Skip to content

OptimizerMonitor Error with FSDP2 #3920

@aadyotb

Description

@aadyotb

** Environment **

---------------------------------
System Environment Report        
Created: 2025-08-29 00:14:29 UTC
---------------------------------

PyTorch information
-------------------
PyTorch version: 2.7.0+cu128
Is debug build: False
CUDA used to build PyTorch: 12.8
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.12.7 | packaged by conda-forge | (main, Oct  4 2024, 16:05:46) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-6.8.0-53-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.8.61
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200

Nvidia driver version: 550.144.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.7.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.7.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        46 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               192
On-line CPU(s) list:                  0-191
Vendor ID:                            GenuineIntel
Model name:                           INTEL(R) XEON(R) PLATINUM 8568Y+
CPU family:                           6
Model:                                207
Thread(s) per core:                   2
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             2
CPU max MHz:                          4000.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4600.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect user_shstk avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hfi vnmi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                       VT-x
L1d cache:                            4.5 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             192 MiB (96 instances)
L3 cache:                             600 MiB (2 instances)
NUMA node(s):                         2
NUMA node0 CPU(s):                    0-47,96-143
NUMA node1 CPU(s):                    48-95,144-191
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] numpy==2.0.2
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] pytorch-ranger==0.1.1
[pip3] torch==2.7.0+cu128
[pip3] torch-optimizer==0.3.0
[pip3] torchmetrics==1.6.0
[pip3] torchvision==0.22.0
[pip3] triton==3.3.0
[conda] numpy                     2.0.2                    pypi_0    pypi
[conda] nvidia-cublas-cu12        12.8.3.14                pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.8.57                  pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.8.61                  pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.8.57                  pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.7.1.26                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.3.3.41                pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.9.55                pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.7.2.55                pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.5.7.53                pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.3                    pypi_0    pypi
[conda] nvidia-nccl-cu12          2.26.2                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.8.61                  pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.8.55                  pypi_0    pypi
[conda] pytorch-ranger            0.1.1                    pypi_0    pypi
[conda] torch                     2.7.0+cu128              pypi_0    pypi
[conda] torch-optimizer           0.3.0                    pypi_0    pypi
[conda] torchmetrics              1.6.0                    pypi_0    pypi
[conda] torchvision               0.22.0                   pypi_0    pypi
[conda] triton                    3.3.0                    pypi_0    pypi


Composer information
--------------------
Composer Version: 0.32.1
Composer Commit Hash: None
CPU Model: INTEL(R) XEON(R) PLATINUM 8568Y+
CPU Count: 96
Number of Nodes: 1
GPU Model: NVIDIA H200
GPUs per Node: 1
GPU Count: 1
CUDA Device Count: 8

CUDA 12.8.0.

** To reproduce

Steps to reproduce the behavior:

  1. Set up trainer with an OptimizerMonitor callback and a FSDP2 parallelism_config.
  2. Run trainer.fit().

Stack trace:

[rank0]: Traceback (most recent call last):                  | 9/2203 [00:07<23:24,  1.56ba/s, loss/train/total=0.8159]                                                                                                                         
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/profluent_models_progen2/tools/alignment.py", line 40, in <module>
[rank0]:     main()
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper
[rank0]:     return f(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/click/core.py", line 1161, in __call__
[rank0]:     return self.main(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/click/core.py", line 1082, in main
[rank0]:     rv = self.invoke(ctx)
[rank0]:          ^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/click/core.py", line 1443, in invoke
[rank0]:     return ctx.invoke(self.callback, **ctx.params)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/click/core.py", line 788, in invoke
[rank0]:     return __callback(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/profluent_models_progen2/tools/alignment.py", line 36, in main
[rank0]:     trainer.fit()
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/trainer/trainer.py", line 2249, in fit
[rank0]:     self._train_loop()
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/trainer/trainer.py", line 2507, in _train_loop
[rank0]:     self.engine.run_event(Event.BATCH_END)
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/core/engine.py", line 304, in run_event
[rank0]:     self._run_nonlogger_callbacks(event)
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/core/engine.py", line 502, in _run_nonlogger_callbacks
[rank0]:     self._run_callbacks(event, callbacks)
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/core/engine.py", line 494, in _run_callbacks
[rank0]:     cb.run_event(event, self.state, self.logger)
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/core/callback.py", line 96, in run_event
[rank0]:     return event_cb(state, logger)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/callbacks/optimizer_monitor.py", line 104, in batch_end
[rank0]:     optimizer_metrics = dist_reduce_metrics(optimizer_metrics)
[rank0]:                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/optim/decoupled_weight_decay.py", line 389, in dist_reduce_metrics
[rank0]:     dist.all_reduce(reduced, reduce_operation='SUM')
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/composer/utils/dist.py", line 338, in all_reduce
[rank0]:     dist.all_reduce(tensor, op=reduce_op, group=group)
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/c10d_logger.py", line 81, in wrapper
[rank0]:     return func(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/distributed_c10d.py", line 2810, in all_reduce
[rank0]:     work = group.allreduce([tensor], opts)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/_compile.py", line 51, in inner
[rank0]:     return disable_fn(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn
[rank0]:     return fn(*args, **kwargs)
[rank0]:            ^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/tensor/_api.py", line 344, in __torch_dispatch__
[rank0]:     return DTensor._op_dispatcher.dispatch(
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/tensor/_dispatch.py", line 167, in dispatch
[rank0]:     op_info = self.unwrap_to_op_info(op_call, args, kwargs)
[rank0]:               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]:   File "/root/sky_workdir/profluent-models/models/progen2/.pixi/envs/default/lib/python3.12/site-packages/torch/distributed/tensor/_dispatch.py", line 393, in unwrap_to_op_info
[rank0]:     assert compute_mesh is not None, (
[rank0]:            ^^^^^^^^^^^^^^^^^^^^^^^^
[rank0]: AssertionError: found no DeviceMesh from dtensor args for c10d.allreduce_.default!

Expected behavior

No errors.

Additional context

The root cause of the bug is the fact that the OptimizerMonitor is attempting to reduce DTensors without specifying the device_mesh. An easy fix would be to call .to_local() on these DTensors.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions