|
7 | 7 | #'
|
8 | 8 | #' Traditional implementations (e.g., function \code{adjustedRandIndex} of package \code{mclust}) are in Omega(n + u v) where n is the size of the vectors the classifications of which are to be compared, u and v are the respective number of classes in each vectors. Here, the implementation is in Theta(n), plus the gain of speed due to the C++ code.
|
9 | 9 | #'
|
10 |
| -#' @section Functions in aricode: |
11 | 10 | #' The functions included in aricode are:
|
12 |
| -#' \itemize{ |
13 |
| -#' \item{ARI:}{ computes the adjusted rand index} |
14 |
| -#' \item{Chi2:}{ computes the Chi-square statistic} |
15 |
| -#' \item{MARI:}{ computes the modified adjusted rand index (Sundqvist et al, in preparation)} |
16 |
| -#' \item{MARIraw:}{ computes the raw version of the modified adjusted rand index} |
17 |
| -#' \item{RI:}{ computes the rand index} |
18 |
| -#' \item{NVI:}{ computes the normalized variation information} |
19 |
| -#' \item{NID:}{ computes the normalized information distance} |
20 |
| -#' \item{NMI:}{ computes the normalized mutual information} |
21 |
| -#' \item{AMI:}{ computes the adjusted mutual information} |
22 |
| -#' \item{entropy:}{ computes the conditional and joint entropies} |
23 |
| -#' \item{clustComp:}{ computes all clustering comparison measures at once} |
24 |
| -#' } |
| 11 | +#' |
| 12 | +#' * ARI: computes the adjusted rand index |
| 13 | +#' * Chi2: computes the Chi-square statistic |
| 14 | +#' * MARI: computes the modified adjusted rand index (Sundqvist et al, in preparation) |
| 15 | +#' * MARIraw: computes the raw version of the modified adjusted rand index |
| 16 | +#' * RI: computes the rand index |
| 17 | +#' * NVI: computes the normalized variation information |
| 18 | +#' * NID: computes the normalized information distance |
| 19 | +#' * NMI: computes the normalized mutual information |
| 20 | +#' * AMI: computes the adjusted mutual information |
| 21 | +#' * entropy: computes the conditional and joint entropies |
| 22 | +#' * clustComp: computes all clustering comparison measures at once |
| 23 | +#' |
25 | 24 | #' @author Julien Chiquet \email{julien.chiquet@@inrae.fr}
|
26 | 25 | #' @author Guillem Rigaill \email{guillem.rigaill@@inrae.fr}
|
27 | 26 | #' @author Martina Sundqvist \email{martina.sundqvist@@agroparistech.fr}
|
28 |
| -#' @references Nguyen Xuan Vinh, Julien Epps, and James Bailey. "Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance." Journal of Machine Learning Research 11.Oct (2010): 2837-2854. as described in Vinh et al (2009) |
| 27 | +#' @references |
| 28 | +#' * Nguyen Xuan Vinh, Julien Epps, and James Bailey. "Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance." Journal of Machine Learning Research 11.Oct (2010): 2837-2854. as described in Vinh et al (2009) |
| 29 | +#' * Sundqvist, Martina, Julien Chiquet, and Guillem Rigaill. "Adjusting the adjusted Rand Index: A multinomial story." Computational Statistics 38.1 (2023): 327-347. |
29 | 30 | #' @seealso \code{\link{ARI}}, \code{\link{RI}}, \code{\link{NID}}, \code{\link{NVI}}, \code{\link{AMI}}, \code{\link{NMI}}, \code{\link{entropy}}, \code{\link{clustComp}}
|
30 | 31 | #' @name aricode-package
|
31 | 32 |
|
|
0 commit comments