Skip to content

Latest commit

 

History

History
399 lines (378 loc) · 9.59 KB

repro.md

File metadata and controls

399 lines (378 loc) · 9.59 KB

Reproduce Results

Tip

​This page is for reproducibility. For results where methods have been tuned for optimal performance, please refer to the community/leaderboard.

The scripts below execute standard baseline unlearning experiments on the TOFU and MUSE datasets, evaluated using their corresponding benchmarks.

bash scripts/tofu_unlearn.sh
bash scripts/muse_unlearn.sh

Results

For all the experiments below, we used the following setup

Category Details
Hardware 2 × L40s GPUs (48GB each)
Distributed Computing DeepSpeed ZeRO Stage 3 (Accelerate)
Hyperparameters Learning Rate (lr) = 1e-5
α = 1, γ = 1, β = 0.1 (where applicable)
Batch size 32 effectively: 8 per device, 4 grad accum steps
Number of Epochs = 10
Optimizer: paged_adamw_32bit

Note

  1. The results in the next section display only some important subsets of metrics for each benchmark. For examples of more available evaluation metrics available: see muse*/*_SUMMARY.json, tofu*/evals*/*_SUMMARY.json files on the HuggingFace space.
  2. Results may vary even with the same effective hyperparameters when trained with modifications to the distributed training setup, including when training on a single GPU. For example: methods such as SimNPO & RMU can be significantly improved with careful tuning. Please use the below numbers only for reproducibility purposes.
  3. NPO inconsistency: for NPO, the MUSE implementation is inconsistent with the original paper as discussed here. This inconsistency is carried over into implementations like SimNPO. Here, we use the original NPO implementation with the same loss function expression across datasets.

TOFU unlearning on the Llama-2-7b-hf-chat architecture

Method forget01 forget05 forget10
forget_quality model_utility forget_truth_ratio forget_quality model_utility forget_truth_ratio forget_quality model_utility forget_truth_ratio
Finetuned 1.27e-03 0.63 0.53 5.87e-14 0.63 0.51 4.35e-25 0.63 0.52
Retain 1.0 0.63 0.68 1.0 0.63 0.67 1.0 0.61 0.68
GradAscent 1.88e-04 0.55 0.36 1.94e-119 0.00e+00 8.82e-96 1.06e-239 0.00e+00 2.21e-32
GradDiff 3.02e-03 0.57 0.41 1.94e-119 0.56 4.14e-95 1.80e-229 0.58 1.46e-07
IdkDPO 0.1 0.56 0.67 4.02e-06 0.04 0.67 5.42e-13 0.04 0.64
NPO 0.4 0.58 0.65 0.09 0.53 0.71 0.42 0.54 0.73
SimNPO 1.27e-03 0.58 0.41 1.06e-106 0.6 3.94e-05 1.47e-198 0.6 3.17e-04
RMU 0.4 0.62 0.64 9.59e-10 0.02 0.81 6.92e-21 0.03 0.81

TOFU unlearning on the Llama-3.2-1B-Instruct architecture

Method forget01 forget05 forget10
forget_quality model_utility forget_truth_ratio forget_quality model_utility forget_truth_ratio forget_quality model_utility forget_truth_ratio
Finetuned 0.01 0.6 0.47 1.33e-13 0.6 0.47 1.66e-21 0.6 0.48
Retain 1.0 0.60 0.65 1.0 0.6 0.64 1.0 0.59 0.63
GradAscent 0.27 0.33 0.59 1.94e-119 0 2.52e-23 1.06e-239 0 2.25e-18
GradDiff 0.77 0.43 0.57 1.94e-119 0.53 3.87e-34 1.06e-239 0.49 3.53e-27
IdkDPO 0.01 0.51 0.60 1.12e-05 0.07 0.62 4.64e-12 0.23 0.6
NPO 0.92 0.56 0.66 0.14 0.45 0.7 0.02 0.46 0.7
SimNPO 0.58 0.46 0.55 5.01e-100 0.58 4.19e-03 2.47e-203 0.54 1.07e-05
RMU 0.16 0.55 0.70 4.87e-10 0.58 0.77 3.15e-15 0.59 0.76

MUSE unlearning on the benchmark's target models

Method News Books
forget_knowmem_ROUGE forget_verbmem_ROUGE privleak retain_knowmem_ROUGE forget_knowmem_ROUGE forget_verbmem_ROUGE privleak retain_knowmem_ROUGE
Finetuned 0.64 0.58 -99.81 0.56 0.47 1.0 -57.26 0.69
Retain 0.33 0.20 0 0.56 0.3 0.14 0 0.69
GradAscent 0 0 52.11 0 0 0 -0.67 0
GradDiff 0.41 8.92e-03 93.23 0.37 0.18 0.16 -37.79 0.3
NPO 0.56 0.35 -86.00 0.51 0.32 0.84 -54.24 0.55
SimNPO 0.54 0.36 -86.11 0.51 0.32 0.84 -54.26 0.54
RMU 0.48 0.05 56.36 0.51 0.29 0.79 -60.52 0.48