|
| 1 | +import torch |
| 2 | +import pytest |
| 3 | + |
| 4 | +from pytorch_sparse_utils.conversion import ( |
| 5 | + torch_sparse_to_minkowski, |
| 6 | + torch_sparse_to_spconv, |
| 7 | +) |
| 8 | +from pytorch_sparse_utils.imports import has_minkowskiengine, ME, has_spconv, spconv |
| 9 | + |
| 10 | +from pytorch_sparse_utils.minkowskiengine import ( |
| 11 | + MinkowskiGELU, |
| 12 | + MinkowskiLayerNorm, |
| 13 | + get_me_layer, |
| 14 | + MinkowskiNonlinearityBase, |
| 15 | +) |
| 16 | +from pytorch_sparse_utils.spconv import spconv_sparse_mult |
| 17 | + |
| 18 | + |
| 19 | +@pytest.mark.skipif(not has_minkowskiengine, reason="MinkowskiEngine not installed") |
| 20 | +@pytest.mark.cpu_and_cuda |
| 21 | +class TestMinkowskiEngineUtils: |
| 22 | + def test_minkowski_layer_norm(self, device): |
| 23 | + indices = torch.tensor([[0, 0], [0, 1]], device=device).T |
| 24 | + values = torch.randn(2, 8, device=device) |
| 25 | + tensor = torch.sparse_coo_tensor(indices, values).coalesce() |
| 26 | + |
| 27 | + me_tensor = torch_sparse_to_minkowski(tensor) |
| 28 | + |
| 29 | + norm = MinkowskiLayerNorm(8).to(device) |
| 30 | + |
| 31 | + out = norm(me_tensor) |
| 32 | + assert isinstance(out, ME.SparseTensor) |
| 33 | + assert not torch.equal(me_tensor.F, out.F) |
| 34 | + assert torch.equal(me_tensor.C, out.C) |
| 35 | + |
| 36 | + me_tensor_field = ME.TensorField(me_tensor.F, me_tensor.C) |
| 37 | + |
| 38 | + out_2 = norm(me_tensor_field) |
| 39 | + assert isinstance(out_2, ME.TensorField) |
| 40 | + assert not torch.equal(me_tensor_field.F, out_2.F) |
| 41 | + assert torch.equal(me_tensor_field.C, out_2.C) |
| 42 | + |
| 43 | + def test_minkowski_gelu(self, device): |
| 44 | + indices = torch.tensor([[0, 0], [0, 1]], device=device).T |
| 45 | + values = torch.randn(2, 8, device=device) |
| 46 | + tensor = torch.sparse_coo_tensor(indices, values).coalesce() |
| 47 | + |
| 48 | + me_tensor = torch_sparse_to_minkowski(tensor) |
| 49 | + |
| 50 | + gelu = MinkowskiGELU() |
| 51 | + assert isinstance(gelu, MinkowskiNonlinearityBase) |
| 52 | + |
| 53 | + out = gelu(me_tensor) |
| 54 | + |
| 55 | + assert isinstance(out, ME.SparseTensor) |
| 56 | + assert not torch.equal(me_tensor.F, out.F) |
| 57 | + assert torch.equal(me_tensor.C, out.C) |
| 58 | + |
| 59 | + def test_get_me_layer(self): |
| 60 | + module = get_me_layer(MinkowskiGELU()) # pyright: ignore[reportArgumentType] |
| 61 | + assert isinstance(module, MinkowskiGELU) |
| 62 | + |
| 63 | + relu = get_me_layer("relu") |
| 64 | + assert isinstance(relu(), ME.MinkowskiReLU) |
| 65 | + |
| 66 | + gelu = get_me_layer("gelu") |
| 67 | + assert isinstance(gelu(), MinkowskiGELU) |
| 68 | + |
| 69 | + bn = get_me_layer("batchnorm1d") |
| 70 | + assert isinstance( |
| 71 | + bn(8), ME.MinkowskiBatchNorm # pyright: ignore[reportCallIssue] |
| 72 | + ) |
| 73 | + |
| 74 | + with pytest.raises(ValueError, match="Unexpected layer"): |
| 75 | + get_me_layer("fdsfdsf") |
| 76 | + |
| 77 | + |
| 78 | +@pytest.mark.skipif(not has_spconv, reason="spconv not installed") |
| 79 | +@pytest.mark.cpu_and_cuda |
| 80 | +class TestSpConvUtils: |
| 81 | + def test_spconv_sparse_mult(self, device): |
| 82 | + indices = torch.tensor([[0, 0], [0, 1]], device=device).T |
| 83 | + values = torch.randn(2, 8, device=device) |
| 84 | + tensor = torch.sparse_coo_tensor(indices, values).coalesce() |
| 85 | + |
| 86 | + spconv_tensor = torch_sparse_to_spconv(tensor) |
| 87 | + assert isinstance(spconv_tensor, spconv.SparseConvTensor) |
| 88 | + |
| 89 | + out = spconv_sparse_mult(spconv_tensor, spconv_tensor) |
| 90 | + |
| 91 | + assert torch.equal( |
| 92 | + out.indices, spconv_tensor.indices # pyright: ignore[reportArgumentType] |
| 93 | + ) |
| 94 | + assert not torch.equal(out.features, spconv_tensor.features) |
| 95 | + |
| 96 | + def test_spconv_sparse_mult_different_indices(self, device): |
| 97 | + indices = torch.tensor([[0, 0], [1, 1], [1, 2]], device=device).T |
| 98 | + values = torch.randn(3, 8, device=device) |
| 99 | + tensor = torch.sparse_coo_tensor(indices, values, (2, 5, 8)).coalesce() |
| 100 | + |
| 101 | + spconv_tensor_1 = torch_sparse_to_spconv(tensor) |
| 102 | + |
| 103 | + indices = torch.tensor([[1, 0], [0, 1], [0, 0]], device=device).T |
| 104 | + values = torch.randn(3, 8, device=device) |
| 105 | + tensor = torch.sparse_coo_tensor(indices, values, (2, 5, 8)).coalesce() |
| 106 | + |
| 107 | + spconv_tensor_2 = torch_sparse_to_spconv(tensor) |
| 108 | + |
| 109 | + assert not torch.equal( |
| 110 | + spconv_tensor_1.indices, # pyright: ignore[reportArgumentType] |
| 111 | + spconv_tensor_2.indices, # pyright: ignore[reportArgumentType] |
| 112 | + ) |
| 113 | + |
| 114 | + out = spconv_sparse_mult(spconv_tensor_1, spconv_tensor_2) |
| 115 | + |
| 116 | + assert not torch.equal( |
| 117 | + out.features, |
| 118 | + spconv_tensor_1.features, # pyright: ignore[reportArgumentType] |
| 119 | + ) |
| 120 | + assert not torch.equal( |
| 121 | + out.features, |
| 122 | + spconv_tensor_2.features, # pyright: ignore[reportArgumentType] |
| 123 | + ) |
0 commit comments