-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_loop.py
239 lines (212 loc) · 7.99 KB
/
training_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gc
import os
from pathlib import Path
from typing import Any, List
import gin # type: ignore
import matplotlib.pyplot as plt # type: ignore
import numpy as np
from src.stone12.dataloader import get_datasets as get_datasets_ks
from src.stone24.dataloader import get_datasets as get_datasets_ks_mode
from src.stone12.stone import Stone as Stone_ks
from src.stone24.stone import Stone as Stone_ks_mode
from src.stone12.stone_loss import CrossPowerSpectralDensityLoss as loss_ks
from src.stone24.stone_loss import CrossPowerSpectralDensityLoss as loss_ks_mode
from src.hcqt import HarmonicVQT
from src.utils.gin import get_save_dict
from src.utils.callbacks import (
EarlyStoppingCallback,
NaNLoopCallback,
add_audio_tensorboard,
add_losses_tensorboard,
get_writer,
restart_from_checkpoint,
save_fn,
)
from src.utils.gin import parse_gin
from src.utils.scheduler import (
get_learning_rate_scheduler,
get_weights_decay_scheduler,
)
from src.utils.training import clip_gradients, get_optimizer, update_optimizer, cleanup
import tensorflow as tf
import torch
from tensorflow.keras.utils import Progbar
def create_save_dir(save_dir: str, name: str, train_type: str, circle_type: int) -> str:
save_dir = os.path.join(
save_dir,
"models",
train_type,
str(circle_type),
name
)
Path(save_dir).mkdir(parents=True, exist_ok=True)
print("PARAMETERS used for SAVING:")
print("\t save_model_dir: {}".format(save_dir))
print("\t exp_name: {}".format(name))
return save_dir
class ModelCustomWrapper:
def __init__(
self,
learning_rate: float,
device: str,
n_steps: int,
n_epochs: int,
train_type: str,
circle_type: int,
) -> None:
self.device = torch.device(device)
self.lr = learning_rate
self.n_steps = n_steps
self.n_epochs = n_epochs
self.current_epoch = 0
self.circle_type = circle_type
self.train_type = train_type
# MODELS
self.stone = Stone_ks(HarmonicVQT()).to(device) if train_type=="ks" else Stone_ks_mode(HarmonicVQT(), device=self.device).to(device) # type: ignore
# LOSS
self.loss_fn = loss_ks(self.circle_type, self.device).cuda(self.device) if train_type=="ks" else loss_ks_mode(self.circle_type, self.device).cuda(self.device)
# OPTIMIZER
self.optimizer = get_optimizer(self.stone)
self.scaler = torch.cuda.amp.GradScaler() # type: ignore
# TRAINING STEPS
self.step = (
lambda self, batch: self.loss_fn(self.stone(batch))
)
# SCHEDULES
self.lr_schedule = get_learning_rate_scheduler(
self.lr, self.n_epochs, self.n_steps
)
self.wd_schedule = get_weights_decay_scheduler(self.n_epochs, self.n_steps)
def training_step(
self, batch: Any, current_global_step: int, current_epoch: int
) -> Any:
self.current_global_step = current_global_step
self.current_epoch = current_epoch
lr_step = self.lr_schedule[self.current_global_step]
wd_step = self.wd_schedule[self.current_global_step]
# update weight decay and learning rate according to their schedule
self.optimizer = update_optimizer(self.optimizer, lr_step, wd_step)
self.optimizer.zero_grad()
with torch.cuda.amp.autocast(): # POWERFUL
loss = self.step(self, batch)
self.scaler.scale(loss["loss"]).backward()
# unscale the gradients of optimizer's assigned params in-place
self.scaler.unscale_(self.optimizer)
self.stone = clip_gradients(self.stone)
self.scaler.step(self.optimizer)
self.scaler.update()
# remove data
torch.cuda.empty_cache()
del batch
return loss["loss_to_print"]
def validation_step(self, batch: Any) -> Any:
with torch.no_grad():
loss = self.step(self, batch)
return loss["loss"]
def do_one_iter(
model: ModelCustomWrapper,
ds_train_iter: Any,
ds_val_iter: Any,
epoch: int,
n_steps: int,
val_steps: int,
progress_bar: Any,
writer: Any,
) -> float:
# --- TRAINING ---
model.stone.train()
for i in range(n_steps):
current_global_step = i + epoch * n_steps
train_batch = next(ds_train_iter)
train_loss = model.training_step(
batch=train_batch,
current_epoch=epoch,
current_global_step=current_global_step,
)
if model.train_type == "ks_mode":
progress_bar.update(i, [("train_loss", train_loss["loss_total"].item()), ("train_loss_pos", train_loss["loss_pos"].item()), ("train_loss_equi", train_loss["loss_equi"].item()), ("train_loss_mode", train_loss["loss_mode"].item())])
else:
progress_bar.update(i, [("train_loss", train_loss["loss_total"].item()), ("train_loss_pos", train_loss["loss_pos"].item()), ("train_loss_equi", train_loss["loss_equi"].item())])
# if i % 50 == 0:
# add_audio_tensorboard(writer, train_batch, "train", epoch)
# --- VAL ---
model.stone.eval()
for _ in range(val_steps):
val_batch = next(ds_val_iter)
val_loss = model.validation_step(batch=val_batch)
progress_bar.update(n_steps, [("val_loss", val_loss.item())])
val_loss_ckpt = add_losses_tensorboard(writer, progress_bar, epoch)
# Clean memeory
tf.keras.backend.clear_session()
tf.compat.v1.reset_default_graph()
torch.cuda.empty_cache()
plt.close()
_ = gc.collect()
return val_loss_ckpt
@gin.configurable
def main_loop(
n_epochs: int,
n_steps: int,
val_steps: int,
learning_rate: float,
gin_file: str,
save_dir: str,
name: str,
train_type: str,
circle_type: int,
save_epochs: List = [25, 50, 75, 100],
) -> None:
device = "cuda:0" # TODO: change the device to a suitable one for you
save_dict = get_save_dict()
save_dict["gin_info"] = parse_gin(gin_file)
print(" ------- CREATING model -----------")
model = ModelCustomWrapper(
learning_rate=learning_rate,
device=device,
n_steps=n_steps,
n_epochs=n_epochs,
train_type=train_type,
circle_type=circle_type,
)
# DATALOADERS
print(" ------- CREATING datasets ----------")
ds_train, ds_val = get_datasets_ks(device=device) if train_type=="ks" else get_datasets_ks_mode(device=device)
save_dict["audio"] = {
"dur": int(ds_train.duration),
"sr": ds_train.sr,
}
save_dir = create_save_dir(save_dir, name, train_type, circle_type,)
writer = get_writer(save_dir)
model, save_dict = restart_from_checkpoint(model, save_dict, save_dir) # if an experiment of the same name was launched before
early_stopping = EarlyStoppingCallback(save_dir, best_score=save_dict["val_loss"])
nan_loop = NaNLoopCallback(save_dir)
ds_train_iter = iter(ds_train)
ds_val_iter = iter(ds_val)
epoch, val_loss_ckpt = [save_dict["epoch"], save_dict["val_loss"]]
while epoch < n_epochs:
print("\nepoch {}/{}".format(epoch + 1, n_epochs))
# Training loop
val_loss_ckpt = do_one_iter(
model=model,
ds_train_iter=ds_train_iter,
ds_val_iter=ds_val_iter,
epoch=epoch,
n_steps=n_steps,
val_steps=val_steps,
progress_bar=Progbar(n_steps + 1),
writer=writer,
)
model, ds_train, save_dict, epoch = nan_loop(
False, model, save_dict, ds_train, n_steps, epoch
)
# epoch is updated inside nan_loop
save_dict["epoch"], save_dict["val_loss"] = [epoch, val_loss_ckpt]
early_stopping(val_loss_ckpt, model, save_dict, epoch)
save_fn(save_dict, model, os.path.join(save_dir, "last_iter.pt"))
if epoch in save_epochs:
save_fn(
save_dict, model, os.path.join(save_dir, "epoch_{}.pt".format(epoch))
)
writer.close()
cleanup()
return