@@ -484,7 +484,7 @@ function estimate(::BasicKDE, binned::UnivariateKDE{T}, info::UnivariateKDEInfo)
484484 info. kernel = UnivariateKDE {eltype(xx)} (xx, kernel)
485485
486486 # convolve the data with the kernel to construct a density estimate
487- f̂ = conv (f, kernel, :same )
487+ f̂ = conv (f, kernel, ConvShape . SAME )
488488 estim = UnivariateKDE {T} (x, f̂)
489489 return estim, info
490490end
@@ -531,20 +531,20 @@ function estimate(method::LinearBoundaryKDE, binned::UnivariateKDE{T}, info::Uni
531531 K̂ = plan_conv (f, K)
532532
533533 Θ = fill! (similar (f, R), one (R))
534- μ₀ = conv (Θ, K̂, :same )
534+ μ₀ = conv (Θ, K̂, ConvShape . SAME )
535535
536536 @simd for ii in KI
537537 @inbounds K[ii] *= kx[ii]
538538 end
539539 replan_conv! (K̂, K)
540- μ₁ = conv (Θ, K̂, :same )
541- f′ = conv (h, K̂, :same )
540+ μ₁ = conv (Θ, K̂, ConvShape . SAME )
541+ f′ = conv (h, K̂, ConvShape . SAME )
542542
543543 @simd for ii in KI
544544 @inbounds K[ii] *= kx[ii]
545545 end
546546 replan_conv! (K̂, K)
547- μ₂ = conv (Θ, K̂, :same )
547+ μ₂ = conv (Θ, K̂, ConvShape . SAME )
548548
549549 # Function to force f̂ to be positive — see Eqn. 17 of Lewis (2019)
550550 # N.B. Mathematically f from basic KDE is strictly non-negative, but numerically we
0 commit comments