlZbVobPw305+x/Au+VOqXOHLkcUy9SB0ZOYK2tutRXv4vAJbbNWRPydgeSjZW2kZptbfzooNB0PveuonBqodYBzWdfp9Vy/cKL3o2+vWCZGo/x4GBV3DgwBeQP/6KihSqqrpULwL0+kF2d0820i7M3kYB/AbA1N6eABBBRUUK8XgGIyPar1UQvxhEpspnzvyEpfsWu6gYxkUXfQXvvPMR3cb40ejZuPTSLpSUxCyNJRKJorJyDfbu/ZDGEdnP8MjIN6Aot8KujL5XZG0PJRs720ZZbWslevG9ZQswa8oEBy847MNg1WOsgypk3GdVXTR6NjKZ4zpHeLOYya8XJLl+joqSwY4dH0Zjo9Z7on4RoNUP8vXXjethC3t7AvH4bFxxxWPo6IiGMhOlPVWe9dZbX8bbbz9tutRF7aJCUTI4cWInRkdTKCtLYN68C1BRMQOtrfr115FIWdF/s0Q6pChKD4aGtqGm5l1FPZbXvOoZKsKPO2V99avAvfc6c99+3EwkiBisSoB1UJNE+6xOVVHx/6C//9eGx3mxmMnPFyReNW5vbPwemprakUz+BRde+FGUlmYzdmH9QsidQ2+99TUcPjy9w4TVUpfpFxVRABcByO2utx6HDxtfPI6NHSv6HBDvkPK25ccgY34MzuY7XMrst81EgojBKklFtM9qvtmzb0Vvr9hKca8Wovj1gsSrFmtnn30R6upW4OjRN1SDejfq/WSsKezuflrjN/aWumjtrqen2HNAfDHZzKIeh4zJEpx1C55S3KAg+Bis2iCI+757xUqf1fLyeRgd7TM8rqysVoqFKH4i42p0N+r9ZKwpdCvLrb+7nrZizwHjxWRAJFKPigp+hsNicFDsuBMnHB0GSYDBapGCuu+7V8z1Wc2uhC4rqxW67/r6fwzlRUQxGUIZV6O7Ue8nY02hW1lu46B4KnvOAePFZICinEIy+SDOOKOJiQGiEGGwWgStqTKnWyX5mUgWOpFYr7ugJGtyNX1pabXQY9fUXFPM0H2p2AyhXzsaBJFbWW5zwa6950BuMVl7+80a3QeOI5m8f+JfTAz4l8hFtN3a2uSrtyUxDFYt0p8q86ZVkuzMZKGn9l7s7f1JwVR//mp6RclIl/2ThR0ZQjs6Gpht7O0XbjYgdyvLbSbYdaKrRSJxDfbtu0XoWCYG/En0Ivrb3xa7v9mzjTsYANkerGwJ5k8MVi3yapW0X4lkoaurCzOfuUVJVVXrsGjRo5oZWWb/nFdMRwOzjb1la4ujx+4G5PrZpijKy7+HkZG/h+h5bqUERKR2tLS0BkuW/G9UVa2z/XOVPceOCB7tz8SAH9tDGTFzroleRMcE2/YuW5b9vG3bpv2ZzL9fL1qCUXEYrFrk1SppPxLNQl98sfYen0ar6f3az9RPrHY0EG3svWkT0Nw8+aWWsb7TruesfCGKZZvejVdf/U8MD99seJ5bLQERufhravoeqqud6XVq/m+memJAxm4OOX5sD6VHhgWJDQ3Zvx8UTAxWLZJxlbSsRLPQQ0PbAFRafhw/9zOl7BfNypVej8I7otkmRXk3Vq06bHieF1MC4uXFn9W/mflBrgzBkxFZ2kPZQcYFiRQsDFYtknGVtKzMNfuuLOqx/NrPlMgMN85zry7+RMoQ1OQHuQyegqGyMnjlEmQNg1WLWCcpjs2+yU5u1PuJPEYYeHHxJ9LCasotmBgIqFmz1MslMpkMOjra0djYhPr6KC84QoDBahFYJylGNAudbfbd6vLoyG/cqPfTe4y2NuNFHFQcrb+t0wUrMSBzna1X1MolMhmgpOQUli8Hov5/20kAg9UisU7SGLPQ3vHzquNkEti7dwbGx9W/kJz+4vZ7TaGiZAAYf6ZEjytmHFb+Pk7923ryZAeSyacAqLew8zs/1NkSeYXBqg1YJ2lMJAud8fPyb0n5ddVxMgksWVKC4eElmsfwi1vfiRM7AVxk23FWFLvDX/7f1kwmg/7+d2P+/BMYG+sNXGIgTHW2Tl1Ei97vyAjw+uv69+O31zjoWXkGq+QaZqG94XWG0MoXU/aLO6J7v159cfslWz06qvPNZeE4s5zY4S8SiaKych2inPv1NacuokXud2QEuOKKYGWww5CVZ7BKrmIWOnz8mt3V4tTzsTsInjmzArHYKaTTMzSPicVOYebMCnMDFcAd/sLFyrnr1EW00f2+/nrwMthhyMozWCUixxl9gSSThdNysm/L6sQXrd1B8Pnn/zV+/vPV6Osbg9bCxtraMpx//n9bGa4ur3f480v2OyiCdkFK8mGwSuRDVhetyMjsdqz5jh17CQMD5dI9f6v1Y3YGwZFIFJdddtfpqXhAbWHj0qWbEYlEba9383qHPwZP7svfSlVN7ud8zckKBqtEPlPsohXZiG7HqubQoS+irGynFM8/F/B1dwMbNgDptPaxbtWPiSxsdKLeTbS38smTezAwsNWRi438wF8tGE+lJn8WtMDVi8U2YaibJO8wWCXyEScWrQSB18/fbHbYzfoxo4WNTtS7ie5ClUw+gGTyAUcvNsIWRCWTQGNjdiGRlngc6Oiw9/mGoW6SvFPi9QAovBQlg4GBrejp+RkGBrae7vco/317xXjRCrB//22BeK7mefP8c7W227bJvdtVbmFjff0HUVW1zlIWs9vEjH2ut/Lpfxken7vY6OvbYnpcRswEUV7K1dnqEamzbW3VD1SB7O9buf8K+Qgzq+QJtansWGwOSkpuAbDc9vuWYZq4WF4vWpFNLHYKFRX5EYa7z7+YWls/2rAB2LdPPCsmvgsVwA4B9tXZDg6KPZ7ocUQyYLBKrtOayk6njwC4E6nUfNTXX6d6W6v37fU0sR28WLQi00Kup556FaWln534d0VFCvX1ndOOc2rRzlTF1Nr6UTptfgo3vwRhYOC3SCYf0Dk6WBdbVupGve6JHAZmOkX4pdF+GLpfMFglV4lMZR88eDvq6tabDoqC3ttRdNGK6HFGZMtQL1kSQ09PCkND2b+4Q0OJif/OqahIYdkye54/2SNXguB1hwA3ha1O1k9EM9iAf97DMHS/YLBKrjKeygZGRrosZVeCPk1uvGglgnh8Dior1xT9WDJmqE+eXIEbb+xAOq1d2BeLDaOjowxVVS4OjIS4fbHlJS42kptIBttvmwcEPSvPBVbkKiezK0HP3OgvWsn+e9Gix4vOGru9kEt0YQkQ1Q1UASCdLsexY/7LmodB7mJLe8FVBPH4XM2LLUXJYGzsj+jt/XlgFk0SkRhmVslVTmZX/Ja5sVIPKtI3s1huZ6i1prAymQw6OtrR2NiE+vqo56u17SRT/VgiAcRi+n1h7ZC72Mpm7CNQ26Qgd7E19bMxOtqH/fs/h3S6C+3t2Vt4VZIiUscYRmGomyTvMFglV4n0X7Q6le3mNHmxiqkHNeqbWSwvMtRqU1iZDFBScgrLlwPRqPethYoViwFbtgCzZslVP9bQkB3X1Vc7c/9TA88lS57DgQO3a15sqX021GRLUq7F7NnZOnStz4CdQZRoLermzcb35ZTKSnuPExWGuknyDoNVcpVxdkXBggWPWQq8zGRuvGRHPWhu0YoT7MxQ+2U1rZM2bQKam+V+rrMcmmzQuihbuPCbKCurnXaxpfXZUJc95siRx3HkyOOaF3t2BlGitahetoVqack2/TfaFKClxf7H9mvdpNrfqbY2b8ZC6hiskuu0p7JnIxK5BYnEegfu275p8mLI3LEglwEbGTmCsrJajI6mNMYplqEO+opo0YzdmjXyPz8npnD1Lsr27Hk/li7djPr6D078XP+zYUzvYs+vQZQVDQ3Z3anMBudhvbAMW79kv2KwSp5Qm8o+66zV2LWr+G1VnJ4mL4asHQtEp17NZKiDviI6SNOedj8XKxdlIp1CDB5V9X7DyGxwHvQLS0A7GG9rY6DqBwxWyTFGC4imTmVnMvat7rUyTe5GA3wZOxaYmXqVJUMtiyBl7Ox8LlYuyuw55+VoT1dZ6a/FRjJcWDqZ2XUqeyrTexh0rgSrP/nJT/CDH/wAfX19OO+883Dvvffiggsu0Dz+N7/5DZ544gkcOXIE8+bNwx133IG1a9e6MVSyiWwN5Y24NV7ZOhaITL2WldVi0aLHEIvN9jRDzdXG9nF6ytfKRZmd57zX7elmzfJX1r3b425+Tmd27dhtLld7nk+m9zDoHA9WX3zxRTz00EO4//77sWzZMjz77LP4+Mc/jpdeegk1NTXTjn/99dfx+c9/Hp/73Odw+eWX41e/+hU+85nPYMuWLWhsbHR6uGQDGRvK63FzvLJ1LBCZeh0d7UMsNtvzjRSCNO3uZX2gG1O+Vi7KKivXoLS0BmNjx6w9qIXHd5Jfsu7JJLDB4z/HopndbduyAWMmA3R0zMD4eLZTiBuf++ZmYOVKZx+DtDkerD7zzDO4/vrrce211wIA7r//fmzduhXPP/88br755mnHb9y4EWvWrMEnPvEJAMBtt92GV199FZs2bcJXvvIVp4dLRZJ5AZEat8crW8eCYsoSjAIuJ7I1XgYAdgWYIsFiPJ7Bf//3r7FgQYXt2Ww3pny9uyiTpz2dX6RSzvXYtfui7IYbcv8VBbBk4ud+r6clY44Gq+l0Grt378YnP/nJiZ+VlJRg9erV2Llzp+pt3njjDXzkIx8p+Nlll12Gl19+2dRj21n/SOIGB7cK1ar1929FZeW6gt/k3jM337tixmtVdfU1aG7O9ppMpwu7ISxY8Biqq69x7TUoLa0TPi5/TMkksGRJCYaHtXYjAmKxbLBvJJPJQO3penE+aBF5vuXlCvbsGTf8wuzpAYaH9YPPkZEo/vSn+3HixE7EYnOwcOFjE10yig0Asi+ncfCr9b6IWrDgMbS1XQ+ti7IFC76J8XEAyD7I4OBWoaxqdfUG9PdvUfmN+v3aqaoKKC83Pg+qqsaLeu3cJHo+ZI8VPyfMfGbMjEHN8DDQ05PB7Nnqvy/2/rP3UdzngaYz87fd0WB1YGAAmUxm2nR/TU0NDh48qHqbVCqFxJSis5qaGqRMdgRvbS1+VTmZNzq6Q+i4fft2oKysUvV3br53dozXmvmIxZ5HNLoTipJCJJJANLoCXV1RdHW9YePj6FOUsxCJ1EFRejWPiUTqcejQWYhEJse1d+8MDA8v0bwNAKTTxoEqAHR0tKOk5JTm72X4LIs83+HhCF59tR39/drPBchOX+ZnhYyk011oa3sfyssfwbFj/y82bDgf6bT2Ttmx2Di2bHkTM2eOFvX4Ru+LsfkoL/8XjIw8WnB+RSJ1iMc/j66u+QXnuuhn8Z13VqK8fJXw/dpt8+YyDA5qf3VWVo6hv38U/f2ODcFWZs5HM+eEmc9MlvhnwuzYzH7mzN4/OS+w3QBaWloQjXo/zRw2g4ODEIktFi9ehcrK5QU/y2QyaG1tdfW9K2a89rjQgfs0J5V66nQGDFDLgJ133reQSBSOM5u5MhaLKbpBa3m5gtWrm1QzgaLngxv1n6LPt7GxCcuX23NfhSJQlCdRW3ubbqAKAOl0CerqlmqOw87nYmw5FOVWDA1tQzr9NmKxmaioUC9rEP0sLlz416iuvkL4fkmfmfPRzDlh5jyzg97YrH3mJun9nSLrcn/jRTgarFZVVSEajeLYscKpnWPHjk3LnuYkEolpWVS947VEo1Epg1U32iN5qbp6nVCtWnX1Os3n7eZ7Z8d4/a6+/jqUlJjbSEH07dmyJaK7O1IiEUFDg/6d6Z0P2alG5/tDij7f7Fjtua9Cyun3ZheAi4oah53PRfCeUFPzLsOjRD6LkUgdqqrWnj4fxO6X9Im+x7EYUF9feE7oXSh2dIg+vj1/V+0459VW/ANif6fIWY4Gq7FYDEuXLsX27dtx5ZVXAgDGx8exfft23DBZKV1g+fLl2LFjR0Hd6quvvorlxV/ie85v7ZyskG0BkRG/jdcpTm2kMGuWsytoZegP6absrmLBJPJZjMc/79nObkFNMIjasqXwM+SnnZ+CtNtcWDleBvDRj34Ud911F84//3xccMEFePbZZ3Hq1ClsON0r484770R9fT0+//nPAwBuvPFGfOhDH8IPf/hDrF27Fi+++CLefPNN33cC8Fs7p2LIvuXpVH4br1OsbKRA7iors95ENhd0HTs2DOAq+wZlI73P4oIF30RX13xXxxOGBIOoqTMkdvQuzREJJosRpLZ3YeV4sPqe97wH/f39ePLJJ9HX14fm5mZ8//vfn5jW7+7uRknJZA3WypUr8eijj+Lxxx/HN7/5TcybNw9PPfWUr3us+q2dkx1k3vJUjd/GS2GTLUeJxVZYunV+0NXfPxexWDvS6Rmax3u5uYLWZ3F8HK4uPgxLgkGGzTa0gsm2tvx2VcU/BqAdsOZ+zoBVTq4ssLrhhhs0p/1//OMfT/vZu9/9brz73e92eliukWE/eC+msuzO1Kk9BwC2PS9mFskNIsFBLHYKFRW5b9XJcpTOTvPn9tSgq76+Exs3NmFoSC36iCAWq8fll//K0xo99c+ie32DrCYYvNzswSpZso7F9FCOxYyDaTc2wyDnBLYbgEy83g8+CFNZas+htDTbEi2/N6PfnpdfmcnG+PELfCor2Se95715c/b/p06tDgy8gs7Or2PGjN2or+8EUFiO0tlpbtxaQVd9fefE/efr6ZmLoSEFhw7txLFj0xdyWXmv/Pj+W0kw+DkY8mqzDbsytlPradWErb49aBisusDL/eCDMJWl9RzUGoj76Xn5mWg2BvDvF3g+s9knq4FLMnkFKivX4sSJnRgdTaGsLIFYbAU6O6N47TWgtzebRdLbcSg/ABDZTjenp2cubrzRuDzAzHvl1wBOJHHQ0zMXf/zjMHJtxNvaGAyJiMWyweWsWfZdqOh1HKFgYLDqAq+2HgxCraz+c1C9BfzwvIJAJBvz+uvB+QI3k32yksWZDOyiEGlPNVUuCGhpmbxPM7M1Q0MJ3UBVbcxG/JrNMkociAT2QZXLlLe1Wbt9Oi3WJSSZtP4YFDwMVl3gVXskGWpli2UmMzRJ/udF9pBhcYhdil1dnQsC8oM+J2ZrwsAowTA0VBvaQNWNdlVmHscvn28qDoNVl3jRHsnrWlk7FDM2mZ8X2UOWxSGyMp7VySe2PW4YiCQYwsjOdlV2PM7GjRmsXRsN7ec7TBisusjt9khe1srapZixyfy8yBw/LtKRgX7QVSgWq3dtXFN1S3hdqZdgWLjw65bvd2DgFQBX2DBCOu88fu7DgsGqy9xsj+RVraydzGWGcuR/XiTOrS1Vjcbgh2BZrcYvkVAPumKxOTjnnJswY8ZixGKzcNZZ3n1eNmwA9u1z5zU0815qJRh27rSeYDhw4Au44IK7uQCUyAQGqwEWhK1EzWSGTt8CgPzPi8R5vUjHTyva1dpZZ8e2AatW6c/qRARnt53IgqbTYu9fttfyVoyN9VqambLyXjqRYOACUPcFqb49jBisBlwQthLVeg7afVb98bzIH7wOlos1OTZ7gi43s6D5UqkXcPLkZ9Da2jvxM7N9lb1+L7ObPfRxAagHWN/ubwxWQyAIW4lqPQfAvh2syH5hzWb48XknEsY9XAHxLKiZ+zTS17cFbW3Xw2/9ou+++x/Q0LB34t8VFamJzRjCugDUy/Peq80PqHgMVkMiCFuJaj0Hvz+vIAtrNsPoeeem0lOpyWO6u+0J7KxqaMj2ab36arnuU8Z+0SIXI6WlI5g16yAaG3eq/l6mBaB212Rv2gQ0N9tzX0QAg1UiclhYsxlazzuZBP7mb/QDnfxdfnJyAW7+z9ra1OtUrXJiJ6Bi71PGftENDcArrwDr1mlfXIyNxfG5z/0OGzc2TdnaVq4FoKJ1vK+8AvT3i+2gtmZNcZ95kYuBWGxcqpkJchaDVSIiF4nUTYru8hNU+Zm+Y8eGcejQioLf50+n57g9rR6Pi5RMzMDQUCJvrPItABWt49ULzAH1HdSsMpqZyGQy6O3djYaGpZbu3y/dPWgSg1UiIpLG9EzfVaf/NykWOzUtYynTtLoWPy8AFallnrqDWjH0ZmQyGeCNN0Yt3a+funvQJAarRD4VluyAHxcrAdrvT9j2Ozf7/ollnvMzlnJNq0/V2Pg9NDfvc2QBaFj+BtjJ644QZA2DVSIfClN2wOtFWlaCZTv2UO/uBl5/XX9cfgjknX3/zE2re/F6nX32Raivv8i+OzxN5ByLxzP47//+NRYsqGCnFPI1BqtEPhS27IDdi7TMZKSsBFt27KG+YYPxQpb2dnsDQaeCOacW2ZmdVvf6wsdOIufYyEgUf/rT/ThxYqfpnrREMmGwSkShYiUr7UVHA6MawdzFyMqV9tYJ+iWYa2z8HlatWiGULeR0ufw9aYn0MFglIkNWv+xlDBLClpU2yy+txs4++yKhLWL9WjJj9Nkxv+2tNz1piezAYJWIdFn9sjd7u6lfzpkM0NExA+PjQDQ6GdjKGADbzcvNAYrh5nsjUtPb0ODcxYmT9a8in51YzPz9qvWkFetp6s/zkYKDwSoR6bL6ZW/mdoDal3MUwJKJf+Uak19xhbXAOfc4Mq3G19rpp7vb3p2k3OB2BlO0ptcpTpZMiPbitSq/J63Ibmt9fcAnP2n8esvWkYOCg8EqEXlONLA9eNB84GzHynynNDerN/7Xyxha5XTW064Mpl2ZvvwLIaf4pWRiqqk9ae3YbU1tMwAZZ0FEz6+REffGRMYYrBJRoNmxMt/v/FS3qZXpy2Qy6OhoR2NjE3p7o77LPMvBXE9aM7utqQWqMp5zIlvlptPZGRwZPg+UxWCVyIf80F8zzKz2ZnWqVMFvi8rUMn2ZDFBScgrLlwO7dnkyLOkYZZhjsVOoqMhF/e5u9SrzOSeyVa5MnwdisErkS35qMRRGou8PkJ3y7+42rsGcihcjtGVLNqs51cDAK+js/DpmzNg9sSWtn7d6JWKwSuRTfq2X8wM7AkGj98dKLW3+gixejPiHU7Wbs2ap1zwDV0BR1mJwcBvS6W5HtnolchODVSIiuB8IWqml1VqQ5Ta14EumLgv5vC6Z8ap2MxKJTrSnytm+PbtIUcuCBcCll9o3BiK7MFglIl1Wv+zN3M7pVdsiZAkEZSdzdwU1XpfMWKnddCLA3r4dWL3a+LhXX2XASvJhsEpEuqx+2Zu9nciX84IFXFjmpLY248CtmO4Kdr03ZoM5P5TMTM1Mb94MDA4ClZXqdalmA2y9jOrU4xisipGxNVdQMVglIkNWv+xFb6cW2Oa3KopGoxN/+M0Gzl5PA/vJDTfYNyWttuGBXV/eXmdLnXDDDeo/97KlGD872mRtzRVUDFaJSApTA9v8VkXRqPZxIvdrZmW+3jF+/dIRCTpy7GrZ43RZxdTzYGqWK5Uq/Ldf3z8vWygVc1Egc6Brx9hkbs0VRAxWiSjw7FiZ7+csSS7o2LZNO4PnZ0F//7xUzKyKrNlvmcdG6hisElHo+SFLUmwWqqFh+rS8lvz6ydxjOrVhgR388P6Fkcy1wjKPjaZjsEpE5AEzU/OxWHaLSLe+XPOzr/F49v+92is9N72fyQAdHTMwPl5YFhLGekmisGGwSkTkATNT8+n0ZNDoNq+CVGDq9H4UwJJpx5SXZ1fOy8rMRQkRqWOwSkTkETNT835i18IZ0en9wcHiH0tLse2J9Ooj29rcqyFesMDe44jcxGCVSIOiZLhdIZGgIG4Fa9fCLRnqIy+9NNvwnztYkR8xWCVS0de3Bfv334qRka6Jn8Xjc7Bo0ROord3g4ciIrHNySjqIO4A5vXDL7fZOl14qXzBqJXOdTAJ7906vX9a7jd1kbs0VRAxWiabo69uC3buvA6AU/Hxk5Ah2774OS5duZsBKrtNahW/mi3nqlLSb09B+kQueuruBnTudfaywt1CykrlOJoElS0owPDy9flnrNk4I+3vnNgarRHkUJYP9+2/F1ED19G8BRLB//21IJK5hSUCA+CFLYtcORzJMSdutstKe908keLJbEN8PUVYy19nbREzdxilhfu/cxmCVKM/g4LaCqf/pFIyMdGJwcBuqqta5NCpymp+zJHpfzEZTrN3dzo3LTbNm2fP+iQRPsuH+9BQGDFaJ8qTTYt/eoseRf3iVJXGqjlQkSxiPZ/+n155KpM+q11lnwNss18DAKwCucOz+80sT8jsfpFLAF74AjI5q35Y7d1EQMFglyhOLzbL1OCIjTrU2EskSjowAv/51NjOpZeoOVlrHOBEM+aE8AwAOHPgCLrjgbkdq2YstTeDOXRQEDFaJ8lRWrkE8PgcjI0egXrcaQTw+B5WVa9weGknCiWlXL7OCs2aJreL3eg/3TCaDjo52NDY2IZq3BFyWaW6natn9WJpAZDcGq0R5IpEoFi164nQ3gAgKA9ZsUf+iRY9zcVVAGQWiIyPAFVcU33fTbmqdAoJSj5oL5DMZoKTkFJYvV29XVKxkUrvjgp5Y7BQqKvqQTAIjIztx9tkXqR4nS1AtC6uvN4UTg1WiKWprN2Dp0s0afVYfZ9uqgBKZbo3Fsluf6vFi2lWtVKCsTOy2QQlqi2F1qv3uu/8BLS3/HwDgxhvbkU7P0DyWtaOTvOi6QP7GYJVIRW3tBiQS13AHqxARmW41ClRlorfoJp8TW5X6bYW61an2hoa9qK/vREfHCt1AFQhW7Wix76+Z13tqTXK2jlnRbV8lQx2zX/jls8pglUhDJBJleyrylJM7TjnFri1KZZed/s99y+v3/QwSN9/fTZuANWsK76ehAdizZxyvvjq9fjlHlgBLdn76rDJYJSKSlFanANl2nsrPzrS1ObtFqZc+9rG7sXjxG6iu7kZFRQr19Z3we6BqNrPm9Ba0+Zqb1e+joQHo73eufjks3Hwvi8VglYjII6KBgpNfFJWVxd0+TPWH//AP78Jf/dXGabXsCxd+3cNR6Zs6JZ5/znV3Axs26Je3yJJZo3BjsEpEtvJLDZTXZJmCm9pj1YlMW1BUVV2BFSsOT6tl37nTufSemVKQWAzYsqXwPc1/v6xcWMiSWaNwY7BKRLaRJQDzAxmn4Pj+GXO7lj2/FGTqDlY5lZXZANXOhU1EMmGwSkS2kTEAs5tR+yo/r0QOw/vnR15uGhFUnAHyFwarREQQ39rzlVeAeFz/fpz+khMZa26MIyPax/g5sLZTsdu6+mVbWFkU+3olk8DevTMwPq6+wMroM8gZBP9hsEpEBO2V9/lkybaIjhXwx/PxWrHvvVPnTlCzf8W8XskksGRJCYaHl2je1ijQ5AyC/zBYJSI6zU/TraJjlfH5lJdnM76vv659jNuBWLHvvd3njqzZP7uyyFZfr2ygqd8ujIGmGD/NCDBYJSIix23alO2bCWQD1SuukC8Qk4ms2T8nsshBzSDLzk+zSQxWiYjIMr2a2HwLFgArV2b/+/XX5QzE7BSUAEwts2ZnFlnWDHJY+GU2icEqEZEH/DQFp0dvsZmV44wkk8DAgPbvZQgC3QzAurvFyylEzrmpvVqdfj1lzSCTXBisEpFtghKAuUHGKTjZ37+33y7DZZeVSJ+FsyMA6+4We6z164HRUe3f578eMp5zRCIYrBKRbfhlaI5sU3Cyv3+Dg6XCi2sAeZ+HCLXm/2r0AlVgelAs2zlHJILBKhHZil+G/haE96+7G/ibv2EdJKmTfQaBpmOwSkREgTI4yDrIoMoGmopuht0o0JR9BoGmczRYHRwcxFe/+lX87ne/Q0lJCf7u7/4Od999N8444wzN23zoQx/Ca6+9VvCz97///fjKV77i5FCJiOi0oKxk97PKSq9HIKeGBmDPnnG8+mo7GhubEFXZwkrk/AzCDEKYOBqs3nHHHejr68MzzzyD0dFRfPGLX8SXvvQlfOMb39C93fXXX49bbrll4t8zZsxwcphEoRTkgCQoz82L5+HGSnZOwxrLrcan6RoagP7+U1i+XH27VQoex4LVAwcOYNu2bdi8eTNaWloAAPfccw9uvvlm3Hnnnaivr9e8bXl5OWpra50aGlHoBbm3YVCem1fPw+xKdiuBJ6dhKYcXLiTCsWB1586dOPvssycCVQBYvXo1SkpK8Oc//xl/+7d/q3nbX/3qV/iP//gP1NbW4vLLL8enP/1p09nVTCZjeezkjdx7xvfOeT09wPCwfkpieBjo6clg9myXBjWF1fPBD89NhFfPI/tyG6erMpkMMhlg9mxgzx7jwHP27Nx9Z82eDcNx5x9v5jwYH8/AzHOwW1UVUF5eYlBXqaCqalzz8UXfBxFOPU+g+Oy/lfOH3xXBYOb9cyxYTaVSqK6uLnyw0lJUVFSgr69P83ZXX301zjnnHNTV1aG9vR2PPvooDh06hG9961umHr+1tdXSuMl7fO+c19ExA8ASgePaUVJyyvkB6TB7Pvjpuenx6nlYfdySEu1j+/uz/ytWZWUZYrFxpNPaDxaLjaO//yCAxYb35+Q5sHlzGQYHtb9iKyvH0N8/qvm69PaWIRY7X/e5lpWNAwBGR/Vfj97e3XjjDYMeVxa8/XYZNmzQH2MsNo4tW97EzJn6j2/l/OF3RXiYDlYfffRRPP3007rHvPjii5YH9P73v3/iv5uamlBbW4uPfOQjSCaTaDAxJ9TS0qJaeE3yymQyaG1t5XvngqNHxY5rbGzC8uWODkWT1fNhfFzsOC+fmwivnoesr182C9OK3bvHMDCgfT4kEkAqtUDoPmU/B/buVZBKaWefclPjRsc0NCy1e2gAsjtn6QWqQPb3dXVLbX2d+V0RDLn3UYTpYPVjH/sY1q9fr3vM3LlzkUgk0D/lUmhsbAxDQ0Om6lGXLVsGAHjrrbdMBavRaJQnsU/xvXNWMglcd53Ysdn3wtnxiI1BfBCih8rw3PR49Txkf/3mz49i0SL9B45Gxeog6+vlPgfmz8/+T+Q4L3h9rvC7IjxMB6vV1dXTpvfVrFixAsePH8ebb76J888/HwCwY8cOjI+P44ILLhB+vLa2NgDggisim6RSQDrt/OMEZUW+7ES35QyL3Hm3ebP6LlCVldmV9jz/iPzDsZrVhQsXYs2aNbj33ntx//33Y3R0FF/96lfx93//9xOdAHp6evDhD38YjzzyCC644AIkk0n86le/wtq1a1FZWYn29nY89NBDuPjii3Heeec5NVQisllQVuT7wYYNwL59fB2B7HnX2AiMjGgfE48DHR18vYj8xNE+q48++ii++tWv4sMf/vDEpgD33HPPxO9HR0dx6NAhnDqVLXAvKyvD9u3bsXHjRrzzzjuYNWsW/u7v/g6f/vSnnRwmEemwkiE12/6IrEun7X0d/dxKqLVVP1AFsr9vbeV5R+QnjgarlZWVuhsAzJkzB+3t7RP/njVrFjZt2uTkkIhIUCyW/WL3W4bUz8FWvkQi+x64UbKRz889UNWm/Ys5jojk4GiwSkT+tWVLdsrUbxlSPwdb+Roasu/B1Vfbd5+iWXI7t6KUsXZZbzxEJB8Gq0Skys/bPQZl32873wMv6ohlrV2+4w5g/Xo5zhEZg3lRQZnFIPkxWCUiCgEv6ojdfkzRjOnYmByzAbIG86KCMotB8mOwShQyZrIhnC4ls/Izhac7D7r2uF/4gnuPZ4cgLEQMyiwGyY3BKlHImMmGMFglM0QyhWq0glozWblUChi1f0dRIpIAg1WiEHI6G8JaNnv47XUUyRSqueEG9Z/LPAVORO5hsEpEtmMtmz28eB1zWU4Z3h+Zp8DtWBgluvvY1OP8vCiLyAoGq0SkqZjMHmvZ7OH265jLcsqS1ZRxO1m7FkZZ6Qvr90VZRFYwWCUiTcyQhpcsWU21gE4ts+jmYi4vF0YFYVEWkVkMVolIFzOkwSCSJfeDZBJYsqS45+FWna9MJRVEfsZglYgoBPKz5G1t2oua3LBpE3DoEHDvveZva3URV/5jr1njTvCYe41jsexuZLlNHnLBa2Wl2P2IHkcUVAxWiYhCQpYseXOz+LF2tk8rL3cvUM2XThdum5urKRXdoczPu8kR2YHBKhER2cKJVltf+EJ2a9TZs82NZdOm6UGxLNPxuZpSIhLDYJWIiGxhZkGe6NT26Gj2/swGq83NwMqV5m5DRHJisEpERLYRLTXg1Lb/Nn0g8gqDVSKikJEhSEoksguP0mln7l+vlVWx5QB2dVaw0hpOhveOyG0MVomIQiTXo3TzZvUeppWV2ayn0/WdDQ3ZFfL5C4/spNftoNim+XZ2VjC76M2J3sfcEYtkx2CViCgkZNv9yEopgB1ZTatN842COrfY2dVBtnOCSA2DVSKikAjC7kdGmUWnesiKBHV+FIRzgoKPwSoREUmtuxtYtmzy3170ixXdjODxx4E779SvxWVNKZE5DFaJiMgTiQQQjwMjI/rHXXut/oIpmaxZA+zbF8waUNa2klcYrBIRkScaGoDnnzdeZDUykg2SSkrcGVexZNkpzE7d3cDf/A1rW8kbPvnoExFRELHfqj8MDorXthLZjZlVIiIiCiSWLgQDg1UiIgoMkTrYeJwLnMKAbbmCg2UAREQhketRqocr1cNF9JyorHRlOLYy05aL5MbMKhFRSDix+5FsUinj7gK5BVtmnqeX25w6OZUtek4woCMvMVglIgqRIK5Ud4NXgb4bU9ki5wSDVfISg1UiIvKMmYxlf79741Ij62YE3GGKgo7BKhEReUY0Yzl7tvfBaph5WQZBxGCViGgKtrtxl0jGMpNxZyykLgz1ziQvBqtERHnY7sY+DPqDhfXO5BUGq0REeVgjaA8G/eQ1li4EB4NVIiKynVdBPwMUymHpQnAwWCUiosBggEL5WLoQDAxWiYgoUIIUoDBTTMRglYgotLgASn7MFBMxWCUiCiUugPKPIGWKiaxgsEpEFELseiAPZriJ9DFYJSLKwxpBchMz3ETGGKwSEeVhjaA9ZAn6Zc9aMsNNZIzBKhHRFKwRLJ4MQT+zlkTBwGCViIgc4XXQz6yldbJnpClcGKwSERHRBGakSTYlXg+AiIiI5GEmI03kBmZWiYhCSJYFUHbLn75ua/N2LERkDwarREQhJMMCKLuJTF8Tkf8wWCUiCimvF0DZTWT6WjZBzXAT2YnBKhERkUeCmOEmshuDVSIispWf2h7JkLUMWoabyG4MVomIyDZ+aHu0aRPQ3Jz9b5kCZyJSx2CViIg0mc2S+qERf3MzsHKlN4/tB6yjJdkwWCUiommSSaC1FdiwAUintY/zOktK9mMdLcmGwSoRERUw0wLK6ywpOYN1tCQT7mBFREQFimkB1d1t73Fm5Kav9XD6msh/mFklIiLbDA7ae5wZnL4mCiYGq0REFBicviYKHpYBEBEREZG0GKwSEZFtKivtPY6IiMEqERHZZtYse48jImKwSkRElnF1PRE5jcEqEREVEGkBFYsBv/41NwQgIuexGwARERUopgUUt+okIrsxWCUiommstoBir1Misptjwep3vvMd/J//83/Q1taGsrIy/PGPfzS8jaIoePLJJ/GLX/wCx48fx8qVK3Hfffdh3rx5Tg2TiIhsxl6nRGQnx2pWR0dHcdVVV+GDH/yg8G2efvpp/PjHP8Z9992H5557DjNmzMDHP/5xjIyMODVMIiIiIpKYY8HqLbfcgo985CNobGwUOl5RFGzcuBH/9E//hCuvvBLnnXceHnnkEfT29uLll192aphEREREJDFpala7urrQ19eH1atXT/zsrLPOwrJly7Bz5078/d//van7y2Qydg+RHJZ7z/jeEcDzgQrxfKAcngvBYOb9kyZY7evrAwDU1NQU/LympgYpvUp9Da2trbaMi9zH947y8XygfDwfKIfnQniYClYfffRRPP3007rHvPjii1i4cGFRg7JDS0sLotGo18MgEzKZDFpbW/neEQCeD1RI5HxIJtmFIAz4tyEYcu+jCFPB6sc+9jGsX79e95i5c+eaucsJtbW1AIBjx46hrq5u4ufHjh3DeeedZ/r+otEoT2Kf4ntH+Xg+UD6t8yGZBJYsMe7vyk0MgoN/G8LDVLBaXV2N6upqRwYyZ84c1NbWYvv27WhubgYA/OUvf8GuXbtMdRQgIqLwSaX0A1Ug+/tUisEqkd841g3g6NGjaGtrw9GjR5HJZNDW1oa2tjacPHly4pirrroK//Vf/wUAiEQiuPHGG/Gd73wHv/3tb9He3o4777wTdXV1uPLKK50aJhERERFJzLEFVk8++SReeOGFiX+/973vBQBs3LgRl1xyCQDg0KFDOHHixMQxN910E06dOoUvfelLOH78OC688EJ8//vfRzwed2qYRERERCQxx4LVhx9+GA8//LDuMe3t7QX/jkQiuPXWW3Hrrbc6NSwiIiIi8hHHygCIiIiIiIrFYJWIiIiIpMVglYiIiIikxWCViIh8L5HI9lHVU16ePY6I/EWa7VaJiIisamjINvznDlZEwcNglYiIAqGhgcEoURCxDICIiIiIpMVglYiIiIikxWCViIiIiKTFYJWIiIiIpMVglYiIiIikxWCViIiIiKTFYJWIiIiIpMVglYiIiIikxWCViIiIiKTFYJWIiIiIpMVglYiIiIikVer1AIiIiMgZySSQSmn/PpEAGhrcGw+RFQxWiYiIAiiZBJqagOFh7WPKy4H2dgasJDeWARAREQVQKqUfqALZ3+tlXolkwGCViIiIiKTFYJWIiIiIpMVglYiIiIikxWCViIiIiKTFYJWIiIiIpMVglYiIiIikxWCViIgogBKJbB9VPeXl2eOIZMZNAYiIiAKooSHb8J87WJHfMVglIiIKqIYGBqPkfywDICIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJplXo9ALspigIAyGQyHo+EzMq9Z3zvCOD5QIV4PlAOz4VgyL1/ubhNT0QROcpH0uk0WltbvR4GERERERloaWlBLBbTPSZwwer4+DjGxsZQUlKCSCTi9XCIiIiIaApFUTA+Po7S0lKUlOhXpQYuWCUiIiKi4OACKyIiIiKSFoNVIiIiIpIWg1UiIiIikhaDVSIiIiKSFoNVIiIiIpIWg1UiIiIikhaDVSIiIiKSFoNVIiIiIpIWg1UiIiIikhaDVZLSd77zHXzgAx/AsmXLcNFFF3k9HHLZT37yE1xxxRVoaWnB+973Pvz5z3/2ekjkkT/84Q/41Kc+hcsuuwxNTU14+eWXvR4SeeS73/0urr32WqxYsQKXXnopPv3pT+PgwYNeD4tcwGCVpDQ6OoqrrroKH/zgB70eCrnsxRdfxEMPPYTPfOYzeOGFF3Deeefh4x//OI4dO+b10MgD77zzDpqamvDlL3/Z66GQx1577TX84z/+I5577jk888wzGBsbw8c//nG88847Xg+NHBZRFEXxehBEWrZs2YIHH3wQf/zjH70eCrnkfe97H1paWvClL30JADA+Po61a9fiQx/6EG6++WaPR0deampqwlNPPYUrr7zS66GQBPr7+3HppZdi06ZNuPjii70eDjmImVUikkY6ncbu3buxevXqiZ+VlJRg9erV2Llzp4cjIyLZnDhxAgBQUVHh8UjIaQxWiUgaAwMDyGQyqKmpKfh5TU0NUqmUR6MiItmMj4/jwQcfxMqVK9HY2Oj1cMhhpV4PgMLj0UcfxdNPP617zIsvvoiFCxe6NCIiIvKj+++/H/v27cNPf/pTr4dCLmCwSq752Mc+hvXr1+seM3fuXJdGQzKqqqpCNBqdtpjq2LFjSCQSHo2KiGTyla98BVu3bsWmTZswc+ZMr4dDLmCwSq6prq5GdXW118MgicViMSxduhTbt2+fWEQzPj6O7du344YbbvB4dETkJUVR8NWvfhX/9V//hR//+MdMboQIg1WS0tGjRzE0NISjR48ik8mgra0NANDQ0IAzzjjD49GRkz760Y/irrvuwvnnn48LLrgAzz77LE6dOoUNGzZ4PTTywMmTJ5FMJif+3dXVhba2NlRUVOCcc87xcGTktvvvvx+//vWv8e1vfxtnnHEG+vr6AABnnXUWysvLPR4dOYmtq0hK//zP/4wXXnhh2s83btyISy65xIMRkZs2bdqEH/zgB+jr60NzczPuueceLFu2zOthkQd+//vf48Ybb5z28/Xr1+Phhx/2YETklaamJtWfP/TQQ7yYDTgGq0REREQkLbauIiIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImkxWCUiIiIiaTFYJSIiIiJpMVglIiIiImn9/6vqRWvWqyF6AAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "X, y = datasets.make_moons(n_samples=500, noise=0.30, random_state=SEED)\n", + "\n", + "plt.figure(figsize=(8, 6))\n", + "plt.plot(X[:, 0][y==0], X[:, 1][y==0], \"yo\")\n", + "plt.plot(X[:, 0][y==1], X[:, 1][y==1], \"bs\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "cb4de83e-dfe0-48f4-8bd8-f0f9fdc36e80", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "cb4de83e-dfe0-48f4-8bd8-f0f9fdc36e80", + "outputId": "57473ce4-c5ff-4871-8f1a-e1247dfa6d2c" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RandomForestClassifierCustom(max_features=2, n_estimators=100, random_state=42)" + ], + "text/html": [ + "
    RandomForestClassifierCustom(max_features=2, n_estimators=100, random_state=42)
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 71 + } + ], + "source": [ + "# Создание и обучение модели\n", + "rf_custom = RandomForestClassifierCustom(n_estimators=100, max_depth=None, max_features=None, random_state=42)\n", + "rf_custom.fit(X, y)" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "c59e2333-fb8d-4fa4-9405-a0c186596b19", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 557 + }, + "id": "c59e2333-fb8d-4fa4-9405-a0c186596b19", + "outputId": "1ae5b6fb-aedd-4881-d6dd-8925aba59e9b" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIcCAYAAAAExjNxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5xlWV3vjb/XjidVnYodqrs6TaeZYRJDFp+5IEj06oBI+AEXR1BRvHr1eck18FzTy0HURx5zYEYUE6KIyMCgiCASBpgAk7t7OldVV64T99lx/f44XdUVTlWdc+rEqvV+vXgxXeecvdfee+21Puu7vkFIKSUKhUKhUCgUCoViCa3dDVAoFAqFQqFQKDoNJZIVCoVCoVAoFIpVKJGsUCgUCoVCoVCsQolkhUKhUCgUCoViFUokKxQKhUKhUCgUq1AiWaFQKBQKhUKhWIUSyQqFQqFQKBQKxSqUSFYoFAqFQqFQKFahRLJCoVAoFAqFQrEKJZIVCoVCoVAoFIpVdI1I/sY3vsGP/uiP8uIXv5gTJ07wuc99bsPvP/DAA5w4cWLN/6anp1vUYoVCoVAoFApFt2K0uwHVUiwWOXHiBK9//et5z3veU/Xv7r//flKp1NK/BwcHm9E8hUKhUCgUCsU2omtE8h133MEdd9xR8+8GBwfp7e1tQosUCoVCoVAoFNuVrhHJ9fJ93/d9eJ7HsWPHeM973sPtt99e9W+jKCIIAjRNQwjRxFYqFAqFQqFQKOpBSkkURRiGgaY1zpN424rk4eFhfvmXf5lnPetZeJ7Hxz72Md7+9rfz93//99x4441VHSMIAh599NEmt1ShUCgUCoVCsVVuuukmLMtq2PG2rUg+cuQIR44cWfr3s5/9bC5dusSHP/xhfvM3f7OqYyyuRk4eHMbUt+2tajiRjLh08RKjB0bRRNfEhrYVdc/qQ923jSmWzjCX+TeKpbNE0kUTNnH7MG7xJo4c/g51z2pg2/c1GaDNn4PQ49SFAr/392eZf8ZHPgFaqPHsVxzhxW+4oaZDRlHEpUsXGR090FDr3nZH3bfaiWRIbNRt+P3aUcrvpptu4qGHHqr6+4suFqZuYJk76lZtiTCKEAJMw0BXL3hVqHtWH+q+rU/BOcXk3L34/iy2tQ9d200YFSm636LkPo7v76UnebLdzewatn1fiyjnu4okAonvh3ilEFkELZJEAWiaXtsxpSAKJZrQldirBXXfaicq/1+jXWN31N1/6qmnGB4ebnczFAqFoqlIGTEz/2l8f5ZE7ASG3oMQOobeQ8I+TiQzzGTuR8qo3U1VKBSKjqVrzKOFQoGLFy8u/fvy5cs8+eSTpNNpRkZG+O3f/m0mJyf5wAc+AMCHP/xh9u/fz7Fjx3Bdl4997GN87Wtf4957723XJSgUCkVLKHmXKZbOYFv71lhWhBBo2jBF5zQl7zJx+0CbWqlQKBSdTdeI5Mcee4y3v/3tS/++++67Abjzzjt5//vfz/T0NBMTE0uf+77Pb/zGbzA5OUk8Huf48eP8+Z//OS94wQta3naFQqFoJWGYJ4xK2Fqi4ueCOFLOEYb5FrdMoVAouoeuEcnPf/7zefrpp9f9/P3vf/+Kf7/rXe/iXe96V7ObpVAoFB2HrqfQtRhhVMTQe9Z8LnEQwkbXUxV+rVAoFArYYT7JCoVCsROIWftJxI7iemNIKVd8Vs4nOk0ifoyYtb9NLVQoFIrOp2ssyYrWImVEybtMGObR9RQxaz9iO6Y9Uii2IUJoDPW/mpI/TrH0NLY1gq4lCKMiJW8cTaQZSr9SvdMKhUKxAUokK9ZQcE4xM/9piqUzhFEJXYuRiB1lqP/VJOPH2908hUJRBcn4cfbveufSu+zJK2jCJpW4CSO6iYR6lxUKhWJDlEhWrKDgnOLy1IeWcqvaV61PueKjlPxx9u96pxLKCkWXkIwfJxE7umJXyDRGOO9caHfTFAqFouNRIlmxxOrcqoupowy9Bz12gmLpaabnP40mbMKooNwwFIouQAhtRZq3MFK5kRUKhaIalEhWLLF5btU403P/Qq74LQS6csNQKFqIihNQKBSK1qJEsmKJjXKr+v4sRecp/HCWpDhJzB5Vbhh1oISOoh5UnIBCoVC0HiWSFUusl1tVSkmhdJogymNofZhm/1KJ20U3jJmFz5CIHVWCbwM2Ejox+2i7m6foUFScgEKhULQHpWgUS6yXWzUMs/jBLEiJZQ1i6L1LnwkhsK2RpRK3isosCp1c8VEMY4BE7CiGMUCu+CiXpz5E0TnV7iYq2oiUEY57kXzxCRz3IlJGS39fHidg6D1LC9RE7AS+P8vMwmeWvq9QKBSKxqEsyYol1sut6ofzBME8pjlMInYMWOmvrGsJPHlFlbhdh2oCImcy9yPla9rcUkU72GiHQdNiG8YJLF+gLg/OUygUCsXWUSJZsYJKuVVlFGCaQ6Ti12Mag2t+E0ZFNFXidl02C4hcFDp6NAlc155GKtrCZq4UA70vWTdOANQCVaFQKJqJEsmKNazOrappCabm/ol88TGklCuEnpQS1xunJ3mzKnG7DhsFREJZ6Eg5gaTY4pYp2kk1OwyZ/NfRNHtNnMAiaoGqUCgUzUOJZEVFVudWHe5/Da4/sabEreuNY5mDDPW9SgXtrcN6AZGLhFERIWwElUX0TmQnZAGpZofB86awrF2U3Ivoy4Q0qAVqteyEvqRQKJqDEsmKqlivxG1P8maG+l6lous3YDEgMld8dF2hk0zcRFDc3cZWdg47Jd1ZNTsMHldIp55HGBXUArUOdkpfUigUzUGJZEXVVCpxq6wym7NeQOQKoZN+JZOOuo87Kd1ZNTsMmrBJJW4kEbuuaQvU7Wpp3Ul9SaFQNAclkhU1sdoNQ1Edm1niy3mSz7W7mW2lqiwg2ygfdzU7DIuuFEJoTVmgbldL607rSwqFojkokaxQtIiNLPFhpPLcVpsFZLukO6tqh2GZK0WjF6hF5xTjM/duS0vrTutLCoWiOSiRrFC0EGWJX5+qfHS3Wbqzdvn6Sxkxs/CZbWtp3Yl9SaFQNB4lkhUKRUdQrY/udkt31g5f/zCaxNvGltad2pcUCkVj6T4TgUKh2JasVxYdrvnoJuLHtmW6s8UdhlTiBuL2gaZbbyVFIumib2BpjaTbtZbWndyXFApF41AiWaFQdASLPrqmOUix9DRBmEXKgCDMUiw93ZR0Z1JGOO5F8sUncNyLSLkzfMMFCTRRLlJSiW63tLajLykUiu2HcrdQKBQdQyt9dLdrZodq0LXd2LGjFJzHtm2REpXbXaFQbBUlkhUtZ7vmZVU0hlb46O70HLpCaAz1vQov2N5VNFVud4VCsRWUSFa0lJ1svVNUTzOzgKgcumUSO8TSqjLKKBSKelEiWdEydrr1rlPZaZZ9lUP3GsrSqlAoFOujRLKiJSjrXWeyEy37KofuSpSlVaFQKCqj1IiiJdRivVO0hkXLfq74KIYxQCJ2FMMYIFd8lMtTH6LgnGp3E5vC8hy6lej2zA4KhUKhaAxKJCtawqL1brvmZe02Vlv2Db0HIXQMvYdE7AS+P8vMwme2ZUo0lUNXoVAoFNWgRLKiJSjrXWexky37KoeuQqFQKKpBzQKKlqCsd53FTrfsL+bQ7UncRBDM47hnCYJ5epI3s08FkCoUCoUCFbinaBGL1ruSP76t87J2C8st+4bes+bznWDZX57ZIQhzhGEOXUuhaTGkjFRfVCgUih2OEsmKlqEqYHUOi5b9XPHRbVtxrRqE0IiiEnML/7ajMnwoFAqFYnOUSFa0FJWXtTNQlv0yKne3QqFQKNZDiWRFy1F5WTuDnW7ZV7m7FQqFQrERSiQrFDuYnWzZV5X3FAqFQrERSiQrFDucnWrZV5X3FAqFQrER299cpFAoFBVQubsVCoVCsRFKJCsUih1JNbm7TXOYIMjiuBe3ZfVBhUKhUKyPcrdQKBQ7ko0yfBScpwnDLFL6XJj4oEoLp1AoFDsQZUlWKBQ7lkqV90ruBcIwi673ErMPkYgdxTAGyBUf5fLUhyg4p9rdbIVCoVC0AGVJViBltCOzGygUsLby3uTMxwCDZPykSgunUCgUOxglknc4BefUUp5cVW1MsVNZzPDhuBfxgxli9n6VFk6hUCh2OMoUsoPJF5/i/MQHmc99GYRJ3L5ObSsrdjSLaeH0DdLCRdJVaeEUCoViB6BE8g4lX3yKM5feRyb3NVzvCrnCI2QL30RGHonYCXx/lpmFz6iIfsWOQqWFUygUCsUiSiTvQArOKS5e+f9wSmcx9QFMox9di+H5k2SLDxEEcyu2lRWKnUI1aeES8WPErP1taqFCoVAoWoUSyTsMKSNm5j+N588gRBxdTyKEhqbZmMYgYVik4J5BE3G1razYcSymhTPNQYqlpwnCLFIGBGGWYulpLHOQob5XqaA9hUKh2AGokX6HUfIuUyydIWbtQ9dMpPSXPhNCYOg9+P4sXjCltpUVO5JKaeGCYJ6e5M3s2/VOFdCqUCgUOwSV3WKHsRiYlIhdh2kM4PqTmGKIxUB+IUykzON6Y/T3vlhtKyt2JMvTwnVDakSVxlGhUCgajxLJO4xrgUkOifgxgiiHH8xg6D0IYRKGBcKogGUOq21lRVcgZUTJvYSUhYYKxMW0cJ1OrWkcpYwIwgkKTgnT6FGCWqFQKNZBieQdxmJgUq74KInYCXqTz6bonMYP5ohkjihySMSPcmDP/1TbyoqOp+icIlf6G86PzyKlu+PyfBecU1ye+hC+P4tt7cO+WlY7V3yUkj/O/lXuIQXnFFNz95FxHsGfMDF22P1SKBSKWlAieYexGJhU8scplp7GtkboTd2O60/hemNY5hAH9vwkqcTJdjdVsQy1nb6WgnOKsel78MNLpIxjGHpyQ4G43VgMwvX9WRKxE5tWB1wU1J4/i6alSdh7iaSzY+6XQqFQ1IoSyTuQxcCkxS1aT15BEzb9vS9mqO9VaqLsMFRVxLUsCcRgDl07dNVdSOyo8tGLQbi2tW/T6oAxa/81QW0fxystIISOoe2c+6VQKBS1okTyDqXbApN2KrVup+8UlgSiOYJXClZ8tlPKRy8G4dobVAf05BXCMF+ToN6u90uhUChqRSmiHcxiYFIqcQNx+4ASyB3G6u30srVUx9B7dnxVRFU+urbqgOp+KRQKRe0oVaRQdCi1WP8ajZQRjnuRfPEJHPdixwnxTisf3Y77VUt1wE67XwqFQtENKHcLhaJDqWU7vZF0gw/0okDMFh9FyuEVny0KxJ7kzU3N870YTJkvPk4m9wCeP03UwgwblYJw9avuOK43vqI64PKsNnF7ZZtadb8UCoWi21AiWaHoUJZb/wy9Z83nzbD+dYsP9KJAdLwxitF5gtBYym6xWiA2g8WFRLbwEHnnKaQMiFkjJOPXo2nxlt2v9YJwe5I3rwjCXSGo3VNEMoGUPYSR05L7pVAoFN2IEskKRYey3PqnL0vxBc2x/tWaUqzdJOPH2Tf8QxTzf4MfzOIHkxUFYqNZvpDw/TkEJqYxiB8skCt+i97Es0m08H5VG4S7KKin5u6jWHgEx3XQtVjT75dCoVB0K0okKxQdSi3b6Y2gkzMgrJcnOhE/Tk/sbYyMWA2vuLdeOxYXEpa5B6d0FtNIo2kWmmbhB7MU3DOkjee19H5VWx0wGT/O6J4juIWvMbK3X1XcUygUig1QIlmh6GCq3U5vBO3ygd6MjXykY3bZShuzR9G15gu95QuJKCoRyQBdmABLeZp9f5YwzKLrybbcr80QQsPQ95KMH27JPVModgL5gkbJFet+HrMlqWRnBUArNkeJZIWiw2lVTut2+EBvxmY+0iNDdwFmy9qzciERoQkDKX2EsAAQwkTKPJH0IBIqY4RCsQPIFzTu/egAC1l93e/09Ybc9cY5JZS7DCWSFduW7VTKudrt9K3Qah/ozajKRzpzP1K+piXtgdULiV5MYwDXn8QUQwjBVcFsIDBVxgiFYodQcgULWR3bksTstSK45GosZHVKriCVbEMDFXWjRLJiW9INacw6jVb7QG9GtT7SejQJXNeSNq1eSCTixwiiHH4wg66lCKMcptGP609gW0MdkzFi+YJRiGTH5b1WKLYDMTsiEZcVPolwvfWtzIrORYlkxbajW9KYdSKt9IHejGp8pKWcQFK5QEYzqLSQ6EncQqH4JK4/gRA6pjFAb+qWjskYsXrBKISNWxqk6LyFnuTJdjdPoVAoOhYlkhXbim5LY9aJtMoHejOq8ZEWwkZQWUQ3i9ULiUi6xGIH6e15LunU80glbuwY155KC8YgLJAPTzE2fQ+j2rs6QsgrFApFJ6JEsmJb0clpzLqJVvhAb0Y1PtLJxE0Exd0tb1unLCQ2YsMFo3YIP5hWC0aFQqHYACWSFduKTk1jVi/bKfiwVqrykU6/kkmnPfejExYSG7HpgtHcqxaMCoVCsQFKJCu2FZ2YxqxeWhl82KlifDMf6Zh9FDi34jedei3V0qj2V7Ng9IPJrlkwKhSdTsnVgMrZLRTdiRLJim1Fp6Uxq5dWBh92eiaQjVwbwmjlhNTp17IZjWz/dlowKhSdTMyW9PWGLGT1dbNY9PWGxOxKmS8UnYwSyYptRaelMauHVgYfdksmkGpcG7rlWtaj0e3fdMHoT9DbBQtGhaLTSSUj7nrjnKq4tw1RIlmx7eikNGb10KrgwygKmJj+G5zSORL2cXQttVRauRWZQBrpFtHtWU2a0f71FoxBWCCMzmMaox2/YFQouoVUMlKFQrYhSiQrtiXdkH1gPVoRfFhwTjEx87dML9yHwMDzZzCNAZKxY5jmYNMzgTTaLcL1xro6q0mzFkarF4xuNIGUAZo2xFDfa0jEjjb6UhQKhWLboERyDXR7QNBOo9OzD6xHs31JF7f1ndI5BDqmMQQEeP4kYZSjN/FsTHOwaZlAmuEWEUbdndWkmQujxQXjfPZLzC58FscdJwinmZz9GIXiI13jr61QKBStRonkKun2gCBF99DM4MOV2/rH8f0ZIETTbExh4QezFNwzpI2BhgR2rV5Y2uZIU9widK27g9SavTAqls4wvXAfvj9LzB7Fc11Mw+4af22FQqFoB0okV0GxdIbJuXu7NiBI0V00M/hw+ba+oacwjQFcfxJTDC35I/v+LEGQwQuubCkTSKWFpWkM4bhnidmHGupWYFv7ujqrSesWRicAECLA0Hsw9M7311YoFIp2oUbEKpjL/NvSBGPoPQihY+g9JGIn8P1ZZhY+g5QqalXROBZ9SXsSNxEE8zjuWYJgnp7kzezbwqJscVtf1xKAIBE/hq4n8IMZosgFdKLIoeie2pIYX3SpyBUfxTAGSMSOYhgD5J3HyTtPEUVOxd/pWoJIujW7FSwuLExzkGLpaYIwi5QBQZilWHq647OaNLP9tfg7KxQKheIaypJcBcXS2a4NCGo0jfLLVv7dm9OM4MPV2/qmMUhv8tkUndP4wRyhdJCEpBLPYu/Qm+sS4xtlakjYxymWnqHgPIllDgMr36mtuBV0e1aTZrV/u1WhVCgUilahRHIVRNJF13ZX/GwnTTCN8stW/t3V0+jgw0rb+qYxSLpnAD/IUCydIpV4Fkf2/QKaVt/wsJHl0jDSxKwRXG8CP8hgGn1LnzXCLaKbs5pAaxZGq+l0f22FQqFoF0okV4Em7B0/wTQiI4GUEfPZLzE+81eEQZ547Ci2ldxW/t2dbiHfyN/Z86+QiB1m79Cb6xbIsLHlUghBMn49nj9FsXSKZPxkw4u9dGtWk0WavTBaTjf4aysUCkW7UCK5ChKxIxRLj3RlQFAjaEShg4Jziun5+5ie/xS+P4Nh9BNJbykvbzcUfNiMbrGQN9stYTPLpabFSMZPEo9dh+dP4QRnWfSP3jP4xobcq05frLSS1Qsjy9yLlCFBmMXzJzreX3unovqwQtF+lEiugoH0y/HDS11b5nirbLXQwaIVuuReIopcLHMvQog1eXk73b97o0mr20oiN9MtoZpMDb2p2xnofTmTs39PEGSRMsTzpphduB8htC3dq25ZrLSS5QujvHOaIJrDDwa6xl97p6H6sELRGXSNSP7GN77BPffcw2OPPcb09DR/8Ad/wMte9rINf/PAAw/w/ve/n9OnT7N3717e/e5387rXva7mcydiR7s6IGirbCXwZ7kV2jb3U3Ivo2l22Rd2VV7eTvbv3mjSSsSOdmVJ5Ga5JVSTwi4Zv57xmQ/j+7PEY4eXPt/qoqKZi5VWW/Yafb7FhVGxdImLl57mwMgJErHRjuqTiu5bcCsU25muEcnFYpETJ07w+te/nve85z2bfv/SpUv8yI/8CG9605v4rd/6Lb761a/yi7/4iwwPD/Od3/mdNZ+/2wOCtsJWAn+WW6EhQhMGUvoIYa3IyxuGWRCiI/27N5u0hvte09UlkZvBRi4dg+lXMLtwf8MXFZXcgqSUICMMfYBS6RLT85+ua7HSastes84nhEbMHsXUA2K2EsidRiNc2xQKRePoGpF8xx13cMcdd1T9/b/7u79j//79/O///b8BuO6663jwwQf58Ic/XJdIhu4PCKqXrRQ6WG6FFkJbVbwChDCRMk8YuQThXMf5d1czac1m/pUgdLAtlWJrOestLLfqvrMeq4/r+7MUSuXUdlIGgMSbm6I3eRsD6erHklZb9pQlcefSrHdDoVDUR9eI5Fp55JFHeOELX7jiby9+8Yv59V//9ZqPFcmIMNrZxUIG0q/E8cYolJ7GNvde2z73JzCNAQZ6X0EkARkRXb1XURQhRBIhbIKwgKH3EI8dxQ+z+MEMut4DMgLK28oxe/+K43QCJfcSeec0ljkClBcFy7HMvZTcy0jJ0jWuJggLgIUQyXX70fJ7tt2wzP1glv87kuAHOYKohCXia+4ngCbihNEEfpDDMtfeDykjXG+MMMojSCCv9rnlx/X8GXKFhwgjB13rQWgmUrp4wSTj0x/BNHaTqEJoShkxNXcfnj9Lwj6+JFx0LUXcPk7RPcXU/KcZtY40xLLXivN1Sl9b/hx1LYVl7sXzJ5b+XRaKnWMtbcV92+q7sSWiCG3tKctIkJEkCms7Z6f0tW5D3bfaiZqkGbatSJ6ZmWFoaGjF34aGhsjn85RKJWKxWNXHunTxEqsW9TsQExm+Et/7IsXCBSQeAgtTP4Rh/V9MXjGBcyt+ceHChfJEWBokH55C1w6VJ73oKGF4Ac+bR5JDE30YHEOKOyoep5344TPknFkMLYkQwZrPy1kCSujaII5z+uo1rrS0h9F5TP0E42MeQmx8bRcuXGj4NXQaQThP0fEpORNoIrnm80jmiSKf8bF5DH3l/fLD8zjeF/HDC0hcBDamfpAzZ+9AYFN0fJziOEH4DKHMoNFHKCLAReIRRXFy+WlOn/tbemJv3VSEBeEEGecRNC2NV1qo0NYExcLDuPmvYeh7t3JbWn6+dva11c9RSh+kC8JGCHPpucatOzD1Q21rZyWaed+28m5sFQ3JiO1haeVxSyKRUpaNFlHEwsIC586drevYFy6cb2hbdwrqvlWPpguOHdjV8ONuW5HcSEYPjGIa6lbBYaS8Y4X1p5K1J4oiLly4wMGDB9E0jaLzFsam78EPpq9aoUcJokGc0jMYepI9Q2+lr+fFHWU1WqTkGpwfH8Q07HWsxFn8YJDdA9/PTObTy65xuaV9lH3DbyYRv27d86y+Z9sZKQ9y6co3yDuPkbD3rVlUFN0pUonbGN39ghV9ouicYmz6fkxtjpR5AF1LEIQFFjKniJtFRnb9EPbCrWTyXweviKUNomn24pHxgwKWOUIifj1BMMPIiEXMHt2wrQWnhD9hkrD3IoRe4Vp6cFyHkb39JOOHt3xvWnG+dve11c8xihwyhW8QhAuYej+9yeeiaTFcfwxh3M/u4R+qyurfbFpx3+p9NxpCFKDNPQOhixACgUAIgSZA0zT6+vo4fPhIbYeMIi5cOM/Bg4e2/bjWSNR9q51IhkCp4cfdtspvaGiImZmZFX+bmZkhlUrVZEUG0ISGvkM66uYR9RpG/GBVx9K08n3rSZ5kVHvXUiCSH0yiCZv+3hd0fHaQRGyUVPwYueKjGPpaf2zPnygHo/XdQTy2b8019taYAWXxnm2Vzs6xqrFr4DV4UxM47qk12S9sc5Bd/a/G0K8NT1JGzGXuJwjmSC7zDTdFL7p2iCCcZj77rwz3v4pC6QmKzjyWZgMRUvoEYQ5dT5CMH8PQkwTBJFIWNr3XptGDocWIpIOhVQpaddC1GKbR05Dn1srzNaqv1cLa5wiZ3BMgQ2LmIYJwFsc7Rzr5PAy97PM/l/0sqcTxjum/zb1vtb8bjTw36+2YChCaQNPru25N0+r+7U5G3bcaiNbzFdoa21Yk33rrrfznf/7nir995Stf4dZbb21Pg7qAZkbwd2t2kGrSmS3mye6Ua+yGHKu1FjTZNKDJ3EvROc2ugTsZGXorTuksYVQgkkUEBra1m0TsGKYxSBBmq86ispWg1Xpo9flazernGIQZ/GAOQ+9F0wQG17LdGEZ6RwaqNbvYj0KhqJ6uEcmFQoGLFy8u/fvy5cs8+eSTpNNpRkZG+O3f/m0mJyf5wAc+AMCb3vQm/vqv/5oPfOADvP71r+drX/san/nMZ/iTP/mTdl1CR9OKiPpqsoN0ogW0lkmr0jW28pq6KTNCLYuKanJ1+8EkYZinv/c7Ge5/LZn817HN/ei6jaH3AqJmoVnLIqkRNOt8y/ugEElkmwJjVz/HKPKIZIAuypGdi9luIukBKjNMp42FCsVOo2tE8mOPPcbb3/72pX/ffffdANx55528//3vZ3p6momJiaXPR0dH+ZM/+RPuvvtu/vIv/5I9e/bwa7/2a3Wnf9vOdEpuzk62gNY7abXymup9jpmMoOisH5maiEvS6eZsZVWbVrGWXN1CaAz3vwbXn8D3Z9H1EaQM6xaarbbsNfp8q/ugEDZuaZCi8xZ6kicb2vbNWP0cNc1akTu9/P8GmrCAjXOwb3d2aspRhaKT6BqR/PznP5+nn3563c/f//73V/zNJz7xiSa2anvQCbk522kBrdbSW+uk1eprquc5ZjKCX/2NBDOz6wvGocGI9723uCSU22Ht39QNwZ+gd5l1uNFCs9WWvUadr1IfDMIC+fAUY9P3MKq9q6UL0NXP0dB7l3KnGwwShDksaw+63rvG6t+Ju0wKhWJ70zUiWdE8tlJ2uhG005LdLEtvO66pnudYdAQzsxrxuCRR4WfFIszMahQdQTota7pfjbRQr+eGEISFcoo9Y3SNdbjRwrbVlr2tnm/DPqgdwg+mW169rdJzjMeO4AWzuP55TL2fhH2YMMqtsPoXS2c6dpdJoVBsX5RIVmyp7HQjaJclu5mW3nZc01aeYyIBPalKglXgOOX/quV+1WOh3oxK1mGwMPUT7Bt+c8Vn1alb1q2wilYb7NjqoLjVzzGSLnH7AGG0C12LEYQLaNE1qz/QNX72CoVie6FEsqLtEfXtsGQ329Lbjmtq5nOs9X7VaqHe6LzLxWQidpQDe//niiC08TFvwxzUm11Xq7fwW+WnXkuwY6upZOW3zRFcf3zFswC4OPG7bY+X2A4odxWFonaUSFa0PIJ/Ne2wZDfb0tuOa2rmcyx5E7jhxverUDxFJv91DL0Xx+1HcrwqC/V6VCMmwyjatIrhVo7faFrpp96KPrgV4VXJyr/63457se3xEtuBTg6KVig6GSWSFUB7c3O2w5LdbEtvu6zzzXqOUVTY8H5FUYm88xgXJ34fTYsxN7uHQvFHSPfuBvprPl+zxWQ7AkWbsXuxkUitNdixVlohvNodL7Ed6Ka0kApFp6FEsmKJduXm3IoFtF5LVrOtbO20zjfjOWpaEl1Wvl++P0sm/w3CMI9lDmGZe8gYBn44T644RSp1I5Y5uO6xVz9D2xypWkzWQ7sCRRu9e7GZSK0m2HEw/Yq6+kmrhFe74yW6nZr6epvbqlB0IkokK1bQrkCneiygW7Fk2eYIpjlMvvgYidhxTCPNYk3WRll622mdr/U5FotQqSZt+e8Qs/aiy7VWSSklhdJpgnCeuH0dtjUCCAwthaGniaJLFEunMY2BNcIQoFh6hosT/7ziGZrmME7pGWL2oU3FpGXW/nzaFSjaSKtotSJ1o2DHgd4XMrtwf83vTysXGe2Ol+h2aurr5kibWrn9yRc0Su76y5CYLUkl21PgR7ExSiQrOoZaLKBbsWQtimun9Awl9wJO6Sy2uZdk4no0LdZQS2+9Vt1WBdkk4pKhwYiZWW1dH+GhwYhkQmBYa62Srj+J457D0Puv3u+VE4Gup/CDOYIwe3Uhcg0/zDI+8zf0951d8QzzxccouRewzN1QwXq4QkyatV9zq7bwVz9DTUs0xCpaq0hd3QeFSHLh4inmsv9KEMzV/P60cpHR7niJbqemvl7Hu6TYnHxB496PDrCQ1df9Tl9vyF1vnFNCuQNRIlnRUVRburpeS9ZycR2zD2GZuyk4T1LyxnGzU6TiJ+lN3d5QS289RUhaFWSTTkve995ilfmM11olw7CEofeQTj0X01jrUuGWEoRhAZ0Q07x2jkIBXPcygT+/5hkmYsdxSmcpOE9hGsNrhNhWt9hbsYVf6RnGY9dh6H243tiWrKL1iNTlfTAIA0r+PZj6HMk6LMGt9hNu545Mt6PcVdpPyRUsZHVsSxKz14rgkquxkNUpuYJUsg0NVGyIEsmKrqNeS1ZFca33YBrDBEGGonuKeOw6Rnf/OJrWnlej6JxifObelgbZpNPVF/VYbZUMwizj0x9B0+IrvheL+wz0F5ids4iK/YR+HEO/9qyCsEBP7xjp3rVuGKaRxjb3UvLGCIIMptm39NlqMRnVUS272Vv46+1y5IuPIYQOQt+SVXSrItX1xvDDC6TMA3VZgtshvDbakVGpzdanpr4ulRWzmcTsiES80oAV4XrrW5kV7UWJZEXXsVwkSCkJwyyR9NCEha73risS1hPXQghMs4+kdhLfn8b1x9vily1lxMzCZzo+J+xyq6SUEZnc19ZMwr09Jd7z7s8xt3CRVOIG9u26ASEKS8coOKeYXvgb+tKV/CAFycT1uNkpiu4pktrJ9cVkHRN7M7fwq9nlsK0RTH0Ax31mU6toJQG4VZEaRnkkLnqdIrtdfsKVdmRUarONqamvK5GsUKxBiWRF17EoEkreGK43jh/MIWWAEAamMYBt7a0oEjo9nVQYTeJ1WU7YjSZh3Rxn38gg+3a9mGQc4Nok7LgWvozWFXqaFiMVP0ncPoIfzDR8i71ZW/jV7HIEwTz7d70ThNjQ+rmeABzse2XNInV5ifBiqZ/ZmT0EvoF59d7H4j69PSVgc5HdKX7CKrXZVaKg/D8jVvFj5a6iUNSPEsmKriNm7cfQ+5jNfBYhbAy9ByFMpPTx/Elc7yKDfa9cY8nqdP88SZFI1m/haxf1TMLVWCN7U7czuvvH11Rha5T4akaqvKoXYlGBVOKGdY+zmQAcTL+sapG6ukR4JI8zn/kJNL2AoZeDKQf6C7znx/6dnpRTlSW43cKrXWn8Oo5SBnLjZStwfBBSu6DC9bYrvadC0e0okbzD6Vp/PiGQCJArfbyklFRKZQadn05KkEATdseK+I2odRKu1hqpaUZTreaNTnnYiIVYNQKw4DzJvuG7llK4bSRSV5cIj6RE0/sQ2jxRdAnPG2BuPkG+UEI3nq7aEtxO4dWuNH4dg4wgPwWFaVzXw3FD+sIAvAL0jYJurflJu9J7KhTdjBLJO5hu9ecreZcJgnn6Us+/5m5BHoFBzN6Dbe4lCObXTJCdsk28Hrq2Gzt2lILzWEeK+M2odRJutzWyGTRiIVatANw1cCcH9v7PqkXqYonwSEpCP0UydSOOe4aFTI6iExIGmZrvfbuEV6e7TjWVwIPMJfDynLmU448/fpZsPuDOl4zwihfsRps9A737IJbe/FiKllFyNZa7nK38u6JTUSJ5h9LN/nyLE2QidpSYPUoQZokiD02zMPRepAxx3LMVJ8hOFmZCaAz1vQovmOhIEd8Mun0buNJOzFYXYrUIwK2IVNMcxDIHkWEe34X9e36cA3t2d8W973TXqabhZCA7RhS43P/VST72r5eYfSyCPPzF7AWeOp/lnd97mJ7oIiQGoWdPRfcLReuI2ZK+3pCFrL5uFou+3pCYXUeqHkXTUSJ5B9Lt/nyrJ0hDT8OysWezCbKThVmig0V8s+jWbeCNdmK28gxbKQCFEBhGL6YhiNsGQnRHhoNOd51qCrlJKEwRhgF/+A/P8JUHZ8k/AHIKkJCfhf/KzzM27fLTbznKyHAEQQn6DoKmUoy1i1Qy4q43zrW04p6q8Nc4lEjegXS7P18jJshOFmadLOIX6Vpf9gZRzU5MLa4Qy9mRArBGOt11quHICEoLIEPGp0s8cTZHaRpkBoQEoQmiksSfgOkRl4eeWmBkOF4WyX4B7N52X8GOJpWMWlYoRFX4ayxKJO9Aut2fbydMkNVWHmyHUO1WX/ZGUe1OzIE9P1HXQqxy/47j+lO43hiWOcRg+hVd3b8bQSe7TjUcoZVdJ7Jj7N8lec137ObvnTEWpiOiCyBDieiH+DG46Wgvdzx7CIQOsT6wtpnLiWJDVIW/xqJE8g5kO/jz7agJsgK1CNVGiulu9mVvFK3YiVnev7OFh3DcC+Xc0yKBrsWZXbgfIbSa7nWxCCCIJBQKGrop0IS4+vfupBt2XRpGLA1GDJG5xGu/U+PoaA9/3HuWi0+UiAqQPq7x+pfv5zXfsQfdsKF3pPwbsf62u2L7oir8NQYlkncg22U7d0dNkMuoRag20urb7b7sjaJVOzHJ+HGkjMiXTmGZu7Ct/VjGLiLp1LQoScQlQ4MRM7MajgORFOTzJn6ooV199YcG15tQO59Odp1qOIYNA0cgN8HJwxq//CM38JefvsCVmRJvf81BThzsLVuO0/vL31UoFFtCieQdyHZyV9hREyS1CdVi6UxDrb7d7su+HrVa2lu1EyNlxOzC/cjIpTf53KV7rlHboiSdlrzvvcWlinthFHHx4kUOHDiArpV/l4hL0unuFMk7DqGVU7yZSdJinJ/4gaNX/66rjBYKRYNRInmHstPdFbqVaoWq415suNW3233ZK1GPpb1VOzGNXJSk09dEcBhFlByfvXsidKWlupd4H5hxyI5B6EFqL8RVbmSFopEokbyD2anuCt1MtULVKZ1tuNV3O/iyL6de/+pW7cRsx0VJNyNlRBBOUHBKmEZPZ4yVhg39hwGprMcKRRNQInmHs9PcFRpNqzNMVCtUETRcYG0XX3bYun91K3ZittuipBo6NbVgwTnF1Nx9ZJxH8CdMjE7K6CIEoILzFCtRFf4agxLJCkWdtCMV2kZCNYoiis4ZEvEj6CKOJuyGCqzt5MveCFeGZu/EbKdFSTV0amrBxR0Hz59F09Ik7L01B08qFK1CVfhrLEokK7qWdlqd2pUKbT2hWvLGyBe+jcQHIsaDv8ILpvCCaXqTz9lQYNVyH7eLL3ujXBmauROznRYlm9GpqQVX7DjYx/FKCwihY2g7K6OLontoR4W/7YwSyYqupFarUyMFdbtToa0WqsXgNCX3AkKY9Caeg23tI4yKeP40nj9BtvBNkvETFQVWsXSmZuvddvBl7xZXhu2yKNmIdr9PG7FdM7ootjetrPC33VEiWdF11Gp1avQ2bidMnItC1XEvcnnyTwFBT+LWJRFh6D30Jp9DtvBNAHx/Do+VAguo23q3VQtqu31Pu8mVYTssSjaiE96n9VDBkwool3pWltmdiRLJiq6iVqtTM7ZxO2XiFEJDCI0wzJKIHVsjmoQQJOMn8IM5RobfhqH3LgksgIsTv9sW610n+J4KoTHY90rypVNkC9/AtvYtFeroRFeG7Rxg2ynvU8VzL9tx0LW1uwqdsuOgaB75gsa9Hx1gIbt+lbq+3pC73jinhPI2RIlkRVdRi9UpZu1vyjZuJ23VVyswDL2XVOKGpb877sW2WO86xfe04JxiduF+ojCP50/huOfRtQRx+yC9qdu3jStDN9BJ79Nqlu84xO3V5d47a8dB0RxKrmAhq2NbkphdOVvEQlan5Arl4rCM7WJ9VyJZ0VXUYnVq1jZuJ23V1yswmmm9W8+VolN8T5cL9Zh9iGT8ejx/kpI3hq4nGUy/QgnkFtJJ79NqVgRPuqeIZAIpewijztxxUDSPmL1e6fZo3SwSO5XtZH1XIlnRVdQiCpslBDsp60C9AqNZ1ruNXCk0LdZ239P1hLpt7cMyRyiWnmY281mS8eNK+LSITnqfKrEYPDk1dx/FwiM4roOuxbZV8KRC0Ui2k/VdiWRFV1GLKCx5l5u2jdspWQfqFRjNsN5t5kox0PuStvuednKQ2E6mU96njdo3uucIbuFrjOzt75yKewpFB7MdrO9KJCu6ilpEoW2OYBpD5J3HSdjHMYz0kjBqxDZup2QdqEdgNNp6V40rRSb/9YYXOKmVTg4S2+l0yvu0HkJoGPpekvHD6FpntEmhUDQXJZIVXUc1onBx299xz+K4FyiWniFmjZCMX4+mxRq2jdspWQfqERiNtN5VY6H1/Cksc5iSd6l5vqdRCPlJKGUqfqwHk+gRhFEBQ+9d87nKVtBeOuV96hqiALLjEHrQsxesDt+7Vii6DCWSFV3JRqJwdWCWZe6mUHwS15vA86dIxk92dAaDenMI1yMwGmW9q9ZCm+55PmG22BzfU78EmUvgF4HKJVdjpEkwRK5wGj11C0K7NgS2O0hMoagJrwCZyxA45X/PnYPUbkgOgVg/q4CiPkquBlT2r1VsX5RIVnQtlURhxW1/vQcrPYwfZCiWThGPXcfo7h9H0zqv+xedU8xl7m9pDuFGWO+qDQRMJW4kEbuuwb6nEuHMQ/4Kge/yqf+6wtcfnyNcNZ+5rgXS4jtvv51d+z2mpy5gxQ+iG72EsoimXWJwQGUrULSemhbGUkJhBvJXKJU8/vE/xpicLfHGl4+yT0blRWLvPtA7b3zrRmK2pK83ZCGrr+tH29cbErMrL8wV3Y16ixTbivW3/QWm0UcyfhLfn8b1xztuW9cPzzM2fT9BMNfWHML1UEsgoBDahtbrmgRDFDJklhDZMWYXHP744+f41rcyuJOsMPr4oc2pKy/AC5P882dg7+4XsWdXnogiUgiEZrFrWOeXft4gGb+uiXeqPSy/p0IkkbKz0y7tJGoqrhP6kB2DUpbLUwX+8B+e4dTjBcK85IlzOd7x2oN8xy0hInAgParcLxpAKhlx1xvntkXO31azHazvSiQrthXdGpglZYTjfRFTmyPZxhzC9VJrIOB61uuaBINfQlu4SI8R8K1TGf7sE2cZ+7ZH8DgInxVbzr60KAVJdOkjcj7TEfi+zU3He0klwPF6cJ3dCOlQaVDfjHaX2d6I1fdUCBu3NEjReQs9yZPtbt6OpqbiOl6h7E4UlPjSw9P8xX0Xmf6WT3hKQCSYvBTwh7mzPHk+x9tefYBYePaq+8Wwcr/YIqlk1PGpyjqJ7WR9VyJZsa3o5OpdG+F6Y/jhBVLmga5NTbbVQMCaBIOUZYtaUCSf97n3k+cZP+8RPAGiBKZloOvXRKqMDPRQw5QBWuDBDBSS8MzliP92+xBmUWc2W6rrujuhzPZGbVt9T4OwQD48xdj0PYxq72p7G3cqNRXXAciMQVBibNrhbz57mdlzAeEZgfAAIZDTkvyTki8nZtm/K86rXrQHijNgxsFeOxYqFM1iO1nflUhWbCs6uXrXRoRRHomL3mUW8NXUGwhYVzW+yCeTMzh1IWI+k6SUtZASNEMwdKifF37fCWwrwjZ8PvfRCzz6JERSomkgEmCYgj0DNgJRtrTpBuDXdL3NLrO9FQv1hvdUO4QfTHf07sR2p+ac3VYSwhK7+m0O7E4wN+3hx0GWKC8aDdCHJD0JgxMHr4pi3QQj1vqLU+x4tov1XYlkxbai06t3rYeupRCUcwhrWnenJqsnELCeIh+ZrM6v/cEo58d0vn1mP6VcCK6ACMZzPUw9MEDcLLFr6n4un1ogDCN0HcQQJPdo3Ha8j/2746AZYPeCY1GLSG52me2tWqg3vafm3o7fndjO1Owa1jsCho2Zu8L//bZj/P3nLvMZ+wrZRySyCLEb4cZb0rz7+w+zezABsb7ybzowQFmh6BbU26PYdnR69a5K2NY+TP0grj+Gofd0jQW8UdTjS14s6UzPW9i2RyxWJCpFLBqFE5ZFKZPniUfnORbOEyHBBH0P7N5n8dwbBuhJmGDaZYFcqL36UzOr9zXCQl3NPfWDyY7fndiu1OwaJkQ5vZuVxMxc4v/3yoMcP5Diw+mLFN2Qlz1vmB942X5M0yrnTE4MKF/kHUK+oG0L14ZORIlkxbak06t3rUYIjbh1B8K4v6ss4I1iK77kiViAafoYeghCIASU5jJMX8zgBzEiU6LtAkuH6w4neM4NCQzDACsFZhwJBEEWPwDHnUTK3VXd52YFiTbKQt2t/vk7hbpdw8w4DFwHuXGee4Pg+IEeMnmfA3uSYCYgvb/8HcWOIF/QuPejAyxk11/o9/WG3PXGOSWU60CJZMW2pduqd5n6IXYP/9BSnuRusIBvhUxGUHQWy4QfIJ+9jbzzJHF7L0IIYnGf3p7S+oLhqkC0TA1dk9gJB5EOCR2dQi4iDC3QwDgpGb7ewJzq4cAeE8cXIHrAM/ELczjuObJ5h1JJ5/KVj6KbQ1W5NDRLhDbKQr2pCPMn6N3GuxOdzpZcwzQdUnvBd0mnItIps/w+9IwogbzDKLmChayObUliduV0awtZnZIrtoWPcKtRIlmhWId2pPVKxI+TShzvGgt4vWQygl/9jQQzs9euyw/vouicJpIldC3B4ECJd//IP2PZZ9cKBiEgtQeEjq4XuOHEBHO5WeSBskh2Mgkmx/YTmglueFGKH/3+/fzp32rMZOM4hQQUBX6YpeicJ5IuutbDrqESqVSiapeGZgWJNspCvZ4IC8ICYXQe0xht6u5EJ6fF6xTqdg1bVl3yyXM5puddXnjzAObC+bKrRbxfuVrsMGJ2RCJeKaVatG4aNsXmKJGs6Bg6aVJtZ1qvbrOA10PREczMasTjksSSFuzB9w9dtezmmZrRyecdDg6sIxisBIHuk/HPkEzksa00E9M+oemR2ptDGxwncAb4qbcc48CI5H3/u0SRJIgiUkaMTd571XJ93TLLtYmU1bk0NCtItJEW6koiDCxM/QT7ht/ctL7cyWnxOo2aXMOkBGcechP4nss/fn6MT3/5CoEr+c9HZvjR1x1mSF4Gv1C2KmtKHCkUW0GJZEVH0EmTarPTeimukUhAT2q59aMfKftIxPLMzML+PT/OgT2VfYSljCj549iaj2EOY2o+B/daTM0bFEsWQ/0QJvMYdhwG95I246SRgMRxL5JxHqZvoB8YI4o8NM0CemtyaWhGkGijLdSrRZgQScbHPBJNqiy4U96fRi7qq1oYRyHkxsGZZ3rO4Y8/fpZHH8lSfAhw4JuXMvw/U4/zrjuPcNsJWbY2K/9khWJLKJGsaDudNKk2O62XogJSgl+EoARGDGEmMIxeTEMQtw2EqBxsUvImCMIs0h2gWDJBRhC69MTj9MShUNRwZYlScnCNUAjDPJ4/TckdIwgXiGSAJgxMY4BE/BiGnq466K7RQaLNsFAvF2FhFCHEubrathnb8f1ZFMN+kCMI55HyIAXnTGsX9VLCwkVws2QLHr/xF09z9kwR76sCiiCA4DEYD3z+IDjLj7zuMM+9QcLCBeg/pHIlKxR1okSyoq102qTazLReigpEEZQyELiAhDCAyIcoDWy8VWzbWfr6FpidGWZ+wS7/UabKv5cSNJ2+gSvYMXvNbz1/Gse7CDLCNAbRhYmUPq4/SRDlSMaOL7k0VGMxbLSLTDemMYTt9/4s3+EKohJFx+fs5fvxgimQYesW9ZEPYQmQnB1zmM+HyHkdXYJmCgxTx/MCWBAUXcnj5/I894aBsvXZKyiRrFDUiRLJirbSaZNqs9J6KSoQBVDKIEWJS1ccLkwUOTiSYHR3BCV5VSivz0B/nHf/8CeYn4vT37d3Vf+RBFEe05hioP8nVvxOyohs/iE0TKSIEMJECIEQFqYYwvOnyRW/za6B1xGGRS5O/G5b3IC6LY0htOf9aVYsw+odLkvEKRXHmc/+J1I69Pe+dMlnvJWLeokANIQm0IRA18si2fdDNE1c/VwF7e00Sq4GVM5uoagfJZIVbWUrk2ozJkeVW7YFSAmFGXB7CSyPhy8ucO5SET8rmZp1mVlwObx3ANwcFHIg+ypG6ses/eweHgHxNYYHkmiatuwUkmLp6Yq+uyXvMo77DKnkLRRLT+MHs1cLuJStyYgQKSMsc5ix6Xtb6gZUqU93g8V1kVa/P82KZai0wyXlou+8AKFTdJ/BNAaXFmfdaClXdD8xW9LXG7KQ1dfNYtHXGxKzK2W+UGyGEsmKtlLvpNqsybFZab0UVwl9yI5BvkTBSfDtMzly8z7hlAk+eDPwZN7n8pUc1+0zID8JCxno3Qe6ueJQQmgM9b2KmdmnKLqniFXpu7u4MEvEjmJoSQql0/jBHFLmEcLANvcihEW++HhL3YA6KXi1Xlr5/jQzlmH9HS4fiDC0Pnx/ljDMYhjXdjzUTpOi1aSSEXe9cU5V3GsSSiQr2ko9k2ozJ8dmpfVSXKUwDV6ORFxwZW6a2QWDcCoBXtlYLD1gCjwByfg0iXgAXq78u96RNYdLxI+Tiv0Asfi3KbnPVOW7u3xhZpqDpI0BwjBLJD00YSEBzxvD9SeIWaMtcQOqtk93UprESrTq/Wl2LMP6O1wmQuhX2xAQSW/l79ROk6INpJKRKhTSJJRIVrSVWifVVgT6dWvQVCezJO6iSfQwR2+qj594+9N87PPTZB6JiC4BIWCAth/St2q84aXDpHuGQFjlEtLrYOqHGN1zB34wvql4lDICKTH0XorOaVKJW9E0bckauOimYdsjuN4kegt8a6vt01JGzC7c3/GW5la8P82OZVhvh0sTSTRjgJI3hq7F0YS19JnaaVIoth9KJCtaxnpWsFom1VYF+nVj0FSnssaNAIMEw7zmJc/l8L7d3JM+z5VHPYKLAuOAZM9NFj/0vYfK0flm4mqu18pidZFqskssb8didgvXGyOVvJmYtW/Fwmww/d1Mzn6sJb611fTpbP5BCs5TRJHX9jSJ1dDs96fZAYLr7nAJQdwuXxcyKmfdloHaaVIotilKJCtawmb+lptNqosCO1f4Nl4wh23tq3ieeifH9QS8Cr7ZGuu6EXiXKZVmuOHEq/mVH72RP/6Hs5wdL3BkX5Ifff0Rdg3EIdZXdrHQtj5MrWmHtR/L3EWu+C1yhQfxgxksY2hpYZaIHSVXeLglvrWbCT5NxHHcC1jmLnqTz217msRqaeb7U08sQy2uKpV2uDQRJ5J5/LBIb/JWLGMXQbiAH0y2ZafJD2yCyESLBEFkUJImWiCIHMFCJk4mZ5DeOEGMQqHYBCWSFU2nWn/L9SbVlRbAOYruacIgSyr5LExjcMV367HwdXrAVKf7oa7Hxm4EJ8viLnqMAwOv5ed+8EQ5BdzeBKZlQ2oPJAYqZrVoVDti9gFsaz+54iMkYkfYt+tdxO0DS/e2WjegTEZQdNZvZyIuSafXjyzfTPB5wRRhVCTWIWkSO4FaYxnqecdX73CF0QRR5JNK3Mau/le3dafJ8yyeGns+rptASIEWCsIgglnQvy2YmYhx+aLJ+37iIum1XUqhUFSJEsmKprJVH+I1uUrNfYRRlpJ3iTDvkk7dviSU67HwdVK1v/Xa18kCfiOqco0Jxij12MSdGEcPmOWiBw0upbtxOzQSsaMEwTxCaCv6YDVuQJmM4Fd/I8HM7PriaGgw4n3vLa4rlDcXfGPoWgLL3F3x91vZPXHc7lt8QW2xDFt5x5fvcPlBjvGxeUZ3vwBDL0+d7VqUBIGJGyTQ8DFFgCY0QkKEDpolME2DmfkkRUdHGZO7l3xBwwvWL6qkslY0HyWSFU1lKz7E6wnsVPxZRJGLF0yRLz5GX8+LCCOnZp/ATqv2t5pOF/CbWbir9hsVAQycAL8AZhK0jSvt1cpW/Fc3cwMqOoKZWY14XJKocPhiEWZmNYqOWFckVxZ8cVx/6qpAjhOzDhBGTsP8o/3wPJeufJKS+0zXLb4WqWYR04h3fHGHyzIjDP1cRy0kDOFjUhbJQoQIDXRTYFtBu5um2CJFx+DPPzZIJre+TOvrDbnrjXNKKDcRJZIVTWUrAmU9gW2ag/QmbyfvPIbrT5IvPo5p9NfsE9jMIMCtukh0g4DfzMJdk9+opoPd25S2brXARTW+tYkE9KQqiWCB42zexuWCL1t4CMe9QBgV0UWCmH2ASJYoOE/Rm3zOlv2ji84p8qW/J9ACYh24+KqFzRYxnVbRU6GoFtfXWcgaxGxJzK5cSW8hq1NyhUr/1kSUSG4g3eo72ky2IlA2EtimOUhafxEF53H2DL15SSTUcr+bFSFfrYvE8v4iRLKcnuwqnTy5V2vh7pTCLJ3Sjs1YtHzmS6ewzF3l4EJjF5F0KDhP4fkTZAvfJBk/UXfuYSkjZhY+QyQzJOzblqoUdsriqx42WsSoMvOKbidmRyTilRbg0boV9hSNQ4nkBtHNvqPNZCsCZTOBHUlnyYJcby5UTbPx/CsIYaFpFobeC5TbWG8QYDUCcnV/EcLGLQ1SdN5CT/Jkx07utVq4O6EwS6e0YzMW8yDLyF2RxUKjh97kc8gWvgkC/GCu7tzDi4svTdvVcYuvZrAdy8yLcuK5cnl3CRKJlBKJBCnKn1FbCWIpI0ruJULvLHqkI1GmSYUClEhuCJ3uO9pOtiJQmm0BDMMinj+FUzqLEHF0zcQ0BkjEj2HoAzUfv5aiEGPT967oL0FYIB+eYmz6Hka1d3Xs5F6LhTtm7UfTYgz0voRM7gE8fxqP9hRm6YYCMZvd22T8BL4/x8jw2zD03rp2q8IwTyRdBAMVP99ultVu2UXYFM0AzQJcRnfHSMQEmJIISRhGhKEETYIlMXWNdMIEZDk7zCZBsEsLducUYWkGHYOCtpve9F7m1uknCsVOQYnkLdLpvqOdQL0CpZkWwIJzirHpewGBrvcgZQDolLwJvGAWy9xFInaopuNXIyALxVP4wULl/qIdwg+mmVn4DKO7f7wjJ/dqLdz54uNMzX58yVKuaTaWtYt06nmkEjc2xBVJyrIFrVo6vUBMpXsrpVwqmS3QiKSLofeSStxQ1zl0PYUmbCSlym3oQsvqRnTLLsKmCA36DkDmMoPpHD/6ukM88E2DgjAJZoEQRBriA4Kj+3rp701S8nTo2behSF5h4DH3YptxwrBAIM5x8vqzZM4/nzl2te46FYoOQ4nkLdIu39Fu83+uV6A0wwK4fGHTm3wOQTBHoXQaP5hDCJ0gzGJZuxgZvqum41cjIJ3wLIGTIR47Urm/mHspOqdx/fGOnNyrsXBHkcv0/CfXVIcruRcJowKJ2HUNa/fqe7j595tT4KJYhEU3nbV/r47V99b3Z5f6ZXkRJ9GEjedP193ORctqPv8AUu7rmMVXM+mGXYSq0E3oPwSFKY4fmuW7npfg64+ZTJolohB6enROHOolGTMo+SZDIzESfTrruV6sMfAgQXgYWhJd7seOPcmR659k7gtDQOfOLQpFM1EieYu0w3e0W/2f6xUoW7UArl5QSBmtWNiY5iBpY2DJYhdJDxn56PrGpZBXU42ABA1JiL5Bf/GDScIwTypxQ8dN7pttX5fcMUJZQkRmY3ZWpISgVBYIqyrvCSHKn7eRRFwyNBgxM6utm8ViaHC9wJuVLL+3kTFErvgwYbjYl0z8YBIpNKbnP4Vt7a3r+QuhMdT3KmZmn6LoniLWIYuvZtPpuwhVIwSkdpM+mORXfnqcQs7noaczzCx4fOdtQyRi85AchsQgiURpwyI2aww8y94lgaBY6GNg1xQ9wxkKV1YWbcoXNEru+gtUlb+3cZRcDaic3ULRfJRI3iKt9h3dqf7P9QrsSgsKXe/F9aexl1nLhBAYRjntvpQBjnu25oVNNf6PifhRPH+q6v7SaZP7ZtvXuh6DMGjMzoqMIDcBzkJZIKf3gdVZbgDptOR97y1uqeLeIov31vHGyOS+SoSHqQ8DAUE4h2Gk6Unchh/MbMmFKxE/Tir2A8Ti36bkPrNufuFO6XONYluVmbdSpA8dJp25zMjuEJBgLH9HNu9vmxl4gsDCNgKsuEth2d/zBY17PzrAQnb9zAqL+XsTMSWU68U2Q/p6AzI5Y90sFn29ITG7vYaC7Y4SyVuklYEhyv+5NtZbUBRLp3G9i5TMXRUnzc0WNusJiGr8H/cMvpHZhfvX7y/+BL2r+kunTe4bbV8nYseZnP3HDS3lVe2sBCXIXAavwHzWJZUwMMNzkNpdtpQ1oFx1o0inqxPB1ZCMH2dX/2vJFR5CRBFhtIDAwLZ2k4gdwzQG0TSrJheu1f3VNEYw9UOM7rkDPxhf04+7dadqK3TlomDR/aI4C6FXfi90s/qfb2LgMQyP0DXwHHvF30uuYCGrY1ub5+9NxGq+KsVVEvGAH3zDrKq412aUSN4irQwM6eTcuevRrslnowVFT+JWXG+MfOFb2Ob+pVyx5d9tvLDZTEBU4/8ohLamvwRhgTA6j2mMdsV293oW7pJ3mZn5++rfWZGybDnOjRP6Hp/80gT3/dcVhvssfvT7j3BwjwSvUC5dXYMg6CYsc5i4fRjLHEbKcE1qwlpcuCr115h9HX54M0IcXjNOVFpYBmGBhdwD5IqPMdT3CpLx6zGM3u4QklXQ1YsCISA5VNdP1xh4ln0mkSSSC1y+NEJuOl3RI1nl720+qWTU6AKkihpRIrkBtCowpFNz565H0TnFXOb+tkw+Gy8oNHoSN5MpPEi++AiJ+NGqFjbVurps5iJRqb+AhamfYN/wmzt/Yr5KJQv3lnZWovCqe8Ucc5kSf/rxszz8cIbikzCd9viVuSd466sP8N9uDxFBCdKjYNbmN94NLFr4hCinJFxNtS5c6/XXvPMYpdJTFJ199CRPLn2/0sJyMXjQ9cbxginms/+JZe4hETtEb/LZ3SEkN2AnuK9VvfNl7kWXIWFUIBRXKJVSnH3yepDdvxBSKOpFieQG0Qrf0U7NnVsJPzzP2PT9BMFcWyafzRYUljmCZV7CNNK47mUQOroWW3dhU6ury2YuEqv7ixBJxsc8EvHrGncT2kDdOytBCRYugV/k0TML/MnHz3L52x7B40AJwjHB1EzIn+bO8eS5HO/4noMkonMIO82A6SJyEytdMDQDEgNrgv26gUa4cG3UXxP2cYqFh5nJ3E8qcXzdEs6+P0u2+BBBsEAQFspiSQikLOG4FwmjUlcLyZ3gvlbTzpdzCs+fRUPHkEd4+sk9zE+rPMmKnU33zSAdzFZ8R6txS2hXYvxaXSakjHC8L2JqcyTbNPlstKDw/VnyzmO4/iS6lkTTbGxzF0N9r6C/9zsrtqkZri7L+0sYRQhxrs6r7Sxq2lmREpx5yE0wOxfyD/8+w799ZYrsty2iCQsRgGnpBH6EmPDI/YfLvy/McH6iwLu//zoOjYT0GSCKM2sb4syX3TKs7qoe1ggXrs36q6YNr+mvyxeWUkoKpdOEYZEoCoEIQ+8hkg66liaSDlKGeN7WgghbzfKxLAizFEqnu8p9rRZq3vkqXSCcewI90jmXTZLNnAX8dl+GQtFWlEjuAKr1iWtHYvx6/PVcbww/vEDKPNC2yWe9BYXvz5ItPIgXTBGzRulJ3EQYObjeGNML962bWqvbXF3aTVU7K1EIuXFw5jl3yedt793F5bFhgpkbwCt/xTB1do+mKWRcSrMzXJf/T3jA5amZIr86/yQve8Fu4vZap71UXOc7bx0iFp6F1J6y32aTg/0a4X+/eAwpA4b7XkM2/xDOOhkoNmKz/iqII+Xciv66fGGJjPCDOTRhE8h5NGEDIaChaQYaPfjBHDF7dN13udOC4VaPZVHkUvIukk49DyrszHXzO13fztcoWCUIXMSKfBYKxc5FieQ2U6tPXCsT49frrxdGeSTu1jMcbIFKCwpNxMk7j+EFU5jGLlKJZyGEUZWFu5tcXTqFDXdWfKecvcIv8sjT8/zOX09y8ewIYsHHCn2EEPQMxDl8yxDxHgunlGL8rI05nkCUPKJTMD0f8vGpcTDWlvHQbfiPB6d59+uPMLpbgl+A3n1NC/ZrRPBXpWPEY9exe/ANWOZwTUJzs/4qcRCr+uvyhaWhDyBlgBA2kuhqtT8HXU8hhA1ESJlHoBPKwpp3udOC4SqNZa4/Sd55nEz+G/T1vADTWJkLuJvf6VYEeav8vYqdgBLJbaRen7hW+D9vxV9P11II7PIko/WuOXarJp/VCwo/OIvrTxKzRkklnrViUtxs4miXq8u2Q0pw5iB3Bd9z+cfPX+a+L1xh8utJojmwpI9tBOy9rp+DN+1GNzQWc74OjfZy55tewBf+7EtkZopEkxHuPEixViRLAY8fzfPLs0/y9tcc4DtvWwz229/wXMuNCP5aN8iu+BiuP8H+Xe/cUMysttra5siG/TWKpknEX7Am1eDiwrJUukQ5x0EIQCgLaMLG1AcQAqLIRwgDSbjmXe60YLj1xjLb3EvcPozjnqHgnKKv5wUs9qRuf6ebufMVsyV9vSELWV3l71Vse5RIbiNbWe03O3fuVtpmW/sw9YO4/tiSFWuxmp3ALOcCTt1S9eSzlW3b5QuKXOHbTMz8DT2JmxBibdffaOJoh6vLtqQ4C/krEAV8+FPn+fw3p8l/FaJJQIJp65x4zm6GRq+lPFvOnuv6ueu3XsZnP/Qwp74+RuhHSCnX9NEokoRPwORswB/nzvHEuRxvf81BEg3OtdyI4K+tHmM9q20ycUPF/lryxtFEmqH0K9ccb3FhOT13H978FH44C2gIBLa5B12PI6UkCHNY5m6CILviXe7EYLj1xjIhBMnYMfxglpJ7gZJ9ANvcvS3e6WbufKWSEXe9ca6qintRWPPhFYqOQonkKih5Y3h+oeEW2072c91K24TQiFt3IIz7yRa+SRQVCcIcUeQSSQ/b3EUy/qaq7mMjtm2XLyhmF+4njJy6Jo5WurpsW7xCuZIe8NgzeUp5EDmBJgWxhMmNL9zNwPDGLhGJXpvv+6nn88SXLzF1IcPCwjx9ff0IrTxpR0HEo1+8QH7eIZqQZD8v+beFac6PF/ixN1zHgQbmWm7EtvZWjrGZ1XYw/TIKxSdW9NdU4iaM6CYS6/TXZPw4iZGj9KaezcTMR3C9afxggSDMI2VIJEtowkQIHdsaWiEkOzGX+0ZjmWkOkk49l0z+6/j+DFFU2BbvdLN3vlLJiFR3xcMqFHWhRHIVXJz4IJBruF9dJ/u5brVtpn6I3t7v4tKVD+L50wjNRBMxLHMITUswm/kccfvQhvex0du2jZg4mu3qImWE43ZOsFPzWNzWLht0hRAYtk4sZVFNSV2hCW78zgNc/6KIc+fOcvjwETT92n167muP8dk/e4gzD07gF0Lcr8GTMwV+eb5CrmW7/verEQvdeo9RjdW24DzJ6J734PrXKuuZxgjnnQsbXpcQGgPpO7CtvczMf5ps4SEc9wJBlEXXEsTsA/Smbl8jJDtx4b/ZWKZpMVLxZzGy620Yeu+2eO822/nSNItE7Dgl73LXX2snkS9oVVnYFd2DEslVYBr9mMbuhvvVdbKf61bbJmVEwXkS29pHT/J2pPSXKodJyabbrs3Ytm2Uy0SzXF388DyXrnySkvtMRwQ7dTM9A3Fe93+/kK//yym+9LEncYs+4dMwNbc21zLJXZDaVZf7RSMWuvUeo1qrreuPr+ivYVT9JL18URiEOcIwh66l1q2414kL/2rHsnTqedtKLFba+Yoitzy2yBiTs//IzPx918YY+0i7m9zV5Asa9350gIXs+iXy+npD7nrjnBLKXYQSyVVg6CmECBvuV9fJfq5bbVsYTeJdncBXT5ZCsOm2a7O2bTvVZaLonCJf+nsCLSDWAcFO7aKREfOarvGC7zvJvuODfOJ3HiA7WySalOT+g6u5lov82Pcf4dDI1ewX6dGa3S8asdCt9xitstrWsijsxIV/J4+zzWb5IidffJyp+X8BDGL2/qV7sDTGDP0gjfagyBc05rM2PXP6ip2eRbaTZbXkChayOrYlidmVx7CFrE7JFcpVpYvoOpH813/919xzzz1MT09z8uRJ3ve+93HzzTdX/O7HP/5xfu7nfm7F3yzL4tFHH637/I32q+tU0bZR21KJm+hN3oaUAY57saJFSVIkkvWngWumAGhFdpBakDJiZuEzRDJDwr4NTSu3YztV/qpMRG/vPMZBj8JMiSnfwfVEwyPmR28Y5q7ffBl/9b4vMDeRIyhEuN+Cs+kif/6pC/zSu65HeAXIT5b9lDdhdSDpYN8rtyTA6hVxnWi17VRB2snjbLMRQiNm7Wdq9uPIyCUZP1l5Zy5zPwnjuyuEy9ZHvqDx5x/r5/JYglRPT8WNmu1oWY3ZEYl4pXEqWnds60Z2imtJV4nkT3/609x999388i//Mrfccgt/8Rd/wQ/90A9x//33Mzg4WPE3qVSK+++/f+nfq62S9dBov7pOE20btc3zp8nmH2Jy9mMbFz4hgSbsuifwZguAZmcHqYVFq7mm7arbat4JhRsyGUHRWf/9SsQl6av/XfAvcvz6/0DoExjPCggck+dkz3Lyee9Eiw5W/H29g27ohzx4/zNkZ4qEYYSv2ci0iS0EB4b3cGXaLluQU2lwtHI705XF+HqBpJUC5GoRYPWIuJVW2+OEUY4o8tA0C13raZu71lYEaTP7cSePs82m6p25xC3EaUwp6rJl1cAyQ9I9wZrzbmRZbYUA2ykirxnsJNeSrhLJf/7nf84P/MAP8PrXvx6AX/7lX+YLX/gC//iP/8gP//APV/yNEILh4eGGtqMZFppOEm2rWWxbwTnF9MJ9VQXS6dpu7NhRCs5jdW27duK2bbMIwzyRdBHrTE6bLco6oXBDJiP41d9IMDO7vuAYGox434/oGNoFLuf/iXT/GFOTSbxxG1P32HPd0/Tt/jMM/+1o0XWNadd0gc/88YOc+/YUQRDimzbP9LwYYaQ4tpDiP79q86UHDLASoBnX2vne4hqhvFkg6b7hu9ilJ+oWYLWKuEWrbd55gpmF+5DyWjo8ITSS8ZNtcyOoR5C2oh938jjbTKrbmRsnjBxocHexrJBEXFawJFe2rLZCgO0kkdcMdpJrSdeIZM/zePzxx/mRH/mRpb9pmsaLXvQiHn744XV/VywWeclLXkIURdxwww389E//NMeOHavp3FJKpJRL/13yxkklbsI0RmoKgmkVUka43hhhlEfXUletB1sb+aSMmJq7D8+fJWEfXxKtupYibh+n6J5iav7TjFpHrmYs0BhIvxLXH6dQehrb3Htt29WfwDQGGOh9BZFkKSXYagbSr8Txxur+fbcgRBJNWEhKS/1sOUFYACyESK7pb0XnFGPT9+AHc9jmCJZZvkfZ4qM43hj7hn9o3VRfjSRX0Jia0YjHJYnE2msoFgVTMxq5oiTQv4wfZclld+N5ATISeG6M3JV+ohvmCLR/Q/cPIqqYraOr9yOq8B6eeXCCT//RgxQyJSIk9IJxo0liLs2tx5MM9QswNKSVAFH2hV5qZ0GS6rl2zGr6//TC/Yzufg+WWW53vX3TMvfDVdfozY4RRdHV8an878V2SblYNCRa02c2umeNptpr6ZR+vBGtvG+NRogkQtgEYaHizlwQFkDY6CJeObeMBBlJorD6a49CUV60QcVxrdxHIQqjFcctFgXzGR3bitYVYPMZnWJRkojV9yyacY7y9a7UC8tZ73orHqvD+9ritdpWSDxW6VolJdeo6lob1qYm6YCuEcnz8/OEYbjGrWJwcJCzZ89W/M3hw4f59V//dU6cOEEul+Pee+/lTW96E/fddx979uyp/tyZcQQ6EocomkYTaYzopk3TKLUDPzyP430RP7yAxEVgY+oHiVt3YOqH6j5uEE6QcR5B09J4pYU1n0cyQbHwMG7+axj6XgCmJy1k+Ep874sUCxeQeAgsTP0QhvV/MXnFBM5tcFZzi7/vDqSMcEtDRNEp5hcSa6zmYXQeUz/B+JiHEOdW/C5X+hv88BK6dgivFADZq58NU4zOU8z/LT2xtzbFmqgR0WsEaEKSnbbwi0fosXysChUEvFDHL5rk8ueJEhcxxRDIfDnbm5QgBYEfkpuPoxnfInflAUJvd9VtuXDh/Ip/P/mFSR7/twk8LwQdxF7ovV3wvJuH+cZDaQb6AuKJgEBKkO5S1rnFdmYnzpIIPACCSDDnzdTc/5vNteefQxMvBApIfAQmkKRQuMDpc+s//wsXOmP82mo/ljIijCaRFBEk0LXdTbWed8p9q4XyGDNIPjyFrh2qOMZY+nGw+pH6VaFHWexFEogiFhYWOHeu8lxbifmsTSEfJ5WEzMLCms8dVydfsLh46SK5jLvid/lcHJIemlw7lrjr/K4WmnGOpWNGHl5p7THXu96NWD2udQrNuNatoumCYwd2Nfy4XSOS6+G2227jtttuW/HvV7/61fzd3/0dP/VTP1X1ceLxEMgghE0i/gKG0q9su1WjEmVrzP2Y2hwp88Ayy+sYwrif3VuwxhScEv6EScLeixBrt6ik7MFxHUb29hO3D3LhwgUOHjyIph1GyjvqsmyXLeIGQbhracvW0HsbYhnvNPLFN3Pq7AexYlPElgc7+ROYxij7ht9MIr7SBaHkXuL8+Cwp49g61iEDP5hhZMQiZo82tsFeAS03BleFZMkQWFqErYXEtLWDpq+BpekYWpG8X+JbZwzyOZ/oChCApgniyRi96b1IzSVtDqJFm6ekiqKICxfOc/DgoaWAx8APuf8bTxP4spyOOQ2JW+GWG/v4vpfs46FvCTQBhgBDrGzrYjv7DJ9+07/6V0HcKuILjURs8/6fjB+u5U7Wzdrnv9KAEIRmxedfvmeL72f736Ot9OOic4qZhc/glc4QSRdN2Nixowz1varhY3Sn3bdaKTpvuWqtn66wMzfKvqE3EitqELpllx0EQpTfFU3T6Ovr4/Dh6tPE9czpJFMpkHOk+/rW+CRbjgDN4MDoAYYGwhW/S/X0kO4JKgbArfe7WmjGORaPaVsRVgXrdCQ00LR1j7ncRzqSksuXL7F//yja1fvWST7SrXhGtRLJECg1/LhdI5L7+/vRdZ3Z2dkVf5+dnWVoaKiqY5imyfXXX8/FixdrOveBvf8LTTS+4l4jkTJiLnM/QTBHcpkPr6b1Yug9FEtPM5f9LKnE8brabxo9GFqMSDoYWqVAOgddi2EaPUsTiKZp6JoGaBjxysFY67GRf6Khd023rZpU4gSp2A8QS3ybkvsMfjCJJmx6Nwh2krKAlC6GnqwYkGroSfxgEikLV59DA5ASCjOQv0Kp5PGlR2bIOyFzC3EuXtnHfK5EPBas+ZlTMsgVYnzpwTxGv8PMWIh/MQZB2UUg1RfjwLOGEcIBYaNpKbQa+qmmaUsppixd47vfdRv3/cE3yWdKyHlJ4b/gG8V5JmfOcPHK6Kbt/MxXrjDQ5wCwe8Dm1pMRhu8T6QsY9trxZnn/b9i93oStPv9r72d7qfc6Cs4pxmfuXfIRXxR9BecxvGCCfcN3oW/BR3w9GnnfWhlw25M8yaj2rqVxdc0YYx8B53TlH4tyAR9N16oOeNN0rfw8JVf95NcGDApRTtWo6deEVvl31z5f05R1flcLzThHIiHoT4csZHU8v/Iz7E+HJBJiTTq8fEHjw/9wzUdaSsjnVmYF6SQf6VY8o5qJmnOerlEblmVx44038tWvfpWXvexlQHll/9WvfpW3vvWtVR0jDENOnTrFHXfcUdO5Y9Y+LLOzb1Wzy8HWEki31b7a6Ep73YKpH2J0zx34wXhVk2bLU4CFPmTHoJTl0mSeP/qHs5y9UCB0wSmlOHvhJJZVxDS8NT/1AwvPC/nHTxV5wc397BqYoBTY6LrO8IE0R27dg25pSO0SWngjQo5sqanHnjPC/7j7pXz6jx7k4hNTBAsRzpfhsSt5zs4WNm3nP31mnHisHChpJQXPvrGX175iL67zDLq0ELEerlUNbE8gaSemgKuHeq5js2JD2cI3OXP5/8EyhokityML87Qj4HbDgMpo7aJxNbUEvC3ieTpFZ61Irif3eSeTSkbc9ca5ujJmrA6Ek1JC5C1lBdlOgXDdRmcrv1X84A/+IO9973t51rOexc0338xf/MVf4DgOr3vd6wD42Z/9WXbv3s3P/MzPAPD7v//73HrrrRw8eJBsNss999zD+Pg4b3jDG9p5GU2h2rzCQZjDcS/WbLmoKf/pFhzom1Fpr5vo2MINXh4yl5G+w5cenuEv77vI9Ld9wjMCIcGVEHoQUrlwXSjLn3nzGqcv3EDP92XZdd0sg7uPMrh/N0IUkdoVhBxAD19WVdDeZvTvSfHGX3gxX/ro43zj02fwSj7hUxBGm7fTnb/2uWNI/mssw0JxF9/zigmQT2KHe9Fjuwjx2pb/d7tkgKnnOjYyCgTBHJ4/RRjmiPWOEIuNdtwiu12GgK1armvJahCzJX29AZdzOpmcsW6e5Hpyn3cqqWS0JRG7mGNZSolXWp4VpDNzLDey+FOn0lUi+dWvfjVzc3P87u/+LtPT01x//fV86EMfWnK3mJiYWOErls1med/73sf09DTpdJobb7yRv/u7v+Po0aPtuoSmUY01JopcJmc+hh/M1GW5aEVC/mZbxLcTLSvc4OYhcxFCj397YIq/+ewl5h8OCZ8RiECgaQJNaogIIizCCuUIIkwEoPkaubE9jD/8Sl76rhkSQ+PAeSQ2WngjeviyhqV/AzAsnZe87Wb2nxzivj/8Jn5243YG0ibCwPeuuXuEpYjSI/CNUopMzuRt338eXUzh+VNoscG2FaTo1MIdtVLPdaw1CkiCMEsYuhRLTyClj6bFEcJCCL2jFtntMgQ00nJdTcGMVDLiB98wy6kzlzgweqDminutEGA7QeQ1g/ICqOxa0ujiT51GV4lkgLe+9a3ruld85CMfWfHvn//5n+fnf/7nW9GstrOZNabgPE0YZlksSVqv5aLZCflbVWp3u9CSSmJ+YWl34PFzBYouiHkdLZLEe0yOPXcEs6cX5/E4Bddev622y4tuPMzAkMYtLz2MldCR7jiIAsgkQo40xIJciWPPHeEd7/8uvvn5cYoPVW5nGAkmFsrlThb6XoGuSYoZl2LWJXIjxBnBhaLDc06e5g3fLQmFh957hFjP9W0TXNulklyt17HcKCClR9E5jR/MEUQOQTCLJuIYRgpNs5Z+0ymL7HYYAqqyXNvVB+VVSyoZ0d/rMjQQVu2b2goBtpNEXjPYimtJt9F1IllRmc2sMWGYRdd71y9JWoPlopkJ+beLn2UjqHZrtHWVxK4NiEIrB2bops5/e8tN9AzGeXFBo+Su79cYszVSyZMrjyj3Uzkxa+Pp253kZW8+xgv+e+V2zi3ofPhjgkRc0pMs96+FKZ0zDy0QBRGhZuK6CTzPJm70gW6Atf9qjuX2sV0qydVyHYtGgfncV/CDeaLIwdB7MYRBEMwTRDlEKIgiH5ZpoE5YZLfaEFC15XrXuxtWknortEKA7SSR1yy26lrSLSiRvI1YzxoTsw8gpU/MPtTxLgzbxc9yq9S6NdrohcsKge6ViElj0wm0WwbNjdoZsyU9yXBpK9m1Q0zhE4oIoUGIVfmHddKo7AbbpZJctdchhMZg3yuZWbgfP5jCMkYQwoCohCRE1+IIzcZxz2CZgywu8Dphka1pCZAhJe8Spt6PrveuGOca3cbqLddjxBtyxq3TirGkW8YrRXtRInmbUckaEwRZLkx8EL0LXBia7WdZjShpZVqmSrQ7u8cagR5JEmIXQ/aLmnbOSlSTaqreiludQCeUE+9mdD2BZe5CCIMgLBAGeUDHNAZASnSRxHXHKVlj2OY+gJYusiuNI8XSGabn78PxLuL7MxhGP6YxSDJ2DNMc3NAQUO+4VLXlOsqjJEF7WfSRlrJckMO6mhVE+Ui3D/VGbENWW2McLnaVC0Oz/CyrESXtFi7tzu5RUaCXpsm5pyn5k9jx24H1/Y4bRbWppt7x/TNNb8tGSBlRqiNbTLsXQtuBMMwjhEU69R1EUYFIemjCwvWnyRa+Rsm/CDIik3sAyxxC0xIkYodaEsxYaRwxjH5cfxJkSCp+A3meJAxzuP4YYZghET9JFDkVDQFbGZeqdmHTUlRbjEEFvDWW1T7SUkK+YIF2LSuI8pFuD0ok7wC60YWh0X6W1YgSoO3CxfXG2pbdY32BnkI3DlH0z5Me+hbwHFY4ejaBWlJNtYuCf4GZmX+h6F+uSbi0eyG0XVgUf5F0MIxywKXvz1Lyzl0VfZIwLCJlgOtNYJnD9Pe+FE2LkS8+0bRdospjTYH57BeJIof+3pdimUPoepKicxrPn8ULZpDOkwz3fw/Dq/rPVhdU1Y//+4BnNrw2FfDWHFb7SEdhxMVLF1dkBVE+0u1BieQdQLNcGJrtllCvn+XqdtnmyKaiZHr+0yBl24VLGLUvu8emvov6ELHEOD09GeYYaPj5K1FNqqlFqq0E1ggK/kUuF/8ZX/OwY4eqEi6ZjKDoCBx3gstXZtCN6ynkru3exOI+vT2ljooR6GRWiz+AQuk0YVjENPYiwlli9iip+A0IYVEsnWZs6t5ygRHZnAIj6y2AQILUQOgU3WcwjUFMY5B0zwBBmMX35wllkd0DdxKPHdz0eLWMS40c/1XAW/NY7iMdhRG5TG1ZQRTNQYnkHUKjXRg22v6L2e3LQ12pXaY5jFN6ZlngYjmnahR5aJqFbe0lV/wWQoJtj7Y1uFHX2pfdY1PfRRFD03xM0234uevBD8oZKaanE2SKMf7lc31kC9eEs65JDAN0XWIa1Zd1Xb6V7Lg6vjSJZEQYmVfDvyJmSl/GDzMkYjch9HK400bCJZMR/OpvJJiZ1fCD3eSdN159vtf62kB/gff82L/Tkwo6Jkagk1kt/nS9Bz+YQRM2QTiLrifoSdyEaQziB7N4/hRBmMXu3UfCbE6BkfUWmlHkIQkxtD58f5YwzF61fgsMPY2uJXHcs4RRoarjla+/+nGpqvG/iop7oALeFDsLJZJ3EI1yYdhs+29k6C7AbM5F1NGufPExSu4FLHM3/rKcqpEM0ISBofch8cs+i20MbhRIYoFNQuwmV3wS3bxu7dao/ww99g3EShq44w09v+4X0cOIsDSFoS0T4Vcnz1CWCEMD17OQoaRludsq4PmCM+ds7v3oEM9cGCaMbDI5HSGuVcrTNUlfOiQeizh2yN20rGulreR80cCLEkQyAglJu4gVm6ToX8LWhxGhu0JcCMCWaYrZb1GyHiJulstrF6cMZq6MEI9FpBNFTDODJlw0UX5PnJLF3IxNKeOS0KfRohDdKUJQxzM2ExBLVy4puM1YLv4y+QcJwgyG1odt7SYRO4ZpDAKSonOaKPLQtSSaMJtWYGS9haamWWiiPN1KGRDJlSXR11v8NjJdXKtTBRazLlZMSQxFd6N68A5jtQuDlFFNZaqr2v7L3I+Ur2n6tVTbrkTsOE7pLNnCw4BYyqmqCxMpfUr+OBARtw+1L7gxcNlrOWj5IkP6rZSicxSdJ7H1IXQRI5Ql3HAGS+9lSL8FUZxteBNiUichdpErnUE3DqxMSxVGnJ64wONPjnL583thTkOEGoaIkyvFcOfKorJVW61hCJ6voWkSicC2IgxdwzDKZVylhCgSWIYkDAWGIfH8jUVjpa3kyfMLfPLC1ylmXaQnMTSfR06PMXo0y8GhIQjWBjrpMsILcoSFy2BeXSwWLQgGSBgeqViE0HS8cBJTK/vSEsUoFQXSL+K6F+mxjhJzdfCma785QoDbB70joHXHEL8V161F8ZfJf52LE7+PZQ5hWyMsWumDMIsfzKFrCSQhmmhegZH1guQMvRfTGMDxLqNr8RVt2CgupNF541uRKjAKI7756TN8+R+eZNfBNDe+ehgON/WUimW00u1sJ9AdI6iiKdQTMV3t9p8eTQKNKy+8GRu1yzTSWOaeq1uyA8SskWVGNvOqNU9DUg6ca2lwo5TgLKDlxjEJ+K+HZ5nJ6Gjmi7BSD6FZEwjhI6VJ6O3Fzz+bx30dGNvyqQtFE9dbOQRo5i3YvRmEPoOlx0nEA4TmkXWucP7sAH//hz9BZqZcBt60dPbvHeJDH7uWXbVal4ZGYdsRhibK/29Qdq/QyiI6APSrIrlaVm8lD/anyH//fr700ScoFX3kGcmkpXP6pMv07CQ98d41xxCag9ADzjyZJQrKz2luIc6FK/uYy5WIxwKEPoARm0eIGWQUp1iEXMHg3OQZ+ks67sJRHvIn6ronR/YlueVYBIED6dGyZbmDaURGGSE00qnnkU49h1zxUSx5zZAeRR5h5COEj2XtQddXPrNG7hKtHyQniMeO4niXQEZIyhblzfyCuy3ourBQ4rN/9jCnvjFG4Iece8xl/Ows1rt7uP5Fa13ZFI2l2qxArRyj66VTxL4SyTuUeiOmq9n+k3ICSbHZl1BDuwQxe5SC8wQQIKULlK3IQZhD1xMkYscJwyyaZjUlP3NFohByE+DMMZ8p8acfP8ejpzJ4hUU3hpvo6T2AaXn4nkUumwZC4NKWT+37Nk+ceTGut9r34CS2/QJSvQsMDl7hta/9I2yzxMyFXTzyT88nMzOEoQX0DxocuWUYO2lebdPKjBON8llcL9WU26JUU0IInv/fT7D36AD//DsPkJ0tknk8zZVvDsGzJzh/IYIVZVYkA4PTTE+O8NADBcABwCmlOHvhJJZVxDTKW+3x+G76BqaJJwq4Xki+aPDtR9PMXtnN/Nza5+z7NkG4vhuToZf9xWNpje967jBvesUoseAs9OyGxFBHul80MhXeegFqkfSQ0kHXeknaR9cItUbuEm0UJOcHM/Qmb8UydhGEC/jB5KZxIc3OG99ILj4xvfSORFJCDPAlpULAp37vG4yfmuOOtzwL01ayo1nUkhWok/3KO0nsq966A9lKxLSuJZGElNxLmGY/ht7LcpEQRkWEsBG01nq12bakQEfXe7DN3YRRCSnzCGFgWXtI2kcxjDSO6zLc/98pOk83ND9zRYISLFwCv8hjzyzwx/94lsuPegRPgAgXv6RRor9x51xGSZoUvSQ6Pjr+yqYBs2KABbufr1x8KUZQIjORxvV70XWN0SM9HLu1/2pqouV+yWszTtTLZqmmXF9gmRKtRdrgwA3D3PWbL1uykp35wg30DmRI902Tm+7FL1mYMY+e4Sz5Z5I89S/XU7p0rXGuhNArLycWNVqOBDlxADvhEukGjtvDNx99HjGxdoHpS5vT/otx5fozmy0KHDP/Cyfu8qnpSZ4Zy/Pu11/HiIzAL0Lvvo5yv2hGKrxKAWpCWMRj5V0tw1iZlaUZ1tjNguRq9QtuVt74RhGFEQ988hT/9bEncR0fqUnEbkjeDqUJSfC4wHUDvnHfaSaemefV734Og/vWjtHbnVZaRmvJCtSJdJLY75wRU9Ey6o2YzhefYmL6byk4pwiDDIYxiG0OkYiXA2QWJ5xk4iaC4u6WXtNm25J+OIdlDpNK3I4mWCo8sFgSNgizaMImlbiRob5XNDe4JXBh/jwEJR45leEPPvYM04/7BI+D8EBrgfLTpIaIwCDAEP6az0Uk8IpxFs7vJibyGAKMdIwDo8OMHraanpZos1RTcws6H/n4AJbZuuDBZF+M7/vp5/ON+07zpY/qfOsTL+K6Fz3JwOg0+kCe0DOYfnofz3zlehYu7WL5U1y83wKx6p0TeLk4gbTwsdF0A61CX5PSxguTGARrFjUAISYeSSQ2eC6lB+DxKM/786f4xbtOsmsggtCHgSONvzF10qjMDaupFKAWhkXGpu9tmTV2syC5Wv2CWx10Vwtf/NvH+canTuO5PtIE/RgM3WLwhpfv55tPzvPtgQzFb0KQibj4xAx/80tf5G2/9hL6dnewKbPBdJJltJvoBLGvRPIOpJ6I6ZmFf+X8+P+L509RzsPg4wdXCKMcfpghFT9JuFgtKv1KJp36B+96gng225aMWftJ2Nfh+hMkYicwNvDta3pwi18kk4Vi3ubLjwTMLiQoTUuiUGLFDHYfHWDfdSliVnUpmeoh68SY+VYfCSuBba49j+sbFD2L59xyjN54CdPW2XPTEf7603EW3SuazWappkxj7eAZReUUf5GESEIQQBgJXFejEXpC0zWe/99PMHr9EGcevELkfyfu1Ay65RB6ccxgiJPP0+B5K3+3eL8NvQdLX3v/vFAnCPWl+72aa8/L2/B57dJ6KUwUCaMIuQA5J+L0pQK7BuyyKTtwQW9+xcRqaGTmhtVUeodbbY1t9DjSiqC7erj0xDSBFyJiAv02yd4TNj/3P05wYE+clz53mHv7zvPgnmcIz5TwL8Vwszpjp2c7ViQ3w+LbSZZRRW0okbwDqTViOl98igvj/y+eP4FljKBpJkGYxfOnCMMCUeQCcqlaVDlP8rm62raVIJ7NtiWhXFGv3b59mazGr/7+IWZmDZ4ZG+HyVIlwTiIDiSF18vowhcjkru9tnlVhZk7nkVwf6Z6w4kq96AgyOZ0X3XmCoYFw6TedhutpBJHA88uuH54nAIGUIKXAKZXTwrm+YM9w0LBKYCPHBhk5Nlj19/MFjfOiZ1NL0kvfeLziM6/2ed04epAHPz6FlKAJkAgk5XvSaTQ6c8NmdLI1dltggEhDwtY5sCcBAjx5meuOfx69/xm4xSOYM8iM78ZMDgOdJ/ibbfHtBMuoojaUSN6B1BIxLWXEldmP4vnTWMYI+lUrlGn0oWu9eMEkhp4kZo6ya+D7SMQOEUb1CbtGBPFsNhF2gm9f0RHMzJnE7YCeZAnbKhLqkggwNA3LiJRVYRMWfZanZnUE4HkaMVsirWsTkGlKDo96DPYHvOm/LzDYH7ZtK1NVKltLOzI3dKo1djtS8C8ylv8EwpqiVErgTKYxHJehI2P07v8nIm0ELWpdBqRq2KkW307JJNGJKJG8A6klYtpxL1J0TiOEiaZZK46jaRqWMUAYFZH4RFH9GS0aGcSz0UTYSdakRDwkFgswTR+hSSIhMYWObYUV8jl0DsszTni+ILzqPeC6Gq4vmFu4ZhFp1uC6KDqLRcnTp8cYHj5wNZDwGrYlSSaijhngVaWylXRT5oZOZis5ppvZphnny/hRBoJ9+H4eKSWeE2P+Upw9R7KE+ucQ0WEEnfd8u93iu15WoFKFrEDKX3pjlEjeoVQbMR2GeSQRmoghpY8QK4WyEOZVdwttS9uizQriqYSyJl2jlsF0dcYJP4Az5+yrrg5lLFPykY8PLPkLN3NwTSUjErGI3K4ihw97a0Ryo1BWlubR6ZkbOp1G5JjeKkITIEB6EFyCuX6PLz36FEP7L5LNjPL4aZib1gknARcMQ2d6MoUv5kiJSXoTe1vSzp3AZlmBoDwmL3c762TreS3zU7OoSyQ/+OCDvOUtbwHgd37nd3j1q1+95jvf+ta3eMc73kGxWOSuu+7ive9979Zaqmg41VhVdT2FafQTBln8cAFTDK1ItxpFPpH0SMSPbmlbtJlBPIq11DOYrnYZmFvQ+fDHyhkmFgdXXWcp48R22JrsNCtLJ0wajaaTdne6iUbmmN4KN7/kEFPnF3AKPvIpmJkP+GjsNN/xYo97/+J7mZ9JI0tAVE5/aMYM+sYToBcYSO3jh34AtchsEFtx6+ok63k981OzqEsk33777bz0pS/l85//PL/3e7/HK17xCnT92oWcPXuWH/7hH6ZYLHLnnXfysz/7sw1rsKKxbGZVjVn7ScaO4fnTaNLFD2Yw9J6rFmQPL5jANveyZ/CNW5rUWh3Es9OpdzBd7TIQs+W6wWTdsjW5EZ1iZal20rCM1mQeaTRqd6c2mpFjejNKnlExeHffbUd5iZ3m8/d8AzeTIRqXzH/R4uJ+i4XpFEbgYlolhBAk0zF6hw2ElqHkwkImScktdu0iulZascjdDm5dnRTDUbe7xc/8zM/wxS9+kbNnz/LJT36SO++8E4DJyUne+c53srCwwEte8hJ+7dd+TZWi7GKW+w1Sgii0CcIcES4y8rGtvRzc+9OkEie3dJ5uK7+6HdgOg2mraLeVpdpJ49SXmpc2UNE5tNI9DcrFbP79iev5emZonW8MkXjuEQ7MfJaxRy+RPZdm9rEBTN1Hly7xmMvA3h4SaQPwQMwh2EfgJKDF1VnbQSdZRruFTpmf6hbJR48e5c477+Qf/uEf+P3f/31e+9rX4jgO73znOxkbG+P222/ngx/8IIah3J67neV+g4XSaYJgARAk4sfYM/jGLQtk2JlBPEVHp1Qy8H2TMCrn9kVquJ6OaW36c8UOo1MmDUX7abV7WiANCq7F0AY7KkXP5rt/9AU881+9fPkfnuT8A8cJewzSgxmG9iQxLYuyQM4DcUR0sCFtawaNtvh2kmVUURtbUrD/83/+Tz71qU9x+fJl/vqv/5rPfe5znDp1iuPHj/PHf/zHxGKxRrVT0WBqjYhuhd/gTgniScQlQwM+M7MGuUIM14MwlEgkUaTjBRrDyqqgUCjWoV3uaZvtqOiGxotedz37jg9y/1+dQ3qHsZIapp0BSoCBkMOI6AhC9jW0bY2gmRZftcjtTrYkknfv3s3b3vY2/uzP/oy7774bgH379nHPPffQ29u75vuPP/44n/zkJ/nqV7/K5cuXsSyL6667jh/8wR/kZS972VaaoqiBeiOiW+E3uBOCeNK9Ee97z3mKeck/fmGCf//6NO6jktCTxGImr33lczhy04CyKlRgdaaJKBTMZ2165nQ0XVPWGMWOoLJ7miQIs4Shi+tfJp16ftvc0w4+axev/9m9XPmLIQInhhYIED5gIWQPnVjcBna2xXc7BgU3gi37QrztbW/jnnvuIYoi+vr6uPfee9m1a1fF737oQx/iK1/5Ci9/+ct5y1veQqlU4r777uPHf/zH+bEf+zF+8id/cqvNUWxCp0REb8ROCOJJ94SkEwH9aYd4vIAwJKGIiGsW/b1+xwzCG6U/m1vQ8QPRssG1UqYJKSGfi5Pq6UGInZ3PU7FzWO2epmtxSu4YXjBNGOXRtTgJ+zqKpTNtH8/L+eF6ER0qjFez0yy+yl96Y7YkkoMg4P/8n/9DdLXCmuM4G7pYvPWtb+X9738/tm0v/e1tb3sbb3nLW/jTP/1T/sf/+B/09fVtpUmKDWhHRPR2ohOT9jeTzdKf+QFcGjMZ3efjepUnwEYOrpUyTUgpIfJI9wS4nt60TBPb1cqy0/r0dmLRPW18+iPMZj5HFDroeoq4fQTb2ofrT3B56kNtN3x4nk7REWsCDLv93dku7GTreTXULZKllPziL/4i//Ef/8HAwACJRILLly/zu7/7u/z6r/96xd/cfvvta/6m6zovf/nLeeSRRzh//jy33nprvU1SbEKrI6IX2Q4TcSck7W811aQ/G93n8bbXzTPQVzn1WDMG1+V+kVJKvFI5BZ0Qjc80sZ2tLEXnFHOZ+9vWpztlXOiUdtRDInYUUx8gbh3Ctvajaza63osQAillWw0f5Xcn4HJOJ5MzqJTkqlvfne3GTrOe10LdIvkDH/gA//RP/0QikeBP/uRPuHjxIj/zMz/DJz7xCe666y6OHj1a9bGmpqYAGBgYqLc5iipoR8GO7SAuu8FFpZnE7AhDh2CVDpZSEoba1e9UL4a7qYLddrWy+OF5xqbvJwjm2tKnax0XmiVku318KnmXcdxnSMSPrQnga4bho5YdlVQy4gffMMupM5c4MLq2bDx057vTLJaPi6tjLaCz7lU3jeFbpS6RfM8993Dvvfdimia///u/z80338xNN93En/7pn/L000/z27/92/zRH/1RVceanJzk4x//OLfccgsHDnSmH2qh9DRh1NNVFoZKtDoiuuicYnzm3q4Wl8pFBTxf8OhTsTWDYhAKfF/w4Y8NsGc4qMoXuBUV7ArFjZ9DrQP4drOySBnheF/E1OZItqFPF5xTXJr8M1z3MqY5gGUMgzDWHReaJWS3w+K3VYYPQwQkbQ/XEzXtqKSSEf29LkMDIZquLMbrsXpcXB1rAa2Pt1hPCBeKGn/3yT7yRQ1zHQW5nWJDahbJn/jEJ/jN3/xNhBDcfffdfMd3fAdQXrX+5E/+JD/2Yz/G5z//eR588MGK7hXLcRyHH//xH8fzPH7lV36lvitoAZeu/AGmrnWVhaESrSzYIWXEzMJnahaXnbb12S4XlU4iDMuuF4YuMZZNdH4oQAosU1btC9y4CnYSKXJIPIReBPrKbQrg7z7Zh+ut32e20wBeD643hh9eIGUeaEmfzmQERad8Hikjzo39M5ncWRACKSeIxy/S32eRiB3F92dWjAvNErLbZfHbKsOHKVy+64Ynec73rr+47TTrYTdZO1ePi8tjLYQQLavsuchGxoySK3j6mRjxWMQtNzhYplz1eWvb2mxqEslf/OIX+YVf+AWklPzcz/0c3/M937Pi8+/6ru/illtu4Vvf+ha/9Vu/xd/+7d+ueyzP83jPe97DE088wQc/+EFOntx6QYpmkbCPIMl2lYWhEq0s2BFGk3g1istO3Pqs11KzFbHfqfYWQ5eY5rI/iLKAjtkRnl9bn9lKBTspFoj000gxjyTAToVE+iRSHCcMh8jkdNI9UVvLSLcLKTfvPWGUR+KiawkW04ZFkYemWRh6b0PdrjIZwa/+RoKZaQmajutNki28AHg+QtgIodGXnuUd7/ggYfphErHjS+OCbY4wMf03OKVzJOzj6FoKIURDhOx2Wfy20vARswKGBrqj7HkrdqyaweK4uDLWAlpV2XORjYwZlinQNEkQlg0ka8fx1ra12VQtkh9++GF+8id/kiAIeNe73sU73vGOit/7X//rf/GOd7yDhx56iM997nMV8x/7vs9P/dRP8eUvf5m7776b7/7u7677AlqBEBq61l0WhvVoVcEOSZFILk7Ea9G1BG40QdE5Qxjm8fxppuY/1TYfyfWox1KzudhfnMgkhgaakEQyIpISzw349B8+SM9gvDUXuAEFP87ZseehC5/54m4MEaBr1wbMUGoEkcnp7CShNPj41NdJms7S53uO9PGi119PPNW48oGSHEX/GcJijvyciVs0QQuw49MUCyUmLx4lKMXpTzlcd1M/yb7V2XY6awD33YCvfeJpLj4x05DjZWeK+F5IpEdICRoauiYpL70EIMpiExvXG8PzJ/CDOSIZoAkD0xjAtvY2zO2qmPeZGS8QtzziCcGC8RTo0+h6D0J4OE6MhcwgQTBCGJ7C9cYwjUHyxccZy/850wv3ITDw/BlMY4Bk7BimObhlIduO+IxmsBMrlVZD43asdjbrGTPKY0p3pPTbKlWL5Ntuu41HHnlk0++98IUv5Omnn1738zAM+Zmf+Rn+/d//nV/6pV/izjvvrLYJbaebLAwb0YqCHYIEmrDXFZclbwyndI7xmY8g0HHcc8jIJ93zwqXvd8LWZ62Wmqq2h+0jULQhDHjBs/r5yrdnKI44BFcEnhMwM5ZlZizb0uusREmmyEVl0VtCohOhLQvaiQCJT7bkEGFwMTNDTFwTFRcem+LCo9O86t3PZu91Ww/Kte2QdN9pZuZCrpxL43vhCrO7nSqR6jnL+ORhokyBwkyGI7fuZvehPiqG1reZ2bEcn/6jb3L5qRnCsHH7BxIJCbD2wv5dFrcc6wU0sJJg2NjaPjStl0zhawgsTCONLkyk9Cl5V3C8Swz1vWLr1kcnA3PTyPAgQpSIW3kcOYFmuGiahhDlxYrr2ksWYs+fRmAwPf9JPH8GgY5pDAEBnj9JGOXoTTwb0xzckpBtV8W6ZrBTKpXWw1Z2rBQKaEAxkVqIooj3vve9fPazn+Xnfu7nePOb39zK0zeEbrEwbEazC3bo2m7s2FEKzmNrxKXnz5DNP4CmxYlZ+5EyoOA8hSQgV3x4aRIst7O9C5NaLDVV+znu+QlE/2HIjXNwRPC+HzrJH3/8HN+OZ3AeBZzOcLjQpYftFCiGaaJQp+wHvNIqowsfTQ+JpAEJCdrVtkcQFiXjz8zxN//ni7zkbTdz28uPbKk9icQlXvtd/x9nHhY4u00QsjyCXe1aVswFU+evJn8BWZD4XsCZByfITBc5cuseDKszJkUpJU9++RKf/bOHKeRcJBKRBBrUPK0PUrcK/tsLhnnbqw8Qj1mQ2g3J4WuLhauPabFS2+L/hBBb9/eREeSuQHGWXF7yxLksjpfh0P4C+/dLdCzC0EHXV5vwTIIgh2mkiSKPROw4vj8DhGiajSks/GCWgnuGtDGwJSHbSjeFVrATKpUqFO2gpSL5Ax/4AP/yL//CbbfdRn9/P//8z/+84vNnP/vZjI6OtrJJNdNNFoZ2IoTGUN+r8IKJFeIyCAtkcl8FBOnUCzH0Xjx/GhCY+i6CcG5pElycuNq9MKnWUlOzn2PvfjCTDIkJfvbtx/nE6Dj3D0/iN9CquDUC0t5XyRV6efzx78CyHAzDX/ENTYuIIg3XFfTeqpGIl5VeFETkHpNEZyXFgse/3vswl56c4fbXPaeulhSzLl/91AMMXX8OSw5gpjREP1i7BGUdIBCi7GJgj0j8LDALoR8xeX6BQsbl2HP2osUqb6+3Cs/x+Y+/epRH/v0cvhsgDdD2l0WtbjVG0CRiGm971QG+45ZBhBmH9GjZinwV1xsjkll6U89fcreQMo8QBpa1B9vcQxDM17coDVzIXAYvz6kLWX7rI1NMjg9jlCSXwgAz4TOYjqPpAWGYR0blwlIy8vCCSTTdRNMS2NY+DD2FaQzg+pOYYmjJ2uz7swRBBi+4UreQ3Y5uCjuhUqlC0WpaKpIff/xxoOzf/PDDD6/5/O677+5okdyNFoZ2krgqLqfn7iNf/DahLIIEoZmk47dgmUMAaJqFJgwgWJoEwzCLYaSB8sJECIsgzJIvPtEWK0k1lpqa/RyFgMQAmAnMzCVe/7L9vPDmAWYzXisuqWqm52L83ofj2JZFLLY2cKdUKhfa+NHXHWZ4oASA60V89HOXuTDk4D4CfjHksS9d5NLFEHfotZQsg2rzrc6N5/jnDz5APj/HCw/rmCmPMB2jb5fJDUd6MfSrmRMoMj1ncd2+XnL9JWZTHt44SEeSm3N49AsXGL15P3pPXyNvT9Xk5x0+8TsPcOmJaYIwAhuMZ8G+my3e9PJRepKNGY5HdycYTMcglobefaCvPO5i4F7MOkncPkAYZomkhyYsdL0XCHHcs7UvSr0CLFyCsMQXHpzmLz99kbFvxIhmgQgcxyYzEEfKPH2pNLFYERmViKJS2bKs2aQSNxFFi7EMgkT8GEGUww9mrrpF6ESRQ9E9RSJ2eEtCVrkpKDqNxTzUUoLj6lhXKxV2YnXCMBQ4pbVubJ3Y1q3QUpH8kY98pJWnaxhShgRhtmstDG2nnCkMGUkkIVL6aNq1gCpD712yGBn6AFLmiWRZKEopKThlH/fxqY9cDQZsT9aLzSw1dfs5mjGivkPkxk+xf08Po3s6xZJcJpPTOX5YMDNXWfwn43Bwn8fzntVDuufqdyTccLiHD/3zBb6WnsN5CJiFzPg8vjGPm9hVdb7Vx/7zItOXsvhhmrm5YfbeNk7S7ufZJ/qwLINISgRQDCcx5XMYTPeyfzjJVNriKZGjNC0hA6EnuHQmz6Hb+hp7g6rkwuPTTJ5bKPsfm6AdhYETBm95RdnqWx/a2vgZTYfELkgOVfTFXgzcC6MiptG7tBhdJAjr3C0rzkJUfm//5UtXWJgLiC4DEei6gFBj9swwdrpETi/Qk+jH1m1MLYVl7SadOsxw/2uZnP3Y0jtkGoP0Jp9N0TmNH8wRSgdJSCrxLPYOvXnL7/96i18Ax7245m8KRTNYXdlTSsgXLNCuVSrs6w0JQsHMXOvS8FUqHuP5AkMvp9vM5nU8f+18tZ0qKbZUJHcrjnsOQ9eUhaFGlhcTiVmj5YwW/iRF5yzz2S/Tk3wWlrELXe9dshh5wSSaMBFoBGGWgvM0nj+BZe5dCtbphKwXldiSn6OmM+Pb9OzajS6DFrZ6c9JpeN/P+RSdle2SUlLyrxBFRVJJm97BPSC0sk9qYZqeZMRrXjzCE+cL+Id8ohzooct/O/E4z7tz/UXm6oE+uBqgp5k656/cyG6Z5/CBBTQjhiTFvO9hxwrYscMMDLyO4aGImRmD3kQ/ui4Ikj4yD/igh1rbBvDjzx3h4mPTfPs/zuN7AdHTMFMK+BPvLKcv5UmnzM0PchVdE9x+so99u5Kgm5AYBO3q7404mKuzelzDtvZh6gdx/TEMvadx/rhy8ZkJ/EAShaAJgRBgJJJ4echnLC5dsNm1Z56eWLRkiUqnbmf/7heX35/Cw1ffoeOEUQ4pIxLxkyAlRfc0qcSzOLLvF9C0xkxfqxe/62WnGUi/Eqj+GSnaTy0VAtvB8lzO3/vdGVxvseJexNj4GP9/9v48TrK6Ovz/X+97b+29b7PvwwwwzMAwLLKJKCCLGwpKPgoiqBH8fWM+MSH5JC4hJjEaNInRoJG4gCYKKogJmICCYGSRYRkGxhlm32d679rrLu/fH9Xd00t1d1V3rd3n+Xig093VVffevnXr3PM+7/NeuXwh9YP5FsdV3PezprK0tRsbtI+1YlmGurDL9e/oIxIe/1rV1IN6piRIzsPi+R8n6K/9FffKaaLFRAzlxzB8pO1DOAN9+H0d+KxWIsGTqA9vpD/2NEr5yDhdGEa2XtHvW0BD5Kyqb/g/8zpHla0dNSq/L2M1hmBkvnEokEjrbCBh20HSfYPZ/eAqiHdO+FxB3+T9VmNxY1S2ZCAZJKkjeJ7HkUMr2PJyHZvW7MXxjpL2evG8IHWRjXQ0X0UkuJpP//92k4i5oD3+5jvb2bUvjtuvUJ6io72Bm953UUUu4L6AxRW/fyaL17by6LdfIhHN4O3W9PR6/KzrKEYBnfKUCT9tPsQHrlzKmza1o+Ld2drjwNTZX6UMQv6LUdbPS16PayqbgErg6CYyhECDHQ3heR0sbAxh4bJggeKkZRuIhLLv77bmq4glX6Or77/QOruwglIKpQwioZNZ0PZ7RQuQx5qsO00ycwjtXgGsKMlri+KZKsiDymc7J+vlnF1xz8/inSFuub6XuohHV49ZtrZ2dRGPm9/XUzOLsZSSBMl5iATX4p9o/UWRU67FRGy7m2jiRRRgqBCel0bjkbGPYjvd+H0dNNadS3vz2/D72nHcAQ4fvxfLahlXN1nprhcTmQt1jlO2uWu7meleo3N9cBzZeRrdmWVopWEfHEymuOmKoyxf0IejXI4kGljScS6WaYH2aGxwaQxnQHvURRIEgzFcI1vbF7asil7YlVKsv2Q581Y188hdz3Po9R7cHo/Mbyio7agGks0u/zqwl9/tjfHBty0l7O2BSAfUdUzZ8s5nLmde+y309P98+DxVyk8wsJTGunMwjCBaezMOlH0qzRrjf2lua6ErFUUHNeZazeLFIf7qo6eAUoSb6mhsGl3yoYf/hxOZbl3ahXam6k4TT23HzjyJ1hcD1XcjWyq2DuB5fgaSwZxD/dUYLNVCkDdZL+ehxUT6BqxxQW+52trVRTzpIY0EyaJExi4morUmnnod103g9y3AMhtJZQ6hPRulTFw3Cv4OFnXcQl04u/piLPEaGaeLtH0Y2+lDawc1uOBBJHgSltVYle34Kt6OSWtI9UPs2Igh8GI9tUfXwL9jZ/YStpahUikghQWYuoVEei9dme8RbrgeBXT2pnBcDy/hob2p9z/XB0e/P0OUBB4a1/WRSIY4dNzjrFPnow0/y8I2Zs/OMRvq0TOQIZlyIEGuEdeK6ljayPWffiO/vHcLrzyxL1tSUgCtNd5RTfRxzWN9new5Eue296xk+UINdjybVTYnLw0Ih9ZQF15DKnOQWOJV+qPPkskc51j3j+nq/a/C6v49FzwbtOZ4bxrH9dDJ7OnnU2nCVoKgiqENjRnURCIeCzoy2WB+xGTQoUAV7dLadDWeFx2+OTaMepLpHSUbPZqyO41vAYn4XtKZQ1ihZUV97aLTGuLHIdFLYbcW2cd29qawHZf0gI/tqQuwdYRjW+p5KdY87jeqceU6qJ0gL1fQq7XG76+N1Q1nOwmSRUmMXUzEdQewnZ7hGkilLPy+Duojp2OoAJ7OoLWNaZ6YHJaxO0ln9qPR+Mxm1OCCB0OLCoSDa6q2HV/F2jFpD6JHINEDuvgX2ZRzlERmDwGjBYU36vNXAQGjhURmN4nkAf7nac0Djx2i90UPvR+U42HWWcxb0TTl64z84GjtsOg94GBnXHSfJmVb3PuzfXg08vaLFuAzFLijO4Jseb2fb/xkN4deyeC8CqQ0fp/JvBXjP+QrJRD2ccVHz2TVmQs4/HpPQb97dGcPe7cex467pJ+F33XF+auebbz/yiVcclYHhpMaLL8YP4F0JKUMPC9Fz8DjwyMDBdf924ls2zc7wW9f6+HffrqXo1ts3G2g0hpfIL/sltYe/bHn6I9txucbbPk2ZlJhKUeP8ulOo8ngetV1Uz6Oa0P/AUjHKPTu0HE9HnziCA89fpjeFzzS+wOknBABn0N7u6KxfvQ1RVauE7OdBMmiJMYuJpINgp3BQBccN0rAP4+gfxGg0NoZ1XZKa4+B+AvZx3suSgVQCpQ6sahALL6FjtZ3y8zzIU4K+g6CHee1Pf385JeHiSaLOwmwruEIq9d2EosqID7u50p5ROq6+I+tW9i+pYn480AvKK0I1/u57OaNnHphYW0e25c2oD3NrheP4qQVRKHvfz1+4BzgyRe68I/tL6zh8LEk/Zs9vIOgnGw98BlvWcElH1g//Z0vAaUUa85eyJqzFxb0e57r8dv/ep2nfvgaqYSNtwM6e13uju7ltb0xPvT2ZdR5e7MLiNR1wARZ17wXwMmVudU629EiepRMJsN9jx7g578+xsDzGu8wKBf8QR+brljF/lcnrlGHEzXu/bHniSW2YllNpKz9w8tQDyllz/R8utMo/JhG9d2UD0tHof8Anp3mic2d/PL5zoL6rmcyHof3JrPv2z5QnsLymaze0MTiVRHGZ6Vl5bqZsJ3cbdS0hlTaxJIIreLkTyBKYuxiIqZZj1IGrhvPlmGYYcLBkxgqxBzbHi2VOUgytYv68OnZWsDBPqlD2WRP2xjKoCGysSom7VWU1pDsg+hhXDvDQ08d4YHHDjGw10MXueVyQ7NLa4MiGYuRSY/voOAPpshEYPfTmvhmIAWmabDopBauuvUs2pc2jn/SKSk6ljdR1xzk1Wc76ekF+iD+JOxakUTluIq5B7OPcbwg/voIF/6f01hzzkIGkgqSJx5XqrrEkbPWc5np6xqmwbnvWMuiNa08+OVn6O9K4h3ziD4BT/R1se9IgtuuXcnKRRoyCWhaDOb4mYEFL4AzxHNg4DAk+zjaneCuH+3mtZej2VZ/A6BQ1DUFuerWTaw5ZxH3/sXjE+5LPLOHg/3ZQN3va8Mym1BY45ahhtIu5jRldxr7CD5zOQH/oqK/9oxpD2LHId5JLJHm2w/t5Te/7SZ5qLABJe2AtxtID75vV7fgNc6ndb5BaSvC5554wmDnngBa65zBcDLhxxfwEU8Yk050FqUlQbIomfCISWzx5OsAOG4fwcAyIqE1+KzsB1+utlNDQ5/h4GpMMzLcJ1UTQ2ER9C/EMAL4fe0V27+q4LnZ8opkD739Kb7xkz28+GJfNhPUz7jAZ6b6VBPdS9rpWHWY7q4go2ebaeqWDnDslYX0P9s4nME9/c3ZDG4gPLP2WeHGICe/YTHbX47i7zFRKdA7Bj+6R+6nBlyNZ4Q41nIpLasW84vtPn6xffxzlqKecrJZ68V+3cUnt/Ghv7+U/7n7JbY/ezBbfvEc7OiK87mebVx/xWIuO3ceRncqu7BIcPRNSsEL4MCY8ope7n5wN8e22DjbFGTAskyWrWvnyo9tonn+5MGs1h5dsSewvaFMNvh9BwZ7prfiuCeWoQZKuphT7u40IdL2cdKZQ/isNoK+C4tzU6697HHUuQJPBf7whNn/cdxMdgQpE2PPoSj/8qPd7H4lQfolIFXgNUDr7AhAwOKMy1Zy2lUbufuHPkCCtGJLZxQZWxEK6HFdNrTWpNMemYwx3BZuSLW3tZttJEgWJTVyElss8SqdvQ/heZnBjLAzYdupkUOfPquVxvoWHHcAz8tgDPbKcpy+qqxHLpsR5RVbd/Xx9R/v5uArGZytDGdwh7qy2NqPoycOUi1l41P5pZ0PPLeB5nlROpZ3EetqxE758QUz1LX1kxyo5+BvNxD0BbEiJpfdcganXrikaMG66TNYtKaFt6w9g9/e9xx2xsXzXAzDHBWuK0Ox4vw16ORyQiEIBnKsFFiiesrJZq2X4nUjjUHe9X/P5flHWvnVf2wlFbfxXoeuXpdvx/axbW+UW96xnHpvf7b8Itw2/LsFL4CjPeg/BHaC4z1pvvOzfRzf6+BsV6hMtrzinLedxIXXnYrln3oYPuUeJ5HZSyC8dPgcGeqZ7rjdGCqAbXeStg/jutGSL+Y0sjvNQPwFkul9uF4CU4VRKohrP0U8uRifFZn+pFw7la0ZdtMTP8YMQONi8IWmfr7YMbDjOK7DN3+6l937EqS3AHHw+Uwsq7ByCCtg8taPbOTk8xbT3SulFGUx0c3SCLXQ1m42kiBZlNzQJLZQYCnh4Kq82qPlGvq0zEYws3fZidT2ubs8uNaQ7IXoERw7PTzRpm9MDe76i5dx6gVLSNk+fvTLJcTiE7/d6yMO17z5AOEcy07nYgbPxN/yJNbafWBkwKvDSa4j0/NG5n9wOQDNC+qob8njQz6HSbMlCta+YREb3nAZ3YcGOHLkMAsWLMQY0V86WO9HRZrZeq8iGHDL0jJprHK1aoLsTcHZV5/EojUtPHzXZo7t68c77hF7Ap7s62H/0SS3XbuS1Us8VDqGpbLbVfACONobHr/vjTpkXAVpA0spDL9i7bmLeNP786/7dnUSV2dGZbJHrrKXsbtwvH5su5vG+rPK0kYxElqD1h6x1A78vg4C/sX4rQ5cL0F34kV27HuWgG8eSvkLW/1zxPvWdTIc7kxmV18cwzQVC9tDmD27oW5+dun6yW4yXRvQ2A70xxy8NJiegTKhdVEDl99yRkE3qS0L66lrnngxGjG5fEutAn6N3+fheIpUZvxNlusp/P7s42B0W7t4YnyGGSDg14OvbVRdt5FaJUGyKJjW3rTbm+XbHm3mC3PMUiPKK7r7Unz9x7t5+aV+EkMTbQYnyL31w2dy6kXZDG5Xj4nnq6OlY+LMZjoTpG1FewG1b+1oNqHVYVBx0BFUcCGqeWZ/j0KyJXWREJHGAG4oytIV7Rjm6Nfu6iluqUktWHhSK++/42L+599eYtvTB7ATLpnnYGdXkr/p28Z1ly/hrefNY4HfgFQ/Ktw84/eZUgpU9v8b2nKXbUzEVCFM5R+XyR4aPUplDmPbXSxd8HEa684py/tda4/uvp+jvTQNkbOHA0zHzeC6fXj2AIby01h3Pp5O5tcFxHMhehiSvXT1JvnGT/aw62AcL8c9lKFg+cIwH3vPSjr0IXASUL8wu9x4QRRNHRGWndZR4O+NJ0P8+Smk1CoS9li9Ik0k5BEKji+3OHY8hulrGrWiXTbwNfj3BxvLUs4lJEgWBZpoyda8+6mSf3u0ubAwR0GGhmntBC/t6OObD+zi0Ct2trxicKLNkrVtXHnrJtoWN4z79WJnNhUGSi+e8XyesZmXkcuzQjY7MvKDotKLABRLPDF5gDHd/QzVB3jHH5zDklPaePzeLSTjNt5OTVevxz0D+/jd3gFueecKGvoPgpMkUr+6Yu+zoNlB2L+caOZAjkw2uG6UxvqzyxYgw0STGTWJ1OugMgSsBThuDM+LY1mNU3cBsZPDNdybt/Vw94N7OPpaBueAQuV472gFPYv6+Uznq3z4ncs561SdfY7GJfmVXxSRDPEXppBSKwCfBaGgztknORhwc65ZU+5yrrlOgmSRtylXWpuqn+o0VHxhjmqRGoCBg+Bm+K9fH+GHjx2k73kPb1+2vGJoos2b3r8ef7B23tblnORWTWwHfvBQE+kcw6xDZrLfylCc+dZVNCxq4+d3v8qx/dnyi+Tj8Ogxm9/t3scNVy9jw0m9NGYSRPx1hCPXkgocxfXimEaEoDUfZRtgHx7xzJqhuyJPazJpH6m0H+2B0sa4VdkmDPQ1eJ7GMBRtwQtIxR8kEXuJgDkf0wjheknSXif+wIKyjxjlmszoDPZ5VyqCUn60F8cbbB0zYRcQrbP9ymNHsTNp7v/FQR751VH6X9B4BxXKBZ1zmUWN06U43Gnzj9GdXPnGGO+9dDE+ZxeEmseXXrgOaI03lJYuYrxaCyvXlcJMu9OUo9SqnOVcc1ntfJqKiiqkn2qxVWxhjmqS6ALXJpFy+fkzx4l2eujDoBxFuM7Plbdu4uTzFhe9m0WpzdWsiOsq+qMmjfVeyfY7Fjd4+LlVdC9azdFkD33H4ngJDS/A1h2aXzylWL/W5Ft/fYyWxjgKCOEDmrJPkOme4Jk1ew7Fuev+Q/zmqXNIHo2Akx3J6NrWxMv3nBjFGAr0Q/V+lFJ4KQ/nBTiiEvzTD17nlncupyHSweLAFXSl/pdE5gCZwRX26n1LaQteRsS/YnoHYJpyTWb0vAxau4AfrW2UsjDUiZZ647qADLXIS/VxvDvBP/z7IV55OUVqS2S4RV4w7CPSEADAMhz8RjbojvelSMQzeAc1fQOaB/uO8Pr+GB97z0rmt+Yuh+ruT/P1n+ym82AK52UgqfGZBqH68W3/ClUrK9cVS7lv3HOVsmgNmYyJX0rDK06CZJGXQvqp+n1zcDJdqQ3OfnZdjecCnsIwFIalWLqunVPOL2yBjmpTyqxIpeop83nd0u539gYkHNGcdnYTx/cb7H+tEyfjQVTjZHy8ZMOX7t3LWafl/1qJtMtjzxzj0HNBkocjmJ6Nz3BomV/P8pNCWIPL6Y4M9C963zoGupMc2d2L1+kRfxKe7M1OKHzjmW2ACVyIYfWAkQQvxPzmhSw5pRm6d2Y7PUyxemCx5JrMaBh+lDLR2sb1Evj98zHNEzcDo7qAjGyR92oP//KjIzz16LmkuiPggmFApDHEorWteOHsR3BTg8v7B4Ou3qMxHvn6Zva92onT75L8DbzUM8Bnu17l0nPmYVmjz1vX0/zyt8c4PKL0yjIVC9e0cP67Ty7LMZtNynXjPlkpi9aQsU06OhwpZakwCZJFXgrqpzqzdriiQIY1x0pP8lSpesp8Xrex3iWWKM+QaDYQh+UnN9A+38/rvz1MtDcJKcgc9bH5qQF2vJ7/CnbagfRW8DoVeOD3O6w9M0DHcguloihdT7Z91YlAf96KJn7vs2/ksW+/xGu/PkAm4WBvhl09SQ7uO5DjVZIE6ndz7oZ+bn77MiLeXoh0QF17/v2Dp2miScOmEcHTezGMhUQCq4eTBcNdQMIbCNpBiO0mk8nww/85wH//+hjHn42Q6oxgahu/5TJveTOLT27FMBXgjgu6mufX8d4/v5Bf3/8az/3n62RSNs5WxeEehx8ePTSu2kJryLwO3gFG9TiutdKralPqcobJSlk812P/gf2sWb1kTmXxq5G8g0ReCu6nKopKaz1BL838zbUZ6pWqp8zndeMJg+/+qKWor5uPSFOQdW9cyvbf7qf7iAsuOK9CKsdCKxPSoDNgKIPGdpe1Z0VpbN2LxkFjoXQzylsJtI76tVCdn7d9/GyWnNzGL+7ZQjKWwdulSe3P/TJJn+aJo13sP5Lg1qHVA+14NqucY/XAYso1adhntWCqOJbVjDLG9Hm3mmmzzkBFj3K0O8G//Gg32wZXIPT6s8csGNScek4HrQuHMtBD7+fxQZflN3nT+9ez+ORW/utrzxPrS+Ed1KSPMbZ9bvbvYWdLOCINAa74/TNrsvRqLpqolMVzPaL96eFuFqJyJEgWeSmkn2qutkZi+vRgcJw95kMHVw/+DLoODJCKZwhGcgcOc3mGeqXqKau5jtPymyw8tZH6dh87XolhOAqcwgIqy2ew7jIDlRjAFxoAHSQ7hGSjVSfajKLVmYwNlJWhOOOylcxf3cwjd23m2J4+PDv3eeemPdKbYacb5++TO/iTG9awcpEHvXugZRUYpf34GjtpWKkI+/bvIFS3lVR614kuIOH1tKn1RNxGuvtT/N13trN/Z5LMs9kl0C3ToL4xxKlnzqe5rbBtXr1pITd94S088vXN7H2lE8/JfUNnWIpFa1q56tazaF1UnrIUMbFyJCTmWtKjUiRIFnkpqG+xnl0znStNKQX+EDgJwiGL+W1+jnelSFoaXE3XoQH+444nufLWTcxf0Tzu9+fqDHUxMYXC57cwlEIplbPHwqS/b3gsWPcaL29eCzShGFo9zo/WLaB60MY+xgbJQ+avaOb3PvtGtvxyL4noiZUe7ZTDni3H6Dsaw0t7aA3aUbieJm0Pnp9FGFXJ18hJw67n4bcclsy/BNs5fKLbjtGG6tsHTpqdBxMMJDx0r4mpwfQbLD61A1XfQSDiMZ3WE43tEa79swvY+sQ++joTOR9T3xxkw5uX4wuU7yM9nw4Q4eDcuqaUIyExl5MelSBBssib9C2uoPoFAJiJHv7gfav51wf38LzTS+K34PZ6HHq9h+9/5le8+cYNnPGWFShj9IdXNWc2YWZZkUTSoqvHHLeYyJBqvgGoRDbIcz2O7YpybF8PthPE9Xloq4APVA2h5l6SyZ30H9dEgi6MaN+rAK3r0PSjyR3UAQQjfs55+4lrRtfBAR65azNdBwdwXQ8CYK2Dhet8fPTdqzhleQP4woPlFpNPfJjJgkdTGddtx0mdeF1AY6CUgaE0pmmw+JQ2DhyeWemD5TM547KVM3qOYsq3A8RN13aVcasqrxwJCUl6lJcEyaIg0re4QpQBDYvAF6FRHeaP/s9JPLzsKD+qP0jvSx7eHk0iluZ/7n6Rg7/r4tIPnUGorrR1m8Uw06xILG7wwKOr0ap1wpV7q7HPcjmzQSMD8XTCZs/LR+nvzOBoCwwwTgJfAYuyaQf88Qymzyad0BzelcZZbBGsDwxnpDV+UukU4Ez9fFrz2q8P8N93v0hiII1WGpohfBacfkYjH3v3ClqbQxBqyd4sTrHyXDEWPBKTK3TRjFo03RvYciQkqj3pMZtIkCwKJn2LKyjUBL4QZv9B3n6Rwdqlddz14z3sbUlivwKZhMOWJ/bRuX+AKz92JgtWlX9yWCFmmhVJpRXRmJ/W1vFLu2Z/Xp19lsuRDRobiA90Jzm4rQsnA5oQ+CC8IM5pF/tZv3p+3s+bSLps3d2PEXaor+smGm3l4B5FqMGgrjk0eLPioJVBS4M3aaCfSTk8fu8WXvrFHuy0g7bAWAxNmwzecclC3vWmBVi+QDY4zrWQxhiVWPAoX7OxhnQ2Lmgx28oZZrowylwnQbIQtcYKQMsKiB5lzXKDO37/FP7tp3t5prmH+Gbwuj2O7u7lp//wLB/5h8sxfVN/WDm2y3M/28HeLcdzlnv6gxZnXbWaFafPK/ruFCMrMtTmbLzq/bAudTZoZCAe603xw79+ipCbwvNpVAfUbTC4/MJGbn7nSgL+wo7RizuaeWrHK7z7+q9w5JVF4BhYPoMlJ7fRsaIJjL0obw11xuJJ9/GlR3fzyuP7sNMuOpgtr1i0wc/H3r2S9aubBssrloBv6lUVClnwqJwjX37LnVVB12w3m8oZ5uqKpsUkQbIQtUgZ0LAQtEcDPXzi+pOIJrbzsr8f59cK+rJZOjvtThkk9x6N8cg3XmDf1uO4E8yeB9j7yjHe8M61nP/uk/MKvEXlDQXidm+MgI7hWRmYB/6zNZec3c6t716ULV+wQnl2i9DgJNm4phnMq/jt3v9g5bk7iO1qxEkGaKhL0Nq+G6VbsOxzMab43I32JPE8jRk2ME6DljUWt127mnUr68DyQ/MKMPP7mCpkwaNyjoSF/M6sCbrmitlSzjBXVzQtJgmShahlhgkqu/qez2eiDAOlQOc5i37Hc4d4+K7NxPpTaDQqTM6rgk5BKmnz6x9t49CObq782CYa2+WqWnNUtl2YMhSB4RsdlS3jCefuRDGK52RXwAPC1lK2/+5CWkNbaG7oxGqJYgWbMdyzMN1LMbxVhW2bMRjM+oayvGrK8oqRClrwqMxmS9AlatNsLIspFwmShZiD7LTDUz98lecf2UUmZaNNMBZC3ZkKMzB+KDp53CX1AjhRl10vHuU7f/oLrv742azetKBs25yrtq6nT5HJGCRTCp8Ffr8MWZfTQP889jz/RuqO9hP025xy/lqWLLwEVYEFEGTBIyFEsUmQLESNGdXeyk4Q1L7hrgLZ9lsnHtt5YIBwQ2DU78f7Uzz1w9fY/9pxHGew1dapmnnr/Vx/2WKaG8Z3xXhxex+PNR4nulnjHdFEe5P85M6nOefta7jw2lOwCqxpLdREtXWplGLPQZNjPSZ1Ec3GdckxgbJGk8AzduEpC6UXViSAy9fIG4F4wiCdGX1TEPBrIuHssOl0h+i1pwE1vEgNaEhHwUmPfqBSEKgH/xRBpTaIHm8m7hqk13dMenzH3ugMJIMkdQTP8zDSkMkw7cWIClnwSBTHbJyMOJJMehMSJAtRQ8a1t/IgrNppC5xHY8TAMjQpywMU8f409/3tr8c9h/Y0qaSdLclogtAmWH96Ix+7diUdzaHxy94CZ6xp4tQV9XyrYS/Httg42xTplM3TD/yOw4PlF83zS5ehm6i2zmeBz1JoTGIJg2hcEXIH91P1kbSP4JlpHN93sAMJDHclpntZ4aUAZTDyRsB2FDv3BMjYo/8Yfp/H6hVpfFZhE25C9X6UofAcD++oxtkCT5rHaW/2cfUF8zG9/ty/GO+CSAfUtWfr4Iu0f0OO7zud45nl2b7IL0PoaJyv1b3AH71/EcsWGNC3Lztxb4q+yJD/gkcAyfT+irWwnA2BVyEdIKIFPG81HRuZ9CZAgmQhakbO9lZujGhiFyn7GFdffCWHO8P8bl2M1GaNE3NxE7kv3trUGAuhcZPiyovnc91bFuPzByDSnjsgSUc59zSDZQsi3PWj3bzWEiX5AjgDLru3HOO7/++XXHXrJtacs6ikx2BsbZ1pQCjk4Lg+bFsxEDPJ2BpNFG0cQKsMTfUOQf98lNeLZ76GNo5g2TdWXaA88kbA7/PQWhMKaMzBhT5cR+F4ikjIQylV0ISbpo4Il9ywnke/9RLJWAa9W9PT6/L96H627R5gzbLx5QmGgjPWNLJsgYZMHJoWzyhQznWjE1kTgtQAvUeS2LZF8nCEbb/KcEd8G++/aimXbGrHcFLZQDkw9XLLUy14BLD/yFcq1kN5tgRe+XaACAc9OvN8zljc4Bvfa6W7b+Jj09rk8vsf6C7LsZFJbwIkSBYzlGtlK1F8E7a3shox688gEX+FoPUCf3Hzu/mP/z7EY/XHSezSaDv32LXRrJm/1s+H37WCTae0nFjJzJezjxoEm8AXZr46yl/cfDL3PXqAnzcdY+B5jXdYE+tL8uA/PMtZV67iovetK9vyuH6/5pRVPRhWM9G4xU3X9dDcZOP4voc2XgdvOaGgTV3EBurAW402duKaj6G8FVVRejGUPevpy37g+n0nPpBNSxPwaUwTbFuTyhiD/aB1wRNuNlyynHnLm3j4ruc5vKsHr1sT/xU83dXH8y194x6vFPy05TDvu2wxl507D6M7BXUzr0EfdaMTMthw4XwO7+hm59Y+krYPb5eiM+pyd3QPr+2JcvPblxHx9uad0Z5owaNEamfFeyjPpsArn8mInpv/83X3mjy/JYzjgmmMv265nmKPCdf29pX1BmI2THqb7WUxpSRBspi2iVa2amm8Aph6eHQ6SrncbDWbvL2VQSC0gkSmEwJxPvT2ZZy8vJ77f3GIRCr3p9RJiyPc9PZltDWHsos01C+cfCUzpSDSBv4w/v6DfOCqZaxdXs+/1e/l6CsZnNey5RfPPrSDIzt7ufLWs2hZUJ4JUj7Lwx/U2I6mpcmlpfUAduBllNeMGjPYq1Dgzcczd6Gdwyhd2Zu6kZnFVFqxfVcQny/7gdzVa2GaGr9Ps6DdLsrrzVvRxPs+dRE//Zdfs//FPjJJB+clcHP86TWQbHT5dv8+tu2Ncss7llPvHcy7JdtExpaQgKJ5aTvL/Q1sf2kA1w6ij8WIPgFP9HWx/0iCW69dycpFGuz44LLUk68mOXbBo2rroTwbAq9iS2cUGVsRCngEcy0MlIJkenydvpjYbFsYpRIkSBbTMtnKVsnMIbR7BbCi6K85V5ebzau9lXJxG1pRdgPnbzA5f8MULb0MX94rmQ3zhaFlJQwc5ux12fKLr/9oN680D2TLL/o99m7t5N8/+wQ3fv7NNLTm3t6SUnEgDUyQFScMHMs+rsKfDWNLLHyWR2Bw4qFpaAylcRyFV8TEWTDi4+z3LOXUs1fyi+++TDpho3PE4FprvOOa2BPwZG8P+48mue3alaxekr356exLY9suXtwDL7/A0nZg1/Ygrjv+fHPcCE5DC33mm4n0/ifEE6Q3w043zt8nd/AnN6xh5SIPevdAy6o8+zpnVWsPZTGeaWl81vg3pm2RfVuLvM2mhVEqRYJkUbCpsjLx1HbszJNofTEUaTi7mpebLYe821tZjRBeAr5uiHcyYRRo+PJeyWzIqCx+MELQaKeDLv7fh9byrw/u5cm6HtLPa/RxRSbpcPj1nsoEyToCBIAkkCubncj+XFfPePbQ0LtlZScjAhhGtrJAl+DzSynF+jctY+FJLWx/5lC2y8kYx/f2sfvlo9gJl8xvYWd3kr/p28Z1ly8hmXb56S8P0/uChz4AyvHw11nMW9406eu6riKdMQj6PSxz9LlpuwrXNWhZvoA1gRXse24HjudCryKe0vxuX5yViyLZMXw7mVeN8onXrd4eypVUTRPlRGkU2qNbzonRJEgWBZsyK+NbQCK+l3TmEFZo2Yxfr9qGSiuhoPZWQ6UR4ZaJIyxlFrRQQ84svm8pbcZ6ItZCli2owx/qx27w0N0z3duJja2t0xqSaRNvxN9d6YUY7koGUntJJxZkSyyGHo8GoxvlnUGdsZj66omTK6J9aSPtSxtz/kx7mhcf3c3j924hGbfxdmq6ej3uGdiHdiH+PNAHSivC9X4u//BGTrkgv/IVy9T4xlZkqcFaVAVL13Vw8IWdeLbGMBQalX1ArtYreZAeyuPNlkmEonjknBhPgmRRsHyyMpoMrlecrIwMlebf3mrUTYIyZty2CybJ4idfJeXtYHH4nWQzt6UzUW2d1hCL+8EwaG7M1tYpDJIDV3LPfSn6BoIoHQJMwEWrJEr7Ud4qmhvCVXmxdxyFRmdLLDw1eCOgUGS7WyRTatz7oBSUoTjzratYsLqZR+56gSN7evE6PWJPAi6QBtM0WLymlStvPYv2JQ15Pa/rKmxXjYt3Had0+yQ9lMebTZMIS2kuTXqTc2I8CZJFwfLJyij8mEZxsjIyVJo1VXurUpSbTJrFD6wmEdtCV+p/gTcV/bVHmqi2znM99h/Yz9IlSwmH1XDAm0muZKA3QDC4j0Cwk2xUZ6JoRHlLSKfq6BtQVXWxt6zszUAqrfC87PLitq3wNMQTJqaZ7ZMcTxrDfZLLMeFmwaoWfu8v38hj336J1359ADvhAOALWJzxlhVc8oH1+ENTT9QNBjSN9S6eB+m0ws0xpzQQyHbyKHax+LRuMkuomgKvaptE6DoKO0dXHreEN1G5zOVJb9V2TlSSBMmiYFNmZewj+MzlBPzF6Zk7W4ZKi9GZY6L2VqX6cJ8yi292kLAPoKwS1lgMylVb57ke0f40bS0uhjn6GCjqCftOJhRYCGQAP0rXAwqlq+9i7/dpNp6WxMnGoNi2IpYwiMVN3vu2Xpoa3aKsuDcdoTo/b/v42XQsa+Txe19BGYorPryRDW9ZkXdWuy7icf07+uiPmjTUuYOt7EbL2IpYFLY+uQ877eAqD60VhjIG24IN/U7hAVMxbjK19kilD6B1/MR7r4BtmMuB11SGJq+mbQPHG39UXTfbHjFQpqXnZdKbAAmSxTRMlZXxWS1Y/jcWLXCbDUOlxezMMba9VSlNmcVXQTI6g1IpijVJs7gUSudXBlBJuTKLPp8mFNQYhsvKZRnaWgpoOlsCB7d389x/vo7jeigXNv/3bjpWNLNgVXPezxEJewQD2f3KlamK9aXY/VI/XrIbv3ahDnwLNPObg5x1ShOgwAqBf3oTQvO9ycx1Q5tI7iCa+nf2Hu5G6/SJ93DDW4jk+VFa6sCrliddtTa7bNqQpGeSxURamlxam8v3Pih00puYfSRIFtMyWVampeGtHDtavD7J1TZUWqh8OnMEA6srvZk5TZnF1ykM5UfrINlsrShELWQWPdfjuf98nafuey3bLs7QaODwzh7+/bNPcMkNG9h42UqUkX9OddxNgdYc3dvP3tf6yDgmnuWhOiCyCc49q5kPv3MF9XXB7IqQdR1T1tpPNmoz1U1mrhtay2omnTmK7Uaps07CMiMn3sPp/bSbG/FTh2fY5CqjGKlUgVetT7qqi3h87APdNRvki9lJgmQxbRNlZTwNsKfor1XuetxiyLczx6KOj1d4S3ObMovvHqfetwrttAJHKrehNarah3RjvSn++19f4PXNh7FtF3xgrAYc8PZoEvEMj37rJQ5u7+ayD51OqH7yCZy5bgqcjMfh13vo70zgeSZ+M45vpU3bJoP3vXUJl79hHoYvAA2LIJi7E8dIMxm1yX1DG6d34Fe4XhKTTVhmPUopLLMez2qjP/obBrxnCRrzcYKK9RvCvNp1Cj3b2/M+zsUwGyZdSeZWVBsJksWM5MzKlKKxK+Wvxy2GfDtzpDOHKrSFuY3MxNVHNpLKHBqfxU/vx2820ha8gOmUWtTy0HAxVWtgcHxfH/f97f9mg1ftQQQCZ8Lq9WEyjmZvaxJ7C2QSDq/8ah/dBwd41x+9geb5E88NGHtT0Hs0xn9/80V0dz/zyL5GeIPNSWca3PqeU1i9uB78ddC0ZMpV9mBm/dQnuqEFDdpAYeJ4+9E6W4dtO91EEy/i6jSG1gTMZvBcWlr3c/qFvby05zyiB2e+jHehCp10VU2TCEXpTXbd7ekzsR0l58QIEiSLmlLOetxiyLszhxcD8l/Yo5RyDjebTQT8C3Gc3hNZ/NC6bJ9kYyFwrKDXKNfQsFzsp2/LL/eS6E+BqTHaIbzJ4OJz2/jg25biuh53/3QvzzT3kXxBQ5em68AArzyxjzdev27S5x15U7D7fw+QOnaMgLbRAY21DjrW+rj57StZvbgOrGBey1DDzPupT3RD63kZNC6W2UjK6cN1BzCMRhLJ13HdBH6zA8c7jsZDEaavbx6RyFFWvWEbL/14XgFHvLxqodSnUHLjPbmprru2AwcO+ViyyJ5w+e9aOydmSoJkIUoo784cRh3glH8Dx5goE5fOHMKyWpjXeh1+X3s2i68bUQOHwM2xpvEUSj00PBsDgHJzbA+twQgYGCuhscXH2964kHDQBEyuumAhr+1NYC+30VHQLrg5Vu6bzPo3LePg9m52PHcIO+PibIGjiQxfsnfw/quWcsmmdoye3dlAeYoV9mbaT32iG1rD8GMoi2xvDRdPZ3DcAWynB8tsAG2jlImhhuZhKGJ9jbQsPk59e19Bx6Ocqr3Up1C1XpNdTBPdLPT0mRzttAgHPerrcl93lyzKcMO7e2lpyj1BspbOiWKQIFnkVIx2ZdWmEvuUb2eObLu8fSXdlqnkk4mLJl5i6fz/L3vc0tEZv2ap+nHOtgBgtgrVB3jX/z2X3/7X6zz1w9dIJWy87dDZ43J3dA+v7Yly89uXEfH2QqQD6tonnLQ3037qJ25o44DG8zIYhh/TqMdntZDMHARMDOXH8zJ42sHAwvH68RuNmCoCpAGwM34iwQF8oeqezFqtpT7TMRtqsothspuFVFqxfVeQuojLOacn8Y9rp5e97rY0uRXvplMtai5I/v73v8+//du/0dnZycknn8ynP/1pNmzYMOHjH3nkEf7pn/6JQ4cOsXz5cv74j/+Yiy++uIxbXHuK2a6sWlRqn2qpM8dsW9lwNgUAtSjfoW/DNDj3HWtZtKaVB7/8DP1dSbxjHtEn4Im+LvYfSXDrtStZuUiDHZ+w/GKm/dSD/sVYVjO9A78CbaBxMZSVbWlptUFmPwqFBpQyAY3tHscy6oiYS0e9Z3z+DG7Gwk5OXSYiZi4WN+jpywbAft/4ANkyszfkleiNXu4SkMluFvw+hWFo0hkDxwU5O6dWU0Hyww8/zOc//3nuuOMOTj/9dL773e9yyy238POf/5zW1tZxj3/hhRf45Cc/yR/90R9xySWX8LOf/YyPf/zj/OQnP2HNmtoM9kptJhNfqlWl9ymfzhyuV/mMZsGZOCcNnofnaTp7U9gZFy+hIcdCAKJ0Sv0hrF2NToDjenT2pFjSke1g0dmXxrZdvLgH3uibvOkMfS8+uY0P/f2l/M/dL7H92YPYcZf0Ztjpxvn75A7+5IY1rFzkQe8eaFkFxuiPr5n2U0+kdpK2j+F5SVAmltEEkM0gZw4QDqwiQzuO24fWaQwjgPYM6kNn4HMN8IYyb5q6pn6Ov7SIaGdTAUe6OOZaHf7QuXa002L7riA+n8YyR2dIgwHN2lWpim3bZO+DcMjjuqv7hhcJAvBcRe9AgPoec9RKooWYaJQuuyiPXKPzVVNB8re//W3e+9738p73vAeAO+64gyeeeIIf//jHfPSjHx33+HvuuYeLLrqID3/4wwD84R/+Ib/5zW/43ve+x1/91V+VddtrwUwnvlSjatmnWujMkX/9dAQGjkCii2gsxb/9dC/PPN9L/HmN7gZDK8x6k46lU7frEjNTyjrMecsbMS0DO+HivqLpjGf4iv067718Mcm0x09/eYjeFzz0AVCOh7/OYt7yJmD6Q9+RxiDv/MNz+Pm/Wmx9cj+O50KvIp7S/G5fnJWLItlg1E6Oq1GeyajN0HUC7dLc8GYSqZ3YTg9aO5hGCLRHKLiakHEDixYG0TpOxu7keO9/YttdGF4YU/vQJGhqOsbAkQi7njkFdPne33O1Dn/oXPP7ND4ruyKfb0SQ7LjZ5edzLYNerm2b6H0QjRls3hKip88c9XfRGmLREHX19TQ3zo066mpVM0FyJpPh1Vdf5fd///eHv2cYBueffz4vvvhizt956aWXuOmmm0Z978ILL+Sxxx4r6LU97VVFpq/UUukDxJKv4/ctBLLZl5H8vgXEEjtIpA4QDCyZ8Hm8wWPlVcExK9Y+FYvftxgG5/d4muF2edVwzHzWQoKBVcSSWwkH1ozLxKUyh6kLnoo/mkY7fbx+IMpdP9rN3peT2K8Aiex7snlJOxd9YCOOr4HjneNfJxjQeG52UpjWetzfJPt62f8818NzJz4m1XDc8lGqbG8ioejtNwn4vQmD0d5+g3jqCMFwL4oInpftuDDVMdtwyXI8V/P4918hFbfxdmq6e13uGdiH50LieaAPlFaE6/1cdvMZrH3DwsG/mUJrCPhzLz+ttSaVtib8+y5f38G23xzEtTWGodAoYPD/NXhaQ47tDwZWs7DtZrr6HiGR2onWR1AqQCS8nrbGKwgGVue8lo+8TlhmPQ2RFlx3AE9nsovlALbTg6k78fvegGEYhIIn47Pm0dXznySjL5P2kmBAd9ciXvv1KfQebMcEtKcnPYeLJRz0uOnarinPs3DQO5H0LrFyvD9HnmuWBZapsUasZaXROK4avNZMfU2ZTKHv46neB4kkpDMGfsujoe7EH0VrwMvg97n09pskEtm/Wz6GXjPXtXX4y8Gf5fr5TI9RpXglaj1bM0Fyb28vruuOK6tobW1l9+7dOX+nq6uLtra2cY/v6uoq6LUP7D+AmgOjE7a7i2iyG8uIoNT4TgtauzheD/sPbMdnTt2JYd++yk5Eg+LvU6lV+pjZ7gZSqd+RiL+IYbSjCKFJ4nmd+I16mqw1aOI8/PRR7v+fg/S85OLtUeCAZRnMO3Ue+8Jv4p5HJm5nV1+X4ZJz9xOLhsikXPz+8Z/YmYxJxjbZf2A/0f70lNu9b9/emex2SSWSFg88uppobOIKwPq6DNdctpNwqLBzsHcgQCwagkgGQ48/jraTIOUMMOB8BZ97FO35sdOLsQLnMfJUSyQt0naO7OO8AGdcv46tD+8lfrQPr1MTexJwgTQYhqJtWYSzr11KeJ7D3r17Rm+XlyGTGr9dybRJLO6f8O97/Hj2eo/28LRCawNv8EPdsW06jxwh6U308eVD67dhesfQJFCEcRLzOJY0mGiRo4mvExbgDV4nemkMJca8R31YvJ1F4fUYKsHAsQyvbInRf0zjaY3SLt3d3ezZU/5a2FyiQI771pIr5ftz6FyzLJdM2gLtjuqy4jiKjG0xMBDFcfK/pow1nffxVO+DgQE/jh0gne4nkxo9yTMUgGS6b9L3SS6TvWYybWJn/Lie4tjxGMHA6J8Xet2tJoapOGlpR9Gft2aC5EpasnQJPmv2H6pU2mLv4VZ8ViDncHu27VELSxeunTKTvG/fPpYtW4ZhVLacoFj7VGpFP2Zag5MCKzDlEr6jrSCRXDQiE9eDUn4ixmm0mWfgZubxlR+9znPP9xLfDLpboTxFKOLjTe9fz+JNJ/H177fTWjdxZjOdqWfxYs3iRSH6BnK/r/xB6OhwWLN6yaQZ1uxx28uyZcsrfq5NpKvHRKtWWlsnPybz5hc+o7y+x6Suvp7Gemdc/aFWPcQzB3AG/ETCC4mE2oAkuu4wUd9DNPluxeQkYnGDb9/fOuHfAqBu/TmsWf04u5/djZ3IBgC+gMXpb17Om/7Pevyh0b872XYB+JMKDIulS5bm3Of00YOY5iFcDwylUEoN/7/P52N+24LsIiOTWjXFz0/I7zrRjHLD49+jThqjzwM3jaH7UCqJUi6GAkOZtLa2smLFyry3ZTYpx/tz6Fzz+1z8AT+mqTFHlFt4gOEZBIKNBJWa8JybynTex1O9D1wMLJ+PhoZ6mppPPKfWmv6+PhoaGid9n+Qy2WuGM4q6epNozAKjGYwxI6t5XnerkaddoPh15zUT+TU3N2OaJt3d3aO+393dPS5bPKStrW1c1niyx0/EUAZmlX4AF1M4uIS60ElEE69gmeMnvmTsI9RHNhAOLsmrltYwKn/cir1PpVaUY+Y5ED2cbdFm+rPdAHyhvH+9PnIydeE1J+qnMy7BFCjtcs+j+9n8u34SW4FuMDCYv7KJq247iwWrmunqMVAKQkFNOMdLKqXJ2FBfD7dc35vH0CXks5qfYRgYZuX/frkYZn7HxDANDHP8B2k+z62UGjPapdHmHiCNog1FHYYaAOrx9EkY1svowOMo5yQyjkl/1CIYmLh+OJ4O8KYbN3HShkZ+ee8rGIbi8ls2csoFi8d1Qpl8u4b2Ofv9ifZZDb4Hxv6qGvwfUyko4rUln+tEJLweJzFv/HvUUGM2VI36lzLUjM/NaHeSX9//Gj1Hcreva2gLceF1p0662mEllfL9OXSuWZYiGNCD9ccn/gaOA7ZjkLEN5rc7hMPT+3tM532c7/tADd4Ajv85k75PJtvOdMZEqfHv55NW2CSSDjdd15OzF3Ih192q4pWm1r5mgmS/38+6det4+umnufTSS4HsXerTTz/NBz7wgZy/c8YZZ/DMM8+Mqkv+zW9+wxlnnFGGLa49tdSuLF+zcZ8mZSeg/yDYCbr7MzTVZTCdXVC/AMIt5Fs3NGplQ+8YqE7Qiu5+B9tVmLaFpzSRBj/v+MQ5tE9jkl4lWrTNlRW5tIqiVS8w/u+iUHiZNnRkF9o9DCwDpu5ZrQzFGZeuZOUZ8zFMRV1z/jde1S6v60TjFYMlG+W15+VjPPSV54j1pnLW70P2bb1r81Guum0Ta85ZVOYtrA5+n2bjaUmcMRVLyZRiIGZy03U9LJznVNX727bBdbMT/BLJkTdm2dIIzMLrPPOZwDm/3am6Y1GtaiZIBvjQhz7En/7pn3LaaaexYcMGvvvd75JMJnn3u98NwO233868efP45Cc/CcCNN97IDTfcwLe+9S0uvvhiHn74YbZu3SqdLSaRT7uyWjMb92kcrSHRDdGjZDIZfvg/B3jixS6WzgvxsfesZJ4+lO0x27BwXOusaRm6ditFMFIb3Tbn1opcGbIrOPpy/lR7QTT9oOIFP3NDW+4WgbnUUjuyqa4TwcBqJqppLgXXdvnNA7/jmQe3k07aaBNUiPEJPg1eAmL9SR78h2fZdMUq3nj9OnyBmvp4n7FU2iCY41xTKpthbmlyJ31fT3UDHU9M/5zN9T7I2IpXd4Toj5q8uiNEYMzCHpm0j1DYx9JFhS1IIwspFVdNvYuuuuoqenp6+MpXvkJnZyennHIKd99993D5xJEjR0bVPZ155pnceeed/OM//iNf/vKXWb58OV/72tekR/IUaqFdWaFm4z4N8xwYOAzJPo52J/iXH+3itZdjpF+H7vYBPtP1Gre8YznnrPOydcqNi8GXf6AzW8zmFbnGfghrFcIz6kilcp/fykih8IMuzY6OzGalMmmyAbuF4sR5V43tyCa7TpSzw1F/Z4JHvrGZPS8fwxlc9cFcC/VrDZQxOvjRWhPb6eG8BumUzXM/28HRXb1c+bFNtCycfCnv2aAYre/yuYEO+D3sAud2T7ZtqbQilTay3TjG1FFrrdFAImmMKh3JlyykVDw1FSQDfOADH5iwvOLee+8d970rr7ySK6+8stSbNeuMGm6fJWbjPuGkoXcfOAle3TXA1360iyNb09ivKEiDc0RxpMvmnwZ28tYL5/G+yxYTcHZD/XwIt+ZdfjGblGop7EqY+EO4Ec9YiFb9NDXECAZPZKM0GsPfhXLPQemFRdsWz/VIJ2xC9QHqIh43/d5m4s6v0cZ+sss1B1DeUkz3YgxvWZ7ZrGzbLrTKtn0bkuwtyrLoWAEINY+a3Frp68Th17v50Rd+Q7Qnmd3neghugpM31PGuNy3EGhyC13h4qgtPJ/nlb6NsbjVJPG/g9Hvs3Xqce//icd71yTew7LTiz/ivJsXInOZzA90fLfzaMNm29fSZ3P0frRw5bqG1GhMMq2wrN6VorK++m8m5pOaCZCHECMle8LIB0M+fOU53v4OzR6EyCp/fxLFdvIOa/gHNQ/1H2Xkwxm3XrmK+PpytXy5W+cUYtTTMXi6lOCaTfQh7RgzH+gmB0DEioQY0YSCBNo7gOQ0Y9luKNpLSdXCAn//r86QS+zj33Us45YIgwab/IaD6UN4CoAlIoo1nUXoHln0jhjdx94lwgx/DUDhpD3ZrBnzwU/9BWuoMztvQinLtomw3KEj2QdOSnEtdV8L2Zw+TitlogBD41kPHcj8fvWYlS+dn68Dj9n66Uv9Lwj6AqzNc9maLuiY/LzSs4dgj7egUpBI2235zcNYHyVC8zOlkN9D90ex7pdD38WTbVhfx2HBKCr9vbL9izbHjMZTRzPXv6Cu4NGKuzL0oBwmSRVXR2pudJRElowf/U2QccLXCxEQrTajeT2N7hMM7e3D6XVL/Cy93R/lM96t86G3LecN6F2UnoXEJ+ItTfjFXV/2aTKmPycQfwovxjHfgmo/iGbuBY0AAw1lHonMNrQtXwYjNmU4Qr7XmtV8f4NlHfs7iM16mZUknXtChKxqlodWHqc9BMdRxoQ681WhjJ675GMpbgZpgBv3SU9s5++qTePrB35FO2rivwdEem68O7ObF1/tZ2FacSYPzWwKce5qL0b0T6hdBqPKrRJ751lUc2dXLvq3HcZIu9mY4HE/zN+42Lj2nA3/oKIGmRzHMGK7TgnYbOdDZi884xvrl3djt5zFwaB4LT2rhnLedVOndmTVME+rCLumMUdT3sd+nx7dv1Drbw9jQo5arzsfcmntRehIkV6G5EiiO3U/XTdDd93MSqZ24XgrTCBIOrqat+arZMbmuAt5z+/m88N87efanO0inbNxXFUd6HP65fxfbLojyf65YQtDdDfXzINw24/ILmTQyXiWPieGtQnkr0M7h7CQ9HUE783HSe0e99nSC+HTC5vHvv8L+Hc+y/upfE2pMEO1uIB33aF12jP5uTV3DCwR8m1C6Bch21sCbj2fuQjuHUXpxztdThuLC957KwjUt/OwrvyXWl8Q7pBkY0PyiuwuzSPWW/ojimdO6ueWdK2jw9oPdmi1FquD1trE9zHv/3wX8+v7XeO4/XyeTsnG2Kg732Pzw6AE2veEp2lPH6eluBzKgM7g9PnR/O61LOzn5jdtx+87jTe8/HX9w9Ee8ZBinz2dprn9H36RBazUcv9k896ISJEiuMvHkjuHZ1bM5UBy7n1pnyNjHMc0GIqGTCQy2X4omXiFlH2Zxx4dn1f6Xi+UzeOP1p7FwTSv/9dXfEutL4R3UDPRrHh44xq5DMW57zyoWaQ8yCWhcNOPyi0KGPufKh/Z0h4OLcXwURjYYHYxxvTHZ4ukE8Z37+3n4ruc5tLOLTde9Qqg5QW+yHXO+wojF0BqinRE8uwefbyuNzRdiDAeeYWLxKG7UwfByB+VDr7fyjPl86Itv4effeIFdLx3FibrYz4GdRwxr6wDuBN09AExsLF+aJw/3sv9oilvfs4I1yzywk9nJrVZg6hcpEctvZhfnObmV//ra88Pv24Dup+GsLvpea8AZ0TIMF8Ag1d/Chss8Who6MBkfIEuGsXCZjCKZUqTSinRGERkz6Fat16jZNPeikiRIriLx5A4OHr8b2+4m4F80awPFsfvpVyH6Y/9L2j6CT7tonUGpeiyzHjO4lkRqO119jxAOrp6VGfVp0x44GfA0saTDQCyDl/DQzvhgZ/WZC7jpC5fy83/dzO6XjuFEXVK/ga1dMT7b/Ro3vW0ZF5zuouw445dw0OB5JFIOvdEMbtLDmySgylelPrRrpV66nMenkCC++3CU//irJ4n2JKmb30vr6i6SgQYWLQgxvzXI6wfTeJaJ6XNJxfx4weMc6d7HopNWDO6X5p7/uIGBnvWjul1MtF8NbWHec/t5PPPgdn7z4HbstDMYFE7M1gF2eheQ1hOXEQVUglXpp2Bzml09Sf6m73e857LFXH3BfEzndVCjj7uBZknAxuj6HePfI9njf7wnhe24eAkPXDWqnGU6Vm9ayE1feAuPfH0ze1/pJOC38VkO0WQA5Y1YtMRQNLSGOOnseQQaDxPvzZBJjn7xnj6To50Wfl92CH9sHaxkGMfLZBQvvhoiljCwbcV37m8ZN6Iy0/dgruuR1tklov3B6W65KBYJkquE1h5dvQ9j292EgydWfJptgWKu/XScfhw3jt9aiOtFSaRep7GuBciuQhTwLySRfJ1U5uDs604xXW4G+g5CJsaugwPc9eM97N6SIPMSkNCYpsn8lc0EwicyaY3tYa69/XyefuB3PD3Ye9XdpjjW4/Av0d1s2xvlhiuXEgyM/2TfdzTBv9y/i52vJEi/AMQ1pmESbggQbpxexq3cw4K1Vi9djOOTKxPtuYregQD1PSYeJtYkK3nlypI5aRfPzf6OP5zBCjikPD8Bv0nAb+C6IVKJMOFwlGR/CGVm8AYnl2o0qUw//X2LCPmD2brLPPbL9JlccN2pLF3Xzp4tx/GmWF1rIBnk2MsLsUwXvzn+NTKuSTrdgL8/AokM3i5NT4/H96P72b4vykfftYLGuvFZaJ9B9r03dpszLj/47wM8+r/HGdis0UdAuYpgg495y5sm3dapNLZHuPbPLmDrE/tIJJtpXvAK9U31uPaJG4BAyKJjRROGGScab+Z7/3Eq/QOjXzeVVmzfFcRnedRFsgtvjA6U51aGceR7o6cve755nkkylT3fTTO70EcsYYAGn+XRUOcSCp44ZjO5Rk12PdIaMrZJR4dTNdejuUqC5CqRyhwkkdpJwL9o3PKUsylQzLWfns6gtYNh+lCqHtvuwXEHsMzsJBrTCJPRR3Hd3Euyzjmpfhg4hGen+Z9njvHD/z5A90se3h7ABp/P5OQ3LObyD28c11PV9Jlc+N51LFrbxs++8hzR3iTeYc3A45qf9x9ny+v9hEPjLwud3Sm6X3Zwd6rh1zhp00Le+tGNmNbMbtrKNSxYq/XS0z0+E2WitYZYNEQwWM+BI36WLMrgm+CTIFeWbN6KJt79J+fx0394FicewBmw0IkMe5JxDhxJkDmscVQbvpNT1LXGCYSCtHa0oYmijaOgV6K8BQQD4ycsTbVfS05tZ8mp7RPu85CuHpOXok001rs5XyORVPRHTd79pvN49t+f4cjuXtxuj/iv4Dc9vew+GKchR5A8kWTa5fDOFKkXgAEwlKKuOcjVHz+7KN0lLJ/JGZetRLMcx7cDz3wN5bVna7wHaTTaOEom8Qb6B5rG3Vz5fQqfT2MZ2YDZccCf/y7OKmPfG7YDe/b7yYyo4/H7NEsWZrBtNXxjUV+ni3JjMRSgv/PyftKZ8dcjn+nS3b2XNauXSFa/wiRIrhKuG8P1UgSM3MODsyVQzLWfhvKjlIXWNkr50MSymafBa4/rJTBUANOsm+BZ5wjtQew4xDuJxlL820/38szzPcQ3g+4C5SmCER9vev96Nr111bgAeaQVp8/jQ1+8lEe+sZndLx7FjrqkfwP7DqdRwfS4x3vHQXcqlKcIhH1cdN0pnPP2NRhmbY1qzKUm+xNlorXW4GXQaKJxE8uAxvr8MrpDlp7azs1/fyk//+bz9B16hbaVh+g+EMC1gAwkqaN793LWXHgEfziE4fWiCWC467Ccq1HUM2XNRBl0LG3k9z77Rn7x3S1s/dU+MkkH+wU42JnBqMt/pTOdIXuTmgHLMlmxoYMrP7aJxvbinmwKA9O9DG0cQRs7wZsPw639jqJ0C6b7RiD3zdXQohXTWaBiNsn13mioS+IOnpLptEHaVrzr8n4e/J9GGurcHAHy9ORTRtVY7/Dmc4ZWCKyta+xsI0FylTDNOkwjiOslsMzxqyTNlkAx136aZgM+q4WMfQzTqENhYRjZnqVaa9KZw9RHNhD0554JPye4Geg7AJkYOw9G+Zf7d7N3a3KwvAIMw2D+yiau/NgmFp7UktdT1reGeM/t5/PsT7fzvz/eRjrpoHdpdI7gWrsaA0VDe5h3/d83sOSUtuLunyiZscGS1ppMysUdrIMMTDNTHWkKcs0fnc+Wp1LYiXtoXdJJtLMB1wvSsshgxZlh/IE3YKXfitKtoCMovRDDq670ZTDi56pbN7HklDYe/dZLJGMZ2Kfxct1kap27A4ynszeQIYs3vHMt57/7ZExfaUoXDG8Vln1jtrWfOaK1n7sO070Uw1tW4DNqtIqilYsmgs5Rrz9bjXxvjHwPJJKa/qhJU2O2/CoULE6ADPmWUVmk7ZmdP7Uy96LaSZBcJYL+xYSDq4kmXsEcUZMMsytQzLWfSikiwZNw3QEyzhGC/iWYRhjHHSCdOYzf10pb05U1XYs9Y9GjkIlhOy7ffGAv+/YnyWwBEuDzW5x6/mIuu/kMQvWF1QeblsH57zmFRWtbeeifniMdn2CRBj+s3Dift354I5Gm6p1NMle6ZVQLwzQ4402XcmRvEztf/T51847SvkTRtrgdk9WY9qWTLhpSahk797kw1K0gnjBoa3FRSrHhkuXMX9nEI1/fTOf+geFuIEM04HkuhmGOm7YH4A9bvP3/O4cVp88r+n6Mlau1n9ILJ+w7PRGtetDGbrTqxTN8eGYzju9XeMYbKvp3mwsmK6NKpacfINfa3ItqJ0FylVDKoK35KlL2YRKp7QT8CzEHu1vMpkBxov1Uhg/LakYpE5/VQjK9B0MFqI9soK3pylnR1WNGBlcYS6U9YgkXLwWmNlCmYsHKZt7+/50zaXnFVJad1sFH/uFyju/vHxccAPgCJvNWNFV1eYW0uKqcBcvPorljPYnYXprmA870grZish3YtT2Ys7TAcRW2rfjBQ018/IPdw+dDx7Im/s9fXszR3X3oMZMDPc/jyJHDLFiwEMMYv1/tSxsKvkmdibGt/fLlOgrHhUQ6hmtuJ7tkeCOpVASlDbTxOo5v6lURRXWq1bkX1UqC5CoSCa1hcceHh/sHZ/TRWRkoTrSfzQ0X0Nr4VkwzPOsXUpm57AVQqWzZxEwC5CHBOj9L85gUVWzFGhas5ib6M8lwV2rYNGNns609fZP3Mh7+OhwgGF6ba1NzKvV+ua4ikTQJ+DxMa3xa2DWgPzr+fPAFrJzlRJ7r4YaiLF3RXvSbxXKMgFhm9nliCQPbUQzEu/G7AZQ+sa9NDXGC/oVotXXKVRHnklorXZhLcy9KTYLkKhMJrSEcXD3rV9ybK/spJlaqYcFqa6I/3Qx3JYdNM7Zi6/YgsbiZszfsRNucj6H96uwx6Y/m/ghqrHdxZjC5LBjQNNa7eB44LuPriBWEQx7mNE4HjYenZlbmMFKpRkByBXZrV6VIJAxSdor3/953aWkExYloKhjMUBdJo/NYFXEuCPildGGukyC5Cill1HSbt3zNlf2cMa2znS3QeDo7uqpnwTV5rgwLTjfDXazjMzZY0hqSaRM9GNil0waJ5OgTKplSJJIGhsG43rCTbXM+6iIe7317H9+9v5n+aO7AI5Ywue9nTdMujamLeFz/jj76o2bO7YfsjUAyVVhwawX24wYeRVt7yJYpBDDclZjuZdMuTSj2CMhUN1fKgPkdURYsOEB9aB4qZ5eRMHBs8Eag8H2qFVNliCPhuXGNEhOTIFmIaua5ED0MTpLO3jRf/8keug6mcLcAyezEu3C9v9JbOW1zaVhwOhnumRyfiYIlrSEW9xMMKuojLo7HuGA1u7CCoi7iUh/R+P1jt3tmWXnL1KQzBo31XslKYyJhb7gzQe7jDslU/s/nGbsItz+EZ7oY3kIgBCTxzNfQxpEZ1/AWawQkn5srf/AQgYgLXhLI1TEpAQRAz843ZyGjNKW6RtVaCcdcJUGyENXKTkL/QbATbN7Ww90P7uHIKxmc1xSkwTIVi9a2cu4711Z6S0UVmihY8lyP/Qf2s3TJ0glX3Ovpy5ZZNDe6OQLk4qm20piJaDw832MY7gDKO31EWVgdeKvRxs6qquGdKrDTzMNxV+KZr4G3OueiJIa7DqUXlmFrZ67Qmu5KjmLlF6A7BHyV7yMuJEgWovpoDYkeiB7BtjPc99hBfv7kUfo3a7xDCuWCP+DjzCtWcfHvrcMXkLfxXFZogOC5HtH+NG0tLsYUS1IXqzdsrdPqMNrcjZdpR4XGrIiKgiqs4Z38vDDxh64k2DTZoiSXVkXAP5Xp1nRXahQrr0y/5dJ53CnjVomJyKerENXEcyB2FJJ9HO9J8C8/2sOrLw+QfAHoz34g1zUGuPJjm1hz7vglzMXcGsaUtndTK8r5oOJo0mivaYIHVFcNb37nRTM3/R6EGh6ZYFGS2mj/VmhNdzX0Up8qQPdcj84ivVY17G8tkyBZiKqhMfoPQCZK70CGv/vuDvbuTJB5RkECLMtg6akdXHXrJprn1/bKi6UwF5voV3Pbu0qbyfkwNrDwVDOObz7RfgNHNxAK2tRFRhY0V1cNb77nRSa5kvrQR2e8KEk1yKd0Z67dVM61/S0FCZKFqBKW0sOLhuw6lKQ/7qF7TEwPTL/B8tM6ePft50l5xQSqvVtGKTPcpartreWs/HTPh9yBRRueug3b7cKyWmhuiPPB9/+cukiqaDW8pTjW+ZwX012UpBbNtZvKuba/pSCftkJUIT34nzIMDJVd/nfZho7hAFmG0HKrxm4ZtZjhLtc2lzoIn875MFFg4dFK2jmASyd9A80kUyaRSHTGNby1eH7MRDVcu2plwmixzLX9LSYJkoWoMTKEVltmkuGeKqCIJwoLymJxg0RC0TsQoL7HHLdy3ImWV6XNytdCYDg2sNC6ETe6DH8gSiaTAWM/2kjMuIa32kdAiim/a5fDTddvpa5uoKbLP8TsIEGyEDVGhtBqz3QymvkEFAG/h53nJPih5+vtN4lFQ9TV149biG7kzVUps/K1Ghh6TiOWtQLDzWDZN+FLW0UJ4qpxBKQUprp2JdNRemLHiOnvEPAfpRiLtQgxExIkC1GjZAit/Mo5VJzPzdBEK9ZN/nweRDI01jujuqOU++aqlgNDRRjDW4WhpZftdOS6dmnVg2tuJxkNgNeI8gpbrKWW6+dF9ZIgWQgh8lCpMpfJbob6o9kAoJAAIRjwMLRLOKTHZJLl5qocynujVSuBo0Ybu4E0SrehiAwulz31Yi2FlO5MdtyFyEWCZCFERVTDBJ5CVGOZi2lCXdglnTEkQKgB5brRqkTNd673s+eeqH8Phyc+/7SKolUv0DjuZ1Mt1lJI6U4qnT0WtXPzUBxzbX+LSYJkIUTBZhrgTjdYGNe/1h09CW2uzYz3WZrr39FHJDzxPo8NEER+xgYWWkMybeKp6QcW5brRKnfN90TvZ60Zrn9vbnR55+X9EzxDBnAA3wQ/n3yxlnxLd2phwmgxzbX9LQUJkoUQBSlGNmw6wUKu1x35IazU+NettWz1dETCHm0tc7M2thR/34kCC60hFveDYdDcmA0spvv65bjRKmfN90TvZ601eBkCfm/weE50rPxkwxF7gp8XZ7GWWp0wOl1zbX9LQYJkIWpUpYbQipkNKyRYyPW6Qx/CjfUO6Yw5bvnZmQTzYwOgnr7sc/t92e9ZFvh9koGplFKVLkwUWHiux/4D+1m6ZOlw6YC0YhxtfNs8TSbl4g94ZOwT16Xx164GPHMeqXR83HMWa7GWIbU8YXQ65tr+FpsEyULUmGoZQqtU2cHI1x36EM5OQhv9ujMJ5nMFYKm0YvuuID7Lw7Kyf4eNpyVLHigX+2YolTZIp038STWuu0UtKWXpQq7AwnM9ov1p2lpcDNOgq8esuhr1ahfwT3zt0pyENnbR2HSQQLAHjQISM16sZUgxRh1qdWSqVre7GkiQLESNkSG0wkwnmM8VgPl9Cp9PE/BrFIpUWuE44J+ojHLG213cm6Gh5+vtNwfLBqycfZJncnNViQ/jSteIV/r1a0kkPPm1yzNcfOEXCNcfQZMm2yd5Zou1QHFGHWp1Eada3e5qIUGyEDVIhtDKY2wAZJnZ/JZG4ziKZKp0mdhi3wwNPV8ioYfLBiZacW865MNY5GPya9diNDei04cHJ+kVZ8W9Yow6VGN3m3zU6nZXCwmShRAiD5bJcCs1x1XYjmIgZpKxTwTRxS5zmcnN0MRZ3ez2BQOahobiTfiTD+P8SUuuiSmMbJu3ElQxFSPrX6sjB7W63ZUmQbIQomJqKVjw+zUb1yVxXEimsgHyTdf10NJ0ItCsdJnLUGAcTxj84KGmcSvymabGMrMdQRYvCnHL9b2zrvyhmlXLfIJSKUXbPCEqSYJkIcS0zCTAnUmwMPJ1hz6E/UlFOlP6D2K/X+Mf/HfG1rQ0uVXTfm1kucPQJEPDyAbGQwJ+j3VrkmRSLn0DlmR1y2y2zicopG2eELVEgmQhREGKkQ2bTrCQ63VPfAhbw32Sx75uLWWrZ2JkuYPf5+GzPAIBjW8wSHbcbJmI36fx+6sjsC+GSv99C339ap5PMN2Jl/m2zau14F8ICZKFEAUpVjas0GAh1+uO/BAeu+JeMYL5Sgdg0zFUD2xZ4Bv8L0vjuLW5NHWu4C2eMAj4PfqjJrGEgc8a/3csZenCbCudmOnEy3za5s3E0U6LgejEz9FQ7zG/3ZnRawgxlgTJQoiCVSobNvZ1R38I63GPnW4wP9sCoFo2WfBmD8ZEdWE35/LcpSxdmG2lE9U88fJop8Wf/e0CovGJA/j6iMvf/fmRSQPlYtz01uKNM9TudleaBMlCiFlrusH8bAuAyimVNsjYGtfN9X1FT59Z0LHLJ3hLZ4yKLM9dzaUT0zXZxMtYwqKnb+JAtVTviYGoQTRu4rM0gRznQDqd/flA1GB+e+7tmulNb63eOJdiu+fS4iQSJAshRA6zMQAqpaEP484ei517AmTs8R+ifp/HvT9ppr2l8H7J0jWjsjK2YueeAN+5v2XCgKrUfbADAY9wMPc5YDsTnwPFuOmt1RvnYm/3XOuHLkGyEELMULVmVhznxDbZbnbyXjKlyGRM/MHivtbQh/HhYxbfub+FgG981s80wfPUrO6XXK3nwky5bjZQDvg0jfXjM/bV3ge7GDe9tXrjXMztruaynFKQIFkIIWag2jIrqbSBYWhMM7vwCYMBm+spPE8xELNwbJOODqfoQ8N1EY+WpuzQbWO9mzPzm0iqWZv5rbZzoRQCktEXzJ2RHQmShRBiBqolszKy9hAUSxfZ4+qCG+td3nt1D93de1mzesmsyPRUk2o5F4QQxSFBshBCFEGlMysjaw/jCYN0ZvyQf8CvCQU8YgPuYCazPDPbM7bCGWw6kEwpUmk1agLYyBKEseUKPX3ZoNLvy37PssDvq67JUWNV+lyYCemCIMQJEiQLIcQsMRT4/vuDjRMO+WsNSpssW+bQ0FD6bcrYihe3hoYDX8cB2zFGTQAbKkEAxpUrnFg9UGMamkBAc9ra1HCgXOrgbSho91xF70CA+h5zVM/fWq0xHmuqLggZW+H3eZgVjPHTEwTwaQngRYlIkCyEELPIVEP+yZSiu9tPKu3SQOkzso6T3SbLBMvS2CagNA11LqGgHlWCAIzb9lBQURdxSWcMXNcgFofefnNUPXWpWm+NrDHWGmLREHX19agRSfparzEeMlUXhJ4+k3t/0lyRLH5DvUd9xCUaNyfsYlEfcWmor+2/gag+EiQLIcQsNNGQv9blCXKGhu2TqWyphWlq0BqFwjI1oaAe3L7xJQgjtz0c0pxzehLHzQb4AzGTm67roaXJHfH40mRzR95wBPwueBka6x3UYJQ822qMp+qC4LMqU44xv93h7/78iKy4V0XmSlmOBMlCCCGKZuywfSqtsB0DlMYdXBUxGNBYBQzb+/0a/+C/M7ampckt68IhwYBHKKjJpLIdO05kkitbY1zOdnOVXkxjfruTc6EQUV6VPg/KTYJkMWdp7ZHKHMR1Y5hmHUH/YpSaXXfBonzmSmZlKmOH7Xv6TL5zf8tweQWAZWYD39mqHOdCudvN1epiGrUqkbToGlP/PlKljvVcOw8kSBZzUjy5g67eh0mkduJ6KUwjSDi4mrbmq4iE1lR680QNmWuZlXyMHbYPBkaWV8xe5TwXKtFurlYX06g1sbjBA4+uRqvWUfXvI1WyFn4unQcSJIs5J57cwcHjd2Pb3QT8iwgYYVwvQTTxCin7MIs7PiyBsshbrWZW4gmDrp6Jf16N21ztKnEu1HK7udlsJqUwqbQiGvPT2uoNj76M/vnsqoWvZhIkizlFa4+u3oex7W7CwbXDE3Assx4zuJZEajtdfY8QDq6W0guRt2rMrEw85K9wHMUP/7OZjF2+leEKKUGo5dKVUpwLIwOuoR7Yff0m/VEDz9NkbD3cdWK2l7LUgmKVwmRvgHL9RG6AykWCZDGnpDIHSaR2EvAvGg6QhyilCPgXkki+TipzkFBgaYW2Uojpm2rIX2sIhRzicZO6upkN1eeTLSu0BKEaS1dSaQOtNcm0iT+pRnW3KLWRAZftwM49ATK2getCf9TEUGD5NK1NLoaRPd4b1yVLvl1iYrLy4uwhQbKYU1w3huulCBjhnD83jTAZfRTXjZV5y4QojqmG/D3XY/uOQ/zyuY0zGqovJFtWSAlCNZWujAzwU2mLWNwPhjWuT3Ipg/aRAZffp9EoQgEPjSaeNDAUoMHnc0E5pNIa24uhqO7oq5ydOSpFSmFqnwTJYk4xzTpMI4jrJbDM+nE/d70EhgpgmnUV2DohimOyIX/P9dgfmnn7tEKyZW0tbt4Zs2oqXRl5w+G5HvsP7GfpkqUVWXFv6Bhbpibo90BlF2gxDI3neVi+Y2jSOK4Pz3gFRSOak0q+XbkMBcDRqMneQ/XY2j/qmLkuPPRoI7GEic/KfYMxWxZpEbVNgmQxpwT9iwkHVxNNvII5oiYZsosspDOHqY9sIOhfXMGtFKJ2zPZs2VDQ7rke0f40bS0uhlk9Nb+e5+HpFLZjo/HjuEGSyQaUEUcbu/AMFyjf9WxohKGzx+T1PQES8flYPt+o7LthaBxHEQl5nL4uOW4VPylHENVCgmQxpyhl0NZ8FSn7MInUdgL+hZiD3S3SmcP4fa20NV0pk/ZEycyFYWZReobKLvOdsTO4nkE6UwcabNtHNNZIMBCmsekgvvCLaG5AUZ5r2tAIg2UAGgIBl1DoRB236yhSmewcEMcFvy9Xa8DZcYM1U6m0gVK5u1uI8pAgWcw5kdAaFnd8eLhPckYfxVAB6iMbaGu6Utq/iZIp9wIQ05WxFam0oqcv93bOpZ7P1co0NfM74qTtTtKZEKev2wtoorEIH3jfo7Q0RwkEewjXH0GnD6N0eUfHAgEPywLLcAiHLBTZc8Z2wHEVbo7gT2QFA5r6ugzpTD0ZO/dj5lrv9UqRIFnMSZHQGsLB1bLiniiafDLE1TbrPVertYytePnVEMm0wXfub8n5QdzU4HLpRVFSaYXfl3ufM/bEx0LkJxY36OkzRx1nx1XYrgIFynCxLBvXDRIKpQHI2D5amqO0tQ6gUWjSoOLEYjKCUQ4j/2baM0mmRh9T0wTPm/y9URfxuOayncyb71bdintzjQTJYs5SypA2b6Io8s0Qv/PyfqDydbwBn0tTg0N/1Br3eqm0Ipk2CAU9mhvdnPWinT0W9/+ske27gvisbMZwLNPULF00QRpMTGnonDraabF9VxDDAI2mt89CKY1SYJkRGhvDaK1IJv05VmdLAAFisQa+UwMjGLXuRD22xZ79gZw3in6fx+oVadpbJs8Eh0NO1dW/z0USJAshxAzlmyFOZ6ojuxoOOXzoum4yzvigqafP5Dv3t9Dc6NLUkCtg8uiPGiSSJoaRXbzCHPNB7jqKRDLby7dcZlut99A5FQ5p6iIu6bTC88A0NK6r8ADH8eFP1RMKRokng/gsl6aGOMFgBo1GG0cx3HWkUwuragSjWhT7nBn6m9WFPc5cnxh3/qfSBhlbccO7e1k4z6mp83GukiBZCCGKpNIZ4kLURTyMCTYpGNDjMshjmYYmHHJxXYXrjg40HE/heYrG+vLUTdZKrfd01EdczjkjieNkv87YCtcdXLo4bnLdO3bStuAHhCPHwGsnGDSJRHrQxlGUbsF0Lx2etFdt56frKZKp8UFquRdpmch0z5mJjnMiqemPmrQ0uTV3Hs5VEiQLIYQomGXBaWtTOYPpZEoxEDO5/h19ZQkGqq3Wu9j8Po3fl/33UPCVSCoMQ7F6SRstbZfjmo/imbuBNJoAhrsO070Uw1tVkW1Opw0cB1zXwkgyqrvFUEbcdgwGYiYZO3fde743WNPJCM/2c0YUhwTJQgghpiV3+66sjK2JhEsTII8Nik5MbhtacAP8/pHbVX2Z/GIyvFUobwXaOQwqDjqC0gvL1vZtpKFVCjt7TFCQTpu43uhVCv0+zbIlaZobXK5/R1/O8yTfUoeZZoSrLbsuqosEyUIIUWa5ukqc+P705ZNRCwdre5g3V1CUSqvsJEKfzq5IF9BsXJccEyjPbgoj2+atwrs8cpXCaBR27z3MooWLRnVpCPizN1DFqBOXjLAoJQmShRBlMdsmVk1HwJ/NsmUn8eXOUk23/2m+GbWbru3K6/lKFcgPme75kCso8vsUPssj4Neowcc4LviLsqWiUEOrFLY0enh2lBUrMhO2MitErnNm5CjC+BEEkIywmAkJkoUQJTebJ1aNNFVgGQmfyLJNZLo3C4Vk1CYzNFw+WSDfWO8SSxjTDqSLcT6MHSa3LPBZgNY4bnV0ESmGYt6slPrGp5QmOmdGjiLUhb2qGEGo5eMsRpMgWQhRcrN9SDSfwHIoQzyUZSvdtsysxnLkcPlEHFdx38+app0Rn+3nQzEUck6V87kqZaJzZmgUwTIqP4IwG46zGE2CZCFE2czWSTL5BJa1VE6STyBfjP0t9vngONnFjx13dGuxWszgFfOcmk3nZ65zxrKyvbrHtiLMRzGzvtV6nKXUbfokSBZCiCIodYa42lTT/lrWiWW/HUdhO2pca7FazOAV8xhX09+rGpQq61uM4xyLG/QOBKjvMXPWchcS1M6VUrdSkSBZCCFETfP7NBtPyy64MdSj+abremhpOrHkmWTLSm9sxtJz1ahgr5R/A9dRODkWJ5koI1zNWd9v39/MwUNh6urrcyw1XlhQK6VNMyNBshBCiJoz0TC5UopgQNPS5NLWkntdbBl+Lr5cGUutIRYNDQd7pchYDo0ixOK5RxBg4oxwNWbXs0Gthd/n0ljvDC/CcuLn0wtqZ2upW6lJkCyEELPIbJ9ZP9Nhchl+Lo1cGUutNXgZGusd0hmzJBnLoVGEaCz3CALU5k2P3+8SDukcmWQJastJgmQhRNnM9gCukgoJHqNl3raJTOd8qIt4vPftfQxEJ35MQ703YVAkw8+lNTJjqbUmkxoK9ooT3M1kBKHcZMSi9kmQLIQoOWmNVHr51liGgx6dZdyuibZjuudDLG4Mt5+bSD6Z4Lk+/FxrAVytXUNkxGJ2kCBZCFFy1TpJZrbJp8bSq4Ik20zOh2rIBNdagDlWqQI42xk9cU5rSKZN/ElFKp2tGR56/UKPX61dQ6rhPBUzJ0GyEKIsqnGSjKicmZ4PlcoEx+IG3/lRbWcISxHAxRMGO/cE0FpjjYgsMmkf/oAfx8mWRHR2mzz6VMO0jl8tXkOqZcRCSt2mR4JkIYQQIk+zKUNYzAAunVFkbEUooIdLHrTWoF0Cfg+0QTKtiMbMWXP8SimTMUkkVc7uFoWotTKVaiNBshBCCFGgQgLMWi/PKJjWuf89QrVkWKtNNqh1OBg16Y9aE/ZJzjeorbUylWojQbIQQog5p1zDz3NlAlfAr/H7PBxPkcqcOIYZ2wLDwPEUfp+H3y8Zy8nURTw+dF03O3YeYOmSpTNecW/oOedyVn4mJEgWQggxZ5R7+Hk2lWdMJhL2WL0iTSTkEQqeKLfo7++nsbGRVNognjQIh2r3RqBc6iIezQ1p2lpcDFNuKipJgmQhhBAVMZMyhOlmgis1/DwXygt8FoSCeoI+yZqMXeENrACZMFfbaiZI7uvr43Of+xyPP/44hmFw+eWX8xd/8RdEIhPfet9www0899xzo773vve9j7/6q78q9eYKIURVisUNegcC1PeYRRnKncl2TKcMoRiZYBl+zpIArnRkwtzsUDNB8h//8R/T2dnJt7/9bWzb5s///M/5zGc+w5e+9KVJf++9730vf/AHfzD8dSgUKvWmClFz5tzEohzmwjGIxQ2+fX8zBw+Fqauvn3BSUDnqY6dbhlAtE5FqOcAsZQA38riM7JOczhgTPm7892tftZynYmZqIkjetWsXTz31FD/60Y9Yv349AJ/61Kf46Ec/yu233868efMm/N1gMEh7e/uMXt/THq4nJ3K+vMFj5ckxy9vQsdKc+FAa/fGk0Z7Gc4t/TIcCp76BiS8HTQ0OH7quu+ou6MU612r5GBQikVD09pv4fS4Ndc64IDmVNujtN0kksivzlZLnKrSGgN8drmEdSWtNKm3hud648z4c9AgHp3r+Ym7tiXPM73NprHfoG7BIpScKMB38lju47dn91FpnW6KNkf0ZOfezVMJBj5uu7cprdcZ8j6PfYtxx0VoTj/vRykQpRVODQ33YKej41bLpnqfyGVo4T5fmWNVEkPziiy/S0NAwHCADnH/++RiGwZYtW7jssssm/N2f/exnPPTQQ7S3t3PJJZdw2223FZxNPrD/QM6Mi5jcvn37Kr0JNcVSYGdsfMZgf1FPD3+welrR09PNnj27i/66vQMBDh4K4/e5+P3jr9iZjMnBqMmOnQdobkgX/fWLYd++vTP6/dlwDPLROxAgHgtRF3Gx0z3jfp5Om8TifvYf2E+0v7T72TsQIBYNgZchkxp/zJNl3JZCdHft5s3n7CdtT1wmEvC5dB536KR29zMKBS9f/uZz9k55XBIxhzefY+V9/MopkZx6u8Ihp2zbM9Pr2lximIqTlnYU/XlrIkju6uqipaVl1Pcsy6KxsZHOzonfRm9729tYuHAhHR0dbN++nTvvvJM9e/bw1a9+taDXX7J0CT6rJg5VVfA8j3379rFs2TIMY3YMnZWa53kc2r8Hn9+HcjPZBvLGYCN5pTCUoqWllRUrVhb9tet7TOrq62msd3JOLEokFf1Ri6VLltLWUgVrGo+QPdf2smzZ8hmda7V8DApR32MSqasD3UNjU9O4hQr8SQVGefZzqmNezm3Jx3TPtaH9DPg9/DnKSjxlgGFUzX4WU7Hen+WQHU1qrYrRpFo6btXC0y6QKvrzVjTyu/POO/nmN7856WMefvjhaT//+973vuF/r127lvb2dm666Sb279/P0qVL834eQxmYcqIWzDDkuBVKoVDD/x7zE0PlnGg1U4ZpkI3FVc4Rk6HvG6ZRte2IDMOY0bGZDccgH9n9VKCH9mnMWVbG/azVY17ouRYOK5obs/W/GTv37zU3uoTDpXl/V4OZvj/LIeNkF+8IBiauke+PWmQcE6NMzUhq4bhVDa8014iKBsk333wz11xzzaSPWbJkCW1tbfT0jB4adByH/v7+guqNTz/9dCBbBlBIkCzEbBZPZCes+X25a4oyttQaCTFdMoGrtsyFVn0ifxUNkltaWsaVUeSyceNGBgYG2Lp1K6eddhoAzzzzDJ7nsWHDhrxfb9u2bQAznsgnxGwRixv84KEmtu8K4vNprBwZO9PULF2UqcDWiblgtnc5AGk5J0StqolC21WrVnHRRRfx6U9/mjvuuAPbtvnc5z7H1VdfPdzZ4tixY3zwgx/ki1/8Ihs2bGD//v387Gc/4+KLL6apqYnt27fz+c9/nrPPPpuTTz65wnskRHVIpRX9URPD0AT8Hr4xQbLjZpeYdd3iZpPnQru1apZI+ujuNcaVW6TSBhlbEU8YJa+PlT6yQohqVxNBMmTrlz/3uc/xwQ9+cHgxkU996lPDP7dtmz179pBMJgHw+Xw8/fTT3HPPPSQSCRYsWMDll1/ObbfdVqldEKJqmYbOVkOPiVs1lCRAns4iEuUw27OawYAmEnLZ8loTel8gZy2w3+dx/3818bEPlHaC0mwvQ4jFDbp7TdKZ3PsX8Gtam92a3T8h5oKaCZKbmpomXThk8eLFbN++ffjrBQsW8L3vfa8cmyZETTNNCAQ0jqtwxgTEjgOeB431xcvoTXcRiVKaK1nNuojHe67s5cDBEM0tuffHcRSJpFGW4z9byxBicYOvf6+VzVtCE07W8/s0Z21I8PslvhkRQkxfzQTJQojS8Fma09am8PvGB0zJlGIgZnL9O/qGP8iLVSpRTRNkZntWc6RI2MPv92hqcImEx/882+5OJijNRCqt6OkzcVyDUMDDtEaf566jSNuK7r7y3gyKqc320SRRGAmShRD4fXqCgBUytiYSPhEgV2upxEzN1qzmXFUNde9KaUxL4xv3SavRtsJxpHNMtZgro0miMBIkCyHyVo2lEqK6VENwWg03c46j6Os36R8wGdsu3vOyP98DZZkkKaY2l0aTRP4kSBZCFDzEWE2lEqJ6VENwCtVxM+d62Umvfr/GGlNu4Q3+zLbVhBP7qk013PyUmowmibEkSBZiDpMhRlFM1RCcjlQNN3PK0IxbNE1nv18rquXmR4hykyBZiDmskkOMMkGmslJpA6XGB2rFOP7VEJxWmuNkV8rNZo1H/8z1QNdOjFx1Nz9ClIsEyULMceUeYpTsdWUFA5r6ugzpTD0ZO/djau34jy0F6BnsGjG01Lplgt8/en9sJ9uBYiIzuTmMJwwOHPaTySgcxxzXj1oDaE04OK2nrxi5+RFzjQTJQoiykgkylVUX8bjmsp3Mm+9ijKsDyKql45+rFCCVVqOWWg8GNBvXJYcD5Yyt2LknwHfub5nwZmCm5QNKZf/TejAoHksrfH6PgL92bkaEmGskSBZCFGympRIyQaaywiGHthYXw6z9AC1XKYDfp/BZ2QBUDT7GccE/+Duumw2UAz5NY/34zhIzLR+IhD1WLcsA2RuOsRP3HAdSaZNVSzPD7RVrQcbOfWObTClS6fIsZy5EOUmQLITIm5RKiEJkMtngdMhQMDVU5lDMjPXYUgDLAoVCk11NMpk6EeAN3cwFSlg+YFka32CPZCvHJ61h5/5+tbIdxa7twZzL1DsO2I7BDx5q4uMfzL2C4FzojiFmnxp6iwohKk1KJUQ+UmmDjK3Zuj1IOnNidMF1FZ7HcJlDqToiWFb2PEylswt22E525ciMfaLcwrI0tp1dYXCsZCr7OzNR7uXeRypFQOq6kE4rggHGZcZtMzsZsT+aO/seixt850fSHUPUHgmShRAFkVIJMZGRIw2ptEEsbmIYGnOw3ZlpZFd2bG508TxVso4Ifp9m42lJHOfE0uo3XddDS1M2rX3wiI/Pf3Uer+4I5czmOg4oNbPygUKXey+WUrZrcz2FZnxrDoXCnKR0R7pjiFolQbIQQoiiGDnS0NNn8p37W2iocwkFR5dB+H2aRFKVtCOC36fx+7L/ztialiZ3OODt6TNxXEUooHNmclNakUxPvtDHZNnanj4T21E05rncezGVIiANBrK1256nSGcM3BwBccDvTRooZ59HumOI2iJBshBCiKIZOdIQDGhCwYkDxUozB+uGx7ItID3x702VrU2lFXv2BwY7V+SeGFhqIwPSkbXhWmtSaWNU+7upyi/qIh7Xv6OP/qg57qZnSMZWJFPS41zMLhIkCyGEqHnT6bjiOgrbHh/wuVPUI0+VrTWUAWSz5Z5X2QmumYzixVdDw1lvx1Wk04p//X4bfn922xvrXa5/R99wZjtX0BwJe1Pe9CRTJdwRISpAgmQhhBA1azodVwJ+jd/n4XiKVGZ8EO14Cr9v6h7Gk5UPrF6R5oZ39w7XQefa7nJMUnPcbFBvmdme0amMoifhY+8hH5ahcT2F5yn6o+bwMZJJdEJkSZAshBCiZk2n40oknA1i/ZaHzzf+8am0IpGcWemAz2JUHXSlWabG5wPbBa2zPaJDQY3taNIZY7iMYqqaZVlOXswlEiQLIYQomXIEVdPtuLJz3wR9f12FbatJ+/7WuqE+zmhwzZFlFLkn0RWjR7oE2KLWSJAshBCi6Kp94RnXVSSSJgGfhzl28p4G15i4728tGApIk6lsn2bbVaCmrreeyEx6pFf7uSDERCRIFkIIUXTVvPDMiZZm2Zpd1JhtVBAOeZg12JVsbECaSmez4miF62brrU1TY0wjVp5uxr6azwUhJiNBshBCiJKo1oVnitXSrBrLB8YGpGP7VSdTBlu2hcp+A1Ct54IQk5EgWQghxJwzk5ZmhZQPlGKJ6KmMDUiDAY1SCtCAxvM0tpP9cuyS2UKIEyRIFkIIUVSVCAzLKd/yAaBkS0TnK2f5hWPgegyvkBfwe2Ts7L7U4iS62X6+icqRIFkIIUTRTLUaHcyOPrz5lA909ZhFXyJ6IpMFiu+8vB/IZs/jCYMfPNREf/TE38c0s2UYQ5nzWppEN1fON1EZEiQLIYQomqlWoytmYFgM5agrnmzRkYnKNQpRSKDY1mLz8Q92z5rMa62db6K2SJAshBCi6EodGM7UbGpLVmigOBsn0VX7+SZqkwTJQggh5pyhuuLuXpN0JndWdaplqauNBIpCFJcEyUIIIeasn/5PY15lCuFgbZQfiKnJRD+RLwmShRBCzEmFlCmEgxXYQFF0MtFPFEKCZCGEEHNaqcsUqnHRkblKJvqJQkiQLIQQougkMJxdkwOrXaHn22yq35bykdKRIFkIIUTRSGB4Qr6LjhQrgJmLNyZz/XyT8pHSkiBZCCFE0ZQ7MBRzO1Cc6+eblI+UlgTJQgghimo29uGdjnJl+eZ6oCjn2+wqH6kmEiQLIYSY00pVplDOLJ8EikIUnwTJQggh5qRylSnMpSzfyElknqvoHQhQ32NimNkbjmrJaM/F+m1ROAmShRBCzEmFlCl4bhk3rEaNLS/RGmLREHX19ajBQ1zpSWRzuX5bFE6CZCGEEHOWlCkUz9jyEq01eBka6x2UUlUxiWyu12+LwkiQLIQQQoiiGSov0VqTSbmEQ3owk1wd5SWz8cZIykdKQ4JkIYQoImnsL4QoFykfKS0JkoUQokiksb/IRbJ8olSkfKS0JEgWQogikcb+lVdNmXzJ8olymI3lI9VCgmQhhCiyudTyq5pUWyZfsnxC1DYJkoUQQswK1ZjJn4tZvqHyEq0hmTbxJ9VwdwshaokEyUIIIWYVyeRXxtjyEq0hFveDYY3qkyzlJaJWSJAshBBCiBkbW17iuR77D+xn6ZKlVbfinhD5kCBZCCGEEEUxsrzEcz2i/WnaWlwMU7LHovZIkCyEEEUmLb9Gq6aOE0IIkS8JkoUQokik5dd41dZxQggh8iVBshBCFIm0/BqvEh0nJJMvhCgGCZKFEKKI5mLLr3yUo+OEZPJLS8pmxFwjQbIQQohZQTL5pSNlM2IukiBZCCHErFHNmfxazsRW40ItQpSaBMlCCCFEic2WTKws1CLmEgmShRBCiBKTTKwQtUeCZCGEECUnHSeyJBNbPrVc3iKqgwTJQgghSkY6TohKmC3lLaKyJEgWQghRMtJxQlSClLeIYpAgWQghRElVc8eJUho53N/Tlw3I/L4TNwuWCX5/bWXQa61sRspbxExIkCyEEEIU2djh/lRasX1XEJ9PY5nZoC0Y0Gxcl6yJQFnKZsRcJEGyEEIIUWRjh/v9PoXP8rAMME2N6yhiCYNoXBFyqzcTO0TKZsRcJEGyEEIIUSJDw/2WBXURTSqtcF2F44LtKAZiJhk7m32t9kzsXC2bEXOXBMlCCCFEifl9mo2nJXGc7NfJVDZAvum6HlqaXEAysUJUGwmShRBC1Lxa6Inr92n8vhNfZ2xNS5NLW4tbuY2a5WptoqGoLhIkCyGEqGnSE1eMJRMNRTFIkCyEEKLiZpIJlp64YiyZaCiKQYJkIYQQFROLG3T3mvzgoSb6o+Mzfqap8Vn5ZYKrsSeuDPdXjkw0FDMlQbIQQoiKGCqTONppsX1XEGOwPdpIAb/HScvTNZcJluF+IWqfBMlCCCEqYqhMwu/T+CyPQEDjGxEkO67CcRWWpcnYEw+bQ7adWjKV+zHJlMJ2Jv/9YpPhfiFqnwTJQgghKioY8LAs8A3+d4LGcacObuMJg517Amid7Uc8luOAUop4wihrJwkZ7heitkmQLIQQoqalM4qMrQgFdM7yhZRWJNOKdKa82WQhRG2TIFkIIcTsoXPV+EpwLIQonATJQgghalrAr/H7PBxPkcqM7xrheAq/zyPgl0lyQoj8SZAshBCiKjhjJtfZbnbyXjptoCbpmBYJe6xekSYS8ggFxwfCyZQinjSIhGWSnBAifxIkCyGEqCjHNTBNne0EMaIbhOspPE+RthXz251J26X5LAgF9QR9kiFjF32zhRCznATJQgghKmJkL+Gli2zcHI0nGutdrn9HH63NrrRLE0KUlQTJQgghKqLYvYRldTshRDFJkCyEEKJiitFLWFa3E0KUggTJQgghapqsbieEKAUJkoUQQtQ8Wd1OCFFsUqglhBBCCCHEGDURJN91111cf/31nH766Zx11ll5/Y7Wmn/6p3/iwgsvZMOGDdx0003s3bu3tBsqhBBCCCFmhZoIkm3b5oorruD3fu/38v6djS7+BgAAENFJREFUb37zm9x777385V/+Jffddx+hUIhbbrmFdDpdwi0VQgghhBCzQU0EyX/wB3/ATTfdxJo1a/J6vNaae+65h1tvvZVLL72Uk08+mS9+8YscP36cxx57rMRbK4QQQgghat2snLh38OBBOjs7Of/884e/V19fz+mnn86LL77I1VdfndfzaJ1tF2S7Tkm2c7bytIfWYDsO7mRryYphnvbwNNgqiIFLMBRh6aJ2rHgaN+lguYqmeSE8L8dqC3OYpz0MU+FpFzxp75UPOWbTI8etcHLMpkeOW+E8nf1sHIrbimVWBsmdnZ0AtLa2jvp+a2srXV1deT+P52XbBf1uX2fxNm7O8PPqnmOV3ogaE6S3B6ARWhp5+3vm5XhMoszbVP1OWtoBpCq9GTVFjtn0yHErnByz6ZHjNj1DcVuxVCxIvvPOO/nmN7856WMefvhhVq1aVaYtGs+yLNavX49hGCg1cf9NIYQQQghRGVprPM/Dsoob1lYsSL755pu55pprJn3MkiVLpvXc7e3tAHR3d9PR0TH8/e7ubk4++eS8n8cwDPx+/7S2QQghhBBC1K6KBcktLS20tLSU5LkXL15Me3s7Tz/9NKeccgoAsViMl19+uaAOGUIIIYQQYm6qiVlVhw8fZtu2bRw+fBjXddm2bRvbtm0jHo8PP+aKK67g0UcfBUApxY033shdd93FL37xC7Zv387tt99OR0cHl156aaV2QwghhBBC1IiamLj3la98hQceeGD463e9610A3HPPPZx77rkA7Nmzh2g0OvyYj3zkIySTST7zmc8wMDDApk2buPvuuwkEAmXddiGEEEIIUXuULna/DCGEEEIIIWpcTZRbCCGEEEIIUU4SJAshhBBCCDGGBMlCCCGEEEKMIUGyEEIIIYQQY0iQPMZdd93F9ddfz+mnn85ZZ52V1+/82Z/9GWvXrh313y233FLiLa0e0zlmWmv+6Z/+iQsvvJANGzZw0003sXfv3tJuaJXp6+vjk5/8JGeeeSZnnXUWf/7nfz6qrWEuN9xww7hz7TOf+UyZtrgyvv/97/PmN7+Z9evXc91117Fly5ZJH//II49wxRVXsH79et7+9rfzq1/9qkxbWj0KOWY/+clPxp1T69evL+PWVt5vf/tbPvaxj3HhhReydu1aHnvssSl/59lnn+Waa67htNNO47LLLuMnP/lJGba0uhR63J599tlx59ratWvp7Ows0xZX3je+8Q3e8573sHHjRs477zxuu+02du/ePeXvzeXr2nSOWbGuaxIkj2HbNldccUXBi45cdNFF/PrXvx7+78tf/nKJtrD6TOeYffOb3+Tee+/lL//yL7nvvvsIhULccsstpNPpEm5pdfnjP/5jdu7cybe//W2+/vWv8/zzz+cV8L73ve8dda7dfvvtZdjaynj44Yf5/Oc/z8c//nEeeOABTj75ZG655Ra6u7tzPv6FF17gk5/8JNdeey0PPvggb3nLW/j4xz/Ojh07yrzllVPoMQOoq6sbdU49/vjjZdziykskEqxdu5bPfvazeT3+wIED/P7v/z7nnnsuP/3pT/ngBz/Ipz71KZ566qkSb2l1KfS4Dfn5z38+6nxrbW0t0RZWn+eee473v//93HfffXz729/GcRxuueUWEonEhL8z169r0zlmUKTrmhY5/fjHP9abNm3K67F/+qd/qm+99dYSb1H1y/eYeZ6nL7jgAn333XcPf29gYECfdtpp+j//8z9LuYlVY+fOnXrNmjV6y5Ytw9/71a9+pdeuXauPHj064e994AMf0H/9139djk2sCtdee62+4447hr92XVdfeOGF+hvf+EbOx3/iE5/QH/3oR0d977rrrtOf/vSnS7qd1aTQY1bItW4uWLNmjX700UcnfcwXv/hFffXVV4/63h/+4R/qm2++uZSbVtXyOW7PPPOMXrNmje7v7y/TVlW/7u5uvWbNGv3cc89N+Bi5ro2WzzEr1nVNMslF8txzz3Heeefx1re+lc9+9rP09vZWepOq1sGDB+ns7OT8888f/l59fT2nn346L774YgW3rHxefPFFGhoaRg3/nH/++RiGMWU5wc9+9jPOPfdc3va2t/GlL32JZDJZ6s2tiEwmw6uvvjrqPDEMg/PPP3/C8+Sll17ivPPOG/W9Cy+8kJdeeqmUm1o1pnPMIJsRvOSSS7j44ou59dZbef3118uxuTVrrp9nM/Wud72LCy+8kA996ENs3ry50ptTUUOLoDU2Nk74GDnfRsvnmEFxrms1seJetbvooou47LLLWLx4MQcOHODLX/4yH/nIR/jhD3+IaZqV3ryqM1R/NnaIrbW1la6urkpsUtl1dXXR0tIy6nuWZdHY2Dhpfd7b3vY2Fi5cSEdHB9u3b+fOO+9kz549fPWrXy31Jpddb28vruvmPE8mqkfr6uqira1t3OPnynk1nWO2YsUK/vZv/5a1a9cSjUb51re+xfXXX89//dd/MX/+/HJsds3JdZ61tbURi8VIpVIEg8EKbVl1a29v54477uC0004jk8lw//33c+ONN3Lfffexbt26Sm9e2Xmex9/+7d9y5plnsmbNmgkfN9evayPle8yKdV2bE0HynXfeyTe/+c1JH/Pwww+zatWqaT3/1VdfPfzvoQLxSy+9dDi7XItKfcxmq3yP23S9733vG/732rVraW9v56abbmL//v0sXbp02s8r5q6NGzeycePGUV9fddVV/OAHP+AP//APK7dhYtZZuXIlK1euHP76zDPP5MCBA3znO9/h7//+7yu4ZZVxxx138Prrr/Pv//7vld6UmpHvMSvWdW1OBMk333wz11xzzaSPWbJkSdFeb8mSJTQ3N7Nv376aDZJLecza29sB6O7upqOjY/j73d3dnHzyydN6zmqR73Fra2ujp6dn1Pcdx6G/v3/4+OTj9NNPB2Dfvn2zLkhubm7GNM1xE866u7vHZVWGtLW1jcuuTPb42WY6x2wsn8/HKaecwv79+0uxibNCrvOsq6uLuro6ySIXaP369bzwwguV3oyy+6u/+iueeOIJvve9702Z2Zzr17UhhRyzsaZ7XZsTQXJLS8u4oe1SOnr0KH19fQUFO9WmlMds8eLFtLe38/TTT3PKKacAEIvFePnllwvuKlJt8j1uGzduZGBggK1bt3LaaacB8Mwzz+B5Hhs2bMj79bZt2wZQ0+faRPx+P+vWrePpp5/m0ksvBbJDbU8//TQf+MAHcv7OGWecwTPPPMNNN900/L3f/OY3nHHGGWXY4sqbzjEby3VdduzYwcUXX1zKTa1pZ5xxBk8++eSo782l86yYfve7383K69dEtNZ87nOf49FHH+Xee+/NK9k0169r0zlmY033uiYT98Y4fPgw27Zt4/Dhw7iuy7Zt29i2bduo/rVXXHEFjz76KADxeJwvfOELvPTSSxw8eJCnn36a2267jWXLlnHRRRdVajfKqtBjppTixhtv5K677uIXv/gF27dv5/bbb6ejo2P4g322W7VqFRdddBGf/vSn2bJlC5s3b+Zzn/scV199NfPmzQPg2LFjXHHFFcMT+fbv38/XvvY1tm7dysGDB/nFL37Bn/7pn3L22WfXfAZ+Ih/60Ie47777eOCBB9i1axd/+Zd/STKZ5N3vfjcAt99+O1/60peGH3/jjTfy1FNP8a1vfYtdu3bxz//8z2zdujXvAHE2KPSYffWrX+XXv/41Bw4c4NVXX+VP/uRPOHz4MNddd12ldqHs4vH48HULspOLh65pAF/60pdGtVq8/vrrOXDgAF/84hfZtWsX3//+93nkkUdGBTFzQaHH7Tvf+Q6PPfYY+/btY8eOHfzN3/wNzzzzDO9///srsv2VcMcdd/DQQw/xpS99iUgkQmdnJ52dnaRSqeHHyHVttOkcs2Jd1+ZEJrkQX/nKV3jggQeGv37Xu94FwD333MO5554LwJ49e4ZnV5qmyY4dO3jwwQeJRqN0dHRwwQUX8IlPfAK/31/27a+EQo8ZwEc+8hGSySSf+cxnGBgYYNOmTdx9990EAoGybnsl3XnnnXzuc5/jgx/8IIZhcPnll/OpT31q+Oe2bbNnz57h7hU+n4+nn36ae+65h0QiwYIFC7j88su57bbbKrULJXfVVVfR09PDV77yFTo7OznllFO4++67h4cZjxw5gmGcuNc/88wzufPOO/nHf/xHvvzlL7N8+XK+9rWvTTrBY7Yp9JgNDAzw6U9/ms7OThobG1m3bh0/+MEPWL16daV2oey2bt3KjTfeOPz15z//eQCuueYa/u7v/o7Ozk6OHDky/PMlS5bwjW98g89//vPcc889zJ8/n7/+67+eM4mRIYUeN9u2+cIXvsCxY8cIhUKsWbOGb3/727zhDW8o+7ZXyn/8x38A2YWhRvr85z8/fCMr17XRpnPMinVdU1prPcPtF0IIIYQQYlaRcgshhBBCCCHGkCBZCCGEEEKIMSRIFkIIIYQQYgwJkoUQQgghhBhDgmQhhBBCCCHGkCBZCCGEEEKIMSRIFkIIIYQQYgwJkoUQQgghhBhDgmQhhBBCCCHGkCBZCCGEEEKIMSRIFkIIIYQQYgwJkoUQYpbYvHkza9euZe3atTz88MM5H/Pyyy+zceNG1q5dyxe+8IUyb6EQQtQOCZKFEGKW2LRpE29+85sB+Od//mdc1x318927d/PRj36URCLBNddcw+23316JzRRCiJogQbIQQswin/zkJzFNk927d/PQQw8Nf//YsWN8+MMfpq+vj0suuYS//uu/RilVwS0VQojqJkGyEELMIqtXr+aaa64B4Ktf/Sq2bTMwMMCHP/xhDh06xKZNm/jHf/xHLMuq8JYKIUR1U1prXemNEEIIUTzHjh3j8ssvJ5VK8f/+3//jscce47e//S1r1qzh+9//Pg0NDZXeRCGEqHoSJAshxCx055138s1vfnP460WLFvGDH/yAjo6OcY+Nx+N861vfYuvWrWzdupWuri6uueYa/u7v/q6cmyyEEFVFyi2EEGIWuuGGGzCM7CW+qamJb33rWzkDZIDe3l6++tWv8uqrr3LaaaeVczOFEKJqSVGaEELMMo7j8NnPfhbP8wBIJpMEg8EJH9/R0cGTTz7JvHnzSKfTbNiwoVybKoQQVUsyyUIIMYtorfnUpz7F448/TktLC4sXLyadTvOVr3xlwt/x+/3MmzevjFsphBDVT4JkIYSYRb74xS/ywAMPEA6H+cY3vsH//b//F4AHH3yQnTt3VnjrhBCidkiQLIQQs8S//du/8a1vfQufz8dXv/pVNmzYwNVXX83atWtxXZcvfelLld5EIYSoGRIkCyHELPDggw/y93//9yil+PznP88FF1wAgFKKT3ziEwD88pe/ZPPmzZXcTCGEqBkSJAshRI371a9+xV/8xV+gtebP/uzPePvb3z7q5295y1s4/fTTgWxrOCGEEFOTIFkIIWrYiy++yCc+8Qkcx+EjH/kIN910U87HDdUmv/DCCzz22GNl3EIhhKhN0gJOCCFq2MaNG3nppZemfNx5553H9u3bS79BQggxS0gmWQghhBBCiDEkkyyEEILvfe97DAwM4LouANu3b+df/uVfADj77P9/u3ZoBDAMA0HQKUoNuB67bNeh8J/gmOxSkYcHVKOqbs4D+N3T3X17BAB3zTnHOefzttYae++fFwHcJZIBACD4SQYAgCCSAQAgiGQAAAgiGQAAgkgGAIAgkgEAIIhkAAAIIhkAAIJIBgCAIJIBACCIZAAACC9NqOsFEgD92gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Визуализация\n", + "plt.figure(figsize=(8, 6))\n", + "plot_decision_boundary(rf_custom, X, y)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "da484a87-bb76-43a7-8953-1af94efbd0aa", + "metadata": { + "id": "da484a87-bb76-43a7-8953-1af94efbd0aa" + }, + "source": [ + "Подберите наилучшие гиперпараметры, при которых разделяющая граница будет, на ваш взгляд, оптимальной с точки зрения bias-variance. Можно также подключить какие-то метрики для выбора лучшей модели." + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "fccbd1cc-740c-4411-9b27-680a9cf73c9f", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fccbd1cc-740c-4411-9b27-680a9cf73c9f", + "outputId": "f6b8caad-1b22-40af-95d8-0352d641bf27" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Лучшая точность: 0.9279999999999999\n", + "Лучшие гиперпараметры: {'n_estimators': 100, 'max_depth': None, 'max_features': None}\n" + ] + } + ], + "source": [ + "def search_best_params(X, y, n_estimators_list, max_depth_list, max_features_list):\n", + " best_score = 0\n", + " best_params = {}\n", + " n_features = X.shape[1]\n", + " for n_estimators in n_estimators_list:\n", + " for max_depth in max_depth_list:\n", + " for max_features in max_features_list:\n", + " # Преобразование строковых значений max_features в числа\n", + " if max_features == 'sqrt':\n", + " max_features_num = int(np.sqrt(n_features))\n", + " elif max_features == 'log2':\n", + " max_features_num = int(np.log2(n_features))\n", + " else:\n", + " max_features_num = max_features\n", + "\n", + " rf_custom = RandomForestClassifierCustom(n_estimators=n_estimators,\n", + " max_depth=max_depth,\n", + " max_features=max_features_num,\n", + " random_state=42)\n", + " scores = cross_val_score(rf_custom, X, y, cv=5, scoring='accuracy')\n", + " mean_score = scores.mean()\n", + " if mean_score > best_score:\n", + " best_score = mean_score\n", + " best_params = {'n_estimators': n_estimators, 'max_depth': max_depth, 'max_features': max_features}\n", + " return best_score, best_params\n", + "# Параметры для перебора\n", + "n_estimators_list = [10, 50, 100]\n", + "max_depth_list = [None, 5, 10, 20]\n", + "max_features_list = [None, 'sqrt', 'log2'] # Теперь корректно обрабатываются строковые значения\n", + "# Поиск лучших гиперпараметров\n", + "best_score, best_params = search_best_params(X, y, n_estimators_list, max_depth_list, max_features_list)\n", + "print(\"Лучшая точность:\", best_score)\n", + "print(\"Лучшие гиперпараметры:\", best_params)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "293aac4e-a7c9-400a-a939-e3b1122d5517", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 557 + }, + "id": "293aac4e-a7c9-400a-a939-e3b1122d5517", + "outputId": "8a406460-8348-47fa-8b7a-746050b648e5" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIcCAYAAAAExjNxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hs2VmfDd9rx0pd1fGEPnHmpAmarDQKDIIRigQhhIQsgRLBICOM3g8ZjF6DjZEQwRhjbIFGpA9QQCDLCA22JECARnGCJp6c+5zO3RV23nu9f1R3T4fq7uruit3rvi6F01W196pde6/1W8/6recRUkqJQqFQKBQKhUKhWEBrdwMUCoVCoVAoFIpOQ4lkhUKhUCgUCoViGUokKxQKhUKhUCgUy1AiWaFQKBQKhUKhWIYSyQqFQqFQKBQKxTKUSFYoFAqFQqFQKJahRLJCoVAoFAqFQrEMJZIVCoVCoVAoFIplKJGsUCgUCoVCoVAsQ4lkhUKhUCgUCoViGV0jkr/+9a/zEz/xE7zkJS/hxIkTfP7zn1/z/V/96lc5ceLEiv+Mj4+3qMUKhUKhUCgUim7FaHcD6sVxHE6cOMHrX/963v3ud9f9uQcffJBcLrfw74GBgWY0T6FQKBQKhUKxjegakXzfffdx3333bfhzAwMD5PP5JrRIoVAoFAqFQrFd6RqRvFm+7/u+jyAIOHbsGO9+97u555576v5skiREUYSmaQghmthKhUKhUCgUCsVmkFKSJAmGYaBpjXMSb1uRPDQ0xC//8i/znOc8hyAI+OQnP8kP//AP84lPfIJbb721rmNEUcTjjz/e5JYqFAqFQqFQKLbKbbfdhmVZDTvethXJN954IzfeeOPCv++++24uX77MH/3RH/Hrv/7rdR1jfjZy06EhTH3bXqqGk8iEy5cuc+DgATTRNXtD24q6ZptDXbfVcbwzXJv4U8JoGtvcja5liBMHL7hO4BkcPfyTZNPH2t3MrkHdaxsgrKAVr0IS8oWvjfOJL4xQeTJBXgDT0PnOH7mdm164v92t7FiSJOHy5UscOHCwoVHR7UwiY1IH/IZfrx2l/G677TYefvjhut8/b7EwdQPL3FGXakvESYIQYBoGunrA60Jds82xHa+blAlecIU4LqPrOVLWfsQmRJll3oRp/AgT03+L450hin00YZPPncDjNvK5E9vmmrWC7XivNY1EBw2kBJkkBEFC4CVIRyINkIlA0/R2t7JzkYIklmhCVyK5XpLq/zTaGrujlN8zzzzD0NBQu5uhUCgUNam4pxZEbZx46FqKTOoog32vJps+vuHjZdPHyaSOLhHdpjHMBfdiE1qvUCgU24uuEcmVSoVLly4t/PvKlSs8/fTTFAoFhoeH+c3f/E1GR0f50Ic+BMAf/dEfsX//fo4dO4bv+3zyk5/kK1/5Ch/96Efb9RUUCoViVSruKa6MfYQwnMS29mHP2SNKzuN44Qj7d71rU0JZCI20fXDh33GSNLLZCoVCsW3pGpH8xBNP8MM//MML//7ABz4AwOte9zo++MEPMj4+zrVr1xZeD8OQX/u1X2N0dJR0Os3x48f5wz/8Q174whe2vO0KhUKxFlImTEz/LWE4SSZ1YmHJ0NB70FMncLyTTMx8jkzq6KasFwqFQqHYOF0jkl/wghdw8uTJVV//4Ac/uOTfP/qjP8qP/uiPNrtZCoVCsWW84AqOdwbb2rfCUyeEwLaGcdzTeMGVJVFhhUKhUDSPrhHJCoWi82jUJrOdThyXiRMPW8vUfF3XMgTyOnFcbnHLFAqFYueiRLJCodgUjd5k1ki6Tbzreg5dSxEnDobes+L1OHHQhI2u59rQOoVCodiZKJGsUCg2TLM2mTWqbZ0q3lcjZe0nkzpKyXkcfZEnGaqVpPxghJ7s7aQslVtWoVAoWkXnhlYUCkVHsnyTmaH3IISOofeQSZ0gDCeZmPkcUrY+i8K8eC85jyOEgaEXEMKg5DzOlbGPUHFPtbxN9SCExmDfqzHNARzvJFFcRMqIKC7ieCexzAEGe1/V0dFwhUKh2G6oSLJC0WakTPD8y4TxWTzfIJM60NFiqFM3mc2Ld9e7gEwiXO8ciYzQhIGh9xHFpY7OEJFNH2f/rnctRMEDeR1N2PRkb2ew91UdGwVXKBSK7YoSyQpFG5m3BpTd05TcSS6MDJBLH+toa0CnbjLzgisUKw8ThGNIGWHoeXRhImVIEI0hhEGx/M2OzhBRq/hHp/upFQqFYruiRLJC0SYW+3otcxhDy2Iadkf4eteiUzeZRXEJ179IkkRY5hDzQW4hLEwxSBCO4foXieJSS9u1UZYX/1AoFApFe1DhCYWiDXSyr3c95jeZ+cFVpJRLXpvfZJZJH2v5JrM4LhEnDrqWZpkLBCFA19LEiUPc4SJZoVAoFJ2BEskKRRvYiK+30+jUTWa6lkMXaRLp1RTvifTQtQy6ptKoKRQKhWJ9lEhWKNrAvK9XX8PXm0i/Y4tHzG8y68ncRhRN4/rniKJperK3s69NNhHDyJNOHUYIgzCaJEl8pExIEp8wmkQTJmn7EIaRb3nbFAqFQtF9KE+yQtEGOtXXuxE6bZNZytpPPns3ceIhZUwYTSFlGSEMLHM3Qujkc/eoXMMKhUKhqAslkhWKNrC8eMRiuql4RCdtMpu3gXjhCEEwQco+gEBHEhNFRWxrUOUaVigUCkXdqNFCoWgDtX29cdt9vd3OvA0kn70dZEScFEFG5HN3tM0GolAoFIruREWSFYo2sbh4RNk9TZRMEUb9qnjEFuk0G4hC0QqkTNQ9r1A0GCWSFYo2Mi/oHO8yly6f5ODwiY6vuNcNdJINRKFoNvNFiRzvzNyG4BSZ1NGOLkqkUHQDSiQrFG1GCI2UfQBTj6o+WiWQFQpFnSwuSmRb+7C1DHHidHxRIoWiG1CjsUKhUCgUXUg3FyVSKLoBJZIVCoVCoehCurkokULRDSiRrFAoFApFF9LtRYkUik5HiWSFQqFQKLqQxUWJatENRYkUik5GiWSFQqFQKLqQ+aJEfnAVKeWS1+aLEmXSxzq+KJFC0amo7BYKhUJRA5V3VtHpLK4y6Xgnsa1h9LnsFn4woooSKRRbRIlkRVtRQkTRiXRi3ln1rChqsbgokeOdIZDX0YStihIpFA1AiWRF2+hEIaLobJYLRdMYbvg51so76wZX2dX3WixzqKVCVT0rirVQVSYViuagRLKiLagE+IqNUksopuwjhPHtwA0NOcfyvLPzabUMvYfEGGS29BClysOk7RtaJlTVs6KoB1VlUqFoPGqaqWg5KgG+YqPMC8WS8ziG0U8mdRTD6KfsPkHZ+wSOe6oh51kt72wYTlJyHiEhIEl8LHMIw+in5DzOlbGPUGnQ+ZejnhWFQqFoH0okK1qOSoCv2AhrCkX7OImcZWL2wYYIxVp5Z6WUVLzTxLGDqQ8hhEDKuCVCVT0rCoVC0T6USN5mSJng+pcoO0/h+pc6MsKkEuArNsJ6QlHThhomFGvlnY3jImE0haH3ABECA02zFs7fTKGqnhWFQqFoH8qTvI3ols09i4VIVXgsRSXAVyxmXijaqwhFQRopp+oWimtliZjPO1tyHkef8yQnMkDKCDCJ4ilsazeGnl84nq5lCOT1pghV9awoFApF+1AieZvQTZt7agmReeYT4Pdkb1cJ8JtMt6QUW08oSlxEnUJxvYlkrbyzAg2QhNEohlEgkzoGPHvPNlOoqmdFoVAo2ocSyduAtXbk66kTON5JJmY+RyZ1tCNEkEqA3366ZdUB1heKSTJOJv3CdYVivRPJ5Xln48RDEzZSaPRk7sI0Bpacv5lCVT0rCoVC0T6USN4GbGRzT6ekCFIJ8NtHN606wNpC0QtG0ESBwcIr1xSKG51ILs87G4TjjE//DWE0gaZZLRWq6llRKBSK9qBE8jZgPc9mMz2TW0ElwG893bbqMM9qQjGXuQ0juY3MOkJxMxPJ5XlnbWtv24SqelYUCoWi9SiRvA3o5s09KgF+a+nGVYd5sunjpO0bKVa+QRBOYJmDZNN3c9G9vO5nGzGRbLdQVc+KQqFQtBYlkrcBanOPol66ddUBVqu491BdFfcaNZFUQlWhUCh2Dmqtbhsw79k0zQEc7yRRXETKiCgu4ngn1eYexQK18gAvplNXHbZacW9+IukHV5FSLnltfiKZSR9TE0mFQqFQLKBU0zZh3rPZk7mNKJrG9c8RRdP0ZG9nX4dtxFK0j24Ui42ouKcmkgqFQqHYKMpusY1ot2dS0Rmslf+4G1OKbaTi3lpWCJUlQqFQKBQbQYnkbYbyTO5s6sl/3G1isZEV99REUqFQKBT1okSyQtFg2lXJbiP5j7tJLDay4h6oiaRCoVAo6kOJZIWigbSrkt1m8h93i1hsVMU9hUKhUCg2QueFjRSKLmW1DAwl53GujH2EyjoZGLbCRvIfdxtrbrrzT9VVcU+hUCgUio2iRhWFogGsmYEhdYIwnGRi5nNrZmDYCvO+XX2N/MeJ9Dsy/3E9rJa9JZe5jVzqB9etuKdQKBQKxUZRdguFogG0u5JdN1ddrJdaPmrTGOaCe7HdTVMoFArFNkSJZIWiAbS7kt1Oqbq43EcdJ82JzHcT7dooqlAoFNsdJZIVigbQ7khuN+Y/Vmyddm0UVSgUip2AGjEVigbQCZXsVNXFnUU7N4oqFArFTkBFkhWKBtDoSO5ml9C7Kf9xp9PJNobNpPxTKBQKxcZQIlmhaBCNqmS31SX0bsl/3Ml0uo2h3RtFFQqFYiegRLJC0UC2Gsl13FOMTHy0rqp5iuawkcqFjabe6HW7N4oqFArFTkCJZIWiwWw2kitlwsTM59QSehtpp41hI9Hrdm8UVSgUip2AGmkVig4hTka3bdW8bqFdlQs3ugmvEzaKKhQKxXZHiWSFokOQOCTS37ZV87qBdlQu3Ey1xjVLdXsnVco/hUKhaACqB1UoOgRBBk3YxIlT83W1hN58FtsYatGM32Cz0euNpvyTMsH1L1FxnyaKrzWtRLpCoVBsF5QnWaHoEHRtN3bqKBX3iW1dNa+TaUflwq1swqt3o+hiv3OUeDhuyOXrX2dX/2vURlCFQqFYBRVJVig6BCE0BntfpZbQ20xP9i4QGqXKI4TRbNN/g61Gr+c3iuYyt5C2D9YUyEv8zvYRNK1A2X1CFR1RKBSKNVCRZIWig8g0KNfyerSiUEajz1HreI1kSXaJqEgQTRCUxrCsISxjsOG/wTzNjF7XytYhpUQTWTL2Plz/lMqYolAoFKugRLJC0WE0u2peKwplNPocqx2vv/BKwGxIe5fkRrb2EycVHO8Mhp5l98Ab6Mu/tClCsna1xjR+OIYfXMUyBxkovGJT51ZFRxQKhWLzKJGsUHQgzaqa14pCGY0+x1rHc4OryPiVwA2bbu/quZHz9GTuwvFOUnIepS//0k2fYz0WV2ssVh7G9S8SJw66yKBraSZnHkQIbcO/jSo6olAoFJtHra8pFDuEzaQaa/c5lh9P13LEcZkk8bCMPQThJG7wpS21uV25kZeTTR9noPeVaHoOy9xFb89LGOh9JSn78Kr5ktejHdk6FAqFYrugIskKxQ6hFUvvjT7H4uNF0RQV7zRhNIWUEUIY1UhoNIsfXMVIH9pUmzsl2iplwuTMg8jEJ5993sL109h8tb92ZOtQKBSK7YKKJCsUO4RWFMpo9Dnmj5ckLkXnYYJwFF1LYRp96FqKKJ4hSs5Rdp/cdJs7JdrajIj2akVHElnG8U+pjCkKhUKxBqpnVChaxHwxh7LzFK5/qeXFHFohBht9Dl3PoQmbivs0cexgGgNomo0QGppmo2k9SBlTLH9909ezU0o8N2sSs7joSBhNUXafIIqvkrIOMjz0DpUnWaFQKFZB2S0UihbQiowS69GKpfdGnyNl7ccyh5gpP4Rl7F52PEiSMrrYRRCObtomMh9tdYOrlCqPYJr9GFoPCIMgvNayaOviCYah96x4fSuTmGz6OFImhBMz1dzPxPjB6KY3BCoUCsVOQIlkhaLJ1JPtIWUfbXo7aqcaq7bFD0YaIgYbfQ4hNAo9L2B85m+rVgFSgAAkSeKjaWlM/QakDLbsGda1FEE0huNVN8cZei+FnnsZ7H05Uka4/qWm5JOep5mTmIp7iqvjHyUMJ0nbNxD6PpZpNzSriUKhUGw3lEhWbCtaUSRjo+2pnV5s6Wasfbt+qiXtybagWEmtcwgsUvZBCrnno2kppEzq/l1ymVtJWftx/fOE/tjCZw2jj6x9K25iIUSyaZvI4klMb8+LqhX2oiJecIVi5ev4wSWEsJoe/W/WJGb5PVg9V4Sh92Dom9sQqFAoFDsBJZIV24ZOsDQsp97NWH5wtWVtanaxkuXnKDtPMlv+Gn4wysjYnyKETiZ1hD2DbyKXuWndY8WxQ5w4SJlgWwcQQgcSksTH8c4Sx2ky6e9sWEW6uVeIPYcwGkMTFoXci0ik2/TIazMmMcvvwcW+a1VQRKFQKFZHiWTFtqAVRTI2Q93pxZIykGpZu5pVrGT5OZLEY6r497jeBZLEIYrLJIlP2X2SmfJXODz8swz2fteqx5hPi2boeTBj4sRF13oQwkRg4UcjIPsbXJFO4rinSRIXyxiea3MFwyhsOhXbRmj0JKZTUtwpFApFt6FEsqLrqdfS0I7l5Lo3Y2k5IGpp25rN/O/ieheIomnixJ1b4s+TJCFBOMLFkd8iZR1cNaI8L2Kz6ZuQSbAoT3IZIQxS5gGCwF41I8R61BKQUVwkjKYw9DxCGMRRmUQGQOsir42cxDRzQ6BCoVBsZ5QBTdH1dErFtFrUm17Mtva1vG3NxguuUHFPkyQOceIuSd+m6zaWsZcgHOf65MdXTd+2OC2aaQ5QyL2Avp4X09tzL309L6aQuxchrLlI/MaplbIuSQISGSGEiZQhQhhownr2Mw3IJ91KOiXFnUKhUHQbSiQrup5WFMnYLKsVc4jiIo53clsXc4jjMmE0TRSX58pTL53AaJqF0Mw1JzDLRawQAsMoYJlDGEaBRLoIrLlI/MapJSA1zUITBkkSEMUlTHMAXc8vfCaKK8gkwg+vtyXf9UapfQ/GO+IeVCgUiq2g7BaKrqeTl5OlTNC0FP35lzFb+ipBOE7Ays1YcdLZQmsz6HoOIXTi2EMTNnFcQQgdIey5DWQhGjYgV53ArJsWLbyGqR/edCR+tYwSupbFCy9jGbvI2kcXzhuEE8yWHkJoJtfG/3xDm0PbmXll8YbAsnuaKJkijPobmtVEoVAothtKJCu6nlYUydgMy7NtaJqNZe2ikHv+Qlqz7Ry9S1n7MY1+wniSKJ5BCIFAQ9PTGHo/SeJgGr0YRu+qE5j10qKZRj+G9W0buo7LxWomdXRFRgnT7EcSoet5hGYiZYQXXKVY/iogKKTvwLb21b05tBMyr8xvCHS8y1y6fJKDwyfIpA5s63tQoVAotoISyYqupxVFMjbKatk2PP8ScVIhkzqy7cWJ450hkQ5CCJLEQxd5EIIoLhFFRSxzN5qWIZs+vuYEZq20aP35VzB63ay7TWuJ1YN7f3qJeI5jh8mZB3G8M/jJNVzvPJqWppC7F8scBOrbHNpJmVeE0EjZBzD1iJStBLJCoVCshRLJim1BK4pk1EsnZ9toFfPXQMqEvp6XUSx/hTipINFBagiRkMiAtH2orgnMamnREglwvq42bUasZtPHqxtD3TOMTPwpKWt/NR3dItbKeNGoe6HTiuQoFArFTkCJZMW2oRVFMuphI9k2tmvxhsXXwNB7MI1eyu4ThOEUIEHo6FqKob7X1j2BqZkWrc5Nc5sVq/PnjOMyAh1dy9Y8/mq5hhtxL3SCVUOhUCh2IkokK7YVrSiSsR6dWryhldHI5dfAMgfpN+8jioskSYAQOkE4jmUONeX8y9mqWN3s5tCt3gudZNVQKBSKnYYSyQpFg+nEbButiEYuFuFRXETT7GXXQGDoBdCrBTt0LdWya7BVsbrZzaFbuReUbUehaA3liobni1VfT9mSXHb7ZSBSrI8SyQpFg+m0bButiEauyOQhbIJojCAcJ599btuvwVYnLpvdHLqVe0HZdhSK5lOuaHz04/3MFPVV39Obj3nHG6eUUN6BKJGsUDSYTsq20Ypo5GoiPIjGCcJrFCvfIJs+0daMI42YuGxmc+hW7oVOte0oFNsJzxfMFHVsS5KyV4pgz9eYKep4viBXe0tCS1DR7vagRLJC0QTWElQDhVegaSnKzlML3uBm0exo5FoiPJ99LsXKN0BAGE21NeNIoyYu620OreX73mzmlU607SgU25WUnZBJyxqvJPjB6lHmVqCi3e2ja0Ty17/+dR544AGeeOIJxsfH+e///b9z//33r/mZr371q3zwgx/k9OnT7N27l3/9r/813//939+iFit2OrUE1eLcu4u9wf2FVwL15/utl2ZHI9cT4dn0CcJwiuGht2Lo+bamL2tUmsDVNoeu5/veaOaVTrPtKBSK9tAt0e7tSNeIZMdxOHHiBK9//et597vfve77L1++zI//+I/zpje9id/4jd/goYce4hd/8RcZGhripS99aQtarFAsFVQV9xRXxz9a0xvsBleR8SuBGxp6/mZHI+sS4VzH0PNk0zfhBVeouM8siaC3MmVfs9IE1uv73ki0vpNsOwrFdicIa1sZXE/g+YKKozHYH7e4VUvp5Gj3dqVrRPJ9993HfffdV/f7P/axj7F//37+3b/7dwAcOXKEb37zm/zRH/2REsmKlrOeN7jinSQMvoSU9wGNEz3NjkbWK8KDcJzJmf+zJMpqGH0gJVE807L8v81Ig9dM33cnFclRKLYrYQRnT6aI45VCOYoFYSj42Gd6+akfmVR2hh1G14jkjfLoo49y7733LvnbS17yEn71V391w8dKZEKcqAejXpK5a5Woa7aA51+m7J7GMoeBqkBdjGXsxYkv4HqXyaQPNfTc/YVX4gZXqXgnsc29z0Yjw2uYRj/9+VdUK9fVWZhjMaYxTMo+Qtl9gox9fIUI94IRbHMvY1P/mzCexjaHscwMfnCViZkHAchnX0DaPkKcOBTnour7ht5Jpg4BuJF7zXFPMTHzubly2T6asKuivPdVdZ1rNdb9bc29lJ1TON5lUvaBDR8/ZR9l3+534wdXiZMyupabs7dom+qX1PO5OdR12wAyQVvyGMi5/8y/LEnizriOSSyIIoHvC2xbYuhLn18tgjjWmS3qOI4kk2p+u5ffa0kskLLatyzvX4C51yCJk465rq0m2cT4VQ/bViRPTEwwODi45G+Dg4OUy2U8zyOVStV9rMuXLiNW31SqWIWLFy+2uwkdQxifpeROYmhZhIhWvC5ljCTgytXTmHqjH3YTGb+SMPhHnMpFJAECC1M/jGF9G6PXTeot7VyLML4dz3sGp/IImjaEII3EJUnGEeTxtFmSZBxdO0zghiTyKkH8JHEcIYTJbPEcrpFDCIGUQzjJBZzyX9CTekvdkdf17rUwvkDZ+wSJnEXTdiHoR+JRLn+ViclnyKV+EFM/vMnvv/5vGyVTXLp8ElNf+frGSAERsPVna7VrJmVCnIwicRBk0LXdytKxCNWvrU9Ki9hlhhhzSnle3CWJJI5hbGyU9Pmwza2sMl20ccpZPC8PMiI2lorQOBYkkU65UubS5UuUZv2Wte3ixQsLbSyX0pAEBN5Ky4fr65QrVsvb10louuDYwV0NP+62FcmN5MDBA5iGulT1kiQJFy9e5NChQ2iaGlwBPN/gwsgApmHXtCWEUZGZWYv9+441PJJc5QakvK9mNLIRx3bcfQtRWimnEMImk34hPek7GJ36S0zjGFIGON5pwmCUWI4idANdSDRtmnyPjmEUAIhigzCaYHjYWjfyWs+9JmXC5eufIdIiMvZdy6Ld+3D8U6Qyj3Ng932buh7r/bZRXCSM+jk4fGJTkeRGs9Y1m4+2B4ui7XYDou3bgVrXTcqkSc9UlxOU0WavQFIVwkIIhBBomkDXdXbt2s0NN7T/WQAYqmjs3Zvi8qgFwoBlATHdgJydUOjJcvDAwZb4kqv32gUOHTqMpmn0TOnkenoo9EQ1PcmWK0AzWta+TiSRMeA1/LjbVvkNDg4yMTGx5G8TExPkcrkNRZEBNKGhK7G3YTRNXbd5MqkD5NLHKDmPY+g1vMHhCLroJ5FlgvDKml7ZzftqNYymCHDoyd5ELnN8Rbsq7jNI6SOlR8l5jDh20DQTTZgIYREnHnHiEMbjmGYvAIaeJYxGkbJS9/2z1r3m+lfw/LOkrH0rRKEQgpQ1jOedIYxGNpUGb73fNgiv0ZO9nUzqQEcJqOXXrOKeYmTi2Y2l87acivsEQXStJSWwW1k6fbPMX7dWVLHsWoQGYrHBQsz9R869LND0zvhd83n4oe+dpVg2yOdi0qmVIjQIBa6noekaml5r41xz0LT5c2oIAX6gI8TKlUY/qL7e6vZ1FElzvve2Fcl33nknX/rSl5b87ctf/jJ33nlnexqk2NGslamg4p4kimcJk1kuXf+vGGsMtp08MNdKjabrOTTNpuI8TRw7mMYgUvqAhoC50tUVvOAqmdRRQDQ8/2+z0+BthywUnVACu5Pv7eW0ooqlonVkMwkpW5JOyVWyR4Db+CBl3aRsSW8+Zqaor5rFojcfk7J3qEBuIl0jkiuVCpcuXVr495UrV3j66acpFAoMDw/zm7/5m4yOjvKhD30IgDe96U382Z/9GR/60Id4/etfz1e+8hU+97nP8eEPf7hdX0Gxw6mVqSBJfOK4iKEXkPoeMvZeEunWHGy7cWBOWfuxzF3Mlr6Caeya8/bb6FqaKC4jhMDQe4ijClFcRNfyDc//uzwDh5SSOC6SyABNWEjYsijv9iwU7S6BvZl7u11R506YUCh2FrlswjveOKUq7rWBrhHJTzzxBD/8wz+88O8PfOADALzuda/jgx/8IOPj41y7dm3h9QMHDvDhD3+YD3zgA/zJn/wJe/bs4Vd+5VdU+jdFW1mcpzeKioxOfQohTNL2cWbCGYTQMbSVgy3QlQOzEBqF3POZmP4scVJCCBDCRNd6iJJZpBQYWh5JSBhO48trDY+8Lk6DlxiDON4ZwmgKKSOE0EEm9BXuI2Xt35LwalYO5lbQzhLYmxGd7Yw6+8HVtk4oFM3D8zWgdrGOdpPLJqpQSBvoGpH8ghe8gJMnT676+gc/+MGan/n0pz/dxFYpFBtn3pbgcokwHK9rsAW6dmDOZW4lm76JMJoiiitIWUYIg4x9FAnEcYkk8YilQz57Z8Mjr/N2iJL7FNPFL4LQMbQCCIsongEkQTjK5OznqThPbUl4rVaNr9NpZwnsjUax272iEiftm1AomoOyMyhWo2tEskKx3dho9K5bB+aUtZ989m6KlW+RS+9FEqIJC13PI6Wk7DxKJn0j+3f9GCm7OZvbMqmj2OZuHC0NUiORDgKDlL2ftH0U1z/PxZHfqoquLrGybAYpEzz/MmF8Fs83FjYTtrME9kaeg06wOuha+yYUiuag7AyK1VAiucvpht3gitosjt7p2soBdflg260D8+KNbUF4fdHGthJ+MEI6dYDhoR8hnWpO5g1gzt4yTV/+PkCSJAGaZmHoeaSEivskQThOT/aehevb6VaWjTJvUSi7pym5k1wYGSCXPrYQKW/X5sONRLHb7Z0GsK19bZtQKJqHsjMoaqFEchfTTbvBFStZHL1L28s3Ja0cbLt5YG73xrZno5XZqg9ZX/zaLFFcQmgmUi4tcNDpVpZ6WWxRsMxhDC2LoVvMlL5KyX2S4cG30Jd/aVt+o41EsSvuM21fUdkO2UwUCkV9KJHcpbTbl1eL+ah2GJWI4mmkPASogWI1lgy2/ikSmUHKHuLErTnYdvvA3M6NbWtFKxMZkCQ+mkihadbKz3awlaUellsUABI5geONEUaTRO40rneOob7XMtT3Gg7u/emW/kYbEZ3t9E4vptmTPrVCqFB0BkokdyGd4MtbzuKodpR4OG7I5etfZ1f/a3Z8VHutAW9+sB2b+ixO5VFc30XXUjUH23ZHYxtBuza2rRWtFJgkMsAyBzH0/IrPdrKVpR6WWxSCcIIwfhIZJhh6D5pZzVU9W/4aftiaoiHLqffebqd3ulabmzHpUyuECkXnoERyF9IJvrzFLI9qWyKN516j7D5BMNb6QbeTojD1DHjZ9HEO7LkRv/IVhvf2YRo9q7a5m9OMtZM1o5XhNWxzF5qWQUpY/Eh1g5VlPRZvjJNS4nhnSKSHoe9F0wRSJiTSwTb3E4aTbfNf13Nvt8PqsNYKWaMnfZ24QqhQ7GSUSO5C2pnTdDm1otpSSjSRJWPvw/VPtXTQ7aQozEYGPCE0DH0v2fQN65Zi7tY0Y+1mtWhlPncH2fSbmJz9fNdaWdZisUUBmRBGk2hkFybYUoYIDHTdRtfb67+u595u5YpKK1fIOnGFUKHY6SiR3IV0ii8POiuq3UlRGDXgdSZrRSvT9uGutrKsxmKLgqH3I2UMpACQEqK4hG3tnsv0Ebfdf13PSlArVlQatUJW78pWJ/WlCoWiihLJXUgn+fLaHdWeH4Dmq9d1iihVA17nslq0crtaWRZbFDzvMpAgCUmkTxyX0PUMmdQxQLTdf72RlaBmrqg0aoVsI9+n3X2pQqFYiRLJXUgnpSBqZ1R78QAUhFM4/mlsYzeWOYRpDCy8rx2iVA143cl2tbLMWxTGpz6LPz1KIseI4wFsazeZ1DFMY6Dt/utOWglqxCR3o9+nk1YIFQpFle4Okexg5ge9nsxtRNE0rn+OKJqmJ3s7+1o4mMxHtf3gKlIuLdk5P+hm0scaPujOD0Al53EMox/bGkZgEETTFCsPE0aTS96va5m5yFlrROkSH2gN1ICnaDXZ9HEODb+HG/f/v9jGbdjWMNn0zRh6gSgu4ngn2+a/Xh65NfQehNAx9B4yqRMLGwqlbE3Fs/lJrr7GJHet/mQz36ddfalCoVgdFUnuYjphebhWVFsTaRJZxvHHsJu023yF31cmaFoKTaSI4xKOd5pCrh+oRoFaLUo7yRKzXajl7VRsDCE0+vLfRj4dk8p+C88/SyBH2+6/7jR70lajupv5Pp20QqhQKKookdzldMLy8PLd5nFyjSQJyWXuYlcTskrUGoB0PY9p9BOEo+hajjCcIoqLGHqhLaK0ngFvoPCKBdEnRLZlUbJuZDVvZ3/hlYDZ7uZ1HaZ+mAN77iOMRpoywd5oGsZOsydtdZK72e+zHXKhK3Y25YqG54tVX0/Zkly2e8Y6JZIVDWFxVDuMSoxcnebA7hdi6I2/xWoNQEIIsqljxEmJOC4hiYljFxBti8KsNeBl0zczOfPggugTwsb3BnDcN9OTvallbewG1vJ2usFVZPxK4IZ2N7PraNYEezNpGDvNj7vVFbKtfJ9OWCFUKDZDuaLx0Y/3M1PUV31Pbz7mHW+c6hqhrESyYk02EhGaH3QtM8HQzzetU19tADLNAfKZuym7T+CHowThdUzZ19YoTK0BL44dro5/dInoi+IK5fgUV8cf4ID2oypiNMd6qfQq3knC4EtIeR9qi0X72ezmu060J21lhWyr36cTVggVio3i+YKZoo5tSVL2ShHs+RozRR3PF+SybWjgJlAiWbEqnVSYYzFrDUCG0Y9p7CKfex67B34AQ1+9el2rWDzgSZlw6drv1BZ92mHCaFzlT17Eut5Ocy9O5QJ+cBUjfahNrVTA1nKDd6ofd7MrZJ36fRSKVpCyEzJpWeOVBD9YPcrciSiR3AQ6qSzyZumkdEzLWW8Asq1B9g7+UEdGY+sSfR2YP7ld93Q93k5JQJy0prpktz/XzWSrm+861Y+72RWyTv0+CoWifpRIbjCdGn3dCN1QLa5RA1CrhM/8eUqVbxFEU9jWvprv07UMYTTaUfmT23lP1+PtFFjoWnO9qtvhuW42jdh8104/bjP6AuUvVii6GyWSG0gnR183QqelY1qNrQ5AmxU+Gx1MaxU9iaMiuexzlhQ9gc7Ln9yOe3rx9dW0DOnUEcrOE7W9neE1TP3wqpOORrBdnutm06jNd+3w4zZzEqT8xQpF96JEcoPohuhrvXRaOqa12OwAtFnhs9HBdPl5LHMfcVLECy4Tl30KuXsWhPK86MtvYoNSM6Jg7bina11fQ+9FCL2mtcY0+jGsb9vS+de6dtvpuW42nbj5rh7UJEihUKyGEskNoluir/XQaemY5mmUENys8NnoYLraeXLp55AkPkE0Rtl5gt6eFxHFDnFyAdM4sOENPc2KgrX6nl7t+vrBVRA6tjVMFE0vsdb051/B6PXN50le79otvgYAUTRLIgM0YaHr+ZY9193gh+7GzWob6QsUCkV9eL4G1M5u0W0okdwguin6uh6dGBFqpBDcjPjbjLBe7TymOUA+e89Cqrqy8yS63oupn2Df0PobDhcLpiAcZ3z6bwjnfM6NjIItv6ellMRxcUEkalqGpEH3dD3X1zQG2L/rXcRJZUEoJhLg/KbOWc+kR8qIOPHQEpey8yRhNIWUEUIYmEY/mdSNTS93Pn/vV7zThNE0Ao1M+hh7Bt5ILtNZObW7bbPaRvoCy+ysCLhC0WmkbElvPmamqK+axaI3H5Oya2W+6EyUSG4QnRp93QydFhFq9HLoZiY0mxHWa53HNAco6C+i4j7JnsEfIpu+jZGrAZn0kXWvxbwAiWIXz7+AJKSQu3fhvqvHClBPZHLxPS2TYE6kPSsSDT2LafQ35J6u5/q63hkQglzmlkVfZHMJ6eud9Az1fS9SBsyWv46UEYbegxAmUoYE4ShhNEnaPti053r+3ne9CySxQxSXSaRHxX2a2dJDHBr+WQZ7v6sp594s3bRZbUN9gSrsqFCsSS6b8I43TqmKe4qVdGL0dSt0SkSoGZ7QzUxoNiOs1ztPIl1Mo1rsxDL3I8TaEdHlkwVdC3G8k0gZUnIeIZ+9e8HfvJYdot6o/Pw9PV36MlE0TZy4CyIxSUK84HI10ho7a7a7Hlq9ElPvpIdeSZy4RPE0tnkYTRNz77ExsPDDC8RyF7Y53JB2LWb+3ne9C4TRNEniYuh5DFEgSQL8cISLI79FyjrYcRHlbtmstp2CGwpFJ5DLJl1TKKQeOm9q36XMR19NcwDHO0kUF5EyIoqLON7JjvTjrUc2fZyDe3+aw/t+jkN7/y2H9/0cB/f8m5YumW4kglsv8+LPD64i5dJln/kJTSZ9bMmEZvFgWotag+lmzrMayycLht6DJAYEprGbOHZwvNPAs+fRtcwKK8C80C5WvgXCxNB7QZgUK9/iythHqLinFt4rhMZA7yuJ4iJBNIau5RaiqHFSwjR2oet5Jmf/DrnJiO5CWzdxfbfCvCjX1xDlifRx/fPoWhpD7yOKJ0kSHykTksQniicx9D50kcIPRxrSrsV4wRUq3mmS2CFJXExjEE2zEEKg6zaWMYwfjnF98uNbvv6bQcoE179E2XkK17/UljZslUY+owqFYvuhIskNpFOir42k3RGhrUYYV7MVbNROspmVgg2dZx2BUWuyoAkLIQwgxNB7CMMporiIoReq126ZsFwcmZQyxvXPL/HXxl55RVRe1zPY5i40DOKkQhRXEBjY1m4yqWMIYTZk41rK2k86dYTZ8tewzf3ouo2h5wHRlJWYeiOICBDCopB7Hq53rmo3obxwDdL2jUTxTFM8yXFcJoymieIyhp5n2RwRTTPRhIXjnmn5huDtkje6kc9oo+mGzZoKxXZHieQG001+vG5gK8uh6w3kG5nQbNan3aiJU63Jgq7nMY1+gnAUQ+9DEpEkAei1hbsXXKFYeZggHKvprxXCoFj+5gpftRAWucxziJIiSDCMPkyjQFXARg2xQTjeGcJwEs+/QMV9Gl3LYRlDpOx9xInb8JWYeic9GfsIupZC09IUel5AFBdJkgBNszD0PFFcQkuasxyv6zkEGon0MERhxetShmiaDSQt3RC83VKmdWJwY7tMQhSKbkeJ5CbQ7ujrdmKlmGFBqAhhEoTXa0YY6x3INzKh2exg2oiJU63JghCCbOoYcVIijMcRGAihE8XFmsI9iorVKDIJpjGwIAyFsDGFRRhN4PoXiaIi2NXzBuE4rn+eivsMINDmszqkj2EaAw2xQZSdZ7h4/XcIw3EyqZsJo6m5tpzHj64zULif4aG3NlQc1DvpSdkHltx/hl6AuU3bzd5rkLL2k0kfo+I+TZIE6Lq98JqUkiguYRq9GHpvyzyz2zVvdCcFN7bbJESh6GaUSFZ0NIvFTLHyjbkd/iVi6YMMscwh9gy+cclgttGBfCMTms0OpludOK0W+TTNAXoydzFbegihmQThOLqWqinc46RMLF0MrVDT362JFFFSJE6qUcmKe4qx6b9BJiGJDDG0XiQBbnCFMC6Sz95NGE1sSSSWnWc4c/n9ON5ZdC2LEBOYRj89mTvQtAx+cAXTGGhKntp6Jz3tyvQihMaegTcyW3oIPxzBYhhNq0b+o7iErqXRtAzZzPGWeWa3Uz745XRCcGO7TkIUim5FiWRFx5NNH2egcD8XKr9FEI5VI5daCkMfQtPSTM5+nrR9eEHUNHsgb8dgulbkM4wmKPS8gKG+12KZQ2ukdOtBF2miuAiiGhUWwkYIkBLixEXXMuh6DzMzktMX/omyK4EXUXK+OSeedQQZbHuGOP4H+vLftmmRWHFPcen6f8X1zmHq/eh6ZsH6EScl8pm7yaSP4nrN89zWM+lp53J8LnMTh4Z/lgsjv0UQjs7lp7YxjV40LUMmdbilG4I3s0dAeWvrZztPQhSKZlCuaHi+QErY24RYgRLJio5HyoSK8xS2OUw+cw+ScKHiGbAiurKdCrssZqtiLQwnkCSE8TRhNIGm2XOiOD/nb7VI2wepVHr54G9ILly+F7h3LlPLq5EynstgICkUxnnb236Lg3vv3JRInI+YBeEEQqTR9SxCiEXWj0kq/hnymbsbVrBkNeqZ9KwmpgFc/1JTBeBg73eRsg5yfeJjON5ZIMHQe8lmjrfcM7vRPQLKW7sxtmvfpVA0g3JF46Mf72emqGNZCb94W6nh51AiWdHxzEdXUvb+mgPz8ujKds59ulm7x7x1QqBh6nmklCTSJYxniJMyKesGDCNPPncPSbSP8YkEy3KwUzPEsYuupQCBJMZ1bcrlGwiCPiruU0iZbFgYLvym1r6qeJchQlhANWJWzdYxSRCNdcxvtVxMt1IA5jI3ceTA/9v2iOxGsrx0mre2GyLa27nvUigajecLZoo6tiXpyUVNOYcSyYqGImWC518mjM/i+QaZ1IEtD0Qbja5st8Iuy9mo3WM+ahtFUxR67qXkPEIcO5iiDwnE8QyJdEjbtzHY+yqKs1r1HGkX05qcy83rLTq/ju8LdC2LF4xsaul3/jfNpI5gGv344SimGFxIc1bNulHGD67Sl39Jx/1W7RCAneCZrXfDI9BR3tpuiWhv975LoWgGKTshnW5OqWslkhUNY34gKrunKbmTXBgZIJc+tuWBaKPRlU4rq91uFvscDb2HfObuJSWmNS2NECZDfa8lmz5OcRZ0PYuu5ZDSB9JLDyir6cdMcwABm1r6ffY3dcmkjxElJcJoYiEtXRxXiJMKljnUcb/VTt9cVY/tx/UvdYy3ttMi2muh+i6ForNQIlnREBYPRJY5jKFlMQ27IQPRZqIrW/XvdsPSbL0sj8Sb5gAFo584LpLIAIFGEE1gmUMLnxFA2j6MHz9DkpSrQhodSUycuAiRI2XuQddmNrX0u/g3zaROkM/ejeNWhXsiSySJSyZ9lIN7frpjBMw8anPV+rafTvHWduOEphPzNisUOxUlkhVbZvlABCBEtViFoW99INpKIY/N+nebsTTbLuG9Wo5lw6gWqIjiIrqWWiF2bXs/WnIjnn8RmURIEQDaQhGTOPE2XbK31m+az92DH47hB1exzEEO7nkPucxNW/7+jaZTBCDUeU8lERRHIKgAoCE5YIdoE9Xc1wgBmSHI9LOirN8arGX/6BRvbbdOaDopb7NCsZNRIlmxZZYPRFI+6w1q1EC02ejKRn2cjV6anZ0VOK7A8c4yNfNFXP88ceKjazZp+wb27f12hncfqft4m2GzPkchBD2ZO5AyqgppkUbTbOIoTSI9TLNvS0u/q/2mffmXdHTErFMEYF2TuaACs1cgcpd81tSAOHj2D6WrEFYgPwza1oeFTvHWdtKEZqN0ggddodjpKJGs2DKtGoiaHV1p9NLs7KzgP/1ahmtjZRw3JJHPQ9e+HSF0pIyJkwoD/TP8yvvPsnvohoZ8h1psNhLvOACDaPJ5xOF5vGgGKSM8H0yjn72Dbyab3lq7uzFi1gkCcN3J3NA7ySb9UB7F833+6u9H+NbpWWptbUlbGq99yV6ee0sCkQeF/WDWfpbrpVO8tZ0yoVEoFM3D8zVMt/5VsI2gRLJiy7RyIGpmdKXRS7OOKxif1EBcIJ8fwzT6AX/hddfNMDnlcPX6P7Jr8FCjv84SNhKJz6QlgwMJE5MargswgGSAOK4gZYSpGRzYn2awz4GasmtjdFvErN0CcN3JnPsME9c/Rib1vYyMu/zep85y6okKwQQ1fy5hwJnzZV7x0t288eUHsKJz0LMHMgMbsl8spxO8tZ0woVEoFM0hZUt68zEzRR1Zbo6cVSJZsWWWD0SL6aaBqBkR8TiuYFpj9PRYaCJY8brrZXC9c/jB1U23u17qjdoWCpL3v8/BqTkzr3YZmbRDodCclDvdQDsF4JqTuSTETjI4wUn++fTT/PFnHMYfC4lPCUTMs6JXyoX/HyQW5TMmHx8r88gzl/iR1xxiV98EpELo2U0mq2/6t273SkG7JzSdwnbaiKxQzJPLJrzjjVNzFffippxDiWTFllk+EFnmXqSMieIiQXitIQNRKzr5ZkTEpYyqadZEbeEthEEig7mSz6nNNr1u6o3aFgpyR4vgemiXAFx1MicT8Evo0mDGc/nsly8web6f+IxABGDZJpomkECSxGiaTiQtznr34s2k4WvwxEX40kMWz7kxD2hgWAzusXn/+zY/KWr3SkEnRLTbSbfkiFYoNkMum5DLVvu0ZqBEsqIhLB6Iyu5pomSKMOpvyEDUqk6+GUuzQuhAQhTPos1tfFtMVUBb6FoOaE7FIEXzaIcAXH0yJ4GEWHqEoYHj2RDoGAJ0W+OGO3bzgu85TpIkXLs2wt69w8yULJ78b3mMioMuQ4Qh0bSIgd40CIET6ExMpnFc0dWTpnZHtNtFN+WIVig6ESWSFQ1jfiByvMtcunySg8Mntlxxr5WdfKOXZh2vWnXQ1kp4/gSalkbT0ljGAJpWLdARJw7p1I3Y1j7gYkO+R6PZShRfLfM2nnUnc/E4WnKQSrkPQYwUAiFg75E+Dt46RBInxOkSB28YIjdrIrQAnRBDBAhDYlmCnmxctWPoCW6ldju67bdtd0S71XRjjmiFotNQIlnRUITQSNkHMPWIlL01gdyOTr5RS7MV9xQjE58kjL+bnDGAprlI6RPHEX7iY5qDhJGOJnbRX3hZxw5SW4nit2IFYHZWMDZukkpr6NrKa5hJbz/byKqTubiMH17E0gtYyfOBAGjOEqRawu98Wp0jesmkKdZIyWTLx1Qo2o0SyYqOpV2FALa6NDsv7qNwGkMvEAYZNGESxtMksUcifTStAvJmMunDZFI6nWi12EoUvxUrALOzgv/8oSznLx4kl+tBq7HPcHAg2ZKftlOpOZnDpMc6zqD9fM5O9AHnqm+WEhBMjpSYvFoiiROKYx6TVonpkoWU1obOrZbwu4NW5oheMWlCJyMHGLDvBex1P78dKFc0PH/1bDApW5LLqolDt6FEsqJjaWchgK0szc6L+0J+mP6+ClPTWTx/ABhAypAk8ZHE9GSOsGdXmkzaaWzjG8BWovitWgGYT7GXshMGBhK0ZRMpx4GJSa3lftpW2RBWTOZEhlTJRcQ+PZkKpp6Q6DFxArGfcOprI5z55jWQECcxunYGV2bxnZdiIJGaRNcgZS1qa5t+W8XWaVVqzpqTpnCGknMaL7yOMF5KtdD99qVc0fjox/uZKeqrvqc3H/OON04podxlKJGs6Fi6tRDAvLjvLWi8+ye/gOeaS16XMsYLLrJ/d4ah/mMUCpK4w/rNrUTxW70CkEpFpFMzQIgQFoaenzuvmMvz3DpabUNYMZkTRShe5fBeyXe/dA+f8K4wPZWQXJD4frjokxKI8aRFIiWYoA9Bb4/JrTfOPWuaCWZ6yfm6tczzTqQVOaLXnDQZh3HC82jpbwJ3b/XrdDSeL5gp6tiWJGWv7Mw9X2OmqOP5gly2DQ1UbBolkhUdS7cWAlgs7vM9Ovkeb8nrUVwkihz2DVuk7c60AWwmij9fgrviBlwfTZO2d89l96iSSofke7yGrgDE8SySp5kpTQMxQhiYRj+Z1DFgcMvH3wgdYUNI5cGwEbNXeM1LNI4eyPE/P3Wei0+6xBPP3mtVA4ZECyViArSCyZ59aW67MY+h65SCDFgZHG+pEO7mMs87jVbkiF530qQPopkj5HI3UqF3i9+osTTDHpGyEzLpWn16gh+sHmVWdC5KJHcQ3bZbvNl0ayGAbhX3i9loFH++BPfEpEYUH6fsvB1NsxHi2S6mv6/Cu3/yC2QyYw1ZAXC8szheQDo9ja6l0TSLRIYE4ShRXEKTzwUGtnSOeukoG4JhQ/8NULrOicMav/RjN/Mnf3uRJ8+VqvbkRQQBjD/uM5gfYO9giqKjQ5gB/dnVj8GBZwf+bl3dqcVO6G+bnSN63UmTSIEIMU2/5uvtQtkjFPWiRHKHoHaL16ZTCwGsNcB2q7hfzEaFvuMKJiY10mlJOp0mXdEJwmtzpbjBdS2mprO4joFuNGaZd2rmiyTyeWgijzaX2UITFpoxSBhN4Afnkc0QyTKB0igEJcjuglSh82wIQoP8MJhZCuIq/+YHjz7b/Pn/ElWn6GypjON6YGUhvxf0gGpmjCqLM4Rshwkg7Kz+tpk5otedNEkPpEkYdtbmPWWPUNSLEskdQEcs03YwnVYIoJ4BtlPFfb1sVuhnMtCTg1TqEMXKJEkygq73ADlcD1z/LP0NWuZ1/fNo4r6qD3cZut6DE80Qx6sk+d0skQ+zlyGoALL6/8MKsVHqTBtCugBmCopXIZqz/UgIwxDTNEFAoVdQ2NsHuaG5jXqrR846dQK4kajwTuxvm5Ujev2c3RMk4TDlcm/Dz90IlD1CsR5KJLeZjlqm7WA6pRDARgbYThP3G2UrQt8yB8hn78bxThNGU4RRRJL0kcvcwr5dL2nQMq+PEAauZ1OpLPcWmriuh6FFNKSbkxK8GSiOEEcBf/fQdb76uMd3Pncfxw4WcYXDlDPErGlgaFWrwbwHG9psQzBs6LsBZDVncpIkXLl4kUN7Ds3llhag1S8IOm0CWHFPMT71WcrOt4iSCoaWJZe5naH+16xoi+pvG8vqObtL+NEFTD1P4t5Ddc1C2RYU3YcSyW2m1jKtlJI4LpLIAF3voeKcUrvFO4DNDLCdIu43y1aEvmUOYBr9RHERnZg4TLNv1y1k0+t+dF10PUc2A329M4yOZ5meWZrrt5pqT7D3AKtEijaATKB0DZwpZoouv//X53noay6Pf+sl/P8/leXgcJYDu1I4cS+hdDDMXuBZD3ZPzm2/DUEIWPCHJyRooBlQowBLPXTKBLDinuL8yG/gOM8g50SYT9WvXvae5obh/2eJUO44W8w2oOakSWr0WMcZsF/I+cgGRtrdzJbg+bVXYqp/V3QjSiS3meUbH8Jwkspc9E3KaGHQKTtPqk67zezUAXazQl9KSRQXkTJAiBS6nkWICo2IKKWs/ewe2sc73/kAxZlhegu9SyaZrn+WXOYWjh26eWs5kiMfZqqWiqfPz/I/PnWeK497lB7L4blZdDvkqhgnSmxuOZIlYJSEGYJoiKnpDOWKh26c7Aof+kZp9wRQyoSRsT+hXHkEIWwMvQchTKQMieIS5cojjIz/KUcP/PLCdVfZOZrDiklTrJFyIkhiYLTdzWs6KVvSm4+ZKeqr2jR68zGpDs1mpFgdJZLbzOKNDzIJKDoPE8fOQocfxxWieIbx6c+QSR3Zdl65bkINsPUThJMLVgspIxwnR8UZxvEi4IYtH39+mdcN/gBde4y+3qMYenbBG9tvDszZOrZYxKA4AmEFL4j4yKcvcvWSS/CEAK+6gKz7IUwGzGRDro9nufXYYZzoMjPONI4bE0ezXeND7zZc/xIzpYdA6JjGwMIkSQgbU1gE0SgzpS/j+pfIpA4D2ys7R6exZNLkl8G9hGxSWfROI5dNeMcbp1TFvW2IEsltZn7jQ7HyLaJ4ljh2Fjp8KSGRPin7EEkSKK9cm1ED7Po4DoThNCXnSZLERdd70YSB72uE8TQjE/+bPbvf0BDBmE0fZ9/QO3HKf04YTRJGo433xqZ6IKxgmwm33Jjj2oRDUABckBGgg5YF0xDs6rextDRmqh8pDMLAYP+en+Lgnt3qmW0CrneOMJ7GMnbVXNkxtAJhNIHrnVsQyRvJzrF8M6BpDLfy6ylaQCPtEblsojJhbEOUSG4z8xGxsncK13kUU+8DJEkSEMUldD1DNn0cIcxtuZTfTWwm/dVOyMUKVd/v4EDC+KRGZXKUMDYx9KXFPHYNVjD06w2d7GXSx+lJvZXhYQspK42/xplB0ExE8Spv/+7D7BtK83HjMlcfBi6CPgB9e02ed0sf/XkLdAuRKmBIA9MQpG0DIVT0qCkIEPWUO170lnqzczjemRUZbFL2EcL4dhqxEgI7p2/oRJQ9QlEvSiR3ANn0cXb1fTcV50mkjIniaQQGtrWbTOoYpjGAlJFaym8zG01/tZNysRYKkve/z2FyZoQr1z+MbvQuZHmYJ5UOyWR6Gz7ZE0IjZR+Yy9SwcdYVK6kCmGm0mSu88kUaxw7m+I0/GeNcINi/J8W9t+ewLB3MbDXXsNiixUNRFxn7CIbRSxRPo2l7l1x2KSGMZzCMXjL2kSWfWy87B1Azg03ZfQLPewbH3UdP9qYttX0n9Q2diLJHKOpFieQOIZe5lVzmOWjCRAgLTbMw9DzzYZBuXcrfbtGSetNf7cRcrIWCRDenccLrZFI5hCiteI+UneXbrlus6Bb0H4byGEcOaPw/b+1ldKTA4eEEyxZgV8tBbxca+dw2qw9I2Qfo7XkREzN/RxCOYxr5hY17YVREIOnteREp+8CKz66WnQPg0rXfqZnBJmMfx6k8wsTsg+Qyxzf9HXZi39CJKHuEoh6USO4QUtZ+sqljlJzHl3TO0F2VrBbjuKeYmn1w20VL1kt/tZNzsXaTb3vDYkVo0LMHrCyZyTHyWRM31BFxBrylS7aO0+Iv00AaGeVsZsRUCI3hobcShKNU3GeI4hLzpQQ1TSebvpXhobeu+ozVys7h+pfWzGCjaUNbWgnZyX2DQtGNKJHcITSrklW7IrlhfIGr4w8SRVPbMlqyVvqrnZoqDrqnbPGWxIrdQ2ZvmsG9aSZmUrjTtc8xOLBaNa/OpZFRzlZETLPp4xwe/n8Yn/4sJedbJHEFTc/Sk7mDoU0I8fUy2AjSSDm16ZWQndw3KBTdiBLJHUSjK1m1y/cmZYIb/COmNkV2B0ZLdnKquE4tW7ycrYqVQr/B+38hwnFXL3udScut5Wheg9lZgeOu7qfMpCX5fLyhCXIjo5ytjJg2srDJeishEhexhZWQndw3KBTdiBLJHcZmOvxa0WLHO9M235sfXCWML5IzD64QIAC63sNs6RvM5r5GIff8tgumRtNNloNm0Glli2vRCLFSKDRPBK/F7KzgP/1ahonJ1Z+bQmGSd73zAQzzyRUT5JR9tOZnGhnlbHXEtFGFTdZaCUmShCi+hGHcClIiZbLhvmun9w0KRbehRHIHspEOv1a0OG0fIYyn2uZ7i5MyEh99mQB5tprgBFE8y6Vrv0sh99yu9ygvp1ssB82kbWWLkxjKo+DNrvIGAZl+dCO7IbGyZCKqZUn5BsIvrn6OdB/khqo+5gbjuIKJSY10WpKpofFni7NcunqBiamz7N/Xjy1SxN4YpZmH8LyLDO/+ccBc8blGRjm7NWK62kqIF1ylVPkWUezgeikujPz6plblVN+wsyhXNJVBo8tRIrmLWc3zN1v+Gm5wgUL2uW3xvelaDoFdFRpaHqgK5PlqgpqwMbReLHNw23iUF9MtloNm0/KyxaEHs5chdKhu4FqF0nVSVpaMfSMl98l1xcqSiWjsoEcxGX0vg6kXEXk34rjLf0cJTIMVkNm9h0L/SkHaCDIZ6Mkt/Z5SSorlMyTSJ20fwWAKvFmMREfX9uG4l5gc/xRSvmHF8RoZ5ezmiOnylRAnOo3nXwRhYhm30pO5iUS6m+q7VN+wcyhXND768X5mirXzMEM1F/M73jilhHIHo0Ryl7KW58+29lNxn8ILrsylP1oqlJsdxbGtfZj6Ifzw6sIAWfFOz5XbHiCKJ7Gt3djWMJZkW3qUu8FysH2QCHcayteJQp+/+efrfO3JKeIa445lCL7zebu47+5BBrkFT7u8blGJhYmoNoCdWETS4fTI4zx48TJ/8qe/yOzs0qIpmoA9Ayn2DqYYGox5/897FHatFIrNIIqLhNEMujaAiFxwZ4jiiGculChVIm6+sReHpxjKXoLkMGjWwmcbGeXs9ojp/EqI61/iyujvA4Js+g5mZ2cRQsfQNr8qp/qGnYHnC2aKOrYlSdm1q/rNFHU8X6hUdB2MEsldylqeP12z0fUegnCcKC5i6IUlrzc7iiOERtq6D2E8iOOdRNd7CKMJNGETxZPoeoZM6hggEIJtu6O7bZaDnUQSM2h6iOJVJmdc/udfneexx2bxR6lVbRahw5mzZZ46V+Rt332I/eZ3MhE/hhNdWyFWMqmjz+bMFXsRoYfnJzz8jMvI9SxEAU7JozzuoIvo2XNocNEvUvFyRHEvzvURCukC5HY1xX6xGCkDpAwRSQJhhVLF5+tPTzM5FpAEMDkLt93ksD9bRJs+B4UD1QIoNDbKuR0ipkJoCKERx0UyqWNoy9q6lVU51TfsHFL2alluklWr/Sk6ByWSu5S1PH+6nscyh3D988Sxj7HoOWxVFMfUD7N76J1MzT7IbPmbRPEshta7pIrgQns71J/YCFpuOdhJhB7azCV6jIjHTs3yB58+x9VvBURPggipWflOSknpNHxhZoIL1xx+8gdu5NDe1+DpFeJsD7rZuyBWXP8SjnsSO84icJmY8fnGU9MUxyLiUYEX5bB0n5RfJnGXPGTIGRjzy0wXBedHSuwd8iCoQO+BamGSJiGkQCQJMgm4OuZwZWKcymiCnAQk+IHHKdvn3DOT/ND9FdLxOcjthuwQCNHQKOd2iJg201ut+obGoHy/imaiRHKXspbnrxrh2EcQXscPr6DrqbZEcTLp4+Qyx5ktf41L134XyxzEtoZZbv/oZH+iokOREopXIXIol0M++pkLjFwIiJ4C4YFpGej6yvs7imLCSoz/GJzLOzzwmYv88o/dTFrmIe6D3LMTxzguE/sz2Npuwijh4WdmKM5GxGNABEloo+sSy4LIf/ZcSZyQhJJ4HAJi/uLBy7zgtsPoQQVK16G3ccJISkkUF5EyQAgTI5SYWpYgcnn6fBE9TpBTQFx9f0+2yOgzw5yZkOwujPGal+wFZwLMNNjVfqSRUc5uj5gu7md1bWX/1Mq+a7tVL20EyveraDZKJHcp63n+ksSlv3A/ptGP651tWxRHCI1C7vkUcs+l5DyOJZcG+LrBn7hZ1KDWZJIQgOlyhB8CnoYhQDM1ho/1c98PPWfJ26WU/J8HHmXi0iwykUSeZKYUEieg6RLicMn7dT2HjkksPYIoRRhJZCQQgNAE+QFBtpBh4LZ92JrN1VNTzI5VSKpF38AG3YSbDufQNQG6viBEl7OZe2W2OEuxfIYwmkHKCCEMTDKE/hCGPsPuXdNUKh7OlIVpBfQMFXHLWc5fvomeAYsTh+baoptgpJYcu5FRzo0cq9OemcX9bNpe2me2su9qV877Tkf5fhXNRonkLqUez9/w0Fs7IoqzHfyJG0UNam1AzP2XgF2HChy8dWjFW/IDaSYuz6duWzvHccraT8Y8SMl/GimfFUECEEjyexwMsxdbLzDy5AjT18skSQIaiAHIDgj2DeV43bcPg65VrRbWyojjRu+VapGSSS5dvUAifXRtECF0pIyJkwoaFfYNZnneiWNcnXmU6/lJ3AmD0YvDXJm5mYNHbuQnXn8juwcykO6F/DBo7R8KOvGZWdJ3+adIZAYpe4gTt2V9VysqF3Y7yveraBbt7xkVm6Zez1+zfW/Loz+mMbzptm4H1KC2PRBCYzD7UrxwhLK8hGlqCKFjZgJ6+ov43s24M/2cf/IS0nORSLBA3wsDu0xuuWGAIEgj7AIM7K5GbJexmXsln4951zsfYGLqLGn7yIpVJNc/y2DvDdw68CaO73kRj5+9ziefmGSi0sP9L97NG+7fj9A0ZM9eRHawpne71XTyMzPfd41NfRan8iiu76JrqZb0Xa2sXKhoDp6vUWsXseer36sbUCK5y2m3569W9CdlHyGMbwdu6Ki2tgI1qHUXEogTiSnn7BbFkSWvZ83D7M99H+f8L2HZT9I3EBDFBmNn9nHpmXs4/6gDkYYuTMiAtVewf0+aW27sIQitqte39wDoK6Ncm71XvOAKhvkk+/f1Y+grN4xFcZooehq/5zWk7Vt4/om9nNjnM1sOObgngxQGxQB64gBK16oZN9J9YNiNvbh10g3PTDZ9nAN7bsSvfIXhvX2YRk9L+q5WVy5UNI6ULenNx8wU9VWj2b35mJTd+qqdivpRInkb0K5d0qtFf8ruE3jeMzjuPnqyN3VEW1tFqwe1TvNwdjrpHhuhQexKeAzGDI/f/vPT/Pj330BfHojcFZ8pFXfxyf91J5fPD8K5gGDcxpsZIDvUjxGX8ckQmwZGH6RTJnv688yWNNBtBvdaZDLRyoaw+XsliooE4RRCpEAm6Hp+yed1LcNkschVEZG1DsJsNR2cqcG1serEIJ1KEObEsyd0pqq2i3TvVi7vpugWISiEhqHvJZu+AV1rzTPWrZULFZDLJrzjjVMq80aXo0SyYlOsFf3J2MdxKo8wMfsguczxjhJtzRaVrRzUOtHD2em8+AduZnq0zNVTk8STEudL8JWpGa6MPcnLnrub5donCBO+8LVRRh8LiU/2QQCGoXPD7bu55SUHcP7kGxRnYpJIQgnsw9C/O8PbXnuIPQMZMn05Cj17qNXVbuZeqbinGJ36FI5/Gtc/j6alMI1+sqljmGY1reLMbMKH/+CHCL0jGDGQ7GO2HDBbjhZc2Pmcxxte8xjZTEjK0rj3tn565WUIK9Czt+n5nBejhODqdHPlQkVVKKsNg92NEsmKTbFe9EfThjoi+rOYVojKVg1qnezhbDehtCl5KSamaixxpnt57c/ex9f/6jEe++J5Qi8iehQuTQb8xZXLK+y5Mgb/JMhrAhGDnTJ5wfce50WvvxnD1Dn0nCE+9+GHOf/YKFE5hm/ChXKZ3wum+JHXHOLFQwMwWYHC/oWiHfNs9F4pO89w6fp/JQgnMLTeuddTBOEocVIin7kbw+hntjhNaXYPg5mQVDrkzOUy565WCP2qRI5js/qfaIx0qoxmwoMPjfIT338DN9+QQOhWi4y0yH6hhODqdHvlwlahfL+KZqFEsmJTrBf9EaSRcqpjoj+tEpWtGNS6wcPZLkJpcyp8MZef3sVTf9Jf8z29+Zi3v/keDtw0yN898AhO0Se5KPFHarxZggxAE4JcX4rX/pvnceSuvQsvF4ayvOF9L+LLf/0MX/n0SXw3JH4Krk9G/F7xHM9cLPGWVx4kFZ+D3B5YtFFuI/dKqfIUpy/9u2r0WGSqleASB0mIqfcTxyXK7hOYxhCm3ItNL5rw+NaZSUave0TXQATPfqcYE3+62hQJnN/v8YGZk7zuO/fxPS/dix6dgZ45+0WTN/YpIbg6OzEz0EZQvl9Fs1EiWbEp1ov+SFxEh0R/WikqWzGodYuHsx3E0sCXaXr1iEJPvOL1+bypfqBx67cdZPeNvfzt//gmI6cnScLaA6luaRy+fRev/LF7KAzVqHBp6rz0B29l/4lBPvM7X6M87ZJckxT/WfJ/xRiz5ZCfffMxRGW0Gpru2QPUf69Mzn6ec1c+gOufR2AitQRNsxAIZOITiyKSBD8cJa8fJ2N/ByQZvvbkNSplj/gyELJwrwgpEBK0UEMTGkkiSc5Lpv2Ev+QKjhvxr151EEojICSka082GkW7hWCn+/p3UmagjaJ8v4pmo0SyYlOsX8xknEz6hZuK/jR60Gq1qGz2oKY8nOtj6nFdeVMH9+d50/tfyre+eJ7yjF/zWL27Mtx23yF0c+18qzfcsZu3f+g7+fNf+hJTIyWkLwlmJeeuuJSdiJ6sVi1NvYj17hUpEy6O/BZBNIombDQtgyAhSTyEMNC0NIbRRzZ1giC8zu7cd1F2h0kSSSwlMmFJOmghxEK9S02vRsillNW3RJBIiePPTy4kJK0RF+0Sgt3i698JmYE2i/L9KpqJEsmKTbFW9McLRtBEgcHCKzfciTdj0GqHqGzmoLZTPZxLJk9alpRsjICzUgbPffWxhhwrP5Bh16ECM9fLyxySq0e6VrtXAM5e+U8E4TiWvodQjiJIquJY6CSJi5QhcVxBkmAa/Ri9x2HWwrZ0nndTH09diJhMQuLrICOJFJKkmtGZSCREIkaaIIag5x7B/c/fxZtfeQCEAdndkBloyHWph1YLwW7z9W/3zEAKRSeiRLJi06wW/cllbsNIbiOzwQGmWYNWu0Rlswa1nejhrDl5insZsJ8PrKys11kk+PEoIgzRxSApecMK4VfrXnH9SzjuaYQw0fUcsSwSxxU09OrmWGGRJD4xLn5wlb78S0ilD0OvDqZBTy7kvruHeOz0LBczDpFTDSnLCLQIzBvBtKvF9vr3Gbz9uw/zwtv6EWam5kbDVtAqIah8/QqFoh6USFZsiVrRH9MY5oJ7cUPHaeagtd1E5ZY9nJEPcVD7tUZi2KBbWz5M7clThZJ7Ei8cQchXNqCxzaFvYIybbj3FiBeihSG6niWTfKOulZE4LiNJ0EQKiDCNfmQSkEgXDQuJRpL4gETXMgwUXoEQGhJJJGJmA4hkzPED/eQzOaaKPhLwA5MwNHj5dw3Rm8+RsjS+/Z4h9g5mIF2A/L6OKFPdTJSvX6FQ1EPX9YR/9md/xgMPPMD4+Dg33XQT73//+7n99ttrvvev/uqv+Pmf//klf7Msi8cff7wVTd0xLI/+xJvwMTZz0Gr3xqBmsCkPp5RQmQBnrPr/m43Qqhkd0n2bzpCw5uTJPIwTnCWSXwWe08CGN4b+/WPc+fyv0NvvYoijpIw0sZbUvTJSnXD2EUdFwngG0xjEsvYQRlNEcZkkrma3ENJEyoTJmQfxgktMFs9i2ncxPp1lAg2DFLY2wJ7+QaBqUR7sC3j79wzT2zNX6EQY1Q2FmYGOKFPdbJSvX6FQ1ENXieS//du/5QMf+AC//Mu/zB133MEf//Ef8853vpMHH3yQgYHa3rlcLseDDz648O/lAkzRGTR70KpHVHb6LvflbMjDGYdQvApekVLFZ3K2+ZHkXf02meTKXIGK4epOsQ2y7uRJH8LlCtnsfuBZu0wY6zjuyme9EXlTyxVtzd30fmSCSDjygqdJpSsUZ/eiz6VtM7Q0emp/XSsjKWs/2dQxgnAcTfqE0QSG3oOh9RKGJSQJhtbHQO+rMIws06UvMzr1KSxzL//mJ6cJ/AKxdAmC6xikGc69hox5kERKElkkP5irCmKhQXYAzNrP3nZkp/r6FTuD9foolfGjfrpKJP/hH/4hP/iDP8jrX/96AH75l3+Zf/iHf+BTn/oUP/ZjP1bzM0IIhoY63bO4valHfOp6Dk2zCcLrCGGhaRaGnmd+w1MjBq21RGUjNgy2Q2TX5eEMyjB7BRm6/NMjE/z5/7mCFyRLsh40vmGQS+m8/bsPcc/NEkKv6nM10xs6zLqTJ5FCEmCYPpBDFxG2cAnjHmZLjc+bWq5ofPTj/cwUVxf845du58bBp+nfP065WMDObG5lZPEKCB4ksU0YFwnCUSQeljFAIXcvKXsPIJFJRBQXMY1d9BYMhHAAkHIXjncSI/tV9ux5PomE8+c9ZO9BVpQY7ABmZ0XNCc48mbSkUNjc7zf/jEZxCdMYxPUvkU3f1DQLVrsm3t024Vc0jnr6qN58zDveOKWEch10jUgOgoAnn3ySH//xH1/4m6ZpvOhFL+KRRx5Z9XOO4/Cyl72MJEm45ZZb+Nmf/VmOHdvYTvZEJpuyEOxUkrlrlSQJjnuKiZnP4XhnSKSPJuyq+Ox91ZKNfWFYxg/GcP2zaCKDphmYRj+Z1DEMvR8vGCGXuQ3TGN7yb2GZ+8Gca6sEx3mGq+MPEEZT2OYwllm1YhSdx3GDq+wbeue6mxDr/Z6rsfiaNQwpEc4EojKG4wb86Wcv8qWvTlB+UiLLa+VbaMCpgalCxH+ZOc2rvm0Pb7h/P2Z0Fpnbg9yA/UKILELYRHFlWcRPIiTE0kNgEYXV6nCm8LnJ/BdO3HQj9/3QrTWPmbIlmVRCsjKN8ro4jmB6Vse2ElJ27QpfTpBC65EYVkgY5rFZOh+RUqKJNHFyjTAqYZmr/+Yp+yjDg++Yu7dOI4JrRPEsKfMgPZm7sMxBpJRE8SxhPIWhDxJGk0TRLIZRWDiOZe6l7JzC8S5jmfuABt9rDWJ2VvCfP5RlfHJ1QTc0kPDvf668YaG8/BmViU8QjRElZbKp489asMJrmEY//flXkEhALn02671uW+0T1kPKBD+4SpyU0bXc3GqL1vTz1te4BG3JzyNZ/BTIRJLEnXf/dQpbGQ/q6aOmZ3Ucp9oPbheSBmU7Wk7XiOTp6WniOF5hqxgYGODcuXM1P3PDDTfwq7/6q5w4cYJSqcRHP/pR3vSmN/HZz36WPXv21H3uy5dWlqtVrM+Zc/9I2fsEiZxF03Yh6EfiUS5/lYnJZ8ilfhBTP0wYX6DsfYIo8UiSFLEMEELg+1eoVK6h64MY2jBGctuGNwSuh5QJJe/PCePL6NphAi8CinOvDeEkF3DKf0FP6i2rRmLm27/e96yHixcb9f0kuyyXrBYzVQz4L39+ipNPVvC+DpSqArnZruRkHGbGJJ+evcbpS2V+4vU3MhhfwZ2+Rijrs15ImaAFBcrOM9ja4WcLYgA6EUEyjsFhSuUCMomQEnTpIv1RSrO1Nw2WgPFNfqfpok25lIZsgCZXqmzf14nCEN8xiQIDMx0AFiCREqIwpORNk8gySRIycnUaQz+/zllNpHwtejKKzkkEn4H4OJWKToVpAJJkGj9yEfQgcZkpTqBrzw4aUsZEyRSXLp/E1Ks+5Mbda41jbNzk/MWDpOyEdGrl9XU9nfMXNZ45eZldQ2Hdx13tGY3iGXw5hufGCGEhsDD1wxjWtzF63QRW/jb1XLdG9gmrHd8N/pEwvojER2Bj6ocw9aN44b807bz1ktIidpkhxpxSllLO5c+XxDGMjY2SPl//77dTuXjxwoY/U08fVa5YXLp8idJs7dzwm8FxDfxw9X7dNmMy6ahh51uOpguOHdzV8ON2jUjeDHfddRd33XXXkn+/+tWv5mMf+xg/8zM/U/dxDhw8gGls60vVUJIk4cKF89iZx4i0iIx917LlzH04/ilSmcfZv+ulXBn9zNz7XkIUT+F4ZwijSaS0iBOHVCrNkf0/QzZ9ouFt9fzLXBiZJGccq+lNjGKDMJpgeNgiZR9Y8bqUCZevf2bd73lg931rLncmScLFixc5dOgQWiOWwP0SWvEqJDEPPT7F5TGf6JJA80A3NfL9GTSjecuvcRRTnHSIZhPcf4FHp4r8h8mneOf3HOZ5t/YD9c/6bXEvV8vXCZPzWNogukgRSw8/niDws/zt54eZulgtB40Hlm2we/8QN9xwY8O/V8+UTq6nh0JPVLNYieUKDHMaZ6rA1JVd7HruVcIoCwiEANMw6c314vhj5DJ3cWD3CzewDH4Ezz/AhZGHMY3Ukvs1ijVkKU116pOmNze4JJIcxUXCqJ+DwyewzH2NvdcaSCqtkcv1MDCQ0JNbeX1LZcHkpMbBgwfZu6e+e2jdZ9Q7Sco+xK7+78fQ8wsR2eXU+4w2qk9YDcc9xdXxBzG1KXLmwUX56a/gh1/FtAv0ZO5p+Hk3RFBGm70CSVUICyGqaQs1ga7r7Nq1mxtuWNmfKqpU77ULHDp0eMPPaD19FJrBwQMHGezfxHJaDcoVjT/85AAzxdV1Um8+4u1vmGyaxSORMeA1/Lhdo/z6+vrQdZ3Jycklf5+cnGRwcLCuY5imyc0338ylS5c2dG5NaOgdNph0OnEySuCfJWXtW/GQCyFIWcN43hkq7sN4i95naYOYxgBxXCSRAYkMkEmIaWSb8htIWUFKH0PP1tzUaehZwmgUKSs1z+/6V5a0f7XvGUYjdWXl0LQG3WuCaklhBEEEidTQ5vZoWbbBy991J8eeO7z186xCFMT80yee4uufPU3ghUSPC65NhvxO8Qwvfd4gu/pTGziajma+CCv3MJp1DSFCpDTxnd38w78c4uyXssSngBBMU+OGO3bz3FcdRdMbf79oulbd6yZEzdWlhXtICs5+9Wbyt87QNzhKInNImSFOyvj+GLY5wK6+V2PoG+uCM6kD5NLHKDmPY+jPZvswjQKm3o8bnCVtH8UwCguvSSkJwmv0ZG8nkzpQtRDQwHutgeha9T7VhECrcX3n/65rGvX+vOs+o/Y+omgcyyw05BltdJ+wGCkTpmYfJIqmyC7K9qJpeZAJZedRNGGiaYLFhqqtnnfDCA3E4tWq+fbIuZdFU57P7YamaRu+TvX0UUJU36fpjVlPDCKd2ZJByparWjxmSwZBpG9m/3Z9JM1ZG+0akWxZFrfeeisPPfQQ999/P1CdbT300EO85S1vqesYcRxz6tQp7rvvvmY2VQFIHBLpo6+TrSIIJ1ZszBJCLETBpIxw/XNNS8W01V3u3ZpKqtkDlGHpvOwtt7H/xACf/b1vUJn1SK5IZoqSv5sYR99UIoXb6MkfxLQCwsCiOF3Af0pDjoJIBHba4MU/cDMv+J4T6E2MktfL1JVdPPq1F3LXC08RyRJuNI2mZ+jpuXvTpZbXSmcoNANDzyOETpyUVk9z2CTvXqfS6me0medbK9uLJEQTFlFUJoqLGHphyeud2hcptg8pO6kZvYYEP2iWOm4uXSOSAd7+9rfzvve9j+c85zncfvvt/PEf/zGu6/L93//9APzcz/0cu3fv5r3vfS8Av/u7v8udd97JoUOHKBaLPPDAA4yMjPCGN7yhnV9jRyDIoAl7XfFpmYNtTcW01UIjKpXU2hx73jBv++B38rn/+U0uPDFGNBsTfhXCTWlYDY++Z/8pQQbVSVV+IM33/swLOPScxnvStsL05C6eeXIfP/Rtu0ilQ3RrkNTuF21pubtWOkOBRS5zKynrFXj+ZYJwnIA6cmfvAFr9jDbzfGsJcE1YaJpNIj2SJIBlmqTb+yKV1kzRDrpKJL/61a9mamqK3/md32F8fJybb76Zj3zkIwt2i2vXri1Z3ioWi7z//e9nfHycQqHArbfeysc+9jGOHj3arq+wY9C13dipo1TcJ9YUn/nsc5ktfaVt1fC2WmhkO1Xza9Yg1Ls7yxt+4cX8y18+zdf+9ynCIIbGWOHQLY09x3t43XteQn6wdXl+q/mWay8rrkTD1neTM00wc9Wl6C2yOJ1h2XmS2fLXCMIxPP8ymmZjWbso5J4/J5x3dvqvVj+jzTzfWgJc1/MYeg9+UEYIc8lr3dYXLUelNds4G+ujFKvRVSIZ4C1vecuq9oo//dM/XfLvX/iFX+AXfuEXWtEsxTKE0BjsfRVBdG1N8alpRtur4W2qet3i77kNqvk1exAyTJ37fug5HHrOLi4+Mdawgn99u7Nk9kfk+jbicd48KVvSm4+ZKeqrLh9mLA+d5u3inkcIjSTxmCr+/ULJ7oVNXP4l4qRCJnWk4++9WjgO1EpSWP37xmj1M9rM860lwAE0LYNlDs3lm9e6si+qhecLZoo6trW653WmqOP5gly2DQ3sIOrpo7aSK36n0XUiWdE9ZOoUn1sRqY1iQ9Xrany23e3fKq0ahA7ftovDtzXOEpHECefP104B2Qxy2YR3vHFqzYj7//39b3FmDLwkh+ZLKo7F9XGbcsUAy4RQ21JBjHnWLNmdOlFXVb9OI5OWDA4kTExquG7t9wwOrOZ7XJ1WP6PNOt96AjyTOkx/4X4qzlNd2xetxXb0vDaaevooZU2pHyWSFZui3opO9YrPrYjURlWXqqt63Spk08dJ2zdSrHyDIJzAMgfJZ5+LpnXXI6YGofXJZZN1JwrPxC/G99KIM3D+us4vlXsxDQ00A+wsgwMJ73+fsyWhvG7J7jqq+nUahYLk/e9zmlJxbyt9zEaRMkHTUvT3vpxC/EJ0LYdh5BtyvnoE+EDhflVxbwdTTx/VDLajxaO7RvAuYjuXBd1oCed6xedmROp6bWnV71CrHbOlr2yorLViexDGBoHMoIsQwwyxUxr9hQyWqYEucaRkYlLDccWWRHK3ZlZZj0Jh61H21djKRLhe1uqTGtX3rCf4W/E912K2KHDGLGQsmJpJ47hZvDBBJpIo0XF8NeHeTmxni4cSyU1goyKym6i4p7gy9pEFD6Q9t9RXch7HC0fYv+tdpOzWbIxcry0Di5Ydm/k7rNmO4CpDfa/FMoe23WRJsTa6CDGMAMvUyWVjbFOCrkPCqlaCtVg+4dO1bNszq2znYMBmqKd/bFTf024hvBqzs4L/9Bt9TFxPI2XCyNh+zo44RNNAINEiQfjlHm5+YaSW/LcJ29nioURyg2llJ9lq6vVA7tv1U21vS7HyDS5WfgvLHCZl72/a77BWOxJjkNnyQxQrD5OyDmPo6W0zWVK0lloT77R9BMPoww+utiWzynYOBmyG7egR3wyOK5iY1EmnYtJ2SNn1sS0XXZdIIZHYlBwLz493/Ca7bqDerEftsng0GyWSG0grO8l2RHDq9UD6wdWmtmP9tkASO/jhGD2ZexaibM34HVZrRxhNUnIeIU58NJFgm7sQmrktJkuK1rLaxLvsPgFCRwi95ZlVtnMwYLNsR4/4VsikE3LpmHQqwjRDmBPJyRbux+3oee1kVOo9JZIbSqs6yXZFcOr2QCZloDkpueYnB6XKtwjCKSxz34r3RHGRKC6hCRtJuOS1Rg9Wta+JxHFPE8cOhlYgSmaI4llSxmEyHR5RUoNQZ1HPxNuyhjGNflzvbEuyGaiIaW2a7RHfydaW7ex57WRU6j0lkhtKKzbStDOCU3clKS0HTcgTu3hyEERTOP5p4qRILv0cTHNg4X1JEhBLH11LoQlr5fdo4IamWtckiov44TXixCWIJ5BEFCuP4YejZFPHOjKipAahzqSeiXcUTbNv1zsRQmuJgFIR09o0s9Je91tb5Nx/qv/jlQOmr5cR7tJxIpU1yfauDLBsZ89rN7CTsx4pkdxAml3+tJERnM1EJeqtJGVb+4CLm/qOq7FicmDtI46KeMFlksQnn71nQSgLYYIMMfQhdD2/4liN3NBU65oE4RhBOAFoICSmVsDQewjCUeKkRE/mDhLpd1TWATUINZ5YmogIglCjXNEJTA10DWcD84x6J95J4pDL3NKglq/dP2zXrBpbpVmV9rrS2rLou9umQNckvkiQEuIoYeJqiY//538mrVWWfkwTvPj7b+J5rz2Gpi8dj7ar51XR2SiR3ECaXf60URGczUYl2lVdbrXJQS77HOKyTxCNUXafoKC/iES6BOF1LHMITUvXOFZjNzStvCZ7cf3LSBkhhIkubExzoBrV1mzCaJKK+zQp61BTsw5sBjUINQZTj7CEg0+aJDQwPJ2pWWtRnmRRd0GMZk+8a7Fe/9DqNjXCZtAKq0Iz+seutbZoOhhpEBF7h9IcnA04F1bwXYksS+I4wXNDEMHSzyWSv/+zx7lycpJX/OjdLaukqVCshhLJDaTZIrIREZyy8wwXr/8OYTiObe0nbe8jkW7dUYl6EtnHSWOjjatNDkxjgELuHsqVJ/DDUSruk5hGHz3Z29kz+EYmZz/fEjG/+JoUnccIwlE0rdq5m+Ye9LnfSwiBrvXgBSPkc89rWtYBRXuxjZCb9H8htAy0o5LdByz+/dtPkMsYYGWh73DdBTGaPfFeTj1Ry0zqaMva1AibQc3MIKkj5LN3Nzw1Y6Mr7XWztcWJMiSaQeLMcHivTToVccrymLpmIDzQdkk0c+kzEF+FsBLzzFeucPXUJN/3b1/IwVuH2vQNFAolkhtOM8ufbjWCU3ae4czl9+N4Z9G1LEE4gWn0k00d29CGslZWroK1JwemMUBv/kWUnSfZM/hDC4NzNYfo4ZaWoc2kjjI1+w9cjiuYxgCOd4YkcUiEjhAmUoZE8SyaMCjknt9ZkR9FQzGFj655aLYkm7HZM+TTk03AsmCg/klkK1dv6o1aHtzzb1rSpkbYDGodww+uMjb114xOfgLbOohtDjXU39vI/rEbrS2LS4sXSx7F8gi6qCBlxPAeQSYd4gc6wzeDZS3dM1KcCil/Q5KMSYqTLh//z//Ei3/gZl7wPSfQjZ3TX5YrGtNFm54pfYXtBJpvfZtP+zY1U92UZ5lLJ2iGAZa5M/anKJHcBJolIrcSVaq4p7h0/b/ieucw9X40LUOSVPCCy4TRJIXcCzYUlWhlIvv1JwfuQgR5cZtaLeaF0Mikj2KbuzCMfkyjgOOeJoymkJQRGFhmP6bRTy5z64aOvZN3tncS9eQMbTTNnHgvZiNRy2a3qRE2g1rHCKNJKt5JkiQGIZEyRNf7Gu7vbVT/2A67zQqSCErXwK9PiBeA979TZ6J4jZHK3xCERVLmILqw5zYzT9KTsbh5z3eRNZ+9RlJKvvTwBH+av8T4oxHxaYnvhvzzJ57Gq4R8x1tvb9IX7CzKFY0//GQfV65myPX0IGp0N81Mu7Y47ZvnC06eTaFpEl17tm+zbclzTngkyep94XZBieQm0QwRudmo0vxgEYQTCJGe21w2Qpy4SBkTMcVU0aGv59s6bkMZLJ0cSHMPUoZomoWh55GSNScHra5KtbitmdQJCj0vIIqLJEmAECZBeH3DS9GN3tkeSIvpksXEVO1dyWqDXm3qzRk6FJkNP3crJnwbjVo2s02NsBmsPMazqRktcwgpfcJoGoHs2NSMrbbbrCB0YPZK9X83QD6dMBP/LX3mOdL6ITTNAzwApMzhRBeZ8L5MxlhcSltQ6LGwLIFIAdpcTgwp8Z1w1XNtN6pp1wwsM6bQE624/5uddm1x2rd0KiGXjfEDDai2I44F5QpMz+oLWZG2c9YjJZK7jM1EcOYHi5S1Dz+4iheMAEk1PZpmI5OAMJpipvRlsumjHbehTAiNbOYWJmYepFR5FOY2xBl6D5qeIZM63LSiCZtp68qJTBYQm1qKbvTO9lDanHbvZfL/HqTn4ZUbG2H7J4ffLPXmDO2Nm9OtNnvCt5moZbPa1AibwfJjRHGRMJrC0PNz0TkTKcskMsDoUH9vuzZLIyU4k1C6ThAEfPofRnj45Az1SqF0ZopjNz9O4GeJovEVrxuGhmV/i9NPD+M6/XPnhJHrLrPfTEiugIjBsg3ufPmNfPu/uq1x361LsKyYTFrWiCS3Ju3afNq359/hEsXP/t31BMWyztveMEV/b7ztgypKJHchG43gzA8WaftGEhmSSBdD662+KGMkAqRGGE8TSw/bHG7dl6mDinuKydnPo+t5bGEQxWWSxMcLR7DZRX/h/o5KgdSopehm7GyPMfCTDJaZUOiJV7y+E5LDb5XtmjO07VHLRTTCZrD8GEkSkMgIXVQj/VKGCGEs5FLvRH8vtM5us0ASQXEE3BmuTzr83l+e4+nHSwTjUK9KHtg7w/Buj6nRLFIGK14XAvp2eVx6bIbJa/bC3+PLwCwIBNm8zSt//G5uunf/imiqonVYlmR5tYEglPT3xgz2rxxDthtKJHcpG4ngzA8WYTSGJkw0kSZOykgZI4nnhHKCLnuQSYQfjnRMJGWxUMxnnwtAHBdJZIDAxA+vUXGfZqBwf0dEkudpxFJ0M3e2W2ZnC716vL/bJnoRhyBjMNqQ7komEHlgpNsXtaxBIwT78mNomoUmDKQMAZMoLmFZexZyqbfE37tJWra/InRg5gpEDl97coqP/K/zjD4WEj8jEDHUCGvWxJ+yCe82MCohQcVe8TkzExJNGvhP2iSjc69JIJYYusaBmwd51b9+LgPDKydICkUrUSJ5BzA/WEyX/gUpNSyjHy+8ipRhNYqMRBNpDL0HP7hC2XmyY0RyLaFoGIWF14WmddwS6TxbXYruxp3tjaBe7+873jhFJtVZQjmMBJUghSezJAlovqTiWFwftylXDDJ5ncLAog+4M9VNUSSQHoTcrrqFyJaJfChdrf6vmYHC/tZHLVehEYK9Vg5zQ+/FC0fQhImuZ8jaRxFCtDxSvhmavr9CJjB7FSKHsSmfP/6bS4yfj4hPCURQtT5oWn2iPJgepHh1N0NHRpi8mFr2O0l6d5UYP7uPYHqQlPnsa0IT3HH/Ddz3Q7di2kqeKNrPpu7Cb37zm7z5zW8G4L/8l//Cq1/96hXveeyxx3jb296G4zi84x3v4H3ve9/WWqrYNPODRcU7ieOeJZbRnB85jSREE+ZclTyNMBpntvw1Bntf0RGR2Z0qFKFDdra3gXq9v54vyLS51kAQiAW/3mxJ45kzNmfdO/HCo8hYop1KOH9d8EvlXkxDY3AQ3v8fBIV8XBXHzhSeH+AHCYV4FMIKFA6A3vjNfwtISVYP0KbPkUQBU8WAgUKAiDwoHGh5VpjVaIRgX34MTbcRkYZAI5M6jmEUqmXkWxwp70hkArJaJnqyGBFEAnwdQwPdFhy8dRcv+v6b6j6cnjpIavcnGDg0iqUfhCSN0F00a5wkPEJ/7g0cPXF4yWfSPRaDB/LKXqHoGDYlku+55x6+4zu+gy9+8Yv8t//233jFK16Brj8b9Tl37hw/9mM/huM4vO51r+Pnfu7nGtZgxebIpo9zcM97cP3/H2XncTRhIwQYemEuJVyaMJrAtvYShGMdE5ndqUIROssj2g5a7f1dz+JRcZaKpyAQPPJkeuEzfiCYmDKwZC+xTEMCuhPSO3CN/kJAFJlMTNk4pYBCdBGCCs9cKPL7f32Oshvzg/fv4zueuwttTqxiN2GpWSaI8jWGTJ/p2YA/+OvznLpU5p6bennbaw+RSc5Ddhcit6sjnv/Fgj2KisRJGV3vQdNSSJnUJWiXi/4gHKdYfhjXP4vrn2tLpLwbkCxa1BCCPTf2brCwxxCR7GWi/Al6BmdAlAAbLb4bPb4fLXuk4W3eTgSBjuOKmtktWkH1PLWDFDuJTa9nvPe97+Uf//EfOXfuHJ/5zGd43eteB8Do6Cjvete7mJmZ4WUvexm/8iu/omaFHUIucxMHdv8EZy6/H9AwjQK6lkXKkDCaqC4/pm8mimc6JjK7k4ViJ3lEtzv1WDxsKyGMxMLg4XqCsqNhaBLdkGgCNAGGCNHwidGQUkPXY3LZmCDQcAMJ0xeJRYm/+adrfOoLV5l5PAEPHpi6wNMXyrz9uw+RSy5AdmjOfvHs77ulfNmRBzNXEGGFk+eL/I+/OsvI4wHhNfjCxQkuXnP4yR+4kUN7ZWsi2nUihEaSeEzNfn7TaRCXWxX68i9te6S8Hro9P7qWHKEy+gaGcmmE7oDMIuQwgu75Dq2mmlYt4kpJZ7ZkrJonuVlp1+bTus0U9VWDEds97dtiNi2Sjx49yute9zr+8i//kt/93d/lta99La7r8q53vYurV69yzz338Nu//dsYhvIVdRI92dvoyTyHMJwiTipE8TQCA9vaTSZ1DCFMtKRzIrM7XSg2yyMahBqOu7L33WlRgnnqsXiUHY1cppoz1A+qdo8wFGBIEAKhCUxTYiQJkYiRQDInBqSUREmFMA4Yn73An/7tON98uIjzDZDTQAKlcfiHmWfF6o37JAQVMKup+ir+OSbKf48TnCeWPrqwyVg3MJh7GVn7xrW/oJTgzRCFPv/rS9f4X18YYebhhOQyEIE/Ck9PVvjlqaf5V68+yMvuGaI0HeIYB8Cu3RfUW1p7qzQ6DSK0Pn/6Zmh0fvR1WfRTJoms/qEhP6+GSPahbdM+utHksglvf8Mkp85c5uCBgy2vuJfLJrzjjVM7Z+P0OmxJwf70T/80f/M3f8OVK1f4sz/7Mz7/+c9z6tQpjh8/zv/8n/+TVKrNhkHFClLWfvLZuyk5j2PVKMzheCc7LjLbKZuJ2kUjPaI6EbbmEISDzJZUlGA561k83vQ9M2Qz1cFhakbnjz7ZTz4Xk05JimWdx59JERQ1EnQSqRG7GoEX8Mi5J+jtgZJj8/dP/TFhGGOfvYWZif2g22gGhOUE76vwrWuSnx+5xPd++zCvepGgr1CmEl7iSvmvCZMitj6ILfLEiUep8hiee579udctqV5Wi8lZn9//q3M8+sgslW8AMyCkwLJ1Aj8mOQnjUzEfKZ3nm0/7XL30MmZLFhjaglBfzOBAwvvf52xKKNcbIW1GGsRuoBkTgzWJg7msFiFnr5T5w/99nqlzPuFTgCtIpXQyeXvdwygaQy6b0Jf3GeyP0fTW98W5bKJSgM6xJZG8e/du3vrWt/IHf/AHfOADHwBg3759PPDAA+Tz+RXvf/LJJ/nMZz7DQw89xJUrV7AsiyNHjvD2t7+d+++/fytNUdTJ4shsEF5fiMxGcamjI7OdspmoXTQi8hXGNjEGN9rf4qX36hy4aWDJ67YlyWaSHRUl2CjZTLIkN2jKlqRTEsOAsxcspmcMhMgTammiuBqJm57aQ8kZRNMkg4NXmbpoMjxwBe3+iEfGvg8tfRgrbTB2cZbYT+AMcBm+9nX48IGEH33jEwzs+xy6PUocDFP1Cc5XQOtDt0Y4e+lz+NOvhlWWsZMEvvj161x9PCR6AvBB1zX2HR/gjpcd5p8/+RSzEy7JaELpH+AfRotcnHG48zjs6Q1B96oeaa06sXIcmJisrkZsVCRvJELazDSInUrLJwbeLBSvkoQ+/+cro3z8764w+VhMcg4IwTQ1jj5vL7e/7PDWz7UN2FHpKRVbTwH31re+lQceeIAkSejt7eWjH/0ou3btqvnej3zkI3z5y1/m5S9/OW9+85vxPI/Pfvaz/NRP/RQ/+ZM/yXve856tNkdRB90ame2GJdJOJQgsnpl4EX6QRos0Kg8N0nNqaXSw0yrtderGkflBcmqmarmwTAEIKq6GBAwd7IKJUwmRMsCyXGLfxJMpwpKOP2ozWdqFtQsGjlv09fWStmHvfp0Lj41RmfWRniS+bnLeN/mbL57h219+BtdNEwbFFe2xLINU+gxf++cnKBX7arZZSghOU61kFoFuatx1/418x1tvx0qbHHv+MP/nI49y8qtXCCsxwaNQTEU8yhh36WmO7Msi9ADsPBg2IHDdjV+7jUZId2J2m5ZNDGQC5TGojFMqezzwmQt85RtTVL4BcgJEIkhlTb79X93GPa84gtDU3qKNpKfslH5UsTW2JJKjKOI//If/QJJUbwbXdde0WLzlLW/hgx/8ILb97LLNW9/6Vt785jfz+7//+/zIj/wIvb29W2mSok52emR2pxHHJn6cRiPE0mJymWhJxb1OqrTXyRtHKo7Gn3+6sHCtTp5NYRoJCMHUjFFNCRdp5DIJdlojiiRJbIAUJKEOcVXoFAaz9B85QOrhgFSqTCaVJZNO0T8wzNmHrzN+pUgQQTBpIp8KEc+N8K5YyBrjbqxZpPeVkN8K8C6u3nYZVCuZZfI2d752L/e97k50o3p9s4UU3/dvX8A3PjfAP/7FE/hlgQwEbih5VM4wMeNz14lebDkDZhZkDtiYaNpMhHQnZrdpycQgCmD2MgRlzlwu8Xt/eY4Lj7sEjwEOaJrGnht7edVP3M3wsYF1D7dT2Eh6yrX60fWi0dYO28rVydH5Tf8UUkp+8Rd/kb//+7+nv7+fTCbDlStX+J3f+R1+9Vd/teZn7rnnnhV/03Wdl7/85Tz66KNcuHCBO++8c7NNUmyQnRqZ7cQd41ImRPE1Kq6HafQ0rU0GIaaISdvxMu9tZ1Tag41tHElaXBXVD54dJC0zqW7U00CSIJAIIYhigR9Wo8tS6uhWD4EXI6VOJlXi4PEMtzx/F1OzeSAGAqA6ohqWwYkX7CM/lOH0o9OEEUQVm9gzsayQwFkZhLBSIbFvEpVSaOHq94xmCPYdH+CVP3Y3xWB8ZZRSEzzvNccYPtbPp373aZ65CDgQXICLrstsOeJ5t/TRn5fgRSB7N3TtVkRIYx/8cjUtHWAnKZzpb+DJfyBt7AUjRapnz47LbrOhicF8CemgsrGTyJgkCvncl6/zl//3CpOPJCTngQhMy+Dme/fzXe+8k3SP8iHXYivpKeuJRhd6Ir7j+Re21sguodOj85sWyR/60If467/+azKZDB/+8Ie5dOkS733ve/n0pz/NO97xDo4ePVr3scbGxgDo7+/fbHMUirpo+Y7xOts0NvVZZt1HCa+ZGB3QpnbTro0j9Vo8UnaCoUMuk+D5gjjWQAgsK0Emgt58jK6HWPYot9x8gSiymbhu8dYf+Beec08egQBcQAcsYHFhEkFheIAbjB6uX4nYf8uLiBhj6PhJNL+fpRFcSbrvMpWJW3nOS17Iap5kgFxviju+8zC6oVE8P77q+/YdH+B1772Xb/1nC3fchRDiEZhyQ77kjXPrkQK7+zTwSuA5QH1R3GcjpGkIynPC7lmhoWMSJC5xNAuiH2IfEToMZl6CF1zdMdlt6k57SR9MnoVo476X2XLIR/7Xeb7+jWkq3wQ5WbVXpLMmL3vr7dz18huVvaJJ1BeNNvDDzghaNJtGReebxaZE8gMPPMBHP/pRTNPkd3/3d7n99tu57bbb+P3f/31OnjzJb/7mb/I//sf/qOtYo6Oj/NVf/RV33HEHBw/uvKimonW0fMf4BtoUhJNoWoGMvZdEuu1pk6wOwjuRei0etvXs9bEsyV23ukQxuJ7g0SfT6LokjgV33uqSTiVo1iVMexTH2UvvgMXwYQOBQCJBG0fIHoTMrihMAhDFWcJQ8EQ5z+mv3Ey+7xF++C1/SE86D2QAB6ldR8gbMPb8K07cUl9xhiRePxqT7rE4ePMg3m7B9adHCMMEOSVxXMlj/gyDAwnDQwYUr0KxB3r2LMnnXAtdz+GUe5kd9TAwmC2nOXWhhBtWr6mhe+R6BJ+8eBnXqXB4b5o3fdcB+vIp9me/h4nwGzje2Y7fQ7HVlap1014aAwxaL0BMX8DzAj7191d5/ExxQ9naSpWIa0/5hI8DbtVesfdoH6/6iXvYe6S2r13RWNaKRnv+zhDIi2l18ah62bBI/vSnP82v//qvI4TgAx/4AC9+8YuBqs/uPe95Dz/5kz/JF7/4Rb75zW/WtFcsxnVdfuqnfoogCPiP//E/bu4bKBR10ImppJa0yT5O4M0ghI6htaNN1c5ppxb+qdfisfx1y5JzcWAwDND1apWydEqSSYMUB0mYBmYAG0mMpITUroO8EZHsBaoRZM8XGLrEmEv5FMYCpCCfixEiR3H6LgLnG8jsY8Ao1eplt1arlyVNqF4moLC3n1xfivOPjlGZ9ZAVSXQBLszGjE3NcvZykb1DHoQuFPbPbeqrjT/Ty0d+/82MTiS4XoqZYkgcSObnZXbaQ08C8uE5TK3C6XyFJ88V+devP8KtNxbImK/BKwhiEXaMTWo5jVqpWnVzdfpWBo27yAYZroyV+b2/PMupJyuEE2wop3FSBjmXI9uyDG55yQFe/vY7SeWsdT+rUOwkNiSS//Ef/5F//+//PVJKfv7nf57v/u7vXvL6d37nd3LHHXfw2GOP8Ru/8Rv8xV/8xarHCoKAd7/73Tz11FP89m//NjfdVH9NeIVio3RiKqnOaJOkunwvNroPa9tRj8VjvQhPHAmiROB68xdzACnuxg+uIYUP2iWk5qDFt2JEr0HQg+fLarGRWKDrcqEWsEBgGFXBDRI/6MEI34Lp3wei0tTqZYsj62hZhm87xMiZKWZGKyShhAnwwyL//RNPM10Z4jUv3oMWnYXCPkgVlh5sLouCOzpLcfoG3OAp0EdJC4sYHd1IMNM+biXPtXOHSAcj6ETEmuTStYBfmz3J937HMN/37cOkEwt6hsHuvGhno1eqVmyuTnRSToyIA/7pkVH++LOXGH8sJD4lEDGLakjXQSKr9oqcxf1vu4PbX3ZY2SvqoOJoizLarCQI1TXcbtQtkh955BHe8573EEURP/qjP8rb3va2mu/7t//23/K2t72Nhx9+mM9//vM18x+HYcjP/MzP8C//8i984AMf4Lu+67s2/QUUO5t6lzY7MZVUO9oUYaJJDdfXsRcq7om2p1XrdgyjKizLFUEYCYplnSCcD+0NAAP052fIaW/F9G2EHCZjGgtC1PO1avU+KYgXbUZM2dUczFFU/bdAQ5P7G1QJbXVqRdZlIvnm50b42mdPE/ghhdwEmbDIFx4e59DeFLcf7YPSCJiZpeWsvSK4kyAF18c1ZtwCfXaJbKqElk2QiYY7m2X2Uj+hk8a0NAx0ojAmuSIp9iR8LjXKob0ZnntzH1Sug5VZM2rdapq1UrWwuVomMHEG4oCr4y5//ndXmDwfEZ8RiAAMQ9+QyBU6ZPI2pm3wxJcu8cSXLi28tvdIHy96/U2ksiqqvJhyReNjn+nl5NkUmibRtZUPoaHDDYeCNrRO0SzqFsl33XUXjz766Lrvu/feezl58uSqr8dxzHvf+16+8IUv8Eu/9Eu87nWvq7cJCsUSNrK02YmppBa3SddWnncrbZIywYuuE0clNKOErgts3cUnTZDYlB0Dsazi3k6utLdRam3wO3HEo+JoBKHgbW+Yor93aeqNlC3JpY8sCNzFQnR59b55DAMsUxJFrY9QLY+sX356gtP/9BRDey5w44ueYuDGCaw9EdlsCrv3OpXw28imbgNt2bBipkEzgYhCj0HJ15mZHaBYKhB7BnFo4FdSRNImQRIGCbqIq75tC/R+GMib3DCcBQToqaUivANo9qrQbFHHmS6Al/x/7d15nGRldfj/z3Nv1a2tq/fu2TdmmGEZBgZQFCFugCxqRMWYr4goalzyjearP82iJsZ8Q2LQrzEmxkgUURMjirhBEjDGFVA22YYZZmG2nqX3rv1uz++P293TS/Vee5/360XidG1P3aq699znnuccPDdMa6KTo9ER8hEgDyHHJawKC3pOuzdoSNN7ZHLt7YNPneTgkye56t0XsHJT7c3YV0u+oEhnDWJRH9cbvfo2gecpHBea4ovbj44t3M3lFfmCYjhl0TdgjrelliYl1VHRany+7/PhD3+Y//zP/+SP//iP+d3f/d1KvrxoIAu9tDnvFeMVLCU1cUyxyOSgfiFjmjqb7nlZ+vvvIpt6Es/PE+vweN7zm4ic6KXv4VWEwyFecfn5bNzeNXk8DbwTLlUdzrkW+BkGrOxyWb3CndfzTQxEx7r3FV+8Uj2+5/Or7+/hZ3fsItF5lPNecz+x7iz5UDPdTa1s3xLFMQ5wpJBjbefpJKZe9g9FoG0T2WMPEY4e5czTj5N3B8hlFdm+OAOHusAl6HjiA3ENhkY1QeJcuOjCNt7+25tINkUh0QVN3XMuEpxJuco/lvOq0PCw4hN/E6evfwu4BbSTxfXWMZxKc7zNIeuEsewsp8d+vuBAefobAS+nOfrsAF//6P/wsrecy3kv3ySpGKPCITj3rBxWePpvNJcPriC98dVD8/rtTzzRth3Fk7ujFGwDzwuuJmUym/n5I4nxLJpGb1JSq82jKhokf/KTn+T73/8+O3fupK2tje9+97uTbj///PNZt25dJYck6tBiLm3OuWK8CqWkJo2psAdfx9E6iefn5j2mqbPpWtvYzklMFSdhrCRidKL9ATo6j/K8y4d4rPdiMidX05a0J7VXbmSlrMO5kBrOjSA9mOM///lRnn24B8d12HHp08TXZsnpFew4vZWNq+JghNCRtWSd5+gb/k/isa3TvrMZ+wA9+R/h6FfSHI7S1tzFSSNDOJImvqJA78l1pFIRKCiazzOIx0wiYcXrX7aGK16wAiMcgeYi+c4LUM7yj+W8UpXNKfr6DWIxTTicJpffh7L72JhwWLkajh5roq+/m8RZEeIxd0nvw3d9Uk9o/AOabMbmv259lCO7+rjsredKzeRRVnjmE1nb0STis//2i51o5wuKdMYcTePwicd8WppsWpIRlFJVL4NWTrXcPAoqHCQ/9dRTQJDf/Oijj067/eabb5YgWcxpsZc2a7Ed99iYTg78kGzmMXKFHKYRndeYps6mWyrGcPoXFJxjhI12dLgTpWL4XpTBgW6aEyfYfNHTPP6DlRV8h9VX6jqc5azhXEuzKScPDvHNv/oFw71ZfO3TvGmYrvP7CMc7eP7WblqaLDAtiDajlElEFf/djZ3Uuu4QoXAbRjiEYY6wsj1Jzo7j+sOsbEtjZzYyPBLhXa/dRFd7npUdUVZ2xMBKQuva4LUWqdzlHytxpSocHsBXDxGOZInGkhh+CN/LY4VTNDeFeefroqxoW7Xo5wfIFTy+2XGU59pzOE+AnXV54icH6T+a4rf/8CLaVjZOZ8OFKtWivWIn2lPTrUxDk804xGN6dCa5dpo9lVqtTzxUNEj+6le/WsmXEw1qKZc2a7EddyK2lXUrT6OQeYDVq9rm1XFvLPAYGMih9IVklML1UgynYxhsx3OHGDTSFLIJ9veksE/6DBeStK45QXPXMPHm5bcop1brcEJtzqY8/t/PkR3Og6kxuqD1txzWrDHZtnY1VtgCqylYQDeamznT727spNayNgKQy0eDSgyuDdoDbeFpm2jEwGyJsH1zK6u6bcCAROeS0iugMuUfy32lSgO5wgHCVpZwqDP4owGGESISUoTDPu1duzn3tCuXti/TcPZpzdx613M82D5E7mGNHoDeQ8M89dNDXPKGsxb/3FVQqjSriYv2wuFTZRonMk3N+jX2tMfN9/UnpltprckusIliPatW86j5WGYdwkUjWOqlzVpsx62UQchcRSK2CdOY+yCXt49wovcot37p7QwNtQLg+3ls+wUYmGg0BdvB8x0uOf3fiHoZHBWhpTPD8161ipWnyYKcWlKLsymu46M1GBED4zSIxptY3dWCYdpgxCYFyDDz727spLYpHqK9LcPAYIJ8YXThnfZB+7h+mqZolFUrI8RXrIJmP8hlDhc/EV6I2a48AZhmkuHUQww3/YqWpucvOsgs55Uqz8vguENEY82TbzDCEApjmiFyapB83CS22Nlq7UPmJM0Jn6tetJqnn8vibHTQQedwXKe+0rNKmWYVLKQL0iEilk94SpDseor8aD7xYl5fLF06a1COns0SJIu6U4uL8CrN89JksjA01EI04hCLFfCdNAV3AN83SGd9lBEmfaITe0WEWDxLU7vPujNW0xI7G6VlIU6tqeXZFIBMppWwWkvBO4BpNk9ujj3L727spDaSGOD33/Mj8rnJlSlcP4XnDrN25XvpaI3R0rL4vONiZrry5Dj9ZPLP4rh9uN4wh459jpamC5eUo1yuK1Vau2jtYqgiJw1KocwIvqHxwibEFnkC7LuQObmkcdaScrQ7Ng0dtJSfsvvUMClAXujri6VJZwy+/p0W/veHS1/CVYJkURemrkrvaL2yphbhVVoQeETQ2iMWzZOwRtAhDy9nU3CyWKaBNuL4rsIwDDrXJdl8URbLOBvlrK728EVdMmgyXoBrDJB1niPiWZhGYs7f3cST2mRTE83J/PhtWmuy+d0kEztYv3IFSpU+naTYlSfH6Wck+wieF8x+h4xWrHBnSXKUy3GlSqkQSoXwtYOhpqdKBQG0VdESlgtVqtSHhSpVmpVpQiQSNP1xJwTEvq+wXXAdiIR9Mtng+z8wFATAsWjtpnk1imCmvzzhrATJoubNtCq9o+UyMtmna2YRXiVFrbXEIpuC/E/XActnYMRhMBUhZuWxLJvcSBK0ycZzE2zdOYJBJ8rZjjaeRZexW5uoTWNBiu8pBkciJCfUYIX5BSmWWsfKptfQV/gVWXcIW5+Y83dX7coyU688AWTyz+J5WUJmB67XT8RaQcRajaWpSov6McVK1IGBaSZwnG6GR44SMsJofBQmhmGRy1l4fpZY9LSavXqWzhjc9q3SpD5USzik2b4tP6n8mzNaus12g+9JJmfwlW8FF/3zBcXufVGaEh7PP6942bipxhbuag25gomVU+PVLUR1SJAsatpcq9LXdL2NbjNe9UV45aq/OhOlDNpbX4ah8jh+P75W+L6PrxVOIYx2Fa4dwooXiCRyKB1UtPCs7+JRACIY3mmY3uUY/uayjbOW1FLliEqbmB+pNaRTMZqSyUmdjOcbpCTC64OUguYEnp+Z1/e9mpVlpgbpppnEcfswVATX68c048SjpwMKpahKi3qYeTIgbL6Kro4dHDnWyfDICXx/ONjWysRQNooQXZ2aNStfXLNXzxaa+lCtWee5TC3/liXIR46GNa4J7a2nmgFZYYVhQKGgcF2wZul/M3XhrtaQzlhghCbVSZZmT5UnQbKoWfNZld4//J+sX/m/q3pwKGf91dnEo5uJxzyssI/PEVqaXZQJJ/va6H26g/xADJcYP/3KasLXP8HqbQamvwaIATl882m0cYyQc0NdBMrFDpwTZ0XjcVX0wFmLlSMqbWKQErE88G1aku74b2qh+ZnjKQVFFsLNpJqVZSYG6cPph3G9YUJGKxFrBfHo6YRDHeP3rUaL+tkmA8LhHt7zrqs4evKX5AuH8b0cnpfBp4D2XaxwB6dvvInVKy6o2HgXaz6pD6VccFcpZkiDx7RmQKap59VCfurCXd/zOXT4EOvXrZeOe1UmQbKoWeVu9VoK5a6/OpdwqJlk8/OJRTajC4O0R8HywpxsTpHPmhQGolhdGY4ecXhu9zo2ndtBW5eiKWGCvwVt7MUz70P5m0qWelGOWaCZDpwTZ0XbWoofOGuxckS1RCM+sajGznsTarAC+KSzIQaGTm3fVD5KXifwfY1RANsu+pQLUs3KMmNB+nD6Vxw69jmscCcRazXT2gtXuEX9fCYDct7naW1pIhE7I6ie543g+zZKhbGd45jhx9G6dmeSF6IcC+5KN7bJV6Ny+WCWGD19Md9CTVy463s+qeECne0eRpFyc0tVqzP1tUiCZFGzytnqtRQqUX91PnI5hVKdQDuFTJYnnomQzyjSnksh5vHgwdfx6/0uvmti/EixZr3Lu9/9PzQl8uCvxDf3od0elF56PmO5ZoFmOnBqrcG3iVj+rAfOWq8cUW22o9h7IMJtd7SPz6gf3X0uA/ZpQcvoA3A0nWck3Q/d1R3rVAtJdVLKoKXp+bQ0XUgq+wSWnjwZXo3qOHNNBphmklT2cVqTl0zYx7SAeeo9jU0WRK21NVUDfilKteCuFGlWU69GOW5QzaJgB/nCobAmEfOx7bHP59RjPV+Ry08PSKuV5lWPM/XVJEGyqFnlbPVaCtWe6Y7HNJ0dPn39BrkcgEk2l2QoZWIqh+52Rc7O0trdhz1sgq1w3BhHD0UZ7GM0aIwDJ0Bl5nVZcC7lngWaeuDUOpgVtSI+tlOfwUAt8LwgUI6ENS3JoB7ugFUgorJoBZ4RJpePk8sPVXegUywm1anaCwmnmmsyQGGifQdF8aBmbLIgnX2Kk/13Vjzta74cl6LBIgR/d5bWUXuaUqZZTbwalckGjUWGU2ZQDo5gEtlxDH6zKzb+2mdvzROxfNIZk5G0ie1Mf51qpHnV8kx9LZIgWdSsiavSjchWfD+Fr20MZWEYyarXQ672THdLi+ajH86SzZ068JzoKfBXf2PRlsyTzmXYc+QYsXCKUDiEp0MopXBVgkh87KefBSKgS7s3rOXudmJmkQmfWyTkElJOcCXZBIhUdWxTLSXVqZZa1M81GaDxUEYYTfFmHp6fxfcL9A5+D9+3q5L2NZdM1mDvgQgaVbRbnespFJpM1iARL83sZanTrCZejSrYBi1JH609jhwLEYno8QYjrqfIFxSGEVTDGBw2ufG6Adpbp39+1UxraKR9dDSiaUmW+CxrlATJomaNzfikck/TP/RD9IRLZgqDRPyMqtZDroWZ7pYWTUuLDpJzs/0QGiAS2sihEwMcPTFM4ZiiyY2TaEuRd8Mk22L4VgLDMNBotHEcwzsbpaV2sqgfpUh1qpUW9XM1R/K8FLHIJlx3GB1eNe32fOEons6j/HBV075mU7AVtmMQDulgMdsUrquwXYOCrUgsvcniuHKmWY3NwoZCTGowogkC5Vw+KN8WjWjaWz062+urY2E9aUr4vOna8nQulCBZ1Dw19n/01D9WV810/vNdGOmB3BAnBzwe3ztMNpVF9WooKAYOdRFL2qzY5OPqECMjGk0abexF6XZM7zKpl7xM5AsGWutJNVjH/l5PSpXqVAst6ueT/rGy83foH76v6O2mGQXPrekFzhFLY4X1aNBfbOetscLB/SqlFIvXQqHgfvnCqQYjrguOqxhJm+MpH41cOadWNJXoCsRUEiSLmjU2W6S1R2frNXh+Ct+3MQwL00iSze+p6gxJTeQ2ugUYPAhulqf2jfDpfz3O4MkVhAYh5INhGMRiK+jo3EA4ehg3l0OrNBgjGN7ZmN5ldVH+TSzNxPzMfCE0rQar7SissI9ZJ1dZq53qVGrzSf+IRTYWvT0e3cqJ/m9j1vC2SMR9tmwqkIidqiM8US4P6ayNoZ7GVy1AZ1nrmpdq8ZoV1uzcngsqXIzK5YMAeSzFQipF1DcJkkVNKLZCffJskTFpRTeUruj/UhqBVD23MTcIflCb6z8eOMngiIefUuApzLDJ6i1tbDinG9c1yadXUCjksLOKkZPvIlxoH59Brpcd+dQD51hnKr9OV/BXysT8zGI1WAeGTL56Z9u8uoLVglpIdSq1YukfkfBqCk4P6ezTmGYT61b+PgWnZ9p+sm/whzW/LcIhPa2OMIBWAxTcQ+SyeQ4+9ylWrE2QbP1DRoa2UrCnvx9Y+oK3Ui5es8J6WqMQ25EUi0YhQbKouplWqMdj28o+W1SKRiDVzW3Uo/8pbBc8DQYKX4XRIZOOjSsYSZs8uTtKwTbwvCS+D7d/MznpIFPqkj+lngWaaaX6qc5UBm0tcllzNmP5mTPVYA2HJn9uBTeEq8NoDZ4XZpaGYQtSiu6UNZPqNIeFvteJ6R+Z3B4OH/9c0X1TU/ys8cfUy7YoRqsBsrlfkxqyyae76DvUgsqe5PIX/AXN3acTNX4Xw98w7XGlOqlvpMVrC00fWc4dSBdCgmRRVbOtUE/n96C1XbYZklI2AqmF3EaAUMjFMrIUiGH7QekhxzdJZ0wMQ2MawUGhrcUbnzVMpQ2O94boORFa8grscnW3m2ml+sRZ0Zk67om5FfvccnaEgo4H52A+NEezxKIezFCKbD5K1Z2yJlKdmD0IXsp7Xci+qVa2xUJ5nsdg/2/w9BDZoQ58z0QbBvm0RWEXKPdBYmsMOtr/sCbXTNRSkDmf9JF4zOe6a4YAiFg+wymT4dSpsZpmMNsPjd+BdCEkSBZVM9cK9UzuGTydp2AfLfkMSa00Aim1cLjAtsQvcJ0QiaYI17/xJWScKLfd0U5zU5APGAoxHiDbtuLZ5yKkM+akRhITLWSWuZzd7YqtVJ88K1o/n1OtKfa5/fhrT/B0/yH8kMbYBCu2QHPTaSw2SC51d8pqpzrNFgQDi36vi9k3VXtbzNdYYJlP2xx+5jma12RxCy04XhQVA2sdkAGdgYGjTdjZX3Nw8KfsfPlvYYZKk4ucLygGhoJUCis8eT8VMsGaY/FgJdrcpzMGPSfiONoqul+LWJqONm98PzpX+kgqbfDw4zEGhoLFhMVqUjfFPd746iEScb8m0u9qpSugBMmiauZaoR6NrCFfOIhhWCWfIal2I5AF8RxIHQM7U+RGDb4mnXMZSdv4WZ+QnyekIGa6dLS5ROxgh10sH9D1gpqfhqHHg+iJFlNYXrrb1aeJn1s6c+o3pT3QOcgXTJ7eCyEs4k0GLW02hOZXO7lcJ6XVSnWaLeDP2Ucxjeii32vRfZPvQCGFUgaR8Mqi+6Z5b4vcMGROgF8sXzb4/fcO5nFcDz/jg2csuZrQxMAyNaLZ90g/RghCnc0U8hGMmKK7O80F50R57oRB9riPMxhGmSP85r+fZuRkOy97844ljWHibGu+oNi9L0o4rCfVbY5GNDvPzs36POVuc5/OGPzzv7Zz/8Or0ERQRV7GCvtcsCPHu67vn/Q6M6WP5PIa2zGwJjQLmihfMCjYQY3qWsijrqWugBIki6qZzwp1w4jQ1fZqsrndJZ0hqZvV8XYaho+Am5/xLvuOpPn8tw+w/4ks9qNAVmOaJitPayMSD5O2534Z0ygeRNdjbp5YmrED1P7DF9LjbsZzfXgS1HPw64cUG9fEOXerycf+4Dla1qyEWMucz1nOk9JKpzrNFfCnMo9iuydpTV68qPc6ed+kwckF+wEdBAOmC7ZKF903zbottA+p40E9dV08EHI9n7v+5xjf+3EPg4/46MOgXB+rKcSKTa3z30hTTAwsB46lufOZX2JYJ7jgxT8n70ShJcrG9Yr2Ns2RPoUKQShm49ohClmLQtZZ9GuPmTjbaoV9wiGfiDW9CYg7jxixnBMBwUx3CM9TJBIeoSlRmucqCo4xPhu+kHHUSw52LXUFlCBZVM18V6g3xc+ms/UVJZ0tqvnV8VpDphfSJ8jmbL7930d5av9I0c7RJ3rzDPzGw98POBAOm5zxgrVc8fadKKMGCkqLujJ2gFq1MUE8anP46V5cR0NK4zvwnG8znE5wordAS9MhcDoguRJm+T3WzUnpPBTso7MG/OFwO9n8HrQu3gFsrvc6vm/y0oRcwM2TyTk8uW+YqGWybaOJYTiY+TzE/Fm3+zi3EJxs22n2HBzhjh8dZSQ7fXy27dPzXI7MQ8AQKK2IN0d4xU07OeOFS1v4NxZYdrbHePMfn8c9//xrvAGDNVsO0N/TRa+lGEopCsc0ekSTXD9C/4G1bDlvJy9507lLeu2J5tsEpNpMQxONTK+c4Tga16/++CqhFoJ6CZJF1SxkVXapZ4tqekW45wQHtEKKQ8fT/OMd+9j7dBZnAIpFyf5x0P2gfEU0EeYlbzqHC16xWQJksSTRqKb9zBa6Vlo8++tjpIdy6LzGPQYncja3fPVZPnhDN1s3+MFsZ8vaGdMvav6kdAE8f/aAP2QE7891RwiH2os8fvb3GrXWErc2kBr5Naaxlp6+PI/tHiLdH1QjyboDnLluB9G8AYPPBdvdtIoPVmvID8NID55b4Ic/P8a37zvK8H4fXeQKk3YJTrYLYJoGa7d1cPW7L6RzbfN8Ns28rdnWwf/6s5fyi7uyFNJ30rG6l1R/M4Vei7Bhk9wwgpttZsOW32HzjvNLHrRKExAxXxIki6qp5qrsml0Rbqch1QNunh8/dJKv3XOIvsdcvL0K5UGxBDXbsdBGhO71zbz0hh2s3NRK/9Cp2zPZ4D0UW42dyys8T2EacjAQxTW1xTjnJRvY/9hxeg8N4zrg98Nz9+f5v84zvP7ytVzzopUY7j5oWQPR6ekXtXxSutAybaYxe8CPChEyW3G8AaJ6w8Leq9ao7ACd+iyy+mmeObKLfc9FyBwKE3Jtkl0jnDwQ51cPdtJ30Qkuu0ijvAI0r4XIlLFoP1jLkB1gaCTHF+86wEMPD5F9CPQQxQNPrVEeWJEQ511+Gi950zlY0fKECfHmCJddfy1P/rKV3oPfoXnlCZqsFL4Txh4+nS3br6e9c2l5yDORJiD1ybaDdJhcXo0vwByjNawqw+5DgmRRVdVclV1rK8INNEbqGLh59h/N8O/3HmVgn4e3T6FshRUNYUw5sDna4oC+mGh7J8badu78mQE/m/y88ZhPIuaTyRnTLlHlCwrfh3hMT8t9E7Xp6J5+HvzubnLp4nmaa7Z18MLXbCMSL1VlYwhZJluft5pY0mL/U8Pggn8Ehtt8vhc5xsZVcc7Z0hKc4IXjYE5+7Vo9KV1MmbaItWbWgN92jtHafDG+n1/4e3WykDlJIrSGYwd/i2cO/jdR/wStrS5eIcSJ3avZ+9CZjLR1cEfmKOtXxdm2QcHIUWjfAuboj9gtwPBhsDPsOjDMP915gEO/yeM8CeSCWWIrXPwHH4qYvOIdQXpFudMOlKE455KXcWzvDn76rR+RTQ2w5fwtXPTKF2NFZpgdL5FGbAIyU1m6QgPUPrZtxaNPxcZn/x1HTarIZFk+HzknVfLXlcOiqLpqNuOobiOQyQylxxfn9I+42J5C2SYhQxGKKjZfsIoLr9oy6TGDI2FG7ttEa3uIaFQDk3fu+YJBNmfwltcPkCjS235gKCj9Fo9pXBdcV017vKgNnufy+E8f4NF7nyA9YDBysgX09M/n0FMnOfjECa5+94V0rZ97Ud18jfTnOLZ3EH/sO2JBqB262yzWr4wDBoRiYBQ/rNTaSeliS9LNJ+Bf3fVmgIW/V88BNMOpMM8e2MTP778G8+gwoaECyosxfDKJ52vCUQ/Hc+kbdtkGwTSa74JhQm4IUj14js33f3aMO390lKFHffyDgAuWFeLsS9dz9qXri5ZVa1+dpKktWqrNPC+rtnRy7ftey0h/jo41yZrICa4nc5WlKzgKK6xxPYNsbvpVw3rYz7teMKkTMjWmqUGrSRWZPF2eq6ESJIuaUM1mHLXSCKQopYJ1JUqx+vR21p/dNenm+IBJ7EGLaNSbdYHDTKV9ohHNyi6XoRGT4VR5an6Kpcukn+bZp76Oju/l/Nc5uG6IgeOd7H3wLAaOTvhOeOBmNYef6eerH/kxl7/1PLa/ZMOSgg6tNUf39HPoqV5cx0erMESh6QXwst/q5C2v3EAiHoFENzR1FU0JGlMrJ6VLLUk334B/Me91OGXyiX9Yz6+fXsfh4zncASCtMU0DX2u01kSO5XjeGfdPeVNeMKOcG2BwOM8X7jzAo48OBYvwBkcX4SWtknwnysGKhelcW7qrHzOppSYgs/H84tU2PDdIkZtorrJ0mazBt37YSiZn1NV+fuJnlcsHM8imqVEoQiEmVWRy3PKkxkiQLMQyVu6an2Lpeg48xLETnyMUGSZzshnHaya6zmbNxcfpPH+Ep568mOGhbgA82yf9uMY/pMmkCtz9Tw9z+Jk+Xv6WcxecfpEvGNgFm4OPn2TweBrfN8Ew8VvCxFoV1//2el53WRMqFA0Wj03NiZ1BLZyUlqIk3XwC/sW812zOpG/QwgrnsawspglaaUzDwPc1DiFsN4brTvk8R0tFPrlviH/69n6OPmEH6RX5IL1izentXPXuC+ku4dWFelKJJiClEI1o2ltdTDNMLm/OWCd5LG96zGxl6TrbPX7v+v662c8X+6zyhSDFAq3GF15WIkVQgmQhlrlabP5RK92Wqu03/72PgeHbadswTN/BLogrrPWwZm07a1esQRtHOG/zCaLuC1AYZPMe3+g4wuHH8zhPgJ13eexHB+g7MsJvv/8FtHQVr8gw0dgB6niPx4HHe3HyHpoYhMDsgOY2kxeeG+HyF7SjovHR6gqzBOBOHgojEG2GUGUv48+kVCXpyhnwRyyXcNhBGUGQHFIGvgpmkm2C7T1+hdl3cF2X7/7PMb774x6GHvHxD4NyIRwJce7LNvHS688paZ56vamXCYGmhM87/1cfF53TQ1f3+nl13Jvv89bafn4mxT6rsdTAYp1jy0mCZCFETVlIt6V4tHEDZa01+x9/jPUvOEGqtxksRWgldHRYnLe1jXBI4fqrcf1eNjbbxEIrAQiHDL6Q38/JvIv/DPiOpvfgMM89cYJzX7ZpztcdO0D97Nt7iT7xLLbhQgTMs6BrS5h3ve40tm+O0tIenj1A1hpyg0GFBd8N6n4nV0OsddaUjEqo15J0Sil8F/xhzcg+m3/7z+dojhus6Y7xT3fu5/FHh4vWOD7r0nU1l15RDfUSKDYlfFavyLJpk100SF4Oin1WM3WOLScJkoUQNWUh3ZbitTExWRZKKS56zVoG0z4jJyLgg3sYTro2P/FOsrY7DniY1gh7njmIb/uksy4/euAEA4/5+AcAF8KWybYXrOGMF8y/PlJTwufSV60mffQY+x45hmN78BSMuJov/yDFDdes59LzOlED+6BlHVhTjma+F1S6yA3SP5jjkd1DnH9GGx36MDgZSK4KFplVSS2XpJtNJB7Gdv0g9/xpOJyy+duRPSQSJsefcnCfZFKN46vedSFd62avcSxXbYSYmQTJQjSAelmMshC10G2p2lZuWkML68EvcPKAh2/7eIehL+swODCMZeWJxmx+9fNBUiPgO2A/AXogaC4Ta7J42Q07OO/lmxbcXKapLcprP/gCHvzeHn7x7V0Uci7e03Ci3+WfRg6w60CKG67ZQMzbD00rIDG6aM/JBfmxTpZHnhnk1u8eYGDA5rsdPbz9Nadx3tbRVsst6yBcnbOcWi1JN0ZrjTJyxGJpCjGTwnDQpOW081aQSsGe36RQnsI/CIPDPsNJH/8op2ocX3YaL7l+7hrHC7lqI4GyqAUzHeu8IpV+SkGCZCHqWL0sRhGLo/RqrPDpbH7eU8Sbujj0VB+u66P7NO6ApmXDCCeeWk3vD1qCbowatA2GYbD69DauevcFrNzUtujXN8MmF7/uTNZs6+C7n3mQ1EAO/5hm5Mea/xru5cDRDO+5bjPrV2qwM8HivfQJHLvAHT86wj0/Oc7wIxr/OGRX2XxqZA+v/K1VvPZlqwl7+4IZ5VhbVdIvaq0k3Zisc4SMqwnHDrEqOozbbJDriDPSswKAjjVJNocSrB3uYHBfBnfQxx8KWiwnmiNc+Xvnz7vG8UKu2tRDmoJoXHMd6yxLqlsIIaaol8UoYnEUBqZ3Odo4xuqzBmnubmf3/YNosjR1DpEbTHDgZ2dh2Kd25aGIwdmXruflN55LNFGahgwbtnfz1k9exn9+8RH2PnwMJ+1RuB929WX4+ODTXH/1el5ygYcqDHNysMA/fWs/T/xmhNzDwHCQH+sf1AwO+3x7+Ch7Dqd412tPo0sfGU2/WF2V9ItaKUk3JlPYR0/mbhz/jTh2kmw+BAWPcLxA88Ze8t4a/EILkbjJb7/tIp68O8LD/7EP3/NZe0YH17zneXSsmV+VkYnkqo2odXMd67QuTwMYCZKFqHP1shhFLI7hbybk3IBn3ktT537OfYXB0HGLdN9Octnnc8bz18LzT91/5aZWtl20ZsHpFXNJtsd47QdfyIPf28PP79hFIefgPQMnBzz+OfUcu55Lcd7pLdx+9yGOP27j7lJQgJBpkOyIk+rP4g76ZH8GDw8M87GTT/H212zigjN1UAGjZS2EYyUd83zUQkk6GK3dPHIvoXAv3W0++48kSGcsdA6wNZFkHtxhtL2W1maPRDxIiVEGKB9iTdayrl4hGt9sxzrflyBZCCGWJcPfjPI3od0ewipDbEUC1b0adVZlZzwN0+CF154RpF/8vwcZ6c/iH9ekfqz50VAfv3i4n9TDGr9HBfmx0TAXXLmZF157Br/89i4e+c992AUX9zeKo30On0k9y1UvXsl1L19L2NsPTSsh3l716hfVkLePkC3sp7Mlzu+/47s8vsdh7+EM7knQKU004bD5/DjN8ffgZ1r4r88/FMzqO0FwsOfXPRzbdy+//f6L2LC9u8rvRojGIEGyEKImNeJixKVQGCi9Nsg9rrL1Z3Xxtr+9jP/450d49qEenIxH4UEoRDWkg/zYptYoV7/7ArY+fw3pjMG5rz6fpnWr+e/bHyebstGHNNkh+NfeFE8+e4D3v2kt3fpokH7RvHrG9taNKqjdXCCimmhuytHelqJ5OI2bBe1pwmFo7xgm27OPO/+qL8gP1xoSoJrA79WM9Of45l/9nBe9/kwuevW2om2nhZgvqXwiQbIQosbIYsT6kGiNcu0HXsCvf/gsP/v3p8lnHbSjCYVMNpzdxVXvuoC2lU1TKih0UTjjTI7u7iMzlMcfBH4OzzyT4fjAg7z3utVccKYPbn60+kXl0y+qJajdHMHz8oTU9PcditgMHdf812efZqQ/iTY0aiUkL1RE4gYDT7h4z0I+5/DTbzzF0T0DXPnO80m2L59tKEpHKp8EJEgWQtSUhSxGLFMamphBZijPL761i97DI5P+nmyPYZgKz/VJtsVwbY+7P/9w8BgnxiNHn0/IcAkZDgCWAiPhUsg6OF6IfF+CY8/BbT84yGlrErQ1A8NHoWPzskm9iFpriUdOI5V6GNNcN+VWTaJ9iAMPr6HvUAIsjbkVus4JccMr17NxdYJ//NZ+nu3MUHgE3IzH/keP84tv7eLKd54/52tX+qqNzFDWPql8EpAgWQhRc2ppMaIc0AOHd/Vx1/97gJH+HNqfMIuvfJq7h4l3FrCzEfqOtUDPqeAqr5tI+TkscoSUPek5DcBE44XDWEnYsjZBS1MYlAnR5LIJkGG0dnPz5eSze8m6h1BGDKV8rKhNomWI3HCCffefSSgSRp0Oye0mb7pmHb91fgcAf3zjGfzxPzxFj8qjf23gFzSp/tysr1mNqzaVmqE83htiJDVzkN+c9FnZ5S76+ZeL5V75RIJkIUTZ1HuAOZ8DeiLm8/prhkjEi7+PWn+Pc/E9n1/94Fl+9s2nKWSd4DJ/E2BA+5petlz0NO1r+ghZLq4dYuBoJ3sfPIuBo12jT6AhCxga1PSDrYpBpBle/dLV3PiqVoyQdap99TKTiGxmbfK19GV+ijJ309KawrZD9D6zhgMPnsXg4W4wg3MIpcAKjwaBSmGFDZQKbtPzPLeoRgnJSsxQHu8N8Ud/tYpUZubfbTLh8dd/ckwCZTErCZKFEGWxlBmjWgmu5zqgpzImDz0ep3/InHG2rZ7z9tKDef7znx/h2Yd7gioKYTC3QNNZBm0dvZy9/QEi0SyZdAtZ1yKUtFmz4Tid54/w1JMXMzzUTTZnYD2miEQU4fDkmT0FGIbJ+u4Wrr54JWY0DK1rIdTA/cbnkAhvIN70O/y67wkefeQoqccsRh5rxqA8qQ/VumpTzhnKkZRBKmMSDmkiRX63hUJw+0jKYGXXkl5KNDgJkoUQZbHYGaOFBNfxaGUCz5kO6Lm8j+0oImFNS3J6gnQ95+2dPDjEN//qFwz3ZvG1DwmInA9bzonzupevwos+iW8aKP8MFKdOaDSr0MYRztt8gqj7AvoG4vz9SJKW5giJ2JRZOwWWEWMkYwWl3zq6oEqNPGqJUga+08XggEeuX4PWsHwyT0omEvGJR4sH4o7b+KkCYukkSBZClNVCZ4wWElzHa2TCMdKAeXvP/voYuZECWvuoKJhnQ9cmi7e/ZhNrV6V5bqSPkLGGkBGf9ljXX4Pr97Gx2WaodSXtLRYdrYpkIgSoSQFfKhsGJwFN4aLpGGJ5sG2F60Eur8gXFANDk3839Z62JOqTBMliRlr7NdOutd7Itlu65b5gpNrOffkmep4dYN8jx3DyHu6jcCxb4G+83bz51YqONQUiRjwo02ZO7vRm+nHs3BCezjMwYtPTmw+SZTGD+05Ip8j6ETBNUA41UQRaVJxtKx59Kka+oHA9heMobrujfVIKUz2nLc3XWJqZ7ykGRyIkB0wM89RxoxonCsu9Xr0EyaKoTG4PfYN3k83vxfPzmEaUeHQLnW1Xk4htrfbwappsu9pUK3nO9aKpLcprP/gCHvzeHn7x7V0Uci7e03Ci3+XreohrXmWzbV2aCKOrxaw4oMB38PInMbTBM/ttPv/Npzh0vIlDx5NsXZ+kvUWB4UI4AUZwstPZMdMJkVgOXC+4ghQyNaapQSuamzxio6kS9Zy2NF8T08y0hnQqRlMyOanASyVPFKRefaDuguSvf/3r/Mu//Au9vb2cccYZfPSjH2XHjh0z3v+ee+7h7/7u7zh69CgbN27kgx/8IC9+8YsrOOL6k8nt4cjJW3GcfiLWGiJGHM/Pkso+Qd7pYW332yXYm4Fsu9pUi4Xx6yFoN8MmF7/uzKAN9WceDLq8HdP0fL+ZpzY0kS3s44y1Z9KaBDwbTAttp8nZPRw42M23vj3A8COKDcd+ju4OE04YvODCbq6+ZCXhsAVN3RBtJR6HlpbGPtiKySbOUObywQyyaWoUilAIYlE94cSp8a8eTUwzi1ge+DYtSRc1GiVX+kShGpVPalFdBcl33303N998Mx//+Mc599xz+cpXvsJNN93Ef/zHf9DR0THt/o888ggf+MAH+D//5//w0pe+lO9///u8973v5c4772TrVglUitHap2/wbhynn3h02/gPNGQmMaPbyOZ30zd0D/HolqqnD9RaSkM9bbvlZqllp0p9ybEWg/bZbNjezVs/eRn/+cVH2PvwMZwUPHPHWTTdNIzrPc32jZtoSTThOQMUvF72HTL4rx+vZeh+hT4BlrbRPQVsD34aGyFsjXDTb28C4zAkHYh3VvstigopNkOZLwQpFuggQI5GNKESRCeFGX63hRpOFYhGfGJRjZ33iMf0hJnkyp8o1FK9+mqpqyD5y1/+Mm94wxt43eteB8DHP/5x/ud//odvf/vbvPOd75x2/9tvv51LL72Ut7/97QC8//3v55e//CVf+9rX+Iu/+IuKjr1e5O0jZPN7iVhrxoO8MUopItZqsrlnydtHiEXWV2mUtZnSUC/brtJqKadtoXnOc11ytB2FFfZxXUU2N33GZab3WI/drJLtMV77wRfyg7//Nc88cIThwyt47N6LOevyZ1jbNYgVGcJQFknrdI4dWsNAv4UeK2ahAA3aBd+HTH5CJRC/OicBSznJrrUT9HpSbIZyYMjktjvax1MsQiGwwou/stCc9EkmPFIZc8YqFsmER3Oy+iegorbVTZBs2zZPPfUUv/d7vzf+N8MwuPjii3n00UeLPuaxxx7jxhtvnPS3Sy65hPvuu29Br+1rH69KO/JKc9wUrp/HUjG0nr6TMlQMzz+G46awwsW3iT+6rfwybbNsbg9He/8Fxx0gEl6NFQ5SGkayT5Czj7Km6ybiVQiUl7LtxraVnrBwafIzaLSv8b36+R5aIWhJugyNhMgXZsppc7FC3qT35XsKrYNLsMW2Y74Q3O57/ry/a2PPqbWe9py2rcjmgtfr6w8WzZyiue7qgSBPsohM1uBb97SRzZkzzgrP9h4j1qm8y4m01uQLoeA9lvgzX+rvc8M53Tz7UA++pxk+uZInfrOKnRvirN8YJaRiRMwVvOVKF5yD/MzpI/0Q6EGNaoemCxUvvqCTN1+zAa1MdLwLHeuoeKCcze2hb+gesvm9+LqAoSLBSXbrVTPuO8a2Vzq7m4Hh/1jQY+dNa4yiXzWNnqEGnB79P8UepnV19xkzfdfiUX9SZRrf88dPGMd+DxN/pnq0Ct58fw/d7TY3f/gow7N03GtJ+nS3uzXT2r7YPmrivkprcGyK7KNOWQ7pDzPxdXned90EyYODg3ieNy2toqOjg/379xd9TF9fH52dndPu39fXt6DXPnzo8LLpjup6g2RzDvncMQw1fQrL12l836Hn6CAh88Csz3Xw4MGSj09rn1T+X3G8w5jGRuy8C4yM3tZF1n+ObPrfSEavr/jMzlK3XUiBYzuEjdGdo6/Hd5i+VgwM9HPgQPHveq162fOfo+DMfIkwEvboPenSO+Fv2VwIpU36+60ZH5dssjlx/ACp4WCq8uDB52Ydx+BIhHQqBr6NPWEW03EMdu1vI5sP4zoG/3h7lMiUE5hkk821l+8lPrXG76grXxRa8HucaTxjcgWTdMbi0OFDpIYLs763xZprm82kt7cfz/PxdRCZaa3QTifxUCeer+izLZrDit973WmcuSnJ15oPMXzSo3VliBuuXs+LzuvE0SZHcxb5TBpIl/R9zcXxniOd/ya+HsYwulG0o8mTTj9IX/8zNEXfQNjcOONj9+xf3GPnI2E6dIRdQmrst++P/v41arQVuFaAr4LW4FqPBpOj94fxQAutyWYyNbHPWOzvc8xifw/hWY7b2TQcqOxXb1bFtsHw0ND47alMmKf3dvD5r0SxrOIB4Vz7qkZmmIrT13eX/HnrJkiupnXr1xEuRYJUHdB6A4eP/5p07knikclpA1prsoWTNMV3sm7FC2YMQn3f5+DBg2zYsAHDKG2gmi8c5rmefppCpxMyk9Nud70QjtvH6tUW0ci6kr72XJay7Xzf5+ihA4StMMqzg8caKvj/SmEoRXt7B5s2nVbR91QtGza45AszT/EEMybrR79rz7Fhw8ZZv2vJAZOmZJKWpDsp3SKbU6DixKIaL6xYtSI6aWY3XzAo2ElWrPTobC/dlNNM4xlj5RQYIdavW1/S1wXmvc1mkj5oYprBTLKhFEoZKCP4jhrhMB1d68AIo1I9vORCk9PWNvHrpwa4aHs7a1c0oSNJws1rWGVUfp+qtc/h49/DNVzikZ1TfqNryBb2EI0/wboVL572G/U8lyd3f4VIzCERXdhj5y0/jJHqAT9YsKWUgVIaQ/koQwUnJQYYBsG/lRqdwAn2FYqgXXXwWEU8kajqPmOhv8+I5WMVST/yVfCmy/F7qBUT9wmxqM/w0BAtra3j3zMPA02EtnaP1ubijYvKsa+qF772gHzJn7duIr+2tjZM06S/v3/S3/v7+6fNFo/p7OycNms82/1nYigDs8TBXu0y6G6/BvvkMXKFPUSs1ZijFRoKdg+RcAfdbVcTMuf+6hhG6beb1hm0LhAyE9PyfgFCZgLHPYHWmSp8ZkvfdmpC7zI19RZDTaqZ2ciam6F5zpq5p7aFYRizbhvDNCYED6f+Pr64MhQEF/FY8N+p2zW2EzzemCHlYjFmGs/EcSlV+tedNIY5ttlMlKEIvp1Tv6HB/zGVgnAE2jZC6hgbVvpsWDnacCTRhUqupFqX5nKFI+QL+4haa6YFbUopotZq8vm9OG7PtHUD+cIxHO8gTdb6BT923pSaulnHbhhL6y5yC1P7s0waVy3sM+b6rsXjiraWIPffdorfr63FIx6vjfdTDmP7hHQ2RC7vMTJi4WGO76NG0ia+H5wgJab37ynbvqpu+OV5z3UTJFuWxdlnn83999/PZZddBgRnqffffz/XX3990cecd955PPDAA5Pykn/5y19y3nnnVWDE9SsR28ra7rePL4yz9XEMFSGZ2EFn61VVLWFmmk2YRhTPzxadSfb8LIaKYJpNVRhdbW87MX0R4VjpKTTS9rfU8iOQG8L3NQMjNh0tFio/CFYCos2T7lqphXCel8bz80ETlCJMI46tj+N506/De34aTQFzEY8Vs5NyY8H7S8R8Hno8TsFWuE6EUDg8fj7peZDKGOzZH6GjLbekhY1i/uomSAZ461vfyoc//GG2b9/Ojh07+MpXvkIul+O1r30tAB/60IdYsWIFH/jABwC44YYbePOb38yXvvQlXvziF3P33Xfz5JNPSmWLeUjEthKPbqm5FdxRay3x6BZS2ScwJ5RZgyCloWD3kEzsIGqtrdoYa3XbLWczVakYLz0V0jQlSlN2aiFqqfJHyWgNIz2Q7WcknedfvnuAJ/en2LG5mbe9eiNJ/yAkuoIaycqoaKWapZxkm0YTikhwH6N5QY8Vc5tvubF6qC++GE0Jn9dfM0T/kIkV9inkh2luTk6ok6x44pk4rqtwXbDCczyhKIm6CpKvvvpqBgYG+OxnP0tvby9nnnkmt95663j6xLFjxyZdBjv//PO55ZZb+MxnPsOnP/1pNm7cyD/8wz9IjeR5UsqouVJlShl0tl1N3ukhm989LaXBCnfQ2XpV1QPSWtx2y9lMM1UTS08lm3TFZmcauptV6ig4efYcHOHz3z7AwSdyOEfgJwcGOHgix3tefxpb1vpgZ8hE8hzp/0rFmu8s5SQ7Yq0hbG6g4BwlZCZr8gS9kuYTrMajpQ1W662++EIl4j7RiKa5ycO2bFrb/PHvWTanCIdnKGNSYY16olJMXQXJANdff/2M6RVf/epXp/3tqquu4qqrrir3sEQFSUqDWIyZZqqiEU0sWrkAeWwsjXB5eWyLjVeq8lx8p8APf3Gcb997hIHHfPwDgAv2cdjbl+P/Du7iuivW8YoXdNE38G0c9whxazPKBcgSArLp0+hNH2PkxH+wprV52klvPObT0rzwbaOAzvCF5PWzZNOPETFXYhoxPD9HwTuOZbbRGboAlTo+7bGG1qyMv5CU9/3ijw1309ly5fxO0O0s2GmItYI5cxWXWjXfYPXG1y+sktRc6rG+eKNp9BOVqeouSBYCJKVBlFY10h7qtZtVLGmhDHAzHjyrGQq53GEdoiWh2Lo+yT/fdYCHHh4k+2vQg6B8hRUxsQse/l5N36DP7SMH2X/8AJdeup+41Ypys+PPP5KO8blbr6B/MIavHZrCCUJGbNIYOttsPvreA7QkF17qKkGStZEr6cv/gqx9GFvbQROU8Ho6Iy8i4SbB7Z32OAWsjK6i2b2K/mKPtS4h4cTB98CYIYDQGjJ9kD4B2oNsH7Ssg8j01I9atpBgtRwW2hSokXi+Ipeff+OiUltuJyoSJIu6VcqUhlIsHJIuXPWnodMeyuS081Zy/is286sfPIudd/CegGP9Nn+X2ktzS5hjT9s4TwC5oKrB6tPb2HnFaTzyH/s5dmAQv9cn/VN4zOqlbXU/7YkmIDX+/AODIQ4cjmFZeWLxAVL5ZrR3Kogs2CEOHg/xrR+dpL01t8h3YQKXYIQGwMiBH8N32wkqphxd1GO3rW/mrNMGwMlDy1oITw7s8RwYOQr5EXp6Mzy9P8ULzmmnyX/uVI52nVnOwWqlhUyIWD7pjMlI2sR2pm/3Su6rlstnL0GyWPZKsXCoFttki7k1StrDXCbmEPqeYnAkQnLAHC+ntZD3aIYMXvKmc1i9tZ27//Fh0sN5/COaoRHNSLuNfxhwwbJCbH/xBl7+lh1EExbbXrCW+778GE///DB21iX7sMXQ8xUnzV4c+1T7tZGUyeCwTXNyECOU5uiREQoFe/x2x7Ww7TjfuaeHWLRUlSRyzB0cz1QEJXhsrOUYV71oBa9/+VrC3n5oWgnx9qCsm52B4cNoJ8fPHuvjqz88RDrlcs/9x3n3hBxtovU1oywqx7I027flGRw2ufG6Adpbp9dCboR9Va2RIHke8vZRbCcjs4MNKJPbw5GTty5p4VApnkNUT72mPczX1BxCrSGditGUTI6Xl1pMDuHW562h+69bufufHubgkydxhz38EVBaEWuyuPyt53HOSzeMLzyKNVm88r3PY90Znfzo9sdJ9bTS/3QnK7Yeo/9ghLHw082CToMZt8n0xMnsiUxarORp8IDCYOXLLc9UKVADubjPnQPHePZwhne97jS69dHgzZgRSJ8gl7e5/YcH+ckDfaQe1ugBeHZ9kKP9hivW8YoXrsBw81KKUASNQQomVk5NWiDq+4poRNPeujwbhlSDBMnzcOjYZ4CUzA42GK19+gbvxnH6iU9Y6R4yk5jRbWTzu+kbuod4dMuMJ0aleI75ytkh+gZmvowlswiimKk5hEHLc5uWZNDVbSk5hK0rErzhT17EL+7Yxa9+sAfP9Vl5WhtXvesCVmxsnXZ/ZSjOu/w0Vm5p457PP8xz92+npWuEznW9pHpbcPIWkYhNJJHHy4cZPNiB8qY07tBBYw3DMTAqPGGhtS7axEij8Qc1uZ/DI/3DfKz3KW569Uaed3bwezx0PMs/3rGPZ5/MUngESAexsL8X+oZc7uQxnuuL8vqXbqEzuRrfV/QNFnBtDz9LkC5vSvTc6MbSvwaHgzbcGKFpJ4KS/lVZEiTPQzjURji0YtnODjZqrm3ePkI2v5eItWbagU8pRcRaTTb3LHn7yIy5z6V4jvlwtMV/Pno6Pzs6c7fIWl5RvJxKBlXKQrfpWA6h1ho77xGP6dED8NJyCENhkxf/r+1s2N5F35ERznnJRiLx2Yu4rtzUxu/+2W/x+H+vx8+eRrT7QdrOOYph2vQPhDF/0w7uejrXxGDN5McWnBBZ2+LCc0+nOVb6NrTF5O0QBcdkZGSI5ubW0a6Dp+QGRzj48HPYeQf3CUVPv8PfpfbyiktWsLY7xtfuPkTfYy7eXgUOhMMmTa0xzPhznHbxU3Rs6sOMuNzzeITTV53Og49s5pc/j5J9CBgCQxuELROtNV4t1ACrsoasL86p9K9sVnPo8CHWr1s/rcOg7CsrS4LkeQiZTSjllWV2sNY1cq7tUrpvlfI55sPVYTL5CG11uKJ4uZUMqoSFbNNK2bhjBRt3rJj3/aMJi+e/aiuwFc0VaNUDKoMVbqOl9Rxakl7RhUHZnGI4ZXLxtdsqcsl5bFsPpk3SmRRNRnL67F67xxXvfpL/+dKvSI+cytH+3tBxQglIPwT6pEL5ikgszKVvOJNzLvM52vMD8tkTDJ9IMnLcwuq2cb0nMIx9RPe/kOxAF6ZpsGZrO+u3d/Pw3Xsn1NurvkoHq8thoW1Twice9UkNF+hs92ZsMV3tiYdGPVGZSoLkBSrl7GCta/Rc21K0uK50m+x6XFG83EoGVUK1S3CVmsJA6bWgwdDB97hWDsKntrUPiVNpKhPHMzRisnb7Gt7y1y/jnn96mINP9eIOe+R+AYSBDBhK0dwZ57f/8CLWndWBG/5nNnSEObnvXIaOnkS7HoVjUY73RehY3cuWC3fx2JEVnPuS03jpm3fwxP8crOj7ns1CgtVU0VsXZ7kstJ1LNScelsOJykQSJC9CqWYHa1klc22rpRQtruuhTXatqMcAvxKWMiPUiNu0Vg/C0YiPoSemqYw5ta3bVjbxhj+5hJ/f8fRoiTwXbE0obLL1eWt4xTt2kmiN4qsj+OZ+lL+Klac10dQWY+9Dx0gN5tA2pE62sGLzAK/5PxvYeuH5RfOgq2m+wWo86jO94vTSX3u5n0xXc+JhuZ2oSJC8CKWeHaxFlcq1raZStLiulzbZYunKcXlTUlGmq/eDcMgyecmbzmHtGR3c/Y8P4zoel1x3FhdeveVUfqnKAAUgqKXc1BZj+0s2cOCxE/QdHiGejHLa+S5NoRaUX1sB8pj5BKu+FGAoian7noGhIAC2wsFvIGQGJeJOKe9J8nI6UZEgeYGWy+xgpXJtq60ULa6lTXbjK1cwW8kZobH0Ba0hN6G8VC3mEDbCQXjLBat5+//roJB1aFs5ZUJFJ4AIQY3l4LZQ2GTL81axZms7VrKAERqBQp1vBLFkxfY9+YJi974o4bAmZGqiEc3Os3NTAmVRChIkz4PrpQgra1nNDlY617aaStHiWtpkN7ZyB7PlTJuYmr6gNdPKS1UqfaHai40qLd4cId4cmfZ3pVdjeKfhm0+DvwU1WhxZoYi1RNDGYQzvbJReXdbx1fvnUe/jn49i+x4rrAiHfCKWRo3ex/XAqu5QG5IEyfPguEO4XnpZzQ4ut1zbUrS4LmWb7JnUymKm5aoec4Cnpi/4nj+pvFQmG3x38gVFvjD9PZQq0FjqbHwjBUQKA9O7HG0cQxt7wV8JxIEs2jiO0u2Y3mUoyve7rvdUn3of/0JN3feEQhAOAVrjerWZklNqs+0DtIZVZQhHJEieh/Wr3o+hllfHPcm1rS0h5ZCIFijYzTW1mGkhJMAvvflu04npC753qrxUNq/417taKhJoLGU2vhYCopm6oC32+2v4mwk5N+CZ9+Kb+4ETQATDOxvTuwzD31yagc+g3qvO1Pv4xcLMtQ+wLJ+PnFPKWioBCZLnIWqtwQovv00luba1I6xsXrHzWc55+eJn0qo1E1er1QqWyraDS5wAubwiX1AMDJ16f66nCM1Q4xRY0vst1TatRqCxmNn4agZE5eyCZvibUf4mtBvUiEYnUHp1WWeQp6rHqyMT1fv4l8J1FZpgX5PLL/3ErZbNtQ/wylQ/fPlFfmJOUzvsrVv5+xScHsm1rbKY5S66eUI1Z+LqvVpBMbatePSp2Ph7cj2F4yhuu6OdaETjuHD4qMW6NQ7hUPGdd2uzx29fMbyo1y/1Nq2XQKMa4yx3F7SJNaKXQmufeGKAjq4Uhe4oqcOtS3vCZaIe03hCoWBc+YLCdRWOqxhJm9jOqS9RPU48zMdM+wDHLc9nJEGymGS2DntN8bOqPTyxSNW+NNkI1Qomcr1gm4bMYHW54ynQiuYmj1hUMzRsksqYmIZNS3L6ic3Y9i7YavzfC01FabRtWsvm2wWtWjLOIY7lfsbZO57ALhRwN4cZfK4LZ/jF1R5aTauFNJ7FsMKandtzuG5wFWskbXLjdQO0t57a19RicF+PJEgW4xq9w56onxnDWjUWzObyCtdTmKYGpVAoQiGIRTXxmCaXDw5Oc23viNWYqShi/pY6k5lxDnEkcxd5d4hCIc5QfxOhEYeuLT1YkfvwjfOn5TenM8aEWrvTXzu0THYF1Z48WIiZTqSVUkQjmvZWryJt2pcbCZIFsDw67AmxWFNzgPOFIL0CrfC8U/cJLXCPmog3XiqKmL+FzGSO0Z7Gy2hcF3oHs/TmfoHjDePba7DtAbTtYmejDKSirD8vhWfeh/I3jec5j73m8d7QpFq7E0Ujmm2b8+V50zWolicPGnVNR72QIFkAy6PDnhCLNTUHeGDI5LY72sfTKyDIE7TCCz9QzZY2MTbLWKw0G9RnAC1VTk5ZyEzmik2tmGGDfNZB79cMZ33uDj+J2baLZLSNx/f0kTnho/sBT2OGTAy9Et/ch3Z7grznCa9phTXhkE/IILgiMspzFemsQTZrUA/zIY3+fWrENR31RIJkASyfDntCLNbUYDYa0ePpFeVQyXzJSgQapZgRa9SAaD4zmevO7OTV73s+P/j7X5MeyuMf1diPFTh+UZpn01HyRxWkAQ2hkMnaMzpYdXobcHC0csbkZ07EfZoSweIvb0KdXdcDx1UUHMXKLrdmZyiX0wyrrD84ZaZ9gKfLsw+QIFkAy6vDnhD1oBL5kpUMNJYyI7acAqLZbN65ird+8jLu+cLD7H/sBHafhd0Twk8XIBVFobBiIbZdtIbWFU1oUmgio22wJ5u4+GuiiQvBVq9wa3aGspQzrLZT/DnGSjtmsobk+1bZXPsAy5LqFmKeppZwm0/JtuXWYW+5atSZuGqZaXsWCsb47dnc9MBtIdt7tlnGdDY0qTbz9MfOHiRU+lLuYmfE5JLzKc2dcV7/oYu5/67d3H/X0wwc7KJ7Sw+D6RhtK5NsuXAVkVgYjUYbx2dtb22FNVZ4+t9tJ1gIVuvbsxQzrI6r2Lc7Omk2fYzrguMafON7rbz3Lf01vz0a2Vz7AK3LcxIjQXKDma2E22yVKaTDXmOTmbjSmmt7uj4kEx6erxhOlWd7245iz74IX/h6BxGr+PN0tHr83vWzH9zr5VJuvYyzEsywySXXncXabR387NvDtK1Jse2SPO0r12EoI5hBrlB763rneZDNGUTCGnNqTXOt8HwYTtVGhYtyqod60bPtA3xfgmQxh6WWcJMOe41LZuJKaz7bcz4d95ayvfN5Rd9gCMctvmDQ8xUHTHj94JB8rlU2UwAyVoYtFlWLym3fuGMFK057M/nC82la+Qt8cz+ak1SyvXU9i0Y0LUkP31e4PjA1zlIQj3mTFjY2onqtF10JEiQ3iFKVcEvEthKPbllwuoaofTITV1rV3p6er/B9sEKapkSRlI485ArGeMMSUR2zBSD5gmL3viixqM+5Z+WmnezMJy0n1mQRazoH7Zy9oPbWlUq9yuZC9A2Y07oUjqnmyXlTwueNrx5iOGVOqlRjO6dKO9qOIl8wJqU1NdqEQj3Vi640CZIbRClLuCllSJk3IeqEGdJFW187IaBQ+fGIyWYLQGJRRSzik8sbDA6bRdNv5puWM9/21pVMvUpnDL5z7xa06kDNcK5W7RnKRNyfVKnGthVPPBOdseV8LYy5XGq5XnS1SJDcIKSEmxCNacbFgTUyQ1wPuYy1oFgAEo9pzj07x+Dw9LbCpx5X2u1XydSrfEGRSlt0dPjjs7STb6+9Gcq5Ws7X4phF+UiQ3CCkhJsQjWWuGT/HMTAMPeMMXSVILuPcMlljxvbPYyrdVrjSqULBCUKxW2p3hjJkasJhQAWL+07VRK/dMYvSkyC5QUgJNyEay1wzfvsPWuw7uAKzisdryWWcXToTlA/bvS8adLcrcsQ1Tc36NU7lBycmGbtik8urIMXCU6DAdWvjio2oDgmSG4SUcBOi8cw24zcw5GEYQRthxylS3aKCB3fJZSwuXwhKABoGRCKa8JQjruuq0Y531RmfmH7FJl8IcpDRpz6XaEQXPcERjU8+9gYiJdyEWD4ilsYK+xQcA9efHhB7nsIK+zPWUBaVY5qasDk9SAZgltxgUX5Tr9gMDJnc+m8dxGP++EK9kKlx3eCkJpdXOA06uyzNpqaTILnBSAk3IZaHjjaPC3bkZu24197q0dEm05S1wPUUU0tPOF5Qyk9U18QrNpmsweEeC62Lzx67blAxqpFaVUuzqZlJkNyApISbEI2vKeHzruv7pbJEjTNNTcTycT01Giif4noK31e0JBs7AMkXDJRaWnv2SinYCttRhENgmtN/O65rYDuqZqrLlII0m5qZBMmiYrT2ZYZbiBKqdkOTWqPx0SpoqJFON1PIz9xQo1IH/XAItm/LF+2KmMsrRtImb3x1Y3ZFjEY0ySabgp3EnmFtYq3NUI6lMWkUnlckaFTMK42p3kojyr6kOAmSRUVkcnvGc6U9P49pRIlHt9DZdrXkSgtR52ohl9E39uGZ9+Kb+0lnTG7/1psZHoqh/NUoppfFrGRpOiusZ2w7bTuaRLx2gqVSakr4XHv5Xlas9JbUca+SAWci7rNlU4FErHht51xekckZkz6zqePLZIOqJsOpIHXBNJnW8Ge5l0asFxIki7LL5PZw5OStOE4/EWsNkdGqG6nsE+SdHtZ2v10CZSEWoFZmqaqVyzj1/fvGQdzQ90ANg7+RbK6F4aFOrMhJopGTGP5ZKN06fv9Kl6arhZOIaonHXDrbPQxzcd+BatTiDocm1kWeLpNjfC3A1IAYgrzlfQejGIbGNDSRiJ50NWG5l0asJxIki7LS2qdv8G4cp5/4hPrNITOJGd1GNr+bvqF7iEe3SOqFGFcrQWAtKhY0aLKAC4RQxCs2S1WNXMZi7983+tHqtSgdzBhHwg6uG6G5OUY8fgyln8XwLgDGxlmZ0nSyIGrpaq0Wt+0o9h6IjLepzhcUu/dFMYwg/xyC/2+amljURxHkok++mrC8SyPWEwmSRVnl7SNk83uJWGsmNTiBYIVwxFpNNvcsefuILDYUwMJmjuLR5RcoTwwaItEBtHEQzTDgASaFfBeDIxsqFjRUOpdxatCkVRrf6AEiKDLk8xbDqTgKFYTEugmtBtEqhdLNlRsoy2NB1GwntL6nyOZKE2bUSi1uzwPbMbDCmpakhxVWhEN+UAfb1LieIm8bGCr4N4ppCzZF/ZAgWZSV56Xx/DwRI170dtOIY+vjeF66wiMTtWohM0fxaBUGuEilnh2PRAeINj0C5EE3AVHAAY5TsF18wwMat8PmWNCkVQ7fTIMOoygAMJyauL8JA2nArsYwG3pB1FwntFqD0iYbNrg0V+j8pFS/s5lSZAqjKTITg/ZQKEjRCOpgy1WBRiJBsigr02zCNKJ4fpaQOX3xjOdnMVQE02yqwuhELauVmaNSKEdepTYOEgTI7ZwKCSwgglY2nvkLNG+csbpD47AIDmXO6P+eyhm9vdhtYinmOqHN5RX9/Rb5gkdzmYJH2wm6Fg4MmUXzg6cumpvrdzZXikzBCVInqtkOXlSOBMmirKLWWuLRLaSyT2BOyEkG0FpTsHtIJnYQtRp3xkuIUudVarJBioVuYuqcmQKUjgVpGKoHpRv7t6V0EqXb0KoXrdsn3aYBVBqlu8bzlUtJcucDM53Qal3eWVXbUTy5O0o6Y3LbHcFnH+QHBwvmgEmL5ubzO5srRWZgyOSrd7YXLeknGo8EyaKslDLobLuavNNDNr+biLUac7S6RcHuwQp30Nl6lSzaE8tC6WbHXYIc5JnyTUygACqzDK7+KpR/GtpMgRpA0wFoNC75Qg5ow/BPR+lT+5hSVJWoRtUFMZnrQqGgMAxobgq634XDQfOWcChoIz150dz8fmdzpchMLec24/g8hR4dZy5/KuheDlVNGoUEyaLsErGtrO1++3idZFsfx1ARkokddLZeJeXfhFiwEEEgPFOKgQdEQDdoMuwUSrdjeOeijf1ADsNM0ZTIYxdW4ORWzVgneSlVJWqt6kKjK5YjnMsrPF+NVpIYzQ82gwVz4dHoplKL5lw3eB3HA98PAum8beB5Ct+HkbSJ7UxO+5CqJrVPgmRREYnYVuLRLdJxT1RVo1weV8Qp5LuA4wRVHU7J5S20yqH8DSi9ukojLL/pQVMH0I5dyGGZWd746sdIRBMYOje+oG+iUn3WjZQ7X4sm5ginsyE879Rttm3gOArL8rEdVdGrJmPfP9sJgvR8QUEhCNp9X7FxrUNoNMJqSXq88dVDkxqQ1Mu+ZrmTIFlUjFKGlHkT81bqBgzlvjw+WwA+MGTiuKWZ0RoLGgZHNlCwXbSyUTpGMLPsoVWO1uYCidCLGnLR3mwLqzQptNFDS1sPLd3/TlPCw/BOw/Qux/A3V2nEYr6K/YYyWYPfuijF8IjJvT9LUrBPfacdO5ildRzFb56OYZoa3y/vzHGx79/6Nc6k4H1qUCwBcf2SIFkIUVPK1YChnJfH5wrA8wXFgUMRmpu8Gbt4zdfEhUW+4eGZP0cbh4ACEEH5G0iEXkRzbMOSXqdWzbSwKui6dweoYaJWK02xFeDn8M2n0cYxQs4NEiiXycwntPMPWIv9hhwX9h6IYDsGngepjElrs0c4FLyW6yvyBYPmpEPIHH29MmdXLIfa1+IUCZKFEDVlIQch35vxLrM8dvrlcdtWaB2sfh9rN1vs9WYyVwCufRPbUWSyRtFV8QudHT+1sGgtmt9Fq57RRXoJlF497xnkek0/mbqwSuPjhn+Abx5A+VvG2ogATeBvQRt78cz7UP6mhpxdr5a5Tmi1hmSTPa8T2mK/oVxeoVHEIj6uC6m0STTiERtdr5rPw7BWmGaQizwWIQd5yBrHm7xorlQL5hq59rWYTIJkIUTNqeRByLYVjz4VI50N8hvH2s1ONN80jJnyU23HxwoH+YsTa7hOfY3FLORRGEGZtwU+NJ0xuO1bjVGdQasefHM/yl81IUAOKBT4K/HNfWi38UviVdJcJ7S+53Pi+AGaEuthnicnU39DIVMTtXyckEIZY407gtudscV5o6lMvlbjC+aAoovmZMGcWAgJkoUQy5rrBbNYIUNDSNPc5I2vlIfSVCmwwpotmwq8+bWDtLcWn/6u9KxtQ1VnUBmCdJPYDHeIAyfKUhKv1Lnz9Wa2E1rf80kNu2V7bUOBaWo8X+EVgqB449rC+II5kPxgsTQSJAshBGCGNChFLKqnzAY3dpWChqjOoBNABMgBxbp3ZllMSbyJ6Si+pxgciZAcMDFMg0zWIBHzyeSMkubOL1W9ptAshmlCe6vLjjPzgGYkbXLjdQOTTkQb6f2KypMgWQghSsi2Fe6UyeKRlOKZvVH++eudxGJ+0WYEE1Mb5gp0IhGPRNORReUhNyKlV2N4p+GbT8OknOSgrYg2jmN4Zy+oJN7UhWRaQzoVoymZZKxxaDzm85bXD0wq7TVRpQO05djgxDAgFg3ei+1o2ls9OtsXsVhBiCIkSK4irX2pGyxEhU29PJ7LB125OLXuZ9FsR/HEM9FpAW7eVvQPhPA8RbLJG2+TO3FMY6kNMHugo0nR0vosb37zrTQlBoHIgsqcpTMGgyMRHB28nhWePNaQCZZVXzmbCgPTuxxtHEMbe8FfSZBikUUbx1G6HdO7bEEnElPTUbTW4Nu0JF2UCqoqZHMGibhfM0FZQ6XQzMBzFc5ofvHEhXlKlbmsRQWMnRxPvWoxRmbFK0+C5CrJ5PaMd6Dz/DymESUe3UJn29XSgU6IMphpJX6+oHAcBSFNU0JPymdcqGzWIJ01CBk6SN8YFVJB/mQ45ONNapM75lRqw2yBjlZDZJ19DKagkO0mGWsF5l/mLJ0x+PIdbRw5GidsNbN7f5RwWI9WBji1nXaenZvzvdbaZX3D30zIuQHPvBff3A+cIDiBOBvTu2zR5d/G0lG01tj5oIRfEI9VPx1l6mcwMDR24hNs9+knPNUf81wmnsSOncDmCwaeD4bSFByF6wfvYeLCvLHfd70uypt4FaDYVQtovKsA9UCC5CrI5PZw5OStOE4/EWsNESOO52dJZZ8g7/SwtvvtEigLUWIzrcQfGDK57Y52mps8kk26aIm2uYwdoI/3hsYD7klHNwWhsCYcnv909fRcYY1vPoufS2MX1qBIoPBYSJmzIAAPYYU9mppcwiGfiBW08QVGA5Lp6SJTleOyfimCbsPfjPI3od3FlcSrJ8U+g3xBsXvfqROfsROeergyUOwk1nFBocmNLoJsa/HYsNYmNOEEdOLCvHqeaZ14chyxvElXLYLb6/8qQD2SILnCtPbpG7wbx+knHt02/gMImUnM6Day+d30Dd1DPLpFUi+EKLGZVuJHIxqlFK6rx8tJjZlPlYKxALznRGg84J5YISOXVzy+K45pMqkz10JolUKrQaBl2m0LLXNmWcH4QqHRx46+ZU0QKM91+brUl/VLGXQvtiRevSn2GVhhNX7io0bv43pgVXeo8zLTSWwma1Cwg79FLD0t/7ueA+NiohGfWHTqVQuoh6sAjUiC5ArL20fI5vcSsdZMOwgppYhYq8nmniVvH5EWzkJUQKk6/DUlfNpbg/tNr5ABhrHUqM0GXCA8w+0LK3MWMoP3HgRSo00YXHBcNe/L16WqjLEccmnLZVpd4RCEQ4DW459rvSh2Elsr+d5ieZIgucI8L43n54kY8aK3m0YcWx/H89IVHpkQy1P9tJm1CHbZzgy3L6zMmWVpdm7P4U4oY5vLq0lltCr9vhuiHJ0ou1rLhxeNS4LkCjPNJkwjiudnCZnJabd7fhZDRTDNYrU+hRDlUKoOf5msUbRixNgCJM8LSomNtckdM5+UDqWTKN0GpIG2SbcttsyZFdZYUyampYzWZGMLybSGXMHEyqnx6ha1ynXVpNSZMbU85vlajmXuRPVIkFxhUWst8egWUtknMCfkJANorSnYPSQTO4ha0jpViHqSzhh843ut7N4XxTA05oT0Ct+HoRETXyuSCW9Sm9wxY6kNYzNk0zu5KbQ6nbyzD9vN0T9ooEkAOTB6QZ9GyL0Gww/LTNo8zTYjObVZiNaQzlhghMbzRGutmkIoNCGFxlXjqTMTv2vxmE8mO3OwXOvfHUnNEZUkQXKFKWXQ2XY1eaeHbH43EWs15mh1i4LdgxXuoLP1Klm0J0SdyRcU6axBLOqP5oKeCr4ME5JNPp4H552V5cY3DM6yAMmYJUe6A9uNcLTH49++bRAK2YAZzDL7q1AEV6fmmkmzbZNsbvrivEaYaZyv+cxITmwW4ns+hw4fYv269eO1a2stoLTCp1JopqbOQBD4f+uHrXzlW+0zPke9zMI2ampOvmCgtZ501WLs76LyJEiugkRsK2u73z5eJ9nWxzFUhGRiB52tV0n5NyHqVDgE556VK1pGbjxoecMgG9bOlFc8d470wJDJV+9sIxHZTDSaByyUThAE5V7RmbSxGdNM1iBieQz0h/FVeHxG1DR1sNiLmWdHJ866jtXj9X2TXN4ffQ7G33c9HNDnMyM5sVmI7/mkhgt0tnsYZu3MHk+/4hBQShGNTE+dyeQMmYVdpHLmQk9cQJwvhKZdtYDau3KxHEiQXCWJ2Fbi0S3ScU+IBjO9UcgptjO9hFUxc+VIh0MQi8SJR2MT/jr2mpNn0qbOmDo2aDW5WnNT3J+11uy053DhwCEL2zm1v7LCmi2bCuMttxdzQJ8p4Ctn0F2vM5JLqcpSr++5msqdCz3x5LjYVQuovSsXy4EEyVWklCFl3oQQZVWsvXLIzNPSEhlfgFawZ2+vXGzWtbkpN17zuVAwKDiKN7/21KX9hRzQS1WGbzmpn6osjaESudBjJ8e1etViOZIgWQghloFStFeeOAM5cSYym9MMp8xFV8WQgG9xxoKqmdIA8gVFvmDKtishmYVfXiRIFkIIUXWlKsO33CwkDaCRVCM1Ryw/EiQLIUQJycFbVNJC0gAagaTmiEqSIFkIIUqg0gdvCcZLo1G240LSAOr5PUtqjqgkCZKFEKIEZjt4Z7IGBVsRsfR4nuhEssit8pbjdmyU9yypOaJSJEgWQogSKXbwTmcM/vWulpKVjlrsTFop2ivPNQM5Wye3mcZVLUuZkSxnvdxyklnYpavnWfiZ1Ov3uRIkSBZCiDIqR+mohcykTZ09XEx75fnMQMZjPt/6YSuZ3MzBwsSTgVo4MC9mRjKdMbjtW+Wrl1tuMgu7OOWehZ/4e/A9xeBIhOSAWfbujuWu/1zvJEgWQogKqFbpqKmzh4tprzyfGchM1uAr32qf5wKy+j0wV6Jebi0rx8lNLZwwzaWcs/BTA1WtIZ2K0ZRMTjqRLcfvYbl/n+ciQbIQQizSfA7utWDi7OFiGxXMdwZyPicDjXBgLtVJT6kCxEqkAZRj1rGeZjLLNQtfrOEPvk1L0h1PiSr370HqPxcnQbIQQizCfA/uv33FcAVHVV+W+4G5FAFiJRfjlePkZqHPWQ+zzotVioY/orQkSBZCiEWY78G9YDdGfVpReqUIOquxGK8cJzfzec56mnUWjUGCZCGEWILlPhsqlm6p36HlshivEdJ0RH2RIFkIISqgEUtH1ZpGvhQ/m+X2vuXEVFSKBMlCCFFGEasxGjjMV7VOBip9Kb5WTnpme9+Oq/A8aEl6vPHVQyTik8fbaMGzWLxa+T7XGgmShRCijBLx2mvgkM2F6JtQg7UU41nIArKxbVHKA3OlLsXXWte6md637Sj27Y6SzRn4vmI4ZU4bk+Tv1pZSNPxZqFr7PtcaCZKFEKLMailnNJ0x+M69W9CqY7wG61SLCZ4WtoDMKNuBudyX4mu1a12x9+15ikhY4/rQ3OQRi566fSknDeWYdVzOM5mlaPizWLX6fa4VEiQLIcQS1NvBPV9QpNIWHR3+pKDp1O2LD57mezJQ7wfmUp/0lPM7ZIY0eBCL6ilB9MJPGsox67iYKxCNphQNf5b6+rVyEl9rJEgWQohFKFXAUK1FV8HMY7FbKrP4SQ7M9XepeyyY6x+cubRhxCo+1tm+52O1xKfmTI8Z+w3kC2PNaOrrxHQ+StHwR5Re3QTJQ0NDfOITn+DHP/4xhmFwxRVX8Kd/+qckEjPvZd/85jfzq1/9atLffud3foe/+Iu/KPdwhRANrhSzoVL3dXGKBVwDQ8HstxVWhEywZgjWakm9zqh/979a5vWdjUeDcaczBrd9q53egRCeV/wxLUmPt1w3yMoud8bnrbeTClH/6iZI/uAHP0hvby9f/vKXcRyHP/mTP+FjH/sYn/rUp2Z93Bve8Ab+4A/+YPzfsVjRqRMhhFiwpc6GSt3XhZvpxCJfUOzeFyUc1jTFfXaenaubQLmePtuFfGfj0VOP6R0IceCghVskSPZ8he8HJwrvfUv/jCcF9XpSIepXXQTJ+/bt42c/+xnf+ta3OOeccwD4yEc+wjvf+U4+9KEPsWLFihkfG41G6erqWtLr+9rH8+VHN1/+6LbyZZvN29i20pw6qE8+vGu0r/E92aYT1ft3zfcUWkPE8ormB2utyRdC+J5fss/e18bocwfPP/01g/9K+Zowv7QSYM775AuawWGTiOVPCtLCIUU45I8uelKMpCEWPfXYfEEt6X3V6ndt7DuUy6tJn2cuD64bfJZKBZ/1xNsX+zkv6Ds7ts20xnPB9SAS0YSmpBA4LuTyJkMjJtmsHp+BLiYe9ceD75nHOO+3U5Nq9btWy3xdnm1VF0Hyo48+SnNz83iADHDxxRdjGAaPP/44l19++YyP/f73v8/3vvc9urq6eOlLX8p73vOeBc8mHz50eMZV4GJmBw8erPYQ6kpIgWM7hI3R4MXX4wc2XysGBvo5cGB/tYdZkw4efK7aQ1iUwZEI6VQMfBs7P/3IniuYpDMWhw4fIjVcKNlrwjZGRoZxCpV5zWwuxHfu3UIqbc14n2jUQQG5fHjG+ySbbF560aFgmyVsDH1q/L5rEDIVuVwIxzU4fjyPZfnTHn/i+AFOHIeCM3O6QCTsEY8Vv+xfa9+1bC6E0ib9/ZO3bcExyGYjGIYmGnXp6x8hHDoVnNq2ie2YC/6cF/OdPXLkMOlME46dJGS6qCkBje8qPC9MNp0u6feu3tXad62WGabi9PXdJX/eugiS+/r6aG9vn/S3UChES0sLvb29Mz7ula98JatXr6a7u5vdu3dzyy23cODAAT73uc8t6PXXrV9HOFQXm6om+L7PwYMH2bBhA4ZRvwspKsn3fY4eOkDYCqM8G6UUGEGNTJTCUIr29g42bTqt2kOtKcF37Tk2bNhYl9+15IBJUzJJS9ItWrbMyikwQqxft57O9tJMjyX6g+1kRVqxiswE+soAwyjpa/YNmGjVQUeHP+Ml+uGUiQI6OrwZ71Owk3R1M+M2a2nxSWUcUukQN7wuT3vr5PEHs9Ub+fIdHQyNzLxPb212eet1ky/71/J3bcMGl/yUE55M1uDffxBlOBXCNBXh0ORjqBWF7m6XrVvWLSg9Yb7f2Y6OjcRiHkeOHCbetJFwOIkywximiRkCwwBz9DzFccD1DeJNTSX93tWrWv6u1Spfe0C+5M9b1cjvlltu4Ytf/OKs97n77rsX/fy/8zu/M/6/t23bRldXFzfeeCOHDh1i/fr1834eQxmY8kVdMMOQ7bZQCoUa/99TbjHUjM0fljvDMOpy2ximQXAepIperRr7u2EaJVvlHo8GM6q2k8SZYY1UW4tHPF6679vY+wzKkE2/XSnNSDr437Pdx3Zm32aRCHg+OK6ms0PT2T59m/UNmAynQkQjM+fUDqdC2K6JUWSyuRa/a83N0MzU9+rx+zfOJ38XYP7vZz7fWdeDb/6wnXzBIJ2KE7aa2XcwQiptkspoDAWhkGZVl4Npju7ryvBdr3e1+F2rWX55vjNVDZLf9ra3ce211856n3Xr1tHZ2cnAwMCkv7uuy/Dw8ILyjc8991wgSANYSJAshBDzVa2SbvPVlPC59vK9rFjplbTjXr0pd9ORWjBxUWCx72W+oMbLqpXyM/e8oMNfc5MHCRsr4hIKawxDY5oaBbiuwvdPzSYLUYuqGiS3t7dPS6MoZufOnYyMjPDkk0+yfft2AB544AF832fHjh3zfr1du3YBLHkhnxBCFLPYkm6Vrvsaj7mLrsFa6ycBYrpylBos9p21HUUma1Cwg2tiWo9dqjh1jUwxumDQZ/xKhuvJoh9Rm+oi0Xbz5s1ceumlfPSjH+XjH/84juPwiU98gmuuuWa8ssWJEyd4y1vewic/+Ul27NjBoUOH+P73v8+LX/xiWltb2b17NzfffDPPe97zOOOMM6r8joQQjWihJd3qre5rLdV1bsSGEqU2dkIzMGRyvDeEFZ78vTRNsMJ6QaUGZ/rOOq5i74EItqMwDB/XNThyLITvhTDDFsMjxuhno0FpfF+RyZuERp8iZAazzELUkroIkiHIX/7EJz7BW97ylvFmIh/5yEfGb3cchwMHDpDL5QAIh8Pcf//93H777WSzWVatWsUVV1zBe97znmq9BSHEMjHfS/n1Vve1Fuo6R6z6OrGoloknNOM1pEM+E9egRyOandtzRBeQYjLTd3ZgyOS2O9qJhDXK0Dz9bAwr7ON7HpGIj9Hh0tsfoqXZQwOuo9iwxh7v0Geamq52+dxEbambILm1tXXWxiFr165l9+7d4/9etWoVX/va1yoxNCGEWLTFNJOodsrDYvN55zP7O9d9EvH6OrGoloknNFbYJxzWRCxNePSo77qKfEHhztzgbkYzfWejEU1LMqhMETKD1/LwCYeDhZed7R47zswBmpG0yY3XDUyqQCKfm6g1dRMkCyHEbKodOFZKLaU8zNd80kraWz0UkMkZc84Ql6JL3XJJ1xib8Q+ZmrB5KkiGyucCG4YmNtooxHY07a3esi/3JmqbBMlCiLqXzhjc9q3aCBwdV5HLFw8+cnmF4y4tMKmFlIeFmm9aCczdcW+pn1+95YHXM9dTeK4K6iB7QQfAXH60/rsQdUCCZCFE3auVwDGTNdh7IILWmmL9h1w3qCObyRpLnkErdwmzYjPzA0PBNrTCipAJljX/QHK+s7/lDuzrLQ+8Fsy3pfiYkDnWQlxhO0HnENcLThBH0ub4iYqciIhaJ0HyMqa1T94+guelMc0motZalGqsS41ieal27duCrbAdRTgEpjk9yHJdA9tRFOzankmbKaVjfAFYWNMU99l5dm5BgXKtKEW6Rj0K0iuCz8uZ58zufNN7fvuK4fF/W5Zm59k5HFczPDxMS0sL+YIxKQ9ZTkREPZAgeZnK5PbQN3g32fxePD+PaUSJR7fQ2XY1idjWag9PiLo0tkhKo/CK5XsqsML++Ir+WpTOGPScCHG8N0QkrIlMmJn3fYVp+KAV6axBKqOITZgQb7R83lo32wzvwJA5Xod44szuWB7yfGd253uVZuzEb6Zcb6UU0YjkIYv6IkHyMpTJ7eHIyVtxnH4i1hoiRhzPz5LKPkHe6WFt99slUBZiERJxny2bCiRiPrHo9IAjl1dkcgaJeG3OoI3NGh7vDY3PGIcm1K71/dHxxzw8P5gZtJ3J71Muo1fGXDO8+YJi30ELvbFAU8Jn/ZoC/oSvXaFg4PnMe2Z3rqs0xUrzaQ3pjAVGCKXkuyHqjwTJy4zWPn2Dd+M4/cSj28Yvs4XMJGZ0G9n8bvqG7iEe3SKpF0IsQjgEsaieIaAA26nwgBZgbNbQCmvCoWDGOzwhSHY9RUsStp6Wx3aMaSW8QPJ5K2WuGV7PCzE4FOLJ3caMrZ+TCY/mpF+Smd1ipfl8z+fQ4UOsX7cewzTkuyHqjgTJy0zePkI2v5eItWZaHppSioi1mmzuWfL2EWKR9VUapRBiLuUsYRaNBE0nwqP/naJxPU00ojGM2r90XitlAcs5jplmeHN5j0TcZ9vmPK3N0z+jfMHA89WkKwVLNTXX2/d8UsOFRbdAF6LaJEheZjwvjefniRjxorebRhxbH8fz0hUemRBLtxxq30oJs/mplXrS1RyHYQTP3dE2/XmzOc1wqvyLWYWoZxIkLzOm2YRpRPH8LCEzOe12z89iqAim2VSF0QmxOLUWOJYzWJcSZvNTK2UBa2UcQoiFkyB5mYlaa4lHt5DKPoE5IScZQGtNwe4hmdhB1FpbxVEKsTC1EjhWKlivVAkzd0rjE8cL8pILBYNyLVkodWpCtcsC1to4Fms5XKURYioJkpcZpQw6264m7/SQze8mYq3GHK1uUbB7sMIddLZeJYv2RN2phdq3tRKsL5VZpGQYBHV1HVdRcBQru9ySz8zXSoqEOKXWrtIIUUkSJC9DidhW1na/fbxOsq2PY6gIycQOOluvkvJvQixBLQTrS+X7im2b83hT1nvlC0EzlBuvG2D1CrfkgaqkJixcuWd4G+XET4jFkCB5mUrEthKPbpGOe0KIcRNnDWF6UGQYsLLLLUuAPHkc9ZmaMGcr7xBY4dLMuM41w2s7Civs47qKbG76Z7mQILoRTvyEWAwJkpcxpQwp8yaEGCezhos3ZyvvkE9TQrNze64kgfJcn1Uma3DHD1vJ5owZq1hImoQQs5MgWQghxLhGmzWs1IKzmVJFrLAiHNZBK+8MpNKKWLQ045jts+ps93jX9f1ywiPEEkiQLIQQouFUa8HZ1FSRkAlNcZ901sBxKtvKu9FOeISoNAmShRB1K50xGByJkBwwMczpM3IyU7Z81UrqiGVpdp6dI5VRjKRNaeUtRB2RIFkIUZfSGYMv39HGkaNxmpJJVJFYSMqF1ZdMNlj45vsmufz0z8z1FpaaUCszqZaliXmQyRW/PV9Q5AumBMtC1BgJkoUQdSnIAQ1hhT1aku6kxjjB7VIurJ6kM8FCswOHLGyneDBshTUX7sjW5WIz21HsPRDhtjvaZxx/tU7qSt3ARYhGIUGyEKKuWZZHPKaLzCTXdrkwMVm+oMjmDM7emicUmh5EFgoGBUfx+muG6jJg87wgUI6ENS1Jb9rt1TqpkwYupSEnGo1JgmQhhGhAMx20fU8xOBKhK2PQ3FyFgc0h2VS8RnI2pxlOmSTitRdopDPGeD3kYqkipnmqikWkxmpASwOXpZMTjcYlQbIQQjSY2Q7aWkM6FWPtmhg3vXFQDtpLNLatewfMGVNFrLBm3WobK+xj1ujFjXpt4FIL5ESjcUmQLIQQDWa2g7bWGjvvMTQSkoN2CYxt66a45vxzctNaeY+libzmimG+/6PmknXcE7VHTjQajwTJQgjRoIodtLXWWNb0nFixcBPTLKywHwTA4VO3h0IQi3oMp0xaWzzCcsQVoq7IT1YIUdds2ySbU0WrWwhRLmNpFsd7Q+Ntp0NTjqjRiGbb5nx1BiiEWDIJkoUQdSnoqOZyJGUynArNWCe5HsuFLWeVaiO9VOMpLWFNOKyJWHrSTLHrKvIFNS39Yur7s53gPmNpGQNDky/LS1UEIapHgmQhRF1qSvi89bp+9uw9zPp166XjXp2rVhvppYpEfEKmJmzqaekUrnfqzC1iTX9/jgt7D0TGF/tZYc1X72wnPKEEXqWqItTLyUk1zVQxZizlJhZVM+Qki3olQbIQom41JXzamgt0tnsYphyc6lmttJEul0R8+vsbGDK57Y52rHCwwNI0mbSwrxJVEer15KTSZqsYky8odu+LEov4nHt2btriTDnRqF8SJAshRIMqNjuodZDHbUWrM6bZ1Eob6cUIZo1PBUeOB64bfAbGaIxU7P1FI0FzkWpVRWj0k5NSma1iTCyqiEV9cnmDwWGz6AmFnGjUJwmShRCiwcw2O6g12I5Jd7crB+0SMM1ge+cLalJ6hespHFdhO4qVXQvb1ratcD3I5YO85nLnKdfzyUmlFasYE49pzj0rx+CwyY3XDdDeOr16jJxo1CcJkoUQYpFqtRXtbLODvudz6PAhtm5ZJ4FRCVhhzc6zc7hT4qJcXjGSDoKm1SvceX8PbFvx6FOx8aDbcRS33dE+KciW7m21J0iZ0bS3enS2S4nFRiFBshBCLEKtt6KdaXbQ93xSw4XRMUmu5FLlC0bRLmtKqfGgaSGfv+sFl/ZDpsY0NWhFc5NHLKrHX0+6twlRGRIkCyHEIkgr2uWt3AveQqYGFZSHi0X1hEv80r1NiEqRIFkIIZZAWtEuT6Vc8DZxgWUuP5pm4SkUMz+3EKL8JEgWQghRFbWa0z1fS13wVmw2Ol8I8pDRilAouM/UTn6ieqSe9PIiPz0hhBAVV+s53ZVQbDZ6rHbyWB5yKMS0urui8qSe9PIkQbIQQoiKSmcMek6EON4bGm+kMZFpgu+r8ZxuqO8Z59nMVDt5ch6yqDapJ708SZAshBA1oN5TD+ZrbAb5eG+I3fuihEP+tHSCaESzbXMeUGSyBv96V8uym3GWy/q1R+pJLz8SJAshxBKUIphZTqkH41VBwppwWBOxNOEJRyLXDRpoeKOlZgv28qoi0kiX9dMZg8GRCMkBE8Oc/ntolBM/0bgkSBZCiEUoZTCzHMvJRSI+IVMTNicHycCkznVjlksVkUa5rJ/OGHz5jjaOHI3TlEyiirydRjnxE41LgmQhhFiEcgQzyyUQFLNbzGX9WkvXCU78Qlhhj5aki5oSJTfiiV+tfQZi6SRIFkKIRZIcRVEL5pOuk4j5vP6aIRLx4kFauQI4y/KIx3SRmeTGOvFbTilTy4kEyUIIIaomSK04NXvueOC6wUyjMUNat+0oXDf437l8kMM8MHQqOFluM3ZzpeukMiYPPR6nf8icMf1HArilWY4pU8uBBMlCCCEqzjSDYDZfUJNykF1P4bgK21Gs7HKJWJODOttRPPpkbPyytuuC4xrcdkf7eAC4XAO+mdJ1cnkf21FEwpqWpDftdgngSkdSphqLBMlCCCEqzvcV2zbnx6tYjCkUDAqO4sbrBli9wh0PhseqiOTyinRGETLBDGnQCpQeb74hAd/MIhLACbEgEiQLIUSNWA61cSdWBYHpi5yUASu7XFavcEdngo1JVUTyBYXjGqA0eMFTNMV9kgmNZWkk4BNClIoEyUIIUWWNVBt3LgutCjL1/lPbNgOETEYDZFFrbNskm1NFq1sIUeskSBZCiCprlNq487XQqiBT7y9tm2tfcOLnciRlMpwKzVgnuRFO/ETjkiBZCCFqgJSTE0tVS+k6TQmft17Xz569h1m/bv2y6bhXS5+BWDoJkoUQQiyKNE+oDXOl69iOwgr7uK4im5v+eZUrgGtK+LQ1F+hs9zDMxp4xXk4pU8uJBMlCCCEWrNrNEyoxYzfxJMD3FIMjEZID5visaK2cBMyVrpPJGtzxw1ayOYPhlARw5bDcUqaWCwmShRBCLFi5mifMNTvteqoiM3ZTTwK0hnQqRlMyOZ5fW0v1mGdL1+ls93jX9f0SwJWZpEw1HgmShRBCLFopmyfMd3b6Da8aIjTL5ftSBHxTTwK01uDbtCRdlFJ1V49ZAjghFk6CZCGEEDVhvrPTIVPT2T69c1w5jJ0EaK2x8x7xmB6dSZZ6zEI0OgmShRBC1BRp7SuEqAVSk0QIIYQQQogpJEgWQgghhBBiCkm3EEIIsWjSPEEI0agkSBZCCLFgy6V5wthJgNaQK5hYOTVe3UII0dgkSBZCCLFg5WyeUAuz01NPArSGdMYCIzSpTnK9nwQIIWYmQbIQQohFKXXt3VqanZ56EuB7PocOH2L9uvU113FvjLQJF6K0JEgWQghRE2qtte/EkwDf80kNF+hs9zBmaWRSLdVuEy5EI5IgWQghxLyVe7ZSOsMtTrnahAuxnEmQLIQQYl5ktrL2SSMWIUpHgmQhhBDzIrOVQojlRIJkIYQQCyKzlUKI5UAKPQohhBBCCDGFBMlCCCGEEEJMIekWQghRp6QurpiqFhqxCNEoJEgWQog6JJUmxES11IhFiEYhQbIQQtShalaaGJuttB2F503+u+0oBoaCIE1msiun1hqxCNEIJEgWQog6VslKExNnK9PZEHsPRLCdyUGZFfb56p1thEMyk11p0ohFiNKSIFkIIcS8TJytHBgyue2OdiJhTWTCTLZpghXWUjNZCFH3JEgWQggxbxNnK6MRTUvSk5rJQoiGJMtdhRBCCCGEmEKCZCGEEEIIIaaQdAshhKhjUhdXCCHKQ4JkIYSoQ1IXVwghykuCZCGEqEO1UhdXZrKFEI1KgmQhhKhT1ayLKzPZQohGVxdB8uc//3l+8pOfsGvXLsLhMA899NCcj9Fa89nPfpY77riDkZERzj//fP78z/+cjRs3ln/AQgjR4GplJlsIIcqlLq6HOY7DlVdeye/+7u/O+zFf/OIX+epXv8qf//mf881vfpNYLMZNN91EoVAo40iFEGL5aEr4dLZ7M/4nAbIQop7VRZD8B3/wB9x4441s3bp1XvfXWnP77bfz7ne/m8suu4wzzjiDT37yk5w8eZL77ruvzKMVQgghhBD1ri7SLRbqyJEj9Pb2cvHFF4//LZlMcu655/Loo49yzTXXzOt5tA5y6RzPLcs4G5WvfbQGx3XxVF2ch1Wdr318DY6KYuARjSVYv6aLUKaAl3MJeYrWFTF836v2UGuKr30MU+FrD3zJfZ0P2WaLI9tt4WSbLY5st4XzdXBsHIvbSqUhg+Te3l4AOjo6Jv29o6ODvr6+eT+P7weXCp852Fu6wS0bFk8dOFHtQdSZKIMDAC3Q3sKrXreiyH2yFR5T7Tt9fTeQr/Yw6opss8WR7bZwss0WR7bb4ozFbaVStSD5lltu4Ytf/OKs97n77rvZvHlzhUY0XSgU4pxzzsEwDJSaeXGKEEIIIYSoDq01vu8TCpU2rK1akPy2t72Na6+9dtb7rFu3blHP3dXVBUB/fz/d3d3jf+/v7+eMM86Y9/MYhoFlWYsagxBCCCGEqF9VC5Lb29tpb28vy3OvXbuWrq4u7r//fs4880wA0uk0v/nNbxZUIUMIIYQQQixPdbGqqqenh127dtHT04PneezatYtdu3aRyWTG73PllVdy7733AqCU4oYbbuDzn/88P/rRj9i9ezcf+tCH6O7u5rLLLqvW2xBCCCGEEHWiLhbuffazn+U73/nO+L9f85rXAHD77bdz0UUXAXDgwAFSqdT4fd7xjneQy+X42Mc+xsjICBdccAG33norkUikomMXQgghhBD1R+lS18sQQgghhBCiztVFuoUQQgghhBCVJEGyEEIIIYQQU0iQLIQQQgghxBQSJAshhBBCCDGFBMlTfP7zn+eNb3wj5557LhdeeOG8HvNHf/RHbNu2bdJ/N910U5lHWjsWs8201vzd3/0dl1xyCTt27ODGG2/kueeeK+9Aa8zQ0BAf+MAHOP/887nwwgv5kz/5k0llDYt585vfPO279rGPfaxCI66Or3/967zsZS/jnHPO4brrruPxxx+f9f733HMPV155Jeeccw6vetWr+MlPflKhkdaOhWyzO++8c9p36pxzzqngaKvv17/+Ne9617u45JJL2LZtG/fdd9+cj3nwwQe59tpr2b59O5dffjl33nlnBUZaWxa63R588MFp37Vt27bR29tboRFX3xe+8AVe97rXsXPnTl74whfynve8h/3798/5uOW8X1vMNivVfk2C5Ckcx+HKK69ccNORSy+9lJ///Ofj/336058u0whrz2K22Re/+EW++tWv8ud//ud885vfJBaLcdNNN1EoFMo40trywQ9+kL179/LlL3+Zf/qnf+Khhx6aV8D7hje8YdJ37UMf+lAFRlsdd999NzfffDPvfe97+c53vsMZZ5zBTTfdRH9/f9H7P/LII3zgAx/g9a9/PXfddRcvf/nLee9738uePXsqPPLqWeg2A2hqapr0nfrxj39cwRFXXzabZdu2bfzZn/3ZvO5/+PBhfu/3fo+LLrqI7373u7zlLW/hIx/5CD/72c/KPNLastDtNuY//uM/Jn3fOjo6yjTC2vOrX/2KN73pTXzzm9/ky1/+Mq7rctNNN5HNZmd8zHLfry1mm0GJ9mtaFPXtb39bX3DBBfO674c//GH97ne/u8wjqn3z3Wa+7+sXvehF+tZbbx3/28jIiN6+fbv+wQ9+UM4h1oy9e/fqrVu36scff3z8bz/5yU/0tm3b9PHjx2d83PXXX6//8i//shJDrAmvf/3r9cc//vHxf3uepy+55BL9hS98oej93/e+9+l3vvOdk/523XXX6Y9+9KNlHWctWeg2W8i+bjnYunWrvvfee2e9zyc/+Ul9zTXXTPrb+9//fv22t72tnEOrafPZbg888IDeunWrHh4ertCoal9/f7/eunWr/tWvfjXjfWS/Ntl8tlmp9msyk1wiv/rVr3jhC1/IK17xCv7sz/6MwcHBag+pZh05coTe3l4uvvji8b8lk0nOPfdcHn300SqOrHIeffRRmpubJ13+ufjiizEMY850gu9///tcdNFFvPKVr+RTn/oUuVyu3MOtCtu2eeqppyZ9TwzD4OKLL57xe/LYY4/xwhe+cNLfLrnkEh577LFyDrVmLGabQTAjNvVeCQAACrpJREFU+NKXvpQXv/jFvPvd7+bZZ5+txHDr1nL/ni3Va17zGi655BLe+ta38vDDD1d7OFU11gStpaVlxvvI922y+WwzKM1+rS467tW6Sy+9lMsvv5y1a9dy+PBhPv3pT/OOd7yDf//3f8c0zWoPr+aM5Z9NvcTW0dFBX19fNYZUcX19fbS3t0/6WygUoqWlZdb8vFe+8pWsXr2a7u5udu/ezS233MKBAwf43Oc+V+4hV9zg4CCe5xX9nsyUj9bX10dnZ+e0+y+X79VittmmTZv4q7/6K7Zt20YqleJLX/oSb3zjG/nhD3/IypUrKzHsulPse9bZ2Uk6nSafzxONRqs0strW1dXFxz/+cbZv345t29xxxx3ccMMNfPOb3+Tss8+u9vAqzvd9/uqv/orzzz+frVu3zni/5b5fm2i+26xU+7VlESTfcsstfPGLX5z1PnfffTebN29e1PNfc8014/97LEH8sssuG59drkfl3maNar7bbbF+53d+Z/x/b9u2ja6uLm688UYOHTrE+vXrF/28YvnauXMnO3funPTvq6++mm984xu8//3vr97ARMM57bTTOO2008b/ff7553P48GFuu+02/vZv/7aKI6uOj3/84zz77LP867/+a7WHUjfmu81KtV9bFkHy2972Nq699tpZ77Nu3bqSvd66detoa2vj4MGDdRskl3ObdXV1AdDf3093d/f43/v7+znjjDMW9Zy1Yr7brbOzk4GBgUl/d12X4eHh8e0zH+eeey4ABw8ebLggua2tDdM0py046+/vnzarMqazs3Pa7Mps9280i9lmU4XDYc4880wOHTpUjiE2hGLfs76+PpqammQWeYHOOeccHnnkkWoPo+L+4i/+gv/5n//ha1/72pwzm8t9vzZmIdtsqsXu15ZFkNze3j7t0nY5HT9+nKGhoQUFO7WmnNts7dq1dHV1cf/993PmmWcCkE6n+c1vfrPgqiK1Zr7bbefOnYyMjPDkk0+yfft2AB544AF832fHjh3zfr1du3YB1PV3bSaWZXH22Wdz//33c9lllwHBpbb777+f66+/vuhjzjvvPB544AFuvPHG8b/98pe/5LzzzqvAiKtvMdtsKs/z2LNnDy9+8YvLOdS6dt555/HTn/500t+W0/eslJ555pmG3H/NRGvNJz7xCe69916++tWvzmuyabnv1xazzaZa7H5NFu5N0dPTw65du+jp6cHzPHbt2sWuXbsm1a+98soruffeewHIZDL8zd/8DY899hhHjhzh/vvv5z3veQ8bNmzg0ksvrdbbqKiFbjOlFDfccAOf//zn+dGPfsTu3bv50Ic+RHd39/iBvdFt3ryZSy+9lI9+9KM8/vjjPPzww3ziE5/gmmuuYcWKFQCcOHGCK6+8cnwh36FDh/iHf/gHnnzySY4cOcKPfvQjPvzhD/O85z2v7mfgZ/LWt76Vb37zm3znO99h3759/Pmf/zm5XI7Xvva1AHzoQx/iU5/61Pj9b7jhBn72s5/xpS99iX379vH3f//3PPnkk/MOEBvBQrfZ5z73OX7+859z+PBhnnrqKf6//+//o6enh+uuu65ab6HiMpnM+H4LgsXFY/s0gE996lOTSi2+8Y1v5PDhw3zyk59k3759fP3rX+eee+6ZFMQsBwvdbrfddhv33XcfBw8eZM+ePfzf//t/eeCBB3jTm95UlfFXw8c//nG+973v8alPfYpEIkFvby+9vb3k8/nx+8h+bbLFbLNS7deWxUzyQnz2s5/lO9/5zvi/X/Oa1wBw++23c9FFFwFw4MCB8dWVpmmyZ88e7rrrLlKpFN3d3bzoRS/ife97H5ZlVXz81bDQbQbwjne8g1wux8c+9jFGRka44IILuPXWW4lEIhUdezXdcsstfOITn+Atb3kLhmFwxRVX8JGPfGT8dsdxOHDgwHj1inA4zP3338/tt99ONptl1apVXHHFFbznPe+p1lsou6uvvpqBgQE++9nP0tvby5lnnsmtt946fpnx2LFjGMapc/3zzz+fW265hc985jN8+tOfZuPGjfzDP/zDrAs8Gs1Ct9nIyAgf/ehH6e3tpaWlhbPPPptvfOMbbNmypVpvoeKefPJJbrjhhvF/33zzzQBce+21/PVf/zW9vb0cO3Zs/PZ169bxhS98gZtvvpnbb7+dlStX8pd/+ZfLZmJkzEK3m+M4/M3f/A0nTpwgFouxdetWvvzlL/OCF7yg4mOvln/7t38DgsZQE918883jJ7KyX5tsMdusVPs1pbXWSxy/EEIIIYQQDUXSLYQQQgghhJhCgmQhhBBCCCGmkCBZCCGEEEKIKSRIFkIIIYQQYgoJkoUQQgghhJhCgmQhhBBCCCGmkCBZCCGEEEKIKSRIFkIIIYQQYgoJkoUQQgghhJhCgmQhhBBCCCGmkCBZCCGEEEKIKSRIFkKIBvHwww+zbds2tm3bxt133130Pr/5zW/YuXMn27Zt42/+5m8qPEIhhKgfEiQLIUSDuOCCC3jZy14GwN///d/jed6k2/fv38873/lOstks1157LR/60IeqMUwhhKgLEiQLIUQD+cAHPoBpmuzfv5/vfe97438/ceIEb3/72xkaGuKlL30pf/mXf4lSqoojFUKI2iZBshBCNJAtW7Zw7bXXAvC5z30Ox3EYGRnh7W9/O0ePHuWCCy7gM5/5DKFQqMojFUKI2qa01rragxBCCFE6J06c4IorriCfz/PHf/zH3Hffffz6179m69atfP3rX6e5ubnaQxRCiJonQbIQQjSgW265hS9+8Yvj/16zZg3f+MY36O7unnbfTCbDl770JZ588kmefPJJ+vr6uPbaa/nrv/7rSg5ZCCFqiqRbCCFEA3rzm9+MYQS7+NbWVr70pS8VDZABBgcH+dznPsdTTz3F9u3bKzlMIYSoWZKUJoQQDcZ1Xf7sz/4M3/cByOVyRKPRGe/f3d3NT3/6U1asWEGhUGDHjh2VGqoQQtQsmUkWQogGorXmIx/5CD/+8Y9pb29n7dq1FAoFPvvZz874GMuyWLFiRQVHKYQQtU+CZCGEaCCf/OQn+c53vkM8HucLX/gCf/iHfwjAXXfdxd69e6s8OiGEqB8SJAshRIP4l3/5F770pS8RDof53Oc+x44dO7jmmmvYtm0bnufxqU99qtpDFEKIuiFBshBCNIC77rqLv/3bv0Upxc0338yLXvQiAJRSvO997wPgv//7v3n44YerOUwhhKgbEiQLIUSd+8lPfsKf/umforXmj/7oj3jVq1416faXv/zlnHvuuUBQGk4IIcTcJEgWQog69uijj/K+970P13V5xzvewY033lj0fmO5yY888gj33XdfBUcohBD1SUrACSFEHdu5cyePPfbYnPd74QtfyO7du8s/ICGEaBAykyyEEEIIIcQUMpMshBCCr33ta4yMjOB5HgC7d+/mH//xHwF43vOex/Oe97xqDk8IISpOaa11tQchhBCiul72spdx9OjRorf9/u//Pv/7f//vCo9ICCGqS4JkIYQQQgghppCcZCGEEEIIIaaQIFkIIYQQQogpJEgWQgghhBBiCgmShRBCCCGEmEKCZCGEEEIIIaaQIFkIIYQQQogpJEgWQgghhBBiCgmShRBCCCGEmEKCZCGEEEIIIaaQIFkIIYQQQogpJEgWQgghhBBiiv8fvhOD8zKN9RgAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Создание экземпляра с оптимальными параметрами\n", + "rf_custom_optimal = RandomForestClassifierCustom(n_estimators=100, max_depth=None, max_features=None, random_state=42)\n", + "# Генерация искусственных данных\n", + "X, y = datasets.make_moons(n_samples=500, noise=0.30, random_state=42)\n", + "# Обучение модели\n", + "rf_custom_optimal.fit(X, y)\n", + "# Визуализация разделяющей границы для оптимальной модели\n", + "plt.figure(figsize=(8, 6))\n", + "plot_decision_boundary(rf_custom_optimal, X, y)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Вроде неплохо выглядит" + ], + "metadata": { + "id": "lmO0vEiZfKjE" + }, + "id": "lmO0vEiZfKjE" + }, + { + "cell_type": "markdown", + "id": "5fad02ca-af42-4142-8201-93602cfea49f", + "metadata": { + "id": "5fad02ca-af42-4142-8201-93602cfea49f" + }, + "source": [ + "#### Задание 2. 3. Корреляция базовых моделей\n", + "\n", + "**3 балла**\n", + "\n", + "Как мы выянили на лекции, для того, чтобы bagging работал хорошо, предсказания наших моделей не должны сильно коррелировать. Для этого в случайном лесе применяются различные подходы, в том числе и RSM. Давайте посмотрим, как влияет параметр `max_features` на корреляцию базовых моделей в случайном лесу из `sklearn`. В качестве примера будем использовать датасет `breast_cancer`. Для расчета корреляций используйте приведенную ниже функцию `base_model_pair_correlation`. Для каждой модели у вас будет получаться набор значений (попарные корреляции всех деревьев), дальше можно изобразить их в виде боксплотов, как мы на лекции рисовали распределение метрик." + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "c755182a-f385-4f0b-a153-60ef6e572f3b", + "metadata": { + "id": "c755182a-f385-4f0b-a153-60ef6e572f3b" + }, + "outputs": [], + "source": [ + "# Функция для расчета попарных корреляций базовых моделей в случайном лесу\n", + "def base_model_pair_correlation(ensemble, X):\n", + " corrs = []\n", + " for (i, est1), (j, est2) in combinations(enumerate(ensemble.estimators_), 2):\n", + " Xi_test = X\n", + " Xj_test = X\n", + "\n", + " ypred_t1 = est1.predict_proba(Xi_test)[:, 1]\n", + " ypred_t2 = est2.predict_proba(Xj_test)[:, 1]\n", + "\n", + " corrs.append(pearsonr(ypred_t1, ypred_t2)[0])\n", + " return np.array(corrs)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "65ab9ab7-311a-4bb1-8adc-f66c063e827e", + "metadata": { + "id": "65ab9ab7-311a-4bb1-8adc-f66c063e827e" + }, + "outputs": [], + "source": [ + "# Загрузим данные\n", + "breast_cancer = datasets.load_breast_cancer()\n", + "X = breast_cancer.data\n", + "y = breast_cancer.target\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "3d26f651-5f5c-41a5-a80a-b37be6e1802c", + "metadata": { + "id": "3d26f651-5f5c-41a5-a80a-b37be6e1802c" + }, + "outputs": [], + "source": [ + "# Функция для расчет попарных корреляций\n", + "def base_model_pair_correlation(ensemble, X):\n", + " corrs = []\n", + " for (i, est1), (j, est2) in combinations(enumerate(ensemble.estimators_), 2):\n", + " ypred_t1 = est1.predict_proba(X)[:, 1]\n", + " ypred_t2 = est2.predict_proba(X)[:, 1]\n", + " corrs.append(pearsonr(ypred_t1, ypred_t2)[0])\n", + " return np.array(corrs)" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "d34e1758-d2dc-4820-afe5-2abdd850b590", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "d34e1758-d2dc-4820-afe5-2abdd850b590", + "outputId": "344bd4a8-aa59-4428-9120-d8f132a59745" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAK9CAYAAACHG1c1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1nklEQVR4nOzdd3zT1f7H8XcbaKGU0gGWva60rJYWGQLFCoIgS4YgYkEQBBlOvDJkiyBeUNkqKBuZspShqKBXCijjgoCA7FlLaSnQ0kKS3x/8EhtasOlISHk9Hw8eJOd78s0nyUn6/XzP+Z7jZjabzQIAAAAAAC7B3dkBAAAAAACAzCORBwAAAADAhZDIAwAAAADgQkjkAQAAAABwISTyAAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHgP+3evVqNW/eXNWqVVOtWrWcHU6OunXrlj744ANFRkaqcuXK6tevn7NDAjKtcePGGjx4cJYeGxwcrKlTp+ZwRM539uxZBQcH66uvvsrR/Wbnvc6Or776SsHBwTp79qzDn9uRduzYoeDgYO3YscPZoQBwcfmcHQCA3PfVV19pyJAhWrFihUJCQpwdTrZs3bpV+/bt0yuvvJKj+z127JiGDBmihg0bqnfv3ipQoECO7t/ZVq5cqc8//1wvvPCCqlatqpIlS+bK86xbt05xcXHq3r17ruw/rwgODra5X7BgQZUsWVKtWrVSjx49VLBgQSdFdnc7duxQt27dJEkffPCBnn766XR1OnfurD179qhSpUr6+uuvHR1itl27dk1z587Vt99+qzNnzshoNKps2bKKjIxUt27dFBgY6OwQc8Tu3bv1yy+/6IUXXpCPj4+zw8k1d37PChUqpKpVq6pXr156/PHHnRPUfejO98miaNGi+uWXXxwczT/LreMAwNWQyANwKVu3btWiRYty/A/4zp07ZTKZ9M4776hcuXI5uu/7wfbt2xUYGKihQ4fm6vN8/fXXOnr0KIl8JjRo0MCaDCclJem3337T5MmT9ccff2jKlClOju7uPD099fXXX6dL5M+ePas9e/bI09PTSZFlz5kzZ9S9e3dduHBBzZs317PPPqv8+fPr8OHDWrFihTZv3qxNmzY5O8wcsWfPHk2bNk3t2rVLl8hv3LhRbm5uDo/p6aefVsuWLeXh4ZGj+7V8z8xms86fP68vv/xSL7/8smbNmqWGDRvm6HO5srS/Rxb36wnt3DoOAFwNiTwASIqLi5MkFS5c2MmR5I64uDiX7nlLTk6+L3ups6N8+fI2B87PPfecbt68qe+++04pKSn3bUIcGRmpH374QZcvX5a/v7+1/Ouvv1bRokVVrlw5JSYmOjFC+926dUsDBgxQXFyc5s+fn+7SmjfeeEOzZs3KkedKSkqSl5dXunKTyaSbN286/XPP6UQ6swwGgwwGQ47v987vWbNmzdSiRQvNnz+fRD6NO9+nnHLr1i2ZTCantSsgL+MaeeABNXjwYIWHh+v8+fPq06ePwsPD1bBhQy1atEiSdPjwYXXr1k1hYWFq1KiR1q1bZ/N4y/WMv/76q0aMGKG6deuqZs2aevvtt3XlyhWbups3b1bv3r0VERGh6tWrq0mTJpo+fbqMRmO6uP73v//ppZdeUu3atRUWFqbWrVtr3rx51pgt8QUHB1v//ZNFixapZcuWql69uiIiIjR69GibRKNx48bWa2jr1av3j9fUZve9S0hI0IQJE9S6dWuFh4erZs2a6tWrl/744w+beoMGDVJISIiOHTtmU96zZ0/Vrl1bMTEx//jaLdfR7tixQ0ePHrW+Z5brM00mk+bOnauWLVsqJCRE9evX14gRI7L0GXbt2lVbtmzRuXPnrM/TuHFjSXe//jWj60W7du2qVq1a6ffff9fzzz+vGjVq6MMPP5QkpaamasqUKWratKmqV6+uyMhIffDBB0pNTbXZ7y+//KLnnntOtWrVUnh4uJo1a2bdx73cunVL06dPV5MmTVS9enU1btxYH374Ybr9N27cWH369NFvv/2mZ555RiEhIXriiSe0evXqf3yOeylWrJjc3NxsEprffvtNr776qh5//HHrax43bpxu3Lhh89jY2FgNGTJEjz32mLWt9+3bN917vnXrVnXp0kVhYWEKDw9X7969dfTo0UzH+MQTT8jDw0MbN260Kf/666/11FNPZZiMZfZ9NZvNmjFjhh577DHVqFFDXbt2vWtsiYmJeu+99xQZGanq1auradOm+uyzz2QymTL9Wiy+/fZb/fHHH3r55ZcznB/D29tbb7zxhk3Zhg0b1L59e4WGhqpu3bp666230n0nLb8Vp0+f1ksvvaTw8HC99dZbkm7/ho0ZM0Zr1661fv9+/vlnSVJMTIyGDBmi+vXrq3r16mrZsqVWrFjxj6/jjz/+0ODBg/XEE08oJCREDRo00JAhQxQfH2+tM3XqVH3wwQeSbn+Wlu+qpZ1kdI38mTNn9Oqrr6pOnTqqUaOGOnXqpC1bttjUsXyX169fr5kzZ+qxxx5TSEiIXnjhBZ06deofY8/oNyI3vmf/+te/5Ofnp9OnT9uUZ/bvlOX36c8//1TXrl1Vo0YNNWzYMMMTPRcvXlS/fv0UFhamevXqady4cenavIU97Smrf3uyIy4uTkOHDlX9+vUVEhKiNm3aaNWqVTZ1LH9vPv/8c82dO1dNmjSx+Rt27NgxazsKCQlR+/bt9f3339vs4+bNm5o2bZqefPJJhYSEqG7dunruueesQ/yzehwA5EX0yAMPMKPRqJdeekm1atXSW2+9pXXr1mnMmDEqWLCgPvroI7Vu3VpPPvmklixZokGDBiksLExlypSx2ceYMWPk4+OjAQMG6MSJE/ryyy91/vx5LViwwDo8c9WqVfLy8lKPHj3k5eWl7du3a8qUKbp27ZoGDRpk3dcvv/yiPn366KGHHlK3bt1UtGhRHTt2TFu2bNELL7ygZ599Vn/99Zd++eUX64HoP5k6daqmTZum+vXr67nnnrPGuH//fn355ZfKnz+/hg4dqtWrV+u7777TqFGj5OXl9Y8HBtl5786cOaPNmzerefPmKl26tC5duqSlS5cqKipK33zzjfU63HfeeUfbt2/XoEGDtHTpUhkMBi1ZskT//e9/9cEHH2Tqel1/f3998MEH+uSTT5SUlKQ333xT0u2DWUkaMWKEVq1apfbt26tr1646e/asFi1apIMHD1rfn8x+hi+//LKuXr2qixcvasiQIZJuX5OaFQkJCXrppZfUsmVLtWnTRgEBATKZTOrbt6927dqlTp066V//+peOHDmiefPm6eTJk5oxY4Yk6ejRo+rTp4+Cg4P16quvysPDQ6dOndLu3bv/8XmHDRumVatWqVmzZurRo4f27dunTz/9VMeOHdP06dNt6p46dUqvvfaannnmGbVr104rV67U4MGDVa1aNVWqVOkfnyslJUWXL1+WdHvEwe7du7Vq1Sq1atVK+fL9/ed548aNunHjhp577jn5+vpq3759WrhwoS5evGgzBP+VV17Rn3/+qaioKJUqVUqXL1/WL7/8ogsXLqh06dKSbk/oOHjwYEVEROitt95ScnKyvvzyS3Xp0kWrVq2y1ruXAgUKqHHjxvrmm2/UpUsXSbcTyKNHj2rs2LE6fPhwlt/XyZMna+bMmYqMjFRkZKQOHDigF198UTdv3rTZX3JysqKiohQTE6POnTurRIkS2rNnjz788EPFxsbqnXfe+cfXkZYlmchsj6Rl3pGQkBC9+eab1p783bt3a/Xq1TajX27duqWePXvqkUce0aBBg2yGK2/fvl0bNmzQ888/Lz8/P5UqVUqXLl1Sp06d5Obmpueff17+/v766aef9M477+jatWv3vGxl27ZtOnPmjNq3b69ixYrp6NGjWrZsmf78808tW7ZMbm5uatq0qU6ePKmvv/5aQ4YMkZ+fnyTZjK5I69KlS+rcubOSk5PVtWtX+fn5adWqVerbt6/1pFpas2bNkpubm1588UVdu3ZNs2fP1ltvvaXly5dn6r29U3a/Z3e6evWqEhMTVbZsWZvyzP6dkqQrV66oV69eatq0qZ566ilt2rRJEydOVFBQkCIjIyVJN27c0AsvvKALFy6oa9eueuihh7RmzRpt3749XUz2tKec+LudkbS/Rxbe3t7y8PDQjRs31LVrV50+fVrPP/+8SpcurY0bN2rw4MFKTEzUCy+8kO71pKSkqFOnTvLw8FCRIkV09OhRPffccwoMDNRLL70kLy8vbdiwQf3799fUqVOt7WjatGn69NNP1bFjR4WGhuratWv6/fffdeDAATVo0CBLxwFAnmUGkOetXLnSHBQUZN63b5+1bNCgQeagoCDzJ598Yi27cuWKOTQ01BwcHGz+5ptvrOXHjh0zBwUFmadMmZJun+3atTOnpqZay2fNmmUOCgoyb9682VqWnJycLqbhw4eba9SoYU5JSTGbzWbzrVu3zI0bNzY3atTIfOXKFZu6JpPJenv06NHmoKCgTL3uuLg4c7Vq1cwvvvii2Wg0WssXLlxoDgoKMq9YscJaNmXKFHNQUJA5Li7uH/eb3fcuJSXFJh6z2Ww+c+aMuXr16uZp06bZlP/888/moKAg84wZM8ynT582h4WFmfv165ep159WVFSUuWXLljZlv/76qzkoKMi8du1am/KffvopXXlmPkOz2Wzu3bu3uVGjRunqWtrLmTNnbMq3b99uDgoKMm/fvt0m1qCgIPOXX35pU3f16tXmypUrm3/99Veb8i+//NIcFBRk3rVrl9lsNpvnzJmT6c8yrUOHDpmDgoLM77zzjk35+++/bw4KCjJHR0dbyxo1amQOCgqyiSUuLs5cvXp18/vvv/+PzxUUFJThv379+tm8n2Zzxu/9p59+ag4ODjafO3fObDbfbn9BQUHm2bNn3/U5r127Zq5Vq5Z52LBhNuWxsbHmRx55JF35nSyf1YYNG8w//vijOTg42Hz+/Hmz2Ww2T5gwwfzEE0+Yzeb0bS2z76vl+9q7d2+b7/yHH35oDgoKMg8aNMhaNn36dHNYWJj5xIkTNvucOHGiuUqVKta4zGZzuu9fRtq2bWt+5JFH7lnHIjU11VyvXj1zq1atzDdu3LCW//jjj+agoCDz5MmTrWWW34qJEyem209QUJC5cuXK5qNHj9qUDx061NygQQPz5cuXbcrfeOMN8yOPPGJtD2fOnDEHBQWZV65caa2TUVv5+uuv07XV2bNnZ/h9NJtvt+207/V7772X7vHXrl2z/l5bfsss7eOpp56yacPz5s0zBwUFmQ8fPpzuudLK6DciJ75nQ4cONcfFxZnj4uLM+/fvN/fs2TPD70pmf+Msv0+rVq2ylqWkpJgbNGhgfuWVV6xlc+fONQcFBZnXr19vLUtKSjI3bdrU5jcvK+0pq3977vU+ZfTP0rYsr2XNmjXWx6SmppqfffZZc1hYmPnq1atms/nvNlmzZs10v78vvPCCuVWrVjbvpclkMj/77LPmJ5980lrWpk0bc+/eve8Zrz3HAUBextB64AHXsWNH620fHx9VqFBBBQsW1FNPPWUtr1ixonx8fHTmzJl0j7dMCGXx3HPPKV++fNq6dau1LG0P1LVr13T58mXVqlVLycnJOn78uCTp4MGDOnv2rLp165buWu6sTry0bds23bx5U926dZO7+98/dx07dpS3t7dNjFmR1ffOw8PDGo/RaFR8fLy8vLxUoUIFHTx40OY5IiIi9Oyzz2r69Ol65ZVX5OnpqTFjxmQrbouNGzeqcOHCatCggS5fvmz9V61aNXl5edkMd8/MZ5iTPDw81L59+3Tx/utf/1LFihVt4n300UclyRqvpf18//33dg2ztrSHHj162JS/+OKLNtstHn74YZth2P7+/qpQoUKG35OMPPHEE5ozZ47mzJmjGTNmqE+fPvr55581cOBAmc1ma720731SUpIuX76s8PBwmc1ma3spUKCA8ufPr507d6a7LMJi27ZtSkxMVMuWLW3eP3d3d9WoUcOu5bAaNGigIkWK6JtvvpHZbNb69evVsmXLDOtm9n21fF+joqJsvvN39vZJt9vCI488Ih8fH5vXUr9+fRmNRv3666+Zfi3S7Tad2dEjv//+u+Li4vTcc8/ZXM/++OOPq2LFiumGnEu3fxczUrt2bT388MPW+2azWd9++60aN24ss9ls89oiIiJ09epVHThw4K6xpW0rlh7WGjVqSNI9H3cvW7duVWhoqE1bL1SokJ599lmdO3dOf/75p0399u3b21wPbXlcZr8Xd8ru92zFihWqV6+e6tWrpw4dOmj79u3q1atXuvZoz2+cl5eXzegNDw8PhYSE2MT0008/qVixYmrevLm1rGDBgurUqZPNvrLSnrL7dzsjaX+PLP8iIiJsXkurVq2s9fPnz6+uXbsqKSkp3fftySeftBnhkZCQoO3bt+upp56yvreXL19WfHy8IiIidPLkSetlBD4+Pjp69KhOnjyZqbiBBxlD64EHmKenZ7rhlIULF1bx4sXTJc+FCxfOcAKrO2d4L1SokIoVK6Zz585Zy44ePaqPP/5Y27dv17Vr12zqX716VdLfB3lBQUFZf0F3OH/+vKTbBzRpeXh4qEyZMjYx2is7753JZNL8+fO1ePFinT171uYaTF9f33TPNWjQIP3www86dOiQJk2apICAgCzHndapU6d09epV1atXL8PtlgkApcx9hjkpMDAw3eRIp06d0rFjx/4x3hYtWmj58uUaNmyYJk2apHr16qlp06Zq3ry5zQmdO507d07u7u7phtwWK1ZMPj4+6dpLiRIl0u2jSJEid02k71S8eHHVr1/fev+JJ56Qr6+vJkyYoB9//NE6v8D58+c1ZcoU/fDDD+n2bfksPDw89NZbb2nChAlq0KCBatSooccff1xt27ZVsWLFJMl6YJxRYizdHkabWfnz51fz5s319ddfKzQ0VBcuXFDr1q0zrJvZ99XyfS1fvrxNPX9/fxUpUsSm7NSpUzp8+PBd28KdQ4T/ibe3d6YTHkucFSpUSLetYsWK2rVrl01Zvnz5VLx48Qz3deelDJcvX1ZiYqKWLl2qpUuXZviYe722hIQETZs2TevXr7f5/kpZ/56eP3/eejIgLcvv6vnz521+t+9c2tJyYi2rEyBm93v2xBNPKCoqSjdv3tT+/fv1ySef6MaNG+l+C+z5jcvod75IkSI2l5WcO3dO5cqVS1fvznZjb3vKib/bGbnz9ygty2u58z2zXKJleQ0Wd7br06dPy2w2a/LkyZo8eXKGzxEXF6fAwEC9+uqr6tevn5o1a6agoCBFRETo6aefVuXKlTP1OoAHCYk88AC72wzBdytP20uYWYmJiYqKipK3t7deffVVlS1bVp6enjpw4IAmTpyYpYmp7gfZee8++eQTTZ48WR06dNBrr72mIkWKyN3dXePGjcvwPT506JD1oPzIkSM5EP1tJpNJAQEBmjhxYobbLQeLOfEZ3m1Uxd0em9GyRyaTSUFBQdbr7+9kSZYKFCigRYsWaceOHdqyZYt+/vlnrV+/XkuXLtUXX3zxjzNjZ3YESG7MsG1JTH/99Vc1btxYRqNRPXr0sF6TW7FiRXl5eSkmJkaDBw+2ef+6d++uxo0ba/Pmzfrvf/+ryZMn67PPPtO8efNUtWpVa9v64IMPrMl9dl5P69attWTJEk2dOlWVK1e26VnOSE4uaWYymdSgQQP16tUrw+13ngz4JxUrVtTBgwd14cKFDBPH7Eg7AudOd7Zzy+fZpk0btWvXLsPH3Gv+jtdff1179uxRz549VaVKFXl5eclkMqlXr15Z+v3Oiru91qw+f3a/Z2kT1MjISPn5+WnMmDGqW7eunnzySUn2/8blxnc/sxzxdzu77tauX3zxxbuuFGA50Ve7dm199913+v777/XLL79oxYoVmjdvnkaPHm0zEgEAiTyAbDp16pR1aLMkXb9+XbGxsXrsscck3V6f3dJLVLt2bWu9O2fStkzGc+TIkbv2Ckj2JQOWnqHjx4/bTPaTmpqqs2fP3vN5ctOmTZtUt25djRs3zqY8MTHROvGURVJSkoYMGaKHH35Y4eHhmj17tpo0aaLQ0NBsx1G2bFlFR0erZs2a91wvOLOfoXT3z8fSK3dnz5Y9oyLKli2rP/74Q/Xq1fvHduDu7m4dTjtkyBB98skn+uijj7Rjx467fu6lSpWSyWTSqVOnrD1N0u3JvhITE1WqVKlMx5pVt27dknT7c5dufx9OnjypCRMmqG3bttZ6lhmc71S2bFm9+OKLevHFF3Xy5Em1bdtWX3zxhSZOnGj9DgQEBORI23/kkUdUsmRJ7dy50zoTe0Yy+75avq8nT560+b5evnw5Xe9r2bJllZSUlGPf4UaNGunrr7/W2rVr1adPn3vWtcR54sSJdCMCTpw4ka5H2h7+/v4qVKiQTCaT3a/typUrio6O1iuvvKIBAwZYyzMaomzv7+iJEyfSlVuGm2fn9TrDs88+q7lz5+rjjz9W06ZN5ebmZtdvXGaVKlVKR44ckdlstnm/73wvc7M95ZRSpUrp8OHDMplMNidqMtsGLN/n/PnzZ6pd+/r6qkOHDurQoYOuX7+uqKgoTZ061ZrI5+RJQcCVcY08gGxZunSpzYzSX375pW7dumVN5C1/9NP2CqSmpmrx4sU2+6lWrZpKly6t+fPnpxsKmPaxlrXEMzNcsH79+sqfP78WLFhgs48VK1bo6tWr1tmFHc1gMKTrJdmwYUOGy8lNnDhRFy5c0Pvvv6/BgwerVKlSGjx48F2XMLLHU089JaPRaJ3tPa1bt25Z3+PMfobS7c8noyG8lt6WtNdSGo1GLVu2zK54Y2JiMnzMjRs3rMlvQkJCuu1VqlSxxn03lvZgWe7QYs6cOTbbc9OPP/4oSdZhpBm992azWfPnz7d5XHJyslJSUmzKypYtq0KFCllfc8OGDeXt7a1PP/003Szwkv3D0d3c3PTOO+9owIAB95ztPbPvq+X7unDhQpvXe+fjpNttYc+ePdbl2tJKTEy0nhDJLMsw3k8++UR79uxJt/3atWv66KOPJEnVq1dXQECAlixZYtOetm7dqmPHjunxxx+367nTMhgMatasmTZt2pTh6Jt7fUZ365HN6P2z/I5mZrh9ZGSk9u3bZ/O+JCUladmyZSpVqtQ/jsS43+TLl089evTQsWPHrKsV2PMbl1mPPfaY/vrrL5tlGpOTk9P9fuVme8opjz32mGJjY7V+/Xpr2a1bt7RgwQJ5eXnZnPzISEBAgOrUqaOlS5fqr7/+Src9bbtOu1SidPtyvbJly9q8N/YcBwB5GT3yALLl5s2b6t69u5566imdOHFCixcv1iOPPKInnnhCkhQeHq4iRYpo8ODB6tq1q9zc3LRmzZp0iay7u7tGjRqlvn37qm3bttblk44fP64///xTn3/+uaTbCb8kjR07VhERETIYDHedZMvf3199+vTRtGnT1KtXLzVu3Ngao2UdXGd4/PHHNX36dA0ZMkTh4eE6cuSI1q1bl26JoOjoaC1evFgDBgywvu7x48era9eu+vjjj/X2229nK446dero2Wef1aeffqpDhw6pQYMGyp8/v06ePKmNGzfqnXfeUfPmzTP9GUq3P5/169dr/PjxCgkJkZeXlxo3bqxKlSopLCxMH374oa5cuaIiRYpo/fr1diVcTz/9tDZs2KCRI0dqx44dqlmzpoxGo44fP66NGzdq9uzZCgkJ0fTp0/Xbb78pMjJSpUqVUlxcnBYvXqzixYvrkUceuev+K1eurHbt2mnp0qVKTExU7dq1tX//fq1atUpNmjSxGXmSE06ePKk1a9ZIun0iYu/evVq9erXKlStnTYwrVqyosmXLasKECYqJiZG3t7c2bdqU7gD25MmT6t69u5o3b66HH35YBoNBmzdv1qVLl6zfD29vb40aNUpvv/222rdvrxYtWsjf31/nz5/X1q1bVbNmTY0YMcKu19CkSRM1adLknnUy+776+/vrxRdf1Keffqo+ffooMjJSBw8e1E8//ZRupErPnj31ww8/6OWXX1a7du1UrVo1JScn68iRI9q0aZO+//77uy6nlpH8+fNr2rRp6tGjh6KiotS8eXPVrFlT+fPn19GjR/X111/Lx8dHb7zxhvLnz6+33npLQ4YMUVRUlFq2bGldLqxUqVL3XB4uMwYOHKgdO3aoU6dO6tixox5++GFduXJFBw4cUHR0tHbu3Jnh47y9vVW7dm3Nnj1bN2/eVGBgoH755ZcMe5UtvycfffSRWrRoofz586tRo0by8vJKV7d379765ptv9NJLL6lr164qUqSIVq9erbNnz2rq1Kn3nHfiftW+fXtNmTJFs2bNUpMmTez6jcusTp06adGiRRo0aJAOHDigYsWKac2aNelGP+V2e8oJzz77rJYuXarBgwfrwIEDKlWqlDZt2qTdu3dr6NChmZpfY+TIkerSpYtat26tTp06qUyZMrp06ZL27t2rixcvau3atZKkli1bqk6dOqpWrZp8fX21f/9+bdq0SVFRUdZ92XMcAORlJPIAsmXEiBFat26dpkyZops3b6ply5YaNmyYdeibn5+fPvnkE02YMEEff/yxfHx81KZNG9WrV089e/a02VfDhg01b948TZ8+XV988YXMZrPKlCljM8vvk08+qa5du+qbb77R2rVrZTab7/kH/JVXXpG/v78WLlyo8ePHq0iRIurUqZPefPNNm9n2Henll19WcnKy1q1bp/Xr16tq1ar69NNPNWnSJGuda9eu6Z133lHVqlX18ssvW8tr1aqlbt26ac6cOXryyScVFhaWrVjGjBmj6tWra8mSJfroo49kMBhUqlQptWnTRjVr1pRk32fYpUsXHTp0SF999ZXmzp2rUqVKWSdtmzhxokaMGKHPPvtMPj4+euaZZ1S3bt10s0ffjbu7u6ZPn665c+dqzZo1+u6771SwYEGVLl1aXbt2tU4W1bhxY507d04rV65UfHy8/Pz8VKdOHb3yyisqXLjwPZ9j7NixKl26tFatWqXNmzeraNGi6tOnj81Q5Zzyyy+/WIfIGwwGFStWTB07dtRrr71mTajy58+vTz75RGPHjtWnn34qT09PNW3aVM8//7xNL3jx4sXVsmVLRUdHa+3atTIYDKpYsaI+/vhjNWvWzFqvdevWeuihh/TZZ5/p888/V2pqqgIDA1WrVq10qwTkpMy+r6+//ro8PDy0ZMkS7dixQ6Ghofriiy/SDXcvWLCgFixYoE8//VQbN27U6tWr5e3trfLly2fqc85IuXLltHr1as2dO9d6ja7JZFK5cuXUsWNHde3a1Vq3ffv2KlCggGbNmqWJEyfKy8tLTZo00b///e90q27Yq2jRolq+fLmmT5+u7777Tl9++aV8fX318MMP3/MSBkmaNGmS3n33XS1evFhms1kNGjTQrFmz0l2XHBoaqtdee01LlizRzz//LJPJpO+//z7DRL5o0aJasmSJ/vOf/2jhwoVKSUlRcHCwPvnkk/uitzgrChQoYB2uvWPHDtWtWzfTv3GZVbBgQc2dO1fvvvuuFi5cqAIFCqh169Z67LHH0s3tkJvtKScUKFBACxYs0MSJE7Vq1Spdu3ZNFSpU0Pjx4zP9u/Hwww9r5cqVmjZtmlatWqWEhAT5+/uratWq6t+/v7Ve165d9cMPP+iXX35RamqqSpYsqddff93mc7D3OADIq9zMzpgFA4DL++qrrzRkyBCtWLFCISEhzg4HAAAAeGC43ngoAAAAAAAeYAytBwAXFhsbe8/tBQoUyNIwYwAAANy/SOQBwIVFRETcc3u7du30/vvvOygaAAAAOALXyAOAC9u2bds9tz/00EMutzwUAAAA7o1EHgAAAAAAF8JkdwAAAAAAuBCukc+AyWTSrVu35O7ubl0LGwAAAACA3GI2m2UymZQvXz65u9+7z51EPgO3bt3S/v37nR0GAAAAAOABExISIg8Pj3vWIZHPgOXsR0hIiAwGg5OjAQAAAADkdUajUfv37//H3niJRD5DluH0BoOBRB4AAAAA4DCZubybye4AAAAAAHAhJPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC6ERB4AAAAAABdCIg8AAAAAgAshkQcAAAAAwIWQyAMAAAAA4EJI5AEAAAAAcCEk8gAAAAAAuBASeQAAAAAAXAiJPAAAAAAALoREHgAAAAAAF0IiDwAAAACACyGRBwAAAADAhZDIAwAAAADgQkjkAQAAAABwISTyAAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuJJ+zA0DekJqaqtWrV+v8+fMqWbKk2rZtKw8PD2eHBQAAgP9nNBq1b98+xcXFKSAgQKGhoTIYDM4OC0AWkMgj22bMmKHly5fLaDRay2bOnKmOHTuqX79+TowMAAAAkrR161ZNnz5dFy9etJYVL15c/fv3V2RkpBMjA5AVDK1HtsyYMUNLliyRj4+P/v3vf2vVqlX697//LR8fHy1ZskQzZsxwdogAkCVGo1F79uzR5s2btWfPHpuTlQDgSrZu3aoRI0YoPj7epjw+Pl4jRozQ1q1bnRQZgKxyM5vNZmcHcb8xGo3au3evwsLCGG50D6mpqWrWrJl8fHy0cuVK5cv39wCPW7duqUOHDkpMTNSmTZsYZg/ApdBzBSCvMBqNateunRISElSvXj1169ZNFSpU0IkTJzR//nxFR0fLz89PX331Fce9gJPZk4cytB5Ztnr1ahmNRvXq1csmiZekfPnyqWfPnpo4caJWr16tTp06OSlKALCPpeeqXr16GjlypPWAd8GCBRoxYoTGjBlDMp+HnT9/XlevXnV2GA5XuHBhlSxZ0tlhIBfs3btXCQkJCgkJ0fjx4+XufntAbrVq1TR+/Hi98sor2r9/v/bu3atHHnnEydEiN/C7ljeRyCPLzp8/L0mqX79+htst5ZZ6AHC/MxqNmj59uurVq6dx48bZHPCOGzdOQ4cO1YwZMxQREUHPVR6UkJCgLl26yGQyOTsUhzMYDFq1apV8fX2dHQpy2J49eyRJL774ovU3zcLd3V09evTQm2++qT179pDI50H8ruXd3zUSeWSZ5QzXtm3b1Lp163Tbt23bZlMPAO53+/bt08WLFzVy5MgMD3ijoqLUr18/7du3T+Hh4U6KErnF19dXixcvdkrP1alTpzR27FgNGzZM5cqVc/jzFy5cOM8e7AIPMn7XfB3+vI5CIo8sa9u2rWbOnKnZs2frqaeeSneN/Oeffy6DwaC2bds6L0gAsENcXJwkqUKFChlur1ixok095D3OPvlcrlw5BQcHOzUG5C3h4eGaP3++vvjiC4WHh9ucpDSZTJozZ461HvImftfyJmatR5Z5eHioY8eOio+PV4cOHbR27VpdunRJa9euVYcOHRQfH6+OHTsy0R0AlxEQECBJOnHiRIbbjx8/blMPAO53YWFh8vX11f79+zV06FD9/vvvSkpK0u+//66hQ4dq//798vX1VVhYmLNDBWAHeuSRLZZ14pcvX66JEydayw0Ggzp37sw68gBcSmhoqIoXL64FCxbYXCMv3e65WrhwoUqUKKHQ0FAnRgkAmWcwGDRw4EANHz5cu3btsl76KEmenp6SpIEDBzLvB+BiSOSRbf369VOvXr20evVqnT9/XiVLllTbtm3piQfgcgwGg/r3768RI0Zo6NChioqKUsWKFXX8+HEtXLhQ0dHRGjNmDAe8AFxKZGSk3n33XU2bNk0xMTHWcj8/P5bVBFwUiTxyhIeHB0vMAcgTIiMjNWbMGE2fPt1mVFGJEiVYeg6Ay4qMjFRERIT27dunuLg4BQQEKDQ0lBOTgIsikQcA4A4c8ALIiwwGA5PaAXkEiTwAABnggBcAANyvmLUeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhzFoPAAAAPABSU1O1evVqnT9/XiVLllTbtm3l4eHh7LAAZAGJPACXYjQaWdsbAAA7zZgxQ0uWLLEpmzZtmjp37qx+/fo5KSoAWUUiD8BlbN26VdOnT9fFixetZcWLF1f//v0VGRnpxMgAALh/ZZTEW1jKSeYB18I18gBcwtatWzV8+HCbJF6SLl68qOHDh2vr1q1OigwAgPtXamrqXZN4iyVLlig1NdVBEQHICfTI50Hnz5/X1atXnR2GwxUuXFglS5Z0dhjIBUajUe+//74kyc3NTWaz2brNcv/9999XREQEw+wBAEgjbRLv6emplJSUDO8vWbJE3bp1c3h8ALKGRD6PSUhIUJcuXWQymZwdisMZDAatWrVKvr6+zg4FOWzXrl26fv26JMnDw8PmIMRy//r169q1a5fq1KnjrDABALjvrFu3znr7kUceUdeuXVWhQgWdOHFCCxYs0LZt26z1SOQB10Ein8f4+vpq8eLFTumRP3XqlMaOHathw4apXLlyDn/+woULk8TnUZs2bbLerlmzprp162Y9CJk/f76io6Ot9UjkAQD4m+VE+EMPPaRx48bJ3f32lbXVqlXTuHHj1LFjR8XGxlrrAXANJPJ5kLOHl5crV07BwcFOjQF5y4ULFyRJ5cuX1/jx420OQsaPH68XXnhBp06dstYDAAC3FSlSRNeuXVNcXJxMJpP1b6gkmUwmXb582VoPgOtgsjsA9z1PT09JshlSn5Zlgh5LPQAAcFvDhg0l3Z5v5umnn9batWt16dIlrV27Vk8//bSMRqNNPQCugR55APe9ypUra9euXbpw4YKGDBmirl27qmLFijp+/LgWLFhg7YmvXLmykyMFAOD+UrduXeuEd1evXtXEiRPvWg+A6yCRB3Dfq1WrlhYtWiRJ2r59u/WaeOn2rPVp6wEAgL+FhYXJ19dXCQkJd63j5+ensLAwh8UEIPucPrR+0aJFaty4sUJCQtSxY0ft27fvrnVv3rypadOmqUmTJgoJCVGbNm30008/2dSZOnWqgoODbf41b948t18GgFxkOQiRZLP0XNr7vr6+HIQAAHAHg8GggQMHys3NTR4eHjbbPDw85ObmpjfffJPlWwEX49REfv369Ro/frz69++vVatWqXLlyurZs6fi4uIyrP/xxx9r6dKlGj58uNavX6/OnTtrwIABOnjwoE29SpUq6b///a/13+LFix3xcgDkEstBiJT+OnjL/YEDB3IQAgBABiIjIzVmzBj5+/vblAcEBGjMmDGKjIx0UmQAssqpQ+vnzJmjTp06qUOHDpKk0aNHa8uWLVq5cqV69+6drv6aNWvUt29f649Nly5dFB0drS+++MLmeh+DwaBixYo55kUAcIjIyEi9++67mjZtmmJiYqzlfn5+6t+/PwchAADcQ2RkpCIiIrRv3z7FxcUpICBAoaGhnAQHXJTTEvnU1FQdOHBAffr0sZa5u7urfv362rNnT4aPuXnzZrohQZ6entq9e7dN2alTpxQRESFPT0+FhYVp4MCBWVqSzTKLJzLHZDJZ/+e9Q26IiIhQvXr1tH//futBSEhIiAwGA20OgEvjbygcJTQ01OY+7Q25hd81+9nzPjktkY+Pj5fRaFRAQIBNeUBAgI4fP57hYyIiIjR37lzVrl1bZcuWVXR0tL777jubFxwaGqrx48erQoUKio2N1fTp0/X8889r3bp18vb2tivG/fv32//CHmBnzpyRJB0+fFhJSUlOjgZ5neW3g+8pgLyAv6EA8hp+13KXS81a/84772jYsGF66qmn5ObmpjJlyqh9+/ZauXKltU7a4bWVK1dWjRo11KhRI23YsEEdO3a06/ksPX3IHC8vL0lScHCwgoKCnBwNAACug7+hAPIaftfsZzQaM91J5bRE3s/PTwaDId3EdnFxcSpatGiGj/H399eMGTOUkpKihIQEPfTQQ5o4caLKlClz1+fx8fFR+fLldfr0abtjNBgMJPJ2cHd3t/7P+wYAQObxNxRAXsPvWu5y2qz1Hh4eqlatms160CaTSdHR0QoPD7/nYz09PRUYGKhbt27p22+/1RNPPHHXutevX9eZM2eY/A4AAAAAkCc4dWh9jx49NGjQIFWvXl2hoaGaN2+ekpOT1b59e0nS22+/rcDAQOuyU//73/8UExOjKlWqKCYmRlOnTpXJZFKvXr2s+5wwYYIaNWqkkiVL6q+//tLUqVPl7u6uVq1aOeU1AgAAAACQk5yayLdo0UKXL1/WlClTFBsbqypVqmj27NnWofUXLlywDsmQpJSUFH388cc6c+aMvLy8FBkZqQ8++EA+Pj7WOhcvXtSbb76phIQE+fv765FHHtGyZcvSrZsJAAAAAIArcvpkd1FRUYqKispw24IFC2zu16lTR+vXr7/n/j766KMciw0AAAAAgPuN066RBwAAAAAA9nN6jzwA13X+/HldvXrV2WE4XOHChVWyZElnhwEAAIAHFIk8gCxJSEhQly5dZDKZnB2KwxkMBq1atUq+vr7ODgUA4KI4GQ4gO0jkAWSJr6+vFi9e7JSDkFOnTmns2LEaNmyYypUr5/DnL1y4MEk8ACDLOBnOyXAgu0jkAWSZs8+olytXTsHBwU6NAQAAe3Ey3NfhzwvkNSTyAAAAgINxMhxAdjBrPQAAAAAALoQeeQDAfY9JoQAAAP5GIg8AuK8xKRSTQgEAAFsk8gCA+xqTQvk6/HkBAMD9jUQeAHDfc/bwciaFAgAA9xMmuwMAAAAAwIWQyAMAAAAA4EJI5AEAAAAAcCEk8gAAAAAAuBASeQAAAAAAXAiJPAAAAAAALoREHgAAAAAAF0IiDwAAAACACyGRBwAAAADAhZDIAwAAAADgQkjkAQAAAABwISTyAAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhJPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC6ERB4AAAAAABdCIg8AAAAAgAshkQcAAAAAwIWQyAMAAAAA4EJI5AEAAAAAcCEk8gAAAAAAuBASeQAAAAAAXAiJPAAAAAAALoREHgAAAAAAF0IiDwAAAACACyGRBwAAAADAhZDIAwAAAADgQkjkAQAAAABwISTyAAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhJPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC6ERB4AAAAAABdCIg8AAAAAgAtxeiK/aNEiNW7cWCEhIerYsaP27dt317o3b97UtGnT1KRJE4WEhKhNmzb66aefsrVPAAAAAABciVMT+fXr12v8+PHq37+/Vq1apcqVK6tnz56Ki4vLsP7HH3+spUuXavjw4Vq/fr06d+6sAQMG6ODBg1neJwAAAAAArsSpifycOXPUqVMndejQQQ8//LBGjx6tAgUKaOXKlRnWX7NmjV5++WVFRkaqTJky6tKliyIjI/XFF19keZ8AAAAAALiSfM564tTUVB04cEB9+vSxlrm7u6t+/fras2dPho+5efOmPDw8bMo8PT21e/fuLO/zXoxGo92PeZCZTCbr/7x3yE20NTgKbQ2OQluDo9DW4Ci0NfvZ8z45LZGPj4+X0WhUQECATXlAQICOHz+e4WMiIiI0d+5c1a5dW2XLllV0dLS+++476wvOyj7vZf/+/XY/5kF25swZSdLhw4eVlJTk5GiQl9HW4Ci0NTgKbQ2OQluDo9DWcpfTEvmseOeddzRs2DA99dRTcnNzU5kyZdS+fftcGzYfEhIig8GQK/vOi7y8vCRJwcHBCgoKcnI0yMtoa3AU2hochbYGR6GtwVFoa/YzGo2Z7kx2WiLv5+cng8GQbhK6uLg4FS1aNMPH+Pv7a8aMGUpJSVFCQoIeeughTZw4UWXKlMnyPu/FYDCQyNvB3d3d+j/vG3ITbQ2OQluDo9DW4Ci0NTgKbS13OW2yOw8PD1WrVk3R0dHWMpPJpOjoaIWHh9/zsZ6engoMDNStW7f07bff6oknnsj2PgEAAAAAcAVOHVrfo0cPDRo0SNWrV1doaKjmzZun5ORktW/fXpL09ttvKzAwUAMHDpQk/e9//1NMTIyqVKmimJgYTZ06VSaTSb169cr0PgEAAAAAcGVOTeRbtGihy5cva8qUKYqNjVWVKlU0e/Zs6zD4CxcuWIdkSFJKSoo+/vhjnTlzRl5eXoqMjNQHH3wgHx+fTO8TAAAAAABX5vTJ7qKiohQVFZXhtgULFtjcr1OnjtavX5+tfQIAAAAA4Mqcdo08AAAAAACwH4k8AAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhJPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC6ERB4AAAAAABdCIg8AAAAAgAshkQcAAAAAwIWQyAMAAAAA4EJI5AEAAAAAcCEk8gAAAAAAuBASeQAAAAAAXAiJPAAAAAAALoREHgAAAAAAF0IiDwAAAACACyGRBwAAAADAhZDIAwAAAADgQkjkAQAAAABwISTyAAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhJPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC6ERB4AAAAAABdCIg8AAAAAgAshkQcAAAAAwIXkc3YAAAAAacXExCghIcHZYTjUqVOnbP5/kPj6+iowMNDZYQCASyGRBwAA942YmBhFPf+8UlJTnR2KU4wdO9bZITicp4eHFi5aRDIPAHYgkQcAAPeNhIQEpaSm6hlJxZwdDHJdrKQVqalKSEggkQcAO5DI5xKGBT5YGBYIADmrmKSScnN2GMh1ZmcHADgEucGDxRG5AYl8LoiJidHzz0cpNTXF2aE4xYM4LNDDw1OLFi0kmQcAAICN27nB80rlkqEHhoeHhxbl8iVDJPK5ICEhQampKbrxr8dlLujr7HCQy9ySE6RjWxgWCAAAgHRu5wapCgnwkXd+g7PDQS67dtOo/XGJuZ4bkMjnInNBX5kKFXV2GMhlrOEIAACAf+Kd3yAfj/zODgN5BDkIAAAAAAAuhEQeAAAAAAAXQiIPAAAAAIALIZEHAAAAAMCFkMgDAAAAAOBCSOQBAAAAAHAhJPIAAAAAALgQEnkAAAAAAFxIPmcHAAAAADhDTEyMEhISnB2GQ506dcrm/weJr6+vAgMDnR0GkCNI5AEAAPDAiYmJUdTzUUpJTXF2KE4xduxYZ4fgcJ4enlq4aCHJPPIEEnkAAAA8cBISEpSSmqK6FVvKp0CAs8NBLku8Eacdx79RQkICiTzyBBJ5AAAAPLB8CgTIrxCJHQDXwmR3AAAAAAC4EBJ5AAAAAABcCIk8AAAAAAAuxOmJ/KJFi9S4cWOFhISoY8eO2rdv3z3rz507V82aNVNoaKgiIyM1btw4paT8Pdvo1KlTFRwcbPOvefPmuf0yAAAAAABwCKdOdrd+/XqNHz9eo0ePVo0aNTRv3jz17NlTGzduVEBA+tlD161bp0mTJmncuHEKDw/XyZMnNXjwYLm5uWnIkCHWepUqVdKcOXOs9w0Gg0NeDwAAAAAAuc2pPfJz5sxRp06d1KFDBz388MMaPXq0ChQooJUrV2ZYf8+ePapZs6Zat26t0qVLKyIiQq1atUrXi28wGFSsWDHrP39/f0e8HAAAAAAAcp3TeuRTU1N14MAB9enTx1rm7u6u+vXra8+ePRk+Jjw8XGvXrtW+ffsUGhqqM2fOaOvWrXr66adt6p06dUoRERHy9PRUWFiYBg4cqJIlS9odo9FotPsxkmQymbL0OLg2k8mU5TYD+1i+Y7znyG20Ncfjb+iDyRnfMdrag4m2BkfJSluzp77TEvn4+HgZjcZ0Q+gDAgJ0/PjxDB/TunVrxcfHq0uXLjKbzbp165Y6d+6sl19+2VonNDRU48ePV4UKFRQbG6vp06fr+eef17p16+Tt7W1XjPv377f/hUk6c+ZMlh4H13b48GElJSU5O4wHguU7xnuO3EZbczz+hj6YnPEdo609mGhrcJTcbmtOvUbeXjt27NCnn36qkSNHKjQ0VKdPn9Z7772n6dOnq3///pKkyMhIa/3KlSurRo0aatSokTZs2KCOHTva9XwhISFZur7ey8vL7sfA9QUHBysoKMjZYTwQLN8x3nPkNtqa4/E39MHkjO8Ybe3BRFuDo2SlrRmNxkx3JmcpkU9MTNS+ffsUFxcns9lss61t27aZ2oefn58MBoPi4uJsyuPi4lS0aNEMHzN58mS1adPGmpAHBwcrKSlJI0aMUN++feXunv6Sfx8fH5UvX16nT5/OVFxpGQyGLCXyGcWBvM/d3Z2JFR3E8h3jPUduo605Hn9DH0zO+I7R1h5MtDU4Sm63NbsT+R9++EFvvfWWkpKS5O3tLTc3N+s2Nze3TCfyHh4eqlatmqKjo9WkSRNJt68jiI6OVlRUVIaPuXHjRrovguXNufOEgsX169d15swZFStWLFNxAQAAAABwP7M7kZ8wYYI6dOigN998UwULFszWk/fo0UODBg1S9erVFRoaqnnz5ik5OVnt27eXJL399tsKDAzUwIEDJUmNGjXSnDlzVLVqVevQ+smTJ6tRo0bWhH7ChAlq1KiRSpYsqb/++ktTp06Vu7u7WrVqla1YAQAAAAC4H9idyMfExKhbt27ZTuIlqUWLFrp8+bKmTJmi2NhYValSRbNnz7YOrb9w4YJND3zfvn3l5uamjz/+WDExMfL391ejRo30xhtvWOtcvHhRb775phISEuTv769HHnlEy5YtYwk6AAAAAECeYHciHxERof3796tMmTI5EkBUVNRdh9IvWLDA5n6+fPk0YMAADRgw4K77++ijj3IkLgAAAAAA7kd2J/KRkZH6z3/+o2PHjikoKEj58tnu4oknnsix4AAAAAAAgC27E/nhw4dLkqZPn55um5ubmw4dOpT9qAAAAAAAQIbsTuT/+OOP3IgDQBbFxMQoISHB2WE41KlTp2z+f5D4+voqMDDQ2WEAAADAibK0jjyA+0NMTIyinn9eKampzg7FKcaOHevsEBzO08NDCxctIpkHAAB4gGUpkd+5c6e++OILHTt2TJL0r3/9S7169VKtWrVyNDgA95aQkKCU1FT1rXZdJQsZnR0Octn56wbNPHD7cyeRBwAAeHDZncivWbNGQ4cOVdOmTdW1a1dJ0u7du9W9e3eNHz9erVu3zvEgAdxbyUJGVfAhkQcAAAAeBHYn8p988on+/e9/q3v37taybt26ac6cOZoxYwaJPAAAAAAAucjd3gecOXNGjRo1SlfeuHFjnT17NkeCAgAAAAAAGbM7kS9RooSio6PTlW/btk0lSpTIkaAAAAAAAEDG7B5a36NHD40dO1aHDh1SeHi4pNvXyK9atUrvvPNOjgcIAAAAAAD+Znci36VLFxUrVkxffPGFNm7cKEmqWLGiPvroIzVp0iTHAwQAAAAAAH/L0vJzTZs2VdOmTXM6FgAAAAAA8A/svkYeAAAAAAA4T6Z65OvUqaONGzfK399ftWvXlpub213r7ty5M8eCAwAAAAAAtjKVyA8ZMkTe3t7W2/dK5AEAAAAAQO7JVCLfrl076+327dvnWjAAAAAAAODe7L5GvkqVKoqLi0tXHh8frypVquRIUAAAAAAAIGN2J/JmsznD8tTUVOXPnz/bAQEAAAAAgLvL9PJz8+fPlyS5ublp+fLl8vLysm4zmUz69ddfVbFixZyPEAAAAAAAWGU6kZ87d66k2z3yS5Yskbv73535+fPnV+nSpTV69OgcDxAAAAAAAPwt04n8Dz/8IEnq2rWrpk2bpiJFiuRaUAAAAAAAIGOZTuQtFixYkBtxAAAAAACATLA7kZekixcv6vvvv9eFCxd08+ZNm21DhgzJkcAAAMCDK1aSlPEEu8g7Yp0dAAC4KLsT+ejoaPXt21dlypTR8ePHValSJZ07d05ms1lVq1bNjRhdlltygv3LAsDluCUnODsEAMhzVjg7AADIYddu3nJ2CHAAR33OdifykyZN0osvvqhXX31V4eHhmjp1qvz9/fXWW2+pYcOGuRGjyypwbIuzQwAAwCU9I6mYs4NArosVJ23w4Ngfd9XZISAPsTuRP3bsmD788MPbD86XTzdu3FChQoX02muvqV+/furSpUuOB+mqbvzrcZkL+jo7DOQyt+QETtrggRATE6OEhARnh+FQp06dsvn/QeLr66vAwECnPX8xSSXl5rTnh6M4//KJxOQ4Z4cAB7gfPueQgMLyzp+lK5vhQq7dvOWQkzZ2tyQvLy/rdfHFihXT6dOnValSJUlSfHx8zkbn4swFfWUqVNTZYSCXcfkEHgQxMTF6Pup5paakOjsUpxg7dqyzQ3A4D08PLVq4yKnJPOAIO0584+wQ8IDwzp9PPh75nR0G8gi7E/kaNWpo165d+te//qXIyEhNmDBBR44c0XfffacaNWrkRowAACdLSEhQakqqTHVMMvs4vwcNucst0U2pO1OVkJBAIo88r26FlvIpGODsMJDLEpPjOGmDPMXuRH7IkCG6fv26JOmVV17R9evXtX79epUvX16DBw/O8QABAPcPs49Z8nN2FMht5vtguDPgKD4FA+RXiBNWAFyL3Yl8mTJlrLe9vLw0ZsyYHA0IAAAAAADcHZf3AgAAAADgQjLVI1+7dm25uWVu5tidO3dmKyAAAAAAAHB3mUrkhw4dmttxAAAAAACATMhUIt+uXbvcjgMAAAAAAGRClq6RP336tD766CO9+eabiouLkyRt3bpVR48ezdHgAAAAAACALbsT+Z07d6p169bat2+fvv32WyUlJUmSDh8+rKlTp+Z4gAAAAAAA4G92J/KTJk3S66+/rjlz5ih//vzW8kcffVR79+7NydgAAAAAAMAd7E7kjxw5oiZNmqQr9/f3V3x8fI4EBQAAAAAAMmZ3Il+4cGHFxsamKz906JACAwNzJCgAAAAAAJAxuxP5li1bauLEiYqNjZWbm5tMJpN27dqlCRMmqG3btrkQIgAAAAAAsLA7kX/jjTdUsWJFPf7440pKSlLLli0VFRWl8PBw9e3bNzdiBAAAAAAA/y9T68hbmM1mXbp0ScOGDVP//v115MgRXb9+XVWrVlX58uVzKUQAAAAAAGBhdyL/5JNP6uuvv1b58uVVokSJ3IoLAAAAAABkwK6h9e7u7ipXrpwSEhJyKRwAAAAAAHAvdl8jP3DgQH3wwQc6cuRIbsQDAAAAAADuwa6h9ZI0aNAgJScn6+mnn1b+/PlVoEABm+07d+7MseAAAAAAAIAtuxP5oUOH5kYcALLh/HW7B9fABfE5AwAAQLIzkb9586Z27typfv36qUyZMrkVEwA7zTzg7ewQAAAAADiIXYl8/vz59e2336pfv365FQ+ALOhb7ZpKFjI5OwzksvPX3TlpAwAAAPuH1jdp0kTff/+9unfvngvhAMiKkoVMquBjdHYYAAAAABzA7kS+XLlymj59unbv3q1q1aqpYMGCNtu7deuWY8EBAAAAAABbdifyK1asUOHChfX777/r999/t9nm5uZGIg8AAAAAQC6yO5H/4YcfciMOAAAAAACQCdlay8hsNstsNudULAAAAAAA4B9kKZFfvXq1WrdurdDQUIWGhqp169ZavXp1DocGAAAAAADuZPfQ+jlz5mjy5Ml6/vnn9frrr0uSdu3apVGjRikhIYHZ7AEAAAAAyEV2J/ILFizQqFGj1LZtW2vZE088oUqVKmnq1Kkk8gAAAAAA5CK7h9bHxsYqPDw8XXl4eLhiY2NzJCgAAAAAAJAxuxP5cuXKacOGDenK169fr/Lly+dETAAAAAAA4C7sHlr/yiuv6I033tCvv/6qmjVrSpJ2796t7du36+OPP7Y7gEWLFunzzz9XbGysKleurOHDhys0NPSu9efOnasvv/xSFy5ckJ+fn5o1a6aBAwfK09Mzy/sEAAAAAMBV2N0j36xZMy1btkx+fn76/vvv9f3338vPz0/Lly9X06ZN7drX+vXrNX78ePXv31+rVq1S5cqV1bNnT8XFxWVYf926dZo0aZIGDBig9evX67333tP69ev14YcfZnmfAAAAAAC4Ert75CWpevXqmjhxYraffM6cOerUqZM6dOggSRo9erS2bNmilStXqnfv3unq79mzRzVr1lTr1q0lSaVLl1arVq30v//9L8v7vBej0Zil12UymbL0OLg2k8mU5TaTnefEg4e2BkehrcFRaGtwFNoaHCUrbc2e+plO5GNiYjR37lz1799f3t7eNtuuXr2qGTNmqGfPnipatGim9peamqoDBw6oT58+1jJ3d3fVr19fe/bsyfAx4eHhWrt2rfbt26fQ0FCdOXNGW7du1dNPP53lfd7L/v377X6MJJ05cyZLj4NrO3z4sJKSkhz6nLS1BxNtDY5CW4Oj0NbgKLQ1OEput7VMJ/Jz587VtWvX0iXxklS4cGFdv35dc+bM0b///e9M7S8+Pl5Go1EBAQE25QEBATp+/HiGj2ndurXi4+PVpUsXmc1m3bp1S507d9bLL7+c5X3eS0hIiAwGg92P8/LysvsxcH3BwcEKCgpy6HPS1h5MtDU4Cm0NjkJbg6PQ1uAoWWlrRqMx053JmU7kf/75Z40aNequ29u2bavhw4dnOpHPih07dujTTz/VyJEjFRoaqtOnT+u9997T9OnT1b9//xx/PoPBkKVE3t3d7qkHkAe4u7tnqb1k9znx4KGtwVFoa3AU2hochbYGR8nttpbpRP7s2bMqWbLkXbcXL15c586dy/QT+/n5yWAwpJuELi4u7q7D8ydPnqw2bdqoY8eOkm6f5UhKStKIESPUt2/fLO0TAAAAAABXkulE3tPTU+fOnbtrMn/u3DmbJeD+iYeHh6pVq6bo6Gg1adJE0u0JAaKjoxUVFZXhY27cuJHujJblLIfZbM7SPnOTW3KC/csCwOW4JSc4OwQAAAAAD5BMJ/I1atTQmjVrVLt27Qy3r1692u612nv06KFBgwapevXqCg0N1bx585ScnKz27dtLkt5++20FBgZq4MCBkqRGjRppzpw5qlq1qnVo/eTJk9WoUSNrQv9P+3QEX19feXh4Sse2OOw54VweHp7y9fV1dhgAAAAAHgCZTuRffPFFvfjiiypcuLDN7PSXLl3S7NmztWrVKn3++ed2PXmLFi10+fJlTZkyRbGxsapSpYpmz55t3feFCxdseuD79u0rNzc3ffzxx4qJiZG/v78aNWqkN954I9P7dITAwEAtWrRQCQkJDnvO+8GpU6c0duxYDRs2TOXKlXN2OA7l6+urwMBAZ4cBAACA+9S1m45d9g7O4ajPOdOJ/KOPPqoRI0bovffe09y5c+Xt7S03NzddvXpV+fLl07Bhw1SvXj27A4iKirrrsPcFCxbYBpsvnwYMGKABAwZkeZ+OEhgY+MAmduXKlVNwcLCzwwAAAACc7vZoXQ/tj0t0dihwEA8Pj1wfrZvpRF6SOnfurEaNGmnDhg06deqUzGazypcvr+bNm6t48eK5FSMAAHjAxEqSzE6OArkt1tkBAA5we7TuIkbrPkAcMVrXrkReut0Qu3fvnguhAACAB52vr688PTy0IjXV2aHAQTwd0HMFOBujdRmtm9PsTuQBAAByS2BgoBbSc+XscByKeWYAwH4k8gAA4L5CzxU9V46UeCPO2SHAAfickdeQyAMAAOCBc/syDk/tOP6Ns0OBg3iyXDDyEBJ5AAAAPHBuX8bBcsEPEi7jQF5CIg8AAIAHEpdxcBkH4KoylcjXrl1bbm5umdrhzp07sxUQAAAAAAC4u0wl8kOHDs3tOAAAAAAAQCZkKpFv165dbscBAAAAAAAywT0rDzp9+rQ++ugjvfnmm4qLu72Uw9atW3X06NEcDQ4AAAAAANiyO5HfuXOnWrdurX379unbb79VUlKSJOnw4cOaOnVqjgcIAAAAAAD+Zves9ZMmTdLrr7+uHj16KDw83Fr+6KOPauHChTkaHADgPpPo7ADgEHzOAADc1+xO5I8cOaKJEyemK/f391d8fHyOBAUAuD8ZdhqcHQIAAMADz+5EvnDhwoqNjVWZMmVsyg8dOvTArsMJAA8KYx2j5OPsKJDrEjlpAwDA/czuRL5ly5aaOHGiJk+eLDc3N5lMJu3atUsTJkxQ27ZtcyFEAMB9w0eSn7ODAAAAeLDZPdndG2+8oYoVK+rxxx9XUlKSWrZsqaioKIWHh6tv3765ESMAAAAAAPh/dvfIe3h4aOzYserXr5+OHj2q69evq2rVqipfvnwuhAcAAAAAANKyO5G3KFmypEqWLJmTsQAAAAAAgH+QqUR+/Pjxmd7hkCFDshwMAAAAAAC4t0wl8gcPHkx332g0qkKFCpKkkydPyt3dXdWqVcv5CAEAAAAAgFWmEvkFCxZYb8+ZM0eFChXShAkTVKRIEUnSlStXNGTIENWqVSt3ogQAAAAAAJKyMGv9F198oYEDB1qTeEkqUqSIXn/9dX3xxRc5GhwAAAAAALBldyJ/7do1Xb58OV355cuXdf369RwJCgAAAAAAZMzuRL5p06YaMmSIvv32W128eFEXL17Upk2b9M477+jJJ5/MjRgBAAAAAMD/s3v5udGjR2vChAkaOHCgbt26JUkyGAx65pln9Pbbb+d4gAAAAAAA4G92J/IFCxbUqFGj9Pbbb+v06dOSpLJly8rLyyvHgwMAAAAAALbsTuQtvLy85Ovra70NAAAAAAByn92JvMlk0owZMzRnzhwlJSVJkgoVKqQePXqob9++cne3+7J7AAAAAACQSXYn8h999JFWrFihgQMHqmbNmpKkXbt2adq0aUpNTdUbb7yR40ECAAAAAIDb7E7kV61apbFjx+qJJ56wllWuXFmBgYEaPXo0iTwAAAAAALnI7nHwV65cUcWKFdOVV6xYUVeuXMmRoAAAAAAAQMbs7pGvXLmyFi1apGHDhtmUL1q0SJUrV86xwABk3vnrBmeHAAfgcwYAAICUhUT+3//+t/r06aNt27YpLCxMkrR3715duHBBs2bNyun4ANyDr6+vPD08NPOAsyOBo3h6eFhXDAEAAMCDye5Evk6dOtq4caMWL16s48ePS5KaNm2qLl26KDAwMMcDBHB3gYGBWrhokRISEpwdikOdOnVKY8eO1bBhw1SuXDlnh+NQvr6+/NYCAAA84LK0jnxgYCCT2gH3icDAwAc2sStXrpyCg4OdHQYAAADgUJlO5M+fP5+peiVLlsxyMAAAAAAA4N4yncinXW7ObDZLktzc3GzK3NzcdOjQoRwMDwAAAAAApJXpRN7NzU3FixdXu3bt1KhRI+XLl6VR+QAAAAAAIBsynY1v3bpVq1at0ldffaUlS5aoTZs2euaZZ/Svf/0rN+MDAAAAAABpuGe2YrFixdS7d29t3LhRkydP1pUrV9SxY0d16tRJy5Ytk8lkys04AQAAAACA7Ejk06pVq5bGjRunb7/9VgUKFNDIkSOVmJiY07EBAAAAAIA7ZOlC9927d2vlypXauHGjKlSooBEjRsjHxyenYwMAAAAAAHfIdCL/119/afXq1frqq6+UmJio1q1b68svv1RQUFBuxgcAAAAAANLIdCLfqFEjBQYGqm3btmrcuLHy5csnk8mkP/74w6Ze5cqVczxIAAAAAABwW6YTeaPRqPPnz2vGjBmaOXOmpL/Xk7dgHXkAAAAAAHJXphP577//PjfjAAAAAAAAmZDpRL5UqVK5GQcAAAAAAMiELC0/BwAAAAAAnINEHgAAAAAAF0IiDwAAAACACyGRBwAAAADAhWQpkb9165a2bdumJUuW6Nq1a5KkmJgYXb9+PUeDAwAAAAAAtjI9a73FuXPn1KtXL124cEGpqalq0KCBvL29NWvWLKWmpmrMmDG5EScAAAAAAFAWeuTfe+89Va9eXTt37pSnp6e1vGnTptq+fXuOBgcAAAAAAGzZ3SO/a9cuffnll/Lw8LApL1WqlGJiYnIsMAAAAAAAkJ7dPfImk0kmkyld+cWLF1WoUKEcCQoAAAAAAGTM7kS+QYMGmjdvnk3Z9evXNXXqVEVGRuZYYAAAAAAAID27E/nBgwdr9+7datGihVJTU/XWW2+pcePGiomJ0VtvvZWlIBYtWqTGjRsrJCREHTt21L59++5at2vXrgoODk73r3fv3jYx3rm9Z8+eWYoNAAAAAID7id3XyBcvXlxr1qzR+vXr9ccffygpKUnPPPOMWrdurQIFCtgdwPr16zV+/HiNHj1aNWrU0Lx589SzZ09t3LhRAQEB6epPnTpVN2/etN5PSEjQ008/rebNm9vUa9iwocaPH2+9f+c1/QAAAAAAuCK7E3lJypcvn9q0aaM2bdpkO4A5c+aoU6dO6tChgyRp9OjR2rJli1auXGnTy27h6+trc/+bb75RgQIF0iXyHh4eKlasWLbjAwAAAADgfmJ3Ir9q1Sr5+fnp8ccflyR98MEHWrZsmR5++GFNmjRJpUqVyvS+UlNTdeDAAfXp08da5u7urvr162vPnj2Z2sfKlSvVsmVLeXl52ZTv3LlT9erVk4+Pjx599FG9/vrr8vPzy3RskmQ0Gu2q/6CzTIJoMpl475CraGuOl9Ekp8j7+I45Dr9rcBTaGhyFtmY/e94nuxP5Tz75RKNGjZIk7dmzR4sWLdLQoUP1448/avz48Zo2bVqm9xUfHy+j0ZhuCH1AQICOHz/+j4/ft2+fjhw5ovfee8+mvGHDhmratKlKly6tM2fO6MMPP9RLL72kpUuXymAwZDq+/fv3Z7oupDNnzkiSDh8+rKSkJCdHg7yMtuZ4lvccDxa+Y47D7xochbYGR6Gt5S67E/mLFy+qXLlykqTNmzerWbNmevbZZ1WzZk117do1xwO8lxUrVigoKEihoaE25S1btrTetkx216RJE2svfWaFhITYlfg/6CyjIoKDgxUUFOTkaJCX0dYc785RT3gw8B1zHH7X4Ci0NTgKbc1+RqMx053JdifyXl5eSkhIUMmSJfXLL7+oe/fukiRPT0+lpKTYtS8/Pz8ZDAbFxcXZlMfFxalo0aL3fGxSUpK++eYbvfrqq//4PGXKlJGfn59OnTplVyJvMBhI5O3g7u5u/Z/3DbmJtuZ4lvccDxa+Y47D7xochbYGR6Gt5S67j8zq16+vYcOG6Z133tHJkyeta8cfPXrUruvjpdsT0lWrVk3R0dHWMpPJpOjoaIWHh9/zsRs3blRqamqmJty7ePGiEhISmPwOAAAAAODy7E7kR44cqbCwMF2+fFlTpkyxTiB34MABmyHtmdWjRw8tW7ZMq1at0rFjxzRq1CglJyerffv2kqS3335bkyZNSve4FStWqEmTJukmsLt+/bomTJigvXv36uzZs4qOjla/fv1Urlw5NWzY0O74AAAAAAC4n9g9tN7Hx0cjRoxIV56ZIe4ZadGihfWkQGxsrKpUqaLZs2dbh9ZfuHAh3ZDO48ePa9euXfriiy/S7c9gMOjIkSNavXq1rl69qoceekgNGjTQa6+9xlryAAAAAACXl6V15CUpOTlZ58+f182bN23KK1eubPe+oqKiFBUVleG2BQsWpCurWLGiDh8+nGH9AgUK6PPPP7c7BgDAP3NLdJNZZmeHgVzmlujm7BAAAMA92J3IX758WYMHD9bPP/+c4fZDhw5lOygAwP3F19dXHp4eSt2Z6uxQ4CAenh7y9fV1dhgAACADdify7733nq5evaply5apW7dumjZtmi5duqSZM2dq8ODBuREjAMDJAgMDtWjhIiUkJDg7FIc6deqUxo4dq2HDhlmXXn1Q+Pr6KjAw0NlhAACADNidyO/YsUMzZsxQSEiI3NzcVLJkSTVo0EDe3t769NNP9fjjj+dCmAAAZwsMDHxgE7ty5copODjY2WEAAABIysKs9UlJSfL395ckFSlSRJcvX5YkBQUF6eDBgzkbHQAAAAAAsGF3Il+hQgWdOHFCkhQcHKylS5cqJiZGS5YsYZ12AAAAAABymd1D67t166bY2FhJ0oABA9SrVy+tW7dO+fPn1/vvv5/jAQIAAAAAgL/Zncg//fTT1tvVq1fXjz/+qOPHj6tEiRLWIfcAAAAAACB3ZHkdeYuCBQuqWrVqORELAAAAAAD4B3ZdI3/y5Elt2rRJZ86ckSRt2bJFzz//vDp06KCZM2fKbDbnSpAAAAAAAOC2TPfIf/fdd3r99dfl5uYmNzc3vfvuuxoxYoTq1Kkjb29vTZs2TQaDQb17987NeAEAAAAAeKBlOpGfOXOmevXqpddff11fffWVRo4cqTfffFPdu3eXJC1dulRz584lkQcAAAAAIBdlemj9iRMn1KFDB7m5ualdu3a6efOm6tevb93eoEEDnT9/PleCBAAAAAAAt2U6kU9OTlahQoVuP8jdXZ6enipYsKB1e4ECBZSamprzEQIAAAAAAKtMJ/KWa+PT3gcAAAAAAI6V6WvkzWazmjVrZk3gk5KS1K5dO7m7u1u3AwAAAACA3JXpRH78+PG5GQcAAAAAAMiETCfy7dq1y804AAAAAABAJmT6GnkAAAAAAOB8JPIAAAAAALgQEnkAAAAAAFwIiTwAAAAAAC4ky4l8amqqjh8/rlu3buVkPAAAAAAA4B7sTuSTk5M1dOhQhYWFqVWrVrpw4YIk6d1339Vnn32W4wECAAAAAIC/2Z3IT5o0SX/88Yfmz58vT09Pa3m9evW0fv36HA0OAAAAAADYyvQ68hbff/+9PvroI4WFhdmUV6pUSadPn86puAAAAAAAQAbs7pG/fPmyAgIC0pUnJyfLzc0tR4ICAAAAAAAZszuRr169urZs2ZKufPny5el66QEAAAAAQM6ye2j9G2+8oZdeekl//vmnjEaj5s+fr2PHjmnPnj1asGBBbsQIAAAAAAD+n9098rVq1dKaNWtkNBoVFBSkX375Rf7+/lqyZImqV6+eGzECAAAAAID/Z3ePvCSVLVtWY8eOzelYAAAAAADAP7C7R/7AgQM6fPiw9f7mzZvVr18/ffjhh0pNTc3R4AAAAAAAgC27E/kRI0bo5MmTkqQzZ87ojTfeUMGCBbVx40b95z//yen4AAAAAABAGnYn8idPnlSVKlUkSRs2bFCdOnU0adIkjR8/Xt9++22OBwgAAAAAAP5mdyJvNptlMpkkSdHR0XrsscckSSVKlFB8fHzORgcAAAAAAGxkaR35mTNnavXq1fr111/1+OOPS5LOnj2rokWL5nR8AAAAAAAgDbsT+aFDh+rgwYN699139fLLL6tcuXKSpE2bNik8PDzHAwQAAAAAAH+ze/m5ypUra926denK3377bbm7231eAAAAAAAA2CFL68hnxNPTM6d2BQAAAAAA7iJTiXydOnW0ceNG+fv7q3bt2nJzc7tr3Z07d+ZYcAAAAAAAwFamEvkhQ4bI29vbevteiTwAAAAAAMg9mUrk27VrZ73dvn37XAsGAAAAAADcm92z07399ttauXKlTp8+nRvxAAAAAACAe7B7srv8+fPrs88+0zvvvKPAwEDVrl1bdevWVe3atVW+fPlcCBEAAAAAAFjYnci/9957kqSYmBj9+uuv2rlzp7744guNGDFCxYoV008//ZTjQQIAAAAAgNuyvPC7j4+PfH19VaRIEfn4+MhgMMjf3z8nYwMAAAAAAHewu0f+ww8/1M6dO3Xw4EH961//Uu3atfXSSy+pdu3aKlKkSG7ECAAAAAAA/p/difxnn30mf39/DRgwQE2bNlWFChVyIy4AAAAAAJABuxP51atXa+fOndZr4/Pnz686depY/5HYAwAAAACQe+xO5CtXrqzKlSurW7dukqQ//vhDc+fO1ZgxY2QymXTo0KEcDxIAAAAAANxmdyJvNpt18OBB7dy5Uzt27NDu3bt17do1BQcHq3bt2rkRIwAAAAAA+H92J/J16tRRUlKSgoODVadOHXXq1Em1atWSj49PbsQHAAAAAADSsDuR/89//qNatWrJ29s7N+IBAAAAAAD3YNc68jdv3lS/fv10/vz53IoHAAAAAADcg12JfP78+VWiRAmZTKbcigcAAAAAANyDXYm8JL388sv68MMPlZCQkAvhAAAAAACAe7H7GvlFixbp1KlTatiwoUqWLCkvLy+b7atWrcqx4AAAAAAAgC27E/kmTZrkRhwAAAAAACAT7E7kBwwYkBtxAAAAAACATLD7GnkAAAAAAOA8meqRr1OnjjZu3Ch/f3/Vrl1bbm5ud627c+dOu4NYtGiRPv/8c8XGxqpy5coaPny4QkNDM6zbtWvXDJ8jMjJSn332mSTJbDZrypQpWr58uRITE1WzZk2NGjVK5cuXtzs2AAAAAADuJ5lK5IcMGSJvb29J0tChQ3M0gPXr12v8+PEaPXq0atSooXnz5qlnz57auHGjAgIC0tWfOnWqbt68ab2fkJCgp59+Ws2bN7eWzZo1SwsWLND777+v0qVLa/LkyerZs6fWr18vT0/PHI0fAAAAAABHylQi365duwxv54Q5c+aoU6dO6tChgyRp9OjR2rJli1auXKnevXunq+/r62tz/5tvvlGBAgWsibzZbNb8+fPVt29f68R8H3zwgerXr6/NmzerZcuWORo/AAAAAACOZPdkd2mlpKTY9I5LsvbcZ0ZqaqoOHDigPn36WMvc3d1Vv3597dmzJ1P7WLlypVq2bGldBu/s2bOKjY1V/fr1rXUKFy6sGjVqaM+ePXYl8kajMdN1IZlMJuv/vHfITbQ1OAptDY5CW4Oj0NbgKLQ1+9nzPtmdyCclJWnixInasGGDEhIS0m0/dOhQpvcVHx8vo9GYbgh9QECAjh8//o+P37dvn44cOaL33nvPWhYbG2vdx537vHTpUqZjk6T9+/fbVf9Bd+bMGUnS4cOHlZSU5ORokJfR1uAotDU4Cm0NjkJbg6PQ1nKX3Yn8f/7zH+3YsUOjRo3S22+/rREjRigmJkZLly7VwIEDcyPGu1qxYoWCgoLuOjFedoWEhMhgMOTKvvMiy6iI4OBgBQUFOTka5GW0NTgKbQ2OQluDo9DW4Ci0NfsZjcZMdybbncj/+OOPmjBhgurWrashQ4aoVq1aKleunEqWLKl169apTZs2md6Xn5+fDAaD4uLibMrj4uJUtGjRez42KSlJ33zzjV599VWb8mLFiln38dBDD9nss3LlypmOTZIMBgOJvB3c3d2t//O+ITfR1uAotDU4Cm0NjkJbg6PQ1nKX3evIX7lyRWXKlJF0+3r4K1euSJIeeeQR/fbbb3bty8PDQ9WqVVN0dLS1zGQyKTo6WuHh4fd87MaNG5WampruxEHp0qVVrFgxm31eu3ZN//vf//5xnwAAAAAA3O/sTuRLly6ts2fPSpIqVqyoDRs2SLrdU1+4cGG7A+jRo4eWLVumVatW6dixYxo1apSSk5PVvn17SdLbb7+tSZMmpXvcihUr1KRJE/n5+dmUu7m5qVu3bpo5c6a+//57HT58WG+//bYeeugh6yz2yHlGo1GHDx+WdPs6GCa0AAAAuL9wvAbkHXYPre/QoYP++OMP1alTR71799bLL7+shQsX6tatWxo8eLDdAbRo0UKXL1/WlClTFBsbqypVqmj27NnWofUXLlywDsuwOH78uHbt2qUvvvgiw32+9NJLSk5O1ogRI5SYmKhHHnlEs2fPZg35XLJ161ZNnz5dFy9elCRNnDhRCxcuVP/+/RUZGenk6AAAAO4/58+f19WrVx32fLt379aSJUsUHx8v6fbx2ueff67OnTurZs2aDoujcOHCKlmypMOeD8ir7E7ku3fvbr1dv359bdiwQQcOHFDZsmXtvgbdIioqSlFRURluW7BgQbqyihUrWs8mZsTNzU2vvfaaXnvttSzFg8zbunWrRowYIQ8PD5vy+Ph4jRgxQmPGjCGZBwAASCMhIUFdunSxLs/lLPHx8Zo5c6ZDn9NgMGjVqlXy9fV16PMCeU2mE3mTyaTZs2frhx9+0M2bN1WvXj0NGDBApUqVUqlSpXIzRtynjEajJk2aJLPZrJo1ayoyMlLvv/++Bg8erK1btyo6OloffvihIiIimOACAADg//n6+mrx4sUO6ZE3mUx67bXXdOPGjbvWKVCggCZPnpxuFGxuKFy4MEk8kAMyncjPnDlT06ZNU/369eXp6an58+crLi5O48ePz834kAWOGqp16NAhJSQk6OGHH1b37t2ta0Xmy5dP3bt3V2xsrP7880+tW7dOVapUyfV4GKoFAABchaOOWX799dd7JvGSdOPGDV27dk21a9d2SEwAsi/TifyaNWs0cuRIde7cWZK0bds29e7dW++9955Dzt4hc5wxVOvPP/9Unz59rPfHjh1rs/3DDz90SBwM1QIAALC1ceNG620fHx+lpKTo5s2byp8/vzw9PZWYmGitRyIPuI5MJ/Lnz5+3uda5fv36cnNz019//aXixYvnSnCwnyOHaq1atUrr169X69attW3bNsXFxVm3BQQEqF69evr666/VokULtWvXLtfjYagWAACArfPnz1tvW5J2SUpJSVFKSkqG9QDc/zKdyBuNxnSzvufLl083b97M8aCQPY4aqtW0aVOtX79e69at06OPPqpu3brJw8NDqampio6O1tdff22tFxwc7JCYAAAA8LfMHqtzTI+cFBsba13RbPDgwfrss89UrFgxJ0eVt2Q6kTebzRo8eLDN7OSpqakaNWqUChYsaC2bNm1azkaI+1ZISIjc3d1lMpm0Z88ebd++3brNctLH3d1dISEhzgoRAADggebt7Z2j9YB/0qJFC127ds16Py4uTh06dJC3t7fWr1/vxMjylkxf3N6uXTsFBASocOHC1n9t2rTRQw89ZFOGB8eBAwes1+LfeRbXct9kMunAgQMOjw0AAADSvn37crQecC9pk3h/f3+b/69du6YWLVo4Lba8JtM98sxOjzvFxsZKkipVqqSEhATrfUkqWrSoihQpoqNHj9qUAwAAwHFu3bqVo/Xgehy1olViYqJNEn/58mVJ0uXLl633r127pl9//VU+Pj65Hk9eX9Eq04k8cKeEhARJUtWqVbVjxw6bbe7u7qpSpYqOHj1qrQcAAADHMhgMMhqNmaqHvMcZK1pJsibxGd0fOHCgQ2LI6ytakcgjyyxfijVr1qhevXoaOXKkKlSooBMnTmj+/Plau3atTT0AAAA4Vnh4uH777bdM1UPe48gVrfr376/U1FSVL19eQ4YMsVmi3GQyady4cTp16pQ8PDw0ffr0XI8nr69oRSKPLAsICLDeNpvN2rx5s1JTU+Xh4SGz2ZxhPQAAADhOZocW5+UhyA86R322hQoVUmpqqm7cuKGgoCDt27dPcXFxCggIUGhoqHW5w0KFCrGiVQ4gkUe2FS5c2GbG+rTljjj7BwAAgIxldjJqJq1Gdr3wwgv6+OOPdfHiRbVv317x8fHWbX5+ftb7L7zwgrNCzFMyPWs9cCfLl/Hq1avKnz+/atasqSeffFI1a9ZU/vz5rUl82i8xAACwlZqaqu+++06S9N133yk1NdXJESGvcnNzu+d9IDsqVKhgvR0fH6/ixYtr+PDhKl68uE0+kLYeso4eeWRZkSJFJEkeHh66deuWdu/ebd3m7u4uDw8PpaamWusBAABbM2bM0PLly62TkS1btkwrV65Ux44d1a9fPydHh7zAMou4p6endWizhdlstpanXfcbyIpq1arZTK548eJFvfvuuzZ1DAaDqlWr5ozw8hwSeWTZ8ePHJd3uSXj00UdVr149a/IeHR1tHW5//Phx1a5d25mhAgCQKY5apkmSVqxYoU2bNsnHx0cRERFav369WrRoof/+979asmSJ4uPj9cwzzzgklry+TNODzDLhWEpKinx9fRUWFqaCBQsqOTlZe/futa4ulHZiMiArDhw4IKPRKDc3N4WFhWn//v26deuW8uXLp5CQEO3du1dGo1EHDhxgcsUcQCKPLDt37pz1tru7uypVqqSKFSvq+PHjNsvRpa0HAMD9ylnLNCUmJmr9+vWSZP1fkjZt2qRNmzY5JIa8vkzTg6xEiRLW29evX9eWLVus9z08PDKsB2RFXFycJKl48eLas2ePtfzWrVvas2ePSpQooQsXLljrIXtI5JFtDRs21NGjR22GAJYoUUIRERH673//68TIAADIPEcu0/Tdd99p2bJl6tq1q+rXr68ff/xRsbGxKlasmBo1aqRt27ZpwYIF6tSpk5o2bZrr8eT1ZZoeZBUrVpR0+2TNzZs3bbalpqZah0Jb6gFZZVmp6sKFCxlut5SzolXOIJFHllWtWlWrV6/W/v37tXz5ch08eNC6xETVqlXVsWNHaz0AAFyBo4aXb9iwQdLtCWMHDBhgvaZUklauXKlWrVpJut2TxTJNyI7ExERJsmljaVnKLfWArEp7MshyuW1G9zlplDO4GAZZFhgYKOn2UMROnTrpzJkzCgsL05kzZ9SpUyfrNVeWegAA4DbLCYPVq1fLx8dHYWFhqlGjhsLCwuTj46M1a9bY1AOyKrOTDjM5MbLr/ffft9728vJSo0aN9NRTT6lRo0by8vLKsB6yjh55ZFloaKiKFy8ud3d3xcTEaOLEidZtBoNBJUuWlNlsVmhoqBOjBADg/tOiRQtNmzZN0u1lmu62VGuLFi0cGRbyoD///NN6u06dOipQoICuXbsmb29v3bhxQzt37rTWY3JiZMexY8ck3U7iExIS9OOPP9ps9/LyUlJSkrUesoceeWSZwWBQ//79deHChXQznbq7u+vChQvq16+fDAaDkyIEAOD+lHZSO0mqW7eupk+frrp1696zHmCvffv2WW/v3btXP/30k3bv3q2ffvpJe/fuzbAekBX58t3uI05KSpKfn586d+6sN998U507d5afn5+SkpJs6iF7SOSRbWazWW5ubjZlbm5uMpvNTooIAID72+nTpyXd/nvp7u6uHTt2qH///tqxY4fc3d2tf1ct9YCsSrt2fNprlu+8f+ca84C9Hn30Uevt+fPnq169evL29la9evU0f/78DOsh6zgdgiwzGo2aPn26goODdeXKFV28eNG6zd/fX0WKFNGMGTMUERFBrzwAAGkcP35c0u2hzmPGjNHMmTN17tw5lSpVSn379tWwYcP066+/WusBWVWpUiX99ttvkm6P/Khfv7514rFt27ZZlwyuVKmSM8NEHnDr1i3r7datW2eqHrKORB5Ztm/fPl28eFExMTGqV6+eRo4cqQoVKujEiRNasGCBoqOjZTabtW/fPoWHhzs7XAAA7huenp6SpP3796tr167666+/JEm//vqrtm3bpmvXrtnUA7Iq7SR2hw8fVsOGDVW3bl1t27ZNhw8fzrAegPsfiTyyLDY2VtLt3oRx48ZZr5OvVq2axo0bp0GDBmnHjh3WegAA4LYyZcpo165dSkpK0s2bN9WlSxe1bNlS33zzjZYvX25d77tMmTJOjhSuznJSSLq90lDayYnvVg/IilKlSuVoPdwb18gjyyzLyz322GMZTnbXsGFDm3oAAOC23r17W28bjUYtXrxYzz//vBYvXiyTyZRhPSAr0h6j3TnCI+39O4/lAHtldn141pHPGXxjkWW+vr6SpJ9++snmoEOSTCaTfv75Z5t6AADgtqNHj9rcL1q0qPz9/VW0aFGbyWLvrAfYy3J5Y9myZeXj42OzrUiRIipbtqxNPSCr7lxGMygoSI0bN1ZQUNA96yFrGFqPLCtWrJgkaceOHRo6dKiioqJUsWJFHT9+XAsXLrROnmKpBwAAbouLi5N0+2R3QkKCLl26ZLPdUm6pB2RVWFiYfH19dfr0aXl4eNhsS0hIUGpqqvz8/BQWFuacAJFnWH6v3N3dZTKZdOTIER05csS63VLO71rOIJFHloWGhqp48eIqUqSIjh07pn79+lm3FS9eXMHBwUpMTFRoaKgTowQA4P4TEBAg6XYilS9fPgUGBloPcmNiYqyXpVnqAVllMBjUvHlzLVmyJN1s4Zb7zZo1Y4UhZNuff/4p6fbI3EcffVSlS5dWamqqPDw8dPbsWW3fvt2mHrKHRB5ZZjAY1L9/f40YMUL16tXTc889J09PT6WkpGjnzp2Kjo7WmDFj+MMAAMAd0i71VaRIEZ07d856PyAgwNpjxZJgyC6j0agtW7YoODhYCQkJiomJsW576KGHVKRIEW3dulV9+vThmA3ZkpycbL1tNpvT/cuoHrKORB7ZEhkZqTFjxmj69Onatm2btbxEiRIaM2aMIiMjnRgdAAD3p88++8x6+85hpmnvf/bZZ3rzzTcdFhfyHstywW3atNHatWvTbX/sscc0a9YslgtGtllGEHl6emrHjh3Wy2wtLB1+jDTKGSTyyLbIyEjVq1dPq1ev1vnz51WyZEm1bds23XVYAADgtrNnz+ZoPeBuLCeGZs2apXr16mnkyJGqUKGCTpw4oQULFmj27Nk29YCsqlatmtasWaOUlBTly5dPjz/+uCpXrqw//vhDW7ZsUUpKirUeso9EHtm2detWTZ8+XRcvXrSWrVixQv3796dHHgCADOTPn9/mfvny5RUREaH//ve/Onny5F3rAfby8/OTJFWvXl3jxo2zLjNXrVo1jRs3Tq+88or2799vrQdklb+/v/W2yWTS5s2btXnzZkm2yxumrYesY/k5ZMvWrVs1YsQIVaxYUTNnztTGjRs1c+ZMVaxYUSNGjNDWrVudHSIAAPedtNcir169WvPnz1fv3r01f/58rV69OsN6AHA/O378uKTbq26kvSZeun3NfJEiRWzqIXvokUeWGY1GTZ8+XfXq1cvwDO/QoUM1Y8YMRUREcCACAEAau3btst7u2LGjOnbsqJYtW+qbb77R8uXLM6wHZIVlze79+/dnuFzw/v37beoBWWUZnXvlyhU9+uijKlmypHXW+vPnz1tnrU87ihdZRyKPLLNMnjJy5EiZzWbt2bNHcXFxCggIUGhoqKKiotSvXz8mTwEA4A5Go1HS35M/LV68WIsXL7Zu9/DwUGpqqrUekFWWicV69+6ttWvX2iwXXKJECb300kuaNWsWE5Ah20qWLClJatOmjXbs2KHo6GjrthIlSqh169Zau3attR6yh0QeWWaZFOXcuXMaPXq0zdm14sWLq1evXjb1AADAbSVKlNCpU6eUkpKiWrVqKTU1VYmJifLx8ZGHh4d+++03az0gO0JDQ1W8eHH9/vvvmj9/vtauXWudnLhNmzYaNWqUSpQoodDQUGeHChfXtm1bzZw5Uz/99JOWLVumgwcPWjv5qlatqk6dOslgMKht27bODjVPIJFHllnO3I4dO1b169dPNwvq2LFjbeoBAIDbJk+ebD2YtSTtd6sHZIfBYFD//v01YsQItW7d2jpzuHR7JvvU1FSNGTOGyyCRbR4eHurYsaOWLFmiTp06qWfPnqpfv762bdumUaNGKT4+Xp07d2ZlqxxCIo8sq1atmgwGg3x8fDR69GgdPHhQ27ZtU0BAgEaPHq1OnTopMTGRJSYAALiDv7+/vL29de3atbvW8fb2ZnZn5Biz2WyTxEtKdx/ILsulG8uXL9fEiROt5QaDQZ07d7a5tAPZQyKPLDtw4ICMRqPi4+PVqlUrmz8Glmv+LPW4Rh4AgL8ZjUZ5e3srJSVFN2/eTLc9f/78Kly4sIxGIz2lyBaj0ahJkyZJkh599FHVq1fPOgdDdHS0tm/frg8//JDJiZFjqlWrph9++EF//fWXtSwgIIDOvRzG8nPIssxe+8418gAA2LJMGDtlyhStXr1a5cuXl4+Pj8qXL6/Vq1dr8uTJunDhgvbt2+fsUOHi9u7dq4SEBIWEhOi9995T+fLl5enpqfLly+u9995TSEiI4uPjtXfvXmeHijzAsjT1ww8/bLM09cMPP8zS1DmMHnlkmZ+fnySpbNmySklJUUxMjHWbr6+vPD09dfr0aWs9ICcYjUYdPnxYknT48GE9/PDD9CAAcDmWk9wVKlRQvnz51KpVK+sEZN7e3qpYsaJNPSCr9uzZI0mqVauWnn/++XSTEzdv3lz79+/Xnj179MgjjzgrTOQBLE3tWCTyyLbTp0+rXr166tKli3VI/fbt222WnABywtatWzVt2jTrSaOJEydqwYIFGjBggCIjI50cHQBknmUi2IkTJ+rHH3+0WWZu5syZatSokU09ILvmzp2runXrKiIiQikpKfL09NTZs2c1b948Z4eGPCLt0tSWJN7C3d2dpalzGIk8sixtL8GuXbtsEve0s1HSm5B3nT9/XlevXnXIc+3evVszZ85MN9NpfHy8hg8frr59+6pmzZoOiaVw4cKsgQogW0JDQ1WoUCFt3rxZvr6+eumll6yzO8+aNUubN29WoUKFWBIM2VajRg1JUr58+fTrr79q+/bt1m0Gg0H58uXTzZs3rfWArEo70igjjDTKWSTyyLKEhATrbTc3N5ttae+nrYe8IyEhQV26dJHJZHLo86ampmZ4f+bMmQ6LwWAwaNWqVfL19XXYcwLIW4xGo5KTkyVJVapUUYUKFVSwYEFVqFBBVapUUXR0tJKTk5nsDtlm6Rm9efOm8ufPr86dO6tly5b65ptvtGzZMutki3f2oAL2sowgOnHihCpXrqx9+/ZZ15EPDQ3V8ePHbeohe0jkkWU+Pj6Sbl8Pv3z5ch08eND6Za1atao6duyohIQEaz3kLb6+vlq8eLFDeuQPHTqkDz/8UF5eXkpKSkq33VL+5ptvqkqVKrkeT+HChUniAWTL6tWrZTKZ9PTTT2vHjh02SzKVKFFCbdq00dq1a7V69Wp16tTJiZHC1cXGxtrcX7RokRYtWiTp9uoId6sH2Cs0NFTFixfXxx9/rCtXrqSbj6FIkSIqUaIEI41yCIk8siwxMVHS7Z7ZkSNHKioqSvXr19fx48c1cuRIa0+8pR7yHkcNL//5558lSUlJScqXL59CQ0MVEBCguLg47du3z5rcX7p0ScHBwQ6JCQCy4/z585Kk7t276/XXX0/XcxUfH6+1a9da6wFZdfDgQUlSw4YNdeTIEZvJiQMCAvTwww/rv//9rw4ePKjmzZs7K0zkAQaDQY8//riWLFkiPz8//fvf/7ZeMjR79mwdPnxYnTt3ZpRRDiGRR5ZZeiQrVaqkY8eO2fQmFC9eXJUqVdLRo0fpuUS23bp1y3rbZDJp9+7d1vtphwKmrQcA9zPLidBt27apdevW6SZ+2rZtm009ILuSk5O1ePFi/f7779aTRtWrV9egQYOcHRryCKPRqC1btig4OFgJCQn6z3/+Y91WvHhxBQcHa+vWrerTpw/JfA4gkUeWFStWTJL0559/ql69enruueess9bv3LnTOvmdpR6QVadOnbLeLlKkiHr16mVzhjc+Pj5dPQC4n7Vt21YzZ87U7Nmz9eSTT6a7PO3zzz+XwWBQ27ZtnR0qXFzp0qUlSb/99puGDx9uM4Jy+PDh+u2332zqAVmVdtb6jK6RP3ToELPW5yASeWSZ5TqYIkWK6Pjx49beA+n29X1BQUFKTEzkOhhkm2VCKEkKCgqymRQqKChIO3bsSFcPAO5nHh4e6tixo5YsWaJmzZrZTBzq7u4uk8mkzp07p1upA7CX5aRRgQIF9Oeff9qMoAwMDFShQoV048YNThoh29LOWm8wGNIl68xan7NI5JFlBoNB/fv314gRI1S3bl01aNBAqamp8vDw0Llz57Rjxw6NGTOGoTPItrQz1e/du9eauEuSp6dnhvUA4H5XrVo1SUq3+oflvmU7kB1pTxp5eHjo8ccfV8GCBZWcnKz//e9/un79OieNkCPSzlqf0e8Xs9bnLBJ5ZEtkZKSeffZZLV++PN26pM8++6wiIyOdGB3yiooVK+r333+Xm5ubfH19bSbq8fPzU0xMjMxms/VMLwDc74xGo6ZPn6769etr1KhR1ontSpYsqTZt2mjUqFGaMWOGIiIiOCGObOvXr5/OnDmjX375RVu2bLHZ1qBBA5teeiCrLKN1FyxYoHHjxtnMY2QymbRw4UJmrc9BJPLIlq1bt2rp0qWqV6+e6tata71GfseOHVq6dKmqVatGMo9sK1u2rCTJbDYrLi5OpUqVkpubm8xmszWJT1sPAO53aa8lLVCgQLol5qKioriWFDlm69at2rZtmx599FGVLl1aKSkp8vT01NmzZ7Vt2zZt3bqV4zVkW9rRukOGDEmXG2zfvp3RujmIRB5ZZulNqFevXrqzbk8//bSGDh1KbwJyhOX6PpPJpFu3buncuXM2293c3OTu7s71fQBcRtprSY1GY7pJobiWFDnlXsdrJpOJ4zXkqLSjdS0TX0uM1s0NJPLIsrS9CWn/KEi3J+qhNwE5xcPDQ8WLF0+XwFuYzWYVL16c6/sAuAzLNaJfffWV1q5dq4sXL1q3FS9eXK1bt7apB2QVx2twJEbrOg6JPLIsbW9CRuhNQE5JTk6+axJvce7cOSUnJ6tgwYIOigoAsi40NFS+vr767LPPVL9+fY0cOVIVKlTQiRMntGDBAs2aNUu+vr5cS4ps43gNjsJoXcdy/+cqQMbSzkyZEWamRE6ZOnWq9XaxYsVstqW9n7YeALgKs9lsnesj7W03NzdnhoU8guM1OIpl9EfXrl3vOvrjwoUL2rdvn5MizFtI5JFlaWemzGjpHGamRE75+eefrbcrVaqkmTNnauPGjZo5c6YqVaqUYT0AuJ/t27dPCQkJ6t27t06cOKF+/fqpefPm6tevn06ePKmXXnpJ8fHxHPAi29Ier928eVN79uzR5s2btWfPHt28eZPjNeQYRn84FkPrkWVpZ6YcOnSooqKiVLFiRR0/flwLFy5UdHQ0M1MiR1hOFBUtWtRmqFa1atU0btw4PfPMM7p06VK6E0oAcL+yHMi2b99ezz33XLrJ7lJSUjRr1iwOeJFtluO14cOHq0WLFkpJSbFus1y//O6773K8hmxjHXnHcnqP/KJFi9S4cWOFhISoY8eO/3jmOTExUaNHj1ZERISqV6+uZs2aaevWrdbtU6dOVXBwsM2/5s2b5/bLeGBFRkZqzJgxOn78uE1vwokTJzRmzBgms0COKFOmjCTp0qVLSklJselNSElJ0aVLl2zqAcD9Lu0Br8FgUHh4uJo0aaLw8HAZDAYOeJHj7napBpdwIKcwWtexnNojv379eo0fP16jR49WjRo1NG/ePPXs2VMbN27M8A9XamqqevTooYCAAE2ePFmBgYE6f/68fHx8bOpVqlRJc+bMsd7nDGPuioyMVERERLreBN535JRWrVrp4MGDkqRmzZrdsx4AuIK0B7wZLQnGAS9yStoJyN599139/vvv1uO16tWra/jw4UxAhhzBaF3HcmoiP2fOHHXq1EkdOnSQJI0ePVpbtmzRypUr1bt373T1V65cqStXrmjJkiXKnz+/JKl06dLp6hkMhnQTYmWF0WjM9j4eJHcebPD+IaeUKFEi0/Vod8hJlh4Fk8lE20KO69u3r0aNGqWhQ4eqS5cu1lnrFy9erOjoaI0aNUoSf0+RPXv37tXFixc1fPhwubu7pzte69KliwYMGKC9e/cqLCzMOUEiz4iIiNCoUaM0c+ZM9evXz1peokQJjRo1ShEREfym3YM9743TEvnU1FQdOHBAffr0sZa5u7urfv362rNnT4aP+eGHHxQWFqYxY8bo+++/l7+/v1q1aqWXXnrJ5szOqVOnFBERIU9PT4WFhWngwIEqWbKk3THu37/f/hcGIMfdunVL7u7uNrM5p+Xm5iY3NzfdunVLe/fudXyAyLPOnDkjSTp8+LCSkpKcHA3yGh8fH3Xv3l1r1qzRgAEDrOX+/v7q3r27fHx8+E1Dtu3evVuSdPXqVe3cuVNr167VpUuXVLRoUbVp08Z6wtJSD8guHx8f/fvf/9bx48eVmJgoHx8fVaxYUe7u7vym5SCnJfLx8fEyGo3phtAHBARYrwu705kzZ7R9+3a1bt1an332mU6fPq3Ro0fr1q1b1j+AoaGhGj9+vCpUqKDY2FhNnz5dzz//vNatWydvb2+7YgwJCWHoB3Af2Lt3r/VAw8fHR97e3rpx44YKFCiga9euKTExUWazWfny5aM3ATnKy8tLkhQcHKygoCAnR4O8KCwsTB07dtRnn32ms2fPqnTp0urdu7cKFizo7NCQhyxYsECLFi2y6aQ6fPiwfvnlF4WEhEiSatasyd9Q5KiaNWs6OwSXYzQaM92Z7FKz1pvNZgUEBFhn1qxevbpiYmL0+eefWxP5tJOrVa5cWTVq1FCjRo20YcMGdezY0a7nMxgMJPLAfcAya3OJEiUUExOjxMRE6zaDwaASJUrowoULiouL4zuLHGW5btnd3Z22hVwxY8YMLV++3Dqc8rffftO6devUsWNHm2GpQFaFhYXJ09PzrsnB/v37raNY+Z0DXIfTEnk/Pz8ZDIZ0y6rExcWpaNGiGT6mWLFiypcvn82PTMWKFRUbG6vU1FR5eHike4yPj4/Kly+v06dP5+wLAOAw/9fe/YdFWab9H/8MI+BqJYgGWK46WWijBFoqSEu5WqaLm1im+eNb+avA1bZSCxWDEHfTntQELDUrtPyRYrn6oOtu0paTaWKIrbormJZYRKAmBjjM9w+deZxAU0CG0ffrODgO5r7PuTmnvVc47+u6zqukpESSVFBQoLCwMPXo0UNeXl4qLy/XZ599JovF4hQHAO4gNTVVK1askK+vr0aPHq3w8HBt27ZNixcv1ooVKySJYh61Vl5e7thyzmAwOC1Rs78uKytTeXk5M0EAN+Ky7ee8vLxkNpsdf4BLZ5sJWSwWhYaGVvueLl266PDhw07bGRw6dEgtW7astoiXpFOnTunIkSN10vwOgGvYd6bw8fHRzJkzNXDgQPXv318DBw7UzJkz5ePj4xQHAA1deXm5Vq9eLV9fX61Zs0ZRUVHy8/NTVFSU1qxZI19fX61evVrl5eWuThVuLjU11fG9vVm03fl/P58fB6Dhc+k+8o8//rhWrVqljIwMHTx4UC+++KJOnz6t6OhoSdLkyZP1yiuvOOKHDh2qkpISzZw5U/n5+dq6datef/11DRs2zBHz17/+VZ9//rm++eYb7dq1S+PHj5eHhwfbUgFuzD6VvqSkRNOmTVNubq5KS0uVm5uradOmOUbiz59yDwAN2bp162S1WjV69GgZDAZlZ2dry5Ytys7OlsFg0KhRo2S1WrVu3TpXpwo3t2/fPklne3387//+r+bNm6f4+HjNmzdPGzdudPT/sMcBcA8uXSPfr18//fjjj5o/f74KCwvVsWNHLV682DG1vqCgwGlf1cDAQC1ZskSzZs3SgAED5O/vr5EjR2rMmDGOmGPHjumZZ55RSUmJmjdvrq5du2rVqlVq3rx5vX8+AHXDPuJ+66236uDBg05TTQMCAnTrrbfqP//5jyMOABq6o0ePSjo7tXno0KE6duyY41xAQIBGjBjhFAfUlH0q/c033yxPT88qM19vvvlmHThwoNpdYQA0XC5vdjd8+HANHz682nPp6elVjoWGhmrVqlUXvN6rr75aZ7kBaBjsS2P++9//qkePHoqIiHD0xTh69Kg+++wzpzgAaOjs2+K+/PLLCg8P14wZMxz7yKenp2v27NlOcUBNde3aVQcOHNDWrVv1wgsvOE2nLy8vV1ZWliMOgPtweSEPAL8mODhYAQEB8vDw0Pbt2536ZHh4eCgwMFA2m03BwcEuzBIALl1UVJQWLFggT09PJSYmOoors9msxMREPfDAA6qoqFBUVJSLM4W769atm9577z1ZrVb17dtXgwcPVv/+/bVhwwatWrXKsWNCt27dXJwpgMtBIQ+gwTMajbrnnnscXZzPV1lZqaNHj2rIkCFsmwPAbdjXI1dUVOihhx5SSEiIGjdurJ9//lm7d+9WRUWFI+5CTYCBSxESEiIfHx+VlJTozJkzevfdd/Xuu+86xfj6+rKHPOBmXNrsDgAuhdVqVWZm5kVjMjMzHaMKANDQ2bffve2221RSUqKtW7cqMzNTW7duVUlJiaMB2S+36QUul9Fo1LPPPiuDwVBllycvLy8ZDAY988wzPAwH3Awj8gAavN27dzs609tHDX7zm9/o9OnT2r17t4qLi1VSUqLdu3ezxg+AW/Dz85MkHThwoNp/1w4cOOAUB9RGZGSkEhMTlZKS4tRY0c/PTzExMYqMjHRhdgBqgkIeQIO3Y8cOSVLjxo3l6empjz76yHHuxhtvdExH3bFjB4U8ALfQoUMHSWf39V69enWVBmT2NfL2OKC2IiMjFRYWpnXr1uno0aNq1aqVHnzwwSqj9ADcA4U8gAbPPjL1888/q0uXLkpISHDq7rxt2zanOABo6NavXy/p7Br5+Ph4DR8+XCaTSXl5eVq2bJljjfz69es1ePBgV6aKq0RWVlaVEfn3339fsbGxjMgDbog18gAaPG9vb0lS06ZNlZSUJLPZrCZNmshsNispKUlNmzZ1igOAhs6+P/zkyZOVl5enmJgY9e3bVzExMcrPz9ekSZOc4oDayMrKUnx8vEwmk9LS0pSZmam0tDSZTCbFx8c7tqAD4D4YkQfQ4Nn3hz916pSmTp2qESNGOEau0tPTderUKac4AGjo7PvD22w2vffee8rJyVFRUZH8/PwUHBysDRs2OMUBNWW1WpWSkqKwsDAlJyfLw+PsOJ7ZbFZycrLi4uKUmpqqiIgIGt4BboRCHkCDd/vtt2vdunWSpJ07d8pisTjOeXp6OsUBgDt48MEHlZaWpsWLF+uBBx5w2mLuzJkzWrJkiYxGox588EHXJYmrQk5Ojo4dO6YZM2Y4ing7Dw8PDR8+XDExMcrJyWGrQ9QZq9Va5QElD4rqFoU8gAbP39/f8f0vt5g7//X5cQDQkHl5eenhhx/WihUrNGjQII0aNUrh4eHatm2blixZouLiYg0ZMoRGZKg1+xaG7dq1q/a8yWRyigNqq7p+DAEBAfRjqGMU8gAavODgYAUEBMjDw8Ppl4IkGQwGtWrVSjabTcHBwS7KEAAuX0xMjCRp9erVmjNnjuO40WjUkCFDHOeB2rBvYZifny+z2VzlfF5enlMcUBv2fgxhYWGaMWOGU3Pi+Ph4JSYmUszXEZrdAWjwjEajYmNjdfTo0SrTsjw8PHT06FHFxMQwZQuA24mJidGmTZs0fvx4RUdHa/z48dq0aRNFPOqM/WF4enq6Kisrnc5VVlZq2bJlCgwM5GE4au2X/RjOb06cnJyssLAwpaamVpldiZqhkAfgNgwGQ7Xr+wwGg4syAoDa8/Ly0uDBg/X0009r8ODBTKdHnbI/DLdYLIqLi1Nubq5KS0uVm5uruLg4WSwWHoajTtj7MYwYMeKC/RgKCgqUk5PjogyvLkytB9Dgnf+E96WXXlJubq6jeUqnTp00ffp0Ou4CAHABkZGRSkxMVEpKitNsj8DAQKY6o87Qj6F+UcgDaPDouAsAQO1ERkYqIiKCTuK4YujHUL8o5AE0ePYnt99++60SEhKqdEEdPXq0UxwAAKjKaDTywBtXzPn9GJKTk50GX+jHUPdYIw+gwbM/uU1KSpLJZFJaWpoyMzOVlpYmk8mkpKQkpzgAAADUL/ox1C9G5AE0eGazWUajUTfccIOSkpLUqFEjx/GkpCQNGjRIJ06cqHYaFwAAAOoH/RjqD4U8gAZv7969slqtKikp0bRp0zR8+HCZTCbl5eVp2bJlKikpkc1m0969e5kyCAAA4EL0Y6gfFPIAGjz72vepU6dq8eLFVZ7wTp06VUlJSayRBwAAaADox3DlUcgDaPDsa99vuukmvffee1We8P773/92igMAAACuZjS7A9Dgnd8F1WAwKDQ0VL1791ZoaKgMBgNdUAEAAHBNoZAH0ODRBRUAAAD4P0ytB+AW6IIKAAAAnEUhD8Bt0AUVAAAAoJAH4GboggoAAIBrHWvkAQAAAABwIxTyAABUw2q1av/+/ZKk/fv3y2q1ujgjAACAsyjkAQD4haysLA0dOlRz5syRJM2ZM0dDhw5VVlaWizMDAABgjTwAwA0cPXpUJ0+erJeftWvXLi1cuFDBwcHq27ev3nrrLT322GPKzs5WfHy8nnzySXXp0qVecrn++uvVqlWrevlZAADAfRhsNpvN1Uk0NFarVbt371ZISAjdsIEGxmq10rX+GlNSUqIHH3xQlZWVrk6l3hmNRmVkZMjHx8fVqQAAgCvscupQRuQBuI2srCylpKTo2LFjjmMBAQGKjY1lH/mrmI+Pj9599916GZHfv3+/5syZo4EDB+rjjz9WUVGR45yfn59+97vfKSMjQ88995yCgoKueD7XX389RTwAAKiCQh51glFSXGlZWVmKj49XWFiYZsyYoXbt2ik/P1/p6emKj49XYmIixfxVrL6mlx85ckSSlJGRIW9vb6dzP/30kzIyMiRJTZo0qZdCHgAAoDoU8qg1RklxpVmtVqWkpCgsLEzJycny8Djbp9NsNis5OVlxcXFKTU1VREQED5BQK76+vo7vu3TpopEjRzoeGr3zzjuyWCxV4gAAAOobXetRK/ZRUpPJpLS0NGVmZiotLU0mk0nx8fF0eEadyMnJ0bFjxzRixAhHEW/n4eGh4cOHq6CgQDk5OS7KEFcL+xZz119/vRITE1VeXq5t27apvLxciYmJuv76653iAAAAXIERedQYo6SoL/Z1yu3atat2GYfJZHKKA2rK/jDo5MmT+sMf/qCysjLHOW9vb8frnJwcdevWzSU5AgAAUMijxuyjpDNmzLjgKGlMTIxycnIUGhrqoixxNfDz85MkrV27Vh9++GGVZRxRUVFOcQAAAMDVjEIeNXb+KGl1GCVFXQkODpaPj4/eeOMNhYeHV2l2t2jRIvn4+Cg4ONjVqcLN3XHHHZLOTq1fu3atvvrqK8fsj9tvv13R0dE6efKkIw4AAMAVWCOPGrOPfubn51d7Pi8vzykOqAs2m002m63K9waDwZVp4Sphn1108uRJxcfHKz8/X2VlZcrPz1d8fLxjC7xfzkICAACoT4zIo8aCg4MVEBCg9PR0pzXyklRZWally5YpMDCQUVLUWk5OjkpKSjR27Fh9+OGHiomJcZwLDAzUmDFjtGjRIpZxoNaKi4sd31ssFkeX+ovFAQAA1DcKedSY0WhUbGys4uPjFRcXp+HDh8tkMikvL0/Lli2TxWJRYmIije5Qa/blGdHR0Ro6dGiVZndlZWVatGgRyzhQa5c6g4iZRgAAwJUo5FErkZGRSkxMVEpKSpVR0sTERPaRR504fxmH2WyuMurOMg7UFbPZLA8PD1VWVl4wxsPDQ2azuR6zwtWuut04eAgOALgYCnnUWmRkpCIiIvgjBFcMyzhQX/bs2XPRIl46e8/t2bNHXbt2raescDXLyspSSkpKld04YmNjeRgOALgguvWgThiNRoWGhqp3794KDQ2liEedsi/jsFgsiouLU25urkpLS5Wbm6u4uDhZLBbFxMRw36HWduzY4fj+lw0Uz399fhxQU1lZWYqPj5fJZFJaWpoyMzOVlpYmk8mk+Ph4ZWVluTpFAEADRSEPwC3Yl3Hk5eUpJiZGffv2VUxMjPLz81nGgTqzb98+SZK3t7c++OAD9ezZUyaTST179tQHH3wgLy8vpzigpqxWq1JSUhQWFqbk5GSZzWY1adJEZrNZycnJCgsLU2pqqqxWq6tTBQA0QEytB+A2WMaBK83ejd5ms2nAgAGO43l5eRowYICjkKdrPWorJydHx44d04wZM6psZ+jh4aHhw4crJiaG3TgAANWikAfgVuzLOIAroWnTppKk8vJyGQwG3XfffXrkkUe0cuVKbd68WeXl5U5xQE3Zd9lo165dtedNJpNTHAAA56OQBwDgnO7duys3N1fS2VH5TZs2adOmTZKc18h3797dJfnh6vHL3Th+id04AAAXwxp5AADOKSwsvOA5m812SXHApTh/N45f7pTAbhwAgF9DIQ8AwDkFBQV1GgdcCLtxAABqg6n1AACcExgYKOlskVVdt3D7cXscUBv23ThSUlIUExPjOB4YGMhuHACAi6KQBwDgHHuBbrPZtH79ei1ZskTffvutbrrpJo0aNUp//OMfneKA2mI3DgBATVDIAwBwjn3te2VlpaKiohzHd+zYoXXr1lWJA+oCu3EAAC4Xa+QBADinVatWdRoHAABwJTAiDwDAOVFRUVqwYIEk6c4771STJk30008/6brrrlNpaal27tzpiAMAAHAVRuQBADjnq6++cnx/8OBBdevWTdOmTVO3bt108ODBauMAAADqGyPyAACck52dLUm699579fHHH2vOnDmOc0ajUffee68++ugjZWdnq2vXrq5KEwAAXOMYkQcA4Bfatm0rPz8/p2N+fn5q06aNizICAAD4Py4v5JcvX65evXqpc+fOevjhh5WTk3PR+BMnTighIUERERHq1KmT7r//fmVlZdXqmgAASHJ0Dl+6dKnat2+vtLQ0ZWZmKi0tTe3bt9dbb73lFAcAAOAKLi3kN27cqFmzZik2NlYZGRnq0KGDRo0apaKiomrjy8vL9fjjj+vbb7/VvHnzlJmZqZdeekn+/v41viYAAHadO3eWh8fZX402m002m63K9x4eHurcubPLcgQAAHDpGvmlS5dq8ODBGjRokCQpISFBW7du1Zo1azR27Ngq8WvWrNHx48e1YsUKeXp6SpJuvvnmWl0TAAC7vXv3qrKyUpL0xRdfyGKxOM55eXlJOrvH/N69exmVBwAALuOyQr68vFx79+7VuHHjHMc8PDwUHh7uaDb0S//85z8VEhKixMRE/eMf/1Dz5s31hz/8QWPGjJHRaKzRNS/GarVe/gcDALitwsJCSVJ0dLTWrl3rdK6iosJxvLCwkN8RAACgTl3O3xYuK+SLi4tltVqrbSaUl5dX7XuOHDmizz77TFFRUXrjjTd0+PBhJSQk6MyZMxo/fnyNrnkxe/bsuez3AADcV3FxsSRVKeKls9Pr7ceLi4u1e/fu+kwNAADAwa22n7PZbPLz89NLL70ko9GoTp066bvvvtOSJUs0fvz4Ov95nTt3ltForPPrAgAapttvv12pqamy2Wzy8fHRfffdp1atWuno0aPavHmzSkpKZDAYNGDAAMdUewAAgLpgtVoveTDZZYW8r6+vjEZjlSZ0RUVFatGiRbXvadmypRo1auRUXJtMJhUWFqq8vLxG17wYo9FIIQ80MFarVTk5OSoqKpKfn5+Cg4P5/ynqTG5urqOp3alTp7Rq1SrHOXtvFpvNptzcXN11110uyREAAMBlXeu9vLxkNpudGglVVlbKYrFcsIFQly5ddPjwYUcjIkk6dOiQWrZsKS8vrxpdE4D7yMrK0tChQzVx4kQlJiZq4sSJGjp0aJUtKIGa2rRpk+N7e/f66l6fHwcAAFDfXLr93OOPP65Vq1YpIyNDBw8e1IsvvqjTp08rOjpakjR58mS98sorjvihQ4eqpKREM2fOVH5+vrZu3arXX39dw4YNu+RrAnBPWVlZio+Pl8lkctrb22QyKT4+nmIedaK0tFSS1KFDB23cuFHz5s1TfHy85s2bp40bNyooKMgpDgAAwBVcuka+X79++vHHHzV//nwVFhaqY8eOWrx4sWMafEFBgdMISGBgoJYsWaJZs2ZpwIAB8vf318iRIzVmzJhLviYA92O1WpWSkqKwsDAlJyc7/l0wm81KTk5WXFycUlNTFRERwTR71Ir9d8XJkydlNBqdZnNVVlbq5MmTTnEAAACuYLDZFwPCwWq1avfu3QoJCaEoABqA7OxsTZw4UWlpaTKbzVXO5+bmKiYmRvPmzWMZDWolMzNTycnJkqTu3bsrLCxM3t7eKisrk8Vi0fbt2yVJcXFx6tu3rytTBQAAV5nLqUPdqms9gGuTvYFlu3btqj1vMpmc4oCa8vf3d3y/fft2R+F+sTgAAID65tI18gBwKfz8/CRJ+fn51Z7Py8tzigNqKjg4WD4+PheN8fHxUXBwcP0kBAAAUA1G5AE0eMHBwQoICFB6errTGnnp7LrlZcuWKTAwkOIKdap79+66+eabVV5eLi8vL33zzTfavn27DAaDq1MDAADXOEbkATR4RqNRsbGxslgsiouLU25urkpLS5Wbm6u4uDhZLBbFxMTQ0wK1lpOTo5KSEo0dO1Zff/211qxZo/Xr12vNmjU6fPiwxowZo+LiYuXk5Lg6VQAAcA1jRB6AW4iMjFRiYqJSUlIUExPjOB4YGKjExERFRka6MDtcLex9FqKjozV06FDl5OSoqKhIfn5+Cg4OVllZmRYtWkQ/BgAA4FIU8gDcRmRkpCIiIqoUV4zEo66c34/BbDZX2QWBfgwAAKAhYGo9ALdi39u7d+/eCg0NpYhHnTq/H0NlZaXTOfoxAACAhoIReQAAzrH3Y4iPj1dcXJy6devm2Ef+888/l8ViUWJiIg+QAACAS1HIAwBwnsjISD3yyCNavXq1tm3b5jhuNBr1yCOP0I8BAAC4HIU8AADnycrK0sqVK9WjRw/16NFDXl5eKi8v12effaaVK1fKbDZTzAMAAJdijTwAAOdYrValpKQoLCxMSUlJatu2rby9vdW2bVslJSUpLCxMqampslqtrk4VAABcwxiRBwDgnJycHB07dkwDBgzQsGHDdOzYMce5gIAARUVFadu2bcrJyanS0R4AAKC+UMgDAHCOfX/4RYsWKSwsTEOHDnU0u9u+fbsWL17sFAcAAOAKFPIAAJzj6+srSWrdurUOHjzo1OzO399frVu31uHDhx1xAAAArkAhDwDALxw+fFheXl5Ox4qLi1VeXu6ijAAAAP4Pze4AADjn/CnzTZs21aRJk7R27VpNmjRJTZs2rTYOAACgvjEiDwDAOcXFxZLOTqM3GAyaPXu241xgYKD8/f313XffOeIAAABcgUIeAIBzjh8/Lklq0aKF5s+fr9zcXBUVFcnPz0+dOnXShAkT9N133zniAAAAXIFCHgCAczw8zq44++qrrzR9+nR169ZN3t7eys/P18qVK/XVV185xQEAALgChTwAAOeEhobqnXfekZ+fnz777DOnrvVGo1F+fn764Ycf2EMeAAC4FEMKAACcExISoiZNmuiHH36QzWZzOldZWakffvhBTZo0UUhIiGsSBAAAEIU8AACXxWAwuDoFAABwjaOQBwDgnN27d6u0tFS//e1v1bJlS6dzN954o37729/q1KlT2r17t2sSBAAAEGvkAQBwyM7OliT9+c9/VkhIiHJychxd64ODg5Wdna1nnnlG2dnZ6tq1q4uzBQAA1yoKeQAAqmE0GmlqBwAAGiSm1gMAcI69cH/zzTdVUVGh7OxsbdmyRdnZ2aqoqNDSpUud4gAAAFyBEXkAbsVqtVaZ7mw0Gl2dFq4SISEh8vHx0Z49e/TAAw+ovLzccc7Ly0vl5eXy9fWlaz0AAHApCnkAbiMrK0spKSk6duyY41hAQIBiY2MVGRnpwsxwtTAajerbt69WrFihM2fOOJ2zv77//vt5eAQAAFyKqfUA3EJWVpbi4+NlMpmUlpamzMxMpaWlyWQyKT4+XllZWa5OEVcBq9WqrVu3KigoSDfeeKPTOX9/fwUFBSkrK0tWq9VFGQIAADAiD8ANWK1WpaSkKCwsTMnJyfLwOPsM0mw2Kzk5WXFxcUpNTVVERAQjpaiVnJwcHTt2TDNmzFCHDh2qLOP497//rZiYGOXk5LBOHgAAuAwj8gAaPHtxNWLECEcRb+fh4aHhw4eroKBAOTk5LsoQV4uioiJJUrt27Rxd63v37q3Q0FAZjUaZTCanOAAAAFdgRB5Ag3d+cVUdiivUFT8/P0lSfn5+tSPyeXl5TnEAAACuQCEPoME7v7gym81VzlNcoa4EBwcrICBAc+fO1fHjx6s0VmzWrJkCAwMVHBzswiwBAMC1jqn1ABo8e3GVnp6uyspKp3OVlZVatmwZxRXqhNFo1D333KP9+/errKxMkyZNUkZGhiZNmqSysjLt379fkZGR9GIAAAAuRSEPoMEzGo2KjY2VxWJRXFyccnNzVVpaqtzcXMXFxclisSgmJobiCrV2ftd6Ly8vzZ49WwMHDtTs2bPl7e1N13oAANAgMLUegFuIjIxUYmKiUlJSFBMT4zgeGBioxMRE9pFHnaBrPQAAcAcU8gDcRmRkpCIiIqoUV4zEo65U17X+fDRWBAAADQGFPAC3Ul1xBdQVGisCAAB3wBp5AADOobEiAABwBxTyAACcQ2NFAADgDgw2m83m6iQaGqvVqt27dyskJIQ/1gDgGpSVlaWUlBSnfeQDAwMVExNDY0UAAHBFXE4dyhp5AAB+gcaKAACgIaOQBwCgGjRWBAAADRVr5AEAAAAAcCMU8gAAAAAAuBEKeQAAAAAA3AiFPAAAAAAAboRCHgAAAAAAN0IhDwAAAACAG6GQBwAAAADAjVDIAwAAAADgRijkAQAAAABwIxTyAAAAAAC4EQp5AAAAAADcCIU8AAAAAABuhEIeAAAAAAA3QiEPAAAAAIAboZAHAAAAAMCNUMgDAAAAAOBGGkQhv3z5cvXq1UudO3fWww8/rJycnAvGrl27VkFBQU5fnTt3dop5/vnnq8SMGjXqSn8MAAAAAACuuEauTmDjxo2aNWuWEhISdMcdd+jtt9/WqFGjlJmZKT8/v2rfc9111ykzM9Px2mAwVIm5++67NWvWLMdrLy+vuk8eAAAAAIB65vIR+aVLl2rw4MEaNGiQ2rdvr4SEBDVu3Fhr1qy54HsMBoNatmzp+GrRokWVGC8vL6eYZs2aXcmPAQAAAABAvXDpiHx5ebn27t2rcePGOY55eHgoPDxc2dnZF3xfaWmp7r33XlVWVur222/XM888o1tvvdUp5vPPP1dYWJhuuOEG9ejRQ08//bR8fX0vKz+r1Xp5HwgAAAAAgBq4nPrTpYV8cXGxrFZrlSn0fn5+ysvLq/Y97dq1U3JysoKCgnTy5Em9+eabGjJkiDZs2KCAgABJZ6fV9+nTRzfffLOOHDmi//mf/9GYMWO0cuVKGY3GX83LZrNJkvbs2VPLTwgAAAAAwKWz16MX4/I18pcrNDRUoaGhTq/79eunFStW6Omnn5Yk9e/f33He3uyud+/ejlH6X1NZWVnneQMAAAAA8GsupR51aSHv6+sro9GooqIip+NFRUXVrnuvjqenpzp27KjDhw9fMKZ169by9fXV119/fUmFfKNGjdS5c2d5eHhU20gPAAAAAIC6ZLPZVFlZqUaNfr1Md2kh7+XlJbPZLIvFot69e0s6+/TBYrFo+PDhl3QNq9WqAwcOKDIy8oIxx44dU0lJiVq2bHlJ1/Tw8KDLPQAAAACgQXL51PrHH39cU6ZMUadOnRQcHKy3335bp0+fVnR0tCRp8uTJ8vf317PPPitJWrBggUJCQtSmTRudOHFCS5Ys0dGjR/Xwww9Lkk6dOqUFCxbo/vvvV4sWLXTkyBHNnj1bbdq00d133+2yzwkAAAAAQF1weSHfr18//fjjj5o/f74KCwvVsWNHLV682DG1vqCgQB4e/7dL3okTJzR9+nQVFhaqWbNmMpvNWrFihdq3by9JMhqNOnDggNatW6eTJ0/qxhtvVM+ePTVx4kRG2QEAAAAAbs9gu5SWeAAAAAAAoEHw+PUQAAAAAADQUFDIAwAAAADgRijkAQAAAABwIxTyAAAAAAC4EQp5AMA1YcSIEZo5c6ar0wAAAKg1Cnk4PP/88woKCtIbb7zhdHzLli0KCgpyUVZAzQUFBWnLli2uTgNXqc2bN+vxxx9Xjx491KVLFz3yyCP617/+5eq00EAtX75cvXr1UufOnfXwww8rJyfngrFr165VUFCQ01fnzp3rMVu4s8u510aMGFHlXgsKCtLYsWPrMWO4q8u51yoqKrRgwQL17t1bnTt31oABA/Txxx/XY7ZXHwp5OPH29taiRYt0/PhxV6cC1Fh5ebmrU8A1YMeOHQoPD9cbb7yhtWvXqnv37nrqqaf01VdfuTo1NDAbN27UrFmzFBsbq4yMDHXo0EGjRo1SUVHRBd9z3XXX6ZNPPnF8ffTRR/WYMdzV5d5rr732mtN99re//U1Go1F9+/at58zhbi73Xps7d65Wrlyp6dOna+PGjRoyZIjGjx/P78xaoJCHk/DwcLVo0UKvv/76BWM2bdqk/v37q1OnTurVq5fefPNNp/O9evXSwoUL9cILLyg0NFT33HOPVq5c6RRTUFCgiRMn6s4771S3bt301FNP6ZtvvrkinwnuITMzU1FRUQoODlb37t312GOPqbS0VFarVbNmzdKdd96p7t276+WXX9aUKVMUExPjeO+IESOUmJiomTNnqnv37ho1apR69eolSYqNjVVQUJDjNSBJx48f1+TJk3XXXXfpjjvu0OjRo3Xo0CGnmFWrVikyMlJ33HGHYmNjtXTpUt15552O81OnTtWYMWMUHBystm3b6plnnlGbNm30z3/+s54/DRq6pUuXavDgwRo0aJDat2+vhIQENW7cWGvWrLngewwGg1q2bOn4atGiRT1mDHd1ufeaj4+P03326aefqnHjxhTy+FWXe6998MEHevLJJxUZGanWrVvr0UcfVWRkZJU6ApeOQh5OPDw89Mwzz2jZsmU6duxYlfO5ubl6+umn1a9fP61fv17jx4/XvHnztHbtWqe4pUuXqlOnTlq3bp0effRRvfjii8rLy5N0dmrNqFGj1LRpUy1fvlzvvfeemjRpotGjRzOSeo36/vvv9eyzz2rQoEHauHGj3nnnHfXp00c2m01vvvmmMjIylJycrHfffVfHjx/X3//+9yrXyMjIkKenp9577z0lJCTo/ffflyTNmjVLn3zyieM1IJ1dSpSbm6u0tDStXLlSNptNY8eOVUVFhSTpiy++0IwZMzRy5EitW7dO4eHhWrhw4UWvWVlZqVOnTsnHx6cePgHcRXl5ufbu3avw8HDHMQ8PD4WHhys7O/uC7ystLdW9996ryMhIPfXUU/rPf/5TH+nCjdX0XjvfmjVr1L9/fzVp0uRKpYmrQE3utYqKCnl5eTkd8/b21q5du65orlczCnlU0adPH3Xs2FHz58+vcm7p0qUKCwtTbGys2rVrp+joaA0bNkxLlixxivvd736nYcOGqU2bNhozZox8fX21fft2SWen4lRWVmrmzJkKCgrSLbfcolmzZqmgoECff/55vXxGNCyFhYU6c+aM+vTpo5tvvllBQUEaNmyYmjZtqrfffltjx47Vfffdp1tuuUUJCQm6/vrrq1yjbdu2mjx5skwmk0wmk5o3by5JuuGGG9SyZUvHa+DQoUP65z//qaSkJN15553q0KGD5syZo++++87RU2HZsmX63e9+p1GjRqldu3YaNmyY7r777oted8mSJSotLdUDDzxQHx8DbqK4uFhWq1V+fn5Ox/38/PTDDz9U+5527dopOTlZqampmj17tmw2m4YMGVLtA3bArib32vlycnJ04MABPfzww1cqRVwlanKvRURE6K233tKhQ4dUWVmpTz/9VH//+9/1/fff10fKVyUKeVTrueee07p163Tw4EGn43l5eerSpYvTsS5duujrr7+W1Wp1HDu/OZ7BYFCLFi0ca2b27dunw4cPq0uXLgoNDVVoaKi6d++usrIyHT58+Ap+KjRUHTp0UFhYmKKiojRhwgStWrVKx48f18mTJ1VYWKg77rjDEduoUSN16tSpyjXMZnN9pgw3dvDgQTVq1MjpvvL19VW7du0c/+bl5+dXaS4WHBx8wWuuX79eKSkpmjt3bpU/bIDLFRoaqgcffFAdO3ZUt27d9Nprr6l58+ZasWKFq1PDVez999/XbbfddtF/64Camjp1qtq0aaMHHnhAnTp1UmJioqKjo+XhQTlaU41cnQAaprvuuksRERF65ZVXFB0dfdnvb9TI+dYyGAyy2WySzk4XNJvNmjNnTpX3MWp6bTIajVq6dKl27dqlTz/9VOnp6Xr11Ve1dOnSS77Gb37zmyuYIXBhGzZs0LRp0zRv3jynaYaAdPYhkdForNIAqqio6JLXvXt6eqpjx4487MZF1eZeKy0t1YYNGzRhwoQrmSKuEjW515o3b67U1FSVlZWppKREN954o+bMmaPWrVvXR8pXJR6B4IKeffZZffTRR05rXUwmU5W1LLt27VLbtm1lNBov6bpms1lff/21/Pz81KZNG6ev6qZM49pgMBjUtWtXTZgwQevWrZOnp6csFotatmypL7/80hF35swZ7d2795Ku6enp6TRTBJCkW265RWfOnHG6r4qLi5Wfn6/27dtLOju1OTc31+l9e/bsqXKtv/3tb3rhhRf0yiuv6J577rmiecM9eXl5yWw2y2KxOI5VVlbKYrEoNDT0kq5htVp14MABtWzZ8kqliatAbe61zMxMlZeXa8CAAVc6TVwFanOveXt7y9/fX2fOnNHmzZv1+9///kqne9WikMcFBQUFKSoqSunp6Y5jTzzxhCwWi1JSUpSfn6+MjAwtX75cTzzxxCVfNyoqSr6+vnrqqae0c+dOHTlyRNu3b1dSUhLr/65RX375pRYuXKg9e/bo6NGj2rx5s3788UeZTCaNHDlSixYt0pYtW3Tw4EElJCToxIkTl3Tdm266SRaLRYWFhWypCIe2bdvq97//vaZPn66dO3dq3759mjRpkvz9/R1/UAwfPlxZWVlaunSpDh06pBUrVujjjz+WwWBwXGf9+vWaMmWKpkyZojvuuEOFhYUqLCzUyZMnXfXR0EA9/vjjWrVqlTIyMnTw4EG9+OKLOn36tGPG2+TJk/XKK6844hcsWKBPPvlER44c0d69ezVp0iQdPXqUtcv4VZd7r9m9//776t27t3x9fes7Zbipy73XvvzyS23evFlHjhzRzp07NXr0aFVWVmr06NGu+ghuj6n1uKgJEyZo48aNjtdms1lz587V/PnzlZaWppYtW2rChAmXNf3+N7/5jZYtW6Y5c+Zo/PjxOnXqlPz9/RUWFqbrrrvuSnwMNHDXXXedduzYobfffls//fSTWrVqpeeff16RkZHq2bOnCgsLNWXKFHl4eGjQoEHq06fPJRVLU6ZM0V/+8hetXr1a/v7+bAsGh1mzZmnmzJl68sknVVFRoTvvvFNvvPGGPD09JUldu3ZVQkKCFixYoLlz5yoiIkKPPfaYli9f7rjGqlWrdObMGSUmJioxMdFxfODAgfrLX/5S758JDVe/fv30448/av78+SosLFTHjh21ePFixxTUgoICp3WiJ06c0PTp01VYWKhmzZrJbDZrxYoVjhkjwIVc7r0mne1/9MUXX7ANGC7L5d5rZWVlmjt3ro4cOaImTZooMjJSL7/8sm644QZXfQS3Z7DZFy4DgJt4/vnndeLECaWmpro6FVxDpk2bpry8PL377ruuTgUAAFzjmFoPAEA1lixZon379unrr79Wenq61q1bp4EDB7o6LQAAAKbWAwBQnZycHC1evFinTp1S69atNXXqVNYoAwCABoGp9QAAAAAAuBGm1gMAAAAA4EYo5AEAAAAAcCMU8gAAAAAAuBEKeQAAAAAA3AiFPAAAAAAAboRCHgAAXLItW7aoT58+6tixo2bOnOnqdAAAuCax/RwAALhk4eHhio6O1ogRI9S0aVNdd911tb7m9u3bNXLkSO3YsUM33HBDHWQJAMDVrZGrEwAAAO7h1KlTKioqUkREhPz9/V2dTrUqKirk6enp6jQAALiimFoPAEADNWLECL300kuaOXOm7rrrLoWHh2vVqlUqLS3VCy+8oNDQUPXp00dZWVmSJKvVqri4OPXq1UvBwcG6//779fbbbzuuV1ZWpv79+2v69OmOY4cPH1ZoaKjef//9i+ayfft2denSRZL0//7f/1NQUJC2b98uSdq5c6ceffRRBQcHKzIyUklJSSotLXW8d926dYqOjlZoaKh69uypZ599VkVFRZKkb775RiNHjpQk3XXXXQoKCtLzzz8vSerVq5feeustpzz++Mc/6rXXXnO8DgoK0rvvvqsnn3xSISEhWrhwoaSzSwAGDhyozp076/e//70WLFigM2fOSJJsNptee+013XPPPerUqZMiIiKUlJR0if+rAADgehTyAAA0YBkZGfL19dXq1as1fPhwvfjii5o4caJCQ0OVkZGhnj17avLkyTp9+rQqKysVEBCgefPmacOGDYqNjdWrr76qjRs3SpK8vb01Z84cZWRkaMuWLbJarZo0aZJ69uyphx566KJ5hIaGKjMzU5L02muv6ZNPPlFoaKgOHz6sMWPG6L777tOHH36oV199VV988YVeeuklx3vPnDmjiRMn6sMPP1RKSoq+/fZbR7EeGBjoKMwzMzP1ySefaOrUqZf132jBggXq06eP1q9fr0GDBmnnzp2aMmWKRo4cqY0bNyoxMVFr1651FPmbNm3SW2+9pYSEBG3evFmpqam67bbbLutnAgDgSkytBwCgAevQoYNiYmIkSePGjdOiRYvk6+urwYMHS5JiY2P13nvvaf/+/QoJCdGECRMc723durV2796tzMxM9evXT5LUsWNHPf3005o2bZr69++vb7/91lHgXoyXl5f8/PwkSc2aNVPLli0lSa+//rqioqL02GOPSZLatm2rqVOnasSIEXrxxRfl7e3t9JCgdevWmjp1qh566CGdOnVKTZs2VbNmzSRJfn5+NVoj/4c//EGDBg1yvI6Li9PYsWM1cOBAx8+cOHGiZs+erfHjx6ugoEAtWrRQeHi4PD091apVKwUHB1/2zwUAwFUo5AEAaMCCgoIc3xuNRvn4+DiNHrdo0UKSHFPVly9frjVr1ujo0aMqKytTRUWFOnTo4HTNJ554Qlu2bNGyZcscDwZqat++fdq/f7/Wr1/vOGaz2VRZWalvvvlGt9xyi3Jzc7VgwQLt27dPx48fl73PbkFBgdq3b1/jn23XqVOnKjnt2rXL6QGF1WpVWVmZTp8+rb59++rtt99W7969dffddysyMlL33nuvGjXizyIAgHvgNxYAAA3YL4tLg8HgdMxgMEg6Wzxv2LBBf/3rXzVlyhSFhoaqadOmWrJkib788kunaxQVFenQoUMyGo36+uuva5VfaWmphgwZohEjRlQ5FxgYqNLSUo0aNUoRERGaM2eOfH19VVBQoFGjRqmiouKi17Z/tvPZ17mfr0mTJlVy+tOf/qT77ruvSqy3t7cCAwOVmZmpbdu2adu2bUpISNCSJUuUnp5OozwAgFugkAcA4Cqxa9cuhYaGatiwYY5jhw8frhIXFxen2267TQ899JCmT5+u8PBw3XLLLTX6mbfffrv++9//qk2bNtWeP3DggEpKSvTcc88pMDBQkpSbm+sUYy+erVar0/HmzZvr+++/d7z+6aef9M0331xSTvn5+RfMSZIaN26sXr16qVevXnr00Uf1wAMP6MCBAzKbzb96fQAAXI1mdwAAXCXatGmj3Nxc/etf/1J+fr7mzp2rPXv2OMUsX75cu3fv1l//+lcNGDBAvXv31nPPPafy8vIa/cwxY8YoOztbiYmJ+ve//61Dhw5py5YtSkxMlCS1atVKnp6eSk9P15EjR/SPf/xDqampTte46aabZDAYtHXrVv344486deqUJKlHjx768MMPtXPnTu3fv19TpkyRh8ev/+kSGxurDz74QAsWLNB//vMfHTx4UBs2bNCrr74qSVq7dq1Wr16tAwcO6MiRI/rwww/VuHFjtWrVqkb/DQAAqG8U8gAAXCWGDBmi++67T3/+8581ePBglZSU6NFHH3WcP3jwoF5++WXNmDHDMTo+Y8YMFRcXa968eTX6mR06dFB6eroOHTqkRx99VAMHDtT8+fN14403Sjo7qv6Xv/zF0XBv0aJFmjJlitM1/P399ac//UmvvPKKwsPDHR3vx40bp7vuukvjxo3TuHHj1Lt3b/32t7/91ZzuvvtuLVy4UJ988okeeughDR48WG+99ZZuuukmSdINN9yg1atXa+jQoRowYIAsFosWLlxYq14BAADUJ4PN3nEGAAAAAAA0eIzIAwAAAADgRmh2BwAAJEmjR4/WF198Ue25cePG6cknn6znjAAAQHWYWg8AACRJ3333nX7++edqzzVr1kw+Pj71mxAAAKgWhTwAAAAAAG6ENfIAAAAAALgRCnkAAAAAANwIhTwAAAAAAG6EQh4AAAAAADdCIQ8AAAAAgBuhkAcAAAAAwI1QyAMAAAAA4Eb+P+cokRa2NtaPAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "# Значения max_features для анализа\n", + "max_features_values = [None, 'sqrt', 'log2', 0.5, 0.7, 0.9]\n", + "correlations = []\n", + "for max_features in max_features_values:\n", + " # Создание и обучение случайного леса\n", + " rf = RandomForestClassifier(n_estimators=100, max_features=max_features, random_state=42)\n", + " rf.fit(X_train, y_train)\n", + " # Расчет попарных корреляций\n", + " corrs = base_model_pair_correlation(rf, X_test)\n", + " correlations.append(corrs)\n", + "# Визуализация результатов\n", + "plt.figure(figsize=(12, 8))\n", + "sns.boxplot(data=correlations)\n", + "plt.xticks(range(len(max_features_values)), labels=[str(mf) for mf in max_features_values])\n", + "plt.xlabel('max_features')\n", + "plt.ylabel('Pairwise Base Model Correlation')\n", + "plt.title('Impact of max_features on Base Model Correlation in Random Forest')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "511f49f6-b433-449d-b27c-522098ef7a32", + "metadata": { + "id": "511f49f6-b433-449d-b27c-522098ef7a32" + }, + "source": [ + "Теперь давайте посмотрим, как на это влияет параметр `max_depth`:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "26d98e98-b0ba-480b-944c-a27486b8b7c5", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 718 + }, + "id": "26d98e98-b0ba-480b-944c-a27486b8b7c5", + "outputId": "8400308c-19b1-4b88-89a5-cdd3f223ec79" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+kAAAK9CAYAAABYVS0qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdK0lEQVR4nOzdeVyUVf//8TeMgAsqSoZornWDiRK4oxZplpZLLrdLimalVqj33eaGimakt6WVJVppaSLmUmpZppmV9k3Ucgk1tW4hN5QMxQ0FnZnfH/6Y2wE0RmaYgXk9Hw8fzlzXmbk+M3NmOJ/rnOscD7PZbBYAAAAAAHA6T2cHAAAAAAAAriFJBwAAAADARZCkAwAAAADgIkjSAQAAAABwESTpAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHgDxWr16tTp06KSQkRM2aNXN2OMUiODhY77zzjlOOvW3bNgUHB2vdunVOOT4cY+XKlQoODtaxY8dsfuw777yj4OBgB0TlfGPHjlX79u3t+pxFea+Lqn379ho7dmyxH7e4DRw4UAMHDnR2GADcBEk64EZyG3J79uxxdihFtmnTJocklYcOHdK4ceNUu3ZtvfLKK5oyZYrdj+Gu1qxZo4ULFzo7jFuWmzjm/mvQoIHatm2rp59+Wrt373Z2eDc0cOBABQcH66GHHipw/48//mh5TSX1RMm2bds0YsQItWnTRo0aNVJERISeeeYZff31184Oza7effddffPNN84Ow6Hyfs9CQkLUvn17xcXF6dy5c84Oz2XkfZ+u//fxxx87O7x8Ll26pHfeeUfbtm1zdihAiVDG2QEAwK3YtGmTEhMTNXLkSLs+7/bt22UymTR+/HjVqVPHrs/t7r744gv9/vvvGjx4sLNDKZLJkyerfPnyMpvNOnHihFasWKGoqCitWLFCd999t7PDK5CPj48OHz6s5ORkhYaGWu1bs2aNfHx8lJ2d7aToiubtt99WfHy86tatq759+6pGjRrKzMzUpk2bNHLkSM2YMUNdu3Z1dph28d5776ljx47q0KGD1fZHH31UnTt3lre3d7HHtG7dOnl4eNj9eXO/Z5cuXVJSUpISEhK0b98+l0xAnSn3fbrePffc46RobuzSpUuaPXu2RowYoZYtWzo7HMDlkaQDwHUyMjIkSRUrVnRyJHBVHTt2VNWqVS33O3TooC5dumjdunUum6TXrl1bV69e1RdffGGVpGdnZ2vDhg26//77tX79eidGeGvWrVun+Ph4dezYUTNnzpSXl5dl35AhQ/TDDz/o6tWrRT7O1atXZTKZCkyCs7Ky8iVJxc1gMMhgMDjl2I46MXD996xfv356/vnntXbt2gJPNLmzvL9H9uIK9RpwZwx3B9zc2LFjFR4errS0ND399NMKDw/Xvffeq8TEREnSwYMHNWjQIIWFhaldu3Zas2aN1eNzh9D/9NNPio2NVcuWLdWkSRONHj1aZ8+etSr7zTffaNiwYWrbtq0aNWqkDh06KD4+XkajMV9cv/zyi4YOHarmzZsrLCxMXbt21UcffWSJOTe+64f4/Z3ExER17txZjRo1Utu2bfXyyy9bDZ9s3769ZQh9RETE316nXdT3LjMzU9OnT1fXrl0VHh6uJk2aaMiQITpw4IBVuTFjxqhx48Y6dOiQ1fannnpKzZs3V3p6+t++9lw5OTmaOnWqWrVqpfDwcD3zzDM6efJkgWXT09M1btw4tW7dWo0aNVLnzp31ySefWJXJvZ587dq1euONN9SmTRuFhYXpmWee0YkTJyzlBg4cqO+//17Hjx+3fF55r8s1mUyaO3eu7rvvPjVu3FiPP/64Dh8+XKjX9euvv2rIkCFq0qSJwsPD9fjjj+cbgp5bV3fs2KFp06apVatWCgsL0/Dhw3X69OlCHacgt912myRZJUk5OTmaNWuWevbsqaZNmyosLEz9+/fX1q1b8z3+yy+/VM+ePS114Pq6nuvcuXN69dVXFRkZqUaNGunBBx/U+++/L5PJVOg4u3TporVr11o95ttvv9Xly5fVqVOnAh9TmPdVkn7//XcNGjRIoaGhuu+++zRnzpwbxrZp0yb1799fYWFhCg8P17Bhw/T7778X+nVcb9asWfLz89PUqVOtEvRc9957r9q1a2e5n5GRoZiYGLVu3VqNGzdWt27dtGrVKqvHHDt2TMHBwfrggw+0cOFCdejQwfL9yx1i/N///lcvvviimjdvrv79+1se+9lnn6lnz54KDQ1VixYt9Pzzz1t9D27kgw8+UL9+/dSyZUuFhoaqZ8+e+S49CA4OVlZWllatWmX5DuVeC36ja9L/7jdPuvbd7NKli/773/9q4MCBuueee3Tvvfdq3rx5fxu3lP+adEd9z3LnBzly5IhlW2F/Q6//nSrMb8yyZcvUoUMHhYaG6p///Kd+/vnnAmOytT4lJibqgQce0D333KMnn3xSJ06ckNlsVnx8vO677z6Fhobq2WefVWZm5i2/T3l99dVXljrZsmVLvfTSS/n+ZuT+LTty5IiGDh2q8PBwvfTSS5Ku/S4vXLhQnTt3VuPGjdW6dWvFxsbm+/u+Z88ePfXUU5Y63L59e40bN87yHkREREiSZs+ebam/zpoHBSgJ6EkHIKPRqKFDh6pZs2Z66aWXtGbNGk2ZMkXlypXTm2++qa5du+qhhx7S0qVLNWbMGIWFhalWrVpWzzFlyhRVqlRJI0aMUGpqqj7++GOlpaUpISHBMhRy1apVKl++vJ544gmVL19eW7du1dtvv60LFy5ozJgxluf68ccf9fTTT+v222/XoEGDdNttt+nQoUP6/vvv9fjjj6tv3776888/9eOPP+q1114r1Gt85513NHv2bLVu3VqPPfaYJcY9e/bo448/lpeXl2JiYrR69Wpt2LDBMoTw75L/orx3R48e1TfffKNOnTrpjjvu0F9//aVly5YpKipKX375pQICAiRJ48eP19atWzVmzBgtW7ZMBoNBS5cu1f/93//ptddes5QrjPHjx+vzzz9Xly5d1KRJE23dulXDhg3LV+6vv/5Snz595OHhoQEDBqhq1aravHmzxo8frwsXLuQbsj537lx5eHho6NChysjI0EcffaTBgwfrs88+U9myZfXMM8/o/PnzOnnypKXhVqFCBavnmDdvnjw8PPTkk0/qwoULmj9/vl566SWtWLHipq/p999/14ABA1ShQgUNGTJEZcqU0bJlyzRw4EAtXrw439DPuLg4S109fvy4PvroI02ZMkVvvfVWod7D3Map2WxWenq65syZIx8fHz388MOWMhcuXNCKFSvUpUsX9e7dWxcvXtQnn3yiIUOGWA2L//HHH/XCCy8oIiLC0ihOSUnRzp079fjjj0u6Nkw0KipK6enp6tevnwIDA7Vr1y698cYbOnXqlMaPH1+ouLt06WK5JjS3wfzFF1+oVatW8vf3v+X39dSpUxo0aJCMRqOGDRumcuXKafny5fLx8cn3nKtXr9bYsWPVtm1bvfTSS7p06ZI+/vhj9e/fX6tWrdIdd9xRqNciSX/88YdSUlLUq1cv+fr6/m35y5cva+DAgTpy5IgGDBigO+64Q+vWrdPYsWN17tw5y/uda+XKlcrOzlafPn3k7e2typUrW/b9+9//Vp06dfT888/LbDZLuvYdmDVrlh5++GH985//1OnTp7V48WINGDBAq1evVqVKlW4Y26JFi9S+fXt17dpVV65c0Zdffql///vfeu+993T//fdLkl577TVNmDBBoaGh6tOnj6RrIyRupDC/ebnOnj2rIUOG6MEHH9TDDz+s9evXa8aMGQoKClJkZOTfvrcFKer3LK/cExDXv4+F/Q3NVZjfmBUrVig2NtZyUuro0aN69tlnVblyZQUGBlrK2Vqf1qxZoytXrmjgwIHKzMzU/Pnz9dxzz6lVq1batm2bhg4dqsOHD2vx4sWaPn26pk2bVqj3JW+ybDAYLHV15cqVGjdunBo3bqwXXnhBGRkZWrRokXbu3JmvTl69elVPPfWUmjZtqjFjxqhs2bKSpNjYWK1atUo9e/bUwIEDdezYMSUmJurXX3+11KOMjAw99dRTqlKlioYNG6ZKlSrp2LFj2rBhgySpatWqmjx5siZPnqwHH3xQDz74oCSV2skhAbswA3Abn376qTkoKMicnJxs2TZmzBhzUFCQ+d1337VsO3v2rDk0NNQcHBxs/vLLLy3bDx06ZA4KCjK//fbb+Z6zR48e5pycHMv2efPmmYOCgszffPONZdulS5fyxTRx4kTzPffcY87OzjabzWbz1atXze3btze3a9fOfPbsWauyJpPJcvvll182BwUFFep1Z2RkmENCQsxPPvmk2Wg0WrYvXrzYHBQUZP7kk08s295++21zUFCQOSMj42+ft6jvXXZ2tlU8ZrPZfPToUXOjRo3Ms2fPttr+ww8/mIOCgsxz5swxHzlyxBwWFmaOjo4u1OvPtX//fnNQUJB58uTJVttfeOGFfLHFxMSY27RpYz59+rRV2eeff97ctGlTy2e5detWc1BQkPnee+81nz9/3lJu7dq15qCgIPNHH31k2TZs2DBzu3bt8sWV+xwPP/ywpR6YzWbzRx99ZA4KCjIfPHjwpq8rOjraHBISYj5y5IhlW3p6ujk8PNw8YMAAy7bcujp48GCrujR16lTz3XffbT537txNj5NbN/L+a9asmXnz5s1WZa9evWr1Wszma3WjdevW5nHjxlm2xcXFmZs0aWK+evXqDY8bHx9vDgsLM6emplptnzFjhvnuu+82p6Wl3TTuqKgoc+fOnc1ms9ncs2dPc0xMjCWekJAQ86pVqyyfwVdffWV5XGHf11dffdUcFBRk/uWXXyzbMjIyzE2bNjUHBQWZjx49ajabzeYLFy6YmzVrZp4wYYJVfKdOnTI3bdrUanvue30z33zzjTkoKMi8YMGCm5bLtXDhQnNQUJD5s88+s2zLyckx9+3b1xwWFmapv0ePHjUHBQWZmzRpku93IDeuF154wWr7sWPHzHfffbd57ty5VtsPHjxobtiwodX2MWPG5Pse5P1tzMnJMXfp0sU8aNAgq+1hYWHmMWPG5HttuXU797225TcvKirKHBQUZF61apVlW3Z2trlNmzbmkSNH5jtWXu3atbOKyV7fs5SUFHNGRob52LFj5k8++cQcGhpqbtWqlTkrK8sqzsL8hhb2NyYnJ8ccERFhfvTRR63KLVu2zBwUFGSOioqybLO1PrVq1crqtc+cOdMcFBRk7tatm/nKlSuW7S+88II5JCQk3+/Hjd6nvP9y61bua+nSpYv58uXLlsd999135qCgIPOsWbMs23L/ls2YMcPqGD/99JM5KCjI/Pnnn1tt37x5s9X2DRs25Gtb5JWRkZHv7wyAG2O4OwBJUu/evS23K1WqpHr16qlcuXJWvYP169dXpUqVdPTo0XyP79u3r1XPzGOPPaYyZcpo06ZNlm25Z+alaz2Np0+fVrNmzXTp0iWlpKRIuja89tixYxo0aFC+nqdbnZxoy5YtunLligYNGiRPz//97PXu3Vu+vr5WMd6KW33vvL29LfEYjUadOXNG5cuXV7169fTrr79aHaNt27bq27ev4uPjNXLkSPn4+Ng883zu68y7jFDeHh+z2ayvv/5a7du3l9ls1unTpy3/2rZtq/Pnz2vfvn1Wj+nevbtVb2anTp1UrVo1m97bnj17Wl3fmju8taD6lstoNOrHH39Uhw4drEZ33H777erSpYt27NihCxcuWD0md4TA9ccxGo06fvx4oeJ85513tGDBAn344YeaNm2a6tatq3/961/auXOnpYzBYLC8FpPJpMzMTF29elWNGjWy+mwrVaqkS5cu6ccff7zh8datW6emTZuqUqVKVp9F69atZTQa9dNPPxUqbknq2rWrNmzYoJycHK1fv14GgyHfJGSSbe/rpk2bFBYWZnWdcNWqVfNN1rZlyxadO3dOnTt3tnodnp6euueee2ye9Tn3+HlHZNzI5s2bVa1aNXXp0sWyzcvLSwMHDlRWVla+9/Ghhx664bW+/fr1s7q/YcMGmUwmPfzww1av7bbbblOdOnX+9rVd/9t49uxZnT9/Xk2bNs33O1BYtv7mlS9fXo8++qjlvre3txo3bnzT797fKer3rFOnToqIiFD79u0VExOj2rVra968eSpXrpxVnIX9DZX+/jdm7969ysjIUL9+/azK9ejRI988JbbWp06dOlk9R+73pVu3bipTpozV9itXrhT6Mqbc36Pcf6+//rrVa3nsscesRrXcf//9ql+/vr7//vt8z/XYY49Z3V+3bp0qVqyoNm3aWNXrkJAQlS9f3lKvc1/X999/rytXrhQqbgA3x3B3APLx8cnXGK1YsaKqV6+eLzGuWLFigcvg5J0JvUKFCqpWrZpVg+z333/XW2+9pa1bt+ZLnM6fPy/pf42loKCgW39BeaSlpUm6lihfz9vbW7Vq1Sp0o7EgRXnvTCaTFi1apCVLlujYsWNW1+b7+fnlO9aYMWP07bffav/+/Zo5c2aBQ5Rv5vjx4/L09Mw3RDbv+3L69GmdO3dOy5Yt07Jlywp8rrzXlub9/D08PFSnTh2b3tsaNWpY3c89SXOzZZdOnz6tS5cuqV69evn23XnnnTKZTDpx4oT+8Y9/FOk412vWrJnVZ96xY0d17NhRcXFxWrlypWX7qlWr9OGHHyo1NdWq4Xr9kO7+/fvrq6++0tChQxUQEKA2bdro4Ycf1n333Wcpc/jwYR08eNAyRL2g96CwHnnkEU2fPl2bN2/W559/rvvvv7/AoeK2vK9paWkFziad97F//PGHpPwnhXIVZsh6QeUvXrxYqPLHjx9XnTp1rJJW6drrkf73O5HrZkPv8+77448/ZDabb7jM3fVJWEG+++47zZ07V/v371dOTo5l+62emLT1N6+g36vKlSvr4MGDt3R8qejfs3feeUe+vr46ffq0EhISdOzYMauTGZLtv6F/F1Pu+5b398zLyyvfJV621qfrh8pL/0tsb7T97Nmz+Y5ZkLy/R7lyj1/Qd7h+/frasWOH1bYyZcqoevXqVtsOHz6s8+fP3/C3J3ei1RYtWqhjx46aPXu2Fi5cqBYtWqhDhw7q2rWrU1YcAEoDknQAN5wV+Ebbzf//GkxbnDt3TlFRUfL19dW//vUv1a5dWz4+Ptq3b59mzJhh0wRYrqQo7927776rWbNmqVevXvr3v/+typUry9PTU1OnTi3wPd6/f7+lUfTbb7/ZIfqC5X4W3bp1U48ePQos44hrCfM2dnPdSn0rzuNUqFBBoaGh2rhxo2VG5M8++0xjx45Vhw4d9NRTT8nf318Gg0HvvfeeVe+kv7+/Vq9erf/7v//T5s2btXnzZq1cuVLdu3fX9OnTJV37PNq0aaMhQ4YUePy6desWOtbbb79dLVq00IIFC7Rz585inbgp9/197bXXVK1atXz7bZ2dPDcBddR3IW9CeL2819ubTCZ5eHho3rx5Bb6Om82S/fPPP+vZZ59V8+bNNWnSJFWrVk1eXl769NNP9cUXX9z6C7CBI2aGL+r37Prks127duratateeuklrVy50vLctv6GFtdvTEFu9B47M6brXT8qIZfJZJK/v79mzJhR4GNyPx8PDw+9/fbb2r17t7777jv98MMPiomJ0YIFC7Rs2bJCj3YB8D8k6QDs4vDhw2rVqpXl/sWLF3Xq1ClLj+D27duVmZmp2bNnq3nz5pZyeWcjzu05+O2339S6desbHs+WHqbc3pOUlBSrnomcnBwdO3bspsdxpPXr16tly5aaOnWq1fZz586pSpUqVtuysrI0btw43XXXXQoPD9f8+fMtsw8XVs2aNWUymXTkyBGrHrbcSw1yVa1aVRUqVJDJZCr0e5N3hmSz2azDhw9bJfOOWEu5atWqKleunFJTU/PtS0lJkaenZ76eKkfI7cHLTdLXr1+vWrVqafbs2Vav++233873WG9vb7Vv317t27eXyWTS5MmTtWzZMkVHR6tOnTqqXbu2srKy7FZPu3TpogkTJqhSpUpWPfbXs+V9rVGjRoEzZOd9bO53z9/f3y6vpV69eqpXr542btyoixcv/m0iULNmTR08eFAmk8kqGcmt/3l7WW1Ru3Ztmc1m3XHHHQX2XN7M+vXr5ePjow8++MCq1/HTTz+95Xhc9TfvVlWoUEEjRozQuHHj9NVXX6lz586SbPsNLYzc9+3w4cNWvcdXrlzRsWPH1KBBA8s2R9Yne8g9fmpqar6e8NTU1ELFV7t2bSUlJalJkyY3PWmVKywsTGFhYXr++ee1Zs0avfTSS1q7dq169+7tkN9/oDTjmnQAdrFs2TKrIb0ff/yxrl69akkCchsx1/cO5OTkaMmSJVbPExISojvuuEOLFi3KNyzy+sfmXpdYmKGTrVu3lpeXlxISEqye45NPPtH58+dvefbiojIYDPl6S7766qsCr0WcMWOGTpw4of/85z8aO3asatasqbFjx1oNjf07uZ9FQkKC1fa8y30ZDAZ17NhR69evL7CXsqDh1atXr7a6hGHdunVWJ2mka59Z7mUN9mIwGNSmTRtt3LjR6oTPX3/9pS+++EJNmza1eRi1rTIzM7Vr1y5Vq1bNcglCbq/Z9Z/vL7/8km/5sjNnzljd9/T0tJzYyP1sH374Ye3atUs//PBDvmOfO3fO5nXAO3XqpBEjRmjSpEk3HIpqy/saGRmp3bt3Kzk52VLu9OnT+ZYcvPfee+Xr66v33nuvwOtWb2V5rn/961/KzMzUhAkTCnwf/u///k/fffedpGv1/9SpU1q7dq1l/9WrV5WQkKDy5ctbnTy01UMPPSSDwaDZs2fn+06bzeZ8n/P1DAaDPDw8rIZqHzt2TBs3bsxXtnz58iX6N68ounbtqurVq1stDWfLb2hhNGrUSFWrVtXSpUutfltXrVqV7313ZH2yh0aNGsnf3z/fa9m0aZMOHTpkWTXgZh5++GEZjUbNmTMn376rV69a3pOzZ8/m+xxyV7DIPbYtf7MB0JMOwE6uXLmiwYMH6+GHH1ZqaqqWLFmipk2b6oEHHpAkhYeHq3Llyho7dqwGDhwoDw8PffbZZ/n+sHt6emry5Ml69tln1b17d/Xs2VPVqlVTSkqK/vvf/+qDDz6QdC2Zl64t89O2bVsZDAZL70peVatW1dNPP63Zs2dryJAhat++vSXG3LVtneH+++9XfHy8xo0bp/DwcP32229as2ZNvusQk5KStGTJEo0YMcLyuqdNm6aBAwfqrbfe0ujRowt1vLvvvltdunTRkiVLdP78eYWHh2vr1q0F9oK++OKL2rZtm/r06aPevXvrrrvu0tmzZ7Vv3z4lJSVp+/btVuUrV66s/v37q2fPnpYl2OrUqWNZKkq69pmtXbtW06ZNU+PGjVW+fPl8a6Xfiueee05btmxR//791b9/fxkMBi1btkw5OTkaNWpUkZ8/r/Xr16t8+fIym836888/9emnn+rs2bN6+eWXLb1F999/v77++msNHz5c999/v44dO6alS5fqrrvuUlZWluW5JkyYoLNnz6pVq1YKCAhQWlqaFi9erLvvvttybetTTz2lb7/9Vs8884x69OihkJAQXbp0Sb/99pvWr1+vjRs33nCCs4JUrFhRI0eO/NtyhX1fhwwZos8++0xDhgzRoEGDLEuw1ahRw+qaZl9fX02ePFmjR49Wz5499cgjj6hq1apKS0vTpk2b1KRJE8XGxhb6dUjXrrE/ePCg3n33Xf3666/q0qWLatSooczMTP3www9KSkrSzJkzJV2b3HLZsmUaO3as9u3bp5o1a2r9+vXauXOnYmJiinQyp3bt2nruuec0c+ZMHT9+XB06dFCFChV07NgxffPNN+rTp4+eeuqpAh8bGRmpBQsWaMiQIerSpYsyMjK0ZMkS1a5dO9814SEhIUpKStKCBQt0++2364477ihwPgBX/c0rCi8vLw0aNEivvfaaNm/erPvuu6/Qv6G2HOO5555TbGysHn/8cT3yyCM6duyYVq5cme85HVmf7MHLy0svvfSSxo0bp6ioKHXu3NmyBFvNmjXzLaNZkBYtWqhv37567733tH//frVp00ZeXl76448/tG7dOo0fP16dOnXSqlWr9PHHH6tDhw6qXbu2Ll68qOXLl8vX19dyorZs2bK666679NVXX6lu3bry8/PTP/7xD7vOPwOUJiTpAOwiNjZWa9as0dtvv60rV66oc+fOmjBhgiVpqVKlit59911Nnz5db731lipVqqRu3bopIiIiX+P13nvv1UcffaT4+Hh9+OGHMpvNqlWrllXC99BDD2ngwIH68ssv9fnnn8tsNt8wSZekkSNHqmrVqlq8eLGmTZumypUrq0+fPnrhhResZqUvTs8884wuXbqkNWvWaO3atWrYsKHee+89S1IhXZvBevz48WrYsKGeeeYZy/ZmzZpp0KBBWrBggR566CGFhYUV6phTp05VlSpVtGbNGm3cuFEtW7bU+++/n69n7bbbbtOKFSsUHx+vDRs26OOPP5afn5/uuusuy3reeV/LwYMH9f777+vixYuKiIjQpEmTrGZi7t+/v/bv36+VK1dq4cKFqlmzpl2S9H/84x9KTEzUzJkz9d5778lsNis0NFSvv/56gQlMUU2ePNlyu3z58goODtZzzz1nNZt/z549LWs2/9///Z/uuusuvf7661q3bp3VCY5u3bpp+fLlWrJkic6dO6dq1arp4Ycf1siRIy2jT8qVK6eEhAS99957WrdunVavXi1fX1/VrVtXI0eOzDfrtL0U9n29/fbbtWjRIsXFxen999+Xn5+f+vXrp9tvvz3fGu5du3bV7bffrvfff18ffPCBcnJyFBAQoGbNmqlnz563FOfzzz+vVq1aKSEhQR9//LHOnj2rSpUq6Z577tGcOXMsJwrLli2rhIQEzZgxQ6tWrdKFCxdUr149TZs27ZaPfb1hw4apbt26WrhwoeLj4yVdm5CtTZs2N63nERERevXVVzVv3jxNnTpVd9xxh1566SUdP348X5I+duxYxcbG6q233tLly5fVo0ePG9ZxV/zNK6q+fftq7ty5mjdvnu67775C/YbeyjGMRqM++OADvfbaawoKCtLcuXM1a9Ysq3KOrk/20LNnT5UtW1bz5s3TjBkzVL58eXXo0EGjRo3Kt3rKjUyZMkWNGjXS0qVL9eabb8pgMKhmzZrq1q2bmjRpIulaMr9nzx6tXbtWf/31lypWrKjQ0FDNmDHD6uRGXFycXnnlFU2bNk1XrlzRiBEjSNKBG/AwF/fMFABKlZUrV2rcuHH65JNP1LhxY2eHg2K2bds2DRo0SLNmzVKnTp2cHQ4AAECJxzXpAAAAAAC4CIa7A0ApcOrUqZvuL1u2rMOGRQMAAMB+SNIBoBRo27btTff36NFD//nPf4opGgAAANwqrkkHgFJgy5YtN91/++2366677iqmaAAAAHCrSNIBAAAAAHARTBwHAAAAAICLcLtr0k0mk65evSpPT0/L+s0AAAAAADiK2WyWyWRSmTJl5Ol5875yt0vSr169qj179jg7DAAAAACAm2ncuLG8vb1vWsbtkvTcsxaNGzeWwWBwcjQAAAAAgNLOaDRqz549f9uLLrlhkp47xN1gMJCkAwAAAACKTWEuuWbiOAAAAAAAXARJOgAAAAAALoIkHQAAAAAAF0GSDgAAAACAiyBJBwAAAADARZCkAwAAAADgIkjSAQAAAABwESTpAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHAAAAAMBFkKQDAAAAAOAiSNIBAAAAAHARJOkAAAAAALgIknQAAAAAAFwESToAAAAAAC6CJB0AAAAAABdBkg4AAAAAgIso4+wAAACuJycnR6tXr1ZaWppq1Kih7t27y9vb29lhAQAAlHpOTdJ/+uknffDBB9q7d69OnTql+Ph4dejQ4aaP2bZtm/7zn//o999/V2BgoJ599ln17NmzmCIGgNJvzpw5WrFihYxGo2Xb3Llz1bt3b0VHRzsxMgAAgNLPqcPds7KyFBwcrEmTJhWq/NGjR/X000+rZcuW+uyzz/T4449rwoQJ+uGHHxwcKQC4hzlz5mjp0qWqVKmSRo0apVWrVmnUqFGqVKmSli5dqjlz5jg7RDiJ0WjUrl279M0332jXrl1WJ3EAAID9OLUnPTIyUpGRkYUuv3TpUt1xxx0aO3asJOnOO+/Ujh07tHDhQt17772OChMA3EJOTo5WrFihKlWq6NNPP1WZMtf+RHTt2lUPP/ywevXqpRUrVmjIkCEMfXczmzZtUnx8vE6ePGnZVr16dQ0fPtymv+MoXYxGo5KTk5WRkSF/f3+FhobKYDA4OywAKPFK1DXpu3fvVkREhNW2tm3baurUqTY/Fz0AKEnS0tJ04cIFZ4dhV76+vqpRo4azwyixHFEnvvnmGxmNRnXu3Fm///57vv2PPPKIEhMT9d577/3tpUm3gjrhmjZv3qzJkycrIiJCEydOVL169ZSamqrExETFxsZq8uTJuu+++5wdJorZ5s2bNXfu3Hwnbp599lnqAwAUwJb8s0Ql6X/99Zduu+02q2233XabLly4oMuXL6ts2bKFfq49e/bYOzzAIS5cuKDY2FiZzWZnh2JXnp6eevnll+Xr6+vsUEocR9eJxYsXa/HixTfcv2LFCq1YscLux6VOuB6TyaRZs2apYcOG6tGjh3799Vdt3bpVlSpVUo8ePXT27FnNmjVLvr6+8vRkwRh3kZycrIULF6phw4bq27evAgMDdeLECX3zzTeaPHmyBg8erNDQUGeHCQAlVolK0u2pcePGDMlCibF48eJi6Uk/cuSIXn31VY0fP161a9d26LHoNS0aR9SJb775RitWrFBUVJTuvffefPVh8+bNSkxMVO/evelJdxO7d+/W6dOn1bNnT82cOTNfr2mXLl00f/58eXp6KiwszHmBotgYjUZNnz5dEREReuWVV6xOznTr1k0TJ07UunXrNGDAANpZAHAdo9FY6I7iEpWk33bbbfrrr7+stv3111/y9fW1qRddkgwGA388UGLUqlWrWI6T29iqW7eugoODi+WYuDWOqBN33nmnVq5cqS+//FJPPvmkVX248847NXbsWBkMBj399NNck+4mzpw5I0maP3++Wrdurccee0w+Pj7Kzs7Wtm3bNH/+fEs5/qa6h+TkZJ08eVKTJk2Sl5eX1T6DwaCoqChFR0dr3759Cg8Pd1KUAFCylagkPSwsTJs3b7batmXLFs7eA4AdeHt7q3fv3lq6dKl69eqlLl26SLp27eno0aN15swZ9evXjwTdjVSpUkWSVLt2bR06dEhbtmyx7AsICFDt2rV15MgRSzmUfhkZGZKkevXqFbi/fv36VuUAALZz6gVkFy9e1P79+7V//35J0rFjx7R//36lpaVJkmbOnKnRo0dbyvfr109Hjx7Va6+9pkOHDikxMVFfffWVBg8e7IzwAaDUiY6OVr9+/XTu3DklJCRIkhISEnTu3Dn169ePddLd1JEjRyy96rnOnDmjI0eOOCkiOIu/v78kKTU1tcD9KSkpVuUAALZzapK+d+9ede/eXd27d5ckTZs2Td27d9fbb78tSTp16pROnDhhKV+rVi2999572rJlix599FEtWLBAcXFxLL8GAHYUHR2t9evXq0+fPpKkPn36aP369STobuj63tAKFSpo1KhRWrlypUaNGqUKFSoUWA6lW2hoqKpXr66EhASZTCarfSaTSYsXL1ZgYCATxwFAETh1uHvLli118ODBG+7/z3/+U+BjVq9e7cCoAADe3t568MEHtXz5cj344IMMcXdTub3nAQEB8vDw0Ouvv27ZFxgYqICAAKWnp+frZUfpZTAYNHz4cMXGxiomJkZRUVGqX7++UlJStHjxYiUlJWnKlCnMUQAARVCirkkHAADF5+zZs5KuTdz69ttva+/evcrIyJC/v78aNWqkf/3rX0pPT7eUg3uIjIzUlClTFB8fbzXCJjAwUFOmTFFkZKQTowOAko8kHQAAFCh3hv9ff/1VEydOVFRUlFq3bq2UlBRNnDhRv/76q1U5uI/IyEi1bdtWycnJlhM3oaGh9KADgB2QpAMAgAKFh4dr0aJFqlWrllJSUvL1mtaqVUtHjhxhqS03ZTAY+OwBwAFI0gEAKAXS0tJ0/vx5uz5n+fLl5evrqyNHjqhx48Zq166dvL29lZOTo71792rPnj2qWLGiypcvf9M5Zm5VxYoVVaNGDbs/r7twRJ1wNuoEAHdAkg4AQAmXmZmp/v3755tt25727NmjPXv25Nt+/vx5Pf300w45psFg0KpVq+Tn5+eQ5y/NiqNOOAN1AoA7IEkHAKCE8/Pz05IlSxzWa7pz504tW7ZMp0+ftmzz9/dXnz591KRJE4ccU7rWa0oydmscXSdyHT58WHFxcZowYYLq1Knj0GNJ1AkA7oEkHQCAUsCRQ4CDg4PVp08fffnll5oxY4Zeeuklde7cmUnCXFxxDguvU6eOgoODi+14AFCaMR0rAAD4WwaDwZKEBQcHk6ADAOAgJOkAAAAAALgIknQAAAAAAFwESToAAAAAAC6CJB0AAAAAABdBkg4AAAAAgIsgSQcAAAAAwEWQpAMAAAAA4CJI0gEAAAAAcBEk6QAAAAAAuIgyzg4AznHp0iXNnTtXx48fV82aNfXss8+qXLlyzg4LAAAAJRTtS+RFnbg1JOluaNy4cfrxxx8t93/66SetXr1abdq00bRp05wYGQAAAEoi2pfIizpx6xju7mbyflmu9+OPP2rcuHHFHBEAAABKMtqXyIs6UTQk6W7k0qVLli9LlSpVNGrUKK1atUqjRo1SlSpVJF370ly6dMmZYQIAAKCEoH2JvKgTRUeS7kbi4+MlSWXLltWnn36qrl27yt/fX127dtWnn36qsmXLWpUDAAAAbob2JfKiThQdSbob2bVrlyQpKipKZcpYT0dQpkwZDRgwwKocAAAAcDO0L5EXdaLoSNLdSO6XJCMjo8D9udvzfpkAAACAgtC+RF7UiaIjSXcjDz30kCTps88+U05OjtW+nJwcff7551blAAAAgJuhfYm8qBNFR5LuRnr37i1JMplM6tixo959910dPXpU7777rjp27CiTyWRVDgAAALgZ2pfIizpRdIwxcCPe3t7q16+fli5dKqPRqCVLlmjJkiVWZfr16ydvb28nRQgAAICShPYl8qJOFB1JupuJjo6WJC1fvtxyFkuSDAaDevfubdkPAAAAFAbtS+RFnSgaknQ3FB0drSFDhmj16tVKS0tTjRo11L17d85mAQAA4JbQvkRe1IlbR5LugtLS0nT+/HmHH+eee+7RPffcI0lKTU116LEqVqyoGjVqOPQYAAAAKFhpbF9KtDGLojTWidJSH0jSXUxmZqb69+9vNSykNDAYDFq1apX8/PycHQoAAIBbKa3tS4k25q0qrXWitNQHknQX4+fnpyVLlhTLWa3Dhw8rLi5OEyZMUJ06dRx6rIoVK5b4LwsAAEBJVFrblxJtzFtVWutEaakPJOkuqLiHaNSpU0fBwcHFekwAAAAUH9qXyIs64bpYJx0AAAAAABdBkg4AAAAAgIsgSQcAAAAAwEWQpAMAAAAA4CJI0gEAAAAAcBEk6QAAAAAAuAiSdAAAAAAAXARJOgAAAAAALoIkHQAAAAAAF0GSDgAAAACAiyBJBwAAAADARZCkAwAAAADgIkjSAQAAAABwESTpAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHAAAAAMBFkKQDAAAAAOAiSNIBAAAAAHARJOkAAAAAALgIknQAAAAAAFwESToAAAAAAC6CJB0AAAAAABdBkg4AAAAAgIsgSQcAAAAAwEWQpAMAAAAA4CJI0gEAAAAAcBFlnB0AAAClVXp6ujIzM50dht0cPnzY6v/Sws/PTwEBAc4OAwAASSTpAAA4RHp6uqIGDFB2To6zQ7G7uLg4Z4dgVz7e3lqcmEiiDgBwCSTpAAA4QGZmprJzcvRPSdWcHQxu6JSkT3JylJmZSZIOAHAJJOkAADhQNUk15OHsMHBDZmcHAACAFZJ0ALATrj8uObgGGQAAuCqSdACwg/T0dA2IGqCcbK4/Lgm8fbyVuJhrkAEAgOshSQcAO8jMzFROdo5MLUwyV2L4rCvzOOehnO1cgwwAAFwTSToA2JG5klmq4uwocDNmrkEGAAAuzNPZAQAAAAAAgGtI0gEAAAAAcBEk6QAAAAAAuAiSdAAAAAAAXARJOgAAAAAALoIkHQAAAAAAF0GSDgAAAACAiyBJBwAAAADARZRxdgAAAADuIj09XZmZmc4Ow24OHz5s9X9p4efnp4CAAGeHAcBNkaQDAAAUg/T0dEUNiFJ2TrazQ7G7uLg4Z4dgVz7ePlqcuJhEHYBTkKQDAAAUg8zMTGXnZKtl/c6qVNbf2eHgBs5dztC2lC+VmZlJkg7AKUjSAQAAilGlsv6qUoHkDwBQMJJ0AAAc6JQkyezkKHAjp5wdAAAAeZCkAwDgQJ84OwAAAFCikKQDAOBA/5RUzdlB4IZOiRMpAADXQpIOAIADVZNUQx7ODgM3xKUIAADX4unsAAAAAAAAwDUk6QAAAAAAuAiSdAAAAAAAXARJOgAAAAAALoKJ4wDAns45OwD8LT4jAADgwkjSAcCODNsNzg4BAAAAJRhJOgDYkbGFUark7ChwU+c4mQIAAFwXSToA2FMlSVWcHQQAAABKKiaOAwAAAADARZCkAwAAAADgIkjSAQAAAABwEVyTboP09HRlZmY6Owy7OXz4sNX/pYWfn58CAgKcHQYAAMDfon1ZMhRn+5I6UTI4sk6QpBdSenq6BgyIUk5OtrNDsbu4uDhnh2BX3t4+SkxcTKIOAABc2rX25QDl5OQ4OxS7K33tS28lJiY6vH2Znp6uqAFRyibncHk+3j5a7KCcgyS9kDIzM5WTk63Ld94vczk/Z4eDG/C4lCkd+l6ZmZkk6QAAwKVda1/mqLF/Jfl6sTSkq7pwxag9GeeKpX2ZmZmp7JxsPdm4pwJ9b3PosXDrTlz4Sx/uWemwOkGSbiNzOT+ZKvCFcVVMsgAAAEoaXy+DKnl7OTsMuJBA39tUu1INZ4cBJyGnAQAAAADARdCTDgCAA52SJJmdHAVu5JSzAwAAIA+SdAAAHMDPz08+3t76pBROCFXa+Hh7y8/Pr9iOd+5SRrEdC7bj8wHgbCTpAAA4QEBAgBYnJpa6ZXTi4uI0YcIE1alTx9nh2E1xL925LfXLYjsWAKDkIUkHAMBBAgICSuVKE3Xq1FFwcLCzwyixWtbrrErl/J0dBm7g3KUMTqQAcCqSdAAAgGJUqZy/qlQofSdvAAD2wezuAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHAAAAAMBFkKQDAAAAAOAiWCcduEXp6enKzMx0dhh2dfjwYav/Sws/Pz8FBLAmMQAAAFwfSTpwC9LT0xU1YICyc3KcHYpDxMXFOTsEu/Lx9tbixMRiSdQ9znnILLPDj4Nb53HOw9khAAAA3BBJOnALMjMzlZ2To2dDLqpGBaOzw8FNpF00aO6+a5+ZI5N0Pz8/eft4K2d76TxxU9p4+3jLz8/P2WEAAADkQ5IOFEGNCkbVq0SSDikgIECJixNL1SUQhw8fVlxcnCZMmKA6deo4Oxy74hIIAADgqkjSAcBOAgICSmXiV6dOHQUHBzs7DAAAALdAkm4jj0uZTInvwjwuZTo7BAAAAJtcuHLV2SHgJpzx+Zy48FexHxOF5+jPhyTdRmUPfe/sEAAAAFCK7Mk47+wQ4GI+3LPS2SHAiUjSbXT5zvtlLufn7DBwAx6XMjmRAgAASpTG/hXl60Wz3FVduHK12E+kPNm4pwJ9byvWY6LwTlz4y6EnUvg1sJG5nJ9MFfjCuCouRQAAACWNr1cZVfL2cnYYcCGBvrepdqUazg4DTuL0nCYxMVHt27dX48aN1bt3byUnJ9+0/MKFC9WxY0eFhoYqMjJSU6dOVXZ2djFFCwAAAACA4zg1SV+7dq2mTZum4cOHa9WqVWrQoIGeeuopZWRkFFh+zZo1mjlzpkaMGKG1a9fq1Vdf1dq1a/XGG28Uc+QAAAAAANifU5P0BQsWqE+fPurVq5fuuusuvfzyyypbtqw+/fTTAsvv2rVLTZo0UdeuXXXHHXeobdu26tKly9/2vgMAAAAAUBI47Zr0nJwc7du3T08//bRlm6enp1q3bq1du3YV+Jjw8HB9/vnnSk5OVmhoqI4ePapNmzbp0Ucftfn4RqPRpvImk8nmY8B5TCaTzZ+xrc+PksXRdaI0yq3nvHfIRZ0oGv52lCzFUc+pEyULdQJ52VInbKk7TkvSz5w5I6PRKH9/f6vt/v7+SklJKfAxXbt21ZkzZ9S/f3+ZzWZdvXpV/fr10zPPPGPz8ffs2WNT+aNHj9p8DDjPwYMHlZWV5bDnpz6UPI6uE6VRbj3nvUMu6kTR8LejZCmOek6dKFmoE8jLUXWiRM3uvm3bNr333nuaNGmSQkNDdeTIEb366quKj4/X8OHDbXquxo0by2AwFLp8+fLlbQ0XThQcHKygoCCHPT/1oeRxdJ0ojXLrOe8dclEnioa/HSVLcdRz6kTJQp1AXrbUCaPRWOiOYqcl6VWqVJHBYMg3SVxGRoZuu63gJc5mzZqlbt26qXfv3pKuvSlZWVmKjY3Vs88+K0/Pwl9ibzAYbErSbXluOJ+np6dNn++tPD9KFkfXidIot57z3iEXdaJo+NtRshRHPadOlCzUCeTlqDrhtCTd29tbISEhSkpKUocOHSRdG9OflJSkqKioAh9z+fLlfBU3900xm82ODRgAAMAOzl0ueBUbuAY+HwDO5tTh7k888YTGjBmjRo0aKTQ0VB999JEuXbqknj17SpJGjx6tgIAAvfjii5Kkdu3aacGCBWrYsKFluPusWbPUrl07zugDAACX5ufnJx9vH21L+dLZoeBv+Hj7yM/Pz9lhAHBTTk3SH3nkEZ0+fVpvv/22Tp06pbvvvlvz58+3DHc/ceKEVc/5s88+Kw8PD7311ltKT09X1apV1a5dOz3//PPOegkAAACFEhAQoMWJi5WZmensUOzm8OHDiouL04QJE1SnTh1nh2M3fn5+CggIcHYYANyU0yeOi4qKuuHw9oSEBKv7ZcqU0YgRIzRixIjiCA0AAMCuAgICSmXyV6dOHQUHBzs7DAAoFZiZAAAAAAAAF0GSDgAAAACAiyBJBwAAAADARZCkAwAAAADgIkjSAQAAAABwESTpAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHAAAAAMBFlHF2AAAAAIA7u3DF6OwQcBN8PihuJOk28riUyfADF+ZxKdPZIQAAABSKn5+fvL29tSfjnLNDwd/w9vaWn59fsR3vxIW/iu1YsJ2jPx+S9EK69iPqIx363tmh4G94e/sU648oAADArQgICFBiYqIyMzOdHYrdHD58WHFxcZowYYLq1Knj7HDsxs/PTwEBAcVyHB9vH324Z6XDj4Wi8XFgzkGSXkjXfkQX8yNaAhTXjygAAEBRBQQElMp2S506dRQcHOzsMEqcgIAALSbnKBEcmXOQpNuAH1EAAAAAjkTOAS6vBgAAAADARZCkAwAAAADgIkjSAQAAAABwESTpAAAAAAC4CJJ0AAAAAABcBEk6AAAAAAAugiQdAAAAAAAXQZIOAAAAAICLIEkHAAAAAMBFkKQDAIC/lZOTow0bNkiSNmzYoJycHCdHBABA6USSDgAAbmrOnDl66KGHtHz5cknS8uXL9dBDD2nOnDlOjgwAgNKnjLMDAEqytIuc53J1fEZA0cyZM0dLly7Nt91kMlm2R0dHF3dYAACUWiTpQBHM3efr7BAAwGFycnIKTNCvt3TpUg0ZMkTe3t7FFBUAAKUbSTpQBM+GXFCNCiZnh4GbSLvoyckUuIW0tDSdP3/ers/51VdfFarcnDlz9PDDD9v12JJUsWJF1ahRw+7PCwCAK7ulJP3cuXNKTk5WRkaGzGaz1b7u3bvbIy6gRKhRwaR6lYzODgOAm8vMzFT//v1lMjnnpOHKlSu1cuVKuz+vwWDQqlWr5OfnZ/fnBgDAVdmcpH/77bd66aWXlJWVJV9fX3l4eFj2eXh4kKQDAFDM/Pz8tGTJErv3pI8cOVKXL1+Wj4+PKlSooNOnT1v2Va1aVRcuXFBOTo7Kli2rd955x67Hlq71pJOgAwDcjc1J+vTp09WrVy+98MILKleunCNiAgAANnLEsHAvLy9dvnxZ2dnZatKkiQYNGqR69eopNTVVixYtUlJSkqVccHCw3Y8PAIA7snna4/T0dA0aNIgEHQCAUu6uu+6y3N6/f78OHTqkrKwsHTp0SPv37y+wHAAAKBqbe9Lbtm2rPXv2qFatWo6IBwAAuIiWLVtq165dkq5d9z5jxowblgMAAPZhc5IeGRmp119/XYcOHVJQUJDKlLF+igceeMBuwQEAAOe57bbb7FoOAAD8PZuT9IkTJ0qS4uPj8+3z8PCwGv4GAABKrmrVqtm1HAAA+Hs2J+kHDhxwRBwAAMDFhIaGqnr16qpcubIyMzOVnp5u2RcQECA/Pz+dO3dOoaGhTowSAIDSxeaJ4wAAgHswGAwaPny4Dh48qDNnzljtO3PmjA4ePKjo6GgZDAYnRQgAQOljc0+6JG3fvl0ffvihDh06JEm68847NWTIEDVr1syuwQEAANeQk5Nz0/sAAMA+bE7SP/vsM8XExOjBBx/UwIEDJUk7d+7U4MGDNW3aNHXt2tXuQQIAgOJnNBo1c+ZMSVJERIRatWolHx8fZWdna+vWrUpKStIbb7yhtm3b0psOAICd2Jykv/vuuxo1apQGDx5s2TZo0CAtWLBAc+bMIUkHAKCU2L17tzIzM9W4cWPFxcVp7969ysjIUGBgoLp06aLnnntOe/bs0e7du9W0aVNnhwsAQKlgc5J+9OhRtWvXLt/29u3b64033rBLUAAAwPly10hv1qyZBgwYoJMnT1r2Va9eXZ06ddKePXu0a9cuknQAAOzE5onjAgMDlZSUlG/7li1bFBgYaJegAACA61iwYEGBE8ctXLjQOQEBAFCK2dyT/sQTTyguLk779+9XeHi4pGvXpK9atUrjx4+3e4AAAMA57rnnHsvt8PBwPf7446pXr55SU1P10UcfaevWrfnKAQCAorE5Se/fv7+qVaumDz/8UOvWrZMk1a9fX2+++aY6dOhg9wABAIBzmM1my20PDw/LfbPZLA8PjwLLAQCAormlJdgefPBBPfjgg/aOBQAAuJDk5GTL7Z07d1pd7ubj42NVrkWLFsUaGwAApZXN16QDAAD3MnjwYPn5+Vltq1KlitVKLwAAwD4K1ZPeokULrVu3TlWrVlXz5s2thrjltX37drsFBwAAnCc8PFyLFi3Sjh07tGTJEssSbP7+/mrUqJGee+45SzkAAGAfhUrSx40bJ19fX8vtmyXpAACgdAgLC5Ofn5/27NmjiRMnKioqSq1bt1ZKSoomTpyoPXv2yM/PT2FhYc4OFQCAUqNQSXqPHj0st3v27OmwYAAAgOswGAx68cUXNXHiRO3YsUNbtmyx7Mu9Jv3FF1+UwWBwVogAAJQ6Nl+TfvfddysjIyPf9jNnzujuu++2S1AAAOfKycnRhg0bJEkbNmxQTk6OkyOCs0RGRuqVV14p8Jr0V155RZGRkc4JDACAUsrm2d1vtMxKTk6OvLy8ihwQAMC55syZo+XLl8tkMkmSli9frk8++UR9+vRRdHS0k6ODM0RGRqpt27ZKTk62XJMeGhpKDzoAAA5Q6CR90aJFkq6tk7pixQqVL1/ess9kMumnn35S/fr17R8hAKDYzJkzR0uXLs233WQyWbaTqAMAADhOoZP0hQsXSrrWk7506VJ5ev5vpLyXl5fuuOMOvfzyy3YPEACQX1pams6fP2/X57x69aqWLVt20zLLli1TZGSkypSxeSDW36pYsaJq1Khh9+dF0W3atEnx8fE6efKkZVv16tU1fPhwhrsDAGBnhW5lffvtt5KkgQMHavbs2apcubLDggIA3FhmZqb69+9vGY5enMxms5599lmHPLfBYNCqVavyXfsM59q0aZNiY2MVERGhSZMmqV69ekpNTVVCQoJiY2M1ZcoUEnUAAOzI5q6QhIQER8QBACgkPz8/LVmyxO496dOmTVNKSsrflqtfv77GjRtn12NL13rSSdBdi9FoVHx8vCIiIjR16lTLKLqQkBBNnTpVMTExmjNnjtq2bcv16QAA2MktjVc8efKkNm7cqBMnTujKlStW+xzRcAMAWHPEsPCLFy8WulxwcLDdjw/Xk5ycrJMnT2rSpElWl7lJkqenp6KiohQdHa3k5GSFh4c7KUoAAEoXm5P0pKQkPfvss6pVq5ZSUlL0j3/8Q8ePH5fZbFbDhg0dESMAoBhkZ2fbtRxKvtwlV+vVq1fg/twJYwtamhUAANwam9dJnzlzpp588kmtWbNG3t7eeuedd/T999+refPm6tSpkyNiBAAUg7w9pUUth5LP399fkpSamlrg/tzLI3LLAQCAorO5pXXo0CF1795dklSmTBldvnxZFSpU0L///W/Nnz/f3vEBAIqJt7e3Xcuh5AsNDVX16tWVkJCQb6JCk8mkxYsXKzAwUKGhoU6KEACA0sfmJL18+fKW69CrVaumI0eOWPadOXPGfpEBAIrV5cuX7VoOJZ/BYNDw4cOVlJSkmJgY7d27V1lZWdq7d69iYmKUlJSk6OhoJo0DAMCObL4m/Z577tGOHTt05513KjIyUtOnT9dvv/2mDRs26J577nFEjACAYpB3ItCilkPpEBkZqSlTpig+Pl7R0dGW7YGBgSy/BgCAA9icpI8bN84yA/DIkSN18eJFrV27VnXr1tXYsWPtHiAAoHhwTTpuxmw2W93PO/wdAADYh81Jeq1atSy3y5cvrylTptg1IACAc5QpU7g/CYUth9Jh06ZNio2NVUREhCZPnqx69eopNTVVCQkJio2NpTcdAAA7ozsEACBJysrKsms5lHxGo1Hx8fGKiIjQ1KlTFRISovLlyyskJERTp05VRESE5syZI6PR6OxQAQAoNQrVHdK8eXN5eHgU6gm3b99epIAAAM5R2ESLhMx9JCcn6+TJk5o0aVK+yxw8PT0VFRWl6OhoJScnKzw83ElRAgBQuhQqSY+JiXF0HAAAJ/P29tbVq1cLVQ7uISMjQ5JUr169AvfXr1/fqhwAACi6QiXpPXr0cHQcAAAnq169ulJSUgpVDu7B399fkpSamqqQkJB8+3PrS245AABQdLd0TfqRI0f05ptv6oUXXrCcPd+0aZN+//13uwYHACg+lStXtms5lHyhoaGqXr26EhIS8s3mbjKZtHjxYgUGBio0NNRJEcKZLly4oNmzZ0uSZs+erQsXLjg5IgAoHWxO0rdv366uXbsqOTlZX3/9tWUCoYMHD+qdd96xe4AAgOJRtmxZu5ZDyWcwGDR8+HAlJSUpJiZGe/fuVVZWlvbu3auYmBglJSUpOjpaBoPB2aGimA0bNkyPPPKIfvnlF0nSL7/8okceeUTDhg1zcmQAUPLZnKTPnDlTzz33nBYsWCAvLy/L9latWmn37t32jA0AADhZZGSkpkyZopSUFEVHR6tTp06Kjo5Wamoqy6+5qWHDhunAgQMF7jtw4ACJOgAUkc2L3f7222+aMWNGvu1Vq1bVmTNn7BIUAKD4nTt3zq7lUHpERkaqbdu2Sk5OVkZGhvz9/RUaGkoPuotLS0vT+fPn7fqcly9fvmGCnuvAgQP65ZdfHDLqpmLFiqpRo4bdnxcAXInNSXrFihV16tQp1apVy2r7/v37FRAQYLfAAADFq7BLbRa2HEoXg8HAMmslSGZmpvr3759vLoHiMnLkSIc8r8Fg0KpVq+Tn5+eQ5wcAV2Bzkt65c2fNmDFDs2bNkoeHh0wmk3bs2KHp06ere/fuDggRAFAc6tSpo7179xaqHADX5ufnpyVLlti9J33MmDE6ffq0JMnT01MPPfSQ7r33Xv3www/6+uuvLScFqlatqunTp9v12NK1ziISdAClnc1J+vPPP68pU6bo/vvvl9FoVOfOnWU0GtWlSxc9++yzjogRAFAMjh8/bnU/KChINWvW1PHjx/Xbb7/dsBwA1+SIYeGenv+bzuirr77SgQMHlJGRoYcffljPP/+8OnbsaCkXHBxs9+MDgDuwKUk3m83666+/NGHCBA0fPly//fabLl68qIYNG6pu3boOChEAUBxOnTpldf+3336zSs5vVA6A+7h+HoJBgwYpPT3dcv/6yx6ZrwAAbp3NSfpDDz2kL774QnXr1lVgYKCj4gJKhLSLNEJcHZ9R4eVea+7p6Vngday527kmHXBf16/sk56ergYNGqhVq1baunWr1YRy15cDANjGpiTd09NTderUUWZmpoPCAUoGPz8/+Xh7a+4+Z0eCwvDx9uYaxkKoVauWjh07ZknQa9asKQ8PD5nNZh0/ftyyPe/EoQDcR3h4uI4dO2a5f+DAgQJne2eSQQC4dTZfk/7iiy/qtdde0+TJkxUUFOSImACXFxAQoMWJiaXuhNXhw4cVFxenCRMmlKrJwfz8/Fh9ohDuueceJSUlWe7f6Nrze+65p7hCAuBi7rvvPq1Zs6ZQ5QAAt8bmJH3MmDG6dOmSHn30UXl5eeVbA3P79u12Cw5wZQEBAaU28atTpw4T/rghlmAD8HfOnj1r13IAgPxsTtJjYmIcEQeKWU5OjjZs2CBJ2rBhg+rVqydvb28nRwXAmU6cOGHXcgBKnz///NOu5VC60L5EXtSJW2NTkn7lyhVt375d0dHRXJNYgs2ZM0fLly+3XF+6fPlyffLJJ+rTp4+io6OdHB0AZ8mdtb1OnTo6evSo1eRxBoNBd9xxhw4fPszs7oAb+/nnnyVJPj4+WrlypebNm6fjx4+rZs2aGjp0qHr06KGcnBz9/PPPioqKcnK0KE60L5EXdeLW2ZSke3l56euvv+ZNLcHmzJmjpUuX5ttuMpks2/l8Afd02223SZIyMzO1du1affHFF0pLS1ONGjXUpUsX9e3b16ocAPeTe5IuOztbr776qqKiolS/fn2lpKTo1VdfVU5OjlU5uAfal8iLOlE0Ng9379ChgzZu3KjBgwc7IBxIUlpams6fP2/357169WqBX5brLV26VJGRkSpTxuaqcVMVK1ZUjRo17PqcAOwrd4TU2bNn9dhjj+mpp55SVFSUtmzZoscee8xyjSkjqQD3dfvtt+vo0aOqUqWKDh06ZNXIrl69uqpUqaIzZ87o9ttvd2KUKEhpbF9KtDGLojTWidJSH2x+V+rUqaP4+Hjt3LlTISEhKleunNX+QYMG2S04d5SZman+/fsXuEZxcXn22Wft/pwGg0GrVq1iGSzAhXXv3l1z585VmTJllJmZqRkzZlj2eXh4yMfHR1evXlX37t2dFyQAp+rbt6927NihM2fOqEWLFmrbtq1ycnLk7e2to0ePWiYQzh15A9dQWtuXEm3MW1Va60RpqQ82J+mffPKJKlasqL1792rv3r1W+zw8PEjSi8jPz09LlixxyFmt2NhYnThxQl5eXoqLi9Nrr72mCxcuyNfXV6NHj9aECRN05coVBQYGasqUKXY9dsWKFUv8lwUo7by9vdW7d28tXbpUfn5+VsvwHT58WJmZmerXrx8TvgBurHnz5vLx8VF2dra2b99e4Ko+Pj4+at68uROiw42U1valRBvzVpXWOlFa6oPNSfq3337riDhwHUcN0cjKypIkGY1GjRkzxrI9OztbY8aMkaenp6Ucy28B7ik6OlpHjx7Vjz/+qMzMTKt9bdq04foxwM0ZDAb16NHjpkNZe/ToIYPBUIxRoTBoXyIv6oTr8izKg81ms8xms71igYNVqVJFkm44rCV3e245AO5n06ZN2rJlS77ecm9vb23ZskWbNm1yUmQAXIHRaNT333+v4OBgVatWzWpftWrVFBwcrE2bNsloNDopQhQ32pfIizpRdLeUpK9evVpdu3ZVaGioQkND1bVrV61evdrOocHe2rRpY7nt6empBx54QNHR0XrggQcsZ7TylgPgPoxGo2bOnCmz2aymTZtq7ty5WrdunebOnaumTZvKbDbrjTfeoPENuLHk5GSdPHlSkZGR+XrLDQaD7rvvPp04cULJyclOihDFjfYl8qJOFJ3Nw90XLFigWbNmacCAAXruueckSTt27NDkyZOVmZnJrO8u7JtvvrHcNplM2rhxozZu3Fhguaeffro4QwPgAnbv3q3MzEw1btxY06ZNs/whDQkJ0bRp0zRy5Ejt2bNHu3fvVtOmTZ0cLQBnyMjIkCTNmzdPERERmjRpkurVq6fU1FQlJCRo/vz5VuVQ+tG+RF7UiaKzuSc9ISFBkydP1qhRo/TAAw/ogQce0OjRozVp0iQtWrTIETHCTs6cOWPXcgBKl127dkmSnnzySasz3dK1M+FPPPGEVTkA7id3eGqjRo00depUhYSEqHz58goJCdHUqVPVqFEjq3Io/WhfIi/qRNHZnKSfOnVK4eHh+baHh4fr1KlTdgkKjlG2bFm7lgMAAIB7o32JvKgTRWdzkl6nTh199dVX+bavXbtWdevWtUdMcJAePXpYboeHh+uf//ynunXrpn/+859WJ16uLwfAfeT+Dnz44Yf5JnsxmUxasGCBVTkA7ie352vPnj2KiYnR3r17lZWVpb179yomJkZ79uyxKofSj/Yl8qJOFJ3N16SPHDlSzz//vH766Sc1adJEkrRz505t3bpVb731lr3jgx1duXLFcnvXrl1KS0vTvffeqx9++EHp6ekFlgPgPsLCwuTn52dpfEdFRal+/fpKSUnR4sWLtWfPHvn5+SksLMzZoQJwEn9/f0nSsGHD9Pnnn1styxgYGKihQ4dq3rx5lnIo/WhfIi/qRNHZnKR37NhRy5cv18KFCy0TANSvX18rVqxQw4YN7R4g7Oevv/6yup+enq5PPvnkb8sBcA8Gg0EvvviiJk6cqB07dmjLli2WfT4+PpKkF198kfWPATcWGhqq6tWra+/evUpMTNTevXuVkZEhf39/NWrUSBMnTlRgYKBCQ0OdHSqKCe1L5EWdKDqbk3Tp2mQhM2bMsHcscLDbb7/druUAlD6RkZF65ZVXNHv2bKuz3VWqVNHw4cMVGRnpxOgAOJvBYNDw4cMVGxuriRMnKioqSq1bt1ZKSoomTpyopKQkTZkyhZN5boT2JfKiThRdoZP09PR0LVy4UMOHD5evr6/VvvPnz2vOnDl66qmndNttt9k9SNhHeHi4Fi9eXKhyANxXZGSk2rZtq+TkZEsPWWhoKI1uAJKu/UZMmTJF8fHx+Ya7T5kyhZN5bob2JfKiThRdoZP0hQsX6sKFC/kSdEmqWLGiLl68qAULFmjUqFF2DRD2c/XqVbuWA1B6GQwG/ngCuCFO5iEX7UvkRZ0oukLP7v7DDz/o0UcfveH+7t276/vvv7dHTHCQZcuWWW7nXl9a0P3rywEAABQk92Rehw4dFB4eToLupmhfIi/qRNEVOkk/duyYatSoccP91atX1/Hjx+0SFBwjdx37Ro0a5ZtN8cqVKwoJCbEqBwAAANwM7UvkRZ0oukIPd/fx8dHx48dvmKgfP34835kSuJZq1arp6NGj2rt3r1q1aqU77rhDOTk58vb21rFjx7R161ZLOQAAAODv0L5EXtSJoit0kn7PPffos88+U/PmzQvcv3r1apbbcHF9+/bVzp07JUk//fST5QsiyWqIWt++fYs9NgAAULIYjUauSQftS+RDnSi6QifpTz75pJ588klVrFjRahb3v/76S/Pnz9eqVav0wQcfOCxQFJ23t7flttFotNp3/f3rywEAAOS1adMmxcfH6+TJk5Zt1atXZ6lGN0T7EnlRJ4qu0El6q1atFBsbq1dffVULFy6Ur6+vPDw8dP78eZUpU0YTJkxQRESEI2NFEWVkZNi1HIDSix4yADeyadMmxcbG5mtgnzlzRrGxsSzD5mZoXyIv6kTRFTpJl6R+/fqpXbt2+uqrr3T48GGZzWbVrVtXnTp1UvXq1R0VI+wkMzNTkvToo49qy5YtVpM13H777WrVqpU+//xzSzkA7okeMgA3YjQaNXPmTJnNZjVp0kSDBg1SvXr1lJqaqkWLFikpKUlvvPGG2rZty4k9N0H7EnlRJ4rOpiRdkgICAjR48GAHhAJH8/PzkySdPHlSS5cu1d69ey29ZI0aNVJMTIxVOQDuJ7eHLCIiQpMmTbI0vhMSEughA6Ddu3crMzNTjRs31rRp0+TpeW2hoJCQEE2bNk0jR47Unj17tHv3bjVt2tTJ0aI40L5EXtSJoiv0Emwo+XJnUNy+fbsmTpwoLy8vtW7dWl5eXpo4caK2b99uVQ6AezEajYqPj1dERISmTp2qkJAQlS9fXiEhIZo6daoiIiI0Z86cfNeXAXAfu3btknRtrqLcBD2Xp6ennnjiCatyKP1oXyIv6kTR2dyTjpIrNDRU1atXV+XKlZWSkqLo6GjLvsDAQAUFBencuXPM0g+4qeTkZJ08eVKTJk0qsPEdFRWl6OhoJScnKzw83ElRAgBcCe1L5EWdKDp60t2IwWDQ8OHD9dtvv6levXrq1auXunbtql69eqlu3br67bffFB0dzTVkgJvKncClXr16Be6vX7++VTkA7if3BN2HH34ok8lktc9kMmnBggVW5VD60b5EXtSJoqMn3c1ERkaqb9++WrFihdWQVYPBoL59+3KtKeDG/P39JUmpqakKCQnJtz8lJcWqHAD3ExYWJj8/P+3Zs0cxMTGKiopS/fr1lZKSosWLF2vPnj3y8/NTWFiYs0NFMaJ9ibyoE0VDku5mNm3apGXLlqlVq1Zq1aqVvL29lZOTo61bt2rZsmUKCQnhSwO4qdzhaQkJCZo6darVkHeTyaTFixcrMDCQ4WmAGzMYDHrxxRc1ceJE7dixQ1u2bLHs8/HxkSS9+OKL9JC5GdqXyIs6UTSFGu7evHlztWjRolD/4LqunxQqLi5OdevWlY+Pj+rWrau4uDgmhQLcXO7wtKSkJMXExGjv3r3KysrS3r17FRMTo6SkJIanAVBkZKT69eunK1euWG2/cuWK+vXrR8PbzdC+RF7UiaIrVE967jT5KNlyJ4Xq1q2bBgwYkG8N5K5du2rLli1MCgW4scjISE2ZMkXx8fH5Jnph+TUAknUPWc2aNZWTkyNvb28dP36cHjI3RPsSeVEniq5QSXqPHj0cHQeKQe5kT/PmzStwDeT58+dblQPgniIjI9W2bVslJydb1jUNDQ2lBx2ApYcsKChIKSkpSkpKsuwLCAhQUFCQ5syZo7Zt2/Kb4SZoXyIv6kTR3dLs7keOHNGbb76pF154wfLmbtq0Sb///rtdg4N9ValSRZLUqFGjAtdAbtSokVU5AO7LYDAoPDxcHTp0UHh4OI1tAJL+10N28OBB3XnnnZo7d67WrVunuXPn6s4779TBgwd14sQJJScnOztUFBPal8iLOlF0Nifp27dvV9euXZWcnKyvv/5aWVlZkqSDBw/qnXfesXuAAAAAcA2nTp2SJLVs2bLAxnfLli2tygEAbGdzkj5z5kw999xzWrBggby8vCzbW7Vqpd27d9szNtjZmTNnJMmybEreSaH27NljVQ4AAOB6mZmZkqT77rvPagUISfL09NS9995rVQ6lH+1L5EWdKDqbk/TffvtNHTp0yLe9atWqvNEuLndt42HDhiklJUXR0dHq1KmToqOjlZqaqqFDh1qVAwAAuJ6fn58kafPmzTKZTFb7TCaTfvjhB6tyKP1oXyIv6kTR2bxOesWKFXXq1CnVqlXLavv+/fsVEBBgt8Bgf7lrIO/du1eJiYnau3evZVKoRo0aaeLEiayBDAAAbqhatWqSrl3+GBMTo6ioKNWvX18pKSlavHixtm/fblUOpR/tS+RFnSg6m3vSO3furBkzZujUqVPy8PCQyWTSjh07NH36dHXv3t0BIcJerl8DeeLEifLy8lLr1q3l5eWliRMnsgYyAAC4qdzGd+7s7nl7yIKCgmh8uxnal8iLOlF0Hmaz2WzLA3JycjRlyhStWrVKRqNRZcqUkdFoVJcuXfSf//zH5d9so9Go3bt3KywszOVjdZRNmzYpPj7eas3CwMBARUdHs66pmzt48KCGDh2qefPmKTg42NnhAABc0KZNmxQbG6tWrVqpZcuW8vHxUXZ2trZt26atW7dqypQptCfcEO1L5EWdsGZLHmpzkp4rLS1Nv//+uy5evKiGDRuqbt26t/I0xY4k/Rqj0cgayMiHJB25+I0AcDM0vlEQ/nYgL+rE/9iSh9p8TXquGjVqqEaNGrf6cDhZ7hrIAJBXQY3v6tWra/jw4TS+AUiSIiMj1bZtWxrfsEL7EnlRJ25NoZL0adOmFfoJx40bZ1MAiYmJ+uCDD3Tq1Ck1aNBAEydOvOl1TOfOndObb76pDRs2KDMzUzVr1lRMTAwNRwCwg9xhrBEREZo0aZLq1aun1NRUJSQkKDY2lmGsACxofAOAYxQqSf/111/z3TcajapXr54k6Y8//pCnp6dCQkJsOvjatWs1bdo0vfzyy7rnnnv00Ucf6amnntK6desKnJI/JydHTzzxhPz9/TVr1iwFBAQoLS1NlSpVsum4YOgJgPyMRqPi4+MVERGhqVOnWtZADgkJ0dSpUxUTE6M5c+aobdu2/F4AAPKhfYm8qBO3plBJekJCguX2ggULVKFCBU2fPl2VK1eWJJ09e1bjxo1Ts2bNbDr4ggUL1KdPH/Xq1UuS9PLLL+v777/Xp59+qmHDhuUr/+mnn+rs2bNaunSpvLy8JEl33HGHTcfMZTQab+lxpcHmzZs1d+7cfENZn332Wd13331OjAzOlrvmrclkcuvviLvavXu3Tp48qYkTJ8psNuerA/3799eIESMs11MBAJCL9iXyok5Ys6VtbfM16R9++KE+/PBDS4IuSZUrV9Zzzz2nJ598Uk8++WShnicnJ0f79u3T008/bdnm6emp1q1ba9euXQU+5ttvv1VYWJimTJmijRs3qmrVqurSpYuGDh1q8xmZPXv22FS+tEhOTtbChQvVsGFD9e3bV4GBgTpx4oS++eYbTZ48WYMHD2bZFDd29OhRSdcmkMvKynJyNChuO3fulCSdP39eu3fvzrf/8uXLVuUAAJBoXyI/6kTR2JykX7hwQadPn863/fTp07p48WKhn+fMmTMyGo35hrX7+/srJSWlwMccPXpUW7duVdeuXfX+++/ryJEjevnll3X16lWNGDHCptfRuHFjtxtqYTQaNX36dEVEROiVV16xDGWVpG7dumnixIlat26dBgwY4HbvDa4pX768JCk4OFhBQUFOjgbOkJCQoIoVK6phw4b59u3bt0+S1KRJE3rSAQCSaF8iP+pEwYxGY6E7im1O0h988EGNGzdOY8eOtZz9+OWXX/Taa6/poYcesvXpbGI2m+Xv769XXnlFBoNBjRo1Unp6uj744AObk3SDweBWlUK6dkbr5MmTmjRpkuVygVwGg0FRUVGKjo7Wvn37mAjGTeX+iHp6errd9wNSWFiYqlevrsTERKtr0qVrl0AsWbJEgYGBbr+EJQDgf2hfIi/qRNHZnKS//PLLmj59ul588UVdvXpV0rU3+5///KdGjx5d6OepUqWKDAaDMjIyrLZnZGTotttuK/Ax1apVU5kyZawah/Xr19epU6eUk5Mjb29vW1+OW8l9r3Mn/Murfv36VuUAuBeDwaDhw4crNjZWMTExioqKUv369ZWSkqLFixcrKSlJU6ZMIUEHAFjQvkRe1ImiszlJL1eunCZPnqzRo0fryJEjkqTatWtbhskWlre3t0JCQpSUlKQOHTpIutZTk5SUpKioqAIf06RJE33xxRcymUyWHp4//vhD1apVI0EvhNxLC1JTUwuciT/3MoOCZtYH4B4iIyM1ZcoUxcfHKzo62rI9MDCQ5dcAAPnQvkRe1Imi8/z7IgUrX768/Pz85OfnZ3OCnuuJJ57Q8uXLtWrVKh06dEiTJ0/WpUuX1LNnT0nS6NGjNXPmTEv5xx57TJmZmXr11VeVmpqq77//Xu+9954GDBhwqy/DrYSGhqp69epKSEiwzOKdy2QyafHixQoMDGQSB8DNRUZG6uOPP9asWbMUGxurWbNmacmSJSToAIB8aF8iL+pE0dmcpJtMJs2ePVtNmzZVu3bt1K5dOzVr1kzx8fH5PoS/88gjj2jMmDF6++239eijj2r//v2aP3++Zbj7iRMndOrUKUv5wMBAffDBB9qzZ4+6deumuLg4DRo0qMDl2pBf7lDWpKQkxcTEaO/evcrKytLevXsVExOjpKQkRUdHM5QVgAwGg8LDw9WhQweFh4fzuwAAKBDtS+RFnSg6D7PZbLblATNnztQnn3yikSNHqkmTJpKkHTt2aPbs2erTp4+ef/55hwRqL0aj0bLGr7tWjE2bNik+Pt5qzcLAwEBFR0fTU+bmDh48qKFDh2revHkKDg52djgAAKCEoH2JvKgT1mzJQ22+Jn3VqlWKi4vTAw88YNnWoEEDBQQE6OWXX3b5JB3XhrK2bdtWycnJysjIkL+/v0JDQ932pAUAAACKhvYl8qJO3Dqbk/SzZ89aZuS7Xv369XX27Fm7BAXHyx3KCgAAANgD7UvkRZ24NTZfk96gQQMlJibm256YmKgGDRrYJSgAAAAAANyRzT3po0aN0tNPP60tW7YoLCxMkrR7926dOHFC8+bNs3d8AAAAAAC4DZt70lu0aKF169bpwQcf1Pnz53X+/Hk9+OCDWrdunZo1a+aIGAEAAAAAcAs296RLUkBAABPElXBGo5FJHAAAAGA3tC+RF3Xi1hQ6SU9LSytUuRo1atxyMCgeBS2HUL16dQ0fPtwtl0MAAABA0dC+RF7UiVtX6CT9+iXXcpdW9/DwsNrm4eGh/fv32zE82NumTZsUGxuriIgITZo0SfXq1VNqaqoSEhIUGxurKVOm8KUBAABAodG+RF7UiaLxMOdm3H+jYcOGql69unr06KF27dqpTJmC83tXn+HdlkXkSxuj0ajHHntM9evX19SpU+Xp+b8pCUwmk2JiYpSamqolS5a43XuDaw4ePKihQ4dq3rx5Cg4OdnY4AADAxdG+RF7UiYLZkocWeuK4TZs2qV+/fvryyy/19NNP67PPPpOXl5caNGhg9Q+uKzk5WSdPntTAgQOtviyS5OnpqaioKJ04cULJyclOihAAAAAlCe1L5EWdKLpCJ+nVqlXTsGHDtG7dOs2aNUtnz55V79691adPHy1fvlwmk8mRccIOMjIyJEn16tUrcH/9+vWtygEAAAA3Q/sSeVEnis7mJdgkqVmzZpo6daq+/vprlS1bVpMmTdK5c+fsHRvszN/fX5KUmppa4P6UlBSrcgAAAMDN0L5EXtSJorulJH3nzp0aP368OnbsqKysLMXGxqpSpUr2jg12FhoaqurVqyshISHfyAeTyaTFixcrMDBQoaGhTooQAAAAJQntS+RFnSi6Qifpf/75p95//3116tRJI0aMkK+vrz7++GN98skneuyxx/JdbwDXYzAYNHz4cCUlJSkmJkZ79+5VVlaW9u7dq5iYGCUlJSk6OtqtJnAAAADAraN9ibyoE0VX6NndQ0JCFBAQoO7du6t9+/bM7l6CFbRmYWBgoKKjo1kKwc0xuzsAALgVtC+RF3XCmi15aKGT9OuT79z10fM+tCSsk06Sfo3RaFRycrIyMjLk7++v0NBQt34/cA1JOgAAuFW0L5EXdeJ/bMlDC+4OL8DGjRuLHBhch8FgUHh4uLPDAAAAQClB+xJ5USduTaGT9Jo1azoyDgAAAAAA3B6zvQEAAAAA4CJI0gEAAAAAcBEk6QAAAAAAuAiSdAAAAAAAXMQtJelXr17Vli1btHTpUl24cEGSlJ6erosXL9o1OAAAAAAA3EmhZ3fPdfz4cQ0ZMkQnTpxQTk6O2rRpI19fX82bN085OTmaMmWKI+IEAAAAAKDUs7kn/dVXX1WjRo20fft2+fj4WLY/+OCD2rp1q12DAwAAAADAndjck75jxw59/PHH8vb2ttpes2ZNpaen2y0wAAAAAADcjc096SaTSSaTKd/2kydPqkKFCnYJCgAAAAAAd2Rzkt6mTRt99NFHVtsuXryod955R5GRkXYLDAAAAAAAd2Nzkj527Fjt3LlTjzzyiHJycvTSSy+pffv2Sk9P10svveSIGAEAAAAAcAs2X5NevXp1ffbZZ1q7dq0OHDigrKws/fOf/1TXrl1VtmxZR8QIAAAAAIBbsDlJl6QyZcqoW7du6tatm73jAQAAAADAbdk83H3VqlX6/vvvLfdfe+01NWvWTP369dPx48ftGRsAAAAAAG7F5iT93XfftayPvmvXLiUmJmrUqFHy8/PTtGnT7B4gAAAAAADuwubh7idPnlSdOnUkSd988406duyovn37qkmTJho4cKDdAwQAAAAAwF3Y3JNevnx5ZWZmSpJ+/PFHtW7dWpLk4+Oj7OxsuwYHAAAAAIA7sbknvXXr1powYYLuvvtu/fHHH5a10X///XfVrFnT7gECAAAAAOAubO5JnzRpksLCwnT69Gm9/fbbqlKliiRp37596ty5s90DBAAAAADAXdjck16pUiXFxsbm2/6vf/3LLgEBAAAAAOCubmmddEm6dOmS0tLSdOXKFavtDRo0KHJQAAAAAAC4I5uT9NOnT2vs2LH64YcfCty/f//+IgcFAAAAAIA7svma9FdffVXnz5/X8uXLVbZsWc2fP1//+c9/VKdOHc2dO9cRMQIAAAAA4BZs7knftm2b5syZo8aNG8vDw0M1atRQmzZt5Ovrq/fee0/333+/A8IEAAAAAKD0s7knPSsrS1WrVpUkVa5cWadPn5YkBQUF6ddff7VvdAAAAAAAuBGbk/R69eopNTVVkhQcHKxly5YpPT1dS5cuVbVq1eweIAAAAAAA7sLm4e6DBg3SqVOnJEkjRozQkCFDtGbNGnl5eek///mP3QMEAAAAAMBd2JykP/roo5bbjRo10nfffaeUlBQFBgZahsEDAAAAAADb3fI66bnKlSunkJAQe8QCAAAAAIBbs+ma9D/++EPr16/X0aNHJUnff/+9BgwYoF69emnu3Lkym80OCRIAAAAAAHdQ6J70DRs26LnnnpOHh4c8PDz0yiuvKDY2Vi1atJCvr69mz54tg8GgYcOGOTJeAAAAAABKrUIn6XPnztWQIUP03HPPaeXKlZo0aZJeeOEFDR48WJK0bNkyLVy4kCQdAAAAAIBbVOjh7qmpqerVq5c8PDzUo0cPXblyRa1bt7bsb9OmjdLS0hwSJAAAAAAA7qDQSfqlS5dUoUKFaw/y9JSPj4/KlStn2V+2bFnl5OTYP0IAAAAAANxEoZP03GvRr78PAAAAAADsp9DXpJvNZnXs2NGSnGdlZalHjx7y9PS07AcAAAAAALeu0En6tGnTHBkHAAAAAABur9BJeo8ePRwZBwAAAAAAbq/Q16QDAAAAAADHIkkHAAAAAMBFkKQDAAAAAOAiSNIBAAAAAHARt5yk5+TkKCUlRVevXrVnPAAAAAAAuC2bk/RLly4pJiZGYWFh6tKli06cOCFJeuWVV/T+++/bPUAAAAAAANyFzUn6zJkzdeDAAS1atEg+Pj6W7REREVq7dq1dgwMAAAAAwJ0Uep30XBs3btSbb76psLAwq+3/+Mc/dOTIEXvFBQAAAACA27G5J/306dPy9/fPt/3SpUvy8PCwS1AAAAAAALgjm5P0Ro0a6fvvv8+3fcWKFfl61wEAAAAAQOHZPNz9+eef19ChQ/Xf//5XRqNRixYt0qFDh7Rr1y4lJCQ4IkYAAAAAANyCzT3pzZo102effSaj0aigoCD9+OOPqlq1qpYuXapGjRo5IkYAAAAAANyCzT3pklS7dm3FxcXZOxYAAAAAANyazT3p+/bt08GDBy33v/nmG0VHR+uNN95QTk6OXYMDAAAAAMCd2Jykx8bG6o8//pAkHT16VM8//7zKlSundevW6fXXX7d3fAAAAAAAuA2bk/Q//vhDd999tyTpq6++UosWLTRz5kxNmzZNX3/9td0DBAAAAADAXdicpJvNZplMJklSUlKS7rvvPklSYGCgzpw5Y9/oAAAAAABwI7e0TvrcuXO1evVq/fTTT7r//vslSceOHdNtt91m7/gAAAAAAHAbNifpMTEx+vXXX/XKK6/omWeeUZ06dSRJ69evV3h4uN0DBAAAAADAXdi8BFuDBg20Zs2afNtHjx4tT0+bc34AAAAAAPD/3dI66QXx8fGx11MBAAAAAOCWCpWkt2jRQuvWrVPVqlXVvHlzeXh43LDs9u3b7RYcAAAAAADupFBJ+rhx4+Tr62u5fbMkHQAAAAAA3JpCJek9evSw3O7Zs6fDggEAAAAAwJ3ZPNPb6NGj9emnn+rIkSOOiAcAAAAAALdl88RxXl5eev/99zV+/HgFBASoefPmatmypZo3b666des6IEQAAAAAANyDzUn6q6++KklKT0/XTz/9pO3bt+vDDz9UbGysqlWrps2bN9s9SAAAAAAA3MEtL2xeqVIl+fn5qXLlyqpUqZIMBoOqVq1qz9gAAAAAAHArNvekv/HGG9q+fbt+/fVX3XnnnWrevLmGDh2q5s2bq3Llyo6IEQAAAAAAt2Bzkv7++++ratWqGjFihB588EHVq1fPEXEBKGYXLlzQ7NmzJUmzZ8/WtGnTLEsvAgAAACgeHmaz2WzLAw4cOKDt27dr+/bt+vnnn+Xl5aUWLVpY/rl60m40GrV7926FhYXJYDA4OxzAJQwbNkwHDhzIt71BgwZ6//33nRARAAAAUHrYkofanKTndeDAAS1cuFBr1qyRyWTS/v37i/J0DkeSDljLTdA9PDzUsmVLbd26Va1atdK2bdtkNptJ1AEAAIAisiUPtXm4u9ls1q+//qrt27dr27Zt2rlzpy5cuKDg4GA1b978loMGcGNpaWk6f/683Z/38uXLlgT97bffVnp6urZu3aoOHTpowIAB+te//qUDBw7ol19+UdmyZe167IoVK6pGjRp2fU4AAACgpLO5J7158+bKyspScHCwZYh7s2bNVKlSJUfFaFf0pKOkyczMVPfu3WUymZwdil0ZDAatWrVKfn5+zg4FAAAAcCiH9qS//vrratasGRNKAcXEz89PS5YscUhP+uTJk3X8+HEFBgbqxIkT+fbnbq9Zs6YmT55s12NXrFiRBB0AAADIw6Yk/cqVK4qOjtbq1asVFBTkqJgA5OGoYeF169bV8ePHC0zQJVm2161bV8HBwQ6JAQAAAMD/eNpS2MvLS4GBgaVu2C3grv79739b3b/77rs1ePBg3X333TctBwAAAMAxbErSJemZZ57RG2+8oczMTAeEA6A4zZw50+r+/v37tXDhwnyrNOQtBwAAAMAxbL4mPTExUYcPH9a9996rGjVqqHz58lb7V61aZbfgADjWrl277FoOAAAAQNHYnKR36NDBEXEAcILcxR0qV66sBQsW6IUXXtDp06dVtWpVvfHGG3riiSd09uxZ2bgIBAAAAIBbZHOSPmLECEfEAcAJAgMDdeTIEZ09e1Y9e/a0bD937pzV/cDAQGeEBwAAALgdm69JB1B69OnTx67lAAAAABRNoXrSW7RooXXr1qlq1apq3ry5PDw8blh2+/btdgsOgGMVtoecnnQAAACgeBQqSR83bpx8fX0lSTExMQ4NCEDxOXDgQKHLNW/e3MHRAAAAAChUkt6jR48CbwMo2b7++utClxs4cKCDowEAAABg88Rx18vOztaVK1estuX2uANwfX/++addywEAAAAoGpuT9KysLM2YMUNfffWVMjMz8+3fv3+/PeICUAxMJpPldpUqVdSxY0fVqFFDaWlpWr9+vc6cOZOvHAAAAADHsTlJf/3117Vt2zZNnjxZo0ePVmxsrNLT07Vs2TK9+OKLjogRgIN4eXkpOztbknT16lVt375dV69eVZkyZXT16lWrcgAAAAAcz+Yk/bvvvtP06dPVsmVLjRs3Ts2aNVOdOnVUo0YNrVmzRt26dXNEnAAcoFKlSrpw4YIk6fz58zp//vwNywEAAABwPJvXST979qxq1aol6dr152fPnpUkNW3aVD///LN9owPgUHXr1rVrOQAAAABFY3OSfscdd+jYsWOSpPr16+urr76SdK2HvWLFivaNDoBDNWzY0K7lAAAAABSNzUl6r169LGsrDxs2TImJiWrcuLGmTZump556yu4BAnCcffv22bUcAAAAgKKx+Zr0wYMHW263bt1aX331lfbt26fatWurQYMG9owNgIOdOHHCruUAAAAAFE2hk3STyaT58+fr22+/1ZUrVxQREaERI0aoZs2aqlmzpiNjBOAgWVlZdi0HAAAAoGgKPdx97ty5evPNN1WhQgUFBARo0aJFevnllx0ZGwAH8/Hxsdz+6KOP1L17dzVv3lzdu3fXRx99VGA5AAAAAI7jYTabzYUp+NBDD+nJJ59Uv379JElbtmzRsGHDlJycLE9Pmy9tdxqj0ajdu3crLCxMBoPB2eEATtWuXTsZjca/LWcwGPTdd98VQ0QAAABA6WNLHlro7DotLU2RkZGW+61bt5aHh4f+/PPPW48UAAAAAABYFDpJNxqN+Ya8lilTRleuXLF7UACKR6VKlexaDgAAAEDRFHriOLPZrLFjx8rb29uyLScnR5MnT1a5cuUs22bPnm3fCAE4zHPPPadJkyYVqhwAAAAAxyt0kt6jR49827p162bXYAAUr0uXLtm1HAAAAICiKXSSPm3aNEfGAcAJNm3aVOhyjzzyiIOjAQAAAFBypmUHYHf//e9/JUkBAQFaunSpqlSpIi8vL1WpUkVLly5VtWrVrMoBAAAAcKxC96QDKL3S09P11ltvqX379srJyZG3t7feeustnTp1ytmhAQAAAG6FJB1wY61atdKaNWskSVu3br1pOQAAAACOx3B3wI2NGDHC6n5wcLAGDx6s4ODgm5YDAAAA4Bj0pANuzGAwWN0/ePCgDh48+LflAAAAADgGPemAG1u9erUkqXr16gXuz92eWw4AAACAY7lEkp6YmKj27durcePG6t27t5KTkwv1uC+//FLBwcGKjo52cIRA6ZSWliZJOnnyZIH7c7fnlgMAAADgWE5P0teuXatp06Zp+PDhWrVqlRo0aKCnnnpKGRkZN33csWPHNH36dDVr1qyYIgVKn8DAQKv7HTt21IcffqiOHTvetBwAAAAAx3B6kr5gwQL16dNHvXr10l133aWXX35ZZcuW1aeffnrDxxiNRr300ksaOXKkatWqVYzRAqXL9cn32rVrNX78eN11110aP3681q5dW2A5AAAAAI7j1InjcnJytG/fPj399NOWbZ6enmrdurV27dp1w8fFx8fL399fvXv31o4dO27p2Eaj8ZYeB5QmixYtstweMGCAHnzwQQUGBurEiRPasGGDVbk2bdo4I0QAAACgxLMl/3Rqkn7mzBkZjUb5+/tbbff391dKSkqBj/n555/1ySefFHkiqz179hTp8UBp8Ndff0mSatasqePHj2v58uVW+3O3//XXX9q9e7cTIgQAAADcS4lagu3ChQsaPXq0XnnlFVWtWrVIz9W4cWOWlYLba9CggbZs2aLjx4+rRYsWKlu2rM6fP6+KFSvq8uXL2r59u6VcWFiYc4MFAAAASiij0VjojmKnJulVqlSRwWDIN0lcRkaGbrvttnzljx49quPHj+vZZ5+1bDOZTJKkhg0bat26dapdu3ahjm0wGEjS4fbGjRunrl27SpJ++eUXZWdnW/b5+PhYleP7AgAAADieU5N0b29vhYSEKCkpSR06dJB0LelOSkpSVFRUvvL169fXmjVrrLa99dZbunjxosaPH3/DtZ4BFOz6y0quT9Dz3k9JSVF4eHixxQUAAAC4K6cPd3/iiSc0ZswYNWrUSKGhofroo4906dIl9ezZU5I0evRoBQQE6MUXX5SPj4+CgoKsHl+pUiVJyrcdwN87deqUJKlChQq6ePFivv2523PLAQAAAHAspyfpjzzyiE6fPq23335bp06d0t1336358+dbhrufOHFCnp5OXykOKJUyMzMlSdHR0brvvvs0btw4/fnnn7r99ts1bdo0bdq0STNmzLCUAwAAAOBYHmaz2ezsIIqT0WjU7t27FRYWxjW2cHtff/214uLi9I9//EMnTpzQhQsXLPt8fX0VGBio33//XRMmTNBDDz3kxEgBAACAksuWPNTpPekAnKdatWqSpN9//z3fvgsXLli255YDAAAA4FiMIwfcWEhIiF3LAQAAACgaetIBN7Zx40bL7fDwcNWvX185OTny9vZWSkqKdu3aZSn38MMPOytMAAAAwG1wTTrgxu6//36ZTCbLd8FoNFr2GQwGmc1mmUwmeXp66vvvv3dSlAAAAEDJxjXpAArFZDJJuvaj0bJlS/n4+OjChQvy9fVVdna2tm3bZlUOAAAAgGORpANuzGAwWHrPf/7553w96QXdBgAAAOA4TBwHuLFRo0ZZbhuNRg0YMEBLlizRgAEDrBL268sBAAAAcBx60gE35ulpfZ4uMTFRiYmJf1sOAAAAgGPQ8gbc2K+//mrXcgAAAACKhiQdgAICAuTh4WG1zcPDQwEBAU6KCAAAAHBPDHcH3Ngdd9whSUpPT5eXl5fuu+8+NWjQQAcOHNDmzZuVnp5uVQ4AAACAY7FOOuDGLly4oEceeeRvy61du1a+vr7FEBEAAABQ+tiShzLcHXBja9eutdz28vLSAw88oOHDh+uBBx6Ql5dXgeUAAAAAOA7D3QE3duzYMUnXrkk/deqUNm7cqI0bN0q6tjZ6QECA0tPTLeUAAAAAOBY96QBUtWpVmUwmq21Go1FVqlRxUkQAAACAeyJJB9xYw4YNJUn79+8vcP+BAwesygEAAABwLJJ0wI1VrVrVruUAAAAAFA1JOuDGfv/9d7uWAwAAAFA0JOmAG/vxxx8ttytXrqx27drp4YcfVrt27VS5cuUCywEAAABwHGZ3B9zYhQsXJEl+fn4qW7asvvvuO8u+wMBAeXh4KDMz01IOAAAAgGORpANurGrVqvrjjz906dIlrVixQr/++qsyMjLk7++vhg0bqnPnzpZyAAAAAByPJB1wY3fffbd27typ7Oxs9erVS02aNFG5cuV06dIlTZw4UTk5OZZyAAAAAByPJB1wY82aNVNiYqIk6dy5c/r+++9vWA4AAACA4zFxHODGwsLC5OPjc9MyPj4+CgsLK56AAAAAADdHkg64MaPRqCtXrkiSvL29rfbl3r9y5YqMRmOxxwYAAAC4I5J0wI2tXr1aJpNJjz76aL7J4apWrapu3brJZDJp9erVzgkQAAAAcDMk6YAbS0tLkyQFBwcrOzvbal92draCg4OtygEAAABwLCaOA9xYjRo1JEmvvfZavn1nzpzR66+/blUOAAAAgGPRkw64sa5du1rdb9iwod544w01bNjwpuUAAAAAOAZJOuDGfv75Z8ttX19fPfLII6pbt64eeeQR+fr6FlgOAAAAgOMw3B1wY2+++aYkqUqVKjp37pxmzJhh2WcwGFSlShWdOXNGb775pu69915nhQkAAAC4DXrSATeWlZUlSRo4cKDWrFmjNm3aqH79+mrTpo3WrFmj/v37W5UDAAAA4Fj0pANu7Pbbb9cff/yhOXPmaPbs2TKZTJKklJQUdenSRZ6enpZyAAAAAByPnnTAjb311luSpKtXr8pkMql///5asmSJ+vfvL5PJpKtXr1qVAwAAAOBY9KQDbuz6yeEkacmSJVqyZMnflgMAAADgGPSkA25s9erVkqTy5csXuD93e245AAAAAI5Fkg64sbS0NElSYmKiVq9erbp166pSpUqqW7euVq9ercWLF1uVAwAAAOBYDHcH3FiNGjUkSVu2bFHXrl21aNEiq/2ff/65VTkAAAAAjkVPOuDGunfvLoPBoPnz51smict19epVffDBBzIYDOrevbtzAgQAAADcDEk64Ma8vb3Vu3dvnTlzRr169dLnn3+uv/76S59//rl69eqlM2fOqHfv3vL29nZ2qAAAAIBbYLg74Oaio6MlSStWrNCMGTMs2w0Gg/r162fZDwAAAMDxSNIBKDo6WkOGDNHq1auVlpamGjVqqHv37vSgAwAAAMWMJB2ApGs95//4xz9UtWpV+fv7y2AwODskAAAAwO2QpAPQpk2bFB8fr5MnT1q2Va9eXcOHD1dkZKQTIwMAAADcCxPHAW5u06ZNio2NVf369TV37lytW7dOc+fOVf369RUbG6tNmzY5O0QAAADAbZCkA27MaDQqPj5eERERmjp1qkJCQlS+fHmFhIRo6tSpioiI0Jw5c2Q0Gp0dKgAAAOAWSNIBN5acnKyTJ09q4MCB8vS0/jnw9PRUVFSUTpw4oeTkZCdFCAAAALgXknTAjWVkZEiS6tWrV+D++vXrW5UDAAAA4Fgk6YAb8/f3lySlpqYWuD8lJcWqHAAAAADHIkkH3FhoaKiqV6+uhIQEXblyRbt27dI333yjXbt26cqVK1q8eLECAwMVGhrq7FABAAAAt8ASbIAbMxgMGj58uGJjY9WpUydduXLFss/Ly0tXr17VlClTWDMdAAAAKCYk6QBkNputEnRJ+e4DAAAAcDyGuwNuzGg06pVXXpF0ree8Q4cOGj58uDp06CAvLy9JUlxcHEuwAQAAAMWEJB1wYz///LNycnJkMBj0xRdfqGvXrvL391fXrl31xRdfyGAwKDs7Wz///LOzQwUAAADcAsPdATe2bNkySVLLli31+OOP6+TJk5Z91atXV4sWLZSUlKRly5apZcuWzgoTAAAAcBsk6YAbO3/+vCQpKSlJERERmjRpkurVq6fU1FQlJCRoy5YtVuUAAAAAOBbD3QE31qBBA0mSj4+P4uLiFBISovLlyyskJERxcXHy8fGxKgcAAADAsUjSATfWpk0bSdLly5cVExOjvXv3KisrS3v37lVMTIyys7OtygEAAABwLIa7A27swoULlttbt27V1q1b/7YcAAAAAMehJx1wY/7+/pKkOnXqFLg/d3tuOQAAAACORU864MZCQ0Pl5+enw4cPq2XLlvLx8dGFCxfk6+ur7Oxsbdu2TVWqVFFoaKizQwUAAADcAkk6AEmSwWBQv379VL9+faWkpGjx4sWSJLPZ7OTIAAAAAPdBkg64seTkZGVmZmrYsGH6/PPPFR0dbdkXGBiooUOHat68eUpOTlZ4eLgTIwUAAADcA9ekA24sIyNDknT77bfn6zE3mUwKCAiwKgcAAADAsehJB9xY7oRwcXFxat26tSZPnqx69eopNTVVCQkJiouLsyoHAAAAwLHoSQfcWEhIiAwGg6pUqaK4uDiFhISofPnyCgkJUVxcnKpUqSKDwaCQkBBnhwoAAAC4BZJ0wI3t27dPRqNRmZmZmjBhgvbu3ausrCzt3btXEyZMUGZmpoxGo/bt2+fsUAEAAAC3QJIOuLHca83Hjx+vlJQURUdHq1OnToqOjlZqaqrGjx9vVQ4AAACAY3FNOuDGcq81r1mzphYvXqzVq1crLS1NNWrUUPfu3fXbb79ZlQMAAADgWCTpgBsLDQ1V9erV9dZbb+nMmTP6888/LfuWL1+uKlWqKDAwUKGhoU6MEgAAAHAfDHcH3JjBYND999+vgwcPWiXokvTnn3/q4MGDioyMlMFgcFKEAAAAgHshSQfcmNFo1Oeffy5J8vDwsNrn6Xnt5+Hzzz+X0Wgs9tgAAAAAd8Rwd8CN7dy5U1lZWapYsaJWrlypX3/9VRkZGfL391fDhg3Vs2dPnT9/Xjt37lTz5s2dHS4AAABQ6tGTDrix9evXS5KefPJJ+fj4KDw8XB06dFB4eLh8fHz0xBNPWJUDAAAA4Fj0pANu7NKlS5KkwMBAGY1GJScnW3rScyeVu74cAAAAAMciSQfcWGhoqH744Qe9+eabkqT09HTLvoCAAKtyAAAAAByP4e6AG+vRo4c8PDyUnp6uy5cva9SoUVq5cqVGjRqly5f/X3v3HhV1nf9x/DUMoWguGGLgDa+Bi5KjsS0Xc/MShWuL5qUy3dZLBZiaullSXnIVK3UXEymUtVC74Ka0BmnyRxz1sOlqONLJLpqXFIym3E1guczM7w9/zq/5YaZr8B2d5+McznE+3zdf3nAA58XnMv/RmTNnZDKZNHLkSKNbBQAAALwCM+mAFzObzfL391d1dbW+//57vfjii65rF0539/f35yXYAAAAgGbCTDrgxaxWq6qrqzVs2LBGL8FmMpk0dOhQVVdXy2q1GtQhAAAA4F2YSQe8mM1mkyTNnj1bc+fOVX5+vk6fPq0OHTooKSlJDQ0NKioqctUBAAAAaFqEdMCLBQUFSZK+/PJL1dbWavXq1a5rPXv2lJ+fn1sdAAAAgKZFSAe82IWXWUtOTm50bebMmZLOvzwbp7sDAAAAzYM96YAXM5vNqqiocBuLj493e1xeXs7BcQAAAEAzIaQDXuzAgQOuf18I4rt375Yk+fr6XrQOAAAAQNMhpANe7MKSdkkqLCxUUlKSoqOjlZSUpIKCgovWAQAAAGg67EkHoA4dOigxMVF2u12StG/fPm3btk0hISGNlsMDAAAAaDqEdAA6ffq0AgMD1bVrV9fYsWPHCOgAAABAM2O5O+DFli9f7vr32bNnVVpa6no7e/bsResAAAAANB1COuDFjh071mjMYrFcVh0AAACAnx8hHfBiJ06caDT20UcfXVYdAAAAgJ8fIR3wYkePHpUkhYSEXPT6hfELdQAAAACaFiEd8GItW7aUpB89IO7C+IU6AAAAAE2LkA54sdDQ0J+1DgAAAMDVIaQDXiw4OPhnrQMAAABwdQjpgBfbu3ev699ms1kWi0XDhg2TxWKR2Wy+aB0AAACApuNrdAMAjFNVVSXp/AFxFRUVjU52vzB+oQ4AAABA02ImHfBi3bt3lyTZbLZGS9qDg4Nls9nc6gAAAAA0LUI64MXuueceSVJ9fb0qKyvdrlVWVqq+vt6tDgAAAEDTIqQDXqxfv34/ax0AAACAq0NIB7xYaWnpz1oHAAAA4OoQ0gEv9v7770uShg8frpCQELdrISEhSkxMdKsDAAAA0LQ43R3wYjU1NZKkgQMHas6cObJarbLZbAoKClJUVJT+8Y9/qLCw0FUHAAAAoGkR0gEv1rdvX+3atUtr165Vnz59lJeXp/LycoWGhqpHjx5at26dqw4AAABA0zM5nU6n0U00J7vdrtLSUvXr109ms9nodgBD1dXV6a677pLD4fjRGh8fH73//vvy8/Nrxs4AAACA68eV5FD2pANezM/PT4GBgZesCQwMJKADAAAAzYSQDnixc+fO6dtvv71kzbfffqtz5841U0cAAACAdyOkA15syZIlkqSEhAQVFRVp2rRpGjVqlKZNm6aioiINGzbMrQ4AAABA0yKkA16svLxckjRu3DiZzWb16tVLffr0Ua9evWQ2mzVu3Di3OgAAAABNi9PdAS8WGhqqo0ePKiMjQ2fOnFFFRYXrWkhIiNq3b++qAwAAAND0mEkHvFhaWpok6eDBg+rSpYuysrK0fft2ZWVlqUuXLrJarW51AAAAAJoWM+mAF/P395evr68aGhq0b98+BQQEaNy4cdqyZYv27dsnSfL19ZW/v7/BnQIAAADegZl0wItZrVY1NDQoLCxMTqdTO3fu1JQpU7Rz5045nU6FhYWpoaHBNaMOAAAAoGkxkw54MZvNJkl65ZVX5HA4tGTJEpWXlys0NFRpaWny8fHR3Xff7aoDAAAA0LQI6YAXCwoKkiR9+eWXioyMVHp6utv1srIytzoAAAAATYvl7oAXi4qKUkhIiDZs2CCHw+F2zeFwaOPGjQoNDVVUVJRBHQIAAADehZAOeDGz2azU1FSVlJRo3rx5KisrU3V1tcrKyjRv3jyVlJQoJSVFZrPZ6FYBAAAAr2ByOp1Oo5toTna7XaWlperXrx/BA/hfxcXFyszMdHud9NDQUKWkpGjQoEEGdgYAAABc+64kh7InHYAGDRqk+Ph4Wa1W2Ww2BQUFKSoqij9kAQAAAM2MkA5A0vml7xaLxeg2AAAAAK9GSAcg6fwSHGbSAQAAAGMR0gFcdE96SEiIUlNT2ZMOAAAANCNOdwe8XHFxsebPn6/u3bsrKytL27dvV1ZWlrp376758+eruLjY6BYBAAAAr0FIB7yY3W5XZmamYmJitHTpUkVGRqpVq1aKjIzU0qVLFRMTozVr1shutxvdKgAAAOAVPCKkb9q0SYMHD1bfvn01ZswYWa3WH63Ny8vTgw8+qOjoaEVHR+vhhx++ZD2AH2e1WlVRUaEJEybIx8f914GPj48eeughlZeX8zMGAAAANBPDQ3phYaHS09OVmpqqrVu3KiIiQpMnT5bNZrto/Ycffqjhw4crNzdXb775pkJDQzVp0iSdOXOmmTsHrn0Xfs66deummpoarVy5UrNnz9bKlStVU1Oj7t27u9UBAAAAaFqGHxy3fv16jR07Vvfdd58kadGiRfrggw/09ttv65FHHmlUv2LFCrfHf/rTn7Rjxw6VlJQoKSmpOVoGrhtBQUGSpCeffNJttnzfvn3Kz89XVFSUWx0AAACApmVoSK+rq9PHH3+sRx991DXm4+Oj2NhYffTRR5d1j5qaGjU0NCggIOCKPjZ7bAEpMjJSfn5+slqtuuGGGzRmzBglJiaqsLBQmzdvltVqlZ+fnyIjI/mZAQAAAP5LV/Jc2tCQ/t1338lutzeapQsKCtLRo0cv6x7Lly9X+/btFRsbe0Uf+9ChQ1dUD1yP6urqVFdXJ0nq0aOHgoODdfLkSQUHB6tHjx46fPiw6urqtH//fvn5+RncLQAAAHD9M3y5+9XIzs5WYWGhcnNz1aJFiyt63759+8psNjdRZ8C1ISMjQ5IUHx+vL774wvVYkkJDQxUXF6c9e/aopKREM2bMMKpNAAAA4Jpmt9sve6LY0JDetm1bmc3mRodS2Ww2tWvX7pLvm5OTo+zsbK1fv14RERFX/LHNZjMhHV7v1KlTkqSUlBSFhobKarXKZrMpKChIUVFROn36tPbs2aNTp07x8wIAAAA0A0NPd7+w17WkpMQ15nA4VFJSIovF8qPvt3btWq1Zs0br1q1T3759m6NV4LrUsWNHSVJBQYHMZrMsFouGDh0qi8Uis9msgoICtzoAAAAATcvwl2D7wx/+oLy8PG3dulVHjhzRwoULVVNTo1GjRkk6f+r0D090z87OVkZGhpYuXaqOHTuqsrJSlZWVqqqqMupTAK5ZycnJkqS8vDzX3vQL6urqtHnzZrc6AAAAAE3L8D3piYmJ+vbbb7Vq1SpVVlaqd+/eWrdunWu5e3l5uXx8/u9vCW+++abq6+s1ffp0t/tMmzZNjz/+eLP2Dlzr/P39XfvO77nnHo0ZM0bDhw9XQUGBNm/erPr6esXFxcnf39/oVgEAAACvYHI6nU6jm2hOdrtdpaWl6tevH3tsgf/19NNPa8+ePY3G4+LilJ6ebkBHAAAAwPXjSnKo4TPpAIyXnp6umpoaZWVl6dSpU+rYsaOSk5OZQQcAAACaGSEdgKTzS99nzZpldBsAAACAVzP84DgAAAAAAHAeIR0AAAAAAA9BSAcAAAAAwEMQ0gEAAAAA8BCEdAAAAAAAPAQhHQAAAAAAD0FIBwAAAADAQ/A66QAkSXa7XVarVTabTUFBQYqKipLZbDa6LQAAAMCrENIBqLi4WJmZmaqoqHCNhYSEKDU1VYMGDTKwMwAAAMC7sNwd8HLFxcWaP3++unTpoqioKHXt2lVRUVHq0qWL5s+fr+LiYqNbBAAAALwGM+mAF7Pb7crMzFSrVq20d+/eRtdbt26tNWvWKD4+nqXvAAAAQDNgJh3wYlarVRUVFaqqqpLJZFJCQoL++te/KiEhQSaTSVVVVSovL5fVajW6VQAAAMArENIBL3bq1ClJkslk0o4dO5SWlqaePXsqLS1NO3bskMlkcqsDAAAA0LQI6YAXKywslCT96le/UsuWLd2utWzZUrfddptbHQAAAICmRUgHvFhVVZUkqaamRg6Hw+2aw+FQbW2tWx0AAACApkVIB7xYhw4dJJ3fmz5v3jyVlZWpurpaZWVlmjdvnmsv+oU6AAAAAE3L5HQ6nUY30ZzsdrtKS0vVr18/TquG1zt37pwSExMlSe3atdM333zjuhYcHKzKykpJ55e733jjjYb0CAAAAFzrriSHMpMOeLEbb7xRERERkiSbzaYBAwZoypQpGjBggCuwR0REENABAACAZkJIB7xcdna2IiIi5HQ6tX//fq1bt0779++X0+lURESEsrOzjW4RAAAA8Bq+RjcAwHjZ2dk6d+6clixZovLycoWGhiotLY0ZdAAAAKCZEdIBSDq/9D09Pd3oNgAAAACvxnJ3AAAAAAA8BCEdAAAAAAAPQUgHAAAAAMBDENIBAAAAAPAQhHQAAAAAADwEIR0AAAAAAA9BSAcAAAAAwEMQ0gEAAAAA8BCEdAAAAAAAPAQhHQAAAAAAD0FIBwAAAADAQxDSAQAAAADwEIR0AAAAAAA8BCEdAAAAAAAPQUgHAAAAAMBDENIBAAAAAPAQhHQAAAAAADwEIR0AAAAAAA9BSAcAAAAAwEMQ0gEAAAAA8BC+RjfQ3JxOpyTJbrcb3AkAAAAAwBtcyJ8X8uileF1IdzgckqRDhw4Z3AkAAAAAwJtcyKOXYnJeTpS/jjgcDjU0NMjHx0cmk8nodgAAAAAA1zmn0ymHwyFfX1/5+Fx617nXhXQAAAAAADwVB8cBAAAAAOAhCOkAAAAAAHgIQjoAAAAAAB6CkA4AAAAAgIcgpAMAAAAA4CEI6QAAAAAAeAhCOgAAAAAAHoKQDgAAAACAhyCkX8OeeuophYeHKzs72228qKhI4eHhBnWFa9G+ffv02GOPKT4+XuHh4SoqKjK6JRjolVde0X333SeLxaKYmBilpKTo6NGjRrcFA73++usaMWKE+vfvr/79+2vcuHEqLi42ui0Y6KWXXlJ4eLjb29133210W2hGP/Xcwel0KiMjQ/Hx8YqKitLDDz+sY8eOGdMsmsVPfU9cyC4/fJs8ebJB3Xo2Qvo1rkWLFlq7dq3+9a9/Gd0KrmHV1dUKDw/XggULjG4FHmDv3r0aP3688vLytH79ejU0NGjy5Mmqrq42ujUYJCQkRHPmzNGWLVv09ttv69e//rVSU1P1+eefG90aDNSrVy/t3r3b9fb6668b3RKa0U89d1i7dq02bNighQsXKi8vT/7+/po8ebJqa2ubuVM0l8t5Pjlw4EC33xsrV65sxg6vHb5GN4CrExsbq+PHj+uVV17Rk08+edGaHTt2aNWqVTp+/Ljat2+vhx56SJMmTXJdHzx4sMaOHavjx49r+/btCggIUHJyssaNG+eqKS8v17Jly7Rnzx75+PhowIABSktLU6dOnZr8c0TTGzRokAYNGmR0G/AQOTk5bo+XLVummJgYffzxx4qOjjaoKxhp8ODBbo+feOIJvfHGGyotLVWvXr0M6gpGM5vNCg4ONroNGORSzx2cTqdyc3OVnJysoUOHSpJeeOEFxcbGqqioSMOHD2/OVtFMLuf5pJ+fH783LgMz6dc4Hx8fzZo1Sxs3blRFRUWj62VlZZo5c6YSExO1bds2TZs2TRkZGdqyZYtb3fr169WnTx/l5+frwQcf1MKFC13LW+vr6zV58mS1bt1amzZt0htvvKFWrVppypQpqqura5bPE4Bxvv/+e0lSQECAwZ3AE9jtdhUUFKi6uloWi8XodmCg48ePKz4+XkOGDNHs2bN1+vRpo1uCh/jqq69UWVmp2NhY11ibNm1066236qOPPjKwMxht7969iomJUUJCghYsWKDvvvvO6JY8EjPp14Fhw4apd+/eWrVqlZYuXep2bf369YqJiVFqaqokqVu3bvriiy+Uk5OjUaNGueruuOMOjR8/XpI0depUvfrqq/rwww/VvXt3FRYWyuFwaMmSJTKZTJKk9PR0RUdHa+/evYqPj2+mzxRAc3M4HFq6dKn69++vW265xeh2YKBPP/1U999/v2pra9WqVStlZmaqZ8+eRrcFg0RFRSk9PV3dunVTZWWlMjMzNX78eG3btk033nij0e3BYJWVlZKkoKAgt/GgoCB98803RrQEDzBw4EANGzZMnTp10smTJ7Vy5UpNnTpVb731lsxms9HteRRC+nVizpw5+v3vf9/o8IWjR49qyJAhbmP9+/dXbm6u7Ha76wfihwfNmUwmtWvXTjabTZJ0+PBhnThxQv3793e7T21trU6cONEUnw4AD7Fo0SJ9/vnn7DWFunXrpvz8fH3//ffasWOH5s6dq40bNxLUvdQPl7RGRETo1ltv1Z133qn33ntPY8aMMbAzAJ7qh9scLhwcN3ToUNfsOv4PIf06ER0drfj4eK1YscJthvxy+fq6fyuYTCY5nU5J5w+BiIyM1PLlyxu930033fTfNQzA4z333HP64IMPtHHjRoWEhBjdDgzm5+ensLAwSVKfPn106NAh5ebm6rnnnjO4M3iCX/ziF+ratSt/vIckufYc22w2tW/f3jVus9kUERFhVFvwMJ07d1bbtm11/PhxQvr/Q0i/jsyePVtJSUnq1q2ba6x79+46cOCAW92BAwfUtWvXy15WEhkZqffee09BQUEsYQO8gNPp1OLFi7Vz505t2LBBnTt3NroleCCHw8G5JHCpqqrSyZMnORAKkqROnTopODhYJSUl6t27tyTp3LlzOnjwoB544AGDu4OnqKio0NmzZ/m9cRGE9OtIeHi4RowYoQ0bNrjGJk2apNGjRyszM1OJiYkqLS3Vpk2bruiltkaMGKGcnBwlJydrxowZuvnmm3X69Gnt3LlTU6ZMYYbtOlBVVeU2+/HVV1/pk08+UUBAgDp06GBgZzDCokWL9O6772rNmjVq3bq1a29hmzZt1LJlS4O7gxFWrFihO+64Q6GhoaqqqtK7776rvXv3NnolAHiP559/Xnfeeac6dOigr7/+Wi+99JJ8fHz029/+1ujW0Ex+6rnDxIkTlZWVpbCwMHXq1EkZGRlq376967R3XH8u9T0REBCg1atXKyEhQe3atdPJkyf14osvKiwsTAMHDjSwa89ESL/OTJ8+XYWFha7HkZGR+stf/qJVq1YpKytLwcHBmj59+hUtiff399fGjRu1fPlyTZs2TVVVVbr55psVExPDzPp1oqysTBMnTnQ9Tk9PlySNHDlSy5YtM6otGOSNN96QJE2YMMFtPD09/b/aToNrn81m09y5c/X111+rTZs2Cg8PV05OjuLi4oxuDQapqKjQrFmzdPbsWd10000aMGCA8vLy2AbnRX7qucPUqVNVU1Oj+fPn69///rcGDBigdevWqUWLFka1jCZ2qe+JhQsX6rPPPnOdbdK+fXvFxcVpxowZ8vPzM6plj2VyXth4DAAAAAAADMXrpAMAAAAA4CEI6QAAAAAAeAhCOgAAAAAAHoKQDgAAAACAhyCkAwAAAADgIQjpAAAAAAB4CEI6AAAAAAAegpAOAAAAAICHIKQDAID/2pYtW3Tbbbc1y8d66qmnlJKS0iwfCwAAoxDSAQCAR/nqq68UHh6uTz75xOhWAABodoR0AAAAAAA8BCEdAAAPNWHCBC1evFhLlixRdHS0YmNjlZeXp+rqaj399NOyWCwaNmyYiouLJUl2u13z5s3T4MGDFRUVpYSEBL322muu+9XW1mr48OF69tlnXWMnTpyQxWLR3/72t8vqacuWLfrNb36jW2+9VampqTp79myjmqKiIo0cOVJ9+/bVkCFDtHr1ajU0NLiuh4eH6/XXX9eUKVMUFRWlIUOGaPv27a7rQ4YMkSQlJSUpPDxcEyZMcLt/Tk6O4uPjdfvtt2vRokWqr6+/rN4BALgWENIBAPBgW7duVdu2bbV582Y99NBDWrhwoWbMmCGLxaKtW7cqLi5OTz75pGpqauRwOBQSEqKMjAwVFBQoNTVVf/7zn1VYWChJatGihZYvX66tW7eqqKhIdrtdf/zjHxUXF6fRo0f/ZC8HDx5UWlqaxo8fr/z8fN1+++3Kyspyq/nnP/+puXPnauLEiSosLNRzzz2nLVu26OWXX3ary8jIUEJCgt555x2NGDFCs2bN0pEjRyRJmzdvliS9+uqr2r17t1566SXX+3344Yc6ceKEXnvtNS1btkxbt27V1q1br+prDACAJyGkAwDgwSIiIpSSkqKuXbvq0UcfVYsWLdS2bVuNHTtWXbt2dc1mf/rpp7rhhhs0ffp09e3bV507d9a9996rUaNGuc1S9+7dWzNnztQzzzyjpUuX6tSpU1q8ePFl9ZKbm6uBAwdq6tSp6tatmyZOnKj4+Hi3mtWrV+uRRx7RyJEj1blzZ8XFxWnGjBl688033eruvvtujRkzRt26ddPMmTPVp08fbdiwQZJ00003SZICAwMVHByswMBA1/sFBARo/vz56tGjh+68804NGjRIJSUl/82XFgAAj+RrdAMAAODHhYeHu/5tNpsVGBioW265xTXWrl07SZLNZpMkbdq0SW+//bZOnz6t2tpa1dfXKyIiwu2ekyZNUlFRkTZu3Ki1a9eqbdu2l9XLkSNHNHToULexfv36adeuXa7Hhw8f1oEDB9xmzu12u2pra1VTUyN/f39JksViaXSfyzkormfPnjKbza7HwcHB+uyzzy6rfwAArgWEdAAAPJivr/t/1SaTyW3MZDJJkpxOpwoKCvT8889r7ty5slgsat26tXJycnTw4EG3e9hsNh07dkxms1nHjx//Wfutrq7W448/rrvuuqvRtRYtWlz1/S/29XA6nVd9XwAAPAUhHQCA68SBAwdksVg0fvx419iJEyca1c2bN0+33HKLRo8erWeffVaxsbHq0aPHT96/R48eslqtbmP//w8Av/zlL/Xll18qLCzskvcqLS1VUlKS23169+4tSbrhhhsknZ+BBwDA2xDSAQC4ToSFhSk/P1+7du1Sp06d9M477+jQoUPq1KmTq2bTpk0qLS3V3//+d4WGhqq4uFhz5szRW2+9JT8/v0vef8KECXrggQeUk5OjIUOGaPfu3W5L3SUpNTVVjz32mDp06KCEhAT5+Pjo8OHD+uyzz/TEE0+46rZv364+ffpowIAB2rZtm6xWq5YsWSJJCgoKUsuWLbVr1y6FhISoRYsWatOmzc/4lQIAwHNxcBwAANeJ+++/X3fddZeeeOIJjR07VmfPntWDDz7oun7kyBG98MILWrBggUJDQyVJCxYs0HfffaeMjIyfvH+/fv20ePFi5ebm6ne/+512796t5ORkt5qBAwfq5Zdf1u7duzV69GiNHTtWr776qjp27OhW9/jjj6uwsFD33nuv8vPztWLFCvXs2VPS+SXtzzzzjN566y0NHDhQKSkpV/ulAQDgmmFyspELAAA0o/DwcGVmZjY6hA4AADCTDgAAAACAx2BPOgAAkCRNmTJF+/fvv+i1Rx99VI899lgzdwQAgPdhuTsAAJAknTlzRv/5z38uei0gIECBgYHN2xAAAF6IkA4AAAAAgIdgTzoAAAAAAB6CkA4AAAAAgIcgpAMAAAAA4CEI6QAAAAAAeAhCOgAAAAAAHoKQDgAAAACAhyCkAwAAAADgIf4HBHuUWKPGpFsAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "# Значения max_depth для анализа\n", + "max_depth_values = [None, 1, 2, 3, 5, 10, 15]\n", + "correlations_depth = []\n", + "\n", + "for max_depth in max_depth_values:\n", + " # Создание и обучение случайного леса\n", + " rf = RandomForestClassifier(n_estimators=100, max_depth=max_depth, random_state=42)\n", + " rf.fit(X_train, y_train)\n", + "\n", + " # Расчет попарных корреляций\n", + " corrs = base_model_pair_correlation(rf, X_test)\n", + " correlations_depth.append(corrs)\n", + "\n", + "# Визуализация результатов\n", + "plt.figure(figsize=(12, 8))\n", + "sns.boxplot(data=correlations_depth)\n", + "plt.xticks(range(len(max_depth_values)), labels=[str(md) if md is not None else 'None' for md in max_depth_values])\n", + "plt.xlabel('max_depth')\n", + "plt.ylabel('Pairwise Base Model Correlation')\n", + "plt.title('Impact of max_depth on Base Model Correlation in Random Forest')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "efafb748-a14d-4fd0-9995-4eee6e092445", + "metadata": { + "id": "efafb748-a14d-4fd0-9995-4eee6e092445" + }, + "source": [ + "Опишите ваши наблюдения:\n", + "\n", + "* При использовании деревьев с небольшой глубиной (например, max_depth=1) корреляция между предсказаниями отдельных деревьев ниже\n", + "* По мере увеличения max_depth корреляция между предсказаниями возрастает, а затем немного снижается" + ] + }, + { + "cell_type": "markdown", + "id": "aef2bd46-a98e-4f8f-ba17-0bdfe51ba395", + "metadata": { + "id": "aef2bd46-a98e-4f8f-ba17-0bdfe51ba395" + }, + "source": [ + "### Задание 3. Строим большой ансамбль\n", + "\n", + "**4 балла + 3 дополнительных за скор выше 0.87**\n", + "\n", + "В данной задаче вам нужно диагностировать сердечное заболевание у людей по медицинским показателям." + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "475ce2d1-1a24-4731-a424-df36cef9b270", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "475ce2d1-1a24-4731-a424-df36cef9b270", + "outputId": "2dfecb9b-ec57-446b-f80b-620cb5738400" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/usr/local/lib/python3.10/dist-packages/gdown/cli.py:138: FutureWarning: Option `--id` was deprecated in version 4.3.1 and will be removed in 5.0. You don't need to pass it anymore to use a file ID.\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "!gdown --id 1VFbDK-Ad-hpf0_GGCBzn4thdn9mkQ-Y- -O heart.csv -q\n", + "heart_dataset = pd.read_csv(\"heart.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "8bde25c5-2da7-4fb9-93e1-bd347cecef8e", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "8bde25c5-2da7-4fb9-93e1-bd347cecef8e", + "outputId": "6e8248e0-cb4a-426c-9176-f53f37a72d4a" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " age sex cp trestbps chol fbs restecg thalach exang oldpeak \\\n", + "178 43 1 0 120 177 0 0 120 1 2.5 \n", + "298 57 0 0 140 241 0 1 123 1 0.2 \n", + "201 60 1 0 125 258 0 0 141 1 2.8 \n", + "246 56 0 0 134 409 0 0 150 1 1.9 \n", + "153 66 0 2 146 278 0 0 152 0 0.0 \n", + "\n", + " slope ca thal \n", + "178 1 0 3 \n", + "298 1 0 3 \n", + "201 1 1 3 \n", + "246 1 2 3 \n", + "153 1 1 2 " + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    agesexcptrestbpscholfbsrestecgthalachexangoldpeakslopecathal
    17843101201770012012.5103
    29857001402410112310.2103
    20160101252580014112.8113
    24656001344090015011.9123
    15366021462780015200.0112
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "
    \n", + "
    \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "X_train", + "summary": "{\n \"name\": \"X_train\",\n \"rows\": 227,\n \"fields\": [\n {\n \"column\": \"age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 9,\n \"min\": 29,\n \"max\": 76,\n \"num_unique_values\": 40,\n \"samples\": [\n 65,\n 61,\n 55\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"cp\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"trestbps\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 17,\n \"min\": 100,\n \"max\": 200,\n \"num_unique_values\": 45,\n \"samples\": [\n 108,\n 115\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"chol\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 48,\n \"min\": 131,\n \"max\": 417,\n \"num_unique_values\": 133,\n \"samples\": [\n 286,\n 318\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"fbs\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"restecg\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thalach\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 23,\n \"min\": 88,\n \"max\": 202,\n \"num_unique_values\": 86,\n \"samples\": [\n 164,\n 120\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"exang\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"oldpeak\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.2266336979069916,\n \"min\": 0.0,\n \"max\": 6.2,\n \"num_unique_values\": 40,\n \"samples\": [\n 1.6,\n 0.3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"slope\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 2,\n \"num_unique_values\": 3,\n \"samples\": [\n 1,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"ca\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 4,\n \"num_unique_values\": 5,\n \"samples\": [\n 1,\n 4\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"thal\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 3,\n \"num_unique_values\": 4,\n \"samples\": [\n 2,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 85 + } + ], + "source": [ + "X = heart_dataset.drop(\"target\", axis=1)\n", + "y = heart_dataset[\"target\"]\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=SEED)\n", + "X_train.head()" + ] + }, + { + "cell_type": "markdown", + "id": "b144a808-145d-4370-9b6c-4859ee231d91", + "metadata": { + "id": "b144a808-145d-4370-9b6c-4859ee231d91" + }, + "source": [ + "Обучите разнообразные классификаторы, приведенные ниже, а также ансамбль `VotingClassifier` из `sklearn.ensemble`, объединяющий эти классификаторы с помощью жесткого или мякого голосования (параметр `voting =` `'hard'` или `'soft'` соответственно). Оцените качество моделей с помощью кросс-валидации на тренировочном наборе, используя функцию `cross_val_score` и метрику `f1`. Часть моделей отсюда мы не проходили, о них можно почитать дополнительно, но в принципе для задания не очень важно знать принципы их работы (но, если есть время, то почитайте, там интересно)." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "099f6e1a-641c-4acc-8334-e4b304aa8810", + "metadata": { + "id": "099f6e1a-641c-4acc-8334-e4b304aa8810" + }, + "outputs": [], + "source": [ + "dt = DecisionTreeClassifier(random_state=SEED, max_depth=10, min_samples_leaf=10)\n", + "rf = RandomForestClassifier(n_estimators=50, random_state=SEED)\n", + "etc = ExtraTreesClassifier(random_state=SEED)\n", + "knn = KNeighborsClassifier(n_neighbors=5, weights=\"distance\")\n", + "svc_lin = SVC(kernel='linear', probability=True, random_state=SEED)\n", + "svc_rbf = SVC(kernel='rbf', probability=True, random_state=SEED)\n", + "cat = catboost.CatBoostClassifier(verbose=0, random_seed=SEED)\n", + "lgbm = lightgbm.LGBMClassifier(random_state=SEED)\n", + "lgbm_rf = lightgbm.LGBMClassifier(boosting_type=\"rf\", bagging_freq=1, bagging_fraction=0.7, random_state=SEED)\n", + "xgb = xgboost.XGBClassifier(random_state=SEED)\n", + "xgb_rf = xgboost.XGBRFClassifier(random_state=SEED)\n", + "lr = LogisticRegression(solver='liblinear', max_iter=10000)\n", + "nb = GaussianNB()\n", + "base_models = [(\"DT\", dt), (\"RF\", rf),\n", + " (\"ETC\", etc), (\"KNN\", knn),\n", + " (\"SVC_LIN\", svc_lin), (\"SVC_RBF\", svc_rbf),\n", + " (\"CAT\", cat), (\"LGBM\", lgbm),\n", + " (\"LGBM_RF\", lgbm_rf), (\"XGB\", xgb),\n", + " (\"XGB_RF\", xgb_rf), (\"LR\", lr), (\"NB\", nb)]" + ] + }, + { + "cell_type": "markdown", + "id": "afb6e5b6-da19-48e8-9882-63e0c5cafdde", + "metadata": { + "id": "afb6e5b6-da19-48e8-9882-63e0c5cafdde" + }, + "source": [ + "Здесь могут возникать различные предупреждения при обучении бустингов, не волнуйтесь, все нормально, просто они обычно очень разговорчивые)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "03d7be2e-568b-47ce-b29c-7221ba2d5bee", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "03d7be2e-568b-47ce-b29c-7221ba2d5bee", + "outputId": "67cd166b-da48-43d6-c968-68a676adafdb" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "DecisionTreeClassifier: 0.797997226792219\n", + "RandomForestClassifier: 0.8328751280279528\n", + "CatBoostClassifier: 0.8342715174922052\n", + "ExtraTreesClassifier: 0.828174603174603\n", + "KNeighborsClassifier: 0.6493313763861709\n", + "SVC: 0.8403098469098905\n", + "SVC: 0.6973119072190279\n", + "XGBClassifier: 0.8134522115571786\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 72\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000362 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.523179 -> initscore=0.092782\n", + "[LightGBM] [Info] Start training from score 0.092782\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 78, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000105 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 193\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.516556 -> initscore=0.066249\n", + "[LightGBM] [Info] Start training from score 0.066249\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000064 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 152, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.519737 -> initscore=0.078988\n", + "[LightGBM] [Info] Start training from score 0.078988\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "LGBMClassifier: 0.8170106316447779\n", + "XGBRFClassifier: 0.8499478840942255\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 72\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000062 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.523179 -> initscore=0.092782\n", + "[LightGBM] [Info] Start training from score 0.092782\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Info] Number of positive: 78, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000097 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 193\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.516556 -> initscore=0.066249\n", + "[LightGBM] [Info] Start training from score 0.066249\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000061 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 152, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.519737 -> initscore=0.078988\n", + "[LightGBM] [Info] Start training from score 0.078988\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] bagging_freq is set=1, subsample_freq=0 will be ignored. Current value: bagging_freq=1\n", + "[LightGBM] [Warning] bagging_fraction is set=0.7, subsample=1.0 will be ignored. Current value: bagging_fraction=0.7\n", + "LGBMClassifier: 0.8132478632478634\n", + "LogisticRegression: 0.8500073681108163\n", + "GaussianNB: 0.8140676625250128\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 72\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000073 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.523179 -> initscore=0.092782\n", + "[LightGBM] [Info] Start training from score 0.092782\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 78, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000060 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 193\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.516556 -> initscore=0.066249\n", + "[LightGBM] [Info] Start training from score 0.066249\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000053 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 152, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.519737 -> initscore=0.078988\n", + "[LightGBM] [Info] Start training from score 0.078988\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "VotingClassifier: 0.8421927307508369\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 72\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000065 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.523179 -> initscore=0.092782\n", + "[LightGBM] [Info] Start training from score 0.092782\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 78, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000054 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 193\n", + "[LightGBM] [Info] Number of data points in the train set: 151, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.516556 -> initscore=0.066249\n", + "[LightGBM] [Info] Start training from score 0.066249\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Info] Number of positive: 79, number of negative: 73\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000056 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 190\n", + "[LightGBM] [Info] Number of data points in the train set: 152, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.519737 -> initscore=0.078988\n", + "[LightGBM] [Info] Start training from score 0.078988\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "VotingClassifier: 0.8503633581946834\n" + ] + } + ], + "source": [ + "voting_hard = VotingClassifier(estimators=[('dt', dt), ('rf', rf), ('cat', cat), ('etc', etc), ('knn', knn),\n", + " ('svc_lin', svc_lin), ('svc_rbf', svc_rbf), ('xgb', xgb), ('lgbm', lgbm),\n", + " ('lr', lr), ('nb', nb)], voting='hard')\n", + "voting_soft = VotingClassifier(estimators=[('dt', dt), ('rf', rf), ('cat', cat), ('etc', etc), ('knn', knn),\n", + " ('svc_lin', svc_lin), ('svc_rbf', svc_rbf), ('xgb', xgb), ('lgbm', lgbm),\n", + " ('lr', lr), ('nb', nb)], voting='soft')\n", + "\n", + "# Оценка качества моделей с помощью кросс-валидации\n", + "for model in [dt, rf, cat, etc, knn, svc_lin, svc_rbf, xgb, lgbm, xgb_rf, lgbm_rf, lr, nb, voting_hard, voting_soft]:\n", + " scores = cross_val_score(model, X_train, y_train, cv=3, scoring=\"f1\")\n", + " print(f\"{model.__class__.__name__}: {scores.mean()}\")" + ] + }, + { + "cell_type": "markdown", + "source": [ + "VotingClassifier: 0.8503633581946834" + ], + "metadata": { + "id": "m2k8ruLI_eXG" + }, + "id": "m2k8ruLI_eXG" + }, + { + "cell_type": "markdown", + "id": "a95d780c-3960-47e0-84b1-496a128d5a5b", + "metadata": { + "id": "a95d780c-3960-47e0-84b1-496a128d5a5b" + }, + "source": [ + "Вы можете заметить, что ансамбль показывает хорошее, но не лучшее качество предсказания, попробуем его улучшить. Как вы знаете, ансамбли работают лучше, когда модели, входящие в них не скоррелированы друг с другом. Определите корреляцию предсказаний базовых моделей в ансамбле на тестовом наборе данных, и удалите из ансамбля те модели, чьи предсказания будут сильнее коррелировать с остальными. Воспользуйтесь функцией `base_model_pair_correlation_for_voting_clf`. **Спойлер**: далеко не факт, что если вы удалите две модели с корреляцией 0.95, то все станет сильно лучше, здесь все будет немного сложнее. Чтобы добиться максимального качества может понадобиться долгий перебор различных комбинаций моделей. Наилучший скор, который мне удалось достичь, это 0.915, но он получен весьма странной комбинацией алгоритмов, а еще и простым перебором всех вариантов)" + ] + }, + { + "cell_type": "code", + "source": [ + "voting_soft.fit(X_train, y_train)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "YHT8IU8FkqnN", + "outputId": "62c2fbd2-7674-4a75-91e1-4fc89d278ca1" + }, + "id": "YHT8IU8FkqnN", + "execution_count": 93, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[LightGBM] [Info] Number of positive: 118, number of negative: 109\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000073 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 236\n", + "[LightGBM] [Info] Number of data points in the train set: 227, number of used features: 13\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.519824 -> initscore=0.079337\n", + "[LightGBM] [Info] Start training from score 0.079337\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "VotingClassifier(estimators=[('dt',\n", + " DecisionTreeClassifier(max_depth=10,\n", + " min_samples_leaf=10,\n", + " random_state=111)),\n", + " ('rf',\n", + " RandomForestClassifier(n_estimators=50,\n", + " random_state=111)),\n", + " ('cat',\n", + " ),\n", + " ('etc', ExtraTreesClassifier(random_state=111)),\n", + " ('knn', KNeighborsClassifier(weights='distance')),\n", + " ('svc_lin',\n", + " SVC(...\n", + " max_cat_to_onehot=None,\n", + " max_delta_step=None, max_depth=None,\n", + " max_leaves=None,\n", + " min_child_weight=None, missing=nan,\n", + " monotone_constraints=None,\n", + " multi_strategy=None,\n", + " n_estimators=None, n_jobs=None,\n", + " num_parallel_tree=None,\n", + " random_state=111, ...)),\n", + " ('lgbm', LGBMClassifier(random_state=111)),\n", + " ('lr',\n", + " LogisticRegression(max_iter=10000,\n", + " solver='liblinear')),\n", + " ('nb', GaussianNB())],\n", + " voting='soft')" + ], + "text/html": [ + "
    VotingClassifier(estimators=[('dt',\n",
    +              "                              DecisionTreeClassifier(max_depth=10,\n",
    +              "                                                     min_samples_leaf=10,\n",
    +              "                                                     random_state=111)),\n",
    +              "                             ('rf',\n",
    +              "                              RandomForestClassifier(n_estimators=50,\n",
    +              "                                                     random_state=111)),\n",
    +              "                             ('cat',\n",
    +              "                              <catboost.core.CatBoostClassifier object at 0x787a215deec0>),\n",
    +              "                             ('etc', ExtraTreesClassifier(random_state=111)),\n",
    +              "                             ('knn', KNeighborsClassifier(weights='distance')),\n",
    +              "                             ('svc_lin',\n",
    +              "                              SVC(...\n",
    +              "                                            max_cat_to_onehot=None,\n",
    +              "                                            max_delta_step=None, max_depth=None,\n",
    +              "                                            max_leaves=None,\n",
    +              "                                            min_child_weight=None, missing=nan,\n",
    +              "                                            monotone_constraints=None,\n",
    +              "                                            multi_strategy=None,\n",
    +              "                                            n_estimators=None, n_jobs=None,\n",
    +              "                                            num_parallel_tree=None,\n",
    +              "                                            random_state=111, ...)),\n",
    +              "                             ('lgbm', LGBMClassifier(random_state=111)),\n",
    +              "                             ('lr',\n",
    +              "                              LogisticRegression(max_iter=10000,\n",
    +              "                                                 solver='liblinear')),\n",
    +              "                             ('nb', GaussianNB())],\n",
    +              "                 voting='soft')
    In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
    On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
    " + ] + }, + "metadata": {}, + "execution_count": 93 + } + ] + }, + { + "cell_type": "code", + "execution_count": 103, + "id": "6b132bb4-e551-4791-88e7-95eaa7df909c", + "metadata": { + "id": "6b132bb4-e551-4791-88e7-95eaa7df909c" + }, + "outputs": [], + "source": [ + "def base_model_pair_correlation_for_voting_clf(ensemble, X):\n", + " corrs = []\n", + " base_model_names = [f\"{est.__class__.__name__}\" for est in ensemble.estimators_]\n", + " for (i, est1), (j, est2) in combinations(enumerate(ensemble.estimators_), 2):\n", + " Xi_test = X\n", + " Xj_test = X\n", + " if not isinstance(est1, SVC):\n", + " ypred_t1 = est1.predict_proba(Xi_test)[:, 1]\n", + " else:\n", + " ypred_t1 = est1.decision_function(Xi_test)\n", + " if not isinstance(est2, SVC):\n", + " ypred_t2 = est2.predict_proba(Xi_test)[:, 1]\n", + " else:\n", + " ypred_t2 = est2.decision_function(Xi_test)\n", + " corrs.append((est1, est2, pearsonr(ypred_t1, ypred_t2)[0]))\n", + " return corrs" + ] + }, + { + "cell_type": "code", + "execution_count": 104, + "id": "21fb93e4-8065-473c-a11a-cd423baf71d6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 354 + }, + "id": "21fb93e4-8065-473c-a11a-cd423baf71d6", + "outputId": "d1c93346-3c90-4012-e28f-9baa59a64355" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Model 1 Model 2 Correlation\n", + "49 XGBClassifier LGBMClassifier 0.970839\n", + "24 CatBoostClassifier LGBMClassifier 0.955278\n", + "19 CatBoostClassifier ExtraTreesClassifier 0.952720\n", + "43 SVC LogisticRegression 0.952159\n", + "10 RandomForestClassifier CatBoostClassifier 0.945070\n", + "23 CatBoostClassifier XGBClassifier 0.933990\n", + "11 RandomForestClassifier ExtraTreesClassifier 0.921565\n", + "16 RandomForestClassifier LGBMClassifier 0.914687\n", + "15 RandomForestClassifier XGBClassifier 0.896641\n", + "31 ExtraTreesClassifier LGBMClassifier 0.892875" + ], + "text/html": [ + "\n", + "
    \n", + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Model 1Model 2Correlation
    49XGBClassifierLGBMClassifier0.970839
    24CatBoostClassifierLGBMClassifier0.955278
    19CatBoostClassifierExtraTreesClassifier0.952720
    43SVCLogisticRegression0.952159
    10RandomForestClassifierCatBoostClassifier0.945070
    23CatBoostClassifierXGBClassifier0.933990
    11RandomForestClassifierExtraTreesClassifier0.921565
    16RandomForestClassifierLGBMClassifier0.914687
    15RandomForestClassifierXGBClassifier0.896641
    31ExtraTreesClassifierLGBMClassifier0.892875
    \n", + "
    \n", + "
    \n", + "\n", + "
    \n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
    \n", + "\n", + "\n", + "
    \n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
    \n", + "
    \n", + "
    \n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "corrs_df", + "summary": "{\n \"name\": \"corrs_df\",\n \"rows\": 55,\n \"fields\": [\n {\n \"column\": \"Model 1\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 9,\n \"samples\": [\n \"DecisionTreeClassifier\",\n \"CatBoostClassifier\",\n \"LogisticRegression\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Model 2\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 9,\n \"samples\": [\n \"RandomForestClassifier\",\n \"ExtraTreesClassifier\",\n \"GaussianNB\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Correlation\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.2596297739031848,\n \"min\": 0.2263393781495638,\n \"max\": 0.970838692549758,\n \"num_unique_values\": 55,\n \"samples\": [\n 0.7609652214109747,\n 0.9339896573127269,\n 0.7399817403132603\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 104 + } + ], + "source": [ + "corrs = base_model_pair_correlation_for_voting_clf(voting_soft, X_test)\n", + "corrs_df = pd.DataFrame(corrs, columns=['Model 1', 'Model 2', 'Correlation'])\n", + "corrs_df['Model 1'] = corrs_df['Model 1'].apply(lambda x: x.__class__.__name__)\n", + "corrs_df['Model 2'] = corrs_df['Model 2'].apply(lambda x: x.__class__.__name__)\n", + "# Сортировка результатов по убыванию корреляции\n", + "corrs_df = corrs_df.sort_values(by='Correlation', ascending=False)\n", + "# Вывод первых 10 пар моделей с наивысшей корреляцией\n", + "corrs_df.head(10)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Наиболее высокая корреляция наблюдается между XGBClassifier и LGBMClassifier, что указывает на то, что эти две модели делают очень похожие предсказания. Аналогично, CatBoostClassifier и LGBMClassifier также показывают высокую корреляцию." + ], + "metadata": { + "id": "HzY8rbeUnw_w" + }, + "id": "HzY8rbeUnw_w" + }, + { + "cell_type": "code", + "source": [ + "models_list = [(\"DT\", dt), (\"RF\", rf),\n", + " (\"ETC\", etc), (\"KNN\", knn),\n", + " (\"SVC_LIN\", svc_lin), (\"SVC_RBF\", svc_rbf),\n", + " (\"CAT\", cat), (\"LGBM\", lgbm),\n", + " (\"LGBM_RF\", lgbm_rf), (\"XGB\", xgb),\n", + " (\"XGB_RF\", xgb_rf), (\"LR\", lr), (\"NB\", nb)]\n", + "def evaluate_ensemble(models, X_train, y_train, X_test, y_test):\n", + " estimators = [(model.__class__.__name__ + str(i), model) for i, model in enumerate(models)]\n", + " voting_clf = VotingClassifier(estimators=estimators, voting='soft')\n", + " voting_clf.fit(X_train, y_train)\n", + " y_pred = voting_clf.predict(X_test)\n", + " score = f1_score(y_test, y_pred)\n", + " return score\n", + "best_score = 0\n", + "best_combination = None\n", + "for L in range(2, len(models_list) + 1):\n", + " for subset in combinations(models_list, L):\n", + " score = evaluate_ensemble(subset, X_train, y_train, X_test, y_test)\n", + " if score > best_score:\n", + " best_score = score\n", + " best_combination = subset\n", + "# Выводим наилучшую комбинацию и ее производительность\n", + "print(f\"Лучший F1-скор: {best_score}\")\n", + "print(\"Лучшая комбинация моделей:\")\n", + "for model in best_combination:\n", + " print(model.__class__.__name__)" + ], + "metadata": { + "id": "Oiabf__Tnjmy" + }, + "id": "Oiabf__Tnjmy", + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "id": "054b2673-1725-48a9-ae6a-4e348d50169d", + "metadata": { + "id": "054b2673-1725-48a9-ae6a-4e348d50169d" + }, + "source": [ + "### Задание 4. Определение оттока клиентов из телекома\n", + "\n", + "**6 баллов + 7 дополнительных за высокое качество модели и различные эксперименты**\n", + "\n", + "Будем предсказывать, уйдет ли от нас клиент (переменная `Churn?`). Данные можно скачать [здесь](https://www.kaggle.com/venky12347/churn-telecom). Это будет уже совсем взрослое задание, так как правильного ответа на него нет. Вам нужно будет разобраться с данными, правильно подготовить их для моделей, а также выбрать лучшую модель.\n", + "\n", + "Задача минимум:\n", + "\n", + "Выберите 2 модели — один случайный лес и один бустинг из приведенных ниже:\n", + "\n", + "1. `xgboost.XGBClassifier`\n", + "2. `xgboost.XGBRFClassifier` — случайный лес от xgboost\n", + "3. `lightgbm.LGBMClassifier`\n", + "4. `lightgbm.LGBMClassifier(boosting_type=\"rf\")` — случайный лес от lightgbm\n", + "5. `catboost.CatBoostClassifier`\n", + "\n", + "И попробуйте разобраться с тем, как для этих моделей правильно настраивать гиперпараметры. Советую гуглить примерно следующее `how to choose best hyperparameters for lightgbm`. Там вы найдете кучу сложного и непонятного кода, но если с ним разобраться и научиться обучать нестандартные бустинги, то в плане табличных данных равных вам не будет)" + ] + }, + { + "cell_type": "code", + "execution_count": 139, + "id": "47cd58e0-3c7b-4dc6-8eba-617eec699586", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "47cd58e0-3c7b-4dc6-8eba-617eec699586", + "outputId": "9e06dfa4-9fa7-45c7-8fbf-3eb413f23fca" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " State Account Length Area Code Phone Int'l Plan VMail Plan \\\n", + "0 KS 128 415 382-4657 no yes \n", + "1 OH 107 415 371-7191 no yes \n", + "2 NJ 137 415 358-1921 no no \n", + "3 OH 84 408 375-9999 yes no \n", + "4 OK 75 415 330-6626 yes no \n", + "\n", + " VMail Message Day Mins Day Calls Day Charge ... Eve Calls Eve Charge \\\n", + "0 25 265.1 110 45.07 ... 99 16.78 \n", + "1 26 161.6 123 27.47 ... 103 16.62 \n", + "2 0 243.4 114 41.38 ... 110 10.30 \n", + "3 0 299.4 71 50.90 ... 88 5.26 \n", + "4 0 166.7 113 28.34 ... 122 12.61 \n", + "\n", + " Night Mins Night Calls Night Charge Intl Mins Intl Calls Intl Charge \\\n", + "0 244.7 91 11.01 10.0 3 2.70 \n", + "1 254.4 103 11.45 13.7 3 3.70 \n", + "2 162.6 104 7.32 12.2 5 3.29 \n", + "3 196.9 89 8.86 6.6 7 1.78 \n", + "4 186.9 121 8.41 10.1 3 2.73 \n", + "\n", + " CustServ Calls Churn? \n", + "0 1 False. \n", + "1 1 False. \n", + "2 0 False. \n", + "3 2 False. \n", + "4 3 False. \n", + "\n", + "[5 rows x 21 columns]\n", + "\n", + "RangeIndex: 3333 entries, 0 to 3332\n", + "Data columns (total 21 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 State 3333 non-null object \n", + " 1 Account Length 3333 non-null int64 \n", + " 2 Area Code 3333 non-null int64 \n", + " 3 Phone 3333 non-null object \n", + " 4 Int'l Plan 3333 non-null object \n", + " 5 VMail Plan 3333 non-null object \n", + " 6 VMail Message 3333 non-null int64 \n", + " 7 Day Mins 3333 non-null float64\n", + " 8 Day Calls 3333 non-null int64 \n", + " 9 Day Charge 3333 non-null float64\n", + " 10 Eve Mins 3333 non-null float64\n", + " 11 Eve Calls 3333 non-null int64 \n", + " 12 Eve Charge 3333 non-null float64\n", + " 13 Night Mins 3333 non-null float64\n", + " 14 Night Calls 3333 non-null int64 \n", + " 15 Night Charge 3333 non-null float64\n", + " 16 Intl Mins 3333 non-null float64\n", + " 17 Intl Calls 3333 non-null int64 \n", + " 18 Intl Charge 3333 non-null float64\n", + " 19 CustServ Calls 3333 non-null int64 \n", + " 20 Churn? 3333 non-null object \n", + "dtypes: float64(8), int64(8), object(5)\n", + "memory usage: 546.9+ KB\n", + "None\n", + " Account Length Area Code VMail Message Day Mins Day Calls \\\n", + "count 3333.000000 3333.000000 3333.000000 3333.000000 3333.000000 \n", + "mean 101.064806 437.182418 8.099010 179.775098 100.435644 \n", + "std 39.822106 42.371290 13.688365 54.467389 20.069084 \n", + "min 1.000000 408.000000 0.000000 0.000000 0.000000 \n", + "25% 74.000000 408.000000 0.000000 143.700000 87.000000 \n", + "50% 101.000000 415.000000 0.000000 179.400000 101.000000 \n", + "75% 127.000000 510.000000 20.000000 216.400000 114.000000 \n", + "max 243.000000 510.000000 51.000000 350.800000 165.000000 \n", + "\n", + " Day Charge Eve Mins Eve Calls Eve Charge Night Mins \\\n", + "count 3333.000000 3333.000000 3333.000000 3333.000000 3333.000000 \n", + "mean 30.562307 200.980348 100.114311 17.083540 200.872037 \n", + "std 9.259435 50.713844 19.922625 4.310668 50.573847 \n", + "min 0.000000 0.000000 0.000000 0.000000 23.200000 \n", + "25% 24.430000 166.600000 87.000000 14.160000 167.000000 \n", + "50% 30.500000 201.400000 100.000000 17.120000 201.200000 \n", + "75% 36.790000 235.300000 114.000000 20.000000 235.300000 \n", + "max 59.640000 363.700000 170.000000 30.910000 395.000000 \n", + "\n", + " Night Calls Night Charge Intl Mins Intl Calls Intl Charge \\\n", + "count 3333.000000 3333.000000 3333.000000 3333.000000 3333.000000 \n", + "mean 100.107711 9.039325 10.237294 4.479448 2.764581 \n", + "std 19.568609 2.275873 2.791840 2.461214 0.753773 \n", + "min 33.000000 1.040000 0.000000 0.000000 0.000000 \n", + "25% 87.000000 7.520000 8.500000 3.000000 2.300000 \n", + "50% 100.000000 9.050000 10.300000 4.000000 2.780000 \n", + "75% 113.000000 10.590000 12.100000 6.000000 3.270000 \n", + "max 175.000000 17.770000 20.000000 20.000000 5.400000 \n", + "\n", + " CustServ Calls \n", + "count 3333.000000 \n", + "mean 1.562856 \n", + "std 1.315491 \n", + "min 0.000000 \n", + "25% 1.000000 \n", + "50% 1.000000 \n", + "75% 2.000000 \n", + "max 9.000000 \n", + "State 0\n", + "Account Length 0\n", + "Area Code 0\n", + "Phone 0\n", + "Int'l Plan 0\n", + "VMail Plan 0\n", + "VMail Message 0\n", + "Day Mins 0\n", + "Day Calls 0\n", + "Day Charge 0\n", + "Eve Mins 0\n", + "Eve Calls 0\n", + "Eve Charge 0\n", + "Night Mins 0\n", + "Night Calls 0\n", + "Night Charge 0\n", + "Intl Mins 0\n", + "Intl Calls 0\n", + "Intl Charge 0\n", + "CustServ Calls 0\n", + "Churn? 0\n", + "dtype: int64\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAMKCAYAAAAvSN82AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHaklEQVR4nO3deZxVdeH/8fcwgKIoCYOaa7gwaKxmGgqRpKaplfhNLFxIU8vMzAxNTQHLXVPUhNDc19zNLfWb21dcIkkswdxBK1lcUJBl5v7+8MH9OYIIiA6ffD4fDx6POed87rmfMwNeX3POPbemUqlUAgAAABSpRXNPAAAAAFh6wh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACtayuScAQBmuv/76/OIXv6gut27dOmuttVa23nrrHHTQQamrq2vG2QEAfHoJewCWyCGHHJJ11lknc+bMydixY3PllVfmvvvuyx//+Me0adOmuacHAPCpI+wBWCJf/vKX061btyTJt7/97XzmM5/JhRdemHvuuSc777xzM88OAODTx3vsAfhIvvSlLyVJJk+enCR5/fXXc/LJJ2eXXXZJr169stlmm+X73/9+JkyYsMBjZ8+enbPPPjtf+9rX0q1bt/Tp0ycHH3xwXnrppeo+6+vrP/DPXnvtVd3XI488kvr6+tx2220544wzsvXWW6dnz575wQ9+kH/9618LPPff/va37LfffvnCF76QHj16ZM8998zYsWMXeox77bXXQp//7LPPXmDsTTfdlAEDBqR79+7ZYost8tOf/nShz7+oY3uvxsbGXHTRRdlpp53SrVu3bLXVVjn22GPzxhtvNBnXv3//HHjggQs8z/DhwxfY58Lmfv755y/wPU2SOXPmZMSIEdluu+3StWvX9OvXL6ecckrmzJmz0O/V+91+++3V78eWW26Zww8/PP/5z3+q24888shF/ozr6+szefLk9O/ff5Fj+vfvX93nzJkzc9JJJ6Vfv37p2rVrvva1r+WCCy5IpVJZ5Pdh3rx52X///bPFFlvkmWeeqa6/7rrrsvfee6d3797p2rVrvv71r+eKK65YrOM/8sgjm8wteffvSJcuXfK73/1ugfGL+h580LyTj/7zq6+vz/DhwxeYz4EHHlid/4f9e6yvr8+RRx5ZfeykSZNyyCGHZIsttkiPHj2y++675957722y//n/buf/mf/zGjVq1AI/LwA+mDP2AHwk8yP8M5/5TJJ3/2f+7rvvzg477JB11lknU6dOzdVXX50999wzt956a9ZYY40kSUNDQw488MCMGTMmO+20U/bee++8/fbb+b//+788/fTTWW+99arPsfPOO+fLX/5yk+c944wzFjqf8847LzU1Ndl///0zbdq0XHzxxRk8eHBuuummrLjiikmSMWPGZP/990/Xrl1z8MEHp6amJtdff3322WefXHHFFenevfsC+11zzTVz2GGHJXk3HIcOHbrQ5z7rrLOy44475n/+538yffr0XHbZZRk0aFBuvPHGrLrqqgs8ZuDAgfnCF76QJLnrrrty1113Ndl+7LHH5oYbbsiAAQOy1157ZfLkybn88svzj3/8I1deeWVatWq10O/DknjzzTcXGpmNjY354Q9/mLFjx2b33XfPhhtumKeffjoXX3xxXnjhhfz2t79d5H7n35ehW7duOeywwzJt2rRccskl+etf/1r9fgwcODC9e/euPmbIkCHZbrvtst1221XXtW/fPkcddVTefvvtJMlzzz2XkSNH5gc/+EE22GCDJMnKK6+cJKlUKvnhD3+YRx55JP/zP/+TTTbZJA888EBOOeWU/Oc//8lRRx31gfM95phj8uijj+b3v/99Ntpoo+r6K6+8MhtvvHH69++fli1b5s9//nOGDRuWSqWSQYMGLcZ3+P978MEHc/TRR2fPPffMAQccsNAx7z3+sWPH5uqrr17kPj+un9/7tW/fPqecckp1ef7f1/eum//vdurUqdljjz0ya9as7LXXXllttdVyww035Ic//GH1Fw3vNf9nOXv27Oov59q3b59vf/vbSzRHgE+tCgAshuuuu67SuXPnykMPPVSZNm1a5V//+lfl1ltvrWyxxRaV7t27V/79739XKpVKZfbs2ZWGhoYmj500aVKla9eulXPOOae67tprr6107ty5cuGFFy7wXI2NjdXHde7cuXL++ecvMGannXaq7LnnntXlhx9+uNK5c+dK3759KzNmzKiuv+222yqdO3euXHzxxdV9b7/99pV99923+jyVSqUya9asSv/+/Svf+973FniugQMHVnbeeefq8rRp0yqdO3eujBgxorpu8uTJlU022aRy3nnnNXnsxIkTK5tuuukC61944YVK586dKzfccEN13YgRIyqdO3euLj/22GOVzp07V26++eYmj73//vsXWL/NNttUDjjggAXmPmzYsCb7rFQqC8z9lFNOqfTu3buy6667Nvme3njjjZUuXbpUHnvssSaPv/LKKyudO3eujB07doHnm2/OnDmV3r17V3beeefKO++8U13/5z//udK5c+fKWWedtdDHvX9uCzP/Z/3www8vsO2uu+6qdO7cufLb3/62yfof//jHlfr6+sqLL7640Oc6/fTTK5tssknlrrvuWmCfs2bNWmDdvvvuW/nqV7+6yHlWKpXKEUccUdlmm20qlUqlMn78+ErPnj0rhxxyyAL/RiqVSmXu3LmVzp07V84+++zquvn/7iZNmrTQeVcqy+bn17lz58qwYcMWmNMBBxxQnf/7vf/v63v9+te/rnTu3LnJc7/11luV/v37V7bZZpvq8S/sZzl79uxKly5dKkOHDl3ovgFYkEvxAVgigwcPTu/evdOvX7/89Kc/zcorr5xzzjmneia+devWadHi3ZeXhoaGvPbaa1lppZXSqVOn/OMf/6ju509/+lNWW2217Lnnngs8R01NzVLP71vf+lbatm1bXd5hhx3SsWPH3HfffUmSp556Ki+88EJ22WWXvPbaa5k+fXqmT5+emTNnpnfv3nnsscfS2NjYZJ9z5sxJ69atF/m8d911VxobG7PjjjtW9zl9+vTU1dVl/fXXzyOPPNJk/Ny5c5Nkkfu94447ssoqq2Trrbduss/Pf/7zWWmllRbY57x585qMmz59embPnr3Ief/nP//JZZddloMOOqh61vu9z7/hhhtmgw02aLLP+W+/eP/zv9eTTz6ZadOm5Tvf+U5WWGGF6vqvfOUr2WCDDRa4JHtZuf/++1NbW7vAJen77rtvKpVK7r///gUec9lll2XUqFE5+uijs+222y6wff6VHkkyY8aMTJ8+PVtssUUmTZqUGTNmLNa8Jk2alAMPPDCbbLJJTj311Oq/kfdanL8T77csf36zZ89e4O/PvHnzFnsu73Xfffele/fu2XzzzavrVl555QwcODAvv/xyk7c6JP//+/rKK69k9OjRaWxsrM4TgA/nUnwAlsixxx6bTp06pba2NnV1denUqVOTSGlsbMwll1ySK664IpMnT05DQ0N12/zL9ZN3L+Hv1KlTWrZcti9F66+/fpPlmpqarL/++nn55ZeTJC+88EKS5IgjjvjAfcyYMSPt2rWrLr/22msL7Pf9XnjhhVQqlWy//fYL3f7+43zzzTeTJCuttNIH7vPFF1/MjBkzmlyq/l7Tpk1rsvzggw9+4NgPMmLEiKy++uoZOHBg7rzzzgWe/9lnn13s53+vV155JUnSqVOnBbZtsMEGH3g/g4/q5Zdfzuqrr97klztJsuGGG1a3v9f999+fJ598MkkWuG/BfGPHjs3ZZ5+dcePGZdasWU22zZgxI6usssoi5zRz5szst99+mTp1apN/A+83/+/E+wN9UZblz+/aa6/Ntddeu8C4tddee7HnM98rr7ySHj16LLB+/lsnXnnllXTu3Lm6/kc/+lH16xYtWuSHP/xhvva1ry3x8wJ8Wgl7AJZI9+7dq3fFX5iRI0fmrLPOym677Zaf/OQnadeuXVq0aJETTjhhubgZ1vw5DBkyJJtssslCx7w3tufMmZMpU6Zkq622WuR+GxsbU1NTk9GjR6e2tnaR+0zefQ9yktTV1S1ynx06dMhpp5220O3t27dvstyjR48ceuihTdZddtllueeeexb6+GeffTY33HBDTj311IW+V7+xsTGdO3fOL37xi4U+fs011/zAuZfiiSeeyO677542bdrkvPPOyw477FCNz+TdX0ANHjw4G2ywQY488sh89rOfTatWrXLffffloosuWuDqjoWZf9XKyJEj86Mf/Si/+93vcvDBBy8wbnH+TrzXsv75ffWrX13gCpozzzyzOq+P0xFHHJEuXbpk7ty5GT9+fEaOHJmWLVsu9PsEwIKEPQDL1J133pktt9wyJ5xwQpP1b775ZlZbbbXq8nrrrZe//e1vmTt37jK5Adx8L774YpPlSqWSF198sXpn+HXXXTdJ0rZt2w+N9SSZMGFC5s6dm65duy5y3HrrrZdKpZJ11llnoWep3++ZZ55JTU3NIseut956GTNmTDbbbLMml4N/kNVWW22BY7r77rs/cPzpp5+eLl265Otf//oHPv+ECRPSu3fvJX57xFprrZUkef755xc4Y/z8889Xty9ra6+9dsaMGZO33nqryVn75557rrr9vbbeeusMHTo0s2fPzt13351jjz02l156afV4//d//zdz5szJeeed12TOi3obwvu1adMmo0ePzoYbbph99tknI0eOzI477li9imC++Zenv3/9B1nWP78111xzgb8/F1988VKF/VprrZXnn39+gfXzfw7v//l//vOfz5Zbbpkk6devX1599dWMHj06Bx100ELftgBAU/5LCcAyVVtbu8CZ+dtvv73JR5wlyfbbb5/XXnstl19++QL7+Chn9m+88ca89dZb1eU77rgjU6ZMqd5Vv2vXrllvvfXy+9//vnqX9feaPn16k+U77rgjtbW12WabbRb5vNtvv31qa2tzzjnnLDD/SqWS1157rbo8b968/OlPf0r37t0Xedn1jjvumIaGhoXevXzevHnVS7eXxrhx43LPPffk8MMP/8Do23HHHfOf//wn11xzzQLb3nnnncycOfMD99+1a9d06NAhV111VZOPVrvvvvvy7LPP5itf+cpSz31RvvzlL6ehoWGBv1cXXXRRampqFvh0hV69eqW2tjYrrbRShg0blscee6zJ8c6/+uK9P9MZM2bkuuuuW+w5tW/fvhrrP/nJT7LmmmvmmGOOWei/k44dOy5W2H/cP7+Pql+/fnniiSfy+OOPV9fNnDkz11xzTdZee+0mnzqwMO+8804aGhqW+j3+AJ82ztgDsEx95Stfybnnnptf/OIX6dWrV55++unccsst1TPl833rW9/KjTfemBNPPDFPPPFEvvCFL2TWrFkZM2ZMvvOd7yz0JmaLo127dvnud7+bAQMGVD/ubv3118/uu++e5N337/7qV7/K/vvvn5133jkDBgzIGmuskf/85z955JFH0rZt24wcOTIzZ87M5ZdfnksvvTSf+9znmpyhnR9EEydOzOOPP55evXplvfXWy6GHHprTTz89L7/8crbddtusvPLKmTx5cu6+++7svvvu2W+//fLQQw/lrLPOysSJEzNy5MhFHssWW2yRgQMHZtSoUXnqqaey9dZbp1WrVnnhhRdyxx135Oijj84OO+ywVN+nBx98MFtvvfUir1r45je/mdtvvz3HHXdcHnnkkWy22WZpaGjIc889lzvuuCPnn3/+B74to1WrVjn88MPzi1/8InvuuWd22mmn6sfdrb322hk8ePBSzfvD9O/fP1tuuWV+85vf5OWXX059fX3+7//+L/fcc0/22WefJh+j+H59+/bNN77xjZx66qnZZpttsvrqq1e/5z/4wQ+yxx575O23384f/vCHdOjQIVOmTFni+a244oo5/vjjM3jw4FxxxRUZNGhQxo8fn7POOisPPPBAhg0btlhn1z/un99HdcABB+TWW2/N/vvvn7322ivt2rXLjTfemMmTJ+fss89e4Cz8Qw89lH//+9+ZN29exo8fn1tuuSX9+/dfohsJAnyaCXsAlqkf/OAHmTVrVm655Zbcdttt2XTTTTNq1KicfvrpTcbV1tZm9OjROe+88/LHP/4xf/rTn/KZz3wmm222WfWy+aV9/okTJ+Z3v/td3n777fTu3TvHHXdc2rRpUx2z5ZZb5uqrr85vf/vbXHbZZZk5c2Y6duyY7t27Z+DAgUnePXM//73tzz77bIYMGbLAc911111p27ZtevXqleTdmPnc5z6Xiy66KOeee26Sdy9v3nrrrdO/f/8k717a3apVq/zud79L3759P/R4hg8fnq5du+aqq67Kb37zm9TW1mbttdfON77xjWy22WZL/X2qqanJz372s0WOadGiRc4999xcdNFFuemmm3LXXXelTZs2WWeddbLXXnt96FsOBgwYkBVXXDGjR4/OaaedlpVWWinbbrttfv7zn2fVVVdd6rl/2JzPO++8jBgxIrfddluuv/76rL322hkyZEj23XffD338UUcdlQcffDDDhw/POeeckw022CAjRozImWeemZNPPjl1dXX5zne+k/bt2+eoo45aqjn27t07AwYMyBlnnJFtt902Dz/8cF5//fWcdtpp2WWXXRZrH5/Ez++jqKury1VXXZVTTz01l112WWbPnp36+vqMHDlyoVdrzP8lV8uWLbPGGmtk0KBBOeSQQz62+QH8t6mpLA93MgKAj+iRRx7J3nvvnbPOOmupz2K/1+TJk/PVr34199xzT9ZZZ52Fjjn77LPz8ssv56STTvrIzwcAsLS8xx4AAAAK5lJ8AFiIlVZaKbvssssiP2e+vr4+q6+++ic4KwCABQl7AFiI9u3bf+Dnx8+3/fbbf0KzAQD4YN5jDwAAAAXzHnsAAAAomLAHAACAgnmP/WJobGzMvHnz0qJFi9TU1DT3dAAAAPgvV6lU0tjYmJYtW6ZFi0Wfkxf2i2HevHkZP358c08DAACAT5lu3bqldevWixwj7BfD/N+OdOvWLbW1tc08GwAAAP7bNTQ0ZPz48R96tj4R9otl/uX3tbW1wh4AAIBPzOK8HdzN8wAAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7D8FGhobm3sKACwD/nsOACxMy+aeAB+/2hYtcswVD+T5V99o7qkAsJQ6rd4uv/pu3+aeBgCwHBL2nxLPv/pGJrw8vbmnAQAAwDLmUnwAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAgjVr2I8aNSq77bZbevXqld69e+eggw7Kc88912TMXnvtlfr6+iZ/jj322CZjXnnllRxwwAHp0aNHevfunZNPPjnz5s1rMuaRRx7Jrrvumq5du2a77bbL9ddf/7EfHwAAAHzcWjbnkz/66KMZNGhQunXrloaGhpxxxhnZb7/9cuutt2allVaqjtt9991zyCGHVJfbtGlT/bqhoSEHHnhg6urqctVVV+XVV1/NEUcckVatWuWwww5LkkyaNCkHHnhg9thjj5x22mkZM2ZMjjnmmHTs2DF9+/b95A4YAAAAlrFmDfsLLrigyfJJJ52U3r175+9//3u++MUvVtevuOKK6dix40L38eCDD+aZZ57JhRdemLq6umyyySb5yU9+ktNOOy0HH3xwWrdunauuuirrrLNOjjzyyCTJhhtumLFjx+aiiy4S9gAAABStWcP+/WbMmJEkadeuXZP1t9xyS26++eZ07Ngx22yzTQ466KDqWftx48alc+fOqaurq47v06dPhg4dmmeeeSabbrppxo0bl969ezfZZ58+fXLCCScs0fwaGhqW5rCaXW1tbXNPAYBlpNTXIgBgySzJa/5yE/aNjY054YQTstlmm6Vz587V9TvvvHPWWmutrL766pk4cWJOO+20PP/88znnnHOSJFOnTm0S9Umqy1OmTFnkmLfeeivvvPNOVlxxxcWa4/jx45f6+JpLmzZtsummmzb3NABYRiZOnJhZs2Y19zQAgOXIchP2w4YNyz//+c9cccUVTdYPHDiw+nV9fX06duyYwYMH56WXXsp66633ic6xW7duzn4D0Kzq6+ubewoAwCegoaFhsU8uLxdhP3z48Nx777257LLLsuaaay5ybI8ePZIkL774YtZbb73U1dXliSeeaDJm6tSpSVJ9X35dXV113XvHtG3bdrHP1ifvXtIu7AFoTl6HAID3a9aPu6tUKhk+fHjuuuuuXHzxxVl33XU/9DFPPfVUkv8f7T179szTTz+dadOmVcc89NBDadu2bTbaaKPqmIcffrjJfh566KH07NlzGR0JAAAANI9mDfthw4bl5ptvzumnn56VV145U6ZMyZQpU/LOO+8kSV566aWce+65efLJJzN58uTcc889OeKII/LFL34xXbp0SfLuTfA22mijDBkyJBMmTMgDDzyQM888M4MGDUrr1q2TJHvssUcmTZqUU045Jc8++2wuv/zy3H777Rk8eHBzHToAAAAsE816Kf6VV16ZJNlrr72arD/xxBMzYMCAtGrVKmPGjMkll1ySmTNn5rOf/Wy23377HHTQQdWxtbW1GTlyZIYOHZqBAwemTZs22XXXXZt87v26666bUaNG5cQTT8wll1ySNddcM7/61a981B0AAADFa9awnzhx4iK3f/azn81ll132oftZe+21M3r06EWO2XLLLXPjjTcuyfQAAABgudesl+IDAAAAH42wBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAACiYsAcAAICCCXsAAAAomLAHAACAggl7AAAAKJiwBwAAgIIJewAAAChYs4b9qFGjsttuu6VXr17p3bt3DjrooDz33HNNxsyePTvDhg3LlltumV69euXHP/5xpk6d2mTMK6+8kgMOOCA9evRI7969c/LJJ2fevHlNxjzyyCPZdddd07Vr12y33Xa5/vrrP/bjAwAAgI9bs4b9o48+mkGDBuWaa67JhRdemHnz5mW//fbLzJkzq2NOOOGE/PnPf86ZZ56ZSy+9NK+++moOPvjg6vaGhoYceOCBmTt3bq666qqcdNJJueGGGzJixIjqmEmTJuXAAw/MlltumZtuuin77LNPjjnmmDzwwAOf6PECAADAstayOZ/8ggsuaLJ80kknpXfv3vn73/+eL37xi5kxY0auu+66nHbaaendu3eSd0P/61//esaNG5eePXvmwQcfzDPPPJMLL7wwdXV12WSTTfKTn/wkp512Wg4++OC0bt06V111VdZZZ50ceeSRSZINN9wwY8eOzUUXXZS+fft+4scNAAAAy0qzhv37zZgxI0nSrl27JMmTTz6ZuXPnZquttqqO2XDDDbPWWmtVw37cuHHp3Llz6urqqmP69OmToUOH5plnnsmmm26acePGVX8x8N4xJ5xwwhLNr6GhYWkPrVnV1tY29xQAWEZKfS0CAJbMkrzmLzdh39jYmBNOOCGbbbZZOnfunCSZOnVqWrVqlVVXXbXJ2A4dOmTKlCnVMe+N+iTV5Q8b89Zbb+Wdd97JiiuuuFhzHD9+/JIfWDNr06ZNNt100+aeBgDLyMSJEzNr1qzmngYAsBxZbsJ+2LBh+ec//5krrriiuafygbp16+bsNwDNqr6+vrmnAAB8AhoaGhb75PJyEfbDhw/Pvffem8suuyxrrrlmdX1dXV3mzp2bN998s8lZ+2nTpqVjx47VMU888UST/c2/a/57x7z/TvpTp05N27ZtF/tsffLuJe3CHoDm5HUIAHi/Zr0rfqVSyfDhw3PXXXfl4osvzrrrrttke9euXdOqVauMGTOmuu65557LK6+8kp49eyZJevbsmaeffjrTpk2rjnnooYfStm3bbLTRRtUxDz/8cJN9P/TQQ9V9AAAAQKmaNeyHDRuWm2++OaeffnpWXnnlTJkyJVOmTMk777yTJFlllVWy22675aSTTsrDDz+cJ598MkcddVR69epVjfI+ffpko402ypAhQzJhwoQ88MADOfPMMzNo0KC0bt06SbLHHntk0qRJOeWUU/Lss8/m8ssvz+23357Bgwc305EDAADAstGsl+JfeeWVSZK99tqryfoTTzwxAwYMSJIcddRRadGiRQ455JDMmTMnffr0yXHHHVcdW1tbm5EjR2bo0KEZOHBg2rRpk1133TWHHHJIdcy6666bUaNG5cQTT8wll1ySNddcM7/61a981B0AAADFq6lUKpXmnsTyrqGhofrxeqW+t3HQmX/MhJenN/c0AFhKXdZun8sP3bm5pwEAfEKWpEOb9VJ8AAAA4KMR9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFCwpQr7vffeO2+++eYC6996663svffeH3lSAAAAwOJZqrB/9NFHM3fu3AXWz549O2PHjv3IkwIAAAAWT8slGTxhwoTq188880ymTJlSXW5sbMwDDzyQNdZYY9nNDgAAAFikJQr7b33rW6mpqUlNTU322WefBbavuOKKOeaYY5bZ5AAAAIBFW6Kwv+eee1KpVLLtttvmD3/4Q9q3b1/d1qpVq3To0CG1tbXLfJIAAADAwi1R2K+99tpJml6SDwAAADSfJQr793rhhRfyyCOPZNq0aWlsbGyy7eCDD/7IEwMAAAA+3FKF/TXXXJOhQ4dmtdVWS11dXWpqaqrbampqhD0AAAB8QpYq7M8777wceuihOeCAA5b1fAAAAIAlsFSfY//GG29kxx13XNZzAQAAAJbQUoX9DjvskAcffHBZzwUAAABYQkt1Kf7666+fs846K3/729/SuXPntGzZdDd77733MpkcAAAAsGhLFfZXX311VlpppTz66KN59NFHm2yrqalZ7LB/7LHHcsEFF+TJJ5/MlClTcu6552bbbbetbj/yyCNzww03NHlMnz59csEFF1SXX3/99Rx//PH585//nBYtWmT77bfP0UcfnZVXXrk6ZsKECRk+fHjGjx+f9u3bZ88998z++++/NIcOAAAAy5WlCvv//d//XSZPPnPmzNTX12e33Xb7wDvp9+3bNyeeeGJ1uXXr1k22H3744ZkyZUouvPDCzJ07N0cddVSOPfbYnH766UmSt956K/vtt1969+6dYcOG5emnn85RRx2VVVddNQMHDlwmxwEAAADNZak/x35Z6NevX/r167fIMa1bt07Hjh0Xuu3ZZ5/NAw88kGuvvTbdunVLkhxzzDE54IADMmTIkKyxxhq5+eabM3fu3Jxwwglp3bp1Nt544zz11FO58MILhT0AAADFW6qw/8UvfrHI7e89w/5RPfroo+ndu3dWXXXVfOlLX8qhhx6a1VZbLUny+OOPZ9VVV61GfZJstdVWadGiRZ544olst912GTduXDbffPMmZ/r79OmT0aNH54033ki7du0Wey4NDQ3L7Lg+SbW1tc09BQCWkVJfiwCAJbMkr/lLFfZvvvlmk+V58+bln//8Z95888186UtfWppdLlTfvn2z3XbbZZ111smkSZNyxhlnZP/998/VV1+d2traTJ06Ne3bt2/ymJYtW6Zdu3aZMmVKkmTq1KlZZ511moypq6urbluSsB8/fvxHPKJPXps2bbLppps29zQAWEYmTpyYWbNmNfc0AIDlyFKF/bnnnrvAusbGxgwdOjTrrrvuR57UfDvttFP16/r6+tTX12fbbbetnsX/pHXr1s3ZbwCaVX19fXNPAQD4BDQ0NCz2yeVl9h77Fi1aZPDgwdl7770/tjvOr7vuullttdXy4osvpnfv3qmrq8v06dObjJk3b17eeOON6vvy6+rqMnXq1CZj5i/PP3O/uGpra4U9AM3K6xAA8H4tluXOJk2alHnz5i3LXTbx73//O6+//no12nv16pU333wzTz75ZHXMww8/nMbGxnTv3j1J0rNnz/zlL3/J3Llzq2MeeuihdOrUaYkuwwcAAIDl0VKdsX//zfEqlUqmTJmSe++9N7vuuuti7+ftt9/OSy+9VF2ePHlynnrqqbRr1y7t2rXLOeeck6997Wupq6vLpEmTcuqpp2b99ddP3759kyQbbrhh+vbtm1/+8pcZNmxY5s6dm+OPPz477bRT1lhjjSTJLrvsknPPPTdHH3109t9///zzn//MJZdc8qE3AAQAAIASLFXY/+Mf/2iy3KJFi7Rv3z5HHnlkdtttt8Xez5NPPpm99967ujz/Fwa77rprhg4dmqeffjo33nhjZsyYkdVXXz1bb711fvKTnzS5w/1pp52W448/Pvvss09atGiR7bffPsccc0x1+yqrrJILLrggw4cPz4ABA7LaaqvloIMO8lF3AAAA/FeoqVQqleaexPKuoaEh48aNS8+ePYt9b+OgM/+YCS9P//CBACyXuqzdPpcfunNzTwMA+IQsSYd+pJvnTZ8+Pc8991ySZIMNNljgo+cAAACAj9dShf3MmTNz/PHH56abbkpjY2OSd+/S+81vfjO//OUv06ZNm2U6SQAAAGDhluqu+CeddFIee+yxnHfeefnLX/6Sv/zlL/ntb3+bxx57LCeddNKyniMAAADwAZYq7O+88878+te/Tr9+/dK2bdu0bds2/fr1y/HHH58777xzWc8RAAAA+ABLFfbvvPNO6urqFljfoUOHvPPOOx95UgAAAMDiWaqw79mzZ0aMGJHZs2dX173zzjs555xz0rNnz2U1NwAAAOBDLNXN84466qh8//vfz5e//OV06dIlSTJhwoS0bt06v//975fpBAEAAIAPtlRhX19fnz/96U+55ZZbqh93t/POO2eXXXbJiiuuuEwnCAAAAHywpQr7UaNGpUOHDtl9992brL/22mszffr0HHDAActkcgAAAMCiLdV77K+++upssMEGC6zfeOONc9VVV33kSQEAAACLZ6nCfsqUKenYseMC69u3b58pU6Z85EkBAAAAi2epwv6zn/1s/vrXvy6wfuzYsVl99dU/8qQAAACAxbNU77H/9re/nRNOOCHz5s3Ll770pSTJmDFjcuqpp2bfffddphMEAAAAPthShf33v//9vP766xk2bFjmzp2bJFlhhRXy/e9/PwceeOAynSAAAADwwZYq7GtqavLzn/88Bx10UJ599tmsuOKK+dznPpfWrVsv6/kBAAAAi7BUYT/fyiuvnO7duy+ruQAAAABLaKlungcAAAAsH4Q9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBmjXsH3vssfzgBz9Inz59Ul9fn7vvvrvJ9kqlkrPOOit9+vRJ9+7dM3jw4LzwwgtNxrz++uv52c9+ls022yybb755jjrqqLz99ttNxkyYMCHf/e53061bt/Tr1y+jR4/+uA8NAAAAPhHNGvYzZ85MfX19jjvuuIVuHz16dC699NIMHTo011xzTdq0aZP99tsvs2fPro45/PDD88wzz+TCCy/MyJEj85e//CXHHntsdftbb72V/fbbL2uttVauv/76DBkyJOecc06uvvrqj/34AAAA4OPWsjmfvF+/funXr99Ct1UqlVxyySX54Q9/mG233TZJcsopp2SrrbbK3XffnZ122inPPvtsHnjggVx77bXp1q1bkuSYY47JAQcckCFDhmSNNdbIzTffnLlz5+aEE05I69ats/HGG+epp57KhRdemIEDB35ixwoAAAAfh2YN+0WZPHlypkyZkq222qq6bpVVVkmPHj3y+OOPZ6eddsrjjz+eVVddtRr1SbLVVlulRYsWeeKJJ7Lddttl3Lhx2XzzzdO6devqmD59+mT06NF544030q5du8WeU0NDw7I5uE9YbW1tc08BgGWk1NciAGDJLMlr/nIb9lOmTEmSdOjQocn6Dh06ZOrUqUmSqVOnpn379k22t2zZMu3atas+furUqVlnnXWajKmrq6tuW5KwHz9+/JIdxHKgTZs22XTTTZt7GgAsIxMnTsysWbOaexoAwHJkuQ375VG3bt2c/QagWdXX1zf3FACAT0BDQ8Nin1xebsO+Y8eOSZJp06Zl9dVXr66fNm1aunTpkuTdM+/Tp09v8rh58+bljTfeqD6+rq6ueoZ/vvnL88/cL67a2lphD0Cz8joEALzfcvs59uuss046duyYMWPGVNe99dZb+dvf/pZevXolSXr16pU333wzTz75ZHXMww8/nMbGxnTv3j1J0rNnz/zlL3/J3Llzq2MeeuihdOrUaYkuwwcAAIDlUbOG/dtvv52nnnoqTz31VJJ3b5j31FNP5ZVXXklNTU323nvvnHfeebnnnnsyceLEDBkyJKuvvnr1Lvkbbrhh+vbtm1/+8pd54oknMnbs2Bx//PHZaaedssYaayRJdtlll7Rq1SpHH310/vnPf+a2227LJZdcku9973vNdtwAAACwrDTrpfhPPvlk9t577+ryiSeemCTZddddc9JJJ2X//ffPrFmzcuyxx+bNN9/MF77whZx//vlZYYUVqo857bTTcvzxx2efffZJixYtsv322+eYY46pbl9llVVywQUXZPjw4RkwYEBWW221HHTQQT7qDgAAgP8KNZVKpdLck1jeNTQ0ZNy4cenZs2ex720cdOYfM+Hl6R8+EIDlUpe12+fyQ3du7mkAAJ+QJenQ5fY99gAAAMCHE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABVuuw/7ss89OfX19kz877LBDdfvs2bMzbNiwbLnllunVq1d+/OMfZ+rUqU328corr+SAAw5Ijx490rt375x88smZN2/eJ30oAAAA8LFo2dwT+DAbb7xxLrzwwupybW1t9esTTjgh9913X84888ysssoqOf7443PwwQfnqquuSpI0NDTkwAMPTF1dXa666qq8+uqrOeKII9KqVascdthhn/ixAAAAwLK2XJ+xT94N+Y4dO1b/tG/fPkkyY8aMXHfddTnyyCPTu3fvdO3aNSeccEIef/zxjBs3Lkny4IMP5plnnsmpp56aTTbZJP369ctPfvKTXH755ZkzZ04zHhUAAAAsG8v9GfsXX3wxffr0yQorrJCePXvmZz/7WdZaa608+eSTmTt3brbaaqvq2A033DBrrbVWxo0bl549e2bcuHHp3Llz6urqqmP69OmToUOH5plnnsmmm266RHNpaGhYZsf1SXrvVQ4AlK3U1yIAYMksyWv+ch323bt3z4knnphOnTplypQpOffcczNo0KDccsstmTp1alq1apVVV121yWM6dOiQKVOmJEmmTp3aJOqTVJfnj1kS48ePX8ojaT5t2rRZ4l9gALD8mjhxYmbNmtXc0wAAliPLddj369ev+nWXLl3So0ePbLPNNrn99tuz4oorfuLz6datm7PfADSr+vr65p4CAPAJaGhoWOyTy8t12L/fqquums997nN56aWXstVWW2Xu3Ll58803m5y1nzZtWjp27Jjk3bPzTzzxRJN9zL9r/vwxS6K2tlbYA9CsvA4BAO+33N88773efvvtTJo0KR07dkzXrl3TqlWrjBkzprr9ueeeyyuvvJKePXsmSXr27Jmnn34606ZNq4556KGH0rZt22y00Uaf9PQBAABgmVuuz9iffPLJ2WabbbLWWmvl1Vdfzdlnn50WLVpk5513ziqrrJLddtstJ510Utq1a5e2bdvmV7/6VXr16lUN+z59+mSjjTbKkCFD8vOf/zxTpkzJmWeemUGDBqV169bNe3AAwHKvobExtS2KOg8CwEL8t//3fLkO+3//+9857LDD8vrrr6d9+/b5whe+kGuuuab6kXdHHXVUWrRokUMOOSRz5sxJnz59ctxxx1UfX1tbm5EjR2bo0KEZOHBg2rRpk1133TWHHHJIcx0SAFCQ2hYtcswVD+T5V99o7qkAsJQ6rd4uv/pu3+aexsdquQ773/zmN4vcvsIKK+S4445rEvPvt/baa2f06NHLemoAwKfE86++kQkvT2/uaQDAB/rvvRYBAAAAPgWEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBhD0AAAAUTNgDAABAwYQ9AAAAFEzYAwAAQMGEPQAAABRM2AMAAEDBPlVhf/nll6d///7p1q1bvv3tb+eJJ55o7ikBAADAR/KpCfvbbrstJ554Yn70ox/lhhtuSJcuXbLffvtl2rRpzT01AAAAWGqfmrC/8MILs/vuu2e33XbLRhttlGHDhmXFFVfMdddd19xTAwAAgKXWsrkn8EmYM2dO/v73v+fAAw+srmvRokW22mqrPP744x/6+EqlUt1PbW3txzbPj0ttbW02XrNdWtfWNPdUAFhK63dcNQ0NDWloaGjuqXyqeA0FKF+pr6Hz5zu/RxflUxH2r732WhoaGtKhQ4cm6zt06JDnnnvuQx/f2NiYJPnHP/7xsczvk7DLxislG6/U3NMA4CMYN25cc0/hU8lrKED5Sn4Nnd+ji/KpCPuPqmXLlunWrVtatGiRmhq/sQcAAODjValU0tjYmJYtPzzbPxVhv9pqq6W2tnaBG+VNmzYtdXV1H/r4Fi1apHXr1h/X9AAAAGCpfSpunte6det8/vOfz5gxY6rrGhsbM2bMmPTq1asZZwYAAAAfzafijH2SfO9738sRRxyRrl27pnv37rn44osza9asDBgwoLmnBgAAAEvtUxP2X//61zN9+vSMGDEiU6ZMySabbJLzzz9/sS7FBwAAgOVVTWVx7p0PAAAALJc+Fe+xBwAAgP9Wwh4AAAAKJuwBAACgYMIeKNL111+fzTffvLmnAQAAze5Tc1d8YPl05JFH5oYbblhg/Z/+9Kesv/76zTAjAChHfX39IrcffPDB+fGPf/wJzQZoLsIeaHZ9+/bNiSee2GRd+/btm2k2AFCOBx98sPr1bbfdlhEjRuSOO+6orltppZWqX1cqlTQ0NKRlSwkA/21cig80u9atW6djx45N/lxyySXZZZdd0rNnz/Tr1y9Dhw7N22+//YH7mDBhQvbaa6/06tUrm222WQYMGJDx48dXt//lL3/Jd7/73XTv3j39+vXLr371q8ycOfOTODwA+Ni897VzlVVWSU1NTXX5ueeey2abbZb77rsvAwYMSLdu3TJ27NgceeSROeigg5rs59e//nX22muv6nJjY2NGjRqV/v37p3v37vnGN77R5BcGwPJF2APLpZqamhx99NH54x//mJNOOikPP/xwTj311A8cf/jhh2fNNdfMtddem+uvvz77779/WrVqlSR56aWXsv/++2f77bfPzTffnN/85jcZO3Zsjj/++E/qcACg2Zx++un52c9+lttuu+1DL92fb9SoUbnxxhszbNiw3HrrrRk8eHB+/vOf59FHH/2YZwssDdfhAM3u3nvvTa9evarLffv2zYgRI6rL66yzTg499NAcd9xxGTp06EL38corr2S//fbLhhtumCT53Oc+V902atSo7LLLLhk8eHB129FHH5299torQ4cOzQorrLDMjwkAlheHHHJItt5668UeP2fOnIwaNSoXXnhh9fV53XXXzdixY3P11Vdniy22+LimCiwlYQ80uy233LJJsLdp0yYPPfRQRo0aleeeey5vvfVWGhoaMnv27MyaNStt2rRZYB/f+973cswxx+Smm27KVlttlR122CHrrbdekncv0584cWJuueWW6vhKpZLGxsZMnjy5+ssAAPhv1K1btyUa/+KLL2bWrFnZd999m6yfO3duNtlkk2U5NWAZEfZAs2vTpk2TO+BPnjw5Bx54YL7zne/kpz/9adq1a5exY8fm6KOPzty5cxca9j/+8Y+z884757777sv999+fESNG5De/+U222267zJw5M3vssUeT9w7O99nPfvZjPTYAaG7vf92sqalJpVJpsm7evHnVr+ffg2bUqFFZY401moxr3br1xzRL4KMQ9sBy5+9//3sqlUqOPPLItGjx7q1Abr/99g99XKdOndKpU6cMHjw4hx12WK677rpst9122XTTTfPMM8/4+DwAyLufPPPPf/6zybqnnnqqem+aDTfcMK1bt84rr7zisnsohJvnAcud9ddfP3Pnzs2ll16aSZMm5cYbb8xVV131gePfeeedDB8+PI888khefvnljB07NuPHj69eYr///vvn8ccfz/Dhw/PUU0/lhRdeyN13353hw4dX93H66adnyJAhH/uxAUBz+9KXvpQnn3wyN954Y1544YWMGDGiSei3bds2++67b0488cTccMMNeemll/L3v/89l156aW644YbquB122CF33XVXcxwC8D7O2APLnS5duuQXv/hFRo8enTPOOCObb755DjvssBxxxBELHd+iRYu8/vrrOeKIIzJ16tSsttpq2X777XPIIYdU93fppZfmzDPPzHe/+90k794E6Otf/3p1H1OmTMm//vWvj//gAKCZ9e3bNwcddFBOPfXUzJ49O7vttlu+9a1v5emnn66OOfTQQ9O+ffuMGjUqkydPziqrrJJNN900P/jBD6pjnn/++cyYMaM5DgF4n5rK+99gAwAAABTDpfgAAABQMGEPAAAABRP2AAAAUDBhDwAAAAUT9gAAAFAwYQ8AAAAFE/YAAABQMGEPAAAABRP2AMBiq6+vz913393c0wAA3qNlc08AAFh+TJkyJSNHjsy9996b//znP+nQoUM22WST7LPPPundu3ezzm3ChAk5++yz89e//jVz587NVlttlaFDh6Z9+/bNOi8AaG7O2AMASZLJkydnwIABefjhhzNkyJDccsstOf/887Pllltm2LBhH9vzzpkzZ7HGjR07NptttlkuueSSXHDBBZk4cWJOPfXUj21eAFAKYQ8AJEmGDRuWmpqa/OEPf8jXvva1dOrUKRtvvHG+973v5ZprrqmOe+211/KjH/0oPXr0yPbbb5977rmnuu3666/P5ptv3mS/d999d+rr66vLZ599dr75zW/mD3/4Q/r375/u3bsnefcy/z/84Q8fuO9BgwZlv/32y8Ybb5wePXqkb9+++de//vVxfTsAoBjCHgDI66+/ngceeCCDBg3KSiuttMD2VVddtfr1Oeeckx133DE333xzvvzlL+fwww/P66+/vkTP99JLL+XOO+/MOeeckxtvvHGJ9z1hwoTceOON2W233ZboeQHgv5GwBwDy0ksvpVKpZIMNNvjQsbvuumt23nnnrL/++jnssMMyc+bMPPHEE0v0fHPnzs0pp5ySTTfdNF26dFmifU+YMCF77713fvjDH2aXXXZZoucFgP9Gwh4ASKVSWeyx772sfqWVVkrbtm0zffr0JXq+tdZaa6E3vVucfZ9xxhnp06dP9ttvvyV6TgD4byXsAYCsv/76qampyXPPPfehY1u1atVkuaamJo2NjUmSFi1aLPBLgrlz5y6wjzZt2izxvud79dVX06lTpw+dJwB8Wgh7ACCf+cxn0qdPn1x++eWZOXPmAtvffPPNxdrPaqutlrfffrvJPiZMmLDM5pkkp512Wnbfffdluk8AKJmwBwCSJMcdd1waGxvz7W9/O3feeWdeeOGFPPvss7nkkksycODAxdpHjx490qZNm5xxxhl56aWXcsstt+T6669fpvM8/vjjc9dddy3TfQJAyYQ9AJAkWXfddXP99ddnyy23zMknn5ydd9453/ve9zJmzJgMHTp0sfbxmc98Jqeeemruv//+7LLLLrn11lvz4x//eJnOc9KkSXnttdeW6T4BoGQ1lSW5Ww4AAACwXHHGHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACibsAQAAoGDCHgAAAAom7AEAAKBgwh4AAAAKJuwBAACgYMIeAAAACvb/AAJ5IGi8sovlAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkYAAATFCAYAAAD18GqiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhUdf//8ZcMoCiKC2ia2qIyqKCgljeKkmZ651Iu39IybUHTjLRyTStxyaUbu12yNDNLTck701vUFm2xTNTqB4mlKJlb3MliiriBw/z+8GJyxIVhm+35uC6ui3PO5zPzfg/D+cyc9zmfU8FsNpsFAAAAAAAAAADgBjzsHQAAAAAAAAAAAEB5oTACAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt0FhBAAAAAAAAAAAuA0KIwAAAAAAAAAAwG1QGAEAAAAAAAAAAG6DwggAAAAAAAAAAHAbFEYAAAAAAAAAAIDboDACwGLBggUyGo06efKkvUMBAJSzTz75REajUcePH7d3KADg9go+l1+pc+fOmjBhgp0iAgCg/DH2oSxRGEGJfPjhhzIajXrooYfsHUqZWrRokbZu3VqktsePH5fRaNTSpUvLOKrisyUfAHBVzjKGmUwmrV27VoMGDdLdd9+t4OBgde7cWS+99JKSk5PtHR4AOL3hw4erZcuWysnJuW6b0aNHKzg4WH/99ZckyWg0ymg0atKkSdds/+9//9vSprxPOnLk2AAAZafgRKeCn5CQEEVERCgqKkrLly+/4ThXlnbt2mWJ6b///e812wwYMEBGo1E9e/Ys5+jgziiMoETi4+N16623as+ePTpy5Ii9wykzixcvdqlCgqvlAwDF4Qxj2IULFzRs2DBNnDhRZrNZw4YNU0xMjB588EElJibqoYce0p9//mnvMAHAqT3wwAO6cOHCdT8fnz9/Xl999ZUiIiJUo0YNy/qKFSvqiy++UG5ubqE+GzduVMWKFYsd0zPPPKM9e/YUu39ZxgYAcGwjR47U66+/rpiYGA0aNEiSNGPGDD3wwAPav3+/3eKqWLGiNm7cWGj98ePHlZiYeM2x6bPPPtO0adPKIzy4IQojKLZjx44pMTFRL730kmrWrKn4+Hh7hwQAQJEUdwy7dOnSNQ8ylZXXX39d3333nV566SWtXLlSUVFR+r//+z+NGjVKmzZt0tixY8stFgBwVZ07d1aVKlWuOxZ8+eWXOnfunB544AGr9R06dFBOTo6+/fZbq/X/7//9Px0/flz33HNPsWPy9PQsUfGiLGMDADi2jh076sEHH1S/fv00bNgwLV26VMuWLVNWVpZGjBihCxcu2CWuyMhI7dixo9DVihs3bpS/v7+Cg4ML9fH29paXl1d5hQg3Q2EExRYfHy8/Pz9FRkaqW7du1/0ikZ2drRkzZqhz584KDg5Wx44dNW7cOKsd4cWLF7VgwQJ169bNcqlfdHS0jh49amlz7tw5zZo1S5GRkQoODla3bt20dOlSmc1mS5uCaaw++eSTQnEYjUYtWLDAslwwb++RI0c0YcIEtWnTRq1bt9ZLL72k8+fPW/U7d+6c1q1bZ7n0rzTmN8zNzdX8+fN13333KTg4WJGRkXr99dcLHXAzGo2aOnWqtm7dqp49eyo4OFg9evQo9CVHunx5Yt++fRUSEqIuXbooLi6u0PzERcnnzJkzN3xNAMDZFWUMu3JqxPfff19dunRRSEiIfvvtN0nSb7/9ppEjR+ruu+9WSEiI+vbtqy+//NLqMU6dOqXZs2erV69eCgsLU6tWrTRkyJAinan1559/6qOPPlL79u31xBNPFNpuMBgUFRWlW265xbLu119/1ZAhQ9SqVSuFhYXp8ccfV1JSUqG+Bw8e1ODBg9WiRQt17NhRb731lvLz868Zx7Zt2/Too48qNDRUYWFhevrpp3Xw4MGbxg8AzqJSpUrq2rWrdu7cqaysrELbN27cqCpVqqhz585W6+vUqaM2bdoUOvs1Pj5egYGBatKkSaHH+vHHHzVy5Ejdc889lu8AM2bMKHSQ6lr3GLFFcWKTpJ9//llRUVFq3bq1WrZsqccee0w//fSTVZucnBy99tprlu934eHhevLJJ/XLL79Y2hw+fFjPPfec2rdvr5CQEHXs2FEvvPCCzpw5Y2mzdu1aDR48WOHh4QoODlb37t21atWqQjHl5+drwYIFioiIUMuWLTVo0CClpqZec9757Oxsvfbaa5bvjPfdd5/eeeed645xAOAuwsPDNWLECP3xxx/asGGDZf3+/fs1YcIE3XvvvQoJCVH79u310ksvWaaOlKSdO3fKaDRqy5YthR43Pj5eRqNRiYmJN43h3nvvlbe3tz777DOr9Rs3btT9998vg8FQqM/V+/qC6cJ++uknzZw5U//4xz8UGhqqZ599tlDBJTk5WVFRUWrbtq1atGhhmY4YKOBp7wDgvOLj43XffffJ29tbPXv21OrVq7Vnzx61aNHC0ubs2bMaOHCgfvvtN/Xr10/NmjXTX3/9pa+++konTpxQzZo1ZTKZNGzYMCUkJKhHjx4aPHiwzp49q++//14HDhxQw4YNZTab9cwzz2jXrl36v//7PzVt2lTfffedXn/9dZ04cUITJ04sdh7PP/+86tevrxdffFG//vqr/vOf/6hmzZqWs3Bff/11vfzyy2rRooUefvhhSVLDhg1L9Nrl5+frmWee0U8//aSHH35YjRo10oEDB/TBBx/o8OHDeuutt6za//TTT/riiy/06KOPqkqVKlqxYoVGjhypr7/+2nI5f8HBsICAAD333HPKz8/XwoULVbNmTavHKko+N3tNAMDZFWUMK/DJJ5/o4sWLevjhh+Xt7S0/Pz8dPHhQjzzyiOrUqaOhQ4eqcuXK+vTTT/Xss89qwYIFuu+++yRdvjJl69at+uc//6n69esrMzNTH330kR577DFt2rRJderUuW6M3377rS5dulToDOXrOXjwoAYOHKgqVapoyJAh8vT01EcffaRBgwZp5cqVatmypSQpIyNDgwcPlslk0tNPPy0fHx+tWbPmmmcmr1+/XhMmTFBERITGjBmj8+fPa/Xq1Xr00Ue1bt061a9fv0ixAYCj69Wrl9atW6dPP/1Ujz32mGX9qVOntH37dvXo0UOVKlW6Zr/XXntNZ8+eVZUqVXTp0iV99tlnevLJJ3Xx4sVC7T/77DNduHBBjzzyiKpXr649e/Zo5cqV+vPPPzV//vxSz8mW2BISEjR06FAFBwcrOjpaFSpU0CeffKLHH39cq1atsoyRkydP1ueff67HHntMjRo10qlTp/TTTz/pt99+U/PmzZWbm6uoqCjl5ubqsccek7+/v06cOKFvvvlG2dnZqlq1qiRp9erVatKkiTp37ixPT099/fXXmjJlisxmswYOHGiJa86cOXr33XfVqVMndejQQfv371dUVFShHM6fP6/HHntMJ06c0IABA1S3bl0lJibqjTfeUEZGxnXvuQIA7uLBBx/UG2+8oe3bt1uOB+3YsUPHjh1T3759FRAQoIMHD2rNmjVKTU3VmjVrVKFCBbVt21Z169a1fIe6Unx8vBo2bKiwsLCbPn+lSpXUuXNnbdq0SY8++qiky4WZgwcPavr06UpJSSlyLtOnT1e1atUUHR2tP/74Qx988IGmTp2quXPnSpKysrIUFRWlGjVq6Omnn1a1atV0/PjxaxZ34MbMQDEkJyebAwMDzd9//73ZbDab8/PzzR07djRPnz7dqt28efPMgYGB5i+++KLQY+Tn55vNZrP5448/NgcGBpqXLVt23TZbtmwxBwYGmt966y2r7c8995zZaDSajxw5YjabzeZjx46ZAwMDzWvXri30WIGBgeb58+dblufPn28ODAw0v/TSS1btnn32WfPdd99ttS40NNQ8fvz4a74WVyuI4d13371um/Xr15uDgoLMP/zwg9X61atXmwMDA80//fSTVdzNmze35Gg2m8379u0zBwYGmlesWGFZN2zYMHPLli3Nf/75p2Xd4cOHzc2aNTMHBgYWKR9bXhMAcFZFHcMK9uetWrUyZ2VlWW17/PHHzT179jRfvHjRsi4/P9/cv39/c9euXS3rLl68aDaZTIUeNzg42Pzmm2/eMM4ZM2aYAwMDzb/++muR8hoxYoS5efPm5qNHj1rWnThxwhwWFmYeOHCgZd1rr71mDgwMNP/888+WdVlZWebWrVubAwMDzceOHTObzWZzTk6OuU2bNuaXX37Z6nkyMjLMrVu3LrQeAJzZpUuXzO3btzf379/fan3B5/PvvvvOan1gYKB5ypQp5lOnTpmbN29uXr9+vdlsNpu/+eYbs9FoNB8/ftzy2frKMeT8+fOFnnvx4sVmo9Fo/uOPPyzrCvpeqVOnTkX6TlKc2PLz881du3Y1P/XUU5bvYAXxdu7c2fzkk09a1rVu3do8ZcqU6z7/r7/+ag4MDDR/+umnN4zzWq/FU089Zb733nstyxkZGeZmzZqZR4wYYdVuwYIF5sDAQKvXY+HChebQ0FDz77//btU2NjbW3LRpU3NaWtoN4wEAZ7d27VpzYGCgec+ePddt07p1a3Pv3r0ty9faF2/cuNEcGBhodcxqzpw55uDgYHN2drZlXVZWlrlZs2ZWx9quZefOnZZx4euvvzYbjUbLPnn27NmW/f5jjz1m7tGjh1Xfq8e+ghyfeOIJq/FqxowZ5qZNm1riKziOeKPXAmAqLRRLfHy8/P391bZtW0lShQoV1L17d23evFkmk8nS7osvvlBQUFChinJBn4I2NWrUsDoz6+o23377rQwGg+WmUQWeeuopmc3ma04rVVQDBgywWm7Tpo1OnTqlnJycYj/mzXz22Wdq1KiR7rzzTp08edLy849//EPS5SmxrtSuXTurqzqCgoLk6+urY8eOSZJMJpMSEhJ07733Wp19fNttt6lDhw42x2eP1wQAyktRx7ACXbt2tbr67tSpU9q5c6fuv/9+5eTkWPbhf/31lyIiInT48GGdOHFC0uU5cT08Ln/cMplM+uuvv1S5cmXdcccd+vXXX28YZ8E+t0qVKjfNyWQy6fvvv1eXLl3UoEEDy/ratWurZ8+e+umnnyyPt23bNoWGhlpdHVOzZk316tXL6jF37Nih7Oxs9ejRw2qs8vDwUMuWLQuNVQDgzAwGg3r06KHExEQdP37csr5g3vPw8PBr9vPz81OHDh20adMmSZfHmLCwMN16663XbH/lVSfnzp3TyZMnFRYWJrPZfNNxwVa2xLZv3z4dPnxYvXr10l9//WXZ5587d07h4eH64YcfLNNRVatWTT///LNlrLuar6+vJGn79u03nI73ytfizJkzOnnypO6++24dO3bMMuVWQkKCLl26ZDmzuMC1vjt+9tlnat26tapVq2Y1brVr104mk0k//PDDjV4uAHALlStX1tmzZy3LV+6LL168qJMnT1quNL9yisQHH3xQubm5VtNgbd682aYr3CWpffv28vPz06ZNm2Q2m7V582b16NHD5jwefvhhyzFD6fJxK5PJpD/++EOSLFcnfvPNN8rLy7P58eEemEoLNjOZTNq0aZPatm1r9aWhRYsWeu+995SQkKCIiAhJ0tGjR9W1a9cbPt7Ro0d1xx13yNPz+m/HP/74Q7Vr17Z8yC7QqFEjy/biqlevntVytWrVJEmnT58u9Hyl5ciRI/rtt9+u+wXr6rmN69atW6iNn5+fsrOzLe0vXLig2267rVC7a627GXu8JgBQHmwZwwpcPV3U0aNHZTabNW/ePM2bN++az5OVlaU6deooPz9fy5cv16pVq3T8+HGrwkv16tVvGGvB/vbKLy7Xc/LkSZ0/f1533HFHoW2NGjVSfn6+/ve//6lJkyZKS0uzfNm50tV9Dx8+LEl6/PHHbxgfALiKXr166f3339fGjRs1fPhw/fnnn/rxxx81aNCga857fmW/cePGKS0tTV9++aXGjBlz3bZpaWmaP3++vvrqK50+fdpqW1mchFTU2Ar2+ePHj7/uY505c0Z+fn4aM2aMJkyYoHvuuUfNmzdXZGSkevfubSnMN2jQQE8++aSWLVum+Ph4tWnTRp07d9YDDzxgOVAlXZ4ueMGCBUpKSipUQDlz5oyqVq2qtLQ0SYWn/q1evbr8/Pys1h05ckQpKSnX/Y519dzzAOCOzp07p1q1almWT506pTfffFObN28udCzqyvtCNWrUSCEhIYqPj9dDDz0k6XLBPTQ01KbjTl5eXvrnP/+pjRs3qkWLFvrf//5X6AStorjecauC42R33323unXrpjfffFPvv/++7r77bnXp0kW9evWSt7e3zc8H10RhBDbbuXOnMjIytGnTJsvZR1eKj48vdFCpvFxZLb7Stc4ALlBwJu/VzFfc1L205efnKzAw8Lo3fbryRrqSrvtFrKxitMdrAgDloThj2NVzyhecMfvUU09d96q8ggM4ixYt0rx589SvXz+NGjVKfn5+8vDw0IwZM266T73zzjslSSkpKWratGnREixFBfG9/vrrCggIKLT9RgcJAcAZBQcH684779SmTZs0fPhwbdy4UWaz+aYHbDp37iwvLy+NHz9eubm5uv/++6/ZzmQy6cknn9Tp06c1ZMgQ3XnnnapcubJOnDihCRMmlMkNwosaW8E+f9y4cdcdcypXrixJ6t69u9q0aaMtW7bo+++/19KlS7VkyRItWLBAkZGRkqQJEyaoT58++vLLL/X9999r+vTpWrx4sdasWaNbbrlFR48e1RNPPKE777xTEyZMUN26deXl5aVt27bp/fffL9ZrkZ+fr/bt22vIkCHX3H777bfb/JgA4Er+/PNPnTlzxqrY/PzzzysxMVFRUVFq2rSpKleurPz8fA0ZMqTQ95XevXvrtdde059//qnc3FwlJSXp1VdftTmOXr16KS4uTgsWLFBQUJAaN25s82Pc7LhVhQoVNH/+fCUlJenrr7/Wd999p4kTJ2rZsmX66KOPinRVPlwfhRHYLD4+XrVq1brmzm/Lli3asmWLpkyZokqVKqlhw4Y6ePDgDR+vYcOG+vnnn5WXlycvL69rtrn11luVkJCgnJwcqzNUDx06ZNkuyXLWUEGFuEDBmUaOomHDhtq/f7/Cw8OvW8yxRa1atVSxYkUdOXKk0LZrrQMAd2XLGHY9BWfEenl5qV27djd8vs8//1xt27bVjBkzrNZnZ2erRo0aN+zbsWNHGQwGxcfHq3fv3jdsW7NmTfn4+Oj3338vtO3QoUPy8PCwXH1Yr169a44NV/ctyLNWrVo3zRMAXEWvXr00b9487d+/Xxs3btTtt99uNfXgtVSqVEldunTRhg0b1LFjR6vpF6904MABHT58WLNnz7bar3///felmUKxYivY5/v6+hZpn1+7dm0NHDhQAwcOVFZWlvr06aNFixZZCiOSZDQaZTQaNWLECP2///f/9Mgjj2j16tV64YUX9NVXXyk3N1dvv/221Vm/V0/TWLDt6NGjVlNF/vXXX4WuuGnYsKHOnTvHmAUA1/Hf//5Xkiwngp0+fVoJCQl67rnnFB0dbWlXcBXh1bp3765Zs2Zp48aNunDhgry8vK5bcL+R1q1bq169etq9e/cNr7IsDaGhoQoNDdULL7yg+Ph4jRkzRps3b7Zc9QL3xj1GYJMLFy7oiy++0D333KN//vOfhX4GDhyos2fP6quvvpJ0eV72/fv3a8uWLYUeq6CK27VrV/3111/68MMPr9umY8eOMplMhdq8//77qlChgjp27Cjp8gf5GjVq6Mcff7Rqt2rVqhLlXbly5ULFlpK4//77deLECa1Zs6bQtgsXLujcuXM2PZ7BYFC7du305ZdfWs31e+TIEX333XeF2pd2PgDgDGwdw66nVq1auvvuu/XRRx8pPT290PYrp+owGAyFzrT69NNPrzsv+5Xq1q2rhx56SNu3b9eKFSsKbc/Pz9d7772nP//8UwaDQe3bt9eXX35pNUVYZmamNm7cqNatW1tOLIiMjFRSUpL27NljFXN8fLzV43fo0EG+vr5avHjxNeflZUoSAK6o4OqQ+fPna9++fUWe3iMqKkrR0dEaMWLEddsUnN165bhgNpu1fPnyEkRcOrEFBwerYcOGeu+99645hWPBPt9kMllNrSJdHhdr166t3NxcSZenBLt06ZJVm8DAQHl4eFjaFFx1eOVrcebMGa1du9aqX3h4uDw9PbV69Wqr9df67nj//fcrMTHxmt9/srOzC8UEAO4kISFBb731lurXr2+5J8j1rgD/4IMPrrm+Zs2a6tChgzZs2GC50v56BfcbqVChgiZNmqTo6Gg9+OCDNvcvitOnTxf6HlZwRWTBWARwxQhs8tVXX+ns2bPq3LnzNbeHhoaqZs2a2rBhg7p3766oqCh9/vnnGjVqlPr166fmzZvr9OnT+uqrrzRlyhQFBQWpd+/eWr9+vWbOnKk9e/aodevWOn/+vBISEvTII4+oS5cu6ty5s9q2bat///vf+uOPP2Q0GvX999/ryy+/1OOPP251GeBDDz2kd955R5MmTVJwcLB+/PHHa55Ba4vmzZsrISFBy5YtU+3atVW/fv1rzs9+pYSEBF28eLHQ+i5duujBBx/Up59+qsmTJ2vXrl1q1aqVTCaTDh06pM8++0zvvvuuQkJCbIoxOjpa27dv1yOPPKJHHnlE+fn5WrlypZo0aaJ9+/aVOB8AcHa2jmE3MnnyZD366KPq1auXHn74YTVo0ECZmZlKSkrSn3/+qQ0bNkiS7rnnHi1cuFAvvfSSwsLCdODAAcXHx1ud9XojEyZM0LFjxzR9+nR98cUX6tSpk6pVq6b//e9/+uyzz3To0CHLzQqff/557dixQ48++qgeffRRGQwGffTRR8rNzdXYsWMtjzlkyBD997//1ZAhQzR48GD5+PhozZo1qlevnlJSUiztfH19FRMTo3Hjxqlv377q3r27atasqbS0NG3btk2tWrUq1qXzAODIGjRooLCwMH355ZeSVOTCSFBQkIKCgm7Y5s4771TDhg01e/ZsnThxQr6+vvr888/L/ISlosTm4eGh6dOna+jQoerZs6f69u2rOnXq6MSJE9q1a5d8fX21aNEinT17VpGRkerWrZuCgoJUuXJl7dixQ8nJyZowYYKky9NWTp06Vf/85z91++23y2Qy6b///a8MBoO6desm6fLNd728vDR8+HANGDBAZ8+e1X/+8x/VqlVLGRkZlrj8/f01ePBgvffeexo+fLg6dOiglJQUffvtt6pRo4bV1fdRUVH66quvNHz4cPXp00fNmzfX+fPndeDAAX3++ef68ssvi3UADwCczbfffqtDhw7JZDIpMzNTu3bt0vfff6969erp7bffVsWKFSVd/rx/11136d1331VeXp7q1Kmj77//3upEq6v17t1bI0eOlCSNGjWq2DF26dJFXbp0KXb/m1m3bp1Wr16tLl26qGHDhjp79qzWrFkjX19fy8nVAIUR2GTDhg2qWLGi2rdvf83tHh4euueeexQfH6+//vpLNWrU0IcffqgFCxZoy5YtWrdunWrVqqXw8HDVqVNH0uUK9ZIlS/T2229r48aN+uKLL1S9enW1atVKRqPR8rhvv/225s+fr82bN+uTTz7RrbfeqnHjxumpp56yiuHZZ5/VyZMn9fnnn+vTTz9Vx44d9e677173JnxFMWHCBL366quaO3euLly4oD59+ty0kPDdd99d82ylW2+9VYGBgVq4cKHef/99/fe//9WWLVvk4+Oj+vXra9CgQde8ee7NBAcHa8mSJXr99dc1b9481a1bVyNHjtShQ4csU46VJB8AcHa2jmE30rhxY61du1Zvvvmm1q1bp1OnTqlmzZpq1qyZnn32WUu74cOH6/z584qPj9fmzZvVrFkzLV68WHPmzClSzD4+PlqyZIk++eQTrV+/Xm+99ZYuXLig2rVrq23btoqNjbWMp02aNNGHH36oOXPmaPHixTKbzWrRooX+9a9/We3ja9eureXLl2v69Ol65513VL16dQ0YMEC1a9fWpEmTrJ6/V69eql27tt555x0tXbpUubm5qlOnjtq0aaO+ffsWKQcAcDa9evVSYmKiWrRoYdMNZW/Gy8tLixYtstxvo2LFirrvvvs0cODAMjtj1hZt27bVRx99pLfeeksrV67UuXPnFBAQoBYtWqh///6SLk/N9cgjj+j777/XF198IbPZrIYNG1pOGJAuT6EVERGhr7/+WidOnJCPj4+MRqOWLFmi0NBQSZeLRPPnz9fcuXM1e/Zs+fv765FHHlHNmjU1ceJEq7jGjBmjSpUq6T//+Y8SEhIUGhqqpUuX6tFHH7W6ga6Pj49WrFihxYsX67PPPtP69evl6+ur22+/Xc8995zVjd8BwJXNnz9f0uVxp3r16goMDNTEiRPVt29fq+npJWnOnDmaNm2aVq1aJbPZrPbt22vJkiXXvZdip06d5Ofnp/z8fN17771lnktx3X333UpOTtbmzZuVmZmpqlWrqkWLFoqNjS3ySWpwfRXM3E0ZcGkjRoxQamqqvvjiC3uHAgAAAAAllp2drbvuukvPP/+8nnnmGXuHAwBu49KlS+rQoYM6depU6D6KgLPhHiOAC7lw4YLV8uHDh/Xtt9/q7rvvtlNEAAAAAFB8V3/Hkf6e/57vOQBQvrZu3aqTJ0+qd+/e9g4FKDGm0gJcSJcuXdSnTx81aNBAf/zxh+Li4uTl5aUhQ4bYOzQAAAAAsNnmzZu1bt06dezYUZUrV9b/+3//Txs3blRERIRat25t7/AAwC38/PPPSklJ0VtvvaVmzZpRmIZLoDACuJAOHTpo06ZNysjIkLe3t0JDQ/Xiiy/q9ttvt3doAAAAAGAzo9Eog8Ggd999V2fPnlWtWrU0ePBgPf/88/YODQDcxurVq7VhwwYFBQVp1qxZ9g4HKBXcYwQAAAAAAAAAALgN7jECAAAAAAAAAADcBoURAAAAAAAAAADgNpzyHiP5+fm6dOmSPDw8VKFCBXuHAwBlxmw2Kz8/X56envLwoJZdnhhrALgTVxtvFi9erC+++EKHDh1SpUqVFBYWpjFjxujOO++0tBk0aJB2795t1a9///6aOnWqZTktLU0xMTHatWuXKleurN69e2v06NHy9Pz7a9SuXbs0a9YsHTx4UHXr1tUzzzyjvn37FjlWxhsA7sLVxhpnwlgDwF3YMtY4ZWHk0qVLSk5OtncYAFBuQkJC5O3tbe8w3ApjDQB35Crjze7duzVw4ECFhITIZDLpjTfeUFRUlDZt2qTKlStb2j388MMaOXKkZdnHx8fyu8lk0rBhw+Tv76+4uDilp6dr/Pjx8vLy0osvvihJOnbsmIYNG6YBAwYoNjZWCQkJevnllxUQEKAOHToUKVbGGwDuxlXGGmfCWAPA3RRlrHHKwkhBtSckJEQGg6FIfUwmk5KTk23q48zcKV93ylVyr3zJ9e/1nFFV/ooz1jgaV/8fIj/n5+o5OlN+rjbeLF261Gp51qxZCg8P1y+//KK77rrLsr5SpUoKCAi45mNs375dqampWrZsmfz9/dW0aVONGjVKsbGxio6Olre3t+Li4lS/fn1NmDBBktSoUSP99NNPev/994tcGCnueONM76/icPX8JNfPkfycX2nn6GpjjTNhrLEvXsfSwetYOlz9dbRlrHHKwkjBZX8Gg8HmP2Bx+jgzd8rXnXKV3CtfchWXO9tBScYaR+MKOdwI+Tk/V8/RmfJz1fHmzJkzkiQ/Pz+r9fHx8dqwYYMCAgLUqVMnjRgxwnLVSFJSkgIDA+Xv729pHxERoZiYGKWmpqpZs2ZKSkpSeHi41WNGRERoxowZRY7NVV9zALge9nvlr6TfbZzps4wj43UsHbyOpcPVX8eijDVOWRgBAAAAgKLIz8/XjBkz1KpVKwUGBlrW9+zZU/Xq1VPt2rWVkpKi2NhY/f7773rzzTclSZmZmVZFEUmW5YyMjBu2ycnJ0YULF1SpUqUix1ncKU5cfWoUV89Pcv0cyc/5uUOOAAD3Q2EEAAAAgMuaMmWKDh48qFWrVlmt79+/v+V3o9GogIAAPfHEEzp69KgaNmxY3mEyvclVXD0/yfVzJD/nV1ZTaQEA4AgojAAAAABwSVOnTtU333yjlStX6pZbbrlh25YtW0qSjhw5ooYNG8rf31979uyxapOZmSlJlvuS+Pv7W9Zd2cbX19emq0Ukpje5HlfPT3L9HMnP+blDjgAA98MdrwAAAAC4FLPZrKlTp2rLli364IMP1KBBg5v22bdvn6S/ix6hoaE6cOCAsrKyLG127NghX19fNW7c2NJm586dVo+zY8cOhYaGllImAAAAAMoChREAAAAALmXKlCnasGGD5syZoypVqigjI0MZGRm6cOGCJOno0aNauHCh9u7dq+PHj+vLL7/U+PHjdddddykoKEjS5ZuoN27cWOPGjdP+/fv13Xffae7cuRo4cKC8vb0lSQMGDNCxY8f0+uuv67ffftOHH36oTz/9VE888YS9UgcAAABQBEylBQAAAMClrF69WpI0aNAgq/UzZ85U37595eXlpYSEBC1fvlznzp1T3bp11bVrV40YMcLS1mAwaNGiRYqJiVH//v3l4+OjPn36aOTIkZY2DRo00OLFizVz5kwtX75ct9xyi6ZPn64OHTqUT6IAAAAAioXCCAAAAACXkpKScsPtdevW1cqVK2/6OLfeequWLFlywzZt27bV+vXrbQkPAAAAgJ2VaCqtd955R0ajUa+99ppl3cWLFzVlyhS1bdtWYWFheu655wrdkDAtLU1PP/20WrZsqfDwcM2ePVuXLl0qSSgAAAAAAAAAAAA3VezCyJ49exQXFyej0Wi1fsaMGfr66681d+5crVixQunp6YqOjrZsN5lMGjZsmPLy8hQXF6dZs2Zp3bp1mj9/fvGzAAAAAAA34+XlZe8QAAAAAKdUrMLI2bNnNXbsWE2fPl1+fn6W9WfOnNHatWs1YcIEhYeHKzg4WDNmzFBiYqKSkpIkSdu3b1dqaqr+9a9/qWnTpoqMjNSoUaP04YcfKjc3t1SSgnMx5Zvt0hcAHFFx92vsDwHA/TRt1lwGg8HmfowZAACgPPD9Fo6sWPcYmTp1qiIjI9WuXTu9/fbblvV79+5VXl6e2rVrZ1nXqFEj1atXT0lJSQoNDVVSUpICAwPl7+9vaRMREaGYmBilpqaqWbNmJUgHzsjgUUGj4hKVmp5jU7/GtX01b0CYTKYyCgwA7KA4+8SC/SEAwL14eRoYMwDASbzzzjuaM2eOBg8erEmTJkm6PB39rFmztHnzZuXm5ioiIkKTJ0+2OmaWlpammJgY7dq1S5UrV1bv3r01evRoeXpy22A4Pr7fwpHZvBfdtGmTfv31V3388ceFtmVmZsrLy0vVqlWzWl+rVi1lZGRY2ly5g5dkWS5oU1QmG46IF7S1pY8zc6Z8DQaDUtNz9EtadrH65+fnS3KOXEuDM/1tS4pc3SN3FFaSfSIAwL0wZgCA47vRdPTbtm3T3LlzVbVqVU2bNk3R0dGKi4uT9Pd09P7+/oqLi1N6errGjx8vLy8vvfjii/ZIBbAZn1XgqGwqjPzvf//Ta6+9pvfee08VK1Ysq5iKLDk5uVz6ODNHz9fHx6fEVwkdPHhQkuPnWtrcKV9yBQAAAAA4oyuno79y1pWC6ehjY2MVHh4u6XKhpHv37pZZVwqmo1+2bJn8/f3VtGlTjRo1SrGxsYqOjpa3t7e90gLswsfHx94hwIXYVBj55ZdflJWVpb59+1rWmUwm/fDDD/rwww+1dOlS5eXlKTs72+qqkaysLAUEBEi6fHXInj17rB43MzNTkixtiiokJKTIc+qaTCYlJyfb1MeZuVO+TZo00cGDB9WkSRN5eBTrtjlOxZ3+tuT693oAAAAAgPNxpOnobZ2RwJ1mcShLDvM6VvCQwaNCsbqa8s2SOd/mfsU5lhPgW1GmfHOhWA0GQ5He88WN1V04zPuxjNiSl02FkX/84x+Kj4+3WvfSSy/pzjvv1NChQ1W3bl15eXkpISFB3bp1kyQdOnRIaWlpCg0NlSSFhoZq0aJFysrKUq1atSRJO3bskK+vrxo3bmxLODIYDDb/gxWnjzNz5XwLdpReXl62fxi4xg7W2bjy3/Zq5AoAAAAAcDaONB29VPwZCjhZr3TY83UsmLGlJPf4/fXXFJ0/f97m57RVNR/PEt+P2NZY3RH/1zYWRnx9fRUYGGi1rnLlyqpevbplfb9+/TRr1iz5+fnJ19dX06dPV1hYmKUwEhERocaNG2vcuHEaO3asMjIyNHfuXA0cOJBLAGGT4u4ouYkTAAAAAAAoS442Hb1k28wrknvN4lCWHOl1LMn9Pq6+R05Zc6ZYnYkjvR/Lgi0zr9h88/WbmThxojw8PDRy5Ejl5uYqIiJCkydPtmw3GAxatGiRYmJi1L9/f/n4+KhPnz4aOXJkaYcCN8FNnAAAAAAAgCNxtOnopeLPUMDMBqXDWV9Hy9RWThS7M8VqL876fixNJS6MrFixwmq5YsWKmjx5slUx5Gq33nqrlixZUtKnBgAAAAAAAByOo01HDxRXcWdsuccYoLHdgsowMqBkSv2KEQAAAAAAAMCdMR09XI2tM7Y0CqhShtEAJUdhBAAAAAAAAChnTEcPAPZDYQQAAAAAAAAoY0xHDwCOw8PeAQAAAAAAAAAAAJQXCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAADl6ocfftDw4cMVEREho9GorVu3Wm2fMGGCjEaj1U9UVJRVm1OnTmn06NFq1aqV2rRpo4kTJ+rs2bNWbfbv369HH31UISEhioyM5IaFAAAAAAAAkCR52jsAAIB7OXfunIxGo/r166fo6OhrtunQoYNmzpxpWfb29rbaPmbMGGVkZGjZsmXKy8vTxIkT9eqrr2rOnDmSpJycHEVFRSk8PFxTpkzRgQMHNHHiRFWrVk39+/cvu+QAAAAAAADg8CiMAADKVWRkpCIjI2/YxtvbWwEBAdfc9ttvv+m7777Txx9/rJCQEEnSyy+/rKefflrjxo1TnTp1tGHDBuXl5WnGjBny9vZWkyZNtG/fPi1btozCCAAAAAAAgJtjKi24nQDfijLlm4vVt7j9ANhm9+7dCg8PV7du3TR58mT99ddflm2JiYmqVq2apSgiSe3atZOHh4f27NkjSUpKSlKbNm2srjSJiIjQ77//rtOnT5dfIgAAAAAAAHA4XDECt1PNx1MGjwoaFZeo1PScIvdrXNtX8waElWFkAKTL02jdd999ql+/vo4dO6Y33nhDQ4cO1UcffSSDwaDMzEzVrFnTqo+np6f8/PyUkZEhScrMzFT9+vWt2vj7+1u2+fn5FTkek8lUwoxsYzAYit336lgLlss7h/JCfs7P1XN0pvycIUYAAAAAKC0URuC2UtNz9Etatr3DAHCVHj16WH4vuPl6ly5dLFeRlLfk5ORyey4fHx81a9as2P1TUlJ0/vz5QuvLMwd7ID/n5+o5unp+AAAAAOBsKIwAABxagwYNVKNGDR05ckTh4eHy9/fXyZMnrdpcunRJp0+fttyXxN/fX5mZmVZtCpYLrhwpqpCQkBJdxVGejEaj1bLJZFJycrJT5WAL8nN+rp6jM+VXECsAAAAAuAMKIwAAh/bnn3/q1KlTlqJHWFiYsrOztXfvXgUHB0uSdu7cqfz8fLVo0UKSFBoaqrlz5yovL09eXl6SpB07duiOO+6waRot6fLUVo5+QLPA9eJ0phyKg/ycn6vn6Or5AQAAAICz4ebrAIBydfbsWe3bt0/79u2TJB0/flz79u1TWlqazp49q9mzZyspKUnHjx9XQkKCRowYodtuu00dOnSQJDVq1EgdOnTQK6+8oj179uinn37StGnT1KNHD9WpU0eS1KtXL3l5eWnSpEk6ePCgNm/erOXLl+vJJ5+0W94AAAAAAABwDFwxAgAoV3v37tXgwYMtyzNnzpQk9enTRzExMTpw4IDWr1+vM2fOqHbt2mrfvr1GjRolb29vS5/Y2FhNmzZNjz/+uDw8PNS1a1e9/PLLlu1Vq1bV0qVLNXXqVPXt21c1atTQiBEj1L9///JLFAAAAAAAAA6JwggAoFy1bdtWKSkp192+dOnSmz5G9erVNWfOnBu2CQoK0qpVq2yODwAAAAAAAK6NqbQAAAAAAAAAAIDboDACAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt0FhBCiiAN+KMuWbi92/JH0BAAAAAAAAAKXD094BAM6imo+nDB4VNCouUanpOTb1bVzbV/MGhJVRZAAAAAAAAACAoqIwAtgoNT1Hv6Rl2zsMAAAAXMfixYv1xRdf6NChQ6pUqZLCwsI0ZswY3XnnnZY2Fy9e1KxZs7R582bl5uYqIiJCkydPlr+/v6VNWlqaYmJitGvXLlWuXFm9e/fW6NGj5en599eoXbt2adasWTp48KDq1q2rZ555Rn379i3XfAEAAPD3bC8Gjwo29y1uPzgvCiMAAAAAXMru3bs1cOBAhYSEyGQy6Y033lBUVJQ2bdqkypUrS5JmzJihbdu2ae7cuapataqmTZum6OhoxcXFSZJMJpOGDRsmf39/xcXFKT09XePHj5eXl5defPFFSdKxY8c0bNgwDRgwQLGxsUpISNDLL7+sgIAAdejQwW75AwAAuKPizvbCTC/uicIIAAAAAJeydOlSq+VZs2YpPDxcv/zyi+666y6dOXNGa9euVWxsrMLDwyVdLpR0795dSUlJCg0N1fbt25Wamqply5bJ399fTZs21ahRoxQbG6vo6Gh5e3srLi5O9evX14QJEyRJjRo10k8//aT333+fwggAAICdMNsLioKbrwMAAABwaWfOnJEk+fn5SZL27t2rvLw8tWvXztKmUaNGqlevnpKSkiRJSUlJCgwMtJpaKyIiQjk5OUpNTbW0KSisXNmm4DEAAAAAOCauGAEAAADgsvLz8zVjxgy1atVKgYGBkqTMzEx5eXmpWrVqVm1r1aqljIwMS5sriyKSLMs3a5OTk6MLFy6oUqVKRY7TZDLZnJfBYLCpT0mer7wVxOfocZaEq+dIfs6vtHN05dcKAOB8KIwAAAAAcFlTpkzRwYMHtWrVKnuHckPJyck2tffx8VGzZs2K/XwpKSk6f/58sfuXF1tfF2fk6jmSn/NzhxwBAO6HwggAAAAAlzR16lR98803WrlypW655RbLen9/f+Xl5Sk7O9vqqpGsrCwFBARY2uzZs8fq8TIzMyXJqk3Buivb+Pr62nS1iCSFhITYdAVIfn6+TY9/NaPRWKL+Zc1kMik5Odnm18WZuHqO5Of8SjvHgscDAMARUBgBAAAA4FLMZrOmTZumLVu2aMWKFWrQoIHV9uDgYHl5eSkhIUHdunWTJB06dEhpaWkKDQ2VJIWGhmrRokXKyspSrVq1JEk7duyQr6+vGjdubGnz7bffWj32jh07LI9hC4PBUK4HV53lQG55vy724Oo5kp/zc4ccAQDuh5uvAwAAAHApU6ZM0YYNGzRnzhxVqVJFGRkZysjI0IULFyRJVatWVb9+/TRr1izt3LlTe/fu1cSJExUWFmYpakRERKhx48YaN26c9u/fr++++05z587VwIED5e3tLUkaMGCAjh07ptdff12//fabPvzwQ3366ad64okn7JQ5AAAAgKLgihEAAAAALmX16tWSpEGDBlmtnzlzpvr27StJmjhxojw8PDRy5Ejl5uYqIiJCkydPtrQ1GAxatGiRYmJi1L9/f/n4+KhPnz4aOXKkpU2DBg20ePFizZw5U8uXL9ctt9yi6dOnq0OHDuWQJQAAAIDiojCCUmPKN8vgUcHeYQAAAMDNpaSk3LRNxYoVNXnyZKtiyNVuvfVWLVmy5IaP07ZtW61fv97WEAEAAADYEYURlBqDRwWNiktUanpOkfvcYwzQ2G5BZRgVAAAAAAAAAAB/ozCCUpWanqNf0rKL3L5RQJUyjAYAAAAAAAAAAGvcfB0AAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAADl6ocfftDw4cMVEREho9GorVu3Wrbl5eXpX//6l3r16qXQ0FBFRERo3LhxOnHihNVjdO7cWUaj0ernnXfesWqzf/9+PfroowoJCVFkZKSWLFlSLvkBAAAAAADAsXnaOwAAgHs5d+6cjEaj+vXrp+joaKttFy5c0K+//qpnnnlGQUFBys7O1muvvaZnnnlGn3zyiVXbkSNH6uGHH7YsV6lSxfJ7Tk6OoqKiFB4erilTpujAgQOaOHGiqlWrpv79+5dtggAAAAAAAHBoFEYAAOUqMjJSkZGR19xWtWpVLVu2zGrdK6+8ooceekhpaWmqV6+eZX2VKlUUEBBwzcfZsGGD8vLyNGPGDHl7e6tJkybat2+fli1bRmEEAAAAAADAzVEYAQA4tJycHFWoUEHVqlWzWr9kyRK9/fbbqlu3rnr27KknnnhCnp6Xh7WkpCS1adNG3t7elvYRERFasmSJTp8+LT8/vyI/v8lkKp1EishgMBS779WxFiyXdw7lhfycn6vn6Ez5OUOMAAAAAFBabCqMrFq1SqtXr9Yff/whSWrSpIlGjBhhOfP34sWLmjVrljZv3qzc3FxFRERo8uTJ8vf3tzxGWlqaYmJitGvXLlWuXFm9e/fW6NGjLQezAAAocPHiRcXGxqpHjx7y9fW1rB80aJCaNWsmPz8/JSYm6o033lBGRoZeeuklSVJmZqbq169v9VgFY1FmZqZNhZHk5ORSyKRofHx81KxZs2L3T0lJ0fnz5wutL88c7IH8nJ+r5+jq+QEAAACAs7GpGnHLLbdozJgxuu2222Q2m7V+/Xo9++yzWrdunZo0aaIZM2Zo27Ztmjt3rqpWrapp06YpOjpacXFxki6fiTZs2DD5+/srLi5O6enpGj9+vLy8vPTiiy+WSYIAAOeUl5enUaNGyWw2a8qUKVbbnnzyScvvQUFB8vLy0uTJkzV69Girq0RKQ0hISImu4ihPRqPRatlkMik5OdmpcrAF+Tk/V8/RmfIriBUAAJQeTjAGAMdl0160c+fOVssvvPCCVq9eraSkJN1yyy1au3atYmNjFR4eLkmaMWOGunfvrqSkJIWGhmr79u1KTU3VsmXL5O/vr6ZNm2rUqFGKjY1VdHR0qR/MAgA4p7y8PD3//PNKS0vTBx98YHW1yLW0bNlSly5d0vHjx3XnnXfK399fmZmZVm0Klq/8klEUBoPB4Q9oFrhenM6UQ3GQn/Nz9RxdPT8AAHBtnGAMAI6r2OVlk8mkzz77TOfOnVNYWJj27t2rvLw8tWvXztKmUaNGqlevnqUwkpSUpMDAQKuDUhEREYqJiVFqaqrN04fYMheyM83xXBrskS9f+G+uNP4e7vReJlf3yP1qBUWRI0eOaPny5apRo8ZN++zbt08eHh6qVauWJCk0NFRz585VXl6evLy8JEk7duzQHXfcYdM0WgAAAABQXJxgDACOy+bCSEpKigYMGKCLFy+qcuXKWrhwoRo3bqx9+/bJy8ur0M1xa9WqpYyMDEmXz9a9+kzdguWCNrYozuX+7jZFQHnlW9J58d3F9eb/Lw53ei+Tq2s5e/asjh49alk+fvy49u3bJz8/PwUEBGjkyJH69ddftXjxYplMJsv44OfnJ29vbyUmJurnn3/WP/7xD1WpUkWJiYmaOXOmHnjgAUvRo1evXlq4cKEmTZqkoUOH6uDBg1q+fLnlHiQAAAAAUJ4c4QRjAMDfbC6M3HHHHVq/fr3OnDmjzz//XOPHj9fKlSvLIrabsmW+Zmea47k0uFu+zuLq+f+Lw53+tuTqmnO+7927V4MHD7Ysz5w5U5LUp08fRUdH66uvvpIkPfjgg1b9li9frrZt28rb21ubN2/Wm2++qdzcXNWvX19PPPGE1X1HqlatqqVLl2rq1Knq27evatSooREjRqh///7lkCEAAAAAXOZIJxjbOiOBO83iUJYc5XV09eMqpcHef6Py4Cjvx7JiS142F0a8vb112223SZKCg4OVnJys5cuX6/7771deXp6ys7OtdupZWVkKCAiQdHnnvWfPHqvHK5jzvaCNLYozX7O7zfFsa76mfLMMHhXKMCL3VprvPXd6L5Ora2nbtq1SUlKuu/1G2ySpefPmWrNmzU2fJygoSKtWrbI5PgAAAAAoLY50gnFxT7pztZP17MWeryMzvRRNac704uj4vy7BPUYK5OfnKzc3V8HBwfLy8lJCQoK6desmSTp06JDS0tIUGhoq6fKc74sWLVJWVpZlHvgdO3bI19dXjRs3LmkoKAUGjwoaFZeo1PQcm/rdYwzQ2G5BZRQVAAAAAACA83GkE4xtnY3BnWZxKEu8js6jNGZ6cXSu/n60ZeYVmwojc+bMUceOHVW3bl2dPXtWGzdu1O7du7V06VJVrVpV/fr106xZs+Tn5ydfX19Nnz5dYWFhlsJIRESEGjdurHHjxmns2LHKyMjQ3LlzNXDgQG4Y5UBS03P0S1q2TX0aBVQpo2gAAAAAAABcgz1PMC7uDAXuMLNBeeB1dHzu9Pfh/WhjYSQrK0vjx49Xenq6qlatKqPRqKVLl6p9+/aSpIkTJ8rDw0MjR45Ubm6uIiIiNHnyZEt/g8GgRYsWKSYmRv3795ePj4/69OmjkSNHlm5WAAAAAAAAgB1xgjEAOC6bCiMzZsy44faKFStq8uTJVsWQq916661asmSJLU8LAAAAAAAAOBVOMAYAx1Xie4wAAAAAAAAAsMYJxgDguDzsHQAAAAAAAAAAAEB5oTACAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt0FhBAAAAAAAAACcgCnfbO8QAJfgae8AAAAAAAAAAAA3Z/CooFFxiUpNzylyn3uMARrbLagMowKcD4URAAAAAAAAAHASqek5+iUtu8jtGwVUKcNoAOfEVFoAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAAAAAAAAAACA26AwAgAAAAAAAAAA3AaFEQAAAAAAAAAA4DYojAAAAAAAAAAAALdBYQQAAACAS/nhhx80fPhwRUREyGg0auvWrVbbJ0yYIKPRaPUTFRVl1ebUqVMaPXq0WrVqpTZt2mjixIk6e/asVZv9+/fr0UcfVUhIiCIjI7VkyZIyzw0AAABAyXnaOwAAAAAAKE3nzp2T0WhUv379FB0dfc02HTp00MyZMy3L3t7eVtvHjBmjjIwMLVu2THl5eZo4caJeffVVzZkzR5KUk5OjqKgohYeHa8qUKTpw4IAmTpyoatWqqX///mWXHAAAAIASozACAAAAwKVERkYqMjLyhm28vb0VEBBwzW2//fabvvvuO3388ccKCQmRJL388st6+umnNW7cONWpU0cbNmxQXl6eZsyYIW9vbzVp0kT79u3TsmXLKIwAAAAADo7CCAAAAAC3s3v3boWHh6tatWr6xz/+oeeff141atSQJCUmJqpatWqWoogktWvXTh4eHtqzZ4/uu+8+JSUlqU2bNlZXmkRERGjJkiU6ffq0/Pz8bIrHZDLZ1D4/P18Gg8GmPiV5vvJWEJ+jx1kSrp4j+Tm/0s7RlV8rAIDzoTACAChXP/zwg5YuXaq9e/cqIyNDCxcuVJcuXSzbzWaz5s+fr//85z/Kzs5Wq1atFBMTo9tvv93S5tSpU5o2bZq+/vpreXh4qGvXrpo0aZKqVKliabN//35NnTpVycnJqlmzph577DENHTq0PFMFADioDh066L777lP9+vV17NgxvfHGGxo6dKg++ugjGQwGZWZmqmbNmlZ9PD095efnp4yMDElSZmam6tevb9XG39/fss3WwkhycrJN7X18fNSsWTOb+lwpJSVF58+fL3b/8mLr6+KMXD1H8nN+7pAjAMD9UBgBAJSrm837vmTJEq1YsUKzZs1S/fr1NW/ePEVFRWnz5s2qWLGiJOZ9BwCUTI8ePSy/F9x8vUuXLparSOwhJCTEpitA8vPzS/R8RqOxRP3LmslkUnJyss2vizNx9RzJz/mVdo4FjwcAgCOgMAIAKFc3mvfdbDZr+fLleuaZZyxXkbz++utq166dtm7dqh49ejDvOwCg1DVo0EA1atTQkSNHFB4eLn9/f508edKqzaVLl3T69GnLfUn8/f2VmZlp1aZgueDKEVsYDIZyPbjqLAdyy/t1sQdXz5H8nJ875AgAcD8URgAADuP48ePKyMhQu3btLOuqVq2qli1bKjExUT169Cj3ed/Ley7k0pwv3tXnviY/5+fqOTpTfs4QY1n6888/derUKUvRIywsTNnZ2dq7d6+Cg4MlSTt37lR+fr5atGghSQoNDdXcuXOVl5cnLy8vSdKOHTt0xx132DyNFgAAAIDyRWEEAOAwCuZtr1WrltX6WrVqWc7CLe9538vzcv+ymi/e1acsID/n5+o5unp+jujs2bM6evSoZfn48ePat2+f/Pz85OfnpzfffFPdunWTv7+/jh07pn/961+67bbb1KFDB0lSo0aN1KFDB73yyiuaMmWK8vLyNG3aNPXo0UN16tSRJPXq1UsLFy7UpEmTNHToUB08eFDLly/XSy+9ZJecAQAAABQdhREAAG7AmeaNvnq+eFef+5r8nJ+r5+hM+bnavO979+7V4MGDLcszZ86UJPXp00cxMTE6cOCA1q9frzNnzqh27dpq3769Ro0aZXWlYWxsrKZNm6bHH39cHh4e6tq1q15++WXL9qpVq2rp0qWaOnWq+vbtqxo1amjEiBFM2QgAAOBkAnwrypRvlsGjgs19i9sP9kdhBADgMAqmMMnKylLt2rUt67OyshQUFCRJ5T7vuzPNqXy9OJ0ph+IgP+fn6jm6en6OqG3btkpJSbnu9qVLl970MapXr645c+bcsE1QUJBWrVplc3wAAABwHNV8PGXwqKBRcYlKTc8pcr/GtX01b0BYGUaGskRhBADgMOrXr6+AgAAlJCSoadOmkqScnBz9/PPPeuSRRyQx7zsAAAAAACh9qek5+iUt295hoJx42DsAAIB7OXv2rPbt26d9+/ZJ+nve97S0NFWoUEGDBw/W22+/rS+//FIpKSkaN26cateurS5dukiynvd9z549+umnn64577uXl5cmTZqkgwcPavPmzVq+fLmefPJJu+UNAAAAAAAAx8AVIwCAcnWjed9nzZqloUOH6vz583r11VeVnZ2t1q1b691331XFihUtfZj3HQAAAAAAAMVFYQQAUK5uNu97hQoVNGrUKI0aNeq6bZj3HQAAAAAAAMXFVFoAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAAAAAAAAAACA26AwApSDAN+KMuWbi9W3uP0AAAAAAAAAAIV52jsAwB1U8/GUwaOCRsUlKjU9p8j9Gtf21bwBYWUYGQAAAAAAAAC4FwojQDlKTc/RL2nZ9g4DAAAAAAAAANwWU2kBAAAAAAAAAAC3QWEEAAAAAAAAAAC4DQojAAAAAAAAAADAbVAYAQAAAAAAAAAAboPCCAAAAAAAAAAAcBsURgAAAAAAAAAAgNugMAIAAAAAAAAAANyGTYWRxYsXq1+/fgoLC1N4eLhGjBihQ4cOWbW5ePGipkyZorZt2yosLEzPPfecMjMzrdqkpaXp6aefVsuWLRUeHq7Zs2fr0qVLJc8GAAAAAAAAAADgBmwqjOzevVsDBw7UmjVrtGzZMl26dElRUVE6d+6cpc2MGTP09ddfa+7cuVqxYoXS09MVHR1t2W4ymTRs2DDl5eUpLi5Os2bN0rp16zR//vzSywoAADsz5ZvtHQIAJ1bcfQj7HgAAHAcnGAOA4/K0pfHSpUutlmfNmqXw8HD98ssvuuuuu3TmzBmtXbtWsbGxCg8Pl3S5UNK9e3clJSUpNDRU27dvV2pqqpYtWyZ/f381bdpUo0aNUmxsrKKjo+Xt7V162bk5Hx8fe4cAAG7L4FFBo+ISlZqeU+Q+9xgDNLZbUBlGBcBZFGcf0ri2r+YNCCvDqAAAgC0KTjAOCQmRyWTSG2+8oaioKG3atEmVK1eWdPm42bZt2zR37lxVrVpV06ZNU3R0tOLi4iT9fYKxv7+/4uLilJ6ervHjx8vLy0svvviiPdMDAKdmU2HkamfOnJEk+fn5SZL27t2rvLw8tWvXztKmUaNGqlevnqUwkpSUpMDAQPn7+1vaREREKCYmRqmpqWrWrFmRn99kMtnc1pY+Tq1CBZteSzi2K9+37vReJlf3yN2Vpabn6Je07CK3bxRQpQyjAeBsbN2HAAAAx8IJxgDguIpdGMnPz9eMGTPUqlUrBQYGSpIyMzPl5eWlatWqWbWtVauWMjIyLG2uLIpIsiwXtCmq5ORkm+MuTh9n4+Pjo2bNmnGmsgtJSUnR+fPnrda5w3u5ALkCAAAAAJydM51gfGV7TtgrmdJ+HQ0GQ6k8DkqPM/2PuPr/tS15FbswMmXKFB08eFCrVq0q7kOUWEhISJF3BiaTScnJyTb1cXacqew6jEaj5Xd3ei+T69/rAQAAAADOy1lPMC5JP1grjdex4GRoOJZrndDs6Pi/LmZhZOrUqfrmm2+0cuVK3XLLLZb1/v7+ysvLU3Z2ttVOPSsrSwEBAZY2e/bssXq8gptKFbQpKoPBYPPB0uL0AeztWu9Zd3ovkysAAAAAwJk52wnGknudrFiWeB1d35UnNDs6V38/2nKCsU2FEbPZrGnTpmnLli1asWKFGjRoYLU9ODhYXl5eSkhIULdu3SRJhw4dUlpamkJDQyVJoaGhWrRokbKyslSrVi1J0o4dO+Tr66vGjRvbEg4AAAAAAADg0Jz5BOOS9IO1K19HU75ZBo8Kdo4IpcUZ/z/4v7axMDJlyhRt3LhRb731lqpUqWK5ZK9q1aqqVKmSqlatqn79+mnWrFny8/OTr6+vpk+frrCwMEthJCIiQo0bN9a4ceM0duxYZWRkaO7cuRo4cCA3jAIAAAAAAIBL4ARjXI/Bo4LN9waWuD8wUJpsKoysXr1akjRo0CCr9TNnzlTfvn0lSRMnTpSHh4dGjhyp3NxcRUREaPLkyZa2BoNBixYtUkxMjPr37y8fHx/16dNHI0eOLGkuAAAX0LlzZ/3xxx+F1j/66KOaPHmyBg0apN27d1tt69+/v6ZOnWpZTktLU0xMjHbt2qXKlSurd+/eGj16tDw9i31rLQAAAACwCScY40ZsvTewxP2BgdJk0xGilJSUm7apWLGiJk+ebFUMudqtt96qJUuW2PLUAAA38fHHH8tkMlmWDx48qCeffFL//Oc/Lesefvhhq4K6j4+P5XeTyaRhw4bJ399fcXFxSk9P1/jx4+Xl5aUXX3yxfJIAAAAA4PY4wRgAHBenzgIAHErNmjWtlt955x01bNhQd999t2VdpUqVrjuf7vbt25Wamqply5bJ399fTZs21ahRoxQbG6vo6GjOqgIAAABQLjjBGAAcF4URAIDDys3N1YYNG/Tkk0+qQoW/b0wXHx+vDRs2KCAgQJ06ddKIESMsV40kJSUpMDBQ/v7+lvYRERGKiYlRamqqmjVrZlMMV169Ygt73MTs6lgLloubg6MjP+fn6jmWJL+S7EOK83yu+jcAAAAAgGuhMAIAcFhbt27VmTNn1KdPH8u6nj17ql69eqpdu7ZSUlIUGxur33//XW+++aYkKTMz06ooIsmyXDCnry2Sk5Nt7uPj42NzAaY0pKSk6Pz584XWFycHZ0J+zs/Vc7Q1v5LuQ663LwAAAAAAXEZhBADgsNauXauOHTuqTp06lnX9+/e3/G40GhUQEKAnnnhCR48eVcOGDUs9hpCQELtc/VEcRqPRatlkMik5OdmpcrAF+Tk/V8/RXvldvS8oioJYAQAAAMAdUBgBADikP/74Qzt27NCCBQtu2K5ly5aSpCNHjqhhw4by9/fXnj17rNpkZmZK0nXvS3IjBoPBaQ7YXi9OZ8qhOMjP+bl6juWdnyu/lgAAAABQGjzsHQAAANfyySefqFatWrrnnntu2G7fvn2S/i56hIaG6sCBA8rKyrK02bFjh3x9fdW4ceMyixcAAAAAAADOgcIIAMDh5Ofn65NPPlHv3r3l6fn3xY1Hjx7VwoULtXfvXh0/flxffvmlxo8fr7vuuktBQUGSLt9ovXHjxho3bpz279+v7777TnPnztXAgQPl7e1tr5QAAOXohx9+0PDhwxURESGj0aitW7dabTebzZo3b54iIiLUokULPfHEEzp8+LBVm1OnTmn06NFq1aqV2rRpo4kTJ+rs2bNWbfbv369HH31UISEhioyM1JIlS8o6NQAAAAClgMIIAMDh7NixQ2lpaerXr5/Vei8vLyUkJCgqKkr333+/Zs+era5du2rRokWWNgaDQYsWLZKHh4f69++vsWPHqnfv3ho5cmR5pwEAsJNz587JaDRq8uTJ19y+ZMkSrVixQjExMVqzZo18fHwUFRWlixcvWtqMGTNGqampWrZsmRYtWqQff/xRr776qmV7Tk6OoqKiVK9ePX3yyScaN26c3nzzTX300Udlnh8AAACAkuEeIwAAhxMREaGUlJRC6+vWrauVK1fetP+tt97KWbsA4MYiIyMVGRl5zW1ms1nLly/XM888oy5dukiSXn/9dbVr105bt25Vjx499Ntvv+m7777Txx9/rJCQEEnSyy+/rKefflrjxo1TnTp1tGHDBuXl5WnGjBny9vZWkyZNtG/fPi1btkz9+/cvt1wBAAAA2I4rRgAAAAC4jePHjysjI0Pt2rWzrKtatapatmypxMRESVJiYqKqVatmKYpIUrt27eTh4aE9e/ZIkpKSktSmTRuraRojIiL0+++/6/Tp0+WUDQAAAIDi4IoRAAAAAG4jIyNDklSrVi2r9bVq1VJmZqYkKTMzUzVr1rTa7unpKT8/P0v/zMxM1a9f36qNv7+/ZZufn59NcZlMJpva5+fny2Aw2NSnJM9X3gric/Q4S8LVcyQ/51faObryawUAcD4URgAn5OPjY+8QAAAAUIqSk5Ntau/j46NmzZoV+/lSUlJ0/vz5YvcvL7a+Ls7I1XMkP+fnDjkCANwPhRHAgQX4VpQp3yyDRwXLOoPBUKQvwVf3AwAAgBQQECBJysrKUu3atS3rs7KyFBQUJOnylR8nT5606nfp0iWdPn3a0t/f399yhUmBguWCK0dsERISYtMVIPn5+TY/x5WMRmOJ+pc1k8mk5ORkm18XZ+LqOZKf8yvtHAseDwAAR0BhBHBg1Xw8ZfCooFFxiUpNzylyv8a1fTVvQFgZRgYAAOCc6tevr4CAACUkJKhp06aSpJycHP3888965JFHJElhYWHKzs7W3r17FRwcLEnauXOn8vPz1aJFC0lSaGio5s6dq7y8PHl5eUmSduzYoTvuuMPmabSkyye/lOfBVWc5kFver4s9uHqO5Of83CFHAID7oTACOIHU9Bz9kpZt7zAAAACcwtmzZ3X06FHL8vHjx7Vv3z75+fmpXr16Gjx4sN5++23ddtttql+/vubNm6fatWurS5cukqRGjRqpQ4cOeuWVVzRlyhTl5eVp2rRp6tGjh+rUqSNJ6tWrlxYuXKhJkyZp6NChOnjwoJYvX66XXnrJLjkDAAAAKDoKIwAAAABcyt69ezV48GDL8syZMyVJffr00axZszR06FCdP39er776qrKzs9W6dWu9++67qlixoqVPbGyspk2bpscff1weHh7q2rWrXn75Zcv2qlWraunSpZo6dar69u2rGjVqaMSIEerfv3/5JQoAAACgWCiMAAAAAHApbdu2VUpKynW3V6hQQaNGjdKoUaOu26Z69eqaM2fODZ8nKChIq1atKnacAAAAAOzDw94BAAAAAAAAAAAAlBcKIwAAAAAAAAAAwG1QGAEAAAAAAAAAAG6DwggAAAAAAAAAAHAbFEYAAAAAAAAAAIDboDACAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt0FhBAAAAAAAAAAAGwT4VpQp31zs/iXpi5LztHcAAAAAAAAAAAA4k2o+njJ4VNCouESlpufY1LdxbV/NGxBWRpGhKCiMAAAAAAAAAABQDKnpOfolLdveYcBGTKUFAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt0FhBAAAAAAAAAAAuA0KIw7OlG+2dwgAUK4WLFggo9Fo9fPPf/7Tsv3ixYuaMmWK2rZtq7CwMD333HPKzMy0eoy0tDQ9/fTTatmypcLDwzV79mxdunSpvFMBAAAAAEA+Pj72DgHAVTztHQBuzOBRQaPiEpWanlPkPvcYAzS2W1AZRgUAZatJkyZatmyZZdlgMFh+nzFjhrZt26a5c+eqatWqmjZtmqKjoxUXFydJMplMGjZsmPz9/RUXF6f09HSNHz9eXl5eevHFF8s9FwAAAACAazLlm2XwqHDDNgaDQc2aNSuniAAUFYURJ5CanqNf0rKL3L5RQJUyjAYAyp7BYFBAQECh9WfOnNHatWsVGxur8PBwSZcLJd27d1dSUpJCQ0O1fft2paamatmyZfL391fTpk01atQoxcbGKjo6Wt7e3uWdDgAAAADABXFCM+C8KIwAABzOkSNHFBERoYoVKyo0NFSjR49WvXr1tHfvXuXl5aldu3aWto0aNVK9evUshZGkpCQFBgbK39/f0iYiIkIxMTFKTU21+Uwdk8lUrByuvMqlvFwda8FycXNwdOTn/Fw9x5LkV5J9SHGez1X/BgAAAGWNE5oB50RhBADgUFq0aKGZM2fqjjvuUEZGhhYuXKiBAwcqPj5emZmZ8vLyUrVq1az61KpVSxkZGZKkzMxMq6KIJMtyQRtbJCcn29zHx8fHLpdKp6Sk6Pz584XWFycHZ0J+zs/Vc7Q1v5LuQ663LwAAAAAAXEZhBADgUCIjIy2/BwUFqWXLlurUqZM+/fRTVapUqdzjCQkJscvVH8VhNBqtlk0mk5KTk50qB1uQn/Nz9Rztld/V+4KiKIgVAAAAANwBhRHABQX4VizSDcCupyR9gdJWrVo13X777Tp69KjatWunvLw8ZWdnW101kpWVZbknib+/v/bs2WP1GJmZmZJ0zfuW3IzBYHCaA7bXi9OZcigO8nN+rp5jeefnyq8lAAAAAJQGCiOAC6rm41msG4BJUuPavpo3IKyMIgNsd/bsWR07dkwBAQEKDg6Wl5eXEhIS1K1bN0nSoUOHlJaWptDQUElSaGioFi1apKysLNWqVUuStGPHDvn6+qpx48b2SgMAAAAAAEBSyU5q5oTm0kFhBHBhtt4ADHAEs2fPVqdOnVSvXj2lp6drwYIF8vDwUM+ePVW1alX169dPs2bNkp+fn3x9fTV9+nSFhYVZCiMRERFq3Lixxo0bp7FjxyojI0Nz587VwIED5e3tbd/kAAAAAACA2yvuSc2c0Fx6KIwAABzKn3/+qRdffFGnTp1SzZo11bp1a61Zs0Y1a9aUJE2cOFEeHh4aOXKkcnNzFRERocmTJ1v6GwwGLVq0SDExMerfv798fHzUp08fjRw50l4pAQAAAAAAFMJJzfZDYQQA4FD+/e9/33B7xYoVNXnyZKtiyNVuvfVWLVmypLRDAwAAAAAAgAvwsHcAAAAAAAAAAAAA5cXmwsgPP/yg4cOHKyIiQkajUVu3brXabjabNW/ePEVERKhFixZ64okndPjwYas2p06d0ujRo9WqVSu1adNGEydO1NmzZ0uUCAAAAAAAAAAAwM3YXBg5d+6cjEbjdacwWbJkiVasWKGYmBitWbNGPj4+ioqK0sWLFy1txowZo9TUVC1btkyLFi3Sjz/+qFdffbX4WQAAAAAAAAAOhJOLAcBx2VwYiYyM1AsvvKD77ruv0Daz2azly5frmWeeUZcuXRQUFKTXX39d6enplp3/b7/9pu+++07Tp09Xy5Yt1aZNG7388svatGmTTpw4UfKMAAAAAAAAADvj5GIAcFyleo+R48ePKyMjQ+3atbOsq1q1qlq2bKnExERJUmJioqpVq6aQkBBLm3bt2snDw0N79uwpzXAAAAAAAAAAu+DkYgBwXJ6l+WAZGRmSpFq1almtr1WrljIzMyVJmZmZqlmzpnUQnp7y8/Oz9C8qk8lkc1tb+jgCg8Fg7xDgphzhf8VZ/2+L43q5ukPuAAAAAOBubnZycY8ePW56cvG1Ci43Yuv3S3f6Tl5cHLeDvRT3/9LV/69tyatUCyPlLTk5uVz62IuPj4+aNWtm7zDgplJSUnT+/Hl7hyHJuf5vS8qdcgUAAAAAd1XeJxdLxf++yffUa+O4HeyppMft+L8u5cJIQECAJCkrK0u1a9e2rM/KylJQUJAkyd/fXydPnrTqd+nSJZ0+fdrSv6hCQkKKXJk1mUxKTk62qQ/gzoxGo71DcKv/2+vlWrAeAAAAAICSsPW7tTt9JwecTXGP27n6/7Utx9FKtTBSv359BQQEKCEhQU2bNpUk5eTk6Oeff9YjjzwiSQoLC1N2drb27t2r4OBgSdLOnTuVn5+vFi1a2PR8BoPB5j9gcfqUlCnfLINHhXJ9TqCkHGnnaI//W3txp1wBAAAAwF2V98nFUvG/b/I9FXA8Jf2f5P+6GIWRs2fP6ujRo5bl48ePa9++ffLz81O9evU0ePBgvf3227rttttUv359zZs3T7Vr11aXLl0kSY0aNVKHDh30yiuvaMqUKcrLy9O0adPUo0cP1alTp/QycyAGjwoaFZeo1PQcm/rdYwzQ2G5BZRQVAAAAAAAA7KG8Ty4GAFizuTCyd+9eDR482LI8c+ZMSVKfPn00a9YsDR06VOfPn9err76q7OxstW7dWu+++64qVqxo6RMbG6tp06bp8ccfl4eHh7p27aqXX365FNJxXKnpOfolLdumPo0CqpRRNAAAAIB7W7Bggd58802rdXfccYc+++wzSdLFixc1a9Ysbd68Wbm5uYqIiNDkyZPl7+9vaZ+WlqaYmBjt2rVLlStXVu/evTV69Gh5ejr1rRwBAKWEk4sBwHHZ/Im9bdu2SklJue72ChUqaNSoURo1atR121SvXl1z5syx9akBAAAAoNQ0adJEy5YtsyxfOZ3AjBkztG3bNs2dO1dVq1bVtGnTFB0drbi4OEmX5y8eNmyY/P39FRcXp/T0dI0fP15eXl568cUXyz0XAIDj4eRiAHBcnMoEAAAAwC0ZDIZrztF+5swZrV27VrGxsQoPD5d0uVDSvXt3JSUlKTQ0VNu3b1dqaqqWLVsmf39/NW3aVKNGjVJsbKyio6Pl7e1d3ukAABwMJxcDgOOiMAIAAADALR05ckQRERGqWLGiQkNDNXr0aNWrV0979+5VXl6e2rVrZ2nbqFEj1atXz1IYSUpKUmBgoNXUWhEREYqJiVFqaqqaNWtmUywmk8mm9vn5+SW6Yaatz1feCuJz9DhLwtVzJD/nV9o5uvJrBQBwPhRGAAAAALidFi1aaObMmbrjjjuUkZGhhQsXauDAgYqPj1dmZqa8vLxUrVo1qz61atVSRkaGJCkzM9OqKCLJslzQxhbJyck2tffx8bG5+HKllJQUnT9/vtj9y4utr4szcvUcyc/5uUOOAAD3Q2EEAAAAgNuJjIy0/B4UFKSWLVuqU6dO+vTTT1WpUqVyjyckJMSmK0Dy8/NL9HxGo7FE/cuayWRScnKyza+LM3H1HMnP+ZV2jgWPBwCAI6AwAgAAAMDtVatWTbfffruOHj2qdu3aKS8vT9nZ2VZXjWRlZVnuSeLv7689e/ZYPUZmZqYkXfO+JTdjMBjK9eCqsxzILe/XxR5cPUfyc37ukCMAwP142DsAAAAAALC3s2fP6tixYwoICFBwcLC8vLyUkJBg2X7o0CGlpaUpNDRUkhQaGqoDBw4oKyvL0mbHjh3y9fVV48aNyzt8AAAAADbgihEAAAAAbmf27Nnq1KmT6tWrp/T0dC1YsEAeHh7q2bOnqlatqn79+mnWrFny8/OTr6+vpk+frrCwMEthJCIiQo0bN9a4ceM0duxYZWRkaO7cuRo4cKC8vb3tmxwAAACAG6IwAgAAAMDt/Pnnn3rxxRd16tQp1axZU61bt9aaNWtUs2ZNSdLEiRPl4eGhkSNHKjc3VxEREZo8ebKlv8Fg0KJFixQTE6P+/fvLx8dHffr00ciRI+2VEgAAAIAiojACAAAAwO38+9//vuH2ihUravLkyVbFkKvdeuutWrJkSWmHBgAAAKCMcY8RAAAAAAAAAADgNiiMAAAAAAAAAHBbpnyzvUMAUM6YSguAlQDfijLlm2XwqGBz3+L2A660ePFiffHFFzp06JAqVaqksLAwjRkzRnfeeaelzaBBg7R7926rfv3799fUqVMty2lpaYqJidGuXbtUuXJl9e7dW6NHj5anJ0MfAAAAAOBvBo8KGhWXqNT0nCL3uccYoLHdgsowKgBliaNDAKxU8/Es1geCxrV9NW9AWBlGBnexe/duDRw4UCEhITKZTHrjjTcUFRWlTZs2qXLlypZ2Dz/8sNUNbn18fCy/m0wmDRs2TP7+/oqLi1N6errGjx8vLy8vvfjii+WaDwAAAADA8aWm5+iXtOwit28UUKUMowFQ1iiMALgmWz8QAKVl6dKlVsuzZs1SeHi4fvnlF911112W9ZUqVVJAQMA1H2P79u1KTU3VsmXL5O/vr6ZNm2rUqFGKjY1VdHS0vL29yzQHAAAAAAAAOC4KIwAAh3bmzBlJkp+fn9X6+Ph4bdiwQQEBAerUqZNGjBhhuWokKSlJgYGB8vf3t7SPiIhQTEyMUlNT1axZsyI/v8lkKlbcBoOhWP1K4upYC5aLm4OjIz/n5+o5liS/kuxDivN8rvo3AAAAAIBroTACAHBY+fn5mjFjhlq1aqXAwEDL+p49e6pevXqqXbu2UlJSFBsbq99//11vvvmmJCkzM9OqKCLJspyRkWFTDMnJyTbH7ePjY1PxpbSkpKTo/PnzhdYXJwdnQn7Oz9VztDW/ku5DrrcvAAAAAABcRmEEAOCwpkyZooMHD2rVqlVW6/v372/53Wg0KiAgQE888YSOHj2qhg0blmoMISEhdrn6oziMRqPVsslkUnJyslPlYAvyc36unqO98rt6X1AUBbECAAAAgDugMAIAcEhTp07VN998o5UrV+qWW265YduWLVtKko4cOaKGDRvK399fe/bssWqTmZkpSde9L8n1GAwGpzlge704nSmH4iA/5+fqOZZ3fq78WgIAAABAafCwdwDOxJRvtncIAODyzGazpk6dqi1btuiDDz5QgwYNbtpn3759kv4ueoSGhurAgQPKysqytNmxY4d8fX3VuHHjsgkcAAAAAACgDAX4VizZMeoKHvLy8iq9gJwYV4zYwOBRQaPiEpWanlPkPvcYAzS2W1AZRgUArmXKlCnauHGj3nrrLVWpUsVyT5CqVauqUqVKOnr0qOLj4xUZGanq1asrJSVFM2fO1F133aWgoMv724iICDVu3Fjjxo3T2LFjlZGRoblz52rgwIHy9va2Z3oAAAAAAADFUs3Hs1jHqCWpcW1fzRsQJk9PSgIShRGbpabn6Je07CK3bxRQpQyjAQDXs3r1aknSoEGDrNbPnDlTffv2lZeXlxISErR8+XKdO3dOdevWVdeuXTVixAhLW4PBoEWLFikmJkb9+/eXj4+P+vTpo5EjR5ZrLgAAAAAAAKXN1mPUKIzCCADAoaSkpNxwe926dbVy5cqbPs6tt96qJUuWlFZYAAAAAAAAcBHcYwQAAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAA4NRM+WZ7hwDAibjVPUa8vLykCtSCAAAAAAAAAFdi8KigUXGJSk3PsanfPcYAje0WVEZRAXBUblUY8fT0ZCcJlJEA34oy5Ztl8KhQrP4l6QsAAAAAAJCanqNf0rJt6tMooEoZRQPAkblVYaQAO0mg9FXzKX7hsXFtX80bEFZGkQEAAAAAAADA39yyMAKg7BSn8AgAAAAAAAAA5YUbbgAAAAAAAAAAALdBYQQAAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABuoFKlSvYOwSF42jsAAAAAAAAAAABQdgJ8K8qUb9add95pc19TvlkGjwplEJX9UBgBAAAAAABlqiQHVFzxYAwAAOWtmo+nDB4VNCouUanpOUXu17i2r+YNCCvDyOyDwggAAAAAAG6muMWG4vYrzoEYyXUPxgAAYC+p6Tn6JS3b3mHYHYURAAAAAADcjD3OGOVADICi4CoxAOWBwggAAAAAAE6opAcPKVQAcETFKdzeYwzQ2G5BZRgVAFdDYQSAQ/Px8bF3CAAAAIBDKu70VOV1AJHP8gCKy9bCbaOAKmUYDQBXRGEEgN0F+Fa85tluBoNBzZo1u2FfLrEFAACAOyvOVR/FPYB4vc/t11KUz/IAAAD2QmEEgN1V8/G0yxzHAAAAAIquuJ/b7TXFTUlOouIELAAALrPlxIirOfJ4SmEEgMNgjmMAAADA8TnLFDfFnWqME7AAAPibq57QTGEEgNNy1Yo1AAAA3AufTa+vJJ/5JU6+AgCgtLjamEphBIDTctWKNQAAANxDwc3JnWl6qvLmyNN3cXN5AACcl10LIx9++KGWLl2qjIwMBQUF6ZVXXlGLFi3sGRIAJ+RqFWuULsYaAEBZY6xBAVuubLj65uTOMj2VvZTn61OUq1Sud3N5rv5BWbHXWOPl5VXsvvw/AHBkdiuMbN68WTNnztSUKVPUsmVLffDBB4qKitJnn32mWrVq2SssAG6gpJfj8+HOeTDWAADKGmON6ynJZz1HvbIBtinuVSp33V5Dr/RsXqzn5DsGbsSeY03TZs1lMBiK1Zd9IuDeHP34m90KI8uWLdPDDz+sfv36SZKmTJmib775RmvXrtXTTz9tr7AAuIHiftGRmIbL2TDWAADKGmON4yrul+nifk4sOJjHlR+uozh/S6b6RVmw51jj5WlgnwigWBz9+JtdCiO5ubn65ZdfNGzYMMs6Dw8PtWvXTomJiTftbzabLY9T1Kq1yWSS2WyWyWRS01uqqKKNxe7ba/kUq29x+9njOZ0pVns8J7G6znMW9PPyMNsca0AVT+XmXSr2Dd9lzr/2NpNJUuH9WsH6gv0eis4eY82VDAZDub2n7wyoIpPJZHm/FMjPz1elSpWUl5dXaJsrID/n5+o55ufnq2LFisXKrzj7kOvtC4qC8aZ4SjrWSMUfb/LzL3+mKM/3SXnKz8+Xr6+vTPnX/uxUVAu//E1pp88XuX2L+n76v9YNivU50VCheN833enztzPEWhrPaev7pyTfMaTiFwFv9P1EKv1xmrGmeBxhrGGf6Bj93OU5idV1nrMkx9+8PMzF+sxqy1hTwWyHEenEiRPq2LGj4uLiFBb2d+Xn9ddf1w8//KD//Oc/N+yfm5ur5OTksg4TABxGSEiIvL297R2GU2GsAQDbMd7YpqRjjcR4A8D9MNbYhrEGAGxXlLHGrjdfLy5PT0+FhITIw8NDFSowBycA12U2m5Wfny9PT6fcXTs1xhoA7oTxxn4YbwC4C8Ya+2GsAeAubBlr7DIa1ahRQwaDQVlZWVbrs7Ky5O/vf9P+Hh4enF0AALghxhoAQFkr6VgjMd4AAG6MsQYAyoaHPZ7U29tbzZs3V0JCgmVdfn6+EhISrC4LBACguBhrAABljbEGAFDWGGsAoGzY7frFJ598UuPHj1dwcLBatGihDz74QOfPn1ffvn3tFRIAwMUw1gAAyhpjDQCgrDHWAEDps1thpHv37jp58qTmz5+vjIwMNW3aVO+++26RLwMEAOBmGGsAAGWNsQYAUNYYawCg9FUwm81mewcBAAAAAAAAAABQHuxyjxEAAAAAAAAAAAB7oDACAAAAAAAAAADcBoURAAAAAAAAAADgNiiMAAAAAAAAAAAAt+E2hZEPP/xQnTt3VkhIiB566CHt2bPH3iGV2IIFC2Q0Gq1+/vnPf1q2X7x4UVOmTFHbtm0VFham5557TpmZmXaMuOh++OEHDR8+XBERETIajdq6davVdrPZrHnz5ikiIkItWrTQE088ocOHD1u1OXXqlEaPHq1WrVqpTZs2mjhxos6ePVuOWRTdzfKdMGFCob91VFSUVRtnyXfx4sXq16+fwsLCFB4erhEjRujQoUNWbYry3k1LS9PTTz+tli1bKjw8XLNnz9alS5fKM5WbKkqugwYNKvS3ffXVV63aOEOusI933nlHRqNRr732mqTL+4Fp06apW7duatGihe655x5Nnz5dZ86csernLO+pq/O7ktls1pAhQ665z3SW/KTr55iYmKjBgwcrNDRUrVq10sCBA3XhwgXLdmfZ518rv4yMDI0dO1bt27dXaGio+vTpo88//9yqnyPnVxqfv5zpPQrH5ErfbUrjc78jK63Pvo5q1apV6tWrl1q1aqVWrVqpf//+2rZtm2W7M+d2Ldca15w9R1c+roCSc6XxprS523GrsuJOx4jKUmmMx+74GrpFYWTz5s2aOXOmnn32Wa1bt05BQUGKiopSVlaWvUMrsSZNmmj79u2Wn1WrVlm2zZgxQ19//bXmzp2rFStWKD09XdHR0XaMtujOnTsno9GoyZMnX3P7kiVLtGLFCsXExGjNmjXy8fFRVFSULl68aGkzZswYpaamatmyZVq0aJF+/PHHQgecHcXN8pWkDh06WP2t33jjDavtzpLv7t27NXDgQK1Zs0bLli3TpUuXFBUVpXPnzlna3Oy9azKZNGzYMOXl5SkuLk6zZs3SunXrNH/+fHukdF1FyVWSHn74Yau/7bhx4yzbnCVXlL89e/YoLi5ORqPRsi49PV3p6ekaP368Nm7cqJkzZ+q7777TpEmTLG2c5T11rfyu9MEHH6hChQqF1jtLftL1c0xMTNSQIUMUERGh//znP/r44481cOBAeXj8/bHNGfb518tv/Pjx+v333/X2228rPj5e9913n55//nn9+uuvljaOnl9JPn8503sUjsnVvtuUxud+R1Yan30d2S233KIxY8bok08+0dq1a/WPf/xDzz77rA4ePCjJuXO72vXGNVfI0VWPK6BkXG28KW3udtyqrLjTMaKyVNLx2G1fQ7Mb+L//+z/zlClTLMsmk8kcERFhXrx4sR2jKrn58+ebH3jggWtuy87ONjdv3tz86aefWtalpqaaAwMDzYmJieUUYekIDAw0b9myxbKcn59vbt++vfndd9+1rMvOzjYHBwebN27caDab/851z549ljbbtm0zG41G859//ll+wRfD1fmazWbz+PHjzc8888x1+zhzvllZWebAwEDz7t27zWZz0d6733zzjTkoKMickZFhabNq1Spzq1atzBcvXizX+G1xda5ms9n82GOPmadPn37dPs6aK8pWTk6OuWvXrubvv//+pu+hzZs3m5s3b27Oy8szm83O8Z66WX6//vqruUOHDub09PRC+0xnyM9svnGODz30kPnf//73dfs6wz7/RvmFhoaa161bZ9X+7rvvNq9Zs8ZsNjt+fiX9/OUs71E4Llf9bmM2F+9zv7MpzmdfZ3PXXXeZ16xZ41K5XW9cc4Uc3eW4AmznyuNNaXO341ZlyZ2OEZU1W8Zjd30NXf6KkdzcXP3yyy9q166dZZ2Hh4fatWunxMREO0ZWOo4cOaKIiAjde++9Gj16tNLS0iRJe/fuVV5enlXejRo1Ur169ZSUlGSnaEvH8ePHlZGRYZVb1apV1bJlS8vfNDExUdWqVVNISIilTbt27eTh4eG0l37u3r1b4eHh6tatmyZPnqy//vrLss2Z8y2Y4sfPz09S0d67SUlJCgwMlL+/v6VNRESEcnJylJqaWn7B2+jqXAvEx8erbdu26tmzp+bMmaPz589btjlrrihbU6dOVWRkpNX/yfXk5OTI19dXnp6ekpzjPXWj/M6fP6/Ro0fr1VdfVUBAQKHtzpCfdP0cs7Ky9PPPP6tWrVoaMGCA2rVrp8cee0w//vijpY0z7PNv9DcMCwvTp59+qlOnTik/P1+bNm3SxYsXdffdd0tyjvxK8vnLWd6jcEyu/t3makX53O9sivPZ11mYTCZt2rRJ586dU1hYmEvldr1xzVVydMfjCrgxdxtvSpu7HrcqDe50jKisFGc8dtfX0NPeAZS1v/76SyaTSbVq1bJaX6tWrUJz1jmbFi1aaObMmbrjjjuUkZGhhQsXauDAgYqPj1dmZqa8vLxUrVo1qz61atVSRkaGnSIuHQXxX+tvWjA/XmZmpmrWrGm13dPTU35+fk6Zf4cOHXTfffepfv36OnbsmN544w0NHTpUH330kQwGg9Pmm5+frxkzZqhVq1YKDAyUpCK9dzMzM6121pIsy46a77VylaSePXuqXr16ql27tlJSUhQbG6vff/9db775piTnzBVla9OmTfr111/18ccf37TtyZMn9dZbb6l///6WdY7+nrpZfjNnzlRYWJi6dOlyze2Onp904xyPHTsmSXrzzTc1btw4NW3aVOvXr9cTTzyhjRs36vbbb3f4ff7N/oZz587VCy+8oLZt28rT01OVKlXSm2++qdtuu02S44/hJf385QzvUTguV/5ucy1F+dzvTIr72dfRpaSkaMCAAbp48aIqV66shQsXqnHjxtq3b5/T5ybdeFxzhb+fux5XwI2523hT2tzxuFVpcKdjRGWhJOOxu76GLl8YcWWRkZGW34OCgtSyZUt16tRJn376qSpVqmTHyFDaevToYfm94IZ4Xbp0sVxF4qymTJmigwcPWs1h66qul+uVB6yNRqMCAgL0xBNP6OjRo2rYsGF5hwkH97///U+vvfaa3nvvPVWsWPGGbXNycjRs2DA1atTIaeaBvll+X375pXbu3Kl169bZIbrScbMc8/PzJV3eN/Tr10+S1KxZMyUkJGjt2rUaPXp0ucZrq6K8R+fNm6fs7Gy9//77qlGjhrZu3arnn39eH3744XXvKeNI+PwFoLhc9bPvHXfcofXr1+vMmTP6/PPPNX78eK1cudLeYZUKWz57OSvGNQCOwlXHyfLiyuNxWXH5qbRq1Kghg8FQ6OZQWVlZhSphzq5atWq6/fbbdfToUfn7+ysvL0/Z2dlWbbKysq459YgzKYj/Rn9Tf39/nTx50mr7pUuXdPr0aafPX5IaNGigGjVq6MiRI5KcM9+pU6fqm2++0QcffKBbbrnFsr4o711/f/9CZwkWLDtivtfL9VpatmwpSVZ/W2fKFWXrl19+UVZWlvr27atmzZqpWbNm2r17t1asWKFmzZrJZDJJulwUGTJkiKpUqaKFCxfKy8vL8hiO/J66WX47duzQ0aNHddddd1m2S9Jzzz2nQYMGSXLs/KSb51gwjjVq1MiqX6NGjSzTWjjyPv9m+R09elQrV67UjBkzFB4erqCgIEVHRys4OFgffvihJMfO71ps/fzl6O9RODZ3+m4jFe1zv7MoyWdfR+ft7a3bbrtNwcHBGj16tIKCgrR8+XKXyK0o47az53g1dzmugBtzt/GmtHHcynbudIyorJRkPHbX19DlCyPe3t5q3ry5EhISLOvy8/OVkJCgsLAwO0ZW+s6ePatjx44pICBAwcHB8vLyssr70KFDSktLU2hoqP2CLAX169dXQECAVW45OTn6+eefLX/TsLAwZWdna+/evZY2O3fuVH5+vlq0aFHuMZe2P//8U6dOnbLsnJwpX7PZrKlTp2rLli364IMP1KBBA6vtRXnvhoaG6sCBA1YfMnbs2CFfX181bty4XPIoipvlei379u2T9PfA4yy5onz84x//UHx8vNavX2/5CQ4OVq9evbR+/XoZDAbl5OQoKipKXl5eevvttwud3ejI76mb5Td8+HBt2LDBarskvfTSS5oxY4Ykx85PunmODRo0UO3atfX7779b9Tt8+LBuvfVWSY69z79ZfgX3UPLwsP4IajAYZDabJTl2ftdi6+cvR3+PwrG503cbqWif+x1daXz2dTb5+fnKzc11idxuNq65Qo5Xc5fjCrgxdxtvShvHrYrOnY4RlTdbxmN3fQ3dYiqtJ598UuPHj1dwcLBatGihDz74QOfPn1ffvn3tHVqJzJ49W506dVK9evWUnp6uBQsWyMPDQz179lTVqlXVr18/zZo1S35+fvL19dX06dMVFhbmFB9gzp49q6NHj1qWjx8/rn379snPz0/16tXT4MGD9fbbb+u2225T/fr1NW/ePNWuXdsy53yjRo3UoUMHvfLKK5oyZYry8vI0bdo09ejRQ3Xq1LFXWtd1o3z9/Pz05ptvqlu3bvL399exY8f0r3/9S7fddps6dOggybnynTJlijZu3Ki33npLVapUscxVWLVqVVWqVKlI792IiAg1btxY48aN09ixY5WRkaG5c+dq4MCB8vb2tmN21m6W69GjRxUfH6/IyEhVr15dKSkpmjlzpu666y4FBQVJcp5cUT58fX2t7lEjSZUrV1b16tUVGBionJwcPfXUUzp//rz+9a9/KScnRzk5OZKkmjVrymAwOPR76mb5Sdc+W6VevXqWD9COnJ9UtByjoqK0YMECBQUFqWnTplq3bp0OHTqk+fPnS3Lsff7N8svLy9Ntt92mV199VePHj1f16tW1detWff/991q8eLEkx85PKvnnL0d/j8Lxudp3m5J+7nd0pfHZ15HNmTNHHTt2VN26dXX27Flt3LhRu3fv1tKlS50+N6lo47az5+jKxxVQMq423pQ2dztuVVbc6RhRWSrpeOyur2EFc8HpeS5u5cqVWrp0qTIyMtS0aVO9/PLLlilrnNULL7ygH374QadOnVLNmjXVunVrvfDCC5b7Ely8eFGzZs3Spk2blJubq4iICE2ePNkpLoHatWuXBg8eXGh9nz59NGvWLJnNZs2fP19r1qxRdna2WrdurcmTJ+uOO+6wtD116pSmTZumr776Sh4eHuratatefvllValSpTxTKZIb5RsTE6Nnn31Wv/76q86cOaPatWurffv2GjVqlNUlrM6S7/Xmj585c6blA1ZR3rt//PGHYmJitHv3bvn4+KhPnz4aPXq0PD0dp957s1z/97//aezYsTp48KDOnTununXrqkuXLhoxYoR8fX0t7Z0hV9jPoEGDFBQUpEmTJl13XyJdvj9H/fr1JTnXe+rK/K7FaDRq4cKFVgfInCk/6do5vvPOO/rwww91+vRpBQUFacyYMWrTpo1lu7Ps86XC+R0+fFhz5szRTz/9pHPnzqlhw4Z66qmn1Lt3b0sfR86vND5/Odt7FI7Hlb7blMbnfkdWWp99HdXEiRO1c+dOpaenq2rVqjIajRo6dKjat28vyblzu56rxzVnz9GVjyug5FxpvClt7nbcqqy40zGislQa47E7voZuUxgBAAAAAAAAAABw+XuMAAAAAAAAAAAAFKAwAgAAAAAAAAAA3AaFEQAAAAAAAAAA4DYojAAAAAAAAAAAALdBYQQAAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAAAAAAAAAACA26AwAgAAAAAAAAAA3AaFEQAAAAAAAAAA4DYojAAAAAAAAAAAALdBYQQAAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAAAAAAAAAACA26AwAgAAAAAAAAAA3AaFEQAAAAAAAAAA4DYojAAAAAAAAAAAALdBYQQAAAAAAAAAALgNCiMAAAAAAAAAAMBtUBgBAAAAAAAAAABug8IIAAAAAAAAAABwGxRGAAAAAAAAAACA26AwAgAAAAAAAAAA3AaFEcABTJgwQZ07d7ZaZzQatWDBAjtFBABwBJ07d9awYcPsHQYAABa7du2S0WjUrl277B0KAMANXX287JNPPpHRaNTx48ftGBWckae9AwCu5ZNPPtFLL71kWfb29pafn5+MRqMiIyPVt29f+fr62i2+zMxMLV26VF9//bX+97//qUKFCrrzzjvVpUsXPfbYY6pWrZrdYgMAMI4AABzP1WPT1T766COFhoaWWzwTJkzQunXrVKVKFe3YsUOVKlWy2n748GF169ZNkjRu3DhFRUWVW2wAANs52jhTYNeuXVqxYoUSExN1+vRpVa1aVS1btlTfvn3VtWvXco8HKEBhBA5t5MiRql+/vi5duqTMzEzt3r1bM2bM0Pvvv6+33npLQUFB5R7Tnj179PTTT+vcuXN64IEH1Lx5c0nS3r17tWTJEv3444967733yj0uAEBhjCMAAEdTMDZdrWHDhuUei6enpy5cuKCvvvpK3bt3t9oWHx+vihUr6uLFi1br77rrLu3Zs0deXl7lGSoAoIgcaZyZP3++Fi5cqNtvv139+/dXvXr1dOrUKW3btk3PPfecYmNj1atXr3KPC5AojMDBdezYUSEhIZblYcOGKSEhQcOHD9eIESO0efPmQmc2laXs7GxFR0fLYDBo3bp1atSokdX2F154QWvWrCm3eAAAN8Y4cnMXL16Ul5eXPDyYYRUAysPVY5M9eXt7q1WrVtq0aVOhwsjGjRt1zz336PPPP7da7+HhoYoVK5ZnmAAAGzjKOPPZZ59p4cKF6tatm+bMmWNVUB8yZIi+++47Xbp0yY4Rwt3xDRhOJzw8XCNGjNAff/yhDRs2WNbv379fEyZM0L333quQkBC1b99eL730kv766y9Lm507d8poNGrLli2FHjc+Pl5Go1GJiYnXfe64uDidOHFCEyZMKHQwS5L8/f01YsQIy/LWrVv19NNPKyIiQsHBwerSpYsWLlwok8lkc945OTl67bXX1LlzZwUHBys8PFxPPvmkfvnlF5sfCwDcmTONIwV+/PFH/d///Z9CQkJ07733av369VbbT506pdmzZ6tXr14KCwtTq1atNGTIEO3fv9+qXcG88Js2bdK///1vdejQQS1btlROTo4k6dNPP1X37t0VEhKinj17asuWLde8D1Z+fr7ef/999ejRQyEhIWrXrp1effVVnT59+rq5AwBuLi8vT3ffffc1p0LJyclRSEiIZs+ebVmXm5ur+fPn67777lNwcLAiIyP1+uuvKzc3t8jP2bNnT3377bfKzs62rNuzZ48OHz6snj17Fmp/rXuMDBo0SD179lRqaqoGDRqkli1bqkOHDlqyZEmh/itWrFCPHj3UsmVL3XXXXerbt6/i4+OLHC8AoPjKc5yZN2+eqlevrhkzZlzzKsMOHTqoU6dOlueZN2+e+vbtq9atWys0NFSPPvqodu7cWaw8k5OTFRUVpbZt26pFixbq3LnzDacZg3uiMAKn9OCDD0qStm/fblm3Y8cOHTt2TH379tUrr7yi7t27a/PmzXr66adlNpslSW3btlXdunWv+cE7Pj5eDRs2VFhY2HWf96uvvlKlSpUsc+3ezLp161S5cmU9+eSTmjRpkpo3b6758+crNjbWlnQlSZMnT9bq1avVtWtXTZ48WU899ZQqVqyo3377zebHAgB35yzjiCQdOXJEo0aNUvv27TVhwgT5+flpwoQJOnjwoKXNsWPHtHXrVt1zzz2aMGGCoqKidODAAT322GM6ceJEocd86623tG3bNkVFRenFF1+Ul5eXvvnmG73wwgvy9PTU6NGjdd9992nSpEnXLMC/+uqr+te//qVWrVpp0qRJloNaUVFRysvLK3JuAOCOcnJydPLkSaufgiK8l5eXunTpoq1btxY66FSwruDKjvz8fD3zzDN677331KlTJ73yyivq0qWLPvjgAz3//PNFjue+++5ThQoV9MUXX1jWbdy4UXfeeaeaNWtW5Mc5ffq0hgwZoqCgII0fP1533nmnYmNjtW3bNkubNWvWaPr06WrUqJEmTpyo5557Tk2bNtXPP/9c5OcBANyYI4wzhw8f1qFDh3TvvfcW6d6OOTk5+s9//qO7775bY8aMUXR0tE6ePKkhQ4Zo3759NuWflZWlqKgoHT9+XE8//bReeeUV9erVi7EGhTCVFpzSLbfcoqpVq+rYsWOWdY8++qieeuopq3ahoaF68cUX9dNPP6lNmzaqUKGCHnjgAS1btkxnzpxR1apVJUknT57U999/r+HDh9/weQ8dOqTbb79d3t7eRYpzzpw5VlO0PPLII3r11Ve1evVqvfDCC0V+HEnatm2bHn74YU2YMMGybujQoUXuDwD4m7OMI5L0+++/68MPP1SbNm0kSffff78iIyP1ySefaPz48ZL0/9m787ioy/3//09mWARZTMBccwFBDRSwUnCM7Fimtrick3psOX2stDI57mYmuIRY2lHTosg4ZSlZtqmk1ckWc+t8DwSaxyJPloeSpRS3BIf5/eGPOU1uzAjMDPO4327ebs77fV0zr/fFe+aaeb/e13UpOjpamzdvtpkO67bbbtPAgQP1xhtv6KGHHrJ5zlOnTmndunU2fdTixYt1+eWXa82aNWratKmkM6Nr7rzzTrVp08Za7p///Kdef/31s+YD7tWrl+69915t2rSJeYIB4AL+8pe/nLXN19dXhYWFkqRBgwZp3bp1+vzzz6130kpSbm6u2rVrZ50eZf369dq2bZtWrVpl7SMkqXPnzkpNTdW//vUvJSQkXDSewMBAXXfdddqwYYP++Mc/qrq6Wrm5uRo5cqRdx1VSUqKFCxdqyJAhkqQ//vGPuv7667Vu3TolJydLkj7++GN17txZy5Yts+u5AQC15wr9TM1NvFFRUbWKOSQkRB999JHN76Tbb79dAwcO1KpVq5Senl6r55FkXeR95cqVNlOKTZw4sdbPAc/AiBG4rYCAAB0/ftz6+LcXd06dOqWff/5ZPXr0kCSbu11vu+02VVZWatOmTdZtubm5On36tG699dYLvuaxY8esF4tq47cx1WTsr7rqKp08eVL79++v9fNIUnBwsL788stz3vkLALCfO/QjkhQZGWnzQ6R58+bq2LGjTVLH19fXmhQxm8365ZdfFBAQoI4dO+qrr7466zmHDBlic7yHDh3S119/rSFDhtjEd80115z1Y2bTpk0KCgpSnz59bO5Cu/LKKxUQEGAztQoA4GyzZ89Wdna2zb/fTjnVu3dvXXbZZcrNzbVuO3LkiLZt22azDsimTZsUERGhTp062Xwe9+7dW5Ls+jy+5ZZbtGvXLpWWlmrHjh0qLS21O8kdEBBgHZEpnembYmNjbfqr4OBg/fTTTyooKLDruQEAtecK/UzNVL21/e1jNBqtSZHq6modPnxYp0+fVkxMzDl/z1xIzc1rH3/8MaPZcUGMGIHbOnHihEJDQ62PDx8+rOXLlys3N1fl5eU2ZY8ePWr9f0REhGJjY7V+/Xr96U9/knQmCx4XF6f27dtf8DUDAwNtLqJdzDfffKMlS5Zox44d1k7hXDHVxpQpUzRjxgxdd911uvLKK5WcnKwhQ4aoXbt2dj0PAOAMd+hHJKlVq1ZnbQsJCbFZz6O6ulovv/yyVq9erYMHD9qsZdWsWbOz6rdt29bmcXFxsSTpiiuuOKts+/btbX6MHDhwQEePHlViYuI54/192wEAbHXv3v2Ci+J6e3vrxhtv1IYNG1RZWSlfX1+9//77qqqqsrlgdeDAAX377bd18nmcnJyspk2bKjc3V//+978VGxur9u3b6+DBg7V+jpYtW8rLy8tmW0hIiPbt22d9fN9992nbtm3605/+pPbt26tPnz66+eab1bNnz1q/DgDgwlyhn6mZPsue3z5vvfWWXnzxRf3nP/+xSWj8/rfLxVxzzTUaMGCAli9frr///e+65ppr1L9/f91yyy12jdxH40diBG7pp59+0tGjR20u4Pz1r39VXl6exowZo65duyogIEDV1dW69957rXPD1xgyZIgef/xx/fTTT6qsrFR+fr5mz5590dft1KmT9u7da+04LqSiokJ33HGHAgMDNWHCBF1xxRXy8/PTnj17tGjRIlVXV9t1zIMGDdJVV12lDz74QJ9//rlWrlyprKwsPf3009ah6QCA2nGHfqSG0Wi8aJnMzEwtXbpUw4cPV0pKikJCQmQwGJSenn5W7JLt6Bh7VVdXKzQ09LzrZTVv3tzh5wYAnDF48GC99tpr+vTTT9W/f39t2rRJnTp1UpcuXaxlqqurFRUVdd7FZFu2bFnr1/P19dUNN9ygt99+Wz/88IPGjx9vd8y16a8iIiK0adMmffzxx/rss8/0/vvva/Xq1XrooYc0YcIEu18TAOCY+u5nOnXqJEn6+uuvaxXPO++8oxkzZqh///4aM2aMQkNDZTQa9dxzz9mMPKwNLy8vLVu2TPn5+dqyZYs+++wzzZw5U9nZ2XrttdfsHsGPxovECNzSO++8I0kymUySzgz52759ux5++GGbL/HffffdOesPGjRIGRkZ2rBhg3799Vf5+Pho4MCBF33dfv36KS8vT++//75uvvnmC5bdtWuX9e7jq6++2rrdnruufq9FixYaPXq0Ro8erfLycg0dOlSZmZkkRgDATu7Qj9hj8+bN6tWr11lz71ZUVOiyyy67aP3WrVtLkr7//vuz9h04cMDm8RVXXKHt27crISHhkhIsAIDzu/rqqxUeHq7c3FwlJCRox44dZ61jdcUVV+jf//63EhMTzxqp4YhbbrlF69atk8Fg0ODBgy/5+c4nICBAgwYN0qBBg1RZWamHH35YmZmZGjt2rPz8/OrtdQEA/1Pf/UzHjh3VsWNH/eMf/9Dx48cvmozYvHmz2rVrp+XLl9u81qWsSRUXF6e4uDhNnDhR69ev15QpU5Sbm2sd9Q+wxgjczvbt2/XMM8+obdu21rncz3d30ksvvXTO7c2bN1ffvn317rvvav369TKZTLW6w3XkyJEKDw9XRkaG/vOf/5y1v7y8XM8884wkWed6/+2dupWVlVq9evVFX+f3zGbzWVNvhYaGqkWLFqqsrLT7+QDAk7lLP2IPo9F41siQ9957r9brUl1++eWKiorS22+/bTPcfdeuXWfd5TVw4ECZzeZzxnn69GlVVFTYHT8AwJbBYNBNN92kLVu26N1339Xp06dtpjeRznweHzp0SGvXrj2r/q+//qoTJ07Y9Zq9evVSSkqKHnvsMYWHh19S/Ofzyy+/2Dz29fVVRESELBYL88ADQANqiH5mwoQJOnz4sGbNmqXTp0+ftX/r1q3asmWLpP/9Hvvtb5ovv/xS+fn59h6ajhw5ctZvo65du0oS19BggxEjcGmffvqp9u/fL7PZrLKyMu3cuVOff/65WrdurWeffdZ6R1FgYKCuvvpqvfDCC6qqqtLll1+uzz///IKjM4YMGWIdrp2SklKreEJCQrRixQrdf//9GjJkiG699VZdeeWVkqSvvvpKGzZsUHx8vCQpPj5eISEhmjFjhu688055eXnpnXfeOeeUJhdz/PhxJScna8CAAerSpYsCAgK0bds2FRYWasaMGXY/HwB4CnfuR+xx3XXXacWKFXrkkUcUHx+vr7/+WuvXr7drHaqJEyfqwQcf1KhRozRs2DBVVFTo1VdfVVRUlE2y5JprrtGIESP03HPPae/everTp498fHz03XffadOmTXr00Ud100032X0MAOApavqm30tISLD53B44cKBWrVqlZcuWKSoqShERETblb7vtNr333ntKTU3Vzp07lZCQILPZrP3792vTpk164YUXLjjH/O8ZDAY9+OCDjh9YLYwZM0ZhYWFKSEhQaGio9u/fr1deeUXJycnW+egBAJfGVfqZQYMGad++fcrMzNRXX32lm2++Wa1bt9bhw4f12Wefafv27Vq8eLGkM79n3n//fT300EO67rrrdPDgQeXk5CgyMtLuRP9bb72lNWvWqH///rriiit0/PhxrV27VoGBgbr22mvtei40biRG4NJqhsz5+PioWbNmioqK0syZMzVs2LCzvjgvXrxY8+bN0+rVq2WxWNSnTx9lZWWpb9++53zufv36KSQkRNXV1frDH/5Q65h69Oih9evXa+XKlfr444/1zjvvyGAwqFOnTrr//vt1xx13SJIuu+wyZWZmauHChVqyZImCg4N16623KjExUWPGjLGrHZo0aaJRo0bp888/1/vvvy+LxaIrrrhCqamp+vOf/2zXcwGAJ3HnfsQe48aN08mTJ7V+/Xrl5uaqW7dueu6556w/NGrj+uuv11NPPaWnn35aixcvVocOHbRgwQK9/fbb+uabb2zKzp07VzExMcrJydHf/vY3GY1GtWnTRrfeeqsSEhLsjh8APMn5pgVZsGCBzQWrhIQEtWrVSj/++ONZd/FKZxIZK1as0N///ne98847+uCDD+Tv76+2bdvqzjvvVMeOHevtGBw1YsQIrV+/XtnZ2Tpx4oRatmypO++8s94TMgDgSVypn5k4caJ69+6tVatWac2aNTpy5IiCg4PVo0cPPfPMM9bfUcOGDVNZWZlee+01bd26VZGRkXryySe1adMm7dq1y67jv+aaa1RYWKjc3FyVlZUpKChI3bt316JFi+y6cQyNn5fFkdvXgUbg9OnT6tu3r/r163fWnOwAAFyMp/Qjt912m5o3b67s7GxnhwIAAAAAQJ1gjRF4rA8//FA///yzhgwZ4uxQAABuqLH1I1VVVWfN/btz5079+9//1jXXXOOkqAAAAAAAqHtMpQWP8+WXX2rfvn165pln1K1bNy72AADs0lj7kUOHDumee+7RrbfeqhYtWmj//v3KyclReHi4Ro4c6ezwAAAAAACoMyRG4HHWrFmjd999V126dFFGRoazwwEAuJnG2o+EhIToyiuv1Ouvv66ff/5ZAQEBSk5O1pQpU3TZZZc5OzwAAAAAAOoMa4wAAAAAAAAAAACPwRojAAAAAAAAAADAY5AYAQAAAAAAAAAAHoPECAAAAAAAAAAA8Bhuufh6dXW1Tp8+LYPBIC8vL2eHAwD1xmKxqLq6Wt7e3jIYyGU3JPoaAJ6E/sZ56G8AeAr6GuehrwHgKezpa9wyMXL69GkVFhY6OwwAaDCxsbHy9fV1dhgehb4GgCeiv2l49DcAPI2n9TWHDh3Sk08+qc8++0wnT55U+/btlZ6ertjYWElnLuItW7ZMr7/+uioqKpSQkKC0tDR16NDB+hyHDx/WvHnztGXLFhkMBt1444169NFH1bRp01rFQF8DwNPUpq9xy8RITbYnNjZWRqOx1vXMZrMKCwvtrofaoX3rD21bf1y9bWvi446qhudoXyO5/nl1McTvXO4ev+T+x+CJ8dPfOA+/bRoebec42s5xtJ1n9jVHjhzRqFGj1KtXL2VlZemyyy7TgQMHFBISYi2TlZWlVatWKSMjQ23bttXSpUs1ZswY5ebmys/PT5I0ZcoUlZaWKjs7W1VVVZo5c6Zmz56txYsX1yoO+hrXQZvWLdqz7rl7m9rT17hlYqRm2J/RaHToD+RoPdQO7Vt/aNv64+pty3Dnhnepfc2l1nUFxO9c7h6/5P7H4Inx0980PH7bOA9t5zjaznG0nWf1NVlZWWrZsqUWLFhg3dauXTvr/y0Wi15++WU98MAD6t+/vyTpiSeeUFJSkj788EMNHjxY3377rT777DO98cYb1lEms2bN0v33369p06bp8ssvv2gc9DWuhzatW7Rn3XP3Nq1NX+OWiREAAAAAuBRPP/20li9fbrOtY8eO2rRpkyTp1KlTysjIUG5uriorK2UymZSamqqwsDBr+eLiYqWlpWnnzp0KCAjQkCFDNHnyZHl78zMLACB99NFHMplMmjBhgr744gtdfvnl+vOf/6zbb79dknTw4EGVlpYqKSnJWicoKEg9evRQXl6eBg8erLy8PAUHB1uTIpKUlJQkg8GggoIC3XDDDbWOx2w22xV/TXl76+H8aNO6RXvWPXdvU3vi5hs7AAAAAI/UuXNnZWdnWx//9q649PR0ffLJJ1qyZImCgoI0b948jR8/Xjk5OZLO/OgaO3aswsLClJOTo5KSEk2fPl0+Pj6aNGlSgx8LAMD1/PDDD1qzZo3uuecejRs3ToWFhZo/f758fHw0dOhQlZaWSpJCQ0Nt6oWGhqqsrEySVFZWpubNm9vs9/b2VkhIiLV+bTm6zgjrk9Q92rRu0Z51zxPalMQIAAAAAI9kNBoVHh5+1vajR49q3bp1WrRokRITEyWdSZQMGjRI+fn5iouL09atW1VUVKTs7GyFhYWpa9euSklJ0aJFizR+/HiPWlgYAHBuFotFMTEx1oR5t27d9M033ygnJ0dDhw5t8HhYY8T5aNO6RXvWPXdv05r4a4PECAAAAACPdODAAZlMJvn5+SkuLk6TJ09W69attXv3blVVVdlMbRIREaHWrVtbEyP5+fmKioqymVrLZDIpLS1NRUVF6tatmzMOCQDgQsLDwxUREWGzrVOnTtq8ebN1vySVl5erRYsW1jLl5eXq0qWLJCksLEw///yzzXOcPn1aR44cOWdy/0JYY8R10KZ1i/ase57QpnYnRg4dOqQnn3xSn332mU6ePKn27dsrPT3dOtehxWLRsmXL9Prrr6uiokIJCQlKS0tThw4drM9x+PBhzZs3T1u2bJHBYNCNN96oRx99VE2bNq2zAwMAAACA8+nevbsWLFigjh07qrS0VCtWrNDo0aO1fv16lZWVycfHR8HBwTZ1QkNDrdOWlJWV2SRFJFkf2zu1icS87w2JtnMcbec42s4zjz0hIUH/+c9/bLZ99913atOmjSSpbdu2Cg8P1/bt29W1a1dJ0rFjx/Tll19q1KhRkqT4+HhVVFRo9+7diomJkSTt2LFD1dXV6t69ewMeDQA0LnYlRo4cOaJRo0apV69eysrK0mWXXaYDBw4oJCTEWiYrK0urVq1SRkaG2rZtq6VLl2rMmDHKzc2Vn5+fJGnKlCkqLS1Vdna2qqqqNHPmTM2ePVuLFy+u26MDAAAAgHNITk62/r9Lly7q0aOH+vXrp/fee09NmjRp8HiY973h0XaOo+0cR9t5lrvvvlujRo1SZmamBg4cqIKCAq1du1Zz586VJHl5eemuu+7Ss88+q/bt21uvo7Vo0UL9+/eXdGbEYt++ffXYY49pzpw5qqqq0rx58zR48GBdfvnlzjw8AHBrdiVGsrKy1LJlSy1YsMC6rV27dtb/WywWvfzyy3rggQesH+BPPPGEkpKS9OGHH2rw4MH69ttv9dlnn+mNN96wjjKZNWuW7r//fk2bNo0PdQAAAAANLjg4WB06dND333+vpKQkVVVVqaKiwmbUSHl5uXXakrCwMBUUFNg8R81CufZObSIx73tDou0cR9s5jrazb973xqJ79+5avny5nnrqKa1YsUJt27bVzJkzdeutt1rL3HfffTp58qRmz56tiooK9ezZUy+88IL15mJJWrRokebNm6e7777bOvPKrFmznHFIANBo2JUY+eijj2QymTRhwgR98cUXuvzyy/XnP/9Zt99+uyTp4MGDKi0ttZmLNygoSD169FBeXp4GDx6svLw8BQcHW5MikpSUlCSDwaCCggLdcMMNtY6H4eauhfatP9XV1fL391d1dbWzQ2l0XP28ddW4ANQvf39/Z4cAeJzjx4/rhx9+UHh4uGJiYuTj46Pt27drwIABkqT9+/eruLhYcXFxkqS4uDhlZmaqvLxcoaGhkqRt27YpMDBQkZGRdr8+8743PNrOMT4+PrTdJaDtPE+/fv3Ur1+/8+738vJSSkqKUlJSzlumWbNmzLICAHXMrsTIDz/8oDVr1uiee+7RuHHjVFhYqPnz58vHx0dDhw61zqVb88OgRmhoqPXuqbKyMjVv3tw2CG9vhYSE2D0XL8PNXRPtW3d8fHzUtduV8vHxsXsBz6rTZu39ao+qqqrqKbrGhfMWgMvwMji8aLO52iKjwauOAwIap4ULF6pfv35q3bq1SkpK9PTTT8tgMOjmm29WUFCQhg8froyMDIWEhCgwMFDz589XfHy8NTFiMpkUGRmpadOmaerUqSotLdWSJUs0evRo+fr6OvfggHrUtduVDl3Yp48CADQER/sb+inPY1dixGKxKCYmRpMmTZIkdevWTd98841ycnI0dOjQegnwQhhu7lpo3/phNBqVkpOnopJjta4T2SJQS0fG68orr6zHyBoHVz9vPXG4+e89//zzWrx4se666y49+uijkqRTp04pIyNDubm5qqyslMlkUmpqqs0iuMXFxUpLS9POnTsVEBCgIUOGaPLkyfL2tqvrAxqc0eBl9+e+9L/PfgC189NPP2nSpEk6fPiwmjdvrp49e2rt2rXWm7hmzpwpg8GgCRMm2PQ1NYxGozIzM5WWlqYRI0bI399fQ4cO1YQJE5x1SECD8PF2/PcJAAD1zZHfU/RTnsmuq0Ph4eGKiIiw2dapUydt3rzZul86M/duixYtrGXKy8vVpUsXSWfm4v35559tnuP06dM6cuSI3XPxMtzcNdG+da+o5Jj2FFfYXY+/Q+1x3rqmgoIC5eTkKDo62mZ7enq6PvnkEy1ZskRBQUGaN2+exo8fr5ycHElnEkpjx45VWFiYcnJyVFJSounTp8vHx8ea3AdcmaOf+wBq729/+9sF9/v5+Sk1NdUmGfJ7bdq0UVZWVl2HBrg8+ikAgCujn0JtGOwpnJCQoP/85z8227777ju1adNGktS2bVuFh4dr+/bt1v3Hjh3Tl19+qfj4M1m3+Ph4VVRUaPfu3dYyO3bsUHV1tbp37+7wgQAAGpfjx49r6tSpmj9/vkJCQqzbjx49qnXr1mnGjBlKTExUTEyM0tPTlZeXp/z8fEnS1q1bVVRUpCeffFJdu3ZVcnKyUlJS9Oqrr6qystJJRwQAAAAAAABXYNeIkbvvvlujRo1SZmamBg4cqIKCAq1du1Zz586VdGbBqLvuukvPPvus2rdvr7Zt22rp0qVq0aKF+vfvL0mKiIhQ37599dhjj2nOnDmqqqrSvHnzNHjwYF1++eV1f4QAALc0d+5cJScnKykpSc8++6x1++7du1VVVaWkpCTrtoiICLVu3Vr5+fmKi4tTfn6+oqKibKbWMplMSktLU1FRkV3rN5jNZrtjr6njSF1XQPy/42VweI5aWartrufo6LXwQL9Lmk/XkVjP+3ycQ07lSPzueqwAAAAA4Ai7EiPdu3fX8uXL9dRTT2nFihVq27atZs6cqVtvvdVa5r777tPJkyc1e/ZsVVRUqGfPnnrhhRfk5+dnLbNo0SLNmzdPd999twwGg2688UbNmjWr7o4KAODWNm7cqK+++kpvvPHGWfvKysrk4+Oj4OBgm+2hoaEqLS21lvltUkSS9XFNmdq6lDVe3H19GOKX/P391a1bN4fnqP3qq306efKk3a/niGB/70uaT9feWGuDc8i53D1+AAAAAKgvdq9A269fP/Xr1++8+728vJSSkqKUlJTzlmnWrJkWL15s70sDADzAjz/+qMcff1wvvviiTVLdWWJjY+2+g99sNquwsNChuq6A+M/m6By1v18fpyG4QqycQ87lSPw1dQAAAADAE9idGAEAoD7t2bNH5eXlGjZsmHWb2WzWF198oVdffVUrV65UVVWVKioqbEaNlJeXKzw8XNKZ0SEFBQU2z1tWViZJ1jK1ZTQaHb4weil1XQHx100M7qI+YnWFv8GlIH4AAAAAaJxIjAAAXErv3r21fv16m22PPPKIOnXqpPvuu0+tWrWSj4+Ptm/frgEDBkiS9u/fr+LiYsXFxUmS4uLilJmZqfLycoWGhkqStm3bpsDAQEVGRjbo8cAzXcp6HwAAAAAAoH6RGAEAuJTAwEBFRUXZbAsICFCzZs2s24cPH66MjAyFhIQoMDBQ8+fPV3x8vDUxYjKZFBkZqWnTpmnq1KkqLS3VkiVLNHr0aPn6+jb0IcEDObrex3XR4Zo6oEs9RgYAAAAAAEiMAADczsyZM2UwGDRhwgRVVlbKZDIpNTXVut9oNCozM1NpaWkaMWKE/P39NXToUE2YMMGJUcMT2bveR0R403qMBgAAAAAASCRGAABuYNWqVTaP/fz8lJqaapMM+b02bdooKyurvkMDAAAAAACAmzE4OwAAAAAAAAAAAICGQmIEAAAAAAAAAAB4DBIjAAAAAAAAAADAY5AYAQAAAAAAAAAAHoPECAAAAAAAAAAA8BgkRgAAAAAAAAAAgMcgMQIAAAAAAAAAADwGiREAAAAAAAAAAOAxSIwAAAAAAAAAAACPQWIEAAAAAAAAAAB4DBIjAAAAAAAAAADAY5AYAQAAAAAAAAAAHoPECAAAAAAAAADA7fj7+zs7BLgpEiMAAAAAAHgYc7XF7jpGo7EeIgEAwFZt+yij0ahu3brRP8Eh3s4OAAAAAAAANCyjwUspOXkqKjlW6zrXRYdr6oAu9RgVAKAxMVdbZDR42V3PkT5Kop+CfUiMAAAAAADggYpKjmlPcUWty0eEN63HaIDG5+mnn9by5ctttnXs2FGbNm2SJJ06dUoZGRnKzc1VZWWlTCaTUlNTFRYWZi1fXFystLQ07dy5UwEBARoyZIgmT54sb28u6cH1XUoS3t4+SqKfgn34FAUAAAAAAADqQefOnZWdnW19/Nspf9LT0/XJJ59oyZIlCgoK0rx58zR+/Hjl5ORIksxms8aOHauwsDDl5OSopKRE06dPl4+PjyZNmtTgxwI4giQ8XBVrjAAAAAAAAAD1wGg0Kjw83PqvefPmkqSjR49q3bp1mjFjhhITExUTE6P09HTl5eUpPz9fkrR161YVFRXpySefVNeuXZWcnKyUlBS9+uqrqqysdOJRAYD7IzECAAAAAAAA1IMDBw7IZDLpD3/4gyZPnqzi4mJJ0u7du1VVVaWkpCRr2YiICLVu3dqaGMnPz1dUVJTN1Fomk0nHjh1TUVFRgx4HADQ2TKUFAAAAAAAA1LHu3btrwYIF6tixo0pLS7VixQqNHj1a69evV1lZmXx8fBQcHGxTJzQ0VKWlpZKksrIym6SIJOvjmjL2MJvNDpW3tx7Oz9Pa9LdTx7kDT/m7XIi7n6P2xE1iBAAAAAAAAKhjycnJ1v936dJFPXr0UL9+/fTee++pSZMmDR5PYWFhg9bD+XlCm/r7+6tbt27ODsMu+/bt08mTJ50dhkvwhHPUrsTI008/reXLl9ts69ixozZt2iRJOnXqlDIyMpSbm6vKykqZTCalpqbaZLeLi4uVlpamnTt3KiAgQEOGDNHkyZPl7U2OBgAAAAAAAI1TcHCwOnTooO+//15JSUmqqqpSRUWFzaiR8vJyhYeHSzozOqSgoMDmOcrKyiTJWsYesbGxdt3BbzabVVhYaHc9nB9t6tqio6OdHYLTufs5WhN/bdidjejcubOys7Otj3/bQOnp6frkk0+0ZMkSBQUFad68eRo/frxycnKsgY0dO1ZhYWHKyclRSUmJpk+fLh8fH02aNMneUAAAAHCJwgP9ZK62yGjwcqj+pdQFAADwJMePH9cPP/yg8PBwxcTEyMfHR9u3b9eAAQMkSfv371dxcbHi4uIkSXFxccrMzFR5eblCQ0MlSdu2bVNgYKAiIyPtfn2j0ejQhU5H6+H8aFPXxN/kfzzhHLU7MWI0Gs+ZlT569KjWrVunRYsWKTExUdKZRMmgQYOUn5+vuLg4bd26VUVFRcrOzlZYWJi6du2qlJQULVq0SOPHj5evr++lHxHgorhwBABwRcH+3jIavJSSk6eikmN21Y1sEailI+PrKTIAwMXwGwNwbQsXLlS/fv3UunVrlZSU6Omnn5bBYNDNN9+soKAgDR8+XBkZGQoJCVFgYKDmz5+v+Ph4a2LEZDIpMjJS06ZN09SpU1VaWqolS5Zo9OjRXEMDgEtkd2LkwIEDMplM8vPzU1xcnCZPnqzWrVtr9+7dqqqqUlJSkrVsRESEWrdubU2M5OfnKyoqymZqLZPJpLS0NBUVFbndvHOAPRy56HRddLimDuhSj1EBAHBGUckx7SmucHYYAAA7OJrY5ncG0DB++uknTZo0SYcPH1bz5s3Vs2dPrV27Vs2bN5ckzZw5UwaDQRMmTLCZkr6G0WhUZmam0tLSNGLECPn7+2vo0KGaMGGCsw4JABoNuxIj3bt314IFC9SxY0eVlpZqxYoVGj16tNavX6+ysjL5+PjYzIsoSaGhoSotLZV0Zh7E3yZFJFkf15Sxhz2rzP+2vL31UDu074UZjUa7LzpFhDe9pNfkb3Fxrn7eumpcAAAAcA2OJLYv9XcGgNr529/+dsH9fn5+Sk1NtUmG/F6bNm2UlZVV16EBgMezKzGSnJxs/X+XLl3Uo0cP9evXT++9956aNGlS58FdTG0XUqmreqgd2vds/v7+ThkRtW/fPp08ebLBX9cdcd4CAOC5nn/+eS1evFh33XWXHn30UUnSqVOnlJGRodzcXJu7eH97o1dxcbHS0tK0c+dOBQQEaMiQIZo8ebK8ve0emA8AAACgAV3SN/bg4GB16NBB33//vZKSklRVVaWKigqbUSPl5eXWNUnCwsJUUFBg8xxlZWWSdM51Sy4mNjbWrkVgalalt7ceaof2dT3R0dHODsHlufp5WxMfAACoHwUFBcrJyTnre1N6ero++eQTLVmyREFBQZo3b57Gjx+vnJwcSWf66LFjxyosLEw5OTkqKSnR9OnT5ePjo0mTJjnjUAAAAADU0iUlRo4fP64ffvhB4eHhiomJkY+Pj7Zv364BAwZIkvbv36/i4mLrolFxcXHKzMxUeXm5QkNDJUnbtm1TYGCgIiMj7X59o9Ho0IVMR+uhdmhf18HfofY4bwEA8DzHjx/X1KlTNX/+fD377LPW7UePHtW6deu0aNEiJSYmSjqTKBk0aJB1/cStW7eqqKhI2dnZCgsLU9euXZWSkqJFixZp/PjxLIoLAAAAuDC7EiMLFy5Uv3791Lp1a5WUlOjpp5+WwWDQzTffrKCgIA0fPlwZGRkKCQlRYGCg5s+fr/j4eGtixGQyKTIyUtOmTdPUqVNVWlqqJUuWaPTo0fxwAAAAANCg5s6dq+TkZCUlJdkkRnbv3q2qqiolJSVZt0VERKh169bWxEh+fr6ioqJsptYymUxKS0tTUVGR3dOosn5iw2lMbecuN/aEB/rJXG2R0eDlUH1ztUWyVNdxVA2rMZ13jvLkYwcAuB67EiM//fSTJk2apMOHD6t58+bq2bOn1q5dq+bNm0uSZs6cKYPBoAkTJtjMw1vDaDQqMzNTaWlpGjFihPz9/TV06FBNmDChbo8KAAAAAC5g48aN+uqrr/TGG2+cta+srEw+Pj42UwRLUmhoqEpLS61lfpsUkWR9XFPGHqyf2PDcve2ctY6hI4L9vWU0eCklJ09FJcfsqhvZIlBLR8brq68ax/qJ7n7eAQDQWNiVGPnb3/52wf1+fn5KTU21SYb8Xps2bZSVlWXPywIAAABAnfnxxx/1+OOP68UXX5Sfn5+zw5HE+okNibZznqKSY9pTXOFQXXdfP5HzjvUTAQCu5ZLWGAEAAAAAd7Nnzx6Vl5dr2LBh1m1ms1lffPGFXn31Va1cuVJVVVWqqKiwGTVSXl6u8PBwSWdGhxQUFNg8b1lZmSRZy9iD9RMbHm3nXhrL34rzDgAA10BiBAAAAIBH6d27t9avX2+z7ZFHHlGnTp103333qVWrVvLx8dH27ds1YMAASdL+/ftVXFxsXT8xLi5OmZmZKi8vV2hoqCRp27ZtCgwMVGRkZIMeDwAAAAD7kBgBAAAA4FECAwMVFRVlsy0gIEDNmjWzbh8+fLgyMjIUEhKiwMBAzZ8/X/Hx8dbEiMlkUmRkpKZNm6apU6eqtLRUS5Ys0ejRo+Xr69vQhwQAAADADiRGAAAAAOB3Zs6cKYPBoAkTJqiyslImk8lmLUWj0ajMzEylpaVpxIgR8vf319ChQzVhwgQnRg0AAACgNkiMAAAAAPB4q1atsnns5+en1NRUm2TI77Vp00ZZWVn1HRoAAACAOmZwdgAAAAAAAAAAAAANhcQIAAAAAAAAAADwGCRGAAAAAAAAAACAxyAxAgAAAAAAAAAAPAaJEQAAAAAAAAAA4DFIjAAAAAAAAAAAPFJ4oJ/M1RaH6jpaD87n7ewAANS9mg90o8HLofqXUhcAAAAAAABwF8H+3jIavJSSk6eikmO1rhfZIlBLR8bXY2SoTyRGgEbI0Q90iQ91ON/q1au1Zs0a/fe//5Ukde7cWQ8++KCSk5MlSadOnVJGRoZyc3NVWVkpk8mk1NRUhYWFWZ+juLhYaWlp2rlzpwICAjRkyBBNnjxZ3t50ewAAAAAA4GxFJce0p7jC2WGggXCFCGjE+ECHO2rZsqWmTJmi9u3by2Kx6O2339ZDDz2kt956S507d1Z6ero++eQTLVmyREFBQZo3b57Gjx+vnJwcSZLZbNbYsWMVFhamnJwclZSUaPr06fLx8dGkSZOcfHQAAAAAAABwNtYYAQC4lOuvv17Jycnq0KGDOnbsqIkTJyogIED5+fk6evSo1q1bpxkzZigxMVExMTFKT09XXl6e8vPzJUlbt25VUVGRnnzySXXt2lXJyclKSUnRq6++qsrKSuceHAAAAAAAAJyOESMAAJdlNpu1adMmnThxQvHx8dq9e7eqqqqUlJRkLRMREaHWrVsrPz9fcXFxys/PV1RUlM3UWiaTSWlpaSoqKlK3bt3sjsGRuB2t6wqI35bRaKyT52nMft/WnEPO5Uj87nqsAAAAAOAIEiMAAJezb98+jRw5UqdOnVJAQIBWrFihyMhI7d27Vz4+PgoODrYpHxoaqtLSUklSWVmZTVJEkvVxTRl7FBYWOngUl1bXFRC/5O/vb3cyzRPt27dPJ0+ePGs755BzuXv8AAAAAFBfSIwAAFxOx44d9fbbb+vo0aPavHmzpk+frldeecUpscTGxto9YsBsNquwsNChuq6A+GGv6Ohom8fu/jfwxPhr6gAAAACAJyAxAgBwOb6+vmrfvr0kKSYmRoWFhXr55Zc1cOBAVVVVqaKiwmbUSHl5ucLDwyWdGR1SUFBg83xlZWWSZC1jD6PR6PCF0Uup6wqIH7V1vnZ2978B8QMAAABA48Ti6wAAl1ddXa3KykrFxMTIx8dH27dvt+7bv3+/iouLFRcXJ0mKi4vT119/rfLycmuZbdu2KTAwUJGRkQ0dOgAAAAAAAFwMI0YAAC5l8eLFuvbaa9WqVSsdP35cGzZs0K5du7Ry5UoFBQVp+PDhysjIUEhIiAIDAzV//nzFx8dbEyMmk0mRkZGaNm2apk6dqtLSUi1ZskSjR4+Wr6+vcw8OAAAAAAAATkdiBADgUsrLyzV9+nSVlJQoKChI0dHRWrlypfr06SNJmjlzpgwGgyZMmKDKykqZTCalpqZa6xuNRmVmZiotLU0jRoyQv7+/hg4dqgkTJjjrkAAAAAAAAOBCSIwAAFxKenr6Bff7+fkpNTXVJhnye23atFFWVlZdhwYAAAAADnn++ee1ePFi3XXXXXr00UclSadOnVJGRoZyc3NtbvoKCwuz1isuLlZaWpp27typgIAADRkyRJMnT5a3N5f0AOBSsMYIAAAAAAAAUE8KCgqUk5Oj6Ohom+3p6enasmWLlixZolWrVqmkpETjx4+37jebzRo7dqyqqqqUk5OjjIwMvfXWW1q2bFlDHwIANDokRgAAAAAAAIB6cPz4cU2dOlXz589XSEiIdfvRo0e1bt06zZgxQ4mJiYqJiVF6erry8vKUn58vSdq6dauKior05JNPqmvXrkpOTlZKSopeffVVVVZWOumIAKBxYNwdAAAAAAAAUA/mzp2r5ORkJSUl6dlnn7Vu3717t6qqqpSUlGTdFhERodatWys/P19xcXHKz89XVFSUzdRaJpNJaWlpKioqUrdu3eyKxWw2O1Te3no4P09rU6PR6OwQGkRj+nu6+zlqT9wkRgAAQKNnrrbIaPBydhgAAADwIBs3btRXX32lN95446x9ZWVl8vHxUXBwsM320NBQlZaWWsv8Nikiyfq4pow9CgsL7a5zKfVwfp7Qpv7+/nYn79zVvn37dPLkSWeHUac84Ry9pMQIC0cBAAB3YDR4KSUnT0Ulx+yqd110uKYO6FJPUQEAAKCx+vHHH/X444/rxRdflJ+fn7PDkSTFxsbadQe/2WxWYWGh3fVwfrRp4/T79YPcmbufozXx14bDmYgLLRz1ySefaMmSJQoKCtK8efM0fvx45eTkWIMbO3aswsLClJOTo5KSEk2fPl0+Pj6aNGmSo+EADYI7jgHAfRWVHNOe4gq76kSEN62naAAAANCY7dmzR+Xl5Ro2bJh1m9ls1hdffKFXX31VK1euVFVVlSoqKmxGjZSXlys8PFzSmdEhBQUFNs9bVlYmSdYy9jAajQ5d6HS0Hs6PNm1cGuPf0hPOUYcSI79dOOq38yPWLBy1aNEiJSYmSjqTKBk0aJB1fsSahaOys7MVFhamrl27KiUlRYsWLdL48ePl6+tbN0cG1APuOAYAAAAAABfTu3dvrV+/3mbbI488ok6dOum+++5Tq1at5OPjo+3bt2vAgAGSpP3796u4uFhxcXGSpLi4OGVmZqq8vFyhoaGSpG3btikwMFCRkZENejwA0Ng4lBhxlYWjWDTKtXhC+xqNRo+547gx/x1/y9XPW1eNCwAAAABwfoGBgYqKirLZFhAQoGbNmlm3Dx8+XBkZGQoJCVFgYKDmz5+v+Ph4a2LEZDIpMjJS06ZN09SpU1VaWqolS5Zo9OjR3FgMAJfI7sSIKy0cxaJRrqmxtq8nLRolNc6Foy6ksZ63AAAAAADXNHPmTBkMBk2YMMFmnd4aRqNRmZmZSktL04gRI+Tv76+hQ4dqwoQJTowaABoHuxIjrrZwFItGuRbat3FpTAtHXYirn7f2LBoFAAAA98RahoBnWLVqlc1jPz8/paam2iRDfq9NmzbKysqq79AAwOPYlRhxtYWjWDTKNdG+jYOn/Q05bwEAAOAsjqxlyDqGAAAAjrMrMcLCUQAAAAAA1D171zJ0x3UMAQAAXIVdiREWjgIAAAAAAAAAAO7M7sXXL4aFowAAAAAAAAAAgKu65MQIC0cBAAAAAID6EB7o5/Di9CxqDwAAzqfOR4wAAAAAAADUhWB/b4cWp49sEailI+PrMTIAAODOSIwAAAAA8DirV6/WmjVr9N///leS1LlzZz344INKTk6WJJ06dUoZGRnKzc21mSI4LCzM+hzFxcVKS0vTzp07FRAQoCFDhmjy5Mny9uZnFlDX7F2cHgAA4EIMzg4AAAAAABpay5YtNWXKFL355ptat26devfurYceekjffPONJCk9PV1btmzRkiVLtGrVKpWUlGj8+PHW+mazWWPHjlVVVZVycnKUkZGht956S8uWLXPWIQEAAACoJRIjAAAAADzO9ddfr+TkZHXo0EEdO3bUxIkTFRAQoPz8fB09elTr1q3TjBkzlJiYqJiYGKWnpysvL0/5+fmSpK1bt6qoqEhPPvmkunbtquTkZKWkpOjVV19VZWWlcw8OAAAAwAWRGAEAAADg0cxmszZu3KgTJ04oPj5eu3fvVlVVlZKSkqxlIiIi1Lp1a2tiJD8/X1FRUTZTa5lMJh07dkxFRUUNfQgAAAAA7MDktwAAAAA80r59+zRy5EidOnVKAQEBWrFihSIjI7V37175+PgoODjYpnxoaKhKS0slSWVlZTZJEUnWxzVl7GE2mx0qb289uGbbGY1GZ4fQaLnK39kVz7uG5snHDgBwPSRGAAAAAHikjh076u2339bRo0e1efNmTZ8+Xa+88opTYiksLGzQenCdtvP391e3bt2cHUajtW/fPp08edLZYVi5ynkHAICnIzECAACAOufv7+/sEICL8vX1Vfv27SVJMTExKiws1Msvv6yBAweqqqpKFRUVNqNGysvLFR4eLunM6JCCggKb5ysrK5Mkaxl7xMbG2jVqwGw2q7Cw0O56oO08TXR0tLNDkMR5J/2vDQAAcAUkRgAAAOCQ8EA/mastMhq8bLYbjcaL3v18rnqAs1VXV6uyslIxMTHy8fHR9u3bNWDAAEnS/v37VVxcrLi4OElSXFycMjMzVV5ertDQUEnStm3bFBgYqMjISLtf22g0OnSx1NF6oO08hav9jTnvAABwDSRGAAAA4JBgf28ZDV5KyclTUcmxWteLbBGopSPj6zEy4OIWL16sa6+9Vq1atdLx48e1YcMG7dq1SytXrlRQUJCGDx+ujIwMhYSEKDAwUPPnz1d8fLw1MWIymRQZGalp06Zp6tSpKi0t1ZIlSzR69Gj5+vo69+AAAAAAXBCJEQA2znf3b21w9y8AeKaikmPaU1zh7DAAu5SXl2v69OkqKSlRUFCQoqOjtXLlSvXp00eSNHPmTBkMBk2YMEGVlZUymUxKTU211jcajcrMzFRaWppGjBghf39/DR06VBMmTHDWIQEAAACoJRIjAGxw9y8AAPAE6enpF9zv5+en1NRUm2TI77Vp00ZZWVl1HRoAAACAekZiBMA5cfcvAAAAAAAAgMbI4OwAAAAAAAAAAAAAGgqJEQAAAAAAAAAA4DFIjAAAAAAAAAAAAI9BYgQAAAAAAAAAAHgMEiMAAAAAAAAAgHMyV1ucHQJQ57ydHQAAAAAAAAAAwDUZDV5KyclTUcmxWte5LjpcUwd0qceogEtDYgQAAAAAAAAAcF5FJce0p7ii1uUjwpvWYzTApWMqLQAAAAAAAAAA4DFIjAAAAAAAAAAAAI9BYgQAAAAAAACoY6tXr9Ytt9yihIQEJSQkaMSIEfrkk0+s+0+dOqU5c+aoV69eio+P18MPP6yysjKb5yguLtb999+vHj16KDExUQsXLtTp06cb+lAAoNEhMQIAAAAAAADUsZYtW2rKlCl68803tW7dOvXu3VsPPfSQvvnmG0lSenq6tmzZoiVLlmjVqlUqKSnR+PHjrfXNZrPGjh2rqqoq5eTkKCMjQ2+99ZaWLVvmrEMCgEaDxAgAAAAAAABQx66//nolJyerQ4cO6tixoyZOnKiAgADl5+fr6NGjWrdunWbMmKHExETFxMQoPT1deXl5ys/PlyRt3bpVRUVFevLJJ9W1a1clJycrJSVFr776qiorK517cADg5kiMAAAAAAAAAPXIbDZr48aNOnHihOLj47V7925VVVUpKSnJWiYiIkKtW7e2Jkby8/MVFRWlsLAwaxmTyaRjx46pqKiooQ8BABoVb3sKr169WmvWrNF///tfSVLnzp314IMPKjk5WdKZuREzMjKUm5uryspKmUwmpaam2nyAFxcXKy0tTTt37lRAQICGDBmiyZMny9vbrlAAAAAAAAAAl7Zv3z6NHDlSp06dUkBAgFasWKHIyEjt3btXPj4+Cg4OtikfGhqq0tJSSVJZWZnNNTVJ1sc1ZexhNpsdKm9vPZyfu7ap0Wh0dgguzd3+nhfirudoDXvitisbUTM3Yvv27WWxWPT222/roYce0ltvvaXOnTsrPT1dn3zyiZYsWaKgoCDNmzdP48ePV05OjjWwsWPHKiwsTDk5OSopKdH06dPl4+OjSZMm2XeUAAAAAAAAgAvr2LGj3n77bR09elSbN2/W9OnT9corrzgllsLCwgath/Nzpzb19/dXt27dnB2GSztw4IB+/fVXu+udPn1aVVVV9RDRpXOnc9RRdiVGrr/+epvHEydO1Jo1a5Sfn6+WLVtq3bp1WrRokRITEyWdWURq0KBBys/PV1xcnHVuxOzsbIWFhalr165KSUnRokWLNH78ePn6+tbdkQEA3NJzzz2n999/X/v371eTJk0UHx+vKVOmqFOnTtYyjFAEAAAA4A58fX3Vvn17SVJMTIwKCwv18ssva+DAgaqqqlJFRYXNqJHy8nKFh4dLOjM6pKCgwOb5ysrKJMlaxh6xsbF23flvNptVWFhodz2cH23auIQH+slcbbG5XmEPc7VFslTXcVSXxt3P0Zr4a8Phq0Nms1mbNm2q9dyIcXFx550bMS0tTUVFRXZnHxkC6Fo8oX3d8QOhobnb39/Vz1tXjas+7dq1S6NHj1ZsbKzMZrOeeuopjRkzRhs3blRAQIAkMUIRAAAAgFuqrq5WZWWlYmJi5OPjo+3bt2vAgAGSpP3796u4uFhxcXGSpLi4OGVmZqq8vFyhoaGSpG3btikwMFCRkZF2v7bRaHTouoaj9XB+tGnjEOzvLaPBSyk5eSoqOWZX3cgWgVo6Ml6Sa54HnnCO2p0YcaW5ERkC6Joaa/sydLB29u3bp5MnTzo7DLs11vPWHa1cudLmcUZGhhITE7Vnzx5dffXVOnr0KCMUAQAAALi8xYsX69prr1WrVq10/PhxbdiwQbt27dLKlSsVFBSk4cOHKyMjQyEhIQoMDNT8+fMVHx9vTYyYTCZFRkZq2rRpmjp1qkpLS7VkyRKNHj2a3zSACykqOaY9xRXODgN2sjsx4kpzIzIE0LXQvpCk6OhoZ4dgF1c/b+0ZAthYHT16VJIUEhIiSU4ZoQgAAAAA9iovL9f06dNVUlKioKAgRUdHa+XKlerTp48kaebMmTIYDJowYYLNFME1jEajMjMzlZaWphEjRsjf319Dhw7VhAkTnHVIANBo2J0YcaW5ERkC6JpoX8/mrn97zlvXVF1drfT0dCUkJCgqKkrSmX6jIUcoOjKdmatP0XYxjTF+3t+uyVXPscb4HqhtHQAAUHfS09MvuN/Pz0+pqak2yZDfa9OmjbKysuo6NADweJe8Aq0z50YEADRuc+bM0TfffKPVq1c7LYZLGbHj7qN9Gkv8TIXoulx9+sXG8h4AAAAAANiyKzHC3IgAgIYyd+5cffzxx3rllVfUsmVL6/awsLAGHaHoyDRrrj5F28W4e/zV1dX65ptv1LlzZxkMBmeHgwtw1ekX3f094Ej8TN0IAAAAwJPYlRhhbkQAQH2zWCyaN2+ePvjgA61atUrt2rWz2d/QIxQvZZo1d5+izRXjN1dbZDR4XbCM0WhkhIibcLXz6/dc8T1gD3ePHwAAAADqi12JEeZGBADUtzlz5mjDhg165pln1LRpU+uaIEFBQWrSpAkjFD2c0eCllJw8FZUcq3Wd66LDNXVAl3qMCgAAAAAAuJNLXmMEAIC6tGbNGknSnXfeabN9wYIFGjZsmCRGKHq6opJj2lNcUevyEeFN6zEaAADgisID/Wo10vR8LqUuAABwfSRGAAAuZd++fRctwwhFAAAAXEiwv7dDI00lKbJFoJaOjK+nyAAAgCsgMQIAAAAAABole0eaAgAAz2BwdgCAM5irLc4OAQAAAAAAAADgBIwYgUdi8V4AAAAAAAAA8EwkRuCxWLwXAAAAAAAAADwPU2kBAAAAAFAHmLIXAADAPTBiBAAAAACAOsCUvQAAAO6BxAgAAAAAAHWEKXsBAABcH1NpAQAAAAAAAAAAj0FiBAAAAIDHee655zR8+HDFx8crMTFRDz74oPbv329T5tSpU5ozZ4569eql+Ph4PfzwwyorK7MpU1xcrPvvv189evRQYmKiFi5cqNOnTzfkoQAAAACwE4kRAAAAAB5n165dGj16tNauXavs7GydPn1aY8aM0YkTJ6xl0tPTtWXLFi1ZskSrVq1SSUmJxo8fb91vNps1duxYVVVVKScnRxkZGXrrrbe0bNkyZxwSAAAAgFoiMQIAAADA46xcuVLDhg1T586d1aVLF2VkZKi4uFh79uyRJB09elTr1q3TjBkzlJiYqJiYGKWnpysvL0/5+fmSpK1bt6qoqEhPPvmkunbtquTkZKWkpOjVV19VZWWlE48OAAAAwIWw+DoAAAAAj3f06FFJUkhIiCRp9+7dqqqqUlJSkrVMRESEWrdurfz8fMXFxSk/P19RUVEKCwuzljGZTEpLS1NRUZG6detW69c3m812xVtT3t56qN+2MxqNdf6ccJ66PEd4z3r2sQMAXA+JEQAAAAAerbq6Wunp6UpISFBUVJQkqaysTD4+PgoODrYpGxoaqtLSUmuZ3yZFJFkf15SprcLCQodid7Qe6r7t/P397UqGwfXt27dPJ0+erNPn5D0LAIBrIDECAAAAwKPNmTNH33zzjVavXu20GGJjY+0abWA2m1VYWGh3PdB2qL3o6Og6ey7Ou/+1AQAAroDECAAAAACPNXfuXH388cd65ZVX1LJlS+v2sLAwVVVVqaKiwmbUSHl5ucLDw61lCgoKbJ6vrKxMkqxlastoNDp0sdTReqDtcHH1cX5w3gEA4BpYfB0AAACAx7FYLJo7d64++OADvfTSS2rXrp3N/piYGPn4+Gj79u3Wbfv371dxcbHi4uIkSXFxcfr6669VXl5uLbNt2zYFBgYqMjKyQY4DAAAAgP0YMQIAAADA48yZM0cbNmzQM888o6ZNm1rXBAkKClKTJk0UFBSk4cOHKyMjQyEhIQoMDNT8+fMVHx9vTYyYTCZFRkZq2rRpmjp1qkpLS7VkyRKNHj1avr6+Tjw6AAAAABdCYgQAAACAx1mzZo0k6c4777TZvmDBAg0bNkySNHPmTBkMBk2YMEGVlZUymUxKTU21ljUajcrMzFRaWppGjBghf39/DR06VBMmTGi4AwEAAABgNxIjAAAAADzOvn37LlrGz89PqampNsmQ32vTpo2ysrLqMjQAAAAA9Yw1RgAAAAAAAAAAgMcgMQIAAAAAAAAAADwGiREAAAAAAAAAAOAxSIwAAAAAAAAAdey5557T8OHDFR8fr8TERD344IPav3+/TZlTp05pzpw56tWrl+Lj4/Xwww+rrKzMpkxxcbHuv/9+9ejRQ4mJiVq4cKFOnz7dkIcCAI0OiREAAAA0qPBAP5mrLQ7VdbQeAABAQ9u1a5dGjx6ttWvXKjs7W6dPn9aYMWN04sQJa5n09HRt2bJFS5Ys0apVq1RSUqLx48db95vNZo0dO1ZVVVXKyclRRkaG3nrrLS1btswZhwQAjYa3PYWfe+45vf/++9q/f7+aNGmi+Ph4TZkyRZ06dbKWOXXqlDIyMpSbm6vKykqZTCalpqYqLCzMWqa4uFhpaWnauXOnAgICNGTIEE2ePFne3naFAwAAADcU7O8to8FLKTl5Kio5Vut6kS0CtXRkfD1GBgAAUHdWrlxp8zgjI0OJiYnas2ePrr76ah09elTr1q3TokWLlJiYKOlMomTQoEHKz89XXFyctm7dqqKiImVnZyssLExdu3ZVSkqKFi1apPHjx8vX19cZhwYAbs+uTERNpjs2NlZms1lPPfWUxowZo40bNyogIEDSmQ/wTz75REuWLFFQUJDmzZun8ePHKycnR9L/Mt1hYWHKyclRSUmJpk+fLh8fH02aNKnujxAAAAAuqajkmPYUVzg7DAAAgAZx9OhRSVJISIgkaffu3aqqqlJSUpK1TEREhFq3bm1NjOTn5ysqKsrmhmOTyaS0tDQVFRWpW7dutX59s9lsV7w15e2th/Nz1zY1Go3ODqHRcrVzwV3P0Rr2xG1XYoRMNwAAAAAAAGCf6upqpaenKyEhQVFRUZKksrIy+fj4KDg42KZsaGioSktLrWV+mxSRZH1cU6a2CgsLHYrd0Xo4v4ZuUx8fH3XtdqV8vElwuJp9+/bp5MmTzg7jLJ7wvr+kuaucnekGAAAAAAAAXN2cOXP0zTffaPXq1U6LITY21q47/81mswoLC+2uh/NzZpsajUa7p7KVpOuiwzV1QJd6igrR0dHODsGGu7/va+KvDYcTI66Q6WYIoGtxp/Z1xze2u3CHv/9vufp566pxAQAAAABqZ+7cufr444/1yiuvqGXLltbtYWFhqqqqUkVFhc21tPLycoWHh1vLFBQU2DxfWVmZJFnL1JbRaHToeoij9XB+zmpTR6ayjQhvWk/RQHLda5Se8L53ODHiCpluhgC6poZsXx8fH3l723caN2nSRJ06daqniDxXeKCfzNUWhz80q06btferPaqqqqrjyGqHzwUAAAAAQF2yWCyaN2+ePvjgA61atUrt2rWz2R8TEyMfHx9t375dAwYMkCTt379fxcXFiouLkyTFxcUpMzNT5eXlCg0NlSRt27ZNgYGBioyMbNDjAYDGxKHEiKtkuhkC6Fqc0r5eBhkNXg3zWrigYH9vGQ1eDg3LjGwRqKUj43XllVfWU3Tn5+qfC/YMAQQAAAAAuI45c+Zow4YNeuaZZ9S0aVPrTClBQUFq0qSJgoKCNHz4cGVkZCgkJESBgYGaP3++4uPjrYkRk8mkyMhITZs2TVOnTlVpaamWLFmi0aNHs04vAFwCuxIjrpbpZgiga2ro9rX3QjxzI9YvR4Zl1nDm+5LPBQAAAABAXVqzZo0k6c4777TZvmDBAg0bNkySNHPmTBkMBk2YMEGVlZUymUxKTU21ljUajcrMzFRaWppGjBghf39/DR06VBMmTGi4AwGARsiuxAiZbrgiey/EMzciAAAAAACob/v27btoGT8/P6WmptokQ36vTZs2ysrKqsvQAMDj2ZUYIdMNAADqgrnawlSIAAAAAADAKexKjJDpBgAAdcGRNYmYChEAAAAAANQFhxZfBwAAuFRMhQgAAAAAAJzB4OwAAAAAAAAAAAAAGgqJEQAAAAAAAAAA4DFIjAAAAAAAAPz/wgP9ZK62OFTX0XoAAKBhscYIAAAA3ELNhSqjwcuh+pdSFwDgOYL9vWU0eCklJ09FJcdqXS+yRaCWjoyvx8gAAEBdITECAAAAt+DohSqJi1UAAPsVlRzTnuIKZ4cBAADqAYkRAAAAuBUuVAEAAAAALgVrjAAAAAAAAAAAAI9BYgQAAAAAAAAAAHgMEiMAAJfzxRdfaNy4cTKZTIqOjtaHH35os99isWjp0qUymUzq3r27/vKXv+i7776zKXP48GFNnjxZCQkJuuqqqzRz5kwdP368AY8CAAAAAAAArojECADA5Zw4cULR0dFKTU095/6srCytWrVKaWlpWrt2rfz9/TVmzBidOnXKWmbKlCkqKipSdna2MjMz9c9//lOzZ89uqEMAAAAAAACAiyIxAgBwOcnJyZo4caJuuOGGs/ZZLBa9/PLLeuCBB9S/f3916dJFTzzxhEpKSqwjS7799lt99tlnmj9/vnr06KGrrrpKs2bN0saNG3Xo0KGGPhwAAAAAAAC4EBIjAAC3cvDgQZWWliopKcm6LSgoSD169FBeXp4kKS8vT8HBwYqNjbWWSUpKksFgUEFBQYPHDAAAAAAAANfh7ewAAACwR2lpqSQpNDTUZntoaKjKysokSWVlZWrevLnNfm9vb4WEhFjr15bZbLY7xpo6jtR1BQ0Rv9ForLfnBi6kNue1J76H3fVYgfpgrrbIaPBydhgAAACoRyRGAAC4gMLCQqfUdQX1Fb+/v7+6detWL88NXMy+fft08uTJWpXlPQx4JqPBSyk5eSoqOWZXveuiwzV1QJd6igoAAAB1icQIAMCthIeHS5LKy8vVokUL6/by8nJ16XLmYkRYWJh+/vlnm3qnT5/WkSNHrPVrKzY21u7RDWazWYWFhQ7VdQXuHj9wIdHR0Rct4+7vAUfir6kD4IyikmPaU1xhV52I8Kb1FA0AAADqGokRAIBbadu2rcLDw7V9+3Z17dpVknTs2DF9+eWXGjVqlCQpPj5eFRUV2r17t2JiYiRJO3bsUHV1tbp3727X6xmNRocvjF5KXVfg7vED52LPOe3u7wF3jx8AAABorMID/RyevpNpP+sGiREAgMs5fvy4vv/+e+vjgwcPau/evQoJCVHr1q1111136dlnn1X79u3Vtm1bLV26VC1atFD//v0lSREREerbt68ee+wxzZkzR1VVVZo3b54GDx6syy+/3FmHBQAAAAAAoGB/b4em74xsEailI+PrMTLPQWIEAOBydu/erbvuusv6eMGCBZKkoUOHKiMjQ/fdd59Onjyp2bNnq6KiQj179tQLL7wgPz8/a51FixZp3rx5uvvuu2UwGHTjjTdq1qxZDX4sAADX9MUXX2jlypXavXu3SktLtWLFCmuCXZIsFouWLVum119/XRUVFUpISFBaWpo6dOhgLXP48GHNmzdPW7ZssfY1jz76qJo2ZUolAAAAXJwj03eibpAYAQC4nF69emnfvn3n3e/l5aWUlBSlpKSct0yzZs20ePHi+ggPANAInDhxQtHR0Ro+fLjGjx9/1v6srCytWrVKGRkZ1tGJY8aMUW5urjURP2XKFJWWlio7O1tVVVWaOXOmZs+eTf8DAAAAuDiDswMAAAAAgIaWnJysiRMn6oYbbjhrn8Vi0csvv6wHHnhA/fv3V5cuXfTEE0+opKREH374oSTp22+/1Weffab58+erR48euuqqqzRr1ixt3LhRhw4daujDAQAAAGAHEiMAAAAA8BsHDx5UaWmpkpKSrNuCgoLUo0cP5eXlSZLy8vIUHBys2NhYa5mkpCQZDAYVFBQ0eMwAAAAAao+ptAA4XXign8zVFhkNXnbXdbQeAADA+ZSWlkqSQkNDbbaHhoaqrKxMklRWVqbmzZvb7Pf29lZISIi1vj3MZrND5e2th4u3ndFobMhw0Aid69ziPevZxw4AcD0kRgA4XbC/t4wGL6Xk5Kmo5Fit60W2CNTSkfH1GBkAAEDDKCwsbNB6OHfb+fv7q1u3bk6IBo3Jvn37dPLkyXPu4z0LAIBrIDECwGUUlRzTnuIKZ4cBAAA8XHh4uCSpvLxcLVq0sG4vLy9Xly5dJElhYWH6+eefbeqdPn1aR44csda3R2xsrF0jFcxmswoLC+2uB9oO9S86OvqsbZx3/2sDAABcAYkRAAAAAPiNtm3bKjw8XNu3b1fXrl0lSceOHdOXX36pUaNGSZLi4+NVUVGh3bt3KyYmRpK0Y8cOVVdXq3v37na/ptFodOhiqaP1QNuh/lzovOK88yxffPGFVq5cqd27d6u0tFQrVqxQ//79rfstFouWLVum119/XRUVFUpISFBaWpo6dOhgLXP48GHNmzdPW7ZskcFg0I033qhHH31UTZs2dcIRAUDjweLrAAAAADzO8ePHtXfvXu3du1fSmQXX9+7dq+LiYnl5eemuu+7Ss88+q3/84x/at2+fpk2bphYtWlgvaEVERKhv37567LHHVFBQoP/3//6f5s2bp8GDB+vyyy935qEBAFzEiRMnFB0drdTU1HPuz8rK0qpVq5SWlqa1a9fK399fY8aM0alTp6xlpkyZoqKiImVnZyszM1P//Oc/NXv27IY6BABotOxOjHzxxRcaN26cTCaToqOj9eGHH9rst1gsWrp0qUwmk7p3766//OUv+u6772zKHD58WJMnT1ZCQoKuuuoqzZw5U8ePH7+kAwEAAACA2tq9e7eGDBmiIUOGSJIWLFigIUOGaNmyZZKk++67T3fccYdmz56tP/7xjzpx4oReeOEF+fn5WZ9j0aJF6tSpk+6++27df//9SkhI0Ny5c51xOAAAF5ScnKyJEyfqhhtuOGufxWLRyy+/rAceeED9+/dXly5d9MQTT6ikpMR6re3bb7/VZ599pvnz56tHjx666qqrNGvWLG3cuFGHDh1q6MOBizBXW5wdAtAo2D2VVk22e/jw4Ro/fvxZ+2uy3RkZGWrbtq2WLl2qMWPGKDc31/ojYsqUKSotLVV2draqqqo0c+ZMzZ49W4sXL770IwIAAACAi+jVq5f27dt33v1eXl5KSUlRSkrKecs0a9aM3zAAAIccPHhQpaWlSkpKsm4LCgpSjx49lJeXp8GDBysvL0/BwcGKjY21lklKSpLBYFBBQcE5Ey5o/IwGL6Xk5Kmo5Fit61wXHa6pA7rUY1SA+7E7MZKcnKzk5ORz7vt9tluSnnjiCSUlJenDDz/U4MGDrdnuN954w/rBPmvWLN1///2aNm0aw84BAHAT5mqLjAYvZ4cBAAAAuJ3S0lJJUmhoqM320NBQlZWVSZLKysrUvHlzm/3e3t4KCQmx1reH2Wx2qLy99XB+ddGmRqNRRSXHtKe4otZ1IsJZk6axqa/3pbu/7+2Ju04XX2/obDcf6K7FGe3LonWQLu2cc/XPBVeNC5Acu1NJ4m4lAAAAwBkKCwsbtB7Oz9E29ff3V7du3eo4Grijffv26eTJk/X2/J7wvq/TxEhDZ7v5QHdNDdW+dAaoURedAZ8LgGPsvVNJ4m4lAAAAIDw8XJJUXl6uFi1aWLeXl5erS5czNxGFhYXp559/tql3+vRpHTlyxFrfHrGxsXbdYGo2m1VYWGh3PZwfbYq6Eh0dXS/P6+7naE38tVGniZGGxge6a6F94SyX0hm4+nlrzwc6AAAAAMA9tG3bVuHh4dq+fbu6du0qSTp27Ji+/PJLjRo1SpIUHx+viooK7d69WzExMZKkHTt2qLq6Wt27d7f7NY1Go0O/ex2th/OjTXGp6vv88YRztE4TIw2d7eYD3TXRvmhodXG+cd4CAAAAAOrS8ePH9f3331sfHzx4UHv37lVISIhat26tu+66S88++6zat2+vtm3baunSpWrRooV13d6IiAj17dtXjz32mObMmaOqqirNmzdPgwcPZo1ewEOFB/pd0nqfrBX6P3WaGHFGthsAAAAAAABwNbt379Zdd91lfbxgwQJJ0tChQ5WRkaH77rtPJ0+e1OzZs1VRUaGePXvqhRdekJ+fn7XOokWLNG/ePN19990yGAy68cYbNWvWrAY/FgCuIdjf2+H1PiNbBGrpyPh6isz92J0YIdsNAAAAAAAAXFivXr20b9++8+738vJSSkqKUlJSzlumWbNmWrx4cX2EB8CNObLeJ2zZnRgh2w0AAIDGzt/f39khAAAAAADqid2JEbLdAAAAcDf2zMVrNBrVrVs362Pm4QUAAACAxqVO1xgBAAAAXJGjc/EyDy8AAAAAND4kRuB03IUJAAAaCnPxAgCchWkaAQBwHSRG4HSO3L0pSddFh2vqgC71FBUAAAAAALV3oWkbfz9N4+9xwyAAAA2LxAhcgiN3b0aEN62naAAAAAAAsA/TNgIA4D5IjAAAAAAAANQRpm0EAMD1GZwdAAAAcD3MgQ0AAAAAABorRowAAODhfj+n9cXmwAYAAAAAAHBnJEYAAPBwjsyFfV10uKYO6FKPUQEAUH8YGQkAAODZSIwAAAC758KOCG9aj9EAAHDpfj8isgYjIwEAAEBiBAAAAADQ6DAiEgAAAOdDYgSA2woP9DvvnYAX42g9AAAAuA9GRAIAAOBcSIwAcFvB/t4O3QkY2SJQS0fG12NkAAAAAAAAZ/Px8ZG8DM4OA/B4JEYAuD177wQEAAAAAABwBm9vx27ylJjyEahLJEYAAAAAAAAAoAE5cpMnUz4CdYdxWwAAAAAAl2Sutjg7BKDe1ayd6CjeJwAA2I8RIwAAAAAAl8RUI/AEjq6dKLF+IgAAjiIxgjrl7+/v7BAAAADqTM1dvEaDl0P1L6UugDOYagSegrUTAQBoOCRGUHe8DOrWrZuzowAAAKgz3MULAAAAAI0PiRHUGUcuGjDEHQDqBnelA/WLu3gBAAAAeAJPmRGIxAjqlL0XDRjiDgB1gznYAQAAAADA+dRmmmCj0XjOGYEa482YJEYAAGgkmIMdAAAAAACci6PTBDfWKYJJjAAAAAAAAAAA4AGYJvgMg7MDAAAAAAAAAAAAaCgkRgAAAIB6UDOHryMcrQcAAADX1qRJE2eHAEBMpQUA8vf3d3YIAIBGiDl8gf9pjAt2AgBgb/9mNBrVqVOneowIQG2RGIENfrDAE9TcwWs0eMloNKpbt2521ed9AgCwB3P4AnIoSXhddLimDuhSj1EB7u+3v23sxe8a4NLRvwHuy6mJkVdffVUrV65UaWmpunTposcee0zdu3d3Zkgez5EPdIkPdbgXR+/glbiL1x05q6/x8fFxqB4/UAHA/fC7pnbsTRJGhDetx2iAxoHRiZ6DvsZ10b8B7slpiZHc3FwtWLBAc+bMUY8ePfTSSy9pzJgx2rRpk0JDQ50VFuTYXY18qMMdcQdv4+fMvqZrtytlNBrtrscdRwAu9e5fNCx+1wBwBfb+tmGkiXuhrwHgTI21z3BaYiQ7O1u33367hg8fLkmaM2eOPv74Y61bt07333+/s8ICgAtqrJ1BY+XMvsbH2+hwgoM7jgDPdql3/5rN9RgczuJpv2v4PgM0Dow0cS+e1tcAcC2Ntc9wSmKksrJSe/bs0dixY63bDAaDkpKSlJeXd9H6FovF+jz23I1rNptlNBpVVVUlc2P/xehlcPgHS9eWTeVn503OHUL9ZTab7a7raD1nvCaxNp7XvJRYu7cNkizVWvGPb1V85GSt67UO8de46yJUWWnfZ0/NZ1XN5x5qz1l9jSRVV1dLknwMFrvOMaOXpdG//5zxmsTaeF7TnWKti9e09zPEx3DmM6SqqkqSfZ9f9DeOudS+RnK/3zZGo9Hu70Hd24bojz3budX7zx1ek1gbz2u6Y1/jyOcOfY1jPLGvcYoGvI7mTp9PznhNYnXd17S3zwhv6q3KqtMOv7fM1RbJUm1fHTv6Gi+LE3qkQ4cO6dprr1VOTo7i4/+XNXriiSf0xRdf6PXXX79g/crKShUWFtZ3mADgMmJjY+Xr6+vsMNwKfQ0A2I/+xj6X2tdI9DcAPA99jX3oawDAfrXpa5y6+LqjvL29FRsbK4PBIC8vhnEDaLwsFouqq6vl7e2WH9dujb4GgCehv3Ee+hsAnoK+xnnoawB4Cnv6Gqf0RpdddpmMRqPKy8tttpeXlyssLOyi9Q0GA3cXAAAuiL4GAFDfLrWvkehvAAAXRl8DAPXD4IwX9fX11ZVXXqnt27dbt1VXV2v79u02wwIBAHAUfQ0AoL7R1wAA6ht9DQDUD6eNX7znnns0ffp0xcTEqHv37nrppZd08uRJDRs2zFkhAQAaGfoaAEB9o68BANQ3+hoAqHtOS4wMGjRIP//8s5YtW6bS0lJ17dpVL7zwQq2HAQIAcDH0NQCA+kZfAwCob/Q1AFD3vCwWi8XZQQAAAAAAAAAAADQEp6wxAgAAAAAAAAAA4AwkRgAAAAAAAAAAgMcgMQIAAAAAAAAAADwGiREAAAAAAAAAAOAxPCox8uqrr+r6669XbGys/vSnP6mgoMDZIbmdp59+WtHR0Tb/brrpJuv+U6dOac6cOerVq5fi4+P18MMPq6yszIkRu64vvvhC48aNk8lkUnR0tD788EOb/RaLRUuXLpXJZFL37t31l7/8Rd99951NmcOHD2vy5MlKSEjQVVddpZkzZ+r48eMNeBSu6WJtO2PGjLPO4zFjxtiUoW3hKHfqa+ric8hZnnvuOQ0fPlzx8fFKTEzUgw8+qP3799uUcfU+afXq1brllluUkJCghIQEjRgxQp988ol1v6vH/3vPP/+8oqOj9fjjj1u3ufIxNIbvNIcOHdKUKVPUq1cvde/eXbfccosKCwut+135PYxL4059TUPhu7Xj6qpPLS4u1v33368ePXooMTFRCxcu1OnTpxvyUBpcXfTlnthucB/0N45pDN8znY1+vW5xnezcPCYxkpubqwULFuihhx7SW2+9pS5dumjMmDEqLy93dmhup3Pnztq6dav13+rVq6370tPTtWXLFi1ZskSrVq1SSUmJxo8f78RoXdeJEycUHR2t1NTUc+7PysrSqlWrlJaWprVr18rf319jxozRqVOnrGWmTJmioqIiZWdnKzMzU//85z81e/bshjoEl3WxtpWkvn372pzHTz31lM1+2haOcLe+pi4+h5xl165dGj16tNauXavs7GydPn1aY8aM0YkTJ6xlXL1PatmypaZMmaI333xT69atU+/evfXQQw/pm2++keT68f9WQUGBcnJyFB0dbbPd1Y/Bnb/THDlyRKNGjZKPj4+ysrK0ceNGTZ8+XSEhIdYyrvwehuPcra9pKHy3dlxd9Klms1ljx45VVVWVcnJylJGRobfeekvLli1zxiE1mEvtyz213eAe6G8ujTt/z3QF9Ot1i+tk52HxEH/84x8tc+bMsT42m80Wk8lkee6555wYlftZtmyZ5dZbbz3nvoqKCsuVV15pee+996zbioqKLFFRUZa8vLwGitA9RUVFWT744APr4+rqakufPn0sL7zwgnVbRUWFJSYmxrJhwwaLxfK/ti0oKLCW+eSTTyzR0dGWn376qeGCd3G/b1uLxWKZPn265YEHHjhvHdoWjnLnvsaRzyFXUl5ebomKirLs2rXLYrG4b5909dVXW9auXetW8R87dsxy4403Wj7//HPLHXfcYZk/f77FYnH9v4G7f6d58sknLaNGjTrvfnd7D6P23LmvaSh8t740jvSpH3/8saVLly6W0tJSa5nVq1dbEhISLKdOnWrQ+J3Nnr6cdoMro79xnLt/z3Q19Ot1i+tk/+MRI0YqKyu1Z88eJSUlWbcZDAYlJSUpLy/PiZG5pwMHDshkMukPf/iDJk+erOLiYknS7t27VVVVZdPOERERat26tfLz850UrXs6ePCgSktLbdoyKChIPXr0sJ6zeXl5Cg4OVmxsrLVMUlKSDAYDw1trYdeuXUpMTNSAAQOUmpqqX375xbqPtoUjGltfU5vPIVdy9OhRSbLeLe9ufZLZbNbGjRt14sQJxcfHu1X8c+fOVXJysk2sknv8Ddz5O81HH32kmJgYTZgwQYmJiRoyZIjWrl1r3e9u72HUTmPraxoK363t40ifmp+fr6ioKIWFhVnLmEwmHTt2TEVFRQ0XvBM50pfTbnBV9DeXzp2/Z7o6+vX64YnXybydHUBD+OWXX2Q2mxUaGmqzPTQ09Ky5U3Fh3bt314IFC9SxY0eVlpZqxYoVGj16tNavX6+ysjL5+PgoODjYpk5oaKhKS0udFLF7qmmvc52zNfNOlpWVqXnz5jb7vb29FRISQntfRN++fXXDDTeobdu2+uGHH/TUU0/pvvvu02uvvSaj0UjbwiGNra+pzeeQq6iurlZ6eroSEhIUFRUlSW7TJ+3bt08jR47UqVOnFBAQoBUrVigyMlJ79+51i/g3btyor776Sm+88cZZ+1z9b+Du32l++OEHrVmzRvfcc4/GjRunwsJCzZ8/Xz4+Pho6dKhbvYdRe42tr2kofLeuPUf71LKyMpuL+5Ksjxt7+11KX+7J7QbXRn9zadz9e6aro1+ve556ncwjEiOoO8nJydb/d+nSRT169FC/fv303nvvqUmTJk6MDKi9wYMHW/9fs6hU//79rdlxAO5lzpw5+uabb2zm7XUXHTt21Ntvv62jR49q8+bNmj59ul555RVnh1UrP/74ox5//HG9+OKL8vPzc3Y4dnP37zQWi0UxMTGaNGmSJKlbt2765ptvlJOTo6FDhzo5OgDuyp37VGdx574cQP1w9++Z8Dyeep3MI6bSuuyyy2Q0Gs9aIKq8vPysuzNgn+DgYHXo0EHff/+9wsLCVFVVpYqKCpsy5eXlCg8Pd1KE7qmmvS50zoaFhennn3+22X/69GkdOXKE9rZTu3btdNlll+nAgQOSaFs4prH1NbX5HHIFc+fO1ccff6yXXnpJLVu2tG53lz7J19dX7du3V0xMjCZPnqwuXbro5Zdfdov49+zZo/Lycg0bNkzdunVTt27dtGvXLq1atUrdunVzi2P4LXf7ThMeHq6IiAibbZ06dbJO0+Au72HYp7H1NQ2F79a1cyl9alhY2Fmj0WoeN/b2u5S+3JPbDa6N/qZuudv3TFdHv17/POU6mUckRnx9fXXllVdq+/bt1m3V1dXavn274uPjnRiZ+zt+/Lh++OEHhYeHKyYmRj4+PjbtvH//fhUXFysuLs55Qbqhtm3bKjw83KYtjx07pi+//NJ6zsbHx6uiokK7d++2ltmxY4eqq6vVvXv3Bo/Znf300086fPiw9cOctoUjGltfU5vPIWeyWCyaO3euPvjgA7300ktq166dzX537ZOqq6tVWVnpFvH37t1b69ev19tvv239FxMTo1tuucX6f1c/ht9yt+80CQkJ+s9//mOz7bvvvlObNm0kuf57GI5pbH1NQ+G79YXVRZ8aFxenr7/+2uYi1bZt2xQYGKjIyMgGOQ5XYU9fTrvBVdHf1C13+57p6ujX65+nXCfzmKm07rnnHk2fPl0xMTHq3r27XnrpJZ08eVLDhg1zdmhuZeHCherXr59at26tkpISPf300zIYDLr55psVFBSk4cOHKyMjQyEhIQoMDNT8+fMVHx/Ph/s5HD9+XN9//7318cGDB7V3716FhISodevWuuuuu/Tss8+qffv2atu2rZYuXaoWLVqof//+ks4sztW3b1899thjmjNnjqqqqjRv3jwNHjxYl19+ubMOyyVcqG1DQkK0fPlyDRgwQGFhYfrhhx/05JNPqn379urbt68k2haOc7e+5lI/h5xpzpw52rBhg5555hk1bdrUOq9pUFCQmjRp4hZ90uLFi3XttdeqVatWOn78uDZs2KBdu3Zp5cqVbhF/YGCgdf75GgEBAWrWrJl1uysfg7t/p7n77rs1atQoZWZmauDAgSooKNDatWs1d+5cSZKXl5dLv4fhOHfraxoK360dVxd9qslkUmRkpKZNm6apU6eqtLRUS5Ys0ejRo+Xr6+vEo6tfl9qXe2q7wT3Q3zjO3b9nugL69brFdbJz87JYLBZnB9FQXnnlFa1cuVKlpaXq2rWrZs2apR49ejg7LLcyceJEffHFFzp8+LCaN2+unj17auLEibriiiskSadOnVJGRoY2btyoyspKmUwmpaamuvWwqvqyc+dO3XXXXWdtHzp0qDIyMmSxWLRs2TKtXbtWFRUV6tmzp1JTU9WxY0dr2cOHD2vevHn66KOPZDAYdOONN2rWrFlq2rRpQx6Ky7lQ26alpemhhx7SV199paNHj6pFixbq06ePUlJSbIYE07ZwlDv1NXXxOeQs0dHR59y+YMEC6481V++TZs6cqR07dqikpERBQUGKjo7Wfffdpz59+khy/fjP5c4771SXLl306KOPSnLtY2gM32m2bNmip556St99953atm2re+65R7fffrt1vyu/h3Fp3KmvaSh8t3ZcXfWp//3vf5WWlqZdu3bJ399fQ4cO1eTJk+Xt3Xjvx6yLvtwT2w3ug/7GMY3he6az0a/XLa6TnZtHJUYAAAAAAAAAAIBn84g1RgAAAAAAAAAAACQSIwAAAAAAAAAAwIOQGAEAAAAAAAAAAB6DxAgAAAAAAAAAAPAYJEYAAAAAAAAAAIDHIDECAAAAAAAAAAA8BokRAAAAAAAAAADgMUiMAAAAAAAAAAAAj0FiBAAAAAAAAAAAeAwSIwAAAAAAAAAAwGOQGAEAAAAAAAAAAB6DxAgAAAAAAAAAAPAYJEYAAAAAAAAAAIDHIDECAAAAAAAAAAA8BokRAAAAAAAAAADgMUiMAAAAAAAAAAAAj0FiBAAAAAAAAAAAeAwSIwAAAAAAAAAAwGOQGAEAAAAAAAAAAB6DxAgAAAAAAAAAAPAYJEYAAAAAAAAAAIDHIDECAAAAAAAAAAA8BokRAAAAAAAAAADgMUiMAAAAAAAAAAAAj0FiBAAAAAAAAAAAeAwSIwAAAAAAAAAAwGOQGAEAAAAAAAAAAB6DxAhgp507dyo6OlqbNm1ydigAgHp0/fXXa8aMGQ7XHTt2bB1H5LiDBw8qOjpab775prNDAQD8RmPqay7m98da87tq586dTowKANyXu/chNb9RVq5c6dQ44LlIjMAp3nzzTUVHR5/3X35+vlPi2rlzp8aPH68+ffooJiZGiYmJGjdunN5//32nxAMAqBs1/U5sbKwOHTp01v4777xTN998c4PHVVRUpKeffloHDx6sVfmnn35a0dHR6tKli3788cez9h87dkzdu3dXdHS05s6dW9fhAgAuoLH0NTX27t2rKVOmKDk5WTExMbrmmmv0l7/8RevWrZPZbK6naAHAM9GHAA3P29kBwLNNmDBBbdu2PWv7FVdc0eCxLFu2TCtWrFCHDh00YsQItW7dWocPH9Ynn3yihx9+WIsWLdItt9zS4HEBAOpOZWWlnn/+eT322GMXLbtp0yZ5eXnVazxFRUVavny5rrnmmnP2h+fj6+urDRs26L777rPZfr5Efps2bVRQUCBvb776AUB9awx9zeuvv67U1FSFhobqtttuU/v27XX8+HHt2LFDjz76qEpLSzVu3Lh6jRsAPBF9CNBw+HUMp7r22msVGxvr7DC0adMmrVixQgMGDNDixYvl4+Nj3Xfvvffqs88+0+nTpxs0phMnTiggIKBBXxMAGruuXbtq7dq1uv/++3X55ZdfsKyvr28DRWW/5ORkbdy48azEyIYNG3Tddddp8+bNNtu9vLzk5+fXkCECgMdy974mPz9fqampiouL0/PPP6/AwEDrvr/85S8qLCzUN99848QIAaDxog+pe1xfw/kwlRZcVlVVla655ho98sgjZ+07duyYYmNjtXDhQuu2yspKLVu2TDfccINiYmKUnJysJ554QpWVlRd9raVLl6pZs2ZKT0+3SYrU6Nu3r/r162ezrbq6Ws8++6w1uXP33XfrwIEDNmX++c9/asKECbruuuusMaWnp+vXX3+1KTdjxgzFx8fr+++/13333af4+HhNmTJFkvTrr79q/vz56tWrl+Lj4zVu3DgdOnRI0dHRevrpp22e59ChQ3rkkUeUlJSkmJgYDR48WG+88cZFjx8APMXYsWNVXV2trKysi5Y915y9//73v3XHHXeoe/fuuvbaa/XMM89o3bp1io6OPufw8n/+85/64x//qNjYWP3hD3/Q22+/bd335ptvKiUlRZJ01113WaeTrM1c6zfffLP27t2rb7/91rqttLRUO3bsOOcQ+3OtMVLT9xw6dEgPPvig4uPj1bt3by1cuPCs4e0bN27UsGHDFB8fr4SEBN1yyy166aWXLhonAHgid+9rli9fLi8vLy1atMjmglaN2NhYDRs2zPp45cqVGjlypHr16qXu3btr2LBhDq/H+N133+nhhx9Wnz59FBsbq2uvvVYTJ07U0aNHHXo+AHA3ntaH1HjttdfUv39/xcTEaPjw4SooKDjruGbMmKE//OEPio2NVZ8+ffTII4/ol19+sSlXM/VwUVGRJk+erKuvvlp//vOfJZ25jvf000/LZDKpR48euvPOO1VUVHTOdqyoqNDjjz9unQrshhtu0PPPP6/q6urzHjvcDyNG4FTHjh3Tzz//bLPNy8tLl112mXx8fNS/f3998MEHmjNnjk0m/MMPP1RlZaUGDRok6cyH2wMPPKD/9//+n26//XZFRETo66+/1ksvvaTvvvtOzzzzzHlj+O6777R//34NHz78nB/a55OVlSUvLy/93//9n44dO6YXXnhBU6ZM0euvv24ts2nTJv36668aNWqUmjVrpoKCAr3yyiv66aeftGzZMpvnO336tMaMGaOePXtq+vTpatKkiaQzF67ee+893XbbberRo4e++OIL3X///WfFU1ZWpttvv11eXl4aPXq0mjdvrk8//VSPPvqojh07pr/85S+1PjYAaKzatm2r2267TWvXrtV999130buwfuvQoUO6++67JUn333+/AgIC9Prrr5/3Tq0DBw4oJSVFf/zjHzV06FCtW7dOM2bM0JVXXqnOnTvr6quv1p133qlVq1Zp3Lhx6tSpkyQpIiLiorFcffXVatmypTZs2GD9sZKbm6uAgABdd911tT4ms9msMWPGqHv37po2bZq2b9+uF198Ue3atbP+gPj88881adIkJSYmWpP2+/fv17/+9S9rewAA/sed+5qTJ09qx44duuqqq9S6detaxfzyyy/r+uuv1y233KKqqipt3LhRKSkpeu655+zqkyorKzVmzBhVVlbqjjvuUFhYmA4dOqSPP/5YFRUVCgoKqvVzAYC78rQ+RDoz6v348eMaMWKEvLy89MILL+jhhx/Whx9+aL15edu2bfrhhx80bNgwhYeH65tvvtHatWtVVFSktWvXnjWlWEpKitq3b6+JEyfKYrFIkhYvXqwXXnhB/fr1U9++ffXvf/9bY8aM0alTp846jjvuuEOHDh3SyJEj1apVK+Xl5empp55SaWmpHn300VofG1wbiRE41bku1vv6+qqwsFCSNGjQIK1bt06ff/65zYiN3NxctWvXzjoN1/r167Vt2zatWrVKV111lbVc586dlZqaqn/9619KSEg4Zww1d9tGRUXZFfupU6f09ttvWzuY4OBgPf744/r666+tzzVlyhRrgkOSRowYofbt2+upp55ScXGxTUdRWVmpm266SZMnT7Zu27Nnj9577z3dfffdmjlzpiRp9OjReuSRR/Tvf//bJp6//e1vMpvNWr9+vS677DJJ0qhRozRp0iQtX75cI0eOtIkFADzVAw88oHfeeUdZWVmaNWtWretlZWXpyJEjeuutt9S1a1dJ0rBhwzRgwIBzlv/Pf/6jV1991dovDRw4UMnJyXrzzTc1ffp0tWvXTldddZVWrVqlpKQk9erVy67jGDRokPXik3SmL7zhhhvsGlJ/6tQpDRw4UA899JCkM/3G0KFD9cYbb1gTIx9//LECAwO1cuVKGY1Gu2IEAE/lrn3NgQMHVFVVZddvo82bN9v8zhg9erSGDRum7OxsuxIj3377rQ4ePKilS5fqpptusm4fP358rZ8DABoDT+pDJKm4uFjvv/++QkJCJEkdO3bUgw8+qK1bt1qvBf75z3/W//3f/9nUi4uL06RJk/T//t//s7kWKEldunTR4sWLrY/Lysr097//Xf3799eKFSus25cvX37WbCzZ2dn64Ycf9NZbb6lDhw6SpJEjR6pFixZauXKl/u///k+tWrWy6xjhmphKC041e/ZsZWdn2/z77XDB3r1767LLLlNubq5125EjR7Rt2zbraBHpzMiMiIgIderUST///LP1X+/evSXpgsP8jh07Jklq2rSpXbEPGzbM5uJTzYfwDz/8YN322x8IJ06c0M8//6z4+HhZLBZ99dVXZz3nqFGjbB5/9tlnkmS9OFXjjjvusHlssVj0/vvv6/rrr5fFYrFpA5PJpKNHj2rPnj12HR8ANFbt2rXTrbfeqrVr16qkpKTW9T777DPFxcVZf2RIUrNmzXTLLbecs3xkZKTNF/TmzZurY8eONv3Epbjlllt04MABFRQU6MCBAyosLDxvLBfy+76nZ8+eNsPsg4ODdfLkSX3++eeXHDMAeAp37Wsc+W302988R44c0dGjR9WzZ89z/t65kJrR+1u3btXJkyftqgsAjYkn9SHSmRu+apIi0sWvr506dUo///yzevToIUnnvN41cuRIm8fbt2/X6dOnL3p9TTpzjbFnz54KDg62ub6WlJQks9msL774wq7jg+tixAicqnv37hdcfN3b21s33nijNmzYoMrKSvn6+ur9999XVVWVTWLkwIED+vbbb5WYmHjO5ykvLz/va9R8AT9+/Lhdsf9+WGBwcLCkM/MQ1iguLtayZcv00Ucf6ciRIzblazqMGt7e3mrZsqXNtuLiYhkMBrVt29Zme/v27W0e//zzz6qoqNBrr72m11577Zzx/n7KMgDwZA8++KDeffddPf/887W+C+u///2v4uLiztp+xRVXnLP8ue4iCgkJOas/cFS3bt3UqVMnbdiwQcHBwQoPD7feEFBbfn5+at68+QVj/POf/6z33nvPOpS/T58+GjhwoK699to6OQ4AaKzcsa9x5LfRli1b9Oyzz2rv3r026zv+flqTi2nXrp3uueceZWdna/369brqqqt0/fXX69Zbb2UaLQAex1P6kHPFUZMk+e31tcOHD2v58uXKzc096xrfudah+v11tOLiYklnt0WzZs1skjLSmWuM+/btO+81Rq6vNR4kRuDyBg8erNdee02ffvqp+vfvr02bNqlTp07q0qWLtUx1dbWioqLOuVC7pLMSDr9VM0fi119/bVdcBsO5B1zVzF1oNpt1zz336MiRI7r33nvVqVMnBQQE6NChQ5oxY8ZZCzb5+vqe9zkvpua5br31Vg0dOvScZaKjox16bgBojH57F9a51m2qCw0x7dTNN9+sNWvWqGnTpho4cKDd/UhtYgwNDdXbb7+trVu36tNPP9Wnn36qN998U0OGDNHChQsdDR0AGj137Gvat28vb2/vWv82+uc//6kHHnhAV199tVJTUxUeHi4fHx+tW7dOGzZssPv1Z8yYoaFDh+of//iHPv/8c82fP1/PPfec1q5de8HfdADQ2HhCH3KxOGqur0nSX//6V+Xl5WnMmDHq2rWrAgICVF1drXvvvdemXA0/Pz/7gv+N6upq9enTR/fee+8599dMrwX3R2IELu/qq69WeHi4cnNzlZCQoB07dmjcuHE2Za644gr9+9//VmJiot13JnXs2FEdO3bUP/7xDx0/ftzuIX/n8/XXX+u7777TwoULNWTIEOt2e6Yiad26taqrq3Xw4EGbD94DBw7YlGvevLmaNm2q6upqJSUlXWroAOARHnjgAb377rs2UzheSJs2bc76/JWk77//3uEY7O2zfu+WW27RsmXLVFpaqieffPKSnutCfH19df311+v6669XdXW10tLS9Nprr+nBBx88axQjAOB/3K2v8ff3V+/evbVjxw79+OOPF51DffPmzfLz89PKlSttphlet26dw/FGR0crOjpaDz74oP71r39p1KhRWrNmjSZOnOjwcwKAO2rsfUhtHTlyRNu3b9fDDz9ss+7Ud999V+vnqJn15fvvv1e7du2s23/55ZezRshcccUVOnHiBNfXPABrjMDlGQwG3XTTTdqyZYveffddnT592mYaLenMAlGHDh3S2rVrz6r/66+/6sSJExd8jQkTJujw4cOaNWuWTp8+fdb+rVu3asuWLXbHLdlmuC0Wi15++eVaP4fJZJIkrV692mb7K6+8YvPYaDRqwIAB2rx58zkz8wzzA4CzXXHFFbr11lv12muvqbS09KLlTSaT8vPztXfvXuu2w4cPa/369Q7H4O/vL+ncw79r44orrtDMmTM1efJkde/e3eE4LuSXX36xeWwwGKyjEH87ZQoA4Gzu2Nc89NBDslgsmjZt2jmnQ9m9e7feeustSWd+h3h5eclsNlv3Hzx4UP/4xz/sjvPYsWNn/RaLioqSwWCgvwHgkRp7H1Jb5xtR8tJLL9X6ORITE+Xt7a01a9bYbH/11VfPKjtw4EDl5eVZ1/39rYqKinNeN4R7YsQInOrTTz/V/v37z9qekJBgk8EdOHCgVq1apWXLlikqKkoRERE25W+77Ta99957Sk1N1c6dO5WQkCCz2az9+/dr06ZNeuGFFy64lsmgQYO0b98+ZWZm6quvvtLNN9+s1q1b6/Dhw/rss8+0fft2LV682K5j69Spk6644gotXLhQhw4dUmBgoDZv3mwzR+LFxMTEaMCAAXrppZd0+PBh9ejRQ1988YU1K/7bzP3kyZO1c+dO3X777frTn/6kyMhIHTlyRHv27NH27du1a9cuu+IHAE8wbtw4vfPOO/rPf/6jzp07X7Dsvffeq3fffVf33HOP7rjjDgUEBOj1119Xq1atdPjwYYdGf3Tt2lVGo1FZWVk6evSofH191bt3b4WGhtb6Oe6++267X9ces2bN0pEjR9S7d29dfvnlKi4u1iuvvKKuXbue1R8DAM7mbn1NQkKCZs+erTlz5mjgwIG67bbb1L59ex0/fly7du3SRx99pL/+9a+SpOTkZGVnZ+vee+/VzTffrPLycq1evVpXXHGF9u3bZ1ecO3bs0Ny5c3XTTTepQ4cOMpvNeuedd6w3gQGAJ2rMfUhtBQYG6uqrr9YLL7ygqqoqXX755fr888918ODBWj9HWFiY7rrrLr344osaN26c+vbtq3379unTTz/VZZddZtM2Y8aM0UcffaRx48Zp6NChuvLKK3Xy5El9/fXX2rx5s/7xj3+ctU4j3BOJETjVsmXLzrl9wYIFNomRhIQEtWrVSj/++ONZo0WkM3evrlixQn//+9/1zjvv6IMPPpC/v7/atm2rO++8Ux07drxoLBMnTlTv3r21atUqrVmzRkeOHFFwcLB69OihZ555Rn/4wx/sOjYfHx9lZmZa58X18/PTDTfcoNGjR+u2226r9fMsXLhQYWFh2rhxoz744AMlJSXpb3/7m2666Sab4ephYWF6/fXXtWLFCn3wwQdas2aNmjVrpsjISE2ZMsWu2AHAU7Rv31633nprre5aatWqlV5++WXr53rz5s01evRo+fv7a/78+Q7NYxseHq45c+boueee06OPPiqz2ayXX37ZrsRIfauZ23j16tWqqKhQeHi4Bg4cqIcfftjhtbEAwJO4Y18zcuRIxcbG6sUXX9Tbb7+tX375RQEBAerWrZsWLFigW2+9VdKZO3Aff/xxZWVlKT09XW3bttWUKVP03//+1+7ESHR0tEwmk7Zs2aJDhw7J399f0dHRysrKOudiwgDgCRpzH2KPxYsXa968eVq9erUsFov69OmjrKws9e3bt9bPMWXKFDVp0kSvv/66tm/frri4OK1cuVJ//vOfba6v+fv7a9WqVXruuee0adMmvf322woMDFSHDh308MMPKygoyO744Zq8LOdaoQaAS9u7d6+GDBmiJ5980qEOBQBQdx5//HG99tprysvLa5AF1wEAnoe+BgDgKPqQ86uoqNDVV1+tv/71r3rggQecHQ4aGLf5AS7u119/PWvbSy+9JIPBoKuvvtoJEQGA5/r9Z/Ivv/yid999Vz179uRHBgCgTtDXAAAcRR9yfue7viZJ11xzTUOHAxfAVFqAi3vhhRe0e/du9e7dW0ajUZ9++qk+/fRTjRgxQq1atXJ2eADgUUaMGKFrrrlGERERKisr07p163Ts2DE9+OCDzg4NANBI0NcAABxFH3J+ubm5euutt3TttdcqICBA//rXv7RhwwaZTCb17NnT2eHBCZhKC3Bxn3/+uZYvX65vv/1WJ06cUKtWrXTbbbdp3Lhx8vYmtwkADempp57S5s2b9dNPP8nLy0vdunXT+PHjlZSU5OzQAACNBH0NAMBR9CHnt2fPHj355JPau3evjh8/rtDQUN14443661//qqZNmzo7PDgBiREAAAAAAAAAAOAxWGMEAAAAAAAAAAB4DBIjAAAAAAAAAADAY7jlAgXV1dU6ffq0DAaDvLy8nB0OANQbi8Wi6upqeXt7y2Agl92Q6GsAeBL6G+ehvwHgKTyxr3n66ae1fPlym20dO3bUpk2bJEmnTp1SRkaGcnNzVVlZKZPJpNTUVIWFhVnLFxcXKy0tTTt37lRAQICGDBmiyZMn27XmKH0NAE9hT1/jlomR06dPq7Cw0NlhAECDiY2Nla+vr7PD8Cj0NQA8Ef1Nw6O/AeBpPK2v6dy5s7Kzs62PjUaj9f/p6en65JNPtGTJEgUFBWnevHkaP368cnJyJElms1ljx45VWFiYcnJyVFJSounTp8vHx0eTJk2qdQz0NQA8TW36GrdMjNRke2JjY206lIsxm80qLCy0u54rIPaG565xS+4bu7vGLdVf7DXP6yl3VLkSR/saT+PO71tnoc0cQ7vZz542o79xHnfvbxrTe5NjcT2N5TikxnMsl3IcntrXGI1GhYeHn7X96NGjWrdunRYtWqTExERJZxIlgwYNUn5+vuLi4rR161YVFRUpOztbYWFh6tq1q1JSUrRo0SKNHz++1gkmd+9rXEVjeR+7Gtq1fnhqu9rT17hlYqRm2J/RaHToD+toPVdA7A3PXeOW3Dd2d41bqr/YGe7c8C61r/E0tJP9aDPH0G72s6fN6G8aXmPpPjvlIAAAuBpJREFUb9w9/t/iWFxPYzkOqfEcy6Uch6f1NQcOHJDJZJKfn5/i4uI0efJktW7dWrt371ZVVZWSkpKsZSMiItS6dWtrYiQ/P19RUVE2U2uZTCalpaWpqKhI3bp1q1UMjaWvcRW0Y/2gXeuHp7ZrbfoauxIjrjI3IgAAAAAAAODKunfvrgULFqhjx44qLS3VihUrNHr0aK1fv15lZWXy8fFRcHCwTZ3Q0FCVlpZKksrKymyuqUmyPq4pYw+z2ezgkUD6X/vRjnWLdq0fntqu9hyv3dkIV5gbEQAAAAAAAHBlycnJ1v936dJFPXr0UL9+/fTee++pSZMmDR4P64zUDdqxftCu9YN2PT+7EyOuMDciAAAAAAAA4E6Cg4PVoUMHff/990pKSlJVVZUqKipsRo2Ul5dbr7uFhYWpoKDA5jnKysok6ZzX5i7G09YaqGueumZDfaNd64entmvNcdeG3YkRV5gbEQAAAAAAAHAnx48f1w8//KDw8HDF/H/s3Xtc1GX+//8nMwKhHErACi1TUZRAwGoNmkJdy9LcUrfVsuPHTTsQfPKcWUAY4oa7qLVRZmxZSabVZtlxKz+52vEHgeaa5HZw2eLgKqIGOMzvD7/MOqnIDMz5cb/duiXvua6Z13XNm/fF+/16X9c7IUGBgYHaunWrxowZI0navXu3qqurlZycLElKTk5WcXGx6uvrFRkZKUnasmWLQkNDFRsba/fn++uzBroa/egc9Ktz0K8nZ1dixNvXRvTmtdWI3fW8NW7Je2P31rgl58XujX0BAAAAAJCWLFmikSNHKiYmRjU1NVqxYoUMBoOuvvpqhYWFadKkSSooKFBERIRCQ0O1aNEipaSkWBMjJpNJsbGxmjt3rubMmaPa2loVFRVp6tSprLoCAJ1kV2LEV9ZG9Oa11Yjd9bw1bsl7Y/fWuCXvjh0AAAAA0HV+/PFHzZw5U/v27VPPnj11wQUXaO3aterZs6ckacGCBTIYDMrMzFRzc7NMJpOys7Ot9Y1Go4qLi5WTk6PJkycrJCREEyZMUGZmpruaBAA+w+6ltI7lbWsjevPaasTuet4at+S9sXtr3JLzYrdnbUQAAAAAgOf405/+1O7rwcHBys7OtkmG/FLv3r21cuXKrg4NAPxepxIj3ro2ojevrUbsruetcUveG7u3xi15d+wAXCckJMTdIQAAAAAA4LfsSoywNiLgOHOrRUZDgMvqAQDc62THb6PRqPj4eLvrAQDQlTg/AQB0FGMGfJFdiRHWRgQcZzQEKKu0TFU1jR2uE9srVMumpDgxKgCAs3DcBwB4MsYpAEBHMWbAF9mVGGFtRKBzqmoatb26wd1hAABchOM+AMCTMU4BADqKMQO+xuDuAAAAAAAAAAAAAFyFxAgAAICHiA4NlrnV4nD9ztQFAAAAAMBf2LWUFgAAAJwnPKSbQ+v3SqzhCwAAAABAR5EYAQAA8DCs3ws434oVK/Too4/abOvXr5/eeustSVJTU5MKCgq0ceNGNTc3y2QyKTs7W1FRUdby1dXVysnJ0SeffKLu3bvr2muv1axZs9StG6dZAAAAgCfjL3YAAAAAfmngwIEqKSmx/mw0Gq3/zs/P16ZNm1RUVKSwsDDl5eUpIyNDpaWlkiSz2awZM2YoKipKpaWlqqmp0bx58xQYGKiZM2e6vC0AAAAAOo5njAAAAADwS0ajUdHR0db/evbsKUk6cOCA1q9fr/nz5ys1NVUJCQnKz89XWVmZysvLJUmbN29WVVWVHnnkEQ0ZMkTp6enKysrS888/r+bmZje2CgAAwLuEhIS4OwT4IWaMAAAAAPBL3333nUwmk4KDg5WcnKxZs2YpJiZG27ZtU0tLi9LS0qxlBwwYoJiYGJWXlys5OVnl5eUaNGiQzdJaJpNJOTk5qqqqUnx8vF2xmM3mLmuXK7XF7a3xH8vf2nLsDClH39/Z/O078QadaYe3tx2AfaJDg2VutchoCGi3nNFoPO7vpo7UAzqLxAgAAAAAvzN06FAtXrxY/fr1U21trR577DFNnTpVGzZsUF1dnQIDAxUeHm5TJzIyUrW1tZKkuro6m6SIJOvPbWXsUVlZ6WBLPIO3x38sf2hLSEiI3cm7Y+3cuVOHDx92uL69/OE78Ta+0g4AzhMe0k1GQ4CySstUVdPY4XqxvUK1bEqKEyMDjiIxAgAAAMDvpKenW/89ePBgJSUlaeTIkXrzzTd12mmnuTyexMTETt3B7y5ms1mVlZVeG/+xaEvHxcXFdfl7ngjfiefpTDva6gLwL1U1jdpe3eDuMIDjkBgBAAAA4PfCw8N13nnn6fvvv1daWppaWlrU0NBgM2ukvr5e0dHRko7ODqmoqLB5j7q6OkmylrGH0Wj06oul3h7/sWhLx97XlfhOPI+vtAMA4L94+DoAAAAAv3fw4EH98MMPio6OVkJCggIDA7V161br67t371Z1dbWSk5MlScnJyfr6669VX19vLbNlyxaFhoYqNjbW1eEDAAAAsAMzRgAAAAD4nSVLlmjkyJGKiYlRTU2NVqxYIYPBoKuvvlphYWGaNGmSCgoKFBERodDQUC1atEgpKSnWxIjJZFJsbKzmzp2rOXPmqLa2VkVFRZo6daqCgoLc2zgAAAAA7SIxAgAAAMDv/Pjjj5o5c6b27dunnj176oILLtDatWvVs2dPSdKCBQtkMBiUmZmp5uZmmUwmZWdnW+sbjUYVFxcrJydHkydPVkhIiCZMmKDMzEx3NQkAAABAB5EYAQAAAOB3/vSnP7X7enBwsLKzs22SIb/Uu3dvrVy5sqtDAwAAAOBkPGMEAACgHeZWi7tDAAAAAAAAXYgZIwAAAO0wGgKUVVqmqprGDtcZERetOWMGOzEqAAAAAADgKBIjAAAAp1BV06jt1Q0dLj8guocTowEAAAAAAJ3BUloAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEcAO5laLu0MAAAAAAAAAAHRCN3cHAHgToyFAWaVlqqpptKveiLhozRkz2ElRAQAAAAAAAAA6isQIYKeqmkZtr26wq86A6B5OigYAAAAAAABon7nVIqMhwN1hAB6DxAgAAAAAAAAA+DBWQQFskRgBAAAAAAAAAB/HKijAf/HwdQAAAAAAAAAA4DdIjAAAPNqTTz6puLg4Pfzww9ZtTU1Nys3N1fDhw5WSkqJ77rlHdXV1NvWqq6s1ffp0JSUlKTU1VUuWLNGRI0dcHT4AAAAAAAA8DIkRAIDHqqioUGlpqeLi4my25+fn64MPPlBRUZFWr16tmpoaZWRkWF83m82aMWOGWlpaVFpaqoKCAr3yyitavny5q5sAAAAAAAAAD0NiBGhHSEiIu0MA/NbBgwc1Z84cLVq0SBEREdbtBw4c0Pr16zV//nylpqYqISFB+fn5KisrU3l5uSRp8+bNqqqq0iOPPKIhQ4YoPT1dWVlZev7559Xc3OymFgEAALgO5zIAAAAnx8PX4ZfMrRYZDQHtljEajYqPj3dRRAB+6aGHHlJ6errS0tL0+OOPW7dv27ZNLS0tSktLs24bMGCAYmJiVF5eruTkZJWXl2vQoEGKioqyljGZTMrJyVFVVZVdv9tms7lrGuSj2vrHl/vJaDS6OwS7+Op34Q/7Wlezp8/oV8A7ney8hnMZAACA9pEYgV8yGgKUVVqmqprGDtcZERetOWMGOzEqAG3eeOMNffXVV1q3bt1xr9XV1SkwMFDh4eE22yMjI1VbW2stc2xSRJL157YyHVVZWWlXeX/lq/0UEhLidReWdu7cqcOHD7s7DKfx1X3NmegzwPN15MatE3HkvEbi3AZwhyeffFJLly7VzTffrPvvv1/S0WcnFhQUaOPGjWpubpbJZFJ2drbNuUx1dbVycnL0ySefqHv37rr22ms1a9YsdevGJT0A6AyOovBbVTWN2l7d0OHyA6J7ODEaAG3+/e9/6+GHH9bTTz+t4OBgd4ejxMREr5sx4Epms1mVlZX0kwf55TN5fAX7mv3s6bO2sgDcozM3btl7XiNxbgO4WnvPTty0aZOKiooUFhamvLw8ZWRkqLS0VNJ/n50YFRWl0tJS1dTUaN68eQoMDNTMmTPd0RQA8BkkRgAAHmX79u2qr6/XxIkTrdvMZrM+++wzPf/881q1apVaWlrU0NBgM2ukvr5e0dHRko7ODqmoqLB537q6Okmylukoo9HIRdgOoJ88h69/D+xr9qPPAO/AjVuAbzr22YnHLhHc9uzEwsJCpaamSjqaKBk7dqx1ieC2ZyeWlJQoKipKQ4YMUVZWlgoLC5WRkaGgoCB3NQsAvF6nEiNMAwQAdLWLL75YGzZssNl23333qX///rr99tt19tlnKzAwUFu3btWYMWMkSbt371Z1dbWSk5MlScnJySouLlZ9fb0iIyMlSVu2bFFoaKhiY2Nd2h4AAAAA/stTnp0o8UyxzvL2Z955240y3trPnsLb91dH2dNehzMRTAMEADhDaGioBg0aZLOte/fuOv30063bJ02apIKCAkVERCg0NFSLFi1SSkqKNTFiMpkUGxuruXPnas6cOaqtrVVRUZGmTp3KXVUAAAAAXMKTnp0o8dyxruKN/cizE/2XN+6vruJQYoRpgIDnCwwMdHcIgNMsWLBABoNBmZmZNrMT2xiNRhUXFysnJ0eTJ09WSEiIJkyYoMzMTDdGDQAAAMBfeNqzEyWen9hZPPPOtXz12Ymu4q/7qz3PTnQoMeIp0wDtnQrkzVOIiL1recsBITo0WOZWi4yGALvqGY1GDYk/36P6vCM8cV/pKGfF7o194QyrV6+2+Tk4OFjZ2dk2yZBf6t27t1auXOns0AAAAADgOJ727ESJ5451FfrRNejjrsH+enJ2J0Y8aRqgo1OBvHkKEbF3njdNHwwP6SajIUBZpWWqqmnscL3YXqFaNiVFX33lndMOPWVfcYQ3xw4AAAAA6Bo8OxEAPJtdiRFPmwZo71Qgb55CROz+raqmUdurG+yuN3DgQBkMBidE5BzevK84K3Z7pgACAAAAADwDz04EAM9mV2LE06YBOjoVyJunEBE77GEwGLyyz715X/Hm2AF4N0eXX5TkcD0AAAA4jmcnAoD72JUYYRogAADwRv5w4b+zyy8CAADAuXh2IgB4DrsSI0wDBAAA3siRhIEkjYiL1pwxg50UlXM4uvwiAAAAAAD+wu6Hr58K0wABAIAnciRhMCC6h5OiAQAAAAAA7tLpxAjTAAEAAAAAAAAAgLcwuDsAAAAAAHCnJ598UnFxcXr44Yet25qampSbm6vhw4crJSVF99xzj+rq6mzqVVdXa/r06UpKSlJqaqqWLFmiI0eOuDp8AADgR8ytFneH4FTRocGdaqOv9w+6TpcvpQUAAAAA3qKiokKlpaWKi4uz2Z6fn69NmzapqKhIYWFhysvLU0ZGhkpLSyVJZrNZM2bMUFRUlEpLS1VTU6N58+YpMDBQM2fOdEdTAACAH3Dk+Yne9OzE8JBuDj8jMrZXqJZNSXFSZPA1JEYAAAAA+KWDBw9qzpw5WrRokR5//HHr9gMHDmj9+vUqLCxUamqqpKOJkrFjx6q8vFzJycnavHmzqqqqVFJSoqioKA0ZMkRZWVkqLCxURkaGgoKC3NUsAADg4+x9fqI3PjvRkWdEAvYgMQIAAADALz300ENKT09XWlqaTWJk27ZtamlpUVpamnXbgAEDFBMTY02MlJeXa9CgQYqKirKWMZlMysnJUVVVleLj4+2KxWw2d75BbtAWt7fGfyx3tsVoNLr8MzvDVX3E/uV5OtMOb287AMC3kBgBAAAA4HfeeOMNffXVV1q3bt1xr9XV1SkwMFDh4eE22yMjI1VbW2stc2xSRJL157Yy9qisrLS7jifx9viP5eq2hISE2J1Ic7edO3fq8OHDLvs89i/P4yvtAAD4LxIjAAAAAPzKv//9bz388MN6+umnFRwc7O5wJEmJiYleN2tAOnoHeGVlpdfGfyxfaouz/fKZPM7iS9+Jr7SlM+1oqwsAgCcgMQIAAADAr2zfvl319fWaOHGidZvZbNZnn32m559/XqtWrVJLS4saGhpsZo3U19crOjpa0tHZIRUVFTbvW1dXJ0nWMvYwGo1efbHU2+M/li+1xVlc3T++9J34Slt8pR0AAP9FYgQAAACAX7n44ou1YcMGm2333Xef+vfvr9tvv11nn322AgMDtXXrVo0ZM0aStHv3blVXVys5OVmSlJycrOLiYtXX1ysyMlKStGXLFoWGhio2Ntal7QEAAABgHxIjAAAAAPxKaGioBg0aZLOte/fuOv30063bJ02apIKCAkVERCg0NFSLFi1SSkqKNTFiMpkUGxuruXPnas6cOaqtrVVRUZGmTp2qoKAgVzcJAAAAgB1IjAAAAADALyxYsEAGg0GZmZlqbm6WyWRSdna29XWj0aji4mLl5ORo8uTJCgkJ0YQJE5SZmenGqAEAAAB0BIkRAAAAAH5v9erVNj8HBwcrOzvbJhnyS71799bKlSudHRoAAACALmZwdwAAAAAAAAAAAACuQmIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAAAAAOA3SIwAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAAAAAAAAADAb5AYAQAAAAAAAAAAfoPECAAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAE4pOjRY5laLQ3UdrQcAAOAM3dwdAAAAAAAA8HzhId1kNAQoq7RMVTWNHa4X2ytUy6akODEyAAAA+5AYAQAAAAAAHVZV06jt1Q3uDgMAAMBhLKUFr8Z0bAAAAAAAAACAPZgxAq/myDTuEXHRmjNmsBOjAtAZL7zwgtasWaN//etfkqSBAwfqrrvuUnp6uiSpqalJBQUF2rhxo5qbm2UymZSdna2oqCjre1RXVysnJ0effPKJunfvrmuvvVazZs1St24MewAAAAAAAP6OK0TwevZO4x4Q3cOJ0QDorLPOOkuzZ89W3759ZbFY9Oqrr+ruu+/WK6+8ooEDByo/P1+bNm1SUVGRwsLClJeXp4yMDJWWlkqSzGazZsyYoaioKJWWlqqmpkbz5s1TYGCgZs6c6ebWAQAAX2ZutchoCHB3GAAAADgFEiMAAI8yatQom5/vvfderVmzRuXl5TrrrLO0fv16FRYWKjU1VZKUn5+vsWPHqry8XMnJydq8ebOqqqpUUlKiqKgoDRkyRFlZWSosLFRGRoaCgoLc0SwAAOAHmNEOAADgHUiMAAA8ltls1ltvvaVDhw4pJSVF27ZtU0tLi9LS0qxlBgwYoJiYGGtipLy8XIMGDbJZWstkMiknJ0dVVVWKj4+3OwacXFv/eHo/GY1Gd4fg8Tz9O/SWfc2T2NNn9CvQdZjRDqANywQDgOfiKAr4oOjQ4KPT+B28EMgSAHC3nTt3asqUKWpqalL37t312GOPKTY2Vjt27FBgYKDCw8NtykdGRqq2tlaSVFdXZ3MiIcn6c1sZe1RWVjrYCv/iyf0UEhJid0LMH+3cuVOHDx92dxin5Mn7mqeizwAAcA+WCQYAz0ViBPBB4SHdHJrGL0mxvUK1bEqKkyIDOqZfv3569dVXdeDAAb399tuaN2+ennvuObfEkpiYyGyDdpjNZlVWVtJPPiAuLs7dIbSLfc1+9vRZW1kAANB1WCYYADyXXYkRpgAC3sXeafyApwgKClLfvn0lSQkJCaqsrNSzzz6rq666Si0tLWpoaLCZNVJfX6/o6GhJR2eHVFRU2LxfXV2dJFnL2MNoNHIRtgPoJ+/nLd8f+5r96DMAANzPE5YJBgD8l13ZCKYAAgDcobW1Vc3NzUpISFBgYKC2bt2qMWPGSJJ2796t6upqJScnS5KSk5NVXFys+vp6RUZGSpK2bNmi0NBQxcbGuqsJgMeyLr/o4BKKLL8IAABwcp60TDDPFOscT3nmHTe8nJq7vyNP4Cn7q6vZ0167EiNMAQQAONvSpUt12WWX6eyzz9bBgwf1+uuv69NPP9WqVasUFhamSZMmqaCgQBEREQoNDdWiRYuUkpJiTYyYTCbFxsZq7ty5mjNnjmpra1VUVKSpU6cyzgAnwPKLAAAAzuNJywSzbGbXcGc/8vzEjvGW5ye6Ar/3J+fw+lWeMAXQ3oyXN2fKiP3EyJI7jzv2Nfbzk7+vP6mvr9e8efNUU1OjsLAwxcXFadWqVbrkkkskSQsWLJDBYFBmZqbNso1tjEajiouLlZOTo8mTJyskJEQTJkxQZmamu5oEeAWWXwQAAOh6nrRMMM9q6xyeeec9PP35ia7gr/urPc9OtDsx4klTAB3NeHlzpozY/4ssuXO5M7vOfu7f8vPz2309ODhY2dnZNsmQX+rdu7dWrlzZ1aEBAAAAQKe4c5lgnjvWNehHz2VdJtiB78dXlwhmfz05uxMjnjQF0N6MlzdnyogdruaO7Lo37yvOit2eTDcAAAAAwHOwTDDgWo4uE8wSwf7J7sSIJ00BdDTj5c2ZMmKHq7jzu/LmfcWbYwcAAAAAdB2WCQbcg2WC0REOP2OkjTunAAIAAAAAAACeiGWCAcBzGewpvHTpUn322Wfas2ePdu7cqaVLl+rTTz/V+PHjbaYAfvzxx9q2bZsWLFhw0imA//jHP/TRRx8xBRAAAACAy73wwgsaP368hg0bpmHDhmny5MnatGmT9fWmpibl5uZq+PDhSklJ0T333GOd7d6murpa06dPV1JSklJTU7VkyRIdOXLE1U0BAAAAYCe7ZowwBRAAAACALzjrrLM0e/Zs9e3bVxaLRa+++qruvvtuvfLKKxo4cKDy8/O1adMmFRUVKSwsTHl5ecrIyFBpaamko88BmzFjhqKiolRaWqqamhrNmzdPgYGBmjlzpptbBwAAAKA9diVGmAIIAAAAwBeMGjXK5ud7771Xa9asUXl5uc466yytX79ehYWFSk1NlXT0XGjs2LEqLy9XcnKyNm/erKqqKpWUlCgqKkpDhgxRVlaWCgsLlZGRwYx4AAAAwIN1+hkjAAAAAODNzGaz3nrrLR06dEgpKSnatm2bWlpalJaWZi0zYMAAxcTEWBMj5eXlGjRokKKioqxlTCaTcnJyVFVVpfj4eLtj8EZtcXtr/MfqirYYjcauCscn2du37F+epzPt8Pa2AwB8C4kRAAAAAH5p586dmjJlipqamtS9e3c99thjio2N1Y4dOxQYGKjw8HCb8pGRkaqtrZUk1dXV2SRFJFl/bitjj8rKSgdb4Rm8Pf5jOdqWkJAQuxNi/mbnzp06fPiw3fXYvzyPr7QDAOC/SIwAAAAA8Ev9+vXTq6++qgMHDujtt9/WvHnz9Nxzz7kllsTERK+cbWA2m1VZWem18R/Ll9riqeLi4uwq70vfia+0pTPtaKsLAIAnIDECAAC8hrnVIqMhwN1hAPARQUFB6tu3ryQpISFBlZWVevbZZ3XVVVeppaVFDQ0NNrNG6uvrFR0dLeno7JCKigqb96urq5Mkaxl7GI1Gr75Y6u3xH8uX2uJpHO1XX/pOfKUtvtIOAID/IjECAAC8htEQoKzSMlXVNHa4zoi4aM0ZM9iJUQHwFa2trWpublZCQoICAwO1detWjRkzRpK0e/duVVdXKzk5WZKUnJys4uJi1dfXKzIyUpK0ZcsWhYaGKjY21l1NAAAAANABJEYAAIBXqapp1Pbqhg6XHxDdw4nRAPBWS5cu1WWXXaazzz5bBw8e1Ouvv65PP/1Uq1atUlhYmCZNmqSCggJFREQoNDRUixYtUkpKijUxYjKZFBsbq7lz52rOnDmqra1VUVGRpk6dqqCgIPc2DgAAeDRmwgPuR2IEAAAAgN+pr6/XvHnzVFNTo7CwMMXFxWnVqlW65JJLJEkLFiyQwWBQZmammpubZTKZlJ2dba1vNBpVXFysnJwcTZ48WSEhIZowYYIyMzPd1SQAAOAlHJkJLzEbHuhKJEYAAAAA+J38/Px2Xw8ODlZ2drZNMuSXevfurZUrV3Z1aAAAwA/YOxNeYjY80JUM7g4AAAAAAABPEBgYKAVwmgwAAODrmDECAAAAAICkbt26sbyJhwkJCXF3CAAAwAeRGAEAAAAA4Bgsb9K1okODHXrQsNFoVHx8vMytFidFBgAA/BWJEQAAAAAA4DThIY7PxIntFaplU1KcFBkAAPBXJEYAAAAAAIDTOTITBwAAwBl4qhwAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAAAAAAAAAADgN0iMAAAAAAAAAAAAv0FiBAAAAAAAAAAA+A0SIwAAAAAAAAAAwG+QGAEAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRADaiQ4NlbrU4VNfRegAAAAAAAADgKt3cHQAAzxIe0k1GQ4CySstUVdPY4XqxvUK1bEqKEyMDAAAAAAAAgM4jMQLghKpqGrW9usHdYQAAAAAAAABAl2IpLQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiNwO3Orxd0hAPAgTzzxhCZNmqSUlBSlpqbqrrvu0u7du23KNDU1KTc3V8OHD1dKSoruuece1dXV2ZSprq7W9OnTlZSUpNTUVC1ZskRHjhxxZVMAAAAAAADggXj4OtzOaAhQVmmZqmoa7ao3Ii5ac8YMdlJUANzl008/1dSpU5WYmCiz2aw//vGPmjZtmt544w11795dkpSfn69NmzapqKhIYWFhysvLU0ZGhkpLSyVJZrNZM2bMUFRUlEpLS1VTU6N58+YpMDBQM2fOdGfzAAAAAAAA4GYkRuARqmoatb26wa46A6J7OCkaAO60atUqm58LCgqUmpqq7du366KLLtKBAwe0fv16FRYWKjU1VdLRRMnYsWNVXl6u5ORkbd68WVVVVSopKVFUVJSGDBmirKwsFRYWKiMjQ0FBQe5oGgAAAAAAADwAS2kBADzagQMHJEkRERGSpG3btqmlpUVpaWnWMgMGDFBMTIzKy8slSeXl5Ro0aJCioqKsZUwmkxobG1VVVeW64AEAAAD4LZYJBgDPZdeMkSeeeELvvPOOdu/erdNOO00pKSmaPXu2+vfvby3T1NSkgoICbdy4Uc3NzTKZTMrOzra5OFVdXa2cnBx98skn6t69u6699lrNmjVL3boxgQUA8F+tra3Kz8/XsGHDNGjQIElSXV2dAgMDFR4eblM2MjJStbW11jLHjjuSrD+3lekos9nsaPh+oa1/XNVPRqPRJZ8D+7ji+3f1vuYL7Okz+hUAgK7HMsEA4LnsykRwQAcAuFJubq527dqlF154wW0xVFZWuu2zvYkr+ikkJETx8fFO/xzYb+fOnTp8+LBLPovfSfvRZwAAuAfLBAOA57IrMcIBHQDgKg899JA+/PBDPffcczrrrLOs26OiotTS0qKGhgabWSP19fWKjo62lqmoqLB5v7bp6G1lOioxMZFZCu0wm82qrKykn/xcXFyc0z+Dfc1+9vRZW1kAAOA89i4TnJycfNJlgnNyclRVVWXXjUPMEO2crpzBzN+znsmXfkf8dca9Pe3t1NpV7j6gAwB8j8ViUV5ent59912tXr1a55xzjs3rCQkJCgwM1NatWzVmzBhJ0u7du1VdXa3k5GRJUnJysoqLi1VfX6/IyEhJ0pYtWxQaGqrY2Fi74jEajfzR2gH0k39z5XfPvmY/+gwAAPfzhGWCuQmia3S2H5kJ77lcORPeVfi9PzmHEyOecEC3N+PlzZkyX46dE3Xf0pl91Jf3886+rz/Jzc3V66+/rj//+c/q0aOHdWwICwvTaaedprCwME2aNEkFBQWKiIhQaGioFi1apJSUFGtixGQyKTY2VnPnztWcOXNUW1uroqIiTZ06lZmJAAAAAFzOE5YJZuZt5zCD2fe5Yia8q/jr/mrPTHiHEyOecEB3NOPlzZkyX4udLLnv6Yrsuq/t57DPmjVrJEk33XSTzfbFixdr4sSJkqQFCxbIYDAoMzNTzc3NMplMys7OtpY1Go0qLi5WTk6OJk+erJCQEE2YMEGZmZmuawgAAAAAyHOWCWYWadegH32XL36v7K8n51BixFMO6PZmvLw5U0bs8Badya57877irNj9cc33nTt3nrJMcHCwsrOzbZIhv9S7d2+tXLmyK0MDAPiQJ554Qu+88452796t0047TSkpKZo9e7b69+9vLdPU1KSCggJt3LjRJhF/7Az46upq5eTk6JNPPlH37t117bXXatasWerWrVOrFgMAfICnLRMMAPgvu/5a97QDuqMZL2/OlBE7PF1XfMfevK94c+wAAPiTTz/9VFOnTlViYqLMZrP++Mc/atq0aXrjjTfUvXt3SVJ+fr42bdqkoqIihYWFKS8vTxkZGSotLZV09AaGGTNmKCoqSqWlpaqpqdG8efMUGBiomTNnurN5AAAPwDLBAOC57EqMcEAHAAAA4AtWrVpl83NBQYFSU1O1fft2XXTRRTpw4IDWr1+vwsJCpaamSjqaKBk7dqzKy8uVnJyszZs3q6qqSiUlJYqKitKQIUOUlZWlwsJCZWRkcH4DAH6OZYIBwHPZlRjhgA4AAADAFx04cECSFBERIUnatm2bWlpalJaWZi0zYMAAxcTEWBMj5eXlGjRokM3SWiaTSTk5OaqqqrLrWXpms7mLWuJabXF7a/zH8oU2+DJv/3585XelM+3w9rY7gmWCAcBz2ZUY4YAOAAAAwNe0trYqPz9fw4YN06BBgyQdfQ5iYGCgzbMTJSkyMtI6c76urs4mKSLJ+nNbmY7y9meKeXv8bUJCQtwdAk5i586dOnz4sLvD6DRf+V3xlXYAAPwXTwQEAAAA4Ndyc3O1a9cuvfDCC26LITEx0SufU2Y2m1VZWem18R/LbDarqqrK3WHgJOLi4twdQqf4yu9KZ9rRVhcAAE9AYgQAAACA33rooYf04Ycf6rnnntNZZ51l3R4VFaWWlhY1NDTYzBqpr69XdHS0tUxFRYXN+9XV1UmStUxHGY1Gr75Y6u3xw/P5yv7lK78rvtIOAID/Mrg7AAAAAABwNYvFooceekjvvvuunnnmGZ1zzjk2ryckJCgwMFBbt261btu9e7eqq6uVnJwsSUpOTtbXX3+t+vp6a5ktW7YoNDRUsbGxLmkHAAAAAPsxYwQAAACA38nNzdXrr7+uP//5z+rRo4f1mSBhYWE67bTTFBYWpkmTJqmgoEAREREKDQ3VokWLlJKSYk2MmEwmxcbGau7cuZozZ45qa2tVVFSkqVOnKigoyI2tAwAAANAeEiMAAAAA/M6aNWskSTfddJPN9sWLF2vixImSpAULFshgMCgzM1PNzc0ymUzKzs62ljUajSouLlZOTo4mT56skJAQTZgwQZmZma5rCAAAAAC7kRgBAAAA4Hd27tx5yjLBwcHKzs62SYb8Uu/evbVy5cquDA0AAACAk/GMEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAEmnnXaau0MAAACAC5AYAQAALmdutbg7BACAj7N3rDEajerfv7+TogEAAIAn4eHrAADA5YyGAGWVlqmqprHDdUbERWvOmMFOjAr2ig4NlrnVIqMhwO66jtYDgI5irAEAAMDJkBgBAABuUVXTqO3VDR0uPyC6hxOjgSPCQ7o5dOExtleolk1JcWJkAHAUYw0AADgVbvjyTyRGAAAA0Cn2XngEAAAAfAEXxX0DN3z5JxIjAAAAAAAAAGAnlm30Ldzw5V9IjAAAAAAAAACAA1i2EfBOBncHAAAAAAAAAAAA4CokRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAAAAAAOCRokODZW61OFTX0XoAAMD38fB1AAAAAADgkcJDusloCFBWaZmqaho7XC+2V6iWTUlxYmQAAMCbkRgBAAAAAAAeraqmUdurG9wdBgAA8BEspQWgS3RmirvENHcAAAAAAAAArsGMEQBdwtEp7tJ/p7mbzU4KDgAAAAAAAAD+HxIjALoUU9wBAAAAAAAAeDKW0gIAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAAAAAAAAAADgN0iMwCVCQkLcHQIAAAAAAAAAAOrm7gDgO8ytFhkNAcdtNxqNio+Pd0NEAAAAAAAAAADYIjGCLmM0BCirtExVNY0drjMiLlpzxgx2YlQAAAAAAAAAAPwXiRF0qaqaRm2vbuhw+QHRPZwYDQAAAAAAAAAAtnjGCADA43z22We64447ZDKZFBcXp/fee8/mdYvFomXLlslkMmno0KG69dZb9e2339qU2bdvn2bNmqVhw4bpwgsv1IIFC3Tw4EEXtgIAAAAAAACeiMQIAMDjHDp0SHFxccrOzj7h6ytXrtTq1auVk5OjtWvXKiQkRNOmTVNTU5O1zOzZs1VVVaWSkhIVFxfr888/14MPPuiqJgAAAADwc9zwBQCey+7ECAd1AICzpaen695779Xll19+3GsWi0XPPvus7rzzTo0ePVqDBw/WH/7wB9XU1FjHpG+++UYfffSRFi1apKSkJF144YVauHCh3njjDf3000+ubg4AAAAAP8QNXwDguex+xkjbQX3SpEnKyMg47vW2g3pBQYH69OmjZcuWadq0adq4caOCg4MlHT2o19bWqqSkRC0tLVqwYIEefPBBLV26tPMtAgD4tD179qi2tlZpaWnWbWFhYUpKSlJZWZnGjRunsrIyhYeHKzEx0VomLS1NBoNBFRUVJ0y4nIzZbO7S+H1NW//Y209Go9EZ4cDL2LPfOLqv+TN7+ox+BQCg66Wnpys9Pf2Er/3yhi9J+sMf/qC0tDS99957GjdunPWGr3Xr1lnPbRYuXKjp06dr7ty5OvPMM13WFgDwNXYnRjioAwDcqba2VpIUGRlpsz0yMlJ1dXWSpLq6OvXs2dPm9W7duikiIsJav6MqKys7Ea3/sKefQkJCFB8f78Ro4C127typw4cP21WH30n70Wcn9tlnn2nVqlXatm2bamtr9dhjj1nPYaSj5zbLly/XSy+9pIaGBg0bNkw5OTk677zzrGX27dunvLw8ffDBBzIYDLriiit0//33q0ePHm5oEQDAm7j6hi+JGyE660Q3nXDDFyTP/N3y1xvL7Gmv3YmR9nj6XbzevEN4Q+wMBuis1tZWSZ69n5+Ms35HvbEvfE1iYiLHt3aYzWZVVlbST3BIXFxch8uyr9nPnj5rK+tPmAkPAHAnV9/wJXGzRFdp60du+EIbR274chV+70+uSxMj3nIXrzfvEJ4aO4MBusKuXbskee5+3hHeHLu3iI6OliTV19erV69e1u319fUaPHiwJCkqKkp79+61qXfkyBHt37/fWr+jjEYjF2E7gH6CIxzZZ9jX7EefnRgz4QEA/oYbTDqHG3VwMvbc8OUq/rq/2nPDV5cmRlzN3i/Wm3cIb44d6KiBAweqoqLCK/dzZ/2O+uMdvKfSp08fRUdHa+vWrRoyZIgkqbGxUV9++aWuv/56SVJKSooaGhq0bds2JSQkSJI+/vhjtba2aujQoW6LHQDgHdyxvAkAwL+4+oYviZslugr9iF/y5P2B/fXkujQx4i138XrzDuHNsQOnYjAYJHn3fu7NsXuSgwcP6vvvv7f+vGfPHu3YsUMRERGKiYnRzTffrMcff1x9+/a1Lm/Sq1cv6129AwYM0KWXXqoHHnhAubm5amlpUV5ensaNG8cdvIAXCwkJcXcI8BPuWN7EW5fPdPqSvwEGGQ0Bznlv+AVP+d3yhuWxO6Iz7fD2tnc1bvgCAPfq0sQIB3UAQFfYtm2bbr75ZuvPixcvliRNmDBBBQUFuv3223X48GE9+OCDamho0AUXXKCnnnrKuua7JBUWFiovL0+33HKL9YG4CxcudHlbABwvOjRY5laLXRc7jUaj4uPjZW61ODEywH28fYaoM+JvW643q7RMVTWNdtUdERetOWMGd3lM8D6etu67t/+ut/GVdjgbN3wBgOeyOzHCQR0A4GzDhw/Xzp07T/p6QECAsrKylJWVddIyp59+Og+/dRHu4oe9wkO6yWgIsPtiZ2yvUC2bkuLEyICj3LG8iTcuJSq5ZsnfqppGba9usKvOgOgeTokF3sdT1n33leWxO9MOf1wmmBu+AMBz2Z0Y4aAOAAAkHb3j///dxQ84wpGLnYAruGMmvLcvx+nt8cN3edp+6Su/K77SDmfjhi/fw01hOJYjM+GP1Zm66Dy7EyMc1AEAgCSH7viXWN4EgGdgJjwAAGjTkQvU3BSGX3J0JrzEbHhP0KXPGAEAAP6F5U0AeCtmwgMAgDaOXNzmhi+0YSa8dyIxAgAAAMDvMBMeAAAcy96L29zwBXg3g7sDAAAAAAAAAAAAcBUSIwAAAAAAwKe0PRDXUZ2pCwAAPB9LaQEAAAAAAJ/CA3EBAEB7SIwAAAAAAACfxANxAQDAibCUFgAAAAAAAAAA8BskRgAAAAAAAAAAgN8gMQIAAAAAAAAAAPwGiREAHiUkJMTdIQAAAAAAAADwYTx8HYDbRYcGy9xqkdFoVHx8vF11za0WGQ0BTooMAAAAAAAAgK8hMQLA7cJDusloCFBWaZmqaho7XC+2V6iWTUlxYmQAAAAAAAAAfA2JEQAeo6qmUdurG9wdBgAAAAAAAAAfxjNGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjMCGudXi7hAAAAAA+BjOMwAAAOBJePg6bBgNAcoqLVNVTaNd9UbERWvOmMFOigoAAACAN3PkPINzDAAAADgLiREcp6qmUdurG+yqMyC6h5OiAQAAAOAL7D3P4BwDAAAAzsJSWgAAAPAK0aHBnVqOh6V8AAAAAHiCzpzbcF7TNZgxAgAAAK8QHtLN4WU/Y3uFatmUFCdFBgAAAAAd5+i5Dec1XYfECAAAALyKI8t+AgAAAICn4dzGfVhKy0cxpQr+gGmHAAAAAAAAAOzFjBEf5chUrBFx0ZozZrATowK6FtMOga5hbrXIaAhwdxgAAAAeoe0GLEf+PuLvKsB9+P0DYA8SIz7M3qlYA6J7ODEawHmYdgh0Dsl0AACA/+IGLMA7OfosOs5tAP9EYgQAAJBMBwAA+AVuwAK8jyO/t5zbAP6JZ4wAAAAAAAAAAAC/QWIEAAAAAAAAAAD4DRIjAAD4AHOrxd0hAAAAoB0hISHuDgEAAPw/PGMEAAAfwIMGAQAA3Cs6NFjmVouMhoDjXjMajYqPjz9p3ZPVA/wRvw8AXIHECAAAPoIHDQIAALhPeEg3h25Wie0VqmVTUpwYGeBdHPk94oYv4HjMVGwfiREvws4MAADgmPbu4j0V7loE2sd5CmDLkZtVANiy9/eIG77gLzp6XnOymYqc2/wXiREP17aznmraLQAAAE6Ou3iBrvHLk2nOUwAAAFzH0fMaiXObXyIx4uGYPgh0vc7cNSyRXQcAb8ZdvEDncH4CAADgfpzXdJ5bEyPPP/+8Vq1apdraWg0ePFgPPPCAhg4d6s6QPBLTB4Gu5azsOstIeCZvG2tIvAGA9/G2saazOD8BANfzxrGGcxsAnsxtiZGNGzdq8eLFys3NVVJSkp555hlNmzZNb731liIjI90VFgA/4kh2/WSzTTqyjAR/FLqeN4413IkLeBZmGeJUvHGsAeBZGGtwKt461nBuA3gWnrtoy22JkZKSEv3ud7/TpEmTJEm5ubn68MMPtX79ek2fPt1dYTmFL+44gL9ijXrv4q1jDXfiAp6DNXxxKt461gDwHIw1OBVvHms4twE8B9e0bLklMdLc3Kzt27drxowZ1m0Gg0FpaWkqKytz6mcHBgY69f1PxNE/cMiSA56LtRw9nzvHGgC+pytnGXYEd3J5B28da9hPAM/kLecY7riu4s+8dawB4LnsHW/cNdPE2X+zuiUx8p///Edms/m46X6RkZHavXv3KetbLBZJRwcHo9HY4c81m80aFDfY+m97debLCDRYFNzxUCVJxgCLzGazhpzVw66650WGuLSev3wmsfrOZ7oj1v7RPWQ2m+0+9rSVbzvuoePcNdZYBRgcHjO8YZ/2ps8kVt/5TG+KVZKG9gmTLK167G/fqHr/YTvqRei3F5xjd72YiBDdMWKAmpuPjh1tY0hHjmOMN47p7FgjdXK86cRYY+/+Jf133+R33jM+k1h95zM7E+uwc09Xc8sRl16sGhQ32KFjFmONY7x5rJFcd27jL7/z/vCZxOp5n+nq8xrp+HObjrJnrAmwuGFE+umnn3TZZZeptLRUKSn/nYbzhz/8QZ999pleeumldus3NzersrLS2WECgMdITExUUFCQu8PwKow1AGA/xhv7dHaskRhvAPgfxhr7MNYAgP06Mta4ZcbIGWecIaPRqPr6epvt9fX1ioqKOmX9bt26KTExUQaDQQEBTAEH4LssFotaW1vVrZvbHgnltRhrAKDjGG8c09mxRmK8AeA/GGscw1gDAB1nz1jjltEoKChI559/vrZu3arRo0dLklpbW7V161bdeOONp6xvMBi4uwAA0C7GGgCAs3V2rJEYbwAA7WOsAQDncFua/rbbbtO8efOUkJCgoUOH6plnntHhw4c1ceJEd4UEAPAxjDUAAGdjrAEAOBtjDQB0PbclRsaOHau9e/dq+fLlqq2t1ZAhQ/TUU091eBogAACnwlgDAHA2xhoAgLMx1gBA13PLw9cBAAAAAAAAAADcweDuAAAAAAAAAAAAAFyFxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAAAAAAAAAADgN/wqMfL8889r1KhRSkxM1HXXXaeKigp3h3RKK1asUFxcnM1/V155pbvDOs5nn32mO+64QyaTSXFxcXrvvfdsXrdYLFq2bJlMJpOGDh2qW2+9Vd9++617gv2FU8U+f/78476DadOmuSna/3riiSc0adIkpaSkKDU1VXfddZd2795tU6apqUm5ubkaPny4UlJSdM8996iurs5NER/Vkbhvuumm4/r8wQcfdFPE//XCCy9o/PjxGjZsmIYNG6bJkydr06ZN1tc9sb8BR3TFMX3fvn2aNWuWhg0bpgsvvFALFizQwYMHXdgK1+qqY3J1dbWmT5+upKQkpaamasmSJTpy5Igrm+JSXXFc9bc++6Unn3xScXFxevjhh63b6Dc4w6nOS7zl76BRo0Yd1464uDjl5uZK8ty/QyXfGp/ba0tLS4seeeQRjR8/XsnJyTKZTJo7d65++uknm/c40Xf55JNPekw7pI6dS3rDdyLphL83cXFxeuqpp6xlPOE7AZzBW67NeTpvvnboybz1uqYn8JvEyMaNG7V48WLdfffdeuWVVzR48GBNmzZN9fX17g7tlAYOHKjNmzdb/3vhhRfcHdJxDh06pLi4OGVnZ5/w9ZUrV2r16tXKycnR2rVrFRISomnTpqmpqcnFkR7vVLFL0qWXXmrzHfzxj390YYQn9umnn2rq1Klau3atSkpKdOTIEU2bNk2HDh2ylsnPz9cHH3ygoqIirV69WjU1NcrIyHBj1B2LW5J+97vf2fT53Llz3RTxf5111lmaPXu2Xn75Za1fv14XX3yx7r77bu3atUuSZ/Y34IiuOKbPnj1bVVVVKikpUXFxsT7//HOPubDkDF1xTDabzZoxY4ZaWlpUWlqqgoICvfLKK1q+fLk7muQSnT2u+mOfHauiokKlpaWKi4uz2U6/wVnaOy/xlr+D1q1bZ9OGkpISSbK5wOWJf4dKvjU+t9eWn3/+WV999ZXuvPNOvfzyy3r00Uf1z3/+U3feeedxZTMzM22+qxtvvNEV4Vt1xbmkN3wnkmzasHnzZuXn5ysgIEBjxoyxKefu7wRwFm+4NufpvPnaoSfz1uuaHsHiJ377299acnNzrT+bzWaLyWSyPPHEE26M6tSWL19u+c1vfuPuMOwyaNAgy7vvvmv9ubW11XLJJZdYnnrqKeu2hoYGS0JCguX11193R4gn9cvYLRaLZd68eZY777zTTRF1XH19vWXQoEGWTz/91GKxHO3j888/3/Lmm29ay1RVVVkGDRpkKSsrc1OUx/tl3BaLxXLjjTdaFi1a5MaoOu6iiy6yrF271mv6G7CXI8f0tn2/oqLCWmbTpk2WuLg4y48//ui64N3IkWPyhx9+aBk8eLCltrbWWuaFF16wDBs2zNLU1OTS+N3JnuOqP/dZY2Oj5YorrrD8/e9/txk36Tc4S3vnJd78d9CiRYsso0ePtrS2tlosFu/5O9SXxucTnYP90pdffmkZNGiQ5V//+pd128iRIy0lJSVOjq7jHDmX9Obv5M4777TcfPPNNts87TsBuoo3XpvzdN587dCTefN1TXfwixkjzc3N2r59u9LS0qzbDAaD0tLSVFZW5sbIOua7776TyWTSr3/9a82aNUvV1dXuDskue/bsUW1trU3/h4WFKSkpySv6Xzp6J3BqaqrGjBmj7Oxs/ec//3F3SMc5cOCAJCkiIkKStG3bNrW0tNj0+4ABAxQTE6Py8nJ3hHhCv4y7zYYNGzR8+HBdffXVWrp0qQ4fPuyO8E7KbDbrjTfe0KFDh5SSkuI1/Q10VkeO6WVlZQoPD1diYqK1TFpamgwGg1csY9kVHDkml5eXa9CgQYqKirKWMZlMamxsVFVVleuCdxNHjqv+3GcPPfSQ0tPTbfpHYl+Dc53svMRb/w5qbm7Wa6+9pkmTJikgIMC63dP/Dj0RXx+fGxsbFRAQoPDwcJvtK1eu1PDhw3Xttdfqqaee8sglAds7l/TW76Surk6bNm3Sb3/72+Ne84bvBHCEt1+b83S+cO3Qk3nDdU136ObuAFzhP//5j8xmsyIjI222R0ZGHrf+t6cZOnSoFi9erH79+qm2tlaPPfaYpk6dqg0bNig0NNTd4XVIbW2tJJ2w/z1x3eFfuvTSS3X55ZerT58++uGHH/THP/5Rt99+u1588UUZjUZ3hydJam1tVX5+voYNG6ZBgwZJOvrHamBg4HEnD5GRkdbvxN1OFLckXX311YqJiVGvXr20c+dOFRYW6p///KceffRRN0Z71M6dOzVlyhQ1NTWpe/fueuyxxxQbG6sdO3Z4fH8DXaEjx/S6ujr17NnT5vVu3bopIiLCL34fHD0m19XV2VyolmT92Zf7rTPHVX/tszfeeENfffWV1q1bd9xr7GtwlvbOS7zh784Tee+993TgwAFNmDDBus2T/w5tjy+Pz01NTSosLNS4ceNszoFvuukmxcfHKyIiQmVlZfrjH/+o2tpa3XfffW6M1tapziW99Tt55ZVX1KNHD11xxRU2273hOwEc4QvX5jydt1879GTecF3TXfwiMeLN0tPTrf8ePHiwkpKSNHLkSL355pu67rrr3BiZ/xg3bpz1320PKRo9erQ12+oJcnNztWvXLq9b4/JkcU+ePNn677i4OEVHR+vWW2/V999/r3PPPdfVYdro16+fXn31VR04cEBvv/225s2bp+eee86tMQHwLN56THYXjqv2+fe//62HH35YTz/9tIKDg90dDvxIe+clp512mhsjc9z69et12WWX6cwzz7Ru8+S/Q/1RS0uLsrKyZLFYlJuba/PabbfdZv334MGDFRgYqOzsbM2aNUtBQUGuDvWEvOFc0hHr16/X+PHjjxuHvOE7ARzBtTl4M18di7qCXyyldcYZZ8hoNB73oPX6+vrj7pbzdOHh4TrvvPP0/fffuzuUDouOjpYkn+h/STrnnHN0xhln6LvvvnN3KJKOLqXx4Ycf6plnntFZZ51l3R4VFaWWlhY1NDTYlK+vr7d+J+50srhPJCkpSZI8os+DgoLUt29fJSQkaNasWRo8eLCeffZZj+9voKt05JgeFRWlvXv32rx+5MgR7d+/3+d/HzpzTI6Kijrubqi2n3253zpzXPXHPtu+fbvq6+s1ceJExcfHKz4+Xp9++qlWr16t+Ph4+g0uc+x5iTf+HfSvf/1LW7ZsOeFSQMfypL9D2+OL43NLS4v+93//V9XV1Xr66adPeVd2UlKSjhw5oj179rgoQvv98lzS274TSfr888/1z3/+s0MXg73hOwEc4Y3X5jydr1079GSedl3TnfwiMRIUFKTzzz9fW7dutW5rbW3V1q1blZKS4sbI7Hfw4EH98MMPHvtH0on06dNH0dHRNv3f2NioL7/80uv6X5J+/PFH7du3z+3fgcVi0UMPPaR3331XzzzzjM455xyb1xMSEhQYGGjT77t371Z1dbWSk5NdHO1/nSruE9mxY4ckz7xY09raqubmZo/tb6CrdeSYnpKSooaGBm3bts1a5uOPP1Zra6uGDh3q8phdoSuOycnJyfr6669tTga2bNmi0NBQxcbGuqQdnsCe46o/9tnFF1+sDRs26NVXX7X+l5CQoPHjx1v/Tb/BFY49L/HGv4NefvllRUZGasSIEe2W8+S/Q4/la+NzW1Lku+++01/+8hedccYZp6yzY8cOGQyG45Zh8SS/PJf0pu+kzbp163T++edr8ODBpyzrDd8J4AhvvDbn6Xzt2qEn85Trmp7Ab5bSuu222zRv3jwlJCRo6NCheuaZZ3T48GFNnDjR3aG1a8mSJRo5cqRiYmJUU1OjFStWyGAw6Oqrr3Z3aDYOHjxokynfs2ePduzYoYiICMXExOjmm2/W448/rr59+6pPnz5atmyZevXqpdGjR7sx6qPaiz0iIkKPPvqoxowZo6ioKP3www965JFH1LdvX1166aVujProUi2vv/66/vznP6tHjx7W9RjDwsJ02mmnKSwsTJMmTVJBQYEiIiIUGhqqRYsWKSUlxa0nqKeK+/vvv9eGDRuUnp6u008/XTt37tTixYt10UUXdeiPb2daunSpLrvsMp199tk6ePCgXn/9dX366adatWqVx/Y34IjOHtMHDBigSy+9VA888IByc3PV0tKivLw8jRs3zma5El/SFcdkk8mk2NhYzZ07V3PmzFFtba2Kioo0depUn11+orPHVX/ss9DQUJvncklS9+7ddfrpp1u3029whvbOS7zt76DW1la9/PLLuvbaa9Wt239PiT3571DJt8bn9toSHR2tzMxMffXVV3riiSdkNput42pERISCgoJUVlamL7/8UhdffLF69OihsrIyLV68WL/5zW8UERHhEe3oyLmkt3wnMTExko5epHzrrbc0b9684+p7yncCOIO3XJvzdN587dCTeet1TU8QYLFYLO4OwlWee+45rVq1SrW1tRoyZIgWLlxonRrtqe6991599tln2rdvn3r27KkLLrhA9957r8etb/vJJ5/o5ptvPm77hAkTVFBQIIvFouXLl2vt2rVqaGjQBRdcoOzsbPXr188N0dpqL/acnBzdfffd+uqrr3TgwAH16tVLl1xyibKystw+lS8uLu6E2xcvXmxN+DU1NamgoEBvvPGGmpubZTKZlJ2d7das8Kni/ve//605c+Zo165dOnTokM4++2yNHj1ad911l9sfarZgwQJ9/PHHqqmpUVhYmOLi4nT77bfrkksukeSZ/Q04oiuO6fv27VNeXp7ef/99GQwGXXHFFVq4cKF69Ojhyqa4TFcdk//1r38pJydHn376qUJCQjRhwgTNmjXL5sKdL+mK46q/9dmJ3HTTTRo8eLDuv/9+SfQbnONU5yXe9HfQ5s2bNW3aNL311ls2Y5cn/x0q+db43F5bMjIy9Otf//qE9Z599lkNHz5c27dvV25urnbv3q3m5mb16dNH11xzjW677TaXJni74lzSG76TgoICSdKLL76o/Px8bd68WWFhYTblPOU7AZzBW67NeTpvvnboybz1uqYn8KvECAAAAAAAAAAA8G9+8YwRAAAAAAAAAAAAicQIAAAAAAAAAADwIyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiMAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiMAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGyRGAAAAAAAAAACA3yAxAgAAAAAAAAAA/AaJEQAAAAAAAAAA4DdIjAAAAAAAAAAAAL9BYgQAAAAAAAAAAPgNEiMAAAAAAAAAAMBvkBgBAAAAAAAAAAB+g8QIAAAAAAAAAADwGyRG4NdWrFihuLg4p73/J598ori4OH3yySdO+wwAgGdz9lhzKnFxcVqxYoX155dffllxcXHas2eP22ICAHSMM8aQtnOUt956q0vfFwAAb3bTTTfppptusv68Z88excXF6eWXX3ZjVHAmEiPwCm0XcSorK+2ue/jwYa1YsaJTyYn58+crLi5Ow4YN088//3zc699++63i4uIUFxenVatWOfw5AAD3cfdY0+aTTz5RRkaGLrnkEiUkJCg1NVV33HGH3nnnnU6/NwDAORhDAAD2+v777/Xggw/q17/+tRITEzVs2DBNmTJFzzzzzAmvPXWFDRs26C9/+csJX9u7d68WLVqkK6+8UkOHDlVqaqp++9vf6pFHHtHBgwedEk9nuKP/4Fu6uTsAwNkOHz6sRx99VBkZGRo+fLjD79OtWzf9/PPPev/99zV27Fib1zZs2KDg4GA1NTXZbL/oootUUVGhwMBAhz8XAOD5umqsWb58uR577DGdd955mjx5smJiYrRv3z5t2rRJ99xzjwoLCzV+/PgujBwA4G6MIQDgfz788ENlZWUpKChI11xzjQYNGqSWlhZ98cUXeuSRR1RVVaW8vLwu/9zXX39du3bt0q233mqzfd++fZo0aZIaGxs1adIk9e/fX/v27dPOnTu1Zs0aXX/99erRo0eXx+Mod/UffAuJEaCDgoKCNGzYML3xxhvHJUZef/11jRgxQm+//bbNdoPBoODgYFeGCQDwUm+99ZYee+wxjRkzRkuXLrVJqv/+97/XRx99pCNHjrgxQgCAp/LEMeTQoUPq3r27Sz8TALzBDz/8oHvvvVcxMTF65pln1KtXL+trU6dO1XfffacPP/zQpTGtW7dO1dXVWrNmjYYNG2bzWmNjY5fd8NsVY4Mn9h+8E0tpwWvNnz9fKSkp+umnn3TXXXcpJSVFF198sZYsWSKz2Szp6HqAqampkqRHH33UutzVsWut2+Pqq6/W//3f/6mhocG6raKiQt9++62uvvrq48qf6BkjN910k66++mpVVVXppptuUlJSki699FKtXLnyuPqrV6/WuHHjlJSUpIsuukgTJ07Uhg0bHIodAGA/V441y5Yt0+mnn678/PwTnnhceumlGjlypCSpublZy5Yt08SJE3XBBRcoOTlZN9xwgz7++GOH2llZWalp06Zp+PDhGjp0qEaNGqX77rvPofcCABzlqWNIm9bWVj3++OO67LLLlJiYqFtuuUXfffedTZnPP/9cmZmZGjFihBISEpSenq78/Pzjlihpa+v333+v22+/XSkpKZo9e7Yk6eeff9aiRYs0fPhwpaSk6I477tBPP/10wnb+9NNPuu+++5SWlqaEhASNGzdO69ats6svAMDTPfXUUzp06JAefvhhm4v6bfr27atbbrlFUvvPufjlcbSxsVEPP/ywRo0aZV1O8bbbbtP27dslHb0e9eGHH+pf//qXdbwZNWqUpKPLUhmNRiUnJx/3OaGhocfd9Pvll19q2rRpuuCCC5SUlKQbb7xRX3zxhU2ZtudkVVVVadasWbrooot0ww03aNWqVYqLi9O//vWv4z5r6dKlSkhI0P79+7uk/yRp/fr1uvnmm5WamqqEhASNHTtWL7zwwknfvz21tbW67777dNlllykhIUEmk0l33nknz2/0UswYgVczm82aNm2ahg4dqrlz52rr1q16+umndc455+iGG25Qz549lZOTo5ycHF1++eW6/PLLJcnhBxhefvnlys7O1jvvvKPf/va3ko7OFunfv7/i4+M7/D779+/X73//e11++eW66qqr9Pbbb6uwsFCDBg1Senq6JGnt2rVatGiRxowZo5tvvllNTU3auXOnvvzyS6bAA4ALuWKs+fbbb7V7925NmjRJoaGhpyzf2Niol156SVdffbWuu+46HTx4UOvWrdPvf/97vfTSSxoyZEiHP7u+vl7Tpk3TGWecoenTpys8PFx79uzRu+++2+H3AACcmCeOIW1WrlypgIAA/c///I8aGxv11FNPafbs2XrppZesZd566y39/PPPuv7663X66aeroqJCzz33nH788UctX77c5v2OHDlivUg2b948nXbaaZKOJk3efPNNXXPNNUpKStJnn32m6dOnHxdPXV2dfve73ykgIEBTp05Vz5499X//93+6//771djYeNyyLwDgrT744AOdc845x83M6Kzs7Gy9/fbbuvHGGzVgwADt27dPX3zxhb755hudf/75uuOOO3TgwAH9+OOP1pug2pbH6t27t8xms/76179qwoQJ7X7O1q1bdfvttyshIUEZGRkKCAjQyy+/rFtuuUUvvPCChg4dalM+KytLffv21b333iuLxaKRI0fqkUce0Ztvvqnf//73NmXffPNNXXLJJYqIiDjp59vbf2vWrNHAgQM1atQodevWTR988IFyc3NlsVg0derUDr1Hm3vuuUdVVVW68cYb1bt3b+3du1d///vf9e9//1t9+vSx673gfiRG4NWampp01VVX6e6775YkXX/99ZowYYLWrVunG264Qd27d9eYMWOUk5OjuLg4XXPNNZ36vNDQUI0YMUKvv/66fvvb36q1tVUbN27UlClT7HqfmpoaLVmyRNdee60k6be//a1GjRql9evXWxMjH374oQYOHHjcCQcAwLVcMdZ88803kqRBgwZ1qHxERITef/99BQUFWbf97ne/01VXXaXVq1crPz+/w59dVlam/fv3a9WqVUpMTLRuv/feezv8HgCAE/PEMeTY2F599VXrWBIeHq6HH35YX3/9tfW9Zs+ebU1wSNLkyZPVt29f/fGPf1R1dbViYmKsrzU3N+vKK6/UrFmzrNu2b9+uN998U7fccosWLFgg6egyJ/fdd5/+8Y9/2MTzpz/9SWazWRs2bNAZZ5wh6Wh/zZw5U48++qimTJliEwsAeKPGxkb99NNP+vWvf93l771p0yb97ne/0/z5863bbr/9duu/L7nkEj377LNqaGg4bryZNGmS/vKXv2j+/Pl68skn9atf/UoXXXSR0tPTFRYWZi1nsViUk5Oj4cOH66mnnlJAQIAkacqUKRo3bpyKior09NNP27z34MGDtXTpUpttycnJ2rhxo01ipKKiQj/88IMyMjJO2kZH+u+5556zGT9uvPFGTZs2TSUlJXYlRhoaGlRWVqa5c+dq2rRp1u0zZszo8HvAs7CUFrze9ddfb/PzBRdc4NQpbOPHj9enn36q2tpaffzxx6qtrbV7Bkf37t1tBqGgoCAlJibqhx9+sG4LDw/Xjz/+qIqKii6LHQDgGGePNY2NjZLU4QcaGo1G64Ws1tZW7du3T0eOHFFCQoK++uoruz677UTnww8/VEtLi111AQCn5mljSJuJEyfaJNgvvPBCSbI5Jzn2QtKhQ4e0d+9epaSkyGKxnHC8+WVbP/roI0nSDTfcYLP9xhtvtPnZYrHonXfe0ahRo2SxWLR3717rfyaTSQcOHLAuBQMA3szRY3ZHhIeH68svv9RPP/1kd92oqCj99a9/1ZQpU9TQ0KDS0lLNmjVLqampeuyxx2SxWCRJO3bs0Lfffqvx48frP//5j/VYfejQIaWmpuqzzz5Ta2urzXuf6Gbiq666Stu3b9f3339v3fbmm28qKChIo0ePPmmcjvTfsWPZgQMHtHfvXv3qV7/SDz/8oAMHDtj1PoGBgfr000/bXeoL3oMZI/BqwcHB6tmzp822iIgIpx6g0tPT1aNHD23cuFH/+Mc/lJiYqL59+9p1cnPWWWdZs+ptIiIitHPnTuvPt99+u7Zs2aLrrrtOffv21SWXXKKrr75aF1xwQZe1BQBwaq4Ya9qWPjl48GCH67zyyit6+umn9c9//tMmoWHvFO5f/epXGjNmjB599FH95S9/0a9+9SuNHj1a48ePt7lgBgCwn6eOIZJsZntIRy+oSbJ5nmJ1dbWWL1+u999//7iY2y5OtenWrZvOOussm23V1dUyGAzHjU19+/a1+Xnv3r1qaGjQiy++qBdffPGE8e7du7cDrQIAz+boMbsjZs+erfnz52vEiBE6//zzlZ6ermuvvVbnnHNOh+r36tVLubm5ysnJ0bfffqvNmzdr5cqVWr58uXr16qXrrrtO3377rSRp3rx5J32fAwcO2CyFdaLzkyuvvFIFBQXauHGj7rjjDlksFr311lu67LLL2l0W0pH+++KLL7RixQqVl5fr8OHDx8V67IyY9gQFBWn27NlasmSJLrnkEiUlJWnEiBG69tprFR0d3eF44DlIjMCrGY1Gl39mUFCQLr/8cr366qunnOJ3Mh2Je8CAAXrrrbf04Ycf6qOPPtI777yjF154QXfffbcyMzMdCR0A4ABXjDX9+/eXJH399dcdKv/Xv/5V8+fP1+jRozVt2jRFRkbKaDTqiSeesLnTtyMCAgK0fPlylZeX64MPPtBHH32kBQsWqKSkRC+++KJT7mYDAH/hiWNIG4PhxAtItN0VbDabddttt1mfj9i/f391795dP/30k+bPn3/cHcFBQUEnfc9TaXuv3/zmNydd297R50QCgCcJDQ1Vr169tGvXrg6V/+VNtW3MZvNx28aOHasLL7xQ7777rv7+979r1apVWrlypVasWGFdtr2jn9mvXz/169dPI0aM0BVXXKHXXntN1113nXWMmDt37kmfa9i9e3ebn3/54HZJOvPMM3XhhRfqzTff1B133KHy8nJVV1dr9uzZ7cZmb/99//33uvXWW9W/f3/Nnz9fZ599tgIDA7Vp0yb95S9/OW4sO5Vbb71Vo0aN0nvvvafNmzdr2bJlevLJJ/XMM8/Y9exheAYSI/B5JxtEOmP8+PFav369DAaDxo0b1+Xv36Z79+4aO3asxo4dq+bmZt1zzz0qLi7WjBkzTjiwAADco7NjTduJx9/+9jcdPHjwlMmIt99+W+ecc44effRRm8/uzHOpkpOTlZycrHvvvVcbNmzQ7NmztXHjRl133XUOvycA4NRcPYZ01Ndff61vv/3W5tmIkvT3v/+9w+8RExOj1tZW7dmzR+edd551+3fffWdTrmfPnurRo4daW1uVlpbW2dABwKONHDlSL774osrKypSSktJu2baZF8fO5pOOzsg7kV69emnq1KmaOnWq6uvrNWHCBBUXF1sTI/aOOeecc47Cw8NVW1tr/Vk6mqDo7PH6qquuUm5urnbv3q2NGzcqJCREI0eOPGU9e/rv/fffV3Nzsx5//HGbmZKffPKJw3Gfe+65+p//+R/9z//8j7799ltde+21evrpp1VYWOjwe8I9eMYIfF5ISIik4weRzhg+fLiysrL0wAMPOG263H/+8x+bn4OCgjRgwABZLBbWgAcAD9MVY01mZqb27dunhQsX6siRI8e9vnnzZn3wwQeS/nsHctsdW5L05Zdfqry83O7P3b9/v837SLLe/dXc3Gz3+wEA7OPqMaSj2mZ/HDtGWCwWPfvssx1+D5PJJEl64YUXbLY/99xzNj8bjUaNGTNGb7/99glnvrCMFgBf8vvf/17du3fXwoULVVdXd9zr33//vZ555hlJRxMQZ5xxhj7//HObMr88rprN5uOelxEZGalevXrZ/E0fEhJywudqfPnllzp06NBx2ysqKrRv3z7169dPkpSQkKBzzz1XTz/99AmXs7LneD1mzBgZjUa98cYbeuuttzRixIjjZpuciD39d6LzpgMHDmj9+vUdjrPN4cOH1dTUZLPt3HPPVY8ePThv8lLMGIHPO+200xQbG6s333xT5513nk4//XQNHDhQgwYNcvg9DQaD7rrrri6M8njTpk1TVFSUhg0bpsjISO3evVvPPfec0tPT211vEQDgel0x1owdO1Y7d+5UcXGxvvrqK1199dWKiYnRvn379NFHH2nr1q1aunSpJGnEiBF65513dPfdd2vEiBHas2ePSktLFRsbe8ITmva88sorWrNmjUaPHq1zzz1XBw8e1Nq1axUaGqrLLrvMrvcCANjP1WNIR/Xv31/nnnuulixZop9++kmhoaF6++237UrgJCQkaMyYMXrmmWe0b98+JSUl6bPPPrOuUX/sncuzZs3SJ598ot/97ne67rrrFBsbq/3792v79u3aunWrPv30U7viBwBPde6556qwsFD33nuvxo4dq2uuuUaDBg1Sc3OzysrK9NZbb2nixInW8tddd52efPJJ3X///UpISNDnn3+uf/7znzbvefDgQaWnp2vMmDEaPHiwunfvri1btqiyslLz58+3ljv//PO1ceNGLV68WImJierevbtGjRqlv/71r9qwYYNGjx6thIQEBQYG6ptvvtH69esVHBysO+64Q9LR62GLFi3S7bffrquvvloTJ07UmWeeqZ9++kmffPKJQkNDVVxc3KF+iIyM1PDhw1VSUqKDBw9q7NixXd5/l1xyiQIDA3XHHXdoypQpOnjwoF566SVFRkZaZ8F01Lfffqtbb71VV155pWJjY2U0GvXee++prq7OqavJwHlIjMAvLFq0SHl5eVq8eLFaWlqUkZHRqcSIK0yePFkbNmxQSUmJDh06pLPOOks33XST0xMyAADHdMVYc++99+riiy/W6tWrtWbNGu3fv1/h4eFKSkrSn//8Z/3617+WJE2cOFF1dXV68cUXtXnzZsXGxuqRRx7RW2+9ZfeFo1/96leqrKzUxo0bVVdXp7CwMA0dOlSFhYUdflAjAKBzXDmGdFRgYKCKi4u1aNEiPfHEEwoODtbll1+uqVOn6pprrunw+yxZskRRUVF644039O677yotLU1/+tOfdOWVVyooKMhaLioqSi+99JIee+wxvfvuu1qzZo1OP/10xcbGnnLNeQDwNr/+9a/12muvadWqVfrb3/6mNWvWKCgoSHFxcZo/f75+97vfWcvefffd2rt3r95++229+eabuuyyy/TUU08pNTXVWua0007T9ddfr7///e965513ZLFYdO655yo7O1s33HCDtdwNN9ygHTt26OWXX9Zf/vIX9e7dW6NGjdLkyZN12mmn6eOPP9b777+vxsZGnXHGGbrkkks0Y8YMm+dnDB8+XC+++KL+/Oc/67nnntOhQ4cUHR2toUOHavLkyXb1w9ixY7Vlyxb16NHDruegdLT/+vfvr+XLl6uoqMg6Hl1//fXq2bOnFixYYFesZ511lsaNG6etW7fqtddek9FoVP/+/VVUVKQxY8bY9V7wDAGWX66dAAAAAAAA4CQ7duzQtddeq0ceeUS/+c1v3B0OAADwQzxjBAAAAAAAOMXPP/983LZnnnlGBoNBF110kRsiAgAAYCktAAAAAADgJE899ZS2bdumiy++WEajUf/3f/+n//u//9PkyZN19tlnuzs8AADgp1hKCwAAAAAAOMXf//53Pfroo/rmm2906NAhnX322brmmmt0xx13qFs37tUEAADuQWIEAAAAAAAAAAD4DZ4xAgDwKKNGjVJcXNxx/+Xm5kqSmpqalJubq+HDhyslJUX33HOP6urqbN6jurpa06dPV1JSklJTU7VkyRIdOXLEHc0BAAAAAACAh2HeKgDAo6xbt05ms9n6865du3TbbbfpyiuvlCTl5+dr06ZNKioqUlhYmPLy8pSRkaHS0lJJktls1owZMxQVFaXS0lLV1NRo3rx5CgwM1MyZM93SJgAAAAAAAHgOltICAHi0hx9+WB9++KHeeecdNTY2KjU1VYWFhdZEyTfffKOxY8fqxRdfVHJysjZt2qQ77rhDH330kaKioiRJa9asUWFhobZu3aqgoCB3NgcAAAAAAABu5pUzRlpbW3XkyBEZDAYFBAS4OxwAcBqLxaLW1lZ169ZNBoP/rX7Y3Nys1157TbfddpsCAgK0bds2tbS0KC0tzVpmwIABiomJUXl5uZKTk1VeXq5BgwZZkyKSZDKZlJOTo6qqKsXHx3fosxlrAPgTfx9v3InxBoC/YKxxH8YaAP7CnrHGKxMjR44cUWVlpbvDAACXSUxM9MuZDu+9954OHDigCRMmSJLq6uoUGBio8PBwm3KRkZGqra21ljk2KSLJ+nNbmY5grAHgj/x1vHEnxhsA/oaxxvUYawD4m46MNV6ZGGnL9iQmJspoNHa4ntlsVmVlpd31/AX90z76p330T/sc7Z+2ev56R9X69et12WWX6cwzz3T5Z7f1eXx8vN37tNls1ldffeVQXX9A/5wcfdM++qd9nemftrr+Ot64E+c2/0WbvIcvtos2uS4exhrXY6xxDO2n/bTf+9pvz1jjlYmRtml/RqPRoS/G0Xr+gv5pH/3TPvqnfY72jz9Od/7Xv/6lLVu2aMWKFdZtUVFRamlpUUNDg82skfr6ekVHR1vLVFRU2LxXXV2dJFnLdERbnwcFBTl0gdHRuv6A/jk5+qZ99E/7OtM/bXX9cbxxN85tjkebvIcvtos2OR9jjesx1nQO7af9tN/72t+RscauNP2KFSsUFxdn81/bw28lqampSbm5uRo+fLhSUlJ0zz33WC9Gtamurtb06dOVlJSk1NRULVmyREeOHLEnDACAH3j55ZcVGRmpESNGWLclJCQoMDBQW7dutW7bvXu3qqurlZycLElKTk7W119/rfr6emuZLVu2KDQ0VLGxsa4KHwDg4Ti3AQB0xmeffaY77rhDJpNJcXFxeu+996yvtbS06JFHHtH48eOVnJwsk8mkuXPn6qeffrJ5j3379mnWrFkaNmyYLrzwQi1YsEAHDx60KfOPf/xDN9xwgxITE5Wenq6VK1e6pH0A4OvsnjEycOBAlZSUWH8+NmOUn5+vTZs2qaioSGFhYcrLy1NGRoZKS0slHb0TbcaMGYqKilJpaalqamo0b948BQYGaubMmV3QHACAL2htbdXLL7+sa6+9Vt26/XeoCgsL06RJk1RQUKCIiAiFhoZq0aJFSklJsSZGTCaTYmNjNXfuXM2ZM0e1tbUqKirS1KlTWcsYAGCDcxsAgKMOHTqkuLg4TZo0SRkZGTav/fzzz/rqq6905513avDgwWpoaNDDDz+sO++8Uy+//LK13OzZs1VbW6uSkhK1tLRowYIFevDBB7V06VJJUmNjo6ZNm6bU1FTl5ubq66+/1oIFCxQeHq7Jkye7tL0A4GvsTowYjcYTLkVy4MABrV+/XoWFhUpNTZV09GRi7NixKi8vV3JysjZv3qyqqiqVlJQoKipKQ4YMUVZWlgoLC5WRkcEFKwCApKMzPKqrqzVp0qTjXluwYIEMBoMyMzPV3Nwsk8mk7Oxs6+tGo1HFxcXKycnR5MmTFRISogkTJigzM9OVTQAAeAHObQAAjkpPT1d6evoJXwsLC7NJvEvSAw88oOuuu07V1dWKiYnRN998o48++kjr1q1TYmKiJGnhwoWaPn265s6dqzPPPFOvvfaaWlpalJ+fr6CgIA0cOFA7duxQSUkJiREA6CS7EyPfffedTCaTgoODlZycrFmzZikmJkbbtm1TS0uL0tLSrGUHDBigmJgY68lDeXm5Bg0apKioKGsZk8mknJwcVVVVKT4+vmtaBQDwaiaTSTt37jzha8HBwcrOzrZJhvxS7969mWIOADglzm0AAK7S2NiogIAA67MSy8rKFB4ebk2KSFJaWpoMBoMqKip0+eWXq7y8XBdeeKFNst1kMmnlypXav3+/IiIi7Iqh7Zli9pa3t56voP20/9j/+xtvbb898dqVGBk6dKgWL16sfv36qba2Vo899pimTp2qDRs2qK6uToGBgTYPw5WkyMhI1dbWSjr68NtjTxwkWX9uK2MPDuhdi/5pH/3TPvqnfY72D/0JAIBzcG7jeWiT9/DFdtEm5/OUONyhqalJhYWFGjdunEJDQyUdHUd69uxpU65bt26KiIiwGWv69OljU6ZtrKmrq7M7MVJZWelQ/I7W8xW0n/b7M19uv12JkWOnCA4ePFhJSUkaOXKk3nzzTZ122mldHtypcEB3DvqnffRP++if9tE/AAB4Bs5tPBdt8h6+2C7ahK7W0tKirKwsWSwW5ebmujWWxMREm+dpnYrZbFZlZaXd9XwF7af9tN/72t8Wd0fYvZTWscLDw3Xeeefp+++/V1pamlpaWtTQ0GBzZ1V9fb113d6oqChVVFTYvEddXZ0knXBt31PhgN616J/20T/to3/a52j/2HNABwAAjuPcxv1ok/fwxXbRJtfF409aWlr0v//7v6qurtYzzzxjnS0iHR1H9u7da1P+yJEj2r9/v81Y0za2tGn7+ZezFjvCaDQ6tC84Ws9X0H7aT/t9s/2dSowcPHhQP/zwg6Kjo5WQkKDAwEBt3bpVY8aMkSTt3r1b1dXVSk5OliQlJyeruLhY9fX1ioyMlHT0AbuhoaGKjY21+/M5oDsH/XNygYGB9M8p0D/to38AAPBMnNt4DtrkPXyxXbQJXaUtKfLdd9/p2Wef1RlnnGHzekpKihoaGrRt2zYlJCRIkj7++GO1trZq6NChko6ONUVFRWppaVFgYKCko2NNv3797F5GCwBgy2BP4SVLlujTTz/Vnj179P/9f/+fMjIyZDAYdPXVVyssLEyTJk1SQUGBPv74Y23btk0LFixQSkqK9eTBZDIpNjZWc+fO1T/+8Q999NFHKioq0tSpU20eJAV4qiHx5zv8B6W51dLF0QBA13D0+MRxDYA349wG/o7xH+icgwcPaseOHdqxY4ckac+ePdqxY4eqq6vV0tKizMxMbdu2TYWFhTKbzaqtrVVtba2am5slSQMGDNCll16qBx54QBUVFfriiy+Ul5encePG6cwzz5QkjR8/XoGBgbr//vu1a9cubdy4Uc8++6xuu+02t7XbFTg+AXAFu2aM/Pjjj5o5c6b27dunnj176oILLtDatWutD4tasGCBDAaDMjMz1dzcLJPJpOzsbGt9o9Go4uJi5eTkaPLkyQoJCdGECROUmZnZta0CnCSwm1FZpWWqqmm0q15sr1Atm5LipKgAoHOMhgC7j20c1wB4O85t4O86M/778TO0Aatt27bp5ptvtv68ePFiSdKECROUkZGh999/X5J0zTXX2NR79tlnNXz4cElSYWGh8vLydMstt8hgMOiKK67QwoULrWXDwsK0atUqPfTQQ5o4caLOOOMM3XXXXZo8ebKzm+dWnJ8AcAW7EiN/+tOf2n09ODhY2dnZNicMv9S7d2+tXLnSno8FPEpVTaO2Vze4OwwA6FIc2wD4G85tAMZ/oDOGDx+unTt3nvT19l5rc/rpp2vp0qXtlhk8eLBeeOEFu+PzdhyfADibXUtpAQAAAAAAAAAAeDMSIwAAAAAAAAAAwG+QGAEAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAIBdQkJC3B0CAACAw0iMAC4QHRosc6vFobqO1gMAAACArtR2XmM0GhUfHy+j0djhupzXAAAAT9LN3QEA/iA8pJuMhgBllZapqqaxw/Vie4Vq2ZQUJ0YGAAAAAB3DeQ0AAPAVJEYAF6qqadT26gZ3hwEAAAAADuO8BgAAeDuW0gIAAAAAAAAAAH6DxAgAAAAAAAAAAPAbJEYAAAAAAAAAAIDfIDECAAAAAAAAAAD8BokRAADgcoGBge4OAQAAAAAA+CkSI/BL5laL3XWMRqMTIgEA7xQdGuzQsVQ6ejwdEn9+F0cEAID/cXQsBgAA8Hfd3B0A4A5GQ4CySstUVdPY4Toj4qI1Z8xgJ0YFAN4jPKSbQ8dSSYrtFaplU1JkNpudFB0AAP7B0bGYcxsAAODvSIzAb1XVNGp7dUOHyw+I7uHEaAAc66efftIjjzyijz76SIcPH1bfvn2Vn5+vxMRESZLFYtHy5cv10ksvqaGhQcOGDVNOTo7OO+8863vs27dPeXl5+uCDD2QwGHTFFVfo/vvvV48e/C53JXuPpQAAoGs5MhZzbgMAAPwdS2kBADzK/v37df311yswMFArV67UG2+8oXnz5ikiIsJaZuXKlVq9erVycnK0du1ahYSEaNq0aWpqarKWmT17tqqqqlRSUqLi4mJ9/vnnevDBB93RJAAAAAAAAHgQZowAADzKypUrddZZZ2nx4sXWbeecc4713xaLRc8++6zuvPNOjR49WpL0hz/8QWlpaXrvvfc0btw4ffPNN/roo4+0bt066yyThQsXavr06Zo7d67OPPNM1zYKAAAAAAAAHoMZIwAAj/L+++8rISFBmZmZSk1N1bXXXqu1a9daX9+zZ49qa2uVlpZm3RYWFqakpCSVlZVJksrKyhQeHm5NikhSWlqaDAaDKioqXNcYAAAAAAAAeBxmjAAAPMoPP/ygNWvW6LbbbtMdd9yhyspKLVq0SIGBgZowYYJqa2slSZGRkTb1IiMjVVdXJ0mqq6tTz549bV7v1q2bIiIirPU7ypEHhLfV8ZaHixuNRrd8bmtrq1s+15N5277javRP+zrTP/QpAAAAAH9CYgQA4FEsFosSEhI0c+ZMSVJ8fLx27dql0tJSTZgwweXxVFZWuqWuq4SEhCg+Pt4tn71r1y4dPnzYLZ/t6bxh33En+qd99A8AAAAAtI/ECADAo0RHR2vAgAE22/r376+3337b+rok1dfXq1evXtYy9fX1Gjx4sCQpKipKe/futXmPI0eOaP/+/db6HZWYmGj3jAqz2azKykqH6vqTgQMHymBgVc9jse+0j/5pX2f6p60uAAAAAPgDEiMAAI8ybNgw/fOf/7TZ9u2336p3796SpD59+ig6Olpbt27VkCFDJEmNjY368ssvdf3110uSUlJS1NDQoG3btikhIUGS9PHHH6u1tVVDhw61Kx6j0ejwBdjO1PUHBoOB/jkJ9p320T/to38AAAAAoH3cpgkA8Ci33HKLvvzySxUXF+u7777Thg0btHbtWt1www2SpICAAN188816/PHH9be//U07d+7U3Llz1atXL40ePVqSNGDAAF166aV64IEHVFFRoS+++EJ5eXkaN26czjzzTHc2DwAAAAAAAG7GjBEAgEcZOnSoHn30Uf3xj3/UY489pj59+mjBggX6zW9+Yy1z++236/Dhw3rwwQfV0NCgCy64QE899ZSCg4OtZQoLC5WXl6dbbrlFBoNBV1xxhRYuXOiOJgEAAAAAAMCDkBgBAHickSNHauTIkSd9PSAgQFlZWcrKyjppmdNPP11Lly51RngAAAAAAADwYiylBQAAAAAAAAAA/AaJEQAAAAAAAMAOn332me644w6ZTCbFxcXpvffes3ndYrFo2bJlMplMGjp0qG699VZ9++23NmX27dunWbNmadiwYbrwwgu1YMECHTx40KbMP/7xD91www1KTExUenq6Vq5c6eymAYBfIDECAAAAAAAA2OHQoUOKi4tTdnb2CV9fuXKlVq9erZycHK1du1YhISGaNm2ampqarGVmz56tqqoqlZSUqLi4WJ9//rkefPBB6+uNjY2aNm2aYmJi9PLLL2vu3Ll69NFH9eKLLzq9fQDg63jGCAAAAAAAAGCH9PR0paenn/A1i8WiZ599VnfeeadGjx4tSfrDH/6gtLQ0vffeexo3bpy++eYbffTRR1q3bp0SExMlSQsXLtT06dM1d+5cnXnmmXrttdfU0tKi/Px8BQUFaeDAgdqxY4dKSko0efJkl7UVAHwRiREAAAAAAACgi+zZs0e1tbVKS0uzbgsLC1NSUpLKyso0btw4lZWVKTw83JoUkaS0tDQZDAZVVFTo8ssvV3l5uS688EIFBQVZy5hMJq1cuVL79+9XRESEXXGZzWaHyttbr7OMRqPDdbsyVne131PQftp/7P+9hT3xkhgBAAAAAAAAukhtba0kKTIy0mZ7ZGSk6urqJEl1dXXq2bOnzevdunVTRESEtX5dXZ369OljUyYqKsr6mr2JkcrKSrvKd7aeI0JCQhQfH+9w/Z07d+rw4cNdGJFr2++JaD/t91UkRgAAAAAAAAAfl5iYaNdsDLPZrMrKSrvruVNcXFyXvZc3tr8r0X7a743tb4u7I0iMAAAAAAAAAF0kOjpaklRfX69evXpZt9fX12vw4MGSjs782Lt3r029I0eOaP/+/db6UVFR1hkmbdp+bps5Yg+j0ejQBU5H67mDM+L0pvY7A+2n/b7afoO7AwAAAAAAAAB8RZ8+fRQdHa2tW7datzU2NurLL79USkqKJCklJUUNDQ3atm2btczHH3+s1tZWDR06VJKUnJyszz//XC0tLdYyW7ZsUb9+/exeRgsAYKtTiZEnn3xScXFxevjhh63bmpqalJubq+HDhyslJUX33HPPcdnt6upqTZ8+XUlJSUpNTdWSJUt05MiRzoQCAAAAAA7hvAYAYK+DBw9qx44d2rFjh6SjD1zfsWOHqqurFRAQoJtvvlmPP/64/va3v2nnzp2aO3euevXqpdGjR0uSBgwYoEsvvVQPPPCAKioq9MUXXygvL0/jxo3TmWeeKUkaP368AgMDdf/992vXrl3auHGjnn32Wd12221uazcA+AqHl9KqqKhQaWnpcWv35efna9OmTSoqKlJYWJjy8vKUkZGh0tJSSUfX+ZoxY4aioqJUWlqqmpoazZs3T4GBgZo5c2bnWgMAAAAAduC8BgDgiG3btunmm2+2/rx48WJJ0oQJE1RQUKDbb79dhw8f1oMPPqiGhgZdcMEFeuqppxQcHGytU1hYqLy8PN1yyy0yGAy64oortHDhQuvrYWFhWrVqlR566CFNnDhRZ5xxhu666y5NnjzZdQ0FAB/lUGLk4MGDmjNnjhYtWqTHH3/cuv3AgQNav369CgsLlZqaKunoCcXYsWNVXl6u5ORkbd68WVVVVSopKVFUVJSGDBmirKwsFRYWKiMjQ0FBQV3TMgAAAABoB+c1AABHDR8+XDt37jzp6wEBAcrKylJWVtZJy5x++ulaunRpu58zePBgvfDCCw7HCQA4MYcSIw899JDS09OVlpZmcwKxbds2tbS0KC0tzbptwIABiomJsZ5AlJeXa9CgQTYPiTKZTMrJyVFVVZXi4+M7HIfZbLYr7rby9tbzF/7UP9720CBv+E78af9xhKP9Q38CAOA8nnJeI3FuI9EmR3Be03XY/5zPU+IAAEByIDHyxhtv6KuvvtK6deuOe62urk6BgYEKDw+32R4ZGana2lprmWNPHiRZf24r01GVlZV2le9sPX/h6/0TEhJi94mqu+3cuVOHDx92dxgd4uv7T2fRPwAAeAZPOq+ROLc5Fm3qGM5rnIP9DwAA/2BXYuTf//63Hn74YT399NM2ayK6S2Jiol13yJjNZlVWVtpdz1/QP57rl2teeyL2n/Y52j9t9QAAQNfxtPMaiXMbiTb5A08+r/HF78rT2sS5DQDAk9iVGNm+fbvq6+s1ceJE6zaz2azPPvtMzz//vFatWqWWlhY1NDTY3F1VX1+v6OhoSUfvoqqoqLB537q6Okmylukoo9Ho0ODuaD1/Qf94Hm/6Pth/2kf/AADgfp52XiNxbnMs2uS7vKEPfPG78sU2AQDQWXYlRi6++GJt2LDBZtt9992n/v376/bbb9fZZ5+twMBAbd26VWPGjJEk7d69W9XV1UpOTpYkJScnq7i4WPX19YqMjJQkbdmyRaGhoYqNje2CJgEAAADAyXFeAwAAAPg3uxIjoaGhGjRokM227t276/TTT7dunzRpkgoKChQREaHQ0FAtWrRIKSkp1hMIk8mk2NhYzZ07V3PmzFFtba2Kioo0depUBQUFdU2rAAAAAOAkOK8BAAAA/JvdD18/lQULFshgMCgzM1PNzc0ymUzKzs62vm40GlVcXKycnBxNnjxZISEhmjBhgjIzM7s6FAAAAABwCOc1AAAAgO/qdGJk9erVNj8HBwcrOzvb5qThl3r37q2VK1d29qMBAAAAoEtwXgM4T3RosMytFhkNAQ7V70xdAACAE+nyGSMAAAAAAABtwkO6yWgIUFZpmapqGu2qG9srVMumpDgpMgAA4K9IjAAAAAAAAKerqmnU9uoGd4cBAAAgg7sDAAAAAAAAAAAAcBUSIwAAj7JixQrFxcXZ/HfllVdaX29qalJubq6GDx+ulJQU3XPPPaqrq7N5j+rqak2fPl1JSUlKTU3VkiVLdOTIEVc3BQAAAAAAAB6IpbQAAB5n4MCBKikpsf5sNBqt/87Pz9emTZtUVFSksLAw5eXlKSMjQ6WlpZIks9msGTNmKCoqSqWlpaqpqdG8efMUGBiomTNnurwtAAAAAAAA8CzMGAEAeByj0ajo6Gjrfz179pQkHThwQOvXr9f8+fOVmpqqhIQE5efnq6ysTOXl5ZKkzZs3q6qqSo888oiGDBmi9PR0ZWVl6fnnn1dzc7MbWwUAAAAAAABPwIwRAIDH+e6772QymRQcHKzk5GTNmjVLMTEx2rZtm1paWpSWlmYtO2DAAMXExKi8vFzJyckqLy/XoEGDFBUVZS1jMpmUk5OjqqoqxcfH2xWL2Wy2O/62Oo7UdYdjZ+S4Umtrq1s+15N5277javRP+zrTP/QpAAAAAH9CYgQA4FGGDh2qxYsXq1+/fqqtrdVjjz2mqVOnasOGDaqrq1NgYKDCw8Nt6kRGRqq2tlaSVFdXZ5MUkWT9ua2MPSorKx1sSefqukpISIjdyaKusmvXLh0+fNgtn+3pvGHfcSf6p330DwAAAAC0j8QIAMCjpKenW/89ePBgJSUlaeTIkXrzzTd12mmnuTyexMREu2dUmM1mVVZWOlTXnwwcOFAGA6t6Hot9p330T/s60z9tdQEAAADAH5AYAQB4tPDwcJ133nn6/vvvlZaWppaWFjU0NNjMGqmvr1d0dLSko7NDKioqbN6jrq5Okqxl7GE0Gh2+ANuZuv7AYDDQPyfBvtM++qd99A8AAAAAtI/bNOHVzK0Wd4cAwMkOHjyoH374QdHR0UpISFBgYKC2bt1qfX337t2qrq5WcnKyJCk5OVlff/216uvrrWW2bNmi0NBQxcbGujp8AACAU+K8BgAAwLWYMQKvZjQEKKu0TFU1jR2uMyIuWnPGDHZiVAA6Y8mSJRo5cqRiYmJUU1OjFStWyGAw6Oqrr1ZYWJgmTZqkgoICRUREKDQ0VIsWLVJKSoo1MWIymRQbG6u5c+dqzpw5qq2tVVFRkaZOnaqgoCD3Ns6JzK0WGQ0B7g4DAAA4gPMaAAAA1yIxAq9XVdOo7dUNHS4/ILqHE6MB0Fk//vijZs6cqX379qlnz5664IILtHbtWvXs2VOStGDBAhkMBmVmZqq5uVkmk0nZ2dnW+kajUcXFxcrJydHkyZMVEhKiCRMmKDMz011NcglHLqhIXFQBAMBTcF4DAADgOiRGAA8WHRrs8F3g3D0Ob/WnP/2p3deDg4OVnZ1tkwz5pd69e2vlypVdHZrHs/eCisRFFQAAAAAA4H9IjAAeLDykm0N3gcf2CtWyKSlOjAwAAAAAAAAAvBOJEcALOHIXOAAAAAAAAADgeAZ3BwAAAAAAAAAAAOAqJEYAAIBLWZ+fZDTaXdfcanFCRAAAAAAAwJ+wlBYAAHApnp8EAAAAAADcicQIAABwC56fBAAAAF9mNpu1YsUKvfbaa6qrq1OvXr00YcIE3XXXXQoICJAkWSwWLV++XC+99JIaGho0bNgw5eTk6LzzzrO+z759+5SXl6cPPvhABoNBV1xxhe6//3716NHDTS0DAO/HUloAAAAAAABAF1u5cqXWrFmjBx98UBs3btTs2bP11FNPafXq1TZlVq9erZycHK1du1YhISGaNm2ampqarGVmz56tqqoqlZSUqLi4WJ9//rkefPBBdzQJAHwGiREAAAAAAACgi5WVlenXv/61RowYoT59+ujKK6+UyWRSRUWFpKOzRZ599lndeeedGj16tAYPHqw//OEPqqmp0XvvvSdJ+uabb/TRRx9p0aJFSkpK0oUXXqiFCxfqjTfe0E8//eTO5gGAV2MpLQAAAAAAAKCLpaSkaO3atfrnP/+pfv366R//+Ie++OILzZ8/X5K0Z88e1dbWKi0tzVonLCxMSUlJKisr07hx41RWVqbw8HAlJiZay6SlpclgMKiiokKXX355h+Mxm812xd9W3t56nWU0Gh2u25Wxuqv9noL20/5j/+8t7ImXxAgAAAAAAADQxaZPn67GxkZdddVVMhqNMpvNuvfee/Wb3/xGklRbWytJioyMtKkXGRmpuro6SVJdXZ169uxp83q3bt0UERFhrd9RlZWVDrXD0XqOCAkJUXx8vMP1d+7cqcOHD3dhRK5tvyei/bTfV5EYAQAAAAAAALrYm2++qQ0bNmjp0qWKjY3Vjh07tHjxYutD2F0tMTHRrtkYZrNZlZWVdtdzp7i4uC57L29sf1ei/bTfG9vfFndHkBgBAAAAAAAAutgf/vAHTZ8+XePGjZN09KJ9dXW1nnjiCU2YMEHR0dGSpPr6evXq1ctar76+XoMHD5YkRUVFae/evTbve+TIEe3fv99av6OMRqNDFzgdrecOzojTm9rvDLSf9vtq+3n4OgAAAAAAANDFfv75ZwUEBNhsMxqNslgskqQ+ffooOjpaW7dutb7e2NioL7/8UikpKZKOPqekoaFB27Zts5b5+OOP1draqqFDh7qgFQDgm5gxAgAAAAAAAHSxkSNHqri4WDExMdaltEpKSjRp0iRJUkBAgG6++WY9/vjj6tu3r/r06aNly5apV69eGj16tCRpwIABuvTSS/XAAw8oNzdXLS0tysvL07hx43TmmWe6s3kA4NVIjAAAAAAAAABdbOHChVq2bJlyc3Oty2VNnjxZd999t7XM7bffrsOHD+vBBx9UQ0ODLrjgAj311FMKDg62liksLFReXp5uueUWGQwGXXHFFVq4cKE7mgQAPoPECAAAAAAAANDFQkNDdf/99+v+++8/aZmAgABlZWUpKyvrpGVOP/10LV261BkhAoDf4hkjAAAAAAAAAPALISEh7g4BgJOQGAEAAAAAAADgt8ytluO2GY1GxcfHy2g02lUPgHdgKS0AAAAAAAAAfstoCFBWaZmqaho7XCe2V6iWTUlxYlQAnInECAAAAAAAAAC/VlXTqO3VDe4OA4CL2LWU1gsvvKDx48dr2LBhGjZsmCZPnqxNmzZZX29qalJubq6GDx+ulJQU3XPPPaqrq7N5j+rqak2fPl1JSUlKTU3VkiVLdOTIka5pDQAAAAB0AOc2AAAAgP+yKzFy1llnafbs2Xr55Ze1fv16XXzxxbr77ru1a9cuSVJ+fr4++OADFRUVafXq1aqpqVFGRoa1vtls1owZM9TS0qLS0lIVFBTolVde0fLly7u2VQAAAADQDs5tAAAAAP9lV2Jk1KhRSk9P13nnnad+/frp3nvvVffu3VVeXq4DBw5o/fr1mj9/vlJTU5WQkKD8/HyVlZWpvLxc0v/f3v0HR1Xf+x9/ZZdNSMgPND/AABclMSExCUlsR4mrqb1UrlI7ArdFyhXrMKBeaTLKj1iKJAEMqYITbNHYmDIIaC6V1hmB1uqtOuUahdtJTEBvSqS2MultNms1CeSSsLvfP/yyuighu5vs2R/Px4wz7tnPJ5/353D2fPaz73M+Rzp8+LA6Ozv1+OOPKycnR6WlpSovL9fevXs1ODg4Fv0DAIS4n//858rOztajjz7q3sZVvAAAfzG3AQAAACKXV4mRL3I4HDp48KDOnDmjoqIiHTt2TENDQyopKXGXycjIUHp6unvy0NraqqysLKWkpLjLWK1W9ff3q7Oz0/deAADCUltbm5qampSdne2xnat4AQCjibkNAAAAEFm8fvh6R0eH7rzzTp09e1ZxcXHasWOHMjMz9f7778tisSgxMdGjfHJysmw2mySpp6fHY+Igyf36fBlvOBwOn8p7Wy9ShOL+MZvNRocQ1AL5bxmKx08g+bp/Inl/nj59WmvWrNHmzZv19NNPu7efv4p369atmj17tqTPEiW33XabWltbVVhY6L6Kd+fOnUpJSVFOTo7Ky8u1detWrVy5UtHR0UZ1CwAQRJjbBJdI7hPzmksb6+Miko+/QAmWOAAAkHxIjFx11VV66aWX1NfXp1deeUUVFRXas2fPWMR2Se3t7QGtFylCZf/ExsYqNzfX6DCCWkdHhwYGBgLaZqgcP0Zh/4zcxo0bVVpaqpKSEo/EyKWu4i0sLLzoVbxVVVXq7Ozk3AEAkMTcJlhFWp+Y14xMoOY2kXb8AQAQqbxOjERHR2v69OmSpLy8PLW3t+u5557TrbfeqqGhIfX29npcWWW325Wamirpsyuo2traPP7e+TXhz5fxRn5+vldX1jgcDrW3t3tdL1Kwf8LPhcsPjSWOn+H5un/O14s0Bw8e1HvvvacXX3zxS+/19PQE9CpeX65sM+LqvEj63IXz1YbBdmVnsGH/DM+f/ROp+5S5TXChTxjOWM9twvHfKtj6FKlzGwBAcPI6MXIhp9OpwcFB5eXlyWKxqLm5WXPnzpUknTx5Ul1dXSosLJQkFRYWqr6+Xna7XcnJyZKkt956S/Hx8crMzPS6bbPZ7NPg7mu9SMH+CR9G/Dty/AyP/XNpf/vb3/Too4/qF7/4hWJiYowOx6/JW6AmfpF2pakRd8MFGj8aDI/9Mzz2j++Y2wQH+oSvEqj9F47/VuHYJwAA/OVVYmTbtm266aabdMUVV+j06dM6cOCAjhw5osbGRiUkJGjhwoWqra1VUlKS4uPjtXnzZhUVFbknD1arVZmZmVq7dq3WrFkjm82muro6LVmyhPXeAQCSpOPHj8tut2vBggXubQ6HQ0ePHtXevXvV2NgY0Kt4fbnCLtiuzgs3gbwbLtA4dobH/hmeP/snEq/iZW4DAMClWSwWo0MAgDHhVWLEbreroqJC3d3dSkhIUHZ2thobG3XDDTdIktatWyeTyaSysjINDg7KarWqsrLSXd9sNqu+vl5VVVVatGiRYmNjNX/+fJWVlY1urwAAIev666/Xyy+/7LHtRz/6kWbMmKHly5friiuuCOhVvP5cYcfVeWMjEvYpx87w2D/DY/+MDHMbAAAuLSf3Gp+/VzicLplNUaMcEQCMDq8SIzU1NcO+HxMTo8rKSo8Jw4WmTJmihoYGb5oFAESQ+Ph4ZWVleWyLi4vTxIkT3du5ihcA4C/mNgAAXJplnFnlTS3q7O73ql5mWry231k0RlEBgP/8fsYIAACBxlW8AAAAABAYnd39Ot7Va3QYADCqSIwAAILe7t27PV5zFS8AAAAAAAB8ZTI6AAAAAAAAAAAAgEAhMQIAAAAAAAAAACIGiREAAAAAAAAAABAxSIwAAAAAAAAAAICIQWIEhnM4XUaHAAAAAAAAAACIEOOMDgAwm6JU3tSizu5+r+p9IztVa+bOHKOoAAAAAAAAAADhiMQIgkJnd7+Od/V6VScjdcIYRQMAAAAAAAAACFcspQUAAAAAAAAAACIGiREAAAAAAAAAABAxSIwAAAAAAAAAAICIQWIEAAAAAAAAGAN///vftXr1al133XUqKCjQ7bffrvb2dvf7LpdL27dvl9VqVUFBgX7wgx/oww8/9Pgbn3zyiVatWqXi4mJ97Wtf07p163T69OkA9wQAwguJEQAAAAAAxkhsbKzRIQAwyKeffqrFixfLYrGooaFBBw8eVEVFhZKSktxlGhoatHv3blVVVWnfvn2KjY3VsmXLdPbsWXeZ1atXq7OzUzt37lR9fb3++7//Wxs2bDCiSwAQNsYZHQAAAAAAAOHA4XTJbIpyvzabzcrNzTUwIgBGamho0OTJk7Vlyxb3tmnTprn/3+Vy6bnnntP999+vOXPmSJIee+wxlZSU6LXXXtO8efP0wQcf6A9/+INefPFF5efnS5LWr1+vFStWaO3atZo0aVJgOwUAYYLECAAAAAAAo8BsilJ5U4s6u/tHXOcb2alaM3fmGEYFwCi///3vZbVaVVZWpqNHj2rSpEn6/ve/r+9973uSpFOnTslms6mkpMRdJyEhQbNmzVJLS4vmzZunlpYWJSYmupMiklRSUiKTyaS2tjZ961vfGnE8DofDq/idTqfMZrNXdfxtU5JfbfrSnlFtBrvz/QrX/l0K/Q/N/nsTL4kRIAylxsd86Wo1b/hTFwAAAIhknd39Ot7VO+LyGakTxjAaAEb66KOP9MILL+iee+7Rfffdp/b2dm3evFkWi0Xz58+XzWaTJCUnJ3vUS05OVk9PjySpp6dHl19+ucf748aNU1JSkrv+SH3x2SYjERsb6/ddbx0dHRoYGAhYm962Z1SbocTb4ybc0P/w7T+JESAMJcaO8+lqNUnKTIvX9juLxigyAPCdP0lfEr4AAAAINJfLpby8PD300EOSpNzcXJ04cUJNTU2aP39+wOPJz8/36s4Ip9Ppd5vZ2dl+/41gbs+oNgPB4XCovb3d6+MmXND/0Oz/+bhHgsQIEMa8vVoNAIKZr0lfEr4AAAAwQmpqqjIyMjy2zZgxQ6+88or7fUmy2+1KS0tzl7Hb7Zo587Ml9lJSUvTxxx97/I1z587p008/ddcfKbPZHPAfOMO9PaPaDCQjjptgQv/Dt/8kRgAAQEgh6QsAAIBQUFxcrD//+c8e2z788ENNmTJFkjR16lSlpqaqublZOTk5kqT+/n69++67Wrx4sSSpqKhIvb29OnbsmPLy8iRJb7/9tpxOpwoKCgLYGwAILyajAwAAAAAAAADCzd133613331X9fX1+stf/qKXX35Z+/bt0/e//31JUlRUlJYuXaqnn35a//mf/6mOjg6tXbtWaWlpmjNnjiQpIyNDN954ox555BG1tbXpj3/8ozZt2qR58+Zp0qRJRnYPAEIad4wAAAAAAICgxDPGEMoKCgr0s5/9TE888YR27NihqVOnat26dfrOd77jLrN8+XINDAxow4YN6u3t1bXXXqtnn31WMTEx7jJbt27Vpk2bdPfdd8tkMumWW27R+vXrjegSAIQNEiMAAAAAACAo8YwxhLqbb75ZN99880Xfj4qKUnl5ucrLyy9aZuLEidq2bdtYhAcAEYvECAAAAAAACGo8YwwAAIwmnjECAAAAAAAAAAAiBokRAEBQef7553X77beruLhYxcXFWrRokd588033+2fPnlV1dbWuu+46FRUV6Yc//KF6eno8/kZXV5dWrFihWbNmafbs2frJT36ic+fOBborAAAAAAAACEIkRgAAQWXy5MlavXq1fvWrX2n//v26/vrr9cADD+jEiROSpJqaGr3++uuqq6vT7t271d3drZUrV7rrOxwO3XvvvRoaGlJTU5Nqa2v161//Wk8++aRRXQIAAAAAAEAQITECAAgq3/zmN1VaWqorr7xSV111lR588EHFxcWptbVVfX192r9/vx5++GHNnj1beXl5qqmpUUtLi1pbWyVJhw8fVmdnpx5//HHl5OSotLRU5eXl2rt3rwYHB43tHAAAAAAAAAzHw9cBAEHL4XDot7/9rc6cOaOioiIdO3ZMQ0NDKikpcZfJyMhQenq6WltbVVhYqNbWVmVlZSklJcVdxmq1qqqqSp2dncrNzfU6Bl/i9rWur8xmc8DaClWB/PfwlRHHTihh/wzPn/3DPgUAAAAQSUiMAACCTkdHh+68806dPXtWcXFx2rFjhzIzM/X+++/LYrEoMTHRo3xycrJsNpskqaenxyMpIsn9+nwZb7S3t/vYC//qeiM2NtbrhE8k6ujo0MDAgNFhjEigjp1Qxf4ZHvsHAAAAAIZHYgQAEHSuuuoqvfTSS+rr69Mrr7yiiooK7dmzx5BY8vPzvb4bw+FwqL293ae6GDvZ2dlGh3BJHDvDY/8Mz5/9c74uAAAAAEQCEiMAgKATHR2t6dOnS5Ly8vLU3t6u5557TrfeequGhobU29vrcdeI3W5XamqqpM/uDmlra/P4ez09PZLkLuMNs9ns8w+w/tTF6AulfwuOneGxf4bH/gEAAACA4fHwdQBA0HM6nRocHFReXp4sFouam5vd7508eVJdXV0qLCyUJBUWFupPf/qT7Ha7u8xbb72l+Ph4ZWZmBjp0AAAAAAAABBnuGAEABJVt27bppptu0hVXXKHTp0/rwIEDOnLkiBobG5WQkKCFCxeqtrZWSUlJio+P1+bNm1VUVOROjFitVmVmZmrt2rVas2aNbDab6urqtGTJEkVHRxvbOQAAAAAAABiOxAgAIKjY7XZVVFSou7tbCQkJys7OVmNjo2644QZJ0rp162QymVRWVqbBwUFZrVZVVla665vNZtXX16uqqkqLFi1SbGys5s+fr7KyMqO6BAAAAAAAgCDiVWLkmWee0e9+9zudPHlS48ePV1FRkVavXq0ZM2a4y5w9e1a1tbU6dOiQxw9WKSkp7jJdXV2qqqrSO++8o7i4ON1xxx1atWqVxo0jTwMAka6mpmbY92NiYlRZWemRDLnQlClT1NDQMNqhAQDCCHMbAAAAIHJ59YyRI0eOaMmSJdq3b5927typc+fOadmyZTpz5oy7TE1NjV5//XXV1dVp9+7d6u7u1sqVK93vOxwO3XvvvRoaGlJTU5Nqa2v161//Wk8++eTo9QoAAAAAhsHcBgAAAIhcXiVGGhsbtWDBAl199dWaOXOmamtr1dXVpePHj0uS+vr6tH//fj388MOaPXu28vLyVFNTo5aWFrW2tkqSDh8+rM7OTj3++OPKyclRaWmpysvLtXfvXg0ODo56BwEAAADgQsxtAAAAgMjl1/3dfX19kqSkpCRJ0rFjxzQ0NKSSkhJ3mYyMDKWnp6u1tVWFhYVqbW1VVlaWx+3nVqtVVVVV6uzsVG5u7ojbdzgcXsV7vry39SKFUfvHbDYHtD2MDJ+v0eXr/mF/AgAQGMxtjBcOfWJuE3xGejyFw/F3oWDrU7DEAQCA5EdixOl0qqamRsXFxcrKypIk9fT0yGKxKDEx0aNscnKybDabu8wXJw6S3K/Plxmp9vZ2n2L3tV6kCOT+iY2N9WrCiMDp6OjQwMCA1/X4fA2P/QMAQPBhbhNcQrVPzG2Ck7fzmlA9/oYTjn0CAMBfPidGqqurdeLECT3//POjGY9X8vPzvboix+FwqL293et6kYL9gy/Kzs72qjzHz/B83T/n6wEAgLHD3CY4hGOfYLyRzmvC8fgLtj4xtwEABBOfEiMbN27UG2+8oT179mjy5Mnu7SkpKRoaGlJvb6/HlVV2u12pqanuMm1tbR5/r6enR5LcZUbKbDb7NLj7Wi9SsH8g+b4MAMfP8Ng/AAAEF+Y2wScc+wTjeHsshePxF459AgDAX149fN3lcmnjxo169dVXtWvXLk2bNs3j/by8PFksFjU3N7u3nTx5Ul1dXSosLJQkFRYW6k9/+pPsdru7zFtvvaX4+HhlZmb60RUAAAAAGBnmNrgYh9NldAgAAAAYY17dMVJdXa0DBw7oqaee0oQJE9zr5iYkJGj8+PFKSEjQwoULVVtbq6SkJMXHx2vz5s0qKipyTx6sVqsyMzO1du1arVmzRjabTXV1dVqyZImio6NHvYMAAAAAcCHmNrgYsylK5U0t6uzu96reN7JTtWbuzDGKCgAAAKPJq8TICy+8IEm66667PLZv2bJFCxYskCStW7dOJpNJZWVlGhwclNVqVWVlpbus2WxWfX29qqqqtGjRIsXGxmr+/PkqKyvzty8AAAAAMCLMbTCczu5+He/q9apORuqEMYoGAAAAo82rxEhHR8cly8TExKiystJjwnChKVOmqKGhwZumAQAAAGDUMLcBAAAAIpdXzxgBAAAAAAAAAAAIZSRGAAAAAAAAAABAxCAxAgAAAAAAAAAAIgaJEQAAAAAAAAAIEIfTZUhdAJ/z6uHrwHAcTpfMpiijwwAAAAAAAAgqP//5z7Vt2zYtXbpUP/7xjyVJZ8+eVW1trQ4dOqTBwUFZrVZVVlYqJSXFXa+rq0tVVVV65513FBcXpzvuuEOrVq3SuHH8pBfKzKYolTe1qLO736t6mWnx2n5n0RhFBUQWzqIYNb6c1L+Rnao1c2eOYVQAAAAAAADGaWtrU1NTk7Kzsz2219TU6M0331RdXZ0SEhK0adMmrVy5Uk1NTZIkh8Ohe++9VykpKWpqalJ3d7cqKipksVj00EMPGdEVjKLO7n4d7+o1OgwgYpEYwajy9qSekTphDKMBAAAAAAAwzunTp7VmzRpt3rxZTz/9tHt7X1+f9u/fr61bt2r27NmSPkuU3HbbbWptbVVhYaEOHz6szs5O7dy5UykpKcrJyVF5ebm2bt2qlStXKjo62qhuAUDIIzECAAAAAAAAjIGNGzeqtLRUJSUlHomRY8eOaWhoSCUlJe5tGRkZSk9PdydGWltblZWV5bG0ltVqVVVVlTo7O5Wbm+tVLA6Hw6vyTqdTZrPZqzr+tinJrzZ9ac+INo3Yr762EYi2ghH9D83+exMviREAAAAAAABglB08eFDvvfeeXnzxxS+919PTI4vFosTERI/tycnJstls7jJfTIpIcr8+X8Yb7e3tXpWPjY31OvlyoY6ODg0MDASsTW/bM6JNI/arP7w9bsIN/Q/f/pMYAQAAAAAAAEbR3/72Nz366KP6xS9+oZiYGKPDkSTl5+d7daeC0+n0u80Ln6sy1gLdXji36XA41N7e7vVxEy7of2j2/3zcI0FiBAAAAAAAABhFx48fl91u14IFC9zbHA6Hjh49qr1796qxsVFDQ0Pq7e31uGvEbrcrNTVV0md3h7S1tXn83Z6eHklyl/GG2WwO+A+c4d5eJLRpxHETTOh/+PafxAgAAAhrqfExcjhdMpuifKrvT10AAABEpuuvv14vv/yyx7Yf/ehHmjFjhpYvX64rrrhCFotFzc3Nmjt3riTp5MmT6urqUmFhoSSpsLBQ9fX1stvtSk5OliS99dZbio+PV2ZmZkD7AwDhhsQIAAAIa4mx42Q2Ram8qUWd3f1e1c1Mi9f2O4vGKDIAAACEq/j4eGVlZXlsi4uL08SJE93bFy5cqNraWiUlJSk+Pl6bN29WUVGROzFitVqVmZmptWvXas2aNbLZbKqrq9OSJUsUHR0d6C4BQFghMQIACCrPPPOMfve73+nkyZMaP368ioqKtHr1as2YMcNd5uzZs6qtrdWhQ4c0ODgoq9WqyspKjwcTdnV1qaqqSu+8847i4uJ0xx13aNWqVRo3jqEvUnV29+t4V6/RYQAAAACSpHXr1slkMqmsrMxjXnOe2WxWfX29qqqqtGjRIsXGxmr+/PkqKyszMGoACA/8OgQACCpHjhzRkiVLlJ+fL4fDoSeeeELLli3TwYMHFRcXJ0mqqanRm2++qbq6OiUkJGjTpk1auXKlmpqaJH22du+9996rlJQUNTU1qbu7WxUVFbJYLHrooYeM7B4AAACACLV7926P1zExMaqsrPRIhlxoypQpamhoGOvQACDimIwOAACAL2psbNSCBQt09dVXa+bMmaqtrVVXV5eOHz8uSerr69P+/fv18MMPa/bs2crLy1NNTY1aWlrU2toqSTp8+LA6Ozv1+OOPKycnR6WlpSovL9fevXs1ODhoYO8AAAAAAABgNO4YATBqLBaL0SEgDPX19UmSkpKSJEnHjh3T0NCQSkpK3GUyMjKUnp6u1tZWFRYWqrW1VVlZWR5La1mtVlVVVamzs1O5ubkjbt/hcHgd8/k6vtT1ldlsDlhbkShQ/5ZGHDuhhP0zPH/2D/sUAAAAQCQhMQLAQ2p8jBxOl8ymKK/qmc1m5eReM0ZRIVI5nU7V1NSouLjY/YDCnp4eWSwWJSYmepRNTk6WzWZzl/liUkSS+/X5MiPV3t7ua/h+1fVGbGysV8keeK+jo0MDAwMBay9Qx06oYv8Mj/0DAAAAAMMjMQLAQ2LsOJlNUSpvalFnd/+I62WmxWv7nUVccYpRVV1drRMnTuj55583LIb8/Hyv78ZwOBxqb2/3qS6CU3Z2dkDa4dgZHvtneP7sn/N1AQAAACASkBgB8JU6u/t1vKvX6DAQwTZu3Kg33nhDe/bs0eTJk93bU1JSNDQ0pN7eXo+7Rux2u1JTU91l2traPP5eT0+PJLnLjJTZbPb5B1h/6iK4BPrfkWNneOyf4bF/AAAAAGB4PHwdABBUXC6XNm7cqFdffVW7du3StGnTPN7Py8uTxWJRc3Oze9vJkyfV1dWlwsJCSVJhYaH+9Kc/yW63u8u89dZbio+PV2ZmZkD6AQAAAAAAgODEHSMAgKBSXV2tAwcO6KmnntKECRPczwRJSEjQ+PHjlZCQoIULF6q2tlZJSUmKj4/X5s2bVVRU5E6MWK1WZWZmau3atVqzZo1sNpvq6uq0ZMkSRUdHG9g7AAAABKvY2FijQwAAAAFCYgQAEFReeOEFSdJdd93lsX3Lli1asGCBJGndunUymUwqKyvT4OCgrFarKisr3WXNZrPq6+tVVVWlRYsWKTY2VvPnz1dZWVngOgIAAADDpMbHyOF0yWyKGlF5s9ms3Nxc92tv6gIAgNBDYgQAEFQ6OjouWSYmJkaVlZUeyZALTZkyRQ0NDaMZGgAAAEJEYuw4mU1RKm9qUWd3v1d1M9Pitf3OojGKDAAABAMSIwAAAAAAICx1dvfreFev0WEAAIAgw8PXAQAAAAAAAABAxCAxAgAAAAAAAAAAIgaJEQAAAAAAAAAAEDFIjAAAAAAAAAAAgIhBYgQAAAAAAAAAAEQMEiMAAAAAAAAAACBikBgBACCIOJwuo0MAAAAAAAAIa+OMDgAAAHzObIpSeVOLOrv7R1znG9mpWjN35hhGBQAAAAAAED5IjMCDxWIxOgQAiHid3f063tU74vIZqRPGMBoAAAAAAIDw4vVSWkePHtV9990nq9Wq7Oxsvfbaax7vu1wubd++XVarVQUFBfrBD36gDz/80KPMJ598olWrVqm4uFhf+9rXtG7dOp0+fdqvjmB05OReI7PZbHQYAAAAwJhiXhP+WJ4SAAAAF+P1HSNnzpxRdna2Fi5cqJUrV37p/YaGBu3evVu1tbWaOnWqtm/frmXLlunQoUOKiYmRJK1evVo2m007d+7U0NCQ1q1bpw0bNmjbtm3+9wh+sYwze72Ei8QyLgAAAAgtzGvCH8tTAgAA4GK8ToyUlpaqtLT0K99zuVx67rnndP/992vOnDmSpMcee0wlJSV67bXXNG/ePH3wwQf6wx/+oBdffFH5+fmSpPXr12vFihVau3atJk2a5Ed3MBq8XcJFYhkXAAAAhBbmNZGB5SkBAADwVbxeSms4p06dks1mU0lJiXtbQkKCZs2apZaWFklSS0uLEhMT3ZMHSSopKZHJZFJbW9tohgMAAAAAXmNeAwAAAIS3UX34us1mkyQlJyd7bE9OTlZPT48kqaenR5dffrlnEOPGKSkpyV1/pBwOh0/lva0XKZxOJ88Xgd+cTqfRIQQlX88/nK8AAAi8QM9rJOY20uj3ibkN/BXqn69gO08ESxwAAEijnBgJtPb29oDWC3exsbHKzc01OgyEuBMnTmhgYMDoMIIW5x8AAPBVmNt8bjT6xNwGo6GjoyMs5jbheJ4AAMBfo5oYSU1NlSTZ7XalpaW5t9vtds2c+dkD7FJSUvTxxx971Dt37pw+/fRTd/2Rys/P9+oqIIfDofb2dq/rRQqu9MdouPrqq2UyjeoqfWHB1/PP+XoAACBwAj2vkZjbSOHZJ4S27Oxso0PwS7B9ppjbAACCyagmRqZOnarU1FQ1NzcrJydHktTf3693331XixcvliQVFRWpt7dXx44dU15eniTp7bffltPpVEFBgVftmc1mnwZ3X+sBuDSTycTnaxicfwAACH6BntdIzG2+KBz7hNAULschnykAAL7M68TI6dOn9de//tX9+tSpU3r//feVlJSk9PR0LV26VE8//bSmT5+uqVOnavv27UpLS9OcOXMkSRkZGbrxxhv1yCOPqLq6WkNDQ9q0aZPmzZunSZMmjV7PAAAAAOAimNcAAMbaM888o9/97nc6efKkxo8fr6KiIq1evVozZsxwlzl79qxqa2t16NAhDQ4Oymq1qrKyUikpKe4yXV1dqqqq0jvvvKO4uDjdcccdWrVqlcaNC+kV8gHAUF6fQY8dO6alS5e6X2/ZskWSNH/+fNXW1mr58uUaGBjQhg0b1Nvbq2uvvVbPPvusYmJi3HW2bt2qTZs26e6775bJZNItt9yi9evXj0J3AAAAAODSmNcAAMbakSNHtGTJEuXn58vhcOiJJ57QsmXLdPDgQcXFxUmSampq9Oabb6qurk4JCQnatGmTVq5cqaamJkmfLUF27733KiUlRU1NTeru7lZFRYUsFoseeughI7sHACHN68TIddddp46Ojou+HxUVpfLycpWXl1+0zMSJE7Vt2zZvmwYAAACAUcG8BgAw1hobGz1e19bWavbs2Tp+/Li+/vWvq6+vT/v379fWrVs1e/ZsSZ8lSm677Ta1traqsLBQhw8fVmdnp3bu3KmUlBTl5OSovLxcW7du1cqVKxUdHW1E1wAg5HHPHQAAwEWkxsfI4XTJbIryuq6v9QAAABCe+vr6JElJSUmSPrt7cWhoSCUlJe4yGRkZSk9PdydGWltblZWV5bG0ltVqVVVVlTo7O5Wbmzvi9h0Oh1fxOp1Ov59P422bkn/P9/GlPSPaNGK/+tpGINoKRvQ/NPvvTbwkRgAAQefo0aNqbGzUsWPHZLPZtGPHDvea7pLkcrn05JNP6pe//KV6e3tVXFysqqoqXXnlle4yn3zyiTZt2qTXX3/dvbzJj3/8Y02YMMGAHiFUJcaOk9kUpfKmFnV294+4XmZavLbfWTSGkQEAACCUOJ1O1dTUqLi4WFlZWZKknp4eWSwWJSYmepRNTk6WzWZzl/liUkSS+/X5MiPV3t7uVfnY2FivEi9fpaOjQwMDAwFr09v2jGjTiP3qD2+Pm3BD/8O3/yRGAABB58yZM8rOztbChQu1cuXKL73f0NCg3bt3q7a21v1A3GXLlunQoUPutd9Xr14tm82mnTt3amhoSOvWrdOGDRtY8gQ+6ezu1/Gu3oC0ZbFYAtIOAAAAAqe6ulonTpzQ888/b1gM+fn5Xt2p4HQ6/W4zOzvb778RzO2Fc5sOh0Pt7e1eHzfhgv6HZv/Pxz0SJEYAAEGntLRUpaWlX/mey+XSc889p/vvv999F8ljjz2mkpISvfbaa5o3b54++OAD/eEPf9CLL76o/Px8SdL69eu1YsUKrV27VpMmTQpYXxCZfF2Cy2w2Kyf3mjGKCgAAAEbYuHGj3njjDe3Zs0eTJ092b09JSdHQ0JB6e3s97hqx2+1KTU11l2lra/P4ez09PZLkLjNSZrM54D9whnt7kdCmEcdNMKH/4dt/EiMAgJBy6tQp2Ww2j3V4ExISNGvWLLW0tGjevHlqaWlRYmKiOykiSSUlJTKZTGpra9O3vvUtI0JHBPF3Ca5QW8cVAAAAX+ZyubRp0ya9+uqr2r17t6ZNm+bxfl5eniwWi5qbmzV37lxJ0smTJ9XV1aXCwkJJUmFhoerr62W325WcnCxJeuuttxQfH6/MzMyA9gcAwgmJEQBASDm/ju75ScF5ycnJ7iunenp6dPnll3u8P27cOCUlJXm9Dq8vP1D785CycL0SI1L5ugTXaCxbEI5C9QGAgeLP/mGfAgAw+qqrq3XgwAE99dRTmjBhgnsukpCQoPHjxyshIUELFy5UbW2tkpKSFB8fr82bN6uoqMidGLFarcrMzNTatWu1Zs0a2Ww21dXVacmSJYqOjjawdwAQ2kiMABgV7mVjfPxR15clZ4BA8OdBY0Y83BDh4cSJEwF7mGIoCucHAI4G9g8AAMHhhRdekCTdddddHtu3bNmiBQsWSJLWrVsnk8mksrIyDQ4Oymq1qrKy0l3WbDarvr5eVVVVWrRokWJjYzV//nyVlZUFriMAEIZIjAAYFb4uGyN9vnQMMBLn19G12+1KS0tzb7fb7Zo5c6akz9bh/fjjjz3qnTt3Tp9++qnX6/D68qCxUH1IGYLH1VdfLZPJZHQYQYfP1vD82T/ePKQQAACMTEdHxyXLxMTEqLKy0iMZcqEpU6aooaFhNEMDRiQ2NtboEIAxQ2IEwKjyddkYYKSmTp2q1NRUNTc3KycnR5LU39+vd999V4sXL5YkFRUVqbe3V8eOHVNeXp4k6e2335bT6VRBQYFX7fnzoLFwfkgZxpbJZOLYGQafreGxfwAAAHAhb1fqMJvN7hUNWOUD4YjECAAg6Jw+fVp//etf3a9PnTql999/X0lJSUpPT9fSpUv19NNPa/r06Zo6daq2b9+utLQ0zZkzR5KUkZGhG2+8UY888oiqq6s1NDSkTZs2ad68eZo0aZJR3QIAAAAAwBCs8gF4IjECAAg6x44d09KlS92vt2zZIkmaP3++amtrtXz5cg0MDGjDhg3q7e3Vtddeq2effVYxMTHuOlu3btWmTZt09913y2Qy6ZZbbtH69esD3hcAAAAAAIIBq3wAnyMxAgAIOtddd92w6/FGRUWpvLxc5eXlFy0zceJEbdu2bSzCAwAAQBhLjY/xedkYlpsBACA0kBgBAAAAAAD4/xJjx/m05AzLzQAAEDpIjAAAAAAAAFyAJWcAAAhfJqMDAAAAAAAAAAAACBQSIwAAAAAAAAAAIGKQGAEAAAAAAAAAABGDxEiYcjhdXtcxm81jEAkAAAAA+MaXeQ0AAABwKTx8PUyZTVEqb2pRZ3f/iOt8IztVa+bOHMOoAAAAAGDkfJnXSMxtAAAAMDwSI2Gss7tfx7t6R1w+I3XCGEYDAAAAAN7zdl4jMbcBAADA8FhKCwAAAAAAAAAARAwSIwAAAAAAAAAAIGKQGAEAAAgSqfExcjhdMpvNPtXnIcUAAAAAAFwazxgBYDj3D4GmKK/r+loPAIJRYuw4nx80nJkWr+13Fo1RZAAA4FKY1wAAEDpIjAAwnK8/BPIjIIBw5cuDhgEAgLGY1wAAEDpIjAAIGvwQCAAAACDUMa8BACD48YwRAAAAAAAAAAAQMUiMAAAAAAAAAACCgsPpMqQuIgtLaQEAAAAAAAAAgoIvz2uSeGYTvENiBAAAAAAQFGJjY40OAQAABAGe14SxFnFLaVksFqND8Aq3fwEAgJFIjY/x+XsD3zeA0BRKc5uRnGfMZrNyc3NlNpsDEBEAAAAiWcTdMZKTe43PX7QdTpfMpqhRjmh4vtw69o3sVK2ZO3MMowIAAMEmMXacT98buN0cCF2+zm2Y1wAAACDSRVxixDLOHHJr1Hl761hG6oQxjAYIHuevjvZlYm/EDwKILKF0FS/CC7ecA5HDl7kN8xog+Pgzr5GY2wAA4IuIS4xI/GAAhAuujkYw8+cORQAARoq5DRD6fJ3XSMxtAADwVUQmRgKNqzeAscUPAghGvlzFy5IhMAJXqQLwBp95YOwwrwGA4BIbG2t0CBhDhiZG9u7dq8bGRtlsNs2cOVOPPPKICgoKjAxpTPh65Qc/kAGA/4wca1gyBKHAn6tUv37lZXrk29f41C4/riKcRMq8RuJZIUCo4Ue98BFJYw1ghAvnJ2azWbm5uV7XQ+gwLDFy6NAhbdmyRdXV1Zo1a5Z27dqlZcuW6be//a2Sk5ONCmvM+HLlBz+QAWODq6MjR6SNNYA/fP2uEuglDePi4nyqB4yVSBxrSPwDwWO4uc2lftRjXhM6InGsAQKNpdojj2GJkZ07d+p73/ueFi5cKEmqrq7WG2+8of3792vFihVGhQUgArCGb+RgrAECw9sfSX1NUJvNZmVlzySxjaDCWAPASDx3MTIw1gCBwZKGkcWQxMjg4KCOHz+ue++9173NZDKppKRELS0tl6zvcrncf8ebB9s6nU5JUs7kCYrx8nm4xf80UYND53yeTPvS5pXJsXI4HF7XDXS9SGmTWMOnzfP1LCaX17FaTC45HA45HA6v6jmdTpnNZq/PW+fbOX/ew8gZNdZIvo83kfD5M6JNYg2+NgumJkgup3b85wfq+nTAi3pJ+tdrp3ldT5LSk2J13zcyNDjo3fnbb1Emn74/OpwuyeX0qo6vY43EeOMrf8caKfBzG3/nNb60GUrnp1Bqk1jDp83RiNXbuY2v8xp/MNb4JhTHGkmakTrB52PMbDZ73aY/7RnRpi/thWKbvgqV/eP3vgngXMFbTqdT48eP19DQUED/7f3lzVgT5TJgRPr73/+um266SU1NTSoq+vwKhccee0xHjx7VL3/5y2HrDw4Oqr29fazDBICgkZ+fr+joaKPDCCmMNQDgPcYb7/g71kiMNwAiD2ONdxhrAMB7IxlrDH34uq/GjRun/Px8mUwmRUWxHAKA8OVyueR0OjVuXEierkMaYw2ASMJ4YxzGGwCRgrHGOIw1ACKFN2ONIaPRZZddJrPZLLvd7rHdbrcrJSXlkvVNJhNXFwAAhsVYAwAYa/6ONRLjDQBgeIw1ADA2TEY0Gh0drWuuuUbNzc3ubU6nU83NzR63BQIA4CvGGgDAWGOsAQCMNcYaABgbht2/eM8996iiokJ5eXkqKCjQrl27NDAwoAULFhgVEgAgzDDWAADGGmMNAGCsMdYAwOgzLDFy22236eOPP9aTTz4pm82mnJwcPfvssyO+DRAAgEthrAEAjDXGGgDAWGOsAYDRF+VyuVxGBwEAAAAAAAAAABAIhjxjBAAAAAAAAAAAwAgkRgAAAAAAAAAAQMQgMQIAAAAAAAAAACIGiREAAAAAAAAAABAxIioxsnfvXn3zm99Ufn6+vvvd76qtrc3okILCT3/6U2VnZ3v89y//8i9Gh2WYo0eP6r777pPValV2drZee+01j/ddLpe2b98uq9WqgoIC/eAHP9CHH35oTLAGuNT+efjhh790PC1btsygaAPrmWee0cKFC1VUVKTZs2fr3//933Xy5EmPMmfPnlV1dbWuu+46FRUV6Yc//KF6enoMihhjgbHmqzHWeGKsGR5jzfAYbxBuY82lPvOhaCSf01Dz/PPP6/bbb1dxcbGKi4u1aNEivfnmm0aHNap+/vOfKzs7W48++qjRofiF710YLeE23oxUOJ7DfRUu50Vv/P3vf9fq1at13XXXqaCgQLfffrva29uNDisgHA6H6urq9M1vflMFBQWaM2eOduzYIZfLZXRoYyJiEiOHDh3Sli1b9MADD+jXv/61Zs6cqWXLlslutxsdWlC4+uqrdfjwYfd/zz//vNEhGebMmTPKzs5WZWXlV77f0NCg3bt3q6qqSvv27VNsbKyWLVums2fPBjhSY1xq/0jSjTfe6HE8PfHEEwGM0DhHjhzRkiVLtG/fPu3cuVPnzp3TsmXLdObMGXeZmpoavf7666qrq9Pu3bvV3d2tlStXGhg1RhNjzfAYaz7HWDM8xprhMd5EtnAca0bymQ81I/mchprJkydr9erV+tWvfqX9+/fr+uuv1wMPPKATJ04YHdqoaGtrU1NTk7Kzs40OZVTwvQv+CsfxZqTC8Rzui3A7L47Ep59+qsWLF8tisaihoUEHDx5URUWFkpKSjA4tIBoaGvTCCy9ow4YNOnTokFavXq1nn31Wu3fvNjq0seGKEP/6r//qqq6udr92OBwuq9XqeuaZZwyMKjg8+eSTru985ztGhxGUsrKyXK+++qr7tdPpdN1www2uZ5991r2tt7fXlZeX5zpw4IARIRrqwv3jcrlcFRUVrvvvv9+giIKL3W53ZWVluY4cOeJyuT47Vq655hrXb37zG3eZzs5OV1ZWlqulpcWgKDGaGGsujrHm4hhrhsdYc2mMN5El3Mear/rMh4MLP6fh4utf/7pr3759Rofht/7+ftctt9zi+q//+i/Xv/3bv7k2b95sdEh+4XsXRkO4jzfeCNdz+HDC7bw4Uo8//rhr8eLFRodhmBUrVrh+9KMfeWxbuXKla9WqVQZFNLYi4o6RwcFBHT9+XCUlJe5tJpNJJSUlamlpMTCy4PGXv/xFVqtV//zP/6xVq1apq6vL6JCC0qlTp2Sz2TyOpYSEBM2aNYtj6QuOHDmi2bNna+7cuaqsrNQ//vEPo0MyRF9fnyS5ryw4duyYhoaGPI6fjIwMpaenq7W11YgQMYoYay6NsWZkGGtGhrHmc4w3kYOxJnRd+DkNdQ6HQwcPHtSZM2dUVFRkdDh+27hxo0pLSz0+W6GO713wB+ONp3A7h49EOJ4XR+L3v/+98vLyVFZWptmzZ+uOO+7Qvn37jA4rYIqKivT222/rz3/+syTpf/7nf/THP/5RN910k8GRjY1xRgcQCP/4xz/kcDiUnJzssT05OTli1wj8ooKCAm3ZskVXXXWVbDabduzYoSVLlujll19WfHy80eEFFZvNJklfeSyxbvdnbrzxRn3rW9/S1KlT9dFHH+mJJ57Q8uXL9R//8R8ym81GhxcwTqdTNTU1Ki4uVlZWliSpp6dHFotFiYmJHmWTk5PdxxZCF2PN8BhrRo6x5tIYaz7HeBNZGGtC01d9TkNVR0eH7rzzTp09e1ZxcXHasWOHMjMzjQ7LLwcPHtR7772nF1980ehQRg3fu+AvxpvPhdM5fKTC8bw4Uh999JFeeOEF3XPPPbrvvvvU3t6uzZs3y2KxaP78+UaHN+ZWrFih/v5+3XrrrTKbzXI4HHrwwQf1ne98x+jQxkREJEYwvNLSUvf/z5w5U7NmzdLNN9+s3/zmN/rud79rYGQIRfPmzXP///kH/c2ZM8d9ZW+kqK6u1okTJ1jLF/j/GGswmhhrPsd4AwS/cPqcXnXVVXrppZfU19enV155RRUVFdqzZ0/IJkf+9re/6dFHH9UvfvELxcTEGB3OqOF7FzB6wukcPhLhel4cKZfLpby8PD300EOSpNzcXJ04cUJNTU0RkRj5zW9+o5dfflnbtm1TZmam3n//fW3ZskVpaWlh2f+IWErrsssuk9ls/tIDoux2u1JSUgyKKnglJibqyiuv1F//+lejQwk6qampksSx5IVp06bpsssu01/+8hejQwmYjRs36o033tCuXbs0efJk9/aUlBQNDQ2pt7fXo7zdbncfWwhdjDXeYay5OMYa70XiWCMx3kQixprQc7HPaaiKjo7W9OnTlZeXp1WrVmnmzJl67rnnjA7LZ8ePH5fdbteCBQuUm5ur3NxcHTlyRLt371Zubq4cDofRIY4KvnfBW4w3nwm3c/hIRMp58WJSU1OVkZHhsW3GjBkRsxzhY489phUrVmjevHnKzs7WHXfcobvvvlvPPPOM0aGNiYhIjERHR+uaa65Rc3Oze5vT6VRzc3NYrIc62k6fPq2PPvqIifNXmDp1qlJTUz2Opf7+fr377rscSxfxv//7v/rkk08i4nhyuVzauHGjXn31Ve3atUvTpk3zeD8vL08Wi8Xj+Dl58qS6urpUWFgY4Ggx2hhrvMNYc3GMNd6LpLFGYryJZIw1oeNSn9Nw4XQ6NTg4aHQYPrv++uv18ssv66WXXnL/l5eXp9tvv10vvfRS2CzPyPcueCvSx5tIOYd/lUg5L15McXGx+/ka53344YeaMmWKQREF1v/93/8pKirKY5vZbJbL5TIoorEVMUtp3XPPPaqoqFBeXp4KCgq0a9cuDQwMaMGCBUaHZrif/OQnuvnmm5Wenq7u7m799Kc/lclk0re//W2jQzPE6dOnPa6kOXXqlN5//30lJSUpPT1dS5cu1dNPP63p06dr6tSp2r59u9LS0jRnzhwDow6c4fZPUlKSfvazn2nu3LlKSUnRRx99pMcff1zTp0/XjTfeaGDUgVFdXa0DBw7oqaee0oQJE9zruCckJGj8+PFKSEjQwoULVVtbq6SkJMXHx2vz5s0qKirih6owwVhzcYw1nhhrhsdYMzzGm8gWjmPNpc6JoehSn9NQtG3bNt1000264oordPr0aR04cEBHjhxRY2Oj0aH5LD4+/kvPDIiLi9PEiRND+lkCfO/CaAjH8WakwvEcPlLhel4cqbvvvluLFy9WfX29br31VrW1tWnfvn3auHGj0aEFxM0336z6+nqlp6e7l9LauXOnFi5caHRoYyLKFa4pn6+wZ88eNTY2ymazKScnR+vXr9esWbOMDstwDz74oI4ePapPPvlEl19+ua699lo9+OCD+qd/+iejQzPEO++8o6VLl35p+/z581VbWyuXy6Unn3xS+/btU29vr6699lpVVlbqqquuMiDawBtu/1RVVemBBx7Qe++9p76+PqWlpemGG25QeXl5RNxum52d/ZXbt2zZ4v7yePbsWdXW1urgwYMaHByU1WpVZWUlV2+FEcaar8ZY44mxZniMNcNjvEG4jTWXOieGopF8TkPNunXr9Pbbb6u7u1sJCQnKzs7W8uXLdcMNNxgd2qi66667NHPmTP34xz82OhSf8b0LoyXcxpuRCsdzuD/C4bzojddff11PPPGEPvzwQ02dOlX33HOPvve97xkdVkD09/dr+/bteu2112S325WWlqZ58+bpgQceUHR0tNHhjbqISowAAAAAAAAAAIDIFhHPGAEAAAAAAAAAAJBIjAAAAAAAAAAAgAhCYgQAAAAAAAAAAEQMEiMAAAAAAAAAACBikBgBAAAAAAAAAAARg8QIAAAAAAAAAACIGCRGAAAAAAAAAABAxCAxAgAAAAAAAAAAIgaJEQAAAAAAAAAAEDFIjAAAAAAAAAAAgIhBYgQAAAAAAAAAAEQMEiMAAAAAAAAAACBi/D+33io3zslE8gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+oAAAMKCAYAAAAS2r5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdKklEQVR4nOzde1yUZf7/8fcwgIEiSiIe8ISuKOaxgFQoy1OZkqdyNbU2za11M8u2aCs33a2o1g5apuW3k5a1DaCbi2ZWlpaB59WtplayA6uupoIgKtxz//7w52wTagID9z3yej4ePpa57sP1nula8TPXdd+3wzRNUwAAAAAAwBaCrA4AAAAAAAD+h0IdAAAAAAAboVAHAAAAAMBGKNQBAAAAALARCnUAAAAAAGyEQh0AAAAAABuhUAcAAAAAwEYo1AEAAAAAsBEKdQAAAAAAbIRCHQAAAAAAGwm2OgAAAD+XlZWl++67z/s6NDRULVq0UN++ffW73/1OTZo0sTAd6jq3263nnntOO3bs0IEDB9SoUSN16NBBV155pSZMmODdb8GCBerQoYMGDBhQpX7+/e9/a+XKlRoxYoRiY2P9FR8AEAAo1AEAtjVt2jTFxsbqxIkT2rx5s5YuXaqPPvpIK1asUFhYmNXxUAdt2bJFEydOVIsWLXTdddcpOjpae/bs0fbt2/Xaa6/5FOoLFy7U4MGDq1WoP/vss0pKSqJQB4A6hkIdAGBbl112mbp27SpJuu6669SoUSO9/PLLev/99zV06FCL06EuWrBggSIiIuRyudSwYUOfbT/++KNFqQAA5xuuUQcABIxLL71UkvTDDz9Ikg4fPqzHHntMw4YNU8+ePdWrVy9NnjxZX375ZYVjjx8/rnnz5mnw4MHq2rWrUlJS9Pvf/17fffed95zx8fFn/PPTmdLc3FzFx8crJydHTz75pPr27asePXro1ltv1Z49eyr0vX37dk2aNEkXX3yxunfvrvHjx2vz5s2nfY8TJkw4bf/z5s2rsO/y5cs1cuRIdevWTUlJSbrzzjtP2//Z3ttPeTwevfLKK7rmmmvUtWtX9enTRzNnzlRhYaHPfldeeaV++9vfVuhn9uzZFc55uuyLFi2q8JlK0okTJzR37lwNHDhQF110kS6//HI9/vjjOnHixGk/q5860+d26s+pMXPK66+/rmuuuUYXXXSRUlJSNGvWLBUVFf1iP9999506dOhQoUiXpAsvvNDnfR89elTZ2dneDOnp6ZKkgoICPfTQQxo8eLC6deum5ORkTZs2zSdjVlaW7rjjDknSxIkTvefIzc317vPRRx9p3Lhx6tGjh3r27KkpU6bo66+//sX3AACwP2bUAQAB41RR3ahRI0nS999/rzVr1uiqq65SbGysDhw4oLfeekvjx4/XP/7xD8XExEiSDMPQb3/7W23YsEHXXHONJk6cqJKSEn3yySf66quv1Lp1a28fQ4cO1WWXXebT75NPPnnaPM8//7wcDoduueUW/fjjj3r11Vd10003afny5brgggskSRs2bNAtt9yiiy66SL///e/lcDiUlZWlG2+8UW+88Ya6detW4bzNmjXTXXfdJUk6evSoHnroodP2/cwzz+jqq6/W6NGjdfDgQS1ZskQ33HCDli1bdtpCcsyYMbr44oslSe+9957ee+89n+0zZ85Udna2Ro4cqQkTJuiHH37Q66+/rs8//1xLly5VSEjIaT+HyigqKtILL7xQod3j8ei2227T5s2bdf3116t9+/b66quv9Oqrr2r37t2aP3/+L577p5/bKR9//LFWrFjh0zZv3jw9++yz6tOnj8aOHatvvvlGS5cu1Y4dO37xfbZs2VJbt27VV199pY4dO55xv8cff1wPPPCAunXrpuuvv16SvONsx44d2rp1q6655ho1a9ZMBQUFWrp0qSZOnKh//OMfCgsLU2JioiZMmKDFixfr1ltvVVxcnCSpffv2kqRly5YpPT1dKSkpuvvuu1VaWqqlS5dq3Lhxys7OZqk8AAQ6EwAAm8nMzDQ7duxofvrpp+aPP/5o7tmzx/zHP/5hJiUlmd26dTP37t1rmqZpHj9+3DQMw+fY77//3rzooovMZ5991tvmcrnMjh07mi+//HKFvjwej/e4jh07mosWLaqwzzXXXGOOHz/e+/qzzz4zO3bsaKampppHjhzxtufk5JgdO3Y0X331Ve+5Bw0aZN58883efkzTNEtLS80rr7zS/M1vflOhrzFjxphDhw71vv7xxx/Njh07mnPnzvW2/fDDD2bnzp3N559/3udYt9ttJiQkVGjfvXu32bFjRzM7O9vbNnfuXLNjx47e1xs3bjQ7duxo/v3vf/c59uOPP67QfsUVV5hTpkypkH3WrFk+5zRNs0L2xx9/3Ozdu7c5YsQIn8902bJlZqdOncyNGzf6HL906VKzY8eO5ubNmyv091Pjx483r7nmmgrtixYtMjt27Gh+//33pmme/Dy7dOli3nzzzT5jZ8mSJWbHjh1Nl8t11n7Wr19vdu7c2ezcubM5ZswY8/HHHzfXrVtnnjhxosK+PXr0MO+9994K7aWlpRXatm7dWuG/0cqVK82OHTuan332mc++xcXF5iWXXGI+8MADPu379+83L7744grtAIDAw9J3AIBt3XTTTerdu7cuv/xy3Xnnnapfv76effZZ70x5aGiogoJO/iozDEOHDh1SeHi42rVrp88//9x7ntWrV6tx48YaP358hT4cDkeV8w0fPlwNGjTwvr7qqqsUHR2tjz76SJL0xRdfaPfu3Ro2bJgOHTqkgwcP6uDBgzp69Kh69+6tjRs3yuPx+JzzxIkTCg0NPWu/7733njwej66++mrvOQ8ePKgmTZqoTZs2PsujJamsrEySznreVatWKSIiQn379vU5Z5cuXRQeHl7hnOXl5T77HTx4UMePHz9r7n379mnJkiX63e9+p/r161fov3379oqLi/M556nLHX7ef1V9+umnKisr08SJE71jRzp5D4QGDRp4/9udSd++ffXmm2/qyiuv1JdffqlFixZp0qRJuuyyy/T++++fU4ZTqy2kk/9tDh06pNatW6thw4Y+4/Zs76GoqEjXXHONz2cVFBSk7t27++2zAgBYh6XvAADbmjlzptq1ayen06kmTZqoXbt2PsWVx+PRa6+9pjfeeEM//PCDDMPwbju1PF46uWS+Xbt2Cg7276+9Nm3a+Lx2OBxq06aNCgoKJEm7d++WJN17771nPMeRI0cUGRnpfX3o0KEK5/253bt3yzRNDRo06LTbf/4+T117HR4efsZzfvvttzpy5Ih69+592u0/v1Ha+vXrz7jvmcydO1dNmzbVmDFj9O6771bof9euXefcf1X95z//kSTvUvJTQkND1apVK+9/u7Pp1q2bnn32WZ04cUJffvml1qxZo1deeUV33HGHli1bpg4dOpz1+GPHjmnhwoXKysrSvn37ZJqmd9uRI0d+sf9T4+rGG2887faffnkEAAhMFOoAANvq1q2b967vp7NgwQI988wzGjVqlO644w5FRkYqKChIjzzyiE/xY5VTGe655x517tz5tPv8tHg+ceKE9u/frz59+pz1vB6PRw6HQy+++KKcTudZzylJBw4ckKSzPn/e4/Howgsv1F//+tfTbo+KivJ53b17d02fPt2nbcmSJWecVd61a5eys7P1xBNPnPYacI/Ho44dO+q+++477fHNmjU7Y3arhIaGqlu3burWrZvatm2r++67T6tWrdLvf//7sx735z//2Xufgh49eigiIkIOh0N33nnnOY3bU/s8/vjjio6OrrD9dGMCABBYKNQBAAHr3XffVXJysh555BGf9qKiIjVu3Nj7unXr1tq+fbvKysr8ckO0U7799luf16Zp6ttvv/Xe+bxVq1aSTs5w/lLxLUlffvmlysrKdNFFF511v9atW8s0TcXGxqpdu3a/eN5///vfcjgcZ923devW2rBhg3r16uWzNPtMGjduXOE9rVmz5oz7z5kzR506ddKQIUPO2P+XX36p3r17V+tyhF/SokULSVJ+fr73v4908kuSH3744Zz+O53Oqf9m//3vf39x33fffVfDhw/33gVeOvlUgp/Ppp/pcziV+8ILL6xyXgCAvXGNOgAgYDmdzgozkCtXrtS+fft82gYNGqRDhw7p9ddfr3CO6sy8L1u2TMXFxd7Xq1at0v79+713jb/ooovUunVrvfTSSyopKalw/MGDB31er1q1Sk6nU1dcccVZ+x00aJCcTqeeffbZCvlN09ShQ4e8r8vLy7V69Wp169atwnXhP3X11VfLMIzT3l29vLz8nB5ddibbtm3T+++/r7vvvvuMxefVV1+tffv26W9/+1uFbceOHdPRo0er3P9P9enTRyEhIVq8eLHPZ+dyuXTkyBFdfvnlZz3+s88+O+2YOXVt+0+X1IeHh5/2czvdjPfixYt9Lt2QpLCwMEkVl8OnpqaqQYMGWrhwoff+Az/183EFAAg8zKgDAAJWv3799Nxzz+m+++5Tz5499dVXX+mdd97xmSmVTt70bdmyZXr00Uf1z3/+UxdffLFKS0u1YcMGjR07VgMGDKhS/5GRkRo3bpxGjhzpfTxbmzZtvI/jCgoK0l/+8hfdcsstGjp0qEaOHKmYmBjt27dPubm5atCggRYsWKCjR4/q9ddf1+LFi9W2bVufm4GdKlDdbre2bt2qnj17qnXr1po+fbrmzJmjgoICDRgwQPXr19cPP/ygNWvW6Prrr9ekSZP06aef6plnnpHb7daCBQvO+l6SkpI0ZswYLVy4UF988YX69u2rkJAQ7d69W6tWrdL999+vq666qkqf0/r169W3b9+zzv5ee+21Wrlypf70pz8pNzdXvXr1kmEYys/P16pVq7Ro0aKzXgZxrqKiovTb3/5Wzz77rCZPnqwrr7xS33zzjd544w117dpVaWlpZz3+L3/5i0pLSzVw4EDFxcWprKxMW7Zs0cqVK9WyZUuNHDnSu2+XLl20YcMGvfzyy2ratKliY2PVvXt39evXT8uXL1eDBg3UoUMHbdu2TZ9++qnPfRUkqXPnznI6nXrxxRd15MgRhYaG6tJLL9WFF16ohx56SPfcc49GjhypIUOGKCoqSv/5z3/00UcfqVevXpo5c2a1PysAgHUo1AEAAevWW29VaWmp3nnnHeXk5CghIUELFy7UnDlzfPY7Vew8//zzWrFihVavXq1GjRqpV69e3mXqVe3f7XbrhRdeUElJiXr37q0//elP3plQSUpOTtZbb72l+fPna8mSJTp69Kiio6PVrVs3jRkzRtLJGdBT14bv2rVL99xzT4W+3nvvPTVo0EA9e/aUJE2ZMkVt27bVK6+8oueee07Syeu4+/btqyuvvFKS9MEHHygkJEQvvPCCUlNTf/H9zJ49WxdddJHefPNNPfXUU3I6nWrZsqXS0tLUq1evKn9ODodDM2bMOOs+QUFBeu655/TKK69o+fLleu+99xQWFqbY2FhNmDDhnJb4n6vbb79dUVFRWrJkiR599FFFRkbq+uuv11133fWLl0bcc889WrVqlT766CO99dZbKisrU4sWLTRu3DjddtttPs+vT09P18yZM/X000/r2LFjGjFihLp37677779fQUFBeuedd3T8+HH16tVLL7/8siZPnuzTV3R0tGbNmqWFCxfq/vvvl2EYeu2113ThhRdq2LBhatq0qV544QX93//9n06cOKGYmBhdcsklPl8WAAACk8O0w912AAAIILm5uZo4caKeeeaZKs8y/9QPP/yg/v376/3331dsbOxp95k3b54KCgqUkZFR7f4AAIC9cY06AAAAAAA2wtJ3AAAsFh4ermHDhp31Oefx8fFq2rRpLaYCAABWoVAHAMBiUVFRZ3x++SmDBg2qpTQAAMBqXKMOAAAAAICNcI06AAAAAAA2QqEOAAAAAICN1Nlr1D0ej8rLyxUUFCSHw2F1HAAAAADAec40TXk8HgUHByso6Mzz5nW2UC8vL9eOHTusjgEAAAAAqGO6du2q0NDQM26vs4X6qW8vunbtKqfTaXEaAAAAe/CYHgU5uDrSHwzD0I4dO/j3JmyHsWmdU5/92WbTpTpcqJ9a7p75ea72lBRanAYAAMB6MQ0idUP3VKtjnHecTifFEGyJsWmdX7r82naFenp6uoqKijR//nxv26pVq/SHP/xBd955p4YPH65nnnlGH330kQ4cOKDIyEh16tRJv/vd73TxxRdXur//lhSpoOigP98CAAAAAABVZrtC/efefvttzZo1S7NmzdKoUaN0ww03qKysTBkZGWrVqpV+/PFHbdiwQYcPH7Y6KgAAAAAA1WbrQv3FF1/UvHnz9NRTT2ngwIEqKirSpk2btHjxYiUlJUmSWrZsqW7dulmcFAAAAAAA/7DtnUKeeOIJzZ8/XwsXLtTAgQMlSeHh4QoPD9eaNWt04sQJixMCAAAAAOB/tizUP/74Yy1atEjz589X7969ve3BwcHKyMjQsmXLdMkll+jXv/61nnzySX355ZcWpgUAAAAAwH9sWajHx8erZcuWmjdvnkpKSny2DR48WOvWrdPzzz+v1NRU5eXlaeTIkcrKyrIoLQAAAAAA/mPLQj0mJkaLFy/Wvn37NHnyZBUXF/tsr1evnvr27aupU6fqzTff1IgRIzRv3jyL0gIAAAAA4D+2LNSlkzeJW7JkiQ4cOHDaYv2nOnTooKNHj9ZiOgAAAAAAaoat7/revHlzLV68WBMnTtTkyZM1Z84c3XfffRo1apTi4+NVv3597dy5U4sWLVL//v2r1EfT+g1lyPRzcgAAgMAT0yDS6ggAANm8UJekZs2aeYv1u+66S927d9err76q7777TuXl5WrWrJmuu+463XrrrVU6//Vd+8jpdPo5NQAAQGDymB4FOWy76BIA6gTbFeoZGRkV2mJiYvTuu+/WSH+GYVCow1YMw5Db7VZ8fDxjE7bC2IRdMTb9iyIdAKzH38QAAAAAANiI7WbUaxvfvMNunE6nEhISrI4BVMDYhF0xNlFTTI9HjiDmtQDUPtsU6nv27NHcuXO1bt06HT58WNHR0erfv7+mTp2qxo0bS5ImTJigTp066f777/c5NisrS4888og2bdpU6X6LPnTJPLTXL+8BAAAA5wdn46aKHDDW6hgA6ihbFOrff/+9xowZo7Zt2+rJJ59UbGysvv76az3xxBNat26d3nrrLTVq1KhG+jYO75fnQEGNnBsAAAAAgMqyxVqeWbNmKSQkRC+99JKSkpLUokULXX755Xr55Ze1b98+PfXUU1ZHBAAAAACgVlheqB8+fFjr16/XuHHjdMEFF/hsi46O1rBhw7Ry5UqZJs86BwAAAACc/yxf+v7tt9/KNE21b9/+tNvbt2+vwsJCHTx4UJK0dOlSuVwun33Ky8tVr169Gs8KAAAAAEBNs7xQP+VcZ8yHDRumW2+91adt9erVWrhwYU3EAgAAAACgVlleqLdu3VoOh0O7du3SwIEDK2zftWuXIiMjFRUVJUlq0KCB2rRp47PPhRdeWCtZAQAAAACoaZZfo964cWP17dtXb7zxho4dO+azbf/+/XrnnXd09dVXy+FwWJQQAAAAAIDaY3mhLkkPPvigTpw4oUmTJmnjxo3as2ePPv74Y918882KiYnRnXfeaXVEAAAAAABqheVL3yWpbdu2yszM1Lx58zR9+nQVFhaqSZMmGjBggKZOnVpjz1CXJGejaAWZRo2dHwAAAIHH2bip1REA1GEOs44+98wwDG3btk09evSQ0+m0Og4AAABsxvR45Aiq+gJU/r0Ju2JsWudcP3tbLH23kmEwmw57MQxD+fn5jE3YDmMTdsXYRE2pTpEOANVhi6XvVuIbJNiN0+lUXFyc1TGAChibsCvGpi+Px1RQEDfhBYBAVucL9Q82fK1DRaVWxwAAAKi2xg3DNTAl3uoYAIBqsn2hnp6eruzsbM2YMUNTpkzxtq9Zs0ZTp06V2+1Wbm6uJk6cqI0bN6phw4aVOv/hI0d14OBRf8cGAAAAAKBKAuLCm3r16unFF19UYWGh1VEAAAAAAKhRAVGo9+nTR02aNNHChQutjgIAAAAAQI0KiEI9KChId911l5YsWaK9e/daHQcAAAAAgBoTEIW6JA0cOFCdO3fW3LlzrY4CAAAAAECNCZhCXZLuvvtuLVu2TLt27bI6CgAAAAAANSKgCvXExESlpKRozpw5VkcBAAAAAKBG2P7xbD83Y8YMDR8+XO3atbM6CgAAAAAAfhdwhXp8fLyGDRumxYsX++V8jSLCZZoOv5wLAADASo0bhlsdAQDgBwFXqEvStGnTlJOT433t8XgkSU6ns9LnurL3r6p0HAAAgB15PKaCgpiEAIBAZvtCPSMjo0JbbGysdu7c6X198OBBhYeHq379+pU+v2EYFOqwFcMw5Ha7FR8fz9iErTA2YVeMTV8U6QAQ+GxfqJ/NiRMn9N1332nJkiXq3bu31XEAAAAAAKi2gLrr+899/PHHuu666xQeHq4HHnigSufgm3fYjdPpVEJCAmMTtsPYhF2dy9g0PWYtJgIAoHpsN6O+Z88ezZ07V+vWrdPhw4cVHR2t/v37a+rUqWrcuLEkacKECerUqZPuv/9+bd26VZL06quv6oknntBjjz2ma6655pz72/ehW8ah0hp5LwAAwHohjcPVbEBnq2MAAHDObFWof//99xozZozatm2rJ598UrGxsfr666/1xBNPaN26dXrrrbfUqFGjCsfNnTtXL730kubPn6/LLrusUn2WHS5V2YFiP70DAAAAAACqx1aF+qxZsxQSEqKXXnpJF1xwgSSpRYsWSkhI0MCBA/XUU09p1qxZ3v1N09Rf/vIX/f3vf9dLL72kXr16WRUdAAAAAAC/sM016ocPH9b69es1btw4b5F+SnR0tIYNG6aVK1fKNE9eY2YYhu6++269++67Wrx4MUU6AAAAAOC8YJsZ9W+//Vamaap9+/an3d6+fXsVFhbq4MGDkqS//e1vkqTly5ef8RgAAAAAAAKNbWbUTzk1Y/5LLr74YtWvX1/PPPOMysvLazgVAAAAAAC1wzaFeuvWreVwOLRr167Tbt+1a5ciIyMVFRUlSerYsaNeeeUV5ebm6s4776RYBwAAAACcF2xTqDdu3Fh9+/bVG2+8oWPHjvls279/v9555x1dffXVcjgc3vbOnTvr1Vdf1caNGzV9+nSVlZXVdmwAAAAAAPzKNoW6JD344IM6ceKEJk2apI0bN2rPnj36+OOPdfPNNysmJkZ33nlnhWM6deqkV199VZs3b6ZYBwAAAAAEPNvcTE6S2rZtq8zMTM2bN0/Tp09XYWGhmjRpogEDBmjq1KmnfYa6JMXHx+vVV1/VTTfdpDvuuENPP/20QkNDz6nPkEZhCjq3y+IBAEAACmkcbnUEAAAqxVaFuiS1bNlSGRkZZ91n8eLFFdo6duyoTz/9tNL9xVwRL6fTWenjAABA4DA9phxBjl/eEQAAG7DV0ncrGIZhdQTAh2EYys/PZ2zCdhibsKtzGZsU6bBKSEiI1REABCDbzajXNmbTYTdOp1NxcXFWxwAqYGzCrhibsCun06kuXRKsjgEgANX5Qn1D/qsqPPYfq2MAAADgPBMZ1kwpHSazEglApdm6UN+6davGjRun1NRUvfDCC972H374Qf3799eyZcvUuXPnavVRVPpfHSz9rrpRAQAAAADwC1tfo+5yuTR+/Hht3LhR+/btszoOAAAAAAA1zraFeklJiXJycjR27Fj169dP2dnZVkcCAAAAAKDG2bZQX7lypeLi4hQXF6e0tDRlZmbKNHngOQAAAADg/GbbQt3lciktLU2SlJqaqiNHjigvL8/iVAAAAAAA1CxbFur5+fnasWOHhg4dKkkKDg7WkCFD5HK5LE4GAAAAAEDNsuVd310ul8rLy5WamuptM01ToaGhmjlzpoXJAAAAAACoWbYr1MvLy7V8+XKlp6erb9++PtumTp2qFStW+BTwAAAAAACcT2xXqK9du1aFhYUaPXq0IiIifLYNGjRILpfLW6h/8803FY7v0KGDQkJCzrm/hmFNZTrKqxcaAAAA+JnIsGZWRwAQoGxXqLtcLvXp06dCkS5JgwcP1qJFi1RcXCxJuvPOOyvs89FHH6lZs3P/S7F33I1yOp1VDwwAAACcgWGUS3JYHQNAgLFdob5gwYIzbuvWrZvcbrckef+3ugzDoFCHrRiGIbfbrfj4eMYmbIWxCbtibMKuDMPQv/71ubp06WJ1FAABxpZ3fQcAAADOB2VlZVZHABCAbDejXtv45h1243Q6lZCQYHUMoALGJuwqkMamaXrkcDBPAgA4uzpfqB/+5ml5ju22OgYAADjPBYe1UuP291gdAwAQAGxRqKenpys7O1tjxozR7NmzfbbNmjVLb7zxhkaMGKGMjAxv+9atWzVu3DilpqbqhRdeqHLf5aUFMkp3Vfl4AAAAAAD8yTZrr5o3b66cnBwdO3bM23b8+HGtWLFCLVq0qLC/y+XS+PHjtXHjRu3bt682owIAAAAAUGNsU6gnJCSoefPmWr16tbdt9erVat68uTp37uyzb0lJiXJycjR27Fj169dP2dnZtR0XAAAAAIAaYZtCXZJGjRqlrKws7+vMzEyNHDmywn4rV65UXFyc4uLilJaWpszMTJmmWZtRAQAAAACoEbYq1NPS0rR582YVFBSooKBAW7ZsUVpaWoX9XC6Xtz01NVVHjhxRXl5ebccFAAAAAMDvbFWoR0VFeZeyZ2VlqV+/foqKivLZJz8/Xzt27NDQoUMlScHBwRoyZIhcLpcVkQEAAAAA8Ctb3PX9p0aNGuW98/uf/vSnCttdLpfKy8uVmprqbTNNU6GhoZo5c6YiIiJqLSsAAAAAAP5mu0I9NTVVZWVlcjgcSklJ8dlWXl6u5cuXKz09XX379vXZNnXqVK1YsUJjx46tzbgAAAAAAPiV7Qp1p9OplStXen/+qbVr16qwsFCjR4+uMHM+aNAguVyuShfqwWEtFeQoq15oAACAXxAc1srqCACAAGG7Ql2SGjRocNp2l8ulPn36nHZ5++DBg7Vo0SJ9+eWX6tSp0zn31ajd9ApfCAAAANQE0/TI4bDVLYIAADZki0I9IyPjrNvnz5//i+fo1q2b3G53pfs2DINCHbZiGIbcbrfi4+MZm7AVxibsKpDGJkU6AOBc8NsCAAAAAAAbscWMupXs/s076h6n06mEhASrYwAVMDZhV7U1Nlm2DgCoLZYW6unp6crOztaYMWO8j2Q7ZdasWXrjjTc0YsQI79L4PXv2aO7cuVq3bp0OHz6s6Oho9e/fX1OnTlXjxo2rlGHfV+tllBZW+70AAIDzV0h4pJp1utzqGACAOsLyGfXmzZsrJydHf/zjH3XBBRdIko4fP64VK1aoRYsW3v2+//57jRkzRm3bttWTTz6p2NhYff3113riiSe0bt06vfXWW2rUqFGl+y87WqSyoz/66+0AAAAAAFAtlq/fSkhIUPPmzbV69Wpv2+rVq9W8eXN17tzZ2zZr1iyFhITopZdeUlJSklq0aKHLL79cL7/8svbt26ennnrKivgAAAAAAPiV5YW6JI0aNUpZWVne15mZmRo5cqT39eHDh7V+/XqNGzfOO+t+SnR0tIYNG6aVK1fKNM1aywwAAAAAQE2wRaGelpamzZs3q6CgQAUFBdqyZYvS0tK827/99luZpqn27duf9vj27dursLBQBw8erK3IAAAAAADUCMuvUZekqKgo9evXT9nZ2TJNU/369VNUVFSF/ZgxBwAAAACc72wxoy79b/l7dna2Ro0a5bOtdevWcjgc2rVr12mP3bVrlyIjI09b3AMAAAAAEEhsU6inpqaqrKxM5eXlSklJ8dnWuHFj9e3bV2+88YaOHTvms23//v165513dPXVV8vhcNRmZAAAAAAA/M4WS98lyel0auXKld6ff+7BBx/Ur3/9a02aNEnTp0/3eTxbTEyM7rzzzir1GxLeUEEOltQDAIAzCwmPtDoCAKAOsU2hLkkNGjQ447a2bdsqMzNT8+bN0/Tp01VYWKgmTZpowIABmjp1apWeoS5JMR1TTvvFAAAAwE+ZpkcOh20WIwIAzmOWFuoZGRln3T5//nyf1y1btvzFYyrLMAwKddiKYRhyu92Kj49nbMJWGJuwq9oamxTpAIDawm8cAAAQ8EpLS62OAACA39hq6bsVmBWC3TidTiUkJFgdA6iAsVn7TNPkRqkAANRBdb5Q3759u4qLi62OAQCAj4iICPXs2dPqGAAAwAK2LNTT09NVVFRU4Rr1n9q7d68GDBigtm3basWKFVXuq7i4WEVFRVU+HgAAAAAAfwrYa9SzsrJ01VVXqbi4WNu3b7c6DgAAAAAAfhGQhbppmsrKytK1116roUOHyuVyWR0JAAAAAAC/CMhC/bPPPtOxY8fUp08fpaWl6R//+IeOHj1qdSwAAAAAAKotIAt1l8ulIUOGyOl0qmPHjmrVqpVWrVpldSwAAAAAAKot4Ar1oqIivffee0pLS/O2paWlsfwdAAAAAHBesOVd38/mnXfe0fHjx3X99dd720zTlMfj0TfffKN27dpZmA4AAAAAgOoJuEI9MzNTN998s0aMGOHTPmvWLGVmZuruu++2KBkAAAAAANVn20L9yJEj+uKLL3zaSkpK9K9//UtPPPGE2rdv77Ptmmuu0fz58zV9+nQFB5/722rQoIFf8gIA4E8RERFWRwAAABaxbaGel5en4cOH+7SNHDlSHTp0qFCkS9LAgQP15z//WR999JH69+9/zv10795dTqezunEBAPA70zTlcDisjgEAAGqZLQv1jIwMZWRkVOqY6OjoCjPw58IwDAp12IphGHK73YqPj2dswlYYm7WPIh0AgLop4O76DgAA8HNhYWFWRwBOi7EJu2Js2pvDNE3T6hBWMAxD27ZtU48ePZgZAgAAAIAA5DE9CnIEzvzzudahli19X7p0qR5//HFt3LjRe/O3kpISJSUlqVevXlq8eLF339zcXE2cOFENGzbULbfcoilTplQ433PPPafXX39dH330kUJCQs45x992fKo9JYXVf0MAAAAAgFoT0yBSN3RPtTpGjbCsUE9OTtbRo0e1c+dO9ejRQ5K0adMmNWnSRNu3b9fx48dVr149SScL9RYtWmjAgAHKzMysUKibpqns7Gxde+21lSrSJem/JUUqKDrol/cEAAAAAEB1WbZGIC4uTtHR0crLy/O25eXlqX///oqNjdW2bdt82pOTkzV69Gjt3r1bmzZt8jlXXl6evv/+e40ePbq24gMAAAAAUCMsXcyfnJys3Nxc7+vc3FwlJSUpMTHR237s2DFt375dycnJio+PV9euXZWZmelznqysLPXs2fO0j20DAAAAACCQWFqoX3rppdqyZYvKy8tVXFysL774wluon5pp37p1q06cOKHk5GRJ0ujRo7Vq1SqVlJRIkoqLi/Xuu+9q1KhRlr0PAAAAAAD8xdJCPSkpSUePHtWOHTu0efNmtW3bVlFRUUpMTPRep56Xl6dWrVqpRYsWkqShQ4fK4/Fo5cqVkqSVK1fK4XBoyJAhVr4VAAAAAAD8wtJCvU2bNmrWrJlyc3P12WefKTExUZIUExOj5s2ba8uWLcrNzdWll17qPaZBgwYaPHiwsrKyJEmZmZm6+uqrVb9+fUveAwAAAAAA/mT5A+eSk5OVl5envLw8JSUledsvueQSffzxx/rnP//pXfZ+yujRo7V582Z9+OGH2rp1KzeRAwAAAACcN2xRqG/evFlffvmlT6GelJSkt956S2VlZRUK9cTERLVp00b33nuv4uLi1KtXr9qODQAAAABAjbDsOeqnJCcn69ixY4qLi1OTJk287YmJiSopKVG7du3UtGlTn2McDodGjRqlJ598ssIz1Suraf2GMmRW6xwAAAAAgNoV0yDS6gg1xmGaZp2sUg3D0LZt29SjRw85nU6r4wAAAAAAKsljehTksHyh+Dk71zo0cN5RDTEMw+oIgA/DMJSfn8/YhO0wNmFXjE3YlWEY+vzzzxmbsJ3zaWwGUpFeGZYvfbcas+mwG6fTqbi4OKtjABUwNmFXjM3aZ3o8cgSdn/849rfS0lKrIwCnxdi0tzpfqBd96JJ5aK/VMQAAAAKCs3FTRQ4Ya3UMADiv2b5QT09PV1FRkebPn6/09HRlZ2drxowZPjeRW7NmjaZOnSq3213p8xuH98tzoMCfkQEAAAAAqLKAW7NUr149vfjiiyosLLQ6CgAAAAAAfhdwhXqfPn3UpEkTLVy40OooAAAAAAD4XcAV6kFBQbrrrru0ZMkS7d3LteUAAAAAgPNLwBXqkjRw4EB17txZc+fOtToKAAAAAAB+FZCFuiTdfffdWrZsmXbt2mV1FAAAAAAA/CZgC/XExESlpKRozpw5VkcBAAAAAMBvbP94trOZMWOGhg8frnbt2lkdBQAAAAAAvwjoQj0+Pl7Dhg3T4sWLq3wOZ6NoBZmGH1MBAACcv5yNm1odAQDOewFdqEvStGnTlJOTU+XjG14xWk6n04+JAAAAzm+mxyNHUMBeQQkAtmf7Qj0jI+O0P58SGxurnTt3Vvn8hmFQqMNWDMOQ2+1WfHw8YxO2wtiEXTE2ax9FOgDULP6WBQAAAADARmw/o17T+OYdduN0OpWQkGB1DKACxibsKpDGpsdjKijIYXUMAIDN1flC/YMNX+tQUanVMQAAwHmuccNwDUyJtzoGACAABEShnp6eruzsbElScHCwYmJidNVVV+mOO+5QvXr1JJ28A/xzzz2nAQMGVOrch48c1YGDR/2eGQAAAACAqgiIQl2SUlNT9eijj6q8vFz/+te/dO+998rhcOgPf/iD1dEAAAAAAPCbgCnUQ0NDFR0dLUlq3ry5+vTpo08//dTiVAAAAAAA+FdA3vX9q6++0tatWxUSEmJ1FAAAAAAA/CpgZtTXrl2rnj17qry8XCdOnFBQUJAefPBBq2MBAAAAAOBXAVOoJycn66GHHlJpaaleeeUVOZ1ODR482OpYAAAAAAD4VcAsfQ8LC1ObNm3UqVMnPfLII/rnP/+pt99+2+pYAAAAAAD4VcAU6j8VFBSk3/72t3rmmWd07Ngxq+MAAAAAAOA3AbP0/eeuuuoqPf7443r99dc1adKkKp+nUUS4TNPhx2QAAAAVNW4YbnUEAECACNhCPTg4WOPHj9eiRYs0duzYKp/nyt6/ktPp9GMyAACA0/N4TAUFMUEAADi7gCjUMzIyTts+ZcoUTZkyRZLkdrurdG7DMCjUYSuGYcjtdis+Pp6xCVthbMKuAmlsUqQDAM5FQF6jDgAA8FOlpaVWRwAAwG8CYka9Jtn9m3fUPU6nUwkJCVbHACqwy9g0PaYczEoCAIDzWEAU6unp6SoqKtL8+fO9bVu3btW4ceOUmpqqF154ocrn3vehW8YhvoUHgEAQ0jhczQZ0tjoGAABAjQqIQv10XC6Xxo8fL5fLpX379ikmJqZK5yk7XKqyA8V+TgcAAAAAQNUE5DXqJSUlysnJ0dixY9WvXz9lZ2dbHQkAAAAAAL8IyEJ95cqViouLU1xcnNLS0pSZmSnTNK2OBQAAAABAtQVkoe5yuZSWliZJSk1N1ZEjR5SXl2dxKgAAAAAAqi/gCvX8/Hzt2LFDQ4cOlSQFBwdryJAhcrlcFicDAAAAAKD6Au5mci6XS+Xl5UpNTfW2maap0NBQzZw5UxERERamAwAAAACgegKqUC8vL9fy5cuVnp6uvn37+mybOnWqVqxYobFjx1qUDgAAAACA6guoQn3t2rUqLCzU6NGjK8ycDxo0SC6Xq9KFekijMAVxHzoACAghjcOtjgAAAFDjAqpQd7lc6tOnz2mXtw8ePFiLFi3Sl19+qU6dOp3zOWOuiJfT6fRnTABADTI9phxBDqtjAAAA1JiAKNQzMjJ+cZ9u3brJ7XZX+tyGYVCow1YMw5Db7VZ8PF8iwV7sMjYp0gEAwPku4O76DgAA8HNhYWFWRwAAwG8CYka9JjFjCbtxOp1KSEiwOgZQAWMTdsXY9OUxPQpyMBcDAIGszhfqG/JfVeGx/1gdAwAAoNoiw5oppcNkq2MAAKrJNoV6enq6srOzNWbMGM2ePdtn26xZs/TGG29oxIgRys7OPut5fv/73+v2228/536LSv+rg6XfVSkzAAAAAAD+ZptCXZKaN2+unJwc/fGPf9QFF1wgSTp+/LhWrFihFi1aSJLWr1/v3T8nJ0dz587VqlWrvG3h4Ty6BwAAAAAQuGxVqCckJOj777/X6tWrlZaWJklavXq1mjdvrtjYWElSdHS0d/+IiAg5HA6fNgAAAAAAApnt7jQyatQoZWVleV9nZmZq5MiRFiYCAAAAAKD22K5QT0tL0+bNm1VQUKCCggJt2bLFO7sOAAAAAMD5zlZL3yUpKipK/fr1U3Z2tkzTVL9+/RQVFWV1LAAAAAAAaoXtZtSl/y1/z87O1qhRo6yOAwAAAABArbHdjLokpaamqqysTA6HQykpKVbHAQAAAACg1tiyUHc6nVq5cqX355rUMKypTEd5jfYBAABQGyLDmlkdAQDgB7Ys1CWpQYMGtdJP77gba/zLAAAAgNriMT0Kctjy6kYAwDmyTaGekZFx1u3z58+v0DZy5MhqP7rNMAwKddiKYRhyu92Kj49nbMJWGJuwK8amL4p0AAh8/E0OAAAA1JCwsDCrIwAIQLaZUbcK37zDbpxOpxISEqyOAVTA2IRdMTZhV7U1Nk3TIwcrKYDziq0K9fT0dGVnZ2vGjBmaMmWKt33NmjWaOnWqHnvsMT300ENavny52rRp492+b98+DR06VHfccYfGjx9fqT4Pf/O0PMd2++stAAAAALUmOKyVGre/x+oYAPzMVoW6JNWrV08vvviixowZo8jISJ9tw4cP15o1a5Senq7XX39dQUEnvzl88MEH1aVLF91www2V7q+8tEBG6S6/ZAcAAAAAoLpst0amT58+atKkiRYuXHja7bNnz9bu3bv18ssvS5KysrK0ZcsWPfroo3I4HLUZFQAAAAAAv7NdoR4UFKS77rpLS5Ys0d69eytsj4qK0p///Gc988wz+uSTT/Too4/q/vvvV/PmzS1ICwAAAACAf9muUJekgQMHqnPnzpo7d+5ptw8YMEBXX321Jk+erMTERI0YMaKWEwIAAAAAUDNsWahL0t13361ly5Zp167TXz/+u9/9Th6PR7fddlstJwMAAAAAoObYtlBPTExUSkqK5syZc9rtpx6rFhxsu/vhAQAAAABQZbaucmfMmKHhw4erXbt2VkcBAAAAAKBW2HZGXZLi4+M1bNgwLV682OooAAAAAADUClvPqEvStGnTlJOTU2PnDw5rqSBHWY2dHwAAAKgpwWGtrI4AoAY4TNM0rQ5hBcMwtG3bNvXo0cN7vTsAAAAQaEzTI4fD1gtlYTPUQtY518++zv8/2jAMqyMAPgzDUH5+PmMTtsPYhF0xNmFXhmHo888/r/GxSZEOnH9sv/S9pvENEuzG6XQqLi7O6hhABYxN2BVjMzDVlVng0tJSqyMACEB1vlDf99V6GaWFVscAAACoM0LCI9Ws0+VWxwAA27J1oZ6enq6ioiLNnz9f6enpys7OlnTy2emRkZGKj4/XNddco5EjRyooqGrfyJYdLVLZ0R/9GRsAAAAAgCqzdaH+c6mpqXr00Ufl8Xh04MABrVu3Tg8//LDeffddPf/88woODqi3AwAAAABABQFV2YaGhio6OlqSFBMToy5duqh79+666aablJ2dreuuu87ihAAAAAAAVE/A38Gjd+/e6tSpk1avXm11FAAAAAAAqi3gC3VJiouLU0FBgdUxAAAAAACotvOiUDdNUw6Hw+oYAAAAAABU23lRqO/atUuxsbFWxwAAAAAAoNoCvlDfsGGDvvrqKw0aNMjqKAAAAAAAVFtA3fX9xIkT2r9/v8/j2RYuXKgrrrhCw4cPr9I5Q8IbKshh+jcoAAAAzigkPNLqCABgawFVqK9bt04pKSkKDg5Ww4YN1alTJz3wwAMaMWKEgoKqtjggpmOKnE6nn5MCAADgbEzTI4cj4Bd3AkCNsHWhnpGR4fPzT1/7i2EYFOqwFcMw5Ha7FR8fz9iErTA2YVeMzcBEkQ4AZ8bfkAAAAAAA2IitZ9RrA9+8w26cTqcSEhKsjgFUwNiEXTE2AxOP1wWAM7NVoX7rrbeqrKxM//d//1dh26ZNm3TDDTf84jncbnel+ty+fbuKi4srdQwAAACqLiIiQj179rQ6BgDYlq0K9dGjR+v222/X3r171axZM59tmZmZ6ty5s1588UWf/a+//npdf/31Ve6zuLhYRUVFVT4eAAAAAAB/stU16v369VNUVJSysrJ82ktKSrRq1SqNGTNG0dHR3j9Op1P169f3aQMAAAAAIJDZqlAPDg7Wtddeq+zsbJnm/55tvmrVKnk8Hg0dOtTCdAAAAAAA1DxbFeqSNGrUKH333XfKy8vztmVlZWnQoEGKiIiwMBkAAAAAADXPdoV6+/bt1bNnT2VmZkqSvv32W23atEmjR4+2OBkAAAAAADXPdoW6dPImcatXr1ZxcbGysrLUunVrJSUlWR0LAAAAAIAaZ8tC/eqrr5bD4dCKFSu0bNkyjRo1iudsAgAAAADqBFs9nu2U+vXra8iQIXryySdVXFysESNGWB0JAAAAAIBaYctCXTq5/N3lcunyyy9XTExMjfXToEGDGjs3AAAAKuIGwQBwdrYt1Hv27Cm3233WfT744INq99O9e3c5nc5qnwcAAADnzjRNLm0EgDOw5TXqtckwDKsjAD4Mw1B+fj5jE7bD2IRdMTYDE0U6AJyZbWfUawuz6bAbp9OpuLg4q2MAFTA2YVeMTVSVx/QoyFHn560A2FCdL9T/tuNT7SkptDoGAAAAalFMg0jd0D3V6hgAcFq2KtRvvfVWlZWV6f/+7/8qbNu0aZNuuOEGLV++XJ06ddLMmTP19ttv68knn9TVV19d5T7/W1KkgqKD1YkNAAAAAIDf2Gqtz+jRo/Xpp59q7969FbZlZmbqoosuUqdOnVRaWqp//OMfmjx5sjIzMy1ICgAAAABAzbBVod6vXz9FRUUpKyvLp72kpESrVq3S6NGjJUmrVq1Shw4dNGXKFG3atEl79uyxIi4AAAAAAH5nq0I9ODhY1157rbKzs2Waprd91apV8ng8Gjp0qCTJ5XIpLS1NERERuuyyyyoU9gAAAAAABCpbFeqSNGrUKH333XfKy8vztmVlZWnQoEGKiIjQ7t27tX37du916WlpacrKyvIp7AEAAAAACFS2K9Tbt2+vnj17eq89//bbb7Vp0ybvsvfMzEylpKQoKipKknTZZZepuLhYn332mWWZAQAAAADwF9sV6tLJm8qtXr1axcXFysrKUuvWrZWUlCTDMJSdna21a9cqISFBCQkJ6tGjhw4fPiyXy2V1bAAAAAAAqs1Wj2c75eqrr9bDDz+sFStWaNmyZRo7dqwcDoc++ugjlZSUaNmyZQoK+t93DF9//bXuu+8+FRUVqWHDhhYmBwAAAACgemxZqNevX19DhgzRk08+qeLiYo0YMULSyZvI9evXT506dfLZv0OHDnr00Uf1zjvv6IYbbqhUX03rN5Qhrm8HAACoS2IaRFodAQDOyJaFunRy+bvL5dLll1+umJgYHThwQB999JH++te/Vtg3KChIAwYMkMvlqnShfn3XPnI6nf6KDQAAgADhMT0KctjySlAAdZxtC/WePXvK7XZ7Xzdp0kT/+te/zrj/Qw89VKV+DMOgUIetGIYht9ut+Ph4xiZshbEJu2Jsoqoo0gHYFX87AQAAAABgI7adUa8tfPMOu3E6nUpISLA6BlABYxN2xdi0H9PjkSOI+SAAqKo6X6gXfeiSeWiv1TEAAADOC87GTRU5YKzVMQAgoNmqUI+Pjz/r9t///vfq1q2bpk6dqrfeektdunTxbnvppZe0cOFCrVixQtHR0efcp3F4vzwHCqqcGQAAAAAAf7JVob5+/Xrvzzk5OZo7d65WrVrlbQsPD1f9+vV17bXX6t5771VWVpZCQ0P173//W08//bQyMjIqVaQDAAAAAGA3trp4KDo62vsnIiJCDofDp61+/fqSpPvuu09Hjx7V3LlzVV5ernvvvVdXXHGFhgwZYvE7AAAAAACgemw1o36uGjRooIcffliTJ0/WDz/8oL1792rRokVWxwIAAAAAoNoCslCXpN69e2vw4MH6xz/+oaeeekqNGze2OhIAAAAAANVmq6XvlbFv3z6tW7dOYWFh2rx5s9VxAAAAAADwi4At1B944AF16dJFCxYs0NKlS5WXl2d1JAAAAAAAqi0gC/W3335bmzdv1sMPP6xLL71UY8eO1R//+EcdPXrU6mgAAAAAAFRLwF2jXlBQoEcffVT33nuvWrZsKUm6++679fHHH2vOnDl68MEHK3U+Z6NoBZlGTUQFAACoc5yNm1odAQACXkAV6qZp6v7771fPnj01ZswYb3tYWJgeffRRTZw4UYMHD1ZSUtI5n7PhFaPldDprIi4AAECdZHo8cgQF5MJNALAF2xbqI0eO1MiRI33aHA6HXnnlldPuf8kll+jzzz+vdD+GYVCow1YMw5Db7VZ8fDxjE7bC2IRdMTbthyIdAKqHv0UBAAAAALAR286o1xa+eYfdOJ1OJSQkWB0DqICxCbuqrbHp8ZgKCnLUeD8AANi2UE9PT1d2dnaF9tWrV+v5559XUVGR5s+fX+1+PtjwtQ4VlVb7PAAA4PzVuGG4BqbEWx0DAFBH2LZQl6TU1FQ9+uijPm1RUVF+7ePwkaM6cJDHugEAAAAA7MHWhXpoaKiio6OtjgEAAAAAQK3hZnIAAAAAANiIrWfU165dq549e3pfp6amau7cuRYmAgAAAACgZtm6UE9OTtZDDz3kfR0WFmZdGAAAAAAAaoGtC/WwsDC1adPG6hgAAAAAANQarlEHAAAAAMBGbD2jfjZHjhzRF1984dPWqFEjNW/e3KJEAAAAAABUX8AW6nl5eRo+fLhP2+jRo/Xwww9X6jyNIsJlmg4/JgMAAOebxg3DrY4AAKhDHKZpmlaHsIJhGNq2bZt69Oghp9NpdRwAAGBzHo+poCC+3Me549+bsCvGpnXO9bOv89eoG4ZhdQTAh2EYys/PZ2zCdhibsKvaGpsU6QCA2hKwS9/9hW+QYDdOp1NxcXFWxwAqYGzCrs6nsWl6TDn4QgAA6rw6X6jv+9At41Cp1TEAAEAdF9I4XM0GdLY6BgDABmxVqO/fv18LFizQ2rVrtW/fPl144YXq3LmzbrzxRvXu3VuStGXLFj3//PPatm2bjh07prZt22rkyJGaOHFilWbHyw6XquxAsb/fCgAAAAAAVWKbQv2HH37Q2LFj1bBhQ91zzz3q2LGjysvLtX79es2aNUurVq3Se++9p+nTp2vkyJF67bXXFBERoQ0bNuiJJ57Q1q1b9cwzz8jhYLkYAAAAACBw2aZQnzVrlhwOh95++22Fh//vESi/+tWvNGrUKB09elQPPPCArrzySv35z3/2br/uuut04YUX6rbbbtPKlSs1ZMgQK+IDAAAAAOAXtrjr++HDh7Vu3TrdcMMNPkX6KQ0bNtQnn3yiw4cP6+abb66w/corr1Tbtm21YsWK2ogLAAAAAECNsUWh/t1338k0zbPesfWbb76RJLVv3/602+Pi4rR79+6aiAcAAAAAQK2xRaFummaN7AsAAAAAQKCxRaHepk0bORwO5efnn3Gfdu3aSZJ27dp12u35+flq27ZtTcQDAAAAAKDW2KJQb9SokVJSUvT666/r6NGjFbYXFRWpb9++atSokV5++eUK299//33t3r1bQ4cOrY24AAAAAADUGNvc9f1Pf/qTxo4dq+uuu07Tpk1TfHy8DMPQJ598oqVLl2rlypWaNWuW7rrrLj344IO64YYb1KBBA+/j2QYPHqyrr7660v2GNApTEKvpAQCAxUIaV7yhLgCgbrJNod6qVStlZWVpwYIFeuyxx/Tf//5XUVFR6tKlix566CFJ0lVXXaUmTZro+eef1w033KDjx4+rbdu2uvXWW3XjjTdW6RnqMVfEy+l0+vndAAAAVJ7pMeUIqvy/ZwAA5xeHWUfvzmYYhrZt26auXbsqNDTU6jiAl2EYcrvdio/nSyTYC2MTdsXYhF2d+vdmjx49GJuwFcamdc71s7fFNeoAAAAAAOAk2yx9twrfIMFunE6nEhISrI4BVMDYhF3ZZWx6TI+CHMyBAACqz5aF+tatWzVu3DilpqbqhRde8LZPmDBBeXl5Zzxu8eLFSkpKqlRfG/JfVeGx/1Q5KwAAQGRYM6V0mGx1DADAecKWhbrL5dL48ePlcrm0b98+xcTESJLmzZunsrIyn33Lysr029/+VqGhoerevXul+yoq/a8Oln7nl9wAAAAAAFSX7Qr1kpIS5eTkKDMzUwcOHFB2drZuvfVWSSeft/5zDzzwgA4dOiSXy6V69erVcloAAAAAAPzLdhdSrVy5UnFxcYqLi1NaWpoyMzN1phvTv/7661q2bJnmzp2rZs2a1XJSAAAAAAD8z3aFusvlUlpamiQpNTVVR44cOe116Rs3btSjjz6qP/3pT+rVq1dtxwQAAAAAoEbYqlDPz8/Xjh07NHToUElScHCwhgwZIpfL5bPff/7zH02bNk3XX3+9rrvuOiuiAgAAAABQI2x1jbrL5VJ5eblSU1O9baZpKjQ0VDNnzlRERISOHTum3//+9+rQoYP++Mc/WpgWAAAAAAD/s02hXl5eruXLlys9PV19+/b12TZ16lStWLFCY8eO1f3336/Dhw9r0aJFCg62TXwAAAAAAPzCNpXu2rVrVVhYqNGjRysiIsJn26BBg+RyuVRSUqJ3331Xzz//vAzD0P79+332i4iI0AUXXFCbsQEAAAAA8CvbFOoul0t9+vSpUKRL0uDBg7Vo0SLt3LlTkjR58uTTnuPRRx/VyJEjK9Vvw7CmMh3llQ8MAADw/0WG8fQZAID/2KZQX7BgwRm3devWTW63u0b67R13o5xOZ42cGwAA1B0e06Mgh63u0wsACFB1/reJYRhWRwB8GIah/Px8xiZsh7EJuzIMQ1999ZXlY5MiHQDgL7aZUbcKs+mwG6fTqbi4OKtjABUwNmFXTqdTHdrHybQ6CAAAflLnC/XD3zwtz7HdVscAAABVFBzWSo3b32P5jDoAAP5iu0L94MGDeuaZZ/TRRx/pwIEDioyMVKdOnfS73/1OF198sSTp888/14IFC7Rp0yYdOXJEzZs3V1JSkiZNmqR27dpVqr/y0gIZpbtq4q0AAAAAAFBptivUb7/9dpWVlSkjI0OtWrXSjz/+qA0bNujw4cOSpA8//FC33367UlJS9Ne//lWtWrXSwYMHtWrVKj3zzDN6+umnLc0PAAAAAEB12KpQLyoq0qZNm7R48WIlJSVJklq2bKlu3bpJkkpLS3Xffffp8ssv13PPPec9rlWrVurevbuKioosyQ0AAAAAgL/Y6vak4eHhCg8P15o1a3TixIkK29evX69Dhw6d8TnqDRs2rOmIAAAAAADUKFsV6sHBwcrIyNCyZct0ySWX6Ne//rWefPJJffnll5Kk3bt3SxJ3HQYAAAAAnLdsVahL0uDBg7Vu3To9//zzSk1NVV5enkaOHKmsrCyZJg9eAQAAAACc32xXqEtSvXr11LdvX02dOlVvvvmmRowYoXnz5nnv6J6fn29xQgAAAAAAaoYtC/Wf69Chg44ePaq+ffuqcePGWrRo0Wn342ZyAAAAAIBAZ6u7vh86dEh33HGHRo0apfj4eNWvX187d+7UokWL1L9/f4WHh+svf/mLpk+frltvvVUTJ05U69atdejQIa1cuVJ79uzRU089Vak+g8NaKshRVkPvCAAA1LTgsFZWRwAAwK9sVajXr19f3bt316uvvqrvvvtO5eXlatasma677jrdeuutkqQBAwZo6dKleuGFFzRjxgwVFxerefPmuvTSSzV9+vRK99mo3XQ5nU4/vxMAAFCbPEa5JIfVMQAA8AtbFeqhoaGaMWOGZsyYcdb9unbtqnnz5vmlT8MwKNRhK4ZhyO12Kz4+nrEJW2Fswq4Mw9C//vW5unTpYnUUAAD8IiCuUQcAADib4GBbzT0AAFAtdf63GrNCsBun06mEhASrYwAVMDZhV+cyNk3TI4eD+QkAQGCo84X6vq/WyygttDoGAACoISHhkWrW6XKrYwAAcM5sVainp6crOztbM2bM0JQpU7zta9as0dSpU+V2u5Wbm6uJEyee9vj169crOjq6Un2WHS1S2dEfq5UbAAAAAAB/sVWhLkn16tXTiy++qDFjxigyMvKM+61atUoNGjTwabvwwgtrOh4AAAAAADXKdhdr9enTR02aNNHChQvPut+FF16o6Ohonz9BQbZ7OwAAAAAAVIrtKtugoCDdddddWrJkifbu3Wt1HAAAAAAAapXtCnVJGjhwoDp37qy5c+eecZ/LL79cPXv29P655pprajEhAAAAAAA1w3bXqJ9y991368Ybb9SkSZNOu/31119X/fr1va95fioAAAAA4Hxg2+o2MTFRKSkpmjNnjkaOHFlhe2xsrBo2bGhBMgAAAAAAao5tC3VJmjFjhoYPH6527dpZHQUAAAAAgFph60I9Pj5ew4YN0+LFiyts+/HHH3X8+HGftkaNGikkJKRSfYSEN1SQw6xWTgAAYF8h4Wd+3CsAAHZk60JdkqZNm6acnJwK7VdddVWFtrfeeks9evSo1PljOqbI6XRWNR4AAAgApumRw2HLe+gCAFCBrQr1jIyMCm2xsbHauXOn93VycrLcbrff+jQMg0IdtmIYhtxut+Lj4xmbsBXGJuzqXMYmRToAIJDwWwsAAAAAABux1Yy6FZgVgt04nU4lJCRYHQOogLEJu2JsoqpM05TD4bA6BgBUYGmhvnTpUj3++OPauHGj9znoJSUlSkpKUq9evXxuIpebm6uJEyeqcePGuummm3Trrbf6nOuOO+7Qnj17tHTp0koV39u3b1dxcbF/3hAAAAACQkREhHr27Gl1DAA4LUsL9eTkZB09elQ7d+703gRu06ZNatKkibZv367jx4+rXr16kk4W6i1atNADDzygO+64Q1dccYXi4+MlSStXrtTatWuVnZ1d6Rny4uJiFRUV+fV9AQAAAABQVZZeox4XF6fo6Gjl5eV52/Ly8tS/f3/FxsZq27ZtPu3Jycnq37+/hg0bpvT0dJWVlengwYOaPXu2ZsyYobi4OAveBQAAAAAA/mP5zeSSk5OVm5vrfZ2bm6ukpCQlJiZ6248dO6bt27crOTlZknT//ffr8OHDmj9/vh566CH96le/0oQJEyzJDwAAAACAP1l+M7lLL71UjzzyiMrLy3Xs2DF98cUXSkpKUnl5ud58801J0tatW3XixAlvod6gQQM98sgjmjRpksLCwvT3v/+dG4EAAAAAAM4LlhfqSUlJOnr0qHbs2KGioiK1bdtWUVFRSkxM1H333afjx48rLy9PrVq1UosWLbzH9e7dW927d1fnzp3VsmVLC98BAAAAAAD+Y3mh3qZNGzVr1ky5ubkqLCxUYmKiJCkmJkbNmzfXli1blJubq0svvbTCscHBwTxeDQAAAABwXrH8GnXp5HXqeXl5ysvLU1JSkrf9kksu0ccff6x//vOf3mXvAAAAAACczyyfUZdOFuqzZ89WeXm5T6GelJSk2bNnq6ysrMYK9QYNGtTIeQEAAGBfERERVkcAgDOyTaF+7NgxxcXFqUmTJt72xMRElZSUqF27dmratGmN9N29e3eWzwMAANRBpmlyQ2IAtmSLQj02NlZut7tCe8uWLU/bfsrixYur3bdhGBTqsBXDMOR2uxUfH8/YhK0wNmFXjE1UFUU6ALuyxTXqAAAA1VFaWmp1BAAA/MYWM+pW4pt32I3T6VRCQoLVMYAKGJuBx2N6FOTgO3kAAAJNnS/U/7bjU+0pKbQ6BgAAfhXTIFI3dE+1OgYAAKgC2xfq6enpKioq0vz5833ac3NzNXHiRG3cuFFffPGF9+eGDRtW6vz/LSlSQdFBf0YGAAAAAKDKqrUe7sSJE8rPz1d5ebm/8gAAAAAAUKdVqVAvLS3VH//4R/Xo0UNDhw7Vnj17JEl//vOf9cILL/g1IAAAAAAAdUmVCvU5c+boyy+/1GuvvaZ69ep523v37q2cnBy/hQMAAAAAoK6p0jXq77//vp566in16NHDp/1Xv/qVvvvuO3/k8rF27Vr17NnTp80wDL/3AwAAAACA1apUqB88eFAXXnhhhfbS0lI5HI5qh/q55ORkPfTQQz5t27dv1x/+8Ae/9wUAAAAAgJWqtPT9oosu0tq1ayu0v/322xVm2f0hLCxMbdq08fkTExPj934AAAAAALBalWbU77zzTt1yyy3697//LcMw9Nprr2nXrl3aunWrFi9e7O+MAAAAAADUGVUq1C+55BItX75cL7zwgjp27KhPPvlECQkJevPNNxUfH+/vjDWqaf2GMmRaHQMAAL+KaRBpdQQAAFBFVSrUJal169b6y1/+4s8slri+ax85nU6rYwAA4Hce06MgR5WucgMAABaq0m/vzp0768cff6zQfujQIXXu3LnaoX4qIyND8+fPr9CenJwst9uthg0b+vxcWdw9HnZjGIY+//xzxiZsh7EZeCjSAQAITFX6DW6ap18qfuLECYWEhFQrEAAAAAAAdVmllr6/9tprkiSHw6G3335b4eHh3m0ej0cbN25UXFycfxPWMJa9w26cTqcSEhKsjgFUwNhETTE9HjmCmP0HAOCUShXqr7zyiqSTM+pvvvmmgn7ySzUkJESxsbGaNWuWXwOekp6erqKiIs2fP9/n5+oq+tAl89BePyQEAACV5WzcVJEDxlodAwAAW6lUof7BBx9IkiZMmKBnn31WkZGBf0dZ4/B+eQ4UWB0DAAAAAABJVbzrO89KBwAAAACgZlT58Wx79+7V+++/rz179qisrMxn23333VftYAAAAAAA1EVVKtQ3bNig2267Ta1atVJ+fr5+9atfqaCgQKZpcqMhAAAAAACqoUq3WJ0zZ45uvvlmvfPOOwoNDdW8efO0du1aJSYm6qqrrvJ3RgAAAAAA6owqFeq7du3S8OHDJUnBwcE6duyY6tevrzvuuEOLFi3yZz4AAAAAAOqUKhXq4eHh3uvSo6Oj9d1333m3HTp0yD/JAAAAAACog6p0jXr37t21efNmtW/fXpdffrkee+wxffXVV3rvvffUvXt3f2c8rSNHjuiLL77waWvUqJGaN29eK/0DAAAAAFATqlSo33fffSopKZEk3X777SopKVFOTo7atm2r9PR0vwY8k7y8PO/y+1NGjx6thx9+uFLncTaKVpBp+DEZAAA4V87GTa2OAACA7ThM0zStDmEFwzC0bds29ejRQ06n0+o4AADUWabHI0dQla7Gk8TvdNgXYxN2xdi0zrl+9lX6rdi/f//TXoteVFSk/v37V+WUljEMZtNhL4ZhKD8/n7EJ22FsoqZUp0gHAOB8VKWl7wUFBfJ4PBXaT5w4oX379lU7VG3iGyTYjdPpVFxcnNUxgAoYmzgdj8dUUJDD6hgAAJxXKlWov//++96f161bp4iICO9rj8ejDRs2qGXLlv5LVws+2PC1DhWVWh0DAICA07hhuAamxFsdAwCA806lCvWpU6dKkhwOR4WbxgUHB6tly5ZVuplcenq6srOzNWPGDE2ZMsXbvmbNGk2dOlVut1u5ubmaOHGiNm7cqIYNG/ocf+WVV2rixIm66aabKt334SNHdeDg0UofBwAAAABATahUof7ll19KOlkYu1wuRUVF+S1IvXr19OKLL2rMmDGKjIz023kBAAAAAAgklbp7y9atW/Xhhx/qgw8+8Bbpy5Yt05VXXqnevXvrwQcf1IkTJ6oUpE+fPmrSpIkWLlxYpeMBAAAAADgfVKpQf/bZZ/X11197X7vdbt1///3q06ePpkyZog8//LDKhXZQUJDuuusuLVmyRHv37q3SOQAAAAAACHSVWvrudrs1ffp07+ucnBx169ZNf/nLXyRJzZo107x583T77bdXKczAgQPVuXNnzZ07V4888shp97n88ssrtJWWcjM4AAAAAMD5oVKFemFhoZo0aeJ9nZeXp8suu8z7umvXrtqzZ0+1At1999268cYbNWnSpNNuf/3111W/fn2ftgkTJlSrTwAAAAAA7KJSS9+bNGmiH374QdLJZ6Z//vnn6tGjh3d7SUmJQkJCqhUoMTFRKSkpmjNnzmm3x8bGqk2bNj5/goOr9Dh4AAAAAABsp1KF+mWXXaY5c+Zo06ZNevLJJ3XBBRfo4osv9m53u91q1apVtUPNmDFDH374obZu3VrtcwEAAAAAEEgqNRV9xx136Pbbb9f48eMVHh6uxx57TKGhod7tmZmZSklJqXao+Ph4DRs2TIsXL672uX5Jo4hwmaajxvsBAOB807hhuNURAAA4L1WqUI+KitLrr7+uI0eOKDw8XE6n02f7M888o/Bw//zSnjZtmnJycvxyrrO5svevKrwPAABwbjweU0FBfOENAIA/Veni7oiIiNO2N2rUqEohMjIyKrTFxsZq586d3tfJyclyu92nPf6DDz6oUr+SZBgGhTpsxTAMud1uxcfHMzZhK4xNnA5FOgAA/lepa9QBAAAAAEDNqvO3S2dWCHbjdDqVkJBgdQygAsbm+cn0mHIwKw4AgK3U+UJ934duGYdKrY4BAECtC2kcrmYDOlsdAwAA/IytCvX9+/dr4cKF+uijj7R3715FRESodevWSktL04gRIxQWFubdd+HChXr66ac1Y8YMTZ48ucp9lh0uVdmBYn/EBwAAAACg2mxTqH///fcaO3asIiIidOeddyo+Pl6hoaFyu93629/+ppiYGPXv39+7f2ZmpiZPnuz9XwAAAAAAzge2KdQfeughOZ1OZWZm+jzirVWrVhowYIBM0/S25eXl6dixY5o2bZqWLVumLVu2qFevXlbEBgAAAADAr2xx1/dDhw7pk08+0Q033HDG57A7HP+70Y3L5dI111yjkJAQDR06VC6Xq7aiAgAAAABQo2xRqH/33XcyTVPt2rXzaU9OTlbPnj3Vs2dPPfHEE5Kk4uJivfvuu7r22mslSWlpaVq5cqVKSkpqPTcAAAAAAP5mi0L9TFwul5YtW6YOHTroxIkTkqQVK1aodevW6tSpkySpc+fOatmypXJycqyMCgAAAACAX9jiGvXWrVvL4XDom2++8Wlv1aqVJOmCCy7wtrlcLn399dc+z/L1eDzKzMzUddddVzuBAQAAAACoIbYo1Bs3bqy+fftqyZIlGj9+/BmvU3e73dq5c6cWL16syMhIb3thYaEmTJigXbt2qX379rUVGwAAAAAAv7NFoS5Jf/rTnzR27FiNGjVKt99+u+Lj4+VwOLRjxw7l5+erS5cucrlc6tatmxITEysc37VrV7lcLt17772V6jekUZiCzF/eDwCA801I49N/MQ4AAKxlm0K9devWys7O1sKFCzVnzhzt27dPISEh6tChg26++WaNGTNG/fv31y233HLa4wcNGqSXX35Zd911l0JCQs6535gr4uV0Ov31NgAACCimx5QjyPHLOwIAgFrjMH/6gPI6xDAMbdu2TV27dlVoaKjVcQAvwzDkdrsVH8+XSLAXxibs6tTv9B49ejA2YSuMTdgVY9M65/rZ2/qu7wAAAAAA1DW2WfpuFb5Bgt04nU6fpxoAdsHYtB+P6VGQg+/cAQA439iyUN+6davGjRun1NRUvfDCC972H374Qf3799eyZcvUuXNnSVJxcbFuu+02/fjjj3rppZfUrFmzSvW1If9VFR77j1/zAwBQ0yLDmimlw2SrYwAAgBpgy0Ld5XJp/Pjxcrlc2rdvn2JiYk6738GDBzV58mQFBQXp9ddfV+PGjSvdV1Hpf3Ww9LvqRgYAAAAAwC9st16upKREOTk5Gjt2rPr166fs7OzT7rdnzx6NGzdOERERevXVV6tUpAMAAAAAYDe2K9RXrlypuLg4xcXFKS0tTZmZmfr5jem/+eYbjR07Vh06dNCLL76o+vXrW5QWAAAAAAD/sl2h7nK5lJaWJklKTU3VkSNHlJeX57PPPffco9atW+uZZ57h0WoAAAAAgPOKrQr1/Px87dixQ0OHDpUkBQcHa8iQIXK5XD77XXnlldq8ebNWr15tRUwAAAAAAGqMrW4m53K5VF5ertTUVG+baZoKDQ3VzJkzvW233Xab4uPjdffdd8s0TQ0ZMsSKuAAAAAAA+J1tCvXy8nItX75c6enp6tu3r8+2qVOnasWKFT4F/NSpUxUUFKQ//OEPkkSxDgAAAAA4L9imUF+7dq0KCws1evRoRURE+GwbNGiQXC6XT6EunZxZdzqduvvuu+XxeLxL5iujYVhTmY7yamUHAKC2RYY1szoCAACoIbYp1F0ul/r06VOhSJekwYMHa9GiRSouLq6wbcqUKXI4HLrnnntkmqaGDRtWqX57x90op9NZ5dwAAFjFY3oU5LDV7WYAAIAf2KZQX7BgwRm3devWTW63W5K8//tTt9xyi2655ZYq9WsYBoU6bMUwDLndbsXHxzM2YSuMTfuhSAcA4PzEb3gAABDwwsLCrI4AAIDf2GZG3SrMCsFunE6nEhISrI4BVMDYhF0xNv3LND1ysFoDACxV5wv1w988Lc+x3VbHAAAAsFxwWCs1bn+P1TEAoM6ztFBPT09Xdna2xowZo9mzZ/tsmzVrlt544w2NGDFCGRkZ3n0lKTg4WJGRkYqPj9c111yjkSNHKiioat/8lpcWyCjdVe33AgAAAACAP1i+rql58+bKycnRsWPHvG3Hjx/XihUr1KJFC599U1NTtX79en3wwQd68cUXlZycrIcffli//e1vVV7OI9YAAAAAAIHP8kI9ISFBzZs31+rVq71tq1evVvPmzdW5c2effUNDQxUdHa2YmBh16dJFt956q+bPn6+PP/7YO9sOAAAAAEAgs7xQl6RRo0YpKyvL+zozM1MjR448p2N79+6tTp06+RT6AAAAAAAEKlsU6mlpadq8ebMKCgpUUFCgLVu2KC0t7ZyPj4uLU0FBQQ0mBAAAAACgdtjiru9RUVHq16+fsrOzZZqm+vXrp6ioqHM+3jRNORyOGkwIAAAAAEDtsMWMuvS/5e/Z2dkaNWpUpY7dtWuXYmNjaygZAAAAAAC1xzaFempqqsrKylReXq6UlJRzPm7Dhg366quvNGjQoBpMBwAAAABA7bDF0ndJcjqdWrlypffn0zlx4oT2798vj8ejAwcOaN26dVq4cKGuuOIKDR8+vEr9Boe1VJCjrKqxAQAAzhvBYa2sjgAAkI0KdUlq0KDBWbevW7dOKSkpCg4OVsOGDdWpUyc98MADGjFihIKCqrY4oFG76Wf8YgAAAKCuMU2PHA7bLLoEgDrJYZqmaXUIKxiGoW3btqlr164KDQ21Og7gZRiG3G634uPj+RIJtsLYhF0xNmFXp/692aNHD8YmbIWxaZ1z/ez5uhQAAAS80tJSqyMAAOA3tlr6bgW+QYLdOJ1OJSQkWB0DqICxWTexDBoAgNpny0J969atGjdunFJTU/XCCy9423/44Qf179/f+zoyMlIdO3bU9OnTdckll1Spr31frZdRWljtzAAAnG9CwiPVrNPlVscAAKDOsWWh7nK5NH78eLlcLu3bt08xMTE+21955RV16NBBhw4d0oIFC/Tb3/5W7777rpo0aVLpvsqOFqns6I/+ig4AAAAAQLXYbi1bSUmJcnJyNHbsWPXr10/Z2dkV9mnUqJGio6PVsWNH/fa3v1VxcbG2b99uQVoAAAAAAPzLdoX6ypUrFRcXp7i4OKWlpSkzM1NnujH9sWPHtGzZMklSSEhILaYEAAAAAKBm2G7pu8vlUlpamiQpNTVVR44cUV5enpKTk737/PrXv1ZQUJBKS0tlmqa6dOmi3r17WxUZAAAAAAC/sdWMen5+vnbs2KGhQ4dKkoKDgzVkyBC5XC6f/Z566illZ2dr3rx5atOmjTIyMphRBwAAAACcF2w1o+5yuVReXq7U1FRvm2maCg0N1cyZM71tzZs3V9u2bdW2bVuVl5fr97//vVasWKHQ0FArYgMAAAAA4De2mVEvLy/X8uXLlZ6ermXLlnn/LF++XE2bNtWKFStOe9xVV10lp9OpN954o5YTAwAAAADgf7Yp1NeuXavCwkKNHj1aHTt29PkzaNCgCsvfT3E4HJowYYJeeOEFlZaW1nJqAAAAAAD8yzZL310ul/r06aOIiIgK2wYPHqxFixapuLj4tMeOGDFCTz/9tJYsWaJbbrmlUv2GhDdUkOP0d5UHAKAuCwmPtDoCAAB1km0K9QULFpxxW7du3eR2uyXJ+78/FRYWpry8vCr1G9MxRU6ns0rHAgBwvjNNjxwO2yzAAwCgTqjzv3kNw7A6AuDDMAzl5+czNmE7jM26KVCK9LCwMKsjAADgN7aZUbcKs+mwG6fTqbi4OKtjABUwNmFXTqdTCQkJVsfAecg0TTkcDqtjAKiD6nyhvn379jNe+w4AAIC6KSIiQj179rQ6BoA6ynaF+tKlS/X4449r48aNCg4+Ga+kpERJSUnq1auXFi9e7N03NzdXEydO1HvvvaebbrpJEydO1E033VSp/oqLi1VUVOTPtwAAAAAAQJXZ7sKz5ORkHT16VDt37vS2bdq0SU2aNNH27dt1/Phxb3tubq5atGih1q1bWxEVAAAAAAC/s12hHhcXp+joaJ+7uOfl5al///6KjY3Vtm3bfNqTk5MtSAkAAAAAQM2wXaEunZxVz83N9b7Ozc1VUlKSEhMTve3Hjh3T9u3bKdQBAAAAAOcVWxbql156qbZs2aLy8nIVFxfriy++8Bbqp2bat27dqhMnTlCoAwAAAADOK7Ys1JOSknT06FHt2LFDmzdvVtu2bRUVFaXExETvdep5eXlq1aqVWrRoYXVcAAAAAAD8xnZ3fZekNm3aqFmzZsrNzVVhYaESExMlSTExMWrevLm2bNmi3NxcXXrppRYnBQAAAADAv2w5oy6dvE49Ly9PeXl5SkpK8rZfcskl+vjjj/XPf/6TZe8AAAAAgPOOLWfUpZOF+uzZs1VeXu5TqCclJWn27NkqKyvzS6HeoEGDap8DAAAA55eIiAirIwCow2xdqB87dkxxcXFq0qSJtz0xMVElJSVq166dmjZtWu1+unfvLqfTWe3zAAAA4PximqYcDofVMQDUQbYt1GNjY+V2uyu0t2zZ8rTtH3zwQZX6MQyDQh22YhiG3G634uPjGZuwFcYm7IqxiZpCkQ7AKra9Rh0AAAAAgLrItjPqtYVv3mE3TqdTCQkJVscAKmBswq4Ym6gpHtOjIAfzWgBqn60K9T179mju3Llat26dDh8+rOjoaPXv319Tp05V48aNJUkTJkxQXl6eJCk0NFQtWrTQyJEjNWXKlCotT/rbjk+1p6TQr+8DAAAAgS2mQaRu6J5qdQwAdZRtCvXvv/9eY8aMUdu2bfXkk08qNjZWX3/9tZ544gmtW7dOb731lho1aiRJuv766zVt2jSdOHFCn332mWbOnKmIiAiNGzeu0v3+t6RIBUUH/fxuAAAAAACoGtus5Zk1a5ZCQkL00ksvKSkpSS1atNDll1+ul19+Wfv27dNTTz3l3feCCy5QdHS0WrZsqVGjRik+Pl6ffvqphekBAAAAAPAPWxTqhw8f1vr16zVu3DhdcMEFPtuio6M1bNgwrVy5UqZp+mwzTVObNm1Sfn6+QkJCajMyAAAAAAA1whZL37/99luZpqn27dufdnv79u1VWFiogwdPLlFfunSpXC6XysrKVFZWpnr16mnChAm1GRkAAAAAgBphi0L9lJ/PmJ/JsGHDdOutt6qwsFDz5s1Tz5491atXrxpOBwAAAABAzbPF0vfWrVvL4XBo165dp92+a9cuRUZGKioqSpLUoEEDtWnTRt26ddPTTz+t119/nWvUAQAAAADnBVsU6o0bN1bfvn31xhtv6NixYz7b9u/fr3feeUdXX331aR+/Vr9+fU2cOFGPPfbYOc/IAwAAAABgV7Yo1CXpwQcf1IkTJzRp0iRt3LhRe/bs0ccff6ybb75ZMTExuvPOO8947JgxY7R79269++67tZgYAAAAAAD/s8016m3btlVmZqbmzZun6dOnq7CwUE2aNNGAAQM0depU7zPUT6dRo0a69tpr9eyzz2rQoEEKCjr37x+a1m8oQ8zEAwAA4H9iGkRaHQFAHeYw6+h6ccMwtG3bNvXo0UNOp9PqOAAAALAZj+lRkKPqC1D59ybsirFpnXP97G2z9N0qhmFYHQHwYRiG8vPzGZuwHcYm7IqxiZpSnSIdAKrDNkvfrcI3SLAbp9OpuLg4q2MAFTA2YVeMzcBkejxyVOJyRQCoS+p8oV70oUvmob1WxwAAAKgznI2bKnLAWKtjAIBt2bZQT09PV3Z2tsaMGaPZs2f7bJs1a5beeOMNjRgxQhkZGUpPT1dRUZHmz59f6X6Mw/vlOVDgr9gAAAAAAFSLrdcbNW/eXDk5OT7PVj9+/LhWrFihFi1aWJgMAAAAAICaYetCPSEhQc2bN9fq1au9batXr1bz5s3VuXNnC5MBAAAAAFAzbF2oS9KoUaOUlZXlfZ2ZmamRI0damAgAAAAAgJpj+0I9LS1NmzdvVkFBgQoKCrRlyxalpaVZHQsAAAAAgBph25vJnRIVFaV+/fopOztbpmmqX79+ioqKsjoWAAAAAAA1wvYz6tL/lr9nZ2dr1KhRVscBAAAAAKDG2H5GXZJSU1NVVlYmh8OhlJQUq+MAAAAAAFBjAqJQdzqdWrlypfdnv567UbSCTMOv5wQAAMCZORs3tToCANhaQBTqktSgQYMaOW/DK0b7vfgHAADA2ZkejxxBAXEVJgDUOtsW6hkZGWfdPn/+/HPe92wMw6BQh60YhiG32634+HjGJmyFsQm7YmwGJop0ADgz/oYEAAAAAMBGbDujXlv45h1243Q6lZCQYHUMoALGJuzqXMamx2MqKMhRS4kAAKieOl+of7Dhax0qKrU6BgAAqCGNG4ZrYEq81TEAADhntirU09PTlZ2dLUkKDg5WZGSk4uPjdc0112jkyJEK+v/XMl155ZUqKCiocPyMGTM0ZcqUSvV5+MhRHTh4tPrhAQAAAADwA1sV6tLJZ6Y/+uij8ng8OnDggNatW6eHH35Y7777rp5//nkFB5+MPG3aNF1//fU+x9avX9+KyAAAAAAA+I3tCvXQ0FBFR0dLkmJiYtSlSxd1795dN910k7Kzs3XddddJOlmUn9oPAAAAAIDzRUDc9b13797q1KmTVq9ebXUUAAAAAABqVEAU6pIUFxfnc136X//6V/Xs2dPnz6ZNmyxMCAAAAABA9dlu6fuZmKYph+N/j1WZNGmSRo4c6bNPTExMbccCAAAAAMCvAqZQ37Vrl2JjY72vGzdurDZt2liYCAAAAAAA/wuIpe8bNmzQV199pUGDBlkdBQAAAACAGmW7GfUTJ05o//79Po9nW7hwoa644goNHz7cu19JSYn279/vc2xYWJgaNGhQqf4aRYTLNB2/vCMAAAhIjRuGWx0BAIBKsV2hvm7dOqWkpCg4OFgNGzZUp06d9MADD2jEiBEKCvrfAoC5c+dq7ty5PseOGTNGs2fPrlR/V/b+lZxOp1+yAwAAe/J4TAUF8cU8ACAw2KpQz8jIUEZGxi/u98EHH/itT8MwKNRhK4ZhyO12Kz4+nrEJW2Fswq7OZWxSpAMAAklAXKMOAAAAAEBdYasZdSswKwS7cTqdSkhIsDoGUAFjE3bF2LQf02PKwSoGAKgyWxXqEyZMUKdOnXT//ff7tGdlZemRRx5Rw4YNVVBQcMbjR4wYcU5L539q34duGYdKq5QXAAAAvkIah6vZgM5WxwCAgGarQv2XuFwuGYYhSdq6datuv/12rVq1ynun9wsuuKDS5yw7XKqyA8V+zQkAAAAAQFUFVKEeFRXl/TkyMlKSdOGFF6phw4ZWRQIAAAAAwK+4mRwAAAAAADZCoQ4AAAAAgI1QqAMAAAAAYCO2KtTr16+v4uKKN3YrKipSRESEBYkAAAAAAKhdtirU27Vrp3/9618V2j///HO1bdu29gMBAAAAAFDLbFWojxs3Trt379Zf/vIXffnll8rPz9fLL7+sf/zjH/rNb35jdTwAAAAAAGqcrR7P1qpVKy1ZskRPP/20fvOb36isrExxcXF65plndNlll9VInyGNwhRk1sipAQAA6pyQxuFWRwCAgGerQl2SunXrppdeeukX90tOTpbb7a52fzFXxMvpdFb7PAAAADjJ9JhyBDmsjgEAActWS9+tYBiG1REAH4ZhKD8/n7EJ2zEMQ59//jljE7bD2LQfinQAqB7bzajXNmbTYTdOp1NxcXFWx4CfeUyPghyB/91oaWmp1RGA02JsAgDOJ3W+UN+Q/6oKj/3H6hgAzmORYc2U0mGy1TEAAAAQIGxXqO/fv18LFizQ2rVrtW/fPl144YXq3LmzbrzxRvXu3du738KFC/X0009rxowZmjy56v8ALir9rw6WfueP6AAAAAAAVJut1mH+8MMPGjlypD777DPdc889euedd7Ro0SIlJydr1qxZPvtmZmZq8uTJyszMtCgtAAAAAAD+Z6sZ9VmzZsnhcOjtt99WePj/Hu3xq1/9SqNGjfK+zsvL07FjxzRt2jQtW7ZMW7ZsUa9evayIDAAAAACAX9lmRv3w4cNat26dbrjhBp8i/ZSGDRt6f3a5XLrmmmsUEhKioUOHyuVy1WZUAAAAAABqjG0K9e+++06maf7i3a6Li4v17rvv6tprr5UkpaWlaeXKlSopKamNmAAAAAAA1CjbFOqmaZ7TfitWrFDr1q3VqVMnSVLnzp3VsmVL5eTk1GQ8AAAAAABqhW2uUW/Tpo0cDofy8/PPup/L5dLXX3+thIQEb5vH41FmZqauu+66mo4JAAAAAECNsk2h3qhRI6WkpOj111/XhAkTKlynXlRUpD179mjnzp1avHixIiMjvdsKCws1YcIE7dq1S+3bt6/t6AAAAAAA+I1tCnVJ+tOf/qSxY8fquuuu07Rp0xQfHy/DMPTJJ59o6dKlSklJUbdu3ZSYmFjh2K5du8rlcunee++tVJ8Nw5rKdJT76y0AQAWRYc2sjgAAAIAAYqtCvVWrVsrKytKCBQv02GOP6b///a+ioqLUpUsX3X///ZoxY4ZuueWW0x47aNAgvfzyy7rrrrsUEhJyzn32jrtRTqfTX28BAE7LY3oU5LDNbUEAAABgY7Yq1CWpadOmmjlzpmbOnFlhW25u7hmPu+WWW85YxJ+NYRgU6rAVwzDkdrsVHx/P2DyPUKQDAADgXPEvRwDAOQsLC7M6AnBajE3YFWMTQFXYbka9tjFjCbtxOp0+TzUA7IKxCbtibMKu7DI2TdMjByu7gIBieaGenp6u7OxsjRkzRrNnz/bZNmvWLL3xxhsaMWKEMjIyvPvOmDFDU6ZM8e63Zs0aTZ06VW63u9L9H/7maXmO7a7u2wAAAABsJzislRq3v8fqGAAqyfJCXZKaN2+unJwc/fGPf9QFF1wgSTp+/LhWrFihFi1a+Oxbr149vfjiixozZozPI9qqqry0QEbprmqfBwAAAAAAf7DFGpiEhAQ1b95cq1ev9ratXr1azZs3V+fOnX327dOnj5o0aaKFCxfWdkwAAAAAAGqcLQp1SRo1apSysrK8rzMzMzVy5MgK+wUFBemuu+7SkiVLtHfv3tqMCAAAAABAjbNNoZ6WlqbNmzeroKBABQUF2rJli9LS0k6778CBA9W5c2fNnTu3llMCAAAAAFCzbHGNuiRFRUWpX79+ys7Olmma6tevn6Kios64/913360bb7xRkyZNqsWUAAAAAADULNvMqEv/W/6enZ2tUaNGnXXfxMREpaSkaM6cObWUDgAAAACAmmebGXVJSk1NVVlZmRwOh1JSUn5x/xkzZmj48OFq165dLaQDAAAAAKDm2apQdzqdWrlypffnXxIfH69hw4Zp8eLFNR0NAAAAAIBaYatCXZIaNGhQqf2nTZumnJycKvcXHNZSQY6yKh8PAAAA2FVwWCurIwCoAodpmqbVIaxgGIa2bdumHj16nNPsPQAAABCITNMjh8NWt6aCxaiFrHOun32d/3+sYRhWRwB8GIah/Px8xiZsh7EJuzIMQ1999RVjE7ZjGIY+//xzy8cmRToQeGy39L228Q0S7MbpdCouLs7qGEAFjE3YldPpVPv27a2OAZxWaWmp1REABKA6X6jv+2q9jNJCq2MAAIAqCgmPVLNOl1s+awkAgL/YqlA/ePCgnnnmGX300Uc6cOCAIiMj1alTJ/3ud7/TxRdfrCuvvFIFBQWSpHr16qlJkybq2rWrfv3rX6t3795V6rPsaJHKjv7oz7cBAAAAAECV2apQv/3221VWVqaMjAy1atVKP/74ozZs2KDDhw9795k2bZquv/56lZWVqaCgQH//+9/1m9/8RnfccYduu+0268IDAAAAAOAHtinUi4qKtGnTJi1evFhJSUmSpJYtW6pbt24++9WvX1/R0dGSpBYtWigxMVHR0dGaO3euBg8ezPWTAAAAAICAZptbQIaHhys8PFxr1qzRiRMnKnXsxIkTZZqm3n///RpKBwAAAABA7bBNoR4cHKyMjAwtW7ZMl1xyiX7961/rySef1JdffvmLxzZq1EgXXnih9/p1AAAAAAAClW0KdUkaPHiw1q1bp+eff16pqanKy8vTyJEjlZWV9YvHmqYph8NRCykBAAAAAKg5tirUpZN3c+/bt6+mTp2qN998UyNGjNC8efPOesyhQ4d08OBBxcbG1lJKAAAAAABqhu0K9Z/r0KGDjh49etZ9XnvtNQUFBWnAgAG1lAoAAAAAgJphm7u+Hzp0SHfccYdGjRql+Ph41a9fXzt37tSiRYvUv39/734lJSXav3+/ysvL9cMPP+jvf/+73n77bd11111q06ZNpfsNCW+oIIfpz7cCAABqUUh4pNURAADwK9sU6vXr11f37t316quv6rvvvlN5ebmaNWum6667Trfeeqt3v7lz52ru3LkKCQlRdHS0unfvrldeeUWXXnpplfqN6Zgip9Ppr7cBAAAsYBiG1REAAPAb2xTqoaGhmjFjhmbMmHHGfT744AO/92sYBoU6bMUwDLndbsXHxzM2YSuMTdiVYRj617/+pS5dulgdBQAAv7D9NeoAAAC/JDjYNnMPAABUW53/rcasEOzG6XQqISHB6hhABYxN2BVj0xePrAWAwFfnC/Xt27eruLjY6hgAAADVFhERoZ49e1odAwBQTbYp1NPT05Wdna0ZM2ZoypQp3vY1a9Zo6tSpcrvdkk5+S/y3v/1NLpdL//73v+V0OtW6dWulpaVpzJgxCgsLq1S/xcXFKioq8ut7AQAAAACgqmx1jXq9evX04osvqrCw8Iz7/OEPf9Ajjzyi/v3769VXX9WyZcv0u9/9Tu+//74++eSTWkwLAAAAAID/2WZGXZL69Omjb7/9VgsXLtQ999xTYXtOTo7eeecdPffccxowYIC3PTY2Vv3792cJOwAAAAAg4NlqRj0oKEh33XWXlixZor1791bY/s4776hdu3Y+RfopDodDERERtRETAAAAAIAaY6tCXZIGDhyozp07a+7cuRW2ffvtt2rXrp0FqQAAAAAAqB22K9Ql6e6779ayZcu0a9cun3bTNC1KBAAAAABA7bBloZ6YmKiUlBTNmTPHp71t27bKz8+3KBUAAAAAADXPloW6JM2YMUMffvihtm7d6m0bNmyYdu/erTVr1lTY3zRNHTlypDYjAgAAAADgd7a66/tPxcfHa9iwYVq8eLG37eqrr9Z7772nGTNm6LbbblPfvn0VFRWlr776Sq+88oomTJhw2hvNnU2DBg38HR0AAMAS3FgXAM4Pti3UJWnatGnKycnxvnY4HJozZ47eeustZWZmasGCBXI6nWrTpo2GDx+ulJSUSvfRvXt3OZ1Of8YGAACwjGmacjgcVscAAFSDbQr1jIyMCm2xsbHauXOnT1tQUJDGjh2rsWPH+qVfwzAo1GErhmHI7XYrPj6esQlbYWzCrhibvijSASDw2fYadQAAAAAA6iLbzKhbhW/eYTdOp1MJCQlWxwAqYGzCrs6nsekxPQpyMI8CAHWdpYX60qVL9fjjj2vjxo0KDj4ZpaSkRElJSerVq5fPjeRyc3M1ceJEvffee2rdurW2bt2qcePGKTU1VS+88EKVM/xtx6faU1JY7fcCAABQHTENInVD91SrYwAAbMDSQj05OVlHjx7Vzp071aNHD0nSpk2b1KRJE23fvl3Hjx9XvXr1JJ0s1Fu0aKHWrVtLklwul8aPHy+Xy6V9+/YpJiamShn+W1KkgqKDfnk/AAAAAABUl6Vrq+Li4hQdHa28vDxvW15envr376/Y2Fht27bNpz05OVnSyVn3nJwcjR07Vv369VN2dnZtRwcAAAAAoEZYfhFUcnKycnNzva9zc3OVlJSkxMREb/uxY8e0fft2b6G+cuVKxcXFKS4uTmlpacrMzJRpmpbkBwAAAADAnywv1C+99FJt2bJF5eXlKi4u1hdffOEt1E/NtG/dulUnTpzwFuoul0tpaWmSpNTUVB05csRnVh4AAAAAgEBleaGelJSko0ePaseOHdq8ebPatm2rqKgoJSYmeq9Tz8vLU6tWrdSiRQvl5+drx44dGjp0qCQpODhYQ4YMkcvlsvidAAAAAABQfZY/nq1NmzZq1qyZcnNzVVhYqMTERElSTEyMmjdvri1btig3N1eXXnqppJOz6eXl5UpN/d9dUU3TVGhoqGbOnKmIiAhL3gcAAAAAAP5geaEunbxOPS8vT4WFhZo0aZK3/ZJLLtHHH3+sf/7znxo7dqzKy8u1fPlypaenq2/fvj7nmDp1qlasWKGxY8fWdnwAAAAAAPzGNoX67NmzVV5erqSkJG97UlKSZs+erbKyMiUnJ2vt2rUqLCzU6NGjK8ycDxo0SC6Xq9KFetP6DWWIG9EBAABrxTSItDoCAMAmbFOoHzt2THFxcWrSpIm3PTExUSUlJWrXrp2aNm0ql8ulPn36nHZ5++DBg7Vo0SJ9+eWX6tSp0zn3fX3XPnI6nX55HwAAANXhMT0Kclh+CyEAgMVsUajHxsbK7XZXaG/ZsqVP+4IFC854jm7dup32HL/EMAwKddiKYRhyu92Kj49nbMJWGJuwq/NpbFKkAwAkG9z1HQAAAAAA/I8tZtStFOjfvOP843Q6lZCQYHUMoALGJuzKX2PT9HjkCGIOAwBgvTpfqBd96JJ5aK/VMQAAgIWcjZsqcgBPjgEA2IPlhXp6erqys7M1Y8YMTZkyxdu+Zs0aTZ06VW63W7m5uZo4caIaNmyo9evXq169et79/vnPf+q6666TpKpdo354vzwHCqr/RgAAAAAA8ANbrO+qV6+eXnzxRRUWFp51v/r16+u9997zaXO5XGrRokVNxgMAAAAAoNbYolDv06ePmjRpooULF551v+HDhyszM9P7+tixY8rJydHw4cNrOCEAAAAAALXDFoV6UFCQ7rrrLi1ZskR79575evFrr71WmzZt0n/+8x9J0rvvvquWLVuqS5cutRUVAAAAAIAaZYtCXZIGDhyozp07a+7cuWfc58ILL9Rll12mrKwsSVJmZqZGjRpVWxEBAAAAAKhxtinUJenuu+/WsmXLtGvXrjPuM2rUKGVnZ+v777/Xtm3bNGzYsFpMCAAAAABAzbJVoZ6YmKiUlBTNmTPnjPtcdtllOn78uP74xz/qiiuuUOPGjWsxIQAAAAAANctWhbokzZgxQx9++KG2bt162u3BwcG69tprlZeXx7J3AAAAAMB5x/LnqP9cfHy8hg0bpsWLF59xnzvuuEOTJk3yy2y6s1G0gkyj2ucBAACBy9m4qdURAADwsl2hLknTpk1TTk7OGbeHhoYqKirKL301vGK0nE6nX84FAAACl+nxyBFku8WGAIA6yPJCPSMjo0JbbGysdu7c6X2dnJwst9t9xnMMGDDgrNvPxjAMCnXYimEYcrvdio+PZ2zCVhibsCt/jU2KdACAXfAbCQAAAAAAG7F8Rt1qzArBbpxOpxISEqyOAVTA2IRdnU9j0+MxFRTksDoGAMBitinU09PTlZ2drRkzZmjKlCne9jVr1mjq1KmaO3eupk+frrVr1+r/tXfvYVEV+B/HP8NwEeSiCF4xQ8tRAhSzUIJNTe1imkg3s0wfy/XRtFJ31dbylklrVlqWhmZG5RVxnwwvuWarqVmZmZlkkuulm5BKiAnMnN8fPc4vFiuRgXNw3q/n8Yk558ycz/B8n4bPnDNnGjVqVOH+PXv2VNeuXTVhwoRK7XfT9gM6UXimyvkBAACqon5okHokO8yOAQCwAMsUdUkKCAhQRkaG7rrrLoWFhZVb161bN9WrV0/Z2dkaNmxYuXUfffSR/vvf/+r222+v9D5P/lys/J+Kq5QbAAAAAABPsdRn1JOSkhQREaH58+dXWOfn56fbbrtN2dnZFdZlZWWpXbt2uvLKK2siJgAAAAAA1cZSRd3Hx0ejR4/WG2+8oe+//77C+ttvv12HDh3SRx995F52+vRprV+//qKOpgMAAAAAYDWWKuqS1KNHD7Vt21Zz5sypsO6KK65Q+/btlZWV5V62du1aGYahW265pSZjAgAAAABQLSxX1CVp7NixWr16tQ4ePFhhXVpamtavX6+ioiJJv572ftNNNyk4OLimYwIAAAAA4HGWLOrXXHONkpOTNWvWrArrzh05X7t2rQ4dOqRdu3Zx2jsAAAAA4JJhqau+/9aYMWPUt29fRUdHl1seHBysm266SVlZWTpy5Iguv/xydezY0aSUAAAAAAB4liWPqEuSw+FQ7969lZmZWWFdWlqaPv30Uy1dulRpaWkmpAMAAAAAoHpY9oi6JI0aNUo5OTkVlnfs2FHR0dE6fPiw+vbtW6V91AsJkmHYqvQYAAAAVVU/NMjsCAAAi7BMUU9PT6+wLCoqSnv37j3v9uvWrfPIfrt1vlJ2u90jjwUAAFAVLpchHx8OIACAt7Psqe81xel0mh0BKMfpdCovL4/ZhOUwm7Aqp9Opffv2XRKzSUkHAEgWOqJuFo6mw2rsdrtatmxpdgygAmbz0mS4DNkugXJ45swZsyMAAOAxXl/Uf3gvV84TvLgDALyPX/0gNe7e1uwYAADgf1imqI8fP17Z2dmSJF9fX4WFhcnhcKhXr17q16+ffHz+/yz9ffv2ad68efr444/1888/q0mTJrr22ms1ZMiQCl/n9mdKT55RaX6RR58LAAAAAAAXy1KfUU9JSdHWrVu1adMmZWRkKDExUdOnT9df//pXlZWVSZLee+893XnnnSopKdEzzzyjnJwczZw5UyEhIZo9e7bJzwAAAAAAgKqxzBF1SfL391dkZKQkqVGjRrrqqqvUrl07DRo0SNnZ2br11ls1YcIEXX/99Zo7d677fs2bN1e7du1UWFhoVnQAAAAAADzCUkX9fDp37qw2bdpow4YNqlevnk6cOKEHHnjgvNuGhobWcDoAAAAAADzLUqe+/56WLVvq2LFjOnTokPs2AAAAAACXolpR1A3DkM1mk2EYZkcBAAAAAKBa1YqifvDgQUVFRbmv6J6Xl2dyIgAAAAAAqofli/r27dv11VdfqWfPnrruuutUv359LViw4LzbcjE5AAAAAEBtZ6mLyZWUlOj48eNyuVzKz8/Xli1bNH/+fHXt2lV9+/aV3W7Xk08+qUceeUTDhg3TwIEDddlll+nEiRNau3atvvvuOz333HOV2qdfvUD5cEY9AMAL+dUPMjsCAAA4D0sV9S1btig5OVm+vr4KDQ1VmzZtNHHiRKWmpsrH59eD/927d9eSJUv0yiuvaMyYMSoqKlKTJk3UqVMnPfLII5XeZ6OuDtntdg8/EwAAagfDZcjmYzM7BgAA+A3LFPX09HSlp6df0LZxcXF64YUXPLJfp9NJUYelOJ1O5ebmyuHgTSRYC7N5aaKkAwBgPZb/jDoAAAAAAN7EMkfUzcJRIViN3W5XTEyM2TGACphNmMlluORj4/gCAMA7eH1R3563WKd++dbsGAAA4HeEBTZW8hUPmB0DAIAaY8miPn78eBUWFuqll15yL1u3bp0efvhh+fr6avHixerYsaN7XXFxsXr37q2ePXtq3LhxldpX4Zkf9dOZwx7LDgAAAABAVdSKc8hWrFihsWPH6qmnntK9996rCRMmqLi42L1+5syZqlOnzkVd9R0AAAAAACuxfFHPyMjQtGnT9NxzzyktLU2jR4+Wn5+fnnnmGUnSjh07tGLFCj399NMKCAgwOS0AAAAAAFVjyVPfz5k5c6beeustzZ8/X507d5YkBQQE6Omnn1b//v2VlJSkp556SsOGDVNsbKzJaQEAAAAAqDrLFvX//Oc/+ve//63XXnvNXdLPiYuL09ChQzVy5Ei1bdtWw4YNMyklAAAAAACeZdlT3x0Oh5o1a6YXXnhBp0+frrB++PDhcrlcGjp0qHx9Lft+AwAAAAAAlWLZot6oUSNlZmbqhx9+0AMPPKCioqJy68+Vc0o6AAAAAOBSYtmiLknNmjXTG2+8ofz8/POWdQAAAAAALjWWPxzdpEkTZWZmauDAgXrggQe0YMECBQcHe+zxQwMbyrCVeezxAACAZ4UFNjY7AgAANcryRV2SGjdu7C7rQ4YM0cKFCz1W1ju3vF92u90jjwUAAKqHy3DJx2bpEwEBAPAYSxb19PT0CssaNWqk9evXl1uWm5tb5X05nU6KOizF6XQqNzdXDoeD2YSlMJswEyUdAOBNeNUDAAC1XmBgoNkRAADwGEseUa9JHBWC1djtdsXExJgdA6iA2YRVeWo2DcMlG0fuAQAWYImiPn78eGVnZ+uuu+7S1KlTy62bMmWK3nrrLaWmpio9Pd297f9KTk7WwoULK73vk988L9cvhy42OgAAuAT4BjZX/VZ/NzsGAACSLFLUpV+v7p6Tk6PHHntMderUkSSdPXtWa9asUdOmTcttm5KSohkzZpRb5u/vf1H7LTtzTM4zBy8uNAAAAAAAHmaZoh4TE6MjR45ow4YN6tOnjyRpw4YNatKkiaKiospt6+/vr8jISDNiAgAAAABQrSz1Qay0tDStWrXKfTsrK0v9+vUzMREAAAAAADXLUkW9T58++uSTT3Ts2DEdO3ZMu3btch9d/63NmzcrISGh3L958+aZkBgAAAAAAM+yzKnvkhQeHq4uXbooOztbhmGoS5cuCg8Pr7BdYmKiJk+eXG5ZWFhYDaUEAAAAAKD6WKqoS7+e/n7uyu+TJk067zaBgYFq0aJFTcYCAAAAAKBGWK6op6SkqLS0VDabTcnJyWbHAQAAAACgRlmuqNvtdq1du9b98/mUlJTo+PHjFe53vtPk/4xvYDP52EorHxQAAFwyfAObmx0BAAA3yxV1SQoODv7D9Vu2bKlwtD06Olrr1q2r9L7qRT/yu28IAAAA72EYLtlslrrOLgDAS9kMwzDMDmEGp9Op3bt3Ky4uTv7+/mbHAdycTqdyc3PlcDh4EwmWwmzCqphNWNW5vzfbt2/PbMJSmE3zXOjvnreNAQAAAACwEEue+l6TeAcJVmO32xUTE2N2DKACZhNWVZtmk9PrAQAXwuuL+g9fbZXzzCmzYwAAgEucX1CYGre53uwYAIBawBJFffz48crOztZdd93l/g71c6ZMmaK33npLqampSk9P108//aTZs2fr/fffV35+vsLCwtSmTRsNHz5cV199daX3XVpcqNLiAk89FQAAAAAAqsQSRV2SmjRpopycHD322GOqU6eOJOns2bNas2aNmjZt6t5u5MiRKi0tVXp6upo3b66CggJt375dJ0+eNCk5AAAAAACeY5miHhMToyNHjmjDhg3q06ePJGnDhg1q0qSJoqKiJEmFhYX6+OOPlZmZqWuvvVaS1KxZM8XHx5uWGwAAAAAAT7LU1UzS0tK0atUq9+2srCz169fPfTsoKEhBQUHauHGjSkpKzIgIAAAAAEC1slRR79Onjz755BMdO3ZMx44d065du9xH1yXJ19dX6enpWr16tTp27Ki7775bzz77rPbv329iagAAAAAAPMdSRT08PFxdunRRdna2Vq1apS5duig8PLzcNjfeeKO2bNmil19+WSkpKdq5c6f69etX7kg8AAAAAAC1laWKuvT/p79nZ2crLS3tvNsEBATouuuu04gRI7R06VKlpqbqhRdeqOGkAAAAAAB4nuWKekpKikpLS1VWVqbk5OQLus8VV1yh4uLiak4GAAAAAED1s8xV38+x2+1au3at++ffOnHihB5++GGlpaXJ4XCobt262rt3rxYsWKAbbrjhovbnFxQqH5tR5dwAAAB/xC8ozOwIAIBawnJFXZKCg4PPu7xu3bpq166dFi9erMOHD6usrEyNGzfWHXfcoWHDhl3Uvhq1Tq7whgAAAEB1MAyXbDbLndAIALAYm2EYXnk42el0avfu3YqLi5O/v7/ZcQA3p9Op3NxcORwO3kSCpTCbsCpmE1Z17u/N9u3bM5uwFGbTPBf6u+ctXQAAUOudOXPG7AgAAHiMJU99r0m8gwSrsdvtiomJMTsGUAGzWfsYhiGbzWZ2DAAAUEmWKeoOh+MP1z/00ENKTU3VDTfcoPDwcL377rvlPst+2223qXv37ho5cmSl9vvZZ5+pqKjoojIDAGBVISEhSkhIMDsGAAC4CJYp6lu3bnX/nJOTozlz5mjdunXuZUFBQTpx4oQk6fTp03r11Vc1atSoKu+3qKhIhYWFVX4cAAAAAAA8wTKfUY+MjHT/CwkJkc1mK7esbt267m3vvfdeLVq0SAUFBSYmBgAAAADA8yxT1Cvj1ltvVYsWLTR37lyzowAAAAAA4FG1sqjbbDaNGTNGy5cv1+HDh82OAwAAAACAx9TKoi5JKSkp6tChg2bPnm12FAAAAAAAPKbWFnVJGjt2rHJycrRv3z6zowAAAAAA4BG1uqjHx8erR48emjVrltlRAAAAAADwCMt8PdvFevTRR3XrrbfKbrebHQUAAAAAgCqr9UU9OjpaaWlpWrZs2UXdPzg42MOJAAAwX0hIiNkRAADARbIZhmGYHcIMTqdTu3fvVvv27TkaDwC4JBmGIZvNZnaMasdrOqyK2YRVMZvmudDffa3+jLonOJ1OsyMA5TidTuXl5TGbsBxms/bxhpIOAMClqNaf+l5VvIMEq7Hb7WrZsqXZMYAKatNsugyXfGxe/140AACopby+qC//fJu+O33K7BgAAA9pFBymAe1SzI4BAABw0SxZ1MePH6/s7GxJkp+fn5o0aaLbbrtNw4YNk6/vr5GHDBmibdu2admyZYqPj7/off14ulDHCn/ySG4AAAAAAKrKsucFpqSkaOvWrVq/fr0GDx6sF198UQsXLpQkffvtt9q1a5cGDBigrKwsk5MCAAAAAOA5li3q/v7+ioyMVLNmzXTPPfcoKSlJmzZtkiStWrVKXbt2Vf/+/fXOO+/ol19+MTktAAAAAACeYdmi/r8CAgJUWloqwzC0atUq9enTR61atdJll12mdevWmR0PAAAAAACPsHxRNwxD27Zt09atW5WYmKht27bpzJkzSk5OliT16dOH098BAAAAAJcMyxb1zZs3KyEhQXFxcXrwwQd1yy23aOTIkcrKytItt9zivqjcrbfeql27dunw4cMmJwYAAAAAoOosedV3SUpMTNTkyZPl5+enhg0bytfXVydPntS7776rsrIyLVmyxL2t0+lUVlaWHn30URMTAwAAAABQdZYt6oGBgWrRokW5ZW+//bYaN26suXPnllv+wQcf6NVXX9WoUaNkt9trMiYAAAAAAB5l2aJ+PitXrtSNN96o1q1bl1vepEkTzZo1S1u2bFGXLl0q9ZgN64bKKcODKQEAZmoUHGZ2BAAAgCqpNUV979692r9/v6ZNm1ZhXUhIiDp37qyVK1dWuqjfGZfEUXgAuMS4DJd8bJa9DAsAAMAfsmRRT09Pr7AsNjZWubm5v3ufjIyMi9qX0+mkqMNSnE6ncnNz5XA4mE1YSm2aTUo6AACozfhLBgAA1HqBgYFmRwAAwGMseUS9Jln9qBC8j91uV0xMjNkxgAqYTVgVs3lpMlwu2Xw4pgTAO1myqB8/flzz5s3T5s2b9cMPP6hBgwZq27at7r//fg0aNOgP7/v6668rMTHxgvdV+N5KGSe+r2JiAAAAeIq9fkOFde9vdgwAMI3livrRo0fVv39/hYaG6u9//7tat26tsrIybd26VRMnTtTWrVvd206fPl1FRUWaMWOGe1lYWOWu9us8eVyu/GMeyw8AAAAAQFVYrqhPmTJFNptNK1asUFBQkHv5lVdeqbS0NIWGhrqX1alTRyUlJYqMjDQjKgAAAAAAHmepD/6cPHlSW7Zs0YABA8qV9HN+W9IBAAAAALgUWaqoHz58WIZhqGXLlmZHAQAAAADAFJYq6oZhmB0BAAAAAABTWaqot2jRQjabTXl5eWZHAQAAAADAFJYq6vXq1VNycrLefPNNFRcXV1hfWFhoQioAAAAAAGqOpYq6JE2aNEkul0t33HGH1q9fr0OHDungwYN6/fXXddddd5kdDwAAAACAamW5r2dr3ry5Vq1apXnz5unpp5/Wjz/+qPDwcF111VWaPHmyx/dnrxcpH8Pp8ccFAADAxbHXb2h2BAAwlc3w0iu4OZ1O7d69W+3bt5fdbjc7DgAAAH7DcLlk87HcyZ+Vwt+bsCpm0zwX+ruv3f/38wCnk6PpsBan06m8vDxmE5bDbMKqmM1LU20v6QBQFZY79b2m8Q4SrMZut6tly5ZmxwAqYDZhVZ6aTZfLkI+PzQOJAACoGq8v6pu2H9CJwjNmxwAAACaqHxqkHskOs2MAACDJIkV9/Pjxys7O1pgxYzR06FD38o0bN2rEiBHKzc3Vhx9+qIEDB0qSbDab6tatq+bNmyspKUmDBg1Sw4YXd9GRkz8XK/+nil8FBwAAAACAGSzz4Z+AgABlZGTo1KlTf7jdunXrtGXLFq1cuVIPPvigtm/frt69eys3N7eGkgIAAAAAUH0sU9STkpIUERGh+fPn/+F2DRo0UGRkpKKjo9WrVy8tWbJE9evXr5avbgMAAAAAoKZZpqj7+Pho9OjReuONN/T9999f8P3q1Kmju+++W7t27VJBQUE1JgQAAAAAoPpZpqhLUo8ePdS2bVvNmTOnUvc7d6XXY8eOVUcsAAAAAABqjKWKuiSNHTtWq1ev1sGDBy/4PoZhVGMiAAAAAABqjuWK+jXXXKPk5GTNmjXrgu+Tl5cnSYqKiqquWAAAAAAA1AhLfD3b/xozZoz69u2r6OjoP932l19+0bJly3TNNdcoPDy8BtIBAAAAAFB9LFnUHQ6HevfurczMzArrCgoKdPbsWZ0+fVpffPGFFixYoBMnTujFF1+8qH3VCwmSYdiqGhkAANRi9UODzI4AAICbJYu6JI0aNUo5OTkVlt90002y2WwKCgpS8+bNdd1112nw4MGKjIy8qP1063yl7HZ7VeMCAIBazuUy5OPDm/cAAPNZoqinp6dXWBYVFaW9e/e6bycmJio3N9dj+zx3AbqSkhL5+/t77HGBqnI6nTpw4ICuvJI3kWAtzCasypOz6XR6KBSgX2fzt/8FrILZNM+53/mfXRDdZnjpJdNLSkr0+eefmx0DAAAAAOBl4uLi/vCAsdcWdZfLpbKyMvn4+Mhm4zQ3AAAAAED1MgxDLpdLvr6+8vH5/S9h89qiDgAAAACAFVnue9QBAAAAAPBmFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAAL8cqi/uabb6pbt26Ki4vTHXfcoT179pgdCV5m/vz5SktLU0JCgjp37qzhw4crLy+v3DZnz57VlClTlJiYqISEBI0cOVL5+fkmJYa3euWVV+RwODR9+nT3MmYTZvnhhx80duxYJSYmKj4+Xr1799bnn3/uXm8YhmbPnq3k5GTFx8dr0KBBOnTokHmB4RWcTqeef/55devWTfHx8erevbvmzp0rwzDc2zCbqAkfffSRhg0bpuTkZDkcDm3cuLHc+guZw5MnT2rMmDHq0KGDOnbsqMcee0ynT5+uwWeBc7yuqOfk5GjGjBkaMWKEsrOz1aZNGw0ZMkQFBQVmR4MX2blzpwYMGKDly5dr0aJFKisr05AhQ1RcXOze5qmnntJ7772n559/XpmZmfrxxx/10EMPmZga3mbPnj1aunSpHA5HueXMJsxw6tQp9e/fX35+fsrIyNA777yjcePGKSwszL1NRkaGMjMzNXnyZC1fvlyBgYEaMmSIzp49a2JyXOoyMjK0ZMkSPfHEE8rJydHYsWO1YMECZWZmltuG2UR1Ky4ulsPh0KRJk867/kLmcOzYsfr666+1aNEizZs3Tx9//LGeeOKJmnoK+C3Dy9x+++3GlClT3LedTqeRnJxszJ8/38RU8HYFBQVG69atjZ07dxqGYRiFhYXGVVddZaxdu9a9zddff220bt3a+PTTT01KCW9SVFRk9OzZ0/jggw+Me++913jyyScNw2A2YZ6ZM2ca/fv3/931LpfLuO6664wFCxa4lxUWFhqxsbHGmjVraiIivNTQoUONCRMmlFv20EMPGWPGjDEMg9mEOVq3bm28++677tsXMofnXs/37Nnj3ub99983HA6H8f3339dceBiGYRhedUS9pKREX3zxhZKSktzLfHx8lJSUpE8//dTEZPB2P//8syS5jwzt3btXpaWl5Wa1VatWatq0qXbv3m1GRHiZqVOn6vrrry83gxKzCfNs2rRJsbGxGjVqlDp37qy+fftq+fLl7vVHjx7V8ePHy81mSEiI2rVrx2s8qlVCQoJ27Nihb775RpK0f/9+ffLJJ/rLX/4iidmENVzIHH766acKDQ1VXFyce5ukpCT5+PjwUWET+JodoCadOHFCTqdTDRo0KLe8QYMGFT4fDNQUl8ulp556Sh06dFDr1q0lSfn5+fLz81NoaGi5bRs0aKDjx4+bERNe5J133tG+ffu0cuXKCuuYTZjlyJEjWrJkiQYPHqxhw4bp888/15NPPik/Pz+lpqa65+98r/FcQwHVaejQoSoqKtLNN98su90up9OpRx99VH369JEkZhOWcCFzmJ+fr/Dw8HLrfX19FRYWxmu8CbyqqANWNGXKFB04cEBvvfWW2VEAfffdd5o+fbpeffVVBQQEmB0HcDMMQ7GxsRo9erQkKSYmRgcOHNDSpUuVmppqcjp4s7Vr1+rtt9/WrFmzdMUVV+jLL7/UjBkz1LBhQ2YTwEXzqlPf69evL7vdXuHCcQUFBYqIiDApFbzZ1KlTtXnzZi1evFiNGzd2L4+IiFBpaakKCwvLbV9QUKDIyMiajgkv8sUXX6igoED9+vVTTEyMYmJitHPnTmVmZiomJobZhGkiIyPVqlWrcstatmypb7/91r1eEq/xqHH//Oc/NXToUPXq1UsOh0N9+/bV/fffr/nz50tiNmENFzKHERER+umnn8qtLysr06lTp3iNN4FXFXV/f39dddVV2r59u3uZy+XS9u3blZCQYGIyeBvDMDR16lS9++67Wrx4sZo3b15ufWxsrPz8/MrNal5enr799lu1b9++htPCm3Tq1Elvv/22Vq9e7f4XGxur3r17u39mNmGGDh06uD8DfM6hQ4fUrFkzSVJUVJQiIyPLzWZRUZE+++wzXuNRrX755RfZbLZyy+x2u/vr2ZhNWMGFzGFCQoIKCwu1d+9e9zY7duyQy+VSfHx8jWf2dl536vvgwYM1btw4xcbGKj4+XosXL9aZM2fUr18/s6PBi0yZMkVr1qzRSy+9pLp167o/9xMSEqI6deooJCREaWlpSk9PV1hYmIKDg/Xkk08qISGBMoRqFRwc7L5WwjlBQUGqV6+eezmzCTPcf//96t+/v+bNm6ebb75Ze/bs0fLlyzV16lRJks1m08CBA/Xyyy+rRYsWioqK0uzZs9WwYUN1797d5PS4lHXt2lXz5s1T06ZN3ae+L1q0SGlpaZKYTdSc06dP6/Dhw+7bR48e1ZdffqmwsDA1bdr0T+ewVatWSklJ0eOPP64pU6aotLRU06ZNU69evdSoUSOznpbXshnn3u7zIm+88YYWLlyo48ePq23btpo4caLatWtndix4kf/9XupzZsyY4X7T6OzZs0pPT9c777yjkpISJScna9KkSZx6hBp33333qU2bNvrHP/4hidmEed577z09++yzOnTokKKiojR48GDdeeed7vWGYWjOnDlavny5CgsLdfXVV2vSpEmKjo42MTUudUVFRZo9e7Y2btyogoICNWzYUL169dKIESPk7+8vidlEzfjwww81cODACstTU1OVnp5+QXN48uRJTZs2TZs2bZKPj4969uypiRMnqm7dujX5VCAvLeoAAAAAAFiVV31GHQAAAAAAq6OoAwAAAABgIRR1AAAAAAAshKIOAAAAAICFUNQBAAAAALAQijoAAAAAABZCUQcAAAAAwEIo6gAAAAAAWAhFHQAAAAAAC6GoAwCAGnP06FE5HA59+eWXZkcBAMCyKOoAAAAAAFgIRR0AAC/icrmUkZGhHj16KDY2Vl26dNHLL78sScrNzdXAgQMVHx+vxMREPf744zp9+rT7vvfdd5+mT59e7vGGDx+u8ePHu29369ZN8+bN04QJE5SQkKAuXbpo2bJl7vU33HCDJKlv375yOBy67777qvPpAgBQK1HUAQDwIrNmzVJGRoaGDx+unJwcPfPMM4qIiFBxcbGGDBmisLAwrVy5Us8//7y2bdumadOmVXofixYtUmxsrFavXq177rlHkydPVl5eniRpxYoVkqTXXntNW7du1QsvvODR5wcAwKWAog4AgJcoKirS66+/rr/97W9KTU3VZZddpo4dO+qOO+7QmjVrVFJSoqefflqtW7dW586d9cQTT+hf//qX8vPzK7Wfv/zlLxowYIBatGihBx98UPXr19eHH34oSQoPD5ck1atXT5GRkapXr56nnyYAALUeRR0AAC+Rl5enkpISderUqcK6gwcPyuFwKCgoyL2sQ4cOcrlc+uabbyq1H4fD4f7ZZrMpIiJCBQUFFx8cAAAvQ1EHAMBLBAQEVOn+NptNhmGUW1ZWVlZhO19f3z+9HwAA+H0UdQAAvMTll1+uOnXqaMeOHRXWtWrVSrm5uSouLnYv27Vrl3x8fBQdHS3p19PWjx8/7l7vdDp14MCBSmXw8/Nz3xcAAJwfRR0AAC8REBCgBx98UDNnztTq1at1+PBh7d69WytWrFDv3r3l7++v8ePH66uvvtKOHTs0bdo03XbbbYqIiJAkderUSe+//742b96sgwcPavLkySosLKxUhgYNGqhOnTrasmWL8vPz9fPPP1fHUwUAoFbz/fNNAADApWL48OGy2+2aM2eOfvzxR0VGRuruu+9WYGCgFi5cqOnTp+v2229XYGCgevbsWe6r19LS0rR//36NGzdOdrtdgwYNUmJiYqX27+vrq4kTJ2ru3LmaM2eOOnbsqMzMTE8/TQAAajWbwYfGAAAAAACwDE59BwAAAADAQijqAAAAAABYCEUdAAAAAAALoagDAAAAAGAhFHUAAAAAACyEog4AAAAAgIVQ1AEAAAAAsBCKOgAAAAAAFkJRBwAAAADAQijqAAAAAABYCEUdAAAAAAAL+T8BFecUr6psPgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAMKCAYAAAAxkcfEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7PklEQVR4nOzdeXSV1bn48ec95+RkHoEECEOYQQYFUYM4VBwqonWeerH1Wlt7O6kdtLWtHW9722pbxzq03lq1tdrrPAuOKCIgIAQIY4CQEEhC5uGMvz9c8uPkHJ7nSE5JeP1+1upa993Ps/d+E1nrrndn72c70Wg0KgAAAAAAAAfB09cvAAAAAAAADl8sLAAAAAAAgIPGwgIAAAAAADhoLCwAAAAAAICDxsICAAAAAAA4aCwsAAAAAACAg8bCAgAAAAAAOGgsLAAAAAAAgIPGwgIAAAAAADhoLCwAAAB8yjzxxBMyYcIEWb16dV+/CgDABXx9/QIAABxunnjiCfnBD36w79nv98vQoUNl9uzZ8rWvfU0GDhzYh2+HTzP+bQIA+gILCwAAHKRvfetbMmzYMAkEArJ8+XL5xz/+IW+++aY899xzkpmZ2devh08x/m0CAA4lFhYAADhIJ510kkydOlVERC6++GIpKCiQ//3f/5WFCxfK2Wef3cdvh08z/m0CAA4laiwAAJAi5eXlIiJSXV0tIiJNTU3ym9/8Rs455xyZPn26zJgxQ66++mpZv359XN/u7m6544475LOf/axMnTpVTjjhBPnGN74h27dv3zfmhAkTDvi/K664Yt9YS5YskQkTJsgLL7wgv//972X27Nly1FFHyVe/+lWpra2Nm3vVqlXypS99SY4++mg58sgjZf78+bJ8+fKEP+MVV1yRcP477rgjLvfpp5+WCy64QKZNmybHHnusXH/99Qnn1362/UUiEfnrX/8q8+bNk6lTp8rxxx8vN998szQ3N8fkzZkzR6655pq4eX7+85/HjZno3f/85z/H/U5FRAKBgNx+++1y+umny5QpU+Tkk0+W3/72txIIBBL+rvZ3oN/bx//7+N/Mxx555BGZN2+eTJkyRU444QT52c9+Ji0tLeY8B9Lz3+b+P9Ovf/1rKS8vl6OOOkq+/vWvS2NjY1z/ZN7niiuukLPPPls2bdokV1xxhRx55JFy4oknyv333x83Xm9+lwCA/ocdCwAApMjHiwAFBQUiIrJjxw5ZsGCBnHnmmTJs2DCpr6+Xf/7znzJ//nx5/vnnpaSkREREwuGwXHPNNbJ48WKZN2+efOELX5D29nZ55513ZMOGDTJixIh9c5x99tly0kknxcz7+9//PuH7/OlPfxLHceTLX/6yNDQ0yIMPPihXXnmlPP3005KRkSEiIosXL5Yvf/nLMmXKFPnGN74hjuPIE088IV/84hfl73//u0ybNi1u3MGDB8u3v/1tERHp6OiQn/70pwnnvu2222Tu3Lly0UUXSWNjozz88MPyH//xH/LUU09JXl5eXJ9LL71Ujj76aBERefXVV+XVV1+Nid98883y5JNPygUXXCBXXHGFVFdXyyOPPCJr166Vf/zjH5KWlpbw9/BJtLS0yH333RfXHolE5L/+679k+fLlcskll8iYMWNkw4YN8uCDD0pVVZXcfffd5tj7/94+9tZbb8lzzz0X03bHHXfInXfeKccff7xcfvnlsnXrVvnHP/4hq1evPuifs+e/zY/98pe/lLy8PPnGN74hO3fulAcffFB+/vOfyx//+MeDep/m5ma5+uqr5fTTT5e5c+fKyy+/LLfccouMHz9eTj75ZBFJze8SANC/sLAAAMBBamtrk8bGRgkEAvLBBx/IXXfdJRkZGXLKKaeIyEd/DX/55ZfF4/n/GwTPPfdcmTt3rvzrX/+Sr3/96yIi8tRTT8nixYvlBz/4gVx55ZX7cr/yla9INBqNmfOII46Qc889N6Yt0V+ERT76yHvhhRckJydnX9/rrrtOHnvsMfnCF74g0WhUfvrTn8pxxx0nf/7zn8VxHBERueyyy2TevHnyxz/+UR544IGYMYPBoOTl5e17h8bGxriFhZ07d8odd9wh1113nXz1q1/d137GGWfI+eefL3//+99j2sPhsIiIzJgxY9+427dvj1lYWLZsmTz++ONyyy23yDnnnLOv/bjjjpOrr75aXnrppZj2g3XvvfeKz+eTyZMnx7Q/++yz8u6778pDDz0kM2fO3Nc+btw4+clPfiIffPCBzJgxQx07Nzc37r9dfX19zMJCY2Oj3HvvvXLCCSfI/fffv+/fzujRo+XnP/+5PPPMM3LhhReaP4f1b/NjBQUF8sADD+z7bx+JROShhx6S1tZWyc3N/cTvs3v3bvnNb34j5513noiIXHTRRTJnzhz5v//7v30LC6n4XQIA+heOQgAAcJCuvPJKmTVrlpx88sly/fXXS3Z2ttx55537diL4/f59H2LhcFj27t0rWVlZMmrUKFm7du2+cV555RUpLCyU+fPnx83x8QffwTjvvPP2LSqIiJx55pkyaNAgefPNN0VEZN26dVJVVSXnnHOO7N27VxobG6WxsVE6Ojpk1qxZsnTpUolEIjFjBgIB8fv96ryvvvqqRCIRmTt37r4xGxsbZeDAgTJy5EhZsmRJTH4wGBQRUcd96aWXJDc3V2bPnh0z5uTJkyUrKytuzFAoFJPX2Ngo3d3d6nvX1dXJww8/LF/72tckOzs7bv4xY8bI6NGjY8b8+IhBz/kP1rvvvivBYFC+8IUvxCxIXXzxxZKTk7Pvv53F+rf5sUsuuSTm39jMmTMlHA7Lzp07D+p9srKyYhZP/H6/TJ06VXbs2LGv7VD9LgEAhw47FgAAOEg333yzjBo1SrxerwwcOFBGjRoV8/EViUTkb3/7m/z973+X6urqfX+ZF4ndkr59+3YZNWqU+Hyp/X/LI0eOjHl2HEdGjhy576OxqqpKRERuvPHGA47R2toq+fn5+5737t0bN25PVVVVEo1G5YwzzkgY7/lzfnxWPysr64Bjbtu2TVpbW2XWrFkJ4w0NDTHPixYtOmDugdx+++1SXFwsl156qbz88stx82/evDnp+Q9WTU2NiHy0I2B/fr9fhg8fvu+/ncX6t/mxoUOHxjx/fETl4/8mn/R9Bg8eHLcYlp+fL5WVlfueD9XvEgBw6LCwAADAQZo2bdq+yvuJ3HPPPXLbbbfJhRdeKNdee63k5+eLx+ORX/3qV3FHHPrCx+9www03yKRJkxLm7P+xHwgEZM+ePXL88cer40YiEXEcR+6//37xer3qmCIfHQcQERk4cKA65oABA+SWW25JGC8qKop5PvLII+W6666LaXv44Ydl4cKFCftv3rxZnnzySfnd736XsIZBJBKR8ePHyw9+8IOE/QcPHnzAd+8L1r/NjyVabBCRg/73mei/d0+H2+8SAGBjYQEAgH+Tl19+WY477jj51a9+FdPe0tIihYWF+55HjBghq1atkmAwmJIChB/btm1bzHM0GpVt27btuxlh+PDhIiKSk5NjLhaIiKxfv16CwaBMmTJFzRsxYoREo1EZNmyYjBo1yhx306ZN4jiOmjtixAhZvHixzJgxY1/hSU1hYWHcz7RgwYID5t96660yceJEOeussw44//r162XWrFm9Op5i+XgHwZYtW/b99xH5aFGnuro6qf9O/f19DtXvEgBw6FBjAQCAfxOv1xv3l98XX3xR6urqYtrOOOMM2bt3rzzyyCNxY/RmZ8NTTz0lbW1t+55feukl2bNnz75bJaZMmSIjRoyQBx54QNrb2+P697x28KWXXhKv1xtXALCnM844Q7xer9x5551x7x+NRmXv3r37nkOhkLzyyisybdq0uLoG+5s7d66Ew+GENwaEQqFeXcW4cuVKWbhwoXz3u9894Ifu3Llzpa6uTh577LG4WFdXl3R0dBz0/Ps7/vjjJS0tTR566KGY392//vUvaW1t3VcA8VD5d7zPofpdAgAOHXYsAADwb/KZz3xG7rrrLvnBD34g06dPlw0bNsizzz4b85dfkY+KLD711FPy61//Wj788EM5+uijpbOzUxYvXiyXX365nHbaaQc1f35+vnz+85+XCy64YN91kyNHjpRLLrlERD7aBv/LX/5SvvzlL8vZZ58tF1xwgZSUlEhdXZ0sWbJEcnJy5J577pGOjg555JFH5KGHHpKysrKY4noffwRWVlbKihUrZPr06TJixAi57rrr5NZbb5WdO3fKaaedJtnZ2VJdXS0LFiyQSy65RL70pS/Ju+++K7fddptUVlbKPffco/4sxx57rFx66aVy7733yrp162T27NmSlpYmVVVV8tJLL8kPf/hDOfPMMw/q97Ro0SKZPXu2+tf3c889V1588UX5yU9+IkuWLJEZM2ZIOByWLVu2yEsvvSR//vOfkzp6YCkqKpJrrrlG7rzzTrn66qtlzpw5snXrVvn73/8uU6dOlc997nO9nqOv3+dQ/S4BAIcOCwsAAPybfPWrX5XOzk559tln5YUXXpAjjjhC7r33Xrn11ltj8rxer9x///3ypz/9SZ577jl55ZVXpKCgQGbMmLHv2MLBzl9ZWSn33XeftLe3y6xZs+QnP/mJZGZm7ss57rjj5J///Kfcfffd8vDDD0tHR4cMGjRIpk2bJpdeeqmIfLRz4ePaBps3b5Ybbrghbq5XX31VcnJyZPr06SLy0VWZZWVl8te//lXuuusuEfno7Pzs2bNlzpw5IiLy2muvSVpamtx3331y4oknmj/Pz3/+c5kyZYo8+uij8oc//EG8Xq+UlpbK5z73uV5dT+g4jnznO99Rczwej9x1113y17/+VZ5++ml59dVXJTMzU4YNGyZXXHFFUkc+kvXNb35TioqK5OGHH5Zf//rXkp+fL5dccol8+9vfTulRmb56n0P5uwQAHBpOtD9UjwIAACmzZMkS+cIXviC33XbbQf8Vf3/V1dVy6qmnysKFC2XYsGEJc+644w7ZuXOn/M///E+v5wMAAIcXaiwAAAAAAICDxlEIAACgysrKknPOOSfumsj9TZgwQYqLiw/hWwEAgP6ChQUAAKAqKiraV2PhQM4444xD9DYAAKC/6dMaCxdccIGsXbt23/VFHo9H5s2bJ7fccsu+85yJ/PGPf5S5c+dKdXW1fOELX5Campp9YwwfPlz+8Ic/qNWEr7vuOnnxxRfj2seOHSvPP/+8iIgsXrxYfvzjH8uOHTv2xUtLS+W2227bN/Y555wjGzZsiBlj8uTJ8sQTT4jI/z/jmsjjjz8u06ZNO+A7AgAAAABwOOjTGguVlZUxdyJHIhF59tln5W9/+5s0NTUdsN+WLVtERGTt2rWyc+fOmDF27NghF198sQSDwQP2/8///E/JyMiIax8xYsS+//u+++6LWVQQEdm5c6csW7ZMREQCgUDcooKISEVFhTQ0NIiIqFtCd+7cecAYAAAAAACHiz5dWAiHwwnb7777btm7d+8B+6Wnp4vI/787u6doNCo1NTUH7P/Vr35Vurq64trfeeedff/3u+++m7Dv7bffLiIi69evP+D4X/nKV0REpL6+/oA5B3p3AAAAAAAOJ/2yxkJzc7P6F/2WlhYRkX1HDhLRCkw1NjYmbO/u7pZgMCjt7e0H7PvxgsCaNWsOmPPxosMHH3xwwJxAIHDAWE+RSERCoZB4PB5xHCfpfgAAAAAAHIxoNCqRSER8Pp94PPqehD5dWPB4PAl3LXz8IX0gr7/+unz729+WioqKA+Y8/fTTcvXVVx/Ue3V3d5s5bW1tB4x9/O7PPvvsAXPeeustufzyy5N6n1AoJKtXr04qFwAAAACAVJk6dar4/X41p08XFrS6kYmOKnzs4x0H2nGC1157Ta6++mqZMGHCvra8vDx577331HdqbGyUkpISNaerqyupHQe1tbUHjK1atcrs/7GPV4emTp0qXq836X4AAAAAgP4jEo1INBI9LL7rwuGwrF692tytINLHCwuZmZkHPHbw3HPPHbDfx7ULIpHIAXO2bdsmr776akxbW1ubesxB5KObKj6+GeJAfvWrX0llZaWaIyIybNiwA9ZiaG5uNvt/7OPjD16v97D4BwgAAAAAiOeJikQcOay+65I5jt+nxRu1mxt6W9ywublZOjs749qtX8q4cePiboPoad68eVJXV6fmrF27Vl3E0I56AAAAAADcJxrt00/wf5s+/am04wQ+X+82UwSDwbjrHiORiFRXV6v9SkpK1CMMIh8dSUhLS1NzKioqZM+ePWrOtm3b1DgAAAAAwD3cWou/3y6XDB8+vNdjbNmyJebZ4/HI6NGj1T7nnHOOlJWVqTk7d+6UwsJCNaeoqEitEyEisnz5cjUOAAAAAHCRA5cZPKz124WFDRs2qPGVK1eaY6xduzbm2XEc9fiFiMi9995r7jRYsWKFWavhQFda7o+bHgAAAADg0yPquHNloc8WFqxbEbTrHEU+Wliw6iVkZGTEPIfDYbnpppvUPqNGjYrr11NmZqa5QDFw4EA1LiIyePBgMwcAAAAA4A6OS7cs9NnCwoIFC9R4S0uLGq+oqFCvqxQRmTZtWsyz4zjy/e9/X+3T2toqNTU1as5vfvMb9UYKEZHXX39djYuIjBgxwswBAAAAALgDxRtTbP78+Wo8OztbjW/atMmco+dxhWg0Ks8884zaZ/fu3bJz5041x3Ecc7fE1q1bzfebPXu2mQMAAAAAcAeKN6ZYSUmJGrdqGFh1EEREmpqaYp7T09PlsssuU/s0NDRIaWmpmtPa2mreOxoOh833s45cAAAAAABcxJ0nIfpv8caexxh6smowiHxUL2F/3d3dcvXVV6t9qqqqZNCgQWpOOByWvLw8NSeZ4o1LliwxcwAAAAAA7kDxxkPsww8/VOM+n88co6KiIq7N2mkQjUZl0aJFak5aWpq5q6GpqUn8fr+aU1VVpcYBAAAAAO5B8cZ+xvpoFxF566234tqOOOIIs9+JJ56oxsPhsLnwkZaWZt4csXjxYvNdAAAAAADuQPHGfiaZ6xxPP/30uDarKKSISF1dnRr3er3mjQ4zZ8405ykvLzdzAAAAAADuQPHGfqaoqMjMKS4ujnl2HEcuvfRStY/jOGaNhc7OTrO4ZEVFhYwdO1bNqaysVOMAAAAAABdx50mI/ruwMHz4cDU+a9Ysc4yeNzNEo1G55ppr1D5ZWVkSCATUHI/HI5s3b1ZzysvLzcWP2tpaNQ4AAAAAcA+KNx5iO3bsUOPr1q0zx/jnP/8Z8+z1euW2225T+3R0dJhXWWZnZ5u3QpSWlpo3V3R0dKhxAAAAAIB7ULzxEDv66KPVeKIbH3pyehxgCYfDMn/+fLVPNBqV1tZWNaetrc3cUbF+/XrZvn27mtPV1aXGAQAAAADuQfHGFLOOASxfvlyNNzU1mXMkuhIymSMU1m0O4XDYvLby3XffNcfJzMw03wUAAAAA4A4Ub0yxZHYcaKziiSLxOxZERHbt2mX2S2bxoaWlRY23t7ebiw/JFKAEAAAAAKA/67OFhd5etWh9tIuIhEKhmGefzydf+cpXzH7btm1T40OGDJHdu3erObm5uebix+jRo813AQAAAAC4Q5QaC6mVk5Ojxq3iiNbNDSLxuxpCoZC89tprZr+VK1eq8a6uLmlublZzEh3D6Oncc881cwAAAAAA7kDxxkPMOmqQzI4Fv98f12YtaAwcOFDOP/98NaetrS1uN0Qyc/f0u9/9zswBAAAAALgDxRv7mWjUXunp7u6Oa3v99dfVPp2dnQn77c/j8Zg7KrZs2WK+37Rp08wcAAAAAIA7ULyxn/F4PJKVlaXmDBo0KK4tEomofdrb22Xp0qVqjuM4CcfeXzJXSS5btszMAQAAAACgPztsFxa8Xq+Ew2E1p+d1j16vV+688061j+M44vHovxa/3y/Dhg1Tczo7O9W4iEhlZaWZAwAAAABwB4o3plhtba0aP/XUU9V4enq6eWQhMzMz5jkcDst9992n9jnuuOOksLBQzfH7/bJp0yY1p6CgIOF1l/sbN26cGgcAAAAAuAfFG1OsoqJCjS9cuFCNZ2dnm3Mkujayurpa7fPee++Zt0J4vV7zVojc3Fzx+XxqTkdHhxoHAAAAALgHxRtTrKysrFf9i4qKzJxEH/aTJk0y+1166aVqvKurS0pKStQcazeFSHIFKAEAAAAA7kDxxhSrqqrqVf8RI0aYOaecckpcm3Wbg4h9RKG5udm8TrKpqSmuxkNP1uIEAAAAAAD93WG7Y8G6lUFE5JJLLol5dhxHrrrqKrNfIBAwc6zdBsksGowePdrMAQAAAAC4A8UbU8zasVBcXKzGt2zZYs6xe/fuuLaCggKzn3Vbg+M4kpOTo+bMnDnTnGfMmDFmDgAAAADAHSjemGLl5eVqPCMjQ41v3LjRnGPdunUxz9FoVH784x+rfXw+n6xYsULNycvLkz179qg5NTU15vu9+uqrZg4AAAAAwB0o3phi1l/8t2/frsbb29vNORLtWGhtbVX7hEIhOeuss9Qcv99vHuVobW0Vr9er5vRc+AAAAAAAuBfFG/uZcDhs5iRanPjwww/NfmvWrFHjzc3N5lWRlZWV5jt2dnaa7wIAAAAAQH922C4sRCIRM6erqyuu7aijjjL7vfXWW2o8GAyadRiSWfhw3LpcBQAAAACIQ/HGfsa6lUEkcRFGn88nHo/+Y9fW1ppzW1dJpqWlme/HdZMAAAAA8OlB8cYUsz7eLcn8tf/zn/98XNuCBQvMcc8880xz7NLSUjWenZ1tvmNvr9wEAAAAABw+KN6YYhUVFb3qn5WVZRZHTOSss85Sj1FEo1HZtWuXOobjOJKdna3mtLa2mrsWhgwZosYBAAAAAO7h1tPw/fa6SUteXp4MHDhQzSkuLo5rW7x4sdonPT1dzjnnHDXH4/GYc4t8dOxC09TUZI4BAAAAAHAHaiykmHXto8Xr9UpbW5ua8/zzz8e1HXnkkWqf7u5uefzxx9WccDgsBQUFao7H45FQKKTm7NixQ40DAAAAANzDEXduWThsj0JEIhHp7u5Wc3rWcfB6vfL973/fHNu6SlJEZNGiRWo8mR0NVhFJAAAAAICb2LcbHo767VGIqVOnqvH09HRzR8B//ud/xjxHIhEZMGCA+W7jx49X40VFRdLZ2anmnHjiieaVmD3fDwAAAADgXhRvTLGcnBw1Xl9fr8abm5vNOTIzM2Oeo9Go/OhHP1L7eL1es3jj2LFjZdCgQWpOYWGh5OXlqTncCgEAAAAAnx4UbzzErOsoey4aJFJZWRnX9v7776t9wuGwbN68Wc0ZPny4+X4PPfSQWZwxmSszAQAAAADuQPHGfiYYDJo51dXVMc8ej0fuuecetU9eXp55DOOFF14wb3zo7Ow0j0JcdtllahwAAAAA4B4UbzzEhg4dqsYzMjLMMfx+f8xzJBKRhQsXqn1aWlrM2g1dXV0yePBgNSc7O9t8P45CAAAAAMCnCcUbD6mamho13t7ebo6Rn58f1/bOO++Y/caNG6fGo9GonHrqqWpOMjc+WLdaAAAAAADcg+KN/Uxra6uZk+hKyMLCQrNfbm6umbNjxw41nsw8yVxJCQAAAABwB7eW2TtsFxYS7UawchzHkfPOO8/sZxWGPOWUUyQcDqs506dPN+c588wzzRwAAAAAgDtQvPEQu+SSS9R4MrsKehZYjEajcvfdd5v9CgoK1Pj69evN+ghvv/22Oc/xxx9v5gAAAAAA3IHijYfYY489psaLi4vNMebOnRvz7PP55H/+53/MftGovorU2dkp27ZtU3PC4bB4vV41xxoDAAAAAOAmFG88pHre6NBTMjUMet7MEIlEZOzYsWa/LVu2qPGMjAxZvHixmpOfn28uUBx33HHmuwAAAAAA3IHijSlWW1urxq0aBr/97W/NOdavXx/zbH3ofywS0VeRxowZIzk5OWrO8OHDzXHq6uqSeh8AAAAAwOGP4o0plujGhv1ZxwiSsWHDhoPq13NBoqfS0lLJyMhQc+rr6815rF0PAAAAAAD3oHhjilkf5kOGDOn1HNFoNGaBIhqNyuTJk81+eXl5avyll16SQCCg5jQ0NJjzvPXWW2YOAAAAAMAdKN6YYqeccooa1wobejzJv3bPIxXJ1DWwFhba29vNoxBOEntcXnnlFTMHAAAAAOAWFG9MqdbW1oPua9Uu+NiUKVNinh3Hkd/97ndmv2SOMfS8yrKn0aNHm2OcfPLJZg4AAAAAwB0o3phiFRUVatw6CrFy5UozZ8KECTHP0WhU0tPTzXfruSDRU0FBgVRWVqo53/rWt8ydFddff735LgAAAAAAd6B4Y4qVlZWp8UGDBqnxn/70p9LW1qbmbNy4MebZcRzZsWOH2ueoo44yb2vIy8uT9vZ2Nae7u9tcWEhLS1PjAAAAAAD3oHhjilVVVanxUCikxj/zmc+oxykcx4n7sPd4POYRhd/85jfmUYhvfetbUlpaquYsX77c/BmWL1+uxgEAAAAA7uG4c12h7xYWysvL1Xh3d7caLygoUOPRaFQyMzPj2qyjEDt27DDfrb29XSZOnKjm7NmzR42LiGzdutXMAQAAAAC4hEvPQvTZwoJ1q4J1HCGZD/dp06bFPEciEbn55pvVPj/+8Y9l+PDhas4TTzwRd9tET42Njeb77dq1y8wBAAAAALhDlB0LqVVbW6vGrfoJyRg1alRcm7XToba2VtavX6/mbN68WRoaGtScI4880rw5wu/3q3EAAAAAgHu4dMNC3y0sLFq0qFf9A4GAmbN79+6k2noaMGCAGm9tbZXq6mo1529/+5tZY2HMmDHmuwAAAAAA3IHijSmWkZHRq/5dXV1mTqIrLb/3ve+Z/axFj4yMDCkpKVFzHnzwQXMe68gFAAAAAMA9KN6YYpMmTVLj48ePV+MbNmww5+i5+OA4jrkbISsrS3bu3KnmjB071nx/n88XVzyyp3HjxqlxAAAAAICLuPQsRL+9bnLv3r1q3Ov1mnOceuqpMc/RaFTuuecetc+JJ55o3hzxxS9+0Zw/MzPTXMTYsmWLGgcAAAAAuAfFG1PMutLRuvXBWngQ+ajI4v4cx5HLLrtM7dPa2iqDBw9Wc5YtWyYbN25Uc95++22pqalRc0aOHKnGAQAAAADu4dINC/33uslBgwap8SlTpphz5OXlxTxHo1F59NFH1T5tbW1mgUe/3y8dHR1qztlnny2RSMR8RwAAAADApwPFG1PMum7S2rHQc9Egkfr6+ri2iy++WO2zZcuWhEUf9/foo4+a12Fu27bNfL+BAweaOQAAAAAAd6B4Y4pZH+8ej/5qDQ0N4hj7SLZu3Rrz7DiOOa6IyOzZs9X44MGDxe/3qznFxcXmPFlZWWYOAAAAAMAlXHoWos8WFrKzs3vVv6qqSqJG5YueNRb8fr+5GOHxeGTWrFlqTmFhoVnjIT8/31zEsGowAAAAAADcg+KNKfbuu++q8VGjRqnxpqYmc5Ggu7s77nnu3Llqn9bWVnPRY9euXWb9hO3bt5s5paWlahwAAAAA4B4u3bDQdwsL8+fPV+M9dxskYu1YSFSE8fTTTzfHtHYS7Nq1S/Lz89WcnscwEmlsbDRzAAAAAADuQPHGFCspKelV/8LCQjNn8uTJcW2rVq0y+61cuVKN5+TkmLda3HDDDeY8ra2tZg4AAAAAwB0o3tjPJFo06KnnUQTHceT73/++2c/asXD88ccnvHFifxkZGebNFevXrzffBQAAAADgEi49C9FvFxaKiorUuHUrg0jiYw/HHHOM2e/ss89W49/97nfj6jf0NG3aNHMeqwYDAAAAAMA9KN54iGVmZqpx6+NfRMTr9cY8R6NR+fOf/6z28fv95m6IN998U2bOnKnm3HrrrdLV1aXmHHfccWocAAAAAOAeLt2w0H8XFnbu3KnGH3vsMXOMV155JebZ6/XKZZddpvYJBALy2muvqTnt7e1y8cUXqznf/e53JRQKqTnFxcVqHAAAAADgHhRvPMR8Pp8ar6ysNMeYMmVKzHM0GpWCggK1z4QJE6SiokLNmT17tpmTnZ1tHnVoampS4wAAAAAA96B44yFWVlamxpO5qnHkyJExz5FIRObOnav2qayslDPPPFPNefDBB2XhwoVqzttvv22+31/+8hczBwAAAADgEhyFOLQ2bdqkxsPhsDnGv/71r7i2o446yuzX2dmpxpcsWSLt7e1qTjAYNOdx3HrABgAAAACQgDu/AfvtwoIlmfoEiYonDhw40Oy3detWNd7S0mLWT/D5fObCQWlpqfkuAAAAAAD0Z322sFBbW9ur/pMnTzbrMCSao2dBx0SqqqrUuMfjkXHjxqk5gUBARo8erebMmTPHfBcAAAAAgDtQvDHFrOKHlmAwaO4IaG5ujms79thjzbF71mboqbOz0zyKkZubK62trWpO1K2XmAIAAAAA4lC8McWs4oyW3Nxcs47BxIkT49rq6+vNsdPS0sy5hw8fruZkZGSYc913333muwAAAAAAXMKdJRb6bmHBOm5gWb16tbljISMjI64tmaKP27dvV+Otra3mdZfNzc3mjoRkCkkCAAAAANzCnSsLfbawUF5e3qv+27ZtM3MS3dyQl5dn9rN2I4iIVFdXq/Guri5zYeGee+4x5wEAAAAAoD/rs4WFnJycXvX3+/3mh/uGDRvi2lasWKH2Oeecc+Szn/2sOb91u0RhYaF53GPo0KHmPAAAAAAAd3Br8Ub9WoV+zDoGIZL4SIN1TeSzzz4rY8aMMceeOnWqrF+//oDxlpYW8fv96hhLliwx5wEAAAAAuIMTFVcuLfTZjoXeKikpMXNGjRoV12YtLIhIUgsLVmHGlpYWaWhoUHOmTp1qzgMAAAAAcAl3llg4fBcWPvOZz5g5kUgkru0vf/mL2W/z5s1mTldXlxqPRqMJ59/frl27zHkAAAAAAG7hzpWFfruwYB0jaGpqMscoKiqKa/v73/9u9rPG9nq9ZvFI68pKEZFLLrnEzAEAAAAAoD/rs4WF2tpaNR4IBNR4Tk6OeDz662/dujWuLZnbJHw+vfREdna2jB49Ws0ZN26ceL1eNSeZIxcAAAAAAHdwa/HGPltYqKio6FX/wYMHm0cNvv71r8e1WTdJiCS+pnJ/juNIenq6mpOdnW0uUGjFHwEAAAAA7uK4c12h7xYWysvLe9Xf+vgXEVm5cmXMs+M48rvf/c7sl5mZqcaTKQBZWVlpHueYMWOGOQ4AAAAAwCXcWWKh7xYWcnJy1HheXp4af/jhh805Et3ckMxtEqeddpoa9/v90tjYqOYEAgEZN26cmlNZWWm+CwAAAADALdy5stBnCwurVq1S49aRBesqRxGRjIyMuDFvvvlmtU9OTo5s2bJFzWlvbzfrJ4iIbN++XY1bdSYAAAAAAOjv+mxhYcGCBWq8tbVVjYdCISksLFRziouL49qsBY2Ojg5577331BwR++YIv9+fcMfE/pIpJAkAAAAAcAeKN6bY/Pnze9U/IyND2tra1JwPPvggrm369Olqn0gkIrNnz1ZzwuGwObfX6zVvrdi4caMaBwAAAAC4B8UbUyyZWgeaAQMGSDAYVHNyc3Pj2jo7O3s178eSuZLSOs4xb968lLwLAAAAAOAw4M4SC323sNBbBQUFZs55550X13bDDTeY/c444ww1Hg6HzcKMbW1tCY9i7I+FBQAAAAD4FIm6c2Wh3y4sZGVlqfFkdh50d3fHPHs8HhkwYIDaJy0tzazv4PF4zCsphw8fbh6FsHY9AAAAAABcxJ3rCv13YSEcDqtxq3iiSHw9BetogshHRxhWrFih5vh8PsnOzlZzjj/++IOqAQEAAAAAcCeKN6aYddXiwIED1XhXV5c5x//93//FPEejUbnqqqvUPtdee60cffTR5thLlixR42+++aa582H58uXmPAAAAAAAd6B4Y4pVVFSo8Z07d6pxx7H3kOzZsyeuzboC8m9/+5sUFRWpOZFIxDxSUVVVZb7fli1bzBwAAAAAgEtwFCK1ysrKetXfql8gknhhwdpFsHXrVvnXv/6l5oRCIWlvbzfn93q9ajyZxREAAAAAgEtQvDG1kvmLviYQCJiLC4kKQB5xxBFqH8dxJC8vz5y/vLxcjYdCIXPngxUHAAAAALiIO9cV+m5hwfowt3R2dkokElFz5syZE/Ps8Xjkxz/+sdonGo3K5s2b1RyfzyejR49Wc/Lz82XixIlqTkdHhxoHAAAAALgHxRtTLCcnR40XFhaqcWtRQeSjXQ09+/zXf/2X2icjI0POP/98NWfo0KHmrRBHH320rF+/Xs1J5jgFAAAAAMAdKN54iO3du1eNJ1Of4KGHHoprs2osdHV1SXV1tZqzfft2efzxx9WcTZs2JazxsD8rDgAAAABwEY5CpJZ13aQlPT3dLI6Y6AaIjIwMc+wJEyaYOdaiwI4dO8wxrCs1AQAAAAAuQvHG1LKum7RkZ2ebuxYS7U6oq6szx3755ZfNnPT0dDWezK0VyeQAAAAAAFzCnesKh2/xRr/fL6FQSM3JzMyMefZ4PHLHHXeYY6elpZk5Pp9PjQ8ePNisI7F9+3ZzHgAAAACAO1C8McWsmxdOO+00NZ7MjQo9CyxGIhG59957zd0GLS0t5tj5+flqfNiwYVJcXGyOAwAAAAD4dKB4Y4otWLCgV/HOzk5zjvHjx8e1TZgwIe62iJ5mzJhhjt3Q0KDG161bJ1u2bFFzkqn3AAAAAABwCY5CpNb8+fN71T+Z+gSJPtyfeuopiUb1ZSLrKITH4zGLTyaz62H69OlmDgAAAADAJSjemFolJSW96j916lSzzkGiHQPJ7EYIh8Nq3OfzJbXboGeNh566u7vNMQAAAAAALuHOdYXD97rJwsJCc+dBW1tbXFtubq7ax+PxSCQSUXMCgYBZ48Hv94vf71dzqqqq1DgAAAAAwD0o3phivb1u0uPxmEcWBg8eHNfnhhtuUPtEIhF5//331ZzZs2ebixplZWVmHYhjjjlGjQMAAAAA3IPijSlmXTd51FFHqfH6+nrp6upSc4LBYMxzJBKRyy+/3Hy3rVu3qvE1a9bIkUceqea0t7dLYWGhmpNMHQYAAAAAgEtwFCK1cnJy1PjKlSvV+IQJE8w5tm/fHtc2adIktY/X6zUXDZqbm6WgoMAcp66uTs3JyspS4wAAAAAAF6F4Y2r1tsbC5s2bzZxE9RS+853vqH3C4bC8+eab5tjt7e1q3KrBICJSU1Nj5gAAAAAA3CHq0rMQ/bbGglX4sLS01Jwj0a6GW265Re0zduxYSU9PV3OGDx+ecDfE/gYNGmS+n7XrAQAAAADgHo5Lz0L02xoLgUBAjW/bts2co+fVkh6PR773ve+pfTZt2mS+2/jx42XmzJlqTigUMt+vZ3FJAAAAAICLGZcAHK76bY0Fa8dCMh/lJSUlMc+RSESeeOIJtc/QoUNlx44das6SJUvMuZPBjgUAAAAA+BRx54aFvltYsFg7FpqamswxehZH9Hg8csUVV6h9ampqpLq6Ws2JRqNmDYV58+aZiyezZs1S4wAAAAAAF6F4Y2pZxRuLiorUeHNzszlHWlpazHM0GjXHFREZOHCgGo9EIrJw4UI157Of/aw5jnVDBQAAAADAPSjemGJW8Uav16vGjznmGHOO4uLimOdoNCq333672c+6BjIjI0MikYia89BDD8nevXvVHOu4BwAAAADAPSjemGJWgcQ9e/ao8UGDBonP5ztgPDc3N25xwufzmfNmZWXJZZddpuakp6fL0KFD1ZwVK1aYxyWSKfAIAAAAAHAJijemVmtrqxrvudugp/T0dHGcA6/2tLa2SjAYjGkLhULyzDPPqOP6/X7zg3/kyJFyzTXXqDkdHR1x8/fU1dWlxgEAAAAALuLODQv99yjE7t271Xh3d7d4PPrrv/DCCzHPHo9Hrr/+erVPKBSSJ598Us35/Oc/bxZ4nDZtmhoXEXn77bfNHAAAAACAS1C8MbXKysrUuHWd5J49e6S7u1vNqaqqinmORCJywQUXqH3a2tpk48aNak4oFDIXBZLZjWDNAwAAAABwD4o3pljPj/6edu3apcbr6urMOd5///24NmvBQuSj4oya3/3ud+aOhFdeeUXS09PVHGtxBQAAAADgHhRvTLHeflQ3NDSYOePGjYt59nq98tvf/tbsN2XKFDW+d+9e2bJli5ozYMAA89aHf/zjH+a7AAAAAABcguKNqbVixQo1npOTo8YzMzPV4o0iIj/72c9insPhsAwbNkztU1hYKKeffrqa4/P5zFsrJk+eLG1tbWrO2WefrcYBAAAAAC7izg0LfbewYB03sG5m2LFjhxQUFKg5w4cPj2u788471T7l5eXmbgTHcaSxsVHNufzyy82Fj5qaGjUOAAAAAHARijem1qRJk9S4Vfzw1FNPlZaWFjWnvb09ru2KK65Q+7z00kuyefNmNWf48OHmdZmzZs0yF0/mzZunxgEAAAAA7kHxxhSzjkJYH+VDhw6VcDis5rz11lsxzx6PR4qKitQ+I0eONAs8Tpo0yZw7mR0VI0eOVOMAAAAAAPegeGOKWQsHUaOoRUdHhzlHfn7+JxpT5KOdEjt27FBzLrvsMsnNzVVzhg4dKmPHjlVztm3bZr4PAAAAAMAlKN6YWqecckqv+q9evdrM6bmQ4PP5zD6hUCjuNomempqazKMau3fvNt/RKgAJAAAAAHARd25Y6LuFBatGQXFxsRrfsmWLWRyx50JCMBiUm2++We2Tm5trHmFYuXKlueMiGAxKZ2enmmMtTgAAAAAAXITijam1aNEiNW4dR2hvbzc/7l988cW4tquvvlrts3XrVqmrqzPnzs7OVnNefvllc+GgublZjQMAAAAA3IPijSlmLQr0rI/QUzgcNncENDU1xbV997vfNd8tLS1Njb/yyivmbonXXnvNnCfR+wEAAAAA3MkRFhZSyqqxYP013+v1mnOMHj06ru3II480+23ZskWNBwIB8yjHpk2bzHkSXYcJAAAAAHCrPvsE/7fqtzUWLNaOARGRZcuWxfX5+te/bvazFj3a29vlpJNOUnOsGyFEPrq2EgAAAADwacGOhZSqqKhQ49ZxhKysLHOOnnUQotGoPProo2Y/aydBMBiUrVu3qjkZGRnm4sfpp59uvgsAAAAAwCUo3pha5eXlajwYDPYqLvJRHYaeLrvsMrNfSUmJOe6MGTPUnA0bNpjz3HjjjWYOAAAAAMAdKN6YYtZRiCFDhqhxv99vzpFogeBzn/uc2c+68eFAY+8vFApJNKr/o5k3b545DwAAAADAHSjemGLWUYja2lpzDI9Hf/3NmzfHtU2dOtUcd+PGjWaOVeAxHA6bN1/k5eWZ8wAAAAAA3ILijSllHYVIhrWw0NbWFtc2dOhQc9yioiIzx9rV4DiODBw4UM15++23zXkAAAAAAG7BjoWUysnJ6VX/jIwMiUQias6IESPi2tauXWuOnUz9BmucYDAou3fvVnOWLFlizgMAAAAAcAmKN/Yvra2t5sLCnj17kmrrKdERip5aWlrU+PHHH5+weOT+mpqazHkAAAAAAO5A8cZ+xjpmICJSXV0d1zZp0iSzXyAQMHOOOOIINR4KhcyFBasGAwAAAADAPSje2M9kZmaaObm5uXFtyXzMJ3MrhCUrKyvhUYz9/dd//Vev5wEAAAAAHC4O209w1WH7U23atMnMSeZqyZ4cx5HS0lI1x+v1Sk1NjZrT2toqp5xyippjHacAAAAAALgJOxb6lWQKLHZ0dBzU2IMGDVLjgwcPNhcFOjs7zdslkrnWEgAAAADgEi4t3ujrq4lra2t71d/v95s5e/fujWtbuXKl2icajcq//vUvNWf37t3m/DU1NfLQQw+pOV6vV40DAAAAANwj6kRduWmhz3YsVFRU9Kp/cXGxmdPQ0BDXdtttt5n9Ghsb1XgwGBSPR//VNTY2HvSOCQAAAACA+1C8McXKy8vVuLUjwKqDICKSl5cX1/aVr3zF7FdXV2fmWEcxsrOzpaurS8258sorzXkAAAAAAG5x2FYjUPXZT5WTk6PGrSsfR44cac7R2toa13bXXXeZ/ZI5ZjF37lw1Ho1GJRrVV6MWL15szgMAAAAAcAt2LBxSw4YNU+MffPCBOUbPxQuv15vUgoS16OHxeMxxvF6vWUPBWjwBAAAAALiIS4s39tuFhUT1EfaXlpZmjpGdnR3zHA6H5ZFHHjH7TZs2TY0PGDBAtm/frubk5ORIKBQy5wIAAAAAfDpEHXYsHFKdnZ1qfO3ateYYVVVVcW1//etfzX7WbonOzk555ZVX1Jxx48aJ4+irUcccc4z5LgAAAAAAd6B4Yz+TzEd5fX19XNtf/vIXs9+IESPUeGdnp1k8ctiwYWaNhbKyMvNdAAAAAADuEI0etp/gqn77UyW60WF/yVw3mWiBYNGiRWa/zMxMNe71emXAgAFqzvDhw815rFsjAAAAAADuYWxqP2z124WFlpYWNW4VRhSJv87R4/HIOeeco/bJzMw0dxqMHj1aNm/erOb4fD7z/V599VUzBwAAAADgEu48CdF3Cwu1tbVqvKCgQI2///775uJCJBKJe/7Nb36j9vF4PLJq1So1JzMzU/Lz89WcmpoaNS4ismPHDjMHAAAAAOAOFG9MsYqKCjXe1NSkxs8880xJT09XcxLFv/e976l9cnNzJRgMqjkrVqyQnTt3qjkzZsxQ4yIiF110kZkDAAAAAHAHijemWHl5uRq3diNYCxMiIg8//HDMs8/nM3cazJkzR8LhsJqTm5srU6ZMUXPq6urM90umTgQAAAAAwB0o3phiOTk5ajwtLU2NV1ZWmosPPeschEIhueqqq9Q+Z599dsLbJHqOU1hYqOZUVVWZdRaqq6vVOAAAAADAPSjemGJWjQXrxoTa2lozx+OJ/fHS0tLkt7/9rdrnm9/8powePVrNyc7OluXLl6s5gUDA3Pnw2muvqXEAAAAAgIu48yRE/62xYF036TiOWQuhqKgo5jkYDMoDDzyg9hk/frxZP6GsrMwsvGgduRAR6e7uNnMAAAAAAO7g1uKN9p2I/yZWjQXrusmeNz4kkpWVFdeWnZ2t9lm8eLEMHz5czVm2bJl5DOO1116T9PR0dVeF9S4AAAAAAPdwJOrKTQv9tsZCKhx11FFxbdZtEyIiJ510khrPy8szayxMmzbN3JEwaNAg810AAAAAAO5A8cYUs2osWBLtRuipZ40FEZFoVF8fys7OlpKSEjUnMzNTJk+erObU1dWZc02bNk2NAwAAAADcg+KNKZbMdZGagQMHmjlLly6NefZ6vfK1r31N7dPe3i7PPPOMmlNQUCAbN25Uc8477zzz/Ry3/qsCAAAAAMRz4zkI6cOFBavGglXnYNSoUeYcu3fvjnkOh8Py4osvqn2KiorMsYuLiyUQCKg5n/nMZ8z3s8YAAAAAALiHW4s39tsaC9atCz1vfEikZ40Dr9crl19+udqnsbFRMjIy1Jx169alpPDisGHDej0GAAAAAODw4Lh0y0K/rRxx/vnnq/FkboUYMGBAXFtBQYHax3EcWbRokZrj9/vNWyFaWlokLS3NfEcAAAAAwKcDxRsPsSVLlqhxa1eBiMj06dNjnsPhsNxzzz1qH4/HI3PmzFFzJk6caC4aFBUVSTgcVnOsOAAAAADAPdxaZq/fLizU1NT0eoz29va4Nuu6Sa/XK2PGjFFzSktLJTMzU81ZsGCBuauiqqpKjQMAAAAAXMSdJyHE11cT9/a6yUGDBpk5ia6bbGxsVPsEAgFZsWKFmvP+++9LZ2enmvPCCy+Y7zd48GAzBwAAAADgDlEn6srFhcP2uslp06aZOaFQKObZ4/HItddeq/bxeDxm/YQdO3ZIa2urmmMtPIiIvPXWW2YOAAAAAMAdKN6YYr29brK+vt6co7KyMuY5EonID3/4Q7VPNBo1Czx2dHTE3TjRU2lpqfl+M2bMMHMAAAAAAO5A8cYU6+11k88995w5x969e2OeHceRH//4x2ofx3FkwoQJ5tjz589X42VlZeIYlTmWLl1qzgMAAAAAcAeKN6aYVWMhOztbjS9fvtycY9SoUXFtgUBA7ePz+WTXrl3m2FbOokWLEtZ42N+GDRvMeQAAAAAA6M/6bGFh0aJFanzu3LlqvKOjw5wjKysr5jkajcqPfvQjtY/P55MtW7aoOR6PR1566SU1p6GhwbxOcsSIEWocAAAAAOAeUWospFZXV5ca/9e//qXGA4GAeZxi4cKFcW1WbYTc3Fxzt0Q0GjWvm0ymBgQ7FgAAAADg04PijSlmFUi0+P1+8+aFzZs3x7XNnDnTHNtasIhGo3E3TvTU0tJizmPVYAAAAAAAuAfFG1PslFNO6VX/9PR088M8LS0trm3x4sVqn7q6Onn55ZfN+fPz89X4rFmzzDEyMjLMHAAAAACAO7j1b8v99lYIS1pamrlrYMyYMXFtEydONMceNGiQmWMtalhHJUTEfH8AAAAAAPq7w3YfhlUHQUSktLQ0rm3btm1mv+nTp5s5kUhEjZeUlJhjWLseAAAAAADuQfHGFLOum7RY9RVEEh81+OUvf2n2q6ysVOOlpaXmMYb29nZzV8PSpUvNdwEAAAAAuAPFG1OsoqJCjefm5qrxZIojJrp54r777lP7ZGRkyIABA9ScoqIiaWxsVHPGjBkj0aj+j2b48OFqHAAAAADgHhRvTLHy8nI13traqsbT09PNORLVWLCugfR4PNLR0aHmnHTSSeaiQTKFGaurq80cAAAAAIA7ULwxxXpbvNH6+BcR8Xq9Mc8ej0d+/etfq30CgYDs2rVLzampqTF3G3R2dia8lWJ/1uIEAAAAAAD9Xb/dh2EVP+y5aJBIz1sXIpGIvPjii2qftLQ02b17t5rzzjvvJDxmsb/29nbJy8tTc5Ip8AgAAAAAcAeKNx5idXV1aty6lUFE5Ljjjotrq6qqUvsEAgE59dRT1Zzm5mazDkNDQ4PMmjVLzampqVHjAAAAAAD3oHhjP5PMdZOvvPJKXNv69evVPpFIRCZPnqzmBINB6e7uVnMyMjLk1VdfVXP27t2rxgEAAAAA7kHxxn7GOmYgkvhWCOs2CasugshHxzCs6zK3bNliLj6wYwEAAAAAPj0o3tjPWEcRRD4qoNjTjTfeqPYJBALy5ptvqjk+n0/GjRun5iRzHeawYcPMHAAAAAAA+rN+u7AwcuRINT5w4EBzjER1Gt5++221j9/vN6+KHDFihFkDgoUFAAAAAMD+KN54iG3btk2NNzU1mWMkutKyqKhI7RMKhcy5x4wZY153mZ+fb77foEGDzBwAAAAAgDtQvLGf8XjsV09PT495dhxHrrrqKrWPz+eThoYGNaetrS3hosX+rDFERGbMmGHmAAAAAADcgeKNh1jPRYGeAoGAOcacOXPi2rKyssxxraKLgwcPNhcWRo8ebb7fMcccY+YAAAAAANyB4o0pZt2qcOqpp6rxtWvXmnOMGTMm5jkajcoPfvADs591jOH555+XIUOGqDlOEv9ili9fbuYAAAAAANyBGgspVlFRocZfeOEFNR4Khcw5Hnnkkbi2VatWmf0uv/xyNZ6RkWEWeNy6das5zxtvvGHmAAAAAADcwRF3blnos4WF8vLyXvVPZmGhpqYmri2Zayqt3Qh79+6V9evXqzm7d+82dy18+OGH5rsAAAAAANwi0tcv8G/RZwsLVo2CVEj0Yd/e3m72a2trU+ORSESCweBBzb8/64YKAAAAAIB7ULyxn/F4POLz+dScRB/uaWlp5tjLli0zc4qLi9V4JBKRSERfjSosLDTnAQAAAAC4A8Ub+xmv12seh0h01MDajSAiMn36dDPH2nExduxYc4zq6mozBwAAAADgDhRv7GcyMzPNnESLCHfffbfZb/v27Wo8KytLKisr1ZyCggJznrq6OjMHAAAAAOAOFG9MMeu6SeuoQTILC4k+7hcuXGj2mzhxojl3U1OTmjN16lRznry8PDMHAAAAAOAWFG9MKeu6yd27d6vxZBYWvv71r8e1dXV1mf327t2rxr1er1kfYfny5TJq1Cg159hjjzXfBQAAAADgDhRvTLGysrJe9T/hhBPMnEQ7Fnbt2qX2SaYo5IABA8ycjo4Os4bCMccco8YBAAAAAO5B8cYUq6qq6lX/efPmSUZGhpozYMCAuLZoVC+WMWjQILMwo+M45lWSxx9/vITDYTXnscceU+MAAAAAAPegeGOKlZeX93oMa9fA8uXLY54dx5EbbrhB7dPW1iYtLS1qTm1tbcKrLPf3xhtviNfrVXOOPvpoNQ4AAAAAcA+KN6aYtSsgOztbjT/77LPm1ZE9r3z0er3mYkR7e7u5qyE3N9csPjlmzBgJBoNqzsyZM9U4AAAAAMBNKN54SFl/7X/55ZfNMV5//fWY52g0Khs2bDD7WYse7e3tkpWVpeasWbPGnMc6ygEAAAAAcA+KNx5i3d3daty6uUFEZNy4cTHP4XBY3nnnHbPfypUr1Xg4HJbm5mY1p6Ojw5xn6dKlZg4AAAAAwB0o3niIWQsL0WhU0tPT1ZxExx6s+gkiIpMnT1bjRUVFZvFG6ziFiMj//d//mTkAAAAAAHegeGOKWTUKLNFo1Fx8SBR/5ZVXzLEXL16sxrds2SKDBg1Sc0KhkAwdOlTNsY5cAAAAAADcg+KNKVZRUdGr/laNAxGRRx99NObZ4/HIrbfeavZL5oN/4MCBaryzs1OuueYaNae1tdWcBwAAAADgFhRvTCnrusnc3Fw1PnjwYHOOngsEkUhEHnnkEbOftWggYtd4yMjIkD/96U9qzumnn27OAwAAAABwB4o3ppi1K8D6a/7IkSPNmyMS1WDYunWr+W5r1641c7Zv367GCwoKzDHeeustMwcAAAAA4A4Ub+xnuru7zQKJY8aMiWv71re+ZY6dqOhjT9bCR2ZmpuzZs0fNOe6448x5AAAAAADuQPHGQ6ywsFCNB4NBiUT08yldXV1xbQsWLDDnLioqMnOys7PV+NixYyUcDqs5w4cPN+cBAAAAALiD4851hf67sGDVMGhtbTWvfAwEAnFtb775pjm3dcRCROSYY45R45WVleb7PfXUU+Y8AAAAAACXcOlZiH67sGDp6OiQjIwMNSfRjobx48ebYz///PNmTnFxsRrftm2beVQjMzPTnAcAAAAA4A7GJ+Jh67BdWHAcxzxqkOg4hbUgIGLfOOH3+2XXrl1qTkZGhng8+q830VENAAAAAIA7uXTDwuG7sNDa2iqhUEjNSVQ8ceXKlebYnZ2danzq1KnmAkU4HDZvvkhUXBIAAAAA4E4Ub+xnmpubzeKNGzdujHl2HEduueUWc+xRo0aZc1sFHtPS0swdFdZRCQAAAACAe1C88RAbOXKkGk9LSzPH6LnwEI1G5ctf/rLax+fzSV1dnZpTW1sr7777rppTXFxsLixs2LBBjQMAAAAAXMSlZyH67cLCtm3b1Lj10S4ikpeXF/Ps8XjkjjvuUPt8+ctfNgs8tre3y+rVq9Wc0tJS8x1ra2vVOAAAAADAPdy6ab3fLixY9QmS2bHQ89aISCRiHoV47LHHZOfOnea43d3dak4oFDIXFkaMGKHGAQAAAADu4dINC323sGD9tb6trU2N99yNkEhpaWnMs+M48tvf/lbt09DQIMcff7yaEwgEpKCgQM0JBoPm4siJJ56oxgEAAAAA7kHxxhSrqKhQ49bCQSAQMOfYvXt3zLPjOEldN9lzQaKnrKyshFdZ7m/y5MnmdZJHHnmk+S4AAAAAAHegeGOKlZWVqfHW1lY1PnToUHOOzMzMmOdIJCJXXXWV2S8YDKrxmTNnSkdHh5pTUFBg3lqRzK4LAAAAAIBLuPQsRJ8tLFRVValx6yrGrKwscw6/3x/X1tjYqPbJzs6W6upqNeeNN96Q+fPnqzl1dXXmcQmrACQAAAAAwD0o3phi1o4Fi3Vzg0h88UbHceRPf/qT2qe9vV3efvttNefiiy+O2w3R0/Lly80Cjy+++KIaBwAAAAC4h0s3LPTfHQvp6elq/IwzzjDn+OxnPxvzHI1G5aGHHlL7ZGRkyKxZs8ycxx57TM1pb283ayxMmTJFjQMAAAAA3IPijSlWXl6uxq2/9mdnZ5tzrFu3LubZcRy59tpr1T5dXV3mUYjFixdLc3OzmlNQUCChUEjNGTRokBoHAAAAALgHxRtTzLqKMT8/X42vX7/enGPr1q0xz47jmHUPROwbK3bs2GEWlzzhhBPMOhEUbwQAAACATxGXnoXos4UFi/VRnsxf+3suXkQiEbnwwgvNfmlpaWrccRxzUaC5uTmuxkNP1s8IAAAAAHAPt34C9tnCQm1trRpvaWlR408++aQ5x9ixY2OeHceRn/70p2ofr9crAwcOVHMCgYCMHDlSzXn++efNBYrJkyercQAAAACAe7h0w0LfLSxYxw2sWxeGDBlizpGoQOSYMWPUPmeccYZMnz5dzfH7/eY43/rWt8zjEkcddZQaBwAAAAC4B8UbU8wq3jh8+HA13tnZac5RV1cX8xyNRuNuiujpjTfekPfee0/NCYVC0t7eruYkc2tFY2OjmQMAAAAAcAeKN6aYVbxxw4YNanzp0qXmHMuXL4959ng88rOf/Uzt09nZKQMGDFBzQqGQZGVlqTmnnXaa+X433XSTmQMAAAAAcAmOQqSWVWNh8ODBatzjsV+958d/NBoVv99v9rN2QziOY153ecUVV5g1Fnbt2mW+CwAAAADALdy5stBnCwuLFi1S493d3Wp879695hyXXHJJzLPH40nqikfrNoecnBx57bXX1JzFixdLOBxWc4LBoPkuAAAAAAD0Z322sGB9vPt8PjXe3t5u7lqora2N2TUQDofliiuuMN8tPT1djXd3d8uOHTvUnE2bNkkkElFzWFgAAAAAgE8Pijem2KRJk9T4nj171PiAAQPMD/fXX3897uP9uOOOM9+tvr5ejQcCASkuLlZzIpGIuThiXWsJAAAAAHAPijemWKKrID+JI444wsxJVOMgmV0CJ554oplz2WWXqXG/3y+hUKjX8wAAAAAAXMKdJRb673WTlvPPP988CpHoysqioiJzbKvoYm5urjQ0NKg5Rx99tDiO/q8mGnXpchUAAAAAIAF3riz02+smLW+99ZZ5FOLUU0+NefZ4PPLDH/5Q7eP1eqWjo0PNKSkpkRdeeEHNSUtLMxcOrMUJAAAAAAD6uz5bWLCMGDFCjSez86CwsDDmORqNSmZmptrnW9/6ljQ1Nak5s2fPlsbGRjXHKu4oIjJr1iwzBwAAAADgDhRvPMSsWghLly41x9i5c2fMs+M45gf/U089ZV4T+fnPf14KCgrUnGQWPqZNm2bmAAAAAADcgeKNh5i1s8A6riAicUclIpGILFy4UO1TVVUlb7zxhpqzZs0a8xhGMlasWNHrMQAAAAAAhwl3lljovwsLW7ZsUePJXNWYaFeBdVNDNBpNWPSx57ijR49Wc3oew0hk06ZNZg4AAAAAwC3cubLQbxcWLNnZ2WZOenp6zLPP55Mrr7xS7eM4jmzbtk3NefPNNyU/P1/NGT9+vPl+fr/fzAEAAAAAoD/rtwsL1o6A4uJic4xhw4bFPIdCIfn2t7+t9vH5fDJp0iQ1x3EcaW1tVXOam5vN96PGAgAAAAB8elC88RCzjkIMGDDAHOPhhx+OeXYcR773ve+pfYLBoHR3d6s5jz76qFnjIZmFhffee8/MAQAAAAC4A8UbU6y2trZX/XvuRkjk/PPPj3mORpP7r2jVb/jhD38odXV1as6ePXvMeWpqapJ6HwAAAACAC7izxELfLSxUVFSocetWiGSKN/b8cPd4POYRi5ycHKmvr1dzJk2aJF1dXWrOZZddZr5fMgUeAQAAAABu4c6VhT5bWCgvL1fjWVlZavyxxx4z58jNzY15jkQicu6556p9LrzwQvnwww/VnDvvvFOCwaCac9JJJ5nvl+wOCgAAAAAA+qs+W1iwih82NDSo8WSOEdx9990xzx6PR66//nq1T0lJiVxyySVqzptvvilDhgxRc/7rv/5LPB791zt16lQ1DgAAAABwD4o3pph1FMK6TrKzs9OcY9asWTHPkUhE3nrrLbXPY489JkcddZSa4/P5ZPDgwWrOr371K4lEImqOtWsDAAAAAOAeFG9MMeujur29XY07jn02JVGdgyVLlqh9qqqq5LXXXlNzQqGQ7N69W81J5lYIq04DAAAAAMBF3Flioe8WFnJycnrVv62tzcxZv359zLPjOHLHHXeY/Z544gkz55RTTlHjDzzwgDnG/fffb+YAAAAAAFwi6s6VhX573aR1e8MvfvELc46eCwsi8QUdE5kzZ44aT09PN3csJHNrRX5+vpkDAAAAAHAJd64r9N8aC9YxgTFjxojP51Nzdu7cGddmFX30er1y7LHHqjmlpaXy7rvvqjnWwoOIyPDhw80cAAAAAIA7ULwxxawaC4FAQI2/+uqrEg6H1ZzGxsaY52g0Km+//bb5btaixtFHHy1NTU1qjnUdpYi9MwIAAAAA4B4Ub0wxq8ZCfX29Gh83bpxEo/p/laysrLi2vXv3qn3C4bCsXLlSzWltbRWv16vm7Nq1S42LiCxYsMDMAQAAAAC4BEch+pfnn3/ezEl0baS1E0Lko2MWmpdeekkGDBig5iRTnPKuu+4ycwAAAAAALkHxxv6lsrLSvHJyx44dcW3Lli0zx96zZ4+Zk56ersZXr15tjjFixAgzBwAAAADgEu5cVzh8FxaqqqoO6ihEol0MPa1bt06NZ2RkSGtrq5pzwQUXmPOsWbPGzAEAAAAAuAPFG/sZ68NeJPGxB+smCcdxZNasWWpOMBiUz33uc2pOMosGl156qZkDAAAAAHAHijf2M6FQyMyZOXNmXNuNN96o9olGo5KXl6fmeL1eWbt2rZqTzMKHVQASAAAAAOAiHIU4tIqLi9W4x2O/el1dXVzb9773PbOfdVVkenq6bN68Wc2pra015/nyl79s5gAAAAAAXILijYfW7t271XhBQYE5RqJaCVY/n88nw4cPV3Py8/OlpKTEzLEWP5Ip8AgAAAAAcAl3riv034UFSzILCz1vhfD5fHLdddepfaLRqHnMorOzU8rKytScoUOHSiQSUXNefvllNQ4AAAAAcA+KN6aYdVRg4MCBatw6riAicsYZZ8Q8h8NhaW9vV/s4jiObNm1Sczo6OmT58uVqznnnnWe+35FHHmnmAAAAAADcgeKNKVZRUaHGrcKGDQ0N5hw9dwxEo1F55JFH1D6hUEj8fr+a09XVJeXl5WqOtfAgIjJ37lwzBwAAAADgEhyFSC3rwzxR4cX9JbNjYevWrXFt119/vdnPqu+QzHGJ119/XRxH/1fT2NhovgsAAAAAwCUo3phaOTk5ary0tFSNp6WlmXN0dXXFtV1yySVmv5aWFjNn4cKFarygoEAmT56s5iR6PwAAAACAS7lzXaH/Fm/cuXOnGh80aJA5xp49e+LaWltbzX7HHHOMmRMOh9X4rl27zF0Nd9xxhzkPAAAAAMAdKN7Yz5x44olmTkZGRsyzx+OR22+/3ezX3Nxs5gwdOlSNDx48WIYNG6bm1NTUmPMAAAAAANyB4o2HmFVA8cYbbzRrGGRlZcU8RyIRs3ijiEhJSYmZM2rUKDV++umny+LFi3s1BgAAAADARTgKcWgFAgE1/vzzz5t1FhItTqxbt86c+7333jNzrBoRTz75pHR2dqo51s8IAAAAAHARijf2L3fddZf5YZ7oZgnrmIPX65Vp06aZ87/99ttqvLi42ByjsrLSzAEAAAAAuEPUpWchDtuFhYKCAvMoRM8aCyJ2YcZwOCyFhYXm/JmZmWq8ubnZ3NWQTC0HAAAAAIA7OC49C3HYLizs3Lkz4cLB/k444YS4tmQKJiaTU1ZWpsaHDRtm7qjIzs425wEAAAAAuESUHQv9SkdHh0yYMEHNSVQ8MZmCiS0tLWZOMBhU47W1teYYHR0dZg4AAAAAwCXcuWHh8F1YyMjIkF27dqk5GzdujGv70Y9+ZI79+OOPq/Hc3FwZOHCgmrNjxw7p6upSc5KpwwAAAAAAcAmKNx5axx9/vBrPy8uTPXv2qDmhUCiu7fzzzzfntuow+Hw+aWxsVHO+8pWvmPN4PP321w8AAAAASDGKNx5i7777rhp3HEfC4bCaU1BQENfW1NRkzj1z5kw1HolEZPz48WrOP//5T3OeSCRi5gAAAAAA3IHijf2MVRhRJP7mBr/fL3/605/Mfh988IEab25uNhc1TjrpJHMea9cDAAAAAMBFKN54aCXabfBJTZs2LeY5EAjIsmXLzH6TJk1S4x6PR7Zs2aLmDBkyxDzqcOqpp5rvAgAAAABwCXduWOi/CwvWkYXW1lZzjIqKirg26yrJtLQ02bRpk5qTkZEha9euVXNqamrE6/WqOdZxCgAAAACAi1C8sX/Jysoyc3ouTjiOIzfccIPaJxgMypAhQ9SciRMnSm5urppTWVkpRUVFao7P51PjAAAAAAD3oHjjITZhwgQ1PmfOHHOMz372szHP0WhUBgwYoPbxeDxywgknqDnhcNg85jB79mzzusmpU6eqcQAAAACAe1C88RCrr69X48nc7jBu3Li4tquvvlrtE4lEZPXq1WrOhAkTzOKNXq9Xmpub1RwWFgAAAADgU4TijYdWQ0ODGrfqIIiI3HPPPXFthYWFZj/rqst33nlHRo4cqeZs3LjRnKetrc3MAQAAAAC4hDs3LPTfhQVLMlc1VlZWxrVZRxhEPqqhoNm9e7fU1dWpOXv27DHneeONN8wcAAAAAIBLULwxtWpra3vVv6Ojw8zJzs6OayspKVH7ZGRkyOjRo9WcvLw8OeKII9ScHTt2mO+3e/duMwcAAAAA4A4Ub0yxRFdBfhJdXV3m7oPBgwfHtb399ttqn2g0KmvWrFFzZs2aJVVVVWqOVXxSRKS0tNTMAQAAAAC4A8UbUyzRboJPIicnRyKRiJqTqDhiWVmZ2qe7u9vc1fDyyy+bOXv37jV/xmSuzAQAAAAAuATFG1PLKpBoSaZWQigUimvz+/1mv5qaGjXu9Xpl69atak5aWpp5c8Szzz5rvgsAAAAAwCXcuWGh7xYW5s+f36v+yRwjSLQjIJmCiVZhRr/fby4adHd3J1zY2F+i4pIAAAAAAJeieGNqWUcJLI5j/wdZvnx5XNtdd91l9rMKQ7a2tpo5W7dulaixzWXz5s3muwAAAAAA3IHijSlm3QqRkZGhxmfOnGkeh7j22mvj2t555x3z3U488UQ1fuaZZ8qQIUPUnK997WtmDYgRI0aY7wIAAAAAcAdHWFhIqUWLFqnxrq4uNZ6RkWF+uAeDwZhnx3HkggsuUPt4PB6zwOMrr7wikydPVnNqa2vNHQsXXnihGgcAAAAAuEmffYL/W/XZT2XtSLCKLFZXV5tzNDc3xzz7fD5pa2tT+5SVlSW8pnJ/0WhUdu7cqeZ0dnaa75eXl2fmAAAAAADcgh0LKTVp0iQ1npmZqcYvv/xyc46JEyfGPIdCIRk9erTax+v1mkcsvvjFL0pra6uaM3fuXPP9eu6oAAAAAAC4GMUbU6uqqkqNW8cInn/+eXOO+vr6uDH/+7//W+2zceNG2bBhg5pz4oknSnp6uppj1ZAAAAAAAHy6ULwxxcrLy9V4S0uLGk/mqsZECwSJCjr2ZNV/uOWWW+KOWfSUzFEN61gGAAAAAMA9KN6YYjk5OWrcujEhmRoGiT7uH3/8cbOfdUxj586dUldXZ+ZYV2J2d3eb7wIAAAAAcAuKNx5S27dvV+PJfJQnWpywbpsQEXnvvffUuN/vl1AopOa8//77MmrUKDUnmasvAQAAAABuwY6FlOptDQLrKIJI4psnVq5cqfbxeDxy7LHHqjnJFF0Mh8OSlpam5hxxxBHmOAAAAAAAl6B4Y2pVVFT0qv+AAQPMnPXr18e1RSIRtU8kEjGvwmxqapKsrCw1x+PxyI4dO9QcawwAAAAAgHtQvDHFrOKNFq/Xa+YkqnHQ8wrKRKz6DT6fTwoKCtSc/Px86ejoUHNqamrMdwEAAAAAuAPFG1PMKt5osY4ZiIiMHz8+rs362BcRKSsrU+NZWVkSCATUnKFDh5rz+Hw+MwcAAAAA4Bb9tsxhrxy2P1Uyt0LMmjUr5tnj8chXv/pVtc/w4cNl69atas5nPvMZs3hjOBw23+9zn/ucmQMAAAAAcAt2LBxSY8eOVePJHIVYuHBhXJt1BWQ4HJa1a9eqOdXV1bJ3715zfksyxzIAAAAAAC5B8cZDq76+Xo0nU/iw5+0OkUhE7rnnHrVPXV2dlJSUqDkbNmwwj1Qks/CwYMECMwcAAAAA4A4Ub0wgEAjIli1bzGMBB6OpqUmNWwsPIiLXX399XNt7772n9gmHw5Kbm6vmtLW1mTsfamtrzToSmzdvVuMAAAAAAPegeON+Ojs75aabbpKjjjpKzj77bKmtrRURkV/84hdy3333pfQFD6S9vd3MsY5TJJKeni6nnXbawbxSjEAgYBZ4/HcsyAAAAAAA+qt+e2igVw7qp7r11ltl/fr18re//U3S09P3tc+aNUteeOGFlL2cJpniiIsXL45ru/POO9U+Ho9HgsGgOfawYcPMHGth4fTTTzfHAAAAAAC4BTsW9lm4cKHcfPPNMnPmzJj2cePGyfbt25MaY9WqVWo8MzNTjbe2tppzJPpwf/31181+zz77rBr3eDwxCyoHa/Lkyb0eAwAAAABwmKB44//X2NgoAwYMiGvv7Ow0aw98zCpcaF0nmcyugpUrV8a1vfzyy2qftLQ0qampUXMikYi5sOE4jvj9fjXniSeeUOMAAAAAAPegeON+pkyZIm+88UZc++OPPy5HHXVUUmPMnz//YKbeJxq1/4Pk5+fHtZWVlal9Wlpa5LzzzlNzHMeRqVOnqjkej8c8CmEVkgQAAAAAuIdbizf6DqbT9ddfL1/+8pdl06ZNEg6H5W9/+5ts3rxZVqxYIQ899FBSY1hXOlrS0tKku7tbzdm2bVtc29KlS9U+fr9fGhsb1ZxoNCobNmwwx+nq6lIXQD4uegkAAAAAcL9o1CMikb5+jZQ7qB0LM2fOlKefflrC4bCMHz9e3nnnHSkqKpJHH31UpkyZkup3TCgjI8PMGTJkSFzbkUceqfYJBALy4osvmmPv3btXjUejUXNXhdfrNecBAAAAALhDkpUDDjsHtWNBRGTEiBHyy1/+MpXv8olkZmZKc3OzmjN16lRZvXr1vmefzyc///nPzfoOXV1d5vzW3MOGDZNNmzapOYkWPgAAAAAALuXOkxAHf4lmJBKRrVu3yrJly2Tp0qUx/0uFgoICNT5o0CBzjEsvvTTmORQKyRVXXGH2O+aYY9T4GWecYe6YGD9+vDlPMgUoAQAAAADu4NbijQe1Y2HlypXyne98R2pqauK2+zuOI+vWrev1izU1NanxrKwsc4zf/e53Mc+O48jvf/97Offcc9V+Vu2DDRs2yJAhQ2Tz5s0HzLnuuuvklVdekVAodMCcZG/QAAAAAAAc/hyJunLTwkEtLPzkJz+RKVOmyH333SeDBg06qA/k3hYurK+vN3OuuuoqWbRo0b7naDQqDz74oNkvEtGLaQSDwYQ3Tuxv5MiR5jilpaXmuwAAAAAA3MGtxRsPamFh27Ztcvvtt8vIkSMPeuKKioqD7isi0tnZaeZs3bo1rm3gwIFqH8dxZNiwYWrOqaeeKi+88IKa8/Of/3zfzRAHcuyxx6pjAAAAAADcw3FEjBr/h6WDqrEwbdq0hFc5fhLl5eW96t/R0WHmfPjhhzHPaWlp8qUvfUntU1hYKNu3b1dznnvuOXPuJ5980qyhMGHCBHMcAAAAAIBLuHBRQeQgFxauuOIK+c1vfiNPPPGErFmzRtavXx/zv2S0traq8eHDh6vxk046yZzjvPPOi3kOBoPy6KOPqn1CoZCEw2E1Z+bMmWaNh6lTp5rjrFixQo0DAAAAANyD4o37+eY3vykiIjfddNO+NsdxJBqNJl280ToKsWPHDjU+efJkeeaZZ9ScnldCejweufjii+UPf/jDAfvk5uaaN1Js2rRJsrOz1Zy8vLx9v5MDaWxsVMcAAAAAALgHxRv3s3Dhwl5PXFZWpsanTZsWd5Rhfw0NDeYcRUVFMc+RSES+/e1vq33q6+vNqyRra2tlwIABak4oFFIXFUTErOUAAAAAAHAPijfuJxW3GVRVValxbVFBROSDDz4w53jjjTfi2gKBgNrH6/XKmDFj1JzOzk7zmIMVFxGZMWOGmQMAAAAAcAeKN/awfft2+cUvfiFXXnmlXHnllfLLX/7SLHq4v94Wb0x040NPPY9CpKWlyY033qj26ezslDVr1qg5juOI1+tVcyKRiHg8+q/36aefVuMAAAAAABdx4aKCyEEuLLz99tty1llnyYcffigTJkyQCRMmyKpVq2TevHnyzjvvJDVGTk6OGvf59M0UyVw3edxxx8U8B4NB+dWvfqX2ycjIkFAopOZ4PB6zDoPjOBKJ6FtcrDgAAAAAwD0o3rifW2+9Va688kr57ne/G9N+yy23yC233CKzZ8/u9YtZH/fhcFhyc3PV2yUSxY488khZtWrVAft0dnbKhRdeKLfeeusBc/x+v3krRDKLBqn4PQEAAAAADg9uLd54UDsWNm/eLBdddFFc+4UXXiibNm3q9UslIzc31zxqsHnz5rg26wjDgfrtr6SkRPbu3avmDBw40Jxn6NChZg4AAAAAwB0+Kt7oPgf1UxUVFSW8UnLdunXmbQmpctZZZ0lLS4uaM2TIkJhnj8cjxxxzjNonLS3NvHHi/PPPN49ijB8/Xo2LfHQlJQAAAADg08Fx+voN/j0O6ijExRdfLDfffLPs2LFj380GH3zwgdx///1y5ZVXpuTFPB6Pepxg3Lhx4vV61SMTmZmZMc/RaFRGjx6tzpuTk2MWlly6dKm0t7erOY2NjWpcRKSmpkZGjhxp5gEAAAAAXMCN5yDkIBcWvv71r0tOTo488MAD8vvf/15ERIqLi+Ub3/iGfOELX0jJi40aNUo9ktDR0WHWYRg1alTMs8fjMXcjNDc3y4IFC9ScDz74wLy28q233lLjIqm5thMAAAAAcHiIOlFXLi4c1MKC4zj7rplsa2sTEfuWh0/Kqp9QUVFhjpGWlhbzHA6H49p6yszMlIULF6o5HR0dUlBQIE1NTQfM6e7uNnddRN14gSkAAAAAICGKNx5ATk5OyhcVRET9aBcRqaurM8dIdFzh+9//vtrH7/fL2WefbY4dDofNua1CkdYYAAAAAAD3oHjjfurr6+V73/uenHDCCXLEEUfIpEmTYv6XCnv27FHju3fvNsfYsGFDzLPH45Hbb79d7bN3717p6uoyx+5Zv6GnlpYWCQaDas7zzz9vzgMAAAAAcAeKN+7n+9//vtTW1srXvvY1KS4uTvU7ichHxxi0D/OOjg5zjMLCwpjnSCQi1157rdnv2GOPTWpsbXEjmWMO69evN3MAAAAAAOjPDmphYfny5fL3v/89ZbsTErH+2m8VTxQR+fDDD+PaCgoKzH4vvviimTNlyhSprKxUc7xer3rcYefOneY8AAAAAAB3cGeFhYM8CjFkyJA+LzyYzI6FJUuWxLU5Sew9GTBggJnT2tqqxj0ej6Snp6s5yRy5AAAAAAC4g8PCwv930003ya233irV1dWpfp+kOY4jGRkZak7P4omO48ivfvUrc+wxY8aYOdaOipEjR5rXYY4ePdqcBwAAAADgDm4t3pj0UYhjjjkm5q/9HR0dcvrpp0tGRkbcFY7vv/++OV5tba0aT09Pl+7u7gPGI5GI5Ofnq3/1/9KXviQ//vGP9z1Ho9Gkjjm8/vrratzn88nQoUPVnP/4j/+Qn/3sZ2pObm6u+S4AAAAAAHdwHJE+3vz/b5H0wsJNN92U0okrKirUuLaoIPLRrQwNDQ1qzmuvvRbX9uSTT5rvZl0DWVJSYh7F+OxnPyv//d//re5s2Lp1q/kuAAAAAAD0Z0kvLJx//vkSDoflL3/5i7z22msSDAZl1qxZ8o1vfMM8kpBIWVnZJ+6zv7Fjx8ry5cvVHI8nfpvJxIkTpaqq6oB9fD6fzJw5U/785z8fMGfMmDHmosDZZ58tEyZMkDVr1hwwh4UFAAAAAPj0oHijiNxzzz3yhz/8QbKzs6WkpET+9re/mdv9D0T7uE/GsGHDzJye1zk6jiPf+c531D75+fkyduxYNefkk0+WmpoaNSccDsvmzZvVnGSKRAIAAAAA3IHijSLy9NNPy09+8hP5y1/+Infffbfcc8898uyzz0okEvnEE5eXl6tx6yrLZK5qvPjii2OeHceR9vZ2tU9bW5vk5eWpOe+//75548PnP/958/cye/ZsNQ4AAAAAcA+3Fm/8RD9VTU2NnHzyyfuejz/+eHEcR3bv3v2JJ87JyVHjPp9+SsPaDSAictppp8U8RyIReeSRR9Q+wWDQPKKwadMmc+6Ojg6zTsSoUaPMcQAAAAAA7rDffQiu8okWFsLhcNxf6n0+n3n14sFYvXq1Gm9tbTXHSLT4YB3BiEQi5sKC4zjmz7xixQrz/TZu3GjmAAAAAADQnyVdvFHko+sav//974vf79/XFggE5Kc//alkZmbua7vzzjtT94YH4PV6JRQKqTnTp0+Pa5syZYosXbpU7Wcds6iurpaZM2fKrl27DphTV1enjiHy0a0V11xzjZkHAAAAADj8ubV44ydaWDj//PPj2j73uc+l7GU+iYyMDPOowQsvvBDX1tTUZI5tXSVZVlZmXnWZTN2JlpYWMwcAAAAA4A6OS5cWPtHCwq9//et/13t8Yrm5udLc3KzmfPDBB3FtAwcONMfOz89X4+vXr5eRI0eaY1i1J6ixAAAAAACfHh8Vb/zklx/0d4dtScrBgwebOVu2bIl59ng8cs4555j9SkpK1PioUaPMHQldXV3mPFOnTjVzAAAAAADuQPHGFKutre1V/4yMDDMnKysr5jkSicgf//hHs9+sWbPUeGtrq0Sj+gaW/W/POBDryAUAAAAAAP1dny0sVFRU9Kp/Y2OjmbN/QcmP9dzFcLBjW4UjV69ebR676O3vAAAAAABw+HBnhYU+XFgoKyvrVX/tRoaPHXHEETHPjuPI7bffbvazFg3q6+vjdkP0tGnTJtm7d6+aw44FAAAAAPj0cFhYSK2qqio1PmTIEDWeTA2DnnUYotGoPPLII2a/BQsWmDk+n1730ufziWMcoBkxYoQ5DwAAAADAHT4q3ug+ffZTlZeXq3GrBkMoFBKv16vmLF68OK7NuqJSRGTixIlmjt/vV+PBYFDC4bCas3XrVnMeAAAAAIA7ULwxxXJycnrV3+fzSXp6upoTCATi2l566SVzbGu3hIhIUVGRGvf7/WaBxz179pjzAAAAAADcgRoL/UxaWpp4PPrrJ/qwt258EBF544031LjjONLQ0KDmNDU1mfMEg0EzBwAAAADgDo64c8vCYbuwkJOTI21tbWpOooUHq4+IyMyZM9V4cXGxdHZ2qjmO45gLH9nZ2ea7AAAAAADcItLXL/BvcdguLFg1DkQSH7eor683+7W0tKjx0tJSOf/889WcmTNnmgsLU6ZMMd8FAAAAAOAOFG/sZ5LZeZDousfbbrvN7Ldq1So1/sEHH5hXSW7cuFHy8vLUHKtGBAAAAADAPSjeeIhZOxJyc3PNMU444YSYZ8dxZOzYsWofx3HMayAdx0lYGHJ/6enp0tzcrOYMGDBAjQMAAAAA3IPijYeY9df8ZBYWeh5FiEaj8qMf/UjtE41GzZ0GxcXFMmjQIDVnyJAh5nWTJSUlahwAAAAA4B4UbzzEWltb1fjAgQPN4oc9b27w+Xzy7W9/W+3j9/uluLhYzSkoKJBt27apOevWrVPjItwKAQAAAACfLhRvPKSGDx+uxru7u6Wrq0vN2bRpU8xzKBSSO+64Q+2Tnp5u1m/o7OyUyspKNWf06NFqXESksLDQzAEAAAAAuAPFGw+xHTt2qPFgMGgeNUhk48aNajwjI0MGDhyo5owdO9assVBWVma+S1VVlZkDAAAAAHAHijemWG1tba/6J3MrRM8aCx6PR770pS+pffbs2WPWT3jttdfMqyStWyNEPtp1AQAAAAD4dKB4Y4pVVFSocevDPZndCj13DUQiEbnhhhvUPl6v19zVMG3aNNm9e7ea09HRYb7fuHHjzBwAAAAAgDtQvDHFrKMCkYhe1CIQCIhj7CPpWafB4/HIn/70J7WP4zhm/YQPP/zQXNiwCkuKiDQ1NZk5AAAAAAC3oHhjSln1BawrHwcMGCDRqL6N5Oijj455jkQismLFCrXPnDlzZOzYsWpOWVmZeRRjwoQJalxEZMOGDWYOAAAAAMAdKN6YYuXl5Wq8paVFjXd2dpo7FtLT02OeHceRyy67TO0zaNAgGTlypJpTX18vmZmZas6YMWPUuAjXTQIAAADApwnFG1MsJydHjZ944olqvKqqytyxsGfPnri23Nxctc/zzz9vXnXZ0dFhXif52GOPmQsf1uIJAAAAAMA9KN54iFkFFHvuRkhk5cqVMc/RaFR+9KMfqX1ycnJk165dao7X65WCggI1p7W11ayzYC2uAAAAAADcg+KNh5j1cR8IBMwxEl1pWVRUpPZpbW016ydEo1EpKSlRc9ra2szrJK06EgAAAAAAN6F4Y7/i9/vNnLS0tLi2t99+W+3T3Nwsb731lprjOE7CsfeXmZkpoVBIzTnyyCPVOAAAAADAPSje2M8MHjzYzElUB8EqGun1es2dBMFg0LzVoqGhwawBMXnyZDUOAAAAAHAPijemWKJjCp/E9OnTxePRX7/nrgbHceRrX/ua2iccDsuaNWvUnKKiIrMGxH333afGRcSs0wAAAAAAcA+KN6ZYRUWFGp89e7YaHz58uEQi+vmURLsarI/5nJwcOeGEE9ScSCQiPp9PzTnmmGPE6/WqOVYNBgAAAACAezjuXFfou4UF60iCtWvgww8/NOcoLS39RO8k8lHRxalTp6o5+fn55qLA+++/b9ZhOJj3AwAAAAAcplx6FqLPFhasqxbD4bAaHzJkiHrlZHp6ujQ0NMS0RaNRueeee9RxHccxayzs3LnT3C3x6KOPmrsarDgAAAAAwD2MMnyHrX5bvNG68nH37t3qroFAICADBgyIa+/o6FDHzcjIMI9pZGZmmsUja2pqpLOzU8257LLL1DgAAAAAwD1cumHh8C3eWFNTo8aj0ajce++9ce0XX3yx2i8QCJiFGQcPHhy3G6Kn0tJSc9fFiBEj1DgAAAAAwD0o3phiyewK0NTX15tz9Lxu0uPxmMUbw+Fw3G0Sid6ttbVVzTn11FPFMZajeru4AgAAAAA4fFC8McWs4o1a/QQRkebmZnOO9vb2mOdIJCI//OEPzX4jR45U4x6PR/Lz89WcwYMHS9Q4QBMMBs13AQAAAAC4hEvPQvTb4o1NTU1qPBQKicejv35XV1dc27Zt23r9blu2bDF3NfzpT38ydyxYixMAAAAAAPegeGOK9fYYgN/vN3cEPPPMM3FtPXcxJLJ06VI13tbWJsccc4yaU1VVZS58cN0kAAAAAHx6uHTDQt8tLCxatKhX/QcPHmzuGigpKYlrO+WUU8yxJ0yYoMYjkYh5JeWYMWPM4o2rVq0y3wUAAAAA4A4Ub0yxjIyMXvUfPHiwet2kiIjP54t59nq98vWvf90cO5nCkFu3bjVzvF6vGk/mXQAAAAAA7kDxxhSzdg5YVzEmc5Ti+9//fsxzOByWyy+/3OzX2dlp5uzcuVONb9261SxAaY0BAAAAAHARl56F6LfFG7dv367GExVmTIZ1hEFEZMqUKWbOkCFD1Hg0GpXCwkI1h4UFAAAAAPj0oHhjP2PduCAiUldXF9c2c+ZMs1/PIxSJ4taOiyFDhphHIbZs2WK+CwAAAADAHVy6YeHwXViwrqMUETnhhBPi2qyPfRGRQYMGqfHs7GwpLi5WcyZOnCihUEjN6W2dCQAAAADA4YPijSnW2xsRWltbzZwHHnggrm3btm1mv2TqNyxevFiNDxw40Fz8yM3NNecBAAAAALgDxRtT7KmnnupVf+uqSZHERw2ysrLMfsuWLVPj7e3tsnv3bjXn+eefN4s3AgAAAAA+RVx6FqLPFhZKS0t71f9g/9pvFYUUEamurlbj4XBYZs2apebk5uZK1KjMkczuCQAAAACAO1C8McV6+9f8ZG53mDFjRlzb1KlT1T6O45iLBmlpaVJZWanmtLS0mLsqLr74YjUOAAAAAHAPl25Y6LuFhYKCgl71HzBggJmTaBFh/fr1ap9oNCqZmZlqzujRoyUYDKo5kUjEPC5BjQUAAAAA+PSgeGOKWdc1Wr75zW+aOb/5zW9inr1eb1xbTx6Px/zgv/rqq2XUqFFqTlFRkXltZTI3VAAAAAAA3IHijSmWk5PTq/7WdY8iIiUlJTHP4XBY7rrrLrVPJBIxr4n8wx/+IA0NDWpOUVGRlJWVqTmBQECNAwAAAABchKMQ/UsyCxNpaWkxz47jyLXXXmv2e+aZZ9R4TU2NrFu3Ts0544wzzKMQHR0d5rsAAAAAANzCnSsL/XZhISMjQ43/9a9/FceofJGdnR3z7PF4zNoMl156qUyePFnNiUaj0tbWpubs2rVLWlpa1Jyamho1DgAAAABAf9dvFxaysrLUeHp6unmdY6KjEDfffLPaZ+HChWZthPT0dPMoxKuvvqrGRUSam5vNHAAAAACAO1C88RBrbGxU4x988IE5xrhx4+Laurq61D5NTU1y5JFHqjkjRoww5167dq2562Ljxo3mOAAAAAAAd6B4Y4rV1tb2qv/48ePNnIEDB8a1WddEpqenS2FhoZpTV1cnQ4YMUXPS0tKku7tbzamqqlLjAAAAAAAXcWeJhb5bWKioqOhV/2SKN65fvz6u7cYbb1T7tLe3y0MPPaTmtLa2mosCGRkZ5lGNkSNHqnEAAAAAgJu4c2WhzxYWysvL1XheXp4aT6Y+wYcffhjznJaWZl4lOW3aNJkxY4aa4/P5pKCgQM2x3l9E5LTTTjNzAAAAAADoz/psYWHz5s1q3DqykMxRiCuvvDJuTOsmhnXr1smYMWPUnOOPP16GDh2q5lgLJyIi8+bNM3MAAAAAAO5A8cYUW7BggRq3ahhccMEF5hyJahz861//UvvMmDFDcnNz1Zy8vDxpbW1Vc7797W+b12Gmp6ercQAAAACAe1C8McXmz5+vxrds2aLGH3vsMXOOnTt3xrUtXLhQ7bNs2TLZtGmTmvPCCy+Y9RGWL19u1liw3gUAAAAA4CLuLLHQdwsLJSUlver/xhtvmDnPP/98zLPjOHL//ferfcLhsNxzzz1mTiQSUXN+8pOfyKBBg9ScP/7xj2ocAAAAAOAm7lxZ6LOFBcvgwYPVuLWjQURk7969Mc9+v98szCgi8pnPfMbMseZvbm42dywcffTR5jwAAAAAAPRn/XZhwWIVYRSRuJsburu75aKLLjL7rVy50szZvXu3Gs/KyjLHKCwsNHMAAAAAAO5A8cYUq62tVeO7du1S49atESIidXV1cW2lpaVmv7KyMjMnEAio8eLiYmlsbFRz2tvbzXkAAAAAAO5A8cYUW7RoUa/6+3w+MyfRlZRFRUVmv+3bt5s51gLFpEmTzFsh8vLyzHkAAAAAAC7hzhILfbewkJGR0av+Ho9HcnJy1JxEiw8vvPCCOfakSZPMnLlz56pxx3HijmL0lJmZac4DAAAAAHALd64s9NnCQjIf7xqv1ytpaWlqTs9bIUSSW9CYNWtWUvNrHn/8cfH7/WrOiBEjzHkAAAAAAOjP+mxhYcWKFb3qn5GREXfrQ0+JrnscOnSoOfabb75p5qxZs0aNe71eaWhoUHOOO+44cx4AAAAAgDtQvDHFurq6etX/mGOOMXOKi4vj2pK54rGlpcXMSVQYcn+O45g7Fq655hpzHgAAAACAO1C8McWs+gOWcDhs5syZMyeubc+ePWqfrKyshEUf91dQUGAWZszOzjaPSxx77LFqHAAAAADgIu4ssXD41lgYNmyYmTNgwIC4NmtBw3Ecsw7DueeeK62trWrOmDFjpKOjQ815+umn1TgAAAAAwEWi7lxZ6LOFhddff71X/ZMpwpioBoN1/GDEiBFmUcXGxkaJRCLmOMFgUM352c9+psYBAAAAAC7iznWFvltYqK+vV+N5eXlqPD093TyOMGXKlJhnx3GkqKhI7bNp0ybxePRfS2Njo7mwccUVV6hxETHnAQAAAAC4B8UbU+yqq65S49aOgGXLlpkLC6tXr455jkajcvXVV6t9gsGglJaWqjlLliwxc6wFDBGRl156ycwBAAAAALgDxRtTrKSkRI23tbWpcevDXkQkJycnrm3ixIlqH8dxzN0U5557rmzfvl3Nueiii8z3s+o0AAAAAABchKMQ/cvo0aPNXQ07duyIeXYcx9yx4PF4zNoIP/zhD83rMmfOnKnGRezjHgAAAAAAF6F446F19NFHq/ExY8aYY6xatSrmORqNyqOPPqr2ycrKMndDrFmzRhobG9Wc2tpaycrKUnPOP/98NQ4AAAAAcBF3riv03cJCbW2tGl++fLka37NnjzlHS0tLzLPH45HLLrtM7dPR0WEeUXjwwQfNoxq7d+82r5u0fkYAAAAAgHtQvDHFKioq1Lj11/7Pfe5z5hz5+fkxz5FIRM4991y1Tzgclg8//FDNqaiokMzMTDVn0qRJ5vtdeumlZg4AAAAAwB0o3phi5eXlatz6a7/jOOatEIMGDYpru/fee81327JlixrPz8+X7u5uNWfnzp3mPIWFhWYOAAAAAMAlOAqRWolubNifz+dT47W1tebCQm5ubsyzx+Mxb4UQEampqVHjjY2NZuHI0aNHi9/vV3OsOAAAAADARSjeeGhZ11GuWbPG/LgfMGBAzHMkEpG7777bnDsUCqnx1tbWhLsh9jd48GCJRvV9Lrt27TLfBQAAAADgEu5cV+i/CwvWUYLbb7/dHKPndY5paWly1llnqX28Xq8cccQRak5hYWFSN0dYCxQPPvigGgcAAAAAuAfFG/uZ9PR0M6fnzQ3hcFgKCgrUPqWlpdLV1aXmjB492twtEQwGzfdLpg4DAAAAAMAdKN54iPW80aGnvXv3mnUYehaAjEQicskll6h9ampq5Pzzz1dzlixZYtZ32LJlS1yNh56smyUAAAAAAC7CUYjUqq2tVePNzc1qPBwOmzUMtm3bFtdmFUwMhUKye/duMyctLU3Nyc3Nlfb2djXHGgMAAAAA4CIUb0ytioqKXvXPzs6WcDis5ixbtiyubebMmebY//znP80c66hDbW2teDz6rzeZ4xIAAAAAAJdw57pC3y0slJWV9ap/z8KMiXzhC1+Ia1u8eLHZ77XXXjNzrN0SeXl5Zh0I6+YLAAAAAIB7ULwxxaqqqnrVPxwOmzUWFi1aFPPs9XrlzjvvNMeeOHGimVNYWGjmWMcu9u7da44BAAAAAHAHijemWHl5uRq3Ch96vV7zOsexY8fGPIfDYbn66qvVPsOHD5c5c+aoOX6/X+rq6tScaDQqjY2Nas7WrVvVOAAAAADARTgKkVo5OTlqvLW1VY1nZWWZc/Q8LuE4jtx9991qn6FDh5qLBoFAQAKBgJqTkZFhvl8yux4AAAAAAC5B8cZDy1o42LlzpzlGoo//4cOHq322bNkil19+uZpzzTXXmFdFJnPjQ3FxsZkDAAAAAHCHqEvPQvTbhYXRo0er8ZNPPtkco2cdhmg0ah7B8Hg85k6CV199VQoKCtQca0eDyEfHOQAAAAAAnw6OS89C9NnCQm1trRpfs2aNGt+8ebM5x8qVK2PqMDiOI3/84x/VPtYxCJGPdjVYiw979uwxx1m/fr2ZAwAAAABwCeN2wcNVny0sVFRUqHGreKO1o0Ek8a0M1o4Fx3Hk/fffN8e2Fj5ycnLMWys8nn67YQQAAAAAkGru3LDQdwsLZWVlajxqrOTU1NSYc5xzzjlxY55xxhlmv7feesvMsa6S9Hq95s8wYsQIcx4AAAAAgEtQvDG1VqxYocbb2trU+LJly8w5du3aFdd2yimnqH2i0ajMnDnTHHvYsGFqvLm5WcLhsJqTTB0GAAAAAIA7ULwxxZK5jlFTWFgojqOv9iS6snLQoEHm2PX19WbOypUrzRxLV1dXr8cAAAAAABweKN6YYtbOgWRYRw0GDx4c17Z7925z3GSOWXR0dKhxq76CiMjEiRPNHAAAAACAS1C8MbVycnJ61b+hocHMWb16dVybdQRDRCQSiZg51nWT48aNM3dUJPMuAAAAAACXcOeGhb5bWOgt68M+Ecdx5M477zTzNm7cqMa9Xq+5sHHqqaea70jxRgAAAAD4FKF4Y2rV1taqceuv/V6v15xj8uTJMc/RaFQeeOABtU9GRoZZOPLkk082Cy86jiOdnZ1qTn5+vhoHAAAAALgHxRtTrKKiQo1b9ROSOUrR3t4e17Z48WK1z8iRI+Wss85ScyZNmiSlpaVqzurVqyUrK0vNSabeAwAAAADAHSjemGJlZWW96m9d5Sgi0t3dHfOclpYmd911l9qnsrJSXn75ZTXnwQcfNG+XaG1tNXc+JFr4AAAAAAC4FMUbU6uqqkqNH3HEEWr8/PPPN+foufgQDAbln//8p9nPOobR3d1t3gpxzTXXSDAYVHOmT59uvgsAAAAAwCXcuWGh7xYWsrOz1fjatWvVeF5enjlHenp6XNs3vvENs59VdNHj8ci2bdvUnBNOOME8zjF8+HDzXQAAAAAALkHxxtR699131XhJSYkav+CCC8w5QqFQXNv//u//mv3Ky8vV+ODBg83ijXfffbc5z9SpU80cAAAAAIA7ULwxxebPn6/G6+rq1Pjbb79tzpGojsOGDRvMfj1rMyRiFW98/PHHzTH+8pe/mDkAAAAAAHegeGOKWTsSLE8++aSZ09TUFPPsOI78/Oc/N/tZRRVra2tl1qxZao7HY/9qrcUTAAAAAICLULzx0PL7/Wo8mQ/3nnUYPB6PudNg2LBhcvTRR5vjWtddzps3z3y/I4880swBAAAAALiEOzcs9N+FBZ/Pp8atWyVERDIzM2Oew+Gw3HPPPWqfE044wbzNISsryyzMOHPmTPP9kll8AAAAAAC4BMUbU2vVqlVq3LrO0TquICJSWFgY13bxxRerfV5//XUpKipSc7KysmTnzp1qzoIFC8xdDcnsugAAAAAAuAPFG1NswYIFatyqwTB06FBzjuOOOy6u7T/+4z/UPnV1dQkXJPZXX18v4XBYzWltbZVIJKLmvPTSS2ocAAAAAOAejrCwkFK9vRUiPT3dnKPnlZaO48jtt99u9tu4caMab21tldbWVjXnvffeM3ddVFdXm+8CAAAAAHALd+5a77e3QmRkZKjxZK6E7Orqinn2er0yZswYs19zc7MaT09Pl7a2NjUnmaskrToSAAAAAAA3YcfCIWUdNdi+fbs5xvjx42OeQ6FQUjsWTjrpJDU+dOhQKSsr+0RzJ+L1es0cAAAAAIBLULzx0LJuZqivrzfHWLFiRcyz4zhy5plnmv2sRYv6+nrJzs5Wc26++WZxHP0fza5du8x3AQAAAAC4A8UbD7G8vDw17vf7zTHOOeecmOdoNCqPPfaY2c8qqpiRkWEexaisrDRvfTjllFPMdwEAAAAAuAPFGw+xlpYWNW7tBhAR+eY3vxnXtmzZMrPfhAkTzBxrYWH79u3mO65bt86cBwAAAADgFv32E7xX+uynqq2t7VV/6yiCiEhOTk7Ms8/nk29961tmP+vdqqurzUWBzs5Oyc/PV3Oee+45810AAAAAAG7BjoWUqqioUOPWX/ut4okiIlu2bIl5DoVC8o9//MOcd/jw4WpOVlaWBAIBc/729nY1nswYAAAAAACXoHhjapWXl6vxaFRfySkqKjLnyMvLk9zc3Ji2ngUde0pLS5OVK1eqOR0dHZKZmanmeDweswDluHHj1DgAAAAAwD0o3phiPY8pfFI7d+40c/bs2SOtra0xbenp6WqfYDAoI0aM6NW7iXx0laRVvLGqqqrX8wAAAAAADg8Ub0yx3tZYsI4ZiHxU56CnkSNHqn2i0ai5W0JEZNSoUWp80KBBkpGRoeaMHj3anAcAAAAA4BYUb0wpq8aCpbm52cyZOHFiUm09feYzn1HjHo/H3I0wbtw4aWtrU3OshQcAAAAAgJuwYyGlrBoLlq6uLvH5fGrOwIED49o2b95sjm0tGkSjUdm7d6+as2PHDvF6vWqO3+833wUAAAAA4BIUb0yt3tZYCIfDEgqF1JxEuxr++7//2xx76dKlatzr9UppaamaM3r0aPP9TjvtNPNdAAAAAADuQPHGFFu1apUaT0tLU+PJLExMmDAhrs2qsSAisnHjRjWelpZmFl487rjjzHm2bdtm5gAAAAAA3IHijSm2YMECNW4dI7CuexRJfHPEPffco/bJy8uTE088Uc0JhUJSXV2t5lRWVprv19jYaOYAAAAAANyC4o0pNX/+fDXe1dWlxhPd+NBToqMI1rjt7e1mHYZgMGjeHPHcc8+Z77dixQozBwAAAADgFuxYSKmSkpJe9S8oKDBzHCe+MIZ1zWU4HJaamhpzbOtWihEjRphjTJo0ycwBAAAAALgExRv7l6KiIvNWiER1GgKBgDn2hx9+aOZYxRuTWfhI5jgHAAAAAMAdKN7Yz6Snp5u3LvSsseA4jlx33XVqH8dx5KijjjLntxYWDvaoBgAAAADAnSjeeIiVl5er8fb2dnOM4cOHxzxHo1G577771D7RaFSKi4vVHMdxZPfu3WpOd3e3+X7JHJcAAAAAALhDNNpvP8F7pd/+VO+9954a3759uzlGQ0NDXJtVYyGZnMzMTHNhY8eOHeY8PRc+AAAAAADulaAMoCv024UFi3W7g4jIuHHjYp49Ho/84he/MPtVVVWpcb/fb+5ICAaD5jwez2H76wcAAAAAfFLuPAnRfxcWcnJy1HgyCwtbt26NeY5EIvLFL37R7Ddnzhw13tHRkfDGif1Z11GKiLS0tJg5AAAAAAB3oHjjIdbW1qbGk9kRUF1dHdeWzAd/VlaWGg8EAmbhRcdxxOv1qjl//OMfzXcBAAAAALgDxRv7mUgkYuaMHj06ri07O9vs19HRYeZYiwbBYNBcxMjIyDDnAQAAAAC4A8UbU2zVqlW96p9MfYLCwsKYZ8dx5H/+53/MftYHf3p6urlokJWVZR7n8Pl85rsAAAAAANyB4o0ptmDBAjU+bNgwNW7VOBARueiii2Keo9Go/OAHPzD7DR06VI2XlpaaV0VmZmaauyquuuoq810AAAAAAC7hzpMQfbewMH/+fDWeqD7C/nJzc805li5dGtc2ffp0s59VYyEcDsvEiRPVnPLycsnMzFRzrJslAAAAAADuQfHGFCspKelV/8GDB5s5r776asyzx+ORU045xew3ZMgQNd7W1mYe5Zg+fbrs2bNHzTn99NPNdwEAAAAAuAPFGw8x6+Pe2g0gInLqqafGPEejUcnLy1P7+P1+80aK7u5uc/6zzz7bfD/rZgkAAAAAgHtQvPEQs2ooBAIBc4wZM2bEtVm1G7KysmTTpk1qTltbm1mYce3atebPwMICAAAAAHx6ULzxELPqHCSjqKgo5jkajcoNN9yg9unq6pJx48aZY1vHHF555RXz5ogPP/zQnAcAAAAA4BLuPAnRdwsLtbW1atzaNeD3+805Hn/88bi2nldQ9tTV1SWdnZ3m2AUFBWp8yZIl5hjbt283cwAAAAAA7kDxxhSrqKjoVf9BgwaZOYlubkhm3pUrVx7U2PsLBoPmGI888oiZAwAAAABwB4o3plh5eXmv+peWlorX61Vz/vrXv8a1WQsCIiLZ2dlqPDMz05w7Pz/fnGfMmDFmDgAAAADAHSjemGJW8UNLd3e3hMNhNedrX/taXNvw4cPNsa36DsXFxeLx6L+6oUOHmvMce+yxZg4AAAAAwB0o3phiVo0Fy44dO9RbFxzHke7u7pg2j8cjF110kTl2Y2OjGu/s7JQVK1aoOcuWLTPnueSSS8wcAAAAAIBLuPMkRP+tsWDVUAgGg+qtC9FoVHJzc2PavF5vXFtPaWlpMn36dDWno6ND1q1bp+bMmTPH3NWQzHEJAAAAAIA7ULwxxawaC4FAQI2fffbZavyII46QpqammLZIJGLWRgiHw+atENFoVCKRiJrzne98R91RISLS3t6uxgEAAAAA7kHxxhSzaix0dXWp8QsuuECNb9u2Le5KyGg0ai4sRCIRqampUXPS09PNhY+ioiJ1R4WIyJo1a9Q4AAAAAMA9KN6YYlaNBeuj3BIMBuMKKEYiEbnpppvMvg0NDWrccRwpLi5Wc3bs2GH+DMcdd5z5LgAAAAAAd6B4Y4pZNRasHQGWQCAga9eujWnzeDwJb4royap9UFRUJGlpaWrOM888Yx6FuPHGG813AQAAAACgP+uzhYWysjI1bn24r1y50pyj53ELx3FkyJAhah/HcWTbtm1qztatW6WlpUXNiUQiZh2Giy++WI0DAAAAANwjSo2F1KqqqlLjVi2EZ5991pzjySefjHl2HEfy8vLUPkceeaRUVlaqOaWlpTJ+/Hg1Z+LEieb7bd++3cwBAAAAALgDxRtTzLoVIhgMqvElS5aYc/Qs3hgOh826B7feeqtcfvnlas4vfvELmTp1qprzv//7v+b7JbPrAgAAAADgDhRvTDHrVojc3Fw13tbWZs7h8/linqPRqMybN0/t8/nPf948LlFdXS2hUEjNycjIMN/P2hkBAAAAAHAPijceYk1NTWo8mYWFHTt2xLVNmDBB7VNXVyfhcFjNueOOO2TLli1qTn19vfl+vS1QCQAAAABAX+u3CwsWa8eAiMi6devi2tavX2/2e+utt9R4S0uLeaSiqalJ/H6/mpOenm6+CwAAAADAHSjemGK1tbW96m9d5Sgi0tDQENd22223mf2qq6vVeDQalZtuuknNqa+vNwtQDhgwwHwXAAAAAIA7ULwxxSoqKtT40KFD1bh1XEFEZODAgeLxxP6Il156qdnP+uAPBoPy17/+1Xy/7u5uNWfy5MnmuwAAAAAA3IHijSlWVlamxmtqatR4MsURQ6GQRCKRmLbCwkKz38CBA9V4MBg0j2L4/X5zV8URRxxhvgsAAAAAwB0o3phiVVVVveqflpZm5iRavLj//vvNftZVlyIigwYNUuMlJSXmrgqrlgMAAAAAAP1dny0slJeXq/GZM2eq8aOPPtqcY8SIEXFtDz30kNlv5cqVZo5VmDE/P98c4+qrrzZzAAAAAADuQPHGFMvJyVHjy5YtU+ObNm0y5xg3blxcm1X3QERk7ty5ajw/Pz/uiEVP1nWUIiILFy40cwAAAAAA7kDxxhTr7a0QyRRvbG9vj3l2HEduuOEGs1/Pgo89lZaWyuuvv67mBAIBc57HHnvMzAEAAAAAuAPFG1PMuhVi9OjRajwvL8+sszBs2LCY52g0mtR1k/X19Wq8q6tL9u7dq+Y4jmMuUJx22mnmuwAAAAAA3IHijSlm1ViwjhLs2bPHvJkh0XGK559/3ny3zs5ONV5dXS2ZmZlqTlpamnlcwioACQAAAABAf9dvayxYmpqaxOfzqTmtra1xbTNmzDDHnjhxohoPBAJmccZkbq1IppAkAAAAAMAdKN7YD1nXQlZWVsY8+3w+ueqqq8xxrR0LgwYNMm+FsMYQSW7xAQAAAADgDhRvPMSsHQ3JFEfsuaMhFArJ9ddfb/YbOXKkGj/xxBPN3RJTpkwxcxJdhwkAAAAAcCeKNx5ibW1tatyqXyAi0tjYGNd2yimnqH0cx5GNGzeqOU888YQ0NzerORs2bDCPS/T2ZgwAAAAAwOGD4o39jNfrFa/Xq+bk5eXFtW3YsEHtk56eLm+//baak5OTI8XFxWpOIBAwi0smU+8BAAAAAOAO1FjoZ7KysswaBRMmTIhrs3YahMNhmTx5sprT1dVl7kYoKSkx6yzk5uaqcQAAAACAezjizi0Lfbaw0NtjANFo1CzemKhWgrVoEAwGZefOnWpOKBSSoUOHqjlDhw41dyxYV2oCAAAAANzEPtJ/OOqzhYWKiope9c/JyZFwOKzmXH311XFtGRkZ5tjW4kNOTo68++67as6FF15oHtUYO3as+S4AAAAAAHegeGOKlZeX96q/taggIgk//ktKStQ+Pp9PNm/erObMmDFDOjo61JxNmzaZOyoAAAAAAJ8eFG9MMevj3eIk8V8k0a6I3bt3q318Pp+MHz9ezVm3bp0UFhaqOdaVlSIiu3btMnMAAAAAAO5A8cYUW7BgQa/6W/ULREQGDRoU12bd5tDV1SXHHHOMmrNnzx5pb29Xczo6Oszikl1dXWocAAAAAOAeFG9Msfnz5/eqf1pamvnh/uKLL8Y8+3w+ueqqq8yxW1pazJzLL79cjb/55pvi8ei/3u7ubnMeAAAAAIBbULwxpaxaByNGjDDHsGoYXHzxxTHP4XDYvOLRcRz58MMPzbn37Nmjxrdv327WgUhPTzfnAQAAAAC4A8UbD7GGhgY13t7eLgMGDFBzeh41iEajctFFF5lzW1dJinxUwFGTn58vkyZNUnOqqqrMeQAAAAAA7kDxxkPMqmEQiUSktbVVzXnqqafi2qyiimlpaTJ69Gjz/awaERs2bBCfz6fmsGMBAAAAAD49KN7Yz3i9XgkEAmrO4MGD49qWLVum9gkEAmbtBhGRJUuWqPHZs2fLpk2b1JxExSUBAAAAAO5E8cZ+JpnrJnvmOI4jd999t9kvmaKKVo2FyspKc9fFtm3bzHkAAAAAAG5B8cZDKtFug/11d3ebhRjHjh0b8xyNRmXatGnm3G+99ZYa9/v9UlhYqOa0trZKNKpvcznrrLPMdwEAAAAAuAPFGw+xZI4JdHR0qPHy8vK4tmSKNz777LNqfPDgwZKRkaHmhMNhc2EhmSKRAAAAAAB3oHjjIbZ69Wo1Hg6Hzescq6ur49qsgooiYi4aVFdXmzdSWMcgRCjeCAAAAACfJhRv7Ge8Xq+Zs3Tp0ri2cePGmf2OOuooc+6CggI1Jysry5wnJyfHzAEAAAAAuAPFG/sZj8d+9URHISIRu1iGtSgwcOBAqaqqUnNGjx4t2dnZas4zzzxjvgsAAAAAwC0o3tivWMcgRETq6upinh3HkWuvvdbsl5+fr8aLiopk48aNas7kyZPNXRWXX365+S4AAAAAAHegeOMhVlLy/9q78+gqy2vx4/sMOSfzHEKAMKmEMkNBAjIjglSc6aWgaOnlKmq13q5qu5alCkW0otcBUKQ4tV6sdllsEbmtEwVlkNEaATUMGQgQSELm5Ey/P7rIz5NzeHYSQhJev5+17lr3ffd+3vfJve/q6tk8z37SjfGoqCj1Gd98803QdSAQkLffflsdN3r0aGPcbreLy+Uy5lx99dVSU1NjzPn444/VuQAAAAAArIHmjW2s8WqDxppSWAjXYPGTTz5Rx2mnOcTFxUlGRoYxZ9SoUeLxeIw58+bNU+cCAAAAALAGmjd2MNqKARGRffv2hdw7fPiwOk5babBjxw61f0JTjrX88ssv1RwAAAAAgDXYrFlXuHgLCxUVFWpOly5dQu6tWrXKOCY1NVV9ttfrVQsLWVlZ6vz+9Kc/qTkAAAAAAIuw6F6IdissFBUVGeNxcXHGeFMKC8nJyUHXDodDMjMzjWPGjx8v1dXV6rO1VQ2ff/65+oyCggI1BwAAAABgDcqu+4tWuxUWcnJyjPHIyEhj3Ov1qn0WGvdY8Pl8MmvWLOOY9evXS1VVlTEnKipKPZUiMjJSPRKzV69exjgAAAAAwDosumCh/QoL2dnZxnhxcbExHggE1CaLXq835J62GqGurk42btyoPreystKYk5OTI7GxscacrVu3GuMAAAAAAOugeWMr0350a5xOp9TW1hpzLrnkkpB7V1xxhfrsGTNmGOM+n0/q6uqMORMmTFBXPiQkJKhzAQAAAABYA80bOxitB4OIyJkzZ0Lu/exnP1PHud1uY9zpdEp6erox58Ybb1Sfc77FFQAAAADARcSieyE6bGFBKxw07p8QzpEjR4Ku7Xa7OJ1O4xi73S7l5eXGnMjISHW1xK5du8Tj8RhzevbsaYwDAAAAAKyD5o0djNa4UUTE7/eHXGvbHPx+f0hBIhyHw2GMFxcXi8vlMub84Ac/UN8DAAAAALAGiy5Y6LiFBe04SbfbrZ66YAvz/7X/+Z//Ud+tHYVZXl4uM2fONOYUFhaqPRRWrlypzgUAAAAAYA00b2xj3bp1M8bT0tLUwkJ+fn7QtcPhkC5duqjv1k6k+PnPfy6HDx825owdO1bddpGWlqbOBQAAAABgDTRvbGXaqgCtsWGXLl3CHif5bY1PgPD5fPLCCy8Yx0RERMigQYOMOWPGjJETJ04YcxwOh5SUlBhztKMvAQAAAAAWYtG9EO1WWMjJyTHGDxw4YIxXVlaq7whXnNixY4dxjMfjUZsqLlq0SI4fP27MufLKK9XCBysWAAAAAOC7g+aNrSw7O/u8xvfu3VvNycvLC7q22WyyfPlydVxA+f/2iBEj1NUG8+fPVwsL2qkRAAAAAADrsOiChfYrLGhbHcI1Xvw2bbuCiMi1114bdB0IBOSyyy5Tx2kFgZKSErW55PDhw9WTIx588EF1LgAAAAAAa6B5Yyvbt2+fMR4ZGWmMb968WX2H1oTxXNLT043x48ePq8UHv98v8fHxxpymHJkJAAAAALAGmje2svfff98Yj4iIMMY/+ugj9R3hjnscMWKEOk4rGhw+fFiGDh2qPkM7FeLdd99V5wIAAAAAsAiL7oVot8LClClTjPHy8nJjXCs8iIj89Kc/Dbq22WyycuVKdVy4gsS3FRYWSm1trTHnww8/VE+OyM3NVecCAAAAALAGmje2spMnTxrjQ4YMUZ+hbZe4+uqrg64DgYA8//zz6nO1/g5ut1uqqqqMOU6nU/x+vzGnrq5OnQsAAAAAwBosumCh454KsXfvXmO8vr5eXTVw+eWXh9xryo/5/fv3G+NxcXFSWlpqzPH7/WrzxpSUFHUuAAAAAABroHljK9NOhdA0PkoynPz8/JB7Tz31lDru73//uzFeU1Mj0dHRxhyHw6E2b9y5c6c6FwAAAACANdC8sY1pfQ7i4uLUZ5w5cybk3ooVK9RxSUlJxviUKVPkm2++MeY4nU71OdqqBwAAAACAhbAVom2FKwp8W1lZmXTq1MmYc/z48ZB7iYmJ6ru1H/x///vf1S0VNTU1UlBQYMzRVjQAAAAAAKzEmpWFDltY0Hg8HrUAEK5Xwscff6w+W1sNUVNTI26325jj9XolKirKmJOWlqbOBQAAAACAjuyiLSw4HA7xeDzGnMsuuyzkXp8+fdRnf/DBB016v4ndbhev12vMyczMVN8DAAAAALAGmjd2MHa7PvWMjIyQe507d27RuG8LBALqiQ4ul0vdLqFt9wAAAAAAWAfNGzuYqKgosSmHgIZbMXDq1Cn12cOGDVNzBg0aZIxHRESI3+835hw9elR9DwAAAADAIqzZYuHiLSyI/PvkBZNwx03+93//t/rcK6+8Us25+uqrjXGfzycul8uYk5ycrL4HAAAAAGAV1qwsdNjCQrdu3Yxxj8ej9jCorq4Oubd27Vr13TU1NWpORESEmqOd+vAf//Ef6jMAAAAAAOjIOmxhQTuq0ev1SiBg3qASrg/D+vXr1Xfv3btXzdGe4/P5pKKiwpjTo0cP9T0AAAAAAGugeWMHo/VXEBHp2rVryL2SkhJ1XGFhoZqzZcsWY9zn86krH26++Wb1PQAAAAAAa6B5YwcTExOjHvnYv3//kHtNWSUwd+5cNUc7laIphQ+3263mAAAAAAAswpotFi7ewkLPnj3VnCFDhoTcW7ZsmTouISFBzamsrDTGtf4KIiInT55UcwAAAAAAVmHNykKHLSxoqxG6d+8uPp/PmLNz586Qe6tXr1bfXV9fb4zbbDaJiYkx5vTt21d9T1NWRgAAAAAA0JF12MKCVjQ4evSo+ozGfRBsNpvceeedxjGxsbFqjwWHwyGXXXaZMcftdkt0dLQxZ8KECcY4AAAAAMA6aN7YyoqKioxxbStBU457dDqdQdc2m009qaGqqkqysrKMOWPHjpX09HRjzsGDB9XmjbW1tcY4AAAAAMA6rNq80amnXBg5OTnGuLYVQutxIBLaK8Hv98u9995rHBMIBGT37t3GnKqqKjlz5owxp6KiQux2u3HlRWlpqfEZAAAAAAALsYlYcdFCu61Y0Jovaj+6tdUAIiKRkZEh9wYPHqyO046S/PLLL9VTHxISEtTtHNrqCQAAAACAldC8sVXt2bPnvMZ36tRJzdm/f3/Qtc1mk1/96lfqOG2bQ1VVlfj9fmPOoEGD1PckJyerOQAAAAAAdGTtVlgIt5qgOZqyYuH6668PunY4HGpDxaioKPF4PMaclJQUtbAwc+ZMdX6jRo1ScwAAAAAA1kDzxlY2ceJEYzwxMdEYP3bsmNrAsXfv3kHXPp9Pjhw5YhxTX18v3//+9405CxYsUJ8zbNgwY1xE5F//+peaAwAAAACwBqs2b2y3wkJsbKwxrhUWnE6nurLgiy++CLoOBALy0EMPqXPbuXOnMR4ZGSmBgPmLaHwiRTja3wgAAAAAsBBrtlhov8KCRlsR4HK51GccO3Ys6Npms8nSpUuNYxITE+XQoUPGnKefflqSkpKMOZMmTVLnt3DhQjUHAAAAAGARAWtWFtqtsFBUVGSM9+rVyxjPzMxU31FeXh50HQgEZM2aNcYxsbGxMm3aNGOO0+lUezWsXLlSnd/QoUPVHAAAAACARVizrtB+hQXtSMfDhw8b4437J4TTeLuCzWaTX/ziF8YxR48elYKCAmPO+PHjxW43/58uNzdX3Q4xY8YMYxwAAAAAYB00b2xl2qkQ2lGMxcXF6jtSU1ODrgOBgMTExBjHxMTEiMPhMObs3btXMjIyjDl79uwRt9ttzPne975njAMAAAAArIPmja1M+1GtrQgoKSlR39GjR4+Qe/n5+cYxXbp0UQsLV1xxhfh8PmNOcXGx2lyyKX0iAAAAAAAWwVaI1qU1Z+zcubMxXlBQoB43GW5Vw+uvv24cExsbK5MnTzbmfPTRR1JZWWnMKSsrE6/Xa8zRTpYAAAAAAFgIzRtbV3Z2tjHe+KjIxqqrq9Uf7jt27Ai5p22FOHr0qOzbt8+Yc/r0aamqqjLmuN1u8fv9xpzCwkJjHAAAAABgIdasK7RfYSE2Nva8xtvtdvVf/Kurq4OuIyIi5PLLLzeOOXPmjLpdonv37mrRICcnxxgXaVqfCAAAAACANdC8sY1phYekpCT1GVdddVXQtcfjkZdeesk4xufzyeDBg405I0eOVLdhTJ8+XZ1fXV2dmgMAAAAAsAaaN7YxrYdBuMaMjTU+ecJms8lvf/tbddzGjRuN8a+++kotfGhHVoqIfPLJJ2oOAAAAAMAi2ArRtrQVAT179lSfEe5Uhl69eqnjtGMic3Jy1FUN/fr1U9+jPQMAAAAAYCE0b2xb2qkQnTp1Up+RkJDQoncPGTLEGO/fv7/k5eUZc0aMGKG+RztSEwAAAABgIdasK7RfYaGoqMgY7969uzHelMaHR48eDbpu6g95bZvD6dOnxWYzfxH/+Mc/1Pds3bq1SfMBAAAAAFz8aN7YyrRTE1rjxISampqga5/PJ6NGjVLHZWRkqDnR0dHG+IEDB877GQAAAAAA66B5YyvLzs42xr/66itjvL6+Xn3HP//5z5B7Q4cOVcft2bPHGM/JyZHDhw8bc/bu3au+58MPP1RzAAAAAAAWwVaI1lVRUXHB39H4x7/dbpfFixer444cOaLmfPnll8Z4YmKi+gytlwMAAAAAwEJo3ti6tmzZYoy7XC5jfOfOneo7Gp+6EAgEmvSDf+LEiWqOtmJi3LhxEhUVZcyZM2eO+h4AAAAAgEVYs67QfoWFyMhIY1zrP5Cbm6u+o/GRlIFAQKZOnWocExMT06SjLLWiwZEjR8Tr9Rpz+vbtq74HAAAAAGANNG9sZdqqgLKyMmPc5/Op72j8wz4iIkIef/xx45iqqqomFS369OljjJ88eVI9OaIpfSIAAAAAANZA88ZWph3pGBERYYw7nU71h3tmZmbQtcfjkTvuuEOdW35+vpqjFT68Xq9a/PB4POp7AAAAAAAWwVaItqX96Ha5XBIImMs9Bw8eDLkXHx+vvvuzzz5Tc5xOpzHu8XjUwsKGDRvU9wAAAAAALILmjR1LXFycmlNcXBxyrymNGbWVECL6igWt6CEi8u6776o5AAAAAABrCFh0L8RFW1iYPHmyWgBITk4OurbZbDJv3jz12U1Z1ZCWlmaMOxwO9RmTJk1ScwAAAAAA1mCz6F6IDltY0I6FrKmpUfswdOrUKeg6EAjImjVrjGPsdrtcccUVxpyUlBQpKSkx5jz22GPGuAiFBQAAAAD4TmnCyvaLkblRQDvSthocPXpU7WEQ7uSGXbt2Gcf4/X7p0qWLMae0tFRcLpcxZ9myZRIZGSm1tbXnzKmpqTE+AwAAAABgITYRK5442WFXLGg6d+6sNlD0+/0h94qKitRn5+Xlqc/VihqHDh1Sj5O8/fbb1bkAAAAAACyC5o0dS2VlpdTV1Rlz3nzzzZB7I0aMUJ996NAhY9zhcMjw4cONOXV1dWrhoym9HAAAAAAA1kDzxg4mEAioPRbuvffekHuxsbHqs0tLS41xn88n5eXlxpyoqCh1xQJbIQAAAADgu4PmjR2QdvJCTk5OyD2tKaSISPfu3dWcgoICY7wpRQNtOwUAAAAAwEIs2rzxoi0sHD582NgYUSR8P4Xc3Fz12f369VNztKLATTfdpB6HOWvWLPU9AAAAAACLsOaChfYrLDSliaJJ46Mkwxk7dmzQtd1ul0ceeUQdp22FEBFJSkoyxgcPHqwWFsKdWgEAAAAAsCiaN7aucNsUmsPtdovdbp5+uFMhtB4L0dHRavNGEZHIyEhjvKysTC0saMdaAgAAAACsg+aNrSw7O/u8xvfs2TNs4eAsm80WsmLB7/fLpEmT1Gfv2LFDzamsrDTGCwoK1B4Qu3fvVt8DAAAAALAGmje2sqaczmCi9UoIBALy9ddfh9zXjomsrq5Wc0REPZGiKb0c1q5dq+YAAAAAACyC5o0dy6WXXqpuNaioqAi5d+TIEfXZKSkpLZ1WA7/frx43WV1dfd7vAQAAAABcJKy5YOHiLSycOHFCzSksLAy6ttvtsnz5cnVc165djXGn0ynR0dHGHG2rhIjepwEAAAAAYCE0b2xbUVFRxvju3bsloCwjaRz3+/3ywQcfqO/Oy8szxiMiImT69OnGnPT0dPU9vXr1UnMAAAAAANZA88Y2VlNTY4x7vV71GVVVVUHXdrtdZs6caRxjs9mkW7duxpyePXuK2+1W362dWtGvXz9jHAAAAABgHTRvbGPx8fHGuM/nU5/R+DhHv98vf/zjH41jAoGAHD582JiTl5cndXV1xpxp06YZT60QEXU7BQAAAADAQmje2LqKioqM8fLycmM8KSlJbd544MCBkHvaNgcRkZKSEmPc6/XKnj17jDmzZ89W33PmzBk1BwAAAABgEdZcsNB+hYWcnJzzGm+z2dStBsePHw+5d/ToUeOYoUOHyqBBg4w5Ho9Hdu/ebcyZNm2aMS7StBMqAAAAAAAWQfPG1pWdnX1e42NiYtTtEOFWJ2RmZhrHZGZmqqsl/H6/xMTEGHMWL15sjItwKgQAAAAAfJfQvLGVxcbGXvB3NC482Gw2mT9/vnFM9+7d1RMpEhISJCUlxZizevVqdX7asZYAAAAAAOuwCYWFNqUdxejz+dQeC1lZWUHXgUBAHn74YeOY//3f/xWHw2HMcblcUlhYaMw5duyYuqph6tSpxjgAAAAAwEo67E/w89Jh/yrtZIb6+nq1ADB06NCga5vNphYWSkpK1OaNCQkJ6jaGqqoqycjIMOYkJycb4wAAAAAAK2HFQpvStiN06dJFvF6vMadv375B14FAQNavX28c43K5pKyszJhTUVEh3//+9405AwcOlPr6emPOsWPHjHEAAAAAgIXQvLF1acdN1tTUGOMul8sYt9lsEh8fH3LvtttuM44bN26cVFVVGXO8Xq8UFxcbczp37qz+jdozAAAAAADWYdXmjc72erF23KTL5TL+i7921GQgEAgpTgQCAfH7/cZxY8aMkbS0NHVu2rGVXq9XXC6XeDyec+ZQWAAAAACA7w6bBCy5GaLDHjfZv39/Yzw6Olp9R7jixaOPPmoc8/nnn0tFRYUxx263S0JCgjEnEAiI02mu22zfvt0YBwAAAABYSYftRnBeOuxxk3v27DHGte0KIiJ79+4Nuo6IiJD77rvPOGbdunVq48gzZ86ohY9bb721ScdWAgAAAAC+K6y4XqED91hofFRkY3V1deo7Gm+l8Hq9xq0JIiJ+v1/S09ONOZGRkepWiEsvvVROnDhhzNH6RAAAAAAALITmja1L67EQFxdnjGsFAhGRHj16BF0HAgH54IMPjGPi4+NlyJAhxhy32y1Hjhwx5vzud7+TQMBcjerUqZMxDgAAAACwDqs2b+ywPRZ27tx53u+49NJLg67tdrvccsstxjGJiYlq8cHn86nNI/Py8tT5xcTEqDkAAAAAAGuwsRWidWk9FqZMmWKMR0REiMPhMOacPHky6Nrv98vkyZONY/Ly8uT06dPGHJvNJgMHDjTmFBYWGuMi+nYQAAAAAICV0LyxTf3jH/8wxmtrayUiIsKYs2nTpqBrm80mL7zwgvpubRtGUVGR+m7tGSKiFkYAAAAAAFbCioVWpf1rvXacZE1NjdTW1qo53xYIBGTXrl3q3LR3R0ZGSnFxsTGnKUUDrZcDAAAAAMBCaN7YurTmjdXV1ca41+tV3xFu1cArr7yijsvMzDTGa2trxe12G3PKysrUPgzaMwAAAAAA1kHzxlamNW/UlJSUqDnx8fEh96666ip1XGVl5Xm/v7S0VPx+vzHn1VdfVd8DAAAAALAGmje2Mq15o2batGlqTrgf9vX19eq48vJyNefUqVPGeLdu3dRnaE0iAQAAAABW0mHbHJ6XDttjQdOrVy81J9yqgoKCAnVcXV2dMZ6UlCRVVVXGnDlz5qjvGTRokJoDAAAAALAKViy0Kq3Hgmbz5s1qjsfjCbp2uVxy2223qeNKS0uN8ejoaLWwMWPGDPU9Xbt2VXMAAAAAABZB88bWdb49FgYPHqzmpKenB117vV7p1KmTcUz37t0lJibGmJOWlhZStGisrKxMbc6YlJRkjAMAAAAArIPmja1M67Fgs5krOdu3b1ffcffddwdd+/1+6du3r3FMVVWV+Hw+Y05ZWZk4nU5jzv/93/+pxYfx48cb4wAAAAAA66B5YyvTeiyMGDHCGK+pqTHGo6KiwhYnlixZYhzn8/kkOTnZmOP3+2Xs2LHGHLvdLpGRkcacM2fOGOMAAAAAAOsIBGje2Kq0Hgs7duwwxlNSUozxmpoa8Xq9Iffvu+8+4zi73S6FhYXGnMzMTNm5c6cxZ+bMmRIVFWXM0d4DAAAAALAOZWH+RavD9liIj483xrU+CCIiJ0+eDLp2OBxqQSImJkauu+46Y87kyZPlxIkT6vu1oy3T0tLUZwAAAAAALMKaOyHar7BQUVFhjI8ePfq831FbWxt07fP5ZOXKlcYxZ86cCXtM5bf98Ic/VPswHDt2TCorK405qampxjgAAAAAwDpo3tjKtK0QGzduNMarqqrUf/H/61//GnRts9nUYyADgYDExcUZcwoLC9Xmjc8995wEAuaPpqCgwBgHAAAAAFgHzRtbmbYVovFRkY3V1dXJqVOnmv2Orl27qs/VVhLcf//96jaHUaNGGeMiIl9//bWaAwAAAACwBpo3tjLtuEnth7vH41FXBDQ+OSIQCMjy5cuNYzp37ixlZWXGnPT09LCNIb9Ne4aIyDXXXKPmAAAAAACsgeaNbay0tNQY1/oXiIhkZGQEXTscDnWlxIkTJ9SCRXR0tERHRxtzjh8/rs7P5XKpOQAAAAAAi7DmToj2KywUFRUZ4/379zfGq6ur1Xf06tUr6Nrn88njjz9uHFNXVye7du0y5sTFxUldXZ36fptSjtIaWAIAAAAArIPmja1sy5YtxrjW3LHxNodwPv3006Brm80mjzzyiDpu27Ztxnhpaam6YuGNN95QVz7s2LFDnQsAAAAAwBpo3tjKGh8F2Zjdbp5aTU2NuiLA4XAEXQcCAZk7d646t3nz5hnjmzZtUhtHXn/99ep7tD4SAAAAAADroHljK0tMTDTG/X6/Md6UrRCvvfZayL2rrrpKHTd69GhjvLa2VpKSkow5ubm5EhERYcxhKwQAAAAAfHfQvLGVTZw48bzGe71edavBuHHjQu4lJCQYx0RFRcmXX36pvr9v377GeFlZmXg8HmOOtp0CAAAAAGAh1twJ0XGPm9RoWyVEJOwPe60Y4XA45JtvvlHfrRUFtG0aIiLHjh1TcwAAAAAA1kDzxotQVVVVyL1169YZx1RWVkp5ebkxJz4+Puyzvy09PV2dX0lJiZoDAAAAALAGmjd2MHFxcWrOwYMHQ+49//zz6rhp06YZ42VlZZKdnW3M+eKLL9T37Nu3T80BAAAAAFgDzRvbmMvlMsa1XgkiEvbH/zvvvKOO07ZL2Gw2cTqdxpyYmBj1PZdccomaAwAAAACwBpo3tjLtX+u1oxi1H/Yi4bcj3Hfffeq4f/7zn8a43W6Xzz77zJjj8XikW7duxpw77rhDnQsAAAAAwCKsuRNC9F/nF8j7779/XuPLysrUnCNHjoTc037Mx8XFidfrNebEx8fL3r17jTlnzpxRix9paWnGOAAAAADAOgK2gCWLC+22YuGWW245r/Haj3+R8KsinnjiCeOYiooKiYyMNOaUlpZKdXW1Mae6uloqKyuNOTk5OcY4AAAAAMA6aN7YyrRTE7R/zbfb7eqRjuGe8fLLL6tzO3nypDHer18/ycrKMub06NFD7dWgFScAAAAAANZB88Y2VlxcbIx36dJFbfAYrnjx6aefqu8eOnSoMX7gwAH50Y9+ZMzp37+/WvjYsGGDOhcAAAAAgDVYtXlju/VYKCoqOq/xUVFRkpCQYFxdUFtbG3Rts9nk+eefl2uuucb4bG01gt/vV0+luOSSS9QVC5MnTzbGzzr7HJ/P16R8AAAAAEDHEwgExO/3t/c0muTs70/td61IOxYWtP4CycnJUlJScs54ly5d5ODBg8ZnDBo0SP761782XAcCAfnDH/5gHBMdHa0WDWJjY2X48OHGnMGDB4vD4TB+NMeOHTM+46yzz/jXv/7VpHwAAAAAAFpDUwoh7VZYyM7ONsZNRQURkYSEBLVHwcaNGyUiIkI8Ho+I/LsvQ2JionFMdXW1bN261Zgza9YsdRvG5ZdfLoMHD5adO3eeM0d7xllOp1MGDhzYpL4SAAAAAACcr7OrK7TTDkXasbAQGxtrjNvtdmNlpKSkRKKioownL0yYMEEWL14sx48fFxGRmJgY6dGjh7z00ksNxYbGbDabJCcnq3NvvM2isV//+tcydepUY2EhLy/P+Iyz7HZ7k4sQAAAAAAC0pXYrLJg4nU754x//KHPmzAnpK3B2BcINN9wgbrdb3n777bDPcLvdctttt4nL5ZLevXuHPP9chYW33npLMjMzxel0nvNIy9raWmNvh7i4OLn//vtl9+7d58zJyMiQ+fPnnzMOAAAAAMDFoF1PhYiIiAi6PrvMPyMjQ+rr68M2KzxbECguLpalS5fKvHnzwj77mmuuOee/8g8ePDjs/bNbDkpKSs5ZVBARiYyMlMTExJD5R0dHi4jI7NmzpXPnzjJ9+nRJTU0N+4xVq1adMwYAAAAAwMWiXQsL1157rXTt2lUiIiIkOTlZsrOzJSsrSyZOnCgjR46UgwcPyn333dfwg91ut8vw4cNly5YtcuONN4qIyIMPPigffvihjBs3Ttxut4iIXHfddbJo0aJzvvfVV1+VDRs2yOjRoyUyMlI6d+4sl156qYwdO1ZERLp16yb/+Z//KVFRUQ1jnE6nDBgwQN566y1ZsGCBxMfHy0cffSQ33nijdOrUSdxud8MWimnTpjWMmzVrVtg5aM0rAQAAAAC4GNgCTTk7AgAAAAAAIIx2XbEAAAAAAAAubhQWAAAAAABAi1FYAAAAAAAALUZhAQAAAAAAtBiFhQ7i9ddfl0mTJsnAgQNl5syZ8vnnnxvz33vvPZk2bZoMHDhQZsyYIZs2bWqjmQLhNecbfvPNN2X27NkyYsQIGTFihNx+++3qNw9caM39z+Gz3n33XcnKypK77rrrAs8QMGvuN1xeXi6PPPKIjBkzRgYMGCBTp07lv0+g3TX3O37llVdk6tSpMmjQIBk/frw8+uijUldX10azBf6/zz77TO68804ZM2aMZGVlyfvvv6+O2b59u9xwww0yYMAAmTJlirz99tttMNMLg8JCB7BhwwZZunSp3H333fKXv/xF+vbtKz/5yU/k9OnTYfN3794tP//5z+Xmm2+WdevWyeTJk+Xuu++Wr776qo1nDvxbc7/h7du3yw9+8AN57bXX5I033pCMjAyZN2+enDhxoo1nDvxbc7/hswoKCuTxxx+X4cOHt9FMgfCa+w3X19fLj3/8YyksLJRnnnlGNm7cKIsXL5b09PQ2njnw/zX3O/7b3/4mTz75pNxzzz2yYcMGWbJkiWzYsEGeeuqpNp45IFJdXS1ZWVnym9/8pkn5+fn5cscdd8jIkSPlnXfekdtuu00eeugh2bx58wWe6YXBcZMdwMyZM2XgwIGycOFCERHx+/0yfvx4ufXWW+W//uu/QvJ/9rOfSU1Njaxatarh3g9/+EPp27evLFq0qM3mDZzV3G+4MZ/PJyNGjJCFCxfK9ddff4FnC4RqyTfs8/lkzpw5ctNNN8muXbukvLxcVq5c2ZbTBho09xteu3atrFmzRt577z2JiIho6+kCYTX3O160aJHk5ubKq6++2nDvsccek3379snatWvbbN5AY1lZWbJixQq58sorz5nzxBNPyKZNm2T9+vUN9+6//34pLy+XNWvWtMU0WxUrFtpZfX295OTkyOjRoxvu2e12GT16tOzZsyfsmL1798qoUaOC7o0ZM0b27t17IacKhNWSb7ixmpoa8Xq9kpCQcKGmCZxTS7/hFStWSEpKisycObMtpgmcU0u+4Q8//FCGDBkiixYtktGjR8s111wjL7zwgvh8vraaNhCkJd/x0KFDJScnp2G7RH5+vmzatEnGjx/fJnMGzofVftM523sC33WlpaXi8/kkJSUl6H5KSoocOnQo7JhTp05JampqSP6pU6cu2DyBc2nJN9zYsmXLpFOnTkH/ZQJoKy35hnfu3Cl//vOfZd26dW0wQ8CsJd9wfn6+bNu2TWbMmCEvvvii5OXlySOPPCJer1fuueeetpg2EKQl3/GMGTOktLRUZs+eLYFAQLxer8yaNUvuvPPOtpgycF7C/aZLTU2VyspKqa2tlcjIyHaaWcuwYgFAu3rxxRdlw4YNsnz5cnG73e09HUBVWVkpDzzwgCxevFiSk5PbezpAiwQCAUlJSZHFixfLgAEDZPr06XLnnXfKG2+80d5TA5ps+/btsmrVKvnNb34jb7/9tixfvlw2bdokK1asaO+pAd85rFhoZ0lJSeJwOEKa0pw+fTqkgnVWampqyOoEUz5wIbXkGz5rzZo18uKLL8rLL78sffv2vZDTBM6pud9wfn6+FBYWyoIFCxru+f1+ERHp16+fbNy4Ubp3735hJw18S0v+czgtLU2cTqc4HI6Ge71795bi4mKpr68Xl8t1QecMNNaS7/iZZ56Ra6+9tmFLWlZWllRXV8vChQtlwYIFYrfzb6jouML9pjt16pTExsZedKsVRFix0O5cLpf0799ftm7d2nDP7/fL1q1bZejQoWHHDBkyRLZt2xZ079NPP5UhQ4ZcyKkCYbXkGxYRWb16taxcuVJ+//vfy8CBA9tiqkBYzf2Ge/fuLX/7299k3bp1Df8zadIkGTlypKxbt046d+7cltMHWvSfw8OGDZO8vLyGopiIyJEjRyQtLY2iAtpFS77j2trakOLB2WIZ/enR0VntNx2FhQ7gxz/+sbz55pvyl7/8RXJzc+Xhhx+WmpoaufHGG0VE5IEHHpAnn3yyIX/u3LmyefNmeemllyQ3N1eee+45+eKLL+SWW25prz8B33HN/YZffPFFeeaZZ+TRRx+Vrl27SnFxsRQXF0tVVVV7/Qn4jmvON+x2u6VPnz5B/xMfHy8xMTHSp08ffpShXTT3P4d/9KMfSVlZmSxZskQOHz4sH3/8saxatUrmzJnTXn8C0OzveOLEibJ27Vp59913JT8/Xz755BN55plnZOLEiUGrcYC2UFVVJfv375f9+/eLyL+PpN6/f78cO3ZMRESefPJJeeCBBxryZ82aJfn5+fK73/1OcnNz5fXXX5f33ntPbr/99vaY/nljK0QHMH36dCkpKZFnn31WiouL5Xvf+578/ve/b1j2VVRUFFSNHTZsmCxbtkyefvppeeqpp6Rnz56yYsUK6dOnT3v9CfiOa+43/MYbb4jH45F777036Dn33HOP/PSnP23TuQMizf+GgY6mud9wRkaGrFmzRpYuXSrXXnutpKeny9y5c2X+/Pnt9ScAzf6OFyxYIDabTZ5++mk5ceKEJCcny8SJE+X+++9vrz8B32FffPGFzJ07t+F66dKlIiJyww03yGOPPSbFxcVSVFTUEM/MzJRVq1bJ0qVL5bXXXpPOnTvLb3/7Wxk7dmybz7012AKsEwIAAAAAAC3EP78AAAAAAIAWo7AAAAAAAABajMICAAAAAABoMQoLAAAAAACgxSgsAAAAAACAFqOwAAAAAAAAWozCAgAAAAAAaDEKCwAAAAAAoMUoLAAAAAAAgBajsAAAABBGQUGBZGVlyf79+9t7KgAAdGgUFgAAAAAAQItRWAAAAB2S3++X1atXy5QpU2TAgAEyYcIEef7550VE5ODBgzJ37lwZNGiQjBw5Un79619LVVVVw9hbb71VlixZEvS8u+66S375y182XE+aNEleeOEF+dWvfiVDhw6VCRMmyJ/+9KeG+OTJk0VE5Prrr5esrCy59dZbL+SfCwDARYvCAgAA6JCefPJJWb16tdx1112yYcMGWbZsmaSmpkp1dbX85Cc/kYSEBPnzn/8sTz/9tHz66aeyePHiZr/j5ZdflgEDBsi6detk9uzZ8vDDD8uhQ4dEROStt94SEZFXXnlFtmzZIs8991yr/n0AAFgFhQUAANDhVFZWymuvvSa/+MUv5IYbbpDu3bvL8OHDZebMmbJ+/Xqpr6+Xxx9/XPr06SOjRo2ShQsXyjvvvCOnTp1q1nvGjRsnc+bMkR49esj8+fMlKSlJtm/fLiIiycnJIiKSmJgoaWlpkpiY2Np/JgAAlkBhAQAAdDiHDh2S+vp6yc7ODonl5uZKVlaWREdHN9wbNmyY+P1+OXz4cLPek5WV1fC/22w2SU1NldOnT7d84gAAfAdRWAAAAB2O2+0+r/E2m00CgUDQPa/XG5LndDrVcQAAwIzCAgAA6HB69uwpkZGRsm3btpDYJZdcIgcPHpTq6uqGe7t37xa73S69evUSkX9vYyguLm6I+3w++frrr5s1h4iIiIaxAADg3CgsAACADsftdsv8+fPliSeekHXr1kleXp7s3btX3nrrLZkxY4a4XC755S9/KV999ZVs27ZNFi9eLNddd52kpqaKiEh2drZs2rRJPv74Y8nNzZWHH35YysvLmzWHlJQUiYyMlM2bN8upU6ekoqLiQvypAABc9Jx6CgAAQNu76667xOFwyLPPPisnT56UtLQ0mTVrlkRFRcmaNWtkyZIlcvPNN0tUVJRcddVVQUdJ3nTTTXLgwAF58MEHxeFwyO233y4jR45s1vudTqc89NBDsmLFCnn22Wdl+PDh8oc//KG1/0wAAC56tgAbCQEAAAAAQAuxFQIAAAAAALQYhQUAAAAAANBiFBYAAAAAAECLUVgAAAAAAAAtRmEBAAAAAAC0GIUFAAAAAADQYhQWAAAAAABAi1FYAAAAAAAALUZhAQAAAAAAtBiFBQAAAAAA0GIUFgAAAAAAQIv9P0DueS1A/QiiAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+sAAAMKCAYAAAD9GNVuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7BElEQVR4nO3dd5hV5b347e8wgIAIgmALVQ1jlCIlIsWgNDViAQs2lKPBGNSjxn5+RhFNsCdSVNTEhp2DGLuIrxoDYkVJBBErqCE06aHMrPcPZR9HijM6wzw4931dXBd77bXXfhbzzB4+s9baOy/LsiwAAACAZFSp6AEAAAAAxYl1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQCActa9e/e46KKLkt0eAOkR6wCUq3HjxkVBQUHuT6tWreKAAw6IoUOHxvz58yt6eFRi6+bmtGnTSv3YlStXxogRI2LKlCnr3TdixIjo3r379xrTN79Xdt999+jatWucfPLJG3weAH7cqlb0AACoHP77v/87GjVqFKtXr4433ngj7r///njxxRfj8ccfj5o1a1b08KBUVq5cGSNHjowzzjgjOnbsWKbb7tKlSxx22GGRZVnMmTMn7r///jjppJNi9OjR0a1btzJ9LgDSJdYB2Cx+8YtfRKtWrSIi4qijjoptt9027rjjjpg4cWL06dOngkcH6WjWrFkcdthhudu9evWKQw89NO6++26xDlCJOA0egAqxzz77RETEnDlzIiLiyy+/jKuvvjoOOeSQaNu2bbRr1y5+9atfxYwZM9Z77KpVq2LEiBFxwAEHRKtWraJr165xxhlnxKeffprb5jdPJ/72nwEDBuS2NWXKlCgoKIgnn3wybrjhhujSpUvstddecdppp8UXX3yx3nO//fbbccopp0T79u2jTZs2ccIJJ8Qbb7yxwX0cMGDABp9/xIgR66376KOPRr9+/aJ169ax9957xznnnLPB59/Uvn1TUVFR3HnnnXHwwQdHq1atonPnznHppZfG4sWLi63XvXv3+PWvf73e8wwdOnS9bW5o7Lfffvt6/6YREatXr47hw4dHr169omXLltGtW7e45pprYvXq1Rv8t/qmjf27rfuzbs6sc++998bBBx8cLVu2jK5du8bll18eS5Ys+c7n2ZCLLroo2rZtG3Pnzo3BgwdH27ZtY5999omrr746CgsLI+Krr0GnTp0iImLkyJGb/LqWhYKCgqhXr956+/1NJf3++eZ8v/nmm3O/RDvppJPik08+KZfxA/D9OLIOQIVYF9bbbrttRETMnj07nnvuuTjwwAOjUaNGMX/+/HjwwQfjhBNOiCeeeCJ22GGHiIgoLCyMX//61zF58uQ4+OCD48QTT4zly5fH3//+95g5c2Y0adIk9xx9+vSJX/ziF8We94YbbtjgeG6++ebIy8uLQYMGxYIFC+Kuu+6KgQMHxqOPPho1atSIiIjJkyfHoEGDomXLlnHGGWdEXl5ejBs3Lk466aS47777onXr1uttd8cdd4zf/va3ERGxYsWKGDJkyAaf+8Ybb4yDDjoojjzyyFi4cGGMGTMmjj/++Bg/fnzUqVNnvcf0798/2rdvHxEREyZMiAkTJhS7/9JLL41HHnkk+vXrFwMGDIg5c+bEvffeG++++27cf//9Ua1atQ3+O5TGkiVL4tZbb11veVFRUfzmN7+JN954I44++ujYddddY+bMmXHXXXfFxx9/HDfddNN3bvub/27rvPTSS/H4448XWzZixIgYOXJkdO7cOY499tj46KOP4v77749p06Z97/0sLCyMU045JVq3bh0XXHBBTJ48Of7yl79E48aN47jjjov69evHkCFDYsiQIdGrV6/o1atXRMR6v9woK4sXL44lS5ZE06ZNN7pOSb9/1rntttsiLy8vTj755Fi2bFncfvvtcd5558XDDz9cLvsAQOmJdQA2i2XLlsXChQtj9erV8eabb8aoUaOiRo0asf/++0fEV6HzzDPPRJUq/3fS12GHHRYHHXRQjB07Nk4//fSIiBg/fnxMnjw5Lr744hg4cGBu3VNPPTWyLCv2nHvssUex04kjvoqUDVm8eHE8+eSTUbt27dxjzz777HjooYfixBNPjCzLYsiQIdGxY8e4/fbbIy8vLyIijjnmmDj44IPjT3/6U/zlL38pts01a9ZEnTp1cmNYuHDherH+2WefxYgRI+Lss8+O0047Lbe8d+/e0bdv37jvvvuKLV93dLddu3a57X766afFYv3111+Phx9+OK677ro45JBDcss7duwYv/rVr+Lpp58utvz7Gj16dFStWjX23HPPYssfe+yxmDRpUtxzzz3RoUOH3PKf/vSncdlll8Wbb74Z7dq12+S2t9lmm/W+dvPnzy8W6wsXLozRo0dH165d47bbbsvNnV122SWGDh0af/3rX+OII44o9X6tWrUqDjrooNycO/bYY6Nv374xduzYOO6446JWrVpxwAEHxJAhQ6KgoGC9cZ555plx5plnlvp5v/n8CxcujIivjuLfcMMNUVhYGAceeOBGH1PS759vPsf48eOjevXqERFRp06d+P3vfx8zZ86MFi1afO+xA1B2nAYPwGYxcODA6NSpU3Tr1i3OOeec2HrrrWPkyJG5I37Vq1fPhUZhYWEsWrQoatWqFc2bN4933303t51nn3026tWrFyeccMJ6z7EuoL+Pww8/PBfqEREHHnhgNGzYMF588cWIiJg+fXp8/PHHccghh8SiRYti4cKFsXDhwlixYkV06tQpXnvttSgqKiq2zdWrV+diaGMmTJgQRUVFcdBBB+W2uXDhwmjQoEE0bdp0vXcBX7NmTUTEJrf79NNPxzbbbBNdunQpts0999wzatWqtd42165dW2y9hQsXxqpVqzY57rlz58aYMWNi8ODBsfXWW6/3/Lvuumvssssuxba57tKHsnpn80mTJsWaNWvixBNPLBapRx11VNSuXTv3tfs+jj322GK327dvv8nT0MvS2LFjo1OnTtGpU6c46qij4s0334z/+q//ipNOOmmjjynp9886/fr1KzaH1v1SZfbs2WW8NwB8X46sA7BZXHrppdG8efPIz8+PBg0aRPPmzYsFVlFRUdx9991x3333xZw5c3JHkCP+71T5iK+OIjdv3jyqVi3bH2HfPsU4Ly8vmjZtGp999llERHz88ccREXHhhRdudBtLly6NunXr5m4vWrRok6cur9tulmXRu3fvDd7/7f1cdy12rVq1NrrNTz75JJYuXZq7rvrbFixYUOz2yy+/vNF1N2b48OGx/fbbR//+/eOZZ55Z7/k/+OCDEj//9/X5559HxFdH0r+pevXq0bhx49zXrrS22mqrqF+/frFldevWXe96//LSo0ePOOGEEyIvLy+23nrr2G233Tb59Y4o+ffPOjvvvHOx2+sutfi+1/oDUPbEOgCbRevWrXPvBr8ht9xyS9x4441xxBFHxFlnnRV169aNKlWqxB/+8If1Tm+vCOvGcMEFF8TPfvazDa7zzaBavXp1zJs3Lzp37rzJ7RYVFUVeXl7cdtttkZ+fv8ltRkTus+kbNGiwyW1ut912cd11123w/m+HaJs2beLss88utmzMmDExceLEDT7+gw8+iEceeSSuvfbaDV4TXlRUFC1atIiLL754g4/fcccdNzr2FGzo67A57bjjjt85b76ttN8/3/xF2Tel8L0GwFfEOgBJeOaZZ6Jjx47xhz/8odjyJUuWRL169XK3mzRpEm+//XasWbOmTN4kbZ1vvxN2lmXxySef5N40rHHjxhERUbt27RKF1IwZM2LNmjXRsmXLTa7XpEmTyLIsGjVqFM2bN//O7c6aNSvy8vI2uW6TJk1i8uTJ0a5du9yb421KvXr11tun5557bqPrX3/99bH77rvHL3/5y40+/4wZM6JTp04/6NKE77Lu6PCHH36Y+/pEfPWLkjlz5pQ6eEujPPfr+yjp9w8AWw7XrAOQhPz8/PWO6j311FMxd+7cYst69+4dixYtinvvvXe9bfyQo4Ljx4+PZcuW5W4//fTTMW/evNy7ybds2TKaNGkSf/nLX2L58uXrPX7dG4J98/H5+fm5N9DbmN69e0d+fn6MHDlyvfFnWRaLFi3K3V67dm08++yz0bp16/WuE/+mgw46KAoLCzf4rutr1679Qac6T506NSZOnBjnnXfeRoP1oIMOirlz58ZDDz203n3/+c9/YsWKFd/7+b+pc+fOUa1atbjnnnuK/duNHTs2li5dWq6fSV6zZs2ISOe08ZJ+/wCw5XBkHYAk7LfffjFq1Ki4+OKLo23btjFz5sx47LHHih0xjfjqjeDGjx8fw4YNi3feeSfat28fK1eujMmTJ8exxx4bPXv2/F7PX7du3TjuuOOiX79+uY9ua9q0aRx99NER8dVpw1deeWUMGjQo+vTpE/369Ysddtgh5s6dG1OmTInatWvHLbfcEitWrIh777037rnnnmjWrFmxN1NbF6nvvfdevPXWW9G2bdto0qRJnH322XH99dfHZ599Fj179oytt9465syZE88991wcffTRccopp8SkSZPixhtvjPfeey9uueWWTe7L3nvvHf3794/Ro0fH9OnTo0uXLlGtWrX4+OOP4+mnn47/9//+3ybfWXxTXn755ejSpcsmj1ofdthh8dRTT8Vll10WU6ZMiXbt2kVhYWF8+OGH8fTTT8ftt9++yUsiSqp+/frx61//OkaOHBm/+tWvonv37vHRRx/FfffdF61atYpDDz30Bz/HxtSoUSN22223eOqpp6JZs2ax7bbbxk9/+tMKeyf1kn7/ALDlEOsAJOG0006LlStXxmOPPRZPPvlk7LHHHjF69Oi4/vrri62Xn58ft912W9x8883x+OOPx7PPPhvbbrtttGvX7gd9zvVpp50W7733Xtx6662xfPny6NSpU1x22WW5I6gRX3302YMPPhg33XRTjBkzJlasWBENGzaM1q1bR//+/SPiqyPs664V/+CDD+KCCy5Y77kmTJgQtWvXjrZt20bEVx8716xZs7jzzjtj1KhREfHVdctdunSJ7t27R0TE888/H9WqVYtbb7019t133+/cn6FDh0bLli3jgQceiD/+8Y+Rn58fP/nJT+LQQw/9zo9N25S8vLw499xzN7lOlSpVYtSoUXHnnXfGo48+GhMmTIiaNWtGo0aNYsCAASU63b+kzjzzzKhfv36MGTMmhg0bFnXr1o2jjz46fvvb35bpZRIbcuWVV8YVV1wRw4YNizVr1sQZZ5xRYbFe0u8fALYceZl3EgGgEpsyZUqceOKJceONN37vo83fNGfOnOjRo0dMnDgxGjVqtMF1RowYEZ999llcddVVP/j5AIAfJ9esAwAAQGKcBg8AZahWrVpxyCGHbPJzsQsKCmL77bffjKMCALY0Yh0AylD9+vU3+vnm6/Tu3XszjQYA2FK5Zh0AAAAS45p1AAAASIxYBwAAgMRU2mvWi4qKYu3atVGlSpXIy8ur6OEAAADwI5dlWRQVFUXVqlWjSpVNHzuvtLG+du3amDZtWkUPAwAAgEqmVatWUb169U2uU2ljfd1vMfbYY4/v/EeCTSksLIxp06ZFq1atIj8/v6KHwxbMXKIsmU+UFXOJsmIuUVa25Lm0buzfdVQ9ohLH+rpT3/Pz87e4LzBpMpcoK+YSZcl8oqyYS5QVc4mysiXPpZJciu0N5gAAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1gEAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1gEAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1gEAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1gEAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1qEM1KxZs6KHwI+EuURZMp8oK+YSZcVcoqxUhrmUl2VZVtGDqAiFhYUxderU2GuvvSI/P7+ihwMAAMD3UJQVRZW8LeM4dGk6tOpmGlOyHpo2Kb5YvriihwEAAEAp7VC7bhzfZt+KHka5qPSx/u/lS+KzJQsrehgAAACQs2WcKwAAAACViFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxFSt6AFsyIABA6KgoCCqV68eY8eOjWrVqsUxxxwTZ555ZkREfP7553HFFVfEK6+8Enl5ebHvvvvG7373u2jQoEEFjxwAAAB+uGSPrD/yyCNRq1ateOihh+L888+PUaNGxd///vcoKiqKwYMHx+LFi+Oee+6JO+64I2bPnh3nnHNORQ8ZAAAAykSSR9YjIgoKCuKMM86IiIhmzZrFmDFjYvLkyRERMXPmzJg4cWLstNNOERFxzTXXxMEHHxzvvPNOtG7dusLGDAAAAGUh2SPrBQUFxW43bNgwFixYEB988EHsuOOOuVCPiNhtt92iTp068eGHH27uYQIAAECZSzbWq1YtftA/Ly8vsiyroNEAAADA5pNsrG/MrrvuGv/617/iiy++yC2bNWtWLFmyJHbdddcKHBkAAACUjS0u1jt37hwtWrSI8847L/75z3/GO++8ExdccEHsvffe0apVq4oeHgAAAPxgW1ys5+XlxU033RR16tSJE044IQYOHBiNGzeOP/7xjxU9NAAAACgTeVklvRC8sLAwpk6dGi//51/x6ZIFFT0cAAAASuknderHb7v0qehhlNi6Dt1rr70iPz9/k+tucUfWAQAA4MdOrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJKZqRQ+gom2/dZ0ojKyihwEAAEAp7VC7bkUPodxU+lg/ulXnyM/Pr+hhAAAA8D0UZUVRJe/Hd9L4j2+PSqmwsLCih8AWrrCwMN59911ziR/MXKIsmU+UFXOJsmIuUVa+PZd+jKEeIdahTKxcubKih8CPhLlEWTKfKCvmEmXFXKKsVIa5JNYBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABJT6o9uW7FiRdx6663xyiuvxIIFC6KoqKjY/RMnTiyzwQEAAEBlVOpYv+SSS+LVV1+Nww47LBo2bBh5eXnlMS4AAACotEod6y+99FKMHj062rdvXx7jAQAAgEqv1Nes16lTJ7bddttyGAoAAAAQ8T1i/ayzzoobb7yxUnwIPQAAAFSEUp8Gf8cdd8Snn34anTt3jkaNGkXVqsU38cgjj5TZ4AAAAKAyKnWs9+zZszzGAQAAAHyt1LF+xhlnlMc4AAAAgK+V+pp1AAAAoHyV+sh6YWFh3HnnnfHUU0/FF198EWvWrCl2/6uvvlpmgwMAAIDKqNRH1keOHBl33HFH/PKXv4ylS5fGwIEDo1evXpGXl+cUeQAAACgDpT6y/thjj8WVV14Z++23X4wYMSL69OkTTZo0iYKCgnj77bfLY4wAAABQqZT6yPr8+fOjRYsWERGx9dZbx9KlSyMiYv/9948XXnihTAcHAAAAlVGpY32HHXaIefPmRURE48aN4+9//3tEREybNi2qV69etqMDAACASqjUp8H36tUrJk+eHG3atIkBAwbE+eefH2PHjo3PP/88Bg4cWA5DBAAAgMql1LF+3nnn5f7+y1/+MnbaaaeYOnVqNG3aNLp3716mgwMAAIDKqNSx/m1t27aNtm3blsVYAAAAgChhrE+cOLHEG+zRo8f3HgwAAABQwlg//fTTS7SxvLy8mD59+g8aEAAAAFR2JYr1GTNmlPc4AAAAgK+V6qPbsiyLjz/+ON5///1Yu3ZteY0JAAAAKrUSv8Hc7NmzY/DgwTFr1qyI+Orz1ocPHx6tW7cut8EBAABAZVTiI+vXXnttrF27Nq699toYPnx47LjjjjFkyJByHBoAAABUTiU+sv7GG2/EjTfeGB06dIiIiDZt2kS3bt1ixYoVUatWrXIbIAAAAFQ2JT6yvmDBgmjWrFnu9vbbbx81atSIBQsWlMe4AAAAoNIq8ZH1vLy8WLFiRSxbtqzYsuXLlxdbVrt27bIdIQAAAFQyJY71LMvigAMOWG9Z3759c3/3OesAAADww5U41u++++7yHAcAAADwtRLH+t57712e4wAAAAC+VuI3mAMAAAA2D7EOAAAAiRHrAAAAkBixDgAAAIkR6wAAAJCYEr0b/BlnnFHiDY4cOfJ7DwYAAAAoYaxvs8025T0OAAAA4GslivVhw4aV9zgAAACAr7lmHQAAABJToiPrEREDBgyIvLy83O277767XAYEAAAAlV2JY71fv37lOQ4AAADgayWO9b59+5bnOAAAAICvlfqa9R49esSiRYvWW75kyZLo0aNHmQwKAAAAKrNSx/pnn30WRUVF6y1fvXp1zJ07t0wGBQAAAJVZiU+DnzhxYu7vf/vb34p99npRUVFMnjw5fvKTn5Tt6AAAAKASKnGsn3766RERkZeXFxdddFHxjVStGj/5yU/WWw4AAACUXoljfcaMGRER0b179xg7dmzUr1+/3AYFAAAAlVmJY32d559/vjzGAQAAAHyt1LEeETF58uSYPHlyLFiwYL03mxs2bFiZDAwAAAAqq1LH+siRI2PUqFHRsmXLaNiwYeTl5ZXHuAAAAKDSKnWsP/DAAzFs2LA4/PDDy2E4AAAAQKk/Z33NmjXRrl278hgLAAAAEN8j1o888sh47LHHymMsAAAAQHyP0+BXrVoVDz30UEyePDkKCgqiatXim7j44ovLbHAAAABQGZU61t97773YfffdIyJi5syZxe7zZnMAAADww5U61u+5557yGAcAAADwtVJfsw4AAACUrxIfWT/jjDNKtN7IkSO/92AAAACAUsT6NttsU57jAAAAAL5W4lgfNmxYeY4DAAAA+Jpr1gEAACAxYh0AAAASI9YBAAAgMZU+1vPz8yt6CJVSVlRU0UMAAABIVonfYO7Hasn/NzayRf+q6GFUKvn1to+6PY+t6GEAAAAkq9LHeuGX86Jo/mcVPQwAAADIqfSnwQMAAEBqxDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkpsJiffz48dGxY8dYvXp1seWDBw+O888/PyIinnvuuejbt2+0atUqevToESNHjoy1a9dGRESWZTFixIjYb7/9omXLltG1a9e48sorN/t+AAAAQFmrsFg/8MADo7CwMCZOnJhbtmDBgnjxxRfjiCOOiNdffz0uvPDCOPHEE+PJJ5+MoUOHxrhx4+KWW26JiIhnnnkm7rzzzrj88svj2WefjZtuuilatGhRUbsDAAAAZabCYr1GjRrRp0+fGDduXG7ZX//619hpp52iY8eOMXLkyDj11FOjb9++0bhx4+jSpUucddZZ8cADD0RExBdffBENGjSIzp07x8477xytW7eOo48+uqJ2BwAAAMpM1Yp88qOPPjqOPPLImDt3buywww4xbty46Nu3b+Tl5cWMGTPizTffzB1Jj4goLCyMVatWxcqVK+PAAw+Mu+66K3r27Bn77rtvdOvWLfbff/+oWrVCdwkAAAB+sAot2z322CN23333GD9+fHTp0iVmzZoV/fr1i4iIFStWxJlnnhm9e/de73FbbbVV7LTTTvH000/HpEmTYtKkSXH55ZfHn//857jnnnuiWrVqm3tXAAAAoMxU+GHoI488Mu66666YO3dudO7cOXbaaaeI+CrkP/roo2jatOlGH1ujRo3o3r17dO/ePY477rg46KCDYubMmbHnnnturuEDAABAmavwWD/kkEPimmuuiYceeiiuueaa3PLTTz89TjvttNh5553jgAMOiCpVqsSMGTNi5syZcc4558S4ceOisLAw2rRpEzVr1oy//vWvUaNGjdh5550rcG8AAADgh6vwWN9mm22id+/e8eKLL0bPnj1zy/fdd9+45ZZbYtSoUXHbbbdF1apVY5dddomjjjoqIiLq1KkTt956a1x11VVRVFQULVq0iFtuuSXq1atXUbsCAAAAZaLCYz0iYu7cuXHIIYdE9erViy3fd999Y999993gY3r27Fks7gEAAODHosI+ui0iYvHixTFhwoR49dVX47jjjqvIoQAAAEAyKvTIet++fWPx4sVx3nnnxS677FKRQwEAAIBkVGisP//88xX59AAAAJCkCj0NHgAAAFifWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEiMWAcAAIDEiHUAAABIjFgHAACAxIh1AAAASIxYBwAAgMSIdQAAAEhM1YoeQEXL37ZhVMkKK3oYlUp+ve0reggAAABJq/SxXmf/IyM/P7+ih1HpZEVFkVfFiR0AAAAbUulrqbDQUfWKINQBAAA2TjEBAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJKZqRQ+gomRZFhERhYWFUVhYWMGjYUu2bv6YR/xQ5hJlyXyirJhLlBVzibKyJc+ldWNe16ObkpeVZK0fodWrV8e0adMqehgAAABUMq1atYrq1atvcp1KG+tFRUWxdu3aqFKlSuTl5VX0cAAAAPiRy7IsioqKomrVqlGlyqavSq+0sQ4AAACp8gZzAAAAkBixDgAAAIkR6wAAAJAYsQ4AAACJEesAAACQGLEOAAAAiRHrAAAAkBixDgAAAImptLF+7733Rvfu3aNVq1Zx1FFHxTvvvFPRQyIhI0aMiIKCgmJ/DjzwwNz9q1atissvvzw6duwYbdu2jTPPPDPmz59fbBuff/55nHrqqdGmTZvo1KlTXH311bF27drNvStsZq+99lqcdtpp0bVr1ygoKIjnnnuu2P1ZlsWNN94YXbt2jdatW8fAgQPj448/LrbOl19+Geeee260a9cuOnToEP/zP/8Ty5cvL7bOjBkz4rjjjotWrVpFt27d4rbbbivvXaMCfNd8uuiii9Z7rTrllFOKrWM+MXr06DjiiCOibdu20alTpxg8eHB8+OGHxdYpq59rU6ZMib59+0bLli2jV69eMW7cuHLfPzafksylAQMGrPe6dOmllxZbx1zivvvui0MOOSTatWsX7dq1i/79+8eLL76Yu99r0teySuiJJ57I9txzz2zs2LHZ+++/n11yySVZhw4dsvnz51f00EjE8OHDs4MPPjj797//nfuzYMGC3P2XXnpp1q1bt2zSpEnZtGnTsqOPPjrr379/7v61a9dmffr0yQYOHJi9++672QsvvJB17Ngxu/766ytid9iMXnjhheyGG27Inn322axFixbZhAkTit0/evTorH379tmECROy6dOnZ6eddlrWvXv37D//+U9unVNOOSU79NBDs6lTp2avvfZa1qtXr+y3v/1t7v6lS5dmnTt3zs4999xs5syZ2eOPP561bt06e+CBBzbbfrJ5fNd8uvDCC7NTTjml2GvVl19+WWwd84mTTz45+9///d9s5syZ2fTp07NBgwZl++23X7Z8+fLcOmXxc+3TTz/N2rRpkw0bNiybNWtWds8992Q/+9nPspdeemmz7i/lpyRz6YQTTsguueSSYq9LS5cuzd1vLpFlWTZx4sTshRdeyD766KPsww8/zG644YZszz33zGbOnJllmdekdSplrB955JHZ5ZdfnrtdWFiYde3aNRs9enQFjoqUDB8+PDv00EM3eN+SJUuyPffcM3vqqadyy2bNmpW1aNEie+utt7Is++o/2Lvvvns2b9683Dr33Xdf1q5du2zVqlXlOnbS8e24Kioqyrp06ZLdfvvtuWVLlizJWrZsmT3++ONZlv3fXHrnnXdy67z44otZQUFB9q9//SvLsiy79957s5///OfF5tK1116bHXDAAeW9S1SgjcX6b37zm40+xnxiQxYsWJC1aNEie/XVV7MsK7ufa9dcc0128MEHF3uus88+Ozv55JPLeY+oKN+eS1n2VaxfeeWVG32MucTG/PznP88eeughr0nfUOlOg1+9enX885//jM6dO+eWValSJTp37hxvvfVWBY6M1HzyySfRtWvX6NGjR5x77rnx+eefR0TEP/7xj1izZk2xObTrrrvGzjvvHFOnTo2IiKlTp0aLFi2iQYMGuXW6du0ay5Yti1mzZm3W/SAdc+bMiXnz5hWbO9tss020adMm9/rz1ltvRZ06daJVq1a5dTp37hxVqlTJXa4zderU6NChQ1SvXj23TteuXeOjjz6KxYsXb6a9IRWvvvpqdOrUKQ444IC47LLLYtGiRbn7zCc2ZOnSpRERUbdu3Ygou59rU6dOjU6dOhV7rq5du+a2wY/Pt+fSOo899lh07Ngx+vTpE9dff32sXLkyd5+5xLcVFhbGE088EStWrIi2bdt6TfqGqhU9gM1t0aJFUVhYGNttt12x5dttt91619xQebVu3TqGDRsWzZs3j3nz5sWoUaPi+OOPj8ceeyzmz58f1apVizp16hR7zHbbbRfz5s2LiIj58+cXe/GIiNztdetQ+az72m/o9WfddVjz58+P+vXrF7u/atWqUbdu3WLzq1GjRsXWWTe/5s+fv95/mvjx2nfffaNXr17RqFGjmD17dtxwww0xaNCgePDBByM/P998Yj1FRUXxhz/8Idq1axctWrSIiCizn2sbW2fZsmXxn//8J2rUqFEu+0TF2NBciojo06dP7LzzzrH99tvHe++9F9ddd1189NFHMXLkyIgwl/g/7733XhxzzDGxatWqqFWrVowaNSp22223mD59utekr1W6WIeS6NatW+7vu+++e7Rp0yb233//eOqpp7aIb2ygcjj44INzf1/3Rk49e/bMHW2Hb7v88svj/fffj/vuu6+ih8IWbmNzqX///rm/FxQURMOGDWPgwIHx6aefRpMmTTb3MElY8+bNY/z48bF06dJ45pln4sILL4wxY8ZU9LCSUulOg69Xr17k5+fHggULii1fsGDBer95gXXq1KkTzZo1i08//TQaNGgQa9asiSVLlhRbZ8GCBdGwYcOI+Oq3dt9+x8p1t9etQ+Wz7mu/qdefBg0axMKFC4vdv3bt2li8eHGJ5pfXscqtcePGUa9evfjkk08iwnyiuKFDh8YLL7wQd911V+y444655WX1c21j69SuXdsvun9kNjaXNqRNmzYREcVel8wlIiKqV68eTZs2jZYtW8a5554bu+++e9x9991ek76h0sV69erVY88994zJkyfnlhUVFcXkyZOjbdu2FTgyUrZ8+fKYPXt2NGzYMFq2bBnVqlUrNoc+/PDD+Pzzz2OvvfaKiIi99torZs6cWSzKJk2aFLVr147ddtttcw+fRDRq1CgaNmxYbO4sW7Ys3n777dzrT9u2bWPJkiXxj3/8I7fOK6+8EkVFRdG6deuI+Gp+vf7667FmzZrcOpMmTYrmzZs7ZbmS+9e//hVffvll7j8q5hMRX31k5NChQ2PChAlx1113RePGjYvdX1Y/1/baa6945ZVXim170qRJuW2w5fuuubQh06dPj4j/CyhziY0pKiqK1atXe036pop+h7uK8MQTT2QtW7bMxo0bl82aNSv73e9+l3Xo0KHYuwlSuV111VXZlClTstmzZ2dvvPFGNnDgwKxjx465j2+79NJLs/322y+bPHlyNm3atKx///4b/DiJk08+OZs+fXr20ksvZfvss4+PbqsEli1blr377rvZu+++m7Vo0SK74447snfffTf77LPPsiz76qPbOnTokD333HPZjBkzst/85jcb/Oi2ww8/PHv77bez119/Pevdu3exj9pasmRJ1rlz5+z888/PZs6cmT3xxBNZmzZtfNTWj9Cm5tOyZcuyq666Knvrrbey2bNnZ5MmTcr69u2b9e7du9g7u5tPXHbZZVn79u2zKVOmFPs4rZUrV+bWKYufa+s+Junqq6/OZs2alY0ZM2aL+5gkNu275tInn3ySjRw5Mps2bVo2e/bs7Lnnnst69OiRHX/88bltmEtkWZZdd9112auvvprNnj07mzFjRnbddddlBQUF2csvv5xlmdekdfKyLMsq+hcGFWHMmDHx5z//OebNmxc/+9nP4pJLLsmdpgPnnHNOvPbaa/Hll19G/fr1o3379nHOOefkrrVatWpVXHXVVfHEE0/E6tWro2vXrnHZZZcVO8X9s88+iyFDhsSrr74aNWvWjL59+8a5554bVat6q4gfsylTpsSJJ5643vK+ffvGVVddFVmWxfDhw+Ohhx6KJUuWRPv27eOyyy6L5s2b59b98ssv44orrojnn38+qlSpEr17945LLrkktt5669w6M2bMiKFDh8a0adOiXr16ccIJJ8Spp566WfaRzWdT82nIkCFx+umnx7vvvhtLly6N7bffPrp06RJnnXVWsdPXzScKCgo2uHzYsGHRr1+/iCi7n2tTpkyJYcOGxaxZs2LHHXeMwYMH556DLd93zaUvvvgizj///Hj//fdjxYoVsdNOO0XPnj1j8ODBUbt27dz65hL/8z//E6+88kr8+9//jm222SYKCgpi0KBB0aVLl4jwmrROpY11AAAASFWlu2YdAAAAUifWAQAAIDFiHQAAABIj1gEAACAxYh0AAAASI9YBAAAgMWIdAAAAEiPWAQAAIDFiHQAAABIj1gGAzWbOnDlRUFAQ06dPr+ihAEDSxDoAAAAkRqwDQCVSVFQUt912W/Tq1StatmwZ++23X9x8880REfHee+/FiSeeGK1bt46OHTvG7373u1i+fHnusQMGDIjf//73xbY3ePDguOiii3K3u3fvHrfccktcfPHF0bZt29hvv/3iwQcfzN3fo0ePiIg4/PDDo6CgIAYMGFCeuwsAWyyxDgCVyPXXXx+33XZbDB48OJ588sm47rrrokGDBrFixYo45ZRTom7dujF27Nj405/+FJMmTYorrrii1M9xxx13RMuWLWP8+PFx3HHHxZAhQ+LDDz+MiIiHH344IiLuvPPOePnll2PEiBFlun8A8GMh1gGgkli2bFncfffdcf7550ffvn2jSZMm0aFDhzjqqKPi8ccfj9WrV8fVV18dLVq0iE6dOsWll14ajz76aMyfP79Uz/OLX/wijj/++GjatGkMGjQo6tWrF1OmTImIiPr160dExLbbbhsNGzaMbbfdtqx3EwB+FMQ6AFQSH374YaxevTr22Wef9e774IMPoqCgIGrVqpVb1q5duygqKoqPPvqoVM9TUFCQ+3teXl40aNAgFixY8P0HDgCVkFgHgEpiq622+kGPz8vLiyzLii1bu3bteutVrVr1Ox8HAGyaWAeASqJZs2ZRo0aNeOWVV9a7b9ddd4333nsvVqxYkVv25ptvRpUqVaJ58+YR8dUp7PPmzcvdX1hYGO+//36pxlCtWrXcYwGAjRPrAFBJbLXVVjFo0KC49tprY/z48fHpp5/G1KlT4+GHH45DDjkkqlevHhdddFHMnDkzXnnllbjiiivisMMOiwYNGkRExD777BMvvvhivPDCC/HBBx/EkCFDYsmSJaUaw3bbbRc1atSIv/3tbzF//vxYunRpeewqAGzxqn73KgDAj8XgwYMjPz8/hg8fHv/+97+jYcOGccwxx0TNmjXjz3/+c/z+97+PI488MmrWrBm9e/cu9rFsRxxxRMyYMSMuvPDCyM/Pj4EDB0bHjh1L9fxVq1aNSy65JEaNGhXDhw+PDh06xD333FPWuwkAW7y8zEVkAAAAkBSnwQMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGLEOgAAACRGrAMAAEBixDoAAAAkRqwDAABAYsQ6AAAAJEasAwAAQGL+f6bt+1GU9DSrAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/EAAAMKCAYAAADNlMRPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+iUlEQVR4nO3dd5hV5aH/7e8wgCiIomCLDQtwFDCoJwiCBftBVOyxG2uISfRoLCfGGkVNNIrYTWJPJB6woGL9xcRgiVGjHkVjFyuIgoIKzOz3D18mjrQBGcYH7vu6uC5m7bXXftbwzDCfWWVXVSqVSgAAAIBvvWZNPQAAAACgYUQ8AAAAFELEAwAAQCFEPAAAABRCxAMAAEAhRDwAAAAUQsQDAABAIUQ8AAAAFELEAwAAQCFEPADAQnLxxRenc+fO9Zb169cvJ5544gJ7jQW9PQC+XUQ8AN/Y8OHD07lz57o/3bp1y3bbbZczzjgj48ePb+rhsZg68sgjs8EGG+TTTz+d7TrHHntsunbtmo8++ihJ6ubwz3/+81mu/5vf/KZunQkTJjTKuGfnq19jXbp0SZ8+ffKDH/wgjz322EIdBwBNS8QDsMD85Cc/yXnnnZdTTjklPXr0yB/+8Ifstdde+eyzz5p6aCyGdtppp3z++ee5//77Z/n4Z599lgcffDB9+vRJu3bt6pYvscQSuffeezN16tSZnjNy5MgsscQS8z2mH/7wh3nmmWfm+/mbbrppzjvvvJxzzjnZe++98+KLL+bAAw/MQw89NN/bBKAsIh6ABWazzTbLzjvvnD322CPnnHNODjzwwIwdOzYPPPBAUw+NxVC/fv3SunXr3HHHHbN8/IEHHsiUKVOy00471Vvet2/ffPrpp/nLX/5Sb/mTTz6ZsWPHZosttpjvMTVv3vwb/RJgzTXXzM4775xddtklRx11VH73u9+lUqnkuuuum+9tAlAWEQ9Ao9lkk02SJGPHjk2SfPzxxzn33HMzYMCA9OjRIxtuuGEOPfTQjBkzZqbnfvHFF7n44ouz3XbbpVu3bunTp0+OOuqovPnmm3Xb/OrpxV//s//++9dt67HHHkvnzp1z11135YILLsimm26a7373uznyyCPz7rvvzvTa//znP3PIIYdko402ygYbbJD99tsv//jHP2a5j/vvv/8sX//iiy+ead3bbrstu+66a7p3757vfe97OeaYY2b5+nPat6+qra3NNddck/79+6dbt27p3bt3TjnllEycOLHeev369csRRxwx0+ucccYZM21zVmO/+uqrZ/qcJsnUqVMzZMiQbLPNNunatWs233zznHfeebM8gv11s/u8zfgzY87McOONN6Z///7p2rVr+vTpk9NPPz2TJk2a42u0atUq2267bR599NF8+OGHMz0+cuTItG7dOv369au3fMUVV8zGG2+ckSNH1lt+xx13pFOnTll33XVn2tYTTzyRn/zkJ9liiy3qPhdnn312Pv/883rrzeqa+G+ic+fOadeu3Uyfr69q6NfdV79OLrvssmy22Wbp1q1bDjzwwLzxxhsLbMwAfDPNm3oAACy6ZgT3sssumyR56623cv/992f77bfPqquumvHjx+fmm2/OfvvtlzvvvDMrrrhikqSmpiZHHHFEHnnkkfTv3z8HHHBAJk+enL/97W956aWXsvrqq9e9xo477pjNNtus3utecMEFsxzPZZddlqqqqhx22GH58MMPc+211+aggw7KbbfdllatWiVJHnnkkRx22GHp2rVrjjrqqFRVVWX48OE58MADc9NNN6V79+4zbXellVbKf//3fydJpkyZktNOO22Wr33RRRdlhx12yO67754JEybkhhtuyL777ptbb701bdu2nek5e+21VzbaaKMkyX333Zf77ruv3uOnnHJKRowYkV133TX7779/xo4dmxtvvDHPP/98/vCHP6RFixaz/DzMi0mTJuXKK6+caXltbW1++MMf5h//+Ef23HPPrL322nnppZdy7bXX5vXXX8+ll146121/9fM2w1/+8peZ4vniiy/O0KFD07t373z/+9/Pa6+9lj/84Q959tln57qfAwYMyIgRI3L33Xdnv/32q1v+8ccf5+GHH07//v3r/u2//ryzzjorkydPTuvWrTN9+vSMGjUqBx98cL744ouZ1h81alQ+//zzfP/738+yyy6bZ555JjfccEPee++9DBkyZK6fi/k1ceLETJo0KWusscZs12no190MV111VaqqqvKDH/wgn376aa6++uocd9xx+dOf/tRo+wFAw4l4ABaYTz/9NBMmTMjUqVPz5JNP5pJLLkmrVq2y5ZZbJvnyqOE999yTZs3+fSLYzjvvnB122CG33HJLfvSjHyVJbr311jzyyCM56aSTctBBB9Wte/jhh6dSqdR7zfXWWy8777xzvWVXXXXVLMc3ceLE3HXXXWnTpk3dc48++ugMGzYsBxxwQCqVSk477bT07NkzV199daqqqpIke++9d/r3758LL7wwv/vd7+ptc9q0aWnbtm3dGCZMmDBTxL/99tu5+OKLc/TRR+fII4+sW77ttttm4MCBuemmm+otr6mpSZJsuOGGddt9880360X8E088kT/96U/59a9/nQEDBtQt79mzZw499NCMGjWq3vL5dcUVV6R58+ZZf/316y2/4447Mnr06Fx//fXZeOON65avu+66OfXUU/Pkk09mww03nOO2l1566Zn+7caPH18v4idMmJArrrgiffr0yVVXXVU3d9Zaa62cccYZuf3227PbbrvN9jU22WSTdOjQISNHjqwX8aNGjcq0adNm+zmacWPG+++/PzvvvHP+9re/5aOPPkr//v0zfPjwmdY/7rjj6v0yYK+99soaa6yRCy64IO+8805WWWWVOX4uGuqLL76ou6He2LFjc8EFF6Smpibbb7/9bJ/T0K+7r77GrbfempYtWyZJ2rZtm7POOisvvfRSOnXqtED2A4D553R6ABaYgw46KL169crmm2+eY445Jq1bt87QoUPrjvS1bNmyLiRqamry0UcfZamllkrHjh3z/PPP123n3nvvTbt27epF1wwzwnp+7LLLLnUBnyTbb799OnToUHdTsBdeeCGvv/56BgwYkI8++igTJkzIhAkTMmXKlPTq1St///vfU1tbW2+bU6dOrYud2bnvvvtSW1ubHXbYoW6bEyZMSPv27bPGGmvMdHfxadOmJckctztq1KgsvfTS2XTTTettc/31189SSy010zanT59eb70JEybM8ojyV73//vu54YYbMmjQoLRu3Xqm11977bWz1lpr1dvmjEsoFtQd00ePHp1p06blgAMOqBehe+yxR9q0aTPXG7pVV1enf//+eeqpp+qdcj5y5Mi0b98+vXr1muXzlllmmfTt2zd33nlnki9/adGjR4985zvfmeX6Xw34KVOmZMKECenRo0cqlUq9uf1N3XLLLenVq1d69eqVPfbYI08++WQOPvjgHHjggbN9TkO/7mbYdddd6829Gb+keeuttxbYfgAw/xyJB2CBOeWUU9KxY8dUV1enffv26dixY73wqq2tzXXXXZebbropY8eOrTvinPz7lPvky6POHTt2TPPmC/a/qa+fclxVVZU11lgjb7/9dpLk9ddfT5KccMIJs93GJ598kmWWWabu448++miOpzLP2G6lUsm22247y8e/vp8zrvVeaqmlZrvNN954I5988slsI/Tr14A//PDDs113doYMGZIVVlghe+21V+65556ZXv+VV15p8OvPr3feeSfJl0fev6ply5ZZbbXV6v7t5mTAgAG55pprMnLkyBx55JF577338sQTT2T//fdPdXX1HJ93/PHH55133skDDzyQ4447bo7jHDJkSB588MGZ7kkwp7e4m1dbbbVV9ttvv1RVVaV169ZZZ5115jhPkoZ/3c3w9bMGZlzqMbd7EACwcIh4ABaY7t27p1u3brN9/PLLL89FF12U3XbbLT/96U+zzDLLpFmzZjn77LNnOk2+KcwYw/HHH5//+I//mOU6Xw2mqVOnZty4cendu/cct1tbW5uqqqpcddVVs4zGr0fY+PHjkyTt27ef4zaXX375/PrXv57l48stt1y9jzfYYIMcffTR9ZbdcMMNs33ngFdeeSUjRozIr371q1lec15bW5tOnTrlpJNOmuXzV1pppdmOfWHr2rVr1lprrdx555058sgjM3LkyFQqlblebtCvX7+0aNEiJ5xwQqZOnZoddthhluvV1NTk4IMPzsSJE3PooYdmrbXWylJLLZX3338/J5544kxnb3wTK6200lzn29fN69fdV3/x9lXfhq9RAEQ8AAvRPffck549e+bss8+ut3zSpEn13qd79dVXzz//+c9MmzZtgdycbYav32G7UqnkjTfeqLtb+GqrrZYkadOmTYNCacyYMZk2bVq6du06x/VWX331VCqVrLrqqunYseNct/vyyy+nqqpqjuuuvvrqeeSRR7LhhhvO8sZsX9euXbuZ9ml275+eJOeff366dOmS//qv/5rt648ZMya9evX6Rpc4zM2Mo8Kvvvpq3b9P8uUvUMaOHdvgoB0wYEAuuuiijBkzJiNHjsyaa645y5sUflWrVq2y9dZb5/bbb89mm2020y9GZnjppZfy+uuv59xzz80uu+xSt/xvf/tbg8bW2Br6dQdAGVwTD8BCU11dPdPRvLvvvjvvv/9+vWXbbrttPvroo9x4440zbeObHA289dZb653aPGrUqIwbN67u7vZdu3bN6quvnt/97neZPHnyTM+fcUOxrz6/urq67sZ9s7Ptttumuro6Q4cOnWn8lUolH330Ud3H06dPz7333pvu3bvPdB36V+2www6pqamZ5V3gp0+f/o1OfX766afrTh+fXaDvsMMOef/99zNs2LCZHvv8888zZcqU+X79r+rdu3datGiR66+/vt7n7pZbbsknn3ySzTffvEHbmXHUfciQIXnhhRcafNO/Qw45JEcddVQGDRo023VmHLn+6vi+Te/d3tCvOwDK4Eg8AAvNFltskUsuuSQnnXRSevTokZdeeil33HFHvSOsyZc3oLv11lszePDgPPPMM9loo43y2Wef5ZFHHsn3v//9bL311vP1+ssss0z22Wef7LrrrnVvMbfGGmtkzz33TPJljP3yl7/MYYcdlh133DG77rprVlxxxbz//vt57LHH0qZNm1x++eWZMmVKbrzxxlx//fVZc801693EbUa8vvjii3nqqafSo0ePrL766jn66KNz/vnn5+23387WW2+d1q1bZ+zYsbn//vuz55575pBDDsno0aNz0UUX5cUXX8zll18+x3353ve+l7322itXXHFFXnjhhWy66aZp0aJFXn/99YwaNSo///nP53jH8jl5+OGHs+mmm87xKPfOO++cu+++O6eeemoee+yxbLjhhqmpqcmrr76aUaNG5eqrr57jpRUNtdxyy+WII47I0KFDc+ihh6Zfv3557bXXctNNN6Vbt27ZaaedGrSd1VZbLT169Ki7fKChEd+lS5d06dJljuustdZaWX311XPuuefm/fffT5s2bXLPPfd8a64hb+jXHQBlEPEALDRHHnlkPvvss9xxxx256667st566+WKK67I+eefX2+96urqXHXVVbnssssycuTI3HvvvVl22WWz4YYb1p36Pr+v/+KLL+bKK6/M5MmT06tXr5x66qlZcskl69bp2bNnbr755lx66aW54YYbMmXKlHTo0CHdu3fPXnvtleTLI/IzrkV/5ZVXcvzxx8/0Wvfdd1/atGmTHj16JPny7fHWXHPNXHPNNbnkkkuSfHl986abbpp+/folSR588MG0aNEiV155Zfr27TvX/TnjjDPStWvX/PGPf8xvfvObVFdX5zvf+U522mmnub6925xUVVXl2GOPneM6zZo1yyWXXJJrrrkmt912W+67774sueSSWXXVVbP//vs36LKBhvrxj3+c5ZZbLjfccEMGDx6cZZZZJnvuuWf++7//e54utxgwYECeeuqpdO/efa43I5wXLVq0yOWXX55f/vKXueKKK7LEEktkm222yb777jvTW+g1hYZ+3QFQhqqKu5QAsIh77LHHcsABB+Siiy6a76PTXzV27NhstdVWeeCBB7LqqqvOcp2LL744b7/9ds4555xv/HoAADO4Jh4AAAAK4XR6AJhHSy21VAYMGDDH9+fu3LlzVlhhhYU4KgBgcSDiAWAeLbfccrN9f/YZtt1224U0GgBgceKaeAAAACiEa+IBAACgECIeAAAACrHYXhNfW1ub6dOnp1mzZqmqqmrq4QAAALCIq1Qqqa2tTfPmzdOs2fwdU19sI3769Ol59tlnm3oYAAAALGa6deuWli1bztdzF9uIn/Fbj/XWW2++P3nwbVVTU5Nnn3023bp1S3V1dVMPBxYo85tFlbnNosz8ZlE2L/N7xrrzexQ+WYwjfsYp9NXV1b6RsMgyv1mUmd8sqsxtFmXmN4uyeZnf3+SSbje2AwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIh0XUkksu2dRDAAAAFrDmTT2AplZdXd3UQ4AFrrq6Ouutt15TD4PFRG2lNs2q/E4YAGBhWOwjftizo/Pu5IlNPQyAIq3YZpnsu0Hfph4GAMBiY7GP+A8mT8rbkyY09TAAAABgrpz/CAAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQCBEPAAAAhRDxAAAAUAgRDwAAAIUQ8QAAAFCIJov4W2+9NT179szUqVPrLR80aFB+9rOfJUnuv//+DBw4MN26dctWW22VoUOHZvr06UmSSqWSiy++OFtssUW6du2aPn365Je//OVC3w8AAABYWJos4rfffvvU1NTkgQceqFv24Ycf5qGHHspuu+2WJ554IieccEIOOOCA3HXXXTnjjDMyfPjwXH755UmSe+65J9dcc01OP/303Hvvvbn00kvTqVOnptodAAAAaHRNFvGtWrXKjjvumOHDh9ctu/3227PyyiunZ8+eGTp0aA4//PAMHDgwq622WjbddNP89Kc/zR//+Mckybvvvpv27dund+/eWWWVVdK9e/fsueeeTbU7AAAA0OiaN+WL77nnntl9993z/vvvZ8UVV8zw4cMzcODAVFVVZcyYMXnyySfrjrwnSU1NTb744ot89tln2X777XPttddm6623Tt++fbP55ptnyy23TPPmTbpLAAAA0GiatHjXW2+9dOnSJbfeems23XTTvPzyy9l1112TJFOmTMmPf/zjbLvttjM9b4kllsjKK6+cUaNGZfTo0Rk9enROP/30/Pa3v83111+fFi1aLOxdAQAAgEbX5Ietd99991x77bV5//3307t376y88spJvgz81157LWusscZsn9uqVav069cv/fr1yz777JMddtghL730UtZff/2FNXwAAABYaJo84gcMGJDzzjsvw4YNy3nnnVe3/Ec/+lGOPPLIrLLKKtluu+3SrFmzjBkzJi+99FKOOeaYDB8+PDU1Ndlggw2y5JJL5vbbb0+rVq2yyiqrNOHeAAAAQONp8ohfeumls+222+ahhx7K1ltvXbe8b9++ufzyy3PJJZfkqquuSvPmzbPWWmtljz32SJK0bds2V155Zc4555zU1tamU6dOufzyy9OuXbum2hUAAABoVE0e8Uny/vvvZ8CAAWnZsmW95X379k3fvn1n+Zytt966XvQDAADAoq7J3mIuSSZOnJj77rsvjz/+ePbZZ5+mHAoAAAB86zXpkfiBAwdm4sSJOe6447LWWms15VAAAADgW69JI/7BBx9sypcHAACAojTp6fQAAABAw4l4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKETzph5AU1uhddvUpNLUwwAo0optlmnqIQAALFYW+4jfs1vvVFdXN/UwAIpVW6lNsyondgEALAzzHPE1NTUZPnx4Hn300Xz44Yepra2t9/h11123wAa3MNTU1Ih4Fjk1NTV58cUX07lzZ/ObRifgAQAWnnmO+LPOOisjRozI5ptvnnXXXTdVVVWNMS7gG/rss8+aeggAAMACNs8Rf+edd+bCCy/M5ptv3hjjAQAAAGZjns+BbNGiRVZfffXGGAsAAAAwB/Mc8T/4wQ9y3XXXpVJxR3cAAABYmOb5dPp//OMfeeyxx/KXv/wl6667bpo3r7+JoUOHLrDBAQAAAP82zxHftm3bbLPNNo0xFgAAAGAO5jniBw8e3BjjAAAAAObCm/sCAABAIeb5SHySjBo1KnfffXfefffdTJs2rd5jI0aMWCADAwAAAOqb5yPx1113XU466aS0b98+zz//fLp165Zll102b731VjbbbLPGGCMAAACQ+TgSf9NNN+XMM8/MjjvumOHDh+ewww7LaqutlosuuigTJ05sjDECAAAAmY8j8e+++2569OiRJGnVqlUmT56cJNl5551z5513LtjRAQAAAHXmOeLbt29fd8R95ZVXztNPP50kGTt2bCqVygIdHAAAAPBv83w6/SabbJIHH3ww6623XnbbbbcMHjw499xzT5577jnvHw8AAACNaJ4j/swzz0xtbW2SZN99982yyy6bp556Kv369ctee+21wAcIAAAAfGmeI75Zs2Zp1uzfZ+H3798//fv3X6CDAgAAAGbWoIgfM2ZMgzfYpUuX+R4MAAAAMHsNivhddtklVVVVc71xXVVVVV544YUFMjAAAACgvgZF/AMPPNDY4wAAAADmokER/53vfKfu71OnTs306dOz1FJLNdqgAAAAgJk1+H3iJ0yYkEMPPTQ9evTIRhttlD333DNvvPFGY44NAAAA+IoGR/yvfvWrjBkzJj/5yU9ywgknZNKkSTn55JMbc2wAAADAVzT4LeZGjx6dwYMHp2/fvkmSLbbYIv/1X/+VqVOnpmXLlo02QAAAAOBLDT4S/8EHH9R7+7g111wzLVu2zAcffNAoAwMAAADqa3DEJ0l1dXX9JzdrNte3nQMAAAAWjAafTl+pVLLddtulqqqqbtmUKVMycODANGv2798FPP744wt2hAAAAECSeYj4wYMHN+Y4AAAAgLlocMQPHDiwMccBAAAAzMU8XRMPAAAANB0RDwAAAIUQ8QAAAFAIEQ8AAACFEPEAAABQiAbdnX5e3l7upJNOmu/BAAAAALPXoIh//vnnG7SxqqqqbzQYAAAAYPYaFPHXX399Y48DAAAAmAvXxAMAAEAhGnQk/qijjso555yTNm3a5KijjprjukOHDl0gAwMAAADqa1DEL7300rP8OwAAALDwzPPd6eflTvUAAADAguOaeAAAAChEg47Ef92oUaNy991359133820adPqPTZixIgFMjAAAACgvnk+En/dddflpJNOSvv27fP888+nW7duWXbZZfPWW29ls802a4wxAgAAAJmPI/E33XRTzjzzzOy4444ZPnx4DjvssKy22mq56KKLMnHixMYYIwAAAJD5OBL/7rvvpkePHkmSVq1aZfLkyUmSnXfeOXfeeeeCHR0AAABQZ54jvn379nVH3FdeeeU8/fTTSZKxY8emUqks0MEBAAAA/zbPp9NvsskmefDBB7Peeutlt912y+DBg3PPPffkueeeyzbbbNMYYwQAAAAyHxF/5plnpra2Nkmy7777Ztlll81TTz2Vfv36Za+99lrgAwQAAAC+NM8R36xZszRr9u+z8Pv375/+/fsv0EEBAAAAM2twxL/zzjsNWm+VVVaZ78EAAAAAs9fgiN9qq63q/j7jBnZVVVX1llVVVeWFF15YgMMDAAAAZmhwxFdVVWWllVbKwIEDs+WWW6Z583k+Ex8AAAD4Bhpc4g899FBGjBiR4cOH549//GN22mmn7L777ll77bUbc3wAAADA/6/B7xPfoUOHHH744Rk1alQuuuiiTJw4MXvssUf23HPPDBs2rO6O9QAAAEDjaHDEf9XGG2+cs88+O/fee29atWqVU089NZMmTVrQYwMAAAC+Yr4ubH/yySfzv//7vxk1alQ6duyYU045JW3btl3QYwMAAAC+osER/8EHH+TWW2/N8OHDM2nSpAwYMCB/+MMf0qlTp8YcHwAAAPD/a3DEb7nllllxxRWzyy67pF+/fmnevHlqa2szZsyYeut16dJlgQ8SAAAAmIeIr6mpyTvvvJNLL700l112WZJ/v1/8DN4nHgAAABpPgyP+gQceaMxxAAAAAHPR4IifPHmy698BAACgCTX4LeZ22mmn7LHHHhk2bFg+/fTTxhwTAAAAMAsNjvgbbrgh66yzTs4555z07ds3J5xwQp544onGHBsAAADwFQ2O+I033jiDBw/Oww8/nJNPPjlvv/129ttvv2y33Xa58sorM27cuMYcJwAAACz2GhzxMyy11FLZbbfdcsMNN+See+7J9ttvn5tuuilbbrlljjzyyMYYIwAAAJD5iPivWmONNXLEEUfkhz/8YVq3bp2HHnpoQY0LAAAA+JoG353+6/7+97/nf//3f3PPPfekWbNm2WGHHbL77rsvyLEB38CSSy7Z1EOARmN+s6gyt1mUmd+wYMxTxL///vsZMWJERowYkTfeeCM9evTIySefnB122CFLLbVUY42xUVVXVzf1EGCBq66uznrrrdfUw4BGYX6zqDK3WZSZ3zSmSm1tqpp9o5PMi9LgiD/00EPzyCOPpF27dtl5552z2267Za211mrMsS0Uk/7fLal89F5TDwMAAIB5VN1uhSyz9febehgLVYMjvnnz5rnooouy5ZZbLlJHr2s+Hpfa8W839TAAAABgrhoc8ZdffnljjgMAAACYi8XnwgEAAAAonIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAoRPOmHsCs7L///uncuXNatmyZW265JS1atMjee++dH//4x0mSd955J2eeeWYeffTRVFVVpW/fvvnFL36R9u3bN/HIAQAAoPF8a4/EjxgxIksttVSGDRuWn/3sZ7nkkkvyt7/9LbW1tRk0aFAmTpyY66+/Pr///e/z1ltv5ZhjjmnqIQMAAECj+lYeiU+Szp0756ijjkqSrLnmmrnhhhvyyCOPJEleeumlPPDAA1l55ZWTJOedd1769++fZ555Jt27d2+yMQMAAEBj+tYeie/cuXO9jzt06JAPP/wwr7zySlZaaaW6gE+SddZZJ23bts2rr766sIcJAAAAC823NuKbN69/kkBVVVUqlUoTjQYAAACa3rc24mdn7bXXznvvvZd33323btnLL7+cSZMmZe21127CkQEAAEDjKi7ie/funU6dOuW4447L//3f/+WZZ57J8ccfn+9973vp1q1bUw8PAAAAGk1xEV9VVZVLL700bdu2zX777ZeDDjooq622Wn7zm9809dAAAACgUX0r705//fXXz7Ts0ksvrfv7Kquskssuu2xhDgkAAACaXHFH4gEAAGBxJeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBDNm3oATa162Q5pVqlp6mEAAAAwj6rbrdDUQ1joFvuIb7vl7qmurm7qYQAAADAfKrW1qWq2+Jxkvvjs6WzU1DgKz6KnpqYmzz//vPnNIsn8ZlFlbrMoM79pTItTwCciHhZZn332WVMPARqN+c2iytxmUWZ+w4Ih4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQzZt6AE2lUqkkSWpqalJTU9PEo4EFa8acNrdZFJnfLKrMbRZl5jeLsnmZ3zPWmdGj86Oq8k2eXbCpU6fm2WefbephAAAAsJjp1q1bWrZsOV/PXWwjvra2NtOnT0+zZs1SVVXV1MMBAABgEVepVFJbW5vmzZunWbP5u7p9sY14AAAAKI0b2wEAAEAhRDwAAAAUQsQDAABAIUQ8AAAAFELEAwAAQCFEPAAAABRCxAMAAEAhRDwAAAAUYrGN+BtvvDH9+vVLt27dsscee+SZZ55p6iHBHF188cXp3LlzvT/bb7993eNffPFFTj/99PTs2TM9evTIj3/844wfP77eNt55550cfvjh2WCDDdKrV6+ce+65mT59+sLeFcjf//73HHnkkenTp086d+6c+++/v97jlUolF110Ufr06ZPu3bvnoIMOyuuvv15vnY8//jjHHntsNtxww2y88cb5n//5n0yePLneOmPGjMk+++yTbt26ZfPNN89VV13V2LvGYm5uc/vEE0+c6Xv5IYccUm8dc5tvoyuuuCK77bZbevTokV69emXQoEF59dVX662zoH4WeeyxxzJw4MB07do122yzTYYPH97o+8firSHze//995/p+/cpp5xSb52FNb8Xy4i/6667Mnjw4PzoRz/KiBEj0qVLlxxyyCH58MMPm3poMEfrrrtuHn744bo/N910U91jZ599dv7f//t/ufDCC3P99dfngw8+yFFHHVX3eE1NTY444ohMmzYtf/zjH3POOedkxIgRGTJkSFPsCou5KVOmpHPnzjn11FNn+fhVV12V66+/PqeddlqGDRuWJZdcMocccki++OKLunWOO+64vPzyy/n973+fyy+/PE888US9/0w//fTTHHLIIVlllVUyfPjwHH/88Rk6dGhuvvnmRt8/Fl9zm9tJ0rdv33rfyy+44IJ6j5vbfBs9/vjj2XfffTNs2LD8/ve/z/Tp03PIIYdkypQpdessiJ9F3nrrrRxxxBHp2bNnbrvtthx44IE5+eST89e//nWh7i+Ll4bM7yTZc889633/Pv744+seW6jzu7IY2n333Sunn3563cc1NTWVPn36VK644oomHBXM2ZAhQyo77bTTLB+bNGlSZf3116/cfffddctefvnlSqdOnSpPPfVUpVKpVP785z9XunTpUhk3blzdOjfddFNlww03rHzxxReNOnaYk06dOlXuu+++uo9ra2srm266aeXqq6+uWzZp0qRK165dKyNHjqxUKv+e388880zdOg899FClc+fOlffee69SqVQqN954Y+U///M/683vX/3qV5XtttuusXcJKpXKzHO7UqlUTjjhhMoPf/jD2T7H3KYUH374YaVTp06Vxx9/vFKpLLifRc4777xK//79673W0UcfXfnBD37QyHsE//b1+V2pVCr77bdf5Ze//OVsn7Mw5/didyR+6tSp+b//+7/07t27blmzZs3Su3fvPPXUU004Mpi7N954I3369MlWW22VY489Nu+8806S5Lnnnsu0adPqzeu11147q6yySp5++ukkydNPP51OnTqlffv2dev06dMnn376aV5++eWFuh8wJ2PHjs24cePqzeell146G2ywQd336aeeeipt27ZNt27d6tbp3bt3mjVrVnd51NNPP52NN944LVu2rFunT58+ee211zJx4sSFtDcws8cffzy9evXKdtttl1NPPTUfffRR3WPmNqX45JNPkiTLLLNMkgX3s8jTTz+dXr161XutPn361G0DFoavz+8Z7rjjjvTs2TM77rhjzj///Hz22Wd1jy3M+d18ntZeBHz00UepqanJ8ssvX2/58ssvP9N1D/Bt0r179wwePDgdO3bMuHHjcskll2TffffNHXfckfHjx6dFixZp27Ztvecsv/zyGTduXJJk/Pjx9b6pJKn7eMY68G0wYz7O6vv0jGsrx48fn+WWW67e482bN88yyyxTb86vuuqq9daZMefHjx8/03/MsDD07ds322yzTVZdddW89dZbueCCC3LYYYfl5ptvTnV1tblNEWpra3P22Wdnww03TKdOnZJkgf0sMrt1Pv3003z++edp1apVo+wTzDCr+Z0kO+64Y1ZZZZWssMIKefHFF/PrX/86r732WoYOHZpk4c7vxS7ioVSbb7553d+7dOmSDTbYIFtuuWXuvvtu/6EBFKJ///51f59xY6Stt9667ug8lOD000/Pv/71r3r35oFFxezm91577VX3986dO6dDhw456KCD8uabb2b11VdfqGNc7E6nb9euXaqrq2e6id2HH344029F4Nusbdu2WXPNNfPmm2+mffv2mTZtWiZNmlRvnQ8//DAdOnRI8uVv+b5+h9gZH89YB74NZszHOX2fbt++fSZMmFDv8enTp2fixIkNmvO+3/Ntsdpqq6Vdu3Z54403kpjbfPudccYZ+fOf/5xrr702K620Ut3yBfWzyOzWadOmjYMWNLrZze9Z2WCDDZKk3vfvhTW/F7uIb9myZdZff/088sgjdctqa2vzyCOPpEePHk04Mpg3kydPzltvvZUOHTqka9euadGiRb15/eqrr+add97Jd7/73STJd7/73bz00kv1wmj06NFp06ZN1llnnYU9fJitVVddNR06dKg3nz/99NP885//rPs+3aNHj0yaNCnPPfdc3TqPPvpoamtr07179yRfzvknnngi06ZNq1tn9OjR6dixo9ON+dZ477338vHHH9f9gGdu821VqVRyxhln5L777su1116b1VZbrd7jC+pnke9+97t59NFH62179OjRdduAxjC3+T0rL7zwQpJ/B/rCnN+LXcQnycEHH5xhw4ZlxIgReeWVV3Laaafls88+y6677trUQ4PZOvfcc/P4449n7NixefLJJ3PUUUelWbNm2XHHHbP00ktnt912yznnnJNHH300zz33XP7nf/4nPXr0qPum0KdPn6yzzjo5/vjjM2bMmPz1r3/NhRdemH333bfezZFgYZg8eXJeeOGFuv8Ax44dmxdeeCHvvPNOqqqqcsABB+Syyy7LAw88kBdffDHHH398VlhhhWy99dZJvrxZUt++ffOLX/wizzzzTP7xj3/kzDPPTP/+/bPiiismSQYMGJAWLVrk5z//ef71r3/lrrvuynXXXZeDDz64yfabRd+c5vbkyZNz7rnn5umnn87YsWPzyCOPZNCgQVljjTXSt2/fJOY2316nn356br/99px//vlp3bp1xo0bl3HjxuXzzz9PkgX2s8jee++dt956K+edd15eeeWV3Hjjjbn77rtz0EEHNdGesziY2/x+8803c8kll+S5557L2LFj88ADD+SEE07If/7nf6ZLly5JFu78rqpUKpUF+hkoxA033JDf/va3GTduXP7jP/4jJ598ct0pEfBtdMwxx+Tvf/97Pv744yy33HLZaKONcswxx9Rdg/PFF1/knHPOyZ133pmpU6emT58+OfXUU+udKv/222/ntNNOy+OPP54ll1wyAwcOzLHHHpvmzd0eg4XrscceywEHHDDT8oEDB+acc85JpVLJkCFDMmzYsEyaNCkbbbRRTj311HTs2LFu3Y8//jhnnnlmHnzwwTRr1izbbrttTj755LRu3bpunTFjxuSMM87Is88+m3bt2mW//fbL4YcfvlD2kcXTnOb2aaedlh/96Ed5/vnn88knn2SFFVbIpptump/+9Kf1ToM3t/k26ty58yyXDx48uO5A2IL6WeSxxx7L4MGD8/LLL2ellVbKoEGDHGyjUc1tfr/77rv52c9+ln/961+ZMmVKVl555Wy99dYZNGhQ2rRpU7f+wprfi23EAwAAQGkWy9PpAQAAoEQiHgAAAAoh4gEAAKAQIh4AAAAKIeIBAACgECIeAAAACiHiAQAAoBAiHgAAAAoh4gEAAKAQIh4AWGjGjh2bzp0754UXXmjqoQBAkUQ8AAAAFELEA8BipLa2NldddVW22WabdO3aNVtssUUuu+yyJMmLL76YAw44IN27d0/Pnj3zi1/8IpMnT6577v7775+zzjqr3vYGDRqUE088se7jfv365fLLL89JJ52UHj16ZIsttsjNN99c9/hWW22VJNlll13SuXPn7L///o25uwCwyBHxALAYOf/883PVVVdl0KBBueuuu/LrX/867du3z5QpU3LIIYdkmWWWyS233JILL7wwo0ePzplnnjnPr/H73/8+Xbt2za233pp99tknp512Wl599dUkyZ/+9KckyTXXXJOHH344F1988QLdPwBY1Il4AFhMfPrpp7nuuuvys5/9LAMHDszqq6+ejTfeOHvssUdGjhyZqVOn5txzz02nTp3Sq1evnHLKKbntttsyfvz4eXqdzTbbLPvuu2/WWGONHHbYYWnXrl0ee+yxJMlyyy2XJFl22WXToUOHLLvssgt6NwFgkSbiAWAx8eqrr2bq1KnZZJNNZnrslVdeSefOnbPUUkvVLdtwww1TW1ub1157bZ5ep3PnznV/r6qqSvv27fPhhx/O/8ABgDoiHgAWE0ssscQ3en5VVVUqlUq9ZdOnT59pvebNm8/1eQDA/BHxALCYWHPNNdOqVas8+uijMz229tpr58UXX8yUKVPqlj355JNp1qxZOnbsmOTLU+HHjRtX93hNTU3+9a9/zdMYWrRoUfdcAGDeiXgAWEwsscQSOeyww/KrX/0qt956a9588808/fTT+dOf/pQBAwakZcuWOfHEE/PSSy/l0UcfzZlnnpmdd9457du3T5Jssskmeeihh/LnP/85r7zySk477bRMmjRpnsaw/PLLp1WrVvnrX/+a8ePH55NPPmmMXQWARVbzua8CACwqBg0alOrq6gwZMiQffPBBOnTokL333jtLLrlkfvvb3+ass87K7rvvniWXXDLbbrttvbeP22233TJmzJiccMIJqa6uzkEHHZSePXvO0+s3b948J598ci655JIMGTIkG2+8ca6//voFvZsAsMiqqrhIDQAAAIrgdHoAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACiEiAcAAIBCiHgAAAAohIgHAACAQoh4AAAAKISIBwAAgEKIeAAAACjE/wcQhcplIGlNbgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Churn 1.000000\n", + "CustServ Calls 0.208750\n", + "Day Mins 0.205151\n", + "Day Charge 0.205151\n", + "Eve Mins 0.092796\n", + "Eve Charge 0.092786\n", + "Intl Charge 0.068259\n", + "Intl Mins 0.068239\n", + "Night Charge 0.035496\n", + "Night Mins 0.035493\n", + "Day Calls 0.018459\n", + "Account Length 0.016541\n", + "Eve Calls 0.009233\n", + "Area Code 0.006174\n", + "Night Calls 0.006141\n", + "Intl Calls -0.052844\n", + "VMail Message -0.089728\n", + "Name: Churn, dtype: float64\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+IAAANECAYAAAA0X5W4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADj0ElEQVR4nOzdeZzNdf//8eeZzTaWMHaNQY7ByFiSMRPmsmSZ0dguWSoUsmUpJnUJVzUkqUgzIXupzJItrlREREXlclm6LNlKlhAzzHLO7w/fzq9zjeV8DOczHx732+3cbp3P+jyfMPM6r/fn/bE5nU6nAAAAAACAV/iYHQAAAAAAgDsJhTgAAAAAAF5EIQ4AAAAAgBdRiAMAAAAA4EUU4gAAAAAAeBGFOAAAAAAAXkQhDgAAAACAF1GIAwAAAADgRRTiAAAAAAB4EYU4AAAAAABeRCEOAAAAALgjffPNNxo4cKAiIyNlt9u1du3a6+6zZcsWxcXFqU6dOmrVqpVSUlIMn5dCHAAAAABwR0pPT5fdbtcLL7zg0faHDx/WgAED1LhxY3388cd69NFH9fzzz2vDhg2Gzut3I2EBAAAAALC6Zs2aqVmzZh5vv2TJElWqVEnx8fGSpGrVqum7777TvHnzFBUV5fFx6IgDAAAAAG4bmZmZOn/+vNsrMzPzphz7+++/V5MmTdyWRUZG6vvvvzd0HDrid7isk/vNjmBISI1YsyMY4iOb2RE85udjrX8OAv0Kmh3BkPPZF82OYEi2I9vsCB4r6FvA7AiGXMy5ZHYEQxxymh3BEKfTOnltNuv8jJCkAj4BZkcwxNdmrX5TjtNhdgSPZTut8zNCkgJ8/M2OYMhPJ74zO8INyU91RdL7KzVjxgy3ZUOGDNHQoUPzfOyTJ0+qdOnSbstKly6t8+fP6+LFiypY0LPfUa31mzcAAAAAANcwYMAA9enTx21ZQED++jKRQhwAAAAAcNsICAi4ZYV36dKldfLkSbdlJ0+eVGBgoMfdcIlCHAAAAACQV44csxN4Rb169fTll1+6Ldu0aZPq1atn6DjWunkGAAAAAICb5MKFC9q1a5d27dolSTpy5Ih27dqlY8eOSZKmTp2q0aNHu7bv3r27Dh8+rFdeeUX79u3T4sWL9cknn+ixxx4zdF464gAAAACAvLHQhIN/9e9//1uPPPKI631CQoIkKS4uTpMmTdKJEyf0yy+/uNZXrlxZSUlJSkhI0IIFC1SuXDm9+OKLhh5dJkk2p5WmF8VNl59mN/QEs6bfOsyafmsxa/qtw6zptxazpt86zJp+azFr+q3DrOm3lmVnTT++x+wILv5l7WZHuC5r/QsFAAAAAIDFWasFBgAAAADIfxzWGdWRH9ARBwAAAADAiyjEAQAAAADwIoamAwAAAADyxGmhCQfzAzriAAAAAAB4EYU4AAAAAABeRCFuUVu2bJHdbte5c+fMjgIAAADgTudw5J+XBdxQIb59+3aFhoaqf//+NzuPV3haxOaXYrd379566aWXTM0AAAAAALg5bqgQX7p0qXr16qVvvvlGx48fv9mZAAAAAABW4nTkn5cFGC7EL1y4oFWrVunhhx9W8+bNlZqammubzz//XJ07d1ZYWJgaN26swYMHu9ZlZmZqypQpatasmerUqaNWrVrpo48+cq3funWrunTpojp16igyMlKvvvqqsrOzXeujo6M1b948t/N17NhR06dPd7232+366KOPNHjwYN17771q3bq1PvvsM0nSkSNH9Mgjj0iSGjVqJLvdrvj4eKOXwfVZJk+erKioKNWrV09du3bVli1bXOtTUlLUsGFDbdiwQW3btlV4eLj69eun3377zbVNdna2XnzxRTVs2FCNGzfWlClTNGbMGA0aNEiSFB8fr61bt2rBggWy2+2y2+06cuSIa/+dO3eqU6dOuvfee9W9e3ft37//hj4LAAAAAMA7DBfin3zyiapWraqqVasqNjZWycnJcjqdrvXr1q3TkCFD1KxZM6WlpWn+/PmqW7eua/3o0aO1cuVKPf/88/rkk080ceJEFSlSRJJ0/Phx9e/fX2FhYfr44481fvx4LV26VG+//bbhDzZjxgy1bdtWy5Yt0wMPPKCnn35aZ86cUfny5V1F++rVq7Vx40Y999xzho8vSRMnTtT27ds1bdo0LVu2TA8++KAef/xxHTx40LXNxYsX9e677+qVV17RokWL9Msvv2jy5Mmu9bNmzdLy5cuVkJCg9957T+fPn9fatWtd65977jmFh4erW7du2rhxozZu3Kjy5cu71k+bNk3x8fFKTk6Wr6+vxo4de0OfBQAAAADgHYafI7506VLFxsZKkqKiovTHH39o69ataty4sSQpMTFR7dq107Bhw1z71KxZU5J04MABffLJJ5o7d64iIiIkSZUrV3Zt995776lcuXIaN26cbDabqlWrpuPHj+vVV1/V4MGD5ePj+fcGcXFx6tChgyRp5MiRWrhwoX788Uc98MADKl68uCSpVKlSKlasmNFLIEk6duyYUlJS9MUXX6hs2bKSpH79+mnDhg1KSUnRyJEjJUlZWVmaMGGC7r77bklSz549NXPmTNdxFi1apP79+6tVq1aSpHHjxunLL790rS9atKj8/f1VsGBBBQUF5coxYsQI3XfffZKk/v37q3///rp06ZIKFChwQ58LAAAAAAxz5JidwFIMFeL79+/Xjh079NZbb13e2c9P7dq109KlS12F+K5du9S1a9cr7r9r1y75+vqqUaNGV1y/b98+hYeHy2azuZY1aNBA6enp+vXXX1WhQgWPs9rtdtd/Fy5cWIGBgTp9+rTH+1/P3r17lZOTowcffNBteWZmpkqUKOF6X6hQIVcRLkllypTRqVOnJEl//PGHTp486TZiwNfXV7Vr15bDw9n+/vo5/yzUT506ZehaAQAAAAC8x1AhvnTpUmVnZysqKsq1zOl0KiAgQOPGjVPRokVVsGDBq+5/rXWe+muR/qe/3kP+J39//1z7eVrceiI9PV2+vr6uIeF/VbhwYdd/+/m5X2KbzeY2lD+v/nr8P6/NzfycAAAAAICby+Ox3tnZ2fr4448VHx+vtLQ01+vjjz9WmTJltGLFCklSjRo1tHnz5iseo0aNGnI4HPrmm2+uuL5atWravn27W6H63XffqUiRIipXrpwkqWTJkm6TnZ0/f95t8jJP/Fmk5+Tc+PCJ0NBQ5eTk6PTp0woODnZ7XWkI+ZUULVpUpUuX1o4dO1zLcnJy9J///CdXXoprAAAAAPmW2TOlW2zWdI874uvWrdPZs2fVpUsXFS1a1G1d69attXTpUj388MMaMmSIHnvsMd19991q3769srOztX79evXv31+VKlVSXFycxo4dq+eff152u13Hjh3TqVOn1K5dO/Xo0UPz58/XP//5T/Xs2VMHDhzQ9OnT1adPH9f94ffff79SU1MVHR2tokWL6s033zR077gkVaxYUTabTevWrVOzZs1UoEAB14RxV7J371639TabTTVr1lRMTIxGjx6t+Ph4hYaG6vfff9fmzZtlt9vVvHlzj7L06tVLSUlJuvvuu1W1alUtWrRIZ8+edev8V6xYUT/88IOOHDmiwoULuw19BwAAAABYi8eF+NKlSxUREZGrCJekNm3aaPbs2dq9e7caN26sN954QzNnztQ777yjwMBAt3vCx48fr9dee03jx4/XmTNnVKFCBQ0YMECSVLZsWb3zzjt65ZVX9OGHH6pEiRLq0qWLnnzySdf+AwYM0JEjRzRgwAAVLVpUTz31lOGOeNmyZTV06FBNnTpVzz77rB566CFNmjTpqtv37NnT7b2vr6/+85//KCEhQW+//bYmTZqk3377TSVKlFC9evU8LsIl6YknntDJkyc1ZswY+fr6qlu3boqMjHQb7t63b1/Fx8erffv2unjxoutRbAAAAACQLzCC1xCb82besIw8czgcatu2rdq2bavhw4ff8vNlnbTWc8dDasSaHcEQH+We0yC/8vMx/BAFUwX65X3OCW86n33R7AiGZDtyz72RXxX0tdZTIi7mXDI7giEOWevXBCv9WnOleW/yswI+AWZHMMTXZvgpvabKschwWknKdlrnZ4QkBfj4X3+jfOSnE9+ZHeGGZO7fanYEl4Cq95kd4bqs9Zv3bejo0aP66quv1KhRI2VmZmrx4sU6evSoYmJizI4GAAAAALgFKMRN5uPjo5SUFE2ePFlOp1M1atTQ3LlzVa1aNbOjAQAAAIBHnBYa1ZEfUIibrHz58lqyZInZMQAAAAAAXmKtm2cAAAAAALA4OuIAAAAAgLxh1nRD6IgDAAAAAOBFFOIAAAAAAHgRQ9MBAAAAAHnDrOmG0BEHAAAAAMCL6IgDAAAAAPLGkWN2AkuhIw4AAAAAgBdRiAMAAAAA4EUMTQcAAAAA5A2TtRlCRxwAAAAAAC+iEAcAAAAAwIsYmn6HC6kRa3YEQw7sXWZ2BEOq2x8yO4LHsh3ZZkcw5HTmH2ZHMMRHNrMjGOJrs873tOk5F82OYIi/zdfsCMZYbKhhAb8CZkfw2KWcTLMjGJKeba2/a045zY5giM1CPydKBASaHcGQS44ssyPcGRzW+nlhNuv8pgUAAAAAwG2AjjgAAAAAIG8sNoLKbHTEAQAAAADwIgpxAAAAAAC8iKHpAAAAAIC8YbI2Q+iIAwAAAADgRRTiAAAAAAB4EUPTAQAAAAB54nTmmB3BUuiIAwAAAADgRXTEAQAAAAB5w3PEDaEjDgAAAACAF1GIAwAAAADgRQxNBwAAAADkDc8RN4SOuIXY7XatXbvW7BgAAAAAgDy4LQrx7du3KzQ0VP379zc7iiRpzZo16t27txo0aKDw8HDFxMRoxowZOnPmjNnRAAAAAAAmuy0K8aVLl6pXr1765ptvdPz48Wtu63Q6lZ2dfcuyTJs2TSNGjFCdOnU0a9YsLV++XPHx8dqzZ48+/vjjW3ZeAAAAADCN05F/XhZg+UL8woULWrVqlR5++GE1b95cqampbuu3bNkiu92u9evXq1OnTgoLC9N3330nh8OhpKQkRUdHq27duoqNjdXq1atd++Xk5Gjs2LGu9W3atNH8+fOvmeXHH39UYmKixowZozFjxqh+/fqqVKmSmjZtqunTpysuLs617XvvvaeWLVuqTp06atOmjdLS0tyOdfDgQfXs2VNhYWFq166dvvrqq1zn++WXX/TUU0+pYcOGuu+++/Tkk0/qyJEjN3AVAQAAAADeYvnJ2j755BNVrVpVVatWVWxsrF5++WUNGDBANpvNbbupU6dqzJgxqly5sooVK6akpCQtW7ZMEyZMUJUqVfTNN9/omWeeUcmSJXXffffJ4XCoXLlyeuONN1SiRAlt375d48aNU1BQkNq1a3fFLMuWLVPhwoXVo0ePK64vVqyYJOnTTz/Vyy+/rGeffVYRERFat26dxo4dq3Llyun++++Xw+HQ0KFDVapUKX300Uf6448/9PLLL7sdKysrS/369VO9evW0ePFi+fn5aebMmXr88ce1bNkyBQQE3ISrCwAAAAC42SxfiC9dulSxsbGSpKioKP3xxx/aunWrGjdu7LbdsGHD1LRpU0lSZmamkpKSNHfuXIWHh0uSKleurO+++04ffPCB7rvvPvn7+2vYsGGu/StXrqzvv/9eq1evvmoh/vPPP6ty5cry9/e/ZuY5c+YoLi5OPXv2lCSFhITo+++/17vvvqv7779fmzZt0v79+zV79myVLVtWkjRixAg98cQTrmOsWrVKDodDL730kutLh4SEBDVq1Ehbt25VZGSkx9cQAAAAAPLEkWN2AkuxdCG+f/9+7dixQ2+99ZYkyc/PT+3atdPSpUtzFeJhYWGu//7555+VkZGhvn37um2TlZWl0NBQ1/vFixcrOTlZx44d06VLl5SVlaWaNWteNY/T6fQ499///ne3ZfXr19eCBQskSfv27VO5cuVcRbgk1xcGf9q9e7cOHTqk+vXruy2/dOmSDh065FEOAAAAAID3WboQX7p0qbKzsxUVFeVa5nQ6FRAQoHHjxqlo0aKu5YUKFXL9d3p6uiQpKSnJrdiV5BrSvXLlSk2ePFljxoxReHi4ihQpojlz5uiHH364ap4qVarou+++U1ZW1nW74nmVnp6u2rVr69VXX821rmTJkrf03AAAAADgxiKTpOUXli3Es7Oz9fHHHys+Pt415PxPgwcP1ooVK/Twww9fcd9q1aopICBAx44d03333XfFbbZt26bw8HDX8HFJ1+00x8TEaOHChXrvvff06KOP5lp/7tw5FStWTFWrVtW2bdvcJm/btm2bqlev7sr366+/6rffflOZMmUkSd9//73bsWrXrq1PPvlEpUqVUmBg4DVzAQAAAADyD8sW4uvWrdPZs2fVpUsXt863JLVu3VpLly69aiEeGBiovn37KiEhQU6nUw0aNNAff/yhbdu2KTAwUHFxcQoODlZaWpo2bNigSpUq6eOPP9aOHTtUqVKlq2a699579fjjj2vy5Mk6fvy4WrVqpTJlyujQoUN6//331aBBAz366KN6/PHHNXz4cIWGhioiIkJffPGFPv30U82dO1eSFBERoSpVqig+Pl6jR4/W+fPnNW3aNLdzxcTEaM6cOXryySf11FNPqWzZsjp27Jg+/fRTPf744ypXrlwerzAAAAAA4FawbCG+dOlSRURE5CrCJalNmzaaPXu2du/efdX9hw8frpIlSyopKUlHjhxR0aJFVatWLQ0cOFCS1L17d+3atUsjRoyQzWZT+/bt1aNHD3355ZfXzPXMM8+odu3aeu+997RkyRI5nU5VrlxZbdq0cXXAW7ZsqbFjx+rdd9/Vyy+/rIoVK+rll1923dfu4+OjGTNm6LnnnlOXLl1UsWJFPf/883r88cdd5ylUqJAWLVqkV199VUOGDNGFCxdUtmxZNWnShA45AAAAAO9yMDTdCJvT0xnGcFuqVLKO2REMObB3mdkRDKluf8jsCB6z2j8FDlkrr49s198oH/G1+ZgdwWNZTmvN0upv8zU7giE5Frvnr4CvdR7feSkn0+wIhmRZbEZkp8V+Ttgs9HOiRIC1mj6XHFlmRzBk/8ntZke4IRe//sDsCC4F7//79TcymXV+0wIAAAAA4DZg2aHpAAAAAIB8wmIjqMxGRxwAAAAAAC+iIw4AAAAAyBsmazOEjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDcMTTeEjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkCdOZ47ZESyFjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDfMmm4IHXEAAAAAALyIjjgAAAAAIG+cdMSNoBC/w/nIZnYEQ6rbHzI7giH/3ZNmdgSP1bDHmR3BEIfFZub0tVlrAJK/j7/ZETyWk2OtH/xWuraSZLPY37UcC/0i6OdjrV/DrPbvmNWub7Yj2+wIHjuXdcHsCIYcv3DG7AhALtb6FxUAAAAAAIuz1leFAAAAAID8h8naDKEjDgAAAACAF1GIAwAAAADgRQxNBwAAAADkjYUmy8wP6IgDAAAAAOBFdMQBAAAAAHnDZG2G0BEHAAAAAMCLKMQBAAAAAPAihqYDAAAAAPKGydoMoSMOAAAAAIAXUYgDAAAAAOBFli3E4+PjNWjQINf73r1766WXXjIxEQAAAADcoRyO/POygDwV4gMHDlS/fv2uuO7bb7+V3W7X7t27deTIEdntdoWGhur48eNu2/3222+qVauW7Ha7jhw54vG5n3vuOU2aNMnj7VNSUmS329W2bdtc6z755BPZ7XZFR0d7fDwAAAAAAG5EngrxLl26aNOmTfr1119zrUtOTladOnVUs2ZN17KyZcsqLS3Nbbu0tDSVLVvW8LmLFi2qYsWKGdqncOHCOn36tLZv3+62fOnSpapQoYLhDAAAAAAAmd8Fv5M64s2bN1fJkiWVkpLitvzChQtavXq1unTp4rb8oYceyrVtcnKyHnroIbdlOTk5Gjt2rKKjo1W3bl21adNG8+fPd9vmf4eme8LX11cdOnRQcnKya9mvv/6qrVu3qkOHDrm2X7t2reLi4hQWFqa//e1vmjFjhrKzsyVJTqdT06dPV/PmzVWnTh1FRkbqxRdfdO27ePFitW7dWmFhYYqIiNCwYcNc67788ks9/PDDatiwoRo3bqwBAwbo0KFDbufetm2bOnbsqLCwMHXq1Elr166V3W7Xrl27XNvs3btXjz/+uMLDwxUREaFnnnlGp0+fNnRNAAAAAADeladC3M/PTx07dlRqaqqcTqdr+erVq+VwOHIVt9HR0Tp79qy+/fZbSZeHr587d04tWrRw287hcKhcuXJ64403tHLlSg0ePFjTpk3TqlWr8hJXktS5c2d98sknysjIkHR5yHpUVJRKlSrltt23336rMWPG6JFHHtGqVas0ceJEpaSkKDExUZK0Zs0azZs3TxMmTNC//vUvzZw5UzVq1JAk7dixQy+99JKGDRum1atXa/bs2WrYsKHr2BkZGerTp4+Sk5M1b9482Ww2DR48WI7/+/bm/PnzevLJJ1WjRg2lpqbqqaee0pQpU9zynTt3To8++qhq1aqlpUuXavbs2Tp16pSGDx+e52sEAAAAALh18vwc8c6dO2vOnDnaunWrGjduLOlycdu6dWsVLVrUbVt/f3/FxsYqOTlZDRs2VHJysmJjY+Xv759ru792kCtXrqzvv/9eq1evVrt27fKUt1atWqpcubLWrFnj+hIhPj5ehw8fdttuxowZ6t+/v+Li4lwZ/iyIhwwZol9++UWlS5dWRESE/P39VaFCBdWtW1eS9Msvv6hQoUJq3ry5AgMDVbFiRdWqVct17DZt2rid6+WXX1aTJk303//+VzVq1NDy5cslSS+++KIKFCig6tWr67ffftPzzz/v2mfRokWqVauWRo4c6XacZs2a6cCBAwoJCcnTdQIAAAAAj/EccUPyXIhXq1ZN4eHhSk5OVuPGjfXzzz/r22+/1YIFC664fefOndW9e3eNHDlSq1ev1gcffKCcnJxc2y1evFjJyck6duyYLl26pKysLLf7zfOic+fOSk5OVvny5ZWRkaFmzZpp0aJFbtvs3r1b27Ztc3XApctD5i9duqSMjAw9+OCDmj9/vlq2bKmoqCg1a9ZMLVq0kJ+fnyIiIlShQgXXuqioKLVq1UqFChWSJB08eFBvvvmmfvjhB/3++++u0QS//PKLatSooQMHDshut6tAgQKuc4eFheXKt2XLFoWHh+f6fIcOHaIQBwAAAIB8Ks+FuHR50rYXX3xR48aNU0pKiu6++27dd999V9zWbreratWqGjlypKpVq6YaNWq43fcsSStXrtTkyZM1ZswYhYeHq0iRIpozZ45++OGHmxFXMTExmjJlimbMmKHY2Fj5+eW+DOnp6Ro6dKhat26da12BAgVUvnx5rV69Wps2bdKmTZs0YcIEzZkzRwsXLlRgYKBSU1O1detWbdy4UW+++aZmzJihpUuXqlixYho4cKAqVqyoF198UWXKlHEN48/KyvL4M6Snp6tFixZ6+umnc60LCgoydkEAAAAAAF5zU54j3rZtW9lsNq1YsUJpaWnq3LmzbDbbVbfv3Lmztm7dqs6dO19x/bZt2xQeHq6ePXuqVq1aCg4OzjWZWV6UKFFC0dHR18xQq1YtHThwQMHBwblePj6XL1vBggUVHR2t559/XgsWLND27du1d+9eSXJ1xkePHq1ly5bp6NGj+vrrr/X777/rwIEDevLJJ9WkSRNVq1ZNZ8+edTt3SEiI9u7dq8zMTNeyHTt2uG1Tu3Zt/fTTT6pYsWKufIULF75p1woAAAAArsvsmdLvpFnT/1SkSBG1a9dOr732mk6cOOG6r/pqunXrps2bN6tr165XXB8cHKx///vf2rBhgw4cOKDXX389VyGaV5MmTdLXX3+tatWqXXH94MGD9fHHH2vGjBn66aeftG/fPq1cuVLTpk2TdPk++I8++kh79+7V4cOHtWzZMhUsWFAVKlTQF198oQULFmjXrl06evSo0tLS5HA4FBISouLFi6tEiRL64IMP9PPPP2vz5s25noceExMjp9Opf/zjH9q3b582bNigd999V5JcX3D06NFDZ8+e1ciRI/Xjjz/q0KFD2rBhg5599tkrDvUHAAAAAOQPN6UQly4PTz979qwiIyOv+1xwPz8/lSxZ8opDwiWpe/fuat26tUaMGKFu3brpzJkz6tGjx82KKulyN/uuu+666vqoqCglJiZq48aN6tKli7p166Z58+apYsWKkqRixYrpo48+0sMPP6zY2Fht3rxZiYmJuuuuu1S0aFF9+umnevTRR9WuXTstWbJEU6dO1T333CMfHx9NmzZNO3fuVIcOHZSQkKDRo0e7nTswMFBvv/22du3apY4dO2ratGkaPHiwJCkgIEDS5Weyv//++3I4HOrXr59iYmL08ssvq2jRoq6OPQAAAAAg/7E5//rcMeRby5Yt09ixY/Xtt9+qYMGCN+24d5cMu/5G+ci1bnnIj/67J83sCB6rYb/2SJb8JstprZEf/jZfsyMY4u/jf/2N8omLOZfMjmBIQd8C198oH8m22N813DpOi82I7OdzU6ZC8ppsR7bZETyWaaGsknT8whmzIxiSnXnU7Ag3JOPjV8yO4FKo4+jrb2Qya/0LdQdJS0tTpUqVVLZsWe3Zs0evvvqqHnzwwZtahAMAAAAAvI9CPJ86ceKE3nzzTZ04cUJBQUF68MEHNWLECLNjAQAAAEBuFpkkLb+gEM+nnnjiCT3xxBNmxwAAAAAA3GTM6gUAAAAAgBfREQcAAAAA5I3FJnQ0Gx1xAAAAAAC8iEIcAAAAAAAvYmg6AAAAACBvmDXdEDriAAAAAAB4ER1xAAAAAEDe0BE3hI44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJA3TqfZCSyFjjgAAAAAAF5EIQ4AAAAAgBcxNP0O5+djrT8C2Y5ssyMYUsMeZ3YEj+3dk2p2BEPsNTubHcGQPbuTzY5giJWubwHfALMjGJLtzDE7wm0twEI/1zIt9jMty2J/dm1Oa/WbrHZ9raR/haZmR7gzMGu6Idb6FwoAAAAAgJts8eLFio6OVlhYmLp27aoff/zxmtvPmzdPbdq0Ud26ddWsWTO9/PLLunTpksfnoxAHAAAAANyxVq1apYSEBA0ePFipqamqWbOm+vXrp1OnTl1x++XLl2vq1KkaMmSIVq1apZdeekmrVq3Sa6+95vE5KcQBAAAAAHnjcOSfl0Fz585Vt27d1LlzZ1WvXl0TJkxQwYIFlZx85VsLt2/frvr16ysmJkaVKlVSZGSkOnTocN0u+l9RiAMAAAAAbhuZmZk6f/682yszM/Oq2+7cuVMRERGuZT4+PoqIiND27duvuE94eLh27tzpKrwPHz6s9evXq1mzZh5ntM6MJgAAAACA/MmZfyZrS0pK0owZM9yWDRkyREOHDs217e+//66cnByVKlXKbXmpUqW0f//+Kx4/JiZGv//+u3r06CGn06ns7Gx1795dAwcO9DgjhTgAAAAA4LYxYMAA9enTx21ZQMDNe8rKli1blJSUpBdeeEF169bVoUOH9NJLL+mtt97S4MGDPToGhTgAAAAA4LYREBDgceF91113ydfXN9fEbKdOnVLp0qWvuM8bb7yh2NhYde3aVZJkt9uVnp6ucePG6cknn5SPz/XvAOcecQAAAABA3pg9QdsNTtYWEBCg2rVra/PmzX/5KA5t3rxZ4eHhV9zn4sWLuYptX19fSZLT6fTovHTEAQAAAAB3rD59+mjMmDGqU6eO6tatq/nz5ysjI0OdOnWSJI0ePVply5bVqFGjJEktWrTQ3LlzVatWLdfQ9DfeeEMtWrRwFeTXQyEOAAAAALhjtWvXTqdPn9abb76pEydOKDQ0VLNnz3YNTf/ll1/cOuBPPvmkbDabXn/9dR0/flwlS5ZUixYtNGLECI/PSSEOAAAAAMgbD4dk51e9evVSr169rrhu4cKFbu/9/Pw0ZMgQDRky5IbPxz3iAAAAAAB4ER1xAAAAAEDeGJwk7U5HRzwf6d27t1566SWzYwAAAAAAbqHbuhCPj4+X3W6X3W5X7dq1FRERoT59+mjp0qVyeOEbmz/PP27cuFzrJkyYILvdrvj4eNey6dOn66mnnrrluQAAAAAA5rmtC3FJioqK0saNG/X5559r1qxZaty4sV566SUNGDBA2dnZt/z85cuX16pVq3Tx4kXXskuXLmnFihWqUKGC27YlSpRQYGDgLc8EAAAAADeV2c8Ov8HniJvlti/EAwICFBQUpLJly6p27doaOHCgZs6cqS+//FKpqamu7ebOnauYmBjVq1dPzZo10/jx43XhwgVJUnp6uurXr6/Vq1e7HXvt2rWqV6+ezp8/f9Xz16pVS+XLl9e//vUv17J//etfKl++vEJDQ922/d+h6dHR0UpMTNSzzz6r8PBwNW/eXB988IFrfWZmpiZOnKjIyEiFhYWpRYsWSkpKurELBQAAAADwitu+EL+SJk2aqGbNmm7Fsc1m03PPPacVK1Zo0qRJ+vrrrzVlyhRJUuHChdW+fXulpKS4HSc5OVlt2rS5bhe7c+fObvsmJye7Hg5/PXPnzlWdOnWUlpamHj16aPz48dq/f7+ky9Pof/7553r99de1evVqTZkyRRUrVvTouAAAAAAAc9yRhbgkVa1aVUePHnW9f+yxx3T//ferUqVKatKkiYYPH65PPvnEtb5r167auHGjfvvtN0nSqVOn9OWXX6pz587XPVdsbKy+++47HT16VEePHtW2bdsUGxvrUc4HHnhAPXv2VHBwsJ544gnddddd2rJli6TLD5YPDg5WgwYNVLFiRTVs2FAdOnQwchkAAAAAIO+cjvzzsoA79vFlTqdTNpvN9X7Tpk1KSkrS/v37df78eeXk5OjSpUvKyMhQoUKFVLduXVWvXl1paWnq37+/li1bpgoVKqhRo0bXPVfJkiXVvHlzpaamyul0qnnz5ipZsqRHOe12u+u/bTabSpcurVOnTkmS4uLi1LdvXz344IOKiopS8+bNFRkZafBKAAAAAAC86Y7tiO/bt0+VKlWSJB05ckQDBgyQ3W7X9OnTlZKS4prpPCsry7VP165dXUPMU1JS1KlTJ7di/lr+HJ6emprqURf9T35+7t+V2Gw2OZ1OSVLt2rX12Wef6amnntLFixc1fPhwDRs2zONjAwAAAAC8747siG/evFl79+7VY489JknauXOnnE6n4uPj5eNz+buJvw5L/1NsbKymTJmiBQsW6L///a/i4uI8PmdUVJSysrJks9luatc6MDBQ7dq1U7t27dSmTRs9/vjjOnPmjEqUKHHTzgEAAAAA1+J0OM2OYCm3fSGemZmpEydOyOFw6OTJk9qwYYOSkpLUokULPfTQQ5Kk4OBgZWVlaeHChYqOjtZ3332nJUuW5DpW8eLF1apVK73yyitq2rSpypUr53EOX19fV3Hv6+t7Uz7b3LlzFRQUpNDQUPn4+Gj16tUKCgpSsWLFbsrxAQAAAAA3321fiG/YsEGRkZHy8/NTsWLFVLNmTT3//POKi4tzdb9r1qypZ599VrNmzdJrr72mhg0bauTIkRozZkyu43Xp0kUrVqwwNLz8Tzf7GeFFihTR7Nmz9fPPP8vHx0dhYWF65513XJ8LAAAAALzCIs/vzi9szj9vOIZH0tLSlJCQoA0bNiggIMDsOHlWtXS42REMyXZkmx3BEF+bdb4U2bsn1ewIhthrGv8yzEx7diebHcEQK11fK/09k6Qci8zmalUBPtbpMWRa7GdapiPr+hvlIwE+/mZHMMRK19dq5UPH4rXNjmDIzIMfmh3hhqQnPmV2BJfCA98wO8J1WeenlckyMjJ04sQJzZo1S927d78tinAAAAAAgPdZq41gotmzZ6tt27YqXbq0+vfvb3YcAAAAAMg/zH52OM8Rvz0NHTpUQ4cONTsGAAAAAMDi6IgDAAAAAOBFdMQBAAAAAHnDc8QNoSMOAAAAAIAX0REHAAAAAOQNzxE3hI44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJA3DE03hI44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJA3Tp4jbgQdcQAAAAAAvIiOOAAAAAAgb5iszRAK8TtcoF9BsyMYcjrzD7MjGOJw5pgdwWP2mp3NjmDInt3JZkcwxGrXNyP7ktkRPFbIr4DZEQyx0rWVpOIBRcyOYMjZzAtmR/CY1a5tgI+1fm3MdGSbHcGQQL9CZkfwmJX+nknS2gv7zY4A5MLQdAAAAAAAvMhaX20CAAAAAPIfB5O1GUFHHAAAAAAAL6IQBwAAAADAixiaDgAAAADIGyezphtBRxwAAAAAAC+iEAcAAAAAwIsYmg4AAAAAyBtmTTeEjjgAAAAAAF5ERxwAAAAAkCdOB5O1GUFHHAAAAAAAL6IQBwAAAADAixiaDgAAAADIGyZrM4SOeD6XkpKihg0but5Pnz5dHTt2NDERAAAAACAvbtuOeHx8vFJTUyVJfn5+Kl68uOx2u9q3b69OnTrJx+fWfwdx4sQJJSYmat26dTp+/LhKlSql0NBQPfroo2rSpMktPz8AAAAAIP+5bQtxSYqKilJCQoIcDodOnjypDRs26KWXXtKaNWv09ttvy8/v1n38I0eO6OGHH1axYsU0evRo1ahRQ9nZ2dq4caMmTJig1atX37JzAwAAAIBXOZk13Yjbemh6QECAgoKCVLZsWdWuXVsDBw7UzJkz9eWXX7q65ZI0d+5cxcTEqF69emrWrJnGjx+vCxcuSJLS09NVv379XIXz2rVrVa9ePZ0/f/6K554wYYJsNps++ugjtWnTRiEhIbrnnnvUp08fffjhhx6d2xNbtmxRly5dVK9ePTVs2FDdu3fX0aNHjVwmAAAAAIAX3daF+JU0adJENWvW1L/+9S/XMpvNpueee04rVqzQpEmT9PXXX2vKlCmSpMKFC6t9+/ZKSUlxO05ycrLatGmjwMDAXOc4c+aMNmzYoJ49e6pw4cK51hcrVsyjc19Pdna2Bg8erEaNGmnZsmX64IMP9Pe//102m82j/QEAAADgpnA488/LAu64QlySqlat6tY1fuyxx3T//ferUqVKatKkiYYPH65PPvnEtb5r167auHGjfvvtN0nSqVOn9OWXX6pz585XPP6hQ4fkdDpVtWrV62a53rmv5fz58/rjjz/UokUL3X333apWrZri4uJUoUIFj/YHAAAAAHjfbX2P+NU4nU63rvGmTZuUlJSk/fv36/z588rJydGlS5eUkZGhQoUKqW7duqpevbrS0tLUv39/LVu2TBUqVFCjRo2uenxPXe/c11KiRAl16tRJ/fr1U9OmTdWkSRO1bdtWZcqU8fj8AAAAAADvuiM74vv27VOlSpUkXZ5UbcCAAbLb7Zo+fbpSUlI0btw4SVJWVpZrn65du7qGp6ekpKhTp05XHQIeHBwsm82m/fv3XzOHp+e+loSEBH3wwQcKDw/XJ598ojZt2uj777/3aF8AAAAAuCkcjvzzsoA7rhDfvHmz9u7dq9atW0uSdu7cKafTqfj4eNWrV08hISGuIeh/FRsbq2PHjmnBggX673//q7i4uKueo0SJEoqMjNTixYuVnp6ea/25c+cMnft6atWqpQEDBmjJkiWqUaOGVqxYYfgYAAAAAADvuK0L8czMTJ04cULHjx/Xzp07lZiYqEGDBqlFixZ66KGHJF3uXmdlZWnhwoU6fPiw0tLStGTJklzHKl68uFq1aqVXXnlFTZs2Vbly5a557hdeeEEOh0Ndu3bVmjVrdPDgQe3bt08LFizQ3//+d0PnvprDhw9r6tSp2r59u44ePaqNGzfq4MGDHt2bDgAAAAAwx219j/iGDRsUGRkpPz8/FStWTDVr1tTzzz+vuLg4+fhc/g6iZs2aevbZZzVr1iy99tpratiwoUaOHKkxY8bkOl6XLl20YsWKq07S9leVK1dWSkqKEhMTNXnyZP32228qWbKkateurfHjxxs+95UUKlRI+/fvV2pqqs6cOaMyZcqoZ8+e6t69u+cXCQAAAADyyiKzlecXNqeRmcXucGlpaUpISNCGDRsUEBBgdpybom65JmZHMOR05h9mR7htBfj4mx3BkD27k82OYIi95vW/wMtPMrIvmR3BY4X8CpgdwRArXVtJKh5QxOwIhpzNvGB2BI9Z7dpaTaYj2+wIhgT4WKc/ZqW/Z5JU1D/344Tzs70nvjU7wg25MC7/NAOLTPR8lLFZrPM33kQZGRk6ceKEZs2ape7du982RTgAAAAAwPtu63vEb5bZs2erbdu2Kl26tPr37292HAAAAADIX5yO/POyADriHhg6dKiGDh1qdgwAAAAAwG2AQhwAAAAAkDdM1mYIQ9MBAAAAAPAiCnEAAAAAALyIoekAAAAAgDxxOqwxSVp+QUccAAAAAAAvohAHAAAAAMCLGJoOAAAAAMgbZk03hI44AAAAAABeREccAAAAAJA3dMQNoSMOAAAAAIAXUYgDAAAAAOBFDE0HAAAAAOSNk+eIG0Ehfoc7n33R7AiG+MhmdgRDfG3WGXSyZ3ey2REMsdfsbHYEQ7i+t46V/p5JUiG/AmZHMCTTkW12BEOKBxQxO4LHrHZtMx1ZZkcwJMDH3+wIhpzPzjA7gsd8bNb6faxlkapmRwBysdZvLwAAAAAAWBwdcQAAAABA3jBruiF0xAEAAAAA8CI64gAAAACAPHHSETeEjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDcMTTeEjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDcOh9kJLIWOOAAAAAAAXkQhDgAAAACAFzE0HQAAAACQN8yabggd8Tyw2+1au3at2TEAAAAAABaSLzvi8fHxSk1NlST5+fmpePHistvtat++vTp16iQfn1v//cGJEyeUmJiodevW6fjx4ypVqpRCQ0P16KOPqkmTJrf8/AAAAABgGXTEDcmXhbgkRUVFKSEhQQ6HQydPntSGDRv00ksvac2aNXr77bfl53froh85ckQPP/ywihUrptGjR6tGjRrKzs7Wxo0bNWHCBK1evfqWnTszM1MBAQG37PgAAAAAAHPl26HpAQEBCgoKUtmyZVW7dm0NHDhQM2fO1JdffunqlkvS3LlzFRMTo3r16qlZs2YaP368Lly4IElKT09X/fr1cxXOa9euVb169XT+/PkrnnvChAmy2Wz66KOP1KZNG4WEhOiee+5Rnz599OGHH7pt+/vvv2vw4MG699571bp1a3322WeudTk5ORo7dqyio6NVt25dtWnTRvPnz3fbPz4+XoMGDdLbb7+tyMhIPfjgg5Kkbdu2qWPHjgoLC1OnTp20du1a2e127dq1y7Xv3r179fjjjys8PFwRERF65plndPr06Ru42gAAAAAAb8m3hfiVNGnSRDVr1tS//vUv1zKbzabnnntOK1as0KRJk/T1119rypQpkqTChQurffv2SklJcTtOcnKy2rRpo8DAwFznOHPmjDZs2KCePXuqcOHCudYXK1bM7f2MGTPUtm1bLVu2TA888ICefvppnTlzRpLkcDhUrlw5vfHGG1q5cqUGDx6sadOmadWqVW7H2Lx5sw4cOKC5c+cqKSlJ58+f15NPPqkaNWooNTVVTz31lOsz/encuXN69NFHVatWLS1dulSzZ8/WqVOnNHz4cI+vJwAAAADcDE6nM9+8rMBShbgkVa1aVUePHnW9f+yxx3T//ferUqVKatKkiYYPH65PPvnEtb5r167auHGjfvvtN0nSqVOn9OWXX6pz585XPP6hQ4fkdDpVtWpVj/LExcWpQ4cOCg4O1siRI5Wenq4ff/xRkuTv769hw4YpLCxMlStXVmxsrDp16pSrQ1+4cGG9+OKLuueee3TPPfdo+fLlkqQXX3xR1atXV7NmzfT444+77bNo0SLVqlVLI0eOVLVq1VSrVi29/PLL2rJliw4cOOBRdgAAAACA9+Xbe8Svxul0ymazud5v2rRJSUlJ2r9/v86fP6+cnBxdunRJGRkZKlSokOrWravq1asrLS1N/fv317Jly1ShQgU1atToqsc3wm63u/67cOHCCgwMdBsevnjxYiUnJ+vYsWO6dOmSsrKyVLNmTbdj1KhRw+2+8AMHDshut6tAgQKuZWFhYW777N69W1u2bFF4eHiuTIcOHVJISIihzwEAAAAA8A7LFeL79u1TpUqVJF2eVG3AgAF6+OGHNWLECBUvXlzfffednnvuOWVlZalQoUKSLnfFFy9erP79+yslJUWdOnVyK+b/Kjg4WDabTfv37/coj7+/v9t7m80mh8MhSVq5cqUmT56sMWPGKDw8XEWKFNGcOXP0ww8/uO3zZ04j0tPT1aJFCz399NO51gUFBRk+HgAAAADcMGZNN8RSQ9M3b96svXv3qnXr1pKknTt3yul0Kj4+XvXq1VNISIhrCPpfxcbG6tixY1qwYIH++9//Ki4u7qrnKFGihCIjI7V48WKlp6fnWn/u3DmP827btk3h4eHq2bOnatWqpeDgYB06dOi6+4WEhGjv3r3KzMx0LduxY4fbNrVr19ZPP/2kihUrKjg42O11pXvbAQAAAAD5Q74txDMzM3XixAkdP35cO3fuVGJiogYNGqQWLVrooYceknS5e52VlaWFCxfq8OHDSktL05IlS3Idq3jx4mrVqpVeeeUVNW3aVOXKlbvmuV944QU5HA517dpVa9as0cGDB7Vv3z4tWLBAf//73z3+DMHBwfr3v/+tDRs26MCBA3r99ddzFdRXEhMTI6fTqX/84x/at2+fNmzYoHfffVeSXJ38Hj166OzZsxo5cqR+/PFHHTp0SBs2bNCzzz6rnJwcjzMCAAAAQJ45nPnnZQH5thDfsGGDIiMjFR0drccff1xbtmzR888/r5kzZ8rX11eSVLNmTT377LOaNWuWOnTooOXLl2vkyJFXPF6XLl2UlZV11Una/qpy5cpKSUlR48aNNXnyZHXo0EF9+vTR5s2bNX78eI8/Q/fu3dW6dWuNGDFC3bp105kzZ9SjR4/r7hcYGKi3335bu3btUseOHTVt2jQNHjxYklz3kpctW1bvv/++HA6H+vXrp5iYGL388ssqWrSofHzy7f9WAAAAALjj2ZxWmd89j9LS0pSQkKANGza4TYxmFcuWLdPYsWP17bffqmDBgjftuFVL557sLT/LdmSbHcEQX5t1vhTZuyfV7AiG2Gte/0u1/GTP7mSzIxhipetrpb9nkpTjdJgd4bYW4GOd6W8yLfYzLdORZXYEQwJ8/K+/UT5ipetrtfKhY/HaZkcwZObBD82OcEPO9WtldgSXYnM+NTvCdVnnp9UNysjI0IkTJzRr1ix1797dMkV4WlqaKlWqpLJly2rPnj169dVX9eCDD97UIhwAAAAAbganRYaE5xe3fSE+e/ZsJSYmqmHDhurfv7/ZcTx24sQJvfnmmzpx4oSCgoL04IMPasSIEWbHAgAAAADk0W1fiA8dOlRDhw41O4ZhTzzxhJ544gmzYwAAAAAAbrLbvhAHAAAAANxiDE03xFoz3AAAAAAAYHEU4gAAAAAAeBFD0wEAAAAAecPTOQ2hIw4AAAAAgBfREQcAAAAA5AnPETeGjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDcMTTeEjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkDc8R9wQCvE7XLYj2+wIhvjarDWIw9/H3+wIHrPX7Gx2BEMysi+ZHcEQq13fPbuTzY7gsZAasWZHMOTA3mVmRzDEatfXSjIdWWZHuK05nVQFt4rNZjM7giH/yT5tdgQgFwpxAAAAAECe8BxxY6zVXgQAAAAAwOIoxAEAAAAA8CKGpgMAAAAA8oZpGQyhIw4AAAAAuKMtXrxY0dHRCgsLU9euXfXjjz9ec/tz585pwoQJioyMVJ06ddSmTRutX7/e4/PREQcAAAAA3LFWrVqlhIQETZgwQffee6/mz5+vfv36afXq1SpVqlSu7TMzM9WnTx+VKlVKb7zxhsqWLatjx46pWLFiHp+TQhwAAAAAkCdWnjV97ty56tatmzp3vvy42QkTJmjdunVKTk5W//79c22fnJyss2fPasmSJfL3v/y44kqVKhk6J0PTAQAAAAC3jczMTJ0/f97tlZmZedVtd+7cqYiICNcyHx8fRUREaPv27Vfc5/PPP1e9evU0ceJERUREqEOHDkpMTFROTo7HGSnEAQAAAAB548g/r6SkJDVo0MDtlZSUdMXYv//+u3JycnINQS9VqpROnjx5xX0OHz6sNWvWKCcnR++8844GDRqkuXPn6u233/b4cjE0HQAAAABw2xgwYID69OnjtiwgIOCmHd/pdKpUqVL65z//KV9fX9WpU0fHjx/XnDlzNGTIEI+OQSEOAAAAALhtBAQEeFx433XXXfL19dWpU6fclp86dUqlS5e+4j5BQUHy8/OTr6+va1nVqlV14sQJZWZmenRuhqYDAAAAAPLE6cg/LyMCAgJUu3Ztbd682bXM4XBo8+bNCg8Pv+I+9evX16FDh+Rw/P+THTx4UEFBQR5/AUAhns9ER0dr3rx5ZscAAAAAgDtCnz599OGHHyo1NVX79u3T+PHjlZGRoU6dOkmSRo8eralTp7q2f/jhh3XmzBm99NJLOnDggNatW6ekpCT17NnT43PeMUPT4+PjlZqammt5ZGSk5syZc8vO27t3b23dulWjRo3KNfV9//79tX79eg0ZMkRDhw6VJC1dulSFChW6ZXkAAAAAAP9fu3btdPr0ab355ps6ceKEQkNDNXv2bNfQ9F9++UU+Pv+/h12+fHnNmTNHCQkJio2NVdmyZfXII4/oiSee8Picd0whLklRUVFKSEhwW3Yzb9q/mvLlyyslJcWtED9+/Lg2b96soKAgt21Llix5y/MAAAAAwE1lcEh4ftOrVy/16tXriusWLlyYa1l4eLg+/PDDGz7fHTU0PSAgQEFBQW6v4sWLS5JGjRql4cOHu22flZWlxo0bKy0tTdLlewWSkpIUHR2tunXrKjY2VqtXr77ueZs3b67ff/9d3333nWtZamqqmjZtmmua/P8dmm632/XRRx9p8ODBuvfee9W6dWt99tlnrvVnz57VqFGjdP/996tu3bpq3bq1kpOTDV4ZAAAAAIC33FGF+LXExMToiy++0IULF1zLNm7cqIsXL6ply5aSLj+PLi0tTRMmTNDKlSv12GOP6ZlnntHWrVuveWx/f3/FxMQoJSXFtSw1NVVdunTxKNuMGTPUtm1bLVu2TA888ICefvppnTlzRpL0xhtvaN++fZo1a5ZWrVql8ePH66677jL46QEAAAAA3nJHFeLr1q1TeHi42ysxMVHS5XvFCxUqpE8//dS1/YoVKxQdHa3AwEBlZmYqKSlJL7/8sqKiolS5cmV16tRJsbGx+uCDD6577i5duuiTTz5Renq6vvnmG/3xxx9q3ry5R7nj4uLUoUMHBQcHa+TIkUpPT9ePP/4oSTp27JhCQ0MVFhamSpUqKSIiQtHR0cYvDgAAAADcILNnSr/RWdPNckfdI964cWONHz/ebdmfQ9P9/PzUtm1bLV++XA899JDS09P12Wef6bXXXpMk/fzzz8rIyFDfvn3d9s/KylJoaOh1z12zZk1VqVJFa9as0ZYtW9SxY0f5+Xl2+e12u+u/CxcurMDAQJ0+fVrS5Rn7hg0bpv/85z9q2rSpWrZsqfr163t0XAAAAACA991RhXihQoUUHBx81fUxMTHq3bu3Tp06pa+++koFChRQVFSUJCk9PV3S5eHpZcuWddvP0wnfOnfurMWLF2vfvn366KOPPM7t7+/v9t5ms7meWdesWTN98cUXWr9+vb766is99thj6tmzp8aMGePx8QEAAAAgTyzSic4v7qih6ddTv359lStXTqtWrdLy5cv14IMPuorgatWqKSAgQMeOHVNwcLDbq3z58h4dv0OHDtq7d6/uueceVa9e/ablLlmypOLi4vTqq69q7NixHg2VBwAAAACY447qiGdmZurEiRNuy3x9fd0eGdahQwctWbJEBw8e1Pz5813LAwMD1bdvXyUkJMjpdKpBgwb6448/tG3bNgUGBiouLu665y9evLg2btzo8ZB0T7zxxhuqXbu27rnnHmVmZmrdunWqVq3aTTs+AAAAAODmuqMK8Q0bNigyMtJtWUhIiNsjyGJjY5WYmKiKFSuqQYMGbtsOHz5cJUuWVFJSko4cOaKiRYuqVq1aGjhwoMcZihUrlrcP8T/8/f312muv6ejRoypYsKAaNGjguq8dAAAAALzBKpOk5Rc2p9PpNDsEzHN3yTCzIxjia7PW3RT+Pv7X3yifyHbmmB3BkIzsS2ZHMKSQXwGzIxiyZ3ey2RE8FlIj1uwIhhzYu8zsCIZY7foGWOjf3UxHltkRbmv+Nl+zIxiSZbGfw1ZSvXA5syMYsu7IWrMj3JATrZqZHcEl6NP1Zke4LmtVNQAAAAAAWNwdNTQdAAAAAHDzMTTdGDriAAAAAAB4ER1xAAAAAECe0BE3ho44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJA3TpvZCSyFjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkCfMmm4MHXEAAAAAALyIQhwAAAAAAC9iaDoAAAAAIE+cDmZNN4KOOAAAAAAAXkRHHAAAAACQJ0zWZgyF+B2uoG8BsyMYkp5z0ewIhuTkWOdfpAK+AWZHMKSQn7X+7PrarDUAKaRGrNkRPHZg7zKzIxhipWsrWe/PrpVY7dr62az1a6PVrq+P09fsCB5zOHPMjmDI4YunzY4A5GKtf6EAAAAAALA4a321CQAAAADId5xOJmszgo44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJAnzJpuDB1xAAAAAAC8iI44AAAAACBPnA4mazOCjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkCdOp9kJrIWOOAAAAAAAXkQhDgAAAACAFzE0HQAAAACQJ8yabgwd8Xxu+vTp6tixo+t9fHy8Bg0aZGIiAAAAAEBe3PYd8fj4eKWmpuZaHhkZqTlz5tzSc//8889KTEzUV199pdOnT6tMmTKqV6+e+vTpo7CwsFt6bgAAAABA/nTbF+KSFBUVpYSEBLdlAQEBt/ScO3bs0GOPPaZ77rlHEydOVNWqVXXhwgV99tlnmjx5shYtWnRLzw8AAAAA3sLQdGPuiEI8ICBAQUFBV1w3atQo5eTk6PXXX3cty8rKUmRkpJ599lk99NBDcjgcmjVrlj744AOdPHlSVapU0aBBg/Tggw9e8ZhOp1PPPvusgoOD9d5778nH5//fARAaGqpHHnnE9X7KlClau3atfv31V5UuXVoxMTEaPHiw/P39Pfpsq1ev1ltvvaWff/5ZhQoVUmhoqGbOnKnChQt7tD8AAAAAwLvuiEL8WmJiYvTUU0/pwoULKlKkiCRp48aNunjxolq2bClJSkpK0rJlyzRhwgRVqVJF33zzjZ555hmVLFlS9913X65j7tq1Sz/99JOmTp3qVoT/qVixYq7/LlKkiBISElSmTBnt3btX//jHP1SkSBE98cQT183+22+/adSoUXrmmWfUsmVLXbhwQd9++62cPMQPAAAAgBdRghhzRxTi69atU3h4uNuyAQMGaODAgYqMjFShQoX06aef6qGHHpIkrVixQtHR0QoMDFRmZqaSkpI0d+5c1zEqV66s7777Th988MEVC/GDBw9KkqpWrXrdbH+deK1SpUo6cOCAVq5c6VEhfuLECWVnZ6tVq1aqWLGiJMlut193PwAAAACAee6IQrxx48YaP36827LixYtLkvz8/NS2bVstX75cDz30kNLT0/XZZ5/ptddek3R5wrWMjAz17dvXbf+srCyFhobmOduqVau0YMECHT58WOnp6crOzlZgYKBH+9asWVNNmjRRTEyMIiMjFRkZqTZt2rg+GwAAAAAg/7kjCvFChQopODj4qutjYmLUu3dvnTp1Sl999ZUKFCigqKgoSVJ6erqky8PTy5Yt67bf1SZ8q1KliiRp//79qlWr1lXPu337dj399NMaOnSoIiMjVbRoUa1cuVJz58716HP5+vpq7ty52rZtm7766istXLhQ06ZN04cffqjKlSt7dAwAAAAAyCsmazOG54hLql+/vsqVK6dVq1Zp+fLlevDBB12TpVWrVk0BAQE6duyYgoOD3V7ly5e/4vFCQ0NVvXp1vfvuu3I4HLnWnzt3TtLlQrxChQp68sknFRYWpipVqujYsWOGsttsNjVo0EDDhg1TWlqa/P39tXbtWoNXAAAAAADgLXdERzwzM1MnTpxwW+br66uSJUu63nfo0EFLlizRwYMHNX/+fNfywMBA9e3bVwkJCXI6nWrQoIH++OMPbdu2TYGBgYqLi8t1PpvNpoSEBD322GPq0aOHnnzySdfjy7744gt99dVXWrRokYKDg/XLL79o5cqVCgsL07p16wwV0T/88IM2b96spk2bqlSpUvrhhx90+vRpj+5NBwAAAACY444oxDds2KDIyEi3ZSEhIVq9erXrfWxsrBITE1WxYkU1aNDAbdvhw4erZMmSSkpK0pEjR1S0aFHVqlVLAwcOvOo569atq+TkZCUmJur555/X77//rjJlyig8PFxjx46VJP3tb3/To48+qokTJyozM1PNmzfXk08+qRkzZnj0uQIDA/XNN99o/vz5On/+vCpUqKD4+Hg1a9bM00sDAAAAAHnmdDI03Qibk2dd3dFqBDU0O4Ih6TkXzY5giI+s8w9SAd8rz3mQX+U4c9/2kZ/52qx1J1BGziWzI3jswN5lZkcwJKRGrNkRDLHan11fm6/ZETyW48wxO4IhfjZr9W+s9mfXSj/XHBb7s+tjoX8XJGnfyW1mR7gh++q0MTuCS7V/rzE7wnVZ619UAAAAAEC+Y6HvkvIFa31VCAAAAACAxVGIAwAAAADgRQxNBwAAAADkiYPJ2gyhIw4AAAAAgBdRiAMAAAAA4EUMTQcAAAAA5AnPETeGjjgAAAAAAF5ERxwAAAAAkCdOBx1xI+iIAwAAAADgRRTiAAAAAAB4EUPTAQAAAAB54nSancBa6IgDAAAAAOBFFOIAAAAAAHgRQ9MBAAAAAHnCrOnGUIjf4S7mXDI7giH+Nl+zIxji7+NvdgSPZTtzzI5gSEa2tf7sFvIrYHYEQw7sXWZ2BI+F1Ig1O4IhVrq2kvWur6+Ffk7kOB1mRzAkx5lpdgRDrPY7Q5bFfg5bSfVCQWZHAHJhaDoAAAAAAF5ERxwAAAAAkCcOJ0PTjaAjDgAAAACAF9ERBwAAAADkiZOOuCF0xAEAAAAA8CIKcQAAAAAAvIih6QAAAACAPHE6zU5gLXTEAQAAAADwIgpxAAAAAAC8iKHpAAAAAIA84TnixtARBwAAAADAi+iIAwAAAADyhOeIG0NHHAAAAAAAL6IQv0FHjhyR3W7Xrl27zI4CAAAAALCQfD00PT4+XqmpqbmWR0ZGas6cObf03D///LMSExP11Vdf6fTp0ypTpozq1aunPn36KCws7JaeGwAAAACshOeIG5OvC3FJioqKUkJCgtuygICAW3rOHTt26LHHHtM999yjiRMnqmrVqrpw4YI+++wzTZ48WYsWLbpl587MzLzlnw8AAAAAYJ58PzQ9ICBAQUFBbq/ixYtLkkaNGqXhw4e7bZ+VlaXGjRsrLS1NkuRwOJSUlKTo6GjVrVtXsbGxWr169VXP53Q69eyzzyo4OFjvvfeemjdvrrvvvluhoaEaMmSIZs6c6bb94cOH1bt3b917772KjY3V9u3bXet+//13jRw5UlFRUbr33nsVExOjFStWuO3fu3dvTZw4US+99JIaN26sfv36SZI+++wztW7dWmFhYerdu7dSU1Nlt9t17tw5177ffvutevToobp166pZs2Z68cUXlZ6ebvgaAwAAAAC8J98X4tcSExOjL774QhcuXHAt27hxoy5evKiWLVtKkpKSkpSWlqYJEyZo5cqVeuyxx/TMM89o69atVzzmrl279NNPP6lv377y8cl9eYoVK+b2ftq0aerXr5/S0tJUpUoVjRo1StnZ2ZIud7dr166td955RytWrFC3bt00evRo/fjjj27HSE1Nlb+/v95//31NmDBBhw8f1lNPPaW//e1v+vjjj9W9e3dNmzbNbZ9Dhw7piSeeUOvWrbVs2TJNmzZN3333nf75z38av5AAAAAAkAcOpy3fvKwg3xfi69atU3h4uNsrMTFR0uV7xQsVKqRPP/3Utf2KFSsUHR2twMBAZWZmKikpSS+//LKioqJUuXJlderUSbGxsfrggw+ueL6DBw9KkqpWrepRvr59+6p58+YKCQnRsGHDdPToUf3888+SpLJly6pfv34KDQ1V5cqV1bt3b0VFRemTTz5xO0aVKlU0evRoVa1aVVWrVtUHH3ygkJAQjRkzRlWrVlX79u0VFxfntk9SUpJiYmL02GOPqUqVKqpfv76ee+45paWl6dKlSx5lBwAAAAB4X76/R7xx48YaP36827I/h6b7+fmpbdu2Wr58uR566CGlp6frs88+02uvvSbp8oRrGRkZ6tu3r9v+WVlZCg0NvSn57Ha767+DgoIkSadPn1a1atWUk5OjxMRErV69WsePH1dWVpYyMzNVsGBBt2PUrl3b7f2BAwdUp04dt2V169Z1e797927t2bNHy5cvdy1zOp1yOBw6cuSIqlWrdlM+HwAAAADg5sr3hXihQoUUHBx81fUxMTHq3bu3Tp06pa+++koFChRQVFSUJLnul05KSlLZsmXd9rvahGhVqlSRJO3fv1+1atW6bj5/f3/Xf9tsl4dBOBwOSdKcOXO0YMECjR07Vna7XYUKFdLLL7+srKysXJ/RqPT0dHXv3l29e/fOta58+fKGjwcAAAAAN8ppkSHh+UW+L8Svp379+ipXrpxWrVqlL7/8Ug8++KCrOK5WrZoCAgJ07Ngx3XfffR4dLzQ0VNWrV9e7776rdu3a5bpP/Ny5c7nuE7+abdu26W9/+5s6duwo6XKBfvDgwet2q0NCQrR+/Xq3ZTt27HB7X6tWLf33v/+95pcUAAAAAID8J9/fI56ZmakTJ064vU6fPu22TYcOHbRkyRJt2rRJMTExruWBgYHq27evEhISlJqaqkOHDmnnzp1auHDhFZ9PLl3uaickJOjgwYPq0aOH1q9fr8OHD2v37t16++23NWjQII+zBwcHa9OmTdq2bZv27duncePG6eTJk9fd7+9//7sOHDigKVOm6MCBA1q1apUr759d9yeeeELbt2/XxIkTtWvXLh08eFBr167VxIkTPc4HAAAAADeD2RO0WW2ytnzfEd+wYYMiIyPdloWEhLg9giw2NlaJiYmqWLGiGjRo4Lbt8OHDVbJkSSUlJenIkSMqWrSoatWqpYEDB171nHXr1lVycrISExP1/PPP6/fff1eZMmUUHh6usWPHepz9ySef1OHDh9WvXz8VKlRI3bp1U8uWLfXHH39cc7/KlSvrjTfe0OTJk7VgwQLVq1dPAwcO1Pjx411D6mvWrKmFCxfq9ddfV48ePVz7tWvXzuN8AAAAAADvszmdTqfZIXB9b7/9tpYsWZJryHpe3V0y7KYe71bzteX7QRxu/H38r79RPpHtzDE7giEZ2dZ6OkAhvwJmRzBkz+5ksyN4LKRGrNkRDDmwd5nZEQyx2vUNsNC/u5mOrOtvhBvmb/M1O4IhWRb7OWwl1QuXMzuCIeuOrDU7wg3ZUqGT2RFcGh9LMTvCdeX7jvidavHixQoLC9Ndd92l7777TnPmzFHPnj3NjgUAAAAAudDdNYZCPJ/6+eef9fbbb+vs2bOqUKGC+vTpowEDBpgdCwAAAACQRxTi+dTYsWMN3Y8OAAAAALAGCnEAAAAAQJ5YZbby/MJaM18BAAAAAGBxdMQBAAAAAHnipCNuCB1xAAAAAAC8iEIcAAAAAAAvYmg6AAAAACBPHGYHsBg64gAAAAAAeBGFOAAAAAAAXsTQdAAAAABAnjjFrOlG0BEHAAAAAMCL6IgDAAAAAPLE4TQ7gbXQEQcAAAAAwIvoiN/hHLLYV1dOaz0YwebMMTvCbat4QBGzIxiS6cg2O4IhITVizY7gMV+btb5TttK1laQDe5eZHcGQmjW7mB3BY1a7tlXuiTE7giFZstbPYKfTOr+T2WzWuhf4ZNZ5syMAuVCIAwAAAADyxMFkbYZYq40AAAAAAIDFUYgDAAAAAOBFDE0HAAAAAOQJzxE3ho44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJAn1nrIsPnoiAMAAAAA4EV0xAEAAAAAecJkbcbQEQcAAAAAwIsoxAEAAAAAd7TFixcrOjpaYWFh6tq1q3788UeP9lu5cqXsdrsGDRpk6HwU4gAAAACAPHHko5dRq1atUkJCggYPHqzU1FTVrFlT/fr106lTp66535EjRzR58mQ1bNjQ8DkpxAEAAAAAd6y5c+eqW7du6ty5s6pXr64JEyaoYMGCSk5Ovuo+OTk5evrppzV06FBVrlzZ8Dlv+0I8JSXF8DcU8fHxhocW3Cx2u11r16415dwAAAAAYHWZmZk6f/682yszM/Oq2+7cuVMRERGuZT4+PoqIiND27duveo633npLpUqVUteuXW8oo2UL8fj4eNntdr3zzjtuy9euXSu73e56365dO61Zs+amnz86Olrz5s3zaDu73a6VK1fmWte+fXvZ7XalpKS4lm3cuFEPPPDAzYwKAAAAALeU2cPR//pKSkpSgwYN3F5JSUlXzP37778rJydHpUqVclteqlQpnTx58or7fPvtt1q6dKn++c9/GrtIf2Hpx5cVKFBAs2bN0t///ncVL178itsULFhQBQsW9HIyd+XLl1dKSorat2/vWvb999/r5MmTKly4sNu2QUFB3o4HAAAAALeNAQMGqE+fPm7LAgICbsqxz58/r9GjR+uf//ynSpYsecPHsWxHXJIiIiJUunTpq367IV15aPrMmTPVpEkThYeH67nnntOrr76qjh075tp3zpw5ioyMVOPGjTVhwgRlZWVJknr37q2jR48qISFBdrvdrQN/JTExMdq6dat++eUX17Lk5GTFxMTI19fXbdu/Dk0/cuSI7Ha7/vWvf6l379669957FRsb6zZE4ujRoxo4cKAaNWqkevXqqX379lq/fv018wAAAADAzeSULd+8AgICFBgY6Pa6WiF+1113ydfXN9fEbKdOnVLp0qVzbX/48GEdPXpUTz75pGrVqqVatWopLS1Nn3/+uWrVqqVDhw55dL0sXYj7+Pho5MiRWrRokX799VeP9lm2bJkSExP19NNPKyUlReXLl9f777+fa7stW7bo0KFDmj9/viZNmqTU1FSlpqZKkqZPn65y5cpp2LBh2rhxozZu3HjNc5YqVUqRkZGu/TMyMrRq1Sp17tzZo8zTpk1Tv379lJaWpipVqmjUqFHKzs6WJE2cOFGZmZlatGiRli9frqeffjpXlx0AAAAAkFtAQIBq166tzZs3u5Y5HA5t3rxZ4eHhubavWrWqli9frrS0NNcrOjpajRs3VlpamsqVK+fReS1diEtSq1atFBoaqjfffNOj7RctWqQuXbqoc+fOCgkJ0ZAhQ1SjRo1c2xUvXlzjxo1TtWrV1KJFCzVr1sz1P6dEiRLy9fVVkSJFFBQU5NFw8s6dOys1NVVOp1Nr1qzR3XffrdDQUI8y9+3bV82bN1dISIiGDRumo0eP6ueff5YkHTt2TPXr15fdblflypXVokULNWrUyKPjAgAAAMCdrk+fPvrwww+Vmpqqffv2afz48crIyFCnTp0kSaNHj9bUqVMlXb49ukaNGm6vYsWKqUiRIqpRo4bHQ+AtX4hL0tNPP620tDTt27fvutseOHBAdevWdVv2v+8lqXr16m7DxoOCgq77HLlrad68udLT0/XNN98oOTnZ4264JLeh738W/adPn5YkPfLII3r77bfVvXt3vfnmm9q9e/cNZwQAAACAG+Gw5Z+XUe3atdOYMWP05ptvqmPHjtq1a5dmz57tGpr+yy+/6MSJEzf1ell6srY/NWrUSJGRkZo6darrW4u88vNzvzQ2m01OpzNPx4uNjdX06dP1ww8/aMaMGR7v6+/v75ZDujxcQpK6du2qyMhIrVu3Tl999ZXeeecdjRkzRr17977hrAAAAABwJ+nVq5d69ep1xXULFy685r6TJk0yfL7boiMuSaNGjdIXX3xxzWe9SVJISIh27Njhtux/33vC39/fVQx7qkuXLtq6dav+9re/XXWW9xtRvnx5Pfzww5oxY4ZrWAUAAAAAIH+6LTri0uXh2zExMdf9tqJXr176xz/+oTp16ig8PFyrVq3Snj17VLlyZUPnq1ixor755hu1b99e/v7+Hk1dX61aNX399dcqVKiQoXNdy0svvaQHHnhAVapU0blz57RlyxZVq1btph0fAAAAAK7HoRsYE34Hu20KcUkaNmyYVq1adc1tYmNjdfjwYU2ePFmXLl1S27ZtFRcXZ7grPmzYMI0bN04tW7ZUZmam9uzZ49F+d911l6HzXI/D4dDEiRP166+/KjAwUFFRUXr22Wdv6jkAAAAAADePzZmXG59vE3369FHp0qU1ZcoUs6N4XaWSdcyOYIiPxb5p8/O5rb7rylcCLHZtMx3ZZkcwJNORZXYEj/narHWXVY7T2G1NZjuwd5nZEQypWbOL2RE8tnv3UrMjGFLlnhizIxjy57w6VmGlX8mtdm1L+AeaHcGQfx//2uwIN+Tjcj3MjuDS8df3zI5wXdb6TfYmyMjI0JIlSxQZGSkfHx+tXLlSmzZt0ty5c82OBgAAAACWZJ2vkvKHO64Qt9lsWr9+vRITE3Xp0iWFhIRo+vTpioiIMDsaAAAAAOAOcMcV4gULFtS8efPMjgEAAAAAtw1r3XhlPmvdWAcAAAAAgMVRiAMAAAAA4EV33NB0AAAAAMDN5bDYbPpmoyMOAAAAAIAXUYgDAAAAAOBFDE0HAAAAAOQJzxE3ho44AAAAAABeREccAAAAAJAnPEfcGDriAAAAAAB4EYU4AAAAAABexNB0AAAAAECeOHiMuCF0xAEAAAAA8CI64nc4p9NaDxoo4FfA7AiG5DitM21FgI+1/jk4m3nB7AiGFA8oYnYE5BO+Nl+zIxhSs2YXsyMYsnv3UrMjeMxq19Zq/C32dy3TmW12hNtWes4lsyMAuVjrN28AAAAAQL7jEGPTjWBoOgAAAAAAXkRHHAAAAACQJ9a64dV8dMQBAAAAAPAiCnEAAAAAALyIoekAAAAAgDzhOeLG0BEHAAAAAMCLKMQBAAAAAPAihqYDAAAAAPLEYXYAi6EjDgAAAACAF1GIAwAAAADgRQxNBwAAAADkidPsABZDRxwAAAAAAC+6bQvxlJQUNWzY0NA+8fHxGjRo0C1KdGP+N1Pv3r310ksvmZgIAAAAANw5bPnnZQWWK8Tj4+Nlt9v1zjvvuC1fu3at7Ha76327du20Zs2am37+6OhozZs3z6Nt//Of/2jYsGGKiIhQWFiYWrdureeff14HDhy46bkAAAAAANZguUJckgoUKKBZs2bp7NmzV92mYMGCKlWqlBdTufviiy/UrVs3ZWZm6tVXX9WqVas0ZcoUFS1aVG+88YZpuQAAAAAA5rJkIR4REaHSpUsrKSnpqttcaWj6zJkz1aRJE4WHh+u5557Tq6++qo4dO+bad86cOYqMjFTjxo01YcIEZWVlSbo8LPzo0aNKSEiQ3W5368D/VUZGhp599lk1a9ZMiYmJioiIUOXKlXXvvfdqzJgxmjhxoiQpJydHY8eOVXR0tOrWras2bdpo/vz5hq7F4sWL1bp1a4WFhSkiIkLDhg0ztD8AAAAA5JUjH72swJKzpvv4+GjkyJEaNWqUHnnkEZUrV+66+yxbtkyJiYl64YUXVL9+fa1cuVJz585VpUqV3LbbsmWLgoKCNH/+fB06dEgjRoxQaGiounXrpunTp6tjx47q1q2bunXrdtVzbdy4Ub///rsef/zxK64vVqyYJMnhcKhcuXJ64403VKJECW3fvl3jxo1TUFCQ2rVrd93PtGPHDr300kt65ZVXFB4errNnz+rbb7+97n4AAAAAAPNYshCXpFatWik0NFRvvvmmXn755etuv2jRInXp0kWdO3eWJA0ZMkRfffWV0tPT3bYrXry4xo0bJ19fX1WrVk3NmjXT5s2b1a1bN5UoUUK+vr4qUqSIgoKCrnqugwcPSpKqVq16zUz+/v5uHezKlSvr+++/1+rVqz0qxH/55RcVKlRIzZs3V2BgoCpWrKhatWpddz8AAAAAgHksOTT9T08//bTS0tK0b9++62574MAB1a1b123Z/76XpOrVq8vX19f1PigoSKdOnTKUy+n0/Cl6ixcvVqdOnXT//fcrPDxcH374oY4dO+bRvhEREapQoYJatmypZ555RsuWLVNGRoahrAAAAACQV2YPR7fa0HRLF+KNGjVSZGSkpk6detOO6efnPkjAZrMZKqwlKSQkRJK0f//+a263cuVKTZ48WZ07d9a7776rtLQ0derUyXVP+vUEBgYqNTVVr732moKCgvTmm2+qY8eOOnfunKG8AAAAAADvsXQhLkmjRo3SF198oe3bt19zu5CQEO3YscNt2f++94S/v78cjmt/z9K0aVPdddddmj179hXX/1kob9u2TeHh4erZs6dq1aql4OBgHTp0yFAePz8/RUREaPTo0Vq2bJmOHj2qr7/+2tAxAAAAACAvnLb887ICyxfidrtdMTExWrhw4TW369Wrl5YuXarU1FQdPHhQM2fO1J49e2SzGfs/VbFiRX3zzTc6fvy4Tp8+fcVtChcurBdffFHr16/XwIEDtWnTJh05ckQ7duzQK6+8ohdeeEGSFBwcrH//+9/asGGDDhw4oNdff93QlwNffPGFFixYoF27duno0aNKS0uTw+FwdeQBAAAAAPmPZSdr+6thw4Zp1apV19wmNjZWhw8f1uTJk3Xp0iW1bdtWcXFxhrviw4YN07hx49SyZUtlZmZqz549V9yuZcuWev/99/XOO+9o1KhROn/+vMqXL6/7779fw4cPlyR1795du3bt0ogRI2Sz2dS+fXv16NFDX375pUdZihYtqk8//VQzZszQpUuXFBwcrKlTp+qee+4x9JkAAAAAAN5jcxq9Afo20qdPH5UuXVpTpkwxO4ppKt5V2+wIhhT2K2h2BENynFaZLkIK8LHW93JnMy+YHcGQ4gFFzI5gSKYj2+wIyCdsssgYv/+ze/dSsyN4rGbNLmZHMORiziWzIxhitZ9rVvp31+iIUrMF+PibHcGQ/SevfcttfjWzci+zI7gMOrzI7AjXZa1/ofIgIyNDS5YsUWRkpHx8fLRy5Upt2rRJc+fONTsaAAAAAOAOcscU4jabTevXr1diYqIuXbqkkJAQTZ8+XREREWZHAwAAAADcQe6YQrxgwYKaN2+e2TEAAAAA4LZjnRsy8wfLz5oOAAAAAICVUIgDAAAAAOBFd8zQdAAAAADArXHHPorrBtERBwAAAADAi+iIAwAAAADyxGGtx8ubjo44AAAAAABeRCEOAAAAAIAXMTQdAAAAAJAnPEfcGDriAAAAAAB4EYU4AAAAAABexNB0AAAAAECeMDTdGArxO5zNZq3nDFzKyTQ7giF+Ptb5K5bpyDY7giHFA4qYHcEQq13fTEeW2RE85muz1uCuHKe1flU5sHeZ2REMqVmzi9kRPLZ791KzIxhS5Z4YsyMYkuXMMTsC8onCvgXMjgDkYp0qAQAAAACQLznNDmAx1mojAAAAAABgcRTiAAAAAAB4EUPTAQAAAAB54rDW1FOmoyMOAAAAAIAXUYgDAAAAAOBFDE0HAAAAAOSJtR7OaT464gAAAAAAeBGFOAAAAAAAXsTQdAAAAABAnjjNDmAxdMQBAAAAAPAiOuIAAAAAgDxx0BM3hI44AAAAAABelC8L8ZSUFDVs2NDQPvHx8Ro0aNAtSpTbli1bZLfbde7cOa+dEwAAAABgfV4txOPj42W32/XOO++4LV+7dq3sdrvrfbt27bRmzZqbfv7o6GjNmzfPo23/85//aNiwYYqIiFBYWJhat26t559/XgcOHLjpuQAAAADAyhz56GUFXu+IFyhQQLNmzdLZs2evuk3BggVVqlQpL6Zy98UXX6hbt27KzMzUq6++qlWrVmnKlCkqWrSo3njjjVt67szMzFt6fAAAAACAubxeiEdERKh06dJKSkq66jZXGpo+c+ZMNWnSROHh4Xruuef06quvqmPHjrn2nTNnjiIjI9W4cWNNmDBBWVlZkqTevXvr6NGjSkhIkN1ud+vA/1VGRoaeffZZNWvWTImJiYqIiFDlypV17733asyYMZo4caLb9jt37lSnTp107733qnv37tq/f79r3aFDh/Tkk08qIiJC4eHh6ty5szZt2uS2f3R0tN566y2NHj1a9evX17hx4yRJH374oZo1a6Z7771XgwcP1ty5c3Ndk7Vr1youLk5hYWH629/+phkzZig7O/uq1xUAAAAAYD6vF+I+Pj4aOXKkFi1apF9//dWjfZYtW6bExEQ9/fTTSklJUfny5fX+++/n2m7Lli06dOiQ5s+fr0mTJik1NVWpqamSpOnTp6tcuXIaNmyYNm7cqI0bN17xXBs3btTvv/+uxx9//IrrixUr5vZ+2rRpio+PV3Jysnx9fTV27FjXuvT0dDVr1kzz5s1TamqqoqKiNHDgQB07dsztGO+++65q1qyptLQ0DRo0SN99951eeOEFPfLII0pLS1NERIQSExPd9vn22281ZswYPfLII1q1apUmTpyolJSUXNsBAAAAwK3mzEcvKzBlsrZWrVopNDRUb775pkfbL1q0SF26dFHnzp0VEhKiIUOGqEaNGrm2K168uMaNG6dq1aqpRYsWatasmTZv3ixJKlGihHx9fVWkSBEFBQUpKCjoiuc6ePCgJKlq1aoeZRsxYoTuu+8+Va9eXf3799f27dt16dIlSVLNmjXVvXt31ahRQ1WqVNHw4cN199136/PPP3c7xv3336++ffvq7rvv1t13361FixbpgQceUL9+/RQSEqKePXsqKirKbZ8ZM2aof//+iouLU+XKldW0aVM99dRTWrJkiUe5AQAAAADmMO054k8//bQeffRR9evX77rbHjhwQD169HBbVrduXX399dduy6pXry5fX1/X+6CgIO3du9dQLqfT2Hcofx3i/mdxf+rUKVWoUEEXLlzQjBkztG7dOp04cUI5OTm6ePFiro54nTp13N4fOHBALVu2dFtWt25drVu3zvV+9+7d2rZtm1sHPCcnR5cuXVJGRoYKFSpk6HMAAAAAwI2yyiRp+YVphXijRo0UGRmpqVOnqlOnTjflmH5+7h/HZrMZLqxDQkIkSfv371d4eLihc9psNkmSw3H5j+HkyZO1adMmjRkzRnfffbcKFiyoYcOGue5b/9ONFM3p6ekaOnSoWrdunWtdgQIFDB8PAAAAAOAdpj5HfNSoUfriiy+0ffv2a24XEhKiHTt2uC373/ee8Pf3dxXJV9O0aVPdddddmj179hXXG3lu+Pbt2xUXF6dWrVrJbrerdOnSOnr06HX3CwkJ0b///W+3Zf/7eWvVqqUDBw4oODg418vHJ18+Hh4AAAAAIJMLcbvdrpiYGC1cuPCa2/Xq1UtLly5VamqqDh48qJkzZ2rPnj2uDrSnKlasqG+++UbHjx/X6dOnr7hN4cKF9eKLL2r9+vUaOHCgNm3apCNHjmjHjh165ZVX9MILL3h8vuDgYH366afatWuXdu/erVGjRl33iwDp8uddv3695s6dq4MHD2rJkiX68ssv3T7v4MGD9fHHH2vGjBn66aeftG/fPq1cuVLTpk3zOB8AAAAA3AwOW/55WYHprdNhw4ZdtziNjY1V//79NXnyZMXFxenIkSOKi4szPAR72LBhOnr0qFq2bKkmTZpcdbuWLVvq/fffl7+/v0aNGqW2bdtq1KhROn/+vIYPH+7x+eLj41WsWDF1795dAwcOVFRUlGrXrn3d/Ro0aKAJEyZo7ty56tixozZs2KDHHnvM7fNGRUUpMTFRGzduVJcuXdStWzfNmzdPFStW9DgfAAAAAMD7bE6jN1HnE3369FHp0qU1ZcoUs6N4xfPPP6/9+/frvffeu6nHrVSyzvU3ykd8ZJGvuP6Pn49p0zDc9gIsdm0zHdlmRzAk05F1/Y3yCV+b6d8pG5LjtNZ0Ngf2LjM7giE1a3YxO4LHdu9eanYEQ6rcE2N2BEOMjpw0m5V+JbfatS3hH2h2BEP+ffzr62+UD42r0tPsCC4TDy42O8J1WeI32YyMDC1ZskSRkZHy8fHRypUrtWnTJs2dO9fsaLfMnDlz1LRpUxUqVEhffvml0tLSDA2LBwAAAABvcVjmCd75gyUKcZvNpvXr1ysxMVGXLl1SSEiIpk+froiICLOj3TI//vijZs+erQsXLqhy5cp67rnn1LVrV7NjAQAAAADyyBKFeMGCBTVv3jyzY3jVG2+8YXYEAAAAAPAI/XBjrHVjHQAAAAAAFkchDgAAAACAF1liaDoAAAAAIP+y1jNBzEdHHAAAAAAAL6IQBwAAAADAixiaDgAAAADIE54jbgwdcQAAAAAAvIhCHAAAAAAAL2JoOgAAAAAgTxiYbgwdcQAAAAAAvIiOOAAAAAAgT3iOuDF0xAEAAAAA8CI64ne4Aj4BZkcwJD37otkRDPG1Wee7rixnjtkRDAnwsdY/X5mOLLMj3Lb8bNb6s5DjzDQ7giFV7okxO8Jty2rX9uBPy82OYEi92g+bHcGQ73e+b3YEj4XUiDU7giGBvgXNjgDkYq3fXgAAAAAA+Q7PETfGOu06AAAAAABuAxTiAAAAAAB4EUPTAQAAAAB5wsB0Y+iIAwAAAADgRXTEAQAAAAB5wnPEjaEjDgAAAACAF1GIAwAAAADgRQxNBwAAAADkiZPp2gyhIw4AAAAAgBdRiAMAAAAA4EUMTQcAAAAA5AmzphtDRxwAAAAAAC+iEM+D6dOnq2PHjjfteFu2bJHdbte5c+du2jEBAAAAAPnLHVmIx8fHa9CgQYb2sdvtWrt2raF9jhw5IrvdrtDQUB0/ftxt3W+//aZatWrJbrfryJEjkqTw8HBt3LhRRYsWNXQeAAAAADCTQ85887KCO7IQ97ayZcsqLS3NbVlaWprKli3rtiwgIEBBQUGy2WxeTAcAAAAAd7bFixcrOjpaYWFh6tq1q3788cerbvvhhx+qR48eatSokRo1aqTHHnvsmttfCYW4pN69e+vFF1/UK6+8ovvuu09NmzbV9OnTXeujo6MlSYMHD5bdbne999RDDz2klJQUt2XJycl66KGH3Jb979D0lJQUNWzYUBs2bFDbtm0VHh6ufv366bfffnPbp0uXLqpXr54aNmyo7t276+jRo4byAQAAAEBeOPPRy6hVq1YpISFBgwcPVmpqqmrWrKl+/frp1KlTV9x+y5Ytat++vRYsWKAlS5aofPny6tu3b65R0NdCIf5/UlNTVbhwYX344Yd65pln9NZbb+mrr76SJC1dulSSlJCQoI0bN7reeyo6Olpnz57Vt99+K0n69ttvde7cObVo0eK6+168eFHvvvuuXnnlFS1atEi//PKLJk+eLEnKzs7W4MGD1ahRIy1btkwffPCB/v73v9NRBwAAAAAPzZ07V926dVPnzp1VvXp1TZgwQQULFlRycvIVt586dap69uyp0NBQVatWTS+++KIcDoc2b97s8Tl5fNn/sdvtGjJkiCSpSpUqWrRokTZv3qymTZuqZMmSkqRixYopKCjI8LH9/f0VGxur5ORkNWzYUMnJyYqNjZW/v/91983KytKECRN09913S5J69uypmTNnSpLOnz+vP/74Qy1atHCtr1atmuF8AAAAAHC7yMzMVGZmptuygIAABQQEXHHbnTt3asCAAa5lPj4+ioiI0Pbt2z06X0ZGhrKzs1W8eHGPM9IR/z92u93tfVBQ0FWHItyIzp07a/Xq1Tpx4oRWr16tzp07e7RfoUKFXEW2JJUpU8aVq0SJEurUqZP69eungQMHav78+W7D1gEAAADAG8yeoO2vr6SkJDVo0MDtlZSUdMXcv//+u3JyclSqVCm35aVKldLJkyc9+uyvvvqqypQpo4iICI+vFx3x/+Pn534pbDabnM6bN+Oe3W5X1apVNXLkSFWrVk01atTQrl278pwrISFBvXv31oYNG/TJJ5/o9ddf19y5c1WvXr2blh0AAAAArGLAgAHq06eP27IrdcNvhnfeeUerVq3SggULVKBAAY/3oyPuIX9/f+Xk5OTpGJ07d9bWrVs97oZ7qlatWhowYICWLFmiGjVqaMWKFTf1+AAAAABgFQEBAQoMDHR7Xa0Qv+uuu+Tr65trNPSpU6dUunTpa55nzpw5eueddzRnzhzVrFnTUEYKcQ9VrFhRmzdv1okTJ3T27NkbOka3bt20efNmde3a9aZkOnz4sKZOnart27fr6NGj2rhxow4ePKiqVavelOMDAAAAgCcc+ehlREBAgGrXru020dqfE6+Fh4dfdb9Zs2Zp5syZmj17tsLCwgyelaHpHhszZowmTZqkjz76SGXLltXnn39u+Bh+fn6uid9uhkKFCmn//v1KTU3VmTNnVKZMGfXs2VPdu3e/aecAAAAAgNtZnz59NGbMGNWpU0d169bV/PnzlZGRoU6dOkmSRo8erbJly2rUqFGSLg9Hf/PNNzV16lRVrFhRJ06ckCQVLlxYRYoU8eicNufNvBEallOtdH2zIxiSnn3R7AiGFPS9/sz4+UWWM2+3XnhboF8hsyMYcj47w+wIt60CPrfmnq9b5ZIj8/ob5SP8moA/HfxpudkRDKlX+2GzIxjy/c73zY7gsZAasWZHMKRSwWsPL85vvj62zuwIN+TxKl3MjuAy+6Cxx01L0qJFizRnzhydOHFCoaGhev7553XvvfdKknr37q2KFStq0qRJki4/nvro0aO5jjFkyBANHTrUo/PREQcAAAAA3NF69eqlXr16XXHdwoUL3d7fyOjo/8U94gAAAAAAeBEdcQAAAABAnhidJO1OR0ccAAAAAAAvohAHAAAAAMCLGJoOAAAAAMgTp3jKhhF0xAEAAAAA8CI64gAAAACAPGGyNmPoiAMAAAAA4EUU4gAAAAAAeBFD0wEAAAAAeeJwMlmbEXTEAQAAAADwIgpxAAAAAAC8iKHpAAAAAIA8YWC6MXTEAQAAAADwIjridzhfm7W+i3Fa7Ls2Px/r/BWzOa31ZyHTkW12BEMCfPzNjmCI02mdp4Fa7d8xf5uv2REMyVKO2REMsdL1zXJa69rWq/2w2REM+X7n+2ZHMMRK1zfHYZ2fEZL0n7OHzI4A5GKdKgEAAAAAkC85LNYwM5u12ggAAAAAAFgcHXEAAAAAQJ5Y7RZSs9ERBwAAAADAiyjEAQAAAADwIoamAwAAAADyxFpz6ZuPjjgAAAAAAF5EIQ4AAAAAgBcxNB0AAAAAkCc8R9wYOuIAAAAAAHgRHXEAAAAAQJ7wHHFj6IgDAAAAAOBFFOIAAAAAAHgRhfgNmD59ujp27OiVc0VHR2vevHmu93a7XWvXrvXKuQEAAADAE4589LKCO6oQj4+P16BBgwztk5fCd82aNerdu7caNGig8PBwxcTEaMaMGTpz5swNHQ8AAAAAYH13VCHuTdOmTdOIESNUp04dzZo1S8uXL1d8fLz27Nmjjz/+2Ox4AAAAAACT3NGzpvfu3Vt2u10BAQFaunSp/P391b17dw0dOlTS5WHhkjR48GBJUsWKFfX5559f97g//vijEhMTNXbsWD366KOu5ZUqVVLTpk117tw5SdKhQ4eUkJCgH374QRkZGapatapGjRqliIgIj/JnZmZq0qRJ+te//qWzZ8+qdOnS6t69uwYMGGDoOgAAAABAXjidzJpuxB1diEtSamqq+vTpow8//FDff/+94uPjVb9+fTVt2lRLly5VkyZNlJCQoKioKPn6+np0zGXLlqlw4cLq0aPHFdcXK1ZMkpSenq5mzZppxIgRCggIUFpamgYOHKjVq1erQoUK1z3PwoUL9fnnn+v1119X+fLl9csvv+jXX3/1/MMDAAAAALzuji/E7Xa7hgwZIkmqUqWKFi1apM2bN6tp06YqWbKkpMuFc1BQkMfH/Pnnn1W5cmX5+/tfc7uaNWuqZs2arvfDhw/X2rVr9fnnn6tXr17XPc8vv/yi4OBgNWjQQDabTRUrVvQ4IwAAAADAHBTidrvb+6CgIJ06dSpPx/R0WMaFCxc0Y8YMrVu3TidOnFBOTo4uXryoY8eOebR/XFyc+vbtqwcffFBRUVFq3ry5IiMj8xIdAAAAAAxziKHpRtzxk7X5+bl/F2Gz2fJ8f0OVKlV0+PBhZWVlXXO7yZMn69NPP9XIkSO1ePFipaWlqUaNGtfd70+1a9fWZ599pqeeekoXL17U8OHDNWzYsDxlBwAAAADcWnd8IX49/v7+ysnJMbRPTEyM0tPT9d57711x/Z+TtW3fvl1xcXFq1aqV7Ha7SpcuraNHjxo6V2BgoNq1a6cXX3xR06ZN05o1a3g8GgAAAACvMvvZ4VZ7jvgdPzT9eipWrKjNmzerfv36CggIUPHixa+7z7333qvHH39ckydP1vHjx9WqVSuVKVNGhw4d0vvvv68GDRro0UcfVXBwsD799FNFR0fLZrPp9ddfl8Ph+R+duXPnKigoSKGhofLx8dHq1asVFBTkmgwOAAAAAJD/UIhfx5gxYzRp0iR99NFHKlu2rEePL5OkZ555RrVr19Z7772nJUuWyOl0qnLlymrTpo3i4uIkSfHx8Ro7dqy6d++uu+66S0888YQuXLjgcbYiRYpo9uzZ+vnnn+Xj46OwsDC988478vFhoAMAAAAA5Fc2Jw98u6PVCGpodgRDzmV5/kVFflDUv7DZETyW47TKQB54g9NCfx78fa79hIr8Jsvh2Twg+UWW09jtWWbzt3n2qNH8wGrXtrh/EbMjGPL9zvfNjmBIvdoPmx3BY6cv/WF2BEMuZF00O4Ih5y7sNzvCDelwd3uzI7isOLTS7AjXResUAAAAAAAvohAHAAAAAMCLuEccAAAAAJAnPEfcGDriAAAAAAB4ER1xAAAAAECeMAe4MXTEAQAAAADwIgpxAAAAAAC8iKHpAAAAAIA8cZgdwGLoiAMAAAAA4EUU4gAAAAAAeBFD0wEAAAAAeeLkOeKG0BEHAAAAAMCLKMQBAAAAAPAihqYDAAAAAPLEwdB0Q+iIAwAAAADgRXTE73A5Tms98c8mm9kRDMl2ZJsdwWNZzhyzIxgS6FfI7AiGnM/OMDvCbcvH6Wt2BEOs9nfN6bRWhyPTaZ1/d63m+53vmx3BkHq1HzY7giFWur4hNWLNjmBIreJ3mx3hjmC1nxdmoyMOAAAAAIAXUYgDAAAAAOBFDE0HAAAAAOQJk7UZQ0ccAAAAAAAvohAHAAAAAMCLGJoOAAAAAMgTJ0PTDaEjDgAAAACAF9ERBwAAAADkiYPniBtCRxwAAAAAAC+iEAcAAAAAwIsYmg4AAAAAyBMGphtDRxwAAAAAAC+iEAcAAAAAwIvuyEJ8+vTp6tixY745DgAAAABYmUPOfPOyAksV4vHx8Ro0aJChfex2u9auXXtD51uzZo169+6tBg0aKDw8XDExMZoxY4bOnDlzQ8cDAAAAAMBShbg3TZs2TSNGjFCdOnU0a9YsLV++XPHx8dqzZ48+/vjjW3rurKysW3p8AAAAALiZzO6CW60jbulZ03v37i273a6AgAAtXbpU/v7+6t69u4YOHSpJio6OliQNHjxYklSxYkV9/vnn1z3ujz/+qMTERI0dO1aPPvqoa3mlSpXUtGlTnTt3zm37tLQ0vfnmmzp79qweeOAB/fOf/1RgYKAk6csvv9Tbb7+tn376Sb6+vqpXr56ee+453X333ZKkI0eO6G9/+5umTZum9957Tz/88IMmTJig2NhYTZo0SWlpafL19VWXLl108uRJ/fHHH5o5c6YkyeFwaNasWfrggw908uRJValSRYMGDdKDDz6YxysLAAAAALhVLN8RT01NVeHChfXhhx/qmWee0VtvvaWvvvpKkrR06VJJUkJCgjZu3Oh6fz3Lli1T4cKF1aNHjyuuL1asmOu/Dx06pM8++0yJiYlKSkrSN998o1mzZrnWZ2RkqM//a+++43Le//+BP65Skp1ZSWZl75WI7FEkDo7xsQ+y17EOZSWEzIwvjj1SGdm7jhxxQmZHISrZDUW5ruv3R7+u43JVSrre7zeP+7l1u9X7fXX1cJ33NV7r+Ro8GAcPHsS2bdsgk8ng7OwMhUKhdp/Lli3DwIEDcezYMdjY2KhG4d3c3LB7924kJiZqTLHfsGED/Pz84OrqCn9/fwwaNAhTp07F1atXs/XvJCIiIiIiIu2T9Ig4kLYGfMyYMQCAChUqYOfOnQgKCkLz5s1hZGQEIK3hXKpUqWzf55MnT2BmZgY9Pb2v3lapVMLNzU01Au7g4ICgoCBMnDgRANChQwe12y9atAjNmjXDw4cPYWFhoTr+v//9D+3bt1f9vHPnTowYMQLt2rUDAMyZMweXLl1SnU9JScGGDRuwdetW1KtXDwBgZmaG69evY9++fWjcuHG2/71ERERERES5oVRKY0q4WPwQDfHPlSpVCq9fv87VfebkIjI1NVU1wgGgdOnSan//8ePHWLVqFW7evIm3b9+q7jsmJkatIV6zZk3V9wkJCXj16hVq166tOqarq4saNWqoRtKfPHmC5ORkDBkyRC1PamoqqlWrlu38REREREREpF2Sb4jny6f+T5DJZLnujalQoQKuX7+O1NTUr46Kf/n3AfWG/MiRI2FqaooFCxagdOnSUCgU6Nq1q0ZBNkNDwxxlTEpKApA2Pb1MmTJq5/T19XN0X0RERERERKQ9kl8j/jV6enqQy+U5+h17e3skJSVh9+7dGZ7/slhbZt6+fYtHjx5h1KhRaNasGSpXroy4uLiv/l7hwoVRsmRJhIaGqo7J5XLcvXtX9XPlypWhr6+P6OhomJubq30ZGxtnKx8REREREdH3IHSldFZNFxlTU1MEBQWhfv360NfXR9GiRb/6O3Xq1MGwYcPg7u6O2NhYtGvXDqVLl0ZkZCT27NmDBg0aqFVTz0zRokVRrFgx7Nu3D6VKlUJ0dDQ8PDyylbt///7YsGEDypcvj0qVKmHnzp2Ii4uDTCYDABQqVAhDhgyBm5sblEolGjRogISEBPzzzz8oVKgQHB0ds/V3iIiIiIiISLt++Ib477//jsWLF+PAgQMoU6ZMtrYvA4CpU6eiRo0a2L17N/bu3QulUgkzMzN06NAh241cHR0drFixAgsWLEDXrl1RsWJFzJ49GwMGDPjq7w4fPhyvXr3C77//Dl1dXfzyyy+wsbGBrq6u6jYTJkyAkZERNmzYgGfPnqFw4cKoXr06Ro4cma18REREREREpH0yJcvbSYJCoUCnTp3QqVMnTJgw4bvdb+WS9b/bfWlD0qcPQkfIEQPdr1feF4tUZc6WcAitUL4CQkfIkcRPyUJH+GHl15FWXYyPihShI+QIPyZQusf/HhE6Qo7UrdFX6Ag5cuPOHqEjZFtFCwehI+RIOYOSQkfIkSvRF4SO8E0ambQUOoJKcPSlr99IYD/8iLhURUVF4a+//kKjRo2QkpKCXbt2ISoqCvb29kJHIyIiIiIiolxgQ1ykdHR04OPjA3d3dyiVSlhYWGDr1q2oXLmy0NGIiIiIiIjUcAZVzrAhLlLGxsbYu3ev0DGIiIiIiIjoO/vhty8jIiIiIiIiEhOOiBMREREREVGuSGX/brHgiDgRERERERGRFrEhTkRERERERKRFnJpOREREREREucKq6TnDEXEiIiIiIiIiLeKIOBEREREREeUKi7XlDEfEiYiIiIiIiLSIDXEiIiIiIiIiLeLUdCIiIiIiIsoVJaem5whHxImIiIiIiIi0iCPiP7lPyk9CR8iRYvqFhI6QI/Gp74WO8MOKS5HWY6sjkwkdIUdkEsqrUMqFjvBDk9K1QHmrooWD0BFyRK5QCB0hR6T0+D4KOyx0hByZ2HCG0BGINLAhTkRERERERLmi4D7iOcKp6URERERERERaxIY4ERERERERkRZxajoRERERERHlCqum5wxHxImIiIiIiIi0iCPiRERERERElCss1pYzHBEnIiIiIiIi0iI2xImIiIiIiIi0iFPTiYiIiIiIKFdYrC1nOCJOREREREREpEVsiBMRERERERFpEaemExERERERUa6wanrOcESciIiIiIiISIvYEBe56dOnY/To0aqfBwwYgIULFwqYiIiIiIiISJ1SRP9JwXefmv7y5Ut4eXnhwoULiI2NRYkSJVCtWjX873//Q7NmzXJ9/8+ePUObNm3g5+eHatWqqY4nJydj3bp1OH78OGJjY1GwYEFUqVIFgwYNQtu2bXP9d7/F3bt34eXlhWvXriEhIQHGxsZo3Lgxhg4diooVKwqSiYiIiIiIiIT1XRviz549Q9++fVGkSBFMmzYNFhYW+PTpEwIDA+Hq6ooTJ058zz+nZu7cubh58yb++OMPVK5cGe/evUNISAjevXv3zfcpl8shk8mgo5PziQPnz5/H2LFjYWNjg2XLlsHMzAxv3rzBiRMn4OnpiZUrV35zLiIiIiIiIpKu7zo13dXVFTKZDAcOHECHDh1QsWJFVK1aFYMHD8b+/fsBpDXWLS0tce/ePdXvxcfHw9LSEn///TcAIC4uDpMnT0bTpk1Ru3ZttG/fHgcPHgQAtGnTBgDQvXt3WFpaYsCAAQCAc+fOYeTIkbC1tUW5cuVQs2ZNDBgwAD179lT9nZSUFLi7u6NFixaoW7cuevXqpfqbAODj44OGDRvi7Nmz6Ny5M2rVqoUDBw6gVq1aiI+PV/u3LliwAAMHDszwcUhOTsaMGTNga2sLLy8vWFtbw8zMDHXq1MHvv/+OefPmAUhr6M+cORN2dnaoXbs2OnTogD///DNHj/muXbvQvn171KpVC9bW1hg3blyOfp+IiIiIiCi3FEqlaL6k4LuNiL979w4BAQGYOHEiDA0NNc4XKVIk2/fl6emJ8PBwbNq0CcWLF0dkZCQ+fPgAADhw4AB69eqFbdu2oUqVKtDT0wMAlCxZEhcvXkS7du1QqFChDO933rx5ePjwIVasWIHSpUvj9OnTGDZsGI4cOYIKFSoAAD58+IBNmzZhwYIFKFasGMqWLYtVq1bh5MmT6NWrF4C0BvTx48cxYcKEDP9OYGAg3r59i2HDhmV4Pv2xUCgUKFu2LDw9PVGsWDGEhIRgzpw5KFWqFDp37vzVxyk0NBQLFy7EkiVLUK9ePcTFxeHatWtf/T0iIiIiIiISzndriEdGRkKpVKJSpUq5vq/o6GhUq1YNtWrVAgCUK1dOdc7IyAgAUKxYMZQqVUp1fP78+ZgyZQqaNm0KS0tLNGjQAB06dECDBg1U9+nj44Pz58+jTJkyAIChQ4ciICAAPj4+mDRpEgAgNTUVLi4usLKyUt13586dcfToUVVDPCgoCPHx8ejQoUOG+R8/fgwAX30s9PT01EawzczMcOPGDZw4cSJbDfGYmBgUKFAArVq1QqFChWBqaorq1at/9feIiIiIiIhION+tIa78jlMA+vbti3HjxuHu3bto3rw52rZti/r162f5O40aNcKZM2dw8+ZN/PPPP7hy5Qq2b9+OsWPHwtnZGWFhYZDL5ejYsaPa76WkpKBYsWKqn/X09GBpaal2G3t7e/Tu3RuxsbEoU6YMjhw5glatWmU6yp+Tx2LXrl04ePAgoqOj8fHjR6Smpqp1AmTF2toaJiYmaNu2LVq0aIEWLVqgXbt2KFCgQLb/PhERERERUW5JpVq5WHy3NeLm5uaQyWSIiIjI+g/+/8JnnzdWP336pHYbW1tbnD9/HoMGDcKLFy8waNAguLu7fzWDnp4eGjZsiBEjRmDLli0YN24c1q9fj5SUFCQlJUFXVxcHDx6En5+f6uvYsWOYNWuW6j4MDAwgk8nU7rd27dooX748jh07hg8fPuD06dOwt7fPNEd6RfSvPRb+/v5wd3eHk5MTtmzZAj8/P/To0QOpqalf/bcCQKFCheDr64vly5ejVKlSWLVqFbp166axnp2IiIiIiIgyt2vXLtjZ2aFWrVro1asXbt26leXtjx8/jo4dO6JWrVqwt7fHxYsXc/T3vltDvFixYrCxscGuXbuQlJSkcT69cZg+tfzly5eqc58XbktnZGQER0dHLFu2DDNnzsS+ffsAQLUmXC6XfzVTlSpV8OnTJ6SkpKBatWqQy+V48+YNzM3N1b4+n+KeGXt7exw5cgTnzp2Djo4OWrVqleltmzdvjuLFi2Pz5s0Znk9/LP755x/Uq1cP/fr1Q/Xq1WFubo7IyMivZvlcvnz5YG1tjWnTpuHw4cOIiorClStXcnQfREREREREuaFUKkTzlVPHjh2Dm5sbnJ2d4evrCysrKwwdOhSvX7/O8Pb//PMPJk+ejJ49e8LPzw9t2rRRzcLOru9aNX3u3LlQKBTo1asXTp48icePHyM8PBzbt29H7969AaSNONetWxcbN25EeHg4rl69qrGVl6enJ86cOYMnT57g33//xYULF1C5cmUAQIkSJWBgYICAgAC8evUKCQkJAIABAwZg7969uH37Np49e4aLFy9i+fLlaNKkCQoVKoSKFSvC3t4e06ZNw6lTp/D06VPcunULGzZswIULF776b7O3t8edO3fg5eWFDh06QF9fP9PbGhoaYsGCBbh48SJGjhyJy5cv49mzZwgNDcWSJUswd+5cAGmzCG7fvo2AgAA8evQIK1euRGhoaLYf7/Pnz2P79u24d+8eoqKi4OfnB4VCwT3KiYiIiIiIsmnr1q345Zdf4OTkhCpVqsDV1RUGBgaqnbu+tH37drRo0QLDhg1D5cqVMWHCBFSvXh07d+7M9t/8rvuIm5mZwcfHB15eXnB3d8eLFy9gZGSEGjVqwMXFRXW7RYsWYdasWejRowcqVqyIqVOnYsiQIarzenp6WL58OaKiomBgYIAGDRpg+fLlaYHz5cPs2bOxdu1arFq1Cg0bNsSOHTtgY2MDPz8/rFixAsnJyShdujRatWoFZ2dn1f26ublh/fr1WLx4MV68eIFixYqhbt26WY5upzM3N0ft2rVx69YtzJw586u3b9u2Lfbs2YONGzdi8uTJSExMhLGxMZo2baqqtt6nTx/cu3cPEydOhEwmQ5cuXfDrr7/i0qVL2Xq8CxcujNOnT2PNmjX4+PEjzM3N4eHhgapVq2br94mIiIiIiH40KSkpSElJUTumr6+f4WBqSkoK7ty5g99++011TEdHB9bW1ggJCcnw/m/cuIFBgwapHbOxscGZM2eynVGm/J5V1khyzEvUFjpCjhjqGggdIUfiU98LHeGHJZU9ItPpfFF7Quy+rJUhZnoyXaEj5Eiq8utLq4go9+SKnE9PFZKuznedqJqnHoUdFjpCjkxsOEPoCDmy5vE+oSN8EzG1K6a4DMeaNWvUjo0ZMwZjx47VuG1sbCxatmyJvXv3ol69eqrjS5YsQXBwMA4cOKDxOzVr1sTixYvRtWtX1bFdu3Zh7dq1uHz5crYyftcRcSIiIiIiIiIh/fbbbxg8eLDasayWFguBDXEiIiIiIiL6YWQ2DT0jxYsXh66urkZhttevX6NkyZIZ/k7JkiXx6tWrbN8+I9KZA0NERERERESipFQqRfOVE/r6+qhRowaCgoJUxxQKBYKCgtSmqn+ubt26GjtVXb58GXXr1s3232VDnIiIiIiIiH5agwcPxv79++Hr64vw8HC4uLggOTkZPXr0AABMmzYNHh4eqtsPHDgQAQEB2LJlC8LDw7F69Wrcvn0b/fv3z/bf5NR0IiIiIiIi+ml17twZb968wapVq/Dy5UtUq1YNmzdvVk01j4mJgc5nBRXr16+PZcuWYeXKlVi+fDkqVKiAtWvXwsLCItt/k1XTf3Jiqm6YHayaTulYNT1vsWp63mHVdCLtYNX0vMOq6XlLqlXTyxnVFDqCyrM3t4WO8FXSecYTERERERER/QA4NZ2IiIiIiIhyhROtc4Yj4kRERERERERaxIY4ERERERERkRZxajoRERERERHlitQK6QqNI+JEREREREREWsSGOBEREREREZEWcWo6ERERERER5YoSnJqeExwRJyIiIiIiItIijoj/5PR19ISOkCMfFalCR8iR2PfvhI6QbSNMmgsdIUfOvI8QOkKOtC1YSegIOXL30xuhI2Tb0w/SyQoAVQqUEjpCjrxKTRQ6Qo4kyT8KHSHbDHXzCx0hRwrpGggdIUfuxkUKHSFHqhctL3SEbJvYcIbQEXJkxTU3oSP8FLiPeM5wRJyIiIiIiIhIi9gQJyIiIiIiItIiTk0nIiIiIiKiXFGwWFuOcESciIiIiIiISIvYECciIiIiIiLSIk5NJyIiIiIiolxh1fSc4Yg4ERERERERkRaxIU5ERERERESkRZyaTkRERERERLmi4NT0HOGIOBEREREREZEWcUSciIiIiIiIcoXF2nKGI+JEREREREREWsSGOBEREREREZEWsSGexywtLXHmzBmhYxAREREREeUZBZSi+ZICrhHPpZcvX8LLywsXLlxAbGwsSpQogWrVquF///sfmjVrJnQ8IiIiIiIiEhk2xHPh2bNn6Nu3L4oUKYJp06bBwsICnz59QmBgIFxdXXHixIk8+bspKSnQ19fPk/smIiIiIiKivMWp6bng6uoKmUyGAwcOoEOHDqhYsSKqVq2KwYMHY//+/arbvX37Fs7OzqhTpw7at2+Ps2fPqs75+PigYcOGavd75swZWFpaqn5evXo1unXrhgMHDsDOzg61a9cGkDbt/cCBA5neNxERERERkTYolUrRfEkBG+Lf6N27dwgICEC/fv1gaGiocb5IkSKq79esWYNOnTrh8OHDaNmyJaZMmYJ3797l6O9FRkbi5MmTWLNmDfz8/L7rfRMREREREZH2sCH+jSIjI6FUKlGpUqWv3tbR0RFdu3aFubk5Jk2ahKSkJNy6dStHfy81NRVLlixB9erVYWVl9V3vm4iIiIiIKDcUSqVovqSADfFvlJMpD59PMzc0NEShQoXw5s2bHP09ExMTGBkZ5cl9ExERERERkfawIf6NzM3NIZPJEBER8dXb6unpqf0sk8mgUCgAADo6OhqN+tTUVI37KFCgQI7vm4iIiIiIiMSHDfFvVKxYMdjY2GDXrl1ISkrSOB8fH5+t+ylevDjev3+vdh/379//bjmJiIiIiIjymlJE/0kBG+K5MHfuXCgUCvTq1QsnT57E48ePER4eju3bt6N3797Zuo86deqgQIECWL58OSIjI3HkyBH4+PjkcXIiIiIiIiISChviuWBmZgYfHx80adIE7u7u6Nq1KwYPHoygoCC4uLhk6z6KFSuGpUuX4tKlS7C3t4e/vz/Gjh2bt8GJiIiIiIhIMDKlVDZaozxRtVQDoSPkiFwprfXvkfEvhI6QbSNMmgsdIUfOvP96fQYxaVvw6zssiMndT9Ip+vj0g3SyAoCZgWbhTTF7lZoodIQcSZJ/FDpCthnq5hc6Qo4U0jUQOkKO3I2LFDpCjlQvWl7oCNnWUL+M0BFyZMU1N6Ej5IheSWl9ZkhXoIC50BFUkpOfCB3hqzgiTkRERERERKRF+YQOQERERERERNLGidY5wxFxIiIiIiIiIi1iQ5yIiIiIiIhIizg1nYiIiIiIiHJFKvt3iwVHxImIiIiIiIi0iA1xIiIiIiIiIi3i1HQiIiIiIiLKFVZNzxmOiBMRERERERFpERviRERERERERFrEqelERERERESUK5yanjMcESciIiIiIiLSIo6IExERERERUa5wPDxnOCJOREREREREpEVsiBMRERERERFpkUzJVfVEREREREREWsMRcSIiIiIiIiItYkOciIiIiIiISIvYECciIiIiIiLSIjbEiYiIiIiIiLSIDXEiIiIiIiIiLWJDnIiIiIiIiEiL2BAnIiIiIiIi0iI2xImIiIiIiIi0iA1xIiIiIiIiIi1iQ5yIiIiIiIhIi9gQp+8mJSUFz58/R3R0tNqXGH369AmXL1/G3r17kZiYCACIjY3F+/fvBU6WsSdPniAgIAAfPnwAACiVSoETZV98fLzQETIVExOD58+fq36+desWFi5ciH379gmY6uukfD2I1YcPH5CcnKz6OSoqCtu2bUNgYKCAqb4uJSUFERER+PTpk9BRfmiJiYk4c+YMwsPDhY6SpY8fPwod4auk+rr7OTG/r0mZVJ5nRN8LG+KUa48fP8avv/6KOnXqoHXr1mjTpg3atGkDOzs7tGnTRuh4GqKiomBvb4/Ro0dj3rx5ePv2LQBg06ZNcHd3Fzidurdv32LQoEHo0KEDRowYgZcvXwIAZs6cicWLFwucTtPGjRtx7Ngx1c/jx49HkyZN0KJFC9y/f1/AZBmbPHkyrly5AgB4+fIlBg8ejNDQUKxYsQJr1qwROJ0mKV0Pvr6+uHDhgurnJUuWoGHDhujTpw+ioqKEC5aJ0aNHw8/PD0Dah+xffvkFW7duxejRo7F7925hw2UgOTkZM2fORN26ddG1a1fExMQAAObPn4+NGzcKnE7TpUuXcO3aNdXPu3btQrdu3TB58mTExcUJmCxj48ePx86dOwGkddI4OTlhwoQJcHBwwMmTJwVOp06hUGDt2rVo0aIF6tWrh6dPnwIAVq5ciQMHDgicTpPUXnel9r4GANeuXcOUKVPQu3dvxMbGAgD8/PzUnoNiIKXnGVFeYEOccm369OnQ0dGBl5cXfHx84OvrC19fX/j5+cHX11foeBoWLlyImjVr4urVq8ifP7/qeLt27VQfDsTCzc0Nurq6uHDhAgwMDFTHO3fujICAAAGTZWzv3r0oW7YsAOCvv/7C5cuXsWnTJrRs2RJLliwROJ2mf//9F7Vr1wYAHD9+HFWrVsXevXuxbNkyUV67UroevLy8VM+vkJAQ7N69G1OnTkWxYsXg5uYmcDpNd+7cQcOGDQEAJ0+eRIkSJXD+/Hm4u7tjx44dAqfT5OHhgfv372P79u1qr2PNmjVTazSIxdKlS1Uzjh48eIDFixfD1tYWz549E10nEpDWkEm/Hk6fPg2lUong4GDMmjUL69evFzidunXr1sHX1xdTp06Fnp6e6riFhQW8vb0FTJYxqb3uSu197eTJkxg6dCgMDAxw9+5dpKSkAEgbbd6wYYPA6dRJ6Xn2ufj4eAQGBuLQoUPw8/NT+yLKiXxCByDpu3//Pg4ePIjKlSsLHSVbrl+/jj179kBfX1/tuKmpqarnWCz++usv/N///Z/qQ0C6ChUqiHLa/6tXr2BsbAwAOH/+PDp16gQbGxuYmpril19+ETidpk+fPqmug8uXL8POzg4AUKlSJdVos5hI6Xp4/vw5zM3NAQBnzpxB+/bt0bt3b9SvXx8DBgwQOJ2mDx8+oGDBggCAwMBAtG/fHjo6Oqhbt67oHlsAOHv2LFasWIG6deuqHa9atSoiIyOFCZWFZ8+eqd4jTp06hdatW2PSpEm4c+cORowYIXA6TQkJCShatCgAICAgAO3bt0eBAgXQqlUrLF26VOB06g4dOoT58+ejWbNmmDt3ruq4paUlIiIiBEyWMam97krtfW39+vVwdXVF9+7d4e/vrzpev3590TVupfQ8S3fu3DlMmTIFSUlJKFSoEGQymeqcTCZD9+7dhQtHksMRccq1ypUrq6Z3S4FCoYBCodA4/vz5c9UHcbFISkpSG/lM9+7dO42OBDEoUqSIaopsQEAAmjVrBiBtDbNcLhcyWoaqVKmCvXv34tq1a7h8+TJatmwJAHjx4gWKFSsmbLgMSOl6MDQ0xLt37wCkdSBYW1sDAPLnzy/Kdazly5fHmTNnEBMTg8DAQDRv3hwA8Pr1axQqVEjgdJrevHmDEiVKaBxPTk5W+2AoFnp6eqqaBpcvX1Y9vkWLFlXV6RATY2NjhISEICkpCQEBAaq88fHxonuuxcbGonz58hrHlUqlKGsHSO11V2rva48ePVKNMn+ucOHColvbLqXnWTp3d3c4OTkhJCQE165dQ3BwsOrr6tWrQscjiWFDnL5JYmKi6mvKlClYtmwZ/v77b7x9+1btnBg/YDVv3hx//vmn2rH3799j9erVsLW1FShVxho2bKgx1UmhUGDz5s1o0qSJMKGy0L59e0yZMgWDBw/Gu3fvVB+w7t27pxodFZMpU6Zg3759GDBgALp06QIrKysAaT3e6VMnxURK14O1tTVmz56NWbNm4fHjx6rn1r///gtTU1OB02lydnbGkiVLYGdnhzp16qBevXoA0joRqlWrJnA6TTVr1lRbg5/uwIEDGqPkYlC/fn24ublh7dq1CA0NRatWrQCk1Rj5coaHGAwcOBBTp06Fra0tSpcurXp+BQcHw8LCQuB06qpUqZLh2t8TJ06I8tqV2uuu1N7XSpYsmeGsmOvXr8PMzEyARJmT0vMsXWxsLAYOHIgCBQoIHYV+ADIly+3SN7CyslIbdVEqlRqjMOnH7t27p+14WXr+/DmGDh0KpVKJJ0+eoGbNmnj8+DGKFy+OXbt2ZTjKJJSwsDAMGjQI1atXx5UrV2BnZ4eHDx8iLi4Oe/bsyXAUREipqanYvn07YmJi0KNHD1SvXh0AsG3bNhQsWBC9evUSOKEmuVyOxMRE1fQ4IG0abYECBUR1LQDSuh7i4+OxcuVKxMTEoG/fvqoPr6tWrYKenh5GjRolcEJNL1++xMuXL2FlZQUdnbR+6lu3bqFgwYKiW3pz7do1DB8+HA4ODvD19UXv3r0RHh6OkJAQ7NixAzVr1hQ6opro6Gi4uroiJiYGAwYMUL0WLFq0CAqFArNnzxY4oabQ0FA8f/4c1tbWqtlSFy5cQOHChdGgQQOB0/3nzJkzmD59OkaMGIF169Zh7NixePToEfz8/LBhwwbVKKOYSOl1V2rvaxs2bMDhw4exaNEiDB48GBs3bkR0dDTc3NwwevRo0S0NksrzLN2YMWPQuXNndO7cWego9ANgQ5y+SU6m3zRu3DgPk3ybT58+wd/fHw8ePEBSUhJq1KgBe3v7DKf9Ci0hIQE7d+7E/fv3kZSUhOrVq6Nfv34oXbq00NFIALweKF1kZCQ2btyodi0MHz4clpaWQkcjLbt27RrWrl2rdi04OzvDxsZG6GikZUqlEl5eXti4caNqS0Z9fX0MGTIEEyZMEDbcD+DAgQNYt24devToAQsLC+TLp15uS4y7BZF4sSFOuRYdHQ1jY+MMR8RjYmJgYmIiUDISwuPHj/H333/j9evXGmvxx4wZI1Cq/3Tv3j3ba2jFWMFXSuLj43Hr1i28fv1aY69zMRS0ycn1KMZtlaRGoVDgyZMnGV4PjRo1EijVf3JSzX/GjBl5mOTH9urVK7i7uyMoKAhv3rzRuBbEMIvu7Nmz2b6tWBteKSkpiIyMRFJSEipXriyaGjhSf56lL6XIiBhngZK4sWo65VqbNm0QGBioMZ3s3bt3aNOmjShelKT6pprZHqUymQz58+eHiYmJqAqa7N+/Hy4uLihevDhKliypUU1UDA3xtm3bCh3hm0npepBCZdnChQsLHeGbZVV/Q19fXzTXQbobN25g8uTJiI6O1mh4ieXD6927d7N1OzEWw5OS6dOnIyYmBqNHjxbtTB5nZ+ds3U4s125G9PX1UaVKFaFjaJD680yse8eTNHFEnHLNysoKly9fhpGRkdrxqKgodOnSBTdu3BAm2Ge+7MGUyWQZfhgExNEbn+7ztfjpeT9/c8qXLx86d+6MefPmqe0lLJTWrVujb9++otyO6EcgpeuhQ4cOaNmyJSZNmsSiNnngyzodXypbtiwcHR0xZswY1Xp3IXXr1g0VKlTAuHHjUKpUKY3sUu4UEVqjRo0yvBZkMhn09fVhbm4OR0dHODk5CZBOU7169bB7925RFpL7ETg7O3/1eujatSsqVaokQDppS01NRZ06deDn5yfaYnIkLRwRp2+WPr1IJpNh5cqVah+25XI5bt26leUUHm36vAfz8uXLWLZsGSZOnKiqjBwSEoKVK1di0qRJQkXM0Jo1a7Bs2TIMHTpUVU321q1b2Lp1K8aMGYNPnz7Bw8MDK1euxO+//y5wWiAuLg6dOnUSOsYPS0rXAyvL5q3FixdjxYoVcHR0VLsW/Pz8MGrUKLx58wZbtmyBvr4+Ro4cKXBa4MmTJ1i1apUoq0xLnbOzM9avX4+WLVuqXQsBAQHo168fnj17BhcXF8jlclHse21sbKzREU7fT+HChXHmzBkUKVIENWrUAADcuXMHCQkJaN68OY4dO4ZNmzZh27ZtoiyGJmZ6enowNjbOcAtcom/Bhjh9s/TpRUqlEmFhYdDT01Od09fXh5WVFYYMGSJUvEwtWrQILi4uavtstmjRAgUKFMAff/yB48ePC5hOnZeXF2bNmoUWLVqojllaWqJs2bLw9PSEt7c3DA0NsXjxYsEbXgDQsWNHBAYGom/fvkJHyVRmo0cZEdueoFK6HmxsbBAaGiq67XI+J+V6Ab6+vvj999/VKvfa2dnBwsIC+/btw59//gljY2N4eXmJoiFeu3ZtPHnyRNQNcanWDLh+/TomTJig8bq7d+9e/PXXX1i9ejUsLS2xY8cOUTTEZ86cCQ8PD7i6uqJcuXJCx8nQ9u3bs33bgQMH5mGSnCtZsiS6du2KOXPmqGbDKBQKLFy4EAULFsSKFSswd+5cLFu2DHv27NF6Pqk+z9KNHDkSy5cvx5IlS0S57z1JCxvi9M127NgBIK2YxqxZs1CoUCGBE2VPZGQkihQponG8UKFCiIqKEiBR5sLCwjIsdmdiYoKwsDAAaVNUX758qe1oGTI3N4enpydu3ryZYTVRMXxgmTlzptARvpmUrgdbW1ssXboU4eHhoq0sK+V6ASEhIXB1ddU4Xr16ddVyoAYNGiAmJkbLyTI2YMAAuLu749WrVxleD2KYPSXV6fGBgYGYMmWKxvFmzZrB3d0dQNrz0cPDQ9vRMjRx4kQkJyejXbt2MDAwUOvEB8TRAbpt27Zs3U4mk4nife1z3t7e2LNnj9qSFB0dHfTv3x99+vTBpEmT0K9fP/Tr10+QfFJ9nqXbtWsXnjx5ghYtWsDExASGhoZq58XWaUvixoY45VpOKmCKQa1atbB48WIsWbIEJUuWBJBWxXXp0qWqaX1iUalSJWzatAnz5s1TFV9KTU3Fpk2bVOu7YmNjRbPv6r59+2BoaIirV69qfJgSywcWR0dHoSN8MyldD3/88QcAYO3atRrnxFLgSAzFA7+VsbExvL29NRpg3t7eKFu2LIC0gpkZdToKYezYsQDUO8LSa3WI5XqQ2ntZuqJFi+L8+fMYNGiQ2vHz58+r9ulOSkoSTdVsKXSGnjt3TugI30wulyMiIgIVK1ZUOx4REaGaUp0/f37BiqFJ9XmWTsoduCQ+bIhTrmX2YVashUEWLVqEMWPGoFWrVjA2NgYAxMTEoEKFChk2GoQ0Z84cjBo1Cra2tqq9gcPCwiCXy7FhwwYAwNOnT/Hrr78KGVNFyh9ePn78iNTUVLVjYpvlIaXrgZVl89a0adMwfvx4XLp0CbVq1QIA3L59GxEREVi1ahUAIDQ0VG3qupBysnMF5czo0aPh4uKCK1euqDqTQ0NDcenSJbi4uABIq40ihi3iAGl3hkpBt27dMGvWLDx9+hQ1a9YEkPba4OXlhW7dugEAgoODRVlRXQqk3IFL4sOq6ZRr06dPz7IwyP379xEVFSWqwiBKpRJ//fUXIiIiAACVK1eGtbW1KLfLSExMxJEjR/D48WMAQMWKFdG1a1fRNRKlKCkpCcuWLcPx48fx7t07jfNiGKX7Eq+HvCGXy7Ft2zYcP34cMTExGp0yYpgu+6Vnz55h3759ePToEYC0a6F3796iXXcrNSdOnMj0ehDb9NPr169j165datdC//79Ub9+fYGTpUlMTFS9RmW19R4gvg5QAHj+/DnOnj2b4bUgtr2u5XI5Nm7ciF27duHVq1cA0taN9+/fH8OHD4euri6io6Oho6Ojmj0jJCk9z4i+NzbEKdeWLVuGxMTETAuDTJw4EXPnzsW///4rSGEQyltubm4YP348DA0NvzrlTGwfWFxdXfH3339j/PjxmDZtGubMmYPY2Fjs27cPkydPhoODg9ARVVJTU9GpUyds2LABlStXFjpOhrZv347evXsjf/78Xy12JIZlCp/z9PTEgQMHMGTIEKxcuRIjR45EVFQUzpw5A2dnZ1HlTU1NxbBhw+Dq6ooKFSoIHSdTZ8+eRcuWLaGnp/fVEXEx1Az43Pbt27FixQr06NED+/btQ48ePfD06VOEhoaiX79+mDhxotARAaRdC3PmzMHo0aNFXRixWrVqCAwMRIkSJTLdek9MyxQ+FxQUhFGjRsHMzAwRERGoWrUqoqKioFQqUb169RwVdstrnz59wtGjR2FjY4OSJUuqOj3E2LkBSOd59rmvbR0ptuuXxI1T0ynXxF4YJCNXr17Fli1bEB4eDiBtRHzYsGFqldTF5OHDh4iOjtboLRbDh9e7d+/i06dPqu8zI8bZBufPn4e7uzuaNGmCGTNmoGHDhjA3N4eJiQmOHDkiqoa4np4ePn78KHSMLG3btg329vbInz9/lsWOxFIv4HNHjhzBggUL0KpVK6xevRpdu3ZF+fLlYWlpiZs3bwodT42enh4ePHggdIyvcnZ2xl9//YUSJUrA2dk509uJsfG1e/duzJ8/H127doWPjw+GDx8OMzMzeHp6Ii4uTuh4Knp6ejh16hRGjx4tdJQs/fnnn6r16mJquGaHh4cHhgwZgnHjxqFevXpYvXo1jIyMMGXKFLUdLMQgX758mDt3Lo4dOwZAvA3wdFJ5nn3uy0runz59wr179+Dr66uqhUGUXWyIU66JvTDIlw4dOoSZM2eiXbt2GDBgAIC0aX2DBg2Cm5sb7O3tBU74n6dPn8LZ2RlhYWGqwkbAf41aMXx4Ta+e/+X3UhAXF6caRSpUqJDqjb9BgwYZVqQWWr9+/bBp0yYsWLBAo+q0GHxeI0Bq9QLSq3kDQMGCBZGQkAAAaN26NTw9PYWMliEHB4cMi7WJyed1AqRWMyAmJgb16tUDABgYGOD9+/cA0tbf9u7dG3PmzBEynpq2bdvi7NmzGsXaxKRx48YZfi8F4eHhWL58OYC0hu6HDx9QsGBBjB8/HqNHjxZFTY7P1a5dG/fu3YOpqanQUb5KSs+zdBkVa+vYsSOqVKmCY8eOoVevXgKkIqkS3yc5khypFQbx8vLC1KlT1T60DBw4EFu3bsW6detE1RBfuHAhypUrh23btqFNmzbw9vbG27dv4e7uLvg+0T+CcuXK4dmzZzAxMUGlSpVw/Phx1K5dG+fPnxflFiuhoaEICgpCYGAgLC0tUaBAAbXzYtxzVSrKlCmDly9fwsTEBGZmZvjrr79Qo0YNhIaGqirUi4lcLseePXtw+fJl1KxZU+NaENsyEKkpWbIk4uLiYGpqCmNjY9y4cQNWVlZ49uwZxLaiz9zcHGvXrsU///yDGjVqaFwLYpl9Eh0dna3bZbRFo5AMDQ1Vs9FKlSqFyMhIVK1aFQDw9u1bIaNlqG/fvli8eDGeP3+e4fUghq0C00npefY1devWFWXHAYkbG+KUazNmzECJEiWwefNmtcIggwYNwvDhwwEAzZs3F80UrqdPn6J169Yax+3s7FS93mIREhKCP//8E0ZGRtDR0YFMJkPDhg0xadIkLFiwAH5+fkJHBJD9D/1i27bEyckJ9+/fR+PGjTFixAiMHDkSO3fuxKdPnzB9+nSh42koUqQIOnToIHSMLGW3M0BslWfbtWuHoKAg1KlTBwMGDMDUqVPh7e2N6OhoUY40hoWFoXr16gCgKtCVTiyzjwBk+zWqe/fueZojp5o2bYpz586hevXqcHJygpubG06ePInbt2+jXbt2QsdT4+3tjcKFC+P27du4ffu22jkxLQP5fCnVl7O70o+JcZlCnTp1cP36dVSuXBm2trZwd3dHWFgYTp8+jTp16ggdT8OkSZMAAAsWLFAdE9tWgemk9DzLyocPH7B9+3aULl1a6CgkMSzWRt+V2AuDAGkfuIcOHYo+ffqoHd+zZw+2bt2KU6dOCZRMU6NGjeDj4wMzMzO0bdsWCxYsQNOmTREZGQl7e3vRrF21srKCiYkJqlevnmUvtti2h/tSVFQU7ty5g/Lly4tq1EBKrKysULp0aZQoUSLTa0Emk4m+Gu6NGzcQEhICc3Nz2NnZCR1HsqysrGBoaIh8+fJleT2IrSq9QqGAQqFQLQHx9/dXXQ+9e/cW5SwJsatevTrKli0LR0dHtG7dOtPlNWJ77X369Cnev38PKysrJCUlYfHixQgJCUGFChUwffp00U0Bj4qKyvK8mPJK8XnWqFEjjQ6k9+/fw8DAAEuXLhVF7R6SDjbE6aeze/duLFq0CE5OTqq1Sf/88w98fX0xa9YsjQa6kH799VcMGTIEbdu2xeTJkxEXF4dRo0Zh//79uHPnDo4ePSp0RABp1cf9/f1hYmKCHj16wMHBAcWKFRM6FglgxIgRuHLlCmxsbODk5ITWrVurFXKkn0uXLl3w6tUrODg4wMnJSXSNLNKely9fwtfXFz4+PkhISICDgwN69uwp2l0giDLyZSeyTCaDkZER6tSpoypISJRdbIhTrr169Qru7u4ICgrCmzdvNEY9xDQNKt3p06exZcsW1T7ilSpVwtChQzMswiGkgIAAJCcno3379njy5Al+++03PH78GMWKFcOKFSvQrFkzoSOqpKSk4NSpUzh48CBCQkJga2uLnj17wsbGRlRTZYG07Wjmz5+P/fv3a8zeSEhIQJ8+feDq6irKKvpS2HM1NjYWfn5+8PHxwfv379GtWzc4OTmhUqVKQkfTcPv2bbi7u2P9+vUZXgujR4/GrFmzRNmADA0NzfRaEFO9gJs3b+LgwYM4duwYypcvj549e8LBwUGUM6ceP36MVatWYd68eRleDy4uLpgwYYLotgqT0j7XAHDt2jX4+PjgxIkTqFKlCnr27ImePXuKqtMuLi4Ohw8fhqOjY4bXgp+fX4bnxELMu61I9XlG9L2xIU65NmzYMMTExKBfv34Zro8RW+NW6t69e4eiRYuKrnH7uaioKPj6+sLPzw9yuRxHjx5FwYIFhY6lMnLkSDRt2jTTtb/bt2/H33//Lbqp9FLcczU4OBg+Pj44efIkLCwssG3bNhgYGAgdS2Xy5MmoVKlSpttrrV+/HuHh4Vi2bJmWk2XN398fv//+O2xsbBAYGAgbGxs8evQIr1+/Rrt27URXjwFIW0d54sQJHDx4EKGhoWjTpg3c3NxENf30jz/+QOHChTFt2rQMzy9duhSJiYmi2lVBSvtcf+nVq1eYNGkSgoODERQUJKqZVGvXrsWDBw+watWqDM+PHz8eVlZWGDVqlJaTZU0Ku61I8Xn2ufj4eNy6dQuvX7/WGHwSW70LEjklUS7VrVtXeffuXaFjfNW7d++U27dvVyYkJGici4+Pz/ScmCQkJChPnz6tfPjwodBRshQdHa1cvXq10s7OTtmiRQtlYmKi0JHUtGrVKsvH8OHDh0pbW1vtBcqmDh06KI8cOaJUKtOed5GRkUqlUqlcuXKl0tXVVchomUpOTlb6+voqe/bsqaxdu7bonmNt2rRR3rt3L9Pz9+/fV9rZ2WkxUfZ07dpVuXPnTqVS+d+1oFAolLNnz1Z6enoKnC5rV69eVfbv319pZWWlfPfundBx1LRv31558+bNTM+HhoYq27dvr8VEX+fk5KT6f55+LSQmJipHjhyp3LVrl8DpMnb9+nXlzJkzlfXr11c6OTkpd+/erZTL5ULHUuPg4KC8fPlypucvX76s7Natm/YCZdNvv/2mHDVqlPL169fKunXrKh8+fKgMDg5W9uzZUxkcHCx0PKVSKc3nWbqzZ88q69Wrp7S0tFQ2aNBA2bBhQ9VXo0aNhI5HEiOeOUAkWcbGxpLYZmLnzp0IDg7OcBpZ4cKFce3aNdHtgz1+/Hjs3LkTQNpokpOTEyZMmAAHBwecPHlS4HTqUlJScPToUQwePBgdOnRAWFgY5syZgwsXLohqNBxIG4XJah/ufPny4c2bN1pMlD1Z7bnq7+8vZDQNISEhmD17Npo3b44dO3age/fuCAgIEN00ztjY2CyvT0NDQ7x8+VKLibLn6dOnsLW1BQDo6+sjKSkJMpkMgwYNwv79+wVOpyk2NhZeXl5o3749Jk6ciFq1auHo0aOiW1MZExODEiVKZHq+ePHieP78uRYTfV14eLhqFO7Lfa43b94sbLjPvHjxAhs3bkTHjh0xZswYFCpUCHv27IG3tzf69u0rqmnpABAZGQlzc/NMz5ubmyMyMlKLibInJCQE48aNy3S3FTGQ4vMsnbu7O5ycnBASEoJr164hODhY9SW2opMkfty+jHJt5syZ8PDwgKurK8qVKyd0nEydOnUqyy2p+vTpA3d3d1FNM7t27Zoqz+nTp6FUKhEcHAxfX1+sX79eNFtZubi44NixYyhbtiycnJzg4eEBIyMjoWNlqkyZMvj3338z/ZD14MEDlCpVSsupvk4Ke65u2rQJvr6+ePv2Lezt7bFr1y5Rrq9OZ2RkhEePHmW6FjEiIgLFixfXcqqvK1KkiKojpnTp0vj3339haWmJ+Ph4JCcnC5zuP8eOHYOPjw+Cg4NhY2OD33//Ha1atYKurq7Q0TJUuHBhREZGZlpZOjIyUnSdSVLZ57p169YoU6YMunfvDjs7O+TLlw8KhQL3799Xu51YXi90dXXx4sWLTPc1f/Hiheg6D4C0SuTpnYvFixfHixcvUKlSJZiammpsdSgUKT7P0sXGxmLgwIEa+7MTfQs2xCnXJk6ciOTkZLRr1w4GBgbQ09NTOy+WHkIp9m4nJCSoRowCAgLQvn17FChQAK1atcLSpUsFTvefvXv3wsTEBGZmZqqe4YyIpYCUra0tPD090aJFC+TPn1/t3IcPH7B69eoM95oXmhT2XPXw8ICJiQk6deqU5TZlYikgZW1tDS8vL7Rs2VLjnFKphJeXF6ytrQVIlrVGjRrh8uXLsLS0RMeOHbFw4UJcuXIFly9fFlURx0mTJsHExASDBg1CiRIlEBUVhV27dmncTix7XTds2BA7d+7M9DHcvn07GjRooOVUWZPKPtdyuRzR0dFYt24d1q9fDwAaHYhi2ue6WrVqOHPmDOrWrZvh+dOnT6NatWraDZUNVatWxYMHD2BmZoY6depg8+bN0NPTw/79+0VT/EyKz7N0NjY2CA0NFc1jSdLGhjjl2syZM4WOkC1S7N02NjZGSEgIihYtioCAACxfvhxAWqEQMRU46t69u6iLx31p1KhROHXqFDp06IB+/fqhYsWKANJGP3fv3g25XI6RI0cKnFLT/PnzoVAoAAD9+vVDsWLFEBISAjs7O/Tu3VvgdGkaNWoEAPj3338zvY2YrpVRo0ahR48e6NWrFwYPHqyq7B4REYEtW7bg8ePHWLx4scApNf3xxx/4+PEjgLR/g56eHv755x+0b99eVLN60l9vjxw5kultZDKZaBriv/32G3r37o1x48Zh2LBhaq8NmzdvRmBgIPbu3StwSnUzZsxQzY4YO3Ys3r9/j2PHjqn2uRaLs2fPCh0hR/r3749JkyahbNmy6Nu3r2oWh1wux+7du/Hnn3+KrogjkPZ6kD4rZty4cfjtt99U7xcrVqwQOF0aqT3PPr92bW1tsXTpUoSHh8PCwkJjmZsYqtKTdLBqOv00BgwYgDp16mDKlCkZnl+6dClu3bolqnXiu3btwqJFi2BoaAgTExP4+vpCR0cHO3bswKlTp0SVVWqioqLg4uKCwMBAtaqyNjY2mDNnDnu7fyKhoaGYMWMGHj58qOokUCqVqFKlChYtWoTatWsLnJC06fz585g5cybevXundrxYsWJYsGABP2j/RFasWIENGzagYMGCqveEp0+fIikpCUOHDs3084TYiHG3FSk9z7K7XEJMMzpIGtgQp+8iMjISBw8exNOnTzFr1iyUKFECFy9ehImJiWqtmtBOnjyJSZMmYcaMGRn2bru7u2PZsmXo2LGjwEnVhYaG4vnz57C2tlat+7pw4QIKFy4s2qlbUhIXF4cnT54ASFueILbiUV/itil55969e3j8+DGUSiUqVqwoymmnn1MoFHjy5EmG10L6zAT6Nh8+fEBAQACePHmiuh6aN28u6nWhKSkpePPmjWrWTLrMZoFR9ty6dQuHDx9GZGQklEolKlSoAHt7e3bQfQdSfJ4RfU9siFOuXb16FcOHD0f9+vURHByM48ePw8zMDBs3bsTt27cz3YNTCFLv3ZbL5QgLC4OJiYnoG4z0/Z07dw5TpkxBUlISChUqpDa6IZPJRFOPgfLejRs3MHnyZERHR4t6nS3lvUePHmHWrFkICQlRO65UKnkt/ISSkpKwceNGXLlyBa9fv9bomJHaEgGxCAoKwvz587F//36NQnIJCQno06cPXF1d0bBhQ4ESkhRxjTjlmoeHByZMmIDBgwertlYC0gpLpW+9JRYTJ05EmzZt1Hq3GzVqJNre7YULF8LCwgK9evWCXC5H//79ERISggIFCsDLywtNmjQROiJpUfq2KZMmTeKIwU9u7ty5qFmzJjZu3IhSpUqJasopadeMGTOQL18+eHl5oXTp0rwWfnKzZ8/G1atX0a1bN742fEd//vknfvnll0y3wO3duze2bt3KhjjlCBvilGthYWEZFiwxMjIS1dYp6WrXri3KRndGTp48CQcHBwBp66mePXuG48eP49ChQ1ixYoWoiplQ3uO2KZTuyZMnWLVqVZY7QdDP4f79+zh48CAqV64sdBQSgUuXLmHDhg1cuvadPXjwAFOnTs30fPPmzbFlyxYtJqIfgbhKRJMkFS5cGC9fvtQ4fu/ePZQpU0aARD+Ot2/fqvazvnjxIjp27IiKFSvCyckJYWFhAqfTlJSUJHSEH1r6tilEtWvXVtU2oJ9b5cqVRdnpTcIoUqQIihUrJnSMH86rV680KqR/Ll++fHjz5o0WE9GPgCPilGtdunTBsmXL4OnpCZlMBoVCgevXr8Pd3Z3Fo3KpZMmSePjwIUqVKoWAgAC4uLgASCtwkl5sTkyaN2+Ojh07wsnJSRLTs5KSkmBoaCh0jCxJeduUa9euYe/evXj69ClWrVqFMmXKwM/PD+XKlZPE9SE29+/fV30/YMAAuLu749WrVxleC9mt8qst1apVQ2BgIEqUKKF2/O3bt7C2tuY65hxKTExUfT9lyhQsW7YMEydOhIWFBfT09NRum9FUWm3LyRaXvr6+eZzmxzZ+/Hh4enrC3d2ds6e+ozJlyuDff//NdBbSgwcPVAMnRNnFhjjl2sSJEzFv3jy0atUKcrkcXbp0gVwuR9euXUW5F7OU9OjRAxMmTFCt87K2tgYA3Lx5U7XfsZgsXboUPj4+GDRoEExNTeHk5IRu3bqJdmaEFDoOnJ2dNY6tXbtW45jYijKdPHkS06ZNg729Pe7evYuUlBQAaQ2IDRs2iPLxFnvHQXpj5vPibDNnzlR9n35ObNcCAI2CculSUlI0Go5iIPaOg4YNG6o1bJVKJQYNGqR2GzFdC23bthU6wg/ty46OJ0+ewNraGuXKldPopBNTR8egQYPg4OCA9u3bi6LDKCu2trbw9PREixYtkD9/frVzHz58wOrVq9G6dWuB0pFUsSFOuaavr48FCxbA2dkZYWFheP/+PapXr44KFSoIHU3yxo4di6pVq+L58+fo2LEj9PX1AQC6uroYPny4wOk0tW3bFm3btsWbN29w6NAh+Pj4wNPTEzY2NnBycoKdnV2WU7u0TQodB5+PgkrJ+vXr4erqiu7du8Pf3191vH79+li/fr2AyTImhY4DKVY73r59O4C0ToIDBw6ozUBRKBQIDg4WZaei2DsO0h9XqRgzZozQEXJEaiP4Uu3oqFKlCpYvXw5XV1fY2trCwcEBtra2oniOfWnUqFE4deoUOnTogH79+qFixYoAgIiICOzevRtyuZyDT5Rj3L6M8sz9+/fRs2dP3L59W+goP4SPHz9q9MJKwY4dO7BkyRKkpqaiePHi6NOnD0aMGCGqKXOfdxxERESItuNASurUqQN/f3+UK1cO9erVw+HDh2FmZoanT5+ic+fOolvr3r17dwwaNAjdu3dXy3v37l0MHz4cf/31l9ARJcnOzg4AEB0djbJly0JH57/SNHp6eihXrhzGjRuHOnXqCBVRTXoD183NDePHj8+w4yAqKgp+fn4CJZS+Nm3awNvbG8WLF1c7Hh8fD0dHR1F0OK1Zsybbt5VaJ4PYKBQKXL58GUePHsXp06ehq6uLDh06wN7eHo0bNxY6npqoqCi4uLggMDBQ1Vknk8lgY2ODOXPmqLbFJcoufsKkPCWXy4WOkKETJ07g+PHjiImJQWpqqto5MfRup5PL5fDy8sLevXvx+vVrnDx5EmZmZli5ciVMTU3Rq1cvoSNm6NWrV/D19YWvry+io6PRoUMH9OzZE8+fP8fmzZtx8+ZNUVUXNTIywuDBgzF48GBVx8HFixdF03GQnf1LXVxc0KhRI4ESaipZsiQiIyNRrlw5tePXr18X5YeVR48eZTjqXbhwYcTHxwuQKGO3b9+Gu7s71q9fn+G1MHr0aMyaNUs0a8TPnTsHIG1N+5o1a1C0aFGBE2Vt27ZtANJGxPfu3Zthx4Grq6tA6dQ9fvwYq1atwrx58zK8FlxcXDBhwgTRPd+ioqI09rYG0mYbxMbGCpBIkxQb13FxcTh8+DAcHR0zvB78/PwyPCc0HR0d2NjYwMbGBq6urjh37hy8vLzg7e0timUVnzM1NcWmTZsQFxenKpZpbm4u+tc1Ei82xOmns337dqxYsQI9evTA2bNn0aNHDzx9+hShoaHo16+f0PHUrF+/Hn5+fpg6dSr++OMP1XELCwv8+eefomuInzp1Cj4+PggMDETlypXx66+/wsHBAUWKFFHdpn79+ujcubOAKTWJveMgO/uXbtu2TVQN8V9++QULFy7EokWLIJPJEBsbi5CQELi7u2P06NFCx9MglY6DrVu3omnTppleC82bN8fmzZsz3FJSSDt27BA6QrZIqePg//7v/1C2bNlMr4WyZcti8+bNouk4+HykOyAgAIULF1b9rFAoEBQUBFNTUyGiZUkKI/gAsHPnTjx48AADBgzQOFe4cGFcu3YNiYmJGDVqlADpvu7ly5fw9/fH4cOH8eDBA1FvM1u0aFFR5yPpYEOcfjq7d+/G/Pnz0bVrV/j4+GD48OEwMzODp6cn4uLihI6n5tChQ5g/fz6aNWuGuXPnqo5bWloiIiJCwGQZmzFjBrp06YLdu3dn+iZVunRp0ayjkkrHgRT3Lx0xYgQUCgUGDRqE5ORk9O/fH/r6+hgyZEiGHxSFJpWOg5s3b2ZZH6J169Y4cOCAFhNlj1wuh4+PD65cuYLXr19rjIiKbc2zFDoOrl69iqVLl2Z6vlOnTpg8ebIWE2UtvfCkTCbD9OnT1c7ly5cPpqamGsfFQAoj+EDa+1lWj1+fPn3g7u4uqoZ4YmIiTp48iaNHj+Lq1asoV64c7O3tsXLlSpQvX17oeER5jg1x+mafb5/yLeeFEhMTg3r16gEADAwM8P79ewBAt27d0Lt3b8yZM0fIeGpiY2MzfDNSKpX49OmTAImyFhgY+NUp3AYGBqKZ9ieVjgMp7l8qk8kwatQoDB06FJGRkUhKSkLlypVRsGBBoaNlSCodB7GxsVk+hoaGhnj58qUWE2XPwoUL4evrC1tbW1StWjXbhbCEIoWOg5iYGI2q7p8rXrw4nj9/rsVEWUsvPGlnZwdvb28YGRkJnChrUhvBj4yMzHRrLSBtCnVkZKQWE32dtbU1ihQpgs6dO2PSpEmoVauW0JGItIoNcfpmX26f8qX0rVPEpmTJkoiLi4OpqSmMjY1x48YNWFlZ4dmzZ5lWyhVKlSpVcO3aNY03+xMnTqBatWoCpcrc543wjx8/aqy/F9vaNKl0HEhx/9JDhw6hffv2KFCgAKpUqSJ0nK+SSseBkZERHj16lOl0+YiICI0ptGLg7++PlStXwtbWVugo2SKFjoPChQsjMjIy08ZgZGSk6F5zgf+m/4ud1EbwdXV18eLFC5iYmGR4/sWLF2o1D4SmVCoxe/Zs2Nvbi6p4K5E2sSFO30wMIwLfomnTpjh37hyqV68OJycnuLm54eTJk7h9+zbatWsndDw1o0ePxvTp0xEbGwulUolTp07h0aNH8PPzw4YNG4SOpyEpKQnLli3D8ePH8e7dO43zYiu8IpWOAynuX+rm5gYXFxfY2dnBwcEBNjY20NXVFTpWpqTScWBtbQ0vLy+0bNlS45xSqYSXlxesra0FSJY1PT09SU01lULHQcOGDbFz5040a9Ysw/Pbt29HgwYNtJwqe4KCghAUFJThbAM3NzeBUqmT2gh+tWrVcObMGdStWzfD86dPnxZVB75SqcS8efPQuHFjbndLPy1uX0Y/HYVCAYVCoZrq6+/vj5CQEJibm6N3796qvbrF4tq1a1i7di3u37+PpKQkVK9eHc7OzrCxsRE6mgZXV1f8/fffGD9+PKZNm4Y5c+YgNjYW+/btw+TJk+Hg4CB0RDVS6Th49eoVHB0doaurm+n+pb6+vihZsqTASf/z6dMnBAQE4OjRozh37hwMDAzQsWNH2Nvbo379+kLH09C0aVN8/PhR9B0HkZGR6NGjBypWrIjBgwer9uCOiIjAli1b8PjxYxw8eDDLKapC2LJlC54+fYo5c+aIcnT5SzY2NtixY4fquSZGd+/eRe/evdG6dWsMGzZM7XVh8+bNuHDhAvbu3YsaNWoInFTdmjVrsHbtWtSsWROlSpXSuB7Wrl0rUDJpO3nyJCZNmoQZM2agb9++qtcvuVyO3bt3w93dHcuWLUPHjh0FTvqfLl26YOHChZl2HhD96NgQJ6LvplWrVnB3d0eTJk1Qv359+Pr6wtzcHH5+fvD398emTZuEjqhGSh0HUt6/NDk5GadPn8bRo0dx+fJllC1bFmfOnBE6lhopdRyEhoZixowZePjwoaoRo1QqUaVKFSxatEg01Xy/XNJx5coVFC1aFFWrVtWoeZCTfZu1QSodB+fPn8fMmTM1OhKLFSuGBQsWoE2bNsIEy4KNjQ2mTJmC7t27Cx0l26Qwgg8AK1aswIYNG1CwYEHVe8LTp0+RlJSEoUOHYsqUKQInVHfu3Dls3rwZLi4usLCwEDoOkdaxIU4/pWvXrmHv3r14+vQpVq1ahTJlysDPzw/lypXLcC9hyp569erB398fJiYmaNmyJdasWYPatWvj6dOncHBwQEhIiNAR1Uit4wCAZPcvffPmDY4dO4a9e/ciPDxcNLMNMiKFjgMgbcbG48ePoVQqUbFiRVFNOwXSiiFmlxgaM1LtOPjw4QMCAgLw5MkT1bXQvHlz0a67bdKkCQ4cOCCZpQpSG8G/desWDh8+jMjISCiVSlSoUAH29vai6aD7XKNGjZCcnAy5XA49PT0YGBionb969apAyYi0g2vE6adz8uRJTJs2Dfb29rh79y5SUlIApFV537Bhgyga4tkdxRDL/qXpypUrh2fPnsHExASVKlXC8ePHUbt2bZw/f16t4qxYxMXFqUYNChUqpNq+rkGDBqLZe/dLUtq/NL1Be+TIEQQFBcHY2BhdunSBp6en0NGyVKBAAdjY2CA+Ph7R0dEIDw8XOlKGqlWrJrrG9+fE0LjOiS9fo8RWMyQzBgYGkskKAD179sSRI0dUxdDEbu/evXBzc5PMCH7t2rUl8x4xc+ZMoSMQCYoNcfrprF+/Hq6urujevTv8/f1Vx+vXr4/169cLmOw/UVFRMDExgb29vegLxHzOyckJ9+/fR+PGjTFixAiMHDkSO3fuxKdPn0RVXTad1DoOpGTixIm4cOECDAwM0KlTJ4wePVq1baBYSbXjgL4PqXUcSNXHjx+xf/9+BAUFwdLSUmO2QU5mUmhDamqq6Jan/CgcHR2FjkAkKDbEKddmzJiBWbNmaVSYTkpKwvz580X34ebRo0cZjnoXLlwY8fHxAiTStGLFChw8eBBbt25Fy5Yt4eTkBFtbW1FtPZKRQYMGqb63trbG8ePHcefOHZQvXx5WVlbCBcuE1DoOpERHRwcrV64UbdGzL0mx40BKunfvnuFaa5lMBn19fZibm8PR0RFNmzYVIB1p04MHD1TvB2FhYWrnxLgeX2oj+FITGRmJgwcP4unTp5g1axZKlCiBixcvwsTEBFWrVhU6HlGe4hpxyrVq1aohMDAQJUqUUDv+5s0b2NjY4O7duwIly1ibNm0wf/58WFtbo169ejh8+DDMzMzg5+eHjRs34tixY0JHVImNjYWPjw98fX2RnJyMbt26oWfPntzqI49ERUWJuuOA8k56cT6pdBxIjYeHB/bs2QMLCwvVtNnQ0FA8ePAAjo6OCA8PR1BQEFavXo22bdsKnJYdB/SfBQsW4NChQ7C0tJTECL6UXL16FcOHD0f9+vURHByM48ePw8zMDBs3bsTt27exatUqoSMS5SlxD6+RqCUmJiIhIQFKpRLv379HYmKi6isuLg6XLl0S5bTqX375BQsXLsTNmzchk8kQGxuLw4cPw93dHX379hU6npoyZcpg1KhROHXqFDw8PHDz5k106tRJtZZZTBQKBby9vfHbb7+ha9eusLe3x8iRI+Hn5wep9PeZmpqiffv2om2EJyUlCR3hq4YPH46EhATVzxs3blSbafL27Vt07txZiGhZ8vDwgK2tLRvheeTt27cYPHgwdu/ejenTp2P69OnYtWsXhgwZguTkZGzZsgWjRo3CunXrhI4KAGjRogWePn2KAgUKoEmTJmjSpAkMDQ0RGRmJWrVq4eXLlxg8eLAoi/jR95U+gi+TyRAWFoa7d++qvsRcdFIKPDw8MGHCBGzduhV6enqq402bNsWNGzeEC0akJZyaTt+sYcOGkMlkkMlk6NChg8Z5mUyGsWPHCpAsayNGjIBCocCgQYOQnJyM/v37Q19fH0OGDMGAAQOEjqfh48ePOHHiBA4ePIhbt26hY8eOoquGq1QqMWrUKFy8eBFWVlawsLCAUqlEeHg4pk+fjlOnTonmA3Y6hUIBHx8fnD59GlFRUZDJZDA1NUXHjh3RrVs3UU6RbN68OTp27AgnJydRFBXMSGBgoKoAIgB4eXmhU6dOKFKkCIC0PW0fPXokVDwNw4cPx/Lly1U1ATZu3Ig+ffqo8r59+xb9+vUT1UyZdFLa/eH48ePw8fHRON6lSxf06NEDCxYsQJcuXbB161YB0mlK7zj4cjryunXrEB0djS1btmDVqlVYt26d4CP4mc1Ke/v2LaytrUXTWPyyKn1mxFSRHgB27NghdIQfVlhYGJYtW6Zx3MjICG/fvhUgEZF2sSFO32z79u1QKpX43//+h9WrV6tto6SnpwcTExOUKVNGwISa5HI5/vnnH/Tr1w9Dhw5FZGQkkpKSULlyZRQsWFDoeGpu3rwJb29v1VQtJycnjcdZLHx8fBAcHIxt27ZpTNUMCgqCs7Mz/Pz8RFN1VoodBwCwdOlS+Pj4YNCgQTA1NYWTkxO6desmqufZl7MfxD4bQmodB+mksPvD5/Lnz4+QkBCYm5urHQ8JCUH+/PkBpF0r6d8LTUodB5k9x1JSUtRGGYXGAph5J7OlFBnx9fXN4zTZV7hwYbx8+VK1e0m6e/fuiep9jSivsCFO36xx48YA0rbQMjY2Fn0hMQDQ1dXFkCFDcOzYMRQpUgRVqlQROlKGunTpgtevX6Nr167YuXOnaKdKp/P398fIkSMzXC/ZrFkzjBgxAkeOHBFNQ1xqHQfp2rZti7Zt2+LNmzc4dOgQfHx84OnpCRsbGzg5OcHOzk5j/SJlTWodB+mksPvD5/r374+5c+fi9u3bqFWrFoC0NeLpy1mAtE4RsWzHJoWOg+3btwNIm3124MABGBoaqs4pFAoEBwejUqVKQsXTILbCrV8jpRF8oWdlfKsuXbpg2bJl8PT0hEwmg0KhwPXr1+Hu7i6691+ivMBPbJRrpqamiI+Px61bt/D69WuND7JiezGtWrUqnj17ptEDKybh4eEoUKAADh06hMOHD2d6u6tXr2oxVeYePHiAqVOnZnq+ZcuWopreJ7WOgy8ZGRlh8ODBGDx4MHbs2IElS5bg4sWLKF68OPr06YMRI0YItnwhfbkK5S0p7P7wudGjR6NcuXLYtWuX6jWtYsWKmD9/Puzt7QEAffr0EU2dDil0HGzbtg1AWofA3r171TrD9fT0UK5cObi6ugqUTvqkNIKf3U4DsZk4cSLmzZuHVq1aQS6Xo0uXLpDL5ejatStGjRoldDyiPMeGOOXauXPnMGXKFCQlJaFQoUJqH8JlMpnoGjMTJkyAu7s7xo8fjxo1aqiNIgDQ2IZNCFIbOYiLi9NYn/i5EiVKiKrAnNQ6Dr706tUr+Pr6wtfXF9HR0ejQoQN69uyJ58+fY/Pmzbh58ya2bNkiSDalUonp06dDX18fQNr0WBcXF1XHwOfTwMVAqh0HJUuWRGRkJMqVK6d2/Pr166LtZHRwcICDg0Om5w0MDLSYJmtS6Dg4d+4cAGDAgAFYs2aNKJctSZnU3ofTtWnTBt7e3ihevLja8fj4eDg6OuLs2bMCJdOkr6+PBQsWwNnZGWFhYXj//j2qV6/OnWHop8GGOOWau7s7nJycMGnSJNEVEcvIiBEjAACjRo1S+wCuVCohk8lEUdjG0dFR6Ag5IpfLs5wSraurC7lcrsVEWZNax0G6U6dOwcfHB4GBgahcuTJ+/fVXODg4qNYzA2lTk4WsSv7ltZtRw0tMnXNS6zhIl777w6JFi1S7P4SEhMDd3R2jR48WOt4PQSodB2LuNCTti4qKgkKh0DiekpKC2NhYARJ9nbGxMYyNjfHp0yd8/PhR6DhEWsOGOOVabGwsBg4cKIlGOPDfujr6fr5szHxJbI0ZqXUcpJsxYwa6dOmC3bt3q/Zi/lLp0qUxcuRILSf7j9RGkaTWcZBOCrs/NG7cGCdOnICRkREaNWqU5cwDsSyzkSK5XA4fHx9cuXIFr1+/1miE8T3v5/D5SHdAQIDa1HqFQoGgoCCYmpoKEU3DuXPn8O7dO/To0UN1bP369Vi3bh3kcjmaNm2KFStWcJYH/fBkSqlUpiHRGjNmDDp37izKvYFzKiwsDBYWFkLHkJwZM2Zk63ZiaaRZWVmhZcuWWXYcBAQEiGJ2xOeSk5Ml0+FF2pGSkiLa3R98fX3RpUsX6Ovrf7VSsxhmAUm142DevHnw9fWFra0tSpUqpZF75syZAiUjbUov6iqTyTRq9eTLlw+mpqaYPn06WrduLUQ8NQMGDEDHjh3Rr18/AFDtZjNu3DhUrlwZK1asQMuWLbP92YJIqtgQp1w7cOAA1q1bhx49esDCwkJjpLFNmzYCJcuexMRE+Pv748CBA7hz547oGl/0/Umt4yAjHz9+RGpqqtoxMdQ3IO04dOgQ2rdvz46Z70hqHQfpmjRpgiVLlsDW1lboKCQCdnZ28Pb2hpGRkdBRMtWsWTP83//9H6pXrw4g7b324cOH+L//+z8AwMWLF7Fw4UKcOnVKyJhEeY4Nccq1rLbWEsua64wEBwfD29sbp06dQunSpdGuXTu0b98+0ym/REJLSkrCsmXLcPz4cbx7907jvFifa/T9NW3aFB8/foSdnR0cHBxgY2MDXV1doWORAGxsbLBjxw5UrFhR6ChE2VK7dm2cOHECJiYmAICePXuiY8eOGDZsGIC0de5dunTBjRs3BExJlPe4Rpxy7f79+0JHyLaXL1/C19cX3t7eSExMRKdOnZCSkoK1a9eKdk9xonRLly7F33//DRcXF0ybNg1z5sxBbGws9u3bh8mTJwsdj7QoMDAQAQEBOHr0KCZMmAADAwN07NgR9vb2qF+/vtDxVKysrL5alV4mk+Hu3btaSvTjGTJkCLZv3445c+ZIcgcA+v6CgoIQFBSUYc0AMcz0KlOmDMLDw2FiYoL379/j/v37ajPV3r17J5piiER5iQ1x+mmMHDkSwcHBaNWqFWbOnIkWLVpAV1cXe/fuFTqampy8SXL91M/l/PnzcHd3R5MmTTBjxgw0bNgQ5ubmMDExwZEjR7Ks8Ew/lnz58qF169Zo3bo1kpOTcfr0aRw9ehQDBw5E2bJlcebMGaEjAgDWrFmT6bkbN25gx44dGVZ4FopUOg6+3Df6ypUruHTpEqpWraqxPCyr/wf041mzZg3Wrl2LmjVrZlgzQAw6duyIRYsW4bfffsOlS5dQqlQp1K1bV3X+9u3bnOFBPwU2xCnXvvYm/+UHBqFcunQJAwYMQN++fUW9R2V2P+CJ8c2V8lZcXJxqj+hChQqptlhr0KABXF1dhYxGAipQoABsbGwQHx+P6OhohIeHCx1JpW3bthrHIiIi4OHhgfPnz8Pe3h7jxo0TIFnGpNJx8HlFbABo166dQElIbPbu3Qs3NzdR7vaQztnZGbGxsVi4cCFKliyJpUuXqi2tOXr0qCiKyhHlNTbEKde+HHn59OkTnj17Bl1dXZQvX140DfHdu3fD29sbPXr0QOXKldGtWzdRVnrnnrCUmXLlyuHZs2cwMTFBpUqVcPz4cdSuXRvnz5/X+GBOP770kfAjR44gKCgIxsbG6NKlCzw9PYWOlqHY2FisXr0afn5+sLGxgZ+fn+h2qZBKx4EYpheTOKWmpopqeUpGDAwMsGTJkkzP83MQ/SxYrI3yRGJiIqZPn462bduKrlc2KSkJx44dw8GDBxEaGgq5XI7p06fDycmJVadJ1LZt2wYdHR0MHDgQly9fxsiRI6FUKvHp0ydMnz4d//vf/4SOSFoyceJEXLhwAQYGBujUqRPs7e1Rr149oWNlKCEhAV5eXti5cyeqVauGKVOmoGHDhkLH+qovOw4mTZokuo4Doi8tXboUhoaGcHZ2FjrKVw0cOBBr1qxBkSJF1I4nJiZi9OjR2L59u0DJiLSDDXHKMw8ePMCoUaNw7tw5oaNkKiIiAt7e3jh8+DDi4+NhbW0NLy8vQTONGTMGixcvRqFChb46m4Br/35uUVFRuHPnDsqXL5/l7gX045k8ebIkqqVv2rQJmzdvRsmSJTFx4sQMR5zFRmodB927d89wqZJMJoO+vj7Mzc3h6OiIpk2bCpCOtG3BggU4dOgQLC0tYWlpqVEzQEy1ZaysrPDXX3+hRIkSasdfv36Nli1b4s6dOwIlI9IOTk2nPJOQkICEhAShY2SpUqVKmDZtGiZPnozz58/D29tb6EhqU4w53ZiyYmpqClNTU6FjkAA8PDyEjpAtHh4eMDAwQPny5eHn5wc/P78MbyeWTsXPOw48PDwk0XHQokUL7NmzBxYWFqrtN0NDQ/HgwQM4OjoiPDwcgwcPxurVqyXx76HcefDggapjNiwsTO2cWGrLfL7bzsOHD/Hy5UvVzwqFAgEBAShTpowQ0Yi0iiPilGtfTh1SKpV4+fIlDh06hMaNG0vmAyORmCkUCvj4+OD06dOIioqCTCaDqakpOnbsiG7duonmAxblreHDh2P58uWqTrqNGzeiT58+qqmdb9++Rb9+/XDs2DEhY6pMnz49W9emWNY8W1lZwcDAAM2aNctypoFYOg4AYPbs2TA2NtaYirxu3TpER0djwYIFWLVqFS5cuAAfHx+BUhL95/PdCTJqhhgYGGD27Nno2bOntqMRaRUb4pRrdnZ2aj/r6OjAyMgITZs2xYgRI7jumiiXlEolRo4ciYsXL8LKygqVKlWCUqlEeHg4wsLCYGdnh3Xr1gkdk7SgWrVqCAwMVE3lrF+/Pg4dOqSqpv/q1Su0aNEC9+7dEzKmZEmt4wBI2zXBx8cH5ubmasefPHmCHj164Pr16wgPD0fPnj0REhIiUEqi/0RFRUGpVKJt27Y4cOAAjIyMVOf09PRQokQJUS+5IfpeODWdck3Ma8B/BCdOnMDx48cRExOD1NRUtXO+vr4CpSJt8vHxQXBwMLZt26axzjMoKAjOzs7w8/MTXWFE+v6+7DtnX/r3tXjxYqEj5Fj+/PkREhKi0RAPCQlB/vz5AaRdJ+nf048puzvUiGE2R/qSqs+nqBP9jNgQp+/q+fPnAICyZcsKnOTHsH37dqxYsQI9evTA2bNn0aNHDzx9+hShoaHo16+f0PFIS/z9/TFy5MgMiy01a9YMI0aMwJEjR9gQJ/oJ9e/fH3PnzsXt27dRq1YtAGlrxL29vfHbb78BAAIDA1GtWjUhY1Iek2JNGV9fXxQvXhytWrUCACxZsgT79+9HlSpV4OHhwRoo9MNjQ5xyTaFQYN26ddi6dSuSkpIAAAULFsTgwYMxatQo6OjoCJxQunbv3o358+eja9eu8PHxwfDhw2FmZgZPT0/ExcUJHY+05MGDB5g6dWqm51u2bMl9V38SMpmM9QBIzejRo1GuXDns2rULhw8fBgBUrFgR8+fPh729PQCgT58+6Nu3r5AxKY+JablEdnl5ecHFxQVA2gyOXbt2YebMmTh//jzc3NxEMXpPlJfYEKdcW7FiBby9vTF58mTUr18fAHD9+nWsWbMGKSkpmDhxosAJpSsmJka1N7CBgQHev38PAOjWrRt69+6NOXPmCBmPtCQuLk5je5fPlShRgh0zPwmlUonp06dDX18fAJCSkgIXFxcUKFBA9TP9fBwcHODg4JDpeQMDAy2mIcqe58+fq5ZUnDlzBh06dEDv3r1Rv359DBgwQOB0RHmPDXHKNV9fXyxYsABt2rRRHbOyskKZMmXg6urKhngulCxZEnFxcTA1NYWxsTFu3LgBKysrPHv2jGtDfyJyuVxjL9jP6erqQi6XazERCcXR0VHt54waX1yiQERSYGhoiHfv3sHExAR//fUXBg0aBCCt7sHHjx+FDUekBWyIU67FxcWhUqVKGscrVarEUbpcatq0Kc6dO4fq1avDyckJbm5uOHnyJG7fvo127doJHY+05MtR0C9xFPTnIcXpp/T9NW7cGCdOnICRkREaNWqU5XKFq1evajEZUfZZW1tj9uzZqFatGh4/fgxbW1sAwL///sv14fRTYEOccs3Kygq7du3C7Nmz1Y7v2rULVlZWAqX6McyfPx8KhQIA0K9fPxQrVgwhISGws7ND7969BU5H2vLlKGhGOApK9POYMWOGamvQmTNnCpyG6NvMnTsXK1euRExMDFatWoXixYsDAO7cuYMuXboInI4o73Efccq1q1ev4rfffoOxsTHq1q0LALhx4wZiYmKwadMmNGzYUNiAREREREREIsKGOH0XsbGx2L17NyIiIgCkTUv/9ddfUaZMGYGTSVN0dHS2bmdiYpLHSYiIiIi+v+Dg4CzPN2rUSEtJiITBhjiRCH2+32v6U/TzNYBKpRIymQz37t3TejYiIhKelZXVV7eyk8lkuHv3rpYSEeVMRssXP7+m+RmHfnRcI065dvDgQRgaGqJTp05qx48fP44PHz5ka30rqZPJZChbtiwcHR3RunXrLCtmExHRzyerPZZv3LiBHTt2qGqMEInRlyPiqampuHfvHjw9PbnjDv0UOCJOudahQwe4urqiadOmasevXr2KP/74AydPnhQomXS9fPkSvr6+8PHxQUJCAhwcHNCzZ09UrlxZ6GhERCRSERER8PDwwPnz52Fvb49x48ax+jRJztWrV7F48WL4+PgIHYUoT+kIHYCkLzo6GuXKldM4bmJigpiYGAESSV+pUqUwYsQInDhxAp6enoiLi0OvXr3wyy+/YP/+/RzlICIildjYWMyePRsODg6Qy+Xw8/ODu7s7G+EkSSVKlMCjR4+EjkGU5zjflXKtRIkSePDggUZj/P79+yhWrJgwoX4gDRs2RMOGDTFp0iRMmjQJc+fORfv27fnYEhH95BISEuDl5YWdO3eiWrVq2LZtG3cqIcm4f/++xrEXL15g06ZN3P6WfgpsiFOudenSBQsXLkTBggVVFS6vXr2KRYsWcR/I7+Cff/7BwYMHceLECVSsWBFz5sxBkSJFhI5FREQC2rRpEzZv3oySJUvCw8MDbdu2FToSUY50794dMpkMX66SrVu3LhYuXChQKiLt4RpxyrWUlBRMmzYNJ06cUBUVUygU6NatG1xdXaGvry9wQul58eIF/Pz84OPjg/j4eNjb28PJyQkWFhZCRyMiIhGwsrKCgYEBmjVrBl1d3Uxvl1VRNyIhRUVFqf2so6MDIyMj5M+fX6BERNrFhjh9N48fP8a9e/dgYGAACwsLrk3LhRo1aqBMmTLo3r077OzsMq2azqlbREQ/p+nTp391+zIAcHNz00IaIiLKKTbEiUTo8wZ2+getL5+q3EeciIiIpCYoKAjz58/H/v37UahQIbVzCQkJ6NOnD1xdXVnvgH54XCNOuTZ27FjUqlULI0aMUDu+adMmhIaGYtWqVQIlk66zZ88KHYGIiIjou/vzzz/xyy+/aDTCAaBw4cLo3bs3tm7dyoY4/fDYEKdcCw4OxpgxYzSOt2zZElu3bhUgkfS9f/+e68GJiIjoh/PgwQNMnTo10/PNmzfHli1btJiISBjcR5xyLSkpCXp6ehrH8+XLh8TERAESSZ+DgwN69eqF/fv38zEkIiKiH8arV68yrX0DpH1+fPPmjRYTEQmDDXHKNQsLCxw7dkzj+LFjx1ClShUBEknfzp07UaVKFSxevBgtWrTA77//jmvXrgkdi4iIiChXypQpg3///TfT8w8ePECpUqW0mIhIGCzWRrl27tw5jB07Fl27dkXTpk0BpBXi8Pf3h6enJ/c2zYWkpCQcP34cvr6+uHbtGszNzeHk5ARHR0e+SREREZHkzJ8/H1evXoW3t7fGVmUfPnxAr1690KRJE8yePVughETawYY4fRcXLlyAl5cX7t+/j/z588PS0hJjxoxB48aNhY72w3jy5Al8fHxw6NAhvHr1CjY2NvDy8hI6FhEREVG2vXr1Co6OjtDV1UW/fv1QsWJFAEBERAR2794NuVwOX19flCxZUuCkRHmLDXHKU2FhYSw69h0lJSXhyJEjWL58OeLj47l9GREREUlOVFQUXFxcEBgYqNqeVSaTwcbGBnPmzIGZmZnACYnyHhvi9N0lJibC398fBw4cwJ07d9hY/A6Cg4Nx8OBBnDx5Ejo6OujUqRN69uyJunXrCh2NiIiI6JvExcXhyZMnAABzc3MULVpU4ERE2sOGOH03wcHBOHDgAE6fPo3SpUujXbt2aN++PWrXri10NEmKjY2Fr68vfH198eTJE9SrVw89e/ZEp06dYGhoKHQ8IiIiIiL6RtxHnHLl5cuX8PX1hbe3NxITE9GpUyekpKRg7dq1rJieC8OGDUNQUBCKFy+Obt26wcnJCZUqVRI6FhERERERfQdsiNM3GzlyJIKDg9GqVSvMnDkTLVq0gK6uLvbu3St0NMnLly8fPD090bp1a+jq6godh4iIiIiIviM2xOmbXbp0CQMGDEDfvn1RoUIFoeP8UFgNnYiIiIjox6UjdACSrt27d+P9+/fo0aMHevXqhZ07d+LNmzdCxyIiIiIiIhI1FmujXEtKSsKxY8dw8OBBhIaGQi6XY/r06XByckKhQoWEjkdERERERCQqbIjTdxUREQFvb28cPnwY8fHxsLa25jRrIiIiIiKiz7AhTnlCLpfj/Pnz8Pb2ZkOciIiIiIjoM2yIExEREREREWkRi7URERERERERaREb4kRERERERERaxIY4ERERERERkRaxIU5ERERERESkRWyIExEREREREWkRG+JEREREREREWsSGOBEREREREZEWsSFOREREREREpEX/D9KXmhsU3oOoAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
    " + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/YAAAMKCAYAAAAvSN82AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZIklEQVR4nO3dd5RV5cH/7S8MIN1IsaCo2EaJINgILRgs0YgaMGrUYIk1thhj1xhQH7FHRY08xqBiL1iwRn1+MRowKpGoUVQEFcRCsQLKMDPvHy7O60gREBg2XtdarMXZ5z773HvmTPnMLqdOdXV1dQAAAIBCqlvbEwAAAACWnLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACq1fbEwBYFoYPH57TTjutxrIWLVpko402yqGHHppevXrV0swAAGDpEvbASu24447LOuusk+rq6kybNi333HNPDj/88FxzzTX5yU9+UtvTAwCA70zYAyu1H//4x+nQoUPp9i9+8Yt07949DzzwgLAHAGCl4Bx74HulefPmWWWVVVKv3rx/1xw8eHDKy8vn+XfqqafOM+brZsyYke7du6e8vDz/+te/atx3yy23pE+fPtliiy1qrPORRx4pjenfv3/69Okzz3yuu+66lJeXZ9KkSaVlvXv3rjGfJHn44YdTXl6e3r1711heVVWV66+/Prvuums6dOiQbt265ayzzsonn3zyrR+nU089NeXl5dljjz3muW/IkCEpLy9P586d57nvvvvuS79+/dKxY8dsu+22+d3vfpf33nuvdP/s2bPzq1/9Kttvv32mT59eWj6/j+t1112X9u3b58knn5zneeb3efr6x3/GjBnp1KlTzj333Hke+/7772ezzTbLkCFDknx12kZ5eXleeumlGuOmT5+e8vLyDB48uLTs3XffzYABA/LTn/40HTt2TJcuXXLcccfV+Bx9fZ3PPfdczjrrrHTp0iVbbrllTj755Pl+/G+++ebsuuuu2XzzzdOjR48MHDgwn3766TzjFmXbk+Rf//rXPK+zuTp37jzPa2jixIk57rjjsu2222aLLbbI3nvvnb///e81xsxd5/z+Pf/886Vxr7zySg499NBsueWW6dy5cw488MCMGTNmvtvydZMmTVrg+svLy9O/f/95HjP3dfrNf1//nI0dOzannnpqtt9++3To0CHdu3fPaaedlo8++qjGuua+Br/+ukySl156KeXl5Rk+fPhir3N+Fudz8/HHH+eCCy7Ibrvtls6dO2fLLbfMoYcemrFjx37r8yTJnDlzctVVV2WHHXbI5ptvnt69e+fSSy/N7NmzS2N69+690I977969v/Vz883vk4vzevr66/aDDz5I7969069fv8yYMWOh2/bNz/OcOXNy2GGHZdttt824ceNqjJ379biw19TcMV//Wq6qqspuu+02z+c/Sd58883SNnbo0CH9+vXLE088Md/n/bbvLQv62bOgr++HH3649H22S5cuOfHEE/PBBx/UeI5vfm1ss8026d+/f42vVWDlYo89sFL7/PPPS7+oT5s2LcOGDcvMmTOz++67L/AxF154Yen/gwYN+tbnGDp0aKZOnTrP8oceeigDBw7Mtttum1/96ldp1KhRxo8fn2uuuWYJtmT+5syZk8suu2y+95111lm555570q9fv/Tv3z+TJk3KzTffnFdeeSW33npr6tevv9B116tXL+PGjcsrr7yS9u3bl5YPHz48q6yyyjzj//znP+fyyy/PLrvskl/84heZPn16brrppuy///65995707x58zRo0CCDBw/OPvvsk6OPPjo33HBDGjRoMM+6Hn/88Vx88cU5/fTTF3g9hO7du5f+8PDSSy9l2LBhpfuaNGmSHXbYIQ8//HBOO+20lJWVle574IEHUl1dnd12222h2z8/L730Ul544YXsuuuuWXPNNfPuu+/m1ltvzQEHHJAHH3wwjRo1qjH+7LPPTvPmzXPMMcdkwoQJufXWWzN58uQMGzYsderUSfLVL/VXXnllunXrln333bc07qWXXlrg52lh2764pk6dml/+8peZNWtW+vfvn9VWWy333HNPfvOb3+SKK67IjjvuWGN8//79axwFkyQbbLBBkuSNN97I/vvvnyZNmuTQQw9NvXr1cvvtt6d///656aabssUWW3zrfPr06ZMf//jHNZZdeumlCxy/2mqr1biexsknn1zj/pEjR2bixInp169fWrdunTfeeCN33HFHxo0blzvuuKP0eVgcy2Kd8zNx4sQ8/vjj2XnnnbPOOutk6tSpuf322/OrX/0qDz74YNZYY42FPv7MM8/MPffck5/+9Kc5+OCD8+KLL2bIkCF58803c9VVVyVJTj/99FJEz/3+dOSRR5Y+p02aNEmLFi1qfF987LHH8thjj9VYtu666yZZ/NfTXJ999lkOO+yw1KtXL9dee22aNGmyWB+rM888M88++2z++te/ZqONNprvmNNOOy2rrbZakizS9+H77rsvr7/++jzL33jjjey7775ZY401cthhh6Vx48Z5+OGHc/TRR2fw4MEL3MYF2XHHHUsfv+Srnzsbbrhh9t5779KyDTfcMMn/f/2YDh065IQTTsi0adNy44035t///nfp++xcX//a+OCDD3LjjTfmsMMOy5NPPlljHLByEPbASu2ggw6qcbtBgwY577zz0r1793nGzpkzJ3Xq1Kmxl/ryyy9f6PqnT5+ev/71r/nxj3+cf/zjHzXue+KJJ9K8efP85S9/KYXwv/71r6Ua9nfccUcmT56cLl261NjT9Pzzz+fOO+/MxRdfXCNgu3TpkkMPPTSPPPLIt4ZtgwYN0qVLl9x9992lsH/++efz/vvvp2fPnhk5cmRp7LvvvpvBgwfn+OOPz5FHHllavtNOO6Vv37655ZZbSstXW221DBkyJPvss0/OOOOMXHTRRTWe99VXX81JJ52Ufffdd757aSsqKpIk7dq1K32uVllllXni9uc//3lGjBiRf/7znzVC8f77788222yTNm3aLHT752e77bbLzjvvXGPZT37yk+yzzz559NFH8/Of/7zGffXr18/1119fivM2bdrkoosuyv/93/+VjloYMmRIevTokWuvvTZ16351IN0GG2yQs88+O/fff3/23HPPxd72xfG///u/mTp1am6++eZsvfXWSZK99toru+++ewYNGpTtt9++NK8k2Xrrref5GMx12WWXpaKiIrfeemvatm2b5KvPw84775yLLrooN91007fOp3379vMcKXLttdfOd+ycOXPSpEmTGuO/Gfb77bdffv3rX9dY1qlTp5xwwgkZPXp0aZsXx7JY5/yUl5fn0UcfrfHx32OPPbLLLrvkrrvuytFHH73Ax44dOzb33HNP9tprr9KRK/vvv39atGiRv/71r3nmmWfyox/9KDvssEPpMXO/P3Xr1i1dunSpsb6vf4zfeeedPPbYY/M9omdxX0/JV0fyHHXUUZk6dWpuu+22tGzZcjE+Sl/94ef+++/PFVdcka222mqe+ysrK5N89f1o7tf9XXfdtdB1zp49O1dcccV8v7f/z//8T9Zaa63cfffdpT9M7rffftl3331z8cUXL3bYb7rpptl0001Lty+//PK0bdt2no9vRUVFLr744myyySa5+eabSz9XttpqqxxxxBG5/vrrc9xxx5XGN27cuMY6fvCDH+QPf/hD3nrrrXTs2HGx5gis+ByKD6zUzjrrrAwdOjRDhw7NRRddlC5duuTMM8/M3/72t3nGVlRUzHfv8cJcffXVadas2XwDdMaMGWnYsOF8925/U2VlZaZPn17j36xZsxb6mFmzZuXqq6/Or371q3ki9ZFHHkmzZs3SvXv3Guv84Q9/mMaNG89zysCC/OIXv8gDDzxQOnR3+PDh2XHHHdOsWbMa4x577LFUVVVll112qfF8rVq1ynrrrTfP87Vr1y5XXHFFRowYkauvvrq0/MMPP8yRRx6ZTp065YwzzpjvnL788ssk+dbPVbdu3bL66qtnxIgRpWWvv/56XnvttfkesTH36I65/+Z3yHzDhg1L/6+oqMhHH32UddddN82bN88rr7wyz/h99tmnxh73fffdN/Xq1SudXjBy5MhUVFTkgAMOqBE7e+21V5o2bTrPaQiLuu1zzZgxY57X1Tc9+eST6dixY40YbdKkSfbZZ5+8++678xzWvCCVlZX55z//mR122KEU9Umy+uqrp0+fPhk9enQ+//zzRVrXolqUr9mvf86+/PLLTJ8+vXTkwH//+995xn/yySc1Pl7zm/PirnN+FuVz06BBg9LrorKyMh999FEaN26cdu3azff19nVzXzsHH3xwjeVz/yAxv1NclobFfT1VVVXl5JNPzn/+85/87//+b40914vipptuypAhQ3LGGWfU+CPF1839/rU4399vvvnmfPzxxznmmGNqLP/444/zzDPPZJdddqnxPeOjjz5Kjx498tZbb81zWPyifG9ZFC+//HKmTZuWfffdt8bPle222y4bbLDBPKc7VFVVlZ7z1Vdfzb333pvWrVuX9v4DKxd77IGVWseOHWscNtynT5/8/Oc/z9lnn53tttuuxi96n332WRo3brzI6544cWJuu+22DBgwYL7x3qlTp/y///f/Mnjw4Oy5555p2LBhPvvss/mua/z48enatetibNlXpwB8+eWXOeKII3L++efXuO/tt9/OZ599tsB1Tps2bZGeo1evXikrK8vjjz+e7bbbLg8//HCuvvrq3HfffTXGvfXWW6murs5OO+003/XM75oG06dPT3V1da644or88Ic/TJIcddRRef/997PqqqsucE5zz2P+5h8Xvqlu3brZbbfdcuutt2bWrFlp1KhRRowYkVVWWWW+e5y/eXTH/HzxxRcZMmRIhg8fng8++CDV1dWl++b3uV1vvfVq3G7SpElat26dd999N0kyefLkJP//oexzNWjQIG3bti2Nm2tRt32u008//VvHTJ48eb6HyM+d0+TJk7PJJpt863rm/jGqXbt289y34YYbpqqqKu+991423njjRZj5olmUr9mPP/44V155ZR566KF5Xvfz+5wt6GiE77LO+VmUz01VVVVuvPHG3HLLLZk0aVJpz3Py1d7XhXn33XdTt27deUK5devWad68+TyvraVlcV9Pl112WcaMGZM6derkiy++WKzn+sc//pGXX345SRYay3M/J4v6/f2zzz7LNddck4MOOmieowfeeeedVFdX5/LLL1/gEV3Tpk2rcZrEonxvWRRzv1/M72tsgw02yOjRo2sse++992r8DGjdunUGDx682Kc5AMUg7IHvlbp166ZLly658cYb8/bbb9eIjClTpqR169aLvK7LLrss66+/fvr27TvfCxIddNBBmTBhQq6++upceeWVC13X2muvPc+F3h555JHcfvvt8x0/ffr0XHfddTniiCPm+wt+VVVVWrZsmYsvvni+j2/RosVC5zNX/fr1s/vuu2f48OH54osvstpqq+VHP/rRPGFfVVWVOnXq5Nprr61xPvtc3/yFesaMGTn//PPTp0+ftG7dOkOHDk3yVYxcffXVOe644zJs2LD5/kI8N0jWXnvtb53/z3/+81x33XV5/PHH06dPnzzwwAPZbrvt5hvGZ511Vo1fmD///PMce+yxNcacc845GT58eA488MB06tQpzZo1S506dfK73/2uRuQvK4uz7Uly9NFHz3NY+NdPlSi6KVOmfOvH4vjjj88LL7yQQw45JJtttlkaN26cqqqqHHroofP9nA0ePDhNmzYt3Z4wYULOPvvs77TO+VmUz80111yTyy+/PHvuuWd++9vfZtVVV03dunVz3nnnLfLzLK3z/ZeV//znPzn//PNz00035Q9/+EPuu+++Rd6z/uKLL2bvvfdOo0aN8uc//zk777zzPH8kS746779x48aLHPZzT4s55JBD8vHHH9e4r6qqKslXRz707Nlzvo//5h9TFuV7y7LQqlWr0qlOn332We6+++4ceuihueWWW+a5WClQfMIe+N6Zu9dr5syZNZa/+eabNS4StzCvvPJKHnzwwVx11VXzDdnkq8N1zznnnLzyyitp1qxZjjnmmIwdOzYXXHDBPGMbN26cbt261Vj26quvLvD5//znP6dJkyY54IAD5nv/uuuum1GjRmXLLbescdjwkthzzz2zxx575P3338/Pf/7z+YbCuuuum+rq6qyzzjrz3Zv0TYMHD86MGTNyyimnpFWrVnnjjTfy9NNP56qrrsqWW26ZAw44IIMHD87PfvazrL766jUeO3cP3eabb/6tz7PJJpukffv2GTFiRNZcc81Mnjw5Z5555nzHfvPojvkdGj33PPqvXwH8yy+/XOBe2rfffjs/+tGPSrdnzJiRKVOmlM75n3sKxfjx42scvj579uxMmjRpntfE4mx78tX2f3Md33y9tmnTJhMmTJjnsePHj68xx2/TokWLNGrUaIHrqlu3btZaa61FWteiqKioyDvvvLPAuEq+2os7atSoHHvssTUOqX7rrbcW+Jitt966xh++vvlHoCVZ5/wsyufm0UcfTZcuXXLeeefVWP7pp5+WLgK3IGuvvXaqqqry9ttv1zj0eurUqfn0008X+Y9Di2txX0/HHnts+vbtm8022yx77rlnrr766hx//PGL9Fzdu3fPgAED8uWXX+bxxx/PWWedVePClHONGzdukQ8///DDD3PjjTfmhBNOSNOmTecJ+7lfp/Xr15/n87cgi/K9ZVHM/dhNmDBhnqOxJkyYMM/HdpVVVqkxx969e2fbbbfNzTffPM8fq4Dic4498L1SUVGRf/7zn6lfv36NX/ReeumlvPPOOzUibGEuueSSbLnlltl+++0XOu7SSy/Ne++9l4suuijdunUrHXL+Xcy9Evuxxx67wGjfZZddUllZWeP89bnmzJmzwLdSm5+NN944P/zhDzNu3Lj07dt3vmN22mmnlJWV5corr5xnT2J1dXWNtwF7/fXXM2zYsBx77LFZffXVU7du3XTq1ClJsuWWWyZJjjnmmDRp0mSeUwySr2KnXbt2i/yL+h577JF//vOfueGGG/KDH/xgniuuL475/RFn2LBhNQ6R/rrbb7+9dMG7JLn11lszZ86c0hy6deuW+vXrZ9iwYTU+bnfddVc+++yzed4RYHG3fVH06tUrL774Yl544YXSspkzZ+aOO+7I2muvvcArjH9TWVlZunfvnieeeKLGhRynTp2aBx54IFtttVWNPeHf1RNPPJEvvvhioV+zC/qj2w033LDEz7ss1rmw5/rm19PDDz88zznc8zP3tfPNec09OmZB7zbxXS3u62nuUQubbrppfv3rX+cvf/nLfK9EPz+dO3dOWVlZGjdunIEDB+a5557LHXfcUWPMe++9l3//+9+L/L39qquuSsuWLfPLX/5yvve3bNky2267bW6//fZ8+OGH89y/pNG+KDbffPO0bNkyt912W423LHzyySfz5ptvZrvttlvo4ysqKlJZWVnjscDKwx57YKX2j3/8o7SnaPr06RkxYkTeeuutHH744aXIuPLKKzNs2LC0bdt2nquaL8jTTz+dW2+9daFjRo4cmeuvvz4XXnjhUt079uyzz2bDDTdMv379Fjhm2223zT777JMhQ4bk1VdfTffu3VO/fv289dZbeeSRR3LGGWcs0rnEc91www2ZPXv2As/rXXfddXP88cfnkksuybvvvpsddtghTZo0yaRJk/L4449n7733ziGHHJIkGThwYDbaaKP5XnBwriZNmuS0007L8ccfn7322itdu3bNxIkTc+211+bFF1/MTjvtVON0gLnvEz1y5Mi0adOmxt7vPn365KKLLspjjz2Wfffd91vf5m9htttuu9x3331p2rRpNtpoo4wZMyYjR45c4MeloqIiBx10UHbZZZdMmDAht9xyS7baaqvSH4RatGiRI444IldeeWUOPfTQ9O7duzSuQ4cOpYv8Lem2L4rDDz88Dz74YA477LD0798/q666au69995MmjQpgwcPnucK5gtz/PHHZ+TIkdlvv/2y3377paysLLfffntmz56dk046abHmtSCzZs3KFVdckVtvvTWdO3dOjx49Fji2adOm2WabbfKXv/wlFRUVWWONNfLPf/6zxh8eFteyWOeCbLfddrnqqqty2mmnpXPnznn99dczYsSIRfocb7rppunbt29uv/32fPrpp9lmm23y0ksv5Z577skOO+ywyKG7uL7L6+mYY47J3/72t/zhD3/IrbfeulivvZ49e2b33XfPRRddlJ/85CdZffXVc8stt+R///d/06hRo4V+v/m6p59+OhdffPFCTwf44x//mP322y+77bZb9t5777Rt2zZTp07NmDFj8v777+f+++9f5Hkvjvr16+fEE0/Maaedll/96lfZddddS293t/baa89z6tLMmTNL3ys+//zz3Hffffnyyy8XeJFBoNiEPbBSu+KKK0r/X2WVVbLBBhtkwIABNfbG3Hnnndl+++1z/PHHz/M+5Auy/fbbl/Yuz89HH32UU045Jbvuuut8r8D+XZ1wwgkL3HM419lnn53NN988t912W/70pz+lrKwsa6+9dnbfffeFzn1+FuX81MMPPzzrr79+rr/++tJ7ZK+55prp3r17evfunSS59957M3r06Nxyyy3fOv9ddtkld955Z84+++zcd999ee6550rXHPjb3/4233c2uOaaa7LeeuvVCJ9WrVqle/fuefLJJ+f79lyL44wzzkjdunUzYsSIfPnll9lyyy0zdOjQHHroofMdf9ZZZ2XEiBG54oorUlFRkV133TVnnnlmjUOFjz322LRo0SI33XRTBg0alFVXXTV77713TjjhhNIfIZZ02xdFq1atctttt5Xeju7LL79MeXl5rrnmmm/dA/hNG2+8cW6++eZccsklGTJkSKqrq9OxY8dcdNFFi/Qe9ovi008/zcMPP5y99947xx133LfG3yWXXJJzzjknt9xyS6qrq9O9e/dce+21Cz2E/9ssi3XOz5FHHplZs2ZlxIgReeihh9K+ffsMGTIkl1xyySI9/txzz80666yTe+65J48//nhatWqVI444Yp4rvS9N3+X1tMoqq+Scc87JAQcckJtuummBpxotyOmnn56nn346Z599dq688srcc8892WKLLfLb3/62xsXsFmazzTZLnz59Fjpmo402yt133116jo8//jgtWrRI+/btF/oWhEtDv3790rBhw1x77bW5+OKL07hx4+ywww456aST5nlv+o8++qj09o9z303hwgsvFPawkqpTvTyu9gMA39Hw4cNz5ZVX5v/+7/8WOKZ///7p27fvPEczHH300Xn99dfz2GOPLetpJvlqrqeddlruuuuuGufWfpf1Lem2AwArP+fYA7BS+/DDD5fK3noAgBWVQ/EBKIR11133Ww8h7datW+mtpiZOnJh///vfueuuu1KvXr3ss88+y2Oay8TibjsA8P3iUHwAVkpzD4dv06ZNTjnllMW6WODSeu6ldSg+AMDCCHsAAAAoMOfYAwAAQIEJewAAACgwF89bBFVVVZkzZ07q1q1b472HAQAAYFmorq5OVVVV6tWrl7p1F75PXtgvgjlz5uSll16q7WkAAADwPdOhQ4c0aNBgoWOE/SKY+9eRDh06pKysrJZnAwAAwMqusrIyL7300rfurU+E/SKZe/h9WVmZsAcAAGC5WZTTwV08DwAAAApM2AMAAECBCXsAAAAoMOfYAwAAsEDV1dWZM2dOKisra3sqK5369esvleu4CXsAAADma/bs2Xnvvfcyc+bM2p7KSqlOnTpZZ5110rRp0++0HmEPAADAPKqqqjJhwoSUlZWlTZs2adCgwSJdoZ1FU11dnSlTpmTSpEnZeOONv9Oee2EPAADAPGbPnp2qqqq0bds2jRs3ru3prJRat26dt956KxUVFd8p7F08DwAAgAWqW1c2LitL6wgInyEAAAAoMGEPAAAABSbsAQAAWOGUl5fn8ccfr+1pFIKL5wEAALDcTZkyJddcc03+/ve/54MPPkjLli2z2Wab5cADD0zXrl1rdW5jx47N4MGD8+9//zsVFRXp1q1bBgwYkBYtWtTqvBbEHnsAAACWq0mTJqVfv3555plncvLJJ2fEiBH5y1/+ki5dumTgwIHL7Hlnz569SONGjx6dLbfcMjfeeGOuu+66vPbaa7nooouW2by+K2EPAADAcjVw4MDUqVMnd955Z37605+mXbt22XjjjXPwwQfnjjvuKI376KOPcvTRR2eLLbbITjvtlCeeeKJ03/Dhw7P11lvXWO/jjz+e8vLy0u3Bgwdnjz32yJ133pnevXunY8eOSb46zP/OO+9c4Lr333//HHLIIdl4442zxRZbpGfPnnnvvfeW1YfjOxP2AAAALDcff/xxnnrqqey///5p3LjxPPc3b9689P8rr7wyu+yyS+6///78+Mc/zoknnpiPP/54sZ7vnXfeyaOPPporr7wy995772Kve+zYsbn33nuz5557LtbzLk/CHgAAgOXmnXfeSXV1dTbYYINvHdu3b9/06dMn6623Xk444YTMnDkzL7744mI9X0VFRS688MK0b98+m2666WKte+zYsTnggAPym9/8JrvttttiPe/yJOwBAABYbqqrqxd57NcPq2/cuHGaNm2a6dOnL9bztWnTZr4XvVuUdV966aXp0aNHDjnkkMV6zuVN2AMAALDcrLfeeqlTp07Gjx//rWPr169f43adOnVSVVWVJKlbt+48fySoqKiYZx2NGjVa7HXP9eGHH6Zdu3bfOs/aJuwBAABYbn7wgx+kR48eufnmmzNz5sx57v/0008XaT2rrbZaZsyYUWMdY8eOXWrzTJKLL744e++991Jd57Ig7AEAAFiu/vjHP6aqqip77bVXHn300bz11lt58803c+ONN2afffZZpHVsscUWadSoUS699NK88847GTFiRIYPH75U53nOOefkscceW6rrXBaEPQAAAMtV27ZtM3z48HTp0iUXXHBB+vTpk4MPPjijRo3KgAEDFmkdP/jBD3LRRRflH//4R3bbbbc8+OCDOfbYY5fqPCdOnJiPPvpoqa5zWahTvThXLvieqqyszJgxY9KpU6eUlZXV9nQAAACWuS+++CITJkxIu3bt0rBhw9qezkppYR/jxelQe+wBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7L8HKquqansKsMx5nQMA8H1Vr7YnwLJXVrduzrzlqUz48JPangosE+1WXzXn7teztqcBAPC9UVlVlbK6y28/8fJ6vuHDh+e8887L888/v8yfa2kS9t8TEz78JGPfnV7b0wAAAFYCy3Pn4ZLsxDn11FNzzz33zLP8b3/7W9Zbb72lNbUVhrAHAABgsa3oOw979uyZQYMG1VjWokWLWprNsuUcewAAAFY6DRo0SOvWrWv8u/HGG7PbbrulU6dO6dWrVwYMGJAZM2YscB1jx45N//7907lz52y55Zbp169fXnrppdL9zz//fPbbb7907NgxvXr1yrnnnpuZM2cuj82rQdgDAADwvVCnTp2cccYZeeCBB3L++efnmWeeyUUXXbTA8SeeeGLWXHPN3HXXXRk+fHgOO+yw1K9fP0nyzjvv5LDDDstOO+2U+++/P3/6058yevTonHPOOctrc0ocig8AAMBK5+9//3s6d+5cut2zZ89cccUVpdvrrLNOjj/++Pzxj3/MgAED5ruOyZMn55BDDsmGG26YJFl//fVL9w0ZMiS77bZbDjrooNJ9Z5xxRvr3758BAwZklVVWWerbtCDCHgAAgJVOly5dagR7o0aNMnLkyAwZMiTjx4/P559/nsrKynz55ZeZNWtWGjVqNM86Dj744Jx55pm577770q1bt+y8885Zd911k3x1mP5rr72WESNGlMZXV1enqqoqkyZNKv0xYHkQ9gAAAKx0GjVqVOMK+JMmTcoRRxyRfffdN7/73e+y6qqrZvTo0TnjjDNSUVEx37A/9thj06dPnzz55JP5xz/+kSuuuCJ/+tOfsuOOO2bmzJn55S9/mf79+8/zuLXWWmuZbts3CXsAAABWev/9739TXV2dU089NXXrfnW5uYcffvhbH9euXbu0a9cuBx10UE444YTcfffd2XHHHdO+ffuMGzduhXj7PGEPAADAYmu3+qqFep711lsvFRUVGTZsWHr37p3Ro0fntttuW+D4L774IhdeeGF++tOfZp111sn777+fl156KTvttFOS5LDDDss+++yTs88+O3vttVcaNWqUcePGZeTIkTnrrLOSJJdcckk++OCDXHjhhUtlGxZE2AMAALBYKquqcu5+PZfr85XV/W5v6rbpppvmtNNOy7XXXptLL700W2+9dU444YSccsop8x1ft27dfPzxxznllFMyderUrLbaatlpp51y3HHHldY3bNiwXHbZZdlvv/2SJG3bts3Pfvaz0jqmTJmS99577zvNe1HUqa6url7mz1JwlZWVGTNmTDp16pSysrLans4S2f+yBzL23em1PQ1YJjZdu0VuPr5PbU8DAGCl8sUXX2TChAlp165dGjZsWNvTWSkt7GO8OB3qfewBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAACLpbqqcqV+vqKpV9sTAAAAoFjq1C3L1OGnpmLq+GX+XPVbbZBW/c5f5PHl5eULvf+YY47Jscce+12ntUIR9gAAACy2iqnjU/H+q7U9jXk8/fTTpf8/9NBDueKKK/LII4+UljVu3Lj0/+rq6lRWVqZevWKnsUPxAQAAWGm0bt269K9Zs2apU6dO6fb48eOz5ZZb5sknn0y/fv3SoUOHjB49OqeeemqOOuqoGuv5n//5n/Tv3790u6qqKkOGDEnv3r3TsWPH7L777jX+YFCbiv1nCQAAAFhMl1xySU455ZS0bds2zZs3X6THDBkyJPfff38GDhyY9ddfP88991xOOumktGjRIttuu+0ynvHCCXsAAAC+V4477rh07959kcfPnj07Q4YMydChQ9O5c+ckSdu2bTN69Ojcfvvtwh4AAACWpw4dOizW+LfffjuzZs3Kr3/96xrLKyoqstlmmy3NqS0RYQ8AAMD3SqNGjWrcrlOnTqqrq2ssmzNnTun/M2fOTPLV4fhrrLFGjXENGjRYRrNcdMIeAACA77UWLVrkjTfeqLHs1VdfTf369ZMkG264YRo0aJDJkyfX+mH38yPsAQAAWGz1W22w0jzPj370o1x33XW5995706lTp9x///1544030r59+yRJ06ZN8+tf/zqDBg1KdXV1ttpqq3z22Wf597//naZNm6Zv375Jkp133jm///3vs+OOOy7zOX+dsAcAAGCxVFdVplW/85fr89WpW7bM1t+zZ88cddRRueiii/Lll19mzz33zM9//vO8/vrrpTHHH398WrRokSFDhmTSpElp1qxZ2rdvnyOPPLI0ZsKECfnss8+W2TwXpE71N08kYB6VlZUZM2ZMOnXqlLKyZfdiWpb2v+yBjH13em1PA5aJTddukZuP71Pb0wAAWKl88cUXmTBhQtq1a5eGDRvW9nRWSgv7GC9Oh9ZdlpMEAAAAli1hDwAAAAVWq2E/ZMiQ7LnnnuncuXO6du2ao446KuPHj68xpn///ikvL6/x76yzzqoxZvLkyTn88MOzxRZbpGvXrrngggtqvDVBkvzrX/9K3759s/nmm2fHHXfM8OHDl/n2AQAAwLJWqxfPe/bZZ7P//vunQ4cOqayszKWXXppDDjkkDz74YBo3blwat/fee+e4444r3f76ew5WVlbmiCOOSKtWrXLbbbflww8/zCmnnJL69evnhBNOSJJMnDgxRxxxRH75y1/m4osvzqhRo3LmmWemdevW6dmz5/LbYAAAAFjKajXsr7vuuhq3zz///HTt2jX//e9/s80225SWN2zYMK1bt57vOp5++umMGzcuQ4cOTatWrbLZZpvlt7/9bS6++OIcc8wxadCgQW677bass846OfXUU5N89R6Eo0ePzvXXXy/sAQAAFsL11pedpfWxXaHe7m7u2wKsuuqqNZaPGDEi999/f1q3bp2f/OQnOeqoo0p77ceMGZNNNtkkrVq1Ko3v0aNHBgwYkHHjxqV9+/YZM2ZMunbtWmOdPXr0yHnnnbdY86usrFySzap1Rb2SPyyuon6NAgCsiOrWrZvq6urMmDHDVfGXkdmzZ6e6ujp16tSZ53fZxfnddoUJ+6qqqpx33nnZcssts8kmm5SW9+nTJ23atMnqq6+e1157LRdffHEmTJiQK6+8MkkyderUGlGfpHR7ypQpCx3z+eef54svvljkF+lLL720xNtXWxo1apT27dvX9jRguXjttdcya9as2p4GAMBKZfLkyZk9e3ZWWWWV1KlTp7ans9Korq7Ohx9+mFmzZuXll1/+TutaYcJ+4MCBeeONN3LLLbfUWL7PPvuU/l9eXp7WrVvnoIMOyjvvvJN11113uc6xQ4cO9n7DCqy8vLy2pwAAsFKprq7OBx98kI8//ri2p7JSqlu3btq3b58GDRrMc19lZeUi71xeIcL+7LPPzt///vfcdNNNWXPNNRc6dosttkiSvP3221l33XXTqlWrvPjiizXGTJ06NUlK5+W3atWqtOzrY5o2bbpYh5SUlZUJe1iB+foEAFj61l577ay55pqpqKio7amsdBo0aJC6db/7m9XVathXV1fnnHPOyWOPPZZhw4albdu23/qYV199Ncn/H+2dOnXKNddck2nTpqVly5ZJkpEjR6Zp06bZaKONSmP+8Y9/1FjPyJEj06lTp6W4NQAAACsnOzlXbLX6PvYDBw7M/fffn0suuSRNmjTJlClTMmXKlHzxxRdJknfeeSdXXXVVXn755UyaNClPPPFETjnllGyzzTbZdNNNk3x1EbyNNtooJ598csaOHZunnnoql112Wfbff//S4Qy//OUvM3HixFx44YV58803c/PNN+fhhx/OQQcdVFubDgAAAEtFre6xv/XWW5Mk/fv3r7F80KBB6devX+rXr59Ro0blxhtvzMyZM7PWWmtlp512ylFHHVUaW1ZWlmuuuSYDBgzIPvvsk0aNGqVv37413ve+bdu2GTJkSAYNGpQbb7wxa665Zs4991xvdQcAAEDh1WrYv/baawu9f6211spNN930retZe+21c+211y50TJcuXXLvvfcuzvQAAABghVerh+IDAAAA342wBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABRYrYb9kCFDsueee6Zz587p2rVrjjrqqIwfP77GmC+//DIDBw5Mly5d0rlz5xx77LGZOnVqjTGTJ0/O4Ycfni222CJdu3bNBRdckDlz5tQY869//St9+/bN5ptvnh133DHDhw9f5tsHAAAAy1qthv2zzz6b/fffP3fccUeGDh2aOXPm5JBDDsnMmTNLY84777z8v//3/3LZZZdl2LBh+fDDD3PMMceU7q+srMwRRxyRioqK3HbbbTn//PNzzz335IorriiNmThxYo444oh06dIl9913Xw488MCceeaZeeqpp5br9gIAAMDSVq82n/y6666rcfv8889P165d89///jfbbLNNPvvss9x99925+OKL07Vr1yRfhf7PfvazjBkzJp06dcrTTz+dcePGZejQoWnVqlU222yz/Pa3v83FF1+cY445Jg0aNMhtt92WddZZJ6eeemqSZMMNN8zo0aNz/fXXp2fPnst9uwEAAGBpqdWw/6bPPvssSbLqqqsmSV5++eVUVFSkW7dupTEbbrhh2rRpUwr7MWPGZJNNNkmrVq1KY3r06JEBAwZk3Lhxad++fcaMGVP6w8DXx5x33nmLNb/Kysol3bRaVVZWVttTgOWiqF+jAADwTYvzu+0KE/ZVVVU577zzsuWWW2aTTTZJkkydOjX169dP8+bNa4xt2bJlpkyZUhrz9ahPUrr9bWM+//zzfPHFF2nYsOEizfGll15a/A2rZY0aNUr79u1rexqwXLz22muZNWtWbU8DAACWqxUm7AcOHJg33ngjt9xyS21PZYE6dOhg7zeswMrLy2t7CgAAsFRUVlYu8s7lFSLszz777Pz973/PTTfdlDXXXLO0vFWrVqmoqMinn35aY6/9tGnT0rp169KYF198scb65l41/+tjvnkl/alTp6Zp06aLvLc++eqQdmEPKy5fnwAAfB/V6lXxq6urc/bZZ+exxx7LDTfckLZt29a4f/PNN0/9+vUzatSo0rLx48dn8uTJ6dSpU5KkU6dOef311zNt2rTSmJEjR6Zp06bZaKONSmOeeeaZGuseOXJkaR0AAABQVLUa9gMHDsz999+fSy65JE2aNMmUKVMyZcqUfPHFF0mSZs2aZc8998z555+fZ555Ji+//HJOP/30dO7cuRTlPXr0yEYbbZSTTz45Y8eOzVNPPZXLLrss+++/fxo0aJAk+eUvf5mJEyfmwgsvzJtvvpmbb745Dz/8cA466KBa2nIAAABYOmr1UPxbb701SdK/f/8aywcNGpR+/folSU4//fTUrVs3xx13XGbPnp0ePXrkj3/8Y2lsWVlZrrnmmgwYMCD77LNPGjVqlL59++a4444rjWnbtm2GDBmSQYMG5cYbb8yaa66Zc88911vdAQAAUHh1qqurq2t7Eiu6ysrK0tvrFfUc3v0veyBj351e29OAZWLTtVvk5uP71PY0AABgqVmcDq3VQ/EBAACA70bYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAAqsVsP+ueeey5FHHpkePXqkvLw8jz/+eI37Tz311JSXl9f4d8ghh9QY8/HHH+f3v/99ttxyy2y99dY5/fTTM2PGjBpjxo4dm/322y8dOnRIr169cu211y7zbQMAAIDloV5tPvnMmTNTXl6ePffcM8ccc8x8x/Ts2TODBg0q3W7QoEGN+0888cRMmTIlQ4cOTUVFRU4//fScddZZueSSS5Ikn3/+eQ455JB07do1AwcOzOuvv57TTz89zZs3zz777LPsNg4AAACWg1oN+169eqVXr14LHdOgQYO0bt16vve9+eabeeqpp3LXXXelQ4cOSZIzzzwzhx9+eE4++eSsscYauf/++1NRUZHzzjsvDRo0yMYbb5xXX301Q4cOFfYAAAAUXq2G/aJ49tln07Vr1zRv3jw/+tGPcvzxx2e11VZLkrzwwgtp3rx5KeqTpFu3bqlbt25efPHF7LjjjhkzZky23nrrGnv6e/TokWuvvTaffPJJVl111UWeS2Vl5dLbsOWorKystqcAy0VRv0YBAOCbFud32xU67Hv27Jkdd9wx66yzTiZOnJhLL700hx12WG6//faUlZVl6tSpadGiRY3H1KtXL6uuumqmTJmSJJk6dWrWWWedGmNatWpVum9xwv6ll176jlu0/DVq1Cjt27ev7WnAcvHaa69l1qxZtT0NAABYrlbosN91111L/5978bwddtihtBd/eevQoYO937ACKy8vr+0pAADAUlFZWbnIO5dX6LD/prZt22a11VbL22+/na5du6ZVq1aZPn16jTFz5szJJ598Ujovv1WrVpk6dWqNMXNvz91zv6jKysqEPazAfH0CAPB9VKj3sX///ffz8ccfl6K9c+fO+fTTT/Pyyy+XxjzzzDOpqqpKx44dkySdOnXK888/n4qKitKYkSNHpl27dot1GD4AAACsiGo17GfMmJFXX301r776apJk0qRJefXVVzN58uTMmDEjF1xwQcaMGZNJkyZl1KhROeqoo7LeeuulZ8+eSZINN9wwPXv2zB/+8Ie8+OKLGT16dM4555zsuuuuWWONNZIku+22W+rXr58zzjgjb7zxRh566KHceOONOfjgg2ttuwEAAGBpqdVD8V9++eUccMABpdtz36++b9++GTBgQF5//fXce++9+eyzz7L66qune/fu+e1vf1vjCvcXX3xxzjnnnBx44IGpW7dudtppp5x55pml+5s1a5brrrsuZ599dvr165fVVlstRx11lLe6AwAAYKVQp7q6urq2J7Giq6yszJgxY9KpU6fCnsO7/2UPZOy70799IBTQpmu3yM3H96ntaQAAwFKzOB1aqHPsAQAAgJqWKOwPOOCAfPrpp/Ms//zzz2scWg8AAAAsW0sU9s8++2yNq8zP9eWXX2b06NHfeVIAAADAolmsi+eNHTu29P9x48ZlypQppdtVVVV56qmnSlejBwAAAJa9xQr7n//856lTp07q1KmTAw88cJ77GzZsWOOK9AAAAMCytVhh/8QTT6S6ujo77LBD7rzzzrRo0aJ0X/369dOyZcvCXjUeAAAAimixwn7ttddOUvOQfAAAAKD2LFbYf91bb72Vf/3rX5k2bVqqqqpq3HfMMcd854kBAAAA326Jwv6OO+7IgAEDstpqq6VVq1apU6dO6b46deoIewAAAFhOlijs//znP+f444/P4YcfvrTnAwAAACyGJXof+08++SS77LLL0p4LAAAAsJiWKOx33nnnPP3000t7LgAAAMBiWqJD8ddbb71cfvnl+c9//pNNNtkk9erVXM0BBxywVCYHAAAALNwShf3tt9+exo0b59lnn82zzz5b4746deoIewAAAFhOlijs/+///m9pzwMAAABYAkt0jj0AAACwYliiPfannXbaQu8fNGjQEk0GAAAAWDxLFPaffvppjdtz5szJG2+8kU8//TQ/+tGPlsrEAAAAgG+3RGF/1VVXzbOsqqoqAwYMSNu2bb/zpAAAAIBFs9TOsa9bt24OOuig3HDDDUtrlQAAAMC3WKoXz5s4cWLmzJmzNFcJAAAALMQSHYr/zYvjVVdXZ8qUKfn73/+evn37LpWJAQAAAN9uicL+lVdeqXG7bt26adGiRU499dTsueeeS2ViAAAAwLdborAfNmzY0p4HAAAAsASWKOznmj59esaPH58k2WCDDdKiRYulMikAAABg0SxR2M+cOTPnnHNO7rvvvlRVVSVJysrKsscee+QPf/hDGjVqtFQnCQAAAMzfEl0V//zzz89zzz2XP//5z3n++efz/PPP5+qrr85zzz2X888/f2nPEQAAAFiAJQr7Rx99NP/zP/+TXr16pWnTpmnatGl69eqVc845J48++ujSniMAAACwAEsU9l988UVatWo1z/KWLVvmiy+++M6TAgAAABbNEoV9p06dcsUVV+TLL78sLfviiy9y5ZVXplOnTktrbgAAAMC3WKKL551++uk59NBD8+Mf/zibbrppkmTs2LFp0KBB/vrXvy7VCQIAAAALtkRhX15enr/97W8ZMWJE6e3u+vTpk9122y0NGzZcqhMEAAAAFmyJwn7IkCFp2bJl9t577xrL77rrrkyfPj2HH374UpkcAAAAsHBLdI797bffng022GCe5RtvvHFuu+227zwpAAAAYNEsUdhPmTIlrVu3nmd5ixYtMmXKlO88KQAAAGDRLFHYr7XWWvn3v/89z/LRo0dn9dVX/86TAgAAABbNEp1jv9dee+W8887LnDlz8qMf/ShJMmrUqFx00UX59a9/vVQnCAAAACzYEoX9oYcemo8//jgDBw5MRUVFkmSVVVbJoYcemiOOOGKpThAAAABYsCUK+zp16uSkk07KUUcdlTfffDMNGzbM+uuvnwYNGizt+QEAAAALsURhP1eTJk3SsWPHpTUXAAAAYDEt0cXzAAAAgBWDsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABRYrYb9c889lyOPPDI9evRIeXl5Hn/88Rr3V1dX5/LLL0+PHj3SsWPHHHTQQXnrrbdqjPn444/z+9//PltuuWW23nrrnH766ZkxY0aNMWPHjs1+++2XDh06pFevXrn22muX9aYBAADAclGrYT9z5syUl5fnj3/843zvv/baazNs2LAMGDAgd9xxRxo1apRDDjkkX375ZWnMiSeemHHjxmXo0KG55ppr8vzzz+ess84q3f/555/nkEMOSZs2bTJ8+PCcfPLJufLKK3P77bcv8+0DAACAZa1ebT55r1690qtXr/neV11dnRtvvDG/+c1vssMOOyRJLrzwwnTr1i2PP/54dt1117z55pt56qmnctddd6VDhw5JkjPPPDOHH354Tj755Kyxxhq5//77U1FRkfPOOy8NGjTIxhtvnFdffTVDhw7NPvvss9y2FQAAAJaFWg37hZk0aVKmTJmSbt26lZY1a9YsW2yxRV544YXsuuuueeGFF9K8efNS1CdJt27dUrdu3bz44ovZcccdM2bMmGy99dZp0KBBaUyPHj1y7bXX5pNPPsmqq666yHOqrKxcOhu3nJWVldX2FGC5KOrXKAAAfNPi/G67wob9lClTkiQtW7assbxly5aZOnVqkmTq1Klp0aJFjfvr1auXVVddtfT4qVOnZp111qkxplWrVqX7FifsX3rppcXbiBVAo0aN0r59+9qeBiwXr732WmbNmlXb0wAAgOVqhQ37FVGHDh3s/YYVWHl5eW1PAQAAlorKyspF3rm8woZ969atkyTTpk3L6quvXlo+bdq0bLrppkm+2vM+ffr0Go+bM2dOPvnkk9LjW7VqVdrDP9fc23P33C+qsrIyYQ8rMF+fAAB8H62w72O/zjrrpHXr1hk1alRp2eeff57//Oc/6dy5c5Kkc+fO+fTTT/Pyyy+XxjzzzDOpqqpKx44dkySdOnXK888/n4qKitKYkSNHpl27dot1GD4AAACsiGo17GfMmJFXX301r776apKvLpj36quvZvLkyalTp04OOOCA/PnPf84TTzyR1157LSeffHJWX3310lXyN9xww/Ts2TN/+MMf8uKLL2b06NE555xzsuuuu2aNNdZIkuy2226pX79+zjjjjLzxxht56KGHcuONN+bggw+ute0GAACApaVWD8V/+eWXc8ABB5RuDxo0KEnSt2/fnH/++TnssMMya9asnHXWWfn000+z1VZb5S9/+UtWWWWV0mMuvvjinHPOOTnwwANTt27d7LTTTjnzzDNL9zdr1izXXXddzj777PTr1y+rrbZajjrqKG91BwAAwEqhTnV1dXVtT2JFV1lZmTFjxqRTp06FPYd3/8seyNh3p3/7QCigTddukZuP71Pb0wAAgKVmcTp0hT3HHgAAAPh2wh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYCt02A8ePDjl5eU1/u28886l+7/88ssMHDgwXbp0SefOnXPsscdm6tSpNdYxefLkHH744dliiy3StWvXXHDBBZkzZ87y3hQAAABYJurV9gS+zcYbb5yhQ4eWbpeVlZX+f9555+XJJ5/MZZddlmbNmuWcc87JMccck9tuuy1JUllZmSOOOCKtWrXKbbfdlg8//DCnnHJK6tevnxNOOGG5bwsAAAAsbSv0Hvvkq5Bv3bp16V+LFi2SJJ999lnuvvvunHrqqenatWs233zznHfeeXnhhRcyZsyYJMnTTz+dcePG5aKLLspmm22WXr165be//W1uvvnmzJ49uxa3CgAAAJaOFX6P/dtvv50ePXpklVVWSadOnfL73/8+bdq0ycsvv5yKiop069atNHbDDTdMmzZtMmbMmHTq1CljxozJJptsklatWpXG9OjRIwMGDMi4cePSvn37xZpLZWXlUtuu5enrRznAyqyoX6MAAPBNi/O77Qod9h07dsygQYPSrl27TJkyJVdddVX233//jBgxIlOnTk39+vXTvHnzGo9p2bJlpkyZkiSZOnVqjahPUro9d8zieOmll5ZwS2pPo0aNFvsPGFBUr732WmbNmlXb0wAAgOVqhQ77Xr16lf6/6aabZosttshPfvKTPPzww2nYsOFyn0+HDh3s/YYVWHl5eW1PAQAAlorKyspF3rm8Qof9NzVv3jzrr79+3nnnnXTr1i0VFRX59NNPa+y1nzZtWlq3bp3kq73zL774Yo11zL1q/twxi6OsrEzYwwrM1ycAAN9HK/zF875uxowZmThxYlq3bp3NN9889evXz6hRo0r3jx8/PpMnT06nTp2SJJ06dcrrr7+eadOmlcaMHDkyTZs2zUYbbbS8pw8AAABL3Qq9x/6CCy7IT37yk7Rp0yYffvhhBg8enLp166ZPnz5p1qxZ9txzz5x//vlZddVV07Rp05x77rnp3LlzKex79OiRjTbaKCeffHJOOumkTJkyJZdddln233//NGjQoHY3DgAAAJaCFTrs33///Zxwwgn5+OOP06JFi2y11Va54447Sm95d/rpp6du3bo57rjjMnv27PTo0SN//OMfS48vKyvLNddckwEDBmSfffZJo0aN0rdv3xx33HG1tUkAAACwVNWprq6uru1JrOgqKytLb6FX1HN497/sgYx9d3ptTwOWiU3XbpGbj+9T29MAAIClZnE6tFDn2AMAAAA1CXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeKLyWzRqmuqqytqcBy5zXOQAwP/VqewIA31Wzhg1Sp25Zpg4/NRVTx9f2dGCZqN9qg7Tqd35tTwMAWAEJe2ClUTF1fCref7W2pwEAAMuVQ/EBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMALEBlVVVtTwGWOa9zKL56tT0BAIAVVVndujnzlqcy4cNPansqsEy0W33VnLtfz9qeBvAdCXsAgIWY8OEnGfvu9NqeBgAskEPxAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAB8T7Vs1jDVVZW1PQ1Y5lb213m92p4AAABQO5o1bJA6dcsydfipqZg6vranA8tE/VYbpFW/82t7GsuUsAcAgO+5iqnjU/H+q7U9DWAJORQfAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9AAAAFJiwBwAAgAIT9gAAAFBgwh4AAAAKTNgDAABAgQl7AAAAKDBhDwAAAAUm7AEAAKDAhD0AAAAUmLAHAACAAhP2AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIEJewAAACiw71XY33zzzendu3c6dOiQvfbaKy+++GJtTwkAAAC+k+9N2D/00EMZNGhQjj766Nxzzz3ZdNNNc8ghh2TatGm1PTUAAABYYt+bsB86dGj23nvv7Lnnntloo40ycODANGzYMHfffXdtTw0AAACWWL3ansDyMHv27Pz3v//NEUccUVpWt27ddOvWLS+88MK3Pr66urq0nrKysmU2z2WlrKwsG6+5ahqU1antqcAy0bZlk1RWVqas9SapqtugtqcDy0RZy/VTWVmZysrK2p7K94qfoazs/Azl+6CoP0Pnzndujy7M9yLsP/roo1RWVqZly5Y1lrds2TLjx4//1sdXVVUlSV555ZVlMr/lYbeNGycbN67tacAyM2bMmGTdvsm6tT0TWHYmjhlT21P4XvIzlJWdn6F8HxT5Z+jcHl2Y70XYf1f16tVLhw4dUrdu3dSp4y/2AAAALFvV1dWpqqpKvXrfnu3fi7BfbbXVUlZWNs+F8qZNm5ZWrVp96+Pr1q2bBg0cmgQAAMCK53tx8bwGDRrkhz/8YUaNGlVaVlVVlVGjRqVz5861ODMAAAD4br4Xe+yT5OCDD84pp5ySzTffPB07dswNN9yQWbNmpV+/frU9NQAAAFhi35uw/9nPfpbp06fniiuuyJQpU7LZZpvlL3/5yyIdig8AAAArqjrVi3LtfAAAAGCF9L04xx4AAABWVsIeAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9UBj9+/fPueeemwsvvDDbbrttunfvnsGDB5funzx5cn7zm9+kc+fO2XLLLfPb3/42U6dOrcUZA8Dyd++996ZLly6ZPXt2jeVHHXVUTjrppCTJ448/nr59+6ZDhw7Zfvvtc+WVV2bOnDlJkurq6gwePDjbbbddNt988/To0SPnnnvuct8OYNEJe6BQ7rnnnjRu3Dh33HFHTjrppFx11VX55z//maqqqhx11FH55JNPMmzYsAwdOjQTJ07M7373u9qeMgAsVzvvvHMqKyvzxBNPlJZNmzYtTz75ZPbcc888//zzOeWUU3LAAQfkoYceytlnn53hw4fnmmuuSZI8+uijuf766zNw4MD87W9/y9VXX51NNtmktjYHWAT1ansCAIujvLw8xxxzTJJk/fXXz0033ZRRo0YlSV5//fU88cQTWWuttZIkF154YXbddde8+OKL6dixY63NGQCWp4YNG6ZPnz4ZPnx4dtlllyTJ/fffn7XWWitdunTJwQcfnMMPPzx9+/ZNkrRt2za//e1vc9FFF+WYY47Je++9l1atWqVbt26pX79+2rRp4+corOCEPVAo5eXlNW63bt0606ZNy5tvvpk111yzFPVJstFGG6V58+YZP368X0gA+F7Ze++984tf/CIffPBB1lhjjQwfPjx9+/ZNnTp1Mnbs2Pz73/8u7aFPksrKynz55ZeZNWtWdt5559xwww3ZYYcd0rNnz/Tq1Ss/+clPUq+edIAVla9OoFC++UtFnTp1Ul1dXUuzAYAVU/v27bPpppvm3nvvTffu3TNu3Lj069cvSTJz5swce+yx2WmnneZ53CqrrJK11lorjzzySEaOHJmRI0dm4MCBue666zJs2LDUr19/eW8KsAiEPbBS2HDDDfP+++/nvffeK+21HzduXD799NNsuOGGtTw7AFj+fvGLX+SGG27IBx98kG7dupV+PrZv3z4TJkzIeuutt8DHNmzYML17907v3r2z3377ZZdddsnrr7+eH/7wh8tr+sBicPE8YKXQrVu3bLLJJjnxxBPz3//+Ny+++GJOPvnkbLvttunQoUNtTw8AlrvddtstH3zwQe64447sueeepeVHH3107rvvvlx55ZV544038uabb+bBBx/Mn/70pyTJ8OHDc+edd+b111/PxIkTc//996dhw4Zp06ZNbW0K8C2EPbBSqFOnTq6++uo0b948v/rVr3LQQQelbdu2pV9SAOD7plmzZtlpp53SpEmT7LDDDqXlPXv2zDXXXJOnn346v/jFL7L33nvn+uuvz9prr50kad68ee68887su+++2X333TNq1Khcc801WW211WprU4BvUafayakAALBSOvDAA7PxxhvnzDPPrO2pAMuQPfYAALCS+eSTT/LYY4/l2WefzX777Vfb0wGWMRfPAwCAlUzfvn3zySef5MQTT8wGG2xQ29MBljGH4gMAAECBORQfAAAACkzYAwAAQIEJewAAACgwYQ8AAAAFJuwBAACgwIQ9APCdnXrqqTnqqKO+0zrKy8vz+OOPL6UZAcD3h7AHgO+RJQnw+QX38OHD079//0Vex7/+9a+Ul5eX/nXr1i3HHntsJk6cuFhzAQDmJewBgOXmkUceyVNPPZXLL788b7zxRo488shUVlbW9rQAoNCEPQB8j/Xv3z/nnntuLrzwwmy77bbp3r17Bg8eXLq/d+/eSZKjjz465eXlpdtLqmXLlll99dWzzTbb5Oijj864cePy9ttvz3fsRRddlJ/+9KfZYostsv322+eyyy5LRUVF6f7Bgwdnjz32yL333pvevXtnq622yu9+97t8/vnn32mOAFA0wh4AvufuueeeNG7cOHfccUdOOumkXHXVVfnnP/+ZJLnrrruSJIMGDcrTTz9dur00NGzYMElqxPrXNWnSJIMGDcqDDz6YM844I3feeWeuv/76GmPeeeedPPHEE7nmmmsyZMiQPPfcc7n22muX2hwBoAjq1fYEAIDaVV5enmOOOSZJsv766+emm27KqFGj0r1797Ro0SJJ0rx587Ru3br0mH79+qVfv35L/Jwffvhhrrvuuqyxxhpp167dfMd8/VoA66yzTiZMmJAHH3wwhx12WGl5dXV1Bg0alKZNmyZJdt9994waNSq/+93vlnhuAFA0wh4AvufKy8tr3G7dunWmTZu2TJ6rV69eqa6uzqxZs7Lppptm8ODBadCgwXzHPvTQQ7nxxhszceLEzJw5M3PmzCkF/Fxrr712jWWrr776Mps7AKyohD0AfM/Vq1fz14E6deqkurp6mTzXzTffnKZNm6ZFixbzRPrXvfDCCznxxBNz7LHHpkePHmnWrFkefPDBDB06dKFzT7LM5g4AKyphDwAsVP369ZfalevXWWedNG/e/FvHvfDCC2nTpk1+85vflJZNnjx5qcwBAFY2Lp4HACzU2muvnVGjRmXKlCn55JNPlstzrrfeennvvffy4IMP5p133smNN96Yxx9/fLk8NwAUjbAHABbqlFNOyciRI7Pddtulb9++y+U5t99++xx44IE5++yzs8cee+SFF16osfceAPj/1al2IhoAAAAUlj32AAAAUGDCHgAAAApM2AMAAECBCXsAAAAoMGEPAAAABSbsAQAAoMCEPQAAABSYsAcAAIACE/YAAABQYMIeAAAACkzYAwAAQIH9fzg/4h6SjWSrAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "data = pd.read_csv(\"churn.csv\")\n", + "print(data.head())\n", + "print(data.info())\n", + "print(data.describe())\n", + "print(data.isnull().sum())\n", + "# Визуализация распределения целевой переменной\n", + "sns.countplot(x='Churn?', data=data)\n", + "plt.title('Распределение оттока клиентов')\n", + "plt.show()\n", + "# Гистограммы числовых признаков\n", + "data.hist(bins=20, figsize=(20,15))\n", + "plt.show()\n", + "# Визуализация категориальных признаков\n", + "for column in data.select_dtypes(include=['object']).columns:\n", + " if column != 'Churn?':\n", + " sns.countplot(y=column, data=data, palette=\"Set2\")\n", + " plt.title(f'Распределение по {column}')\n", + " plt.show()\n", + "# Корреляция числовых признаков с целевой переменной\n", + "numeric_data = data.select_dtypes(include=[np.number])\n", + "numeric_data['Churn'] = data['Churn?'].apply(lambda x: 1 if x == 'True.' else 0)\n", + "corr_matrix = numeric_data.corr()\n", + "print(corr_matrix[\"Churn\"].sort_values(ascending=False))\n", + "sns.heatmap(corr_matrix)\n", + "plt.show()\n", + "# Пример проверки гипотезы\n", + "sns.countplot(x='Int\\'l Plan', hue='Churn?', data=data)\n", + "plt.title('Влияние международного плана на отток клиентов')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "691d25ae-0bf3-4ca6-bc71-3ec9964f9906", + "metadata": { + "id": "691d25ae-0bf3-4ca6-bc71-3ec9964f9906" + }, + "outputs": [], + "source": [ + "# Преобразование категориальных признаков с помощью one-hot encoding\n", + "categorical_features = ['State', 'Phone', \"Int'l Plan\", 'VMail Plan']\n", + "data_encoded = pd.get_dummies(data, columns=categorical_features)\n", + "X = data_encoded.drop('Churn?', axis=1)\n", + "y = data_encoded['Churn?'].apply(lambda x: 1 if x == 'True.' else 0)\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" + ] + }, + { + "cell_type": "code", + "source": [ + "# Настройка гиперпараметров для LGBMClassifier\n", + "param_grid_lgbm = {\n", + " 'n_estimators': [100, 200],\n", + " 'learning_rate': [0.01, 0.1],\n", + " 'max_depth': [3, 5, 7],\n", + "}\n", + "\n", + "lgbm = LGBMClassifier(random_state=42)\n", + "grid_search_lgbm = GridSearchCV(lgbm, param_grid_lgbm, cv=5, scoring='accuracy')\n", + "grid_search_lgbm.fit(X_train, y_train)\n", + "# Настройка гиперпараметров для CatBoostClassifier\n", + "param_grid_catboost = {\n", + " 'iterations': [100, 200],\n", + " 'learning_rate': [0.01, 0.1],\n", + " 'depth': [4, 6, 8],\n", + "}\n", + "catboost = CatBoostClassifier(verbose=0, random_state=42)\n", + "grid_search_catboost = GridSearchCV(catboost, param_grid_catboost, cv=5, scoring='accuracy')\n", + "grid_search_catboost.fit(X_train, y_train)\n", + "# Выбор лучшей модели и оценка на тестовом наборе\n", + "best_model = grid_search_lgbm if grid_search_lgbm.best_score_ > grid_search_catboost.best_score_ else grid_search_catboost\n", + "y_pred = best_model.predict(X_test)\n", + "accuracy = accuracy_score(y_test, y_pred)\n", + "print(f\"Лучшая модель: {best_model.best_estimator_}\")\n", + "print(f\"Точность на тестовом наборе: {accuracy}\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5_c1PKeB50tB", + "outputId": "445630b5-5833-4534-98f1-4985268d8775" + }, + "id": "5_c1PKeB50tB", + "execution_count": 147, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[1;30;43mВыходные данные были обрезаны до нескольких последних строк (5000).\u001b[0m\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000361 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000401 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000327 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000392 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000699 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000376 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000445 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000454 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000456 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000817 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000869 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000314 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000359 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000308 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000604 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000393 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000538 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000366 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000309 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000312 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000385 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000385 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000311 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000333 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000393 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000368 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000366 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000381 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000616 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000691 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.001279 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000358 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000837 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2466\n", + "[LightGBM] [Info] Number of data points in the train set: 2132, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143058 -> initscore=-1.790119\n", + "[LightGBM] [Info] Start training from score -1.790119\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000305 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000360 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2467\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 306, number of negative: 1827\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000340 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2462\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143460 -> initscore=-1.786845\n", + "[LightGBM] [Info] Start training from score -1.786845\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 305, number of negative: 1828\n", + "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000348 seconds.\n", + "You can set `force_row_wise=true` to remove the overhead.\n", + "And if memory is not enough, you can set `force_col_wise=true`.\n", + "[LightGBM] [Info] Total Bins 2454\n", + "[LightGBM] [Info] Number of data points in the train set: 2133, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.142991 -> initscore=-1.790666\n", + "[LightGBM] [Info] Start training from score -1.790666\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Warning] Found whitespace in feature_names, replace with underlines\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "[LightGBM] [Info] Number of positive: 382, number of negative: 2284\n", + "[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.001068 seconds.\n", + "You can set `force_col_wise=true` to remove the overhead.\n", + "[LightGBM] [Info] Total Bins 2494\n", + "[LightGBM] [Info] Number of data points in the train set: 2666, number of used features: 71\n", + "[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.143286 -> initscore=-1.788263\n", + "[LightGBM] [Info] Start training from score -1.788263\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", + "[LightGBM] [Warning] Accuracy may be bad since you didn't explicitly set num_leaves OR 2^max_depth > num_leaves. (num_leaves=31).\n", + "Лучшая модель: LGBMClassifier(max_depth=7, n_estimators=200, random_state=42)\n", + "Точность на тестовом наборе: 0.9490254872563718\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "Лучшая модель: LGBMClassifier(max_depth=7, n_estimators=200, random_state=42)\n", + "Точность на тестовом наборе: 0.9490254872563718" + ], + "metadata": { + "id": "4EgajnrA-c_D" + }, + "id": "4EgajnrA-c_D" + }, + { + "cell_type": "markdown", + "id": "aed4b39e-db2b-4891-9c83-26cf78bcba8c", + "metadata": { + "id": "aed4b39e-db2b-4891-9c83-26cf78bcba8c" + }, + "source": [ + "### Задание 5. Рисуем\n", + "\n", + "**дополнительно 0.5 балла**\n", + "\n", + "Наверняка, в процессе выполнения этого задания вас переполняли какие-то эмоции. Нарисуйте что-то, что бы могло бы передать их (я сам не умею, так что, если это будет просто квадрат, тоже подойдет). Прикрепите сюда свой рисунок:" + ] + }, + { + "cell_type": "markdown", + "source": [ + "Когда ждешь, пока оно все посчитает...![photo_2024-03-06_07-32-28.jpg]()" + ], + "metadata": { + "id": "UlRJZZsUXmpm" + }, + "id": "UlRJZZsUXmpm" + }, + { + "cell_type": "markdown", + "id": "e6c52141-d648-49a7-8c2a-06724d3e88af", + "metadata": { + "id": "e6c52141-d648-49a7-8c2a-06724d3e88af" + }, + "source": [ + "### Therapy time\n", + "\n", + "Напишите здесь ваши впечатления о задании (можно и не о задании): было ли интересно, было ли слишком легко или наоборот сложно и тд. Также сюда можно написать свои идеи по улучшению заданий, а также предложить данные, на основе которых вы бы хотели построить следующие дз.\n", + "\n", + "**Ваши мысли:**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e3db0b95-89ca-48a2-9600-53a28090b241", + "metadata": { + "id": "e3db0b95-89ca-48a2-9600-53a28090b241" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + }, + "colab": { + "provenance": [] + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} \ No newline at end of file diff --git a/data/churn.csv b/data/churn.csv new file mode 100644 index 0000000..9a2de22 --- /dev/null +++ b/data/churn.csv @@ -0,0 +1,3334 @@ +State,Account Length,Area Code,Phone,Int'l Plan,VMail Plan,VMail Message,Day Mins,Day Calls,Day Charge,Eve Mins,Eve Calls,Eve Charge,Night Mins,Night Calls,Night Charge,Intl Mins,Intl Calls,Intl Charge,CustServ Calls,Churn? +KS,128,415,382-4657,no,yes,25,265.100000,110,45.070000,197.400000,99,16.780000,244.700000,91,11.010000,10.000000,3,2.700000,1,False. +OH,107,415,371-7191,no,yes,26,161.600000,123,27.470000,195.500000,103,16.620000,254.400000,103,11.450000,13.700000,3,3.700000,1,False. +NJ,137,415,358-1921,no,no,0,243.400000,114,41.380000,121.200000,110,10.300000,162.600000,104,7.320000,12.200000,5,3.290000,0,False. +OH,84,408,375-9999,yes,no,0,299.400000,71,50.900000,61.900000,88,5.260000,196.900000,89,8.860000,6.600000,7,1.780000,2,False. +OK,75,415,330-6626,yes,no,0,166.700000,113,28.340000,148.300000,122,12.610000,186.900000,121,8.410000,10.100000,3,2.730000,3,False. +AL,118,510,391-8027,yes,no,0,223.400000,98,37.980000,220.600000,101,18.750000,203.900000,118,9.180000,6.300000,6,1.700000,0,False. +MA,121,510,355-9993,no,yes,24,218.200000,88,37.090000,348.500000,108,29.620000,212.600000,118,9.570000,7.500000,7,2.030000,3,False. +MO,147,415,329-9001,yes,no,0,157.000000,79,26.690000,103.100000,94,8.760000,211.800000,96,9.530000,7.100000,6,1.920000,0,False. +LA,117,408,335-4719,no,no,0,184.500000,97,31.370000,351.600000,80,29.890000,215.800000,90,9.710000,8.700000,4,2.350000,1,False. +WV,141,415,330-8173,yes,yes,37,258.600000,84,43.960000,222.000000,111,18.870000,326.400000,97,14.690000,11.200000,5,3.020000,0,False. +IN,65,415,329-6603,no,no,0,129.100000,137,21.950000,228.500000,83,19.420000,208.800000,111,9.400000,12.700000,6,3.430000,4,True. +RI,74,415,344-9403,no,no,0,187.700000,127,31.910000,163.400000,148,13.890000,196.000000,94,8.820000,9.100000,5,2.460000,0,False. +IA,168,408,363-1107,no,no,0,128.800000,96,21.900000,104.900000,71,8.920000,141.100000,128,6.350000,11.200000,2,3.020000,1,False. +MT,95,510,394-8006,no,no,0,156.600000,88,26.620000,247.600000,75,21.050000,192.300000,115,8.650000,12.300000,5,3.320000,3,False. +IA,62,415,366-9238,no,no,0,120.700000,70,20.520000,307.200000,76,26.110000,203.000000,99,9.140000,13.100000,6,3.540000,4,False. +NY,161,415,351-7269,no,no,0,332.900000,67,56.590000,317.800000,97,27.010000,160.600000,128,7.230000,5.400000,9,1.460000,4,True. +ID,85,408,350-8884,no,yes,27,196.400000,139,33.390000,280.900000,90,23.880000,89.300000,75,4.020000,13.800000,4,3.730000,1,False. +VT,93,510,386-2923,no,no,0,190.700000,114,32.420000,218.200000,111,18.550000,129.600000,121,5.830000,8.100000,3,2.190000,3,False. +VA,76,510,356-2992,no,yes,33,189.700000,66,32.250000,212.800000,65,18.090000,165.700000,108,7.460000,10.000000,5,2.700000,1,False. +TX,73,415,373-2782,no,no,0,224.400000,90,38.150000,159.500000,88,13.560000,192.800000,74,8.680000,13.000000,2,3.510000,1,False. +FL,147,415,396-5800,no,no,0,155.100000,117,26.370000,239.700000,93,20.370000,208.800000,133,9.400000,10.600000,4,2.860000,0,False. +CO,77,408,393-7984,no,no,0,62.400000,89,10.610000,169.900000,121,14.440000,209.600000,64,9.430000,5.700000,6,1.540000,5,True. +AZ,130,415,358-1958,no,no,0,183.000000,112,31.110000,72.900000,99,6.200000,181.800000,78,8.180000,9.500000,19,2.570000,0,False. +SC,111,415,350-2565,no,no,0,110.400000,103,18.770000,137.300000,102,11.670000,189.600000,105,8.530000,7.700000,6,2.080000,2,False. +VA,132,510,343-4696,no,no,0,81.100000,86,13.790000,245.200000,72,20.840000,237.000000,115,10.670000,10.300000,2,2.780000,0,False. +NE,174,415,331-3698,no,no,0,124.300000,76,21.130000,277.100000,112,23.550000,250.700000,115,11.280000,15.500000,5,4.190000,3,False. +WY,57,408,357-3817,no,yes,39,213.000000,115,36.210000,191.100000,112,16.240000,182.700000,115,8.220000,9.500000,3,2.570000,0,False. +MT,54,408,418-6412,no,no,0,134.300000,73,22.830000,155.500000,100,13.220000,102.100000,68,4.590000,14.700000,4,3.970000,3,False. +MO,20,415,353-2630,no,no,0,190.000000,109,32.300000,258.200000,84,21.950000,181.500000,102,8.170000,6.300000,6,1.700000,0,False. +HI,49,510,410-7789,no,no,0,119.300000,117,20.280000,215.100000,109,18.280000,178.700000,90,8.040000,11.100000,1,3.000000,1,False. +IL,142,415,416-8428,no,no,0,84.800000,95,14.420000,136.700000,63,11.620000,250.500000,148,11.270000,14.200000,6,3.830000,2,False. +NH,75,510,370-3359,no,no,0,226.100000,105,38.440000,201.500000,107,17.130000,246.200000,98,11.080000,10.300000,5,2.780000,1,False. +LA,172,408,383-1121,no,no,0,212.000000,121,36.040000,31.200000,115,2.650000,293.300000,78,13.200000,12.600000,10,3.400000,3,False. +AZ,12,408,360-1596,no,no,0,249.600000,118,42.430000,252.400000,119,21.450000,280.200000,90,12.610000,11.800000,3,3.190000,1,True. +OK,57,408,395-2854,no,yes,25,176.800000,94,30.060000,195.000000,75,16.580000,213.500000,116,9.610000,8.300000,4,2.240000,0,False. +GA,72,415,362-1407,no,yes,37,220.000000,80,37.400000,217.300000,102,18.470000,152.800000,71,6.880000,14.700000,6,3.970000,3,False. +AK,36,408,341-9764,no,yes,30,146.300000,128,24.870000,162.500000,80,13.810000,129.300000,109,5.820000,14.500000,6,3.920000,0,False. +MA,78,415,353-3305,no,no,0,130.800000,64,22.240000,223.700000,116,19.010000,227.800000,108,10.250000,10.000000,5,2.700000,1,False. +AK,136,415,402-1381,yes,yes,33,203.900000,106,34.660000,187.600000,99,15.950000,101.700000,107,4.580000,10.500000,6,2.840000,3,False. +NJ,149,408,332-9891,no,no,0,140.400000,94,23.870000,271.800000,92,23.100000,188.300000,108,8.470000,11.100000,9,3.000000,1,False. +GA,98,408,372-9976,no,no,0,126.300000,102,21.470000,166.800000,85,14.180000,187.800000,135,8.450000,9.400000,2,2.540000,3,False. +MD,135,408,383-6029,yes,yes,41,173.100000,85,29.430000,203.900000,107,17.330000,122.200000,78,5.500000,14.600000,15,3.940000,0,True. +AR,34,510,353-7289,no,no,0,124.800000,82,21.220000,282.200000,98,23.990000,311.500000,78,14.020000,10.000000,4,2.700000,2,False. +ID,160,415,390-7274,no,no,0,85.800000,77,14.590000,165.300000,110,14.050000,178.500000,92,8.030000,9.200000,4,2.480000,3,False. +WI,64,510,352-1237,no,no,0,154.000000,67,26.180000,225.800000,118,19.190000,265.300000,86,11.940000,3.500000,3,0.950000,1,False. +OR,59,408,353-3061,no,yes,28,120.900000,97,20.550000,213.000000,92,18.110000,163.100000,116,7.340000,8.500000,5,2.300000,2,False. +MI,65,415,363-5450,no,no,0,211.300000,120,35.920000,162.600000,122,13.820000,134.700000,118,6.060000,13.200000,5,3.560000,3,False. +DE,142,408,364-1995,no,no,0,187.000000,133,31.790000,134.600000,74,11.440000,242.200000,127,10.900000,7.400000,5,2.000000,2,False. +ID,119,415,398-1294,no,no,0,159.100000,114,27.050000,231.300000,117,19.660000,143.200000,91,6.440000,8.800000,3,2.380000,5,True. +WY,97,415,405-7146,no,yes,24,133.200000,135,22.640000,217.200000,58,18.460000,70.600000,79,3.180000,11.000000,3,2.970000,1,False. +IA,52,408,413-4957,no,no,0,191.900000,108,32.620000,269.800000,96,22.930000,236.800000,87,10.660000,7.800000,5,2.110000,3,False. +IN,60,408,420-5645,no,no,0,220.600000,57,37.500000,211.100000,115,17.940000,249.000000,129,11.210000,6.800000,3,1.840000,1,False. +VA,10,408,349-4396,no,no,0,186.100000,112,31.640000,190.200000,66,16.170000,282.800000,57,12.730000,11.400000,6,3.080000,2,False. +UT,96,415,404-3211,no,no,0,160.200000,117,27.230000,267.500000,67,22.740000,228.500000,68,10.280000,9.300000,5,2.510000,2,False. +WY,87,415,353-3759,no,no,0,151.000000,83,25.670000,219.700000,116,18.670000,203.900000,127,9.180000,9.700000,3,2.620000,5,True. +IN,81,408,363-5947,no,no,0,175.500000,67,29.840000,249.300000,85,21.190000,270.200000,98,12.160000,10.200000,3,2.750000,1,False. +CO,141,415,340-5121,no,no,0,126.900000,98,21.570000,180.000000,62,15.300000,140.800000,128,6.340000,8.000000,2,2.160000,1,False. +CO,121,408,370-7574,no,yes,30,198.400000,129,33.730000,75.300000,77,6.400000,181.200000,77,8.150000,5.800000,3,1.570000,3,True. +WI,68,415,403-9733,no,no,0,148.800000,70,25.300000,246.500000,164,20.950000,129.800000,103,5.840000,12.100000,3,3.270000,3,False. +OK,125,408,355-7251,no,no,0,229.300000,103,38.980000,177.400000,126,15.080000,189.300000,95,8.520000,12.000000,8,3.240000,1,False. +ID,174,408,359-5893,no,no,0,192.100000,97,32.660000,169.900000,94,14.440000,166.600000,54,7.500000,11.400000,4,3.080000,1,False. +CA,116,415,405-3371,no,yes,34,268.600000,83,45.660000,178.200000,142,15.150000,166.300000,106,7.480000,11.600000,3,3.130000,2,False. +MN,74,510,344-5117,no,yes,33,193.700000,91,32.930000,246.100000,96,20.920000,138.000000,92,6.210000,14.600000,3,3.940000,2,False. +SD,149,408,332-8160,no,yes,28,180.700000,92,30.720000,187.800000,64,15.960000,265.500000,53,11.950000,12.600000,3,3.400000,3,False. +NC,38,408,359-4081,no,no,0,131.200000,98,22.300000,162.900000,97,13.850000,159.000000,106,7.150000,8.200000,6,2.210000,2,False. +WA,40,415,352-8305,no,yes,41,148.100000,74,25.180000,169.500000,88,14.410000,214.100000,102,9.630000,6.200000,5,1.670000,2,False. +WY,43,415,329-9847,yes,no,0,251.500000,105,42.760000,212.800000,104,18.090000,157.800000,67,7.100000,9.300000,4,2.510000,0,False. +MN,113,408,365-9011,yes,no,0,125.200000,93,21.280000,206.400000,119,17.540000,129.300000,139,5.820000,8.300000,8,2.240000,0,False. +UT,126,408,338-9472,no,no,0,211.600000,70,35.970000,216.900000,80,18.440000,153.500000,60,6.910000,7.800000,1,2.110000,1,False. +TX,150,510,374-8042,no,no,0,178.900000,101,30.410000,169.100000,110,14.370000,148.600000,100,6.690000,13.800000,3,3.730000,4,True. +NJ,138,408,359-1231,no,no,0,241.800000,93,41.110000,170.500000,83,14.490000,295.300000,104,13.290000,11.800000,7,3.190000,3,False. +MN,162,510,413-7170,no,yes,46,224.900000,97,38.230000,188.200000,84,16.000000,254.600000,61,11.460000,12.100000,2,3.270000,0,False. +NM,147,510,415-2935,no,no,0,248.600000,83,42.260000,148.900000,85,12.660000,172.500000,109,7.760000,8.000000,4,2.160000,3,False. +NV,90,415,399-4246,no,no,0,203.400000,146,34.580000,226.700000,117,19.270000,152.400000,105,6.860000,7.300000,4,1.970000,1,False. +HI,85,415,362-5889,no,no,0,235.800000,109,40.090000,157.200000,94,13.360000,188.200000,99,8.470000,12.000000,3,3.240000,0,False. +MN,50,415,350-8921,no,no,0,157.100000,90,26.710000,223.300000,72,18.980000,181.400000,111,8.160000,6.100000,2,1.650000,1,False. +DC,82,415,374-5353,no,no,0,300.300000,109,51.050000,181.000000,100,15.390000,270.100000,73,12.150000,11.700000,4,3.160000,0,True. +NY,144,408,360-1171,no,no,0,61.600000,117,10.470000,77.100000,85,6.550000,173.000000,99,7.790000,8.200000,7,2.210000,4,True. +MN,46,415,355-8887,no,no,0,214.100000,72,36.400000,164.400000,104,13.970000,177.500000,113,7.990000,8.200000,3,2.210000,2,False. +MD,70,408,333-1967,no,no,0,170.200000,98,28.930000,155.200000,102,13.190000,228.600000,76,10.290000,15.000000,2,4.050000,1,False. +WV,144,415,354-4577,no,no,0,201.100000,99,34.190000,303.500000,74,25.800000,224.000000,119,10.080000,13.200000,2,3.560000,1,False. +OR,116,415,331-7425,yes,no,0,215.400000,104,36.620000,204.800000,79,17.410000,278.500000,109,12.530000,12.600000,5,3.400000,3,False. +CO,55,408,419-2637,no,yes,25,165.600000,123,28.150000,136.100000,95,11.570000,175.700000,90,7.910000,11.000000,2,2.970000,3,False. +GA,70,415,411-1530,no,yes,24,249.500000,101,42.420000,259.700000,98,22.070000,222.700000,68,10.020000,9.800000,4,2.650000,1,False. +TX,106,510,395-3026,no,no,0,210.600000,96,35.800000,249.200000,85,21.180000,191.400000,88,8.610000,12.400000,1,3.350000,2,True. +VT,128,510,388-6441,no,yes,29,179.300000,104,30.480000,225.900000,86,19.200000,323.000000,78,14.540000,8.600000,7,2.320000,0,False. +IN,94,408,402-1251,no,no,0,157.900000,105,26.840000,155.000000,101,13.180000,189.600000,84,8.530000,8.000000,5,2.160000,4,True. +WV,111,510,412-9997,no,no,0,214.300000,118,36.430000,208.500000,76,17.720000,182.400000,98,8.210000,12.000000,2,3.240000,1,False. +KY,74,415,346-7302,no,yes,35,154.100000,104,26.200000,123.400000,84,10.490000,202.100000,57,9.090000,10.900000,9,2.940000,2,False. +NJ,128,415,358-9095,no,no,0,237.900000,125,40.440000,247.600000,93,21.050000,208.900000,68,9.400000,13.900000,4,3.750000,1,True. +DC,82,510,400-9770,no,no,0,143.900000,61,24.460000,194.900000,105,16.570000,109.600000,94,4.930000,11.100000,2,3.000000,1,False. +LA,155,415,334-1275,no,no,0,203.400000,100,34.580000,190.900000,104,16.230000,196.000000,119,8.820000,8.900000,4,2.400000,0,True. +AR,80,415,340-4953,no,no,0,124.300000,100,21.130000,173.000000,107,14.710000,253.200000,62,11.390000,7.900000,9,2.130000,1,False. +ME,78,415,400-9510,no,no,0,252.900000,93,42.990000,178.400000,112,15.160000,263.900000,105,11.880000,9.500000,7,2.570000,3,False. +AZ,90,415,387-6103,no,no,0,179.100000,71,30.450000,190.600000,81,16.200000,127.700000,91,5.750000,10.600000,7,2.860000,3,False. +AK,104,408,366-4467,no,no,0,278.400000,106,47.330000,81.000000,113,6.890000,163.200000,137,7.340000,9.800000,5,2.650000,1,False. +MT,73,415,370-3450,no,no,0,160.100000,110,27.220000,213.300000,72,18.130000,174.100000,72,7.830000,13.000000,4,3.510000,0,False. +AZ,99,415,327-3954,no,no,0,198.200000,87,33.690000,207.300000,76,17.620000,190.900000,113,8.590000,8.700000,3,2.350000,4,False. +MS,120,408,355-6291,no,no,0,212.100000,131,36.060000,209.400000,104,17.800000,167.200000,96,7.520000,5.300000,5,1.430000,1,True. +ID,77,415,362-9748,no,no,0,251.800000,72,42.810000,205.700000,126,17.480000,275.200000,109,12.380000,9.800000,7,2.650000,2,True. +IA,98,510,379-6506,no,yes,21,161.200000,114,27.400000,252.200000,83,21.440000,160.200000,92,7.210000,4.400000,8,1.190000,4,False. +MA,108,415,347-7741,no,no,0,178.300000,137,30.310000,189.000000,76,16.070000,129.100000,102,5.810000,14.600000,5,3.940000,0,False. +VT,135,415,354-3783,no,no,0,151.700000,82,25.790000,119.000000,105,10.120000,180.000000,100,8.100000,10.500000,6,2.840000,0,False. +KY,95,408,401-7594,no,no,0,135.000000,99,22.950000,183.600000,106,15.610000,245.300000,102,11.040000,12.500000,9,3.380000,1,False. +IN,122,408,397-4976,no,no,0,170.500000,94,28.990000,173.700000,109,14.760000,248.600000,75,11.190000,11.300000,2,3.050000,1,False. +AZ,95,408,334-2577,no,no,0,238.100000,65,40.480000,187.200000,98,15.910000,190.000000,115,8.550000,11.800000,4,3.190000,4,False. +MI,36,510,400-3637,no,yes,29,281.400000,102,47.840000,202.200000,76,17.190000,187.200000,113,8.420000,9.000000,6,2.430000,2,False. +NM,93,510,383-4361,no,yes,21,117.900000,131,20.040000,164.500000,115,13.980000,217.000000,86,9.760000,9.800000,3,2.650000,1,False. +CO,141,415,371-4306,no,yes,32,148.600000,91,25.260000,131.100000,97,11.140000,219.400000,142,9.870000,10.100000,1,2.730000,1,False. +UT,157,408,403-4298,no,no,0,229.800000,90,39.070000,147.900000,121,12.570000,241.400000,108,10.860000,9.600000,7,2.590000,3,False. +MI,120,408,409-3786,no,no,0,165.000000,100,28.050000,317.200000,83,26.960000,119.200000,86,5.360000,8.300000,8,2.240000,1,False. +MA,103,415,337-4697,no,no,0,185.000000,117,31.450000,223.300000,94,18.980000,222.800000,91,10.030000,12.600000,2,3.400000,2,False. +AL,98,408,383-1509,no,no,0,161.000000,117,27.370000,190.900000,113,16.230000,227.700000,113,10.250000,12.100000,4,3.270000,4,False. +DE,125,408,359-9794,no,no,0,126.700000,108,21.540000,206.000000,90,17.510000,247.800000,114,11.150000,13.300000,7,3.590000,1,False. +AZ,63,415,407-7035,no,no,0,58.900000,125,10.010000,169.600000,59,14.420000,211.400000,88,9.510000,9.400000,3,2.540000,1,False. +ME,36,510,363-1069,yes,yes,42,196.800000,89,33.460000,254.900000,122,21.670000,138.300000,126,6.220000,20.000000,6,5.400000,0,True. +NJ,64,510,391-4652,no,no,0,162.600000,83,27.640000,152.300000,109,12.950000,57.500000,122,2.590000,14.200000,3,3.830000,1,False. +NV,74,415,355-6837,no,no,0,282.500000,114,48.030000,219.900000,48,18.690000,170.000000,115,7.650000,9.400000,4,2.540000,1,True. +MO,112,510,409-1244,no,yes,36,113.700000,117,19.330000,157.500000,82,13.390000,177.600000,118,7.990000,10.000000,3,2.700000,2,False. +ID,97,408,328-3266,no,no,0,239.800000,125,40.770000,214.800000,111,18.260000,143.300000,81,6.450000,8.700000,5,2.350000,2,False. +NE,46,408,352-7072,no,no,0,210.200000,92,35.730000,227.300000,77,19.320000,200.100000,116,9.000000,13.100000,7,3.540000,1,False. +TX,41,408,370-7550,no,yes,22,213.800000,102,36.350000,141.800000,86,12.050000,142.200000,123,6.400000,7.200000,3,1.940000,0,False. +MD,121,510,369-5526,no,no,0,190.700000,103,32.420000,183.500000,117,15.600000,220.800000,103,9.940000,9.800000,4,2.650000,3,False. +MS,193,415,329-4391,no,no,0,170.900000,124,29.050000,132.300000,95,11.250000,112.900000,89,5.080000,11.600000,3,3.130000,1,False. +NV,130,510,408-4195,no,no,0,154.200000,119,26.210000,110.200000,98,9.370000,227.400000,117,10.230000,9.200000,5,2.480000,2,False. +AZ,85,408,354-4445,no,no,0,201.400000,52,34.240000,229.400000,104,19.500000,252.500000,106,11.360000,12.000000,3,3.240000,1,False. +MS,162,415,335-4858,no,no,0,70.700000,108,12.020000,157.500000,87,13.390000,154.800000,82,6.970000,9.100000,3,2.460000,4,True. +MS,61,510,414-8718,no,yes,27,187.500000,124,31.880000,146.600000,103,12.460000,225.700000,129,10.160000,6.400000,6,1.730000,4,True. +TX,92,408,409-5939,no,no,0,91.700000,90,15.590000,193.700000,123,16.460000,175.000000,86,7.880000,9.200000,4,2.480000,2,False. +NE,131,408,331-4902,no,yes,36,214.200000,115,36.410000,161.700000,117,13.740000,264.700000,102,11.910000,9.500000,4,2.570000,3,False. +NE,90,415,353-6870,no,no,0,145.500000,92,24.740000,217.700000,114,18.500000,146.900000,123,6.610000,10.900000,2,2.940000,3,False. +CA,75,408,355-2909,no,no,0,166.300000,125,28.270000,158.200000,86,13.450000,256.700000,80,11.550000,6.100000,5,1.650000,1,False. +NJ,78,415,390-6101,no,no,0,231.000000,115,39.270000,230.400000,140,19.580000,261.400000,120,11.760000,9.500000,3,2.570000,1,False. +TX,82,408,400-3446,no,no,0,200.300000,96,34.050000,201.200000,102,17.100000,206.100000,60,9.270000,7.100000,1,1.920000,4,False. +AR,163,408,411-5859,no,no,0,197.000000,109,33.490000,202.600000,128,17.220000,206.400000,80,9.290000,9.100000,10,2.460000,1,False. +AL,91,510,387-2919,yes,no,0,129.900000,112,22.080000,173.300000,83,14.730000,247.200000,130,11.120000,11.200000,3,3.020000,3,False. +NY,75,415,374-8525,no,yes,21,175.800000,97,29.890000,217.500000,106,18.490000,237.500000,134,10.690000,5.300000,4,1.430000,5,False. +FL,91,510,379-5592,no,no,0,203.100000,106,34.530000,210.100000,113,17.860000,195.600000,129,8.800000,12.000000,3,3.240000,3,False. +AK,127,510,345-8237,no,yes,36,183.200000,117,31.140000,126.800000,76,10.780000,263.300000,71,11.850000,11.200000,8,3.020000,1,False. +NV,113,415,422-6690,no,yes,23,205.000000,101,34.850000,152.000000,60,12.920000,158.600000,59,7.140000,10.200000,5,2.750000,2,False. +DE,110,510,346-2359,no,no,0,148.500000,115,25.250000,276.400000,84,23.490000,193.600000,112,8.710000,12.400000,3,3.350000,1,False. +MD,120,415,374-3534,no,yes,39,200.300000,68,34.050000,220.400000,97,18.730000,253.800000,116,11.420000,10.500000,4,2.840000,0,False. +MI,157,415,381-4756,no,yes,28,192.600000,107,32.740000,195.500000,74,16.620000,109.700000,139,4.940000,6.800000,5,1.840000,3,False. +VT,103,510,390-2805,no,no,0,246.500000,47,41.910000,195.500000,84,16.620000,200.500000,96,9.020000,11.700000,4,3.160000,1,False. +VT,117,408,390-2390,yes,no,0,167.100000,86,28.410000,177.500000,87,15.090000,249.400000,132,11.220000,14.100000,7,3.810000,2,True. +MI,140,415,419-9097,no,no,0,231.900000,101,39.420000,160.100000,94,13.610000,110.400000,98,4.970000,14.300000,6,3.860000,3,False. +WA,127,408,386-7281,no,no,0,146.700000,91,24.940000,203.500000,78,17.300000,203.400000,110,9.150000,13.700000,3,3.700000,1,False. +UT,83,408,380-3561,yes,no,0,271.500000,87,46.160000,216.300000,126,18.390000,121.100000,105,5.450000,11.700000,4,3.160000,1,False. +LA,121,408,390-8760,no,no,0,181.500000,121,30.860000,218.400000,98,18.560000,161.600000,103,7.270000,8.500000,5,2.300000,1,False. +RI,145,408,366-6730,no,yes,43,257.700000,97,43.810000,162.100000,95,13.780000,286.900000,86,12.910000,11.100000,4,3.000000,2,False. +IA,113,408,395-5285,no,no,0,193.800000,99,32.950000,221.400000,125,18.820000,172.300000,67,7.750000,10.600000,6,2.860000,1,False. +NE,117,415,354-3436,no,no,0,102.800000,119,17.480000,206.700000,91,17.570000,299.000000,105,13.460000,10.100000,7,2.730000,1,False. +OH,65,408,336-7600,no,no,0,187.900000,116,31.940000,157.600000,117,13.400000,227.300000,86,10.230000,7.500000,6,2.030000,1,False. +RI,56,415,383-6293,no,no,0,226.000000,112,38.420000,248.500000,118,21.120000,140.500000,142,6.320000,6.900000,11,1.860000,1,False. +OK,96,415,362-4596,no,no,0,260.400000,115,44.270000,146.000000,46,12.410000,269.500000,87,12.130000,11.500000,4,3.110000,5,False. +LA,151,408,401-3926,no,no,0,178.700000,116,30.380000,292.100000,138,24.830000,265.900000,101,11.970000,9.800000,4,2.650000,0,False. +OH,83,415,370-9116,no,no,0,337.400000,120,57.360000,227.400000,116,19.330000,153.900000,114,6.930000,15.800000,7,4.270000,0,True. +VA,139,510,328-6289,no,yes,23,157.600000,129,26.790000,247.000000,96,21.000000,259.200000,112,11.660000,13.700000,2,3.700000,0,False. +MO,6,510,350-9994,no,no,0,183.600000,117,31.210000,256.700000,72,21.820000,178.600000,79,8.040000,10.200000,2,2.750000,1,False. +FL,115,510,351-4616,no,yes,24,142.100000,124,24.160000,183.400000,129,15.590000,164.800000,114,7.420000,9.600000,4,2.590000,1,False. +SC,87,415,360-5779,no,no,0,136.300000,97,23.170000,172.200000,108,14.640000,137.500000,101,6.190000,7.100000,5,1.920000,0,False. +VA,141,415,417-4885,no,no,0,217.100000,110,36.910000,241.500000,111,20.530000,253.500000,103,11.410000,12.000000,6,3.240000,0,False. +IA,141,510,406-4710,no,yes,36,187.500000,99,31.880000,241.400000,116,20.520000,229.500000,105,10.330000,10.500000,5,2.840000,3,False. +MI,62,415,409-8743,no,no,0,98.900000,103,16.810000,135.400000,122,11.510000,236.600000,82,10.650000,12.200000,1,3.290000,1,False. +OK,146,415,335-4584,no,no,0,206.300000,151,35.070000,148.600000,89,12.630000,167.200000,91,7.520000,6.100000,3,1.650000,1,False. +DE,92,415,361-9845,no,yes,33,243.100000,92,41.330000,213.800000,92,18.170000,228.700000,104,10.290000,12.100000,2,3.270000,2,False. +GA,185,510,366-5699,no,yes,31,189.800000,126,32.270000,163.300000,133,13.880000,264.800000,126,11.920000,7.500000,3,2.030000,1,False. +DC,148,415,329-9364,no,no,0,202.000000,102,34.340000,243.200000,128,20.670000,261.300000,90,11.760000,10.900000,3,2.940000,1,False. +AZ,94,408,390-7434,no,yes,38,170.100000,124,28.920000,193.300000,116,16.430000,105.900000,73,4.770000,12.800000,4,3.460000,1,False. +AL,32,510,404-9680,no,no,0,230.900000,87,39.250000,187.400000,90,15.930000,154.000000,53,6.930000,6.300000,2,1.700000,0,False. +CO,68,408,338-9398,no,no,0,237.100000,105,40.310000,223.500000,105,19.000000,97.400000,79,4.380000,13.200000,2,3.560000,1,False. +NH,64,408,394-2445,no,yes,27,182.100000,91,30.960000,169.700000,98,14.420000,164.700000,86,7.410000,10.600000,5,2.860000,2,False. +NM,25,415,381-2709,no,no,0,119.300000,87,20.280000,211.500000,101,17.980000,268.900000,86,12.100000,10.500000,4,2.840000,3,False. +OR,65,415,397-5060,no,no,0,116.800000,87,19.860000,178.900000,93,15.210000,182.400000,150,8.210000,14.100000,2,3.810000,1,False. +LA,179,408,415-2393,no,no,0,219.200000,92,37.260000,149.400000,125,12.700000,244.700000,104,11.010000,6.100000,5,1.650000,0,False. +NE,94,415,377-1765,no,no,0,252.600000,104,42.940000,169.000000,125,14.370000,170.900000,106,7.690000,11.100000,7,3.000000,2,False. +MN,62,415,409-2111,no,no,0,147.100000,91,25.010000,190.400000,107,16.180000,195.200000,115,8.780000,12.200000,3,3.290000,0,False. +MI,127,415,401-3170,no,no,0,202.100000,103,34.360000,229.400000,86,19.500000,195.200000,113,8.780000,11.500000,3,3.110000,2,False. +AR,116,408,405-5681,no,no,0,173.500000,93,29.500000,194.100000,76,16.500000,208.000000,112,9.360000,16.200000,10,4.370000,3,False. +KS,70,408,411-4582,no,no,0,232.100000,122,39.460000,292.300000,112,24.850000,201.200000,112,9.050000,0.000000,0,0.000000,3,False. +WV,94,510,355-5009,yes,yes,23,197.100000,125,33.510000,214.500000,136,18.230000,282.200000,103,12.700000,9.500000,5,2.570000,4,False. +AK,126,415,372-3750,no,no,0,58.200000,94,9.890000,138.700000,118,11.790000,136.800000,91,6.160000,11.900000,1,3.210000,5,True. +NY,67,408,405-2888,no,yes,36,115.600000,111,19.650000,237.700000,94,20.200000,169.900000,103,7.650000,9.900000,12,2.670000,2,False. +NH,19,408,361-3337,no,no,0,186.100000,98,31.640000,254.300000,57,21.620000,214.000000,127,9.630000,14.600000,7,3.940000,2,False. +VA,170,510,350-1639,yes,no,0,259.900000,68,44.180000,245.000000,122,20.830000,134.400000,121,6.050000,8.400000,3,2.270000,3,False. +NM,73,415,333-3221,no,no,0,214.300000,145,36.430000,268.500000,135,22.820000,241.200000,92,10.850000,10.800000,13,2.920000,1,False. +NY,106,408,422-1471,no,no,0,158.700000,74,26.980000,64.300000,139,5.470000,198.500000,103,8.930000,10.200000,4,2.750000,1,False. +AZ,93,415,399-7865,no,no,0,271.600000,71,46.170000,229.400000,108,19.500000,77.300000,121,3.480000,10.900000,3,2.940000,2,False. +WY,164,510,373-4819,no,no,0,160.600000,111,27.300000,163.200000,126,13.870000,187.100000,112,8.420000,9.000000,3,2.430000,1,False. +WA,51,408,338-6981,no,no,0,232.400000,109,39.510000,187.400000,95,15.930000,231.200000,107,10.400000,9.100000,3,2.460000,1,False. +CO,107,415,418-4365,no,no,0,133.800000,85,22.750000,180.500000,94,15.340000,112.200000,115,5.050000,8.900000,4,2.400000,0,False. +TX,130,415,359-5461,no,no,0,176.900000,109,30.070000,90.700000,104,7.710000,238.000000,69,10.710000,9.500000,2,2.570000,1,False. +KY,80,408,375-3586,no,no,0,209.900000,74,35.680000,195.100000,77,16.580000,208.200000,119,9.370000,8.800000,4,2.380000,2,False. +MT,94,415,407-8376,no,no,0,137.500000,118,23.380000,203.200000,88,17.270000,150.000000,131,6.750000,13.400000,2,3.620000,0,False. +OK,118,408,408-6496,no,yes,23,289.500000,52,49.220000,166.600000,111,14.160000,119.100000,88,5.360000,9.500000,4,2.570000,1,False. +MD,117,415,385-7688,no,yes,23,198.100000,86,33.680000,177.000000,86,15.050000,180.500000,92,8.120000,6.800000,6,1.840000,1,False. +TN,78,415,332-6934,no,no,0,149.700000,119,25.450000,182.200000,115,15.490000,261.500000,126,11.770000,9.700000,8,2.620000,0,False. +TX,208,510,378-3625,no,no,0,326.500000,67,55.510000,176.300000,113,14.990000,181.700000,102,8.180000,10.700000,6,2.890000,2,True. +ME,131,510,353-7292,yes,yes,26,292.900000,101,49.790000,199.700000,97,16.970000,255.300000,127,11.490000,13.800000,7,3.730000,4,True. +DC,63,408,399-6786,no,no,0,83.000000,64,14.110000,177.000000,106,15.050000,245.700000,89,11.060000,13.000000,3,3.510000,0,False. +MN,53,415,358-3261,no,yes,24,145.700000,146,24.770000,220.500000,136,18.740000,249.900000,96,11.250000,13.100000,5,3.540000,3,False. +DE,62,408,377-9932,no,no,0,182.300000,101,30.990000,328.200000,93,27.900000,245.000000,131,11.030000,11.200000,1,3.020000,2,False. +MD,97,415,397-4030,no,no,0,218.000000,86,37.060000,184.000000,94,15.640000,240.500000,110,10.820000,6.400000,8,1.730000,3,False. +MI,105,510,367-1062,no,no,0,140.600000,109,23.900000,178.600000,51,15.180000,217.000000,83,9.760000,6.800000,3,1.840000,2,False. +WA,157,415,341-8467,no,no,0,152.700000,105,25.960000,257.500000,80,21.890000,198.100000,93,8.910000,9.400000,4,2.540000,1,False. +MO,66,415,339-9453,no,yes,36,106.700000,76,18.140000,209.800000,77,17.830000,190.400000,117,8.570000,12.100000,2,3.270000,1,False. +IN,122,415,344-3388,no,no,0,243.800000,98,41.450000,83.900000,72,7.130000,179.800000,84,8.090000,13.700000,8,3.700000,2,False. +OR,38,415,375-8013,no,no,0,194.400000,94,33.050000,186.700000,95,15.870000,223.300000,90,10.050000,10.800000,5,2.920000,3,False. +MD,106,510,408-4142,no,no,0,213.900000,95,36.360000,151.900000,70,12.910000,260.100000,124,11.700000,12.200000,5,3.290000,3,False. +RI,99,510,386-3671,no,no,0,217.200000,112,36.920000,246.700000,89,20.970000,226.100000,89,10.170000,15.800000,7,4.270000,3,False. +LA,99,415,411-2284,no,no,0,241.100000,72,40.990000,155.600000,98,13.230000,188.200000,109,8.470000,11.600000,10,3.130000,1,False. +AZ,144,510,346-7795,yes,no,0,203.500000,100,34.600000,247.600000,103,21.050000,194.300000,94,8.740000,11.900000,11,3.210000,0,False. +PA,82,415,333-5609,no,yes,24,155.200000,131,26.380000,244.500000,106,20.780000,122.400000,68,5.510000,10.700000,3,2.890000,1,False. +AZ,86,408,405-1842,no,yes,31,167.600000,139,28.490000,113.000000,118,9.610000,246.900000,121,11.110000,12.200000,6,3.290000,1,False. +FL,70,510,366-6345,yes,no,0,226.700000,98,38.540000,228.100000,115,19.390000,73.200000,93,3.290000,17.600000,4,4.750000,2,True. +LA,93,415,337-9345,no,no,0,179.300000,93,30.480000,178.600000,98,15.180000,225.200000,131,10.130000,11.500000,6,3.110000,3,False. +FL,93,415,328-6770,no,no,0,151.400000,89,25.740000,186.400000,76,15.840000,172.500000,120,7.760000,10.900000,3,2.940000,0,False. +FL,120,415,380-7321,no,no,0,180.000000,80,30.600000,224.200000,82,19.060000,265.400000,91,11.940000,4.700000,7,1.270000,3,False. +MD,136,415,375-1476,no,no,0,250.200000,121,42.530000,267.100000,118,22.700000,151.000000,114,6.800000,13.000000,2,3.510000,1,True. +AL,106,415,356-1567,no,no,0,223.000000,121,37.910000,110.100000,98,9.360000,188.700000,107,8.490000,7.100000,12,1.920000,0,False. +WA,81,415,422-6685,no,no,0,183.600000,116,31.210000,152.600000,98,12.970000,212.200000,99,9.550000,12.200000,6,3.290000,3,False. +TN,127,408,336-1090,no,yes,22,166.000000,114,28.220000,174.500000,103,14.830000,244.900000,68,11.020000,10.200000,6,2.750000,1,False. +MS,65,415,343-2095,no,no,0,136.100000,112,23.140000,272.900000,96,23.200000,220.200000,104,9.910000,4.400000,2,1.190000,1,False. +ME,35,408,345-3934,no,no,0,149.300000,113,25.380000,242.200000,122,20.590000,174.300000,104,7.840000,8.900000,6,2.400000,2,False. +OK,88,408,338-8050,no,no,0,65.400000,97,11.120000,168.200000,76,14.300000,236.000000,113,10.620000,13.800000,1,3.730000,2,False. +IN,65,415,388-9568,no,no,0,213.400000,111,36.280000,234.500000,94,19.930000,250.100000,123,11.250000,2.700000,4,0.730000,1,False. +MO,123,415,402-6591,no,no,0,206.900000,85,35.170000,244.700000,78,20.800000,221.500000,136,9.970000,7.700000,2,2.080000,3,False. +IA,126,408,403-6419,no,yes,27,186.200000,78,31.650000,189.600000,83,16.120000,76.500000,139,3.440000,9.600000,3,2.590000,2,False. +VA,104,415,386-9790,no,yes,23,280.200000,136,47.630000,220.500000,92,18.740000,136.900000,102,6.160000,13.300000,3,3.590000,4,False. +KY,45,415,378-5692,no,yes,22,196.600000,84,33.420000,313.200000,92,26.620000,163.300000,108,7.350000,11.900000,3,3.210000,0,False. +MD,93,408,360-3324,yes,no,0,312.000000,109,53.040000,129.400000,100,11.000000,217.600000,74,9.790000,10.500000,2,2.840000,0,True. +OH,63,415,410-3719,yes,yes,36,199.000000,110,33.830000,291.300000,111,24.760000,197.600000,92,8.890000,11.000000,6,2.970000,1,False. +OK,100,415,352-4221,no,no,0,203.100000,96,34.530000,217.000000,126,18.450000,180.900000,122,8.140000,13.500000,2,3.650000,3,False. +NV,53,415,327-6179,no,no,0,168.800000,97,28.700000,220.300000,87,18.730000,154.300000,113,6.940000,10.900000,2,2.940000,0,False. +ID,92,415,359-6196,yes,no,0,173.100000,140,29.430000,240.300000,105,20.430000,233.200000,117,10.490000,9.000000,5,2.430000,1,False. +MN,139,510,374-9107,no,no,0,134.400000,106,22.850000,211.300000,98,17.960000,193.600000,125,8.710000,10.200000,2,2.750000,5,True. +SD,110,408,357-4078,no,yes,40,202.600000,103,34.440000,118.800000,128,10.100000,234.900000,98,10.570000,9.000000,9,2.430000,2,False. +IL,110,408,366-5780,no,no,0,74.500000,117,12.670000,200.800000,98,17.070000,192.200000,101,8.650000,9.800000,7,2.650000,3,False. +WY,215,510,393-9619,no,no,0,83.600000,148,14.210000,120.900000,91,10.280000,226.600000,110,10.200000,10.700000,9,2.890000,0,False. +AL,73,415,355-9295,no,no,0,192.200000,86,32.670000,168.600000,116,14.330000,139.800000,87,6.290000,9.400000,6,2.540000,1,False. +NJ,138,510,400-5751,no,no,0,220.200000,89,37.430000,88.300000,125,7.510000,195.300000,79,8.790000,12.900000,5,3.480000,0,False. +NV,137,415,338-1027,yes,no,0,135.100000,95,22.970000,134.100000,102,11.400000,223.100000,81,10.040000,12.300000,2,3.320000,2,True. +IN,36,415,405-8867,no,no,0,253.400000,77,43.080000,182.400000,151,15.500000,275.800000,103,12.410000,8.400000,2,2.270000,1,False. +WV,85,408,336-5616,no,no,0,225.000000,81,38.250000,176.900000,63,15.040000,194.300000,110,8.740000,7.100000,2,1.920000,3,False. +VA,108,408,335-1697,no,no,0,198.500000,99,33.750000,267.800000,60,22.760000,354.900000,75,15.970000,9.400000,3,2.540000,0,True. +SC,22,408,331-5138,no,no,0,110.300000,107,18.750000,166.500000,93,14.150000,202.300000,96,9.100000,9.500000,5,2.570000,0,False. +RI,107,415,385-8240,no,yes,37,60.000000,102,10.200000,102.200000,80,8.690000,261.800000,106,11.780000,11.100000,3,3.000000,0,False. +IN,51,510,348-1359,no,no,0,214.800000,94,36.520000,149.700000,58,12.720000,283.400000,66,12.750000,10.200000,5,2.750000,0,False. +AZ,94,408,354-7339,no,no,0,181.800000,85,30.910000,202.400000,98,17.200000,245.900000,97,11.070000,9.200000,2,2.480000,4,False. +NM,119,510,349-1687,no,yes,23,154.000000,114,26.180000,278.000000,137,23.630000,228.400000,112,10.280000,11.800000,4,3.190000,2,False. +OR,33,415,380-2558,no,yes,29,157.400000,99,26.760000,117.900000,80,10.020000,279.200000,79,12.560000,13.900000,11,3.750000,4,True. +NJ,106,415,365-2153,no,no,0,207.900000,91,35.340000,172.000000,109,14.620000,191.800000,143,8.630000,14.400000,7,3.890000,4,False. +MS,82,408,345-6043,no,no,0,207.000000,90,35.190000,232.900000,83,19.800000,172.400000,108,7.760000,9.100000,8,2.460000,3,False. +MI,86,510,349-2808,no,yes,41,119.000000,101,20.230000,230.000000,134,19.550000,236.900000,58,10.660000,9.500000,3,2.570000,0,False. +TX,97,415,411-1715,yes,no,0,143.700000,117,24.430000,273.000000,82,23.210000,178.300000,81,8.020000,10.900000,3,2.940000,0,False. +FL,106,408,385-2488,no,yes,32,165.900000,126,28.200000,216.500000,93,18.400000,173.100000,86,7.790000,14.100000,8,3.810000,4,False. +DC,108,510,377-7177,no,no,0,138.600000,122,23.560000,172.300000,117,14.650000,231.600000,92,10.420000,9.800000,3,2.650000,1,False. +TX,114,415,342-1099,no,no,0,84.700000,118,14.400000,249.900000,86,21.240000,193.400000,95,8.700000,14.500000,8,3.920000,1,False. +KS,92,408,386-4170,yes,no,0,62.600000,111,10.640000,180.600000,126,15.350000,221.700000,80,9.980000,10.400000,2,2.810000,1,True. +UT,59,510,413-1269,no,no,0,155.200000,79,26.380000,235.300000,123,20.000000,169.400000,80,7.620000,8.700000,4,2.350000,1,False. +MN,24,510,396-4460,no,yes,25,164.900000,110,28.030000,209.300000,105,17.790000,231.200000,55,10.400000,6.700000,9,1.810000,1,False. +IL,151,408,334-2730,no,no,0,134.500000,88,22.870000,143.100000,112,12.160000,223.900000,61,10.080000,15.400000,1,4.160000,1,False. +NM,117,415,340-3182,no,no,0,143.300000,103,24.360000,211.300000,108,17.960000,185.200000,96,8.330000,11.500000,3,3.110000,1,False. +SC,78,510,377-8608,no,no,0,168.300000,110,28.610000,221.200000,73,18.800000,241.000000,136,10.850000,12.500000,1,3.380000,1,False. +NC,155,408,417-3676,no,no,0,262.400000,55,44.610000,194.600000,113,16.540000,146.500000,85,6.590000,8.300000,6,2.240000,2,False. +WV,114,510,417-6774,no,yes,30,206.200000,79,35.050000,260.000000,91,22.100000,291.600000,83,13.120000,11.400000,6,3.080000,1,False. +RI,114,510,411-9554,no,yes,28,225.800000,94,38.390000,193.000000,117,16.410000,232.400000,100,10.460000,8.400000,9,2.270000,4,False. +NH,119,408,420-3192,no,no,0,138.300000,89,23.510000,170.500000,78,14.490000,263.900000,98,11.880000,13.500000,6,3.650000,3,False. +MO,64,510,389-1475,no,yes,48,94.400000,104,16.050000,136.200000,101,11.580000,147.400000,89,6.630000,4.500000,4,1.220000,0,False. +MA,118,408,343-7734,yes,no,0,160.000000,123,27.200000,175.400000,96,14.910000,184.800000,99,8.320000,9.900000,3,2.670000,2,False. +PA,101,415,410-3390,no,no,0,206.600000,105,35.120000,224.900000,117,19.120000,249.900000,100,11.250000,14.600000,3,3.940000,0,False. +OK,117,415,344-6495,no,no,0,134.700000,121,22.900000,180.000000,83,15.300000,200.900000,104,9.040000,7.700000,3,2.080000,1,False. +AL,49,415,331-6229,no,yes,28,214.400000,78,36.450000,235.200000,100,19.990000,206.200000,107,9.280000,8.000000,13,2.160000,3,False. +WY,139,415,337-7501,no,no,0,192.800000,104,32.780000,234.400000,96,19.920000,203.200000,101,9.140000,13.000000,3,3.510000,3,False. +PA,92,408,339-9631,no,yes,28,151.100000,90,25.690000,194.800000,79,16.560000,239.200000,114,10.760000,10.000000,3,2.700000,1,False. +WA,83,415,369-4384,no,no,0,221.400000,103,37.640000,231.800000,103,19.700000,122.500000,100,5.510000,9.800000,5,2.650000,3,False. +HI,148,510,416-3915,yes,no,0,218.900000,88,37.210000,208.000000,85,17.680000,203.300000,99,9.150000,11.100000,4,3.000000,0,False. +SD,144,408,339-3049,no,yes,48,189.800000,96,32.270000,123.400000,67,10.490000,214.200000,106,9.640000,6.500000,2,1.760000,2,True. +AL,131,415,361-7998,no,yes,25,192.700000,85,32.760000,225.900000,105,19.200000,254.200000,59,11.440000,10.900000,6,2.940000,2,False. +VT,146,510,355-4842,yes,no,0,204.400000,135,34.750000,219.100000,90,18.620000,222.700000,114,10.020000,10.500000,6,2.840000,3,False. +MT,143,415,387-6440,no,no,0,172.300000,97,29.290000,174.000000,108,14.790000,188.200000,119,8.470000,13.000000,4,3.510000,2,False. +MN,81,415,369-2625,no,no,0,198.400000,93,33.730000,210.900000,108,17.930000,193.300000,71,8.700000,10.400000,6,2.810000,2,False. +AK,48,415,389-7073,no,yes,37,211.700000,115,35.990000,159.900000,84,13.590000,144.100000,80,6.480000,12.200000,1,3.290000,1,False. +MI,86,415,370-8463,no,yes,28,221.600000,74,37.670000,288.400000,100,24.510000,240.300000,105,10.810000,9.000000,2,2.430000,1,False. +DE,71,415,362-7318,no,no,0,197.900000,108,33.640000,181.500000,109,15.430000,281.400000,56,12.660000,6.700000,5,1.810000,3,False. +SD,145,408,412-1194,no,yes,24,147.500000,90,25.080000,175.700000,108,14.930000,252.100000,102,11.340000,15.600000,3,4.210000,2,False. +MI,137,510,355-9508,no,no,0,206.400000,122,35.090000,128.000000,102,10.880000,194.500000,84,8.750000,8.800000,5,2.380000,2,False. +KS,137,408,352-8202,no,no,0,205.900000,88,35.000000,209.300000,86,17.790000,289.900000,84,13.050000,14.500000,4,3.920000,2,False. +AL,167,510,335-5882,no,no,0,207.600000,88,35.290000,132.400000,63,11.250000,255.200000,98,11.480000,14.100000,5,3.810000,0,False. +OK,89,510,352-6976,no,no,0,303.900000,95,51.660000,260.900000,114,22.180000,312.100000,89,14.040000,5.300000,3,1.430000,1,True. +CT,199,415,393-6733,no,yes,34,230.600000,121,39.200000,219.400000,99,18.650000,299.300000,94,13.470000,8.000000,2,2.160000,0,False. +NE,132,510,335-1838,no,no,0,99.500000,110,16.920000,129.100000,80,10.970000,125.100000,124,5.630000,9.700000,3,2.620000,0,False. +WI,94,510,355-6930,no,no,0,177.100000,112,30.110000,194.000000,112,16.490000,146.700000,108,6.600000,5.900000,4,1.590000,1,False. +CT,96,415,387-5860,no,yes,37,172.700000,93,29.360000,120.100000,116,10.210000,216.100000,86,9.720000,10.300000,5,2.780000,5,True. +WI,96,510,343-2605,no,yes,18,172.700000,86,29.360000,133.400000,113,11.340000,259.500000,70,11.680000,9.800000,3,2.650000,1,False. +IN,166,510,350-6759,no,no,0,204.200000,115,34.710000,179.900000,152,15.290000,216.800000,109,9.760000,9.500000,5,2.570000,1,False. +DC,74,415,371-1514,no,no,0,85.700000,83,14.570000,247.700000,67,21.050000,142.400000,85,6.410000,10.100000,5,2.730000,2,False. +AR,36,415,346-9317,no,no,0,157.600000,117,26.790000,184.300000,58,15.670000,240.400000,99,10.820000,11.900000,1,3.210000,0,False. +ME,113,415,398-4313,no,no,0,215.500000,129,36.640000,218.700000,117,18.590000,207.100000,91,9.320000,6.600000,9,1.780000,4,False. +MN,94,415,412-4399,no,no,0,181.500000,98,30.860000,199.900000,88,16.990000,287.700000,114,12.950000,6.600000,5,1.780000,1,False. +MD,67,415,330-1835,no,no,0,171.700000,80,29.190000,110.400000,81,9.380000,195.400000,111,8.790000,11.900000,4,3.210000,2,False. +FL,127,415,416-1676,no,no,0,266.600000,106,45.320000,264.800000,168,22.510000,207.200000,119,9.320000,5.900000,2,1.590000,1,True. +RI,121,408,329-7347,no,no,0,170.400000,108,28.970000,350.500000,68,29.790000,297.000000,87,13.370000,11.200000,3,3.020000,0,True. +IA,158,415,360-6868,no,no,0,158.000000,106,26.860000,292.500000,114,24.860000,241.100000,89,10.850000,9.100000,4,2.460000,1,False. +AZ,136,510,405-6641,no,no,0,92.000000,117,15.640000,253.600000,77,21.560000,214.100000,90,9.630000,10.300000,10,2.780000,1,False. +MO,196,415,393-2373,no,no,0,234.000000,109,39.780000,249.500000,114,21.210000,173.100000,70,7.790000,9.100000,5,2.460000,2,False. +VT,113,415,419-1714,no,no,0,272.100000,111,46.260000,268.500000,118,22.820000,213.800000,105,9.620000,8.500000,10,2.300000,1,True. +IN,122,408,336-3819,no,no,0,296.400000,99,50.390000,214.800000,89,18.260000,133.900000,107,6.030000,11.400000,3,3.080000,4,True. +RI,112,510,341-3464,no,no,0,194.400000,101,33.050000,190.300000,82,16.180000,183.400000,107,8.250000,11.400000,2,3.080000,0,False. +SD,209,415,413-5310,no,no,0,227.200000,128,38.620000,258.400000,92,21.960000,183.500000,74,8.260000,8.900000,4,2.400000,3,False. +MN,62,415,366-7912,no,no,0,248.700000,109,42.280000,220.000000,118,18.700000,265.700000,78,11.960000,13.200000,2,3.560000,1,True. +TX,110,415,399-8845,no,yes,38,236.300000,102,40.170000,195.900000,112,16.650000,183.500000,82,8.260000,9.700000,6,2.620000,1,False. +VA,16,510,368-2583,no,no,0,205.600000,69,34.950000,169.500000,93,14.410000,220.100000,64,9.900000,10.900000,3,2.940000,0,False. +MA,73,408,360-6309,no,no,0,94.100000,136,16.000000,280.300000,122,23.830000,205.000000,77,9.230000,9.800000,4,2.650000,0,False. +ID,128,408,359-5890,no,no,0,125.200000,99,21.280000,205.400000,107,17.460000,254.400000,111,11.450000,18.900000,2,5.100000,0,False. +MA,39,408,332-2462,no,no,0,60.400000,158,10.270000,306.200000,120,26.030000,123.900000,46,5.580000,12.400000,3,3.350000,1,False. +GA,103,415,381-9196,no,yes,28,121.000000,105,20.570000,270.400000,100,22.980000,160.500000,76,7.220000,7.700000,4,2.080000,2,False. +RI,119,415,329-3222,no,yes,29,117.800000,66,20.030000,256.800000,114,21.830000,147.600000,76,6.640000,7.600000,3,2.050000,3,False. +ID,173,510,363-5819,no,yes,21,232.400000,96,39.510000,211.900000,118,18.010000,273.000000,102,12.290000,5.000000,5,1.350000,3,False. +SD,128,510,413-9269,yes,yes,32,223.500000,81,38.000000,188.800000,74,16.050000,154.900000,101,6.970000,9.400000,2,2.540000,2,True. +MA,86,510,330-7483,no,no,0,176.300000,79,29.970000,259.200000,97,22.030000,287.400000,78,12.930000,6.200000,3,1.670000,0,False. +WY,114,415,403-7775,no,yes,32,125.200000,79,21.280000,177.800000,105,15.110000,232.400000,89,10.460000,12.900000,3,3.480000,1,False. +VA,104,408,360-2479,no,no,0,138.700000,107,23.580000,256.900000,113,21.840000,234.900000,74,10.570000,10.000000,3,2.700000,0,False. +OR,148,415,394-3791,no,no,0,86.300000,134,14.670000,246.600000,92,20.960000,251.600000,91,11.320000,11.300000,4,3.050000,1,False. +VA,129,408,384-2632,no,no,0,207.000000,91,35.190000,154.900000,121,13.170000,245.100000,112,11.030000,13.400000,5,3.620000,3,False. +ME,100,510,359-8466,no,yes,30,58.800000,104,10.000000,219.500000,107,18.660000,152.300000,118,6.850000,7.100000,3,1.920000,0,False. +AL,121,408,331-8909,no,yes,35,68.700000,95,11.680000,209.200000,69,17.780000,197.400000,42,8.880000,11.400000,4,3.080000,1,False. +GA,143,408,359-5160,no,yes,33,239.200000,109,40.660000,235.500000,112,20.020000,156.300000,95,7.030000,9.500000,4,2.570000,1,False. +IA,76,510,330-9833,no,no,0,198.300000,130,33.710000,217.100000,86,18.450000,188.400000,96,8.480000,12.500000,3,3.380000,0,False. +AZ,158,510,362-2314,no,no,0,205.200000,97,34.880000,240.600000,77,20.450000,79.700000,108,3.590000,14.400000,12,3.890000,0,False. +FL,116,510,338-8478,no,no,0,192.100000,98,32.660000,312.900000,135,26.600000,130.200000,94,5.860000,7.900000,2,2.130000,3,False. +MT,54,415,387-5453,no,no,0,272.600000,83,46.340000,248.700000,74,21.140000,197.400000,111,8.880000,9.500000,2,2.570000,1,True. +AL,86,415,380-3437,no,no,0,128.300000,121,21.810000,197.100000,93,16.750000,138.400000,152,6.230000,12.200000,5,3.290000,7,True. +DE,108,510,365-8779,no,no,0,169.600000,99,28.830000,264.100000,87,22.450000,206.300000,78,9.280000,9.300000,4,2.510000,0,False. +MT,66,510,407-2750,no,no,0,201.300000,95,34.220000,152.800000,66,12.990000,233.200000,101,10.490000,7.500000,4,2.030000,1,False. +KY,151,408,396-8265,no,yes,17,214.700000,97,36.500000,138.500000,90,11.770000,169.100000,44,7.610000,8.600000,4,2.320000,1,False. +SC,99,510,397-4304,no,no,0,169.200000,70,28.760000,271.500000,77,23.080000,170.200000,104,7.660000,10.600000,2,2.860000,0,False. +WA,55,415,333-2611,no,no,0,194.100000,121,33.000000,176.600000,110,15.010000,302.800000,136,13.630000,7.000000,7,1.890000,2,False. +OR,77,510,409-8814,no,no,0,233.800000,104,39.750000,266.500000,94,22.650000,212.700000,104,9.570000,7.600000,3,2.050000,2,False. +AK,78,408,336-5406,no,no,0,225.100000,67,38.270000,199.200000,127,16.930000,175.500000,102,7.900000,14.600000,2,3.940000,0,False. +GA,89,415,343-6940,no,no,0,213.000000,63,36.210000,176.600000,71,15.010000,262.600000,126,11.820000,9.100000,1,2.460000,1,True. +MN,101,415,361-9923,no,no,0,183.900000,115,31.260000,255.900000,101,21.750000,275.000000,145,12.380000,10.800000,11,2.920000,1,False. +IL,44,415,350-6639,no,yes,34,221.800000,105,37.710000,161.700000,85,13.740000,227.700000,62,10.250000,14.000000,7,3.780000,0,False. +IN,98,408,376-4300,no,yes,21,64.600000,98,10.980000,176.100000,86,14.970000,244.800000,84,11.020000,0.000000,0,0.000000,2,False. +SC,64,510,349-6567,no,yes,37,154.600000,92,26.280000,83.400000,103,7.090000,165.900000,99,7.470000,13.300000,3,3.590000,1,False. +VA,141,415,333-7749,no,no,0,260.200000,131,44.230000,179.200000,120,15.230000,135.000000,119,6.080000,7.200000,8,1.940000,3,False. +WI,81,415,408-6089,no,yes,33,161.600000,117,27.470000,123.000000,90,10.460000,261.300000,101,11.760000,12.200000,5,3.290000,1,False. +VT,162,510,375-2165,no,no,0,220.600000,117,37.500000,155.200000,121,13.190000,186.700000,89,8.400000,10.500000,11,2.840000,1,False. +AZ,83,415,400-6999,no,yes,41,155.900000,122,26.500000,162.300000,107,13.800000,127.600000,105,5.740000,13.100000,5,3.540000,3,False. +FL,100,510,420-7823,no,no,0,107.000000,63,18.190000,105.700000,67,8.980000,243.100000,74,10.940000,12.800000,3,3.460000,4,True. +AK,59,510,366-5241,no,no,0,182.500000,104,31.030000,204.700000,95,17.400000,229.900000,100,10.350000,11.300000,8,3.050000,4,False. +AR,179,415,413-3412,yes,yes,38,220.100000,78,37.420000,234.300000,71,19.920000,237.300000,85,10.680000,10.100000,4,2.730000,4,False. +AR,79,408,406-2752,no,no,0,152.200000,112,25.870000,177.200000,132,15.060000,96.400000,87,4.340000,5.300000,3,1.430000,1,False. +AK,117,415,337-8078,no,no,0,181.500000,95,30.860000,205.100000,88,17.430000,204.000000,82,9.180000,14.700000,9,3.970000,2,False. +MS,64,408,402-1942,yes,no,0,236.200000,77,40.150000,218.600000,85,18.580000,194.100000,97,8.730000,13.200000,2,3.560000,2,True. +ME,31,415,371-7917,no,no,0,166.100000,105,28.240000,79.300000,93,6.740000,213.700000,98,9.620000,12.700000,2,3.430000,1,False. +CA,124,408,343-6374,yes,no,0,244.600000,89,41.580000,188.800000,80,16.050000,206.000000,114,9.270000,11.300000,4,3.050000,1,False. +NM,122,408,385-8730,no,yes,23,134.200000,85,22.810000,227.300000,132,19.320000,122.400000,96,5.510000,8.500000,2,2.300000,2,False. +NE,37,408,393-7892,yes,yes,39,149.700000,122,25.450000,211.100000,75,17.940000,114.300000,90,5.140000,9.200000,4,2.480000,1,False. +SC,90,408,407-6748,no,yes,29,150.100000,109,25.520000,264.700000,103,22.500000,178.400000,97,8.030000,5.800000,4,1.570000,1,False. +CO,159,408,341-4463,yes,no,0,257.100000,53,43.710000,312.200000,127,26.540000,183.000000,82,8.240000,8.800000,6,2.380000,1,True. +DE,148,415,351-2587,no,no,0,124.400000,83,21.150000,179.700000,81,15.270000,253.000000,99,11.390000,11.300000,6,3.050000,0,False. +OH,39,415,421-9752,no,yes,36,141.700000,121,24.090000,232.300000,113,19.750000,222.100000,131,9.990000,12.000000,5,3.240000,1,False. +MS,77,408,356-4001,no,no,0,230.000000,87,39.100000,103.200000,138,8.770000,309.600000,136,13.930000,11.300000,3,3.050000,2,False. +OK,194,408,328-9869,no,no,0,162.300000,88,27.590000,213.700000,118,18.160000,192.100000,81,8.640000,10.900000,2,2.940000,0,False. +CO,154,415,343-5709,no,no,0,350.800000,75,59.640000,216.500000,94,18.400000,253.900000,100,11.430000,10.100000,9,2.730000,1,True. +NC,112,415,334-1872,no,no,0,193.300000,96,32.860000,264.100000,123,22.450000,128.600000,115,5.790000,9.100000,3,2.460000,4,False. +MD,45,415,350-1040,no,no,0,78.200000,127,13.290000,253.400000,108,21.540000,255.000000,100,11.480000,18.000000,3,4.860000,1,False. +KS,132,415,369-3214,no,no,0,83.400000,110,14.180000,232.200000,137,19.740000,146.700000,114,6.600000,7.600000,5,2.050000,1,False. +MA,128,415,385-6778,no,no,0,195.600000,99,33.250000,267.800000,120,22.760000,164.900000,76,7.420000,16.000000,2,4.320000,0,False. +NC,135,415,383-7689,no,no,0,201.800000,81,34.310000,225.000000,114,19.130000,204.400000,82,9.200000,10.300000,6,2.780000,1,False. +NM,56,408,385-5722,no,no,0,197.000000,110,33.490000,222.800000,102,18.940000,225.300000,91,10.140000,10.600000,6,2.860000,2,False. +CA,151,415,357-1909,yes,no,0,218.000000,57,37.060000,114.400000,88,9.720000,269.200000,95,12.110000,12.400000,1,3.350000,0,True. +NY,32,415,364-3567,no,no,0,164.800000,98,28.020000,229.900000,96,19.540000,167.300000,108,7.530000,14.800000,2,4.000000,2,False. +AZ,90,415,422-4241,no,no,0,179.200000,77,30.460000,210.700000,99,17.910000,276.900000,58,12.460000,9.200000,6,2.480000,2,False. +SD,87,415,370-2957,no,yes,21,214.000000,113,36.380000,180.000000,114,15.300000,134.500000,82,6.050000,10.600000,5,2.860000,0,False. +DC,138,415,329-6562,no,no,0,170.500000,87,28.990000,118.200000,116,10.050000,187.900000,111,8.460000,11.200000,7,3.020000,2,False. +ND,79,408,363-3515,no,no,0,205.700000,123,34.970000,214.500000,108,18.230000,226.100000,106,10.170000,6.700000,18,1.810000,1,False. +MO,95,415,374-7787,yes,no,0,165.500000,84,28.140000,286.200000,112,24.330000,198.900000,89,8.950000,11.500000,2,3.110000,1,True. +KS,127,415,345-2931,no,no,0,221.000000,100,37.570000,160.700000,113,13.660000,233.100000,96,10.490000,6.800000,4,1.840000,2,False. +SD,137,510,373-5732,no,no,0,242.100000,118,41.160000,191.000000,93,16.240000,218.600000,50,9.840000,14.700000,2,3.970000,3,False. +OK,97,415,348-7437,no,no,0,151.600000,107,25.770000,155.400000,96,13.210000,240.000000,112,10.800000,14.700000,4,3.970000,1,False. +OR,149,415,332-9460,yes,no,0,176.200000,87,29.950000,145.000000,81,12.330000,249.500000,92,11.230000,5.700000,4,1.540000,0,False. +IN,117,415,355-6531,yes,yes,22,196.000000,82,33.320000,322.700000,82,27.430000,225.600000,120,10.150000,3.700000,5,1.000000,1,False. +OH,84,408,336-9390,no,no,0,159.500000,125,27.120000,247.100000,90,21.000000,187.900000,82,8.460000,7.200000,4,1.940000,2,False. +KS,137,415,346-8581,no,no,0,230.200000,113,39.130000,220.400000,79,18.730000,204.700000,111,9.210000,10.700000,7,2.890000,4,False. +CT,99,415,363-8824,no,no,0,146.700000,64,24.940000,274.000000,99,23.290000,321.300000,98,14.460000,8.900000,1,2.400000,3,False. +NH,54,510,353-3351,no,no,0,210.500000,102,35.790000,204.500000,83,17.380000,127.800000,53,5.750000,8.500000,5,2.300000,1,False. +WI,85,415,360-4320,no,no,0,102.000000,95,17.340000,270.200000,139,22.970000,148.200000,105,6.670000,10.700000,3,2.890000,1,False. +MS,150,510,417-6252,no,no,0,126.000000,99,21.420000,238.500000,73,20.270000,285.100000,100,12.830000,10.200000,6,2.750000,3,False. +WV,43,415,393-4949,no,no,0,168.400000,125,28.630000,243.800000,89,20.720000,214.700000,102,9.660000,11.100000,2,3.000000,1,False. +MA,35,415,401-3156,no,no,0,105.600000,129,17.950000,258.200000,129,21.950000,213.100000,77,9.590000,8.700000,3,2.350000,0,False. +MD,98,415,338-6283,no,no,0,206.500000,92,35.110000,176.200000,152,14.980000,232.800000,115,10.480000,12.400000,5,3.350000,5,False. +PA,112,510,352-9017,no,no,0,217.100000,76,36.910000,205.200000,100,17.440000,185.700000,91,8.360000,9.400000,3,2.540000,2,False. +WI,16,510,405-5305,no,no,0,229.600000,78,39.030000,205.700000,108,17.480000,166.200000,91,7.480000,10.800000,2,2.920000,0,True. +TN,98,415,376-9249,no,yes,22,278.300000,89,47.310000,93.400000,143,7.940000,107.600000,42,4.840000,9.700000,5,2.620000,0,False. +TX,84,408,339-7139,no,no,0,138.600000,102,23.560000,199.000000,93,16.920000,204.100000,137,9.180000,7.800000,4,2.110000,0,False. +OR,94,415,328-6011,no,no,0,234.400000,103,39.850000,279.300000,109,23.740000,234.200000,121,10.540000,2.000000,2,0.540000,1,True. +IL,84,510,378-1303,no,no,0,181.500000,129,30.860000,130.700000,112,11.110000,186.500000,118,8.390000,8.500000,4,2.300000,1,False. +DC,66,415,402-5155,no,no,0,167.300000,91,28.440000,230.000000,68,19.550000,191.700000,118,8.630000,10.600000,5,2.860000,1,True. +GA,98,415,333-5430,no,yes,31,121.000000,105,20.570000,218.900000,98,18.610000,226.700000,110,10.200000,12.000000,1,3.240000,1,False. +ID,74,415,365-9696,no,no,0,221.100000,124,37.590000,110.800000,94,9.420000,240.100000,112,10.800000,10.600000,3,2.860000,0,False. +UT,96,408,410-4023,no,yes,26,145.800000,108,24.790000,192.200000,89,16.340000,165.100000,96,7.430000,9.900000,2,2.670000,1,False. +KY,119,510,411-7649,no,no,0,222.800000,122,37.880000,163.200000,107,13.870000,160.600000,112,7.230000,11.200000,6,3.020000,1,False. +OH,73,415,338-4065,no,no,0,183.400000,80,31.180000,242.000000,115,20.570000,201.400000,100,9.060000,7.500000,3,2.030000,4,False. +WI,92,415,421-9401,yes,no,0,264.300000,91,44.930000,160.900000,115,13.680000,198.600000,73,8.940000,9.300000,5,2.510000,0,False. +IL,21,415,343-9658,no,no,0,146.000000,78,24.820000,109.700000,79,9.320000,247.400000,108,11.130000,6.800000,7,1.840000,0,False. +DE,122,510,332-5521,no,no,0,157.100000,134,26.710000,184.900000,122,15.720000,197.200000,59,8.870000,8.500000,5,2.300000,4,True. +RI,133,510,349-4369,yes,no,0,127.300000,108,21.640000,251.300000,81,21.360000,135.000000,88,6.080000,10.300000,3,2.780000,1,False. +TX,145,415,351-4288,no,no,0,187.900000,110,31.940000,197.000000,117,16.750000,167.000000,108,7.520000,4.800000,4,1.300000,2,False. +OR,25,408,422-5874,no,no,0,178.800000,90,30.400000,141.200000,72,12.000000,203.000000,99,9.140000,8.400000,5,2.270000,2,False. +NV,64,415,396-2324,no,no,0,97.200000,80,16.520000,186.200000,90,15.830000,189.000000,92,8.500000,10.400000,6,2.810000,2,False. +NE,85,415,416-5662,no,no,0,259.800000,85,44.170000,242.300000,117,20.600000,168.800000,72,7.600000,5.400000,1,1.460000,0,False. +MS,126,415,363-9663,no,no,0,256.500000,112,43.610000,199.500000,90,16.960000,188.300000,122,8.470000,7.000000,5,1.890000,3,False. +OR,76,415,410-9477,no,no,0,169.500000,77,28.820000,124.000000,87,10.540000,219.400000,92,9.870000,10.000000,3,2.700000,0,False. +DE,113,415,352-4418,no,no,0,239.700000,47,40.750000,282.900000,110,24.050000,238.400000,88,10.730000,8.700000,3,2.350000,2,True. +DE,224,510,361-6563,yes,no,0,171.500000,99,29.160000,160.000000,103,13.600000,212.400000,102,9.560000,5.000000,2,1.350000,1,True. +AZ,117,408,417-4404,no,no,0,239.900000,84,40.780000,174.800000,106,14.860000,209.500000,93,9.430000,9.800000,2,2.650000,0,False. +SD,128,408,372-8048,no,yes,34,142.300000,73,24.190000,194.800000,79,16.560000,239.300000,81,10.770000,16.000000,6,4.320000,1,False. +NV,115,415,356-3646,no,no,0,184.100000,98,31.300000,327.000000,73,27.800000,212.500000,106,9.560000,7.500000,6,2.030000,2,False. +NM,141,415,351-9604,no,yes,28,206.900000,126,35.170000,264.400000,126,22.470000,171.800000,124,7.730000,9.300000,11,2.510000,2,False. +MN,51,510,355-9581,no,no,0,259.900000,114,44.180000,176.200000,94,14.980000,77.200000,112,3.470000,15.300000,1,4.130000,1,False. +NJ,100,415,396-5189,no,no,0,203.800000,122,34.650000,283.100000,76,24.060000,197.300000,83,8.880000,12.500000,3,3.380000,0,False. +IN,96,415,356-9187,no,yes,45,248.800000,124,42.300000,140.300000,77,11.930000,263.600000,102,11.860000,10.300000,2,2.780000,3,False. +DC,112,415,394-5537,no,yes,16,221.600000,110,37.670000,130.200000,123,11.070000,200.000000,108,9.000000,11.300000,3,3.050000,1,False. +MA,129,510,408-2712,yes,no,0,192.900000,131,32.790000,185.500000,101,15.770000,205.200000,130,9.230000,10.900000,4,2.940000,1,False. +ME,163,415,404-4486,no,no,0,122.400000,129,20.810000,113.400000,108,9.640000,180.200000,97,8.110000,12.500000,7,3.380000,1,False. +NH,67,415,355-1113,no,yes,40,104.900000,65,17.830000,216.300000,93,18.390000,217.400000,128,9.780000,9.600000,9,2.590000,1,False. +AZ,140,408,411-4674,no,no,0,173.200000,91,29.440000,196.800000,106,16.730000,209.300000,128,9.420000,11.200000,5,3.020000,3,False. +OR,49,510,376-4519,no,no,0,119.400000,69,20.300000,273.300000,92,23.230000,214.400000,153,9.650000,12.400000,7,3.350000,2,False. +KS,46,510,365-5979,no,no,0,250.300000,100,42.550000,260.600000,90,22.150000,195.000000,104,8.780000,13.300000,2,3.590000,2,True. +NE,148,415,382-2879,no,no,0,178.300000,98,30.310000,282.600000,110,24.020000,181.000000,98,8.150000,11.400000,4,3.080000,1,False. +MI,112,510,420-1383,no,no,0,243.400000,77,41.380000,182.100000,97,15.480000,259.200000,94,11.660000,12.800000,2,3.460000,1,False. +SC,78,415,411-7390,no,no,0,155.000000,106,26.350000,175.300000,101,14.900000,155.600000,125,7.000000,11.800000,5,3.190000,2,False. +PA,61,408,383-8848,no,yes,31,288.700000,101,49.080000,203.800000,102,17.320000,203.200000,49,9.140000,8.600000,3,2.320000,0,False. +MT,58,510,387-9301,no,yes,29,240.400000,80,40.870000,118.900000,91,10.110000,164.200000,108,7.390000,11.200000,3,3.020000,1,False. +NM,155,415,399-3164,no,no,0,190.300000,123,32.350000,301.300000,96,25.610000,214.600000,134,9.660000,8.000000,3,2.160000,1,False. +OH,100,510,385-8997,no,no,0,278.000000,76,47.260000,176.700000,74,15.020000,219.500000,126,9.880000,8.300000,4,2.240000,0,True. +WY,113,510,352-6573,no,no,0,155.000000,93,26.350000,330.600000,106,28.100000,189.400000,123,8.520000,13.500000,3,3.650000,1,False. +MI,81,415,408-3384,no,no,0,153.500000,99,26.100000,197.600000,102,16.800000,198.500000,86,8.930000,6.300000,2,1.700000,2,False. +AR,135,510,419-6033,no,yes,27,273.400000,141,46.480000,154.000000,99,13.090000,245.800000,112,11.060000,12.300000,6,3.320000,1,False. +FL,99,408,336-2090,no,no,0,155.300000,93,26.400000,265.700000,95,22.580000,145.700000,67,6.560000,12.400000,4,3.350000,0,False. +AR,59,510,343-7242,no,yes,29,133.100000,114,22.630000,221.200000,82,18.800000,131.600000,103,5.920000,6.800000,3,1.840000,1,False. +MO,135,510,376-1713,no,no,0,246.800000,129,41.960000,187.800000,121,15.960000,154.500000,109,6.950000,12.600000,5,3.400000,1,False. +WI,85,408,381-5878,yes,no,0,165.400000,107,28.120000,196.000000,126,16.660000,349.200000,110,15.710000,9.600000,7,2.590000,2,False. +TX,70,510,390-5470,no,no,0,59.500000,103,10.120000,257.200000,106,21.860000,208.300000,86,9.370000,11.100000,6,3.000000,0,False. +TX,88,510,414-4803,no,no,0,138.300000,116,23.510000,236.000000,138,20.060000,179.100000,110,8.060000,9.600000,4,2.590000,3,False. +NM,55,510,382-5478,no,no,0,286.700000,100,48.740000,134.400000,121,11.420000,192.900000,122,8.680000,6.900000,5,1.860000,2,False. +GA,75,415,333-7637,no,no,0,117.300000,114,19.940000,201.100000,61,17.090000,107.900000,82,4.860000,12.200000,3,3.290000,1,False. +ID,79,510,341-1647,no,yes,21,264.300000,79,44.930000,202.800000,118,17.240000,173.400000,92,7.800000,6.300000,3,1.700000,4,False. +AL,85,408,411-4232,no,no,0,127.900000,107,21.740000,271.200000,124,23.050000,202.200000,76,9.100000,12.500000,5,3.380000,0,False. +KS,86,408,339-2616,no,yes,23,225.500000,107,38.340000,246.300000,105,20.940000,245.700000,81,11.060000,9.800000,2,2.650000,0,False. +SD,91,510,327-3850,no,no,0,149.000000,115,25.330000,245.300000,105,20.850000,260.000000,94,11.700000,8.300000,3,2.240000,0,False. +LA,149,415,328-7209,no,yes,20,198.900000,77,33.810000,274.000000,88,23.290000,190.700000,76,8.580000,14.300000,9,3.860000,1,False. +OH,97,408,405-6189,no,no,0,256.400000,125,43.590000,273.900000,100,23.280000,222.700000,101,10.020000,11.100000,1,3.000000,1,True. +MA,88,415,418-6737,no,no,0,264.800000,124,45.020000,245.400000,112,20.860000,160.500000,115,7.220000,14.800000,2,4.000000,1,True. +AZ,60,415,366-2212,no,no,0,98.200000,88,16.690000,180.500000,69,15.340000,223.600000,69,10.060000,9.300000,2,2.510000,2,False. +KY,54,408,356-1420,no,no,0,159.800000,99,27.170000,264.000000,64,22.440000,115.700000,70,5.210000,9.700000,7,2.620000,2,False. +DC,11,415,343-1323,no,yes,28,190.600000,86,32.400000,220.100000,122,18.710000,180.300000,80,8.110000,6.000000,3,1.620000,3,False. +WA,109,415,361-8239,no,no,0,184.000000,120,31.280000,120.400000,119,10.230000,153.700000,86,6.920000,11.000000,3,2.970000,0,False. +UT,90,415,384-1621,no,no,0,261.800000,128,44.510000,220.600000,104,18.750000,136.600000,91,6.150000,9.600000,5,2.590000,1,False. +RI,115,408,360-3525,no,no,0,147.900000,109,25.140000,228.400000,117,19.410000,299.700000,90,13.490000,9.600000,9,2.590000,3,False. +OH,144,415,392-3813,no,yes,18,106.400000,109,18.090000,108.100000,113,9.190000,208.400000,111,9.380000,10.100000,5,2.730000,1,False. +NV,91,408,337-6898,no,no,0,133.700000,75,22.730000,195.300000,87,16.600000,280.500000,89,12.620000,5.900000,2,1.590000,0,False. +ND,105,415,366-8036,no,yes,23,193.500000,85,32.900000,220.200000,90,18.720000,272.400000,111,12.260000,8.500000,5,2.300000,0,False. +NV,71,415,352-8327,yes,no,0,178.200000,113,30.290000,167.800000,94,14.260000,182.100000,111,8.190000,13.600000,3,3.670000,3,True. +FL,132,510,334-9505,no,yes,36,226.200000,103,38.450000,181.600000,125,15.440000,258.800000,102,11.650000,10.500000,5,2.840000,3,True. +MD,112,415,336-5702,no,no,0,170.400000,103,28.970000,200.200000,71,17.020000,258.300000,100,11.620000,11.600000,4,3.130000,1,False. +AZ,86,415,392-2381,no,yes,32,70.900000,163,12.050000,166.700000,121,14.170000,244.900000,105,11.020000,11.100000,5,3.000000,3,False. +AL,41,510,369-6880,no,yes,34,194.400000,63,33.050000,254.900000,110,21.670000,160.200000,115,7.210000,17.200000,9,4.640000,2,False. +NE,44,415,416-8697,no,no,0,240.300000,146,40.850000,164.600000,83,13.990000,240.700000,106,10.830000,10.600000,2,2.860000,1,False. +NV,78,408,345-3451,no,no,0,75.000000,116,12.750000,248.700000,87,21.140000,176.000000,83,7.920000,9.500000,6,2.570000,3,False. +IL,149,408,379-2514,no,no,0,69.100000,117,11.750000,136.300000,100,11.590000,181.700000,53,8.180000,6.300000,3,1.700000,1,False. +WV,72,510,418-6651,no,yes,33,96.600000,59,16.420000,315.400000,98,26.810000,163.300000,117,7.350000,6.200000,4,1.670000,4,True. +MI,139,415,421-3528,no,yes,20,214.600000,101,36.480000,235.100000,132,19.980000,162.800000,132,7.330000,14.800000,12,4.000000,0,False. +AR,74,510,329-9046,no,no,0,148.500000,111,25.250000,146.500000,42,12.450000,289.200000,83,13.010000,9.900000,6,2.670000,3,False. +UT,50,510,406-3890,no,no,0,258.100000,106,43.880000,161.400000,106,13.720000,225.100000,110,10.130000,11.700000,5,3.160000,1,False. +GA,141,510,403-8904,no,yes,23,149.700000,112,25.450000,162.500000,118,13.810000,220.300000,115,9.910000,7.600000,2,2.050000,3,False. +AZ,140,408,393-4086,no,no,0,149.800000,134,25.470000,164.400000,98,13.970000,294.700000,124,13.260000,8.100000,2,2.190000,1,False. +ID,99,408,400-1367,no,no,0,190.400000,102,32.370000,158.100000,107,13.440000,271.500000,92,12.220000,11.200000,4,3.020000,2,False. +HI,166,408,377-9473,no,no,0,181.400000,108,30.840000,253.800000,54,21.570000,112.300000,94,5.050000,11.600000,6,3.130000,1,False. +NV,124,408,396-3068,no,no,0,151.100000,123,25.690000,187.400000,104,15.930000,255.400000,93,11.490000,5.300000,3,1.430000,1,False. +MD,74,415,331-9293,no,no,0,155.700000,116,26.470000,173.700000,63,14.760000,257.400000,97,11.580000,8.100000,4,2.190000,0,False. +GA,117,510,347-1914,no,no,0,149.900000,95,25.480000,256.100000,110,21.770000,212.700000,92,9.570000,13.300000,13,3.590000,2,False. +GA,85,510,395-1962,no,no,0,222.300000,132,37.790000,231.500000,101,19.680000,223.500000,75,10.060000,11.000000,2,2.970000,3,False. +UT,36,415,401-5485,no,yes,16,149.400000,111,25.400000,131.800000,113,11.200000,132.700000,87,5.970000,6.700000,2,1.810000,0,False. +MA,102,510,355-6560,yes,no,0,233.800000,103,39.750000,221.600000,131,18.840000,146.900000,106,6.610000,12.800000,3,3.460000,0,False. +IN,76,415,363-3911,no,no,0,204.200000,100,34.710000,292.600000,139,24.870000,244.300000,105,10.990000,10.500000,2,2.840000,0,False. +VT,165,510,345-1998,no,no,0,242.900000,126,41.290000,209.800000,65,17.830000,228.400000,126,10.280000,0.000000,0,0.000000,1,False. +IA,130,415,361-5277,no,no,0,150.400000,119,25.570000,230.500000,99,19.590000,186.300000,76,8.380000,12.300000,4,3.320000,1,False. +IN,78,415,376-7145,no,no,0,208.900000,119,35.510000,252.400000,132,21.450000,280.200000,120,12.610000,12.800000,7,3.460000,0,False. +AL,55,415,375-2975,yes,no,0,191.900000,91,32.620000,256.100000,110,21.770000,203.700000,101,9.170000,14.300000,6,3.860000,1,True. +ME,92,415,376-8573,yes,no,0,130.700000,113,22.220000,260.600000,122,22.150000,244.200000,98,10.990000,9.400000,2,2.540000,2,True. +RI,129,415,366-7360,no,yes,33,119.600000,104,20.330000,278.700000,88,23.690000,263.400000,175,11.850000,5.900000,2,1.590000,2,False. +MD,18,408,347-7898,no,no,0,273.600000,93,46.510000,114.600000,116,9.740000,250.600000,120,11.280000,8.200000,4,2.210000,1,False. +FL,161,415,390-7328,yes,no,0,156.100000,114,26.540000,180.300000,63,15.330000,179.600000,115,8.080000,11.100000,9,3.000000,2,False. +CA,93,415,356-5491,no,yes,36,178.700000,134,30.380000,178.600000,102,15.180000,126.800000,82,5.710000,8.000000,4,2.160000,2,False. +AL,144,415,373-3251,no,no,0,177.500000,93,30.180000,287.400000,75,24.430000,180.500000,118,8.120000,11.900000,3,3.210000,2,False. +ME,75,408,343-1965,yes,no,0,211.300000,61,35.920000,105.600000,119,8.980000,175.900000,63,7.920000,9.700000,4,2.620000,4,True. +WV,95,415,378-8019,no,no,0,175.200000,91,29.780000,244.400000,109,20.770000,75.800000,95,3.410000,7.500000,2,2.030000,1,False. +SD,126,415,386-1548,no,yes,23,114.300000,102,19.430000,190.300000,103,16.180000,240.400000,111,10.820000,12.600000,7,3.400000,3,False. +FL,124,415,397-1649,no,yes,28,251.400000,104,42.740000,225.100000,89,19.130000,251.900000,121,11.340000,7.500000,5,2.030000,1,False. +MI,93,415,366-7247,yes,no,0,216.900000,61,36.870000,207.400000,120,17.630000,221.700000,110,9.980000,17.500000,5,4.730000,1,True. +MI,109,415,402-9691,yes,yes,26,217.200000,138,36.920000,145.500000,111,12.370000,280.700000,76,12.630000,9.300000,3,2.510000,0,False. +NM,80,510,334-9806,no,no,0,206.300000,97,35.070000,154.900000,98,13.170000,263.600000,82,11.860000,12.400000,12,3.350000,0,False. +AK,41,415,378-7733,no,no,0,159.300000,66,27.080000,125.900000,75,10.700000,261.900000,76,11.790000,11.100000,5,3.000000,1,False. +OH,136,415,407-2248,no,yes,31,143.100000,88,24.330000,236.600000,65,20.110000,227.800000,120,10.250000,11.400000,5,3.080000,2,False. +MO,92,415,405-3916,no,no,0,154.000000,122,26.180000,329.800000,88,28.030000,288.000000,117,12.960000,5.600000,2,1.510000,3,True. +KS,143,408,407-2081,no,yes,24,186.600000,69,31.720000,222.000000,116,18.870000,234.900000,138,10.570000,11.600000,5,3.130000,1,False. +MS,118,415,397-9148,no,yes,26,170.800000,114,29.040000,199.500000,125,16.960000,169.700000,98,7.640000,9.600000,5,2.590000,5,True. +VT,193,408,415-4857,no,yes,17,124.000000,102,21.080000,202.900000,81,17.250000,205.100000,129,9.230000,12.300000,3,3.320000,1,False. +NE,73,415,354-7314,no,no,0,198.300000,94,33.710000,279.300000,101,23.740000,146.200000,87,6.580000,14.800000,8,4.000000,3,False. +VA,62,408,346-5611,no,no,0,172.800000,101,29.380000,204.800000,97,17.410000,240.800000,90,10.840000,9.100000,8,2.460000,2,False. +DE,30,415,349-4703,no,yes,30,217.400000,74,36.960000,213.800000,86,18.170000,227.200000,104,10.220000,6.600000,3,1.780000,0,False. +AL,60,408,411-7778,yes,yes,29,265.900000,113,45.200000,215.800000,94,18.340000,108.100000,82,4.860000,14.000000,12,3.780000,0,True. +ID,148,510,421-1469,no,yes,14,93.600000,137,15.910000,193.800000,72,16.470000,144.900000,84,6.520000,17.500000,5,4.730000,1,False. +MS,96,510,420-5990,no,no,0,98.200000,100,16.690000,307.200000,88,26.110000,182.500000,120,8.210000,7.600000,1,2.050000,2,False. +OK,52,408,389-4780,no,no,0,214.700000,68,36.500000,158.600000,138,13.480000,123.400000,114,5.550000,9.400000,4,2.540000,2,False. +NM,87,415,357-2735,no,no,0,168.200000,92,28.590000,224.700000,100,19.100000,169.500000,99,7.630000,12.900000,3,3.480000,1,False. +WI,41,408,409-4791,no,no,0,202.900000,97,34.490000,153.800000,104,13.070000,113.500000,92,5.110000,9.000000,3,2.430000,3,False. +WV,112,415,380-5286,no,no,0,261.400000,108,44.440000,154.500000,102,13.130000,130.900000,90,5.890000,11.600000,2,3.130000,1,False. +SC,88,510,394-8402,no,no,0,73.300000,86,12.460000,161.400000,82,13.720000,239.600000,76,10.780000,8.200000,3,2.210000,4,True. +KY,122,408,392-1616,no,yes,27,253.700000,84,43.130000,229.200000,109,19.480000,190.500000,123,8.570000,9.200000,5,2.480000,7,False. +MO,61,408,364-1969,no,no,0,45.000000,108,7.650000,151.300000,74,12.860000,152.900000,94,6.880000,9.800000,6,2.650000,2,False. +IL,87,510,390-4152,no,no,0,231.300000,105,39.320000,171.700000,108,14.590000,67.700000,136,3.050000,13.000000,6,3.510000,1,False. +OK,176,408,367-7039,no,no,0,47.400000,125,8.060000,167.800000,90,14.260000,163.100000,107,7.340000,10.500000,8,2.840000,2,False. +MI,30,510,391-6607,no,no,0,227.400000,88,38.660000,182.500000,100,15.510000,191.700000,134,8.630000,12.500000,3,3.380000,0,False. +NJ,95,415,379-6652,no,yes,22,40.900000,126,6.950000,133.400000,90,11.340000,264.200000,91,11.890000,11.900000,7,3.210000,0,False. +ID,46,415,384-1833,no,no,0,124.800000,133,21.220000,157.300000,143,13.370000,199.300000,72,8.970000,8.600000,4,2.320000,2,False. +DC,100,510,403-2455,yes,no,0,68.500000,110,11.650000,337.100000,115,28.650000,205.200000,99,9.230000,12.100000,9,3.270000,0,False. +NY,47,415,391-1348,no,yes,37,163.500000,77,27.800000,203.100000,102,17.260000,232.000000,87,10.440000,7.800000,4,2.110000,2,False. +AL,77,415,408-4174,no,no,0,163.000000,112,27.710000,219.100000,89,18.620000,233.400000,66,10.500000,6.700000,3,1.810000,2,False. +OR,98,415,366-4334,no,yes,38,213.700000,61,36.330000,253.000000,104,21.510000,207.700000,73,9.350000,10.700000,5,2.890000,2,False. +OK,125,415,406-5059,no,yes,36,201.300000,117,34.220000,42.200000,78,3.590000,125.700000,104,5.660000,5.400000,3,1.460000,1,False. +LA,67,510,373-6784,no,no,0,310.400000,97,52.770000,66.500000,123,5.650000,246.500000,99,11.090000,9.200000,10,2.480000,4,False. +NE,194,408,408-3532,no,no,0,48.400000,101,8.230000,281.100000,138,23.890000,218.500000,87,9.830000,18.200000,1,4.910000,1,False. +TX,128,415,350-8680,no,yes,40,171.200000,88,29.100000,145.700000,109,12.380000,196.800000,93,8.860000,14.000000,6,3.780000,1,False. +UT,190,415,398-9870,no,yes,22,166.500000,93,28.310000,183.000000,92,15.560000,121.000000,102,5.440000,8.500000,3,2.300000,0,False. +OR,165,415,343-3356,no,no,0,216.600000,126,36.820000,190.800000,104,16.220000,224.700000,123,10.110000,12.400000,8,3.350000,0,False. +NY,59,408,415-4609,no,no,0,107.800000,113,18.330000,216.600000,125,18.410000,217.500000,92,9.790000,9.900000,3,2.670000,2,False. +AL,47,408,404-5387,no,yes,28,141.300000,94,24.020000,168.000000,108,14.280000,113.500000,84,5.110000,7.800000,2,2.110000,1,False. +RI,150,415,415-8151,no,yes,29,209.900000,77,35.680000,158.000000,52,13.430000,141.900000,113,6.390000,6.600000,1,1.780000,0,False. +MN,152,415,416-2778,yes,yes,20,237.500000,120,40.380000,253.400000,94,21.540000,265.200000,80,11.930000,14.200000,3,3.830000,9,True. +NC,26,415,393-3300,no,no,0,234.500000,109,39.870000,216.500000,129,18.400000,191.600000,94,8.620000,3.500000,6,0.950000,3,False. +MD,79,510,391-7661,no,yes,31,103.100000,90,17.530000,243.000000,135,20.660000,76.400000,92,3.440000,12.200000,8,3.290000,3,False. +RI,95,510,339-4317,no,yes,27,129.500000,106,22.020000,248.900000,90,21.160000,268.000000,115,12.060000,11.900000,3,3.210000,1,False. +WI,69,510,418-6455,yes,no,0,279.800000,90,47.570000,248.700000,91,21.140000,171.000000,118,7.690000,8.400000,10,2.270000,2,True. +VT,95,510,378-3508,yes,yes,41,136.800000,91,23.260000,200.800000,61,17.070000,133.700000,67,6.020000,10.300000,9,2.780000,5,True. +CT,31,415,390-9359,no,yes,31,100.100000,54,17.020000,246.300000,97,20.940000,255.000000,131,11.480000,5.900000,3,1.590000,0,False. +OK,121,408,364-2495,no,yes,31,237.100000,63,40.310000,205.600000,117,17.480000,196.700000,85,8.850000,10.100000,5,2.730000,4,False. +AK,111,415,364-7719,no,no,0,172.800000,58,29.380000,183.100000,108,15.560000,158.800000,104,7.150000,7.900000,3,2.130000,4,True. +NY,157,415,421-1189,no,no,0,224.500000,111,38.170000,200.700000,99,17.060000,116.600000,118,5.250000,11.500000,2,3.110000,2,False. +GA,44,510,419-8987,no,no,0,288.100000,112,48.980000,258.000000,92,21.930000,192.400000,90,8.660000,10.200000,4,2.750000,3,True. +UT,61,510,402-9980,yes,no,0,78.200000,103,13.290000,195.900000,149,16.650000,108.000000,100,4.860000,10.100000,6,2.730000,2,False. +NM,65,415,376-5908,no,no,0,148.700000,80,25.280000,259.000000,94,22.020000,149.500000,107,6.730000,12.700000,6,3.430000,2,False. +NE,74,415,400-3150,no,yes,25,194.600000,84,33.080000,119.900000,103,10.190000,175.500000,75,7.900000,13.100000,2,3.540000,2,False. +NJ,123,408,336-1749,no,no,0,159.500000,77,27.120000,303.800000,92,25.820000,226.900000,120,10.210000,12.000000,4,3.240000,0,False. +TX,58,408,420-1259,no,yes,20,194.500000,110,33.070000,213.700000,89,18.160000,236.600000,92,10.650000,9.500000,2,2.570000,1,False. +MT,74,408,339-7541,no,no,0,174.100000,96,29.600000,251.100000,94,21.340000,257.600000,123,11.590000,8.300000,5,2.240000,2,True. +CO,125,415,378-9029,no,no,0,131.800000,97,22.410000,136.700000,100,11.620000,308.200000,119,13.870000,7.700000,6,2.080000,2,False. +VT,80,415,342-7514,no,no,0,160.600000,103,27.300000,237.000000,109,20.150000,245.100000,88,11.030000,10.700000,1,2.890000,1,False. +RI,53,408,422-4956,no,yes,18,146.800000,107,24.960000,310.000000,84,26.350000,178.700000,130,8.040000,7.200000,7,1.940000,0,False. +WY,99,408,389-8606,no,yes,28,200.700000,88,34.120000,264.200000,116,22.460000,172.700000,102,7.770000,9.100000,5,2.460000,1,False. +ID,99,415,406-7261,no,no,0,145.600000,106,24.750000,98.300000,106,8.360000,230.800000,83,10.390000,10.900000,5,2.940000,1,False. +CT,66,415,417-7973,no,yes,29,229.400000,104,39.000000,257.400000,84,21.880000,231.500000,119,10.420000,8.000000,1,2.160000,2,False. +ME,97,510,390-2891,no,no,0,211.000000,76,35.870000,189.000000,100,16.070000,123.000000,102,5.540000,4.700000,4,1.270000,3,False. +AZ,75,510,385-7387,no,yes,37,121.500000,97,20.660000,271.400000,110,23.070000,248.700000,97,11.190000,11.300000,5,3.050000,2,False. +MD,85,510,362-2776,yes,no,0,216.000000,73,36.720000,188.200000,117,16.000000,147.100000,98,6.620000,3.600000,7,0.970000,2,False. +IN,108,510,329-1955,no,no,0,293.000000,88,49.810000,160.600000,101,13.650000,143.900000,87,6.480000,10.000000,6,2.700000,2,False. +NC,133,408,344-3160,yes,yes,32,221.100000,137,37.590000,264.900000,99,22.520000,168.900000,108,7.600000,15.400000,4,4.160000,2,True. +DE,51,510,406-2454,no,no,0,181.500000,108,30.860000,196.900000,87,16.740000,187.200000,119,8.420000,10.300000,2,2.780000,1,False. +MN,186,415,335-3913,no,yes,26,74.300000,107,12.630000,177.300000,116,15.070000,296.300000,90,13.330000,14.500000,3,3.920000,2,False. +WI,44,415,355-7705,yes,no,0,62.300000,92,10.590000,275.000000,82,23.380000,138.700000,108,6.240000,10.800000,3,2.920000,1,False. +FL,64,408,410-7108,no,yes,31,228.600000,88,38.860000,248.500000,109,21.120000,167.100000,124,7.520000,9.000000,1,2.430000,3,False. +WV,44,510,419-1674,no,no,0,228.100000,121,38.780000,276.500000,79,23.500000,279.800000,77,12.590000,9.900000,5,2.670000,2,True. +SD,114,415,351-7369,no,yes,36,309.900000,90,52.680000,200.300000,89,17.030000,183.500000,105,8.260000,14.200000,2,3.830000,1,False. +FL,92,415,349-9566,no,no,0,201.900000,74,34.320000,226.800000,119,19.280000,217.500000,80,9.790000,13.700000,6,3.700000,3,False. +OR,110,408,333-3421,no,no,0,149.800000,112,25.470000,180.000000,93,15.300000,140.000000,119,6.300000,11.700000,4,3.160000,2,False. +CO,90,408,393-8199,no,yes,30,183.800000,76,31.250000,229.700000,95,19.520000,144.100000,124,6.480000,7.700000,3,2.080000,1,False. +CT,72,408,388-4879,no,yes,21,186.700000,108,31.740000,335.000000,86,28.480000,187.200000,119,8.420000,16.500000,4,4.460000,1,False. +IN,113,415,353-6007,no,no,0,209.400000,151,35.600000,347.300000,113,29.520000,246.000000,116,11.070000,7.400000,2,2.000000,1,True. +PA,171,415,416-1557,no,yes,25,223.200000,77,37.940000,183.200000,118,15.570000,150.800000,90,6.790000,10.200000,3,2.750000,3,False. +NM,104,415,356-7217,no,no,0,164.200000,109,27.910000,155.400000,90,13.210000,168.900000,117,7.600000,10.700000,8,2.890000,1,False. +ME,165,408,350-2012,no,no,0,150.500000,75,25.590000,193.100000,93,16.410000,311.600000,93,14.020000,10.300000,2,2.780000,1,False. +SD,104,510,420-9838,no,no,0,234.200000,128,39.810000,293.100000,92,24.910000,183.900000,79,8.280000,9.800000,6,2.650000,0,True. +AR,110,408,373-6379,no,no,0,55.300000,102,9.400000,164.700000,124,14.000000,200.700000,108,9.030000,10.200000,5,2.750000,1,False. +TX,90,408,355-7293,yes,no,0,221.800000,97,37.710000,203.800000,134,17.320000,215.800000,154,9.710000,8.400000,4,2.270000,1,False. +NH,114,415,406-4588,no,no,0,169.600000,85,28.830000,58.900000,86,5.010000,179.300000,124,8.070000,7.400000,8,2.000000,1,False. +OK,101,408,345-1524,no,no,0,89.700000,118,15.250000,260.100000,79,22.110000,170.100000,93,7.650000,13.500000,11,3.650000,5,True. +WI,117,408,375-8493,no,yes,14,80.200000,81,13.630000,219.000000,103,18.620000,122.600000,102,5.520000,8.600000,2,2.320000,1,False. +AL,109,408,361-2924,no,no,0,218.900000,105,37.210000,299.900000,87,25.490000,158.600000,110,7.140000,11.300000,4,3.050000,2,False. +PA,82,408,359-6163,no,no,0,125.700000,96,21.370000,207.600000,137,17.650000,183.100000,103,8.240000,12.900000,2,3.480000,1,False. +OK,92,510,411-8140,no,no,0,176.300000,85,29.970000,93.400000,125,7.940000,207.200000,107,9.320000,9.600000,1,2.590000,2,False. +ME,82,510,381-9049,no,yes,29,207.200000,111,35.220000,254.100000,137,21.600000,169.300000,92,7.620000,9.500000,5,2.570000,2,False. +WV,90,415,344-4478,no,no,0,205.700000,138,34.970000,161.900000,83,13.760000,269.700000,104,12.140000,12.500000,6,3.380000,2,False. +HI,87,408,360-2690,no,yes,28,151.400000,95,25.740000,152.400000,97,12.950000,250.100000,109,11.250000,0.000000,0,0.000000,1,False. +MN,124,510,410-7383,no,no,0,157.500000,70,26.780000,130.700000,79,11.110000,193.400000,98,8.700000,9.600000,4,2.590000,3,False. +NY,39,408,356-1889,no,no,0,160.400000,68,27.270000,102.600000,103,8.720000,235.300000,106,10.590000,9.100000,5,2.460000,2,False. +AZ,84,415,341-2360,no,no,0,159.000000,80,27.030000,167.900000,128,14.270000,167.600000,101,7.540000,12.300000,5,3.320000,1,False. +OH,75,510,370-3021,no,yes,46,214.100000,62,36.400000,200.900000,111,17.080000,246.800000,126,11.110000,9.200000,6,2.480000,0,False. +MI,102,510,336-4656,no,no,0,102.600000,89,17.440000,246.000000,77,20.910000,170.500000,140,7.670000,9.100000,4,2.460000,2,False. +MA,62,415,386-2810,yes,no,0,159.700000,86,27.150000,197.500000,76,16.790000,121.600000,105,5.470000,13.900000,6,3.750000,0,True. +WV,143,510,350-1354,no,no,0,202.800000,109,34.480000,165.800000,104,14.090000,143.900000,71,6.480000,4.600000,4,1.240000,1,False. +MI,53,415,346-5707,no,no,0,57.500000,95,9.780000,265.500000,131,22.570000,244.300000,128,10.990000,11.600000,6,3.130000,3,False. +NM,30,415,405-8370,no,no,0,169.900000,144,28.880000,225.200000,118,19.140000,169.700000,93,7.640000,11.400000,7,3.080000,1,False. +MO,112,415,373-2053,no,no,0,335.500000,77,57.040000,212.500000,109,18.060000,265.000000,132,11.930000,12.700000,8,3.430000,2,True. +RI,129,415,369-5222,no,no,0,139.500000,119,23.720000,289.300000,105,24.590000,129.400000,97,5.820000,13.100000,8,3.540000,0,False. +NC,63,415,347-7420,no,yes,29,142.300000,107,24.190000,118.700000,56,10.090000,240.100000,91,10.800000,6.600000,8,1.780000,1,False. +WY,28,415,392-6856,no,no,0,187.800000,94,31.930000,248.600000,86,21.130000,208.800000,124,9.400000,10.600000,5,2.860000,0,False. +WY,111,415,371-5556,no,no,0,146.200000,55,24.850000,261.500000,83,22.230000,163.200000,116,7.340000,8.700000,3,2.350000,3,False. +PA,91,510,334-5337,no,no,0,231.800000,120,39.410000,150.600000,106,12.800000,269.200000,129,12.110000,11.600000,7,3.130000,3,False. +KY,90,415,334-8817,no,no,0,193.700000,83,32.930000,154.200000,79,13.110000,299.000000,60,13.460000,12.700000,3,3.430000,1,False. +OR,151,510,339-1405,no,no,0,156.400000,108,26.590000,233.400000,118,19.840000,195.700000,141,8.810000,7.700000,6,2.080000,4,False. +NV,105,415,380-7742,yes,yes,29,220.700000,82,37.520000,217.700000,110,18.500000,190.500000,100,8.570000,13.200000,6,3.560000,1,True. +DC,41,408,329-6191,no,yes,37,239.800000,110,40.770000,221.900000,115,18.860000,189.100000,100,8.510000,7.300000,1,1.970000,2,False. +UT,48,510,340-3075,no,yes,43,172.000000,111,29.240000,200.200000,64,17.020000,233.100000,96,10.490000,8.000000,5,2.160000,1,False. +WA,166,408,416-5849,yes,yes,35,128.200000,138,21.790000,274.500000,113,23.330000,298.900000,130,13.450000,8.800000,7,2.380000,2,False. +FL,79,510,334-7443,no,no,0,130.200000,119,22.130000,290.900000,121,24.730000,194.800000,140,8.770000,14.000000,6,3.780000,3,False. +VA,153,510,394-9121,no,no,0,195.400000,107,33.220000,154.600000,96,13.140000,142.800000,97,6.430000,11.600000,6,3.130000,1,False. +KS,110,415,383-1657,yes,no,0,293.300000,79,49.860000,188.500000,90,16.020000,266.900000,91,12.010000,14.500000,4,3.920000,0,True. +KS,163,415,347-4112,no,no,0,191.300000,89,32.520000,193.900000,87,16.480000,268.400000,121,12.080000,12.800000,4,3.460000,1,False. +DC,126,510,362-8280,no,no,0,122.400000,88,20.810000,143.800000,111,12.220000,157.000000,106,7.070000,11.500000,3,3.110000,1,False. +ME,105,408,402-9982,no,yes,33,209.600000,68,35.630000,146.900000,140,12.490000,121.000000,131,5.440000,10.600000,3,2.860000,2,False. +LA,172,415,392-8905,no,no,0,215.700000,140,36.670000,146.300000,84,12.440000,264.600000,83,11.910000,7.100000,1,1.920000,3,False. +DC,126,415,392-5512,no,no,0,161.400000,110,27.440000,220.600000,125,18.750000,249.200000,78,11.210000,5.100000,2,1.380000,0,False. +TX,97,510,351-6384,no,no,0,144.200000,91,24.510000,226.700000,137,19.270000,144.600000,72,6.510000,13.800000,4,3.730000,3,False. +NJ,95,408,348-8015,yes,yes,37,220.200000,109,37.430000,185.300000,99,15.750000,205.100000,82,9.230000,4.100000,2,1.110000,0,True. +DE,87,510,374-6966,no,no,0,256.200000,105,43.550000,160.700000,102,13.660000,249.400000,80,11.220000,7.400000,2,2.000000,4,False. +VT,97,415,328-2236,no,no,0,112.700000,119,19.160000,217.700000,109,18.500000,152.100000,76,6.840000,6.500000,5,1.760000,1,False. +GA,76,415,372-6497,no,no,0,299.500000,125,50.920000,226.700000,92,19.270000,210.700000,134,9.480000,13.700000,4,3.700000,0,True. +TX,140,408,417-8617,no,no,0,194.800000,107,33.120000,170.900000,99,14.530000,225.100000,93,10.130000,13.900000,4,3.750000,0,False. +MT,169,415,361-9621,no,no,0,100.800000,112,17.140000,230.000000,69,19.550000,193.600000,95,8.710000,9.500000,2,2.570000,0,False. +ND,68,408,421-2723,no,yes,22,82.500000,97,14.030000,289.900000,94,24.640000,180.000000,114,8.100000,4.800000,4,1.300000,3,False. +NJ,122,415,327-9341,no,yes,34,146.400000,104,24.890000,89.700000,103,7.620000,220.000000,91,9.900000,15.600000,4,4.210000,2,False. +MO,36,408,383-5474,no,no,0,177.900000,129,30.240000,224.600000,87,19.090000,306.300000,102,13.780000,10.800000,6,2.920000,2,False. +CO,120,510,328-8147,no,yes,27,153.500000,84,26.100000,194.000000,73,16.490000,256.500000,94,11.540000,10.200000,7,2.750000,5,False. +KS,121,408,373-5438,no,no,0,150.700000,105,25.620000,197.300000,133,16.770000,169.000000,116,7.610000,9.200000,15,2.480000,1,False. +NC,64,408,333-9253,no,yes,19,180.100000,106,30.620000,127.500000,92,10.840000,237.400000,118,10.680000,7.500000,3,2.030000,0,False. +MT,13,415,347-9421,no,yes,31,265.300000,94,45.100000,147.600000,95,12.550000,259.300000,117,11.670000,12.900000,1,3.480000,1,False. +DE,106,415,419-3167,no,no,0,128.600000,83,21.860000,134.000000,114,11.390000,210.600000,113,9.480000,11.400000,2,3.080000,0,False. +ND,88,415,414-4162,no,no,0,161.500000,92,27.460000,173.500000,108,14.750000,206.200000,95,9.280000,7.900000,4,2.130000,2,False. +VA,74,408,416-5341,no,no,0,165.300000,120,28.100000,198.500000,106,16.870000,208.500000,102,9.380000,9.800000,3,2.650000,1,False. +IL,83,415,368-8600,no,no,0,195.000000,92,33.150000,210.500000,83,17.890000,180.600000,92,8.130000,11.000000,13,2.970000,0,False. +OK,49,415,336-6085,no,no,0,213.800000,79,36.350000,265.100000,93,22.530000,239.800000,128,10.790000,15.600000,7,4.210000,0,False. +CO,111,510,377-1479,no,yes,24,205.500000,114,34.940000,219.300000,99,18.640000,215.900000,95,9.720000,14.000000,4,3.780000,1,False. +MT,50,415,360-2107,no,yes,22,252.900000,112,42.990000,177.900000,99,15.120000,158.400000,146,7.130000,8.500000,4,2.300000,3,False. +WV,153,408,405-9384,no,yes,28,235.600000,74,40.050000,227.900000,37,19.370000,170.300000,103,7.660000,15.400000,9,4.160000,0,False. +ME,88,415,420-5179,no,no,0,192.000000,91,32.640000,127.600000,127,10.850000,155.600000,125,7.000000,7.500000,5,2.030000,1,False. +WI,131,415,331-3174,no,yes,39,69.100000,122,11.750000,101.300000,136,8.610000,104.800000,94,4.720000,9.100000,4,2.460000,0,False. +MO,79,408,411-5958,no,no,0,261.700000,97,44.490000,210.600000,48,17.900000,256.700000,83,11.550000,6.000000,3,1.620000,3,True. +NY,140,415,333-8180,no,no,0,235.500000,81,40.040000,257.200000,130,21.860000,103.100000,111,4.640000,11.500000,4,3.110000,2,False. +CT,105,408,357-2679,no,no,0,213.400000,100,36.280000,204.900000,52,17.420000,179.700000,93,8.090000,9.500000,6,2.570000,1,False. +AR,54,415,396-2867,no,yes,39,206.900000,143,35.170000,127.800000,72,10.860000,199.200000,120,8.960000,9.200000,1,2.480000,3,False. +WY,87,415,341-9443,no,yes,22,263.800000,65,44.850000,103.400000,115,8.790000,208.100000,109,9.360000,8.500000,3,2.300000,3,False. +CA,96,510,341-4103,no,yes,31,183.400000,126,31.180000,195.500000,106,16.620000,180.100000,93,8.100000,10.500000,5,2.840000,1,False. +CA,79,510,416-8701,no,no,0,157.600000,85,26.790000,194.100000,92,16.500000,231.500000,86,10.420000,9.400000,10,2.540000,5,True. +MN,55,415,397-6109,no,no,0,175.600000,147,29.850000,161.800000,118,13.750000,289.500000,55,13.030000,9.300000,4,2.510000,0,False. +AK,130,415,392-5587,no,no,0,242.500000,101,41.230000,102.800000,114,8.740000,142.400000,89,6.410000,9.300000,2,2.510000,2,False. +VA,34,415,392-9342,no,no,0,151.000000,102,25.670000,131.400000,101,11.170000,186.600000,86,8.400000,9.900000,7,2.670000,0,False. +CO,139,415,368-2845,no,no,0,138.100000,103,23.480000,164.500000,100,13.980000,134.900000,63,6.070000,8.300000,2,2.240000,1,False. +MT,109,408,405-4920,no,no,0,264.700000,69,45.000000,305.000000,120,25.930000,197.400000,86,8.880000,9.500000,9,2.570000,1,True. +SD,65,408,348-7484,no,yes,31,282.300000,70,47.990000,152.000000,89,12.920000,225.500000,93,10.150000,12.000000,4,3.240000,1,False. +NE,63,415,338-5207,no,no,0,211.200000,80,35.900000,237.700000,93,20.200000,259.200000,58,11.660000,12.300000,2,3.320000,0,False. +VT,152,415,418-7846,no,no,0,197.100000,126,33.510000,130.100000,76,11.060000,78.100000,100,3.510000,7.400000,4,2.000000,3,False. +ND,147,408,358-8729,no,no,0,205.300000,95,34.900000,166.700000,128,14.170000,240.600000,84,10.830000,7.800000,4,2.110000,1,False. +GA,112,415,349-1943,no,yes,22,181.800000,110,30.910000,228.100000,123,19.390000,262.700000,141,11.820000,9.200000,4,2.480000,2,False. +OR,120,415,368-8283,no,no,0,252.000000,120,42.840000,150.200000,106,12.770000,151.800000,96,6.830000,9.600000,1,2.590000,2,False. +MT,27,510,345-1419,no,no,0,193.800000,102,32.950000,118.900000,104,10.110000,135.900000,124,6.120000,9.200000,3,2.480000,0,False. +WY,171,415,358-8025,no,no,0,231.200000,135,39.300000,188.700000,74,16.040000,206.900000,124,9.310000,12.300000,1,3.320000,1,False. +GA,101,415,383-8695,no,yes,33,200.100000,108,34.020000,188.900000,122,16.060000,205.100000,90,9.230000,15.500000,4,4.190000,0,False. +WV,32,408,370-7565,no,yes,26,266.700000,109,45.340000,232.300000,107,19.750000,212.800000,98,9.580000,16.300000,4,4.400000,1,False. +CT,3,415,401-6162,no,yes,36,118.100000,117,20.080000,221.500000,125,18.830000,103.900000,89,4.680000,11.900000,6,3.210000,2,False. +IL,151,408,386-5303,no,no,0,175.300000,106,29.800000,144.300000,87,12.270000,160.200000,88,7.210000,11.800000,5,3.190000,0,False. +CO,60,408,351-6552,no,no,0,125.100000,99,21.270000,248.800000,62,21.150000,211.300000,79,9.510000,11.200000,3,3.020000,3,False. +DE,119,415,345-5338,no,no,0,176.800000,90,30.060000,224.700000,81,19.100000,204.600000,77,9.210000,7.500000,15,2.030000,1,False. +LA,43,415,330-2849,no,no,0,241.900000,101,41.120000,129.400000,121,11.000000,264.800000,104,11.920000,5.900000,3,1.590000,1,False. +MA,42,408,364-6801,no,no,0,241.200000,134,41.000000,116.500000,114,9.900000,152.200000,91,6.850000,10.600000,4,2.860000,0,False. +IN,84,408,375-3003,no,no,0,217.100000,99,36.910000,236.000000,68,20.060000,118.300000,120,5.320000,9.400000,4,2.540000,1,False. +NY,65,510,383-8878,no,no,0,195.400000,110,33.220000,181.200000,109,15.400000,178.500000,105,8.030000,8.900000,4,2.400000,0,False. +TX,75,415,384-2372,yes,no,0,222.400000,78,37.810000,327.000000,111,27.800000,208.000000,104,9.360000,8.700000,9,2.350000,1,True. +KS,116,510,377-7107,no,no,0,189.500000,90,32.220000,189.800000,118,16.130000,205.800000,83,9.260000,13.100000,2,3.540000,1,False. +WV,107,415,361-1581,no,no,0,123.100000,100,20.930000,158.400000,82,13.460000,256.100000,82,11.520000,9.300000,5,2.510000,0,False. +NE,189,415,417-7888,no,yes,38,256.700000,98,43.640000,150.500000,120,12.790000,123.000000,87,5.540000,11.400000,3,3.080000,3,False. +ND,123,408,383-8364,no,no,0,159.100000,94,27.050000,241.600000,119,20.540000,202.400000,120,9.110000,6.500000,1,1.760000,1,False. +AK,110,408,396-2335,no,no,0,100.100000,90,17.020000,233.300000,93,19.830000,204.400000,57,9.200000,11.100000,8,3.000000,3,False. +CO,63,415,408-4530,no,yes,32,30.900000,113,5.250000,187.000000,113,15.900000,230.800000,101,10.390000,8.600000,7,2.320000,1,False. +ME,176,415,408-6621,no,no,0,223.200000,76,37.940000,214.400000,131,18.220000,154.400000,80,6.950000,10.100000,2,2.730000,3,False. +SC,108,510,393-7522,no,no,0,187.400000,101,31.860000,199.900000,126,16.990000,216.100000,107,9.720000,12.600000,8,3.400000,1,False. +MN,13,510,338-7120,no,yes,21,315.600000,105,53.650000,208.900000,71,17.760000,260.100000,123,11.700000,12.100000,3,3.270000,3,False. +CO,71,415,357-4265,no,no,0,277.500000,104,47.180000,131.800000,121,11.200000,126.900000,101,5.710000,8.200000,2,2.210000,1,False. +KS,88,415,398-8801,no,no,0,189.800000,111,32.270000,197.300000,101,16.770000,234.500000,111,10.550000,14.900000,3,4.020000,2,False. +MS,137,510,346-2347,no,no,0,147.200000,119,25.020000,192.800000,91,16.390000,172.700000,105,7.770000,10.200000,4,2.750000,1,False. +NE,82,408,343-2741,no,no,0,185.800000,36,31.590000,276.500000,134,23.500000,192.100000,104,8.640000,5.700000,7,1.540000,4,False. +NJ,92,510,420-8242,no,yes,29,155.400000,110,26.420000,188.500000,104,16.020000,254.900000,118,11.470000,8.000000,4,2.160000,3,False. +WI,165,510,402-7746,no,no,0,154.200000,91,26.210000,268.600000,108,22.830000,188.800000,99,8.500000,10.900000,4,2.940000,6,False. +MT,96,415,332-1494,no,no,0,97.600000,98,16.590000,105.500000,118,8.970000,220.200000,105,9.910000,11.600000,9,3.130000,1,False. +AR,156,415,388-6223,no,no,0,178.800000,94,30.400000,178.400000,97,15.160000,169.200000,77,7.610000,7.500000,3,2.030000,1,False. +WA,63,408,404-9539,no,no,0,149.300000,104,25.380000,273.600000,75,23.260000,206.600000,72,9.300000,9.100000,4,2.460000,0,False. +NH,37,415,341-7332,no,no,0,206.000000,89,35.020000,186.000000,88,15.810000,307.100000,86,13.820000,8.400000,11,2.270000,0,False. +IA,98,415,338-7886,no,no,0,216.800000,86,36.860000,190.800000,114,16.220000,187.500000,79,8.440000,11.000000,9,2.970000,0,False. +WV,121,415,332-5596,no,no,0,103.300000,110,17.560000,129.100000,82,10.970000,167.100000,113,7.520000,10.700000,3,2.890000,0,False. +RI,94,415,348-9945,no,no,0,139.400000,95,23.700000,159.100000,92,13.520000,128.200000,129,5.770000,7.700000,3,2.080000,0,False. +KS,99,415,407-1896,no,no,0,191.200000,110,32.500000,163.900000,102,13.930000,243.600000,114,10.960000,14.100000,3,3.810000,1,False. +MT,163,510,398-9408,no,yes,23,160.000000,104,27.200000,189.400000,64,16.100000,229.900000,118,10.350000,10.400000,7,2.810000,1,False. +MO,161,510,369-8005,no,no,0,221.700000,95,37.690000,193.000000,82,16.410000,194.100000,113,8.730000,6.500000,4,1.760000,3,False. +HI,99,415,346-2530,no,no,0,62.900000,81,10.690000,231.000000,64,19.640000,168.900000,121,7.600000,8.500000,5,2.300000,1,False. +CO,108,415,400-5984,no,no,0,215.600000,78,36.650000,195.300000,119,16.600000,194.400000,65,8.750000,3.600000,5,0.970000,1,False. +CT,84,510,351-1007,no,yes,42,165.300000,97,28.100000,223.500000,118,19.000000,260.800000,72,11.740000,7.600000,7,2.050000,3,False. +ID,83,415,345-5980,yes,yes,32,94.700000,111,16.100000,154.400000,98,13.120000,200.400000,109,9.020000,10.600000,6,2.860000,2,False. +DC,139,510,368-8964,no,no,0,203.200000,81,34.540000,152.500000,99,12.960000,197.800000,76,8.900000,9.700000,3,2.620000,2,False. +TN,69,510,358-1912,no,no,0,195.300000,70,33.200000,216.700000,108,18.420000,259.900000,119,11.700000,12.500000,4,3.380000,3,False. +WY,129,510,379-3132,no,no,0,143.700000,114,24.430000,297.800000,98,25.310000,212.600000,86,9.570000,11.400000,8,3.080000,4,False. +MO,106,415,340-9910,no,no,0,114.400000,104,19.450000,78.300000,101,6.660000,232.700000,78,10.470000,0.000000,0,0.000000,2,False. +VA,158,415,396-2719,no,no,0,222.800000,101,37.880000,203.000000,128,17.260000,210.600000,106,9.480000,6.900000,2,1.860000,2,False. +SD,168,415,369-6204,no,yes,22,175.900000,70,29.900000,211.700000,105,17.990000,174.500000,81,7.850000,7.300000,5,1.970000,2,False. +WV,115,510,420-9971,yes,no,0,249.900000,95,42.480000,242.500000,104,20.610000,151.700000,121,6.830000,15.300000,6,4.130000,1,True. +GA,57,408,410-3782,yes,yes,30,234.500000,130,39.870000,195.200000,116,16.590000,268.800000,94,12.100000,11.400000,4,3.080000,2,False. +AZ,67,415,404-4481,no,no,0,210.700000,116,35.820000,219.200000,86,18.630000,179.700000,83,8.090000,7.200000,6,1.940000,1,False. +AK,127,408,383-9255,no,no,0,182.300000,124,30.990000,169.900000,110,14.440000,184.000000,116,8.280000,9.300000,3,2.510000,1,False. +AK,78,510,418-9385,no,no,0,190.300000,88,32.350000,194.500000,89,16.530000,256.500000,109,11.540000,11.700000,5,3.160000,2,False. +CT,100,415,360-9676,no,yes,38,177.100000,88,30.110000,163.700000,108,13.910000,242.700000,72,10.920000,7.400000,2,2.000000,0,False. +UT,103,510,327-3587,no,yes,36,87.200000,92,14.820000,169.300000,110,14.390000,166.700000,80,7.500000,10.900000,5,2.940000,6,True. +KY,113,415,385-4715,no,no,0,215.600000,96,36.650000,193.400000,127,16.440000,105.400000,115,4.740000,13.500000,3,3.650000,1,False. +MI,78,510,414-2695,no,no,0,137.400000,109,23.360000,237.600000,49,20.200000,206.700000,136,9.300000,14.000000,11,3.780000,3,False. +OR,129,510,331-5999,no,yes,36,192.800000,103,32.780000,177.000000,83,15.050000,216.500000,118,9.740000,16.400000,5,4.430000,1,False. +TN,57,510,337-7739,no,no,0,149.300000,100,25.380000,200.200000,110,17.020000,231.700000,101,10.430000,11.900000,3,3.210000,2,False. +WV,82,408,388-6658,no,no,0,143.700000,116,24.430000,170.700000,99,14.510000,287.700000,95,12.950000,7.800000,5,2.110000,1,False. +NJ,64,415,405-6943,no,no,0,224.800000,111,38.220000,190.000000,101,16.150000,221.400000,110,9.960000,9.200000,2,2.480000,1,False. +MS,86,510,382-4084,no,yes,39,261.200000,122,44.400000,214.200000,101,18.210000,154.900000,101,6.970000,12.700000,5,3.430000,2,False. +ME,151,415,352-8249,no,yes,26,196.500000,98,33.410000,175.800000,111,14.940000,221.800000,124,9.980000,13.400000,5,3.620000,0,False. +WY,94,510,353-8363,no,no,0,271.200000,105,46.100000,202.600000,105,17.220000,221.600000,51,9.970000,11.500000,3,3.110000,3,True. +WY,90,415,416-2825,no,no,0,207.200000,121,35.220000,292.500000,104,24.860000,226.300000,103,10.180000,8.000000,1,2.160000,2,False. +IN,48,510,342-6696,no,no,0,300.400000,94,51.070000,133.200000,103,11.320000,197.400000,94,8.880000,7.200000,5,1.940000,2,False. +NM,85,408,338-9210,no,yes,37,229.600000,123,39.030000,132.300000,90,11.250000,211.900000,76,9.540000,9.500000,8,2.570000,2,False. +NJ,93,415,328-1768,yes,yes,20,187.500000,110,31.880000,169.800000,94,14.430000,175.300000,127,7.890000,12.100000,4,3.270000,1,False. +DC,169,415,406-5870,yes,no,0,57.100000,98,9.710000,199.700000,78,16.970000,274.700000,103,12.360000,6.500000,6,1.760000,3,False. +UT,68,415,398-3834,no,no,0,162.100000,86,27.560000,155.000000,86,13.180000,189.700000,87,8.540000,11.000000,9,2.970000,5,True. +KY,91,415,330-7754,yes,no,0,145.000000,89,24.650000,175.800000,102,14.940000,223.700000,151,10.070000,16.700000,3,4.510000,2,True. +KS,68,510,414-9054,no,no,0,159.500000,123,27.120000,240.800000,93,20.470000,210.300000,76,9.460000,11.400000,3,3.080000,1,False. +MI,101,510,350-2832,no,no,0,190.700000,72,32.420000,208.600000,103,17.730000,203.800000,111,9.170000,8.800000,8,2.380000,1,False. +UT,67,510,414-9027,no,yes,20,230.600000,40,39.200000,189.100000,58,16.070000,162.200000,115,7.300000,9.400000,2,2.540000,1,False. +NE,66,415,337-1225,no,no,0,34.000000,133,5.780000,278.600000,61,23.680000,129.600000,120,5.830000,11.500000,3,3.110000,0,False. +FL,116,415,394-6577,no,yes,17,193.400000,112,32.880000,240.600000,131,20.450000,248.100000,98,11.160000,11.400000,3,3.080000,5,False. +LA,158,408,359-6995,no,no,0,202.000000,126,34.340000,163.500000,86,13.900000,195.400000,84,8.790000,10.400000,6,2.810000,1,False. +MT,78,415,377-7561,no,no,0,191.700000,122,32.590000,241.400000,88,20.520000,203.500000,86,9.160000,9.100000,5,2.460000,1,False. +WA,119,415,380-6631,no,yes,26,161.300000,97,27.420000,250.300000,110,21.280000,142.400000,92,6.410000,6.600000,8,1.780000,1,False. +MI,120,415,390-8876,no,no,0,150.600000,85,25.600000,119.000000,128,10.120000,232.900000,123,10.480000,6.400000,2,1.730000,1,False. +KY,155,510,413-2201,no,no,0,184.600000,102,31.380000,196.000000,117,16.660000,226.500000,122,10.190000,7.800000,1,2.110000,1,False. +LA,106,408,374-2073,no,no,0,220.700000,120,37.520000,270.200000,95,22.970000,121.600000,113,5.470000,8.700000,5,2.350000,1,False. +NM,87,510,417-1272,yes,no,0,167.300000,119,28.440000,198.500000,119,16.870000,133.100000,88,5.990000,11.000000,6,2.970000,1,False. +AL,146,415,358-1129,no,yes,32,154.000000,80,26.180000,185.500000,91,15.770000,148.200000,107,6.670000,8.200000,4,2.210000,3,False. +MO,101,415,394-1211,no,yes,29,121.100000,116,20.590000,186.400000,100,15.840000,241.700000,75,10.880000,10.100000,6,2.730000,0,False. +CO,22,510,327-1319,no,yes,23,182.100000,94,30.960000,164.600000,59,13.990000,128.800000,102,5.800000,12.700000,4,3.430000,3,False. +TX,90,415,399-4413,no,no,0,109.600000,88,18.630000,137.600000,108,11.700000,159.700000,121,7.190000,11.000000,5,2.970000,2,False. +NY,41,415,393-9985,no,no,0,209.900000,105,35.680000,121.900000,105,10.360000,253.700000,104,11.420000,9.600000,4,2.590000,1,False. +OR,69,415,401-8377,no,no,0,167.500000,76,28.480000,242.100000,92,20.580000,101.200000,103,4.550000,11.400000,4,3.080000,2,False. +WY,33,415,331-3202,no,no,0,213.900000,88,36.360000,239.800000,119,20.380000,148.700000,71,6.690000,9.800000,14,2.650000,2,False. +UT,112,415,358-5953,no,no,0,115.800000,108,19.690000,243.300000,111,20.680000,184.600000,78,8.310000,13.100000,5,3.540000,1,False. +LA,108,510,380-7624,no,yes,30,276.600000,99,47.020000,220.100000,113,18.710000,177.900000,95,8.010000,9.800000,6,2.650000,2,False. +NV,136,415,416-5261,no,yes,21,179.400000,88,30.500000,181.100000,97,15.390000,320.700000,120,14.430000,9.500000,4,2.570000,2,False. +NC,128,510,417-5067,no,no,0,187.300000,84,31.840000,270.800000,95,23.020000,206.400000,68,9.290000,10.100000,5,2.730000,1,False. +NC,27,408,345-6515,no,no,0,201.200000,128,34.200000,227.200000,100,19.310000,145.800000,91,6.560000,8.400000,3,2.270000,2,False. +WY,161,415,406-1349,yes,no,0,189.600000,78,32.230000,267.400000,117,22.730000,184.500000,137,8.300000,1.300000,6,0.350000,1,False. +TN,33,415,360-9038,no,yes,35,186.800000,124,31.760000,261.000000,69,22.190000,317.800000,103,14.300000,15.000000,5,4.050000,0,False. +FL,120,415,348-3444,no,yes,31,153.500000,83,26.100000,219.100000,96,18.620000,237.400000,76,10.680000,11.400000,4,3.080000,0,False. +CA,113,415,370-2892,no,no,0,187.600000,97,31.890000,208.200000,118,17.700000,158.900000,101,7.150000,8.700000,6,2.350000,2,False. +PA,122,415,383-4061,yes,no,0,230.900000,132,39.250000,243.200000,99,20.670000,182.400000,57,8.210000,11.000000,2,2.970000,0,True. +WV,148,415,391-7937,no,yes,26,244.900000,150,41.630000,118.000000,138,10.030000,236.000000,91,10.620000,15.200000,4,4.100000,2,False. +NJ,74,415,389-4083,no,no,0,230.900000,93,39.250000,223.000000,78,18.960000,157.800000,101,7.100000,9.700000,2,2.620000,3,False. +MT,106,415,410-9633,no,no,0,187.100000,104,31.810000,250.200000,117,21.270000,144.900000,81,6.520000,11.000000,3,2.970000,1,False. +MN,179,415,418-9502,no,no,0,170.700000,54,29.020000,191.100000,108,16.240000,214.600000,107,9.660000,13.300000,4,3.590000,1,False. +WI,149,415,339-6637,yes,yes,28,126.900000,97,21.570000,166.900000,102,14.190000,145.200000,77,6.530000,8.800000,3,2.380000,5,True. +ID,77,510,356-3403,no,no,0,189.500000,112,32.220000,207.000000,95,17.600000,214.100000,91,9.630000,9.200000,7,2.480000,0,False. +MA,127,408,371-9457,yes,no,0,176.900000,110,30.070000,167.900000,100,14.270000,182.200000,138,8.200000,7.700000,2,2.080000,1,True. +OR,80,415,391-8087,no,no,0,161.100000,99,27.390000,198.800000,81,16.900000,228.400000,116,10.280000,10.600000,4,2.860000,1,False. +MT,106,510,392-6420,no,no,0,169.400000,107,28.800000,197.200000,71,16.760000,202.200000,79,9.100000,10.700000,4,2.890000,1,False. +AL,61,415,399-4094,no,yes,20,254.400000,133,43.250000,161.700000,96,13.740000,251.400000,91,11.310000,10.500000,4,2.840000,0,False. +ND,135,510,378-4013,yes,yes,24,127.700000,54,21.710000,215.000000,105,18.280000,234.300000,84,10.540000,5.800000,4,1.570000,2,False. +LA,115,415,386-6306,no,yes,26,170.500000,107,28.990000,217.200000,77,18.460000,225.700000,71,10.160000,13.600000,5,3.670000,6,False. +ND,167,408,359-3618,yes,no,0,219.100000,100,37.250000,242.900000,90,20.650000,168.900000,101,7.600000,10.100000,4,2.730000,2,False. +MS,107,510,340-8875,yes,no,0,273.500000,104,46.500000,183.800000,68,15.620000,153.800000,67,6.920000,11.000000,9,2.970000,2,False. +WV,112,415,330-2693,yes,no,0,161.900000,138,27.520000,200.900000,114,17.080000,134.000000,134,6.030000,10.700000,4,2.890000,1,False. +WI,35,510,403-7627,no,yes,27,241.700000,87,41.090000,142.000000,101,12.070000,288.900000,68,13.000000,9.400000,4,2.540000,1,False. +KS,103,408,342-3678,yes,no,0,62.800000,124,10.680000,170.400000,66,14.480000,280.200000,78,12.610000,9.400000,4,2.540000,3,False. +MO,107,415,344-9943,no,yes,22,281.100000,83,47.790000,143.700000,130,12.210000,239.400000,128,10.770000,11.200000,9,3.020000,1,False. +PA,69,415,390-5686,no,no,0,228.200000,70,38.790000,263.700000,80,22.410000,142.600000,60,6.420000,10.700000,5,2.890000,3,False. +SD,85,408,358-5826,no,no,0,209.800000,82,35.670000,194.500000,94,16.530000,200.400000,85,9.020000,11.300000,3,3.050000,0,False. +NJ,24,408,393-7826,no,no,0,265.600000,86,45.150000,208.800000,102,17.750000,182.500000,105,8.210000,11.100000,6,3.000000,2,True. +AL,90,415,335-9786,no,no,0,214.900000,97,36.530000,117.800000,117,10.010000,133.700000,78,6.020000,11.800000,2,3.190000,2,False. +ME,137,510,368-9860,no,no,0,110.500000,79,18.790000,223.200000,111,18.970000,169.500000,64,7.630000,10.500000,3,2.840000,3,False. +AZ,92,415,416-9522,yes,yes,45,281.100000,88,47.790000,198.000000,103,16.830000,94.300000,76,4.240000,7.500000,3,2.030000,0,False. +VT,38,415,416-7307,no,no,0,137.800000,86,23.430000,286.300000,76,24.340000,167.000000,77,7.520000,14.100000,3,3.810000,2,False. +NV,69,510,397-6789,yes,yes,33,271.500000,98,46.160000,253.400000,102,21.540000,165.400000,85,7.440000,8.200000,2,2.210000,1,True. +WI,45,408,335-9501,no,no,0,112.800000,108,19.180000,218.800000,120,18.600000,240.200000,106,10.810000,9.000000,3,2.430000,2,False. +HI,73,408,388-1250,no,no,0,187.300000,118,31.840000,239.700000,90,20.370000,167.500000,108,7.540000,15.100000,2,4.080000,1,False. +DE,92,415,386-1374,no,no,0,197.000000,84,33.490000,269.300000,105,22.890000,158.900000,105,7.150000,10.800000,4,2.920000,1,False. +AZ,113,415,346-8112,no,yes,32,180.400000,89,30.670000,129.400000,124,11.000000,166.900000,124,7.510000,8.400000,2,2.270000,1,False. +VA,68,408,364-9040,yes,no,0,148.500000,126,25.250000,219.400000,125,18.650000,198.500000,121,8.930000,14.500000,7,3.920000,1,True. +GA,135,415,366-3944,no,yes,22,197.100000,113,33.510000,259.400000,95,22.050000,134.700000,135,6.060000,14.600000,5,3.940000,2,False. +AZ,100,415,331-9861,no,yes,26,153.700000,115,26.130000,137.800000,146,11.710000,213.500000,104,9.610000,15.900000,5,4.290000,1,False. +MN,96,415,330-2881,no,yes,27,261.300000,96,44.420000,220.900000,101,18.780000,179.400000,97,8.070000,11.300000,2,3.050000,1,False. +ME,108,510,402-9558,no,no,0,246.200000,102,41.850000,202.400000,134,17.200000,180.100000,95,8.100000,9.400000,5,2.540000,1,False. +FL,84,510,341-3180,no,no,0,191.000000,88,32.470000,318.800000,119,27.100000,247.300000,79,11.130000,6.500000,4,1.760000,0,False. +WA,134,408,371-8598,no,no,0,208.300000,86,35.410000,253.600000,89,21.560000,291.000000,86,13.100000,12.600000,3,3.400000,1,False. +MT,72,415,398-8385,no,no,0,253.000000,73,43.010000,219.300000,78,18.640000,210.800000,89,9.490000,9.800000,4,2.650000,0,False. +AL,83,408,333-4154,no,no,0,202.300000,87,34.390000,201.500000,111,17.130000,101.700000,82,4.580000,6.800000,4,1.840000,0,False. +WV,137,408,330-3589,no,no,0,174.400000,120,29.650000,156.300000,98,13.290000,136.500000,121,6.140000,10.200000,5,2.750000,0,False. +GA,56,415,417-1477,no,yes,30,127.100000,89,21.610000,172.100000,116,14.630000,194.600000,111,8.760000,12.100000,3,3.270000,1,False. +OH,61,510,327-5525,yes,yes,16,143.500000,76,24.400000,242.600000,58,20.620000,147.700000,95,6.650000,11.300000,3,3.050000,0,False. +DE,171,510,363-8244,no,yes,17,186.900000,94,31.770000,240.000000,138,20.400000,200.900000,64,9.040000,5.800000,3,1.570000,1,False. +NE,123,510,419-9104,no,no,0,194.000000,118,32.980000,242.000000,114,20.570000,146.300000,108,6.580000,12.100000,4,3.270000,1,False. +FL,58,510,363-1560,no,no,0,234.800000,89,39.920000,106.800000,131,9.080000,178.500000,122,8.030000,9.900000,6,2.670000,0,False. +AK,156,510,341-4075,no,no,0,123.700000,96,21.030000,103.000000,80,8.760000,189.400000,82,8.520000,13.100000,4,3.540000,1,False. +WI,166,510,366-9074,no,no,0,173.900000,103,29.560000,276.400000,83,23.490000,190.800000,113,8.590000,15.300000,5,4.130000,0,False. +WA,75,510,367-1424,no,yes,41,130.900000,115,22.250000,203.400000,110,17.290000,171.700000,68,7.730000,12.400000,4,3.350000,1,False. +KY,75,415,341-1191,no,no,0,314.600000,102,53.480000,169.800000,86,14.430000,285.100000,100,12.830000,5.700000,3,1.540000,2,True. +OH,83,510,342-9480,no,no,0,227.900000,78,38.740000,207.500000,115,17.640000,211.700000,100,9.530000,12.100000,5,3.270000,1,False. +UT,243,510,355-9360,no,no,0,95.500000,92,16.240000,163.700000,63,13.910000,264.200000,118,11.890000,6.600000,6,1.780000,2,False. +NM,153,408,343-1538,no,no,0,185.300000,127,31.500000,208.000000,73,17.680000,206.100000,124,9.270000,15.100000,3,4.080000,1,False. +MN,150,415,335-2331,no,no,0,146.300000,133,24.870000,202.700000,95,17.230000,234.700000,103,10.560000,13.100000,3,3.540000,1,False. +WV,92,510,335-7257,no,yes,16,184.000000,99,31.280000,76.400000,134,6.490000,185.100000,96,8.330000,12.700000,3,3.430000,2,False. +MN,80,415,332-2137,no,no,0,105.800000,110,17.990000,43.900000,88,3.730000,189.600000,87,8.530000,13.100000,5,3.540000,0,False. +AL,134,415,352-2998,no,no,0,178.000000,110,30.260000,153.800000,64,13.070000,236.600000,105,10.650000,11.700000,4,3.160000,1,False. +PA,77,510,346-6941,no,yes,24,149.400000,74,25.400000,123.900000,72,10.530000,174.300000,84,7.840000,10.100000,6,2.730000,1,False. +DE,147,510,400-2203,no,no,0,209.400000,104,35.600000,132.500000,78,11.260000,149.400000,123,6.720000,11.300000,3,3.050000,2,False. +MO,74,415,421-2955,no,no,0,172.100000,105,29.260000,211.700000,99,17.990000,182.200000,105,8.200000,11.600000,6,3.130000,1,False. +IL,138,510,331-6629,yes,no,0,169.300000,82,28.780000,217.900000,147,18.520000,184.200000,77,8.290000,9.400000,9,2.540000,1,False. +FL,143,415,343-6314,no,no,0,119.100000,117,20.250000,287.700000,136,24.450000,223.000000,100,10.040000,12.200000,4,3.290000,0,False. +HI,64,415,414-6638,no,no,0,194.200000,147,33.010000,173.400000,87,14.740000,268.700000,114,12.090000,5.500000,2,1.490000,2,False. +ME,120,510,350-5883,no,no,0,198.800000,56,33.800000,230.100000,73,19.560000,119.800000,81,5.390000,9.900000,3,2.670000,2,False. +CO,121,408,409-4447,yes,no,0,167.700000,94,28.510000,93.700000,121,7.960000,241.300000,115,10.860000,13.400000,1,3.620000,3,True. +NH,88,415,376-4856,no,no,0,202.200000,86,34.370000,216.800000,93,18.430000,239.400000,99,10.770000,11.800000,2,3.190000,2,False. +SC,87,408,335-1874,no,no,0,322.500000,106,54.830000,204.600000,93,17.390000,186.200000,128,8.380000,9.400000,4,2.540000,2,True. +IN,100,510,397-6255,no,no,0,216.200000,107,36.750000,215.600000,84,18.330000,138.400000,127,6.230000,10.200000,3,2.750000,0,False. +FL,104,415,381-5047,no,no,0,76.400000,116,12.990000,115.600000,74,9.830000,226.300000,94,10.180000,9.400000,3,2.540000,3,False. +GA,27,510,403-6850,no,no,0,72.700000,75,12.360000,208.600000,117,17.730000,65.800000,71,2.960000,9.900000,3,2.670000,1,False. +IL,81,415,375-3658,no,yes,31,210.400000,100,35.770000,225.500000,97,19.170000,168.700000,120,7.590000,9.700000,4,2.620000,0,False. +NC,64,510,341-2603,yes,yes,33,127.200000,93,21.620000,162.900000,104,13.850000,247.400000,109,11.130000,8.100000,13,2.190000,0,False. +VT,107,510,342-5062,no,yes,28,201.800000,79,34.310000,304.900000,128,25.920000,225.600000,133,10.150000,11.900000,8,3.210000,1,False. +DC,88,415,354-1558,no,yes,17,219.500000,78,37.320000,222.100000,94,18.880000,188.300000,92,8.470000,16.100000,5,4.350000,1,False. +VT,111,408,351-9537,no,no,0,99.300000,112,16.880000,270.500000,136,22.990000,225.300000,94,10.140000,9.000000,6,2.430000,3,False. +NV,77,415,401-1252,no,no,0,239.200000,114,40.660000,150.000000,115,12.750000,160.800000,81,7.240000,10.300000,2,2.780000,5,False. +OR,67,415,366-9538,yes,no,0,120.900000,58,20.550000,235.000000,88,19.980000,95.100000,130,4.280000,11.400000,11,3.080000,2,False. +AL,102,408,364-7622,no,no,0,224.700000,81,38.200000,129.400000,112,11.000000,167.600000,109,7.540000,15.800000,6,4.270000,1,False. +ND,146,408,393-9918,no,yes,19,176.600000,88,30.020000,162.700000,66,13.830000,215.500000,98,9.700000,14.600000,6,3.940000,1,False. +FL,144,415,376-4484,no,yes,51,283.900000,98,48.260000,192.000000,109,16.320000,196.300000,85,8.830000,10.000000,4,2.700000,1,False. +NE,96,415,410-6791,no,no,0,180.600000,92,30.700000,190.900000,114,16.230000,295.600000,125,13.300000,10.300000,4,2.780000,1,True. +ND,70,415,343-2392,no,yes,31,125.900000,101,21.400000,196.400000,102,16.690000,252.700000,75,11.370000,10.300000,4,2.780000,1,False. +ME,149,408,408-4323,no,no,0,237.600000,79,40.390000,192.400000,107,16.350000,207.400000,111,9.330000,9.100000,9,2.460000,0,False. +IL,129,415,395-1718,no,no,0,198.400000,91,33.730000,264.700000,106,22.500000,111.400000,101,5.010000,9.200000,2,2.480000,2,False. +WA,166,408,354-9492,no,no,0,274.300000,110,46.630000,52.900000,109,4.500000,246.100000,119,11.070000,10.900000,5,2.940000,0,False. +MA,136,408,367-8168,yes,no,0,199.600000,89,33.930000,211.400000,96,17.970000,72.400000,84,3.260000,11.000000,4,2.970000,3,True. +KS,149,510,340-3500,no,no,0,217.700000,91,37.010000,273.500000,74,23.250000,226.900000,99,10.210000,9.600000,3,2.590000,3,False. +RI,70,415,369-4962,no,no,0,134.700000,96,22.900000,235.900000,90,20.050000,260.200000,113,11.710000,7.600000,6,2.050000,3,False. +MO,120,415,334-8967,no,yes,24,212.700000,73,36.160000,257.500000,103,21.890000,227.800000,119,10.250000,9.700000,13,2.620000,2,False. +IA,66,510,402-2377,no,no,0,256.300000,135,43.570000,180.200000,106,15.320000,187.300000,135,8.430000,6.200000,7,1.670000,2,False. +WY,104,408,366-3917,no,no,0,183.600000,133,31.210000,120.700000,98,10.260000,215.100000,112,9.680000,12.700000,2,3.430000,1,False. +NV,160,415,333-3531,no,no,0,176.200000,90,29.950000,196.000000,115,16.660000,263.900000,95,11.880000,9.200000,4,2.480000,1,False. +WI,129,415,333-8954,no,yes,37,205.000000,94,34.850000,165.400000,103,14.060000,185.000000,81,8.320000,11.700000,8,3.160000,1,False. +AL,93,408,374-9203,no,no,0,267.900000,114,45.540000,223.000000,74,18.960000,262.700000,90,11.820000,11.300000,3,3.050000,3,True. +HI,169,415,334-3289,no,no,0,179.200000,111,30.460000,175.200000,130,14.890000,228.600000,92,10.290000,9.900000,6,2.670000,2,False. +MO,58,415,353-7822,no,no,0,149.400000,145,25.400000,196.500000,105,16.700000,209.500000,108,9.430000,14.900000,3,4.020000,1,False. +CA,75,510,350-1422,no,yes,38,163.600000,132,27.810000,146.700000,113,12.470000,345.800000,115,15.560000,13.100000,3,3.540000,3,False. +MO,45,408,385-8406,no,no,0,207.600000,71,35.290000,152.700000,94,12.980000,217.800000,125,9.800000,12.400000,13,3.350000,1,False. +CT,155,510,380-7277,no,no,0,165.400000,108,28.120000,183.700000,103,15.610000,80.200000,108,3.610000,8.900000,4,2.400000,3,False. +MD,52,415,352-1798,no,no,0,209.800000,114,35.670000,171.300000,82,14.560000,154.600000,119,6.960000,9.900000,9,2.670000,4,False. +OH,119,415,385-7922,no,yes,27,220.100000,128,37.420000,268.200000,133,22.800000,146.500000,80,6.590000,11.100000,3,3.000000,0,False. +NV,86,510,353-7730,no,no,0,141.300000,72,24.020000,154.300000,95,13.120000,210.600000,91,9.480000,8.200000,5,2.210000,1,False. +MD,42,408,337-7163,no,no,0,196.500000,89,33.410000,241.300000,123,20.510000,143.200000,105,6.440000,4.000000,7,1.080000,0,False. +NE,127,510,348-5567,yes,no,0,180.900000,114,30.750000,209.500000,118,17.810000,249.900000,105,11.250000,7.400000,4,2.000000,2,False. +OH,123,408,420-9575,no,no,0,105.000000,150,17.850000,251.600000,90,21.390000,258.000000,93,11.610000,14.900000,5,4.020000,0,False. +MA,98,510,366-3358,no,no,0,271.400000,119,46.140000,190.400000,102,16.180000,284.700000,118,12.810000,11.100000,6,3.000000,4,True. +OK,149,510,359-9972,no,yes,43,206.700000,79,35.140000,174.600000,122,14.840000,241.500000,80,10.870000,10.900000,3,2.940000,1,False. +MA,160,408,387-3332,no,no,0,166.800000,109,28.360000,236.000000,117,20.060000,307.600000,77,13.840000,9.300000,1,2.510000,1,False. +WA,103,415,354-6960,no,no,0,204.900000,107,34.830000,135.200000,102,11.490000,208.200000,106,9.370000,10.400000,3,2.810000,5,False. +HI,132,415,405-3335,no,yes,15,154.600000,128,26.280000,245.600000,106,20.880000,148.600000,90,6.690000,9.100000,4,2.460000,1,False. +CO,137,415,379-4257,no,no,0,127.000000,107,21.590000,323.200000,75,27.470000,143.900000,127,6.480000,7.500000,2,2.030000,1,False. +FL,129,415,355-4992,yes,no,0,267.400000,78,45.460000,204.200000,85,17.360000,111.700000,146,5.030000,5.900000,4,1.590000,1,False. +WI,62,415,383-6373,no,no,0,281.000000,66,47.770000,160.600000,108,13.650000,77.900000,74,3.510000,0.000000,0,0.000000,1,False. +ID,122,510,382-7993,no,yes,33,270.800000,96,46.040000,220.400000,110,18.730000,169.900000,104,7.650000,11.800000,8,3.190000,4,False. +WY,32,408,422-5865,no,no,0,171.200000,82,29.100000,185.600000,102,15.780000,203.300000,64,9.150000,10.200000,7,2.750000,1,False. +GA,86,510,410-9961,no,no,0,124.100000,82,21.100000,202.600000,120,17.220000,289.600000,119,13.030000,6.700000,8,1.810000,3,False. +FL,130,415,343-9946,no,no,0,162.800000,113,27.680000,290.300000,111,24.680000,114.900000,140,5.170000,7.200000,3,1.940000,1,False. +WY,42,408,357-7060,no,no,0,146.300000,84,24.870000,255.900000,113,21.750000,45.000000,117,2.030000,8.000000,12,2.160000,1,False. +DE,73,415,355-9541,no,no,0,254.800000,85,43.320000,143.400000,80,12.190000,153.900000,102,6.930000,15.000000,7,4.050000,2,False. +ME,66,408,378-4145,no,yes,26,254.900000,108,43.330000,243.200000,135,20.670000,190.800000,95,8.590000,5.400000,3,1.460000,2,False. +DC,103,510,386-2317,no,yes,31,107.700000,124,18.310000,188.900000,104,16.060000,196.200000,98,8.830000,8.900000,3,2.400000,0,False. +IA,128,408,335-8146,no,no,0,158.800000,75,27.000000,264.800000,91,22.510000,270.000000,77,12.150000,7.600000,7,2.050000,1,False. +CO,104,415,377-2235,no,no,0,182.900000,113,31.090000,239.600000,85,20.370000,229.800000,104,10.340000,5.500000,4,1.490000,2,False. +MN,103,415,386-9141,no,no,0,198.500000,112,33.750000,42.500000,90,3.610000,179.200000,124,8.060000,12.400000,5,3.350000,0,False. +VT,124,415,416-5623,no,no,0,178.400000,72,30.330000,233.600000,134,19.860000,179.400000,91,8.070000,12.000000,2,3.240000,0,False. +AZ,87,510,327-3053,no,no,0,110.900000,91,18.850000,158.500000,115,13.470000,207.500000,131,9.340000,6.200000,5,1.670000,1,False. +LA,109,415,395-6195,no,yes,27,166.900000,85,28.370000,221.200000,92,18.800000,197.300000,97,8.880000,12.300000,4,3.320000,1,True. +MO,167,415,397-8772,yes,no,0,244.800000,91,41.620000,60.800000,105,5.170000,176.700000,110,7.950000,10.700000,3,2.890000,2,False. +ME,97,510,346-7656,no,no,0,120.800000,96,20.540000,169.800000,101,14.430000,194.100000,63,8.730000,11.900000,3,3.210000,4,True. +MD,106,415,343-2350,no,no,0,165.300000,118,28.100000,210.000000,101,17.850000,187.200000,93,8.420000,8.500000,3,2.300000,2,False. +VT,125,415,372-4722,no,no,0,126.700000,113,21.540000,155.500000,131,13.220000,206.200000,112,9.280000,14.400000,7,3.890000,2,False. +DC,108,408,399-8615,no,yes,35,215.900000,106,36.700000,200.600000,107,17.050000,195.400000,107,8.790000,15.500000,7,4.190000,0,False. +WY,125,415,379-8248,no,no,0,140.100000,132,23.820000,209.600000,126,17.820000,264.100000,77,11.880000,8.000000,2,2.160000,1,False. +VA,89,415,414-6219,no,yes,32,209.900000,113,35.680000,249.800000,104,21.230000,224.200000,92,10.090000,8.700000,7,2.350000,1,False. +VA,72,510,387-1343,yes,yes,29,139.800000,114,23.770000,138.200000,91,11.750000,221.000000,88,9.950000,5.500000,6,1.490000,0,False. +CT,23,510,370-5527,no,no,0,321.600000,107,54.670000,251.600000,115,21.390000,141.100000,158,6.350000,11.300000,3,3.050000,2,True. +HI,149,510,393-8736,no,no,0,166.600000,61,28.320000,218.800000,107,18.600000,208.300000,131,9.370000,8.200000,6,2.210000,7,False. +WI,73,415,402-7626,no,no,0,214.200000,90,36.410000,196.800000,78,16.730000,157.900000,112,7.110000,5.900000,8,1.590000,0,False. +MD,61,415,370-2688,no,no,0,260.000000,123,44.200000,210.500000,127,17.890000,234.700000,70,10.560000,9.000000,3,2.430000,1,True. +WV,161,415,418-9036,no,no,0,191.900000,113,32.620000,70.900000,87,6.030000,204.800000,107,9.220000,13.400000,4,3.620000,4,True. +VT,73,408,417-2035,no,no,0,213.000000,95,36.210000,188.800000,104,16.050000,136.200000,89,6.130000,13.500000,3,3.650000,0,False. +UT,118,415,355-3602,no,yes,24,118.100000,83,20.080000,109.600000,72,9.320000,245.500000,73,11.050000,16.900000,2,4.560000,1,False. +CO,23,408,393-4027,no,no,0,190.200000,89,32.330000,166.400000,108,14.140000,219.800000,73,9.890000,15.000000,4,4.050000,6,False. +NC,127,415,418-5141,no,yes,25,82.200000,95,13.970000,163.300000,109,13.880000,264.900000,104,11.920000,5.100000,6,1.380000,0,False. +NJ,42,415,406-1247,no,yes,32,163.800000,80,27.850000,177.800000,123,15.110000,190.400000,106,8.570000,8.100000,5,2.190000,0,False. +AR,118,415,402-3892,no,no,0,267.800000,145,45.530000,316.400000,121,26.890000,208.600000,91,9.390000,14.400000,11,3.890000,5,True. +IA,45,510,332-2965,no,no,0,159.800000,91,27.170000,120.400000,86,10.230000,163.000000,93,7.340000,10.600000,3,2.860000,2,False. +GA,50,408,377-1218,no,yes,24,214.300000,129,36.430000,289.800000,55,24.630000,312.500000,130,14.060000,10.600000,4,2.860000,1,False. +MO,179,510,355-2464,no,no,0,287.300000,123,48.840000,288.000000,114,24.480000,266.000000,112,11.970000,10.500000,4,2.840000,0,True. +MO,152,408,404-4611,no,no,0,101.200000,122,17.200000,141.600000,87,12.040000,198.500000,124,8.930000,7.500000,3,2.030000,2,False. +WY,105,415,373-2339,no,no,0,102.800000,74,17.480000,281.700000,125,23.940000,228.100000,113,10.260000,13.200000,5,3.560000,2,False. +HI,72,415,410-3503,no,no,0,109.100000,97,18.550000,115.700000,96,9.830000,295.800000,84,13.310000,8.300000,6,2.240000,0,False. +PA,52,408,410-4739,no,no,0,215.900000,67,36.700000,217.000000,108,18.450000,342.800000,130,15.430000,5.200000,2,1.400000,1,False. +TX,125,415,365-3562,no,no,0,203.400000,110,34.580000,128.700000,97,10.940000,190.500000,113,8.570000,11.000000,4,2.970000,1,False. +VA,143,510,387-7641,no,no,0,110.100000,113,18.720000,169.000000,59,14.370000,166.700000,94,7.500000,9.200000,2,2.480000,1,False. +RI,65,415,385-9744,no,no,0,111.000000,51,18.870000,219.800000,84,18.680000,202.000000,89,9.090000,4.400000,14,1.190000,1,False. +WI,80,415,398-5006,no,no,0,239.900000,121,40.780000,142.300000,51,12.100000,364.300000,106,16.390000,9.300000,5,2.510000,1,False. +MS,1,415,408-3977,no,no,0,144.800000,107,24.620000,112.500000,66,9.560000,218.700000,79,9.840000,13.800000,3,3.730000,1,False. +KY,60,408,334-2729,no,no,0,135.400000,134,23.020000,205.900000,85,17.500000,204.000000,103,9.180000,7.900000,4,2.130000,1,False. +NC,43,415,334-7685,no,no,0,84.200000,134,14.310000,80.800000,103,6.870000,196.100000,79,8.820000,10.800000,2,2.920000,1,False. +NV,143,415,350-9228,no,no,0,209.100000,127,35.550000,106.100000,80,9.020000,179.600000,90,8.080000,14.000000,6,3.780000,0,False. +UT,81,415,407-5774,no,yes,24,130.100000,117,22.120000,196.000000,61,16.660000,139.300000,123,6.270000,11.400000,5,3.080000,0,False. +ME,205,510,413-4039,no,yes,24,175.800000,139,29.890000,155.000000,98,13.180000,180.700000,64,8.130000,7.800000,5,2.110000,2,False. +HI,24,415,343-2077,no,no,0,241.900000,104,41.120000,145.200000,112,12.340000,214.500000,105,9.650000,6.600000,5,1.780000,1,False. +OH,74,415,336-5661,no,no,0,136.700000,106,23.240000,228.600000,105,19.430000,265.300000,114,11.940000,9.800000,4,2.650000,0,False. +WV,77,510,355-4143,no,no,0,67.700000,68,11.510000,195.700000,86,16.630000,236.500000,137,10.640000,12.000000,2,3.240000,1,False. +OK,74,415,366-5918,no,no,0,200.400000,87,34.070000,309.200000,105,26.280000,152.100000,118,6.840000,10.000000,2,2.700000,1,False. +KY,74,510,368-7555,yes,no,0,125.800000,103,21.390000,207.700000,96,17.650000,207.400000,143,9.330000,14.100000,4,3.810000,1,True. +AL,200,408,408-2119,no,no,0,128.200000,87,21.790000,133.200000,105,11.320000,177.600000,123,7.990000,11.200000,2,3.020000,1,False. +MD,86,408,329-2789,no,no,0,226.300000,88,38.470000,223.000000,107,18.960000,255.600000,92,11.500000,13.000000,3,3.510000,4,False. +NE,91,510,334-1508,no,yes,37,162.300000,107,27.590000,233.900000,115,19.880000,277.400000,94,12.480000,9.200000,4,2.480000,0,False. +DC,76,415,337-1506,no,no,0,224.400000,121,38.150000,147.900000,97,12.570000,183.800000,74,8.270000,6.700000,2,1.810000,2,False. +TX,130,415,396-8400,no,no,0,120.500000,127,20.490000,189.700000,52,16.120000,270.100000,107,12.150000,14.300000,2,3.860000,1,False. +OH,56,408,349-2654,no,no,0,91.100000,90,15.490000,179.300000,115,15.240000,300.700000,89,13.530000,11.900000,8,3.210000,2,False. +DE,117,415,417-2716,no,no,0,168.800000,137,28.700000,241.400000,107,20.520000,204.800000,106,9.220000,15.500000,4,4.190000,0,False. +IA,63,510,402-1725,no,no,0,153.500000,81,26.100000,287.300000,115,24.420000,230.200000,85,10.360000,6.500000,5,1.760000,2,False. +VT,126,415,403-3229,no,no,0,226.200000,88,38.450000,140.300000,114,11.930000,208.900000,110,9.400000,6.400000,2,1.730000,0,False. +OR,132,510,353-6056,no,no,0,191.900000,107,32.620000,206.900000,127,17.590000,272.000000,88,12.240000,12.600000,2,3.400000,1,False. +NV,81,415,399-9802,no,yes,28,167.900000,147,28.540000,190.700000,105,16.210000,193.000000,103,8.690000,9.200000,6,2.480000,4,True. +NC,122,415,366-7069,no,no,0,180.000000,88,30.600000,145.000000,77,12.330000,233.700000,120,10.520000,11.500000,6,3.110000,2,False. +NJ,46,408,332-5949,no,no,0,257.400000,67,43.760000,261.100000,91,22.190000,204.400000,107,9.200000,13.400000,5,3.620000,2,True. +MN,150,415,393-6376,no,yes,28,174.400000,75,29.650000,169.900000,80,14.440000,201.600000,130,9.070000,11.000000,4,2.970000,1,False. +ID,99,408,354-7025,no,no,0,159.700000,83,27.150000,155.400000,121,13.210000,255.700000,114,11.510000,8.400000,3,2.270000,1,False. +AL,87,408,351-6585,no,no,0,237.200000,124,40.320000,222.600000,87,18.920000,173.300000,81,7.800000,11.000000,3,2.970000,1,False. +AK,108,415,330-5462,no,no,0,103.000000,129,17.510000,242.300000,103,20.600000,170.200000,89,7.660000,7.900000,3,2.130000,1,False. +VT,101,415,407-2292,no,no,0,153.800000,89,26.150000,234.000000,89,19.890000,196.300000,77,8.830000,11.600000,2,3.130000,4,False. +PA,53,415,340-3011,no,no,0,205.100000,86,34.870000,160.500000,95,13.640000,149.500000,142,6.730000,10.700000,2,2.890000,3,False. +AK,132,415,345-9153,no,yes,39,175.700000,93,29.870000,187.200000,94,15.910000,225.500000,118,10.150000,8.600000,3,2.320000,2,False. +CA,158,510,379-5503,no,no,0,155.900000,123,26.500000,224.200000,112,19.060000,221.000000,116,9.950000,8.600000,8,2.320000,2,False. +MS,114,415,389-6790,no,yes,34,154.400000,109,26.250000,221.400000,142,18.820000,208.500000,103,9.380000,10.300000,5,2.780000,0,False. +AR,77,415,408-3610,no,yes,23,209.700000,73,35.650000,183.600000,63,15.610000,205.500000,111,9.250000,7.100000,3,1.920000,2,False. +NV,144,415,375-8238,yes,no,0,150.000000,69,25.500000,285.900000,73,24.300000,190.600000,121,8.580000,9.400000,15,2.540000,0,False. +AL,91,510,378-5633,no,yes,23,232.400000,97,39.510000,186.000000,88,15.810000,190.500000,128,8.570000,12.300000,3,3.320000,3,False. +GA,58,408,389-9120,no,no,0,165.400000,100,28.120000,115.700000,87,9.830000,193.800000,118,8.720000,12.800000,5,3.460000,2,False. +AR,5,415,380-2758,no,no,0,199.200000,106,33.860000,187.300000,12,15.920000,214.000000,85,9.630000,13.300000,3,3.590000,3,False. +MA,97,408,402-2728,no,no,0,217.600000,81,36.990000,320.500000,51,27.240000,150.700000,110,6.780000,4.200000,3,1.130000,0,False. +NJ,107,415,354-9062,no,no,0,212.100000,95,36.060000,150.100000,88,12.760000,219.800000,111,9.890000,7.700000,2,2.080000,3,False. +MO,142,415,417-2054,no,yes,30,154.000000,75,26.180000,165.800000,97,14.090000,270.000000,83,12.150000,10.800000,5,2.920000,1,False. +NY,9,408,353-1941,no,yes,31,193.800000,130,32.950000,202.600000,98,17.220000,191.200000,102,8.600000,13.300000,2,3.590000,1,False. +AZ,73,415,328-1522,no,no,0,175.400000,130,29.820000,248.100000,105,21.090000,122.400000,85,5.510000,12.200000,4,3.290000,0,False. +NJ,48,510,408-4529,no,yes,22,152.000000,63,25.840000,258.800000,131,22.000000,263.200000,109,11.840000,15.700000,5,4.240000,2,True. +WV,43,408,417-5320,no,no,0,230.200000,147,39.130000,186.700000,121,15.870000,128.400000,100,5.780000,9.200000,3,2.480000,0,False. +NM,122,408,370-9755,no,yes,33,174.900000,103,29.730000,248.200000,105,21.100000,164.600000,116,7.410000,13.500000,3,3.650000,1,True. +SC,93,415,372-4835,no,no,0,190.200000,68,32.330000,262.200000,64,22.290000,130.000000,92,5.850000,8.800000,4,2.380000,0,False. +VT,85,415,334-6605,no,no,0,176.400000,122,29.990000,224.900000,123,19.120000,219.600000,50,9.880000,11.500000,1,3.110000,1,False. +TN,59,415,399-5564,no,no,0,160.900000,95,27.350000,251.200000,65,21.350000,273.400000,97,12.300000,5.000000,5,1.350000,3,False. +LA,87,415,392-2887,no,no,0,228.700000,90,38.880000,163.000000,99,13.860000,154.100000,90,6.930000,11.800000,3,3.190000,1,False. +OH,137,408,328-2110,no,no,0,144.000000,90,24.480000,181.600000,100,15.440000,128.100000,93,5.760000,12.300000,2,3.320000,0,False. +OR,21,510,383-5976,no,yes,31,135.900000,90,23.100000,271.000000,84,23.040000,179.100000,89,8.060000,9.500000,7,2.570000,6,False. +DE,129,510,332-6181,no,no,0,334.300000,118,56.830000,192.100000,104,16.330000,191.000000,83,8.590000,10.400000,6,2.810000,0,True. +KY,104,415,330-5255,no,no,0,130.500000,77,22.190000,131.200000,117,11.150000,264.700000,63,11.910000,13.000000,6,3.510000,0,False. +GA,93,408,413-5190,no,yes,21,134.200000,105,22.810000,162.500000,128,13.810000,186.600000,90,8.400000,11.800000,2,3.190000,4,True. +VT,63,415,394-7447,no,no,0,278.000000,102,47.260000,266.400000,114,22.640000,224.100000,118,10.080000,13.100000,4,3.540000,4,True. +OR,161,415,353-7096,no,no,0,105.400000,70,17.920000,214.800000,122,18.260000,223.600000,126,10.060000,7.800000,5,2.110000,0,False. +TX,50,510,395-6002,no,no,0,188.900000,94,32.110000,203.900000,104,17.330000,151.800000,124,6.830000,11.600000,8,3.130000,3,False. +MO,103,408,372-9816,no,yes,24,111.800000,85,19.010000,239.600000,102,20.370000,268.300000,81,12.070000,6.900000,4,1.860000,1,False. +ND,84,415,400-7253,no,yes,33,159.100000,106,27.050000,149.800000,101,12.730000,213.400000,108,9.600000,13.000000,18,3.510000,1,False. +MN,92,510,344-7470,no,no,0,212.400000,105,36.110000,224.600000,118,19.090000,221.300000,105,9.960000,9.000000,4,2.430000,1,False. +NV,77,415,378-8572,no,no,0,142.300000,112,24.190000,306.300000,111,26.040000,196.500000,82,8.840000,9.900000,1,2.670000,1,False. +NY,64,415,345-9140,yes,no,0,346.800000,55,58.960000,249.500000,79,21.210000,275.400000,102,12.390000,13.300000,9,3.590000,1,True. +FL,159,415,340-5460,no,yes,15,113.900000,102,19.360000,145.300000,146,12.350000,195.200000,137,8.780000,11.800000,9,3.190000,1,False. +KS,110,415,369-8024,yes,yes,27,267.900000,103,45.540000,263.300000,74,22.380000,178.100000,106,8.010000,8.300000,2,2.240000,1,True. +NV,138,510,395-8595,no,no,0,171.400000,117,29.140000,115.200000,128,9.790000,224.500000,115,10.100000,17.000000,4,4.590000,3,False. +NV,178,408,359-4587,no,no,0,275.400000,150,46.820000,187.500000,62,15.940000,147.100000,126,6.620000,13.600000,3,3.670000,1,False. +SC,38,415,375-5439,no,yes,31,197.200000,118,33.520000,249.900000,70,21.240000,298.900000,104,13.450000,3.900000,2,1.050000,0,False. +MI,50,415,361-3779,no,yes,35,192.600000,97,32.740000,135.200000,101,11.490000,216.200000,101,9.730000,7.900000,2,2.130000,2,False. +MI,45,510,375-8934,no,yes,26,91.700000,104,15.590000,150.600000,119,12.800000,63.300000,103,2.850000,7.700000,5,2.080000,1,False. +TN,70,510,395-4757,no,no,0,126.300000,99,21.470000,141.600000,106,12.040000,255.900000,96,11.520000,9.600000,2,2.590000,0,False. +NY,147,510,421-7205,no,yes,33,251.500000,107,42.760000,234.100000,110,19.900000,213.400000,87,9.600000,10.400000,6,2.810000,3,False. +NV,94,510,379-8805,no,no,0,190.600000,108,32.400000,152.300000,95,12.950000,144.700000,97,6.510000,7.500000,5,2.030000,1,False. +IL,179,510,348-2150,no,no,0,116.100000,101,19.740000,201.800000,99,17.150000,181.900000,103,8.190000,11.600000,5,3.130000,0,False. +MS,116,415,417-9128,no,no,0,217.300000,91,36.940000,216.100000,95,18.370000,148.100000,76,6.660000,11.300000,3,3.050000,2,False. +ND,59,510,351-4226,no,no,0,179.400000,80,30.500000,232.500000,99,19.760000,175.800000,105,7.910000,14.700000,3,3.970000,0,False. +NC,165,415,330-6630,no,no,0,207.700000,109,35.310000,164.800000,94,14.010000,54.500000,91,2.450000,7.900000,3,2.130000,0,False. +MI,133,408,387-9137,no,no,0,277.300000,138,47.140000,228.400000,117,19.410000,117.300000,103,5.280000,12.800000,4,3.460000,2,True. +TN,140,415,372-3987,no,no,0,125.300000,84,21.300000,167.600000,121,14.250000,260.600000,94,11.730000,8.400000,4,2.270000,1,False. +VT,93,408,408-5183,no,yes,32,138.100000,91,23.480000,167.300000,72,14.220000,238.900000,115,10.750000,6.800000,3,1.840000,2,False. +OK,52,510,412-9357,no,yes,38,169.300000,88,28.780000,225.900000,97,19.200000,172.000000,86,7.740000,8.200000,3,2.210000,0,False. +DE,64,415,402-3599,no,yes,27,201.300000,101,34.220000,143.800000,89,12.220000,150.200000,127,6.760000,12.300000,3,3.320000,1,False. +ND,12,510,379-5211,yes,no,0,216.700000,117,36.840000,116.500000,126,9.900000,220.000000,110,9.900000,9.800000,4,2.650000,2,False. +OR,48,415,405-9217,no,no,0,190.400000,92,32.370000,317.500000,85,26.990000,133.400000,113,6.000000,8.300000,4,2.240000,2,False. +NY,181,408,340-9200,no,no,0,143.300000,91,24.360000,195.500000,58,16.620000,223.300000,95,10.050000,6.000000,7,1.620000,1,False. +MO,168,415,339-9026,no,yes,42,97.400000,57,16.560000,203.600000,98,17.310000,173.900000,124,7.830000,11.400000,2,3.080000,2,False. +FL,155,415,343-4772,no,no,0,181.400000,111,30.840000,167.700000,92,14.250000,168.500000,122,7.580000,11.300000,3,3.050000,3,False. +ND,105,510,345-2108,no,no,0,246.400000,83,41.890000,256.200000,101,21.780000,169.000000,151,7.610000,3.800000,4,1.030000,0,False. +NY,11,415,401-4650,no,no,0,143.400000,130,24.380000,289.400000,50,24.600000,194.000000,100,8.730000,9.700000,6,2.620000,2,False. +ND,182,415,400-3945,no,no,0,104.900000,111,17.830000,198.500000,120,16.870000,258.200000,91,11.620000,8.000000,5,2.160000,2,False. +NY,104,415,338-3781,no,no,0,156.200000,93,26.550000,193.000000,54,16.410000,222.700000,94,10.020000,13.100000,5,3.540000,1,False. +OH,102,415,342-6316,no,no,0,114.800000,125,19.520000,81.900000,126,6.960000,304.300000,101,13.690000,12.000000,4,3.240000,0,False. +AL,122,415,336-5920,no,no,0,232.500000,96,39.530000,205.500000,120,17.470000,213.700000,91,9.620000,11.900000,2,3.210000,0,False. +SC,41,415,332-1060,no,no,0,143.600000,117,24.410000,152.400000,108,12.950000,194.400000,110,8.750000,8.600000,3,2.320000,1,False. +GA,132,415,418-3426,no,no,0,176.700000,132,30.040000,244.100000,80,20.750000,176.300000,120,7.930000,9.100000,4,2.460000,2,False. +WY,76,415,408-6326,no,no,0,263.400000,148,44.780000,230.300000,69,19.580000,170.600000,101,7.680000,11.400000,5,3.080000,1,True. +WV,13,415,334-6142,no,no,0,146.400000,74,24.890000,148.500000,92,12.620000,216.700000,96,9.750000,11.300000,3,3.050000,1,False. +HI,115,415,336-6128,no,yes,33,145.000000,72,24.650000,194.500000,157,16.530000,242.300000,138,10.900000,14.200000,3,3.830000,2,False. +WV,67,408,406-6708,no,no,0,167.800000,91,28.530000,167.700000,69,14.250000,110.300000,71,4.960000,8.400000,12,2.270000,1,False. +LA,154,510,388-8670,no,no,0,166.900000,99,28.370000,154.900000,97,13.170000,189.400000,89,8.520000,7.200000,5,1.940000,0,False. +AR,100,510,363-5853,no,no,0,142.500000,87,24.230000,195.700000,88,16.630000,122.100000,117,5.490000,7.800000,8,2.110000,2,False. +AK,146,510,383-6544,yes,no,0,133.000000,65,22.610000,262.800000,93,22.340000,214.300000,128,9.640000,11.200000,3,3.020000,1,False. +DC,148,415,378-2940,no,yes,11,252.900000,129,42.990000,284.300000,88,24.170000,262.800000,99,11.830000,12.300000,1,3.320000,1,False. +AL,67,415,338-7683,no,yes,28,95.000000,94,16.150000,291.200000,73,24.750000,159.600000,114,7.180000,10.000000,2,2.700000,2,False. +UT,161,510,329-2786,yes,no,0,194.200000,106,33.010000,249.400000,105,21.200000,254.900000,129,11.470000,12.900000,1,3.480000,1,True. +KS,70,415,369-9465,no,no,0,222.800000,114,37.880000,215.900000,113,18.350000,223.500000,122,10.060000,0.000000,0,0.000000,1,False. +MN,116,510,337-3769,no,no,0,201.800000,82,34.310000,231.500000,95,19.680000,226.100000,130,10.170000,16.500000,5,4.460000,0,False. +VA,99,415,400-6257,no,yes,42,216.000000,125,36.720000,232.300000,104,19.750000,215.500000,100,9.700000,9.300000,4,2.510000,2,True. +UT,87,415,411-6663,no,no,0,146.300000,108,24.870000,171.800000,102,14.600000,167.500000,66,7.540000,5.300000,9,1.430000,1,False. +IN,87,510,384-3101,no,no,0,234.800000,85,39.920000,140.900000,91,11.980000,204.300000,93,9.190000,9.500000,5,2.570000,1,False. +CT,70,408,339-5329,no,no,0,198.600000,111,33.760000,213.900000,115,18.180000,171.200000,105,7.700000,10.600000,6,2.860000,2,False. +DE,131,408,388-9944,no,no,0,94.400000,80,16.050000,215.100000,101,18.280000,179.700000,108,8.090000,13.100000,9,3.540000,2,False. +VT,119,510,403-1769,no,no,0,190.400000,74,32.370000,215.600000,113,18.330000,161.200000,111,7.250000,10.000000,1,2.700000,2,False. +MO,119,408,390-1612,no,yes,32,142.600000,77,24.240000,208.200000,126,17.700000,171.000000,102,7.690000,12.000000,2,3.240000,3,False. +RI,87,510,421-7214,yes,no,0,134.200000,80,22.810000,165.000000,71,14.030000,173.100000,102,7.790000,10.700000,5,2.890000,0,False. +CA,112,415,338-6962,no,no,0,111.900000,92,19.020000,114.000000,143,9.690000,146.800000,79,6.610000,14.100000,3,3.810000,5,True. +RI,75,415,333-9826,no,no,0,122.800000,89,20.880000,211.300000,104,17.960000,261.400000,91,11.760000,10.700000,2,2.890000,2,False. +CT,150,510,411-8549,no,no,0,189.300000,77,32.180000,220.900000,105,18.780000,238.700000,117,10.740000,9.200000,5,2.480000,4,False. +IN,161,510,381-9234,no,yes,38,240.400000,112,40.870000,201.800000,102,17.150000,206.100000,112,9.270000,16.100000,6,4.350000,0,False. +FL,91,510,387-9855,yes,yes,24,93.500000,112,15.900000,183.400000,128,15.590000,240.700000,133,10.830000,9.900000,3,2.670000,0,False. +KS,124,415,371-6990,no,no,0,158.600000,104,26.960000,211.200000,77,17.950000,179.300000,104,8.070000,10.200000,8,2.750000,3,False. +NY,94,510,417-3046,yes,no,0,243.200000,109,41.340000,147.000000,88,12.500000,94.900000,99,4.270000,7.200000,4,1.940000,4,False. +TX,217,408,385-7082,no,no,0,176.400000,115,29.990000,158.800000,128,13.500000,306.600000,107,13.800000,9.300000,3,2.510000,4,False. +RI,158,510,365-5886,no,no,0,220.900000,129,37.550000,242.200000,108,20.590000,233.300000,75,10.500000,6.400000,5,1.730000,0,False. +NV,102,415,373-5196,no,no,0,144.400000,87,24.550000,266.500000,128,22.650000,217.600000,59,9.790000,7.100000,7,1.920000,0,False. +UT,85,510,327-6194,no,no,0,212.300000,107,36.090000,228.400000,103,19.410000,163.300000,116,7.350000,7.700000,3,2.080000,0,False. +OK,79,510,381-4565,no,no,0,147.000000,72,24.990000,165.700000,102,14.080000,243.200000,107,10.940000,8.400000,9,2.270000,1,False. +MN,139,510,357-9832,no,yes,25,96.200000,112,16.350000,178.900000,70,15.210000,182.100000,84,8.190000,12.900000,10,3.480000,2,False. +NC,103,415,396-4845,no,no,0,263.400000,118,44.780000,179.100000,69,15.220000,214.700000,112,9.660000,10.300000,2,2.780000,0,False. +OR,98,415,378-6772,yes,no,0,12.500000,67,2.130000,256.600000,90,21.810000,169.400000,88,7.620000,7.700000,9,2.080000,1,False. +NH,78,408,353-4296,no,no,0,162.300000,116,27.590000,192.400000,86,16.350000,240.600000,100,10.830000,10.100000,3,2.730000,2,False. +AK,50,408,362-8331,no,no,0,183.600000,107,31.210000,58.600000,118,4.980000,202.600000,99,9.120000,8.700000,3,2.350000,1,False. +OR,161,415,362-4685,no,no,0,178.100000,109,30.280000,146.500000,86,12.450000,137.600000,78,6.190000,8.500000,2,2.300000,1,False. +KS,67,408,383-1431,no,no,0,201.400000,101,34.240000,97.600000,122,8.300000,202.500000,119,9.110000,7.000000,3,1.890000,0,False. +WV,86,415,332-2258,no,yes,38,123.000000,158,20.910000,133.900000,119,11.380000,138.200000,103,6.220000,13.300000,4,3.590000,1,False. +GA,92,510,375-8304,no,no,0,208.000000,125,35.360000,198.900000,76,16.910000,76.400000,97,3.440000,8.600000,6,2.320000,0,False. +NM,174,415,340-5580,no,no,0,239.200000,72,40.660000,188.500000,124,16.020000,105.600000,116,4.750000,8.800000,3,2.380000,1,False. +OH,124,510,362-1490,no,no,0,193.000000,97,32.810000,89.800000,99,7.630000,172.800000,104,7.780000,15.300000,3,4.130000,1,False. +ND,132,415,336-4281,no,yes,31,174.500000,101,29.670000,245.600000,105,20.880000,172.800000,76,7.780000,10.300000,9,2.780000,1,False. +RI,190,415,361-1315,no,yes,26,116.700000,71,19.840000,145.900000,88,12.400000,175.100000,103,7.880000,9.900000,3,2.670000,1,False. +HI,101,510,342-5906,no,no,0,93.800000,127,15.950000,150.000000,104,12.750000,241.100000,116,10.850000,10.700000,2,2.890000,1,False. +WY,185,415,405-7904,yes,yes,30,154.100000,114,26.200000,118.700000,106,10.090000,258.400000,105,11.630000,12.900000,3,3.480000,2,False. +NY,68,415,349-4762,no,yes,29,239.500000,82,40.720000,203.800000,105,17.320000,167.800000,70,7.550000,9.900000,6,2.670000,0,False. +KS,117,510,385-3263,no,yes,25,216.000000,140,36.720000,224.100000,69,19.050000,267.900000,112,12.060000,11.800000,4,3.190000,0,False. +LA,118,408,405-9496,no,no,0,187.400000,97,31.860000,177.800000,89,15.110000,233.400000,97,10.500000,12.200000,6,3.290000,1,False. +PA,124,415,396-6775,no,no,0,167.400000,119,28.460000,233.200000,143,19.820000,109.600000,115,4.930000,10.300000,5,2.780000,0,False. +NV,22,510,393-6475,no,no,0,160.400000,108,27.270000,218.100000,88,18.540000,192.900000,115,8.680000,12.500000,4,3.380000,1,False. +MN,75,415,379-7779,no,no,0,143.200000,92,24.340000,209.100000,142,17.770000,173.000000,96,7.790000,11.900000,9,3.210000,1,False. +PA,134,408,408-8650,no,no,0,205.300000,122,34.900000,240.500000,155,20.440000,179.100000,107,8.060000,5.000000,9,1.350000,1,False. +MO,164,408,400-3497,no,yes,25,219.100000,88,37.250000,151.500000,99,12.880000,50.100000,60,2.250000,14.300000,6,3.860000,1,False. +NY,44,510,407-9244,no,no,0,143.200000,77,24.340000,169.800000,114,14.430000,215.800000,77,9.710000,7.600000,4,2.050000,1,False. +ME,177,415,406-8809,no,no,0,232.800000,106,39.580000,175.200000,97,14.890000,212.200000,77,9.550000,12.500000,7,3.380000,2,False. +NH,110,408,358-1778,no,no,0,162.000000,81,27.540000,247.500000,89,21.040000,155.500000,99,7.000000,8.900000,8,2.400000,0,False. +WY,53,415,337-4339,no,yes,27,25.900000,119,4.400000,206.500000,96,17.550000,228.100000,64,10.260000,6.500000,7,1.760000,1,False. +NY,108,415,344-7197,no,no,0,154.200000,123,26.210000,112.300000,86,9.550000,246.400000,75,11.090000,15.400000,4,4.160000,4,True. +ME,80,408,333-7631,no,no,0,322.300000,113,54.790000,222.000000,95,18.870000,162.800000,123,7.330000,6.700000,8,1.810000,0,True. +MN,158,408,372-6623,no,no,0,209.900000,112,35.680000,221.300000,82,18.810000,210.000000,93,9.450000,8.200000,3,2.210000,1,False. +OH,114,415,363-2602,no,no,0,191.500000,88,32.560000,175.200000,78,14.890000,220.300000,118,9.910000,0.000000,0,0.000000,0,False. +NC,64,408,387-7757,no,yes,19,291.100000,150,49.490000,226.700000,123,19.270000,219.100000,67,9.860000,7.500000,2,2.030000,1,False. +SD,88,415,397-5381,no,no,0,215.600000,115,36.650000,216.200000,85,18.380000,171.300000,65,7.710000,11.800000,1,3.190000,3,False. +UT,82,510,406-4604,yes,no,0,208.800000,101,35.500000,213.700000,87,18.160000,175.100000,86,7.880000,12.400000,6,3.350000,3,False. +KY,111,415,376-9513,no,no,0,255.900000,97,43.500000,204.100000,129,17.350000,171.300000,84,7.710000,12.300000,5,3.320000,3,False. +MT,60,408,360-1852,no,no,0,252.700000,97,42.960000,221.100000,121,18.790000,109.900000,100,4.950000,12.400000,4,3.350000,2,False. +NJ,113,408,421-7270,no,no,0,132.100000,72,22.460000,247.500000,107,21.040000,246.200000,123,11.080000,6.900000,6,1.860000,3,False. +FL,109,408,371-9482,no,no,0,217.000000,115,36.890000,207.000000,142,17.600000,268.000000,106,12.060000,8.200000,4,2.210000,1,False. +IN,105,510,337-4101,no,yes,42,101.900000,79,17.320000,223.100000,97,18.960000,241.600000,77,10.870000,12.900000,2,3.480000,0,False. +DE,85,510,420-2796,no,no,0,211.500000,100,35.960000,184.600000,88,15.690000,164.300000,131,7.390000,13.300000,4,3.590000,2,False. +AL,131,510,366-4225,no,no,0,153.400000,86,26.080000,198.500000,81,16.870000,164.400000,83,7.400000,10.400000,3,2.810000,0,False. +ME,59,510,398-4567,no,no,0,166.300000,95,28.270000,239.300000,87,20.340000,123.200000,108,5.540000,10.000000,3,2.700000,2,False. +SD,148,408,388-4571,no,no,0,185.200000,87,31.480000,170.400000,96,14.480000,165.100000,104,7.430000,9.500000,13,2.570000,1,False. +VA,210,408,360-8666,no,no,0,104.600000,121,17.780000,149.500000,71,12.710000,255.100000,67,11.480000,6.500000,8,1.760000,2,False. +AK,115,415,333-3704,no,no,0,245.200000,105,41.680000,159.000000,109,13.520000,229.900000,74,10.350000,7.200000,8,1.940000,0,False. +ID,106,510,383-2566,no,no,0,274.400000,120,46.650000,198.600000,82,16.880000,160.800000,62,7.240000,6.000000,3,1.620000,1,False. +RI,93,415,406-5584,no,no,0,98.400000,78,16.730000,249.600000,129,21.220000,248.200000,114,11.170000,14.200000,4,3.830000,1,False. +KY,57,415,344-4691,no,yes,29,279.900000,121,47.580000,223.100000,109,18.960000,251.700000,94,11.330000,13.000000,2,3.510000,1,False. +ND,98,510,347-9737,no,no,0,187.200000,127,31.820000,195.600000,88,16.630000,181.800000,129,8.180000,5.100000,4,1.380000,1,False. +HI,157,415,333-7961,no,no,0,276.200000,95,46.950000,165.800000,119,14.090000,151.600000,79,6.820000,2.200000,4,0.590000,3,False. +WI,116,415,364-2439,no,yes,35,200.400000,104,34.070000,272.800000,89,23.190000,214.500000,100,9.650000,8.300000,4,2.240000,1,False. +WV,30,510,411-8043,no,no,0,162.300000,96,27.590000,244.000000,122,20.740000,180.100000,89,8.100000,9.100000,4,2.460000,2,False. +NJ,111,510,332-5084,no,no,0,176.900000,128,30.070000,102.800000,56,8.740000,213.700000,84,9.620000,10.500000,2,2.840000,4,True. +KS,52,415,413-4831,no,no,0,165.500000,78,28.140000,205.500000,89,17.470000,213.600000,124,9.610000,12.200000,6,3.290000,0,False. +AL,72,415,343-4806,no,no,0,217.800000,93,37.030000,189.700000,113,16.120000,182.600000,91,8.220000,10.400000,5,2.810000,4,False. +NJ,135,510,401-8735,no,yes,28,201.400000,100,34.240000,246.500000,117,20.950000,154.800000,131,6.970000,12.900000,4,3.480000,2,True. +NC,86,510,391-8626,no,no,0,190.500000,115,32.390000,179.600000,130,15.270000,258.500000,89,11.630000,10.100000,5,2.730000,3,False. +DE,98,415,327-5817,no,yes,29,179.900000,97,30.580000,189.200000,89,16.080000,164.300000,76,7.390000,12.800000,7,3.460000,3,False. +WY,151,510,381-4712,no,no,0,235.900000,104,40.100000,80.600000,91,6.850000,212.800000,116,9.580000,5.800000,2,1.570000,3,False. +ID,118,415,335-3320,no,no,0,140.400000,112,23.870000,187.100000,60,15.900000,207.900000,155,9.360000,7.900000,1,2.130000,0,False. +NY,117,415,415-8780,no,no,0,144.600000,115,24.580000,258.800000,66,22.000000,253.200000,113,11.390000,7.400000,9,2.000000,2,False. +MO,55,510,362-1146,no,no,0,189.000000,100,32.130000,118.500000,99,10.070000,248.100000,87,11.160000,17.100000,6,4.620000,0,False. +ID,82,408,352-7413,no,no,0,101.000000,93,17.170000,155.600000,104,13.230000,304.400000,93,13.700000,13.300000,2,3.590000,0,False. +IA,152,415,387-6716,no,no,0,206.300000,98,35.070000,292.800000,82,24.890000,43.700000,121,1.970000,10.600000,4,2.860000,1,False. +TN,108,408,352-1127,no,yes,15,165.100000,85,28.070000,267.000000,93,22.700000,250.700000,114,11.280000,10.900000,4,2.940000,1,False. +OH,98,408,368-1288,no,no,0,165.000000,129,28.050000,202.600000,113,17.220000,172.300000,94,7.750000,12.500000,7,3.380000,1,True. +IL,130,415,403-5279,no,no,0,155.900000,95,26.500000,256.100000,97,21.770000,262.900000,103,11.830000,11.700000,3,3.160000,3,False. +FL,136,408,397-9333,yes,no,0,199.200000,122,33.860000,214.700000,114,18.250000,150.900000,105,6.790000,11.800000,7,3.190000,1,False. +MA,47,415,411-7353,no,no,0,155.300000,116,26.400000,188.200000,85,16.000000,247.000000,73,11.120000,12.300000,4,3.320000,3,False. +OK,189,415,383-2537,no,no,0,208.300000,106,35.410000,236.700000,123,20.120000,179.100000,120,8.060000,11.300000,5,3.050000,3,False. +KY,107,415,330-4419,no,no,0,157.100000,79,26.710000,162.600000,124,13.820000,150.000000,138,6.750000,12.100000,6,3.270000,1,False. +MI,91,415,390-7930,no,no,0,154.400000,165,26.250000,168.300000,121,14.310000,239.900000,81,10.800000,11.700000,4,3.160000,5,True. +NE,159,415,362-5111,no,no,0,189.100000,105,32.150000,246.100000,147,20.920000,242.000000,106,10.890000,10.400000,5,2.810000,1,True. +VA,11,408,358-6796,no,yes,24,131.500000,98,22.360000,230.200000,111,19.570000,283.700000,87,12.770000,10.000000,3,2.700000,2,False. +NY,167,415,409-7494,no,no,0,166.400000,85,28.290000,243.200000,135,20.670000,229.200000,95,10.310000,9.900000,5,2.670000,1,False. +MT,111,408,400-1636,no,no,0,142.300000,75,24.190000,122.800000,106,10.440000,229.500000,94,10.330000,12.800000,9,3.460000,2,False. +VT,99,408,389-2747,no,yes,19,87.700000,103,14.910000,223.000000,86,18.960000,182.300000,112,8.200000,7.300000,4,1.970000,2,False. +KS,159,415,415-2176,no,yes,19,184.100000,78,31.300000,194.500000,71,16.530000,225.600000,101,10.150000,16.900000,3,4.560000,0,False. +VA,114,415,377-8067,yes,yes,31,174.500000,104,29.670000,224.200000,92,19.060000,116.300000,91,5.230000,12.300000,10,3.320000,2,False. +AL,71,415,362-7835,no,no,0,103.300000,103,17.560000,138.500000,79,11.770000,164.800000,98,7.420000,9.000000,2,2.430000,2,False. +PA,122,415,361-5225,no,no,0,35.100000,62,5.970000,180.800000,89,15.370000,251.600000,58,11.320000,12.700000,2,3.430000,1,False. +AL,100,408,333-3447,no,yes,25,246.600000,94,41.920000,141.400000,112,12.020000,189.800000,109,8.540000,13.000000,5,3.510000,1,False. +WV,83,415,341-3044,no,yes,37,78.500000,109,13.350000,210.500000,101,17.890000,179.700000,102,8.090000,11.800000,4,3.190000,1,False. +NV,64,408,350-7306,no,no,0,148.100000,73,25.180000,164.900000,101,14.020000,216.000000,125,9.720000,12.300000,2,3.320000,5,True. +TN,105,408,353-8849,no,no,0,206.200000,84,35.050000,256.400000,138,21.790000,117.100000,91,5.270000,9.000000,3,2.430000,1,False. +ID,144,415,402-3476,no,yes,33,251.600000,87,42.770000,197.600000,118,16.800000,209.200000,97,9.410000,12.200000,3,3.290000,2,False. +WY,106,415,338-6018,yes,yes,26,270.300000,111,45.950000,215.200000,90,18.290000,254.000000,133,11.430000,14.400000,7,3.890000,1,True. +TX,19,510,409-3520,no,yes,34,156.600000,97,26.620000,224.200000,97,19.060000,260.900000,135,11.740000,11.300000,1,3.050000,1,False. +MA,46,408,357-1085,no,no,0,139.400000,81,23.700000,223.700000,113,19.010000,173.100000,77,7.790000,13.600000,6,3.670000,1,False. +IL,127,510,353-3285,no,no,0,220.200000,108,37.430000,188.400000,124,16.010000,172.700000,113,7.770000,11.700000,3,3.160000,2,False. +LA,9,415,409-9885,no,yes,39,214.100000,108,36.400000,169.200000,115,14.380000,189.700000,117,8.540000,10.100000,3,2.730000,1,False. +CO,157,415,388-7701,no,no,0,196.000000,74,33.320000,213.400000,96,18.140000,196.800000,81,8.860000,7.900000,6,2.130000,1,False. +UT,105,415,385-8184,no,no,0,106.400000,71,18.090000,240.100000,83,20.410000,147.700000,114,6.650000,5.300000,4,1.430000,6,True. +MI,105,415,345-2863,no,yes,29,179.400000,113,30.500000,275.400000,100,23.410000,246.100000,105,11.070000,10.000000,5,2.700000,0,False. +NH,155,408,353-6300,no,no,0,216.700000,30,36.840000,144.300000,125,12.270000,135.300000,106,6.090000,10.800000,1,2.920000,2,False. +ID,31,415,389-5649,no,no,0,177.300000,129,30.140000,152.800000,105,12.990000,162.900000,92,7.330000,5.100000,2,1.380000,0,False. +WA,161,415,378-8137,no,no,0,151.600000,117,25.770000,219.400000,87,18.650000,224.700000,68,10.110000,4.000000,5,1.080000,1,False. +MN,95,408,340-4627,no,yes,32,262.200000,123,44.570000,165.200000,82,14.040000,194.300000,57,8.740000,10.600000,5,2.860000,0,False. +NY,122,415,352-6833,no,no,0,173.600000,110,29.510000,91.700000,84,7.790000,211.700000,103,9.530000,9.700000,7,2.620000,3,False. +MD,37,415,420-2000,yes,no,0,106.600000,76,18.120000,147.400000,89,12.530000,235.800000,113,10.610000,9.600000,8,2.590000,2,False. +GA,132,415,368-5437,no,no,0,193.300000,106,32.860000,128.300000,94,10.910000,162.100000,119,7.290000,11.600000,4,3.130000,5,True. +HI,119,408,418-8170,no,yes,24,217.200000,94,36.920000,138.700000,52,11.790000,139.300000,85,6.270000,11.300000,4,3.050000,0,False. +AL,16,408,403-9417,no,no,0,209.500000,89,35.620000,172.800000,85,14.690000,94.100000,102,4.230000,8.800000,4,2.380000,1,False. +CT,99,408,330-6165,no,no,0,95.400000,105,16.220000,207.200000,101,17.610000,136.000000,117,6.120000,5.600000,5,1.510000,1,False. +CO,76,408,412-4185,no,yes,26,214.600000,110,36.480000,205.200000,87,17.440000,134.600000,140,6.060000,8.100000,2,2.190000,1,False. +KS,167,415,409-4734,no,no,0,131.600000,120,22.370000,211.300000,96,17.960000,168.300000,97,7.570000,11.100000,4,3.000000,4,True. +NJ,129,415,348-9828,no,no,0,168.400000,117,28.630000,217.100000,129,18.450000,81.600000,100,3.670000,11.800000,7,3.190000,1,False. +FL,116,408,418-8850,no,no,0,146.400000,123,24.890000,176.600000,113,15.010000,212.600000,102,9.570000,7.800000,5,2.110000,1,False. +CA,60,415,330-8351,yes,no,0,183.000000,110,31.110000,206.700000,93,17.570000,203.800000,119,9.170000,11.100000,6,3.000000,1,False. +KS,128,415,347-7773,no,no,0,103.300000,122,17.560000,245.900000,123,20.900000,161.100000,95,7.250000,6.400000,7,1.730000,0,False. +TX,47,408,392-6841,no,yes,28,112.200000,70,19.070000,154.800000,106,13.160000,166.700000,105,7.500000,10.600000,2,2.860000,0,False. +MN,40,510,354-2189,yes,no,0,170.700000,55,29.020000,179.100000,108,15.220000,281.900000,89,12.690000,8.200000,9,2.210000,3,False. +AK,173,510,349-9060,no,no,0,172.500000,78,29.330000,142.600000,91,12.120000,102.000000,63,4.590000,10.900000,2,2.940000,0,False. +OR,157,510,334-1311,no,yes,30,194.300000,107,33.030000,243.200000,108,20.670000,322.200000,114,14.500000,7.100000,5,1.920000,1,False. +MS,66,408,415-3120,no,yes,32,187.800000,117,31.930000,129.800000,90,11.030000,132.300000,113,5.950000,12.000000,3,3.240000,2,False. +VT,50,415,387-5891,yes,yes,26,307.100000,94,52.210000,289.400000,78,24.600000,174.900000,109,7.870000,8.000000,3,2.160000,0,False. +UT,72,415,368-8026,no,no,0,118.200000,106,20.090000,167.200000,136,14.210000,214.200000,106,9.640000,12.200000,3,3.290000,3,False. +KS,130,510,332-9446,no,no,0,154.000000,95,26.180000,205.900000,106,17.500000,233.700000,75,10.520000,12.900000,1,3.480000,1,False. +NV,143,408,393-5284,no,no,0,155.500000,101,26.440000,213.400000,89,18.140000,237.900000,61,10.710000,7.600000,11,2.050000,1,False. +DE,89,510,376-1677,yes,no,0,125.600000,108,21.350000,213.000000,90,18.110000,181.700000,108,8.180000,5.400000,5,1.460000,1,False. +IN,108,415,392-2268,no,no,0,199.300000,104,33.880000,224.200000,92,19.060000,140.100000,57,6.300000,15.200000,2,4.100000,0,False. +TX,32,408,396-4311,no,no,0,157.900000,88,26.840000,180.800000,132,15.370000,132.500000,102,5.960000,12.800000,3,3.460000,1,False. +MA,166,415,363-4005,no,no,0,203.400000,81,34.580000,167.700000,110,14.250000,132.000000,124,5.940000,9.200000,5,2.480000,2,False. +VT,109,408,344-9966,no,no,0,222.200000,113,37.770000,218.500000,122,18.570000,266.000000,88,11.970000,10.900000,5,2.940000,1,False. +CA,72,408,337-7377,no,yes,39,92.800000,98,15.780000,271.200000,115,23.050000,167.100000,83,7.520000,5.800000,7,1.570000,1,False. +IA,134,415,373-7037,no,yes,32,216.800000,78,36.860000,102.200000,111,8.690000,174.000000,83,7.830000,8.600000,2,2.320000,0,False. +NH,13,415,356-7580,no,no,0,193.200000,89,32.840000,194.400000,90,16.520000,186.500000,104,8.390000,9.700000,2,2.620000,4,False. +GA,90,415,390-3401,no,no,0,113.200000,108,19.240000,189.300000,63,16.090000,271.800000,124,12.230000,14.100000,4,3.810000,3,False. +WI,111,415,350-9313,no,yes,36,166.200000,54,28.250000,238.800000,109,20.300000,108.800000,92,4.900000,11.200000,2,3.020000,3,False. +CO,101,408,420-9009,no,yes,23,262.200000,101,44.570000,157.000000,80,13.350000,129.100000,100,5.810000,7.300000,14,1.970000,1,False. +SC,72,415,415-2641,no,no,0,207.800000,92,35.330000,195.700000,110,16.630000,184.800000,124,8.320000,13.100000,4,3.540000,0,False. +MI,67,510,392-4929,no,yes,35,245.400000,89,41.720000,148.200000,102,12.600000,274.000000,136,12.330000,7.500000,6,2.030000,1,False. +MD,172,408,346-5068,no,no,0,287.100000,108,48.810000,178.400000,125,15.160000,153.200000,98,6.890000,14.400000,2,3.890000,3,True. +IN,154,510,389-2631,no,yes,32,192.300000,82,32.690000,165.300000,134,14.050000,205.000000,74,9.230000,9.000000,1,2.430000,2,False. +ME,69,510,368-3808,no,no,0,194.200000,122,33.010000,242.100000,81,20.580000,215.800000,80,9.710000,9.700000,3,2.620000,2,False. +DC,123,415,406-8599,no,no,0,211.000000,92,35.870000,217.000000,102,18.450000,214.800000,104,9.670000,9.800000,7,2.650000,3,False. +TN,130,415,386-7456,no,yes,12,141.900000,92,24.120000,228.900000,102,19.460000,195.100000,101,8.780000,8.700000,5,2.350000,0,False. +FL,142,415,357-4936,no,yes,26,220.500000,94,37.490000,239.500000,126,20.360000,254.300000,109,11.440000,5.900000,9,1.590000,2,False. +WA,29,415,397-7411,no,no,0,157.400000,122,26.760000,145.000000,75,12.330000,281.800000,92,12.680000,9.300000,2,2.510000,1,False. +HI,87,408,353-6218,no,yes,28,143.500000,106,24.400000,223.500000,147,19.000000,175.400000,69,7.890000,11.200000,5,3.020000,0,False. +NE,149,415,369-5942,no,no,0,156.000000,56,26.520000,56.000000,116,4.760000,163.300000,104,7.350000,8.900000,8,2.400000,0,False. +TN,146,408,416-8543,yes,no,0,160.100000,63,27.220000,208.400000,112,17.710000,177.600000,98,7.990000,9.200000,3,2.480000,2,False. +MD,88,415,358-4576,yes,no,0,235.100000,98,39.970000,251.800000,79,21.400000,285.900000,76,12.870000,7.200000,2,1.940000,4,True. +NM,119,415,352-5118,yes,yes,15,160.000000,95,27.200000,209.500000,110,17.810000,82.300000,107,3.700000,8.700000,5,2.350000,5,True. +VT,48,510,408-2621,no,no,0,188.400000,63,32.030000,165.900000,89,14.100000,205.700000,71,9.260000,13.200000,2,3.560000,1,False. +OR,135,415,353-3994,no,no,0,194.800000,97,33.120000,235.300000,118,20.000000,174.400000,126,7.850000,11.000000,3,2.970000,1,False. +IN,100,510,367-4277,no,no,0,247.800000,117,42.130000,130.000000,95,11.050000,134.300000,125,6.040000,6.900000,2,1.860000,1,False. +MO,98,415,354-3237,no,no,0,221.200000,80,37.600000,213.600000,104,18.160000,291.800000,89,13.130000,11.900000,3,3.210000,4,False. +FL,75,510,394-8504,no,yes,26,118.500000,86,20.150000,213.900000,118,18.180000,132.600000,99,5.970000,13.400000,3,3.620000,2,False. +DC,180,415,370-4139,no,yes,33,231.800000,78,39.410000,232.900000,79,19.800000,206.900000,121,9.310000,7.600000,4,2.050000,1,False. +VT,100,415,382-6135,no,yes,25,215.900000,90,36.700000,257.900000,92,21.920000,180.200000,157,8.110000,11.600000,4,3.130000,1,False. +OH,119,415,359-5718,no,yes,35,217.100000,92,36.910000,220.800000,134,18.770000,249.500000,93,11.230000,8.000000,5,2.160000,2,False. +MO,86,415,385-3111,no,no,0,83.500000,96,14.200000,221.100000,63,18.790000,349.700000,75,15.740000,12.600000,3,3.400000,0,False. +LA,155,408,353-4880,no,yes,39,183.300000,106,31.160000,205.100000,101,17.430000,263.700000,90,11.870000,5.100000,7,1.380000,1,False. +IL,78,415,343-7019,yes,no,0,236.800000,141,40.260000,265.300000,101,22.550000,152.400000,77,6.860000,9.500000,2,2.570000,1,True. +NJ,153,415,419-6133,no,no,0,193.800000,90,32.950000,195.300000,121,16.600000,182.700000,108,8.220000,8.500000,3,2.300000,1,False. +IA,92,510,350-7344,no,yes,25,134.000000,112,22.780000,206.000000,111,17.510000,180.600000,118,8.130000,9.700000,4,2.620000,0,False. +WA,13,510,397-6064,no,yes,25,176.600000,65,30.020000,172.700000,96,14.680000,104.500000,128,4.700000,11.300000,5,3.050000,2,False. +NE,154,415,363-6896,no,no,0,191.400000,93,32.540000,205.400000,119,17.460000,205.700000,121,9.260000,10.200000,3,2.750000,3,False. +CT,144,510,416-9021,yes,yes,35,174.800000,127,29.720000,219.600000,93,18.670000,255.800000,90,11.510000,12.800000,3,3.460000,0,False. +WV,48,408,408-3269,no,no,0,275.200000,67,46.780000,180.200000,108,15.320000,159.000000,110,7.150000,7.900000,2,2.130000,1,False. +ND,94,408,408-9463,no,no,0,174.000000,85,29.580000,241.100000,114,20.490000,207.800000,94,9.350000,7.900000,1,2.130000,1,False. +UT,139,415,340-7062,no,no,0,165.000000,132,28.050000,249.700000,86,21.220000,170.300000,128,7.660000,12.600000,8,3.400000,1,False. +MS,126,415,417-4309,no,no,0,228.700000,102,38.880000,168.700000,99,14.340000,223.500000,100,10.060000,11.800000,4,3.190000,1,False. +MN,122,415,421-2659,no,no,0,107.900000,88,18.340000,235.800000,109,20.040000,228.600000,119,10.290000,9.500000,3,2.570000,2,False. +NH,139,510,383-2017,no,no,0,221.300000,140,37.620000,157.800000,89,13.410000,192.500000,89,8.660000,11.300000,6,3.050000,1,False. +LA,95,415,411-6294,no,no,0,141.100000,84,23.990000,211.400000,108,17.970000,103.700000,127,4.670000,5.900000,6,1.590000,3,False. +ME,80,408,332-9525,no,yes,31,166.400000,92,28.290000,238.300000,74,20.260000,150.700000,84,6.780000,10.700000,4,2.890000,4,False. +KS,131,415,401-5012,no,yes,28,249.600000,87,42.430000,227.200000,138,19.310000,239.900000,92,10.800000,7.600000,3,2.050000,3,False. +KS,36,510,368-8835,no,no,0,178.600000,83,30.360000,213.100000,103,18.110000,198.000000,119,8.910000,10.900000,5,2.940000,1,False. +NV,180,510,351-1382,no,no,0,139.000000,96,23.630000,224.900000,64,19.120000,170.800000,118,7.690000,15.700000,5,4.240000,2,False. +MT,25,415,359-7694,no,no,0,134.300000,98,22.830000,202.300000,109,17.200000,195.900000,100,8.820000,12.600000,5,3.400000,2,False. +MT,113,415,419-5505,no,no,0,215.900000,93,36.700000,240.100000,85,20.410000,156.700000,123,7.050000,4.900000,5,1.320000,3,False. +ID,88,415,341-4570,no,yes,31,181.600000,91,30.870000,213.200000,120,18.120000,207.800000,104,9.350000,11.400000,4,3.080000,1,False. +AK,120,415,366-6991,no,no,0,178.400000,97,30.330000,168.300000,113,14.310000,120.500000,93,5.420000,9.300000,9,2.510000,1,False. +UT,74,415,377-7399,no,no,0,106.400000,84,18.090000,140.200000,104,11.920000,90.900000,81,4.090000,11.400000,3,3.080000,1,False. +AR,109,510,377-9092,no,no,0,170.700000,101,29.020000,240.200000,82,20.420000,119.000000,112,5.360000,11.400000,4,3.080000,2,False. +LA,162,510,373-6681,no,yes,33,184.500000,139,31.370000,183.200000,78,15.570000,127.400000,106,5.730000,12.300000,6,3.320000,0,False. +KS,124,510,417-7736,no,yes,37,161.200000,109,27.400000,204.200000,79,17.360000,231.500000,87,10.420000,8.900000,4,2.400000,1,False. +OR,177,408,393-2812,no,no,0,84.900000,77,14.430000,257.500000,109,21.890000,210.500000,66,9.470000,7.500000,5,2.030000,2,False. +WI,91,510,398-3176,no,no,0,217.900000,71,37.040000,230.100000,116,19.560000,232.100000,110,10.440000,10.600000,2,2.860000,1,False. +CO,105,408,334-8694,no,no,0,270.900000,98,46.050000,226.200000,110,19.230000,178.800000,60,8.050000,8.800000,5,2.380000,0,True. +KS,24,510,369-5449,no,no,0,243.000000,91,41.310000,183.900000,77,15.630000,184.300000,109,8.290000,15.300000,6,4.130000,0,True. +IL,48,510,380-5246,no,no,0,128.200000,71,21.790000,48.100000,78,4.090000,116.300000,80,5.230000,8.900000,3,2.400000,0,False. +IA,86,408,390-3873,no,no,0,126.300000,115,21.470000,168.800000,112,14.350000,154.600000,95,6.960000,9.800000,7,2.650000,2,False. +AZ,163,510,354-4568,no,no,0,178.700000,56,30.380000,215.700000,79,18.330000,152.700000,84,6.870000,10.600000,2,2.860000,4,False. +NE,91,510,339-6968,no,no,0,159.000000,109,27.030000,255.100000,142,21.680000,82.400000,73,3.710000,10.100000,4,2.730000,0,False. +ID,56,510,379-5933,no,no,0,150.900000,79,25.650000,161.800000,87,13.750000,167.700000,115,7.550000,11.700000,5,3.160000,3,False. +OH,147,415,365-5682,yes,yes,24,219.900000,118,37.380000,208.500000,116,17.720000,352.500000,111,15.860000,8.100000,4,2.190000,3,False. +TX,64,415,382-8518,no,no,0,168.000000,116,28.560000,192.400000,94,16.350000,166.500000,98,7.490000,10.100000,3,2.730000,2,False. +TN,108,510,356-8449,no,yes,34,162.100000,83,27.560000,171.800000,117,14.600000,259.800000,76,11.690000,9.600000,3,2.590000,4,True. +OK,159,510,333-3460,no,no,0,198.800000,107,33.800000,195.500000,91,16.620000,213.300000,120,9.600000,16.500000,7,4.460000,5,False. +ND,136,510,375-8596,yes,no,0,256.800000,90,43.660000,230.100000,104,19.560000,143.600000,82,6.460000,9.100000,10,2.460000,3,False. +MT,116,415,384-5907,no,yes,35,182.800000,122,31.080000,212.700000,119,18.080000,193.800000,103,8.720000,11.000000,2,2.970000,1,False. +NC,45,408,373-2903,no,yes,38,196.800000,92,33.460000,254.200000,108,21.610000,261.800000,85,11.780000,7.700000,2,2.080000,1,False. +MN,122,415,361-7702,no,no,0,140.100000,120,23.820000,231.400000,128,19.670000,188.100000,127,8.460000,11.200000,5,3.020000,2,False. +MN,138,415,388-5850,no,no,0,194.300000,83,33.030000,189.900000,97,16.140000,232.200000,102,10.450000,9.000000,3,2.430000,5,False. +MA,132,415,405-6298,no,no,0,117.600000,66,19.990000,214.000000,108,18.190000,239.500000,94,10.780000,8.800000,5,2.380000,1,False. +PA,101,415,368-2074,yes,no,0,193.700000,108,32.930000,186.600000,98,15.860000,223.000000,100,10.040000,11.600000,8,3.130000,0,False. +GA,58,510,328-5050,no,no,0,243.100000,105,41.330000,231.400000,108,19.670000,180.900000,120,8.140000,7.800000,4,2.110000,2,False. +NV,81,415,395-5783,no,no,0,145.400000,132,24.720000,129.300000,91,10.990000,186.400000,109,8.390000,5.200000,4,1.400000,1,False. +TX,87,415,420-7301,no,no,0,169.100000,105,28.750000,169.900000,102,14.440000,244.900000,106,11.020000,9.900000,10,2.670000,3,False. +ME,116,510,328-2478,no,no,0,229.300000,93,38.980000,184.500000,111,15.680000,168.200000,91,7.570000,8.800000,3,2.380000,2,False. +RI,85,415,381-2460,yes,no,0,197.200000,97,33.520000,211.700000,115,17.990000,210.100000,133,9.450000,8.300000,4,2.240000,4,False. +MN,62,510,390-9811,no,yes,33,186.400000,84,31.690000,201.000000,136,17.090000,286.700000,103,12.900000,11.100000,3,3.000000,2,True. +NH,90,415,373-5670,no,no,0,76.100000,121,12.940000,290.300000,73,24.680000,236.900000,89,10.660000,10.800000,3,2.920000,0,False. +TN,98,415,351-7016,no,no,0,162.800000,65,27.680000,185.000000,109,15.730000,219.500000,104,9.880000,6.000000,3,1.620000,2,False. +UT,73,415,394-9934,no,no,0,182.300000,115,30.990000,199.200000,97,16.930000,120.200000,113,5.410000,18.000000,5,4.860000,1,False. +RI,107,510,422-8268,yes,no,0,194.400000,83,33.050000,247.800000,84,21.060000,245.400000,93,11.040000,11.200000,7,3.020000,2,False. +NH,55,408,373-7690,no,yes,20,189.300000,95,32.180000,118.600000,113,10.080000,250.200000,102,11.260000,12.500000,4,3.380000,2,False. +AK,76,415,366-9781,no,yes,22,160.100000,107,27.220000,168.700000,136,14.340000,23.200000,102,1.040000,9.500000,4,2.570000,3,False. +NC,30,510,404-5427,no,no,0,145.000000,76,24.650000,240.700000,112,20.460000,197.100000,134,8.870000,7.100000,4,1.920000,3,False. +AZ,157,415,389-9783,no,no,0,220.700000,105,37.520000,119.300000,127,10.140000,165.100000,113,7.430000,11.500000,7,3.110000,4,False. +MA,40,408,351-7005,no,yes,31,224.700000,69,38.200000,134.500000,81,11.430000,120.300000,104,5.410000,7.500000,5,2.030000,1,True. +TN,72,408,348-2009,no,no,0,147.000000,79,24.990000,162.300000,103,13.800000,162.900000,80,7.330000,10.500000,4,2.840000,1,False. +WY,95,415,340-4236,no,yes,39,260.800000,130,44.340000,213.400000,111,18.140000,195.600000,97,8.800000,10.100000,5,2.730000,1,False. +IA,42,415,348-1528,no,no,0,155.400000,127,26.420000,164.100000,45,13.950000,157.700000,128,7.100000,9.000000,3,2.430000,0,False. +IN,86,415,365-5039,no,no,0,166.200000,112,28.250000,255.300000,81,21.700000,228.100000,97,10.260000,5.400000,7,1.460000,1,False. +NJ,131,415,411-1810,no,no,0,211.800000,115,36.010000,260.500000,102,22.140000,144.200000,96,6.490000,10.800000,7,2.920000,0,False. +FL,55,510,364-7644,no,yes,45,130.500000,114,22.190000,208.400000,94,17.710000,141.600000,114,6.370000,11.000000,5,2.970000,4,True. +MT,74,415,335-9066,no,no,0,162.700000,102,27.660000,292.000000,105,24.820000,183.300000,80,8.250000,8.700000,6,2.350000,0,False. +ND,81,408,362-7581,yes,yes,37,237.100000,76,40.310000,264.200000,125,22.460000,271.300000,120,12.210000,7.900000,3,2.130000,1,False. +MI,81,408,346-1095,no,no,0,166.200000,102,28.250000,217.600000,112,18.500000,220.200000,68,9.910000,13.200000,2,3.560000,4,False. +MT,28,415,357-9136,no,no,0,121.700000,48,20.690000,125.800000,112,10.690000,261.600000,122,11.770000,8.300000,2,2.240000,6,True. +AL,111,510,390-7863,no,no,0,176.400000,62,29.990000,201.000000,124,17.090000,150.400000,138,6.770000,11.200000,2,3.020000,0,False. +NV,3,510,344-2416,no,yes,27,67.400000,116,11.460000,244.000000,78,20.740000,281.100000,93,12.650000,11.400000,2,3.080000,2,False. +MI,51,415,373-1448,no,no,0,229.700000,129,39.050000,336.000000,104,28.560000,192.800000,128,8.680000,9.600000,1,2.590000,1,True. +FL,68,415,360-7076,no,yes,24,176.000000,118,29.920000,277.900000,116,23.620000,174.700000,71,7.860000,14.700000,7,3.970000,1,False. +NY,163,408,413-2241,no,no,0,247.700000,77,42.110000,269.500000,108,22.910000,167.300000,82,7.530000,9.600000,7,2.590000,0,True. +KS,87,510,343-3961,no,no,0,115.400000,90,19.620000,262.600000,68,22.320000,245.700000,69,11.060000,13.100000,5,3.540000,2,False. +NC,58,510,375-4107,no,no,0,112.200000,95,19.070000,209.600000,108,17.820000,260.900000,78,11.740000,13.900000,1,3.750000,0,True. +MN,109,408,414-7410,no,no,0,162.600000,138,27.640000,154.000000,109,13.090000,209.700000,118,9.440000,11.500000,4,3.110000,0,False. +RI,111,415,351-2535,no,no,0,229.400000,107,39.000000,214.100000,99,18.200000,289.600000,95,13.030000,10.400000,6,2.810000,4,False. +UT,144,415,416-9615,no,no,0,139.600000,96,23.730000,124.200000,93,10.560000,95.600000,75,4.300000,15.000000,4,4.050000,2,False. +OR,135,415,377-1293,no,no,0,263.800000,66,44.850000,251.300000,116,21.360000,200.100000,112,9.000000,8.400000,2,2.270000,5,True. +SC,109,415,388-6479,no,yes,46,217.500000,123,36.980000,233.700000,84,19.860000,163.900000,99,7.380000,9.000000,3,2.430000,4,False. +IL,107,415,390-2755,no,yes,14,114.300000,132,19.430000,199.800000,91,16.980000,194.700000,74,8.760000,7.500000,8,2.030000,1,False. +OH,149,408,340-5930,no,no,0,196.300000,108,33.370000,136.800000,96,11.630000,154.700000,87,6.960000,7.700000,3,2.080000,2,False. +MA,56,510,401-3622,no,no,0,253.200000,95,43.040000,188.000000,116,15.980000,142.000000,133,6.390000,4.400000,4,1.190000,1,False. +OR,129,408,382-1104,no,no,0,98.000000,99,16.660000,240.700000,62,20.460000,254.800000,123,11.470000,10.500000,4,2.840000,0,False. +CA,92,408,355-9324,no,no,0,249.400000,118,42.400000,211.500000,95,17.980000,169.000000,116,7.610000,9.100000,3,2.460000,0,False. +WV,67,415,393-4843,no,yes,30,129.600000,107,22.030000,233.000000,104,19.810000,297.000000,93,13.370000,14.500000,5,3.920000,1,False. +VT,120,415,401-4052,no,no,0,221.300000,106,37.620000,267.600000,98,22.750000,111.500000,80,5.020000,9.300000,7,2.510000,0,False. +ID,166,415,385-1830,no,no,0,220.700000,106,37.520000,177.800000,118,15.110000,206.100000,102,9.270000,12.400000,9,3.350000,1,False. +OR,66,408,348-7409,no,no,0,87.600000,76,14.890000,262.000000,111,22.270000,184.600000,125,8.310000,9.200000,5,2.480000,1,False. +GA,76,408,361-4910,no,no,0,203.600000,61,34.610000,161.700000,127,13.740000,175.900000,97,7.920000,8.400000,3,2.270000,0,False. +ME,79,415,415-6578,no,no,0,213.600000,110,36.310000,234.900000,121,19.970000,229.600000,157,10.330000,8.800000,3,2.380000,2,False. +HI,98,415,395-5015,no,yes,31,181.600000,112,30.870000,220.700000,100,18.760000,236.300000,121,10.630000,12.900000,4,3.480000,2,False. +AZ,141,510,369-6012,no,yes,22,215.400000,123,36.620000,328.700000,98,27.940000,160.500000,89,7.220000,7.800000,6,2.110000,1,False. +UT,49,415,394-4520,no,no,0,266.300000,90,45.270000,207.800000,117,17.660000,205.000000,98,9.230000,14.000000,2,3.780000,2,True. +IA,46,510,380-5873,no,no,0,199.200000,111,33.860000,175.100000,83,14.880000,210.600000,84,9.480000,10.200000,2,2.750000,3,False. +CT,137,415,372-5384,no,no,0,115.000000,130,19.550000,137.800000,83,11.710000,224.000000,61,10.080000,7.300000,4,1.970000,3,False. +WA,171,408,419-1863,no,no,0,270.500000,69,45.990000,230.000000,112,19.550000,136.000000,111,6.120000,9.600000,5,2.590000,1,True. +VA,10,415,352-5697,no,no,0,222.200000,127,37.770000,153.100000,125,13.010000,227.400000,80,10.230000,12.900000,4,3.480000,1,False. +CO,88,510,373-4274,no,no,0,61.900000,78,10.520000,262.600000,114,22.320000,212.500000,110,9.560000,8.800000,2,2.380000,3,False. +LA,89,415,382-4024,no,no,0,141.100000,92,23.990000,249.100000,126,21.170000,136.000000,73,6.120000,10.800000,2,2.920000,2,False. +TX,82,415,395-9215,no,no,0,189.200000,81,32.160000,184.400000,117,15.670000,255.800000,83,11.510000,10.600000,5,2.860000,3,True. +SD,139,510,331-9149,no,no,0,196.000000,135,33.320000,186.000000,146,15.810000,153.000000,92,6.890000,9.800000,1,2.650000,3,False. +VA,87,415,347-3958,no,no,0,171.600000,119,29.170000,205.000000,107,17.430000,170.600000,114,7.680000,13.800000,4,3.730000,0,False. +NY,137,415,389-2540,yes,no,0,174.000000,123,29.580000,161.300000,115,13.710000,260.700000,98,11.730000,11.400000,3,3.080000,2,False. +WA,45,510,399-3083,no,no,0,78.600000,106,13.360000,187.300000,110,15.920000,184.200000,111,8.290000,7.400000,5,2.000000,1,True. +WI,90,415,420-8308,no,no,0,200.900000,92,34.150000,164.300000,91,13.970000,249.000000,98,11.210000,8.900000,7,2.400000,1,False. +TN,103,415,384-7724,no,no,0,141.300000,123,24.020000,253.600000,87,21.560000,215.800000,96,9.710000,6.400000,2,1.730000,1,False. +CT,100,415,389-2114,no,no,0,235.800000,130,40.090000,176.000000,69,14.960000,63.600000,122,2.860000,7.300000,1,1.970000,2,False. +WA,110,510,335-4414,no,no,0,185.100000,100,31.470000,165.100000,88,14.030000,111.600000,104,5.020000,6.300000,4,1.700000,3,False. +NH,124,415,370-5361,no,no,0,254.300000,113,43.230000,78.900000,104,6.710000,153.200000,69,6.890000,11.800000,2,3.190000,2,False. +MT,10,510,374-5965,no,no,0,183.000000,103,31.110000,214.800000,77,18.260000,206.400000,73,9.290000,8.700000,6,2.350000,2,False. +NE,89,415,420-6414,no,yes,29,163.500000,80,27.800000,274.800000,136,23.360000,381.900000,147,17.190000,7.500000,5,2.030000,2,False. +WA,121,408,392-2708,no,no,0,207.900000,98,35.340000,210.500000,96,17.890000,109.600000,114,4.930000,7.700000,2,2.080000,2,False. +WI,101,415,352-7234,no,no,0,248.600000,102,42.260000,174.900000,93,14.870000,207.200000,86,9.320000,6.100000,3,1.650000,3,False. +AR,103,415,337-9878,no,yes,31,185.400000,105,31.520000,197.600000,126,16.800000,147.100000,110,6.620000,14.500000,4,3.920000,2,False. +WI,51,408,350-7288,no,no,0,197.800000,60,33.630000,221.000000,64,18.790000,168.600000,134,7.590000,8.900000,5,2.400000,1,False. +DE,2,415,415-8448,yes,no,0,132.100000,42,22.460000,138.900000,88,11.810000,192.600000,119,8.670000,9.100000,1,2.460000,2,True. +NH,111,510,392-6331,no,no,0,197.100000,117,33.510000,227.800000,128,19.360000,214.000000,101,9.630000,9.300000,11,2.510000,0,False. +VA,118,415,392-3315,no,no,0,154.600000,112,26.280000,184.200000,105,15.660000,217.400000,102,9.780000,12.600000,5,3.400000,2,False. +TN,17,510,382-5401,no,yes,31,153.100000,115,26.030000,185.900000,59,15.800000,224.300000,102,10.090000,10.000000,1,2.700000,6,True. +VA,130,408,389-7012,no,no,0,211.200000,119,35.900000,231.100000,120,19.640000,220.900000,80,9.940000,6.300000,9,1.700000,2,False. +ID,193,415,411-4714,no,no,0,96.800000,92,16.460000,142.600000,103,12.120000,210.100000,115,9.450000,10.900000,5,2.940000,2,True. +TN,114,510,343-3846,no,no,0,172.000000,145,29.240000,276.400000,101,23.490000,193.700000,100,8.720000,10.100000,9,2.730000,1,False. +AZ,137,415,370-4395,no,no,0,141.100000,91,23.990000,147.200000,100,12.510000,254.700000,75,11.460000,8.000000,7,2.160000,2,False. +MT,185,408,422-4394,no,yes,29,151.100000,121,25.690000,244.700000,88,20.800000,154.400000,91,6.950000,13.800000,2,3.730000,2,False. +OK,101,408,405-1780,no,no,0,209.600000,107,35.630000,228.800000,96,19.450000,172.400000,85,7.760000,7.600000,2,2.050000,3,False. +ID,95,415,393-2220,no,yes,32,247.000000,109,41.990000,125.600000,91,10.680000,226.500000,90,10.190000,10.500000,4,2.840000,3,False. +NV,7,408,355-8299,no,yes,30,221.400000,114,37.640000,165.800000,116,14.090000,247.000000,105,11.120000,10.800000,12,2.920000,1,False. +KS,126,408,379-8681,no,no,0,321.300000,99,54.620000,167.900000,93,14.270000,193.600000,106,8.710000,8.000000,4,2.160000,1,True. +WY,71,415,409-7034,no,no,0,243.700000,124,41.430000,60.000000,90,5.100000,189.000000,129,8.500000,11.300000,2,3.050000,0,False. +MS,124,415,358-1922,no,no,0,251.500000,85,42.760000,214.200000,98,18.210000,186.100000,71,8.370000,11.100000,6,3.000000,3,False. +WY,97,510,346-1629,yes,no,0,236.900000,107,40.270000,157.600000,105,13.400000,241.000000,120,10.850000,7.300000,2,1.970000,0,True. +TX,28,415,347-1870,no,no,0,159.700000,79,27.150000,216.700000,131,18.420000,206.700000,116,9.300000,9.300000,3,2.510000,2,False. +WA,90,415,374-9576,yes,no,0,148.200000,96,25.190000,220.400000,111,18.730000,134.200000,97,6.040000,9.200000,1,2.480000,4,True. +HI,190,408,380-1096,no,no,0,150.900000,86,25.650000,268.600000,129,22.830000,179.900000,73,8.100000,14.700000,1,3.970000,1,False. +IL,31,415,396-5790,no,yes,28,210.500000,101,35.790000,250.500000,86,21.290000,241.600000,125,10.870000,11.500000,2,3.110000,1,False. +AK,52,415,356-5244,no,yes,24,170.900000,71,29.050000,201.400000,80,17.120000,159.000000,124,7.150000,4.100000,5,1.110000,2,False. +MD,73,510,341-1412,no,no,0,254.700000,80,43.300000,90.200000,79,7.670000,153.400000,60,6.900000,10.600000,8,2.860000,0,False. +MA,111,415,387-7371,no,no,0,284.400000,89,48.350000,157.000000,113,13.350000,242.800000,91,10.930000,8.400000,8,2.270000,0,True. +SD,98,415,392-2555,no,no,0,0.000000,0,0.000000,159.600000,130,13.570000,167.100000,88,7.520000,6.800000,1,1.840000,4,True. +PA,106,408,403-9167,yes,no,0,133.700000,45,22.730000,187.800000,107,15.960000,181.900000,89,8.190000,10.700000,2,2.890000,1,True. +NC,111,408,338-6550,no,no,0,224.900000,117,38.230000,191.900000,127,16.310000,229.900000,97,10.350000,10.300000,3,2.780000,0,False. +VT,59,408,357-5801,no,no,0,151.800000,98,25.810000,209.900000,92,17.840000,266.900000,86,12.010000,11.900000,5,3.210000,1,False. +KY,71,510,403-1953,no,yes,22,141.400000,107,24.040000,163.000000,105,13.860000,220.000000,99,9.900000,5.600000,3,1.510000,2,False. +WA,55,408,357-6039,no,no,0,285.700000,124,48.570000,230.900000,106,19.630000,230.700000,140,10.380000,14.800000,7,4.000000,0,True. +LA,13,415,388-9653,no,no,0,58.400000,121,9.930000,262.200000,64,22.290000,159.000000,115,7.150000,11.900000,5,3.210000,1,False. +WA,136,415,359-2915,no,yes,16,90.400000,105,15.370000,201.300000,109,17.110000,227.100000,115,10.220000,13.100000,4,3.540000,0,False. +ME,123,408,381-4562,no,no,0,114.400000,91,19.450000,216.600000,123,18.410000,250.600000,102,11.280000,11.000000,3,2.970000,0,False. +WI,105,408,406-2213,no,no,0,147.700000,103,25.110000,222.700000,78,18.930000,163.500000,102,7.360000,12.800000,3,3.460000,2,False. +TX,50,408,330-6436,no,yes,31,302.700000,93,51.460000,240.500000,119,20.440000,193.900000,103,8.730000,13.600000,14,3.670000,3,False. +IA,118,415,332-4289,no,no,0,136.100000,120,23.140000,204.200000,103,17.360000,228.200000,90,10.270000,11.300000,4,3.050000,1,False. +AZ,97,408,386-3596,no,no,0,169.700000,84,28.850000,165.900000,86,14.100000,191.900000,83,8.640000,12.800000,6,3.460000,3,False. +ND,51,510,337-3740,no,no,0,227.200000,89,38.620000,194.400000,106,16.520000,243.400000,126,10.950000,14.900000,2,4.020000,0,False. +VT,73,415,414-1496,no,no,0,217.800000,91,37.030000,220.600000,97,18.750000,277.300000,89,12.480000,10.300000,6,2.780000,1,True. +HI,35,415,349-7291,no,no,0,124.200000,102,21.110000,123.900000,115,10.530000,135.700000,100,6.110000,13.100000,8,3.540000,2,False. +WY,64,415,385-1985,no,no,0,206.200000,76,35.050000,232.400000,76,19.750000,251.600000,96,11.320000,13.600000,2,3.670000,1,False. +WV,63,510,329-7102,no,no,0,132.900000,122,22.590000,67.000000,62,5.700000,160.400000,121,7.220000,9.900000,2,2.670000,3,False. +OK,117,415,394-2553,no,yes,31,104.900000,115,17.830000,237.600000,125,20.200000,263.400000,104,11.850000,7.700000,6,2.080000,3,False. +CT,115,415,339-1330,no,no,0,245.000000,97,41.650000,250.700000,75,21.310000,270.200000,124,12.160000,13.700000,8,3.700000,1,True. +UT,162,408,398-1959,no,no,0,184.500000,118,31.370000,224.000000,95,19.040000,180.500000,82,8.120000,11.600000,3,3.130000,1,False. +NY,89,415,408-7015,no,no,0,89.500000,66,15.220000,179.300000,104,15.240000,225.100000,116,10.130000,12.300000,1,3.320000,3,False. +VA,94,415,384-9254,yes,no,0,235.600000,131,40.050000,194.800000,107,16.560000,170.600000,93,7.680000,8.600000,4,2.320000,1,False. +VT,129,408,355-9475,no,no,0,186.000000,127,31.620000,262.300000,96,22.300000,98.900000,63,4.450000,11.500000,6,3.110000,4,False. +SD,86,415,334-1337,no,no,0,223.900000,75,38.060000,155.700000,109,13.230000,150.200000,143,6.760000,7.300000,9,1.970000,1,False. +PA,96,510,359-1441,no,no,0,179.500000,125,30.520000,162.300000,139,13.800000,264.500000,133,11.900000,6.600000,2,1.780000,1,False. +ND,190,415,391-5442,no,no,0,169.400000,102,28.800000,253.500000,113,21.550000,197.100000,93,8.870000,8.900000,5,2.400000,1,False. +CT,80,408,374-1551,no,no,0,118.100000,90,20.080000,144.300000,77,12.270000,225.100000,86,10.130000,8.200000,6,2.210000,1,False. +SC,108,415,399-6233,no,no,0,112.000000,105,19.040000,193.700000,110,16.460000,208.900000,93,9.400000,4.100000,4,1.110000,4,True. +MI,97,408,337-4749,no,yes,32,168.400000,129,28.630000,225.900000,97,19.200000,191.800000,95,8.630000,8.500000,7,2.300000,0,False. +VT,84,415,403-5552,no,yes,42,214.300000,112,36.430000,188.200000,107,16.000000,333.500000,117,15.010000,11.300000,10,3.050000,0,False. +OH,65,415,405-3097,no,no,0,245.700000,139,41.770000,241.900000,113,20.560000,285.300000,117,12.840000,4.200000,5,1.130000,4,True. +VT,131,415,364-9240,no,yes,34,156.600000,134,26.620000,71.000000,95,6.040000,261.700000,120,11.780000,13.400000,10,3.620000,1,False. +IL,58,415,404-9348,yes,yes,43,142.800000,96,24.280000,272.300000,100,23.150000,193.400000,105,8.700000,8.900000,4,2.400000,1,False. +MO,36,415,336-1462,no,no,0,202.400000,115,34.410000,230.700000,115,19.610000,202.000000,127,9.090000,10.200000,2,2.750000,3,False. +WI,54,415,364-8981,no,no,0,116.800000,119,19.860000,123.100000,123,10.460000,217.500000,101,9.790000,12.000000,2,3.240000,1,False. +NJ,45,510,412-7606,no,no,0,155.700000,110,26.470000,260.300000,103,22.130000,192.200000,98,8.650000,11.000000,1,2.970000,1,False. +GA,125,415,380-6342,no,yes,39,236.100000,107,40.140000,289.200000,110,24.580000,175.400000,107,7.890000,9.100000,4,2.460000,2,False. +VT,72,415,418-3017,no,yes,21,138.100000,113,23.480000,260.100000,83,22.110000,135.400000,118,6.090000,8.200000,2,2.210000,2,False. +CT,141,408,367-3648,no,no,0,51.900000,108,8.820000,162.000000,83,13.770000,223.500000,115,10.060000,10.100000,3,2.730000,3,False. +AZ,113,510,341-5892,no,no,0,81.300000,116,13.820000,220.600000,124,18.750000,235.700000,113,10.610000,8.900000,3,2.400000,0,False. +SD,20,415,334-4678,no,yes,35,171.500000,98,29.160000,153.100000,127,13.010000,165.600000,125,7.450000,7.100000,3,1.920000,0,False. +CT,212,415,366-6751,no,no,0,126.000000,96,21.420000,144.300000,80,12.270000,302.800000,102,13.630000,7.600000,3,2.050000,1,False. +IN,99,415,397-8512,yes,no,0,197.200000,127,33.520000,156.000000,92,13.260000,204.100000,99,9.180000,9.900000,6,2.670000,4,False. +OH,94,510,367-9495,no,no,0,194.100000,62,33.000000,227.200000,54,19.310000,190.400000,115,8.570000,15.300000,4,4.130000,1,False. +NY,40,510,379-2991,no,no,0,115.700000,105,19.670000,127.800000,113,10.860000,107.500000,91,4.840000,9.300000,6,2.510000,1,False. +NE,86,510,356-4832,no,yes,29,157.200000,118,26.720000,196.300000,136,16.690000,226.700000,109,10.200000,8.400000,5,2.270000,3,False. +OK,101,415,413-4040,no,no,0,269.700000,85,45.850000,207.600000,86,17.650000,214.200000,107,9.640000,4.500000,15,1.220000,3,True. +NC,170,415,366-4444,no,no,0,246.400000,107,41.890000,228.100000,124,19.390000,166.400000,95,7.490000,9.100000,8,2.460000,0,False. +HI,105,510,394-3806,no,no,0,227.400000,121,38.660000,268.500000,89,22.820000,143.300000,82,6.450000,13.000000,4,3.510000,1,False. +UT,103,415,368-5647,no,no,0,189.800000,110,32.270000,115.500000,83,9.820000,191.300000,103,8.610000,12.200000,4,3.290000,0,False. +MD,140,415,412-1076,yes,yes,27,188.900000,124,32.110000,160.900000,102,13.680000,197.700000,100,8.900000,11.500000,5,3.110000,4,False. +VT,101,510,413-7655,no,no,0,0.000000,0,0.000000,192.100000,119,16.330000,168.800000,95,7.600000,7.200000,4,1.940000,1,False. +TX,98,408,371-2316,no,yes,19,110.500000,87,18.790000,227.800000,97,19.360000,243.600000,84,10.960000,11.000000,4,2.970000,1,False. +AZ,104,408,420-3346,no,no,0,167.600000,116,28.490000,219.200000,112,18.630000,215.900000,94,9.720000,11.700000,2,3.160000,4,False. +VA,115,415,367-3971,no,no,0,132.000000,90,22.440000,197.500000,75,16.790000,175.800000,114,7.910000,0.000000,0,0.000000,3,False. +WI,112,408,417-5813,no,no,0,167.800000,88,28.530000,247.900000,81,21.070000,155.100000,108,6.980000,11.900000,4,3.210000,0,False. +NE,70,415,421-8535,no,no,0,213.400000,86,36.280000,204.700000,77,17.400000,256.600000,101,11.550000,5.700000,4,1.540000,1,False. +KY,126,510,375-1721,no,no,0,175.400000,120,29.820000,98.300000,71,8.360000,201.900000,93,9.090000,10.600000,1,2.860000,0,False. +NV,87,510,331-8484,no,yes,39,82.600000,113,14.040000,224.400000,63,19.070000,163.600000,88,7.360000,9.500000,1,2.570000,3,False. +MT,125,510,366-5829,no,no,0,143.200000,80,24.340000,88.100000,94,7.490000,233.200000,135,10.490000,8.800000,7,2.380000,4,True. +MO,86,415,367-7906,no,no,0,125.500000,139,21.340000,269.800000,93,22.930000,235.800000,110,10.610000,8.900000,8,2.400000,1,False. +MS,73,415,412-2520,no,yes,31,82.300000,105,13.990000,256.100000,91,21.770000,229.600000,98,10.330000,11.800000,2,3.190000,6,True. +NM,232,408,386-9177,no,no,0,165.600000,104,28.150000,195.900000,115,16.650000,118.300000,77,5.320000,11.800000,3,3.190000,1,False. +NJ,1,415,420-6780,no,yes,30,183.100000,95,31.130000,232.600000,110,19.770000,248.300000,110,11.170000,8.400000,2,2.270000,0,False. +NH,133,408,401-1454,no,no,0,162.100000,91,27.560000,212.100000,94,18.030000,260.400000,78,11.720000,12.200000,5,3.290000,1,False. +NC,103,510,379-2508,no,no,0,166.600000,84,28.320000,192.400000,91,16.350000,167.900000,115,7.560000,7.700000,6,2.080000,1,False. +MT,131,415,353-3492,no,yes,24,135.900000,60,23.100000,233.200000,78,19.820000,210.600000,121,9.480000,9.400000,4,2.540000,1,False. +SD,95,408,406-4840,no,yes,20,165.700000,78,28.170000,215.600000,94,18.330000,243.300000,91,10.950000,9.800000,6,2.650000,0,False. +VA,182,415,391-7982,no,no,0,176.100000,90,29.940000,174.900000,106,14.870000,234.700000,134,10.560000,9.700000,4,2.620000,1,False. +LA,99,510,379-9821,no,no,0,142.300000,89,24.190000,204.500000,95,17.380000,203.100000,114,9.140000,9.100000,1,2.460000,0,False. +NV,27,510,398-7414,no,no,0,177.600000,121,30.190000,296.800000,92,25.230000,192.900000,106,8.680000,7.600000,3,2.050000,3,False. +AK,141,408,338-8566,no,no,0,83.200000,74,14.140000,190.600000,104,16.200000,150.500000,79,6.770000,10.700000,7,2.890000,1,False. +OH,29,415,397-3058,yes,yes,37,235.000000,101,39.950000,183.300000,79,15.580000,139.800000,106,6.290000,5.700000,7,1.540000,2,False. +NM,65,415,389-8096,no,no,0,105.700000,95,17.970000,141.800000,100,12.050000,180.500000,105,8.120000,6.600000,12,1.780000,2,False. +MI,81,415,393-6840,yes,no,0,149.400000,68,25.400000,171.900000,98,14.610000,214.500000,97,9.650000,17.900000,3,4.830000,3,True. +MN,37,415,360-7404,no,yes,20,264.700000,81,45.000000,216.500000,110,18.400000,210.700000,102,9.480000,10.400000,7,2.810000,0,False. +WY,107,510,411-5740,no,yes,31,160.300000,45,27.250000,221.500000,70,18.830000,261.600000,109,11.770000,5.600000,1,1.510000,1,False. +WY,127,415,412-3726,yes,yes,28,95.900000,117,16.300000,159.500000,131,13.560000,152.800000,132,6.880000,10.400000,3,2.810000,1,False. +WA,78,408,372-7326,no,no,0,140.700000,77,23.920000,195.200000,114,16.590000,252.900000,107,11.380000,11.700000,5,3.160000,0,False. +NM,55,510,338-9873,no,no,0,119.700000,148,20.350000,231.800000,96,19.700000,222.300000,113,10.000000,4.600000,2,1.240000,2,False. +VA,86,415,383-4322,no,yes,30,99.900000,84,16.980000,263.500000,125,22.400000,254.700000,90,11.460000,9.800000,7,2.650000,2,False. +RI,176,415,401-7654,no,no,0,250.900000,108,42.650000,171.400000,100,14.570000,148.600000,85,6.690000,9.600000,6,2.590000,2,False. +AL,96,415,410-5455,yes,no,0,200.600000,117,34.100000,289.500000,120,24.610000,98.300000,95,4.420000,11.200000,5,3.020000,2,False. +WV,11,510,419-4310,no,yes,38,209.800000,130,35.670000,196.600000,84,16.710000,233.000000,79,10.490000,7.000000,7,1.890000,1,False. +WV,48,415,367-2056,no,yes,34,198.000000,70,33.660000,273.700000,121,23.260000,217.900000,71,9.810000,7.600000,4,2.050000,1,False. +NJ,127,510,363-6695,no,no,0,239.800000,107,40.770000,128.900000,121,10.960000,249.900000,110,11.250000,11.300000,5,3.050000,1,False. +TN,63,415,374-6217,no,no,0,164.500000,75,27.970000,147.900000,118,12.570000,252.700000,97,11.370000,11.200000,2,3.020000,0,False. +MI,79,510,337-9569,no,no,0,220.900000,107,37.550000,192.200000,97,16.340000,161.000000,74,7.250000,12.200000,2,3.290000,1,False. +UT,47,408,350-9720,no,yes,37,112.800000,150,19.180000,243.900000,97,20.730000,178.700000,112,8.040000,13.200000,6,3.560000,2,False. +IL,89,415,380-4080,yes,yes,19,112.600000,114,19.140000,261.700000,132,22.240000,123.500000,116,5.560000,11.100000,2,3.000000,0,True. +MI,83,510,333-7460,no,yes,26,226.400000,117,38.490000,234.700000,97,19.950000,133.600000,82,6.010000,10.800000,7,2.920000,1,False. +WI,126,415,378-3722,yes,yes,34,244.900000,118,41.630000,219.600000,105,18.670000,210.800000,136,9.490000,9.700000,6,2.620000,4,False. +ND,60,510,353-9339,no,no,0,203.200000,99,34.540000,235.800000,131,20.040000,224.900000,112,10.120000,15.100000,6,4.080000,2,False. +VT,122,415,386-6535,no,no,0,136.700000,115,23.240000,243.100000,137,20.660000,188.900000,110,8.500000,8.600000,4,2.320000,0,False. +WA,136,408,403-5575,no,no,0,152.600000,97,25.940000,208.900000,85,17.760000,119.100000,99,5.360000,5.000000,10,1.350000,1,False. +NC,172,408,331-5962,no,yes,47,274.900000,102,46.730000,186.600000,118,15.860000,245.000000,123,11.030000,8.800000,2,2.380000,1,False. +ME,102,510,390-9627,no,no,0,195.700000,116,33.270000,209.100000,87,17.770000,201.100000,73,9.050000,8.300000,3,2.240000,1,True. +SD,113,415,406-4560,yes,no,0,204.300000,82,34.730000,188.800000,115,16.050000,139.400000,97,6.270000,9.200000,7,2.480000,1,False. +WV,79,415,359-6931,no,no,0,222.300000,99,37.790000,146.200000,82,12.430000,275.600000,82,12.400000,8.900000,4,2.400000,3,False. +ID,55,510,331-7342,no,yes,8,222.500000,104,37.830000,171.500000,94,14.580000,377.500000,114,16.990000,9.700000,2,2.620000,1,False. +LA,111,415,367-2227,no,yes,28,128.800000,104,21.900000,157.300000,52,13.370000,147.400000,76,6.630000,10.300000,2,2.780000,2,False. +GA,160,415,335-8836,no,no,0,174.300000,105,29.630000,171.300000,107,14.560000,220.800000,131,9.940000,8.300000,2,2.240000,0,False. +FL,110,415,398-6703,no,no,0,242.500000,110,41.230000,162.300000,140,13.800000,184.100000,86,8.280000,7.800000,3,2.110000,4,False. +CO,192,415,370-8379,no,no,0,221.600000,101,37.670000,285.200000,50,24.240000,167.400000,83,7.530000,12.700000,6,3.430000,4,False. +NV,93,408,335-3880,no,no,0,114.300000,100,19.430000,221.100000,103,18.790000,126.300000,88,5.680000,10.900000,9,2.940000,0,False. +IN,101,415,375-8761,no,yes,33,219.700000,137,37.350000,186.800000,94,15.880000,184.500000,113,8.300000,9.500000,2,2.570000,2,False. +VA,77,510,367-1398,no,no,0,144.900000,136,24.630000,151.300000,115,12.860000,252.400000,73,11.360000,12.300000,3,3.320000,2,False. +UT,105,415,395-7857,no,yes,40,236.500000,111,40.210000,117.000000,110,9.950000,221.100000,115,9.950000,8.100000,3,2.190000,2,False. +UT,133,408,398-8745,no,yes,44,174.000000,80,29.580000,209.400000,113,17.800000,224.100000,87,10.080000,14.100000,7,3.810000,2,True. +MO,131,408,386-3717,no,no,0,109.500000,95,18.620000,332.100000,48,28.230000,258.600000,108,11.640000,6.600000,7,1.780000,1,False. +CT,106,510,330-1175,no,yes,33,81.600000,120,13.870000,235.600000,85,20.030000,150.900000,113,6.790000,9.900000,4,2.670000,1,False. +HI,118,415,418-6752,no,no,0,133.400000,113,22.680000,121.000000,92,10.290000,254.700000,129,11.460000,5.900000,4,1.590000,1,False. +MD,125,408,349-6464,no,no,0,137.100000,94,23.310000,209.800000,83,17.830000,238.400000,114,10.730000,8.600000,4,2.320000,1,False. +VA,95,415,366-7331,no,no,0,197.000000,88,33.490000,190.400000,68,16.180000,211.900000,104,9.540000,16.100000,8,4.350000,0,False. +MT,80,415,361-8288,no,no,0,198.100000,160,33.680000,156.700000,87,13.320000,182.100000,76,8.190000,9.300000,3,2.510000,3,False. +SC,145,408,377-6635,no,no,0,39.500000,78,6.720000,264.300000,106,22.470000,185.800000,90,8.360000,10.000000,6,2.700000,0,False. +CO,37,408,408-1513,no,no,0,199.500000,107,33.920000,207.500000,110,17.640000,83.900000,123,3.780000,8.100000,4,2.190000,2,False. +ID,87,415,370-7546,no,no,0,156.800000,93,26.660000,215.800000,68,18.340000,223.300000,77,10.050000,7.600000,6,2.050000,1,False. +AL,69,415,389-4278,no,no,0,183.400000,85,31.180000,237.600000,100,20.200000,228.000000,94,10.260000,9.000000,5,2.430000,3,False. +CO,83,510,379-3012,no,no,0,132.400000,120,22.510000,121.600000,101,10.340000,197.700000,84,8.900000,8.600000,2,2.320000,1,False. +UT,195,415,355-3620,no,no,0,63.200000,108,10.740000,220.200000,88,18.720000,184.000000,99,8.280000,5.100000,3,1.380000,0,False. +DE,67,415,413-7743,yes,yes,35,181.100000,59,30.790000,215.900000,116,18.350000,216.300000,106,9.730000,16.900000,4,4.560000,0,True. +OH,75,510,372-2296,no,yes,27,117.500000,102,19.980000,206.800000,127,17.580000,194.400000,114,8.750000,4.200000,7,1.130000,3,False. +RI,123,415,333-9728,no,yes,27,218.700000,79,37.180000,163.400000,78,13.890000,173.800000,116,7.820000,15.000000,1,4.050000,0,False. +FL,41,415,415-6110,no,yes,41,207.300000,95,35.240000,137.300000,120,11.670000,115.700000,74,5.210000,5.900000,3,1.590000,1,False. +OH,75,415,340-9803,no,no,0,150.600000,99,25.600000,301.500000,83,25.630000,158.700000,104,7.140000,8.100000,5,2.190000,0,False. +MD,76,415,400-7002,yes,no,0,273.300000,66,46.460000,263.600000,121,22.410000,165.200000,84,7.430000,12.000000,7,3.240000,1,True. +IL,86,415,395-7435,yes,no,0,266.100000,120,45.240000,182.000000,92,15.470000,206.500000,103,9.290000,10.300000,4,2.780000,1,False. +PA,140,408,336-7143,no,no,0,112.800000,89,19.180000,156.700000,65,13.320000,249.600000,85,11.230000,16.300000,6,4.400000,0,False. +AZ,70,415,352-2175,no,no,0,104.700000,112,17.800000,82.200000,104,6.990000,169.400000,110,7.620000,15.800000,7,4.270000,3,False. +NH,121,510,346-6352,no,yes,35,193.800000,62,32.950000,197.600000,97,16.800000,218.800000,95,9.850000,5.900000,4,1.590000,0,False. +RI,112,415,405-7467,no,no,0,168.600000,102,28.660000,298.000000,117,25.330000,194.700000,110,8.760000,9.800000,5,2.650000,1,False. +HI,118,415,379-8526,no,no,0,253.200000,122,43.040000,201.000000,78,17.090000,195.300000,108,8.790000,9.700000,7,2.620000,2,False. +NJ,66,415,410-5713,no,yes,16,174.700000,92,29.700000,232.100000,105,19.730000,305.400000,98,13.740000,8.900000,2,2.400000,1,False. +WI,78,408,408-5916,no,no,0,87.000000,102,14.790000,193.600000,64,16.460000,205.800000,120,9.260000,11.000000,5,2.970000,0,False. +MD,129,415,370-5626,no,yes,34,204.500000,79,34.770000,132.800000,113,11.290000,190.100000,117,8.550000,14.800000,9,4.000000,2,False. +OR,6,408,408-1331,no,no,0,226.500000,93,38.510000,152.100000,122,12.930000,164.400000,98,7.400000,9.400000,4,2.540000,3,False. +NV,107,510,419-9688,yes,no,0,234.100000,91,39.800000,163.100000,105,13.860000,282.500000,100,12.710000,10.000000,3,2.700000,1,False. +AR,107,415,343-5219,yes,no,0,133.300000,106,22.660000,182.900000,89,15.550000,241.100000,123,10.850000,12.900000,2,3.480000,3,True. +MT,138,415,401-5586,no,no,0,133.900000,87,22.760000,166.400000,110,14.140000,193.500000,139,8.710000,15.400000,3,4.160000,1,False. +CT,103,510,377-9178,no,no,0,160.200000,104,27.230000,138.900000,70,11.810000,312.500000,97,14.060000,9.700000,2,2.620000,0,False. +UT,116,415,345-5639,no,yes,44,230.600000,94,39.200000,224.100000,103,19.050000,244.000000,76,10.980000,11.100000,2,3.000000,0,False. +GA,189,408,336-3488,no,no,0,227.400000,84,38.660000,176.000000,81,14.960000,206.100000,120,9.270000,6.300000,4,1.700000,2,False. +NV,161,415,414-6426,no,no,0,72.800000,120,12.380000,267.100000,120,22.700000,222.500000,91,10.010000,11.800000,2,3.190000,2,False. +TN,1,415,335-5591,no,no,0,196.100000,107,33.340000,296.500000,82,25.200000,211.500000,91,9.520000,7.000000,2,1.890000,1,False. +DE,89,408,421-9144,no,no,0,197.100000,110,33.510000,165.900000,115,14.100000,227.300000,106,10.230000,12.800000,3,3.460000,1,False. +NY,64,408,422-7728,no,no,0,219.600000,126,37.330000,303.300000,100,25.780000,154.500000,65,6.950000,9.700000,5,2.620000,1,False. +MT,126,415,344-3466,no,yes,30,153.400000,90,26.080000,151.400000,97,12.870000,153.800000,97,6.920000,12.800000,4,3.460000,4,True. +IA,129,415,398-7978,no,no,0,216.000000,85,36.720000,186.900000,114,15.890000,210.700000,109,9.480000,4.900000,10,1.320000,2,False. +VT,128,510,346-8368,no,yes,32,222.900000,136,37.890000,262.000000,80,22.270000,191.400000,101,8.610000,10.800000,4,2.920000,0,False. +LA,81,415,392-2722,no,yes,36,115.900000,120,19.700000,236.600000,95,20.110000,255.000000,90,11.480000,11.700000,6,3.160000,3,False. +MT,114,510,393-3274,no,no,0,189.800000,101,32.270000,147.700000,80,12.550000,172.700000,121,7.770000,10.600000,5,2.860000,1,False. +NH,50,408,339-4636,no,no,0,154.700000,102,26.300000,298.000000,108,25.330000,210.200000,95,9.460000,11.100000,3,3.000000,0,False. +WV,86,415,349-7138,no,no,0,136.400000,104,23.190000,202.500000,110,17.210000,230.700000,86,10.380000,11.500000,1,3.110000,3,False. +ID,96,408,363-3295,no,no,0,170.500000,86,28.990000,277.500000,88,23.590000,162.500000,117,7.310000,12.200000,6,3.290000,1,False. +AZ,72,510,407-9830,no,no,0,272.400000,88,46.310000,107.900000,125,9.170000,185.500000,81,8.350000,12.700000,2,3.430000,0,False. +SC,64,510,333-8822,no,yes,40,210.000000,116,35.700000,232.700000,89,19.780000,168.800000,94,7.600000,5.900000,4,1.590000,8,False. +WV,57,415,419-6418,yes,yes,17,236.500000,94,40.210000,163.100000,94,13.860000,236.700000,117,10.650000,12.200000,3,3.290000,2,False. +OH,65,510,351-8955,no,no,0,153.900000,117,26.160000,220.100000,122,18.710000,280.500000,147,12.620000,8.500000,3,2.300000,2,False. +MD,163,408,338-1840,no,no,0,223.000000,120,37.910000,227.000000,98,19.300000,188.300000,125,8.470000,8.800000,5,2.380000,1,False. +MD,136,415,336-6997,no,no,0,252.400000,74,42.910000,167.900000,81,14.270000,248.300000,110,11.170000,10.700000,3,2.890000,2,False. +MN,116,408,408-6266,no,no,0,197.900000,84,33.640000,168.100000,113,14.290000,239.800000,145,10.790000,12.000000,6,3.240000,1,False. +NE,93,408,332-4291,no,no,0,152.400000,74,25.910000,274.600000,88,23.340000,252.200000,120,11.350000,6.600000,5,1.780000,3,False. +MN,142,510,355-7895,no,yes,40,237.400000,105,40.360000,175.900000,93,14.950000,210.300000,110,9.460000,9.200000,3,2.480000,3,False. +NY,92,408,348-2916,no,no,0,265.600000,82,45.150000,180.700000,75,15.360000,211.100000,113,9.500000,8.600000,2,2.320000,1,False. +HI,70,415,339-8132,no,no,0,197.300000,91,33.540000,305.800000,81,25.990000,171.000000,105,7.690000,6.700000,6,1.810000,1,False. +MO,22,408,374-1684,no,yes,14,199.100000,100,33.850000,221.800000,103,18.850000,65.700000,91,2.960000,4.200000,1,1.130000,1,False. +NV,37,415,362-7604,no,no,0,233.700000,114,39.730000,207.900000,109,17.670000,212.700000,101,9.570000,12.000000,2,3.240000,2,False. +MA,51,415,389-3206,no,no,0,183.100000,99,31.130000,160.100000,107,13.610000,311.800000,121,14.030000,7.000000,3,1.890000,1,False. +NH,174,408,336-2829,no,no,0,139.400000,96,23.700000,143.400000,108,12.190000,225.200000,107,10.130000,10.000000,5,2.700000,2,False. +UT,68,415,403-8916,no,no,0,213.900000,112,36.360000,260.500000,100,22.140000,233.800000,97,10.520000,8.400000,3,2.270000,1,True. +FL,130,415,384-1135,no,no,0,207.100000,70,35.210000,200.100000,115,17.010000,194.200000,100,8.740000,12.400000,2,3.350000,1,False. +WA,104,415,390-2320,no,no,0,139.700000,78,23.750000,202.600000,119,17.220000,203.600000,102,9.160000,11.300000,5,3.050000,2,False. +CT,134,408,398-8578,no,no,0,177.200000,91,30.120000,228.700000,105,19.440000,194.300000,113,8.740000,8.900000,3,2.400000,2,False. +KY,108,415,393-9424,no,yes,35,169.800000,136,28.870000,173.700000,101,14.760000,214.600000,105,9.660000,9.500000,7,2.570000,2,False. +NM,103,415,417-6330,no,no,0,173.500000,83,29.500000,244.300000,65,20.770000,221.600000,66,9.970000,9.700000,2,2.620000,3,False. +ND,62,510,340-6339,no,no,0,159.900000,100,27.180000,172.200000,99,14.640000,263.200000,109,11.840000,5.600000,4,1.510000,1,False. +NV,162,415,380-6571,no,no,0,115.100000,89,19.570000,196.800000,111,16.730000,212.400000,98,9.560000,11.400000,3,3.080000,2,False. +CA,93,510,368-6488,no,yes,19,136.800000,113,23.260000,179.500000,105,15.260000,71.100000,95,3.200000,12.500000,3,3.380000,2,False. +ID,42,415,363-2193,no,no,0,92.200000,108,15.670000,211.200000,120,17.950000,129.100000,73,5.810000,13.100000,6,3.540000,1,False. +OK,155,415,328-1206,no,yes,23,243.900000,112,41.460000,133.000000,106,11.310000,213.700000,123,9.620000,13.400000,11,3.620000,2,False. +IA,36,510,385-3540,no,no,0,117.100000,94,19.910000,235.400000,117,20.010000,221.300000,108,9.960000,9.000000,2,2.430000,0,False. +OH,143,415,337-7167,no,no,0,223.300000,99,37.960000,167.100000,128,14.200000,203.000000,84,9.140000,4.500000,4,1.220000,0,True. +NJ,197,510,372-8405,no,no,0,154.800000,111,26.320000,171.500000,102,14.580000,227.300000,86,10.230000,10.600000,2,2.860000,3,False. +IA,81,510,377-1273,no,no,0,261.400000,141,44.440000,215.700000,102,18.330000,271.800000,96,12.230000,8.000000,6,2.160000,1,True. +DE,138,510,380-7816,yes,no,0,46.500000,104,7.910000,186.000000,114,15.810000,167.500000,95,7.540000,9.600000,4,2.590000,4,True. +CA,103,415,402-6744,no,yes,18,149.900000,84,25.480000,170.900000,84,14.530000,171.500000,112,7.720000,11.500000,7,3.110000,0,True. +WY,127,510,400-2181,yes,no,0,242.200000,102,41.170000,226.100000,80,19.220000,252.000000,96,11.340000,13.900000,5,3.750000,2,True. +OR,136,510,366-1613,no,no,0,259.400000,99,44.100000,172.700000,125,14.680000,293.700000,78,13.220000,10.700000,6,2.890000,1,True. +ME,99,415,347-8205,no,no,0,222.400000,102,37.810000,185.800000,89,15.790000,237.700000,81,10.700000,12.000000,8,3.240000,2,False. +AR,95,415,328-2982,no,no,0,69.400000,79,11.800000,190.800000,109,16.220000,219.900000,102,9.900000,8.900000,5,2.400000,0,False. +ME,118,408,384-8723,yes,yes,21,156.500000,122,26.610000,209.200000,125,17.780000,158.700000,81,7.140000,11.100000,3,3.000000,4,True. +WV,113,415,341-7686,no,no,0,61.200000,111,10.400000,92.300000,88,7.850000,197.400000,114,8.880000,13.700000,3,3.700000,5,True. +PA,128,408,353-6038,yes,no,0,245.200000,112,41.680000,101.500000,101,8.630000,152.300000,116,6.850000,10.700000,5,2.890000,0,False. +HI,117,408,416-8827,no,no,0,102.300000,100,17.390000,135.200000,104,11.490000,199.700000,93,8.990000,15.700000,10,4.240000,3,False. +MT,48,415,418-8450,no,yes,36,230.900000,92,39.250000,167.600000,121,14.250000,270.000000,87,12.150000,7.600000,4,2.050000,3,False. +DC,81,510,385-7861,yes,no,0,227.400000,105,38.660000,211.500000,120,17.980000,258.200000,113,11.620000,11.900000,3,3.210000,0,False. +AR,57,510,393-3507,no,no,0,192.800000,68,32.780000,158.000000,86,13.430000,235.500000,105,10.600000,12.700000,6,3.430000,1,False. +MS,140,408,372-5262,no,no,0,162.600000,98,27.640000,206.200000,109,17.530000,141.600000,66,6.370000,8.200000,2,2.210000,1,False. +OH,107,510,411-3095,no,yes,38,219.400000,92,37.300000,180.500000,73,15.340000,104.100000,91,4.680000,11.000000,1,2.970000,2,False. +MO,56,415,331-5919,no,no,0,137.200000,111,23.320000,165.900000,119,14.100000,182.300000,72,8.200000,14.300000,4,3.860000,1,False. +TX,159,415,402-1556,no,no,0,87.700000,103,14.910000,278.200000,97,23.650000,170.600000,93,7.680000,10.500000,10,2.840000,1,False. +MD,102,415,349-7362,no,no,0,271.100000,80,46.090000,172.000000,133,14.620000,169.200000,105,7.610000,10.300000,5,2.780000,1,False. +CT,107,408,339-2734,no,no,0,103.400000,94,17.580000,189.300000,125,16.090000,227.200000,125,10.220000,14.400000,3,3.890000,1,False. +SC,106,408,330-4914,no,no,0,52.200000,106,8.870000,220.100000,113,18.710000,112.300000,95,5.050000,11.400000,2,3.080000,2,False. +MI,225,415,371-2500,no,no,0,165.400000,106,28.120000,273.700000,109,23.260000,210.000000,93,9.450000,8.700000,3,2.350000,0,True. +SD,75,408,335-3681,no,no,0,147.500000,110,25.080000,191.700000,97,16.290000,135.000000,68,6.080000,16.400000,3,4.430000,2,False. +CO,86,415,405-1132,no,no,0,217.800000,93,37.030000,214.700000,95,18.250000,228.700000,70,10.290000,11.300000,7,3.050000,0,False. +ID,169,415,399-9239,no,no,0,235.700000,79,40.070000,136.900000,85,11.640000,220.900000,97,9.940000,13.300000,10,3.590000,1,False. +AZ,122,510,350-7227,no,yes,22,204.500000,92,34.770000,139.600000,121,11.870000,205.000000,103,9.230000,8.600000,5,2.320000,2,False. +FL,106,408,384-6654,no,no,0,178.400000,143,30.330000,247.000000,123,21.000000,259.900000,105,11.700000,9.600000,2,2.590000,0,False. +MN,52,415,376-4271,no,yes,32,130.100000,68,22.120000,247.200000,77,21.010000,289.400000,87,13.020000,13.500000,5,3.650000,2,False. +DE,79,415,391-8124,no,yes,34,103.700000,100,17.630000,236.300000,78,20.090000,256.600000,102,11.550000,14.800000,4,4.000000,2,False. +MI,135,415,393-2524,no,no,0,239.900000,91,40.780000,177.100000,104,15.050000,217.200000,118,9.770000,5.900000,3,1.590000,2,False. +MS,70,408,384-4385,no,no,0,148.400000,110,25.230000,267.100000,90,22.700000,151.500000,101,6.820000,8.900000,4,2.400000,0,False. +MA,80,408,377-8266,no,no,0,148.600000,106,25.260000,210.800000,65,17.920000,203.700000,86,9.170000,10.000000,2,2.700000,2,False. +CA,37,415,345-1243,no,no,0,191.100000,69,32.490000,129.200000,113,10.980000,207.500000,117,9.340000,12.900000,1,3.480000,0,False. +MN,161,415,394-8086,no,yes,39,218.500000,76,37.150000,112.700000,94,9.580000,205.100000,121,9.230000,7.300000,4,1.970000,1,False. +VT,137,510,348-9145,no,no,0,97.500000,95,16.580000,195.800000,82,16.640000,288.800000,78,13.000000,0.000000,0,0.000000,1,False. +CT,123,415,376-5201,no,no,0,128.700000,126,21.880000,117.600000,94,10.000000,198.400000,132,8.930000,10.800000,5,2.920000,0,False. +WV,80,415,356-2093,no,yes,38,236.600000,69,40.220000,197.500000,68,16.790000,209.500000,102,9.430000,9.500000,10,2.570000,2,False. +WV,94,415,353-2080,no,no,0,85.900000,113,14.600000,226.700000,91,19.270000,279.600000,110,12.580000,15.600000,16,4.210000,0,False. +NE,105,415,397-7500,no,yes,27,141.200000,96,24.000000,167.700000,94,14.250000,274.400000,101,12.350000,11.400000,2,3.080000,1,False. +NC,73,415,414-5786,no,yes,31,194.400000,104,33.050000,176.000000,84,14.960000,230.100000,110,10.350000,11.500000,3,3.110000,0,False. +NE,112,415,388-4282,no,no,0,167.600000,100,28.490000,154.500000,90,13.130000,281.400000,107,12.660000,17.300000,3,4.670000,2,False. +IL,179,408,415-5132,no,no,0,234.500000,134,39.870000,164.200000,94,13.960000,191.400000,72,8.610000,6.100000,4,1.650000,1,False. +MA,57,510,352-4541,no,no,0,154.200000,78,26.210000,196.700000,85,16.720000,253.500000,97,11.410000,10.100000,9,2.730000,1,False. +AZ,127,415,373-5928,no,yes,14,143.200000,99,24.340000,169.900000,91,14.440000,221.600000,77,9.970000,11.600000,1,3.130000,1,False. +SD,122,415,406-7737,yes,yes,40,216.400000,80,36.790000,249.700000,90,21.220000,185.900000,99,8.370000,12.700000,4,3.430000,1,False. +MT,33,510,332-7607,no,yes,35,161.900000,85,27.520000,151.200000,82,12.850000,191.000000,131,8.590000,8.500000,2,2.300000,1,False. +VT,94,408,359-7788,no,no,0,118.700000,90,20.180000,205.100000,57,17.430000,172.200000,100,7.750000,10.400000,6,2.810000,3,False. +UT,100,408,384-1549,no,no,0,179.100000,123,30.450000,196.600000,132,16.710000,186.700000,116,8.400000,10.200000,10,2.750000,1,False. +HI,106,415,352-8508,no,no,0,147.900000,97,25.140000,209.300000,99,17.790000,162.100000,80,7.290000,8.800000,5,2.380000,2,False. +DC,148,415,404-1002,no,yes,38,209.200000,110,35.560000,116.600000,73,9.910000,109.600000,105,4.930000,16.500000,4,4.460000,2,False. +WI,120,415,414-2905,no,yes,29,244.300000,140,41.530000,322.300000,89,27.400000,166.800000,83,7.510000,10.600000,6,2.860000,0,False. +UT,91,415,380-9849,no,yes,34,175.300000,96,29.800000,262.300000,122,22.300000,143.900000,76,6.480000,5.600000,11,1.510000,1,False. +WA,86,510,387-6498,no,no,0,150.500000,92,25.590000,120.300000,95,10.230000,271.200000,96,12.200000,9.000000,2,2.430000,1,False. +SD,78,415,360-6024,no,yes,25,197.400000,73,33.560000,295.700000,113,25.130000,211.700000,73,9.530000,13.200000,2,3.560000,0,False. +MT,94,510,352-5815,no,no,0,163.500000,136,27.800000,143.700000,111,12.210000,253.400000,82,11.400000,12.600000,5,3.400000,1,False. +NJ,85,415,366-2273,no,no,0,236.900000,93,40.270000,197.700000,113,16.800000,309.100000,78,13.910000,11.400000,7,3.080000,2,True. +CT,89,415,414-9119,no,no,0,82.300000,77,13.990000,167.200000,80,14.210000,194.700000,70,8.760000,7.200000,4,1.940000,1,False. +VA,128,415,409-8796,no,no,0,216.000000,111,36.720000,153.700000,115,13.060000,227.000000,74,10.220000,12.700000,4,3.430000,1,False. +NC,115,415,337-2442,yes,no,0,180.000000,119,30.600000,198.800000,126,16.900000,217.100000,70,9.770000,12.400000,3,3.350000,1,False. +AK,76,415,404-1931,no,no,0,143.700000,55,24.430000,173.100000,108,14.710000,239.100000,95,10.760000,5.800000,6,1.570000,1,False. +MD,75,415,367-9765,no,yes,39,198.200000,107,33.690000,280.400000,132,23.830000,129.600000,73,5.830000,11.300000,7,3.050000,1,False. +IL,90,415,378-7299,no,yes,29,185.600000,106,31.550000,219.700000,113,18.670000,152.100000,120,6.840000,11.100000,5,3.000000,2,False. +CT,30,408,410-5192,no,no,0,137.600000,108,23.390000,162.000000,80,13.770000,187.700000,126,8.450000,5.800000,10,1.570000,3,False. +KS,105,415,405-1108,yes,no,0,273.900000,119,46.560000,278.600000,103,23.680000,255.300000,90,11.490000,10.900000,7,2.940000,1,True. +MA,102,415,392-1734,no,yes,31,125.300000,92,21.300000,141.200000,108,12.000000,168.200000,68,7.570000,6.300000,2,1.700000,3,False. +NJ,83,415,395-6030,no,no,0,178.800000,102,30.400000,167.900000,84,14.270000,178.900000,65,8.050000,8.600000,4,2.320000,3,False. +AR,63,510,330-5168,no,yes,49,214.900000,86,36.530000,198.200000,89,16.850000,170.800000,139,7.690000,8.200000,5,2.210000,0,False. +MS,155,408,334-3142,no,no,0,163.000000,93,27.710000,203.900000,102,17.330000,159.000000,109,7.150000,15.100000,4,4.080000,2,False. +ND,82,415,362-9983,no,yes,29,163.800000,77,27.850000,134.900000,112,11.470000,79.300000,95,3.570000,8.800000,2,2.380000,2,False. +IN,87,510,414-2606,no,no,0,189.500000,113,32.220000,204.900000,100,17.420000,221.700000,93,9.980000,13.400000,3,3.620000,1,False. +MI,115,415,402-4501,no,yes,26,155.200000,110,26.380000,230.900000,133,19.630000,261.600000,100,11.770000,4.500000,4,1.220000,0,False. +AR,99,510,387-2604,yes,no,0,242.300000,102,41.190000,350.900000,102,29.830000,163.100000,93,7.340000,11.300000,3,3.050000,0,True. +VT,121,415,400-3343,yes,yes,44,254.100000,127,43.200000,180.200000,108,15.320000,196.200000,129,8.830000,8.700000,4,2.350000,3,False. +WV,54,510,353-2450,no,yes,33,112.000000,90,19.040000,208.000000,112,17.680000,150.300000,83,6.760000,11.300000,4,3.050000,2,False. +ME,105,408,406-2032,no,no,0,115.500000,73,19.640000,267.300000,83,22.720000,114.200000,90,5.140000,13.300000,5,3.590000,3,False. +IA,73,415,409-4462,no,no,0,137.100000,102,23.310000,210.800000,114,17.920000,191.400000,120,8.610000,11.100000,4,3.000000,1,False. +CT,95,415,392-5941,no,no,0,198.400000,113,33.730000,235.900000,144,20.050000,325.600000,99,14.650000,10.100000,3,2.730000,0,False. +NM,21,415,334-9182,no,yes,19,132.700000,94,22.560000,204.600000,101,17.390000,154.700000,78,6.960000,12.900000,7,3.480000,3,False. +OR,163,408,346-3445,no,yes,25,219.600000,99,37.330000,210.400000,99,17.880000,242.700000,88,10.920000,13.800000,8,3.730000,2,False. +VT,57,415,368-9507,no,no,0,169.600000,96,28.830000,234.700000,112,19.950000,285.400000,83,12.840000,11.200000,4,3.020000,0,False. +RI,104,408,382-3966,yes,no,0,160.400000,73,27.270000,293.900000,103,24.980000,306.600000,90,13.800000,12.600000,5,3.400000,4,False. +RI,83,415,334-5844,no,yes,20,95.000000,89,16.150000,167.900000,92,14.270000,200.600000,79,9.030000,11.200000,2,3.020000,0,False. +NM,141,415,362-9411,no,no,0,160.100000,87,27.220000,256.700000,120,21.820000,270.000000,107,12.150000,7.000000,1,1.890000,2,False. +AL,95,415,390-3565,no,no,0,194.600000,114,33.080000,232.800000,106,19.790000,173.400000,92,7.800000,3.800000,2,1.030000,3,False. +MT,184,415,417-4810,no,no,0,236.400000,73,40.190000,287.300000,120,24.420000,192.000000,94,8.640000,13.800000,4,3.730000,1,True. +CT,74,408,384-3389,no,no,0,157.100000,95,26.710000,213.100000,36,18.110000,280.400000,77,12.620000,7.600000,3,2.050000,2,False. +TN,67,415,414-9717,no,no,0,179.800000,125,30.570000,173.200000,86,14.720000,272.800000,97,12.280000,10.900000,4,2.940000,0,False. +ID,104,415,357-1700,yes,no,0,148.200000,108,25.190000,161.800000,113,13.750000,259.300000,103,11.670000,11.000000,4,2.970000,0,False. +TX,71,415,376-7207,no,yes,39,183.200000,103,31.140000,209.400000,111,17.800000,172.400000,109,7.760000,11.900000,6,3.210000,1,False. +NH,149,415,368-7706,no,no,0,119.200000,88,20.260000,168.300000,110,14.310000,204.700000,119,9.210000,12.200000,6,3.290000,4,True. +ND,154,408,346-4216,no,yes,35,224.000000,102,38.080000,192.000000,99,16.320000,163.100000,100,7.340000,9.600000,2,2.590000,0,False. +SC,138,510,370-9533,no,yes,21,19.500000,149,3.320000,140.900000,109,11.980000,179.700000,111,8.090000,7.900000,1,2.130000,0,False. +KS,117,415,372-1493,no,no,0,184.800000,83,31.420000,248.600000,101,21.130000,133.100000,113,5.990000,9.600000,8,2.590000,1,False. +ME,130,408,387-6031,no,no,0,176.300000,140,29.970000,201.000000,104,17.090000,161.900000,123,7.290000,11.300000,5,3.050000,1,False. +RI,73,415,366-6248,no,no,0,241.700000,115,41.090000,168.500000,133,14.320000,169.800000,122,7.640000,11.100000,2,3.000000,2,False. +WI,100,510,369-3756,no,yes,38,224.700000,121,38.200000,294.000000,131,24.990000,290.000000,61,13.050000,9.800000,6,2.650000,0,False. +NC,149,510,363-1719,no,no,0,207.300000,115,35.240000,198.400000,82,16.860000,114.100000,83,5.130000,8.600000,4,2.320000,1,False. +OH,29,408,402-6666,no,no,0,196.800000,81,33.460000,168.000000,110,14.280000,132.600000,98,5.970000,12.700000,7,3.430000,2,False. +WY,131,510,408-9779,no,no,0,110.900000,74,18.850000,115.600000,90,9.830000,190.500000,114,8.570000,15.800000,9,4.270000,1,False. +NJ,153,510,407-2441,no,no,0,122.500000,145,20.830000,273.300000,103,23.230000,197.800000,71,8.900000,8.000000,3,2.160000,2,False. +ND,84,510,384-5027,no,no,0,226.900000,144,38.570000,201.600000,122,17.140000,130.200000,121,5.860000,13.200000,5,3.560000,2,False. +WI,133,510,380-3161,no,no,0,187.000000,65,31.790000,141.400000,128,12.020000,238.200000,108,10.720000,10.000000,8,2.700000,2,False. +KY,112,415,360-8135,no,no,0,170.500000,113,28.990000,193.200000,129,16.420000,188.000000,91,8.460000,11.200000,6,3.020000,0,False. +NY,87,415,399-5426,no,no,0,204.800000,101,34.820000,161.000000,80,13.690000,285.700000,89,12.860000,9.500000,3,2.570000,0,False. +MO,72,415,385-2564,no,no,0,165.900000,114,28.200000,235.900000,97,20.050000,210.100000,120,9.450000,12.000000,5,3.240000,2,False. +AZ,66,510,337-8618,no,no,0,154.000000,133,26.180000,198.900000,121,16.910000,151.900000,100,6.840000,9.500000,3,2.570000,4,True. +MN,65,510,354-8491,no,yes,29,158.100000,104,26.880000,322.200000,81,27.390000,210.000000,96,9.450000,8.900000,6,2.400000,1,False. +CO,74,415,394-6278,no,no,0,225.200000,93,38.280000,215.100000,120,18.280000,241.800000,95,10.880000,9.100000,2,2.460000,2,False. +MD,116,408,405-2276,no,no,0,159.400000,79,27.100000,179.500000,88,15.260000,167.800000,71,7.550000,9.700000,2,2.620000,6,True. +AR,68,510,376-1000,no,no,0,172.700000,95,29.360000,139.100000,90,11.820000,174.300000,99,7.840000,11.700000,1,3.160000,2,False. +TN,68,415,397-1659,no,no,0,222.800000,99,37.880000,175.800000,85,14.940000,202.000000,111,9.090000,11.000000,3,2.970000,3,False. +DE,54,415,379-3953,yes,no,0,214.100000,77,36.400000,240.500000,94,20.440000,188.900000,75,8.500000,10.100000,3,2.730000,1,False. +TN,99,408,418-6512,no,no,0,54.800000,92,9.320000,173.000000,103,14.710000,195.100000,125,8.780000,7.500000,3,2.030000,1,False. +WI,107,408,392-5296,no,no,0,134.000000,104,22.780000,174.500000,94,14.830000,311.100000,79,14.000000,7.300000,3,1.970000,3,False. +WV,124,510,355-3814,no,no,0,184.800000,74,31.420000,175.100000,84,14.880000,158.200000,95,7.120000,10.500000,6,2.840000,1,False. +CT,95,415,375-2098,no,yes,36,283.100000,112,48.130000,286.200000,86,24.330000,261.700000,129,11.780000,11.300000,3,3.050000,3,False. +MN,173,510,372-7990,no,no,0,291.800000,143,49.610000,214.300000,134,18.220000,151.200000,119,6.800000,9.900000,2,2.670000,0,True. +MO,110,408,356-4558,no,no,0,222.700000,94,37.860000,105.800000,98,8.990000,214.800000,78,9.670000,13.500000,4,3.650000,1,False. +VA,102,510,398-5788,no,no,0,174.500000,79,29.670000,236.800000,136,20.130000,270.400000,110,12.170000,8.500000,5,2.300000,0,False. +NH,130,408,390-4003,no,no,0,68.400000,86,11.630000,193.300000,110,16.430000,171.500000,139,7.720000,10.400000,4,2.810000,0,False. +OK,91,408,332-8103,no,yes,31,273.000000,78,46.410000,215.500000,98,18.320000,104.700000,114,4.710000,9.600000,2,2.590000,1,False. +CT,64,415,406-9926,yes,no,0,225.300000,134,38.300000,108.200000,87,9.200000,139.600000,132,6.280000,17.300000,9,4.670000,1,True. +TN,176,415,418-2402,no,yes,23,283.200000,130,48.140000,162.600000,74,13.820000,177.700000,104,8.000000,7.200000,6,1.940000,1,False. +MD,93,510,384-3299,yes,no,0,131.400000,78,22.340000,219.700000,106,18.670000,155.700000,103,7.010000,11.100000,2,3.000000,1,True. +WI,84,510,378-9090,no,yes,12,89.700000,87,15.250000,138.600000,73,11.780000,165.800000,114,7.460000,10.700000,2,2.890000,1,False. +SD,138,510,350-6473,no,no,0,127.100000,102,21.610000,247.700000,106,21.050000,207.700000,75,9.350000,5.000000,3,1.350000,3,False. +ND,101,415,379-4583,no,yes,28,105.900000,132,18.000000,231.700000,107,19.690000,281.300000,120,12.660000,10.700000,5,2.890000,1,False. +VA,136,408,411-5078,no,no,0,142.300000,79,24.190000,158.000000,113,13.430000,177.500000,75,7.990000,6.000000,11,1.620000,2,False. +UT,111,510,347-4982,no,no,0,191.300000,80,32.520000,138.500000,94,11.770000,246.000000,107,11.070000,6.400000,3,1.730000,2,False. +MA,132,408,341-9274,no,yes,36,201.900000,93,34.320000,156.300000,75,13.290000,131.300000,92,5.910000,13.700000,5,3.700000,0,False. +SD,128,415,353-7461,no,no,0,247.300000,91,42.040000,182.700000,60,15.530000,143.200000,112,6.440000,14.700000,2,3.970000,3,False. +AL,92,408,371-7366,no,yes,38,242.200000,96,41.170000,159.700000,144,13.570000,210.000000,108,9.450000,8.900000,1,2.400000,1,False. +AL,197,415,395-7923,yes,no,0,127.300000,80,21.640000,222.300000,115,18.900000,173.900000,95,7.830000,13.700000,5,3.700000,5,True. +WV,191,408,351-8398,no,no,0,162.000000,104,27.540000,241.200000,120,20.500000,210.400000,83,9.470000,10.900000,7,2.940000,1,False. +SC,99,415,329-2204,no,yes,33,179.100000,93,30.450000,238.300000,102,20.260000,165.700000,96,7.460000,10.600000,1,2.860000,2,False. +FL,106,415,407-7507,no,yes,31,197.400000,125,33.560000,123.400000,110,10.490000,115.600000,101,5.200000,12.300000,4,3.320000,3,False. +KY,88,415,405-8075,no,no,0,148.200000,82,25.190000,308.700000,67,26.240000,235.400000,79,10.590000,6.400000,4,1.730000,2,False. +UT,78,415,390-9698,no,no,0,193.100000,85,32.830000,172.100000,105,14.630000,129.600000,119,5.830000,10.200000,1,2.750000,0,False. +NY,98,408,403-4917,no,no,0,171.700000,99,29.190000,174.800000,87,14.860000,189.600000,130,8.530000,7.800000,6,2.110000,1,False. +MS,17,408,391-6709,no,yes,35,198.500000,123,33.750000,270.600000,74,23.000000,209.900000,130,9.450000,8.100000,10,2.190000,1,False. +NH,56,415,389-5988,no,yes,24,121.700000,87,20.690000,184.000000,76,15.640000,266.600000,98,12.000000,12.700000,3,3.430000,1,False. +VA,84,415,372-1534,no,no,0,130.200000,105,22.130000,278.000000,60,23.630000,305.400000,74,13.740000,14.000000,6,3.780000,2,False. +VT,95,510,395-6369,no,no,0,203.400000,96,34.580000,168.600000,61,14.330000,173.000000,105,7.790000,13.700000,3,3.700000,2,False. +WY,16,415,400-3197,no,no,0,174.700000,83,29.700000,280.800000,122,23.870000,171.700000,80,7.730000,10.500000,8,2.840000,5,False. +NV,76,510,377-4169,yes,no,0,241.000000,120,40.970000,231.800000,96,19.700000,220.200000,67,9.910000,9.900000,1,2.670000,1,True. +WV,93,415,384-5343,no,no,0,141.700000,95,24.090000,221.000000,100,18.790000,227.100000,71,10.220000,10.200000,3,2.750000,0,False. +WA,83,408,338-4472,no,no,0,134.800000,96,22.920000,167.200000,78,14.210000,161.500000,123,7.270000,7.700000,5,2.080000,2,False. +KS,123,415,332-2126,no,no,0,163.100000,119,27.730000,249.400000,51,21.200000,168.200000,77,7.570000,9.000000,10,2.430000,1,False. +VT,64,408,349-2157,no,no,0,145.500000,116,24.740000,228.400000,110,19.410000,273.400000,91,12.300000,8.900000,8,2.400000,1,False. +OK,82,510,393-4823,no,no,0,329.800000,73,56.070000,208.300000,120,17.710000,267.100000,102,12.020000,10.600000,6,2.860000,0,True. +GA,107,510,385-2683,no,no,0,194.500000,97,33.070000,186.300000,131,15.840000,178.300000,106,8.020000,12.700000,1,3.430000,2,False. +CO,110,510,345-8350,no,no,0,131.900000,93,22.420000,272.700000,106,23.180000,192.800000,105,8.680000,7.100000,4,1.920000,1,False. +AK,96,408,334-4506,no,yes,29,150.000000,91,25.500000,159.400000,75,13.550000,228.100000,55,10.260000,8.500000,3,2.300000,1,False. +TN,47,415,332-3544,no,yes,30,196.600000,93,33.420000,241.400000,140,20.520000,226.000000,118,10.170000,12.900000,4,3.480000,2,False. +KY,115,510,380-5102,no,no,0,99.700000,107,16.950000,145.100000,96,12.330000,149.400000,99,6.720000,14.100000,4,3.810000,2,False. +PA,69,415,395-6149,no,no,0,143.600000,88,24.410000,141.800000,86,12.050000,194.000000,83,8.730000,10.800000,5,2.920000,3,False. +CT,163,408,398-8122,no,yes,40,231.900000,56,39.420000,211.800000,91,18.000000,268.500000,74,12.080000,12.300000,3,3.320000,2,False. +CT,90,415,334-4438,no,no,0,37.800000,80,6.430000,155.300000,105,13.200000,175.000000,111,7.880000,14.200000,5,3.830000,3,False. +MN,98,415,384-7459,no,no,0,72.800000,107,12.380000,186.400000,103,15.840000,175.300000,110,7.890000,10.500000,4,2.840000,3,False. +WY,90,408,368-3931,no,yes,39,94.800000,89,16.120000,219.100000,91,18.620000,197.400000,65,8.880000,11.400000,5,3.080000,1,False. +PA,174,415,353-1352,no,yes,15,221.800000,143,37.710000,210.600000,115,17.900000,221.800000,109,9.980000,12.400000,9,3.350000,1,False. +OR,95,415,348-5725,no,no,0,269.000000,120,45.730000,233.700000,120,19.860000,179.300000,61,8.070000,7.300000,4,1.970000,2,True. +PA,79,415,365-2008,no,no,0,268.300000,114,45.610000,185.500000,111,15.770000,264.600000,88,11.910000,6.300000,7,1.700000,1,True. +OK,123,415,393-3635,no,yes,27,198.700000,127,33.780000,249.000000,105,21.170000,173.200000,124,7.790000,12.500000,5,3.380000,1,False. +VT,99,415,380-8727,no,no,0,115.500000,75,19.640000,218.100000,111,18.540000,254.900000,98,11.470000,11.500000,7,3.110000,7,True. +ID,114,415,381-2376,no,no,0,202.100000,100,34.360000,195.700000,102,16.630000,291.800000,120,13.130000,13.300000,5,3.590000,2,False. +PA,141,510,365-8114,no,no,0,215.600000,113,36.650000,200.600000,81,17.050000,153.800000,107,6.920000,12.400000,6,3.350000,1,False. +NM,132,408,415-5008,no,no,0,169.900000,107,28.880000,209.400000,121,17.800000,206.100000,79,9.270000,11.500000,2,3.110000,1,False. +FL,133,510,392-8318,no,no,0,201.700000,85,34.290000,169.400000,116,14.400000,286.300000,80,12.880000,6.000000,4,1.620000,0,False. +TX,133,408,401-4007,no,no,0,221.100000,133,37.590000,160.200000,140,13.620000,161.800000,84,7.280000,8.400000,3,2.270000,4,False. +VT,93,510,338-7709,no,yes,32,218.700000,117,37.180000,115.000000,61,9.780000,192.700000,85,8.670000,9.400000,5,2.540000,2,False. +MA,34,415,374-1981,no,no,0,293.700000,89,49.930000,272.500000,71,23.160000,178.200000,76,8.020000,11.000000,10,2.970000,2,True. +OR,140,415,333-5101,no,no,0,120.300000,108,20.450000,240.400000,84,20.430000,216.400000,74,9.740000,7.700000,3,2.080000,4,True. +DE,96,415,345-3734,no,yes,26,175.800000,96,29.890000,206.600000,84,17.560000,178.000000,105,8.010000,11.100000,2,3.000000,2,False. +FL,144,510,384-5004,no,no,0,278.500000,95,47.350000,240.700000,90,20.460000,120.000000,90,5.400000,11.600000,5,3.130000,1,True. +ID,24,408,341-9396,no,yes,29,236.300000,105,40.170000,190.800000,114,16.220000,129.000000,105,5.810000,7.200000,2,1.940000,3,False. +MD,54,415,408-6302,no,no,0,273.800000,113,46.550000,119.600000,156,10.170000,267.600000,117,12.040000,11.700000,3,3.160000,1,False. +WV,50,408,348-7193,no,no,0,131.100000,129,22.290000,160.500000,94,13.640000,206.900000,88,9.310000,5.600000,9,1.510000,5,True. +ID,92,415,417-4063,no,yes,23,167.400000,83,28.460000,258.600000,129,21.980000,116.400000,110,5.240000,11.200000,3,3.020000,4,False. +NV,96,408,375-6911,no,no,0,197.700000,68,33.610000,250.500000,53,21.290000,181.200000,67,8.150000,10.500000,3,2.840000,3,False. +OH,146,415,358-3604,no,no,0,169.500000,93,28.820000,230.900000,71,19.630000,269.800000,115,12.140000,9.000000,7,2.430000,2,False. +ID,138,415,339-7485,yes,yes,17,225.200000,116,38.280000,173.400000,88,14.740000,145.800000,99,6.560000,11.700000,4,3.160000,0,False. +SC,102,408,368-3078,no,no,0,174.500000,73,29.670000,213.700000,114,18.160000,164.700000,116,7.410000,10.300000,5,2.780000,4,False. +MO,76,510,418-7055,no,no,0,129.700000,84,22.050000,177.500000,80,15.090000,228.900000,87,10.300000,7.500000,3,2.030000,5,True. +NE,99,415,386-9981,no,no,0,200.000000,66,34.000000,107.900000,104,9.170000,233.700000,82,10.520000,11.400000,2,3.080000,3,False. +NC,83,510,366-2541,no,yes,36,95.900000,87,16.300000,261.600000,105,22.240000,228.600000,109,10.290000,13.300000,4,3.590000,0,False. +ME,36,510,335-3110,no,yes,25,152.800000,110,25.980000,242.800000,67,20.640000,147.400000,74,6.630000,9.100000,2,2.460000,1,False. +MI,70,510,400-7809,no,no,0,129.900000,102,22.080000,208.700000,133,17.740000,231.400000,93,10.410000,14.300000,3,3.860000,1,False. +AZ,109,415,404-3106,yes,no,0,268.400000,85,45.630000,150.600000,131,12.800000,297.900000,84,13.410000,9.700000,8,2.620000,2,True. +AZ,100,415,333-2337,no,no,0,188.500000,152,32.050000,148.300000,115,12.610000,179.800000,88,8.090000,15.200000,5,4.100000,2,False. +HI,104,408,353-6482,no,no,0,170.600000,97,29.000000,162.100000,111,13.780000,210.700000,131,9.480000,6.100000,1,1.650000,1,False. +NJ,106,415,397-8162,no,no,0,191.400000,124,32.540000,200.700000,116,17.060000,230.100000,76,10.350000,8.200000,3,2.210000,1,False. +MS,84,510,380-6722,no,no,0,75.300000,96,12.800000,179.900000,113,15.290000,193.800000,134,8.720000,12.300000,1,3.320000,1,False. +MA,80,510,329-2918,no,no,0,149.800000,123,25.470000,276.300000,75,23.490000,241.400000,75,10.860000,10.900000,7,2.940000,2,False. +SC,100,510,348-8022,no,no,0,115.900000,87,19.700000,111.300000,56,9.460000,170.200000,77,7.660000,7.100000,4,1.920000,1,False. +MN,99,408,388-4459,no,no,0,128.800000,86,21.900000,203.900000,105,17.330000,282.600000,131,12.720000,14.100000,4,3.810000,2,False. +WV,50,510,358-3114,no,no,0,131.700000,108,22.390000,216.500000,103,18.400000,196.100000,126,8.820000,11.000000,5,2.970000,1,False. +MS,105,415,343-9654,no,no,0,101.400000,48,17.240000,159.100000,119,13.520000,259.200000,53,11.660000,12.200000,2,3.290000,1,False. +VA,113,415,401-9909,no,yes,23,149.000000,104,25.330000,235.800000,67,20.040000,201.800000,76,9.080000,9.500000,5,2.570000,4,False. +MS,111,415,404-9978,no,yes,36,96.800000,123,16.460000,170.600000,105,14.500000,166.000000,85,7.470000,13.400000,4,3.620000,2,False. +NM,161,408,397-8011,no,no,0,107.500000,121,18.280000,256.400000,46,21.790000,247.200000,131,11.120000,12.600000,3,3.400000,2,False. +TX,70,415,341-8719,no,no,0,232.800000,95,39.580000,303.400000,111,25.790000,255.600000,104,11.500000,12.900000,7,3.480000,0,True. +HI,97,415,408-1242,no,yes,43,121.100000,105,20.590000,260.200000,115,22.120000,222.400000,100,10.010000,8.300000,5,2.240000,3,False. +WA,130,510,406-7726,no,no,0,124.300000,70,21.130000,270.700000,99,23.010000,239.500000,83,10.780000,3.500000,6,0.950000,0,False. +WI,92,415,351-2773,no,no,0,157.700000,101,26.810000,298.600000,100,25.380000,216.900000,99,9.760000,13.800000,3,3.730000,1,False. +CO,119,408,368-6174,no,no,0,124.300000,68,21.130000,207.100000,88,17.600000,157.400000,93,7.080000,14.800000,1,4.000000,0,False. +NV,115,415,334-5029,no,no,0,286.400000,125,48.690000,205.700000,74,17.480000,191.400000,141,8.610000,6.900000,6,1.860000,1,True. +RI,134,415,413-1789,no,no,0,141.700000,95,24.090000,205.600000,101,17.480000,218.500000,60,9.830000,8.800000,6,2.380000,0,False. +VA,127,408,414-1246,no,yes,25,173.000000,91,29.410000,245.800000,64,20.890000,300.000000,99,13.500000,4.800000,3,1.300000,0,False. +NJ,80,415,330-4978,no,no,0,268.700000,120,45.680000,301.000000,147,25.590000,167.000000,140,7.520000,5.800000,1,1.570000,2,True. +ND,153,415,386-1631,no,yes,31,218.500000,130,37.150000,134.200000,103,11.410000,118.900000,105,5.350000,9.400000,6,2.540000,0,False. +MN,85,415,363-1208,no,no,0,255.300000,114,43.400000,194.600000,83,16.540000,276.600000,78,12.450000,3.700000,5,1.000000,3,False. +HI,79,415,334-5263,no,no,0,41.900000,124,7.120000,211.000000,95,17.940000,237.900000,55,10.710000,11.400000,5,3.080000,1,False. +ND,35,415,361-4137,no,no,0,260.800000,87,44.340000,258.100000,78,21.940000,131.300000,123,5.910000,5.800000,2,1.570000,1,False. +WI,120,408,374-8187,no,yes,26,239.400000,94,40.700000,259.400000,88,22.050000,238.000000,132,10.710000,7.700000,3,2.080000,0,False. +MN,68,510,370-1525,no,no,0,226.700000,94,38.540000,168.400000,129,14.310000,188.700000,117,8.490000,10.200000,1,2.750000,0,False. +DC,60,408,355-3801,no,no,0,179.300000,147,30.480000,208.900000,89,17.760000,248.200000,98,11.170000,13.500000,6,3.650000,1,True. +KS,120,510,392-5605,no,no,0,158.000000,110,26.860000,197.000000,103,16.750000,154.900000,132,6.970000,10.000000,5,2.700000,1,False. +MT,71,510,363-1366,no,yes,23,175.700000,82,29.870000,258.900000,136,22.010000,268.400000,154,12.080000,14.100000,7,3.810000,1,False. +WV,124,415,358-5274,no,no,0,157.400000,107,26.760000,167.800000,112,14.260000,188.800000,102,8.500000,8.800000,3,2.380000,3,False. +ME,23,510,376-9607,no,no,0,113.100000,74,19.230000,168.800000,95,14.350000,262.900000,126,11.830000,6.900000,2,1.860000,1,True. +WY,225,415,374-1213,no,no,0,182.700000,142,31.060000,246.500000,63,20.950000,218.000000,103,9.810000,8.800000,2,2.380000,1,False. +NY,181,415,421-8537,yes,no,0,161.300000,83,27.420000,124.400000,83,10.570000,262.000000,98,11.790000,14.100000,3,3.810000,0,True. +VT,63,415,351-5576,no,no,0,142.500000,92,24.230000,208.300000,102,17.710000,228.900000,120,10.300000,7.500000,2,2.030000,2,False. +NC,54,415,407-7258,yes,no,0,190.500000,108,32.390000,259.700000,108,22.070000,141.500000,111,6.370000,9.700000,2,2.620000,2,True. +MO,80,408,405-4420,yes,yes,15,159.300000,110,27.080000,170.600000,120,14.500000,141.200000,82,6.350000,11.900000,5,3.210000,1,False. +NC,118,408,340-2855,yes,yes,39,153.800000,106,26.150000,123.300000,111,10.480000,117.800000,103,5.300000,9.200000,6,2.480000,1,False. +NJ,42,408,342-8002,yes,no,0,180.700000,127,30.720000,174.600000,94,14.840000,165.300000,114,7.440000,12.000000,6,3.240000,2,False. +OH,134,408,355-6826,no,no,0,202.700000,105,34.460000,224.900000,90,19.120000,253.900000,108,11.430000,12.100000,7,3.270000,0,False. +TX,66,415,402-3886,no,yes,35,190.800000,100,32.440000,261.300000,93,22.210000,209.500000,108,9.430000,8.900000,6,2.400000,0,False. +WA,66,415,336-5900,no,no,0,205.100000,102,34.870000,232.700000,109,19.780000,259.900000,95,11.700000,9.200000,6,2.480000,2,False. +TN,127,415,339-7684,no,yes,28,235.600000,124,40.050000,236.800000,113,20.130000,241.200000,127,10.850000,7.700000,2,2.080000,1,False. +HI,146,510,390-2433,no,no,0,189.300000,77,32.180000,155.900000,128,13.250000,186.000000,83,8.370000,7.400000,3,2.000000,0,False. +WY,93,408,360-7246,no,yes,42,166.900000,101,28.370000,273.200000,84,23.220000,171.000000,106,7.690000,11.500000,1,3.110000,1,False. +CT,77,415,335-6508,no,no,0,245.200000,87,41.680000,254.100000,83,21.600000,239.400000,91,10.770000,7.500000,4,2.030000,0,True. +NM,111,415,348-6720,no,no,0,132.600000,125,22.540000,221.100000,67,18.790000,127.900000,101,5.760000,12.700000,2,3.430000,4,True. +NJ,125,415,406-6400,no,no,0,182.300000,64,30.990000,139.800000,121,11.880000,171.600000,96,7.720000,11.600000,7,3.130000,2,False. +AL,115,510,390-7370,no,yes,14,192.300000,86,32.690000,88.700000,90,7.540000,229.400000,120,10.320000,10.500000,3,2.840000,2,False. +MN,115,510,390-5055,yes,no,0,122.000000,110,20.740000,220.200000,100,18.720000,179.700000,124,8.090000,10.800000,2,2.920000,2,True. +NC,114,408,405-7542,no,no,0,193.000000,101,32.810000,250.000000,81,21.250000,133.300000,79,6.000000,9.600000,2,2.590000,2,False. +OH,106,415,364-4927,no,no,0,158.600000,112,26.960000,220.000000,114,18.700000,252.900000,106,11.380000,9.100000,3,2.460000,0,False. +ND,118,415,329-3458,no,yes,39,91.500000,125,15.560000,219.900000,113,18.690000,229.000000,99,10.310000,12.700000,8,3.430000,2,False. +CO,59,510,331-3842,no,no,0,153.600000,92,26.110000,205.500000,88,17.470000,114.500000,89,5.150000,12.500000,10,3.380000,1,False. +ND,87,415,343-4147,yes,yes,40,221.600000,79,37.670000,157.100000,74,13.350000,222.400000,124,10.010000,11.500000,3,3.110000,1,False. +NY,21,415,335-2274,no,no,0,244.700000,81,41.600000,168.000000,117,14.280000,281.500000,87,12.670000,6.600000,1,1.780000,1,False. +WI,142,408,343-3227,no,yes,24,239.800000,103,40.770000,285.900000,65,24.300000,256.700000,106,11.550000,9.500000,4,2.570000,0,False. +WY,62,415,336-6907,no,no,0,172.400000,132,29.310000,230.500000,100,19.590000,228.200000,109,10.270000,11.000000,5,2.970000,0,False. +OR,149,415,331-1391,no,no,0,242.500000,83,41.230000,245.400000,97,20.860000,219.600000,80,9.880000,10.000000,3,2.700000,3,True. +CO,54,510,360-1643,no,yes,39,117.600000,82,19.990000,159.200000,60,13.530000,236.400000,113,10.640000,11.300000,10,3.050000,2,False. +LA,112,510,410-2518,no,no,0,174.500000,127,29.670000,259.300000,71,22.040000,170.500000,120,7.670000,11.300000,7,3.050000,1,False. +AL,68,510,344-4970,no,no,0,157.300000,83,26.740000,220.900000,85,18.780000,218.900000,129,9.850000,12.000000,7,3.240000,1,False. +TX,201,415,408-1486,no,yes,21,192.000000,97,32.640000,239.100000,81,20.320000,116.100000,125,5.220000,15.100000,3,4.080000,1,False. +PA,88,510,396-1648,no,no,0,218.200000,76,37.090000,169.300000,60,14.390000,141.100000,99,6.350000,8.000000,1,2.160000,1,False. +IL,85,415,391-2022,no,yes,29,144.600000,97,24.580000,140.000000,102,11.900000,165.400000,148,7.440000,10.900000,3,2.940000,1,False. +DE,51,415,420-6465,yes,no,0,153.600000,108,26.110000,232.900000,85,19.800000,214.200000,92,9.640000,14.100000,4,3.810000,0,True. +MO,45,510,398-2628,no,yes,29,135.800000,104,23.090000,222.500000,101,18.910000,235.600000,92,10.600000,7.900000,6,2.130000,2,False. +AR,116,510,409-5519,no,no,0,160.700000,69,27.320000,146.800000,106,12.480000,287.800000,144,12.950000,8.200000,5,2.210000,0,False. +OH,146,408,391-8554,no,yes,31,202.500000,91,34.430000,241.400000,108,20.520000,169.600000,77,7.630000,7.800000,2,2.110000,1,False. +WI,63,510,395-1693,no,yes,34,152.200000,119,25.870000,227.100000,91,19.300000,195.700000,103,8.810000,12.300000,5,3.320000,1,False. +GA,133,510,393-3194,no,no,0,227.400000,90,38.660000,73.200000,135,6.220000,114.300000,99,5.140000,4.700000,7,1.270000,0,False. +KY,125,408,328-3402,no,no,0,191.600000,115,32.570000,205.600000,108,17.480000,210.200000,123,9.460000,9.200000,3,2.480000,2,False. +OH,72,510,411-4781,no,no,0,138.900000,111,23.610000,211.600000,102,17.990000,179.500000,91,8.080000,10.800000,3,2.920000,1,False. +TN,130,408,401-2581,no,no,0,127.000000,102,21.590000,206.900000,107,17.590000,231.700000,99,10.430000,6.100000,6,1.650000,0,False. +SD,97,415,385-1214,no,no,0,168.600000,87,28.660000,259.200000,105,22.030000,279.800000,123,12.590000,7.300000,4,1.970000,1,False. +NY,54,415,348-6853,no,no,0,286.600000,73,48.720000,223.200000,108,18.970000,203.700000,107,9.170000,11.500000,5,3.110000,1,True. +GA,160,415,341-8412,no,yes,29,164.600000,121,27.980000,262.800000,108,22.340000,123.800000,131,5.570000,15.200000,4,4.100000,1,False. +TX,79,415,330-8142,no,no,0,144.000000,90,24.480000,135.800000,91,11.540000,212.400000,129,9.560000,13.000000,4,3.510000,1,False. +WV,92,415,361-1404,no,yes,47,141.600000,95,24.070000,207.900000,130,17.670000,203.600000,95,9.160000,10.200000,11,2.750000,0,False. +MI,59,415,375-9671,no,no,0,204.300000,65,34.730000,247.300000,123,21.020000,214.700000,94,9.660000,12.000000,4,3.240000,1,False. +ND,132,510,372-1824,no,no,0,163.200000,80,27.740000,167.600000,90,14.250000,87.500000,90,3.940000,6.200000,10,1.670000,1,False. +NE,21,510,408-3606,no,no,0,225.000000,110,38.250000,244.200000,111,20.760000,221.200000,93,9.950000,10.700000,4,2.890000,0,False. +SD,93,415,333-3595,no,no,0,176.100000,103,29.940000,199.700000,130,16.970000,263.900000,96,11.880000,8.500000,6,2.300000,2,False. +NJ,147,415,379-7009,no,yes,36,254.200000,78,43.210000,228.100000,105,19.390000,98.000000,125,4.410000,13.800000,7,3.730000,5,False. +AK,101,510,411-4940,no,no,0,174.900000,105,29.730000,262.000000,75,22.270000,210.000000,93,9.450000,8.500000,5,2.300000,1,False. +CT,125,415,409-7523,yes,no,0,187.300000,118,31.840000,160.700000,111,13.660000,263.800000,112,11.870000,9.600000,2,2.590000,0,True. +CO,63,415,408-6725,no,no,0,211.800000,84,36.010000,230.900000,137,19.630000,217.100000,99,9.770000,10.700000,9,2.890000,3,False. +MD,107,415,350-2384,no,no,0,241.900000,102,41.120000,126.900000,117,10.790000,185.600000,92,8.350000,11.700000,6,3.160000,0,False. +ND,110,408,348-1706,no,no,0,196.100000,103,33.340000,199.700000,123,16.970000,135.900000,71,6.120000,12.900000,1,3.480000,3,False. +NH,83,415,415-6145,no,no,0,231.300000,100,39.320000,210.400000,84,17.880000,217.400000,106,9.780000,12.400000,2,3.350000,3,False. +MN,117,408,373-3731,no,no,0,161.600000,104,27.470000,196.300000,119,16.690000,294.800000,111,13.270000,13.800000,2,3.730000,1,False. +KY,124,415,341-3349,no,no,0,194.000000,103,32.980000,241.000000,116,20.490000,227.500000,153,10.240000,11.900000,5,3.210000,0,False. +NH,115,510,399-8859,no,no,0,109.700000,148,18.650000,223.800000,87,19.020000,240.300000,96,10.810000,15.400000,8,4.160000,3,False. +CO,156,408,377-4518,yes,no,0,277.000000,119,47.090000,238.300000,106,20.260000,94.400000,96,4.250000,8.300000,3,2.240000,1,False. +KY,89,408,341-1594,no,no,0,192.100000,83,32.660000,163.600000,88,13.910000,169.700000,138,7.640000,6.100000,3,1.650000,0,False. +KY,72,415,418-8770,no,no,0,198.400000,147,33.730000,216.900000,121,18.440000,112.800000,125,5.080000,13.100000,4,3.540000,0,False. +IN,101,415,332-9118,no,yes,42,209.200000,82,35.560000,159.700000,74,13.570000,181.600000,100,8.170000,9.500000,3,2.570000,0,False. +OR,53,415,386-1418,no,no,0,184.800000,98,31.420000,216.400000,125,18.390000,141.100000,116,6.350000,18.400000,3,4.970000,2,False. +SD,116,408,393-3535,no,no,0,167.800000,119,28.530000,142.000000,123,12.070000,190.700000,128,8.580000,7.300000,4,1.970000,2,False. +DE,78,408,328-9006,no,no,0,139.200000,140,23.660000,191.400000,113,16.270000,286.500000,125,12.890000,11.800000,3,3.190000,3,False. +OR,117,415,402-2482,no,yes,17,221.300000,82,37.620000,167.600000,100,14.250000,262.700000,87,11.820000,4.400000,4,1.190000,0,False. +NE,56,510,408-4865,no,no,0,121.600000,84,20.670000,165.300000,115,14.050000,243.900000,95,10.980000,8.900000,2,2.400000,1,False. +OH,123,408,396-6247,no,yes,39,270.400000,99,45.970000,245.100000,110,20.830000,108.900000,113,4.900000,15.400000,7,4.160000,1,False. +OH,127,408,396-9462,no,no,0,139.600000,94,23.730000,240.900000,112,20.480000,127.100000,88,5.720000,8.800000,4,2.380000,2,False. +AR,116,415,396-9279,no,yes,23,253.000000,78,43.010000,138.900000,121,11.810000,277.800000,104,12.500000,11.800000,3,3.190000,2,False. +KS,138,510,363-8715,no,yes,26,183.900000,83,31.260000,240.700000,93,20.460000,185.700000,125,8.360000,15.000000,3,4.050000,1,False. +TX,120,415,356-1358,no,no,0,203.300000,108,34.560000,259.900000,66,22.090000,115.900000,103,5.220000,7.800000,2,2.110000,3,False. +WI,102,408,360-7839,no,no,0,200.600000,106,34.100000,152.500000,127,12.960000,199.400000,128,8.970000,7.700000,2,2.080000,3,False. +OR,95,415,364-8774,no,no,0,167.600000,96,28.490000,176.000000,89,14.960000,250.900000,113,11.290000,13.400000,6,3.620000,2,False. +VA,102,408,348-5038,no,no,0,156.500000,67,26.610000,204.300000,103,17.370000,141.900000,72,6.390000,9.900000,2,2.670000,2,False. +AR,89,415,365-4728,no,yes,25,215.100000,140,36.570000,197.400000,69,16.780000,162.100000,117,7.290000,10.600000,10,2.860000,1,False. +CT,50,408,351-9037,no,no,0,301.700000,82,51.290000,167.100000,118,14.200000,72.200000,89,3.250000,10.500000,6,2.840000,1,False. +OH,93,415,397-9184,no,yes,42,152.300000,90,25.890000,267.500000,102,22.740000,266.900000,130,12.010000,11.300000,5,3.050000,7,False. +WY,68,510,398-4538,no,no,0,195.400000,116,33.220000,212.100000,101,18.030000,138.400000,134,6.230000,15.100000,11,4.080000,1,False. +IL,70,408,382-6827,no,no,0,208.700000,97,35.480000,275.500000,83,23.420000,182.500000,122,8.210000,8.000000,3,2.160000,2,False. +MO,138,415,408-1340,no,yes,29,190.100000,87,32.320000,223.200000,123,18.970000,256.200000,130,11.530000,14.200000,6,3.830000,0,False. +DC,141,415,333-9511,no,yes,37,185.400000,87,31.520000,178.500000,128,15.170000,218.300000,107,9.820000,8.000000,3,2.160000,4,False. +MA,112,415,358-7379,no,yes,17,183.200000,95,31.140000,252.800000,125,21.490000,156.700000,95,7.050000,9.700000,3,2.620000,0,False. +NH,117,510,397-1766,yes,no,0,54.200000,100,9.210000,303.200000,84,25.770000,171.800000,84,7.730000,8.600000,2,2.320000,1,True. +IA,1,408,331-2144,no,yes,26,208.000000,115,35.360000,185.000000,113,15.730000,177.700000,144,8.000000,8.100000,9,2.190000,1,False. +AL,70,415,345-7014,no,no,0,230.300000,110,39.150000,77.900000,87,6.620000,247.100000,105,11.120000,13.200000,4,3.560000,1,False. +OR,87,510,395-1898,no,yes,22,240.800000,102,40.940000,75.900000,106,6.450000,224.600000,115,10.110000,7.100000,3,1.920000,2,False. +WV,52,510,373-8920,no,yes,21,195.700000,119,33.270000,106.200000,95,9.030000,157.400000,94,7.080000,5.300000,3,1.430000,2,False. +WA,97,408,373-8908,no,no,0,276.100000,82,46.940000,201.100000,106,17.090000,231.300000,73,10.410000,8.900000,4,2.400000,0,True. +NV,105,408,415-1203,no,no,0,166.100000,93,28.240000,175.900000,106,14.950000,243.500000,55,10.960000,16.200000,3,4.370000,2,False. +SC,77,510,369-7017,no,yes,28,135.900000,117,23.100000,244.500000,102,20.780000,207.500000,74,9.340000,11.500000,3,3.110000,4,True. +NC,80,415,420-8435,yes,no,0,189.100000,122,32.150000,223.200000,92,18.970000,269.000000,116,12.110000,13.900000,3,3.750000,2,True. +NH,120,510,395-2579,no,yes,43,177.900000,117,30.240000,175.100000,70,14.880000,161.300000,117,7.260000,11.500000,4,3.110000,1,False. +WY,54,408,405-7850,no,yes,39,143.900000,73,24.460000,210.300000,117,17.880000,129.200000,117,5.810000,12.500000,8,3.380000,2,False. +FL,148,510,394-7710,yes,no,0,148.200000,138,25.190000,159.600000,123,13.570000,197.400000,62,8.880000,8.600000,3,2.320000,2,False. +PA,119,408,342-4122,no,no,0,287.100000,115,48.810000,159.300000,99,13.540000,216.800000,86,9.760000,13.900000,1,3.750000,2,True. +NC,162,408,340-1876,no,yes,26,179.700000,144,30.550000,218.100000,129,18.540000,212.300000,105,9.550000,9.300000,8,2.510000,1,True. +MO,85,510,383-6095,no,no,0,165.800000,96,28.190000,190.000000,141,16.150000,144.000000,116,6.480000,10.900000,3,2.940000,5,True. +KS,101,510,413-1061,no,yes,25,144.100000,144,24.500000,167.600000,105,14.250000,240.000000,107,10.800000,14.500000,3,3.920000,1,False. +KY,172,415,343-5347,no,no,0,172.500000,85,29.330000,253.100000,71,21.510000,221.600000,113,9.970000,5.900000,6,1.590000,0,False. +DE,80,415,376-4861,no,no,0,199.800000,138,33.970000,167.100000,91,14.200000,271.800000,94,12.230000,5.500000,4,1.490000,1,False. +WI,67,510,417-2265,no,no,0,109.100000,134,18.550000,142.300000,76,12.100000,91.200000,86,4.100000,10.900000,5,2.940000,2,False. +CO,86,408,419-7415,no,no,0,171.800000,106,29.210000,301.700000,44,25.640000,139.400000,108,6.270000,9.700000,5,2.620000,1,False. +NM,107,415,407-2259,no,no,0,222.300000,101,37.790000,286.000000,111,24.310000,249.400000,117,11.220000,12.100000,4,3.270000,1,True. +DE,133,510,333-2906,no,no,0,245.800000,102,41.790000,264.700000,90,22.500000,111.700000,103,5.030000,11.200000,7,3.020000,0,False. +IL,116,510,360-7477,no,no,0,164.600000,110,27.980000,270.600000,103,23.000000,230.400000,109,10.370000,8.000000,3,2.160000,0,False. +WA,63,408,342-5243,no,no,0,211.700000,107,35.990000,271.700000,77,23.090000,203.300000,108,9.150000,7.400000,7,2.000000,0,False. +MA,119,408,417-3999,yes,yes,16,147.200000,103,25.020000,160.100000,96,13.610000,184.000000,120,8.280000,7.700000,2,2.080000,0,True. +OH,133,408,379-1720,yes,no,0,254.700000,103,43.300000,252.200000,80,21.440000,178.100000,103,8.010000,8.000000,3,2.160000,0,True. +TN,94,408,368-3117,yes,no,0,170.100000,113,28.920000,271.800000,94,23.100000,110.700000,78,4.980000,8.700000,4,2.350000,1,False. +MA,69,510,352-5000,no,no,0,195.100000,91,33.170000,261.500000,57,22.230000,203.800000,90,9.170000,11.400000,5,3.080000,0,False. +MI,146,408,405-7676,no,no,0,149.300000,83,25.380000,187.100000,130,15.900000,149.800000,100,6.740000,7.900000,4,2.130000,7,True. +TX,119,510,361-2349,no,no,0,81.900000,75,13.920000,253.800000,114,21.570000,213.100000,125,9.590000,8.900000,1,2.400000,2,True. +NH,142,408,383-2901,yes,yes,25,191.100000,109,32.490000,149.600000,120,12.720000,227.800000,60,10.250000,9.800000,3,2.650000,0,False. +MD,123,408,369-7049,no,no,0,206.900000,115,35.170000,224.400000,86,19.070000,197.400000,60,8.880000,8.300000,2,2.240000,3,False. +MS,101,408,387-5533,no,no,0,239.000000,156,40.630000,273.000000,106,23.210000,278.200000,93,12.520000,13.500000,8,3.650000,1,True. +AZ,43,415,362-3660,no,no,0,179.300000,97,30.480000,252.700000,126,21.480000,227.500000,114,10.240000,8.000000,5,2.160000,0,False. +IN,69,408,357-3577,no,no,0,185.300000,91,31.500000,219.100000,88,18.620000,243.600000,107,10.960000,5.500000,5,1.490000,0,False. +NY,15,510,394-3312,yes,no,0,141.400000,80,24.040000,123.900000,76,10.530000,323.500000,88,14.560000,8.100000,3,2.190000,2,False. +WI,107,510,395-8330,no,yes,25,248.600000,91,42.260000,119.300000,115,10.140000,194.300000,83,8.740000,12.000000,1,3.240000,1,False. +WV,67,510,373-8895,no,no,0,152.500000,131,25.930000,252.400000,107,21.450000,185.400000,104,8.340000,4.900000,3,1.320000,2,False. +NY,99,415,386-4581,no,no,0,145.600000,102,24.750000,230.900000,87,19.630000,181.500000,86,8.170000,11.400000,7,3.080000,1,False. +OK,46,415,354-8191,no,no,0,164.200000,116,27.910000,196.200000,153,16.680000,236.100000,119,10.620000,8.100000,1,2.190000,1,False. +NC,55,408,359-7562,yes,no,0,221.000000,115,37.570000,165.400000,97,14.060000,235.400000,117,10.590000,9.700000,4,2.620000,1,False. +KY,39,415,359-4336,no,no,0,295.400000,126,50.220000,232.100000,117,19.730000,204.400000,123,9.200000,11.500000,2,3.110000,1,True. +TX,92,510,336-9901,no,no,0,139.800000,98,23.770000,174.900000,143,14.870000,201.600000,135,9.070000,9.400000,7,2.540000,2,False. +CT,56,415,406-3069,no,no,0,162.300000,99,27.590000,149.100000,78,12.670000,255.500000,115,11.500000,14.800000,1,4.000000,4,True. +NE,76,415,334-6519,no,no,0,272.700000,97,46.360000,236.400000,95,20.090000,235.500000,105,10.600000,7.700000,2,2.080000,0,True. +HI,132,408,361-8113,yes,yes,33,200.300000,75,34.050000,226.600000,67,19.260000,198.800000,91,8.950000,12.900000,3,3.480000,2,False. +SC,140,510,347-9769,no,yes,28,157.100000,77,26.710000,172.400000,97,14.650000,184.500000,94,8.300000,11.100000,9,3.000000,1,False. +AK,51,510,352-9130,yes,yes,12,135.800000,60,23.090000,200.600000,134,17.050000,192.400000,98,8.660000,12.300000,7,3.320000,2,False. +SD,27,408,378-4557,no,no,0,236.700000,110,40.240000,231.900000,92,19.710000,164.700000,85,7.410000,12.700000,6,3.430000,1,False. +ID,224,510,360-8919,no,no,0,111.400000,133,18.940000,175.000000,66,14.880000,217.200000,106,9.770000,5.500000,6,1.490000,3,False. +OK,105,510,405-4109,yes,yes,28,156.100000,89,26.540000,107.100000,114,9.100000,167.700000,95,7.550000,14.700000,3,3.970000,0,True. +WA,117,408,381-2498,no,no,0,191.100000,93,32.490000,282.800000,56,24.040000,84.800000,118,3.820000,12.000000,4,3.240000,2,False. +SD,91,415,357-5696,no,no,0,153.000000,123,26.010000,141.100000,127,11.990000,171.500000,76,7.720000,10.300000,15,2.780000,1,True. +OH,135,415,412-2947,no,no,0,218.800000,123,37.200000,242.800000,64,20.640000,85.800000,80,3.860000,10.300000,3,2.780000,4,False. +VA,146,415,363-3571,no,no,0,205.400000,101,34.920000,134.900000,77,11.470000,310.500000,83,13.970000,10.300000,2,2.780000,3,False. +WI,147,415,405-5403,yes,no,0,225.200000,111,38.280000,184.900000,98,15.720000,143.200000,146,6.440000,9.900000,1,2.670000,0,True. +IN,68,510,330-9354,no,no,0,249.900000,127,42.480000,254.500000,118,21.630000,273.200000,98,12.290000,8.900000,6,2.400000,2,True. +NM,68,408,396-7091,no,no,0,131.600000,89,22.370000,137.000000,109,11.650000,256.300000,107,11.530000,10.200000,5,2.750000,3,False. +HI,86,408,398-3004,no,yes,21,197.900000,99,33.640000,165.600000,100,14.080000,208.000000,120,9.360000,10.100000,9,2.730000,0,False. +KY,131,415,400-4020,no,no,0,166.500000,129,28.310000,210.200000,107,17.870000,257.200000,93,11.570000,9.900000,5,2.670000,1,False. +OH,86,415,356-3448,no,yes,29,225.400000,79,38.320000,187.100000,112,15.900000,281.100000,112,12.650000,12.900000,3,3.480000,1,False. +VT,159,415,335-2019,no,no,0,275.800000,103,46.890000,189.500000,108,16.110000,223.900000,93,10.080000,7.400000,5,2.000000,2,True. +AZ,134,415,332-6633,no,yes,40,142.900000,105,24.290000,88.600000,61,7.530000,290.000000,96,13.050000,10.800000,6,2.920000,1,False. +VT,113,510,359-7648,no,no,0,207.200000,113,35.220000,256.000000,80,21.760000,211.000000,87,9.490000,9.900000,1,2.670000,1,False. +MO,132,408,412-9190,no,no,0,206.200000,100,35.050000,211.200000,118,17.950000,196.200000,122,8.830000,10.200000,6,2.750000,1,False. +AL,85,415,368-9007,no,no,0,210.300000,66,35.750000,195.800000,76,16.640000,221.600000,82,9.970000,11.200000,7,3.020000,1,False. +NJ,93,510,384-5632,yes,yes,38,225.700000,117,38.370000,119.600000,122,10.170000,193.200000,125,8.690000,14.000000,7,3.780000,1,True. +WA,174,408,352-6068,no,yes,33,167.800000,91,28.530000,205.300000,91,17.450000,130.000000,132,5.850000,14.500000,4,3.920000,4,True. +NY,61,415,343-9645,no,no,0,197.700000,118,33.610000,152.200000,96,12.940000,221.000000,93,9.950000,7.000000,3,1.890000,2,False. +DC,91,415,384-7873,no,yes,39,169.800000,105,28.870000,65.200000,116,5.540000,144.400000,92,6.500000,10.900000,4,2.940000,1,False. +NE,88,408,396-2187,no,yes,28,190.600000,104,32.400000,237.300000,105,20.170000,211.600000,116,9.520000,9.800000,1,2.650000,2,False. +MA,88,408,383-5109,no,yes,45,80.300000,140,13.650000,153.300000,101,13.030000,309.200000,123,13.910000,12.800000,3,3.460000,2,False. +VT,195,415,377-7843,no,yes,36,231.700000,110,39.390000,225.100000,88,19.130000,201.700000,89,9.080000,12.100000,2,3.270000,0,False. +NM,182,415,382-7999,no,no,0,69.100000,114,11.750000,230.300000,109,19.580000,256.700000,96,11.550000,6.500000,4,1.760000,0,False. +CO,118,408,328-1222,no,no,0,188.800000,60,32.100000,217.400000,64,18.480000,220.100000,100,9.900000,8.200000,7,2.210000,4,False. +NH,103,408,371-1727,no,no,0,150.600000,125,25.600000,169.100000,126,14.370000,221.200000,104,9.950000,10.400000,8,2.810000,8,True. +IL,65,510,369-8871,no,no,0,192.000000,89,32.640000,139.500000,88,11.860000,187.400000,102,8.430000,5.500000,4,1.490000,2,False. +UT,61,408,335-9726,no,yes,25,163.700000,78,27.830000,113.200000,112,9.620000,134.100000,118,6.030000,9.900000,3,2.670000,3,False. +WV,172,415,357-3709,no,no,0,211.700000,100,35.990000,198.700000,101,16.890000,301.700000,136,13.580000,6.500000,9,1.760000,1,False. +NJ,72,415,422-9964,no,no,0,175.500000,103,29.840000,132.300000,120,11.250000,242.900000,96,10.930000,11.800000,3,3.190000,1,False. +NM,113,510,366-9211,no,no,0,150.100000,120,25.520000,200.100000,85,17.010000,266.700000,105,12.000000,11.000000,3,2.970000,2,False. +ND,177,408,384-9033,no,no,0,189.500000,99,32.220000,176.300000,117,14.990000,225.900000,112,10.170000,14.200000,2,3.830000,1,False. +WA,100,408,382-4932,no,no,0,70.800000,94,12.040000,215.600000,102,18.330000,230.800000,125,10.390000,9.500000,1,2.570000,6,True. +NM,67,415,404-7518,no,no,0,215.500000,102,36.640000,190.700000,95,16.210000,214.500000,106,9.650000,8.600000,6,2.320000,1,False. +DE,136,415,353-1954,no,no,0,101.700000,105,17.290000,202.800000,99,17.240000,136.200000,119,6.130000,9.400000,6,2.540000,3,False. +GA,71,415,391-7166,no,no,0,258.400000,132,43.930000,126.800000,119,10.780000,182.400000,87,8.210000,9.700000,8,2.620000,4,False. +HI,134,408,370-9000,no,no,0,242.400000,126,41.210000,152.900000,115,13.000000,318.300000,115,14.320000,11.800000,6,3.190000,1,False. +CT,124,415,332-3642,no,no,0,131.800000,82,22.410000,284.300000,119,24.170000,305.500000,101,13.750000,11.300000,2,3.050000,1,False. +NJ,84,415,412-3898,no,no,0,190.200000,102,32.330000,197.700000,141,16.800000,247.500000,102,11.140000,9.800000,6,2.650000,2,False. +ME,39,408,366-5640,no,no,0,154.100000,104,26.200000,204.200000,112,17.360000,196.200000,92,8.830000,9.800000,4,2.650000,2,False. +OK,110,510,356-2302,no,no,0,188.000000,127,31.960000,90.500000,118,7.690000,150.300000,64,6.760000,15.300000,3,4.130000,3,False. +TN,102,510,345-9018,no,no,0,103.100000,70,17.530000,275.000000,129,23.380000,141.100000,92,6.350000,11.200000,5,3.020000,1,False. +WY,70,415,365-6205,no,no,0,175.400000,130,29.820000,159.500000,130,13.560000,260.600000,96,11.730000,11.600000,4,3.130000,0,False. +NY,142,415,337-1151,no,no,0,145.400000,93,24.720000,209.100000,98,17.770000,214.000000,96,9.630000,10.900000,1,2.940000,1,False. +DE,81,510,374-4664,yes,no,0,250.600000,85,42.600000,187.900000,50,15.970000,120.300000,131,5.410000,7.800000,5,2.110000,1,False. +RI,17,415,396-9656,no,no,0,161.500000,123,27.460000,214.200000,81,18.210000,315.000000,106,14.180000,8.600000,5,2.320000,1,False. +PA,119,408,377-5043,no,no,0,260.100000,101,44.220000,256.500000,68,21.800000,229.100000,89,10.310000,10.000000,2,2.700000,1,True. +HI,105,415,401-7359,no,no,0,281.300000,124,47.820000,301.500000,96,25.630000,202.800000,109,9.130000,8.700000,3,2.350000,0,True. +MD,108,415,375-2184,yes,yes,42,130.100000,90,22.120000,167.000000,128,14.200000,244.700000,80,11.010000,13.600000,5,3.670000,3,True. +VA,90,415,367-6005,no,no,0,102.000000,118,17.340000,113.300000,134,9.630000,188.600000,105,8.490000,11.400000,3,3.080000,2,False. +IN,100,415,364-2166,no,yes,33,218.700000,104,37.180000,155.000000,144,13.180000,99.000000,117,4.460000,12.100000,4,3.270000,1,False. +OR,155,408,414-4741,no,yes,30,128.500000,86,21.850000,188.400000,91,16.010000,254.400000,85,11.450000,6.800000,6,1.840000,1,False. +AZ,113,510,403-9719,no,no,0,128.700000,100,21.880000,227.100000,67,19.300000,178.100000,135,8.010000,9.200000,4,2.480000,2,True. +WI,123,415,371-8452,no,no,0,172.200000,92,29.270000,162.600000,76,13.820000,250.300000,101,11.260000,8.700000,4,2.350000,1,False. +VA,145,408,392-6239,no,no,0,199.200000,124,33.860000,126.000000,86,10.710000,289.200000,135,13.010000,7.600000,3,2.050000,1,False. +MO,42,415,410-5250,no,no,0,184.500000,98,31.370000,200.500000,93,17.040000,279.200000,91,12.560000,8.800000,3,2.380000,2,False. +NV,125,510,336-1574,no,no,0,168.600000,99,28.660000,175.600000,107,14.930000,243.300000,92,10.950000,10.900000,7,2.940000,0,False. +HI,131,415,406-8324,no,yes,30,174.000000,118,29.580000,205.300000,81,17.450000,218.200000,90,9.820000,6.700000,3,1.810000,1,False. +WA,107,415,411-7110,no,no,0,230.400000,65,39.170000,257.400000,80,21.880000,107.300000,88,4.830000,8.500000,3,2.300000,1,False. +IL,48,408,341-9907,no,no,0,198.200000,73,33.690000,202.800000,115,17.240000,146.400000,73,6.590000,5.100000,5,1.380000,1,False. +IL,76,510,400-8952,no,no,0,186.100000,96,31.640000,211.600000,100,17.990000,230.600000,100,10.380000,8.000000,4,2.160000,0,False. +LA,128,415,333-9266,no,no,0,148.500000,105,25.250000,243.000000,106,20.660000,255.200000,114,11.480000,6.800000,2,1.840000,1,False. +WI,73,415,419-4894,no,no,0,157.100000,109,26.710000,268.800000,83,22.850000,181.500000,91,8.170000,10.000000,8,2.700000,0,False. +TX,52,415,364-9904,no,no,0,155.000000,110,26.350000,133.400000,104,11.340000,176.100000,84,7.920000,7.000000,4,1.890000,4,True. +MI,126,415,394-3048,yes,yes,26,129.300000,123,21.980000,176.500000,114,15.000000,154.500000,102,6.950000,9.600000,7,2.590000,1,False. +NC,124,415,352-6265,no,no,0,188.500000,77,32.050000,182.000000,123,15.470000,218.200000,127,9.820000,6.100000,6,1.650000,1,False. +WA,137,408,357-3187,no,no,0,208.800000,120,35.500000,225.300000,100,19.150000,221.600000,130,9.970000,11.100000,5,3.000000,0,False. +ND,71,510,373-8483,no,no,0,238.000000,82,40.460000,278.500000,94,23.670000,193.100000,134,8.690000,11.800000,10,3.190000,0,True. +NE,139,415,375-9930,no,no,0,211.100000,103,35.890000,206.900000,108,17.590000,193.900000,70,8.730000,5.600000,4,1.510000,0,False. +MS,107,510,352-6282,no,yes,30,198.900000,87,33.810000,207.000000,90,17.600000,159.800000,76,7.190000,12.600000,4,3.400000,3,False. +KY,147,408,396-2945,no,no,0,212.800000,79,36.180000,204.100000,91,17.350000,156.200000,113,7.030000,10.200000,2,2.750000,1,False. +RI,116,510,412-3527,no,no,0,137.400000,126,23.360000,120.000000,94,10.200000,130.300000,64,5.860000,12.400000,2,3.350000,3,False. +NY,60,510,328-4231,no,yes,31,191.800000,75,32.610000,267.800000,135,22.760000,200.500000,62,9.020000,12.800000,3,3.460000,2,False. +TX,38,510,413-9055,no,no,0,149.000000,92,25.330000,49.200000,78,4.180000,163.300000,93,7.350000,13.900000,11,3.750000,0,False. +DE,63,408,363-8755,no,no,0,117.100000,118,19.910000,249.600000,90,21.220000,162.200000,84,7.300000,11.100000,4,3.000000,3,False. +NM,94,415,388-8891,no,no,0,108.000000,79,18.360000,241.900000,152,20.560000,252.100000,92,11.340000,10.400000,3,2.810000,3,False. +RI,131,415,360-1776,no,no,0,112.800000,133,19.180000,199.400000,116,16.950000,142.700000,105,6.420000,10.100000,5,2.730000,0,False. +MS,158,510,411-3578,no,no,0,175.900000,105,29.900000,188.300000,88,16.010000,188.300000,98,8.470000,11.000000,6,2.970000,1,False. +NY,139,510,399-7268,no,no,0,236.600000,109,40.220000,169.900000,107,14.440000,212.300000,118,9.550000,11.100000,2,3.000000,1,True. +NE,77,415,350-1532,no,no,0,169.400000,102,28.800000,184.900000,144,15.720000,234.300000,89,10.540000,2.000000,7,0.540000,1,False. +WI,140,415,359-2197,no,no,0,129.600000,79,22.030000,246.200000,99,20.930000,172.100000,124,7.740000,9.400000,10,2.540000,3,False. +KY,72,408,407-9290,no,no,0,177.100000,97,30.110000,184.700000,105,15.700000,174.100000,94,7.830000,8.000000,6,2.160000,1,False. +SD,52,510,358-6672,no,yes,20,133.300000,63,22.660000,184.100000,123,15.650000,272.900000,107,12.280000,13.500000,2,3.650000,1,False. +VA,103,510,393-4621,no,no,0,167.800000,121,28.530000,212.900000,123,18.100000,208.200000,73,9.370000,13.000000,3,3.510000,5,False. +KS,74,415,336-7357,no,yes,32,174.600000,107,29.680000,310.600000,115,26.400000,234.700000,92,10.560000,9.000000,4,2.430000,1,False. +ND,124,415,351-1466,no,no,0,150.300000,101,25.550000,255.900000,112,21.750000,136.700000,62,6.150000,12.500000,4,3.380000,2,False. +CO,85,510,394-6668,no,yes,21,283.200000,110,48.140000,239.700000,108,20.370000,149.500000,80,6.730000,6.300000,1,1.700000,5,False. +KY,113,408,403-2673,no,yes,20,157.800000,83,26.830000,161.500000,56,13.730000,271.500000,100,12.220000,8.700000,2,2.350000,5,True. +WA,71,408,355-1735,no,no,0,141.200000,132,24.000000,149.100000,90,12.670000,171.400000,72,7.710000,7.000000,2,1.890000,2,False. +NV,177,415,416-7679,no,yes,27,230.200000,106,39.130000,196.100000,78,16.670000,215.400000,108,9.690000,10.400000,2,2.810000,1,False. +SC,49,415,340-4972,yes,no,0,237.800000,92,40.430000,208.900000,119,17.760000,167.800000,86,7.550000,15.600000,6,4.210000,2,True. +RI,106,510,417-4826,yes,no,0,204.000000,84,34.680000,168.500000,61,14.320000,164.000000,102,7.380000,13.300000,3,3.590000,3,True. +ID,60,510,408-6676,no,no,0,221.100000,106,37.590000,178.600000,48,15.180000,202.700000,90,9.120000,7.400000,3,2.000000,1,False. +KY,43,408,417-6683,no,no,0,177.200000,93,30.120000,142.600000,60,12.120000,314.100000,144,14.130000,12.700000,2,3.430000,4,False. +ME,66,510,331-6270,no,no,0,118.000000,133,20.060000,248.100000,99,21.090000,214.400000,122,9.650000,5.300000,5,1.430000,1,False. +SD,125,415,404-9754,no,no,0,163.800000,73,27.850000,255.600000,85,21.730000,192.900000,95,8.680000,15.700000,4,4.240000,0,False. +SC,114,510,364-9425,no,yes,4,141.300000,96,24.020000,230.400000,88,19.580000,223.700000,85,10.070000,9.400000,3,2.540000,3,False. +TN,112,415,339-6477,no,no,0,272.500000,119,46.330000,226.100000,94,19.220000,159.100000,94,7.160000,16.400000,5,4.430000,3,True. +MT,101,408,362-2787,no,yes,16,118.900000,112,20.210000,228.300000,97,19.410000,180.100000,111,8.100000,8.200000,5,2.210000,2,False. +WI,70,415,405-9233,no,no,0,7.900000,100,1.340000,136.400000,83,11.590000,156.600000,89,7.050000,12.100000,1,3.270000,0,False. +AK,59,408,416-1845,no,no,0,159.500000,96,27.120000,167.200000,123,14.210000,138.600000,106,6.240000,10.200000,4,2.750000,0,False. +AZ,59,408,385-9657,no,no,0,150.200000,70,25.530000,185.700000,98,15.780000,212.500000,128,9.560000,12.100000,2,3.270000,1,False. +MT,124,415,420-5652,no,yes,30,144.500000,35,24.570000,262.300000,101,22.300000,226.500000,82,10.190000,12.000000,7,3.240000,2,False. +DE,99,415,415-1141,no,no,0,140.700000,88,23.920000,210.900000,98,17.930000,229.900000,125,10.350000,12.400000,4,3.350000,2,False. +VA,150,510,334-5634,no,no,0,169.200000,123,28.760000,216.800000,83,18.430000,179.400000,107,8.070000,12.600000,3,3.400000,1,False. +MA,81,510,403-4200,no,no,0,220.800000,77,37.540000,148.500000,87,12.620000,183.900000,100,8.280000,7.600000,3,2.050000,2,False. +IN,86,510,357-7893,no,no,0,216.300000,96,36.770000,266.300000,77,22.640000,214.000000,110,9.630000,4.500000,3,1.220000,0,False. +MD,84,510,369-2899,no,no,0,169.500000,96,28.820000,157.600000,94,13.400000,98.200000,70,4.420000,10.600000,7,2.860000,0,False. +NV,118,510,381-1026,no,yes,35,256.300000,119,43.570000,258.100000,91,21.940000,215.500000,130,9.700000,11.700000,1,3.160000,1,False. +CO,89,415,388-8722,no,no,0,179.700000,128,30.550000,299.800000,92,25.480000,185.300000,120,8.340000,7.600000,3,2.050000,1,False. +KS,93,415,418-3135,no,no,0,266.000000,120,45.220000,130.100000,84,11.060000,165.800000,63,7.460000,13.100000,6,3.540000,3,False. +AR,85,415,380-3974,no,no,0,96.700000,97,16.440000,193.800000,95,16.470000,171.700000,88,7.730000,9.700000,3,2.620000,2,False. +WY,160,408,338-7232,no,no,0,82.700000,116,14.060000,194.600000,95,16.540000,159.000000,54,7.150000,10.900000,9,2.940000,0,False. +PA,28,415,334-5223,no,no,0,168.200000,87,28.590000,161.700000,92,13.740000,192.400000,112,8.660000,10.100000,3,2.730000,3,False. +TX,73,408,340-8323,no,no,0,286.400000,109,48.690000,178.200000,67,15.150000,214.200000,152,9.640000,10.700000,14,2.890000,1,True. +NY,156,408,337-6851,no,no,0,174.300000,95,29.630000,186.600000,128,15.860000,258.200000,105,11.620000,12.900000,5,3.480000,3,False. +OR,33,415,344-5973,yes,no,0,190.600000,100,32.400000,161.700000,104,13.740000,189.900000,136,8.550000,13.000000,6,3.510000,1,False. +CA,77,510,335-2261,no,no,0,175.500000,86,29.840000,205.100000,78,17.430000,245.200000,100,11.030000,17.800000,3,4.810000,4,False. +NY,119,415,343-1458,no,no,0,133.400000,102,22.680000,204.600000,71,17.390000,196.900000,103,8.860000,11.100000,7,3.000000,1,False. +AR,91,510,415-4875,no,yes,27,204.600000,96,34.780000,136.000000,93,11.560000,210.500000,82,9.470000,6.600000,2,1.780000,3,False. +MI,102,510,381-2726,no,no,0,242.200000,88,41.170000,233.200000,89,19.820000,188.500000,121,8.480000,6.200000,6,1.670000,3,False. +OK,86,415,395-3852,no,yes,33,253.100000,112,43.030000,210.100000,94,17.860000,95.000000,98,4.270000,11.900000,4,3.210000,3,False. +TX,82,415,358-7914,no,no,0,130.000000,110,22.100000,185.300000,88,15.750000,178.700000,105,8.040000,8.300000,4,2.240000,0,False. +NC,89,408,332-6958,no,no,0,105.900000,151,18.000000,189.600000,142,16.120000,170.900000,67,7.690000,12.700000,7,3.430000,0,False. +ID,86,415,355-1019,no,no,0,194.200000,98,33.010000,193.800000,95,16.470000,192.000000,123,8.640000,9.300000,7,2.510000,3,False. +IL,134,408,382-9447,no,no,0,183.800000,111,31.250000,123.500000,92,10.500000,160.700000,105,7.230000,6.100000,2,1.650000,1,False. +OR,92,415,386-8536,no,no,0,196.500000,82,33.410000,190.000000,89,16.150000,163.200000,99,7.340000,10.800000,2,2.920000,2,False. +SD,87,510,363-3818,no,no,0,184.500000,81,31.370000,172.000000,103,14.620000,183.400000,96,8.250000,13.700000,3,3.700000,3,False. +NE,64,408,360-6416,no,no,0,261.900000,113,44.520000,148.100000,99,12.590000,145.200000,74,6.530000,13.800000,4,3.730000,0,False. +RI,80,510,332-8764,no,no,0,202.400000,118,34.410000,260.200000,67,22.120000,177.400000,112,7.980000,9.200000,5,2.480000,3,False. +MD,165,415,398-4814,no,yes,39,167.400000,113,28.460000,172.700000,94,14.680000,192.600000,113,8.670000,9.500000,4,2.570000,3,False. +ID,153,415,410-5963,no,yes,22,167.700000,104,28.510000,246.800000,91,20.980000,203.900000,117,9.180000,7.500000,11,2.030000,1,False. +ME,41,415,399-6642,no,yes,30,191.700000,109,32.590000,193.000000,86,16.410000,149.400000,93,6.720000,11.100000,4,3.000000,1,False. +SD,108,415,390-9986,no,no,0,240.200000,78,40.830000,230.300000,109,19.580000,217.000000,83,9.760000,5.200000,1,1.400000,2,False. +NY,104,415,391-1793,no,yes,26,189.100000,112,32.150000,178.200000,97,15.150000,199.300000,104,8.970000,11.100000,4,3.000000,1,False. +DE,115,408,352-5542,no,no,0,127.700000,67,21.710000,182.900000,90,15.550000,172.900000,92,7.780000,10.600000,7,2.860000,1,False. +OK,87,415,386-8118,no,no,0,205.200000,106,34.880000,99.500000,122,8.460000,189.500000,75,8.530000,13.400000,3,3.620000,1,False. +SC,159,415,394-9825,no,yes,23,153.600000,93,26.110000,216.900000,88,18.440000,161.300000,91,7.260000,12.600000,3,3.400000,2,False. +IN,119,510,382-4952,no,no,0,154.500000,129,26.270000,193.600000,87,16.460000,180.900000,145,8.140000,13.400000,3,3.620000,2,False. +NV,69,415,387-2698,no,no,0,153.700000,109,26.130000,194.000000,105,16.490000,256.100000,114,11.520000,14.100000,6,3.810000,1,False. +IL,87,408,417-1360,yes,yes,36,171.200000,138,29.100000,185.800000,102,15.790000,227.600000,97,10.240000,10.800000,3,2.920000,1,False. +SD,93,510,408-4836,no,no,0,328.100000,106,55.780000,151.700000,89,12.890000,303.500000,114,13.660000,8.700000,3,2.350000,1,True. +OK,154,415,374-8329,yes,no,0,145.900000,69,24.800000,208.200000,141,17.700000,180.900000,106,8.140000,14.400000,10,3.890000,0,True. +KS,57,415,363-8424,no,yes,37,201.200000,76,34.200000,280.100000,122,23.810000,154.200000,110,6.940000,11.800000,1,3.190000,1,False. +IA,130,510,408-8910,no,no,0,139.100000,72,23.650000,246.000000,112,20.910000,207.200000,121,9.320000,11.400000,9,3.080000,5,False. +NJ,151,415,399-3840,no,no,0,118.900000,128,20.210000,278.300000,65,23.660000,194.800000,61,8.770000,13.200000,10,3.560000,2,False. +NJ,162,408,367-8692,no,no,0,217.600000,87,36.990000,279.000000,71,23.720000,250.700000,65,11.280000,10.400000,4,2.810000,2,True. +MT,60,415,387-4504,no,no,0,145.000000,133,24.650000,209.100000,92,17.770000,328.500000,112,14.780000,14.600000,2,3.940000,1,False. +IA,81,510,328-2647,no,no,0,203.500000,89,34.600000,289.600000,69,24.620000,212.900000,71,9.580000,8.700000,3,2.350000,3,False. +WA,132,415,369-7903,no,no,0,240.100000,115,40.820000,180.400000,91,15.330000,133.400000,122,6.000000,8.000000,6,2.160000,3,False. +NE,86,408,399-6852,no,no,0,83.800000,121,14.250000,240.200000,96,20.420000,158.600000,108,7.140000,6.700000,8,1.810000,1,False. +TX,136,408,335-4888,no,no,0,269.800000,106,45.870000,228.800000,101,19.450000,257.500000,106,11.590000,10.100000,8,2.730000,1,True. +MS,121,415,344-2260,no,yes,21,126.300000,84,21.470000,209.600000,102,17.820000,192.500000,129,8.660000,10.600000,2,2.860000,1,False. +IA,105,510,349-4070,no,yes,15,88.100000,125,14.980000,175.900000,142,14.950000,269.900000,85,12.150000,9.700000,1,2.620000,2,False. +WI,105,415,394-6505,no,yes,34,218.500000,61,37.150000,196.700000,74,16.720000,151.100000,103,6.800000,9.900000,4,2.670000,2,False. +MT,51,415,419-3612,no,yes,26,236.800000,61,40.260000,263.400000,97,22.390000,181.100000,91,8.150000,11.200000,8,3.020000,1,False. +GA,64,408,356-1952,no,no,0,124.100000,117,21.100000,192.800000,108,16.390000,162.900000,84,7.330000,6.400000,5,1.730000,3,False. +MT,80,510,416-7866,yes,yes,30,184.200000,132,31.310000,167.500000,109,14.240000,212.800000,114,9.580000,10.000000,10,2.700000,0,False. +ND,56,415,398-1759,no,no,0,222.700000,133,37.860000,277.000000,89,23.550000,101.800000,94,4.580000,13.600000,4,3.670000,4,False. +VT,120,415,338-9950,no,no,0,149.200000,98,25.360000,193.600000,88,16.460000,248.900000,119,11.200000,11.100000,5,3.000000,1,False. +SD,103,510,412-7278,no,no,0,206.500000,125,35.110000,180.200000,113,15.320000,220.600000,95,9.930000,12.200000,4,3.290000,3,False. +OH,164,510,347-1263,no,yes,27,159.700000,102,27.150000,168.800000,113,14.350000,244.100000,127,10.980000,9.600000,9,2.590000,3,False. +OH,116,415,386-5684,no,yes,27,204.700000,118,34.800000,209.400000,91,17.800000,212.900000,67,9.580000,7.000000,2,1.890000,2,False. +MT,121,408,334-4354,no,no,0,213.200000,79,36.240000,120.700000,116,10.260000,244.400000,102,11.000000,7.500000,4,2.030000,1,False. +IL,55,415,398-5970,yes,no,0,269.600000,121,45.830000,171.700000,91,14.590000,219.000000,98,9.860000,8.200000,6,2.210000,1,False. +NV,183,415,330-3429,no,no,0,116.700000,92,19.840000,213.800000,112,18.170000,214.300000,112,9.640000,9.700000,6,2.620000,2,False. +UT,104,408,418-4637,no,no,0,263.400000,101,44.780000,235.500000,117,20.020000,102.000000,146,4.590000,13.000000,4,3.510000,0,False. +NH,90,408,393-7322,no,no,0,140.200000,97,23.830000,213.900000,102,18.180000,120.000000,126,5.400000,7.100000,2,1.920000,1,False. +LA,82,415,353-5557,no,no,0,197.700000,101,33.610000,127.600000,83,10.850000,142.100000,103,6.390000,13.500000,3,3.650000,1,False. +VT,101,415,411-5334,no,no,0,136.200000,92,23.150000,220.900000,110,18.780000,196.900000,116,8.860000,13.300000,7,3.590000,3,False. +NY,9,415,398-8588,no,yes,16,88.500000,87,15.050000,178.800000,108,15.200000,228.700000,96,10.290000,11.500000,3,3.110000,2,False. +CT,97,415,374-7285,no,no,0,215.300000,58,36.600000,242.400000,91,20.600000,279.800000,105,12.590000,12.100000,9,3.270000,0,False. +KS,94,408,379-7215,no,no,0,269.200000,104,45.760000,193.800000,144,16.470000,257.600000,61,11.590000,8.900000,2,2.400000,3,True. +MI,127,510,357-7875,no,yes,25,203.800000,118,34.650000,267.100000,48,22.700000,225.100000,105,10.130000,7.300000,5,1.970000,0,False. +SD,125,510,393-9677,no,yes,34,268.400000,112,45.630000,222.200000,108,18.890000,117.600000,102,5.290000,10.300000,3,2.780000,0,False. +ME,140,415,345-9598,no,no,0,159.100000,104,27.050000,269.800000,106,22.930000,220.400000,116,9.920000,10.300000,4,2.780000,1,False. +MD,90,415,353-3203,no,no,0,114.400000,122,19.450000,127.700000,154,10.850000,253.100000,109,11.390000,10.100000,5,2.730000,2,False. +VA,67,415,330-7486,no,no,0,138.900000,65,23.610000,208.900000,109,17.760000,232.400000,82,10.460000,9.200000,3,2.480000,2,False. +NJ,113,415,397-6425,no,no,0,186.000000,55,31.620000,237.400000,105,20.180000,148.100000,83,6.660000,12.200000,6,3.290000,1,False. +TN,121,510,338-1815,no,yes,26,170.400000,91,28.970000,254.500000,90,21.630000,219.600000,122,9.880000,15.100000,5,4.080000,0,False. +DC,93,408,406-5023,no,no,0,164.500000,95,27.970000,230.900000,87,19.630000,149.900000,91,6.750000,9.900000,3,2.670000,4,False. +DC,121,408,368-2458,no,no,0,168.600000,121,28.660000,168.600000,94,14.330000,95.300000,59,4.290000,12.300000,4,3.320000,1,False. +OR,53,408,400-8375,no,no,0,261.200000,119,44.400000,250.800000,105,21.320000,176.000000,112,7.920000,9.800000,2,2.650000,0,True. +RI,75,415,387-8201,no,no,0,190.500000,91,32.390000,178.400000,75,15.160000,162.400000,113,7.310000,13.100000,5,3.540000,1,False. +AK,132,510,346-4360,no,no,0,181.100000,121,30.790000,314.400000,109,26.720000,246.700000,81,11.100000,4.200000,9,1.130000,2,False. +WI,162,408,412-8811,no,no,0,177.100000,131,30.110000,114.700000,122,9.750000,153.600000,88,6.910000,6.500000,6,1.760000,3,False. +IN,140,415,413-3990,no,no,0,160.500000,114,27.290000,240.500000,103,20.440000,233.500000,121,10.510000,11.300000,4,3.050000,1,False. +MI,91,408,345-2448,no,no,0,134.700000,116,22.900000,295.300000,98,25.100000,195.500000,121,8.800000,6.600000,5,1.780000,2,False. +ID,73,510,394-4512,no,yes,28,198.200000,107,33.690000,139.100000,123,11.820000,199.100000,139,8.960000,8.800000,1,2.380000,2,False. +NH,95,408,400-8538,yes,no,0,228.900000,134,38.910000,255.700000,71,21.730000,208.000000,120,9.360000,10.100000,2,2.730000,4,True. +MN,145,408,412-8769,no,no,0,241.700000,137,41.090000,135.800000,100,11.540000,277.600000,123,12.490000,13.100000,3,3.540000,0,False. +AZ,100,415,390-1552,no,no,0,131.100000,108,22.290000,176.200000,81,14.980000,89.700000,81,4.040000,4.300000,4,1.160000,1,False. +MN,122,415,389-2477,no,no,0,234.100000,101,39.800000,200.200000,121,17.020000,237.400000,89,10.680000,13.100000,9,3.540000,2,False. +MO,109,415,389-4695,no,no,0,200.100000,72,34.020000,300.900000,120,25.580000,236.000000,68,10.620000,11.900000,5,3.210000,0,False. +AL,82,408,406-8037,no,no,0,154.000000,107,26.180000,94.400000,114,8.020000,287.600000,95,12.940000,10.100000,7,2.730000,1,False. +PA,65,415,382-9138,no,yes,23,224.200000,106,38.110000,189.600000,100,16.120000,222.800000,75,10.030000,9.800000,4,2.650000,0,False. +AK,52,510,414-7942,no,no,0,148.300000,83,25.210000,181.600000,79,15.440000,155.600000,104,7.000000,8.300000,6,2.240000,3,False. +MS,136,415,348-7071,no,yes,24,174.600000,76,29.680000,176.600000,114,15.010000,214.400000,91,9.650000,8.800000,5,2.380000,2,False. +IA,75,415,404-2942,no,no,0,138.500000,110,23.550000,153.200000,86,13.020000,215.600000,103,9.700000,11.100000,7,3.000000,1,False. +WY,146,408,348-3581,no,no,0,109.000000,69,18.530000,265.800000,98,22.590000,228.300000,80,10.270000,12.600000,2,3.400000,1,False. +NE,105,408,327-6764,no,no,0,162.300000,99,27.590000,212.500000,95,18.060000,214.700000,114,9.660000,11.100000,8,3.000000,4,False. +ND,48,415,405-2831,no,no,0,210.800000,84,35.840000,189.600000,98,16.120000,157.600000,99,7.090000,16.400000,3,4.430000,2,False. +CT,45,415,416-4351,no,no,0,142.400000,107,24.210000,318.700000,78,27.090000,224.100000,108,10.080000,11.100000,7,3.000000,1,False. +NC,106,415,419-3196,no,yes,37,223.500000,104,38.000000,235.100000,99,19.980000,140.100000,90,6.300000,10.600000,5,2.860000,2,False. +CT,33,510,411-6211,no,no,0,182.500000,65,31.030000,232.100000,96,19.730000,149.200000,82,6.710000,7.500000,2,2.030000,2,False. +ND,68,408,391-8369,no,no,0,219.600000,97,37.330000,141.100000,144,11.990000,205.700000,101,9.260000,10.800000,4,2.920000,2,False. +WA,106,408,416-4464,no,no,0,193.600000,66,32.910000,238.200000,82,20.250000,176.400000,107,7.940000,12.900000,3,3.480000,0,False. +NV,141,415,347-1814,no,no,0,192.400000,111,32.710000,156.900000,87,13.340000,175.800000,82,7.910000,11.000000,6,2.970000,0,False. +CO,98,408,386-7337,no,no,0,236.200000,122,40.150000,189.400000,110,16.100000,153.600000,104,6.910000,13.300000,4,3.590000,0,False. +KS,94,510,375-8505,no,yes,28,233.200000,88,39.640000,113.300000,102,9.630000,118.000000,71,5.310000,16.100000,4,4.350000,0,False. +CO,65,510,407-5056,no,no,0,158.800000,53,27.000000,188.500000,132,16.020000,189.300000,87,8.520000,9.800000,4,2.650000,2,False. +MO,85,415,367-8924,no,no,0,126.100000,112,21.440000,274.700000,126,23.350000,184.400000,95,8.300000,9.800000,4,2.650000,1,False. +MA,71,510,419-5171,no,no,0,290.400000,108,49.370000,253.900000,92,21.580000,263.300000,126,11.850000,10.100000,5,2.730000,3,True. +NY,112,408,396-7687,no,yes,30,60.600000,113,10.300000,165.900000,96,14.100000,132.800000,99,5.980000,13.300000,7,3.590000,0,False. +AK,110,415,394-4548,no,no,0,148.400000,95,25.230000,193.800000,98,16.470000,206.000000,106,9.270000,6.900000,6,1.860000,0,False. +WI,111,415,382-6438,no,no,0,246.500000,108,41.910000,216.300000,89,18.390000,179.600000,99,8.080000,12.700000,3,3.430000,2,False. +NH,74,408,413-2194,no,no,0,298.100000,112,50.680000,201.300000,100,17.110000,214.700000,88,9.660000,9.700000,4,2.620000,2,True. +TN,105,510,366-2622,no,no,0,119.300000,82,20.280000,185.100000,111,15.730000,157.000000,74,7.070000,10.900000,4,2.940000,2,False. +NY,40,408,416-7591,no,no,0,242.500000,82,41.230000,232.900000,97,19.800000,154.000000,86,6.930000,9.600000,7,2.590000,0,False. +GA,128,408,355-2634,yes,yes,18,222.100000,89,37.760000,160.600000,109,13.650000,218.800000,102,9.850000,13.600000,2,3.670000,0,True. +MN,123,408,422-5350,no,no,0,236.200000,135,40.150000,273.900000,88,23.280000,227.000000,77,10.220000,10.100000,6,2.730000,2,True. +MI,122,510,329-2388,no,no,0,144.200000,87,24.510000,212.200000,74,18.040000,169.300000,87,7.620000,9.500000,4,2.570000,0,False. +ID,114,408,381-5273,no,yes,19,154.600000,100,26.280000,241.600000,109,20.540000,160.000000,112,7.200000,12.600000,1,3.400000,3,False. +CT,102,415,421-6694,no,yes,25,137.400000,100,23.360000,176.700000,83,15.020000,188.200000,93,8.470000,10.200000,6,2.750000,2,False. +NC,126,415,342-1702,no,no,0,103.700000,93,17.630000,127.000000,107,10.800000,329.300000,66,14.820000,14.400000,1,3.890000,0,False. +LA,150,415,381-4029,no,no,0,136.600000,112,23.220000,209.400000,81,17.800000,161.100000,78,7.250000,12.200000,2,3.290000,4,True. +NJ,60,408,335-2967,no,no,0,289.800000,101,49.270000,255.600000,115,21.730000,242.800000,76,10.930000,11.700000,4,3.160000,2,True. +TX,123,408,416-6594,no,no,0,260.900000,85,44.350000,168.500000,103,14.320000,178.300000,91,8.020000,13.300000,5,3.590000,3,False. +CA,138,510,388-6026,yes,no,0,196.200000,129,33.350000,176.500000,86,15.000000,232.400000,108,10.460000,15.200000,1,4.100000,0,True. +MD,29,510,367-1024,no,no,0,195.600000,71,33.250000,126.400000,74,10.740000,148.600000,87,6.690000,14.200000,4,3.830000,1,False. +WY,111,415,386-7118,no,no,0,222.200000,96,37.770000,162.500000,111,13.810000,184.900000,120,8.320000,11.900000,7,3.210000,4,False. +TX,37,510,346-2020,yes,no,0,172.900000,119,29.390000,183.000000,86,15.560000,226.400000,100,10.190000,9.800000,1,2.650000,0,True. +CA,111,408,329-9067,no,no,0,249.800000,109,42.470000,242.400000,106,20.600000,231.800000,78,10.430000,11.600000,4,3.130000,0,True. +UT,81,510,329-6144,no,no,0,154.500000,84,26.270000,216.200000,91,18.380000,229.800000,82,10.340000,13.700000,3,3.700000,1,False. +WA,46,510,332-1502,no,no,0,90.400000,108,15.370000,276.200000,77,23.480000,146.500000,111,6.590000,12.700000,2,3.430000,1,False. +MS,69,510,342-8320,no,yes,27,268.800000,78,45.700000,246.600000,89,20.960000,271.900000,102,12.240000,16.400000,3,4.430000,0,False. +OH,125,408,411-5748,no,no,0,106.100000,95,18.040000,157.600000,113,13.400000,192.500000,69,8.660000,8.100000,3,2.190000,1,False. +KS,43,415,381-9367,no,no,0,27.000000,117,4.590000,160.900000,97,13.680000,279.500000,96,12.580000,10.700000,3,2.890000,3,False. +RI,127,415,400-1280,no,yes,27,140.100000,59,23.820000,223.400000,111,18.990000,257.900000,73,11.610000,3.800000,10,1.030000,1,False. +IN,94,510,360-5794,no,no,0,245.000000,112,41.650000,180.400000,91,15.330000,262.900000,105,11.830000,9.700000,6,2.620000,1,False. +VT,46,408,373-3538,no,no,0,196.700000,85,33.440000,205.900000,74,17.500000,216.600000,112,9.750000,11.200000,5,3.020000,3,False. +MT,73,408,394-9942,no,yes,26,131.200000,98,22.300000,106.500000,97,9.050000,221.700000,96,9.980000,10.200000,6,2.750000,2,False. +CT,146,408,380-3329,no,yes,23,149.600000,96,25.430000,239.800000,124,20.380000,293.500000,135,13.210000,7.400000,4,2.000000,2,False. +NM,93,415,334-7618,no,no,0,239.800000,70,40.770000,251.800000,99,21.400000,168.600000,112,7.590000,10.900000,10,2.940000,1,False. +OH,52,408,327-9289,no,yes,31,142.100000,77,24.160000,193.000000,97,16.410000,253.400000,88,11.400000,11.000000,4,2.970000,1,False. +GA,202,510,351-2589,no,no,0,115.400000,137,19.620000,178.700000,70,15.190000,185.700000,113,8.360000,6.000000,3,1.620000,3,False. +MN,129,510,368-6892,no,yes,31,193.000000,99,32.810000,224.800000,87,19.110000,197.600000,91,8.890000,10.300000,8,2.780000,2,False. +CT,94,415,337-9303,no,no,0,206.100000,49,35.040000,224.600000,115,19.090000,256.700000,74,11.550000,13.000000,1,3.510000,1,False. +AL,100,415,377-5258,no,no,0,160.300000,138,27.250000,221.300000,92,18.810000,150.400000,120,6.770000,11.200000,2,3.020000,0,False. +WV,43,415,348-5767,no,no,0,199.900000,108,33.980000,288.400000,80,24.510000,180.600000,103,8.130000,11.300000,7,3.050000,1,False. +NH,130,415,373-3549,no,no,0,213.100000,105,36.230000,206.200000,108,17.530000,163.400000,93,7.350000,8.900000,3,2.400000,0,False. +WY,124,415,422-8344,no,no,0,178.300000,102,30.310000,235.000000,120,19.980000,239.700000,119,10.790000,10.900000,1,2.940000,3,False. +VA,92,510,411-2958,yes,no,0,252.300000,120,42.890000,207.000000,112,17.600000,284.600000,95,12.810000,12.000000,5,3.240000,3,True. +VT,48,415,384-2908,no,no,0,197.700000,64,33.610000,136.700000,126,11.620000,244.400000,81,11.000000,13.200000,5,3.560000,4,False. +OH,98,510,347-6393,no,yes,29,111.100000,105,18.890000,217.900000,101,18.520000,248.100000,108,11.160000,6.600000,3,1.780000,2,False. +MT,100,415,385-7148,no,no,0,96.500000,86,16.410000,210.200000,133,17.870000,146.400000,106,6.590000,12.500000,3,3.380000,1,True. +MA,79,415,419-2767,no,no,0,156.900000,109,26.670000,122.200000,87,10.390000,189.100000,103,8.510000,11.300000,5,3.050000,3,False. +VA,164,415,375-1746,no,no,0,123.300000,78,20.960000,170.000000,85,14.450000,165.900000,78,7.470000,12.700000,2,3.430000,1,False. +NM,105,415,362-7870,no,no,0,193.700000,108,32.930000,183.200000,124,15.570000,293.700000,72,13.220000,10.800000,5,2.920000,1,False. +AR,89,408,410-3725,yes,no,0,206.900000,134,35.170000,167.700000,105,14.250000,155.700000,86,7.010000,10.900000,4,2.940000,0,False. +NE,126,415,387-1535,no,no,0,249.800000,96,42.470000,261.900000,92,22.260000,166.800000,108,7.510000,12.700000,4,3.430000,3,True. +WY,96,408,329-2045,no,no,0,144.000000,102,24.480000,224.700000,73,19.100000,227.700000,91,10.250000,10.000000,7,2.700000,1,False. +IA,120,415,341-6743,no,yes,33,299.500000,83,50.920000,163.400000,84,13.890000,146.700000,88,6.600000,11.600000,5,3.130000,0,False. +SC,212,415,336-8343,no,no,0,226.000000,127,38.420000,304.600000,83,25.890000,181.200000,132,8.150000,12.600000,4,3.400000,2,True. +NC,72,415,368-5758,no,no,0,137.600000,106,23.390000,143.500000,94,12.200000,273.700000,110,12.320000,9.600000,6,2.590000,2,False. +HI,155,415,346-8362,yes,yes,26,211.700000,121,35.990000,139.200000,123,11.830000,146.700000,89,6.600000,11.100000,3,3.000000,1,False. +UT,89,415,345-9690,no,no,0,89.700000,80,15.250000,179.800000,81,15.280000,145.700000,120,6.560000,9.500000,4,2.570000,2,False. +WY,126,408,339-9798,yes,no,0,197.600000,126,33.590000,246.500000,112,20.950000,285.300000,104,12.840000,12.500000,8,3.380000,2,False. +AL,172,408,359-5731,no,no,0,270.000000,102,45.900000,256.600000,111,21.810000,168.500000,104,7.580000,12.000000,5,3.240000,2,True. +VA,75,415,373-2091,no,no,0,224.700000,116,38.200000,192.000000,79,16.320000,212.200000,98,9.550000,11.300000,11,3.050000,3,False. +WI,143,510,367-3439,no,no,0,194.300000,99,33.030000,123.600000,133,10.510000,229.500000,99,10.330000,10.200000,2,2.750000,2,False. +FL,166,510,367-1681,yes,no,0,47.700000,89,8.110000,264.400000,95,22.470000,235.200000,97,10.580000,13.200000,3,3.560000,0,True. +KS,132,415,420-9973,no,no,0,190.100000,105,32.320000,182.200000,116,15.490000,279.800000,105,12.590000,13.000000,2,3.510000,1,False. +NV,94,408,351-4025,yes,no,0,89.500000,94,15.220000,339.900000,106,28.890000,172.900000,76,7.780000,7.900000,1,2.130000,1,True. +NY,99,415,393-5897,no,no,0,182.600000,83,31.040000,154.500000,111,13.130000,196.000000,57,8.820000,12.100000,5,3.270000,0,False. +VA,136,415,384-7216,no,yes,35,205.500000,86,34.940000,298.500000,119,25.370000,214.200000,104,9.640000,6.900000,4,1.860000,1,False. +KS,119,415,384-4595,no,no,0,231.500000,82,39.360000,266.900000,97,22.690000,211.000000,118,9.490000,7.400000,10,2.000000,1,False. +NC,115,510,329-9667,yes,no,0,251.300000,69,42.720000,252.500000,96,21.460000,118.300000,112,5.320000,9.900000,1,2.670000,3,True. +MO,160,415,347-5063,no,no,0,171.200000,103,29.100000,243.500000,121,20.700000,178.200000,92,8.020000,13.000000,3,3.510000,2,False. +ND,166,510,345-8433,no,no,0,197.900000,89,33.640000,251.000000,113,21.340000,138.300000,85,6.220000,11.200000,2,3.020000,2,False. +CA,120,510,339-7602,no,no,0,134.800000,94,22.920000,204.100000,106,17.350000,238.400000,109,10.730000,6.700000,8,1.810000,1,False. +WV,173,415,332-1109,no,no,0,191.400000,114,32.540000,168.500000,138,14.320000,109.300000,99,4.920000,10.300000,3,2.780000,1,False. +IL,156,415,343-3296,no,no,0,174.500000,65,29.670000,197.400000,116,16.780000,238.500000,86,10.730000,10.600000,2,2.860000,0,False. +NY,70,415,366-2536,no,no,0,177.400000,125,30.160000,226.200000,104,19.230000,254.100000,72,11.430000,10.900000,4,2.940000,0,False. +NV,41,510,355-2293,no,no,0,182.100000,89,30.960000,211.500000,104,17.980000,207.400000,124,9.330000,6.800000,1,1.840000,1,False. +AL,132,408,350-9318,no,no,0,222.400000,85,37.810000,165.400000,76,14.060000,208.400000,97,9.380000,11.200000,4,3.020000,0,False. +KS,47,510,418-5300,yes,no,0,47.800000,120,8.130000,178.900000,123,15.210000,152.600000,96,6.870000,13.300000,7,3.590000,0,True. +ND,160,510,395-2626,no,no,0,121.800000,97,20.710000,89.300000,97,7.590000,150.700000,92,6.780000,10.300000,5,2.780000,1,False. +OK,180,415,402-7372,no,no,0,143.500000,121,24.400000,189.300000,111,16.090000,174.900000,82,7.870000,8.800000,5,2.380000,3,False. +UT,93,415,337-9710,no,no,0,164.900000,68,28.030000,210.400000,86,17.880000,229.400000,104,10.320000,7.800000,4,2.110000,2,False. +OH,109,415,363-4967,no,no,0,193.600000,58,32.910000,148.700000,115,12.640000,282.500000,105,12.710000,13.100000,1,3.540000,2,False. +WY,80,510,400-5389,no,no,0,101.100000,121,17.190000,263.200000,110,22.370000,137.700000,74,6.200000,7.300000,5,1.970000,0,False. +NM,54,415,416-9162,no,yes,24,92.300000,88,15.690000,193.100000,98,16.410000,99.300000,119,4.470000,11.600000,3,3.130000,2,False. +AL,121,415,414-6541,no,no,0,168.900000,128,28.710000,123.900000,99,10.530000,266.300000,105,11.980000,2.900000,7,0.780000,2,False. +DC,157,510,392-6647,no,yes,29,219.200000,102,37.260000,206.000000,109,17.510000,192.400000,117,8.660000,15.000000,5,4.050000,1,False. +ID,170,510,343-2465,no,yes,37,178.100000,130,30.280000,242.800000,103,20.640000,243.000000,93,10.930000,13.000000,4,3.510000,0,False. +AR,138,510,338-9171,no,no,0,146.500000,101,24.910000,284.500000,142,24.180000,176.000000,98,7.920000,14.000000,6,3.780000,3,False. +ID,92,415,405-4606,no,yes,31,172.300000,116,29.290000,266.200000,91,22.630000,228.200000,90,10.270000,11.800000,5,3.190000,1,False. +TX,126,415,386-9711,no,no,0,190.900000,143,32.450000,149.700000,72,12.720000,191.400000,87,8.610000,13.000000,3,3.510000,1,False. +NM,41,415,327-8495,no,no,0,232.100000,74,39.460000,327.100000,88,27.800000,226.500000,119,10.190000,10.900000,2,2.940000,3,True. +WA,167,415,416-5660,no,no,0,169.200000,124,28.760000,173.300000,108,14.730000,216.500000,64,9.740000,12.400000,4,3.350000,4,True. +UT,91,510,370-3032,no,no,0,123.800000,107,21.050000,319.000000,125,27.120000,237.600000,78,10.690000,7.300000,4,1.970000,2,False. +RI,127,510,331-8462,no,no,0,96.000000,117,16.320000,177.000000,68,15.050000,162.200000,127,7.300000,9.700000,4,2.620000,3,False. +NC,88,408,414-4037,no,yes,27,93.400000,106,15.880000,252.000000,92,21.420000,189.000000,104,8.500000,10.900000,1,2.940000,1,False. +RI,113,415,415-2865,no,no,0,90.600000,130,15.400000,170.600000,100,14.500000,137.400000,74,6.180000,5.400000,9,1.460000,1,False. +NY,78,510,362-2353,no,no,0,152.900000,81,25.990000,256.600000,82,21.810000,173.600000,112,7.810000,5.300000,6,1.430000,2,False. +TX,123,408,329-5114,no,no,0,257.900000,92,43.840000,211.600000,71,17.990000,189.300000,104,8.520000,9.400000,2,2.540000,2,False. +DE,136,408,351-1389,yes,yes,29,85.200000,98,14.480000,230.400000,85,19.580000,243.600000,104,10.960000,9.000000,3,2.430000,2,False. +MS,68,415,375-3668,no,yes,34,160.000000,72,27.200000,184.500000,119,15.680000,208.300000,101,9.370000,6.100000,10,1.650000,1,False. +OH,132,415,375-5414,no,yes,10,182.900000,54,31.090000,292.400000,68,24.850000,142.300000,116,6.400000,11.500000,4,3.110000,0,False. +LA,133,415,360-7079,no,no,0,216.200000,67,36.750000,222.200000,133,18.890000,192.000000,95,8.640000,3.100000,1,0.840000,2,False. +FL,127,415,344-9302,no,no,0,261.700000,105,44.490000,181.800000,107,15.450000,100.900000,131,4.540000,3.300000,5,0.890000,0,False. +WA,110,415,418-1775,no,no,0,241.200000,105,41.000000,174.300000,85,14.820000,245.300000,59,11.040000,8.500000,4,2.300000,2,False. +WV,121,510,401-2468,no,no,0,177.200000,142,30.120000,123.500000,88,10.500000,213.200000,51,9.590000,8.400000,6,2.270000,1,False. +NY,116,510,346-4984,no,no,0,89.500000,128,15.220000,180.800000,137,15.370000,193.100000,94,8.690000,14.000000,3,3.780000,2,False. +NE,112,415,351-2928,yes,yes,16,200.300000,72,34.050000,197.800000,91,16.810000,151.100000,92,6.800000,10.400000,3,2.810000,1,False. +PA,97,510,365-7774,yes,no,0,145.000000,103,24.650000,294.300000,93,25.020000,239.800000,120,10.790000,11.000000,2,2.970000,4,True. +MS,43,510,358-3691,no,no,0,159.500000,99,27.120000,119.700000,149,10.170000,173.900000,126,7.830000,6.800000,3,1.840000,2,False. +IN,110,415,364-9059,no,no,0,151.800000,106,25.810000,138.000000,126,11.730000,233.500000,112,10.510000,11.200000,8,3.020000,3,False. +VA,67,408,356-7208,no,no,0,176.200000,120,29.950000,236.000000,138,20.060000,152.500000,104,6.860000,10.600000,4,2.860000,1,False. +MN,166,408,333-5551,no,no,0,152.100000,95,25.860000,121.000000,105,10.290000,198.000000,126,8.910000,9.800000,5,2.650000,0,False. +DE,129,408,362-6528,no,no,0,161.300000,122,27.420000,220.600000,95,18.750000,224.700000,104,10.110000,9.600000,3,2.590000,1,False. +OR,103,510,394-2560,yes,no,0,171.700000,78,29.190000,144.500000,86,12.280000,157.900000,106,7.110000,6.800000,3,1.840000,3,False. +UT,71,415,367-3220,no,no,0,278.900000,110,47.410000,190.200000,67,16.170000,255.200000,84,11.480000,11.700000,7,3.160000,0,True. +CT,112,415,418-5708,no,yes,27,213.000000,121,36.210000,226.200000,101,19.230000,189.800000,99,8.540000,11.100000,3,3.000000,4,False. +AL,8,415,421-2245,no,yes,36,242.900000,67,41.290000,170.900000,59,14.530000,177.300000,130,7.980000,4.800000,12,1.300000,1,False. +TX,98,415,406-2242,no,no,0,217.200000,121,36.920000,303.400000,73,25.790000,197.100000,71,8.870000,12.400000,2,3.350000,0,True. +CT,90,415,347-6994,no,no,0,175.900000,111,29.900000,285.200000,115,24.240000,150.800000,122,6.790000,13.000000,7,3.510000,1,False. +MS,13,415,413-7468,no,no,0,303.200000,133,51.540000,170.500000,86,14.490000,227.600000,80,10.240000,11.500000,3,3.110000,0,True. +AR,58,415,389-6082,no,no,0,238.900000,107,40.610000,187.200000,88,15.910000,181.100000,84,8.150000,11.800000,3,3.190000,2,False. +CA,137,415,415-3689,no,yes,22,189.600000,42,32.230000,179.000000,137,15.220000,179.600000,126,8.080000,11.400000,5,3.080000,2,False. +MI,116,408,379-2503,no,no,0,133.300000,94,22.660000,247.800000,126,21.060000,219.000000,78,9.860000,11.300000,5,3.050000,5,True. +WV,94,415,396-1106,no,yes,28,92.700000,107,15.760000,127.800000,86,10.860000,225.600000,86,10.150000,9.900000,4,2.670000,3,False. +DE,87,415,379-4372,no,no,0,177.200000,72,30.120000,248.900000,105,21.160000,200.800000,87,9.040000,8.600000,7,2.320000,3,False. +FL,120,415,336-3738,no,no,0,184.500000,103,31.370000,209.000000,86,17.770000,169.700000,70,7.640000,10.200000,6,2.750000,2,False. +AK,97,415,380-2600,no,yes,24,176.100000,109,29.940000,159.400000,81,13.550000,269.100000,94,12.110000,12.100000,9,3.270000,0,False. +ID,134,415,345-4473,no,no,0,204.700000,108,34.800000,143.100000,105,12.160000,165.800000,84,7.460000,11.000000,4,2.970000,6,False. +OH,68,510,380-9990,no,no,0,143.600000,80,24.410000,134.300000,65,11.420000,215.600000,84,9.700000,15.500000,5,4.190000,2,False. +NH,93,408,411-1045,no,no,0,179.300000,93,30.480000,188.800000,65,16.050000,253.200000,88,11.390000,12.100000,5,3.270000,1,False. +MA,120,415,413-5306,no,no,0,137.300000,100,23.340000,212.200000,129,18.040000,152.700000,92,6.870000,10.500000,2,2.840000,1,False. +SC,41,408,417-6906,no,no,0,237.800000,92,40.430000,223.500000,155,19.000000,217.400000,90,9.780000,10.200000,6,2.750000,2,False. +OR,80,510,331-4807,no,no,0,203.700000,92,34.630000,216.400000,97,18.390000,154.200000,66,6.940000,7.600000,5,2.050000,2,False. +OH,83,415,376-5375,no,yes,25,191.300000,95,32.520000,250.700000,136,21.310000,249.400000,86,11.220000,17.600000,5,4.750000,2,False. +NC,109,510,361-9839,yes,no,0,209.100000,141,35.550000,205.000000,93,17.430000,119.400000,111,5.370000,7.800000,3,2.110000,2,False. +KY,66,510,348-8679,no,yes,33,88.800000,104,15.100000,109.600000,94,9.320000,172.700000,107,7.770000,7.100000,9,1.920000,3,False. +ID,104,510,403-6565,no,no,0,97.200000,88,16.520000,155.600000,85,13.230000,261.600000,105,11.770000,12.400000,5,3.350000,0,False. +WA,89,510,346-5287,no,no,0,137.900000,96,23.440000,192.600000,63,16.370000,255.700000,125,11.510000,11.000000,5,2.970000,1,False. +WV,127,510,413-6769,no,no,0,224.300000,112,38.130000,185.700000,103,15.780000,159.400000,83,7.170000,10.000000,1,2.700000,2,False. +RI,117,408,370-5042,no,yes,13,207.600000,65,35.290000,152.700000,77,12.980000,232.800000,95,10.480000,9.700000,3,2.620000,1,False. +KS,128,510,397-9486,no,no,0,268.100000,95,45.580000,120.500000,126,10.240000,220.800000,121,9.940000,14.400000,6,3.890000,2,False. +NV,88,415,364-3286,no,no,0,166.700000,61,28.340000,179.300000,88,15.240000,242.700000,131,10.920000,6.800000,7,1.840000,4,True. +NE,61,408,420-8897,no,no,0,267.100000,104,45.410000,180.400000,131,15.330000,230.600000,106,10.380000,17.300000,4,4.670000,1,True. +FL,22,415,378-9506,no,no,0,181.800000,108,30.910000,198.600000,148,16.880000,206.600000,96,9.300000,9.300000,3,2.510000,2,False. +WY,78,415,399-6259,no,no,0,147.100000,80,25.010000,199.700000,100,16.970000,160.700000,106,7.230000,13.700000,7,3.700000,0,False. +WA,56,415,335-5806,no,yes,29,37.700000,115,6.410000,144.100000,111,12.250000,226.600000,101,10.200000,4.900000,3,1.320000,1,False. +CO,192,415,401-6392,no,no,0,185.000000,88,31.450000,224.900000,98,19.120000,212.400000,105,9.560000,11.400000,3,3.080000,2,False. +WI,70,415,379-9859,no,no,0,156.400000,108,26.590000,171.000000,116,14.540000,196.100000,96,8.820000,8.600000,4,2.320000,2,False. +KS,148,510,415-4051,no,no,0,239.300000,84,40.680000,195.700000,85,16.630000,232.600000,104,10.470000,10.900000,3,2.940000,1,False. +RI,65,415,368-5612,no,yes,29,215.500000,129,36.640000,161.900000,77,13.760000,128.300000,91,5.770000,8.800000,5,2.380000,2,False. +MT,119,510,374-5301,no,no,0,134.900000,70,22.930000,211.500000,74,17.980000,188.500000,105,8.480000,11.300000,6,3.050000,1,False. +CO,80,415,406-5710,no,no,0,194.800000,116,33.120000,209.900000,93,17.840000,194.100000,100,8.730000,12.800000,3,3.460000,0,False. +CT,152,408,354-7077,no,yes,20,239.100000,105,40.650000,209.100000,111,17.770000,268.200000,130,12.070000,13.300000,3,3.590000,5,False. +FL,113,510,343-3340,no,no,0,92.600000,85,15.740000,177.600000,92,15.100000,159.800000,72,7.190000,14.400000,4,3.890000,3,False. +VT,75,510,377-8267,no,no,0,209.400000,133,35.600000,211.500000,121,17.980000,291.200000,123,13.100000,7.200000,4,1.940000,1,False. +OH,80,415,382-2453,no,no,0,197.600000,83,33.590000,164.500000,86,13.980000,94.000000,98,4.230000,6.400000,6,1.730000,1,False. +NH,148,408,333-7449,no,no,0,17.600000,121,2.990000,161.700000,125,13.740000,203.100000,82,9.140000,10.600000,6,2.860000,1,False. +RI,63,415,366-4287,yes,no,0,62.900000,112,10.690000,202.900000,111,17.250000,259.000000,58,11.660000,8.900000,8,2.400000,1,False. +FL,97,415,415-2285,no,yes,28,202.300000,97,34.390000,69.200000,84,5.880000,257.600000,64,11.590000,6.700000,3,1.810000,1,False. +MD,166,415,381-1328,no,no,0,136.100000,116,23.140000,181.400000,93,15.420000,131.400000,108,5.910000,11.300000,4,3.050000,0,False. +WY,94,408,344-4022,no,no,0,207.000000,109,35.190000,167.400000,80,14.230000,238.200000,117,10.720000,2.600000,6,0.700000,1,False. +FL,85,408,415-6601,no,yes,33,207.900000,95,35.340000,233.500000,88,19.850000,221.300000,92,9.960000,13.500000,3,3.650000,1,False. +TN,80,415,351-7309,yes,no,0,276.500000,122,47.010000,195.600000,79,16.630000,210.300000,78,9.460000,7.200000,3,1.940000,1,True. +NC,210,415,363-7802,no,yes,31,313.800000,87,53.350000,147.700000,103,12.550000,192.700000,97,8.670000,10.100000,7,2.730000,3,False. +IN,88,415,408-4870,yes,yes,25,288.500000,114,49.050000,203.400000,74,17.290000,228.400000,117,10.280000,13.000000,5,3.510000,1,False. +IA,100,408,378-9478,no,no,0,210.900000,85,35.850000,329.300000,69,27.990000,127.100000,78,5.720000,9.400000,5,2.540000,4,False. +WV,154,408,401-4778,no,yes,35,64.900000,76,11.030000,184.100000,91,15.650000,151.600000,75,6.820000,14.600000,1,3.940000,1,False. +UT,32,510,370-9563,no,yes,26,243.500000,137,41.400000,236.800000,108,20.130000,173.300000,149,7.800000,9.000000,9,2.430000,1,False. +GA,18,408,394-6382,no,no,0,197.000000,97,33.490000,203.700000,107,17.310000,202.000000,105,9.090000,8.700000,3,2.350000,3,False. +AK,126,415,333-5295,no,yes,31,278.000000,88,47.260000,253.200000,65,21.520000,223.200000,114,10.040000,8.700000,4,2.350000,0,False. +UT,144,510,370-2451,no,yes,37,219.900000,102,37.380000,222.100000,77,18.880000,118.500000,111,5.330000,10.000000,4,2.700000,1,False. +MS,29,510,401-6982,no,no,0,313.200000,103,53.240000,216.300000,151,18.390000,218.400000,106,9.830000,12.800000,4,3.460000,2,True. +AR,86,408,329-8115,no,yes,16,145.700000,88,24.770000,191.000000,129,16.240000,215.500000,82,9.700000,11.300000,7,3.050000,0,False. +AK,138,415,340-3409,no,yes,37,75.800000,102,12.890000,173.600000,147,14.760000,162.600000,96,7.320000,8.200000,13,2.210000,0,False. +AK,146,415,397-5911,no,no,0,195.900000,86,33.300000,228.600000,82,19.430000,303.500000,94,13.660000,12.200000,4,3.290000,3,False. +ME,175,415,415-6127,no,no,0,132.000000,95,22.440000,231.200000,74,19.650000,313.400000,108,14.100000,8.700000,10,2.350000,1,False. +WV,74,510,392-6073,no,no,0,124.000000,102,21.080000,262.100000,101,22.280000,268.200000,98,12.070000,11.700000,2,3.160000,2,False. +CT,48,415,419-6564,no,no,0,171.900000,98,29.220000,159.000000,127,13.520000,139.500000,101,6.280000,7.600000,3,2.050000,2,False. +GA,74,510,340-8245,no,yes,31,249.400000,70,42.400000,209.500000,59,17.810000,180.600000,75,8.130000,9.900000,2,2.670000,4,False. +NV,105,415,376-4540,yes,no,0,228.400000,100,38.830000,145.100000,108,12.330000,245.300000,140,11.040000,7.700000,7,2.080000,0,False. +VT,157,510,361-5936,no,no,0,168.600000,71,28.660000,205.100000,48,17.430000,175.800000,88,7.910000,5.900000,2,1.590000,3,False. +DC,217,415,421-9846,no,no,0,123.700000,138,21.030000,248.500000,105,21.120000,269.600000,78,12.130000,13.300000,4,3.590000,0,False. +TN,68,415,356-1582,no,no,0,178.700000,61,30.380000,252.300000,84,21.450000,255.700000,76,11.510000,8.400000,4,2.270000,1,False. +OR,80,415,375-4900,no,no,0,113.200000,86,19.240000,185.500000,97,15.770000,237.300000,145,10.680000,9.500000,5,2.570000,1,False. +MS,38,415,420-8953,no,yes,25,142.400000,106,24.210000,313.700000,109,26.660000,126.600000,117,5.700000,13.400000,6,3.620000,2,False. +NC,107,415,376-4035,no,yes,38,204.200000,57,34.710000,205.900000,92,17.500000,286.500000,80,12.890000,8.300000,4,2.240000,0,False. +CO,140,415,344-5206,no,no,0,149.700000,71,25.450000,212.500000,97,18.060000,245.900000,67,11.070000,12.600000,4,3.400000,3,False. +AR,98,415,328-7833,no,no,0,227.100000,116,38.610000,120.500000,103,10.240000,117.000000,102,5.270000,4.700000,4,1.270000,5,True. +PA,114,415,417-4266,no,no,0,155.300000,75,26.400000,169.900000,87,14.440000,207.000000,133,9.320000,12.600000,5,3.400000,2,False. +MN,46,408,351-6574,no,no,0,156.400000,105,26.590000,185.500000,98,15.770000,226.700000,96,10.200000,11.800000,3,3.190000,1,False. +NM,118,415,372-8925,no,yes,42,148.700000,105,25.280000,167.300000,105,14.220000,270.600000,105,12.180000,10.400000,7,2.810000,0,False. +UT,37,510,340-5678,no,no,0,271.700000,112,46.190000,155.100000,96,13.180000,199.500000,97,8.980000,6.600000,4,1.780000,3,False. +NE,34,415,361-6814,no,no,0,193.700000,74,32.930000,126.900000,84,10.790000,221.200000,166,9.950000,8.800000,4,2.380000,0,False. +MS,98,415,336-7155,yes,yes,23,245.500000,54,41.740000,292.700000,83,24.880000,184.000000,90,8.280000,10.800000,7,2.920000,1,False. +NV,113,510,342-8167,no,no,0,245.300000,108,41.700000,259.900000,140,22.090000,204.300000,115,9.190000,10.700000,2,2.890000,3,True. +OR,69,408,375-9180,no,no,0,196.100000,87,33.340000,236.800000,66,20.130000,182.300000,75,8.200000,11.900000,1,3.210000,0,False. +VA,121,415,357-7064,no,no,0,134.100000,112,22.800000,195.100000,104,16.580000,159.600000,139,7.180000,10.500000,2,2.840000,2,False. +NJ,59,510,347-5354,yes,yes,31,225.000000,78,38.250000,191.300000,79,16.260000,226.700000,79,10.200000,9.100000,3,2.460000,1,False. +WV,59,510,362-9391,no,no,0,189.700000,100,32.250000,115.900000,133,9.850000,220.600000,115,9.930000,7.400000,4,2.000000,0,False. +OR,190,415,386-8984,no,no,0,142.900000,96,24.290000,177.900000,96,15.120000,113.300000,117,5.100000,6.600000,4,1.780000,0,False. +KY,109,415,384-6372,no,no,0,175.600000,80,29.850000,238.000000,94,20.230000,198.400000,103,8.930000,10.200000,6,2.750000,1,False. +MO,136,415,358-1329,no,no,0,92.400000,109,15.710000,219.000000,115,18.620000,212.600000,80,9.570000,12.900000,4,3.480000,2,False. +TX,86,510,400-7987,no,no,0,92.800000,92,15.780000,159.600000,87,13.570000,148.700000,115,6.690000,8.800000,5,2.380000,1,False. +MN,100,415,327-8732,no,yes,27,221.700000,100,37.690000,236.100000,70,20.070000,192.700000,91,8.670000,8.000000,4,2.160000,0,False. +FL,106,510,389-6955,no,no,0,159.600000,94,27.130000,276.800000,118,23.530000,223.500000,65,10.060000,8.800000,3,2.380000,0,False. +PA,104,415,396-1800,no,no,0,144.500000,107,24.570000,180.500000,85,15.340000,226.000000,94,10.170000,17.000000,6,4.590000,2,False. +WV,129,415,349-4979,no,no,0,159.100000,100,27.050000,202.500000,90,17.210000,233.100000,96,10.490000,11.500000,6,3.110000,2,False. +IN,205,510,361-5864,no,no,0,49.900000,123,8.480000,150.700000,81,12.810000,188.200000,67,8.470000,10.100000,4,2.730000,2,False. +OK,93,415,418-4658,no,yes,32,116.900000,120,19.870000,232.400000,97,19.750000,127.700000,112,5.750000,11.000000,9,2.970000,0,False. +NE,123,415,330-6208,no,no,0,150.000000,98,25.500000,89.800000,95,7.630000,326.000000,91,14.670000,11.100000,3,3.000000,3,False. +DE,99,415,416-6628,no,no,0,254.400000,120,43.250000,159.300000,92,13.540000,264.400000,94,11.900000,6.000000,5,1.620000,1,False. +MI,61,415,349-5617,no,yes,33,270.700000,53,46.020000,200.700000,116,17.060000,201.700000,102,9.080000,10.900000,3,2.940000,3,False. +IL,71,415,397-8051,no,no,0,207.000000,112,35.190000,173.800000,96,14.770000,178.400000,61,8.030000,12.100000,3,3.270000,1,False. +UT,4,510,413-6346,yes,no,0,145.300000,89,24.700000,303.800000,93,25.820000,206.100000,82,9.270000,8.900000,4,2.400000,0,False. +IL,148,408,395-9270,no,yes,25,230.700000,102,39.220000,233.800000,109,19.870000,215.800000,90,9.710000,13.500000,2,3.650000,3,False. +WA,141,415,401-7575,no,no,0,151.500000,104,25.760000,242.200000,114,20.590000,304.200000,109,13.690000,10.800000,2,2.920000,1,False. +NM,56,408,332-5964,no,no,0,146.100000,57,24.840000,196.200000,97,16.680000,310.100000,110,13.950000,9.200000,3,2.480000,0,False. +MD,160,415,348-3338,no,no,0,256.000000,111,43.520000,187.400000,61,15.930000,119.100000,81,5.360000,11.500000,4,3.110000,3,False. +VA,43,408,387-5411,no,yes,35,200.200000,105,34.030000,244.400000,88,20.770000,207.200000,97,9.320000,11.600000,4,3.130000,3,False. +MT,42,415,378-7872,no,no,0,150.700000,52,25.620000,246.700000,96,20.970000,103.800000,118,4.670000,7.000000,4,1.890000,2,False. +CT,135,415,389-6037,yes,no,0,186.000000,107,31.620000,66.000000,94,5.610000,213.100000,105,9.590000,12.900000,4,3.480000,1,False. +AL,106,415,349-3732,no,no,0,212.900000,110,36.190000,187.000000,69,15.900000,128.100000,71,5.760000,6.300000,3,1.700000,3,False. +WV,106,510,347-9738,no,no,0,194.800000,133,33.120000,213.400000,73,18.140000,190.800000,92,8.590000,11.500000,7,3.110000,0,False. +MO,83,415,380-6074,no,yes,30,272.500000,105,46.330000,253.000000,83,21.510000,180.800000,123,8.140000,8.700000,6,2.350000,3,False. +ND,110,415,338-4307,no,no,0,135.100000,109,22.970000,205.200000,99,17.440000,166.300000,119,7.480000,11.700000,4,3.160000,1,False. +AR,153,408,339-3636,no,no,0,154.600000,56,26.280000,263.000000,84,22.360000,367.700000,89,16.550000,15.500000,2,4.190000,1,False. +GA,109,510,328-9315,no,yes,35,230.500000,116,39.190000,265.800000,130,22.590000,269.700000,69,12.140000,10.600000,6,2.860000,5,False. +FL,31,510,402-3634,no,no,0,165.400000,84,28.120000,203.700000,107,17.310000,201.700000,65,9.080000,8.200000,1,2.210000,1,False. +LA,124,510,348-4316,no,no,0,143.300000,120,24.360000,230.700000,111,19.610000,214.300000,91,9.640000,7.800000,2,2.110000,4,True. +UT,110,415,375-3826,no,no,0,271.100000,108,46.090000,237.000000,122,20.150000,239.900000,122,10.800000,9.800000,5,2.650000,2,True. +AZ,124,415,360-1406,no,no,0,253.500000,104,43.100000,117.900000,123,10.020000,248.500000,104,11.180000,14.000000,2,3.780000,0,False. +NY,82,415,356-5475,no,no,0,167.100000,77,28.410000,131.800000,79,11.200000,187.400000,98,8.430000,9.400000,1,2.540000,6,True. +KY,122,415,363-9969,no,no,0,168.300000,96,28.610000,87.600000,91,7.450000,247.200000,87,11.120000,8.400000,6,2.270000,1,False. +AL,137,415,350-4367,no,no,0,104.700000,115,17.800000,249.800000,144,21.230000,192.300000,99,8.650000,8.900000,2,2.400000,1,False. +IN,69,510,348-1592,no,no,0,135.400000,101,23.020000,238.100000,124,20.240000,195.600000,102,8.800000,10.600000,2,2.860000,1,False. +IN,46,415,368-9751,no,yes,34,191.400000,102,32.540000,361.800000,96,30.750000,147.500000,132,6.640000,7.200000,2,1.940000,1,False. +FL,103,415,380-6413,no,no,0,158.700000,90,26.980000,198.400000,117,16.860000,181.100000,76,8.150000,10.500000,4,2.840000,1,False. +NM,16,510,367-9259,no,no,0,144.800000,84,24.620000,164.900000,141,14.020000,231.500000,75,10.420000,8.200000,4,2.210000,2,False. +AL,119,415,404-8765,no,no,0,98.800000,97,16.800000,146.900000,68,12.490000,190.700000,105,8.580000,10.000000,4,2.700000,3,False. +MN,124,510,371-6284,yes,no,0,157.800000,71,26.830000,203.200000,114,17.270000,168.700000,82,7.590000,10.000000,2,2.700000,3,True. +NY,122,415,403-9468,no,yes,37,163.000000,107,27.710000,312.800000,118,26.590000,200.000000,85,9.000000,11.600000,5,3.130000,1,False. +MD,139,415,335-3133,no,no,0,181.600000,119,30.870000,335.700000,118,28.530000,149.800000,64,6.740000,8.300000,6,2.240000,4,False. +KS,67,510,366-4426,no,no,0,129.000000,78,21.930000,188.000000,116,15.980000,235.000000,102,10.580000,11.200000,3,3.020000,2,False. +WV,84,408,354-4752,no,no,0,86.000000,83,14.620000,260.700000,86,22.160000,98.600000,109,4.440000,8.900000,4,2.400000,1,False. +ID,101,510,406-4768,no,yes,17,193.900000,71,32.960000,189.800000,81,16.130000,196.300000,97,8.830000,12.600000,7,3.400000,0,False. +LA,40,510,367-9257,no,no,0,109.400000,107,18.600000,244.700000,102,20.800000,276.900000,123,12.460000,7.100000,7,1.920000,0,False. +MI,61,415,342-8348,no,no,0,188.900000,105,32.110000,153.600000,116,13.060000,213.300000,106,9.600000,10.200000,2,2.750000,2,False. +TN,120,408,410-7611,yes,no,0,179.900000,72,30.580000,170.000000,98,14.450000,190.600000,89,8.580000,13.800000,2,3.730000,1,True. +CA,95,415,341-3270,no,no,0,183.400000,98,31.180000,281.300000,95,23.910000,105.200000,113,4.730000,8.200000,8,2.210000,1,False. +FL,98,408,416-7452,no,no,0,288.100000,101,48.980000,137.900000,93,11.720000,206.500000,88,9.290000,0.000000,0,0.000000,0,False. +LA,114,415,356-8982,no,no,0,169.200000,96,28.760000,149.900000,83,12.740000,196.900000,119,8.860000,4.600000,4,1.240000,2,False. +IL,68,415,340-6908,yes,yes,29,195.500000,113,33.240000,171.600000,96,14.590000,204.000000,85,9.180000,13.500000,9,3.650000,1,True. +AL,149,415,348-6659,no,yes,20,264.400000,102,44.950000,219.600000,123,18.670000,200.400000,89,9.020000,11.300000,3,3.050000,2,False. +CT,22,408,345-2401,no,no,0,207.700000,116,35.310000,210.600000,99,17.900000,238.200000,88,10.720000,9.600000,5,2.590000,0,False. +PA,176,415,422-5264,no,no,0,169.500000,151,28.820000,112.900000,84,9.600000,56.600000,99,2.550000,8.700000,4,2.350000,0,False. +TX,152,415,422-1799,no,no,0,141.500000,102,24.060000,263.000000,94,22.360000,207.100000,113,9.320000,3.400000,4,0.920000,2,False. +VA,118,408,404-2877,no,no,0,154.800000,71,26.320000,244.000000,73,20.740000,159.600000,81,7.180000,12.800000,4,3.460000,0,False. +MO,101,415,417-7913,yes,no,0,133.500000,51,22.700000,219.600000,96,18.670000,210.000000,74,9.450000,11.700000,4,3.160000,1,False. +MT,102,408,399-2457,no,no,0,273.200000,85,46.440000,211.100000,82,17.940000,203.700000,129,9.170000,13.100000,7,3.540000,2,True. +ND,118,408,419-3427,no,no,0,224.600000,94,38.180000,225.900000,120,19.200000,269.000000,105,12.110000,12.500000,8,3.380000,2,False. +FL,105,415,358-2490,no,no,0,273.800000,97,46.550000,289.700000,106,24.620000,269.100000,126,12.110000,5.800000,3,1.570000,2,True. +WI,153,510,349-3112,no,no,0,159.500000,103,27.120000,275.500000,90,23.420000,176.700000,126,7.950000,10.100000,2,2.730000,1,True. +KY,71,415,414-5422,no,no,0,104.000000,92,17.680000,197.000000,125,16.750000,110.100000,123,4.950000,14.600000,8,3.940000,0,False. +MD,71,415,386-3766,no,yes,31,115.400000,90,19.620000,217.400000,78,18.480000,239.900000,102,10.800000,13.100000,4,3.540000,1,False. +IN,68,415,386-9724,no,no,0,222.100000,107,37.760000,199.400000,102,16.950000,162.400000,107,7.310000,9.400000,3,2.540000,2,False. +MA,66,415,416-7393,no,no,0,116.400000,98,19.790000,95.600000,74,8.130000,181.500000,94,8.170000,10.500000,3,2.840000,3,False. +ND,101,415,395-1380,no,no,0,217.700000,118,37.010000,231.700000,128,19.690000,185.300000,128,8.340000,0.000000,0,0.000000,3,False. +VT,116,415,408-4911,no,no,0,129.400000,84,22.000000,157.300000,89,13.370000,215.500000,77,9.700000,13.300000,3,3.590000,0,False. +CT,54,415,387-4064,no,yes,33,161.800000,73,27.510000,273.000000,58,23.210000,153.900000,76,6.930000,13.700000,4,3.700000,0,False. +VA,112,408,380-5667,no,yes,29,198.800000,122,33.800000,238.600000,114,20.280000,289.500000,69,13.030000,11.500000,5,3.110000,1,False. +MS,122,408,402-8930,no,yes,45,147.800000,85,25.130000,147.400000,93,12.530000,203.500000,110,9.160000,14.000000,5,3.780000,1,False. +AK,74,415,336-6533,no,no,0,262.300000,114,44.590000,198.900000,96,16.910000,165.900000,90,7.470000,6.600000,5,1.780000,3,False. +WY,90,415,359-9992,no,no,0,246.400000,83,41.890000,160.300000,88,13.630000,170.900000,99,7.690000,7.600000,7,2.050000,1,False. +NY,112,415,391-1737,no,no,0,174.300000,123,29.630000,140.200000,124,11.920000,215.400000,89,9.690000,9.000000,6,2.430000,4,True. +NC,85,510,404-2871,no,no,0,183.400000,111,31.180000,168.800000,98,14.350000,199.700000,97,8.990000,9.900000,4,2.670000,4,False. +IL,100,415,420-6121,no,no,0,191.900000,95,32.620000,200.900000,101,17.080000,271.900000,74,12.240000,18.200000,3,4.910000,1,False. +OH,114,415,369-4012,no,no,0,187.800000,109,31.930000,154.600000,97,13.140000,213.900000,102,9.630000,10.100000,3,2.730000,2,False. +RI,83,510,357-2294,no,no,0,259.700000,106,44.150000,152.700000,116,12.980000,224.700000,92,10.110000,10.200000,2,2.750000,0,False. +WY,157,415,348-9938,yes,no,0,180.400000,123,30.670000,194.000000,98,16.490000,227.300000,88,10.230000,8.400000,5,2.270000,0,False. +OR,51,510,394-3023,no,no,0,51.800000,107,8.810000,230.200000,104,19.570000,227.500000,118,10.240000,10.400000,4,2.810000,2,False. +NV,42,415,352-5466,no,no,0,303.900000,106,51.660000,232.200000,54,19.740000,147.100000,76,6.620000,5.800000,3,1.570000,1,True. +ND,101,415,364-5510,no,yes,36,123.700000,125,21.030000,172.600000,106,14.670000,280.500000,127,12.620000,8.800000,4,2.380000,1,True. +OR,112,510,396-6462,no,no,0,206.200000,122,35.050000,164.500000,94,13.980000,140.300000,101,6.310000,12.600000,7,3.400000,3,False. +ND,56,510,384-5335,no,no,0,164.300000,92,27.930000,233.700000,107,19.860000,187.300000,104,8.430000,11.800000,1,3.190000,2,False. +NJ,53,408,416-6886,no,no,0,228.600000,117,38.860000,132.800000,123,11.290000,227.200000,124,10.220000,10.100000,2,2.730000,9,True. +WV,64,415,357-2748,no,yes,22,200.400000,80,34.070000,131.100000,84,11.140000,230.700000,67,10.380000,7.600000,5,2.050000,1,False. +VA,123,408,386-7976,no,no,0,154.300000,107,26.230000,183.000000,111,15.560000,54.000000,134,2.430000,10.900000,8,2.940000,0,False. +ID,68,510,403-9199,no,yes,30,122.900000,93,20.890000,233.500000,91,19.850000,199.500000,144,8.980000,9.600000,2,2.590000,2,False. +CT,40,510,361-1900,yes,no,0,220.800000,100,37.540000,265.700000,106,22.580000,212.800000,94,9.580000,6.400000,3,1.730000,0,False. +NM,132,408,405-3848,no,no,0,214.600000,78,36.480000,251.700000,98,21.390000,240.800000,88,10.840000,13.900000,2,3.750000,0,False. +CT,120,408,344-1136,yes,no,0,202.000000,123,34.340000,184.300000,78,15.670000,176.000000,89,7.920000,7.400000,2,2.000000,2,True. +MI,108,408,378-6276,no,yes,32,209.500000,108,35.620000,109.600000,64,9.320000,189.700000,145,8.540000,9.100000,6,2.460000,6,True. +SC,161,510,343-2592,no,no,0,297.900000,141,50.640000,238.100000,107,20.240000,240.500000,93,10.820000,8.900000,5,2.400000,1,True. +SC,130,415,396-4410,no,no,0,212.800000,102,36.180000,189.800000,137,16.130000,170.100000,105,7.650000,10.600000,4,2.860000,0,True. +NY,122,510,397-3943,no,no,0,145.600000,102,24.750000,284.700000,111,24.200000,228.200000,91,10.270000,12.200000,5,3.290000,0,False. +MT,130,408,347-3821,no,yes,19,152.900000,87,25.990000,213.200000,99,18.120000,205.300000,114,9.240000,10.800000,6,2.920000,2,False. +WY,90,510,400-8069,no,no,0,125.400000,158,21.320000,269.100000,83,22.870000,238.600000,103,10.740000,11.000000,7,2.970000,1,False. +NE,139,415,346-5349,no,yes,25,138.300000,96,23.510000,80.600000,79,6.850000,163.700000,83,7.370000,8.300000,8,2.240000,0,False. +IN,57,415,345-5089,no,no,0,189.300000,157,32.180000,174.900000,70,14.870000,221.900000,117,9.990000,11.200000,5,3.020000,3,False. +CO,128,510,410-4613,no,no,0,199.300000,86,33.880000,194.800000,102,16.560000,298.200000,82,13.420000,14.300000,2,3.860000,4,False. +WY,127,510,356-4706,yes,no,0,247.500000,99,42.080000,108.500000,118,9.220000,232.000000,72,10.440000,10.600000,3,2.860000,2,False. +MD,107,415,347-3406,no,no,0,294.900000,71,50.130000,192.800000,78,16.390000,148.100000,87,6.660000,13.200000,5,3.560000,1,True. +OK,177,408,333-9133,no,no,0,175.400000,99,29.820000,155.300000,83,13.200000,179.400000,86,8.070000,11.500000,3,3.110000,1,False. +SD,121,415,392-2459,no,no,0,179.400000,70,30.500000,143.000000,93,12.160000,116.300000,113,5.230000,11.200000,5,3.020000,1,False. +SC,99,510,401-3685,yes,yes,39,126.800000,94,21.560000,293.600000,115,24.960000,174.100000,91,7.830000,8.400000,4,2.270000,0,False. +NY,126,415,352-7752,yes,no,0,239.700000,87,40.750000,281.700000,92,23.940000,183.500000,113,8.260000,11.400000,1,3.080000,1,True. +NY,77,415,388-9285,no,yes,33,143.000000,101,24.310000,212.200000,102,18.040000,104.900000,120,4.720000,15.300000,4,4.130000,5,True. +WV,21,415,332-5582,no,no,0,91.900000,109,15.620000,198.400000,111,16.860000,171.700000,125,7.730000,13.000000,7,3.510000,2,False. +WA,56,408,376-2550,no,no,0,210.400000,80,35.770000,176.600000,96,15.010000,149.700000,56,6.740000,15.500000,4,4.190000,1,False. +ID,92,415,333-4594,no,yes,29,201.300000,130,34.220000,203.700000,115,17.310000,129.900000,113,5.850000,6.400000,6,1.730000,1,True. +MN,81,510,375-2522,no,no,0,145.600000,59,24.750000,287.900000,131,24.470000,181.700000,121,8.180000,9.200000,4,2.480000,2,False. +TX,139,510,388-2240,yes,yes,31,203.500000,82,34.600000,200.300000,72,17.030000,214.000000,112,9.630000,13.400000,6,3.620000,1,True. +AZ,68,415,420-1782,no,no,0,232.400000,76,39.510000,153.300000,103,13.030000,214.600000,107,9.660000,10.500000,2,2.840000,1,False. +DE,183,415,384-8890,no,yes,8,86.500000,119,14.710000,285.200000,97,24.240000,180.400000,133,8.120000,8.700000,2,2.350000,2,False. +CO,90,408,371-4788,no,no,0,109.900000,102,18.680000,220.800000,114,18.770000,104.000000,133,4.680000,10.900000,6,2.940000,0,False. +WI,165,408,360-5636,no,no,0,156.000000,88,26.520000,276.100000,81,23.470000,175.900000,94,7.920000,9.300000,5,2.510000,1,False. +WI,89,415,373-4264,no,no,0,326.300000,112,55.470000,165.100000,110,14.030000,162.900000,97,7.330000,7.500000,1,2.030000,1,True. +NJ,59,510,352-9836,no,no,0,195.000000,58,33.150000,198.500000,88,16.870000,304.300000,110,13.690000,14.800000,9,4.000000,0,False. +IL,16,415,342-2013,yes,no,0,110.000000,91,18.700000,147.300000,75,12.520000,190.500000,73,8.570000,6.400000,7,1.730000,0,False. +DC,114,415,354-5689,no,no,0,147.100000,119,25.010000,161.000000,111,13.690000,275.900000,106,12.420000,9.000000,3,2.430000,5,True. +IA,113,510,335-8427,no,no,0,156.000000,141,26.520000,256.800000,72,21.830000,175.300000,123,7.890000,11.900000,5,3.210000,2,False. +GA,120,408,409-6753,no,no,0,98.200000,99,16.690000,186.700000,85,15.870000,146.700000,96,6.600000,9.300000,4,2.510000,2,False. +AK,115,415,349-1756,no,no,0,210.600000,120,35.800000,153.100000,84,13.010000,262.200000,79,11.800000,11.000000,5,2.970000,0,False. +CA,37,510,328-8980,no,no,0,239.900000,120,40.780000,261.600000,88,22.240000,207.100000,88,9.320000,8.900000,4,2.400000,2,True. +MN,100,415,399-2151,yes,no,0,159.900000,94,27.180000,179.900000,95,15.290000,154.400000,102,6.950000,11.600000,2,3.130000,2,True. +CO,132,415,379-9524,no,no,0,197.800000,66,33.630000,133.900000,119,11.380000,177.300000,94,7.980000,10.900000,3,2.940000,4,True. +KY,38,408,352-9947,no,yes,36,115.400000,98,19.620000,166.200000,83,14.130000,184.700000,79,8.310000,15.200000,6,4.100000,2,False. +SC,1,408,336-1043,no,no,0,123.800000,113,21.050000,236.200000,77,20.080000,73.200000,81,3.290000,3.700000,2,1.000000,0,False. +MT,97,415,416-7013,no,yes,15,117.600000,97,19.990000,196.300000,126,16.690000,157.400000,113,7.080000,6.400000,3,1.730000,1,False. +KY,55,415,345-4551,no,yes,28,105.300000,82,17.900000,197.400000,109,16.780000,187.500000,91,8.440000,8.600000,6,2.320000,2,False. +WV,75,415,405-9864,no,no,0,111.700000,121,18.990000,237.300000,119,20.170000,253.500000,110,11.410000,13.100000,6,3.540000,1,False. +ID,83,415,350-4297,no,no,0,159.300000,104,27.080000,202.300000,98,17.200000,229.000000,73,10.310000,9.500000,3,2.570000,2,False. +MN,40,510,350-7114,no,no,0,81.700000,123,13.890000,210.200000,108,17.870000,212.000000,64,9.540000,11.300000,3,3.050000,6,True. +MA,101,415,400-4244,no,yes,21,238.000000,88,40.460000,209.600000,84,17.820000,233.000000,95,10.490000,10.000000,5,2.700000,2,False. +MD,120,415,417-2608,no,yes,40,128.100000,99,21.780000,247.700000,78,21.050000,199.700000,121,8.990000,15.600000,3,4.210000,0,False. +SD,183,415,372-2990,no,yes,31,171.200000,104,29.100000,193.600000,74,16.460000,196.500000,85,8.840000,10.200000,4,2.750000,1,False. +PA,75,510,353-9998,no,no,0,109.000000,88,18.530000,259.300000,120,22.040000,182.100000,119,8.190000,13.300000,3,3.590000,4,True. +KY,80,415,330-3008,no,no,0,220.000000,114,37.400000,207.700000,76,17.650000,168.400000,137,7.580000,12.100000,3,3.270000,2,False. +ID,88,415,384-8629,no,no,0,55.600000,65,9.450000,242.700000,121,20.630000,176.300000,134,7.930000,11.300000,4,3.050000,0,False. +NY,112,415,404-9504,no,yes,23,286.600000,79,48.720000,315.300000,102,26.800000,193.900000,101,8.730000,10.300000,6,2.780000,1,False. +NM,63,510,405-8753,no,no,0,207.600000,96,35.290000,229.000000,112,19.470000,162.600000,131,7.320000,13.300000,2,3.590000,1,False. +CA,105,415,409-9911,no,yes,31,109.600000,108,18.630000,249.300000,119,21.190000,321.200000,101,14.450000,8.300000,4,2.240000,4,True. +ID,92,415,394-4260,no,no,0,197.200000,113,33.520000,242.300000,116,20.600000,192.000000,76,8.640000,11.000000,5,2.970000,2,False. +WY,177,415,380-9063,no,no,0,175.700000,120,29.870000,168.600000,90,14.330000,198.900000,110,8.950000,14.600000,4,3.940000,1,False. +NM,118,510,395-4509,no,no,0,205.200000,115,34.880000,184.800000,137,15.710000,176.100000,115,7.920000,7.000000,6,1.890000,0,False. +HI,111,408,401-6671,no,yes,13,193.100000,104,32.830000,111.600000,98,9.490000,227.400000,94,10.230000,12.100000,4,3.270000,1,False. +ID,82,510,405-7204,no,yes,34,232.600000,121,39.540000,153.200000,115,13.020000,286.700000,77,12.900000,4.700000,3,1.270000,3,False. +NC,74,415,329-5377,no,no,0,102.700000,89,17.460000,149.300000,100,12.690000,188.100000,114,8.460000,11.000000,5,2.970000,0,False. +TX,121,415,408-9572,no,yes,31,263.100000,70,44.730000,279.300000,118,23.740000,127.100000,143,5.720000,9.700000,4,2.620000,5,False. +GA,131,408,380-9879,no,no,0,197.000000,79,33.490000,201.000000,114,17.090000,151.200000,111,6.800000,11.600000,5,3.130000,1,False. +AL,125,408,384-9243,no,no,0,169.300000,90,28.780000,156.000000,138,13.260000,210.800000,106,9.490000,11.600000,6,3.130000,2,False. +ME,19,415,404-5597,no,no,0,201.500000,123,34.260000,129.200000,110,10.980000,220.600000,98,9.930000,12.900000,4,3.480000,1,False. +VA,138,415,359-7521,no,no,0,251.000000,119,42.670000,91.200000,96,7.750000,142.200000,87,6.400000,13.800000,3,3.730000,3,False. +ID,119,415,327-4795,no,no,0,230.400000,117,39.170000,225.000000,101,19.130000,198.500000,111,8.930000,7.600000,6,2.050000,3,False. +NY,137,510,338-7955,no,no,0,109.800000,120,18.670000,230.500000,86,19.590000,255.800000,103,11.510000,11.900000,6,3.210000,1,False. +NC,182,415,379-6970,no,no,0,279.500000,118,47.520000,203.200000,113,17.270000,174.200000,101,7.840000,10.700000,4,2.890000,2,True. +OH,135,415,351-7807,no,no,0,173.400000,107,29.480000,222.000000,84,18.870000,64.200000,94,2.890000,13.700000,6,3.700000,1,False. +HI,134,415,342-9394,no,yes,38,214.400000,93,36.450000,211.700000,57,17.990000,165.000000,79,7.430000,10.000000,8,2.700000,1,False. +DC,45,415,384-6264,no,no,0,96.100000,103,16.340000,246.800000,134,20.980000,229.700000,92,10.340000,9.700000,4,2.620000,1,False. +TN,129,408,352-4534,no,no,0,101.400000,145,17.240000,249.100000,116,21.170000,157.600000,107,7.090000,7.100000,6,1.920000,1,False. +VT,142,415,378-4617,no,no,0,232.500000,74,39.530000,181.800000,142,15.450000,203.100000,86,9.140000,10.400000,6,2.810000,4,False. +MD,130,415,364-9567,no,yes,45,174.500000,120,29.670000,217.500000,95,18.490000,220.300000,67,9.910000,12.200000,2,3.290000,1,False. +LA,163,408,371-5875,no,yes,23,224.000000,126,38.080000,233.500000,89,19.850000,293.900000,104,13.230000,8.800000,4,2.380000,1,False. +HI,105,415,383-6489,no,no,0,211.100000,99,35.890000,176.700000,66,15.020000,221.500000,96,9.970000,14.700000,7,3.970000,4,False. +FL,119,415,345-7117,no,no,0,109.200000,96,18.560000,153.100000,80,13.010000,240.000000,102,10.800000,9.800000,5,2.650000,2,False. +WY,78,408,384-3902,no,no,0,220.000000,95,37.400000,179.900000,121,15.290000,188.200000,109,8.470000,11.500000,5,3.110000,0,False. +NE,92,415,386-2759,no,no,0,181.400000,98,30.840000,164.500000,98,13.980000,171.000000,110,7.690000,10.900000,4,2.940000,2,False. +WY,146,415,356-1270,no,yes,11,180.700000,82,30.720000,173.700000,90,14.760000,231.500000,89,10.420000,10.100000,4,2.730000,2,False. +OR,125,408,379-1336,no,yes,32,96.500000,109,16.410000,145.800000,109,12.390000,174.400000,82,7.850000,9.400000,2,2.540000,1,False. +IN,88,415,354-7201,no,no,0,183.500000,93,31.200000,170.500000,80,14.490000,193.800000,88,8.720000,8.300000,5,2.240000,3,False. +MD,83,408,404-5057,no,yes,38,107.900000,90,18.340000,140.400000,94,11.930000,253.600000,79,11.410000,10.500000,2,2.840000,0,False. +TN,3,510,407-8012,yes,no,0,161.000000,96,27.370000,244.900000,82,20.820000,180.800000,103,8.140000,7.700000,6,2.080000,1,False. +WV,152,510,332-6139,yes,yes,41,146.800000,128,24.960000,285.600000,96,24.280000,213.600000,80,9.610000,4.300000,2,1.160000,1,True. +WA,48,510,328-1373,no,no,0,149.200000,146,25.360000,161.900000,109,13.760000,197.900000,109,8.910000,8.300000,2,2.240000,3,False. +MS,189,415,411-6501,no,no,0,227.800000,124,38.730000,169.500000,112,14.410000,201.100000,91,9.050000,5.600000,4,1.510000,3,False. +OH,95,415,329-8056,no,yes,23,160.300000,87,27.250000,202.400000,101,17.200000,191.100000,122,8.600000,7.400000,3,2.000000,0,False. +IN,129,415,415-4564,no,no,0,137.800000,120,23.430000,225.800000,110,19.190000,145.200000,95,6.530000,10.200000,6,2.750000,1,True. +CO,66,408,329-6192,no,yes,40,141.700000,87,24.090000,268.300000,89,22.810000,241.300000,68,10.860000,8.500000,7,2.300000,0,False. +TX,80,510,384-3904,no,yes,22,196.400000,115,33.390000,150.300000,109,12.780000,176.200000,75,7.930000,9.300000,1,2.510000,0,False. +AK,1,408,373-1028,no,no,0,175.200000,74,29.780000,151.700000,79,12.890000,230.500000,109,10.370000,5.300000,3,1.430000,1,False. +WV,84,408,369-1220,no,no,0,146.800000,133,24.960000,171.700000,73,14.590000,234.500000,69,10.550000,9.900000,3,2.670000,1,False. +MA,96,415,359-9369,no,no,0,173.900000,111,29.560000,287.400000,105,24.430000,204.800000,91,9.220000,9.100000,7,2.460000,1,False. +TN,123,415,415-3016,no,yes,34,305.200000,80,51.880000,156.500000,109,13.300000,280.000000,81,12.600000,13.200000,7,3.560000,1,False. +ID,116,510,414-7090,yes,yes,29,162.300000,91,27.590000,279.300000,79,23.740000,192.700000,131,8.670000,11.700000,2,3.160000,3,True. +DE,105,415,350-2250,yes,no,0,150.000000,106,25.500000,293.800000,123,24.970000,250.700000,65,11.280000,10.300000,7,2.780000,3,False. +VA,80,415,383-9355,no,no,0,197.500000,114,33.580000,206.900000,119,17.590000,163.600000,109,7.360000,11.300000,4,3.050000,1,False. +MT,157,408,417-3257,no,no,0,240.200000,67,40.830000,153.000000,98,13.010000,249.000000,72,11.210000,10.200000,6,2.750000,2,False. +ID,67,510,336-8010,no,yes,30,186.200000,117,31.650000,286.700000,76,24.370000,164.300000,113,7.390000,12.900000,3,3.480000,2,False. +IN,141,415,354-7718,no,yes,39,116.900000,127,19.870000,276.500000,88,23.500000,289.900000,125,13.050000,12.300000,2,3.320000,0,False. +MD,79,415,358-4412,no,yes,17,236.700000,95,40.240000,263.500000,56,22.400000,259.600000,107,11.680000,12.000000,4,3.240000,1,False. +MS,76,408,368-8972,no,no,0,173.200000,93,29.440000,131.200000,80,11.150000,170.900000,104,7.690000,5.400000,3,1.460000,0,False. +WA,111,510,407-9841,no,no,0,152.200000,114,25.870000,137.200000,102,11.660000,185.900000,97,8.370000,9.800000,3,2.650000,0,False. +OH,94,415,393-5208,no,no,0,181.300000,135,30.820000,182.400000,108,15.500000,180.600000,103,8.130000,6.700000,2,1.810000,0,False. +RI,143,408,332-2889,no,no,0,167.800000,72,28.530000,211.000000,99,17.940000,153.500000,109,6.910000,10.500000,6,2.840000,4,True. +AR,109,510,374-5530,no,no,0,175.400000,125,29.820000,250.700000,87,21.310000,289.300000,74,13.020000,9.800000,9,2.650000,1,False. +AZ,138,415,332-3381,no,no,0,87.600000,112,14.890000,266.900000,107,22.690000,214.600000,104,9.660000,9.800000,10,2.650000,2,False. +SC,73,415,344-9347,no,no,0,203.300000,45,34.560000,141.900000,87,12.060000,200.700000,71,9.030000,8.500000,6,2.300000,0,False. +KY,21,415,412-1991,no,no,0,92.600000,95,15.740000,161.900000,70,13.760000,285.000000,78,12.830000,11.300000,3,3.050000,5,True. +AL,148,415,393-4528,no,yes,21,262.900000,135,44.690000,149.500000,96,12.710000,140.500000,109,6.320000,8.100000,4,2.190000,1,False. +NE,103,408,347-2378,no,no,0,160.800000,91,27.340000,155.800000,82,13.240000,254.300000,103,11.440000,8.500000,3,2.300000,1,False. +MT,143,408,385-2699,no,yes,22,141.800000,116,24.110000,167.300000,99,14.220000,178.100000,130,8.010000,7.800000,3,2.110000,1,False. +MN,79,408,383-4319,no,yes,32,50.600000,62,8.600000,201.400000,87,17.120000,146.800000,121,6.610000,4.200000,4,1.130000,2,False. +NV,89,415,352-7915,no,no,0,134.900000,59,22.930000,156.000000,152,13.260000,197.500000,112,8.890000,10.200000,5,2.750000,1,False. +CA,120,415,375-5547,no,no,0,252.100000,110,42.860000,226.100000,103,19.220000,155.600000,83,7.000000,13.800000,3,3.730000,1,False. +UT,121,415,337-2348,no,yes,41,215.500000,95,36.640000,241.800000,92,20.550000,147.000000,108,6.610000,9.600000,3,2.590000,1,False. +IL,101,415,342-8702,no,no,0,124.800000,66,21.220000,257.200000,85,21.860000,193.200000,115,8.690000,13.400000,4,3.620000,0,False. +DC,115,408,393-5802,no,no,0,178.700000,114,30.380000,271.000000,96,23.040000,245.900000,94,11.070000,16.400000,5,4.430000,2,False. +IN,168,415,384-2219,no,no,0,183.200000,131,31.140000,179.200000,73,15.230000,292.800000,100,13.180000,9.900000,5,2.670000,2,False. +NM,90,415,347-6164,no,no,0,167.500000,96,28.480000,139.100000,104,11.820000,138.400000,87,6.230000,13.000000,1,3.510000,1,False. +MS,70,510,376-9940,no,no,0,147.100000,105,25.010000,200.000000,135,17.000000,234.900000,65,10.570000,12.500000,9,3.380000,3,False. +VT,138,415,354-4352,no,no,0,230.100000,107,39.120000,212.000000,120,18.020000,174.900000,119,7.870000,13.200000,4,3.560000,1,False. +VT,43,408,331-8713,no,no,0,135.800000,125,23.090000,163.200000,88,13.870000,229.800000,106,10.340000,12.600000,3,3.400000,0,False. +UT,117,510,341-3663,no,yes,20,205.700000,98,34.970000,136.100000,107,11.570000,159.400000,147,7.170000,8.700000,3,2.350000,2,False. +KY,108,408,376-4665,no,no,0,73.800000,105,12.550000,143.400000,114,12.190000,170.200000,98,7.660000,10.900000,3,2.940000,2,False. +VA,118,408,421-9034,no,no,0,189.300000,119,32.180000,233.500000,112,19.850000,270.900000,104,12.190000,10.000000,1,2.700000,2,False. +OH,169,408,401-5169,no,no,0,147.200000,115,25.020000,161.900000,123,13.760000,142.100000,103,6.390000,7.200000,6,1.940000,3,False. +AZ,62,408,370-8262,no,yes,42,137.300000,95,23.340000,184.200000,94,15.660000,231.400000,70,10.410000,10.200000,3,2.750000,0,False. +NY,86,510,387-2041,no,no,0,70.700000,125,12.020000,211.000000,113,17.940000,174.600000,107,7.860000,0.000000,0,0.000000,2,False. +VA,44,408,356-4146,no,no,0,204.600000,117,34.780000,205.200000,94,17.440000,164.600000,84,7.410000,10.700000,5,2.890000,0,False. +MD,111,510,372-8883,no,no,0,123.100000,88,20.930000,213.900000,84,18.180000,184.900000,88,8.320000,12.000000,2,3.240000,5,True. +MA,127,510,336-1880,no,yes,19,129.700000,115,22.050000,160.800000,101,13.670000,265.000000,63,11.930000,12.200000,3,3.290000,2,False. +IL,151,415,347-5843,yes,no,0,198.700000,70,33.780000,209.500000,106,17.810000,281.900000,126,12.690000,12.400000,4,3.350000,0,False. +LA,53,415,370-8023,no,no,0,145.100000,116,24.670000,233.700000,82,19.860000,208.700000,95,9.390000,7.900000,5,2.130000,2,False. +MO,15,415,417-9814,no,no,0,135.200000,101,22.980000,152.500000,79,12.960000,224.800000,83,10.120000,8.400000,5,2.270000,2,False. +DC,123,408,387-3422,no,yes,28,124.700000,105,21.200000,250.400000,78,21.280000,216.400000,128,9.740000,7.800000,8,2.110000,1,False. +PA,137,415,365-1664,no,no,0,215.900000,76,36.700000,145.400000,118,12.360000,186.900000,129,8.410000,12.100000,4,3.270000,1,False. +TN,106,415,367-2436,no,no,0,119.200000,142,20.260000,228.400000,139,19.410000,197.900000,61,8.910000,8.400000,9,2.270000,2,False. +NJ,88,510,344-6258,no,no,0,144.300000,116,24.530000,156.400000,74,13.290000,214.700000,90,9.660000,7.800000,10,2.110000,3,False. +VA,106,415,353-8928,no,no,0,235.200000,121,39.980000,220.600000,87,18.750000,236.300000,91,10.630000,11.800000,4,3.190000,1,False. +TN,95,510,365-7784,no,no,0,174.000000,57,29.580000,281.100000,118,23.890000,197.200000,94,8.870000,9.700000,2,2.620000,0,False. +NJ,57,510,330-2635,yes,no,0,115.000000,65,19.550000,122.300000,96,10.400000,245.000000,75,11.030000,6.400000,1,1.730000,0,True. +WA,184,408,344-3131,no,no,0,151.700000,93,25.790000,178.500000,77,15.170000,229.100000,111,10.310000,13.100000,8,3.540000,2,False. +AR,109,510,378-4294,no,no,0,153.100000,102,26.030000,234.100000,77,19.900000,329.200000,74,14.810000,9.900000,9,2.670000,3,False. +WI,127,415,343-9365,no,no,0,218.600000,93,37.160000,149.900000,130,12.740000,204.600000,131,9.210000,9.200000,5,2.480000,2,False. +WA,82,510,362-5579,no,no,0,265.200000,122,45.080000,178.700000,102,15.190000,174.700000,90,7.860000,10.700000,9,2.890000,2,False. +RI,180,415,366-7616,no,no,0,143.300000,134,24.360000,180.500000,113,15.340000,184.200000,87,8.290000,10.100000,4,2.730000,1,False. +ME,174,415,397-2870,no,no,0,190.300000,98,32.350000,252.700000,70,21.480000,220.600000,97,9.930000,7.200000,9,1.940000,2,False. +CO,92,415,408-3262,no,no,0,184.700000,60,31.400000,262.000000,73,22.270000,239.500000,120,10.780000,12.300000,6,3.320000,2,True. +CO,81,408,372-9091,no,no,0,115.300000,99,19.600000,224.700000,117,19.100000,152.500000,98,6.860000,18.000000,2,4.860000,1,False. +RI,125,408,410-3159,no,no,0,113.000000,108,19.210000,169.200000,107,14.380000,156.600000,61,7.050000,9.200000,5,2.480000,2,True. +CT,119,408,344-5181,no,no,0,294.200000,100,50.010000,232.500000,53,19.760000,195.000000,64,8.780000,9.000000,1,2.430000,0,True. +NC,122,415,396-8662,no,no,0,215.600000,86,36.650000,167.800000,59,14.260000,207.000000,67,9.320000,6.400000,8,1.730000,3,False. +WY,34,408,339-6446,no,no,0,128.800000,80,21.900000,208.700000,93,17.740000,202.100000,103,9.090000,14.000000,7,3.780000,1,False. +OR,138,415,384-7236,yes,yes,28,211.200000,117,35.900000,312.500000,98,26.560000,178.000000,118,8.010000,10.700000,2,2.890000,3,True. +FL,90,415,353-5257,no,yes,24,71.200000,82,12.100000,181.600000,103,15.440000,186.900000,111,8.410000,12.900000,1,3.480000,1,False. +KY,73,408,369-7295,no,no,0,94.900000,121,16.130000,253.200000,83,21.520000,175.100000,86,7.880000,14.200000,2,3.830000,2,False. +SC,19,510,408-5322,no,no,0,259.400000,116,44.100000,269.700000,109,22.920000,175.300000,130,7.890000,9.500000,3,2.570000,1,True. +WA,120,408,344-9620,no,yes,28,215.800000,123,36.690000,285.200000,76,24.240000,192.100000,78,8.640000,6.900000,3,1.860000,1,False. +MT,160,415,329-8436,no,no,0,97.500000,113,16.580000,268.100000,69,22.790000,255.300000,62,11.490000,13.200000,4,3.560000,3,False. +PA,141,510,414-6739,no,no,0,146.500000,121,24.910000,169.900000,125,14.440000,238.800000,112,10.750000,8.200000,5,2.210000,0,False. +MA,90,408,406-1730,no,no,0,157.900000,72,26.840000,234.000000,93,19.890000,210.000000,86,9.450000,12.200000,5,3.290000,2,False. +VT,72,415,336-9327,no,no,0,139.900000,117,23.780000,223.600000,96,19.010000,240.800000,93,10.840000,12.700000,4,3.430000,2,False. +MN,117,408,378-7418,no,yes,21,153.200000,112,26.040000,263.300000,110,22.380000,135.000000,85,6.080000,11.900000,7,3.210000,1,False. +IL,79,408,412-6019,yes,no,0,103.500000,134,17.600000,319.300000,111,27.140000,239.900000,124,10.800000,8.400000,4,2.270000,2,False. +AR,87,408,390-4789,no,no,0,185.800000,119,31.590000,192.300000,83,16.350000,200.000000,96,9.000000,6.600000,4,1.780000,1,False. +MD,102,415,386-9774,no,no,0,129.500000,56,22.020000,354.200000,118,30.110000,145.500000,93,6.550000,10.900000,3,2.940000,1,False. +MT,49,408,353-8970,no,no,0,236.600000,91,40.220000,220.900000,146,18.780000,146.800000,114,6.610000,8.900000,2,2.400000,1,False. +VT,67,408,410-5370,no,no,0,260.400000,107,44.270000,208.200000,104,17.700000,207.900000,115,9.360000,10.000000,2,2.700000,6,False. +CO,107,415,404-4421,no,no,0,167.300000,100,28.440000,163.900000,79,13.930000,185.900000,100,8.370000,6.700000,5,1.810000,2,False. +NC,190,408,409-3353,no,no,0,182.200000,101,30.970000,212.300000,95,18.050000,233.000000,123,10.490000,9.300000,4,2.510000,2,False. +WA,118,510,422-2571,no,no,0,113.000000,80,19.210000,150.100000,87,12.760000,204.300000,115,9.190000,10.800000,4,2.920000,2,False. +TN,120,415,412-3404,no,no,0,185.700000,133,31.570000,235.100000,149,19.980000,256.400000,78,11.540000,16.900000,6,4.560000,0,False. +AR,94,408,333-2964,no,no,0,136.200000,114,23.150000,165.100000,118,14.030000,137.900000,71,6.210000,9.600000,5,2.590000,0,False. +DC,115,510,406-6669,no,yes,29,222.600000,81,37.840000,190.300000,109,16.180000,201.200000,87,9.050000,11.500000,2,3.110000,1,False. +MN,61,415,409-8802,no,no,0,197.300000,67,33.540000,264.500000,106,22.480000,210.500000,116,9.470000,9.000000,6,2.430000,1,False. +IA,143,510,354-6183,no,yes,33,141.400000,130,24.040000,186.400000,114,15.840000,210.000000,111,9.450000,7.700000,6,2.080000,1,False. +KS,110,510,354-2434,no,no,0,208.000000,69,35.360000,95.100000,94,8.080000,178.500000,129,8.030000,8.000000,11,2.160000,1,False. +ND,104,415,389-7620,no,no,0,118.500000,92,20.150000,177.800000,109,15.110000,255.700000,98,11.510000,12.100000,4,3.270000,1,False. +MT,16,510,338-1724,no,no,0,153.200000,65,26.040000,229.700000,90,19.520000,148.200000,94,6.670000,10.700000,8,2.890000,1,False. +IL,183,510,399-1750,no,no,0,108.300000,87,18.410000,183.600000,116,15.610000,176.600000,109,7.950000,13.500000,2,3.650000,0,False. +DC,147,408,354-8914,no,no,0,168.600000,92,28.660000,187.700000,107,15.950000,216.500000,95,9.740000,14.400000,8,3.890000,2,False. +KY,58,415,409-2983,no,no,0,247.200000,116,42.020000,303.700000,103,25.810000,105.400000,94,4.740000,9.300000,2,2.510000,2,True. +MS,102,510,329-9689,yes,no,0,224.200000,81,38.110000,243.300000,90,20.680000,147.800000,66,6.650000,12.000000,8,3.240000,3,False. +TN,123,415,337-8950,no,no,0,166.900000,98,28.370000,221.800000,77,18.850000,243.900000,114,10.980000,12.800000,4,3.460000,3,False. +IA,64,415,374-1836,no,yes,43,118.400000,100,20.130000,144.100000,108,12.250000,158.100000,91,7.110000,8.500000,6,2.300000,1,False. +AK,103,510,359-9454,no,no,0,190.900000,62,32.450000,226.600000,53,19.260000,230.100000,96,10.350000,7.800000,3,2.110000,2,False. +MN,152,415,378-9542,no,no,0,317.800000,60,54.030000,152.900000,100,13.000000,123.400000,63,5.550000,10.400000,7,2.810000,1,True. +WV,124,415,344-1970,no,no,0,312.000000,112,53.040000,180.000000,109,15.300000,168.600000,94,7.590000,12.800000,4,3.460000,1,True. +OR,97,415,417-2774,no,no,0,146.000000,121,24.820000,203.000000,141,17.260000,151.800000,120,6.830000,13.300000,2,3.590000,1,False. +MS,131,415,333-9002,no,no,0,131.600000,95,22.370000,179.300000,109,15.240000,251.200000,129,11.300000,15.500000,3,4.190000,1,True. +ME,57,415,369-8576,no,yes,33,193.400000,105,32.880000,231.600000,79,19.690000,226.200000,90,10.180000,11.100000,11,3.000000,2,False. +MN,157,510,372-6920,no,no,0,185.100000,92,31.470000,213.000000,85,18.110000,196.100000,85,8.820000,8.500000,5,2.300000,2,False. +GA,194,510,333-6575,no,no,0,193.300000,106,32.860000,169.000000,150,14.370000,225.200000,122,10.130000,11.800000,4,3.190000,0,False. +DC,66,415,410-1190,no,no,0,146.400000,107,24.890000,196.500000,99,16.700000,230.100000,106,10.350000,7.800000,2,2.110000,1,False. +GA,155,510,376-1641,no,no,0,71.200000,90,12.100000,304.400000,119,25.870000,183.300000,103,8.250000,8.600000,4,2.320000,0,False. +NY,123,415,329-6731,no,no,0,123.200000,104,20.940000,190.000000,117,16.150000,170.300000,95,7.660000,12.900000,5,3.480000,4,True. +OK,116,510,393-3976,no,no,0,205.000000,90,34.850000,140.900000,114,11.980000,272.600000,96,12.270000,7.500000,4,2.030000,2,False. +OK,63,415,388-7355,no,no,0,128.700000,78,21.880000,240.800000,133,20.470000,237.700000,121,10.700000,12.800000,6,3.460000,1,False. +GA,64,510,412-7791,no,no,0,216.900000,78,36.870000,211.000000,115,17.940000,179.800000,116,8.090000,11.400000,5,3.080000,3,False. +NJ,96,510,368-6111,no,no,0,150.000000,122,25.500000,218.500000,116,18.570000,212.400000,89,9.560000,9.800000,1,2.650000,3,False. +MN,53,415,401-9420,no,no,0,164.100000,106,27.900000,206.000000,56,17.510000,194.700000,124,8.760000,11.400000,2,3.080000,1,False. +ME,105,510,352-5750,no,no,0,212.000000,113,36.040000,226.600000,128,19.260000,193.600000,114,8.710000,8.900000,7,2.400000,3,False. +MI,53,510,417-3702,no,yes,37,167.300000,99,28.440000,194.700000,99,16.550000,236.700000,112,10.650000,12.000000,9,3.240000,2,False. +MT,101,415,353-5714,no,no,0,154.400000,130,26.250000,217.200000,101,18.460000,185.400000,52,8.340000,13.900000,4,3.750000,1,False. +NE,129,510,409-9494,no,yes,30,177.300000,95,30.140000,211.800000,102,18.000000,240.200000,108,10.810000,9.300000,7,2.510000,3,False. +ND,122,408,395-1901,no,no,0,231.200000,141,39.300000,267.800000,136,22.760000,240.300000,100,10.810000,8.800000,5,2.380000,1,True. +VA,163,415,378-8342,no,no,0,202.900000,100,34.490000,178.600000,46,15.180000,203.800000,116,9.170000,12.800000,3,3.460000,5,False. +VT,93,408,417-6044,no,no,0,149.600000,120,25.430000,200.700000,85,17.060000,181.200000,107,8.150000,14.300000,9,3.860000,0,False. +OH,115,510,348-1163,yes,no,0,345.300000,81,58.700000,203.400000,106,17.290000,217.500000,107,9.790000,11.800000,8,3.190000,1,True. +AL,25,408,337-4600,no,no,0,264.900000,80,45.030000,281.200000,66,23.900000,166.100000,80,7.470000,8.400000,4,2.270000,1,True. +DC,73,408,355-5922,no,no,0,122.000000,92,20.740000,138.300000,114,11.760000,224.200000,128,10.090000,5.800000,5,1.570000,1,False. +ND,120,415,369-5810,no,no,0,177.200000,88,30.120000,270.400000,99,22.980000,231.500000,90,10.420000,14.000000,2,3.780000,2,False. +TN,196,415,340-8291,no,no,0,133.100000,80,22.630000,206.500000,120,17.550000,221.600000,96,9.970000,10.300000,8,2.780000,1,False. +DE,97,510,354-7397,no,no,0,225.100000,90,38.270000,279.500000,127,23.760000,233.800000,103,10.520000,8.800000,4,2.380000,0,True. +NY,148,408,407-7464,no,no,0,208.400000,120,35.430000,174.400000,99,14.820000,310.700000,105,13.980000,11.200000,4,3.020000,1,False. +AL,85,408,386-6411,no,yes,30,173.100000,107,29.430000,247.200000,101,21.010000,158.700000,104,7.140000,11.500000,5,3.110000,1,False. +OK,86,510,397-3746,yes,no,0,162.400000,131,27.610000,167.000000,102,14.200000,128.900000,118,5.800000,11.400000,2,3.080000,2,True. +MS,78,415,410-5236,no,yes,13,281.200000,93,47.800000,178.200000,101,15.150000,244.200000,129,10.990000,6.400000,5,1.730000,2,False. +MD,106,415,409-2412,no,no,0,208.300000,89,35.410000,169.400000,67,14.400000,102.000000,90,4.590000,15.900000,4,4.290000,3,False. +NE,147,415,400-7280,no,yes,38,243.400000,126,41.380000,273.800000,109,23.270000,282.900000,91,12.730000,14.100000,8,3.810000,2,False. +AR,145,415,332-5820,no,no,0,224.200000,89,38.110000,314.900000,121,26.770000,182.900000,121,8.230000,16.100000,3,4.350000,1,True. +IL,91,415,373-4483,no,no,0,189.300000,100,32.180000,239.300000,107,20.340000,89.700000,89,4.040000,9.900000,3,2.670000,3,False. +IN,81,408,347-6717,no,yes,46,168.300000,124,28.610000,270.900000,103,23.030000,222.500000,98,10.010000,6.700000,2,1.810000,4,False. +UT,116,415,380-2929,no,yes,24,232.900000,90,39.590000,152.100000,94,12.930000,344.300000,82,15.490000,10.700000,6,2.890000,1,False. +LA,69,415,420-7692,no,yes,37,155.000000,98,26.350000,142.400000,105,12.100000,143.700000,117,6.470000,5.900000,4,1.590000,1,False. +ID,135,510,380-6437,no,no,0,154.400000,130,26.250000,203.800000,90,17.320000,158.700000,59,7.140000,11.800000,3,3.190000,0,False. +KY,73,510,377-8309,no,no,0,234.700000,102,39.900000,195.700000,110,16.630000,253.400000,71,11.400000,8.400000,8,2.270000,2,False. +MI,48,415,407-2718,no,no,0,240.000000,88,40.800000,141.000000,117,11.990000,128.900000,137,5.800000,7.100000,9,1.920000,1,False. +NH,125,415,357-1938,yes,no,0,298.400000,78,50.730000,270.500000,142,22.990000,107.300000,84,4.830000,12.200000,2,3.290000,0,True. +WV,100,415,381-3735,no,no,0,166.000000,102,28.220000,236.100000,97,20.070000,134.300000,93,6.040000,10.900000,4,2.940000,1,False. +OR,165,415,409-8453,no,yes,33,111.600000,140,18.970000,213.300000,111,18.130000,267.600000,115,12.040000,16.000000,3,4.320000,0,False. +SD,64,415,395-6758,no,no,0,174.500000,98,29.670000,180.200000,103,15.320000,179.000000,89,8.060000,10.700000,2,2.890000,2,False. +MD,116,510,399-5424,yes,yes,27,175.500000,137,29.840000,210.600000,60,17.900000,294.800000,121,13.270000,6.900000,5,1.860000,1,False. +ND,147,408,409-4671,yes,yes,35,157.500000,109,26.780000,189.600000,67,16.120000,227.000000,76,10.220000,11.100000,2,3.000000,3,True. +TN,115,415,374-6525,no,no,0,206.200000,113,35.050000,176.400000,102,14.990000,297.100000,119,13.370000,11.000000,7,2.970000,1,False. +MO,84,415,406-8665,no,yes,35,207.500000,138,35.280000,201.000000,116,17.090000,164.500000,107,7.400000,7.500000,16,2.030000,4,False. +IL,86,510,342-7716,no,yes,16,144.800000,105,24.620000,206.200000,111,17.530000,255.400000,117,11.490000,11.600000,2,3.130000,4,False. +UT,134,415,417-2221,no,no,0,258.800000,85,44.000000,129.500000,114,11.010000,193.600000,106,8.710000,10.900000,7,2.940000,2,False. +MI,105,415,376-5213,no,no,0,226.900000,106,38.570000,182.200000,77,15.490000,203.900000,107,9.180000,11.600000,2,3.130000,0,True. +AR,88,408,348-7448,no,no,0,152.900000,119,25.990000,171.200000,107,14.550000,257.000000,106,11.570000,12.000000,5,3.240000,2,False. +TX,90,408,328-8179,no,yes,27,156.700000,51,26.640000,236.500000,118,20.100000,123.200000,111,5.540000,12.600000,6,3.400000,2,False. +AK,86,408,389-4602,no,no,0,150.800000,85,25.640000,295.900000,88,25.150000,247.200000,104,11.120000,12.500000,1,3.380000,1,False. +TN,37,415,413-2238,no,no,0,221.000000,126,37.570000,204.500000,110,17.380000,118.000000,98,5.310000,6.800000,3,1.840000,4,False. +NH,141,415,402-3370,no,yes,32,322.400000,92,54.810000,283.200000,107,24.070000,209.500000,111,9.430000,6.700000,3,1.810000,1,True. +NM,148,408,348-6008,no,no,0,153.600000,148,26.110000,262.100000,87,22.280000,225.500000,99,10.150000,9.800000,3,2.650000,2,False. +MN,163,408,371-5655,no,yes,22,215.100000,91,36.570000,138.900000,102,11.810000,146.200000,109,6.580000,12.400000,2,3.350000,2,False. +IA,89,415,374-5224,no,yes,35,174.400000,108,29.650000,196.700000,100,16.720000,127.400000,74,5.730000,11.800000,3,3.190000,1,False. +RI,63,415,371-1187,no,no,0,180.500000,126,30.690000,230.000000,98,19.550000,232.500000,73,10.460000,10.600000,3,2.860000,0,False. +AL,102,415,337-1100,no,no,0,123.100000,106,20.930000,182.000000,102,15.470000,244.600000,75,11.010000,12.600000,7,3.400000,2,False. +NC,76,510,421-8141,no,no,0,165.700000,94,28.170000,257.400000,80,21.880000,170.800000,114,7.690000,10.000000,4,2.700000,1,False. +SD,104,408,406-2678,no,no,0,200.200000,92,34.030000,118.700000,87,10.090000,236.600000,65,10.650000,6.000000,6,1.620000,2,False. +MT,109,510,415-9649,no,no,0,154.800000,82,26.320000,287.700000,109,24.450000,208.400000,80,9.380000,5.900000,9,1.590000,3,False. +HI,105,510,364-8128,no,no,0,125.400000,116,21.320000,261.500000,95,22.230000,241.600000,104,10.870000,11.400000,9,3.080000,2,False. +MT,63,415,356-7817,no,yes,33,184.200000,111,31.310000,312.600000,89,26.570000,264.000000,55,11.880000,12.200000,4,3.290000,1,False. +KY,105,415,404-6357,no,yes,24,274.700000,99,46.700000,193.500000,118,16.450000,299.600000,109,13.480000,10.800000,3,2.920000,3,False. +DC,68,415,398-2138,yes,yes,39,142.000000,140,24.140000,241.600000,89,20.540000,302.000000,72,13.590000,11.300000,5,3.050000,1,False. +CO,63,408,378-8029,yes,yes,21,151.500000,99,25.760000,147.800000,89,12.560000,210.400000,114,9.470000,10.000000,4,2.700000,1,False. +MI,74,415,386-4215,no,no,0,124.800000,114,21.220000,133.000000,121,11.310000,160.300000,85,7.210000,10.600000,7,2.860000,3,False. +AL,76,415,367-8156,no,no,0,179.200000,85,30.460000,222.900000,66,18.950000,188.200000,113,8.470000,12.400000,2,3.350000,0,False. +KS,91,408,382-8079,yes,no,0,246.400000,110,41.890000,182.000000,98,15.470000,157.600000,106,7.090000,12.100000,2,3.270000,2,True. +NC,101,415,354-2985,no,no,0,232.700000,114,39.560000,186.400000,123,15.840000,153.300000,122,6.900000,11.500000,6,3.110000,5,False. +SC,116,408,373-6922,no,no,0,288.000000,120,48.960000,255.800000,90,21.740000,233.400000,99,10.500000,13.400000,4,3.620000,0,True. +CO,131,415,397-7125,no,yes,23,170.800000,145,29.040000,236.700000,93,20.120000,294.500000,100,13.250000,12.700000,1,3.430000,1,False. +MN,84,415,333-6296,no,no,0,216.100000,114,36.740000,197.500000,107,16.790000,217.800000,104,9.800000,9.800000,3,2.650000,1,False. +WY,104,415,365-6022,no,no,0,138.700000,100,23.580000,215.400000,58,18.310000,164.300000,98,7.390000,4.900000,4,1.320000,2,False. +FL,108,510,365-1688,no,no,0,210.700000,112,35.820000,238.700000,73,20.290000,253.600000,90,11.410000,9.200000,5,2.480000,3,False. +NY,111,415,382-4872,no,no,0,181.800000,117,30.910000,158.100000,91,13.440000,266.200000,123,11.980000,9.700000,9,2.620000,0,False. +OK,155,408,367-6136,no,yes,30,61.600000,103,10.470000,255.100000,110,21.680000,225.900000,96,10.170000,12.400000,5,3.350000,1,False. +ME,66,510,404-3592,no,no,0,207.700000,85,35.310000,196.700000,112,16.720000,261.700000,83,11.780000,6.800000,3,1.840000,1,False. +NE,64,510,415-2949,no,no,0,219.200000,73,37.260000,167.000000,65,14.200000,161.400000,119,7.260000,10.000000,5,2.700000,1,False. +OH,69,415,375-8880,no,no,0,227.000000,122,38.590000,258.700000,111,21.990000,169.700000,87,7.640000,8.900000,1,2.400000,2,False. +CT,116,415,335-6832,no,no,0,245.900000,73,41.800000,240.100000,87,20.410000,158.700000,89,7.140000,8.900000,5,2.400000,3,False. +DC,101,415,361-8367,no,no,0,257.300000,84,43.740000,184.800000,115,15.710000,108.900000,109,4.900000,13.500000,7,3.650000,0,False. +OK,15,415,408-2002,no,no,0,121.100000,130,20.590000,216.000000,86,18.360000,235.100000,33,10.580000,16.100000,5,4.350000,2,False. +NJ,88,415,347-8659,no,no,0,301.500000,136,51.260000,257.700000,72,21.900000,132.900000,118,5.980000,13.400000,2,3.620000,4,True. +IA,197,415,376-2922,no,no,0,233.900000,96,39.760000,218.900000,111,18.610000,182.900000,109,8.230000,9.500000,3,2.570000,0,False. +VA,50,415,382-2182,yes,no,0,99.600000,108,16.930000,308.700000,102,26.240000,161.200000,62,7.250000,13.700000,6,3.700000,2,True. +VA,172,510,408-2089,no,no,0,169.800000,123,28.870000,183.100000,94,15.560000,395.000000,72,17.770000,12.700000,7,3.430000,2,False. +NM,188,415,369-6890,yes,yes,26,198.800000,115,33.800000,166.600000,67,14.160000,198.500000,118,8.930000,14.400000,3,3.890000,1,True. +FL,85,408,347-2951,yes,no,0,116.200000,86,19.750000,229.700000,127,19.520000,204.200000,109,9.190000,10.100000,3,2.730000,3,False. +RI,103,510,420-6324,yes,no,0,255.900000,128,43.500000,140.900000,92,11.980000,308.900000,130,13.900000,12.100000,2,3.270000,1,True. +NJ,136,408,402-7650,no,yes,27,187.700000,84,31.910000,221.000000,147,18.790000,145.700000,110,6.560000,10.000000,4,2.700000,3,False. +NE,155,408,391-2702,no,yes,21,195.900000,91,33.300000,213.900000,84,18.180000,88.200000,111,3.970000,8.600000,4,2.320000,0,False. +WV,145,415,383-3375,no,no,0,129.400000,97,22.000000,185.400000,101,15.760000,204.700000,106,9.210000,1.100000,2,0.300000,2,False. +WY,116,510,392-2733,no,yes,12,221.000000,108,37.570000,151.000000,118,12.840000,179.000000,80,8.060000,9.000000,6,2.430000,2,False. +SC,152,408,397-9933,no,no,0,140.500000,92,23.890000,186.800000,96,15.880000,227.000000,89,10.220000,9.500000,5,2.570000,2,False. +MS,65,415,383-9306,yes,no,0,277.900000,123,47.240000,155.800000,112,13.240000,256.900000,71,11.560000,9.200000,10,2.480000,0,True. +ND,180,415,369-1929,no,no,0,224.900000,105,38.230000,250.000000,101,21.250000,216.100000,73,9.720000,6.700000,5,1.810000,3,True. +IL,67,415,369-4377,no,no,0,109.100000,117,18.550000,217.400000,124,18.480000,188.400000,141,8.480000,12.800000,6,3.460000,0,False. +OR,60,415,366-9430,no,no,0,207.800000,109,35.330000,123.500000,112,10.500000,291.600000,115,13.120000,5.700000,9,1.540000,0,False. +UT,138,510,353-7407,no,no,0,205.900000,96,35.000000,257.100000,94,21.850000,209.000000,63,9.400000,12.100000,8,3.270000,0,False. +IA,44,415,359-7426,no,no,0,308.600000,139,52.460000,150.800000,94,12.820000,198.700000,66,8.940000,7.300000,3,1.970000,4,True. +ME,25,510,332-7391,no,no,0,242.600000,69,41.240000,209.000000,117,17.770000,219.700000,82,9.890000,14.400000,6,3.890000,2,False. +WY,145,408,405-6559,no,no,0,229.600000,82,39.030000,138.100000,103,11.740000,250.800000,109,11.290000,3.300000,3,0.890000,1,False. +WI,122,510,338-8784,no,yes,28,166.000000,62,28.220000,233.900000,88,19.880000,170.100000,84,7.650000,7.700000,3,2.080000,2,False. +SC,121,415,415-6347,no,no,0,144.800000,126,24.620000,200.600000,82,17.050000,208.800000,81,9.400000,13.300000,9,3.590000,0,True. +DC,55,510,354-5058,yes,no,0,106.100000,77,18.040000,123.500000,100,10.500000,96.400000,92,4.340000,12.900000,3,3.480000,0,False. +CT,77,415,342-5701,no,no,0,221.800000,84,37.710000,166.000000,125,14.110000,210.200000,72,9.460000,13.200000,4,3.560000,1,False. +OR,12,415,378-4179,no,no,0,204.600000,98,34.780000,212.500000,90,18.060000,182.100000,95,8.190000,9.800000,7,2.650000,2,False. +OR,64,510,407-6391,no,no,0,213.500000,93,36.300000,166.600000,114,14.160000,122.000000,78,5.490000,14.100000,3,3.810000,3,False. +NV,92,415,404-3105,no,yes,44,152.000000,95,25.840000,274.900000,73,23.370000,162.400000,121,7.310000,10.000000,1,2.700000,2,False. +MN,125,415,390-9735,yes,yes,29,260.800000,81,44.340000,163.700000,112,13.910000,271.700000,117,12.230000,17.000000,6,4.590000,1,True. +OK,160,408,350-4820,no,no,0,166.400000,117,28.290000,317.000000,129,26.950000,160.400000,121,7.220000,10.000000,2,2.700000,1,False. +KS,79,415,383-8807,no,no,0,177.900000,83,30.240000,167.300000,84,14.220000,223.700000,142,10.070000,15.200000,8,4.100000,0,False. +RI,36,415,366-8382,no,no,0,235.100000,97,39.970000,196.800000,104,16.730000,259.700000,110,11.690000,7.000000,7,1.890000,3,False. +DC,102,415,402-9704,no,no,0,186.800000,92,31.760000,173.700000,123,14.760000,250.900000,131,11.290000,9.700000,4,2.620000,2,False. +IL,138,408,405-2209,yes,no,0,268.400000,81,45.630000,174.400000,115,14.820000,193.500000,96,8.710000,11.600000,4,3.130000,1,False. +UT,164,510,397-3939,no,no,0,192.100000,95,32.660000,249.800000,94,21.230000,132.600000,100,5.970000,7.300000,3,1.970000,3,False. +MN,125,415,343-2689,no,no,0,240.700000,82,40.920000,269.400000,85,22.900000,187.100000,74,8.420000,10.100000,3,2.730000,0,True. +WI,72,408,383-9448,no,no,0,179.900000,113,30.580000,149.800000,112,12.730000,168.200000,79,7.570000,9.800000,7,2.650000,2,False. +MI,74,415,359-6232,no,no,0,314.100000,86,53.400000,222.400000,99,18.900000,259.000000,121,11.660000,12.300000,5,3.320000,3,True. +MI,134,415,369-9772,no,yes,41,162.000000,82,27.540000,324.700000,77,27.600000,160.100000,112,7.200000,11.900000,5,3.210000,0,False. +MA,145,415,381-7003,no,no,0,175.800000,89,29.890000,274.300000,119,23.320000,226.600000,69,10.200000,12.400000,4,3.350000,1,False. +AL,136,510,352-6732,no,no,0,109.400000,91,18.600000,207.500000,111,17.640000,135.000000,107,6.080000,11.600000,5,3.130000,0,False. +SC,209,510,388-7540,no,no,0,255.100000,124,43.370000,230.600000,110,19.600000,218.000000,69,9.810000,8.500000,5,2.300000,3,True. +WI,66,415,356-3333,yes,no,0,208.700000,84,35.480000,173.300000,88,14.730000,264.700000,107,11.910000,8.300000,3,2.240000,3,False. +VT,152,510,333-9664,no,yes,20,214.600000,108,36.480000,96.600000,82,8.210000,170.700000,145,7.680000,7.900000,5,2.130000,1,False. +CT,162,408,363-3763,no,no,0,49.200000,121,8.360000,143.900000,136,12.230000,203.000000,97,9.140000,12.100000,13,3.270000,1,False. +OR,72,510,345-7900,no,no,0,141.300000,133,24.020000,134.900000,96,11.470000,227.500000,97,10.240000,11.200000,3,3.020000,2,False. +HI,101,415,400-5511,no,no,0,253.200000,89,43.040000,237.900000,114,20.220000,154.300000,85,6.940000,9.700000,7,2.620000,4,False. +WV,125,415,381-7597,no,no,0,206.000000,128,35.020000,198.100000,71,16.840000,135.900000,116,6.120000,13.200000,3,3.560000,0,False. +RI,46,408,404-9775,no,no,0,40.400000,105,6.870000,172.400000,83,14.650000,145.100000,89,6.530000,9.000000,2,2.430000,2,False. +MI,132,408,389-4608,no,no,0,291.200000,104,49.500000,234.200000,132,19.910000,191.700000,87,8.630000,8.900000,3,2.400000,1,True. +ME,193,415,403-1742,no,yes,31,71.200000,58,12.100000,124.700000,105,10.600000,155.500000,108,7.000000,11.700000,3,3.160000,0,False. +WV,63,510,328-9797,no,no,0,261.800000,69,44.510000,245.000000,135,20.830000,202.100000,94,9.090000,14.700000,4,3.970000,0,True. +NE,124,510,359-9223,no,no,0,191.300000,134,32.520000,261.500000,113,22.230000,182.300000,111,8.200000,10.000000,3,2.700000,1,False. +DC,144,415,336-7696,no,no,0,133.300000,101,22.660000,255.500000,127,21.720000,228.600000,68,10.290000,11.600000,2,3.130000,0,False. +NH,116,408,369-2214,no,yes,24,183.600000,138,31.210000,203.800000,90,17.320000,166.900000,89,7.510000,6.000000,3,1.620000,2,False. +MD,189,415,411-1325,no,yes,30,155.200000,116,26.380000,195.500000,50,16.620000,170.100000,108,7.650000,15.400000,6,4.160000,1,False. +NH,97,408,410-7553,no,yes,28,283.100000,93,48.130000,185.400000,98,15.760000,312.800000,78,14.080000,6.100000,8,1.650000,1,False. +WV,137,510,376-4284,no,yes,50,186.500000,94,31.710000,178.000000,106,15.130000,215.600000,100,9.700000,12.100000,4,3.270000,2,False. +IL,142,415,334-2800,no,yes,38,163.300000,104,27.760000,136.000000,114,11.560000,249.100000,127,11.210000,4.300000,6,1.160000,0,False. +OK,84,510,369-1904,no,no,0,203.400000,125,34.580000,182.900000,88,15.550000,213.700000,121,9.620000,13.800000,2,3.730000,1,False. +NH,119,415,359-3833,no,yes,19,178.100000,110,30.280000,212.800000,100,18.090000,226.300000,123,10.180000,10.000000,6,2.700000,1,False. +MI,158,415,348-5569,no,no,0,195.900000,103,33.300000,89.100000,95,7.570000,302.200000,82,13.600000,10.300000,3,2.780000,1,False. +ND,50,415,342-1960,no,no,0,295.300000,127,50.200000,127.400000,100,10.830000,166.800000,105,7.510000,9.600000,6,2.590000,1,False. +LA,98,408,352-9050,no,no,0,136.100000,82,23.140000,156.300000,118,13.290000,158.800000,83,7.150000,10.100000,5,2.730000,2,False. +HI,101,415,390-5316,no,yes,24,114.100000,95,19.400000,161.500000,86,13.730000,176.300000,90,7.930000,13.000000,9,3.510000,2,False. +NJ,182,415,418-8568,no,no,0,279.100000,124,47.450000,180.500000,108,15.340000,217.500000,104,9.790000,9.500000,11,2.570000,2,True. +WV,51,408,401-4844,no,no,0,169.300000,111,28.780000,139.500000,69,11.860000,197.000000,87,8.870000,12.000000,3,3.240000,0,False. +NC,117,510,376-5471,no,no,0,214.400000,94,36.450000,138.000000,149,11.730000,148.700000,102,6.690000,9.900000,1,2.670000,2,False. +PA,92,415,409-2917,yes,no,0,255.800000,125,43.490000,142.700000,111,12.130000,181.200000,101,8.150000,11.700000,3,3.160000,0,False. +MI,86,408,369-6308,no,no,0,148.200000,71,25.190000,285.100000,91,24.230000,166.400000,155,7.490000,6.200000,3,1.670000,2,False. +WY,122,415,357-7385,no,no,0,119.300000,93,20.280000,223.900000,103,19.030000,211.900000,122,9.540000,8.700000,4,2.350000,2,False. +NJ,156,408,405-7119,no,yes,27,192.300000,137,32.690000,199.900000,115,16.990000,244.200000,112,10.990000,14.800000,8,4.000000,1,False. +NJ,127,510,405-3309,no,no,0,245.200000,91,41.680000,217.200000,92,18.460000,243.100000,128,10.940000,13.900000,6,3.750000,0,True. +NC,130,408,384-4938,yes,no,0,216.200000,106,36.750000,363.700000,86,30.910000,126.700000,123,5.700000,16.900000,2,4.560000,5,True. +NM,158,408,377-2725,no,no,0,172.400000,114,29.310000,256.600000,69,21.810000,235.300000,104,10.590000,0.000000,0,0.000000,2,False. +MS,145,510,405-6398,yes,yes,30,175.300000,107,29.800000,153.300000,116,13.030000,233.600000,85,10.510000,11.100000,3,3.000000,1,False. +TX,90,415,355-9366,yes,yes,26,169.000000,104,28.730000,188.800000,104,16.050000,213.300000,76,9.600000,13.300000,3,3.590000,0,True. +OK,127,510,403-1128,no,yes,27,2.600000,113,0.440000,254.000000,102,21.590000,242.700000,156,10.920000,9.200000,5,2.480000,3,False. +ID,109,415,384-9682,no,no,0,184.100000,143,31.300000,211.700000,105,17.990000,243.000000,116,10.930000,9.900000,2,2.670000,1,False. +AL,88,415,352-5393,no,no,0,181.900000,90,30.920000,151.500000,87,12.880000,143.000000,100,6.440000,7.500000,3,2.030000,1,False. +WY,101,510,395-1229,no,yes,9,160.100000,116,27.220000,210.000000,121,17.850000,139.100000,65,6.260000,10.800000,9,2.920000,0,False. +HI,171,510,361-9195,no,no,0,189.800000,122,32.270000,173.700000,85,14.760000,257.100000,84,11.570000,10.300000,1,2.780000,0,False. +VA,21,415,351-6366,no,no,0,223.200000,142,37.940000,216.500000,114,18.400000,214.700000,111,9.660000,12.400000,2,3.350000,1,False. +WV,145,408,346-4919,no,yes,31,216.000000,94,36.720000,225.100000,123,19.130000,234.700000,109,10.560000,10.700000,1,2.890000,2,False. +DE,90,415,354-9068,no,no,0,198.500000,124,33.750000,266.600000,100,22.660000,243.300000,80,10.950000,8.000000,7,2.160000,2,False. +CA,33,408,369-2743,no,no,0,159.500000,115,27.120000,195.400000,118,16.610000,102.400000,86,4.610000,7.100000,7,1.920000,1,False. +PA,61,408,343-1347,no,yes,40,105.000000,78,17.850000,180.600000,100,15.350000,174.100000,115,7.830000,10.200000,2,2.750000,2,True. +CO,107,415,336-5495,no,no,0,204.500000,108,34.770000,162.400000,110,13.800000,155.000000,102,6.980000,13.400000,1,3.620000,3,False. +MD,147,408,376-4292,no,no,0,274.000000,92,46.580000,231.800000,82,19.700000,283.600000,83,12.760000,6.200000,1,1.670000,0,True. +AL,117,510,391-8677,no,no,0,158.700000,84,26.980000,181.700000,91,15.440000,177.300000,67,7.980000,7.700000,10,2.080000,2,False. +AL,95,415,350-7273,no,no,0,229.900000,116,39.080000,202.400000,110,17.200000,171.400000,105,7.710000,14.200000,6,3.830000,1,False. +KS,186,510,400-6454,no,no,0,137.800000,97,23.430000,187.700000,118,15.950000,146.400000,85,6.590000,8.700000,6,2.350000,1,False. +MI,128,415,422-3052,no,no,0,179.400000,94,30.500000,270.400000,92,22.980000,191.000000,88,8.590000,7.900000,4,2.130000,0,False. +AK,55,408,365-6756,no,yes,39,139.300000,101,23.680000,178.300000,117,15.160000,246.500000,104,11.090000,8.100000,1,2.190000,3,False. +OH,134,415,406-4158,no,no,0,7.800000,86,1.330000,171.400000,100,14.570000,186.500000,80,8.390000,12.900000,2,3.480000,2,False. +IN,96,415,383-4641,no,yes,23,183.100000,88,31.130000,147.400000,89,12.530000,350.200000,108,15.760000,11.300000,7,3.050000,1,False. +SC,107,415,368-5165,no,no,0,206.900000,79,35.170000,262.400000,117,22.300000,149.300000,69,6.720000,10.700000,3,2.890000,0,False. +KS,123,415,378-2432,no,no,0,140.000000,106,23.800000,153.700000,101,13.060000,50.100000,87,2.250000,12.500000,1,3.380000,2,False. +OK,35,415,362-4159,no,no,0,179.200000,59,30.460000,283.300000,101,24.080000,285.400000,83,12.840000,5.800000,7,1.570000,2,False. +WI,74,408,363-7979,no,no,0,177.400000,136,30.160000,240.300000,104,20.430000,237.300000,133,10.680000,12.000000,3,3.240000,0,False. +IN,130,408,334-9818,no,no,0,115.600000,129,19.650000,167.800000,104,14.260000,141.800000,124,6.380000,12.600000,9,3.400000,1,False. +IL,137,408,352-5787,yes,no,0,237.300000,103,40.340000,176.700000,84,15.020000,263.400000,81,11.850000,14.200000,4,3.830000,0,True. +TN,88,415,332-3617,no,no,0,181.500000,116,30.860000,187.000000,119,15.900000,220.300000,96,9.910000,10.500000,7,2.840000,1,False. +DC,80,408,327-9957,no,no,0,51.500000,90,8.760000,164.000000,98,13.940000,169.400000,80,7.620000,9.500000,4,2.570000,3,False. +NC,116,408,338-7527,no,yes,19,155.700000,104,26.470000,185.400000,118,15.760000,192.700000,116,8.670000,8.200000,2,2.210000,3,False. +RI,123,510,348-8711,no,yes,23,245.000000,88,41.650000,265.000000,105,22.530000,239.700000,108,10.790000,14.900000,3,4.020000,2,False. +MS,120,415,421-3226,no,no,0,131.700000,99,22.390000,163.100000,109,13.860000,201.100000,116,9.050000,10.700000,3,2.890000,1,False. +VA,146,415,391-4358,yes,no,0,111.100000,126,18.890000,313.400000,95,26.640000,215.700000,82,9.710000,10.500000,6,2.840000,1,False. +KY,106,510,379-2523,no,yes,9,88.500000,100,15.050000,324.800000,109,27.610000,79.900000,86,3.600000,8.200000,4,2.210000,3,False. +NV,121,408,419-2369,no,yes,44,116.000000,85,19.720000,150.100000,120,12.760000,246.800000,98,11.110000,12.000000,2,3.240000,1,False. +WI,137,510,382-1227,no,no,0,155.500000,81,26.440000,133.100000,94,11.310000,253.100000,77,11.390000,9.100000,2,2.460000,1,False. +NH,84,408,409-5749,no,yes,30,106.500000,65,18.110000,225.700000,108,19.180000,188.600000,61,8.490000,5.700000,3,1.540000,2,False. +NE,67,510,362-7951,no,yes,31,175.200000,68,29.780000,199.200000,73,16.930000,219.800000,99,9.890000,13.200000,6,3.560000,1,False. +WI,161,408,415-3537,no,no,0,154.700000,84,26.300000,177.800000,125,15.110000,172.900000,90,7.780000,5.900000,2,1.590000,4,True. +NJ,134,510,373-3959,no,yes,34,247.200000,105,42.020000,225.500000,133,19.170000,186.300000,76,8.380000,6.100000,5,1.650000,2,True. +ME,62,415,358-1346,yes,yes,32,218.400000,93,37.130000,236.700000,132,20.120000,192.200000,137,8.650000,13.200000,3,3.560000,0,True. +WY,120,415,381-8422,no,yes,24,227.500000,81,38.680000,234.900000,71,19.970000,166.400000,128,7.490000,9.000000,13,2.430000,1,False. +IN,130,408,360-9005,no,yes,30,185.000000,117,31.450000,249.500000,141,21.210000,157.800000,103,7.100000,7.400000,7,2.000000,0,False. +WI,20,408,344-5967,no,no,0,186.800000,89,31.760000,253.400000,51,21.540000,273.100000,105,12.290000,12.300000,6,3.320000,2,False. +VT,68,415,396-6390,no,no,0,158.800000,119,27.000000,211.800000,105,18.000000,198.100000,101,8.910000,10.300000,3,2.780000,1,False. +CA,112,415,346-5036,no,no,0,208.700000,150,35.480000,212.800000,104,18.090000,178.100000,98,8.010000,8.500000,4,2.300000,0,False. +IN,77,408,328-7252,no,no,0,185.900000,95,31.600000,212.000000,98,18.020000,282.300000,81,12.700000,11.300000,4,3.050000,3,False. +SC,109,415,360-1745,no,no,0,222.500000,74,37.830000,169.700000,75,14.420000,264.300000,94,11.890000,9.000000,3,2.430000,2,False. +IN,108,415,358-2046,no,no,0,201.100000,101,34.190000,170.700000,86,14.510000,237.400000,113,10.680000,11.600000,3,3.130000,3,False. +IA,79,415,344-6935,no,yes,17,167.900000,114,28.540000,243.700000,93,20.710000,211.900000,114,9.540000,9.100000,2,2.460000,1,False. +MD,119,408,401-9665,no,no,0,239.100000,88,40.650000,243.500000,79,20.700000,230.900000,92,10.390000,10.900000,3,2.940000,3,True. +MN,38,510,399-5291,no,no,0,175.700000,109,29.870000,211.800000,97,18.000000,137.900000,109,6.210000,9.200000,3,2.480000,5,True. +AR,109,415,409-6588,no,yes,29,111.200000,90,18.900000,263.500000,98,22.400000,224.700000,128,10.110000,9.000000,6,2.430000,6,True. +MS,78,415,358-5721,no,no,0,87.700000,74,14.910000,214.800000,58,18.260000,201.300000,147,9.060000,10.800000,6,2.920000,1,False. +MN,134,415,414-7446,no,no,0,244.100000,99,41.500000,246.900000,111,20.990000,200.000000,133,9.000000,7.200000,2,1.940000,0,False. +WA,47,415,329-9517,no,yes,27,165.000000,89,28.050000,127.300000,118,10.820000,284.400000,95,12.800000,7.700000,4,2.080000,2,False. +MS,59,408,415-9553,no,yes,27,127.400000,110,21.660000,103.300000,99,8.780000,164.200000,73,7.390000,9.100000,3,2.460000,0,False. +ID,151,415,413-3177,no,no,0,194.800000,106,33.120000,292.700000,103,24.880000,224.600000,82,10.110000,5.500000,3,1.490000,0,False. +NC,129,415,347-5113,no,no,0,54.700000,131,9.300000,256.100000,105,21.770000,176.600000,135,7.950000,11.100000,4,3.000000,1,False. +VA,107,510,330-2662,no,yes,27,283.400000,104,48.180000,224.100000,152,19.050000,241.300000,63,10.860000,14.400000,7,3.890000,2,False. +MT,137,408,330-5824,yes,no,0,258.000000,112,43.860000,246.500000,117,20.950000,173.200000,100,7.790000,10.900000,3,2.940000,0,True. +MI,76,510,411-1261,no,no,0,90.500000,142,15.390000,211.700000,75,17.990000,194.900000,76,8.770000,9.300000,2,2.510000,1,False. +HI,24,415,329-8788,no,no,0,235.600000,132,40.050000,115.900000,129,9.850000,185.400000,136,8.340000,16.200000,2,4.370000,0,False. +NC,169,408,333-7869,no,no,0,142.500000,82,24.230000,231.400000,110,19.670000,131.200000,67,5.900000,10.000000,4,2.700000,2,False. +MN,30,408,399-4800,no,no,0,54.000000,68,9.180000,179.300000,96,15.240000,247.200000,101,11.120000,10.200000,8,2.750000,1,False. +WV,70,415,402-2072,no,no,0,214.800000,87,36.520000,131.000000,114,11.140000,216.900000,104,9.760000,9.400000,3,2.540000,3,False. +SD,52,510,403-6187,yes,no,0,251.400000,118,42.740000,196.600000,80,16.710000,192.000000,53,8.640000,11.000000,2,2.970000,0,True. +HI,3,408,355-2872,no,no,0,139.000000,99,23.630000,250.700000,108,21.310000,286.200000,87,12.880000,6.100000,3,1.650000,4,False. +MS,38,415,386-2970,no,no,0,117.300000,114,19.940000,208.700000,105,17.740000,203.400000,98,9.150000,14.400000,2,3.890000,2,False. +NY,104,415,389-6081,no,no,0,264.000000,108,44.880000,132.200000,75,11.240000,177.700000,91,8.000000,10.600000,8,2.860000,3,False. +LA,27,408,348-7556,no,no,0,82.600000,105,14.040000,204.000000,99,17.340000,224.200000,122,10.090000,9.100000,4,2.460000,1,False. +KS,166,415,334-9163,yes,yes,28,175.800000,126,29.890000,253.600000,76,21.560000,128.500000,72,5.780000,11.400000,5,3.080000,1,False. +MA,13,408,411-4293,no,no,0,220.400000,100,37.470000,211.200000,79,17.950000,259.300000,112,11.670000,13.600000,8,3.670000,2,False. +AK,52,408,375-5562,no,no,0,217.000000,104,36.890000,152.300000,83,12.950000,134.300000,109,6.040000,11.800000,4,3.190000,2,False. +SD,114,415,386-3823,no,yes,25,129.000000,77,21.930000,290.000000,110,24.650000,177.100000,110,7.970000,11.600000,5,3.130000,1,False. +CO,156,408,364-6445,no,no,0,150.500000,106,25.590000,152.900000,112,13.000000,215.900000,86,9.720000,3.500000,3,0.950000,1,False. +NH,90,415,383-2251,no,yes,42,193.300000,66,32.860000,263.300000,85,22.380000,214.400000,97,9.650000,11.100000,4,3.000000,0,False. +WV,62,415,351-3169,no,no,0,189.500000,122,32.220000,103.800000,95,8.820000,180.600000,106,8.130000,10.800000,5,2.920000,2,False. +AZ,82,415,413-6380,no,yes,33,137.800000,95,23.430000,235.500000,128,20.020000,268.100000,70,12.060000,11.000000,6,2.970000,2,False. +ME,52,510,380-9674,no,no,0,129.300000,80,21.980000,142.700000,101,12.130000,258.300000,89,11.620000,12.300000,4,3.320000,3,False. +NH,146,510,345-2319,no,no,0,115.600000,77,19.650000,213.600000,100,18.160000,218.400000,72,9.830000,10.700000,6,2.890000,1,False. +RI,120,415,377-5441,no,yes,23,221.900000,114,37.720000,254.700000,84,21.650000,250.500000,117,11.270000,7.200000,5,1.940000,2,False. +ID,130,415,358-3692,no,no,0,263.700000,113,44.830000,186.500000,103,15.850000,195.300000,99,8.790000,18.300000,6,4.940000,1,True. +WI,90,408,400-5831,no,no,0,61.300000,91,10.420000,194.400000,94,16.520000,143.100000,80,6.440000,11.400000,9,3.080000,1,False. +NM,147,408,357-5995,yes,no,0,183.800000,113,31.250000,164.700000,110,14.000000,111.000000,87,5.000000,10.100000,4,2.730000,1,False. +WY,159,415,391-2159,no,no,0,167.400000,68,28.460000,143.800000,74,12.220000,140.100000,111,6.300000,10.300000,3,2.780000,0,True. +IL,74,510,398-5954,no,yes,27,154.100000,122,26.200000,195.300000,150,16.600000,276.700000,86,12.450000,13.200000,2,3.560000,4,False. +TX,130,408,385-6175,no,no,0,252.000000,101,42.840000,170.200000,105,14.470000,209.200000,64,9.410000,5.700000,5,1.540000,0,False. +RI,155,408,334-2961,yes,no,0,163.100000,94,27.730000,291.700000,108,24.790000,96.400000,111,4.340000,11.200000,3,3.020000,0,False. +MI,87,415,405-4303,no,no,0,198.300000,80,33.710000,187.000000,89,15.900000,133.500000,96,6.010000,16.600000,4,4.480000,2,False. +OR,81,415,406-4100,no,no,0,324.700000,48,55.200000,236.400000,82,20.090000,187.600000,78,8.440000,13.100000,5,3.540000,0,True. +VA,99,510,352-4401,no,no,0,128.300000,78,21.810000,215.300000,120,18.300000,143.700000,140,6.470000,14.300000,9,3.860000,2,False. +SD,131,510,347-1473,no,no,0,187.900000,110,31.940000,200.500000,101,17.040000,202.600000,125,9.120000,10.200000,11,2.750000,2,False. +AL,89,510,347-2016,no,no,0,129.200000,71,21.960000,214.100000,68,18.200000,214.900000,100,9.670000,10.300000,4,2.780000,5,True. +MS,123,415,388-8948,yes,no,0,125.500000,106,21.340000,128.900000,96,10.960000,251.900000,129,11.340000,6.300000,6,1.700000,4,True. +MS,130,510,402-5509,no,yes,26,257.200000,108,43.720000,224.300000,122,19.070000,204.000000,118,9.180000,12.600000,4,3.400000,1,False. +HI,99,415,367-2598,no,no,0,124.600000,90,21.180000,146.400000,70,12.440000,169.400000,95,7.620000,10.500000,6,2.840000,1,False. +WV,36,408,370-5001,no,no,0,175.100000,144,29.770000,216.900000,69,18.440000,243.700000,146,10.970000,9.900000,3,2.670000,1,False. +WV,87,415,332-3693,no,no,0,124.300000,91,21.130000,173.400000,105,14.740000,256.300000,109,11.530000,7.500000,5,2.030000,3,False. +WV,139,415,403-9766,no,no,0,271.600000,130,46.170000,156.000000,131,13.260000,136.300000,108,6.130000,11.600000,9,3.130000,2,False. +IN,189,510,363-2407,no,no,0,219.900000,80,37.380000,143.300000,117,12.180000,130.600000,69,5.880000,11.700000,7,3.160000,1,False. +NM,96,415,395-9214,no,yes,33,183.300000,115,31.160000,201.400000,87,17.120000,177.400000,84,7.980000,10.400000,15,2.810000,3,False. +DE,112,408,351-8894,no,no,0,101.100000,119,17.190000,214.400000,67,18.220000,179.500000,112,8.080000,10.300000,5,2.780000,2,False. +NC,75,408,406-5003,no,no,0,203.300000,70,34.560000,228.900000,97,19.460000,222.200000,118,10.000000,14.300000,3,3.860000,1,False. +NM,178,415,398-1332,no,yes,35,175.400000,88,29.820000,190.000000,65,16.150000,138.700000,94,6.240000,10.500000,3,2.840000,2,False. +SC,112,415,363-8033,no,no,0,266.000000,97,45.220000,214.600000,94,18.240000,306.200000,100,13.780000,14.200000,2,3.830000,2,True. +NJ,108,415,333-1012,no,yes,41,171.600000,110,29.170000,136.100000,78,11.570000,183.400000,103,8.250000,10.800000,7,2.920000,0,False. +AZ,100,510,391-6260,no,no,0,78.700000,98,13.380000,225.600000,102,19.180000,150.400000,106,6.770000,14.000000,8,3.780000,0,False. +RI,121,510,336-1353,no,yes,20,211.900000,110,36.020000,215.100000,120,18.280000,238.500000,107,10.730000,9.400000,2,2.540000,0,False. +SD,116,415,365-5629,no,no,0,63.700000,101,10.830000,195.800000,95,16.640000,210.100000,87,9.450000,10.000000,6,2.700000,1,False. +NH,161,415,349-4397,no,no,0,173.400000,100,29.480000,213.700000,74,18.160000,141.500000,69,6.370000,11.500000,4,3.110000,1,False. +AL,19,415,380-3910,yes,no,0,237.700000,98,40.410000,207.100000,121,17.600000,182.200000,95,8.200000,4.500000,4,1.220000,0,False. +WV,104,415,354-7820,no,no,0,225.900000,123,38.400000,162.800000,106,13.840000,272.100000,85,12.240000,10.100000,4,2.730000,1,False. +ID,119,415,338-9952,yes,yes,32,173.000000,101,29.410000,209.400000,93,17.800000,231.100000,91,10.400000,12.200000,4,3.290000,0,False. +MD,125,415,405-1821,no,no,0,224.900000,102,38.230000,143.800000,87,12.220000,198.900000,105,8.950000,8.000000,2,2.160000,0,False. +IN,156,510,329-8669,no,no,0,237.700000,122,40.410000,181.500000,91,15.430000,185.700000,151,8.360000,7.700000,4,2.080000,1,False. +WY,109,415,328-8808,no,no,0,137.000000,128,23.290000,217.000000,116,18.450000,182.100000,86,8.190000,10.000000,5,2.700000,2,False. +NH,95,510,409-3018,no,no,0,142.500000,109,24.230000,176.100000,107,14.970000,189.600000,88,8.530000,8.200000,3,2.210000,2,False. +MN,90,408,421-5994,no,no,0,142.400000,126,24.210000,126.200000,118,10.730000,274.200000,71,12.340000,4.600000,4,1.240000,1,False. +MA,105,415,354-4448,no,yes,21,147.000000,112,24.990000,197.300000,43,16.770000,267.400000,93,12.030000,8.700000,3,2.350000,2,False. +NH,101,510,352-5081,no,no,0,220.300000,124,37.450000,188.600000,101,16.030000,278.400000,98,12.530000,10.600000,4,2.860000,1,False. +MN,95,415,401-7803,no,no,0,149.200000,96,25.360000,260.700000,116,22.160000,201.000000,120,9.050000,8.100000,2,2.190000,1,False. +IA,123,415,420-6052,no,no,0,204.400000,88,34.750000,137.500000,111,11.690000,226.000000,100,10.170000,10.000000,4,2.700000,0,False. +NY,160,408,352-6084,no,no,0,216.800000,77,36.860000,207.300000,117,17.620000,228.600000,117,10.290000,5.600000,2,1.510000,1,False. +AL,141,510,388-8583,no,yes,28,308.000000,123,52.360000,247.800000,128,21.060000,152.900000,103,6.880000,7.400000,3,2.000000,1,False. +WV,87,415,415-3158,no,no,0,58.000000,125,9.860000,67.500000,116,5.740000,185.900000,136,8.370000,11.500000,3,3.110000,0,False. +NM,81,415,402-9304,no,no,0,173.200000,80,29.440000,236.200000,94,20.080000,240.200000,84,10.810000,11.800000,6,3.190000,2,False. +CA,75,415,341-1916,no,yes,19,210.300000,90,35.750000,241.800000,87,20.550000,215.700000,102,9.710000,13.100000,3,3.540000,4,False. +MA,126,408,381-2745,no,yes,24,58.900000,125,10.010000,305.500000,90,25.970000,158.900000,73,7.150000,12.100000,6,3.270000,0,False. +ME,28,415,402-5014,no,no,0,236.800000,102,40.260000,167.100000,87,14.200000,280.200000,115,12.610000,9.700000,3,2.620000,3,False. +FL,153,415,399-8846,no,no,0,228.900000,102,38.910000,160.700000,136,13.660000,203.100000,109,9.140000,12.500000,2,3.380000,0,False. +NH,97,408,328-9267,no,yes,32,90.000000,87,15.300000,276.300000,113,23.490000,185.200000,107,8.330000,8.600000,6,2.320000,2,True. +IN,115,408,348-7224,no,no,0,146.700000,128,24.940000,106.200000,74,9.030000,197.700000,104,8.900000,11.100000,4,3.000000,2,False. +WI,95,408,336-2190,no,no,0,237.300000,83,40.340000,154.000000,65,13.090000,237.000000,105,10.670000,11.200000,6,3.020000,1,False. +MA,17,415,376-4705,yes,no,0,162.800000,118,27.680000,229.600000,91,19.520000,332.700000,94,14.970000,13.600000,3,3.670000,0,True. +NH,105,415,381-4076,no,yes,20,186.900000,114,31.770000,256.300000,91,21.790000,334.700000,104,15.060000,8.900000,2,2.400000,1,False. +TX,121,415,348-8464,no,no,0,86.100000,100,14.640000,259.800000,113,22.080000,148.000000,79,6.660000,9.100000,9,2.460000,2,False. +NC,125,408,412-7020,no,no,0,212.300000,89,36.090000,215.400000,127,18.310000,186.800000,73,8.410000,11.300000,2,3.050000,2,False. +CT,124,415,386-8432,no,no,0,151.000000,98,25.670000,120.600000,119,10.250000,152.800000,81,6.880000,9.200000,2,2.480000,2,False. +NJ,35,408,337-1802,no,no,0,158.600000,67,26.960000,130.400000,96,11.080000,229.800000,80,10.340000,6.900000,5,1.860000,2,False. +WY,134,510,366-1084,no,no,0,296.000000,93,50.320000,226.400000,117,19.240000,246.800000,98,11.110000,12.300000,10,3.320000,0,True. +LA,123,510,352-4182,no,yes,32,212.300000,77,36.090000,251.500000,78,21.380000,208.700000,85,9.390000,6.600000,2,1.780000,3,False. +NV,124,415,368-5628,no,no,0,234.400000,61,39.850000,179.300000,111,15.240000,285.500000,117,12.850000,10.400000,6,2.810000,3,False. +WV,133,510,333-8996,no,no,0,176.800000,92,30.060000,187.500000,97,15.940000,196.800000,88,8.860000,6.500000,3,1.760000,2,False. +AR,185,415,353-2557,no,yes,19,157.300000,123,26.740000,257.700000,94,21.900000,190.400000,107,8.570000,9.600000,6,2.590000,0,False. +SC,1,415,356-8621,no,yes,26,146.600000,68,24.920000,172.800000,67,14.690000,173.800000,113,7.820000,10.000000,2,2.700000,1,False. +KS,107,415,354-6942,no,no,0,260.500000,108,44.290000,102.400000,110,8.700000,129.700000,148,5.840000,9.800000,5,2.650000,1,False. +NY,91,415,377-9829,no,yes,20,146.100000,98,24.840000,277.400000,104,23.580000,137.700000,100,6.200000,6.200000,3,1.670000,1,False. +MI,178,408,348-4660,yes,no,0,124.500000,134,21.170000,141.200000,78,12.000000,268.200000,113,12.070000,11.400000,2,3.080000,2,True. +MA,123,415,410-5199,no,no,0,209.400000,49,35.600000,237.400000,117,20.180000,239.200000,98,10.760000,9.800000,11,2.650000,1,False. +UT,170,415,397-6542,no,no,0,285.700000,44,48.570000,167.500000,144,14.240000,260.000000,97,11.700000,8.700000,4,2.350000,1,True. +HI,135,415,333-4492,no,no,0,190.900000,44,32.450000,161.400000,109,13.720000,231.900000,100,10.440000,8.400000,2,2.270000,1,False. +PA,85,408,405-9573,no,no,0,144.400000,88,24.550000,264.600000,105,22.490000,185.400000,94,8.340000,9.900000,3,2.670000,1,False. +OR,134,415,359-7255,no,yes,50,208.800000,130,35.500000,132.900000,104,11.300000,136.700000,107,6.150000,11.100000,4,3.000000,2,False. +TN,148,415,419-5501,no,yes,36,77.600000,141,13.190000,207.000000,60,17.600000,255.700000,115,11.510000,10.900000,2,2.940000,1,False. +CT,93,415,404-4809,no,no,0,271.100000,101,46.090000,237.400000,133,20.180000,145.400000,103,6.540000,8.400000,6,2.270000,1,True. +AZ,138,415,344-6334,no,no,0,240.800000,104,40.940000,144.500000,92,12.280000,125.700000,98,5.660000,11.600000,1,3.130000,0,False. +OR,159,510,400-1899,no,no,0,114.800000,98,19.520000,192.600000,101,16.370000,259.000000,108,11.660000,12.200000,5,3.290000,0,False. +DE,103,415,346-5053,no,yes,34,138.800000,80,23.600000,142.000000,108,12.070000,183.800000,77,8.270000,11.800000,7,3.190000,1,False. +MA,150,408,398-2148,no,yes,27,209.800000,112,35.670000,155.000000,80,13.180000,251.500000,111,11.320000,7.200000,6,1.940000,0,False. +CT,37,408,347-7675,no,no,0,134.900000,98,22.930000,248.400000,130,21.110000,236.200000,113,10.630000,14.700000,2,3.970000,3,False. +AR,33,415,411-8956,yes,no,0,164.000000,99,27.880000,153.100000,102,13.010000,123.800000,104,5.570000,6.400000,4,1.730000,0,False. +SD,55,415,390-3761,no,no,0,245.500000,130,41.740000,192.700000,54,16.380000,141.700000,83,6.380000,9.100000,4,2.460000,1,False. +CT,134,408,377-3876,no,yes,32,80.300000,94,13.650000,199.900000,124,16.990000,170.800000,117,7.690000,16.600000,3,4.480000,0,False. +CT,107,408,345-2476,no,no,0,90.700000,90,15.420000,207.500000,109,17.640000,169.400000,96,7.620000,5.600000,5,1.510000,2,False. +MA,80,408,337-7879,no,yes,36,190.300000,115,32.350000,256.600000,78,21.810000,214.900000,145,9.670000,3.800000,4,1.030000,1,False. +MS,78,408,361-7283,no,no,0,108.600000,108,18.460000,209.900000,126,17.840000,222.600000,117,10.020000,7.900000,5,2.130000,1,True. +MT,85,408,372-4868,no,yes,17,89.800000,88,15.270000,233.200000,75,19.820000,165.700000,116,7.460000,9.300000,7,2.510000,4,True. +AK,61,415,346-8863,no,yes,15,252.400000,106,42.910000,187.800000,69,15.960000,259.600000,137,11.680000,10.000000,3,2.700000,2,False. +DE,97,415,390-5267,no,yes,32,183.400000,94,31.180000,269.100000,120,22.870000,203.500000,38,9.160000,6.700000,4,1.810000,5,False. +OH,136,408,392-1547,yes,no,0,183.400000,103,31.180000,141.900000,113,12.060000,200.400000,122,9.020000,10.400000,9,2.810000,2,False. +MN,135,408,340-8177,no,no,0,155.200000,100,26.380000,135.900000,84,11.550000,184.600000,82,8.310000,3.800000,9,1.030000,3,False. +CA,87,415,383-4802,no,yes,19,165.800000,122,28.190000,186.900000,89,15.890000,249.700000,78,11.240000,0.000000,0,0.000000,1,False. +OH,165,510,378-8567,no,no,0,209.400000,67,35.600000,273.800000,89,23.270000,150.200000,88,6.760000,12.800000,1,3.460000,0,False. +NV,148,415,406-7844,no,no,0,279.300000,104,47.480000,201.600000,87,17.140000,280.800000,99,12.640000,7.900000,2,2.130000,2,True. +SC,99,415,402-9173,no,no,0,174.100000,102,29.600000,99.100000,118,8.420000,211.600000,126,9.520000,7.700000,2,2.080000,2,False. +WV,123,415,352-3440,no,no,0,175.700000,78,29.870000,184.600000,96,15.690000,156.900000,92,7.060000,9.100000,2,2.460000,2,False. +NM,127,415,363-1413,yes,no,0,256.500000,87,43.610000,222.100000,101,18.880000,156.700000,122,7.050000,13.000000,3,3.510000,1,False. +WY,151,415,394-8861,no,no,0,170.200000,89,28.930000,187.500000,83,15.940000,119.500000,100,5.380000,4.300000,3,1.160000,0,False. +CA,185,408,358-4036,no,no,0,139.600000,92,23.730000,250.200000,115,21.270000,158.100000,79,7.110000,10.800000,4,2.920000,1,False. +KS,65,415,392-4680,no,yes,34,208.800000,119,35.500000,142.100000,106,12.080000,214.600000,87,9.660000,12.500000,4,3.380000,4,False. +WY,58,510,354-2762,no,no,0,210.100000,126,35.720000,248.900000,108,21.160000,158.600000,88,7.140000,14.400000,2,3.890000,4,False. +OK,104,415,371-5811,no,no,0,113.600000,87,19.310000,158.600000,98,13.480000,187.700000,87,8.450000,10.500000,6,2.840000,2,False. +UT,44,415,387-2014,no,no,0,202.600000,89,34.440000,163.000000,96,13.860000,268.100000,151,12.060000,8.300000,3,2.240000,0,False. +MA,58,408,411-6598,no,no,0,174.400000,112,29.650000,265.800000,122,22.590000,182.400000,87,8.210000,0.000000,0,0.000000,4,False. +UT,108,415,355-9356,no,no,0,210.600000,117,35.800000,164.200000,103,13.960000,201.400000,68,9.060000,9.400000,5,2.540000,0,False. +MN,132,510,406-4720,no,no,0,121.500000,88,20.660000,253.000000,124,21.510000,195.700000,120,8.810000,10.700000,4,2.890000,1,False. +NE,80,415,356-7239,no,no,0,127.800000,67,21.730000,181.600000,112,15.440000,197.300000,63,8.880000,15.900000,2,4.290000,2,False. +OH,162,415,328-8747,no,no,0,135.200000,98,22.980000,242.000000,107,20.570000,246.900000,96,11.110000,10.200000,2,2.750000,2,False. +KY,110,510,388-9464,no,no,0,99.400000,62,16.900000,275.000000,86,23.380000,212.100000,94,9.540000,16.700000,3,4.510000,2,False. +WA,96,415,406-2866,no,no,0,276.900000,105,47.070000,246.900000,94,20.990000,254.400000,107,11.450000,10.300000,3,2.780000,1,True. +NY,168,408,333-5729,no,no,0,163.400000,134,27.780000,240.100000,87,20.410000,164.000000,147,7.380000,11.600000,2,3.130000,2,True. +IN,72,510,391-1499,no,no,0,287.400000,116,48.860000,235.300000,126,20.000000,292.100000,114,13.140000,5.000000,3,1.350000,4,True. +CO,125,408,386-8690,no,yes,23,120.500000,104,20.490000,227.800000,115,19.360000,158.500000,100,7.130000,10.200000,3,2.750000,1,False. +DC,170,510,391-2231,no,no,0,184.100000,106,31.300000,204.900000,70,17.420000,224.300000,133,10.090000,9.800000,3,2.650000,2,False. +AK,71,510,332-2275,no,no,0,185.000000,84,31.450000,232.500000,129,19.760000,191.100000,82,8.600000,14.900000,4,4.020000,3,False. +SC,124,415,340-4028,no,no,0,160.900000,109,27.350000,144.200000,152,12.260000,120.400000,97,5.420000,12.900000,12,3.480000,1,False. +KS,68,415,363-3486,no,no,0,207.600000,68,35.290000,251.600000,123,21.390000,191.600000,100,8.620000,10.900000,6,2.940000,2,False. +UT,97,415,418-3181,no,no,0,209.200000,134,35.560000,0.000000,0,0.000000,175.400000,94,7.890000,11.800000,6,3.190000,1,False. +IL,98,510,351-3316,yes,no,0,158.400000,71,26.930000,306.600000,66,26.060000,144.200000,93,6.490000,2.100000,4,0.570000,1,False. +DC,24,408,369-3626,no,no,0,149.000000,73,25.330000,131.000000,81,11.140000,238.600000,69,10.740000,8.600000,3,2.320000,2,True. +DC,136,510,353-2763,no,no,0,204.500000,63,34.770000,208.800000,95,17.750000,224.000000,119,10.080000,9.800000,2,2.650000,0,False. +OK,44,408,358-7165,no,no,0,288.800000,86,49.100000,175.900000,87,14.950000,215.400000,106,9.690000,9.500000,2,2.570000,0,True. +KY,96,415,353-3223,no,yes,40,108.600000,90,18.460000,206.400000,154,17.540000,126.300000,118,5.680000,13.400000,4,3.620000,0,False. +NE,31,415,338-9044,no,no,0,97.500000,129,16.580000,260.400000,78,22.130000,88.700000,100,3.990000,7.000000,5,1.890000,1,False. +AL,72,415,341-7296,no,no,0,166.500000,102,28.310000,261.000000,103,22.190000,262.700000,85,11.820000,13.300000,5,3.590000,0,False. +HI,24,415,398-4431,no,no,0,156.200000,104,26.550000,90.000000,101,7.650000,205.100000,116,9.230000,7.300000,5,1.970000,1,False. +SC,112,415,408-5601,no,yes,31,225.200000,89,38.280000,256.800000,117,21.830000,249.700000,87,11.240000,11.500000,1,3.110000,4,False. +GA,117,415,328-5188,yes,no,0,287.400000,118,48.860000,259.600000,84,22.070000,153.200000,86,6.890000,10.000000,3,2.700000,1,True. +KS,137,415,329-4474,no,yes,19,175.300000,96,29.800000,241.300000,146,20.510000,211.400000,109,9.510000,7.800000,2,2.110000,0,False. +PA,136,408,357-4573,no,no,0,102.100000,75,17.360000,219.500000,97,18.660000,73.700000,92,3.320000,9.800000,5,2.650000,0,False. +UT,95,415,341-7112,no,no,0,157.900000,103,26.840000,259.600000,90,22.070000,230.000000,117,10.350000,14.000000,2,3.780000,0,False. +OR,82,415,400-3147,no,yes,19,146.500000,73,24.910000,246.400000,65,20.940000,199.000000,114,8.960000,4.100000,4,1.110000,1,False. +ND,145,415,378-1936,no,no,0,245.800000,116,41.790000,286.700000,91,24.370000,240.700000,115,10.830000,9.000000,13,2.430000,1,True. +KY,56,415,347-1640,yes,no,0,177.700000,114,30.210000,215.600000,110,18.330000,236.700000,67,10.650000,10.500000,5,2.840000,1,False. +MN,155,408,374-9531,yes,no,0,250.800000,146,42.640000,152.500000,105,12.960000,148.100000,104,6.660000,10.000000,5,2.700000,2,False. +OH,133,408,380-4374,no,no,0,117.800000,100,20.030000,199.200000,105,16.930000,244.100000,119,10.980000,11.800000,4,3.190000,0,True. +TX,53,415,380-9409,no,no,0,119.700000,113,20.350000,189.700000,84,16.120000,256.200000,108,11.530000,12.900000,7,3.480000,2,False. +WY,123,415,387-1116,no,no,0,242.200000,87,41.170000,226.100000,101,19.220000,268.600000,121,12.090000,8.200000,3,2.210000,5,True. +GA,136,415,400-7509,no,no,0,163.400000,83,27.780000,249.300000,119,21.190000,249.700000,90,11.240000,9.800000,4,2.650000,7,False. +TX,57,415,403-6225,no,no,0,161.000000,113,27.370000,208.000000,134,17.680000,208.100000,81,9.360000,8.400000,4,2.270000,3,False. +WV,62,408,382-8274,no,no,0,128.700000,111,21.880000,169.500000,104,14.410000,193.600000,97,8.710000,10.300000,5,2.780000,1,False. +NM,112,415,354-5764,no,no,0,81.600000,94,13.870000,268.100000,112,22.790000,140.800000,75,6.340000,8.600000,18,2.320000,1,False. +MI,55,415,387-6912,no,yes,20,207.700000,91,35.310000,199.700000,113,16.970000,216.500000,110,9.740000,7.300000,1,1.970000,1,False. +NC,95,408,384-3413,no,no,0,128.600000,115,21.860000,216.200000,88,18.380000,255.300000,96,11.490000,6.300000,2,1.700000,6,True. +NY,125,415,367-3950,no,no,0,233.300000,65,39.660000,209.800000,93,17.830000,210.600000,109,9.480000,9.100000,4,2.460000,1,False. +TX,1,415,396-4254,no,no,0,182.100000,106,30.960000,134.900000,106,11.470000,152.300000,75,6.850000,10.000000,3,2.700000,5,True. +KY,98,415,333-3010,no,yes,36,168.000000,81,28.560000,163.200000,125,13.870000,172.700000,120,7.770000,8.000000,2,2.160000,6,True. +SD,105,415,393-1891,no,no,0,251.600000,88,42.770000,175.100000,103,14.880000,184.400000,112,8.300000,5.400000,5,1.460000,1,False. +ID,113,415,336-9053,no,yes,30,183.800000,102,31.250000,183.400000,123,15.590000,235.000000,52,10.580000,11.600000,7,3.130000,0,False. +OR,99,408,353-3372,no,no,0,256.400000,44,43.590000,214.500000,105,18.230000,233.700000,75,10.520000,7.900000,1,2.130000,3,True. +WI,103,415,386-8943,no,no,0,180.200000,134,30.630000,97.700000,85,8.300000,181.700000,134,8.180000,8.400000,3,2.270000,1,False. +WV,177,408,376-9716,no,no,0,227.800000,81,38.730000,161.800000,97,13.750000,217.000000,106,9.760000,8.000000,5,2.160000,1,False. +SC,149,415,370-8676,no,yes,20,147.800000,132,25.130000,276.800000,94,23.530000,149.900000,110,6.750000,10.200000,6,2.750000,0,False. +CT,160,415,360-2329,no,no,0,234.900000,136,39.930000,270.800000,134,23.020000,219.300000,101,9.870000,13.900000,2,3.750000,1,True. +NV,116,408,360-1320,no,no,0,110.900000,54,18.850000,213.400000,82,18.140000,186.200000,116,8.380000,7.900000,2,2.130000,2,False. +ND,90,415,329-8638,no,yes,22,124.500000,94,21.170000,231.700000,90,19.690000,222.200000,108,10.000000,6.400000,12,1.730000,1,False. +MI,148,415,385-1118,yes,no,0,233.500000,81,39.700000,187.700000,71,15.950000,122.300000,97,5.500000,9.600000,2,2.590000,0,True. +MT,147,415,408-8269,no,yes,35,197.300000,134,33.540000,141.100000,99,11.990000,212.100000,90,9.540000,10.100000,4,2.730000,2,True. +NE,95,510,391-2334,no,no,0,58.200000,96,9.890000,202.100000,126,17.180000,210.500000,97,9.470000,10.400000,5,2.810000,0,False. +UT,201,510,373-8900,no,no,0,212.700000,72,36.160000,225.200000,90,19.140000,195.100000,99,8.780000,7.000000,6,1.890000,1,False. +WV,80,415,382-3512,no,no,0,151.500000,89,25.760000,131.700000,78,11.190000,235.300000,131,10.590000,11.800000,4,3.190000,0,False. +AR,122,415,420-4089,yes,no,0,146.300000,117,24.870000,218.700000,93,18.590000,236.000000,97,10.620000,11.500000,5,3.110000,1,False. +MT,132,408,406-8465,no,no,0,195.100000,100,33.170000,148.800000,95,12.650000,224.500000,117,10.100000,6.700000,2,1.810000,0,False. +UT,83,510,386-6114,no,no,0,208.900000,71,35.510000,214.800000,92,18.260000,247.900000,108,11.160000,13.000000,5,3.510000,1,False. +HI,99,408,413-9328,no,no,0,135.700000,107,23.070000,208.400000,103,17.710000,209.000000,95,9.400000,8.800000,3,2.380000,7,True. +KS,84,415,335-7144,no,no,0,225.900000,86,38.400000,275.600000,105,23.430000,201.400000,108,9.060000,14.300000,3,3.860000,3,True. +NY,46,415,414-5177,no,no,0,122.200000,67,20.770000,167.200000,62,14.210000,194.800000,98,8.770000,9.700000,6,2.620000,1,False. +OH,87,510,350-5993,no,no,0,153.300000,106,26.060000,224.500000,117,19.080000,273.400000,152,12.300000,8.900000,5,2.400000,2,False. +HI,150,415,370-1465,no,no,0,214.000000,117,36.380000,192.400000,89,16.350000,242.600000,99,10.920000,7.900000,4,2.130000,1,False. +KS,73,408,385-2370,no,no,0,194.800000,112,33.120000,167.200000,85,14.210000,100.300000,61,4.510000,10.800000,6,2.920000,1,False. +IN,7,415,358-9146,no,no,0,206.700000,87,35.140000,281.100000,83,23.890000,158.500000,77,7.130000,11.000000,5,2.970000,3,False. +OR,89,415,357-8515,no,yes,12,188.000000,105,31.960000,151.300000,107,12.860000,201.900000,132,9.090000,10.500000,3,2.840000,2,False. +NY,131,408,406-8995,yes,no,0,122.300000,83,20.790000,118.800000,94,10.100000,147.900000,95,6.660000,13.700000,3,3.700000,3,True. +VA,105,415,344-3145,no,no,0,259.300000,96,44.080000,175.200000,97,14.890000,222.400000,36,10.010000,12.000000,5,3.240000,3,False. +MI,108,408,341-9890,yes,no,0,115.100000,114,19.570000,211.300000,70,17.960000,136.100000,85,6.120000,13.800000,3,3.730000,2,True. +ID,47,415,365-4387,no,yes,28,172.900000,109,29.390000,137.600000,94,11.700000,203.800000,109,9.170000,8.300000,6,2.240000,1,False. +MO,101,415,375-3341,yes,no,0,156.400000,116,26.590000,130.400000,114,11.080000,207.300000,109,9.330000,7.300000,5,1.970000,1,False. +AL,182,415,418-3096,no,yes,24,128.100000,104,21.780000,143.400000,127,12.190000,191.000000,98,8.590000,11.600000,3,3.130000,1,False. +OR,161,408,378-3879,no,no,0,196.600000,73,33.420000,170.200000,79,14.470000,194.300000,79,8.740000,12.500000,3,3.380000,1,False. +VT,128,408,344-1362,no,no,0,227.900000,130,38.740000,302.600000,71,25.720000,191.500000,82,8.620000,5.500000,7,1.490000,1,True. +AZ,69,415,419-3937,no,yes,31,194.900000,63,33.130000,191.600000,90,16.290000,153.000000,129,6.890000,13.200000,2,3.560000,2,False. +VA,113,408,348-4961,no,yes,34,44.900000,63,7.630000,134.200000,82,11.410000,168.400000,118,7.580000,13.300000,3,3.590000,1,False. +PA,87,408,329-1410,no,yes,30,262.800000,114,44.680000,215.800000,130,18.340000,154.800000,88,6.970000,7.800000,2,2.110000,0,False. +CO,71,415,332-9896,no,no,0,211.200000,70,35.900000,252.700000,122,21.480000,225.800000,104,10.160000,12.300000,3,3.320000,0,False. +KY,76,415,407-8575,no,no,0,204.000000,69,34.680000,225.100000,110,19.130000,240.300000,85,10.810000,9.600000,5,2.590000,1,False. +NJ,87,510,387-2799,no,no,0,223.200000,109,37.940000,127.500000,86,10.840000,289.300000,83,13.020000,14.500000,4,3.920000,3,False. +IL,117,408,373-9108,no,no,0,119.000000,82,20.230000,187.500000,108,15.940000,189.300000,97,8.520000,11.500000,3,3.110000,1,False. +WA,177,415,345-3947,no,no,0,266.100000,91,45.240000,225.200000,79,19.140000,224.700000,58,10.110000,8.900000,8,2.400000,3,True. +WV,95,415,356-7511,no,no,0,134.400000,104,22.850000,152.400000,95,12.950000,236.500000,80,10.640000,9.400000,3,2.540000,1,False. +RI,76,415,343-4516,no,no,0,171.100000,78,29.090000,257.200000,83,21.860000,91.600000,92,4.120000,16.200000,3,4.370000,1,False. +OH,66,415,408-6305,no,no,0,170.500000,103,28.990000,254.300000,77,21.620000,197.300000,138,8.880000,10.500000,2,2.840000,2,False. +MO,110,415,338-7305,no,no,0,178.500000,124,30.350000,146.900000,141,12.490000,217.100000,102,9.770000,9.900000,7,2.670000,1,False. +MD,204,510,401-3077,no,no,0,205.200000,145,34.880000,154.800000,95,13.160000,191.400000,77,8.610000,14.100000,5,3.810000,3,False. +OH,32,415,401-6977,no,yes,31,232.800000,97,39.580000,183.500000,111,15.600000,206.800000,111,9.310000,13.000000,2,3.510000,0,False. +VA,133,408,385-1464,no,yes,39,239.900000,107,40.780000,253.800000,77,21.570000,128.700000,85,5.790000,6.700000,3,1.810000,5,False. +FL,185,408,417-5034,no,no,0,55.600000,97,9.450000,288.700000,83,24.540000,111.200000,110,5.000000,12.100000,3,3.270000,2,False. +CO,103,415,420-7066,no,yes,37,153.500000,78,26.100000,241.900000,108,20.560000,244.700000,110,11.010000,10.600000,3,2.860000,1,False. +NY,91,510,394-8256,no,no,0,109.800000,100,18.670000,189.600000,104,16.120000,206.700000,85,9.300000,11.100000,3,3.000000,1,False. +WV,131,415,362-5044,no,no,0,196.100000,89,33.340000,185.500000,87,15.770000,250.000000,132,11.250000,5.200000,6,1.400000,2,False. +LA,153,510,350-2075,no,no,0,166.800000,127,28.360000,143.500000,121,12.200000,210.700000,130,9.480000,11.800000,4,3.190000,0,False. +MA,132,415,343-5372,no,yes,25,113.200000,96,19.240000,269.900000,107,22.940000,229.100000,87,10.310000,7.100000,7,1.920000,2,False. +UT,148,510,377-9520,no,no,0,203.000000,92,34.510000,150.900000,125,12.830000,245.500000,131,11.050000,14.600000,9,3.940000,1,False. +AL,141,408,391-6773,no,no,0,242.800000,90,41.280000,234.100000,80,19.900000,211.500000,104,9.520000,6.000000,3,1.620000,5,False. +ME,105,415,403-4442,no,no,0,156.500000,102,26.610000,140.200000,134,11.920000,227.400000,111,10.230000,12.200000,2,3.290000,2,False. +TX,169,408,379-5885,no,no,0,266.700000,105,45.340000,158.200000,88,13.450000,287.700000,111,12.950000,13.800000,3,3.730000,3,True. +ND,127,415,399-1021,no,yes,23,182.000000,80,30.940000,216.100000,85,18.370000,156.900000,82,7.060000,9.800000,4,2.650000,1,False. +CO,57,415,342-4004,no,no,0,85.900000,92,14.600000,193.900000,127,16.480000,231.500000,93,10.420000,10.100000,2,2.730000,0,False. +LA,123,415,382-7659,no,yes,33,146.600000,87,24.920000,114.800000,59,9.760000,220.400000,99,9.920000,2.900000,7,0.780000,0,False. +MT,103,510,342-1004,no,yes,35,110.500000,101,18.790000,208.300000,81,17.710000,87.400000,77,3.930000,13.900000,2,3.750000,4,True. +OR,101,415,398-5851,no,no,0,118.600000,89,20.160000,199.600000,97,16.970000,53.300000,61,2.400000,11.500000,5,3.110000,1,False. +NH,123,415,396-4869,no,yes,22,197.600000,105,33.590000,80.000000,86,6.800000,120.800000,82,5.440000,15.600000,12,4.210000,2,False. +NE,78,510,422-8333,no,yes,32,210.300000,116,35.750000,192.200000,83,16.340000,246.100000,92,11.070000,10.800000,4,2.920000,6,False. +WV,101,415,367-9127,no,yes,28,220.300000,96,37.450000,285.800000,72,24.290000,203.000000,111,9.140000,9.400000,6,2.540000,4,False. +NV,129,415,420-3028,no,no,0,150.000000,98,25.500000,232.400000,101,19.750000,261.200000,123,11.750000,12.500000,6,3.380000,1,False. +MA,67,415,357-6348,no,yes,34,161.700000,114,27.490000,207.600000,115,17.650000,205.700000,114,9.260000,9.200000,4,2.480000,0,False. +MI,37,415,386-1131,no,no,0,191.400000,116,32.540000,167.400000,99,14.230000,216.500000,112,9.740000,14.000000,5,3.780000,3,False. +KY,64,415,349-8391,yes,no,0,146.700000,83,24.940000,148.300000,91,12.610000,238.600000,69,10.740000,12.500000,3,3.380000,3,False. +WV,173,510,421-1484,no,no,0,109.400000,103,18.600000,101.300000,111,8.610000,167.300000,106,7.530000,7.800000,7,2.110000,1,False. +KY,135,510,414-2663,no,no,0,144.100000,115,24.500000,249.800000,68,21.230000,211.400000,82,9.510000,13.600000,3,3.670000,1,False. +NJ,75,415,327-6989,no,yes,42,248.900000,93,42.310000,170.800000,108,14.520000,104.500000,91,4.700000,11.200000,8,3.020000,1,False. +ME,88,415,405-5513,no,no,0,85.700000,112,14.570000,221.600000,70,18.840000,190.600000,75,8.580000,11.600000,3,3.130000,4,True. +TX,112,415,345-9168,no,no,0,214.800000,112,36.520000,209.700000,104,17.820000,164.400000,97,7.400000,9.400000,5,2.540000,3,False. +MN,113,408,417-5146,no,no,0,158.900000,137,27.010000,242.800000,109,20.640000,247.800000,97,11.150000,6.500000,4,1.760000,0,False. +VA,121,510,339-2792,no,yes,28,110.000000,94,18.700000,141.500000,76,12.030000,237.300000,87,10.680000,6.400000,3,1.730000,2,False. +DC,70,415,345-8397,no,no,0,152.800000,145,25.980000,183.600000,102,15.610000,151.800000,75,6.830000,10.500000,2,2.840000,1,False. +MD,90,415,344-6404,no,no,0,145.600000,103,24.750000,197.100000,137,16.750000,294.500000,83,13.250000,10.500000,4,2.840000,0,False. +RI,39,408,417-9455,no,no,0,93.300000,83,15.860000,199.600000,114,16.970000,206.200000,104,9.280000,6.500000,4,1.760000,0,False. +MA,142,408,343-1009,no,no,0,216.800000,134,36.860000,187.800000,106,15.960000,138.100000,108,6.210000,8.300000,2,2.240000,0,False. +MD,176,408,365-3493,no,no,0,201.900000,101,34.320000,154.700000,78,13.150000,164.400000,79,7.400000,9.000000,2,2.430000,1,False. +NM,105,408,376-7043,no,no,0,146.400000,81,24.890000,225.100000,80,19.130000,230.100000,117,10.350000,8.500000,2,2.300000,1,False. +MN,57,415,348-5728,no,no,0,272.700000,74,46.360000,224.900000,85,19.120000,178.200000,104,8.020000,10.500000,3,2.840000,2,True. +MI,110,510,357-5784,no,no,0,18.900000,92,3.210000,258.400000,81,21.960000,109.600000,74,4.930000,14.800000,4,4.000000,1,False. +AZ,88,415,417-9844,no,no,0,172.800000,81,29.380000,193.400000,90,16.440000,89.600000,107,4.030000,12.800000,5,3.460000,2,False. +AL,95,408,333-7225,no,no,0,190.200000,119,32.330000,157.100000,70,13.350000,181.500000,120,8.170000,14.000000,6,3.780000,0,False. +MI,147,415,382-4943,no,no,0,130.600000,83,22.200000,208.100000,144,17.690000,204.600000,72,9.210000,15.600000,3,4.210000,3,False. +SC,101,415,345-4589,no,no,0,158.400000,92,26.930000,188.000000,117,15.980000,219.700000,125,9.890000,13.500000,4,3.650000,4,True. +MS,115,415,404-6337,no,no,0,166.500000,111,28.310000,236.200000,98,20.080000,205.600000,92,9.250000,15.600000,2,4.210000,1,False. +MS,103,415,412-1470,no,no,0,129.300000,103,21.980000,202.800000,89,17.240000,233.000000,126,10.490000,12.900000,2,3.480000,2,False. +CA,82,415,394-9220,no,no,0,199.300000,112,33.880000,193.400000,120,16.440000,254.400000,117,11.450000,7.000000,10,1.890000,0,False. +MD,141,415,364-5362,no,no,0,185.100000,126,31.470000,233.000000,98,19.810000,152.200000,106,6.850000,9.100000,7,2.460000,0,False. +ND,149,408,372-9852,no,no,0,175.400000,80,29.820000,197.400000,127,16.780000,188.200000,102,8.470000,9.700000,2,2.620000,2,False. +IL,131,510,394-9984,no,no,0,263.400000,123,44.780000,151.900000,74,12.910000,218.500000,101,9.830000,10.700000,2,2.890000,2,False. +SD,119,510,402-1668,no,no,0,94.200000,108,16.010000,264.100000,100,22.450000,203.700000,79,9.170000,7.300000,3,1.970000,1,False. +AL,112,510,339-5659,no,no,0,189.400000,83,32.200000,219.000000,89,18.620000,168.000000,116,7.560000,7.100000,8,1.920000,3,False. +NV,116,510,341-7279,no,yes,35,118.000000,103,20.060000,167.200000,106,14.210000,205.700000,102,9.260000,11.800000,2,3.190000,2,False. +LA,94,415,371-3236,no,no,0,212.100000,98,36.060000,189.400000,89,16.100000,352.200000,95,15.850000,8.400000,5,2.270000,3,False. +VA,90,408,343-5679,no,no,0,222.000000,93,37.740000,187.000000,103,15.900000,282.300000,124,12.700000,12.400000,6,3.350000,2,False. +DE,114,415,347-4626,no,yes,31,222.800000,98,37.880000,180.500000,105,15.340000,151.300000,101,6.810000,13.000000,4,3.510000,0,False. +CT,63,408,344-8498,no,yes,25,190.000000,137,32.300000,116.600000,76,9.910000,141.500000,110,6.370000,12.200000,2,3.290000,1,False. +CO,130,408,349-3005,no,no,0,271.800000,129,46.210000,237.200000,128,20.160000,210.100000,91,9.450000,8.700000,2,2.350000,4,True. +MA,122,408,371-3498,no,yes,29,195.400000,83,33.220000,268.200000,93,22.800000,168.000000,95,7.560000,8.400000,6,2.270000,3,False. +OR,166,510,367-4853,no,no,0,199.600000,93,33.930000,214.300000,99,18.220000,196.800000,110,8.860000,7.200000,5,1.940000,3,False. +WA,62,415,422-3454,no,no,0,100.000000,98,17.000000,173.500000,95,14.750000,218.000000,122,9.810000,10.100000,4,2.730000,0,False. +SC,78,415,403-8915,no,yes,21,160.600000,85,27.300000,223.100000,79,18.960000,124.000000,92,5.580000,9.500000,1,2.570000,2,False. +IN,148,415,371-2418,no,yes,26,158.700000,91,26.980000,160.500000,127,13.640000,218.300000,88,9.820000,9.900000,3,2.670000,1,False. +MD,154,510,411-2977,no,no,0,154.500000,122,26.270000,214.200000,71,18.210000,178.000000,105,8.010000,12.000000,2,3.240000,3,True. +NV,110,408,389-8163,no,yes,34,192.300000,114,32.690000,129.300000,114,10.990000,136.300000,102,6.130000,6.300000,12,1.700000,1,False. +TX,75,415,417-4456,no,no,0,305.100000,106,51.870000,188.000000,115,15.980000,235.400000,116,10.590000,8.500000,5,2.300000,0,True. +ND,84,408,351-1894,no,yes,38,193.000000,106,32.810000,153.600000,106,13.060000,260.400000,87,11.720000,7.400000,5,2.000000,2,False. +WV,113,510,386-6408,no,no,0,72.500000,88,12.330000,204.000000,112,17.340000,117.900000,118,5.310000,6.600000,3,1.780000,1,False. +CO,181,510,370-9592,no,yes,40,105.200000,61,17.880000,341.300000,79,29.010000,165.700000,97,7.460000,6.300000,3,1.700000,2,False. +TX,51,415,397-9251,no,no,0,180.500000,88,30.690000,134.700000,102,11.450000,170.700000,97,7.680000,10.000000,3,2.700000,2,False. +FL,102,408,395-6913,no,yes,29,214.700000,86,36.500000,314.300000,109,26.720000,280.200000,110,12.610000,14.300000,2,3.860000,0,False. +AL,107,408,332-3804,no,no,0,86.800000,95,14.760000,108.100000,85,9.190000,204.300000,87,9.190000,13.200000,3,3.560000,1,False. +WV,88,510,421-1326,no,no,0,131.500000,99,22.360000,174.800000,128,14.860000,184.200000,83,8.290000,7.900000,2,2.130000,5,True. +MI,82,415,415-8200,no,no,0,135.400000,102,23.020000,237.100000,122,20.150000,118.300000,91,5.320000,17.500000,4,4.730000,0,False. +NY,204,415,371-9414,no,no,0,174.300000,85,29.630000,254.100000,95,21.600000,176.400000,96,7.940000,5.900000,3,1.590000,6,False. +MS,130,510,347-3895,no,no,0,203.900000,63,34.660000,191.800000,93,16.300000,132.500000,125,5.960000,12.100000,4,3.270000,3,False. +MO,174,510,342-5854,no,no,0,235.500000,108,40.040000,142.300000,143,12.100000,316.700000,131,14.250000,12.500000,5,3.380000,0,False. +AR,129,415,379-7192,no,no,0,157.000000,113,26.690000,256.900000,97,21.840000,185.500000,126,8.350000,12.100000,2,3.270000,2,False. +MS,190,415,394-5753,yes,no,0,111.900000,55,19.020000,223.000000,124,18.960000,243.200000,81,10.940000,10.000000,7,2.700000,3,False. +NY,54,510,390-6932,yes,no,0,236.300000,91,40.170000,152.800000,130,12.990000,160.300000,98,7.210000,11.200000,8,3.020000,3,False. +SD,78,408,394-3171,no,no,0,163.600000,88,27.810000,283.400000,93,24.090000,262.100000,108,11.790000,8.600000,9,2.320000,0,False. +AK,100,415,394-5202,no,yes,29,213.600000,127,36.310000,175.900000,82,14.950000,207.200000,100,9.320000,8.900000,3,2.400000,1,False. +WV,70,510,348-3777,no,yes,30,143.400000,72,24.380000,170.000000,92,14.450000,127.900000,68,5.760000,9.400000,4,2.540000,3,False. +SC,111,510,407-3949,no,no,0,78.300000,119,13.310000,198.200000,94,16.850000,248.500000,94,11.180000,12.100000,4,3.270000,1,False. +VA,117,408,363-4779,no,no,0,97.100000,98,16.510000,228.000000,131,19.380000,240.000000,111,10.800000,10.600000,3,2.860000,1,False. +MS,68,415,340-2239,no,no,0,94.100000,93,16.000000,147.600000,80,12.550000,213.500000,85,9.610000,10.100000,2,2.730000,0,False. +SD,27,510,359-3423,no,no,0,226.300000,95,38.470000,274.300000,109,23.320000,242.700000,119,10.920000,8.200000,3,2.210000,2,True. +MN,91,415,382-9297,no,no,0,133.800000,61,22.750000,158.800000,96,13.500000,189.600000,92,8.530000,10.500000,2,2.840000,1,False. +AL,181,415,330-9294,no,yes,27,190.300000,93,32.350000,249.000000,127,21.170000,215.700000,82,9.710000,10.600000,4,2.860000,1,False. +CO,118,415,362-8763,no,yes,36,294.900000,106,50.130000,165.700000,115,14.080000,189.200000,63,8.510000,9.800000,5,2.650000,3,False. +ME,112,415,403-4816,no,no,0,185.400000,114,31.520000,191.400000,119,16.270000,144.000000,78,6.480000,10.000000,11,2.700000,2,False. +GA,93,415,371-2155,no,no,0,179.500000,121,30.520000,191.900000,131,16.310000,165.500000,125,7.450000,12.000000,4,3.240000,0,False. +AZ,102,408,334-1339,no,no,0,158.000000,94,26.860000,207.900000,100,17.670000,190.400000,120,8.570000,10.100000,10,2.730000,0,False. +MA,93,415,341-7412,no,no,0,173.000000,131,29.410000,190.400000,108,16.180000,290.000000,66,13.050000,10.400000,2,2.810000,0,False. +AZ,107,415,375-4770,no,yes,32,134.200000,101,22.810000,211.900000,145,18.010000,167.600000,138,7.540000,8.200000,5,2.210000,1,False. +IN,100,415,406-7643,no,yes,32,125.200000,123,21.280000,230.900000,101,19.630000,192.000000,106,8.640000,12.600000,9,3.400000,3,False. +DE,115,415,415-8164,no,no,0,195.900000,111,33.300000,227.000000,108,19.300000,313.200000,113,14.090000,13.200000,1,3.560000,2,False. +WI,63,510,354-3545,no,yes,13,214.200000,61,36.410000,181.200000,88,15.400000,174.000000,68,7.830000,10.300000,2,2.780000,0,False. +ME,57,415,377-3139,no,no,0,221.100000,101,37.590000,236.700000,65,20.120000,252.300000,137,11.350000,9.500000,1,2.570000,0,False. +DC,119,408,418-7478,no,yes,26,132.000000,100,22.440000,173.300000,121,14.730000,203.500000,108,9.160000,11.600000,5,3.130000,1,False. +GA,73,408,385-6952,no,no,0,157.600000,92,26.790000,198.300000,87,16.860000,364.900000,106,16.420000,9.100000,4,2.460000,1,False. +HI,98,408,381-8593,no,yes,30,110.300000,71,18.750000,182.400000,108,15.500000,183.800000,88,8.270000,11.000000,8,2.970000,2,False. +VA,139,415,365-9371,yes,no,0,161.500000,121,27.460000,192.900000,137,16.400000,168.300000,96,7.570000,11.200000,13,3.020000,0,False. +NY,31,408,401-7335,no,yes,28,171.800000,116,29.210000,240.700000,125,20.460000,245.500000,80,11.050000,10.600000,7,2.860000,1,False. +PA,129,510,364-5126,no,yes,32,211.000000,99,35.870000,155.100000,89,13.180000,234.800000,96,10.570000,11.400000,5,3.080000,1,False. +AR,115,415,385-7157,no,no,0,139.300000,89,23.680000,192.300000,95,16.350000,151.000000,75,6.800000,9.300000,3,2.510000,7,True. +HI,108,415,385-4766,no,no,0,291.600000,99,49.570000,221.100000,93,18.790000,229.200000,110,10.310000,14.000000,9,3.780000,2,True. +DE,139,408,390-1760,no,no,0,139.000000,110,23.630000,132.900000,93,11.300000,272.000000,120,12.240000,12.100000,1,3.270000,0,False. +WV,102,408,365-8831,no,no,0,234.800000,125,39.920000,199.200000,99,16.930000,163.200000,88,7.340000,10.000000,1,2.700000,4,False. +OK,149,408,353-4002,no,no,0,187.600000,83,31.890000,201.400000,81,17.120000,264.200000,79,11.890000,8.800000,1,2.380000,1,False. +OR,113,415,367-5923,no,no,0,159.800000,143,27.170000,210.100000,93,17.860000,175.100000,86,7.880000,13.100000,7,3.540000,2,False. +ND,131,408,393-9548,no,yes,33,177.100000,100,30.110000,194.000000,85,16.490000,253.400000,124,11.400000,5.200000,5,1.400000,1,False. +MO,83,408,362-2356,no,no,0,117.900000,101,20.040000,160.400000,92,13.630000,235.300000,150,10.590000,11.400000,10,3.080000,0,False. +AR,96,415,365-2341,no,yes,21,247.600000,95,42.090000,256.300000,150,21.790000,158.600000,72,7.140000,10.800000,6,2.920000,2,False. +GA,98,408,388-8797,no,no,0,169.900000,77,28.880000,138.300000,155,11.760000,142.600000,105,6.420000,8.500000,7,2.300000,1,False. +TN,3,415,400-4713,no,no,0,185.000000,120,31.450000,203.700000,129,17.310000,170.500000,89,7.670000,14.100000,3,3.810000,3,False. +MA,77,408,420-3042,no,yes,17,204.900000,84,34.830000,201.000000,102,17.090000,219.700000,97,9.890000,11.300000,5,3.050000,0,False. +ND,75,408,396-4171,no,yes,24,225.500000,119,38.340000,182.000000,108,15.470000,270.900000,106,12.190000,9.400000,2,2.540000,3,False. +IA,40,510,389-8417,no,no,0,169.700000,115,28.850000,141.400000,123,12.020000,253.000000,115,11.390000,10.500000,3,2.840000,4,True. +NJ,108,415,339-4068,no,no,0,239.300000,102,40.680000,223.400000,127,18.990000,251.400000,104,11.310000,10.600000,6,2.860000,0,False. +MT,100,415,341-4873,no,no,0,113.300000,96,19.260000,197.900000,89,16.820000,284.500000,93,12.800000,11.700000,2,3.160000,4,True. +AL,16,415,336-2322,no,no,0,161.900000,100,27.520000,230.100000,138,19.560000,148.800000,78,6.700000,10.200000,11,2.750000,3,False. +NY,115,510,402-1607,no,yes,16,133.300000,110,22.660000,185.700000,111,15.780000,161.500000,113,7.270000,5.600000,4,1.510000,2,False. +PA,108,510,379-3037,no,yes,25,170.700000,88,29.020000,109.900000,113,9.340000,165.700000,99,7.460000,8.700000,1,2.350000,3,False. +VT,107,510,382-1399,no,no,0,189.700000,76,32.250000,156.100000,65,13.270000,244.000000,91,10.980000,8.300000,3,2.240000,5,False. +NC,161,415,394-5489,no,no,0,322.300000,100,54.790000,230.400000,135,19.580000,241.500000,104,10.870000,7.800000,5,2.110000,2,True. +CT,147,415,387-6065,no,no,0,124.400000,74,21.150000,320.900000,78,27.280000,157.200000,126,7.070000,10.400000,4,2.810000,2,False. +MO,107,415,327-6087,no,no,0,146.900000,94,24.970000,114.300000,111,9.720000,114.500000,97,5.150000,11.400000,5,3.080000,3,False. +WV,120,510,341-8667,no,no,0,192.600000,123,32.740000,206.400000,105,17.540000,283.200000,93,12.740000,10.800000,3,2.920000,1,False. +NJ,107,408,338-9612,no,yes,36,96.300000,83,16.370000,179.600000,91,15.270000,166.300000,121,7.480000,10.300000,2,2.780000,1,False. +AK,58,510,364-1134,no,no,0,131.900000,96,22.420000,167.600000,107,14.250000,205.900000,106,9.270000,14.700000,5,3.970000,3,False. +LA,91,408,413-4811,no,no,0,147.200000,121,25.020000,175.200000,87,14.890000,136.300000,80,6.130000,13.300000,3,3.590000,2,False. +AL,13,415,354-4333,no,no,0,143.100000,139,24.330000,239.600000,88,20.370000,221.700000,123,9.980000,7.100000,5,1.920000,2,False. +IN,104,408,382-2026,no,no,0,280.400000,127,47.670000,179.400000,79,15.250000,150.600000,77,6.780000,15.200000,6,4.100000,5,False. +MA,93,415,368-3287,no,yes,31,237.200000,85,40.320000,213.100000,100,18.110000,192.700000,87,8.670000,10.700000,4,2.890000,1,False. +DE,95,510,367-8298,no,no,0,184.200000,95,31.310000,181.600000,101,15.440000,143.400000,113,6.450000,12.800000,4,3.460000,2,False. +SC,104,415,391-1783,no,no,0,109.100000,141,18.550000,187.100000,140,15.900000,216.600000,100,9.750000,10.000000,4,2.700000,3,False. +NH,35,408,393-8762,no,no,0,138.100000,115,23.480000,158.200000,82,13.450000,215.700000,118,9.710000,10.300000,2,2.780000,5,True. +LA,62,415,385-1423,no,no,0,186.800000,94,31.760000,207.600000,92,17.650000,195.000000,98,8.780000,8.800000,4,2.380000,3,False. +MS,143,510,406-7670,no,no,0,155.400000,112,26.420000,290.900000,92,24.730000,228.400000,91,10.280000,13.900000,5,3.750000,1,False. +NM,62,415,339-5423,no,no,0,245.300000,91,41.700000,122.900000,130,10.450000,228.400000,102,10.280000,8.500000,4,2.300000,4,False. +WA,60,415,366-8939,yes,no,0,205.900000,97,35.000000,277.400000,117,23.580000,202.000000,139,9.090000,11.000000,2,2.970000,0,True. +SC,41,510,353-2391,no,no,0,207.200000,138,35.220000,214.100000,83,18.200000,193.000000,105,8.690000,11.900000,4,3.210000,1,False. +MT,34,415,372-4203,no,yes,14,151.500000,100,25.760000,248.700000,126,21.140000,199.800000,120,8.990000,10.700000,5,2.890000,2,False. +ME,56,408,385-5688,no,no,0,221.900000,112,37.720000,278.200000,122,23.650000,288.100000,85,12.960000,7.100000,5,1.920000,0,True. +NM,183,415,397-7453,no,no,0,190.000000,100,32.300000,246.600000,78,20.960000,304.200000,107,13.690000,9.500000,4,2.570000,1,False. +AZ,94,415,366-9015,no,no,0,220.800000,111,37.540000,156.200000,67,13.280000,187.900000,89,8.460000,10.500000,4,2.840000,2,False. +CT,73,415,356-1654,no,yes,47,173.700000,117,29.530000,204.000000,114,17.340000,174.600000,94,7.860000,6.300000,3,1.700000,2,False. +IL,123,408,337-3932,no,no,0,114.800000,94,19.520000,150.000000,104,12.750000,268.600000,119,12.090000,9.600000,4,2.590000,2,False. +IN,64,408,350-1126,no,no,0,113.800000,97,19.350000,192.300000,97,16.350000,214.900000,89,9.670000,10.400000,1,2.810000,3,False. +AR,127,415,416-3649,yes,no,0,143.200000,60,24.340000,179.500000,159,15.260000,171.800000,122,7.730000,6.200000,4,1.670000,4,True. +RI,33,415,349-1726,no,no,0,184.400000,111,31.350000,203.800000,110,17.320000,237.400000,100,10.680000,9.300000,5,2.510000,3,False. +ND,27,415,405-1589,no,no,0,227.400000,67,38.660000,248.000000,115,21.080000,61.400000,109,2.760000,7.800000,6,2.110000,1,False. +NH,123,408,366-7560,no,no,0,224.000000,99,38.080000,210.700000,80,17.910000,231.900000,75,10.440000,2.100000,5,0.570000,0,False. +NV,148,510,333-9643,no,no,0,216.200000,95,36.750000,185.700000,105,15.780000,300.000000,143,13.500000,10.000000,5,2.700000,2,False. +UT,81,415,355-6422,no,no,0,129.900000,121,22.080000,230.100000,105,19.560000,140.500000,123,6.320000,13.300000,3,3.590000,0,False. +NC,122,510,329-5400,no,yes,30,230.100000,108,39.120000,287.600000,76,24.450000,177.100000,85,7.970000,6.900000,3,1.860000,2,False. +MI,52,415,383-6356,no,no,0,204.400000,97,34.750000,273.200000,128,23.220000,179.600000,118,8.080000,11.000000,5,2.970000,1,False. +WI,91,408,377-7276,no,yes,44,216.600000,101,36.820000,173.100000,98,14.710000,242.100000,95,10.890000,9.100000,3,2.460000,1,False. +AR,54,415,337-1586,no,no,0,247.500000,85,42.080000,225.400000,93,19.160000,244.300000,132,10.990000,10.200000,2,2.750000,2,True. +NH,152,510,336-9273,no,no,0,228.100000,93,38.780000,136.400000,106,11.590000,197.300000,107,8.880000,9.000000,2,2.430000,1,False. +TX,201,415,415-5476,no,no,0,225.900000,110,38.400000,299.100000,86,25.420000,251.300000,81,11.310000,11.200000,4,3.020000,1,True. +ID,78,415,332-2650,no,no,0,103.500000,115,17.600000,117.900000,102,10.020000,201.000000,94,9.050000,12.000000,3,3.240000,4,True. +CT,67,415,418-8257,no,no,0,115.500000,70,19.640000,252.200000,143,21.440000,208.900000,91,9.400000,7.500000,6,2.030000,0,False. +NH,100,408,407-3121,no,no,0,218.800000,125,37.200000,148.300000,102,12.610000,277.800000,97,12.500000,9.700000,6,2.620000,1,False. +WY,41,510,381-2413,no,no,0,223.800000,67,38.050000,244.800000,74,20.810000,223.800000,156,10.070000,12.300000,5,3.320000,3,False. +OR,133,415,378-1144,no,no,0,143.800000,71,24.450000,184.000000,131,15.640000,275.500000,132,12.400000,12.900000,4,3.480000,3,False. +SC,36,408,359-5091,no,yes,43,29.900000,123,5.080000,129.100000,117,10.970000,325.900000,105,14.670000,8.600000,6,2.320000,2,False. +MD,51,510,378-6986,no,yes,28,276.700000,121,47.040000,203.700000,99,17.310000,246.200000,88,11.080000,8.300000,3,2.240000,0,False. +NY,122,415,386-6580,no,no,0,141.400000,128,24.040000,146.400000,70,12.440000,123.000000,75,5.540000,8.100000,4,2.190000,0,False. +NM,84,408,419-9713,no,yes,41,153.900000,102,26.160000,140.700000,117,11.960000,217.700000,101,9.800000,12.800000,5,3.460000,1,False. +LA,91,415,382-6153,no,no,0,190.500000,128,32.390000,205.500000,103,17.470000,130.700000,63,5.880000,13.800000,5,3.730000,0,False. +UT,110,408,332-1690,no,no,0,192.600000,102,32.740000,178.900000,118,15.210000,214.600000,74,9.660000,9.400000,4,2.540000,1,False. +AL,91,408,348-9383,yes,no,0,151.800000,115,25.810000,103.600000,116,8.810000,156.300000,86,7.030000,12.200000,4,3.290000,1,False. +DE,121,408,420-3857,no,no,0,215.600000,74,36.650000,192.900000,98,16.400000,144.000000,103,6.480000,10.100000,4,2.730000,5,False. +WV,109,415,405-2653,no,no,0,180.000000,100,30.600000,229.000000,103,19.470000,139.400000,105,6.270000,7.800000,8,2.110000,3,False. +KY,95,510,417-9278,no,no,0,157.300000,116,26.740000,197.500000,77,16.790000,128.200000,111,5.770000,8.400000,4,2.270000,2,False. +NC,72,415,352-5663,no,no,0,196.500000,88,33.410000,158.600000,129,13.480000,269.300000,118,12.120000,6.800000,3,1.840000,0,False. +WV,73,415,370-8786,no,no,0,240.300000,130,40.850000,162.500000,83,13.810000,231.900000,136,10.440000,11.900000,3,3.210000,0,False. +AZ,108,415,415-6333,no,no,0,193.300000,126,32.860000,154.700000,85,13.150000,174.800000,98,7.870000,9.400000,6,2.540000,3,False. +WV,58,408,391-6558,no,yes,39,211.900000,40,36.020000,274.400000,76,23.320000,210.500000,139,9.470000,5.400000,4,1.460000,1,False. +ND,148,415,396-4234,yes,no,0,218.700000,111,37.180000,155.600000,133,13.230000,277.400000,62,12.480000,8.200000,5,2.210000,1,False. +WA,76,510,345-6961,yes,no,0,246.800000,110,41.960000,206.300000,63,17.540000,208.400000,123,9.380000,13.200000,5,3.560000,0,True. +ID,103,415,346-5992,no,no,0,174.700000,151,29.700000,148.000000,56,12.580000,168.200000,109,7.570000,15.800000,3,4.270000,6,True. +CT,87,415,402-3908,no,no,0,240.000000,83,40.800000,134.100000,106,11.400000,189.100000,84,8.510000,9.300000,2,2.510000,0,True. +OK,35,510,350-2340,no,yes,37,181.200000,76,30.800000,177.600000,98,15.100000,228.000000,136,10.260000,5.000000,3,1.350000,2,False. +IA,88,415,410-2015,no,no,0,113.700000,67,19.330000,165.100000,127,14.030000,141.500000,142,6.370000,10.800000,3,2.920000,1,False. +NE,67,415,380-3311,no,yes,41,174.700000,86,29.700000,160.600000,93,13.650000,155.300000,108,6.990000,13.400000,1,3.620000,0,False. +ID,77,510,399-7029,no,yes,29,211.100000,89,35.890000,223.500000,97,19.000000,148.400000,106,6.680000,9.700000,9,2.620000,2,False. +OR,124,510,337-3868,no,no,0,169.300000,108,28.780000,178.600000,91,15.180000,242.300000,82,10.900000,12.200000,3,3.290000,1,False. +SD,30,415,354-8088,no,no,0,247.400000,107,42.060000,175.900000,76,14.950000,287.400000,90,12.930000,11.300000,2,3.050000,0,False. +DE,53,415,416-9723,no,yes,32,131.200000,63,22.300000,227.400000,125,19.330000,178.900000,105,8.050000,12.800000,2,3.460000,2,False. +WA,152,510,337-4403,no,no,0,161.400000,84,27.440000,163.600000,88,13.910000,153.200000,121,6.890000,11.800000,5,3.190000,1,False. +CT,100,510,416-1536,yes,no,0,107.200000,98,18.220000,86.800000,122,7.380000,156.200000,117,7.030000,9.700000,4,2.620000,1,False. +MN,59,408,386-3796,no,yes,32,211.900000,120,36.020000,202.900000,136,17.250000,213.500000,95,9.610000,8.800000,5,2.380000,1,False. +WA,143,510,340-4989,no,no,0,160.400000,120,27.270000,285.900000,104,24.300000,182.500000,85,8.210000,6.900000,4,1.860000,3,False. +PA,142,510,340-6221,no,yes,40,230.700000,101,39.220000,256.800000,88,21.830000,263.900000,92,11.880000,6.400000,3,1.730000,1,False. +ID,105,408,363-3469,no,no,0,232.600000,96,39.540000,253.400000,117,21.540000,154.000000,101,6.930000,10.500000,9,2.840000,1,False. +MS,111,408,345-3787,no,no,0,294.700000,90,50.100000,294.600000,72,25.040000,260.100000,121,11.700000,10.800000,3,2.920000,1,True. +WA,143,510,362-3107,no,no,0,133.400000,107,22.680000,223.900000,117,19.030000,180.400000,85,8.120000,10.200000,13,2.750000,1,False. +DC,93,408,345-1994,no,yes,22,306.200000,123,52.050000,189.700000,83,16.120000,240.300000,107,10.810000,11.700000,2,3.160000,0,False. +KY,79,415,377-5417,no,no,0,236.800000,135,40.260000,186.400000,87,15.840000,126.900000,112,5.710000,10.400000,5,2.810000,2,False. +OH,68,415,369-8574,yes,yes,24,125.700000,92,21.370000,275.900000,98,23.450000,214.500000,108,9.650000,14.200000,6,3.830000,3,True. +TN,93,510,344-6847,yes,no,0,168.400000,114,28.630000,276.000000,127,23.460000,196.200000,48,8.830000,11.400000,3,3.080000,1,False. +ID,103,415,391-7528,no,no,0,70.900000,134,12.050000,134.500000,112,11.430000,168.800000,164,7.600000,12.000000,6,3.240000,2,False. +WV,144,510,393-6053,no,yes,38,105.000000,86,17.850000,121.800000,123,10.350000,221.500000,122,9.970000,3.700000,4,1.000000,0,False. +WI,93,415,392-6286,no,no,0,152.100000,141,25.860000,215.500000,107,18.320000,262.400000,111,11.810000,12.000000,7,3.240000,1,False. +OK,149,510,365-9079,yes,no,0,180.900000,79,30.750000,194.900000,83,16.570000,197.800000,109,8.900000,8.800000,9,2.380000,3,False. +WV,23,510,399-3089,no,yes,31,156.600000,84,26.620000,161.500000,96,13.730000,294.600000,107,13.260000,9.400000,6,2.540000,1,False. +SD,221,510,365-2192,no,yes,24,180.500000,85,30.690000,224.100000,92,19.050000,205.700000,103,9.260000,2.400000,3,0.650000,0,False. +KS,164,510,394-3051,no,yes,30,238.800000,100,40.600000,230.000000,121,19.550000,206.300000,66,9.280000,13.200000,8,3.560000,1,False. +NC,104,415,357-2429,no,yes,18,182.100000,66,30.960000,213.600000,65,18.160000,193.000000,108,8.690000,13.400000,9,3.620000,2,False. +NY,150,415,421-6268,no,yes,35,139.600000,72,23.730000,332.800000,170,28.290000,213.800000,105,9.620000,8.800000,2,2.380000,2,False. +WI,184,408,401-5915,no,yes,12,200.300000,76,34.050000,253.600000,105,21.560000,149.300000,93,6.720000,10.200000,5,2.750000,0,False. +SC,88,408,348-6057,no,no,0,153.500000,94,26.100000,251.700000,118,21.390000,182.200000,99,8.200000,8.500000,6,2.300000,1,False. +UT,61,415,349-3843,yes,yes,29,128.200000,119,21.790000,171.700000,83,14.590000,250.900000,114,11.290000,11.700000,6,3.160000,3,False. +NC,110,408,396-5561,no,no,0,159.500000,145,27.120000,202.300000,101,17.200000,256.000000,96,11.520000,16.700000,2,4.510000,2,False. +IN,115,415,370-9622,no,no,0,226.400000,101,38.490000,276.800000,60,23.530000,213.400000,82,9.600000,12.300000,4,3.320000,3,True. +AR,33,408,371-9602,no,no,0,251.900000,81,42.820000,194.600000,96,16.540000,211.200000,87,9.500000,8.400000,3,2.270000,2,False. +ME,100,510,351-2815,no,no,0,264.500000,117,44.970000,194.000000,111,16.490000,262.700000,111,11.820000,7.500000,4,2.030000,2,True. +NY,209,415,369-8703,no,no,0,153.700000,105,26.130000,188.600000,87,16.030000,200.800000,95,9.040000,10.700000,2,2.890000,0,False. +OR,27,510,355-2840,no,no,0,232.100000,81,39.460000,210.800000,101,17.920000,165.400000,87,7.440000,15.000000,6,4.050000,5,False. +IL,117,415,372-1115,no,no,0,201.900000,86,34.320000,212.300000,96,18.050000,176.900000,98,7.960000,7.800000,10,2.110000,1,False. +MA,87,408,337-2986,no,no,0,186.900000,79,31.770000,182.600000,105,15.520000,143.100000,90,6.440000,4.200000,14,1.130000,1,False. +CT,129,510,404-3238,no,yes,27,196.600000,89,33.420000,180.600000,95,15.350000,245.000000,83,11.030000,6.600000,5,1.780000,1,False. +WI,142,510,397-4968,no,no,0,232.100000,102,39.460000,168.200000,110,14.300000,197.300000,120,8.880000,9.900000,3,2.670000,1,False. +OK,112,415,327-1058,no,no,0,166.000000,79,28.220000,74.600000,100,6.340000,247.900000,74,11.160000,6.300000,7,1.700000,0,False. +DE,75,510,419-9509,no,yes,28,200.600000,96,34.100000,164.100000,111,13.950000,169.600000,153,7.630000,2.500000,5,0.680000,1,False. +AZ,97,408,349-7282,no,yes,25,141.000000,101,23.970000,212.000000,85,18.020000,175.200000,138,7.880000,4.900000,2,1.320000,3,False. +AK,121,408,382-5743,no,yes,34,245.000000,95,41.650000,216.900000,66,18.440000,112.400000,125,5.060000,7.500000,8,2.030000,0,False. +MI,142,415,358-2694,yes,no,0,140.800000,140,23.940000,228.600000,119,19.430000,152.900000,88,6.880000,10.900000,7,2.940000,1,False. +WA,121,510,378-1884,no,no,0,255.100000,93,43.370000,266.900000,97,22.690000,197.700000,118,8.900000,8.800000,3,2.380000,3,True. +SD,87,415,330-1627,no,yes,33,125.000000,99,21.250000,235.300000,81,20.000000,215.300000,95,9.690000,10.200000,7,2.750000,2,False. +SD,34,408,392-5716,no,no,0,180.600000,65,30.700000,280.400000,99,23.830000,292.400000,105,13.160000,5.000000,3,1.350000,1,False. +AK,177,415,384-6132,yes,no,0,248.700000,118,42.280000,172.300000,73,14.650000,191.900000,87,8.640000,11.300000,2,3.050000,1,True. +MA,58,415,359-2740,no,yes,30,178.100000,111,30.280000,236.700000,109,20.120000,264.000000,118,11.880000,8.400000,2,2.270000,0,False. +AR,113,415,338-6714,yes,no,0,122.200000,112,20.770000,131.700000,94,11.190000,169.500000,106,7.630000,10.300000,9,2.780000,5,True. +KS,101,415,347-9968,no,no,0,231.300000,87,39.320000,224.700000,88,19.100000,214.600000,69,9.660000,7.200000,7,1.940000,1,False. +OR,89,415,343-3399,no,no,0,111.200000,101,18.900000,122.100000,94,10.380000,180.800000,85,8.140000,12.600000,2,3.400000,3,False. +NC,77,408,334-6129,yes,yes,44,103.200000,117,17.540000,236.300000,86,20.090000,203.500000,101,9.160000,11.900000,2,3.210000,0,True. +OK,146,510,377-4975,no,no,0,138.400000,104,23.530000,158.900000,122,13.510000,47.400000,73,2.130000,3.900000,9,1.050000,4,True. +NJ,93,415,405-3533,no,no,0,146.300000,85,24.870000,216.600000,95,18.410000,233.000000,82,10.490000,11.500000,3,3.110000,0,False. +OH,160,415,337-9326,no,no,0,206.300000,66,35.070000,241.100000,109,20.490000,227.800000,102,10.250000,11.700000,6,3.160000,0,False. +NM,55,415,338-6556,no,no,0,132.000000,103,22.440000,279.600000,114,23.770000,180.000000,74,8.100000,13.500000,4,3.650000,0,False. +OH,88,408,354-3040,no,no,0,274.600000,105,46.680000,161.100000,121,13.690000,194.400000,123,8.750000,9.200000,4,2.480000,2,False. +MI,63,510,396-1278,no,no,0,185.300000,87,31.500000,225.300000,87,19.150000,194.300000,93,8.740000,11.700000,3,3.160000,0,False. +KS,127,415,354-6810,no,yes,24,154.800000,69,26.320000,177.200000,105,15.060000,207.600000,102,9.340000,9.000000,4,2.430000,1,False. +IL,57,415,403-6237,no,yes,30,179.200000,105,30.460000,283.200000,83,24.070000,228.100000,77,10.260000,14.700000,5,3.970000,1,False. +RI,138,510,411-6823,yes,no,0,286.200000,61,48.650000,187.200000,60,15.910000,146.200000,114,6.580000,11.000000,4,2.970000,2,True. +AR,115,408,338-1400,no,no,0,268.000000,115,45.560000,153.600000,106,13.060000,232.300000,65,10.450000,17.000000,1,4.590000,3,False. +NY,171,415,412-6245,no,no,0,137.500000,110,23.380000,198.100000,109,16.840000,292.700000,131,13.170000,13.300000,5,3.590000,2,False. +WY,148,408,377-3417,no,no,0,243.000000,115,41.310000,191.800000,91,16.300000,117.800000,93,5.300000,13.400000,5,3.620000,2,False. +NC,127,510,343-2597,no,no,0,134.900000,79,22.930000,221.500000,114,18.830000,113.800000,118,5.120000,15.000000,2,4.050000,1,False. +OR,61,415,388-8282,no,no,0,234.200000,76,39.810000,216.700000,108,18.420000,130.600000,122,5.880000,13.900000,2,3.750000,1,False. +VT,131,415,416-8394,no,no,0,175.100000,73,29.770000,171.900000,116,14.610000,131.100000,94,5.900000,7.300000,6,1.970000,1,False. +SD,88,408,343-6643,no,no,0,142.200000,107,24.170000,262.400000,84,22.300000,139.200000,99,6.260000,10.100000,5,2.730000,1,False. +DC,130,510,330-4364,no,no,0,132.400000,81,22.510000,200.300000,110,17.030000,202.500000,103,9.110000,6.000000,1,1.620000,2,False. +RI,89,415,414-1537,no,yes,24,97.800000,98,16.630000,207.200000,67,17.610000,214.500000,126,9.650000,5.900000,2,1.590000,0,False. +ID,82,415,408-1913,no,no,0,266.900000,83,45.370000,229.700000,74,19.520000,251.700000,99,11.330000,11.000000,6,2.970000,3,True. +OK,138,510,406-5532,no,yes,33,155.200000,139,26.380000,268.300000,79,22.810000,186.400000,71,8.390000,9.700000,4,2.620000,3,False. +MN,115,415,417-7722,no,no,0,200.200000,92,34.030000,244.900000,107,20.820000,190.900000,96,8.590000,8.800000,3,2.380000,1,False. +WA,84,415,367-5226,no,no,0,289.100000,100,49.150000,233.800000,97,19.870000,223.500000,148,10.060000,12.700000,2,3.430000,2,True. +WV,117,510,344-5766,yes,no,0,198.400000,121,33.730000,249.500000,104,21.210000,162.800000,115,7.330000,10.500000,5,2.840000,1,False. +NH,60,415,405-1370,no,no,0,180.300000,67,30.650000,208.000000,68,17.680000,181.200000,101,8.150000,12.800000,6,3.460000,2,False. +WI,62,415,368-9073,no,no,0,86.300000,84,14.670000,238.700000,99,20.290000,238.400000,79,10.730000,12.500000,1,3.380000,2,False. +MD,133,510,373-7974,no,no,0,295.000000,141,50.150000,223.600000,101,19.010000,229.400000,109,10.320000,12.900000,4,3.480000,2,True. +IN,131,408,371-4633,no,no,0,240.900000,108,40.950000,167.400000,91,14.230000,322.200000,109,14.500000,14.700000,8,3.970000,3,False. +IN,65,408,336-4960,no,no,0,207.700000,109,35.310000,217.500000,117,18.490000,125.600000,111,5.650000,8.000000,5,2.160000,1,False. +NY,120,510,405-5083,no,yes,27,128.500000,115,21.850000,163.700000,91,13.910000,242.900000,121,10.930000,0.000000,0,0.000000,1,False. +OR,142,510,392-1105,no,yes,22,224.400000,114,38.150000,146.000000,106,12.410000,241.400000,98,10.860000,8.800000,2,2.380000,1,False. +OK,134,415,378-2397,no,no,0,164.900000,115,28.030000,126.500000,96,10.750000,238.500000,125,10.730000,10.000000,9,2.700000,2,False. +WI,87,415,331-4184,no,no,0,238.000000,97,40.460000,164.500000,97,13.980000,282.500000,132,12.710000,10.600000,6,2.860000,2,False. +NJ,139,415,376-2408,no,yes,43,231.000000,85,39.270000,222.300000,82,18.900000,148.000000,105,6.660000,8.300000,5,2.240000,2,False. +AR,76,408,345-3614,no,no,0,107.300000,140,18.240000,238.200000,133,20.250000,271.800000,116,12.230000,10.000000,3,2.700000,4,True. +UT,100,408,370-9296,no,no,0,185.000000,122,31.450000,182.500000,92,15.510000,274.900000,92,12.370000,5.100000,8,1.380000,1,False. +DC,99,415,402-5076,no,yes,31,244.100000,71,41.500000,203.400000,58,17.290000,234.000000,115,10.530000,7.700000,4,2.080000,3,False. +AK,99,510,401-7334,no,no,0,238.400000,96,40.530000,246.500000,130,20.950000,198.400000,117,8.930000,12.400000,4,3.350000,3,False. +AZ,48,415,409-3428,no,yes,27,141.100000,109,23.990000,224.700000,94,19.100000,174.300000,122,7.840000,13.200000,2,3.560000,1,False. +KS,57,415,362-2067,no,no,0,158.100000,117,26.880000,115.200000,149,9.790000,182.400000,92,8.210000,11.800000,7,3.190000,0,False. +OH,106,415,352-2270,no,yes,30,220.100000,105,37.420000,222.200000,109,18.890000,158.400000,96,7.130000,13.100000,8,3.540000,0,False. +KS,170,415,404-5840,no,yes,42,199.500000,119,33.920000,135.000000,90,11.480000,184.600000,49,8.310000,10.900000,3,2.940000,4,True. +SC,78,415,360-3126,no,no,0,109.500000,105,18.620000,286.100000,90,24.320000,247.600000,113,11.140000,4.900000,9,1.320000,1,False. +TN,39,408,364-8731,no,no,0,187.200000,110,31.820000,114.700000,116,9.750000,104.700000,83,4.710000,13.200000,5,3.560000,1,False. +CA,127,510,388-4331,no,no,0,107.900000,128,18.340000,187.000000,77,15.900000,218.500000,95,9.830000,0.000000,0,0.000000,0,False. +MI,119,510,335-7324,yes,yes,22,172.100000,119,29.260000,223.600000,133,19.010000,150.000000,94,6.750000,13.900000,20,3.750000,1,True. +IN,114,408,362-8886,no,no,0,203.800000,85,34.650000,87.800000,110,7.460000,166.200000,122,7.480000,11.700000,4,3.160000,1,False. +RI,95,408,410-4882,no,no,0,160.000000,133,27.200000,215.300000,98,18.300000,188.900000,87,8.500000,9.100000,4,2.460000,0,False. +MO,116,408,371-1139,no,no,0,51.100000,106,8.690000,208.600000,137,17.730000,198.000000,92,8.910000,12.300000,3,3.320000,1,False. +TN,110,415,391-5516,no,no,0,227.700000,88,38.710000,170.000000,96,14.450000,128.700000,57,5.790000,11.700000,5,3.160000,1,False. +CT,74,510,380-3186,no,no,0,203.800000,77,34.650000,205.100000,111,17.430000,154.900000,109,6.970000,9.000000,2,2.430000,1,False. +ME,148,408,347-9995,no,yes,33,241.700000,84,41.090000,165.800000,84,14.090000,160.600000,80,7.230000,11.300000,3,3.050000,1,False. +MD,83,510,340-9013,no,no,0,78.100000,70,13.280000,239.300000,115,20.340000,144.400000,112,6.500000,12.300000,4,3.320000,1,False. +NC,73,408,362-8378,no,no,0,187.800000,95,31.930000,149.200000,143,12.680000,201.400000,113,9.060000,11.000000,4,2.970000,2,False. +SC,111,415,418-8969,no,yes,21,127.100000,94,21.610000,228.300000,116,19.410000,166.700000,108,7.500000,7.100000,3,1.920000,1,False. +CA,84,415,417-1488,no,no,0,280.000000,113,47.600000,202.200000,90,17.190000,156.800000,103,7.060000,10.400000,4,2.810000,0,True. +LA,75,510,358-9898,yes,no,0,153.200000,78,26.040000,210.800000,99,17.920000,153.500000,100,6.910000,7.800000,3,2.110000,1,False. +WI,114,415,373-7308,no,yes,26,137.100000,88,23.310000,155.700000,125,13.230000,247.600000,94,11.140000,11.500000,7,3.110000,2,False. +IL,71,510,330-7137,yes,no,0,186.100000,114,31.640000,198.600000,140,16.880000,206.500000,80,9.290000,13.800000,5,3.730000,4,True. +IN,58,415,406-8445,no,yes,22,224.100000,127,38.100000,238.800000,85,20.300000,174.200000,86,7.840000,11.500000,7,3.110000,2,False. +AL,106,408,404-5283,no,yes,29,83.600000,131,14.210000,203.900000,131,17.330000,229.500000,73,10.330000,8.100000,3,2.190000,1,False. +OK,172,408,398-3632,no,no,0,203.900000,109,34.660000,234.000000,123,19.890000,160.700000,65,7.230000,17.800000,4,4.810000,4,False. +IA,45,415,399-5763,no,no,0,211.300000,87,35.920000,165.700000,97,14.080000,265.900000,72,11.970000,13.300000,6,3.590000,1,False. +VT,100,408,340-9449,yes,no,0,219.400000,112,37.300000,225.700000,102,19.180000,255.300000,95,11.490000,12.000000,4,3.240000,4,False. +NY,94,415,363-1123,no,no,0,190.400000,91,32.370000,92.000000,107,7.820000,224.800000,108,10.120000,13.600000,17,3.670000,2,False. +LA,128,415,361-2170,no,no,0,147.700000,94,25.110000,283.300000,83,24.080000,188.300000,124,8.470000,6.900000,5,1.860000,2,False. +SC,181,408,406-6304,no,no,0,229.900000,130,39.080000,144.400000,93,12.270000,262.400000,110,11.810000,14.200000,4,3.830000,2,False. +ID,127,408,392-5090,no,no,0,102.800000,128,17.480000,143.700000,95,12.210000,191.400000,97,8.610000,10.000000,5,2.700000,1,False. +MO,89,415,373-7713,no,no,0,178.700000,81,30.380000,233.700000,74,19.860000,131.900000,120,5.940000,9.100000,4,2.460000,1,False. +ME,149,415,392-1376,no,yes,18,148.500000,106,25.250000,114.500000,106,9.730000,178.300000,98,8.020000,6.500000,4,1.760000,0,False. +MS,103,510,390-6388,no,yes,29,164.100000,111,27.900000,219.100000,96,18.620000,220.300000,108,9.910000,12.300000,9,3.320000,0,False. +SD,163,415,379-7290,yes,no,0,197.200000,90,33.520000,188.500000,113,16.020000,211.100000,94,9.500000,7.800000,8,2.110000,1,False. +OK,52,415,397-9928,no,no,0,124.900000,131,21.230000,300.500000,118,25.540000,192.500000,106,8.660000,11.600000,4,3.130000,2,False. +WY,89,415,378-6924,no,no,0,115.400000,99,19.620000,209.900000,115,17.840000,280.900000,112,12.640000,15.900000,6,4.290000,3,False. +GA,122,510,411-5677,yes,no,0,140.000000,101,23.800000,196.400000,77,16.690000,120.100000,133,5.400000,9.700000,4,2.620000,4,True. +VT,60,415,400-2738,no,no,0,193.900000,118,32.960000,85.000000,110,7.230000,210.100000,134,9.450000,13.200000,8,3.560000,3,False. +MD,62,408,409-1856,no,no,0,321.100000,105,54.590000,265.500000,122,22.570000,180.500000,72,8.120000,11.500000,2,3.110000,4,True. +IN,117,415,362-5899,no,no,0,118.400000,126,20.130000,249.300000,97,21.190000,227.000000,56,10.220000,13.600000,3,3.670000,5,True. +WV,159,415,377-1164,no,no,0,169.800000,114,28.870000,197.700000,105,16.800000,193.700000,82,8.720000,11.600000,4,3.130000,1,False. +OH,78,408,368-8555,no,no,0,193.400000,99,32.880000,116.900000,88,9.940000,243.300000,109,10.950000,9.300000,4,2.510000,2,False. +OH,96,415,347-6812,no,no,0,106.600000,128,18.120000,284.800000,87,24.210000,178.900000,92,8.050000,14.900000,7,4.020000,1,False. +SC,79,415,348-3830,no,no,0,134.700000,98,22.900000,189.700000,68,16.120000,221.400000,128,9.960000,11.800000,5,3.190000,2,False. +AZ,192,415,414-4276,no,yes,36,156.200000,77,26.550000,215.500000,126,18.320000,279.100000,83,12.560000,9.900000,6,2.670000,2,False. +WV,68,415,370-3271,no,no,0,231.100000,57,39.290000,153.400000,55,13.040000,191.300000,123,8.610000,9.600000,4,2.590000,3,False. +RI,28,510,328-8230,no,no,0,180.800000,109,30.740000,288.800000,58,24.550000,191.900000,91,8.640000,14.100000,6,3.810000,2,False. +CT,184,510,364-6381,yes,no,0,213.800000,105,36.350000,159.600000,84,13.570000,139.200000,137,6.260000,5.000000,10,1.350000,2,False. +TN,74,415,400-4344,no,yes,25,234.400000,113,39.850000,265.900000,82,22.600000,241.400000,77,10.860000,13.700000,4,3.700000,0,False. From 22c00b39b403bbd6f1d49f6dac08dfb9a1c23cab Mon Sep 17 00:00:00 2001 From: nerofeeva2001 <144069512+nerofeeva2001@users.noreply.github.com> Date: Wed, 6 Mar 2024 07:36:52 +0300 Subject: [PATCH 6/6] Delete data/one --- data/one | 1 - 1 file changed, 1 deletion(-) delete mode 100644 data/one diff --git a/data/one b/data/one deleted file mode 100644 index 8b13789..0000000 --- a/data/one +++ /dev/null @@ -1 +0,0 @@ -

    !=vf2V%iz7q^w+lm{Z+FVapi6mJOY(~#`RE{L+{l;)TEfQHWyNUMR zIkgV4Iz$3J;m*v)=Oz&O5p;MKf7HdBn%WlI0*|n`3m>X4WX2Cl1B+BnCUI}HlWwit z*=KN-riDxbPi@r+PZy!E6vO&9TbD6|QSF_hiUu}C1TQL*briGM`l zN%F>CTV)6dqcg$pr)2E`g4?yTB+8u4zSVe4riYk=!oH;;+JEtps=QQf6j-{ParpL4 zhxsF?0WUVrs@j$Q=GY>h)&B|1)cIJ*1W({$dkF`>yirGb+};>C$VL35BiuRCgeySW>Yo0xb_$n^o{o7voZu1Qx zJW8T-2v!;0@Z;_7~ijN`3O1jL;&S!)$` z>jN5(n>8dq(_M9wRydXm`N3w}p1y@0g!5)v$3*MbA+BpMZeKop`zkx^uFYu->Dnls zM$?Twq`!i1B2p6t!$wW3abHqpx$5o64z~=`%IMGrWURm3*Wcv*&U5C*#k=EqXUOa{ zl+fbpcS^X0@|TErcdN+pU7}#sVmq4EEu_z~h5tNek zhpIFbl3_ngDlzMGW+c2zb-y8eee7x=j|I*0<%v`&=ou~iDzapVc?Qlg*H7-)$Z)p~ zSESX>e2dH9fGX$s-VVEIyx6F)N$7q&iZFn#>@Tb2RBGf7WHPHFa`;JLq=%_Q5+hiD zpsdQA>3Ncvm8nEiY9qa3I^(#tyz?YTqAfm*j`|}(a2cQ3FNvN`le*~Drnj2&O5r2p zP>vJiFEDCDjR^_@cZslkR&+@0k5H5{>9n)4ZV-o!4OUBDGy;?iFZ*|^NQ;M@wz@>+dRc`DD zYv+eLUqia>0Mk&yDg#lPj}Bs;aK1C4UV3(JA|AzU&Y)sTwtR^ zXSVa7FUT$IN>azAorDEWiZDH0h1$PQbl>fVAJkftWD8l!56S~kU0c3!j}o}a2oT%G zWM>?KN_Ac05~zI&m}}FiHpMSv_!bZ0vtWWtbN+-;+_IT#xm zW74eHx25sQ9S-9q1v+}}MeeTEEo_0#jgR1g3(*232RNpz%X?!!{042qMbY277PrER zll$^V5KJSp4D`QB9zWv|fk$#s>d%TFns=LHer32S_7a~9MrznJlP?E&=3bw7{Gkz) z18<%Ld78~)aCSv_+n75D>u9S(u8BxzU~@ZV&hb^Gtl;K+gVq=QQDh)!1+PPAvqa~M zz8502jK_uxP7LvNwHeKoFhk#wZPCg~c;t_Lbd?cY-YHz4xRWSTqgoB0O)lac9Gg)w z4K>h5K%*x(9kZEf=!|IJRLJ@$GYYEc@%YB}JM{sLu5skUt{0-#ye$elQiWFAgDc%C z+}l>bVot)>{w%QggqL^j|D{Dr8E)l!0}Z-POr%_AJB7HgmR8w@LwQ5V=HwZ3>1niS zkR8gQ`_I}rrP5RIQme+3(eh99ba*G>65qHNu-o|XqVOsW_95JvdKYN9mSQiM>2be7 zdmZwePOi>B+H9X-U4HvohLBm~>$-Eg&1YUGhE{YYc3iS@ch!8QdKtl$c*|r@U9jV= zwpyBkC0Yr0XG$EUs$ICL`cL#bC>`2=&1kCcH$A>O%Ob>5{J4t|f{=fhXjg#Rh;s`6 z)eW>QZG;6PwQjF;MiX5kd9Ge4zNtrQnwjQopl-!(RZV%NueC%TN#y5*_}2aAWobAe zYpmnuduT2=xjieaA zs9V2@=^gSA3b2%=Zfpx^CD8GEi<39;$n8T2OFPu`m3n!M$-CgMkU6SG71M*(d^)4$ zU&=DO@VS| zp(x?izZH-l(lSaMK6W&T{rryKAhgX#|0ZdBX7;1y=h?SUU5<2dXBbuP!*kU7&v3L1 zI$bw#jwmQbvnFx371Su@vPZv5@)~hx9x)cXu5RRnotAkV&PHLxlSj9UJpWies1g?0 zR!ZXMIJP$sctD;dFESHud8dlDEr57KRmkX@X1tONe(7Ttp=q?~`gCS#hRn4dKTr+9 zHErZCum5yN>s#_Y&7&ygeXq|(P2B=zYoW)LUU&$pDW&?PJWrW$J<0eOG)=)@VC*S3 zh;)m3Hp-nsUiQfPc*(^HqKK~>gTiWOUGDH*%ibtiYZ`6T&4TZPH_w&nbNjrEuv%Kp z4!7@erj6b?t-|b=JO5A1n(~yj_^~C%l>xrJ&ZO~Nmuxfqhx?&N^2@dG4DK8YpURbZ z4@7)>XU~)2-oy0E)p>>-@PARMEGC^|*N?@S^))o9+Cy4j7=>A1%4F4@v}g2vwy5@` z;|%$NS8_Scv$o`?H-y#Rd!`RmQ&An*37-R1sl@m$Dv0qQ{i3~#+bE9~;_oUn*zLM6 z9B=M-x?TX=XAawOpOH5!JF@#Txtls#^I3WZk0m?q)Hw~$V`2 zUQHWbe_j$naU^4QnO6CNS8 zxDE(=7eArf+{SuR{tM-nnt{23b{VZGuRr#bx&DnXXGQQx`B1XvE&bYrbl7%Ms#^Rp zFy>StPDQGS?$FSWdIx0dE&%eO-aQQ*pVx)(%20U<1T!E7C`lC-l2L9h8oa*=Z1PA6 zDKuTz%OkQf&f3j3C;HL&Zi9ZnX@6*MT~)dI^B7h&efxWp1M{GldZ^-}xOi>*wC6)| zQ1hO1Hd@do!BBMgFTPPNVHwqPhJ{_zvXelziw{0I?ps9CFrPa0t64>uPNCyR(cJD#8O@Gv>%sS4tU}at4xRPi{=Ae*`HyacfAGiLjvoPX(e)txF9N8U|Q2o zVoub4jV^;S-XVe7P{@ks_@^r9mt{l|_kLIR1vxu^C_-`by~g^nl#BGRGy)*i3bh(L zD{%AjQqVNcn1RTAx%3&;`jHLd4Rv1+|B zEV`wQ6!sC#QtGwgPKu#OreR(v!_y#+pF^Fke^RK6TN~1%5Kdw)QKkKbp{6%1`oaqt zgK@VPw2fH@P6&BKX9Tx!b9pgcn3WkQEUp&zFM$K7fqMlPgry!qu#oYk0~DZy3w#*Y zT{G_XLXEB}Fn6Not!TTmE4h_~uYXag(DOX6c(7nlt-r@Mb92>|iKFU-x};oRx+_YC zz5iv}d0Amo*w_n7Y)9LqsdWdC+qglQSpF=z7ilM7kIW(%jef#iFg7LGprO0tZg44vr33j?!Bu>=T@|!!; z>B9WckOkN5(mk-bWErC8O}yj*BaSfK+`Gb05XPjJW7vuNM_~6XVNYvuGo`a{Y&N+BdP0?wjt!d-lCuWT z^Af<(6&pXx&*%`$MMs?g1uT?exwZB`;?N_af^h4sP#YLe?z^hhx$sE zVi7o-7<-JTUtvZ`TPly$9q8^+dUzm#%C|&*N2*W!+i69f<97fn!Xrm3wU%Ekj^8F% z!aT$fqZ?R@S;v`Qh>aqiMV8X>>)JC|w&q66z&=%<5XiZQgtDI>C0}$1?0+QNxxd9# z)LGp(-&iNn+P@MQjq2GdBUmHRdP{1y>n(AMN3=%rhjtp9Kj6b7Aog)So>Ar#O?i&w z>%;&gEhyQ6r0U$8qG7RK3(#!T6xH*mlHiH4ygH@_!?*N>>M=TVll){T)~#0{vycy~ zea96X&Sb6?k9+e*&%|*1$=ost*QG8njDA-5U)@V%Q7dK8@$cN~G55e`sAAu1k!8A6 z)dT4BHsjLWxDl-bNL5!UlhO8DHn_x1@eMl@XYY@-ZnXJgaR6H^oYkup`v?$Nz7tDy z{OYB}=&fnN<7^WEy<_#LK5`f<9ORXIap|8jBrX+oVNhpQU*mJPg!8rtpu;%?3lOZ16%Fz0JFG|FAlWHbmgnwV#;`jb+o z>0&)WIs^uuQS=EGj%19Dwch?UwWs00F!%Xk?;sNl_Z?P;0|V`_EMOb9M$s0_g6oX6VOh0OICJ|~{_~>!` z<6ZD@34p03pCPy3Q@o8LEK$zn9#ACvTwPZ%eg***aoxy7iiyV;G(|t(ncj*=$uUE^ zyK8jbCqoh;Bg0L(#PuEcZyww#D4B{=-}D{qYPrwTUDeQE9ZZA)4BlNLHSLG*OOwPW@QBSJK;Y3 zy)IOV1lEbzdMIv*%Uf)pnKR0p29@bcx5US`H?-Y5MaC$~JpF@y*3+rtbWQC*{iC*- z?DjzYo9s)h0r5^?!11nW%YljkU1ms%cB-93tJy?`fSL=r<%cq;f1d-sS+GW>q0}3@ncyaHZpbCuD%b@CSU76N4oD zDrBc&knf{Br_5#|btp<%_%+x_B5?_`E|N{h1S`PL;Wz~9Br7m7sWkEyEDD=4*A~}V z-oAn$H*R-jAx4-3mT0mso(o!;eWik1E(8bMiEs8Br>a#r_B@f&cYO#Y&*ic*(+XBw z_EOyxu*K|$b#;tHL>6}ATtQRmha1iguPjpo_~)D_E6AO>J9pt|M}lTuu%>y5g#`{N zZtp&90P|kARhWQHHdo~~7ax_PCR+xQccGNaxmO3H4}+P^t=MT&4Hja}xOu6958=04 zFpBaQ@%uK=FB(GJD1ih>3NyFc`J|~GO_cp(UbTOcFY11o1I9T@P|Z`TrA@hdU?e`U zDM);?8;sLPqt`tKQv57+`HTz$7 z_%vON#ga1Jt+-KNmR}|kC*`u=mXZQG%Fg}`WVh#>Ee#g7L@otS-ICi%Y;}I}Wwukm z@;qF-(DUZFx=@0zP2h0nUtO=A444CW4&Hp2Mug4C0)MXkc^ziGf| z17*||depo1&?UH1$k||@q{2#9>K$?gKHL>kBBr9+aKajd?Jw%5s7d3?k?2T;woZ?p zbT7+Qm9skjhtEXRZH)^od-Y4379B*X)03G?Oo`NeFG{CL&)q4hi-mXR_`|z%@1EO9 zb+eTtdsFxXrzh7@lknRDsbs2xopueD9!?9ygszx5OlkXXzbwy1ma;*^mVB}_K)|_N zoUt{#GWCmNcJGFH^GR0k7@ZK~!~E>}vG zHjtSQh`lJ6qf}IXj&LB#RFtpw7UR09n4A%_ch4lRbB^^4u{p0y)PH_?4kN3ILId+j zK2g>s4t3uc`)oo5WO#d@VV)?gVD5rJdPJM290gpKRU&?0%`~CseU0C`fue{Nt$(z? z>kajkU~JH(2&wMe1$-Qlp>Y#1=IVZF;kn#o6F0wYI8Ti|vD-_qRl2{Imu=Q>VGr(G>FhjKOAkD&kvr zBo=IuWRb&|lTPq`_ z)=B;pYxZ(2ZM{W~J_Wu*?}xHrBQPUSh&$N!mpoIVcN~34bF~P%J6o09DVe15JII-I zdVvkf!41}xb7|f3`HDxYqX2-=je^^kNhy!8qYgcRA=c<|qr2mp=4BuiW1!If%<85i zWeCV`F`Az;;>*R4opmOu{FT3gVwW31{YG@SO(9OC0zPGheQxmrarv`NCC)3yW=%Sl zWxHqBu$GgFsC=&knaCXG&K=U|l%i?9L)@eP*`kusBEYyZA#{^RZ@de$LH$3&B&p>6 zpi?$)FYPPv_}AC&z^=BhDPNt^4pHrDF}?aF}i@ zpg{VUKk$#OuWjW>)t3w2Bt;aC*XzWheevgIamBK(s7PpS-g)+SHS;!VEKXiZaWf zigU>Dlxe(9`+FBcgr^;9<81upe#}3V`0v+{pg#8jOO#nvQL$U_-ndf50(csj;i`?#Wzb%M5`vhdEgsD>gLN&f6JS(d4AdY?PuwAP zjdPQ8bO>++ERn-&m{<1yvLGRQa~9b!s$4U+G6!b^w+exaR{y7b`1+9RII^rMT4Tihy>8vY0ExCjRn;?he$53E z($p##ARaYT|1wO_Q-$=*1Gu|Tkw|^CP+QZ;fDk#Biy-48n0z1 zCKTn|FNc+&K7U>&&}exq*6P0uG=<@(zeY4Y8WoY7$!92tc8op+{u~Y z4PGGCZ5infgiI@yS2?l$0U6ypa+v^wOx{WZNX7qsInMOwaV4Q7N+Ut;r$+iQH7Q6e+n zZqEhu%@iiR)YqnLWgaAu1I7Aq$bOV$N0*F8QNAMkB6M|3e36C4AvKP`OEntOZwgYwCcU-5_)7G;*E1TYSDs_GX)f{s6b^GDxB2Fv>j3`(~fb0B$-{O z*M2|zTQ&~dm575LR(IupEO4X6VTyhYHT^YiC}NwlJ@j8B-XwZ5py`z#H25EZ&%0|t zoW3S@zA^{FC&Jhnt?Wv<|6H+veUj*2lzyH&(UWqdHJ|Nu+3Uq@vgoX-NC~`K)2W{A z#B#fC;*sspp?&b@$0<`iCN3mki4$6MJwO>WWg|FieBL^q8@j?fN|Zh4owPCBUDR^p zUZVN8DJ&L1X*B(E@PK;eN?5I~X`{(slQ#AZ&3EG=j$3tda+Z-TFX8y%ni(#7&N|t# zl>;lmOQo%I6-iHckZToHs{374ojm36&+<~s`u>Qje`hMB(p~2?Y&A=8i7*-RxUl7K z7pEVc1Y6(N&?QfO79+twCNREj&gY@bWnXTJ)uJXs?Ft)9R-l5wTF5{%-pWtDI_)yn>vy%Na z<2mVsaK}SRlNH=_!kxuS0e0`wL*wWb?`=52vuq-&ELyr`5nBw*z{?U|^S6qtF@m%2?-$eqOWiT4j6433`7RAEHT3c+CpcWe+adtv(;+rOz*O_Be@QItlkc(orh8q zoV!1Jzbjc$tHZF5za|I6pW}owF)RDwH$qT`OIt_??Z*=Q&UhB-Qkh|S@Z8GB4%r{! za^imRwWSBfBFe#EkzD>Qk)p^pfRX;rUI@|HA3;cBmw@9ffhmaJa)O&56I=O8N1O*G z@K+6o3UQ_y*-d>l)7b)+TGI(DH}@@#Ks37LQt_qoBQi5wGEL!fw@=w(e+hU_ACtR3 zG3Rq&v3RGOBfNA%#`=AlF`elar8u-Fo#v4f2x zQH2#F&SwR$%rI_HcqJNxp^yCWNeq5kC;MWg>2}Svilv*%e#0HJs>DUoFQoN72~*4( zO-bPqXE>BE&re00-Nq7;XWxnChc-HjL;GeSjR@`#f}Qwx zL#xY8HY05r2K5G}zuT&mWLiqsPeo9f+n0`3UTuV&OT85&$fGbfZ>vy7)f|{Ztc$#7 z9|HF6<;XxVg$POSFwPjL!Mp=YnrE)6b_b2Uv6v=Cyi@fRFG`pu>3!yi7%ihsBFy5p z;h~ka{^c^=a3@I&%asFr1I_E0T>Jw> zy^o%(f3t~;nDy8h+R}xqSd+U~Jv7TSOF7%p-^`K^y|DWv@`D&LxasEc2ntK&qiVy- z_;=*o5N%zk=fT>verjaW7wqW(6VbrmhUJ%U?Ri$)wy^yNEcu(4CHr4Ho%UnBDWQ@v zK~fLutBz?YNC>{v{ohJxc0LvzAT}%TH>7Cw@YHLBy@PNhTHM-Kx4Q2?RC7o}+h0Z+ zh%{k!p;+(hQyGK+W+xXtYAF+z9L z`JI=Q$wUWoV%)$CFXPP6N=v>VK9)Nrv1byF9MV}&=GCC|3Ml=K=3@Mw`NYc3EL0Uz zo5~~5ti36!4u^kiR(5ccjOU5RdyqFSy^`MY^5m~$A=yQEB!&&lGQ#Qp6j#js+>R&of;X-$Fh<tJT z(akK7eF#nO1+67dlsQnoXF=oe;~)iZj2zzwlSYBr9sbRqu7t~e69l&v?`T$5romdp z4!G7sko}Hzzh#UT$s8u6Gps=nDQLm46y;M9=dXK@;u&>+3yMe<=cEdxPW_4-ujG=D ze#B!x?q;_OPmtkE^&-$6ABMHvCFF@`JM)( zkx*3}6TLPuy|jw&A;`QQL>wmk($zjfmbsnOD*I)U<0SS#Q$2DN6;v zXM#ix1elnoUl@5%r#7dRB-t6Af4X}xAjtBjebi}4FqR=6;GV|HP*p@N<^N`mV9rV| z4V_jxZR}hcDvh8XNc-_~c^+41Us{q6p1ezf**M(~n=)48lgI-I#+~EinAoBDXeMmt zW;RavuCP545<5dF#*AKCOZciq|8B@GXq=?=8^dz*|3*Bdp5I}UI?y{*EV0FyiPXjW zXkjIJswuti<%Dopfr=j`T{8toz?^DQ-RH5YJ2{tEys5BTrD-vp#6EL{3EAv$n^<0E6@F|(HRs3c8yg zY@|Ka7Hl{iJ*_U$AU@Y~JN$o4b)=YA`(>4*6JL!vb~l9D(a2F`)D)tUU~IVMcM|Sn@YN?~ZBhhpqM}pqB73Z(3G}i9>IBU_4wk{j`B7Y! z(gr#D#SC{twJy2XeiQ#+thiN+R%!Cx>X1-%pyP3~xNeErHqruMlbk5;&Af%F53dnO z8$~TsHENq13I0HeAY&|!=4>PEaqAky#%fW=oD#k_=GuTnzxCEN{~=s?(5-y9)plD9 z`37sAAfj|XCs0KFc1PMXeOY+M=6>ORPam1$U9n@3tLUdM=J0c;J1g3(vm#t^mK*{* z__GG^z0PaDRarYue&nnX5Z+3f%Zdzt zK(mXpRP0!$wc`VX#l#ZcZxb*ni^TGuY1**%Le=WM7@Oq`!W9LbOZlc=hm11V3d#FU zzFmB7PB764nYKsQKM}ivcv?H$jJthDtXK?O$JxgboRav41F^ZRVM$#0Y*zCAae3E2 zg!C+I0ryR9KU2oh>h-U~v;tnE@(AWPECC|rYNF!^#6h?NCrZ_Q;TXORToK_wJv1xOB&7WE-7%~eNhuN^VccYg^_U# zBcRg?gY9F_nwaWx&wl7Zi*)f^ca~Sgu2=9;2xV#}gT{cIonTy6pjP57>Lo1yW#^hW z5KW8`53fjwQK%LHZv^u)UR!rl(+Eu^hG3g4iq@agVA7~9=n0pI= zx|U@@bmJOaf^Xd22@>2r!QBb&?v_B1;O-DCKyZgZaCe8`7TkRn=iYnXxp!v%%zg9! z`?Fzf=(W06S5;ScS65e6_p4uj2vR0M-xmCVR=0VMHH)Bqs!i z&6lu7-q^7|ulIw=ip$N#VUL^?&0ey4e*SM{{WBo7%0aZycJ44W7QyjL6V&Dj;ti=> zzgRD*-nS}_e6*RWqE0GwP%7lQyi(WT^C)gu+&|PJoE&OO-Nb;N5>U1{5st7?lNC4Z zvkZ1A9R8WOAvIi->QI;(B$x!JrQr|^mH}|eehaUt1DbLY*lH0KtK}ypqS=m#`lgn zFD|R2W_vnUVgqzArK9~Izi1`2&q+-Ca0>9_ee@3WWGI1ExAYLql`@f;)Dr zVYOIJ_nu=ji(Rmxc&19*D@L^kyL=AnSM%J+5Nb1twQDllQ)O*&1ce#+X>?jkK0Za& z4-!HSuaJGHC*6AQJY1xfS)gMd3Lc!@rio}mBxgHbF$ZuY;0){}BlF~s31#oDqCE$O z8kz5>I#tEkonX4Lb()MB)gd+a!QA8>bA9io8y_j4Dt5aG6>>=E91Bl8Y>i!aiwrmQ z7drJ`S4bi`PwUE0oiZf)rMUFDVLE5)Fsd>%{SEq)hKigZzH0gV?Cq<}SR<4t*F9_w zcfORlf5e^pTFlp5q(hBvzW8w`F{AOmVRua^l^8CUY(}slLYFj z;i`A=SSU^vJiCf_UkBbL4fG5@7;f{GUz$DotL;+v57QF_+~G&k$cAs6mF_+?O2LsH zM~W-3i%>G`6YH66A1$-QAvA{WtR-WVq?hB>a}O=Gj6t*1%0k38m7w#KU1 zd46$9XNZwOgucaA71T=CH_KpP5WzNpZ>bV0!<@yIlaYFFe75pR^cQ-lRLyUAd;~Je zM$NbC&l9|R6B~p=%uLVu`3-BwF|M2OOLX4a(|uPUzgX>OGfN&PV(Zq?!WNbj@@D95 zeKt?UwbInj3n(nmO%15yRqT|%SP9dj)ir0y*)HA_T@VrFS@if~A$FS_}1pY4f!*?vIkyI0LT=2;Wr zw~dFYgvSLY3VrZu2(DCKy?pG}n&OA*=zeoKuD%oWIJW&zTJZUp--HXZn(Gz8V}1$X zKt188Mo9zVhV2&HvTMnen@4PU$^gbB@E{y+-6Yr%mz`rU9aVKP+RSMx|^X zY)o_U5@z8qkZM_eQ%KFbuh?xs@N+8?v}71QtoECnBL%vCCCku;3>{lGT} zE}?QhPXtfNOshuEU*62_0gFb4(t`kei*8rf)-Vr|!OlyPJ`4!k3rxO%+^iwGpIlQS zRKuOG{5tJHUO}H5Z}ns7+VN2Mxl$~Z@)+jdc)MY_^CNY6BPPes2s$9=bU8Sy8=SR zBO0*o^nOXx>YfEu0rAb=(?2uphVQ@dm#xC%KL55Naf@dwzbEHShGg;1>3$zB^xg_e z4ubc@@rpwyk3!dyd&m-^*5VL(l1I6q>8 zdgrQDMo&MC<5P%2P^aOT5g{y1*sv%~$EsnXa6}08g<59YCr$nbqS#F2_UH)MxrAEC zp+_m(U+`j;Wz%i_Jhm5arr0JN>5g6Bb+5EA5YM>vK(;@3)Uin^CgZ9jd>PA zY&Vc5Q$K~UYuY8NBKU$VSu=A)udodi)WoFC5#V?sI>WTMJ9O;hm`yK_P}S#Oi98zZ zI*#~8Xr`v0vBPOx*7D^SWL)rWyhA;q9=Z}CW6WGP#_dCPMBJs0zf+PQGnic~sId~S z0jaM3bch|SZY3HslpWPxb*5?VDov8*Tk0=;R%zX5g8#J^jSZK`RV2Z*LO%?J)P7GV0~jO z`3R8h@39GoqB*vxo7B%d%}nF~`M67?sT!lD)ipzcd&n?!&4PAY%MWZH@ZSJ_)12d7nF@d*8sv6#8~* zCwV~sy$NAH5qhmYNf!CVP!hGX|D~ANoTPkt$5e2nl_C%7B6?GKN7A`kYb!bz!5-fk zBcox|*LJTO!hs_URE^RdEX6$mf|RiLASPehMbFQjMFh>%>0zxMCsRj0M9qg7uhZOZ zo`AfcrM?HGN!+3yv#gnTp03|YtF1%> z==@`OE=y3qSF^J$A-r5>KX5`^K~9dx4yR08U>i{T$8Fyb!G(9pF=wAJ8bIu*QSo)y zreiB3fgZa1qpLe@srUDiX!@W&neb0*_*ofy7 zY(iw3({&i^qVunY!gh+>|K&ll0NBJMB}1;Fp(X@%v}GK%YZ3{WA2`Lp0V<=I${Dqa zPG#A!13;nj$S0i?D1JsFz|wK|$et9~+V!dKGoapzMY#IRZV5{@Ps{?eFrA zlg|$@lG<2FQ(BxF_DUD+v>#crVE;*Y{`51GZ?oh4PB4V_KFf4lK=&yWR3fSE;w!K`3rV?*FuQ1B)5 z-@ch8>};L?lG}`ti;)$~&H=nvDXbM#Og4Z9#ndMDQEDc5M+`-zwEfz308w;3& zg%hm%M{ZF7L?F8pn3ebC;onL~I@-C|{{`^BRrAN)f55E@RPJbK>tz2@o3Y0~ZcBrm z9bHWSkrD-RiJ7`u8k?#}ioD$XJ6%*vo$Op3jZJ}C|DdwUUlHVeq0dW;yiiuo)YjbD z0s!t$0s(%f*3PDmU}gzxpe@8qjqOZKUyA>|UER}NlzzyFu_Cuz(>uOfbBQao!H=Pa z*K0v&{S@YM%1Gm7|LDguFNmx8yjVv&fPnn6VF-3(*J;!Y?ICB3r3Nx(+U}1-u?&2wPVqXzyj&Dg_>DC7WmY6f z=&{?@Rk?M20i1k|rIe0w`X6Q=^V*=P+K)-sl2?p|zocdlzoRtE(Sp7swN5Nncp~sY zsQ*|@Mz%=nt7k2?GHHr(~SOS2W0*)Wb{9%{LhU3*Pi?*qyO3M|JRJ}BVS?L zYP0*(u{-T+%Fq%Oe5W|1((#!3e+3TdCxQiVDwn!TK7!+b(|O?kZ{{e4DrSJC3=ig)p5?$W8?LHWx3@IKEM z<&kL2aiEzq_fj5k|3-R5TV3AGa*^+XJr*+TZAW`-e}2fL@bJ8Isu^uD%QeS8uO8;V zd$_qh=&kU5p1eW$c6xs7_b?kjAVvHBPXGCG^cmXzDIWTvyO&wqaoSJzZtt4bbYj#` z)-UVVlc(sz8;r;0is$W}cIVlfLuSFJW54^GNfO`d=;yP^EZ;`I(`&zn$zGD@%dF>9 z#rEKB{RcVJcZ<1ZH#bkX9@%B6Vt!EqLaGavs%c7?rb};UB}=Z$t-5U{3;fQ7kBOMg zy*H}_oyti}k4E1Mo=IgnsnzW1`#m7JpngeeYQ;t622Faf>fKQZflx6SEhbOS3E&&HG<9vOarufyY4CH~AR7jZc zQBq}`2P&*uCzkZ;jzF2*T(7HCwY055F$(gE+31~#FtfVf&NuSa9HrHZjSxz&^c~8Lh8k244fxiL+PEL- zNip~7C3eaaUp1L)2V&A#K|{e^nIJxMZkfD(9N#OpR93!Pa{O6 zdI@6`XTm(#S}-#(UQcro!Br*qDCxKJW0cTcY)^Pk284}Oh@;wlDS?IRg4!`so!Btlq ze>x{uVV0~OA#-#xt66cno&`SQA#fnpwF$lPUE|;-5u%GHM$1*?t%;5gTP8mTlw5G^ zZb3(M5KL+k3rp2UGy}9A}5e=O6DHBwv5TZcG5D-0Jbx zli^;`T$H-MrU*##y09#Xj{rhPj-dXC^&yDUYInQ_V)vUg#YxqTD2QceB`@7Uz#2|i zl%C>RNW==`8K5P~2|eM-EV9i5CRdNV>aLMkrupxyHTXG>*pj}ny@GokEK(usyW4=S z49l3(38r<^%Nay*-~xhxZNQ29Ego=!hr=EeppZL%L2NWLb2?-CgozNTrs!nX-yOmL zVF**LN{}nHh6sk27NKPBB1Mt#V%%)~bg4SPF*zefL9T5=G3r_TAm9b3pgqb|Qjy6( zG{Ec%w?2u&C)u{$^awbCGsuUx&hgUaURr?=lmDT6jU0!4?EW3^=mc?3ER_;ZTgx%L|AIU9O_Ydhnt>PX+qyFfWc^jK) zwCk#xR(-_aVC^6BcKFqgk%QE_%moj#pj3hZ+rE5;#NoU`=`VF{9%C}-zNvN6*uGqy zx-Fz^H$hdFxQWk3c``v$rFpX&AU6x(H3I;7qF> z-so4L2)W{;YLMB-+5URr`fZYs?}on&x=JTz$T2gLKaoOE%72x)12k>5>6P{^m4v5g z|7*`S#p;plj3{|4DB?Vd2R?RV_6Iz-^epVVi!YFY!t?d)Q4&|#^uR3gw$!jM%K*ET z^;K;pv6{#iR{bM>9zMt;QI<+Hi6mj<-Y1hY^~QDsL(&V%Aotd87)Qy$TNotz9O?Sf z+5MWC9X?bWL(x8sOb^+^G^=cE;F)+G9+OIgI^&mKM@=@bvKO7<Mw#(Ak zs(N zAedm_+!Kyb!3sZo(=q(tVj@+ekg_qtrLqGEds}h!h-?;|H|-2~)LwWdVV=4wIRjZ6BJ$EGy{@i*-F)xPlu_$ z6j-qoJ0L>tu!Onj+gj@e=;0wkJd@O0&(Bx;Z@8~kp%5}OBVRp0snj)b~`BsB11BcGj26g=~=Q*G(l=R349o3aq(wlyYK2A zL(058Lw~m=fP%pDno^mg;@4Ux3$Iwv_b0BW^s8w4vZp-=g#%|kAHNLV8HYo$HlC6s zI&A2MXc+BTftqKq6{*=!$OW z;vF8qYXX{+CznCn`&qQ8${yd4Y_t1dKPH~w^g14vnE?pO_@fbCie)D&+t`Lx8Ui-Q z5d$f9MK7L>!0Q(}EU8nw|K>C`8mUu&Nbsk(thh5u?dTV{kjR02@?H!4!+Psh&{%i! zIBus(v(g{Dn4^NokVVYy5kKL5tA7vma2bF#9jnb>IzGmnqTUZFvma#jwoYDD>8-*e z)&k0dNC=5K_pL$_A9DwEObzE=b8n=7jsP1RD#YVmb|WK#K+1~fBp=g}unLv>*K>F6 z+XS28p9#do6sE7ep4|LYAvnR3qr?q&>OByUueSPErKj&vlemz87-h_Q& z7273*xuz8KA}G4-{7hv~_Y9^f{hB!J#ep%Hk-W||%~oZ8#XTmzxAv5ItfiGDJ74b$ z5}GiPB9ZXxVz2lq#j|sHn5%u_$Gcq}@JGKinvJDKIO)dHc@JBjn*LtVQt0@pQv8go zdD-7904UWn{_!ymB{ z&7C!TxmR08=e|!CSU^G6iHvzQ&xdNN7mH7m6b*z-=G#3c=_Q7a1J&s@iukqIcIFee zjtm1McUAfLuqP|}3_md9=j0DGPFpU7@h1T@G7_mn#IX9-8z-iMk~ZOa!)|b~iSZRt zNBtYP_-T(EdgH~;+Da2!cj%X7N@+epvr5De2k$VNl3Lh?l586S|LYPu+6n(~zL{(p zE=|Mls1R&TTa0LG@7_o=mp=IJ7OY&q%z>CIesbPAO@Lt1ObE^lHeIvX_YKD!Clv5c#g^of5yNo{*Ldi<8CI( zYQ5pe&=pW_`%%_tkar=EH1@G{VL#pQzA(|MU(*yT*6lDfXr@X8&@5K_J3a(2K_c0v zX6Ybvl|xY2%)57Ty9s3Ss~8QUD@E1+ihO%A@o}M*|Dv1VtEXEeu~=D$}6Il&Xx?{=(5BFNN-!o=)lW~e#WK;wQ{rw3ua_POTDcAg_ zK>mS8GQ5r7S%f9GVw4&sZpx(qq6_V1SpH_crjepvcK8XdUByq9z|A^ZUY*!*M4G9B zA%wuV_mVD?#2CeJHwRA`Pu^)ecT2|hLWn0x7e!2?7i?$PoYhOwz>+2Lu4ZQF3`yKk z7SRDAGSqb7Gomg=c*%2epz@%mey-8XLI3LZJ$Ega8I>zfY{My+TN(k3~`0t*B_W{NccJ z{O9t#-RDX)d*in8{#{vK+hE}sO5DVyPhmZlJKtX$lJ=2vVhT=u(JFZvGMrD!niCfh zdEK=yUm;%h)Q+?nb0Mx=An+qY?*A|z6{2s1z`o?GmO9E*fUcLFW<-4Kbi=v0XRyv8 zX9#AW>AAe@C97Zuq*bsl$7=_#AaTB$eJFrlQE)NYu;Kyb8iUocY z%FD)|89$+2!cKpJe=P!Q<~ZCBVAjQI)#V932w33~WA_p7%K)b%vX`jZ(=!@&FjJSpSq&_jY3SEwuu7?u=}jh!MjWfO$+tdrem=QDqQ0D+Y)#+yF~Jt ziW5zvptTgR zdwxnwS|w+Ij;|J0S(Q;PvE+Uk(0UYDDJq!aA%*5c@C-?n2*gEtqsU(5Weu6YP1A#g zB^$Mu6nw}n)ha%Mhh(}ha4N)-c>}hda#wK+YEebiL7UNDnPab~gPqJ#N=h{^mz+d4 zi2szhG{|C}^jjJwat;|4({L~fuO)Bii%t4TS1U`0$lFYmq9&SXrV9bK@d`Eyi<=s29L9%H4nSTSc7m z?-E;KWy$AI!~J9aq}fnn9LU%woynvD@^`LCRpjKr8>G>|^Q%1`L96O_lc5FQNt9oxI@MmS} z9aJ|3l2mI!o~_{?D^0=L{^6Z@Pi9!{4oc%shr2vESZD?|iXN**w?idm+|fwFyIUWL zSCz;XN5cZE0{An#fWDD!)yyhnl<-)YRa#oWd?RcXfu-X^SE~EAo%%(J0Tj)Ck(2QC z($?r_A=C)zZ+u4E?l@-G4ohI9($$)?>r)55!Y~)Dxm6?VrdP#BNR=)%mBwqM^5lTP zXX21Mn#=SN?!B&YL_KrrN(W7EWOe0=LTrw`Yn@n1%0nejUWmOiRb-fmiPVDIb#Gp- zpu5IXqGUSnBKTgr=zHVI67JG{Df zLZ(gpda*i&1k^>&^0UB#TccuIYOrSPG!?SUP~}s=qMYdp%U;e5odAj80LS3F0#p4~ zmJmJ0tvFM*%G5~;^etJOBL^ee=zWH|{DPszP!p}Ylz2crui$Z`WHiJ#a$#tQ@clat zanpjvLKHE!59_bXOwP@9Re=3eZ768%G*m%tK;O1TNGHC-x#Z=bz$y##UFStbGIX$G zq#87Nz(+lZPdA}k&GRE^CFV*I9KyMEd49v|u5qWVXY`~`8~%NTc&0`K*QsshFhj!R z>(I~M6YsPMe(T ze>tY&s7-eJ3|gBy#?=ao>rQMA_sDTmVi*_;9`>kCo)ea^%1`r_RM-WvcZmFgep|2Y z2<$iszh^dDJ$#I2jk>L`lo#FTm=?k{#(P&G#4)F9CzuO=$`GolLBjK?o8!x&%O%lW z>ZHkpM(eRn>iO2x$i0Q*x(#x=KuLeh(!<269_Qtx7xD+A_PV2DedR)kEGD(q$zg5< z*mj7l0C}xNMl*E7gTR6?`KZNjW{1P$<9cN4Mml=yur0isGp%{ zr1QMfIA$`<3+sy>A$CxY<7HfhP9E02g^tbqI?CAL0n}xY({pRz30n7}9N$D67}`um zSEjzT`^_~DbtuOvhd0ra;_*Al03)bZB7SupYlP+I1pyUQRNlR75nsJ zuaa!i`MCR5=HpI1Q=VnFE%(B^aIQt&X70++_o5W_fjI>$<+rRwoOTiQP9=gask-SN zm~#t@rd(@vomq~RSFU?pOXkYgrSeuGkQsZw51(4jLrfyB(k!(#`?us_-W`%%xDk`I zPP^LnWK*fV?my~cDkavoRh~XRyZzj{a#_1X(J7N%2@NNyLm>Pu#a7NrsZ_6_N^+G+ zXL;=c<|^1`1Uhft2d49MCOY47T@-=yt0tka!F?ashn_HzBZA6Gn@QW>YB{B5xPG+O zD=gA0wjTp|N85~q8Deuj6iRj@|FCm+yIX>kL;WB%^KaHOg0XH zt$t0UI_-ZccU$SgWi9XKHlFU%x1%&EAH5jSA5^gP98eze8PFrx^)b=ZbZ@l-m|NfPIM`|ITZio=X_`+W*PEQ*pV6i}%6a-T3lq^Y6n z!mvShXtVFUf@EKQeW5eh=NzJMLZt zyUAYtOTeD=Kz;O4dya>yG_{Kc5k<*9s-MqvyG1T~8k?f#2x>EQbRJlM@i8086Xt#G zM&DxHxGp>O!0kHY78qrs4b;tL_1bAi=^0Rw8Z{&Z>+I&yD4j=X&DyKrqomOW`{VN{4 zmscmpak@^ZKohy#`G|PcP)9k(`<-q0gQ(xs9;A*1)XBVP3Lm{G)+vb&Bm0w+sl~=7fYYAc}~nw2K}3=*Y~9P<`TBFyQPlEM9r)=mB2);(Bn-y zRs7eKIm>d5d!G6}f%ORJW>aI2)BXTlx}?~%Z@g8N81_rV(t1*+O|4WYZgSUu-Bqg@kKu}+HTK)ZE1{)?eIi3Gn<0WLnznwt6<+RVA|lp+ z_udy~+@^>Nx4!f+K`M3W{lv@jI;#XHy z8nsy(*VfQ02N08rgg0z&L=Pjp_KW9n=rq(`N z#CL3jsyM#dlUYXAuCMrdDP{#7?diWOLfUPy(FCVYmdd@N#Dm)#20o%HSkGhWOih^z z=>~^%gbBo$B(q&EOccvjRid##Z5X352kF{lO)#3U0q^n--1HD{G|Ian1<>~1MVHyL zx^ks9$Q_2$GN|}*iV-MRONC?`nS+a$;oJTOTkLAKuvlya3wHSY;$b|ijkEVtoXzg= zTNb^Ku`{us$U9^@l&Q#5^kiqscQJy)1ajJ6$rX=iLgjq*lI4-M%TJ;#GwI)d3;_01 zvXXph(dQ8-2^dw!Khob^~45RA`vzDcl?ka%k&0znW3&Ed^O66@g%i%CcTxe9`4 z)w97+yzt~`N=guIpz0EP)x*8lX#Fj%Pdgx&wjG8l3bee_7*ri$2KMIdp`rbnNK?e* zk_uKpNCE9=Y}LHQ$C+5@hNSk?>D`%*-?bMsU-V29_%|$Fx1Tc(M1f;Sq^VPe(~U&@ z2!JqiXq7&=B%bcIJ{KxUIGLURQ4L7jR2|@`x=A(Z)%nYUX=B}f?z0*bW7;^2o?}OW z9r<>2;=xtzcY?5(rVBbZQT^UuXUNJejGY%vm2s35NwP#oKy2SBZka18XFCd`D_q@_ zjd#rGY!>y(E3eKe!U#sS1JtbS__%?}e*1xKoRB^peNh7T1P&c9zVrig@jiJOlyS6s z{BQ!y3(SjQk2Ba=9QrlSz{zTt?i$Bq zq0U7`#>*`yI))=m*8874G!SGd>~QV6sC^e+xJ)#}+XKL}(tmp;^Rxd@Hb{8~9z_ zI&n%fnbZkaxlr50|2_YM1eD;}$u@R_c1$|6<`24W)4+(q=Y1m==lzYmh5qi**o2`h zm{PyMqhOZj>`6ffc6x1Qs~XkrvT}xYwfJ)-3O6A~O!zB4+bZ%7yTYy{vrHlTc0#N* zZoylz^bhOVElnwVC=X_Qgd=C+7c@-ToM|aX9d4B(EUPB17LEsYmBjC+le~2{eK2!L zqUQoCRD+$gt|pehK+FUrQOmA~sZEAJ{>zyuI^}B54Ihb&9qjnra;g4)#_BFZPAYH%wUN)ft(NufzPPsr&{)y; zXr4(76UvtA1H#|@#F$4!x4g!PH`lNhuu|{m_LIfht?_Vs#MgkIL*5!}?dxT{Lk4=} z0|b-dhf(Q_#|MA$oUEHUI=yyId=99NwXLFaI^x(!pboK1Cd%>^>&!f-PGyx zN;H+}j9g~@w{dbp03VZ`;2PssbhVp!{4k%M%LF!6tMKNC;eCZ%Fb&Z*WfNogN5B5+ zLn9^!3^<0XsGXM|TVP0(Qe-Mw;8m}UEAEHwl5Y|zpk8Q$ogR|)QR3Zdwh~GD#O6Yf zHeb3G$vOvMc`(vXFSXJL!)F0SwU9!;GowrR5!g&qaQMDih6RULLwB#GH#jIp?<9Gy zr3U-$VLq{$kzg&VM11#P(@XM8c=M%Z`zzwGPe-&nEIV@Pis9lK@Rj2_%vJgUvX<-b z0fUFKwDqKU`nRL`33?DXfxiW-Th|$t;Q(Cjhq#oM=N14n7{D28Xca=0r$jCR6}mg$ zYrTG6P|uz$P-h;{O>Hl4o0#nj$q#%Kpxd9Thv{#SoyUW#&Nu+JuP0g-#i|x^pd=P( z!sjDPm80Z8v5j|PMmq~(p^1%YTF+@X?)wKJYsJYbJQlRb)%>EkZ9ZeOa4G*(DL?71 zpT(a;<)oy|U85l-E14@-(^NMktu3BnL3yN+#*IbDNKei5^9f3Y%j2O9((dt$mqKQ41SW~UCuoy zkD~PYYbC`6&YL|{>CQgW%EAhEfXfuI)A`Up#49`-e(lK1Wm@E4LEoEen)&*95rias z^rFGd7ux~;{z-k$JLNrM_O9evCe#4N5?j_drEO<16&=v;rn)iat3SXh;Ln%X z8Iq<;_j_B3wmYCJ6%DeQ^1G}`m%8%C)8^(fKgBIWKF!zxD$}iwgs&-H?q&ER{=(V{ zitLne!W4XzvZjSi!+g5wtfCa|o_Kx-po_Jvg zCINV5-=}Q}h(xm$B>b0%I{1o#u$GmVWHT zHbASA+dsmUNEKfNw#H*N$YVU>Mb97+FMkrp+T{i0zVUW|62V^O6fGci=)uMqo-YS@E7iDqQ4`qF=@}-P*zUT&1XXS0E8=6 z-lY~`??{}UoylJy%g$xKhrANV%NYGZe1HZh1UzzW5K){%k>+M4yKzygev&N^1xh(L z@O!kNT1w*8I798Z_dn4DC3@e=wPoET>Z+Nhz59Zy+3hatV!Pa9Hrf4(GSR!-&Ob!S zd~SQ}I`KjJt+;??)vsY|sIUYgAEcm4=ZXQ(kOz~6f;Ot`+>!2$xvLXFbvB6^MJhm# zRn_W~#_o>Wrpy@+m`bF#A|HoTXh{gZY+9M_!BlWKTvBC41IMtbx|V)689M27nDE|o z1q@|s$H`N+d{Yr!?Oqh+N~B2A?UT1!98)h_5}h%O7hSep5)eiS=70cW0-Rbrak(Is zRn#V&vqGuPGjX|}6ODPMxe5#_ah6YU2XCHWThfUQ(e@v^)$2r0eQZU5 z;vBAa*XN~H+wa5o39$CXA*&7DS{cg<2QLMH{ezk;gw^ras*Ya){h|X~+BwE-)ks}c zIwgq#*)PoR_;>9UIML&#?5@GW8tKwIG><-lNWJRSZIU@cx34iP6d~r!uE{z@q@-b2 z2PdZ}s4XS1?t;`i9?5rDP096wg?HDp8@?2V#lp$eoN}8d0|QtUbgz%JaS5=ypO8M# zXSM|`y-7(zKPGlbb2p7m$QNw{l3LMJ<*o$;JSki{v#nsN0M2)-xnuemmN_cFu{*a~ zw(d}{U5-$Ep|D2!gzf+vO@%Y5dlb#o?{IK4=!vSAaCRCc+YN!CHPz{z$A+X>T%V^2 z>)qIs(G!htc&`OlzH@)%bKTz|^aXYq6SMu=$zCh*)@QMg>XGd5JNY43qKz=NO^bS} zFNmQe7(Y=$n5ETl7q@*b+U;8FedB$}vy(Rs@i;M=X}&8=L;y7+3BmBtMh5EFX7pKw zM`nRP<38Fxj_{OjXIxWOHh*@WbA&{+_Syr6r&}2alKziI{cikDcCv5*VIfMjxNUJ5 z$L0R;gJFnDMn99_v$DgJEl{_z@_h5;YTVO?i;gdJ5&hC`tX+!Q?Q!Vn{N}&IWpQ59 zy}1WANOBQuEQ;lm8Gq-5$SYG-3_XZzxp!}G^m{^7(TCi?Ebb76U&d;SGN zlaY{?06{>4KoGzW=y?$&3W9}(frWvFg@u8IgM)=fL_H({fXFr;I#lk zhJpYZ4+r^$x=zvu$Rz{)%LQk@Q33WCGLCu;;`HKr))x#bcAKv4pVjDG{4nBzb9V3AaNY1(e^c-Q`ARz zV(>GlJ@Faz;23?Q@Xv3r5YCN&*jfGO!jccv#H7!l9H^fp*JrEGpeXh1adH3i<9{vu z2WZcre}XNy!{hp2iz`2a5PClf?Y=#Qdwi&W25ltlawr?{-@jn?*WxtKpx}+4LKk57 zprw-ihW%^H{2LAXH}(wr58nQN zV9$So<^P1j|J&^O|0_}c(&7I{M0xvfcAdZWy#GnpK_$2ezBu_~aB6r4EhKn#J@NQR z{(P0YuSJ}fxB8fMC{^#PjX=I!6Qdk0s+-|q9>FAE-{ZrwQy#wY3?fGaU1Aw@g}a#V zRo@o9vQP!(hSR)UkfCJ`=y&QVH^LF#)@`GY5Ry+(*n3*_cZn73Cw32sgU_IQ$mmBx zT8M)hWpNfnnq2??^6Rwy(7sm7=#Ta@ZRTgt zZ$zOB`+T_aadE5;n%r>EzjM)(cejyEKG0_CTJd$YxN>#i;h}xU1Eat-e)BvhSx|hE z+HQUZS+`#pje)WV9taWB>ZcjjtbLz$6cfntF0Iw`=a+@OtgwMiwNX2|uqcf=wgv%s z@}d%amm1tQ{ObCaP~O9>T5taclH$qbazVo+XXEcfrsH%E zd+lR_WDI-Ptx8l+(Dg!|WvS)0XU0*6jT>_PjPR==#CePQKy~}Wm{;zu2^(px^y?&{ z9BCv(%n^((nwdy_3(KH@x=l7d5Z~2y`2*W{?Hj+SOu<-vG~Ff2`gys^8mUsJHmdoS zfS!@L9s@+yZ`Yw^^tE44T981Gp)r z6v+PJTnP3V)Nc(;{FT6LINljU+$@guXD|6jZ~0&TEvMh04s$`pe&CySwjnaKI`Gfb zNV#H0LFm6jJhaG0rPdT=T(Yz(T-?*cpU@B?)1GucPd)+l$+u*Edw+`CnHFIe(xe#H zB1GXf%ja|98NBDZh^b`1m7#O)|MUI=`}aE~xQ_?EM5iP5-)^+EiHXNA26Zv6hjobw zI!3{Up>f0TSO&&O(LGJ{`bY;?`k3CTKF~^j#_mxQ6jt47)-#ThnBY$1?S8>L?7es; zIDbn$*wfnfuF@>1MGH@ythNPh50}xJ+epW6nO}mD@u~x530*3*ZyYR(_EzA=ogdA{ z8JVqZjBA{wgG;c^ildS18=rI5o&anJ17ie;mVX&0n{+D0>!kky0r_rDE&opZM?xBVL z8+&gZ7uCA0I#7TB``? z*j;x(W6=_F@Fx?}9PfnZt~%kjP)y`mD3lDsCnT?iX+9~;;f}#WV+e0{zLFTbaJvT9 z5>M%=U^Yrp_@px~t?vOij)reo+R@2a^o`gPA%1N?re3%dx}s?_6;Zs**51Pbk&ub8m7^r+^> zYy7iQ;u!}>5|9Z2AGor7LVoQ*?1r=Z}r zLkc>)2^)a-SSfKx1f9x{0a6|hFHSW?H3XkV3@V7Ze}i6}3I2IJ#?O?!z?qXN7lV$< z0*RyOi!)207h|qwCV#Pke0>1S9DFfowI(OgKQf=^e>vaO&-2OZUvlS#ZIA(DOB~`r zr-J4 z?gG4STrJ`reb%#5QI5x*Y7l(rA`p9+r2_K=8n8)wHaHyw#Txc$$}Y7P!8)FwgB(tk zso4qRn8dW7RbS?5$XkSG98;I$PiBnL;s z`Z8-L;I|t`?yK2+*7`YTz`R3di+d%J(vRt({O^_N|L`#y#b(TMja=%u@u4^NN_pmz zie-oEBe*89a)plr#{vUsH>v)UO4)-4kXgpP$+fo>| zKL_2uoTZ$nSW>0>v8AKG2j;|0_7cTuXHpw)Os^Kr|6E2fO@`$Li_~s*q&0{#%=raH z^@{0`CgaDZ$9!Nb#t2#dW}f_ z*g!=&CTX-=J>>8xS`>&s!7XAOp(|ZJc-!KZROC~=h~qax%O}sBl%kfBz2vj`Kujs6 z)khcPp4x! z$UP~y1CbttUY&pCE6}e0^a*Gu;mJX3scnqb`;ZpDP%ni(v;bu@4Hv?*>4IGz!=*us zqbfGmbZXzZIf~ZVztgd&0=q7zLO)ppuz5DH06!MI z^j-gVVU~v-)Bz7)-FtCHZQwNL&a8aD*o=zOZ=+?-v1S|D#znvf5(;? z?{JG3wm{H-eFb(sTx7(qKWA*xs0DsAkMK(1h;YTRlLsy*T|;YnzrrILyZN;2>pzDs zXmSeHp*P@KR&!ZTU=$YD;K=|og?c$r=R>V$r1v10l*nIaw=4gZ?Dl`*ZJ+~kFtj+P z6=FCC*-V z|KBYu?IzrOs)J}vzit&r)rt}?P%5BCcw6oGNCEkJ0C-o{GR+wZ*J1?HC0k6CKGz69 ztzptrd0oHk#5nLjWQ73^KkQ#AaxrxyU7dGmrOlKT`_vl@L`&Z06I)!auej%1`F3J= z*)zzMiEVDAa)-ZZ+}uBZ8jRVTG@adho2G&kn_xX)>5UstBECj)ah_fGon4jNB|{qq zk+w#+CG!aa{CJoXsf9PiB=CJXcuUb=;uWX2yWrtgP2CCs%T{)SjQdsOoU?+-TlMG% zU`4W_A6i~RO!nR^+~RX|*jj(4iAWJHmWkM`ak%XV$61EBueTd_);tNqB0iWJq&|4ssoh@??i!hwF?k0tWm|5>1vjg5 z&(U#rj?Dj}khTXKr$9;e`ksT+|Ai5QqD!90q3H~ z$kgg~8`}PI0I~sW4JUlHel>6A8IX}wv_I9hvXd&=bO!|lFUlUZDndZA{-RKj7YYhQGPto`b^1pg=Jch>%mfob>-zT}0RkPNeYU(%4)w{t;j4Y8mLK7qF&TMX^UJoR{4Ct=p4FD;^BUf{bqGE} ztyj3nD5hfszqmzDN894*Q@*`bVd`7k%EH^zUfYz2f)^4pS*EOF%_m{{epEfxw;_## z?))*|TpZImGa6#m;S66!`0fC8C^@t2NsXjBmnygm4TFurr*fwgQi*M@z%&GggCL>m zzQt`Bd({Niw#D$U2WJZdm8x}EE9K+LhvvmO>*H}B7zulrVjIf_(XrYHveFZ?#aF z?bm5RFx|XPN9Q+Ls3SFe;vy*)T8 zh1bd97!jE6QUdWcSes@-WGnVna^4&(i#1#*>Pl{<=n%b1I^;5CkX)KM!lsc#2n-v^ z--x%5QmW>Tx+IQ)NegD9!~z|+FnO0Fl<|F(9B=h!?DY5RHxd+ewO6D&#LOBi zs`|2-_q+9yTNY;XeZsK`9jWbL!!p`&7>5$&$epEeCKl^xA33A-KCwfZ#E+s#jZPw~ z9dnGT>I##lX587J#ra$;Emzn(9)T7rvMad+##D1_qfV0x5w|Jbv4yjbx4#b0YyQlaK&SBZ^m}Hph3~scZPRi$-XkKrMklfpQ z4s;G$WCk8hk_@W4!1FG2tm$V)-5k4>wvQT3G`Y2kN9;5$R7Nc}B1XDPuX(c6&3WHT z#FJdO) zs#7`O#TitssZLZ?@#smpiLo$J^52$V!6UjpS+G%fy}8z>pP&|gRu|0*2C{|=6{ z{xvxI15~+#R{jCLx`6pJ)Uy^mdJ}#g_0NWM4k0ju8To6)5*EyieFw zu?_xS%_Wwfj4E7>{~4!q!T8V%7J^a}u)^Pg_is8ON94uIhRk&zU?3IBL^d-)6z3y=!sF$X>bohp{nZrAzncQ&XHzg}YwZe7Sta{bH7Y^M?KA!kQ7kSkdCk|EC57yxUvnApho6{F8S8`GvTndB>!6 zmrJO9t{xi=+7BM`RUaE%rmmIJ^T32gF=X*4j^ z;B)FJrJIMlfIsSbDQbCD0(r~itaqUH&4$$pmQX7=F%kbZkd0u0R-ORzxTpt-a|65TSn>(G9pH<>Fe|DIwfhtW>VUlJ^HMrL&-OpKsQ>2NBS503M&=8xuKll%^fB%lt2RR?Z z`ePg3PaRu7zpCcJLrzZiU)u0~>XG|HgV)6yZ2sv6FD~|7;ACF5zFdug#K^=%lTB_6w5Qnj6jmVsE zgkdN{BN)5wrMSh$#LFWIy5zSfF`z=gzrnAE?Q^UoASl2HV9)>c;mFp9bI{%@5Rw74 z`$G;#fR`^62|JoO2k8ov0k7V?p!teE1>&!_z&L^6-+y3!{HqHj!hSszn%8e<`oqM( zIs4z5Sn~O;XDqpB*q1v#EePOo1?{5&?FqmBmA{*NRO-+Hy8Hop)RwZbeGcjc;-;-o zVagdK^938dZ!j4;YYJVE`0b%4!`R$8C|=Y^gf592IU*g7}WIrOEJm>$@Jq7 zAKq{WVTOlmvRKXBc(As% zNcW_zClEB*d zP=B`DWtcqn)@M;9kuX&*IF?~?z1x;;4*uZa`B3~+;CNBplitEOW#j5Q_QhVa4=`r& z9MT3{An8WjgmN#bZ>A!I=#5c^M#{J&1U(a zIm1(lqkb$@soY#E64<`6prc+1yV7f$u!V7pBmCX`XTSLzG*CBmP+`6lGz#pNhHsw| zYL_KjP*>32PDG9Fke*?KkL81rOsUBw&$K&W;5~+jBV>@psdkh0J~MPl1hSp)ce|VX zVSXzOVPy|~y3x?{4ylb?j+iya-oOPutx6kb3!BVv5`SoxBc?*-^^$%LdUk&r3O9WU z@hi9xtsVQ~l+fCe)5vo5H`OY6bn*gYSJ9m%FHu#r&d@Ew<%RP%*IEWP3ad&zUiAy$ z=ml`;x|oY5%<;4d_^fiW0TJqS3#g_v|qqmexUfjQ!4yJZvNjsm&{91#T}C_ zez<260ef1 zACzqspj1`#%)-ofCE2g5I1G^hFb5@yE4eT=O8T-XggER@4j$hc4kd5Y+WI~mWazggOI8lX8Q^) ztm{sgI-WL1IxqNnqV8>-xSxX-jVDhv%aKT+vf%2cT{;2nZGs$q&05;ydXbygQMZ8o zm-AL$%`9camUn%bDo=NwPx^yfN@xK zo+hfN>ccugbbj6|ai(wCUfP^Nli8v5w3(6XE!4L>`kNvnttQpmc|L8Ze!5Nfgsh%& zqXXjTed|*`5&XD?KQ?t>^K0qA*wZIw*Vr*kTfQ=X0-g{sUP*ZtUub zsG3OgynEx#$GSt=3!qa!Jt6@DSI0~(M3{PP+oqY=iNE~&#?F8V5d=nI+j0F0?;x<3-C9gfnY5vOV8%E#?!ms^1Atv)MJ+e{SunfyLsgDbcrSHKoInwsq?Yn?g`vVP zxtgNQG4x>}cWtif>+}jI(0Y~0UHQy`ciG5KcP;%7T#jql@Lj6T)I6hYQ zb#URBy7~gj@o^T?3tX)^GfTa<%eypi04BU2)r6M2-?hZiHuEjS{^9*~)a=42=b*ZJ zqX|}{8IEOB%{}p?=dPeE!?e4VMt#P2fpV9;JRkzJ_6xR8sP!PKVf+m$QcTm#S{vYW zENYYh^|La7D3%tgtp1yhOoAzBYst(ecu8ZX0d{;Ro&-4YH4Npiw#xbouv^S&Bg5se zpazlc5v*iy)brqcN0}NzM80Aw#@iPo&>BSee~1bYZ4pGjX4rv_E5| zI?H8?RHj39C9-iq#+MF~>?atzHahLq6BOq6?a<-NIjGYN4GIqcLa$;hq0af%)A9IF z@M)wu^wS4tPGlQz&Bcl5pdzF+z~^s@Tm@KD`%9>Nppj%m`|OQh0Tdorat-)ChL;xE zxpNMp`Q{3vO--(ZZQ!cd?mSIF)T04}g}abB(ikmsq*%VR^Sij0V8p!VNq;-|8?rI_ zkWWo-Pz-A`=5c^iF`C8^@|N1eJL;)?;^;9~_Zvy2vC=81#;C?9&!jJVB{uL$+g92CQDw5AOjDD+41^HVCiQb+wUk zp=gufVxtkug^Z|61-ryf{)3v}gI#RNZ?HL9SOQAGpiJH2T5yh2%5_spzc<; zrYePGpgLr2KPbSpUmwvdY7g=jAVlH7ZwZM{$}vW->b37kIO;GX)(2m8uqVQ*x)U$F zxy_W&xT{vDljkmbS>@}6W#9v_vstOyhKV_1lpbA;F9 zT%Or7b|?G}cXk0$yLrR(XpTT8>B{2WbI{17b`9Gno89*x-AYOSIaE-(JnA)DRT*hy zCul(Uz=DM>^|8hwh~TXPw1G4gTxW+Vlm``p?(+@wt(}AL5p>gXC6k_;!@){@+l<%;y3j?Q8%!i@n$ zsAjZS0`AOauJOoDa^|dU3Ko)w$V>D&d;TEfH2boQ*yIOlON{CyMW9AaOD0HkbPs@<%J<6O92YEzNC-j;=qMIpqP?LNFuj)HA&68>)UjS_oB{(R_ivyE8q~kV3nobCBwMwD377 zUFiYa-jyn8#>0Zn%|~sp^d5^-OjYg5`J5fpK?yE^%?f94b2^)Q{p>Eqht%U3>|F)c zA=reCtrGJ#D)u`z(a#?#j98FXb-T>T%~p%4lxzq4z}0Ql#G;{FGGw7JuJ*ifMmznJ z;4ndNQ5<<1NnOc4C>A67en!8T{>2vi?|M7`=`C8ai&*N_MfZ;UrGAyDI;Otd#ocd1 z@Nunp4Tf&$>5{cE3`rjfLpraFZ!{LF-;sxs+|G!8!}a_gr<;2v5H(^Y`xBEll+ z!p71{?p>QR+2Xcua<3t8!=8}`X;{5M-Gl8|5C&Zg#8qx0SNc%Tww2`fY=GvCq}zM; z*4VK@7e!bQ}b62lVDm=E@{ zC#wjyJzf|bOgLp_k~BV!*X!(nkK!kT^aO8g5l-&e&L&*V-)UBM9*Vx||B0N8;gc;O)Dgl&@e6NnCMIwQF$}-+3DZ-Fv)M?yFhgE>XGdEpm(UK)&U^<4 zdN_Q0xMY~8Qo*#alMu+2KPulso77FSBiWO%!mtrur&DCqv*X3V7rDE5=_)PFD0MHe z1h40&DiG##?PQnhns341_C~huLe#YJlVpz8+MQ~K~o*eZB=#g&bGUR9*|oSHQ-9knMqg|06XvefUeL$O!3M%e3@9-zF}Po ztqp$iz&Xem;W6mHg`d|DRHUNG7mPCS^&& zc9`arRq6_P;1@Xk7j-?MV`%I-hzgJk^Qn&@eTmxc*zvy7}Smcndlwyh&+0sDQ}} z9GxCF+_fy*qEU@X-Ty8=*SPwYP@_y^pY(MTo2BKm!v<98o#+CM_8iuPT%!!xc*Cy9 zv5%7U=v%B3Xg-*f+eS9GF6BKV$Lp%ApMw3l=!5h1tvMigVC2oUrVggv~5oh!;pbIcsVy z#x-uZwsh$rmy{dxdNXrJ!L8L@4{Iov$^rj1&YR4%wWZF8QJV?oY(0fmdYcela2!Yu zP*mzcXazLF28snlP%#ebsQO5NGR|U>`qy*=%nQ0JE5HKKH#?zcBqeA=-!}*qQnkq1 z!)V>&K3c?>5USY&$&raNZ6xU7M%G7zD9aX!l>&-WIJM@DZa+P`(RgG~Qf}d)7pr)|xHcY3eg^_2J2I4nEe3J-cIwQQ0^1I@1&Y zvsa4%ETk++sVP{2^&zvj}xr%0FuTqCLjm+Ct$U}$mp9W zY#x`<*3+%l#nOR(2{wC(X;dQ-3=BZunO9E135;ka_y|60aTXT5Q9vNkrA03#m~lbd zOpE}0bYA(oLe|br?L`~?(PnG6)dRtMWT)N4DbbM220&s$q{ALRcXHZzz^-{HqZ4zS zvjG(WcqRANz$!5a+kGV_RTb5*cRDFlSi(;W#jm?X==)Y0BNv9_3Vn8*&50d{+bEQ9qO>Ey0|4~Z;H&1GG;vML@6my5q=L7ML+Vocj8ZRrOfpl z43x~2+MByx;fjnQV=Ew)G@Fny!AJX?1uEn%p^j(iF=aj+*JqC1p7-}$3!39||GG#p zR=Muy4I!qF&DFYH6e|_->6-RY=LpiF}QaG4U>@B*ABwq1ad z%J711+_V6?21lx7eyP33B9sB^8Elw2#3=`QXH0~t#QqMdUH(HoDX%yQN&Cnnh);}tG{WIK8649`{O3YQS9>7eG-)#+Gs z#2^@Y{(bX6qZ&mz%cAB`FS?OT0EOLX&f@fnI^aW<=7+7L1k-`w83>}jp@@O!)NyQ= zpLqgMzpvJZ3Ebpg)cP0o{vY{YRqdNUN%qLV@!q)R1mVkyavHuxouEe;)C=RKhN;6H z0iUSmZP?Wj>Gd}ghnP7Z%RlY>h{H~4kK=O_X!;&$@yblkOHtKsslMDLb7ykdh&D7q zw^=LS;tQ-|aBCmfZnx`VE`v8nreP_5>iiVk@Vk{9`FUkAP$fQT#^lW9i-tkoKO{r) zW#*ws|HyIxL@j(EA91)I;Nc;e?t8RBoLEC%KG{I7SwU-f^w z^uROHLT$feH%_i`d>Ej}AFzmuP=hN@N%DvXDas=BB}ndqKS%}yR#?&03xv+_fHqLn zYOMydaKT&Er8QCl?Z|b}k5XacA@6~-+hxCC9j26AF#4);47U%^;ulyx-rd}_$>L8o z+8r--DN6?rWXWfrqkMvjeVN&;YiFrAFZ=0gTm*OF^XV_dvRzjx-nWwxp=F7^HrBc| z$k91mQd6P#F}vE#cS=|3RrUb8$92N1m)~Pz_6>Uvn<}fx(oC`)hEJ6CxnGj|kejV? zh|Y{D=-4Xij?JyT1Lr>VIacQWzYs9~7WmjWy*XhBI&ii*vM@`k*3SOMg_6>ww{ZfT z9X3BCzjHsmk!h+>^{935=^A7tU9&sWq#J0sBS-m2{o=y?1Fo8KjNDu|h2jp>KfStq z*do6_rQ+r5H-c5HEXgl?mO_bB`MF)Gti_x(9ew=rM|xWZ>XVGChU4JJ&ui5AdCYG; zWX4%}$S@U=5=^GCc)5*|90YeE8#h51x2+^EnYy|9+R)ZyPE0seTB}={eernuAjsph zfJ}<<8*=Z$%W1K)7CC9zuBnoKWz*_Zr*CfscY0JmYH#CNS9inEfrp7gXn&0{pUZq2H<;jrtKkIM)`$>s^DXF2%yKr!KuC+$^N#qSN z2f*)sSr0*MuC1(?e25qhyekuCESJK}bVa`7ks|xmEg6;g zYgHz_*H*3DQJ+OCMEnnU$m|-_8qD$3A=4wlTWR@vtV4_F;7rC`+IDYpckEW{VMR zuY=4Qu_U#%vcn^i9gQnY#9tI{&-o$ir9eA_yi|C2V#eRM2#h!X+wcIu2+A2xs1;YW z?)Zd4XowT@TRrqWT>uhdNZS|iZ)6+=mcTx}h8{|adbnPXLfFs#tss|dC#FdIHH_FuUz*=P8 z-JOS8>M5;6E%Q`u1%Y3{Om+Ro@>gJu)l5^6`osHcpKC}r2D)Mmz~16Sc;GN8wRrjkE%CJ>DqaTnKf)=p-bVQFag5*9?6P>^8tMq-?` z@W?lzh4DRuBc(8^YV6qzoUyu@KR>d$#~5Tp+is^F`)0fBnmpd1heO+y<{x?}-n%LT z(>lAi<9s}X;TlK3P1J+deqYx3pFUn@21*<|n2K`8@Qiwfv)x@bpi)!W4tcXfa>+?1 ztqR3-FX8OtsKhhs^x@JaHyI>MI2j1(p8n34F!=*d;QPa(nSy~w?HpjkMHSQ~N=eAG zC(;I`H|YF3bt{s+Zk4lQ(p!og(QMb8c}<2wXXIfBWr=50W2M^O)CoENgn9p(sdDu%^q}8Wk!_=X0E_N? zet)O?0Jx3ca6)yTHCG0&PeyJb@(8WWp)u#o7Q#pzV|1Y3ynv=-qInNlKP_ zvC+CT+bG~Q-~T5Rmod2#7upnc$mg9rl4WelkydV!7E0F6_OaEz1?Li6gId&_fzmD! zug-6-#%zHi7;i@F^+r-zaj|+Y>l|6T>z>g5J8uy2bBs^i(>FoZW=7LMP4`8SW7y~^ zI|{Y_^eq9IEJgh{O2xrMK6G3H-LDNlS?evo) z#$XQ~9tMG7=-*6l{fFF*?~02QRh-5i_B)WQ0dnwYIx_=RL^>(R+(}^5W}oIl4v{C6m>wk8#3G}PNez?zQf~YKRQ|@!^^>C254$`t z$}(oLV`(0eVSKMK(bPd(Nl>VVAHm=uH^mfM-!@;KnTUfc*Z5%VrP7|_kQRyWt;%mGMsx;!Ugc9*%bT_&Q2RH=or0>GE0=F5La0 z`j9*ZX{h+&9%&%ihCm3u@p9d71J6+@yB}pG4bd}y-8cOo`1?{_5^2Iq8&YldJK9|Y zs_~dnJ=^wvGyALLC~3_7ysBj(s-4+W;OQdq;wrGM=$p_qxp6M-dbgZi1Br_`;?qBx z?)_eZ`(GEi|B^A#Sbi%c%Z0-0Gv-zZ&WLF}8I{mj_C(3R2pXL7)8PnqTIe&yBk{hG zPf;nTy1kTt3R)_lgzJ0}WhuFGCiZ<3tJjQY^a+yG6CMPeHF-2HebG$SS^Tu0h&S&C zl-a3FPRinPJ2=MlN$j}_H8n~UTKXHvm2d_(DauU6X~gz$bLGfVq(%>nYV<;TnOmhQ zYO9KUyR6RQx}+^bLj-2-lPykaFY;5EJ0#-m{y1AQRCjBX6Z=|vdFl2@PNvw>GMr>r z{oSH%V@F==K=OYsclNhJ;fv2~faVJU)%o|QH(8d@*RO+5Spf7m0v=AebND%7Z@gn% zyFFDc+B`7J<>CIBLVv#)u{gs&nAwcTbbvk?;=HEjyDZ$9&cY63ph*04p-D8<$xjNKt^2g^nt;$|#?Vk1igEycAP2u{_EqCJ z_@3v(j{_1tM=I@KbH{jf(D;M1@{AcT@&5?!HR*rkPA1|3nDL)|t5jv)hkTv{A1@H@T zP2z_zYLZ%sG0{Op^6DLk|C4gO1Dn#Qt=v_^D$QPxgVy+t9;P>jOC{r~@|VQ*F)7~= zp{?vI(*t!(r2?Q%Ee->SW2QjS`3$@r0eD#ZbU!68q>3me!!SuFk5}BV7tVXvpwc(UXZiC>~A`NfaYXwIe?cFBEv02vjSU>K= zv=XyCi3-}X?X-LY$j9z9f!J-AGj7dGQcHq|H4tX5j4otb55{U&& z85Vdfe=+4zJb!IbMUlrcFs1dhw9Z?XPSM(ihoMcAE}5+f(k0W(!x1vv9-P~t_A__} zP$x>ntMZ%YfKkpE$Jpha`FPr`=CSIkCWS~Da?|2?dU8o%*3u^gZCRMJ>6C4o*V2_) zzh}^9?=!Xbo3-JFFl8-_xbyol`GmK=DO?LN>Ybf((2~2+OX>DHqwD?i2fcAY*agcn z*$&@MWd`#LwvZGBqDE#EvK-zrqNPN7pRN@-P-UW*Csz{h=;wCabRj4R5trC9gCNdc z47$8=&YGw>6v7=%^L-t5sX^wEPhbbnH}kGkHzKr21q}f}JmJq1p2}TWZ`r*X=19B8 zBJ|w4{;A7`wF2xOCmYrDYUHZmk*D2CvXQR)gRs7(Ma%a*vDNp%fuJ`;%D4Zp6xrk2 zK^CR5d?TnvVD(0#9_045(UnkydOxa>LE#ni)%qQF=(bp?z{d_**VH^ioxA663C1`2tSqdp`~CigBc7*qY) zJcs*g0(FPPrev_wtdNlZ{gm&-T|uIK;+0=WC*PxxpY!HcC`hd{uW7*Gv_$&V^vG4y zd|Gdd4=uz;5AW`_%u^U)GRGAQQ^be|Q^!JcHR*EUS(?~UiubR-PYFh!An-)=Tcxye z`w>(=Su`GWRZ!f>17V*JoLSIwD^~)4@WsYGBJ^P|hoFgmZ}X6{*z{&`^y2 z&?PqI-ik=3Z0jv@^ji7MH-HH6pw2 zDi;I2x3q~=5FGX1;CyMNOI0+T@reWeh;A=wxAU@c#53HAEJn)-QJuy4Oc%D%v=KX1 z;kufLz+tCZAeFh5e*d8j1}Pk3*~7>u3bW6$#Fqx=-F3U$<*COO;2Ps_1+?gci>VbXYOEE;^qbe_w*%fW_kRP{u$ z1ZeJPH7~kfuakX6Zb^24!(o5o?A0p0ftmD*MpdZ$J26TJ>aPLdmP(83n$s-tp;Q@u z3qf~NDqB+Z%H;Q0abDMhICPhlu09N_1ZcY?Nz5@&KXI>IicV*B>#}mva)l11xyNrO zKkZPzcuSYxToe6MR+aGoFi6{P0dV1P<;Mt2`Onv>2NxOe^=+-#+17>nRFg* z8u|9CGbS-!bp=@xHuGEfV`>tXg%jRy^`IZ&Ul+PD*vl~%$m$nDK>RDCddBXHjF*aC zcvD)FzRH*o<=tzy6KvNfqv>Rll;|UEozsB&9lS2BDCoXq#5-Bib$0RGFRC*(2qLXvz&OE>N6sb};KZyuV>>J9!_6pA! z(1zK*!`u$b;b(eXmf>8k?wgd1fvGx=4up)5nLE_M)RixZbBju3sD?;yeb5Uh%Ao;^ zJOc+h9=)~GE^!FEx<0qqqnSIOu*gQY?H7KE!(`3Psl0RTyY4yR@8L&c@N71<$teS!AknRp`Z zOkHkwjH}`k?6M?Y&U?LYH+0G4LpLwK-llB)d77KOST{tJ)uGn}MKi>zJ6IxD>`=tR zvKeL>6I)t!jbXO2RuV1cbWH?zY~qu(Fs6E{;m&ILN%Meo&v-;%r5!EWRX?6>!9p@f zASt?l3+YaR8Qts})z${6ZZs(xkvC7Cm}QkUHxCcFy_xRX z2w1#~dy@it*1YHb14Y9VxiW=D zLsjtipmR%phZtT~nLRP-P%c{Pea+qbfyuITcE{6E1xA{Dyr&NWsCm)iAB?07Zf!hM z8)l7fQKxeVihe^?EW^n1P4ZC)uOgQjmL!{|QT6kSb)}*GYx`na_YNo?`(R}ZYoybG81~>-S zr8X`Pap!Axf+C|We0im1m9Gzd&E?fsmErGfPX#27%wZg+DpK{hp9o1SL2F3Pv^!pN zaBe9-rAU4z2l$9M88fkPJ2I>4hpIkGwZKNCtzx9a=h=&!#N>$HY-SzCSotLR;mu2= zfmn63AexBTw=&67Yl?>Pv?Mmh^4y2Ua{5)dJ0<-coorj!mqc2m^Vu!2D!-5=;x#Nt z1X&P%UB9A4I6mHOTKKl{8aWqTg2EDhPu#rbUCtSNW3?wmB?{9M?dAiF?eZPs63ZHR z!FiKwIe3K@j&9{_IV?3Hv6*Vq*!B@3Imv~f5>pT@vxeu9QOp^tl+AZ(V1I^4mN)E> zFl4Ot%IWjH@Gj-cZ`iZLBQZ{R(8JKy9^|(TqqWIj)<^ts>#Tq~D~4&xNtaRIb7qps zVWh^6Fnq2N8BQ35@mjS%yz?FiH$lfB^6;dyLFg9HLt7naYN5no;=90o*W!J2%dY*_ zy#b<08}BEx`=GVFe+4(Kot~y;QYk<3>y+n9_q4M=wIJ8q(`~M4&RasKXwyl(e(hM& zJo>>ZUr&KEb!PAU6b{s&B=D|ZYZtZjG9fgtjSPc&?3srldS9yMPSFkbFMhq-BOhW& zeM+Y8+*MQA$Xh5^CDZx*0-a$upSG#0#tPA}@N~%BE}AYR(PLc2=ja+n!aDK+?J0Wn$7Oh1Yh7 z6j+$X@V~35;+-<>d2~#A6~jH#Y;p4zF31V&YnwXiBA8{w-qA1NY(ZZwnL;mm_a->b zP`sMs&(Ut%PTO=z7{}}Dm1j$+ zJ*$Ru5Z*&!Dv7@bm#0nRumFxTiMD{%kO?_w45e_EPencw(L}lLgor)DKe=B$%@Dv% zAeeISLrb49g6MIF)ibp-P4GADC16IV$` z9)_!~UOZ~+dhZOkOIaC5S>A6lTjr{V(ge+NX9!T^{*7+%w8YaZ*!CgaecMa~rJ-EBOyDu8to#5^eTo(wgK^G4!ZtwY3y>;*X zaQ{{Bt-9Y>cJ`c^o}QlP>F(*lGAT2qpt$-)B6pF~U|%6d-<mxgMFvpHPK zCfvD_t{~x6;NvXD8s6%hk3iKDYWWF=Gs4w|?!?Wag`MqK=h=v=ow`_U4a%zjGIap& z(*FUdT#Rn)`Jl_3GfUNN$v_^YY1nD~Bc|Ry&4S-H(IK>g|uNJ7ATt zqRRo}QeUw5I7#>xkI7E0SG3*C!;OH!94DNIe*8Z(6n@FV;a{5K*7Vh%hFuXyOz|iO z=|+%el81M6H^cdP%9b`PTG%AWJ5}BO*omKjpUb1_Lsuj~nw1CecI$<~s^%AFRqbaP zv6V-+URGRa(@79By?^7=_75f#lEZHO$($bt=P$SRirZ7P@J0VKJBc-rjQ`#PIm=O( zn6rx=qs0TseU}VAjeP&~6{yg99n1IoqN;`ZSS)DPr6pBMR<7#&{l{*Uwg~uz6)N53^XGrbtw5VU}se z0~(rKLp2|PZ9ZE}^^VRc10Ito+88_08*+6`Te zQhCi`?ycbIQT5pMLYJ|F&49s+*9klLp}_ zy7IekZN+BL!o$t=XBc^W9~bRx3ESV;z@2GHt8FL<{e&$Etmf-~A&eHWzWr1^ z(V}wSZ7mvcRKPt$M)yYOsBa2M8miOyf7TQKXdgV|zwdsnqbwiceBkIeTviak%Ha=!W>jZ!-hQqtO&C1gjTCJ}^N$2^-x6VnzWe(VC`sQ}XmP1I zy1Vw%lnTxqTqp;TI7m-!}lN?=M* z20xCgl4Y_3AH`9F0DTC3SYHikN;xxZZC4A`WAtgme)-|Wvhvn2NaVmB_sAj-P2PS$ z+plt0#z>0EHqErFU!u6s;4DD`PiUEfXbAK!YP0|5!b4(OEKUVyxiHxFH%mob>ZeeX z6(_bftgVCDcHrzK#Us+P{Rwqw27xz^S(~iIJfdasX1l0k?!6_=n;nLn{xS^Y73x6h z6ztz4^{Z4d4WWu0r%KIBkwe@Xrt2|RSqB+VAViySMvpgn_5p!mJCaO{S zBaPS>XSbW;QEL0Q#kO`R6C!x{ZFkDcO)pMZ2jMt=2RxS$jJK$YTelg#Z_0&-Pv4=j z6FlQJYoX0U3!Sk|Q)}y4o1|}Gm@u6Gh}Mt!-gSq6I6#Eb@yrVBAv&?TGT_Xo+W8WRNV; z@|5FjmH&@bhUbu(1~Gec`o%A{_yN`I9k)^nY_D$^D7Oer8eX-`h`B2m8LlaTW@PZI||r6j7d0ZGLqGS0sj!X8E)d<_Plvp)-jzLHE@&!S(0-=fZoW}|6(aIK#iIu<-u{q*rMfb)O`TRSSNrQKay8n=) z3Lx}h^(#K5qQT#Roo9s_{8vjW4cC+o%Z73b{t6^+A?aCdO-wuIveYSKyUokBvX?6x zg&gPkEg$tuA_?kZpfG+$ZXknwC)?+wo8$DN=Frn>`wz6Kv|4Vs@wl$50V0H3B%N>Z z)AaEhJCf9K6e*kA6Q!vFwro<=RHb4BO>M}Hb5MeqtwS&3y8dEd4&*@(G`+tR%_`(O zdlGfZ)1R5LgrbZo3lAyav_kdVgIveEWc%mzj>xDx8gup+q{;LudBP;+kNE6Xv%Hdo zKUorE<2zXnKg#U?{R=s38KuQY(&dgF z=J3g@Zj z?25ayT~W12E$u$4`7I=l)gvSd_Yow2ka$PA6C?t*M_H9OceYvNdaHeUZfl}fAj_i_ z-5{~_a>X)W9!BTH{Yzn0Z_$RI#PaXzsnY_Ku@TA?_mff@KlKvdBo65f55@oPRjG%H z-aoFJg#-?@9&gmU>{9RDhENJ}f$hA@BF6EdcRz*^2xIWy9Jy@1U)5S&>7zV#hOp6L&DRwwX1sM+&F(9vh#z|r?d(pprXrMoa3$ygTN&$<57CJ^}{4q0A7Wi++_A35rMQpvLL;>G!{= z`}KcJ6nS}Or}#8?5~Yb{>2oYicft^AkwXRE@ZP)VF)Du6v{E{X#y(+76lk=|v@7|1 zmREoMiB3w9@N~%O&7iGypWCN9Da%{@tc7w@drIabWTVc{dz{I}0acmYeC=C=yKvm7 zB%k#4HaxtQ>Z3-Es>_Q@s>`3jOdNl`OXK()Rz1cT6?opNJpKVLv057i4&v@-Z2mhh zJGvO)J{gI)vK9ROJ1=f4QTX$w#O$?fwG&c@PMO^bXM2;z_aEsJfw~{BC~P!G4q}jS zCs_vuF1SL@**{k4>GGr+GVHRwJCN2FW0a1^{h>?fn6rb7-7nbWZ~0I0H@;d!ceb^E z#Y$0oeyr|S-#GGGTAP6L#@LB>MDI;uGVm6H!Wm-Nh#GhrzP} z?CkcaT9)9|HTsp17Dq<`3@&CvO^@+toeBty*N1 z-;XFz^$n8}f>^S06m@_CoL=!E)voAXdJ_A$Dwlha%GCuuIg}t?-jGD$k*yf#01uvt z_LeZxu8T`c^~H?Pf#7};jaF@XNK8#h?>S(^S$S$G8aTs!s zgOosBkNBJKv+U!x)XRB|T-2OS2d6l!3d_ADUJ^#g@G(1Am5o5g%>R^0^Z(QTKkDm< zds+%KjoAm8SnTR1rcfZ5IL|DorG++HGbk{Kt_*&^{7N+k{(drOJHJah`s|gn-&~dl zva?6<@UtcooLOoYGsIY~p3q<&g5r>nx&D~w1idHyv;K9!OChOD;4IgItkvSv(npFE zsU!krtn9K*7bR9t{smx@nOPerOsw?X`}7sL@9cfwpba#` zwb@h+S+R$U7M)yKxwNHY6GXxG!&S2-b_rq_D z2~~3#AiE3fjj|e2=cndzXOK<4Z*|SWHvaGNR8EF~=|Iz&Mup;B97TGX5L(3(ws@or z-HNM8Abd~_hz@Fn<}_xw#Z&52&$~vqNPsm98=KT9?;WT$cXR)mo6*#ubS|v_KO=7c zpZ%OxyrTuhxv znIvosT};238rz$gq6iA2IJ-ER8rq_GWOa7Qo-=jS5pgb-E)8(kHsAZb>BmEO2ZuXC z2|4M9*V7vfNF@G^w|iXrStGIPuVDS2w2QCLRIat_Yx}Z~D)#Y5e}wxUA&L7}nKGf5 zhv)6r7qO?n*T4+p2l-UBm5t$$9wvF#)SM6{o9|e>@O7ud;A|2{a@l+3tm|+qF$lHJ&#xZ zj<wry!P2et}tAlb3RUgFiW3pn1y)k>Ngo*dJgGcB(z?)E1l2o%G?{wXJ!jIKQB8~ zx4lMaA@wH5E%|2a8oWNY2o0rQIF;A>|J|Ii?`aaM8^16g>(9U|y3pzG8QAob{rH;G z^DNRM^-|22^h_@1{oEs>)Aho|KWM+F_$UG!cs}KNvLWnwzV)~5(s*Y0b&!OCdyP6+ zK;m*iWVDB)+w*qAU}5Xdcy2ht|IXZx;pM~<4R6#xhE>h)>3$Q&u_Sa!=y|>P+x{sP z0;z*KKZ#2!J@1*ni2F&d`qj9vFm*L_Lu%ab-S0`(56^vuil#AdO)4vM#UMCwbl)8l{`+tA2Y=-Zfb-_Zlyc_TIhge09!qZ9C^{r<|yDo*+?+@2|UanmDVRxARjL+i3y_>Bz7B#P|g)h(NHSn!!FLR!oLQ{XnUr%66 zUfTwDp-F;s+P#%-M?#C}+l%(jLlXw~Syzg$4k$0d;&w;ucVErL@5YIDj#E?~vMq7e zFrQx8u4jTn<8L(dNM8S0T|JKb`KCSlKN(isZqb*g zJ1(iWuaEKCqDcC#PVvZ;9UPX2LMqmodONuC zP$a6ZsXsF^>##(#Xc?}uSry5FENQ5;zQI{JEE=p|wDb4w=Uz&(ei*D|7F~vSSJu+P zQb-P8`XzT3y#kgo!@Sz<9oJQ};j2_Ud_$oiw zg8M?(^*ec(*+rbFE1JFpMsKZsjQOR{8Jy8%Vx#DB!=bOL@!W^J8qLScjtDAe;lv$RVyf=5SNYec4AMwl5HZA zp7$wwaQ-czqEr2kKSl(-Ycy|NEH9EZt*{uA177ZP7#r~_ef8=;@tIn2OxZ^*FM5Gi zi0nM%fFGvo>~$!N?mN=5Of*+KchKlk5GLrK;|Hx*TeMh4b=mbh6ZlroBO4=fPM#3# z2}#VLPcZwa1Y>038H?(W42T(=oj@tv((5TQ%zDf0l~I^}Evu|Yl%$*Mx8Q5PTrsz_ z`5NT@Wzw_!WK6+z*E03H__-*M>%NQd(tH80Jkk~-}&B@B_A+W^NMJoPvo+@ z>6!W_dz&u7bb3RK>X{CQ@;O~L58^3|>yfwij&qL_j{@ixOZ8!~137By48Rl|sy$fV zM#m&|`SH%rtm2Q!Z0?L1hS3*DPiJNsTbwCJ;6Ef_sDOM^A@td_P#zlgiTWOYFcJG1 z4WO5%<@B0dEBVv4-jDzj9M2s(_=23w@r^3f9x-&HjNkb!%-$_71u|)#-;;c9u1e&a zuhvDJDVhX*e*q%MH8z04bo=lo=_d-`f zFav{e1BO)nN%fugn!-swP$@%cx!&c^O+(ycDn+)Vozkp#mQV#+uF;_;f;7;pVXO38 zfmK{bp*9g|lKPVc!_rWjT%Iq$19Pt>vsr&&=m_4NU7~`~lnq`auFT@gKE;WN)Cl1( z6g%&H4E}YGti`VN?8n}>!#_cYvN;_@DaHs!qA$0>2t2<6}3>Jiy=H;ZJS#=yT^#6FkY%=N}lV~ zWQ?ET{Uu;ZN zM`N5JYSx>Iz!W0l&3AF?bl-H}0#cMB9vs2q5o=Lv7Lg8bB}Lc4M-sr!{suzyty1PW zTDj%yg7up_(n49J#dNgyOIpfSyTwujHG*l!qhHt)Dewp4A?uHS$|aD)>GVt0uxf~iAK>R8z0-cj6+FaMrWCR?Gw*R zMv??{>>tm1I%C7avl|Yj7UlcTiT)sZS zQ6J2aIzq9WNjZQchqEw_R0&Qw9(M9;dXvE=cF0=t_i8hL<|Lv?Z~e)dS1r2{w@9 zIKzA<46d8tzKP*bk-jaPF|7{ZHZxFBjg+(f9Y{I6#pkd9p;h4duq*OBfwiZy5Wfwrd@-l0#j#{-p}kd&4A_Nf<6WOH8iBECnOR%*eyV~oqORhH0pgm=5yPA-DHW}rE-cy+)38pM z%r*)f7FMWqF53PT+!o)9x2-(0b3|y_Iv&FBIe)&RG&AtY&MKwc_pw;r%8?k`D_d4u zWI$~qLu&rm@IR?EC+_#KGj(0T1`3NL-=Vmcv-hn1*F&lsX))fCT6!Y{zS+XO$}R0! zX+f?;%EhV++QWjPfp0po{VQg9(o=zyrL`OUxeW+-Z@#FS5@5L`KCgIjHrQO_TXNje z9@0&yRgQ@DnD%fd!$`j);m0X|iO*wAkQ7mr9Tpp4$&HZ1vB@|$*^O;5Ynk?bZQGnt3)GjmvOwfddX|2> zjqdhRPEz6c0;N%(Sgz&SfLbt^*vU7iE7@@h30TuX>W{VYVqu6PpDm%MFxKddK8ANr zccXg)J~Q}*_+kvSyZnZ^e#@+V3$k8VF5G!fqD+Z;hsra2RFsNouhrA%$}_9_HWS`s zf+DV?g?Sq3?a#M~>#^Sp;6+mReq7HAJ|eYYtbhpLIhBm4#FKnnVpGz+raiR0U;e=p zePG;-+p6P%1(UMXpFi`+Dc&0~ohr-=-xG@qqp<69nlg9HtDVzTS7s-i(}EVX*JOGp zyLepl!}vK@1AbsIBA<;u(&|0|=4Z2#xFl*;k`YS>P^iL(6EEKgi|&p2!aQeR*rq>{ zD;XeuQ!T7DaysV-Nd{sBJ|@(_Rr*~Hw$oKW;~0WVSF!inGTmatq!<5e9omymmUHe3 zCoJ+@fsvgAPQICc#t0%>kd95#wHnE0O_K~IrctXg!fHTyZ|hnhDME6*+aIZ{_8aSA z%p=+5WN3OFS*Q%TFZDD}sft&TSS zule~ZDazQuFkHae&QdgwOn&7sj}HR%Q9g9_45_w`dSbykrxezi)9j%9EZ4M9tll$7 z?OK@wjuYt!E3@RStSol1)1@+C45w0y$UBT`1Q`ndcw`3wLQL@|c&s?#tw6(;<_J<9O=yk-iulgCX;vp?PhN(L^! zG`@I}I8Z5jJ(dt8`{MA3F=h{EV0=3R3ozbV{!LSO;@&14COgSH&CQ)}vpf)nzZq}W z)f$<~4@ph&6%n%=_m*0g=jugvg+b!Z{jyGdu!6yYZPoyFz@EovSi zOcwj{EHoMQ2F2dz(ctdSZI@Ru)XJFSKTUB|S<$o>spH;-ejC^e26rPIKV5|hMcm|a zJqF37PE|p1l|t6Vv3X9S!5}fBIF-xysUPY*Y{xOIQjxt04aA=bAdDD~+W58*fNLCArgOG`KFp&0E*!C!TOZSO4c0RZq{xw#b z-FAU*Dc#ZD^n%C_2abIX>`aHQ4aIQS-n@0i#)2TmrO|{G$(AP9r}agHHy$pha}KhE zrehx-&-I;G5*pG6OLE&kJ&~Hov)4AqN=S>jA zh2Svy*?yj))W}trejZr2#hK7FGY*t8N3b&w>}=o&M>ACFPRX%!61_n@{Re??bm3cg zKQf04!H#o*Jh7^fzh>ZP_xGo@5$7EQ^D}cq+P*Qf4W=|~jd$*?Hd(?7)1VyU>3h6G zhG8qH^7QmnWr*n{wJ!qXTZ6B1L0Zl}%X6^cq5oapEd>=pJB^V}7R0BhQSA1HOJO}` zFwvr-_nS%@CVK#D=&2pS+?S7|79} zbW>9H%lS`3C9wniV%Ww*VkX+rA+!qD*epk!zbv0-$DPu8{{mLzCs{(ad+f>Tots1K z)F^-%-%AhUv}z{8jPI<;v$4 zRd+P4O7bjAh2D4hCdDBXs;D=Ml)sh57}>l{kR=X@GbE<;?2=@ozC{o^ zo&-44JH~)h&Pjuf*+5m8#s?>kFl$eFZDnBHV}I3;m;Dx`-1+7Hht>4R-B;pjfzjpx zO?qT-OmMK~1haIVBEGJGjMzj}Bjb3k3e<8Y;7Fw26eF?cTp0u=Y_x4^%frtN>J)D_ z)M2h7+?f-%e2x101vFuwxnZ@l-6ko0etdrHPf2HGo9Qc(ar%MbLj$V7Xo~q5aWSIf zvnK0?Jx}8|4fA*~W2I4NrC__fTT1x}>g?tFYp&4-|3aYBV2mYi0TW9x0@ zrWWHcj|aD$3tHRzrD%TNqP%_2@XH@>4W(X|O@9LS+4koZ4ZM!uPNWAa_z>?Uz6-Hr z*R3hW8(5;DMcTWU%Q-jCkoNTvs3;Y3j?E`9PZ6isAFY>^HaM;!V6Fc*?AvUjl%v!4 z64a1_`R3=rh!^d?5^=s^U$kX5eL@^n-oKH-{Gu8n)@oPpxsPz=F2R@Fikn?DJ5M51 z4*>HVWh^mjb3fPWsSxwTdjB3T_na8|J8u-5e=Jzx9lG5g+I(#7X#p8t{^gmO^Fs3+ zMu0XDQb>lNSo?(8|E;4>PC5uXdbiW-y4CTbGyOP`%a5in%9$dHv=-Nm#DF?0#XNcA%Lrn2uUN$O_sWam zrR@f$55P%o#e;`b0d1i>1IG1C;`4YL%lSpqO{~{DJX$|)R)N_vd|S#i>rj}4>ST2x zO(^634lS>>Q-D*?#KY^IC+tD{_uZ9-5GXt`noWE7H2=?OnxlwU#8&hWhXp53X|upL zMyYd5gtyXS9p+&21t)5c*?O?yGG%rDC|55+B_Kl=k=Bcs#pUr0(S z4-yff$A#X#=v?#>%M`2mFv{7KDY?L$KLYE8MFWKUi{Kpg4{L=k)oqeCP=W60DM8Ml`%$5}A+%M($-Pf*$ z3pXP@{h>$fdysg?B?>_pr+dcRaIoOmI5FFq5){>s=GTqk!Ls{drHGJ3>AnH6DU%5C zvw{>Y{>pVNrnKjZ(N8D~9usU3qg_uscF6iGOpn~Q~;j*$`rdV%rQ`9LcN^h92D3U|~( zHu^>|?*e1)+wng^Dw+XELnGbZsZB$r*{4%?qaEsL1S|hcS#zb1QMI zJc}$D`fsHhV`s)5(WZ~%&1PGg0r61bCJM3+t2^623XS=Hw9uy~u9g|>?}T^Nz3f@& z!&Yk!lU+m))wNvjw#+0}Z~*jqVgEa3>h?^B?)I<+?k2Tsuv#FZ+_)%TtOpzPPRNwr zRbzkC(uM!7T2m~mK7ZRvlOk2PT}(Q+F=xmzyVE!`({AScx0Il}BL3kS#9sUdqj8+h zfcHUQZ?NCjPRwCLKXjptBw*D1+6#MJqXXDf_JD-X&h{Qul~WOAjTYP@6i-+#uZ|jKo4#K zxq0|-D|N%>-GsXV_ZmsHr~VA4;wy17EWgW`R}A62>c98?>z#c#LT93NoysoSGTQxR z3yDp{1d5v5@5ySe{uK~6_}*@208EY4{EkBVuc&k7*^h#kHrC!vzyy2}6F%aYoos*1 ztLc!G4!6!tbg3#jP@aW6`yr=^NA_(JKdU35an}j3eqUPVK$Ey!iOgbl6ikF44O6(5 zqSN8HJRJT_8hoE6_Hs=CAaC5!V#CJ(`afJOxXXY6i!fHS5U*i$rF{(Alt~W~_Dzyr z5oi;WW~wb)YS^n}{cmZ_?^rx&Q;Cyp6CWyzkqjX|(47*y!pvNs=IcwZLj0(rM~?$G zEjsu*X981g9vqMvwNI3?!v{EsxG(tbZHn^OZC^snyyj;L-w$vjnIZFDPX5+*Iur12 zHZxjBALUj|o?rF701))iFlCZrZIRO75&~7I=Y8jVrO|J~V?SH~vky4+vNU%y^TI3e zSGaJ;_2R*5#dTKzqeP+t8m*zEj$b-a?N{(OnK?J1W%ZK+ltHr{tRtJCWNFUA3i#GP zl-SkxV=p^Am>DG4ggBEmT|!%zzWmmfE5FRNT=~&MTYuc$AR=v092}&!``5yE6Nmw% z#q`uzYLy62$q3?>W7}DCz4i$t)TMtfF8vto)s&V@&i2zI8KzcC%M_lu3B>@S1iL>c zY-&0xZ>4i3Qy9f$s&6v8r#}ijWUpzqEhjZU5;2wN{Q|IpSUCOy2N0gg2Sb?wP>(L!eoWt+)dZ!`IlU2HZ@Lv8+bEPZC(QqzgW$te4t z9WDu?#DfGE|C}gi4M7Ty<41YWEUg|y8cz>*1%4}($T{r?d&UFY+5611zt?LIov}`p zXEmNYn9aT2iJC}9W7`U1&io{L;71p#M9eJPWs89KXO-RKhHU9EtE^!F43Z{Ee^+G| z&Ltu>`b?=djZ<=G?`t%h=|$?hY-uYJq^<-iveFCrTHb?xw$coAR|2=AI_ zzM5pk{s}Z0uv?vr#PG-%3DhfIWp8jAo_9aThb1|V37_dJZpU|M3X(2srhD@tM*)iK z!GnwM$|)efyH!=HXuY(!=qFt72vn_I{e8}cue2=H>HX>D;WO(6A%&K>t2-o^j_6Bh z!}~6NMgt71LsM~wGh}A@IJPt8$s@{2&Mf>PxV}}UdO3%2y z9P|Ii6MTVPGJxpW<9_%U=O&NWhEfXS1iKsPhYrkL-d#8pj0puXzLK6Ud5-Y_L-^KV$*o?bB* z##T5Qd+`Qc_$G}>5cy})dzDdxTWnl}!TID%Cw+)obzxwpvQLF0pQM<*{uC>rh}{WP zTw49)^uD0@fv;+M+W4!d{45J*rKC38KFRS^_8zCRy^cK{9qRGwnQX-i#vVTIIMg1| zjK_?vKh5Y)a>HrUcaO5#bYXB{%g8b>pc*n^aEQ{^$s3L6+$cO-YeOo^|47Z5&Q+s# z+1(`8leDeA5_`%#QSRvvD89|wNRoGT;O!ZxSO9kxu__ncI`q5Bfd#e^t-0?bbqiKCU0D4rYSotY$6j1oXBVm|eM(?8-mVdT0 z@g4+CPK7P=h;*@Usj$fSp%2%4T{%AJ7-CQKwQnNgjgE2glK2I`OnWD*L>*Ce=s^bP zDSfNCnuM)>g1CzKX~B`Oz>ys*(_oDwF<4bTf_?Knzt3EY!rQv-ADsH~tXAE)7=Fk6 zpODQnP`7<0kiqEp_N>B24SUunJF>xk$2M4Q4_fPJ%j%5re#g7m^|<)IR*mL&WHG># zBn`WL7goTp(Qr9)(gddQYJq7jox0ju4cP~}CnYx98=Z?)zZmo1r?>&y9q)g*v-~n% z3MUK4a;ZuK5>TY)1!(~^LJR@6<}(p#jHe;M$AN`$$50d4Wai~I>1zI$!L9j_Fi#;#Gpi6}Dgg(S zpUJAX$2>5d7n&6sN%2eh&C38oCIZVFpC8CzG?HX3`K`_8ZsO5E?L^_;$bREG@4~~5ziojYen~G0$atBxY>vrLk*%lBqCYSw(j@ElCHAf}IFDKK zN#Mcw{8TZz%5Kgf=dC~xCkHcfZE_IsukR!;Z+7iYD4s#$b4&>TrfwA86pHoil`OQ? zqwgqvJ;FH$fCfcr2ulWe)2wQ{NY9=|sgOBRFOT5Wq5IRr)1fE=?te{!L3^iI(9G_= z@R6zM{Tcpp`^v%Yy^rOONdl}X;=bPB@L@WFKe;V0*}BL_{}upNT=RhV;YR%Cu;ob_ zQ}U-4Zp9fM@zde*nCS*TFWjGddeC!fCIjgGMEi$W)JR~@_;j!svBR+qiD&FD=Fk1t zdh7wy0gco;J&HIzp$I%MARmq*u_44KWl2ga@`jwx3)$HNl7r`5`@k$BM=vwR|NHuI zSalG${}k&umRbQAJ4Ml_aCd4qz|UF>de+257FwJTu_J+c)EHbCM;6>U9LyWFBRwj_ z(qzHblLmJN_95|uH4h$8s_^VTOL?1L$Zlp7|CxsSm4*@GD|~Ka9b(`ypE)1?rNW)r z^csp+&H~d-v2dcr8IkeU?=P+k{wPoYB&>LM`rB$XOh)zj@1js z*GD}QUsF-9(&}}=mq^d8&}lA6BVGgmN}AwSaRCP1%6xlrWX_t=XUEO@qi_J2!+9=5 zx!cMr&b1f?*G`j7y{w>{{n2(Irpopw2sMB09_Yp{Mwr8u!@iY0-?$`Qe%CU{v&tbB z37pLq1)#i<6+@)&>E3x7pqu?IdD|0q&$wns`189;vx^V>He)+qd}~$s2w*yiCbgAY zx@RcOY*th_0MD=?f^Q@D!r7KknJ^ReTF@08BV`UEjZMMF6nw zDivx`>jsF&c7QyATW`5Nxp|jqOJ6ga#;^Z=&P|?rv0NQ_%U=u(6F2hIm^HvdAkdzi z#u32|@ev>k{AN10>%+C(p=k6s7Vq|ysUuzItP^sK;Y zb5(wlvkefW`t5}c^a={WZTamuC&lcXwL;^Hs&L7OPF;h3!WzZQ2tzU7yBVC{%adiN3b+eQ@Q zp?c)r6pBwRkT61#gr6uW9j}W{VN(%bwW;BT_7#2weUO(_DH z0u}=EGZW4Grj-9!Sua<3Y)hBo){On0TyO7nuA{kkEpD48$Fr4y3AtUfNKX>p+By5d z01(zlr#rPe&FoIGgOmL3SHss|Bq_a_nfvq2<0;`CizheDD*N^-n}rh!K+N@f=iF^t z0dI^<+UhrjJAerS_4$4w+NC>Wo?f2_gST6w!wiDW05ao3VIAG`D9`@!4M4X`9IG@n zN|)R7k$X}eOqO9;CN8?W01r0!OOobprXe57g>|b!9Mj7^EIoUO{J0rkEXsAB8WL@yN|Cd`3X4XK%adU=5<(s|1 z^9b=(3HOsT`!>GDiOvsT51+j{M^1+D6M%|rA(31g(wA8|0Mw9Md_JZ;lNecy7m)dy zLS>kBGlXrJ{|I7V>K$I`&vs)|9RL-k8vgUcC?H;7wXmqgRm%Ktql#=s`g)KI<8kjy zNd2aQOWCYpo9x2y;`&oTQH?TY?DP!L_s^7`*=OR%bLQu^O2y%>#5M&+ab&<=Iq*HC zzOD4fJwwzk07dgnyoH%6@d4~z;hD3Gkr)5z78%%J*e(Z%4DrX$4*AAk5T*4I ztFl!c7D>Xvp!cRQ=Y1fT0lv-IWf89pO@6~(dDf7h*w(f%lNeQ;2w38K_~6-Cv#UlE zt#?v@aJa><jb;o#0<3|m zWn7w`Kwc?CQi%E&!JRkqhZUs19a*hmZ-wMH%YB*aqX(91&V}m}g-uPYOWS<`-^AjN zu_52aBAx?Gt zuH8Hp;h-o+GfVb*F5ck>LSH=VJblH9RzM<23M1Rcx|M4QaM{Eq0Cj)ByBhwH-nN|O zC1geO=BenLE8^iX<-K7$2QcxBi??7~cMkR5$XaTcZN6WI-A|0WlrV3Sx!*noxVr+& zrzYoj7!^=SaiK%VA&s}nO&)lzck>>r)lM3N2=`-?o-$4W7u)*ihTO;I#1=6?F1bV#pyUS$br(XW18# zPHSp$C6LH=LggbkK~&UUSy(48BCkTW*ZNF3*Sej&YPuyNE$OCtzTG9ODG1OZ0-dW3 z8gWcwKGm!9u@={<{V%^W{cZy&jlchW({-kNkkJ@5acRc&cIC#B$>Td>i;)0r3;nqW z*l=5TS$}Tavoz9;HtF+DS)pm>2;C{%S5W7dxI|=XJcv*u3D;mR??i>Qe$lXe9NHiK)s_#)4i74lSjRvaJTB=T#7e$wu#DW z&ZRr43>zuRR`q-WVBVK0HFK4>bH=;Bz|+4r)|%b;%S!NbEBo#+)4d52Y}5-@+e_>r z1w!| zM85vc2n4_T_aKE~ezG#l+H`=Up?$M4{NpU_q}@REU`9RN0W6S?@+3m^eB&jF*SHHU zSyXydXamoQrBE3#xM?!mSgvLDf#;Gyc=F#mX`&G~k{uB- zmEOL`S85P@NV-<#U?8Q~sAcnoRfI1F4v-c$x-OUE2GL=q;sJb=--vbEc}-;*6%3-GLqt!msX~Y&EAEYq6i?_>BoJ%tJV=KRNCGAMUR- zYY_P*qIUe!9E8yJi(*S+Ag|vid1!S z>VLL0alY?_om;R{8aYZ#I(&3U+PQRo0MLdg4-%-uA3Iw5rN6>dg+D5ylcpl*fS4f| zWQ-Zs&*S+qk*2i51!$O>J(8bKU#x+NHm#OIk{l10|^a+Tva#IAWZ6G*x9p#eQf`U|?sgpcLZ=8!3D4QKe!L?uX zsb{MbDr@uBf3eE^70FC8&+lD#w42bUcG8emt$60n)STY$w&tsJdTYwc;n+joUV&u` zsGC_>;B}an?Iw_g2H&DnUO7VZ2fDA6ZO3ZO=koJd6+HfP6sha0jD7Q2;6on&mR?#H zOM5(PhgMn*OUC2jfI1Eq1~_IX`Ydk#?AE<(OoN-n;)dI)^u3=_lxyvRXU82;3Fg(N(Rv2se;e5WV&!wW7EV<3&W&4rd z%}O=Zqom|I9TQ#QN6G|wkS=$sknuho*%=}|(@~{Evo=SQt_eK~Sp-0_J7{t>p zv4OnnyxKBu+W|5;j3ezOP$f76KcyNx138Xg1ogbW!JNLgi-?#jFp0HXa|1|oTJ&Za zIW=fO^WUF9QZ{I&CnRM@TwWD$$wk)}mUi#)#|P;z<`X@*stalHe`7?^;QM6((#1r% z3P@AY>!Mte-#hn_i$L7N*1+IRFrkd+e82ERhe11Kqp)Z(MRby$OMYKb{RUAw3{7_h z(xpE6uXYrP(wi#$c(}ooNUOOncQsFD*!q^DDWBQHD(fTgUXXurWHC*Xi% z#IpXHf-$|c0ODoy1iZdfksbqH)S*R(xJ7lA{ZBWO=tqZF>D`hUERu>EsFQXP<|5y=_4P6Z zJaX44%Y(ICVc^NaTuRr+Nozr9O6~jOlB2%Wy^{T>`ux4m^0}KCR}X_$ES@_3C%h>F z6|imvu3yihH|xS&Xz@o&;Jqr&ohUqSq8+rs=#4=Aj>soj5riNsr1k>$*|xb~Sl)7j z6Ybt>gFHIJu0VqDHzF4elqDHEDrIG`7wgy10&{H9ltjz`+VO9^0)9Y9uNBfSPoAk> z6$Az*9)~|Gf|$*Xu7b}i;pBf&bd7;=twFSD8Z~ar#Oaw?s7+QTsn0^3==Fc{sjmU9)K+ z!1il{O6T)}(01GROOue2xQtASqMTV><@;i*{jpcn4{&M?IGBq6l~uT!e|I)t91#5k z=%6?qEw&Ns_+L}I0n7P}bbUwteQk`J8VOV%0c@8uUe?U#&RXwXr zeCGb0adlTEak(X9z`w*A`#zGRft`8L3gotIP-|hEc^?4qEDlh`WeaKxGR75SG z3VnYQ-OyU_6m>D(mMZ1DPG>Z-xQJ*fEo$O>2f4L&Ip8c>!s!1>t4pSE0+dn_MoLE9 zE{#PIlxUjF&JJXf<=FF;Xd^+>>4UVG>A%+TiOQUW!D){b0@Lx$S_>-sg5=HMPu(Jv zOYWY_4(E!6(_p5!=@V;(#(5+ln09DUeWk%@RsXAa1n`@j3%FT>MYv=!V|`r#qIj@A z)i>J=gNgv{b> zxbUmP=&uJ`va%44zdWbFF6^h~NKCe*9kD@JP>Aqk59bsZ+b*4z!+IDw?!o{Z@cJYV zZw&Qs<5PQ1(Q#XD56%5ILV)2Q129dfWgUFLR!aO|;AUc>apZ?O+nwc9+k_J3?Q++d zL%wW91IsrT%P=m%eWkAXT!Oj8J;CEgiJx9-^R>`q_)`2YFL&(-{EKikIl(Asjirsx z5jiGV8y+eG-yX6YzkaJmV>x8?R78THLZ6F?(&92yTfN=RF$+pk#&x*QZ^Lv~Ic8@{ zZ`2ioDewckM#mwohtB?3iZBc7f`Q7MB8rOo(|j%o{9B!X4Ij01G;MVEOlfAGN5jSQ zp^*+KT)BN)a@vA^mYJV)L)njLgxu762pHGXYf%8K7*}KqBQEly;11@~k@4e_G5NM| z5dRpVyaE~*xOKVZf;!knC0ImPt99j`lvUrbHeCLsjc$^ zs={s&r1@rXt16o;Vj|PHt1-GQfhO?99rN6hrpBBHzX7Qu{KKdgC__b#;-Yi-xQKk^ zqXeq)A+CS{VEUYQ86FQ=i{^cSEj>)r`2F4;Bd;{!2f!EAKYAHbG8w(pr7Q=^GC|tK z4&By;3IwWvhi)yLh}V`omK%5nXd(Vp5^H9`cBB|#R!C&-?qq}a>0?=e+BGn}W?n=0 zeR|yA>Rj>wdoBq(csG$rXkPSyJ*qLN&9O90cz{tphe+dGAllz6!v8ZrCs~*i1WZBa z0v7~75U$}{9SK@*IyhQ65RFt2F3puXLkQ>Z4h5K;t=rP$o%36S0!f5p3}?@(V17I- z=xG0`x7McuajK|PVtIhfX%Xkrd0vWO+Y0!Is5Wqx2|>=D!$08odXpo)$Jchg>rMl( znizQv^{FEgGewF*4wYtD5q;G(kMqivMFDd+9`}N4FnmPu*qk3)vI&SXuCdKoH$yv#H$kB@j}~t^zheB zJV$Bi7g%{k%kvJ7J&H6mA#Mv^%2pEM3{j_DC$*%UOGV`;_=)tp?8%@G1Zf`U6_1S~ z`>hq2_Z|EaQUX8NSrho~CJ7)8K^I$bjNW}{+2@|wSYL9Ml2f@exw6qmTU<9RW+8Mp z%+O;lNpyKn-AE;wJfl@F<=3$1zM8P?{|HMm!Mq&SI;4c5jERfb*6zxD8`O@NfaX$cD zp>Bc1G z4G3Mlp^#UvR?{YWz3l@0vs~dy@v`UHN%{=;5C1GaFG;|q13;gav#y=CiTJjf3dn34 zPb_%lVOmo~1KB)7*^>n!4S)Nh0l-bcB%j-_vf7V=bBMJ&Yha#kG#_T+XMY8b(Xpwc zyX5e5Hl^*5?Q-Axd<(Fo9BcknTA<$>2y;LYwIhiKQw(xmEtOHAhB$Rm8j?P_En3W249 zat{f2d+R`tH#ST$njcWc@1lfAqO-SKz~(3DH54YmTaUVTBpNlP|9IDUwdd%%@?!dt z+`1BWg~l?{RV#$Ji5U-HS~l6A|3YMQLh@JAQ)q$c0xkGdCa-9_fgf_1ek{MBoXuVY zQB>%M--O>A54ITxrl4Bs#)FT0Z#x8TC9d^XGeT0Fa3|hvXa&#$>ZD&Ai23>?h&yzt z_OUL&fyan|jls$u^TdN}f3_W+6K|Zxb?F+AJJEAVSOO7Nn_BMYO9<)X&Jaq)YSe%gV) zlsWn2h>Yqv8S~NM5gp5HI{urU3ApgKJ&#};f4T{R>zo3a?EKxVJ86O9OrZxLCE3D< zchPlNvDo%~MSrH+rZy<))Jdp2x?XDxbw}OtX5{oM@;M_@k-QSocz~f@SKJ_~e*I4?18jZ4)*S?lWQ<8)`$a?w-QVIrx22Qe}JN@;HEUHR}ZV`+vtgsQCc z;aD%#`j0Ti8sDSx%5Bm;QS}%!GO+ZthE4XKF-1g7Ie!6st4FU<`~pL|>EH&qx(n?@ z*clcLma`g!uYukt1&oP#g8z&wDj6r>4Z_98L7s`KwoJV{kiN1Xm1im5CpxKm|M|H? zh|_5``F+?ZFNyvXLwjdLCY{R>;npAXlF<$nrg$^kZ)5km zXR{tNHS^ScpWqm03(tiJI=3|0$Lt*lXZTLI`p7&Kc(Cwd;r?BcGkC zf+~sdzn<8n2z+ zvaE@G`x!Q0qp?b$VUn61E#(a?l;D_SuM86Eg&XRu4Dbh0l=J+qV6I)>Qes#%SAMh?D-=Q-S6|wAe z(gPIchZ-p8clHFuFWNpSlUV{u4*6JPvm&KNFf{$-Th6}7-z3wk2$B}aWffO2Ed1?f z$!k<(kDD$+_($MH1!rAO>P{;eZ8yUN;S#(_&j6ntKBH0SybnnLF3;P|&B1s~L{fE4 zSFgc1lbUPfnmceaKtq@?9~@?!v%$8Vf#HQpg!U6Sd#;NFgh`?HZ|29TwbnvI_z(ME2A>#b;%D!kS_G(0 z&fsqO4)M6w%PIHZmC^g*;Gv%oO(KoY;E^ZbYrcnH+IC##mt33b8yF^%6B8eq)!Rl8 zrszES-G4sz($H7Ph89g(@b>eIYzUJ(Fl&G#Eqa&4RI^aUDss?KcttoFD~IOzY&CWE zir-j32(i{jI(+VGUHaO0nn$-g&~W*lq|HC+{_vcB=~@92qAZI(?Wl z2m~%|rUlI`5A4S;`EA;i_G>wcl33L_QMt`27%sGT z;nnY#ZII`?9;VS!`3~fMeswCWSUg7(Tcj9U%U!{OM@+b-)^WW7?H_Ms(hw6}6I(2GfCV7LCrp^MvF zfTw$_G}2||{kREPnCk}WQ#RF$j`?WKBJ04CGRHPQVSX9CGuSS>Tx_5EwYQ(bk_CfR zg8W&9q;gzQbDof1U0D{98~p(a`VdNGC;%>n&oB!x5-1KB>VK2>iWt{En-;(} zHL$r_J_3J2+c`Lun*I)K0A|TuNKW2$@J0Q{x>o>A=bYv8)Jx`i73p1%N3YJQDj#$( zLh;M{5YVx&Tn2k$7|`Dzg60$$tbV`(O8%Z6q(gTXt54dV-t9Ss+}s zp`v>>!YA!Od}gBBhyz(t~OqTHH_oSUel5 z`GJAEUp%lLe!wf10ORpiDKt;1iHrNb?Xt*Lli~?=|L0lJAZz|d4vt|*_iY)Bi#BNwRx-~(8}%2 zFzPNn*l8ztRjJK-^>Q>URX|AbW~T7nQhco$hGx##wl< zJB09|QN~YoL5BD|j&opNoT0u$QSr>(eTMg~Q0=T}zKpGjwoiRzVl0svLTsi`rE|A! zgBUHE!iY-m`7whQo&!uVwiS=4GDw@kJ57$Urbds+9RYWOk!ZzA-@w4Px6*^;)lurc zRS=nVCT<9~W~f3#*!ne-egb~&hgVo>4)#GLI)m&{aTE-#Fh^2-}RYCW4|EUNTt@Wx{BWO0+2aUCMyx zfl=dK4IoM+wFw8@i9Gx1?c|r)v7YcUO}7**d+r*?pM0$IMke!J-trLH6b#4>f0jM* zzo(XBi(M{Dir2BLtqH^LtL)z*ET`tk`z!z>BIyu{iADhWSvYXt(;`TSluBEjNB-G* zZvjc4-#r7RB`EB)01J7ZNM6+-mIiYYs(R$&J4A2blAUY{U@m<;ABlnH z8*?n?x|=}fBqZau?`(7Q9?yHay5uau$ut9dtUJ$0d{yVPEjSq44+LzO{Sbji?gCrx|!;kdwwX!RzU&;e_v9l z?HS@FNl*0F^TL?2|)DRjjU9GOxiE%HNu(SSbs7 z{O_8pzqB`K;{w45Q;njVy`ODd6A5*lM!XkM}Mn|DHag! zD9z7OMd8R0TC>RVc zG5|WAy7iI`RX`YS{4=Y)I^mLB+}&yt&{Yw@C(Cf}H=tTs7eC-{{U64iD@}pJ!vh_J zc4J@D} zRnjTt->!oyl<(GrLr})tA4H)yOkN-c;38)QQ_j#y{U=|uf269Dr%~lz$}4t*_A6NRJ`NTiO{*MOmX6iawA+?Z5Gaf}&p@ycN~!WD4F&BdEphUP|KWN77Hh zI%Z9~kzwkv?GoY!zpQ$PRvJ<}#N9xb(dhZWzl3o|sY?HP+$ZZ8 z*5==UkYmzwI>HbC5CbfhW`pUe})D=T9GzhKRG3mVjdYl`cWnTq6;2 zYRV(X+s}YIV)rI0zWIOxri;Mp_X$*8dEn(sLXGWV{7uijC;`{4yeBIs6XS~Z@?;Qk zo@h}!Z~&uOm&spqx{un@qGKf_l{SX8l#tN9c90@qIEQ$COdb|k6y?FMKsr^;PHrCa zvbum{9;i<8XFG2z=#4Q!aStVz#ylU*8#Q zw|c3w8&222Lb|w%<$F`9#&B+m^}~4wvYxY$cXxMwtpqcZZRs2AiVMSAkn|P2DtmTm z8xvAXiJiL|*jS?Pa^>FT1s?_m#fh#%8id&t_G)DX80Lu^~B9{|b_H z5^vlSNhI*YIie>@bEfVh+&k%^Xkk)HK;h(a(KQUVoc&x|UvU(+Kyxu2nINhWJdX%q zKGoj_eP^Z^Sx&czmdCTAXG0Z%a|9(O$E?I{odRc?Taaf^*!0A!qS@S~HaC73P^+t8 ziuuAWAZkGhPQu%YEPzvfhHkv8vql-K&OQC~P}7-{ren6ecjb41$F?W;D`)y#FXuuz z=N2lMejPTmz7?6T!FCT}C12BJEV(H?tvVEx@-X9v()ssh_Ank&dBMm<$)0OKXoqRV@~%Im2sT7PRhZw>>QebKz|4^?4!tBOW?{@pdaX@NYB0RA%rn(CZ;3#50)H zo+Tg2-*=7V5ovqL80*6P=4``ABB)PAqCccButgbvjB)e@mnhB3W#t9zXK; zNm;R1=z^(J_KS5d1=@6xFb<()upAD{x8P;OI+z$nPC@vxAGD}C_mKo&J^pSUDdU0%-tJkn38iau16IzOPZGK9vW(?3r}s zp>)Gcoy2)czq6)QfHn*H3hx1$g$zCUroX_i$j9$`mK*Mw)uMZOC{0tNwFY+GVy6Vm z(2OBZCaV&as#s?@;Pof|=qjk2erkN=LzqriD{w&F{BB;&S1Ak`~(;*n2??C58!!0 zSiYxD&;sdN)#nO5(Eo-ecx(zW!FQi$l;(L5`9hfK5iU8@gDyg-+J*r0g=6zL>f6cf zbIw}qTww?$kF9p;Xbu0nkJ5YD4HT-HE9D<;fW6O%$b zm7f+GjWx168p#$~k93_>Crr)BW_`Et(pIiOFTZn!RCUDR(E!$A*gF%ns)wdjd=#E# z$3g)1VP(P{z}#kp>we7tuMh%5?J5MLH9C_^{A7H^CFz1`d2c;?lx@Y9maA|!01b(UKebI6q=M(7gM_9o zWL#AzgiYWlCQVX+qPTZ!WTt;#W5z?wUvj7ycYt1hpketc>347mlvH$!V@Xppysm5J zC*%PtjpM3h(YC~-)^~tNN19<~qRe63G*vkUNIiJa`EL6=*B4CuQ6g03d1=IU<$e~I zbK>MlaPDwpc1WfSn+`bKT3nDpB0)uQTw%un?g%{%6h6Fve+fPW%=HnwuG zMhvz$jewVC(GG8KM9jnPghM&_pX`-!`pF_gL`-svAbWDm*rw8B=yFqj<3%`8lAWE! zPa51lX8o`vJfI7F9gb*Xq7Y_!paWv(Cw7aLswX%x6c-o907oJJpRjBxXwU8}#C#%PCp~f3}xi3``gkRF1cPJF_IC-%!DDlVe zO_{_;`|p*bIPXbQdC~9c^6<=fcFA(Asw|QHCvUQ3I6FDFpO^Whd5|=R_-e_*t4gJT zQ4GLwiP&5H#6eR`*90YWN$YuSPPy{0w*>k3(O9sfc7mT6ZT9s$Aa!wfA*p7Y2o8Ow z1p(>x0oFc;W39!cW{y8Vqe^5S%0^$fjUnTMC8zV_EhZU`_ow7QZEW=gnxdsgDuMrK zj<#$(B6a&_0`Rp1RmYnxTcp`7{|ZJs?hCIfZByuii_Kq^B&vkKS|fix9fgus*4IR2pcU&hcC^8a>VXG?xs@YJ5bFaS0~{Uv&c8w&JXxNz z1t5`NL6fymoWwZOn+SG-J>4colD}pWQofEzwrR4}T@E zgCib9c`6phY3zm&l8>P8qHI&zEF^4vy?)X`#`)aBw0RaYT~~rKO+x2#(?1C$SrT$h z-l(l&K$hJ*fRtOg8OxG`*M5WkHK3vPdGs-*bIdmB@s&Wfltryh&H}DE%6l7L4OS_>NtBT*sZQ!X}Ly+B{H~T|z!ysa0R;p7F`J?2tFdm%$x1i$uyJHSDJo zR0PI|gH0w8i+o*aSBJ4}8NbiO$w~G+@YbgwnJQHWQNuIhwigvS><~Qmr{rm4M()NS zm#|8!1y~g6(=s2tqhoc<+cA*Niuozim zR?Y_W_>mcZr#(D>*AU{9yrD_-{#~yM(NWf22GxC#5Vb{3fhU1F=ubHS^u%3$8^pvH zu|2B-F4#dQHXIgmz_T=y09>(ktGc*O=h;sDGj@cE=oJ>4G0MEbQ`w;8;OZ~$*0aac z9=ky-L4(@qnYD}zIG~)W8eKPvX9SBI`j73mST;1;7XGa#UI0)!aQ<%+JN9z61Tt}B zN!m>&`mr}3D_GaI`RIglHxKek**X3{r-6#82jC)7SVd3hckOMSm;P%wngz!3u$DwB zF5Az*+&AD1u|Nc9txS6fz5lv7y)7QaQ0n_2fthoNt?kp1K#WCp+At&pxEPBLMoiw! zXu=hVHo)dtik#io%5*<<|7=Eb+mnJbSQ%=mDcupz}}yINoYF&wOlI)?}4^8WT{*z#4poo&(=fZeSck+tF}NfbM!N_Gsb+SrU;d_2z%>xI#%XMo zZ#FhhXNU>h1n~&(9(_6?VR&>?703ZI)#hU462=RP1cFov#j!_ce%xm zhYJ8if2P{!Lxq^3J^`zU=Nsp0>>pU6{)E=;jNf6EjH$et^I3SkX0djIXS+GaTnKH@ ze^AiU9VlCSoiqd$tBsH7h4!`kE?^IhY|`!X?Rx;N!M1t?bb!7OUjm!&7?E# zKM(XTu}PoW;UAwcS!$pb>x*A7-(#p?-OjPQ4zzP~QG(Z`#8gS6qhnE&8mDTOu=e>k zP#e3Xxa+Ko+(|C8D27*olP}|+D-G*0*~o-6zXpp)Nqi*%6DY3ok`JwV##mR>Y$@f0 zwJ-tFK!wHNCf`+9($jQrL8q(dTS<8wpQp(!55FkBsw#>JFH zoas}N{SUNtwzhxbcclft!TU8BftjI``O?W3^`cJFybf(DobP!BdjpU-?9pJ&fi#;s za7q3)+B@74c>2)q!xCi>**#;L8pJn?1KLp%nWosh#MecH0LuCQsn&(|Pg9FSQvwbC zZ93v}I6CXjCa5fiI&>Dka)4okHVj?*g%-eI2_9S`kq#Nd?z{Q=(e?8~$_ycMl|Zu2 zOW{c~J2$~pWEo@9pRAwyyVQJ?ZesznMcxgd5q3Zp8)OyBP+3lQpfvYa(Yz%Tw+doC zH-}ZI$TKBPRMU)-H{q_XY1+xeG5-&}xaE$mTkCZk-dHEmh{e_TGGeW;CFOc}7#9><wuG2rSl)3ot<{V4FG9K9-Js5vMi1a1(hW%8n!ShTiI0#@5 zLX)s+XiQy$|M-n4c7am)-A-vnJDwE*lSg6i0M|v}8 zbu`~W>6Yr4_Pg^bMY0oI>n#3(U|cNngm=6~L&bH#jZ)5I56t5tJ3t+q3M>?wl<5-F zmvv#>i+u$kajLn?D;X_RfU`1lXF|zfk!_PltQaqRDA2i~<0kMe!w-*BJ(!x)Y+H)6 zG8yR4!=R7U##g0Sg9UVI$dkeMa#k6|xXJ|PBjT(=CRoYZFloh2NE7sPIQI~CzFfNb zyCL0agsp8uHZ5&Kh-!C0q~WACrzN}aAE?Z^rCU7T<2%+o@ZfC~p#hkyCXb;cuD=E8 zTQGVQRmjp%^Qcaoq+U3G(B%fD#vwz~IN6#~EPI;T0g`OQ5y|QOCqt+}%a?4LPGx;o z$Uws!FyOK|I+3RMS)3U&fVFLnVkI*SKb0EK0G8#!@Rr?6lafrq!m(hS*pQHWvQr;P zbR{LAc&dpBwTFn<-G$S7#f7rp7IErcabZ4wl1iTOJ;8Z{N+DfYtB4G&1TbL+DHYJl zI3#k~*8z&IlMNgt1p6C-BC*gvw_&H`FZZEuxsbZ2IF}sY%$D?bMk3_Z5Mb66{RkZ@ z=L;&ezyUgBE9h<>TN0N8(;xHoWA?#GZW!N6;L5nQpXC0K6{2@f$&jzsSLy!m$A&E1KxyHwAZt@qmKm*|n~DU3 z&a2&|!IQ%M(&Hqe<)Ii0M!ayEWz=>UPFDyQ&E<<|qi^g3>X>K~6cV>&s)1*K#;G^;{=au)2!ZN%Qq#ZZE>r8 zAVQ)$Pa&q29?(62 zv`(2-iI2Qfj|lYI9rWF)Mx^^JX0Q^Hc@q3wyNcJc17nc_bX3KONrPT$$4xO(f|txN zd$avMILy{lK>Tx?K_@6Lb+;~^N0~cj-?aXel1yqvdGZf%0r33dUT;-dvD=+-;9>_R ze|>U)rg1VG0FCUwNzYs7XtF&w!Jh%`#ZYqULMM*L*VF$RD3zz!g3(+_oflpk7iBTX z2|ifF$sq}PnWZ_8T`jZo6m|LT64>M0B@jW`CdfI>nDo5qb2Zqgt6zOtLfJdk^4FN1 zEK~{!JhocX`Ccyi>eu!jtFIOsM7&!aebs*lDW6>D;S+$Nf|qzX%$8_Uq4y9p-qq#k zW+PW0OQwcu?&{WcQGGJnU9yF^mzSwkSfh;X2WKzA$GU}%yn!%knTNW$3%NQh!~ttg z#dGZ25&a{BWu{y6hn@FS%kGP|)hz9So?O|bdbD-*5hlkQ;yEY?r?e;Uw zLo;;=ah^fa=o*RyB&(Gk>T?hDoCU3aD#*c)s(2K<$YJ(MyFkL8#ZapoF4wkDD4d$T zs{4vrN-Q$EYZME7=YH#TfYWzjWM~4q+)XkZ5@C z>{EHWrVCwZoLabJTWiZ!v!~Y<08rMHC)Jq^l6kj1A0Y1sF=PzczUSl}6#?wIrE@*m zAtbKhsLfTtTCHlMR=V%!{6Y|G*GKru!zMIvw*iGyOp0HINs6_lvk6PMOgipIM!GW~ zCe%wKm`n%IB!w=;Rq10bPMK-}Q8n~Li5G37F^@PvOG3RzutSx@4nr3R6Eb^Xq8oYk zd}M%r7ZSGl(XY@i3%BsmG`d~$BSTJ%#0~BO;lK#04~+~<^kOPM00^5tlampGZVtZ= zhM1m(6fKG}^ ziS=UEGxNf0#R0$Vvb=`hX)b$>O3Zbajz&OO#O=Lrx3@xX6}?0aK5n*3&;2IKf67J% zUfQkOX_h7>uE*IRm{tz&>o)}495bw_INY!ST{DtS2k51;%x>nZ7U$ntlB&lpcqQBf z=h?xXG|fw=M-~o1KZgbcL(m1zUk)swt^-MO4Dhn)C`+ueSJ6Gy+7fQ(r|hiE^i?%l z0i>vbYNCiUBlO!1um<8wZCiTL~D{sC-v zX1(Dtz6E^VX(cF5D#ciuge$>WG~f8Ot5wZb>9xG*bl*>NS| zZ<|+NgT?m&aIEbkt&;RxW;&oMALEnG{L*I2eC(QWtB!PI1pqCD6KGW)vcE?2*z2=K zfO1n`1)a#MTS%G_2H+m{I<+B=%d~-VZr}EaWoYsBZ%8TerC;Wm*0JV>5+ZsrCYstF zIv*106`KBhB_=q0pcP1;=M>7c5df&mc`vSU2ftDB0~||{?}AK=;5xCYX977u5J)sc zE3mP!B(amAWWV8~i`?u(psk8-y-8Kf<)CpV!lE)#>-|4DV#UvolgZ!RqfskBw6wo} zh5h(~?yMAdd@C@{E4FZqE%BZac*_0nf6loU(#Z1C{EXQ%+mp8U&#HYX9^H)Fz1wn6 zd4thzehO*|!-ygOZ4=tR_BTncuqDuFMqIhGI_KW?&3TyhD{Kd8B*jw%y-< zYa*{bijsE4C|e!Vk5@Cuyn8zKuA*u* zV;1%<)KX%{3gtgSB%BbwTH%nc&f1F# z1%JW!ZmF+wm)78VY9G`WW!n$3-`+I);;Ypy{CP-BU|;WPLcg(&4&r@NnvFu#-Al=- zK)Yp3X=X6A%AZE>qR)jA^^5kQh2HMO-%1xN9o_5VK<51s>48U`zgCB=-q7gIx}MMC zE@KIakzTdi^nv7H;x{fAFl`jpZ1&Pj%o%by|1@_L)iF3rY;UtB`#DA^#`Hf!a+(PG zKKId;-yaQp!7cdvYPN5u(#Dm_(xHH&u$nc6G;bUiLOeU{v4V_~B!Rw?^DQViL5Zi3 z4;D)I63S`bfjvX(FT~qs-S^w}RT~dp}G`b4Q(4 zFoVAi19ZTx7t3M(tLCHS14E!Y&KK%4qE~hnWKpg_K7*kvX zyn>8*7)l9Ip=5$vgV8EFRNMLE-~J3zRFBUbqs_dJ=CJdUOzI~3^!@@l;?r&Rx2F-W zPOnpY_SeOuq;c|C@&ylb)%}_1N;6`HL>ZE;f-0h+dXfYkGIH}ncaEZq)7i9ooZfc2 zG#eujY&UagG}UC=Vks4bP5IsFDy(IMDmc1GR+q*O=*|uWvkuAlVc{R~vv5$l-rqC7 zhz;pAZ6JIXzTibAUzg9cI#)I5+z!ouz>r_;xCQNH4V-dq)8%e0K2fc zyGbcUIKiElh6jw!Yxe`4%l@x{MS+Sq1yNtlUK!dDT}oRA4!@x)5A%auqU{fkrBQow z;FF1RkBp()q8U8FmsH1XUu>H_uuHuKN@le&o@E3O-X6Mgv-Bw!j_Xp+Rq+4Br;#0T ze|u?fy`^zI`PQ~cl1K8=9=Zy&VBa|yc%AU$2>VhJc(hp-7EEvBt3wN2*7)3Gem{0) zP5N2Pb4x;LKs_#}AUW)+-@OnWy;V*jh1P-u?VH9$gO*KoD!c76eV2)#CM<+i3ZbR# zaO3=`m%+Zjb=_tR;{4e`SST4iz4y`x?uE&r=hsI};+k?st=dbOX($Z3^XhhZ{qRB9 zWfNJRfE+u9d%WcIqEQR!OM7Z5vbQFgm#A-=H4UB@xb_+KSkqVhF4$x~SABRrg~N7@ zB{ye%|8kimsyUwjBF9(v1~*B6Y}G<^;q^aB=a){h!05JaKmIIV^`FE|GYQlB3m=_6 zYSj8qd35A#ZlP~Rq+i=!nE1c#t*>`SDg66+?7_y_hbznUwh71kEDa;julwN z2kWtp+m+e1qoC05oM<1JOs1cni}JsHZR06yIm=iW{|)lA z%>V!sbt?n`j_S15eeR4t6;&vvF$;#{&2`>HmnyG2JsMwLQ}=};FURURL4LhcnTgcD zJ6(v4FUC+|gTiZM1$nf2E}i0_^ZcrPI-XyY>KG%xTH?oM{cqS0Tc3(MYep?DOIk|J zWW||5U92wcs}a<9VzH|7;-=OgQ-rUFaRvMS;HcM0J_EPJXz=-ygOwg@Etdw!GLy+a*AS(yg-Khyx|4G&%l=2mDABv2bNX zXA}V^M7-imp|L_z@qhc0w%C~fjEGMYNuCoIXlx){I8JP)>eEv@Vff`jEmDTz#vH!6 zzCP&=zIL7eQMmh+#)p0#Ra^8O{1P~T`N9uP&iLHK28;uyoF`fCRqBTq@$V0L;Ya7I zCcco>qZ2qJt?tpY)teKC02(7DQ-hH1?~#of$>E)9j9-+BHqfQyt@LAIwK#)sy52>kJ&PrBg&t= zk8(NP20R@o4;uD}Vt20O-(-JdVxgp+2k3-1vn$MBjeU)XW}MSE6Rd2%Xg-VmwA*il zlBw&@PZsrS!2PVv7#CRnjbQyCtKga*zmN|$b@6_crAW#7saE?c%-QUsT@8fa(ba#V z2NGGI+FMhNbjP<*nQ{asVe57>&yBrVy^n#(?;mN3p;9u`-kTS>o-@f&~?f{1*zqFdO7^(If^0{mF{4 zff15dG|cORcC-R86D|SC7eXbq1M54Tuemut(X;QB<3XSE7WM*gJ4=7{9UW->cr&3;!-~FvFh}e5?rW>=(_&=ElmbYu*g*+#5L zzS`m}Xnh!WL9w0{ky9b|y26$dVg4naq%wc*C*Y}|e)Z~#vX6O?ESh}Y@pgDBBS%{; z)6@t8~zJ?LD zu4QX1CwE=>9B_1_sHSZ$ze+s4ju;5oZdB+|t9u@#Mu%<#QC{Zh5FN5)pjKTHy}R~O zLQCew3Py@ctW(h=aMY#K$);UUgkGFSu@Ls#k5|>XYUtpIVgvA%wCbJB^g(&h-6gb< zrxeVFSSW&|SD9_*+buVaQsZ+rpK*OWx11bL&QpR&agVFcJ?5}JqZ5wKR{5kw#H&J` zemND8yKAI>V7@9=RZzP%+N(;kE#AMNm~cZR-FGjqZoDR@f0m{?t_x?@ zWy_B?r2K~ZzDcK*O5SOEnD%Tk$OEjy)jVdW=$!dAh4X?qw3m5w#!yPMTGnq9V@1h; z5kAN_Jc)g~H$r0%5Rkix>z6?z?6D;6a_Hu>Tv>OTk$VbZ{D1o zard-}gsO5G=|)pyw5NF;COB=>?wLqxxy3RU{*w2nG^NaA1bm3PbvE*qlU&(9ezVi1 z0O&T5AP=0Y1s@kITEWk#aQRT>uDG((*CZ}EuoqXLFBa}(QDTmbD7*Yc|rs{!HAk4Zj~xL ze^#^~4DAGRI0i1ef0R}AMl#g*6BrY`Z&tj0t{f9#bjsq>682u8ODub+Oj|a%fDrNC zpyU5NzEN)%J3Q$ad<|NXa-%HmH8-r#nwFHLI`)jhVwXqGn>gstghtsblCP_{^nLmH z%ZKxDdz(9*N5uoZ~+cK&q2`7nQl~_=;Lj&pH1WaGvdw;VRrg<4#*|!Vz# zkp^|b`3$+@al&U3bZ2hp+LM9f(FE|nFm#XtX(2}OLAfLXnCL(bhfqW%$?1Rb5_dxU z`_(40OYF7fzn2)v+F9=sq2>r5wxR4*4=kb!-MFhlq{|aGOLdFqm79*zQFC?*JY}2n zz81T~N17z7-ZF`J$TV&FCZZRJLV2@$H==(5v1#CugRs9I>VQIE{pn{J{=7d$w_&2* zSBW3|YS7zi^9}}{3=K1rU%@2Ck*;~0_vMyFJG^UvJoG4cYN;*TNQtt!W9RfP&9;|O z*teN4#VyTlEJnc#Kn9)<65$Y1Ol86H$H?whx~dEEIYR&uJMifqloBE*V3K+9UmTKa z7|S4qJ+5de^`3dRj|?>8v4V1wiF+yTPv5I_p_l^^n#4S6^{dry<)2^Lar8(sT*7`0 zP}oM9}okMb^>vl+X%USo5`lo8ug-0 zv@a4^(6cdsr#ikl{QiRaBNVtP%|F37t_L@4exxw7ruG+O{9o1HfgAsvTrd-z?ANM} z0ytXPP~opKozL^IL?ez$g$^BN)lJQzRL4z%Hz5m`mpLZvD#|TwuTW9{$drwB}&ErwVrgI>jJRSAC~M`w*yCppqcM= z17Tkm<~SX_!%(3>h5~CA7dmwD0N^WE&s7p_ED6^r(-#zC{GX$14vgz-qD|9y)7W<7 zw6Sg5wr$(C?FNl)r?KtEw!ioL{>x@}-`jWZ+%sp+%$?hI`N8#OqyZ*2#J7;ZoLucm zFT&eC;TN#^m)_B}iMc8`*${}Jz-a5I9`^|#j!K`^G~PEJp#ZjF5*_Y(aLdGCf&6{n z?((S_qvD;;&d7#lYoV!UU8k#Zs@Q{=BAXGwC`5FgmJRkHaZ=YV(&Q(<~)(D z&M*@YZI#NR`VYhxLG|HIF?8$6lgO#gUiSMU7-o;9%{^>a&zB#m=i8TyQArAx7kKeC zzIbhg-I}W!xZtGw3>U?Sn9Fp*M9r=EZQ}Y_kekphlyfLYt|V^Q*uuuH;rba;wyLRr zFN)u9`BbqSer=Tn-2LS|P>;S#PI*p$Of+@Yxz5{o8QFS+^!>7Tws-)Zu<_AC&^%pg zd?Ye|}icq%gIpPtQ3NRyKDkDqd6wqHaTz z*A<9dT66xozn)4>h=YBU#D4ExI3>nwfwLIr+-P{&PdZc#7mB5a4> z_e;cEinw!!0_$|$%u9Yp8o`(&!*@qmPe94%rGwW{XPetB5dXPp^Pex{%i15baIS&g zx(S5U{y2TU=GJu4f&-%A$pK`B$;n?trThH+O9qqa7BD)+X;5e!clHY8v7N-_g5=IOEpQC80XRg?Y zq;c{51S~#=srX`DTjBDtJVF`in|iJ}(dZjDrUmj8cmS=;mrtZ&}X>u*S%hegz9xCwb{pha6acmqO|BxUIq|1=X&pX+WI{ zO@D$eyo*Vy1D;1~brcR}9JeBkNRPjCE>$xWN)&7Nh0BW=)b zd-C^FemrsFd--?r0K)MVorr*A-RDVDnIA_Q4L&;E30cht<#f|f!nTX9wKj%Ro)_9YX>}Ml;erH!IZ#?r(c3q7741;HKg}RTJ!zo zrkRf^qBCNDt5o-MVJmSlV+zW*iyr5dQe@2_Fx5Vvn0@5js)})=%icTbalYblTXVB1 zGu_M*DhTMm5%wc!bT1WKTt))?OWjIlm5vd6Jb8cWAO2nDAe|=*&5%6JFy))h?#z*(A)JUjUtGdibN0;{0ajf1*qbY4P}m zVSzeqhbwUO6z=T#((&d3B^vKk4GNX5uek=#{ZILql}K=>ZQz@>tVHJTQe;?Y0)Pd1 z*J%-YN~Av-I0*#v+{+)tW~tRb8qB%!@!K9bnQ~qOkcW}V%Yj=&4P7=36=TNBQJ&>F zqemS8T<9=pcBAgoqg;d>WVDh~a+)4Pt0zXk_F3)YGvfQ-h~CO1x&%1cf}wdV(NsPe zkF0zZsr5tluFaag=w@kvN}?;dZH(pCGVMx}S)v=K5%=qY%~$NBTWeJoJzqI5ZD}u4 zb=VxIh2{WyJG~I8NHArQ)VObg^7A4uIng8%vJ`57YL)z_l6??0S_Dj*JA(3P7p1^C zT$1zEvJysqXSm8J_dBe;UdzHod_9I1+CUdu1K#Q;8%*jP%LW8Bw2? zE%}KD?rJOTwnb`Lo^kda9QK8;dnz|K!zT{W9hgzzR7Y60mhwdepzDdnQ13mdFwc*p zRT%en2{I{u+RnU+p<9Qo~O{{8D_q>J}20AyZLrD$(OX1oc6;P6qMU@9eo6PV^$t&wnm zeqSG7NLRN5(TRy9`bjEO5u|+@|Jo>t@GsHo86MnoBdjt1r<~Pak-v`ZiXs|q(7W)6 z({0rbW5`XLM(^#YwI&-|K?P?qr}(lyf%#{N!mk5_S5Dw&t*d{h(_vvO(zPw9p6+hZ2=fP<1s4Td%>g_IOUK2;MPncC(HW&x`!9x z*0qD4Hzs~VH5m(h%DP$0t2j9T)*o2LY?=MAoulFF3>^6)Q)+=*bDP{W1u2sNwpzFm zx~B*65VgPM<;mW$tS?(OfY-oHm;)k9e5lWr)en@Gogz$=r(ll0Vb#{74UB zE5pR*Azp0c_pkq+Rp`uetDvzIJ1#Dgy*H;G0thR4_ME@Qr+9v2ZOtG?vVI-NFD;D+ z{DO0;m{akE@z+Hxuy5*3Q;8OCXyRHN-Di1mC?`mAI0BKVvEr@?eHC_6f z7e}O-?dDf|{ZnAOV(YjaY7S8Fe|gVP_RW#vVllWoB=<~t<)9S(@fxKpqdz2ip zCWdARc)G3gMGBR-m)+aMG;Svm;J3YzrJ~Lf!Wn>C%bmLeA?yWt{hz8`rIp{lNwtDG0NXVBj!(!iTn!juoBi~8=%&Uy!ZkcGdsXcx zm-n}3?cG$4)(}zjgu*{?$?0(G0L~&!k?-NWXtNRy#q81dlZuQTXxPf>B+9QkY@Ltb zaT(HexlWlcGW=z?O^P_sYX#$*`feYx=vG*UIr~(wTw!JXx+J$#dBzgLYk(gz#R{^Topn+fzFM-iIf=#N z+k7t6e!5d5GQwA7SPhwnT-J_bg^r3$R$Dk+HAW606$zD}eVFvKgr2 z$+4IC-b7y<;EXhfPSB-?04}9yXs>D{%9d_7++7`smT%mqZ4?zKVQ5* zby+y_^E8kAO(A>~miMM%HtrtE@jb?pQqzR=G=|Fo;6}>-C9tI=SKb*YOIVOM4w*4z ztIm8OPmGg2&6msi*%EfLEZF=byd)#$B)lzy+V~PnDR-McTt@x3vF%>hnANyJvackn zb(?>BhJvv!-6A)JP zfBv0$SN}>K3h)B&ya8JG5UkYH-o>P-+BHh zqANIIv$at^GH)Nol+8Rg=O7ObE!BNGu>)2{4_$JTR8EOjIyHz$<;3<#;*GFrhb;=^ zh5RK^L#WLnZu9@s8U}l*S@)Ss}gu{H; z=l)?3u{qqZMFQ~C$nV$AnLb_h0F@wcqf%`YJ&t?wmCLV0)w~P6}IyWSas9DH5#y=6Zn8$a2{d;)`;vq{ z0OrJ>%Uqpk)94RfFg~tEgyi}mVwz2@o=Pz<62`KpU-?7!QIG=lF2Im`O5xU6L5RPG zZSnSg4;8BK*;&Ba>D38k$AQ#A2j)^+=y>Vbi63%R{%Ps*xUZFim)kqz$o}evOA9Rj zt`>s~NlJVg>#a7G4C$yH`yA#K3r<;zU|w{YL3T>RltUK{(1N!{36xXWVcrm+o1Uf| z+bVppS=DCqQ6jz*F~$eg&1B@0XX1Q?eZfEfHBKhZFO9Q@$#kPrAAZlh$|V`{#h?1q zSd@Giu7NXlk`k|cNd-Y~jxz#$?D68>-B!(6h~M^wUtz!9$nCo!r`bO4)Pzle&^P{+ z-=^V@*YKZdFtMBkd6A_V1=53X3OAk70MkW5d0X8kew$?BMWEuw-+{?dBg3x)Mso+3EroM~d64CU%(yADjLL z1Kr09k_k@&=tSg6^VPbIhWOAH1Pq$&!=b=rExXFF<9`-+EHG6B5?20hhV)pyO?U9H zF@myx)JP20!uw#r0|Pcsc9<@2)b~d&QLIC{qIKXv{z6=jOntne#N)^p&~1y8NViPb zx60-F(u-~y@w@9HFwIbfCr59!YqYO4XUrFzBA2Wyn zJS$K|J7tS$R~(dckg&SHV|s>)EW4ir?-=y# zxp8oRg~efkk5YGCmGzK+`Ra`XDySS2FD|l3?hXV2Q>yx42vcz>X{RcbG*nd72%2=L zO5xl?vgkMbu5KayU}j3wnKtp0VD{FAqWm@HqE_apM3U+x0wt}CeRrD7k5H58+?C|= zQKPu`9dP{=1}z)soz3y+Gl=r}nn#$!tE(PF0^2NEP}zk|09a;UuhYIT!BCJu+sL7% zQNg~h{uHiuLx;V@f%b)0_h`-;0-6URneDvUO{LvW18~dZzlE$AGvV-sKV-}FaLk+eistr$Jp|-+IyF}pLg<*D+FS-sp1e_F3 znVr)iMG}zIBB7f=E9SCbD-c=Ywr@isel^TE0%BI>8R{|0FlW>E_?s31RmhKW-kT0Qv-go*~FAh*V~i_ zl&;(^6T^B8`)AVMJZcn92m<;91Z)2=l4Jn0-8mRU=T1j&uxw0@JOCzpRd?FXLgC*w zIRpC1m5$I_LkTd7;(N$Diu?kq^W$})qpRhLeB|;q&q73-$9m^09x%aS+e$j0vLmLT z9Pkl-SdDnTo^_4xk`3b+Bkup~>kWFl)3IVPM4@sDLmNl+scbp}tJZ`4uP)}Mx1K6v z*X=q^oa7kipax+1{MW<7M}-ccJZO>Vdk4q8|?%wOy?bgk;@1>H=tzlvbFemz7L7} zx=xQMex4u37^+2ied|>r8W6X76%4$um4CYNVuKw}-7}1uapab|T zdqg8NIGs1K#S5Inc*GN@MdEvLQa?h3g~V34rf2Vij&!*9>L-!u;&g>gMx69%f`Kmy zQ~@63e~jpI_I;rE(YYbrAAHOn4xE$00nu_&D^TMIRXu_Pf)6k$o%rb?99u5oXkP#$ z0j@wy&`yAG*{II$1f!^u+)rUk6p$H0CXbrRr;hjC&)cqf_X2$^QRdaAI_&HUJ9c? z0kmJ@kot_Vgsr zWhY#$#Fi0w%{2smg>937uK2j8xjRJ|80F0SSSl@kAYr0IwcDUt zS}gWM7l^|0Fpgwn_hT=zNC3E=n{!T2QIgd)K{Q%XpOGp^he%n+lAo4dW!-2_TSD>& z7%CO+dQDtwkcoHGM+{I?aiNSmZ`_~ILQ$#h0bJTIXx7G|U^=syP8bMm_r#nNr+hoV z~+)O(3-5ZL=bkdCIG1-+)&cChp!M zCr71~VAGX}6Bk^y3DF{c)uPOP?&mY>;oQi$5Uiamrnok<>tj0X)?^kBkTHSj)9atu+h(0<2Le<;NqntwIzyLO#zxTmNr$NhHa z>dYoYZGgD3-vp$?`>^ZM#80Of!vM(AI`n>i7x@Z#G5d3Sz@s8;)ao!5?@e1fx>id{ zcZ>}sx@^Yua1}WNSz$GK$1dq8@t0}BKA2O(6WpY+m;ubqo&XZgFRLyItM)x6<=i(G7v^$1ypBbl5U~%}b&<`Q3B2}Wl zwk$VnwUqh3_`V(d$7^ttV`R+7zX#^hQ8pvY=-=by;2TH9bCVr=JHnP>G-Y+|6V4 zS-X?KHJJ&j!_`Q-H|0C$Mu6NjnRB_50>MZw?io;*lY7!x7U1?tGW5x}T~Xtf#Xe4;Aj{uh=9C$k0il@$&MfP`A~_*_0GY+H)Y$bLk;;DkpG zD4#c3WBS*(VBFLmY3Ohl{YG?_=ls2 z5(ssPe)Ci-vyj9mw#-U_YnCxHRGrGYg957pMT}g|o#*`L9ZFE|n)Hbc_pYg#%yZ2) zWv(-JQH_Ti8s(uclqtBE-X5rjSR}%*ra3YaN0(Gw$-?+i8J}En37x;|{&2N{Z#E3vz|aA(Pjwu1$$K4ho&3h$%)y zmw_6y#?7|^r>OVN{EV5vT?3=ylxKBjEDiggfLlKOLs$J#OKJ@iq^|Z)lc9+_Pugm! z7X|Ln9@&jR%nVVCEjqsUuR{U zpnk3!DYn9kO3C;5=T&kJ_@~u>c)#!i67v{jO(d56JCWLYzm_VfqKv~k+ZYTs9p;;KOqzOTsq@X z*!m^)LC?U@X?HtAA@B{!k9+RHOgeGCY#9nRY|x5z8g$vrQeL3iGqhs)qX<28UD3|i z#pE1y7x!VdBw(TJ+=&oR@HV)=z;h*u03w^?M2F-ksR_{In~m_{2nT7IHxHp`9!r`V z)(48ny9mH66}#s>Z#Ufw6#?cs05nCAS9?FQ|7m8_V)P@Fd%>qBORmt6bLSaZ0qBQ9 zfducQYataM6=S7oo(0LvY+Q92He39vet*079XWGc_|PsXr&Y1!o1v){WxguK$*Qdw15iW#NHr6*jwYp{xnDM{`{ z0;Wk67)#6wagHF+dgQ(Z%z1jj*XvjxM#YGEECLzMF$VELUkM`k>NX7F7U@90YnNjjhqFR@(SOu&hXYyz95=gjhx}?)h9qIYP)fX7 zcc~x`EL)U6bzOn1`B5ho8?SWP%#QE%pUU$_0+GV7kLoWnJKk<6-U#SD_Nq-xN%&B+ z4^=#qiU5DEYsM-9?_wQe+|qSrnilVKHm3eZieR$M#G>l)FMWhdTjT$hgUY>+o5uk-KdlDk%u zTvmwxv-Y7=H{u(F-Yj%p99&lHEmg*!E(<{4^269{P=d+$e-X*rK*DVvE$3bM(Pf0d z0N(Xm1X($-`+)ZKE&j?3h1H&sBcFGKAjsK15dw0vLy*@DGHH9@(3}-egVHQ1wahAA zB9~&y?i!1ET&s;bIZKlN!feY5S9&3@hsc^k?DNiFFSDkv_ABfV4!z>1A)iN(wnJ>21g?hMs69b%X$By&@+6+YA)L6MY}#ce?dYWJpy=4bWvN zfVguFmO08xFE%BKn545OckpphBqsf}`Rgx0={+AWJdw3c&CEKSFSqQ+p1tOVUe2N+ zQNhEl#vP9I>k6$|5)du+WS02S_Z25EF4>eKe;oZ%6hBkEkyYJ|1SC*MD(Bbh)swqA zz&emJolkIw~3udfZ*CqhjYq(Z{O1ShyhGFQqlNGl5uQ2s<^Y1rkOGsL@i}ljc zMZ&s|0?r6&HN$Yx`M$@XdW`)tY?Tx=#(ybBuW8K_Y6=$O!&8pWa{|vmmP4*O9@00B z_@qXEgWd|VphBDcAT_B$4r)7iMbDjO9x30QuU5E67h8*w^Rn?KAI0MCt0&MFpSekQ z8AKY`)fJ6~Udqx6V9tp86Q%{&Wc>6frNk6MWAXs_Cdg3r`xovslxxMx@1& z5Bb1hdFiv7_P$jwjx&RMi#ac41vxY-hvP+c^Zs4>N1Nz8O6q0xEzq3P+P2m5kUav@ zlL0l1ZbE)3Rj~sZhLQ70gi_Y?Y&#a7e1S``F1kopM@L%E52O$ zL6Q9aY&uMA#%Q`~pkHLRSHKis*8bcGqHpurT^zOD;Rp zV#bhA9hRiinB)dSxnrcJNkD;jI~eO2&8kDIr+|&YLyR-qjU$XtEIjrZeA(F;&a29? z=SM;h4B#+9?{wzCCf?UY^`b?anlhzl_skdqbR{gRBNc(u6=dKxJ>FHhBgs6HmOZDh zeGG`7#ot+6v;FF|o&>R} z?H1{9!32=maY!-jiyqSF!L3$&0sc@sO(M#%&f=GgdqxmAT0;$2eku)8l}XPPi`ex1 zEDD>egj2McH(zZ%ooOcLLBvrI^MBPh-;~BIuBh?#=JKoW`WU7Y8rqG?ba6Gu=HUAI zPJ2$o=e6-LMgthZL-g|&l#H8Mz1}lCd0hY2Vv_!FP)YTg3)UXeIrG=gD+rDjKG6_} zPsd>Xm@m$MMU)Begbtvw531Y0g&4w5TI|FQS@BB^vgS=fgTF|)dK;88wq^Md!&AnM zUqvt;T$_1U3utS-ZeUd8OKO>32m^EYynu(Vr(HRcGyS~uLITaPmR1Yoaxe;{>MnbJ zsbPKHq|=AN;yaC_;=`XGDf+&C9`~)Ek4!_e7)cCW^gb#y2-a61q#A;Z`S==hmly=z zNq`*IiDLcj50`euL+102SlW5rJ!L;b924X7myJWOy&>IY^qv=f@8G%_{@Rac%({}8gJ-K)V&4R4Mxt$Sjo#pA~w3tCR zHLA!O-32Z5puqg#FA*YT1c5xWt-2xCd4IO=# zRYBnj9@j~Ogl2zk@$sWmcEd(Mgq#EAiISymF|r5&eu8>&`m)=)FTm^0bH$oeN((83 zKl2i{mFc!u81=56Pzt|A!NPLk30RMRJOm>9qhx!hFhcyZ=8jMP20uuMNdE<1sgzcS z$9%T6KtxZKUEjLlS}Js-;fzE5qozVVS{;m8`dzPtQ42324 zZhs#!xw;(5K>dU(la$T4VoI;V9miDnOCummE! zk5e4JD31(uGvI(Ydbe_ab^M^mh37guA5sJUB_%OkVeWg)j43rfeUl=5U8E32IP9s0 zF6W_1YIZbf`%0ONMK`)_w*697dcB4Fo*j@l{^_Kx;)Lcf3|J*32 z52Wa0;`pswbY2n^hAHR3Bf-YD2LxMaA}XK2kwW}AqR1MaC$+?#oZ7J%XdsnO%tA#y zUZ6H! zt=Z-D)x#{)vJ>uEe0QLj6u@5wskl=}&xCYA0@z@wxfCl<9l76*ohyG;nes~pzqLUX zYWkO#+;k@V_b!~R+_^TdkO{qIGY6nK&Luc8;+c*nF4W1BoeL&^tumVi&lu-lr5POc zAyZ7qy1lr>9ULUmKF7lqHnaU;>n76zCK#QXP#FeLgO1_yA**_AR;IBUsEz~4nEXs9 zCGW5Q-Ud_%e_eWQd#R+>!XOBfCGa{2x;aA*=_**C5DqTAf(ukpBtL})F!GrU{B)PG z0+;nkh@V!F{gb{J&%e4~p)f8Bb_p_Pa75kDA0&^hm7Ymhry~Lsuq*anQ{GwJ=cS; z*7+=D`GwkV`T?ck4`-hnxJGuKlf;Ov=Y;$<6tPuq#6>ma!k4Sg3-C3+Ku848%9}Hk zp+Inq7`J)8QXnb2|5z*o$j*$dn#IJe04XJSx=yjb7l}YYTV%KlFjMmbN%yF>g;pIk zP{_%MP++IIklsGvmBvFL14%2AhW+$^@?8uV`r*Io>7|C4+Kmk;VbShK4a$BiD$e($ zGm+OcdcMn+uwXlN2NqDw#5}rEna(l@8B*#IRAO9F4KO1D>n59_c{ow{T4G>LCog z@u>GVW466|m>^BOL|r|ZZxP+KSTt5_TDl(=qaA=P{AHM7GVF1l~75Y7dep>>v|DhB=vVKY+MO%1<=zmdNEK)=t z4W>Q}zzp%XQ5=5~otyEg>VE>nq+zDwM9=aF9~DNPeiJ>$5-5bT_^W<}TfikljU)fO z7~S?P{4UdcgnD+f3!U;{uGpj`*j{kC!#_-!@%e zc`P5sp?@4*$tu?Nd6R;n+{mG=wQyP~$l*S=adfGy5scL!#pxrWoc|aH9B(!Mo@!SOkkbc)6};T`ov8S zGb>DVl`_X`=07jGYVMagg{i*&)1;>sYxyPfruC6_%26Ef{3UxWIa`*DBYS|mn)h+_ z);E9E>%(t4#MyV0sWY6*O;reRz@3o+o1iL&Hm2QZ+5V@aEtmwrL>#jU8Rp$em7s_k zh4zHx60o)OEXpmXn|c zai$#>qbg zyja9{)?%uWE*CM4P-R-P34Wz=D%U6aeDF8*eUGz?AzU}tjVE7XSQ zr|T~0S_o{bsjMd{kU0OnM?;b1rL7RUnL8!%?=_~ZwT;w9t#0@IRvo_4S0_zNJ6n>h z=`!$c1+IUgczh;@GNIXH78dNZagewzwVs}GvynV$}kHHr* zRr7qj9d0={y`N<&maMlaRD$4l!pSwCH_C_j{5vT2LS_*D8VP#YZ_7JbidAC>*8rO;EI8kR0QVDHEF)ozbPy^;PKW8dlD`u(dPAnDrHT~tFc zZvB0I^46Y}^l+Fse@9(SAvn2?Bc*$-`LGRYx1iLh)4qyE5hH*CZ$rhTMPf)|!TNc* zhpnH2-DL#?QP{9`2s2a94rLB8kAZtSRZ^;E9}tbbbUDsT0{KkCL)=w6EpEVTarlgn z4d}eAJp3wiKJZ;Op3Ftx0Xb@9y0dF%fiVH-ap%4;tPNc)e$;0KOfOt{jE zn(hMgPo&#YFLb^6$O1}z_?nGxO}Gj15BH!RQNYj_2oQ|) zoFva>a>Wt?U;*O&LlR4>p#Iq>EAd zZs$V!kF^~#FQc4|66rr3ic?)D{M%g3Vo(h6%|S!HRNp1DM?ebcZ57jv!DX(7dUwxA z>0sxL=vJoy@PM1Kwvz(%(oFv-RK@rvxH^=J;O2U%g5*N5lRI=Qx$S%=NBp=Ya{}4V zJ2e1J^4&N==qYqQA}dGV1wogM*hlV)H#5%0O>j!#YU(NIgGp8`TS}k&#B(oO*5GG9 zLywjwWwB2zp*22uh;IhP?-lgy#JR`GweREjn2@>Ar$&U9xkiwnPo_U=oeI|pFPrJR z|3Moz4!X%49e?!-2=l|-;E%|kkQFETaVVb1uz(th_v_;GXhRM_j38W-J7HACpl$j8 zC7hps%ao-p(YOda^)Rs6CUniSpD1$zBZ5uE_263W&K@OuG_@d5)O-6irso3glPi-0 z6C^*#oADJylBqGvNdV4HDD+?(q)#{*Vh1Jobs_T_(6Q_2c2QO{8!HlD;Yc)J*Ap?g zITO|qU|+PQ*Il^=IPDVJu|oVsM1$|AmZ|F!{`%<~1tQ>Zdj&JA497eGEN@JEMh`ta z|0j4zJQB}j!og<$ndLGgV5~(kURwEoz4;IJvlyk=4|ix~?NduW0C;L84>SNF@>`uMP(l%Ho9_e8S z6|sSTx#fy46m;G>j_$^^TDL`-iBW=J?8ISh>)8Oe1p{Pnnn8l1se{ek&3{98z(h$jDb_@yOBtL^xz&UfxZE zoZ=feMc$0?U7aC8b%_-6q~SZP1%%K8-8cC zLn@5{CS+U08m-d+_3EB!Yfr6txtPe|2!GVd9lvf`$!&bUe~nV=&aqckTl}xw3Zaz| zno>4Xtho|RKr8vvO`_;@w2AZ`r=8@?f|kVVGsXGCPp{I~b6*bccQZ%y6hr6g#;(IF ztL1C3eqQfn;6{|N;M6-KVPd87WJTMF*EuLPm%bLY{ej=~@-ZLTPRZ0e>JTZ_kXDroC&%3`&t z7%|uMd37l-b5bh$xQ7v|01E&D>b{>4;dvq%tSyJlme{z>SWHBorP$!_m~98cMC`kE zL-xBY!Vm8TzOQ&%XIJB+0kf+$B+nN02>T>F|MY7kYHY^idHneeEX21uj=9C>-scLO z?is*jD=1@_T?1avW2LTJ49t?w#^35(T872rrl?*E<(S-NNk#VX0F}MNQ4ehKyv}hD zO40)Nl-?Q5!=Jh7VVJ(avLMq=P5{y*BK>baREw*OkL!?_r$Wx?ObSLK>0s1{>-m2? zA$L@qg6mSLQa70Qd1CaX zBzXjeTp|76avp6EC9@Zh2(J@C2qOilJ3+U}K-R z%y)KfxTjw=B*09P^u=xCg<3YmD%Zm%^`lUR@F~Z&| zyE)LOR<%)(0GIpJqNq&JPVRUzsG5&`%=C{H0L>s7Vd3W(e(87E6hx3}CH}XNaObmD zdpvPGz~E+j+XpXO4~&pmz=AJT$+96OrDAnzYSQE#=}tqg3+=jps&FLeM`c`Uc)9Hr z?oShi(})&??c`RPMaS;y|J&SH$}2Fwno`Dr#OTX(w`FO2-opB59TI2y(YTy07-S!E z)%c*JAe?@H0imm`HY5suvhJDd4#08i{Lm8nOT-9r z#tBhn6$HB=W$|~!f4w=*B+PKfxckCUi=}*dYrUGVvGcFgEI$oCW-_;fkK^Y1ZIAjF zvuUoV1b)9JC9J8iOyp>4P|PLr_sG<$`MmvP2w-TqP$NH{<#TS@yaasd}V7Spi?nRAcV7oY? z%OaS6D&}4LOLfD3jEQIk`NCdnXny&%KA2bt6LR^@kxRVV8J`E(U;!E1A)&%{0@i!c z#Ec}=Vhus<`Iit9Qeolgb$yAtOj)>Ss#g1 zu4%awcFN0p%@o7bU#C2ot;!!YkfbofiM|`te5H6|lHgb#sonuEO@4npd&-++ktwTzaNHNxiDYe@S>e;MB44iA-)#c5q5!@ON@U=*_2Z_D*kx$p z)4qJ=$bb(8-7fccrSPn(kwtO)>F4RE7g{7Y)Wf_D?J&OF5*GJ{I=wz%C*0samHre> zu%xENKRAAT>*0-M$4)NkBR~F~W&x<+Zdt1nk-K0o{=V2E^PDOOO5aR*=N$UNFhhFT zqp#(5I#_p)I1t|E_=uBDHffVWvt;Ix40#bav7;@XipU#x2KjE#gu$w}^bMMi%;!sK@j%53lcK*GpIk{gRg*Xwr$6T4PA$%++J5)YvtE8Q1iAGnUY-W8 z`0*BSOB#6I=6MY}Z7&t2%|f$ULHV#Qvt?~Hc1G~gyXpCuCQeFlXW#ojS8jW3z51un z`=FKXKfc%g6Qz>2jzuuMb~UZ_UV@-a+$)EAi29GN(dWoDvQy`)oac+MVL!1;t$Gtw z9{>pK(shNQHSYJb*7zZwn(KYr8eB3_^yv4E^{e@nM;(fi#5p$Q5{hgM+=9=k#CqJD z2#VdiNB^FW9wwnzzG9m_-e?0n5Zh)XuCiB|)_5!d+Gsx?a1tvtTn0+xV-N4r_;g1N zqq>))m#A*wbZ!aaQM?%e|AeEfgBJrJF*oX7ktuHFVtR!D6OjcTJ&T7cLh9q?r3VJ_ zz8>$}>*+zG=FP*f`D>RMGCIp!YMjbl&x`AYf`W|3HU5CBY z?;;iu5_Jc<=pkhd)3=1_J&bA_E`vlox^zdY`3>&C`@ht~adv3+0FhdT4~1cu6ngcw zF0Jqfm@l0)S@@}rp}y^*MO?`*OvqLumFNnUY-xTWeo+I-xv>3uY>pLdz@WZW*n{~y zK4I|14G*l3Cwr_mJmLT`krw)JiT!yt)Q9;?;e{`=?5B-z)!ihp#S3~(O{@*|tOT%? z7k^g{&karON-SicWR{Kb`yk9g5Rg3Mo=74Zy=0|T?04VJ{TH$;^hPqXMrVi)A_fH- zWTI!73469=04c|5CAY|z8UI`0#8-8#2_#*QHJ^;93VYmOA=-{EKA>RW>(}-{M$S&3 zUSQTyFs{Gh!fylnLAF)bgyyPw#rYcllPb&c?+}rEBh=jD71-rx0r*rKJJ zyRLnh>%7>Yk=4 zIxZ^hvgSSF@m^jvsgN)xTi1O$bl(k}3+S}uWdMb^Y#y|Mag(8lg&oPFEb-D5Y8{O! zasb6Oi%Z8@WEbM(2yeFoPm`h)*1ltDp1|+e7;->HH}@o&pYYSiEb~ykY^F*=uYFy8 zh68e`RMLeoxIn26v6}S64jd&31E7*DV&MA?Y(tDmXyWRo=YHE!0)GoALiwEc@ z#X#r$Y2u^mwg0a08wbmP3z!+9LdA zT~n7b{q4ic7V>OrE6X`4rRi5AQp4h`)sDWy*oEH5n}9e{N|Z5lK|piP6@DN5dfMgYbtTV=DcQks!p< z0QjfY7us)LXUyI#?xoP5O2H!iy+G>CGv2Zw3hAR9F}h8&pwtUtk!4BbsZ@Yz{t4HA0pCu1^Tj@amUF z=kq_@P{wDgIFHI*ctgiLuKYN-fR=6PY7X0wAPkjUbcO3LH*F0i@(8j{KdVn)=LbjI znYrz=_12K*?IoHwN`kkCXcN8Gg`TQ`)q&9?WqJO~(w1Sa1e`?(wvCIvG9&uG7+rn%+Bc*nGnoWzfL|DkA^uGz z=xGN8h}r`($y&avM=t~sO{TP6A}t$nyzR zqjxv#6*mBOa^~3_RVY>{MF0b1QlVVu!+TmT`(^AYS+2CaA3RTR8$E`in`H=AY76dP zFHZjP%-_XXI9PZ*>B55lI|Lg}L=gX;WK`2!aAX>kF7lVtXaOQqSLFB#;Pblbn)^O$ zM*b=RC7j^xr!?lGo6eVT(j@W(YImcjBX`6k2F-rEO8^=~FlN}hO;`ak68j5UZj~uR z7LcBi5IWXc_(%5+h)|qVv59%>+>kj2vfHHF`#TCoc;!>0pg+J>#E@x`AJ$4X+EhRY zYE<=4(|VK_xbf>VB4gwr@I0=m{siRe)!s6PP)~Ay0*Sks@fDt&(FV-_Z}*BRCS3hf zdXh3Q5t|iAW?%EEbI!kY0(BKXTO3U#niqOftMGEG_$07|Y>f)?V2r=s*upTRFYtNH zYu53OoBZNkK`o2p;pfA^u=+xSS?r)1j z>hhrz%2SmkW%uEnyVEB*@CHmw+eyWI8GgUf6s=}D=@>`WX*&rxV7_**WF&a}wP^yZw964x+ z;&$57D5Mt!Uky+TlqisBe&aZ;7Ugh?$9Mlf-uS*xn+?qv8D3?~%k+SBXMstw&&WOH6mRq~}RaM|Av50gDJ#|Hp6-EGZ8`BaP^K z4P~?gX(}o&j_O4GTeZK4keOP3L3;WxuUh9-If_LRYmv?{Yq-56hU6Y}8y3YEyWd!t z;{KZ#h;XmGw&!+IvTk@lF~*aFTy^Y4ZNVH6$hUH~Oj}R9o*rRPBDz$@rS(1XE27zU zfo-Mi|1m#MNG%M=ve&*4*@XS2?%oFq?W26|wSC)G{IH&ZYqHn9lbFm9np|puBqMG> zj_mCbeVYK}UOwT~9Wakdd)I7vg-5YQOW-6Kt=rV+qicZ3bcv4S6VEMu7i7gBJ#xWw z^3iNpi7dWt30D)wL$una87=%D^j``=urw z4M^`8{bD6dDi@09W?_VvYvIgjT1T)vg-{t|n(CD0m6Kp-AJpkBq_>f>T-^9!d0EO!K z)6>@5gS%LAU!ECZ_b@BbZCqm4rAdeOhY#S1`e1_iXvLqT5r0`JB|^Yt59TV-o++jw z|JPFq53nvZQ+4FFeYFB?wwXs$xEGyTeb>De7G?pt|EV?pm$S05mN%svlBX`$$XoKdl{wQi&NcRwd zJ(sy4Z=P?GnrusM&0bJtah*71x#f|V_*jovMxmealiWVNDx3+?a;3FHFmmfuuHLpn zb6-}sH0lRQiIa&AK#q8Rm_~-Ug#(LBO8p*;(en1{(qNum4s) zSBH?3d((IiK#^}dsSjKsr;Bt=uPJHXDVL;2AyD%UJP!WrV0I+soV3JY`k@*ppxgK} zBZaW-G)s4DdBUMtun_uO)Y7hsR6c;$=qU*D!BR2#LleSZV885T zNhCdzE_&H1wgSzrn74kqhq(}@4~&)&W7El^dhZVQ?gCQ5Y zpeU6IvY)cetPGogt3hhbRA$E033#0h9+eSD@>uA9$yum0)tI;p9=WfOB-8@0uBwhv3g1a0I!6 z&yTDXQXpiAaYKoG7~QJp^?!~>PusJw^-}N46(F2?WMMr07*PU}sGM>ph0vH^7MxH( z-(UoxmhQ7@m06Iy|N7RRd~|;u+2Di;KFvfh$PJ<9MnpP0$VBW{`-=NPv9!U~^It1` z@W1k)FWaRatyNwUIBI5XWkl`(LTJ$8nLVz6cKzsV0EVZJ@9bLtoc1CjG64UX2AX=% zptVZAAT`YV#R!Ru|%X*|1bF@4OR?(saxqMhzQs(3Spt=H{(P2L@q?KejmOU$JI z``Ii|)%JI#t?QA1H~i=8^{KGjM>hEBP^Y4fOVwOrs%~-0E)V|A7I}{b&dHsQj)f)`RQ` z&VcHVhOHdXw>QDSRba^n+pX?Z@8_0Cp1K|m1ne(ucghT0EWB3^9qut6799Q5s1$5A zy~3r{99My-){pZ}FN`Bd7JHqod6|U>*%U_6Jq(U+cXK+^Ox#jv7TUzR}KfREQm$gb*J^E>f~VeJ>{opNA{Rvj>pp#yS( z?qMd#*X`>NPf0eiyxfl=*e3%~;Uz4QDI zRSSR2&k1E5!%>(Tr~}XawwDSfa7Koby$qEXEk!x?MS|sq8#1lqzJB|2EV$4k*;bc! z0FQ#$Fg4TaJE7T9Vo=eMUEZp_UqWT0-p9HWfTADY-F%FmITR7e0;xEytuP|F9)x`a z&LHdPkYWvc3!i#A2NHN4#r`ucFsl@8mvd1+)I7*>NOOz3;@Fe|!Ts7h^Bd(N#qOy?aaM;WrTo&55g`Qg-e2LQ6U`;t4Ya&h@~tiYbA zjTfUd)Ls!o@q7d-77H*N#~nsIl2iZhE@>0W1Jx`O^=#uA+_$Noi)7}elzNKXvk4pF zaN$^5j{?*S)3gey4^;1(8L9|>Zu8vd6|tGz!kfeNR=J4bg+4aYsawMf?mDb29!JG? zg|JEE@@|@!0#Kz-5-&#IiXuKDD~c6`%;h3(ndhriASAoR9^Kb7Eihq>W!LU^1L~ih ziZ31|04DEK{B~Y_FawJg?SVD4Ix`bf1)lY}jWW4xAQXmtmcQCIdCbVpI6htgKQ!aS zUz?dfvqSd-maF)CSai*Lf@Y3H85q;m2{BsZP7EnBUlT$w)av^XUa6a+(>+j{Bh^XT zYrwhKeD^=U3hK6=X#)3mYF0;$V@7zm*EU)?f52PgTvCyc3U*xOOlsbQL5xf8pJ2*r*% z6YtH90Mc{SheCz>OeMlDzcn`{JiR8SX~a6|PBWFQ`+A4~XD9)o=s->U>#?;lW@7Ex zy77DjG7c;5E0xQ)-N`6pu093P0fk@cm-)^Uc!wXMrX!W;j8C_i2(X=+Izl0qmY9;9 zLT}sIl+Ul-fBIj5F||mVyoQm71OZr9(%&z<>?GMifKg1e^KzUb5*r@%&B$j3{L$k^ z$dnaB_8+f@*)G(R82f-|b9C3>Qs=nO^z^quw1?e(RvR})WT7pDd=uOmS5Kp`;Hg(R z?U;7kZdqy1INX(F;MFh&B^9pWDGVjHR6s}1L_c@ntwniHl_`np8Dh0GW+CXRN|1Ql zoM%e{MNgQE;EZw;w^yk|%P_Ncf&11vl$E0P1c6^NokT(ylXZS`=yo%nt;{k~3LDcV zjlEH?RdEAD!u1ph{e;as%EZ23pGKBMCC7Y>(b6+oh>BWn2@3nC$kbkce1h1|yU@i5 z*75#2Rn0#{jelAZ`F2XL75d6uL z!7X2FMA=&KcPt1+>L|f7`mBtZ*!H1bIK>yK&H8j=?PAT%tT4zJ9_aaz16hn3A)3g* zN`A-eBTqR))1zhzY1+VTEk%!1qZY`;-eX`HqCk8d`_&flnO=GV3UiOev{Oz;Wz zA^9}P^VRjva=;kfhNL|bx6+i`OvVi@7rdWPu&q0D%;22iXfC?duMQQXX(7@yO>m$e zrgFi>tUqp5p=XN|(dVJusKNEDpvYYDaIoC+JUv=D%*x-kO#47)TE~CPDaDd=!B6`l zvSIY6enD`Ce*&nf`*a_-L0C&`2#)^Fv~UIfV=5(t8BA;F^?V60DZB3)T}Ax*(zc@# z-&PIU0f{2N_R1}foOq%s0!%AkwY5;n<>9r578_VuzHwo+y*-vjBob{Dq-p0pPg?*! zCNQ_kW8%V;p)%3h44oS>UsC~QzI#F7Vi?uGI_tLK3!c@C zsSE~kOPVTFoJ`x!g!$+&eF16qQi|H8EGR)638#CMDE3iEVUhtE=3mwcf`{5DeP&h_ zj9FFsPlC4Ar-*PYb?$SLjf>O)7e~xemZcmnBIVqI7aSlJGkw(R*KW+Z;s9bpYCn_M zlkmQ0N`wna#tV*+3Q2Faqr!Rj1ByA!qn!WY?(pZuX>!2?Z&6NhS$9 zxxT=DQP9#&^*C>>hzS9T%)_c{T|v3eHeeXNnw>rLik-tq+x@}#I{(AUb&L6Fc;?)b z-?54}Yy5fBA5@GA~18*Ku`3gE+fr0dqm8r6CbjDv3PU6Grw6Th(tgjTh!vk(Qe$NpuU_GME4^Zf9 zTmnR%zA64+nEJ3O7!6;*qOT&}CB!oItT|oGz+vP{h$8(a0PmH(y#WNUnsf>n#M&>w zL71-Ej57=0-9L=RT;MdC=D-rFl&k7P(^ei(zjRp2mbcZ*^!^G1 z)KCVS2nul|(sIUiT>~8$k2Q2X#}_OA9R6BIj({3Jf9#e0`_rAIF&osAy<)!2eBJ_f z2f((+r$jBC<4*JYPGjY_rOBs6I$Uy#dSFCNk*; zN#fm9j)DPbU0|`vur~Sd3>wYAPpzydtgKHt33Ms5Z^SUcY=;@sjE{F+)#h;=hZsn_ zXl?>RQXf@1{2E?5!Oj=!0ubqX##gnuAiVzKydQb_p_NeQu}rQ&IkWv;`bsORVB8hJ z18i3xO~|N4G{5YOn<&4>lrxOfQ)~FCm0+$W-SHL+yl>FLT6MbJsvQ&bE-j@ZNeAS4 zQWTGAo-nyCCSx+lKT>oD@5-*51sdt$&Hqpe%Wa_?-C#Y?koh$(XQU09FPSrUUlQGB zlg@hMqxwqA|Fkzkm*!=%@45>|e5!<*IR^^(pq54{9Dl=>DQN_T709$s&~-csOXSR^ z>?YgAUER>hfi3`D)9geqZTClUL+u>p9ChI&NQ&Cfpts#c)5l!WxvD2@<`>7Pc3Uaqu zOB-o@m}LI~{GOiUJ2EW?MYkvz*J%Ay{Yn3X6gco2Y;g33N*2uu(%q;5BVO4jy|ORqfu)cD;feDyT8p$~kL%{@I<|L6STsz)tW(t9d;puILOU z5`GigwwKKuPRhA*XhRryGlj5`)Lc!)W`~ux0StT0J!fh?R)Fely4VwGt&f};QKJ4>= z!aoW-zM5Y6Nqn~A@TT8wIMFGb|9+HJC|?9qh~pf`yD5Z|aa&4K@#73%R=Vn1GuRK3 zj)w?k;N(j|?rcuNh60VUq}RlXvSeB@sb=`A;FH4dm0zQEJzW16})Aaqmk58&(d$S-8BB{e>wXo z%L+PL-X;jYr=rhZgjKdmRtRH?x#Gs`=T825$sq)dSS}*{&(Q&ekXbgR-SmnFzT~#3 zV<&UT#B?PYKbYBHx&7X@v4%8SU8K>9{)miwqR5 zXmxPFDxOK9=PVa`K(-9L4l=aW6n%xs#Rh9prsfwX6DcS@u4e)S^;8hSJaksajW6 zK`P4(9Qa7Secx*;CwCdf?+aR?q6f_g>iP3X4lhjP8-WAuR+O9PE#ni%ITY}@3pQS8 z&xwrfdn}25XDQD-;=QD~85Cvm$fEl}*gsmNA>~ZC3Bm?H$}uz)H!XJ*^MWBXv(J6V zBJnyzIqNa+UVr|rU2hm#xF~$-OW*j^vD!0V7@gC@DpcV88T&GiE8j#s)rRFobiFo#C{g^M!U>FP zqN?1x+_8+vJqNer4o8n~5{aC7@S#!s=Oq(`RE9*QJgz|_at5Hh%TLIfNCMdy3%Ga8 zKOG6n;MQwC1Z3lQWUS=fCR=g*?*OEE9BYbCSz0z{E?7Zn1ar8*zuva3E>fI9Ffc9} z2a}hcnUPE-z_7EM^R2t)XG`KpRT#l@b+YQzmb=Cqf27DO1r{wyRgaHc?f7j1ZK^N# zN;tH3uB$MU=ZIbDoyCX?Lywr=4?Hrbx1Y#7xOFWvJ@(531t&1;LWG#C_k&(`4JKC1 zu&-!YPLuq!n}Ej8z7TmH)BwkdK5DO&@yKuBz&i+^`@hPXQ)dsrJTbnb^@ib@yr&dl zg8QYyy#G~rxMdxdVM6q130CveD>+i&3{8DSc!C-l;noJtzmj7kQ?keL1oQhmbBx!s zv)eG-209RxLc@dp7Kv?5v23SGYm8*N(?}Cxm3;GQotAN1{~YB)`RfF?)xZ|jkZ1cl zBCJlDGBYJBV_;Zx4Rc0&B073^07gTqru$@3=2u~Iw1EZXf}_?{vw?mn+-_m+ijj|u zA9?ae%zQ^w?sJb^}%efyZ30T0-1iS7T`X2)YGna~F50%_#S$szIxxAKCfDVMBv)IJ z$!Xl2LRnsLq=&tQq|qX%AXq}FyL*Ki1I537-nrvD$9D=8QMt*aEGb1%o^xuz)k3R% zadRs}Df|Zyh7DYEq#3yVEx8DSJ9^{u%$nBwH;9Gg78SIA-P!c{(R~+@>ryo!o~I$) zwIWMpFmGW?is3b}Ae+DsLaEKzkG!8kulPDBl=v>Fg|x0aJpI!X)BAqqOZZROm#N(6 zQ`*owLDrOx^NJ9Nd(Tx<2Wc!jS;R(F7k9|FX!>GPtxQ88YNKZT)EGJNe!T`F%ndOt ziy6Vj=J{sRr<#IJr*V89L@vyr)?ln=QA#oHMlry>nI+BrQ#N7v9Qp&X3ZwLki(AyP z&q<9QU{{SLx#X>qu>u14eh_lbweqIR zKfOjz7PCWvhV`B+)Az0eEd9XOI@fD#_F_5=+D_0A)j{&upBVVeNQi~ zMR%W}sw4CDuH9Z>cgn38SY=~zQ%361{wlx(i&*r~9>|_3mDHcRfdi+#P=b3|a01_8 zv9Ab9#h&wV*QGEQK>@xlS58+{MHgSP42>4saYzv;uj)pxZ68^|Pd}q!WSEN;d)43; zK|jG>g|&h+cWd@>n=T^iCYr57k2W`G1%!o1LCcX)5`q*qF|{U?IVh=AW^WUe)Ty`# z3-MNl?}M$}tI_H%Y2P2q^oZHAQwwM(FN3s`-{zhb*li-jgYosxTqw6pE?8g}+iM8) zo`TlYf4O-2@8XJs<5qf)<_ z4+^M~AIaqvDf2r09~*%mJPpPM-|8|Zo{fR+_U;5)Mqc-g;OZo^IHq5~s5r0u(C_5? zYtvgqH-bv);Tbu~bFu+OF%TH!*Je0{J~ru`fz1)iC}3j5_yph1bLlfk&B1};i0<>h zSz&(#BQc)Cb}W?N;5?@Xit2y;5M?a-q^Wya_LHtxN#wo($p+5M>mUknpAIA4g6479 zzk)g_I>~lB%$dB(9A`jFS#{W{8*G^zw1H%>;6N4sjZKMEclBOc(GYQ=w1uYTSOFrH zLF--RJby8nBTdZ&TI}ubc0YWRZB3xC{%Ila_wM$xNpq<|VxaK`>ec6l?y^{jVrerS zZE?kUV+eH8-Hi6FyKACUBUJ7I&zs3+FRk%(c+`6Z43CQS(djtz)7mb6|K29_*X-|Q z&X30(e%&7Vx;a7S>e48TKO;T_e2>6u)l1E48~T6@u^-`pM_S;b&q#rS7f~=LePF=U z90Q>QWGke3kyQp-YXNZrmd|%%{sT^zAYY~wIU2gsjf>FwcXPYY&Wb&@c#lX~xOMa#EMJ3jB7-Aa3Ex!aL)RlxzsJ)Zc7rB`vI*<`uau_Merkn zK^ue|MNS*J3UmH@f7)AjT8eO$K>h?fZO839a~Px*HZbK$cx&G11_2C9MP1GN+5Jmd zN{C43(7+7eLmM3M)kh1*yIi`}RLviD)Px({E1r4k+ZQJq0Ox~)FHngxFj!VVsZ{JW zO#5uc&obt41iOeE5ybzesOzqLaPh|x1mot~QEJv}5z$+?dbtE<<6U^frP^dx)9}SF zMX@$1Fi>YpWf_gvrQ&qE4%}kT#&qTZBeFj<2XC+B+`nPI=p^3xv;yi5OI1+-R zU0qo@9zqnG7*Tx}2(24<-VRtyfw1Eu~V#(}t9Ep(t2UgY@&7)tI|Mma^C>_z{dj)-DoXr&H8J~<6 z10!l;WzeyL9MW#;nXY1&W!vxhfUY!i4o9la8)$u~lQxZ_vT6v+d{4zNB3I`@mngDfq5P{3euaW3w?5M^xY;ki z(hKtYfSg12tHA;PZCb)d#UI!k3Jzg^+fcL~`~g_gUVOKjFAA50UHN+R+X$*diQRKm(h}Nj{9W}baghHc;DpdXY^ubEz%STF9lsnT_fJxh^RjT7s zj`qRvKdPpbmxhJ|qlr-EIsGNxbqZ=jFp&q>ziXo&BQLGYhoR~Z?43hDg*HyWW_kFE z2rKUuxy48>J{t)Azru&aov+Dvw7#OhG2x*?P)KhL7w@%76qt*t@IBZE$J1&#g`dESeHqh_ph3t4xn=?wN?B zB#43V_?=?b{mr8UEvT`%uutyS(Z<0MV2)pTJPlrvmylUOAS?3*+A&o0fDb)y8r9(@ zu>?QW6?0zCB?VBR)9jng%tq0$s5;3QM?Mx#e6zdV)92}tKddCbeLK^$RWwjxc~e!j zYr6pvlCP{^{0VHH?4<1eIf6<#5l6Rj*#?+@PP6dY^bd!LoBkgoBOFDzNraXg=GMPM zM1;{mr2L99@n1SRs}veEy2aAszt@dBQKlZyYRzPB-(6i_tIs53&Tj97uDm8sJ+J~o zLTEL|*KhVag4DrL%2F58jp^SOLG#i9NA>HIH6LbJ8sVPzJ0utFc*&;|kr@u0Dngar ziuQYlJitRT%LS&p&>bP*Gc7z>wgIa%bV%bACI5MVT%#5@EZS z2T+!A5S;;y5>Y^+n?e>QnE+Q#n;Z6agXy4qOfC~62nv47b-koRgD^P~Y=p7dysx1w zD3~z=;F)hrt+L%Z^yo2SfJjjk&)pzB+Qv=kx`=h;jM2s#@qtie&a>i3H=os32-g3X zaI#mD=B`$1h08X0dV{eAnfEu(y2*Y;xEN>e$$EFx_P;(=zQ&=Q@>vpq7>TQM zy6s^wHgjgjF4SsFQ5e=;f0@K(@0L7VWGP|mHb{B;<%UAog<{1^@nvp}(k82$)Y17* zTlDBPldI!gTDLonv7ue_23iiI62e~-d$F03ESRO|0MAVRdIGi5mQ0UKPy4Ws%pn<1 z&MrN)TUUZ6yi!S6+^{bmv+GsAM0bT(gx1FQIBXmT)qSSn+Kv5gpbB+labUQtyefuj zZZuF5LBU}=DDC-6XM{$n^WkVp-Al_tGxRX>hH2Is4@h{hsqLnSa7}jUdfWotFUZn< ztljk;@z2Sq^&S?|DBhNQdWdy-3m;b0WZC>4KRG}ZN*JUiw2ngqk6P&?FiKm@Q|;ax zHoQ0V@2dZ7Idfj|9EW*SOEmexWJHYgO5|)vFO;vF>@ch(v9X1IKo{;S7iFY?-tA>I z-MrKLQ=l9_fQS(OJPwyiC(W95^+E*`{lo=H5ROVJs?dE5jiG4PB@@-G^QU0VCHm89Z*V=|BgKTKPcc0(Ep)q69r(#}2ntQPO)x8eDuIb<9Pf0L8PE z=E0l7$?|oXCg5WIUqq8b9PP_%XD|I=wLuneOq485&C->$*qC>$pue|+gVxKMHIE-* zklZfS57z0t8|opKAE4F)gYp1rkCsBOtd4j+4@r9J3xjpup}jizdqWd z4}y@%mpCklR^7^40jj6cU`o|tG=o?afgnNfisH1{S2*70_AejA3QDDkVyvvE%31|j zPfoF%oYcBbvy$pkmz>z7G zt&pJ-M_Q`#Oj}De^kHVUhivdNEVA`aS<;>!H#G3BB&a>9?09(j>bD`F2CE&54}sZwprfP+4w{ zai9psI~rConlgY60dDr0DKJRw85BVFoFLdxB(@8y^#2E3FA*C77MPaBX9N%oD&MG$ zT2r?2dNhDbVmt5rGu3Gj|H~OYefARy9bjx@0=D6IV2V_#E4b{FGf_`IJ@{`hVB`U%b^UUh$1EqMMyS4)Xb>@E3Mz7y}EQDrisEu;#n~fJt=wLSFj=gkmrH<`feX zIKk@-fb(w*uvkA-&xHenvWNP7K&LYaA)tWCWS>G0h7#>;BD!uJ^tBhlbz}xz0da7k zfm*7V27NZ}|LlWE=#kn}Nzt?fQ0)*!uV&mkR)Z8MIz@#M6NCphR1p*cMJ#q=JU`tb z5z%i;d)}lEZ&f)ODro%TVNzyEuuU+v`-nB zv9^KRRj7PK&dIHC4h-@=>hLyM!OB6E2O8wE_JbHW#)#07MXcMOylh$0=R;TX^jfoz zGqnD0Fd+cEfN!DXfGox-2TcmNvGg7v8#B4%6}Do_rLhS;inD+V){{!yttB0~+i%TLS^4a4T9(>_5JbuQ<{bh z{+s8na|zK>>^55@nn0chFYA2PiVU)tNOzYrbLo+}1;2%QPG+orkC0)(aKz>dGQ zaV{-r-OGvgP|jCD)s&QVpKxN(Y%T`K@6ts;C0ehy^|xDiAdMk^?LFh|Y5+Je1#}{( z{7NZdN&7&NSPlKx%KP4L9sae2m|(!26>H=Fv$xzRHR$2EWd-%LhdCmV42UDCY_tER zf7S6kfC_4Tu<7OSg5Hwwt~?m}UqG_rLUT5|=X1+{Nc3id!i7Ex8yu9;!s~9Q!r({o z&qyqFdG#_@4dfv7+fuN|vc22+c77=Uj6+83!rAog5ejgYioZ=aEmi^3QpSxaSk-U^ z2WlLVic0LO16xAv;``FG(C=Fk9EUIKeI3UhH85t-&`1u8TW_DnVVSr(MJ?(PBh#Uo z1L2TAXUBFF(VVx1d$a(|mE5VObfBZ5`rNB@8=eTs!3JTco(Jzyuqcd!{;DTZhNXj^ zhz)RaV?1$EqCpS7;ScIwg2U%g3LO^!Iqw?0zdDsmMMn$bL7`^Zu&$(;xS(-TH=B;r zV=0#1Ppt5Vf`^(1EZfEe@T#MWghw#Eu$R~LT|Hzd>ASUQ^2dQV5OUKf>D>Tsa_wBe z^Gw2oJ3JFx)^q^8EsrAF?i=q_8#2LT4>54R-pR8ojIIot`0M2W*|D-P)y~nqekPx|pOE_)J~ z+OO6KgM*)hD9X9oquV$;$vUm0j=qOfeU3B({J8HG9`BD9KUsu4KRH0{r95k6IuEK% zd-<+spS53eMzG|t>oFXA53K%;iBxgP|Ne>bx}}5Re{OJh_8|D|`wHGvh)ssQKF<@v zBQe4#{KPE}KCCB%kcZlTQ4HoU%S?vD-sZWwxGLMZ1{D6-2_g{iXtlQgrKEwPfBNj< zxf0qS2}+vod)46(TQVU2s-V9Mw3B`>4%J#o*|;YeAglX^IwH-02*nSi_-bH04T=xh z0gJQ?zL>e$2IuRNK)ecywg4i-!8L#ytLgtc7tjf~YgQ-$1wJQM&|bg+MYSzaNR^*P zb!6Pejc_GpvAP=$3`_KSP5o5O#3kfq(dq(-QC(OQgp+TV1u`H^_^o&Oz;YjAHz9PY z;NkWUX;C!U3NJ*Pb zk;!Ft7xVJ?4CF|Q?#}W1*y8Aa&MMqd3g7`-Zrq_B;hs}m-ZC&qxdG0~{(->g`J6JC zqnj*puYuvWCh-9>0Fh=I{|O(GS`7l<>hMRLVi$@Ku-U@_)Xpooy3c?iU&cy23VxRd zCUT!GBCM)1_kYtJoC&|$kmtz;6f3_?&7pVHpZ))AerZe1pQ)+;0JDd520UuohWXK&@;t{b96foh*5yUhQc_x8K(Oig8 z4PTIwh>1#SL|*%xJ`lLjKa1$~0>t4(5bsrU^B=p{Flfd=chVl~x#m;<$Y~v5VW!d$ zGnEU{xR{4}$T9{l_Ty)-2tt6s^tZ6)DSbSv_ZtwJ$cXGGk{Uw2(M9eKaRyK#OemZ^ z;dkKWfOuYREO&Iwk{S~phXqYC{PzzTeq65}zS|mJuLJx4l?5Vg@@5Vy{TXqo_z;ZV z24>2S7uJE(lhoYZl8YXy$$x*I$LD9>Hc*0GKTI=QIbUPjLm zlmA}35$`|zwKcYvIGP6Z!6FnH=PRgMi!vi=B9Ef$7K+-N`fl;b#zhWsZ8`>%+uswO z%aJlB!GHilY5Is26d_mPU`z%CA%eEL?@g8Zymt=(FP8VyZCZ03K_<_D;uf9vTSzb; zZ{MuH26z>nob}e)hszl-OSk-ChS%(h>>6gX8R_L9{pXHPIWOAcI^L^4y3=Ipt(*fP zw}Bf#6VdLKVfuSawiCo_60ZE|(^URWdF=+D3~z{GBUPuk1yAm0|HQYSpKYsXYp+BL z^g1|VAWGVwisQmo?@hvI@rARZHHkWi9LOxZZ;OmW`R*Q)U-sMfT7Z z&*9Hy`k&e6UniBsE;y}3t(d=RI9uc4o^fw=Fs&_j42Gr|fBg3YFYdL=8#nI|Xw~CC zWG(2^-F}(COa#cKrfn#tt<}98E&peGn)T$$?X8{!YTA_1-#H%?&^7M{`EX@a%T)IS zklY0B=>m9-&f{Q5=sJa>mS${qh66SjhinOb?)+RI?)_g(cNPCOO@8G76309P0^dui ztWLb^er;}L!GAguk^j};6sozRcP9_XDUu9{Zq_ED6jd&HHn71y1QuT|66|$WBGe6N zSre2)O=j+|Xjuh1Q;P^jju2J7w|bM=BZn#v95Y!vRHM_nS&zBSlBt*9PZm*jR^}pU z@!f=cub7}-EIF$h=eqgyp4G%%8$(2tsl_GF=2bNb-SGXkHjsVyWoi+Os^M;mw&vXT z8DaM9YaM)ni$cCR6Fpm!HAw~!Ef`sQ0k3(UuSB0#Hu$&B8N$mPSBK759(B3hf<-3( zj0#H^62Uzb<-AP`@?eCEL;g1$b&ofe^!CE?aHaocMvDim$~lwqx$PO^a6SyB&_AMU zEH`L=`6mJF-;aI)kx0fFjQ^$D${}*Yps1A3EgAOfrub!Bkf@c0T=oZn&(-;NXzY=l z7w3J5vPD5Fb0(2~s@|AymQ=Y%1vgtKsN&(J6xa(rWW{NpUa<^vw=ILQ0UO{F&b&6e zEx#S3d{+)FYc>|ZvFTWXpXc$(f=~>$wcYUi(hER@_vl9cyD~h{+AzwB_3`(&Gg|dB z+I+_}8OqlR$xl8*+o}RKf$-Nm&aKNH$2=3E%Czm$2w!pic2uzNNb6ER{^QSS>(V`u z@)e1F6@eyTpgztamJn8G?Piz$d?a`PF}H-e3v6*S4a1AMTI4eocB))1>C#G8jt26s z@FMqRymkVZnxZf^uuDoujeGU#1*~F}o${#-7?Jsevdcx3@(i$!V(xwM4~C#Ev{d|&I<=g&19SC|Sqy$BF3JX4#su460llc6 z^w1=&7A_Jf4aW3=I5am_cB*y8Kxo^^gUAYU4U6Jillix93L6a23thniJnnRANHdT! z#+Y?u-neVY*J*bL(i<2z`tB@TEL!5tdPUdBC>&dqrvm2!ofI){gi#TOhqKaE7hi6ca`L3z|q4U(fiIK zFgDyqRs!wV{fb}jMqhGO@a7?tuwq*NSzt5gZfVe;5uZfq5kFqQrJd0KpB(dJvd_+H z>xXNaO!XLEqzxHVN=ybJ`S0ZnyO*?$2#jX*Zo;EPO>K=@5?>T|k-+ z0syRnrIm4$3H!{>-AT5o5Ur=A{cZZ>bsuQPipWCpTSPuPMxcFng0+9 zJ_jO`htknj)-`_vc>U~nG*nKxzs5l*tOgwVB!4*Y{#|CAa&Z93n$pm_SAFIlXkLNv zuy8(ibCg`;&wAuAHd+4kFdNpHKgt?lv9olewiQa7)>;WzqS@Ep2E|sHXs1F{7@004 z8B1MLddFPnaf5wW)DY7uIM4+GgA}7tT;C&13dg*%lg@de&FicM@s0n^RMvcAs`OWz znDR|yUQoTb{XE4VeKo*}MNp@(=D}^HCb0;L*VJ9nFuHx1zv=-3JG{7TWrmi1v-f@> zkXpl)G{E0w4(g2l)yE1_c7fOEPhrmbxA+N#14{3SJkmOx{b;Z9cJ28{D~~3zZ^3$J z#iJqHCuaFIoLPbv=10d6J0G-sWww_(tlRrzCAK#ld_piwlXSz$g@L8D13`Ni_i;QL zXQ_q3fQ$J*u`H3v2keT-1hq|-P`TM*KK$59D<2i97N2Y#^lbsmgLeT?`D;yz-mx=y zxhdc#l)d9*ilGj-gqjIqF*)wvTD|V#O86qcQFnGdsH0Mxb~)T6t0PeyH`>zFFFx*AB6A_CeBT%Gv8u zUg6i~@-POjcuFv;Z=!0=cOmTg&JrySDtWuln5-`zP4#AN!@Kp|9-zNJw8j2HLjUk5 zJBSG>$T2g8L@*Yh{_!FeP59f}b+30Oy=`sNOVX1W8L9=il(bqQUSa_*wxsm`K~1tZ zevbbk)0{IsD;tXcAHh6Fp;dd$z#F%ldwTvT5uBa-ZPR{l-zc(@LXX`?xRBY3RzQDe zeUvsp8QTY46AjG_BDXi5f+C4wjhPWBs+t7tO<3BORif5fi)fCcf^C(vp(t!d3M z@NVaQ(R)ti!YK49`djrWCv8fg&qzWaR1h$itE zl6>8H$90xt?J@O5?1L54|6XUbX2j}DT|+BRvkWU=$CZIq!Ny4wro~^j+Ly#!UkMx zi;7Q)Z`I*VE{c-Is6w^iha(iNG=I@$$Kri1Kv@-Rb-bBUq~;X$(M?qldotZk1{qq@ zWV8cJPhprq-;GK};nEIp(368ML;KAdX*2QdK>5(aed*K^3}2=J13iZFAgzb#^^>No zY;gL)40hjO^1`$i7ZkJB&^A-IS13J{^OUOQ z1p_SEr6OSAomBw4<+95Ki@ohGdEP!Ez!9M#e9J0Zc+@q$$@3kV5H%G?JLw{O%FaoT zsK&b9{s4Fs{k*JD(k5r~+dmB#)9*!db_vWaP=(H)KZ=41yhE zMvI`o`_VG@RSj`|zetTRYC-hl{mtQA5;;-!aaG3HU#b&N3{Dw+rKcQo036>F(~7ZjkQo25C^~lm_W; z1nEu*>F)0C&iC>CwimlQ%+5S<&V7FOnLv2)Bk#xC;od_d-s_?ZI_u-J*sYR+S$t3e zeL;bI5=6m(1PqM;&CSU#G5aU*Ssu$RL>mufMjnHaUt_h||+(-S4EkKfxS)pmX#sYCG zqxUcB-BiZhq14MWmEJqVU;K2A8iZnIlo9dtDYV4hxCk6~NH0{uJwRfX^X4+F+w=pp zn;ZSt2(?O@ZORv^Cj5ao&ZB0-QTK!ooo)B9m=J3EXnom5v8)&-v>qjf4?4{Ca zI`Ic+z3fjgek0QAe=TIt!pA_z>9_9Cq;x#@C!`PcOsdO_aS1L{A?ngQNl&H#g@6$= z8)q^lzxy<=&Qw=Jsd2fA3AZ;4Q4gag6qz&f0mWzkCXp6CbSQ*ym(6HwD5AyXEp4X%^d-)J5zFlM4HnoByUb zDQ<914_@esfRI$`nX6wnQfUw41H!1M4}WNQVY#%LcBY}^WS`f&ot+zBnnx1Rs*UaX4suDd?ZmwxIPQK` z4XEzLHrjaot#B2(6@HQ+G!ZV}JIPZ)692`34MV(Q{hXafxwGJ%GD zs^qd9fGv=bsaX$c3q2vWo4?I2jruZr!QPX34k+oeDlB2}ur5OK+w3}F=E`$IE&r=C zNb|~aGb+MLo!q9 zh_iB+ACz?U#~W*Ow{(M>Za!_jB%ngRJ)mA&yp(ml#DCXWg+AO_@ET0EG>yazw`l9o zifO9nx7cO{SP$>(KH27b8sXt8bd1{SIn&Fa1(+1L+}dT$cpL-_L&_>|$7uoYW-{Ho z^`?QJ+*qHQ=a|~x1swct7JsZKkFG)|?{zrB+Tnm(*0yVc{%&VY-`H@KQ6bBlp3y%D zD#K?dyELJ9#f8p9bYK|(0k6XvlXH~$MG(k?I?yK2fBk*7^R{Pr{fhKzRbfQ{DQE9T zr8l6YvjjekR`iFewR63>k_I1aKJ0MLjI;zG86C0)(57id?D;pFK7Zo@0#8wr%5U}R z&IbdP&}uB564Z{X?S;5m$G%%=aIhkCr-@BLPG<)#Fir5UZ3wF>+NVh*n$GENL>OQ| z))$db+M_}*WuEF?Xt&{fMF{x<_E{_p8ecb!L2H^v2=0+%*nKP|8igW>x!NgV(|i&e9rG`+oudadloThAEtz1@?mKo2ddrIPA+U zqrbHeX#70m)OfMWR(6|wxstnu8q`>rhsxN>d1sPdRLavMRFR5;*ipi33@yzD+11mb zF`zekTsh{KWHsyf)n8lZm0+Ob#Mvfk_XQcqP2Hh5$L}Y2kgLd^rylPyboxhiE9!$s ztI_-Z^gwv$;Str;dUh}d+s$O`qP7=qC)mqc{54Lg$CLap$$eISg!EQh)OE;!(f*>f zK?JsSM&s!5j>Qc&5Xoa#UCFiCnGt4m=Lp$tGBapyHx-TEow7V%F!8;4fA}uP#q``L zNwHJ=!P5LmzbN$D32&FOX|Gi+&ZZ1x!EIjmm}*J3VGK>3J4A*)k=&8HY;BYx8ha*S z|My_QXs}y#@kOgrACe5S+IHU2mjbF4c0nOwRc<@3YfHyaB+2OYvaIs0ddWuwAJwP6F0#cHGfgaCu|*sW z{5z$#RRlWal`S6nL;7s?SnRX!PbOL;^7(G=T`Wp`mc9uS2a?|H(ah3_gN*Yys1DM8Tf`aYoC2ubsba#Gq11JS2(k8xl0fP z{UKiT$puM2LcM-q;OpX-D($M_dKFWS4XDU53BF(?K@y#pqbvF^NK1#s?~WeYHuvJs zsoT9%;1qvjj*VN_lX%=0y-2$1ycLu7@?qTVD?SAf7v4qxkDJlAYQC$5I!xFui(hH%ffI_0LAEpfrnM{ z?vAyBClnxs2%-}T;UVLKnv)Qm-GO#5srStWhAIBvpen0tNiHal;De>7(rQ@bB}@sm0}N1vaquBp@<2&hgkSRB*3YroFe`Hy1?i|mih0k z8uz43XO{jiAf!x-iAdxMpfK!MT9EqB1-21g#oFU$%z%yQ_8^h`ty0ovG7u&-`%LZ9ah-Y^ z+{LU#t@;C*sY_-H7VFYVA9b)PTi3SVrTBmvsy)y>w}#`tA!Wp>5@=3m>w&+rWhDlL z-wn~?cs@E0lOoM4wp7$1yuyDEGZAw2WpnR|zch)7``Oh&(C@dHhw?M=_^m`oU;>}E zx>{EH$@tY8SNL6wC{Ls>9TD{qNEOFF=kBY!+ctkor06ErWP3{XBscTv_>1GZi7zV| z8TSR&a|Tf%MjLoC%ce>nzDZabsOt%J6O-E@y?wq*d-z~PlKmzokqPMP!yH7$03ce{BD|?M64`01Ot&E~Yf&?QhEhqfl=Rb-T_~0Qm z1s1S>2oWx<872`+NU*~}0iOM6c$k5*re5J6m((cm&Y}IDp#uE3>7}ptiFhsHpe|26 zE1$@Dk*D!V6K;o7*-wMK?VIBmN{~l2whvuLN5^psaNtz$dbp#!YcoTFqTT%4tTud< zG(#IK-jD_SC+1l3Ll*5H&#TY`ry(w&WyhlSlah(rx5nN})A9ORfDxRR3yL5u>H8kfN7I%2C&BtKRy;?KCuR$|`C(d`-oZt5bUBz_p{23l{V z79xLvPlDF+y|F?Y?t&HutpqGqgf_z|w*u#C`biKEmh56vR?)C-mU`gtPgdi3eCqp? z8;A7DNC7dl>8xk>ZKt@t+qk_L6kbu3>TAcB0!8?bIxrtT;to%Av7jE%!$wXxi+wW! zNJ*+hYYQZ&IPckjteU{P2%^%CV$vxu-JaVaWiG8ie~s8!vpw&k)U^;%UjT|_=;4Sz z)KwQbaRD|jyJI=Gv#$-w|M3GE66EBF&nXm1$)VxPM4v9@4S zkA}4^h71RoOD4~xyuO%UQt5L6V)?p&TSGtabzcJ{k7VEIT?hm0Di+BAcA;(b#gY9` z04fRyj07~;ik|(|xE$W3&ov4<1909UI80l|_k9JUD-Vn^^gM|DFwG zt^35)9qx-r$BES4$I7tq1hTFWpy0>Qj^SI|d;2N?EzLc#jX&#Z!qp@Ap6P0~j>-XV z=4GeGtt~=~B0?JmG+4wXW2 z=xA9k*)nb|)Z{ZavUurs!%qD5k4SoD{}EHAJCr_S46lA5ukY0RIgib2l@9=i_R*&4 zqqV=_{bswx`sN^#0rm(l&3JR9!CLY8SIcjG*M|;Mkr#k{8N7?J@QzfM%T(saAy?P1 zN8ltE>C8j~Bc1#&_2+DAS@uh2a1kxD2c_E6Ul-f~E{~GvF|wRIy#y{U`^sbUQ!Zd( z5EQurM8;90rayX?5;nP__r1%@sxH=jcj2R) zWyTt3tnYL(%QosjYKu9IQT|aR+WQ!X-!`jL6t2@oIpZObMGX~6k0@#7}^{~m} zqIpq*yhQTA`DjI7Th`w2An5sFbUXbwJqNEZ@=fb>Ktw5h)m0Y7$crdBhv59KCO|)i z5?Fu00(#uss8PlQ6gwDkfjq3ViHo|(*#Udc9GA1ZlfJ-ju4vvPP++4M(cOwvAF_-6 zo^O)?MJFd99M4d((MdvQ1XmM}Uk24xWqGQ2=hY38M6bLL@BLWa*LDzDmN~*cL^|W6 zzaHStl_L$(J-250>opRiz76y1y?MS3GI)SC34*fy-sUSbWw;Yrj8jyChRWY++om?6 zfRRyCSPbqd%}(MRhTZg27Hjg}g7-RTUjU;Q6(EgzI8f=@5}e!;)O0-ru*U%lddimECAPHb-P( zB#*x_ZPw>=oCkSfZ5prM>)Giv91H@;>hRpQjqJF(0_Fn;#48D{VRYk&-_zJZ017jl zHIw%0!a}l+en{szsuRb9-EqHz9Xu@htCkX{>%bX@Q%sb_zcnvdumNX)LVxS~ViNi* z2_t6VN(4u_8HFV&Q4n`^E}~j{adn+pyu}A-&7vS$B6XhKEU=Ij5xwJw{$-$~(;aIA zEV8US)tsY72H@4w&nX23vc1sPVY9fZ?6v#k<~kXlDv&8Fl3eK6O!0pNFBRs`)&$mC zPgo!kE)u(|J9_b-Z;4(?RN*BEnTYGCT$Df>a`XO1+>FhdiRUMOUd$XZjTYup%WHI> zD-gF$=6d1sq7mS!-V>Q!>>0(zN8K#oUsbJK{4QU^Ta|big<*-L;uV4>ZO#7G7T|Li z1xinao2ul2yA#Q0t*pT;2kb=^s0eIFHRZZ?v%vj4YNNTsZ{-Kk>t3kbo*|2fdI0S& zCh zF)LEQIPY|-{aIPA=wCXGR<%~ErMQrjrxR`o|0Xgq1(Dr{uK+cu(aDD$ zykV;iGyNGli9x=1eHZEFe>RfAiDcH=KjZK4LB23mKQQELF{2Lqe!gpfO@mLe%JupHC?nX&Jc$cGslpheU zT2VWj$VC*1ieso~k2M%WDU?jQM$!=+{3^iJWw6mt;dPf4LW#S+R*^gMlf`Q`()b=d z$+K-d(~;bo#R~*W!&-X4`q@)?5b{#hQoC-m9w6aohLJ|c0@^A$fwV_rxzFcXo@`V# z&cc`*qd4)S$_?GL2|D4;haz5s;PCJ~x@zUOZvxZb-_i*e-0pJBaCMR)_KBPyXF#}k z?#uDqtsgRVEMcg*x>(&f-Vo^%r#63F1|VyOhpSeuE`Hbp+oNTtum_S@ksn=C&cScU zwTD{jxw+YHHfn`raxMhsLtIMVVYe-Kix1*FQ~z1-L;c5e35;w^|2eZoKTta^u$k4Z zDSQJ9$`bmWsF~o=e5x1d%aM8BUQnC=Bttx}+|@26FuKp79*=-#8j;D?p|azaV`;+?3bn5UN;2Wz>EAt0SU&$(%k{XQ8W zy`cVclMR5MLq6h@VkfZW)vi`x6*SvxS-JlNrE=`mo?%MuR;DMx)Y9`;r;-zQ_hi*g? zdDO+@8v(#y_Jm-5Rq!di95E|~(+3YtIJhC#(w8Jj2`6C^#)&w=oZP6eW?1xFXc_iI z+TUzw*&&A%oZRn^%39eFo9_WG#0|e7y+HoA>YuZ@cF@Y;b7GzJ-z|_?T}Z@dWcm6Z zABBpx-&rD$C+!-^O`2wE(7rL;{;kp)VTOYeQ5?HlRn=a5K!B?oEALL%bT4Qe@&{md zlMpv*%^a(f2t=O>L@)bFim65!0j4JpMS^Q85C$8e zm_^O-2#y3chQJ|qg@?qmkVUBJd{k#d4fx9E)fbs0X;AkMCZbQOSvlAw<_d_}y zZ?*gF`O2R|KDt77#~NNa8Q{tg72bOagMjV~vE%KAQX;6@IG3jA@lm4)^2vuMa`C9z z@&m1psS^_DFM)Tjkn_=)GGn2K*{;H5JWT&=0fQYX@`1l1@a$>xta@KLbnOUPY> zr1_^rYZ8GKM+;ItM>t&PBXHH#5^=m`(jKyd8E7&#F1O5!kx&Ji+pM*hGohUB27x~t zM+NEsoF$3%|7VwX)b4F>HdhHp@k|3-G1YE{wIu3aZ|>wjRp^xM9@YraoRtvl2V2Vf z`4C9Q>fj?G3)?8v3?x-T*&Z-M#>fVV&`|$o4qEQf5aW+thzv2&!uFif`s~i3zs1H1&4C_ zE!CVwc&r>4?{j5EFa}?ayoImI)6aMvoQj`-OW_YU75sYo-WjMF&szj*x~yGy7P z|8^Xj*V>Z-zvdQr;?;am$wV#etiRVp4EAb%Hk&fF@LM;)A3~BAYQ5NM4OW2g$h*)A z*6vcP6kLdjPJ$Gtp*2ZBC3vi!s-9p-_<_`e#B^J`Nw}j8WkKhPdb{j|VT&{GByM!= z-;yI`xYbSIi~T7>61Yy0s+Xh{s6n4C?$=9q&e=Kj$(n!j-aP_KRa)Na^{Y1!GK%ak zBZe1My@h|nSNYfuea1l<@!|`RBze<L>!mCf^lH~swyAy`{+~TK zDGKpnUnR-}%o~3C1WzXsIvzD2CWyYY?-t#5;uSdqW?;ejd5ZFzVVXKOg?EIr2B%A# zeAj+{+2}(&u70k<&UFK4nk~sqm9N2jvhD0Yf|$%cXO5<=_|Ycy$LtMj&FHaJ;p0gn zM#&2yY6mfXv{0xhZGAGhU)qO~wesh2zhHrCvE#u}GqP+3?qLqFy5mb&+*E{CZ~%Cn zgusHn%puPYS#cET;H$Dpc&_PH-cMPSAXD;!+ftY=c$ZmGP6TVDEj($1jVfGg)MSkcd@U5!Eua=nDZgUCm|YqG((= zDdO2!)nCT#FR=C2|Fzw_SVvATB3*6?sy=5Ab;{Iqzk6@!Hxe)iC)6PK)o!%{{p=pA z6%^#ky9aFi*vJt!ec(as_3`GKOmN>9YfXl|Gdc5Vjvi`|@N+1*a<)FmI<+nC0W{Cx zq$m*zC5Mw>7dE9`Y>(bQ$>XaPcFTA=iCP`@*d~4|8Cl(Z-2?XZEpeccd=nmW5wH6{ zU(WVP0!1})7K|e3iISp@f5I@*pkoByI6?c-M$!=O1V%*DUn)5|4wo!ooasf9I5l=U zlKTXJ4nFCiXg}G*48{W>9Q4M1*@HDJQuh5sQb`ij{wqmStQUxRUDo(5FE+EQhUFl@ zC-_za&%G%11ra#CxeNyAK9$X=gEbH9k~-L@Va@Jm9hna?+#y7qOXtoFvJV89f8oA) zymTtW@VCI;$*d3`>toU-S9TTiS6g&BEHTWaF)-11Ypv~GdsyOuUbICgSx;HP$#GG- zOHro{w_m{+99#YvYbHfiLe4!fM}CVuR_~b#iYm8!ttQW^(l*cQ<+UlbSxqa!TgZK! z$~^y_cyrG6x3r6X@jaHcA z#Qy?_zu~ir7L`BwO_BirFF`l3_)=A?Sw3xo)-}gGte39KoDC!Ss?43lq1~tO0ynS) z+?^e7hangttbmI?5^YKWu2s(PNTnaMs|bsqV1QYSOz2rPPFHUomSej% z?iSe1Fm&rq4`t)!dP=cCRnq*&H{La=o8x~@IjQt%nF?3-dlDJ)ZsOye8O1ghIs`H3 z&wtRPNy!odVsEX>DEdJCirPvW{&ps;d88SV9-6)M=Hplb();CVU>hu(L8pB-IQ#&j zHn?+)fq^o*ru_2QS$Pzo)_O^}Zl64uXg-|)C(7Y#9$5qDW^!N1<1*;mHTj+rEj5K* z2CRRVdeGhN@Gb999Yj^$%!tWLvhw5kfPXTeNH_*Nn;1keS`3H6F@_QuUjHl^Qu-AS zPcm-Xfp}X0Q?SkFz1;LYn%%GdXUItm}SN?(3=%z!m;NY-xH}??~~yglB}aOS*peA@R2*H5`sm9L~e%6ZM$&%n1U%U z&j|R6ui14a^%;IzQ{jQg5yyW4*&$?N5_Yg!!UMCKIzn0B%i@ssKpA~5?o>pVh~^I= z?I!M!b4->h*BBfk1TN}EFjcs@1lFZUnu*EIv#gZkGp6@C4=y#EkI z2sO3O!E?n%>!UoB@*^~%cpXh%?$p?Q9svbO-e#k>T&e$H&OiiCrPM*^aQT-`ZTTrO zW|`jCps&2?tfZVHB(4dlk>`p!b`h0QlJ>s87jHSft#5o>4A|=k3`!);7P8ZfrtneP zTC=We1!VGy#|ojWa_B#{t9Gq_T|qT7;nzdK$t+v8Ny z#rW|GlJ<`4SMaX)ysUBV=%Nl*)vt+(b$WpKU>sss`u3=?iGsD?S$#<7w$*p?RJRuw zYXjj%={8G8uEKXERUG&^<>^=nRQuo#uE&t8&>m;*E=M|SmqtZCmi-q{CAg1UnW7z! z%?C0ML?hv_B+TQqiRO+}d&Pks(U_1UEbZ8{_jX+Tw42nB<#-n(#a241U0HY3+r4Ce z@R|nB2%A3qvuaYC4D)uN(GKE)I)k<<-U!L*;Jl2(?A~&Z=)mFIXFijB*$>4>|GYij zYO;k5vMDQgdEQ{2wARp2gg|B0(IQo$(IyD6pgEWw)*F<#ZQq_NruF!lE3I~auh0&P z{3_}LYofHxP*2${R2weu!Nld#ROgU6TMzwePv$|`=&2>|g^-g|7~;Plw%S}{9>hHS z&&F>qn>o)JM)>r|{~`eYV%0xkbbD3iJYUaf-}Xh|c?zYtd2wh!hvxA$a3W{{R3Zmy z`K)5e<6BZr8+fZezPm57GcfBu9C&gh=Rpxr2euPv-ytcl24>#WXU}VQzLmjF_^wbB zA-n9d_Jo{*4f(+zFSW6i_w}aR6+^BS|CV+gq1Z3g@R(&%V8o!rikES$z|$a8jziCZ z4v1BMl#K?r`$M*V0_(WweVd2D%Hk{U=RZzZ!kb1?sWX=58m-%QdD@ubs5AE&nyaD3X|bV$|CB6fs|X>% z#a^epvdL&eHv0=yqSsPCjo+_Glp5SlWk+pf)qm}|yHw8W$TTM`vLNUYo%ibe1Nk&r z;LX^x7~$!GiM@&Ng1vMXwOIm&Yq4DaXumx5+V{f`h9su*hSe2955b6+*-}HQ!IO?< zpJZ_aYhN#mL%HNll{j{JIrHt`rH+H|>5a9t;?3N-2HO)Fl4RRNSR1=9p0p8n#e&1o zk0gDb+tkx&X73+&$6jCaA4!*2v{{~l00{zyh^v%x!4>1LxXywps%}wgZ3wZMMK^fN zlWsEFOL;xbRn(b+Ln+WpC}`Ym85K-j{w5enGx+8Fjb&gy)4DBy&opd*O#hB}TauvhQ! z%38#MdpT5!@L-5(3?0jf!2Ga4Prg>h2wFEXB#8O*)Ln4fC(klk9IzmV?eInoM7J!K zV!(XB*)$ z{T8g$g-Noe<;oi_qF{}DW;w^etj0s2AtUG_*HZttaj^;s7^QhYNecoCsw$OXTjEFd z^u0m0$AISi(L))Cc#|{2P;#&tTdgZ9S*e$x2?E|@tUN0ycJ9@eW7;VUcyVGW$(R&v z3m4Gq3D>g}R6MTBIB!|HGoxo0MteHm6k0?Gn`Rgb$<)BzzKutk3oo@IZ2E26~RYnaTIfy<4NJ;q}(oc3i4H+~&#N=u(bX?^z zP;E;wiH7CGxl>tbtlc)B4mQ?S+|2^DBg(Z$!^QT`PLEi}f7Ms*ND3ak>(NA6A1qzw zl;GD`NCHi(Us8C_7b}k?6Xx^;iNa^{N*~l{T+AwLnRq%ik%FUI#XW~3Wr#pBU&0rh zJWP4>Cmi%Z^-^+*s$|fWPD0)m(MC$Yf8geaweocGVR1sj^uInnWr+q&z9w;je;fyu zkCYD6KvKTnzA(1vGggVZ8YF}a%#T*hTGE0gZDL{~d5KSw@dHE2i!{7mJjtM_Xze|e z)i^XxT~-dPoJ(QR`$OJ=w|EB+o*;)Owug^u^;yay=gp8c{$L>&r%OtBJe2fDd6kJDIWQSG(hpk_2L|ROrBW|4`OJZF%$7bU?BS(ze|H1E3jGsJ$(8-U zbSGuE1X@|Hf_1Q3`$C5cA~;~PzTPx{t(2)dsOw3fwG{g{h{k5N-+0-l8u67a(@9vJ zZB0NK1lCBVz-z_7izG&0&Ng(2%~yeqI@I@UrZ5jr znJh{Ux%HXveaUzptiu-hFPl3Pf||1+`zPvDIOKRw4&mSUZ_~~qTC8;y0(+z(f*|m ztKZUXo{Z`*U-SfRBNZw~+*=_G!fBnbpwp9_qa$5-L3FF=Y}1;Hjs%H=|GJs|s!to( zx10qj+H6;lx>YyGa=)Cnx~}hd{;IAd+S^6x&AHXShbp?M@}QwrKmtSf;^JVyP5&=V zT?V{2kasF$=~{`}rzd7Pa$V^S*f*cb2XMnGAc7hj4R1RPdOVxF)8~eWe3r3uQG`_2ZXCz!ew*Emi^{299 z3tsumiLBraEBfk4r7TXmR!k$b?f5CA(WNR52Pk3+urf{!2x}RcZWo+a_(F~EgFYm4 zp6!jHS@%hb)BwsbEHU5;yqPLISO7Q#!@h{ijIo+;Dcud_i^(F-mKQF<;& zONpB-t^VGrl?G>iy4b1g93l~!ZW(t6LJbd@%20zcUkwOi%xm;@iYqyIPzIDjEp$Jg zgcikE0bO;0x4=)A#f9Q?Zz#9`Dc379>dR#*o`WnPP5#X`bKkrQ9{j=$ia?=9W$&*p z9=sJlhJv3sd$j7HKRI&$7|01s8rKMHci*J4tk#J*oa*wpCm?ucPy&iaYh)fQ#SnNj zFe$M%#qFAJ&l2&MtQ`dvgOxDn+$U&+?4^3+zih*Eeqa2$#R;FCX^3v#J#E53hQtmR zMLon+%FUmBqoQ3q|BsmNGTU+a&z zoV#9oy&H~|H1FJ~J7Z*Tmp+<(7a3UEk)K6bS>F_HMDD(Xqj}oQ>krwI zb7_~=7rWN2i!;h&hLXXUW$;+VPIYCe&#;pjEV7p?WBr3w=#!Hn-W?j!ogHj(N}>MN zbL_X1$C3-9?1uLtjfyo%`dVRa?~qlEL5Lbm7bfp&!~09!?g1!rGrg+_1(lVv8;t-S z!FyR`eg8`nW7maL85f{Nf3$N^)MTxjKtq1w{n2?rfRTub3m}QA_YXFoD0YL^$lrq# zXCBnMD-<*>V}L@{|LCTqC;!)kzpFViwRPVxwaVKd)pWd0j5x*rtNJd7AmYI7{+T#x zOOSt5>=~cQJW)(@DS}$HmI~4~zjE+F#*ExbbdtxX6+X6N`L%q)KiEj6%j+a-p#&7YJeIcNW;5UgxdD^^zA$x0dUCxy#GFXWy>;b;2%Ew1fOb-b;)WI@sJix#;x;R9GFEoGDdKI5As!1 zFM5MK`9;roc6GdszR2ibeJA_%%Wu^ujTkU#HSw7pbnJ1 z&)25E-L~SMIe@j*3f*b6Xw+pGxmo=yi|6%zyn?f7wY;kiphylyWAjqeP?~S9`S{@L z7MO@4+C2QZBGs)0mm)xcNsR$ZU8mtoqCz-C4qCFN_zD5#Oulfdk?=*EjcKqa<_PO5 z(|>({v>iA3#H-a@=-TPW^seXSf!>031@7=HcIXX(iRvbUNa^~Ct#~1 z+;8CV@WioJj*My&KcVUBB-KIcq@sFZ%Zg-zuUhoE;p`01cYcJ8JP9dMQMpPvR{;+9bbx$alU7que>6g*4<@3!HcK1XS@qso>roU9hZ!<`TI{edp%c6god)t(Q< z;Fhp40-AjaMn>{!WR3ts(jOPye7a4Wyrc%m7!cl~Hf<1+O=F)dZUB*GtiH}>qvqF> z#ltxf=l7Jb8pjS9nzUKeZ-!(8w|sPJ#oBSg1}NVQDcR+t_zzv`q3Zu*%ju|zsT6KI z|6uUexbh?a??UPwJj<}6X7(45ED1NM7aTyJeWd=6yE6S;_flHj z8~0Y7(@;*MpjmEc1M~nYcI;7;+J-|bGx{ph>ELXXppi-0DO3@W-Q*Bae>EXn|IrbY z0Z9g!ZgEQ4Sh34No+t-3xl15|#Yvz5_*{WIH;vl*8Mr8B@GSz8J5sVSE5?P1hH2;? zAqI06c2-$$WP+u~1mz3r)l0~?oopYB7^fslQ9J2mvXZ|)n{+b7-J0M`%qf?qP7ht8 z?FetDv`I_XMt?Z3b#Tzq=YapG8J4Lu`Uw|T+F4Mc4kOrK8wJLnRM|s34g}%p(D_=0$NT^+}EcO*1VgM=6vi=<4p3xZ6dM9tt!3>I2)c z(4p^CSBNqi{d%5tl)+e^|Q5kj3${ys1#RoTMQTU1VuOXP5aop>7e(}bD#(u zu_G?+?4La8X>^n^QSn6tM}H2qt(YEZhX|i5j{V@cFr(BK(RoOnak^l})O@qLv`!<_ zec6k~x_py`)f$Xe8in{8nezQgMX$cEnK=t;xI?J~$!Cd@>~`%x@9w3R)P!lxZ-z^A zgjS1kr)Yie_Vm9#2)KrubqL6k4hM={G&kTm1pZ_$QMZpz4?Td>K;$JmBJ1}!vRMX? z(>f>=cW9CflmC+1#bw8g$$G-xAfos$qD@M>udl&Fisbt?dt)fOd9wQPsNk6K2{7vcSu>4qOOLY|2w>5NA$5W%Q?6@}mkLD(&Y;7#B!ypddH&5c z;#il~P?eYTtIV)8Zm6;ii=XE7rkaodgO6c9>C-%ZWLv-Pb?@Fom|x)Fd8Z}AJHZ$z z+S={h_&(f0#1>Ul^BMV4y1go{tBkwzqFHCuAT(&HJzJFjRMo;f}71+b0v^wJiaDf_70AwSx!cU&9l*<*}cU znbmT#@aKwRA3Ku1dvPDBXDIBG^*kf)Fbpt>EccFNDiD zsmVHNF6U|ipGEs0+k7-dt9=*aY~0tj?1P1p=u&dW$g5P`KK{5llB52ko_Yh9x6x0= zn(!h5xMn&s*dc#Q|7OnaQckcaTaO*lNV{r@W{G)OpT=FDR4Ey zyNpm2CjFAuVdBTLksh9X5XZd-&08+kUTaz5x%x;7C#}PV;{GssfEn}qh4LQU&QM}vDAbRPM4FbzQu=+z!Yr3?}A-+3zuh8-ep zn&t)>N~q(@19-v%n^C=wE&@YxXNM#FoU^1ubOo#!Rp7p4#$Y4*J7>`}4Cmq2p9}2k zAIA^LX+@qrOmg@}B8jGd)AI6Jaz8^9sdYufHXTpcDr!lc^F8MFh!G1bYFJ8NNlL&N z?D|YxVa$~PQ}o}rkdpttOV<9;p|ZjC-NOO5LtZw}j9?Hr&V_ES!FQA0D-{bzx;RIV# zU#F}4Gg@jH4T~u4S_Gv^8+Gpvnh<^4TRKVp%D({w%^j`70de=9g%Ad@>^tub6Rxi2 zkC;15t@{@CuVi@b^Ix@BpM!7;AuUDI5kG3lioXZHNg9h;U-S68*UqNWAR@%k0F?|B zL{$w-cUM;_@oI$a{uZh3y)WGd&G(Q$uBhCZU>xafA0o6bY<5VG?W?$pLkxn_2vU>? z*m;6H{Y8k->;7x-vG+Q;$*m7LRSCTA%vN3Ksubm8@3s1Q#=sjidn<|U+}Ks#c!ek< zzP_$uw1m&eIn-6kJn!t=T@xb1l^x)={MVjGKJ2lTatv1zTOG!UNlvUO*E_k#l}PSz z%{8O3{J%wfJ>U1#-U=ZK4l>IZ$M0xtCPTr6(oh@=&zN1>DMY}24TMqoC3zD4btmEI zAObv$q*5o%j}cLutM=VY$LPzRg#9m7huy{d+{f#x1(?Q-8kUUL-&MDY7VnmqFG9FZ})^$(xIybB8OB^>Qe2RN$aAzPrxOY*JX~*tb zIQrL^7|KmzM@fkMU+|Vu@*C|#4sI>R@D^Tkvm8@zJ>@eQ405Y|+L_;*vVrgsjZwle z3rDT$+`>}5GEdacsG|$fzk4-26v=9W=WL0ZBJsaRv!eLD;#w<0xfZeNut>f2rD-oT zNYf#gXbgibO;p%fc>Slmb@0)jDyL(oW1H)WmR{bsmvvUd`w=SqLC>w}QD;u)RIOdr zLV_y|qbsqJ8t+s$TxWPRGx5BLUIPbH3X;nS>*xOBJR$wKAlzw>s>F4zUX{6VOqIys zbv4R}$<(LV(`co?vv$wgBYYfO<16Bn+`ef5%ic5`_ksdp{|tkJl7d1oyl%Xx2LN$v z7QiT7>^EZ%yy{LX9?VPF+bBs{y1Zd;vV}o(;bnvF)F&8Av9#h%xYVjh87gU%Ybu$2 zLUef?f&fMsEiUC*cSV0hRT0aiRi$=<83{*b4agE+R>q5jC?uCEp1i0belu$(uX%!S zqW%R|Xvu{TYQ!|P?F%;(WiynPfC>?P`GT=}dS{ME{S-u*0;+9F!$e*7zxU!a(Ir%U z+ZUJgY!!qx1KsIX@@+?a!n>oZIC-_Ep}16G4pR$h)4ptjvDJ3E@acO-85C3jBP zTN`W)J1JDSO^h=%31SEg6GoKmm=jiYyCVp8MznB}flgXOZQ|;whdA{Jv)}PUtLT1o z|6Z3HYI7z$nxBkQ9p{^yVnylt>Zr!C7>c3}!@0ce(^z#cVDP!u>}Lwq7Tl#c84H0N zObmB;(N#NZ;`Y!WeFb|AGLBDS#T^iZd8-jS(2QCg|WtLPVKKZ^O zt!uFP@bi*5_H*C^en|)hlJ=>=+_rIuihkdQbrXLK@>01!`ZN@Uz=IzlMk16V%9AJE{n6&bIQoeptrSck)vWn&xf3nQ zYhY7)z}5We>>QfrJ0pp|;7+Rif>G!-snZV$2@o>kseD-oEPvV* z7uw)1il9g{reonyr@do-Pp-cm6-Ll>KD}#5ZTfo|ed{NRFIo7N%Bu*?>P$D@-SH1? zNbwzpXZSPTNct4@VDTO19qtqawI6=L_q*rK;3dE8XUv++CEi7ef9Jk@%FUXy1DnWn z#CQ%l-}PDQe;i$PTvX2&RY_@SB)+1wbf-u+EZwov-CYt(BOTJ+C0!B=A`Oz#(%qf@ z#^0ZOmiKnw%$+mmo^$U!*%*&(3rv-XymkPtJa}ePFHICs)gX?MDp{ioa#E2AxlYP_ z7kFi!y8)p!wPS;PS9$nE*578=$>LuB7JSQ_c!p~9QSOlThyf!y-HjE$)lG}Ta=8>6 zv(SZ=p!P04DAL}aa&R!ovNJu^K3{D%2=zBcW1?+-;)eS?Vg?=`tgxADKLg)5A^&e* zVxvCmL~bI{TG^{;A@|$wW<5pQ;Vbqsc52sVbkXx ziTv>uO@Lj{KXl7+;7xPEYn$9wv4d3FHI^s8xJ1ENC4Zj*FkAdK@+RAW0O!S`dN({f zkvT3nW40BQ&(TUC6%9Ax!e%@)Xt75P2dmpMM#PuA`EuhLu7-;HMoX!^5s^$jEfedh zz#y`DP+pBXuPT(;9IGg>dC;tLRiIqBm4AXl?FRzs5u2PQLa4G%#MrRkTBI*&A=SBV znca@ln_R2CWJT|O=Z`sz%~{NPq=g}^o$iZe_WAfd@nsN28-GSZkxWbw@uplmRO zvE4tKt276j1q~?VWlB>^;X>7af5A@j+`9XV*N8TBjXc_dO1lKyNN1A1DV4NK(6byQ zeO$9&Yz$JTbVOp~YMXV5yyyJ1s@a|VXXZ6I#SFFj5{~0juqm$^HY@<;%*@!8OM0gJ z3Stqn!t?rf_Z8yR;@pB^O-)v;2d%Jz-c5#UXRXMk&lK-VyEpsM+wQE_oJFqlkTg@t zBGtBjxK|E?jb*6%*0MLRmit_H0i1Lqc_w1v>g533>&4`aHy*(=l*8o|CL4k+XgKft zs2;Ue_Sfdl()W$WGcIr)(3Yy7e){&!$yO{`raEPJIcyy-Bcpa8ALeS3*1}=npJ-|< zSb>&9V|f`aE_?Y92rKQHXr4AHte=p<+kmQ%hqhnyV?OLJeMew%8-Hu6k-qt-3PwhX zrS6EMk?O^*vKdPzK;cKQ)e!8qiG!`0`(*w;O4el_KV=4ezVkzN&BnNy&(j_Anyqf1 zwuLgaphj_5McWdBQp?vFeor29tGmCY+>>6^n=zpyM3ORz`{$&?AFoQVD2WZ0Lf%yU zivRg!M96K7<-ezAdxalgQAYu0j>|?nI7=ISGCwheG2Cv*)}?RM8}b7|S00fG>+`)Q zBL=M3*t5xC)HGbO#rlkuKMUkC%B$r49I`z=p_yRA=)8a1p0!Sj2iuf|g> zGeB6E;v`1@RXK_t*9|W-g3_@vQ!MG(Q?-~;3M8(zmwKLKOk(J7GRY$mB7`OHRSh?9 zGRb;El~_%oKN_a?{oVi`G(1Hb;hlP65DRBKU&fSM(W`5wCTOZruX%rbdgXod;R};W z9hTg8rE}gk@e$ATJMC@-qg`o=ejYE}KQfgt)-$yp-x{p4wg!W7!b2?taM9L9z zIr5Qx`a<_<&)Wo;D%KSk@{pWi4fq~Qdr*e3><%Qn62VzZmZMj;&`gv4SNnowznyaN z&YqqJ?NJf-wOgJINU}(nKcerq(vbzI!lgztOgM8xOW$PD{4gCG>_Fa``wE6kw4-I4 zzzT~JvI>auoDNeeWBOvfUSnu3q$Rn*D33-ZRUvc<>;{bsMk+*k%mvuu+B2AFv@d=% ziImACYPJ1f(Z@4soym)#dHyz~)SFqQ8G&{ZCmT;kE4A#abR%v<#<$Q?)(a(KSek2# zBP)J<^ACgDTmp7-Sx1c|>rnOQZq+kw7hpo%_t_Gxq?MVY1TkR4#GmRHr{)jM&cQ66 zbj*>BOJ6C*h#KTq=yLeT5ERPZh_lEeQC`^3#AvRk+JeNV^iAQj^3@%~5c53KvpgKl z4~^5GRFGc<_QpKG)rfUscaQS8ri*%ZV7VW~?wAxcM08ooI{=^iA*aLk^dw+Rj)Al( zZt)`{l%d4*mH+^sQj)ve@v&mn7N1z{>h-!3CR#2aWc%nPwYA$iiH)QP}(C;!fvd-q_3S47y zi+uY%5c(=hfnVu|7)=<9b zHT^?s)Tuu%g^)bbfI?iF%l3qee-%-%$GB6_z%p+Ym#2fe50s&QIRR77>{+(4vS-jI z`^@6jl@6ijv@&#hGvx9}FPH3_7$aH3v4nKm!KR$qGEIBtaD=yqu1e{=dPMWbBY8r7 zIY%-Bv4_FHihMc(uOVh~7|V|JWJ|yF1k#&>_w;C|{MLC=H^CKYg?eDZ=?3M}|aK|xR zS@HSzCF?JKYw3ji+Zq{A8DqDL@&lVV$^&7!Ocw@01}V|`a-sauB~P9OMK$2E^}pcmEF-)5|}m7*x{X7j|9`M-6Y948GVbTP_(tp>6DCJ1#*Z;x6Df2+KQCK;ph8UUG; zvN?%Q6?h8A|8SAYm19Gd7tNcRq)UH`&>~>ChLd{M&bXXadi`docYYl!pDJ`@ptbVmG?v?rW_T~T z)eunn*w~7h7y%tz>VYNzas8Q+q{+yh+?O!GQN+;ek6ks(&`MW+bdyQ0(e8F5s&77< z{etxleg9+Tgacj~*1JYAKIeibqKr?pDNrW8e8o&Yu;2T}xiJ@GDl)laLC*dB7N6P})jrmF-(y3Ti!<+GZsDA|kv}%iEi? z{vZffV9{#z^t7rL(iWk~our=Is1d<#rUcR6cPdiFbs(eo|E+w-hiSX@ZAWs!!jCt0 zLcn6sNq*e(P`SU(puBl#y@9$Qq^jr5cW1dXnd?j2ScZ!~T{^tqO01a_*FKE|(2BC< z--gr^nzryN*5NvT>h?lW&Bfeq(|RwH5L78fZ_t=)Smj*s&7xV1p5-}S`6lv;M(XbU zu`V$hVF=kSb~BY6t41Vpr%{9L7yG~K zX4(L~;jUBGpQYj_f|?}X2{e9Qg2nxSwJ>#QRDo1L@DD1fSod0-CEtYdJ^>(?_o8ps zR5F^WTG@a^oXgv?cuPjh7~TT5q1db~Qbbn=_M_=%^ELIdHBcZTq@o3+>j)Fn_hC@W zC-Kl};^#&j&nO9-jb)y(*br2N`o5)a7D7{|54loW`?QT?Q}I}HX+j~b>xV&pORo=SdXl{HrBTa34u`+0IUiHX!q~Dt-_ko>Q zC8SEbGkJg#VY(X<=0i`#@nhe=l0T759%k$KI;{yuo4&UPB5mR)*|;9PFA;_dmTl=9 zHfdCy7K-f#jifS=u!*j_sg7nA>IA})zQUj>oG-)p7|CsCi6bA2)xr$y@S0EK81}DR3QhbqTP)A3uzeyH2UhEK`K7(=dQ9}^kiNB%ROXHk_)n8IOU9O#30}S8DMA2 zJU<_%dROfr(07~PjfwtrcNU=0#{eixHBdn~r2blUz7wD);+&0BL(~2DV4XP;uoN|- zY-Ttuq7&`GZ*_aEB8T%0FAkQMPufAb8`uvLn}? zYhM0?c9WbYi>rY+1~E60axZ`T zu)$<+beKAL{`0c<;xpaSQUWq}_8wn$1&8w*a^W~BSf`B-Gyukg%ur-e>qnUJ6>Y6Tcyr5t^zrXfS(sch0P{ENq!#1OFeHbIwK4T#Px0*`i1~Y-F@T4ioY|0 zCwHY6k@(CDN7(~P$2sTF+s0NcnlUd0hBZWc?tNqf-2~@#C*P7fXlqe(+ zxqZqKb$RxcvaLPXg3sp5F!h)!B^s~|h|v;$b~V(daV9JD>_8c$?F?+U;&j5={r`yx z4tq-iqEi8myTG$wud7`lfigS728ksiEUdb$IYkN#+G?&hJ+`YqA%d&ss zw)@%duu<-Kb7k5ufX^QMq8WdIe&5dp_yeD3Fb@Gn+Q{uDxuoSTdovFw;ZT#~AbQJT zPjK=q{C%T#5^CFnp;cxv1Lq&E@tPhP2Xo=j14If!B&!u>k~kAz!oWA>-FcgK3#PVg z(Qq)nWc(XS8Pu(B!~6l~&V~G#pGcWII!NBw_ydXPsf}}Qc`C~E+k?{8(9!E0#qt^O zVXHpZyJ_V3#%|I#>j@UfW}UAIF`gg>Qb=BosqRFH%CraiDwM&*PgoZpyn_c7Th=jk z&7y^1>+QiJlRY3EbFp~s1G8MU)_dS`Ub|e=guTx$)=b&j1dJF+8tS4$TPHl~mxA(0 z#8wt_xxIO;+yB;wLpKf6tgf*?K!8|?u_a&9kGFzPJ}?yhwM_0BycPS0Jp8e<>6m8g zz~R_^T~8X!kyG2mz}=Hcyt^E%kQZm;er;)A979Fh2eLp9-qS^WP$|yV&Fzh47|6Hj z)aC*THhFzDW(O?X-}FW%e!5s=!g_inDiYnBqeoQ3k^X-gDe;@WUi&f$_%(dDnpmth zbqrd>XcsiHLrbXcXVIah<0`%#aLngdbeq?5OL>Aw2B&5F2Wh48q`4f81Do_ZRY5mX zy(cxy8wyVJ@>e7Bxm(}A7$)wslcC33IEsqTwpI^41*wqfQCKwVC0qYyeKp^sXX1Du zBFDFi_=uuN@!}`UtO-D=~{XWCr6=_C0?KWS9*eWM_^blV?|D5cY5VU1+=pNFhn zy9$f^-%D0n;VncRyXF;}@VIh{tqt*h6rC#T6a39f*6sP&Z(PAy#@XrCL#o?pFxS0d z1|}ZQ*V|hzTVDclaaN7x2G4601g8jbZc$(!vF;+VmFt0yUfNrUF?elNa}{}8k&Ny8 ziy-G?`wvNqlRNXpEEUJ?McQS_v(|4hY&(NsrJr;4gXrhj;xd~2yK?Sc&TK1k%?Hcs z-PwAgr^jHhc(!(j=(k@`6bfcBPU|{iD=x@y=Z22dh_xj2h>**sJ8AAi8UA<|>qNh5 ztXL`i52V_kRc+y=ZUzf{?sNMf%_2*|%V<5Mkl||T>Vf=8ny#JxyQTkUZ_3>d5<$y$ zY_E^^dn?x#Xp9|Uwq%%*ta&(})R90|UW6Q|rDWunnmd*U=s}>*bu#9)hE@>ozoZpk z`dxw!-#Y5m0Ju9tpy|j=e0>yNaZPi4+FwIR~NKB@x*5!>X<1hRG(Z6uuN@ zD+J9nhbVkr(W(vxPiB+CmLiASzPRn-Joh;OQs0QYWJ+I=lUyeQCdY6$wf`zxk0ga9 zwq($Jx3v@+;o}3=vVh8tPoGg6(adw1O79PV2zq$dAJhs%!hDZ@*+KPjHZspVkygxR zND4>{2zyN#LoH@WV6N0d8O=P#J5>lQvbTxN?86C|bu?V)hn`wQ_FqF*j}Z^DT1T)p zw?6ZfO%@qlvbiVE=Ik$hkjNscrQr6SE^NlVB}-c>=N_201g&3(w%?Q>O0T>; zyC?e25!Fe`#{}@#>sbwVL=^t6BG>=@l7PasQfx5KPSUcg1tH`{_$Yg`SQ??GFYp3? zh7$Rm<>8o_6`5s_GI5sO!PCfarP3!a@9B17a7 zB+$G?B=A`hZJaMA>1xi7`<}Zrn%y*wYGVGS8eW7Pb>I5%hz*ZTkl=V zJd9yGMuzK}Z0I=EV?M~+-qw6GTT;usG&706Vhxo`khn|M>$^d#hy4F7dLLialyHp0`G2sz#JP1kR}?cMu)t22 z5HFXuQ(E-uu_Ss0c2Dc-xfTaso!Yc979Y%CRzvacl&cS6GdWgSv)#$09R$~Jt=X#X z�nb16$|C{A%sK@e7oNOgvNCY_64JKiOH=@N2EF70|2LUXOP2)g?hUUC4@%0W01 z>Tmy71&!Jk_@r>7A*PRsXF7`O8m!>6B?j{|U6m3BmfFzL&+@O^SkT+Zfi0^6>(+Kl zP(5EpAeZ$N*UH_LoHy|x2jZm`0S)cfQ@a44BRas`!rpXcy!@$&7-=9_ND%^0^jF90 zfS~jEBG`62u^%Z*f4iE9G5Te5|Hz^`>W+e^)qf?)Hrm~)*i-l6yYf{yc6PH150Mp< zEw)Ugiop>nTiLq8jf~enX2t&qA3LZnk?*7R0=d66DSDU!Qc>GPk6PCZmE2Ugs5Rx} z^){rR!;Exg6-!19amL*b%20ok){4vDFO7t)O3CFF!F&#p%iX2*1~MvUpB)v%A~P~R zsPwau^f!O|1GUjQdw^QGCC`2QpAr4h2g5rWhS>t(1`cPsN5(s zawuv&vnBKxVRxoP($yjmxEw|Rmt_L{# zC{$|c<}p+25X#^{ZyQfoM}RyqD>$qieJE=)vaWDQ7o6s*1!%gyyp-xuf$@JUXUNkd zNKJm_t0DUT$r51?y{3wLJ>fI}=b#rPlRbS5x;}1-d#m&U%K$AbxjS0BR7v}Q@OL3r zi0DS<%%qsA6PiLM?C%gi=_V-No3aXtDh*P75Cf4_lLS6{q3P$A02;K2ubex z3Qi8u%_4q%8{l{)zq9aW+Jq+0G~@kVCQ{7|@c=<<9VzCg{2x8HMO?23l0^BTYXd%4vdOeTumaiBR&|86U#4r#=f@tesfiD1$2O!JhSfHACr)1l zhZis2&?$Hv3!mGx~y(36vp9{{1mceU-i3nhLg9z_Mag@%=l<6O^I42a$4>ZK-(l9?B}j*CvD&V+%r)9ErxZpMAPY+4E1&(XCMisE{{Tlg%fR zdg`ymd=%%jeA&?py|g;*^Lb7U@T=&x?`}JgXI`m!+OU~6!udIlDb1k_F0Ql&PbR&6 zXH~u3Y9-N=7x8Qv>`EX7Llo10yO6p-GESQJM$)}B+1b@Mo5|{9=01>NW__eg&qon4 zu${SHowt~*e@5H?yEpCwOra@(7nx8eG;c;8%4o$O{P8K9BWO^H8TZ&n_O$n-u8gDn z4~ANrj2R@d?R*|DO*^k=xk{Kneo7M;%SzTr$pXm|zmG{97Or9E_k!F;AukN8`=zc_d=W$jG{DHyj87M7-;NgU6kX)WQA{iT5RBqp!^PA3kQS6%Q~Aw> zd5={b0bvGk3_jvylZjn#edH50Ao>N=PZ84&AvDN1bGpzc zI2i_8NMY;qZB1oxwH}pd6*0IV=saLhp#MzP+KbY1ycv{rq`>CT3%p#dkF1~Upjn*g zJRd_t0hpJv3DFxPrBMr7SbJ=o-n;(Mm zFq|9OsD)3J<$`~JmC5*?sqRGFstKH1B?`>dJ4GG`pUk5dn%}@?RdcoxrFR&8>f1gx0nQ|YYfHe-qG5Ch{ zJ%qnj4WyZ|na`QL`0nc=FWSjd#|0F-nnWVnH7#0p4Vh-+c~QX@iHp)^cBaoo>Xw&_ z2Bb3+MwX(dXs^S}+Zc)>cn3R&3*P=`x$90K&mA4mc$eif+&}%B2F^7n9ieqA1%c&m zzQnWpv`Jz*wi>_6P@v)+*Nfi|X-xb>+2D!)_A%L1zSTcU6ZQr2dn#+?uR272y|fjS z_1xV`Q*7l4vlE*d*@PWpFTM(2A2%{J#x55v9&^-t9oT_I1$b9QCcdYo(>p`fOP8JR zKtQnRwh$&tw|<`87K0({7*6e#hsVAs#$cyBcrN;M_sM}HUG%sA3Y^THJ$>)8c|iT> z_xeImHGwb`^UU5{w?PQiPqOoKhj(D z<6dyM9yZq4(K*ps^d&N%qbN7n+s z;9#X}%9Sy3j9okFHB@QuWh&?I0@Gt7Q>J+`7(l0%if1T;3d{2@w;)U4i>4wQf>ale z;s^pIz;028ZBC0|I_RGf_$CG0sJ^}JYD@K;6(5)Bu#c^Yr}EX!CNMM#TI7Z{krq2% zhKhbT>zdJ$^0XIGuI2-um_=#3%U4?`#Q^-DuX6GaOg=}jb~^cRD?vZ1N4KBJOQl4y z#X2A3p-}v-&wZh<1bh!dD?v{o+tBNvg~bNePV8OVWhYb@a7s+}cL#Xc6Jq&LPV1kj&<{epuC-EE{Q^Zy~4H zisz%6txXF9=df6#0RD)p{v!DdFCsy7mi$zrCAfGvnUpO#R!GGav#CbM{`HY18WT${ zr18?sh^xZG;WxgPmELVvyfrnbg04$hZ!#B$ItfZ{*9 zztZG@krfpNg3rC3mQ141#(W}(6VtD z1?A#c5C#=EEgNb{lHTvYQeLFGZ}cdUvd%f>cCQ)HVJJ{!(qQlg{rc$F-L3YFWH246 zCb@UObiNz1BY46UZ&dQ)Ou)oOfEX>B&%}bS(dT6Vk_v$80c}fFALFtb3`XXBfJB@6 zF6lfL4Hh}Kks{3*D{ZuyrZ3{C2EfuOzmW7=u7qe;%>mh0o>X+mH)~3pup8*eYspE; zcxpPyrQoPv@H1NqMtWc{3tRnC!`O*%%*w3JtU52a0sfi^uf))5w*hw9*XJy)y^(h> z7C5I?kP1l88bSF*!4YyDQxaDZN$pkMf7Mmc{R;;&vRFgHn~wd)6I!BSr|;82r3=qH z+zeQNgcm*9LoxcJlkTK(AU81uJ(L3DR7T`^G4L$u)LQ7IWI7$HFHYgWDGIh@|l{0Dr z;9_ ze@cJ-i4U#_rn0P|8|J7Ig;ci$35Q3jNQ9872C(zk^ z$P^QPxlKC%DfuK#bYayWBu)J!g>Nh#$mOv@0&ma?a>rJ9JRo7)=aDHk&;jfEKanba zfB(=N1Mf-p-rVgf#yU`5(7$a&pgOs94D}euS5v}{lL8QZhapn@HR#_z?Ts^!=h$~L zZlQXP7W!(QX0wv?RT;CJ!JVx$hBVLGPkvI7aI2l)&OC$4{|)ksSEo#NZCXyGHdIQB z0U&o|mq8Z8@#3e=h^NP@(gbUN97G8x0X#odSWbwK+LTk|YlHA=BAs&Da=&P`j3!}qNDGKf~> zvP>@b$k9q?bTf){_`w8s;fqq4d6trr6f7G~%m0+XqNm+}dd^1xAlnI~FQ(rF9 z%U_=HdC&*T2=`3NahXM*19s4?+m4nbul;X>;A#(Kcl7{rBlRPleAd6H91TVat7g&sV-B!EXh%bo*Sx~{YP?d3cA{+$eu<}R* zA>|p8V`w=vJE}Vim@{uin=3}ubcDJdu*mX`r-uDBh9F~sV46>Fzkl@#v-X_~lR#00 zChRZ1AJy^x6?XxL7+oS+@(nz=l7DR80Aa380%InJNSxM|0I~t+US5Fm28gC}PJ=HF zPZu5f_MYL$HUD4Tiy&%4oi#jd;x33HB+!7#Wgojz8cb1Fw;E10M@B;E2K!iSvys5f zBTUXR5m!ZIk;S6E+OuDG)Z;DN+ZJ~tKI2{F;HJQhoyC=6ZOp7DR+6D;UEy^ngmGLIu$;`72 z#t@g;DY86dx=epn;tj{Iz=RHwUbJaS%EQ~UjnlPQ?v{Gj=BQqORejHxz+(IE z7u-tyQ+3)>2C`qBoBq?fNlwWlv54>OPpy{i#lZT~ZZUu}HKq9xbCq$LG{#p3Y6|`}4f*YA z%}w~$3j&Ru0j1A`Bk{lU8QL&$sB>I`x)YUfP8YHKuPM)#M8LK9h7!Nhy{T*RA!M?i zQ8ZKSY|3=n`axKmtI~rJRfKrK@$2J@zd%jsq{%D`tiaQqrNS36!XQy+(ssHjQfp3hjp1&A&?S|1J!C+DZ~`Kf@H46qW?HZS%X)^oJ~))rJ~YLl~U`*kEZm{ zGw;A&JSAv^B5jxpkvMyd!WPmdBtCbqM!|JDSSN%tWBG#RB#L(6r-3hDDxR_(u{mqg zu(9o`_x$TAk55#McZ2pi2;k?``u*f2=YiGq4Xuw8lwyhSxsg@)vG8J<@y?V22;)UHXLbLT^3c<*LHX2hPb~9J%wWo6 z#f%+FkRk@EHDa|6xvpyY2pP})fKxKZ=0p?~F_LnH%n5Cy1*K$IU##LyoNT!cv+8U7 z^z{12tjfk#Jd{vKrB-dsieu%b94|09i zt1TNDX`j&kZ7?C!HGTg9?<5|QJJYA*N6~oRL@K)))!ThHyi%12w+PU6aO-I%k(y;( zAo{+Lp*AlhRq0W|6{+prl8LIeVutDKBx+B;AW0uSZ(w+xY^L}ATkAID@HwToF-OOI zGN~wbJV|B=NHiUlG2#tN;EcB>?z%S#_b)T|ns5$Z>%K;M%3Jw9%K9GV1&7>(Zanaf zZ~AJy43eW7v?kPCfFH*1T+5t*MYLF}^shXCRXx7<9R-a0Oi`(cZsXm)(Mn=)7@4ZU z8JRR9wB88kIDsM8x(pB(C#hjPyzw(|}Ebnt|e#*oIdv({2juDqck=M*tK zht{&5DS-mqA1da-)d8}P-rG)pKuvKjf?9aiHj&xvdJ@RDus$S-y%KExdly1S*P=e8 z(h9?#l}Xyv2L+G`QXHyu-kC41+H@`kd)y*v^L^k?jcBArfw7dMmcIPb5PHDs8BmFq z+es_iMf2=Oy05$yR5{IQG#*b%u)^Mc*Bym$`~MZ8#}dvF;!9Uq0|Lfb>+-4b@(s+@ zDcn^Za}qwhS%pnFv-{o`BJXj_UwL@HMl?fEI8o>*DCqnZ!^NY$MEj2!JCc|=J)34* z7ri`;xsw>1v@H0-joKY3anjUS#veqXcB64b8ZgPA<39DCU&Y0%L^D$G*CFa>8@dV} z(bulkFxR*$J&kj1+L?D;kE1L$9WQ2XEOTYiuGn(_+!vIm zckO~EZej7suMRb=Ap4SOzzMxIes&ycMe^0_2r9gf z((l}j<%%^kQrco}Hm|*uBhD}LO%VfFO3K?|!r|QnXMNkI-b%7r2S#qRm@^i(XK|db zm%80IMSA84`7JKewLS44i31jnt|7NQkS*XgpERc+<*YCy-T#U7!wr5PjKZ;$MwU`| zEFm0TYCG>>?_Lu-&b9MLDbH%#K!5Z(D|Fp_>Im>I3?hSMq2$w6C7i0yE1N-qd>Tv2 z3(&-5bkD`?UGY=f|MFeledoT8uz8fb&Eh$oSi%-boVu&Ce%tY3%FQDY;~_4b+Cgrq zpgt#uI1PXA&+%D&lxJRLfscjUzh)yNVeJIR@8*kq#Ds-DBN?cx$?`CBTaK@Qy7X&% zy5}^&qr`%ZSC4U5ji{F1jtLdj-kLBz=-1M$_a&LE&GUFh!h{FZ;->1%7j)k7vRzC8 z?4=sl#_+WfGc5wC2ZNEf)X+C?{>8O)g@K$EY61A_W)%kIR3@MC_;EZ-rEh5_{&-xi zq&6TCWPg?lp1y>LbAZBsDL3NZ8P>Zoo3l0md)_uh=nDH*Hhd)noj!u6y*}vAtMill z5J7`gT-N9GXm5>*{OLzdWT7=)gO#@&m5CZv^?_IF*>%4A+S?oG3!@pdwRl`+d1svb zH*Hgz&ctX-u2kqO*Gcdd>hrIU;uz~$0^79&j1}vu9tKli{_el+Wm@Oo z`@a6y13hkoI$fKKZ0q{%Qn%X#kuwwN413%i$L?|PZj@5m70ulYp+ilTZmVwwX(#H+ zrFIi@8M@`_kvm7*Od7%Uxzle{Rn%57%skHBBcg*`-~W-h?dzh(PyZ*Bv*i5zO^Tc5H5fWE2seYI8Z)a%7z<@+ z6FxET&J+L4j__H^(R__H^ELT~c1>mpb)Qk%Ndd)~S?(nE7KstR|6roUW;I4T?!39> z8ZJ=2pPlKYC2^(VBR`M3`^9>Ta0463VO zlH~|=7=8NBX5g2<-RrcX-*q+l#*@7-rMin)pJVz$wBTGIfs19wJ-4egyUhtPO_A}js*#l*A5V%pm~_5V-(J%ZThOpk|eHW zJRi`zpYl?9Vv=_B1FzTs(o2s5z0tT5`_rb1({JJyLRr=VV6h9Rp;?^vBXj~&@yX$!= z@dY0H^Irjk58C ztERpkM&>m6p9dsD&XREW7hdC>sU}crjpZH|Phgo|L z=*5tOKT92tQwvR2&0wA&I252Z`ZOgfiBn@>nJvDollT+UC&>Li9@aS&VR9r?=v041 z4~7wO;B)s;!CNK{qrOLU!Wl!0i?ZbxdAq#@d^c@WI2^C@qNeF(AO3a!$aIE{z@)5td4}osp&#(EdQus7H(GDo!xBS*r6Eg%~4Y`XOL|X z>Dn7M`1cIHcxw7rq_@Xaq9V>s+Jo`o<&aXwLDSGc_FxpoCx8*X$XbS{$;;ynaA!NGdU~Dr#@n(<>GCrsK?mIKOm_n)Zua=Ft{`s`g;+0BH_c4^A2JXtXtx|wE z`_K3njdeMG8?xV6ji(w8QcAzpRf^@=Z!Z1pYfyE%D$Nw~^!iVaK_Awd9u8Xcoj}#v zsqohzKQaD6HOHX&Sq1-;X$J8v5x&GV71>%TF>epvCcp%8UAx%U2_2q2%7Bt#*E?klGNLljjlHzw*+H7gRjs8{5txL2iE&u_5rsoP$@h@=+j{C zF076sgaH$Ow+*G0MU_lUTfr)VGs}DXLtXh>vW4VfxvpB60>5bF&sgzmlZAYngBme6 zz(7JyYmye+a9Tqv;XbwRXx0%09~e?SHcM7v6dFh}LzvsI5ztOD?2r)3U$~uymQeki z5L-q==Kem_Ggs%EE=$i7#Ad$6&wH?4Q^SBbRuz}>ZEpLY&l?-h+#of}uj?v-@u=*px7mi2FSiF0uWGVGHU7q>L_bnC1|;ali4nSQY;}|O>6TQODNAL&Ul~q2#w?1-~$yB`O zs4EH$y^Pzqdz8tQ;@6`9*suC;BxBo&jsvvfvf?w`s-MVK z>7@UpW2(@K;bC{9ep%UUfRgfQd-Ppb$Y-WaptxL0#MW(Bj{ab>`gPG837+trM&`?!s)!xWC2aj2X?HmkP>sFdn+1 z^J4SkaJtjGlLJQ+u-A;N51!d3?y*Y-k+2S>etIxrN>k%_YF0{gs5TlKa1IuU*TOD; z(JydmB}KsQJStdrwszKZ`aK`^wp|SPsIk#K0iJb|l2L19z;Av_s;KZ))$(@&16)T~wU zO6dXA5<7*PO@|iqPkK4iZNm1+quv)cO6zRTasO-eiG7w8x=CY8d%4jspZ&!>MvvN0Y3PCjb8b@<|Wv3X0RiKe@Z>A0rZSI5JsL^&CwN zmc78C4cOMac#hCoo3B9MD-z8;o;;C!lhs_(E^>LS>1BNGN_3#-g1t|Q$^l`;cxheL z^v&=OI1hofyGsc9&V)NtZ0@gF873wPTVr=fE0G3&*zgmf<@1 zYNK2wnfkWWRZO#%`|+uO6LX6`&2?Kw$S*!LbCFu#$w#7I;{?*CRq-Wf-em~C(=8A;>nzpBroS6II2 zQlHTh(rsV8qzpV5q=(=f|#U?E9Dt_Es}tIYQ5-$Hi@VM}J~;)c|=vja4cF5S{HT zwP>`)13hGV?eNz{Z^?PzwS8fV-21I=#*SCljK$;fmN&I7f5&lE2O$?rBl?1M+i>M) zTpc+1#eg|Ripq&p#mpyR3iLyK7>Rach4zZTLD|j+l zHB3uqDY6#kN`QT#@j3yQ#$vI&IiN);R_jE@YH4#-aJVv3(v{WG*O%ODy38NCq<~&2 zDaPG|4)NBiByk)->gmv!(eQS2M=x)9^MJ=2J>i;&tSm%1!yuhM+HM*)P{!=^jVGf`#4V{ z-$Hgl$C_%cRjthjsYBD31&`ODiRfjn*XS8jgVP2R28^n36UV|W)7WUu9@y^;vBC_g zvL^IaTzH@mUdFxbyif?0+VS$uuBX-GJ-2N1?<{-{FqNxTeIwHYv(4e3_JfT01I8ec zAJk>MrT^dw4oPJ=qEL3!ygWc88d5-bpC6CW-@U@LRNUFJ6kBKIv4qaSses$lweIx7 z@tocG>-@G6CK8M`7GL9zel}yWYaWH`n-g5t)49HNq8O0%wL))v9laoGu#QQNX$g=I z5Gn~etpyiAu$}#R8xy&?w2qMInKZW?DG)H$eCzd>CgIsrOYulpOtks?y;z=L z;Fq3j3?|U6h{+ApxSr4!w)RT<5X|t2%Bg&3<#=Ht;X~kX{NrEIK-eQuv12~-dSU$S zOn3IwHE6;1wcH3gDKtzC$A~|VNM5(@c)0-Rda$_A3N&&4<}3MdFd8MX2Z0v@)Z9o* z3%{KezVN&7_La%ynx;oci|}uBj#=^kS6L~UZ*aGWy`W}w(%r|!0_Fzh$}^naP=v7{+=O)3+cuhgRyFjxdDRhlR+A;SAI2**DR6qO# zR+%gNNh0}wn*BPH6S>*=v@+6S#DL_-{ti5*dJ=XzyT>f?|MV%U(LTsr1IV5dpOmmjH2)m;F`zB~rw zh~%-W@TR;%9YWWs9PQ3_AnULCoV;Jk-0Xt~BYFy6|A^B3YPP16sGvsA=)KG_ck1lE z89~#Dlqe#(l7@)TA;?SBBUDqFgcccML?6^YPDd!@;$(`NIP@)uS)Ytof#Ws`P~k-9 zejMWIb{dFaXZP;LXvI2C{&x@qAySK|cag~fDp_cIkT9jh$C|8)*VlKS$m{Bvr@_CD zj+w;;!87DPxP#*jP-QApbU(2&=cjK~1qtWMl*~``sQ0%V`@N9hY1XWZWJ4ZVco0N~EO;jq$KJB%yYgp)R^SG_w^yQR+i}w|7!-d$2Dg+t9Up8(SVh$j#gbeY z6V$?|c{A>uErsfm(Y;q=kOoAZ&)-mz2in*HA^IgVg4neq>FVpGT|RJT#1C2dGkm3; z5Naj&6L;+fjiKl={_L*Y>~S|4j{&Q%O_3@C=?z0U*|C8#i7v9ospx_lK!b4!2^S9? z{js`w?8IAiVJ=9P-!M{Q4v84j5o3oxK3Er8GuVyCTzqBysmks$E!Pn&1`Y*PYToR1 zw!{Yq{Gf*wnv~^N8WgL}^<*a^_pljcRcvO*9Rr<>+*Ni=%OJE2^lLp8B&Ui~7MQ5! ze-xA<{7&>#z@1uQq@q*)@B~NqS0RhkWW9yutbtnKEl z9{uD0OR4!YbZ=d_XuRtd6$l1%O^%F9Ctav(q_6yc#njL6>bEM@Y)1rj>M}fU?{{bD zo8pP766w^997S$0+F8u|uog zOm)ObpgOSSK`Qhh+Z!nLx{p>3ixFqmYP5xh{;Nt6+K0l>ecc0v0f0J1@%Lo)sh*R?Gp=5% zO0o*m6aIeCF?kgK3No%so=Ilz^G08l_>giHF6A5dL-4Hx_8S@qnd((-UZiy3K!~C* zzj?I;29IZ*PTZ{l*nM5s$1@GYicmRvv*4Bl0#SjgSJFTv^gAeWASV30{XeR{0;-On z%`!lM1b5fq5Zv9}-Q7L7ThJiE9fAaR2=4Cg?(RI?x0#uLclI34n=ACQ`=7KJ-OKfh(qD%lKaw>wwWH4O~ty*ZBKddX;^EH%*DR5pigOQV?B{aG&YS5 zR@RO&LnAqG@Oz)_3O+6BG4c*esP;CK8(MOnn3^LkLRhWZnDn&8@{g2;cBJpeH%B=v zE3foy$fipOgNw=EkH(J}ZCw;ZmSg-|{+@342ktWjbCOnBJh603BWR=GBE-MYAs61Z zko%#9s-m=yv|_A|=#0n-)=#EdBt;g7+-Nt*jPoWwNWM7aV0Uf^08-oRY^fHdR>K2i zlm%nU;{Meo&1QOlt?$TqJq`dFQiG%{TVY9Pkr0K6W1Xp^m>~fm-Z#ykkqMgi0PU03 za_f(Ii1`4$@q#M_*dbe|%0^5YY zPR6cuqMq3#sF;yUkevU?mcDKqv^|6dWNus^>)qqo2%!V#8N79_pXnu3qZ&o;nMjQd zpx*8oKt)LWvGYZ2j1P_jOoALRA*!$+vh^OjwBbZ_ro;jxyj$bBk1jwnm@#baX6poi zz}M;faOHe*KoU1L;I7Q!0QAt=OTkedGZ&DKCcCkt)h|zM@Ora^HS62go4|m{_`Kd# z6}5pmXD~j>-r)5>kcq&i7-_MDkzx&CQLOe)AV9V_D_R>JWc1=pIsjv9q3WW?ZXiS$ z+lTTVOkN+(^ryR^lyoB_7r$OZh$j`#=%O(3qeB)??8HXT#@Jw2QPTlKFUExpAdNVHn0@(HyCK2L_ZP zYmK>v&tXK`=A(xIg*}D}fqP0f`o26BpyNF{UWk3^-v_K$Js3;S=VvX)5xZ@Ka{!NZ zWMH0BXNorR^VERa=41+QTKiAlFrZ5DRG)lh8||H^djp8|xV{=c{Bkyidja-gO2(Xo zL5gP?e}M#82)USyBF38kLJ0+2*L_o61y1ha9)eP^6o^)JyII=m9}Hu(RK{Q8f@>dM zP#r|xk=0iXM3}4Lai0Q)l9;d?2&LvD9E0;M`;87@OAc%^ZNt`fPd1ocM9|I^QdRl) z4~g0~pcbzbh~5v{54ql%ns8ETpu_U~#1ORM0g6p&`X2xqk_@a}E!1M2*xo;XJ2_R$i zm8+MldVG{c9N;oiw7hwz%wwOO7*K~9Q$%-ge_lv;_~oq_KI4crpWhrv4`6O7BTiX7 zVAzNH0mm<==)vhZ#>{8zaz@3|DSMy6VLcCk|5q9qqPy1FpeSXNfdbFk=rIkryX%>1 zQx=`B(V+4hb(j-O!v1V)m16Y+r7tlFX?JBGE&?9_1;`tIDuwkBU5KhtL*)tpMvlf9 z5v?how`mgEpP0cMLvu=0uD9Q58SPep-FfX=6-n16m_(OZzzg`xh-yyDVFV`IcmN1W z?qQlA!`+yA2A1PANiG%)_txAs13e}F_^r-f`mSy>0NS8&88|I4$t}>&u#^G5&EqtC z$PcYxIz0=c_i`1!{clFIs={KcFnU4Et4Ldx9&6DNNe17=X>+-)+#(JFjicYP+-(qpZ*Ozbu%$j9s)s#L=$TzVQbi%ryb3%TLTVB*A6vJN=JmS9hMG1Xd) zE+Wsq)Kt;YZZcckl3wz<&cmKeCz7%=uin1YD|};1F8yWm-h^o$c&vrH-J^QALMbZM zYx%l-->0Xs@G=fJD828BvWs8hrC`F8mxEu$Z(z8#95l$3DFr4!(RR6}C&+8{z0DXL zU`5>ri`YN=E;ba;5j)e~t|~pTNexNOq*KB8a_<1*N6HxYB>h2a^RE#l-V=zgzgP?P z6F?@mnIQrrZ$1%vf$)#EkL`JuN~y%y=E=Ov?YUr<%yAXeO9~s$O#t^eNQN4hJpXx+ zz62zdZMqF1pWIr6Qw{8LPFp{+C6=7!FneTm=k~J@oW)cFQr^Had(v2uE}37>aI}&Cgrc_Iv?5aXLEy+(l_g$};`CjP_Q5@AtQZ2f^x1e(+wSn9)h= z+4HkKKw^~0?tv24B^tRA7 z&b<0@48nl+SxnYY%LL!%^kJ2XT+F$iCmgGy?{i}re?}buLQvJG^0w22Z!SO;P!mbI zoDmmt71}Ew^rh8vnph|4_S^=~an?Mc(vp*d1rzn({l?N*qlaXz9o|y7u}uK~rHpVp z!6RDw9IbcB73pYkkON@VJ(EL(*`C=Hp;Q#Gt99LqJ1XD17ci507-p;YTYwF!7=@^$ zsrRWa`m%~9);uQg$b6MRBr2$bpucv7wv0L7jb~)_$i3f^&eBaZNj!X_Pj-tJkT#YX(hxkgx_8f=u7C% z>YDb^Y(}eY1GE8JlhDv5{mq8qt^xJtANE3%jC%9_cFMl1E`zd!7v>WEgl$mU=ERJE zJ@8%=a6pJ1JJZXK^C7?IrrmGYKh-V2X)qhnYAvv6}U zG)a0iA{^O)xnJWUUfXcBF*~22$0?H_La!UJqmVkolB7pW5BK#R;;pU9BrH+~F!Z4F zQSRF6gFD8IQ@8y1#s9f@9;Q>w_$P?f!)npNKh>-qG?@bnSGfw#y!;I5WK+2qhOVBh zUi3`}$&tjYVc6$fLXRYQSjR!i-%87x4F*{S94DO8#w;n*0F!}_5lO_}ulfQg4~ z3hWRL+Cxvu?B4{|$Z`+A{6dvjFLwa6Ls(ba&Wt#=sVepcC_77Jb@LNFyg9tC*&69g zULgNha1?1gMfihuD-7yJ!IX8wBTOaZZ!L1Ot38h=Sc?IjE`=yl)R&{{A94izmZdyNb0t za(TWPz2$42mtYVFtB~?bCyD+^@+GJ2hAgFMD-zS7b{WXa)|V3!W*VmvL<|?_Lki>s z4XUZh^TyK6G_*&|H&Sr45oopG9b-)zzryz?QU0$~eFGz8X zh6n0$Cf;+iMEbV#f`BuL{bTU-Vt{N3=yHrr#YO+6DGlE1lm`#knu$$vGJt?)<4*w! zfwkYTpDMD9u?FD{>rv+a{yd#Hgp%(cXVgg#cKLiFii*QqRqiZTb8RWHfHo z%@S;lf^hI>R&O!MY=6Xp;2#U1zzm`dG%Fdn?oEL24OwoOI!|v!`JH%Al186?%h^XK zVI_tFE{!|_B4`v^cD;f!P8suF5drGetmmpMEE!TDgEn&gi;QII`++=}ORg$E!9a!7Y5(!(~v zjSbWf7!N716&h~gIzq{NNKvfk=!&E_d3{+FRdcjO z`y$DN4Si5rrDn%B0qZwvPjf;4P%l5d&jEYk^vqVUxfMi0yEQ(lra`gVB?H3cd~8Q( zt9C66Oce`bpnueQMZhFGzrB<->veDBlsP$x9s(p~3ZxMpjV>OnQb$P;%!J5OCIH)q zqaaR*bRj%2^kO{Ls zk?@Lj`tg7;p{aiLC&3k~p<7A0VCu*SFFQ7g)sVSbg=>`=>;&j0+P+0{uzdyk@tSv( z(t>}LeU1^#O)vMYgUNfTDl z#Z9yQWw(s!fM{H;&b$>G<#N+0hFJ|y1IYYV!<;{Eo+D-HK~ev>-+QBL)4=RG^s#gj zN`JY_1XW-=%ny36>8=Wd-n-@XH7FFy{^=mLQ8R`>ZjE5x z!TZbbd(8ECm&snh5V?6%eESc|GhUhXtVQ=`mXL9-RE0OeM71w`ohWjjqV50AUVt^0 z%}kLKdQNm~a^oC7Hg*+2uA73G+Zc|Lo?Ly38ipET`@X6>ZqH9Q9jpwJllgfM%KE?0 z(o5A-YmRP)GuQu1``FuBg!yr|)@@=X?V0eRx#HsX{7uHx)=Lq^lNbjUp!1*LWdQc~ zYXp1QWtuqxd5?yq^T>KGwARx^fC&$*^8_0SFN6m&)nuy znI!vd%$+V0AU?$QFkMm~^?TCdx?YO`6H#L;x>KF&88ft>P-(H7>XlYrbxiR+7(ekN z+Qe6hwSl8o+h~A9D8Uei;UfJ|A1(8DQQ}8={&OS%%*|L;8`&4X1%Ma1pl#|bYl@A# zuM5=f5L1rE{je|E-eT)#(PkJMVa7mwn@V(!o>~~t;4@V$sC9^BJ%chNb zc@67-W%Q3G9gl2MvTYTuu~MeAQlvxyPT(-s=v~O516#WO(I~$t;izb~mGIl+2U{6Z+JbFhqld6g0T#EkbYi7e|Y+|DA^PZ;Y*2j(y zE6%YtvSkdDnC_b2Nv(l~?G5;%I?c!~7raU2;YHE7W zXgr__xpOxD1w^i?i{u1;zXDm#(d(|Cbj)oYB>~J#2Cm6znfJ(c>@)bMSVMiktAe?8 z#LZ24iTA(ti?<~;3gLh)q*KMdzeD!}@aO#iv)#MIYi=m)0v6OpCb@g$;N|7?s(jNx zv}_PRtW}(()CU3rb3P@xTQ>e`cl+z77{;7SNINf^UuX|V4v!;QF88psO(F!bysU#R za0%+)+zW{Bfn|FZ1o&9917wl(c$c)GP)NRDLr_C7%66he&$=R>aDSIVjQ1Co#lTB8 zQ=qRrC|gt?Y}%%A0O+YJ&7QYbc7Uw?Ni~FJwY0~26xc^DeG6Fkt49h|@|B9wZ1{I~ zS_%-7FwAIbRgCE}p#fO#W;O-wJr2c~+`0&~aDc;@W;e^+s)KDpT&7*!qT~F^1t6R( zApoH@YO?m52wFHt>IbjZC@tu-TM8whh}g>>^l2W|p|1JQZ6yF&xx;+GlzE#XJ^~iq z7jDf9n;fAtLJk0gf&i1au|c4h>o5V>%nuPd=)*AbmUmg=nxB%JrvPy5cZMPeS>1Lg zMcB8ofZb{&oo6*XLOx4{^8s7_;XR8=6*N~Z!^974>kZxv;m}pUFqYQ#QPOTT6lZ*) z-he75wno!(J(B{g>aP}(kG)x4v}lf%UZK>a4t%V}wcvfUJT2sLYJu*GcJe|y5KQy# zR@0>O6F0yHI1~zU`N2#=HBBcEWnb{jRk0aZrQk+OR&diZ8LfIX>WQGteE<5(cPWoz zVw{7a?>%x_;F*yK`}-8%<>bdwOn;)4V_$cxQ1XLZ?rPl@w)^sh_MZiOlG@qTVV#`T zAnESzqPn##FYbXp&}=y%kEt3{{h?fkZeZKWDq&S#eDS){y&99xlaYfx5E->A2uQvn zMNsVQ%5*{{<$lPebODAXr!#TtGzubTU+A8d1f?603>?Z6OPj&%bd%} zujdBTGOwt&aI-E%a)$5z!IqyT1P#XisRipDZa7lz4fSEkSA2_9i1}3ffeO4mp3a{U zs1-2~wE$Sj8B14q_&E&!=&a~v{t>sT>`Pc-2QY5|dz}fNo}DeDzyCNCkcuy3%9?{$ zB~dPUuGH2jCosGkGoK0)x~PS~mkB19>D{|f(L3Rk`F)I;&yn#tDIFW6sSX3JUnfT3CBYCf7jS$triid3@hI!d5zJp?#D`Y(K2$15alxr-&Hqq|O4 zDC@Ar-LUe3;SfnHujztHXNDDlHa4r(h5niBLytcoNqEIa008|np@=D4UmfAX&XB^9 z{#sU#uK2}N&C8+;{1aM-$(r|QZHQ7*LT1*t`ms@9M$HtC?DuDayOyIt(^?^1-mzr# z-{~FCzdxu1Dz?i))2PhGQd3&c09>(RmtqMKUTeH_Y!RRW=53AWfnVK4C)zk~h^JjKNE_A%M6%>qD%A&Xcc2SmoK) z;xlI3KA!}4H{(4Zq-Afs+HG|Xdq2YACaOS5hUc`=Y1IacJI3PzZqvsJtv`cThR>~y z08@T43XBRwC0}dt=URpBZ$QA%5(lY0^Q+IlTY-71OT~Z9!h)BGADiL=&?YJ)sl_iW zIlvjxj1~dBoI^G)vw>3T#HyK5fWtP`zKGq0{8_8i-O*h!oTL_hm(UC;XHY{8*fSR# z9#Ml*vI{Oz{|&ep(b`LHYV3kamnO2lkx8-0Wx*5 zh|uH6&%@TnHq?NVB*iB6@$Tr$_sGr7iw**f1awle!^raN#CpJ^wxt50Kg20pk^jx+ z149O77eN7|zl*)J2>^>c!jk0R5r+`Ul#mAju~H-Xg#7fvJ9cVS^N(&BL|(O*IRXEe z(M#<_*_%3v$dzEW-iS8T0N{Os#OhU5r)sq_9t1J;QoYisOYN=v@Y z3e8;i>s4LnX{EVg=?_lV)dv8PC;@+KbTTw9qUM089qgI$rV#dh8=AB2ufiCRre2UiQQnfAw3q`D=Jc{UaqwT_WzWUo%fD{ z0MiTHPoNj|yr^;GJXkd+rs*IlQ2&I~$>F0JF#4w-aLJA-J$9E6tqR;Ghrv;scjX)jg1>xd1B~`&ll>dsNw2IpIKZ=GB2~y zLhZqvc^cSk1T>#sYk={`JKJDkDV77+r~6(8A(t6*VcbvxI|W+`4l3&Afvo_B>e$QZ=C^9`+nRP<9J1}B^gOB09y{e?^0?h_{-2bC=(1VD+6 z&VRqMr4AP9OZgpjvZ4Z$Jd4OW>8Z8<*K6@jlRPq`koJlaOG6*g(3%J#d?%~Y+~7GF zRDI>0j!jT)b5U!}1OcCq`F>S|Xaxo8QLEkc8gwNhtj}deH)2gVo)~PXN)4|b;&hDm zUMaZ7&H1Vn2g;hTHT*}^YxmP%2D77zj$Idrj`%lrE@H`c>Zmw7c^_OHCf^8lSe(`K z!j4W%_hLtAqBVH+_F{||^+3%4+E^u?FvuW8!li<@QhEF^}7Mt3zYt5hWl^g!1T7;3>HLPgSH*Ehd|T~0*8 zaHsp4m%OAlxD$h2nCbIEnGQBhrS@#=H6FBx^|tT|^&W8CP)K6OVyo(GOEn*sm)uKF znAq?7U`rbWj56Yiscq{IFbf8RbC(=^tU{cn9Et{dx)%z+_3F%=G77dy(3k0@chmo4 zmhuLU7mx>QXx}2#o`RiOn{^TCyWvJBOxX6mb~k<+JM@@5i5iirdyeL}H*`V#7Tfds z%8N~S^TfUfHiDl)l4pjOf!oe!aO8h?EkMw2Xa9&~)-ap6)N|9@1D7bT>#IhCc(NzF zpH<{0gz!X&?`bb=QnilAmL}HC3%F?+Z&2C;QqETEH5Q@5_IivT{L~NPOc}p`PkGQ6 z$g?0jW4FDJ)hfI=OZBn;GRmuHtx>bXu1NVoh;jv`p>&S}clr=FQy3q{?xd`?mCBbr z%z%?mP99r^09xNn;*L_S(Am(=7|8%xabf(ae?VIP*p)A|sj16v+`+b^PTG&N+Me3f9vglz@M z*QFV6!D2s!u~~**f0t-U8MkltS05amK$O_Qt>ln>)Hd1$b0nhNeBAA_;a+@!YB&5IEP9*P3J6<*() z>-X$otWTTHNmi;CEa@bTs`aOgpAsp=HzRImsnc40VX>5i`g6XoMt-T-|FWc%@3Lz5 z`1}a%G3!YOV`^vO{5@lraA1ae7%(6H7xOdv_vj z;1UB7I}-yD3j-^W?tk4a45S*k-HC{af$jf3A?|4J^5cKy<-eo(udDybiZT$nqoJMC zkB``lJ^pi9lE~T7#q>YFgn_$6OkFLFO_jujJ}&-GQ7M@^*}FIzn|{Rl--YqNGRXLm z$p2(e#?;Q-*@B3P@&9E<%+ki$)RBl@%m%1B5mRG(6Vs3K`JZ;+p5fg#GVUr}i9frc ze#Hv$P2ViDG>;NR;>%Ym{6$^~h%bWS?l?hE4bh>YrNevtm-gjt^V&UsCU|DM%nSLm zUN$;pK<~#3Z!h*8eoq~5RIgp{uZ8bB6CF?b?fmZp@2~RNSgD`ikNn=R3Ez&MTa>V= z-ecbfOUr(}Q|5c4>!i1icCb?Q_aGcHO^s;lB$nzNh=W6~0^@?QOKZ$vSz1WPD!A zNp9KRUal{)-sb!sl3(?=ZC|ea9tz)&^!@aoHr~f#{CwU^U#>d_0Yb>*JxIQ%<9)2- z`QV)ZZ%5yE_W{%IEyC|DdV=+>ZVIDGrRGGYW!|szp@X>ReS+)RA^8^S-DiZ{Hd)e{3WF_^22VJ!HZ(L|^#IaM+tI=P^KSa{cJ=N3&hN$ky_Em`t|RIFo`2J-cyKi4U9~0o+8hTY=tZ z$mXG&^^&topbFCCjCm^1gH+Zj#xLrX#n650*MF2Dtth`)l{^(7qiZ|dcwChj(I0cQ zjHYfXv&BC23vE>-(FdtUt^P&ycngocPpabP*%k0$_81m;UKwdm>l?wQ%v^*0)zsOu!9$9j|Wxi`qQ2 zk0RN?$wZb-(9!CMjmP&mFO{JPBFnLklhG7L_2Q_He3DD+)gv_p$hL*sKuDc36z`}D*$Hj63vB)sS40zD| zO`K@&5SQd*oHQl-BhS*2dM3$Rvg>XFSL=E1lW&H3PgGnjWkPhJt*L2oDu^#(gzWd@ zP?pauj$L6_FzVr_RO_zN=?|!~=5wocJ+vz1BLF)Ko}H+7dQ)P6&@HMy4V{_~68V}KrzovmMd6T5Fp#euU3D%*-qNaXWz z&oX(yS>W=?*h@(W0>ca-#sU~rFjdFIT#>XiZN3D|6qg-uL9+Amlg?wW4V`k|W?e`i zKZe9kd(HA;s(TN`r1wQJ6r4Y_kv7#V6W!i&rN${L@K ze~)7u)CVeC<%+?lU-tzvxN#7AKSJuS{;}fiGH^y~IiP1<{)a>e%^n>Q;wkXk-BCQn z921+zc=LDgl3k84h84A@%4+AocbkY$_v%Sqe{Om9Sf`taNgYwpWd%Ko`cK!>YFu-u*;$!co*!wpX4o{*a%eJ?Z^aYc(pm-uPcaY z4n??4;)$&jQt4C3E=u$fE$0!`oZl^~Bm_UNKZ|N-wK+vobCP4*81Eft`&5_!T{DJ$ ztzMr-?;@A+2vC@pLg3Q?bNCj|6Omg&Eg+ESUG%b3`6o_y86XfId+it=-kWKa59%a#8rI3w$W+k@eT2xRo)^^l+PRPs92OVd>P}SdF=chC8{pe1ssa_JDkJ1+syqzyMDfD_w*UAuDK@YKdMeBg+y@d#ADC5_(9L zL63w^m8<-}3}nmL5Jj`BGrkbwv&hLEra(SGq(qPAoS61hK2In>2i2C27Wg|r8TAZI zw|Nmi+##)R?8$*aY>?k8<*V`u#?5IRPs;T47jhvXE|iil^u_VZK*umfIsJW*KlrB{ zArhK|DhmB^a88=7$|w(-JMSBm-)$V-+BbsJbpbWp#RBwd!$xi*cS1WuXpV1{gRVoo z=>hk3w2jHXyM)m$msTT~6A1Iw!;u%Bz#IDBD1oVj%d&uDyOuIPu@+Nlc*!!?VxgB* zy%ZP@=Tg(CvdXMkk;tmx=t?`k`Y?< zCE-(LmI_Oh0)4x}RabPp_!Ee(1V6b&+~wr)!TNfTK35JcQBPmt*L^hSaVk#Xal|o! zyYFcX#REDMyI}Njh)m8UbydnpjWVm=b<7E4wNCKD;fmzc^{?7bN0SoU!5$hHgrCx?$Uj(=xbM-Q2RYo`^UBX^#+?IPg9 zUHCe)5iw{)yQFzBnqiBhKoFPHFyu&*GtUJBf#3xx2< z9RxkhQ{J2qp&96rE++RppmI zQfq79WT1-vayjO0Fz&Lt7+*4A8Srmf;|{#BCso0jx*IaU@iI=gV&F7pi_g#SbQ>H} zR|?TIquhNbqXpOqfjOyIy1%(0mj&%#et$%D#v02cjzW2Cp1q*^b$s|PNQB@`_rdA>wCp6Tula-K=H4_mdt#;;>jp@bQW&Hc50 z_73~v1$8QV&nMDGhzPNj45lrUf`xp?e!h_S#jLdUK=QsDL?U+{-=t3hLDq5YSQ*6) zw>H;YF}9OAPS7?pgxk%`Q_iMH*MIcuM+zkBo(Hk2Yk{HkN{$;yxRTP`Rz1kPdC2~7 z>FcgOyBJvyvf725K{kqdNPV5R+SWrF@86z;`XWotV(z&xiaZA;z#NMY&soy$!pwm9 znB)ECcsdXMCRa|_RZjjD;$zi=pMI(1KwDy%`mP{uuaOKe@?gAHe2i2Db%!3JQ z`Z2xIw%7OAG(V5;qI6;|Di1gANz0iI?sU0hHlXx=-sn;ojhUXW{K)ooOAMPi$Ox+` zo|;CR{8wkZX(c7}wiJ0wtA2taVLX{)S;2lbgADW4S|mblhzhLcHypL zWD5+Xx`um5A_)1;G>r^^>B&PpQhpM&=lGdW{vazf`}rr7N=gW( zZ*bn$pbx`^DV_4j5T^8t%jAOhDweek=Y=2@T#x-x2ZK>V#~VCq2(OHT7t7oB?U%vr z)8drIGeel0a`Vgp_9upX+BdIA7^q&CNSh8RJQDO5wC2zCuXK@$ErNL9YI6?GwQPL1 ziV&*lL_ZfJbZg})?dLuIo8ub?Ml$N)$;v&Wq zQ)u<>x0@oj~t8Vwhy{E^+c=+LJHb0 zSm5nu0HxB};*G#{PnxkpAv$%J{%kmRo|3psE0lFdbdt<(y`g;h{h7pb5||PaLYpj< zSz%Y!iQFkl~7zj{K?7&$wh9qPF65J){A)zxEy<@|ei`u=oWb{kNdao$%m zHF?AJMKNI2h_32tBVw5yTwxn9kgkBvRerkLQGp>t^|%==Wb~`$dX}^9!>101toi~AJ zz~Jlzwod53;5to!p)fsT>zwroqe1G3rQ2k);0#p(hlg_niw7>mY+RrNB0-RtH8+n? z@a&Z(Gg{o*KT5D}Joo zb+6M{0#I4MGcutAAaKa=4DCXg#h+qN8t%11DR76 zrodVDa>os^a%h8(md6|f@ayl^;+tRGFf?>Cg1^Qz`M3%J&njMEQJoQ%?}F`%6@|D` zkQICLS;QeQuy>nfT`l`*TO|s~`!^vQ)wM}lLtYdui5(g;S?nI=Hrgt=AC3HZ41OJ# zbhuBw1ly@^q72`+t?>wz=y}-9IesAr8L!G?b9v)mOYn>#9qtuU>^$sY#r@NykKp)( z7iHYIsUItjJ&L`RwS43PK1B8;D^RLwEJ`Bf8FX*F+Yc+R8K43SE(3)Q4HcitCVb+= z|1;Fj%!QsS&b%3J6gXfKyNWt=G~%yP6QTPgAw+IWFUN45cL<}BVa?#od**$G=-h(+ zTP{B^>r?V)w>Y&nVnn+3ikIlX{_3#F|R zjMed#$QP6_!IMb;q)gKyQNs1Z4b$xr^A7IFga6=7e{n-$y3LB&hET`<6<10QIvsR2 z;JL1_%!QSU`WR1FSW{kkPQR%TR|)}_%5FY_@wKSZ@FkO`{TrROX~_*8%C6vFQd@C@e*p#Gu^j`g=g(CUott30Mh+x-r^%oK zrPy^bS{Ak@i44@CIR|4UZq8tDo-tb|KdfV)tlj~xBX=|Jbwr%rHT%KA>4fOMMjDVb zrXmXZQd6^;ks-yX^&HpLxu?bo*65r?h*k#do6CTPJ9762!b=A1S!lA0ZcUJM&N;pU zcO|BB!OYd4gpBkvbb6T(!S`dSSOR}7RFkgPbG z2@~Wk)DI@B!)^=pJLXbiEwGAFR0s!`a@6uazB(bQ@9?%V4`aaA5X$+}*^j!2+LguC zo~Ff^E**LTvPHqxdl=YF90wsv5Uxwj*4#hl<`q5`a>6bP_@1*sA->N}E&R)eSm($j z#=*#X2=X76kiYe>wS7N2` z>q>4tUIue3>lmvwNIxmpa7-!$^X=8p#BnY*9p+E$&vIDePX2MEx_tl|_V;Z?NEfJy zWuzPByOSdSZzgUxx%@bq&Lz&O>5=Vf`-p%|NN8NwjpCO+HC3%^6ORJ7#^p-MuA1aF3`Ps zhdL%|{N+VlaRYTM(?TWUhoxe^D7vJd?-Yro`|<*M1fjr zwHSlFjP?v}$~4eshDsfp-2;b%ib{LE=1S!%>Au3&)4*DuhF5N=Q*O$u6xH_&>SAEc zrzyqtdhZtSPAAv`gX&Qbh7>zT=4;n0_J_uT)8#G0YHB~Y`bAV;$=YdPkwkb1F*eZ9 zj1d#YfK{?)GEEKBPsBwvRt3y^)hYHi;rGyd%Zz#nyDxpaC4Zb1@rzI(0h8RQd}af6 zXBzpj>x7?j$ndDYbB<5zgs|`RQ#{y~zLxHG+CG2A7og8P2M@>ko{-OG9D*ZM`Ta~^ z35Odulz+*+3vchwex{Km?jk=^-!*vte0)t;(H=LNA*iqI{}_9uLtpa36KBvVF$Op9 z#qSWQ9531MxN9%W7Y|vCYVPd2m@qqcrEIJ{r4Z>|{{^c%XC5msbjTk9iR29HrR9si zjvg3W2%EEs`S+f~7AE)tFmi~Xu`*FWs8T>@sbka7SVLLdv(3zc<{rb4Nnm|qDESbp z#>0^pDg}-Ml|ktlz8wSGp+gNZUQpT5bT_FIi&Cprzcke2?x-MknF{CgL}^A$9|AvM zV4YZRQm{gCW)^)1p5$%@VUtddZz?zu7`s5}#c_$5wQa2>?c*CVbqdEgfu=dSBkpN|;chX} zX`HXsOL_;H93pqd@zD#Ov!!APHco>=ijMA!WnGdx8)S+QX5PE^m_n65DQY8|h!98Y z9)0qsj?I&$=~Q5dIeG_av+v2UtWC6^!^R8B7wgzjUWdX#lelFo-sjLCC&fJ-*B-rO zlP)-yW_W)stcOE5M)*L*I8{A+t}C z<$c(w!y0(Uf0kJsL*HgYAfglLBE1tBUocw5_X;378H_*Ne;1V zl3^<@H~Iy%dV`Sv_E%KcH2V)`f~d$+2x)Yj?-6IBPO}CpH(W5@4NBf@;XZovp9Ff>l1PNCnf{&c_ zhj<%nZEE-*VN8*7b6VSJfWsU);vzC&U$$Kz(0mK?f3{^07nc03Ab3j8z5z?c;xXfu zvJW{n($nSO>KjW)SqU{eitLJ}ll=3PWRx`;n78FGIkjY7;IN8s0}r_I*NG=d=RgcU zARBl}u~Cu1z{D-hb2>J%bg=bGND9|YMUmpt+5z*W4x0xKz9QEUjsOY*KU)1Kp#+q= zbVgu8%vU!i$7_wforNKq4hDNsC#bFYR#7l>^M1Rap-=cwBrOOG+oLeXZr{Gcx$6^d zEQ|$7I_{sK0d@}(RBBmg45JC<$4tmjWkD?_w;Gv2a(iO(vD9~YD!IOop>IaeN9xVY z=QbGRIHI7Cqw6-Xpe8Zgo&Ohv8+n)k6x`bp2E2<>AkTU3REj#_ z&R`OtnIekgE*~hf#tsbi^E9)tq60)tpo}8Qa%Q+XP5i4$!>!xk+N{xlqVylLbT3S_ znSd*Wp&Y79>&4P)cAR0}V#*cED)!D?%?LVtY(AoYiiy_dG5UqUr0=K}I~ySCv+G^e z3cCz7`v*PrXIgaSfkDlrchH%wkz(}Tw4bYNSXdlEgudu8O(Pkphn=+Gy9@Z$xJt|pt~2!}rF-ZdF}SIz-;T z`f_GnD($(%(64;|5ADiTl{watavxY*;6TG&xH-Vp+5#p(pYOjvnivBT`2^_dB(n6} zjp&~jcVT7gI#j2(v5GY?Poa2w8I{WA+O@M;qWi%Ik=ZQ6eqHQ@^h}63=?X~xNzL)~ zQN{Mi(sp$$T0`Jro>};Zrb{{J#En1>L28D^&z(c%;iLS|7D5VSe+7O&IdTpnsI$NB zi@T;|uyEQ99?Jg8GV^TBj3RtDa8nik%93=%2Ueo(xin$Ggr=s~_Pa2?2v?y3IDPg$ z^;sJNfpUoTH_DXBZ5bYW@9kpw@Y!ntO_W{fR6w3t?dYsCj~)nrM=rbCw8EnDnE`B1 zj@kKLr-Hmlri?Y+mX(0Kr(sbtw?zXO_xODSyp!5z2Ko3?$VKZN9^xaG~H+s7$<6`=6WN9(e;>QoF^6a%5ms7 ze{X5`ycTc1y!KIWzMXiSe^|ElfxY$gnru8%aTk!h>^I{)4wYfzjNxT`+JgPS>84#}s|D7dkKg;h~S zLC7NYGB-Kjs%5T}5qWU|(57J#7{=KxN*#5BAWzqzL`DJFQ;cDF*d@~->z_y3{j zs^g;QqNu1KA1U3SpmZ!P-Jl54ol7@TOLrsP-QCjN(%p^H-684s_>bksGBa=H-Fwfu z=iEV@(u03buVMAi=yNMhwW{+xib)fBYD`|8A{UAFG`&k)b8p$B+?Hx#U-pi!`bV3^ z`zDi9rc$XD$_@}J|J}gzmD>VB0b5C3J3xk#Vn@WQQ}*BW?M~S=hej>VY4$toOHckw zzFK!M#vs6ob(}T!c4iP*LLew~H#QkB0#3NuvH7}m6P5Mz8r3b?+$2J$ecS8(!yvB- zXS;6#k+ZGtmbxrPospch{(xXwB_3UsbS>vUFj;R{4`)ALU^>b8R~EA(Pn**EggN#(p0Ze%?8JJ!VP;VY?H}FW=$O9~*Obv#-EFQ$u$pH| z{8N=Gfpe?Jk8EUd4_9?cxytIlTLhf;qaY+^v;CRI(`A~;=peE&?kk}2)Vs!7wa+f z1nwpT0uj>=M~Ty9XJY1;GsFJ(9b@bl)G3{v2J>gO^?9YAr|D;Lq53AFeRL|>qefqy z<)Y0uj@V=xvXG{?KcZDKpMHQHRf?U++y|4m)D}OOI$X7?ljW5%F-4paX6y;RY9?=$&XKlMG92@Dw8A|sXV&;q#ON-Z;H;7v1#Ch+ zWyK*)aK$&oB7Q^p{YlrL_tJ$<{r1j7 z6@b43icG${8Py3td!4oJ*pJ^E^hQ=FEeb9b{3_BMcjA*?)V|WCkaGTf&ojio(bTrH zu&DfwR|+9a#w5sP{<7J`SdeDIv_|K`K{6iE%eh1l+`3sx^MQnlhed8QZFGhH=@&iM zjjKO&q=TuHy=bn?CcjVBA*N)p{}4ol5WIu!TW{aLI)q`5ubtht%Y;5mo60wcNHdMQ zf6B-vIc?01=4cHpa*pjxdrG9~D|NTj_Y(PnrXNpPk>8%-jkWzNf zJ-}}Kgk#+O><+F%Oj55}1AMazZUzQ6qMn3vXS}94WbP9`iPMg-ovcmBZ_GzzH4y5i zYHby3r!)$=C>a;ynr6S4FTrU)S4!J-)BO{S7$ZaxEeE%CSXnZIy0G#A1n~240+<(U#2?ku5;n9#;*`=E1 z>W^r*Ko@PhuEDizY%E=f!K^2-%v#t=CKHGm5$2FRM;^X0$pdw-flA*mTK873qmOjJ zrm6Y9qmXfU+477~C|Q#i_bgrwkP(%>#@^)ds3TFsBvSloeGLf7;xy_Bn9t_>FIM2e z)6`##I(E{NXt;YRs)vf=?js*~C_c1Hf^g2C7^6YmG1axE({S<97{(?tXS+baR_RJ5kRv3J+@th@}u#?zio|wexC)n{~k| zMp@NwP|&{*E=zwom{3f#Ao;{|vbqEUSxWM~dc&9L*2Z?9K&~@Y?w{!|*?v+U7g{}5-580T9p-`#!x`O2R|bWnr7__YstYRLDj z;`8_ohX+M3Dak3DwcaT9_vx)9I%09{p#gR!|6^USeGZG`iZ^&Jd_^(ZJvNfILWXUS zDw!1#5(|hdQ=wriC}FSRmak=Zu*}M}c0JL3b?}|q99#jV-37vY{@5gB>I5M; zZOIA5;iV0tYQlieIr1k&;vt{gt>!KPHLK`G>o>4N!yEHTDxlS{Nwz&CIsBQ&WlwAQCU)}|H}?uTQ=?Ue5x6C_O*`jX{d9*(&tEbzdk1?w z@lZY3!h%8!>YVi-kFbX=SL~*gQYydqqg4}=MKy-d?~VMf?fAjPdOM+JSIX8E+s_0=#LjCE zVqeNh-mj)M1enm|+??KXYsqVh@U@-P2Mi9XIgb zc2yg#IYeSQe{ECKZescAj?`o4NvU?(`>d-jm(7x@`SYOWMEw*#h`#I-x)trW#155y zN`7I`N~OXBh)SS;5WtV>h{SmmQVn7H!XNtrm4nl+5-kB%lphjeZi&FtWib&FJT&~4 zyTk zx4E!%S!#qPekT{RhL9LN7XdYe?EGOQt2QW#zoH$}6-jt0nV#b|X6M0xf(7mkhU_G# zrM=EKhTGFuAeT7Y&d+*7L0a6d~sD%^yKChIw4Cx-82$8EiSX|XS46x2#b$Jn(n zC!GOSi_PVA_1>f>uFh$8euc?okaeI^Tk^q#3W%y@_LK)uEvQ@#GuD&#JU-#v(p~wP zb5b*)YWkD*?8>QNWBwcoFJhoKkQTJ8kJ;VMpfaa3S-op&R9$@Mk<i!xMfA*+J@J-HO-ep=uvR{wnz|It%3WK7nw}XG8{<{HP zn$pb6{fZ1tRdTawQ(_Ijn=~rC*8$reN2|_Nh!EbISv>UxJpM8AZ%VFI;O4vN*j#4J z&oN@^(cXXLo@f0#s%`6r+MI^xL10Ce7>;s@i@%@h4JG;KAQ9qbeyw7!Z5Pp$b-a}nZgub}p z(1(JlhN5Yhc8mJVjj|&QJZ+ZytBP3c zW$+cPm6KlCRY}Tf*1NIGC7F}rxJOS#k2yR_UvY$nUhJFNcKo8+AreKV>SmCAK311# z-&hmBnla8luw_H{%XZ*kp;@3^8M7W!do4|+{Hal=dO)tvkwljz(Q><2)ZSUmjNm`& zexj90Cij0$6YUTJ6ZA`z0(C&ab*MNXm+I~Z%d&tbs&1jtH%5Zs$OnO}wC4v};sZU>dv zAs|Z`yBG)xSy4@#k`&PHZ|x(21c0CN$5*46dR7NiC^7Htbno5XPV#WqpW?xD5uM&y zNxn@sGSBsdvWzRJYn?8l1&2}Z-443FDaDc_gtF{%K^AE`is6zt@<7r$+JTG*oKw=r zsoyYxTIkcnbo-Gl2Ln2Nm#(e?yMyYQv9_(^0XMk18tRcm!pBwu11RouOk*>_xQdPt zy;6dWAQeV29lLREK8hZS&07`PowQ~B$MRK;nWgKx-|T*{9?Ol%qL)~(ZK7x6+DfC< z<57wnlxz1ZT^O*Q1FS7VXo~%IXQSZ)&!FiEAdpnxkZ~Ny{&>}~PQ`l%TBhYa>{y;m zM^V+|*kAx(5)wu z)2Nx;6A0ARnK{uExg8mv9f{`!u=yYIgkPcVV0wlZNbG9q+MEPM(p?D z-ew8&<~v3k_=QLmUik{rUHC=&zV_@tpHDQwL>q@GJW8^;&1r%s)VsL&Z^VjT zip>Uo(QfVtBll42!E>ixG0lODHS>uhdWg7Xin-%yuf?8@uClm{y2~Ju3(=Yc9yRb; z18|w|#vfN-Lc-zm!T5IkicL7F^a2~)*at_rFK^ilUoG5hKt~&tG(P$D>TO+nMZ2B8 zsn9ab9VH)!`{-;LI?xoHh$W_Yy~QVm@JMbF|6PA{axnoki_p`fI8|(B)1A9OR$U-( zn2jp^);xt61HB*CYS)wtr#^t6=d+OoFZ13Nn~#6UzI2%iGx%pjRDif9^Si4yb0O&U z(hAk53H2Q;GveXf*Ewt{c1(wk3G0*ZC;W1#QiMT#Bb3$B^@q)v)DrmyS}GqL&ug}= z3x`gwCh=NmBsJ3Cb1BU}9G6}L3{epAH(CMX@N1m%G2&8FYAmYNp`K+vw571j#r(>t z+24aAt_na=E74Mm{f(ZsxD>ulS)~lpjD+WN+6<<4ff{Ji zbuHL>?&YTYA2S+ zzky8e52ul7<*r2`p$#Yf-MaHLuS$N%#N%nRTJHfk@z|B%7?y!F17wV@M|bL|cjn@& zElOmsa(cMEGd_PwS@D|;V_C`FjjFD>g& zYX{c30mO-AWgv7OqZUc9O?ZzH6v|J#Y1e=wPN@qDthX*!>YXy1|^U&$hbG z{7abl1l|_1p+nQ*)JatA@{zv_sD(WfG>w{*=3g3Jz=@%?X&7^aFR+1;3~319jUH2J zTFw<@B#a3Wd``&n?SuATC~XJF+v=;B3TsR2O+nHKFVkiyx~i7`(81I_3;R9IoM9~Z zNOBuNQDEd^ZQ_|a+Q5#YiR>tnck)bzc1!Fev-TbPXac~SZ}Wy~t<3c2R}0a3e17hz zh!e|#={J$n7KsN-l$`y0_vfS>2ti)u63qCsnc1M&EW8?G|LvbZpQK2vtMBD(iAq(# z$;Ihx3&7BPT=&^GySz#az<#XyEy(aI{D)%E-;UmazA zFjvOyWlOxK%}$CSGP#QoHq@N)_v@h(5tM~3zhK1H@~$;s`b0K*%Isw7$MsYjexX1$ zzxF;r`qE7Snx6c{7W+wU3F^DMyK|V|raoaBL~v7Uj4s1qZ<4*`=-&U0m0gg#n7n6g76l)ZB9=nmQSTk2|LvDFdQ439)m5CoTNb)eSHtUGW zOp~eB{Y_7#7M%v>Mt4mV_=Z>aKsWrrFRF~Ok6GT-R$ZeYwxXAGJeW+Dr-}X1BRx`Q zzHI#5ifk1P22&(x9AS0UN$aEo9NQvh1|bgBYnrZ`p1yuZ3#tN2QLszvpizw{lx?CJ zIU52U2IJH35%=mh6!u%Krpg0pKAK3rpMEiS_GNP&s+R+jZ$7*UzeHU;8TA?m0)Sh| zh2eAGV^SrOELoo~NP>px?piG2R>{J@6=H}lJtAO}M56?|JAM1#OsVVF)OVO)Ry{e? z1Lck8P*OaKr8}rEe(ov?ehK$QqZ`376lo2$x+I0g|1_qHn&F$Pn|7W*l>EZktdWL( zTvJsh`G(CEWgX4M4yL+v_{yjb{qd*Au#3$w3cj!Oe4PM&c+wzx3N&N%Nb&9K?3lO5 z&HGC*s3;a`fHlpB6j8DiARrqrN7}F({3`tM!s@vnjHSptS+NBVhkVEXQYxUTRB3)B zD5l!o{y9@8!r6sIGMdr@#6ieP!6!7WQGyD=$2A`gwasf~WK5_*(u30YWaK0ZZxwvqt_2+NfO4TIR9y~*guh-D*Lmu1q9jQb)- z7Q1qu^>yrNb|hR0MYivOnj~o^G(g6Ufn3lWt`vkXED<8Vj2H7hd1jZS@T~(MW%TM& zfBqr`B2C#OZ+nWAtp3U3r|b{LKgcq&HD~qm01*Xkjy|c=nr&=(Bc#os*IhqEL%uLx zj0+Imui`##jqPj`V%fB$br#Av$qb7r};mhz@svCQep0$cH#tF7Q)~6 zE7Nz5Zu)BB7klkX0hZd>Fto-viKAFVP~09CRDbLR&#Z=z3wc=ATRcU%oV2+L3>BfT zDE5WgR>3?dCea+DxwbQpB;BC913?k{vENABS398zngQ6je-5@>{+si_1NwF8eb0~= z;qUP@#804*aX0@c`%tB7H!}bB7ct&1jcv$02g`d!7=gGXw$z=gSP3(x>XoD|s=tXg zt6Fxe!Ybes*+$2i1+NFH4?*dKuUs18|G~=u*B{{2m)=*wR?bWdIft6gP$)zqIQ;V9 z=!K2f=Tbud+ul%ogaptZU@=j4rz@ARC1jntB-4ddsQFaQ9Xxv+fs^@oL{?Zt@SP*u47GSA6MaLvGUirSC57ug8wWWJi$rg0l>9cmC^-(C3)=9U@wrr9mKwR#!)r zEb^s7NQ!#EK1QwmX#{i{x2NYgm)fU1=s>}RtkE%Q|HyK4^{fO?9irC>^hS~wY z+on&GZ*z8#4d`O}J*lNs48|O!C>#ryMh$eAhq~(%9$-cg0>$3l8LriE;}fwj+ENsD zVd5GkFoWlRe$W<$cNPH4)Fy8AJWJtyf}`N{d;&CcHl9Qb=fYTTHf3iwIqm?fgjxA0_Pzq zp2P&QZ>OYlR>!6WHLGA|8t$Zh2~W?@H8Q#5VU%cCU~+E|rD86W*GgZT1Odjcg70Di z8!13v;!-$xwcmeWnoz2YbM1t>E8?MrU$oSNSV+M{1>5jN>H(x>Z|fs525!)xjDG`+>9vGi@lrZnesVkamuqzGyNE3s$YP$ zG;mAOJT%Q|KSYx8*;s6A$?K<1TR$auJO2RuZD=#>-2m^`;3j{3Svb82(?!Ais%qGL zd-w$yIWKW{Cfp5ginqtSXqfB9co+Am4hMI@**P4c4nJI^ngq-}A7Sn#+~?DV5a+Z* zCu~{p={3cDim7eY(uk8{|Bqe=Lkm=u1!f1+0gjWN2 z{Y(S>!1Y^+v(u(o_@@X)Ci_t$UcjP#&YJN++?^cwE(nRHAMH)~+`CDqb0o`Ih0)dy zcq~e;^qw#0D8;+`vG{VgXZ6|mSwQLMy`=M+!;s+~7Z@+|Xhh<**&2^1Gk^nOoRl&-~DLcyho2^Q~6n(*vhkd7#g7bI>Ie z8!rc3C+wFNA9lul`3x4yoWMQp>g_MjeZ=-}j9&DWEF;N`w1cJIXSb=KCIAm2g&&5- zs3rQx#b%Oe;7Sdm>Is0|zv^H3dsG7clZ}h+Z(RGovfX;oz@s?&?QK&tsppW2Sjl(_ z@VU(mzJpk2_^?zOGReEj7S+N+h>`1~{!(G)YAt~yEq`Ak#fmz_i|fHtn9TEJQfavq zfvQnl7e=CU2np}rO+-%_S3khVCF|%uwvtjW&`t|J`ACK;qNR3?%6@b#)JFdi2)bn%vePWKE5H~z)1cze_GaC2apo{8mE{Z1x_uokMThj~YJzje4%bNnv zo$b^pX;;SooWX)K3_HneXtx^I8oXBQSNb{Wtx19GS7JRalpyYf1P`e*^=e&YtF5WnUaT(fs1nwBek$mQ)PY_<2N*;UVJl^dD5z)LhDM_5`&10H}a(w&c$Btv6 zK>_;}9xxf##2d|pqz`agKQyN!@8AC$A0AuHc{N6rwot#=k*$3bL)bqMbgmSEkzJr! zAdUBIIJC!SUi@S^6;J=Axj`b1SQ|-I@hwB8G_lUtIu>5q%@|ZOIm5rG3mzDG)3f!| zcP68MARpLjoW5xflY;7lI+yZ;L$D}IX>?Rt6h=E{#}%v*y~^HJ0(4BV4M ziJuAyHvYe-70JNicZ9$8NYhLD-=e``n;GrsmbB4u{5O~w4IJw^nyA;>RIFvAxU1l6 z?)EhSjqn~*n?L?5jAYF|oJp`XEp|Wvk6o5u>-6msOz1Dzb98KNK07pRgdmh*3~HQe zqK*UmCvEn{#egi&KRR#)w3kwSUK^4lV2OyNF%Z3*BpQdQ+5Nyym|@wbZ#yk=#Fa)a zjOJXlw}#5g{Vt4d1=m?@(kWhd{BB4I_|)gNdp%OHlyZX>(msvz89CqtY%&$Q!p$Tk zhOW)54bFajUMHhzHBDEsbWFH)1MfqBM*|5#{K)t&+^9EpcTr`FPw{Yi6Y^2w15`A%XvCY?a1jsv&sVm z1|r|?@A1cF8j&*3A9zGiHdWjtVqaoHV6rL%-H&Y&{;5~8_HP{WxQ%ArpA+DbgrlrV z^RV^`GA+AaW=kTM(ZvVYa zte|}!Q9uHps#w$d5qtcL```3w3#uKoUXo?PFk39gY(f|E+E-U3W_lmeH!P^>ev(?gxU$n@ zcHO{75eN%U^V%P#^?gH3UJ^=Nu(dgSUij@oDnmiwc*0+7f@_GR|Eg%pDYa@GF?cAn z1ChGE&MF|qI{gP;KI)rTTc{*At94S!M{>%!o*%^xx!!S~aMIYht2ZA zzfCpGb&kUAzUK>>@rLXV+@Oox2>yz<(SZJ7$(&+WV=$h1qu4IhPm}KhsXzxQo}C3a zT(xS6WSAmEQ_MkY>-23aDc)zk1IVXD6qq>AT6A7?%e!Fcr)k!kPfTx+FF`s~(K#9~cGK26K}N#)?zDJykk zHtI+{xnzvOB!y5afh4%eJwKMW(Li9qR&fc9 z+PYUR6rF_0*HUZ_bs;5TY8ZdU5;R0D1W0jci=jS+JicNaFnZztDX9{UU< zOkWY2=y$6dSNxgOc1e`LQjKC3*hlwCntn357Qa=5hQbtSkw`i@vA(mHXsc+`x$NFcf|1C1czeI6k(|+s*6O5 zM)PXPqlJ9Yg`&(%xIyIPhWPPP*SjZK)s8zel|D3hkMZ$$$y&N5)9`?aiV5dG(#Q4` zY4Jc?%gx@MMx5e=Eg8{i<%2#lUM(V7-s19BRgfQqYV}VMHiNNEqHDVCRrZa1)a&0$ zt7WLKzm#lTS}(8)4vTp~CQHhyik4$4XRTrXNfu0BI&QHl=vvm!fpggmu&hNEk<9ru z7%-K=PoG84OJwAFA(*>#l{%TLMC=3MOx}Ba5OLGVLlvhaSo%$DfC)sAZZ;$~tHbmky zV9ZDK&B`$8`?pL1j7VW(_oR&^Q7ug~E!6#VU$5W4rT8a;uMWt$#i`GIE&gRp%ro4; zSSy7n$mgfepOT2h?GN~>)K#vKZ&WeTT;wPL7JozhU@LDoX-jc~5V4|J) z^p(dpzD+7B?_wu7&!ix3>(QTxY@D$uYJV2DEnl9d<69ERP1?~g>4X+m6cc{;>l~jE z%|9Nrlc4&@-(^7kV|!z1-gKIyLHQ+0K<~KEZQ5u9V&0S4&MI*F7Cwyhx$tf4659GT zw#tP_7TA%oA!b$7wK^v@<7}O5rfO0>ad$0OOm`n<8=j8avY;h9xuBE#W8l*U+dXv9@x?KqC#6UUAGQLxnkhfFJG*dUbL z)X$S1?)5#bB!1YCY|>{kpu^*9)@sJYC*&3=dLQd z^6LqJPGe>A!1jps?WPO^Wrx6s!VC$XG+{VNTL`4I$pv^QtmQKrLu1zsFVQ|Wx?~-k z%0v?U#+S>t57do?H^YnuMU z+4=U+|M&din(Z7ykhzv=bmHu{Q3K@rGvPkxHgoMYt+N;~WVo%3(W|A@6Yh6ro58Q< zSXq0kEO*7eL@X3fJ+QT;lGzG9JJV&yzD^+=}vgt$!HLS^p$*ziNa+S~r5x zM{8?kB_9b)$2ZrzfZ@d2*j^#|PQGY$2?Ps)${MRr%5#PHc)Y`pS`J%JjlC1&Ehc)1 zl_ZEGdb$-i9mSmz)4S{;`NTxN>eUPT%v}b$58GiLwgj&*u2G~Ff{w~yje&QNw;Tvz zmnY@keP^X&Kw9uF_vfbV26UeCmdBPvX8r;}{~J)||MfjhRbV>QIj~)rrfh{D9-#=e zIARQKgdg9bAg&SfNB;RHUUSd{pJ7crVm?l;nVQbtwjHRK+Wy8gaU1JA$imefRGfyA z_a~y=XA3Y0%uWB>(IUz?4AJa>ds1uVMi}3Au~Qq?!udnCG@_RMOPX_GG}0@2`S_Ia zCN#4|Zxij&)SW-9r?a1%edk^0#W~YM^`y^(A7@rM&c@?BWzlyl>tTUMx-)+(Q#8sL za27yMnB$7wws)tFZQ6XP&nu8dfwlgDrwb10M+n-ybpCZE4N;8u%z-`4UQ!+#`Q6kV zf3arP>E>cD`G=UPUvGbB%o23*XU^81uvCg`iF%e^CYzu%@u#ecQcaK{p2{E#OWzqr z*cEdgr2h30V35g6!*&b!hW`qOcJ@G!XA9TRrn1sWP$(TAjWdKb*D=YM&=CU)af?rY zVWDhRGg9)1D(*_xoo&6TF^m2JMyb5Y>2$}&#{EIBxfMj z-1(*nz*R4e)p#|3XZC|X*wXl^+fPCf@!u75(RJ~L^lLKIAr$I?pUTtO-;pqeW3Mlr zp)B@8C9MJw|5VCC;A#|$n(4Lgy7-1-=r>TQP+I<<8T7&$@bHYn)3j4T<0t8`3^6az zTS!g_l#JlK5Y4ye06NW7XSD^(S~9))YnB_ZH-Al-r5$h7R7*?y4UCWUImK|Eqyn`8 zy^y(v%GsT*G|*e$O;y>J4o|voWTypy2G~1I3W~zNxWxYD>R>wx&}jyqc$AgARbJ5G z0h-W<83($b-8|vNl;BLPMk*l{ZXvDje4vXgPJ;60o1-qmnB&^h{d|%xwfhwX?-s3w zumA}@lQ!cP)KiIsjPdl7gU4uKf372t4K*c)Nzw&1S-sov{UBa)odsy#7AmL9jqXuH z&i#kmNPcI;CCqulDCk75>SeAodB3t-p;62!RP!t20DHc!e@_symujm5HMpMdmnLol z`4U`Yu6gK^rh>2R-?G_<=*CxUH|417vHQuh z@af%KGzr&vRSt^ajH-ttEo{oy?6~eSMbctOlWxv#v3Ekn;_f4S<@Eu*J8y_6AR$1J4a~6V9gSZbw`ss>Ko) z6S>h7#$G>+Ym_8$Z2!qny8p`iE_`7fLEudyQg-i83cX8FH*~2r#jAd0OPxI>vheE9Z2|h1MLB zdTw#)na>C1IcATOZ4o!;!yiDUL1>O1b6iX98I~o2QP=m&T&zA4>jMQDQ^iFC8pzeE z4qQ4-g}F`qyi1^rtKv+7`c}mXx92bz{k}^8x36M*t~vNE zxrhgNX)cJZ{2%U>-LzH8icY~Wfdc8fX-Yl#V-8>Tjj&T0o--&}Akb8kzwzB=Y>I;a z+n4?-jY7p+be}hj5{QTGm8U;7TPrE5FOKM37Lbf9y8BMXGP)Zzw;}$kF&BP(qjDO& zg}f_sKPhd;vHa8iBJ4+s||HT1cT|aRAPn)sPAqyX@D6O2(Ldl4@&~ z#I}@wXSZaL(?=0s*_0Ps@_Jt-g%)l36q_ghZtFp|t3n&nd7Lzi)bfx44*vHV?&!u& zG->}KV{DsEsp2OHA_vS);mYty1*k$q3Fcoxx|Ux|*S$pcaZhmU_nVKH@ffOgUTJoM zF71}Co;Wx(?YKd$@>&C8m7Jse*Dl2xYt5PMMVUxg*B|BKV1W{3RNE6}-d^YSlRoqA zcT7Jl*_QS;q3NE(oM|Bz0a6h%e$F4NdozFh_u`dfFXB>`&Qs@-CMyv{B2mxZ1@U+2 zW1s{g^)DiarqHq4x=(c6U6ftQKla)fMqw!}0JOQkr(ESb^Ob*{i#I{_HiUFmn%?D4 z21m(k`f<4l7rtm-LF`4B!Ms)9w>^;!YaEF_u{ejg_#+eHIcPg_~d$gXr;rA&> zwA1VoD387lXBXdO5y}64o-RX8U*~{a5z=9Xc8mA1kup2X`2A&@NicFHvo3?_KxH?C z@@umMz~8u&;gLJ66{+T68q~dx>L?wBOdm@x#`V~572#j#p*sY}lKr?h?cYq2ARUPf zI>i9m+YRASm(Ppbe02cIj&lQ#Q9YgJ+6WK{+3a8CU5!o_6+YIHEp(?kC9U=mRm%om zxgY{;X*%=$f&ynIiN1xYL(?4hyN5e=mD$en*O9Dz#(k_?`#5f%ugqfedll4!PGnB% zPoP6f;4Vek=AQSR)BQvYV1@mA{00BJuK8LxCm;#*JsQ=HyuX0`Uj3cRz2#gt2->1> z(+8(5SPP}<3shdd&b`BTxe#640^Sr7X0*q&^nf-|jO%peoq3~_g3nPL6!h_Aves?a zda@dR&StD5T{0W!NgqbOS)wa2CMrMeC0mN(6;l3dsWc^0ZrxS=$W8ulQJI5L5*qN) z_gHvNn{-4QywJ6+YSHU<`jq<%J|J_EzsulRrcWwM^NOEE-li9@xdQs41Zz|y${;^p z`P_AF@ue3PVG^bjBfKHl7=#8yObGQO$cY zTgH)nQad1B>2dT+N-a$c5SD&cvQY0w%CrTSA^MoN6Qaj>r?+pq(cOr-fKKgeafwmV zX;GDurIw1O3A4U_Mf%9RM%XsVjoqOET0RRqS7mtjpUqW3psEuXtS}~gzEK_EB?RPV zEn{~7q>W`>*WpjEbK)(mEB$EU4w*&L7@$$kzcItB(a5dbvIa^YiROL&5;8kZVqVix z1BqtvfHOwTXaxWga>f$%3X&IQMAdEij`QsyyYwQ^l(b>&iM`a%pZg(y*=d1#S?LO< z{_|Q?$yaN%jQHducJ@Knbd5ozg zZM~&l>RX2zSI&7>R9a{ci+;`Mn+>HUm4aTQ`tC72=I!l+N+f9MIJ7c_>rS3*%?tkdK z*FU;Z^(iqb53W-4x|K2Bms#F^PeK>y&`hd4gXS({`=2qm2H;VOkUorPEOqjABd_I! zMiC|P7}QG+F>IlxPI;+0ewTI_^m!V*AN9EmdQg61rUg~_U~@b#ABzvZ_WB1~L&*XfHj7bUeY z39G`DZ&ThHn6}$y9K(3EeQ7B8wsBEyrGYMj3~j>o%Wly;nY8vW%n%5}t~$&BC!Uwm7H?apxQD=*V1go4^HfGXAHa7TgBC`jt?RF`R~vMGuD!zwwu%L z0UaoEA^(ZH6n1DR@7v`6iJqGL2Sic$x)9qfKc7zlkI&wY0Jenu_+IzVWnCSEFYKV^ z%T1v*7q1-({sH@l`fQHshVrV1d5E8Jem@m*0G&Ea(t%Zz2IvjNd z4IB7g^Bq~*xj~ID8M|jj#Wlhj-Si-5D~`D=9IcXKFQx`uO#vP-a6PHhr_-2$>P76ZrrI%JDVoK zqSY8BJmkuOdBp7Qf)>-ApsWR!>Ocls(|yfGIG-x!N_Z>5G~`12gjzn`G8aujgyzKH z$rVS^Dv^2;gFny<$xdg@MH`%r&-)AOZ?xw(iw3sb^J(QzdX?>o&CVD5j&g{j?4YD1 zoJqa|nSA1gJ!17`6=X`|-PrGEY?K!rRy<@y>R#{3Mw?S}dz{5r)w)z;_(CijoqBw0fsX05dz8b-@Qsc0qnDMXTU$~h^4LEbTnq24Pelv&~FJ}fYb zVFn@iE9Jq%JurchkE(3$HQ29&Wi+aoLw=ar`0I@sH^m`Xm+Fjz9r#7=xp1K~fUDG7 zJVr%hG^DqA+@b3J>`1x!Q{OI#pp?s$Lr-=AQt<&@sRp>mfi7Zeme>4i}m*r^QsWAdq zVCUy`C9Ae4^?M9n0CEHxe*IwUs0e%3t#*Tv$au9AKNdA_@GdHuO?q_f-e=oBN-6P! z>RgurZyFh|B+oH!kPK3!+yjt|o=9X)aqDbs{aNWA=f0otd0D zGHqw;QKUeAYuC&`_V{r}MhjHG`hxZk3emYiqB6C7z=px^%4t^YVKf3rKeg?yF{GLd z(|Zyip(-wHTE#Sp2>eU&tQv$d`ET?7T=Nhi{m|Hp>Buq5Z0p2)gX%nwkL&Av?!JDM z77nZslSfnNiUy(fZQg;N(`)>_qnb=QUyBq@|Epw<#o1TjFc1g>+OM^Vx3vg@rh(AS z1x{bzfsWHuD&O`^i=}&HA`wH(M^r8I@2V#{r+32R`VOyjYt+Yb#ZypN6 zoY@&_G2|wVwSUL|!C;PYF9kxYvi#Zk*H8@+c|AW7uP~^sLA|M0kwayk1dvk~EATVt z&8{wayaY5sSaR7i8{7AxPGiNdUsyZyLQ=Op%Oa-a*lvr>S zy5mP4Mu!kMksGKO+tyS~wtYljk{IRft6+v!BFeq?bc>G{u^o@4h=ZF1DqmWZYnD3M zTeV1WATp%&p1B%J)-p%|nnnG;>WLC|ga1=>m0?wFK~zKmNl{X|yFri+>F$n8#{;DE z(%l^*2uOE#cXvxjcStvH`;+em=bp3o?3p!dt*P|D!IyzEg>c+N&CR=#zMa{-!fPQKAi)f zO(GdPhQz}O-%;EA$Ih2Qi0BuV4r7DKs;z8VQK=fi+*iLbX1}c*#mVx2@xI7#06ayL zn2o97$)JK$)lEn}qo`PeS#KrTo6CGPzgdyGoaZ}lQSZ{w zk5`;NVxM<)b9V@&yZslqFdnBEWJ32R(3?B;lKo^er6~ihy~_4tGRypJ5f zbAVFtte~R14@&5d-(GUU8T^-rEravP*Pj0{LW0FHNeT(N2>=JIS)nV##q5YEp+Jn zOJV(8&U2e)O3go$jRthr2VM z4Mt^@(cR*NA{r%psxf`L)_37~OOW5=6=cOlK-Az0f#Vtj_KF4Nf^zC^EU!#Zp^NAZ zlG~bXJ}W?#tonZC8IPj7PZFuSn$=1VJ3kEVu|vQ|M%->od@(OWL{0>i$ROK;7|mA+ zVEMB=UvC*Aw6}>msJf%QP?rl3{%6C_i9QjsD3afW1%)1J5pe97;nnc{-I zs1(IM6x-sI@t*pr3rz2)1BiX?zKr&r z!@__Q`Uqp5S(ue25x}2!3^ZZE~&4Wt-1|WGPT(X)u+=iL7qFUa-%rUfU+z(9I zeokN20666$fkV^L1Tv4a8XTJPnB?Dq8|>@9#SZsf?luzj0qe+K9+)L=a+GKnM@a<% zgLSk+J~oWIM}T3@&)}W#JDnoOgutn*yXb?-^<5ReshipySqQUJbs=F0xC&GA_59d+rY>cuPXGD|Oa#W=RCGmBSG ziN6xtn3H4i_vPbvN~h_c;FwBi6CBHm%Kj=B@EaFB>bu$cB6t3vhB75>hM+ zb0~F%sWw`!ZGR_{K%G8oJnoDpl2DzWSBm=%F>HAtS$t>$e|3T9<1an2#@W7{GJ@e$ zut}7D8LD6-OuVP(OaM=Il;T&b>$1I62o=Op*N4yFwqe=yso)#@tqJqA)=SYn?(3tq zPKN$A)t?zZ)wzc4GO`<18hd$k_;wTdO5#5)b!QPbEC7EHmBd@2U|G5Y?sLp^2QPQ}(}lxqW-^Q-2|h zc0{6HylsSRe>N({8# zt-UkERIDTU2hO^TxolFsIE{aXr-zftz;O#N$*L!@GtQ|2A-i$apX5sW)K<1J`mQ0L za51Z~?XWnVWeC7)@xash`{}Q$YE5%U+vUzd>OjnZudf*Y!{EB`2^F{H=x%5b?Gr0f z&ER%1$LMvU{q6t|AUzpj@l1>_jpKnZTVi(ExFi3O^ZDXmt-}?n>PQqcXtR&LGxU*( zrDw|eiWA)ys+JMFqI5j=mPb76FLfrlnRV*HHaGVHdpjlurGE{RBZu1-yoM%cmjO-* z$2uM(PymTx0#Kk#b4ARM-ipxNBQYVvp;#UD-nWiI3$e_c1%((@3#-&d__v-m zy*w3TtTN?q7*x$@RbK~_%D{bo=l;p}SemEy`z!yf>QR^KimxpA34>JN@;V$)NUBe2 z53X?mtIGWGL!sjZ;Vx&-IF{nnH0B1upO4!HN&ikNS^RgK*EujEMn2$2cld?1jc%G| zUeJI?y3HjY_?>H~a0z8J+~|Ju7q1YDU4+VcmR76Kn4Qd83tP{m((D?i3o~vJ;q;x@ zuzE&>6k^5lE{OB`2otP3<2wtMcE z>BVzo?H3~PsH>Hdb)2~UJ}y3>eG5Osw6pU&ET<2n4uQ^J&CAJJROy#!3>UHsa zQEPUbB81jH!0FI@d~u3CntWCfL_C9uM+Yvda)Y&ctFcL>I34Z@_BF(#hc@=Ke|IMC z{n}iq9dX@A9uiOu5mRo?d+2D(N}VdilzVK}`owPj2QvF!>~PYUlks8;jxOW(KXu#O zoX^`zvT-M5_4ws{TyT~yTc`&`2fAm<>o2(AigHlLcWk2{$RuS%z|EeoDDpK}Xwpyw zsSRWZI#rJ%))VYn12`!%*ckYtYPp)pvaci=DdH3)^wS@~y`Spb+(*04+Lo9XID{}` zSmUbc#LnR{po0xO9IaUXi8$k)zv`x$8N0hoi5X zhd=cg9Wpj`pamUN%C9?7D;kRn9wZheQsf(YO+4YmOXm+d8$2)5WO%sm|NDpw(Y0N= z{{5I%-)a`%v?8B`QJoS|lk3ygjr9BTkL_!F@i5WnhD`kg;jb;;y{fZqrJS%*g*3iA z)eSa+4_sO899=UjQToG%h99I*$Y)o0Wt@~|k~=1<4~m&&p49xd&Fnv75(3;hlu z2jd|{$@NV(Tj32jo(ucRbMYMd5%EBm{r{yzus2a(#&ROUkJIG#3cNrAG}@q6x?lBIV~c1g-9lLwS6QS&&NTwH<%yY$JhIfR3^x1i*wVd`+M3DNQfj% zCpMF)zok2yoH0`+VB)vxi0`}b$$+e<=G;R7pFt0O8c#L92IVW~nbGyE%X6yo8j(&1#Wd z+)r^0IpPqe`RT;rh7>URCuU+n7bGSFK?2J`FP?ig7@Tb}ywy`Wlvf(1bN{kwdWMHT za|G;9MaYDClNv`$@{2!yzvu6=H0hJAP@%%1)Jjh>GIM6e%^43c8T>h>PDq-yWkbrd zI7?(?V<}kpUnuEj^(k)BA&II;?u5wIyYp=vC%pvjB=SMxyBVdcVKuUulX}t)&Rc`Tj1yM$$On{8esVl_OL+{gm$X z?Vxq!lxO{>)M5S`vn`w9JFlMc)rS9`(IK=kALe$YWOYzH4T3Up!6gmYTRlT0JAaDdtGE~?$4cjcYyaWy$ zXOhsO4V{@niys!imVB>J-G8{THS6rhzx0dTUm1nbovz4X?BA1-5F z&GfuZaP&W<7%QDZ!Z8?+Nk@#1gIjaOIagd?vDM@F4NrXIqL6@sc25=TuPa}nA8Xq%rh;kb=Z^R{|N$-LS zV3uAC9Qr~Sx*BuUNlPr!M#dJt^_C|e6Z2taXG=xvPF&i0V_qM)j61p@UhuqGupYW^ zocpMM@au=}Ddb~F1%U>Zk+cIn)q6~eFE-<~4SD9AWFSouheedIsJ_U{$xQ;@#ZK+> z>)aXS?B$feYs43wg1?vc>Nz(D{7w<0q)JU3v*H>R0pieR_v$I@;TF}(djflKri3_H z-qw6d=%f1=_0Gc1@7}x*sBkhlJ2Rb-z$6-{u=e61@B>SV{=*w|jroSwX^S_A!0f}9 zmE!iQrQ5hiBVdsDZ(dunxTUq!fVQ9{Bkg0`Ow*&)Xbmv<*dAkD8qEu8c4TkT1+a5r zh#%Jm9+I;(A87O`hbwFJPlhR7NdIH#T`Osv#0>4Bc&vgW*8uV{MYi3eSh1GcAjkCK z7U$n>gPewL_>h&^WL5vZf;h$9zo0Lr??hQ&@cqtSnx2u`2ME1oI zD>oBv_R;)XSUX;{0&SUOCu4ezW_~91u=g?AF-N5xSU^i=vnGulfHM)?qI(7HK;zc8 zugh_SJ)up%7R_$oYLPTDuw8<3>)U20WMG+@{9Ed-pC_ukTDMAEoZ*wCI~rWRyS140 zGLpN3Bv^y<0`nCnYrLApfGv;e0G+Jip|EvR!TbgO?ZPUOUq*S7N*yAlPz8{Y_2?z6 z>WKH3vV>Iby$!^v--H$?fB`CN8^+*8nz}M?vBBx1Y#4aQc&2w$w3`l4*TW34&{;sq z-@Mn4337s_W0noe*heEamUyN->8?}{w&87n}4sJvQaivcGj)5Z@fS)5hx3+DAqyA<#k>*c5We zlHN9*-TbYESIo^SHuK0hk?R;#Y|6>(2Qubje+ zNoCFec#)Hp;q4B$aP%zAyOn~p5gz_~p`6=rUEUVz_Sb9}QRy}>H(4DoaA)?uaD6%r zvn+7T)gSZ~MxOujd~6vk8$<}NP>|npyNlTDGSe_6c~ek=eR(b@q(oN+jlbg39$iy?CAF}i)L~C?Cyv$x^=Xr^_E*t4 zvhw+=mgGr+Qi9odisGhrH8x)n5Qr5Iw2zkZNUtA1zNI-K3C{^Q=4czCu%l(7?$O}N zz#3XmxHCwR5PTysh^F~e`O){20*UxOL0ZexsOV3pj=ZTp+LY90s`>i@0ifJL4-NJO z*rvgL?;=wV9!VlYX75f}UWz|Ru)~&ONA2{Q0^m;TSdus%2aKca zI05~`07Mrvc6E+ozK8&3WlP!-ijSiIVPLjdX|ngz!Wx;b zB{3GTF$|Bg{Sw4I5;WV2q$hq=wU}^T?Sv=&cQ-VC3+C7kXS&S)aI#7boxaVknl~uz z7wx)F-(^7k63IlnCDG9@x?!vzM1qd0Yoj_WTD^1eiiz3~k%5TWz$EL&PBvOXFc2Rx zSVy*majfzAtqM8iR64W4`h_-A_BeGWX6)#N)OZ_}7``S$;SbJ|ZcM0q*BB(&;2+Msd-Lf|XnGCO$k9 z--LwaNPWfT_~Dr9#MsLyz{Rv%__;7nhYN~r3m3X)>n~_MT zy*vI32PijpNJC5hkso1?uO%3%6Eq7`TxTwEE`PMU;b=g4C@S(Ez-gbxn5)&kPbMbQv%DKO-#3rmH65PhY1inX$|S9A#zE|h#OZ$H<(T<4A%Fj4B9fiu%`rh)^$i z@Z6rMA+(r09P@Ghll-+X4f=%aDtSkq4AD}>S{y;y>!!hGa;49-Lw7XwGmMoh^+7cRzZH&$md}~7{CBfSe0pq+0x1B1T#qR+VNH1bxh>a3N z0d#uas%8EtHn6nQbOipBF~b|b+o4qqa^>QII$E4$T_<7;$K$+TTEWU~Q-ocPe3EowX&qt9OlE;G2$I;82^x0Qkycb~gTAb0hPM-uqnI?n`;fFAUQNDf~ zb;4SHxJNp_=qOP9ULA9pT0jqiMen)K0E<=914ED}e8Qo!S6O4)mSE19W;QCO{g=Y` z1J1V9MlaTr;jd|nRik8k){Tq*FsGhlDv)4*M0yP~IzEX6Wrs<0V#Ly8f4#rcxIij@ zeHV_{nDSYwQog2-KZLdrM1RA|!hq0{gncGV)7D^VW*3;1iplzN_oR+6ju zP~SQ8y$DP1HQPl`Df_31V9(X6iZ7*#JJMqn?GIMniCW{KZ>3)Et=cy@o8ekZGzh$UPLfRs1OuYf%@&QXPtv|W zDZI8sYVoRP^q09m>Ms2zYH~C1b@mkN(Y`Ov$KJLpgx*dl_>TS#ysQq9Ls#y`O4?cC(dl#5DC=Ez(Q!Z>KSzwWj z!C))<%!&I~O2gzD=$)Thq0yU1>18nSz) z>kMiFHz7qUt37EZxxn>Q8hWEseCyV__1AV2Q+?NW_2Oa`y--9jiwv= zQ0-hfeddPAH9Wx^j{NF{+*X&u)3$;V41BxjP_HX!+Jyh8uW-aUCK^juWEG<@{E+E; zmOq4FY2_>B?FCKDylTkP%GBG09}baLr+Y>bRCH?!>ZZ5G2GI9?o471&Ycwf*_{4CQ z*hQssTF`Nvq~G5W)39+$B8O*N4TRkHmI%&a&0b95N!h!W82_2G|6~#pNR^$_kM{Py zG4bcc4IeU`b$$eTvb~QzTNkJ!JCeFXw)5mdia^@FiafBT(4U3*M++DIvjK3}o4{7) zjZ`ZXHsX7YXiq*l&@PMJu1fw|>YUv4_~0a*^D{ZXCu(TC21?pSHP(+d zxQ!hv6NP$!!js^o4pl>66c3feTOp>Jk48*KJnVbgS5q(+MHGLb0N&{8$_m0W5US}WEAi1%;t?|xx&Ey!_~kDq4|PaXHo3yK3E>>>gweN%#8|F}Ma1i7vg!s{wmHChRWk(mcN{VYr*BkT? ztcH}urMk(vQ$5`nR0BGR=*8}A^+8jr8Lk@Juv7*s9;SEE3Xd)qEQWnnSoGuOL%f znDwOl3!qb0Ei)V5W!F*h!5uI@@tbTFOhAxTL`%|7S>*~UVT3g74pVAUnA7mc?8nU4 zBshGI9ax9}FzD-@-NfHk>wNznm`Ad^eqrQ%&d*{Sgn%NhL)LOC&K~hhy3h&h2XMhQ zk3CCDQsWm(0A0BcMVL4TRHnILB;*v^dz|;$^gx3fr1Qc*WlRKC517b%0Nsa*Vi-9C zjZ~%=ZsWat@ev`R;)F}ktYrM0$)&&TS$0mcpw1x7hjZpP-}90mcc(K#azLj6ZuTHz zF)hoX7ML#8r+X3;&%mr}lmT2FD!9e3O4u z(enUnQJB#f9?Cg@WZF@5399t}pf$3se)%LB?$kh48T0j!KTQiw-?3!(@>3Vfml$+nc@&JC?qoHB5z^lOLk$jOvo$7dc z+5gt`=eW0m;_#(}t;gWo$EQx^@@G48ss%-pP2aPS!aS6GMzalS zAs3R9u^!g>pw-3z+y?i~Swcca@rWqYd+8J~{|k z48zENXFuGY*hzsIdJn=y<4kY_;1id11w`EDDRl(E)KsMh-%=H z+i*R=sUlgQqWb%Hb|5%}mN&P~U$Z17tOq8NjK&yNZy(M7hJ33qtI+nTiDEFMkE-y_ zIr!QuOC4Il+VQyfs9I8D8Sv0nsq8Rnq5d*T4Za8w$TrKCk6jdNe zW<0lM>)f0V+R7X1w$r_MwWTF9WUah1S3x^b`%-i#ctbkkt$!;lbt1htv^IX@lDr%x=PG{%8Aq`M#GfvhF&CUyclr6kWJk&nOM(lP+01O3ih|wr z*;T%`G1ofZ4X*oz_6WGuc!CL~u~wtvMdgps?HHZ}Y!ntzRQ1`?(`cS5JsJEVk7$k8 z-;vbYDVAOjg=?gLD`@TTu_Pd$3<{h}wW+2h(cYS>uQ7-5tt^{K~GT@dHBY|^=w zlH8W*FPr^Qdu0!pkOS4rXxpH?!uJ!EHjn+KV_-b3CvsvV)}0^M-o*{d8@uElA!IJJ zp8h{IA#r;D<;fF|KI7{?)&lJ&D3FT#zJ(985{GEY!NXQe5#b3B-OmFM-0*L&=!4!= zg>mx~P?fZ(xCORc^@*XO!@-W?;Z#a5StEd9cg*MJO{Ufa)~cvr+bWndHC^xXT_xb4 zk`RR1w#oa6wBs8BzD7dpt}gt&fC&KFajFWCS(}sGt7fe%t3mV6NIP%XiaQ;XRO-IO zyK^>;JDnEbT&4=4;m>-M*Dd=So(gf&61tjYAqyEqeBb_wcK32zR$`dNH9-IflE)l6 zz3;DRAKtnG`U;;fLS^KG%M8V}dH*1>?T#9($#3tCb6uzhw-wfudJQ3R&AmQxIx3Y= zh=lsOyopt|^gbW5MJ-pqM^7S89}NXEfWemUZgR6$xM%a8;WTg!NQ-4RUJ@W>YK;E= zd?GHVF*lXt47dg_5-Wb;=lo7YGW+8(gtAcRe(vKdFtR`&&nCo~HRb89y}5MG8mg_9m#uk~Kp~LphzI=z#d~m9bfDyY=#30S?U{ zBB@YG-)~u6vk=GEm6pXuwmq8CoC*PFn=(d0FXvEPd=ga$BB|4q`ODf7c zjA|D+&qa&XeFl9Z+y|(Ko5vGTz5)@FYhX@Gm~<^(I4N1jP=$tTA4Pfx;{qBWt}&B` zS2l$0dOVES5e|0WBQdjeVC5-sMeT=6$;6fhaphf5vG5M2vq%^g?ppATFujq@p=_`G z=DhZ};((5Lzg_<*H`J0}-m4mS2&KxODzZemA);XeKk}6?+y_at=Rm-Z%7k_mC=%_OYWjyz2PKP zTb!%QSmJ87Bu8j=3zM-Up_zk5xtXGYj`wNnqzW(sp zTGK?{yyqwQw{FSIDfwkOodM@iB4A4#KBHZOfW&s=w#SDYL{cW3Pw3-SR00J&8sguE zQxv{M%vEH-$?y|i1_kmqvkay0Kgvt+yS6qwmzu=6u1(Gk11@;`^C^^i#5=B?n1E^g~D4ECgCR?{j70{IIy~}^vD!f@+ z1e^EaIKw8TqDDhkA6n-z#SDoEc{6MZyVf+TvVSD>K^c!B?jd`KR%vJq88B4iU^N)1 zKRI_pk&eLy4ROxBx3rH{dcsw|DmfqR9wJT@gbEKuB1Kl1eH+V9xTj@$`YXKbyIli6awuyTxA>QZkf|RgKRDJEZcx6DOG)i9FFtabKff8ENHLo7 zv+9HzR`>m&cwHT?DHVIP^n|FiP^!4hTNJo-!lCu_Nmaw8(-yw+adbQ!{yJCQ(re zjulcXUy1(e*k-u)Ecp*LXn@ewy}9&>0H*+C)IF+h7~eSy8YkIER1UMuEK60es*Gc6YVnKdUHc zN}a5a#&Gx*dD?WJV6q#Jg98J(<*B5>X-z7wU=hT@#JR00`Lo;XX~6N3tlp1DBHgpD z_@N2-3KQ#|bV;ONIn+-!U(vy0L+Y#EYJb?Z-$PM7pY6(9JpFx%0#;pi1J=CaVGsxK zrQtCuF8z8_$_N~TCXAMK>XT6&T$KLtIAz4C%O+&1(|`S-xvF4ArfpW6cgy^H%8QIj z*)6$YbAuOA?s?b(hzK1C_H^4+S2(**=Ac;k0Yy-5xZ=9mkv-;(3+@zjniLo-if1#9 zd0%B%wyi2+G#Hqi4U9;;Sv(0QV=ZNs_kpDF6D>4oe!)_8HrUO8Rc2JjIhRRcr-Bxw zErOT>jcj)13%l9N5kTBYKgU(7a6OP(Ru87ISdgWqD5!v%kjbr}##j13TX&hmBxDVzRv-a=m9 zl=7GTh2)K4Wq{1fShr^T!89x60&L58nBpAoc_DJh4zd_B^*|c$cXp}<2pa;Kg=Z!R zNS@A@j18rqc84Sbhmh#HH$no{MrxC6?!Zgro0l6>{fy*!awcaLFM%5)R95lc`*(ra zJMlb7+jrvnSR(w1@RbQAYW@lPjQNN}B>5i43 z%UZ+hwB1@!L>y0MTA*o7WG-&>mzjffP*{}g?)e7$wG4$U{x)CpM`wM89hU@lG-Z?o zjg^dagf#8o%m6^N%Q2W>lYR)XPFRG=Gt_EOqc_XhX51crEy19P$jwJ*OT@y4q8bk# zpo)0{`x4%4P~E}t-Yj9>24ix#UV35lO-0Clt3fH12uIZ4CK3u|4+luFwqS%E{hJA$ zcr2G+fv<*$#Y!;s#h-#fa0W)N3+Gg2t1x(@T$FFoJc9mu=4;`sVg5HjESW(q zhctCp!P~ePYC%wBNKe_DU*+tZ-#w#WZtH?qvj zYUrF*IulO+(uBdp9pkpXT zUTN5Hun(e!Jz=afGsOw7LYZ;G5bj*==AoBE=MljEL}6fnnPh-n>_8P8 zuf*CBOhPzzYw&>&YLX}P3dYV$eIGjI3&}*j65tNuEm^HA{W(048{B>E{u^0!^S>Q3 zElm%kN7RZYW`XDI;W1gah-!Ym68>4$F0(_6Jyb76cUK5(ESk4$1_2|4e-deWJHi|v zw^HG<+}YF`@J=g82DI1@u_7q?kxn4@i|B00CF#7hP(=y6H(m6U^*4*d%SH((AXj=L z);|67CT@=G4={^%nv7~@QvPBW0JtG5c8r@EB*aRAi(5GH8h~ zR#<~6VoPQjl7KbA&o0n|C(m!r>a-g1ZkM5`$ z?hUYIIh2TlrfxsGpiV^#iGU2e-QHQ&8`}`C>R*V$U`V6|`vYZXc<=wa#r|s$C-pQ8#FG$t)3JdsnfPujbK1 ziPKk^>=tACIt7cYaVJMyBa)-^#f|vb3Y?W5H0Wt6~Yq`6OpTx;-R+-+A&o z^V}Ec8Nm8>S-Ho8z$j5lcu3Bg4JDB~@$j0b;#7Hb_+oCzPtzuF;KhAKY}XH5*9g*g zWy5f`x+3lIegWPfSN$Y`awS6eu&N&-6^tSE`!*%dxL`&F-_Qq)&rrPJ)hu#xJ^-J6 zpR_f}qiF?L69pG4SrWJRO>cM{e%!}M#WJ49-<+SCzJQ}3=F48e=VzPAf5VrG8)%zd z*Gtc*-~rhxYc+#(Z9YlGHKKxl!rdCCE9Tq{@Dh=jDk&q<@LKm57b$`HY^2r*=D|{g zQI0SR-x0UQ}gW6`RD2RDu zoZ-vdcr>#pT9^f-2iuv)ioL@)Ms^Z<%)ws5Q#A^H{HNDqIl-Aw6`ITLq-gTJuMoNejkky(!4A0s{r`_1OX1+Qw| zI$#tVD0d01+%GcH?t)6nOoyZpR5#kI2@ef|+S-8-O$}_F&i=b&$bp*( zqv2{-lL0f|vj>{;)fUB6viy?!IyVdg=n@o6N2gmkanuM9tC|($NJ^n-+s%ExP)z45 zxe1?oVV)VoMPZhGQJG(Zr`-$!^8)g`S9ybP7E2x{7d{w#x^QD6;_tt8Yz?o_dbuj* zf*-u+A4+{Soxv3UpYsj#S1bOiUll3z)CMn;&*^_iz!?pO8fgnav3=smv_9>Z9`V zboH}}XTQDnK@N!}q9W)nCXkJgO7k}Ev=bHiQ~rDFClh09O5YlOHNh2epZ6JZhO$o3 zR%QVGexm1Xcit z@V0-eZmFG^Z{c$Vy3r0goAZA$#}+pXY()ST{ricli-4Tx!MRq&;4JK%adtmtcUWi373Z7h0r?F5~rkaTWWyQ znyZY4HO3G1Ci)fV==Lg zYyT3sj(&-i!%ppNr$H=`wG#(TNt8ikJFiav<(&%Thzwc3f48*G*OAhTasnRqUD&Ut z47#^UZ2zuCu-z`X;^_g>k>YQEwC_&obGz=!vQ01pfNkC30Wxp%>whj-7V;N@@?9 znQw=~TN1BQczjR!d5Md%>k*lKrS!#<=D$)*9EdJ1a|e^{ikNDI$f=@sL2<+F%cS_G z=6$x!uhIiyeLStWyU4mS-*T@SU1|H(M25EvQz~j8p2W<)i<%jZv3#C_oG~*VH;|qB z?(1063g{!$D0@*d6yss`3--2jKi)ZSKIo@g>}xxQS38EfZQPWH(eH{^EOhA9{)B+K z=9_qf?J&d5ckINm5L)Q3=J_xe?8{kA0DfnXG^+ee%fVK75mXbxki`Be=K4lM|I47y zw%jaVDTN!f}osbO8rW;%^yJno7ZlPczBHQoWGTZ|Qhz07Hvs2i#5qa~ zC~_mPVkHN5G!KcvQ$Vs#Do?S0TJ+XrF8h*@0(cGJXpY`d;+|tc$ayc0I_fMYzu+<} zZGKK`cUi`Xk=MUI7|8q!;~VX;A%s;$pfEj_sTPX4=bx>w2(3Ck=eeNgKi zKtjIg({Y$u*@l80N8uJ9ZzT!WFtrwN`>NgBTNn1#fi}xI03oS=T6U>rqC&~h{DZF& zx0m*yMb?&OMuLfY2~wv@y(~^x`8U zxO(&&Q;w`3;qb@QuP;X^F&p37Q?pJ!%KV(4S&#hh`Qu3Z0y$Yt*y5;>XR7n85C4|) zf2c>f_igKQHv{`6ndPJ_J%(moF~!RnTvNwxKwxDy5yq@~$G%@r17*^hTk3y?TZfQ;KjR+1IrVb(3 z9(~dK^seM*)nGr*fxA#&FVQo>8}6hDV9^y~WkTerMgyB`qI%xKjI%&QK&G|<8Q+>Q z0Zq^Mzi!Tl7ib5;4wl`hu}kopUuOR%V@IivgIusj0h{zC;L_8p5T5*s>fXrC&x|gd zjldnvKWhR~;fW7}cv#tG0pO-yI2!pq%U#a8xTrJv16l}4AC2X*X?2%b9!_W$16M=HeC2AuZPPK<^SNHREm67ufr+z|<%7s{=_O z;L}gcZP_Rc{VW6$(XULNU2Hd65^FU6I}j5IKAhE?17q(E1iJ2=UgyTEpDN10Q%hTqWL~fQOW!Tgq@S+MT3i zMR!bah7;2WCPQaj^z$pUp9grL87G9&Upiii7M=~lIF|qV2eQ%aPw7MOFgui3`N}^A7EMdzcKh^J8d|t1&GzV{7ReRO)iUc+jHm@i+Oh1b>UleO!*d{cc=9I2L#OPB?Cx5W zjw7fSfNQzu@+nfYHzf|y@EY4Hw5*1h`E@#UPeU~DFFDug3*^DrJRY2$R~YRVXVE5X zy|S@7Bb;Gxyz@h9gT0l~JbC?6J^DGE{=bxVm>Ai_mGKW9ngMwbYl{E&jQ@%C#K-pmlzBMF6@h^+gawK{T0Ll>HNQA^hIupt7QTjc!&lRd^1;A~OdDh$J=T46($YA-4b+EgCSE}e``5sVJ$%*P_?fAI ziFh}-9mS?F)lK9d-*Wk<#kJq$V!}DtR&bF{ZMZi7CV`G z|D9$6d2xI)Ow3sAJ96aMprS}j*HEJz!!1!hlbNpf7HtBBqzl5dnqV8N0tZ1nwYy&H zCQu*38a_cy*v#|uKt`VXX=})V;q}9R8a3Sj?~MpN+df$y0;(u|eynsc_rri*`FAuh<}?$5rsO1P zwJL5$2QK0A1AIf1JUF_48Dbll`0TpgIa5Des2}8kQmqa1UQ4?wA$Yw;q&{{V-}&J_ z@wYq9++hA>a6s+@`)?7H8Yo-p2?1(J{3S!BS^aMks@$3r9@hm^%zdp<5jVbrK;E%iZp3y9IYbL zf1eP<y7>WKM>makcJ-m@iYZDDe3lw)6bk81Mk?vjao#AJ*3)d+-Wy) zm;@C3AJ@8^Jn=4DGh!Ito3D)CpRXvJCwp|a~AB5dn}+XCTAVf zu}fdUX~<78NdJvjb0|4J+;X{8Mf+X(-6U5}z#~nS35Ka8KYz^EOhcal64tk(sPLOl z1b;fcRdrLqyKc9+nm`85wbW$myU`7Y(+C+e-(&oo(n6Roe_`OMsP|MUVlVp3#9>Pd z^?qz4fnMfr^|9V9m27ndtZ~n?m-UkCwvhK!EK<~lpjVZ={-q0^YwOm-tL=9;*#Z{t zKW|o#aAV_nxyAHUum-4$Hl|I(FLev-tJOJTE*8~nErV5fF6%s|dc+fU0oWt)Fnyyg zzb;wmnm@d`rFxoEi-V#2W|h?C%x%uR8ODvT7;bD7Mdwb2V|FTuP& zScmm?(M(!+pxWCAKv!qmxB5;3W{wgQ3T*mRx@T68OdtHtY6>u(WyB6c<;SE zZczX)L6GY71Jc#kuPe!xjFO&2qT!|uuMSIu7ky$Um7LlWchgnjk-DGNU6wlZ1oh|p z8)LNj_wJ3DVT$aUrTfJ_9}mVvTm}q$&i1}KSZ1hyR1NSx zstWxDo0v+UYf|o(I1CEUoFp?08+*4_?J358Au?0Lj7z#i`m^5$IWlE!{dk-7~1fqq4MLi^~E-+7iy+?4I23p?f*^IwZHwW`xd z->y*MTm|W8x7!J%_vn zsS0ot_Lm%AdgZ%d!$nN1vz(_x)&HKI_CbHVQ-X6$YmTKreb%+jZ}~+R!6tV!1S|^0vt*W? z^6N{|S@bSlnou52{a5iFe(dz1K8Dh%$`Q?2w};AD%n6BD_zV(bMeLkdziZ_|YX$Tc zdndG%2Qu&Ck?DewZUMVl)YSEz?CT4)rrDLpF5^FM*wvNaPa;3nyazh|sJ_|q&Rnm3 zXD7$K(z=}Eq{C!7 z;Pc-KV%O+(2tmE2)-KNm#-Uj|@IFR!>;f)2u7qOj&!9w-WTvvP!23=17fHLV@tUcV z%8%QM4RSSbP`N(OhKN7~2yxBnQ}=IE6X@`wqfX4f`OG=RE@8>z+R{A=dqGiMT&~fn z6KU2fo5`$12hF0!gQ@|f=lQQnv3{DrsGV^0!F%Fog7Rs%WgE4Ox}Z2d9*~g3rnIhB zw-?OYKGbiw^@sL!QuMg9tWcnbG)x@Mtq^9IOYIk40XQmAwFWlH8Y-`scuJU>f={-hPxfp{JjM>ZSJhtTs%v7T{0@{$&#$7s9RsCk%@y<*( zkx25j?Gc&09E`U>RZUol|2Hm*w`}AMpbPkRHEc5V%abGzDr*6>vt>K_n(_NoaC!{x z;Fg)I)h6%#g8s&t=w+gZ4y){f<`-l2)Y$ly5^0xaQ*pwQYeQv{eJ=8ohho^y~K4G&1L=n^@XXE1;09~>oQ{w2rb*f*i0?tJks|Rv#cBZ=!u;jOVbGlcp)}m{vqKy9# zQjr?wUQHX@LCn{GQEehEr09;W6)tDMzfQXCt`N8(S6TucIRe0jG9$ueVrEXlx^D-> zYbRAG+x^J^27Tg}9iLmJ#(vz-siTXePl3mvq85(6tYY5rU^2TTGer5*ht$>;Xh)Eqv&u8fTvG*N;VWV+a)vAZi z2HwqCL=GhhkwvU}id$`pGd_YDVWVH@FSwTkIpn*J72#3(VItPT8+An!;q@e#-rAFY zvD96fZO!Q`f`I794y1i-roLQ!S>DSp1o#eOY0XQr#a7&#E0^|rVDpK|F_LTe*T}gB z2#7i2$(L!z5ce^OwG&;;qx-S=g0-?Gtp$?AobW5?OH?4ts^cP*clpc{XptO_dv&-| zWx-Ej%yt3Uh+VbkhwySUleF;&4sJ_eSs$G4q-?$eT7Of;tWxYF;e`8WWyKARg z)gmDh|APU~N8<;NZIj@~8s6N+yJDiRu$H$p>&~cu($FA(Wx$7BQ2kPD+dV^@J-};> z-kd#K*x0SI9^Hd^-|(|AVyLp;h_NP2SwhO~th}*=s5lpVKJlQu^>3GLY8-Mur2(KE zb_a!GbJwR-MJaX^ok9v9ntDYy4@3JwGng%4p1gy5bDeAW-2O;@#b5Gx!Of(mSS$5A zK=#wr&Iq<9G(d_grbhiIMrwry{Ucek6J8up_dt6lUGaYmk>DbOx+kGfh+nmmBF&?)Q8cGIqVfE#UUm4ZDQNCYy(E~ z?5U6OZ>RGPC;czxafs?zvPt8nL&HUJ0Av$(Yz3{NTTZD7i|A9NNMb}96E#`3j{jFr zIIZlGGXB?!NCz1b2T__n9xOG=U1K#e&?o%AL9?0^#>_5j%u`_YNQPC)t3vj+d(>d) zOTn*`3ATC*ma+fp6HtF?geN_nw<>B(0hXpJtU3;l&RSp}+sv`>Tkb%^Ag83seLMC- zpM#TPdKdMOEgha=C1Npr6lV9D=sw^M|7a6fN!T6)b4%S7azRysGIJJjyp2AEH!ww4 zQRd~ma!PVi5O8xs#72&S8{~81U_mWiL-z0Vb4| zWOfCP$%q1ew9{=ur#3c{FpbtyKvpY8+XKh(GJGwJtLL)8gY@y7AD(%d3?l;dd(bm> z9P!*e{|&QZ$BMS*Cmqvbrnhp!I1OUqf*ZdqHWN@ZnO-l-S)I-hsxDh70y2@acpg5w{i+X3i1G)O^>ska3?JF= zaP{-{(YL~*M~d%a7ArEp0t4Fftex5{!p|b2n9FfLOj7 zVs#~d|E&nZ>zrln>0W~%Br}_;H=*sRxT9MUEiw8rc0IZfdj-O}!@6yK{w<03+;Drx zY>lTF9mXzn?x+BhM3Lgil{jtj{mxWhz#wTqH`LrL`Y_x?XmRRee$5)~m75RX_r*Tm zP@OmI`As(a7-{;X?9)dc4R-t?<4TbL-h<1q7TrYob_a1O1=D2Mihi*#P+7l8FkKk2 z7YTtqn^V&N(L6Pk{`{L<>aJq_MR(18NKQOyjwVO5!SI0uOa?)zn^|ai>6YwS7f}R| z{2xPH+SY2=K8HrauWMm?$*P$-0TJ|kVz<-dHc z-XQIv#XpP+Jy%6LFbbgYD?uMS<&~U{Z`@f8Qo$Qr@I%owO^*sLp1U9G?_RUh+V#04 zNi0aKfd_hPVGV0WADj2Bdi;G`=@QFue(}q-9)NG z`0Y&22(pv`y$+8}{yE@)=-Rf<^T>G4c!47c@SDk##ZDOnXA&Y)W{@LKb%`!{k_|S) zfCczX+s2d=SoK@xgaH1A-We0Ei4rX*_ybUlBi9?F_&nD-GV>8en?`qWN*%x&v(DUHHG4#g$=`Aj$2+J$|rBH5?>EV1% z)lnS;$uS;5+Hx?8PTlaf#{>mPVxSh{>SkEzo0P+2Wm;eGpYz9{ddRG@y0Y+{jM!v2L#k#vA-%5o zz8Tqh!BL8c)R=nX(73go2vj&(_+zslv}=U6+4~%fFodZjh!UDMShgy3MX4T=$p9=t z1?z|Ns)pJeCNK!sxudTdA(19|W&DGOaab({Uc-LpeE$i!PGx4LX`^LIig35AgO~&3 z^rObuia~;kyoMCu5#ZUWK9sfx}}}gn1&0D_^{_!l-S5CP$R|lF&StWY7v^j*(bvLSCF_U8b?->F# zggkyvTx*SomahektrIPp24p1^f4{0r^ER8MtY%%XBC@Y--Vm|d{Xj* zMgyFOFQDe-Mm*&U-AgWib^gb^Yqc?@HLMj+_>ft-k|LRam53;XzF07{l$z&iPYOSl$c8b=# z)v%n4W;SK`Ch4S9mB`VqSW52K3ydlEhFuLTe}pW*j-LVuHAz$@+!tN!ylq>6N++KR z9)ZM|(yQkQ0Id3TZojU>D<^#Oox(e-zsd- zjRf5Dmq;M5ILFqP%Ja8&fZ;!?OM%3ZZi4ITPK)k-z5QcxEGqjxbD)5Neb0Z2meegc zJfv_k7YvWL(g19{kjf~$Jvy!g(yl{g1G{{k)37qkgPW1e0LiJWWuW+e|7tSJ&JdLr z_NzH4JRYz8_ub`eo)e=4e6(qr^j9@;9(3jas1Ps&Kk5;bF{J^fs{=2U8kH$|flgR4ys2~xNOpeGjVUSk$UO@tHHK^{l53J3Jf>JSqwO_6^ zVnBFJmy0&5adfp#x*n%aFi)k}gLP{WUB$}~G9~~bQ<3TSvA3uIg|}X22~7SacGf$^ zdJ4cjkqlY556eoY9cLr#iTJBP+m6W(G5Y2aeXq+ReM{6fmAIs460;7XI|=busZpGg z{1mqJ{oc0^@nVvg#T16UNk=R%2=vA-ubL0hFl0AAlD#CBMYM2^O0{MWf61a-9f|x{ zris{E54-|KI|h6d$dU(2{ZPh45L`DQr2>DOBmAKoqTW$Y+#fRi*(X#QI_i1}ile0l ze@KMSjI;dk++9|LcYlcGT9_MuB6yK`Rt{`R3iKp}r0XAEhFjGK=2 zeQi0DsZYpjxE6~rw8=E7MFc23OHU^Z3CQoLSWd)+0|-o#@xFdB^lrxMGZ?Tj$DyEa zDm{6+Nz1&1pZk>JSqwK&=ekZ}3YpFUeXt9adFL`j9f%TH(BIr(D&k+*WP3T0G_m&A z&%mzb4l;$VfHl`Aqv@2Ai7g$(@YleW_S^~s)GeQiNpSa`e*g#GCy~bNRP12bFG{IY zSET6{T_xbD0SJ_rRau#%(5xdEBJb~)rqJW(xL@YFtx&>+yAlvQ3k z0(8;k->k;TuBTn(E`TnHq6#7Edvv^WKfo2&U;8lI#ChA{nnFoAEh`+mvhFOhGu>Y>(HXyq2K#Hk$q7IPI zGHmKx$$XXMVI_F})%OF?!N~5h$|O=lf%458dM=zQXVh}#Z+~W+pbrrl#utYVJ2IlA z+^KU{K)f&fox)#%By6oN7Z`buyNydXyZt`f|6ciTrkHM09mt{$1atr98A~f5D662b zwKYyWjta1yh%MmA%K4x}Pl4H2`-##pFE1OoPRDXpForlc><5dlktQDtV@S!!il;_G z?h?OsK_S)O8IWuIGDG9NtnWvD#QJqbi^-srLrE$$l8olmRPPxv8pNZuZs<}m6E6y< zRs+ljcEf&`Mn|J z|3Kgjv+#M_07!xIZXNhf7zB9Qk)j}wx&3tS28z7G0jQEioyW)gZUA?xgjL(g{eFg( zbYp7t9LN^l4;KaOulhcc+wrAE4guM5r=&wiXN*p109P|q92&Xi3RlgtMqAYV3LzV@o>1#V0qOd z@ZI&waLK;#$$bFK8#>v z{;6?H@vYm$YQdeI+>{ADp!3*fAAxz7uTLR&Wc*%LYCP5X#dDs3W+bBaCak82!M}+5 z%|r=yV&&j<8kc5T7Dx~JLqovWc-kiAxsB-Ca&KRTz5mpA}`U3QdMg#vQ+y`YNzthJjD^9(^#3a?&&BOFRAIiSkOLIb#H1R z6bgH`Ik@SGYi3*?51S|=3fIR}B1YPmB;Xe zqgJbtM=4*;DZfm-O`NUY0>a+U>C>g)g#gnQsEGv0`9$Tmd!AQjxU3SXCVMhQI(9mG z@5Ge9@+HCW5!@dphnkWcIVHKFl%vIX5Xf_UH(4zW#y2weuQiQI>+Sp-D|(=0WplOr z{Fpp(cu(*e6ISX%IxS-c5aJfA7ueNK?wBhz9iqqFn;uSyV*g?n(AcUXYtrIPHlR8e ziD4Uk8P58N5p(W&ZUI_WtPA+!3vS+U5S=GrC&ZetW@LHI5x>Wrtj1ZhSZZxB4)8u{ z^R<0C;+&fR?X*GI&(?6pqzvn$SU#6T zYgS{+Q8gbtpbgj%Ajpt67!EvtoYJ$m1J!hHhfZrb99~~SAc$@eCZY=HbO7G_3GUvvp$&_D|{XnOfEfR0EGg1gr7FB&kh z`@0?Ja64z8K4UE_;SaM(99!GKm^;{kZ7QHagifv0kLX$t50ZX z9@RI(TKtH!x9-bdaah$z8sw%LQ^I!Ed1qTb8Eg5MMKyZjS|qU9(I z>(%mPn#?xBt4f2g$j*UOXT2h2(K809Ek9OPgbvE+M>F4N7EW87$b0KeI6pg5k1D4Y zN)HazS1n;F%8UXXtdbv3Lb)pA8bY_s96eh7klAH{+)qZC0XE}aw<5A|drJ1StNN&g zxuzFD^WitL3URKbuEk!;Thzs`zLz4)>J|AWEcZ3El3Vb#Uov;vDgOf?+I4b8dhw0N z9?)B0*aBpaG$h^7FTxS`uiW#v5exl=1~!VNwqIe&SG2_l=&PyK_92Ms8-rR)D2}PN zz78krGKp&s5g&Y2AskjEQx_c98lfKh<{F-!fmK8Ku~P*8ni5XC^+Tcv2!{^msCsO3 zcU$rQaojEmHkxlGRbCxAfgVkRKRr2BkQP=a{M})t(-GF4$Oe{GK6>)u0Lw%lhsNgF zT!*vSHLDtkF!4Rn0&Jo$AJ|U5c3(|*G|psKe$iAo+ysgQMcv_tF6df$%HNv+Nd7km zSM^O*It@RN`lCVQb!q6CTTg;!fcUmei6Q#D?7(;mE%rjF!spx=ao=V7r~ z*R{2YDduE(k)Ui}X+u!50N+aT-<=1qK1N-y&5fc7s3O;LUr5z49T$_P2{3pHBu8u;B z9YJx*p2IcJCw+(1y4qB>B-;vP^8SYqFGXk8GuGAbkj@@Y?&Hyh1GE-V48cpDDz}+*g z2t}dKMda*tgy0m%2Vi4d2L!C>+`NdNNCKqGc!gX#O?QO~Y%)M;?jlu>=p?%` zUqF{HQ8Q!Lul0@rb5>b&Eve;FHFlinHfF|QDHF3YWcpyTU!MtJN4qvDVwS;rPp+{= zRZdO-8O0)T=wA*#^(HS0uE0N5Zb-+_3y`dk#> z&>f3}=J0`c1ABKhw_e(a>IFhq|5WETbUx)AiZD4XTGdjvH&#cOr#GlM0*0Z9!($%)kTlHzk? zzEL>Xhm4!QvXRM8M4~2&?iGYjO?Dao8+=zo3#(;#W}HOjnbhyNJ?1g0F87wxAcQ`<@L3-2PsC~l~q%56aD=2?pS zRW*Sja}8!v?z8(bl`CqIY^!t4Ky7Z4SODq_k;Bd0$(~~OmEsslg~R?B?GG<)K^%lxl%Jq6k2l2#ajt+CI+O55~tN{TF0p!8`go^t>lQ z51?(vH%`Na-%f_(qOjj>FJ9-qC7qDAf$$=kac%_i-f@(GBuQRJ#^(@H91v zFkp%yBcZ(dh=V7R^l(BwU!PEGkaQNa9dVQC5*F@F9Y7viEU0yiMERM&FlGSgh_72x zrwt>;fQvDq#R3CcRn^{zLR+zfGy{5PT+)RQm2jT{#puu}oY_Z$8$Z%#XkY`NO+KTm zn^+ly4DAC%$XFR{U;Ztyhj8E4gMYk8l`l%G6aJP@(O6_(fN71tgb#Dms@Mm+KF7ll zu3}j}%VaXNHLOg>?*S=tL80w)H|Il`IN6j}2+t+@Bk<6^}1K{a|dHXg?|A|i*!`sds9BKQCui|-o zzEr!OOSkLz)03j)u=Zt-xLtO}5x?1$K|XwWQ|eV_4#>=`c5^K>UaP3(U7RiO0mTs4 zQOEBgbZ8^7WUKvm39cU@CM#g?`1c+W1Z4^w>q0L_+9?{4CInPjVGG@%`}>#WWam)n z^GGj!LbtS!AoVbqe(A8yKSEv+RJSi@NL1z2@#FubwZj<~x~+>u3qxE;y8yD1pRu@C zM+nsE$oU!JPVOKHRA`36e5{l|mI~U*Fw*`tGma+sX16Fl1m;=MXnFZ@tVuy%rI_Sp zgcA{GUY>bz3G3Us(o9Qp+#Fero0w|n|M=4aVeTF+}+>@4ol+i&vJHKot} zq$46<08#9*j!GMH!Zr{V$xTE4$=J#@)!J0h>kCFH#=vT*#!S2VO#V;%K!~6gBfsvE z4BI`R_v$a);#{RawX8>BFc16KK25JdTeU*#LoeppW@fiKR(iaN}pBTAs0R+ z^-S&1H6k}OS?kV68hthWQ8~Rx`Q8Cm1RKhSN~TWbMXKXjiuk~6T4V9+PYYwecOd%>ZBJ4! z+5*_Pa;KS`E_=q9A;23c^cgRyQX{y@KY>SK4rwYG*`pB;5?1)=L-D5Z3RjaO6|PO#uV$n7I;3~$ zxo;?Ny+5vqU0y#^W}SsT-TSiQP++v*CaXa})QJW5fUsw}yv8Gd(2v8qQIFGF9S~k! zMmL>b=JM^i`94@v=S2kynEWKy8PB4(SGkZONe-#$j(5pp(nd*EjwBxeR0Rh92H7<( zVK-N6o$$3KhqXRSu&k0{MYOcRZwDmkPxSYv>gmJ2P60H7Uu3^}PBMNlkna*c9{>Y0 zJXAzBHoS!lq#<}@i^FJC{@&n`si(N-$2H2T#wHN{HN&Yr-9{k5{8uXx6?E(Y-&h)v zxUYa&U^BYLu1tH{uG+KD5Wh*Lx!+*(d9b+03gOB`DSsDFCPTLJsp;G1Wbhe7q z)dYgT9uyNha&0K@dtsKdf3meIWFSafh6zDnE5=CnEI zYyH>e`oDGxmfOlWu+Vgsduvf3cACmr;fU0cW)iaQ>(?zbzR7;xTs**TP!a)BFjLmZ z{fu|d5SRnOJw8l(5>fLcXKEmR-bKn7#FlG-@iM~1T$Zli^eE##oO;pH8?<;_2LOZC zX=sy3#Q^f=m^sV85x%-Q|zh!F`Pcpd1=5P|t{4m836oz>(dK zCh!>#P4X|~AC98>6a><~SK)@`TOxY|jQ%%iY>lr!a`7t6XI>a~-wyiHXANS^`U;yt^$Ll_mRTsQC!PKZe4Pdb^Mn;$npJHsh!Z{X95QWIHF%_~>TpiIhr^1t2Lt5L%&^sIK{symABIv67utXI zzZC!LxE26AOs8pT8cb7RZTQ<&uIiyV?fZ=0RVX8pTk3tum*#FgdTy}NxF`#O+T_&? zu+0XDBZN@3v!tT9eBro6IC?YV-eO9B8aw#vKyReXv1Kp7Nz_-&-NGQ~jyckAg_bl_ zjj01-(x2Tg&scokFdC;~V2emi610-%kn}TgYb!>`O$1uqKitFDq6G6OrOP?xHC}!% z&IHi<#)EzDd4#Vz#O{lDc7i1`qqc!+t|vWsF@0Aai=B; zAZjv<@U)Hn8$CHdXZS<=aHdor%aGXxj!N_5;j?S}JVcsKz2zWtK8dp`L}yhbPlJz* zBBs;ye$7qE$-zl5qY$t(GP&bi@)ecH9QxhNP!R0GQE4kRF+~T?;1!aO^bm*B70k(t zCeB={Og~tA?YCZ;*m%i%y!JBj(+=Y&@zNgwcg0?i+U4V!{q=VkjWxx#1rkxQ!Rav0 zB|t>FAR+CSk%z63y|sr9eTSOQ#4#*3u5vunk_o?Wo%fF0PtP5gsFA7?h|~Tr0Wqu3 zaXP&HuKL6#tI-U)yGJhQ^ryAn!FN!ucR_n7f(+6e*kV1T$kwV!e=I<_t#9h9mfo>$YR(7BDI@RM=W1Jm z&6=y~%I6<$vX=2W`0@THi0ij@8d!4h2k-2Ovw(WN5@C#9@4kc&Ptu{U&+}OZuXm3o zGI6s8A}aXn-!Pflna4VOTq>4Is8oBejs}F89_uO_^G0<-X&A4ZhPO-?wacsn|Mby! z4OiMfkcVhVDp{zi)VRU2k)lsb&sav$##+Kn&oq;9sOW zTVDxD+3+K64))U*ep4_Fhb7`MdYjxtU!7X|cG{QRxp-u~mGAfW-3P{Ejze0eLDzku zo~Ba5kr?mE5R*aemNn(AEzk4$>=$TtJiO++W1!F^*@ADADqeH(08f4#C?jcqc$Ble z&>7}SAMsyX!9A~Trh#&NY5Z{NfyM%1mAnp(`X`mPQ8q-Vh!|;j z4BY-R9499m+z)nJ4c}=AUbyp}mkPN5zEbxp^}OQkdn7MzJ7iGcz$a93QA5GG4Ty9@p5bfj!swQ0P}Zaah2%pPF`8K| zLj^%=sI+p-7;Vb$IjS|L^}G1EJ=5rwA$M+G+f!b}!1rV$XlRUw$Fd8#3Zf{V=H~6? zuUnb8#EQvdNSgWczF@OGFgDP9lbQDXmZcP4uH_}TsB3bwsdex*koXwMKGt>8U4D^4 z?zkBDGULHr!wn&aG$>qDzx7LI3I<GiH-G#;&2e>FR{(`F!00ZfKwrW_bQNgYqgp z_XRl)e1@5eP_dwnF6jbt5!}bjE(ki?qlc0DjPAie!_(YqE&?BI_tik>Hhd}16-PoX)g~_K2vl;e*0-e{jIS6EJ@=pIg?u& zct6gk)6ADZfvxbu`|SjK;eQQnr%Yl>BY7trKvi)CN zA=+rBodzPG}%2PbI}Xiu3IHZ#$^a{Jd77M|phA@s>1KA&7pZ zmY%;G3S>*g71^gOo}y~H8oI><9>GTa9}hnT8H_v~cdo6jT}vRN#l%SjqxV+k=u_ZO z$f)w^g-TW*Q0qETF_1&9KL$lysQVIwf8>Q{JpDIUUChp3ziIpF8+sz3aGKYSyis^- zowX>W(cK>u^2y^DA@wHu`0)*LZG>jK^Ir4uL@34RYbKLhh4qA$1UXUM{pU93eLBrZEiTJeHa z*MntkG7v9KUuOO3jyj}44Q^0ZL_cx^{x6`;Qe}s-`CJoDy`TBF2DBOQj90)e@Zv_O zN05!p8if94nVuTOXL|Xl+s>ASjtEsrk(vXVdZ92sHHJqN6Nx3MTYRQ56|xW|sm^A& zloiN)=c8K2$O%P5z;l0${B9SR|DW-DW>%`4QIxM7VrHOUr|6}hK?52-X4^1_qM=Z) zlG2%pUVd4o3g7P-xQ~WaWQYNGez@3$7(QcJ74_8*&L?);ZJQw~qwt$=wnLPAGV2Ta7#Z z^AW)-3~b1gN6i-jsxNwrB$XFbhQRTypxW8kDgMp5`T-W2f3J{U%R#x z#%86$Z(0v7q$9M>nnwyXI!!x5F;HIQ;yQE6wfIqAT&qJxKwirP{Nxdi6RMES-bbwX zyK>+~#NbP1HZ853cN8fNur6(cyrzX2jz1x14alUvF=NdCB*wiv;aRrC{C~RO*tf7$>EVeNqWUDO1 zH5CK)rq&%latV}qsFny0=bmQNmmeHObTLDhS($^n^h~ni3x4OX5Yz^Nnh#Uv?GFUr zLa3pELwcoL8D6vW&+NUqw@l&kCnP>J7Mo<@M&6sDa}nkdo34-H(##l1>q#$VCv4}& zPodQFoom%2n9Cc<{MqtpV$ID{31$q#s`ZD{=TMDHR@y zuoNIyAOl8;GFF#Fo0BBnuBfMmrpF(cY#;WGDgR5i;}e$&v;I$U5ua&K<0Yg39{zmF zO&c{!MwFZ9sEoIeKaK5iAq%f>o>E#_Qp;r7KQD>>C6}KEFU9-MG*Lp&gI8Z`+@eHt z%x;!4JYGR;Ht^^Q7Ur_pMZy}yXl$9 zsAKh^E^wN*f?oh1Ws`<+edkjWC92PMT5!F24KJq{vI2NwrErVrfeRK!t*6(9YOEc_ z?p&uw>09Aq4LhdeG*-lr;jGuL_lL!>+6wWfIi~Oy`QofaMxJetP+0%6Ut8zlEL`_nrh1mOV4FCfUjgGnxN#`ZQBnJ zD(bmwN!?fao7C;EG7Qb%kte2CSeSu1KAMd zL?eoUz5nt=NT1cbWC0#F;G=)<$zeXx!TMAcu-L{ToAPpMUDFJT$6?=h8-({p4RWkc z+8o4y<5$FP0e0_bOW&`9B81Bsf?aHhQpQxV*n|md2Bl3?l-5c%0!sdk7Y)%WE77%_ zlWyq!!&QK@j36rk=JryGa=Gg#uN3b=q{4~D<^vb;a+lN3*TGo(@5pSgWXv}G3SvpI z=J*OHpxMV3XN+BsqS6IvDZe|0=^A-?=g>=|)an&4mF-qOg%TR%g{CERDa+xKO-T-e zprqM`rpOk^A`j)T3p&I#{g++%ZUpb9aO3L5qzGcaLn(11gpp8@+ZEl5~0v^o>NXU zBZ@z%5Yk57iJ1j<*Yl5KDq`xISG?FoCK!EB8*y}!`y(SaZ@bTGGfixr;^5rUUNyf& z9}SD{t9u}6B9Xv1Ek}w&l;0P7d=wyWgiTyW*(qn!7R*vqKz!C`ro0Di}x|w6!>9lvG8}GYWC@V+`n3?qbcstLkk*UklcaZRS1Y)MBghF`n&kB~O zEc+e@)hpUgj;PHud3fsiIl9%f7Ny-9q^e*MZ5duG63G#cuTSTWn$@(c5t; zR2~jA`>!p+27|KCLN+Yvh;Rb~$1OIP-K+Iv-sKGjvTpqFcg%O+bZzHqU&J-zQqO~> z9j8U-txYhpZ($~7z`q7jKd1uR(2SE$1VMt zY}*BkzP~I&YJkl|4IHALTKP+%-96m|(sg3mpZ0(=+vtMjo@+3W3MgIcz zh;xpTFEg>oa7|=)17VMl`i{)=&cT$Llj<%ocz!-zUpb`$4Yy8PX{G`mp%63y8>C~U zxv;49r8g*imWP#Ibvy&KBrDd9S**afZ_3yB*ewtL??ca_6S zl{$LFqwH?)Z*IyaNk+Y|4zX^PMUG8tsk2@7A+$`%$W}Obl9yA^z=-Dz3>UDgO#G=Y z(E5zq|GlGw;*XypD31AwN^}?(Nw?1LK=D=1up&YcJgL0zR~4ET z^^V8@j`kauD&PH4+qSVhaFN@7r33=q>*@fhlf|JVEJKvFV45c!R!9+qc(#0w8>1Pj zzDjU@UdV1;v6n%yYe}5}u%z3qEtZneZBs0h|6ZHab-lY&ZY< zT+9iko*rO|T|;gxLeJ$6`{@$+X>b^$bv}bXd?xn!8BF2_qZXEWsks}jyGw;?h>{34 zG8s{*T9d*Un0L4r&A9cMB5#vgc&+kmi6Wp?so}{)<4VFBK~u;6hhk-5%}lexQWq<+h&VL<*In_%s6C8#nvn!1fb--kZeTW<5pdr8)mYDleWJF!y2xn+U} z#NGn9SDQ2u;+ni@6Wud3YNe5pS8&}k3>q?3c^CV6Wyy>=la}y^YdUBM6wBdy>meXN zIpD`PXqO6VBn>|Edqo2Ci7D$e-E#yf-q=7NP@ybwNoQ?Whbx0mbeu^*a@sUSKd2Y# z8|X;>GfvXBPRgWtL-q@0K$ApggpkX+=ucbpfEiE&r-*%w33&z5%0me38pdK*nC`G( zSt}tayrb&?liX-(cYZXw(KFAtg~iaJq418s|vBdrz)0&1umsojxp6!%}xojwS~$ z32bq7Oj;%fuc8-_iJ9UP?zzse4!Z=}K8?7k7l9(u-)Xw{}*Y;1$ff`WS?1GZ>(kTJa!O)+_K#j)AqoL%aYhD^fgDi zFTc19Lln#34OHwPDM+9D_tCF^ct?iDzboRO9aG{OQA@)o*37k|FIX!AIc;<%KQ_Tq zuKA+%qxX-eIllxvXirAcp^T;1n2mr0AQ6w$Y$I*qGh<^0fSc9az|w=_87!nksyi`r zL)?(Q3x#ipuKxRgVM$a7@qX`^Z{`PiYull{dAjephFFL$b<|45Toua;a~xb+s$M=I zm)FTs?=P%>*>y56^pz5^bqUO`@f?YW5^;JW{BHO(Cs>51j5-TCYIwJt)^jKN4#Yd9 z9ip)ENa&R`YQTk{9jVTuz5$agGjQ|r(78*snT_axE&%%2%>mK-`{Sv59Mk7i?h;Yf zqvKEO(oEB9s^uKbR?T$ZljObA%auvMz}sbCxNOWD4s{X*DEqMQ@W<1w3%PTx%hw>0 z)gn;NZ9EpA16B*V?0UhAVbE*uoqd$@?v`>z<&SXKEQ=eAwWJWpkin;ghBARgyWK5F z@}-%faTmV0JGt6-H3O4;KHI5r30YHl<3=~*6mc;d6#H>ey0?pLq1q&Y;Z;S3ut?R$^9Q=3916=QO z{ir9-N0Pcp*D>D?KeX6WxX3N45%sb$_o3pvKz?qb4?ja3=eZPMHRq{X7CBj?LmGV0 zgMj$+g6G-grVM$)qV0hvTjsc~=Hq(=(9 zvSQBqKUR?(3sea+p#7)tIS?3%t!*p3&)HshVi)L(rIq!14=Rul{kL}$PB*l|^S{^C zGN%AfF0eHaa?R;>U0^WvEAAh|g+<4}m*)axoxK8t>jJx#bUDd9FLN_+6umB6_byI}Jnwn) zVLEKgh_AQ;_z9k|2e|m zUJKr)=pxG_x>6qpAdgHuTssFpmU3?)f>*ay(O-&w{DR|hhPI6P%9ezCHEY*$jnB1= zL6~+tWk}C3>QEqEBhSbY!AG&)^=BC-oO(P~Op&q^E634{slQ^|XP}S8sgq-bNOadZ z@>WS?l*gf~s{+-gTD4;Pq@uY`=B8^p2Mlpemd|%9KIl)p2UQaEh7ZbcF(JEoDgQBI z6Hh6BN2)U}H;R$C?V2*yL8Ku)caw9&yPG@Fw!SDyF!Zw!{Mc+1 ztPc$nJlY!e3Q;%=ZoakYBaXIXe((70gY-wr%~*@wZHC+6HpE~3#;|$#CH2@Q0G9YD|`t9zl1)2MYQ^FW%G52HDS9%c;s=}rXCKj#<%`<%dF zTpx)wh;ZYNIh$jw7BI$b zKxk;3EnCX8gEv52Axk~*_s&jbcQ}a>WpE!i6kNgLdnSWT$dTx?X`sXocxPWfL3L5E z3;P=ot7smH#QyyjakxRLczlF`adR>iajYek(ht^mbyPs&H2A08-kU23?hnxu$z9@P zKL`2n2ZxjJFTft2*Vkf~p_)nrOYE@7Wgy+Yc2+hU1E)R+jt=93#TFhhvhTlPRaIuJ zxNwoSRjE7Y`4eE^BhDhH8JJtEF)E_@$VtMMGY0HO9BNGWw%VXIiBB9kzH<1Vd`Bwl zAJT6H8T>$0ZHMHv4Z6fwKRAR7?XxwP@!w}jy>9pa7Z~&8|fs=B8Ah#(;y(%sVC-Cc@wO1E@NcXxM5N;lHo-QC@d@ACV8 zc_E1BoW1tUT{Angj%Do`DstKbL3#TX|0R!Tov*X(4q6-?qwCQ@ z!%@Wni^#*)LuAgQ)pH*ArxzD4wA znl;^6ge?C*4owe|7c+uL_DDESB|Z~Q(5ott#$^r#=ci-VKTRr3o8OdOxAOk1xXewY z>{MKM4Wntx$tX$NP_VaPRhQLZRDpVXghUAx4k|Lss+%Go_+vEEPKN`H@)rG@#kN;7 zZNfbS5D3DLIXL@Jp%*4x{4fsg{VXNje^vk=+2}Tp@Alqv6F!C3SfiN3$G%k&JbhR7 z@u81DzjOKR+W+bracEsPQPYf#_k02N#fTs%kHw16tr|Y9>rYm8uT!n@i~@>rKv2y9 zdAI{~fQd=WG{#V!rp!a!P6IV#)ahpYxCre8DuF%@d2R<(eOAA_uBU%et=z$Ns;jrU zN<-Zs;bsA4Me(XtZ+p%1(`=;?8xj0`BO#BkUq0ToxIcW z;R|QwxfvzJHi*{bjCeh&KfOyK!-f@p%XJu7#sLzpGb3@e;s<3y@2Xa(Y~C;H2u>#H zdmSW^@Sjh+yX?$w@jWASV9IScWAA%TJ#)kdrrEyMZ(C?eL^oX7vS5{_*S~;ubv;Yz z`kLG#5_BlupPA?1!{|H2TTtFB^vn}?q;huGe^b+)S7A@7(0}iXSwmwp{Z=zaNY=f8 z#y*-5-9L}ZYacoHMDlreTB*ooFCR*Yi+x*WB*^w;Q>;llz#6=n3wK_ zM~ZF8{HAr*90M;L$CX&-dXVZWTuyAtLokDhP-Q8$^;C{9`0L95Fsf2GUPj6D zA?D%?ilqzdL_@u?LXlexcbY=ipXu>?cvRR4>d=90#dTA3L_0G3#U74+CdZ3ZfB{;&y~YzYqQw}=2R&( zuhng}ON*2n`Q~Jc=ZOlWM|fc$p0|4ko?=qSQ>VE}Jt@kvij7oJCw~iT9+6r5t3(7) zm=RT5M0(kv>u(Ydof1)ws9RRInqK~&cb(RdCK)YODZ;O7-WmGvuyj{3$qnv}^A$DF zczNu?vyk*({?tmnCkZ^f`UAiIf_NA^YF8J-N0MCWNyR@`*tZSI955kWq9?w(BhocN zp0b$t!*G*-1V2NMN>Z&XGEKHq6Va>kpM_VRs`f3N{ZyxqbZ!PROjxM-_CLyW>Jiwp zOn+elib*-Vq+0?gyJA4I?a%U$4j{q9vFkZ~qUY?lsZ7Kr`Nde~6+xTq8&5*$2s6;r?ek}YID)?*wY zqcJQSbZw^VxtBui) zC;MCPR!kNs1n3_Y&9UvF#zKRIwa@}TP?B-lfA_Vbb5nv@kk1&2f4X;P5Qkhwz-SX3 z$*259sH7QI`?9%}Ia%Yd@CCM>!S*#CL&t_o1|=tYUV3o<3Nj}SK2{MoYilC*Y>x6) zEZEHQIhb*j>91jJiZcRcqRkVv9RhQZcKdRc0CCC`{aytGID& z&N2B^t89%Q`A;w^8K9T(h@LNiiUVH}9L*(o?hVfq6|@o?$UAgg7BX<tEnBJ76_Sm2>Xjo`YolRn-cV(Y*uxAQSw zX?f6zK6ydF=*tai*sl&V%wHtC9gS2`$=>87toD|iN{fB|NA}f;ngwDZI31a3;gF6t zm$Ox--1x+{Yq3?Kw4sZ42Q-*wHv6Js5X*UW?H6B@jvqcce-{>8d8!8S#nq-`*#UAwoae^DlQpkME`!7m}@>R zLT^}aaOF>bdFM-0Q^TRDp>dd{K()h`W2qg&HGtxiPr$mn?(|`3Uew&zTjI>Le*L*l z$wKxE)*d&n0;>~#*Pny|WJpIpRO{L6yyEj6+d3ynU&++g`8JF@vv%LBDgxB3 zqt4ULv}*RuhE#~|Tt%g^6`R6BE#U=1R9ZL=ET8aeyB5E_=?i$k>0+N@KXy?g@W}s# z5A$_|jXUjTQM4J9Q3-$%$yw-HKy4E26UDh)twIfyiB|GcOk6SySeyD=5> zm*-kguhUQ!`4#uke@UEV|HQG=Ovsu#g%20DlU=3EKA%wd%+a*W{TDKv>#6sECspZA z)p>~+)!y7*+I`t#^N5>V?;t=4q3Y0Vv6}BOUrCw62RS2pC-9MOu`hZ6wLkh+7T0u1 z_G&P$6UgN5*s%%aDcAda%I*%^yEChc9`);+k>qxjaaEO6LYw;Re+f z>9wqqrUjY$BigsB*XC3i#)YF=&`dULr9!e}kM3lWjHAo9B~@NvSCm#XN&cB&zC% zDQ?$bT4}3Ix#4VdSU)yyvBBwvrp_mCRU3NWWAYhoZqQ;#s?n@ z%9ky}eOg-q4lG>e@X3Opr=jaZFKCE5Ko702avD?f?LUeQzS~w`427jcN@P#2m6<+YYoOu~ml5zH!jRGQs zIC6;+KG7d@`5pP~1)wpH7n~OSUd9%L9f1xPk?z`l%@*@Z+Kd{r3{D{s1JS*EKxQ|z+Q$F3WI)2(3J-Kz)-G(;`+S-7 zIe%lU_urzta~2=z_;bzPC+XufR$FLW$KEkoBKSAnZI-R{?h%Z?zb5L$sz-pOEVWuMa5-GYQ*D%y@Ci?nn zoG&JJzmgu|(L#w!+hgijU2x|Z`>^{ire?zLkhu<@@`zHwoial>O(FI%42u)Mo$#Cz z%Zk_Bw?ubkQTQnh*{NZsV(_+_W7?O`r#=69x|sn1+~aUQ;9OCoRW6|P(-tcuXXlVp zvqe)B^k?K_SmCD`^DW9+WSLS)0kHld@OQ`0?MoSO$%{(*DoU(Q1ja$I4x8KRas0l) zA%6;_4$YMU>GgE{V)dwsV}|ih0`nXGY1PxMc_|?q68Icf#iVd{2xkLi0#g5-*55pX zj(<8ENWT)#5yi%nwrJ9qVHp`~&gcEx@kRoC!~xy|wqLndDIu zYCyAY^B^$BvUlhi2i&N<4gS+8seJQ4ryeITj?~^NKy#vOG0MLV{1PvIoq^1{1Cn=C zorKDV`7q_HwbQOBK=!un?#p>Nt$ACry7KoLfNHgk=Jgt>3tdbO1L;w@7`$)$)JSTd z)Yq?o{ZDIg@jV?mhfI-mK>&1g)ZwAQ>&y5~=#eJyRWE1yLE*^i2hQ9qqab#+Y^UAC zd|D~(s39PoHMhlik~ir%i}i2=W=`vSmidl6%OgUVze}+gM*Ae5ZIjL%?RE5@+fvf> zO(*eqDtZA`3H7{)w3%__n+!<^)oM6yBME#o2IE&RHQ!Umq4a}m zm(Pj9bgLgkfwFeWSm60b3a*Xtu?ql6Bp6tg_RJmE1ZGn~EI7OG5UzSs5(fwF|1pJg z{bb!g8oqJYu15fu>`64I=g)8hS~xas5k*ZG%BBZe`>gNWD; zR8s4Fn-ngZoJlx1pPKdaadG5VQRE4f57VLYjzo@QU^lehu@MOA27yMQvhux+$mI&$ z$D?Y1wxm6!glp8a6F0gB|Cm3?G5~xM8f=!0MMy3ogp70tmAH<`yL`uS# zk^#7uMVxc7oxgC+W)Lm@U#|%NqsB|x$$Lg!Sq$@7p@s{2*%f4ot6$0Btu?{;I^V@~ z%dkL!NQz$C^%n^SLutU_ut-IJ`A2RoA_*1`bm)Byz8cqXzo7x?V`)}&jJd+_nWlf$ zj#OzgV3;xQnAZW@f@Scyr}cmzMFdY>eU>kUAC1Nw(-yu+d0!T~`dQqFQN| z8c4{nCWl*P)(8E3b}sLEhcvXy0#+NC2A}XIRuXEfpM^}RJ98(H*~uH)sBV-lK7vfy zTV+tMXbpL{{s-lqNAqxkNAbkMsOwru=CX~~W8MmiU zLx*z<9X2^O`Cj2jfUO7gVqfI@%jjJT6309_8gkfO@S`mLW&EGgh5%;HIr{;}H%%T> z!kCmVmxdpE4Z5I7i@VTIeoLX^&wxFp)$0b8e(PThaIy6j%Q4fbg*5h*Nh0+by9U)o z>aYv@AXZV0%{4IRKa)3i2-aT{&#M2FXEXC_y>&(p0!cYAD)o4MzbWjV&%Zb#Me#n2qVnvD;pU{HWZl^f5rms4!{6COkb$e~*1 z?X!<(6DpkPud`>flI`NBU$3zd3^z+vMO^z#oK^&(1YnLLg7b#pF_iMeWq;qabnq{< z;4mBNCj^nv{g3j;_V;eyp|i4#RgJnMd<%N_8t=n80BOiINsVqYVxK4bxm!_?lU;Uj z-x{!aEI73f^mM|UaN{dLWJK^BJzKW?4f3;h+;tfr!Jn3xtCv9zu$u4WHSag`H@`*e zEt^v~p;hu}F+6@%kO};qVzwq-StRwP{X+?ky~PyyN!~&dPMlf#d72*8hVhC*LZ$xm zw<-O@lk2xgUvLzM3CSv*!n2}M^{_~#l^5EuG|@l1w1SrEe@t+7rlqW;1wv%?QLVum z=pWSJ!QY>f&AlSi!yVJe16WM4oG0SQ%of5)RzKJW5Z!8#f>(K$_!?l7H6*uMZ{`Lw zsxFZTQbc7l(3rn8{cYYQxd{_jytFUP9P?gS6p9NI>wbO%%5y?<#Xo%{B|_!Jy}2Lm zQ9@`JBsqxG{VyZuj^>u?hp_{9ZN_)-gNJa$CAC9}GiYZ7H*RanBm`M$Kq5fn-6L7M za1t}Jusl^Hw_9M=nqWz=cg?a?zYutqA+l)Ia-Mt63sE=c(k4-NTK)H^aL-TQfp)P$ z?E2@nb=+}Cs0}FDik54Sy!6gu8Q#KTZG z*OP@z#k7v`jBqW=ACgt&$oPR?&Yy!?G}T>wtq|NY%O;Fn$8kg%o5H&2=xA2mXebxv zR${Uq33&c8bk_cY7I}rtWwvbT`{P_~` zpFAfZ*401no*DT=URq95V7fm9^g3pJCqU5C8TbS$#6|9zijgeJIDAV~!1##JW-7SD zbCgR0b7;MMe;oB3-`*AuGEhNg=QnLf8v2{cl2uLQY*s~aJ~{=WTdUUKMEoo+^T&zw zc%NVo?gYo1V+hZ+sfIl6F3zdV00cf6Jg5mca5PVSdh7hueoa`_izY`UZZ8}>;>ed7 zeW+p7_6@&scDP>$l{faFydyfwODK4QJc%HKaI;jb}cTlOr2isP4Bv_AZK1!5G2~SbY%t%8{GSp?6J&}oqoV| zxw^s{Hyq8(`An9Fg1SBA%5A)7v6rRN5-~2!?*hP?TnTKyj9V{Y0Hv!R_j@&*a&v=*Dg-mLqMmGqR5>vz8)CS0Kx8dF(T~c*R9TQ-~YKr zhFTW$*s4!3sx|;%n!;lIJ}8EmyYLTvnfa{t`cdKUs}GFGyDz3E--}ElK|_KG)i}TO zkU$A&^-6lccwv!HyTWJq_>u{Sl>nU}1%gF5E0CGgb$zP=iW;DG;31o*dT_+|KoCwgAhq^w>U zt=f-=i~R(H@XIqtja$^D4U9h{`RZW$z7u|$y4tfhI(@6p6U7>i8XL1^Zp@z_)~Uqm z3oS-)5w<#`A&(nX6%G7dY>}WWVrW2>euja)H-S#W+Ej4apF{m^A%|GCah|&MgpmY{ zuVmi9Bq9+IpG=yk4d50p%LmW%hjxWZTwtL&z_Ldq?gr=WOxVO5Kf1|7P9RbC`tk83 zhDCUO`3G*crKm7zrf$lBz>sz2cwntGnc0WF*2Y2hVDB5HINp4RitJ;I1y|f2dW+Q{ z7X#W$!^~5<&XjVODs2K$XI6EpX@G7qX3M$r{5?R?R0~%hoVv|@VV=?%3fy=Vu=BE- z0s!((ETqG=XnwJ{>QVBes3I?WZ{f*afYhzKLCg(_d0)1-2}Tvz4ry%3SB~E; zy*&f{6T0aWL`xSdrnj#EIkvL9i1{KS!;VK$TP{#_QaCjQYR{C{e&?ggQ^;#m_hh6Eb)GX^@#UJw|9arh_*`hjHmjr6d<6{j za7Ji`SOWD&T)8Ofa)MImI*vO5ct^H}^7Um>+K<*R3mO+K@QGu0?X>c>k~_~vx>QZv z5}qPb3jA&Hb2(Us!9$et;r(Ga1+&)7Tw%p4UVjCo_XzR!u@*+f-aJSz#iNR=aHKQp zw@p+Z>apKYV}u*OldQXRG@qWk<7CHx2cK?)X8p*uW7`+bPQpgR9%uL~&A9X9>1}8T zIJ;Y9SOogt94ptWS0ED&6@Ci|CaFwP*%CGs294vP6{Vfp;G9w}f=4L9@)VRk03(l7srBP+~&i(ub=vvKQa~PHC zmThYEVDzPiO-*@?@0JxBSg|wBW#e}XMKaOv2*Vh%9&w@ur93~)DQI$%cPch2>57kH zd;Wo(p%{GbKHATs>|%%I*p2o6YyCn0Kc@be=`SHtUgZV_Ct^S&FGj0ldQN67<3MBU zQe2olXBFvlOlS*b42P1_BGee!wK3H~E3tyD$FS|us01GLbx4ViPZC{MJ>oiyp7Ia( zEYqAApw0*;N>1I_@$ac0Vh0Ml+rGG;Up`xrzHkw$cLWm{VEc8mXTgYUu0gekvR0ks zfiWkM&E{*f>ecyAl*s4k2_X#lIqC4=#Ycy4n0C_!xS!YzGm1ye$<^&E3h!G)H*+8T zHGPxWJF+kg*Ox^t&%iWLO{&~oBZ0$8+J5+^LP~6HjOuskBhNogAY7Lc ztD`CK7@7IOSp{Gkqi>rIt(MLEYb(<5-trY>{z^r`j<3J3ehN{5*qvIvCHk1{XQ@gc zW4ute#D0hxEv>@%wOb76(Ne#lnuW)s1A8L~y&az>i1hDPx*nwAy{4a)Ts;mR<^a=+ z%e*jRB8#)@?tNRq*6p-8cei4(s?C|jN+X>bA>bxCdntU+~lB>CJh4{U-vgc|!)AO=o;xAz0 z%_2T^b5HufWuJGEF}L1Jluh_M^#>1Bg9aLWz^KbMqNJ`q+6xyp{$uGPsw^WqbKRmw zqvq-thnU3^pB8?ry7LqFWJdUaKqP~1cAek14n)rfsb1Zf%`X4&rUA?vo?92p@|8=c zH*53XE_Nrh7ivv>)LaPHv){p}pgh^2bxC-K7@vw?sCec8;U^Hdyh4Xuw6CxPXIp* zM!%{XPhl$EFW$AFWxMsxL$A1GkUwf@N}O-8%9R69^EGdq1KVQj|5HB==9tqom1v&p zt@iLDoi4K}F_&$Kr+7KY-?~zq;?kO=HirvYzbCgp;qafuae7p}^RG=!l>NMxX)tJj z62Mt~**EC(&3fKig|!Q7Te^retuu#`jClbZ2m#n#q)_2HP8k57(tE3Z@HuWgfDupl zoxHPREijb$#U;?{Z;3c+rXJOaZIQDUymKd`>ZkltXhcopL8AxK#1%bi-rWFi_D-cv zK0gbx_>`SdCKs<**vWh`JId26|Cs)WeX#O8TKI?z zrh{nPnhAsKO7q&><%}NeRizi5Uf)H^Fo6i&((h+8;6jy<6FQ)ocHmE-K5>nkS0;qcq&7 zJ|EX&4i^t9C{8}|rdw=sUPVqFhXgJ%-`oC@s%m=+MPc(~OIM(Kc4vYQ$lz7z+x4K3 zt%1D$dBJ)O%36zBP8>SW8b8s9E^9YuAU@j#3hZk~h<>_;N|Op?%3@uSwUj~q)E=G= z0)veeu*{N2j+0hEyhIBsVCv6e?7mnjETiTWC8+$u!ugUcHQgEfZtOViNH znkM8hR0vwG&`EzE*}f7IG=7+FJ)5x@K?n=>@>y#_@D^H@mAsIEA7@*cxc$SHyrF>Y z7@@my>$l6!_|G?=KKJpS|Lfr|K(gWKSjvN>D3q2CxS7i?-=Jr{IsHgsI7*7%P>@p49riWNuX-j2W{mC1`il?8uA8U;Io~YvmNJlle8 z0vo_74h=oohOg**YEehvVUc@*j%x+dK&KZDTmh5S#SvLNxzPfd^!F_t=dJAhU=mSK zia!YF$uY-WKhR20;mc8@OufwC0hV0YKL4h(g-I%17HT|-6&Bfl*A8>r(CO3pecj0| zm|hMG-xMcw$~OESsJ@x=9qidGZzbwf+DzFsDJEY)xBgP5a$$kA>wjgDK4ar&Spl;x zLcRIB;B~XD-=fy*MoNlp_(N4|Kjbv}p+fRTtrz17ORK&6NS*hY?7>g3v9AOI<*fGb zTDxyn9KY=kOm`_n!1(W2-~{6Z?IY}4{KI3p-lsgl2_^_o0%>U(jD#QQLHcJ!wY51U zc&k8RF&~8jZw8|VHthYIseg`MCxp$TWE8ey@OmO5hAacmHMmq7HS@xy%w~gCHo==n zcxSU+q+S}Ci9{)i1Efc`Xzw0yu1o{d^r<#_*Mf5VlI9`PggY@zx^8!wI|-E>SfE{! ztQ(&bvFc44?Tj)x1$FyLMJd3GITc^U8LjjR;TT58+G|*%mKo%s0RT353|<=Uik%L& zFKF&SJR4gVE{&QGsK(A%V=FC8xmouR8-`lVA4>Wcteh&0+XGYlZ#!FT_bk}gGixEr za9I&sf|oqj@ zy+6)hN1AIX)&vBLLo_#WqQb91GOWwG>ofze(#Xtu$Wu7)f%a`p^N?jwGayL|#oal+ zO6u&BC~P4I*{Lc+gY|t1SLe-SUvC@hT)2>C0OYb-)lj1_^iO_0X|m)wFi&)Z_d}BL zL-Y3nN|mi03ee8G*(cp!#97c}uWPPxrst^P+qWU7m9w7kPSH~!mp>b8ZwyTE(f2`K zOP|o99hHb(-@$vYt&2p4c5AoTC$^!ozy}-$+@2w*&NGBJdHZZCq>&d(@aA_DngG^Z zsUO(bRvs5nUJ5W@g$`=WjqTV}anT`6XPKh#-sB@ZO1HUWqQgg!1>i^QBTA!(l457Mf)k8{WumAIB-QF7=+K6&9)$-Vi3mxM7f?aQw8}FfW zE6<8zyi9Xvb(Z)YFjGAV1aT4dX(I+~`047P#@WPm{Blybk7_kPG`Al+MlPBaa^SCH zGM@uoM2;b+shI*FEACzElYI2?_|JNtVk%P@jC#nTJP_zp<*YljWgl@~_?Mnkgl+jb z##q2db{*8x0DIcU3Kh87WZn?4!Mi9GY*y-80Y-bMm_^RnsdGGltY%+`;Bvl_q7u;R zY-xhiNqGA$&)CMIh_2`vBj*B2N1;ku^rbyI9uveWm)fSJEMFh*PWH6nMf5v-wS`Mo zTRy|TK&ILM2of4cZ3%2rq6g<+Z*QOCz>&WXCq_@D%BPwd?V2q%b~Ts(uOlG<-ybP5 z?t8@NOUtY}qyyDEn@CufW|rXLg4l)8Fw^9Pe>iB{$G?IoiM|FmJe11$Eli6ePIuwO z3z$4cF72bOXPhWP0{IHF4NF0&3O{(p)mK=f{!hmx6RHnQeXG_;W zfzbHs=R|9&F2$;WY#yFIwhHHd9++3;lxot-d*_pLmT2dsjVR%6-q0tH%zMZTm^a>F zvd8!Rbd&Q);lNrFd1u9ki_pR^F3|DkqKNpSbgy1**q7k2@O zOp6<_;ZBmYSq1q|@3q#Xfnm{{B#XZg-HOR{>9%6+h%$<>2SKgAft+Fc=5&wTPC96S zMY(l(DgBLDo0D7(fr0nV$%9>S5yHGun~T0y$N7&nYnB8}ty5HZPj;ZZ=d5|I$ z(Kv7?`tl@b4Ie+7@-dn5MiaQCpcO+b7AfAak1@1Dqv2FmbC zX^3AvtJVNN_L*|}cH8|`Usbv4bhSd{aPGL7<2LMDYaJbjxYku=+w;#Wx8Z;j<;KOX zAMQsBM!ocjP_71jGHY>BFt5DjLMv58*$OKOlzrojcf9yz9J_1}>qtcTF(SQkzl|Ci zodz;NNSRjVM>n0J-3g)ILK)2Q%|V}TlJJX_6QiZmP#oW`XJX*cG-O%<+a^tNzsXF2 z+l!h8WDVa?y{9)pX&V^usKtdSf|;zqpBR4@ZJ4g4)b2Vo+9!5RRZBv>Gw;U)dA|L2 zYAY*zJL`{TV#$bKh%3W&WI$tqioEBNy1yMd;#WioMaxvK2sk>Se@TD#?`On^J(ltM zO&|ZC2MO!U4uck#nGvfkAkn)*F~pMh9f-5f!9!KlU&wTvQ$wq(t)ReK2R_zqASi9c z0XW-NTWg=uOV(LPWYVa}v9|tWJc9@b=Gf#{Y(+GZJOFtoW8g61mf8P(77wT|b-16* zw5A5gZ0sEu<}<;)JZTn)7T)})?YDSX@8mC+qZZn}3I608u(o+rtQo{J_Z`pXVZ z_tRPQv6MY0Aa{!H3#b0w`s*k;wh}or9HWm0P3{13EXym}EFOjZGcw=p4y8*SQ}4@5 z8K7VFCceXQnYw=f$%Vo5PaV}A(*Wl4`8pB2KAM9m?RL`H$8u`3jAURepSGg}2OnsG zJkd$2hr$H@{jJV3G!}b+@8Z7rG?w^oG{|O?yCsiAG47v!>#5@Nm9rVQaQEi|ucbSS zGB&_%20YHT9-^C_7LKZ5XR}`T@ce8XhyqSwHoB#RAxjQmK>Wb5Pp zJ9?V)J^nRl*MUaq(Tg`8K8@it09$*^`lifN|0LZxaP*gFOy79rS?c`V920yCHgrT9 zsw_bc@~Z1Bd>YFy((GNcsc~*rejeOppiHC*THbE2Yj!*H$dOu7W*qCYeBC*BKFLGR zLH=995YHOi)T`pU$^XHgbmDUCM=J!pw@wbG{3kl>X$>zIn0Gyjc~6o zm0xG+Os<62+b!Hcu+OPK1G6@9^yws3LRbJDyUitEc-Ycn8yy=3K7eUzQ3fYVrv)-@ zVw`4aSA4nREOeg8k)+7vq_Ttilt=7Al# z=5ins4RqMW{%qSOAOGpn?i8e#hE-V#VMJVOknPO27YTfTwas1nUSI54(aYkb!XXJg zPmWt%=*e4E2`Zo_^E>iuj=8J^i=bZX3ly%o&D{j{0yIv|5IwX+mF~Ti59o7h3J!By z)|AF#J`TJ$k;2h~oOzti+@akx1k($bijs)&A9bOAeNCVzb;F#q_tsWSa`0;cplRVe zQN@`iC`=qhVWbDg#}mWWEPJu<|0U-v(EF!S>z4~CNVJU;X4v}5i)`ZVySP1|mAkne zz3Xg1Q5ql}T|NH!&)3{tNynwr_4^`JHqK?~fg4^NVw3s}NA*^`inx>2cJcaIE2#ia zJbsNaOont%=K-qa!HV|QV*v{lb z!AK{sZceN31bY*SRzO_GRtwdz{<&%j?a@ibp_Ba_T^VQ#L zXz^S5cCbp^(^l$+g8DoCq^fgII*9l0O2Oy1>y9UnbNrv>hy%)7x@w&g`QIh{53T1Y z0S|~0?gmp!Js;~!A-(lvGC)4iE}%53JMo_?tV+9sGkgeF^Dpx{u+$8I3~l&2HR(Dv{u#seE2WAO>LkIJh&3SO@J zZEavnjNqDWp)Y%)+JWA&Kzs=7WBXqP z(baFNRAkBF3B?;L)+qI_Ql@zMIP3Ni^1$vADEb=SB<{RCGJ;ZXw6ax_K6;~}BM7*- zHSvmETf2-=TryKQ$}df!`#boq2Cj8JLF`vV6f>eXo$Ye$aYMoF&%+Kmc@c@Ki*lIU zR&uVz(hYFh&nZ0s_;M<0JHp`}zqY%Nk|BRY?@}C5Rk5I(*MY!(i)X+rH7$~U{halm zjGn)M(TmtbqG9fFKsUQg@xZq*8YPrBx18QLFF|7dV@Y;*&odvT3_T^&1D^pC-?}`x z{P$w$ThENACbORdMgIBXRSK1U)!n~PvVm~$jPa17hcM}Uq6_@K-sGEBl7jYXeUP9|_ z>kZC^w}@1Md{foQeL)m%{sNS)Cfm8~_bpO!urI+7DOQ-{{xXadPiv8UPh0BX(VoJ- zi2ubY(;T^vI$vushbO=h+!otfQ+F-kCA8L!X7xMv%#9cXCYumuqNMAsOP1hgwYz=1 z5WOMIm1K9GlcaJc3w5yXe{d-|ZwO?|#5r(lyKKPA2#4*VUMpp-T`a;4^xU^PnYI2_ z;(0#f?BiMa|9h4OkO=<4Uyx=BpObVm)C8S z8MyZkZoi6@62a3f!>@9fXBaA3yuq}@GG(!3mJ6Se4i1AA*tv2iV*4Z>*L`7}VEjPJ zZ#ectE9~Mc2PI24R-uNtmag=Z#T24R4IFR^dIBhoY-^vw+cB{E;NQ!zWaYH}Anqib zj4*s%pqShI9?2-@wgs`elLMJju!@{Wv~3k z;^MnG4OOzEm^x=Kk+i!bwy-jV79T81Uo{9p0ypo{wpP1b=EHkz3~Bg4dRIT_P;Jx1 zPN;WO+Z@N+T~a@~->jg#hR;h(IqP&J-hkm`=Hx3N>d~yksUmc?TcQT@NN)eTQgNdcmTO{(TDP!}ae zG$ixbaXQbo_J2HA37>oXLt^f%tHyK^>gA(cZYqUN4FS zFa%)lVCJ`SsCSbi1YRkS-a+!et0^bu0bt=-!Yj!H-x`qxUT&L5qJ?c~Z4PNl*c^IJYtSGt& zjfQ`)(=gSFVzK<`n#e46)t*~m`I)S(0G)H=*-G;IIgJtgP=a*bwEt(_ny>Xa4DT^x zvs!`~=cpHmUe{%=(#FWM33n|6=#j?uQ8yLrzuI15t!Q_KIDj#;!ENKNyEs&oX3>ZD z4da5am@!3_N}BA>$iOW;(L3+t-J>wL;i-E}w_9HuhG2X5qFCr9ATT#>oD8-h{wkmT z()yy)5?~BA0pXVUknHndR3_)mZSi_7RTZ+)a2}1;M=xgYvW<-oY=&7)kb2M#(Qfe`^}C z{dE==uyH1>xlG5hxg^N}? zYNbQOHukJlB&vE{+2ATUE?!>+tmSH-@B02O52glUevh7Jg+v)8;3Ximc)lR(^phbn z!``ST<+>5h$^8LQ+ns8YSzi8j(7ZJxm)ee`9k1za^I4N$DWJmm9>S)3%}+HLScRRI zCRbUM!50!4Ap-&49oJ`+CY?%7oC2+_v>$(;xPUY(m2D_b)cC6gjyL3Hgbz{-tp41L z=Mmxtvn=ADJLHm49KLc$=-k+3n)#aE?T{k+1a7o=yhrB``m2DQ^6eYO?+by#PCK&}rx!etvIi2xC`APosE_Nf zTX;QG9|$SFYJ7n`V8iY6H&D(&4k~?~zr5kDiPqP|qQAM<=MLHDD&d1)CV2?=;AJrG z0!sVRTJwkfG2{M_gQDNRjc--kb6ont;DG-8yrQ#zcXZOm`S}ea0u=v_c*MniiC`z! z>5dIB{T+{faO-jCk(zHkP*|QvPCDV52n)c;|H!aR;aQ{y_u~8Cy3I1(NBHUAvEWQC za6f-Ie>Qu51qRSEv)!uViL+;$8C&PW_q3B0I)R1`G+93qvQIZHQD}@tSa3<@=ki4L z=xfcO!%%&7PeGl#Vq2cz(ARPIIw$QiR?uc4|5-+9)z53NP_LcmdwVtJuCB*ZAyh2q zZ0L@y)2)$+(TE@%I9Pm|{?d+kFka)V9r*jr)Yo!j-j2H!a=E^=N&Yk|>+UQgZiFaN zxUR=NFZAR6IY1Ibh>qWe#8?4hGl(1^ACtT*dtih9f(imOSOQZzZBWU zaZy16TZrGzf`4~#y|$?=Ox*tHKbYnI^b^R!73u%E^A^LBKVm_0(e0sHB2~FBjr@Ih zh7{Hqy#L-&B+&6(L%yJMU_roP!(a8s0=f?b>H44xWS7j2oCuTsmy)aYuy`q)ruP9P zwizDz>nUyqiq2K%1k}v~_7=mlTAA-29-2Nr7*%i~*o&jDbLY@{MNAM^K_L5x+= zsjD&wk*Qjk@X4g-A$RMjcGhSsd}9%q~xhl1)7XS%Y3d&+K&6U2}3WHH@2 z0TbI;KmvB8rISH$E14R83uSsTqfU+WbQ2;XaSvG#`YG|KFVtc-{?}%ZfZG_Ry-NQm%8H(*IALX@TIADi_&Oo z1NLB_?Wb`2rbT-d%?Wr09bDUATk>#?p?2cHQyIs6xJO+4YxCz2klE@p^>6LP{&sZI zLJ^~g2KK$nYmHo|-p5crTz|-{yQU|u@V5r=Y@+pSquw|-0`eLS@+^wYYaNAP)7E={ zC$1~DCz$CDjZspU)5T?;{`+GrY@l!nCzAWx(o(<>c0Rnfz*8-mvHK5dbi=UFi~Vv$SAuDL zDD*AqoliJtoSk~U0-uHU2&lHr^G;(80tL?XAN{SK2q?=#6oW~LmtDy!o^PO6CZOf( z`b~E|!9E#*d>wdiQ6~0TJnp>dgKwxW0ehZ0sp8uLK)lEB_H~+)^F*6O+C7t`*n;&a zc7%YtT=w`6T{GQ6Wu=K8-rKv#Zn60X8qY)yS}2&-R?x3`L{5UdAia|LJYY+o|DP}p z-}+OkMMoJG3ftoAY_nb?jI!zCw%)Y6cV#-OW;p@ag8YnN}?Ov_O#J++LckZn-aMwYO2!t;=*q0X0@7e z3Ne0CAx}9lN0H8^uLV1T1f2-<;?b1I|6)`U`z@lE_|+N0knTHewaoZRtOw-4m5`Sj{imiD&}74;kYu~}FH$$g7d3oaoKyI%Dy_p)TYCbxQjSma1*_(SjZ-91o3=UH; zsjy1BS(I6;x{Y1o>hyyEP~GwYCX-D%bb7}mU0^5|?q#%3ipM)c7wT)<*hjWy zFpf}gnG`mbN9(CzF@|{_1VG3)%t*=>kV$N1dq5OAjeeUg$mjAdOt3By+Fz`5tf>JFm@>06yC9!Xc4mM|C=1sVp<4-P? z%#+USL_8R>b5HR-hhV=JZ$z-i_!M{tB#yn`#GTY-8l; zs!BTHgx5!}DJGy-c6(cbOnRfF3|=sQ>oJ5TXjbO1O0p9 zpBADHw$66{Q2fs@zomcct@t*$gT9TU-TP>UZhwo#0ZtCi#((Do-)adNyOQ}a9^J!6z-ZX0jstC`G`>&+(uh;pTUitm2N?PYooyWhq8yHPrhxs zZu4z3^;QiOfyOBXv}_VZBN)GY@)1Em6k$la5^p7S4)6wKEJ=oZuqIL99>6`xwnE${ z4;kHN+=3(%BrvE&IM!hoQ{iY=++OzFwkhc*im^D9xjGPh@~tdWfR5LwSA$g}3X7~Z zu0f_!ZYYFM5=Sw1W`xrizh~bnQ#Oy>%zE*an*=I+J;e`JS0^?aLKetx!@@9imNKZ5 z;;>J`=4#YUCfW;vQ@rRyx|5_~`Ev77uDn8*CdP4b$GHymt#f0HJQ$08c(=iTg112_sg*_4ye7~52G1ahl z#X)2*{!pjqfppkrs-{!}AI@B#M<=DPz@p5v%w%Udq_c^gkhBzr-)~}fv^nfoG8SaO znR#e9S*rC}tUEC!Ug^ANzjuQ& z9_xUGGb^kkHYF_#`@NRU!1eJA(1tuAud{1(6@d5F?eT>*!caQ$V*u1V! z{U50Pt7(3CJ^j>WrL|u4oXwLwRpHU_AjEo|dQqm_^jLjmTX{t1n5t&BTIhFV*u9ygoLW;dx%2rZnrkHhjp8sf?+a+@9hu{9_zj_e@H>rGl7Z6u?P|7G_AR} z9~P9W5}h42=30Wb5oNDj)FDxQAoTkY*{1#SIyXD42I+{~Qv1qS_{fngc+&g$W z$`Redg7JzN+pm3TdtgKX^o77@;sYq$&q#-c?sC`NG~cqm;@PS4wpTZ+6?J3Hc%D1C z(kz1mHbK>Iy5v18=1SR`u>>24EvZphn#L+#JY}D}Wvx)A{K`0HXqSGHm0gBYN;(-RWtI5OAM+DP*60+2(ndji?ko&iBAvl!EN`x*{ByE9O_s< zscLjM3xdlFIsbXmJYt8trSL3c=)*$FqiP#Zx|Zs?e~w#C$}@XBe^NPp>=0DPKs5Kv z)A}(9_ue^)Rz7}?)qHIHRoFWKL2kXhFq55R4ULOVM0QzJwvxIoxN#iIbG%uL->d zqLDOTZN-ygVO45m*%O9`CU*^X+Hb1(6FjGq*!1_qd`P^S528^@Xj+|6Za&YP zzT&)EKBYwFe6Bju?M0J>KK0s&`fR=YumgVgjs2`nIq-Ct7y)C+-^0y)z-75sdsGo+ zdP_ko-@q6`ssStiF}eSu>7qCUt3KuWb)j4n{q#~rvR=Q%V7Pl9W1X`$iuvTr>vZXf zUZnl_R;3W^V9}6vf(O}ct@G@9<&Pp70JT8Jy3imvM zy!SoxV%^NKJN*+`nT?@JCEu<+}X{W($r~nCG=76gi)8=$6X-p6i|&O-Ks^V$f{{+Zb|P@$Eyz8 zs=ai<4W6d(R(kgECh#)*m{*mt=$bcvw~e)BvaPk+(8#F^(52Ef(lKcC(bhtfD!WyBOA~@;&oFe;J=aCFZNxH~V1$62cdO;21_0BhO?t^Y+bU zZ~5=DY3LORdZ-yz3@L-e?2^$&Hg#$P#F13JbPCBsZpqySES4m+<)=0#hZ9P|E1kXH zK-xWZV%V};-A792_4BkQ>*`2M7TQspD_0L{@;l@s#?yjboSlep(h8TLRS5#CBGdxD z+^A{#kZlz{(TWI7NH< zF5kuoOjzYUySikJdSDn9qBXc^O~<(5k29Z-CJ+%HlLM23<_K15sm-w;Wc8q(nkiG` zIk|^^4YNr$B;ZqEu}}Hv!#=VFNsl(tnYu;BZeldnF5vv~0HsJCs>)odq^Zwn>-l{LUN?kI9# zK*Bx>P-$k^OqkYi z&H!bokGZqi#1?6C`W)|V7N;(Ifxg?bl}pDSEi@&j8b&$cc1 zsZUT*MddX0-YeGE_rh&Y7X6g(tY8%>W_{TVf*Qme+^ z3DoU9ysAGYb6khGHWE|VXHo1|drwtQS(g)Lti7XN)$jYBbQVkpOb>QhdR-<@?@p%^ zq$={sOQaf#S(AwDmAk2Cus5^g>Po9LY#engaYt(&`(qXpr|zd-%p>bJ6(dSi?q*on zX6wZxn%s&Es~oE=i!@E75jr;m(|ARiJF+vn8W|TMa9<#xdspusM(#cz4}CtZHoje| zv6^r7JQK;U@6~Wz#H`g{a`DBb<~!~O!}#87m@qjiMi2Kdsy-UEj- z_Bg(Er?vh>D~3EwddIZLIey>YWzMCf*-^KqCHh#WiRw&$BTixHzIl z&eb({4pIbWVvv`0(feDL7-0}b^hGBNNOeG-qd4W zRG;B|9x8&}n}E3_9ifabPxbINCN^Z0#Phsr9QM&CK@Dw3UG-TG>_3_)nUzVd6Gw_Uc|zL zaihYf9{RgeQ`r>HSI>Fl`QiDAaVwL=t~EV1yX7QavedMg7|N(Prv_3gn`j%A(v(K| zUs&p~sa90`_c@(B6rDRB)jB6)?nPr$z;Fsrj&M>X)lpHx~uNPshv0 z?e|>)?3+sLfN_rn_|MP>`l|?%UWTN2Cyx++Z5V7e8U@9-oBH0B#e|ZiHP`F+FpYM} zL(`n~bpUg|-VmLdYuN3qg-2OY5*T%{7P-Qw@4oIaVonl{1Y3$fDC{cCI-itq-JU;A z=s33=yu@sJ-J%_!<_r2&0W5=+QJX-C}mvek3vNlg<8Bt#^wv#N0o8E6AYnN!B zuIX%Cp59zKW>}1L*MnxUccv>FYv(#yRXwv0hV~L|DRb?FjfOJTwQsJBqAd zQ^eLJfPSqv0MBw9E!x#yO`F!ZzMd9zb+!|S#-_cerVTv}crV`|ejvXFqx1}e+SZVt@Am(Q zQnUr?OOb^;Fb(fdP3=$9H!roeGGVI_Nj6A{R*$(o<+{{zE+^hdJxo4~+`^lENi+3> zMm+tMm`$u3pi)A(oW9ArT@P#E&k(q9yw4xx?_87BR2Me`S)m{o$Fy2s^c)Av^(iW~ zDUz}~KubC4iT>-lNIkU*nr8fljLwlxaz&^l`(%do69^cR$df`i*%fKS1$chs({ML; zc(3dY(+WNJ3x?xzn`;M5yN2tyJNunoCjl2c#76HX-qbM0oxs8V!u?_Sag=ojC+TYD zaV%VO4>Xzm7IJq2Nn|if$9)3bs~=Gw550TxOIIKro^usatl;YAHM3v7UPF5)r6U^5 zT3(WH&A!e~u7JZhcCug0mOlPMAFhPf_dCClT+aQfuFIpqE=99;f1SKj{0?1X5fmnv z=Uq8yFMKbF?_K_`c1wO}hpx%}T1*)$y|=pG)@hnjya&srJ)_iX_Q1nc#ixT=bi`6~ z^=sugV2_B@<~uh;wJ!@Qpa4euDs{;VB`W(lat@byWF??w+bZpOqw#>a#g=K z2c>7SNp4C{5N!jQBnvp2W0d8)xQDJ7$;@P8t3;BNi+hSt7*D|W)yB5z<;*FyDa%Mo ziFu0c%EPrrUWeLNc&4{#v(xIt-8pXv59IHj8_f0U$PL6TLX^vLCEvktNq!UIBb=lg z1!?-OlgYY=cSWt6q9z$*j%wl^fI^4YG7kSn={{rjjJSeL^POhlUr??M$e#PoU7K(t z$m)~N^AKxX#pS}H`IDu_)(um)3r+$~d{p9eK*}5O0agydsW!TP!sdayRTv`4?|e`V zv^kO5^tMX3h6i_B_wv*z#xv*1pDXjjrq?+h;w0iL0qgbzyAyL+fDK*&jeGnH-|2Y6 zl`O}IT}c)3kvyug*O8^oj{m*W%E0Ni<~`#ClX=aRAD2WrnJz&)u}|TX#C+!P>;`E= z_h~3Ek`L#(=Z5uMB+e#85iDjau1ZxL>=-BdGw1{Kv-BKX58mib6*S!-RDJsLaJqg) zWy5@e8ZpLdhbLD>N9o}G_ShuM6OA{k32*Qz{tNyq^lRv=q(W}TgjtcayHcpc@&x|= zX|*8iMg)sMI?ZSd(p-|mHkEOFwcvbFOCh#0<+QLx$wQ-yze~*iEodkB3ueJxv@6pJ z*dlXBba@~NZdR|}?Wh6V%2$zBppeHsbQgTI(Jq5N?)d2{cb2%c!4XsHBXAe!=9uMC zT!W~pRXs2@&{=>-u$&Eg^^>~i?HTLc;}hL!&=$J_ACx#@F8Ku4K9@Ph zOr?Sb;qr%JoA~r-Scy}y4Dk%f=eas;w{I;HZ5rNuD>S^6?PaMsT7jpA1HgHzZkp^x zsY;E>B|9Z~2i*s-*S5*U5i^*znsuM+e3CWPd9c9yy{=;5Zr47+ZpfZfxltdA3Im^9 zIF)jJ^-2s-JeMtw-k3vcHVd+vUm`Sx$}Jw0UsJ7aWeRN-uvDg5cmMWC*2A;mbs_mA zAq)T#K|~hP2vyTOD#mRk7uG--%cyI}iJSeB({LJWQicX-0Zzx;f`u z>Q|QcxluB?+a`OU%TUY2ge3rnSd4FWFl-OxAqua{3vV3lT+}GVlln=KbvX>jE1Abc zb^Wxrhs^7#W!-L9KmE0eadS?F^@Vf!q(N0pi=t55tWkD7OBKS6y)yv;TZ!xV)&?tJE+ zf;8UM8G?nRN*q6V`h~kAum-6Vlr$SFSi&7=m2(fY9(ebx^tEN=bstGrsP&52v4%h; z@^Y*~E6YkDT_IiByQC#A@=LvKc97nv<*{Oc&?lT*f=sM|0!Rmy5k2}IkeMkD4&rUSdzdq#@ z`8pdwxJ;_K&S37}j(x^=91~(m56whn}ZBWHc z>t6r}bIj25&0BFqgpPjwbV?^4S7!1YrTu|ce4GhyO%Py8r^MmK93et){=x){<_ zB@&O-MXI~-tnUKBIL|cp6C4Z{M=qP15<2?Pts4Z&*6z0Z5_|bksgxMx=ZGgs@(@_95E7SU}zy^AeGdDtP*?xzeTCQ+}#;zzfP!ixF5okurW9B#DNhIIGp z0`DeL$2*FmYNH<&ENfwH%1CF4^mHPDLJW8CCNan%QLL zvm8K9eT2+bkUxGB9uLHbsAG2X_Q^GJjg{6wSA);{*=6S5w9NS_!fD3uNM zI>f-^k-E+7G`uIH{y`WsMDLTHo4mH82TuOVN8*{$3w;)E$6WdWo1R#nD#WVdtp^Q| zy6pUW1Kla?M0B+YZ+pgik_K)G#)^wx2gmDlA-wIGhXqqs@Tc+O7Cs|yX>U{1y3v;6 z!JJ1fUR!dEmHj?3iu%d)^nu)Y?__iKWs|M&69QG<%UYA9Z)9{};0V{$SNzdEKr>7t zMAU|bUhC*iout3Mgwp(qq>4x;Wp3c?332z0q7aV!Qt_<&0s7;W&+}#SeGz6|-#IO! zx;|-vG|X|q#kd?9hgBjSf;Hj|GJ_1=K#oM9?)b1Mga!@|U11bv=HmT#`#ib!RazET z!3G&g>Eqe61m2i>O5 zIQ3>Dt=PsFK}X5zR&SL|+zKyUYY#_>hU*$16^Z&N_T~5iVMbDB2{*2|O}FTAs2r|W zCsTPdsjvazy8=v+Rx*kXvIwZ1k}!^BQqsxb?$cL1`sL((Qa}qH*nl4IF9ijW-T-eM z+}E0m(OgN(1V9D$)^*KpU4y3gj0yzA)QS$;*>oLi!|16@sV4jxJIFD&C+F(QipHX+ zg$6U;MHW5lP!u!pR9(=2G9KJ2)f9H$06i zwM^D=+sucaqoaG>^bGJ-`M)%FBPz730`HC=zFIp;E5^iFcyMD zTJ9oO{L(Ay8%l9azCcxxNq!*HqSpq}DtfprYesTVyzMh~zvkjbsa-zv- zla=9#2&Lv%X!G$SIt&z@@pm=aB(MPfAHZcl7rxZ_bEX3vvZ-q@AWXyWJje{M!Ge7$ z5ZVh9$N2MpJd2lX(MAijINmf_q+Br_gJdBT!A${2izTF=OjvEZv;JTlT%%VlY#|*F z8~X8G#H)XK`|w7b6G0|i=z3%hTfVhMvVxrTuJ2r2hvU~8y<)ZcAjPf9E{F=$Mr`_k zG{iFS0tg3?0{)oH19~iw_yp{Jm0B7ap;b5E{Xc5bzGbHblTUI`I&iqg~Sxj~%0 zc3=V9F90k$V+aM4Sm$qh?OBwQ#DVSf@#*?&ev01fgkZ+kBy!#3%I-faf(1iB1j71V@3^UHA7ktS^s;!8U4IJM` z4pYDw0E<&0Y*VIxb=+5HIJ;1#csy6+@^KpWkZ@n6b}5u6Z(@3iqAXuJle!POW+0M3 zi(4e$PRuQ8>-&;ixFM}lzg)_qaXobZ61{2u`0#R^32ns!ZP}N!il2#1wbhip+HIZ{ zOhak|XEdMFfogm7${)`^FxP|gCCo)XEASxWBP#-6LXACgrgdTi@I6A#S?}?)h+bfQ zWUU%p1F)VxlfS5hzT)>IwLZyR$er;*t*EAr@^Si+l@oX&%K)nE; zW>K7VlF@>k0^>opk?!~`FAg_1{{%b=(x*sL#kV6v$K^AuWGj)7(#F|04U~l4g*|}{ z^uqgq(0=goy`9iI16{K@(`gaZf$)ip%06Ek&A%J;%%HP>;aZJA`=0Q*`$*ucnG}+h zsuao*E4@TKrbO%Go$Z~>fbguTL5J4V$sQD{`{bx?YywF3 zH3QF{=VJmL|0Ki+KMXF=xA;k@#@7re8#ovofcZ%X6ds0;320mofcfQ3*ul5=X9E|2 z_`R{hbG&U$zGR@;pMn_x1D}L2;EnlWf#ppA17F^RLwt8%&VbiJf0+V2|0EgVdES$s zzJh*)fQJQOgZ~2llLTF-yD>!(13Y}$1I>mD<^dgt5W<7^;=95K=6M%xmT=|?PFDaq zeEcT(1)Bj71jPQK51$Vf<2?(qC1$bL^^2Ezh4zU%>Ick(#_jROloz~g{tchW7rwYXcw+J1Gn zyt^(P|Jod1VJHaG7T?Blhsj}ec33#MHao%MuPexk{$x>1cV_{GiM@&8N$e&~wNoZm z;nD#n1)=>>19kyq0gMA^B7BK|tT*!mULIWhWZnJ(s&#@3pQ4Mo7pAOgL5b#+_5rZ+ zeBMpbl4@G7bs%1VWfo_+6ZM2G-w&a0Dj1CvxIHcUck}Xhfo^J}d$(SU;W*emu%8T@ z1FJX#t1K9K!}{ZhJh$wxwcQSRB3~o|ohP@WNb( zR14z-S_q;9O971H+aj_|cV#;TQ4qKUK>>cx&qEK^*tMF-$tdLx*HC4xT`|{3wL^{z zvb3URkD>Ot)RklIvT6ft#e#8Bx|@K)U{rtC#qTuKEh_UqiO7RvXBoPla0kYpxjS?e zh?7?3DZXK$XXl$L>exIv5A-3br^yf}+OkPki(rR9)kfwX_a`KjEN3#yT*5VBawUC- ze7+%0Tr0aFPL(Sb`KmeBe1#DFbPz~tdT>soL!j#CpJJ&~3R+pNug-z_TPb^dYdpnC4?!okaqo2_D4p)IL=*r*&kGQ?40CWTRPry8F}-hzaV}x~H(g+(g&q z+{341B85u*TqP-AJXkoXErQ`Fe$>meVw6#eU+`cA!=Ewsx?5mu5bPYGR<}cZZm8v$ zSr0aay=>Qw_}OV0B%{J{xOl3=(;#a9%Dt>$b(qUZ5Xb3tMV`i62Lr4@WP?F46^m3XCe<<{s zX%W$w*8ON7?N}fM&1(SKjq1&4+m^$H_#K4n^7Q z06ma!+6&W$`t>umE)FGg`lzS#>>9zjxB9#?2Sxw677ADVAuXB@xFT@jny`4eX)K_o z$V{<6KQuBsGCC4U`DuEAMajJ(q=ZSONjf_&3#9V9tO~m~mDh1io+v(b$n31yE zbIrJYsy{_NYUE)GBD=|KmLEymI%ve7KYN*fHRXSyjvKaUoa|qPiom6>k4$aOUl{dCtDZ}5eI z2W?b|NU}Cpv@=FE+1~+egaV-=nF6bV!_f4l8``&ex!h%uyMA>o;F8PiqI!xu>06l_^4pkN z83X8kH{*9Se5Z=C)BRzNzU%Owr+#D1{w^2Pw-YlqH#K`>lfHHHTcqe@Y^?%d`_ukC zBldUZUAecT%b4Mft@%#j{7+IR>wmTSPnXUHPQQ7qg5pB&oxD4R;dhCEzN7KG-8^0A&1c3}9pOclq0cR@TAD*umV!6hJ0!^k%5J zliRDd4*Z@gbNW~M)F|JuK|)7Jh6 zA@;u?FaPPecbEMM$^XJ-!ZvT5*>^9{{_O>7vESYOiNBHlTO8lac6>9A;Z6BBd;d^{ zm28!5%-`v@Z{j~3<~Jw(O-p{W=D&RI{ENfMl zVBgsqv|J8N(^l+yZ#-mqU^wzP8<#aboHf8n2t{cJ9Ce|5Y+7Yp{qRb7Rz*3R-i+}? z&-`;0Y}N5Pj8ge+;Tf!_MGKVKVpi6@wrkuw-Y>gYtTQYpYO7d8P#9~Y(fpG_J;A52 zkjVv#PRT9~-zT9nhSJ@ijCSUhuD00lB5rQbHO3^;;}YTr8$swJ<`5>B^Y^VH6SL?I z!S#}5FmpZtyu3RL3i*C^VfHgM_w=1MAX}>kQQ-!s$60=HH}D~g0Wkvq2=wUd@}-IT zBx)!9se+CQnj95}>be>GPt{2NIR=|dE?88z`- zZO@U82kvGCX?tsR?fKMH-<6ie9RclivcICJq9Nn{oE6mq_eu?RDbqtoS6^x}3o8Q$ z7IctdjmYtHnD8nYy@v6rh3=S+U_!SeNjB-Q#EzU={(`I?9SWu*t){B)yuODrBd@Ej z$1%*-*K$_eO6h0WDOseeM=d%Q9r%ic@>R%ZGUM{_4kg~d&aw3HO870mAg9f!Zi_emo8Pmzh$*tJoW z2{=IGXxLpcRI`9^F8fAy=Ba3XFLj;QmJ-jQ&dDuI5n0;qPA)9g<61>lK8)cCMPI

13EX@peP>5C%t;lyGvg5Ht zj(L!A3EFYr-n4x0vcoKIAZL}g1wX<)1wP&|)~p8xU%Wji112VErywC%hy_^s`c#g5 z>6j8!qV75FD&e+PW>s0P7fRvrt2enzaY2+Zrn^2y)s3J)VWX8l3 z_q$glj+l|Hnz{S6X*9+v3P#?YI@Y$IX0oWm4cO^Y%^N|54nfX-^+kr|(9erc8*x7k z=~bt&P)PFQf2qa=O(gP0+lrPx^r%{P1&-Dyps8gmn6ui5y2sbPdQ>*@m?cvalyG}> zuC@yokhku#0MEG<9Qtju9qAYk(fx)#aXi}eWd=^N+Dm{%viX5P&cds@LU4L>if~lJ z4tSshm4u2UkQo>#^6r>`sn-LM)9Z?KvnZ6iJZ~WX0G5H&f&%A(!0Ktj;Z%@;0~3v` z*o5@y^M6WTIb^p|rFO3NB}u@`0fE+lEL+49IT|S)3YAU7a#SvP!+mKsNfNtC4iQ7Y z%*TuqxDNjSN+bbfc0f0|W6FHaq<}w%>ru@Dv>|o`K*dm%Tq(fHo;&847BeD6A(lDh zc3+s5$C?86`F-iIt-2ME@bQkMt^ntb#J3)m8_ftpKmqfP8Fy#%7#vimbf6@0zsLY$ zN%rlLI<=CvHcQN^f zOCA6xD@!zS3HJ>ArHKPz^7?X5r644RB%MpNCgl~gjf$a1zE+@iiP|`%RhWa3w_=1I z{BuZ#HHHx@tli5(0-|;6(xq89U1B+>cU0jbPu(!>k_|FJ4ZXx@M8vqy%>#{t>H`6q zupV}1SmyHx0dS~Fp8cAe5q6YDSnk0F-2vKqcgNPN%^1N(+yG<20}JiS;Lrt>j&C=7 z(UXDb+z&tspXW(AO~F}JAstJwUBCG5KMd0$@)21UWFTM%+Kc&MgGjEjNBB}68CZP2N6)o?9kk&x2vA)j z#ee_>aH@TY#%UPk^CK4v$nwYmd-8avM=Yj1M~rnPaz{?bamoBB0ycEYktBQ0eqf*A z)b}z;8=a99UUF364#&`*XqG&>1qaMMHy^w`@}{fCOH1Y$)s+tn8A7Q)!ZN*hqz9Qp z3wdN7y=j*g(5M9!jHiw%!s*Hqg9E-Pwwi-m&H|`Afg6o(W>@l@0vCro53OIfLanof zeZMmv=Bb;5_J9Z@p1$>?9P2DuWd)Fe53K-YO&hDb%G=4TtCqJaQb>Y;bC4@%P;#Tp zZ{j^MS(7AkA>5$nngFFFTjLC;F%iJ;QtiSaP^vl{RPhMp1%B?)Ro*|9lrY`cW`F{| ze1{|eC_u3xRpgP^H2(l7eVuZ4_UISoOcpq*mVP9?oszKokyIuJN?{p)O1LmVBy^@B4*vim;~uqq z#&#CoH{PnfNyU5Lgwi8tYvjk}vMTQPHR0BKW1StkD+6BV;X9aylCq9oKo8JUgVc(v zL(+*6+wR^$z$5akhRoM;%Z;pK7|(us({xEp+x+QwE-)0+FJ?$}XyRf-YM40n>suq7 zjS($jwMj@Tyrw?2B+InRw176`1M5*;g`VCbG3LbJ=9zmUn1~3?DjoZWL+wlmQ4(ba zKzH%sii^yF#W;q{0S+L)$+)A-71%e(kS3c?bGbYd-zW<&rut6ajA1Y!rw@1b8QN9;X#{2!OR$ zQW?PLPZgIFqp>peTx5ECR)xL9axrAURBk}%1p*fEe(Fy#Q_N$zpB)FaMQ<@xQcgh! zCY^UOPbp#uN9YHoOK%94-x&c{fyOwXWEYW_jwKEAGiM%^W(XCP6pxuk8{U>d8m@M3 zlr9IiG|8foq*Q6`$(5D`6CCDo@;)fxd}wjaTshC`AtBU(aD@=0G>xmni(L4lX^R6+Mf4pp_MJh)AxABD7SIy zjOh`g;Z(P#6qQR#M#^O`f=7 zUDJei!NDLNxb65?MFzE}T$M38$1AV|NJie6>_vG~JlGqJXjw!IsLTdB^Iep2lZ&%C zs^H-*Pg%EQxhyTD-6F$thVx(kf>0gos2m+BsaZD3~bI)DY*pnX3U&pC+4Unihn4? z%CnNnzET#z_c>EQ4#mopM3*iHF@0r4~}j=0<-!t9N9`F~TidsAa~4f5W_ zkfUhmGEb)QPZBuV49KodK!r&RdVI%q0iB9Sq(~LMWpKbQ2YyWikG7KS;a6>vDd<3L z!=C+UUF~l#nP`rumJFl?$MJo`&$SW8=^Cp*y)%#t7USJ$Sz_|{6ie!! zKR2yacw={5<$38+J=s#B2KMR)twz^>=%z`d0%kmc+P5TG{)l=Z6M zi5Mt5bHzgrQ{-mg_M%~ey9Ykq=mF}UU&`c@oa9x9*ujG13_2RDvTOwko!!9{+k(M2 zASdvk4V!cJctm>u1v$W}?7X8HWC{i`#bzbklUo#!g=}CPQX@URy6}DTKpVPDsAduN zCbp)x4hSQ!O69cu;g&?{T}*TCiCY~84FF?Z!S-B$G6!1oABlS0v1wDoZ6Q@WFg5EM zghlxWgI*o+mPNOYI09kjA&DM>kRC`$B$9GZS|}XS;+VwEEfiprfj|nXSm0I2Asy;C zfJOJK5gLZg5+95Tf?^0D)RIh8V2Yt#S2S72uBoB(LfzHh3=L}n$6qh`^oR^T{VTw_OornV00Dc@W^77T}cc%;<}A9 zSxbV8J7Qem6I^wvJKY_0YF$~Kwf&{0w-y^QPI@1Dz`5}DuK~nytkI7BYW=Op$%1(v zwY{e5W-KJ%>dkVgxaf5p4BAxgK)cH0kUI+WdwJIX0718I0aOF0rDJ%Fqmo_G3=O?~ z>V}nm*4BnLKPVgu9NShOFH-%&c~W3h4k=@qu46JBW}x#AmUGlrVPj`U3lvh4Kse4# zdDZoz-d;^|q>}PBexTP&{h}5pj4=d)4P{v`mKYAZxXpA%T&qHP6WpZ+mwC7WY-Am{ zu7gj|E?PvFQz;xN$c$H6ZF>d2oQ5?8%IBwg!qo4kmv@-oDdc0dCpPyIRufy*K!`zZ zHmZzuu3AQU8!mEc<-@BS07*4YUyyKcYNCORaajnbO?{oP4|vE6&v6z&!I_q2V|T z@x}lOnB?Z19;S7jk?1-Fv5w#EGJL^@0GK8y}4VG$6X1#?ISKxW;!5ndw>vKoTWFbGJC@&1YCeAQFb#<@7oF*0fPCl7=~U zme0;WAW#EglHLeHNe=sy^KLE2<5LNXJ37V{2qm%Jvq~SemJhx9dJ54IKb#XMo}QEe zrDm}ht=ZUepD;hdDnTlTks-q(l5#yeRV1;JKtXe~j(DkBNUW`dYE?Z7JoCnPul=%iBV|x2Bpeg!w0Y5~~CJQQrxntNnM zd4hR^kW}FQBCxM6QraR($RQbrk z=~t1IDdZ?_#-9zmaxe)$9WrVxUp0*RrfA^`Hn9Hod8z_ysTitc^WL^)vOj2HETT}k zA(UdFmPlfZgxnl=$6A((jEw&PvtDF;=n40yN|!OhOoMU$@I5L)cNE$fUpz^~u4?La+(ydO3BvQz#uDfI;5(o{(I)U$8UW;=*ype(CDwEX@HQ8Is zJdi50O7fLd3dG^J9{&J0UJZM+D*H&DC3<|4u`KXJv#~bIy++m>Q*gioj2z;fD2UAd zZr#|}pfJH)j26rF;-zCLS76Q%j4Y#bbGxQ->HO)EvyIAPb~wq1ob5YF+;TllbeNM{ z%1+!#AVyw3W*dpm7|#Nnzj{*^#7LP@vz5m^KJPs!kcB9+#+V}w(6obr#~fmr8%G=> zRgrh^B!wW1Z6}YLlblcl$sBG7Xv4E~A1^sQM;WMMiAV-h>2(bEE^-aJv-07!5np(1UPEs>O!8r8OOwg`aSIPOBw1EX@_ z!Q_~UIA|0w1e5Eu_2Q7W?a0X!1>N$NTp`XglA|=mNJpB2<|uw(zFEUMkM@Wl)Tpk5 zV$8D@Kz1Usj=k_mpa;nDBzt3DEDiutt)IbIQl{jNFv`fGazSSR9>3l^(_{|CciXYT zfDa@#dFWD_=!gOsl|qrn7*mX7g1q&h2_IyG7Z4H$JmrZVzcN&FM{OOfk}9E91dXT$ zcXLr?^9GAgUB#7c93PTh;_Ivmx5B%WX~%%%C;pHtjnsTMie7s`;y-y$MZ zeofYvW|d|sD>+gDB;*6vI0a5SQUGZrD#6rXbp=}=T>8{48oX?-WOi&1n}WmWR+!&p zXkW__ZXTNmU#}EAwv1RT#0|xApl>cM6$HfZrn)pH7Lw@jg(@d znFu09zz2a^kVSOhyna#S9z{8y6MWsVP^2F@cj#%)7zi8^$2}>5W($NHoPbyzx$RS} z-oOI)toyXv7zzrjb5X}PAY>9fC>4zv2b{%1^&M(2E_-zfA0eqBl0+=Tj2ebnLxQZt zlRy<`+L9=2iga=k;GFT&r!mKI2;)BF()mcSjk)8s04pz?d0epOv}~a+RhR+B2*p#k z*?{YieGN{xE+op}XRQEhM{RCckOMH}id)kNv}V`{JXHkBOr#UY=ACzTiSja>NN_&1 z0js83uEjMiN*?$2_Kbw+3{yr zeM?u48Bna2`BG1O*T3o)5kkaBahmWSiyvcsY(1g*$UEvrjs($9>L~!?s03P2aA?OA zpkUG(9;DRK=AvFIK_)6%D2{m#O0S-2@)FIOZCW9P6j6!<6ttM7pkYNA%>#-6Q%O$6 zAsCw%hrS$@$Pv|!-$$i)#?GLx~G5Ru8nGs-)@P)%sZZzCU>NEIuhLNkil zXh${5aa-(N(hQoZaUhY(4h2bhcfaL`=9_O05W97z2&fQej+FhB;U028BZf9og5v+?P7b^QaKsOJ+nioAu^PXNXuaV z0D7rvaY(a(j!OVC0LLD+rF(E^yo%dqSqTeJT^If0zsmT*J;161I>P$mH)H@f4S>M% zD`q)mmD_h2>PJJ0=3$O#;0JEjTpm07*FmRwjUvcC;}4xrudM)E(@eK^@=E6iByAml ztgTiAI-)!SstC?|kSl)G&8)HrQFdGqy!NOyYc**~E>+3MBeei!LyLBn2ZtrO3@TkX z#Qti{xpFWG{u4;kO%~rcF7zA{I+~qgoufOM2JfBC0L!bnB#9##S#qGCTC%N~0(`z$ zJ5Sc2vcy6#@&|92A*jJvqdSgp*Z>*?Xfn6XPz3{keQI$liB;qy3(AEZ@lZ!7Xo!^# zeRX1(q<2+`pM#ZMVUAXE+Exoo?TqZ)3f_j>@08_k7n;))o+JF$l zv7?lI!Vd3lYR*iGt}(E2QF*vuE1kJLM`}YUj@6M*%i5*vQrz-?6GH9cJI#O(gr26cr}Nq-o&M6jaC^yx`&MW*Mn2yZ1$ulIp;Mt)MrN7X(QY%#G5uSEP2QA3TV|n&dnKcBn|T8p{ChH(%HGV3bLUfXM>;q zxU4Iv)=S1^IT`ioNm{qk2oc!y9mf6%+)DXiAC~c;d%JY{!Yc3@|RlKXZIYGln zqpJIgo>raQ2*5FZl?9Sq+{+^n0a2ba(9!0lR)T8Kn# ze7sUoy9XqSOJq^9(X>Yy!RDngm{>G21L}liepRpJyn&HPrE)}>W08c>Cr-8Bxozw= z%2y0W8?n&TGSU)gqn;;L;jxuIzSTv-tb}6>gCy0fGV0r88ShivS|iEkqx9fou7AR& z#a`MI=$fU>4m_ET-s{vF?zG)bIU<22DhZKJ)&mQ)6P}$jURu#hZs5c=o~E{Ry=3JB z%0UO8TI$2%ohN2CF@?mT@tuAT-49pUgt%v6#T4p@?Ma(Wu}X;qCyba^!?N}JT0-c^$J)L`Dm&A}NRh^p#IU*k6kWsWNnW(%m;k}95I#WpzCcFebBv6hC@3XAHg=fz zW02tI>ByyN*t<63qXz&SkNpp=0LMT$zbbVFZlw%KBr*K}-_n&@;S+n3_!&73h4%y# zKo5n?k!@ilhZrhDAJ3K_g)l`SI5CA#2UR@toMf#=ZbBSO845mQv^O64E6-X4_VTms zo?vmyZUZ>>z@SW%av_CGOr}CIftNnK{GyMxd8L7y%uMjmHUb{|kEi%kgUDS<-!l*i z18@t|p*!e>r1DCMKyWjqZM)9}j5@%dqe5ypkTbtfI3a;QT;~F#Wo?@tCX)@4%5o5oL5fLZUC+MRw&Qsr3uDo; z7xbW`$CVM3nEgA}e3s214D8rb*w&|%%NnrH-QZM~qo0`x+%eL%AjPu8leA=U+ce42 zIHr+Zuy`Q$t&6KD;~CqqvCe9;G)6$Ejk$ZC^uWrMWS%msl1Di7sM6bLJbd1j(Y35` zBFrBw!z6lDD}@03xCgPIMpD4xMstFBtBq|OVK@!Ab)b?sVT02&ti*M|P$`J5DtS+p zWADvJ1jo!Ee8c%vm(oM!#;U`4JweWCi(tx|(n1)DLlq<+Ybm?st1FG(qNuDgLni0> zf$l|FYo9JeRgWv&&<3h0B}f^^Q&4IO8hFC--xY4bnoNQ=#(2#|aSE;UC{9a#+)xI_ znxI>##~teHG6GTY$m>zT6I#S~sUV84brERGAv_Gw2QlM`{?DaNHWj?CMSS1lO-uVr zRFZwWc*hm*zY!Ku;hWY_%)1XFzHMWdIqRB3Ler3NNu(g-H7sgbI206-2^git7#JhC zpdM%o3Ms^KP5vxW6WG!i)6Fo9REC;qq8QpUMHIkVTvAho03{fuG?W0MgFv8)08aEC zDDO(t0F=Ecw5EU;aUCcw$EnRWiU3ZP(fB`I8db|ha8KD~``_%JTIXrXxd%N3OpsCes`poL?9T5ox+q>rHFdQ}HLGG2#~=go z2B_)QV$$Hs0AdbC?t-)SR%Y?4nlJc&M@VKj*JJmDe2RNj`_+bNkwQ7i!N);ROR21C zT3i88{{U-S%B}Nc_Sz}9k^qmD7ulg($`xLFvn9CCdHI_6^NS};MzN|RY{ zEWT`FMjKpZ91M@4q9~T`S(53<9#?-;S<~H0cL&HdWuY6sOeCkOAG+U4TXRWVSA4M=HU}MrQFX>zq^p&{$6V5_OR%0urYRttP*~U_4ESpA zJSzku6PEeCD}_U`_jazc!t(|~#Ng)~)zjR{s?hZf3s8d2K_TUUz`*HU8r_Sco>Gw- z{KTI1!|6dh*tZZv92)d13s}(`cNt&@r%LNb8#z5mL|3z1Ma!hvLH^0AH+O7rl`iAs z%OMyJrz17cYS2b6q?HHpjHv7@J6c$0jnWPXZ<9T7R3e1ZZVQOp5^yovuIa@VL!Ltp zezigYCzTM&le~g6&ML%3!ICIfa|4z+pbgD{H=7_L5DDY87tiL}tg&*%#t%Yjh&Ld4 z2j&EDDrw+#jt$IknacVa1ZC=wPbH!|DN-M;H%^{I3oDE~gJ?B-%8=c(Zc8tf$EI^t z1)IejC|IygGCO+EGFxY8=LkmSSIY5P5!-yGPy*$%f@>)ijl`KGp+7Iut_5~w8;M>q z&q@SbNToZmfWziuPf<>UwZ-1p#sT#Hbdk-vK$4&zCQc7gPHjrg36(|}y8NAJ1E92K znpk|7!BRnX98#=m?dCIvkg-)`*mG4htJtQH1kM{c&0CpPJ9Zd6WQt&0La3;7mFPLB zhGkvNj49yMaF8Gb3mBq z;~!4-ucM@}$QoIPn;FX~A9+tXsVSWk+eZYB&=M8;0(}QciWy?^omiGB_mJ>^3b!*T zwi2v>D!wG+I0vEnR5u$Xh@^<3MPsqY8;2Cx2&om+(cA=`!`hbp+}-);4PBD@Cvz11 zG0N{=p@&TS8pWN;D_h7xjE$g<+4ZV+?$`oci9x|Wpj0+eiGE8@Jndt(AAukrb*dYf z=dw_<c3*rZ3z0>v6d z95@7+Rf%TLp)1F&cB7POGenXD3&kT2Ve>xu^#^7JS(G4|)S);{tpcDdyn5~TsNPr% zWp}h;M==Q&Mn9P1iOU$9GRR^rf#rnr0LK|2r~wve;#i{HEIUUF^5lCl$fqc27#;4& zzk4A3rw5VqA6j>xD=(IWG7*e9BRS)e81qWyqzZhrz}yS2?Vxn@=cNE4Nkn7_+E)Pa z<&(RPna2Z~jIO||B0kj{Lo)RC8D41`3sAhnoB$XsV0!XFPMlNAFO<6_D}l>r2Z6@W z2*m&_b1LB#`2Y|}UI*YsH|-myVdjKvj!S3s5_F}C;&+YP?K|*x>;Rv~@6!3awqlr) zc+6)6W7{+VG>I&Q!nd4ufw2oH$vpGTM7FaWE?hSmh?gLG^NwlFZ3MBhB1tOm!y*6x z$8t*cq_PDm{UAz#Nc)xfZf)TOJ^=Z zG?)W8Qb})4cABt~PTO#jV1E(G{&}bu$`Ua!HvkQ!cI(uw06o@K0g5?&zv~L;pG<9} zg@9gBk+X%!04{p*k&{ScUpSc|{qBD9ftO!kag2J<)6Paiwg;di9>Z%KnnfO644@zc zaqm)@N-)}o@T$AfWcm4DK~qmKjk2KaBLcS|mR3oW8JJ_-)iM)!+D5@h$deMqcKuCJ zmP5N>I8RChPdgb#S-w$O_c6A><%R+2Q#d&bxCQ#tCW=NsE;eJD0BabUEEW0tnu>H; zB2^jN(xF*|QiUM19yk?X%F3XSLem1gdTM!r_JE^+2&KG{;$a+nsz#no-0%ekM-j+X zcRAycNC=uxVhY(A?^o;+At#pT4&j{DOL$s%)JitCb5@Kjw*#AqSStM>;oy^|!0omFj+(x_c(-oDh;>-}72I8l& zxC;saoK-z}(aIw>6w+ciPZi5I_BG59$OiOa0q3=R-83wcuS^Rq0aCyfR zmB;ER0Va{Am85^X$0nL74_wij0hVm018)@ReU4(dX9{&r+>Tkkpzq z?zM}%wjOiwoZwa6FHj}6xxlV}y*(JI$fV+$8k0Q$PQ?Sq^Jg1<$f#Hxx)6Ms31uYm zwTY$bW;oD0^kBo%)a@qc}C3MGPvtlH>a0z)qd+$wgYw#T7*apU=O^s zEBWz|cq6?-DKW%>kmu-qDzvGW1aK;8+bPFdq|&m@u=FD|iyb3`$m(jcsq5aRez`Sn z7}TI+(t)X1ryaXD`oo2;!@>58Cgs>ljx$`$@+ypUuFv7_sSI(+2b5%df=KOEPvRo0 z_fEpr$ip;22mb(CyZk4S23v&$o;f2G&RNM0RhU+hy;q1vKKTSM(z?;e%xz7xs($H; zjj9}IA(!;*^IfE~wbp&6H!vfJDT z4}b?4Jw;ivD3dGhZA^JH$)r5t3a}+{&JRq`BK^JHyfH)!jAv}_`FN;q z8RC#&a0fW_teG77Q5iY{Kp=lQvmBGopEDC0^!LpJC%Kgjt1KDv_Vhlr6jM$H_|TOH z^QmCj7B+y$M%*68r;beKGE`%tiU2&|Z6si)&FO>*hffL)^HM6IfyeP*Ns}=e?#;=mH5I$bjhvcoog7M0Zgk?`ceXCa9YiLt) zs16Tq)WFnI5u9UiCj;qIiBu^CK;p7tm6}EXcQ`Fe`O z@x!bd42=24@tjudQL?BF!&g7?94YY5SQ4gW4hN=dD&GS&qw%B4?%|Gk)>sK~$ta^F zRFRa9NXpyqw11GeKXChsg5gKoVv5~K*^b0k-eBzW504mPmB$D#H5*ND$y z8pc@u#C)dM@voL~+~nZmv-Jyz<9kU8qZuOtL_IfmIi}dY`>5{JDU1)D4*-u!&DAI0 zAyoeWQdxv;kGe)Uq3jVu;DKVeStfRt*kl$?N}e(KS50aL*vyw3ZQ~_ZXG}0tlU#<0 z{;++Zjp}!W2d^AgM<(g5qn0?g$e9vCP6LCCXY#1IOuEv|XEI@4SQ)kkC+0#r;Qlp@ za`20*nC@B3OaWCKlwf*_w`-}a_EQUZWR6%HEpI90fz*nc=E^(WHE(>qp;vHm+-H?P zr9*enrJ<8-7V1{E45nD{K_dt8uBk1=cFA)o-5h7jlmW_j&(feeNxK%;b`G(*0ay`` z!lbZy-KVve-|cAdDT|%ADZ-l|pUN!DLwe^F^{p#yIw^E{(sFj(L`vtXGM+*GD7D!)NWj*k`!vaUA`=UIvT@U% z4J6uIGDPu^>gq!6J@JuU5AO9XG{oo#e2@>b3|4ag0Hcd|lkX|qqt|J{q~bL)n?p0G zMSm^vy)rt3!4(X559LX1b@Q?|=$p6)wP{L9#LFPsPGpUT*O62#?IgXKNI!gFG3XC$ z)V0{8^wg3VmR8vzWI4zy*y9yaS^mRtZSDgu;3gq=Tlr)v*FD7&y1 z5y=~__|HDz`qJeNVw4XIlO6FQvk#jbZuhMeir*-bGj8at-^#KEoc2&Q;%0;&l#}z1 z@v8!G@Txb?qz$C?2A11{)X|#QBCk14xTx06n{kaYqmn?Y5Xp;mSphB6C(^D2jRbC? z)=tcakHl3drcX0QKaqp;j2}v|VK9blx|4&DM^RQk*PLz#9f+u=xAN2;2RNs0S9CVi zm6_aW8jY>hyLoe%8B}FLk1(Ekaw|ePFxw5l2&ZVr`ruAF{NBR6=Eayy8WO>WLMyq_ zZyD4JhASfwM2q*c{?X4$^|08Ue|4T_BM-@{FT`*pXy!Xz^X4HYPCb5Vn8zvswZb!; zD?+3f{{VZfMu-f77%YD&B~b6)PpR8YduVOh2bCN$4q7vY$n1XYb{wRu5%RpbqGrKW zF@)W>jFX+eN`RQugEFX>0AfW|9r|Y!@ej(X84-6eOnzMQDpngvj7Y5Pz;wpZk;wU| z0yxZ0sTp&p`O{H3hi!O z50rt3haRD^PLbQo0cT|aRR9dSLHn)8=3ZCv#ViG*bGgi8uyUlHeX)T^_Y9zKnE?s+ zhVGy2o!w{w%PqSDvPWF?3ny{hklYVycn)HWuIUtv?_V0nyq zKc7C-moPk`wj;LS5FMj)erv#>4=hN5eg;Nq%O)i#0A2(lzQ5dw?=&j-o&nfj-qAl7y91!RTlL^vse%9apHx z#YGaz*l<(<>%|e7P~bL4Od64uoqY$^fE>G+vn-0mM<5*Htm%NMk>ukCgHS|>j;vU5 z_o~R5Sw2zn6F?VS7m0!C+N04-fdaq`N4)67C3h6vshcPc-Tm3DDQl z-Y~ScxYI6euA}9Ykix!dmN=4W69jEy1xZoZg4$CY%H6ZgYHCWXV|4B-9N=UQnX8L2 zl~fbLj8bcQkz))yf4ImmR)P|Cn4x>Fs ztstX3&>%chb4qC_7*o{zu02IJ6c4?{04G{pQH)VQ0Tcm6IDOgxKq$=s;L@4^k_NzR z^sTE6NTG>1*r0+>rD61s1Dy4zBM~3sYGoUZI~|l4(Xb@29@QY6V=pzV)=rtCnbhw&_U%Z(6Q1>z2B55pz1NJ@=&lur8Rxxb;%KFEaGR8IQmgrKoc9D% zVQ}k_#W|BL?Nedgqd0jbC$)8+0~0|!-d+aqImb%GSk&+bHPGl1d0!|P&m2>N)N_^N zW6*6M=i2Yr71Y6GRpWeQisbAqB$V2Qa2`hdKo#lHK@pWdxK|&gbt9FWSBNZJYGK!e z^0yDDtcymTI9!prH)OH(uD4u}eX%26Ln#N?RuqV^O2dLP)3s2H*`)Kb3}vQXLsKk} zg)*)~DZ>w1z8Mx!VqSCJr~5o{m67lgW;g))b)X0>ohG`3fHn|!DeXF|2 z53NY>q?Zy#gsf|fd(bl6>bYhM^0sl0T79xCk%uS)f%6(j?at%}qJx3!TK4v7HLEOq z5_zBsazMmGBoeAJwg5cj)6iV58d8CYT&&R*iZR3WZq&e#1M`;4HgP~2R&E>1AYiU~cdb}L zK3J&^{1aKWlSTr7n9Xn4?RZWHN&sRxl0A|Qtco&yYo77>W1>eCV=E-T$X90^X(BHJ zk&5B|BhU6-F+z}87|XXf%8sV7ukbT!E8j<%>L`%Tk8dd#2;qs(-cl-!vpZf%_N|gd zH#r9*-k+(UxMeUBUuv<>aBChBGTYn;n5?RzX#SbQ3h`RG>#YsR%rHE*d)*geyiK(8 z`2BdQvAY(P5jSOostE7gRk>xj8$9Iu!)nGo()>x>+8+*dtksNYzT_u+;w3 zYi?NqNb$Zv-+XdEl_z8bmk^u3vR(u$Dj-L}#^ruNtt|^{*F2>$@pO2L^=W+3uED$5##(S4F)zdR1Xhxd`X zig)N1>TFxMc0;@+*C44F`N#P5t<5u67i%g^rFTkL1JGxNu3J*F5?W5_C+{O*==tSH z!3XF?T+l8J$d==8&bT-o3FkF0Mixz6=q+vD%y|qxXr%c`=*oH#NqJ_Da~|cEH!ll; z!O6}ILnYh&q6s-*5JpF@IS25qmUP;9060=J>)xrNHZWc%XJwofjIm&Ux(!;gvTHYg zm0etJ3!WHbj2~LRG^-M_957&19^(XK^fgvF3jmVt@`oyM(-e{$cR;r*eH?~lZ<&Vd z@Nw%@2cKy)tDVt~2|aP^TH@CLw(ZN^g*Qqpvx3~~tIQ{zE1l8?2D_vnAZsSwLHhs{(i5JG>8sG|5ZV5=(o5lyp)YqH2n z5!5N*{VL>^%tJ1G#OuvFT#M>w*~U=iPBYTFy)C6X6cHe9HipLUZk35<(JOgm6~|-R zuUjwxJ#=UY&hB(7&!b0ei#-wg{w`2OnRURMK225|-LoS0IK`agX9V>)BeP%h;0L*Y_dkeEsHMFk>Fv z^`#APc9aE<(A(IS&*7RwCA%GqDMnGW{`2J=cEfwpt+*#@4>6mNTXEbt9dK!Y+`1;l zjo2;#9$PA}w?@qqDBPxKTn(U%fW>pqIZ6VBY`hDS!Bx5*od!@+D_g5JA`$I4`^Zlo zr*J)~0Ib7yA-LKwLo;pTJ%Gr?A2DXxEI1>h$Z*3xyS=DMW8b^ZK4BbZ=D_QNhv0Kl zLi@LEk=(8uZqiji9G(fL1O)lgGbGW3FNR67v8f)1c1ipx(Rr6BtkFSr68zu2C*?f! z7&)Uem_)4_%&YTmaLB3efSEMKk&KGQ+A>J_ZW)f!PhbjA0=2RV(nQ;e`E<*XTgxJTg9S`YBvck-A@$L=LNaS?L`GKGb zqnvJJ5?q6T2k!s?`<=#;NhC>1{i-Bv;eKMx_zaFc>M0co`DAw7*$P;WoagTx(^n3} zM%(u;0Aru%a5i=4!E zpGp9NR%IcJWSW>rnNUb1j)s{vyTG}Z^EFYSc;oXqZO0;klgblmL>>E8?K37J4$he* z`qnL@vAGUGY;_f{9PArAN{?y)tEsfBD#qB_I##Zht1K(GjCQK`zFd|p3jXnV2By%Z z+Zyic(-Z;FTcIkg>BTza0{;Lb4_cPcZ3G@k9V(urp$e2cSaqOAABt_|`wXSX&NwE% zS-nlSvw|>pxAU*5JVAE<0NFPO%mWBdJlD(Dvk7k}bIE67a6Rf7Q8V3nr9-sT=M1EQ zRo^?Qlv`7ksHa>CSeuMfr{zUST?B)sDmOx8#%fr|Tmwrk6z(-bXs!uUhM<}o=Ev&;qRnkxeZCA*7`=lmH4S6zT*qsHHSeF#+bEOvNbT zfEO90rOz~~C;@RpQqVn5Y5-<4Mk(3!qjdlPU{k@wVSUM_b>fr`XaRo;H;^f52pFUT zp^%K#n68-{gH-{=2zfNDJDoj+@Nfr0D@A7q037DH*ybtF;;qGg>dJtgdYaBqG*j+% z_N)u@&2^p_fhC`D=V{`+_R9V|01qeDy$iukO3LFKI%c9PQk&59y$vJtS+UBB?BShY zvRi@+1^y9SPKW!q-0g*7gI%qWNp~0j08%)u(Tg$sMynO{O%N_je2+@z?ir5eQcgKF z&};WAZ!A)Q^Bkf2R#QZxM?2IbExG>qwjoIXj!CJu28k3dmQ`ZO?jzODvd`SRMFKy~SEtqjHSkfE#EB zzt(}4;+t=kBaDE5EQ;vhR4@S-TyAVvFdQPtjkEwV1!!rvK1>NNP9KI^0M&UCcv>M5w)}ZDzx`%g_<5g=bCF@vV|{!xNx)qCC#B(oZ8?f0Q`H>Sw@c|MpU;P zvFvI~Ig&&fa~k)+=C0UTv{wujx598$k6Hv;ior~3ykv3>Xz5|2mBSpV&lNOLqKtAd zGem2EKso0ijYrUGoC5AK@zSH zZZllir|umXb?=-^&AF|F1SpZbqu&4w*3O+`t1X4of&18`9XKRrvux7bm5?49QlULL zu92sWp@Q1W{av)ggX%fl1$jvxlVvSM;_`M#F$yRkj>HZPVBg)vau(gj3Xn!SgWj~7 z8E4cHU?ADeAIMLy@dH(kmv3bZ*E5!QE!DoebDUCY`FX zmMW~Nu^Ipe&Ixq`f(gj|YQ?;cm!eoDGC*y@$AjChe_DcA?`G6|_!EV|*^an5sFZpR zFS%tRkvu;<66ek?vPMVO2CQiJxAWSTy5z7#EXSb-f=BhOtt&>7Mp@-_W{f(jvG1IK zf2Cct`!Y_&?Zi_$pD}wd{_vxhK{+d!*Vc^Jf_+ELE0B&hDez=xYx7Tkk6>zrRNIK9uArG$ovqxgt3Lz$B|2gId35g^_M7$wF5W zCtTJ|k^wFx!R&Eb79}CMby-h5Z6mcrOOWJ_DT$6iW0O1)-lw*U$d~~l%AJRLeCZ&F z&k6}uKh`MalzP+>BNZ1mfr_BZt~si;h`r63yrQ9oO5=}eg=H~+tlV+;O7Lohz3Q1! zz|16&aoV;(hI=y10c1GNDeg|hR}v`;I$(jSgEzEmwqmK~nAw+hDbv#y6tYbE5-pQJPs?=!&T;wDd*Rx%I;5b<&wdX%Vdw6b~^j5R%Eqlnbs)O z4#~6-LC0`x=bVyu zeJEiP`FyNR^5L070(5|uS3A`G0W`CHr9v~?yN-Cv9p9Q70CwVF zK-Mo^rQ!sG@G#?PndM48>RzdukSyVO>+ncBtg*Ps;ni6kz3~U zt%xj1xnpw72~nJS)p^}yj1|h~)|M!oV7L4Vp4RcZhi2NK^rj-4Mq&zgVNYR0M5Vq! zz#m$@>k4%Nq@V`p^Y41-uElIF}rb)m|rW zHx5aRRrZBsa9Wtws=>~1qxGN)*X+X#1``-He@rTZGI}?9t$c&ZMsA0Sv1AHHxm=Fa z4C(D8QP-9=R`ygbck(GMA9O^IyecW9Ey!R$+Q(0rGVU%4fsVEFo#8_)jH*+6 z6JF)yR8WPHZg=$Nq8LW)4k-2%}y+vybd-BQ; zzoly?p$rjiQGh`NRJLf5%0vpj*5Hn{b}Lu7$y{w-NvAXd;^@ey3Vka=Y2mlE5X02< zrokB~iex*odB+tL$(P`g1x#dU$I1m)GLppOtuk8}$89jwygyovmmMmIVpC~wXvHxJ zNlQ&M0O~2Z=A0-1T6H#x08>dt6aZ41Me9zW2GL83PV@j`gHED=05eX;1sLOsGsiRl zxxl95G^Ask(i5JP0Js!WFmq1;&;nB9iUNDk8x4a%36d#tNT(7ArsRr11-PL|qpc%T z0P9Z8Fj9lfAT3+I7;|2;@Z`MEy7Y@9pL+6Jb=+}YvEWy0O)M-&F8ymhrkxK;v0`qL zE_R+PsDR9k7(#YrZXTksd^c>(vf-C1I-2a(*Z6=Ot_4~lm>wjBO!5Kub`Cu&o|@>- z6k(I)jc_nJ*1oLGc_rEdw8o$xaan#>+0aH?B(Ee@2+OtI3%W{356I7AYhop2Mrg<+ zC{Ty^z3PSBe`}N+{NvKCSzg671Lea-!9L=EFX{ersdXcU0g&|umsWXKgdC1J9V!@i zM|Lg|$Ib$>{Y_1(g7UOwuo!O50AyS4GMAb2DQ&Bt;j30Q%3zi$c`D$8>s8(bd5I+Q zdm5P{cy5wKC6sg?zghsg`e-vnvO$7K$*EvWOv~k#+uOBRP_td^jO_}$fb}&baJ+LF zT$BoMz#gK2GiG?;MSYA^<2zKJtw5i?x-uaKG4iPNt%*`85hD4#qH%#$pG+{Q@{S|U za5|a*OCcS@NQB_11QA*ma!CTTYzvI=*~Tg>Xp}mnae$5dUBzrbu!%gDA*2H*=|CD* z^P|SABW-dz`&6+MS&FI1#{^Ym+7uGJX9Aq8u}DIS0KA+>wDzwY_?H=n#5XdQ8?sJM zra1n!>9DgqhGJJ3=B(nW6*rSkJ7Pp!6ILjx<4#u1pffQK?n1#i7rI14Z7nJGjrVJkN&+& z&~`FmnKbcjY9!qvIE$}Qk&5grZufc95F>aW)vGgi5hQM{%5H zy7toqHaAIgB7q+C)>gNw$!jWJB5$^ERHz)_ z<2d?OKAI#kC}!OFR!}_%sr1{2x>;d$+=00V_)SA?mZFhk`$49jE2P~etAHOIhFk!C zgjZV|MJAmU)v4SUDIo4ZHO#)2boqSSKlt~QZ+MS8eN97SeD;elRz6dop93Ql;_bMa zzQ(AXpUsvu%5FKuXxc<)vTz&%j0hgby=I1cX#-o7kr?2P#E##UQPwpVw2~XEOsq1m zD1U{)!zrMfT(fhc%N*?Ls^^kdxgX@#hlXZLLM^Vq4;I`ja#k>2c=5K-|PSj?JEb15WcTE#&i6atYeXTPkx=PUU>t z3xx|PP0={xaP<0$ZknCTxuse7Pdk;!w#+bLQy$220 ze=5Y&BJ$QZR@_-eMsru1?)uI~V;d}eVs+#b=xJW!<+jCpn*_CGk~T50KkA%veuuq2 zU5~PRc0nreRr}VO>I-<^XSlaudi>pwv8>cK?COk+t~g|F{`sWRTNImnno7>A75$&? z=NwBD`ePh>Q&6{<(!rSIBOz4qeTej@!6IA45QF88273N<`PU9!9AOT4G}wwF;3VwP zK_0`)M%m!^#cRgPY6JCxa0of*Ph(U_7X-OovZ>lfV!e$#&E{GpQUa^caramnTLaXc z!oK%jaqrO5i=~+qXEHAb{i>2U*kHcjm|(CUsj8A&eVxOn%mL0tCJ52Dm0dP-xOA=k z9k%XWtWbhDJxT41isj(M(3ubwkaAZwy`xN|qn0WO0lsWw+}BPPR*}z$jpA;JSdH7b z9D$Mu&ln4ypDjd_2@!J2MqPj>u{>wr9jVbsaAZj%azF~`<8dG!-1jvaLm`edmN@*l z!tVKq*iJpUHR~RD`=vffSk;)Y2vv?4j{T@MN)#A@YzzivUU=vR+G|F#?s>HQyUCXW z4YYdw&YsmHT0*KqCzQlsfePe;csyW?;(#KSIMzu7%+ALsx!Acq26-8&{?a43i^}o= z$RtYK^y6sVQGf$RJow@PgAp%Gj&eS3w5{f|EWc=mP^wrnE?jZ^Bg~)#X_%~xgr<6= z$9oPr+BZ_G;S|QtvtY%;vldcM_jBwi4a|z93$-c-I60M1u;0?0e$l;)$r6)mw zEcTj!-f^0a-cdPc--QPlK9or=7=~gu3{)XnHNvmTdx`*-MGcikJ4Z^4 z#t}EO?IYHtaj^q>^GthjI&O9WM`{28iQ*viCYvS7#)3G86n?b6Oh|^iJ*XL1Se>MjDA0VWb5`x9 zW>9gqB^;AY)vUxt9uvE#%js9_EtcxlQNHGR0)RBFpZ7qt)4ioC5dB2 ziY4KCR9CP#RUl_|0C`u$C{=U|nVg4Z2LZbtE5+cEB_4*ogW~+q9UfFk40i}XWIO^5 zcxYpssm3Z=xlwjC#7s{I0)ua#zIs+!o>9?_4LppvW+s)2xoYlJjO>W>>s1Vl-EwL@ z+3VJf(@2|=E0BGt&T24e%EFj~pGq=&)3;HOde8$2G;>mLDU3j-At{Yc%_b-Trj&i! z2%>-%iUG|!fEz_FC>)$n0KF+`TaE=UmQ4U4;+nl_?4)r{juvyp0~ttq3bZXG#yAJw znJuiTjl-=gg@}Qr9MDv+1azkEAkz?x8#EpTJ)9bP%AjLtG=PINp@^#sv73>BM6oX$ zDS-%MN=|!Xkb;MiPDjsCKn)<1#UUhAt?f*!QoZej0f(S;K+=MGV~a ztlq4yhoNZkc{Ym@ayx-rk^*f8I+MYyZ3a~@B#Lsaz|CsjPr3mb{GvaYpK8$%a$1f) z(>a80VB1bBDsX4cMgrpow5+ZKiqq}Fwpf$gl1)}{kpuRIK3O>!{t@X+3enqyUGeqz zq=wkc#X!RolB1lr8B}dGgxaZ@^bSH{n1N+F3kK7G?w!oYZ=N-#ZP% zJ!<0Iq}FS^lk;aFcdma>zA>}Q9At%TwmS*{lyCDr$< z5Wss?{W@Ui!5kI`r2uV4fo@}T>$7z}gM zPoD!HfS?K?2{JKqyLn7@t2Tn+vF1MT-3?iq)gR_|^5Y|@IH;kx*uhtGEPQ7jMF3r~ zjI*2%mv12Y)%#TvNx6Uyf0aQ4ugqfmqo_3`B>AMT9+U{VGYHfIaxgkm6!W{NCabi$ zixL1EJ*qJNVZt0@ftz;ZFkeGn3*)pmo-DhQj4PA?`il2h2qH8bb6-CAo>m?>)YKD* z?pT5BYnK)9oj7lal%`>3m?{_qQ=fiw{VIf#`Ht5le1;$!J?ig?UopiLBPighZs6ms zWVajJ@Hr#bv(Br;K*3A>ciM{tG7XIa ztJZeNmd?cwmbp0|{i;h^8@AEgL#5lSm>y#vEd6lb%+(EBSG>CNRX+2xBM)p5pXXVc zoRX%UWo_0-Vhf!2>s=IjQmw9(t%tZIyqxq082+^nRy~!+cxuLI9v8XG6hIUYQPdjR zT{78j-s087QoaaMepdActm*w`+A#FL~}05qGOO7vsK+bIR)R7 zBD69Luo>WB_Nd&uSc-dVt7c>lRUhRHI&gUWX{On(Ap&FbKi^V%k-*83XScJ$i zDG{8Gj96gREl$N*SsixGD-=cOcMf+C%BdnbjA(Rcj@fWYk2z90tzJkaMLtnuI^sk= z-Nq`7uB#%%*3!P_fr7J+`6mXMf2@da5ZkudV^wY0>CYmIBv!27ZAoQl;J*QGA{Wo)LBwo%IA4^X*QmoY*B``Jx}o=^ff~1= z)Ki;FxE@%xGcWgeEALFTxnD2>diOOiLXtKuXNq-FgAOyzO&(1CT%k-(ai8RCHqH=| zw9y>pfFreQ5xxnEuiW{EwHuQ3EroSe4!n*sJBqCnYu8WuQ=Do{pHgN9YgpMC{O{{SH*F3?FK zys`6j>(3o&ujTDjS4LgK3R!+&JvwtwRz6?}Dw!B^rO!gf1ag{dXsLt`vZcQFqEb7+_1XHm9OUZZl=|Buf+>*@i z8=3fMI|LAE2NQG>XbUC&BrCFZJCJV_0c{uM;sBOwZ=O-IaS_D?|+9|%%@{#vIJ!(apeaguw&N=3i_Eu)t zS6~$jA!tj3^A6Mi*<7@YM*!xlS*-irZQ6QVxA+0U0q&&owHx@lBC9;(!}U1vDCeUX;Wk2Nc}X)s8Vi8K4I4rwkEH zB88v@G#YprrsJF%0BsnhZnO#n08^=yv;gWw>Sz?@>p&945pGRPPyvdP9v6ya&)D^; zD1-o86(B;r8x>z98kHq{4ZMC7*cT&b13Al7l3WtFc)nrK)NsqOcXd65M>D$}%}`L1 zNF3rt$Iw+511B9TK{9%b)k~Edy(*I>qP_(k=?@2rDug%^q!CtRt zkMrOYRh>$lQ^SrAdKif^dx`*Jz7I6+4>c7i=|B<#%{w@#^NLN>0byGs6!9VB+N&#K zo!6RH9m`Nj`@lf&Ue(|zrCWG*zZsa zrMw|{EV;*}KUHEaBq%`26({hhBT|>v=v!#O1XaCt1XgzfA;D6kJ@ZzGIazTIofyXo zxz0M(D~Xy_EZ`N|4l2;g+JPhQNX9ttSkgI?KmjYb;+Pt^P!d5FNaK#wj3H(QU`ad* zO93mzBRhP#+qV^H#DNTKGQ*V_paMAowUQVV5WhABVqPrMK`^&mM&t*`>5Awqnj2OG zFD|UC4QDf~DY8M!8UV|-iPrKto==`mHshcbt7T%ZC!V8d$pm`U8=I)S)lq=KfX}6G zY4a?EE&)X6Bh=DhKkWYiFu>dwwP^j7Qbt%o@|knTYO8NCw%?V=X4op^(v^t-1ZR#Y z0grFyMi+iZeAGyt9{_-(psOBuk%}G(pa)$b4~(8YDeyzi?BLXqrqTP%5mpcaMgYYiCAK?QGh~6! z74zn^C!gY7LgcC4J;@(HE9iwns>BXJBoA8o+WJD;yusH8&Oe?>HOY$E9awGISxZfA zF_C^`Ayj`lkL<3VM1buJoQjstR&wf!8Q-%yZdezG-#qwhE_LY}xtIyqSxc+pI z+PSN%YSGQ8#AlcV4$9c*%6Y9zi#X87bGQ|8^KqY{{Ed11`=q;({{VzB48PquuAf2F zcSd2jC6EoP%|qOFve3UKlD}?wA?lzj;O8Se5mz-xiLM|_G+jX@&)j6zW~R_aaEfN;kg zcK-kxtu!7~J7$Y~sCgjvu7=9W-rs!bHt9z{Fzz}E$-JIx)BzXE2RpG+H1#9W?jnvw z3K$N1WLC|zQO_rslE)cS_aBVaJuc293Q29b#u!%HTE>p5z$rXr(Hn$$owi4c3Ync+_FWtPUi6h4V)eDc^TqwxKPb1QzvbRe~9TrAl zrvMsVRh}!jTV`UBN}prc)X2D+T6NKE?KlLEJ;ij^au-|y^B&%{%~(PEg_LkdC)&E5 zF-Mvhj4J>L?vLDmT5(2mWGO$A0KGs$za_SRlnEWsEJpFqXW0RaC z`ii7nTt^k$BoN;$pdO7{R^U#8KIqv7qCXK&W3sn@^hF>BM*b#E!FvLIy43CE86P2# zmKhybckXyzDu$3H@?*qk;3!kOpGT5LQ+aYs+UvS(9q4~HUg*rt> zVxSG^&5xJmP)HnbbHFuXC)*}>GP3|MtO*(R}G%_NF)W~YdDb){IOq|zNNNPOGhh& zk`LV}&d8hQPTZUfihDwW1Xz~f!VfD1U~D7Qk;tJW+JGdJJYZlnap6JqW1eUMSL|sa zEh{6p-EG(hpLXY^5=)Y%E77=|a>w!GainXIiht5u51+g+6pk`JZfKTBo@7BhY)X@c zEWnK8u6UpYK6!8=om?S5ykNs?biiD8OHW} z1#&rVqzoM3b5cT!Cdng=h39Eh+&-UotsoN z+ay!AOu=&tO3t_fkc;%ScfFJBRdZ#JoMetfIRLIf#z%+@qNM#Zmz{^c7*9m;i$S^{W#^TO||$+Ntg!mE%3lF$$1iKF|vh z-lA7%INBMH=~63f3`-DuR<I1MXj#^fUo-)wf7QpHobh;akjTu!TF-NIc0{+5V8Q^V+5W} zEE6i+6P)@{E16gjFw8o7Q+~u^WpZ+Ts2O>rcelb27dfWrh^FL#-!aKGJ+hA^sT@{p zakM&_c!~K2Ncz$PskK(MBZINIscvKvLgbv}Vx+R2r-XT`I&oQ(hmG7E?aeVCI(%J@ zYhM@KML!{wI-hFc4?U~azC78R7370Hl#1vue63Oz-Z4hPds3_p zdQt&^6*&~4fj>1^`!jlqjji83DW(KY0qIfw-jzSuq&=xV&miEf7XmzI8KqN$%}M0H z_i3gF&qGDPL&&CM6)=T`JX<*(D7Y2XxuEmSTw4|((>}(-?@@6T8ilK7)OypF)q9#Q z1u9y(Etm_H=BqSpy+NiH8Y%INwMU#(u#uWTT}JZ9BRlZ;bbhUx(sp#epQG*pw2Tct-d;$4Wrl&^Z*H=?ojKB{=k^;+TZZ zEf}Q&kO(R2c&!aTOp@$wA1eBqzPb(wEd32boKd2uCQadcG3SeiT&kWc+dLh)nIynd z#@h1@JIjqy72_4_J`S~HwuPK$xU8WrX%{tRW4_banEul%1CEEiKU=$I(*a|&yM1^Nu5I;rdX*E;Cz)J)u;|aWAgIl8$5v{(;SS$RkS<>8L*I>>Yy=z@MW-jaw&^>CU zvclIU7gcXEKr`t~3p#v~6n9VzeNWb%73h}bB!)b?9AnnB#0zU+(L=N=9#49&q}qt? zgAugG+4}Q954pFFDcWfX-q|I43dX)GEakI+2LSq4MX4aT+!S(8-mF>S*>xC^GJyyO z-heYjtR7}_mp^yfv^2yqxyu}uD^+HJJpG%BzA_C+uw3m~Q0HOgf4xb8(0LEM##lH9 zpRcW5wlT&eM{)AtRzx!tjdriQ!Z|{>M0`t1i%lQ)|ds-N+wr@G0!8~r-+Fr49Hed)84FG0{eu= zJHG2xmO!Wg$4q2(27oK8uxu3>J$40?_uIXyLwY~JLw-0Ku4C`)Z3_TZp(6GjZ`x-vld@q zJN~rdL?l4P@WJcWR60aT}An9Pad_^aZJ} zXDeK+)9j8IiS_I4S8PeN^8%7%kmqX*j%$s0btaS~HuEBnn`!=8@NxB%F$OzJ#^QsV;|dk;xmQ?3oX4hrM6d+_Z4H1x`uaI;re`&#hy; z4FpD1P+~x!xa;gs@~u5TQi69WB%BNe-P<)wYY_Lj%q8oOaRx4ZJB$yq+>tjkQK;wA?SLXXC-t0JUH@6@C9|?aDJ7O zb!?^tbva=B8$I}~D5f_SQ*GstbL=X)0hys}ZGETcYFZLzC8U32xMJKvAsfe`^{sV* z?X@41lyC_2tj1Pp8-L9aQV-M`(9&+1X8SeA%wqejdf?Qj?;1;Ew6ZG_CjIKT82}x} zj;eZ9h^AjH_FWv~aaVEkejB>fHfg_912~?;eol}x~{|X1#fSj zy{K%DB3qLob(P7SNH7N0>PKQue%^##hVwot0ss zX*MW?N)@xUO8lKU$x)hMV=PTPiY4HWHAW*}W*laKAl(y1<}gRV;$52+Pru4Ir=mGS z@{;-DNXPET&!9bVQcofk+y(~Gi3tKW`V5Lm7BC5MJ~+vehn?fkP$dDl?0#w^@`mO&Ewpqy$;ack&;*fg zF3m84KnW)=ox|TF+oeSnrUCO{-h^PXC>i#~-koY88nQCt9)PkOlBD{$Yw4@#By`GL1^1y*QToYaCXimc;3s%V-R&?+cqKBAb4zEq)n$8I|cVcO9U!{_X4 zLuhe{dI6DCT0jh+FR-KpFK{7MO!9pyM7awa$gO}z4Og6kyhc3C9DCGH0)$c+fWs_3 z>5P)$)<8Bc03CfzR@ot7+fE4WO6+{Si`TAd{*+eg-yIn!5ky8+mR2}n#xYj2`@VSt zoYjk~A`x=jH+qU_1Zf(V$ZmfM09Bb$gJ6{%YPmq#i@4z&Vzup}jQpE7D|9tSS%siQ zb@^BjC>g(Gfo+g?6w9bQ$R#810g+C#nP>7s@ELgeik3t2kVX$fK#v#rr)zyRn*EbF zIS!+^730TDxD0a(XX#%_c(n_`BPwTc>0BgQe2&==0tW__hMDDKPn;+w7X#OAJ#3`e zou>oZyN9mPg`7T7qGx2JkVb0f}8vXh)q_HmwTx0k_}dqEC^+r4Ma;am90 z4pZ}>T*&2QK%;|E<2`Gko5MHZ@w8K-@Rp$~Voj)hF-$IwWul=Y8Nsg74+Pv7#L~JC zO_|MIkHZ!ak|b$PIL!jOJpTY=dQi~r;g-D>^cw-cU~C*?)Km%Kt9f&>RwvWafY9^F zH1%Le;M5PNvJ8V>mfjAOugc(t=~?%F61h|%2xF5=P|)+KA$03d;Del3blw!YEHb?N z3W)e_NZ)Lc@=r`t<_jEFeQH#bXvQnDe-Es9^I{^KHivBZ3b-^}EOMyZhhAz2CwC^g zS$saAe6B@Rm&4KkO1%k%jAT8tP5_+xR*=xHe*$ruYv}Xz+;Koy$C8;_KiHDwk-o<+6H$J-&)Rc zve39j`;3OpC?Qlu!uA5G&bWR$R^8swoN-xdt2E^S8S7kEcRLlVS3niFgMvHPwfHhy ziS+0tkyT^Z0LZT+ir7gsaj5&u1$$?Ptk_svMCWRvjw_;(g;S*5Ru$NHN`FyN>z2=Q zZ6U|ZK_FGTCWhQRncpu(9ji9>_syGmd`x%)(z+4OV`>(U<%e^$4#TZxBKaGNebCs? zy>Du{k`&s?ayj;_nWOUOjKtnznF5@5$fgF2H>x8=&gMK5=~oiqJj?SARP?Ngbf*?_ zOwWZ^10eUO>9ZqTp**ibDFL%2h3x~Xl{^}$sJ9%P5;lWV-G;bABRda3D>GAx(pWdP zV$J{_zO=xB;&~(iM>xiP>sHO0I1_&#HzV+>F($mXfE>^HXT#K(i0g&l)}vt#ScFfK!M;DsZn7$c=$w4BJqIURde6s;?=lsnI- zt!`Pw&jU8Vr3QGQ4P}dJ4TRwGGfwiE2qC)ls#e!>7!(xwmpH4+#pBBiH6{j6izYGX zms@^f%d~w@73BK8ylS>!^Yd;e)kSxHIMfVK2oDX*AL(2T?a-3hc*#@=n&GbQ>~>IA zS2-yyyvv)3Nx|QN_|%rC%G4FtkeL7;m8kZN5+@+}uLJAep_a5Fh7#8D#7@^g zbkfF1v`;ey(<@L}+?k|7j9~t?JlSmRA2~Q8q-8sq<9LCKhUtoe-_4cOGhlYBR(f2s zPQ^jzsIALwB*KX#sfA;OZrSvu&}rC9ML}v+a2p@5YNG2fk`&(NXKZ!*-j%UwZ4tRJ z$rG>pOVj@Vty(E#Z*Mend4#+zxD$?kwH6wYTSt=O?%mX@76hSF(?8ucTIW#5nQ3te z3^)Mxtqo6Cw6~q#PmPu2B(@iZKD66wDYYj{tI5Mg2J9RINuW%YEp6sl(pCwA7kcn9 z&)<8DMXZ#%jj{>>s>8^IE;dD!Fu|1riqiWUg7@$(FC!aN{pm^I~uVxilHYXDM-BBppN`e%x!%Kn6}bb5KGv2tt;lKRL<4Vd_t>P6b(wBn+ivj!A+5LorZS z(3~7}uWB0}L)C`DWJEzIQH4;)A$^C-&q`v#BZvu%fpN;Y&mDQnarx4;lDeXcC|`Ko z0CV#$JA9PU8?Cd5p*s-?9B`)?88`&hh>k0JP-B>)AyK$oDk+Um(-b^$fUL}`fyBOA z`F_1A@+|6FSglB609nB-gn9+XN^3Nc$^_Q`0B7?YWW0<+WBaOBf=L*n@$v=pFhrn* zYsKW4 z-{v^{s3=t5ya`dHAZ}#<_c+f}*m~0$H$*}}2|RQsKZe={_6|ISB;XZQKQGka`qQ4+ zN}C$cGX3qU20;G+zBm*B$Pi8U?Ub^dD&YK`IORR4lGZZE5tQ478+tEuyMa&pI|Wrs zB_Q*;Ncork_~N6A7`(H+Sre$+_gH_kjAoD$#}pzkS*3nS&lwmT=h~r^xH}e9Jq9Er zVHoT;3VTl&aH#v(gN7_Nk&rM(?zDnv{Mg5ujt~AwWT zDn)|8`{%7wj`Bl*%m^a{4wX++x0XTsl0eRQt%x?3P=041A?PZj$>iK4B$-pxRZBqg zMkA5V{*;Ey!5|^`bI_Uq)Hku26gztwdZI|ISmSBq=~*chau?n5pIV%-R6-b>a7JhX z)X}Oq!>J>XMOIIc<`jd(&pMg@_^k zZ1kW;jg7!hm5JI;1wrBnnrmYF&QxG8sP(8VTV#iLCj;g7t5-4^Z2oQ!AkYN*CgE*u z{p2~Vok0jDL1Xq&Tm53?8s^wfM`A;6zu@I1{ z4aubt%ete7o51l|iN|rqa7ktRr!StX<8}^N>p47oR zzDO0`CV^nQ72Tf3r(GJxFPKKT`p^fTtTN73W5_3|tC8qeS1Y$@Ij-q#Vguww2iR1x z#^{XE4rmJ;EM6YCNeFG6bmOf~bStHFV$q*$^sc3Y?<9Z-s-{r6Q;xaK12Nx7xC7=? zD~_~-L>LB0(2VyLx%QaLC}!gxw5xL*k^oLc0AN0e2EtY)AB9tWCf*Klw>`yo9#m|D zfz4xTmdyMj@tg_(<8Lj@T*EFsh^)!H^V0Y{J{^3dE#^7L zBE3m${FNjr+t^im=n0Q#L!RVP>0YHbgRGiO-!RW=t1p9NLPSS!qRcsw=OWQ0A9AI)g{^^DNl2pQ}v zN@~c7JF~O1DI6;9RhhU0HIu9;Nh6RjA2t|NHa=n?X8^DqXV#f<1ot6KpaY!yR;FxO z*t0Za{n1OPTm6qsT&M4mmo$;aQuRZ&Ol$}>sja$AW|rfZm4uAg^zA^5=4OXXNRD1f zGT1#bdQ{pim)W9}N}@?K*VBsGnmA(9)>mJh6k{W)s4XLC?H)-RK4>TCX@N?8?;gUS zVY8a&?-Fz8V4Ne0*=H;l=Exj_QB7=1u--7=F#{jGJr7|_MX16l z7(5R3yQbWx#w@|IFZO6zvRhV)|YRtBF zDyjx}>spW!6N*d^HTacqzuMkT2Qd%+wQ;(AxeFJa*|#_0T{px$zlqyv$V6JiDn9Ob zJe*erMeiNd{uEAPSBuWU!ml2c%IY!*t`zOSR>}GkT{GMdA}EQ%?j^D4E0eh|b9PmR z17we&=~ztK23)fQof`h#PBP^eRV^bX{?aKwuMO}i$kOB`N;EKt`vt=ZRZS>Vy zS(OT?Al8Y}qlWGv`%F_2oc7IbN##uh7y>^!BLg4qxH(f*q>!zoQQZ{|oGW|L%8@+R z65bTBm&;|0fWwkA#X&5q587?X8(-&NKzYSMai}fCib{_)Mi0G0Ae!z#yB}sUJ*r#N zLX>-ui zL{>miiBLQJO;mwovzk%{^lYnf(04Uz-r6IyAuSsppKEf1)}FQ#LwOrVAeJKKa!zyU znxPfnPPLlM$rsF3fFZk6;}F_jvs#lB!yhhlj8%xPBUwDTq4JB3rIhe<-xS??FFq*l z(iZcOj7*&lIKdPFb}8j$cClcRZp)!K&U^dwTGsPQ(JQM2EW1o+qOk5gtBOrg?HGBm z7E{1==K{AN)gqP@iLwTFqYj|@d*+g4xSN`c4TA72ZrTH?d2>&`ETX`d*l#l>`az}3hrxhjCq;-FmYF}p$w5T z4yR%EILQ7+pC!71V$H|Ru>EsSxzEpT+-@L-^f);Fw1WE#xwi=N%)==pT!a1PKjDgl zc!92hu2>H=en4aLt1Ry&t1BOwV=PCw03YR5)kY(@9IK&I>~T={DHQK`n6z(#r{zB4 ziy45`ZLZa@A8BL$&@^1ch5$h(IpXsZ1EEuji%gGvQAWgLa08!HLime+3F+)oXro*l z2*%{}JaReY)TBuxJeiDcAd=ZWxMRm&dR2WsUoOBt?X00=zyvVBB!GQ59OJ!Oiv9)^ zRc5jPuLCC`PvV_vB`VQvHuH{tY!cl2{GX)&SZQZ524!~y0tpI19-|B@10gK$g?1Pl zK+M0MHw_?rv}Us}+#xmlf} z4S}Afvn9IPSvY1r1zppv+F0128|z{jaGxvYRXbGm6$p^X=f9z=2^@mmiOz9`T11Q^ zuEjV#J*WX-wJji4A1-=|TdN|3?Cr_=Rk1Ut%20wvGfGlPGuI5b`icOh36{~p7|uAR z&2acCNWl5HqGd5jhXvGfJ!&>&^8uPR0k~YyA%U5|B>aT(X)ZFYx;M$I%Wfoye+tv( zfnl|NjM?IVGozE|0#3fQJCG$@kXNy#j@-(H_TwU(3?Qgi$s>_W2_$w=n1DNv9@wd$ zbKCBeZO0@EEVjIg83vK;0CW2h>+c8-1skz=P1&BcYc_ z-bLx=5nYpz_KFwyhe}9hCaf9Z1x`YW!-`fXkz2PBym{j(=~dva0y%_^WRUJmfI8L4S%J)hj@7f} z$1w#>4PqDoNX|M_8AT;l2MhtHJfsZn7^{n?AtO9g-`UUrOO_`bV-$eKYor4Xy!~j5 z8Ghklx$bLNX_n3uo=0S#Bdu3xv)X_lTS4Z626)X(sKDa_r&t^eZsdxQVH{xe zpbFv_Rxf}-6%3Q@;i7HX;EK5GGy8CA&ir;B)vNYJ z1cuIOg26^UZoR1ilO$+C`9^Cp?%7E@cooshV%cQ`RSB%0o!vzMbFx^-fU*+cbBe0U z#gz#uxbkbKmfB5#jyUOx%eb{{asvtg%=<#Dcu}~6ii-^|ETbOcr@D+F`BxQ7&Dt{g z08qfMaiv;Zmp2Fr?YD}|xzH^ZG9!cLJZ85Rb;|Bjj`bT{pSlNnn+)e6(f-XkVTz3N zitO~(7%@fxkYhRMD+cyv45dcrW5BMTNQIs<%%OAhG4(WyHLRlf83+#{915*{auO$t zqy68dU$mMy-8{T+6`8MFyW73Zxy+@oMOr19_SZ3_p`H2uFM6{!s~y$K0Kg!?Q5Y!Y-|YEBC?W2j#)&1 zcRU|oda(pvRk9MmJefH(#6f+xl!O7Ef}(<9xxDNGNLyu?8B2;k+hRpTdemCFD@ z=|CHE0+#L<>-bc0q-!h}3CMAWTDuGFB3vm9xGH;6+`y4}ZdWTI04VK93DkiMs~}$} zkU%{}4hfDOoPc>XGTR|iSdu&QNM`a$L4^!B$e;{+qP}U)Su?ljY7$DOGl8DfEVDlL zR@z2r7V97kPT$6XjNr!k*0HqqevC8kTJYh32dyC-E4hS25w3lQmmR>W;n#R1kl1OD$%Dy*` zUI#UtosA-{T9Z>nkL-EG+1`wL6X{ir)5(bE$n_raF`RepSZ7bUwS1{QTj1@f;I)`b z490fGSpEz%X2~{Beb!Gt3Y3lMw$nhMhKg2Wq>OB_ijDjZGLmVl`LyDf$ zP=;nU*Kvqs8Q4k6lR_C|3gDkNa-QUU-=V0diIU@dG9R-~_t1X}W35Iu+s|;s04C}^ zew5_Y8sBtGyMY-5^`enJM7UL zf+N_t?SsWYtQQEWdv7=VvvGz4wsBNJ@@}tfQ=cMVm-4HEZMNzkmyR_J@9FwfZ-u{k z$06Jn_sZg;MWZt6Z!Y@M7{(%GBoC<0Kb=ErOm}Fi07h>9wCUs7ac#e#kxHLcIT-xt znkI}kI4b0Q2sJBnPKT#i=17rMi7Z!>kO<%qPhd0n)sU0Cc~p(^Fr#T17|sXF)1T6@ zd_8j4nnX{xATG%P9B%C0Ir>(z#~V%=?Q*!>M$?m?0sEW|4;AfGcZz3^HEA>=$2RZ* z0YPF445&N|ea`;A)a!_(gbYR+OdpU(^ALR)FCU1eq$&w7Y{Aq4k_!g^0LXOpjSDu& zCOgQ=LzQqxa&R&^tqB_(k~7O3VmFOYDU3)=qw3h>nomEUnn>Cpz>tRyJABM>ky6F` z#V+Y1ks~(fa)mLBZYQa#$t#P6Z#qT8q;{pui?GnQ#o9tPwkV}IAJILfSdnZuB{0|34{;|0E)(g4}JJdnivp;+^u zUQhI<6bC9yayCF2$lf~gdB^2WhEO004pgQxNXP^5Y}1UANt~=+{{VR4`i$}TQvqX* z(YBjdot?O482Nn%%lgs+0CpB-KqIF<_ycV+N8IjOIMtO2IQ2akoxi0@0vG_=&iFY9 zyGa}jkCgh-0ge$B*u=pA>$DBLcRXUN2SsH0ok?Cy3Pfl9?6);JLRWIh<&sVv*C=_$ z4@~0}D@qF!cF>HK8{#4+KkSXv0pY6&l?;&|oBg3%8g#6y^Df_0Oor5>1t0-d6dqTB z&MRUWsTmG|jsV65I^H3_&iQ|E|$i{nB=a_tvJI=ruo_bSUq^K3t5IS+vtw|gQ9#%IV)dK*n zmS2;vUbF#SjxyQc`cnanT^DMu2_5RM zmUiyWSn<-5?)*DuG0#C&-ts_jW8>CDYpJtr#tm}1REu`9;Bq+pYpBv#3sp&YkPrxTTNO(9k5|B3v0J>v#U%q~oW;qOHeQ{J`xcPu4tcOQEd87u0Re(4G zn=2@c)CKUMR1C~p8RCE!Rk6x z#~kF;4nZK}fj|+<9{e{Lsx#QONgeuDo>OS&nrR@m3F$x_{PrC3IjS=0nPN(fzO~f; z?1wGSI2Bdn+z8GE1362rDHU>{ny2IQ7R3sMuW(MUv zRnHIHT;3eY-?>Hmy^Ux1hRWjN;6{!6u-z+bM};A1;LptX;8H0X&{?_6iccK{EYp9d z!)u&;xo@p+d5WtYym4|zCb6&Ljdfo&fK>n-pIQV;%^Yz{v2xhtnyDi0v6-Y|PXPzL zM=jmFQecvI(3c4>%YnCd12sYoH1C~@jD-UH%eNAb!b2Yx~{K`1ZXRZ?F-X;VVlOUS4B$Fb_a(@26I~-COIxWN6D@fP~-!=_Z zn(NL?EeMe=_UL4YUF`DDOZM!iC(tj0>Ka?N$;ju-@PS z`P6oX6Oyh*-o~_4k1f2>8)u;u0GnZvM&cX}K5CK_i6m7<>)2DGv$mB+SDbYR6zh1A zF}5Pxedq&17D(pX9#5@mBJJr}i5~Hhn9p7-LfuJ0+?oV@!STf-hvGhGVxWqlPmxb1CWQD+-j&p*tJ*GQW`!IVul6 z*sFipPGxyBk>!Fo$5C0|Y>HVHFmebcx~&%WDcr_z3n3qnu4zNLyl19{N7w`q&Ps-0 zJjDmoy8cdKxRT z&Ay_d-W-rdLbs^*p)Vv!jLMtDWXB@^0DTXCsI04K2b%Hj%OL=dUiq!7JBwIG;==?G z+5WYjt(w^)#hmRddCN$Rk(15`VOv&eCV&UPDmWvpb2ryZVHC1jAu*Cfk%RYGcluRD z@eb{>!W|?XRMKIo*j-A=AdRKo7<6RLKN`clfXc-l2qX?eM%6i<3(IVX-ELz)BNKprwM1VS&SeV29YbcX zTHjkf3JjcpRPj=aCyq%bMOIZ~&<))FRO#-fwkld9v~W%V#b?~jV{(rpSUSoFc@Gtz zCBny_Dh5!)Z><*^S2`$l3pw|Bieqv8#l~txWRg$>kF<2-HO$&f&4%*M;n14jvXCeY z7apRf;L+V^Ff%+#uaJ8VGhMcwZ*lf*%MRg;AH2Z+OI~}S+>9=9pL+C7Jv`V8sa^qM z6csof{^_qz3u_)`CiggR7FoPg$mMX&w1Lk~oxrMbD+t|}_)hHo4R3hPBOSzGfw`11 zBcbW+D-%tWN*!ASWGB}-tZS=C+LW&oM%9M-nK>R>6YZXV_G+}zk!0pJ<$L{l8i!7F z6H6HbVF6DafFJx#S<}IjL!Edsc?y5=dV5OY}Iwu7XHJhkE_uNgqSnuw}J-SKk1@R>Lo`sb;ZvJFf~zAhM2BZLq)1_d&w~ z2TY9QX11RgkySz3q1btNAo`vTbDHJ6D{!XTYkZL^K2!tS1moyW1pC)T`+{Q+Dj`?E zJGdA;fyX1>y?QM;D;`y4X|hXr+_7&d)eZ?8Se6~IcG4JSpUWZ^nm;j{zJu z-e?OXU_Q&WBLFd6MfAX=C{1_3%P>m7ZHjVBY$ql9<7g{^Kn#1G zg<591?%z6~QfsXCL4qaDYtbDVG~rRQy}B+jdi z#TX2F`i^M;;84WUi3UIfFgy(Bsm}wBwA2T0$kDh1J3t>V(B$MFT4SBNaVs#!*Eq_a zF@i&keJNeiNSHLShCe1coO&F$0+5EeKGkef;E!nSCgU4o>x>PQ*dr#nf{ zB<-fBlG}W_qXn4q_{jtKagWxWBvIu8zm}w9DER}oO}_MiVnShbK0^lp0V5%0Jadnf z&=Jv?tP`Zq$QdkKJ$C%KA4+2}^TLT1DHtE!6TG<3AH&5yOGi{_Hn`h@(C)&F_usdQ zV0nabC<@@8o42J{`yTQ+E4XAfdYa6N{DVU4Zw_!AD| zk!>C*M2{vxs7_eM6ASQHx&3}TZmi}%8FnNz^P^&k-#+) zuuS~J%VJ1hN_@<-1>4BQLM>q{xtX#%P%)rI8u@}u=dq^!rDA1S7+~@g{Kg35$*o9ogn^{9)?T{VC*DiOh;89c1<5W^(q zvo$?V5`i#$)9F^`otk32d1t@9b9%gfOrCdD%`p~|`y(AH!dzvAb6;p7w}Zj$=~Ksc zMhzDW9ZN`|6ovtZCZU$?M{+^#E1i4UH+3}0F5h8NKp3Lqv9#BqWbQc?HLjvZC99k= zbAnAc$%Pm=rEsy@$EqtL<*1hFnlCao7_KfUq>SVeR~*)rmG;yK+=EP3Hj`2ZJHg$W zaJ>w1o+~PQsMM)g_a605TfLIwr?ny2=+@>o&(1PCW~58R9Xi)AFJnnIu>gA2i0W!y(5vXv!|1x^Vd zVAYQ?(U+k#0e^8M4b*vsPB&Ern3g}@^rp);&;~wZ)_^sVaT;>nX~{P6wM}#K-3_1< zPm1(K)wsm~ZArKePZe55`FY0b&3#GTh&ab;qWA5%fWVy4Gop@S6R$N4mw1zJQ&{lo zQsj-89;c-v+-2E;8K5j~CBtK_J*FoIITg>1L1HCKXEeWW-HaR$LqHqimgP$I>rhQ0#||h1Mq9$f;NqIs3`YjB8e$vN z)Un;SL&X4W#^T4=1tejNeXl87K#QPIi}|>*z^@y zt};Gm81$e1TUk!B z&o1c~^saK#P=B@^j1*Ry6LU5r+{dXss!Flgo0!G9cn0^!TITgY?&XO&#}y(8EL2R+ zNIj~h&GNqHae#Z81!F9;!~)HX6V&y^KHlTXm78f{&{1kLT`o{T*^r%F_8+d`*eA9uurAHgAWyx$woE&t=wE$kZScE}j1e}Ar(9&Go#w{Wd zw)R)+Q(4Oolo8HVx)V`e#)}>yk0B0DDn>-FGs@B=V4QU6P|xNM-fSB|`Gr`uzKoT3 z`3FzNmif?-@Ude25!!$#$!;D&Ev8Byqu#Y_(aZgjgcf@ z5VapHlfP>pt#H76w2MQLh|YReuA0pw5J=mMjP}5+=u<0J?OEcPRaYZC)QsA)5)9Q_ZK}o@KpXy0dxPs8 zTH&Pgijo*%kEr*nFlqaw45~t&z*hX8O`N%1q#l5bgHb_!ZUH&lwDj&OIZNg$TWJKd zD)L2Kx6=Ora`O32DNat)&O6nSs9KqWi9D%?1EE%?9c5yZGU7RT`ICTXi*HeTNBo2@L*Il&?v}~oM zC^DS|9%977RPs+eRVejM@@)t(YRbf9JMn;OZWcOi7U58@C+aKFbg9IF~K?MU6@(xV~-UbE?L*?M5@wxSlj~OX9tpUI2FcQ z#L*+Nf-w7lK7&8wUX^ibkF^mbY!F>`V2mXSCQmmHH^sFIodFAKIru8Tn*jeYmf=Ub|Z{;72VpCEvl;`v2+}97e3(arFCfJR0<(1gn2z#$tM^)c<)VXc}lQU^CCfk7~$0a0KK=G07)UWR?K!W zsZ}5X4nfC%lB8p6v15<-Kyt-cgWCrf1J;Cvqm7J-Alki17$2a`33AM1A20#K0Hc=2 zBp!ND1Z^y0Nl3a*Kp^bMJx}+!ZhF*&gvfkNsG8-?Xz}0vU1!~0y$BDBkbtp;}9q(Cp~xVrCj93)@DRj#>CDO zk97H|!r#nh2`bGO_X`-p`;HE28Wxh@3FXTYw*{YW!|n3(Kpro*Wa<&S;ZJ(JsQ&yTw&WZ_RB)c03V$ah3n89ADuTGiYb1qH8;oZe#aV^d%3{YG=;jVm-=F425ma((M#kpmCJTjCjN~6$$8j4k z?i>-E^{HZ-P~STTIpFl7;bTu!xh*to#{?Ykde-Ho>b;7Xjt)7lCs}n;k^)8!54CIP zGZ|u$GuRPHFt&$53oGH+j1%6mJWlHk%uxVHVY?%xX+o^9GC9s`nbj`miPj|^V&w9B zRSLv1I;aFw71SNykfyJh*I>tbej@|tI5e(Rh{VoM%sTVZg_mJm_oQ-KU9pZjXEkV9 zG=*5O3OjerE01C+BJ-z9#aLp0m5sHT1=rR^#APduz_Oo8g!!o_-u>7)QQTE265@7I>M}|{d_nZ7R`=v= z5OO%pa&cVz$_Y5fIjiFSKQu;oY;Y*%xVcS{eCIM1WsrXm=}`XwYBPi9KH}Z$K3kS? zv3Nt)g}07nAOpBj%sx_kn~-^Sg>Z94 z#bj*FJ+!J=zu-F5JL8Hy>yzwjBtvlv1(`s{a4O6svyHhp?b?fu#J3mhSY(x7LDHia ztWFoDSdt*=w5R~jKrp{J=BhMHpO=H_K+rVpw>;F=b2Ntor+S5;ks@+=!0A;IZ!C{2 z<2_cVm}wmh5)d}ba(iN@6Sgo21KzM2TZY<6AbSdYS8^kK{E9h+%5C}VgdSU-)nr{p z03;Jwg7XXevyMkyBXfsNyDtrrU#FL**_jt8w(l0krXQPQyWHF;1Z zOTif?rG{B$k7R+BdwpqjK;}4wsUU%lJDM&lSjVzX8npp zAO-M1^b`r2mu~BH%tDyR+`RKk9m-9$T0hpST|KmNDn42G z#?!?uw4c9oBzt+lpe$}%asgg2Ye9Hm#{g$JHJNQFC~=cc)^3*DNxGT3Busxw1bn6O z9^_tl$5feIGMP%L`WojV8Ei4)q`PA+)Y223&d2jKh&Z6KWmUk~+3v&ArbZ(Nw_2`; zo}3z(^b`SV1M_98Ye^rxEKXF6VzA*1%gt?Qi-{B*`p^e;rrbHwh*5(R7XJW%S}+o88n$87y>yAihYQ#97Gy-M^y@oW>JSz zxwpAj&NIk4=x{%sXiY!b738uaHIxx8yYi&^ii~NpJb7>kj||5giob8CMMci&t4^rzY)_F-9DWj@7UIf{=ui{{X6f z6@ki==zS_w8!6OC^Jz34K*p@elpn-7rVTFnUo6LA{t`2hUYT>DO$vRY&DupDdLjWo zQCPP^VJ2dU*>REp&JUsQPnN<{xyQ?*+rA!Gk~SaQO#YQ&G*l3&j_jQFDT7vS_3J2^ z)z%>*^#rn!_+qjyd_W{^vCR=uKZG7CSxW5GTWgCL%ZWsb)MJLGGFj>=xmbOpxzB%k zqZX;O?B6(0dawXeT_vMTB#z_Bob!M%8j)z7Y>YB10l?}&&2C!_(XI_-+3F)^&`@)fwNZHA&`1=`PX~lH3b-Pow&vU&$l4gC2JZwsX#I4E4J{QX}G4q z`-ak|ALLg~9yXe1CL!J@N97+pZ+REXZMn+uMgY&sD~Q%fhg6u5Lop|wxgh@lTJG(E zWsR2HtR(K-2_TKc^v7O0*PnQo&l-}-;k>0$$?uN5_pd^~!g0{twU4r;y2f(L7+m`S z{{ZW%*6c*~%;y2{t)F^>?Y?9Il!LiI_v=$#4baR~fw9$8{sz41GqEFB+_ZDpmLE29 z!`C2+hftAYok-vUS3l?8tFsvz##7i}{b?mrG>%9;b5Pky2{A2VVjLALSLkv@Q@JZ} z$#8iriXYz`W~@L+kokk<#^1t}SqPYpu(86EQ1vuU#(G;5aG5z7;MaGiJddZuj}Vkb zcLtM7eZt4ga^z^R7O^zQaU8P8YQ0nIdXE?zGitEAYBcBxRi;J;ZGVoya-LtRP zjw&>0kyaFnBvv^nLYUt^{f#;JR}ox9=WqJFDyx!7>JJ=tsGNvGqRxXP0Sh0K-v@nq zXP!Ochs=0|oKmYW1_;z~k8-rw?Os%2GbE7>?Yc`Nc4^U4S(QNK^<0yWo1S`f zp&%kcuN(c{*cr&l>^6*1_IZ@<@)|%uQMy8kdY%T}ywC#9@~Q<%6uh$D`8 z6!kJRr)0Z~V{hEXKVAhv<;tOCTYbSu0Po$j^~c>AJt&elK!vU4Be7$GJ&s3TNLp^BG1*n}H&c=((sR5s4#_k)&*Yt$Y_A*bT)`6Ytznu4KYwwgH)Q zo^lOC8$gW2T}W5~mW@<{$4AMa4+i@*@B(DR6W*SJ1_%0+bER0-^& z-^&qkX(FKR%ZhvH*YPgtV#0lB<_i(qF^2_HB#O5p%W#{dQI7bk$R!JeP1P%#woGhb zqpk%tAvlspZqC6~*YPz3(J>4I{lm!3S2BbjI|V;lX_`FcWCWhP(&j6tJw$ zif};wRmjPztWlpbP=6X`ovgyQ88USg{h*aS4??@Y4JcT~6+t=mtSN2;@|~&Q9{H%@ z)FLD@x}V0f#-#6}Iu2HEsb|9H?+(?IePb~>NZ3WwcfA(gCbEec3Xt4@PkOTli7huIGCLFlIL8^I znK9X-l0^37EgL_*Sr-!Qz{-xonR&0-xiJR$f#(CIQn%FYMC8c-03f8;(qrc{nMVhn z^=26)jz6DnJL9RVt#fH|frEpQkf7BInG5I{YbQ>Y7nP#9Oflnkp{o{}su-FtH9>x) znx%MP1&TW0e->(61dSBGhT2~$U9Od4Ra5?Kj zkoiq9X4AVET~DY6s!0@(WXIHX1k-HqmKg~`0+Y>NYxs-q3Z#+NozoSJx=ET<+M%8LKhKh%nju)N$$&&UT5H1oQ@+(I|bS=N#sh!o+d~ zl>CpyKglu0mNduON630pV-C(#xy3t*!{KOSpUf;6n$U+}l^L*ibOy3S0UYG!toeb! z+;B%qR~?PkGKkq^A28$*P}@!$E1a@+toFT^%Q2SY99273bjjRudY@W3gO=v}q{(vc zFa#(BQzW)qwiv)u)7rC=_Cn>4LNIegS8R+asSA~w7aD9bMv6cT2U@DIEJtf5Tl>{0 z)PqJ9hdIq8myv;%KZP8^#4iPdt)fwfMM?OgizJiWm z zzJQEpJ!#DxTTb>OMIfM4T;$ggjk{d45t1{~r?$C(N#DZOxh-5zCT zbLcp#Lrw+-^4WvupzTxX@;D+`GGikkk=B`cbkHiug9VOpnyZ0g7ZElPCMIgdfQ21OkzRZ8i^OTBXb)fn zi#6I5QX8k?U8cFL!KGO|_bfsLIBaz_^FNOKLnn##VQ~DUV4@Fdp(B=;js*+pQ>-AK zY2H$TGtz>H*R@-THv-3{Mdb$HwC5cvXn%G+=mOke3=CyWYg;O-Du>(dYc3}Yz#c1N z5F}l=2a%sz1kGDk#IY76g=`w@^tjCS+m3OLee0jntr}^QBN*h@U!_~@hsq@V?34J^ z%_$*9PAo+tDGL=lB*L&iOjWpE-4-^DN1Gau$=vh)6`^xxlR*{%A+o0ex&3x2H0$J% zFz!?_9kGs;!BUqlr)4^v+8q_V(8~h4@`?`Jj(&!mrFI`CV;V8#Pb;6La+W%glI|G7 z{_1Ahdlhctvzqq(foNsQgN=k&GnI~o2F}g3N4AW~9E_5w+Q1BsI}u#{-nkX_?T~V7NZHi# zah(1&t!Lrb;fxtr~?|ET=m0{|df7-3c zY{s2IJ*XU6%kQ^_Y}%`gjP1`EtJZHM^Qk!lBcZB^r8Tt0GrVUx^%c?CK@>nFE0TI- zbfs&Q!twzw7nVNRt{M{QDqDp=D9dBl(!C2owU)}+BxthI43quQ zU6^<`Ee;y32&K1w+oo=Wl%H12x}LH%#KD?9t~sb-S3<6UZa^*7w=N>0mEeSiXJw z59?VrlK%048B>f`MQYo0j)!%;AI{fBkhnu=tKf=kMq0=l zhK=@;bCo+z2cg?io$61Uv&#oAP-AvE$vHojH_8hnYE=2eWVTlvai6>TQUH!A8Qabw zvGU~L?$0B)wGW)Kd2Tu6MsVN`{je$`VlCye%B>;J!ZEn}e4o~s<|x!FMK%+i{Gdbc zh30@AD=CX)ZzPfLA3PYy{{VcGPIu&O!VLZP7>IsHnn@1$;yzg0gZtyTP&fVa%`u2| zPqZ=_7-w^?6t6*r#REQTjCq9oq=V~IE{k~W`+n|w< z$l3lX=q>CmgvflQ$nT0~o&Kc#YV==x8fb=FxkVP_C;(%%a{A8}QjzIhRp0!3{uRt> z%bQ6v(-cS|b2OpN{p^%B1fe)RAoRUlx{2soVvs&U^0Rzi068LL7q z32q&Bwn}={yKV7;S0gpk_)f|@-7*5oq!K|ScLusK;rk3_qUYGsY_rc+>g5}6?_3et zuqjpM`LfOP4svr{)Vd9_@Ub!CslA1)a_kVQw^BOP+(_hCjB-s#2?)cn;DcR!npL~n zNXnrZRFR70F2>0j26_zsG=?Iv3=eTqM1Dcfy+8*wByI8m=x74KU|b$}=~f-dm5P(a zRZo}<_NxojXBp2l2ytQn%|0`ZfOn>CBp@C5{b|e!FViA`E!kbYySt$qnM(6S*D^df zl#<@nS#iMcQXF|lBvTcHig!iw)ZuZ^Q_}8K00KbAYKR_AMmXz9%AaB=0#7`e4^h^Y(=0{?IG|=l#PX>ldGza5mRAQEIjLn`&fNx0LKg(*t!M)MzR_7xZ;nvsC*)|jIPniCjsPs&bv(`9YE4r$=+ zV@l&9n1+WTcArj;j+ZXQ$Y@GG&?MyNe436$rF!?gZ$1CrQR%p6$ z7${1RR0iXXqv=(?(J0UFPFb?V0ng!zE+#LCu3X#{Sz1K|;fTRMQR`go%eMzLp{U67 zTr;@^n3g1cYK-InGeJnRr%NTO`GK<4wGO3n5Iai8@vI13GLhP@**;V&WQ_Kvgw42h zIf4(~9Ftd4=5M~PNfnPYINDb})n?jxV&R4e>MF>&w;l0y!93DSaO?&+Bd@(>K|bds z3}U8^R>>Q)nnJmvE;it{aZ`;>1dQ|Evz|<#J;!R!^70Pjj!hQ0?#_`f;$!!!W}Yw! z86XVTH)`>#;rRe`ttgK4Wr^~>lsKe5W?Oss0rWnU&+RLBR$bh$T-2~=&|gL;mCD7@ zLiKD`mX8IUwf_M69jrVe=3~=nUrmmTqrSyJaz`A^1uflLtQ1^m(Rt^i2)n`JyXcet)S1b?A53OhG^3A2+dC~~h&PLjU zc3U{lN@6Q+sjcmDR`R6t81?B~!pZXwK~}XSyao>xNSlE7 z=}{z{RltME-I4N|pex%E9#xMArAnCIRgQDWH46|y$6VB~#?EjCaX=Q~URA&+j%%mV zEsp3(9*jq|P|AzW@|86e~;iUe!hNMpK&-ZB9%wa-i(XBE;} zE;%e!k@m8I*N(N$%473gkw*cacYWQBZE2=L135TxoX|7L0Q!S!!3p0GDpa!&~400ib=9G>jjAezzwnFO%d2E+0f2BhARdcc4ECno7#P|$B(b{+vfwM$dh-sUL{yQ?xt!~ifr z&mybBbqj+Uw7{V`4UR|SSv^fsvNs0R1NUlW9^Gn|qa5ES!_({O4w*F$kH|;DN z1-s|gnSRYYYZ|dK0&~w%RFOA1JKIw(poz7W*bESIFNA@1tNW6%>QYK^xzt}s)5ip1u#=*x_dM0zLg{XF=+1KGM(lkn5fy@EiQ5!`5dLPa z+C)_VevUDp#<|-xYCO|T-Q zs9ceq<#NPy1n&2$?I4Okl1dN-44zvYkD$*^I@PO}mPphVVEuU+Q^`Dx^{CyMLac2h zZvDU@008-0^EjXg!=s?g`&B-C^OfzMTc;s;?!Y4Wm1l9i;Ml^`}Y*Y#H|9 z3XQ-XKe~AwQW>x$R&rN3>J*=Cxu6F}5o8-)BweML6!kqprTyBgmRO1bk1zrM0HEWV zMTtDL1|7QyRKNs*?SoOon`TB?7kMCgk&H?B@-aZgl*H4!FWIs(LpDx-;2?2LjT~e~ zkp^S;GFZvSY%j_w9C0$V!FO_SxLhAnNu=8tfP{$(Is1gFsUPokpblQp;eiIP+#JVQ zR>uTZi?-s?#*C)T+=F9QAX z(2DDNfKN;clvIx`@vLB6pG?;ubO>B=itW5|ht4E)&-Jb@`v8zSP>Lxy+^zIAke_&d zRkIf;ewC8EF&_1z5N8!Ya-zKVz_Nvw;ym=))#yvg1M6A6%0!X> z0IIHgR9(7}C-{^RT^JaSu(fnQYK6UssTm#In>6V$)Qk$@E*P2R$7aV`?Da?e!bZJ% z*A*cQ?~#MJnqmypkzl4h>LqLt2^s5yPgcO{Ge~5)!NpjOg+RDCH1xnDp7aQ@ykSWP zuWFMZ^OMLU)}hGSJB-wT;a7}x>L@}Sp+n;*floNtdB+*1AwFry9R*75@)N;6^*|v2 zt_aRX4K$sKyL~aqrxHnFmEd+XppH2M<>`uI8Jsc_ImfLej2T}a-5BPar0-ng7(J>v zcnksl5!!$;rs1k4VtQ2b0L_!@Q8vYKj(Dp>7^9P#Xy-KcY;@^J21b2pfWj~`deS%D zr!eM+jNl&B(1;`$6w#6@Z@oyssK6A&Kvy(_8Rn){%_x9|$>?d^Rtt0t-8ii{M#05a zhy~zPxPD{xE8RtFfJ<6dm#WqO+asdQ-RNM(ADoEgv zNh6#Nv|Tc@hGb$gdK~ji-k>h;Oi~$8H_F5ejFH@$Kq=ZIUY~gK4+He7?n3fef8GYB zmf=GM3;`VDHBM<)<~=drtxyopo&22p)f>$86><4cdW=enAEzQX{C0ih8KDEinC5;+6 zU6Th6hl~;GDm^}BwYl>Hk^$g$s%VtYWYbvB7%>wZdF1A`76@RrXNngfAH1vbw6gZ?$fc)wb> z*2+W?W448hFI=}6$*!}4=b~;X*VWmP*VDltyvY)@7t$H1_VB2{%(65$*88`|nlJOsj zbWIUodqsPAG6XSn2i()u>=!ey8qzc`=9s|$0G_!202<=;Zxz8F<+N6pw&B36OEQcShHidF^=L0-d+a1zeZ3l%J`qpVPfEPw~utvDlfUkE@nxY;x*r;zTim` zBYqkG0PEMA_=4F!%Pi82Dt`_-n)JO=MY_}HWH?m?myWm@uN?88h*IIc!Eb^TgCh=^ z^r@R%x|dG;+8kZfEj!4^uYPK%wvrSw{{Rw=tD4z{2Aq%v9mgM9y#=Oiqi>YXk`^l6 zFh&J=Q(B&+C1i4z@!rQM7;i8GCOvn5`m0|_m08O&FrS_f`quobZdMj$+jo!{4^Du7 zHIrp+BwCWr_(U6+?c|ft3d@w!n&yf$?uMdK%mOM>eI%Dar2!sEEDC@z)ICs$E**ov2SCW}yrADe?#MdTU5Zcn9Sx~Y8R4{CM?1Pl@0yAES;O%^lC z`eb#ciIC^!P%9nekw6MT9`xThsT~QV1H3^3U5K!9068_xHL^rek#Hh>{#Dbgo^C@A ztzl|pCA6x(m`E;M_H+t4XKm#BpZ@?|Seg(lzyp<+XV8jc$V6s5 z=%mSV~6FT9MpH!uUBjSqEQ3TAE^$HwS~y<5&#r z_7Il)>A@c2wKU6|NR7~O)}jyIG@Ne}x`A$Iw*_K~;vc+0Vw(?h!kp9Q--VJ$tKE0|q;F+an7VDV~6d70^J40cYB2-diZr^m!14M^vs1CcBmBeaq4NNC;DdN8dO9V(`a zXEd?2m;p}%J?m90X67x)r&<8r33jY~TgAHMY*tvT z;vKev=k+xavtw!4+|}4duKxhtQ-fS!2WU9PK&eIj<=h*tr)e39>;NBtsLJ!4(_%s> z0Oj#gf(SecXi=VdsXzr-jxaNdLj(hWd(`oPxpV7GK)h}lH8O4f5O_TW0vtdMj)b2| za3NJaer{=Upz^r=Y2mo&IL$B{7$w{0;Erj1any9DL~_F*XE+D7I~XiZ57vPZpjF+t zj1U1m%{&O(a2d!PW`!Uy7zBaNY07yZfJWM(5wKH@xhDj3+LvZSDC@xFds3p2uj(6yCfV07$^(nwBrWNd^ND)jFWs+;fg9SPfyBNaq7I6~wQfyZ}F$ zKjBKt$vDXW0PE9akN2mKnB$E5@lpdu0Atux&bT5OI%sCOo$z8O2Cc30olKg#L8LQMt(+ZtL$>0Ig_OfK4*$Xyt^M_-e+MHX|UADQ(%-OmbF$v1L5h861I6h!WVxG|*i+9142e z1Z}`jCR>S09FE*onAn$HpaQ+UYKfhWHjcGo&Q{!6lRrwW#CIAx$8iQzsOmi{Y8a$} z)=PIP!nj*KT`lAes!~DFk578*w2gk+?SyXXl6oG7vT?CjC)RYWAH-?5R)fmA0}FE> z3_iZK=X&RX^-Ucb;spD3pH-G0y^r>my)x!4<8tF3qO;DSai#{WpKOz1!#Cg^K0EPTld_cRN(@wVj z7&r6uIILsvv6+~g?KdRkosXRTYp2vN?{6nE&gDZNm2-hrGax_fG4yIzXm&Zdz7|{@ z2&J%-1NbE>e^F7Ng?g|G(8iDc%Fd>`W|~DmEQg;%P5X7sXDc&<*yf)wSmk8+W#TZn zT`G3^I-l!VSHBEAKoGIgE)?gJftv1S*Y6+%E$gBF_U>yc=f%31myJ^4y|>V$!K2M@ zJRPlDP9u*`xo7FO%Q?+$X#W5Vd{KO%<+YB^BhLBU5(oREn(ef&72M5vPg#E+(vHlDGHR&2%oEA3g z4V)2M#Jv(E3O^xP8gGq!J*Y*zUo0)ui8!gQykX({G|ZZvx#Oa^C-SIwV>$?!t7rMw zL1T0pA(93<^Ik^(01+a*xG{KlPQBG8^@#{k^<&bswD0&x@1l}TYFIS*n;5pY`QIMy zdVUmydUW^DK*UcfAsvfzR4zP6YXUrr4a=f(&E&GE_sPJnGEH6`Ec}CzKJn!Kb;|gg z#g{s)enQIs0B0QS&jkC_xmc*e?Cv!`h;k8&U?Plg7!plj&Eq**Upc0BoOEV8zn@Cr zjI2gUIQOWSsW}7#SUJg^3Ytft-uy$=CbE{pn8sjf*K5qb%5prS}X+~eiR>w{G8BMmqTk_9YX06Y=j^{uO$U|pU@ zF5X*hOkgerQkmu;Ld2_N5aD@W#-hdCh6OXW_sGcVyzZ@?HrhDj9#W788;Jh3M`GGB zjKqU?I0q*u+P18V$`zSaRB!@}R^YhE{{T>`KkvN%04mkFm1iU$n++yCff%k@ z!WIiVwnE?m^sc8yw+&|U{{VZ|yw`W3=xDVnLJhr?d}JA2Tj)T=L@kVw`5}+Xf~WAU z=e0v@s8{cj!|)lZ_R#EKGmN8RvXmK7nnpmgcHNQpuzt0prs>0K=Z(s_h%^Rr4Yle13g66=hvRmRq7EV(eZJ2qV7!ew8Ao z*^$*4?K`(118>*46&%q#QJD$y&?p~thzZZ8a!=u2#1*2CE^h2)tc6GJ?igdAE;a%` zesfY4ar?$ZCpipA$I_N$k~UExx!c`#?Lsle(YRC*!lerdIUt4%+1=;~+;Lh6d&WS_ zh={62Imrj6$=E2z`iAB9O4$S#idB&qMiCXJ}(1TF1SaV{B~%=f3P_kSsz#q1G<=QII~I z^gguKcn;9hml-Xz9Ql2?6agq`)+K$2xqmNz2N~=}%;K9YN+Xg(6j>+ls|gg3%jN4$ zH!(bsEOW|S7h@zO7REpUhi)oxvEhl31SA8rlvDNQfFo#QF3R>$5(15k>T~P!V~T}B z?vTci2-Fd=ag{x?am_u%W;H!3M!}MlhU-Wd?yv9jm*n; z6UdR43Oeyw8a}BVmGE~~aLa%NYh8GbJBw?Gp^N8bCWo`@z5U2pJ zIX&}Szl!ABa<<_R0KRVF)a2tIrFB|xS#7}Smc9CfE44xb|-0OO9d=n!r_IL2st0wSC5Z5^qHCyLOT%2s7D zfwcEESILkwqbc5_BvdMqW%9E&SjU-zON;?iv@%F{Y{3SY=vBaPOp#hCCPPJckDdo= zjHysPNULj>EP!*4YB^weF|-_tyP;}PbIvh91Pq$9EG~#QCMln0l10LUnq0^%#;is6 zds95KoQ^8m*-VFTCq2bmT|5vD;&D+bi4>sOp9~GS7UWaz6eudZoObl9lDZ=8BL}8x zo#HfdJ1#b|BIiElrZRE~D-7InI5{2aJ;bwQatP~E4oJgy0-_^uIp}+4sF4^II0W*4 zr9{P)xzA1f{s0P@`C>sh!TfquEC=rZE#F}qfvK&mWoH{#HF+UI2p^p~ z+`JF+oYe@1ODO_;%Zkgnw~-iQj2}wutsl>e5`YaotfQ5FWy#F~xyM@WQ?^bRbgg?2 z^{NQ#T9fG(@-nboFsRbRsL2I(^yZos$!4<*tZ*_$1yySTu#M-RQPfuLj7uT_&COYt zPtHg@Vw%)fGAyrd?bBl2$jjJ2IH%mtHP9kS6rW*=eD*R&$|xeU?gImyV;yl$$X6}d zS;C`x4bl$mb6$b){@q(k)Tayk(BVP!09TF6cOyFlat3SJJ`J&(!dGRo?j|7mo+?}D zI~^B@wG^_m0Jx8E$s?&A)#ZBjt$5O~wuq`@Ic`a<+v9ntYEwP;5+s-jjud(de734% zV89-IDWpx#GyO6~0gD1^L2UWUNsue2dr=t=fJbp%XNJ5J9l#e_sybW0NP)p&?@fiz zIMTGc?MCE9r=-^t9x)gvA74uB?EVyLQUG;3`)e48`L{7<{+O>xNiDQ{QE#Q&MQsxC zgis0kn&ma!N@?BD%l`lY9FtN#Oy>Ay;K(7{sd$F+SN{N}PNN^8s^j6GfXN}y>7DAHyq+GmOFjHo_SBx5J?YR1-n z6YA65G|=2>*Q`L{CD>2kf5x$|HFZGZ5(&=(ZD)VNMXf`Rup=St+>Cxy#baGQ9&2c& zE;RU}UWCfy`Hac4CndAEivvv2k`gX=fWqQ`)PC_p6>2&^0|}Jh|t2JSX%A~*8p?LIcewQW)^CM8 zKXYM!_MKia11I{pNF}rCYpb}0?p1;|Guzgbn5}kHySDS@kupRJv~EAggUPEBoP?4* z?vQbw*a!S6OfUP$gMx@aE_zcfi`m|}k#}T;1E|0}{{TA0>dh9w&hu?~Tg!}%#c`a9 zMOT$~2M!o*Q;u4kA&|IsRWTB9I%C`EPDe=9l6!!XAtYm4oT<)gNkK%;ap-+1 z1Z1DxoDQ`<8yw(_S82*Xrahx1XWFGzQU*pvDTxTc#Ym%Q$65f9Sx*%tax14e1aNAm z&zmZFr6A<=$)E{}?L2h!tleibL{XG%$R@80S_8?D@XW~OTBsJk(Z zIV5(*>3sb%GDq(nhvBlb;nWg0og^5mCHJFq*{w!4I?4ozq6 zUClj`wuhtrrZ+0&kicPB8e@nPe47y@W?20BskQ-+;NX?oc(FCBJLS@jA_-0!5{eVN&u5{Ab&Dx6DpxejD-IHfgb*y zDP&|Mk-joGN7!yd87d>)ooSzG*ulv=}!NtEH-lU3WDdSZA$v)NQ+Pos;N}AZP z4#XADsIN}(mOjpL{oL1?>I=D)8a4zPW}$Cj3}QJ1H~~je4|=n8t=q|KGRGXHo;FdD z$0HS#!)W?aJZFMP1B?or7jrL5wrJ5_L6#hIPtt8(#?#N^R-|p5_RkoncwTtJ zU+#4oW#FD_o9YPAOH0+Xei09GxGqwNT&rSN*F$gY5+Dg%xURJSD& z^?saGh(1G_XwL4Gy;$Vq3Qj2unLuK=?NcZlh{yz-4{DXTlQ|inLzgVL`E!xa z<5DOjkV>3qr+S44$WKm1J}j1CGv260h2(&GH#EhMcI~{g5z?fIPu?T$p#1Yw6pspa z5;6QI1k(`3w0eX~gMDUop+f@3(r9Oj7CV(>sqH zGsPRgRY8og0P|6u%*rv)vkGKjiPxT8#VI`p9nOx*;UHB@wPuTG`Io3Zm7^S1vlWsI z7Cko%aaFCOisBF(8@A&E)~v~=Zi{T0!Qk`FdF{KMiD)`)GB<6)Gq`$ms3g&#lxNEu zvCxW+(@twyOi{F(3Cgxl*wCV-Wrjc@!x$DD zT9`w5JYk}{BiN{8RZ%2aO5DvPV>}c%%~v~N%7=?PSr=^3kv1?%85K>V7J!I+vlu+C z1!-N_M?4rp(kbin8q519**HW22k_B$7DX%BqIOk6`_EC11!u_x$;nAd1K+O|t#LKE z+(;3D$t}PYmo4HDO{}Wm_Z*6}#K>gCYy&Ri>T12)fTlLdAgE#KlRz_v5>5sOOi^@= zB#y(9HAFEY-5D4; zIjw71o7S`K?W8Y*(DPQ~f>_2t%>=VXHyI#|(~9oobni{I4E$r9Rf80Pcof7!6b1!& z$2FlH+7-hdYdK+(O~4LCHQ<#P0y#dE&>BwbAO&-p%G6*x9fnUF)`g&cHxAWeXtyuS zyc%LW+U_A7e@ofBQ`L7t24vs@#`?E25&A! zVn?TXi7OPH(d;^;5J{-bBn%lP!>I$>tC$ooAXYHEYgKPFkV78%z|BdfUbeNV!KT`= zY2|Kl*?XGNJqbH61?UTXa@V&3O}u=fk<`~|bBr8tsy|BCveV}F zx6;R*I?$ANUDB}ZzMqXw*aPGc{OBsQpwN;L!V}@rX=V)bg5P~QNhTk$`?5} zyf0-8!IlxYcdLU$h+q{_*l}GMRDJ;DQ(oV4kbCr}U^%OeCk)C$wgv&Lw$n^Zeq0Ld zOfMT?f<-b*ZQ!w9v{*+AKAf`3H;k$E8LaF701ZPcVL%@EuJqYp=NTrUn$=EKh7C=J zbINW!FnrV1Sf5U{+xR2lwY-}zbue}*%E!}p)~!g2x{MJ6mM_2}y&eZhE!H#10LAuEcWscgtEEoii%4}9gIfAn+_NS%S<)@3`@S8I<^cUEqBFZ< zWs50ndY|%ZUKj)n0}qhnBlG_N8p)A_5+k3OuN`rbnoR^q?n^R|01TKI>IkYL=KzTd zNPmS-II7pTY-Nx_-zv5;IUnbmlFbaHGYkREL{~hljbFPPv!&A)Wx5t1Gjc%fSB=0Q zF51Y0axfX-*0eCJsyh+Qdhh_?Kp(%4DzW9xT+ZNblN*U(Po+-<+F&VuzO@Y2s+^8^ zs^$a9v5bT6YQBwVBeved86?-0T8nc%Ds@tYg|ySw zNKuISkwVq`eKj$(uO_b8qAiSUF_#<1=l=lKt4zrmiO&F$pQdVkiWjtO&wVstWkJUV zsmr2mmvnzAu8}2;rcg-vxT$4~D}(D(>`_XiF)Xc2YD0GIS4QO-UzF8?0-ltikep;! zt3_HU^Xj|Et-fC4KJ?X(I@|5ET81|)TnPVGWf%Q^Bsj*ioz*b2dn3dQZ06&Ov{?`=Lc*%AP zwa>~JCP*3d2CS1Yia?S&mnU}6Nk2iJywn6Rw<#sf;b1eoBLX4!g5c?n4X8lSo4yq15FG{{V8LaB&<`OE4$1ra>qB zqoo5J!O>tvhAqdPt})ZP|;B`!spvpZn^a>?IhgE>+m3J7Z%o%kY!8x8ZP={EwLrm!aw|&Db4JnNmd<{Z zAv2!wcpqjwakPr_3!jJ29NoV2Bzsw>1ztL;fj5^}Di{e_*x%Z)hG5OpDFsU+noOY*`JF|||MlyTm zkwlRLzXytxDQO73jB*EF25B9FB8eMr1^^hQvM)-{h7ChU-t;>KpC)JT(p~EgUFDd`DodwZvOzZH-Dth8Oh`bvB&3EZtpCm z$aVr>?tz?sHJvTgu_-p{P7u%L^`i$1;Dj&{d*Y6d%5mYq7xS2YPMs9(xR9=1vFWNG6Rz#u4*@?NFJ7#4$UY zcm(?3S40kZjU`A0N&CcSKGe+caxi|iBdFW#Sdcw@rtBA^x=)yA)~-ZG+HApDg#cK$ zMP&eX6*5J&!Ot}u1Ob(;7_H`+2bB{O*yD<5O_2n{hEBce)F?NCz!UFQwEY_HS$T-; z$8IaAwD8!#-3u#YsWoX_%2G!(u@)m@^z^CL865DWeihwV=y5~`3Q6l%(?&%&ToLrD z-hGsKk>X#oqi%XV{gyr#Z`zoDBugvBif`@ ze4aB}D-hrwwI~Rqpv^l0N;CwFPP>tjF-h%<=}2qYOA!0RFVyDYayW8jw!ynAWj*({EgEZ@zI|O_idE zf^qe$8gGYSwgb&}c@G=93f7LsG~jlw%smc8ce&4Aw?2zwI9STAq!ny-?^Z!5Fa{5` zXnAa-0B01>EDlJnqnLqYDlq(td#q#(4ELlcTR9w28WbG!&mT$vpy&k52*UOvqmoBR zitgMqkZVFjEN}-ELTER!2cVz`+?I^Cd8T>N1sEp>wK)I)sOPb#tZI1OgFp!!ip&Vk zYSO!_t_}xEi^%~$+8ydx8!OE)CAiGC?g^~MxezNS04V42>01oJpkM&bD~i|Tk#{O* zlg)8rUoNLs9z4#*<(8td!5nJbC@2Twf5xlLs=GAlCQ9xbeX&@YU9{=}9ANGhzXp_L zeaths=bH1SIX#Zm2uE?Z8mx=v0n`w{ir3S%^t@C_8w|W0_V=o9qX`ZG$;D<}>9SZ$ z=B`TgH9Yf+FP0KkM{=wsT#kpDhFA+e~%W=uO&{d$|jAx%}#c4iZaaIyWRs{6=(gNhs zZeBnj_QhA^GK9ofU^irw^x6h0baMDP$e`f17-pr!tCgiijOC>XESV*gj6c`Xm?K6a zAtDU6Jg}#0;CEwIrHNHYRb8j5fG}#Cv&zZ~ugj7WRV<_F%|)zL$&up=CzXs00=`KL z$;Skfp7hp=+%R0llZ+jMj(X?m+Me6Ou`nxxP!@(f@qX+b?Ja8~6RTyx1^{!K>+g}xHdyebZ_Sy&dP~Ioj zRmLxz=dlC)D;*H^>?wBUPP}G-HQU76$iNr!f#0D1l%vG@$mi{|emMUC3dq19oxq-y z;H0ii0BesE>l_xoatXl7jz3D4FBIzF0@Fr${y4$@SgbZ*ka5l^P^Cv)_55j|Htsx6 ztI7cTQBZlpC|b;)P`|j0iLWkMIuK+((xdXhhy%tu(jxxqMdtyI4Im+S{#+;@N|$CA z2dTw8g~8|2lqo#t(tsh7GPnTqNT@-{>rymeeA|f>;4wfQFNJQ=?f%SUP|C!GC!AMT zZIP8V<@Vzj2+DBT7{z*BitdaOPfuD+0i^>4a8E&0?&U*p?rCR2h)R>1&$t1_13-Mcxg;_{r*U;1wX^p*E%YB#*0+Yp3x4qTH)5mcYp^S34+^l`- z)S9i_PquwObVsC-%bb09rUR}tm?jF$8b#Zc`H23tUK#z3E-dWQ%`xQ3vzVJ zc$D@tKNViy?@^pAclMDar>~aBnk)q0+0j`!YjOze2O^=KRCOlc?Q_7#BA~pn)TJP$ z>9jy|h|{0U)FLDevg%i3kM)PHX@Q@2a{ywIOOkp4$*jAn?iyb#;6^(7*2~yJnUd91 zj=PUq$Go4)VxQ|D=~jtl3&f2RAdK~*B?c&Q_luss%T@2vMfsgDI`V4VLv#>ebS!xP z0CZPWHaX@Jk{BG4dBF9iou_iH4hKy1=AS1LHhnnvq&@IPI}zKO(1Bn(fmKnG-49G+ ztH=JZC>#fjXY0*P4>5*pug{!*2BA*=A5WPAF%_9Qzg)SuLEbZ3e<|^ z6&Z*i&q|f9ILI0LRS3t1>QrS*n9f_F9OA6wg3F(-YShF_$WRSM79fxpJD0ei3c-nB z4H)03Ch7+vqhdOO1r`gN$#`%mU^YC(JdTuxaE*?}vEvs;V5TP9xb*K(T-@A#^JH)Bkwt*$e$$1{c@%=^I`Y5~ z*wzeJzF^#bR$j)OZW3OnYZ?IDS(U~C8>tD;PNTJBFr63u9}e9`EO&Ft*penmfc)sN zi?Uvbi6w9W=A@9UiXJko4>=W9awb9NC{`nqJJw4{J)DK0+|l&)pk>Rfr0C(Wp!~v_ zIee*)9^#^&KnKF4Dt0q`wU?jIY zl=4A5)Mn;ec@zLkdI|vPM7xynk827H0-cLJ@K3?Ln ztpy}&N=`3AJ8Kn*I34j@a72Mra5&9VRtf+=!gEY}rN;{~@q z7*b$pvH5nMwG5~i<`l%0WEl-as>L(g6q*_#loJP+5=dJ-Fmfs6=htia<5<#z!>d2jv)`o$MPqQRz~EeqEfJ0Bb1Z zVv$u<&!s%%5*Shi8ZU%&ib#VpHuAacflp}jA2TE0xEtMQr$b`shd?F55AX3F%3VGq#g~&1T+$RMgJXI)WHy(2C5| z9#vD89Xkp`F*RZGwPI}A;GO_IeQMP5$tBdGj#L4GQ8Q(f6v)V`LKvX#Z%w$xG%;P> zI@E$-Km#2JIr`KNyP2}s$nDtE5a|ytxaN}w89iyrol6o=zj{VSKXk9Q?Ee5t02F+q zB!iq{orA|Czb2co00BInDf>Xi9|!3`g+&ENIW;>f1!0^VdS;`IJq;5~yGd3m0OWV3 zB55XA@D!ChI*P7bx{Q)@ib6(Y%XMA>9Vx4gxXwOY?IWq61Y`=>Yz$zG8ntH^nQ{;E@M{pjT@tV$`M~-8? zV~n^RdK2xMWzLUpa}uaVR#Bhzhd=##E(Q4``yy_QLnu8Os@=~7k?&?mn0MXMnQv=p z8SB1!CVtIA-$*0G^A*Tu5eR^z9(>$1VIs)w^deZ35?w$#H8!mISe~m@~Rs?~ZgZlpf_36Xr$8nBEedz~3PyYa2Xk-XK(VrL} zKOgtc{{UK|4Y`LnCPn0byH1lL6OsV=k0&3)NURf_3@m_tOH>79;uZ5c`9mCc$)YYL zap{Uzaj>or%7Ff4(nW@m&mDVE1+@38R_pVRN~<4Qy9ggG0AG)w#cFAdwp2aAtlMx- zc;HpLX-sk{1EHV~K}GW+jTfolpGtz+q_nu1O1r81r_&wHSG2v%3$Xmma0Ocq?HqB) zO6_gU@9kP6HjS+o?9Si3INCc`M{TG?h!;6vFe{JJL(ebnzzY1c5!2~iMxUm_5J@gs zw{^}jR+$X6w<2c1Mn0ybj^v|l^4lk+Y1%-GlF9&DrFk+X%u*`!Zfc1t$uy4JQCKkQ z4NK%rDhTw8>O(%SNLFdrbp&=!a$2bQx z$rLF<6p_@>1qhYR*4GD`&}}@jFPZCrY4-4-mwNI@<2|b3jlxES^4Q!c13m4dgK6^y z-k2t;PYQW^Io^76TQNkh401>TJILwjRqq-!c4CS$#fQ>?hr$gwzP+sKPP|99*$=-Z zzomM`a=#BPKF#6Ol&;6Rk*)~;0C@5GS5-n0m*P94XQEzCygEj9{Z9k=*O^AHkVcL` z_4hT|d_%i2+1c8t&)OyD=mu+zeZkr@&eNIzcnok5aZG5X^8;BTI26;4ZU-Ofh=1GeJ0%EQp61B+K?5VSnZrSkZkp-hOMTA-trIu#&(?6eAdS8Qdr89$=ZD? zdz&btw2oF)+;frzAT2%3ozz*iWMhnQ-79B8fc=QEAnyJl+OQ+jqFsd-V>kza)SBxo z);n87iFioHe;UfGvNWc(A>>Tp@_j2SQUzpYB>mn!s{GSqQULVXyyM!lbtf}vhE4%_ z0Q@mtU0qK4XsnW-Ar+7M&zOD{ui@#xdZ6?bfS|N?Kz-%SbQTtF@vu+>5yAAOhl`Za zRoaXWf@tHAg-|h`wUvEgoRn--7Vu3PfsNzVPKoHx=s~!-Ndgip@4Dl{bDjR!i6i~5B2_212Sy9v}`A?-Gl_w%8Lb&9g zl={|-K;qe71wk1dkLOKvg_Jw?>6&zxMn%9}DCttr(>_d#VI9X|ij!ipNrG|*^`t;p z514Ri=$|WcFa}P2Yl!V6MN$EeIoxs$D+Un;1E*Y4TLHW8553lxINWyy9_NYxQV#zB zl=T%L4plJ2E7u)q2sy~W$2owaY^ z1FlIYKGZQIvR-2ttgTP(x6-vE&dgSA`fkXmDC8wvO)0^_s2$&U%MuTAIjv1jF%VEV z$>y?KJAv#4P_97akOK^iflpObI0I_PImR73lF`{ zX#h|g``+}xYOi6?W~6VJp#bM6CYU?+^rtg&f4ZkRphMRs&po{_ako;Nu+Tt=T`9 zc&xozU4(lPRW`n4QU@SlXFcl8v1qU3`FL3}Mm?%$u~6LU#k@?Y_|7<~tds2TAh&q{ zZ<{&DKZQb~Sp3F?@Y`}Y$g2_Fh+z#pEsndR8Ry(rp3bqcz1(t0#&L#kl^HXE&w5+A zZ`F6f9kFrFc^Rpi`rVL;K}E(xvf*k$bpZe@vAW}`wrBz+dzqp8k%s;yQPkCA74#0w z(ll@$$^olF_SIZT9nM$LFmq8)sY2-9de5}>`irvjrHShp$2CmeD7KmB@BlBz*GZUgbAI}sm4)v!K*3ZW4Ke7QKs z-5eT7xF@IKP9rLI?msuD6emm(gPH)b2;?5sp$db@;}xA3BDF1Zw9p0HZ0851I!9=T zC~$pgmgA{8&S}>`F#>^`{v5dtbPdCD2Nl-{qc(wbk8ZAgWjOibqAPil#oXNQhkMlvq*)DXLfxvR){a!+?eK! z6>Jv!)o4zucOaaS9OpHZ_YCTSA-X}^rB#`(W|{)T4oZ+dl*DRXOpI8A#^N`7RQ9vQ zEJ!=_tV?u}q1w;MY!w}<)Ofa45(2r(H!Z4(Dyuk=iR_c?ga%>Pi0q3YHs-se$to z2;DY{lfqC7-x(~7pCz0|Qcw5K1N6;H*k`F(z?Qbq!x+SIphW}F3bUGp4itM*83Kl8 zI8ZWbQwtt-9=|CFW83QT6Z16Ms z(8>}1Mg*1Ie+tBpRhD8r&8A0O4mx6+DVEq742PZo^`H&S*kloc00$ z7?O5{Tn=%9bJDA=(%W1Tqjomu=|CExcTR}Fp`sFYV70yiyPWIgP&_hKJP1 zkPnoI@}&380BGf;jntA;8_idYMGO!YY>;xtJRX1jRRzWV!Wl>jBH;Us*ExTBVp3S0 zryz6Eftt7IXB(l($v9!@S+`bZFv?fW1#(>V2C`RCokrN@C+e7vJ-x(pmPa2s zUgo7h*bW$QcH*g``TkqL6`vSAs=S6(3Wsnzvp|gmWM`29;XuLq(`2@6FpY`A;cGfM zqKnLqVn|_tM_SagcaS7RfZ`xI^x}{Tvu$NYY)C*E^{8Is48ewXWMj~dm0JA?lm-6) zSePZdf1WB5tsrJ3jmkEkdH{Z-a;!&}%iym+TFajJ{h`kA7lHw*H`2Ir?8QqAeQPn~ z*rnZ$anR5*%=(*)smbI87#{U@-&i6Y-B^q=`&U0L)NF+02K5yi%Y+DwIO=EvpgNI? zMVWtgxY_~q>sBSz(ZpV4g_EiDu2(WLkCd|>I`AqHF3WbplB2HPX#wcgT7t_WIc>~N z20MG!rRBkn1a6_573I1Y8DEvN#}!}uLD9U{XOQ*VoL8rXqsXp#)#~%R9cZ2*ADI6DD3EX) zwNsUGC@Mi=i~(Gq_Or-#s&4}%t2qQx!+#=OEQGfl?FT=tb{ywe5;*~v0Zut4pg_!w zVo#8sx$9J5)D@v~ag;KWKpc$ssMdG6vO{YrRmR?V%^)^yvm`FZ83z>T_bDSeTE(}P zXk8He!_(HSNj$*ihu%Fi(wG`TISxvbfI8Eoj54r(Nb6N}?NM$cRgx{4$l{Vq%v{L5 z6yS3}68)7D=>;Z(KC^^ zxa&~NS#o>#q{feyVnV(0Gt^Ye7%#Nsf)4;yc-WFUWsX3p&H&>%=dEy^1}gN$)_I(m7sLK|Om_i!iHsY}w_QkJ75h*hMNchR?M+&O`Rd17!T* z@|9Bccr|VwQmS4Ll++@b&1)y*Ufk9|z<#{ewyrlu!``vm8_2=PJk>H# z)c|00B9j2gj`bVz0qk*8Z5z+8S_TAwsxnOkZshYu0LMLP%mOY>Fgo)<2u8re1+Y5M zm{oiNa>V;~rxrl3w2nr4`_eWP{HKmhGDqZ>CvfO8DUX7#z=45`9<-fEC77m~`Ta4i$jlP{54y&vQv4ax8-W4Pi+`w_vVxoHvJDn^=pnb}_;U|x3(6ycxBo;te=WB6_ z%!1>}#CI7Hlk%_~KDB&WK_(@Q!*<~It_Qi;TKgk{KZ7Na@&A{HCV~u zV}VuQNsclkiJg5_T!Hn)C)lTngpo-rMo-MFb3hVHrS|5advR&6?hF1GMc7VCMtxH??Ek$*{408INA|s`A{v z=YX>g*ptnkm&&n|wTg<- zk3MUYjuQZVGhI;F!l4@y&PW|b4;^Ss?e#dvPhmqbNQX>;o(~-A)2hazX1)k#m&?1*LF*3{*pm4A2Frvz*qosRfp@V(PW4Z@>pM4ADVN*~l$V zKu8#=;EQ~!7~p!)17n2AAPOsYOF;y=lx|VlnQv|m$Bc8_R-AE}nlw}#=RVa)mdlp1 zNp&LyK#0RTy$7{!X%;?d+FNKCb6K`7i6B%5Xipjr{fN)Agqr6gE{MIJfsM+gppKXhkCN5RE5bhk-3QJSYqxe zE-S@F)& zCe|4Pr?o`aqB&Y8BnDB)??4(?k+h1aer4om(x{6_V`O(D%~DS9QHqBD08}yIVg!uj znyBw_dM6)RW|?F=q#Ka+?b4~MlwoZ; z5FJh%)CvG#WV?j23ttBm6sg|pc&9Lo-MUvN6v! z$r+O4GR4$z4{ZBY%R7n1!y(8d`gWj3sg5}m72CYA8++ArEQog;g1Jokk5AH=v4)jp zELKg#oOH!#Op%??fUZCeq;r#;QW=e@7MeDd9Q>o8HAUyShz52T+zN#~D((4bJmpcG z0iSL;tXr_gKfko@=|B+OPR>*_F#~~AWPmZ+*(0$u`;F`KD9V$;s?yHkH>o)k0R`2A zu0%whxXnQl$dV_TxE&5E!t=D z+i~*^$ZiJ#aqF5TJc>u$+qnKzeR(VkQel|sVb?H3@R z;3+NZoL5k`infrvah=RQd>(V}`A{Q0?j{ff5v#H}Qg>snImJ(6CM_Hb35+OU2ss>6 z<%A(*L|_*T&C{<+qSn_CTewLWN67>pahd?sd8D_K1y$r)bef7i+Qg?A>T3o4a;uhG&bCZ?!sg4=)r;<%VN;HQG#PQBWN(z@9L2Qvo zL)A%O5DbyY&jOl8$k{Lt&JOC5BByIEPaVe;-J=I^{vdkO0!aoW90nsJBAPJ&05&-t z4Lz_vZim;kNp9-$0$4D?`=cDw0fkAEp2Tu!L6y%K+IjcQPo7%<76nKoeste75;h>m z%n0r4NCa>bcH(yrS{$rkjF#$8J$b#$rk^F{fh$O(@l6hQz z`l*I*n6!I_JNGn?Cg8^-IO$ARA#g|LC;_t^tbBE1c<4By1B<9hJZ|q!&Qu=2_NbKN zRVSbz^Yx|&quMEGat9S!`ZKY&R_22ceK;2#dK#&%LKZg1rA@3WoCdEbA1A4-#b9J5 zm%neNTh;iwLV9lIsz$)G4*8}sEx`82tvf$C_of4rf^nKqqjAd>3fzZ=%yyH2~B+(aB+ZgFXhX}+RE?0s%pa(lE2?SXKZZg#jtf5!~gYV8wJpTY5 zLXMsDoYYc{#kd3k)4c#c8}4La2n839#MQeMX1a*h~O)ArrcZEwWyLkqqYxGO%mPt-b*w# z@s4-Ocm4o&s`oZ*xs%Ki1Jsehri9F^sZF{7u0n&*p0$~F(_9uY0J!w6JCSZ9JEBD$ zbBe^el{#8TdFz8(M21w15vWEOgS6+LTDOoB2a*$$*PM2$FoG_Dm}eoocg1KtU`BT2 ze7*ja*$s|q?lh1QcMR<#aP8Wln?7`ehHh{=W0vnzJ_3MGTq*kSIH(!EX91Le0Oa?{ z>sCPZ`Bibw(1V{&X|ZLLh8*lg;PH*etw;#RJQ5Uh>kaMehH%naziCw@N)+|Zzn9X!FE=O^om%d-jtmtYP!6?Wcp1Y>c@>?+X=+=WyV zD&V&A0LMzVZuoXN#CXR8y>shw;$8XR_Ny>l=2lY8wZBTTS~a7XLXeHzo;r4`P{_8< z@*@y7w;1BEV@WPZkb*Es1J~ZRtYh*bEpT@X9EuQxOUW-G01TnW7{x^-(ganE6=ggT zS1gt_Vonm=$C35zNUp237!9%Y_s?2lAS)xpuFeSE$_lPekf|E{z-B^y{VHELOC%mb zf|3)thhb35Hp_=XI4gxXpbWXs_JYM~zz4XM5D#K`{F6h6DAc+Q6+So2T0_Q){y*AtCbpZ34 z@oyE}NqgcgT16qFHzib$MHm8{1jboNQHr_9Ju6MFViw_L85NN93PM)RSXWy@Cm3!wAv7WFwpk$ybW0}dY;Eqj6M=jQ1gMnBdtks406M`#!E5Ub5$hM zU}DBK3h|~%9Y~-JBYgu90+87_{ApJ8N)?QOu=9$_)9oWRW>StHb`UY`>s4gDeKuny z%t4PvKzn-72U!a`G;W`9*Pmlgo<^O1T=|<$4r;!YeFV1gvK_!5mv?`yXk2YjRg=qN zamT$e5I{;>pe$qCji>q3E<#*OZ0#d63CL#7c&jo+y9~oP>58p93m|VNa^z>~d(r`u z*KDCzZaX0~xst)0+O6J}fT&!6j06`<6$2AAoq|VUz9jF;pSu0=zC-Q69pC3}ZP4uUz>!jU5z> z;GX%VhfjGt)H3V?=2PpMclKksV-{Or2b0!-76_!b1yCy>IT<~xUr28{ee)1_$I__S z$BDfg_?3-oSXv|7d2z7wH*xx!1Y0veEo9vp$>4r9r*v(WNM?xTf&y3E5my8UEBG99lWXQTQZoT+?NTrDp^VO^rT5G ziP!3~4&K+bS^ZU*LGD;-5tlv*p|8H9t_bf@cjd4_pqvT`8KLZ5&C098;@fjL}A zMF2Wx8}_N-`&7zhRUT82eX)v;7}iAPhJ7j-Vk?syF& z(8qBqM`7NpZk51gCCKhiH9QX@hUa67KsoF@wJgJM&T&(HnNa}+KsnA14O_HnXSZGW z9{#ly`crv?jF87T9Mb|dxR%?LC#PJ}#Nu{Pua;nPGt!$Cqd_S~EXu;mls+YCFjE=e3g|3#K%^wYAh1)%N~JUlZ!-Ltk(8c!s@K-+msZZ12v`>s z2rc#pIP}(selkLyN7k5!9n9rNTq|Ty6~P3s9I(OeDmfUe#15qgBkN64a@o%W z;(?BoDZnG^QOI)HBp-ZI=jO+H3#s5xA=w)U40~i_y)Y0|f_e89BapEiV;@?Hc@zNP z0FN0p1Lycgc&icozhH(;E0rU$d=%d<(gAH-t>{#8R-T*hldNMPD!vEv?E z{{Skftc=8Pdr-+dvtAoy82<3*@v4jW+^Xj-*0elCgCus(HJp-#kOw2?J*r9}f0=g< zGt={@bDWISQWgwQa0Y)vQXJ*F(-9!;k}3O`^c>VG4&3z_>+ez_C$AjzrUPF)AN{ZK zsR!L{-**J@Lyk{C$0QHNn!_0#`Tb}Ru?0K-019z$-I3Js*Qure0m#V(M{08^MLA!7 zde8)Mu>InN0P*!SZ)Fkz>^9^2)08s1Z@>f&ao37EZyClw#V`{)C4Kqk2V~@85E5nu>anN6IsVcU!p61n0e2TdjpW*vf;( z>~*SBp^Ij^@^9`!l!>c?j7V`WoOm$;_716=#)Hjy`Tb3LYq11NVD@ z<1NJ_+Cw~Sk|59bg+#UxNfSjpWw^mP>p%$m5q4b^j2`H7#b^Dh8+ZN1%yJ_0vwtS8 zLt_oQk+3X1lRYW3+uBCnbOJr={6iTO0Yd)jD~PwHyoyh9wVN7T$XG9O>;bx7`@6TUE)a8Z@A6Hx;7}NCUlR z!Z_x%p*SFpv>~$8OO?xZt9I`DR^4zicYRG%joFR|L0Z~GM&TqN0LjQFzqL{%Y;Jtb z`&cURoOP*u$rX81lEa^B(T>&C6qa43z$$67#(5ujXBB9M%X(S!goUx5g0*d@NLMmN zxNh6{))J|Q8wpdK)}jWMEy}=?+La0eEOJ+hWUD9vVgDcYmv+%A z61fMGMIo0wD{hkbg7)P`1W<^_w&VW*)~?xdI&`i#!LC$l5@YX7v7h(|{{ZXPR+D9p zYZmo1MunulO3f+h8W%r+&3L@Jbm=lllF4x8iw>DQ{{W48zOONd!@8ug<9CqiKBQoO zI`ec}k*E1(`Ail1_p5;{hCLcW%QC2CW#iNw)`f+cwT4xAz<0*e=|+`#BdBbES0n@8 zoqW?3j%9TxsrEjVp(TT96q77+02R|DL69 z=`r#oI~%Sz&1YUoGNHtv^Nd!bp;j(VQBFv#S?*ptnRY-KHxe><8K7fCl5J%|K|F>P zT35axA2W8}QHro`W)XuLASaq^vRykX2uaD#am4^j6z?*DGLX2&X;$DU1~LqJmr7y=iKWf4VS7(9i|AB!DXJAcM-1dkSMrlFVISWJ~vtOaV|$60BQK-cE#c zBBGK;YjPEbl6fOrva5$y{i*x3xu-dzE{>iEivX(J`01cJnwMvr7_K)6%zzUhi6ajAf zNNzSXtO-+*{Hl!1kvd3!gnHwOqUo{3QWnX{%~HO3)k31~P!C^vKwZ1Ni4~V{B>UEM zvqDjk(>uS24wakbNLwm!#~rEOUBoB%gphmUfF_Zk4VViC6=DPCMC_yqkmP&SSIV3L zocE_d?lXnXC<4H@a98EnPkO$(Sd?yOV5}-DNztMnYaE6-1Yp*STrsr(?LZR0iH0_w zf`BPm#?VY*W;g(qsVy%hhUAA}>(>Bu6*}a}B0A$e#Z!(09Hra+SUqV0aU~N<&HPx% z80s<9R>g>Q5J;bKxFh-2b*w9Kak2hVgKyA!R)nyNVDPSPzOUCgK}FOf=)s8 z6%4JlC3War)He4ka>(IIV}K7(dQ|Kmc}XM5<2dd`F%X-GWtTGy$-y4tnRz5KqZN-V zNWzoT6&=J|W#1kLmcX3-dQ|W-%Wlm05;Gi+Y5>KW=|sjhgcRxW4h2IDmL5-;ArUce zx!$)@&M31Zl2>Uss4jGidEHzE-cvZBW@`PK6={rw4?-%^GY=i&_q=h4BRKLwR zZh;C zH#SJ*XM!mZ{{XJe-UuaFagu3W@a_QGO8)=}$RA1oRSV^l=(s1f01e{<@~H8J+nfwy zoH=#*m}AiQpaAEoIZ(WN(uX0AGmymR+qE`Nm+te5a4bjN9gkW-0G-^C)1@Me<$oiN znKa5$iq`lYWP0N#n{<_~M_c^AV~(43~C?ZaQEQkH)k$ zA()K%WYUEXGWYnA{3=}2Nc{{XylM^aDVPHNJ~ z%)B1Cz^vPc3K@?;GHEoq35qZdc+O8!J5vKrCLkP~d(@fhgVLg2oknVOKr@^$_n-n& z!cL<-ezbs-pO|OYG&?KGN#O1NqMmV*rY ztcr0e^dh0QWST%SqC!4p$69>0vzXh-c8WzDGFJiCNi~=G7DydYk+>@YnCm{F5G$R`2-tJcNKvh59HIF)dk+9fc zIXJDG`BGBN2-pum1!G)BNd5D5?OMQz6ocmUNf5%3&*@iY8In!_%bKNZR9rHJ+@(%I zU}xU06dSKA5W&%z=9)*UHKi4@$YDu#?P=RXa%9zQ@*> zu%9&LHj1}t5L=jok`r*r#R4iNqW=JBc}teVV4p)*E^Tftrc}3(1|$X``c|XcMkJBc z@XT3{sqIPR?_u*PW7|B_5necM7TAYz@^g@VYd-cgv;e~)Gahr;S49=E+IUh)!RE8| zYcTP!VVB3s2dyRr-vp_BEuD|d)4qQUS48nL;~uq%;N&ss7U7hk%aT7D=!wUA!R~5R z)^q;=2*m6T324F3rtki>a&P6r#6Qgxi;@?yHP(2Myq^z7pabU4qaL^f*CQM)I5{9J zhk@R0Gu+0DsnkK)u|JrD3foO4+a!WW2SfO82QBPvl*9(F+GUIQxZfcgu)3d>}m3_mE;;3BPzU6XQw*cmVGZqOU z-s&)IdyF7>pHI^V5Nv$JB0LX7qpEoE67^S_0;Du&cx890rILIW>(m z==WRW^vAAh&D^rZdmCkp5-AL;>s6ygk%%Z4p4?Cc8<$0t1;7jKOiQirhue|uPrB3m zqnRXTB;@C{K_qdj4XSgB0Jd0_=%dhqRbiG$WN$ZaGtdsT8Cf49Fu;1^t!esw#^sXX zOCT8}5!2~F8oo`f#ER&IHhIStHPM3FHB28x$jGfN7Rh%j6P?_EMQYyZ(X>j@jFQ;^ z_Mi@526Wnr!M1_(RQ7fgPQnLZShfaF719`Ee6G-~jiCF}lFcEKGF&W$hCQhT$TYh| zd!UaH;WEqzQV;l5%bNr$@8uO4;~te})nW+p2KkWupm(IZdGJWd45xAYC=rY0!3?Sf zeR+ds`!xWXWsVW@552psGTk;z6$p3Yt`bo(j2-lZIw(lAb{HJsdedzcqk(f6^H}8j zR5rxk3)VP)iuuLhwdLMSd(hDqZ%9;4o!BR=vNmN~{v zQkPY=QLwy-*$PjVNC0=@v7D0J))8-G=GBi6@}5`b!Su~p2qH-r3|l7z@JBuBAc62V zf*5x0G7U`e6B}Wq8(VR1`Rot1V0AK5NElY@EPyrvA9Nq_r9gvW=LOfO;Qo~hBC9(F zE&K8b1ml&a{J{9KWjt1- z)(q%#A^>~PMb9wtEO=KxQ(R1qkWXs%y+=W_5f`~_!1s3AwdVdXhfcPS%dm`@*}iAz zXdZ%#4Kt6O9%$WT<%q>uwo@7+WMu$f(yA=GZdHqbqanTO+Bga`jFXc=WvJg7%Xg~? z_+y@HKg>YieMhcMJl({k7MdaH^9)iQi|j`qT9Dv@o`j$2R9foX^tyoH^R>bLwC2<; zHYhg{1C!M8Oq&L@;Z$2wvB^JZ2MRxg{{V$5YFc_Lm7T{q#=}5amKDwjE8p_w zv@~esOQ_^1cv3!~))Ce$i2+_-ppoUCYoYMf{j`QejJ%svoG=5Y<5|`COM+>gLR+K8 zlCR7$!Bc`NOL?w?uwo?Ia5KThR<;hFT(A?g^^BgidMlLk9L}aT92~D7op7B)e%%~w zOo7zrkXEEy>qpDOEGqcqGhmvPOcQ?o&SjC;f-{j$n$2!@vXl-v>6}m^mEF~x>4{|{ z9h7i?98?Rb0~tsmY0z*8>zdd>60XVowZ|KjV189rcpCYfkq5%Hd3FDzw<;S0q+N%r~gJ;Z2L%c_4mN&>8c{ zmhllHfJaYy$Gi=5mkL!!degazDKc&(A@P%%#JiQVh)!3h6{HAc7WikAJy#g_=By(f z%A=2)IM1bIOLr~2t>uBaun!rizqBp}2`UKA4%+OF$2_9jHQOU%l5)fRXyB@zzuhEO zGwL@y9sRv2qfog1_ydmBLgZ%8${9Q0XC(TcN=D{DNMbg)>CalkYsrcG{Cg;-o4JYR zMyGLdn$qLUVSqo~;*myWTFH)gY1FeGPEBk^e|j-YlS`rs~3_8%1MwbJ|av%FIuu2azmx9sYlixLB7^jT{aH(Yn0I~fmHf>f|wxG6Y z7y*n`>wQ&xqRfOpU8jn&OJ*(cAo8%vK4b4vY+te~t{CpY6wmEsmEz27i!TQ&QOR_O zj~s3RWBD3jU1*rBU|^;RC*GjQis45EyAkVEX1kqXDo#;GP6stg((P7enpHd;g{C6v zYbGM;56(_U9gSzntzJV6XDq$(+w-kkCx%oKB!4@|=QS3qX7ZylsM^D5AKs~B zIxh+_mqD_XhtBctKZ!N3F({$CRUHxrx6>_Q#tKBLN1?3=0BAtmH)jU0G)6zf3&yn4 z^sTA9ysv@uTvs7&b0n)OOiW>093Hu@zsE|lojNW_L}nu%qz~y_+Ue^)QOVtcKpa-k z*v*zAxXdymHqfo|gVzG4`+G@l+rSI7{NA3FtD{3D$C@3E#R1f{X9bQsrivyzcZ3JG zCa6W|nPj#mCLpiPfIHLRxJVY_TZbl6Q~*yrRfwQiq?gN=AaDjhTBmbi5RG5%;PUKv zIi>@yWD;BlJOa5nHCh?gS-;W1^9q$GIpUvldtgh1mwaJ%=dr~>ZX;3{6lpS!T@0#2yJz=~?hvM{_RY^D3_8=Yz!nI_mZq zk~|(UxbwiQtC=UBH!n6~J%Q_1UIdZ?s+g5P3=ewFyqXI;DP(*DxF`d+sh|oITO^W+ zLOV!%XQeP(xs97|ImQiDgT&VC#jT@a*f-=K`_hI-aJviVrFeURxB=;rrP!B$B!31B_8}jo2L}N0FE;U4IIOd7!s+ zV<33)4;=AXt>Mf603<26kp?<*%`Lx&Z%ZO+L-Cy=#%DXjqu zJc=V{!V-E{B@cwJV})8dTW}cXrYVv5UiR3@EM%**ak+`d(=@>Ap}w|`X+d@KVtu7c zbstKSOOZVOV!G{+orkclG5js4OE;MzZ#y~lCZzt$)gz5ygpsfu<0qc(voYCB~Az#+DWHH5ipaD(VjyNe>wnav{BAXOvW}luzhLp-Vpv- z$W7TC)w@`2W^=FxBaC|1t=5fblcSb63JG3^IG_nFOj|tEc1IilJJsLq2;rDU%*TxV zD=N;}giIpm50&qZDho)bfo=`aQ7e(oGsbBF(AnKbHN&EU+t=mD{wj3XC_&Ej^%ae$ zERQox8(>`RZl8^4M#{_cxi6p0PzHod(1t1jL?D6nsowc~h1y7vk~thyHtiN9Sr`$X zpM^46Ao5&{FaTo%?;2tocX|8tDyncfWj(4X+9_blgXS`l4tdX^s$$h{BY!Xm!nQ~T zt=n7LuPKFo>|3<}QnS+}b&^?K7DUT+$;B+D=XrGnWMu(%_3c($QB{<+j61~<(hnMa_fzt`%nc(wYf5|ky0YrKQ}q4^vx|~MhzwlWPG_5MH=OzNoNi?IX=Hi z-P23lS{9I)_Vnkq11bLiVwm9(!pzFwFd6izV6=NFM2zml@DTI{wO}~T$N8B{uQO}l8|5xZIL8&`<6fxruxmzm z+G{01CM=PW*RR%*_2w~!5CC(W?>Qs5ta85en@($Txe=~4$uiisj46HC$)_E9L!b0m zv5a!({3|3Q9)h0~MUDnD^`&s+Mv>R9a!7_Dk&JUm{kL!r$sB4AQP!!8c0Qk-Ibc52 zu0BLsU2^erv&&F;ATMvNH~V7ns2PZ0_1Votw#WFmr;AWClf@SfR5)t)z+=u){{R4? zb$iw1N&)`>b2Nt708ULPwN~#+;mU*>rS8%U^qD*! zMO5Vpb(7u#ifkei{^fVZo(ACeh40NP7 zKkU=EipY+QxpEFMT|a>>ne{njIS7&MB>IzF{{Wsr$pX5M1Kt^LW`kknHz@;-J!&d^ zAddDqgh)%L0N`V_Xhe}t>ggzK{{RT;DvhBfnPgn<^{eZoL3YaVv5r{IK?kjIvdLRU zwp4qqz=4h7xZ~EPk3dW4mF+Ik%94Kh2kF+VSXpXOlC~E@WB&j=q&tVxnpD!YNoO*| zY~r~LGO_}yKPse&Z_JX%N3)fDi{m0V7+^^l{AufsuxaF4gju7 z_T~1tNZ#ca_+wn-*CxAX(RAygKeS~cRVS>N%T{)+a|VlJB1bK>R?U#=7!u#sorIa@ zI--lGW&4T;AlEN@ACQ1XPs_lrs`fY3L(K{p;_P4L&*5DDrEm6V@Z`3Com4a%Ik{7F z9mkrFXa}A}Hu>Eo0PsyzGcoC1iCq~vShhl*w9|lis=i}V85)|2JjJ7cc&0Wgv6Y1( zkeYm=b1g;0$&XQ6ahy!P)z8^xNz@+3x1r_oDcFWd)Bq6ImG~M zz^85nOBgvDk9vKqUUX}YFgsBas@yJl8Sg+FR&36olhf9;mMj7R#zsX@u{&Ks!BTV5 zx)c$znI*z1DLJN*4UE%E+)Rq-!4ZHiK9#*|I!kP<%s}L1`c@^y%G=vbB0kl180V%d zF52?!#pQW>l<=$%6=bum`&FDRxkzjtFf)@}?cMqtshtKv{Hl@@4e^3j;Z9h3X01&W zA^;UfJm)_3La}BIRID-Y{{U9JRO@lSEZD{}1!7$o<&C0*?P!2Mja&1!#*38<2QB?6 zp&Lo5M$j0`e)x=2+0}u>V6ZsixyuWP*-7lb7~f8 z%tr-ZZZp%4wO>@Yo*Oj+eEA@@-$P0#R3)W2b~zw-s(QO5wz9h9765ba#Y-AJ6G@%k z(kGF(7DXpMxUCpf4goxp4P`+Qw~8eL?xL^gD^pJ%Y|1gsVbrq+#gZ}A*;5!uk$L=2 z^{ja0@@^#9OL4(Hi4`WbbtT>X-0RFODNt9?a4Rf%;#5@ufx$fXt>dwosS7y;Nj#`6 zf!Ea4JF^d#O}cH7PVBdQRFGUr3p}yIyK;gz9-}p4BX4-)P zmfAe`CE~i3%yG+*-OT_{y40s>qcN-e+#DXCg(%Wx)g#?>b-9i(s1UYu8jUHI7f(s=-~ z1_nHyn5m)h{lc-4VhZ6;R>;ZkOPGAD_KjxZ(l(3-Ofv7!w|d0>)v-&+{{Vj(R_sU_ zuNc()b9^FwyLRl@M&1XV3W^gg$T#5!!YNZ)IZf>#9dRjxJb zM=KIJW4&9RoL9(esa>lF^X1*#?=@!EU(_v_I$TI(^(=ptI}&|${k>$;ypl;8jzHdU zderc1np*)Zw{VD)Ic$UYV!k@L*7XaJ1h-PK_iAVMt?!q!?GLv(#%b6Ou4eH+hT7#K zTiB$NsQ`?Ms=D5rawalt1pKR>fM>0Ikqz9?&*v+*o1E^=b)FmXY?kwrsJk)|)N@kG zNgm~KrdsMCc?bXioZ}UhFNdbJVKiNsFaz4LygTC?CTEg4%P}7+w-_DkqqWsq`NW1z zvA-$-?NWwOcGT_XGAJasARcOIbp?TtOPJpSaU(xmS6ykR2^2h!fJRoK)wD%s5foAY z+)uxySRB++T3yV{9GJks$>je4g<~4cy{I>XR>lOpSpSzRP1HB zlH^-nD+z$)_Mi^3#@aoIwAnkT)#6<%rL%RcSz&#CRZNkZHEW2UM83R^SusR?e9m600Hk zp8zSK454*AaK{?M9vAqAc&mwbolYXFh(hzmGHTW0M+!Q)+^TzjDw5V8wnYq!4%Ij# z{n5#w32o+$WOk7Y?m{z5XEM(qh!BiU1blP#r>ucNK3*eYQAr(YRkpTrh6HAHKQY~m zngF2bH0>x|p;`FjnvP2>%aH6`ADCy1dRBs~CE}(wg4iHYC8|c?`Gm1dmCwBbDx5Co zlQ>Kf&qe43Lw3Jtlz}TMu>}B8&~~e$(dB|z$YZw{A6{wZ-Xj93S6Nq*M;N9BNF!#K zY>Si!`?(nD{cA}f!3vpZhs~UH#X$@+s9m=#$io{-;}taWPZOww799sXPz1>8q2I}3 z&4C_xz@$VM5X%pi1~R+5lh&nVmBJrxPobt@T98BKnXqzw@tOdcP^>8V2PBMokUG=t zn3y3}>arEiKN_yicaT2l7+n7VI+EGXnXvui$e;>(tC4)B1CK4RaqH_^tt-ewwgJXC zs)Rx=SPmHQbKKPKQ3f%!sWvk&#H0-(aIYl0 z5^;{+wZywPVpK(s_r`w;@$qi+JxnUJ4+0OGeo5_71*ZYUb=abHBzn`;%Jek=$Q|kH z?@5f5xu-1080}Go<2j`Y53Nq%P3JeMrSq7a=A%^|fyEngIKcXv0C1W?{7s5qJ-Zr> z!Cs^vp{CJbC;Lldmc=yAPw{h6<2|SfM?fgD0p4--qs}9tAC)jIE-0{tGO_4*sjV)W z8^|UjJ0w>9Y7htasNseM0MDT`dyvSa9D*_{QRf>-uOjeQiG&bGXL$Qr56I;89+loU zppO_T~^3-NMd-S z4c??1dSf42LI!v=0TBkf4+6z0G8_Pe0FD0Ec@@eW1Mgkm!};QSE0||+hs+Ec8QaHG z?OD%YJFO{Uyc=g=k}2BRtvK{)!pJn6xYkrT#DI|1M#9b;zd7Qae84l9`39`Ox|9*E z-JCH^3H!iFwU_H$pv#FDh$3~K&I?kDlk zQfjm(QDX4ln`q|iQV(!WS`>@|2m8jk>8$h(C1i}*H1~t7ySMH4#csQ5m$vfH5|~{N z&d)JHgWG5sHP0P2V7X?!cb44ciIK6E^!3F8S2>Mh@;kX6D`>pg58OaHeQS}|t*&hY zo06tO&Id*I72I9wmXR4g%@VIT3cPNvdtB3IEB4(*!m0U$euJ;)RS~ny^(?anep;xN zJ#kxF{lAfYDzEyW-!6T|f30Q@OjmpshdiaJS2*eo9Ff4Qepoz_MgZUnyA#Y(=hBQC zvo;lT-m8v!)3B~v(}(X3Yg>|J;q6vPvTW4wPacXK&{Ia z0N{#|n^sb6Vn2lDg1MI?w>23UVYjiXP=aJq21aNDPQ_kWw10I>N_3~Nnijfs%$&wkVhx2N03 z{hJ?{s$CA;5y_=ij^1}hg>b+SaaFDL8(})Bbp&j11qGB=WkV6 zHh&21&0mfv?(Z!l0k*uV3Vu1N^IAz0q{_i!Cu?J^Kf@A9bK+}Q#G9i)(w+xUIR12= zz>iX$7D)Fl2RX$We4as;Q}<&=bNC7hFj4F=RW)|}+h1zX+dJ>(IO5;Q>t0u^_|dNBc_U4dWCUh8z|S?zU1}E-5N4U(vHjy& zcLxcdYKJ@QT8DE#S-ty3#Ek5BmM1lqBxZfgaz_H0c;TcZb)p_cNl3Vz1x~#ULm1+v z=qU`()t_t)j`hu+rndFDK0u?^u^P9I#xmR~F-t{JB2kK37Jw5JpiohC=a0+=HeDU#KTx?cMyYgvvZYz1zC zg>_O09$27Eyo>@2cgU>U%`jiv?A{hZ$YWTuYBOn95Ut25v=!bvochzaj)PLQNG+7U z1FL+a)Yf}jnf&Qxm4QMwsXdKD_R~GuG`VG507>=lR?_gat_rI}zbFH~DS*grw=_{X z$}l8n+O?vK5Jebbk&lxDxW!bGcv?GhszzIA!Ot~mZUDTFBmkdMI`*qMQ3P(J71~RFbOE0Xa{!yeh{rfR>F`<@ zf(aRlILOKG)ctDI*Ki?WAUk%h0XV=TJ!?KqOsx4Y7)Ad8SChp6SS#kw50su(_CIv= z1HDLNk~N5vfKEZI*S<(J_#+aJJ%||xp*hWDoB5^<6T1jklGMP_j^*O>82sRpMh|Lj zrOeZ9R$bwo{Xi#*!-nD2fL7p)Rf}olj$p`n&JHO7(!o1SoUh#AdYXJwO1BY8ps)&5 zfIaG^oSSae2jNNikMyl4brR$#8&5bih71JrJcMm+*&x)?4ZsEY&r*FUT17Ifil-Rb zYFPkf9$qu+(vuoE?-t0^E|^*Hmc|4X(2m5 z@2-DZtUMv9p-}hsw;=b1;Zd>lHRaTyIm?*zY1f1!W8|H}oFCGl1Rj+lFTHg#iPxtz z<*0%mT5^M&R5GquKnTT4fE001qMVFXgjT3y7+;~q$4Z;Yi1jT|?2oWNiKlS5ah`&m$@Zq^q>Zv$DyX}Z1Yoe6oHSW05k#I zQJhkj^&HX@pW($Z36oR9eRl}NR}&)VqPeIJLBR(!bLl_}G_uNbB$7GxX3aDbI?%zh z(v7TeC;@Xw+>csO8++1-+dP6O0zHlCflo-zI@F#_jBpi=D22hsDFD(j>rKeV2B#L% zH)>(GW$TJA1UaUfpU5EdkIt9KKi*OJ&;?z&<20c_?^Cp0K4ttVzE`UXVh8|vm2sS$ zSD^Sl)LA1;+_P{-IK^>VJR$Wc03e+7uTZprLeayGr)b^oYAU-#N!{4!A+eRM{?(+- zi-iE;`X5nK+G=v?&AR&Bh@|;RPC?JNYNw_Br%c-*Mv~q5W%L!RWvSb4YfF-wTao53 zYUC-GwEcR{+Tg&~3D=CA5I%;rF0ZYd%(#l+KLFtdYbqNpD)EdOg}fIKw;=xj_3F*G zjb&jYEHL8GAC!md>}y13>}ZWf(&oipHdUQ@M`r1sql&8DE3>e-`#r_LesakYk{J7% zkm!0<%ZZi%lMH0}jzRj2;;lt>XQcU&813!zpWY8jq}|DOXDD@%aoAQ;g@Wc3w9TO4+x!m0by6GjI#rJbo3( zDsl73s(owFr?JZ|$jfBebrw+& zp@{lalwXOyQcY-Dx5}Y-8S7NmFc&1`;}vI1R+O+TtAo(gkD<_5<%nGHd)A48KGTI6 zP`S^ktcz5Uqyjc42cYO{r?ZP}TM7NZTWG_A6jFf8=Ia#TD@lR$ts{K zc7w%SNMd=A0=t`@PYOLvSvN4AEGcD7o~J&QQcH0xo?8N+DP<$m(z-b<1No80!H^zU zbRw{|2rqZWA_D~N#yP+=3g&Csw6Z*13lMWjCW&`!j^+0N!wc)0*s*gwl19-OX07}=k9UgPxBT#IeqyoiCTXQ-36q|LbQPoU`hC7F zVBCJ;fco)MEryS1Xo0saj!$~!d~JeL{jwb@H;UnJRKIkMXZ5_<^c4 z`o)!^ugPkJzq>d10Z|=UOj{R8Ayjqfa(TvT)G=F|xg=FFf&o?Z#b()M<4kf%85By_ zGTb8!2m=84?OKpcs7o@2D9pZYago;*nKz%OlGfyrFV1t@JpTYX*S0NvFpb;fh%rIy zoKqTfg70j>Kt%%$&&^B+L9UPtW;2ON7{}{Z5-W?DqLOoxqvZ#+R%=DPnJ!fV+;%TRYWq!FOf2CqJD-;*S`Md1SVD!j@dA z2dbVwoq2Yzt4*qyCA!#VjW%yljl;HTB`X&gT)*O*=`VFxb|_IsBPwz>_N;T7VvG!D z=~7l#xwWiEA;n_qw+0kAt%+-%*R!$MwueNx&bCn=ncE9b8PYI0iL#;y}?d1J}N zd%ll({iAIh(1rkX0)kqxi*ai%jj3VYMznHCFYFHi&%4LG(RG;Xx#@q^~>?f-r!SfmddZX!gj8Jjl;nR&9m) ze`q9Z2fs0g%8CN`d7F-dSz2lgRDXr%QdSlE63cnvzRZcU6=w(mrEA6yrZD zf{HMHQl}u+hLE=JCfV1k?Z`iL)Ykf3e<&wu?N?VzL2wmZhafgU>xuxUszWm0N)Qq< zH)EzLETxm}0OgNn_7weM9k(ba3~->HYTl5r$gIi;&+Agax8^&8<;j3Qgsw6w?Y+ag z9mD6vXR%RothvA&NIsOeamS}ChNraP~A!`Zl_!^1w72EocdL3 zj}%Ps6ukR8f_dM@J^Jxi=kUIi&eHz?VpvMdcNTIRhJW{ZW6BJyGkHFPNkpbeNk(lS2 zuEG17wGlR5^HaSBMaLCGkxS35K2W)P%}NC74{FcD4yKKy_oI|enm=enx?qkm^tM@WG*44eXovTKvsah%s#E{AO$;PRd0cL9{f*cdg%C^+tou88FD^cVISvACAn z>NAnF+6jaglDlwlDW9^*Vzw>}$~KqZQ2C_06dDvzirMe8L61j7aUNKc<_9pDexVF(^iHw%sWB&8%ZT~6f>$HO8ZT3Zer3Twi!&*16lAQpvRVRv;EL(lFmK5)`HHI40}7nR>{0B{dE^sDgRT8N#*sy-Df@I`0+ft4g8Jg$2l1yf5l7Xe#>c@;#R zEw#SoOPdf68SB@Yw>*UI#t_yU@fKjvZs^vHJu#g5J7+& zk@*^f&%2p!ZPh+dd0^P8B)MsE6fDc;0P!9|@@mJDmy`LD6Z3mx@u+Ncw6%#YWx-}p z8|zl4yoMwp&OjY#0_w>W18ZR!cs%v4e_!z(gb}o6WZrlex{n!OSB ztRAN8Ldd7~rYAK1lmP_7xi1h($jmZGuD)(ZwQ;^98*XrU1XV+FXR(oF2cP&>^|%Ca zT>ZNQm>S=-VS!gNAZSE56)rQ$A-s3bxckxi87C?LEr3YfPt`cO@h4Fp?F8d*D!59YA+oRPs+T~HZmnz zu#?KT1myF=ijY2|@ZX6R`vONr0AwzDpIVz+w-=F0u(o83Zv{_pPu9Gn!WT-{5N|kL z+@C>S%cV(b*^wW7W98gCgF+#z7;@XhsR_3^xCmZCJ8{yhN70l%F;4-&j2F%*w`~2r*1Raph)C~c2Y>~>%pK5;ANIWxqfrO=A13$M^~2J)*x_pjN|g5;&cX0 zz>JYwIzFW6pE`#^G06RB0<<>kE)*7ZJu{GMt<%dC#ax~V2l`h@734lj`H<{zbDU#v z>}k?iT3tMlZzyG8*emR41DUndo+LoemQ}+F=rqkyZeu{ryB{x1VAgZkTgt&@FXj{S zxLyzc0IsfDY5rUVkIRP7(9#1=?%3Tc85<1h6cg=G$8GjFO2BuLI{F^gwEr}E8NUu7_dGbFv z6ycLcIOd+JL9ax}R8lf?QYd0ZPaf2OcB>GkPq^(_wls%D5GRVe6hL)9r6f_{0&&+B zaeS~w{NVdma%G}2qzv}@R1)RB`QTQfsydyUn;d=9RId?s;Z^s2DIhakg?*`u9XxRPM z1Qq%)tna9pO%RP+X$RsfLk z0Jl!n(rOI2bzi#OGg%T_y2e9e1ZOq6Gd$;7AnKPJeQ$u1jhxc~ z)B{Bn0HD#4NlA(T6nxdArl>8R`RQ5prJ}BP9^ll-XzDceB&Y+ubx{-Yk5OFSl%&Wr zT?}I(Ph1+zvql9DaCob>cJKCsC-BuchXmHegR=!ej2cBVb4#8mTq~2b@JDl7vd3*W zB0(%^#?|j!n@X0q3fT-t=~`BLpxjKaob;Rh}lDT_6}F4(6ys&7`U@tWY;N_Ro5*))6vDj@V#$3s&!SM04??7t`dzTZ*A%1g_iU8V%(bgtHp_gt>?$t4fM{JDSPH-_;(CV{G8%E&Z^~ZXO z^6uo1MFR?HfbC*ucicJyh1=K)rE4wOB50CU@_VS|N3BCRyJ$lzsYC#6?^m>&)Q%Q{ z>e>?<9Pcj5{{T)ZBvLFi>*i(NK_00u4r?<~l1tmLk!6w* zl07R-vHcW`06eg0Piy-b~vaaS_6OUbY9UTcOf>~cx#S&X}1HFK|8uQ=~enXQdm zC&(486BCRY=d2%&wY6$`W}%{uD6`(AH56_M;-x(^K**fnS0UnjeWZ0K71v09TIBpn z15TuM#Z)&kp2iCBLB(p=$&-%NowlTjiZJx8WUh?j>~HSK08`aSTBC1p8@LsEHz%Ie zjjV2+z>az8OqMXffl@IU;*v+kDWOQ`bttw?kyRI^UDc!#PlfGNfUVZX4{>Q$mlRVF z>Rfu#D5sG~22oGNHxvv?RiKIhpa~JS)#L$?Fs%I4@XAze?MaOn6Dr=7JWcz+M_!c- zZMc9t(#FT9PHJpX>Y4(tmkdhCU56MsuTSu-v07V4ZtS1~k~3Z-;VDYKP>(oIXJaFaYsD4!=0>O}VnSET<<0c9H4yro8Ua zNRY|0J-OU{a4}hnuC$iJ%thZ2C7ah3M3dZz-X?|jM(W#@g;QyoJA`nm&ZLJ|`>rv@ zD>CC*`$z$@Uw1*?tjBg9IShbcV4wCyASY<;zS=iL7&`Q;w$|_}pDI5uIAFQy>MJHa zN-&#BiJ>i!>OtCTLJP!~DHsmV!nS%GW`H$(n5MP`Q4kN5sO!)F0IscDD#sXgZPGwN z85qx{Wk+`*^P%#>&9ioU@zmA$uHC%0!ZVNq6WmY(?;19huy+EZ_;6Iz@LNYDD(Fw% zDnUKR{{XI`yWF!GJgvpoB>gITOiv3CN*rz@-jKrS77)Gj@{#qd>w}pOIjfiI$Bdpi z%~3KP*~UQ_sbfU;+>9{5>s9r6cTB1a0IQBF)qo5}@1dVvuAW*r#Or3hy&4$Bqvf_Z4P292}~qf87;MB1>egX6r)O=ZtROR#!SMmqGM2wpOJQlw;aQiF!CH6j%Y%N+V*p1WDV z+}&x%Rw-zXiUJ|Bi9+CGHCEv~=`uMLB&3$)AJ zA&ii4$F*{ov9yUJA79d#9&@S?x{bgcH`QF!_wVLi%-9&*aaHk=K*!NYy(wq`1uZ5i zXaE^J3eeG85;#0oc1rT62CnHlzSGY+G^Mc7-028%4R1oDB%alcq-3WZg=|}AA71s5 zWza~+QCBP`A@-KzH3TRm#Y`=>FlDJI)shxv$OP^g%`LVNg_i&x0f6X7t!Ri~h=3=PjAOTY)U~>~F*?k^N<+NZ+WC4s~t-~an z!#d%8siF;t{G%CpTmU_NDU)1BCB9?Y!x;jifF!Ynl!ML!js6D>4#BFFTm|5h;)_sS!TGg>tw}wDS*^)7yhO%^+jF#A9GOfrR>W7In z=yYhMlH@qgU^@M13m#4JV^X-a@guAk1prV0PBC72CCf`8X&ZABoSM<`J@C~vTZ_HK znHwNyrE~AR9xFEPZxv)-4h=GP1u<1Ylnjwa@1LU5L+DttkOswWLny#C&p`}`#J2;j zUq)a$)W~s0{BnSL^H&wa4zaZ^WgDsZjEM~W#lhkFx!s$Aza9G4O?$zw${ z(PS58H_38oV_ekj9_~ddCeh6?5W3TFYR&}&3IK&gI~4M`=}C$JZ8oI9rsJ9bV^NxM z0+SQ~4r$rJq{b)|0dC$<2+dl2ZuxuiD=Zqh1cav3^vxo!Z+L3y;h$$+=ee&@(QX|T zQKW8vhdft}+mq%i4x^g%Uku1*o--jKF_Lpo)}uXtN0-lo2*7vTeX4?6wXU||A8M?H zxE-qAgRvtcZe!bweQG(uO?Gsb8+ga2F--`cP`Ga`BaOJ~;~ZwPSWO^73IQ7&ILB<) zVHTeh!bRgC4Zg#*L#OF+#WbrgF_3nH-1^m!W5uUMZ!}Z7hblq96<=Dngj-E@9B!jy z7g5^>gIzC^vPXg_$tpNtr1sBR%9u*_QpYObF&QWOri%g2=^d~)QPCFOh z7nGh{!-fI4By=@WD|WM(s$*{AP>!awe$=oZF|+e1+yLh^0VILr2=^h0JQAno6`^Bp zXHt=t@_z7q{L0>y3{%_794&5hxZ%`}5244cX<4GF^AWaz!TOp&J`0J&C>gVlmkc?k zGt9eJqGvd(Z4p;E!w{YqqnjiwfOr1@ z_0+PFYT8i}nH&PDGDULtcF@UrB#hDm%vnzcx367e)1RNe$4bIg0Ofh()1`1?C9RI! zJaoAeTL&L3=Wlf@oYdPLSIf7EDvok{`qaS2KrBXS!s6aCHzKh-XFvUF=dwC3e5Hem zl_TSmRzA*i@`{lyn30f1YqiM{Vkn~^<28C1$N-$wklB_!G2EPWtq5(7;aN&o83nX# zdey~2w+D)}kd?+)pQTD-B|$NR=nX}{$G89zLu7iBgISknaUf?nu8!&ml>iX|>x#m@ zh$$cpA8M$uGYF=U%}?Z-UnG&79A_1+z^{%d0M&tR$Auiy{hCh0G+aa!jJX)?Q~55v zxux=(xT4@!B<{s7(^dpcoC_4I7y-bm@F@D! zNsPB{6+rn%zZG{MC*2=fsR%g$kyqnvj1Nl82FDl~EU}e5ayg`tK|!=H9e}AxA$cO5 z7CIKk&<_b{)Z1z%ETA$`sS^q!K3o{80R#GFp;TXPDg5{@nMO}Yy&tH z(3!7qC@^Pn-}guZITYZjxm_Cycp|D7$&bu8cB+kB@ZBa zRcY!p(FuU0cgU_OR!CX~CMm*@ed>JxF}hPo%}PdTHsDYMWMoyHIksG>&r^zsFC5d8 z<#j%UQe_^Kpx`Fc)vHz_LE!ysBS!}j_Q1_;M5A^X)?-G6gK^MiwqjD_IKTs%#<6Xn zFc}2bPiL^iaxllHX$_HD7Kr@3W2hCq5Q%v?R%{bgk_S+`R1Mfag5yL+*2gnNF(#2 z*%%FyUA?LanpKx&vLo)mQr$SJHuqODEK;N8oE_?WQ?2fvFpm7~Es#3Z2xatTm`1@% z_4x+_>si9Wd0Ze-61O0pxb>|I6D*KPGIf=UbJPsgwQ262SzSE55TFlw26LC%N;>?T znbdVW3Z##96}ecDBxp`a8Qool${5s#>PI4|HMlBDDP}5EDdQy22Rk&6aT*<^(N`o2 zpsj^1gSh?G1E8%rWO=@9C{=I4-GuMh)_%zjU zMM1e>W4%fa2Lh_3gCeXefVmvf9)n%Stw!>W#-qA!;B!?$%{vO^gC=Tga#}%E5m@xA z){wiN1}QR=H|=)p7&V=*Cz)@!edRT7-U1f{=B1VpSLYus5Oy+>xyOS}1XZm@+sL^p z1_f1Nis-q8g#=ToI(BFfrh!IjXaNNy3Uw3|Mh7(Nb|@nh0MkfDML!gqXe4GS2&d3S zXaX&?n5hWIT4~~#4WgG6Pyn>_d@!bTrvaKp8Wx9lPEKpmd@mfIWeU8=`55#S<(7s| zITAm-!~tH*;k#wGTX5}{JTMh3X!Jc19BE6q<0Ec;=_lJhuX2qbD6y)q;yV77E}V}V zl_x0qI3D$tI)>LD$|MN(hWd&Gc92NXMyjA?z+O6ZsArAizK&@AV521G10CsY6QGIxzvi3X0znynbiiJu%mszj0|gs_g_u zTO@i^wz_NEUyxK4Ert3}G9NA>St3@bQ1b3@;>^ew5^ffG`V`{2Rx<(4A&Q9ve`z)mn*&{zp)~2r^Yt!W> z^#f`8)DWY&3*@Oe?A>e2tofvRG`-l^q5YdNY%Bb|@lF2Db>ZYZbDg!QE#*<+*Krv47_AFScp;FpsbB{{Gn#s7_UW1CQG@erAYzN^7AlBV zAP(WyjK+g*K|JsdYFOPK?EVFeBV+rj z1x%A#3~gDzA&RT99PBoQfh>$a3{>lCxd5wYzpZaDwJ5Aip!Ufe)NkdqgsfQ@01ouI zg2pMePzDf>tqE%%CuU7*ADvqXz@&(LhbjhoQOp)HO2rt-jQs^nw#_#Y#sJ2CYMyBK zPNO&j+O!0!Km@25$24;VjHxVSQlKhZ4-Q;1u9{0@dlCNaZClwYC}8YZovF9Me{3moy%7lLGyaqYJh zi>EAa%Ms@K_<7(l@L){5FJP78T} zf3s68K=OgGJ!ot!Wv!ndHcL>}YDpk4J?me~Y~&gw1sih{$n>RgSmxwNw{0v=I%Evg z_D}_K$T|wYeQrFFAXC?{t6B|-x`IbgNzO2PRPYtKw{+S75-8T7m6^@r|msfXFjygv-y}Uf$LNvW3;Gz5)qbgGg-H4Wy_JA1B}%O;Pp!OlM}Vh|V~Q&=7ykV$Xl=jI1LO5B4g)trk)rJO~j2s#s6mg^$OK?ehY zn##2sT^Jsfx>S)LQ_g7vHAp5X=2Mcm$F*tOPaM&Pk#jQ=K9$a=ny%SDAsNM7(xiVk zE!DWsr8G-5C)3aH5DqGYDKD2HAd*f2^sOs-oJCWgPNY&Mva$p z61#ys{#7H!9z?-myR}I?7>Kk*jtD0`s1UQUSz2_#axmHF^r~ikt0G&*Ooe`CKf{`q z>hL|Lt3#DpZ#P1l4iPCq`tw=YgN4M~wBW znskCEB2T(|(9o`3wXq*5BDLeTR8g>1Q7HR98Fv0mpLsiQ0T`}0f>dN@RrNvCj0O`#z z4l00UFIs*m+nNAqrwT%psxe3f#WakOQUOK)?LZ8{q#b#w58kHYfE$5GMLaGI9q0lx zOgz-YQ&cs%?1Q|0p%vV*rjHb0$LGO}HTd;q)_&wTMp>~^y= z=bp3y49?CsF&uGC-qSA52HtZ_kPHwGb5^VnV74ncY-tl2*>|2uY~YM_p;(3(T=U-| zmPQ_9jAx!H8c7BL=RL8~yr;S7EsG<0IWeEYjL5j!g9p~3`%3^Y+>ha@0cIPC!284= zw1#;r1dJ~1;Y(eTz7^~62Zys|Hk^cbO=LVB%F76R?=m4rTDzNgwCNsO& z+M$`Ho8?9d2dK_}TC`&<4jUsCBn=c`ar1f_cM()uPMb+($ELu4k)~a&kiu9uQ_ueZ zs+v`Z1x;g_~40S7;KK&7&Ozc5zo!*RuHRaamhV6ri4*>>0&h$GiIs9chV${BO- zLI8pdsC>etdyZ-*i5-Z8a9*5II$SdR+1fh}Y55Iq1X&I#j7Lq9!id=;EPaTnQQtTR z2iB6-6_VkL%Yupq0I9r`Nq$!?pHWc8h*g6z&p(Y=icAGi&y44msU}-xO|2kIf3f{) zNYVhR%W_W`Bms&*OCAn$EP$UwKvl^KamP5RVKDB%EZ(OTI>j50y&&g|FCU4afmxGy z%M(%Zt%NQC>+^A1Le|tb&o$2B{?8R1)DYu$oi0aA98qv7%49_&g>OK5)EniK=6`LiC6H*9B!BD^-Y5<{e36WcLj&aBxt8>EeGFk2i8;?v@bkPTh=XgE4S4E{n z(CNsFoZ~sJtUA=@#61XJ1)AevA1LZ-GJuj400$MMk(lkv5OO&+SYk-=7{e1?=MD7$ z89)dQ4O)$3$OosbRt(V$FgZT8FZTi;lcs%WKs}=J-Ola_1Y~xm$svt4mQ%Ro8nji4 zae||%HCjlLMakd})WlG@j~nAWGh}4salirr;*<;EKf!eXA-5@4I)Zj0A z0Fv_cRW|J`Kb2-nBT2O225vL$RwNr!fJ)~FBaG7oNQ;Ii2P9&cink9Odv+NK$2mFY z+N-SIYlzo&(Tto_vqoH|&_O+Fc%xfHFOVeu5llt9HCUr77{xPCizA#KDob|-c>rU- ztyaICS+=bJb2@^2#{<1oAQuCnJabw%tCuB6HAR!=JG#&@s)18z?Zre_Yh((rpLeB4 zD9#9=2#IakH59{iZJ$b;8S6}yN0!}rpajs_qP#mZf-9aJAptXr=PacWTaBZE$2GTYJWiV&oB>G`&6{YGVPF&sn5Bo z$Q!_nHb~_A(~NKBm5qK;!TQl)BDMuFG07f;cc`xKa7;x?hB?MM)`}S(ASD12+zP94 z0P|Ix0@%qX(tt9y7M!6V3}%}v%LIlfkD({fRn>`14=eX=qaEpDRpko)@E%PAE6H|Q z$aTt$el*Luq`HPESLKLyBa&)KVOhzMeo(*2QYxgZu^g*oAk>J!lG;Vp1-bwLT;Oyy z)Y@B=uvU*7z{3j2v?cW^JmeXVLp!#b!hD5(l+fg8o>57|5#SdG?_c3Wly1 zW`Wh@JQT|PY8$)hZWN;7SHF6$M;vve+C>T}17kMyG@_n4q{b@A8b=ig;-@$@1iT(7 zKmd%>$2DCEB-MmGVt^D5D8(;q&?o@K0CDL~A9|FE0E`S$uUc^w0YD64?@cS3m6wge zm`Tq{0A?}LkoDHqu#x*!mzxs zq=q(9#~=~NuORTD5$bWe!X}fVDe3jEbnwZz^HjJ^=OFyt5AmsG9gUPyEGnT?5!a40 zT)V}cN<@$y;y}dX9QMU`7SYDwF6^-wB=9Sdm4D)(xHnIkw%_w=R)u9<3O zw~|!KOhLdrb?aB{tb|d>5kWWy4co0Po$M0ZqoLuD9CrF7^CtwSw~!7w)Jynq;c*8T)RfnsoSIqgnIg^=TLVsdwNq{d)b zOjhBel^Cfx2Op&fT{q+IZXkMrTk^#NC;@RUGAlafG*`->oc-bJNsSq)y<`|U=cQ_~ z3uPmKLC0#Ukbvi=J5%*JgmxtnfMe4mHI+wbvsf$189R45BdPbK+v$(aqLTo%RK_e%a5BJ@lD1EW(tebBymu@PM>?vemk`ZZiEJK%tw5j z&@+OT+%je)c0WpIlE4KpI^+AowH2UHGOT@x6r|^v;a{nstC_OOU|*X!^juJ@hTf#^ z>tq&qreYHULktss8}7W&6ym6m>l- zZ6ULOkKU+m+!0nb#Obie80RB!e~{EAR_2r>E4hH_Ebzax1$9<*uo=W$!*{4N1yPg&AKaTBnChc z3Hk6leQ3B`+TxCeKI$^oOCzkFx;Qz4S#LzrXya7f7Yt6GUIUT@=^e|vVev=W>Njw z4Ooua5`k7A2ltC&o4RI^RlKF+B(gBgPSPKiHV8@Q2*2Y<3dc^0Wji2Z-`@m*ROQp- zfq;@WBhi?VT8{f020X8>(Zxq8C3DHe12U(AB#bwgA;(;tirdkxm8}zaVA$w-VzU?- zCP;$B12-hMKbC8&v4J7C5uR9g_OARidYo97(1v(JMpuq24rq!>;vUB}(%pqv$sK)a zm5sbxUPt+y^cm@0wm9x%8PTNMHUp85oBV2}!SdZONd)5+zpB_o%k!d@JODkbn|LRR zQ-i$*Hj~z!g>u|CNwaJ5?Vf2G;ZFyX*m_kdZr5feK)s7&2Bt}4FyLUEWE}HA?pL|F zR$v*hbAj}#ml!2V@_GC!&B`F%=4}j|jGR>nXr~CgIaGld&nEm*^-NO(OY09Mdio1?UO% zsgSYZYCC{^ITQh(Zw@Xqo(*+cdIJs!IUTE>wjb#rV;~%ZT^5=c%vHOZ&PBxBv%x_d zah`KpFrZ>Li~-d9RY>Cjkop{&)RO_jcO#x^OJ$pAV`x}J*#uzKn+cvPyYW>t{EJ31;qi}FVQX!kR_c28ps~wzR0al{8j4K9V&j8moZ96VQ1#Dup zEforGkTHIugv4xajSkVt6)H)zdlS;K?B-(Z#Q{v?Ca%WbZb9P%nxPkN?jVOHFu@K$ z?rT1Ie$gw)=n-~+273xFLMpa$3E+FwPD#Lin7|YOsNkRW7m-9N8fheM0|S%Xaa9Dt zX4vO~GgjD%Wl|8T;~DKh5ikjEsy_DI6IoK;CARrx=$v%#TES!~nK7LHm4T|1a`Cnh z$&CL1N&vZN8g~*Z;ZHw_t%JHKun%rQs=6W(YqnGhIKdTacf%0f2*5a?4;1*Uws&*K z6cCh|TPM)h5gvvaNg&swc$VB;YZJ7ATW$a&imPd58a^cl8+&@wL!NpH^j3;AgyBJF$2ATjS&2pLDCHM3Jn{THa;uyJ?cSh1AG+h^>-txwKF~7j z!98i%ibJ#xqpdDdxtZn5qfZ%N%gs47dCB2x(tgPdj7t%b(*mBhkt*SU=h}`@a~^2= zG~j?oJt!J9xgdbJch zb6vESas&^wfH}eK^{7O9mAD7f^QFoh#|I{nIyVc7tv!sq&WWG>uupQTqz3Fc-H zM$#1oJNc&89Y28?7-0Zk&Ek4iB>5fU(SO{d5S;-jGe8Yyu}jFJU1Mo=?OA4)Mu zqg%rkjd!X5c|JtxytdVR3UBs_i=@R{H+{^~F}nNar#}F_Hj0VB)XGwWE0)u`)yh z746gd)8!U3MyQSFHsa2w9Y8{)q80a3EUkVkrj zgd2AMErrbqgH(G`mO;f;tbHp@IvAm3P8OJ;BC5 z3eY=LjO`=qQi8j3qd!VxWm#d8LJ4+UcBtOmu_1Bo#a%Lk^7&*Qd*`J+N|Y=>Rvk0m zs8=bZ5)sRwAMW#08)YegAv|N}Ow^mtS6lsBF~@4IWS;~?R1U<@ zE3znT)Ql-A2Tj#C*}>zm?hYx$+%g53%l!p4M8g4FZ#^+i$SyKVB_}0wPm0;XZbTy< zwQ4A3Zd9=Yj%m$pa0p={t~)Up{&egYGaBD_`osX|Iqyi2J0Fq=+v+Pz>~|S1vc|lO zaJZ;th0BolpyP}qcl;?>2tLorEEF;Htj%@=ipwKmc^D=JGtYn0wI)M?8s*)wo-_R` zobh86YdE7U=XsHbuo(Wdm?E^74I7e5kbB~wd(WI~4(GAxDg=$C3}kgdjAJ7>r=^ST z;r{@3JLfdZEF0$uxs~?={0)p6lGgU%yGRDr_mJkGTWmN1izpc4r%N-}Yk}@5F_*>U zu9(R`Q&EjVMItdOt~n!hK@9jeB*e>Cp_oztBWk5 zH+e1xv#u*XFscJdELj~e^(szTe)$mb1TI%UteqeLjp3I}?l33W_ z^v(yrN~tpfrJ6`pPpfUsI{`k4cNBW8A--bFP=@RE0=uUw2?}`~tIsrBUpril_XgNA z!35&FfX(K6cQxqYw28rq+>%$^2{c(FImpH{%_FbMagMapaF8Gi!yczK)N&VZP#7>X z!Q!xIP)R&-R<894BTQ#L^^GL_md_ncFcsnsTO<>TsHzq-83V0J_JB+B20B%DlPX)* zffe;jbn?S}={gK{sp13{+@aNR)bSz3!_YRXB7STXs!RSV6|paO9~ z%(rIA%|`3Ebmpd&SxL=D_l9W!5*>pT9OUv;b5=&&0x|f|(GwXt#zsIr#&Jc)P#BIy zEIw>x5PFK}bk*O92SZ%u!fsFloB}JX(bp*ws2J~1#*LK+J4W1c-J(}Jp!9B%DU*++|s+dQ6jj)H+Q zNhOtwMws&0V0OXvt9G{n77<8)go1r(VvaS4$%4#1PeD`K%?Xfskz;p5)~G==!hNqA z;x*~@rZ{;vf&d4-SZSk3e4w13oN-lUyGV$Q)sJC;%>YUE7FXrR5)KP|e6(u=>|C zJgffz2}&Rz^3SiYJtzck*#a$NNdX0T4cO+FQiKR{IZpJEyq;d@*c9Ehho`+#)bAEB z(M-o-^q?8$dfa<;CuQ~TO^tF1BPZ6h?;sKukup@Aoby%SKwW?w0oJUWlw@7l1RqW+ ztcMaX9lBPm(5^jr_^({m{55B)M9O0b-IxsH^{+7T zAA>brI%yu&T4-0J0o&6_kq>+R!!a_m8`G^E}Cp_0Pqv_Wdvwf9jOM8gbaI%66b6Sn5-f7p*Z*`QphFr)A z&u+)xHS1HwQ>g888DVNdJoeDG_Lqj`o=Lp9ZKsOe2pQYP>}T4kMIFhudFS3^K6?`x z#?g*Q{Q7!T{S#i5XK3zQb2iclJy}l#lh=%jvRX1Bv{>C$go?m)A@huWc>F6~b+L_~ zQxICQf;OF81}F&wEtWz+1GwU+{>{0%jdmk_p+ap%`HN*q$o!6LYSPx+v=6_VSz{%O zeZ?6ZXTEz@y_mIv<~e5bZnwvT5g`q|cVzVbE!5hKmZDN?W11RmypjI^rR=r4asI83 zUvd5w44xb+=gS%Gky7d!d+HbBbda;OOk-WcBL^8L-n)n`(QVOk8NdMk1Fz>^CN6|w zEe_gqZ60SXg(9&E4tmvQ(q{_TT%6aaPo{|(q|O2R*!oso&YsFj1MkIhSl5{I#;}+I z0+EV<#L7-`G1|Mip;gL}pQx(F#wmdcgXS5|DOh~R5a5jQgHX38is~~DLfu2qdmc(1U#At98&!#1J;p7&xAv+vlFSnToaSjdRMpT znww0pTE_nXy(&vDr#0f95{abMp#!r5ewFKf6|(ZRgnZ#jbI*Q%#-tBS(R`+Y5hi|q zyknv1T=dc;S66;#%QDHGqq(k<%*H;=v;(n;=eIp;5n%KDLwar#GVTsR9AN(djZr1V znnj&a*XJOTeLX5wWt1{9l*debPgwt)F zHM)n+Rgkvj+dhmQV02@*9sd9dsMjefgF3Q=d@BysqYdLo(X822g$MzMe2{8`%>%ru zepMrYdSp-rPN{ALfQJkfI^*A^Shdqqdv$Qk%HEx+ZrMJ{`+ni$E$iN&;kl$@6>;T; zDt4TT0MW8pZGvG7M#H^W5wDsvkO|{8c0=YgN(zqON~q3Do!vnqrId*Ngy zG;E!mhMipJ_(8>VH*S1^9BN5FFHF{3#Kd8XDIS8n>`S{lu0>NWnnYSqP08*@Q zt6}!zAK%ISDSpP2034Pd?NrfN+rU2bOM%>hTP-z=lyii6YxnxPUCxZwJA^rBgyhz-G5j_pwtJAp6xFBLY- z-=!+Zz)PEDCa6K=mO10EIGJ_%VeWm;KrE&b()}6w}kIqigP6au)?Z8pf z6+r60I3m_!KAV4?J+(F}88rF0?p$N}(4>WCSdk`G+mW}@xjkM-eM!Tn{{Sfhl2{C9 zn%|dO+IX@XhfUIfT;%rB-CRo~)5N>maSFLB^`z`nQ|eTCU|?mcke8kJfofhiov z>cEfErINvb#8+wuf831!06u6MWS=WN?C<{UD!BYJNT3%k#Z>RwI~ApQK$CHI2dB)f z{RKWNO_>jSc0u+*3)j&aeW}}T14ylPy{N`O8)@z)v?!%e>$7XRU>Xku*FWg zWtIUcAss8I#s~lX>bleIH7{Pf+O+N0@J%uXa6awr1zvj7HH zC)TXV2bx%n4mhe%d58kC^c7&=DySPd>DGWFlH1A|7|uDWu`8pO$l|PAPF+R@38XO; zi07#uv;iEKEx;MT>s6(@+>95fr@EDhu>@z{q)UG?A(4(K12mH4libleDue)l+4bvF z-9XUuRBlu@+@iKR#$XimcjsD~6h)auCNy^KB>jEKcT zl0ajTT9(tx8^#D50OvI&8FCFA7B5)M! zIO=I9SC&|wU%Y-$eziRI=4hEzZ79TMn$b#Tg&DE}&;m+OA0kH~bFlkUR!Fd_yPq8o zO0j7OHxd_6$mcxNP{SiTZ42e@`F@lD>sY^iEQA(j9eo92#J+EdrDYqHBic{DHNI9z zoM83rE1S^Sr_?VUScNXb81Mc~0Ccdj1R$FZqgh?$~4y9!Z*%#OEEcLdK--V0q^> z0NKihR0EG{p)4ev9+}S-pz-8}T+s+!{{T3^9<%|EY zM>WEcwD1oGrd9cYE0rB;t=wa3um=suqz4zT_;g%cHPxFecSnq#hPnR$6X^14w((x$ z$kbw8k^(TYf!{v7SE0y{&&$EAi;GF*FO2RT38FeXqjg?No2St7rqOjM*+{p1ao(V9 zLr}7Ew_%1lEBks^r!}?8KJpJ8^NO=El3OsBHc-y1!7QBPJu9X-iKCUlGlkRj$XQk! zoyiF*!Who%p1I^!q*{cRQkFo@&ICYU?Fe&{4tmz3=+;dq%csPI5sjl5_N`UY)@z;c zpg?douR(!ZeR4?=>``A!vs+t&zccw`VwUHD{{Yvng%GN!AOc4uj%wzer3m6;<8x!F z{*`_$9J>#jsKyD;O5&+GP2NV4T&5q87JF+%Wh*QAC+ax5ERvgOluFeDsyHPy;TewA8f zQiOG+BbPQxPX`=h6$|O^Mn-F1P@$WSl(CQw2YL%7@TIh|Ug7%=4m;PZ=!B^A8yi(e zHRrkue)V`HXQg@$jT2n_stT%OaXso79mRy+WN`erDx{KogH=A)9GdcZM;l|qpIq=i zTAf}w5!o03I8Z$+3qXv%wW0L@++(d(y@@Q#1|`|BV?Mv< zHBIHXv$$B`Vpk)n^{HZOhM9Q}7)}A_4U!Ep3p!hyn`ugxS3;ch&lKxN3P=T9FUrG@ z%BWsi%M!-S&4gm?3C{=9@~SHev`Z`ut>#GV%3GBKp&rx$xVKSxv5CXn5U#Aia0nUxc&vu=Ai9WzQyZu+pHWsC(dH5#IIL{N@Hx(C8CFCsrNsann2a+X zobyTH;BDqTJhSpL_6C+>>pI4q5bMD?<29wGTP&|UtUv{UKAV8XXc2Nlx@R%{!^q7> zz4OVYG_=ig>ij^U5f1>syB9`uVb= zlht8k{VFM1S7Jlm5C?8Qok4eG7LR)xgnK3g4oN|ZxEk_KS`=OC6Jl}kO6xdjPO zKfM|LRKRk|iU=UE&vqoA&XdfEa*MKOgK1u`-26>1^Ne(Weg-H6Q~Eu_mC zRW{yX?0brlB~t7Sv*dN!1u+CN$FfNGuXCQirA&}P2rmxg{{VLiKb24wFE1sG022zm zH?aOx*ze_W_2-Uie=*gG8;bSn2lF)7m7Q{iBix5L+x6>6L|<#1uEmve{nJhlD@UF9 z2dg0FqgfeODLirRJe0}L|U3)Q~A9icUUdIqbR33@kX84n%Bez{o~JI6V$25;swRPETP{D$Y4muy@F$F`^7| zWE+QfIjNMRC(SGlM_!b0L8R)1h6aZxKy#*!bl+j z$mD=?{OZ~>wh+gha!5l~B3-8@CQ<(GC}O!yZB+*4bY40-G5vQ_qlj+=Nc?t=EdKyX zyvQW`rSs?jH4KJjK3Xi?^&5cxK++3?M;LBy=H30)gCC#GPL9w%SzQ7icWeqz>q#BF zg9YMn-`(>!^Z5$2>g94RO5?T(rXeD=RKo(BlyUO){VJ`~$j52`2dEjVS$%{&WFE(- z=~S*_yD5l-TYW(0np%mQ9vifgE#zjDva#nQtzNlcfa8;%Dhn6#EEN^YA75H{NhDwo zdiAL*MI+0o?=XPv3b7lj&OQrfH5CUCx^!F z;C85PZHPv|2LpgR*Gq7LT1=0fhB4_`vB$8T!|!qQpbmapHe#!S5O?)8Wi1*g&hO5) zR@Z8=Z0#+T2kAui{$eU7dH!?(%xWM6!ThTZWGB7_ZR=3949lFgWr*337daW@+JGT~ z9JVpmt~4Q2Ii!H9w&v(Mnx88qm|jO}214$9vZ^W!YygfLwBxmG?_q@%TTxDMi^em> z07aiVF_z&)XG#ikF}Kjwpc~5s@J&{9-+)d4G=R*#VQjUcQGBkt1d0O!N|>NTHJx=amL@y zkwlMch_;2vY-8H4$2zXeXJK3(IvScNjMhl;HeHCw9k{CKs;WeQ;f~RY2`;N3w@|p; zqmOe^E0F|emU41)S^4s&C3y;PJMmUo+^Be0X#?iZ=~M;T4jCAOxDG({p~Q~L%1Vc) zBEQ+U1DOJhk6hCUnIHF{D&quakwA&!W{wT7^JM37?@^Z#&Sc2)n+gxTHCd#ImvGvn z2x=Ko)MIY+&O+lf0iisi7{QE;NHLnBCDdkAD$Uaa9nD1qR}&@}VlmS+ve~pR8!^cQ zVSgF`FK*4eVnzfM&j-21b6PzB-#{S0_my=f-2V1W>^(TG&15{Vx0Zk&cs{j*qapL= zjDhBKU?>_pJ8SUEf<9h`xc>kdN?3^Sa8JrXu8Jkw8B)DE8t1%7FuPo5qb)Q`GBm)W z0kTP}s&ecYbU3WovXWtX0ajK(suX9QO<5+YVN`&`Q=8_CjvGIvRf28G7a3z#V_;a9 z2Z}&0^OXbmNBI>Td))4BFmZ}xlBnE9a&d};U6yUQz*9gPk+PxWaZz1tZdEV=>+9`F zZ6-pwIRw?9H}S^Y=QIqaj6fia4%J~~2!Qt$I>013P(8ks;b;{YmB>BK0y9}ms`wdP zr&ee26@d43MWsExKqIDF;81aqQefk=B`~U5H=FH>+e-mInydDtT@Ipbm2K9BxtwKGo0N z!L`ojD#f_T#dn4flVW7ZBL_W?b6MBcR?`Bx=Q-qNfu4JGt++Q~Q9mok71Uj6GBl0l za;GB$tz(@sbN7&u-herq$jTm1TCS>IKnGgX)GVdlw1yHdVk!D2k2axtp$5_i%v+$O z#%}0V&u<83Rr$Fdwc6-GoT@PSAA`p^tebl&V-bmvj=xIkbciw;hegL8l?5F&wW|LB zXG#VGd1oI{SXu}mwb00Y+gtOlf)*dylk!!THa}X<(;!%6NCpF3sc;DG-=4>s0MeG& zT->9}C(aMZ2S&i+pyg*p+yG}JjP@OWomRXvi^$dzO2Xa;=T+}lP@d@dDp$$* zNh1J^^Hd{h_9G3VJ2r54bxyR`lWfIfVda(29jRHIt`v}cMMWG<6fWe3AY^85)X#g3w+sXd zeaim;T2mbE2}H(!x^Yn(ncpB_XSNBai-}_)Qd}1H;=H!*&p{#242gp%B=^b9G)N+0 zxg#H3Q`zN}K5_{k-5}8#$eAu%IL8ANhF7?lhs0>I6W4Q)Kb1Vfj~O}Gdf*e9n8zCo zp?`hnKh~mfK{!M>>66x|4hkoTD8y&il{EFawMH%WZSUU%4E=HqNgcGT#F#CB&pV6% z0F7Uc-MqHXkh%WkMNj9N&c@A{&3w+RQr}{Oz%EWdC8TS>%Ah{RZ}u`jQ(98nS>TI_ z*|E>eK&axp)1gcUfDPCLN0a=hun@=QNQF`qm5KYr;~$kqwzG~3vOl0Wspi+MQ0#%G zd>(eG!K6B^%(*u9#|ONeWALHaM1N(v$mUl60D+ngohpLD5UuLZ$K_IgrpuDkl?VI1 zDHhUqKQ+XI*X0ygE=HC!F=Hu*Z=gB;l`}$$N}1IcJmVkEnA&RKEZ39l>-Vvr%AXaL zuu>EkJ#t&EI|y^7ldm@}w=iDOd{cC6gS;_+EME8K(KVTCO*!xb)W$ail8YX zj(TtB`O?WXnt)p7bqD@=w*&R5BGUBb0Bub72fa$xmN1MeBIm9RFpc zf=x;;t=Q*&q)$<|f&A%OOK2bENPzzUuD{b1e`#CgL~}##22b>$W7>Op82NGPEP8WN z#@l{jr?ju1<9uSHd$-y=mC5hHr-!|D0U=Nib08F+pjnBpTWE^f#s&Aw5GsAM?Pr?( zV*~zqKn8yvY72Wyr)|>Dvme4as}X6iqJwhIE3Mq4=P&28OSyeq!$b2fUSpinCkTc}o4hAUN#nX#52)kkuA9X^VR@Wv#@Hu1%7 z2o+Iq27PLUjAGu|B5W1L6~ZYwKHau;F7EB$*Qxmt8j8VQ&Mg6e5^2f`%*cNIdT9UC;}Po z7;rdN>%~s96jd_ejy_yde6Kiz7#^gbN*WVr6>q!rpbR$Cq>;-= z=bX1AJXAW4nYgMbAxPwoIj)m#GL6@usZuqNZ6l0+SfCD7H0_8}X!(aH)~(xV>X8;8 zWL3FiXK*9oeQH~XjB$X3p5}lui7hh5Lj>x^n>=yvJ4QjPYYt^~3`XOUf2BR3+iV!8 z&(9s`1D?EqA$_^P99CdCQb_C4y3=V9jF&9fTwr?EEY@dvUAP0KA)M^-Zfy5G>tDjk zb08pto&l)kfJQ!X(w(5lQ&4b6%0_Bl#U^yo+VhdzRLgBM0I@b3zdfqmvaGvsNFKE` zF^@2neZ1zRq0rsQ1C?k>MgU(zNUQs!`3PZ_KPW!5m`P(o%gYVRpGt|47S1pir7$#Y zktH88}BfVmnp8{yz$6}+P!nuq`9@jWeGV06agjW+NGIMg^-d|)mUx{JPmS7NH*g>l^C;Uo--lB zl{p8osajO>nOG?RVE4!4Kn&LAg<>a>xb8vhD-S?qd2S{HX?9{WTG#LklmHNZT&b*W z6zx~@1~76*p`znQS0o{@yaGpBOGk{3xfLWxu1O8hbgfP$jg~~g z9SHTJ3uN;4rU56K0Lo~yjIUoxY*t+5m9lu+YkJZ{4t*^h7-V2} ztq-$oP)Xn(YU|s`%&Uy3J!)Shs`L070Idu@RDcoEuE`RZMtR-a(wQ1I@=sIRr#bm@ zF}8u2H#Qq3c`@?)o|Ou;vPrda20DXVbHp4LJqIT>n>2eR`8e)q5lZeRjlN@^Do*aF-PX3A%@Ab|80bZ3T-y-D$BYbSfD%Pk7HEDtcBxKUV7)Jvf znm`fTfWIya4w<2*AqYGX-llW4xTG=j$OU~308n|AP=kUhl(Bh=Sx8Vj)!Vy#zsf%f zt0Zzp<8u6_ft0QzF^`p-IOhhl-Psh94o?~Mt$A1%A@NjhljR#nC!oQgMm+e-4WQ(8 zJm#kGnENEtE5W)ZA%RoKsIJrpVy8P$F{>Iq+J@Q2^HR!3M8@6E84ONG6@Nhv{ru+KI{8tcec$bRRoHFzIxJ+Vz|W{0P)T9V=_HdUa81Dap4AL3BAwvwE=a)c zden@}mbjPi$<+E|(y52qWH2!-#CPa=e=4CCE$$}!YaxpTWWgTwWp1TdXL$fr87H4g zrS_JKQCN{bd9%#k58?dVbOhIIMdkwSWhV((5@M zTwn$Vk_%%Zv8y{pn^KMBJYHHxjk@VG{{T$aBlD>L0JQ7^NZwOLJ^4xk4|Z; z5j?WD9)}g?IUa(Ecl&DGN&+mb-ALJi{OQtofJQJZLyYHfkdM;_sfZQWZXt8rntIzT zYC}xyqnu|y&V?q2%7&j3%ek>@0)hSDO;tJoj#W%DDtMu4#&SWTl+Rbp-BbDp{?lVfE~to#~EC(=B5&}qvm|f}el|G( zd(#G$AZ#>~AnCXqQ)ScVUSqtKo2Sjd{$`jLqlMQQBN*;#DI;?r2txuZJ*@RGL-~e8 z^l1kbJT0jrpf-`bnd%(i53Ls@u*hRLCpo7m80Tm|T0YY#0L^CS-8ufW5eqKk1;_+{ zc94OPaChu)MF7)PBnnTMIqpY8^r-g2$E4$qo>|Q+{h0yZEWvS%`E8m2C5BSC5~(M+ z7^>69a*N0(Jx^M&l36hMZcosTY2rvqkhft+*CLqAa=~N(}ctC1T&-8rj@GlRxID#IFlET_u5MD!bh z&+AsLpue}`JD8=5uq(|VHq$@CF;z7S8@rB|WmI$lLB&EZF4eF^M2^L=Q^kLJ4q6Cy z^!a5c`cZLNnU;>4e570s;*GYt4BJu|m6sM&4@dxPv}co3ch6 z{{Wukd3>Z@>Ich=3RayX3ZsrV6_D2~P!w-rkZr*);X(Vyw;DE&YPz6(N6-md;Pg-l_9nHxj z9MtiU(rsgkNtGF}GsOUB%^4VOF5D-!sYmn4N;ae+V?x3S3U z^J1!LNb7b_Y-1v{+utmo{wVe&VWyDxiUY_+Nt>kVaf&&tN3ZWWN3|tjqg^_S7ytgI;u{r89^s13v zO)I3ceeimEdsV5T!;YtL&lCY#@uHI5pJa^d$>Wd0qO*A9hXOLYjtFkGCEd!!Z?Rof z)bpO=ptX0JV=0jiaq_PNGyuAUMmTn_-DM;i&G5ctdx+-%7Gh32aa)?o%Bbs)l}8E% zVt9LW7jGjV{ox!QxaTyO(X6ZGCgmrtD=Sb<(~@v&ptw~kSEoaY=dXzlQ*aojiDRPJ zu^&^`gt!|@0r=E#pk*V|-lc*JK1elU9?iUQ^3ul5l>q$0mm3?Nl;VY(a-3jL1*j(H zYo4`vUkY+~tVn;>0s7VCeWU{2Xahv!X+4cRs<}hdW2IC{M%D~Eo)5K49Dv4lo_Y+> z1hPSeZ{cHtDk(;J>CG&1mcVYHb4xbgybm2{0J*u_A z5=!JD0Cga7Qi(^|)j`aGvMB)^)3=$lebO^jrgB&uaysLN;kuPO8VR0+tor!+=ErVyZ^2#Q_R>8ikZ(pyvmz zXoZb=3x)@r)eH^nSEk}c11cnB4u?6Vn%$*hMtym!s!=AvJdsac_~hrk0b`ny+xLtg zi5IHXd7>bIe(ze_kP{&{VOK=^~vmg zFg%Vh?Au5cLLo@Zw_j+Hg0p__Ip7*~#OWL=?Bw7C7#%a#mUUPpkQ0oxO3u-i zUAZKB^FUad>6sun#zJxRtoY(G5X@@Svk7B6LENLidW5U10s{~_fk~8$mT@Y%=Bes9 zl6}OSbjCAQ)D(r-dS>C9{(tQS{9$aj`A6;{^9=VK2WA z`te9tAo4L>M^NKzgk`Q%aOV`%L>Vke$>ZLnjuh+r;zx8*kEKWxjIexz{6?6@tV!KV zXSOOu5hveX+GEG)M_#^AvRr2>$>PLuwYd*$twp z>GNCe$e=3l%8bBwEyik3D)a%2sU0@S)Kf(bh+8yg5keSohPNm`l}Mjub=vC_k^CUK z{{Sj>HiFMPD|hEK0^pXWIH5)A>;*&=lReAEKuyhjPuwq;-i+v*_$TXV!z(xkLOlovynh5M?K1% zQ$EFZP?Fy+GmWS9=9m-)3)Ov@6iYO&>@l7lPTToG5u;OEKHdX zC|q|qIQ?h>#CI1VSpA|WV0i{6{$i}fb{_%djK5$ZWBltl*@Qq6c-U}$Wyn9RJs@XY zs4WgS!3Tl(Q@ENf%Ph#mY>kgjA?x_kD@s7!8C)+#iyxWIK$dq5#4xrg+h{qV?InB+ zp$qp+aPG(EXaQbS&H^KQNdP~Q%_+Ko{q&5FUno>5YM^FP(l9+)6l40;m9$4W3f`Dp zWBE`6TH@GXq*ltltrCO$>cU^ftMYjSdMrTy09uY+J92X*`3D5P5A>ldysQ9Z4V;2V z0REJNLfYKMz-HYDBdLsLrDR^)y^Wqz^tRKwt09GAW{2 zTJrD~KO#DxMM3>4rIpljU&j=1B01_n89!15OLUg2C+?$W2cc;VHo;?A<&>t)gMqtu z<6BZ!k(Ez`=#Y;q9qPT~`Djit#a9<>Mlpa6GgP$;hm>q53OoAOrjI#{mSRCtdUKl3 zHv~zw27BbvN#@G_Tzr<|tH_2m3Qj#+&{dLL!v!BMGmcG3yhi^3Ir@DnA-UN}a>E=S zTCk~s^L^}MfEklH3^R{!O1W9^@sl@c-X zWRvUOkTVg_6ak*=^Yq0k5XsQtc_dOwL$@IAJ-sRF;v_ilKoGNl%n*@IEM&p~la931 zh_hs115-w!4$ygF$;V0nvu+kJpmUMVYV=X=jZ?NpPqkHz6mf&kIn7&%f{c(#k4gY! z_P;Iw2L~X7S<*4d*tq8$*0hdOETal*J=74+{XKmR094_W?9bA%^$4AT+z2P2^sRx2 zcWof#)mxx*f-~?<|_zgC9_fDTPdDIE=~ZU7KS zJ*w)+nE`Ncc^;KU-1%yD^NuRiDUHpJ2&gR4kfg67t}(|Wr9^Dxae*NtIo(aufp|_h zWaq^B&y;!%gzy%^7 zfS^o@(eS^#46H!gkKw0EUG5b^u}+(hdb(k9#WBkN0G?`fiA02C1yC|itx+XgC_*_U zPCoG_rFo^ER@l2h>Bnl6ZEKI2#?p+ZAEiegL{7Qn9)0KoG+10*MD8QrNh5JQiY)Ba zCB&nF_kcZdSEjkRhS-RR0fyo#3usnbZ?vqtq~~;f{Y_tkbYaiy1qIIrX4uw|>qLG<=MHmCnxoe1!euT@yJm5XOSZgo}komPFKtw zhcwoG%Z1}SRXLwzq+s-*ENRI&{pUGwDak(Q_Jg0TW~+<>*`!z6cPTw+xLDWNF@VEy zrC8aH;&4g8s?pAj00S>m8<6TFphM+w2q&EP_oE~LSFJ>545w%TPbG~p?qfg*$;Yh& zAh^g5r1d!!4X|%GE1Gr8t1vDGIKirs+%R<;IRlyi*GAq;9s-P2JECw{npU__iaqI% zC}m(r6aiW#4Y;pC>smJP5}UF{c&cf&iBP8ltzC)pfW!nHr~=Gs<;FjY)Y3G0U~_;E zKT2SngaH7->}Zfkc~US(B7i39Dfg`10$9!$c%cP1tRW4xQx>zFEqd_ z?Fc%0)u5yvX#t-oCHixoYBIcFepRT}$s}aQAP#!uRX0V6xaGPW&;|yp8ps$ZE66y< zHD=ZlQ6wadz~ma2Q$>|Xb=sq=F9!yyX%RZv{_<9l1e*gMc&TGW{XRC5X&7>=#w$}- zoh@|8qjflx-~s7Nr$9^_VHg?7?b5LId$+pOW47E3adI*1QcHD+`A#IWD;b10h3rPiU`W*(Bi!OOT3QkI?z*-$Xw^% zlgwhEA}C?~;!Zybj%Sh>j@XNH+~X9)d5UiNPrY)T1(Y&Lfb4<4*%%b&P>e9-w{RD& z7Q#jt+H!mCspJMUQ6WDu!1~YxMUbW(5`96ann0=pFe(mt6=`6PXe>c;RD?`ok41Z3pYQQ5|zhKd$$pzb+8 zS}ell1``geu%3jV=AkUkN0_0HsN?xn*x&)k7O<5kf^u=iNTFemVKAXR#3Y~RNOvi$ zyE-Cd@JVV{nf8L40{hgh91=c$XJP&1#VAOXvg$}3futg|%w+>{3WM63vIu#MHt+9- zQT;1LCAC3Ui4MYnC*52@Wu3O;epUR}rgyR(XHa>>64@)iE>NEKpBh=C~* z{6Eh(F%z5=?$*I;yLAEI2Q;tbYiXpo(fFE}~6gsXyO0gBh zOh{{};?F-fIQ)e&O2TIuE%tQhsz=s@3ixvjZu!qCk@;e-tk8xd?P65}C6FE}c`sqw zr+m%F@fHL5(O|iprTUw7cj_{|D!ln8=0pVb`72?s$c#xCEg#g1hwV!^RyNGrjzbnC z53U7Ju3$JZAG!eQFu2VSO2t^mv=;ALw=@0xKz0Lxj%zA19%kWG1JG8~7rbLx`=ynU zlnwloPPzT)4cu{0g%qyl9X)7l_8eEFk3E!?8aYwN1TZxo#+v1esN0;?=`*_uIK?s0 zo`agAL{wEEZ5YQDFPFWuO;CDbr&JzU-Me@2;Nzcq0Ax+&&Z8WRR)p88Bq0e4*BGq3 zkM*D_KBU!{ZTGNtB#HoZU=fx%$)uF|cL;ICU2A4(N}u6eoDX`Zc@s*&^YV%S(D`5P zsBCA`1rL}qSI-o}+D4Z>c?mp{7Q_<7#uqU*}XaqG_Xu$d24&AmbUV+X)xUY>nLRQ&UTG z9mkg_AV{l%8=(fXt?mL|l}Nx*fC8Q|QVAQEGlObdZgJMR=7)UykYyW;1B@Elnpk|Y z5yLYNxt>L5LeRS4F;W|$szR|{Be+!zVcNY2&UvQ@Zb3UX?I(=ZluX;54#pjE^`~9L zrI%}A!0DdVKvD(Na^EoO0^**M29I#z$6uvO95WDn=|qS+3;=2uwUt7UL1kPYdRGFx ztkW>YGB`CnYJ9z=bI*FUYi%3G80}XJla86DWUt-}j`%$d09InirwT~}Clw0FBsq~! zJ?Zl=c3`MZdg7ppK*fef6ae;-azNk?DU!{X3$$Y$eQ8vMAx;SHXt<2zZBSSFQn(7G zLt#njz%^nQE<&=9!@XBlA@F)tgDei9vlVYa=|IVR_8Zp&0AnVpnOH{Q_UHI>Mb0i) z{SouUR+bro%Y_IRpzE4f3lf=Fp(sNPbRNCx1-Qw{<2+I!B!yB39DCG)Hb%<@Ak!U% z5;Kj*!(GGW@IM=8TqMP zELoFkkO={gL+em^(tuHwHiAB4-2PP>+$>QZRpaZ=W9?LLbqH7kAR)UP=Rc(v3mZOs zrSKISX!Yi!mPrU_Py>2aO6m%Qhs(H(hQ~Rk$*DY$kthH-&Q#L4>}^DTOsG=hr~{nS z(%~dk-mH!2M>Wlx*-I*E}6;|>& zM%Ij@06LDT0dx#U`sX%ZCuI#RHtTtw$91W@O$9qVl6}dKpVoq181Z1&gF-k_c4?sjPh} z#7K=j!|fyWHP1EG#qPAxl6;t73I%mmmk~t@wZ=&evu{punv$(!qSEy1aI$>=05KUn z;+Y_gyvuZ8P>w?mcs0(=twj-is>O$X#;H%M+}$57W7_9Due}#1lb0Kk%BYUlaTpNp_~};f-o_- z8eH!RLL3v0de=LrUQgxua&99TA9&j%p?{B9#N4**V24l#ID9V-4uu zpj43&Ki$b7bt4s)mv;nkN}hymS`u5ZPRZs2)lE=X+Jnvta>I_>Xn9z$1Tj)Gki9Ds zSnebz{VL`|=uh}mYi28?boqb>@ENS> ztl|SZ*!t#7VyhcS)UjDm1p~3ks18$L--iDHk9T%s&gB_3JZ*O98_1D^btWQzTvXPJ z<-(DxykSN-;FC^~m}6|6PB6@JO<66F1)Kg_D+M3yWAn``G^j9vf%hY&0a{1@08&{0 z0I~gQb%h}tlpLO;if9UwnQ{PWSmQX}DT*awxmCzKAKv5j#a(uMZYu^m7N?QsC?qTN z7(xCffVoK?;bYtWi}L>f6H3I7z%TWtEDbE*zq*DpM*&cr{$y3dwka^svZx$nWKx^2 zFn!Vi>BfIbL2|oUDvS$;$UI^&KdGj@sx*5Z>P_G5z%x^a?xl(PVuzSHRwaq)lRy=k z2px7b*K%$2Kq=PRXPBj$3Ca%c%qv1EcOE`b-wBgWdvhjU<1D>FaX_wT#is^!SmRQ- z$x;~q09vv37*rOTb}IXvcVU72>4n6G7(m-3 zQ5GEIU_YG_O6b5x@~@&sIjb-usu0T=knxq{^{9O7m6I?^%AoS213!&Wt|57tf2_IN z*8xh8=SP$d=Sgn25y&V9>P;^DnJx%vm2=Ju++_RTI-8_FPkRp;I)}eru zpyLIA{*?m8;y>cpdgC=^;VT~BJ(;@gENZxfg=BetW6#Q@{{UJAb2jA2bGr(F;E!s{ zwh{U45O7X8txM%NWd(pE7-551c5!TRlare1!~8~7pSontOqq^3WUhc zYJ|rmk?Y>Q6nX4pH?Br$z&TNa$f%}on*%4(rBcCuUQJMmUyPC3loHt);~5mf7&g*# z-mE~LV|q{o5!=Zl799s#(6tN~XXQx`Fc5t{H3Y}b` z=Zw`mxd|BQiU7`@Pn!UqI#V6<9zJu&1304R0r8%^(EtKYbJIJh0b*BwnZEHHW~5AV z9A&*}@Srjh+^85Gs?EK*CuzZI22@ol!?^UR)duAtlb*G2?73p6jC0b6?TLSvIiLs% zZOa~gt3tv>F1#JXp!BG`l0H&00IBW9!Vj$>8dnmL5j_Dp8Lak|l;H3>nwoYE?~c_% zZSMIa98&^$Tr%xpj2w*AK@vqFaCqyQY-m*oBZjBP2<$#@Z(0D2EzgzBu(YuV0u#v z9VBhQVT`8$R(ZZ?n_yzoG4JV7+h1BGpfbq*a0C&K`5;v&FBHmT+NHwd>6$Jp7iPF? zoyx18=e}yRFhg?_22;5XTW?Y`=~W1k*hmm<%Z!(oJhw6KTJ`$Seko9HqP;o z11<(dRq(u!&v7z8B}PC!NF7aF*Aic{2937yoc0xmq$7M5KleD${Tf7PA888mf)C_c{ft@@WkQ?7U z2;1*h66za(KYSKdByxWm;-r%D1X(ttk4#innuWx#6Nnf*O|_0b_Igvej`2&Zs=`6{ zclF?klkJ;h-71m61b6z^J8OA<76{fQAsFsf2PH`usV7U>sU?{O!NJ5!F4e5>Z9q_}J!YFA^>*=;G#4XXZPM)dakDGu3yz#qTTr`bK!zjc9&pEs z*|pPA(l+H;eXvKaY3~dXxbs*7#NhU!17-Em3UA&Xlk_Zvec_4#=0pN_)q+vWi1Cm*^NuNj z1(Y$y+k&6o4pjQql#Ay@9u)6Iz{mJvvwY3cpbBBS%M>{WA6_W|lP-rN zpR`5_GaM2HR{qSs6FfwQ0OTK9>1DYMJG^)SR~vKC8ksI*k|jPuNI=0o59dBjY-BZD*+pMa>NSZ;=s{(3eiG+tNxC1*%=QZb@jg|I>KQiEY=QS!q zy<_z0p0udQGOSP!MdKf>J7te5^GL_I9R&g%@{|FhRwsk|#RK_fqLX%U6l?F94h2X} zsQ^c9E93aHPgw$h765}CSOb~>fkQCMGJOJ{=bDpdIN!RnWKnpW)bm%ry2Zei^k8wq+`F`p^`|*F4+f;C@i<kXJ7y!hz6djQ&*PTK zg#Q4jMoi=uaHM1LsikIFl^s}zO%Pqfjr|yM2K>cZgYw1W`(8i;JLv#AkbQ+JDqb>W>83TX|0BSj5gE>#L zaoL#D+BG94MKS|`&5EroP8gP*82W@`Knm<5#>a&m^c>XS8B_O{37>vHokYS`+Ok~W zc2OD0sU)+t9Lnb)dI9{+A>5FdW8AAcZUg(kR1!-9C~0=iPZ$zsAB7AcKo%9=nCx-- zfld=!qXV%rJzAKoD#;wFwIYoeblOfx`c;UW9C^#NN3T;%xgzK;)pbtnq~r4xf-v&2 zl|w2n0Z?jywq&+Z<`|v8A1dQ$6&hS1Qbb6_vyI#VNdyB1V55FGM$QN8LNbuaFWJiz z{0K-NkF5f*Bl%>2QJIGsI29}x1(fa<{2io;2m|%znpB`s6dRweU!^;1A|k3H6Z0|K zo_|UJqSvVMGXod^;{Y0hYv>o|E~j^Xc&nEs@N)3&9rplF;43n71X1V9^KvorfsTI~ zR~klL<;-%s$R0IZU>qEpsbtJsJQK(Ur_{ErN6A$}Mm=#xo`E8Wo>+{Z&bn~>m{-vn zReZc4GOXZf%Sm1Q`pbGPo+*Nl_%g=6=WB3bxh?)c2LP73UyOB9L}x zA+wR|QtVe;GW(h(EUczLFnTblUT9%N$;$$Fdx`+&F74)uZ#4;4BaBt37S>B>qPY3) zSn|DvS-W-ZA!CdISeJ0lCs};K4%{|C1miUYBcnEL1|f+_jX-1T$fwR!Gzo_Cff-TX z70suLWo)d9tXBhQY!U}^?^+g`y}Z*&^D>|Vl09fD#*<7WW&mMx^5?BVc-~B&R`65| zWcR9a>b4I1M5B(pb*j@{CBiP%;Ea-K47G828Jb4iS1ba7+uo3@M7k%;dhR@DrDwb| zu`L97IN(%L+1<($4dZOXQ!GYsD6m|Td%&^?Wk$eWtLst0tIg;6!3fDbo=rdO?j}OufZ6-q4nO^MI1t3g zU?g#o+K|HFOMdQJS4i8BlcD@5hf8aBW{Ou*2i{%{D#{U9@4|Mamg#uJ#5X`kdU^`Q zsPy+BG>17oPg-rpng^ENStODP><1XA{@6@P%^^J1sjt#V&<4+PJw55&3e2w!m=njo zHP{a|p>d^K`O>h1N3cgrV*X6u?rTAup3F_R7O_}(cGpO5;NG+W4My4B8-ED?hR0zWYQ2<<{y+a7Y@+#}eR{4CMD6u}K6m;YeloQffeo zcru)EibDu=RhZyctkQ$( zwSu@EJCR<0aSi**RmzBm-6I+NYADXL3xA^J@JHS~f2|(gBlZ$!epGpK1?kweRgL3D z#H=G>(YjVWs_Hi|x=R~2{(GO+k@OqOh8|_y!2$b+2l~==;tGV0gYD5YhE$z!+#HMp zQ8@cRd@_dsouKFPtT=otG#j2ROs+}X2@Jm6bIk+7*G6s6tIDTtH%5Y^>nN|QveZ*; zXW!4awKC>ZPu+7fbOarQPYZ55&xNhFo)s%<%=}u`{eOP71a`MI;gU zR>#geNP)NUiVWs=6{W_WOi6=iO& z;h)Wh&RGNfhqFZR*@#yFlE3X!*<&MXtbV+V)pkdeU`rz7t_}qt5JbPcb~x%Wn$MZN z#-n0r1P{9lxGCoY12rQuq7Z>oJyn}ESy~VelJ3BqoZx1h9w`*(A+i8HbNW&!7bUkQ z;hyR#WNBkxn=R?Psi?C*3k)p7J#cuXe>4x?!l0AX01xXx!|hJdkGj62uj@u-B}*#> zJ@b)BVP|B)3h&b=G@=PZVca*esh|lPf%l3x0|5U3_3E6mft7Mt9tb4SCz7mpvPR%{ zY+{6Xc7|3~BxkNoCWekz%<}RWNORDJ#Ur$vcQH|(nKa<|kLGC9p3Uh|=XMWIPAQf= zP2~UttG_%3UD&6areMsHrr&?N&IWA z(rwn>#xNQD$N7j=&nMK^C%A%x%WbTBzol%)JF@NbnMoN6u10Ca*oiBeZT5}M0stGJ zL6h|+mn8@9*z?aP6_9THxruog5MOFzJ-_!kHU!dlp^K}V&tcZa0bjSYys*8sytdd5tmGYHarsE(a zRBF-rgn|zojOM8;NsN5C9DUKnHB>Vh8u0^QfD{bp`BJ!Ym&M=ARKlB2A9p{kK=&kP zYBo9mDm4tN{{SEC$Ni)Rl?x~yZR-#BVqE@ot`-q)q+W2*x2dV(n{Xe$21D2%{cfEPYZB>?La=9(@m3Nb3MnF2##hRg}VL}t9dRMD+tK!06C~(^CQWe zv2)Yfn+zdQ?rgD@NVKvBp;$NaDLN?B=eE z7RkznJQ1F1c?d+?yRWTF3}!f(F(-H(_~M|931ww%p_FbJ`qy$enB>OXA54?zDmbKk z;P9l>$cp>GU>Gh)6!_p}VglzpRfx53keNBd3TEYbHz~kT$*XF=FP7W@FeVBq9(Dk+gy zYbFQMmh7O~IuqPgUD@GCEA^#tv3fV(mB=kf?ehb{$75CFv<}M38D%{_ZYp<2MkzQ7 zPeuZZfmeGLESSLSo+@;RK1cxj)^DGQLENmQ_ULN#a)8@`0b8#$Tr4D>VNWvzsBNVB zRFPpqw-5c`eJaI?+aBq0vCcW}Y0U~pwMKm8d^UO!iU4Fl$0|H)`?p>>r%oD389I#a zsjrAgVu%CteA}_ovffD%m^(0$LE}6!`qFG^T(=5KYxARHj1f;u)@CH~eJdzk%l2k2 zOQ<;O&T4yGsMM=B@eCYN<{v4bg;`nigOYLerY-6{xe|aT2LSrjN4kv~NLjGsl|SCD zdiPL{37qm*ap2@qb4Y3po3|R0q&p-=>5Pu`PI;Wdn3E{VI-W&lTWHWC#SVxrln}U zSq=eN3pV4=;axnJHn$Llw~@XM(G3qOezg=b}-){=sIOF$^x0;z$iZqQmGpo_kDZ^$j z-XO+JT-h9Mpad)iPDd5Y=-wb$e4%{|klabbuT{^ntu~h9?FVFR$l1xpc%#}!dyCo1 z=7r48i4>8XWPy)LZ`vKMnI!wD1`Sk#StOmyE>%FkPsvBhE6wo;W}Ls>*BMHJO#wKs=oAE2S0-a~3B|;A0*C09qSM zw~P#1B1h9QH($V1OA@*j96RcBGhWGqwUSJK3ikYKIdwVOTs%y>yY?8a)LF)?01zNO z%ATIpb{N{-L4+>cW0Vz_)>~$Zf;lz1o$b^^8ua_bZqN8uebZ|2!RA8;n0WxGAlG}b z=1dhn-!Bx?YB0)BXSP^z_)+zS9>pGerg*OA(&PO)&h8F!NnC^ZS7!buw7G&mEUQ_Y?He*ODL8e(;AW}Ir@<2`Ldnk?m~&5SNR9%JoR0J?Q|g8FSoaoJSz~XQ zgV+j=Tc1(+eEg?2K)oaG5|AF=4e(x&4wO<@-y@m4;3M-G)fZQU5urno}KByIj4F-^&mqKk22WCL~p=+0@3 zse_jVx?xlA3ZP_>88YZ&f4Tw3G&Rgh_?3Vjz>`v4i{B!)N-yF7{VG`HNZg&HrcZ2D zSY@`8mwDI`#>ER$7*GWY8(`_ZvT2O4W{yNEVs-ECI!c$LI%CmaS0Ftu5Xj(&KHG3$~AOBI2cTLebk zus0L!iV!h`$AIf3Vn8|1T6MJK%l?q1!w>*K2Q{64YDB+1%&bBARZt-P38l94mDvPF zKmf*f6Zx8<8Z*golOMCB<2?rQ*rv@Sfp8kgG_mlgM0?`Ey+ZTzR8%LM12ofY0k$cXm@sp%x_s zH}Uhw&`=4YFc^#=y>;orWBHL%9X$yRByIufUk4x06sWhc$OF15A1EPkNc?KrJf|y= z$G$Q}0dk?Rw;wRP864pM0Q%~}XwVfu>1avk1d5tCWK+egjC*1rf1NGNGbBT0nOq#O zAPkyT3yd&Yr^?bu`$qv#xALbCBml~}4n zwcbLl&;>_qeq>WiL0qiSO6TOU?8=CdAk}^>R78fyAYnx}3DnV{osKa${&{ThAjkC&@$KA#;TH?~o5*FFy zJ-1vIC-TKXHI2IvC$@n>{`9Sn=SG3dQ2QKFplK(C7$238Dxc3Lq!%7y?o*6#%2*zK zc&!w(j|2BwYK1)j2NiiFwzohY?g-95<(iCAXgQ93rxHcwv|JvgOB$6egX0#A>x^Zi zBz{J=8tU2cvPWhg-E0aZyMYvWsWbXxG`Uc&QWkd*sM``or=ONEDeG@>F$c~okKq^x z^r_l;8GmtV+Yk5U0+^A!WU^Q&kn_0Q5Zq+2|u9&+4uTmouH zqj1@KdvLvQSg|yjB|t@m6ob18dV6zD$S%muoFzi}mn7#u>$v=}P_~^4bPflmaf(qa zD00is`@@l0ods3gTLsBu&NJGFfpB*)&->LgUV+3>q66PKCYknu$I3Vv=}bcD*3p}t z`~*eD0LdialloSfm?8Ng*uURDc-3oE{{Tf-EEmi^V-URo?M{(YugcEhdJ-`}iymoz z;ZS=q88njajW-5AH{n&$*^buA{uKWJCLr61CmyYz(uM@9Bf8<{E8p)@EcgR^tj+!6 z`Qo7Rp)5ajl6{6M&zBl>j1PQ@0AZR&U)_k8Z>r>)dfePLH#&Vhv5IjdD-~E&o8X~-4+VGscDS%4p{2v%mJNp6pb z!ZU+{TNLHKmP7K+k#modFvs)7Ld~%T`J)@XSQGkG4=LtP&-Z}ls-HSH0g=hZNh^w+GdkmJ!?4<;ApSHUu~zW3+mHl}F~C*nT>Lj} zq}_Rv4gkn3I2r4a>0LY9mLQVhi0a%Q(zCTaJ~?4zo_s0mm+S3{)|}i~6M~k9S7|z4 zSw}i&ZqEMzhHDc1{gY7>XZ>RSl~YaDqm35KGZE5a&j|IAb$>rxB`NcydnuO(LK%s^Y&(@jtIj&;a zbtVZrizvn`IbtG>qe5LxCDc;^U6c{QCZM|jgmjS^TaZ?(N2OSj5s8p@%!K|F)Y0u# zSrOl094ZsnHH*a>eOR+$JHWCDxk3oWPZeh4SA^S;a>0Ly)m5~B4knbLTr_Xg{yC}= zTiSW7v27~&`Am#+^{V>P62mqzu5H7mAEiTi1d^g`mNb!m?)Jtr+N%r3b_aG3Y)6nkGg7SAXs3aL-(aNiO`uq0 znG0D@GCXok5{?^sKSNQ+q+b{UrSwD&K%no92vadja+z~lAitV5>h?u1JkpMUaeLQ83GoGKyPjFHJB@uq!%#&)}q zJB$jBX%)(XEek}I0caQz+&>?nroV?Yn4O(ehCMNs2lJ)`5Rj&20RI3E@snC1qIfnU z;FHvnXi{S3v5_{HX&C@SqVTqe&-2VV~WP|_`Cfn7H*4S*?YBBkuUA?*wud6vb>IAG|Nv?k1sW3aYcpRFjT>z?xxU?%T^q zj?E_-1rJZHSQ38c?;M`wRTjFpM+&nN$GDR?{DG%QbXq^%hnV!v5B0?e3vh;D%^7F+ z9VzoKlY=yScYkr)4&%SDs`6eJa-o@V zjN^*0H}2G{h89M(^};MMrQlS;I=}StwNB=D-ei3 z73PshfZY~QykK{zrkPU>=J0=n3es&c5=>08W7ilJmw6l^h=Fl~kD93gIJ|~r^8RAo zK3vl`!EU5Vps+lA-{Vw;vnqp~ih29r)};_z;5308 zBRfg#Ggg9Iln9})dIjQ{6Gv|^%8igReqowA2%1^tal~!`=nCM}aG?x*z<(2fD$T1& zamWtj^XpbTo3aZm1F{L8Z^>OrT#y#2y){6akA>6+FWHS4i+ zZ7#xi$j9@kqtfo8n|5uZ7{C%ukK_#kx-wOvMaK37`i_4gN(d|?c_wU*8(?4OTJNSw zG1_l!82TY+BlHzKS~G*0u8^iMKXH@!npPJwF%=i?sFZp+Vn0gKx3)>`g385+>R4pf zis@_8TdR&bZ2(lCWVT(oeXR&DpD?-XV z9u=4lpb?+ev{B>)fgEZv-;?=OSWZmJTMNG>qkE++MlcS4rAudG_Tg1-l>+isJ8;Z@ z5^DVN$fM=XnNR{@6X}yuC7|EGbB68nWAvs36Iv004+1+^y)MN2AYI{_3yvNY>X9WI~ z_4_za-$>ifBWeyP3zQY&mORJjgXxj|1z3$%HOUI+AH>a{!#iA!yn57-*g}V!8*qJ;8k{Z87s}kP+^#CS+|IIFf2V*6md`386US-kkzF_||>d{hp{{Ajq12_v^BqY_U}d8%^=(CzZ&R3{sN&p(YvCBzGY zvojI>*5a$lcw|;k?o^Ic^!m`)Shg0}f}5mbdIAM2+$;fC1TSw|$yHZ&`P-hqH(HoO z9At#tdC1AlD~`s3-Ydw#H-^SJ0E1CYbiHzLM?gB&C7C09`5_qR2Y*^~>N_zTs8W96 zIX$V|IZhLBV18V2+|(jIa;uZr=B>dDW0wK5R(J?_J4I%6Gbv+Y#1v3RI2p;Qj4b6M z&f@0;Ds=U$CBp%Lo~9LNX58S{vf1-K#Qhji~wC*1F1b}4D!g|Dj*#&pqi-ZE;iSi=h zzuhN_ECshhQ>%Qx-EosqO1uK{GLFHd;)uNV1gIz6w=@(oDM?C!+_Pg82uS?BxNCsJ z(`hE7o5~OSs3k4xNC5u;g-PX*rOA)W>%d|^J}FXY;w;iKqLJu7tpg$QXJN!gYaWG$ z2l&*2-edBFPsE-*aZZ;~j3X*c*aIb*#sK;OQ45{PgE=aCpDefHDTqlUmIpp!?LomE z{{UK&DfH;~G9&L}o!i%s%Ap~Ap}I*}5&SWa&j+PG*=@iJi7-7t0+7XfsN{UGJ35>x zrITZYE#?#G%y|4N{9k85mq%cu``D-?C}kkP7x2&BQ|>?*M*+sx-`4s?Qq{lfYyC6u`gb+oV4;N=O}5fFG?aOv#Y~M!uz_ z+|>g9@-U4t1HRPc{$`dWfn`+^%)|_R&_9(3Omw8~8_8xpjU-m@G=~wX<2eX2wKUf@ zfyNVYUNYS?QJqN{_QJ7(IKuNxR%Gj@j33^Dy}`o&09uW#t>b;ZXky)i@G2&{nSlh3 zy+EfcVFNSCgX}7T#idB&Qn4Tajn2t}( zBUUUwr6e+DE^?uwj1IsOYQL8z-KtsGlY*dtDhHjI7X`K++X()&#FkRyfQ#LloyL)U zA>GzS+B%)p8=|D6%Z!jX1oN7U?J{Jbd?@D}b^NJ*(<6`JV10AN0Y^A{ZU6#QTg@b&1_`w1M883POxnJ7>|V zlLFi_MF`$NEIHep=A>KUFdk|lUrb~ARe0i3N17DemG+$rwfbX-abl0m|8Q$$rFV2aGXxB$}vDSy&b6&_YP1VAdIuIc_( zb#dP~sbjejyNPV%EEs{gg7Hv!sLsWeBLw$;2jVDY6NtJ7C*|prQX6Y_UE5ik{iY_U zyo_>3mcSmn*yL5X8sLRhh+`Q)BWE9vT0*dmrw47yA0B`f{6K%mD!)xr;-bK7!^XK z4nAUPNbP})B3U%N{qls>Ah}5mjC?yYdzUBr@lANGq#2SX{^r){GdG4MQ%I%9-XN2&eCPG2+re%bytvvTI48^l zKcyB9V>>9Z;x>KcbP7ooL15Z&5_gmy@sJI4ZyZA@=0?N*x)c5t2xWwC93bqp>@H)U zNV6)DZp+32BbvJ%rNLlh9QWrHq;Hjo^2Ndb0DFp)Z<(H0k8?$XnVC{UK5-$1K^VxB zaje6lM{yx9de|7o4;8<(M)^^O9+f&gp*Uq##yQ0xyD(S7miYxFo<|;ukLOdSjcy-o z)_a$n8Dz$P0a|YEX4~f@H4PKwhbITnQx0ZTT{}-!!@+5R+XVjrT9`u&3z)2Jwsj05 z6*LgrM#ZE)U1{W+_FSZxg^jlkVP!$%b3|n?hZedJ)3%Ajnkf>?qVq(cq18E znU8e}NfjDhDR8SKs(SpuEdUtckdDJWHf}$yHOmsG%9%mq=0q5&WFRml$RoI?2_rnH zX-{xY2kSr#SeU62Tsr5lZ}6p!RV2rm<`4E%_55h_m^TnYs(Yz9{Y^4UhgBd*Py5Dz zB$NQh<&jTtMk)pvJm;R(9J9-uys#k8Trs6hK~$CdROcLi?Gz8ri-n0J2poYNj5s6# zoYjUZ#D!)>9g2$1dyJ`Mif0++%N6`GDXpkTpns#==cZVeG_F2VS0xvWHh9f8Sxy3x zxrc04S=6T^X_*JGP$|*gF&LihqhIGm!hVtYd_^Kk}0x=cK zFdcFaT69c4VtmIxQ%qJbCDWJ0VRP8XGmm~MN4lK1%d>ZXO3&PcVbzztJ26Rtwqt?c zfj|}^xRAN~RIvr@s56hsi6(+H+9sdWZESx!qVky7BzA~E?peQDVNhQzEg@`w6O8^w zfU$NpMR6>CX<|9t*{7|R=kxWayoeO-nIk=pGe8OZm*u4(wm;4((gU+#iWwt3bCI8~ zH5*6f;G4L^dWf_AY34YczD+>w#x{t-=7E(&Dy+xLQrY#$rliPZ+xB6*JxL^fRe4$! z`5Ji`^e1KpKPq8~3KvASJVzcw563k&;HXIqqrX~vK@<#eaWT(lImhKnrBI!+whwWU znk*M7$g;j!FaV*};75(%p2RI*{n-bX?eCgnM{WT!HNvm^3z{q!DH!h&fg7BT;YBGI zuL)F+M#;`N8K+4c8v#$X1^0fmjc);7B9wuU$IN4c^q_Y*_K`~MjSlShdREC&94j~1 zIQmsomjf!T!Sn*3=8{2FQR~e~vkk2q43!Daa4MuCH{Sc7b1^soV2so6ZV7>gNGE_m z{{ZXNXl9KQ<^`MAjy|m8$Fyqw~n9kt7YBv3H}oyBqo=SNU3 z%W&kK(t(rC#^?D{(&jQ4D>mW5&m`7kEQP*U9kO}aJJaEfgO=Dq?UFJ-S^&D&Ov)4F zU-wrSsD;UjWMF*Fq#QQ@{b{~J0$sNP&JH(#NXO$!Q3?4YbL>uN0xv#2#h7nwXK@+D zIc^d_3q%O*xK)oPQxiC}LAQ~;`2L*HA~FCIU~$0;nf*zi0NueMT`uBe;w*mny<8gLkI`FhClgwC|Wf<-_#Y-Ko-)Wcs91o< z>rzLim{hc^!;D~>0CULORf4iEa1S77>rgYPBuljO{3Nzd*EKKM<);t2ed(+AqI{{Sx=2Xe3e6~Fdqg0i&o?mbEQf2~4n7XTT&-}`ECKL8C0h0K*|mOIY1UbCK8DuFGbrmurOt@!bABs<1&OaVS!`&hR<317LqI>rn_*RP8t?xF__h`=u(w%65~f+Zy0|QlsJ)+_8h46C)A&0a8((u{@}v zLA!TMlTxG*+NcG0IOOGdr@l$t@}@g&R{pfHg^wlXP(GPI&X}%7*5*mKh}19~e7!2n z7UytZnQ}Aopv5X)#3UFD-G;^Ho{S0)^lP>`$jTG^%{z+Xy_zW{m@)6TiiE~_+G9ob z>S@xsX27;^*(B7jPz(V3yac z*5@9W-BPW^!BDGk>@&{P&OfCf9M+6LEVBT803XhUvp}RYETnqAe?d}+F62KW%p)D% zFc0UNR<>Z_qQqI7HE7mBmF@`?>>?JCc3?hzLh@;2RtgLeOOkRvLt0VDryx24Pu^9fV(pRUO~Amx z;*ea)HkypC%`|Vb_;Z|(YJ6H=qLM6|BaK_MyymRQ=9BX|EzkyI{HkcKQ3)H7n03bH zKgxi+GcI(yueJHb?b1L1Ar~Oh$EUl^nGck|-bEkC3fSKhw+$d~MNFDcKOe+#(=K+J zcNa4<4wSMvFEq?YLTXs_%QzS`=m`G+Xp(;lzvqJ4To6xQ^eOWs#>Q?lm0aSI4rU}) zmZ=zM0Nd0CPw}Ri3zOyBBxAWb{z9eMaG;e|X#W7+r7_&dKXr1^A53+s5c_s@2Y%IG zRgaVTijrG`{28uK`=l*G$#$4lF8JWHFeKEjyHE!scjt-(L*zs<&m8Ul0BwJn%|gc4 zdXFJg5APC9T#zQv34wAx`vPhKZ3!nbqn}h9Py~a^L+=gtu|?ALeQ$x{GNF$@1`VP@Ai9CRobqPo^oP zt{OzQXJNqH`2Lix7A`E%DwlaTj^F?>P)U0NWJ4y^Jwq@xPwfvRj6Tl@7{|=t)}XnX zaGPz~IDOCq{OGvSHc&@8u4Q8({uNS4sEkr0v0*Qg^QkY z1jA1fp5cfUS*{^g&z?4p>&+2oEX!$({{RuqJh3f@Sin7c3N98S7gj9UGEVLO%60r| z#7hIXac?UT_*HRbj31Gd^TUx(5k}v8A3zR2IsmgJ#?zLzBON!mQYx|37iLeF8y+}0 zG>-%T{OiH=QJRr$*J&vk^rjjS8TXtC4&&3UBEZe_I=DE`BfsNTW43LC@$bfI!rD-v z#UrWj@`L>73zgm{1QF&H>`M$#`&8jVKXaYNtvn1qS?)>pIL$NckPb|Q_rRlIxm2TP zdOIl{0wDfomNlIH<&lPR0Nc;$Ru01>2;z72=nv~r7^g4Aw5kvHq*WAx(JT z7&4aqFe&EF$?>xZk65$%lTtZj2|EKS2|mfwBO99)VO^06B!~-tb|FI8yoz0|@y`s*c@;7kVjD|B ztUGVb0Lq?Q&fA*e;YL4z0guL~j?8s=CXgOWJLB`9v~1@fpG~SwLn7Na2{@RRJZwRa z){uwD;2n*$f^q?T6Gxl}5k!TDeCHJek;fhyJA0SG&Ud2XfpZuKFvNs^&r6Q~0Dz!n zg7P;EhzDbib4^ExGYJ|bY<0yfFCIhgg%7bV59d-l2^f_YpdaEf^Ze)$ADv~68q~U+ z~I@^Vkx?-E;lk4FfJO&wv?|9Dq?srlte` z0IXH@Trd9suB#$Q6mXn$IqOo-7#PaO=3}VAG_D1iBV)90k}^5t7&O(oQsOgna)+rb zndEjARZO7e?Y!c8Y;0n#!z8SsL=3&TahhTr(nk2r!-fa%6wYbpH#vCj8)*XtkRQ^k z$!-Qq#VH=66%!vWF}1D_w%(M0no%Y`SyOko0*H;kB(%_wM?ydP)tm)?sAn*N0K!I%0@kkpyYee zainSa%J?zK3wFRcsLRW_olIo+80sr6Wn#p%V0xT$QmyRDfX0DW(T88H7au9d2!FZX z)KiQr7*Y;%*NOzhMe+}yo@s@$44b}Oe8ifQW>VBamhL!WA&g^oc8>i3sbH}yk+HsR zSh1WisD7uuY~S5aaX+M5wKfX9OEUJU=RMiD!hz~ zwi1eY8K6ZZv@trfNrB&YKZPK)z}y*}k3c$A)rF-(++*&O*9NV_Y^p-CzdTSjWC+ew z>?3mKr%O`HhK4il%xhL@!?jO1PwG!K z6EQ=SC{S=V4r^XZAtM7KfgkXKJ5-U_Chg&sR|lyWAB85u=*K2zp z8yOpNMK{ff7b<`-JdmfKYDhOAj?xH-DHJ&W0Ct}6Ka>E+)C|;S>QK$)LX3S)IWF#) zoGd_!ptB}O9RSNhzeUD>Iy{pzC{l$RBdKAfL%*=8;PgQEanlJK=r^2`kIJGC?7nefI6!T(zsZ)3|>w! zna@mT6+5DE&mPm)=1>RbYP3)(PzhZk=wTj zXjxG~=5P5Sj};v7&gukK z%!=L2nEq8d+rL>ZXwy*$B_LStkr49d9}Rma{qU*}VyWjQy?80ttWf2B3yjya1g zQnG(}xv0L%B$Q<{xb{#mKD2caG_4GZcF#MG&&ohNbC${cD%x7eqve4> z{`2Gd(iB*jX5}Mu#ub1+pr9^C6vzMxY;p&5z^U;Y43t6iQAn$}63--qpxOz~=S^7l zr~ng=q|hNkft}0_dJKVzuE^p;G<0)HxVK%o%I3uF84PJf*}?n&YDPoj#2Uui56 zZq5dAoMxW4Xshx?H0S6Ri-n6zFjgQujz?j}DI|A$_zuIjYat%J=zz@RlMGR3)v{^M zOj5%mI`JS}1L`qNFfB;4E8svl7zKw<tsmvN$~ zh)AP6?M&8M$2vZ8qwy5h;WfrlJ6b4fASxF>lS1>Q%iaY9P5zxqV#Is3U4LRnTZ zk2J5i7^GDUp_N`wbBcFjv3gxb(E}ebSx+7KKZRD3`q)dsna(*2fIqE5BKfm`Kbc`#MhCVVk z5t1kYhE#-eI0SQ#ylKlSkVwpodB)H2r$N2H)W{+}s~P9?s|{}}ATrAs3^Fa)u{}x*RW+Y6?PhSpl2xi*@s{13 z`t_uktX$uKaFM1xTz@L8S*1LrdGECe&(jqNxKef^Fl^*EKq>Ogv~KfQDeJmS0%_jj zv1wBZOp(X{?d1WF#F|*y8;FeCy6xapDRFFZw8JxcgfIHj*6oNX8r*TwQXFQg=vHOK ziJh>P({AhYJ0H`EM~-wPd1!|`WMe;>s?99U92 zHi1N%c_s4p??CO`FzHQ3RFAJtweMV|w0E{b2LqA`cK>Vqa+*^RmWsMI^sTmZ&VAL&!Uy(=vb_-S7=?mdii)XN`*B1*B zRmgv(5&fl*6C8&<)v;51mC9{K>g)4FR37cYppdK#aXIX8)thc34x!_bq{kto;;g#B zGQ)Bx^pl*^6GfqZkrHJS3~~1jHaqxcB_nB+`uT)rsu``=sFGQ>9--wFMl|pOlI&O2 zzpW<6%3noN`;E=O{{VUNK9y(Agb)m%lhc~QnA#ywW92P~-Znqz=m$ZyxIcv} ztDqyvZ%zh4tmpG%jI?trWP$>mao&WDr($My`?x$tUyyM&bF;s{v4gc?%9Pjz{A_kN?>U3T19&b98cLVQmU! zZe(v_Y6>wkGaxV^Z(?c+ARr(yIW{&nFbZXEWN%_>3NbS_ATS_rVrmLJJRmPjWo~D5 zXdp2&Hy|(|QVJj-ATLH~Y;-&;>TeW>m|6GK#VzEw}vd+4{j z&fVL;oc!+>UjAQl`Stbl@t+_5h5!Bi?_NLswR`>UzdpcG0~vn*?d!K6?%jQ?KD^`~ zp~v3vj~Js%keckVy^~jgpFkq`oU<^-ScCi*oISm3Dz6^j&G}d8@0j~5zRS1|#Jux8 zB@xSA{>S4VawC1ZlHajaBMrG9kiP#R;(z_sM{s<5`EN;Y->Q>$D)pVJFS)+HdOm*o z+b_x&7>%!f`|+2~`R1Jawfwhy`PIJytY0{SKYIO`l*RrF@c-sZ-{rrq$iL-3?l+MC z@|R!z?EeskY!=>%d&z&lk^hr>`_A8bt#8J&eEsQJ{tB1-o3CU5VrnvMuh0MB0QfNg z^54?y+qv$#jG+uE?ojg>g1D|6{JM0BITT#6mR5YhKUxc}z5d~EU*RpE_`hZ1{7fd( zzkdAUmx8+2Hy`cw^H=omCLhw*`VPImyqC|2oBDT_(U&jxj~{%h@rY?WVtS>3k6&AO zd3o5>WFCd_gx<|Z{Kb#{=~sXF{jdM!-~Qsq35!a_~S>8}5uCK*o;Zyg-QWir?OidH&ZwIiI|}@tK?-FR*@w65qW> zxvh+X+%(sm+oz%a`QN>sfB)v&@5a<Z?DOl3gG1d)9}pk$A3= zKc)?H#%sw$kh$LF{ffM`OrSqO<7Ht@J|vlD(N&qluBZ0>D(~C>`h(GOcp5xJ!6$>& ztw|K^Ua%Rnrn5X_ z_5GEdtaN#wkg=57E6K`l_?hJuu#%FPm6W zNhzW)^tY3-!*AE|P)V*N%RY6{3{@pWht#5!Di(~(^@oOB*Tx_D9&54U*=v_~O-<*; zBNV=ueE+xjSlgmq2YNfv%wAOFpD;a(6P=M_ z%}Moo6nnmW20K0f=U4yn`)|Mbm#_cu?KftQmQrFSlpJkjld)o zrvd7EP{z>z(3Lp$f8;)E@b`sf3Rb<9IHwMyvTn6`k}hYA{%1KI{f@E5ty*s`VDy`d ztr3i$23Wh!=kmU76|-urLH7t(s7xo0F$h%wQEbVG77JP)ZJS zp_i6podOo708}6-a21Atn3bA`fQ2Ct#wf(aoC+_#5%Oi1)KH2ESiDVQs=;hw3iv?F z3TK4^V&`2CL%_li5S<#jQi5pnDbVHL;6G9FyT~hqHV0GUCQ)odz`_uaX(O+8351jz zpXh|egX~?E-6as^l_7A$k2;X0rTZ0PEm^1P1wR@^z=OL6Daqtk{dmC;5M7(cIG3>Q z;Nadt;DjIbe$_XWFD}ON`o=f<=rV=5Qi@x1S_Vg!76eWh0#W@|P+FaXl*R9ge1#LH zfOq}6LljNk(-5%mqmDW>o4!<>&S^lT*i_(zAGHKcXSw}u-tz@cjNEa!fMsa(oA!*T z0e4AiswS7Ek;~~aD6nwKR0`CQk3sK?xI_pgD<#FWnGB6wInqJxJuEIu8`p~TV$*d$ zlE@Rp2?hn(jWHUrcGXfhJOnU_qNC9#fA6(V{*4ZH-<1IUIQUa&Elqv{Q^4sXim`}! z3n2GF0SiMQtDEB`D9CHli%%T*0w+rTqPnH4Lpk3dAv&Odg((2P&`TiI`xX$R)`ozE zDWI|Bh`gqN*pWU2EDV99mJO8R>wf3lbyi+51rUjWB0lJx^hiET0Si+gWZN7eBz(eGl*__@mO)QhuP*#>u_Z(Ur8d8Yq|^`xzlABFDT70x$WK3SU||S& zDl4IsJZGkO0D*1hX*CE#V8Nt{1mV-1zP1LrnZ1p^vFL@z`_s^6(V{QlvC_2f-H7Iooh})LS5U?-=yvDbf zQByTQptPZSPM89!e}yuA7!`=aV4N@o)R9I~Fvjn@gM}d=-e|^WtZMhEe@+^?u*kdw zy1{QQOCy)&6(u;IF52<5Crp8^i@s~}a9-BZz!f!qf)eWcy9ikLT~3$+5voB{M4x_! z2=wgg5U?->P$1D2zviL@;^Vnbl>Bgxu!50noc!5^`9v0`fR204%PvEp%KRMy7N!7v zKrYL=1UPjsaIj;wW05((*tjqFa)GS{Ub;3rV zs&f9pI}F$g1kHG_J4D|O0m4=wY238N(a_8{sYNSq>$1hQ;cQrV2%vw)rE+9yo^mZ_(%nYeq1PINfXi1NDACA|1ko&Kqr>#k`!dh(aR%%fQ^Rs~q(r&D+i}0*d2SNRK3YOH7IrXtMgc0UA2K<%Qx}$S6mH;J zDl&%ow+SgDgLj(|Ua$O8=3Y=LmRgJ&A~~t-vm24>VsXmSipA$EhWT zbI+Fre8p=`qL1gmlv6&BT4CU?t*OwIj2A$Unv_&D$BpteB#euO z7@D?5>nb73Gj)7hVjpefbLYv+`b`bjOX2;Te0!8(kfsO9@(3^w&N#9Jkvmw>ug1edu5YorPo>O=xuVlZavY*dzMQdvgN|xJG#+h1{n3Ka7fA&>(R6uX_ ze?O=GLBr7TB9z8|VrgBu;uE#5**!uWel&G1Onf1t&Om*42Qby zXja3r9T_kKIaQqXzaVOCIKVT$jL_96uMmiSm4RJ<50u9@^NED#Ke5h zZY*I(6s%dBQ2){(%wJ}~|7OPVk&(VhRR@rDoPhPqNNDBJi}!r(mh`Uq+iGZ{)E~Uz z{N5ISv&DMwZJjwJSA3$Dk()ns z-c@GkINk$@zKh!Gc+3RHG96|Z{U>(EltZZ<4Z=f03O2*nQ?{IHX}m}6nyM7?vFv=qX{L`H$W`<88N*^i=k$I=mCeMBz$jqH|`=r%0tkFR1Z0p z&}8)~`7}(J(8N|oW3eRZy=No%YwH~OwaI#yp12Q@-DFrYthy4xCi$fYNcesOY2M(-c*x}iDT98f51y9#|0jQPFI+dTw&X+3rjR^7wA2O znlI1f-HrbCAo-0Q)hA^0&*Uz7>#>@cuqJAXR(3w_x`1iU@sXe6x`4&zvF9bDLWZb7 zX;tiBOvlF%fZG!e(b;)FkMVQSs|B1o)ouXK9-P<;}w1*ckUenB6#T8SW9jJRSfdb~J5D8acuh1;&g|>RlH$_k+*TGgH z6<*!u21aRc3FfBGrp(?w=;mp}a9@t$hUN6uMM-R4j(#*7cdZ^dKOXkYIV`eLxKtSO znb_;+-$M~2wPc_THGX*(Iu~CA`D@H3DhkaSMwu1^gc3pq^H0;%XSU{E!Mt0!gr-o2 z2O=~c9Z-<3>c3?%Ls##-5fPyp$2!$*8zl@Co|TBe8@6<5vN)U*C*h+u!LJHEhhg&S zex<2PVHHAIzOFDw;Yrj{u;vASkOLc0F^}% zI@DI1hn1pRGch9`qzK_?0_Kh6o3&QN3}$HPciAwsGo4)Ykg4HjKK);|(oZx5c7P#& zqee(ba&7USSnL4Y@ayofL77tOvXDXg{g6NbO9sebtedNNHFB>WbcGefK&~Ss)|5LQ zdF2JA`GZ%c3R=-ja#8du3&8w+6@aF^;?V02wer{xB~x%-!=z@c;M3>xZ$E<(Ben2E zETJ!4VPx!TX+MV%^A{k=8LjZ1>Fir!F1D0F-6%j%!^%(PRaqsrJ5%|J!Gs4XMQzADvW=w z*V#ZE`L`*aa+NpE*vaR<&(#LB)odT1HqT}f1v7GxPmuAPdRax>h&TcNY0FC@aG$aH zj&ZC_Xmh=a%o^5K?v=3mtH>O;+27km+xj z*+pQ=J6k0ks;jjtRFgMLNHA9LpE>v-DK)suDcq{m1p8MopsW}IX5b@iL`4fPWo!lz z8q(zKpO>FqZ_BsUciAZvOB5Lx>-;=8vfWhi5K71op_#1fpOUj|9jdfH&||LSc=0p_ zi;&;zkzY&l)+~HWM=c;vYA~_zmYI5?rk>W{(3{=*-7ZqbX{F&?!Un_3WbcBvefC}K z(YlfB^)xCHEHPBP2Aaz`XckBW0@B)JWV{B8&T@zK#+t(|?tV1L>9z)qi0?+~H0L$G z1~X=P=fOF4UkbM-aa$7=kI4RLZPABk7M@z1_k}x@pOS3Whc~vh5yO3_b>vVUyKok` z?@Bfme6FKIgff1^eQe+Dd{{Yyov;%4Lv+7Ko^K0QqU*6ZtieqhFAkbK`l!xD2KcC_*}a_Jcl9)1 zOXjM?sPMv)#(|QB%eM#F?vyxZd*y+aD~Hav3thh$Az`6G*eDMiN+t}0+HFbdjKZ)r z?3WXTqA0}k-RtsY&I_Vk+TuBvhP`~DDYSf_E_8G2&Q8L*6;+PA7j`KkJf0%L`z>~K zjTkGs%+Q#GCbV4br~xU6DC;n6k02G_QPP)Kxl-Se#07gTUPjY=5cWGwmJRaGm2Gs^ zab2z5pOp}I4wQYaJit>eVmMr>dgs|QDrxeiSA{+RbZrvjoe+{r>eT$!tqTs4=36RR z4f6~8S)U)7t|Y16OLLNl(Z_y^Qi>q__$^thTp%J~r~`&Y=|eAu=1%>^%fN-@RGM1A5ix?6Ru8AX zL_#wG9I#Ge0fo);P?IEOhN)#{H8)2Qnih0iF{#CEw;n9v3qEQ-*GPmGNx=I`mA~4; zbUA{-fcm6^cdHDz8(c+5CMOdyn{D&_zrysK06I-1w-%*0K&oFo72vDfolRlAh^H1# zD?=)HCpL|nuu>V~qcMuBU8xvIeOXFPdOI3j%r)A|nYQW8`lD-G%Vf|ePk+~!Q^9py z19GoBV;M$iBCi)}xU^-N-CiY>jrua7%lYGA{xN6w?T_}6GQRvrBvTP#mqrCu2r`(7 z6v?Hh_l zQu(+X$4SNP#cjCA0fUfD`!?d2z=3&?RHFnK#o{@KqB;^I#suQ8kY;vB?;uUYqctX8 z;J+Toq1WsRf-vA@DiQcVZ?DHJhZX3l;Ha}APFWd#5vt)HbO38Y8Q$kdoB8@k*kUS2 zKxD6Fpv096F`H_Xm-JdZzr$_dTa!4f4wvkUw>oO76GG4tBOWQjNHfsIbV0NS(!&wW zu`YA046-kZGOa`{N_eA0)n4LE=Ji9qnySZX+N)7TCFj;Rf}T37=WDH;y1QB|M@e8Xiwrt(Lr3+qJF{K)oZokIxQWbgaN0NAe zWO^UiU%MBz1V=aMOCtX#rUK9{_F8eo z2z5Ae0anB1A76wDf7x!!F*1}P9&Uw?M9?+9J~|PF7(sG z8xBY=6zx&{6tiy_uCs(xh}R$d_jIK(t7mRI^x-Lp^_)?vVnue30E^u*5Sh-jr=HI* z!iZ%o8k#a={p?=u&AibI%hPq7NFhYuxfZ`mg!;v z@Kr~348sWPJH7$l3-j}ahw-M3BH%cwv~11REtBty{^Y#`K3d=rJL84J)oxMu6iPNZ zpjnIB7R;Xi<0s&THCOeb-IA}94@G3rD1)PTOBP3=A*Xttf=C$jnk0qpdSm7OV{ zHcmJOL&71tuD~D%@}yh;*aonU+WZ*&u_4`5Jw6fpi&3J(o8_#Hm{Z0S$TTU5+eN<# z03w5?bqOo6D(M6k-xdzkfQ`V$Rt4y_hmCQSF{>zH+K?t9zBrXeJ3U+W2T z>4ku`#bqadt_m1KO4+mHbDM$UL zn@5n_?AK7*)ZnS)^59I+(BAyy7tcK7fr0K@ONYeH5TVKeV5M}jV_u6+pu_-ZfG4KL z37wtWOlP8p!e@o$#Sv;QlJ8eY1t4O$`}!LQtDPeNEEaF6a=2XN-x8CICEQ_5crYJ1 z_Y5|) zXDS0vj|#Yd=q+cYb&uTva7rtHHCgc=dtPbn(R>B0w1R$;gv?K4=Jz?BKnwWF8IsIx zAJZim1@6%k?=7?PnZG!7iIH*$;23c27-ZXMLc-QV)>EoFOMWQqv<_dn87-h^giH+u z2Og!r267E#g5Sm-2ac)NJEs7^N1YLm{zaXF2Fb;3!6%ssd~1VDV*8oF#H($@tR%iB z`e^ND^K>nS*Idy*3%Dp7n4bdl6XVma|~bZh7ccjgs$_D^c~W+WS6Tg7Rw^&D=_=&&*&*y?(5xA^3> zrN{jj>GgF2FfGF87;tO zj>g6FVzd_T@1o(^?d`M>y+L@i<9nC;P@|qDvQf;!;G+nQiKF+D>39t;9)07DN+y#}@{slp%A0 z#TPZk$v+C7+7${KIToqM*>kMDJi1~FCKWyE2Y!Ap?S>IbYg5~W8yO7d6NujIM-b8^ z>BO32BX1dM#yV1O+6cP>4j$x=xz(`9?9{x45z<`oH<%B4nll^kVsUfJi%rs6*D8iw z@`QPuwn@;Ue=z5foKRxy@`W}}5z9ty7YIZT?AU?O1c%#>RbZJs$;{anf(ejB*Hy zqM(ThJQV{=&&U0#1wjGYd-F;jJe7p-sD#Ts%6Mc!5rEQy`VMTMBtgyJYAb1ARi=HK zZ$omY23stkVOY_RcRYH!~rujwkeJ5qkUIweLr`!==Ez( z6=933es%DaZ6@)=+n*Eyi=bdg^39s|w)n(SAc)qA`e-@}uJTc}!hI;sqCnBTX_B*| z07llY0W0Cc;nw2gdy68p`1%W@avdShO+v@IBw>|4C;Jl@HWaaeZ?5rt%|m((mHdxY zi%Q^AK0XwbquFXSZIVup z0cpD@L$hpiBqB{4EP~*8%)7#pYlo9>yF58Kt56ZOi@e0$d}@LC@`3q}0$yXW19kny zRwcJ9{y{`k>b!QMG#*O_J4>4G@^DZ4Dc^iZ*SOT!h+gwUvre$AjG=_X{mfe5J3`J^ zu1RDYSEUYG>GtBy*R6eq73p2wGAy_VZqmP;WWJnas>53sov+fT=U2re;H;c?x~0iy zcc{#EX-_wPyFHd zEAi)dqK~+{v!s$UkmN(k&;P69SMrYmGjKu5Bql=2Lds-h0Q?40e}Fgs_{}6?XY2eA zcbhVBGO&=cvHzJn^s5C^1}+9>Qnp`x{mv))qmB)zzLe#G;sXr2;BpvNs?Eiu4Kf3u{`zPC! zfX*EaY@O_X^=9PpXSEcmv!jd2pI2hQU2jZWEsRXwON#!g{2No>n>g9II2xJ!>h%w{ z{R4r&neiuqe`ag_og4qdY^~_HE@>zh^w1NJ2p&y?nN-<0DPdZ8-BtuII^x9xoM7V8 z6SQ&bJoCs}!fLkQ=X9Z=V2}&)=Z+5uu5dRS@YXMHDwjzQg)(U<*t^b9UWc_~BEd{j zD3|wPn)aK|He^J`vO_gUKugnn{iqQrp)|KgX-{hzx%4geCsJ!{zV^&1a4)fu2D=@L{1h>WUMF;LKIv>MkxP+O;mh~SZ_1InvEi? zb>z={Jka_hgM5(_jkLKpjw|p`jEDPS~k`{M5 zHgQcJDYco8*QnU^_E+f$L7HpQ7~QL1I!j$?%Z<%<{bV$?+T$_Z{I)HUzzMrTuDcjb zWG#e4`27j_vodOKvahS2vtEwEzav<`x&Al7Vq;Y8%U$e^e|C?O>8`1bB zT7Rybe-;ha-{bs`ipJmNlj*-wH2zQ@|0o*&DEohj#$Sr(e<&J0??b%!u;rI4oBykxI7WQsYVEclSQ8Kl9C5i~|E7^KhrqC)nRnuas@ zyqIzswIB9#wRN4F2Qn&;xFHffas0M51F|F=iPt5`aT|dZC~}i<;`XSJkopd;lDZwyQ_B?K&FXGjxXJJ! zDD^qoDi~_R7#Ih<_aaeWf>}&L*h#chSXFkEP0V7roxhfmr{(wVE16b1`Ey+?ZC;pI zKZiVRk;2CKeHMgiO6&64-7M8(Y`LnW{yM7{NxEJ1h1DdpCML74=(WZbD@wPt8k-;c znuBYo%)cipf0`OV9@yCao_osvXIknX7Uw@jRM-KN!TN7Z5C>o~SpQlHf0!T^7T`t} zw!bXFAGQBvnEqLS*jfKS1&Hl`Pk{a!?SG{J{pS7qe>9%#|EMAU5}?1#^#4$RqBTd# zbtEw|*D4mo2!{q9ecvj=!Uto8i*#Z_Q9-412f*`nLv-!dsH(Y~9JGs|@7@v5Yg)OT z_$sTZkofUDc>Fk1bG*F+GT%CcZX^8!pY7Xxcgsn9eP89nl6gPb`#f(GuM8aYgrEUg zz+kfeJxrB&;wAE1GB7rF*KUSLR2A&Q>zYDIxgQ5-QyCqie!a^TVCqFwlhxZSOyj04 zp$Rl|^ULyWN$YP#U+WrrU{G#nVmx>bcxv@-5Pl)IF;YnS3YILaN=Gcb&lI5n#=5vjto4AEuLW zNqnCMuJ(KM{JB&q|Pe+8vuCgdf&H~S*K}Rl?XDyd^>*}tfxCOCgbEQ2* zY8_&R17~{`Or=Bq*dG~BE_y=fB*tAkDhr6maK~@5%jMOZDGjbgDi#DBHx( zeIxjD2_=vYpWu?RK2E1^Q+Cglv5G{_(;{wZ0vPbhq61p2WRmM6(xe*r_H6&C0Z+lr zXTag%F|o3#5{4;zv!~D7=Vj9DVr4LTMTd^xwvpvwYAlZdhCaOcTR}Nr`7+sd5vh~C z1QMJ>l-#gAQQW&wL;-^W^CC)F-=5)V~^{H+tToK2z9H>{7mGJ#9&dI@jXnlRf-a&E4B;_Fn zQk3$(i1;xv4@5W+Z43-9XHHkX=P0z7!(=^}(ItG}z7$(S#SvA$=&7`Sldvk9fWWPf z5hVa2RI5*b91MtEU78%XM?6Yhd!!CT*f0R>Ds&xGz*# zjhU3bpI6p5z?kJmJ}fzBk!GP;%Mm>pLX%?7&wbRVpCG*jZkJrNp=(Vcm+c`h_oj(Y2H5E09Es>BD-+tF@iR}^{qpyO zaa?~iVlgYL-8(=07(&yDkGt@?SyL_6vs5SP02s0rZm1w!ksd zv%b_BDN5-G#3$`}?+kHt zj=o&o!osTXUbA=G)Yu58GWv#zce>q#7|dtX;UKO8t%icU79BRar{_{9@vx(9oH}Xs zKZo<@G&RX;x$2-kLg7H@!Y7$>isnmZGN>;gqEGiWLhI<9LJ*34(aIpqC1XA4Ld2?v z1Q!ZsBDtz1T5#*r!GFk^QKFOL&j#-KqLfLV*n?Z~(ghDybu~ciKpJrg-=1T4tTuQ zP@j0~{yO&X$dyW9U1f`(9ECnGWxA5NEhBJU`h7r%+}>38AW|~vjXyJy~LN8q-!Ir+7Pq_|Dqeyos6D7FhGmc6b?__svVeeJ-LSnZ7CG$CVUOFO4*t zJE-_VKXMq5=S+SOQG+4g zu?^#~9^(P~!;HK7U|IG&`DC|eG5S`;I)RFF zLQ8?9;($>%Y}NB5PJ}}a7@$9&4MQp`2w9*M7Su;%&ZmrcF28x7?l26YMCvs0;+3T< zKme_g&G~1;MaO;uI9Z5yv{}1jD?^x~+6Zf|3JXyeXLgN*M?I#msG`+l;e6+Ue%5~K zd+}AecIsFP&4NA-ic;w9gn`3t46Er&_f9PEM!Tds_DS1*TmlKIIyAxF3P;Yd=f_hY zNhvq-4kHQ+)iSGZ(Ht(F=#BVzo7>H|95OKGk|E=%X2$6kV-xg}NPxC`Yp8V+h0Dbn-iHC8yhtMVRsrs%Pw z8d3Ab2d4x(1H^M9dUUSV-A%9X4&crFQN?B&UgurM=-~!t7^!pL&sHXKxD_lE^St^P z$U@`6_D#s}#p#epO6Zgl!F?X&r;br1mGBaM$UFy#189UABAZX$mS>sWWIy7=R}3(s zM!BM4+zY(?r^na4~m z-&|INllF{PN;PR#$=Bq22o|3#P8Q7x-7l2WXw4b%AaXC1Q&)+|hytV9Ipm1$I{J6H zeyd~MhsC}t3h)1vCqx*IqH>2PZC$4438X)!rV`4G_RGO>IVM73^O6U&b+;{FB9!>= z!yu90&>yha=Y(cedLNfMXGv38!x&+`?&z(*fV13p;p>zBYOtjyFfd101&{7`cFR@V zGZch~-&XK0Oo~VDc*3;Seeqaom!se3Y5Q<20m+p~NVj|0h@R>qW?#_3QIE%{)F>EG zY6cOU&n_^G%eHSqT=H)kkE7HmFwd8paB#W?KX@dXX--b=1%GR)lCq1z>b0DbpEpuC z%d*uTBtw;V>t_y{0~GepSiv(>u*P9)zUXeKiQ!uIzz!enl-|4912XLh~3|iv5Dd1gC@RUM%I9Z5H7v-BZKVX6{&Hq)7cJbjM3R zr-`PW9Pc1RpD2ZDuWHU-c4@AnaN(5YpIHN=O>sZBwbUWg6_?&*t+5*!OQ>e{CjqL0 zb%(T^4i8@Xq8a3>9$4d0gS$mQHX-6bzMh@##0`f zEQe$@Km(KOBLKTy025Sz+X_byx&K*bJmt^w-2JR+upF)ymp4>4jVgWZ4vzI zd~hf>*iS=DY2?R6lODN}BlJn1)*Lf=Ns2LL)~!5b23qp-@Ap8g!f55%zn$BoV&+9{=wJ z+<#(FzXEP{j(>=_|3riT;}N&IyrHFu(J$PWl*yfigPHVK0l?AUS3pS3@jImc6V3e3 zfr$T2B>sHTnJKAhsDCvA0S5<%2#@#z5%C2z0S*E6|MKg( z6NCW|?GF!vf_Mdj#DIXpfOzf&kpSa_f%yFb{p|$-2|Sq(77iW(5ec}V4jlvu0R;sK z4Fv-O4GrAw1H2D{#(=>jV-bOUp=bd2$^nZt;8QL(eucnC41oyj(?q z{E1)bz%Ns~;0AMnIxj*Dkvh-+|CRqUJRqxn2E}paA0c`)5 zEQO!_1|odqFG>>SfychZV%=r$0$)`3)&tAqV|N5~4&?tU|3`QLZ{4vqj&_54tNaZm z`N5;>X%l$-PTIe$RMPB|oNZ<+JskW{niksX6D+*_Hf-m>5Ew!InfYH-1O6*&<^R<& zK@u{7FM=NXo>Vx*OaOgu@7LHdT=0KnLH=h5I-;lKgL~mD@T8?C<;z&`nf%u$7svEv z8U4Hn8svXf4fubHS@nwy6K$xVprELiB+{UL z^Z%&bu3$U^p4=q_RNk>NO$(z z!{DPGtBR#YOw1*XA8?PV6b}2NyX~s-?qH)5b8*V~9^kW<+<+Ij9j4r*_}n zHba|$v(~_G8N3xepl@7#Wh<>ij0~e&xsd#Y$^1@=Z_+^26)8_b-bQD7Ay3pI8_yv4 zmBkPFfh3%`4H`(Y+nJxUB!`s(V(Kn`{HGH54`!k0FPCEW?^5umH2iD)h4{OZN&EKz zMae7N8kl&p5Rc>|;6cI^LVYAx<0OwHM4mSPwg%+QU;(Vm4p>V;(jW$ukY&!9A`)lm za+UT}S-;K@pQ?K%_g-+thR+h``d!9ffEishD8be zOsu#_Dg~o;WuHbr4Y$*Mv&~=fE7t&yli@*+c}4Ppe(jXE>>lMAG$__jay2}EJ0eV? z@muq0uSK=GY-Ga#7)8Kd~^-#i~S$7z%V&uxDRqfc>y`*m+wAQTcmoA>xP~|J)+($&!F6o&!BafiDwXD4w`CSYvB{Yi;dVv zdVrIJgTY46AThFMP$yFM6PGY?nYa;Hrgu>&vR1v$4t2HcC^%}cnzq`z zb3L#W0`7p$@DIQLw&%JE{KahpOnMp{W=nu{KiInTebbs>kr*2*CZtkIKzQJ$WbY1~ z-1)JhcWp6lOQD6>CrYhGccTfG+CA8Z^%WMxw};n{sYY!xHdlHi6HZ8@d2ePI#`_gK zJt}5Nt|j1)ojwXIiGiioiO{JQyy?Cq>Bc(XF5-C|$2*KUFFtjAc6XgP(mXCSE7Zz@ zS{|(m6%3+^Kcow>izPu(^`i#op?vQbul?b7QkL>)4mHhSlT#ZkW&y46rVW!FG5-{s z!3b>Edq)ypw&;g;FsB)1aq~3B+9ZGDzwOIWB@Bb5C=7$$58m2z3+6}hu`}6>Hn1)) zj2(|5gRZWU{nU7<6!1|}z}|;0{om!Hhx`LORS(G>KH3vV`x$iBeDXlIDM!_pM#0+= zc7k&upHeBMqTvAtjja#Qb0`k7ni99yEbQxm-S=hFLtH(GC9XD&SsTVV$Ho-o{Hou$ z>v)lYd?8G9^m|-dN*%S+wLjAzCESk=kMb={lK{5^iX!dD1JoH^_me={H50NWnhRx$ zYN9T}t4?cwiFH`Hva7Q^qPdr z{X;l$L)#hM*?O~R1&OAv)Us7Ziu-N82=_rSgwn!+NQPS$LDU8E^!8#DGrR*>mO3jj zkp8Svf{8s~s?CX@2b;2y&tRwbaR=Aji-rY@Z(y+e-_qx}kYD7W9!Jpe>CCftpe@uL zHx(^fT<6Df?kEz(@3GC^BZ8*#TCG$cKl>6b$QlLS-93ZgV9IO=Nz#udHsq%|%um8R z6ZWy1Lsqj!?NL@rU>>B8p$^QU7K)1Re6GsBn4s)rJE460JkrjSYrnTOi_ukr1yW0V zn$$z;*f4Q7gsF_5_yeiMHb9mXc;XaJX%B|0q<*5KSw2BXSPtpIh7Do@0oH zLSHTqRgM6)M5?wls{ohnjShCf?XiO`NSmg(OYFJ5sVQ8sVDT@>axGf-Ja-?bo3x5L zJLz3RbVv2F@_S+FXWG>C{;c~Ge?l403F$07LxuG==Hha1&6{#`9O>&!MDBhAX+C`?p>_lZ zgdY4~-QJufSexPL^SNO`%mBjB&JC^tFidDG=6zrC+115s_24d?RVm0^3P|a%M9OFL z5uoFug8rWrR%%{YgY^EuAYwM%%W~qpQjJ34XIqBIVN?`n6d@D(;ff>B;Qq1qRozRsEQ0|X!~v%81kaR(3pg7a^Iy9X`) zcNq$BRf;OLOZNirhv~*R50F}zit^SnwlK`i#!0OIX zZ!h_J{@SiHZB_VZwpdKq!i6xwZ=YK&9o(>G=ikcYL|Jy-MAWzK&5rYS=A#c1^&(mo z={$$Yy_~mTV}>Msb6GLTtp!Jcvfmm^ED&ofi5r5|`glnq*`Go6U?=7JS%!WnJgps3 zFV-yOdvp|=zeOS*^B>wd+@X4!zs<#$Sp7tKEV*@(NU9mcXyc;A01hS^|DV+O-jtg@ zBz=qYo(*Aks@L5T#+cB?d;wiB>X2x&3b12;voQ0UZb1*&RPmccwyQ{`W`|RuNqW|K zkZOX3kd4@ng}x-I4>gaKxZD>gIZIdf-yf-=mZ{6-yM!>jX}0uxdNjw{mWNsAw())_ z{;cx1_6msjNewE{79;A#6yc@+IQWGK&zSX7Ac|lkgWl#^kaH|PQ%J>?WUL130K^Ba z!Ql#080AWBrzWp;voz3cNnZytzuRe8f1Gl6LxMdXf|^kvVTasgE9`6^Ztm9l&2#RGH_X#S6lE6P~@U+EQ<|Im4vc zz?itM4ZV2u8ND5@sZdey=;~TWHf*mcUQE0yPc2+tvwSgNXJ$hvLtp)pmKvX8o?)FS z+!yEUsPB*%Z~W;^3aCInG|s_omsK8+=QUCF1_>L=1(o_jX}* zyUum3a`z#KU+)>DQ`T{bPdD3Pz6J*z8DMbQpcD#!bASVNblr$g`H^T?ut?o#9t&dn zf$2=ym;IDDy1ZX)w8`J&precRp_=LO5>=o|N6tI_9vj><-1e=N+>L68`Q9ak3fvDo z{avwk>oKXKv9txt;9#K* zWUyY*nBD6!i3gw18Mu$*s5>ObIY!yqp7W_seXA(t!;HYd^*8-2F(X2Zje;2 zJp}U`JcG2${4#1Gt`a>O2C~BuPS?6Zj~66gSGo5i;bnhn!MA`vE@ru+l=Qqz1BYGL zeKVUEWGRRyG+_sm)kU-Q--147e_hRgf~1Dj3)X|L%Z{9{0hjb^W-eMd4vREWIp0{L z!i&1A5U~ZqGQ+`<2#ekGd$Y&P581#<>EW@qUEWW0pu+9zMsAeRPV}r2&(ubuMB11@ z3j6CDQ}@d^9r%n{c!WP*J?ueklSFsaEP~afvU}U%nw#V1CT`|&;_COw6o=xt@F7T1`KLOe!L{1UV*;o#j0J__SuwSx0wwoBT6u?NpWg<-IGs=NsQuYKu^?dDvk^ zC{6(xVO_B8_+SWfceCrLh8aVrZJ&aZcfL+dqK$eF9_UY45Lae>dLg`My0 zhx`*Xhud!`1eZgXOVL)acb`G0!&&ga@~a3JI(>!q#HI@X8z5hg2k%qH)YFRrsl2_K zRe4Jr^2RmSgNdd{NY>(f66zzpH=0i)#0W`?_=L)5cxJ)_xae*qSN*NA*MrZXxE7Mf zAYghXKUdT{0}#k*J#f^I%tHvseIT^Mv;%gJm~^Jj%j(h9D-tQVDS~JBL$0&_NF%-Q zr;mIQ*K%44b<@r*ZITL!1~qlz1!)p{Mfns@qGf8qPYcbLX?ooYwRHZd)Db-}fLj@Q>w3!!slT}j$5wjTWF_Pq10?poKzrxK|a zcymunWjaPTu@qy_#?PSYs*l2VRmCJ#$)OvSr!d#8dxG;{SJ(|6$s+xQPV#Oa1nBm7 zL1$=~zN1f2vt<-Iujp2YckPBKxKLPw4o1j$h&yA;ymu(i!Vd4xNQPLGqCOr*3>@AC zrkCELb7*3+GuP_z$% zFpM|C`U>R4ru-3thsoE}ciBajxD9N0=~gzxMp4AeN7y$)5mzjEU_JG3c>eUIJ57M~ zH$d`}zJ_V2-ByGKKZ_4{6siIIF^V&Nr;2vxIw&OMZ7F0`y)Fr@>Xs zX>XaWk&!afW$kF%63S34mImz4 zRP@Wm!XM!RutMwHJ8iV`-|affEDdGK94Pyt*DOSxenzJ}(ydbGpar+T_U1a{>LT); z(3y1M$?6=cUsDXWHeahqrak8Y-IajckMxuukin58y?!u~MbhCoU#-{7+Cz8|K!YwM zD+Ys?JTJF6>dxeQrrb+5cG^D61}u6>vN&W`7p>qw;4yd?-s4-bYIsYxP2c!#DOOpR zdk*0v7oNU<24#YL$^fqyu9u`vhO_2ug?*OCe7&v)?@({&8MK&qPiZ8djM^S$U9TD8;wc~<;aGXke?V6wp7$G~vjX0KCl<#y0)<6J1 z$7AwmS-1~Z6t7+trkgjjw+|HQd1r6*fjqd5w9dq@#^fHbH@<7iAW5ziN#P1QmrNuN zoEEV9Es`8w2ptMMgUHsf{pM>)?p~+@$$*6bBl^RE+e@)Zorqx}XNuP_Kwyp?54IM5e#CWnndg5@>)N$-XXvlH5>>Q0n(XyVS8~ zO)V#dTu0kT_0@p;!?fynd)(7`ON4dZmFKRnVUJuRd4-R3-UyKfu6tJy?j9d^{*1!D zsi;g0qBbG@iVy9UgBB`eW_Qa&sCRed^9;)SQqfGe;rD&%>7B&W+7LG>_Hhg>&p30aAtB2SJil(1)9%gwMY)E%8J`G#;y3D}WtU6m0G!n4 zeK0g5QUVG}4+;tjh@dnn0exvAf)%L|LFph$ClHGC5(NPZ z5EKxQ5|CabbOfcBKC6!nbR7myf4XNX5PuC+%}7!KV({kh(u)j@A5DZP1Z~2gbkX| z$BjaF6_cbrS#2x*9Uv$7^f-?SM_n+UE7Hvl$cGZhvYH{apwb&Q+dp?QE@&dE{C-i^~mlN1Owf%?MZ2((*JOuR-ac}9( zQ`?M0I1SMVY?9wV0ZM@S4>{#92_|H3*5+e3U2v>i$_`mDFNHmcZGLqYw=U^t*S3GI z3Ej@K^HM$r7Ec^8X*mR)P&4>K^&#gxndxD7rMFeSYIk~d%>}x45k4lYUVOELnW+Qe zGOK>KP2@}+@yOSozb5sbJ@XRfYjIf52uAf321X;U0s%B&21Q}PAA**%F({;?EV~1p z{Tm@XIP2V)x#6XS@B7&=q+GrBB+vsHnBsb2WQPW!offiz+_}>Wz7A)jcc8b;9|0@Z z98Eh?zl;GMIAzf*QhFjVdbO~FS@glt{QD;Q zfD~?trnwu@m`yl{*je?;W)!%?|4pJv%}>RX8`S4EDPolTRCEKd;ACj|^z#aFr9Ohq zUy}zf4su-6tG1tWeHDv5VTUF?gTbuc z$jo;OWxw{7lvK`s*7#^-M8ZxK!Aa^%bH{+6q`7|xdfy8kPa>i=3<-8fg5+L-qoY*U;=QXUrM7s!er1Kdxt5yNp4~ zTfs2yGvt`*NVl`LmX8Ox;4R86Z)Y0lYn;0Ex{hmVPi75aO&a`IoPw{SnVF77@LpQY z1=(tGhFwe)LN3n{(9rAU4V?182_5i`n)^_hu6&__FY3CJBGZ^cx4_;hE>{gnpB^Iu zI`kdpO4ZYQ5uGc(&&OR4K|tGD=pO2tB-7=Y&CoAYU-CEae5bKPQ0Z|kcf`H4k`_*} z%IjmIHaG^9754d9BX4<~v3c9;>&IW}^;+N8Yyf$IOimL}4arD|+9`)jbLWI*I%#_v zvOB>23z{(vd8E2nd-YEwAT^7OI|OklV4?$IaIla5e2Shq`fDS*Ot7!0TIW(t2rK_I zLrr}SxwTM#W-Dy+++g9$k#^G4+Zv1Ns_(5(($S;x*7c8R)yYU39{9l zQR}S=MJV9{Xvd8?@Tb*@0T1$rRzvrKRrZX|lTX80G@^OJ#m3VEz&FZgflN-rL0V=} zq^yT|0Rkn|b=8iR{VGAXFU&uihhclF0SP8=&0t#F2=tFU+ho^GR@;PGt{z8<$^0{9 z*sn0r>0jfIaD#75#E35}6Pw}eRQ-I-){CO0?rcnZwr;N>(?2;thz^Pt;?A&|%j}98 zWE%H&B?dM!A=A@^RD7ld8wUqn715vL+pLEM{-_cDoW@R9tf|5dS{(6ra=7_Sm)@Ju^rT>Y?d^8zvHBkw5D~yqVFwN0OKwvQ zxUkv?pmK9Jf2m7{AZ%>&4(0=0f_jw*ZInH3>U32kTlJyZ+p@vO`@&HE?JQw=O^u%n zbGc9-96vDy04td@sK~O>yNK|<#n3?mzR97Wq_8G^jq&Kg>uxD51|Wxzzdbd8Lmdya5av@4_iJAa>!rE?S#HanF+#_ zGKy+v+Si*u;vHUDkQenayXSc>ISy zb>UHg$@bWZMME)gA@BA1SR+oL|C3MCP z{_X>gnW4w3eB5!W6x|%N_8@vpzj|O^jM2%d!vKQN`-#o=+k16sYhWTPPTt1JjLXTjI&`t(97LD%wJ))(NsFl+Nkdd6b{wR>sRYdGV(^bI% zSku=t1Q@Rkxfk5KbK5jsa=7u(T0TO(_9eFk7V0VZX~1?ZS8 zU076zc%zUPBeB{*sV6Y#6}flbyJT!o9E51@IM2WDV?@WUC zqQ1j3MVh`f)pHX8P#hLPxz%OuGgc@*gfkLTJ9^qB4wb6|yQ?Ye)`%LVyYY?c<x7 zCfc3+DP)(SLlE*gM8h`zxu$Dob@y{s${*O$o@U+hZ4=Gcf_%Ro902Ig3J%ToD+s)K zJImeIK>+k6KL{iY;@SGQF*G9POfP;Ue0FleDVu{za;4uXJf>wV1ErNvc|K%a$1&arF7l4s`%Xz zy_t&RIjcv(1WXdJWaA8{$-xCHwUOalx8z^162I3Xb^SmTc>vY}a9+YhmKIh3+u?KC zj3&cp+o@?5SklR209jjSKx!mE)wz)p$)D>P2|XmQ#7iP#gRcq%jTDJH4n|nx`h8dv z09mn)ThX$GjQvwBbdGfUk`zT0iEFu6o}FA%ztXb}Jnu_5Zx{H_D};r9_U zN=i!F@hX0+cby7dE4#@q}bV)#(c?R4n^4fsY-w!P_{eW5b>>u&L(re9;%kn0J!hX0P zzzX_{47qv?M25C2nn1xC8iIuyiU#K9<=ArVY4x&~i*g$wMEa5XtpT^fUG=NO^iD0A z!a;*8cQ|8X8Nl0T>H}$CsZd(Zj3D#`zWqbm1*3D*!5tyjKoT@uJB{QdF>TkH>wye< zKQkz9f+h67snk{L{F*oqL8c}tFJ~Bo`6)M@Dy?ATM(Y`2p8dWNy$Wtgn3TnL-M2=? z`}Yo<6?V5?mPx_cee7=bIUkWJc=V8Gj-^<|X7iT*p29YI9XVrKz9ryTe|gCJrnG_h z9qc)Sch5~rS9wwoLG@DW7eF%_fKJmPLUg0~=v#6B#Xe!RMVzAR?ZqJ1nr;wKBX0C- zBA0-h`2gE(20G}(!ZcuG>Qn7lt})d}yi=78=LF9c_n^SHXRw-UGXN*1Xn(jtE>pPA zteuB%mDd9k+tj{lWL$ufxiUCWbpFexz^q3b0R+zb5F`MbNmM`|@b4Ugs9+=!lZ)V( z6-4rquj}KaN3NJutes~f!}&Z9!kGhkt2Lpgkc*vz|TXmxgE@7zZ)~}0%UWe9ZR{~#MhIuWU;hX zp@uX&2&oe!eeYcutmiXdy>$9%|JEJTOILNKKf?CrTXj6=ak;K zvhd55Tjl3AL%I8SSUYVGegh#!z*0|7abA((9+YW0Ia36tDL%K{-wJ=M5o8R8TR|vK zfhl*c3>bm}*uh1!y=Ve*Oo^_qkV6Xt!du_-UKZ5IFS;HXIN>F5rqs9;fK+UH_QmGt zO(y_$i+T2^+n4kD96QGgLQX4DLfRugnF+^TLQet&6#ZwX+RbQKqW_B^k~O2p%vAJ7^TOg&=K+666AA=Jn`O{i}l zU~7u+jO?Cgxt(BS4L=gt>0U~G)-NFHC2k@;`D4C{Zfk-=3L@@8UTW|=y^l>`sqzuP z4|+Rfv6zTdb=a(buJ@xwt0_s-#fGW+7r0%VT%|ufR(22yclHmvjoxbo1q9sRmHJ*r zyShqRsAzOKVJPNzAw-`V_7EdZ%SGHv7a$wvX~wfG79N6*lTFl;+;$^YiZ2}$XF$-{ zCkCc<+Qha1#~E++G9{&crAOPsXv%Hu1Uel>{lrDbw2!n3ao`|yg=7fWQWuMZ2j^ndQ^Hj z(iXNa_5i!P52L@7WWqbmAfvF`o?QTx$cNH0;T|SU0Qr|Y1aVl6y}fVK<9D;Hx`UX>J z$Z0gY!z3r6D?TE#_3QAE;wH>bhc00=5!C^k(d0*-O1e8E8`H;gp$O#xVgfYF6DB#6yD~rY_4hlo#eT^>1_|GQm z;Bzx<6O1%j4B$$EqgF}*N}9!lq?fH16=Zi}x^iAKrd~ileT3W!QSAjMA>hO#Xrgz! z(-Q)vDKPL;SJ^6S_0w9WxS#Ki4bxENtq=TOaL@2;X z06R~74XB<)xT%8+W|U7s8iusDf#T#BTHi!?hCHNPAP=fvT_^2Md;r=D#aqsQReTQW z9#6IQr#*p-(ML6yJB$6k)R2Y~xGGHV zDqv(w;hG2>HvZvq!GN16lffCwcl>Oui0(&blZi5hMR-{y^)-YCiIYU`AUqdg#e3AC zI+H^X{1S3m)+&u+fb8G`fZ%fg5$d+X6{x4kQP5^on3c@8mzhqdaPHn~lW63~(Mx3>)M%xdji|Bzj8|20b=3`9Nyvy*?oThnlz>HhD7vKUGjn<`UO>JEpB&Yono`E*?c!~AzTngxYa6a4W+FveZstEo|K4s59#Nuwn$oDklj-FfaQ-W%YFdQK7Q8cCy{~iHtnuaQfu-BzB*yxuw3s@5 z&a^of^J`Vl(D>m_!V)4Ox&51>PicExG&A5_>6Uaw(1ZRYbKN~1`tQfixURphEF$+GbD7QucBIVc^GDq#Vhc2-#bo^H*=i7=Zf)>X?=N9mwmHw zOl11ZA!zDxeID`Ldj&M-YK;vS%SKj3OM0juFTIRm+k5?wyY%Bg9xfDhdHp;p=j~-0 zz$M5=By$`%EKt7HIxldJa!ut*2NUtDWkaq8rB@aZ?bd;TI?q3JBm5DY&_$!W%aTk< z2w5++bJ?`S z@UC9{z=Cr8DyyhXETQurP+CQHBRv~33JFwhw9W_YC}oQ-X9A`gPg|EkDfZDY0nj=y zX8%kuGXKs$4oK0UeYU?JC2a*Ag4jOHgh%C$SvVRXy#wTbh-E$DW{i~tB^cd#v9)1^ z)&}t|K+8F6Y9ty9t*>vOjpasKH!c6f&=?a83hRtL$zjqeU=k)R)CpkaqJP86tEbQu z2Tft*y1}OpNLF&FsYm0tS_4~&nwIMCq@OPXd3TcBfqDtVMT9V6>RO+zW#y%@h$`sL zXooldpGexoT2qAk&lJL0AWRo${YKIsNWW7kn#grAAO{^m`T@K!0JKPJJ>-r>xzaii z8pVMN8qq<{zhT%^*l#`+@stQ}T`Od9Jw7~3xt9)Aye}^0X7hawkJZhe1{^06%~SYm zYqygXw;v4++&2bKMUCIkq>dt)G=+Pp@=r?vN4Exm8H2XySN=xH;O3*_&HfH7Ls>C0 zb<1Dd&!k2?;Ai&da&-I`_jv~ujAYCqyU)g?xfu^Xu1_j_kC*)TGDGm4{$oH%v*T;` z+cT2{VZ!Lr$c`c4vaFpTv?IUMuzchK23o!?d!sJtTe!Y5(?WQVMk_gVc0;v+&hriD zX-E6X7C8&%xDv71RzFX_4p=Y~0*{mL-XqTt6)CM6(j4bdZkH04a`lf=k~`?%`FbcC z>l{k6c9G@q_(KryhMLk$vV=}WQf7tPIvzG`fvvde|A_P9(%KXg+58s4E?n9}T|_;( zq9ddQ(O*sJp3F)|-UY zemluM^%pq^c?<+3P=F-DE4!FO&{}yVJ@jmV)i@+@OAycQ=ZxD5I51S@?d_EITexJ{p?u|F=N7Bq=F3N+Rsyp zI1U$Shg7}J5oXTmU8osNy~x}c0AT96EqSwS8%Np#tWAY1uRe*ns8}M*%Eu?}#lv7U zjSIy!9D+E@;`m>&l|a+HbbY5%4(7r{I;F~i61)FEnt|V2^*Z^!2<>j2JJ$Zf?pe5s z_3P(FIk{&_sAs1!oIYw6C=Q2{cyGMdew*lXa<{y`1d{~H547ymU9Un_j+iwHecz^} z=V|`n@<{hw5V=uD-K%)|fD5AB>L+h@6xq3l~}}UtLU*PCmQW^?5ukOn>fY z)V|PMZf9zs!loCrTq1ZWNMR_w(n;3ik{GH1z^}(haBiO$+QhRN6}X*RbsdJz!k-r? zMqd)YYs^-$p+_k**)46?XS!bQa!=mM-v>8PC7E6lPi>gbtogh{z&<*fl+K0M*alx- zYkZ76Z3ZMTuq|)_AR~FC#2+)-3XVu%AlYzK>kV7ZEtsfW^jcC&edN*Q?RV<;zHuO! zKjLG4OJ4SL(Y?)G#V~)g~rC+O_Izd$@prbvN%OPC$54`tEGUA>j-SP_21A||8tgTtz2>QYp1e#{R z2OY~PSV?~0o#^}7QI54>bJqSGpt~P0ZUoAEqd{cZ)<9ljM1z~KZoY%j`LCwO@Qw`L z+G=*_3&zUK@n75rq}|yPe_m63HaTMG`(jZ`e$%8izxX>z6xtM|HZX&Wz4A?VR)Tsq z@Je~z@WtZ~YX6AE^gO$Dz22WG0knm>3H^wjDL?=YhijXFNP+~opujGYd=Ci$#`ShT zY^x!Y&I<+R@&S(rib9ZN>V*CM^k3-sDWNhR z;kN+)X(ky7{Dt_}hoC?fC?S^)K)&A0EaX(MCiF5DLf*)tsuFZb!t~bx-b#2|^v|%~ zi-JPW1M*jq;Z_Qz#6!@_3|tw-VdG=6ZfvWD()qigy|ZH33|Uz6MBv+Ps?QqPdb90s}-!Rwlgg}%Ou<`ZOUVf$#gv;>xFary&GXz{>B{Q}B7j0F1 zKXNdY?8@-pF{&;IfK5v@JMp)akR4SlJWh;v0lLqW^gOgPNW*T}(@2osXLTujxUFaX zz%n24nlZ5FX-@uk@_s7HIlZ|sAd0ZnbW((c5Embsz3{2>j%`vnAPY$^jibLm@+wS| zx>?dMZ38%gHVO*GW=>be>cs3YMOSJHL0YlVS7FUkQmo}M=3{xX?}m?V+&7YBI2&`R zVL#&L?h5?u+WSg?3E8_vJxCs|Xqy~{B}l$WiSK08*%z+rP_rc_fQ0kcF~UCJ=D@4b zoiLu2DHj7JyO+NGx@E=u3w*~p!3$<0rwDCPGv-WBW+vouMimm$#pl@257Zx066_g` z*p|Hl1qhpInGR83yE}QqFZsO!i&GL40y+wB03N#kSXf)Nk|Yer%@$sApr09-9+Ykg zxy{oY_UtJ8(Rrcc^6G~AGhJWkiX zQlc6EOTFbrbWrkBIo%-8s?&}@bzU8K#<%XCn*PNI+k@#xvm1#rRqRLFZw7&tdw3Yy z0(+orb7bF{+X_@i#P!?@9bPm<_G)qHvg!fan8mLZaNeCJM$q+jW0C9J080Gy9$*F$ z*m>1i%mFDBnEQ?go%HT0ZK(OO9!)*)Hm%mU4Xln?+V9jSKXuqV~{ zTTI{RV@hFCW=^=JqGk-%QY&d>PrUitE#wWjg+LwR2PRF5O>S|Apt5sIoOqY6;YG06 zkFPP6B^N+|l(V+^qt?ew=4nMu)Y-~+0xDweNuFZN+{;=;-c5lFgvyt$pQ{OrQ4WBm z&(}@*QL@x4ulWSc?_j20WAM$$l22KVygb(T*g@(nGQd><(qw5RH8l=H^Qs4Qy*s!G z-p*w#C-v+nr;S2~s~ky1xveO?*xjm=-Rtbrb`lv|miIv~;Kva%kXR}tfBEvpkxj-k zUUXL7pK;_%&~T^up3&>Amwk+8U2x&$hP~InEDp^Ds@3LpjGsD>bfL^k=xuSTedn$$<;=W4Ev88F=5`T;o!Y zcI>vbpRsVYY13Cr3<7JsVaT>|aI=2GlKtj9O96MmZEe1$Pq_^sKZd)%L4i93pi19= zWgthCf!$*mllK>U*^w!A{NvizR+$Tf1@(#R>x6{JM*a zfHt$FSo{^fdw?h-9K^$LHqetQL@dWNZ$%muP2r8a+1(AeqmMHkZ{`PN6rQ3BOEX46 zo33Zmk*q5m(y^9f>(jQ02|gJRz)2QfLfE6R)l|}`D5{fK8?(Uig0nhwD?Q*)*3oroL?MSXb z_oj`(-GJW|Yi}sn4&&T);~cfG2`g`1N~|!oJXX|^a6MIM=Ne344f`0n&r=6*H+TmS zPS%F8fB8K%Mw~w0x`eJoQ!>)9e4sGxXPj`IHIp33b}p}hiIBlzMvnQDy;iybf>srB zM@4D_zgVX=4Pzt6m{tsVc5!x6j4O>xy5wzxSVg&egY>7D3PHZmbqt|^Y^N)70hiHM zncGfB3570J1pPwW1?E)o3E4&;9Ep}>Nc@-5Soz+0em-@nBm%B^ij{10FY$Ko6+tP% zQJ#;an3Z&Yw=1C8+l6BxYq;{Z`0y_=U2#|WqO3chl~fP`{+PhTFh9mt>WwJ^xhadhBcQ_eXvql1z(6%=96%7Y@Yh zbLwX{WQ|#z($u8dPt%Dyk4%C9$ceZh+67Cd>GtM{W1c`XIO!&z8eSv&B6O8GEC^s6 zErAT?K5Kw*&0DC3oHapHE_SOVtB4;_PE~UbQNBybsL&Te)Fn8r9n&_B=GDB<1Y!tc zkpUsBDOyzVA*%4KFV$w|=;y1~yGU(Lu27>C)u@K~bH41#!km{_SL#?O_gYV)IV$6J zKD=|aVK5^#JN!c8?MHIKIIu{N2j+{B*pVt(E-I7&i9DC!V$gh2!y`iGZ2g*-#NgY` z`Cf3EBeq;ObYmmNq2_6+uRAJ9M0wVNQZcJL&Eb=tgPcR-#oFYqyEuy#SHQ%bUc1;v z?w9DV2`*ra%sGbK5C;`w%Qv*GE5R7&DLJLgdU@8B3rF{Yjy^yuLl zCyzBNZg*Hen+#YTL!}Q}4_k10RZfa~s7QdK`^YaScg_~Q<4B1w8_WL?`9^kZy(0OI zU!AjNPaYVp1vlY-9ok<7;i3u=z>yb40(6@duX(G!H+W2%N8epY>Nw~HzbA*1@(Hcq zG65;X{-AJoQsefs<41pOHom2!f1SJ z%SP;pj>h>p-mMx~!&b!Ao3lc!7BVq63{yUtUiNK zpyh0qrCpU#ZNKW-_UVz}$%B#HcR}mRBkV~0_dVucR`FBi;GmbPEoP(6c8|($(lqEW zvmH1O;xfT5+Rk^khjYYY96On2+%6VidDMpdeqolDPUmkIMUr(*i=XpiijD#dW0|Q_ z&75+7d_1p$U>EW8c{M)e)W)~3KC|L;FoM_)CXlS1>l1pP?3oGoX_JVscqg2r8~Mk` zFF|Wb5dMaXa=Tyc3a>SW;j&H2cr}vPyM7?P}_eM#RsXKn6=vw%<(a>94-^I zJh?e{_v=sn%QcZVKWH(>F4;@0y5s9@$i8zNmkr5)V!{fKb8%CM>VHuCa8Byi_=#5= zwZ&>ds=*_V4s6YI(3rr{Q}10%95^;!?s<#Yp18PxFso%pJ!YUvt;qf}AIpFM+SfmC zZ1#VB=`;i=wg0?zq5k^mxAd#j7yb2OJ{M(98TGprEE=>_%imfyIaVasxc2K9vSBM8 zZ`6!sP6H^YUVZI{jXOq**OpJQ^VlSAz=3SkU$~ra`v!!t)_8ELaf-{)3>M+BCPmih zS?FQcvb_9n9L%0+D3IT0xMvppa{5mWXPuxM`M-0xDk%Q$%oQw`hf{#jbwGxG8FA}Q zZtOMMXR!{H#7FSi7wzKS-{GSt=z3i_v_K2w^8F3K;ty@Y#tQ&DE*DVCf9sw4BHF%9 z&h5OM1^z{6Y`iW-LZpRLY7}6zjp1`34XZNc<@MfI%36YbQ zTEl1Wu9dT$*!hmpq@}5u17#)r%K}CDbAs;d@)oiq$Hw+A^lj`{>^%YV*`!lbP450S zBOfK~M4d~ViIYE{n3Swnw{mK^CjoYK9jKq|>A`D>r_5DG*#uiIIAq+r$6R8=?gQf7 zJpfw_(wPY5?a?VMiOXJhoT58_lagx9VyBZnCc55UvIE`kfs0kQ;A71TQwT{pJ)KO4{3&P`vVC_+ysuEpbxjYccy>DQt-9g(Q2_H#-Y9<@76R= z{MqY6n}=ZmUM@j>g#ni5SS9^Ut10%Y67_YA>;VPHoAs`ZK8;rSWWT7Lpvd>c`ju`~ zRtR6=?8Cx2y-)C($d8%_44RPtLc8OCw)5bB=6t4k7%){kHVuA@H?RZUvjM)wF$UHi zuG)2H=41K2IOhHA3Jw3!{lyo)p$nvDq*|s(8;79m+a_P`{_Q?wK=^5|k@K;5ByORd z9%j{d^Y1st=-);2|B9xC|LQyb8uSUg=qVya-6b)K)mj%xZ9`+J^Yf29Rd^V% z|LKNy|1(YS{?~qn`G0f>{-?QONwlm#!O%bIT z48CUD@F^a~ZLjFQ5q$?xU*Fz z?VB)yt_5nRB%nI*8=!-8K&K1HFA>dT_%+c>YC(j4hQJgwKERUqdxmXRbj=z-#mgPa*GH4)2( z9Jzo4Ht#}^$31{a{MlILKl4B1(eI)t$6r`H|ELBVIq!8e`fKnj_eRenKq<*McvvI&g_ZTvIr0P0`EklUU>R$=5Z zW#8~0MoPe^GrtC;F^XIFwt+HU;QW7dQpbc*9e~0FM>OdY!0VUYO(u8=*f`ky#$9@w zAdJR&0Weej7q%+-SMmS6^OwC(oI81Xy$&PB2Ee7tYC zbhCZE}pDKg3(2i**TJ;t(v%6Pp86~sRIA>^1s~Bdo>UF{cl*osfv7?37 z#!4Nr9hZ^5WBJg9F{bFTnu?HZyn%m}O*-olT>O3Z0`;S60-$YF=#LdmRg;9NtY5)B>QJN74X_sM>wy3W6r%%54Nt>7ilpD8wGd+!nOLudS9axW+1#EUDh zt^=-}{`R1-6G&e)x@UtY+RIX85C;kb|HP36Hm~4_>9O$MfNiw>F_yh>sYJO zgLIK78I)*q_RS8|UKFgmtWJt@Z*>?SGDhyvs_I^=aIUdOLTRyZr zN1nH$MT+H$&U5)PKS)B9Q@EW5I^1Rr86DWPxZ}53BsP;f>ouy3aKrW48IY5-Pjnea zpdvJ@H?z;#`QiuT6IbHAgu+-$K`c+!>ge|~XECt{@GuR5Ws%cEA5A?29=8eR2PlFY zpZW};Bvg%0#I?hsFcP$C*xawison0a{Z@dC#e`QXg-9^|@yz|3u#6*>1LLT00saLKbC`Q^Q;Jg3OKLhv^+FQrw z94Q;@K&s8YG6RDkD-b^Dki9=OG))Skx%7f2;9nOixjS`?CbS0Pt2%&6g9Y*~(Y1qR zVKJ1^EMUDW`{wI8+D0>~?Hkif#D+rl8m`Y_Qmz!GQ~hSc;QM%aiF&Brn}Y=1Jl>uA zh#ty)s>Fa`b1AvKndEK;H@l?NckSaHpAM$LzP4#S@%W6?oeaol24=>iqC01z37ApA zwgI4(=iTLlmxVH$;cLfgg_46C<(5{;Q(0>@9pz0`gf|Hn#mhXJ3Qtfnr#fi(dInjde<$h zoA{bel-M7(TThw!0pX?U4DK3notZMUhTvaI?C<^DqL&1(>Pn=~iwu!kL5S*U2tH&s z;4#PLb^+-JblVUy&nMN0&k|6zTl(#J9Iuz1ma+Vf1NIunhdrIlZ9LWEQY+;eE>qh6 zkOm8p3byzVFhYCm*@_SFewj^Imw8jMDo|FY!*>=OGp1y=<~@k~q8(ml6scx8qi&$} zt_u0$?ly>;io;R=U4Sx!QlX%`L=iCkLrCQXcqZyn@XL_d|+*A<173*7R!pH_ml# z+M7)pL>_+-R?}vxbs?b5{Q*$!`x{BrBM2t#!fsaNCE1Wok1j>^%Nr?Pc~`8d)2B_3 ziYMb=Ec|L%gKOcIppjWaiF2nSPc+9pQ!w3i`eCopLobO<(C5FubM|2@r58LnbrNe| zDA;tW)ImeI($eigith6t&>{P#0 zMNY}2`Y(QqnRaXBkZnl5z#}12(eQ?m3|xLoB%0$2EpQ5(d9YKW3sH|7$e+{plA8l zA+{*%NSB8>7DBngOiZbqs{u|cQz7+dQ(C9ksIUS{MN0Lf?Hrq-thiX`_En%I5y)#O zY7WA)Oo#NH9jd$TFPxoq;4d~#o?RLBF`S+O>Qi58g5A?D9n2poyKjI`5!=3EfG zzq^1yVr z@Ys+G>bB?SAIH#{uDrY8<{r?p218$Faj$b9)c%B}@)3uzYOgi2hj5tZWo@B8wYz6J z1mgy=8x%}^CX%84Oof51c$IVZ0H2aCU1ADP8of%hd(l%9Y)I^a5 zPmGZBn+P#df_c>Z$kY1|SP7=4AWBBiI41*>@H34_GRNF`HFrYK&B4tvua75PE{;+9 zKOdRf?7WW!8ahthq+47hcMr*+vJra(vANIHL`eIc<@XiuKAW2dBG*heopS+`5y(uvI#36m zuH~pG0jiiL8WQ0aUqerOf%YGf?stPoJ$J3*+}TYo>2tI=NXwr$i5rwJR@VaOW9v9|Mql^(q2!FW1Vacb4hrAx65)H*BVk2F6l9?YWqTg z+!H%A41UtN+=%sLNoCc2Y#BE}^pzZE5Yk&z$fJ2KJ0N>T*cx$t#u928cTI+tWugiu zq-eGT^0$JVe%D<6g(?8OPP!)CJxw*F*Nn;j8{qrsdo`6o=BawE^B$riqwG2X%S@~2 z7+BfUxEa;aG7N|L=gKcFUOyz>#rT*HJX;v?W&-)mb6Z(^5`WDO6(I2@8X}dUMlfZ0 zhZoX+uERiubu3dotAiC|aj5a|>5xNE%chdry3*N73b$R==7fhnn^UInrzgB)nSz9<|iduCiGesO}Rocgy!UNs2rl{E4zAdhdeClrm6tXFx>G zwS`Wz&JRe>(Q&wxtugI$Bh#>*zJ0($Xv-Mj-s)3_hSH_rI&SM%*gOX41pBg%boKhp zhjd?z4&Y7@7|^baXwkS@39xsdylK81y<~95_XksR$9Uo^$SobGYRa1gL$sMKCQeed=oDfV`}rB^`6>uoyMfW*pQ>s zA*#3@c)4BE7>7}_lGUZYjRX#>2H%wQJ3$w%yZPTDef>6fn1zVZQza>J=LXAU44NwY z%Mu)_s>;Tn{~`VC$Ib)bN`RCdxc~lj%i$|D@Qtd$@(LkH7?IQ3Ud z)@D(7^EST-l*ZZCX&Ohmxgc9oX*9E%k=LzZn;nTqJvUEG1_73Ge)^DWCCY8O@R-Uc zu;YZ|S*%aMA9`9$tD_{|pV;=Pm`m-X>N0cBa;PHQ;EgV7uXKQj`J};(IM-V*yux+V zWu^wl&rm%mu4z#s^ipCor+97Z+&6(B4J(4g#$ArC`3I8O3R*S>O--_q!rw$IWA6T!)V7#QkbV4v)6Mt+Z1d}qdd zOcum1IqmuQs*=U@iRkUEk*W4Xv$Yfvc5G65KhbQqMXo31LTnA{sj>NL{bG>DHw-)N zBVEo3#-R{*=7-L}4&}8slcCr|gmUvE5N|llZ0{;igG!n_1idb8M()l@&|@@N`{#yPkpi2rEgS z9ceiB>tHyd0TPabohYv)ddDk`FAskZ4LLRAYNl{3ALz)`3p%>#v$TjQwkfTM?s5^U z43oL9R&p%k=qXCApA9}pxhJGv2|Wu5D)b!tp;vg(%=C1E^4m9OZ^>8BGp+Ot*M7$hZCa)|aw5VPfVOT*_ir6zZo$4ZuIfw~qJul$Lt)yNO zc^N;nivjisK0NtX<5jO(hjJ_1QFkub>QgIWn1*hy=w7ad4Ee%TJDp|lihf05v+M^4 zDddmyI90)wLFiM3?Wy(ZIaL%h^?D5m(t$AxX3UO$ zgA>p#9|8MirY+`6pdcUzs1hn^A%)1D8@SG?iXQ44VFaq-cmjm)#xW8OyTDlPhkn zE}u9xC#ruX$nD+T#sJI3Ue&IaEH_&<$N!}47n0fY#ld;ZJM0ta5wcC&drYK@+TG7* zDO&9EW8tp{9*sBFud(l1l`(9<2m^EweX$fMTLHeLwGXIVhD}2@onYi+SgNH5mhh1d zq-T3EU^;WpKi)qEox#wK5s=eB0-0(F@_}zah>1;bE(9xQ;-}Am#twbqy9MC~u7c!)d;7oxX`!C<)Ey73Gd_CiGPW^H-iECse^CY)+ z`omrEbp5?^K?;uXr3DT(XA`ZQlt{@Z^BdnU-j92+lAx>5O*JK!K_OH~Kv5UpdwU{p znfSE9jqFmjZnPJ68 z&&<;`GawgfQLuSmKm}eGg6%lsMs|tq>wq^*tQ!l=9$)}6AJn%4t(<{gYDQ!#!JGD? zmhNs+O+8W>J~qAgvVT%M&a74ZQ6~S>{kJrIaa?%dIGVUWy>+nUO`XN~kO4ooctjJ7 z^m{UDWpK{^Ry0tMStRdWAD2Inp)HJLlG3| z(p#h}ReBK!s5Fr#LWIx}Y0?Ek4T^yDCMX@H*NF7qn~F5)y-A0J8e04v@9f+=yT9F? zo!!})xwHNu<|HTQoSgH1-}jd1dEPD#Xa=G+7-I+EY3sq5D-Zxjr+jt|5!AHL`(wEl z0h%{F#hGg=@-mT4Y8b*pf0Slu>@^1@qEw8gS^Q{;$Lc)MZ;d6fMJ|4w;Y(cZhL=yJ zbVq!{K}x_%(87&%1m5gS{gtlt4?DpJ5b?!Ui6QGzZVuR|#NwWP`s2}!gcB{o{()Lm zhWZ}~%%a?@QCc>`sK~$tB=gw?wAUI#Q__i7^sddWYU8B^?wwY|ixd_mDLS(j>O<_a zLIb-A&Y8KONU8WiN=EHqHM+2iRX>DHeo3Q~0T0*y;cz4E z+I@<>oKiZ%u{Lo;bTML_VjN36K_GR>(2v)mfV2t8iz#Uk0=-y{sxilne(xv7(RWF|0T5 znGe`R6I#Y3x_GjKubE*+fs3ZzO52+c4zpkQraV~kJW6L-{DP0iDIW&bHgf~rnVkdA z)KpuAYTC>z#|#mFP`Y%ivf1e`yZ5gw5;C8AhI8I)^&Nx*1q`<2HI@p}W^zJ32k5RO z0_rKXkbi5^WQ>?KbW=;C6vjSpHR-M`VuG@VI685wHG`KeE)J;Dldi8q%z1+y2{Dml z-$8|u=Nu-5N;rU#Uhv}nH|Fd%4p(bU0>2O)d5@Y&CJD@xiiwqp{S5ChSLFtgs)Ou| z5nWl|LE93$$d^qP$Yb6WY|GGhkSMas5wbXlIAT18wwnOLRq=bkJh2Awnzab0bkSs6 zQ8~RfXan9ZySNi`V9Kurjphu&vO&@&g zrq3LPR`6b4tx0SQ5^m}RBDTJKBmT%#HxKTqs*q*Jch5CftrbIIyU6)+Uj2dGWkc^_n%!m ztgjKW<}uONN=7keBOYgL{E5oXkUZbY=We(YAqNm{f_BNqT(Js`f`Ed`NYlr=C(i*6 zO{9-l3EW!^Ej3ymb}q7YMPZqLiR7|e|MArugm_Nh0F_}}K+WR43~0i*!fw%*Oq zccV|>(EF*+zHaTe*!aj=>Vv-l9tCbOCT5~>1LFwzM?0;vheSZmbb#07GCXq*8ClNn zXD=;Cw$AYC?x|T_*|V%r-9D0-)W-SJ(9^z_gez-)Wc}r*9hY5g%GakGts^rDO@-WdP4&~F!4 zs$w{U6iH**3G{TjuSUL0HzBjJSafU+^k!t_hn-3bt3>d3Y`v#n&my=;W=wSOtzvXB zxRZBa$-r9w4T@O$PSNoRQxuR)?2Z|c9AC1$qn+?r666(k=RQX%M~rm610L^n0DDgE z%ezP~Lx!$f2!ENznRGa$X?~gHmV!NyS)0TM#R1reGrJ8eW=QBU#9ZvD!y_^ zT$)|c<(a(&Xs~lNxOU0WzDK7Ax{(m--M4obayU30crOJtagv8*``EhzZTQk#b|^mi z&c8%Duu3U-=5(xdiF&SaJmm1DGi3<|6q#t5b!ylaXUF2rqJQ)StyHon0v*GQ!!4r~4 ztoj05X`CK=RP$;$b^cz^;RiUoh^?OQAaEKfFc3TtUwDq9o&i-~6(0cAV7dy(zU-1s zf?H3HUUH*~YDpvV)@^X7ikd8{JVR-OELauTB_Z+NnyrkNiv{O{gZL^KJ^4%K-iL4o zDFi7^cC(irW{}qY@b6#vN!Uot5@T;xR#?)oCZXNJxFBvlzF&e@PoJ^8@EV;+BSDKN z0{B)^{S5=Y4YBNx1f71?leITCn^B79K6)6pEFTrr&Y?r$8wWPdEk|}OW5S&%UD?ql z=8O0~c{3nP11budhPcdm-cbfVm@qhhcin&0nCVIi!V})pl0jB|4H>=wxJu7C$yMJK z#gSg}<&r->!6jU~mx`4;Q#2{-Aw^nRauer>4P{PlYmAs}^@4m~&4Ky^b5vwbu(W zdbCW&fnA5=VJctdLu0`}-Zw3JKx5F&9$qH*8H8H6$T(5xo@^SJO zFmo`zsZhy*+nd`MUJcdduW(WMME0c|VmVE#)9-g>(!frSR-E?nx{XZOo6inZG0z|D zN&~{+(CVO@$)2XEcpW^i++>Mjp7YKjNDZgXC^6et?(35jM|^^PagO6J3c%??e$;I~ zphGtCe#A=punaYFjw?Ge6`CO@Ssw}OjutcM`bip-RMA-V`Quee>y&=~Nek zVfMF%G~$9`BQ#piuwU=uNu2N6ts?@{s1W#YLKW10)vawc4%5906ZDDWUkEe!K(Zy1AzpPoM4d>r2EW{YMu|Kv~aPxy8% z33N)-$c!oW^_YW9xI2>DCPX@L_&70`Dfo2l_-1esA9ekSXZFkp_ zN-^Az4})t`v#>>nXmTk$LmP|D&yK6zv!@)dzg=QdQuL|TvTS^r71AnkotvfJs$Vw| z@n{R+kQAV~a+-E-Ga`WgD>ESr5qQStwOlpX>wMD1*fk2@s3fo3I`_UFqXpzD=&P7q_`wc-RpnfdFrb9Y9 z^>3zoY&S?dDYwj68C7lu-SF-w9Q#F>;ru@dLxvF(E5F$OtY%ez`DCxs0{?xfG+q@0 z=%wYmb(MMC^rjGovGX@i?bU8!)GVxuA5M)KoxiiXVc2Qml#SukWJd$GkL;U`FnDz$ zu|-(Co?u4On~+WY8P*B)!Z(Xqi{{-YYE&4-f;YU7TZ;U>J3+|pdRgbZ%umjonPO#a z%l_j&_FdW|{&ImBH8igZCT9MiVJPJ`f*g0ZBUum+p(~r*REiIEHDUFU$IvezaWMV> zC{wp%X{1|?PkaX(??9&8bylJ2plME~lTO>&7hbAxp3W7zYaA8V>&v1bj+mx11R`^5 zyeWiDI@2Uvc^*i*xaJL4z$XSLuKJmV3$dSqvcgYd0O%+c{Qd*!+0bqFNyfaPEmg30 z^e)9#EAhE6ZvxOLs_!MhH_{MGe<^Idc37gE>g%$F4GaI_dYh7kjaZ_=znl7ptBs>_x_L0$a0<28(o41Z^ACI=&KT7V|8>YVk zA6;fWB51@Sr7(S{LN!ccW*2jNy2Ws@!YSu^$wJL~BqW3^SId*R1+*n2Rbn&4F~Bco z&#->8kTHvl=_TTZ@5NPxC5q5NWKgk>AUbZIdVk|B%vNbQ@|&+5q!Olv9k|B?cGt4g z!O}uI?Y`1fCKp#C*$_i#U<&m zs~nWxWUY;s=P^E{t>zAQ6QptSy!$N{+xgWS z{r?y1`93q@1F{cSe)MUAkQrJVaAoJ;W-jd9vU;-j#QwNtf>iP#gA9QIGQk{Ot>8n# zGGKncZY1jpI4N5KKztpHr7vp;d0SgGxMh~WO?PdBGDv6pB3tbrnhE_mSnEIH=YIm= z)*452rGU2uck}c9k;2wLy%yZG7yy-U{Q&Z%MEBP+PRL z@;^rT(6#nCWP)JOgj_g#DR!!$JQr)M|Il=$hSUFut#KQf=qKgZ2TdBOb6wEHRVA99 zl1lp4s=Rx2S3|9H#b0$P;8{uv5TWGcA;XG%+|ZLP)|IbM+>1T&+3~g}Tnz;v8y~`} z&i8GP&IC=uX=kg;Q0=!Y`dhLzdXH(?0Z>+fkJSPr84<=pd&JG={!Q3J{cekht*Cgy zd<%cV2A{xF`ZWpK^ec{HoO(2sG^89p&W%b$g&2Q8D^DjX*o01wf1SK{k-p@~6Y460 zug*k@*yY-}?Jk#0*iS1vm;JS`gZx)7tbkDvvlnpQfz=iJ z%Sl;(qtT`_2wCiq%RL_cn45*@3iZ|8D||Jx00VA{irN1GAK~Bn41cTbpT5bTpE#A2 zi|JW@L<5;@z@OgV9j@+Q|3ZZ|-DS_)W?X^3iI*TJ^ zzK*K%Q^=VvZjD1|VWZ9dB)~`urMFQs0e_Zx*x*1 z;|$cEe89jV__cKdKFz=(J3unCA#_c|=tUS%NES*>z>puvFp?svmTA^c$}BT z3(HJN0piF|WTM7Ro*NV=()50w-5b$7T^(c$`3_ns z3dZ8wN-z4jEvotAPRG#EM}3OATl+K>`iRihVcf}JDXQqzyfZs-$kaJlYZjPzzH*)|*~jw03LG|EkWY5@VjHp%jySn8T-!YL=SJ1fL=~`#{Rhb{R8yFH zs|kgMbKHA`!O?AFZnSDMns~fxnz>-UI&uDW<;SXYNk-M;USVGQ4Dy;I0RA>Y`?AD+ z+EU|^Sh8Kgr^~+c$0M;SGndBpCnZ^%FF#ua6;^5IRmqUXe}cQ5uP~*YjOsdRj(_nb zxuch(>kuV@mfjsZ5NkJN7525OM63CT#Y!{6{y| z%zR|690eM+aR(?k<2KSV+igd^Fxk~8hn&puyfb?_&I|+;4_yA*p7h`3c%GvGXLCuo z?L5Xf%-D5N2@iIaEZP2nYFZb+)5X_GH7s{b)2ef+rwHVG1*e;HYeEtiWK~6bd2CYr z-DBmdk%<)^O=y8azEh)TvY>9wy%JBQl$_Q0BEO$nPB{hn}+W$ILE5{9OULp zjI2)i%=z*TWSUIgT9B(i75CH)@Go;qQ5RJN%)uuFNhYr2GdGYp;&gAB$m&gP5`!5w zv{xti25XKJNe7IXQG@G7b_o2XH7dv5tC$Z4&>XHUEp1 zv;M{h_xSwR_$U6i(D`~pdnNEQqg(&VixX(H55nLOZhWoUSO^&L zCk%~#nBGU+Xt6eX{7vvk37NKpMe~7O8~+#AnX>6G(s~JXmP=nWru1&B;F+Ebt8C>y zF24x?9r3tY)-?^bcL=vNt4qN1Yb`qc4%l~fg;Sogwf7@e#4JA7>wZRVBrT5nxh8GY zYax7QO*RZ)y&x>iD;LYyXLl%1Rg`M5iHLqz^TdsncN_Tv0gP(RlR4gb?UBZHjPegy z(=UTQ<(?2DJMvv9Poz9hLI3wW#DD1bkkaU+{E_jxE$Y?WY|r3!33!Eh&nRxe%{bZc zO|<+Ho|ZwK>O}!k-*xAi9}LlQpP$3pSJUfG~LLS(o5(w1>9x(UWg^Mz|!^Qx}Nb1eNQ#^Zi}c}wnzhETF` zEf-&fw4NN;d2Hu3p@__EH4pB1d%hH(OtGr~;FCgi+1jH-`sLoqXdGH&&Zi5_b&m8= zbFE(1tww5`CyAma-ls%*;O!V+N8Ys@-Zpy4QDu8VduSz(TS=(7ceXLr-e@QmJ+d;S zO>8Rxw5ErAJFqQiM=V$Z_|iX&*cFmLXU6|TS|ERIBbDXtl;gg`Xp)+o(_-9b%!)SO zS19@XBC49_ZH@34YKJCJe@uWkDuK9LD8@*m(r?srcQ5W<lSn@ke(X^jrP$QP1dS2;u+!yrtcc5Y8zUK z9%z3l;A64y&HYnr5#wm+37NuB=HPy}{W~pjVyGZ$sI@S2t%q;z^aw1(j-NDxevG7v z%N3yqMK9sZ)Y^SLj6HN3Bgtq^BlU}qUwDt02RC#ghKEh?X4Lbn-%o2?6c7o3o+$+x z5gZV5bUiaHjpD!a!Y2TLaChHA97Xu@pGvhX8%#>LE0{>wIg3gcw?edr_q#R$hmJ)r zfVptIvuO%<>Vyqgb`5`9cK_8Pyq7EgXR1Ls>5g8dlbsR7$GV_-*#gZi{O_PNAX_j? z?GkE!{k#FP0(d+}9pH&e-$60}ZK088nacVC?s-P~UMJ#oA?nv1 zfa8ebrcVxG;ea>bqy5JnO0<>yb+G-K$BU42wDKQ6*8O;`p9t~mxvu?j2k5m-`JWf_ z^UnO=vYGts>o5-Di&8QaJ9?{seZLYH@Kb@r#2Y#3buKWYVOtu$UDt|;=8o>!!fHaeV7_G8G$ zx(3VAb)zFMoo(=(tS$9%C)vLy^2t`66lQvwlNL{hpJscHNzXo2s9zz))#T~fkDQR( zFF7F-VwU(LNUPv6w*mOviTbiDu~PRY5DR3!`g;Tf|I>5we(`bmDCR<6x;vW562F9? z%y~5WJp8aA^lRd#0$nQ#o{OdGrt`eb@@leXWMV`W7G0nrYg^;6Y3@2Bg(f!OdbJd7 zX(~_O;d5-cKwi5zYjiz2Zfdc?)<+RdJn^ke)Fy@~#h=v0)zIS3@_X|1&W23^mK#A0 zw^m9%p-sc=OFP?Ehr5j7Nq~;TL~psq)^egGecv&VJAiWWuekF>mv-q4*3JfbJ*tvp zRbZ=RH*J&oR{qpxFf8_R`W?9KSN+vWwEcwq8q~r33ap1>b&*;CS73NmHjgmr_*i4t z1#cM{a-uL)acp9JncdVBTIKg8E+nH$x9?--UIDUKlr&GI|}Qtku{r zV`P^--P$UZb@7rcp%k`aEQ50wGp>%GLsL|c662bkK0#;@L?AJK36%C4b8eITF^r9w^Z(KF51QvMc znKdAt&E1CB7la{Zd9h-{+VZX<3BY^2zrH7mXuUGubV6I)v=a~Xcv`p45cmSak|P0) zqy7dUOYMWi41)17PridbH`xEOIjXCO;qweuAsUv`8og3OiJDJU$A>VyJv$C$YZs zz*D*)Izh`LlL`pH+*=OMh+Ds|GnW%fs+NDoJB;lCo`4(*@ZoTyKEM!t^^l|HV!u*t zH(EBCPDp^)Er(@cuhg3S{iqiweu+*)3fJ@;>J+^o_LQ@5`k-^b>6lA>5TgG z`=S4^>9e2D=I68dX#+oP;IC~1yuy3Br(&NvmbND&JuE7Hc{OTMEwHzA{J`B>7iPEm zPCNh+Mxg!VSA+v%s0j;5evA~^Uc<9Gb;YIvavwmut_tvE`u+}ph66m`LWWS#ICkng zC>L>t_zo&oK3q8m66uTILFcxe@BGCPRgg8H>J0|y=Gx~q-$5EcdHXw{ySRiJZd(ko)evp){eb(Pd~5pX&-K@?EBrj(ABu@3Ru6%Q z|J7{pF7*&pqzKV{*Rk!G2$ZV`2)a>Rwz{5ye?6 zhrYB+Cpm-Ipz+$IAK+=jcvnl3o=U%HFIBu>zun!bdG~8TtAW*vMjp7fs17{DgJdP8 z%t-Z`eQCH;`$-b$pqBS?N80rv8D2Y*&XUo~Ons#?$sTW3=vS;I&+Md4UZydGwb7iM zy-Dtuu76#WkTv^x7*j z1=Xy&ws&}v0`)6mzI~lI>k+xj#SHwIcIUDxMf{{r6e8q_4D20OVb*bzr3bt#DH+D& z1TT;iKsN@@hrQeqOQ<80v1|?+)K@TEj4e=}S3@lo~E=V(sg)+9)?#+$^eXJSooDKMRBt38WOgn+Y9oJvI(T7++Iog!hz7_! z(LNuUPEiWByLr>=f|hEb9P_B?4#gU|tr!2`w7z<3>^1giCk4W2<+m9m(*F@W=5O)- zZ-cx>`nT6V2mJrm1oa;ccx~BwK^fP2?ec-=l(#ZI1dI|^I`J4F^VDQ$Bq%3fjD;_5 z4Ky=xziD==i^7x3@s~tWA$s&t&~qoC{ct}`UGQ_-G^w;}6V@#kmlYoM8M2Hc*@hiu zJbf3=$zWizEX5&JGI)^-l93`!m?g`q5$fSfGaccNySenZQ`pO)1LU<9BqIFT z;x^Cow;v;#Su*8Ph?abyi?_2kC{`!9qFhThdcjHd8I}>Ow+FIfs^z_*if@gKXV#ny zZEKx}1ew6XUq6@89b->W@RiU7F_nY9OYkARk^L=7dsnsLSaxB9+ORNBcB4$9v8gOC z77~yZrqB>w(G^$$cQe76WR$Y!)F(D5*RU|kjm=itbelUY8JcesIfI}UZ_-%gw!~_3 zFHv{fB?U+Nm}Sn4tx4mc4zk`$H*~&bli6L?>|rvUS6!=#B(U?Ix3lYqyN{}&N&P2O z-&ciRT#|^<;GU@FzNj%1fGh^N$G4mTicK+AT7V8y!wxpmwzL=%)iL6g-Ogb0%<}7# z{)L-w3tGsdElNg~{KR_T0()I)jDy?!jPv`i31B_jRV3!)&flc$t9#Z`9{bA%)ekk- zDu$q?X>nj)Fxn0c9&-Mx*W zq&Xkl8G%Z4WQB7fTz2zGMc9kPTX(das#*eZ)kCPG*|;-j>Wpb?5O4ac_r`b@CD-us|F=f&f91F(A3kAa00q1fyR*W$KiSB` zwf$R6=KmMZ@y#vj_>wvX!D=MtD&2MVBIgVeok8^UZ^R?|?-7~Avv6+LdQot0z}}%;<*cdPs9_~xAi=lE)ux-CP%49T zJ9G~&qq7L1#PggxC%YG*3|V)m2uWpFLU^*v-_75IAq@smP2orZu|ACQ88jR5$nLQS zA0x-!)jEZ*o!HFUG)0j6S3PjpnVRLiJ@-~stG?0HZAW{e?SuuLBW*$#yLcn$f_*#U zNpM>uxXS;m_2a^EZwpIcygQyeON64U+-3A5IS#cvuJUB{;mtRk%P%m3mjJ1!Af54G z14OuwE?F>pMG&uk1&P7IXLomUa+b$<9I`jf@R zXw4|~Wp}InV$I+gVMkhKL)GlQoSt06FsmT<3rA1zmq_1mL>|+L;*1U$JG(A|si)yl z21933^I z`_186ef?Q~%2a5p-=Xwn6uFYY0q+N5cgk?qJh;87p2 zXL~Uhw?p*?3}GrCT6lt$b)r8iDNy0?|0u0erz17v?#tuIgUxr;Y zb1`S+nuFP!j86h{IC@=@Y_-!G*h#gaZ9(L>hy3>aJ$w-Z58Om?Y(w|n$S5x&$?pjI zh-9qk8Nkl^Rg0!nK72`i!(qBfSgFn*9C=WPpkBo?p}B+Qx_tcxaojF+B|5C46My`aGdR)lfa}lhUg)fs1v}a)k?dVmMawNYcsa zPA#Fv`i6&Z?<0auKc#nT5keI`+tYZ^jzQb}S?J2RtW++~`veVxx$ZQZT|`DqxKIw_ z$oSPb+J{E(w019WK1d;u4f58)TSf8=)jKa1t7(1R+yWk)=)}`P;<@zq9a&&XJcQ$Z00A0~_)zF^WzG%Hanveuq&d zbY~n*qAProU(nuCcw!22BrJbz#{ZxYa;09U5TkZCOlxo-F2?IS&n0Z+sd!nq03@EW zl-}xp^Dgh@7Gu`14i?7pVYcwr-REWU8ux_r+uoj#+r7fXpjj5%7?y)#GHp}~jQiey zWI)6-RWxMJl z=9xch{eEggoP2CnlB0zRYx`{STl2bX9-dz4-t1+-q$ZHz$friP+uYrw$F?LyvcH4g zXi3MuAjx!h#^}gc0Yl!}kF9KI(?`V0!yX|qzWL4fwpmOijg(Q7;O!rFX_=EV;>W`9 z`sICQsdvG>wc3JjVoY5mOs#fH*jpOqM$dGRQwnzTFSqu?JmWd5tLw*w*#(vz1s(5a zFl*P$@t(s}hy~EPZ zPYA7xjAU#(u?pfVX}jfM7JmTdt5Gocg{8VWZFFvMOn@%w|37t>Iswr zEw+fDfV0fZ5Rjfs?g`^bt1{quUIeMw@aNaBy%LH&1KfPwk3EG3m zFWbAf%wHRuZr*6OpzgGu0ih#fWH%H1AR&H}E)FF)1MD}KB=PsSnQ#XEZz3+QQo#LY zu-CXe1E)7fiwtopvZQ!~#-Ji7*e4eHCTQ1T=(@+PBZznJ9+?S-bjlm*lM#p$`H)mY zC~3jx_FQ3GiFyg<_CtGGy%Zdm2=auP4d%;lI~mX4_JZ6_LaL19mS#3juZ7eDx7p({ zsq0qwC@0GB2FCL3_H@;wAlYf3Cb2`rVx671BLO_K-P``mZsDfKpaOv!iNI8A72Ouc zi-gJb%wjLjdLbCB>q5O9lTh9rMLMDkQ_wZsyFUV1G=gBwPoTaQEz`(?W=>1CIH9X*&E?InU!uAas|(-ZU717KN9))fqt+ zh@HaYeH%x&{L(a&>dLl;#6T#5iUOmFbUIAy;=}h<@m8>FPb|tK zrZu2`gK8kp4iB%?z{>pGsfV+zWfN1Zkq;*`udiRjZTEH;d>!$I(RqmaLT_r;k@zSr z`E8EF&3ly6&j%9dZfcq3;{h{v{CHbo2Ht~m(s zw|AFO8`Ib^vj7mn8c^3AP4&83UA(HHR7X(1b4?-BMLL&9xpVI8vrqJyGj~ue;cl{6c^x zuA9E@F*{?Ere1<{1-&q;_j@e9@)*i~l}5(dkN`QK9!e{YWUh)7J>W2XF*HKyTSe0D ztLSJqLxaXosy}%hEMwxCTRtXe5a%E+#tsm-50lJP{XZ4Z(; z6-`>>B3{svcf6am&S~3}j*NHdpUF*mOxfM$kzBt!S(fHma0#){$G9%BH9xI4+jepx zyKSPlZ#-dPVXc3@n`F0O<*LU*Ezr`{fb6o(UVD|!tnu_m2Z0^#)4gu*bcIOJmf=2@ z94!!*H>*CE>hf`-^YC$XY?oH0aMpc^8S8PCt5?1Zb%0!&uGGse_=>a)spY{3jWpT~ zVIlmvLkqXQgBtFcjpDoZc^$U&L*qBnFCUmtJ-i7|?{GC-x7FRcr`N)7|L}$s1p(tE zD7wDyVy-iQZiZ33}P?{(Y>;`b9(XichEbU zxJB->FfYgRz|E$8m#=cQ&v?nyU=w; zDAq9FS?)--ma9H~$nFS^E8E_j5Q=Jzp!sq*s~kFN(5QZY!$#jh?#ufS7flqd{9@>W zPKz8HYV!m4GarQum9N=p862`59*0tT%E6w~L(kJ*;aDv`3&v8Pf2@=n8703gNT(YR}RX7S76V@2PT^oVmgUzJ>3oADQ-IV1zYPjw;>+NDXWF0Ts- z&70Rmxbj3Dy&^aXU3MtSO>V7}?0y_?WwC~a#AEjJyd~ylM@H$V1hr(OHc6eSZyR!oi*vHQyCXOCi*N{TWSVj?`FduMip)n; z=Gy?^5BiRh*^WGuz_M8xEl-{{3sd`^&I>kYcNRPRaQn_L0C12yvbw01XJ_i!@Dg9! zjZWto-{Q>EN9?L9X9x1P@=RA83G=Anv-5|@gJn^k6 zOY(BtGEBOi;~~8HrUsrx|3QgFYa=0AJY<14Rbvsj3`K9@UT?y~yUHu^Mi~U8?kGY9 zd1j-^XH+cwjiU)R#G`tp6XkbE3Mk$@C(EBU+zEm#6#?sN!zN;%pd`7y(x4cdWY%Bd zHYg|&aF|d5i+Wu>)=uhc7f_BtEb^+GpFRj!AXfACD$UwC52lzRC$IN>L)Wt=&)gZ6 zp_pS=JCn=wW!LtDB6}vzi?L)7*tnt<{$( zJ1XWi0unAFu_E&1w!CQCwj|##`2uC{?DP&x%ZFg9k4HAUGx;mxUy}Gc$As>b%PR3( zD3yNA(0f=ir#cMFBL>v1H(u1Ez@cJc?jO*!Q6&!LJ%0MdTcTsd2D;nXEgX2p!B+Mp zsafJ9-R#e)C^`e)<r+|<7WqVMb{gW^8pB7KJ-w>=b3ejrv{m=Tf)b22B2OId6(Gs>pI>4mGc zK@IRD~~Jd zoj>a-XVV!f>=#V_EEcW^upEezLP5cs08`=@>^y*vM;y=7o}+kdui=6}zyQsri%mPv zlz)ZU=jUZy^!tI;mjOskjTgX=ssQRG1!5LA=jYLX-kF~^^S>~fsD=FtaQ#7ZI1|4^ zS&IKkDgEa@zdyN=pU>>)Gy7=+KW*Tr4g9o$pEmH*27cPWPaF7Y13zuxrw#nHf#0JI z6os8@*m>8mDTWs;(i6(!929%~3OAR(@*VVK3gIHy4JdtpCndmBVY`q;{a0E9>4&{t zM{H+Nn1S;$=kx9+cC1*UBFN_F?mzF$Pb2vI4-fmvn%EicCzh{-x~fZ*YCrvGR)eiU z{!7{OKPy)K{OrG19OO+Lfh=)K%%2559saxl-la@NVQ=|gAGSL^m6c=VKc8+WdbC9* z^9)BWk*jD#B6QzK1UASO27O=A5Xosn;lM^pU74oj#Q-wFsP2=UklG+Hv|!9g))hr( z%1`(qeD{P)!s)MzY3DbLRYdic(72`qerISs0Dekc>_SxR|OoM`~RvOpWW zfak=QRk-?#_m;wzxJ!j@jEbi=tz6leW`9&MP|WCXzoeeqLuHK+|!eq@JkB7t;D zOoyu~T1PcberU(+LsPQ$SNg$8)eyX?8YLc8(EI~(Pi`ul)dx`ac@r9w^`y+Tq?MqZ zeYIKMzOY`mr0Z8CC1WIsh2?bgd`uQEgGt01>RQ|o1x8kz6TT^aj|La>yDXV|7W}0R zc)wU;o*`{|4vW2;4Jy)-q`bqt-;^YYVfU1RuaX{2+epW!A#)~Y*Qzc#TRA;jj3*<$ zhP!MAuj`;Oruh)Mp&fMcFv~n(v$9vnSR}40<75OHD&t1;x{!oXc}P%f+SSyfyu6t_ zfAvxHS$^7hQF1z1ow@#yg&%cr6#Te0WU(sAhSJ-UDZkY-&x!7kuo&baO;c!JVtwe9 z`s{H6v=S%j@8?Lm1kGbT4b|1)V-$C)* zVKVw|Sthcva5dO)@n_TW!&3G;%?HM?z3vPWO?=EV8Qpn%h(YLd@gVy0%fu?`rO2j0 z2R+(n2j2W1ts@MPiH}G0Tnp*8#;NbY%`dj1qzJPe`f(JUCXi7n>#wC914VgvD2xp% zKLtMFApG1{{=cl-_$y_x zBt@;(SE6^ai#DvMcuZy^m=c>+5^F^?bG3wJv&^TQo6Rtc2T}_$!hCA;bpN z*ESQb1gZK46wdL}Hks%DgXYo?y(?BS(N`n-pqj9!^n zCtL6cDu1{?3Blav3}jKoQ{x|aQkNi0?qLf$C_smK`smG4%UD2yH_KtkFYl2%e0?0l zBI)z~Bl$JRbt&$d1``G8w}TnjS(@ATTlN%VT*-{Zx9Qg+E55+%T3;VYx684jiuVot znyCELj#mvXSC>V{KI~sdOXaKMLB4X(c#tK_+fz=%` zMC8St51kc8V2rZh>GA`ngFZ@6^~%ehu~vE$#;2B!`W@g6Wh)jST0h!-${xx@d5o#u zc+tn%msnQ0DIgMc7ldfhJmxZx7&JL&I2eTIEO=`YuaD9sp5D=mt%qY#x0E-GJ?7PE z7Z5@Fj7D6a;Q|l&k1lvx)=s%})U-aEX}C3D<$dwB_Cu0SO86Tz_qSsdWz7h2_^OsHFycEXOrRKl zWPr9NVVd58Tjs)j)t)(vnv9F}BpyYx7{8lM6q8}Fo+VGpSqFw|Va%bkTNgU*GLY8* zfhr&81x=b+MGgav#2o#4VO2XBfl-!wVKqu~V`Npxw_=&db?l9L^uf2_dGAz~iOaBS zB}T{$4?d$erqqzle!@&`W5xf+-dBJ{)wb&njihvkl8Ok@4F)A52m;bdhk*2uLkLKh zfYL~}#L!)%bR&br3@QyXNDMWc<@f)4|NDIBoNL$l_ugk8hfA4R>s`w=uWvkY-}h6z zX->V@rcrKJT7r3DGnK^PLtfBoK8zpZKfg*hajr1ye?OoUlcs@YZSiPKw@T!8GkWkT z!r!kMKgrKmo5)ky=W$Az|NR`8q!C;HB`AW#u%CQ*xS{qO-AV-wbZ*j}ZCPdqr)v_9 z3OI?-wa&SC^JLY?y%L#J{J{S$r?(yCDQ0j5Rji9vY5mY$j)_}+=%?}NL4vY9X@1`4 zQRK4_sU6crfT(I{cC#Zuv{wdtph|6Qq;WIH6R-}H7=LN5cM{t%M}KkfomThZSPthe zc%N`8nOYgT?Rc9b%E+d!+`h&8wbL%tr;1On2~wv)=7omP)XBtUMfk2_=@!5_I;hy3 z^Xrfo;}uq>$IO+BojL9S(%--GD#2Me>7}KREt(oS=(!Ls?8NMDMVm(Mz}=Q4Qu8{K zuB@;8JkKZ!JaZ|vKa|5wl>;p4X5L0}iw zI`#dWOaHly(QGqDDl*--L?};g*8>toe9)%pYu=8pV?*kLZZPU-4Q&$ojT3!*V&;d` z^cyg`-RR@Zo?`2b$l$l|X$WVa#-)5W;dXZ+W``?rsm?Qp3ey5%Sa0ZHoAy^YRjFec zv*&Ku7rkXy26H9a)xIh9Fem7*Gbid}8K#J08uuB+(ktZ=^iEDH#xU zFm{{w5@b6}-W1?i3^0g@qU40E%PI($)KgN`B1b>dMSUD|O|ZiiVmIHCF^gq83bu2x zYRqE)G0)(U)SZ*bi9M3$c=!#f71fZQntfzO2Ay{CSC-mGH2N`JRa(Oo-og!P*WxR@ zOJ9nnI`_UE;&LweW+(NabKbf;=97WT(%Dx7+f^58HryV@?K}qGku4tyiJ(hRMKWv6 zfii2&Ha}kA^h3cH3_OnzMDLzHr-w-$jcAy;pceGd)oC2{lATT|+{7GfkLPDk z^^6;Tb)YXxHXD%=q^o$@{gjm|%>v9G1U$~*&kJ)H4OqAD^fmjf#-{lD8I~KzM@QAS z93&8{$4mbXu;_o%WZnr=S(K)`kF-Z^YK7~U?bYJ4yynD#7b z$yAANFMFP3!1y9Tol~1&@ShVd`kOM{ZGyGf{j`RZfIa?3aD<99D4nvDUiNL=qlAngDp-NO@nqEG|S`$_IeV2sdKS zFW*R{kIm77X6ejoMh7u@eQ)2N=S~M{MZKgx?ta;KGuDe*T?+KlH$qDnjb|RO`;G&n z>@n|d$+Qt5lgadEHwtX7J633jj_-A(q~DD6EO(SSo}ZcNk1=@Iuo4`{@Pdm=x_gYb zWo-(f;bQ`_T#v~DKDL>H*(7FH>h!n+)ck!cF#d9fyefk{ues?Rj4^)f z{qe&uj9+1_jsD0WIpmp1J!-FSkIq5zdt1{%xwzW6^>?>@0%f)@*`Ug5aytXp1qYz8 z-BsP{<*u$=X=ABZ54&<6SNNqzJiwS2+IR4q2JY$3LSyd|a>=Ch43?<8QX-LNk{WeQ zHf4yGQ@jLSp$jp}GS-`-Gj~mXocUl^SY`4dpx>iSsMy_k!pqJEe7P6rBVL}LF$~?p zU>V-mz>Lv!#|Z=HRfrniL3b(>Ue`KPT2vxpi?{P&r@#Z;2iCcI?5=CwpJtERhNRb zKi|9rQRF7;H_gaNS2&olcQ(sbDfA7#$m(oE3*R*UYLQ!uab!J>ZQqMJT-54wGnPtX zbRH~h5nf-?iJ>{nCA|cZq4P0#Kpei}Gr@Mlr^J2%0vo5oh9KXB_V%*eYaLPv#XMph z8Ekcmbd{?R5)K;PES`>H&%&jRpG-Tuf-}#`>2A6)K96D6A_6OLP>lKb$zS{^FJIbW zV3@OFur_Zg1ND>~(Bh=6?wzo;;aq~ue*)tyyfjc8@>zHevXu^5?=S1Pg`%&l28WaD z2r(?p3s!_1t5Hw#UcF;lj31L3b2w(yid@Fwi#k{^mN)2Q-gbo%N4>BWxtGQl+M@jB zt~ApsNSn~B^j5aij3R=q*2@%k$mIyy!|Jmaq+FXbGgi#D=~t2;y2=|#%U{!%&b?WZ zkE4_#463T`P3K9AsP_vHeG~(8BJTR?Hmb$*?%2YIw`rj|?3Ib5IlL0N%uu;PR!JaY8GAWU1gwcLXFOc znz`XH|3luo!@UTJ)3Hch&)-5H3=l$5qK9WbmP#W>xTCR9NcB$N7SA-<$v6UE_jE+8*!RiyXR z`OY=z+j47b3I~b);%6S8u!3mzY9z7c^C5fLTl(MP!t#|Q1Nqoz@>e=>j4&!b6j>FH z?nWXXH3TwVJAxY}kWX;QST8{`px#;W40$|cM`fvl$jio1rI<{zIu7|DKz}R~B)?_Z zeJcL#SW&Fbfw@#*Nk^JC@M&L>wdL3W3hU(xWgjb+mMatLjI_3~!=QnerDY2mc9 z{ZAlm|dm!SOgw3Wv5NG(94g0%C3 z{qSBdf}7c2ko?z`E;O=gI)Zm;=`B;Gs1EtkC&m?6jn|D7@`|5flKVceba+GIF2Rk? zf=t8`HQe7;egsLokYS=sxzuL2J>I3RnNNG3eW|D%Q}QPN2S?BpJr`jCDAceS;Ru*4 zjdANPnRYHWy&KGUcM0N@1rd035MlxfFbbPTyQ6+*TU!mh8s#SslAdQK5Nm_@k_Xfa z(PP1a=N5V{p6yE*m^m z-qhMH_{`VLmlWVQS^gTW+Up0Qaug`}3iQ|P7;A{#3uxPeC?e9BTz;=i+fH}Wz<3Lf zMUkc9#YHnl1D6~R#P{UIcR0zI-^S~IxdO=lPU98lKRVF<5C7gjiLw6A>)2=GI zMw;tmSG7}3qp_@%VB+`07k3$bOj-AmeDAnU}lU zK>ah1hQ@eW+gsAsY+CY;yh5a471^g*=a32|1fFO-l@r``*ADLse-#blcD`SUy-d1^ zxmM}M(Q!O^c)ko`_XWtmZ^gO$)8aDSCya~6)U7}saHOXet;5Hn3|IWrkBbi5WoJ|F zgk*s)vZrx&#PmJ8>gMV*-U#k#+?8P*o^?m0$*qfO2(M}P&xf+-Y zD?BDHrt+!QqtHlqrsP2 zOQ&OLIR^rQl|#z+9X(yVucl6di{Bi8GlkFlHU9!SpzHD1K+}!Hoa%=anJ;WKwv;Pu zZOq?;_k`YF^(Kf@!keCxlOsnRJ@_f)e_wDZ*GF=Ht8&fx5YdBui?j9CAQMbvl-}Dn z$4=KW$2I5FF?Li=x+iXx_MB5pCuOsjGklla89df~)N$RjrD^&wLp9`jS*qk1341Y* zD*o9xps5LN?1g{;vG8sg{qhn=EZ>>luyw)yp*o#=QydY(n4Nm!5`!Z_EEs*``0*yzt8@`doj#QtlEPb5F!s8l zuh5kB_}#iH;jQhiP|TbG&|Oarw4T z7IS)NvlG#a>rOn3@Hz`w9Q)s2yNntS)G z@R%pG>AE)(BR|7NefSuEw872slz{Ou8s!Q6 zP0Bk(j=+1G?EU`7&eld8FsGgxL}H4&66~{iP?fO_ok$3mPD>Kgu|pCK)Z&(~pPRs! z%1VNUEVfMd#}8bIQw=%%Gs&E9xu@JBW67)Yj}3*pr4v0woS@axbeUHUZs2pIwTQD#Y9#w+8J@* ze;CU%Q@u+)_}P3nlJ(-p5r_t(&keb9;P|O;iMMUWGwVsXRZIHmGt~0-bzwdBPyh@E zj3hfV+PQj4jxQG(2GiB&Hye_1=oSZl;=it$d}6QPj)0adu>$oy7xLxw2g+cR+| z3w`Bg>#u@&ci(fv+z3I(VmR{?W?%&>jI;7jm%>>gPrT0^89Eswf?K@=94YE6@syZ| z`{=l;^wjcz(shV+ByaxN#Ao%j zi&E3EoFciT49q zv=Ej^=n_Pw#J->mPCFO14Fw$J8%XnW3UloBc#O>$5m5U2bxQ0#To@n7 zGCe7XZlRUp02OX4DKnTY%ammbh;j?_q2FcLPyu=1}TAI&Cbb}aW z4%lqEaH1NjD4C4Qp4EYYKmTVe@%b}9g91lp_Ty%1FAZ?-y%#iuS2TTSq7e)1_#*H%ib36wrx!-l+oSgWq zrXMs}$Jr%4GqsBBvi6WBqr6Ay`pi3!4AuU9xKT2YWx}>8C0hMf1C^+>ygHAYrc*bW zK1!9m&7Ss7$H7+RMwUwd{*{Y z3t@P4s@kJpA3YM^!xBZl+#bZbx@G#K8nH-Ylq&6+#i2RP9pj|h0#$z)uk?(SBo9D= zalBSs*Be(vnF3RvMu{~(Naz5KCIWVzYyNZDOi}$-DLOXkq<*m&QkEpwly5<<{gz*Z zf}xN%9ilmXNtnQm2Mt3mJl|@lg6SD=SZ+%9`w`|8&)YZjEIh7ntZ!ty9>No=x zL{Vh19hLFcDSZT_=!4aV*^VF9&U2O8ccxl6Z7OL?SF8s4>2kiTzFB|&N zj)n6JhDN2__g$z5g0hPpg81>W&<)VMjcn$bgAGqXiOH2`gQX5r1x|ykp!Y=CU-cBj zeU~DAR;npCqDwdG7Fme%{qDYsStAxH6wNV-(Z?1e%qbljojl9zWHfiCKxA_guAjb9 zgu3I}i|t(jyFY5xXqW6gRW6*gwVFM8GO(3R!N`9-NW3tKRKq68HjWgWc5C=v8ULX? zsG17nV~g59Q|oL(6QiaZCmjrI1HLBgS^YG&KZ$dVOWB#zM=dU>yLghhci(&q{-!;+ za){4PTtSIZI==>#R<8;M#7@^Cm~_z3A^vkATeNI1>Rc*yYBYI7ro#7S><bW7065 z`_2Qhb9FQ10;*GDZ{YHLkLzkw&W4q>)#pQZeDPmuGl9TrN#=T8%NGldg zG+z)ivwvoVcbw<9!%4G~-dF^7M+6pIG^R4UgxfZ}XdQkUkGHiR5bMjt#3(P2*okpm z89EziX+bSzPSp&F^w-}xHmR#xjReS;Ez zXJ#B*ek2$6p&fh+V>4@2`l*o!u3Pd-7NYv~mA8ATC0l!oaf3j!NlTvhtq<-CZ)hT+POHFwsRqrQFy zV6mY)R);Y1Xgrv!lmGdHO1YVtVN&TsXI?AFO%o^fLX(~N5 zStHs|q79^jn~7&vS2;+G*-JF~&PBR#_Nvm4*Mzf0>U}<)a|fJaT`P|$i6oV$$^`G< zt$<{b?598HtA79&DJMzlRK$odvggJD*&%1fa|WbK6qXwcPku0M>F21n^QcbcEQ5^k z+8AGv>y9xMC*}o`6#QT^o?!Fw^}AwWbDB-tcr=MDeh1=n3mAc(hAEhQXSj!2acpQo zQ8i#q-@um)>0+DmUBIP#;eNIRTXvIt-#nenWmYe zG!@uY>r;;JwZ&Y%N)V(i?7CDh#zv`ux_DDJ@ltTxsjjJjpO$7bK&v^ILKTUR=8HWi zWPhsDI7Lqo)V0r2X^iRi@wQzdJ*nVL1sREDgB8xTMT5DjWW)HK|ARAZTUM&torf!=Q0!Z{6C-( zy*<6pU7(LF+*W4_UM2+=H32YQOlVIi@<*O$eqnY>;ZR}4lZWWS0&kZ!w~5f$rT2SL zd&!96kjb+hM?{wB=;-bX0(b1*;)Q_4C8$@1BHxwlG(57%REy+woca!zmogh}k_hMs zh`S@(E0>S--&brL?Rnmg4q!X$W*kyy#Fu*Vb;klw{T@Fz%-u?NGq-Q4%={>_tJtpn zdAlpK^hmtXq^KOV)_q#JWx9;<)=K?8`oood5;navpfwxBK@?YSyiDEw!JfLI)N9^8 zdx%>3Wv*vpch~1tJU;ny7Ua_;J0k#Ej<(Q7ho zI+jM()oU?t$Q*Slyw9s|+;CyC-+Qh-JJFy*GdxPl-ey~<*MzZLDUa^;6bi4Ox*;2P z9bRw=YLU7SDE(LqovPG<_rO_C_@o`=99F>8%?A9&Wx}9qABxU+ zVCSebEJiFKX%!0wTv&f*P{@o|P$H~8G?l}Ha_2nOdf19HoN6#w@aDwr#hfq56;~M=7f(UY< zNbgevn9J+g&;qBDufnJI3Lxvexfg|4M#XqJ;q>sg74Y5Eit${Pn{~e@t+@kBWcdxm_1cV zu`M#(2^A(*F+t$!ht(N@VjnQ&M=>ada1=X>aHDRu87TuN5a_k!$N~ji$#YPIpK3xe zb*;5DRcL~*FL>@^CqrIAnA`t>rF)kXSG|jFK(SvDm#eljx?XAU)!o*|lxs?CS#8$yj3pjobsBhHp?YB4NGarf8lB!K%(XND*T3p zYl zx;29(_SbBkl)KLwS={!46yw9i(JSJ+!g>~J?qT?~*T<23q@Yy1?Gtz018D;t5n_dR zxmWCfh}mi&FZc-7)nZ*Ygx`1yJ;<@0I{2bEyZG>xusp4m)zPO-H9EIoo3W`ncsadI7E!u5O*!P{zNh4p`9!N%kD99$8wjQ}6IJF}3(ReAeK zuA$*i<+i1yTqf%kxX(?d{Fwx2+B;H89la$U)|y2#{$xvM4>y##As?}yOR4dpPEM%O z7#!c*;#Fr+D+oOxm2>3m1@%fP92WnRNu*B{3s3{Wst=7vG)7a^O_ZJNUuIh!i?ByB zQxu>4Q9d0)5_rSV|8C3dtz?akNhq6O&zO@J;mQ@R#(Tt^p_BD;_GlJ0R9d75Imsy; zyQV!`u)i}qLltt~?RNI=xz*9weI>TSyAax`XJ3`=U5^|iVpFA$i1y#b5W>Myaw~`Z zTFM|F&G@*(PGU?EtT%@`X#z3LGBoA6_25pgETH}^osj&!lPeFVsB2bf=6$Aw@fD&v z=SGuJt9JNlcy%;#?cGYmJz@VwXr9lUv7#0E9qrxIPO97L&a?hz;p-h~LGG8@HOJ5K zAYCPRvX4;lv7Yat8u9d)PVK4Q$6GHP^BF%p`!F^*+JD97i0=|qnR6x&ZZw@+MXRJB z1-eVsKbU8zxf~IQRy}i%yTan06X*bBQ#fcHT1K0&geb1y3bmk3nN(5s_oUv(32~w5 zQ%`mf>L_ewhsR$sPlHCo;e&CC2w@fgJ^Ee|T4hXxj~*a;2-^H-^FRN^iFp4%J-@&Y zApM?$)(f1%iqDOW5vH*i^(`t%Q^ilPx3BiYhwK#C+d88LPfx+)C;CVFV{%Cf3fgoy zQe*C2)tQR6i{?*I^f^_ZkwW<3B`00o)}QYy>kUo4f(O)L(l)u2rB;btpii5*ndC4g zg_I$1G3=Bm9BS;ud+PW8Fgj(KAS|msjpkF^J{`_#=p38CpzX~0eY6mAIcz1ZC!2Gk zjj!P0+!$}M1?pt#W>#UXL<}oPM2mZ_Nxi_{z9P#_L&LR{n-C8?C|P0n*>o|&7qljK z2hFE6cYgPFNcfr79G8~x7YB)I7XcxY5@%wV9D54f;I*CC8d4GV&i_S0o;f+jm#{YO zn2}-1zw7nkleV8bduDq|#9!dvmd?^6J|-qtjYfz@ht}p-u=c- z?(;2&po8tx_8!9c`mj2m`#xl^3^au8!w3MbpFim(2;$T^P+^|sh2vFc4i0)5( zr0^*9?0D__LTKh1W4Sr101MzQ$4f0QK>+{)nof7#pAAJ2`;EaXo3SX|z%q%Qc`EMqbOGti>+Qa65i8z%=hkSQpH({nl>i9X zq?=>5-4_VARx4uW(DVz4<<|vmEY>qs?&M)L-`aAPxX#L_v3TtuFl}*b+Dme z5l#v-tAw(A>7rp#G@lF=G8;dh0`+4FP^TE(?o*Z5$@R#A#TOzU2liz$eQm{o0aQ2E zTb@Jt1S7C$dk!L@emebf-2unFm4d|B6kJh zq;+Nip$AVO()zsboMvhC2ct>?0Z}-eNnpS4AcY!!8Hn( zH|dS)=O&De+OxhUBpJ&F6L(4Cb-2RYEgwLWhEzU6(+zo38L1_cRBnxSD{&`(=046P zg?=~V>BPX;+kLZHC;ho@Cvab%-_3p^z-RF#fecHxS+7kLeF?Jn_W@GaLcyJT&7GJX z4!AixWSw-y)jBYDf6dbHp-CTSDKAJo_>y|kzN+mVdvJ`s-dZqD}lLUkwo7Z8Oah7vIo&=9p zmevkH=5?L{L(+1;tTD{r_{$etS$o&~UV6^ni zsbO+?Rn9x-ts1XJazs?*zC&7LGF=TjDIYhZej;J9FJTeTSa*}oJ}*FPNco0f)6lJm zuzPA2Dy}iwMAI^dBa7LQ5Z5B3i>gz8wv}IHGm=1F)la5Z+ik%V$EMT%0@mKhAx5za z8|?wdXYLJ(?^fJkna>aR%*@Xonr)^-ddY7-fw)^E)vIzFRHtr#43x?GZ$FQ^iEq=(9Gn6!Leli3g;*HF!M5%)R= zRl*T?FH0pLN3-<8-BfXh0V&lci%K&dO7tx0^VqVR+mjt6Nl=Jx!qOF^GC%jw$uQ^JsBrhwdzEEyXC|s z@^Ee3i@o3guUY)(a!)(`86Y>($JD_EE+f>W7`#s(Z_RhpE1N<#OfGq`BZVREkfk%u zocaUGCRn!kwOAy6OV&4tmp%~@z&A7Z&kpH`pA=ir$bs}F7qz{6-ku5usUpH-J>{srCf8;&8_Hwp1E+zuS#D@M7bazFn z&D@r*KO)9@$|bDniBqW&y=pV-+VGng0Wz`#HR-CVzi79i0B)IxKm(eiccIkdY-@yK zOhyN&CkdIU4p%ZLNOcgr@IL47<(>;=J}%eW(97 z{~d})F;P2hs;Hw)Q-#x?_v@x(j&m%7i>$evzm|pg^cs|HFjp0pg1tV z8n}gd?Z4>!s(^8q%EmI9nwL z|GX-!`Vm(0TYls}1Ree7^wHnrGo6-k(;06p#5L1LVqZPyL$bacCUD{iBB7}0d%DzhrTg@@FH%`32hi&mxf>&uJJ^DLEE)3yOFmrF2~QAgS;`#!)F&AxyBrb_jw z6jOkun@|n+Ff%AX==)^oh1}X4jO3`C|kgEqzCvWdm)L+Pg zlhk%X>EFg>MALN1t$0`0C=f4Pq#^iTBL@_b<}{Gy`--zr2!a5Wc0mHC#F8QakfNh6 zoY=`}H3ZI&2oWbv9LUpq>H(qv{RO!6pW|PKb^-g{_gy*n4+~@5BBO}$6qn?t5&%Q2 zINrI|mUFy4`9sO`tpQ+nTsaE61SwKOmT4nkrvSSvbsw@^r}3TwW~l6DizEzD{Qj%? zEC9Fdhmbylz(%HfH>kv>lS$cj=z0y$bx-BKQ$b>!v{U`83A(ikNqSZK(Z^9XYLfiy+!Z5*QUa3G&RFURDvx{SMN#CoRh!!Qg@ z>HPk7Yfy4Zj>E$7`-K3^oBT`$GuLgjVF#_G91Q3GrYQaT>p)EBQw!Dck{u-ueSe9@ zGrrzVQsY&2{S=3sw>Jgy%Y4N<=f(V3URr(*kwPD6-~9f^iVa>41E|haW`X0`*T*SZ zU40OXBIA$7HORPLRxyw^YqOHWSl8m*%|4q;ol~O~a%|D0uv&+ENOLNO^tt)fnsDm< ziig9J*@K~SNnpGUbJhQIqW3>yfZW|sCMpE^uT?`n*&JhA8h@5)Ojd0z?=u19$EwQn z&4dxx_K~XvI#v`#o~LJv$mZwtpM ziRYEVqu+HuqR}+FCBvj&DCm(u_p0B|;F{q1Y@-lAAJeE~XVQ%RypGl*eTn7|c~kHQ zcysZECZ0U`a6pknQ1wi;S8|djt1kG|pmHuUaOjSY8RN{`qZW=+azCe+_1wT3_WbX$ zk^R1>GKg+pb;lUBQR#141kQQ%CR*MCyd#uCgzFz$5%7+3M09#?_F$e%-QeY$s^(Ef zE1Q3WY~VjxxXZe)$$E!-($YUFNYt`O%Qy8uxvpLA!H3YvAO(*($Tv}dersxcGDCM% z4&S&0MUL!Uc)F}TjbJN}GfvMZ?bBg&iX@_YZ|TrDEB%t1$YBC)ME@~iR`vC5*M{o> z&E>|_$I=VcvYOKrlX~u^#}Ur`BW1fUGks_IVh*+`#cAE2p0oHgtbMlGiz+(#z*7`H z7AeFoje8AQadLKW{|CG4@`g4z=}T)Qod%`Da8pZ?2FG=A+4VPLP8aDw{*w5py0I7z z+po5&=Df%dw1%Qab9otsUQuc}9G=d<)Bv2PcOk#M=D&m2ED$$?<--W5Ojn6r==P-t zRPMCCOl9IAix@{MvBlDLLwb-HVC>v?23Q>sO3af>5NR}G?}EI={Nh{@p#+#6|AHp{ z_JBkxd8zrr{4;RQ#WEwyr>SFs^m81dmr!sWY&B0#I&}nASiR6*d zj6VxfLl@yf1Gep*aumirY82fVulov{F27@vWpmz z`CvH_jmso$E>1{Fvibyj(XqApA&&EwVTwn#3r&ZtUgC#}-7arZbEw*`k)P7W>xNR9 z8;4@69(m%ORZa(TK|v0Xo+gyy#gz^gz-u$%IM?Lzmqbb9a}Z)&h^8I|LAIeY6G|M{ z&mUmCi!mHWK`7nEwlU zxCbB(9d3!vC|renV&B8I#D6zEe3f&B3w#h=b6tc(EC3NVvpDxi;@U1?plSc!1^<;J z<4+@p#J9hHrs}=BLXM4)^Xk2ch4&B4UL1VAi??NFfXY~9JMMGx{V_1rqhko4M|*o6 z4@U66Vvw}RV)dzw z=X;Hu$k{RbYpN}Ce}lAhe~dLzpE-$e!&6PKPfWK8<(v;=G?jXKSl0*7;`cjcInhH@-OOKus@;U7|cZ7dp@t3(sePyrN_ zl>r$_1P0RucJ*7OT(YLuy>!==#4XAIu*3e9UoO@!q9;IT(VEZiJB39DGLvid8C3cO z9DTOsg|&AurF!$)wcx`P#{o zr&LM4v);fWDia@93H=0Z=am=LnG{m^Eas}-eq}B15dW$VAcr*hKShnod`Al%^X(0M zQ}g)J>>XJ&1cDyZl4TR|wz*BM-fron79*!LLPgvA>H~W+yN;%mB!T)h)A3hrhq|9e zKz;#qgZ?_`w`Mpfz2i5$&@9p>+byOkD03i-l4=srvik1kw*?%Is`Hql&1jZ-b1(K?`?SDa=B1#(b{f)NZ$TP zlT2oK33~N(TIVAbi=EzU&$blj&54Bs zCu(lz%jxI(#_YLFK#X=3Xx5ie@#hk#9~q5~z1B>w*ah;D(_}N7;TCw*akct{>GOSvw9Ndab-f+L4e=bBnXDy+83;w;lz?PLQ zH)eGT5WkQZdNx&U)uAD~WuHE9pKe?oXWxV@#pQmy(TWXb3=!$?UI;c;P14laKefD) zy?pWD8IhtiVvM6VaZk0IgJ5ahoWlAeI-pj)Y%_Vxy;ND?Rv!F*2xEv|ZLYVxV-hCc zi693S|9bW)p`V~l#aiuyc3Cb32oInIF4_IU$Ym)bWN#DzLQ`$(@nS-(OE6eQq7 zjGcn)IWR;3RUP23GMwLrgmE0Oef+h2LokcpffQ(p2xI`G13N==)Y@YaF$=YPy8*=X z^B~AW@AK<{02U>eF!2%;r*S<T_?B0*C}%-WfaOGl%&ZvDSI&`?E)2+dk%z zwNPj3 z&NFj@wmXX9{>;`hZ+UCVMo&|)kZ^ShFQC&^h~~sq@1e%t$mvx9Wp9wI+D7-SmTagRg0Rr-wt5t*{&5K160Xa&|$WZiLFxqfNZr0M1uBAtU^@UdnUYt+A zhnP0bT&4esHvnU@-EnndJlXM=EZ$QH{xtS8AyDst&41CU0JGQC$ttH;v0+A?+(+;G z!#^_VyTt>7Q1W3wjQM$JyaTB9%w+kZWvHj)D%5{*vn51UMP{4Gjt`3uz;gY*ht(Se zW;r?1)3bn6dA4y&K#-d!jY!I1IY--7$QAJTMnoUH-kZ?z%+KIULV{`s<>J}R19|KsaVZyFTA;Lm(9*#Oh4gEqb&*57eG$GojJ zS;QTy zbM$6Kp9oN$xb#NmqC|y6 zw`ZY_ViSX16cHXThe8i4Z~jw{LV$8$iGQk%4Uw_v@+{4|vewq_Y*G^S;WP=HOTo9g z)|Z31>o1j>Zm`#;Sr+(XfPm$_`pW0{mn#%&><2j@EDNNE6fxH}(;0wt(mkG=y7P4? z`+?8VsQRw^j)_*+GU=v*4B8sjFT~uZG2CZQUnNq*xgtgMalNBhaKrooP#O%-C)Qr- zalTb`O$Se%g_AG$Q$P3;w8OEwW8RIz*bMa=^i1hYSBJ>@s9(E7hAX@hoYb4?Rc&pu z!z3;BZJa3QoE#;-*E@zsPN~z<*pjm&qV>agcOiU$h?5m<77D=k4LH!D>eJBW@W5+R zVq(+|k`hHy$*)Y$W2&^6xVX?&J%GSNPRIsQ)||}V*SRvcD7yIBGnjL!T;4A4yMVQx z%$uGo=Y82T>wh-DfW3=REK9=_V~b=Hy?>WC-`&A7Qj%c#)8IFBl87SnHh(UqH0E|T z7Zf#+RYk&+mQv2CSWuwu3}}cCWQ|+i5h1+RzCzO&_FR~=$n&p0Y4jP6mbH#Yf*Zzo>CXc zvQPs+C6J=;WBma0B;*i?s-0y=fiRX>W(H)$`7xk9M6iXWh4kJ#*9II56lA3x($mp^ z@hk_|=`q93d5y$7(!QB8Znq_4Ti9Q%{c!g64G^fwr5w}H^y^zv#1tcj#%P9Iy`?)E zBi-ryV&%GfNFym^ywIX{Y{BvDj$iQziJTRHR)0(WHBK~VwjKGuU{2l|p$H4#9F`#%kPeNktY~}9ZX8pqH*E<&r2a-GDBAmjU zzus|ja!N~xh>85|%$>iUk(1*TdSvZv>tV-vM_d#*sPn6_&{LmR)|^7mv@9H~Ej|7? zqU&kl@y9`Rrx&)?e;hKfw*oE`5f&EyEfpQ>V+k6qX*Vr z_LkN#v z6Z43x%%z4rf!+Y|+d%t_H@~mgA1^)fh#D1FBQ82H46cpqX zRJ-#c+vfm&$d6J`p1iRCnDi~G`!;l^1U(PXUk#1>Sapz7NNttjfo8t(pBgvA@o15OSED47@z@qYwlHpY&6B^^a7iAHk$Qe*a@X{ILiA*aQC$ z?}4bZ&*@dUGL8vTzJ2})v|gQ$!$7wo^9CDB0wfO;@;3+u33@2O59Ih%s-dvLsOp|o zO(Ip?pNA_?`wCW8C$1QKaT}ToD(zF{E*bp@DigNn!L}CF#ZRfX$&ijGdsWU#LW%e= zz*|n(JItzF)TsQnL`B@8ck}Njx$WNOLAZC%Bx2mm5l-^%0K}_Q1TONY;R2}+`5hwF zfg1fNKah!<8HDa^p6L*|1jT7bgCaDs>xiv+RT6i|-XX}7`t{jvZNd$7p+sz0QTq47|V_vH>485q!HVebb>^bP}>upCec5Gw--SN@pZ zA8+rE&G~oFUS>NDEudUP7j`-AAa}n$mKDTdh)MlcAP-}99D;Trp%m{ zLTdYT%L8HEvrcmZbXrI~p-Jz~=XmBAqA+%X^cHY9Yx|Mh2RWL5NVY%p(jRJf*U0!StKvGE2A3;?6}nNv9>@0e z3VkEPU8NbZd8)X~&!D^zwOlAc7yGi_-=9ANcgu5&#+i~v>&PuxdS9C`*PE*k1NV$KK~1bKF1t!HdVx&Ze1zhltd4`c*n6KU`EQ{kLo(ZRj6X z%^#xe50m?Usz;GexHLgSUK>Ft9dC9^ul3lD? z%nA>lkh)5yUeRsMeJFVzf%?PK`@@ml9g+Ehd`X!?spm$|)X;HunffU_jp|wA%NKV00)M zFfhh4CyX0ag9aYqm&JJ}`hdUOeK~$kA=(V_F?GZeA_(zq;ydI;=66Va`U~BL@=o3M zn&L7Ugl__hQGRMZNq(sGj%)F@`wBz%9YL>O!bNazTqj0Sxtau3CNdlO&JJ_wyd@9% za6tkVoAi2}?uqzkc))6SZpH$F`eg5ewPlf}%+ro*aq3f)UV*gYhd$$kP!r;_BC0r* zlSS9$4RXs{_A&Cj{{-2uxjZ&eNwImBQIgvq{v20>o@ZxXy;Bk#%2)R|SI+Y-c_3Z; z{-@~Ji-ra9#Rwnm-j!#rl!^0^9|HI%Nmg&>Nr1;=(IvS(mT>mIkvLRS9#<+WEs>(i)W6U=jm7hi6=6L#wsXKO?&{IT&g66yeu8u zJC2dI7au&67FiGS%;q94`^KH|?HWG(^3ozAb&)FbWcVyP<`FJ*B7|k$ZV-3u(^u^V zg3Hl&P)&#JJ2BGj#i^%bCeC?Pn!i_BKiFJ*oT&)5h;H3hU!!Yr*kQ6s6iLOJa*}kmJcZKv%4#A-f%s%yD zW5frfrfNMM?Xr&_Z(g}4C?<&v!?9s9HS3~bl_h;Mib=i;pRayQyZ?lDmMT?PN7-lN z;~c$)X27}Svl9FnBX?Q#biSwv^H?rkj)OP2U%?a!cuJk`bJa7>P|VWhYPH}(GHJa& ze?k*?I)O3{Nwh zVo-SrE3&1s6$Lpr>9b0<0l}CX4;mt-K+~ zhW>>7O5k*nN*q@?j$iWD9r_|IoUxzmQIMh-+a=*4ZB0t9;UKeJgYcIOT06wC4P-g> zCwxI-Qsc+rul1QMg1(T5TOHVr$R?Zs5G8f&P#5AOqsUo337yybXkvL;p{dCh=im#5 zWxG4*m+hUUS~VisC83j||7A}3@##F44?=SE_6;Yv3(6ET25~OeN_wqoefz%1hy~dW zaM4orbmtCe3a4Zk9B_QuQ0FW-@2vGkM<@q+>1u(zJ{f3k_NRvfbp2n`eE-X8Enlsa$yrn!J|u9-q+X z#z(?Ls8{1=_*zHSRU$;McK@w$cwOlCN^V4h~(N|N2mxEA-t%hngcMIF{5=GZLBa z%AL~4<*DS?*K;pD;$YveqJ?Xqw!&zeE-D$=~21I`1BG^PHnhElv_{NP`JPt@tRdDl!gd zubv-}fB4}bYwd@no9P`NIX33zT5SefTNn-U@}qQ=UZ$zio8O$=fAn5Rio_iQhIb~F zY>$I(-=bO+Uot-I%m;_mx*ZA&!KUSuaN~t+VSb~>5qCluo=?pH2O&#QUhSzRk% zoXR2?<@XrkEH__ouVQ}?P2`3pJco>b9}!5pJ@U)oOB6WxH;6Qd=hQx}+@ zl%Fe1)zy2(&X2Y^Y2kfXRsTI4HI62PDhuGTF`((7^BBrF%E^+zGXZz8z1A)FF^)~< z#3cDfa;M*ek63{~sWXl_^Uc+RfsqC9b?$3qS^ zCnNDM`tp$dvdR&UOi#YnI!{q3;UTXk^`16nu?l5DIbELA(#*D4&3ja9{2ljd4f|KW zX*YN}F~J_LV?{>v)ilW08{&D*?rzRI)EXikXgqYgJn?~r<50->*0X!7=uhHo`ctk| z`&x4(CR*%lIMfM^_`{J?t{085P|USs3!JsKrpNcoDQFyI=NMSXzs*FRq}V1alcL>f zvvYpV>cE3+UEv%u;%J^yWvh=S=uxITN{7>CDHp2WDj;J^c=?&@0f$BH<|}*HMd`jE zh5@t1V82i9=de6}QXEh!$F_x~c(r3Jz819?nABL(;g4rtxLwMMX~08+^DB=YcuZsS zxRtI+P0zs4ujw$^t)g|R6xKfOkX0`|@wyWI%oNA`m8{seMhY{9;!_9PI_j^YWc=H( z4$la(7_`4%75-d0cYrY+y=nYuz0XOT=3dYT5DJ&B&eFKW{0pwS(NZ|$)8TOf&!>Ab zAB8>Qem$l4$ruTr@e*phgtyU8m{2`3q)T8c>d*UfI=3jgjj1!iT-fNXAQ?dc&4p_p zn;3UvRDFp$Hac(DD%EM_z$->}Lr;?@?h|P8d}zfUy)8QM9kR$|1qwi(zG(c2S~($N z^=t(K+wU7r&2PGRHa4`j7xyk)3z zJpis$kNXY*U2|Zk9rAzrK+0?0As^_{yjDUV37Vbv3?rWYaoWX4?FwNPMW$b+Z?q$A zLbss5e@8ZwiMu8Bn`I9#;T8?>CRf$bRS+zNDm!agHVMuGt>>>gfN!Li4EzB znC1YNrkhIP7Ivos*{|HIJR>#Gka?S!lsOe(&>=8Zm`2)R#w-qZW5}ll8I~t0j8^ zTI#LDR9i6y^~~VNh9tE@f3Tn7qb|M!?-GjS230@HT#&SRM~3fOr3lC*brcSUzj3%L z&)-tly|$o$Sd#>z}^h6m;rU=;w#~r?igTpwfkE7w;&1 zhctc}kHJr)*6+m$xZJdoi6zG84{OSN?D#6*bIv^S?&)JExZp*QqBg0dG;VJ!W4*IQ zMJlM)Nwvv!>{=$$l)j6TzJZ35=aOaF3|hJ?mY9l|gpIG@7cQ1Xz9^%uvQ$5^*{HN}f*z{yFyD zYSr2mvH1gt8}Okrp$r)e6gps5@F_#n=AdZU%j6Og73V7YbdMCZnS%zJJ#M18Dbuf| zS+Z2{umeYHFucbV8jtpKY?HAhq>WWPi71%YhgE|VFntkq+zDq+}&&MJI#H_Nqm&G4}3(ycayb+i=@ zC_k=mwFVm#0wgcwXHb_BO=D6r>YLA-?{=?6NK>pZ_$W^T0O*B!`;%D)pK$1}_xwj+xy$?`LdD+o!^{UV&B#C2Xl)0)iY zotw(7u&cPB2^w}bZAquRXCp`Y3NGB3Z7Fp;w-EBSgqe#i7~n5R*&?^^V2IqMaMmQQYB**L)8iT85kx3Q0{9 zG%+|@c0ZveT^=nO%2LhTSI;}l6k$a?$oo3VV}I`@q7HWj!|jkVPwV(|KSr=`ftzPIPbiH z_a9tNoj~}I;Mt^ZEM^I?%R+QAEymU z(Hb4n8EM|M_*OqDZuu-MY#E8z1j;ZJ1 zS1d*C-RupCcAyk4*v?N~CVXFKjKWz?^=+|uw10jIH|z;2ZYVL0 zq$NJh@x3H{7HV4Z7geemE{(ps%2+#C`CQ^wR#WOc`hk9!u~c? z?zL%y6Uc`&si(8nD*RebkRDY8CQ3HY09flU7|NeY)c*-j`Rng+uUueqjHi5u4A3Ho zY2l?|(XL@~9K08`Z=`Am1H545 zmw?of{tH-ueat+oT&Oo7QuM3pHq?HHZ1Y5eLOEzA)H>bOA@+tAkH^wpB(g}ghJp&?4C`zSwFhpGpTQ~#x+N}c@>$#1y6Y9K)3kRyDvt4DR<9^u zMcwXN&VEo*9LX*Dr;|`{uKUlRqB=IN9}i*}tt%5_1j7_!QLsDu&T;6 zTkQyYgLeD^& zB~1Y>5mLwlS#(Whn!utJx;FTA8b%Ls7I$SuT<^2I!xNqOit|J4C5ne0RjR}d|8Ft= z?&MK5Bh=A5H?dEWQ*@b*%9ghP3WJvMA+1Tza00vo1@N$KZe|qGJ_@Kh5uW@iE5ll; zTmZwbB+`*{Byui?x6I;⁡|_!u z%4qy%Ik0Eu%GGQ0o`_ZY;tNB{?kA6$mORSjGRuJvnQ01!o4g7<(49A<)>c&Tp# z!R*S9m3mK1MYpHl)pcFW`Mj1MD`r%)mbnbIS%#xFbwCIK^$Z2}e$xVC^8*<9`Bg5w z8g1nzrc*Bt;c5NPWT^ZeAWut8Lbel|4R-8-a5ea*k6H#a;;(6c!H|Cz$p5Fte16Xm zljNzW{=7;&S^CD0;h7GPPdIsCb$+b@M`#i8Hmjr<_7t_IQicE~Yt44#LTY(!fkY`r zwHk#}alKZOyxBkSabL}pTSUvOVw*#VfzlLeJQ_6*cKc`4cZdbrB|b9hs?BwbE87^g z1$EWMXy(ciQfGdN6SMqUS=I?MkBjVbLht&ITC9prf8LZ%#^tPiReeFgHXPNwKdWF3 z?T7ieSkT*DSW9RI9n7B|zibc)RDg2jd7Xi$z%VemD4an?8L3he_KrBX;A%HE4CI5E z_I%1b_E<;z(R~Wf7rbX38zpVlvtIh^www()qUy!`O3C6R_H~zOa>l9S z@WOrqBr>_C+2Bx3s`B9{BrTn{4~|_p;C$o|@p8Y7>_zUn&%q8g`pl%-)jRC49fO#u zPpia)=CAMTf}c#T4=)VnNFB$Kla7eHT@_doC?sZv=1w~4hEqzt(U>*{;A!&)(x?6Hhwjx>(LrI%) zHP!s3wWfFp`|E}E+tUxGc6*=B=k0d)O3&FzbMJI#Ior}h|nR65JdnK+${I&kl; zUivp)iVLR$4%5vkPE5SdHCkuPe7zb*OpxcL)-w zuE*Z*qsq&X==k7AtSM9OEROP|BWT)!h|ST0=_gUGYh@L&hYfAkH!?!#2^UGjIL|~} z%#LQ`4)vAMM>|qWB%PI=uf9Uvadpl#^u_O&kLv(X<{zWrx{ThHlW7E*?~oz~(lfIa zq}Qqg;kCgt)D{42I%!nw>1G}BZpohXu{PL;n0#%5+5|dWzG?Ru|2S5S1p$h~k58^x~8*{Um!i}sU|G|JOndW;IEi8R^ZJD_* zO=ifWM`DEZ;WKG757!c?^;eT3(2f=$u6r@E_ozB+;mVPePu8O&TPtA;`daS$_2n!2 zy6gHcm|7~D9Om!t@EBL^C!f4q!f zWV(+&t_I^4E|x_2mFcC-<>rlBt`aSV!6>Nuadt>BBjOaYhqd&R+0NlY~D#Lakqwq|)Ludn+b=-MikT^k&0d zE7O+Bvc5b(Av;95D`SzviJe7Djoy@2E6roSs-36CY+O@$6&J9YKb(*M=WFDXd#&~p zUav3#8!SJ9N$=&iL803AC+AeIb{bUK-A|uD1z|Y0H*6;mAokV!^%K zyd$$T;!1h~T=vgj*E|C)&DXO&`wJv`4GyJdfckbOa~BKrjUzVSu(RRXhCj>MjAq(^ z_TKL7XwStBaVL?ZDT#AezZ9-jdmO00C~8+yT5_f|-)mTvDQxUr-{rhQDJHDSa+rmv z%qh5)di(HDR;geAM!F#3SgwkWVr6#kl)sLs;v>^>A;}ict!2Y9LrF2V(*CSY)%O9f zSvBjR`+&7;pZo==IuoMzV%OV?PVAP8frcy*4810ss4s&muOr@0yG2s?xnC$X^L+PY zPGdIF-MjF18;Q{sG(miN43D4K(OLQqF$*&Mx@iTsq_um$6p5-6*xeh^x~3phX9m95 ze<37yyL9Uas;p=ZRFGnA+oDxR{+suYC+-_o702nVc9V`MFD!&CSrrn~L_(~-lw}rO zYI7(6)jsKW3szS<*(5g;(>I|x@GPlzu&bqacQueacH%>q)H7@h=p}$Rd9W|W2uV!X zgyt$e9G-M4&AAY0se5Yzw!1KjV=ho2VoZopixsMP`Or#-a3A;O@xU2LWPW@=cFqM? z#yC{9(0Bk1Yzbky!}t1If%$Ma&+_C1I@9im>&3MSUKkU~Z02n1CL$MKYq+yh{%y-G zy~8Aa@oX>)=5aJ_ad5LD_Csg2C3%wt+~~TI^+8&y=6AtmteWp-#zTB67+=g6vUBJe zG!Z8?VoZZAYHi8xF!3Y<&~c-k0VgDlHF#y;eAI?Z#@zNG6O(+>9slVislzzIgW+=7 z(bi>);p3Ymu~VtSq5Pt4Je$Vd$x*lZ?F*kJmU`~HFx#SIN48!~vR`>k3A$m&m@;Gr zm1%5t(xlQWG2C$>yWP_?Jd~0S|A#VKmm!7_K_gH41a|K1JP^-&Tve5WAS?`|{N8Xe z9GtzeLV|xp%qAV6TXnwbYtg&0nJb~1h_ZBaxYb2i;aqwlEM+>ihZq61Ut^OggfSy1O6Sh|)SyHj)oO>r0@%2wHhht9;(>+l-+jd?_J| zB!h^&mzPGqEa-azbE8U@vn|ic7x*m4EM4ysGpDz^lzG0mw-&NgofrlEWa05R&+!}Wyn%+wLjvuSTva)E_j3+0w{hcD)7C|o zi4~XL?-1XSqhKN6HJORT!lmN(N#9)20x9GthTJ5PX}dd9Vy6xPma5R5!_=LJ)Vn5C z-Er|tMSCeKe226-9=JYhqk@ZAt?sUOcrkx|q$zpcI#!x5X~UXUPENY9{U%BZ-Z7i- z){jrZr{ZuvDay8j1IxdeoKp5c+~s-AWgXW~FX<~3KQ-LEG^aOOvvN4*fa3!i))DF| zy3&K-NyOj0Gql;*od|0bC4C5Mzx$!>3XY;4f;hVULxA5S$38(N%S-n%GH8VcNcN+q z?sQ&Iasgj^@wXxe4htO4%^qlDdftB9OQ=ELt3>;ZtvS7#gi`yM+fq=IvH+uQ)jeH> z2MPzyN>6Y|b-7`2n(A1Aai8SCm6JX9%fnQA#;f?a9UK8s-@sYu5#KBDLfBS*d+dHF5;qgPf5U z>?Ri*-bO!JzEtl9%pO1P`uNZqSN>Hh0>=~lQ-eVRs~sIq;>?fAoO-c#688)n{?%J1kpu#mwR*M z1ndCNnNf}?Qn}wZk$z3i)ew?mq2G7N!T?H0&;DXj_&-{R-&&x*`?=;%RHRt|n|Id=P;AE0+wc(~fVm+Bh>(64mFK%+*7zr05}*$4#vC%i|2PfeiE{Z4 zc~eCR+2AYxW26s;Dqw{)S@)n8sbHjFKri``3)Iu`_Ae37<3HetyL2;ZRAVaGrT4|r zL?#vUx}HDL(*A=bXvF@?bIIRxB9dzVRlD!MTBkgXodbXkw28om>;n34Ke`tR`Y=$b zfmdsaS|`6sPCgDJgjqp>?U+q^R5Cy54n%j8=<0U}(FHn<%u3oiHUPkcKa=3H$T60g z)<*dq<_}FG=MG2EB4)xB>fLBr5LYhK>Eg<+pU+FwcHvB*@e4l{pL`TQT1%n)oL>TA zW;Jv5PRor`R9|6^_A?yLbayA}NWAcv98(Vb{cj-duHlxLr}5(K%`!p6 zG9$%8#kGXFlb$uwwkZa!ktLe7Jih9Fwc&_|XB~^49uL8?hT`bfvq-$hOkQfee;Cvw zSn|%7DvqiM%@ciQ=6S+v8P3B;kTT=-iQG}?&Eq?7nUD6slb?CER0dk#xQ5zH8_*uQK7!Rd?IKvvnlWK@35B`svN~hO6Xd|jvs2)cb60O zBX6>&|CW^BFK1Yja+Q;$r~!nI1qj`^z6R%R&j+vY)TzI0@ZWj}jUM#Uq zA!%VFC22(NAg#WnG?_=Pt!9D=x4Oe;!Dj4f{Ab{;zoAyf%?9E6=bO~{P+GiO`+Kvnlt?oxae4oKWnu;++HCOZ&EjEu}SLz?!#FuM%; zS|zL$6hD9TJX=oPgJW!m`J)yB9O_A#)ls51f91Mb--a^tZgl#R>M`6m&;~f8#A2*G ze6^OF*TTGO>8b+7#E^#74-atshX77`d0Ho3x|je?JCc#Gy~9oiD;{0;T--%$k<1o??5JyGnU@Pb2+K*y53%+tUv z%Hk&0hfvoSvf>!ILaB&E8Dw(l>5Xr1ChW)J11&i=B|LGHkF$hSKKfS=$)BLCe2#5q z-Uj+piqw|Rr`<}T%8i&>O@&(MsCPPi6QQeT=QV1|>k9kgJ+tl{*^Hstco*j?opk1D zA$~{AI)T`A!)Xg9bB8x0ZC>5Oh?9bSV@kz3 zGN$fkPO*gcgNP>i(qJ;0d)0>!&4v{g)ft#`4p=(ibo8?$g}WF`rd??xlE}i}Py>_J z@ccF~#97@lRo>l8$eGm$nTQ;M3NnMD zE_2X{F1x8F_~|AqSdI!6M+rqa`|M*khs~UeC0=G>@JSJ4fQeX6@8Ly8#j%x$ZfuV` z6yMf?ORnjyTw>1k>e-(6`~C?__(Cz_`4a(j^4ID>w>idx;9hm0JaA+BrC9g)RJ zdLB(S+8crXIX9CpH9veizkW;Bz1sEO?-+i+X(;~hvR273QVchRW92oT@GR&s#B9pM zI(qHMzhZb+8D-vp5M+NB+SCBMiM(1#-!j`4%x4|FB{kfnIvU)5Gu}TK^RUoo>UBZ< z;V@lZ(Z#3wI2(Aw1pk9!+LJFSLnGL<7^=QQ8oqu*U(aG0SAVr&h)NsUS2=jhn;Evu zeFYJ96lYxSAhL5#Md`8iopH%U*EUm;v)7BA@47YPrDf?gQ=G>C0q>a%{GIA&OIerE zw{jBg*iI_Xs9Y!4Tl$kz^o|j54fm>)zhV7%hhu{OuFs)K2`t&uH8*w%?=kqxz`Wh7 zSB!r#CN!Y6(Cs4x#qW@N%`rs!-f}I(5yYenmWSwl4z+&!w$AfK*iQ=K9sz`2LZLON z&BF!2*-+N$k*qS`_2J(AE@blSq(bW2K|T$zFVTjCIx8Fs_*Yg$7hovF9{Tiqavnh4 z5wpMAls{IC+~pPB>nvZ(`D#Z;WtmJeJ?p;_ZTiW>0%?)WOBSfYvRj5p_3;WEHj-`57HWcs zWWu5H;L020hlG-!+D5m|Iu`dt6w{`ytmId6&Y*k;!z)wgw@6%8hoMK2S7n%@Rc@T1 ziJxFO&dqd#K(rZ^0&eX=L@;VL8Z~7JT}`NCKUl)f;aBTUQxtHcui2;MF4>x80+;1T zLM6)8d92@A$TK>BV=2jzSI7&1GcgT_bydV#A=PdJm><3;Ytuh!n|8z)h^ikxO&}dZ zv4Slk0b*}MuyMU5dV@y(X={VkFx(93`3y+|NU%eQaUN_tk*=MPSw&(1b}PZ_|HiLz z%F3Krp*IQl`lh{lA@AccF01psm={^ohosbXqg9;MtqoWalQFue{?Gg09CV^pQyh(TS9dB0;w^5g zux7Pyq=-#e-R>`NHui6|(70A~yvww3!BJr!Ib&;Bhaq}SzgO0^5AI`aKhuV0iLR5F zHr4)c+ig=KxLF!YTQOqrB}yrW2YUL`$;Jr|0e!y#o4!JVJSK>I-12?WT@_J>@!g%DhS+qk`yp#}69I8U6>_%{Fp|(xD!@ zc@Zs`dc%2)dUQa}S#(`F99G^zP^3fIFJ2-tmmlLfCKpUb=E1?9Kh3Nk=d{|d<|o&m z^m3-U5Spvn^I>u@y5qB(By_#e;Fj8neIJfEQ8=KL^yPQsHh)g``TIFEySn6We*Tk@ z#ovi!?uQ0Q2q7_WliI9RJ(;k>bG>fQmM^1%oYptlPjwj`(Vw%^N3XVBx6)%>hASEDjh0ue~SXl?3@qRCKdwwMuNs#m9>if zCu;9$55x`eAFXhb6qJ|7Z;aWaRpX1YbuV~Vw-36iw#=r#yYn*t%-Z&HeI2vRG5KSB zavpr~ft2L2FB+A7;4Y z!vTYUYcQ%6_U{!lZyUr@>URAkhuYv$3??1+`x9ScdJkuRRoFlO~ z_Cc9V>8|q+c9D7s>FJLyof&?%DJJRE$XS4t!B7#NxdW&q+o+x7Z+5ObTYDBG0ZVqo z5>CfU2A6)2HR(Hl!tiBFE}s)Jk1kr_#B>4TrzaT20WQiZ7>Fk>G657PK0M3OPq({F zGO;U^*0`_FSAtz;Cah=}aW`Q3sF#^j-^5tjz4uOQ=I`@qF3_PUHv|?76+CL;k zY${(MSEXxgXyFqb3+;aKg;3I;(y?4fY5WoMq>o(~!60x-#aNj+r7JYr&dfEJ@olxw zM!WOEcgRnVcXqEaC37#d3S~q9CR$to_~#QRNqFy2Bm_$}K@;M)tlchCsHd@fyspOg z)Cm_u>v=mIR2Qos8m})Jm!PFz^3)~DahmV)zR$D>ZMMGHjP|p*fMgs-fC33kLptBt zgp&z2FvMvXHIA`jweeC>SjxNry8V?2T-+3AG9M~Z=iQ@={Q7%FqU<`gnJwZA>L_aV zK__Yzp!GqpJtJLQ*o0#l+kLZB`N(0lO;x_G-WwOA1y!>f$7~hJhwPk|MH_S8`bOthF>(_j!c`wdICb$iqnNH>^zUV1@%e#;5FT zp)+NaV18}R{UKUK>KD#-9xU|m>?iUnd$$B4z|x(=5m{3hS&JVDkk5A3k1a@|W&aT1uN7FX_?$ISTKO0FI!eVUd@@qbpd2L^f49ihJJr zMj4Lcw>!DRQP7YA)0t_}tkJR?v^Mi%6Rd0dLEQKdJb=X`F4!+OBg_82&Fk}Rt6!E& z*x^#?{OM;M291biErKc7BdXnE>EVOM&+?xi7L9xy>8i)XeIA)ShH?rTH-Kv6o_wk@zy7jOMn#;gM6O}>^4OE64ekPy_=?CQ zL1HP=cR3qV)zrCWE43? zb$h+bfJK!2vFDz0fMWl{(4w)BS+||r*HwQuuHSeqR(}0P`CS*yt*t}E*v4n zP~;Zrp2)-9v*~+#ZWfhv74QGz69b2LBWF2{79Hp<|F1=_{>tLIQk*vU!?kRiUHfp1NIp5!DVZu%f<=BAHf z`1v~)5QrELiBdmGS1-vEWrTh39ir`Z`m#DHI<#fylazBd`P96-I_plqsglmD$iE!; z`y0zF|8F9Z-4CQew3DgI6+jm+-K@St3@*a(BD-c>=gSDvgQ@X%2`rZq2c>*N4LF*IqIu;G{pK})k zO&%h@uhLPFT2EF#5+A=f9E= zx^Dmpq-(%2FCyP!MMJG^oKe;s-ZeBz<5EcY+T(o(i}-K|o_NO?ISNZ&e* z>i+zxm2~~V*(KEZI@_M)L)l+U(cukD*ijG;0sy%=V%^n#SD5S_cRiLMC9#)}Tfhx^ zg-e&Tp?L-Gr%ya^Hyqk=xw| zqT(_x`DRh~GA286P}YBH+$gBYF___5)vU8Kv*~PYU&_W_XlWOGnE~7xandJS)a<;1 z`C|TacD7S^t%39pw4dc4&|}JSHw}a2JvW&41udnNgw0djn%ItME4S~tESOEHbc~kiB5#ljxI2(v`iy;m+lnYI8T0$_1He|(WwdHzSKBLW}`|UszzM%M7pEz z0Mn#xLee;R(R7+gu2*&;s@j;%!(d%HRdoHTVh+zcyDYeKU=MST-s$5J+@{JfEh^;v zcshj5gQ1_W_j(n=l>#UTu&tfMS&^#3NAbL-B+k|Px0p-jELz@6N53dMQqUp<)*4Q; zH59698v|}K0MRb)f@oGm`uy_SJxIekVGmAXQvSn03)LLHCH?)NRWrkq{iODju$1H_ zhBPzPz=x zq49T>XY`sJ6P4Ko6F7`Lt~6}r*l3gp!tS`(C**}^H-gq+p;|v{=GEmx0DEX?G()s}r5~)$5w3 zwZvihn@kFgTTEz%)wV*+D8$5p{X|%G|JK&6vY2}%g>sId_J<ua>I3 z?bc#f-C2UNdGQh1Cq9fFFFuj{;kmeO5aX)R2U#fqjZHY7PGDSp-TsuoW!Mv8nc&1* z^j;`Nz=OeV!82?b6mi&lvG2;s(j_!&pr4Ojjj`}wh!lo@dknMj!9ycF<0e_%;u$?s)R zSlRG<{WS5vusrryb9&`Ps!K>|0+aL81d1Z20O-MEh5 zm*jahTMJbaBdKUV{6m41UOmkldA)gai}ojuVY=+Ua9N6R;$iMR-E^{vCq4M2sb0uC z!<+Md-(ZUWaGp|uW9`6-j0VN>uD<+dQ5DMnZ2f_}zkloQOo$!g2tmPBX#C4L{;;;5 zELI(@Py4TjA*dUyFOyEJ+`zewe;f~?sWF9b7p{FQDu4Ixt+A!nOl9mQLkrHB1P@`; zb$qEBbFGUhQ#jjMS%8oig(qKMhIge!M;=6`08$6%zq+OVqj}o9W^vD(;M z52l`|B)rVDBMqQtar3CXCHzY@)$RG_nN)AeNvF8~+5mtX*8C}vSB zJuw88pN96|A%88w|7+I)6Xth*1b$UYREINcXM+dye%Ezt4 z%^T4fQ!r}OwE!XKA9@IAQaK@k#YSDIs(Omw@7jx{feSI>S$wabF6;f=3Bcs%5B`3Y z+0+i_pC3nyB#3)G4*1jukm2ExJ%YMJTJ7`-oG&aN1$nTdZIPXSZH1sEC6!lTu+K3l zeB?-tN-@V%CRmA?SwCHIGsrvFd}=OnGHy_B;bw!Kl_7;%T(C@jxCn)H`LoQQ+9c$; zlAD^3P^?afl${QaGFLn!hPemZ7@$pHB3?2 zKC0Q3iJ}-DR6M8m(`&esu>|0z@h9^KCuOruLf@C}7n-rJbBOu%9VRWFwtMmOvi_6n zoEWlcrE$E0f`h^q?s6r!;PUZEl`^gep?oEIt489=5?Vh7bg-u<%;^tHC@)LkG$XKGgE>y`P`UYi4O;B5DPwk?dr>i^9YDyvx%;*LGLvWY3oF5TF-9tg9wr%Fvu z#@K1j?#0>m?O_n{`4(o(4YCF3n{B-q)Dd8rG=GRE>xsF4g%RLGMYzuR+?=_~8o8+u zYc5|<&_*bxD`O6IqD;i@aX8-JU{0`7wV)~=b^eA_vVWGwxrffO3~Xgs-A`dUpI=r_ z*j_$wbbtQ9g4&(G;Y|H+VIl4zg#6^S|AjH}Gj*^qooa9R18F1a4I}`FhyZPxZB$6| z*B;4$?eU$F&VEI|7`8%tlV||{;>UUq>E(ZBR)+o_z^?^kL;wQ5H>o`28$%_y^EPCz za$|{+1dJUeM(me;5<5 z7p-A*GLqnfrV_~{Q^>=x&6NR!yT)V98di%q(Glb^fvx?AWMVYL5ZBr3%h`n$CbTBh zuia!&mxGYU?kh(4Mzh7pbc{^g5#K0Rl5s$tyd-64OE()k(S51TzGw9Qx!+R}WKkHE zNBuQ;w&_&&fx?2oV)Ar$Px)doSdgPge&$S|K*KXvjq6D_EY7OpQ#h9zTuJ4sg{D}N zMs#ycq?`>UDYn8vQr)J3BpFkk>ap7ube2;0@ij@UXKBwE==nT7AfFf*mfn}I(@;)c zXr;5))b)?{e{kMaBtzHrVn4_8q?ZN`|~)w{!gHH7|4 zCg7agQ#&xVoNXqpGQm<9=3)-z9~43OIWzRs=J^iE)ou+a0gR0;k>8%xg-wtC)=jM+ z7?A(fR2R+DSVOIf4k_4tNqE@BP#3D#Q%xUrEaz^i9zHOuYSs=|SB8LfbrYbG?T z*;x*Gnt*0?paGD$;=V(sjzO^rq@y9bJS!Q%v*LnH$d*-;*l$8l8=3Ueh(DtKsUXt!`zzs<$TC!^pVKeEo947>^A6TBdzu53I}ne$cA zkX)8(Q$k?sWRQYN?Ns)8L1zqL3;!@JVUg*B+iXh=RjBF<6EXNRsO@Xs1mHaUxO!cM zZ&oJvQq<9O1s!D??tJ>%=)i(`cp_Jj8!_VOFzl@-EaKf^b_e^c%DtN)&Pnt>91n09SjMo7&du9ce-%% z`UNL%&Y(||ZnDT(5;Hb^?zjLngpd+R!3*0IrpdE7!PG9ck!*31VPjxD5)Lr2A14RA zp&vIzqSb}b#uXEgYPV-|XfZ#Ox>SyJ&jm@ocDXy3&pZUMS`LSl@tcG7BLfYot>R8T zgb>|-@bWdjQUA?aBkAhHD=w|J`wDD?;BHj(ZmMgnp>jA>w(nKCyt7|VwmM%Kxm%v-caUoUlu21e>|)!xF@jN6^ldY}K` z{zJvg)wAin-QNfv_-<2uFK5z!?2t2eAr%*%gsM+NqJ=Uj@FygL{&hD65qL^4z1&l*Qm(}k|RN9_& z6yYvU1&52pN+g3_14Hrm65C9K#)#Mwmle}q#hN7GAjJ{lG%^FpD($J0>=7?PULVik z>Y?z$XW^Fv*+YHUUbZzP5+&yA^xN-SXegF{tO-#7+t7vG6R*P;BLz!FpbhT})4|H^ zHXmXx^(srVvx=YpyZ~uwSyb-Vd}q35-}hL7>weqb%^fG}2kHA^q>uaEB~uq|XsW6L zM}iji|-)c=79;>C5RE^$S-* z7a9lPNa#0tPB;U76F8s;R-QLfo#tgaVVs(hJXdbn*|1;R^w}^nokOh16IKgMh z$T_*u)xeLxw06K!omQ5(T3-gg6gH2GMd9h)<;yUzKmmp`{7s)qOZ_`T3L`Hvykziy z=r1t1JVA{pK2TMt>Hn~=U^em8k7G`}t2CMk^U<(WTtwrY^Ra+~4>t0(JV3R_or{6(Wwmuy=n%1il`g7<}h0gDo(e3QQ?LB z#wlbTp{lTd`K?!a;EdrM6@#_hV#^D>9=H$un=NMhSxfKWwVyI;b^>`J!s??ZlQ50> zMBY`BH`oK&de`XWR_?u!K5M$!jD3$1x7>UbS;tJTryyVOEZ>f8Dz%xzv}H-;SlKiY zBdQYOpK!AXllQX1H|O~o<*H2N^VU#ILUrAVbKtiJ@rG(xs|(j(>MyAqF4+=o9RFBz zoHrQGEK&@eE!Fw(Sd^Rn%~?;Dw)YAKmsDMu*8h{OW!3JybWsck9OEof-zRN8SdqGt z@HjOq&PvP(_B8zSOaxKc+*Vh>-W>30K=&~dUd(SQ0!J-uDBs5j6P%g}OEHNH2?=V) z`aPIrac4MD%YW^x?ezq&s#YL;ZPwVx1ex`dOy$xWqtvP|>M~NbU1**GT`!6bh@QyV z(f+wSv&O}gQtT(Yzj7GVSmTc(hwm<_E;y;SGoF*@|3Y!Kud-l)fbL3_JMIzYb~Y0} zeaec2Yr^aKmt310Z=DDu?#?jBAx||qfvDJ>YZ$S<$sk zLCz*T_@2!;JM1wELBDG7 zfkO^rHB(`M7BQDj=XEFTQP8sVNIOF4Av15mK;Ia&^{lrz^+`3#VefB1zYGBPgGB>W zpF9PeuhOGOhvACG&xnMh{2SG~e_|>$cyG|3BX&Nu zrTy~4=JvHmnxT}#M<=F=;#_B#ym(H+f8y2-6%q{jIIFD*py==gw1fWzvoh6*?R zWx;Um&q61=xIHMzH1~;T9F&;5vh>?iosYLVxXp+fSKE~!M#pL~u%}p)R4w%G%ZvVx z^bDH>t@4(u@AX2*B`43zb{h_2XtRn-srG5L-;C@watf2bb{C(znL05ycXQC`Oh`nK zvn0R-2;fKs?YJNeKcS7`iHt9Nlq+1=$lFi9S$(ABDdp*~u-EiTJ1@#5eM~Hnw2zCV z$mA@Q9~pTb=`Bgb>XssX`-4y8J8p8(?A(&i2$rk~T9=%cOy>~wC8a!SPB*3O2pjAu z?e0#4*@NgbUC+7py-|B(?HW^WaLS+sar-r^b?mkdNzA1zh$C1=oIJD4B z*EehQwkTC8W9%VkUJ~pU)$8BFS^g^kfpHpeD4>qIdtj?{KwC^yS6OLVLuaaRx$$Z} zM~evobV9&^nWKlRO7_F}qF@)lJDydwd6Xr$rt@0VQ()_)4It`kHI+|1 zPLeCqky6Fth?>GR8|=D~XVB%r{RUbnmO6iI<}X+0(M*S^D56Vs9~1CwmoE;X))uY z1@o}359%Lh+^$G@QQk@yXcRgzR}l9J$m^B-u>0KSTTUA0vUAIYHM8l%}-Cx*R!53%u!$ z54U~hgMUE!*3CEojsK%JKC#K$bbf1_oCRH-Mt>Ydx;`|5#v0Gx0d0O08N zF9T{Y^&{wX91h51kd(EDIE#|1Yu^Y!G_}~1JOF?~N^$E1V(Ccjsj^zF%WI0+aPkAP$B@`{R?yk+i=mY@}d5w5J0cLGp?`sux;q3ZapCusWI z718ifWi+mazP2BAt0-FVcFPy&YXTwyv^AMXNbHIPF&5B%X&4bd*eOZS&(7+a?_i;m zrW+v>oqdbH1aNQv!JDsKxNO{4i?IX5k^(@>L*EE^b?_{Q3N!Bkg_$16!tts~6i*|J z%zWbXz>OQ}mEb_+Rj*a{M-OFHWKMz?04TB;k5!6h!{sJqgwS~gYL)QUADA5xvyM#t zEuJ@>?H?T!_F_V13l8PBFd9oL9dJ0%I@1erMB1EL(I5}e>zuDBZJY6QQ+ zHTUIm9?DEZxSG*f^l4iB&O=ThzWJj;A6v1&VRAU=kBET)<;A1_G*hG$AVQkoXh5-4 zDDQY9|4E6QuC|;4r3wQZ9ZTqC>f1fb6?5^_1<3|xr6&UNkj}JWANaz<*KX-^PQ_a_ z)ev;AiScsy=C7|MyGYbIScYJj8sj34oj9)Gy6F?NR(oV3{yfmqBDFP{V9F9C*!%PK zo)o-G3Z=?bZ^jx%hIT)zFeb@xh+yBRQPpXNgb0sc}?@S~pwogE7W{-P=UuGhBS ztp^bsI_<9>hmxiQM=&X=)V%DDv|Q1U*W4aI0xV?B4J~^jc|L=62bG?2$N_0G%8tXdMx1{Xb$!22?+eeC%Vt#UlOdxs$&Q zAMBt1M?BW7-{xjyrd0bePM>Ww7;h{&Q zb-@`hsqaPt=YcVh4YWys*}f-n|1cprdIrF%9MSx`C8m(8jdi5)uR3 zyqI*YMRnfc#gZN!ZTQXb#>zW@s7Yrr;i z`PcW4wE}=7fCNIk33MCcfo_8^Xv=~B%3mZOp8P}s(CPQV5aREFC?G?8^FR+wK%gw4 z4*iV)I7JHhRqz4jU}-KZb@HF%1F13Ux?i{_KejM_QlRUf_$xuB1qalSA}mnkdpn>n z>OhkcD7zD;0itR}273fK}ey@F5FY}|#O8lO~ZlK9Zy z+D(31f)C@S|FpXK_v`D{Hd;}D{BUAj&y)1DSDSKQF+GSBB!o&1ZZIup99B4wR}I!b z!H&WQC9c2cN;dP&*@|KdWJrmG=HG#2_3AZt`qwj)7xq*!#|q$-^^1`0?uby7%ll}< zgetW7%XMAAP@xogMt`#orKfbKb8$yfU93;Mb%q&X)m=&W9W z@ZKts8x6c3~I7O>q*eRS&xLR97@}x-}?!aX1-~0-0SLXLL|0)u;WO(zsDoX!fOB6v(laO~wtF3R_1m!JHj4%_$Q-Oshs zpJQn7ci7j@ItqY<>Cfs%zbmNs6O>KgWSaD@A`vPfKD#4r$;r`RSjkemZKzG^ot+QV zJR>mSoiw0AQ1HvfSwl6xC5cJC#Myn{P{#jen!821WlP}0`2=+ z6ck5YiXG4hs$tbJPoNp#-?t!aOmeFf{t!|VSLeh>MJK!%sVF_Bm|XNT)4w$P!sqUG zD`Y--gAGFyzpF=uh)@IP>ArKa&qys0hLXRrc~sTv_Zu`os4X2t<9Qxe7Q*DiPPlQZ zzp>hsuWM!^+QZ~2jFGxMe1FF*^b!TC^)kj65nr9hA|$OebFCu zm9P<~H_eU#HHa>|4S6=?4eRMNyBXp5ZoZS5C5lhqT3k>9J59^4;T$ZcCP_z{+*vL5 zQrmgYkEXMkvSBwz(c7F-C|HALmHxAu-scKj&&4y0g@>;jS!35kd{&_k9GHpG)&8%F zf;-y`xtnRmyFwOwP~qF=N+=4DyIvi}o&QFSX(fr>jZo?`LM| zQCHf$DSl}cRZG?|hAKXO2R zmn{p!>O^Iis-ABQkc>KcuTjR*EQRr1k9q0f1|@V(8@*Q%KZ{<=*yjofg%#dcBH3d1 z!p;|@pb|dA?8Y;ag1mn%_#c&yJtUAK*S}t`J@<`ZjR`C z1D{{%6A1B0xb=;Idnb8~bq{%Axo$iEPTKw%r(b#)Wd=;n`YV&NC@8Uof1|q3{KG(x zbBv8h2MPZn^1Gs0*V3N~*pb)OTrR>q3}!m`U^;W6*~ao4f#(^b2^p68ps{=bO#B=C z*}<-mEzS6q)QbYyLd|=Pt9;OP9tggYeoKL&jAsQ|Ss3-aT zi3TQ>c+2NqmP-twc46|)@*0cm*5E>QF`11}Ar=RE+Ow7;Fx2s;f^tgP2?63=Li1FC z7RXh@rpRVD%&7&EM^a5m+QOQuy&X^6Va?3`M3g#Z1|OGe8O#$dmq#jLU7i=;8nQlgUK&ydotDMJcM_fsrpBBBuy-ss#AFD ztY}BV;farBKM;DU^mx`;{t-Cyx1!;HDWvgtlD!`jzdw5Z@8_vbyW3z$p{3k*y-vHb%d6^mcIUUwO7%{z5ifUT&+A;I8|Spgm4kd;czn0i3uSBj-j0C< zO}>;RJk;Tc2TJL%S+y8-1&{Oj9MCE^_XpA1GU4gnC+3<2EsZb)JCUEwV3%P6ILe@?2T?%} zXMjNSFAO4JkN&gd_4fj5-$NIDUW~q!3r4n~M1`>qY`S| zhYQS0D2Fh;`+2gTvL^~_oX+l(1uMgZ+scM4sDKHAyoxBSFP@#4>5f@9RpTlps$@cI}#k{BrfVX5B6#mai!fEQ=xQ;eBVmrSgEBWT(p zg6U!uIRh)1OaitoIAsxOWrKN7yc;uRH_ORR&)(gB5%!sW14Ou(z}dHAS=2>7u4`ID z>gFFkur?>A_f@eghPI1P_+psIym)p|cMVIjL0Z8yLqpy&ThylPo_KAM%@$5>_p`uw zZ*>V(-V>}+y|%1xZmjtA(F^il2KksaAGk#uu6K&Ksc-*QY3`p`?*2#WTtC;n{@LTB zuppp5b_9+4y+C$UEA>#G-g|Q6x;|v+A)p^7qpHLEJyiG`xZw9d2S1-DXUDERsEF~g zV8o*o2Ezd#Pv2(zD~O19iKpnI>bSG|sCt3ouC{pFIMU%-Pi>;a=Rv^vxFKUm(#d=@ zF$%zu?nq3hnwDH#(*m+mfQuj(0U=*fZsALtQ0g*c9ZbSqN>G6MRS>q>)=xh7hzf#s z6K_D7^sBUGcRaG*@oZC5f4o<%<3t2aY({a8xpSs+`%hKhdZ0o+Y=OAKmIxFI16z}H zPB;me{t#vTUsYr}LXi8NFS}4oAxR4xe6IqrO*w95T`A9`w)1q2Tp(SVzLC3AdoxH9WJk%$n70EAk;L4h|!?V<73z*>g&^!Uj?;>o|k-X4VqK?o!N}WAn)j zp0Wd3mS}JZ_9+s)tSFCDL{;bJ+<$Me+RSO{U%Edev@;J#t z^^V+Ti_}(&tGJl43#_v#zh-B7Bz2P;k3BB}TIB#r@}2+yRsYenA*~{C>n{N_U~(*#lxK-&LC`J-ngb&^qxeJBw*gQ&y_)R>ZT{IrcTzg(P!jU z-t85mAxM)0=KT8mdGxM7JFiZNd*KA+!v3pi7B416S3M)F#@%A{r2k6M`}6znjYc%L z9hbg%w6YHrlLoRT1?6WLXfKx7>P?PGTUgMxw{xC+j8nWA%^3%P3X7m5@L&k1f*a2{ zEuH*#VvSqJWH*JVzO?H@d+_O%qDswN3&Z^aco~c8l1G<-ZII&Fq2B2~gFG0$S^ea)uV^;Gk` zQqa|@JFns49~QE1p48x5QQ{OEoa$=W&*oCVQ}9r?GQmq^SbfP1iwq=(N9*0zx?jMwmwYBhlUMX6@v3EcLE#Rj?Y?*SR8O!KoolD%{L!wG`V`jGIGzZ7yk<1=A5u>DiU; z%`8sV(;~SzS2hd%h&#Qg?`vpc@f5K23^}hedhd3M^3})6D<`jXvqhqtUs~`3ZTVFT z%Q-zO1553l1tS>`wub>k^NV4Cp0@OrH5K*42;)CH_$qKaF z3J-Cb09a&*40OQsA8{`I?+k%}u<3tIUn6Xevb-evjGti?@y$-Y({-6wKah);VjriD z-hDj^)@S#lq}816BhG@}AwU60R9{1&b0|dwG!Bg>4^1wCgN0?;iytXsFMM7>@vMKy^}g%z*aGroPf#<%<(nJ4KI!lMl^#e@We{5Dmyd z|E;g|il9e>TzY;ak}e;^7he}I+N&z&zCs+@!w|!p@qXl#5M*m@Jrt{c8?<%P8E9Ld zQam(&k-bHx1~le#UO*O}0FC*x?{UC{`FVQT-JF&E^Fn{#qyMkQ(XA<-Q<~1t)^?T< z^N%XZtJJiNt6&|^XoToKZ|B7ZT@$qN1wu7u51RViD+KLk*;v1kOJ7h|dD<>T*jf|p zW`d@ETKXlPbN@LN{#-8p_pgM-VqC~j(T3Pmc(Rp4rrw0&Ij@xJGQQU@=LwkZMv{@%F3!PLiV$6w8mB1ZQ`lWKGOivhH<49tqz;k zz@I;&ex7BeqSB45{pbz>vgi01JaI416kmq{Eab@?4X~U_n7o}J-G+iX$P+9;yYLs~ z!BM3H=2t&n5=ge~PKJ@}6Ey?6QNqIzWG)B}U10&3h28VU-w3>m0G+aR)8w}|tPO@F zKtMX)*$yCN&G7t3t~m%K+I5EBM_xPm$Tbi54iZM19dalj`C$k6!PRL4a%e{`DF9?I zH#Psk#}W2!K6&H=$R54qVO@Y4@L)Uo2|z#IA~3MmJ^Ayd(Em@}6o8a7l2FbOSf!lg z?2TvGMRa6_IU~=_cZ9wTA^&gyuK2l{Dmu=q{pAo`84<9S!mFcr3Hj;b(}XzUjY%Sa zChLN-A{_>w$L4hob4R_sXWwU0_KY`f6HyI%^o;;Y0^6IJY#F==sAkCf`FtbLg#pkC z0hOLJYm$FFY*hXno=Si@;E(ITpL6z?MfBf!Q$WYfwRdrsCs@02k{Jyd479m3VVbLr zAa@EGqA9)EzXL@T$(=jYcW|)`wV77Bu*7^Z@*##P4QBQ%A&tjb}s2_rgQagK(oiz>foeV;?1Ko<E|Hu+7S(fUgERgWaSCKdYj@Iz?0u`g&yo$Wij2;yN7qTX1ZL9PlY1 zQQ84q_w*FkE*Fq)_fg;0pmDN2y_!31W^BtxrDl{MPLQ)s<{T-9VZWf5q@Oxw{ZZCf zok5Mlb1%vYO^HCDtaO;Cq+RmLG3oWOk7uGkPfo}) zP(lhn-%N4XpY@DNM@|Of88CWF!q|UbxqIVB>sW&@z=bQtFBX9R0Y^jz}?6RSKcf&!VJLPNR5?@Eplf&}34Ec{1 zY<*Yr!1ek9Jyoiydgk;-g{LhbgMrVkx57Q@rn_Tjipj$~DT?EoiI+5j&M+IDyJ~>* zc!Pgq`>{g&e$Wh#3PX4Y<0DTUX>(~@rgCJ&ewfujx$pcI2c>g%a|OsxAe)ItMJL(L znG*gigl}V1=Ao?XjUAHQ&QC!z(^#)WrRl5gx6H(1L_&P~V=tc)8diSm_hP#~9PWZd zIFF*pypVHp#X5n^tAn{rSQNS=ojxUs&IlYLWeb+B{?B$8DJ1Y&F`8U#0Kn<~89>4yDJi|(*pVAt$u4)S0%+Ehf3S;d9 zP1n!k%LO+CTHL9D!TA)Ru?%tmf-#|bo{50P91Uo@wKhCY3Rw!+1ry=RLHH1JKsjSI zJ8lqXHPuCK5X@zw7BsN%A+p`b)-eu=CQr-@t1-oXeJYWOQ9-ozIO!^xQOMLzJnQnp z_6Ak8UTBk%Ony{V+Ph*>RUP%T#OrK?+&I;pR)HB< zp;JKUuD@lGXtac9+&+pZ|IJLCCn;=yK^2hK3UyUOHbx+t~;^Z=}hBoGR8(~Pwsjj6Z0DPpMOw;srAosS0wXt$VhQb zNmaY2{E@C^DH?uEn3ir$T-w=WrJpVsMV-oEXlsVZY|e>^IX5#-flt1 z9)|iT&=o2{i72MK(Kj(kI|^1Xqc3{0Tlbu9FC-{Iy{$qvb%4wZbwJWcQ#fL}7viLG z^P1WD$6k-fZnZFVC{7trn0a19z!Q^oUAirYK6~ecj%zae$D-GV+wrm;5PbDvBAF|| zMEky<0Zis2V|+;+><@Ko>2?bc-G#0G0>Ib z^iG}^6j$Ecv+zFo5J4dHwQRxKPAXW(+bp(7;}#M^zo>u9drgl~_hgB&)`=F%jWe`$ z5`Kl-(7+lNguA+!xZ|LK#Bo(;pp%lo8O}jFeYOIF) z2gL4GzKwAH+>&(xy9pqn~Dk<3_=d4{A>D}}8g5T*#<#Y>l2sYk6wJTGhll^E8#4AZ?4VPtg4MOB|9=xxe zNstE|4G}=S=$an)JHS)2-(5@4f2*;wveNgh{0(IvV&DD75?4aFP3vM@5dENJdZJ|) z9M4>Z5vyS-?Ni>?Y`+$4NTB7p;RioMD@Hi9N59C~yu}GRA&rS$yph=FAD}L;o4mTu zC#M!|ydH68xmo^dI;}31Ddk~oZ6xR(4|q{ zPFyL)Py>b|m>)zce;ge9$}v>v%FVWBYuc_m9?}-@Wp?ug+ni%WeHvZ0#T>X-V&cF^ zNyD4z@1{dqBnI*2JR6iFpB~7M7d^*DHfi(td3GFBLYQD9f-X8yVXI|bcU&!5;>}0K zq@BQ|O_lzBMigx1C>1{PS$(E`RTsZM8_0A-8r@P~E)`7Bcc=>p=2qDo@=AfBNXl!!w>5}E6)@W z4Op1y#Eab-JT6y0mUTvG7m0QoqzHl@wcuR>|)_RX>p=@9DWcYnPzWKxk0&8oRowTMb zGv@1PqumVlvYxfv88SNJTdXH;)-{WrhqVkcpl|b>A@R^xI?bKb?0ROVX0(!p_px5p z6T5Z5%;5N5LaMYiHHf;3$ALPTv%|)MDS+8fiIyRd{p6i9Hy)Bx#izMjp`%v!bmR{b zpXZF;+dY>7#awUnT9X|JQ)g`1Cce%Y{FW=%sJtvzD0f?)SR||GtU`q zy&_)jRL2j~o!%#hJm0@lT9m)Ca|$uGeVvn}UZ1lEr}b=5`*QcYN2?LHPwL-VXoJA+ zkEi_NO8{Wjj==bTJkBEl1b!mArX~R$Xb3MbJG8rS(GapjX`tz^K{gi-Gq%_DWjwx< z8&sIu1AhSD)eV@TA!}$LEgJA|1UroH0aHb7@NMjMcboe>CmJ}K{qqA`em zYR6{9T?j;X+Y^N;lOdT!g#KM@r2uT=qbA(h5a-No)2=cr(+=i_S(Q0ijWZn+6jm zX#R7<%C%{kXz*LY;_Bkc(szDvd14u&Heq&qR2d7gIk32t-bnN7Qth>T5`Wnb+{(~S zmO{mz{gIH>VR|4ow7;%hhecXhD}ia`TRS)eK1KW#p7l% z3;7(8)6KrrcJ!m>YcHq2XkIYeo!#8iNOpG8{)8ceT4gSVt(ysn(sd^yUpq@6yHNwk zST}k#4Hz~ZHR+2J^|%~YsH;B)cWj9^WqGiT8F!lZH#6?Rt+4KFrKT~e^Ov^rj-ul6)1dW27&sp$zAM(=(t z)tpZ&v$}@21Xz0nOzYOYzuelUqqHrdk=v@^WT~%VN8nUbL#1TOHb0CPc%9T@sQ4&O zE>Iw6Olqh3vAbxIXB+HWQgoM4?(^$2LQKcR!9XbCn~u!iBL^}l&ly1B6AapUc^H0X zKn67-Th9jR(9o%TKX-Ygo4A5{VYE&;d$?A#)1y1KLz0jT(`=%FIJzISA;+FrsR`bu?AvE4s<@ulM{Ef7(MZN1bFqi z@=yycZBxBnN;(1&L1mwiFb`W^z1;?b^XZ`ywBxXI*UC&ObQH$U(y3i>^0*(4^+EVk zfj=ltd|ASApbjoHg^x-2x^hc&))}dUgp@B>e`aK4_Q-avDn-7~r=Z@eN;sz{9kz9$ z)uYr=;#pRu^XK`=Wj(79cbi0K$qW0>*I#UqwpvlFhx_M=lG}O7=f3buh%r%+cJU0y zRMuC7ZmFknJ?u|?60~_I)%GFL*mF>-Qv%!IRu}1Fu1C&zYH^vUq@@B(nlQq{_e$)E zUV*Fm*MosUJ+W}F$Go69&ZPqw)acpT`&-pKkBa*3u{=e~0c%`W^m+i@1OKn9BYv@C z7nGj$f0tbPYm!U!bIz?x69}2fcfN(M&WCIr(_0nnRscM5DgFM4)&D>FJ1VJ0mW^Y5 zwaX(02L%0lKbkU|-g)AFG~w2T9!bdiCQv%Go}!_tXxRWmrK&xLdT3@~b{ojJ_A3$A zA79acOGw5BVgi!^_Z|O+=n<(iyNb_BuUPW7MUR%|>)I`NWE&uPe7Cu7)oB+E+O(S4 zWWvVS->DN*`aTm0i3Ytql{XNUGO^Ju0Aj#_(D-5(aN0uci0hleTMu^}v#%_Y82jxA zi$&JYXvBa;QsZ}<;^~3l9g*G>o@Ws($$s~e!54y(9ymFRKESO5M24v((Or-GS8xi+ z6C~x1*WXSX@DfLV^?b&c&N{<9z67FMst7B_00^9#%(QquhCnWSJ7t`(?{guOT@H?f zp}qdg&!wDX*5QINjkUD=5Hdx!%MtwNkdB+Dxf>?U2+{f0rRWkbtMp*nA`3C?lcTfm z9iGV6$bwY$wJ=?Ed)dp5%-rZ16(u`xVP}}Y*iui)%xkjgg00WHX*xKMVx5~Yv7|$N zFGqTsSx@UMxv)H-kA8o@Y5dBX=0Q?EsKEU~%0h*Cu$%nskP7chwosW1ixKJQywWLu zpCS*Ax(Zbf?*X04_x1@cGXb}5iTJT`eC#CH$$_#g2*S?e=@xgbwTtsU29?TNTv3az zBWDr6)pub*92|!BZyLsNB-bT6r%PAU0HI9in-{jh^?vHjl5p8nYRlV_ZlZ-_Irh~& zGNl#!RH?a9RXNY!%6Rj05KyzFOX@4IKs{L&$wo~4#RR#NF8F~JE?dlrDIxO{hFnR;$TvP_=I`(oskKY-oc){y)!TA0bp|H@NdeHvB5jesK0VHwO((PKG` ze?r#F@X?UYYU;@yxGU1FuW90-Eut7Ihi#uCW#0W<5jy60dtf)3mo72(YW+=;R@JZ% zAs8)KAqOtN2?&5LL;@0u(z?6Bo);&94uAb#G;AuDd2XUp)F}bKX19@In%Z{OCVDii zYR`#@d_@`R0V0l5RkywoSWfQoW=|{w8C0MxZLKNK z*_(9j!};^qSO&5fg50Pa3IKrG;B<)K@_sIxip3h_mF&evAN=ue1h>TrazXwX6B5|U zEax-_uC&E;iww(mvxWzR!dvVbNq}rMQ*BsLyN(kua65`pr{kpOp2{_F^9hMDSNrN? z-KIDpr<`rYxhJfOBzB^;aMgY?;+V(~0wPrejIZ=q0K}GJs zH^M=a2pLo`m{+Sc8N$JWVps0X8>cM8bd_kc4?STbgS%^&Q}Z{o_V4At%G{U#5Ch+1 zw0NCwo@F!mPP;l5LWK1kY!IY>K`$LK5oto`(<$NBv8Du*7m4zSBxl}r! z@82Q=7Ejjw{KIBGqqEb>#}z{iAGPSQl8bhqIXYSoh-P(Z8uICNupEu_t1CMj zV+#Bf(#Nmd{`$U-A&`xv`9&PmH7%+1P}=Afe0yAz`C4XtiS z8$EK~ywkEJfy!K4yFbh%__>xm-h6GnS!4z?VJ^s5QO`#nA$zvbQ3y%azD-+)tw%UV zPE$jtMgz58gn#fioo0S|a>xzog(dcRP*#KG#T;A7kJZA7LRzeEmEUTB?hGa}HTP*q z0X5Y<-_Fcb>}Y+K75&N3@uv)3El%uNL=#M5q68k+HT?~#P{nGrl0WyB3<4%ssG#_s z#^?^8&2ChM-)=thL0n#1F@__+U0Bp5dP4QS2G)r!UMoxt6$t!)9TmpxymU z4E}sqz{KV5JRKwRh-+NEH_Hity!Ub#xNEyzH2>T%)*t@#t&D(xG}F!evTp>_wUva+ zdMt2g5!M8iy1g1q8;kEQW8439uLrb5djRfnzc>XFMV{DmfeO<57R9_YTo?YDbU-1J zJvy<*X(06uJBm`xb0(}?Cb5iBY3d88cFH=*hTn5!@zujlO)<&vkYIHeqq`i;QY2>- zDb01P+FlA1Mv(PJ;sxev$(ou2s!XQDuOMSeKE1yhUqWOC+nlQj!iG-=;%K+{^yaf2W3*2>7>GETWs%^P;%XB!(17o5#MWs zxbuGcqL=9HXv6UEQ6Ig~P9KLP&(1+@%hYnq%$1=w@8s3B zo4n2FKFIHsh^PQa6m`|RjhH4b5;(nhO~S;@eu;6$5Y(|9zZf$D%cWByL3#eb-Jw!cs-f%1nMg z8~sGD8I!I-pJP+!*)#So`R?r;Kj|AZOcnjwtwFn{5sl=8_-@2qUZ&{8Ym!4RU?+~P zuzv=8?+5(hd=odY*;DJpcjf(Q5Sk_~V>XTG((T;NUFgYf9E*$>_{&VAnq&X~eLd#7{qU)GQ!s?-GNwwt2oCR%&jiZ_Yj zT6OJ=wn}ZFJn*0x2u0FG>rAL!)n{LBU(3r8bajj+7R2Ls!Ye_Z4lb0(vZDj|2|xlM z%Q>Ldg_;n@eg+tQ)kXeEveg%2JjTIpBrvhz&ndH~-J_UVxZ>Pmr>ibwtnML-+!Wb# z&}9KS@Q*Fsmu}o`_=>OiXD8v%)cK)+$cnKj(9 zuNRzNfY+CfDR2~6_DPO>%!THD#?sFnBo7C09$66ck!Jhof~ub8t7GqRpZPQrkqO0p zc*KYd4E(`NFuKGMt?QA|sDHIz;o4nmYvCD)Nb5md?TkCHeJ&3J07~;gg?%MROL{6~ za2MZeZZ&<`{R&Idxc(fA&jiUQEf$M|9CA^Um@~wTEZ7T#SmJiHK_lp-vs;7Xi2DS6 z?A#1oqW@OIg|B(C9qo)!GcUzCi!lbTxZQQo1`XHJ@(%8H!bhBwJH_f|GK}}aTXt#J zb$4HR^2$$zGLPN^)cahyUnHN)&KQ{`BBo=YWhJ{YjxjLClfKE)_0qS zsruOM-%${#jY-4W(d6B%F>ZArTA-vp;FLuYy%Nx2l2XQSm!FMBOvpS7x<&*3_?)a$ z<6~Qhr^Im2!~}+TaQC6kRB8y27F6b#({FI~JqqNerjt>7J#}7g>yfJ)S@8ml!Tn;& zIF=fZCt(1)EmKi6@hiU)I$^0AmV5%Utb3*OX*TXEHq;Kqz)8nr&-rOTX#NWdMhQj>9X;RmlrX1KKRU*MX=OhoVe4h6 zzIb+WpV$?5F7yR8#2TZ(;A=|`BQY1>sE^`)1iMX2`+|^Gu}FOFVXI!nZ_ANhJ3G!` z^_t_0$%eg?Z#V3h-5>%_AJRa>iEt;b5iXhb;@Pps+wUq~cE2VToy5zq?so}c(|*fD zv~qqUuXGwf9IsbNrE8hT@+*nY`prgA&Q9F&0oEI~4>L1+>Js4?l&Hdq5)4_Wqkxcx zk>4c(N5V|?Iu#G$L@?8_g)d#h2^jxChh@>{HiqoSjb+8W^L;_Oyd6fkv)x6jR?Q>n zJGnVd@?eGzM%&QV+AoBcU761;>$jtO;iaCp=tCPv#6}$6NS`chjkrQ2TJwTH?laQ9 z!^LW4_8S4)TrIF~cL8cd>cMN&Ljwn?MWGUdcMw)wFIJId`^o`T%30AWuaHQ)7Q6!( z#T=OB?2m-{F(}Ggrj?c!m&dZViv`a-c`f={M`*9FwrCd@xB#Y{zToi$Y@#li; zW8Eusds;%TM?EHIb@!`}vlWu4jkotai%~B?N4SmCG{%Z;Xtwf(Gm%NS6KK(fh`c7E zqXjYot7M#!1nc0|f#_ZI_DVsA2>Yh+*s~DWyOKQDvvH9lnd@#8CB>amJCTw+p<6lFfHR}^MWE7mbbO*ycdulf%Oj)*9V0!}D z3rwCyH-hZ}s{`6T&u$jLOpqMdtneY)8&>|`2xvi5=h4+QVf>)tuQyibJ@VT-=Q!3@ zBx;J-$LuedDX5M~aE(b>peGI7ypI!uf^}3F3sPlM6&AREy;E|fde3{alQggaD_|9fF{6F&EGp?y^ zUl)!dB1KRE=|w<5I!JE;ktQW5y{mvU=~Y?;1f&ZHD82V8z4tC1Lhrp3Y6u~|)3x^6 zXSw#?=bn4-+2?+EKfnwjzYyjebBzCZ{!jTJO@Em}ozzz7Nb_w0<%^O6YUNjGh!%1` zzR-ge5$v$c&fjw2sGGJHf8-V^QxR5m_IR2b{an`JdNB9i4w5OkX_PF4NQAQ4&SU`Z=39|9F_nH}SS!~< z^UMjTA{38|jy)FGMF--~LeP##W>A&_p8flWp){1Cz4(t#RIVv;r+$)q?$OLeLAf%@ zyZw8AG3CAF4P)xD=MuL=@9|=j=P_>*y#!2#{O}+V-kqiIl*w)zJ0}6gs zV&UDDdB}5XNKOX#J&!C5I4^%U9PVBUVl*N$^Q(Zfm8k4NaSiGe8vD=5l8!U zdU*Em?@w~S3N+ziGh-0bV(vki1J~@2v#l6Ix~}ptlmX)tnI!OH(4yTRzxmIO|DA>9 z&wu8%)IGU@2)a6_mnnp&yhwoj^_A#(Yv$|FyYd4>AmB8=2R8Qaag0B8(6h>ui*U}d zr9_pIDjGg+dlLW}kO9TVL=zJ9 z(+Tk&AOkZvG`(^MvhFso*G=1`#H##pnf|LIh2nqwOVV@p;u;{ri~yYIpB_x;CIiZm0R$x_j4)29e`h^)wP*=+)tXcVHz}8uc!8 z>|_AzwTQ-gF4QX1e1c@+sDQt6(>P-AC3x`J5j4Pnek6W*@Z;MP-SL`Hrw=5hcWzyG zqNyjPrA#PAVLC#ov1xEl6YlZ6q=ZfwXTd6oPilz7Mc~Az)lDNFxSkFfRo|m}-ci1& zg}!@D8x_&rvR<2vg^20v(2-~wZ4a#Yt}4Z{7fFVt_G+gawezCoiIy(QdtxIM&@LD2 zU?U-X8A5Zd89nI`ez_e=ep{u?_1v%qe!ncsjQTEmRG;S+UL?TX%g|=9we4HLO66-> z3@2d<3`@1)`+&60%$hlQ?1C zW;Ig<@3%rdiYOF)zASRvi4k&NkEpKBsJw$g>I3)Qu7Jx%#DV`vNt9_eu%2Q1{aNbx z*T?^5*DT2#XqVsMmA%cX<)@$d#tdyh|GEeQRNCaVS5jzE4xn`arPm8+u>k@_39js+ zKp6$ZH_iOoFjb0q8pIT-sTO+e%^N`+tQU}168LF=(r}3mh)3kkhAzH2oid!ZOGuy!bAj$|HThT5p@V2m^iJ zn8Y}gpe>1R?4mi6l`g`It=;G-#Wl8z^W5z-G|xK%5*@U8uvvt)M?(mZ zTr`cAbl)CdUYL3iKw=v>QTjB<$fhHUV9bHDphcyw_DRSATm2(@;bm-7#Y>O5E$|W( zydfC{MNlfgKYkdKPT?gdV^*SfuvrYIAu8{CLefsIQIkfw*svD$4(iKc560Pc1QVLY zZPHAUXC}@ViO_$xp;6xkv#_;pPW)G9k^c?jz5nXk@{f}dz)6XE4=nCAw=I{!e&t_1 zzVgZK7X`Mq7~}0jvim*}j0N>m^T8Rjfu`2Ej}r#j7JoL&wD&>DYQzceg;r6xWLot# z8#v45P2B~2b2)cOqNv&{7rW$4P86L1S91Iy&8)+?)yZUf^ZvEL9qIbk4bPv6HoiMe zCt^E>=dDn`2Zx#;SJoH0YV)d~{PRLst7hN!Nj$@lL5tv0@dr8%Hp_DYDqWH;*|!4F zg68;Ta9ky_G114F+d0CO@vg7I`rqt<%W#6j>K(8g6Jf*Bw#-VUEBPe>nyphJ1K$0% zLB9~RTi)=ZO{0>8Tz{`&6};dhvFK?x;va{brT3p*2v#2$bhQlOf^LbW`3`ss{vvis zcnXXY<_xYP+$9&3pNGv4(5s%N6XKuC#xG2&xT(N>02-El@SonpKkw<+i0lq>u%Fd~ znh9%kKi=S4>d{mmKlWxyl5e4v=2zFCP8u?g7v$323)!2y&Tl_>E89=rqgK~__BZ;&eH12Io|diRq=@ytCkO}P&`!U+?R%`xrozT} z@o}kflR&2{K__4ze!D3TaJg17dl9OKAv(0qTCR_B7a4Z?BGiw>p*}5$1?RWo<1a>h-I_J?s45BrrGp-Ocvbb5o$? z-VsL-aDLlJqr5W0?#tI>CNXizn5#$pF)Q*7p|z{L5M0G1E;xQoL9ni`n^Dm4O~YQl zn?g5i)3f+csVFo^7wVysnA+!~3)zTs+}5Nx+UJH@}Hc6zsGdj=4=P zlgw~;c9yiaeD}%iZ>*G`us5?SIQ&)yad*CbEbq4%kq^eyT4iKL=&!Np2kJ|lB?KE?>))4|F zu;NM4A^u=YRD>xYZbrRYyVPxzL?y-hTmmEaw6N)>tAffXARcuMZjU`Q*wM7R1s-0R zBH|A5$WKzX1+(n%;a-aIPtIBhr~pyvJP=xGn!qAX6-3Qqp8$8L+HAMrj16w1R{#ZM zLwRpkDNS?<%8)GJuW4F8N4q+YM< z&CT1Y)T#I!g zX0_!W8`X$eY^3qEA0S0z(cCj|@v|)tsuilo9e3qoIu)#*;B&mSzS)y1hOb#YXoqx6 zEoyPd_+i#9LF7? zIb(GbrexX9*+rgLBQBL9NLg` zMr*%daN7-!TlR)L5p!v$uSFUjCiQ#O&8C-C4xCblXAvoFYnw=`!nlPe$nmun5a#+_m@?|#{SpAi}Y(y^? zaaP#*N%q#FE=v#u(x3Cbxg|`Fq^DjIy&;R@ffPC>5yNAGm#uoT^{wi|udEVw)&|L_ z>;p!}jNK=s^<2U|_?AMI`RZUBz6uReUn&?9t=2=rJ_vQ%Z8|_?t1ZGhgW&q~%aI71 z7fO%Y$vcu7vZ5;4HNJ=QVP%wtHK`9STTVLe?C2}^vi6HFv&L)7ti~|n6^NI|nGx2! z`STs}2Ydd%lQ}>9za*XN!Rl6;@XTJ2R)|@Q2>BA54Tlr~#O)kxnva?8w;2Z_Cg~ni zF5)Fzhpe)8*E1a+4YnUz0EEk6cFvSBCyJgoT8iNqviEI+G<_#ecct~K0Tzqkx}%?y zNVKXqgT{)bd+2w9bruDh(4;%n39@z%Pd|aX#7gOZfGF9Z&nz^Cy%Z@qi?=_bIG1`v z3E^UUj`_M>LwvflI#P|&L5>Wedjo<4JkX$uiaLrKaV}T;GZF3i0amgRc^Hq8j8HTC z5TPy-E7+0Xjup9hp}7OS>0Q=kWnomnZKTGUxMk#u6~4`~bosd##)Q@0gGl#4cB&W5 zpUb$rB(NC9=COP%ZLV)>oZpovf^QwtchN1Dh1lq!@pJEKog4=xX1$g z z;G0zmXXQRn&>~?n>*L-embHfvFWq-OpBEnQ3KV?-9tHpl$r7*~q3Au4@M44P5S+#D z4mjGLBs%${aGP((fCr8+7vh~}ESnOQR7WE_d^CJF0E)k<8#WakKK+o=g%Yhr84=SV zm4P66TGG~kt)Y6`xJKj~bZ!etz6}C_Zi4m{48N{Z%7%2x=k!I2#crQNV}YG67jG`G zljyc8OsPtN}QGV|zkZsx8R-8QJ|MK}?-D zJ`u2mdkKO+@+o)PkhqeKpRi6jB~lUeXV0R(=MQ4fIt})Px%ujw5bwTp*tNz{i18TS zJvHRWU$uv|jO0~lcut%af8X}FyRt{oQF%|vl5?uaYSgp8e3kVHmTHop?0J)@W06RE zGGVckZjIvts5z2_>f3f%@%|@(5I`_5zHvk!2VWr9pSEbEt&WoMGrF4_rafN5K~aqa z_A;mWjfXPXra5M%g$dXeupgkhm^r9-Q?hvWe3MQK%qdqUQ?9zQ*mM*LoLRYxppyie z+Woq7dPAI!cMfNRcjxsj1-kNQyPb=_6}eK+u{y&BriY!UXWFixw40G!sGVr)4_IP8 zZyMpQvDKhM(U#-*5I}z(|rTR>`sG$hQ5ZV)z@@&-!cZGoX?( z02ES@`EUaC(gN~9Zc&;i{?F|`&+UJXlZ{Vo|0^Qy&j_9AKP@j9y&k$GlW01{f#%>D zW2dub+;EgF+EG(~<$yq;$h=hkwZxbeY0ot#iU!RgQ;eut{P%H-ynFH-*glJ-oOkvj znJDC5wJZWLloc1T#3mJwUK`M{z#~pwae5nW&A8@+V>&~L)Rm-Es!Bu32Ly~hP$_w2 zJb2Wom0woKc=A-h&^+F7ICXSczWBZ!kIY_$@(2M_0zQHGc+b|v^hOX$-P2)t?)tH= zK95qiVpX-=$kaEt)^}cs4uc*O`5wYU9GLBKXZd6bftn`uZ1wGlgY>jX^X~@l71 zvcKG8$sLUHUM@81AnWqWX%G%Q1%+a4bqPaP1PM)w#npL zZWxoVRTKv_62S!c)&tGHC3#Ge^mriGxT8*s9i+aGZRZq=iDSabL#q5l4Re~)GmFwN z#|$MPEaG1?#986i-d#Z+TsBs*h5JGCW?i{~jjv9-)8>4x2Bp$!4)73z5^!b=xv|t3 zud{vUXN@&7Eh}So`nTDC(Tx!IxDK{xOrs*U??2}Mx{T{(b$aV2Db0SzFY+TCcxT-)d%94XbE#t@8bc*`{ z`p8-T*xkm4!2gs=LFR~vVcPy;L}u}mN~f}1=YYfPX_1RUfI8f!J(RQE-t0V%KQ^<4 zLH=y*XrtN`k4rTNLudne$nJkGCLY9`!~6$Q`fmea{U1oONnk`mEI_1wH%dYH@?!b@ zPBeEd8U@A}M?~*Fsu)SL;W*c0?W&c$T0u`7Eq>v{%^wVmOPDr@VvA|KQxRpdcVc?m zqxqP~^fC#6XA20@x7<9lqF>#PNwfi?S6M3s(@Al_gKmX^vjd08ekV=106D^BXa;Ac;9~J8h{eCw9Yxa`^+HE{% z%UL0&Qg&$iP4=t2nG2-JUd5`IKnt_og|C{Z>T)Q3>zScB%;p|wR+jW4;}eo4403c@ zoZu8n^ZbzNXos4lDf&94xUkV>kucW}kf>%c>d_(kYmT{w0eeH7m7z|((w@t^V^Xbq zI5G`Hk8ao@@tN%uR9@IfzBuTd=N2iTrzRdY%$UGlH+a^VD$MA4K_$tTo{8ca}0uU@aZcvNC(SB#V{mMb1| z(x90?5wAvu9^6Evb#>@Krgy8Pd9BuFb>-V*j_~u^kmspIIfR=(v$=mwB&%jOMJs>< zpu1#ts1BgxYzaOB6afIUqAz^?QM=+Fsmi~qe1T^CUyPXwza(wA|FdfDj}fEExl&BA zC4Rf~n2*e(uZQRh+se8;1k!9;b0XNY{1r~$$&bc6yfhFlnD~~=0h>)ShUz&@3nw?b z5U)0p4RP%AVT(#F2i}HN*n2cHP)coiPkMJ^Df`sdPw-{NjGRRaY}Qs?StF^m^w>)8 zeVcT;8Vp7`I`LvLzB4T(T|-{e zzfF7*BLePRp{Tzwnle8>g+AWQS=@S|!`gU&99`vMUh(Iqlq*d;Q76SX%$l8PbD)WJ zz;lpI*o%$u@6fhP%A)1$u%a zt^pFtxZLf-1bRoV=iPf9j^o7N;kvp#Vr>Psoj?mH1tYiEonx8O`rb3q0lVGP%cPy7 zBU54zV)DQ()7gFAV)9M$SpU_Dmt(J$#2LVhw7}Td@Ff6`n?6+J%vjbhS+sGSxNBp43KH6 z7%T7QD3Cj%a#i6jqiGA9+%hZ}j{mG0SLR6r;Z*bJx3K0^YAW7APH>F23R@^n2)~b2 zZE%Q9I{oe!UM=eNu5gn!=mz!;d2)g!X`u3r44PiQkJCHmA(pYtB0cv34+78Iv$@=S z2`ePJ=9^7$4JT}YcX>_CGPOxhG(N53OmB4 zKUi87O(t_3Eo6C8L8ri}XS7MM)cpI2t$(VtenRLNK5$M{^ubN&M8yI6Ju4s$_)C{R ze)HkjKgDVONo(L&Sp1*!4*suS^JfjH#nmrVAYNK7@n3=aBH3SoeH%OWU%9M#9wbJD=YT`d4`i1Rvxy|KbP6ejM}3^OUSDVS zjx~^ZX?_yK63w8O*Yv{MMBd>C@Mk-&EA&5esg99hD6^LZhpiwc3=N~;{Nh>#Z*v#s z{DUX*FHcV7kRh1F%8{N1O>0*_)6p9p_ihYWSdJ zDyrJ9jM2X2@0FGxsaJnCT3u9ZopIWQQh+5Z504CtSI#XEl7D)qhNee)BQ7;x8HlXt zmO)oU8Xbt^*sxDKbx#>Io7x0PSGfBU4Y)Epl{YV71zp41r8~8X zMfb#%JHDJ;cVa+SWU9#l^Q8Yv*E&d&yIjR>zBqPGWt(zcxdwY7)`JAc;x|C|^8sAe zpN-E9WGD`vrxlu_U5Y)VMUxf_=6cHrYRXU8PgJ&8b9;-*zV*%ax)SjXI@~i_nlVI_ zsh5sA;m+)7DvWl_b({=nuhqRKqwjjDX4fNnDp>sTFgc`<4;*la2tup-J@^pc7VxL{lf|8#&9~Mr(sh5dLQ0C^!-N0$z<@qy$}))+Zs5IaS-0gF4dZy|tIV1R z>(2cGL170D7Be-tHTifvFQ9sfu^;t^E&zUm;4)$>*xJUC?b#z5QD!Mk{+~Lu#OPI3Q5o^4# zO=vv>uGx9tvL`!qZQ!C(A80_nF$hHf4mZ?6F2rGw)_Ktpz8&A!>-r*E1`MMIn!R6W zUV5D`4T#|Eu;O+Y5DwQre@h2r8RJGHlDD%_ zmCw=fZ=3cAF3hls4N&-xro?>qtldnAzb@^$C;>JZvD0F+F8q5fEbmk|+j7J^%eQ5S z{+4r1+>bbDEkUF!Jk?ez%C?wyie9!IdL~R6)`bDgB>I@&du(jjjuK?aV~s)>dlmUn|~?rin1 zE=Z0tl?S8y0G{%Wk?{PT!@X=jM^fHIarxEC4`r;%%{8+fVR9fR@#uC$foEfzA|iNk z$fUk9*s=7QuZtDRt^|Fwh&&OqWgX(B(izno-s58zhw#AGFjDu$Bu{8p?`}UTrMn{f z#~K}g6)gc`YY6a%r~7^qMFD2(QZZmT2q=1sEjh116YffZ0DDl*^cSHUP~rWVE>gZ$ z9rFuXry1|sc(&6SchX2Olx^mS;Bt!J1TaqsszmB)Wnnb?HLKCG?8kk_U<&=mPp?Dn zSPY)IGoUxlGsV3n2Pde!3&A%K7Bj82c*34FJPPP<%g&dhy5LR#zx9_ zl$eyON=8!@+~r7&?NSyA;QJ5TF{{kcWSveua{!MNtviuV0B#Ut6rPSgeW6KV{~*r0;+~+0HEVXW$9+H z&4sDgTHbNaf>$f&YJ!vm6S-?Qqu@+!psAv->?gQK8J}L8(2u!bOnRRbx@bI}O2lec z2)5+J)|cfNGHFdiev$;I6g4dpm%|qDPL2iX2O_mqsC)HRj$6Q?@6G}bCpru`$LVU} z@qGSq0ql2eO+G=L)NIpdS2is-aTUzo?meii2z_1Ucf$^-H!(m2tyvHSeBrvt-&kIf z9yw=`T?~8H-@=)ng_nM=>g7-BkK{fGO3IyA_Sqj9QIOBp?s-MmRVx_u%G+UbgY=x} znteT>6Xsj@&8Hzl=+K=%53z7&ZJmE2TnTPW2b2^!$cIFuC2=*$DHdmLXAzdU=HD(V ztFUVzcH6ghB^QH+in(8kQ@Rdoi$kz?%3cLL{Z=PNkRo#>=5xF?#)}QGR{o=z{3`?I z|4w@Jk0@MqqGi{PQJ%gQK%Ad&GPlw-KGM;B!}}H^bZ(G$q*}nJGOYwfzZ@#kq2n;O zWyO4y!L5YX^G!|O@6FJLh<+s%nTbkn zUpXv{L%E1{)jRX3Hr19J1f$L`lC?ji<%~SvnLwhh2Qe4ZZsD-t_SIQ3d+hXmELqo0(FPnW> ze2U5+-f17nY*Npf}&+%$ zHFSs~mRF8H66*{q%$mcU6QACaxNa7sh>>7yN>o)9bH+th%os-Mjp1H-(^Bmq_qbp8 zNe6MfWs$k2!>z&!3i*fD*V)pUHbr33+`r8(LWP51|B61E`{un0Gh9Jud_O=jLxesA zfJhr-y77HkjsMXIZocU~Nny5#>doFZTC_~P{n5NgoqS;yS&$lY+hmBQ^dZgjn2i=J zNUha`u=@8HrKD;sR)ohSfNBl1tH?SG=lm(p9ysSfi1uIV`2QcWb*sZe?aRTqr|U8- zigsDD>CfJWcgOARd_+u<#V$G5=3&zb&V);{5TbHLbf0&gYX~mjJuN{vD1?GQI$c99 z(>#{SWun|H{Y(8EPicKEX`~j+x(kI-0whoyaVx;I;PGzmO!Uu`>*lg(#QQxv6Qhi$ z?ee*L1+rA>SPnF6>K>#wBbLQ%o?Mm$kT~}x@$>UwjjquoNaVaftGD+OO^*X05%u_fHIZd>6rT&ugYD>B= zW^l#%v(wCyyvHD;eQd?q*|3OVpDCgeEt@v+LHez;uaa}|ceEZz(Fp!?h!Y$!; zLYE8OG5XZ$P^lr)`pht1nA@;D;JXfUT9f46DHPk6%H-U(DxBE2ZE%e6kyey#+VYKIOK(2%n_ z@Y=?+NC6a$GZa3ov0dz|GK+dsIW;oz>>Ul<6S%>;{J5#7{;9Lb|KLX8KZv?9HP9g8 zuOs3#mQ@xrdb+%Fo@8hVC_fRqib{FV>vrSbW`FB=8NNxbOtZ!Gbzth6c(n-((LU~gm1)6X3eK5 zNDVgfJYn;A_$p7ARx-`v{zOoYFiYk4Yg@<*rz_(_ zD*DSKvdf4?AR9s75xRL)MoZ{G$1WaRJG`$uwct-t`_DGu=_yXac>tI;C^S*7yKr;+ zociHmW=&GBL!H`4I?WDnonlJy2ZR`0ie@BXY)*SDw`HFtnpS)<(Q?A7rZ1)HFw=~4 z4Ulg-6fd@0HpFc`Cs*5Bx2S#LRrXYbYg_hYOE;=?%TdG2w?J!WT8%s`T6oZstG8sE zz*hFPNYGI3e?ZSD*+p}@v1Efo_1-PvrHf3!N$5N&pAMe~S}$@u5#iF($QP_r8znzp z82=1TTzz#Kl6~NfvP)hzKzXG{O-u-^KyGOvvS9R&#fmcDx=b5NwU-F4-f<5(rRhFa zKA+X7?2!Ik4^YBO zz{%5VA)dNo$ij;d4h>SOOkAE*kRzvjQ4m>_Oc~4$oA*Aqt=Tz(50(@w09{*Bj0%x+ z;yP;6!@hQUZP>omU|7=chh4`La;6Muc;$sa;r?WYrltv3TT(Y9u=RTq-W)zm$Ujq{v`DbH_`kAc=!5<)1 zi)@O9V9Mmd(qieHg1yvl<^C`jU(h^}){69I-c1mVpMsRjjRIhs_ZL#Ny62O#8RgQX zBc!np>;@-8m@N?w$Qlspn+rRhPls&Tm|s7Lloh>p1*vj7Zg{NNfCzQBDL_P$R2J$jWzC}tcDVPgvO}mF?Z3UnzKfAdRY$eX8j%I4K z@8ev5PXxjO;g9`UwXf1yb$$Cyj8@#N-%*6ogQ4R(2kQrAom@A?E``?}E4?#6$*J2# zP+HMDb>XB$U8w0;`Bi>>6I1#8Lgm35-0CW}j=&yb~7^WAK@_hwx;9U6>j*n=0KWYz!P$4m~)R z`zbo_fMP=0l*jFcT36o!ynxy{Z2IUSFM8Vwzs8xVG7x?Kxn_FfYOfuzirHRhpQs+*O^5S^<)4X!3d!-0*6^R3 zwZGwMS`Z|qPhRJ%f0(yZ8&OLRuo$4FPu)F|Pui=G9TKjFJGsPb&T>x;Z);gh&nM?v zP`}-KiS08N&lMoXz&aOTq>S8VHM38~ccNGzv6x7D&{Q8eZuPbB!Ei+PrQrT3M(BWD z7bz*K3~KiE9t3|g&Xr-%DNnYN3t#(52{@l~L;u*-z6*WN^>p)TiQ&f(o(rW4Ym%xj z;E%;d==9wgkxadwziAMolf92hZ*0z~8-yV>7oL zT%$C{E54kv_Axw;H`AH(ISA!?d@{&;#nX@CUitDmX50M>pO)NXNFSNn>UFPVB(bNJ zj^q42EliQ#yD!$t5YcPw&QldfvQgOb>gs#x&P`FnUXMICUKRDe9OlFJZV8*09n2z% zJG>Hdo_Z=)X0TNB)S6f6$sHc!stC|&Z-fC&HvbNDcqJ=rG2WegZoi4q#t;ENfyS}D z;CUC+bG1};oS9*IG@g8!?y_cR$vPt`qN_UMMFal2xW^lnz{o!?u=`N~-Ca$aF@s5$bH7 zap_fVE&JUaa5%;!TaTZVtCJ>D`%DaO(KzzZUa@>4M{QN#+jPJh35}LiMG+f{ba?UA zb;`!uT(7#!TM9VJ9`>1|t^z7ElRxV|DF0$dX>0HhV3{;54kFJ0gklKOrF=n>BlSP) zw*Ap{`=2`g8ltDU{b$8t>NW3QrN{Q*UzEwJ?tyRrVUkvb?UJYu7oVJa2D;cVV3sDP zjuqK06zZh~)4_^nYj;{plCq5Eof+}bW1%VyFuy0dgR5}tbiLDt>9iZ?sjVE)d=*E-xuV) zP{e~Z48&I4rCzOw6me5+vu&MjF61ya_}35w3bSsz@yzKI z?eyILNwgcNArNJM^|0z0D5ympwde1{B1Mdf@y-TYqOai{{(vyj<+PXZP9LdOra=!$pL4T&Yg#g8sZeG?P&L;3;ZmIMjb~=~X?+ zS@RFj;3I!I>Rt(&P&eXt8=;Uhf_4ZnTuiKr&do_eX9$j;LQuFu;$su9#5Yoh|Hj9C zm(-BH;7X{T+@3__ojvkKO!1jF?ZRC-*COFtBUMaBqs#?YSX!kM~YO7m*s09HoVtpRFV&29p*cAc$Qam>Lp$A(@Eo^`AY+8XKW@0la{6_Et90`@1 zf}k+Kb&@=@GNa)HFr8lUqDG{xsF4WsHwN1*D+ypb(Ma-~eHBxKk7l`FXZ@Bj9;Cbk zT({p^vIF&u;3YByV5H&^8Y7$r$ThU_TL$}B2-;1l-WN+3iz8}7v)a;JvoOWq1iOWD zQz_MdVDLRPgf(0j(7vlr%ENWzjw@aK{=-RNbN>tJ0U!4-#&6Y}x1l`-@Z>9ZZRqCB zy6Lxazz~-bMRiUTf@bW$!1Vk3T@8G8dYsuU@!f zNmElFT1RDB%`k91`V0l02G~y2j7i=4O2|Ln`!@;t+iwiqqLH;3X1I^Jn^lA(-Ejho z*<+X)EWbQ;h}Qa2-R{@8sXCi9xg$Y1tlqd_b(MXUybjHJCk~A*zv`cHNH8jXyPhqJ zKaj$&vM2NcOTu;V`QYP7cA zd9&LDR+$y6F(iJmWR;;B@?K|xIPEkB4J^+%pQ{&fpyFo~Y|3Wk&w#?O;pum~J+h0z zw0Q{Bfd;*!yce#&XGlvATP9-yj1ofEgQ<-zn!gzv8#{Lw zi^8)z<_KD+N4FwdoZi{p7d@cmpl2%WArtJ{P+~kI1d@U%-YuAi+r*xEhBgT;)Uj4k zm4;5C#I~Px9)@LR?+CNG#YC}U|Pa&3dxadW=e`2^T?HO{rci(o-YdghaGf?F0+8i#A4u)Pt|R{5x?23H}J43vDT z=m{(TArk<_i`hDFx%ql#L+tHuD)V2t&YWVvYLNiq-YkmGqf%9SY7ma9yr9wkP>}!P z#ZScj$#01J9X!WOU~k0QYR!)SHQ$2V!ERO2**$d)vKBtjFkQc~9P?>d;bx6>#)s<^ zpRf)$)@-&eG{+CagkHg|Kg>l-+r-VB8a@stqj;$9nRrDFNU!WpG1rf=qVF(je|h@e zg}oD;sGPxtsVuo_)bJKTs3@G(aJE5KRtkQ!dz1{xHtd5nDS3t|s;lGJd_M{0AJaBJ zgXKxyX)j&HGsPgw=Y6h|X=1byUswINO6?lv-gjqb2fgohM9li(C1gdhi^_@Y#op)z zM{b9Fy&jL|FbN|+6cA^GY2aBX2@X7+;l$qh-cm%W;K_2l+I)*id?S3wr8tG1eYw2C ze|qYM?UP_ivj%{kfpJKr@bvC%%wJdXf6%R3{)G&ag~a}8uKCLp`V(CLfA;mO(@m4w zuMuUp@CZIYkCf`cfXub+B5o%?;x85#@qe;W`JC8k7n5%^Vb%E-FD}|=vZA1p(gFuM(g`)7kE)vebw}#-phSEPJ3u0NW@z0_lF!mTT zJ&(fS74W>qF7!&4K4|f~JyP3`L?&+(4yi@ghlPmKsXgo`9Q3|%9bfW5L2o^MiSs^! zxa;g0_+vTyq?S5l`T?b#_uyJYi=f_^FeI#80mV>tv)9XCB%%!KYCpNq%jApg`eQ7{ z6>7kBB5%&iz;tM+>qTBw*|BgO3#;WvYa`&}hnXFR4wt-2&dHXid+N95^pr|F3{;HW zk=+Z+Hbb%|kBh!aHP7>yL1cOu%U(OiK3nldM5vV`>h)K$)rQ`#4xhLPT0PlVdt>lU zc_T|)Z}Ie%K_}LO&J~@t05hh`hOp$vzVM2|tk`9W55t+7$3#86 zI2na?E63q_6j z&sNGmN~{;_sQ`7k<}%GyThocu&tk;4X*KVs(O0z#`lE$qPO?EAc0vZA zT=jrf1|wRghQMdxNRgKY3Am3VxpPlQR4e~zwX%BGUY&P|kRq>=CEwL-3P7sD-4617 zet_Zt;f(zRdQSC;>2Fj|O))qIptSiA+e#kurTTa^+yl>bh6UB_F!Kp(C~ng%)eKAM z@YoP|MN})fS1J>Uv}k@bJ?0z3=pzyP$Kg*{(~E^hZXL#UQ0zS#=;v&gn4fl5t9gDo zhAg>gI*2d`{hgQabD_fex-%_y?#-u-l3$V|_hd9`QX4Va3Ojx(a(5Q0oVflkQ1ar( z6Xos)*DcBrQLUeNk&0bjxfxxfRO=ss>KvWOYVRzDs{ttD^*65UpjS60k~~1AqXBJ} z<}ZUts%ze9z)P^-;7e$nO;v?M-S*h|EWvjWuMSQE{rVf)2}+9f7Eu{aH>kM{Yz~i? z>NO2+jXrFso+uZSc^bh*tVe2T64~)ZChz+7) zG@Gn5l0Crj;vt3Alf9`AowFO1j{UY^5Og(mEBSQ92Jj=_e9Lo73{hZn%hh=lU|5hV zCo>%BKGBZOeyO+rx{CoMoct_)Q&SadnKOW6UuUA-fbyECZ01@T$j*TT{$##}tg9)@ zUZDQLG6jUl?EZ9SU~4yj5836gocIxqEmV>Ew9LSyz!$*aJNpWyj}VqRpJa1rFDoao z_WO4!npSon6*^*NWoHe`8hlm@`8l%=z!_uWVBR@ffV^*v;6CKFBnXX#byz^~Aub^< zyY1@X{^PTFNB$^`F<#?raRdm>H>sJ75(ZDrbHf`0hwokR-3oZCTo)$heLW5k91Q*S z4*55TaYZkeOVC4OqVy@JB*?UWmLDKDW|<9|oMOph@ECNoQDBQJNmF^`VJ&q({RK3M zwLWQ?0?IiUCs^NgH|q?yCS00q8uO*C zd2H6zfRX}oa=ifPj}TnxnYMBTiCVR}nwTHhYntCnepV(8Qmq_i+e@npVp2#xxJcFCTjxNLOdR`8&@c@b7FgS(rzawQ~X8Z025}63M6lZ{mYUlP? zruRIo@S)}}RSZ86qCDOL7)M2l2K=O2#}H@dmxrny0;a}QZ_k7my=X0~Cfq{A?;O^D zfpMxj^*3*s*vt*4-?0^M%+Ms`3~)*m#0?gc4A~iyrDvr{Ej;j@hzZQGIGmMPm=TDK z543*x+CW8cW>Beq(LMRuddvD)DdDQcU}_^1TePrs=A+z)O)|j7vyGfM*8fDo>ak+D z@trWOs}1Yjt{TP)=ClT>??6HGyRjH>qz{`X-H0(;3T2F?HV#U8y!g`iytz2hi@}3# zf)Os=vF?pCr>)<(m?c3@=$){UbJ8U~YkYOr#g;uyle>@6SnjOd@8fKXgZHEXn4Kn zUd03_duVFgoGnz&U8U~=t*s03!7`Vxqw5Pv!Y5r8WzvlMyajKdmbm(amr^?3<$K9H zMsM!zUQ~vu3JqexH;A*PWro@(utlEwJ8DRO%9+h;zYjVEMeBuK%4R-@e6GGu*misN z)BTz+K5!{|7Ul;Mw@5i87)+V$FvH)1q#SSXC%?tEau$yn z)@?W^`r-V;Lyg+{cf#S5#`Kp_MI(@st{nqkJ%P?X=lG@0Y__L?g*vQXx_33Cg-~Vs znF%{i=9ukJdo^vWp^#B`Y-<3S`d#$;@9Q1>>4FMD0>$yG;K>2g{k>A2*vIS~x7Gzt z2KBR3Q3S6H6qX9Twii^Q+UA+1EDLoL-}f}fk7Cu(CxkUfd*bRfh1K89K=gL?jlDiP zpnpMIA09|22ECiqHMW8kcXX_m7h|F@HMWqxoqSrm?exm-MO*KVQAAn|>!l3|;tmmv zZANGK(~?c$kv>Uy!>kjUbD+rFfP1LoA+xr7(=e+-qy|)gFYTy4yQIIe|T0j`21p%dd1f@hkq`RfNh8PA!LQ+6LkPhjR zZt3ol?yebffMLALeYX4Ty?^I?zxTP%J@@`|{+MU!qYGx%to8Z4->>&83aL}fuB;A) zC?7`3-XDHX=MqVk@vsXV#<#vqWsd5N&j=7%aSkOh+qUXdvN_Dk9g|a<6({ZcjW#2b zrAw8DlT+lRhUj>oy+*XL7kx~qedk;NeWo}OCl7B5sfVavic_^tV;(-cJ;<{Aq`CR* z+d;o)jT?cngX8P9)d;uj*(z9Eg22v-`KY3HV`t1Z*~G+jMZdrQMPnip-f23X#>dmH zZI94Pv#ni9cK@Q!U&L(;$h%a#44j(4ZHiu#*;_QXhn$P?#RBcJ+b+EF-$yA`_c@$> zIukLQsbuR1GX>CSFv!j8FO8@X7HJ0|;SVH%hmu#j*kNi05S|FU>&aTU32)n@$;-~E?Xf%3UO?jqOBWzF^ zY64V2#2y4kqYRYR-pmMhyrq62d9b2)ZOq{w6;ufpvdxWD&p{G@^Duj7Z^AK&j9*}vv<=6>MRl!ey8U@ zhmipP?4K*oe_e#~5}IayV3gT{OVPboX;o)n%eggM0PC|8xOjD=mJKL7LjdsLwK`f} z39u27MrRhI60!|-4$O;gp*bS1WcAN^rT=Qm*0c-&abqz+z>5m3efS4PF53?brX0Y6 z&5Bqbp6t7Pr&D9ZhQq}AjoM4uPQ^sSCan$FzdXf3(IJ<&GzAJ*Y#}F(XJ2Xhdat9` z^R4<14A5cRf|@edYJG= zf0nqH!#4Dv9-BrzHFcp+Q*(TQCLLA3@y933`1RQoKk7^ZCO`l3GNd;}YBHakcn0Ywgv zU0Roh(ZL+{KjR!0Hqb9sz2nIyuu9Y74i9sP4~Kd?0+g(0|Ht{s4Xp~D?v#(rb1C!E zLvJYg++erYM>xZ_UjWnLJn$daRF#kVr&->={a*g>e3hzYOEBb1u}Mx8BltVW^za9U z+tud{yM@R}*u4(G*lp`CCE@?4&61d6ryR2=2M_r>6PFpWebJr9BFqk)T^I?9z33#N;#BAZF>Qu`(xc!+ z=Baw5>)>60Nc1|K8VUh_xnnySKbwMl>P-vH-iO$=z4nj$I-}=mXK)1|#x1#)1@wbUj$}Fs{X$6|;M<=Q* z4GHShq>pxm9VD|2vH2kV(IG3aYnGT{Rb^VlfJL_P%+*hg3`WSAJ{qF&`hxvSVKbUf8^`_b zgRKh>ojn8Y9f_>epLJk^i+A)Icr17nN%AQ9Ul(KpwL&r02l)(SgnHmp3(mqvri2Q; zR9x4kT%X)Gam1tUT++jK3rKpNC#g$6)3Yt1vKDANV!Jcgb0 z8&-O9RoDjSH#n8GVWq8d7K)wVjSgj z@&-H)&K9e87qlhIdNFKa9zUlFef@DxJzt)29&mpoQJ+qE^mCT^+iS{1#>kz~MP`WX zjj>Ov3&SbNcD`$qdEBnkRKcloD{XvYuHw>lKIJn%Y&*M;eq*mNZRl$*q5Zw{1*hB$ zFf(5x%${$;pCMqr-H0!u+iP67##L_x48rIFcyWV*NmT*y8om$y*u`HQo!7)@pLZ|9 zNI&ninP*oP%z8yGKT*g0$(i)UNUnJTLUcf zDax2_4=T*4%jDVKm(`_Lb0TZOCycPwanK*j^&|5CVVi0Ae{f2XnJygUe=_y5HaWzC zp*@5r=nLSk7i&UWwW9gYU;EEpLd7wVTM9s@Fj3451Mo(`@K2Vo-JY+wWHuB1Ci5$j zaf!-(LUsg=kVcgyudIR3zA0Z!1peCkBYu4%4t;Q&*M-)C?~pmoT>zp8?6LvLmREit zdY;BF!}ZwPwbyutw@!!r|2UDCq!Nee?B8C5mYT`!X|c}*&(5>AtmWoZ!u;tHtd4zj<+$Bh zi`iF%GhL|hbGl|H>)}@+_wXhuugLQW@c;29DI3$WjsNwxq4vLRvivf@D&lvQWp`Ej z0|Phv)caro8n;JdyKo8^u@<_jJozc&_=V~JmpK3Xc!TW|;vmeq3EM*6B}ay#)**ANq3g_&JM+y){Od652|v_i5m34@M`^eDvS)Zx&?rP*+#p13`k8vzQV z?#ObTNYDnwb`Zqi_C(gz9j308`3>EkAR+r8f!)<1ji8YiCEHMaM6Ff3TMtmqPs5(A z?4=}tOHrbpZe$Db*)fI>zCv08SF#0BtW>aw{0-)rdQOKsjZ2L(`&D1VSFZ=-opu#7 zq=yuBs-Id`wIe|i=K2(<2YEeovFjTOkx5EoGh{<;XR}!`Pxm!~kJ;Gjtadc^t&1Mi zRDLjJ^l!}|FcRQJ6bwl|zS^~%D+`ASm8DuH4Eo#2F9dRC`IKVIXsio5BvUBjcymUuI#4Q-KM%y#D)er|UrqEIujPqdP^F0yYQCGYo zP$!7Ig4#&)5sE>tRS_$zhL#9&cY+rsl8-cghJrb*j%AyY-Jz? zVclBS2`*PBoU}#X%K<+2NUdj5rSaH2^=3Bu!T|OH4l2ukd89BX+L|=@s6g}6MU(mIE2l)aq&av7s`UxO{jMsE{=V+f4r{q#R zyZso;gOa0;{80ro9%Qhkl@(BI$>Chr>sd{JXr;9m4Hp7g*634O9L{a=hq$NDD;m0H zKUgxlc1oWHI2uhiQhVviZ7q+~>y&EgRg$r_pBsL<;6GDrQp_T2?7U+w`T|TeTC>Xo z_*LIc{}(arMYoz44pqG${J@w6%om>X0!|DNVf2gQHt=O2Y%}0X?fc{364<+V36Ss_ zz>ixV73K)K(X{%>9DD-6ddJ4<`v2ayJ4M_@*z(r|54gQn9$zvAX6{(l2#Mv|xvs(n zMQ1di_)B`e8tBI(Qgur<>Mv=@YO0)Ho_cv@!v%OILKTe-Weje95ML#n4_@;o+wRnY zlSMc&c^$vg?jv}GND36&u!T`>=Za##{aJjLiO8jEB14|ljhv9o+1Y=VrB*pL+{eew zn&6$|mr58ARoG)s*z1wdq0aP;jt&J>q=`2>htUs^>YC%&N!eD9arALzu&C-~;~Obu(_MoCW>3vdl14--)` z{Q@bzWF35&%(4=4DMWEd%{{hwLVYw*mvY=oMj@7 zqtn69A7c%Sd;|VxV$s58ZDDN17x5g6=&bh4of>Lb5zPQA4&a5=SYeO^nKS zV`#(X;!E7U%jB{)U>@R(65F#?=*&`5Dc4o&)f%N8r}@HgVwbylIS(S9eL zmd7uS27?{MLOe4d1H*XHa-W_-NK6_E0uq8kdDjxlxj_!xjP@j>F>2s(i2HZy7fcFHvmkal9` zM`QoVe835^YSkD)b6HKV`(x_LTG-hz_D9{W=&z$ypNUw0o%i(gVCZ5nKtvLl>dMJo z(Ja03uQuI8RGn$K^7d9;fI1nOgAR_laO&Ul1JIE&B;?yev7C!Z|AW<`iq_uVn|^mX zy<|bp24QV}YP;Q9)a|4j&pNfL0;#$Y>+c^Ca)PE4JmL#K&jrpab}~=bi4yCMRLsD@ z(qrt!^apDKjIeoX>6O=`&uX&%0h~&^h^SSL%<9OLHWN`WxC-1%HHk*P!g+{bZgbkK zRpHZ;IIleg`Ulg}P?y^tUC@vBHzp}oc(WE$@Wq$x2(-6`KwL_fz3(G5v%v0yV`v|B zcKG4E9r4a&GXGeHY4|If@=rQWq}2@Mo%#3C4MD|Hc^>ABMX4BAi`SAB8vtGL<3BB1 z*D3am-fEk#8PP01BQba=Xi$J;a9*N{_U#agRI*T$R{Sbw?Be38npD3NNAO^_y+j7n zHxXX|<7V;$7WbD$q5fs}R9IDA!|}Si2Ud~=XpKYT|B)Q?kKbV(#h_HyvmKPd_-XOl zzWKE=A`FJaYdT`Z2+rq~wR}R4Q}o6LZ`pjwP5_gGSZL}K)vO?%?cO{a?NxH=oBiD* z1t90I1hS@RKfld8KV47nEfCks^9Psr8%x8>@OXN0X;xIm#M?~hV(-$sJyN+HG4`eb zXQ@vLgaL8D+qe|N-rDy0fuYrmjJGjfN_pqeUKC?PUHG+yRwm=#<$fNtdn3xdXjH1= z5D~PLH^n_TGSxhtIlrvM8AH$ha+DCn?6RMebOL29v159;JSs zBB7*5YK7qM(4)NOrJnIDcZx~8zT*5os&&JrM#o_BdTz4dj$YDY)BR1o$M2HpHm}mi zony=HMAHs%sf&b5(?)h}@a`xTE7Xf-J$%TqHM{oF6sMQ*jq|aRq$SV=|GImmO`pGU zy_v@)D}eFp`mmneGC_!kWY*{u#Csa*aiwr`8bNer(hLg1@|@&#SY8McN`5IVJ8UFM zsyy%k>J$UcQfFh1r%|MgF_3XTQv#($+~0ABpU}yF5#fKL;{czH8u?|k8GS!RwLzIcEqt{1v{&c_svEB1roZEX{76Cyo6S z265PLrCGu$bR0XCPV;TeZL(mGU04SmR@t53==V6j(IdgxIl@5oF*x|J`ILGq%hl|) z_W*~aW}1zJEJM%@$$QG-I^%^x8v~&oi;qg-Qco^ab0Uqyl(0#qZkTP~v?-#m4Rvdc z(8@nDcYN`=6@B>w<2t%NjP)T&z^fid+%BF990;)QV<FDREhzHeUJyAFLDRriDLg$P(u^tKrZFUz9CP zz9(<@zFRUbK>YRG?It)tb*Tw+%#%>%L|x>*Jb|$=dvd2Nuzv`){IPQU&f2Qx#DR6I zA_IS5*dJWo9S1BS77xx@n*gwJAE23}QzmRP5B;Xjp&bLS0A#Zo{zKj_FF;5hWta*O zNSFa9zc5|zGyr!b2g=W;$f9S9RjBAYIOrNMI@A(+V{9+yPnep>LGup`go2k8f*??T ztzrzeY-1#JyNW0W^>k%OJzX6Kp|4mS+|k;0VMI3OjORUCe&4->hEefyBPCU=;`^46 ze`Vnpt%dJh43#yZa#S8~!Abl@>AE4#z@DG1k4V2IoTT0S*wXXP$AnbPXNeDA`Je!g=aeypb8DxixrG^am6c;0eM8@*<@3X5U6@nz<=KcPHYkcAFXZ-& z_P1d`K{-wQ@^XF?;@5rj>BQ!9qn@YAG}zzt>xkD&b`-XkD9?pt-$Q#|SS1CXQqZZ% ziogK0biN@WSf@`=fqAL$s@98n#J0CM($2`MMG@2BLD@NFE}U{&&MtsbKk;U~mL>@y zib<+-BNWY3o6>Scq{*=w41Gg|_r0Gl#?0;O^qXyOMc7kmg(nJCeyucOfePV0%iB}s zR531P5qyUdz2DR&xWk1)-6(bxpN>VpLK-d=8f%QXu*=#W=$*8d%R8zG%t_7Wymaai zWNvtc1oO576zAY_dN8bM zJ7I`$!Fwl+GNO(!Ze8*KFK{-*N>2L@9RU+Y`}Zi#OyluS$+A4fsoKhF!7PB*aAyJ# zD)sRuahxr!=ZZBg<}@RbYbg2b?kHoMhJzgMHoav^{R5TKu+ z-;|aRR-JFK`d`kSo=u8SOwTp{H|4XexT=fxJzjaP{gyp9?b)`WF7TA0A8LD?`w1>HWCm#ayC>-)tWI~_eLnXG2FXVIo)FUTQN5(C^@gZ_n^#BY zY$yxLYWQK}vhLezPJnrE_@ZL)(h#5ut^n#dP(}fcCkeqSj zuWqgM~?C{zC+BNL%3oM>31awS1NUpOElpE)n=y zp|t!1gLEs=YW`+zJdWmZ?!=1Q2)G^$yd6pMeYX2VUTW}zNJleWiIH_&En_Pu^WiRu za0is&rl6?2JMfsbJFK`W5?JyTW^GMQ5=tF4Go4LUn`+z@uzMvX+F><~rftsFfpDtp zTAXTxxLVvNh_@GDLr-{kPKH7-7iTB=r)|qTJ+Nb4btNexOull?ziMURfG|gI9jMc2 z>%4c;>l|{8g->g>+SyQcV#&~lk=Xx3NvcDVa`Twf70S1vF*5budTOC|F-3mrCtZs` zqY9vqxrJ98V`fhW>%bnfKB|jzbsJO11W>lK2peD)37MYW#DBZ;A`Et21ziq}TQ(6m ztRT2GyMp#?<+8olOP@D%YD}*NftRgeY|{`0<*UurB92n?sF|Pevf*9Z+p9o-%D2FZ6fGavq8oThP|c~z zveIOaE0(A-*+gjPJ#2Lqo%WRSNgY3T?#-FNUOEHY#jDX8h=>WX*uwk66(^+F4Usj; z*2kwC!LGNGPDlaij0s9ICEiOeWBQEl77_CFJeR-^rD^{Jx^g-3(@Y3A6)hE0--4Eg zsU85+1ZC*n7}?g*yi;V4%+<=TNYh7EK1==dJW25^S$UiVD$p0psvS; zWqdcEn3qbj{!ol~OkuXu%db3kQh1XE@F!PE(i9wXvvWNY3x1-cQ>rEo^hzY8oyh3s zSMv(B0f7%kdCh0~G>wdc`*%9$zW?SVei>GJ zi0`_;H%NOb+9B`3+ybIVxd$=fU4gaDcLmvzo9iUIR%50b5EynDU}F?da9K}NWD%H` zM^-A>C?|IH>=RHQj00xA;;1wt0D7N%^bk?=-$Nf zfX|t!Pl(a=>1}-(72!;5H_s;03GaV!Eb1^i3iilENaZcutykGDQ1m~}oz2Mvrc@Ugjt=xK%JCG~emWLmE^*oCdlR)n4`-!K;Rl_3jU45%59#Fk=&pbUi3V1VrNCEykHb@1$=T&nn!X3IDNBC>4gSP_F5#b5yuEfKjCtD9gbXV6h8Q+US!GjY;V`?dg zErQDsRG!xB@f2wZR+1Ic@4&4lm6gQTvGTexV4#Pay|2H5nAYS^5Xg z76o)!zRHz>!Uf|BdY`?{1X#1}F6SiN31q%WqAMJ8w-Ph^=dz3?roxNL-g(0u9Mfwf z2CAY&Od>lcE94~UEhJ?H8nZ-M6}kGw2VU*1m+uz7X{diYF~vV9T;Ndjw3pb23$mjr zq~3M*grGK}^AH^~2H{3aT@j<3fC_1-T_vvG$#C`Rt(|idy_$ZY-os$7y{sr4(*!>7 z2kS{@20N07`#IfoL5 z$JHU!vPCLKrt71L3_lviZHs!2n6s$4P=8jG`&16#?>TJaKQPSh$fu9F?2&#xvnD%b zJO;ZAZl}b!OS%GEs);$8x$W+voG~kZbr-nrX3mKKH|~5w+#4tx&`XH`!2rL|hJPIY zKZNdqCk@L*T}t{@SL+R#F8Y!Bh32pPej>U~iT@0FgcJw;+M3}AkQr_`si3BLtKtS-S3z!-SYkfVl)krr9R4e5z zEFU{>9e%$bqdUVri8ZNY=5k}NK%FmITC_foMv&g1=i4!D@FU@9C7rYP^;Sy@w_ikB zd1Ug93e3{o91#YFo<8`f>fzO77~du%E|k08+uUN8L39>Olv zi;P!pY@(bhWw)5<8`#a&Z|xJzQ5DU&m$Ht{_BA~L@WpqaAwksCj7j+~f7ahkAk@0C&KUU`RW!Ieem8g@B)^;)j(#xyq z?xX3mfR9VOEOGo~fCHkuI?@Mywlkz$aZ0*ZvsJE2O{G>cu}j}DV!K>d;T;ND+~1Lcb=Zn&?HrDd#Jz;dne4Lt=&MQ`xj&(c~e$e zCX@m3LONOsb&-?jAPFJD>7tVzz5ngp34l=pC6$vLx2`Azk|SOwaj-M%cI}`d(x`Fw z)Gc2K42IO2)CRug*eF}Rly@0p|8zSB621}vt;^3G;uWY!B5HjN)S#+v*I(j%SxWS# zW<3u2N>86-VjzxXF9}pG&8Jqk*sWTXiPz2J4oD0VqcNipDV^+!skO;|Is_dl^ANRx znd0dRVGZE^_vB0jOn(pZeUbT>mkT$h2+pmFn%M|cL!Z!IIu>+Z#K%nKHo&wCb z@JYZtnF0U?D&o*SRshubH+}7AA^_U@Fz{D6e)2DVlNP=I^d!FaHNBUrlP*B|hNhwf zfszhR%R`X7pC&x3mzeLpYd6_`q1^*cD(~!LfQ&DQr~!&_{Z1{;;AT8SXYkh(`YF|L z;}2H^%9|Jm@~*`D9=yLz6G*AshG(>UMfQnUKGu~21~Ia!1fs~G&bCID;d%<3e(P0B z%47nWyQm!4yxmo71E~tD|Euf1J~-lfPoq-mT)5}%B0EImzd9+%=O ztJcv$h@0br_Esa&=qekuXn_7hvBuuyI-t{i5aCdp07NUdq6xHn9Wu6Q=<8osdF;*1 z83wZ5Wi-}LrJ(;l34JxC)oN;Xqwp*4;#=Ne9%@n*1A;D6u^o8?EI2V$o-qzr>w>sWkHZhbzqQ1D$I+`W*y>`~meha&(#> z2A?k8(tbnbi+?3UpLUbl_e4oI3sSXrgLU32`OfgP5(BqRc^p~VMbWCN5e~f{3(nPc ze7|x?VkJN{wAZXM9m`sjr!{Y+tniJAb(cHhHKBxt z#jp&Syi_zIh?@KA2L}85<2UUt<859#yWK1tf0koFu<>dq;q-Ib zRm7#*M%Sgujt$QKR8`j;`5F#Lx!t?m3+RFQJ9J%bh?|u=joK_JLkhzh31}M~rBPTk zogD-t#Qcd&N-hCYx(R4}YC?q(Q`=*q67+md$?f7I= z#A8xvsX_75?0H4gA*zf;P-g>+DEowj*O19#80e=+30mq#mjEX1wixJ5dw5>J>A2^k zjDwsDAH`uwd4L8K^hLKT$De9M-k7)^r>EAfh8-Qrta7TuG8NKJ_Pz`upp@ z(OD!I>I8_&d8=ao>0MVuc{q_Eu2K{!qm=RS%}g}utg5_T3%mM@hS7bwAdW={1B-pL z?u$f_4kdAksABk|PrQkY3Q|L04pz%z8>~}uau1i~-P*GFv`8-e39PqV0wR8DEKy}* zes{z?l;S=BS3PXtw6{%u$?k^5&=xt_V2)nj89Du0T(6S9s^Rx!f(>;Z7-{#i4YSrT z>Y0-T`DdGTZJC}(mPm!CgZHB&x+Xs>DQpP0iqDkDnesa3a_+nE;rPcp zilrw^rH!AN;knNM0hVud(}Rn1dS$RYfl}bWH;F`6+(K-Lho`(tsut}az$U}i083#=Ai~kRJE^>` z-Wp!BsPbg{siB``t3?uGDk7d_>g-jPM1H^0R0knX>??Mg%3PybIyEOv^*FM$A+n%v ziBY2OX<^?iGscs>jfKUf>qL`*UDW;Bul4ZP@o%zDAZP>bhKkV-f}P<5nEM@h7vjy| zVxm7-{<|QlqNZ2>RskyZcH4FAcR#fI`t1##uizX0L_aWO9joZ}NoZLsPncuQeRoEA z-xmR_!RBG-_w~=1$_yP&T`na%!Yd7=BEvP+^c!WU2OBhyr}vShSPYK>F79L=2^$$VyY^kRCHFLghmJvu`FW=5W5R+~zAQsA;`TBR~zUsVF6IGDPVv3sOJ6rm7pM-mJ2j2Q=F){(O7itRq+eBvj>14W zX#!vq9*UhK#UPhOSEUK`oS*^7ocl*R|Y%yqC@0k#{7+ukrvdm6P zWK-U+w>&>foK(8uk2-`=4#2M_^5N^E&m`>bY)@CDRYyUERun_}q@-6F0+EkBqLWbu zstfqd1rYLYZj|p5crJ>na`buE`eSm}C?&YKFzr)sFVe{F_4AL(Y}ZS>m@Z8U^_cTd z$DFi2!k>1@Nw!aurC7b|cW-AbLTd$0){mdRl0v$pB*inue7J1GD)~@|6trWigMlX& zzwHQhJBhewsl}Ir(1j>#)|Wa<2dpTBDonBRv!#L`;@A&B#VVqgsMvu3*ATbmnSPEH z=~6O@9$XHosqFJAJD0tPXM0-`-|d`6fG+;+Z(V$NgE=sPWH(-dSB)`@*OPiUQ>)fE zhdJ3e>>`dqN+%tbY@i@+3w7CSz@A9KhH@)>tl?!tV&~NPG&DkCRXt6Ge8P3|^sBbM zcDsWeZEHI#wi?aiXp@6>$)$UGjW1JG45NR?nzKPq>loogX0h<+rK@#+`!jEh@zs%D z>cMQCbt_qdp~DoV6zkW`2>cDnNcMWq3>^z1A`<@$6;>b5GwD@32X|m;DA+#^8zY4|Ol(wv!Ec{>31rpCz~#Fzvz6=!ehlN6qOvZJ-3(i>TDY2ka-ZFfZ0b*#V&x}~=@ zPm8Q6)R_`d_pmt)BTfwKW$w$kP2kW)dl{U&yzn+QZqh+^X=Y>8M$cf9EL2YF+EM~o zY9^TgC;NJWta;mv=dJ7%G9XROW1t~>+fD7Yya$JK$WsYF5=|=YF>smyqtj5rU@c-l zt{4*7to0>>^?PSFV`m?tP6IE#GtQ;Y$4>!#m*}z zueBFX7g=9_q(~pZLZ^Ht>?Lu(>qnNG7_TtyV+bp~?g7xgKXNbs1E%z9cJH07?Cx&z z*Q&y=+Q&@ss8vpGi#B6KWc~C@k#6a?T;Gwa9y*B*b9(Mz;Yffg2gV!X+Z57z$U%?2 zodGo6l+LD5Lv}b1Bth1Cw0mrC6s^ZDyLzQwyeNEgzr60!Mp>b%u_WeAMYTACZ38gU z6#Y5y2~lnFGOGUsF`}kyFNGHAbY^$%7I?c}*kFOq^6QGl8bCAp6uY!w-bVlIhVEnH z7p}fPFuabQyJ5Rg+I$qUO|mkzth3om*D%(XRPqHN@qb<=3>C`2>BeTKtE5$ERgWG0 z;9%Uk!QNcB>jp)qK=y#C3O1HBvmLN8-5c&_tq>CgSye7%{(?`nuK!Cs z)k*lc;yh4R5}%*)f+B3cAk2bj;Zia5>`lF5W%hwrDx%Ld(MJv!uKga2S@nFbB{Nzb zrQ$bnR{#Jx)!-UZ)!M&~@z1)2{}5589=z-gTY^B`MlS`MP8&S^fsW$V-Li2MsF3G@ zK~=5!J_o6kLk)#Wa<=~m-;Sv|N$ZSzN4^|CqY;ZX^}tR`JJFzriN0 zX{5G?=}=Zl93-|wnTFc6vbAT`8y4fNM>DcATyCX}`x)YIuYYe=wp-vLq0lBB`nm1Q zqnz76e4A9(U}`*2Y54q^5o==QtYD3Wi$B6 zj$X2?{8%3g%MT1Lm{T2!us19!oW|zVtjY`UPKmtL3Ol`B2~-_&de0CN`qca=`lgxF zi|fY9LDN?sdi!Sg2&%6Zbe#0oGBqT#EcmpbrLJ#BfNF7-j5V0V?B2%pJS#M4v;ycI z0bNVm2sC)f)^K{wwX1=E+B@d*g{zyGWPW<~I|jtFP8VQDw-!>dy?G9rT7ydqSJ^U8 z*Uxm`N0|u^%2T+Sp=*;<0P)JWo*=@A-W0*z>fz@=x|Ug~dG=a^pue4PmaznY_MY5O znuM+5<-jKEQ!eoG$8TIUP4C*WpIIMen4cL7bagnqlukC+Vyel7NX^+)WCf4Nd}nX^ zh(i@F?l3?AxO6QL9Aq@WSLH~*&fIc)O!E50s=+GpPRbx}iq+!Pi~0UXlWlRg%=1*F zNv;VnGbhcj*Xk0>RSuUUcXwNHqnRH$Y9wcl^D%?~51F{QPF0)TIr$1O82i+8%(`ur zgb)Ew3pE8e`*2Nqe3T5-pUXXuSj4v|Y#U4i(A~bDt_FYTPyTDl^ZUg(pE>n`*C$8^ z(IF%gh)q47t3Nef{fLh*N}+zF9NkqcEQRm;aZRR+_mr&o%hV2~O-D-ZOjdtV%Wf3& zrt}fk{kzh%KGM90DdAr9utj$L-81bXp7-BBTcv^#qnoYOC`r-r@ID&mDKSkiPB>Ri zrW9ZiDXu&etQ9@2aPgBUdr#F0siom3jjrUbvFs;dwvkCBSzhicG}8`x7T$n+%q#Wm zbZ1R+9k<5#d&<$3#qhN5Hn|(&X6zaHqf(x-0$dGNPPLWPv$M0@<8gnRzz;J`^`7hH zRUFw^mLkt%$W9jq=9*rQlPGB>|Lm-Qo|cn@rrVxW(_?s7PW))Z?UWggB;F@f;z2#v18evT{e{l9!DX+c59%R`}rS!z8uk9@O&#H;eO6n)gu-8-iEdQ13)+M=J{st z30miV*sV@wO-sCV$o?Epp$3Aq3%pqc{TlK85;TO+y?Qlq3YTeJ2gjd(X^6kSc-|k7bs(std^}v0akkm@#^fgZDWxqr}_g8 zM8R(RY_0Ax=tUEC_FN zCs%iRR?(VCCd>S(*z3}c(^HzcF6y1nDa{`3$0Pa{jiTcjRkcheuhL~&_-Q#sAH!I) zikiZX3uzA7y=Np4WTC@c3TXSUAJP_M*$)X?%9_klh!mmO`sR-9_NTR;WEIs8)wqCG zL9I_{1+~<+q0$(l8iXe| zcv^3}K@*lxUHUUPzUP!%=IOg?La+d|m_Bj&g>Am=Bi>7;_`)9;0peH3r>hS8Lc#kx z8~XR$YbDzQ-ybhkUdqSI5dxSW9rF#vDuD}PeF;sSPIt2#eauhfDZ2v42qRJ3CbjA5 z7sLRD#rW$fyZ<*jyS*OZK^@hw0=_r}Ol61exRrnZxikdW>*Imfoqk}H#-0IW41ikn zH-}0E?Y~;-;%*mZ>0kphVhSwvxbIyHx9eq3Z^eS)ftFFxR&0)sm~Bg=r>Ls3ua2$8 zEMqIOGnV> z*RMtmQw#t2^eS#dg$?y(0*;Znj`UKlw721Tc+B6g%VWr@tkhjvY7J)fTR54Il*Fn= z+fQR+mK2E_EQ#Y(?yryiJ573e$jW znny&uH)|N8>_ugnx6Q8^1+XNm2Qx^=S9SHIlG~&?LKR4*pcvG7Fa9~dzW%3K_VpUh zATd^(>m#?=IUcwzQ;XNo~*4X|#y!7!Aj)shwN)QVN1)LMO=FiTC8yD)~R zAO(2xdRaZrl2yK3UBq2v(!@$zRV%*A8oTix5mXp(_tdm-F|teN5xKGC4DSdZ?tfT2 zwx2kwuUo~=lU*$4mx{Vf0Pef!u|FmXKf$5@lunc_3|X_(x(vH+N%o<0T~Ff1cnL=I zI+FqhwcJBf(1E(CBnE`vhc~hiVmmKwH2Ii-&ZaF&Q+l4^q^o%_mv?yb!O9h#T_6pw z&|K)tdFpX};^%(XDez@q33+@yUi^v(om91QAe}2$CmVV6p(`zNG7YIn897=5vTb7Qh7#;*ZWkz(uV9zd$$vrhw0HG=wEOS<~< zT76tk7D^0~C7xg>tu)>3&eCc({*o_WpqIjdn?aRmvSP2)Ex07@wDXp2q>&KG1L1G! zzR{99&JmI1x`GwZN%&UCpJpSf&84_;>2_{=Jydm0`UIAKo=ju)Uh$0Z9367td6Z`tQ2!C#uN!iD%8FvDW_q(E^C9sCD>B^_SHo%|z z8>#+MQal2uEo9CN>$`a=l?GLr!qjc)qHBi8LK8@wQq7Ugu?^|V>4{XYY9)^j0(CK; z+ef>KmZxA$h~+|yH)Z)qVUTO6U4o85?}N*JG|ji0cF%9A+5H5}|9m^)+*sBJBH#c& zKB$xB&H}-1-{{QPp`m7Cfcx|j{XIlRXWBlUJ z>8IvT4ZP@q<$Qxl;vkkY$ z^_{=5a`n+5<1mK~DZ2>CRM)*D_ps}Z6E{H{d2_~`5UkwNRk~05Rala7l`L~i*Ug;l zC=UXyeIWWerEQ+kG)_%9-6HdlNqIxyyjFV55odm;84FWi+CqyjE)!2G`pcBYdxv#s z!i^Ab?$A9JFj$CGA(=~NQ7sXx1R~J zq<`+=@6{!9GAjV+qbiKE*6NO9z{C+7`W7cU8d?#4D8XEA-qXM@{q!zQwrLS4+}pz$ z!VkjpscEvilfA%46X45D6+6%CAFzDC!>>CfTzvB4gF|Qmz#44adC82jvU>qXM`R{$ zd8mechI!zU;-Q}QQ<5D~Mwmn-pt#|e?P82BkH1&On|RF5=RS)#RnA50o$NPWLwaT) zg}52NelC>lU}*T{wK2wmCfo%RS$$0pIThGeO;UINZPM%WYiauP@$Yr4q?x8+J{9gBIq!3zllP5fcj!PyjGT>%O7hTe2@LcE>NN1!X zr@o(Ask~mt!y7$-f zA`IBt8<})0r%(MEPm32bM^?&o5!+7N=4BF&k4ac&-N9~&(WAUmsC)GYnzTivZN0)0 zs*g(A{`nx8fSKsg_Y?Z)#Bo^*N9D0KG<$B~vYo$KT#!j+0t0iZHw>8yri20(A@{tV zI4pzibc)5|jh9bJj+bD@cFv2Rd;`B?^M%h>VOJS2MyysV#zGY5!|FmkJSeSH2%PkQ zF%&jV1cL^OK9^ho`*Fs$#x=d+#cBX(-gJ3BWA z>&VQUs67A0g|`FLn$<9-Vu%|+i@6`l_zg6 z1vlU1iF*9HjWsmdw|mit< z^Jv1$lx+%vO?<;gm}!zDgO2y)ZtmLWS#%=hRz3CN6@SZ+jLq{n@}s0l{z)9?(bCnZ z`S?B5Ag@~Ga>FUN7scYab@75ef@dcO61(Wcj4G>823&KOseQIm5Q2L^Me9bX2GA}( z{OWpsJKAdvqGDmdaPvFY%6Tv_@0@_GmLc8H&2gYU<)HZApas%qFAjiXUmOO=cm?^< zZz}*E%3oxYquNhI0gI`>(vq%!`JVuxqkUk^*mTPU&(xP`T!dlo!u#Tsd z_v3Q*I~%?gf@WdC!r!7u7(h!8?h)?eVSn*Q(^*=+89~ui!XJKrebORkk8i*GF5F{< z+P#=nh{m)|{m3PQ>6S7Ue2sGzAhl?`!cBBBv}lB zIqEy0c(2ft^BtOHQX=IZGW40HD_Qwh3XYmyHv7DL4t{|fTZ1_e>E>zByS@5CvTnM_ zk9ZuQ^;iXLwkBZLpLuTRrzfVN9BgbaqE&T@YfxG6?j5X@TJB)-@Rc#f61y|%RA$}Vc?p6`=r9twi7EH<6J#7_Bes1xLj6}Atp-X1AtBW0QKm#_+|N< zt!*C9FKi1j5~h`oO>FzJOKB>WE@CQ+;TLPxCrga`@3d_yzl0?DeeDtk9dgfX3WcxZ z+8RXN`jnACfjt>6dAmRqSAD~AsRYgs}{*8obl~^VUb*V01Uh^G&+`Xt}xh9-# zr_DHgHy+Rq`*$D<%fma>m2_a%yb(O|wThBGwwN;Fq*DC>9*QcZ+p^q~FptN)fIA2B zUSSgcrmEUyhS2bQ`AYyN<@P-?8p2o%*jmpL)T6&B7w~AmMc$<2ld)T1!UO=nif7jtwVJLqu34Ht$O!Iym*aI<;i;3 zG$J0U$2x8Ixijy)*uw8mJZObo>s)gF{A%pYrE8Nbc!Wby5;UtQxpnew^D&NtBq{rB z=1=p%za*jkH)iNBE0OAWar(${UGHUdkWHFeJ`9?q#-#vm(z{%5P%g#evWd+82?tGhXgZ;pMdvu_UAKd5+5u`e=iZSS)gS zy}`Afs$;sb$_^aJJ5~R{C1Yljo5do*`J?-tiko*ILoqHU>)Pq$iDZef!^XHuHpMqB zx?M;-@2j`STPaQQP)k7dHfQ_sGk9wSC7+eLE*d_i?w2pJ;y-O77U9kk7n`}&>lv5K z9_$vQliN*kPb{Dmed93=XkwYcJ-0x|PGRTFBYd1QD9Hplxy15eKZ=bl_ddar+UslJ z*LQ?1Thnq8-uvsFOC1$X#tys{ZRVdD{dHHxF<5zu5Z{cqqTN{}EA&vG0s5DNC{^%aDX5N<|6DPRPC+5=vx? ziZUeGjj}J<*JKwp)p7(i||Nr^F@AE#NpJL{|=bm$)bMEV0+qtgq zl{8y0H_U80x2d4ux^2X)&J*7jb?0_k9Gi12xTyh!?CQpMMkMU1DLR+(ro#H3{#zqMUkXr#wSm9A!T)g zLHxt%eP_Hr>)pg|D<8*kb=8!_oE>COd!neZA^4TFU*8Fo7WW%*!ks8~%=%nDQ9jUc zqN(@o{5CSvUyo(`S>>ff3=(Qz%hliCq*Z3jZw8Q=$=~_DmD;`f0SfYq*X17`()&xp zKVAzhTT&17E9(f{9Muvo%wjuiv>E-i`@Y9^gn66X02m)#kAlfAgd49h^XU#SB#!qR zWqyjkU#(6a4CKZFSrNpAYl|SBJ?rO{!BN#s2VzpIp6kD9ogs4;CKV~`OfFM4M65mv)|{D=4@l?iE4(JYTMkj${4;7@>)z<7L37X z^*qO?n&XZ+X@r4!BOhW0;@OW_lQa;7Oq7t29uYJK7)P0mgJZ@g&Fc%@L_d|c!1s?r z#}<2m3RCm=Eb!Jox%8oNZrQHTB8cBd=gCPN+w;&KnQVAmwk$pG(g&!@9nu^G{o6zQ}jSXR|a-7dV4_S2e6^v3$_t#JlUL;cwlV zJo$=obF4;&gLg`*uT>5fPL_oDb;yRWf0t__g-#tUZCS~AjSu=#Rq*88)Ez&zAc`$k zTRpsGx~4~Y@_^~$@HE+E!JSiW^Wc{2lKQL8Y|}(r{6qP-VmI(mt%@OQ8b`D9hvnl) z#*^i}mLsxdbLl!{eiU``oI`X%nO#v_Mq==(na<74M^0n-UcB9r^$Rj>0>6`kSl6wG;=_&dARw#TC z4Servtm6ZLR8?WWkNf`j*wTN;XMZY#VxG$fd?K;*nV<|xKj6#M_o-?A;1>JTPW+?W zOm9WF=->1Cu|5jKbm~s9*rS)56H2@8>+>*L`8t?~-?3DB+jax}D)^Wq`f6EahME1- zg;w-}4EORWL6x=&Zu|mY*h0r050Dd=APeY=USZ8&eSFJ z2)J&G84!%7Ei9&K@0etbr>{g`WmKchJqh6r&iox}!LQNxzmLTK??aaTeKf%T%lrQi zS>=DPJEEm6VJ|znx-x6p6hFp=lW*tusc}kR3JyLiwyUzZ?WR)_BeI^8*1Mh(;LBwi zWvs|8(RUX?af9X3-J%D%k*qADkAn~I6*2siQTw;Y|1Bu;|0V(ao*4d(_x~F3Eh;u5 zNUhp%)-j=2?a12KIS_;3*&wj3*&&bJg^>KA-y923N3r^ma{5rb;f4Of0M02Lo013T zdU%V_7xgbBkM1E&2JS-6Xhp)YoCtjGo0lDW#y>E-+32=N2l;@Dt=@VUGL`-33vcFo zYx!&5HOCgY)Xiz*w8)f_05L#|D9*jQ!=!u(6gUGJTrGPN_CM2_qOmFO@}4`ep>`LN zF4zLYAFd-_h5e~~GIk*pPXYKv2Ki52{c7RiU9yMKeTbSsz8}Ma zn3M*nCRhH{I8XkG$9rJcm|GKw-ngk4BDFbLGzR~twiCnp#`^#W>7R!6=eFI7s(u0_ z{o`!H|Iqm3YwUkb*{_e|e`?D97$@^Lbo~fZUsr>Ri1N%EJ4(1vK1lcMo>KGY+0N+1 zik<22S&m1=#xi=dK{oY+zYp+e=@TvddM;GFy&ig5(-$5bpp%PtY&`81=RG;W*r}5H zuDHdS_C=+#72%V_CCPJs{~_h;CO-aa8U3m4pxY)m;g(c^`xsEpOVt&7*PGKX+@h$lpv$u-;9t7Cm z<_x1m`sADp8>_Y=EuS``zpi^HzkVvE=LoSnrbZbbm>c_ik>x+szE1q53;j+t{TE>3 ze`(x5TR>um(r}UhWq}$oT)IjQ7JHA9EO|dzqXTNBqC|Av+S*Zll7KY!7{Uo`L+4g5s|f6>5SH1MxL1MuB1 zw6q|&+ug&>+QMn?oy%$p*?G$BWsbZ5OS%iXAd%j4N@Kb&Hh*nzr{=JR)wz615UQr*R8q>+o z(zC6-X!2&diGfj0pJG;pm-?b<$@!zFDji)g*`iO?RKgu~HBSVyhqT|eIdG+bQ(nMd zr}UJkUUZn7zQaq|?T^eSE#@;JHoWkIG-sbKjK-JkQ1MpOr6If_2u1qmSt}Orh3pgi z5{9qjR$S#;4d1Z%n)j^LheQ73sH-%&QJlVRDxkiy<)u?w4@I_ED&)|OiwgRN54w7T z<#+;$$uJLvw=`Gw6&B&yioUPB%|&EYJ-&z@l6Mz&GLbi=7J6`dJlZ8Sv%;*mYpSG9 zMY4sR5P|YQBTfg6jvFP!D&H|)m1_}K+6>#+?^xF2_ z$eg-t&M5ml`P4%n>Ff&y7N%ioIh`t-q@;_nh3t3qt7cEf*)M&n*3D=)n2d9{m|U3` zF)9*0u%pDLfm(^kd)R$M2pS@fdQu>=VqI4EIr){=lWrN45UNLNY7Yb7qp< z^60l!MefL8u#~l4wW0qOne09GpUFg4R^~Svk^7ZKe$a%bkB63_2cQRjW#zpSdvs!P z5*+YLYN+!|@k?4-fWLrBzz0A5l{D7B?O<)`@#7jFDY=t?#!l|h7{4SqIt7kS{W$vh z>T@p6dzb#wwvB|mgcQGw?A|56ol}rF$uG0lv)`SQ0p}EdIRzR6|9@Qrdtcuh++H`Y z_};bVmo%`jwdNP*mzLXW6dbu(gWF2|@^wi)Yb$$;GcG>-Cg9Xbeg)~1{IVzI_)ULY ztpU0SE_VlA-&;XHEfy^|7tg!D>-bN%`EmA_ej9?DyIDB9-`%^LrSC7Nb@)BpJgt8@ z(g0VTwf3^Nw7#r$X7A+B^K#kR-Nn<*(t7W%KaKqN1KgX!Uk3Q=O8#{=ejfAB4`Q!T zP_+HF$B&87aRM{(*BmOxj(h~3r{(#api9~%I@dgNeILFb2{fB z6#D>#F8Bx89f4>-sHyf-@28@s-cLKz{zA*hdNaOLO2L?ICbMDFb951tsM^D$4!) zsi?r!f#7op72|%UBU0+r%$F=^1YB99L*mj82%dS{zF7Qar73R`Z;ew$6FOD_5@>8DGC)X=QC=YiIA^?&0a>?c?hgdOs{Y;=#kn z_=G2kNl%|WPkxp0I`d6db`IECDk&{1uc)kQY-(<4ZENrN&_6KvX=wQK7c^#Sdgkl5 z*}3@z+}ii`jm<6m_Rik8D8M*>`T1#Je;OAf7}q{3DoQGvy>U_O^9H|^j8yxNNKrGX zU!t*aWfqVQIlyuzF8yu8K|z_zSk~KaeY9*svKV39-q3!G>_0cKd;eD>`*mQyjSCGq zOi2MA9wj3L4%vzCA*+B88&^c4?xpLXD9&rxisV|3-LLUYzfTYPCwRXvH4Y@YFp~7Y z=OyZE1B|c(Bmx z>!0YC)=!J*qqPC=F1)HDNLCiyLCzW-f8SgNwA|Rnf1-Z=GtJpQqAv$P9P4yHbc=oa zN+}(Z=%-Ew)iOkre}jSjC-X!ep9dI(Fi`LQbmf)x7(6y+0rB$Yn=Ph2ta6Qi1(WEX zbqoR^yD~-_K5G8;^58WDZl2}`R{XEnL4Pki?| z;|#ON6d-p5R|VM+73)M`5JV83m;MrgrJdb{ME8Lp4UkFjlyrCz#1I<6iO#_)=Ofo9 z@aDUa!*z4E=EQvfM||1?(YOo2TgPm34(~!Bg$Vo@#4nLGVse$uE=amRU(%6nHsXpreBYCy49u;!%wHJZB+1c0rWzPirJLh*f-D4lf= zgz8I7NrJk8&|L@@Dn<1aUb?9s&Tzs*;;4VlvOxH8$}#EU_|Ak6xiS59nvNJ4dV;JA z+9COkfUmMpEF-ZWQUR@}l|QIkCBlggF?efz5VhKC(rms(hLPpW)d3!6L=!Y(N53fs z+V$GbZLEuGn9g13>Bao7A98mgv>{Q)mQ4fqvaH-vW$+I%aB7PHodWcikLS*EN}tz4 zB?XtM;3B_wAnZ{Q9a5SJSL4*%o|PewZ+#6R9itq{E~IRPaVQ^}>U_5B@zRgNXZDbb zTLIma=QZYl@9c(R8X|Gb2b-AI8eZQ?;!O*XfUx5aa{Qw^(XykmQ* zRIE)t!&7ykHLUq9nLaUB<;(le6;rXTweMq66UvPngawIJoHNq2=FdBPPbm^|LsaSc zRB2h#6sA#wiQP+uRjmV_=vuoUpM`<(I(Ty-!adJbSKkv)^z)J%ByjW{g$+kfoofVgO9D*K#gAd4M#5FHnhiL zrUXkhr#Iw$D#yN)>O7AJDY7(K_^9>ILyn;oaQdyQ5FdvrUB|88dP_Q;6h3rsqtx}Na0e%&)y5EDYk{$Q1Nk+T7?X#|~5EA`W+8!ZJO2RfP~ z|AESN?!$0KQ`VnA(2SCO@}^^gmE~N8OUJ8uKMh)ihqrLKLDQ|d)i;k8txup0F=Jor zBOSZWbm+7_ceNWq;JVt@)1bDmic9F+&*SJ*pQ8EF9kZ{$txp+<60Gzh8MgoVZuN57d?3d;BJyFWp#E~vP zpjBrle%BPzO>wHn0kUeBzsl%%jgPnQ#75xl>7|{(SH20lC1rgtJRk`jy!$PE4z-ba zaLc8mgssKcg@nF!sjw>_nza*Q(f4@@?DF}XA;EMwduIe%)rwO>ZOKT)Do z%P{yLT-}(D0uVG3CcNllZs1sKV{ozHP^+Pr7im)FWx+sy@M-j(k}dWax7v)N#nbz1 z2k2*)z8*erCS)x1B$0-SnCse8;K^mZQI_)t?ZC$LFn+K^tVn70Ye`Mzu)cg<)f={yww;2d4pzuUvA!o|lKD(NUgmyzejYLVTHZ>M zta^oknVnYDaS|_K zUG8mYudgyY>R9^=ow0t@o@7`QPocyT(yro2N#>%&#E=dH2ug_a4^j4#^(zwF3pv$ z`d-uvb~Px^wBqEj-c&R~4_g-Moxk`LZZlAzCf)fK$$2XyjOs-^&Bb+!98LFe8eCG? zbo7x8_~CKx>QmoNDsiMr7w(Bo=s83D5PLLP(nqY}sib}WqEzY5-JzrpHgWnHP8j`S zMm2!qF@4%)Sp>VXHmNE1l@zOd@Pq`n3t6#(oVdt!0+qFx>|wN{viyGeNyc$mCK^Nh zWAa$`K2SIua1DKs9g1f<<@sY%-UYL6KZ{uQ^Yi)HtI^a@oboI*pT*14Z-yG zTYd~$m(-xIBAal?N3t%|cF}o0k*iB(qKkYuZbk7i2<^coJ4(062CVrb4|A@$jH}qO z3G`A;>x0VZj3cem2W~-Kw}&>sa=t0@uvQ!|)1)e54qd!aS^nvunk7LwpFK$a>%CZ+ zxQWF*Hh9(P;?9Wffb+(o?X&V;u{Gbd)sHZ$+nnOTQp~Hd*%d0)n==u`raM+9v8}I$ z-EZX9WcTVY(q5$4eqtMkuI2(}K_!A0ztt2(RZ?DoJNLTG@otNSI=A*3<1lU7i^EZ= zFJdmK@oKWZ#4I~BHQx|UEy(EEj8dk4n%Beb5yC9~4+Oa8>izE7FBDB^n&wE~FcS>zS zk|F3xhh^K z>0<6msqtF>NUJqM`czNDLX?lY3m4{~>WAZI)?uI8ma@@7`0{b=g3OxP0<(W+O3Z8|WYbTq z?GD^-7ZRaxdH++xnv#yz`TUtS@@X!RsvjiOSEFaS*#lkhN{+5OGqe_t4&?AOT)JyV zdEF$$jSZC10X0Ej(pk$)elTHL`|b zkJ3UX^&oyE*6Aw!Wf*pWY>?ofkVN%@($fx49Pom3ZJ5HY4FLR~)e`>^$3;cerJ=Qh z3-B7Ej}6}FTczZKhrQ3r;$N_pE1@Rs0!L2S#_lvL*fI) z!m&mz2x|QBji=|a-}0SN8PS=aoxVm%@1x*<7wi|~2U*E}RawXDGogk(k+Og5;i_I{ z&Dyq9;=>v7&mtTK`f9#u^zo4$*sKR7b*yvpRo$WPo1m1l_tO)t7nX0oW~gVpcVPa; z;7`eCH?v}D`SC9G246a-9(}hv@g)gTR1>y2?M+KBRpGf&&_!ungrknO&$DNK^ypAU zbLHjw8a%!MK2XMRHA%j>Lqt8 zmyln1gv;f%md|gnndgfZ^7AQZvZ%ai($na2kG;96$6CUq?<$~q_`K*@B$$BoHM=?h31@;J?WKwCDT85`UK;G3!|LACe>!RBJ^lex2T^sipG9f6RNk2ECEaZPEpDu1g@@g5F8v}2Ty9%-_7q$@3PWMN2q zd}{EPD5ybIv@bIa8mB51)D?QR-&qbtd2`HEv#4k(e60cLU7APczeQ`n;luuqlf4& zihaIvmrB1(FLcC_H4R#~h(UbGBVS}2CN1`m*o6ao6*+muF#5rl>BKhUOUkQ`K+!0P zhbk#nY0%~@Q2KY1o-uAt;OFm0|a*Y zmq`4k*i6so)uz5hb0!zhlwND{hcfAOOXP&MSGa1OjbOj_?UZbFrwFLsSY+02jF_;Fm^W+Dgn%kj zMwplfL5CKTZmfjljOt`@x;kZRuIU_F3#f!l$3lw_&(J4sXw}C&$icxHE=^n%jJa0g zQao|?rNZ=)`lWouO-0^3|EY+G+c@(klDF1#h0>P1ZL|LDF-{_fL_j)$%ki=?@j~^0 z0!;AI+q*_8X40JclL}-Hip}={DFj2})xi^>rebO|S zT|b9zT+H%H4odO%mE5WJF|*kbjYlK~C=%rDyQU={7cJZ<6p0`0%G0aHzwY@kaX(%x zh=pPSdAQDo_k@J#p&q_YmF{%W2zmLnZP!M4)kjqumzxYUf~loLi^yXACIaDHjDBft z|7=^QIJ^E)Xhm!hJk#Hlg<_5Uel3sBcZ^62>7ZijOL;Pq;Qtxi|@<{ zhl~+(Cwpn$0Wg!}cp36NGFTRMy})M5ol~YHsNzi;%tYS}uM?JUe_I>yeR#q;>dp1@ zGhu4_hy91&f_j7Q1OO$`!HP2?`Ad?c&ac5gyO5QYEp{QMPKYO^i^vjvVw^cEVi??D zt{JtD6jx)9={fKjpXQTbR5}pdob>I86o18~qjzcEXw9m@Ec(p6>bS_fGGTmTMLiXF z;VPwrK8TiaUK}%PZ)ul;foq4Z;}b8~RT_a{gk7XCyYgXB_B_L;V;!9n#+41)Y*YVHuMsIW~t;Vy&>UoM(YrEww zZ`Izbt#}oz9NDw!fp>Iq7JPa(b-unWMPeNjQ}^Km{QTN#^hEKS=NWj1EpzOJr`mTi zWNsQ?Am6fU6K`*eRqJTzR-2|lefmV5PUU@#UHQty-qBt``I-5qP!dalVN<&B-1M|hbD0LIg3z^hdeph$Y=kuBc;y=_azf$RP=@8a?&uP@EUbGCh)9c4JZv3MQv z_UOZ`4worjXA`Ty^PHE_$5Rq`taWbHK0np5iOQLyY$9GI$og;_4!n-hxHqf${t%%u zqaxmFY{ad-O>j;#U<2TJo(87t>cfHg(;c2g*PBl#=Eipj@Fj>;P@Pm}I;G;cdSjb? zbF_Cl)D$~j$z-uInKX1;Y1{g``|3mPwKQmyyhZSbt?iYSrCiDV1rgRp5mbEeHOY%|` zqRC(41oa3h$1hJ3?suxe4Zd0sflY%lRaWB=%d9xY0*M)U^i84mIK`ufINYPVVrpi; zi}cc~24lCDK7mQS_)dF6*QCpA8m2rj+QA@F%O+jH*9JE<2x=q4LNDO2R269wuA$t8 z3XUp%;pX@h6r6{|Goswmps4}=gp)ol1_R%oHVoXfKOLDP)goRXOOL1;dDpo?HQhV> zlH84CltWPBXMC7j^hM_fZgR^-dUd?3?1mVUhMW(~#~)Zlz5~J!y>-!4Wcskekndy1 z5f0}s!=c~AWPNw0GE5jk>_~{MMB>di6Luj955QG^J-ZOiOh{ng&GHt+ws5T!_@dk_`GMbpV-g+( zZdKk2-=wYqrAnY`Fj;ald`%XgLaqUs{Jo2dJKL0-M?g7~tmcW0uQ0%A%zLT5AC%@n z>F2zwYEh>fENwZHu0wArQH&-8)3~Xjxr3Ha$^Cp zE{{5!2JHdiHIwFOnr5>jCN8Bq_Bjh@PCdFMQ<=yv(#u9QT~xSLkD#s5$7L9*p2Uac z+(gfN)0_zn*=%bxTM`^rZ zqfF;Ppq{u=2Xyd8>^u>SJ$cTxL&SwcF$EK`)ZlpZIUP_zSDg0`=5p8%6*8QK+QX=l zHV#GkC4aB`5_(Qm65lVUVnRBSA8&f?T99{F#eR_q|CODBzyUQrxHsVxQ6Y7-jV;0R z&Mf&xi~n&TnggX^nE_k4n8}s5*wmGY<{-{N=d6CqCwHnf-uWwte5E(aR-rt6_yvQs z%$Besz+*!SM1mW7m9suWE#?Ns>k_%TV#)K*WC;H$bZZ63FR4YAb*>{`oaOhxh5J8Ligqhy7kM7r1O!o@+j-C&l^Q!F6-~BJ%T4p zvEYkwF8Tw?9MM6s=gJtgLxGik{RM30@U%$Oap2Kie#vd{=vu$HC-Rhy)pWI4L&Ut}%#Xtq^vA&cLV>oxbmUn>7SOP|Isf1i{vlr zn+3POey&4^9zB)^NZ}xK+U&a;AL|t2OH2b-^y|>G3TTxfxYxXl9tV6`EM9x(Br3I} zOTT5Jco))aTU=pdM=92Ghi99;mpOQG&h-T-7R=dQF3?)1{s*m0GnzJF!BP<7{(iCFtJALJ)vTcpP4m>b)Uo51rM3k==G z=pJ$yuQ%dtS?SSqY}Ks(^DSQK?dd4n*UpqNMBmg3D&b1>#;PEz}AA2DDnmn_Q2L69|N}5UCbr@x#9OhH2+Hj0$ZcTPJ%2<)J;^a*?Ojd^yE19`5vMh=*C z-x2}DRUBe&Uy0p5?g{*NB)PJD4fS9bVu{=q>)M6f`mzgI7ebXwBBr|$JKrWg)C!Uw z1GIYuQYcW2dgFstr%*2tPCeU90V=x?3$Q!a=VY#B)D172B|cQ;12+#v%$23l4{Tlo zgXB&_)B!%2$z)Vu)ICw$(_BZ5cf`;?%5qHQe^*@lu<&rKqVQ80MNSA`TBuo~BQ62+ z^<#=4&gNMbIax6(=nf=}o*bEzxsb&5{?(Yh(NOtNSHFq(s}URNks7I!C)nm`3{=T$=i~XBGIcsEJUqp?AF838}sFcq@+znDBA#K z*wX>thjUkEU(gcbfmU8v%Zad`pTMTr_1bK9?Q=L5`uqs5@J^Nnxrb0fv7S9+<$-#R zaIAayrm>UE@RBXS^k#P8`LoKeZ4)0Yj53qEX>eR0@g@ZIk-1&S0aStK7b-G;zo4-= zW49hURj`MEY$3PvcDW;qU4jeA0zOl#t*OVy+%4?gY;B%cnT|16K(~yJJec3ox&Z8_ zppRg;0z-=}-)t?Q9z$GJ>&{no^zq9NYQ}c0h7jeJpZr{>=>O3p#Q{uW4+^IH(s@A2DMu`$aoVC}rxg^=Gn0s5yURMj$)3U(ngB_QNsxS)<4 zq6YKc+xRqUfFIB&T9u_b2W@Q@bT3bgHzS8?H&MZ4{)0ihssyZyuQEomY@6M zQBt~gy>#NO1A