-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgemini.go
506 lines (445 loc) · 13.2 KB
/
gemini.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
package llm
import (
"context"
"encoding/base64"
"encoding/json"
"errors"
"fmt"
"io"
"math"
"strings"
"github.com/google/generative-ai-go/genai"
"google.golang.org/api/iterator"
"google.golang.org/api/option"
)
// GeminiLLM implements the LLM interface for Google's Gemini
type GeminiLLM struct {
client *genai.Client
}
// GeminiOptions contains configuration options for the Gemini model
type GeminiOptions struct {
Model string
HarmThreshold genai.HarmBlockThreshold
SafetySettings []*genai.SafetySetting
}
// NewGeminiLLM creates a new Gemini LLM client
func NewGeminiLLM(apiKey string, opts ...GeminiOptions) (*GeminiLLM, error) {
ctx := context.Background()
client, err := genai.NewClient(ctx, option.WithAPIKey(apiKey))
if err != nil {
return nil, fmt.Errorf("failed to create Gemini client: %v", err)
}
return &GeminiLLM{
client: client,
}, nil
}
// convertToGeminiMessages converts our generic Message type to Gemini's content type
func convertToGeminiMessages(messages []InputMessage) []genai.Content {
var contents []genai.Content
for _, msg := range messages {
parts := convertToGeminiParts(msg.MultiContent)
var content genai.Content
switch msg.Role {
case RoleTool:
// For tool results, treat them as user content with a function response
if len(msg.ToolResults) > 0 {
tr := msg.ToolResults[0]
response := map[string]any{
"response": map[string]any{
"name": tr.FunctionName,
"content": tr.Result,
},
}
parts = append(parts, genai.FunctionResponse{
Name: tr.ToolCallID,
Response: response,
})
}
content.Role = "user"
case RoleAssistant:
content.Role = "model"
case RoleUser:
content.Role = "user"
}
content.Parts = parts
// If the assistant had a tool call
if msg.Role == RoleAssistant && len(msg.ToolCalls) > 0 {
// We'll store them as if the assistant invoked a function
for _, tc := range msg.ToolCalls {
argsJSON := make(map[string]any)
_ = json.Unmarshal([]byte(tc.Function.Arguments), &argsJSON)
call := genai.FunctionCall{
Name: tc.Function.Name,
Args: argsJSON,
}
parts = append(parts, call)
}
content.Parts = parts
}
contents = append(contents, content)
}
return contents
}
func convertToGeminiParts(content []ContentPart) []genai.Part {
multiContent := make([]genai.Part, 0, len(content))
for _, part := range content {
switch part.Type {
case ContentTypeText:
multiContent = append(multiContent, genai.Text(part.Text))
case ContentTypeImage:
imageBytes, err := base64.StdEncoding.DecodeString(part.Data)
if err != nil {
continue // Skip if decoding fails
}
multiContent = append(multiContent, genai.Blob{
Data: imageBytes,
MIMEType: part.MediaType,
})
}
}
return multiContent
}
// convertToGeminiTools converts our generic Tool type to Gemini's tool type
func convertToGeminiTools(tools []Tool) []*genai.Tool {
if len(tools) == 0 {
return nil
}
geminiTools := make([]*genai.Tool, len(tools))
for i, tool := range tools {
schema := &genai.Schema{
Type: genai.TypeObject,
}
schema.Properties = make(map[string]*genai.Schema)
if properties, ok := tool.Function.Parameters["properties"].(map[string]interface{}); ok {
for name, prop := range properties {
if propMap, ok := prop.(map[string]interface{}); ok {
propSchema := &genai.Schema{}
if typ, ok := propMap["type"].(string); ok {
propSchema.Type = convertSchemaType(typ)
}
if desc, ok := propMap["description"].(string); ok {
propSchema.Description = desc
}
schema.Properties[name] = propSchema
}
}
}
if required, ok := tool.Function.Parameters["required"].([]interface{}); ok {
reqFields := make([]string, len(required))
for i, r := range required {
if str, ok := r.(string); ok {
reqFields[i] = str
}
}
schema.Required = reqFields
}
geminiTools[i] = &genai.Tool{
FunctionDeclarations: []*genai.FunctionDeclaration{
{
Name: tool.Function.Name,
Description: tool.Function.Description,
Parameters: schema,
},
},
}
}
return geminiTools
}
// convertSchemaType converts a JSON Schema type to Gemini schema type
func convertSchemaType(typ string) genai.Type {
switch typ {
case "object":
return genai.TypeObject
case "string":
return genai.TypeString
case "number":
return genai.TypeNumber
case "integer":
return genai.TypeInteger
case "boolean":
return genai.TypeBoolean
case "array":
return genai.TypeArray
default:
return genai.TypeUnspecified
}
}
// convertFromGeminiToolCalls (unused in streaming approach, for reference)
func convertFromGeminiToolCalls(parts []genai.Part) []ToolCall {
var calls []ToolCall
for _, part := range parts {
if fc, ok := part.(genai.FunctionCall); ok {
args, _ := json.Marshal(fc.Args)
calls = append(calls, ToolCall{
Type: "function",
Function: ToolCallFunction{
Name: fc.Name,
Arguments: string(args),
},
})
}
}
return calls
}
// CreateChatCompletion implements the LLM interface for Gemini (non-streaming).
func (g *GeminiLLM) CreateChatCompletion(ctx context.Context, req ChatCompletionRequest) (ChatCompletionResponse, error) {
if !g.isSupported(req.Model) {
return ChatCompletionResponse{}, fmt.Errorf("model %s is not supported", req.Model)
}
modelName := string(req.Model)
model := g.client.GenerativeModel(modelName)
// Set system prompt if provided
if req.SystemPrompt != nil {
model.SystemInstruction = &genai.Content{
Parts: []genai.Part{
genai.Text(*req.SystemPrompt),
},
}
}
setModelConfig(model, req)
// Convert messages to Gemini format
geminiMessages := convertToGeminiMessages(req.Messages)
// Gemini requires at least one message
if len(geminiMessages) == 0 {
return ChatCompletionResponse{}, fmt.Errorf("no messages provided")
}
chatSession := model.StartChat()
loadChatSession(chatSession, geminiMessages[:len(geminiMessages)-1])
newMessage := geminiMessages[len(geminiMessages)-1]
resp, err := chatSession.SendMessage(ctx, newMessage.Parts...)
if err != nil {
return ChatCompletionResponse{}, fmt.Errorf("failed to generate content: %v", err)
}
// Convert response to our format
choices := make([]Choice, len(resp.Candidates))
for i, c := range resp.Candidates {
choices[i] = convertFromGeminiCandidate(c, i)
}
response := ChatCompletionResponse{
Choices: choices,
}
if resp.UsageMetadata != nil {
response.Usage = Usage{
PromptTokens: int(resp.UsageMetadata.PromptTokenCount),
CompletionTokens: int(resp.UsageMetadata.CandidatesTokenCount),
TotalTokens: int(resp.UsageMetadata.TotalTokenCount),
}
}
return response, nil
}
func convertFromGeminiCandidate(c *genai.Candidate, index int) Choice {
msg := OutputMessage{
Role: RoleAssistant,
Content: "",
}
var textParts []string
for _, part := range c.Content.Parts {
switch p := part.(type) {
case genai.Text:
textParts = append(textParts, string(p))
case genai.FunctionCall:
args, err := json.Marshal(p.Args)
if err != nil {
continue
}
msg.ToolCalls = append(msg.ToolCalls, ToolCall{
Type: "function",
Function: ToolCallFunction{
Name: p.Name,
Arguments: string(args),
},
})
}
}
msg.Content = strings.Join(textParts, "")
return Choice{
Index: index,
Message: msg,
FinishReason: FinishReason(c.FinishReason),
}
}
func setModelConfig(model *genai.GenerativeModel, req ChatCompletionRequest) {
// https://cloud.google.com/vertex-ai/generative-ai/docs/learn/prompts/adjust-parameter-values
// Default value is not 0. It's safer to set the temperature to a small non zero value to avoid the initial value from being lost when marshalled/unmarshalled when sending over an API
if req.Temperature > 0 {
model.SetTemperature(float32(req.Temperature))
} else {
model.SetTemperature(math.SmallestNonzeroFloat32)
}
if req.TopP != nil && *req.TopP > 0 {
model.SetTopP(*req.TopP)
}
model.SetMaxOutputTokens(int32(req.MaxTokens))
if req.JSONMode {
model.ResponseMIMEType = "application/json"
}
geminiTools := convertToGeminiTools(req.Tools)
model.Tools = geminiTools
}
// isSupported checks if the given model is recognized as a valid Gemini model
func (g *GeminiLLM) isSupported(model Model) bool {
switch model {
case ModelGemini2Flash, ModelGemini15Flash, ModelGemini15Flash8B, ModelGemini15Pro, ModelGemini2FlashLite001:
return true
default:
return false
}
}
// geminiStreamWrapper wraps Gemini's streaming iterator to implement our ChatCompletionStream interface
type geminiStreamWrapper struct {
iter *genai.GenerateContentResponseIterator
done bool
accumulatedText string // aggregator for text so far
accumulatedToolCalls []ToolCall // aggregator for tool calls so far
}
// Recv returns the next partial or final ChatCompletionResponse from Gemini.
func (w *geminiStreamWrapper) Recv() (ChatCompletionResponse, error) {
if w.done {
return ChatCompletionResponse{}, io.EOF
}
resp, err := w.iter.Next()
if err != nil {
if errors.Is(err, iterator.Done) {
return ChatCompletionResponse{}, io.EOF
}
return ChatCompletionResponse{}, err
}
if len(resp.Candidates) == 0 {
// If no candidates, return an empty partial update
return ChatCompletionResponse{
Choices: []Choice{{
Index: 0,
Message: OutputMessage{
Role: RoleAssistant,
Content: "",
},
FinishReason: FinishReasonNull,
}},
}, nil
}
// We'll only handle the first candidate for partial streaming.
candidate := resp.Candidates[0]
var newText string
var newToolCalls []ToolCall
// 1. Extract text/tool calls from this partial
for _, part := range candidate.Content.Parts {
switch p := part.(type) {
case genai.Text:
newText += string(p)
case genai.FunctionCall:
args, e := json.Marshal(p.Args)
if e == nil {
newToolCalls = append(newToolCalls, ToolCall{
Type: "function",
Function: ToolCallFunction{
Name: p.Name,
Arguments: string(args),
},
})
}
}
}
// 2. Convert new text into partial delta
var deltaContent string
oldLen := len(w.accumulatedText)
w.accumulatedText += newText
if len(w.accumulatedText) > oldLen {
deltaContent = w.accumulatedText[oldLen:]
}
// 3. Convert new tool calls into partial (any calls that did not appear before)
var deltaCalls []ToolCall
for _, tc := range newToolCalls {
// naive approach: if not already in accumulatedToolCalls, then it's new
isNew := true
for _, existing := range w.accumulatedToolCalls {
if existing.Function.Name == tc.Function.Name &&
existing.Function.Arguments == tc.Function.Arguments {
isNew = false
break
}
}
if isNew {
deltaCalls = append(deltaCalls, tc)
w.accumulatedToolCalls = append(w.accumulatedToolCalls, tc)
}
}
// 4. Determine finish reason
fr := FinishReasonNull
switch candidate.FinishReason {
case genai.FinishReasonStop:
if len(w.accumulatedToolCalls) > 0 {
fr = FinishReasonToolCalls
w.done = true
} else {
fr = FinishReasonStop
w.done = true
}
case genai.FinishReasonSafety:
// The gemini library might block or produce partial or final
// We'll treat those like a stop with an error or just "stop"
fr = FinishReasonStop
w.done = true
case genai.FinishReasonMaxTokens:
fr = FinishReasonMaxTokens
w.done = true
case genai.FinishReasonUnspecified:
fr = FinishReasonNull
w.done = false
default:
err = fmt.Errorf("unknown finish reason: %v", candidate.FinishReason)
panic(err)
}
// 5. Construct the partial chunk response
chunk := ChatCompletionResponse{
Choices: []Choice{
{
Index: 0,
Message: OutputMessage{
Role: RoleAssistant,
Content: deltaContent,
ToolCalls: deltaCalls,
},
FinishReason: fr,
},
},
}
return chunk, nil
}
// Close signals we are finished with the stream
func (w *geminiStreamWrapper) Close() error {
// If there's an open gRPC or HTTP connection it is closed automatically after iteration
// but to align with the interface, we can set iter to nil
w.iter = nil
w.done = true
return nil
}
// CreateChatCompletionStream implements the LLM interface for Gemini streaming
func (g *GeminiLLM) CreateChatCompletionStream(ctx context.Context, req ChatCompletionRequest) (ChatCompletionStream, error) {
if !g.isSupported(req.Model) {
return nil, fmt.Errorf("model %s is not supported", req.Model)
}
modelName := string(req.Model)
model := g.client.GenerativeModel(modelName)
setModelConfig(model, req)
// Convert messages to Gemini format
geminiMessages := convertToGeminiMessages(req.Messages)
if len(geminiMessages) == 0 {
return nil, fmt.Errorf("no messages provided")
}
chatSession := model.StartChat()
loadChatSession(chatSession, geminiMessages[:len(geminiMessages)-1])
newMessage := geminiMessages[len(geminiMessages)-1]
respIter := chatSession.SendMessageStream(ctx, newMessage.Parts...)
return &geminiStreamWrapper{
iter: respIter,
}, nil
}
func loadChatSession(chatSession *genai.ChatSession, geminiMessages []genai.Content) {
if len(geminiMessages) > 1 {
historyPtr := make([]*genai.Content, len(geminiMessages))
for i := 0; i < len(geminiMessages); i++ {
historyPtr[i] = &geminiMessages[i]
}
chatSession.History = historyPtr
}
}