diff --git a/meanValueTheorem/exercises/meanValueStandard1.tex b/meanValueTheorem/exercises/meanValueStandard1.tex index 113441dd9..6fc1e5639 100644 --- a/meanValueTheorem/exercises/meanValueStandard1.tex +++ b/meanValueTheorem/exercises/meanValueStandard1.tex @@ -9,26 +9,10 @@ What point $c$ satisfies the conclusion of the Mean Value Theorem for the function $f(x) = x^2 +x$ on the interval $[2,6]$? -\begin{hint} -You have to find a point $c$ in $(2,6)$ such that $f'(c)=\frac{f(6)-f(2)}{6-2}$. -\end{hint} -\begin{hint} -First, compute the average rate of change of $f$ over the interval $[2,6]$, -$\frac{f(6)-f(2)}{6-2}=\answer{9}$. -\end{hint} -\begin{hint} -Next, we have to compute $f'(x)$. - -$f'(x)=\answer{2x+1}$. -\end{hint} -\begin{hint} -And last, we have to solve the equation -$f'(c)=\answer{9}$. -\end{hint} \begin{prompt} $$c = \answer{4}$$ \end{prompt} \end{exercise} -\end{document} \ No newline at end of file +\end{document}