diff --git a/et_replay/README.md b/et_replay/README.md index b44cbda7..31d4d21c 100644 --- a/et_replay/README.md +++ b/et_replay/README.md @@ -1,29 +1,25 @@ -# Execution Trace Replay (et_replay) -`et_replay` is a tool designed for replaying Chakra Execution Traces (ET) from machine learning models. +# License +Chakra replay is released under the Apache 2.0 license. Please see the LICENSE file for more information. + +# Execution Trace Replay (chakra_replay) +`chakra_replay` is a tool designed for replaying Chakra Execution Traces (ET) from machine learning models. ## Installation -To install `et_replay`, use the following commands: +To install `chakra_replay`, use the following commands: ```bash -$ git clone --recurse-submodules git@github.com:facebookresearch/param.git -$ conda create -n et_replay python=3.10 -$ conda activate et_replay -$ cd param +$ git clone --recurse-submodules git@github.com:pytorch-labs/chakra_replay.git +$ conda create -n chakra_replay python=3.10 +$ conda activate chakra_replay +$ cd chakra_replay $ pip3 install -r requirements.txt -$ cd et_replay $ pip3 install . ``` ## Running et_replay -To use et_replay, execution traces are required. -Start by collecting an execution trace using the command below. This command runs a benchmark with specific configurations and enables execution tracing. -```bash -$ python -m param_bench.train.compute.python.pytorch.run_benchmark -c train/compute/python/examples/pytorch/configs/simple_add.json --et -``` - -After collecting the trace, replay it with the following command. Set the warm-up iteration count to at least 1 to exclude tensor transfer time to GPUs. +Replay the trace with the following command. Set the warm-up iteration count to at least 1 to exclude tensor transfer time to GPUs. ```bash -$ python -m et_replay.tools.et_replay --input --warmup-iter 10 --iter 50 --compute --profile-replay +$ python -m tools.et_replay --input --warmup-iter 10 --iter 50 --compute --profile-replay ``` > Note: When analyzing performance values from et_replay, refer to the collected Kineto traces rather than the execution time reported by et_replay. Kineto traces are only collected when --profile-replay is provided. diff --git a/et_replay/requirements.txt b/et_replay/requirements.txt new file mode 100644 index 00000000..0fb4ac63 --- /dev/null +++ b/et_replay/requirements.txt @@ -0,0 +1,4 @@ +torch +future +numpy +pydot