|
400 | 400 | "fig.colorbar(surf, shrink=0.3, aspect=5, pad=0.1)\n", |
401 | 401 | "\n", |
402 | 402 | "ax.view_init(35, azim = -80)\n", |
403 | | - "ax.set_xlabel('$x$');\n", |
404 | | - "ax.set_ylabel('$y$');\n", |
| 403 | + "ax.set_xlabel('x');\n", |
| 404 | + "ax.set_ylabel('y');\n", |
405 | 405 | "\n", |
406 | 406 | "ax=axs['B']\n", |
407 | 407 | "# #G = stats.multivariate_normal(mean=[0,0],cov=K1)\n", |
|
410 | 410 | "ax.contour(X,Y,N.pdf(pos), extent=[-3,3,-3,3],cmap=cm.coolwarm);\n", |
411 | 411 | "ax.set_ylim(-4,4)\n", |
412 | 412 | "ax.set_xlim(-4,4);\n", |
413 | | - "ax.set_xlabel('$x$');\n", |
414 | | - "ax.set_ylabel('$y$');\n", |
| 413 | + "ax.set_xlabel('x');\n", |
| 414 | + "ax.set_ylabel('y');\n", |
415 | 415 | "# ax.spines['bottom'].set_position('zero')\n", |
416 | 416 | "# ax.spines['left'].set_position('zero')\n", |
417 | 417 | "plt.subplots_adjust(wspace=0.7)" |
|
438 | 438 | " <iframe\n", |
439 | 439 | " width=\"800\"\n", |
440 | 440 | " height=\"1600\"\n", |
441 | | - " src=\"https://jmshea.github.io/Foundations-of-Data-Science-with-Python/bivariate-gaussian.html\"\n", |
| 441 | + " src=\"https://fdsp.net/bivariate-gaussian.html\"\n", |
442 | 442 | " frameborder=\"0\"\n", |
443 | 443 | " allowfullscreen\n", |
444 | 444 | " \n", |
445 | 445 | " ></iframe>\n", |
446 | 446 | " " |
447 | 447 | ], |
448 | 448 | "text/plain": [ |
449 | | - "<IPython.lib.display.IFrame at 0x324d2ca50>" |
| 449 | + "<IPython.lib.display.IFrame at 0x32407e050>" |
450 | 450 | ] |
451 | 451 | }, |
452 | 452 | "execution_count": 13, |
|
457 | 457 | "source": [ |
458 | 458 | "# Display the associated webpage in a new window\n", |
459 | 459 | "import IPython\n", |
460 | | - "#url = 'https://fdsp.net/bivariate-gaussian.html'\n", |
461 | | - "url = 'https://jmshea.github.io/Foundations-of-Data-Science-with-Python/bivariate-gaussian.html'\n", |
| 460 | + "url = 'https://fdsp.net/bivariate-gaussian.html'\n", |
| 461 | + "#url = 'https://jmshea.github.io/Foundations-of-Data-Science-with-Python/bivariate-gaussian.html'\n", |
462 | 462 | "iframe = '<iframe src=' + url + ' width=800 height=1500></iframe>'\n", |
463 | 463 | "#IPython.display.HTML(iframe)\n", |
464 | 464 | "IPython.display.IFrame(url, 800, 1600)" |
|
480 | 480 | }, |
481 | 481 | { |
482 | 482 | "cell_type": "code", |
483 | | - "execution_count": 18, |
| 483 | + "execution_count": 15, |
484 | 484 | "id": "da3da055-392d-4067-9014-d530317f5465", |
485 | 485 | "metadata": { |
486 | 486 | "tags": [ |
|
765 | 765 | { |
766 | 766 | "data": { |
767 | 767 | "text/html": [ |
768 | | - "<div style=\"height:40px\"></div><div class=\"flip-container\" id=\"RDnTdaJDEbTg\" tabindex=\"0\" style=\"outline:none;\"></div><div style=\"height:40px\"></div><div class=\"next\" id=\"RDnTdaJDEbTg-next\" onclick=\"window.checkFlip('RDnTdaJDEbTg')\"> </div> <div style=\"height:40px\"></div>" |
| 768 | + "<div style=\"height:40px\"></div><div class=\"flip-container\" id=\"YolwiyyCJRrM\" tabindex=\"0\" style=\"outline:none;\"></div><div style=\"height:40px\"></div><div class=\"next\" id=\"YolwiyyCJRrM-next\" onclick=\"window.checkFlip('YolwiyyCJRrM')\"> </div> <div style=\"height:40px\"></div>" |
769 | 769 | ], |
770 | 770 | "text/plain": [ |
771 | 771 | "<IPython.core.display.HTML object>" |
|
1251 | 1251 | "\n", |
1252 | 1252 | "\n", |
1253 | 1253 | " function try_create() {\n", |
1254 | | - " if(document.getElementById(\"RDnTdaJDEbTg\")) {\n", |
1255 | | - " createCards(\"RDnTdaJDEbTg\", \"True\", \"False\", \"False\", \"\", \"\");\n", |
| 1254 | + " if(document.getElementById(\"YolwiyyCJRrM\")) {\n", |
| 1255 | + " createCards(\"YolwiyyCJRrM\", \"True\", \"False\", \"False\", \"\", \"\");\n", |
1256 | 1256 | " } else {\n", |
1257 | 1257 | " setTimeout(try_create, 200);\n", |
1258 | 1258 | " }\n", |
1259 | 1259 | " };\n", |
1260 | 1260 | " \n", |
1261 | | - "var cardsRDnTdaJDEbTg=[\n", |
| 1261 | + "var cardsYolwiyyCJRrM=[\n", |
1262 | 1262 | " {\n", |
1263 | 1263 | " \"front\": \"joint probability mass function<br>(pair of random variables)\",\n", |
1264 | 1264 | " \"back\": \"For a pair of random variables $(X,Y)$, the joint <i>probability mass function</i> (PMF) defines the probability that $(X,Y)$ takes on each value $(x,y) \\\\in \\\\mathbb{R}^2$, \\\\begin{align*} P_{X,Y} (x,y) &= P\\\\left[ \\\\left\\\\{ s \\\\left| X(s) = x, Y(s) =y \\\\right. \\\\right\\\\} \\\\right] \\\\\\\\ &= P \\\\left[ X=x, Y=y \\\\right]. \\\\end{align*}\"\n", |
|
1309 | 1309 | "}\n", |
1310 | 1310 | "]\n", |
1311 | 1311 | ";\n", |
1312 | | - "var frontColorsRDnTdaJDEbTg= [\"var(--asparagus)\", \"var(--terra-cotta)\", \"var(--cyan-process)\" ];\n", |
1313 | | - "var backColorsRDnTdaJDEbTg= [\"var(--dark-blue-gray)\" ];\n", |
1314 | | - "var textColorsRDnTdaJDEbTg= [\"var(--snow)\" ];\n", |
| 1312 | + "var frontColorsYolwiyyCJRrM= [\"var(--asparagus)\", \"var(--terra-cotta)\", \"var(--cyan-process)\" ];\n", |
| 1313 | + "var backColorsYolwiyyCJRrM= [\"var(--dark-blue-gray)\" ];\n", |
| 1314 | + "var textColorsYolwiyyCJRrM= [\"var(--snow)\" ];\n", |
1315 | 1315 | "\n", |
1316 | 1316 | "\n", |
1317 | 1317 | " {\n", |
|
1322 | 1322 | "\n", |
1323 | 1323 | " fetch(\"https://raw.githubusercontent.com/jmshea/Foundations-of-Data-Science-with-Python/main/13-multidim-dependence/flashcards/joint-rvs.json\", {signal})\n", |
1324 | 1324 | " .then(response => response.json())\n", |
1325 | | - " .then(json => createCards(\"RDnTdaJDEbTg\", \"True\", \"False\", \"False\", \"\", \"\"))\n", |
| 1325 | + " .then(json => createCards(\"YolwiyyCJRrM\", \"True\", \"False\", \"False\", \"\", \"\"))\n", |
1326 | 1326 | " .catch(err => {\n", |
1327 | 1327 | " console.log(\"Fetch error or timeout\");\n", |
1328 | 1328 | " try_create(); \n", |
|
0 commit comments