|
| 1 | +""" |
| 2 | +Custom Algorithms |
| 3 | +================= |
| 4 | +
|
| 5 | +This example covers defining and using custom fit algorithms. |
| 6 | +""" |
| 7 | + |
| 8 | +from specparam import SpectralModel |
| 9 | + |
| 10 | +# Import function to simulate a power spectrum |
| 11 | +from specparam.sim import sim_power_spectrum |
| 12 | + |
| 13 | +# Import elements to define custom fit algorithms |
| 14 | +from specparam.algorithms.settings import SettingsDefinition |
| 15 | +from specparam.algorithms.algorithm import Algorithm |
| 16 | + |
| 17 | +################################################################################################### |
| 18 | +# Defining Custom Fit Algorithms |
| 19 | +# ------------------------------ |
| 20 | +# |
| 21 | +# The specparam module includes a standard fitting algorithm that is used to for fitting the |
| 22 | +# selected fit modes to the data. However, you do not have to use this particular algorithm, |
| 23 | +# you can tweak how it works, and/or define your own custom algorithm and plug this in to |
| 24 | +# the model object. |
| 25 | +# |
| 26 | +# In this tutorial, we will explore how you can also define your own custom fit algorithms. |
| 27 | +# |
| 28 | +# To do so, we will start by simulating an example power spectrum to use for this example. |
| 29 | +# |
| 30 | + |
| 31 | +################################################################################################### |
| 32 | + |
| 33 | +# Define simulation parameters |
| 34 | +ap_params = [0, 1] |
| 35 | +gauss_params = [10, 0.5, 2] |
| 36 | +nlv = 0.025 |
| 37 | + |
| 38 | +# Simulate an example power spectrum |
| 39 | +freqs, powers = sim_power_spectrum(\ |
| 40 | + [3, 50], {'fixed' : ap_params}, {'gaussian' : gauss_params}, nlv) |
| 41 | + |
| 42 | +################################################################################################### |
| 43 | +# Example: Custom Algorithm Object |
| 44 | +# -------------------------------- |
| 45 | +# |
| 46 | +# In our first example, we will introduce how to create a custom fit algorithm. |
| 47 | +# |
| 48 | +# For simplicity, we will start with a 'dummy' algorithm - one that functions code wise, but |
| 49 | +# doesn't actually implement a detailed fitting algorithm, so that we can start with the |
| 50 | +# organization of the code, and build up from there. |
| 51 | +# |
| 52 | + |
| 53 | +################################################################################################### |
| 54 | +# Algorithm Settings |
| 55 | +# ~~~~~~~~~~~~~~~~~~ |
| 56 | +# |
| 57 | +# A fitting algorithm typically has some settings that you want to define and describe so that |
| 58 | +# the user can check their description and provide values for the settings. |
| 59 | +# |
| 60 | +# For fitting algorithms, these setting descriptions are managed by the |
| 61 | +# :class:`~specparam.algorithms.settings.SettingsDefinition` object. |
| 62 | +# |
| 63 | +# For our dummy algorithm, we will initialize a settings definition object, with a |
| 64 | +# placeholder label and description. |
| 65 | +# |
| 66 | + |
| 67 | +################################################################################################### |
| 68 | + |
| 69 | +# Create a settings definition for our dummy algorithm |
| 70 | +DUMMY_ALGO_SETTINGS = SettingsDefinition({'fit_setting' : 'Setting description'}) |
| 71 | + |
| 72 | +################################################################################################### |
| 73 | +# Algorithm Object |
| 74 | +# ~~~~~~~~~~~~~~~~ |
| 75 | +# |
| 76 | +# Now we can define our custom fitting algorithm. To do so, we will create a custom object |
| 77 | +# that inherits from the specparam :class:`~specparam.algorithms.algorithm.Algorithm` object. |
| 78 | +# |
| 79 | +# Implementing a custom fit object requires following several standards for specparam |
| 80 | +# to be able to use it: |
| 81 | +# |
| 82 | +# - the class should inherit from the specparam Algorithm object |
| 83 | +# - the object needs to accept `modes`, `data`, `results`, and `debug` input arguments |
| 84 | +# - at initialization, the object should initialize the Algorithm object ('super()'), |
| 85 | +# including providing a name and description, passing in the algorithm settings |
| 86 | +# object (from above), and passing in the 'modes', 'data', 'results', and 'debug' inputs |
| 87 | +# - the object needs to define a `_fit` function that serves as the main fit function |
| 88 | +# |
| 89 | +# In the following code, we initialize a custom object following the above to create a fit |
| 90 | +# algorithm object. Note that as a dummy algorithm, the 'fit' aspect doesn't actually |
| 91 | +# implement a step-by-step fitting procedure, but simply instantiates a pre-specified |
| 92 | +# model (to mimic the outputs of a fit algorithm). |
| 93 | +# |
| 94 | + |
| 95 | +################################################################################################### |
| 96 | + |
| 97 | +import numpy as np |
| 98 | + |
| 99 | +class DummyAlgorithm(Algorithm): |
| 100 | + """Dummy object to mimic a fit algorithm.""" |
| 101 | + |
| 102 | + def __init__(self, modes=None, data=None, results=None, debug=False): |
| 103 | + """Initialize DummyAlgorithm instance.""" |
| 104 | + |
| 105 | + # Initialize base algorithm object with algorithm metadata |
| 106 | + super().__init__( |
| 107 | + name='dummy_fit_algo', |
| 108 | + description='Dummy fit algorithm.', |
| 109 | + public_settings=DUMMY_ALGO_SETTINGS, |
| 110 | + modes=modes, data=data, results=results, debug=debug) |
| 111 | + |
| 112 | + def _fit(self): |
| 113 | + """Define the full fitting algorithm.""" |
| 114 | + |
| 115 | + self.results.params.aperiodic.add_params('fit', np.array([0, 1])) |
| 116 | + self.results.params.periodic.add_params('fit', np.array([10, 0.5, 2], ndmin=2)) |
| 117 | + self.results._regenerate_model(self.data.freqs) |
| 118 | + |
| 119 | +################################################################################################### |
| 120 | +# Expected outcomes of algorithm fitting |
| 121 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 122 | +# |
| 123 | +# In order for a custom fitting algorithm to work properly when embedded within a model object, |
| 124 | +# there are some expectations for what the fitting process should do. |
| 125 | +# |
| 126 | +# The following elements are expected to computed through the fitting procedure: |
| 127 | +# |
| 128 | +# - Parameter results should be added for each parameter |
| 129 | +# - `model.results.params.{component}.add_params(...)` |
| 130 | +# |
| 131 | +# - The model should be computed and added to the object |
| 132 | +# - `model.results.model.modeled_spectrum` should be populated, as well as model |
| 133 | +# components (`model.results.model._ap_fit` & `model.results.model._peak_fit`) |
| 134 | +# |
| 135 | +# If the above you do the above, the model object can be used as normal, and you can do |
| 136 | +# (fit / print_results / plot / report / as well as save and load results). |
| 137 | +# |
| 138 | +# There are also some additional procedures / outputs that a custom fit process may do: |
| 139 | +# |
| 140 | +# - Update fit parameters to also have converted versions |
| 141 | +# |
| 142 | + |
| 143 | +################################################################################################### |
| 144 | +# |
| 145 | +# Now that our custom fit algorithm is defined, we can use it by passing it into a model object. |
| 146 | +# |
| 147 | +# Note that in this example, we will use :class:`~specparam.SpectralModel` for our example, but |
| 148 | +# you can also take the same approach to define custom fit algorithms with other model objects. |
| 149 | +# |
| 150 | + |
| 151 | +################################################################################################### |
| 152 | + |
| 153 | +# Initialize a model object, passing in our custom dummy algorithm |
| 154 | +fm = SpectralModel(algorithm=DummyAlgorithm) |
| 155 | + |
| 156 | +# Check the defined fit algorithm |
| 157 | +fm.algorithm.print() |
| 158 | + |
| 159 | +################################################################################################### |
| 160 | + |
| 161 | +# Fit and report model, using our custom algorithm |
| 162 | +fm.report(freqs, powers) |
| 163 | + |
| 164 | +################################################################################################### |
| 165 | +# |
| 166 | +# In this case, with our dummy algorithm, we cheated a bit - the model was pre-specified to |
| 167 | +# initialize a model that happened to match the simulated data, and no real fitting took place. |
| 168 | +# |
| 169 | +# The point of this example is to show the outline of how a custom fit algorithm can be developed, |
| 170 | +# since the `_fit` method can implement any arbitrarily defined procedure to fit a model, |
| 171 | +# |
| 172 | + |
| 173 | +################################################################################################### |
| 174 | +# Example with Custom Fitting |
| 175 | +# --------------------------- |
| 176 | +# |
| 177 | +# Having sketched out the basic outline with the dummy algorithm above, lets now define a custom |
| 178 | +# fit algorithm that actually does some fitting. |
| 179 | +# |
| 180 | +# For simplicity, this algorithm will be a simple fit that starts with an aperiodic fit, and |
| 181 | +# then fits a single peak to the flattened (aperiodic removed) spectrum. To do so, it will |
| 182 | +# take in an algorithm setting that defines a guess center-frequency for this peak. |
| 183 | +# |
| 184 | + |
| 185 | +################################################################################################### |
| 186 | + |
| 187 | +# Define the algorithm settings for our custom fit |
| 188 | +CUSTOM_ALGO_SETTINGS = SettingsDefinition(\ |
| 189 | + {'guess_cf' : 'Initial guess center frequency for peak.'}) |
| 190 | + |
| 191 | +################################################################################################### |
| 192 | +# |
| 193 | +# Now we need to define our fit approach! To do so, we will mimic the approach we used above |
| 194 | +# to define a custom algorithm object, this time making the `_fit` method implement an actual |
| 195 | +# fitting procedure. Note that while the `_fit` function should be the main method that runs |
| 196 | +# the fitting process, it can also call additional methods. In this implementation, we define |
| 197 | +# additional fit methods to fit each component. |
| 198 | +# |
| 199 | +# To fit the data components, we will use the `curve_fit` function from scipy. |
| 200 | +# |
| 201 | + |
| 202 | +################################################################################################### |
| 203 | + |
| 204 | +from scipy.optimize import curve_fit |
| 205 | + |
| 206 | +class CustomAlgorithm(Algorithm): |
| 207 | + """Custom fitting algorithm.""" |
| 208 | + |
| 209 | + def __init__(self, guess_cf, modes=None, data=None, results=None, debug=False): |
| 210 | + """Initialize DummyAlgorithm instance.""" |
| 211 | + |
| 212 | + # Initialize base algorithm object with algorithm metadata |
| 213 | + super().__init__( |
| 214 | + name='custom_fit_algo', |
| 215 | + description='Example custom algorithm.', |
| 216 | + public_settings=CUSTOM_ALGO_SETTINGS, |
| 217 | + modes=modes, data=data, results=results, debug=debug) |
| 218 | + |
| 219 | + ## Public settings |
| 220 | + self.settings.guess_cf = guess_cf |
| 221 | + |
| 222 | + def _fit(self): |
| 223 | + """Define the full fitting algorithm.""" |
| 224 | + |
| 225 | + # Fit each individual component |
| 226 | + self._fit_aperiodic() |
| 227 | + self._fit_peak() |
| 228 | + |
| 229 | + # Create full model from the individual components |
| 230 | + self.results.model.modeled_spectrum = \ |
| 231 | + self.results.model._peak_fit + self.results.model._ap_fit |
| 232 | + |
| 233 | + def _fit_aperiodic(self): |
| 234 | + """Fit aperiodic - direct fit to full spectrum.""" |
| 235 | + |
| 236 | + # Fit aperiodic component directly to data & collect parameter results |
| 237 | + ap_params, _ = curve_fit(\ |
| 238 | + self.modes.aperiodic.func, self.data.freqs, self.data.power_spectrum, |
| 239 | + p0=np.array([0] * self.modes.aperiodic.n_params)) |
| 240 | + self.results.params.aperiodic.add_params('fit', ap_params) |
| 241 | + |
| 242 | + # Construct & collect aperiodic component |
| 243 | + self.results.model._ap_fit = self.modes.aperiodic.func(freqs, *ap_params) |
| 244 | + |
| 245 | + def _fit_peak(self): |
| 246 | + """Fit peak - single peak, with initial guess CF, to flattened spectrum.""" |
| 247 | + |
| 248 | + # Fit peak |
| 249 | + self.results.model._spectrum_flat = self.data.power_spectrum - self.results.model._ap_fit |
| 250 | + pe_params, _ = curve_fit(\ |
| 251 | + self.modes.periodic.func, self.data.freqs, self.results.model._spectrum_flat, |
| 252 | + p0=np.array([self.settings.guess_cf] + [1] * (self.modes.periodic.n_params - 1))) |
| 253 | + self.results.params.periodic.add_params('fit', np.atleast_2d(pe_params)) |
| 254 | + |
| 255 | + # Construct periodic component |
| 256 | + self.results.model._peak_fit = self.modes.periodic.func(freqs, *pe_params) |
| 257 | + |
| 258 | +################################################################################################### |
| 259 | + |
| 260 | +# Initialize a model object, passing in a custom fit algorithm and settings for this algorithm |
| 261 | +fm = SpectralModel(algorithm=CustomAlgorithm, guess_cf=10) |
| 262 | + |
| 263 | +# Check the defined fit algorithm |
| 264 | +fm.algorithm.print() |
| 265 | + |
| 266 | +################################################################################################### |
| 267 | + |
| 268 | +# Fit model with custom algorithm and report results |
| 269 | +fm.report(freqs, powers) |
| 270 | + |
| 271 | +################################################################################################### |
| 272 | +# |
| 273 | +# In the above we fit a model with our custom fit algorithm, and can see the results. |
| 274 | +# |
| 275 | + |
| 276 | +################################################################################################### |
| 277 | +# Notes on Defining Custom Algorithms |
| 278 | +# ----------------------------------- |
| 279 | +# |
| 280 | +# In these examples, we have made quite simple algorithms. This may be a desired use case - |
| 281 | +# creating bespoke fit approaches for specific kinds of data. |
| 282 | +# |
| 283 | +# In cases where generalizability is more desired, the fit algorithm is likely going to need to |
| 284 | +# be significantly more detailed to address |
| 285 | +# |
| 286 | +# To see, for example, the details of the original / default fit algorithm, check the |
| 287 | +# definition of the `spectral_fit` algorithm in the codebase, which is also defined in the same |
| 288 | +# way as here. |
| 289 | +# |
| 290 | +# Additional notes to consider when creating custom algorithms: |
| 291 | +# |
| 292 | +# - In the above, we didn't consider different fit modes, and used the defaults. Depending on |
| 293 | +# your use case, the fit algorithm may or not want to make assumptions about the fit modes. |
| 294 | +# To make it generalize, the algorithm needs to be written in a way that is flexible for |
| 295 | +# applying different fit functions that may have different numbers of parameters |
| 296 | +# - As well as the public settings we defined here, you may want to additional specify |
| 297 | +# a set of private settings (additional settings that are defined for the algorithm, which |
| 298 | +# are not expected to be changed in most use cases, but which can be accessed) |
| 299 | +# |
| 300 | + |
| 301 | +################################################################################################### |
| 302 | +# Algorithms that use curve_fit |
| 303 | +# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| 304 | +# |
| 305 | +# A common approach for fitting functions to data is to use the scipy `curve_fit` |
| 306 | +# function to estimate parameters to fit a specified function to some data, as we did in |
| 307 | +# an above example. |
| 308 | +# |
| 309 | +# When doing so, you may also want to manage and allow inputs for settings that to the |
| 310 | +# curve_fit function to manage the fitting process. As a shortcut for this case, you can use the |
| 311 | +# :class:`~specparam.algorithms.algorithm.AlgorithmCF` object which pre-initializes a set |
| 312 | +# of curve_fit settings. |
| 313 | +# |
| 314 | +# In addition, when using `curve_fit` you are likely going to want to |
| 315 | +# |
0 commit comments