This repository was archived by the owner on Apr 3, 2024. It is now read-only.
forked from apache/airflow
-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathexample_life_sciences.py
96 lines (86 loc) · 3.17 KB
/
example_life_sciences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from airflow import models
from airflow.providers.google.cloud.operators.life_sciences import LifeSciencesRunPipelineOperator
from airflow.utils import dates
PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project-id")
BUCKET = os.environ.get("GCP_GCS_BUCKET", "example-bucket")
FILENAME = os.environ.get("GCP_GCS_LIFE_SCIENCES_FILENAME", 'input.in')
LOCATION = os.environ.get("GCP_LIFE_SCIENCES_LOCATION", 'us-central1')
# [START howto_configure_simple_action_pipeline]
SIMPLE_ACTION_PIEPELINE = {
"pipeline": {
"actions": [
{"imageUri": "bash", "commands": ["-c", "echo Hello, world"]},
],
"resources": {
"regions": [f"{LOCATION}"],
"virtualMachine": {
"machineType": "n1-standard-1",
},
},
},
}
# [END howto_configure_simple_action_pipeline]
# [START howto_configure_multiple_action_pipeline]
MULTI_ACTION_PIPELINE = {
"pipeline": {
"actions": [
{
"imageUri": "google/cloud-sdk",
"commands": ["gsutil", "cp", f"gs://{BUCKET}/{FILENAME}", "/tmp"],
},
{"imageUri": "bash", "commands": ["-c", "echo Hello, world"]},
{
"imageUri": "google/cloud-sdk",
"commands": [
"gsutil",
"cp",
f"gs://{BUCKET}/{FILENAME}",
f"gs://{BUCKET}/output.in",
],
},
],
"resources": {
"regions": [f"{LOCATION}"],
"virtualMachine": {
"machineType": "n1-standard-1",
},
},
}
}
# [END howto_configure_multiple_action_pipeline]
with models.DAG(
"example_gcp_life_sciences",
default_args=dict(start_date=dates.days_ago(1)),
schedule_interval=None,
tags=['example'],
) as dag:
# [START howto_run_pipeline]
simple_life_science_action_pipeline = LifeSciencesRunPipelineOperator(
task_id='simple-action-pipeline',
body=SIMPLE_ACTION_PIEPELINE,
project_id=PROJECT_ID,
location=LOCATION,
)
# [END howto_run_pipeline]
multiple_life_science_action_pipeline = LifeSciencesRunPipelineOperator(
task_id='multi-action-pipeline', body=MULTI_ACTION_PIPELINE, project_id=PROJECT_ID, location=LOCATION
)
simple_life_science_action_pipeline >> multiple_life_science_action_pipeline