-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathevaluator.py
483 lines (399 loc) · 15.7 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, Optional, Tuple
import numpy as np
from scipy.spatial.transform import Rotation
from torchmetrics.image import FrechetInceptionDistance
import cv2
from tqdm import tqdm
from transformers import Wav2Vec2Model, Wav2Vec2Processor
from mysixdrepnet import SixDRepNet_Detector
def extract_pose_sequences(video: torch.Tensor, use_6d_rotation: bool = True) -> torch.Tensor:
"""
Extract pose sequences from video frames using SixDRepNet or other pose estimator
Args:
video: Video tensor of shape [B, T, C, H, W]
use_6d_rotation: Whether to use 6D rotation representation
Returns:
pose_sequences: Pose parameters [B, T, pose_dim]
"""
B, T, C, H, W = video.shape
device = video.device
# Initialize pose estimator
pose_estimator = SixDRepNet_Detector().to(device)
pose_estimator.eval()
pose_sequences = []
with torch.no_grad():
# Process each batch and frame
for b in range(B):
batch_poses = []
for t in range(T):
frame = video[b, t].cpu().numpy().transpose(1, 2, 0)
frame = (frame * 255).astype(np.uint8) # Normalize if needed
# Get pose parameters
pose_params = pose_estimator(frame)
if use_6d_rotation:
# Convert to 6D rotation representation
rot_matrix = Rotation.from_euler('xyz', pose_params[:3]).as_matrix()
rot_6d = matrix_to_rotation_6d(torch.from_numpy(rot_matrix))
pose = torch.cat([rot_6d, torch.from_numpy(pose_params[3:])], dim=0)
else:
pose = torch.from_numpy(pose_params)
batch_poses.append(pose)
# Stack temporal sequence
batch_poses = torch.stack(batch_poses)
pose_sequences.append(batch_poses)
# Stack batches
pose_sequences = torch.stack(pose_sequences).to(device)
return pose_sequences
def compute_pose_intensity(pose_sequences: torch.Tensor) -> float:
"""
Compute pose variation intensity from pose sequences
Following VASA paper's methodology
Args:
pose_sequences: Pose parameters [B, T, pose_dim]
Returns:
intensity: Average pose variation score
"""
B, T, D = pose_sequences.shape
device = pose_sequences.device
# Split rotation and translation
rotation = pose_sequences[..., :6] # 6D rotation
translation = pose_sequences[..., 6:]
# Compute rotation differences
rot_diff = []
for t in range(T-1):
# Convert 6D rotation to matrices
rot1 = rotation_6d_to_matrix(rotation[:, t])
rot2 = rotation_6d_to_matrix(rotation[:, t+1])
# Compute geodesic distance between rotations
R_rel = torch.bmm(rot1.transpose(1, 2), rot2)
theta = torch.acos(torch.clamp(
(torch.diagonal(R_rel, dim1=1, dim2=2).sum(1) - 1) / 2,
-1 + 1e-6,
1 - 1e-6
))
rot_diff.append(theta)
rot_diff = torch.stack(rot_diff, dim=1) # [B, T-1]
# Compute translation differences
trans_diff = torch.norm(
translation[:, 1:] - translation[:, :-1],
dim=-1
) # [B, T-1]
# Combine rotation and translation variations
pose_diff = rot_diff + trans_diff
# Compute statistics
mean_intensity = pose_diff.mean().item()
std_intensity = pose_diff.std().item()
max_intensity = pose_diff.max().item()
return {
'mean_intensity': mean_intensity,
'std_intensity': std_intensity,
'max_intensity': max_intensity,
'total_intensity': mean_intensity + std_intensity
}
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotation matrix to 6D representation
From Zhou et al. "On the Continuity of Rotation Representations in Neural Networks"
"""
return matrix[:2, :].flatten()
def rotation_6d_to_matrix(rotation_6d: torch.Tensor) -> torch.Tensor:
"""Convert 6D rotation representation to rotation matrix"""
x = rotation_6d[..., :3]
y = rotation_6d[..., 3:]
x = F.normalize(x, dim=-1)
z = torch.cross(x, y)
z = F.normalize(z, dim=-1)
y = torch.cross(z, x)
matrix = torch.stack([x, y, z], dim=-2)
return matrix
class VideoFrechetDistance:
"""
Compute Fréchet Video Distance (FVD) between real and generated videos
Implementation follows the paper's methodology
"""
def __init__(
self,
feature_extractor: str = "i3d",
device: Optional[torch.device] = None
):
self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Initialize FID computer
self.fid = FrechetInceptionDistance(
feature=2048,
normalize=True
).to(self.device)
# Initialize video feature extractor (I3D or similar)
if feature_extractor == "i3d":
self.feature_extractor = I3DFeatureExtractor().to(self.device)
else:
raise ValueError(f"Unknown feature extractor: {feature_extractor}")
@torch.no_grad()
def compute_fvd(
self,
generated_videos: torch.Tensor,
real_videos: torch.Tensor,
batch_size: int = 8
) -> float:
"""
Compute FVD between real and generated videos
Args:
generated_videos: Generated videos [B, T, C, H, W]
real_videos: Real videos [B, T, C, H, W]
batch_size: Batch size for feature extraction
Returns:
fvd_score: Fréchet Video Distance
"""
# Extract features
gen_features = self._extract_features(generated_videos, batch_size)
real_features = self._extract_features(real_videos, batch_size)
# Update FID computer
self.fid.update(real_features, real=True)
self.fid.update(gen_features, real=False)
# Compute FID
fvd_score = self.fid.compute().item()
# Reset FID computer
self.fid.reset()
return fvd_score
def _extract_features(
self,
videos: torch.Tensor,
batch_size: int
) -> torch.Tensor:
"""Extract features from videos in batches"""
features = []
num_batches = (len(videos) + batch_size - 1) // batch_size
for i in tqdm(range(num_batches), desc="Extracting features"):
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, len(videos))
batch = videos[start_idx:end_idx].to(self.device)
# Extract features
batch_features = self.feature_extractor(batch)
features.append(batch_features.cpu())
return torch.cat(features, dim=0)
# NOT used
# class I3DFeatureExtractor(nn.Module):
# """I3D network for video feature extraction"""
# def __init__(self, pretrained: bool = True):
# super().__init__()
# # Initialize I3D network
# # This would typically load pretrained I3D weights
# # Actual implementation would depend on available I3D implementation
# pass
# def forward(self, x: torch.Tensor) -> torch.Tensor:
# """Extract features from video"""
# # Implementation would depend on I3D network
# pass
def compute_fvd(generated_video: torch.Tensor, real_video: torch.Tensor) -> float:
"""
Wrapper function to compute FVD between videos
Args:
generated_video: Generated video [B, T, C, H, W]
real_video: Real video [B, T, C, H, W]
Returns:
fvd_score: Fréchet Video Distance
"""
fvd_computer = VideoFrechetDistance()
return fvd_computer.compute_fvd(generated_video, real_video)
from syncnet import SyncNet
class CAPPScore(nn.Module):
"""
Contrastive Audio and Pose Pretraining (CAPP) score implementation
"""
def __init__(self, pose_dim: int, audio_dim: int, hidden_dim: int = 512):
super().__init__()
# Pose encoder (6-layer transformer)
encoder_layer = nn.TransformerEncoderLayer(
d_model=hidden_dim,
nhead=8,
dim_feedforward=hidden_dim * 4,
dropout=0.1,
batch_first=True
)
self.pose_encoder = nn.Sequential(
nn.Linear(pose_dim, hidden_dim),
nn.TransformerEncoder(encoder_layer, num_layers=6),
nn.AdaptiveAvgPool1d(1),
nn.Linear(hidden_dim, hidden_dim)
)
# Audio encoder (initialized from Wav2Vec2)
self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base')
self.audio_proj = nn.Linear(768, hidden_dim) # Wav2Vec2 dim to hidden_dim
# Temperature parameter
self.temperature = nn.Parameter(torch.ones([]) * 0.07)
def forward(self, pose_sequences: torch.Tensor, audio_features: torch.Tensor) -> torch.Tensor:
"""
Compute CAPP score for pose-audio pairs
"""
# Encode pose sequences
pose_embeddings = self.pose_encoder(pose_sequences)
pose_embeddings = F.normalize(pose_embeddings, dim=-1)
# Encode audio features
audio_embeddings = self.audio_encoder(audio_features).last_hidden_state
audio_embeddings = self.audio_proj(audio_embeddings)
audio_embeddings = audio_embeddings.mean(dim=1) # Global pooling
audio_embeddings = F.normalize(audio_embeddings, dim=-1)
# Compute similarity matrix
similarity = torch.matmul(pose_embeddings, audio_embeddings.T) / self.temperature
return similarity
class Evaluator:
"""
Evaluation metrics for VASA
"""
def __init__(self):
self.syncnet = SyncNet() # Load pretrained SyncNet
self.capp_scorer = CAPPScore(pose_dim=6, audio_dim=768)
@torch.no_grad()
def compute_metrics(self,
generated_video: torch.Tensor,
audio_features: torch.Tensor,
real_video: Optional[torch.Tensor] = None) -> Dict[str, float]:
"""
Compute evaluation metrics for generated video
"""
metrics = {}
# Compute SyncNet confidence and distance
sync_conf, sync_dist = self.syncnet(generated_video, audio_features)
metrics['sync_confidence'] = sync_conf.mean().item()
metrics['sync_distance'] = sync_dist.mean().item()
# Compute CAPP score
pose_sequences = extract_pose_sequences(generated_video) # Extract pose from video
capp_similarity = self.capp_scorer(pose_sequences, audio_features)
metrics['capp_score'] = capp_similarity.diagonal().mean().item()
# Compute pose variation intensity
metrics['pose_intensity'] = compute_pose_intensity(pose_sequences)
# Compute FVD if real video is provided
if real_video is not None:
metrics['fvd'] = compute_fvd(generated_video, real_video)
return metrics
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Dict, Optional, Tuple
import numpy as np
from scipy.spatial.transform import Rotation
# # Initialize metrics
# metrics = VASAMetrics(device)
# # Compute metrics
# results = metrics.compute_metrics(
# generated_video=generated_video,
# audio_features=audio_features
# )
# # Print results
# print(f"Sync Confidence: {results['sync_confidence']:.4f}")
# print(f"CAPP Score: {results['capp_score']:.4f}")
# print(f"Pose Intensity: {results['pose_intensity']:.4f}")
class VASAMetrics:
"""
Metrics implementation following VASA paper
Key metrics:
1. Lip sync (SyncNet)
2. CAPP score (Audio-pose alignment)
3. Pose variation intensity (ΔP)
"""
def __init__(self, device: torch.device):
self.device = device
# Initialize SyncNet
self.syncnet = SyncNet().to(device)
# Initialize CAPP scorer
self.capp_scorer = CAPPScore(
pose_dim=6, # 3 rotation + 3 translation
audio_dim=768, # Wav2Vec2 feature dimension
hidden_dim=512
).to(device)
# Initialize pose extractor
self.pose_extractor = SixDRepNet_Detector().to(device)
@torch.no_grad()
def compute_metrics(
self,
generated_video: torch.Tensor,
audio_features: torch.Tensor,
real_video: Optional[torch.Tensor] = None
) -> Dict[str, float]:
"""
Compute all metrics following paper's methodology
Args:
generated_video: Generated video frames [B, T, C, H, W]
audio_features: Audio features [B, T, C]
real_video: Optional ground truth video
"""
metrics = {}
# 1. Audio-Visual Sync Metrics (SyncNet)
sync_conf, sync_dist = self.compute_sync_metrics(
generated_video,
audio_features
)
metrics['sync_confidence'] = sync_conf.mean().item()
metrics['sync_distance'] = sync_dist.mean().item()
# 2. CAPP Score (Audio-Pose Alignment)
pose_sequences = self.extract_pose_sequences(generated_video)
capp_score = self.compute_capp_score(
pose_sequences,
audio_features
)
metrics['capp_score'] = capp_score.mean().item()
# 3. Pose Variation Intensity
intensity_metrics = self.compute_pose_intensity(pose_sequences)
metrics.update(intensity_metrics)
return metrics
def compute_sync_metrics(
self,
video: torch.Tensor,
audio: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Compute SyncNet confidence and distance
"""
return self.syncnet(video, audio)
def extract_pose_sequences(self, video: torch.Tensor) -> torch.Tensor:
"""
Extract pose sequences from video frames
Returns: [B, T, 6] tensor (3 rotation + 3 translation)
"""
B, T, C, H, W = video.shape
poses = []
for b in range(B):
batch_poses = []
for t in range(T):
frame = video[b, t].cpu().numpy().transpose(1, 2, 0)
frame = (frame * 255).astype(np.uint8)
# Extract pose using SixDRepNet
pose = self.pose_extractor(frame)
batch_poses.append(torch.from_numpy(pose))
poses.append(torch.stack(batch_poses))
return torch.stack(poses).to(self.device)
def compute_capp_score(
self,
pose_sequences: torch.Tensor,
audio_features: torch.Tensor
) -> torch.Tensor:
"""
Compute CAPP score as described in paper
"""
return self.capp_scorer(pose_sequences, audio_features)
def compute_pose_intensity(
self,
pose_sequences: torch.Tensor
) -> Dict[str, float]:
"""
Compute ΔP (pose variation intensity) as defined in paper
"""
# Split into rotation and translation
rotation = pose_sequences[..., :3]
translation = pose_sequences[..., 3:]
# Compute frame-to-frame differences
rot_diff = torch.norm(
rotation[:, 1:] - rotation[:, :-1],
dim=-1
).mean()
trans_diff = torch.norm(
translation[:, 1:] - translation[:, :-1],
dim=-1
).mean()
return {
'pose_intensity': (rot_diff + trans_diff).item() / 2,
'rotation_intensity': rot_diff.item(),
'translation_intensity': trans_diff.item()
}