diff --git a/README.md b/README.md index 9b118de7..0df93b43 100644 --- a/README.md +++ b/README.md @@ -1148,6 +1148,7 @@ be * [einops](https://github.com/arogozhnikov/einops) - Deep learning operations reinvented (for pytorch, tensorflow, jax and others). * [machine learning](https://github.com/jeff1evesque/machine-learning) - automated build consisting of a [web-interface](https://github.com/jeff1evesque/machine-learning#web-interface), and set of [programmatic-interface](https://github.com/jeff1evesque/machine-learning#programmatic-interface) API, for support vector machines. Corresponding dataset(s) are stored into a SQL database, then generated model(s) used for prediction(s), are stored into a NoSQL datastore. * [XGBoost](https://github.com/dmlc/xgboost) - Python bindings for eXtreme Gradient Boosting (Tree) Library. +* [InterpretML](https://github.com/interpretml/interpret) - InterpretML implements the Explainable Boosting Machine (EBM), a modern, fully interpretable machine learning model based on Generalized Additive Models (GAMs). This open-source package also provides visualization tools for EBMs, other glass-box models, and black-box explanations. * [ChefBoost](https://github.com/serengil/chefboost) - a lightweight decision tree framework for Python with categorical feature support covering regular decision tree algorithms such as ID3, C4.5, CART, CHAID and regression tree; also some advanced bagging and boosting techniques such as gradient boosting, random forest and adaboost. * [Apache SINGA](https://singa.apache.org) - An Apache Incubating project for developing an open source machine learning library. * [Bayesian Methods for Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers) - Book/iPython notebooks on Probabilistic Programming in Python.