From 248cdf47a8d78a79a01a3e57fe6fe1321832727c Mon Sep 17 00:00:00 2001 From: pauladkisson Date: Wed, 2 Jul 2025 12:21:49 -0700 Subject: [PATCH] added example notebook for 001471 --- 001471/README.md | 19 + 001471/environment.yml | 14 + 001471/example_notebook.ipynb | 2318 +++++++++++++++++++++++++++++++++ 001471/stream_nwbfile.py | 35 + 4 files changed, 2386 insertions(+) create mode 100644 001471/README.md create mode 100644 001471/environment.yml create mode 100644 001471/example_notebook.ipynb create mode 100644 001471/stream_nwbfile.py diff --git a/001471/README.md b/001471/README.md new file mode 100644 index 0000000..4731078 --- /dev/null +++ b/001471/README.md @@ -0,0 +1,19 @@ +# Example Sessions for Dandiset 001471 + +This submission provides a notebook showcasing 4 example sessions for the Dandiset 001471. + +This notebook provides an example of how to access the critical data and metadata for each of the 2 primary data streams: + +- Behavioral events during the social task +- DeepLabCut pose estimation + +It also showcases each of the 3 different session types: + +- 100% Reward +- 50% Reward +- Opaque Control + +It also showcases each of the 2 different genotypes: + +- Fmr1-/y +- WT \ No newline at end of file diff --git a/001471/environment.yml b/001471/environment.yml new file mode 100644 index 0000000..5bf459b --- /dev/null +++ b/001471/environment.yml @@ -0,0 +1,14 @@ +# run: conda env create --file environment.yml +name: jadhav_notebook_env +channels: + - conda-forge +dependencies: + - python==3.12 + - ipykernel + - matplotlib + - dandi + - networkx + - pip + - pip: + - remfile + - jadhav-lab-to-nwb @ git+https://github.com/catalystneuro/jadhav-lab-to-nwb.git@main \ No newline at end of file diff --git a/001471/example_notebook.ipynb b/001471/example_notebook.ipynb new file mode 100644 index 0000000..093e715 --- /dev/null +++ b/001471/example_notebook.ipynb @@ -0,0 +1,2318 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Example Notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stream_nwbfile import stream_nwbfile\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import networkx as nx" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook showcases 4 example sessions from the 001471 dataset containing social behavior and concurrent DeepLabCut pose estimation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## First Session: Experimental Genotype, 100% Reward Condition" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.
identifier: 9895fb0f-ebfc-4648-9183-d5af08b47c42
session_start_time2023-07-20 00:00:00-04:00
timestamps_reference_time2023-07-20 00:00:00-04:00
file_create_date
02025-07-01 11:01:09.637378-07:00
experimenter('Shukla, Ashutosh', 'Rivera, Edward L.', 'Bladon, John H.', 'Jadhav, Shantanu P.')
acquisition
Video_1-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-07-20-2023-100_behavior+image/1dc9f35e-0c9e-4a7b-b936-24cfb4015b2d_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_3-XFN3-XFN1
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-07-20-2023-100_behavior+image/d1c64495-711a-4553-a385-d9a2436e26f1_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_5-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-07-20-2023-100_behavior+image/69b7fd9f-a60f-4201-a4d7-a12c648bee9a_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_7-XFN3-XFN1
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-07-20-2023-100_behavior+image/614a1c21-3bbe-4e6d-992d-cdcd58b2c04a_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_9-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-07-20-2023-100_behavior+image/0a2c9c8c-9138-490a-af2b-1c1db4afbad3_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
keywords
HDF5 dataset
Data typeobject
Shape(3,)
Array size24.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'cooperation' b'social cognition' b'autism spectrum disorders']
processing
behavior
description: Behavioral data recorded during a cooperative maze task, in which a pair of rats must cooperate by picking the same well in order to get a joint reward.
data_interfaces
PoseEstimation_1-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.5525149716679647
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.4917769194470174
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio3.004346199840903
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.554721832736786
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.6175128744136518
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_1-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.643845269443311
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.552937753206348
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.768146472638313
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.655540758262943
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(35643, 2)
Array size556.92 KiB
Chunk shape(35643, 2)
Compressiongzip
Compression opts4
Compression ratio2.6450960566228514
timestamps
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shape(35643,)
Compressiongzip
Compression opts4
Compression ratio2.798355201821447
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(35643,)
Array size278.46 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_3-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.5611996757633073
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.504710865957078
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.8927501955024892
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.563039198289775
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.60621291988332
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_3-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.513583950346176
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.452482980546886
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.8814697654094057
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.5001380595015847
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37916, 2)
Array size592.44 KiB
Chunk shape(37916, 2)
Compressiongzip
Compression opts4
Compression ratio2.56393827844014
timestamps
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shape(37916,)
Compressiongzip
Compression opts4
Compression ratio2.6440033820593953
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37916,)
Array size296.22 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_5-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.831111950160468
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.778886510826361
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio3.489482501861504
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.883534908762282
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio3.5792212131699226
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_5-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.5715535054401415
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.4656513965102658
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.6969759641755613
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.562720553680523
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37491, 2)
Array size585.80 KiB
Chunk shape(37491, 2)
Compressiongzip
Compression opts4
Compression ratio2.620408270246421
timestamps
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shape(37491,)
Compressiongzip
Compression opts4
Compression ratio2.657169435215947
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37491,)
Array size292.90 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_7-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.593686699644431
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.549218813416671
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.8981334421308778
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.6010924197577148
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.6480628411662894
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_7-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.6048964481542276
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.5170018096455373
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.749625588114669
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.558290494218327
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37293, 2)
Array size582.70 KiB
Chunk shape(37293, 2)
Compressiongzip
Compression opts4
Compression ratio2.7163544488197937
timestamps
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shape(37293,)
Compressiongzip
Compression opts4
Compression ratio2.414509197737187
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37293,)
Array size291.35 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_9-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.663113332430437
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.633032119840351
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio3.451824251244387
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.655953988932944
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio3.2373891337829943
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_9-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.619251824033413
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.546817355699931
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.7840130073577436
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.610334830700451
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(38098, 2)
Array size595.28 KiB
Chunk shape(38098, 2)
Compressiongzip
Compression opts4
Compression ratio2.68208418032859
timestamps
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shape(38098,)
Compressiongzip
Compression opts4
Compression ratio2.4265855639241414
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(38098,)
Array size297.64 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
Skeletons
skeletons
SkeletonPoseEstimation_1-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_1-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_3-XFN1-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_3-XFN3-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_5-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_5-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_7-XFN1-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_7-XFN3-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_9-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_9-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
behavioral_events
time_series
matched_poke_A1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 1 and Reward Well A).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(14, 1)
Array size112.00 bytes
Chunk shape(14, 1)
Compressiongzip
Compression opts4
Compression ratio6.588235294117647
timestamps
HDF5 dataset
Data typefloat64
Shape(14,)
Array size112.00 bytes
Chunk shape(14,)
Compressiongzip
Compression opts4
Compression ratio0.9105691056910569
timestamps_unit: seconds
interval: 1
matched_poke_B2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 2 and Reward Well B).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(7, 1)
Array size56.00 bytes
Chunk shape(7, 1)
Compressiongzip
Compression opts4
Compression ratio3.2941176470588234

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(7,)
Array size56.00 bytes
Chunk shape(7,)
Compressiongzip
Compression opts4
Compression ratio0.835820895522388

[ 898.909 1236.909 3971.105 6983.978 10242.386 10478.203 13272.339]
timestamps_unit: seconds
interval: 1
matched_poke_C3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 3 and Reward Well C).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(11, 1)
Array size88.00 bytes
Chunk shape(11, 1)
Compressiongzip
Compression opts4
Compression ratio5.176470588235294

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(11,)
Array size88.00 bytes
Chunk shape(11,)
Compressiongzip
Compression opts4
Compression ratio0.8888888888888888

[ 1098.941 1785.826 4239.799 4417.551 6874.984 7396.431 10350.219\n", + " 10544.523 10946.085 13336.433 13999.99 ]
timestamps_unit: seconds
interval: 1
reward_well_1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 1.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(553, 1)
Array size4.32 KiB
Chunk shape(553, 1)
Compressiongzip
Compression opts4
Compression ratio119.56756756756756
timestamps
HDF5 dataset
Data typefloat64
Shape(553,)
Array size4.32 KiB
Chunk shape(553,)
Compressiongzip
Compression opts4
Compression ratio1.5971119133574008
timestamps_unit: seconds
interval: 1
reward_well_2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 2.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(329, 1)
Array size2.57 KiB
Chunk shape(329, 1)
Compressiongzip
Compression opts4
Compression ratio77.41176470588235
timestamps
HDF5 dataset
Data typefloat64
Shape(329,)
Array size2.57 KiB
Chunk shape(329,)
Compressiongzip
Compression opts4
Compression ratio1.5213872832369941
timestamps_unit: seconds
interval: 1
reward_well_3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 3.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(419, 1)
Array size3.27 KiB
Chunk shape(419, 1)
Compressiongzip
Compression opts4
Compression ratio98.58823529411765
timestamps
HDF5 dataset
Data typefloat64
Shape(419,)
Array size3.27 KiB
Chunk shape(419,)
Compressiongzip
Compression opts4
Compression ratio1.5383203304268014
timestamps_unit: seconds
interval: 1
reward_well_A
resolution: -1.0
comments: no comments
description: Whenever the animal in the right W maze visits Reward Well A.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(563, 1)
Array size4.40 KiB
Chunk shape(563, 1)
Compressiongzip
Compression opts4
Compression ratio121.72972972972973
timestamps
HDF5 dataset
Data typefloat64
Shape(563,)
Array size4.40 KiB
Chunk shape(563,)
Compressiongzip
Compression opts4
Compression ratio1.6390101892285298
timestamps_unit: seconds
interval: 1
reward_well_B
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well B in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(301, 1)
Array size2.35 KiB
Chunk shape(301, 1)
Compressiongzip
Compression opts4
Compression ratio72.96969696969697
timestamps
HDF5 dataset
Data typefloat64
Shape(301,)
Array size2.35 KiB
Chunk shape(301,)
Compressiongzip
Compression opts4
Compression ratio1.4541062801932367
timestamps_unit: seconds
interval: 1
reward_well_C
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well C in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(1173, 1)
Array size9.16 KiB
Chunk shape(1173, 1)
Compressiongzip
Compression opts4
Compression ratio213.27272727272728
timestamps
HDF5 dataset
Data typefloat64
Shape(1173,)
Array size9.16 KiB
Chunk shape(1173,)
Compressiongzip
Compression opts4
Compression ratio1.8210751018823985
timestamps_unit: seconds
interval: 1
rewarded_poke
resolution: -1.0
comments: no comments
description: Whenever a matched poke resulted in a reward.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(32, 1)
Array size256.00 bytes
Chunk shape(32, 1)
Compressiongzip
Compression opts4
Compression ratio15.058823529411764
timestamps
HDF5 dataset
Data typefloat64
Shape(32,)
Array size256.00 bytes
Chunk shape(32,)
Compressiongzip
Compression opts4
Compression ratio0.9770992366412213
timestamps_unit: seconds
interval: 1
tasks
description: tasks module
data_interfaces
SocialW_Left
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_LeftThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.left_Wmaze[0]front/backhead,neckfront,back[1, 5, 9]
SocialW_Right
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_RightThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.right_Wmaze[0]front/backhead,neckfront,back[3, 7]
devices
camera_device 0
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0863.9582098.063[01]
13824.0845136.743[03]
26827.5818125.550[05]
310122.85211414.266[07]

... and 1 more row.

invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
08125.559925.55Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
subject
age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0863.9582098.063[01]
13824.0845136.743[03]
26827.5818125.550[05]
310122.85211414.266[07]

... and 1 more row.

invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
08125.559925.55Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.
session_id: 07-20-2023-100
lab: Jadhav
institution: Brandeis University
source_script: Created using NeuroConv v0.7.4
source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x6020074192\n", + "Fields:\n", + " acquisition: {\n", + " Video_1-XFN1-XFN3 ,\n", + " Video_3-XFN3-XFN1 ,\n", + " Video_5-XFN1-XFN3 ,\n", + " Video_7-XFN3-XFN1 ,\n", + " Video_9-XFN1-XFN3 \n", + " }\n", + " devices: {\n", + " camera_device 0 \n", + " }\n", + " epochs: epochs \n", + " experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.\n", + " experimenter: ['Shukla, Ashutosh' 'Rivera, Edward L.' 'Bladon, John H.'\n", + " 'Jadhav, Shantanu P.']\n", + " file_create_date: [datetime.datetime(2025, 7, 1, 11, 1, 9, 637378, tzinfo=tzoffset(None, -25200))]\n", + " identifier: 9895fb0f-ebfc-4648-9183-d5af08b47c42\n", + " institution: Brandeis University\n", + " intervals: {\n", + " epochs ,\n", + " invalid_times \n", + " }\n", + " invalid_times: invalid_times \n", + " keywords: \n", + " lab: Jadhav\n", + " processing: {\n", + " behavior ,\n", + " tasks \n", + " }\n", + " session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.\n", + " session_id: 07-20-2023-100\n", + " session_start_time: 2023-07-20 00:00:00-04:00\n", + " source_script: Created using NeuroConv v0.7.4\n", + " source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x6036563792\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1\n", + "\n", + " timestamps_reference_time: 2023-07-20 00:00:00-04:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "DANDISET_ID = '001471'\n", + "file_path = 'sub-XFN1/sub-XFN1_ses-07-20-2023-100_behavior+image.nwb'\n", + "nwbfile, io = stream_nwbfile(DANDISET_ID, file_path)\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the subject and session description" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

subject (Subject)

age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
" + ], + "text/plain": [ + "subject pynwb.file.Subject at 0x6036563792\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.\n" + ] + } + ], + "source": [ + "display(nwbfile.subject)\n", + "print(nwbfile.session_description)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "dio_event_names = [\n", + " \"matched_poke_A1\",\n", + " \"matched_poke_B2\",\n", + " \"matched_poke_C3\",\n", + " \"reward_well_1\",\n", + " \"reward_well_2\",\n", + " \"reward_well_3\",\n", + " \"reward_well_A\",\n", + " \"reward_well_B\",\n", + " \"reward_well_C\",\n", + " \"rewarded_poke\",\n", + "]\n", + "event_name_to_timestamps = {}\n", + "for dio_event_name in dio_event_names:\n", + " timestamps = nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_events\"].time_series[dio_event_name].timestamps[:]\n", + " event_name_to_timestamps[dio_event_name] = timestamps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_behavior(axs, matched_poke_A1, matched_poke_B2, matched_poke_C3, \n", + " reward_well_1, reward_well_2, reward_well_3,\n", + " reward_well_A, reward_well_B, reward_well_C, rewarded_poke):\n", + " \"\"\"\n", + " Plot behavioral events on multiple subplots.\n", + " \n", + " Parameters:\n", + " -----------\n", + " axs : array of matplotlib axes\n", + " Array of 4 subplot axes for plotting different behavioral events\n", + " matched_poke_A1, matched_poke_B2, matched_poke_C3 : array-like\n", + " Timestamps for matched poke events\n", + " reward_well_1, reward_well_2, reward_well_3 : array-like\n", + " Timestamps for reward well events (numbered)\n", + " reward_well_A, reward_well_B, reward_well_C : array-like\n", + " Timestamps for reward well events (lettered)\n", + " rewarded_poke : array-like\n", + " Timestamps for rewarded poke events\n", + " \"\"\"\n", + " \n", + " # Plot matched pokes\n", + " axs[0].stem(matched_poke_A1, np.ones_like(matched_poke_A1), linefmt='r-', markerfmt='ro', basefmt=' ', label='Matched Poke A1')\n", + " axs[0].stem(matched_poke_B2, np.ones_like(matched_poke_B2)*1.2, linefmt='g-', markerfmt='go', basefmt=' ', label='Matched Poke B2')\n", + " axs[0].stem(matched_poke_C3, np.ones_like(matched_poke_C3)*1.4, linefmt='b-', markerfmt='bo', basefmt=' ', label='Matched Poke C3')\n", + " \n", + " # Plot reward wells 1-3\n", + " axs[1].stem(reward_well_1, np.ones_like(reward_well_1), linefmt='r-', markerfmt='rs', basefmt=' ', label='Reward Well 1')\n", + " axs[1].stem(reward_well_2, np.ones_like(reward_well_2)*1.2, linefmt='g-', markerfmt='gs', basefmt=' ', label='Reward Well 2')\n", + " axs[1].stem(reward_well_3, np.ones_like(reward_well_3)*1.4, linefmt='b-', markerfmt='bs', basefmt=' ', label='Reward Well 3')\n", + " \n", + " # Plot reward wells A-C\n", + " axs[2].stem(reward_well_A, np.ones_like(reward_well_A), linefmt='r-', markerfmt='r^', basefmt=' ', label='Reward Well A')\n", + " axs[2].stem(reward_well_B, np.ones_like(reward_well_B)*1.2, linefmt='g-', markerfmt='g^', basefmt=' ', label='Reward Well B')\n", + " axs[2].stem(reward_well_C, np.ones_like(reward_well_C)*1.4, linefmt='b-', markerfmt='b^', basefmt=' ', label='Reward Well C')\n", + " \n", + " # Plot rewarded pokes\n", + " axs[3].stem(rewarded_poke, np.ones_like(rewarded_poke), linefmt='k-', markerfmt='ko', basefmt=' ', label='Rewarded Poke')\n", + " \n", + " for i, ax in enumerate(axs):\n", + " ax.set_ylim([0, 2])\n", + " ax.set_yticks([])\n", + " ax.legend(loc='upper right', fontsize='small')\n", + " \n", + " axs[-1].set_xlabel('Time (s)')\n", + " axs[0].set_ylabel('Matched Pokes')\n", + " axs[1].set_ylabel('Reward Wells 1-3')\n", + " axs[2].set_ylabel('Reward Wells A-C')\n", + " axs[3].set_ylabel('Rewarded Pokes')" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAAPbCAYAAAC67N8BAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1mVJREFUeJzs3XlclWX+//H3AUTZEZcRBQXELcVKLVNAaXEqa7Qs03Qs0dLRzCzH6pstOtVYtkzaMv3UrKncl8waR1scDVDHLZfSGscNUHEjloMgerh/f5w4cmQ7B8+BY76ej8d5cO77vu7r+tzcF9c5H+7NZBiGIQAAAADwYF51HQAAAAAAVIfEBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDyfumi0pKRER48eVVBQkEwmU12EAAAAAMADGIah/Px8NW/eXF5elR9XqZPE5ejRo4qMjKyLpgEAAAB4oIyMDEVERFS6vE4Sl6CgIEnW4IKDg+siBAAAAAAeIC8vT5GRkbYcoTJ1kriUnh4WHBxM4gIAAACg2ktIuDgfAAAAgMcjcQEAAADg8erkVDEAAABc/iwWi86dO1fXYeAy4O3tLR8fn0u6ozCJCwAAAJxmNpuVmZkpwzDqOhRcJvz9/RUeHi5fX98arU/iAgAAAKdYLBZlZmbK399fTZo04bl8qJJhGCouLtbJkyd18OBBtWnTpsrntVSGxAUAAABOOXfunAzDUJMmTeTn51fX4eAy4Ofnp3r16unw4cMqLi5WgwYNnK6Di/MBAABQIxxpgTNqcpTFbn0XxQEAAABUz2KR1q2TFiyw/rRY6jqiSxIVFaVNmzZdcj2HDh2q0VGIqgwfPlyvvPKKS+usSyQuAAAAqB3Ll0tRUdKNN0pDhlh/RkVZ57tIVFSUgoODVVhYaJuXl5cnPz8/tW/f3qE6kpKStHDhQpfFdKnWrVsnLy8vBQYGKigoSJ07d9aXX35ZqzF8/PHHMplM+te//mU3/7vvvlOvXr0UEBCg2267za0xkLgAAADA/ZYvl+69V8rMtJ9/5Ih1vguTl2bNmmnlypVlml6uyMhIl9VfF9q2bSuz2azc3FyNGjVK9913n7Kzs2ut/U8//VQNGzbUvHnz7Ob7+/vrT3/6k/7v//7P7TGQuAAAAMC9LBbpscekim6dXDpvwgSXnTZ2//33233BnjdvnoYMGWJX5sUXX1SrVq0UHBysHj16aNeuXbb5KSkpGj58uAIDAzV9+nRJ0tq1a9WtWzcFBwerTZs2SklJsdW1adMmdejQQQ0bNtT48ePt2nn33XfVpk0bNW7cWA8++KAKCgpsy15++WU1bdpUUVFR+vzzzx3aNi8vLyUnJ6uwsFAHDhxQdna2Bg8erMaNGys2NlZz5sypcL1jx46pU6dOmjVrliRp/fr16tq1q0JDQ5WUlKT9+/dX2mZWVpbWrl2rd955RytWrLDbhm7dumnIkCGKiIhwKP5LQeICAAAA90pJKX+kpSzDkDIyrOVcoE+fPtq+fbuys7OVlZWlffv2qVevXnZlrrrqKm3dulXZ2dnq06ePHnjgAUnSc889p8TERH300Ucym8168skndeDAAd19992aMmWKfvnlF3377bcKDw+31bVy5UqlpqZq9+7dWrhwoS2pWbJkiWbNmqVvvvlGGRkZOnfunJ5//nlJ0qpVq/T+++9rw4YN2rFjh7744guHts1iseiDDz5QQECAYmNj9cgjj8jHx0fp6elavny5nnnmGaWmptqtk5GRoRtvvFETJ07UqFGjlJ6eroEDB2rGjBk6ffq07rnnHg0aNKjSZ/IsWLBAXbt21f33369GjRo5nGS5GokLAAAA3OvYMdeWq4aPj4/uuusuLVmyRAsXLtTAgQPL3dHqnnvuUZMmTeTj46NnnnlGu3btktlsrrC+BQsWqH///rrzzjvl7e2tli1bKjY21rZ8woQJatSokSIiIpSUlKSdO3dKkj744ANNnjxZrVq1kp+fn5555hktXbpUkjWpGT16tGJjYxUaGqqnn366ym3at2+fQkND1bRpU3366adatmyZgoKCtGzZMk2bNk3+/v7q3LmzRo4cqQULFtjWO3TokG666SY999xzSk5OliTNnz9f9957rxISEuTt7a1HH31Uhw8f1qFDhypse968eRo0aJBMJpPuu+++cqeL1RYSFwAAALhXmaMTLinngKFDh2r+/PmaP3++hg4dWm757Nmz1bFjR4WEhKhZs2YyDEOnT5+usK7MzEzFxMRU2lbTpk1t7/39/W0JUHp6ukaOHKnQ0FCFhoYqISFBp06dkmQ9davsdTfVXYPTpk0b5eTk6PTp09q8ebNuvfVWnTx5UhaLxe40rVatWuno0aO26eXLlys4OFgDBw60zUtPT9eHH35oiys0NFQFBQV265X6+eeftX37dtv6gwYN0ldffaWTJ09WGa87kLgAAADAvRITpYgIqbLnvphMUmSktZyL9OjRQ0eOHJHZbNY111xjt+zQoUN64okn9MknnygnJ0fHjh2Tl5eX7VSpi59PExkZqYMHDzodQ4sWLTRv3jzl5OTYXqXXh4SHhysjI8NWtux7RzVp0kReXl7KLHMaXnp6upo3b26bnjBhgtq2bav7779fll+vIWrRooXGjBljF9eZM2cUHx9fro1PP/1UknTdddepWbNmuvPOO3X+/HktXrzY6XgvFYkLAAAA3MvbW5oxw/r+4uSldPqtt6zlXGj58uUVfsE2m80ymUxq1KiRzp07pxdeeMHu+o6mTZvanTZ1//33a8WKFVq1apVKSkqUkZFR5cXspUaOHKmXX35ZBw4ckGQ9yrJ69WpJ0r333qtZs2Zp//79ys3Ntd0EwBne3t4aMGCAJk+erMLCQv3www/64IMPNHjwYFsZLy8vffzxxzp79qxGjhwpwzA0ZMgQLVq0SGlpaSopKVF+fr7tFLaLzZ8/X3/729+0Y8cO2+u5556znS5WUlKioqIinTt3zu69O5C4AAAAwP0GDJCWLpXKHA2QZD0Ss3SpdbmLde7cWZ06dSo3v1OnTho1apQ6d+6sqKgoRUdHy9fX17b80Ucf1Zw5c9SwYUO9/vrrio6O1rJlyzR58mSFhITo5ptv1jEHrscZPHiwhg8frr59+yooKEi9e/fWnj17JEl33HGHHnroIfXo0UOdO3fWnXfeWaNtfPfdd1VUVKSIiAj169dPf/nLX5R40ZGrevXqaenSpTp8+LAee+wxRUdHa/78+Zo4caLCwsLUvn17rVixolzdGzZs0MmTJzVy5Eg1a9bM9ho7dqy2bt2q/fv367vvvpOfn59GjRqlr7/+Wn5+fnr44YdrtC3VMRmV3T7AjfLy8hQSEqLc3FwFBwfXdvMAAAC4BEVFRTp48KCio6Odf9q7xWK9e9ixY9ZrWhITXX6kBZ6psn7jaG7gUxtBAgAAAJKsSUpSUl1HgcsQp4oBAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB63QwYAAECtsZRYlJKeomP5xxQeFK7Elony9uI5LqgeR1wAAABQK5bvXa6oGVG68R83asjyIbrxHzcqakaUlu9dXteh1VhUVJQ2bdp0yfUcOnTI+Yd5VmP48OF65ZVXXFpnXSJxAQAAgNst37tc9y6+V5l5mXbzj+Qd0b2L73VZ8hIVFaXg4GAVFhba5uXl5cnPz0/t27d3qI6kpCQtXLjQJfG4wrp16+Tl5aXAwEAFBQWpc+fO+vLLL2ul7Y8++kg+Pj4KDAxUYGCgOnTooBUrVtiWf/nll+rRo4dCQkIUERGhqVOnui0WEhcAAAC4laXEosdWPyZDRrllpfMmrJ4gS4nFJe01a9ZMK1eutE0vX75ckZGRLqm7rrRt21Zms1m5ubkaNWqU7rvvPmVnZ9dK27fccovMZrPMZrPeeustDR06VLm5uZKk/Px8vfTSSzpx4oQ2bNighQsX6pNPPnFLHCQuAAAAcKuU9JRyR1rKMmQoIy9DKekpLmnv/vvv17x582zT8+bN05AhQ+zKvPjii2rVqpWCg4PVo0cP7dq1yzY/JSVFw4cPV2BgoKZPny5JWrt2rbp166bg4GC1adNGKSkXYt20aZM6dOighg0bavz48XbtvPvuu2rTpo0aN26sBx98UAUFBbZlL7/8spo2baqoqCh9/vnnDm2bl5eXkpOTVVhYqAMHDig7O1uDBw9W48aNFRsbqzlz5lS43rFjx9SpUyfNmjVLkrR+/Xp17dpVoaGhSkpK0v79+x1q/9Zbb1VAQIAOHTokyfq7vvnmm1W/fn21bNlSAwYM0ObNmx2qy1kkLgAAAHCrY/nHXFquOn369NH27duVnZ2trKws7du3T7169bIrc9VVV2nr1q3Kzs5Wnz599MADD0iSnnvuOSUmJuqjjz6S2WzWk08+qQMHDujuu+/WlClT9Msvv+jbb79VeHi4ra6VK1cqNTVVu3fv1sKFC21JzZIlSzRr1ix98803ysjI0Llz5/T8889LklatWqX3339fGzZs0I4dO/TFF184tG0Wi0UffPCBAgICFBsbq0ceeUQ+Pj5KT0/X8uXL9cwzzyg1NdVunYyMDN14442aOHGiRo0apfT0dA0cOFAzZszQ6dOndc8992jQoEEyjPJHxMoyDEOrV69WSUmJYmNjKyyzYcMGdezY0aFtcRaJCwAAANwqPCi8+kJOlKuOj4+P7rrrLi1ZskQLFy7UwIED5eVl/7X3nnvuUZMmTeTj46NnnnlGu3btktlsrrC+BQsWqH///rrzzjvl7e2tli1b2n1xnzBhgho1aqSIiAglJSVp586dkqQPPvhAkydPVqtWreTn56dnnnlGS5culWRNakaPHq3Y2FiFhobq6aefrnKb9u3bp9DQUDVt2lSffvqpli1bpqCgIC1btkzTpk2Tv7+/OnfurJEjR2rBggW29Q4dOqSbbrpJzz33nJKTkyVJ8+fP17333quEhAR5e3vr0Ucf1eHDh21HUS727bffKjQ0VIGBgbrjjjv0wgsvKCAgoFy5//f//p+OHTumBx98sMptqSkSFwAAALhVYstERQRHyCRThctNMikyOFKJLRNd1ubQoUM1f/58zZ8/X0OHDi23fPbs2erYsaNCQkLUrFkzGYah06dPV1hXZmamYmJiKm2radOmtvf+/v62BCg9PV0jR45UaGioQkNDlZCQoFOnTkmynrpV9rqb6q7BadOmjXJycnT69Glt3rxZt956q06ePCmLxaKIiAhbuVatWuno0aO26eXLlys4OFgDBw60zUtPT9eHH35oiys0NFQFBQV265V18803KycnRwUFBfrhhx80bdq0ckeIvvzyS/3lL3/Rl19+KT8/vyq3paZIXAAAAOBW3l7emnHbDEkql7yUTr9121sufZ5Ljx49dOTIEZnNZl1zzTV2yw4dOqQnnnhCn3zyiXJycnTs2DF5eXnZTpUymexjjIyM1MGDB52OoUWLFpo3b55ycnJsr9JrXMLDw5WRkWErW/a9o5o0aSIvLy9lZl64fig9PV3Nmze3TU+YMEFt27bV/fffL4vFYotrzJgxdnGdOXNG8fHx1bbZoUMHxcfHa82aNbZ53333nUaOHKmVK1dWegqZK5C4AAAAwO0GdBigpfctVfOg5nbzI4IjtPS+pRrQYYDL21y+fLkWL15cbr7ZbJbJZFKjRo107tw5vfDCC3bXdzRt2tTutKn7779fK1as0KpVq1RSUqKMjAyHLmYfOXKkXn75ZR04cECS9SjL6tWrJUn33nuvZs2apf379ys3N9d2EwBneHt7a8CAAZo8ebIKCwv1ww8/6IMPPtDgwYNtZby8vPTxxx/r7NmzGjlypAzD0JAhQ7Ro0SKlpaWppKRE+fn5tlPYqvO///1PaWlp6tChgyRpx44duvfeezVv3jx17drV6W1wBokLAAAAasWADgO0Z+we2/SqIat08LGDbklaJKlz587q1KlTufmdOnXSqFGj1LlzZ0VFRSk6Olq+vr625Y8++qjmzJmjhg0b6vXXX1d0dLSWLVumyZMnKyQkRDfffLOOHav+RgKDBw/W8OHD1bdvXwUFBal3797as8e6/XfccYceeugh9ejRQ507d9add95Zo2189913VVRUpIiICPXr109/+ctflJhof8pdvXr1tHTpUh0+fFiPPfaYoqOjNX/+fE2cOFFhYWFq37693bNZLvbNN98oMDBQAQEB6t27t+6//3796U9/kiTbBf533XWX7Vkvt99+e422pTomo7rbB7hBXl6eQkJClJubq+Dg4NpuHgAAAJegqKhIBw8eVHR0tMuf9o7frsr6jaO5AUdcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAx/Op6wAAAABw5bBYpJQU6dgxKTxcSkyUvL3rOipcDjjiAgAAgFqxfLkUFSXdeKM0ZIj1Z1SUdf7lKioqSps2bbrkeg4dOuTyh3kOHz5cr7zyikvrrEuXnLjk5eVpxYoV2rt3ryviAQAAwG/Q8uXSvfdKmZn2848csc53VfISFRWl4OBgFRYW2ubl5eXJz89P7du3d6iOpKQkLVy40DUBucC6devk5eWlwMBABQUFqXPnzvryyy9rrf3Dhw/r/vvvV+PGjRUaGqquXbtq7ty5kqQDBw7ouuuuU8OGDRUWFqa77rpLx44dc0scTicu9913n9555x1JUmFhobp166b77rtPnTt31rJly1weIAAAAC5vFov02GOSYZRfVjpvwgRrOVdo1qyZVq5caZtevny5IiMjXVN5HWnbtq3MZrNyc3M1atQo3XfffcrOznZ7uydOnFCPHj3k7++vnTt3KicnRx999JG++eYbSVKTJk20ePFiZWdnKysrS+3bt9eECRPcEovTict3332nxMRESdJnn30mwzCUk5OjmTNn6qWXXnJ5gAAAALi8paSUP9JSlmFIGRnWcq5w//33a968ebbpefPmaciQIXZlXnzxRbVq1UrBwcHq0aOHdu3aZZufkpKi4cOHKzAwUNOnT5ckrV27Vt26dVNwcLDatGmjlDLBbtq0SR06dFDDhg01fvx4u3beffddtWnTRo0bN9aDDz6ogoIC27KXX35ZTZs2VVRUlD7//HOHts3Ly0vJyckqLCzUgQMHlJ2drcGDB6tx48aKjY3VnDlzKlzv2LFj6tSpk2bNmiVJWr9+vbp27arQ0FAlJSVp//79Fa73t7/9Tb/73e80Z84ctWjRQpIUFxen+fPnS5KCgoIUHR0tk8lki+/gwYMObYuznE5ccnNzFRYWJklavXq17rnnHvn7++uOO+7Qvn37XB4gAAAALm+OnjnkqjOM+vTpo+3bt9uOAuzbt0+9evWyK3PVVVdp69atys7OVp8+ffTAAw9Ikp577jklJibqo48+ktls1pNPPqkDBw7o7rvv1pQpU/TLL7/o22+/VXh4uK2ulStXKjU1Vbt379bChQttSc2SJUs0a9YsffPNN8rIyNC5c+f0/PPPS5JWrVql999/Xxs2bNCOHTv0xRdfOLRtFotFH3zwgQICAhQbG6tHHnlEPj4+Sk9P1/Lly/XMM88oNTXVbp2MjAzdeOONmjhxokaNGqX09HQNHDhQM2bM0OnTp3XPPfdo0KBBMio4JLZ27Vr179/flphUJjQ0VH5+fnr99dc1ceJEh7bFWU4nLpGRkdq4caMKCgq0evVq/f73v5ck/fLLLy6/oAgAAACXvzLf8V1Srjo+Pj666667tGTJEi1cuFADBw6Ul5f919577rlHTZo0kY+Pj5555hnt2rVLZrO5wvoWLFig/v37684775S3t7datmyp2NhY2/IJEyaoUaNGioiIUFJSknbu3ClJ+uCDDzR58mS1atVKfn5+euaZZ7R06VJJ1qRm9OjRio2NVWhoqJ5++ukqt2nfvn0KDQ1V06ZN9emnn2rZsmUKCgrSsmXLNG3aNPn7+6tz584aOXKkFixYYFvv0KFDuummm/Tcc88pOTlZkjR//nzde++9SkhIkLe3tx599FEdPnxYhw4dKtfu6dOn1axZs2p/5zk5Ofrll180bdo0RUVFVVu+JpxOXCZMmKChQ4cqIiJC4eHhSkpKkmQ9hSwuLs7V8QEAAOAyl5goRURIlf3T3mSSIiOt5Vxl6NChmj9/vubPn6+hQ4eWWz579mx17NhRISEhatasmQzD0OnTpyusKzMzUzExMZW21bRpU9t7f39/WwKUnp6ukSNHKjQ0VKGhoUpISNCpU6ckWU/dKnvdTXXX4LRp00Y5OTk6ffq0Nm/erFtvvVUnT56UxWJRRESErVyrVq109OhR2/Ty5csVHBysgQMH2ualp6frww8/tMUVGhqqgoICu/VKNWrUSFlZWVXGVio4OFgPPvig7r777gqP3lwqpxOXsWPHauPGjZo7d67S0tJs2WtMTMxv9hoXi0Vat05asMD601UXjv1W4kHtcWTf0z+uXLW57+lncCdH+5c7+iF92z28vaUZM6zvL05eSqffesu1z3Pp0aOHjhw5IrPZrGuuucZu2aFDh/TEE0/o448/UUZGjn744Zi8vLxUUmL8GpN9kJGRkTW6bqNFixaaN2+ecnJybK/Sa1zCw8OVkZEhyXqNz88/W9/n51d8E4OKNGnSRF5eXsoscwFRenq6mjdvbpueMGGC2rZtq/vvv1+WXzt0ixYtNGbMGLu4zpw5o/j4+HJt3HTTTVq5cqXDiUhJSYmOHTumM2fOOLYRzjBq6OzZs8ZPP/1knDt3zul1c3NzDUlGbm5uTZuvNcuWGUZEhGFYu5D1FRFhnU88qE2O7Hv6x5WrNvc9/Qzu5Gj/ckc/pG87rrCw0NizZ49RWFjo1HrLlhlGixb2v+PISNf+jlu1amVs3LjRMAzD2Llzp7F7927DMAzj3//+t9GuXTvDMAxj9+7dRmBgkPGvfx0yNmw4awwbNskwmUzGqlUHjexsw7jvvvuMadOm2eo8cOCAERwcbPzzn/80LBaLkZ6ebvzvf/8r155hGMaDDz5oW3fBggXG9ddfb+zfv98wDMM4evSo8a9//cswDMP48ssvjcjISGPbtv8Zqak5RvfufQxf3/rGli2GsXOnYWRnX9imsrFf7L777jOGDRtmnDlzxti9e7fRtGlT47vvvrOLpbi42LjjjjuMBx980CgpKTEOHDhgNG/e3EhNTTUsFouRl5dnLFmypML6jx8/boSHhxsPP/ywceTIEcMwDOOHH34whgwZYhiGYaxfv97Ytm2bcf78eSM7O9sYNmyYcf3111dYV2X9xtHcwOnEpaCgwBgxYoTh7e1teHt723bEo48+areDq3K5JC7LlhmGyWT/xyVZ55lMtT+QeVo8qD2O7Hv6x5WrNvc9/Qzu5Gj/ckc/pG87p6aJi2EYRm7uhd/vqlWGcf68a2O7OJEoVfbLf3a2YQwdOtEICAg2GjcON5566j3D17e+8fnnB40tWwxj1aoUo3Xr1kZoaKjx2muvGYZhGF9//bVxzTXXGIGBgUabNm2MlJSUCtsrm7gYhmG89957Rrt27WzrvfHGG7ZlTz891WjYsInRrFlLY+LEGbbEpfRVmrxUlbicPHnSGDhwoBEWFmZER0cb77//foWxFBYWGklJScajjz5qGIZhrFu3zujevbsREhJiNG/e3Bg6dGilv9ODBw8agwcPNsLCwoyQkBCjS5cuxty5cw3DMIx//vOfRvv27Y2AgACjSZMmxr333mscOnSownouNXExGYZzJ6A99thjSktL01tvvaXbbrtNu3btUkxMjFauXKkXXnhB33//fbV15OXlKSQkRLm5uQoODq7RkSJ3s1isT3Kt7NZ9JpP1XM2DB117WPNyiQe1x5F9/+vdCekfV6DaHBsYh+BOjvav//1Pat3atf2Qvu28oqIiHTx4UNHR0ZfdzZkMQ9q9WyourryMr68UF1f5NTm/pThqU2X9xtHcwOlrXFasWKF33nlHCQkJduf/XXXVVZXe//lyVNv3G7/c4kHtcWTfZ2bSP65UtTk2MA7BnRztX++95/p+SN++spjNVScLknV5JTcY+83FcTlxOnE5efKk3Z0TShUUFFR7f+fLSW3fb9xV7dRWPKg9rtyn9I/fntocGxiH4E6O9htH/0fqTD+kb19ZqksWnC13ucdxOXE6cbnuuuv0z3/+0zZdmqzMnj1bPXr0cF1kday27zfuqnZqKx7UHlfuU/rHb09tjg2MQ3AnR/tN69aurc+ZsvTt3wZfX9eWu9zjuJz4OLvCtGnTdNttt2nPnj06f/68ZsyYoR9//FEbN27U+vXr3RFjnSi93/iRIxXfkq70fFdX3m/8cooHtceRfV96jQv948pTm2MD4xDcydH+NXas9MYbru2H9O0rS2CgNRmo7tqSwMArI47LidNHXHr27Km0tDSdOXNGrVu31ldffaXf/e532rhxo7p27eqOGOtEXdxv/HKKB7XHkX0/Ywb940pVm2MD4xDcydH+5evr+n5I3645J+/x5BFKH3ZZlchI918Q7ylx1KaSkpJLWt/pu4rt2rVLnTt3rnDZihUrdNddd1Vbx+VwV7FSy5dL48db/wtTKjLSOoANGEA8qD2O7Hv6x5WrNvc9/Qzu5Gj/ckc/pG87zmKxaN++ffL391eTJk0uy+ucc3Ot1y2dP39hXr16UrNmUkjIlReHOxmGoeLiYp08eVIWi0Vt2rSxPcRecjw3cDpxCQ8PV1pammJiYuzmL1u2TA888IDtaaBVuZwSF0nKy7vQcVatkn7/+7r9r4unxYPa48i+p39cuWpz39PP4E6O9i939EP6tuPMZrMyMzMvy6MupUpKrHeMk6SmTaUGDermCIenxOFu/v7+Cg8Pl+9FF+44mhs4fY3LmDFjdPPNN2vDhg0K//UqtUWLFmnEiBH66KOPnK3uslB2wOrVq+4HME+LB7XHkX1P/7hy1ea+p5/BnRztX+7oh/RtxwUGBqpNmzY6d+5cXYdSY2fOSHfcYX2/fbvk739lx+FO3t7e8vHxuaSjc04nLs8//7xOnz6tW265RSkpKVq9erUeeughffLJJ7rnnntqHAgAAAAuL97e3vK+jLM7i0U6fNj6vn5965GOKzkOT+d04iJJM2bM0LBhw3TDDTfoyJEjWrBggfr37+/q2AAAAABAkoOJy8qVK8vNu+uuu7R+/Xrdf//9MplMtjL9+vVzbYQAAAAArngOJS5V3Sls7ty5mjt3riTrwygtFotLAgMAAACAUg4lLpd6z2UAAAAAuBROP4ASAAAAAGpbjRKX9evX6w9/+INiY2PVpk0b9evXTykpKa6ODQAAAAAk1SBx+fTTT3XLLbfI399f48eP17hx4+Tn56ebb75Z8+fPd0eMAAAAAK5wTt8O+eWXX9b06dP1+OOP2+Y99thjevPNN/Xiiy9qyJAhLg3QnSwlFqWkp+hY/jGFB4UrsWWivL2cuxe5K+rAlYd+g9pCX4Onq6iPSpX30bLlQ71bSOpVa7Hi8ndxf+vSqOr+Bs/idOJy4MAB/eEPfyg3v1+/fnrmmWdcElRtWL53uR5b/Zgy8zJt8yKCIzTjthka0GFArdWBKw/9BrWFvgZPV1kffbXXO5LKPx+uXPlif0kFtRMsLnsV9bfm9dtI+m/dBQWnOH2qWGRkpL799tty87/99ltFRka6JCh3W753ue5dfK9dx5WkI3lHdO/ie7V87/JaqQNXHvoNasvnP31OX4NHq2o8HLp8qMPlS33+0+duiRO/DZX1n6P5R+soItSE04nLxIkTNX78eI0ZM0affPKJPv30U/3pT3/SY489pj//+c/uiNGlLCUWPbb6MRkyyi0rnTdh9QRZSip/Ho0r6sCVh36D2jTp60n0NXgsR8ZDR8uXevLrJ+nTqFDV/cewKwfP5nTiMmbMGC1cuFC7d+/WhAkT9Nhjj+mHH37QokWLNHr0aHfE6FIp6SmV/rdGsg6YGXkZSkmv/C5prqgDVx76DWrT0fwjlS6jr6GuVTce6qIvmNWXl47kZ9KnUSFH+o8kpWWk1UI0uBROXeNiGIb+97//qV27dlq3bp18fJy+RKbOHcs/dsnlXFEHrjz0G3ga+hrqirN9j/ETl8LRfpGVn+XmSHCpHD7icujQIV1zzTVq37694uLiFBsbq+3bt7szNrcIDwq/5HKuqANXHvoNPA19DXXF2b7H+IlL4Wi/aBbUzM2R4FI5nLg89dRTKioq0ieffKIlS5YoPDz8sjg17GKJLRMVERwhk0wVLjfJpMjgyF9vx+i+OnDlod+gNjUPakFfg8eqbjzURfOrLy+1CIqgT6NCjvQfSYqPjK+liFBTDicuKSkpmjVrloYMGaIBAwZoyZIl2r59uwoLC90Zn8t5e3lrxm0zJKlcBy6dfuu2t6p8zoEr6sCVh36D2vRan9ck0dfgmRwZDx0tX2p6n+n0aVSo6v5jsisHz+Zw4pKVlaX27dvbpiMiIuTn56fjx4+7JTB3GtBhgJbet1TNg5rbzY8IjtDS+5Y69HwDV9SBKw/9BrWlf/v+9DV4tKrGw3kD5jlcvlT/9uWf+wKUqqz/tAhqUUcRoSZMhmFUfm/BMry9vZWVlaUmTZrY5gUHB2vnzp2Kjo52qtG8vDyFhIQoNzdXwcHBzkXsQnlFeQp5NUSStGrIKv2+9e8rzLYLCqTAQOt7s1kKCHC+DleqKh5cHmrabxzZ9/SPK1dF+95dYxT9DK5SUR8tKvR26HN3+V1rNOCa31dYrqbo279tF/e3+Ga/V0iwdUysy/19pfc7R3MDh28LZhiG2rZtK5PpwiE1s9msa6+9Vl5eFw7cZGdn1zDk2lf2w7tXq141+jB3RR248tBvUFvoa/B0zvbRssvjW3JNApxzcX/TOcbEy4nDicuHH37ozjgAAAAAoFIOJy4PPvigO+MAAAAAgEo5fHE+AAAAANQVEhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PIfuKvbEE084XOGbb75Z42AAAAAAoCIOJS7ff/+93fS2bdtksVjUrl07SdJ///tfeXt7q2vXrq6PsDZZLFJKinTsmBQeLiUmSt61+GAiV7Rf19sAe5e6Py5ev0uipErWLy178ISk+1wRPS5n330n5RyRmobWdSSAvYvHte5dnFvHkT5dF5+FfP5eflK+k9Lz5ZbPTE/uD54cW3UMJ73xxhvGH/7wByM7O9s2Lzs72+jfv7/x+uuvO1RHbm6uIcnIzc11tnmXMp81G5oiQ1NkmJfMM4yICMOQLrwiIgxj2TLDbL4wy2yuoo6z5oobcsSyZZW2Xy7uyuJxog7Ugir2h0P9poL1zc3bVLvvzfK/UGbeilrZVHgGu7FB/tb+UE+uGaOqast11eK3rqJxLap5uT5q17/mrbBbp2yfPp5tLt8PL/GzsEZ9m8/fy4bd5289N31m1qA/1NqY6qF91dHcwOnEpXnz5sYPP/xQbv7u3buN8PBwlwbnbnad11f2O1EyDJPJMEwmwzxvhXsTl2XLrG1V0v7FnanCzu1kHXCzavaHecm8qvtNJeubFVDtvrcbhBXAvr+C2I1VFSUuS+a5ri0SFzirsnHNt3xybZ+EB9iXL5u4fLLQvh+64LPQ6b7N5+9lxe7z9+LExRWfmTXsD7UypnpwX3U0N3D64vy8vDwdP3683PwTJ04oPz//ko8A1Rmjonm/znzySfe1a7FIjz12oa2K2p8wwVrOnXXAdRzZH1X1qarWL9tRLZZqyv6KfX9lsFikSZOqLvPkk/QF1I0qx8WLylVZ4CLPPutgG276LOTz9/LiyDh5KfvLk/uDJ8fmBKcTl7vvvlvJyclaunSpMjMzlZmZqaVLl2rkyJEaMGCAO2KsW4YhHcl0X/0pKVJmFfUbhpSRYS3nzjrgOo7sj8wjNV+/VFqaA2XZ91eMlBTpaBX9SrL2O/oC6oKj49qGNOfqPXL0wvu0tNr/LOTz9/KSkmLfZ8q5xP3lyf3Bk2NzgkMX55f1/vvv689//rP++Mc/6ty5c9ZKfHw0cuRIvfbaay4P8Dfv2LFLL+eKOuA6l/p7dnT9rCypgYP/GWHf//YxDsCTOTOu1ZSj67ryb4C/u8uLu/eXJ/cHT47NCU4nLv7+/nrvvff02muvaf/+/TIMQ7GxsQoICHBHfL994eGXXs4VdcB1LvX37Oj6zZpJfiWurROXL8YBeDJnxrWacnRdV/4N8Hd3eXH3/vLk/uDJsTmhxg+gPHbsmI4dO6a2bdsqICBARlXn2F8OTJXNN0ktItzXbmKiFBFhbaey9iMjreXcWQdcx5H9EdGi5uuXio93oCz7/oqRmCg1r6JfSdZ+R19AXXB0XOsZX8HMKtZp0fzC+/j42v8s5PP38pKYaN9nyrnE/eXJ/cGTY3OC04nL6dOndfPNN6tt27bq27evjv16SOmhhx7SxIkTXR5grbp4Z5ZOT5/uvja9vaUZM6pu/623qr6/tivqgOs4sj+q6lNVrV/2A9zbu5qyv2LfXxm8vaXqTtedPp2+gLpR5bh4UbmKVDa+vfSSg2246bOQz9/LiyPj5KXsL0/uD54cmxOcTlwef/xx1atXT+np6fL397fNHzRokFavXu3S4GrVvHlS84uy8IgIaelSqX9/97Y9YIC1ncrad+SmB66oA65T3f7oV02fqmz9FhX8R72yspK1X7PvrxzVjVXV9TvAnZwZ18qq6PO51B13OtaGOz8L+fy9vFQ1DrriM9OT+4Mnx+YgpxOXr776Sq+++qoiIuxPn2rTpo0OHz7sssBqXb/+0p49F6ZXrZIOHqy9nThgwKW374o64DqXuj8qWr/sdFVlS7k76YbnW768riMALqhoXPuxknGtVP+LPp+r69N18VnI5+9vg6s+Mz25P3hybA5wOnEpKCiwO9JS6tSpU6pfv75LgqozZQ+P9epV+4fLXNF+XW8D7F3q/nBmffY1KhJf0TUDQB2qybhYtowjfbouPgv5/EVZntwfPDm2ajiduPTq1Usff/yxbdpkMqmkpESvvfaabrzxRpcGBwAAAABSDW6H/NprrykpKUlbt25VcXGxnnzySf3444/Kzs5WWpqTD44CAAAAAAc4fcTlqquu0q5du3T99derT58+Kigo0IABA/T999+rdevW7ogRAAAAwBXO6SMuktSsWTNNnTrV1bEAAAAAQIVqlLjk5ORo8+bNOnHihEpK7J/c/cADD7gkMAAAAAAo5XTi8sUXX2jo0KEqKChQUFCQTGUeYmMymUhcAAAAALic09e4TJw4USNGjFB+fr5ycnL0yy+/2F7Z2dnuiBEAAADAFc7pxOXIkSMaP358hc9yAQAAAAB3cDpxufXWW7V161Z3xAIAAAAAFXLoGpeVK1fa3t9xxx2aNGmS9uzZo7i4ONWrV8+ubL9+/VwbIQAAAIArnkOJy1133VVu3l/+8pdy80wmkywWyyUHBQAAAABlOZS4XHzLYwAAAACoTU5f4wIAAAAAtc3pxGX8+PGaOXNmufnvvPOOJkyY4IqYAAAAAMCO04nLsmXLFB8fX25+z549tXTpUpcEBQAAAABlOZ24nD59WiEhIeXmBwcH69SpUy4JCgAAAADKcjpxiY2N1erVq8vN/9e//qWYmBiXBAUAAAAAZTl0V7GynnjiCY0bN04nT57UTTfdJEn69ttv9cYbb+itt95ydXwAAAAA4HziMmLECJ09e1Yvv/yyXnzxRUlSVFSU/v73v+uBBx5weYAAAAAA4HTiIkljxozRmDFjdPLkSfn5+SkwMNDVcQEAAACAjdPXuNx0003KycmRJDVp0sSWtOTl5dlOHQMAAAAAV3I6cVm3bp2Ki4vLzS8qKlJKSopLggIAAACAshw+VWzXrl2293v27FFWVpZt2mKxaPXq1WrRooVrowMAAAAAOZG4XHPNNTKZTDKZTBWeEubn56e3337bpcEBAAAAgORE4nLw4EEZhqGYmBht3rxZTZo0sS3z9fVV06ZN5e3t7ZYgAQAAAFzZHE5cWrVqJUkqKSlxWzAAAAAAUJEa3Q5Zsl7nkp6eXu5C/X79+l1yUAAAAABQltOJy4EDB3T33Xdr9+7dMplMMgxDkmQymSRZL9QHAAAAAFdy+nbIjz32mKKjo3X8+HH5+/vrxx9/1Hfffadu3bpp3bp1bggRAAAAwJXO6SMuGzdu1Nq1a9WkSRN5eXnJy8tLCQkJmjZtmsaPH6/vv//eHXECAAAAuII5fcTFYrEoMDBQktS4cWMdPXpUkvXi/Z9//tm10QEAAACAanDEpVOnTtq1a5diYmLUvXt3TZ8+Xb6+vpo1a5ZiYmLcESMAAACAK5zTicuzzz6rgoICSdJLL72kO++8U4mJiWrUqJEWLVrk8gABAAAAwOnE5dZbb7W9j4mJ0Z49e5Sdna2GDRva7iwGAAAAAK5U4+e4lBUWFuaKagAAAACgQg4nLiNGjHCo3Ny5c2scDAAAAABUxOHE5aOPPlKrVq107bXX2h46CQAAAAC1weHE5U9/+pMWLlyoAwcOaMSIEfrjH//IKWIAAAAAaoXDz3F57733dOzYMT311FP64osvFBkZqfvuu09r1qzhCAwAAAAAt3LqAZT169fX/fffr6+//lp79uxRx44dNXbsWLVq1Upms9ldMQIAAAC4wjmVuJRlMplkMplkGIZKSkpcGRMAAAAA2HEqcTl79qwWLFigPn36qF27dtq9e7feeecdpaenKzAw0F0xAgAAALjCOXxx/tixY7Vw4UK1bNlSycnJWrhwoRo1auTO2AAAAABAkhOJy/vvv6+WLVsqOjpa69ev1/r16ysst3z5cpcFBwAAAACSE4nLAw88IJPJ5M5YAAAAAKBCTj2AEgAAAADqQo3vKgYAAAAAtYXEBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8XzqolHDMCRJeXl5ddG8TUFxgVQkWyyWc2UW5uVJFou1XEGFsyuuw7fMQqcDqqIhR4s5WAdqSSX7w+F+c9H6BbKUnaxw3xfIkJRXcRn8ptl1FxmySCrIy3fdGFVZW/QzOOPica2eyvXRcv1LF2aU7dP5eXnSr+OiXT+8hA5a41X5o7gs2H3+GpLc9ZnpZH+o1e7jgX21NCcozREqYzKqK+EGmZmZioyMrO1mAQAAAHiojIwMRUREVLq8ThKXkpISHT16VEFBQTKZTLXd/BUnLy9PkZGRysjIUHBwcF2HgzLYN56N/eO52Deei33j2dg/nutK3jeGYSg/P1/NmzeXl1flV7LUyaliXl5eVWZTcI/g4OAr7g/hcsG+8WzsH8/FvvFc7BvPxv7xXFfqvgkJCam2DBfnAwAAAPB4JC4AAAAAPB6JyxWgfv36euGFF1S/fv26DgUXYd94NvaP52LfeC72jWdj/3gu9k316uTifAAAAABwBkdcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxfOqi0ZKSEh09elRBQUEymUx1EQIAAAAAD2AYhvLz89W8eXN5eVV+XKVOEpejR48qMjKyLpoGAAAA4IEyMjIUERFR6fI6SVyCgoIkWYMLDg6uixAAAAAAeIC8vDxFRkbacoTK1EniUnp6WHBwMIkLAAAAgGovIeHifAAAAAAej8QFAAAAgMerk1PFAAAAgFIWi0Xnzp2r6zDgRt7e3vLx8bmkOwqTuAAAAKDOmM1mZWZmyjCMug4Fbubv76/w8HD5+vrWaH0SFwAAANQJi8WizMxM+fv7q0mTJjzf7zfKMAwVFxfr5MmTOnjwoNq0aVPl81oqQ+ICAACAOnHu3DkZhqEmTZrIz8+vrsOBG/n5+alevXo6fPiwiouL1aBBA6fr4OJ8AAAA1CmOtFwZanKUxW59F8UBAAAAuF96urR9e+Wv9PS6jrBWREVFadOmTW6r/9ChQ3ZHRdzdniNIXAAAAHB5SE+X2rWTunat/NWunUuSl6ioKPn7+yswMFDNmzfX448/LovF4oKNcK/k5GRNnjzZNr1nzx6ZTCYtWLDANm/x4sW6+uqrXdbm6NGj1bp1a5lMJrcmNyQuAAAAuDycOiUVFVVdpqjIWs4F1q5dK7PZrJSUFC1evFhz5851Sb3OKCkpUUlJicPlExISlJqaaptOS0tT27Zty81LSEhwWYzXXnut5s6dq4iICJfVWRESFwAAAKAKrVu3Vnx8vHbs2GGbt3TpUnXs2FFhYWHq16+fTpw4IUkaMmSIZs+eLUlav369TCaTtmzZIkmaMWOGRo8eLUlauXKl4uLiFBQUpDZt2mjJkiW2uocPH67x48crKSlJgYGBSk9P16pVqxQbG6uwsDBNmTKl0lgTEhK0efNmFRcXS5JSU1M1ceJEpaWl2cqkpqYqMTGxyu1wxp/+9Cf17t1b3t7eTq/rDBIXAAAAoAr79u1TamqqYmJiJEmbN2/WE088oUWLFun48eNq3769xowZI0lKTExUSkqKJGuCEB0dbTddeqQjODhYS5cuVW5urmbOnKnk5GRlZWXZ2ly4cKHefPNN5efnKyAgQIMHD9bMmTOVlZWlM2fOKDMzs8JY27Vrp+DgYG3btk2StGHDBg0YMEBms1m5ubkym83auXOnLcGpbDs8EYkLAAAAUIE+ffooMDBQbdu21Q033KBHHnlEkjR37lyNGzdOnTp1Ur169fT8889r5cqVOn/+vBISEmyJSkpKiiZNmlRh4pKUlKR27drJy8tLt99+u+Li4rR161Zb2wMHDlSXLl3k7e2tVatW6frrr1ffvn3l6+urKVOmVHmHrp49eyo1NVVZWVny9vZW48aN1b17d23YsEGbNm1SZGSkIiIiqtwOT0TiAgAAAFTg66+/Vn5+vlasWKHt27fLbDZLktLT0zV16lSFhoYqNDRUERER8vHxUVZWljp16qTc3FwdPnxYe/bsUXJysrZt26Z9+/bJy8tL0dHRkqxJTHx8vMLCwhQaGqqtW7fq9OnTtrbLXi9y7NgxRUZG2qb9/f3VqFGjSuMuvc4lLS1N8fHxki4kM2Wvb6lqOzwRiQsAAABQCZPJpP79++vmm2/Wiy++KElq0aKFpk2bppycHNursLBQERERMplM6tmzp959913FxcWpQYMGiomJ0ezZs+0uiB82bJhGjBih48ePKycnR926dZNhGHbtlgoPD1dGRoZturCw0C7JuVhCQoLS0tJsyZFkn7iUXt9S1XZ4IhIXAAAAoBqTJk3SnDlzdPLkSY0YMUJvv/22du3aJUnKzs7W559/biubmJio999/X7169bKbLpu45OfnKywsTD4+Plq2bJntmpSK9O3bV5s3b9aaNWtUXFysqVOnVnmnsS5duqiwsFDz58+3JS6dO3fW3r17tWnTJlsc1W2Ho4qLi1VUVCTDMOzeuxqJCwAAAC4PjRtLZR6KWKEGDazlXKx9+/ZKSkrSjBkz1KNHD7366qsaNmyYgoOD1aVLF7u7diUmJio/P992ZKN0umzi8vbbb2vcuHFq2LCh1qxZo969e1fadpMmTTRv3jyNHTtWzZo1k5+fX5VHRerVq6fu3bvLYrGoXbt2kiRvb2/FxcXJ19dXHTp0kKRqt8NRv//97+Xn56f09HT17t1bfn5+Onz4sNP1VMdkuCMdqkZeXp5CQkKUm5ur4ODg2m4eAAAAHqCoqEgHDx5UdHS03VPaq5SeXvVzWho3llq2dE2AcKnK9rejuYFPbQQJAAAAuETLliQmVyhOFQMAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PG6HDAAAgMtGem66Tp2p/Dkujf0bq2UIt0v+LSJxAQAAwGUhPTdd7d5pp6LzRZWWaeDTQD+P+/k3n7xERUVp4cKFuuGGG9xS/6FDh9S+fXsVFRXVSnuO4FQxAAAAXBZOnTlVZdIiSUXni6o8IuOoqKgo+fv7KzAwUM2bN9fjjz8ui8VyyfW6W3JysiZPnmyb3rNnj0wmkxYsWGCbt3jxYl199dUuae/EiRO677779Lvf/U5hYWH6wx/+oPT0dJfUfTESFwAAAKACa9euldlsVkpKihYvXqy5c+fWegwlJSUqKSlxuHxCQoJSU1Nt02lpaWrbtm25eQkJCS6Jr6CgQAkJCfrxxx+VlZWl2NhYJScnu6Tui5G4AAAAAFVo3bq14uPjtWPHDtu8pUuXqmPHjgoLC1O/fv104sQJSdKQIUM0e/ZsSdL69etlMpm0ZcsWSdKMGTM0evRoSdLKlSsVFxenoKAgtWnTRkuWLLHVPXz4cI0fP15JSUkKDAxUenq6Vq1apdjYWIWFhWnKlCmVxpqQkKDNmzeruLhYkpSamqqJEycqLS3NViY1NVWJiYlVboejoqOjNX78eDVu3Fi+vr4aO3asNm/e7FQdjiJxAQAAAKqwb98+paamKiYmRpK0efNmPfHEE1q0aJGOHz+u9u3ba8yYMZKkxMREpaSkSLImCNHR0XbTpUc6goODtXTpUuXm5mrmzJlKTk5WVlaWrc2FCxfqzTffVH5+vgICAjR48GDNnDlTWVlZOnPmjDIzMyuMtV27dgoODta2bdskSRs2bNCAAQNkNpuVm5srs9msnTt32hKcyrajpjZs2KCOHTteUh2VIXEBAAAAKtCnTx8FBgaqbdu2uuGGG/TII49IkubOnatx48apU6dOqlevnp5//nmtXLlS58+fV0JCgi1RSUlJ0aRJkypMXJKSktSuXTt5eXnp9ttvV1xcnLZu3Wpre+DAgerSpYu8vb21atUqXX/99erbt698fX01ZcoUeXlV/jW+Z8+eSk1NVVZWlry9vdW4cWN1795dGzZs0KZNmxQZGamIiIgqt6MmMjIy9PTTT+ull16q0frVIXEBAAAAKvD1118rPz9fK1as0Pbt22U2myVJ6enpmjp1qkJDQxUaGqqIiAj5+PgoKytLnTp1Um5urg4fPqw9e/YoOTlZ27Zt0759++Tl5aXo6GhJ1iQmPj5eYWFhCg0N1datW3X69Glb2xEREbb3x44dU2RkpG3a399fjRo1qjTu0utc0tLSFB8fL+lCMlP2+paqtsNZ2dnZuu222/TMM8/olltucXp9R5C4AAAAAJUwmUzq37+/br75Zr344ouSpBYtWmjatGnKycmxvQoLCxURESGTyaSePXvq3XffVVxcnBo0aKCYmBjNnj3b7oL4YcOGacSIETp+/LhycnLUrVs3GYZh126p8PBwZWRk2KYLCwvtkpyLJSQkKC0tzZYcSfaJS+n1LVVthzPMZrP69u2r/v3769FHH3VqXWeQuAAAAOCy0Ni/sRr4NKiyTAOfBmrs39jlbU+aNElz5szRyZMnNWLECL399tvatWuXJOvRhs8//9xWNjExUe+//7569eplN102ccnPz1dYWJh8fHy0bNky2zUpFenbt682b96sNWvWqLi4WFOnTq3yTmNdunRRYWGh5s+fb0tcOnfurL1792rTpk22OKrbDkcUFxdrwIAB6tixo/761786ta6zSFwAAABwWWgZ0lI/j/tZ20ZtU2ryhdv7pianatuobdo2apvbHj7Zvn17JSUlacaMGerRo4deffVVDRs2TMHBwerSpYvdXbsSExOVn59vO7JROl02cXn77bc1btw4NWzYUGvWrFHv3r0rbbtJkyaaN2+exo4dq2bNmsnPz6/KoyL16tVT9+7dZbFY1K5dO0mSt7e34uLi5Ovrqw4dOkhStdvhiI0bN+rrr7/WwoULFRgYaHu541kuJqPsMalakpeXp5CQEOXm5io4OLi2mwcAAIAHKCoq0sGDBxUdHa0GDao+koLLX2X729HcgCMuAAAAADweiQsAAAAAj+dU4mIYhg4ePGi7t3NxcbEWLVqkjz/+WKdOnXJLgAAAAADg42jBn3/+WbfeeqsyMjIUExOjr776SgMHDtRPP/0kwzDk7++vDRs2qE2bNu6MFwAAAMAVyOEjLk899ZSuvvpq7dixQ3feeafuvPNORURE6JdfftEvv/yi+Ph4/eUvf3FnrAAAAACuUA4nLhs2bNDUqVMVFxenl156SXv37tWf//xn1atXT76+vnrqqaf03XffuTNWAAAAAFcohxMXs9mssLAwSVJAQIACAgIUHh5uWx4REaHjx4+7PkIAAAAAVzyHr3Fp3ry50tPT1bKl9YE+06dPV9OmTW3LT548qYYNG7o+QgAAAOBX6elSVfeEatxYaun650/CAzh8xOWWW27RTz/9ZJseM2aMgoKCbNNfffWVunTp4troAAAAgF+lp0vt2kldu1b+atfOWu63LioqSps2bXJb/YcOHbJ7SKS723OEw4nL+++/r4ceeqjS5YMGDdKcOXNcEhQAAABwsVOnpKKiqssUFVV9RMZRUVFR8vf3V2BgoJo3b67HH39cFovl0it2s+TkZE2ePNk2vWfPHplMJi1YsMA2b/Hixbr66qtd1uYdd9yhpk2bKiQkRN27d9fGjRtdVndZl/QAyszMTJWUlEiSoqOj7a55AQAAAC5na9euldlsVkpKihYvXqy5c+fWegwlJSW279uOSEhIUGpqqm06LS1Nbdu2LTcvISHBZTFOnz5dR48eVW5urp599lndfffdMgzDZfWXuqTE5aqrrtKhQ4dcFAoAAADgeVq3bq34+Hjt2LHDNm/p0qXq2LGjwsLC1K9fP504cUKSNGTIEM2ePVuStH79eplMJm3ZskWSNGPGDI0ePVqStHLlSsXFxSkoKEht2rTRkiVLbHUPHz5c48ePV1JSkgIDA5Wenq5Vq1YpNjZWYWFhmjJlSqWxJiQkaPPmzSouLpYkpaamauLEiUpLS7OVSU1NVWJiYpXb4YyOHTvKx8dHhmHIy8tLx48f15kzZ5yupzqXlLi4I5MCAAAAPMm+ffuUmpqqmJgYSdLmzZv1xBNPaNGiRTp+/Ljat2+vMWPGSJISExOVkpIiyZogREdH202XHukIDg7W0qVLlZubq5kzZyo5OVlZWVm2NhcuXKg333xT+fn5CggI0ODBgzVz5kxlZWXpzJkzyszMrDDWdu3aKTg4WNu2bZNkfaTJgAEDZDablZubK7PZrJ07d9oSnMq2w1l33nmnGjRooDvvvFPjx49XQEBAjeqpyiUlLgAAAMBvVZ8+fRQYGKi2bdvqhhtu0COPPCJJmjt3rsaNG6dOnTqpXr16ev7557Vy5UqdP39eCQkJtkQlJSVFkyZNqjBxSUpKUrt27eTl5aXbb79dcXFx2rp1q63tgQMHqkuXLvL29taqVat0/fXXq2/fvvL19dWUKVPk5VX51/iePXsqNTVVWVlZ8vb2VuPGjdW9e3dt2LBBmzZtUmRkpCIiIqrcDmd9+eWXys/P19KlS912w65LSlyeeeYZ27NdAAAAgN+Sr7/+Wvn5+VqxYoW2b98us9ksSUpPT9fUqVMVGhqq0NBQRUREyMfHR1lZWerUqZNyc3N1+PBh7dmzR8nJydq2bZv27dsnLy8vRUdHS7ImMfHx8QoLC1NoaKi2bt2q06dP29qOiIiwvT927JgiIyNt0/7+/mrUqFGlcZde55KWlqb4+HhJF5KZste3VLUdNeHr66t77rlHb7zxhvbu3VujOqri8HNcKvJ///d/rorDI2zcKC1eLJUeeTtwwPq+qEg6e9b6Kstkkry9JR8fqV49KTpamjJFuvvumrU/bJi0bJn06ymJdhy5iUV4uHTVVdKLL0o9ekizZkkpKZXffaNdO2nUKO51Xhs++0z66CPp2DH7+fv2SQUFkmFY+1D9+vbLQ0KkBg2k3FzJbJbOnbNfbjJJgYFSXJzUvr10+rS0bZtUWFg+Bl9f673t4+Ol666rOM6YGGvfuRSzZkmrV0t5eRUvb9VKeuihS28HF2zcKM2ZI/38s3X8+P57qaJ/lplM1ldQkFRSYu1TlQkJkXbuLD8+vPKKdR+fPl3xuFjKy8v6Cg2VRo60rleRV16xjpuV1VPKx+fCNrRqZf3bkXiew+Xos8+k996T/vc/+8+7s2et4+H589b9HRhoHbdK+fpKfn7WvnvypJSfX/6z0WSyjqORkdJtt0mDBjk21mzcKK1ZI23aJO3dK5U9Nd9isX7WBwZaP2dvukkaMEBau1b64gspJ6f82C1JYWHWcqNGOfXrQS0xm63jR1WXYRQXW8fV+vVNatGiv66+eqXGjXtRf/7zDPn6ttCYMdM0ePB4SRfGu9Jco2fPnnr33XcVFxenBg0aKDIyRi++OFtXXZWg0oMqgwYN04gRz+qNNx6Qj089jRjRQwcOGNq61TquBQaatHWrte5z58K1d+832rfPOqaVlBTaJTlnz1r/Jkq/K0REJOi776YpODhGsbHx2rVLatq0pz76aIIaNKivO+64V8ePS02bttC0adM0fvz4ctt/Kdexnz9/XgcPHlSHDh1qXEeFDBdJT083kpOTHSqbm5trSDJyc3Nd1fwl27DBMKxfHy/9tXy58+3/8Y+ua18yjKeecqycj49hHD7s+t8nLli+3LX71t2vDRtqvq3/7//VTju4wJVjV0WvsuPDtGmXNiZd7FLqi421xtagQdXlGjRgjPMkdTEeVjfWuPtv6P/9v9r53V6uCgsLjT179hiFhYUOlXfF331+vmFs2VL9Kzy8lTF37kbb9JIle40GDfyNr746YXzwwQYjMjLWmD9/p7Fli2F8881p4/XXVxj791vbeOWVV4ygoCDjlVdeMU6cMIwRI541AgKCjD//eaatvpCQRsb06cuNzZtLjFdfXWr4+NQznn/+Q2PLFsO4444HjUcemWYr+9VXJ4yAgCBj5szVxoYNZ40///kpw9vb29i4caNRVGQYW7fax75xY7HRoIG/ERbW1Fiy5CdjyxbD2LTpvNGwYRMjICDIWLToR2PLFsP44IMNRuvWscbOnTsNwzCM06dPGytWrDAMwzAOHjxo1K9f3/Z7a9WqlbFx48Zyv89Dhw4ZX3zxhVFYWGgUFRUZb7/9thEUFGRkZWU5vL8dzQ1cdo1Ldna2/vGPf7iqulp34IDr6vrxR+fX2b7dde1LUplTJKt0/rxr7nWOytWkP9SlS/lbKHOzFbe2gwvc/XssOz78ep1njVQ0Jl1KfRkZtfs8B7hGXYyH1f2NuPtvyJlxEdVr2dJ6FGTbNqnM3X2Vmmqdt22bdXlVR1qrO8Jbmaio9uraNUkLF85Q5849NG7cq3rhhWFKSgrWsGFdtHNnmu0ITmJiovLz85WYmKgzZ6Rrr01UQUG+rrnmwi2IJ016W6+9Nk433dRQGzeuUZcuvSttu2HDJvrLX+bp1VfH6rbbmsnX1892Ktn589aUrSwfn3rq1Km7LBaLoqLaSZK8vb3VunWcfHx8FR1tPRLSuXMPPffcqxo2bJiCg4PVpUsXu7uPOerll19W06ZN1axZMy1atEhffPGFfve73zldT3UcPlVs5cqVVS4/wLcQAAAAuFnLlhcSk4u/sLvSypWHys17661/2t7fdNMA3XTTgArX7dmzp4xfgzt8WLrhht9ryxb7YG+99X7deuv9Fa4/ZcpH5eb16vUH9er1B0lShw7Syy+/IMl6imVF/v73tRXM+7bcvDvvHKAHHyy/HVFRUSoq89+hyk4da9WqldseOHkxhxOXu+66SyaTybYTKmIymVwSFAAAAACU5fCpYuHh4Vq2bJnt6Z0Xv7a7+lwnAAAAAPiVw4lL165dq0xOqjsaAwAAAAA15fCpYpMmTVJBZSfRSYqNjdW///1vlwQFAAAAAGU5nLgkJiZWuTwgIEC9e1d+NwQAAACgIpy1c2UoKSm5pPUv6QGUvyUxMa6rq2NH59fp0kXas8d1MXTrJn1b/sYR5fj4WB/QBvepSX+oS5fyt3DNNbXTDi5w9++x7PjQtau0dGnN6unWrfy8S6kvMtIaW4MGVd8SuUEDxjhPUhfjYXV/I+7+G3JmXLwS1atXTyaTSSdPnlSTJk0u+xs91a9ffkyqV8/17VgsF9qxWKwPX72U3K+6W8tfKsMwVFxcrJMnT8rLy0u+ZZ8u6wSTUQcpbl5enkJCQpSbm6vg4ODabr5SGzdKixdL+/dbn4Zbyt+/6ier1q9vfaJvdLT1CdB3312z9ocNk5Yts3aesnvF0c4YHi5ddZX04ovWJwXPmiWlpEjHj0tff32h3N13W58C3K6d9Ym+PFXa/T77TProI+nQIWnXrgvzg4OtT7m3WKxPgy4rJMT6FN4GDaxPZj5+vHy9vr7WOuLipPbtrU8z37zZ2k5ZTZta+3HjxlJ8vHXfjx1rXfbee9Y6JOsH+KU+0X7WLGn1aunoUek//7kwPzHRGm+rVtJDD116O7hg40Zpzhxp925py5bKy5lM1ldQkLW/mc3lx5bS7wwhIdLOneXHh1dese7j48erHhdNJus4ExoqjRxpXa8ir7xiHTere65CaX0mk7UP7dtnnZ+ebn1OS2GhlPDr4xFSU61PWJesfZ4xzrN89pl13Nm7VzpyxH5Z/frWZ1JYLPbzS8cwPz9r383KknJzK67fz8+6z2+7TRo0yLGxZuNGac0a6bvvpIrOeg8Ntf5NHD5snU5Nta7zxRfSyZPWbSnVqZM1hrAwacAA6+csqmY2m5WZmVmrR13OnpWys6XiYtfUZzJd+JytSH6+tb2aKh3/6tWz9i2fiw49nD9v/f549qx1bK+Kv791fW9v699c/fo1j8tZ/v7+Cg8PL5e4OJobkLhU4MQJqewzc1avtg6AlTlwwJq0uMrnn0t33XVh+qOPpAcftL4fO1b6+9/Lr3P8uHVgr8iPP1oH0lJmsxQQ4Kpo4YyDB+3/u/fDD9b/QF68zyX7fVpQIAUGlq9v82bpuuvs513cf6XyfbRsmar6zqW4uN+5qx1cUNG+L6uiseriMcXR8WHLFun66ytfvn691KtX9fVUVt+YMfZxvfCCNcGpTNm/Eca4y8PF46F04R80F/fj0rGyqnXL1lHTsaayv6EffpCioiruY5WN63COxWLRuXPnar3d06et/9Ara+pUa9K7e7c0cOCF+dOmSf/3f/Zl331Xuvlmx9vbt0/6wx/s533yiTU5vnh+Wdu3WxOO6pw5Yz2LpyppaVKjRtXX5Wre3t7y8fGp8Kiao7kBp4oBAACgTnl7e8vb27vW261X78KRtFJnz1rPdpDslxUXly97/vyFso7w8ipfh2FUPL+s+vUda8diqboeybrNzsTsSRy+HTIAAAAA1BWnE5d//OMf+uc//2mbfvLJJxUaGqqePXvqcHUpHgAAAADUgNOJy1//+lf5/XrV48aNG/XOO+9o+vTpaty4sR5//HGXBwgAAAAATl/jkpGRodjYWEnSihUrdO+992rUqFGKj49XUlKSq+MDAAAAAOePuAQGBur06dOSpK+++kq33HKLJKlBgwYqLCx0bXQAAAAAoBoccenTp48eeughXXvttfrvf/+rO+64Q5L0448/KioqytXxAQAAAIDzR1zeffdd9ejRQydPntSyZcvU6NcbQW/btk3333+/ywMEAAAAAKePuISGhuqdd94pN3/q1KkuCag2fLb3M/148kdJ0p6Te3TCfMJu+c4DRyXtsU3f9mkfSV+rMjFvtZLC0itc5mPykV89P4XVD9PguMF6pU8lj48u46PvP5A00jY9fPkgDT+02Dqx8VVJT1ZbBzzPxoyNWrhpk6QLN7G4b8lABaQd1ukdPSTNsCv/+49/L9/gHEmS5WwDSd+5LJbMvExJEZKkNze+qcCG9o9AD6ofpOubX68ekTze/rekwrHqojEl8K8Bkq99f5AkXy9fjbx2pN678z03R1mxH0/s1EvffVHp8tYBnSX1q72AUCNPf/20Vu1bJfM5s05k+kn60W75715rKh+vepKO2M1P+rCXgiOO6OSZkzpvnFf9vLaSdlTYxtI9SxRy3Po49JjQGLeMY3O3z9XevK2SpNyshpJeti37y/opurmwuUZ1G+XydlFzw5YPU2p6qootxXbzz+eHSdptN2/05w9o9LFPpMxrJH1vmz98+SBJi+zKjv1ytNb42D9/5prfXePy/X/nvDvVPbqTQ98jf8scSlx27drlcIWdO3eucTC14bO9n2nA4gFVFzrT2H665HyN2ztvnFd+cb7yi/P16oZXJanKTvf0109rxd6dKpu44PK3MWOjes7tKWW3VNnEZc+J3ZLpZ+l0+UfY7jz+vVRwyjpR7MDjch2Unpuu7rN7qPSLwaup06TAUxWW3TBiA8kLJEnFJcX6+zbro+zrInlZunuelv7utcoLFPtLKqi1eOC8p79+2vY5KEkqbllBKUPnS4rLzT115oRO5R6wTRcW/VJpO4/8c6zdmOaOcWz86kcvJPjZLVU2cVn8w0ItPvmzJJG8eIhhy4fp092fVrywoHx/c8bRvHT9fevqCpc5s//f3PC6pD9Xunzd4X9r3THr40iu5OTFocTlmmuukclkkmEYFS4vXWYymWSxWFwaoKuVHmmpK1uPbnVgeb3aCQa15kDOgeoL1ZJTZ05V+MWgIgdyDpC4wE51YxhQmbrqO3U1ju04vqPW20TFth/bXuttOrv/Hf1+eqWPwQ4lLgcPHnR3HAAAAABQKYcSl1atWrk7DgAAAAColEOJy8qVKx2usF8/Lo4EAAAA4FoOJS533XWXQ5VdDte4AAAAALj8OJS4lJSUuDsOAAAAAKiU0w+gLKuoqMhVcQAAAABApZxOXCwWi1588UW1aNFCgYGBOnDAepvX5557Th988IHLA3S1jk061mn73Zp3u6TluDzFhMbUdQg2jf0by8fL16GynhQ3PANjFGqqrvpOXY1j1/zumjppF+V1Ce9S6206u/8d/X56pY/BDp0qVtbLL7+sf/zjH5o+fboefvhh2/y4uDj97W9/08iRnv3gxLs73K3l9y3Xjyd/1C+Fv+jNTW9Kkro066LtWdb7fDdsEKbKH23lHG95y9/XX2H1wzQ4bnC1Dw16pc8r+jntA61wUfvwDD0ie2jDiA1amLpJM2eWX94yNFrp5WerbcO2CmkQIsvZBnLVXehbhrTUfx7+j7pOL7/s6Z5PK6B+gILqB+n65tfzDBfY+Hr5auS1I+vk4ZOSdG/cUF19Y7DduP3EDU+ooV9DSVLrgM4a8tc6CQ0OKv38W7VvlU4VntKxbOfWDw8Il7nYrOKSYp2tqp2bpyuihfWfMzGhMW4Zx2be9rb25m1V9plsLUrdaLfsvk6DdfP1zXn4pAf5ZMAnkqTU9FTlns3VL2UeYNrEv6lOuqCNQVcNUph/mCRr0uLs/n+i5581t4rlSa1uVPfoTlf0wyelGiQuH3/8sWbNmqWbb75Zf/rTn2zzO3furJ9++smlwbnL3R3u1t0d7tbBXw7aPgD/duvf1PsfvSVJa4Z9petfck1bax9cq15RvZxaZ/i1IytNXH7f9g/6aselRoW60COyh5rd0EMV5C2a3Os5jZ5Vfv7M22fq1ja3qqBAChzvulgigiMqnP94j8fVNLCp6xqCxzo+8biaBjbV2OPS33dUXm71kNW6tc2ttRZXZTo2vVrP9rrabtwed/04RTeMliQVFNRldHDUK31e0St9XtF3h75T778Nc2rdhfcuVK+oXtpyZIuun35vpeXubHuHOsa4dxwb0WWEAgJG6McTP2pRal+7Zc/3nqKOdXtyBypQmrx8vvdz3bX4Ltv8fz/4b3X6y6XX/1zv59Sxqft2/JdDv1RAgNuqv2w4farYkSNHFBsbW25+SUmJzp0755KgAAAAAKAspxOXjh07KiUlpdz8JUuW6Nprr3VJUAAAAABQltOnir3wwgsaNmyYjhw5opKSEi1fvlw///yzPv74Y3355ZfuiBEAAADAFc7pIy5/+MMftGjRIq1atUomk0nPP/+89u7dqy+++EJ9+vRxR4wAAAAArnAOH3F59tlnddNNN6lnz5669dZbdeutdX+xJgAAAIArg8NHXBYsWKBbbrlFoaGh6t27t6ZOnaqUlBQVFxe7Mz4AAAAAcDxx2b9/vzIyMjR79mzFxsbq448/Vu/evdWwYUPdcsstevnll7VhwwZ3xgoAAADgCuXUNS4tWrTQsGHD9MEHH2j//v06fPiw/v73v6tly5aaPn26evVy7nklAAAAAOAIp+8qVmr//v1at26d1q5dq3Xr1slisejGG290ZWy1q99d0j2/vu95g6Rjrqm3d2/paJlfc/36UocO0r59Um5uJSvdJulfFS/aulVSh/LzW7WSiip69roktZNU5uGgISFSp2hpx47qokdNpadLu3dLOTn280/4SRpQvvyj4yQtKz+/z23SYUnyl1TBE/b+9LB0JlU6W+Y50qFtJa22L7diudS08MJ0rq+kgeXrW7ZU8gkpPz8mRupRwdOnZ82S3nrL2p/Pn79o4UX97tnJUu+rHKsXNbNli6TrHCt7dZxU5COdnCxpbPXlP/tM+vHHC9OZTSVdwpPBZ82yH4OOt5A0+cL07m2Suta8fniezz6T0tKkM2ckHZHqObl+Qm/piKTfSRrUsvJyHTtKRafKz69Xzzrm/O531vcVKQ5RhWPxm69Li16TdNw6HRgg6YzUSNLQi2Lp1F7Sz9VszK+8vKQGDaTISGn4cOnppx1bDzX39nvWPlTqxiRJey693muulk55SdU+0/Ciz0ZJ+tcXUpdoSZ0qX23CBKlesXUcTk+X8vMli8W6rEEDKSzM+r5hhKQ1VYfQob3kdbr8/Kuuktavryb+uuVw4nLw4EH9+9//1r///W+tW7dOubm5io+PV+/evTVu3Dhdd9118vGpcR5U97J/ufC++OIvYJfAIvsvdOfP/5p81FBWJQlV0RknYjov7dwpXXMNyYs7pKdLbdvaJxM2LVVh4nLGif1X1vatKjcAKr98uScel1Q2sW2sChOXsY9IlYWyYYN9kjFrljR6tOOxzp4lza7gy8TF9aJmNm6U7uwn6aRj5bNO/LqvzdWX/ewzacDF/fYa1ThxqbDvXCO7xCX1W5G4/IZc3IdaSLqniuTDHc6dk37+2fqqVOOKZ8+dI4f+VpxVUmId/3/+Wfq//7POI3lxn7Fjpa++koaVmXfCwTGzOsUW6ZylZuu+8ldJv6j853kZc2ar8g9oSVlZv745VH172aclVfB5/N131n+4e3Dy4nCm0bp1a7Vs2VJjx47V+PHj1aVLF3l7e7szNrjb/v11HcFv06lTlSQtl7kDB+wTDFclvRfXi5o5cMB9dZc90uIK/MPkyuPqPvRbtW1bXUfw23Yp/zi+UuxxwdEnN3L4GpeBAwfq7NmzmjZtml588UW99dZb2r59uwzDcGd8AAAAAOD4EZdFixZJkn766Sfb6WKvvfaaioqKlJCQoN69eyspKUnXXefg+dUAAAAA4CCn7iomSe3bt9eYMWO0aNEiZWVlacOGDbrmmmv00ksvqQenewAAAABwgxpdTX/8+HGtW7dO69at07///W/997//Vf369ZWYmOjq+AAAAADA8cRlyZIltlPEfv75Z/n4+Oj666/XfffdpxtvvFE9e/ZU/fr13RkrAAAAgCuUw4nL0KFD1a1bN91999268cYbFR8fLz8/P3fGBgAAAACSnEhcfvnlFwUEBLgzFtS21q3rOoLfpsaNrQ8a/a3dEjkmxn76mmvcUy9qxp2/x44dXVufq/oOLh+u7kO/VV15dpFbdesmfbWlrqPwbFddVX2ZOuRw4vKbT1rCGsr68B83KX04Z/36UocO0t69UkEFT0KvDd4+UqereZaCu7RsKf33v9Lu3dLx49LIkReWvTJdcsezxZo1K/PwqQq8Ml16evCF6b/NkB6voNz0V6Rxvwb43ntScLD1fUVPuB/168MH33rLur0WBx+8VV29qJkePaQvV0l3OrFOaKhUEChV96Dnu++Wli+3Povjl1+kN9+8hEB1oe/s2CFlZ0u/3rXSTsLNUuqlNQMPUtqH0tKsY9W6ebUfQ7161jHnd7+zvv/lF2n7duuyLl2khg2l4hAppYJ1RzwkLXpNcvXHtskk+flJkZHS8OE8fNLd3ntPGrtf0ld1HYnzHnpYys+6MF4GBUn5Fz1wul07qXErKa2auvwDpTO/PoAyMFBq0MD6/qqrPPrhk1IN7ir2m7VyhfvqnjjR+sTec+cks1naskVatco9bY0ZU32Z3FySFndr2VK64w5p0CD7+Xc6863SCR99VPXyi9vt37/icneUKXfPPdLQodZXZcnFqFHWh1Xt3OlwqA7Vi5px9nb0b70lPTTWsbJ33y09+6w0bpzTYVVo1Cjrl4jnnqt4eRz/ef7Nuftu6fXXpRdfrP22N2+Wiouln36yfjH75hvpb3+7sPxvf7POW7qs4vWf+LP1H1Gu9p//WP+J+dNPJC215VEHxzxP89Zb9uPlJ5+UL/Pdd9KaNdXXNXXqhfdvvCGdPGl9eXjSIpG4AAAAALgMkLgAAAAA8HgkLgAAAAA8nkMX5w8YMMDhCpcvX17jYAAAAACgIg4dcQkJCbG9goOD9e2332rr1q225du2bdO3336rkJAQtwUKAAAA4Mrl0BGXDz/80Pb+qaee0n333af3339f3t7ekiSLxaKxY8cquPQWpwAAAADgQk5f4zJ37lz9+c9/tiUtkuTt7a0nnnhCc+fOdWlwAAAAACDVIHE5f/689u7dW27+3r17VVJS4pKgAAAAAKAsh04VKys5OVkjRozQ//73P91www2SpE2bNumVV15RcnKyywMEAAAAAKcTl9dff13NmjXT3/72Nx07dkySFB4erieffFITJ050eYAAAAAA4FTicv78ec2bN08PPPCAnnzySeXl5UkSF+UDAAAAcCunrnHx8fHRmDFjdPbsWUnWhIWkBQAAAIC7OX1xfvfu3fX999+7IxYAAAAAqJDT17iMHTtWEydOVGZmprp27aqAgAC75Z07d3ZZcAAAAAAg1SBxGTRokCRp/Pjxtnkmk0mGYchkMslisbguOgAAAABQDRKXgwcPuiMOAAAAAKiU04lLq1at3BEHAAAAAFTK6cSl1J49e5Senq7i4mK7+f369bvkoAAAAACgLKcTlwMHDujuu+/W7t27bde2SNbrXCRxjQsAAAAAl3P6dsiPPfaYoqOjdfz4cfn7++vHH3/Ud999p27dumndunVuCBEAAADAlc7pIy4bN27U2rVr1aRJE3l5ecnLy0sJCQmaNm2axo8fzzNeAAAAALic00dcLBaLAgMDJUmNGzfW0aNHJVkv2v/5559dGx0AAAAAqAZHXDp16qRdu3YpJiZG3bt31/Tp0+Xr66tZs2YpJibGHTECAAAAuMI5nbg8++yzKigokCS99NJLuvPOO5WYmKhGjRpp0aJFLg8QAAAAAJxOXG699Vbb+5iYGO3Zs0fZ2dlq2LCh7c5iAAAAAOBKTl/j8vXXX+vMmTN288LCwkhaAAAAALiN00dc7rnnHp09e1Zdu3ZV7969lZSUpPj4eNsF+wAAAADgak4fcfnll1+0bt069evXT99//70GDhyosLAw3XDDDXr66afdESMAAACAK5zTiYu3t7d69Oihp59+WqtXr9aGDRs0ZMgQbdu2Ta+99po7YgQAAABwhXP6VLG9e/dq/fr1WrdundavXy+LxaKEhAS98cYb6t27tztiBAAAAHCFczpx6dixo5o0aaIJEyboueeeU8eOHd0RFwAAAADYOH2q2Pjx49WiRQtNmTJFI0aM0FNPPaV//etfMpvN7ogPAAAAAJxPXN566y1t375dx48f17PPPiuLxaLnn39ejRs31g033OCOGAEAAABc4ZxOXEqVlJTo/PnzKi4u1tmzZ3Xu3DkdOnTIhaEBAAAAgJXTictjjz2mq6++Wk2bNtXo0aN19OhRjRo1Sjt37lRWVpY7YgQAAABwhXP64vwjR47o4YcfVlJSkjp16uSOmAAAAADAjtOJy9KlS90RBwAAAABUqkbXuHzyySeKj49X8+bNdfjwYUnWi/Y///xzlwYHAAAAAFINEpe///3veuKJJ9S3b1/l5OTIYrFIkkJDQ/XWW2+5Oj4AAAAAcD5xefvttzV79mxNnjxZ3t7etvndunXT7t27XRocAAAAAEg1SFwOHjyoa6+9ttz8+vXrq6CgwCVBAQAAAEBZTicu0dHR2rFjR7n5//rXv3TVVVe5IiYAAAAAsOP0XcUmTZqkRx55REVFRTIMQ5s3b9aCBQs0bdo0zZkzxx0xAgAAALjCOZ24JCcn6/z583ryySd15swZDRkyRC1atNCMGTM0ePBgd8QIAAAA4ArndOIiSQ8//LAefvhhnTp1SiUlJWratKkk68MpW7Ro4dIAAQAAAKBGz3Ep1bhxYzVt2lRZWVl69NFHFRsb66q4AAAAAMDG4cQlJydHQ4cOVZMmTdS8eXPNnDlTJSUlev755xUTE6NNmzZp7ty57owVAAAAwBXK4VPFnnnmGX333Xd68MEHtXr1aj3++ONavXq1ioqK9K9//Uu9e/d2Z5wAAAAArmAOJy7//Oc/9eGHH+qWW27R2LFjFRsbq7Zt2+qtt95yY3gAAAAA4MSpYkePHrU9pyUmJkYNGjTQQw895LbAAAAAAKCUw4lLSUmJ6tWrZ5v29vZWQECAW4ICAAAAgLIcPlXMMAwNHz5c9evXlyQVFRXpT3/6U7nkZfny5a6NEAAAAMAVz+HE5cEHH7Sb/uMf/+jyYAAAAACgIg4nLh9++KE74wAAAACASl3SAygBAAAAoDaQuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADyeT100ahiGJCkvL68umrfJz8uXiqzvC/ILbO/NRomkMrGdO28/fbGzJbZ1L1ZQIuWdPStdvK0FBZVWd0YXtXfunK3+80ZRhbHkq0QNJKm4uNwysyx26+TlSRZLpc3DlS7az/nmPEllfvnFFqlIKjQq6GNnS6z9R1KBjPLLZd23eRe1k6+ScmXzzQV2c/Lzy8RxtsQ2EuTnm639yDohNWggh5jNFcZWNg5bH3WmXjglP7+aAmXGqnxDalBYqOLii/udIZVcmCwwF9iP1b82cvH+vVhBQflhr0K/9p2L67t4KCsdRsuO2/l5+crzzrO1V4oxzsPl56ugRNb+WMG4Z3XR/GKLbTw0V7bur8xGSfklZnPVn8O/dtjK/oYuXj1PhiyVxGIblx1RUVxwqzPmM3bf2cp955Okc8XWMsUXjXPnzlVQ9rxUZO0LDg15FYydBTqv+tWMqXl5kqXsZ+2ZM+UL5eerwFL952t+UeGFz/rCQo/og6WfM6U5QmVMRnUl3CAzM1ORkZG13SwAAAAAD5WRkaGIiIhKl9dJ4lJSUqKjR48qKChIJpOptpu/4uTl5SkyMlIZGRkKDg6u63BQBvvGs7F/PBf7xnOxbzwb+8dzXcn7xjAM5efnq3nz5vLyqvxKljo5VczLy6vKbAruERwcfMX9IVwu2Deejf3judg3not949nYP57rSt03ISEh1Zbh4nwAAAAAHo/EBQAAAIDHI3G5AtSvX18vvPCC6tevX9eh4CLsG8/G/vFc7BvPxb7xbOwfz8W+qV6dXJwPAAAAAM7giAsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPJ5PXTRaUlKio0ePKigoSCaTqS5CAAAAAOABDMNQfn6+mjdvLi+vyo+r1EnicvToUUVGRtZF0wAAAAA8UEZGhiIiIipdXieJS1BQkCRrcMHBwXURAgAAAAAPkJeXp8jISFuOUJk6SVxKTw8LDg4mcQEAAABQ7SUkXJwPAAAAwOORuAAAAADweHVyqhgAAAAgSRaLRefOnavrMOBm3t7e8vHxuaQ7CpO4AAAAoE6YzWZlZmbKMIy6DgW1wN/fX+Hh4fL19a3R+iQuAAAAqHUWi0WZmZny9/dXkyZNeLbfb5hhGCouLtbJkyd18OBBtWnTpsrntVSGxAUAAAC17ty5czIMQ02aNJGfn19dhwM38/PzU7169XT48GEVFxerQYMGTtfBxfkAAACoMxxpuXLU5CiL3fouigMAAABALYiKitKmTZvcVv+hQ4fsjoi4uz1HkbgAAADg8vPNN9JVV1l/ulhUVJT8/f0VGBio5s2b6/HHH5fFYnF5O66WnJysyZMn26b37Nkjk8mkBQsW2OYtXrxYV199tUvbPXPmjIKCgjRo0CCX1nsxEhcAAABcXgxDeuYZae9e60833JVs7dq1MpvNSklJ0eLFizV37lyXt1GdkpISlZSUOFw+ISFBqamptum0tDS1bdu23LyEhASXxrlixQrVq1dPX3zxhfLz811ad1kkLgAAALi8fPWVtGWL9f2WLdZpN2ndurXi4+O1Y8cO27ylS5eqY8eOCgsLU79+/XTixAlJ0pAhQzR79mxJ0vr162UymbTl1zhnzJih0aNHS5JWrlypuLg4BQUFqU2bNlqyZImt7uHDh2v8+PFKSkpSYGCg0tPTtWrVKsXGxiosLExTpkypNNaEhARt3rxZxcXFkqTU1FRNnDhRaWlptjKpqalKTEyscjucNW/ePI0fP16RkZFavnx5jepwBIkLAAAALh+GIT33nOTtbZ329rZOu+lZMPv27VNqaqpiYmIkSZs3b9YTTzyhRYsW6fjx42rfvr3GjBkjSUpMTFRKSooka4IQHR1tN116pCM4OFhLly5Vbm6uZs6cqeTkZGVlZdnaXLhwod58803l5+crICBAgwcP1syZM5WVlaUzZ84oMzOzwljbtWun4OBgbdu2TZK0YcMGDRgwQGazWbm5uTKbzdq5c6ctwalsO5xx8uRJffXVVxo0aJAGDRqkefPmOV2Ho0hcAAAAcPkoPdpSes2JxeKWoy59+vRRYGCg2rZtqxtuuEGPPPKIJGnu3LkaN26cOnXqpHr16un555/XypUrdf78eSUkJNgSlZSUFE2aNKnCxCUpKUnt2rWTl5eXbr/9dsXFxWnr1q22tgcOHKguXbrI29tbq1at0vXXX6++ffvK19dXU6ZMqfLuXD179lRqaqqysrLk7e2txo0bq3v37tqwYYM2bdqkyMhIRUREVLkdzli0aJE6dOigDh06aNCgQVq7dq1dEuZKJC4AAAC4PFx8tKWUG466fP3118rPz9eKFSu0fft2mc1mSVJ6erqmTp2q0NBQhYaGKiIiQj4+PsrKylKnTp2Um5urw4cPa8+ePUpOTta2bdu0b98+eXl5KTo6WpI1iYmPj1dYWJhCQ0O1detWnT592tZ2RESE7f2xY8cUGRlpm/b391ejRo0qjbv0Ope0tDTFx8dLupDMlL2+partcMann35quyi/Y8eOat++vRYuXOhUHY4icQEAAMDl4eKjLaXcdNTFZDKpf//+uvnmm/Xiiy9Kklq0aKFp06YpJyfH9iosLFRERIRMJpN69uypd999V3FxcWrQoIFiYmI0e/Zsuwvihw0bphEjRuj48ePKyclRt27dZJRJuso+2yY8PFwZGRm26cLCQrsk52IJCQlKS0uzJUeSfeJSen1LVdvhqP379+s///mPXn/9dTVr1kzNmjXT/v373Xa6GIkLAAAAPF/p0ZbKTpPy8nLbtS6TJk3SnDlzdPLkSY0YMUJvv/22du3aJUnKzs7W559/biubmJio999/X7169bKbLpu45OfnKywsTD4+Plq2bJntmpSK9O3bV5s3b9aaNWtUXFysqVOnVnmnsS5duqiwsFDz58+3JS6dO3fW3r17tWnTJlsc1W2HIz799FP16NFDe/fu1Y4dO7Rjxw795z//0ffff6+ff/7ZqbocQeICAAAAz1dcLKWnS5V9aS8pkTIyrOVcrH379kpKStKMGTPUo0cPvfrqqxo2bJiCg4PVpUsXu7t2JSYmKj8/33Zko3S6bOLy9ttva9y4cWrYsKHWrFmj3r17V9p2kyZNNG/ePI0dO1bNmjWTn59flUdF6tWrp+7du8tisahdu3aSJG9vb8XFxcnX11cdOnSQpGq3wxHz5s3T6NGjbUdbmjVrps6dO+v22293y1EXk2G46RYMVcjLy1NISIhyc3MVHBxc280DAACgjhUVFengwYOKjo62e0p7lTIypJMnK1/etKnkxKlOqF2V7XNHcwOf2ggSAAAAuGSRkdYXrkicKgYAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAuO98c+EZXvXuVvjnwTV2HUuuioqK0adMmt9V/6NAhuwdEurs9R5G4AAAA4LJiGIae+fYZ7T21V898+4wMw3Bp/VFRUfL391dgYKCaN2+uxx9/XBaLxaVtuENycrImT55sm96zZ49MJpMWLFhgm7d48WJdffXVLmvTZDIpICBAgYGBatq0qR555BGdP3/eZfWXReICAACAy8pX+7/SlqNbJElbjm7RV/u/cnkba9euldlsVkpKihYvXqy5c+e6vI3qlJSUqKSkxOHyCQkJSk1NtU2npaWpbdu25eYlJCS4NM79+/fLbDbrhx9+0IYNG9z2uyJxAQAAwGXDMAw99+/n5G3yliR5m7z13L+fc/lRl1KtW7dWfHy8duzYYZu3dOlSdezYUWFhYerXr59OnDghSRoyZIhmz54tSVq/fr1MJpO2bLEmWDNmzNDo0aMlSStXrlRcXJyCgoLUpk0bLVmyxFb38OHDNX78eCUlJSkwMFDp6elatWqVYmNjFRYWpilTplQaa0JCgjZv3qzi4mJJUmpqqiZOnKi0tDRbmdTUVCUmJla5HTXVtGlT9enTR3v37r2keipD4gIAAIDLRunRFothPXXLYljcdtRFkvbt26fU1FTFxMRIkjZv3qwnnnhCixYt0vHjx9W+fXuNGTNGkpSYmKiUlBRJ1gQhOjrabrr0SEdwcLCWLl2q3NxczZw5U8nJycrKyrK1uXDhQr355pvKz89XQECABg8erJkzZyorK0tnzpxRZmZmhbG2a9dOwcHB2rZtmyRpw4YNGjBggMxms3Jzc2U2m7Vz505bglPZdtRUVlaWvvrqK3Xv3v2S6qkMiQsAAAAuCxcfbSnljqMuffr0UWBgoNq2basbbrhBjzzyiCRp7ty5GjdunDp16qR69erp+eef18qVK3X+/HklJCTYEpWUlBRNmjSpwsQlKSlJ7dq1k5eXl26//XbFxcVp69attrYHDhyoLl26yNvbW6tWrdL111+vvn37ytfXV1OmTJGXV+Vf4Xv27KnU1FRlZWXJ29tbjRs3Vvfu3bVhwwZt2rRJkZGRioiIqHI7nNWuXTuFhoYqPDxcISEh6t+/v9N1OILEBQAAAJeFi4+2lHLHUZevv/5a+fn5WrFihbZv3y6z2SxJSk9P19SpUxUaGqrQ0FBFRETIx8dHWVlZ6tSpk3Jzc3X48GHt2bNHycnJ2rZtm/bt2ycvLy9FR0dLsiYx8fHxCgsLU2hoqLZu3arTp0/b2o6IiLC9P3bsmCIjI23T/v7+atSoUaVxl17nkpaWpvj4eEkXkpmy17dUtR3O+vnnn5WTk6P8/Hy1bNlSf/zjH52uwxEkLgAAAPB4pUdbvCr5+uolL5cfdTGZTOrfv79uvvlmvfjii5KkFi1aaNq0acrJybG9CgsLFRERIZPJpJ49e+rdd99VXFycGjRooJiYGM2ePdvugvhhw4ZpxIgROn78uHJyctStWze7uE0mk+19eHi4MjIybNOFhYV2Sc7FEhISlJaWZkuOJPvEpfT6lqq2o6YCAwM1ePBgrVmzpsZ1VIXEBQAAAB6v2FKs9Nx0lajiu2yVqEQZeRkqthS7vO1JkyZpzpw5OnnypEaMGKG3335bu3btkiRlZ2fr888/t5VNTEzU+++/r169etlNl01c8vPzFRYWJh8fHy1btsx2TUpF+vbtq82bN2vNmjUqLi7W1KlTq7zTWJcuXVRYWKj58+fbEpfOnTtr79692rRpky2O6rajJgoLC7V48WJ16NDhkuqpDIkLAAAAPF59n/ra8vAWbRu1TanJF27vm5qcqm2jtmnbqG3a8vAW1fep7/K227dvr6SkJM2YMUM9evTQq6++qmHDhik4OFhdunSxu2tXYmKi8vPzbUc2SqfLJi5vv/22xo0bp4YNG2rNmjXq3bt3pW03adJE8+bN09ixY9WsWTP5+flVeVSkXr166t69uywWi9q1aydJ8vb2VlxcnHx9fW1JRXXb4YzWrVvbnnlz7NgxffLJJzWqpzomw133jqtCXl6eQkJClJubq+Dg4NpuHgAAAHWsqKhIBw8eVHR0tN1T2vHbVdk+dzQ34IgLAAAAAI/nVOKSl5dX4Tl1FotFeXl5LgsKAAAAAMpyOHH57LPP1K1bNxUVFZVbdvbsWV133XX64osvXBocAAAAAEhOJC5///vf9eSTT8rf37/cMn9/fz311FN65513XBocAAAAAEhOJC4//PCDkpKSKl3eq1cv7d692xUxAQAAAIAdhxOXX375RefPn690+blz5/TLL7+4JCgAAAAAKMvhxCUqKkpbt26tdPnWrVvVqlUrlwQFAAAAAGU5nLgMGDBAkydP1vHjx8sty8rK0rPPPqt77rnHpcEBAAAAgORE4vL0008rKChIbdq00dixYzVjxgzNnDlTY8aMUdu2bRUYGKinn37anbECAAAAkqRvvpGuusr680oTFRWlTZs2ua3+Q4cO2T0g0t3tOcrhxCUoKEhpaWn64x//qEWLFunxxx/XhAkTtHjxYv3xj39UWlqagoKC3BkrAAAAIMOQnnlG2rvX+tMwXFt/VFSU/P39FRgYqObNm+vxxx+XxWJxbSNukJycrMmTJ9um9+zZI5PJpAULFtjmLV68WFdffbXL2rRYLJo2bZratm2rgIAARUdH69FHH9WpU6dc1kYppx5AGRISovfee0+nTp3S8ePHlZWVpVOnTum9995TaGioy4MDAAAALvbVV9KWLdb3W7ZYp11t7dq1MpvNSklJ0eLFizV37lzXN1KNkpKSCh/+XpmEhASlpqbaptPS0tS2bdty8xISElwW4+jRo/XRRx/pww8/VE5OjrZt26YWLVpo8+bNLmujlFOJSymTyaQmTZpo7ty5ys3NdXVMAAAAQIUMQ3ruOcnb2zrt7W2ddvVRl1KtW7dWfHy8duzYYZu3dOlSdezYUWFhYerXr59OnDghSRoyZIhmz54tSVq/fr1MJpO2/JphzZgxQ6NHj5YkrVy5UnFxcbbLMJYsWWKre/jw4Ro/frySkpIUGBio9PR0rVq1SrGxsQoLC9OUKVMqjTUhIUGbN29WcXGxJCk1NVUTJ05UWlqarUxqaqoSExOr3A5H/fTTT5o7d64WLFig+Ph41atXT2FhYXr66afVt29fp+pyRI0Sl1J//etflZ2d7apYAAAAgCqVHm0pPXPLYnHfURdJ2rdvn1JTUxUTEyNJ2rx5s5544gktWrRIx48fV/v27TVmzBhJUmJiolJSUiRZE4To6Gi76dIjHcHBwVq6dKlyc3M1c+ZMJScnKysry9bmwoUL9eabbyo/P18BAQEaPHiwZs6cqaysLJ05c0aZmZkVxtquXTsFBwdr27ZtkqQNGzZowIABMpvNys3Nldls1s6dO20JTmXb4ah///vfatmypbp06eLUejV1SYmL4a7UFgAAALjIxUdbSrnjqEufPn0UGBiotm3b6oYbbtAjjzwiSZo7d67GjRunTp06qV69enr++ee1cuVKnT9/XgkJCbZEJSUlRZMmTaowcUlKSlK7du3k5eWl22+/XXFxcXaPHRk4cKC6dOkib29vrVq1Stdff7369u0rX19fTZkyRV5elX+F79mzp1JTU5WVlSVvb281btxY3bt314YNG7Rp0yZFRkYqIiKiyu1w1OnTp9WsWTOnf7c1dUmJCwAAAFBbLj7aUsodR12+/vpr5efna8WKFdq+fbvMZrMkKT09XVOnTlVoaKhCQ0MVEREhHx8fZWVlqVOnTsrNzdXhw4e1Z88eJScna9u2bdq3b5+8vLwUHR0tyZrExMfHKywsTKGhodq6datOnz5tazsiIsL2/tixY4qMjLRN+/v7q1GjRpXGXXqdS1pamuLj4yVdSGbKXt9S1XY4qlGjRk6Vv1SXlLjs2bPH7qGTZc/9AwAAAFyl9GhLZQcbvLxcf9TFZDKpf//+uvnmm/Xiiy9Kklq0aKFp06YpJyfH9iosLFRERIRMJpN69uypd999V3FxcWrQoIFiYmI0e/Zsuwvihw0bphEjRuj48ePKyclRt27d7M5kMplMtvfh4eHKyMiwTRcWFtolORdLSEhQWlqaLTmS7BOX0utbqtoOR914441KT0+vtRzgkhKXyMhImc1mvffee+rSpYu6du3qqrhqlcl04XXxoceLl5e+goMrrisiouL6vvlGatVK8vW1zr/+euv8hx+2Tj/8cOXxlZYpfQUG2k+XLu/b98q9n/nlzN//wr6cPr368hX1x4v7T0Vl+va19kdvb2sfqldPql+/4rK/+521v37zjfXVsGH1/RSeobQ/+fuXX9a4cfl93a5dxfVcf719uYYNrX2hojoqejnSlyVrOS+vyutp167yfl7RMxymT7f2a0fbh2epbEwq+7r4My442H65dKHfVNa/S13cz0uvJa5ojC397L34euOLP/dLP99L+2LpNlX2vQGOKy6W0tOlym6yVVIiZWRYyzlq61b7V2UmTZqkOXPm6OTJkxoxYoTefvtt7dq1S/v2Sd9+m6033vhcW7dKO3ZIHTok6r333tdVV/WSZL3u5f3337dLXPLz8xUWFiYfHx/9/e/LtHXrNh08aI3h1CkpM/NCTM2b99WmTZv19ttrtGlTscaPn6qSkhLt3St9/721ze3brWW//16Kje2iwsJCzZ8/35a4dO7cWXv37tWmTZtscZTdDknKzs7W559/7vgvT1L79u01YsQI3X///dq4caPOnz+vnJwcTZ8+XatWrXKqLocYNfTtt98aQ4cONfz8/Iz27dsbkydPNrZv3+7Qurm5uYYkIzc3t6bNu8zhw4Zhzc0vvPLyLiw/cqT88tLXmTP2dRUVVVwuN9cwunUrP7+w0DBMJut7k8kwzp8vH9/585W3X/oqraP0dd11hlFS4t7fG1yjoMB+3/n7G4bFUnn5bdsq7wOl/efLL6vvM46+unY1jGuvrbgdeJ6L+1NBwYVlhYWV7+ezZ+3rKS6uuFynTo73ner6smFYl9ev73idZftfSYl1rCs75lks1nYdbR+exWx2rB906XLhM+7MmfLLv/mm6v5dqrJ+vndv9TGcO2eto7LP/aKiC32xqu8NV7rCwkJjz549RmFhocPrpKdbPwtTUy/8XlNTrfO2bTOMjAzH2z93zjC2bLF/FRVZl7Vq1crYuHGjXfm+ffsakydPNgzDMJYtW2Z07tzZCAgIMsLDWxnDhk2y1TFnTpohyZgzJ80oKTGMNWvWGJLsvifPnz/faN68uRESEmLcddfDxvXX32I8//yHxpYthnHHHQ8ajzwyzS6uN95YabRoEWMEBzc0Ro2aYoSHtzLmzt1YLv4tWwzjxx8N48YbbzQaNWpkF/9NN91kNGrUyCgp8yWxdDuCgoKMVq1aGZMmTTIMwzAOHjxo1K9f31auot9HqfPnzxt//etfjdjYWMPf39+IiooyHn30UePkyZPlyla2zx3NDUyGYRiOJjmZmZn66KOPNHfuXBUUFOi+++7T+++/r507d+qqq65yOFnKy8tTSEiIcnNzFVzH/4IocyTOxsvrwrmTFS0vFRgo5edfmG7eXDp2rOI2Kvoth4VJZW/K9uCD0kcf2ZcZPlz6xz8qj6Eyq1dLt97q/HqoXX5+UlGR/byXXpLKPDvKTlX9sbT/VFXGFSrqp/AMF/enBg2kwkLr+0aN7Mebslq3lv73vwvTXbpY/2t3qf5/e/cdHlWV/3H8M6nUBEgIkIQWwUJREXYBAYGFFUVklXUtIFIUC6ugKOIiFnYFFHcVxfZDBcVVQYG1g4BSgoAoQQFhUSHSEooIqZAyc35/zGZISJuZTLkh79fz5CFz77n3fsM5c+Z+59xzb0VtWZKmTZOmTPFsn0Xt7/PPpSuuOL182TLnt43F91fZ8WEtERFSQYF7ZYs+4+rXl/437aBcZ7bvIlVp5/37SytWlP+536xZ2cvPPG+o6U6dOqXU1FS1bt26xFPaA6W8EZYuXdzb/scfpczMistERUnnnlv++tRUqYKrvrzWtq0UHe37/VZVeXXubm7gduIycOBArVu3ToMGDdKwYcN0xRVXKDQ0VOHh4dU2cdm3z3k5TFkyM52dS0JCxfvIzXWeLOTlOU8SqsJmc3baRZeX2e1SWJjn+wkNdXbIX3/t/5NYeC83V6pbt/TyOnWcbe/Ma3hTUqSKrsa02aQPPpD+9CefhlnmcYq3U1hDee0pJ8fZlmrXrnj7vLzTJ44REb6Jqby2LDkv6ahTx3lcT9hszstALr3U+Z6w251t8eKLnU/Qzs117/iwlpwc50m9uy65REpOLrvNl6WofRfxRTvPzvYs5iJF5w0IbuJSWOi8xKosHTs6L/GriDHS/+44XKnOncs+H/NkH56qU0e64ALrnQdWNXFxuztfvny5brvtNk2dOlVXXXWVQs+Cs5bykhZJatCg8qRFkuLinP/+7yYRVWKMdOutp18X/90T/r6fOXyjvBuC5OZKM2aUXl7ZFDJj/J+0FB3H27YJ/ymvPcXEuNeXFX331LWr72Iqry1LzuWeJi2Ss/1deWXpZzhs3lwyaans+LCWhg09K5+SUn6bL8uZ3636op17GnORovMGBFdFc8m3bat8+59+cv9Y5ZX95Rf39+Gp3NzKR4OqI7cTl+TkZGVlZalLly7q2rWrXnjhBR09etSfsfnVvn0Vry9v4teZsrOlEyfKHhL2xvz5zg9hu927S8SK+Pspsqia3NzSl4gVN316yTaYkuL/mDxR1E5hDRW1p1Onyr9ErLjdu53fevviErHizmzLkvP1/27O45WVK90f8Svr+LCWnBz3LxErrqI+9Ey7d5+esF1Q4Jt27k3MkvO8oegSTgSHO48pqeiLFWM8SwoyM0ufjxnjn0vEijt48Ow7D3Q7cenevbteffVVpaen64477tCCBQuUkJAgh8Phus91dVLRaIunvP3WpSxF32ZX9RttRl2srbJvCs/8pthqN+xj1MVaPPnmuSK+7MuKlDXq4e1oS3HuJs6MulifP9pdWfwxqugtRl2Cy50791Y06uLJaEt52/hztKXI2Tjq4tHk/DPt2rVLr7/+ut566y2dOHFCf/zjH/XRRx9Vul2w57hUNLflbBIS4jzhZa6LtZQ3F+FMRdfnf/ed9RIXibkuVuFuewqm4nNNvJ3b4qvjw1o8ndtSVd7OS/EH5rqcnu/QqlUr1Q7Qf0ZFc1vOVNZcl6rMSyma6+LPuS1nstpcl9zcXO3du9frOS5eTP0+7bzzztPMmTM1Y8YMffzxx5o7d25VdhcwVblEoTopfj/zyiaZIXA2bnSv3MmTzg9Zqz47xRjnJUiNGwc7kprN3fYUTEVtOSrK+W8gkxbJeUlR0fFhLcnJZ/fxKrJ5s1TssR41Unh4uGw2m44eParGjRuXeOiiv/z6q/tl9+93PqenOE+eEXOmrCzP7p7nC3l5zj442F/cGGOUn5+vo0ePKiQkRBFe3h2jSiMu3gr2iIvkvFuXL67Rj4x0NupGjZwZvLuNMTbW+QDAorkxEyacHi6/+GJn0jFypHT8uOcxjRnjHBK/7DLncLQHD0BFgFx1lbRpk/PbxuLXOkdHO78Vad1a+r//k373O+fyYH1TUr9+yVt3DhvmPPmrV8/ZvgYNCk5cKOmqq5z9T26uc86d5LzBSJ06zmuo3UkUoqOd3wampkppab5JLmrXli68UJo9+3RblpyjwAsXSuvWOS9pddf55zsvi4uKkvr0kSZNci7/v/+Tjhxxvp+efNK57KWXTicq555b8viwlj/8QVq1yj/7vuSS05+tl14q/f3v0tNPS6+95rz6wpN5MkW6dnW2t9RUz7arX9/5ExnpfEjlggWeH/tslJ2drQMHDiiQp6P797s39628q3OK5jdXdh4ZFnb6jrORkSVH+3JznUmUP/7sWrWcV0NERDg/B7y5Q62/1KlTR82aNSuVuPj8dsi+ZIXEpUivXs4PzyJPPy098MDp11ddJZX14M8FC6Qbbii57MznChTt7667Sg9Nb9rkTF6Skpyv9+wp+85kqamny5QlLs7ZgRaXnW39S0fg9OabzgS1yOHDFV/7HBtb9mS+4u3Hl0nO4cNSkyZlHwfWU7w9vfGG85knRT78ULrmmtLbrFnjTEKL++ab00//Lm7BAunGG92LpbK2LDn7ruLtqzLF21/xS4yK+rzi+3Pn+LCWOXOkO+6ovFzxz7iFC0u2yVq1nJ/FvXs7X5fVvouU1c63b3d+tv/wQ/nH375dat/e+XtZn/ubNjlPeM9s22WdN8DJbrerIJDDEP8zdar07runX194ofTee+5v/9NP0tVXl1w2ZYrzGVKS9PHHzuepVOTAAedzgXwpJcWZsFhNaGiowsLCyhxZC8ilYgAAAEBVhIaGBuUxGxkZ0t69p183aeLZM/lCQkpuLzmvoihaFhJS+f5CQ0vvo6oiI6v+bEGrYqoiAAAAAMsjcQEAAABgeR4nLm+++aY+/fRT1+sHH3xQDRo00KWXXqq9vh7rAgAAAAB5kbhMnz7dda/tDRs26IUXXtDMmTMVGxur++67z+cBAgAAAIDHk/P379+vNm3aSJI++OADXXfddbr99tvVo0cP9enTx9fxAQAAAIDnIy716tXTsf/dj3X58uXq/797uNWqVUsniz+QAgAAAAB8xOMRlz/+8Y+67bbb1KlTJ/3444+66qqrJEk//PCDWrVq5ev4AAAAAMDzEZcXX3xR3bt319GjR7V48WLFxMRIkjZv3qybbrrJ5wECAAAAgMeJS4MGDfTCCy/oww8/1BXFHhc7depUPfzwwz4NLhB+Ob6z1LKVe1Yq4h8Rsk216bOd75axlXTje9do4L8HSpISn0mUbapNV8zv67O4zpt9nmxTbUqa1dLjbetNr6sxH43RzK9mKvKJSM38amapMiv3rFS7F9tp5Z6VvggXbpr51UzZptpcPyOXlHyMcpOnG7vWFbWv4o5l7gpUqKjmRi65QeF/D3e1p2veubLMcr3ndtfAfw/Uyj0rVfuJ2rJNten3czoFONqqqTe9rn4/5/dq+3ybYIcCLxT1i3d8eIvb24z5aIxsU2268b1rSiw/deqwes/tXuG2dabVqVI7f3TVFEnSwH8P9OnnPgKnqM29vKHk+dGmXz7XmI/GuL2f11NerXB9hxfP13mzz1P4P8LV5J9NSp1zzfxqplfneTWZW5eKbd261e0dXnjhhV4HE2gOh0MHTqRKusC1zBijB5Y+oAJHQaXbL929VDk5OTqYddCnceXn5+vH336s0j5e2/Ka6oTXUb49X1PXTNUD3R9QSIgzTzXGaPIXk7Xz152a/MVk9WvdTzabzRehowIOh0OTVk5yu/zS3UtVWFiosDDn2zQ3N1cyxl/h4SxgjJF0+r1caArd2m7p7qVKy0jTKfspP0Xmf9+kfyPlxbpe2+12SYF/Ejc843A4NGXlFI+2sdvtem3La+WszS/xKi/vpKTarte5ubk6WVi1+bhLdixWXt4jWrp7qaQ+VdoXAs/hcGjyysnlrn99y+t65apXFBpacf/hcDj04rcvSao40Sk6nzuSc0R/W/k39RvjPOc6HUeCp39CjebWiMvFF1+sTp066eKLLy7zp2hdp07V61u6GetmSA57iWU//rpd3//6vdv7aPhMQ1+HpXYvt/PJfnILcl3/zlg3w7V8+e7l+ibtG0nSN2nfaPnu5T45HipWvA7cdWWxb8ljnonxZTg4C20/vMXrbT3p96qDe5eND3YIcMOMdTNUoMq/KCzurk/vcrvsoPcGlXjtm37UqPXs1j7YD4JhxroZsste7nojo1s/utWt/eQXeJYEf5v+reucq7I4UDa3EpfU1FTt2bNHqampZf4UrduzZ4+/4/UZh8Oh6euml1r+4X8/8mg/7ozMeCI/P1+7T+z26T4lafq66XI4HDLG6JFVjyjU5vwmIdQWqkdWPfK/b2rhLw6HQ1NWefatoiStTF2pwsJC5ebmVutvw+F/xhi9u3VBsMMImMLCikeT3tvx3v9GXWBVDodDU1dN9Xi7d7a/7XbZ/IJc1x1PfdmPpuek+2Q/CCyHw6HHVj1Wabn5W+dX2H+Udw4pSXZ7xX3TlC+nyG63uxUHSnMrcWnZsqXbP9XFjHUzXCMSxR3N9u1lX57y1WjLmYpGXYpGW+zG+Ya0GzujLgHgzWhLkSvfuZLRFlRq+e7lSsveG+wwAuba966tpIR735oieLwZbfFG3LNxkhi1hvujHJWNupR3DilJL37zfIX7/jb9W9360a2MtnjJrTkuH33k/ijE4MGDvQ4mUCrKlH1/LPevs/ZmtMWYfEkRbpWdljxN7Ru3V6gt1JW4SKdHXS4/53LmuviBt6MtRVamcgMFVMwYoweXPSjp/GCHEhCFhYVa9cuXlZabv3W+Xh/8eqXXqiPwvB1t8UZ2QbaOHTvGqHUN5+5oS5Hy+o/KziF//nVHpft+c+ubbseBktxKXK655hq3dmaz2arF0HxFmbKvvbv93/qrRrhV1pvRlqPZqZLOc6vsycKT+jb921LLi4+6DGgzwOMYULGqjLYA7li+e7m2HtuqmpK4XFnOHdLOVPSt6RvXvuHfgOCxQI22FIl9IbbyQjireTqnpLz+I5DnkCjNrUvFHA6HWz/VIWkJ5GiLJH13cJNb/y8FBV7ObXG4d9egyoQohLkuflDV0RZ3nTxJJ1pTnR5t8b+CgryAHKcihYWFHo1CVnatOgIvkKMtnjp1qmp3HJMqn+OAwPN0tKXImf1HoM8hUZrHz3Ep7tSp6jfsmp2frVMFgYzb6LeTv1Va6pcTqQGIpXwOObQ/c7/y7fmVF4bbsvOzA3KcLUdSAnIcWE++PV/7MvYF5FgHsoI/h+ZQ9iGPyhs3+2AETnZ+dkBHWzzxw7EfqryPYyeP+SAS+FJ2frZXc0rO7D8Cfw6JM7l1qVhxdrtd06dP1yuvvKLDhw/rxx9/VFJSkh555BG1atVKt95q7cmQUbWitP7W9fr5+M/KPJmpsf9Xcn2dWtFy97vr2qG1lWfPk0OOcsuM6HyHGtdrXOm+2jY+T5N7TtYnuz7R0ZNHlZ7t3h1LImo1UH4ZX4I2iGygE3knJEl3db5LPVr20LHcY2pYq6GSGiap57yekqR1o9apdrjzHvdxdeMUGRbp1nHhnqhaUdp460b9ecGfdTDHuxs/hChEUZFRkqQT5ZS5tGVP7wJEtRcZFqmtd2/V/Z/frzU/JuiIN/sIiVSeo/LRlNaNzvVi776V2CBRr139mjamblN5T/KQpBEXj1JcY+myVpe51QcjcIr6xVkbZumrfV9pf/Z+j7avF15f2W5+UteJqK96deJkMzYdP3Vc+abiL+c6J3SpdJ/nxpyniNhwbf91e5nr4+o1cSs2BE5Rm5vyxRTtPLqzws/jIecNUZP6TVQvvF6p/qPUOeQbz5XavkOzS1R2y5AGtx2spvWbKnlfsjJPZepgkG8IVR15nLhMmzZNb775pmbOnKkxY04/dKdjx4569tlnLZ+4SFLXxK7qmthVR7KPaKy+LrHu4V5T9HDek27t55vbv9GBjAO64p0ryi3TIe4it+Oa1m+apvWbprW/rFXvN3u7tU2DyLJPVJYPX67fv/Z7SdLjfR5XXL0417qc/BzX7xc3vVh1I+q6HSM81zWxqw48cEBHso+oyb/c/0Dbftd2tY9r73r95pY3NfIRf0SI6q55dHO9d/17mpOVozve8Xz75NHJrv6iOrj1klt143mqMHGZ+ceZiouroACCqmtiV737l3c97hclaeNtG9Xhdfeeo7L05uW67LLTr9/c8qZGfjTSo+Od6fmBLyjxnEx1eLlDlfaDwOqa2FUrRqyotM39c8A/1bph+e2r5Dlk6cTl9s5jNa6cuffvXPeO65zLm7YPLy4Vmz9/vubMmaNhw4aVuNPChRdeqP/+978+DQ4AAAAAJC8Sl4MHD6pNmzalljscDhUUWPOaVQAAAADVm8eJS/v27ZWcnFxq+fvvv69OnTr5JCgAAAAAKM7jOS6PPfaYhg8froMHD8rhcGjJkiXatWuX5s+fr08++cQfMQIAAACo4Twecbn66qu1cOFCffbZZ7LZbHr00Ue1c+dOffzxx/rjH//ojxgBAAAA1HBuj7hMmTJFf/jDH3TppZdqwIABGjCAJ6wDAAAACAy3R1zeffdd9e/fXw0aNFDv3r01depUJScnKz+fBxYCAAAA8C+3E5fdu3dr//79evXVV9WmTRvNnz9fvXv3VsOGDdW/f39NmzZN69ev92esAAAAAGooj+a4JCQkaPjw4Xr99de1e/du7d27Vy+//LJatGihmTNn6rLiT3kCAAAAAB/xeHJ+kd27d2v58uX6/PPP9fnnn8tut6tv376+jC04/jbR/bLtOkh/vMK3xx84UOrZu+r76VrsKdhNmkg22+mfevWqvn+4LzHR+f/exMMn5LbrIIWHS2PGOLe/eWTl2wwcKOmwN1GW7aYbS74eNaJkWyr+s3JlybJnrv/976V27UqXQ/B1/n3lZQBfKurXPO0XJal9e/fL9u4uxcae7ocq60f79pZ+WOt5TMX9vpPUpHHZ64r+7uI/qF5WrnS224Rmnm875NrT9X7/fb6PrUi9ulLDhqc/b89sdxERznNBm825rhpxO3FJTU3V3LlzNXz4cDVv3lydOnXSokWL1LFjRy1atEgnTpzQihUr/Bnr2a+wUFq61Ef7crMcDw31r7w86eBB77cvLJRee839sr5qP0W+/KLk6zWryy87aZJkjPP39PTS67/5Rtq5U5o8+XQ5ADWP3e5+v+YLx465X/aoD7/4OZOjnL/76FH/HRO+ZYz00EPSkSNSocPz7ZcXO0/+9zu+i6ssJ05If/tb2ecRBQVSTo7z99dfd74nqwm37yp2zjnnqEWLFho7dqzGjRunSy65RKGhof6Mrea58srAH7NPb+mb7wN/3JqidevAHSsY7ae4lBRp+XJpwAApPr78ct98c7ocgJrn1luDHUFwvPRC2cvj4vgyp7pYvlzavDnYUbjv228rPzcwxvmefOONgIRUVW6PuPzlL39RXl6eZsyYoX/84x+aNWuWUlJSZHiz+Ya9MDiX0Hy/lVEXf8nLK3vkwR+C1X7ONHmylJZWcZnQUOmRR/ighn/Rr1mT3S69+Wawo6ianCzvtlu3qvx1jLpYR3mfTcZIDz8c2Fh8wZ1zg/nzq82oi9uJy8KFC5Wenq4NGzboyiuv1KZNmzRw4EA1bNhQgwYN0tNPP61vvvnGn7Ge3UaOCN6xu3YN3rHPZoEcbQlm+ykuJUVKSKi4jN1+etQF8JcrGNGzpLNhtOWaIb7fZ1yc7/cJ76xNLnt5dRtt8UTRqEs14PHk/PPPP1933XWXFi5cqEOHDmn9+vW6+OKL9cQTT6h79+7+iNF/rPSN71frgnfsLVv4dtLXAjnaIgW3/XiDURf/yMsOdgSBU1nb2b6Nfs1qzobRliJZXo66VIRRl8AorGQS8DP/LN2/eDLaYq+m/U41GXXx6q5ihw8f1sKFC3XXXXdpyJAhmj59uvLz89WrVy9fx+dfq1cHOwLrYNTFtwI52lIdMeriH3+9N9gRBM4XX1Rehn7NWqrJN7pu6eqHL2oZdQmMm26qeP3W7aU/mzwZbXlqundxBVs1GXVxO3F5//33NXbsWLVr107x8fG65ZZbtH37dl1//fX64osvdOLECa1aVcH1m1ZjjPT3vwc7Cutg1MV3Aj3aUl2FhDDq4kvZ2ZK8uMtNdWSMs+1Uhn7NOs6m0RZ/YtTFvwoLpbVu3O56ypTTn02ezm05tN+72KygGoy6uH1XsWHDhqlLly669tpr1bdvX/Xo0UO1a9f2Z2z+lZ8vHTggcQv10/btk845J9hRVH87dwY7gurB4ZD273e+FyMjgx1N9ffll8GOIHCK+m930K9Zw2+/BTuC6uG115y3sIV/HDrkXrm9e09/NuXnO/uRmsAY53u1cTnPIbIAtxOX48ePq27duv6MJbAiI52XivV188PP34beLNl3SwsXBva4MTFS43hp5Eg+3H3l4oulu++W5s2TcnMDM6Lw+67SsXBp927/H6s8oaHufVMTHS3de680eLDz0giSFt8YPFg6Z6MUxCYQMJGR0oYN0vkVlOn3R2lgF/o1q2jcWPrwQ+lf/5K2b6/eiUxEqJTUWlKqb/fbqBFJi78lJkrPPCMdmlB+mXvHSbdNPP3ZFBnpvEzsyy+lPXsqv1rn6iHSx27E0qqlpL3uRu6dc85xXgGSm1t+mfPOc15W26SJdNlllk5aJA8uFTurkpYild39KJCemObepQ++tnevtHWrNKGCNzE8N3u289Kdqj4Q8rHH3Cu34D3nSUEwZWQ4kzRjnCfR5Tl4UHr8cemSS5wfIvCdv1XDW3V6q7K288479GtWM3iwtGaN89kS1dmny6RP3DkzPcPzr5ReNmLE6X7TkwdlwnvDhlW8fvy9pfuX5s2ddfXgg5Xv/48D3Ytj/nz3ylXF9987vyioyNKlzss4Z86UBg3yf0xV5NXkfAAAAAAIJBIXAAAAAJZH4gIAAADA8khcAAAAAFieW3cVGzJkiNs7XLJkidfBAAAAAEBZ3BpxiY6Odv1ERUXpiy++0LfF7gqyefNmffHFF4qOjvZboAAAAABqLrdGXObNm+f6fdKkSbr++uv1yiuvKDQ0VJJkt9s1duxYRUVF+SdKAAAAADWax3Nc5s6dqwceeMCVtEhSaGioJkyYoLlz5/o0OAAAAACQvEhcCgsLtXPnzlLLd+7cKYfD4ZOgAAAAAKA4ty4VK27UqFEaPXq0fv75Z3Xr1k2StHHjRj355JMaNWqUzwMEAAAAAI8Tl3/+859q2rSpnn32WaWnp0uSmjVrpgcffFD333+/zwMEAAAAAI8Sl8LCQr399tu65ZZb9OCDDyozM1OSmJQPAAAAwK88muMSFhamu+66S3l5eZKcCQtJCwAAAAB/83hyfteuXbVlyxZ/xAIAAAAAZfJ4jsvYsWN1//3368CBA+rcubPq1q1bYv2FF17os+AAAAAAQPIicbnhhhskSePGjXMts9lsMsbIZrPJbrf7LjoAAAAAkBeJS2pqqj/iAAAAAIByeZy4tGzZ0h9xAAAAAEC5PE5ciuzYsUP79u1Tfn5+ieWDBw+uclAAAAAAUJzHicuePXt07bXXatu2ba65LZJznosk5rgAAAAA8DmPb4c8fvx4tW7dWocPH1adOnX0ww8/aO3aterSpYtWr17thxABAAAA1HQej7hs2LBBX375pRo3bqyQkBCFhISoZ8+emjFjhsaNG8czXgAAAAD4nMcjLna7XfXq1ZMkxcbGKi0tTZJz0v6uXbt8Gx0AAAAAyIsRlw4dOmjr1q1KSkpS165dNXPmTEVERGjOnDlKSkryR4wAAAAAajiPE5cpU6YoJydHkvTEE09o0KBB6tWrl2JiYrRw4UKfBwgAAAAAHicuAwYMcP2elJSkHTt26LffflPDhg1ddxYDAAAAAF/yeI7LihUrlJubW2JZo0aNSFoAAAAA+I3HIy5//vOflZeXp86dO6t3797q06ePevTo4ZqwDwAAAAC+5vGIy/Hjx7V69WoNHjxYW7Zs0V/+8hc1atRI3bp100MPPeSPGAEAAADUcB4nLqGhoerevbseeughLVu2TOvXr9fQoUO1efNmPf300/6IEQAAAEAN5/GlYjt37tSaNWu0evVqrVmzRna7XT179tS//vUv9e7d2x8xAgAAAKjhPE5c2rdvr8aNG+vee+/VI488ovbt2/sjLgAAAABw8fhSsXHjxikhIUGPP/64Ro8erUmTJmnp0qXKzs72R3wAAAAA4HniMmvWLKWkpOjw4cOaMmWK7Ha7Hn30UcXGxqpbt27+iBEAAABADedx4lLE4XCosLBQ+fn5ysvLU0FBgX755RcfhgYAAAAATh4nLuPHj9dFF12kuLg43XHHHUpLS9Ptt9+u77//XocOHfJHjAAAAABqOI8n5x88eFBjxoxRnz591KFDB3/EBAAAAAAleJy4LFq0yB9xAAAAAEC5vJrj8tZbb6lHjx6Kj4/X3r17JTkn7X/44Yc+DQ4AAAAAJC8Sl5dfflkTJkzQwIEDdeLECdntdklSgwYNNGvWLF/HBwAAAACeJy6zZ8/Wq6++qocfflihoaGu5V26dNG2bdt8GhwAAAAASF4kLqmpqerUqVOp5ZGRkcrJyfFJUAAAAABQnMeJS+vWrfXdd9+VWr506VK1a9fOFzEBAAAAQAke31Vs4sSJ+utf/6pTp07JGKNNmzbp3Xff1YwZM/Taa6/5I0YAAAAANZzHicuoUaNUWFioBx98ULm5uRo6dKgSEhL03HPP6cYbb/RHjAAAAABqOI8TF0kaM2aMxowZo19//VUOh0NxcXGSnA+nTEhI8GmAAAAAAODVc1yKxMbGKi4uTocOHdI999yjNm3a+CouAAAAAHBxO3E5ceKEhg0bpsaNGys+Pl7PP/+8HA6HHn30USUlJWnjxo2aO3euP2MFAAAAUEO5fanY5MmTtXbtWo0YMULLli3Tfffdp2XLlunUqVNaunSpevfu7c84AQAAANRgbicun376qebNm6f+/ftr7NixatOmjc4991zNmjXLj+EBAAAAgAeXiqWlpbme05KUlKRatWrptttu81tgAAAAAFDE7cTF4XAoPDzc9To0NFR169b1S1AAAAAAUJzbl4oZYzRy5EhFRkZKkk6dOqU777yzVPKyZMkS30YIAAAAoMZzO3EZMWJEidc333yzz4MBAAAAgLK4nbjMmzfPn3EAAAAAQLmq9ABKAAAAAAgEEhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5YcE4qDFGkpSZmRmMw7tkZWdJjlxJp+M4pXzpVLFCZ6x3KShQtkPKceh0+YLCUmVPnZLK+jOzs6XIyGKxZEmZJ7MlnbHPPEfZxy8Kz1HGwjyj7GL7yDJSrWKrc8zpdZmZmbJH2MvdP6ooJ8f1a1ax/3eXggKVqN88h+tdme2QMvPyXKtO2iWZbJXVHoq3HylLUu2qxy4pSyXbX5Yc5bfGzEzJ/r+2VFBQ/k6Ll4NPnTyZI6lYHRRvb2X0T5Kk/MIS/YVzmb3Msrm57seSlSXVqlV5GU9kZZ3uT4u9taQ8IzlUor905/gIkmIVX6JfLMhXRZ93RbKNKbbNGX2osqT80209R4Ul1p60FzteGe08W3bZlVNhHDk5WcrOynbup4z3VbbspfpOSco9mVV6r/n5ZZ8kwG+ysrNOtwH7KZWoJ0eOsjKzlBlaTp2c+ZleRhs6ebLYi3x7ib4107h6aGVl5zjXVXKe541MGedxMjMr72iLd6xBVJQTFOUI5bGZykr4wYEDB9S8efNAHxYAAACARe3fv1+JiYnlrg9K4uJwOJSWlqb69evLZrMF+vA1TmZmppo3b679+/crKioq2OGgGOrG2qgf66JurIu6sTbqx7pqct0YY5SVlaX4+HiFhJQ/kyUol4qFhIRUmE3BP6KiomrcG6G6oG6sjfqxLurGuqgba6N+rKum1k10dHSlZZicDwAAAMDySFwAAAAAWB6JSw0QGRmpxx57TJHFb2MGS6BurI36sS7qxrqoG2ujfqyLuqlcUCbnAwAAAIAnGHEBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAywsLxkEdDofS0tJUv3592Wy2YIQAAAAAwAKMMcrKylJ8fLxCQsofVwlK4pKWlqbmzZsH49AAAAAALGj//v1KTEwsd31QEpf69etLcgYXFRUVjBAAAAAAWEBmZqaaN2/uyhHKE5TEpejysKioKBIXAAAAAJVOIWFyPgAAAADLI3EBAAAAYHlBuVQMAAAANYsxRoWFhbLb7cEOBUEQGhqqsLCwKt1RmMQFAAAAfpWfn6/09HTl5uYGOxQEUZ06ddSsWTNFRER4tT2JCwAAAPzG4XAoNTVVoaGhio+PV0REBM/xq2GMMcrPz9fRo0eVmpqqtm3bVvi8lvKQuAAAAMBv8vPz5XA41Lx5c9WpUyfY4SBIateurfDwcO3du1f5+fmqVauWx/tgcj4AAAD8zptv2HF2qWobYMQFAAAAlmW325WcnKz09HQ1a9ZMvXr1UmhoaLDDQhCQ+gIAAMCSlixZolatWqlv374aOnSo+vbtq1atWmnJkiXBDi1gWrVqpY0bN3q83RtvvKErrrjCErH4CokLAAAALGfJkiW67rrrdODAgRLLDx48qOuuu85nyUurVq1Up04d1atXT/Hx8brvvvvO+ls2P/744woPD1e9evXUsGFD9evXT//973+DHValSFwAAABgKXa7XePHj5cxptS6omX33nuvzxKML7/8UtnZ2UpOTtZ7772nuXPn+mS/nnA4HHI4HAE73q233qrs7GylpaWpadOmGjlyZMCO7S0SFwAAAFhKcnJyqZGW4owx2r9/v5KTk3163HPOOUc9evTQd99951q2aNEitW/fXo0aNdLgwYN15MgRSdLQoUP16quvSpLWrFkjm82mb775RpL03HPP6Y477pAkffTRR+rYsaPq16+vtm3b6v3333fte+TIkRo3bpz69OmjevXqad++ffrss8/Upk0bNWrUSI8//niJ+E6ePKm7775b8fHxSkxM1FNPPeVal5OTo6FDh6pBgwa65JJL9OOPP7r1N9euXVtDhw7V9u3bJUnbtm1Tjx491KBBA3Xp0qXcS8OSk5PVsmVL19/84osvqm3btoqNjdWIESOUk5Pj1vE9QeICAAAAS0lPT/dpOXf99NNPWrdunZKSkiRJmzZt0oQJE7Rw4UIdPnxY559/vu666y5JUq9evVyJ07p169S6desSr3v27ClJioqK0qJFi5SRkaHnn39eo0aN0qFDh1zHXLBggZ555hllZWWpbt26uvHGG/X888/r0KFDys3NLZHAPfDAA8rIyNCPP/6oTZs2af78+fr4448lSVOnTtWxY8e0b98+vfPOO3rrrbfc+ptzcnL0zjvv6KKLLlJ+fr6uvvpqDR06VEePHtUDDzygQYMGKSMjo8Q2X375pW6++WZ98MEH+t3vfqf3339fc+bM0cqVK7V//34VFBTo0Ucf9aYKKmaCICMjw0gyGRkZwTg8AAAAAuTkyZNmx44d5uTJk25vs2rVKiOp0p9Vq1ZVOb6WLVuaevXqmbp16xpJ5tprr3XFescdd5innnrKVTYrK8uEhYWZgoICs3XrVtOqVStjjDEDBgwwL730krnmmmuMMcY0bdrU7Nmzp8zjdevWzXz88cfGGGNGjBhhxo4d61r3xhtvmH79+rle5+TkmPDwcLNhwwbjcDhM7dq1zeHDh13rZ8+ebW655RZjjDGtWrUyycnJrnUPP/ywGTBgQJkxPPbYYyYiIsJER0ebuLg4c9VVV5mffvrJrFmzxiQlJZWK97333nP9Xz322GOmRYsW5vvvv3eVGTBggFm4cKHr9bZt20yLFi1KHbe8tuBubsCICwAAACylV69eSkxMlM1mK3O9zWZT8+bN1atXL58cb8WKFcrKytIHH3yglJQUZWdnS5L27dunqVOnqkGDBmrQoIESExMVFhamQ4cOqUOHDsrIyNDevXu1Y8cOjRo1Sps3b9ZPP/2kkJAQtW7dWpJz9KVHjx5q1KiRGjRooG+//VbHjh1zHTsxMdH1e3p6upo3b+56XadOHcXExEiSjh49qpMnT+rcc891xTN58mTXpWtnblv897KMGjVKJ06c0OHDh/XJJ5+oTZs2SktLU4sWLUqUa9mypdLS0lyvX3rpJV199dW68MILXcv27dunW2+91RVXz5499euvv7r3n+8BEhcAAABYSmhoqJ577jlJKpW8FL2eNWuWT5/nYrPZ9Kc//Un9+vXTP/7xD0lSQkKCZsyYoRMnTrh+Tp486UqqLr30Ur344ovq2LGjatWqpaSkJL366quuy8Qkafjw4Ro9erQOHz6sEydOqEuXLiVuOlD872vWrJn279/ven3y5ElXkhMbG6tatWpp7969rlgyMzO1dOnSMrct/ru74uPjS223b98+xcfHu17PnTtXX375pZ599lnXsoSEBL399tsl/p+Y4wIAAIAaYciQIVq0aFGJk2bJOUKxaNEiDRkyxC/HnThxol577TUdPXpUo0eP1uzZs7V161ZJ0m+//aYPP/zQVbZXr1565ZVXdNlll5V4XTxxycrKUqNGjRQWFqbFixdr8+bN5R574MCB2rRpkz7//HPl5+dr6tSprjuNhYSEaMSIEXrggQd04sQJORwO7dy5U5s2bZIkXXfddZo2bZqysrK0a9cuzZ8/3+O/vVu3biooKNDLL7+swsJCvf/++9q1a5cuv/xyV5nY2FitXLlSL7zwgl5//XVJzjuUTZs2TXv27JHkHP1ZtmyZx8evDIkLAAAALGnIkCHau3evVq1apXfeeUerVq1Samqq35IWSTr//PPVp08fPffcc+revbueeuopDR8+XFFRUbrkkkv01Vdfucr26tVLWVlZrkvWil4XT1xmz56tu+++Ww0bNtTnn3+u3r17l3vsxo0b6+2339bYsWPVtGlT1a5du8SlZM8884zq1q2rjh07qlGjRrrlllt0/PhxSdJjjz2m6OhoJSYm6qabbtLw4cM9/tsjIiL04Ycf6q233lJMTIyefPJJffTRR4qOji5RLj4+XitWrNDjjz+u9957TzfeeKNGjhypgQMHqn79+urdu7d27Njh8fErYzOmjBtk+1lmZqaio6OVkZGhqKioQB8eAAAAAXLq1CmlpqaqdevWqlWrVrDDQRCV1xbczQ0YcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAD4XdFtfVFzVbUNhPkoDgAAAKCUiIgIhYSEKC0tTY0bN1ZERESph0ri7GaMUX5+vo4ePaqQkBBFRER4tR8SFwAAAPhNSEiIWrdurfT0dKWlpQU7HARRnTp11KJFC4WEeHfRF4kLAAAA/CoiIkItWrRQYWGh7HZ7sMNBEISGhiosLKxKo20kLgAAAPA7m82m8PBwhYeHBzsUVFNMzgcAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8jxOXJYtW6Z169a5Xr/44ou6+OKLNXToUB0/ftynwQEAAACA5EXiMnHiRGVmZkqStm3bpvvvv18DBw7Unj17NGHCBJ8HCAAAAABhnm6Qmpqqdu3aSZIWL16sQYMGafr06UpJSdHAgQN9HiAAAAAAeDziEhERodzcXEnSypUrdfnll0uSGjVq5BqJAQAAAABf8njEpWfPnpowYYJ69OihTZs2aeHChZKkH3/8UYmJiT4PEAAAAAA8HnF54YUXFBYWpkWLFunll19WQkKCJGnp0qW64oorfB4gAAAAANiMMSbQB83MzFR0dLQyMjIUFRUV6MMDAAAAsAh3cwOvnuOye/duTZkyRTfddJOOHDkiyXmb5B9++MG7aAEAAACgAh4nLmvWrFHHjh319ddfa8mSJcrOzpYkbd26VY899pjPAwQAAAAAjxOXhx56SE888YRWrFihiIgI1/K+fftqw4YNPg0OAAAAACQvEpdt27bp2muvLbW8cePGOnbsmE+CAgAAAIDiPE5cGjRooPT09FLLt2zZ4rrDGAAAAAD4kseJy9ChQzVp0iQdOnRINptNDodDX331lR544AHdcsst/ogRAAAAQA3nceIybdo0tWjRQgkJCcrOzla7du102WWX6dJLL9WUKVP8ESMAAACAGs7r57js2bNHKSkpcjgc6tSpk9q2bauTJ0+qdu3alW7Lc1wAAAAASH58jstf//pXSVJSUpKuu+46XX/99Wrbtq1ycnJ05ZVXeh8xAAAAAJTD48Rl+fLlpS4Jy8nJ0RVXXCG73e6zwAAAAACgSJinGyxfvlw9e/ZUTEyM7rvvPmVlZWnAgAEKCwvT0qVL/REjAAAAgBrO48SldevW+vzzz9WnTx+FhIRowYIFioyM1Keffqq6dev6I0YAAAAANZzHiYskdejQQZ988on69++vrl276pNPPnFrUj4AAAAAeMOtxKVTp06y2WyllkdGRiotLU09evRwLUtJSfFddAAAAAAgNxOXa665xs9hAAAAAED5vH6OS1XwHBcAAAAAkvu5gVdzXCRp8+bN2rlzp2w2m9q1a6dOnTp5uysAAAAAqJDHicuRI0d04403avXq1WrQoIGMMcrIyFDfvn21YMECNW7c2B9xAgAAAKjBPH4A5T333KPMzEz98MMP+u2333T8+HFt375dmZmZGjdunD9iBAAAAFDDeTzHJTo6WitXrtTvfve7Ess3bdqkyy+/XCdOnKh0H8xxAQAAACC5nxt4POLicDgUHh5eanl4eLgcDoenuwMAAACASnmcuPzhD3/Q+PHjlZaW5lp28OBB3XffferXr59PgwMAAAAAyYvE5YUXXlBWVpZatWqlc845R23atFHr1q2VlZWl2bNn+yNGAAAAADWcx3cVa968uVJSUrRy5Urt3LlTxhi1a9dO/fv390d8AAAAAOBZ4vL+++/rgw8+UEFBgfr376977rnHX3EBAAAAgIvbicucOXN05513qm3btqpVq5YWL16s1NRUzZgxw5/xAQAAAID7c1xmz56thx9+WLt27dL333+v119/XS+88II/YwMAAAAASR4kLnv27NGoUaNcr4cPH668vDwdOnTIL4EBAAAAQBG3E5eTJ0+qXr16rtehoaGKjIxUbm6uXwIDAAAAgCIeTc5/7bXXSiQvhYWFeuONNxQbG+taNm7cON9FBwAAAACSbMYY407BVq1ayWazVbwzm0179uypdF+ZmZmKjo5WRkaGoqKi3IsUAAAAwFnH3dzA7RGXX375xRdxAQAAAIDH3J7jAgAAAADBQuICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeW7dVSwzM9PtHXJ7YwAAAAC+5lbi0qBBg0qf4VLEbrdXKSAAAAAAOJNbicuqVatcv//yyy966KGHNHLkSHXv3l2StGHDBr355puaMWOGf6IEAAAAUKPZjDHGkw369eun2267TTfddFOJ5e+8847mzJmj1atXV7oPd5+OCQAAAODs5m5u4PHk/A0bNqhLly6llnfp0kWbNm3ydHcAAAAAUCmPE5fmzZvrlVdeKbX8//7v/9S8eXOfBAUAAAAAxbk1x6W4Z599Vn/+85/1+eefq1u3bpKkjRs3avfu3Vq8eLHPA/Qnu92u5ORkpaenq1mzZrr00ku1fv161+tevXopNDS0VLmi5WXto/i6qsZT3r4CFQ+qrrz68Lauy2ujxcsePHhQR48eVePGjZWQkEAbqEHKagNNmzaVJB05csSnfQJ9DbzlTr8mqdwycXFxkpxtuvjv3vSx7sTn7ra8J6qHM/vJmJgYHTt2zOefmZ62h0C2n2rdVo0X9u3bZ/72t7+Za6+91lxzzTVm8uTJZt++fW5vn5GRYSSZjIwMbw7vE4sXLzaJiYlGkusnNDS0xOvExEQzceLEUuUSExPN4sWLy9xH0TpfxFPWvioq58t4UHXl1UdFbaqy7ctqo+XVPW2gZqmoDfi6PdDXwFvu9GsxMTEmJiamwjIVtW93+1h343NnW94T1YM7/WQw+shAth+rtlV3cwOvEpeqCnbisnjxYmOz2dzqBMv6qWhbm81mbDabRw2gvHjO3FdF5XwZD6rO0zbmbl17UvdnlqMNnL08aW9V7RPc7a+AM1X1s7cqP+60T2/bNu+J6sHTfjJQfWQg24+V26pfE5e1a9eaYcOGme7du5sDBw4YY4yZP3++SU5O9mlw/lBYWOjWt5JV7SCbN29uCgsLqxxP0b7y8vK8jtuTeFB13rYxX9Q1baDm8aa9edse3O2vaGc4UyA+e6vS7r1t27wnqgdP21+g+shAth+rt1V3cwOPJ+cvXrxYAwYMUO3atZWSkqK8vDxJUlZWlqZPn+7p7gIuOTlZBw4c8OsxjDHav3+/kpOTqxxP0b5eeuklr+P2JB5UnbdtzBd1Xdm+aQNnH2/am7ftwd3+inaGMwXis7cyFbVPb9s274nqwdP2F6g+MpDt52xpqx4nLk888YReeeUVvfrqqwoPD3ctv/TSS5WSkuLT4PwhPT3dUsdyN57du3dXNZyA/u01WVX/n31R1+WhDZx9qlKnnm7rbnnaGc5kpTZRVizetm3eE9WDt////u4jA9l+zpa26nHismvXLl122WWllkdFRenEiRO+iMmvmjVrZqljuRvPOeecU9VwAvq312RV/X/2RV2XhzZw9qlKnXq6rbvlaWc4k5XaRFmxeNu2eU9UD97+//u7jwxk+zlr2qqn16AlJSWZFStWGGOMqVevntm9e7cxxpg333zTXHDBBT69js0fiq7x8+cEQW/muJQXz5nzHryJO9jXLdY03rYxX9Q1baDmCcYcl8r6K9oZzhSIz96qtHtv2zbvieoh0HNc3G0PgWw/Vm+rfpuc/9RTT5l27dqZjRs3mvr165vk5GTz73//2zRu3NjMnj3bp8H5S9FdFbztQItvd+Y+qnJXscr2VVE5X8aDqvO0jblb1xW1xcrK0QbOXsG4qxh9DTxV1c/eqvx4clcxT9s274nqIdB3FXO3PQSy/Vi5rfr1rmKTJ082tWvXdv2htWrVMlOmTPF5cP60ePFik5CQUKLizrxPfPPmzc3EiRNLlWvevLnr2RnlrfNFPGXtq6JyvowHVVdefVTUpirbvqw2Wl7d0wZqloragK/bA30NvOVOvxYTE2MaNWpUYZmK2re7fay78bmzLe+J6sGdfjIYfWQg249V26rfn+OSk5NjvvnmG/P111+brKwsvwTnb0VxSDKfffaZ+e2330q8LhouO7Nc8WG0itZVNZ7y9hWoeFB15dWHt3VdXhs9syxtoGYqqw28//77fmkP9DXwljv9WkVlirfp8tp3Vdqnt9vynqgeyuonrdBHBrL9WLGtupsb2IwxRgGWmZmp6OhoZWRkKCoqKtCHd8nJyVG9evUkSdnZ2ZJU4nXdunXLLFe0vLJ1VY2nvH0FKh5UXXn14W1dS2W30TPLFqEN1CxltYHDhw+rSZMmknzbHuhr4C13+rWKyhRv0+W176q0T2+35T1RPZTVTxYJZh8ZyPZjxbbqbm4Q5s7OhgwZ4vaBlyxZ4nZZAAAAAHCHW7dDjo6Odv1ERUXpiy++0Lfffutav3nzZn3xxReKjo72W6AAAAAAai63RlzmzZvn+n3SpEm6/vrr9corryg0NFSSZLfbNXbs2KBe9gUAAADg7OXxAyjnzp2rBx54wJW0SFJoaKgmTJiguXPn+jQ4AAAAAJC8SFwKCwu1c+fOUst37twph8Phk6AAAAAAoDi3LhUrbtSoURo9erR+/vlndevWTZK0ceNGPfnkkxo1apTPAwQAAAAAjxOXf/7zn2ratKmeffZZpaenS5KaNWumBx98UPfff7/PAwQAAAAAjxKXwsJCvf3227rlllv04IMPKjMzU5KYlA8AAADArzya4xIWFqa77rpLeXl5kpwJC0kLAAAAAH/zeHJ+165dtWXLFn/EAgAAAABl8niOy9ixY3X//ffrwIED6ty5s+rWrVti/YUXXuiz4AAAAABA8iJxueGGGyRJ48aNcy2z2Wwyxshms8lut/suOgAAAACQF4lLamqqP+IAAAAAgHJ5nLi0bNnSH3EAAAAAQLk8TlyK7NixQ/v27VN+fn6J5YMHD65yUAAAAABQnMeJy549e3Tttddq27ZtrrktknOeiyTmuAAAAADwOY9vhzx+/Hi1bt1ahw8fVp06dfTDDz9o7dq16tKli1avXu2HEAEAAADUdB6PuGzYsEFffvmlGjdurJCQEIWEhKhnz56aMWOGxo0bxzNeAAAAAPicxyMudrtd9erVkyTFxsYqLS1NknPS/q5du3wbHQAAAADIixGXDh06aOvWrUpKSlLXrl01c+ZMRUREaM6cOUpKSvJHjAAAAABqOI8TlylTpignJ0eS9MQTT2jQoEHq1auXYmJitHDhQp8HCAAAAAAeJy4DBgxw/Z6UlKQdO3bot99+U8OGDV13FgMAAAAAX/J4jsuKFSuUm5tbYlmjRo1IWgAAAAD4jccjLn/+85+Vl5enzp07q3fv3urTp4969OjhmrAPAAAAAL7m8YjL8ePHtXr1ag0ePFhbtmzRX/7yFzVq1EjdunXTQw895I8YAQAAANRwHicuoaGh6t69ux566CEtW7ZM69ev19ChQ7V582Y9/fTT/ogRAAAAQA3n8aViO3fu1Jo1a7R69WqtWbNGdrtdPXv21L/+9S/17t3bHzECAAAAqOE8Tlzat2+vxo0b695779Ujjzyi9u3b+yMuAAAAAHDx+FKxcePGKSEhQY8//rhGjx6tSZMmaenSpcrOzvZHfAAAAADgeeIya9YspaSk6PDhw5oyZYrsdrseffRRxcbGqlu3bv6IEQAAAEAN53HiUsThcKiwsFD5+fnKy8tTQUGBfvnlFx+GBgAAAABOHicu48eP10UXXaS4uDjdcccdSktL0+23367vv/9ehw4d8keMAAAAAGo4jyfnHzx4UGPGjFGfPn3UoUMHf8QEAAAAACV4nLgsWrTIH3EAAAAAQLm8muPy1ltvqUePHoqPj9fevXslOSftf/jhhz4NDgAAAAAkLxKXl19+WRMmTNDAgQN14sQJ2e12SVKDBg00a9YsX8cHAAAAAJ4nLrNnz9arr76qhx9+WKGhoa7lXbp00bZt23waHAAAAABIXiQuqamp6tSpU6nlkZGRysnJ8UlQAAAAAFCcx4lL69at9d1335VavnTpUrVr184XMQEAAABACR7fVWzixIn661//qlOnTskYo02bNundd9/VjBkz9Nprr/kjRgAAAAA1nMeJy6hRo1RYWKgHH3xQubm5Gjp0qBISEvTcc8/pxhtv9EeMAAAAAGo4jxMXSRozZozGjBmjX3/9VQ6HQ3FxcZKcD6dMSEjwaYAAAAAA4NVzXIrExsYqLi5Ohw4d0j333KM2bdr4Ki4AAAAAcHE7cTlx4oSGDRumxo0bKz4+Xs8//7wcDoceffRRJSUlaePGjZo7d64/YwUAAABQQ7l9qdjkyZO1du1ajRgxQsuWLdN9992nZcuW6dSpU1q6dKl69+7tzzgBAAAA1GBuJy6ffvqp5s2bp/79+2vs2LFq06aNzj33XM2aNcuP4QEAAACAB5eKpaWluZ7TkpSUpFq1aum2227zW2AAAAAAUMTtxMXhcCg8PNz1OjQ0VHXr1vVLUAAAAABQnNuXihljNHLkSEVGRkqSTp06pTvvvLNU8rJkyRLfRggAAACgxnM7cRkxYkSJ1zfffLPPgwEAAACAsriduMybN8+fcQAAAABAuar0AEoAAAAACAQSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJYXFoyDGmMkSZmZmcE4vEtOTo7r9zNjyczMlN1uL7Nc0fLK1lU1nvL2Fah4UHXl1Ye3dV1cRXXvzr5x9imrDWRlZbl+92V7oK+Bt9zp1yoqU7xNl9e+q9I+vd2W90T1UFY/WSSYfWQg248V22rR+7woRyiPzVRWwg8OHDig5s2bB/qwAAAAACxq//79SkxMLHd9UBIXh8OhtLQ01a9fXzabLdCHr3EyMzPVvHlz7d+/X1FRUcEOB8VQN9ZG/VgXdWNd1I21UT/WVZPrxhijrKwsxcfHKySk/JksQblULCQkpMJsCv4RFRVV494I1QV1Y23Uj3VRN9ZF3Vgb9WNdNbVuoqOjKy3D5HwAAAAAlkfiAgAAAMDySFxqgMjISD322GOKjIwMdig4A3VjbdSPdVE31kXdWBv1Y13UTeWCMjkfAAAAADzBiAsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbhUAzNmzNDvfvc71a9fX3Fxcbrmmmu0a9euEmWMMXr88ccVHx+v2rVrq0+fPvrhhx9KlMnLy9M999yj2NhY1a1bV4MHD9aBAwdKlDl+/LiGDx+u6OhoRUdHa/jw4Tpx4oS//8SzxowZM2Sz2XTvvfe6llE3wXXw4EHdfPPNiomJUZ06dXTxxRdr8+bNrvXUT3AUFhZqypQpat26tWrXrq2kpCT9/e9/l8PhcJWhbgJn7dq1uvrqqxUfHy+bzaYPPvigxPpA1sW+fft09dVXq27duoqNjdW4ceOUn5/vjz+7WqiobgoKCjRp0iR17NhRdevWVXx8vG655RalpaWV2Ad14x+VvW+Ku+OOO2Sz2TRr1qwSy6kbDxlY3oABA8y8efPM9u3bzXfffWeuuuoq06JFC5Odne0q8+STT5r69eubxYsXm23btpkbbrjBNGvWzGRmZrrK3HnnnSYhIcGsWLHCpKSkmL59+5qLLrrIFBYWuspcccUVpkOHDmb9+vVm/fr1pkOHDmbQoEEB/Xurq02bNplWrVqZCy+80IwfP961nLoJnt9++820bNnSjBw50nz99dcmNTXVrFy50vz888+uMtRPcDzxxBMmJibGfPLJJyY1NdW8//77pl69embWrFmuMtRN4Hz22Wfm4YcfNosXLzaSzH/+858S6wNVF4WFhaZDhw6mb9++JiUlxaxYscLEx8ebu+++2+//B1ZVUd2cOHHC9O/f3yxcuND897//NRs2bDBdu3Y1nTt3LrEP6sY/KnvfFPnPf/5jLrroIhMfH2+effbZEuuoG8+QuFRDR44cMZLMmjVrjDHGOBwO07RpU/Pkk0+6ypw6dcpER0ebV155xRjj7NzCw8PNggULXGUOHjxoQkJCzLJly4wxxuzYscNIMhs3bnSV2bBhg5Fk/vvf/wbiT6u2srKyTNu2bc2KFStM7969XYkLdRNckyZNMj179ix3PfUTPFdddZUZPXp0iWVDhgwxN998szGGugmmM0/AAlkXn332mQkJCTEHDx50lXn33XdNZGSkycjI8MvfW51UdHJcZNOmTUaS2bt3rzGGugmU8urmwIEDJiEhwWzfvt20bNmyROJC3XiOS8WqoYyMDElSo0aNJEmpqak6dOiQLr/8cleZyMhI9e7dW+vXr5ckbd68WQUFBSXKxMfHq0OHDq4yGzZsUHR0tLp27eoq061bN0VHR7vKoGx//etfddVVV6l///4lllM3wfXRRx+pS5cu+stf/qK4uDh16tRJr776qms99RM8PXv21BdffKEff/xRkvT9999r3bp1GjhwoCTqxkoCWRcbNmxQhw4dFB8f7yozYMAA5eXllbjEE+XLyMiQzWZTgwYNJFE3weRwODR8+HBNnDhR7du3L7WeuvFcWLADgGeMMZowYYJ69uypDh06SJIOHTokSWrSpEmJsk2aNNHevXtdZSIiItSwYcNSZYq2P3TokOLi4kodMy4uzlUGpS1YsEApKSn65ptvSq2jboJrz549evnllzVhwgRNnjxZmzZt0rhx4xQZGalbbrmF+gmiSZMmKSMjQ+eff75CQ0Nlt9s1bdo03XTTTZJ471hJIOvi0KFDpY7TsGFDRUREUF9uOHXqlB566CENHTpUUVFRkqibYHrqqacUFhamcePGlbmeuvEciUs1c/fdd2vr1q1at25dqXU2m63Ea2NMqWVnOrNMWeXd2U9NtX//fo0fP17Lly9XrVq1yi1H3QSHw+FQly5dNH36dElSp06d9MMPP+jll1/WLbfc4ipH/QTewoUL9e9//1vvvPOO2rdvr++++0733nuv4uPjNWLECFc56sY6AlUX1Jd3CgoKdOONN8rhcOill16qtDx141+bN2/Wc889p5SUFI//f6ib8nGpWDVyzz336KOPPtKqVauUmJjoWt60aVNJKpVVHzlyxJWBN23aVPn5+Tp+/HiFZQ4fPlzquEePHi2VycNp8+bNOnLkiDp37qywsDCFhYVpzZo1ev755xUWFub6f6NugqNZs2Zq165diWUXXHCB9u3bJ4n3TjBNnDhRDz30kG688UZ17NhRw4cP13333acZM2ZIom6sJJB10bRp01LHOX78uAoKCqivChQUFOj6669XamqqVqxY4RptkaibYElOTtaRI0fUokUL1/nB3r17df/996tVq1aSqBtvkLhUA8YY3X333VqyZIm+/PJLtW7dusT61q1bq2nTplqxYoVrWX5+vtasWaNLL71UktS5c2eFh4eXKJOenq7t27e7ynTv3l0ZGRnatGmTq8zXX3+tjIwMVxmU1K9fP23btk3fffed66dLly4aNmyYvvvuOyUlJVE3QdSjR49Stw7/8ccf1bJlS0m8d4IpNzdXISElP4JCQ0Ndt0OmbqwjkHXRvXt3bd++Xenp6a4yy5cvV2RkpDp37uzXv7O6KkpafvrpJ61cuVIxMTEl1lM3wTF8+HBt3bq1xPlBfHy8Jk6cqM8//1wSdeOVwN0HAN666667THR0tFm9erVJT093/eTm5rrKPPnkkyY6OtosWbLEbNu2zdx0001l3qoyMTHRrFy50qSkpJg//OEPZd5y78ILLzQbNmwwGzZsMB07duS2oR4qflcxY6ibYNq0aZMJCwsz06ZNMz/99JN5++23TZ06dcy///1vVxnqJzhGjBhhEhISXLdDXrJkiYmNjTUPPvigqwx1EzhZWVlmy5YtZsuWLUaSeeaZZ8yWLVtcd6YKVF0U3da1X79+JiUlxaxcudIkJiaelbd1dVdFdVNQUGAGDx5sEhMTzXfffVfiHCEvL8+1D+rGPyp735zpzLuKGUPdeIrEpRqQVObPvHnzXGUcDod57LHHTNOmTU1kZKS57LLLzLZt20rs5+TJk+buu+82jRo1MrVr1zaDBg0y+/btK1Hm2LFjZtiwYaZ+/fqmfv36ZtiwYeb48eMB+CvPHmcmLtRNcH388cemQ4cOJjIy0px//vlmzpw5JdZTP8GRmZlpxo8fb1q0aGFq1aplkpKSzMMPP1ziZIu6CZxVq1aV+TkzYsQIY0xg62Lv3r3mqquuMrVr1zaNGjUyd999tzl16pQ//3xLq6huUlNTyz1HWLVqlWsf1I1/VPa+OVNZiQt14xmbMcYEYmQHAAAAALzFHBcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAIBHHn/8cV188cVBO/4jjzyi22+/3a2yDzzwgMaNG+fniAAAgWAzxphgBwEAsAabzVbh+hEjRuiFF15QXl6eYmJiAhTVaYcPH1bbtm21detWtWrVqtLyR44c0TnnnKOtW7eqdevW/g8QAOA3JC4AAJdDhw65fl+4cKEeffRR7dq1y7Wsdu3aio6ODkZokqTp06drzZo1+vzzz93e5s9//rPatGmjp556yo+RAQD8jUvFAAAuTZs2df1ER0fLZrOVWnbmpWIjR47UNddco+nTp6tJkyZq0KCBpk6dqsLCQk2cOFGNGjVSYmKi5s6dW+JYBw8e1A033KCGDRsqJiZGf/rTn/TLL79UGN+CBQs0ePDgEssWLVqkjh07qnbt2oqJiVH//v2Vk5PjWj948GC9++67Vf6/AQAEF4kLAKDKvvzyS6WlpWnt2rV65pln9Pjjj2vQoEFq2LChvv76a91555268847tX//fklSbm6u+vbtq3r16mnt2rVat26d6tWrpyuuuEL5+fllHuP48ePavn27unTp4lqWnp6um266SaNHj9bOnTu1evVqDRkyRMUvJvj973+v/fv3a+/evf79TwAA+BWJCwCgyho1aqTnn39e5513nkaPHq3zzjtPubm5mjx5stq2bau//e1vioiI0FdffSXJOXISEhKi1157TR07dtQFF1ygefPmad++fVq9enWZx9i7d6+MMYqPj3ctS09PV2FhoYYMGaJWrVqpY8eOGjt2rOrVq+cqk5CQIEmVjuYAAKwtLNgBAACqv/bt2ysk5PR3YU2aNFGHDh1cr0NDQxUTE6MjR45IkjZv3qyff/5Z9evXL7GfU6dOaffu3WUe4+TJk5KkWrVquZZddNFF6tevnzp27KgBAwbo8ssv13XXXaeGDRu6ytSuXVuSc5QHAFB9kbgAAKosPDy8xGubzVbmMofDIUlyOBzq3Lmz3n777VL7aty4cZnHiI2NleS8ZKyoTGhoqFasWKH169dr+fLlmj17th5++GF9/fXXrruI/fbbbxXuFwBQPXCpGAAg4C655BL99NNPiouLU5s2bUr8lHfXsnPOOUdRUVHasWNHieU2m009evTQ1KlTtWXLFkVEROg///mPa/327dsVHh6u9u3b+/VvAgD4F4kLACDghg0bptjYWP3pT39ScnKyUlNTtWbNGo0fP14HDhwoc5uQkBD1799f69atcy37+uuvNX36dH377bfat2+flixZoqNHj+qCCy5wlUlOTlavXr1cl4wBAKonEhcAQMDVqVNHa9euVYsWLTRkyBBdcMEFGj16tE6ePKmoqKhyt7v99tu1YMEC1yVnUVFRWrt2rQYOHKhzzz1XU6ZM0b/+9S9deeWVrm3effddjRkzxu9/EwDAv3gAJQCg2jDGqFu3brr33nt10003VVr+008/1cSJE7V161aFhTGtEwCqM0ZcAADVhs1m05w5c1RYWOhW+ZycHM2bN4+kBQDOAoy4AAAAALA8RlwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFje/wPbOjhMSmaRQAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(4, 1, figsize=(10, 12), sharex=True)\n", + "plot_behavior(axs, **event_name_to_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get DLC data for the first epoch" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "pose_estimation = nwbfile.processing[\"behavior\"].data_interfaces[\"PoseEstimation_1-XFN1-1\"]\n", + " \n", + "nodes = pose_estimation.skeleton.nodes[:]\n", + "edges = pose_estimation.skeleton.edges[:]\n", + "pes = pose_estimation.pose_estimation_series\n", + "name_to_data = {name: series.data[:] for name, series in pes.items()}\n", + "pes_timestamps = pes[\"PoseEstimationSeriesBody center\"].timestamps[:]\n", + "node_to_name = {node: f\"PoseEstimationSeries{node.capitalize()}\" for node in nodes}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot DLC data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def plot_pose_estimation(nodes, edges, name_to_data, node_to_name, timestamps):\n", + " \"\"\"\n", + " Plot pose estimation data with trajectory and skeleton structure.\n", + " \n", + " Parameters:\n", + " -----------\n", + " nodes : array-like\n", + " Node names for the pose estimation skeleton\n", + " edges : array-like\n", + " Edge connections between nodes\n", + " name_to_data : dict\n", + " Dictionary mapping node names to position data\n", + " node_to_name : dict\n", + " Dictionary mapping node indices to series names\n", + " timestamps : array-like\n", + " Timestamps for the pose estimation data\n", + " \"\"\"\n", + " fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 8))\n", + " \n", + " # Left plot: Average position scatter plot with trajectory\n", + " all_x = np.array([name_to_data[node_to_name[node]][:, 0] for node in nodes])\n", + " all_y = np.array([name_to_data[node_to_name[node]][:, 1] for node in nodes])\n", + "\n", + " x = np.nanmean(all_x, axis=0)\n", + " y = np.nanmean(all_y, axis=0)\n", + "\n", + " sc = ax1.scatter(x, y, c=timestamps, cmap='viridis', s=1)\n", + " ax1.set_xlabel('X Position')\n", + " ax1.set_ylabel('Y Position')\n", + " ax1.set_title('Average Position Trajectory')\n", + " plt.colorbar(sc, ax=ax1, label='Time (s)')\n", + " \n", + " # Right plot: Network graph using networkx\n", + " \n", + " # Create a graph\n", + " G = nx.Graph()\n", + " \n", + " # Add nodes\n", + " for i, node in enumerate(nodes):\n", + " G.add_node(i, label=node)\n", + " \n", + " # Add edges\n", + " for edge in edges:\n", + " G.add_edge(edge[0], edge[1])\n", + " \n", + " # Create layout\n", + " pos = nx.spring_layout(G, seed=42)\n", + " \n", + " # Draw the network\n", + " nx.draw(G, pos, ax=ax2, with_labels=True, \n", + " labels={i: nodes[i] for i in range(len(nodes))},\n", + " node_color='lightblue', node_size=1000, \n", + " font_size=10, font_weight='bold',\n", + " edge_color='gray', width=2)\n", + " \n", + " ax2.set_title('Pose Estimation Skeleton Structure')\n", + " ax2.axis('off')\n", + " \n", + " plt.tight_layout()\n", + "\n", + " return fig, (ax1, ax2)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:24: RuntimeWarning: Mean of empty slice\n", + " x = np.nanmean(all_x, axis=0)\n", + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:25: RuntimeWarning: Mean of empty slice\n", + " y = np.nanmean(all_y, axis=0)\n" + ] + }, + { + "data": { + "text/plain": [ + "(
,\n", + " (,\n", + " ))" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAMWCAYAAACDduxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8VFX6x/HPnZZJ74VQQkBKqAIWQJGqiKCLdS2r2BvqWn6raxfXXnZ1rWvD3ntFQUCkI0pHeg8hvZdp5/fHkIExoYNB/L5fr0jmzDn3PnNnhLn3uec5ljHGICIiIiIiIiIiIiIiIiIicoiyNXUAIiIiIiIiIiIiIiIiIiIiB5IS4yIiIiIiIiIiIiIiIiIickhTYlxERERERERERERERERERA5pSoyLiIiIiIiIiIiIiIiIiMghTYlxERERERERERERERERERE5pCkxLiIiIiIiIiIiIiIiIiIihzQlxkVERERERERERERERERE5JCmxLiIiIiIiIiIiIiIiIiIiBzSlBgXEREREREREREREREREZFDmhLjIiL76L///S+WZdGlS5emDuWgM2DAACzLCv1ERkbSvXt3nnjiCQKBwH7f36uvvoplWaxduzbU9vbbb/PEE0802t+yLO655579HsfObH88dvYzefLkfdrPPffcg2VZ+yfoRkyfPp177rmH0tLSA7YPERERERGRplJ/fln/43A4aNGiBRdddBGbNm1q6vAaqD8H3NHP9ufJu7JkyRLuueeeRsdceOGFtG7der/FvSd2dh46YMAABgwY8LvHBLBhwwauvvpq2rdvT2RkJElJSXTt2pXLLruMDRs2hPpdeOGFxMTE7Jd9rl27FsuyePXVV/d4bG5uLvfccw/z5s3bL7HsDWMM7777Lv369SMtLQ23202LFi0YOnQoL730UqhfdXU199xzzz5fI9lXDzzwAJ9++mmTxiAiIvuHo6kDEBH5o3vllVcAWLx4MbNmzeLoo49u4ogOLm3atOGtt94CID8/n+eff54bbriBzZs38/DDD+/XfQ0fPpwZM2bQrFmzUNvbb7/NokWLuP766xv0nzFjBi1atNivMezKjBkzwh7/61//YtKkSUycODGsvVOnTvu0n0svvZQTTzxxn7axM9OnT2fMmDFceOGFJCQkHLD9iIiIiIiINKWxY8fSsWNHampqmDJlCg8++CA//PADCxcuJDo6uqnDa2DcuHHEx8c3aN/+PHlXlixZwpgxYxgwYECDJPidd97J3//+930Nc6/s7Dz02WefbZKYNm7cSM+ePUlISOCmm26iQ4cOlJWVsWTJEt5//31Wr15Ny5YtmyS2HcnNzWXMmDG0bt2aww8/vEliuPXWW3n44Ye57LLL+Mc//kFsbCzr1q1j4sSJfPbZZ1x66aVAMDE+ZswYgCa78QGCifEzzjiDkSNHNlkMIiKyfygxLiKyD3766Sfmz5/P8OHD+eqrr3j55Zd/98S4MYba2loiIyN/1/3ursjISHr37h16PGzYMDp27MjTTz/Nfffdh9Pp3G/7Sk1NJTU1dbf7bx/X7+W3+0xNTcVms+0ylurqaqKionZ7Py1atPjdk/77w56+ThERERERkQOpS5cuHHHEEQAMHDgQv9/Pv/71Lz799FPOO++8Jo6uoV69epGSknLAtt+2bdsDtu19sa83l++tF198kcLCQmbPnk12dnaofeTIkdx2220HpFreH11NTQ1PPPEEF1xwAS+88ELYcxdeeOE+HbM/2jWFmpqag/Z6nojIoUql1EVE9sHLL78MwEMPPUTfvn159913qa6uBsDr9ZKWlsb555/fYFxpaSmRkZHceOONobby8nL+7//+j+zsbFwuF82bN+f666+nqqoqbKxlWVxzzTU8//zz5OTkEBERwWuvvQbAmDFjOProo0lKSiIuLo6ePXvy8ssvY4wJ20ZdXR033XQTGRkZREVFcdxxxzF37lxat27NhRdeGNY3Ly+PK664ghYtWuByucjOzmbMmDH4fL69OmZOp5NevXpRXV1NQUEBAIsWLeIvf/kLiYmJuN1uDj/88NBrqhcIBLjvvvvo0KEDkZGRJCQk0K1bN5588slQn9+WUh8wYABfffUV69atCysht/2x/G0p9d2JZfLkyViWxTvvvMPtt99OZmYmcXFxDBkyhGXLlu3VcdnegAED6NKlC1OmTKFv375ERUVx8cUXA/Dee+9xwgkn0KxZMyIjI8nJyeGf//xng8/Jjkqpv/fee/Tp04fo6GhiYmIYOnQov/zyS4N+s2bN4uSTTyY5ORm3203btm1Ds+7vuece/vGPfwCQnZ3doPx7IBDgkUceoWPHjkRERJCWlsYFF1zAxo0bd+t1XnLJJSQlJYX+X9reoEGD6Ny58x4fUxERERERkf2h/qbmdevWAVBbW8utt94adi4/evToBuW+J06cyIABA0hOTiYyMpJWrVpx+umnh533eDwe7rvvvtC5VGpqKhdddFHo3Hl/ee655+jevTsxMTHExsbSsWNHbrvtNiB4Xn3mmWcCwRsB6s/36kt2N1ZKvf46xdixY0Pn7EcccQQzZ87EGMOjjz5KdnY2MTExDBo0iJUrV4aNHz9+PH/5y19o0aIFbrebww47jCuuuILCwsJQn12dhzZWSr24uJirr76a5s2b43K5aNOmDbfffjt1dXWNxv/GG2+Qk5NDVFQU3bt358svv9zlsSwqKsJms5GWltbo8zbbzi+/T5s2jZSUFEaMGBE6r1+xYgXnnnsuaWlpREREkJOTwzPPPLPLWHZn7OTJkznyyCMBuOiii0LHcftrI59//jl9+vQhKiqK2NhYjj/++AbV7+qvOSxevJhzzjmH+Ph40tPTufjiiykrK9tpjFVVVdTV1e2wikH9MVu7dm1o8sOYMWNCsdZft6qP4eeff+aMM84gMTExdOPGjkrrN/b5raur49577yUnJwe3201ycjIDBw5k+vTpQPDzUVVVxWuvvRaKoX7bO7r20thSf61bt2bEiBF8/PHH9OjRA7fbHZoNv7+vvYmIyI5pxriIyF6qqanhnXfe4cgjj6RLly5cfPHFXHrppXzwwQeMGjUKp9PJ3/72N55//nmeeeYZ4uLiQmPfeecdamtrueiii4DgHa39+/dn48aN3HbbbXTr1o3Fixdz1113sXDhQiZMmBD2RfvTTz/lxx9/5K677iIjIyN0ArZ27VquuOIKWrVqBcDMmTO59tpr2bRpE3fddVdo/EUXXcR7773HzTffzKBBg1iyZAmnnnoq5eXlYa8xLy+Po446CpvNxl133UXbtm2ZMWMG9913H2vXrmXs2LF7dexWrVqFw+EgMTGRZcuW0bdvX9LS0vjvf/9LcnIyb775JhdeeCFbtmzh5ptvBuCRRx7hnnvu4Y477uC4447D6/Xy66+/7nSN62effZbLL7+cVatW8cknn+wyrt2Npd5tt93GMcccw0svvUR5eTm33HILJ598MkuXLsVut+/Vsam3efNm/va3v3HzzTfzwAMPhE4MV6xYwUknncT1119PdHQ0v/76Kw8//DCzZ89uUI79tx544AHuuOMOLrroIu644w48Hg+PPvoo/fr1Y/bs2aE77L/99ltOPvlkcnJy+Pe//02rVq1Yu3Yt3333HRAs015cXMxTTz3Fxx9/HDqZrR9/1VVX8cILL3DNNdcwYsQI1q5dy5133snkyZP5+eefw2YvNPY6ExISeOWVV3j77bdD5dMgWM5v0qRJu31BQEREREREZH+rT+qmpqZijGHkyJF8//333HrrrfTr148FCxZw9913M2PGDGbMmEFERARr165l+PDh9OvXj1deeYWEhAQ2bdrEuHHj8Hg8REVFEQgE+Mtf/sKPP/7IzTffTN++fVm3bh133303AwYM4KefftqtmaV+v79BMs2yrNA56rvvvsvVV1/Ntddey2OPPYbNZmPlypUsWbIECC5R9sADD3DbbbfxzDPP0LNnT2DXM8W//PJLfvnlFx566CEsy+KWW25h+PDhjBo1itWrV/P0009TVlbGjTfeyOmnn868efNC1zlWrVpFnz59uPTSS4mPj2ft2rX8+9//5thjj2XhwoU4nc5dnof+Vm1tLQMHDmTVqlWMGTOGbt268eOPP/Lggw8yb948vvrqq7D+X331FXPmzOHee+8lJiaGRx55hFNPPZVly5bRpk2bHb7uPn368Mwzz3Daaadx44030qdPn7DrPzvz/vvvc8EFF3DxxRfz1FNPYbfbWbJkCX379qVVq1Y8/vjjZGRk8O2333LddddRWFjI3XffvcPt7c7Ynj17Mnbs2NB1geHDhwOEKs69/fbbnHfeeZxwwgm888471NXV8cgjjzBgwAC+//57jj322LB9nn766fz1r3/lkksuYeHChdx6663AtmUHG5OSksJhhx3Gs88+S1paGieddBIdOnRokGBu1qwZ48aN48QTT+SSSy4JXR/4baXA0047jbPPPpsrr7yywaSBXfH5fAwbNowff/yR66+/nkGDBuHz+Zg5cybr16+nb9++zJgxg0GDBjFw4EDuvPNOgN1+j3/r559/ZunSpdxxxx1kZ2cTHR19wK69iYjIDhgREdkrr7/+ugHM888/b4wxpqKiwsTExJh+/fqF+ixYsMAA5oUXXggbe9RRR5levXqFHj/44IPGZrOZOXPmhPX78MMPDWC+/vrrUBtg4uPjTXFx8U7j8/v9xuv1mnvvvdckJyebQCBgjDFm8eLFBjC33HJLWP933nnHAGbUqFGhtiuuuMLExMSYdevWhfV97LHHDGAWL1680xj69+9vOnfubLxer/F6vSY3N9f885//NIA588wzjTHGnH322SYiIsKsX78+bOywYcNMVFSUKS0tNcYYM2LECHP44YfvdH9jx441gFmzZk2obfjw4SYrK6vR/oC5++67Q493N5ZJkyYZwJx00klh/d5//30DmBkzZuw0zu2NGjXKREdHh7X179/fAOb777/f6dhAIGC8Xq/54YcfDGDmz58feu7uu+822/8zv379euNwOMy1114bto2KigqTkZFhzjrrrFBb27ZtTdu2bU1NTc0O9/3oo482ONbGGLN06VIDmKuvvjqsfdasWQYwt9122269zv79+zd4v6+66ioTFxdnKioqdhiXiIiIiIjI/lB/fjlz5kzj9XpNRUWF+fLLL01qaqqJjY01eXl5Zty4cQYwjzzySNjY9957L+xaQP25/bx583a4v/pz8o8++iisfc6cOQYwzz777E7jrT8HbOynbdu2oX7XXHONSUhI2Om2PvjgAwOYSZMmNXhu1KhRDc6xAZORkWEqKytDbZ9++qkBzOGHHx66HmGMMU888YQBzIIFCxrdd/157rp16wxgPvvss9BzOzoPNSZ4Dtm/f//Q4+eff94A5v333w/r9/DDDxvAfPfdd2Hxp6enm/Ly8lBbXl6esdls5sEHH2w0zu3jveKKK4zNZjOAsSzL5OTkmBtuuKFBnNuf/z/00EPGbrebhx9+OKzP0KFDTYsWLUxZWVlY+zXXXGPcbnfoWtCaNWsMYMaOHbvHY+s/U9uPNSZ4HSkzM9N07drV+P3+UHtFRYVJS0szffv2DbXVf95++9m/+uqrjdvtDnvPGzN79mzTqlWr0Gc0NjbWjBgxwrz++uthYwsKChpcu/ltDHfddVeD5377eaj3289v/bW9F198cafxRkdHh10v+20Mv9XY9amsrCxjt9vNsmXLwvru67U3ERHZMyqlLiKyl15++WUiIyM5++yzAYiJieHMM8/kxx9/ZMWKFQB07dqVXr16hd3duXTpUmbPnh0qjQ3BO6u7dOnC4Ycfjs/nC/0MHTo0rDRYvUGDBpGYmNggpokTJzJkyBDi4+Ox2+04nU7uuusuioqKyM/PB+CHH34A4Kyzzgobe8YZZ+BwhBcS+fLLLxk4cCCZmZlhcQ0bNixsWzuzePFinE4nTqeTzMxMHn/8cc477zxefPHFUMyDBw+mZcuWYeMuvPBCqqurQ+W6jjrqKObPn8/VV1/Nt99+22B2+/6wu7HUO+WUU8Ied+vWDdhWUm9fJCYmMmjQoAbtq1ev5txzzyUjIyP0Hvfv3x8IfrZ25Ntvv8Xn83HBBReEvZdut5v+/fuHPmPLly9n1apVXHLJJbjd7j2Oe9KkSQANSvIfddRR5OTk8P333+/W6/z73//OvHnzmDZtGhBcauCNN95g1KhRxMTE7HFcIiIiIiIie6N37944nU5iY2MZMWIEGRkZfPPNN6Snp4eqdv32/OfMM88kOjo6dP5z+OGH43K5uPzyy3nttddYvXp1g/18+eWXJCQkcPLJJ4edsx1++OFkZGQ0uC6wIxMmTGDOnDlhP59++mno+aOOOorS0lLOOeccPvvss7By5fti4MCBREdHhx7n5OQAMGzYsLCZwPXt25835+fnc+WVV9KyZUscDgdOp5OsrCxg5+e5OzNx4kSio6M544wzwtrr36vfnpsOHDiQ2NjY0OP09HTS0tJ2eX5vWRbPP/88q1ev5tlnn+Wiiy7C6/Xyn//8h86dOze4bmKM4YorruDuu+/m7bffDqtMV1tby/fff8+pp55KVFRU2OfgpJNOora2lpkzZzYax76Mrbds2TJyc3M5//zzw0rAx8TEcPrppzNz5swGS541dl2ktrY2dA1qR4488khWrlzJuHHjuO222+jTpw/ff/89F1xwAaecckqDJQF35vTTT9/tvr/1zTff4Ha7w67RHUjdunWjffv2YW3749qbiIjsPpVSFxHZCytXrmTKlCmcfvrpGGNC5bzPOOMMxo4dyyuvvMKDDz4IwMUXX8zo0aP59ddf6dixI2PHjiUiIoJzzjkntL0tW7awcuVKnE5no/v77YlqY+swzZ49mxNOOIEBAwbw4osvhtYl+vTTT7n//vupqakBgutfQfAkb3sOh4Pk5OSwti1btvDFF1/sdlyNadu2Le+++y6WZeF2u8nOziYqKir0fFFRUaOvJzMzMyzeW2+9lejoaN58802ef/557HY7xx13HA8//DBHHHHELuPYHbsbS73fHq+IiAiA0LHeF43FUVlZSb9+/XC73dx33320b9+eqKgoNmzYwGmnnbbT/W7ZsgUgtJbYb9Wf9NavXVdfRm1P1R+jHR3H315U2NGaYn/5y19o3bo1zzzzDMcccwyvvvoqVVVVjB49eq/iEhERERER2Ruvv/46OTk5OBwO0tPTw85hioqKcDgcDUo7W5ZFRkZG6Pyobdu2TJgwgUceeYTRo0dTVVVFmzZtuO666/j73/8OBM/ZSktLcblcjcaxuwns7t27hy1f9Vvnn38+Pp+PF198kdNPP51AIMCRRx7Jfffdx/HHH79b+2hMUlJS2OP617Gj9traWgACgQAnnHACubm53HnnnXTt2pXo6GgCgQC9e/fe6/ProqIiMjIyGpTnTktLw+Fw7PL8HoLn+Lu7/6ysLK666qrQ4/fff59zzjmHf/zjH8yePTvU7vF4eO+99+jcuXMo8bl9zD6fj6eeeoqnnnqq0f3s6HOwL2O33wbs+Hw+EAhQUlISdk1nX66LOJ1Ohg4dytChQ0P7P+OMM/jyyy/55ptvOOmkk3a5jR3Fu7sKCgrIzMzc5Vrw+0tjse6Pa28iIrL7lBgXEdkLr7zyCsYYPvzwQz788MMGz7/22mvcd9992O12zjnnHG688UZeffVV7r//ft544w1GjhwZNuM7JSWFyMjIHa7B9NuT2t+e2EFwnTCn08mXX34ZNtN3+zvDYdtJy5YtW2jevHmo3efzNTgxTElJoVu3btx///2NxlWfMN4Zt9u908R1cnIymzdvbtCem5sbigGCifsbb7yRG2+8kdLSUiZMmMBtt93G0KFD2bBhQ9iJ2d7a3Vh+D429xxMnTiQ3N5fJkyeHZokDO11nvV597B9++GHozvvG1F/Q2bhx4x5GHFT/+dq8eXOD5Hpubu5ufZYhmKgfPXo0t912G48//jjPPvssgwcPpkOHDnsVl4iIiIiIyN7IycnZ4TltcnIyPp+PgoKCsOS4MYa8vLywG5P79etHv3798Pv9/PTTTzz11FNcf/31pKenc/bZZ5OSkkJycjLjxo1rdF/bz2beVxdddBEXXXQRVVVVTJkyhbvvvpsRI0awfPnynZ4vHgiLFi1i/vz5vPrqq4waNSrUXr+W+95KTk5m1qxZGGPCzjvz8/Px+XwH/Pz+rLPO4sEHH2TRokVh7REREUyaNImhQ4cyZMgQxo0bF7o+lJiYiN1u5/zzz9/hTeHZ2dmNtu/L2Hrbn8//Vm5uLjabrdHqhftLcnIy119/PZMnT2bRokW7nRhv7LqC2+2mrKysQftvk8ypqalMnTqVQCCwV8nx+utvdXV1oZsCGtvPzmLdH9feRERk9ykxLiKyh/x+P6+99hpt27blpZdeavD8l19+yeOPP84333zDiBEjSExMZOTIkbz++uv06dOHvLy8BiWaRowYwQMPPEBycvIuT1R2xLIsHA4Hdrs91FZTU8Mbb7wR1u+4444D4L333qNnz56h9g8//BCfz9cgrq+//pq2bdsesJOfwYMH88knn5Cbmxv2Zf/1118nKiqK3r17NxiTkJDAGWecwaZNm7j++utZu3YtnTp1anT7e3KH997E8nuqP4Ha/mQL4H//+98uxw4dOhSHw8GqVat2Wmasffv2tG3blldeeYUbb7yxwb7q7egu8Pqy6G+++WbYRaA5c+awdOlSbr/99l3GWu/SSy/lnnvu4bzzzmPZsmU8/PDDuz1WRERERETkQBs8eDCPPPIIb775JjfccEOo/aOPPqKqqorBgwc3GGO32zn66KPp2LEjb731Fj///DNnn302I0aM4N1338Xv93P00Uf/LvFHR0czbNgwPB4PI0eOZPHixWRlZe3Xami7sifnuXsS1+DBg3n//ff59NNPOfXUU0Ptr7/+euj5/WHz5s07rPi2YcOGRpOaPXr04IcffmDIkCEMGDCA8ePHk5aWRlRUFAMHDuSXX36hW7duO6we0Jg9Gbuj49ihQweaN2/O22+/zf/93/+F3puqqio++ugj+vTps18mJXi9XsrLyxudpV9fOr/+uO3tZ7F169Z88MEHYQnroqIipk+fTlxcXKjfsGHDeOedd3j11Vd3Wk59R9eWWrduDcCCBQvCroF88cUXux3r73HtTUREtlFiXERkD33zzTfk5uby8MMPM2DAgAbPd+nShaeffpqXX36ZESNGAMFy6u+99x7XXHMNLVq0YMiQIWFjrr/+ej766COOO+44brjhBrp160YgEGD9+vV899133HTTTbs8MR4+fDj//ve/Offcc7n88sspKirisccea3By2blzZ8455xwef/xx7HY7gwYNYvHixTz++OPEx8eH3SF77733Mn78ePr27ct1111Hhw4dqK2tZe3atXz99dc8//zze11yu97dd98dWk/prrvuIikpibfeeouvvvqKRx55hPj4eABOPvlkunTpwhFHHEFqairr1q3jiSeeICsri3bt2u1w+127duXjjz/mueeeo1evXthsth3e7b+7sTSVvn37kpiYyJVXXsndd9+N0+nkrbfeYv78+bsc27p1a+69915uv/12Vq9ezYknnkhiYiJbtmxh9uzZREdHM2bMGACeeeYZTj75ZHr37s0NN9xAq1atWL9+Pd9++y1vvfUWEDyuAE8++SSjRo3C6XTSoUMHOnTowOWXX85TTz2FzWZj2LBhrF27ljvvvJOWLVuGXSzalYSEBC644AKee+45srKyOPnkk/fiqImIiIiIiBwYxx9/PEOHDuWWW26hvLycY445hgULFnD33XfTo0cPzj//fACef/55Jk6cyPDhw2nVqhW1tbWhinH11wfOPvts3nrrLU466ST+/ve/c9RRR+F0Otm4cSOTJk3iL3/5S1iCd0fmzp3b6Llrp06diIuL47LLLiMyMpJjjjmGZs2akZeXx4MPPkh8fHwosdelSxcAXnjhBWJjY0PLojWWyNxXHTt2pG3btvzzn//EGENSUhJffPEF48ePb9B3R+ehjc2mv+CCC3jmmWcYNWoUa9eupWvXrkydOpUHHniAk046qcF1mb11//33M23aNP76179y+OGHExkZyZo1a3j66acpKiri0UcfbXRcTk4OP/74I0OGDOG4445jwoQJtGjRgieffJJjjz2Wfv36cdVVV9G6dWsqKipYuXIlX3zxRWhd+8bs7ti2bdsSGRnJW2+9RU5ODjExMWRmZpKZmckjjzzCeeedx4gRI7jiiiuoq6vj0UcfpbS0lIceemi/HLOysjJat27NmWeeyZAhQ2jZsiWVlZVMnjyZJ598kpycHE477TQgWCkhKyuLzz77jMGDB5OUlERKSkooIb0j559/Pv/73//429/+xmWXXUZRURGPPPJIWFIc4JxzzmHs2LFceeWVLFu2jIEDBxIIBJg1axY5OTmcffbZQPCzN3nyZL744guaNWtGbGwsHTp04KSTTiIpKYlLLrmEe++9F4fDwauvvsqGDRt2+3j8HtfeRERkO0ZERPbIyJEjjcvlMvn5+Tvsc/bZZxuHw2Hy8vKMMcb4/X7TsmVLA5jbb7+90TGVlZXmjjvuMB06dDAul8vEx8ebrl27mhtuuCG0HWOMAczo0aMb3cYrr7xiOnToYCIiIkybNm3Mgw8+aF5++WUDmDVr1oT61dbWmhtvvNGkpaUZt9ttevfubWbMmGHi4+PNDTfcELbNgoICc91115ns7GzjdDpNUlKS6dWrl7n99ttNZWXlTo9V//79TefOnXfaxxhjFi5caE4++WQTHx9vXC6X6d69uxk7dmxYn8cff9z07dvXpKSkGJfLZVq1amUuueQSs3bt2lCfsWPHNnitxcXF5owzzjAJCQnGsiyz/T99gLn77rv3OJZJkyYZwHzwwQdh7WvWrDFAg/47M2rUKBMdHR3WtrPjNn36dNOnTx8TFRVlUlNTzaWXXmp+/vnnBvu9++67TWP/zH/66adm4MCBJi4uzkRERJisrCxzxhlnmAkTJoT1mzFjhhk2bJiJj483ERERpm3btg0+G7feeqvJzMw0NpvNAGbSpEnGmODn/eGHHzbt27c3TqfTpKSkmL/97W9mw4YNu/06602ePNkA5qGHHtppPxERERERkf2p/vxyzpw5O+1XU1NjbrnlFpOVlWWcTqdp1qyZueqqq0xJSUmoz4wZM8ypp55qsrKyTEREhElOTjb9+/c3n3/+edi2vF6veeyxx0z37t2N2+02MTExpmPHjuaKK64wK1as2Gkc9eeAO/oZP368McaY1157zQwcONCkp6cbl8tlMjMzzVlnnWUWLFgQtr0nnnjCZGdnG7vdHna+OWrUKJOVlRXWt7HrFPXnx48++mhYe2Pn00uWLDHHH3+8iY2NNYmJiebMM88069evb/ScfUfnof379zf9+/cP61tUVGSuvPJK06xZM+NwOExWVpa59dZbTW1t7S7jN8aYrKwsM2rUqAbt25s5c6YZPXq06d69u0lKSjJ2u92kpqaaE0880Xz99ddhfRs7/9+4caPp2LGjad26tVm1alXo2F188cWmefPmxul0mtTUVNO3b19z3333hcbt6PrD7ow1xph33nnHdOzY0TidzgbH+dNPPzVHH320cbvdJjo62gwePNhMmzYtbHz9562goCCsvbHrMr9VV1dnHnvsMTNs2DDTqlUrExERYdxut8nJyTE333yzKSoqCus/YcIE06NHDxMREWGA0HuyoxjqvfbaayYnJ8e43W7TqVMn89577zX6+a2pqTF33XWXadeunXG5XCY5OdkMGjTITJ8+PdRn3rx55phjjjFRUVEGCPuszZ492/Tt29dER0eb5s2bm7vvvtu89NJLDY5DVlaWGT58eKOx7su1NxER2TOWMcYc4Ny7iIj8AUyfPp1jjjmGt956i3PPPbepw5F9dMMNN/DGG2/scF2rP4qbbrqJ5557jg0bNhyQ2QkiIiIiIiIiIiIi8uegUuoiIn9C48ePZ8aMGfTq1YvIyEjmz5/PQw89RLt27ULlquSPKT8/nxkzZvDxxx/Tp0+fpg5nr82cOZPly5fz7LPPcsUVVygpLiIiIiIiIiIiIiL7RIlxEZE/obi4OL777jueeOIJKioqSElJYdiwYTz44IO43e6mDk/2wddff80111xD7969efLJJ5s6nL3Wp08foqKiGDFiBPfdd19ThyMiIiIiIiIiIiIif3AqpS4iIiIiIiIiIiIiIiIiIoc0W1MHICIiIiIiIiIiIiIiIiIiciApMS4iIiIiIiIiIiIiIiIiIoc0JcZFREREREREREREREREROSQ5mjqAA4GgUCA3NxcYmNjsSyrqcMREREREZH9yBhDRUUFmZmZ2Gx/vHuDa2tr8Xg8TR1GiMvlwu12N3UYIiIiIiIiIiJ7RIlxIDc3l5YtWzZ1GCIiIiIicgBt2LCBFi1aNHUYe6S2tpbsrBjy8v1NHUpIRkYGa9asUXJcRERERERERP5QlBgHYmNjgeCFsri4uCaORkRERERE9qfy8nJatmwZ+t7/R+LxeMjL97NubmviYpt+tnt5RYCsXmvxeDxKjIuIiIiIiIjIH4oS4xAqnx4XF6fEuIiIiIjIIeqPvGxSXKyNuFh7U4chIiIiIiIiIvKHpcS4iIiIiIjIQS6AIUCgqcMggGnqEERERERERERE9krT1+ITERERERERERERERERERE5gJQYFxERERERERERERERERGRQ5pKqYuIiIiIiBzk/CaA/yCoYu43TV/OXURERERERERkb2jGuIiIiIiIiIiIiIiIiIiIHNKUGBcRERERERERERERERERkUOaSqmLiIiIiIgc5AIYAjR9LfWDIQYRERERERERkb2hGeMiIiIiIiIiIiIiIiIiInJI04xxERERERGRg1yAAIGmDgIOkihERERERERERPacZoyLiIiIiIiIiIiIiIiIiMghTYlxERERERERERERERERERE5pKmUuoiIiIiIyEHObwx+Y5o6jIMiBhERERERERGRvaEZ4yIiIiIiIiIiIiIiIiIickhTYlxERERERERERERERERERA5pKqUuIiIiIiJykAtgCND0ZcwPhhhERERERERERPaGZoyLiIiIiIiIiIiIiIiIiMghTYlxERERERERERERERERERE5pKmUuoiIiIiIyEEugMF/EJQxVyl1EREREREREfmj0oxxERERERERERERERERERE5pGnGuIiIiIiIyEEugDkoZmsfDDGIiIiIiIiIiOwNzRgXEREREREREREREREREZFDmhLjIiIiIiIiIiIiIiIiIiJySFMpdRERERERkYOc3xj8punLmB8MMYiIiIiIiIiI7A3NGBcRERERERERERERERERkUOaEuMiIiIiIiIiIiIiIiIiInJIUyl1ERERERGRg1xg609TOxhiEBERERERERHZG5oxLiIiIiIiIiIiIiIiIiIihzQlxkVERERERERERERERERE5JCmUuoiIiIiIge5KZtXsaK0gMcWTsJnDE/0GcnwVp2aOiz5Hfkx+DFNHcZBEYOIiIiIiIiIyN5QYlxERERE5CD21oq53PXzuLC2R+dPVGJcRERERERERERkDygxLiIiIiJykKrz+7j3l+8atJ/YsmMTRCNNyW+CP03tYIhBRERERERERGRvKDEuIiIiInKQWl1ehM8EQo8t4P4jTuKvbXs0XVAiIiIiIiIiIiJ/QLamDkBERERERBrXPj6VKJsz9Lh5VLyS4iIiIiIiIiIiIntBiXERERERkYOU3WajW3Kz0OM2cclNGI00pcBB9CMiIiIiIiIi8kekxLiIiIiIyEGsWVRc6PcpeasZt+HXJoxGRERERERERETkj0mJcRERERGRg9jfu/bHaW372v704h+bMBoREREREREREZE/JiXGRUREREQOYi2jE7j98CGhxy67owmjkaYSwMJ/EPwEsJr6UIg0KWMMtT4/VV4fFR4fVV4ftT4/xpimDk1ERERERER2QVfVREREREQOUktLtvDWyp8JECAzMo5qv5cHjjypqcMSEfnTqPMFKKiuo7TOS3GNl9JaL75GkuAOyyLB7SQp0klChJPUqAgiHJqLICIiIiIicjBRYlxERERE5CA0YdNyrpj6QejxCc3b4wn4ibA7mzAqEZFDnzGG4lovq0uq2FhRiwEsYGdzwn3GUFjjoajGE+rfItZN28RoEt1OLEvVFkRERERERJqaEuMiIiIiIgehTVVlod8jbA6+27QcgOZRs7j3iGFNFZY0kYAJ/jS1gyEGkQMpt6KWJYUVlHt8Ycnw3f3ob99/Y0UtGypqiXM56JQaS2aMe7/HKyIiIiIiIrtPiXERERERkYPQOW174jMBkiIicdnsXDfjUwCaRcU1bWAiIoegOn+A+VvK2FhRG2rb1/tA6seXe3zM3FRCi1g33dPjibCrxLqIiIiIiEhT0NmYiIiIiMhB6LUVc3hjxU/YLTvJ7phQe5/01k0XlDQZP9ZB8yNyqMmtqGX86nw2bZcUPxA2bd1P7gHej4iIiIiIiDROM8ZFRERERA5CzyyZSoW3jv8unsLQFh157pjTyYyKp0tSs6YOTUTkkGCMYVlxFUsKK36f/QGegGFmbgmdU2JpnxSttcdFRERERER+R0qMi4iIiIgcIGPmfsunaxczrGUHJm9ehcfv54GjTuKEFh12OfaqnL68uXIum6vLeX7pdJpHxTPl5Gt+h6hFRA59xhgWF1awvLiqSfa/uLACbyBA55RYJcdFRERERER+JyqlLiIiIiKyHxTWVHLsJ09z5EdPsLB4MwBvr/yFcm8t762ez5aaSko8NTyzeNpube/w5OYcm56Nwwp+Zd9UXUZxXfUBi18Obk1dPl2l1OVQs6y4qsmS4vWWHwQxiIiIiIiI/JloxriIiIiIyH5wwlcvUOoNrhs78ruxdE9qxhU5ffhh8yrWlBdR5fcCsKgkj0XFm3dZEv3GmZ+RV1MRSoxHWHYSXZEH9kWIiPwJ5FbU/m7l03dlcWEFsS4HmbHupg5FRERERETkkKcZ4yIiIiIieylgDO+u/IUTvvwfpZ5aLAvqK+LOL97MTwUb+GzoxXw97FJs2820LfPU7HS7y0rzSXFHA4RGeYxf5XZFRPZRnT/Az3mlTR1GmJ/zSqnzB5o6DBERERERkUOeEuMiIiIiInvpmUXTuG32N6wsL6KxCtNFddXcNWccy8sKyUlIC7X/VLBxh9v0+P2c+f1rLCrJ4+RWnemcmBF6rsbn3a/xyx9HwFgHzY/IH9n8LWV4A6apwwjjDRgWbClr6jBEREREREQOeUqMi4iIiPwJ+P9kM9Hq/D4WF+fhDxyY111QU8nSknyWlGzZab+VZYW8ufJnLvvxAxaXbuv77JLpGNN4YsZmWUQ6nACkuqNx2OwAGGBBUe7+eQEiIn9CuRW1bKyo5eBKiwf/ft9QUUtuZW1ThyIiIiIiInJI0xrjIiIiIoe41z6exYvvTOXUoYdz06WDmzqcA+bX0nw+W7uYU7O7cM9P3zIzfz1DMtvxfL/Tue+XCcwryqVPehb9MtrQOz1rj7f/7OJpPLHgR4wxBDDhiZXtJtHGOiNwYFHirQUDVv2tqCbYzwJOapmzw7LoDpuNz0+4hKWlWzgmPZv/LPyBnwo3ADB6+kf8dOqNexy7iMifnTHmoFlXfEeWFFTQLDpCy2aIiIiIiIgcIJoxLiIiInKImzh9GQaYOGNZU4eyX/1ams/YZbMprQuu133ttE/439IZnP7dq8wrDM6snpC7gueXzuTV5T8xryiX55bM4PxJb1NYW8W0vDVcPPk9xm34dYf7KKip5N654/ly3RKeWjgVnwng/21SHMLWFq/w1lHurQPAXgj4AR+krHUBwfx42/jknb629MhYBjQ7DKfNTr+MNjSLjAXAZbNT5/ft0XGSQ4Mf66D52V0PPvggRx55JLGxsaSlpTFy5EiWLQv/e8gYwz333ENmZiaRkZEMGDCAxYsXh/Wpq6vj2muvJSUlhejoaE455RQ2bgxfjqCkpITzzz+f+Ph44uPjOf/88yktLd3r4y2HnuJaL+Weg/vvz3KPj5JaLZkhIiIiIiJyoCgxLiIiInKIu3ZUf47u3pqcNuncdP9H5BWUN3VI+yS3qpxTxr3MyeNe5r5fJnD3T+PwBwI4bcGvtlU+L7WBbckPb8DPcc3aEL21PHmkw0WE3cH9v3zP5M2ruHPOuB3u68mFP/Lqsjn8fdqnDG7eLtTeIT6V7knNQo9/WxXdvzV17ksFY4GxwbD+XTmheXsyo+JYWVZIfk1lWIw7Kq1++dT32VwTnOW4pbaSsctn785hEmlyP/zwA6NHj2bmzJmMHz8en8/HCSecQFVVVajPI488wr///W+efvpp5syZQ0ZGBscffzwVFdtm9l5//fV88sknvPvuu0ydOpXKykpGjBiB3+8P9Tn33HOZN28e48aNY9y4ccybN4/zzz//d329cnBbXVK1B7d1NA0LWFVStct+IiIiIiIisndUSl1ERETkEHdE1yziYiK56OY3APh8wgIuP+fY323/xtRhWRH7bXufrF0Ytl733MKNjNvwK7+WFgAQ5XDSIjqB67v0I7e6nHMP64Hb4cQYw9zCjbSITiDWGcFJLTuyrDQfl2Xnkknv8cSxI4l1RmyN2fD4gh/4ct0SABIjoriyc18youJYUpJHSW0NC0o2B7MYhlCZ9DBewF5/EAAn3NHteI778hly1y8h2R3NnT2PZ8rmVVw+9QMOi0vmoyEXEWH/zVf03+TLUyKi98NRFDnwxo0Lv+lk7NixpKWlMXfuXI477jiMMTzxxBPcfvvtnHbaaQC89tprpKen8/bbb3PFFVdQVlbGyy+/zBtvvMGQIUMAePPNN2nZsiUTJkxg6NChLF26lHHjxjFz5kyOPvpoAF588UX69OnDsmXL6NChw+/7wuWgU+cL7NXa4nedfzqL58xgwMizuPahJ8jfuIGrhgQ/Y2Ne+5AuR/fd41hO75gJwOgH/sOg0/4a9pwBNlbU0s0XIMKheQwiIiIiIiL7m860RERERP4EsjIT6dg2nZjoCPr2arNftlnj8+AN+Hfap6jwEjbnZpO3+UiM8WOMn9ra7/H51u31foc0b4fD2vY1dnNNBQ/8/H3o8b+OOJE3Bp7Dk4t+5L1V80JlzS3L4ojUlmREBcuSn5zVmSibk821FUzKW8UlT7/Jjf/6kJKyKi6b8gHPLp4eGltcV81fxr3CK8tmMzN/PcvKC4LrhVuEJcTrJ31bVcFZ4iE2eGPVXJ5dMo14lxuAninNAfgxbzXegJ+lpfnk1WybJesN+Bk97SNq/MGyupF2B+8PuoDTs7vt9bGTPy4/toPmZ2+VlZUBkJSUBMCaNWvIy8vjhBNOCPWJiIigf//+TJ8+HYC5c+fi9XrD+mRmZtKlS5dQnxkzZhAfHx9KigP07t2b+Pj4UB/5c7rwwguxLIsBAwfscVIcoMVh7WnXvScZrbL2aNzEj9/j9I6ZoST49tp170m77j2JT2p8SQ0DFNTU7UW0IiIiIiIisiuaMS4iIiJyAOUVlFNd66FNy5QmjSMiwsnLD/1tj8etrshnasEyhmV2J9UdF2r/uXgNV88eS2JENO8dex1xzsgGY73ezdTWfYMFBAKb2JybRXTMNVRV/heIJCrqXCIjRxLh7rVHMXVISOOpY07lqqkfhdo2125LKG+qKmPGlnUsKwvOIJ+Wt4ZTs7s22M6zi6dTFdi2lut8s4UFcfls/K6Sn7y5Dfpvn1SxbMGG7dtMIPhnTJmTilhvwxnkwLur5wXHA71SWuILBFhSkofLZufEFh1pFZ2ALxDAZlmsKCtg3Mbg+ufpkbH8q9eJ9EptudNjI/J7KS8PX5IhIiKCiIgdV4YwxnDjjTdy7LHH0qVLFwDy8vIASE9PD+ubnp7OunXrQn1cLheJiYkN+tSPz8vLIy0trcE+09LSQn3kz80XMKECH3vi8rsf3O+xPPTelzt93gJKa720iG3476qIiIiIiIjsG80YFxEREdlLBcWV1NZ5d/h87pYyzv77K5x/42tMn7t6t7fr9weYPX8tBcWVYe1V1XVMmrmcWfPW4vPtfKb2/jJ6zlieXDaOexZ+FNY+r2QdXuMnv7acDVVFjY4tK7vlN7nhAJWVz2z9vYbq6pcpKjqZLVsuoqR4NFu2HIun6l38FY9ifBt3GleKO7rBut4QnMHdISGVAZlt6d+sLf2btWFQ88OCezeGz9cu5p0p0xnSYTQfrJ6/rQw64M0AT5rhZ19uMDPxm8R22+pE2q2K57DJMTiNLTRj3LIgzhGBvRSiVlqMiu/J4BbtwsbarfCNxbncuOx2Xlk2i5kF6/EE/HyxfjHvrZ5H948f5fivnyMjKo4hme1pE5vM2OPOZnDz9js9JnJoM8YicBD8GBP8LLds2ZL4+PjQz4MP7jyBeM0117BgwQLeeeedBs9Zv/n/wxjToK3h8Qjv01j/3dmOHLpat27Na6+9BsBP06dy2tYZ3ItmTae2upqHRl/EVYOP5twebflr19aMHnoM7/z3EbweT2gbd51/Oqd3zOSpf16/2/t96p/X88xtN4Qe188cf++px8IeT/z4PSB8dvnCmVO5ceQQerVMo1u3bvzwww/74UiIiIiIiIhIPc0YFxEREdkLE2cs485/f0lyYjTvPHkx0ZGuBn3KKmvweoMJ7Pzi4Ixmr9fPQ//7jqLiSm4ffSKpybENxr38/nRe+3gWCXGRfPL85bicDowxXHrrW6zPLQHglCFdueWKExqM3RGv109RaRUZqdtmfZd7a/ipaDVHJbclxuludFxiRDT5deUku2LC2k9veRS5NSVkuBOItLtYU5lPdkz4jE13xGnU1Y3HCqs17iNgObHhCzX5fd9Ss/WhVXEPBh81Ve9Q6s8DkkhNm4jTGb7tbkmZDG7Wlol5q4LjtttFwBjiXG7GDghfu/WReZN4YenM4OvqG42tyk8g2r4tAb51OuGwlh1ZWJLHlpoK6upLxRtY5SohdZUTZ4WFzxuArW95lN1J7FSLmI0uEuKiaHtqGmsryrmuaz+aR8aT6I5gwqYVfLBmAae17solHY8m1R3NB6vn88iCidsODXDX3HH4TYC1lSVsrCrlf/3ObPR9EWlqGzZsIC5u298nO5stfu211/L5558zZcoUWrRoEWrPyMgAgjO+mzVrFmrPz88PzSLPyMjA4/FQUlISNms8Pz+fvn37hvps2bKlwX4LCgoazEaXP48ePXpQVVVFYWEhkdExtDgseHNRVEwMnroa5nz/LQkpqWS2bkN5STF569bw4bNP4KmtZdTNd+31fjNaZZHeMostG4JVD9p17wlAckaznQ0D4IErLyCteUuwLBYuXMjw4cNZvnw5mZkNS7KLiIiIiIjIntOMcREREZG9sHxNPgBFJVWUllc32ienbQb33jCCGy4exIiBwdLBi1dsZtwPS5izcD3jpixpdFxFVXBt0ZpaL4FAcDrz7AXrQklxgMKSqt2O1RjD5be/zelXv8hbn80OtV/302v845e3ueWXhjM4671w1KU8f9Ql3Nn11LD2eFcUd3Q5lT4p7Thr6n8588cnWVCyPqxPdMxJBAA/Bj+GAIaABZjGZtm7AQu/CWbIfYGirZO2iynMP5xAIHz2vMNm48UBfyU1IooLs2ZwZ8evaRFZy41dj+OEFh0AqPF5+c/CH3hjxU8YY/ho9YLQ+JLjE0iaUI7l2Vr/vH72uQXjN61g8ilX887g88NDdEDl4X4Kjvdi31pF2vJCzDdgNga3c8HpR/PYmh/4av1Snlr8I//86UvSo+K4o+fxzD31eh7tfTIdE9JIdkcT5XAC4LRsHJceXPfdv7Uee4zDRZfEXSdRRJpKXFxc2E9jiXFjDNdccw0ff/wxEydOJDs7O+z57OxsMjIyGD9+fKjN4/Hwww8/hJLevXr1wul0hvXZvHkzixYtCvXp06cPZWVlzJ697e+3WbNmUVZWFuojfz6ffPIJw4cPB6BNp6489N6XPPTel7Tp3I3I6Fie+HIyL0+dz2OfjOeFyXM57pTTAZj29Wf7tN8zr76BM666PvS4fr9Dzjxvl2Mv+ucYnvzqBx7+4BscDgdVVVX897//3ad4REREREREZBvNGBcRERHZC+eefAQ+n5/slik0T0/YYb/BfTuEPW6XnUaHNukUlVRyTK+2jY656rx+tGmZTKd2zXBHBJOnsVHbkk5D+3VkQO/2rN1YROsWyazeUMj1936Iy2XnmTF/JT1l2yxOb8DPM8u+Y2n6WmzrI/l11bZZlXX+YIK6NrDjcvAxTjdHJrfZ4fMlnirM1qxyiSc8WW9ZLtJTp5CXf1xwMvbWmdkGiLVcOCyL8oAHPwaoJdJy4LCCM76rjTc0kdsANdUTiY45Jex1vfzrLNJceZzdci4AubVx1Hq7hUonv7d6Hk8vngZAl8RmHN+iPe+umrd1o4bCvyRu28F2O/MYP7U+Lz8VrCfS7sBm2eid2pJfinMpyagBIGK9RcK3dhzlVmhG/JHdszh5SFf++92MsOMwvyiXMye8Rrwrkq9PvJRkdzQAfzusF61jEmkeHU9qZCz/XTSFD9fMp9xbR5XPQ5mnhsSIqB0ee/lz8WPhb2zh+iaIY3eNHj2at99+m88++4zY2NjQet/x8fFERkZiWRbXX389DzzwAO3ataNdu3Y88MADREVFce6554b6XnLJJdx0000kJyeTlJTE//3f/9G1a1eGDBkCQE5ODieeeCKXXXYZ//vf/wC4/PLLGTFiBB06dGg8OPlTs9ntTPn8I2Z8+xUFuRvxebeVTy/Jb1h94Pdy7IiRALRq14HOXbowf948Fi5c2GTxiIiIiIiIHGqUGBcREREBqmo8fPrdPDq0SeeIrlm77B8XG8k1FwzY4/1ER7p45eG/7bRPVKSLU4ceHtbWqV0z3nh8FAFjWLuxiFsf/Ry73cY7T17E1J9WUVQaTErf9/Q3PHXPthLi0wuW88baqdAJejfL5qrBx4Wee/KIC5iav4z+6Z32+HXUOya1Pfd2O4OAMRyX1rHB899sKWP6ppO4L2syBtjir8ECIm3Br6Gxrp74Ik6hsmIMtq0Jt+0rm9u3PqouvzosMf7N+l95dMFkImyRrK5MJjOylKHpS4l1XMfq3DEkx99DdnQsdiDSGUFmdBz3HzWM5tFxPL5gSjAZHjBgt2DrpHHswZ1G2Bwc+/kzFNdtqwQwp3AjFb7gTH6nZeP4lMPof1Ybfl2Vz68rN5OWEsvt155EpNvFvb2Gcv8vE+ia1IyRrbuyorwAbyBAYW0V6ypLQonxUk8Nd84dR7mnlncGnc/tPY4nyuHk6SXTMMClU97jo+Mv2uv3RqSpPffccwAMGDAgrH3s2LFceOGFANx8883U1NRw9dVXU1JSwtFHH813331HbOy2ZSb+85//4HA4OOuss6ipqWHw4MG8+uqr2O32UJ+33nqL6667jhNOCC4xccopp/D0008f2Bcof1ifvPg0H7/wFACpmS1ISE2jKG8zxVs2EwgEdjFaRERERERE/qiUGBcREREBxn4wnXe+mIvNZvHFi1eSEHfwzdT1JXi5+Zd3cFe7MJbB7w9Q5/ExtF8OYz+YgcfrJ+03a5YfFptOjD0Cnwlww8nHkxkbH3ouzR3Paa2O2qeYLMtiePMeO3z+/fWz6OiswrKC86odlkWdCVAd8OGy3JTU/YzDSiE24VHcrp7UlFxFrXc5DqzQzO8gs+033zoGu6/m4141/HN5X65fcDpnZM7jgtbBMsr+QBF5xddS4U3k7YEX0D5xNNNmL+HmX8cRZRwQDdgs8Jtg9t0GSTPt1Pa1UW281AV81NUFS7oHY7ZR4/Ngtobgw/Cfi07HZjU+c3Zg5mG4Ntt4+/M5jFn5BR7Lz4Bz2tAzuyU9kpuH+i0p2cKGqlIApm9ZS4eENP7e+Tgm5q5kSekWSjw1e/huiBxcjDG77GNZFvfccw/33HPPDvu43W6eeuopnnrqqR32SUpK4s0339ybMOUQFhUV/Le8tiZ8yZPl84KVRjJbt+GpcVMJBAI8eNUoirds3i/7jYiMDP1eW12NO2r3vlNM/fJTTjj7fDauWsHiRYsA6Nq1636JSURERERERJQYFxEREQEgdWtCOTbaTYTL2cTRNG7c5gVsqC4C4JqrTqJLcgvatEwB4KNnL2Pxis0c1S18tvvGFeX4x0YTG+0iuXdsg20eaJe0HcArK2tZ7kujmW06dSY4s704UAcEZ2B7aydQUzsOuy2VKCKAAPwm6WwAE6jEssVg6iYRwSY6x8JdncdT4LfTxlkc1t9mQRtHCdUUEOdy88L4SVTnQDU+7GU+YhLq6FiTx8/2VlibAzx3ztk8uHkG8+rywl+ABT4C/KPNAOZWb+T7zSs5LqVNo0nxuYvWM3fhet7/+mdqasPL0+d+VMTLY88OawsYw9GprUiMiGJk6y7cNucrPlyzgGs7HcvI1l0ZlNluzw+4HLL8xobf2Jo6DPy7znWLHDQ6dgxWMlm1aD43nDyIiKgoxrz2AVkdOjF38gRy167mqsFH4/P58NTW7rf9Nm9zWOj3v4/oT2JqOhfechcde+78ZrTXH/0XX735MgWbNuDz+YiIiODoo49m+fLlpKWlER8f/5ubxkRERERERGRPKDEuIiIiApx1Uk+6dWxORkocke7fJzHuDfhw2nb/69iIzB7MKFhBdkwq53frjcO2rYxwUkI0/Y48rMGYFWvyMT6oKPOwcXMJ1bWena6Jvr8NyujMoIzOALy/ZhybSx7lhORfibQboqPOw5hyPL4t+LyziKAEMNis8OSfwWDDorTgNNzxn1FR3Y94R3cKahdSHLBhWVBtnLioC1v92GGDzkm3kFv5M6NOnca3qyNZtLQzKV9WcPYrU4mKqCI7v5B3raOZFpnPfE8elgVWLfRr3oa+Ea14atIUIn1OOvdO57EZP4AfVr6XS3GvSr6fuZxFyzczdc4q/P4AXp9/h8chKtKFMYa3Vs6lyudhaIuOXDTlXQyGm7sNJDEiis/XLcZvAkzJW80HQ0YdgHdDROTP5eKLL2bKlCmM+24861f8CkDAH+D0K66jOG8zcyZ9R3VlJYNOOwuXO5IPn3tiv+y3dYdOnHH19Ux4/y0KczdRmLuJyrKyXY67/YU3ePn+O/H7/KSlpXHiiSeyYMECFixYAIDT6SQtLY3U1FTS0tJCPzExMUqYi4iIiIiI7AbL7E59u0NceXk58fHxlJWVERcX19ThiIiIyF749selPPz8d/Q7si1jrh/R1OHs0iNLvuC9dTO5tO1Armo/5IDtp6rGw6sfziAlKYaPx81jY14pf79wIGcN77lf92MCRWAl7fTC/EsrJ/HcignYLRtfD7yZlIhYKrw1/PXHR+gUuYibWs7GZWuYXDYYrK0p7ze+6Mvnk3vw1AOv4XKWEyCRUvtJxLt70Cb6L6zJa4ctlFeP474Vd9Mu9g26J20EwFP3Ejf/Mp57e35KnKuO2QVZvLW6D39reTizyjdS6anj+aNPp2uzTADyCsqJinQxsXAlN874HICkqQ7+PqQ/z789tdHXmZEai91m46zhPXE5nWzMK+HUE7qzxpRw/uS3ADg2LZufijZQ6/dx3xHDOKdtTz5as4BP1y5kdOdj6Z2263XuZff9kb/v18f+zYJsomObfsZ4VUWAYd3W/CGPpfx5TVlfRGGNp6nDaNTEj9/jmdtuAOCjX3MxxuApKWDF+M92azkCCC430FjCPGo3S7iLiIiIiIj8WWjGuIiIiBwSJk5fRp3Hx/fTlnHH6GE4nfZdD2pCE/OWAPD9lkUHNDEeHeli9Pn9qarx8PTrPwCwcl3+ft2Hv/whTPVLWO7h2BOe3GG/C7J7k+aOIzs6lZSIYFn3Yk8VW+o8dIsOUIcHh7E1KFNubTcP3O32cM4V3+J0lAPgopQjolwYp5tfNwzF43UTHVWLzQYz5+YwtWoNVd5W5MRtZs2SFrwx93tMjsUTi4+nTVwBC0ua0z5uC5N+mcotnc5hxEnha7lmpAYTf0Mc7YhZbKO6VYCyzj5qXcE1yO12i+bpCURGOMlulcKAow7jn48GE+gr1xXyzytP4Nkl07hw7ruc06YHFsGy8ItK8/jmxMvZUlPBESktATg9uxunZ3fb+zdCDmkBLAI0fWI8wJ/+vmr5A0qKdFJU4/lDfHptlkXXw7I588jbKCoqIj8/n/z8fAoKCsjPz6ekpKTBmNraWtavX8/69evD2qOjoxtNmEdERPxeL0dEREREROSgosS4iIiIHDRK6qqIc0Vit/Y8+XP+qUdRVV1Hv6MOw+m0U1xXSYIrqkFZ7oPFbZ1P4eMNP3Fu676/y/6iI1088H+nMH/pRs4++Yj9um3jmbH1z1k77LO56Hoqa97ncGc3WiZ8EWrPik7h7q6nk1f9K1i5VHg2EL/1er1ja0I8gCEA+ALQb+B8lpQnURVwEm3zEu1PxtS8h6n5AHdEJRERUFPrJNLtZfnqaBLW2Vma2ZrH3m2DvcxGtNPQrVsmhe4qfiqK4di05ZzR+mc87e0880Aswwd1aXTWe221F1eRRWWwKjxv58/j9ccuIDoqIpQ8B/D5/LRunsTaTcV07ZDJ/KJcHl84GYBnlk7j4aNG8NqKn7ik/dG0ikmkVUzi3h94ERHZLQkRzj9EUhyCN08luJ04HA7S09NJT08Pe97j8VBQUBBKlNcnzcvLyxtsq6qqijVr1rBmzZqw9ri4uFCSvD5pnpqaitP5+ywlIyIiIiIi0lSUGBcREZGDwttrpvH4r1/TLaElr/S+gjqPD4fdhsOxezO/u7TP5OkxfwW2lew+Krktzx118YEMm2pfHR+un03HuEyOSmm72+OOS8/huPScAxhZQ/2OPKzRdcj3lT3+XwSq3sCK/EuoLRCoYlVuR4zxg4H6+xPqvAuoqp1ATOSwUN9TWvQEejJl1pE8/OzbPPTPV2kV5wslqO1YQACHDTJsXjLjS4h2OPnp11Z8uSib686czsqNKcS0GEph6Tr8nhuJdrmZNHUqkYDlDxDdOoqrjz6WkpIqzjvlKG6d+xXLKwpx27wAOGx+bHYfNbVeoiJdDV7jTwvX4Si2ghkLC9yxTtpmpTbo53DYee2xC6ioqiMxPor7f5mw7TnLxqmtu3F6dvd9Puby5+PHwk/TryF8MMQgsqdSoyJCFTsONoNO+yuDTvtr6LEFpEbueEa3y+WiefPmNG/ePKy9trY2bGZ5/U91dXWDbZSXl1NeXs7KlSvD2hMTE8NmlqemppKSkoLdfnBX4REREREREdldSoyLiIjIQeGXkrUALC7bxM9L13PTfZ+QEBvJ649dQFxs5B5t6+fi4Myo+SXr9neYDby0chKvrfkRGxbfDbqVxIjoA77PvbE+t5i1G4vo26stDvvez6JfX1XMU0sn0jmhGaPa9sWyLCxnN+wJj4b121RwGeDHsuC3eTSno0Oj246LcVOQ5uDi7//GhFNfDXvOjg0bhkicWA4Ly4IjO27GGBuf/ZjDD8uac9xZ04h2pzO4XS9c9liGDSjhi0WLKDnGRwnlPOebRdesZhz/7f9C5don5nWk3BtJUX4s1SWRvPfFHP52au+wUvzFpVU8+Px32AN2XFt8eNIgy+x4bWWHw05ifHBd1xT3tvVd82sqeXbJNK7udEyDcvEiInLgRDhstIh1s7Gi9qBMjtezgBaxbiIce/7vtNvtplWrVrRq1SqsvaqqqkE59vz8fOrq6hpso6SkhJKSEpYtWxZqs9lsJCcnh5VjT01NJSkpCZvt4KzKIyIiIiIisiNKjIuIiMhB4ZoOQ4lxuOmb2p4lM/Pwev0UFFeyIa+UznuYGL8pZzhvrZ3GgPROex1PubeGf/7yLgbDQ4efTbwrqtF+qe5ggjTG6SbCfnB+taqqruOim9+kts7LJWf14eIz96x8uwkUY2q+xIroy+iZ41hdWcjXmxbx0bpf+GLwNaF+dd6l5Jf8E7frCGq903ewNScuR6tGn/nn5nfwDawBwGMCuLCFlTW3sIKJ+K1tlgVH5WzCsjYxrO9S7Db4pc5DlW8jLnsOI4Z0pTbRyycRc/H5bayuKGJNRREGaBObhNPY8QCzCttgqwbrRA+PL/uRNy+YzXdvXY3NcmFZFpXVdfh8AQwGTxpgg0l5q3fr2LWMStj2wIL/LPqBnIQ0BjdvjzGGyZtXkhgRxeHJzXe4DRER2XdtEqPZUFHb1GHslAHaJu7fG+yio6PJzs4mOzt7236MoaKiokHCvKCgAK/XGzY+EAiESrcvWbIk1G6328PKsNcnzePj4xtdkkRERERERORgcHBevRUREZE/pFq/lytmvcT66iJuTB9B+WoPwwd2ISGu8aTy9rKiU7i72+kAlA+pIXdLGanJseS0zdjjONrGpnNX19P2eNz2phUsZ1ZRsMTo1IJlDG/eo9F+Z2f1oVtCK5pFJhDl2HHp06ZkTPDCNoDPF9jj8f6yO6DuO6hKZkPl8FD76spCPlg7lyiHixMyMigsvZdazxxqPXOoKnMQFRdMXm/P7Xqaxz/5jOGHH0lOm1bUVNYyZ8IiuvRuR75n2/qoxb4AGc7wmWgGgzEmdME9YAwGCzvg2jrB2+GP5G9Xf0jFRhuBmAjqBlfiSvLjNH5MlZ3oUjeORAfXdD6WDnFpnPTNS2CDgAtwQnXbAB3jFvH12qOItx/DJ28Mok3LlGAxd5sJzX63md276P/uml9Cv1uAzbLIiAreTPHZukXcNOtzLOCbEy+nXXzD0uwi9fzGht80/exMvzmY59uK7FiS20mcy0G5x9fUoexQnMtBovvAr/NtWRZxcXHExcVx2GHbllgxxlBaWtogYV5YWIjf7w/bht/vJy8vj7y8vLB2p9PZIFmelpZGTEyMEuYiIiIiItLklBgXERGR/WZ9VSGLyjYC8OC4r7Bmu1m1rpC7rjtpj7YTFxvJLVeecCBC3G1HJ7elfWwzwHB0yo7X5bYsi84JLX6/wPZCTHQELz14HqvWFzKwd/s9Hm/Z4jGAz0TRLDKe9TUloefumf8FAFk9vyHC2gAEE/HR8Q0TD16PnVFvT6W2i5P3v/+Jc0pOYOmHi9nw0iLSOqRg3bZt/dd/rv4LL3f4Esd2ddgDgI/gTHKAdwtacXbqhtDzxsBj649iS9sA7tKtVQY822aXt/w5ippVhsy0GDLax7Apt5i4hTbKuwfAtXUHFmT32ggYSr0zmL2gDbPnr+OKs4/hpXen4iyy8CYbLuvRhweeHccvSzZy++gTOTyn4WegtK6GU7O6MWPLOtIiY3htwDm47U5aRCcE493jd0JERPaWZVl0So1l5qaSXXduIp1SY5s0eWxZFomJiSQmJtKhw7ZlTwKBAMXFxQ0S5kVFRZjf3Czj9XrZtGkTmzZtCmt3u92NJsyjonZ986SIiIiIiMj+osS4iIiI7DeHxabz16zerK0sZFNeDYXUkJIU09Rh7ZWkiBjeOfaaXXf8g2iblUrbrD2bkWwC1WBFYou7B+Mexj0LVrK+Zn3o+XhnJBXeWty2OpzWthlj9df0/X4HdnswQV5e5OK7l9rjbxu8gO5Lt/HU8unQzcJ1VzM2FXvZfo7cutoUagKG2K0zwQMYApiwGehLKpvxlT3AiKRNWBbUBWwsr07EtckV6uOaGoW3spaaVIPj8GgiCuooLqvmxvs+4thebXDn2invGgAbWF4wLvjp1z70a1OCv6InMZEVtGqexNmnHMHfTj2agWf/Gy8B1nbKZ+7iYFL+y+8XNUiMLyrezBnfv4bDsvG3w3rxzcalvPTrLMb0OjHUZ2RWF+JdbhJdUZotLiLyO8iMcdMi1s2mg2yt8fq1xTNj3E0dSqNsNhspKSmkpKTQqdO2ZWp8Ph9FRUUNEuYlJQ1vPqitrWX9+vWsX78+rD06OrrRhHlExMFZhUdERERERP7YlBgXERGR/cZm2bi508kAlOfUsHZTMZ3bNWviqGRPmUAx/uLLwDcfXCfiSHqanypa8UXuRAAyI+M5K6sXG6pL2FS1iX+0/i82tq1JagyMWX4ip7e9lNNaBNczf/aZd/np61l0ubE5v1AADguHPYAt4MSb6sQ0s+GgLriBVXWQ7cJjbKGZaH4r+KcnEMC5NVl+R+tplPgc3LamN20iK/mmsDWOqRE4NtmxlVdjr6zF2yIJ/xYX1Yf5WUERIy/pws/PrgIgJsbN4JE5fJa/BMdqsJdUUNvaTnZ6D/IWtabO4+OF+1uT1SKZWl8dH6y6jEtuXc2nrxxDTFQ7ThnSjXlLNvCX47s2OIbLygrwBvx48fP6yp8A+GD1fFpFJ3J152OA4My8QZnt9vO7J4eqABYBmr4M8cEQg8i+6J4eT35VHZ7AwZMad9osuqXHN3UYe8zhcJCenk56enpYu8fjobCwMJQwr0+al5eXN9hGVVUVa9asYc2aNWHtcXFxDRLmqampOJ0HvtS8iIiIiIgcupQYFxERkUb5TYD/LP2GTTXF3NzxZJptLf+8u+JiI+nWsfmBCU4OqEDV68GkOIBnEgAO27a1je85/GQi7A6emDqRjtF52Ale6A4EguXBxxe2Y0FlC6qWfEaftPY0i0rh6gfP5uoHz2ZLTRmXzxyL03Jwx1EjefaJT/m+SxnghzoDAUPSy5XYN/qZeXtLhv81WJrfAfgxGMvgMT5sWNgtGwkOH0dGbeKhVcfinBmF+xc/UYvXYmFhotzUNfNQ1pNgth6LT9cvIuJIi+SpLsb/sISS0w3V8T4cbcAX6wbL4sPyxfz4/Irgfh02vn/nej5c/S3xjrlExUNO35VM/SSFye/d0GjJ2zqPj+Etc7htzlf4zNY13bfmXwo3V0Ln/fyGiYjIbouw2+iZkcDM3IOnpHrPjAQi7LZdd/yDcLlcZGZmkpmZGdZeW1sbNrO8/veqqqoG2ygvL6e8vJyVK1eGtScmJoYlytPS0khJScFutx/Q1yQiIiIiIocGJcZFRESkUb+W5fLOuukAzJ6wgedHjqJrByW6/wwsV09MlQ1wYcWPAaBHUive6ncJvoCf//46kblF63EELJZXpTF+WQfax27hydIBdE3OpV1sPhdkzyA9spJPV/1MbMS/6JnSmi9W/MQGTzGLtlQBFvev+4LSD5YS0SOFyCgfxkDU21U4NvoBSOlgpzYQwG2zYWGF1hv3mQBuy4nNsnBgY2jien5dmcf5502j2fV1VFfbKdgcyag3TqE2yYaJ3Lp4+FbeGENxDy/2ajDLDLQD93ob1W0DBCLBHwee2ADOChteX4DVGwpoEd2RGZubke4u59cFrTnuqMOwLIvqGg/T5q7i8JwWpCbH8u+Xv+f9yb9QNtyHzwpPilNtMe5/CzklszOHdzq416UXETmUZca66ZQSy5LCiqYOhc4psWTGHpwl1Pc3t9tNq1ataNWqVVh7VVVVg3Ls+fn51NXVNdhGSUkJJSUlLFu2LNRms9lITk5uMLs8KSkJm+3QueFARERERET2nRLjIiIih4CaWi9bisrJykzC4/WTX1RBi4yERmez7q7smFRaupLZUFlEYK2dWfPWKjH+J2GLOA4rbS5YEVjWtvW6D09qicfvY17xBlw2H4n2Krb447DF+3Gm+Lg0cSqR9jpcliHbWUgAqIqqYG3lLcwrqGGZryPzK1vSOqGK2oCDlaaaujGpRK+rJpATLI3q6RmB9W0dkTERxCTnU06ACGM1+CzXP7Isi+gIi9tGTa6PnrhYQ1xsNRPHvM3cKrjh2/MpSQmuVWqrBNcmi5p2waR1wiw7cR9ZWFjUtAxAZHArNc39OJfbwLK46OY3+eSFPiSk/ooxAXpc8Q5L1y7lh1W3Eqi288rHJ5AQk8iTd43ixzmrqOjspXXcJtrEFjI1vx0JrmqaR5Yyt6g1FZ19qBK17I0ANvw0fYIncFCtzCyy9zokReMLBFhe3HC28u+lfVI07ZOim2z/B4vo6Giys7PJzs4OtRljqKioaJAwLygowOv1ho0PBAIUFBRQUFDAkiVLQu12u53U1NQG65fHx8fv03dkERERERH547JM/cKNf2Ll5eXEx8dTVlZGXFxcU4cjIiKyR/yBAOdcP5aNeaVcfW4/vp26lFXrC7nsrL5cdEaffdp2IGB4/u0p5G4p4+8XDSI1KWY/RS1/JLW+zVR7VpAYeQxg46uN8/CXX0ZCdDkrC9I4LDUfCFYrb+w6szFQZyxslg2/gTqcGGNjWlFrvtvSFXu1H2KDAyN+rCPhpUoADjsin2v+N5NEu0WEZQND6EK2AxtOy47BYNEwcQ7gN4ZfvR7KK51cuOBSwBCx3iJyk53yPh4CARsGC2cepM2sY9PIiNBYexGkTYmga+dVjBw+jby8JHp031bOtdLvIsbuAWBhfnO6pm0CnFQXv8H7K95nYM9JWBYsLs2gQ1w+DluACm8Ez8w+lWnn37ZHx3/dxiKmzV3N8cd2JDU5do/GStAf+ft+fewfzO9IVGzTlwqurvBzZvdf/5DHUuS3jDEsL65icRPMHO+cEkuHZH2v2lPGGEpLSxskzAsLC/H7/bu1DafT2WD98rS0NGJiYpQwFxERERE5xGnGuIiIyB+c1+snryC4xvPqjYWs3xxcM3Pl+sJ93rbNZnH13/rv83bkj8sfqGVu7sn4AuXMWHwUX37dlUG2WAb8PZhESLWVh/pWBVxE2Tyh+aQ2golyy4IIDJblBwvcxk85No5JXsuUwvZ4Y52hbUTMqqX+vs0LbltInC04Q9VLAKe1bbasjwDegB9jDDbLhtvmCEuQG2PY5A0mruNivHSNX8vyukysdlDXwsIVaQgE/NTVuvAlALUO8BuwB8e7t9gYdNzPnDriR+x2Q0pSGZu3JNIsPfj/17h1nRjUchl2DOt9CXRlE+ClW04keY5fQzcIZEcXYt9aUj3WWcfNPcLLx+6Om+77iLyCcmb8vJqnxvx1j8fLocFvbPhN088Y9+u+ajmEWJZFh+QYYl0Ofs4rxRswB7QmggU4bRY9MxL+NOXT9zfLskhMTCQxMZEOHTqE2gOBAMXFxQ0S5kVFRfx2PojX62XTpk1s2rQprN3tdjeaMI+KivpdXpuIiIiIiBx4SoyLiIgcBDxeH5+MX0BmWhz9jjhsj8a6I5w8cstIfl68gR79MynoWkhsbgzXHq+EtuwZYwwGHzbLuV2rn4AJrvFZnVZGyQk1TH66jMLru9CyZykz09oyqN9K6gJ20mMqIWDhDNQQ5TA4LQ/R+ELJ8XqWBXEEMFY1MS4PpV7n1v2Dt5OLyIVe7A5Di+wqLAvsW9cSt35Tg9yyLLwYagI+XJYdx3briBqgmcNBhc8LWJzQbDH2QthSF4cjIkCFPwIfNs7Jno3P52DO0J60n1fJ6hbxRObaiVtn57jT5mO3GwIBi3FzerDAncaV0VNw+wdQMusYnsqrxkpy0r72F4rTV+PHRoa/isOSzmZNzX/wepxERWwr95oc0YduzftR5y8iv3oG+dU/0CHxGmJcWTt9XxLjo8grKCcxThfmRUQOhMxYN8lRaczfUsbGitoDtp8WsW66p8fjsjf9TS6HGpvNRkpKCikpKXTq1CnU7vP5KCoqapAwLykpabCN2tpa1q9fz/r168Pao6OjGyTMU1NTcbt1c4OIiIiIyB+NSqnzxy6tKCIif3w+n5//vv4DH477BYC3/3MhrZsn79W2zp/2LEvKN5HkimH84Fv3Z5hyiCiu+ZHyunk0j/0bTntiqD0/N5+V1Rfhsa9h3YIrOaX/JSQmRLNoxgq+fv818tKXMLFTJ7w+O+l3FODKCyZ8c/+VRkSWn6HpS2gft4VImxenLRBKhDvw4sKLMyw5brDwYRm4Z8UZlPiC65jbsPF620v45+DH8Nb5GHnVUk65fAXOrYlxm2VtHbt1VjjBZL4NGy6bHdt2ifMABr8xrPR5MVgEto4MzjDfmoQP2HHbg2VX/SY4w73Wa8dhGQoLWzFhymEMOGY+E6f04Gt3WzzpwW2/khmNh/8x49O25HS4nt6npzCv9FIc9kgGtvqASEc6xvhZUfQhy8ru/82a4tbWyINctmSGtp600/esqrqOX1dtoWvHTFxO3de6N/7I3/frY393XqeDppT62Ycv+UMeS5HdkVtRy5LCCso9vt/8jb3nTCCAZbMR53LQKTWWzBglUg8WHo+HwsLCBgnz8vLyXQ/eKi4urtGEudPp3PVgERERERFpErqyJiIi8jtaU5lPgjOaxIjoUNu/nh3H+Km/AhDhchATFbGj4bt0eGIWS8o3cXjinpdr3pWA8WBhx7KaPjEje8fnL2fhlssBP15/Ee2S7wGgrKiCm/7yTy79YAUWsLl0Eq9/2JFT+3fmwZvGUFduo2JTEonti8lMTCIpI4OS1GUktK/hjOOWEmH3Eueu+83eDMaAz3LgsgIY/PgDBrvlJ8IKJqex4P72H1Lr6U1F9c189dZC7vp4HLVHZuHNLeOT53KIOsVwSrM1WFYwHW7brpx6wBhcliNUPj2Awb71eRMwrPd7t4sm+F+7tTVPbYHd7idgwGvsRNiCCfJIV/DPZs3WEnFUMjcsOpPEZQ48g4PbahEZh3G9QnrzCk64ZDH3nvwVh3W5glkvjqLPCd2IbJPOlpoK7p83nuyYdM5q/TAbK7/CEKCgZirbUiwOwIfPVO7yfYuOiqBX1/3//7T8sQSwEaDpZ5kGDmihaZGmlxnrpllMBCW1XlaVVLGxohbDb29r2rH6fibgp3TdKnpkNaNH63Zau/og43K5yMzMJDMzM6y9trY2LFFe/3tVVVWDbZSXl1NeXs7KlSvD2hMTE8MS5WlpaaSkpGC36zu0iIiIiEhTU2JcRETkd/L1pnncueADYh1uPu1/EwmuYFnk3C1lAKQmxvDiA+eSkhiz1/u4Meckzs3KYVPp9czN/ZCu6S/jsiftc+wVdYuYl3ceDlscvTI/2y/b/KMoLazg3vOexrIs7nprNPHJsU0d0l7bUrsYmxVNwJSTX+AkPXYjca4WrCmfyLHPLGfFghTqfNH8XNmCE/rfx7iyACe8FsDvhR8u68pfzhvJaVefwMxNT7Oseg347WAPYNuaKvAbi0qfkxh7HQ7LhCZKuyw/EMBpBbBt1w7BWeRu10wmb76dAl9nthSlgs0GLRIYNXoiJ2SsC92M8duUgjEGLLCwCJjgOuQRQMDASn9wrXNPAEpMJMU1UbRwlxJtD65zXp/cmJDfgcl5QxnT9SmctmAy39o6o3xlTQom1k/8ifnU2GKo8kVSsayUSeNbMfSycqZ/chgYw7tPjWfhrFXM+3E1w84+lrdW/sTXG5YAMKzlZRzdbBjeQAXryj/ghaVf4zdQFziCSztU0yJm+IF5s0VEZK9ZlkVSpIukSBfdfAEKauoorfVSXOOltNaLr5HCew7LIsHtJCnSSV1pMd98/C5+Tx1xFZ3omdO+CV6F7A23202rVq1o1Sr8hrSqqqoGs8vz8/Opq/vtjYFQUlJCSUkJy5YtC7XZbDaSkpLC1i5PTU0lKSkJm63pb3oSEREREfmzUGJcRP5wauu8/Gfs90yZs5Lm6Yn8+/bTiIuObOqwRHZpY3UxABW+Wiq8NaHE+N3XDmHSTxPo03UQafuYdLUsC8vMo8obnIFeWjOdtJgR+xY4UFb7EwFTg8dfQ7VnBa7Io/d5m78Xr8fH5I9m0bJdMzoe0WaPx/80YRFLZq8CYO73ixl0Vu/9HeJ+FzB+bL+Z2V/p3cyE3P/DwsGqWd1p1eMbVq77ioHpj5BnTcSdGMDEw9j7utD6snKcET7YWrzA7oSS21rQontHLvryPY5puxynA3yWYUtlIln+9izMXc7cuOac22I2lmVCZdOL6tzYnV4SHD52NFnOb6BDZgE5oyezYkUGs77uRqSrjL4D1wbLnmOCK4zXzww3Bp8JEMBGhGVh2/oTCJjgLL2ts9VrAzY2+ROwLBtZUaVEbp0Vbggmz8v9LpwuH1fnvIbTFp7ksCwo9MQyqt102icUAFBW62RTUTKzv27LnK+yAeje9zAGjjyCJT+t4Zhh3bHbbRyb0YZXls+ieVQCrWKC5eqdtlgOS7iYeHdLPlm7kDt7nMDhqV328Z0WEZEDLcJho0VsJC1ig+cbxhjq/AECxuA3YLfAZllE2G3b/p1KjmGS00GVp47ly5dTV1dHRMTeVwSSphcdHU12djbZ2dmhNmMMFRUVDRLmBQUFeL3esPGBQIDCwkIKCwtZsmRJqN1ut5OamtqgHHtCQoKqDIiIiIiIHABNnhjftGkTt9xyC9988w01NTW0b9+el19+mV69egHBE40xY8bwwgsvUFJSwtFHH80zzzxD586dQ9uoq6vj//7v/3jnnXeoqalh8ODBPPvss7Ro0aKpXpaIHEAvvjeNLyYuBqCsIo9TLn+eyW/d0MRRyaGkoLacVZX5HJncJlSWeX84P/tYHDYbWdEptIzetoZ4MbfQqss0vFE/A4/t836SIweS4O6NhZ2kyOP2eXsA6TGnUuVdjtOWSLz7iP2yze0Z42dx/rVUeBbSKfUJ4t299tu2P/jvOF6//1PsDhtvLHqUpPT4PRp/xJAudDyiDZbNotfgzrse0IQq65YzveAx8mp+JTtwDW+/7KX3EW0YdVYf7FYEdsuF39RRVh6DwxUA4Mk7n6ZkhYOuV0ewYVI89iI/S8qakeEuo7bcTlppS2ZEellW4uCqTz+iOKGW2E2V3N+pnC+3NOfFxceSOa6aQHRPBl02nxibh0jLh99AoSea19Yew/DM+fSJX7s1SguDCZWa9RvY7I8PllYH2rTN4+gbV5Fhr8Bvgn3s2yXFjTHk+704gAyHK7SuuDEGu2VR4vdTbgyVfgdbAvFYlkX9xL76UriegI0NvmR82GkWXYVja8IcYHNtLGnuSkq8kWyoSqBFTEnouXi3l/gT86hYGcnST5sD0CwrhfnTV3DH/y6ife8VrC+8nm4J1zLv1JuxW8G4P1m7gNkF6xnd6Vhu73E8f2vXi5K6at5ZNZchmR1Ijdz7KhHy5+E3Fn7T9EmSgyEGkaZkWRZux85LYttsNjp16sScOXPw+Xz8+uuvdO/e/XeKUH4vlmURFxdHXFwchx12WKjdGENpaWmDhHlhYSF+vz9sG36/n7y8PPLy8sLanU5ng/XL09LSiImJUcJcRERERGQfNGlivKSkhGOOOYaBAwfyzTffkJaWxqpVq0hISAj1eeSRR/j3v//Nq6++Svv27bnvvvs4/vjjWbZsGbGxwVl1119/PV988QXvvvsuycnJ3HTTTYwYMYK5c+dqDSeRQ1BFVXi5Oo83wLrcYrIy/zylneXA8fh9nD31KUq91VzSdgBXtz9+v2070uHi4rYDGrTX+NYF//Su3S/7cdoT6Z7x+j5vp8pXR63fS3JEDE57PB1SHtgP0YVvP9oRnD1V68ulqGYCAPlVX+xzYtwYf6j8tjvKhc1hSMqpw7aH33zWVkzkx9J7Ofm1oxjU7OG9uhC5YUUe637dRO8Tu+NwNgygorSKBy58nkDAcPurVxKX1DBJWlFaRUSki+paL/5AAJ97JfOLxpIdezwZgQFgWXhdc1mYfykuA3YSmb/pWxYv68jiZbmcMaIn0VFJ9Et/kVtmvsO6lHhsX0XjKc/j59XpVLWNIvKt7mycupaomloqO8bwSa+eGGMxbvglFCyaRvs4GwsWr6c4Ds7IWE2krZbTM1bxr0lH06pzCVk5eRyfHKxUYFngsCDDXcWdHb4kwubHb4JtjbG2rptsI0BrVyXJ9kosyxBJMClezxjDGg9EOyACe9gscoA6A6t9dgJYFAZiqC++bllQiwsXNQBs9sXh226t5tzKeKwYC7vlp8iKptwbDUBKTCXfLenIX7ouCpvtXlPiIr1FEqPvO4Nn7/yQvA3F/Pj1bP713adYNkPA1NI69XkAyj21/GP25wB8vm4h8a5ICmorQ6XcP1m7kPcHX9j4gRERkT+sLl26MGfOHAAWLVqkxPifiGVZJCYmkpiYSIcOHULtgUCA4uLiBgnzoqKi4PIw2/F6vWzatIlNmzaFtbvd7kYT5lFRUb/LaxMRERER+aNr0sT4ww8/TMuWLRk7dmyorXXr1qHfjTE88cQT3H777Zx22mkAvPbaa6Snp/P2229zxRVXUFZWxssvv8wbb7zBkCFDAHjzzTdp2bIlEyZMYOjQob/raxKRA6uguJKvJi1q0L54+WYlxmW/8JsANX4PAJW+2uCfnmUszh9NpKMlXdL/h81y7dd9dk57hoKqcaTHjNyjcTU+D1O2vEZZ3Zd0TTqfnIQz9ltMJXVVjJj4DGWeGp7rfS790tvtt20D3PnLZ3y8/hcua3cs13cagtvRgmYx51DhWUCz2L82OsYf8FDjLybGmbHD7RpjWJR/FcU1P9Ah+X4yYk9j5JVDMMd+QGXkChZ4/8Nx3LPbca6rnETAeNhYNRWfqcZpRe9k3wF+2HwHBXVL6J9xL2mR3aiuqOXaAfdSW+3h3H+M4ILbRjYY99OERfzyw1IAZn+3gCFn9wWgzlfBlpoZbJiWwP3nvUhcqxQK26biDxiufWgpFdYS8qrn8cFxX1LZO5IBt/oYkB5MAme4O+PNGwS+DdiLq/jl+0Uce3IvFhZ5mLXFgWVVMr51KgErhboODvxeO66W7Wm5pZaVCzaQ+W0VVg04N9Zx70OP8cykO0hIjWNdmwLmrPyIjmmXsLryKXI9hvuO/4zk2BqqfM5Q8rh+nW6ACJt/a6LchFLR/q1TtwMGiv2ReI0dv4FWzkqynBUA+ALBpcbthFdt+LagPadmLKba8pMU3AzGBMunR1hQHYimCjuWFdyPZYL7KQm4MXbwGAd+y4HNGPzGYlxeDm0pICoqOIPLuXV3tX4HFYFICp2d6RP7D/IqpzD+my/ZODsBR8nhjP3xJizLoke/Dnzz9gx8HhsblibTqnMhMe7eVPs8PLP4RyLsjtDs+LqAn/zayrDXE+lwbvcZMtw252vmFW/i4aNG0C0pc2cfTxEROYi1bNmS+Ph4ysrKWLVqFVVVVURH7/h7hBz6bDYbKSkppKSk0KlTp1C7z+ejqKioQcK8pKSkwTZqa2tZv34969evD2uPjo5ukDBPTU3F7XYf8NclIiIiIvJH0qSJ8c8//5yhQ4dy5pln8sMPP9C8eXOuvvpqLrvsMgDWrFlDXl4eJ5xwQmhMREQE/fv3Z/r06VxxxRXMnTsXr9cb1iczM5MuXbowffr0RhPjdXV11NVtm3FaXl5+AF+liOxPDrsNm92G3x8gNSma6hoPdpud9tmpzJq/hlXrC/nrSb2w2/df+Ws5eKzdWMTSVXkM6tOeCJdz1wP2QqTDxcu9L2dR6UaGNz8cgIKqb6j1rafWt55Kz6/ERXTbr/uMceUQ48rZ43GjZ71N94R3SXDVsKjkzX1KjH82dgqfjP2BU+5z0K5Lc+zWIEo91QD8Wpa33xPjU7asAOCHLSu4vtMQLMuifcqYHfY3JsCXGy6m1LOaI1KupXPiOaHnCmoruPOXz0hxx3JHt+MprpkEGAqrJ5ARexo2mw1iS8AH5Z71O9zHbwUCdcSYlbRy1pIccxFO284vZlf5trCuajIAqyq+JS2yG8YYEo6toEVWITiqGh3Xo38Obbu3wuvx896LP/D1Bz/xr7GXMb34JFxsoaJZOoFAB4rKqvB4gzcAWaU9sBKXEV3aE29dBQVnx/JhHtidx3N5h5N4aF6A71hGQtVmon6tImHr2vUDmrflhJbtqfbX8ktF8D3IiIoht6yGY1tk83H+NAB8W2pI/SA4u7oIWPbzWo4e2g2f+1VSs15kabUFtmQsdyHJ7uAMpwBQ5XMSZfdiWWARwEaAuoCNCFsAm0Vo7nepP4q6gJ0aXPj9NtYuz8QeX83xh20KbSvCZuEgOCiACc0cL6xKoczrJN7pJddXS6LdxYryJLrGlxAw4KN+HfLgvgzW1rLucRj3tkpC8VYNcY4amkeUER0ZXAfUGCj3usldH8/cmiywW+SZCnxRqRydcSXtzz6XJYetoUe/DqGZ6tfefyb9T+7Bt+/NItVxMV1aZGG3xfPQvAm8tHxmo+95s8g4Lu3Qm2ZRcfRJ37ZWaW51Oe+vmQfA+6vnKTEuYfzY8NP032/8mF13EhEsy6JLly5MmzYNYwxLlizhyCOPbOqw5CDkcDhIT08nPT09rN3j8VBYWNggYd7YNayqqirWrFnDmjVrwtrj4uIaTZg7nQfmXEpERERE5GDXpInx1atX89xzz3HjjTdy2223MXv2bK677joiIiK44IILQmss/fbkID09nXXrgmVn8/LycLlcJCYmNujz2zWa6j344IOMGbPji+8icvDaUlSB3x9cF7dX5yzG/bgE8PLFxEV88M0vACxdmce/bji5CaOUA8Hj9XHp7W9TXeNh4apcTj69Ex3immHbj2uA18uJb05OfPPQ4/SYkRTXTCHSkbVXCewDpaC2khmF2RyXtoE+aRfu07beeWYCMR3XU9FsOT8XwXEZzbm960nk1pRyTva+XcSt8RWxsOQNUtydaBMbvJHt3sNP4dMN8/hbm6N3axt+46XME/y3v7huWdhzX2xYwI/5KwE4pWU32iXdQ1HNJLISrgn1GZj5AGsqvuewuJN2ua/Fpbm8t2YOJ2XaqfPMxQbEO3b9lSnakUH7uJEU1C2mfdwpBIxh7IapnPvgT0TY/MS55gLnAeDxVzJ1y78Aw/QPjmJJUjRDurdm6qvTgALemjGN1u2KwAbRceWMuHgALdpn4GmWgMfj4+SeR2K3X43f56f2tm/4xrOOBVFFZMWfT1xELz5ZE1yrvuf/HcWY7P5kd24BQIwzgv/1Px2AOYVr2VhdwrDMLngCfuJcbnq+fx1vPfolv0xZSlaHTMpLKjmsaxY9+uewpuQ/bKx4ceurNUAhFoHQbOgomxevZd86U9xgJ4Blgc2yWFuTREVtBF0SN+M3dj79tC9LZnZkUO92XHp5Px6b/xQTej0fSjY7DLi2lsIPYLC2K6d+bvO5xLiCiWyfCbDe42FmRTqd40oo8dupw8IyhgTLT3nAgd+C/Lo4MiPDLyKnR0ThD1QyKGkF964eRseYPBYXNCOvKp6Ud0opOC+JyEgPlgUPLfqaF/uOIjE1jmOGhZfCtSyL7n3a0b1P+M0jSRGNlzQ1BnKrKxjZuivxrsiw55pFxTGiVSfmFW3itNb79wYcERH5/dUnxiFYTl2JcdkTLpeLzMxMMjPDb5Srra0NS5TX/15V1fAmzPLycsrLy1m5cmVYe2JiYliiPC0tjZSUFC1HKCIiIiKHvCZNjAcCAY444ggeeCC4ZmmPHj1YvHgxzz33HBdccEGo32/X8zTG7HKNz531ufXWW7nxxhtDj8vLy2nZsuXevgwR+R0dlpXKCcfmsGFzMeeecgTlVTUUFFfSs3PLUGJ8c4GqQPzRmEAJEMCyJe+wj2VZOLZWAvgu5Sfemz6Z81ofw405u0507qsoZ2t6ZX58wPezp546+mzG53bnpBZdaB6VuOsBO/HXqwYz/ruvILAKm83CYQX4a+vu2G0ROx1XUVrFoukrOPy4jkTGNF6qcX7xWJaVfQxYZEYeiduRSP+M9vTPaL/b8TlsEQxodj+bq3+iXfRZLFy6kQ6HZeByOuiXfhivrppOUkQ0OfHNiHWeQ2bcOWHjkyLakxTR+P4CAcP3Py4lNsZN715tuHve5ywty2N6QST/6d6fOl8eadG7/pxZlsXyyccy+5cWdLg0ng/rZvHUouk83MNFhKsGY0sI9d1YNZ0NVT8CsKa8Dr+/BTOiCsn9Rxo91sbwhf1XYtf35oS0lQzLupuBjw9u/Lg4HZz3j5M5j/DvPv93eH8mbFjO34/oT3Zqi0bHHpnSmiNpDYCb4Kyh7E4tuGPslY32Ly2ZRXD+tSHRBil22OSDGhOcCe60BagLOMHyh5LixoAPSIyoIcVRjdMy2PExs2UzKtPreNNaxJufL6J9dHHYvmyWhdmaELdhYbPq1wq3aBvjIWAc5Pt9+ACHzTAsdTU2C5LsfozH0MVVRwuHlzU1sTya25WNNQlckj0NC8OMwjZkxR7HgIxs1uY+QVVtLSelLOKDvF6U1ERhsHAW+zDGIhCwsNsNMU4XZdXfUVHzIw5HKmmxo7HZdn7h+PKcvoxdPpuCumDp9K4JGfyldTc+WrOAfhltGiTF61/3k31O3el25c8rYGwETNPPGA8YzRgX2V3p6emkpKRQWFjI+vXrKSsrIz4+vqnDkj84t9tNq1ataNWqVVh7VVVVg4R5fn5+WMXEeiUlJZSUlLBs2bYbTm02G0lJSQ0S5klJScEKTCIiIiIih4AmTYw3a9YsbF0lgJycHD766CMAMjKCa4jm5eXRrFmzUJ/8/PzQLPKMjAw8Hg8lJSVhs8bz8/Pp27dvo/uNiIggImLnF/pF5OCTV1jOC+9Oo0v7ZtxzXTBJ9dg/Tws9nxQfRXFZNUtW5lHn8R6wUtu/J2/Axw9bfsVgeHrZd3RNbMm/up25y5uDmorX5+d/70zFHzBcec6xRLh2/c+M8a3EX/gXIIA9+UMsZ+dG+zkddsY+9DeWrdnCnWXvgh82VBft51ew/3gCPj5e9wvNoxJCZcj9gTpmFTxBwHg5Ou2GXZbm3pXWMSlc1r7f/giXUy/pT79h3Xjt8bdpc8ovzLPfxNqIbvRr/uZOx9122r9Z8cs6jh7ajTHvXtdon+SIjgBE2TN44vmpJMbFc+l5x2K32/j+vRks+3kNZ984nKT0nV8obhVzHK1ijuOGu95n7vx19OvdjvtvHUm7uHSmnPiPvXvhwIQpS7jvP18D8MJj59MzqRVLy/LomphN1/Rbdns7FZW1vPx2cFbYe5/9hHtQDB6vk38tOoUxvTpxXPpZob4ZUT2Ic7YCDCf3OY0fvFv4tvk6agKG4gHRjMxqx1NLSzgi9RzSo7clxYtqqzn929ep8np474TzaBO37WaS7f9eGN2lL6O7NP49aG+1T36ABXnn4QsU0N4JdgucwGJP8PmagAMPLqLwEtg6a9tgKPVE0SKinK0TwCn1ROEJOEKPAVbVBF+HBdixsLAwBNcNt9Pw77v658HCZkHAVoUn4MRlg9YOH86tz0ba/MwuzsbywxNLh4DNUOGP4pK4Tjh9x/DV8y9xyt9XkAVsqE7CE2Vj1txWxCyvI+uhzRgH3Pz2JfRI/4W1hZeE9l9VO5O26W/v8pg9dNQIbv/pKwY2a8e/jgj+u3VO256Uemr26NiLiMgfU3059cmTJwOwePHiHV6nENlX0dHRZGdnk529bZkWYwwVFRUNyrEXFBTg9XrDxgcCAQoLCyksLGTJkiWhdrvdTkpKSihhXp80T0hIOGjPS0VEREREdqRJE+PHHHNM2N2pAMuXLycrKwuA7OxsMjIyGD9+PD169ACCayz98MMPPPzwwwD06tULp9PJ+PHjOeus4AXnzZs3s2jRIh555JHf8dWIyIEyftqvfDVpES6nnalzVzNuyhL6H9WO1KSYUB+fP0BxWXUTRnlgPLt8Aq+v+RGHZcNnAmysKWZ0+xNoFpnQ1KE1aupPq3j7i58A6NgmnaH9dl123PjWAnVbf1+9w8Q4QLO0eDJSY3l40wpqvIvIThq4P8Imb0MRdbVestpl7JftAby9ejaPLv4OgK8HX0tWTDIbq2ewovwzIJgYPSxu+D7tw+v1syG3mKwWydjtDWdxlNRVs7aymO5JzUMzbnfmo2e+Y/wrv3BKr19p2RKqvOt2Oaa2KpgVralqOBOlXrv4EWRGH80XX6/g6/HBxHHvXm1omRLLo1e+HOxk4OpHzt3l/gDyC8vD/txXUZHBm+VsloU7wsGthw3jknbHkuqO2cXIcDHREfTr3Y65C9Yx6NiO9OqaRbOoWHIS0zkiLXzWdpQjlVNbvxt80BpGDoF/z5/CW8t/4fwOvTizbTcuaXdsg33ML8xlXUUJANPz1oUlxg+0aFcbOqY+wqItl1BhbCRYPpLi/4/Y6gLWVgQrKmREDuT/2bvr+Djq9IHjn5n1bHZjG/c0bSqpuxttkVJce7i7HdwBJ2jhOH64HHY4XHEoTqEtpe7ucWlsN8lmszozvz+2TRuSektS+L7v+iKZnfnOdyftZnee7/M8wcBXaEgENR0yCunmRtRdWeUbGsbyf5uzCGp73oJqGsQavfg1iUiklhusmqaFQ+yqRIRe3yojXpIkHDoDlUq4o7gqKeglPSARJSvMdifQJ6KeBkXPaY5tfFaVi1uzgLLrueiMGE16aosz8DevQ9NZuCBlKZH6ABdEW/Hk63npl1HItZBmmU71r3p5+oKty5Huy9jkXH459ZaW70OqyqnfvcoOdx0PDjwRq97Ecxvnc2m3IUzPHQjAwqpCnP5m3t62nPWuCobFZ/LcyHMw6fTMLt9KSoSd/NjkfZ1SEARB6GR69+7dEhhfv369CIwLvylJkrDb7djtdnJzc1u2a5pGfX19m4B5bW0tiqK0GkNRFKqqqqiqqmq13WAwtOlfnpCQQGRkpAiYC4IgCIIgCJ1WhwbGb7vtNkaMGMGMGTM499xzWbp0KS+//DIvv/wyEH4Df+uttzJjxgy6du1K165dmTFjBhEREVx4YfjmeVRUFFdccQV33HEHcXFxxMbG8uc//5nevXtzwgkndOTTEwThKHn81dm4PX5SE6OQJYmstDii7eEStF5/gPe+WM7g3pnhrEENoiLNv4tscQBFC/dT10kyaRFx9I3OIMncecsvds1KIDLChKppqIkbeGjtHCalTGaoI3efx0im8ciRdwEhJPOJlDbV82XRZk7M6Ea2PbbVviUNr1DV9DnB0Fb0EoSC84BDe63/66JvmFtRwGPDT2ZMSjZlO6q59sTHUEIqD715Dd2G25CQiDQcWeAp1hTOBtdpMp9+toobzx+Pw9QTiy4OVQuRYO57gBEO7K4HPmbF2mKmTurDXTdOafVYUFWY+t3LVPmauKXXGG7qNeaA4/UZmcfnL/3I5ncHM2JcKkt+ieW9lUu44Iwh+7y59dCHt7J89jpGTO2/37Gt+nj69ghhMi3BHmkhMz2WCJOBpEwHAUMJOZPLCanN6OX2+zLvbcY9ZzB34VYmjQkvvNA0jZKmelKsdgwHKG/dnlFDc3nhXxfixMsbVSs5wdCVUcnZBz7wVyRJ4uG7T2+17aK8gQd9/O19x3B73/3/nEYmZ3F2Tm/cwQBTM9suPPGHKlFUDxHGff+bOxy1nu/YUnsH0eaRDElbiE4yo5NUJNlOP2uIaFMPGgLbqHK/jV0XDJdQl3TodmVuyxKAzCTHDB7e+QZaHEgygMYZSev4W94CZElGRzhQrqChEM4MV2QNrxrCIrd+26oj3NtcBSQNikMaKiYKQ2asRi+VqoETLA2Myl5CpC7Eu1V7qhS9t3wRp9v78tf/PMCCgvPI65JGfcNkAGJjPcTGQr/oChpCFjT2BMUVFWQ5lkzH84d1Hb2hAAXucNn4tc5KVtaWUeB28sz6+UzPHciS6mIunvcu7LoOkgTzqgq4aeHHjE3O5b6V36GTZOaecj0p1s77u0A4NhRkFDq+lK2CKKUuCIciNjaWlJQUKioqqKyspLa2FofD0dHTEv7gJEkiJiaGmJgY8vLyWrarqorT6WwTMK+rq0P7VSuNYDBIeXk55eXlrbabzeZ2A+YREQd+ny8IgiAIgiAIx1qHBsYHDx7Mp59+yt13380DDzxAdnY2Tz31FNOnT2/Z56677sLr9XL99dfjcrkYOnQo33//PTabrWWfJ598Er1ez7nnnovX62XixIm88cYb6HSHfnNcEITO54SR3fn8h7WcPqkvZ0zui8moR7erx9kN//yAzQVV/PejRbz04AVsK6ph8qjuHTzjo+eGbpPoEZVKd3sK2ZHxHT2dA0pLimbWy9dS6/2a7a4/M9wg8dSmnbw/+oF9HiNJOqTIq1u+v+Hnz1lbV8nHO9Yx+7SrWrZrmkKh63HCoTAbFkMKKfY/tRrL4/axaWUh+YNzMEeEs4BVTeOKOR+ytKqMx4afzP+2rwFg5vY1jEnJpt7ZRFAvIykqO5vWsKHoGUBiasZ/iTV1PejnHlAUZm5fQ1pkFONTuzAtvS/VWxt5/bWFfOJZRf8uGYwd3o1zsj/f9byPPLhRXBYuJV9YWtvmsaCq4NxVrrm4ru3j7Rl+cj8+LnoGo8XIh7NW8O67c4Gf6dsrnV55Ke0ek5gRxymXjzuo8Xt0Tebrd29GlqWWDPcXF93LT5UTCbKezU6FfMdfDzhOZlocl5w7vOX7R1fO5aWNSxiakM7MKdP3c+S+5XdP5dKfZjKvooAPdqxlw3l3dMpMF5NOz79HTG33Mbd/Net2httLWA296Zvy+WGfxxcsY2vd3Vj0GeTGPUBt8zeomg+n90d08uPo5T3Z9LKkJyfqbBr823E17V16XyFSgySDRJ2i0aiqrPVfT9aqARRO0mE3evlk4P9wGP3oJHlPRrgEaCqGXdnjIVVD96sfhaZp7AyFUJFYXZ9KF1stHozUKRFE63zYZYmgZkDTAAk0tfViqSqDl7ef+5YvxhThDDQT64rAIJ9C14gqrsjw0BwsZ2l9NgZdLEjFqGo5pc0xzNh8MmflTKZfxuDDuq42o5mnh5/OsppSrukxnLmV23lq/c9c3m1o+Pnv47i5O7czOL51H9G9M+gFQRCEzi0/P5+KigognDU+bty4jp2QIOyDLMs4HA4cDker1oehUIi6uro2AXOXy9VmDJ/PR0lJCSUlJa22W63WNgHz+Ph4zGbzMX9egiAIgiAIgrBbhwbGAaZOncrUqe3f4IXwKtb77ruP++67b5/7mM1mnn32WZ599tljMENBEDranVeewB2XT0SW2wYAGpvCgT9Ng5x0B/nd2g/eHa9MOgMnpYQzi98qmM+L235getYobsyb3MEz22Nn0yeUN75DRtQ1xFunhPuK+9wA6CWNwfso+RtQQ3xWspr0iBiGJ3QBoL6uiYhA+Occb2ndf1uSdCRHnk9F00fUhCCkBBlizGu1zz8vf4UNywsZMqEH978WDqo7fc3MKS8AYE7FDq7uOYQ55QVcsiuT98vFW/F2iyczIYoeI2OZXx3O0m8O1RxSYPytLSt4aMVPAPw47Sq6RMUxsWsPZoaWI5slcjLjdz2Po5Pt51dcPHjPZF5auIrFlkqeWbuAm/uMbHk8Qm/kfsdY/u8/H7Nh0feUfD+MjH0Et/dmiQzfmOqem4ROJxNpNZFygN7fh8JgaL1ozWg2oZNNqKoPnXR4N8XWOXcCsNFVfURzy49NYl5FAT1jEo7LgKPbv6rla09wHZoWQpIO763ezqaPaPAtooFFJNnOJ81+JYFQDTGWUehlW7vHRJlyGZH2HUWuJ6j3fomeIDlGGYssYZM15nsNNGulnDFtLP/R6jkxZQuxRj8ye8qj77Y7UA6gb+e1XwOWV6Xi1plIinATq/dhVwO4XRZiHeG2GjtDEczaHo9nVTTruucx3JFNmjGedwqXEbkwgGeMTH3IgyyD0+9Bp4ukLhjJn0yXcP2qcID/si7DuX1tPEVN4Zu+ieZILsw9+CoA7TkloyenZIRvNF/QZQAXdBmAJxjg5O9epsTjJMpgpmdMEld2G8qfl36Ba9cClyXVRTw/4izSrFEYpE18U3QzdmM3RqS8jiz9PqqkCIIg/F716tWL778Pt9hZv349Y8eOPS7fawh/XHq9nsTERBITE1ttDwQC1NbWtgmYNza2bXnk8XgoLCyksLCw1Xa73d5uwNxgEO9vBEEQBEEQhKOvwwPjgiAIB6O9oLiiqjS4fQAM6JlGhMV41M63eHUR/kCQMYNzO81Nqy/KVhBQFb4oW7HfwLiqqUh79ek9EoXVNSxaXsy4QV1JSWg/OFrg/DdBtY6i+qcwGXrhVepIjjwXWTKiEM3YrEntHre7B7cEfDH+ApqbX+DbN0txvZrJNXeO4dYJ4UVTG7dUUFBcy6RxPenmuB+XGkVzw0fEm9LbjOne1WfeXe9t2VYTaORP3fuwzeniih6D6RGTwD0DJ7Q8vmV7OKja4A+SZR9PQLsDSdKRGjGcQ7E7kG/S6bAawn8XszMcfP7mDUgSoHfhV1yYdDGHNG576rwrWFR5JTpDBM6U6VTv9PDC+kWtAuMAcVUSMd81oAG1lfUHFRjfrV9+Ol+8dQNGgw6T6ejclNI0jUU7i0my2snZVSZfJxkZk/YBbv9W4iMOr+fmQ0On8NaWFUxO73ZE87uj7xjO7dKHZKudTSuLWL+0gCnnDcUeYz3wwZ1AUuRF1Hm+pDm4lRT7dQcVFA+pTSiqG5N+zwIWTQvR4FsCyEToc4kwdEUnm+mT/O4BxzMb0kBzIxEEoFHVsMgS5QEjq9zpDIvvxbRTLyF9x+VU+Zz7HcuvqZilttV/FE2jtElixsaT8Vr0nJ62mhxLHfOrcxiUuCczKUHXjD1bI6dbDaeEirh8ywkoO/sQUxTAlm/mE9N60HaVY9ckZEXHmITurKgrIVJvwqcEGRbfhQ+3b2oZ8/Y+40jdRwnzZTUlbGuo4azsvph0h/YWu7Cpjm2NNeHnrSgsqi7i30OmMfuk6xk260mCqsrPVQWclN6T/NjurK5+EUXz4fKvxRuqwmpIO8AZhN8DFVC0jn9Ponb0BAThOGS328nKyqKoqIi6ujp27txJcvKRte0RhM7AaDSSkpJCSkrrzxk+n68lSL53wNzj8bQZo7GxkcbGRrZv395qe0xMTJuAucPhENUhBUEQBEEQhCMiAuOCIBw3NE3jjqWfsbK2jMcGn8ogRyZ6ffhDcWVNI4FgCKPh8F7W/EqQjQ3l9IxKZcu2am6f8TEAj/x5GmOHHHzW8LF0c94U3iyYzzmZQ/e5T6mnjksX/we9pOOt4deRaNl3pq+mqVR5V2M3phOhb1um/eeqTdy24h1okvnisSz+9/gV7Y6TYr+Qsob/EhdxCp+XTEfVggyMu4H82D0lrQNKiKc3hbOpb+kxAaNOT5Qx3CfeKOtp9n9Cne8bBp8Ha76NI6pcw6I30NDo5Ya730dRVHbWNHLl9FEMib+VxNAESlf58cX5W0qmA9z/2pUsnr2BUSf1AWBFXTEX//I6AO+NvoIeMQlt5u/3hwDQ62RkSUf36LP2ec3257TsXmTbY4k1RZAUsSejNsJipM67nIUlV6KTjIxL+5QIQ2qb4ysKqnj9wU/pNTSX06/df9/0xsAWNBRCqpsLuiZT3CRxfm7bnuXjzhqC2+XBZDHSf2zbftQHYos8umUN39+2hnuWfItR1vHLGdeREBEuxx2hTyZCf/g3h3Pssdw3uP0FGLsVN35Ec6icrtFXopfbD3RLkkSGLYaAP8hfp79IwBektKCa2x87/7Dn9luSZT29kz8+6P19oQqWl52ARoBujiewGXuyuebPWAzpNPqXARAdMQKdfGh/Dxp9C1u+LlOgVstgnvc2BiZkMTapG0UV/eltdTHIKgE6VDR0vyoirmkaDT4dBouGbq9FPpqm0aiGsERoDAmVM1fNZlZFH35w9gRUbrbMobetAkkK9zW3EgDAqgtycdZintgaSXOeCb/OD4CqgaZJKIqMN6jn69JtmKvDgfCbu09kREIX3ptwEX9d+iUJlkiseiO9P3oMk05PtMnCiyPPpmtUPDXeJqbPeQdF06jxebglf/+94n+tZ3QSV+UNZ62znBqfh0GOdDbVVzEoPoMnh57BTYs+RgPcwfBiMHcwfOPYIEcRoW/7eiIIgiB0Pvn5+RQVFQGwbt06ERgXftfMZjPp6emkp7dezOzxeFoFynf/8fv9bcZwuVy4XC62bNnSsk2SJOLi4lpllickJBAbG4ssH53KXIIgCIIgCMLvmwiMC4Jw3ChucjGrZAMA9yz/ikSLje1TnKCA9qnG+7OWc8mZww55XG8owKnzHscV8BClt3BJ/LiWx35ZsYOiMifWCCM9uiTRq+uh3cAKqiHuWT2TSm89j/Q7H72s48PixbxbtACzzsAj/c5nRPzBZbmOSezBmMT9BzdXuYqoD4SzphfXbue09H2X/F3repPVda9glO2ck/0Z+l8Fv9bUl4R7/dpUTDH7XpWfFX0TWdE30RgoQ619H4AVdc+jEKBv7GUA/Fi5mde3h4Nl+TEpnJSaz+np/ciKjMNhiiRS3oLT8y5SKJHTpp/NSeeGg0o6nYzRoMOrqERYwlnLkiRz/9SZVBbWMOHcYdz10pUtc0lKj+P0y/YEpJqCe26wuENtb7YA9O6ZSlmli949jjy41Ceu/b8fTcEiQEXRfHhDle0Gxmc+9Q3zP1vO/M+WM+6sIUTH2/d5nnTb6fhC1Rh1MeREnc4pWe1nEOr0ugMG2XdTd5Wtlo9hhQTPrp9BUFUIqMoxO8+vNfq3srY23OdeL0fSNbr9RR676XQyUTFWairriUvY98/hYMz+eBllBTWcc814rHbLEY11tFU3fYa2K3DsbJ5NecMreIKb8ATXE2MeR0CtJiny3IMezx+qZFv1NWiEX4Ms+u70jMgBpZSFTZV8UTCTzNBc9FL4Zx9CIxgEo4GWsum7K11IkkT1NjsVPj39h+7JLJckiRidgQYlxLUjfsJSOZS5zq7E6tyckbKaPvYKAgoYd71kVWsKJe44elnr6WHwomgymiYR8IHeqKGqEiCh12vIcjjL3SwbUFDJsyfx4IrvWFRTwq35Y5iclsdfls6iWQnSrARxBbz8c8W3PDb0VGwGEyadnuZQELvx0BeUyJLEX/pOBOB/O1byr7U/8kHhagbGpfHvoaeRZo2mzFPPjDWzyY2Kx6JLBNZjNWR0mqomgiAIwv716NGDr7/+GlVV2bBhA5MmTRKv4cIfjtVqJTs7m+zs7JZtmqbhdrvbZJfX1NQQDAZbHa9pGrW1tdTW1rJx48aW7TqdDofD0RIw3x00j46OFv/OBEEQBEEQhFZEYFwQhE5ve3EN9z4xi/S0aMxd9PiUEAMd6XxSvDYcuNVD7Zk+/IHQYY2/oGYrrkC4pFtDyMtzld9y9h3DcJTG8NoHi1v20+tknv772fTv2baE926aprHTV49PCfJ1xWqyIuL5qSr8gf1/xYv4uGQpQS0cFGoK+ZlZvLjdwPgaVzFWvZlcW2Kbx/ZnYlI+n5QsY11DKU9s+oqJSb2INLQfpAko4b5vIbUZVWt77aZnjcTl82BwG7j5tral20ubXMSZrUTow2XDdd5YRtpmsND9NzQUan17yg/3iE7Cumu/HlFJQDjA1c2WxKLqIvpE5/PFm/dQVtHEw3cPaAkgRlpNvPHMZZRXuhjQJ3PP3H3BXf8N7Pd6jEnsyv8NOhtJkhgZ36Xdff5y44lcfM4wkhOj233cEyzDEywi3jLisPuDp9mm4VecGGU7seb2FysMnJDPD+8tJLdvBrYDlO7WyxH0iLv1sObSntKmek7/+i0APjvpYtJt0Udt7L1d2n0Q0SYLmZExpEUevb7lB2LSx2OQowiqjdiNB64AodPreP7rOygrqCGvX8Zhn7e8sIb/+/P7u8aUuei2Ew97rGPBYugC6JDQkxl9C+WN/8UT3ATIdHM8ilHvOKTxVpePhV0l1GXJRqIxGfzfATDVup7JkV5235cs89lJkBTsZj+6fbR+iIpU+MfNQzj98u1MOa8Io0lDJvzaYZJkoiJ9XJs9n4EJxcRHuEnQuQEwyKBpIEmgSWCTQ0TIGnlGH6gSgz2ZdEl2MNO9IrxPOCbP7iQjnxpEj8QNS95F0SAY1HH9go+4vNtQLus6hGK3C6e/meImF0tqSrh+wUdc3X0EsyZfSZXXzZD4w/87AzBjzWyaQ+HXNnfIzzelmyj11Lc8XtpUz/k5j1DnW0GMuW2lCOH3S0VGpeOz4TrDHATheBQREUGXLl3Ytm0bjY2NlJSUkJmZeeADBeF3TpIk7HY7drud3Nzclu2aplFfX98mYF5bW4uitF5kqygKVVVVVFVVtdpuMBja7V9us9lEwFwQBEEQBOEPSgTGBUHo1DzNfv725CxKK12UVrqYefalGOwyTz07B3rC7uq7mgzzlm7j6vNH7Xe8N3bM47875hJntDE6sTu3dD8RWZKQCPeZBVDR+MC5iH/0OBu9TkbVNFRVI6SoXH/fTJ76+9kM7Z3V7viPb/qK/xUvIlJvpinkI9kSzXBHVyq9LvpGZ/C/4kUA6JAJaiqraipRNRV5r4DrnKqN/Hnlu8hIzBx1Mzm2tuW/98WqNzHYkcO6hlI8SgCvEiDSYObnZdv54OuVnHNSfyJyDCys3sHZmecTqU/FYe6OURfZZqxYUyT/6Htmu+eZWbCKe5d/RZLFxo8n34Cz1MV1o+4j6A/x99m3Q3IBPaPPa9k/K9LB/JPuBMCs29Ov+rbFn/JT5Ta6WOLwrmwCYO6CLXTJ2lPaPTkxiuTE1kHUx7/+C2vmb2bUtH1nxEP4JsuJqfn73UeWJVKT2+/7HVTdzCs7C0Xz0iP2VnKjL9/vWPuik4x0i7l6v/uMOX0Qw07si8Gk/81v0qyqqaDOH87yXVlbfswC4wZZxzld+hyTsffHpIthYsY3KGozZn3bf0+aUoEWWIZkmogkh/8t2KKt9Biw/wUKzcEyllfdiVnvYGDC4+hkU6vHo+IiiYq10uD0kJXXMeVSVy3YihpSGTi2e6vt3kAJm2tuAMKvfRHGLnR1PExS5PmYDakYdLEHNb6iNlPn+YyQGkAj2PJaaqEOj/8bImQTekkG2ddSLD0Uknjo5av53y1PYZDaD4oDpOV4OPexFaQlNtFoCIAKZknGig6zLJMIbPYbiTQ3Y5X9LUH33f9d5MrGH9ST7JNIz/ZQqRiQ0PC8WchPwbVwa/h1RdLgV5XcCaGBBDoJdCYFn1/ita1LuCC3P/+beDEA5/74Jitqy9jkquaWRZ9yS6/R3HyIJdTbc35Of97bsZKJKbnc1WciIU3l8+J1AEzN6MU52f2oaG6kxJPMcMv+/44KgiAInUt+fj7btm0DwuXURWBcEPZNkiRiYmKIiYkhLy+vZbuqqjidzjYB87q6upYqRLsFg0HKy8spLy9vtd1sNrcJmCckJBAREfGbPDdBEARBEASh44jAuCAIndrbny+jpMIFQK+uSXTLSGD1xlKW7ixGy9PQ6VVkSSOo6snrmrTfsRRV5aVtPxHQQni8dbxbtIDN9eUUe+vQfrVvhM7IoIwsPnj2ch5e/gML3UUoy0N48xQu2fwuz8WezQmpeW3Osb6+FICAGs7Azoxw8NzgS9nUUM5fVr1PD3sKJ6f0Y3XdTr4sW4fRoLU5d/OuctMqGn41yKG6LGcsNr2FXFsi8eZwGein35xDZXUjFTX1FE2pxq+GWF5XzKrqGnpEN/He+B4Y5H2XS/+1XzZsBqDK68Yd9FG+owqfJzzvxvXxTO57Rptj9g6ItzxXJfz8VB1MGJVHeWU9k8f1POD5k7PiSd4VPA+pKgurC+lqjyc54vDLXnuCAeZUbmOgI71lHE1TULXgrvN4D3vsg2U0t71G4Xm0LjN9tE1K78r5uX3R0JicfnCl/Y83BjkSg9x2AQiAUncOqFVI5lPRRT950GOWe76jIbCBhgC4/OtwWAa1ejzSbuG1uffiafSSkNr+4otjad2SHdzzp/8A8OAbVzForz7zVU2f7rXnnowbm7n3IZ2jrP5xdrpfD3+jaZjl8GufHhWAGrV1CwNNg9ffn0TviAxkXR8kbX2bMRVNI6hpVCsyWQPqsUmBlmN9qJiR0UsSelkm0xbC6Q0QKQcIKDJGXfi8C5zZvF0xHEWVGWLYQX+liLqAjsdy57Fyei7f3xMJzQpE7GpG3qL9f2MROiM94pJJs0a3bHtr7IUsry3l6l8+xK+Ejtq/z3v6TeKefpNabfv6xGtavm4M+Djl+5dpDgW5u+8JXJF36C1EhOOToskoWsdna3eGOQjC8ap79+7o9XpCoRAbN27kpJNOQqc7+PfggiCALMs4HA4cDgc9e+757BgKhairq2sTMHe5XG3G8Pl8lJSUUFJS0mq71WptN8PcbD70VjmCIAiCIAhC5yQC44IgdCqapvHToq1IEtgjTbz16RIAomxmHr59Kltcj1IasYTYczIx+E3ckvsTZl2QZzeP58xJ/XDWe/jnM18TGWHknzedTF3ge8qaPqOyysd/XsjFNNVAwLCnbHip14ncTiAkVCJxzqv/JcpmZvsUVzhWMgB2Vw+dX1XQbmD8zz2m8kXZCiYn9ybSYKZLZLgU+jcVayj3uij3uniw7zlMTR1A/9h0Bjmy0P2qPPdJKX3RSTJ2g4UeUYfW91rTNH6uKCLJkNiqRPuU0T1469OlTBndg6+tQba7a/CFFHxKkFV1ZVQ2N5IReXCBu0Vfr2LzdXOInhLF9ZedisMcSez4nlz+z7PwNfsZd/bQg57v08PO4LuyzYxLziXl5MMrrf3Mhnm8sGkBMUYLv5x6CyZd+FdbUeOHOH0ryYu5Hqth3+Xvd/vbiq+YVbKBlAg7P0+9GQCjLppRKW/RGNxOauTJhzW/I6Up1eHALT50sTOR9FlH/RwWvYFHh590yMc1hwJUe5vIsh1cdnHnJf3qvwcnxTqJMvcszLoEok292t3HajNjtXXMjTRpr4Dvr9sAhIJ7l5+UCCmN6HWHvrBEt9diA5vsx3KAeJmqwhXn/5uomFnsdK/CvKssulmS2B0WqFdDhNBo0oxohMP2IUDRQAc0ahoJkgyShleRiDGEqx1s8yRillW2NDv4tGrA7qfGjJ5LsepVuuiDSFIzw0/YyQ/y2ciRu6+P1lJSPdUUQ++YNMqb3GxtqsBmMPP4oHPpH9e2PLpJp2dkYjZfTL6CHY21TEz5bRaVBFUF/67yoe6g/wB7C4IgCJ2J0WgkLy+PDRs24PV6KSgooGvXA7d5EQThwPR6PYmJiSQmtm5HFggEqK2tbRMwb2xsbDOGx+OhsLCQwsLCVtvtdnu7AXODof2FzYIgCIIgCELnJQLjgiB0KgtXFfL3p75ss/2OKyYSYaujuPw9TDIMioaNjcnYDOGgwNhkPz1jkvj0u9WsWB9e9b1081ya7H8BwBgFA4eFWPLDULqfG02p14lB1vHUwIsJqEGuWfoafjVErMGKM+ghkOqH04LUf2vHsklHIFNFiQhn7WaYY7jyVxl6mqbxVuEvPLPlW8bEd2ewo3U/61PTBrCsroCutiQyrQ5kSeaCnCHtXgNZkjkx5fD6xs6tKODaeeFM0HdOOJ+h8eksW1vM2VP6c9W5I5EkiYtDQyltdmFAz4Orvyc/Jon0vbIgD0RRVHQeFccnLkbeEA44y7LMubceemA1zmzlwtz9l0M/kN2BIa8SRN2VWR1Q6llX+2B4bhjol/DAAcfZfaz6q/J70eZ8os37L8e+N03T2NZYS3KEHZvBdOADDjRecA2o4dJ/WmDJIQfG3QEfD63+HpvBzF/6TjykygD7E1AUTv7uZco89fyj/xQu7jr4sMfSNA3N+wlIeiTztN+8lLwu7kO0wHIk04RDOs5qyGB8+mfHZlJHQf7gHP4980YURaHv8D033RcVjSZE5V57atT7FuGwTjnosYNKDcXOhzDp0+gS9zyFrocwUHjA43S6XBzxq6h1/gOjpOHXwKOqaGhYJK2lDHpIkVDUcN9vFWlXgFyiSdOTKsu79pNoREUnSaxsSGWUtZlcSwMeu5PLHIW7aqpr2PS7aqXvVWo9LqWend7WN00lCSoCToxNMh+NuRF9O/9WAorCm9uW4gn5+c+mhWhovDFmOlPSurfZd380TaM5VI5Zn4BOMh70cV+XbqTe7+WdsX+ioKmO0zMPLcNfEARB6Hj5+fls2LABgPXr14vAuCAcY0ajkZSUFFJSUlpt9/l8LUHyvQPmHo+nzRiNjY00Njayffv2VttjYmLaBMzj4uLQ68XtVkEQBEEQhM5KvFMTBKFTkU2gmDUkTSU4sQnJL9FlUwZ9u6cSYTBj1WfhCZUSa8yhxGthTm0eVp2fH2rsTHUVM3xADmlfr8RqMdI9qytLqnXo9AqhkIxJGcidFwxCnzYDgBEpr2PRhwMjn46+nWp/A1saKnhk06zwZGJVlLQAkRvMsAGGTMkiNtPKXydMwrhXwGR9fSnXL3u9pQR6WdPPLK1cRm7MFcSawwHurrYk3h914yFdi7qmJmr8TXSP23+JeIB/rviG+VUFXNRlT3DSotPz9Btz+OT7NSTE2fj0hasAMGgyyWoktmgr/x1zwSHNCWDk1AHc//5NmCNN5A3IPuTjjwa16XlU33fo7PdyZ58JdIuKp09sKhZ9eMW+QbYRZexJQ2ATDsu+M9gV1Ud509fYTXk8POgUxqd0ZYijbWboofjv1iU8smY2yRY7P558A8YjLI8pmUZToU6k0lONLPVi8CG2vfu8ZD0fF60FYHRSF8Ymd9nnvqrvO9SGe5HMk9FFzdjvuD4lSIWnAYCtDdWHNqlf0fw/oDaGF7HIcgyS6cj7NB8KSZfMsqY+vL/me87N7sfwxMP/e62FtqN6v0K2TEPSd8y/j73lD8lp9X2R6ylidJVESlAWgt3NGvS07b2+L5qmsrX6OpoCKwDwBQ3IskTsfhJmNG137+/tlNVdionw9xIasgRBTUJFQweEVFAkjd3/dHzosWgaDlluk5GeqZNoUMCBkUxTONgfoQsRoQsh7YqEa2h7vtY0PIrMFq9jn3Mt8tTySekKzs1svXgpqCq8uOkXnt04v9X2mQWrGJ6Ytb9L1sb2+lfZ7HoWm6Ebo1LeRq+zHPCYNXXl3LzoEwAeGngy53cZcEjnFI5/KhLqIVa2OFbzEATh8OXm5mI2m/H5fGzevJlgMCiyTgWhA5jNZtLT00lPb11dzOPxtAqU7/7a5/O1GcPlcuFyudiyZUvLNkmSiIuLaxMwj42NRZZFOxJBEARBEISOJgLjgiB0GpXNjVy75SO8U4NkGg04TQoasKO5jIc/fZNpk2bhUyoAjeFxTj6tzOGn2j1Zem8UzOOx/hfywTNXtGyzbvkP78yax8g+o/jHVaMoc3/FqpoyAOp8y0mLPIU3ti7l4dXfMzGlG17J2WpOsjP8MqlYVOK6RHLVkOGtguIAC2u24tkVFNdLCn9KX0KVF2q8CzklZ/lhXYstJdVMm/MKikXjltwx3DRgDPOWbuO+Z75mYH46//7LGRSXO3nkpe/JzI7j3chwgGqtq5zPT7oEWZLoHZfEl83hgKjXF0DTIOgPcu3If1JZWMO9b1zLqGmHnq0tSRJDTzy8jPZ9cXt8zPpxHfndUujTff/l4zUtgNoU7gOtNL1GROzLXNCl9fOQJB2jU99D0Xzo5X1HkrfWv8T2+teQMTA5c85Ryb4scof/DlX73PiV4JEHxiUzZy/Lw+lPp0f0ImZNPvjsdYDBjgwi9SYi9AZ6Rifud1/V+wlo9WjeD9Ds/0SS9p3xbjeaeWHkOaysLeXyvIMvn98eSY4jnM4rIckdU5b9b8u/psBdx8raMuZNvemwx1FcN4CyA8U/G71j1lGc4dFR536XvrsSlFWgeFdniXU159BH+oSoiD4HHMMTWNsSFA94dchmJZzT/atYmQ6JRF24jHxFyIemaaiAhISCxq7/IwMmSUPRwnNCkpABWdNo9hlJQyLJFmw19q6/LVhkCYsMUx3FKOqvguBou/4LIU1DJ8HWZguXbT4DVdr/TcneUWlUNDfyfdkW3tu2goKmupbxJClc0t1hjiSkqdzYc9QBr9neVC1Iuec7ANzBrXxTPJz+8Q+RZpvask9F0/eUNc2iS9QlxO3qXR9ltCBLEqqm8WHhahEYFwRBOE7p9Xq6d+/O6tWrCQQCbNu2rVWfZEEQOpbVaiU7O5vs7D2LXDVNw+12txswDwZbv0/VNI3a2lpqa2tbbdfpdDgcjlal2BMSEoiOjv7NK2YJvw1N0/ArKoqmoWogS6CTJEw6WfzMBUEQBKEDicC4IAiHpK6qAavNjDmidcCsKejj+53rSDDZaVYCjEvozrtFC9nm3snJKf34v01fYdYZuLvnaSBB7+j0Nh8Eyj0NeEIBADITHDgbwtmogVSFEf1ew6fs+cBp1EXxv2E38eJ3c/k2YgXI8EvNVu5f9wkz+p3Xst+EIcOZMGR4y/dxplEYg8OJjDATZx5EQKlnTsU2NGBOxTbGG1KwWAMMiy3EHbAz5exziLFHMKNqNm9WL2PVwnI+OeHyVvM+PX0QmxorcPk97GwuaYkNqQTQNO2gPvCs2VzG/c98Q++8FO67+WTWFVSgmMNBmHVVFQDMXbINfyDEwpWFuD1+Pvl+Deu2VLBuSwWn3ZTPanc55+cMoK8juWXc26+YQO/uKfTvmY4sS9TXNFJREM7u3bBke7uB8eZQJQvKL0GSJEamvNWSVX+kVM/bqE1PIFsvQ468udVjL747n89mr8Wg1/Htf2/AYt531owkGZEs56H5vkeOOHs/+8nopf2nV+ukcJamLBmRpKPzK/G23uOIM0fQPy4dm/Ho9JaenJrH/wpWMbmdvvYHkhedwPLT70ACdAfIUNBZr0BRdiKbp+w3KL7bCandOCH1yPsqS8aB6BxfAzokfc4B9z8WRiflUOCuY1TSEZ5flwrKDtAduK/93ur9G1lceS0R+hRGpPx3vws6DleDbzk+tR6fCmYZmtTWj5c1vkZUxNOttmmaRlWZE0eSnTr/lxh1cdiMfZGlSFStCZ0RFDT0aDQpeiyygglw6ExogH5XANok6WjSwn2xwwXOpb3OsSt7XGq9LVLKonvqd4TqWgfrdwfFW/bdFQzXyeEgeJXbjBQRor7ZQFNlPK/Ny6H4Bxsj/uJgqazn7p4nUBWo59UdP7e5RpoGzc1GYoyRTP7mpZbfSS3n3nXaQfGZvDv+ogNf9HaUuWfhDmzda4tKjXdhq8D42toHCKqN+JU6Rqe+B0CWLZb+samsqCtjU33VQf9+EQRBEDqf3r17s3r1aiBcTl0ExgWhc5MkCbvdjt1uJzc3t2W7pmnU19e3KcdeW1uLoiitxlAUhaqqKqqqqlptNxgM7fYvt9ls4r3eccYfUqlp9lPvD+L0Bqn3BQn9qlUbgF6SiDYbiLUYiDYZiI8wYdKLagKCIAiC8FsRgXFBOE75mv0sn7eZnoOyiY23/ybnnP/Vambc+BaxCXZe+fGvRETuCfrdu+YDfqnZUz7sjPRBfFoazpbe0lhBSXMdAFcseRkVjXRLLH/tNY2hjhw2O5/CF6pkee3IluOv7zaZlfVb+bZ0IwVaZZuynU11MouLi5jzYSH6rlZCwzyghwU1W7li0ctc1mUsc8qL8Csh7u43Cas+nCL58nsrmfl1N3K7+jj/itNQ8TNWvpVl5TLGSh1ri5wMPqWa3tkVQAXvNH9HXU0Ejggr+Gi3Z3SCOYonB4YDJKur/0lp0+5H9gR3F1YV8lHhGv6UO5ABjnDAbM3mMuYu2c4Zk/rw9dyN7KxtpLK2gW+aNxHtiOBEcx4ufTMPjzkFgAtPHUSdq4lBvTOxR5oZPdLAmkIPMaae/GvENPS6th+kDKZGUnq/SA1GikpLiDR04Yb/O5+CtRWcfVP7/YTrvMvxKTsBcPpWkhp56L3D26N63wfNjep5u01g3BEbCYA90oz+ID4Q6qIehqiHj3hOXaOvINrUi0hD1lELRMaaIrg1f9xRGWu3hwadwt/7T8GkO7xf2/qDLNknGYegd3x+WOc4UpK+Y/tr/r3/FG7uNYYo44FLWu+PLuZFCG4CQ9sb3N+XbaakycWfcgdh1rde/FHb9BUR1NEQcOEO7CDGfPR7Rzf4lqKisToQzngO/epxkz4OAG+wCIMci15n57+PfslHL8/hnH/spOv4pQDkOZ4gqDahk0CnU5C08IIVH+BT9aTqwLSrsoZHCaEA23daiY1vRJbCwWUZQAMFaEaHTVPY+75f+Osimht8fP3RcM45fz6SFA5cy+3cIFQ0DZ0k4VUMvL81m5weO2luNvHqk+HXT7sDrut/BfenhisSvLR1TrvXKN2UzIXdhwHQHPp1lrqERadHL8nc2efQ+tHvLcKQBkjIkoHEiPHs9MwmoDS0CnQnRUyktOkzkqwTWx37jwEn8vLmhUxJ6y5ulP4BKZqMonX8TdPOMAdBON5lZWVhtVrxeDxs3boVn8+H2Xx0FlQKgvDbkSSJmJgYYmJiyMvbs4hZVVWcTmebgHldXR3arwKlwWCQ8vJyysvLW203m83tBsytVutv8tyEg6NpGk5fkAKXhzK3D43dC4H3LaRp1HoD1HkDLfun2cx0ibESYzaI9/mCIAiCcIyJwLggHKee/MtMfv5yNSlZDl6bcw8AXo8fRVGJtB9ZYGdftm8IlyB3VjfyS+lmZpTNops9mX/3OwGbvAqdZELRwsEQq85ETmQCJZ46piT35ZXtP6GiEWts5MLUpdQHLdyyoobH8pvwBOcCUOvdyLmZBgySQp1nPj2sl/GMeycGAzxVcAK35XyPSdYo2pTDJzodxtqvkCQLBEGqNNCraxLrfaWsri/mlhVvkmF04gmYuH5BPW+OnQ5AU7OfAcM3MeW0pexev60oRQQTdASSVAz1MlXb49GGbycUsrOp3ktQDXJF3jBu6DmaIfH77j9d6v6C0qYvWr7XtGC4lLdk4c9LPqfa18Sm+iq+OfEaAP7y2Oc0NvnYVljN9X8aw8btlbgivWzuUosTH6d17c0N/Ue3jNc1K4Fn/nEuAA3+Tew03MjZl2kMSniKnc3f4LAMxaxv3Te3rOlLaryLWr5vChYydvq1nHr5Cft8HknW8SQ3T0ZCIjFi7P7+ShwSOfJm1KYXkCOmt3ns0jOHMbh3BunJMRj0R1Z6/FBIko6EiJEH3rETONyguHDwjjQoDoQz7Y392mwvdNdx/cKPAAhpKtf22PP3TlPdZIbeJcvsp1IaSrTpwFljfiWEqmlY9O1XV6j0/MTq6nuJjxjBwITHkSSJZNsFzK2YzxpXgK5WHb2iV7Y+puktjPo4iuufRC/HMjjtR3zmr7ji1SUk5Lh3P0MiDF3QSbFAuG2ALAEEsBh6ElLraNACRKuNhOQoFm1+iRnPzkGnU7j7728SG+vGrGkogB8pnGuugSYpbboWR1kv4o3n5/DFit58sLIL1569gOJyC1eesW5XkDx8u8mlyMxqSCWkRDCrqgeBD+Lo1rOUsu17+qY3anDDPz/g41ev5cuy1by2fV7LYymWaB7scxY9o1Ow7FpEBfDWuAvZ5KqixtdEF3scZ2f3RZIkFlUVctX8/9E3NpWXR5/XbqB+fxyWIUxI/wqdZGRd7SNoKFR75+NX6lpew/sl3E+f+L8hS61/vr1iknh6+JmHdD5BEASh85FlmV69erF06VIURWHz5s3069evo6clCMJRIssyDocDh8PRqiJEKBSirq6uTcDc5XK1GcPn81FSUkJJSUmr7Vartd2AuVhc89urcPvYWOumMRBqFQzfX1B8b3vvX+b2Uer2YTfq6RlvIyVS/DwFQRAE4VgRd9kF4TgVDITDun5vuFx3TUU91534bwL+II9/cCN5/TKPaPzSHVXUVjbQb2TXltWqZ189nlBQJbNbEmu0MtwhH9saN7Kg4hlGxKj0t5uYX38jU1IGcEJSL27pfiJBVcGkM3B5l7G4gz7mVc7AqDURb2oi2dTA1sZNpO6KRWVa64gze8K9sFUIKV+A1hUIEdQMPFd0AjkRNezQJ+DFiCfex8fPX8t5y55BQ8Vg0dHDmMKWxnK6Ru7kgtRwxvobO3x8X/waBtnGqWdNoNiztOV55kRdjC7zBLSaLwEIRamUbEnmzYen4ld0GAapDOqewuJ7fqFLZhJj/9WlzbVStRCLKq7E6V8FaGgalGxPoKqwO9OuteAO+Knz+kCCWOOe1d056Q70sd8zYvgK0jMG8vbjl7BkWxGXLHsPTacxOiNc0lnTVJZX/ZmGwAYGJjxGjLkvIdXD7o9RW+tfojGwCZuhC+PSP201t8SIMRQ0vItBigQJbMZcIo1tS0VroVJUzytIptEYzJMYlPj4Yf292R/ZfCKy+cT2H5Mleuftv7e4IBzP7AYzVr0RTyhAqjWq9YOaD0nzAJAS0R9J2v/ikNImF6f98BohTeGjiZfTLSq+zT4VTd8S0jxUen4gpHkwSJEYdDF8WDaBTfVVjI5vbhMYB/AEwpU/QqqTkOqm7+kL0CRvy12bysBZ+Gr1jEudw9rKCYTUupZjfcGtDM7YgiTJLdnPJyWB3R7FC++8RHSMD1XTs70sgUDARmraDgy6ePqmf8yainFEaD4MuzLKbZbpJMY8REb3JbBiB41NETz2xiQALAPq6JbookozoiHjCpiJsXgADw1r++E7Iciq1ZkYag2EkkIEM4IYKvQ0ebwAzCpbRUDbU9pyRr9z6BfbdtHTiMQsRiRmtdn+VelGXAEvc3duZ6e3kZSIqDb7HIjVkAZAdtSF7Gz+EYAtzhfom/CPln1+HRQXBEEQfl969+7N0qXhzyXr168XgXFB+APQ6/UkJiaSmNi6XVkgEKC2trZNwLyxsbHNGB6Ph8LCQgoLC1ttt9vtbQLmDocDo9HYZgzhyPgVlTVVDZS5fS3bDjYYvi+7j28MhFhc7iLNZqZvYhSmdioDCoIgCIJwZERgXBCOU7f/+3z+Vt3AltUlPPe3jxh5Yh+am8JvyndsrDiiwHhdVQPXn/Q4oaDCTQ+fzckXjgDAFm3lqnunAZDnqWW7u4pRMeuAcKNai87PXd2TsRvtGOTwy8vuN/F6WUeMycqk1GtYtnMzy12NVPiimVnRj4FRxVT7ozkndQMQDoqY5AS6RV9MtH4LrmANRoPGBalLSbfUU+GzM7N8MJMcNhxRIYbFd+WXmi2MSejO1JRIFlZcjV/d8+Hv5JR1+JUm/EotEM4SlNDRN/5+0m3T6B6jcpvPTYPXx1efrUUD/F4jilVFdfjZ4SonclMthctLOfOKsWT3SGl1vXyhapz+PQGmZMMlrF6WQ7LJgK/Zj1cKEghoaOjoG7On7/Dj907hx7JwOfBt9a8xIGEGQ7tmsSbnLhRNxaIz8Nojsyit2MjA22YDUNb0FTHmvsRZBjEo8SlUzUepe9auETW0wDLQd0WSo8M/M2MukzN/bDXfgD/Ehy99hyXCxOmXj0GWZVT3v9H8X6N5ZyIlrj2o/tKCIBy8OLOV2SddjyvQTLeohFaPSbp45JjXIbQZyXLhAcfa3FBNY9CHQVJoanwV1TQI2Typ1T5doi7GG9pJQsQoDHJky/Ynh53BJ0VrOTWjFw7DKHzBCnRyJCHVhV6OJN46jQhDDhHGPMz6FDQ5Ck31okpxFDRPZ8b6BuBDfj7lJgakLUXRPJTXP09zcD0JkefjCxWxrfp6jPokMmPvp7DuLhKyEnjx4fspbWii2rWFt94YQW1NNABnntyf/AsSiPLPoMn8FEUbk3j9llxSsuO5+5U63vkyvMDprJP7U1JYzfK1RZjtQXZqezIo7HofQVWmuMZBs10PehX/IB+GAgPeKc1ghFDfICEC3LPqQ1Y7i1uO7ROd1m5QfH8uyh3MloYa+sUm4w74UMw2dO20K/igYBVPb/iZy7oNJSXCTlPQz1lZffEqQax6I/UBL2bdnh6VDYEtbcYQhL0pyCh0/M3RzjAHQfg9SE1NJTo6mvr6egoKCvB4PKJEsiD8QRmNRlJSUkhJ+dW9Bp+vJUi+d8Dc4/G0GaOxsZHGxka2b9/eantMTEybgHlcXBx6vbglfDgq3D5W7qwnqB5pKHz/yt0+qj1+BiRFk2IT2eOCIAiCcDSJd0GCcJzYuKKQUFChz7DwTfSGuibqqhoA2LC8kBsePIuL7ziJ5iYfE88ceETnCgUVVCUc7P78jfk4kqMZMr51ad9Mq4PnB1/A98VPttq+uuYuQCPH+BTdkicgy61LzFoNGaRGP88d658FoDFkxhm0MjC6AGgGoFv0zeTGXA1AL0clS53VGCRdS5ndFHMjN+XMpVE1823pGi7PHMhlmXb6OIaxzfUyGn6Msh8Av6IjwRJu+h1p6EPf+DsobHiPlMgpJFtPwBcK8vjKLxkQuZAJPc/mgn9dwm0Pf4zb46M5M4AaqVGPH+vQaFS3lYVby9oExi36ZBIso6n2zgcgXprIktffZNp1O/hx+ceMHPIUb048n82uaqZ367/nOIOdOPNgnL6VJO1Vsnx3yeyKoho+enkOoNF96gCSezWRYdtTQjfZGu5xm2AZRVXzfBLUJSjOC0BORRc/B0lq/8b1nM9X8M6T3wGQlZfMgNF5SMY+aP6vUeRMllZeR0rkFLLs57V7fEdSVZXt68tJ75KAxSqC98LxJd4SSbwlst3HZNMoMI06qHHGJedydfcR9Db9QB/D26j1ryHFfY1k6NayT7Q5n1Gpb7U5Ntfu4K6W/tgntzt+ZsytLV+bTYPZ2fwjcabeRGljgVnYDWZsBhOSJKOXbGTG/rVl/2LnI3hDW/CGtlDiuh+3P5wJl2ibTq/U/1C5YxO1NV9i0MvkZiVwysR8rpvyGDtdTUT3OJvaigaUNBPuwmqmX/gsSlz4eq2cs5GK9eWYHBGEAjqM5j0d0nUylDVGMdM1KPzONgTGDeHFUbJLh5oYzg4PovB1xdo9z0028JdeUw/qmu8tLzqBDydeyuU/v88p37/CWVl9+deQU9vs99qWJVR53Ty/cT7uYPh30utblrDNXcvQ+EyW1hQzINbHn3YV8WgM1LU6XlFVbl70CetclTw9/Az6x6Ud8lwFQRCEzkuSJPLz8/nll1/QNI0NGzYwZMiQjp6WIAidiNlsJj09nfT09FbbPR5Pq4D57qC5z+drM4bL5cLlcrFly55FmJIkERcX1yZgHhsbi9zOgk8h3MZpi9PDxlr3gXc+GucDAqrG4goXvRw2usVaRe9xQRAEQThKRGBcEPajorqBaLuFCLOx5fs1m8oYM6QrVstvV45q08oi7jg7HEh+6M1rCAZC3H/VaxhNesad2p/TrxiLLMtccOOkA4x0cBLTYvnX/27g4eveoGRbFS/842OGzG/b81YnWbAZuuEObt1razigvqjkH/yweDk3nfWXNsd1tSVxf++zeKdoAX0jF9E3ai3sCnu7gsksre9JYqSPpzZ/Q10gXDrMrBmZM3MaJ5z9E8mRZeglFQnQ4aHEHe7b++yLteRnD2f05MmUOVegM9Vh04VI1ClUKTqe35TFn1Qd0zIeQ5YkSndUcfsT73DaZXM5MXYLSv1XZKUup3deCj8u2oq0Q2LkpC7oVR1r3eVoaDz/7nwqM5r4fucW7uk3iXHJuUiSxJCkZ6n0/IBJH4/R15Vh4+u54k8bAfh4x8PkxZsYlRSNRb9n0YIkyQxPfhVVqUKrv5aQ7z/oYl5F0sUBkJAaS/7gHAo3V9Az6gb6pO3JLNybQWcnzXYKSv1P4fJbmmvXz6H9D7QZXRPR6WT0Bh1JGeFzydYrkcxTWVH9D+p8i6nzrSTTds4+g+sd5bVHZvHJq/PI7JrEi9/dKT4YCn9IBlnHXX0moPp8qPUfAiaQbcfkXAMS/0W9bx1Rpp7oZQu9Y1NwmK3YjO1nLdjMA9m5616RUZeOSZeGQZ+A1dibgFJPXPd3efxpO3nR1xIdZcXj9rEz4Kbor1Fosg/Ht5HoPTKBFDtqVLjPhtQcoHJrNf5u4Uz7mc9M4k9/+RLDXpXGvT/bMMbKBOwqlm8j0FfqkSSI+DICQ4pMYLIPjy4cnI7QGbHoDNzUfTK9og+9hUNAUfiydD0bXTsB2NpQ3e5+1/YYwbMb53NKWk9e3LwAgG3uWgDWOMvRgIKmPQH+bY1BQorCnUu/YEF1IQ5TBFsbw/t/VrROBMYFVE1C1Tr+915nmIMg/F7sDoxDuJy6CIwLgnAwrFYrVquVrKyslm2apuF2u1tllu/+OhgMtjpe0zRqa2upra1ttV2n0+FwOFr1Lk9ISCA6OvoP/dlb0zQ21LrZ6mybqf9b2FDrJqiq9HLY/tA/B0EQBEE4WkRgXBD24cs565nxn+9wxETywdOXYzLqufpv7+FsaGbKumL+eWP7mXbHghJS93ytKOwsDWeVBfwhzrpmPLm9jv7N8vzBOUw6ezAfvjSHEVN6t7uPJEmMTPmIuWUn4VPKAdA00JBwJDYSl/Au213xOCKGUdH0DWmRp1HQ8AY13iXk2c9jesprSOwOCmgUeUfxenEMKt8Q0jQ+KwuX0B0S6MrPBWVU5Pgo/+8ILjzByZnjT8WvqkToIlledQvuJpXSEhub1hcyos+NfPDOTEZO+YFze5QSp9NoUBSWxS5ndul2ZCWayRkP8f0HS8lJX0BvRxEATYqFaElPv57p/LhoK70yUnh5xAU46z2cqb5EUNIYP7CBs6JvJ40kXtsSybjk3F3XQiYlckr4qZjhxhl34A0uQiep6PQeSpu+BSAhYhQOy9BW11AKLkILrQ9fhcACJEu4XL3eoOPfH9x40D8z2f43NEMPJONQJGnfL+89+mfxzuJ/otPL2KL3lGuUdEkkR55MrXcFyZGTO11QHGBnqROA6gpXSw9jQfijks0nI8VlgRyNpEs+JufQSUbiLHsW9LTXz3xvMZZJZMU+hD9USkrUDWTH3d/yWEH9a5Q1fREexzQF6IvVZmbaw1N4qmExAMFYBb1bQl/XjBpQUOxmzCX1SCEl/AtGknC7IvnqpTM5/co1xEc56Bp9DufcMp5raht54e15bAhVsJNGouwR3HfHVLLS45Ai4Nolb6ACzw2+iCTLofcF3+3lzQt5asM8ZCSmdxnIRV0Ht7vfGVl9OCOrDwBLaopZWVcGwMSUrpyc1pMVdWX0iHbgVbZjlrfSxVbDF8UfMqt0O4nmBs7NnE9DwMJL28by7o4VpFtjuLL7sMOas6oFCakejLpoVE0jqCot1UkEQRCEjpOYmEh8fDw1NTWUlpZSX19PdHR0R09LEITjkCRJ2O127HY7ubl7FtVrmkZ9fX2bcuy1tbUoitJqDEVRqKqqoqqqqtV2g8HQKrN8d9DcZvtjBGq3OD0dFhTfbavTg0GWyYtrvwKZIAiCIAgHT9wRE4R92FEaXjlb62qiqdmPyahHt6tf9q/Lgx9r+UNymPH2tQSDIQaP60EwECLoDxGXFHVMguK7Xf7XU/nTbSdhNIVfKmp8jdy+4h22undyefo4ruk1AVmWGZ/+DZ9t7o/JrKCqhJuES+H/bHI9hakhHr9aQ0HDe2iEVypvcT2NROueTGnGZcjSKQx3dGFwbA5GSU+oWeWn2jKUXUl9ziyZtz5L5vpTxrV8AItzv82MGZ8RtIBk0Hjtw4VooQTeeflEhtzxOXGZVaiAhsyUlHAWd3HjTEafMg2bvpgSFXbUxzC7+kpeSDNy1pR+TBqZhzXCFC4xFhPJO89cTvlOF4NyXgRfE+mW7STEd9nntYtJyMfpncumxirGZxhYsnM5BtmGzdi1zb6SaRwYhgISkmnMYf+8JDkGyXrlQe0b7Wg/uzTDdjoZttMPew7H2vX3n0lOjxQGjMkTJd4EAZAMbat5dCRJkki0TW/3sTjzIGTJhEkXh9WQ3bL9yolj2bnKj6uxmX8+OIUtCwp48vZ38DqbWx3/0I0nYU2wUVBcy8jBOWBbjFGOwWwYQEFjHTmOOO677VR8/iCLlheQ3z2F+Lg9r3UfjDn4hUb7Y9aHU9WNOh235Y8j2mQ54DGvjT6fN7cto0dMIhNTulHrXUaevYAs+2DcgTtZvPMqADbVrwMs5EdXEGdqJs7UzIDYYiq9Uby06RfOzO5DrCmCer+XBdWFjEzIbjl/pedHdtS/QXbUBaRG7lm8p6g+5padSXOonN5xM7hmYQklnnpeGXUeo5Jyjso1EQRBEA5ffn4+c+bMAcJZ46NGHVxrFUEQhIMhSRIxMTHExMSQl5fXsl1VVZxOZ5uAeV1dHZrW+l5NMBikoqKCioqKVtvNZnObcuzx8fFYrVZ+Lyrcvt+sfPqBbKh1YzPqRc9xQRAEQThCkvbrdzt/QI2NjURFRdHQ0IDdbu/o6QidRIPby7uzlpGXncjE4eEPD1W1jazfVsnIATmYTYYDjHB8KNtRzWv/+pL8wTmcddW4/e5739qPmVW+MvyNS+Y266n86bRwub83v36dutAXZMecx1ZvHclx7xBl92BSRxIyLEUj0GosnRR+6dmVAIimQaI7gwGpEUj2e6hRunLxU29TW9CE64QALYuQd71iPdb9VL54by198lLITnfwr9mzqR3oRQ7A/Qkncc6Efgy8/zHk/l4mxJZQGjSxxZXAQ/2XIOtdDE16EYdlEJ8V/h81zZ8yr6ovjwx5iPTImP1eAy2wEqXhr0jGocj2Bw56dbSqBZGQkSTdQe0vCILwe6RoAWR0B3wtDIUULht+P7U764mINHHtA2cz6Zw91TZK3Z+zuubvALy2/TTW15u4f8BJTM8duK8hjxpV0/ilqoAMawxZttiDOkZRfYQ0LyZdDIoW4NuiEahagNTIU+gfP4MS98eEVA/l3mH8bfl3WPVuTkz5iaAqkxcVzth5cctYXIEcPj7hcm5e9DF+ZQWTU6qZ3vVeYs39+Kl0Gp5gESZdPJMzf2w5tze0k9klkwFoCk3g76sdAFzdfcRe/eZ//47n9/u75/7osrGYIzt+XbOvKcRfB887Lq+lIHRGTqeTZ58Nt81KTEzk2muv7eAZCYLwRxYKhairq2sTMHe5XAc9htVqbTdgbjYfXwFdv6LyQ0E1AbXz3Do3yhKTchIw6USigCAIgiAcro6/syIInVSUzcL1F7bO3k102El0/L5uAH748k8s/mE9i39Yz8QzBxHdTlmmal8Df1/zATvrGwANQhK6lRY2Ju1s2eeSky8DLuPxVT/zYlERuorTmVKayX239mFZzcVIaEjS7v6Y0NRkJtLmQwNUVca5+XpOGvgEhEDz/JcXNur54KLv2eKM4YIlJ6HZwwH0Xa3IeWHxfCrjGlm/rJKIzUY81nDgXTXCiBHZ6PU60kbFsrWxhi9qwmXEIpf5WBi8nH+efzpmXfgD2enZd1DmuYILulmINJgOeL0k4wD08d8f8nWWpd/HQopD1dzk47Hb3iUUVLjryenYY34/K8cFQTh0Osl4UPvp9TreXvbAfsaJ2PWVTLU3AJgocNe2u+9m57NUNc8jP+7uVmXh63werl/wITpZ5sWR5xBlPHDmN4AsSYxJ2nfFkF8LKI3MLTsNv+JiSNKzJFhGYtEl4QmVYNWnI0kSmfazAegSDT+fujuT515+rviSBt89ABjkEDV+D2O+CgdPHui7FJvBz7raGYxN+4AM2+lscb1Ihu3MVue36JNItN7OJ4Wf812FlYkpXbHqjVycO+ign4MgCIJw7MTGxpKamkp5eTlVVVXU1NQQH7//1iWCIAjHil6vJzExkcTExFbbA4EAtbW1bQLmjY2NbcbweDwUFhZSWFjYarvdbm8TMHc4HBiNB/cZ4be2pqqBYCcKigMEVY21VQ0MTtl/UocgCIIgCPsmAuOC8Ac3ZHxPfvxkOXn9MrFFR7S7z3cVa1npDH+g0c+1IpeaMEg6rv9z64UDOz2zSbc+T9/YZNbVZpDc9SOW1z6E3didxsDmXXtpSJJMcWEiW5ZN5fn7z2fdBhfvf/kTgxOH0T19I5JlGrdn3k6kPsTAhBr64aJgQQIhu4pmBi1KozipHi0GlMwgDXIAS4mOEbpMKiIa+euyL/nPyHOYmNKNrY01WHVGun2l4jojwGbdYt7dnsUVeXv6tKZZo4/FpRWAFT9vYcnsDQAs+mE9U84deoAjBEEQDiwlchIm3esYdHYsJo11zgou69b29SWkNrOt/hUAChvfbRUYn1u5nRW7+n7/srOAUzJ6HfC8S6qL+bR4LdO7DKR3bMpBzdWn7MSv1AHQ4N9IYsRoxqR9gCdYit3Ybb/HjkmZSqnbym2LPmBDQ+vzOQNdsRnWk2AZDUBu9OXkRl+OqoWo8S6mMZjA58XFTE7rTpL1ND4trUDRVKZm9OLUjPx2zxdSVe5d/hXFTU4eGzKNjANUUREEQRCOjvz8fMrLy4FwOfXx48d38IwEQRBaMxqNpKSkkJLS+j2pz+drCZLvHTD3eNr25G5sbKSxsZHt27e32h4TE9MmYB4XF4de33G3rSvcPsrcvg47/75oQKnbR2qTj5TI4ysDXxAEQRA6CxEYF4QD0DSNV2d8wda1pdz08Dlk5CYe+KDjyMgT+/D5pn8h6+R2y4IHAyGMa0MkRNhIiIwmOyeDb4s20y8/lbSk6Fb7bnL+G5uhnLNyKthSlkpCRjgQEFBr8VVezfqSuXTpVkFUTDONrmgeu/MSTLoIPv/6Z6prapg1x0D6lS+w5CuJ0cPCZXY1DYrjTLiHBNF2LSKWlD3nNBkNNIcCjBqawbnpKrevqKK4ycXCqkJuzR9Hen0Ev/x3GRNPdXDigNfRyxpLAvnAMH5N0zQI/AxyfKfr23u86j0kh8xuSSghhQGj9h8AEgRBOBS7g9wnpMIJqe2/vujlCDJsZ1LVPI/0yNNaPTY2uQu9Y5LRyTIjErPbPf7X7ljyGTu9btY7K/lyytUHdYzN0JX8uLvxBEvJtl/QMq8oU94BjoQn1s3hrW3LODPrdFJtHr4p3Yi667EesfcxJjkFgxyu9KJpGpIkscn5FAUNb+EJRfLiphP5uGgtC069ha+mXI3L38wgR/o+z7epficfF60BYOp3L/OvIadyUrr4fdhZqJqMqnV82czOMAdB+L3p1asX33//PZqmsX79esaNG3fQLZsEQRA6ktlsJj09nfT01u8xPR5PuwFzn69tsNnlcuFyudiyZUvLNkmSiIuLaxMwj42NRZaP7XsRTdM6TV/xfdlY4ybZahK/KwRBEI5TmqbhV1QUTUPVQJZAJ0mY9hGjEY4uERgXhAPYWerkk1fnAfDlW79w/QNndfCMjj6dvnWvVy24DqQoJH0G97/1Lt9HbcYyR2Pm3bfycdVaAAy7Vu4qqkoopGAyGoiSJtOkvsEyZxZKjMaW1WcwILee9Nhx/Bi4n6wEL6WrTmK7K4azxpxObFQ4Q33aiX3pl/U/zhi3AqV5Ia88OIEer0kkp4bLp3eNaKBKSaFYqw/PTweJWiTX9BjJyMxsfqkq4Ny4/2EKfMlHA+K5p+AqhidmI0sSK19axdYFBWhVq5k6IlwCa6gjqv0L4f0IrfFeQAeO75D0GUf/Yv/BRDts/Oe7uzp6GoIg/IH1jb+v3e0OcySfTrrikMYa6Ejnq9KNjE2CgoZ3Sbed1hKY/rUNrp38a82PjE3uwhV54YB4ZXMj96/8gCxbLHf1mYi814edFzct4N3ty7mj93jOyOoDwPs7VtIUCrC4poh0awxWg4m7+kygd0wK+bHJLccWNLzDxrr/I912JqrmB8AkB5AkyNyV9Z1rdxzw+XW1xzMgNpWVznKalSB/XvIFIxNzsBtFNoogCMKxZLPZyMrKorCwEKfTSWVlZZusTEEQhOOJ1WrFarWSlZXVsk3TNNxud6tA+e6vg8Fgq+M1TaO2tpba2tbtknQ6HQ6Ho03APDo6+qgFEpy+II2B0FEZ61hpDIRw+YLEWjpnGXpBEAShNX9IpabZT70/iNMbpN4XJKS1bdehlySizQZiLQaiTQbiI0yY9GJx+tEmAuOCcAAJKdH0H9WN7evKGHVy346ezkFZt2QHz977IaGQwoBReVx33xltgt/7ovm+Qau/BTBA/PdsjK5Cs0o0jwQ0jeXrigFYubEUfyDIpX95h/Kqev515+mUVI7n/z5RaO6hMNCSxGM3X4JeJ9MYKCWkeQGYekI2vWMvbnXOleZy3JnhHDi/T2bytFKSU5vRtHBg/LHuS0jJeJoVteXct+o7moJ+/jvmArrYHRRsLMe+2IvuFBcAWRHwvwmXtow9dmo/1i/dQUaPCUjRF4LqBMsZaKoTzXkVoCDFvIKkiwd2p6KrhAtUha2Zv5lv35rPKZePI39410P8aQiCIAi/F08NO4O/9BnJqqpT2FAXwBMsprfjnlb7NAUK8Sk1vLS5lIXVhSysLuT8nAFYDUbe37GC2RVbAZiWkU/PmKSW417evBB30M8bW5e2BMbv6jORd3es4OKug7lr6RcArKwt44IuA1uds7zpWzQUKpq+ZmLGd0SZehBt7M8ncTF0tR98n1qz3sC0zN6sdIbL+frVEMVNzoMuGy8IgiAcvvz8/JZ+vOvWrROBcUEQfnckScJut2O328nNzW3Zrmka9fX1bQLmtbW1KIrSagxFUaiqqqKqqqrVdoPB0CpQvvtrm812yAHzApcHib3vCnU+ErDD5RGBcUEQhE5M0zScviAFLg9lbh8aHPD3S0jTqPUGqPMGWvZPs5npEmMlxmwQ2eRHiQiMC8IB6PQ6Zrx9bUdP45DMeusXSndUA/BV8UJctW5OPH8Yg8f1OPDBqnPXF0GC/kbOShrKO86FTHT0YvX2Sk4Zn09cTCTjh3Wluq6JZmUHg0aWsXprF846YTyzF27GHjTz0A2noteFVzPZjemMT34Ed7CcvKg9Gfc+b4CHrnudr4bX4onNZ0NNLAMX90TxzgdoCYwnmxtBq2VwQiZf7VW6VlFU7jr/eTxuH6XbhnDT30aDqXXf8xPPH8aJ57dTNt23CELrwt/450PEmWA5F0mOATkRSZ/Zsu8TN75OVUkd29eW8MqSBw98DQVBEITfJUmSSIyIQS9bCagBjLrWPbi9oSrmlZ2NSpDJKVczu1zH6KQuROgNAIxNzuXNbctIs0aTbYtrdeyNPUfz3o4VXN19eMu2c3L6cU5OPwBKmpwsqi7m0nZ6qfeIvZltrldIs52KUWcnJ2o6ALGWQ3+OFd6Glq97RiWSH5O8n72F35KChELHfwjuDHMQhN+jHj168NVXX6GqKhs2bGDSpEnHvFywIAhCZyBJEjExMcTExJCXt6fdkKqqOJ3OVpnl1157LU6nk7FjxzJ+/PiWfYPBIBUVFVRUVLQa22w2twqY7w6aW63Wdufy/Y8/MeWEiQDc/+ZH5A8dcQye8ZHTgDK3jz4hVWQSCoIgdEIVbh8ba900BkKtguEHu+hq7/3L3D5K3T7sRj09422kRIqqfkdKBMYFoROZv3MHT66fy5lZfflT7qDDHmfyuUNY+tNG/L5wKaoFs9cxt2ojWS86GDO4N4qiMmJyb7r3z8Tpa+aVjUvp60jmxIw8VhWOJEp/CzmZPbnnktks9DWD2cgnbONj8xbU7j7+ftZUxnbriqZpXHXjT8iGRqL0RhLipvHKQxe2O6eMyLFttm1ZXcyKeVuwV+hJvDiN0anjuOSBEaxbOoW/XP8wuXkurrplMxIg+X9Cs1zA6gXbiIg0kdcvE1mWiIyKwOP2YTAnIVnPOPiLZBoNxuGgKWAeh+b7Fi2wGMl6NZKudXZGv7E9+O7tX+h/MAsLBEEQhN81nWRkbNrHNAULiTO3ztxWtSAq4bKLPaOj2HDWDa1W8w50pLPqjDvDv9d+tcr3irxhXJHXdiHXbrfmj+PWfTzmsAzBYRlyOE+n7Xl6jWOTqwqnv5mnh58pViMLgiD8RiwWC7m5uWzduhW3201JSUmrEsSCIAh/NLIs43A4cDgc9OzZE4A777wTp9PJoEGDOPPMM1tlmbtcrjZj+Hw+SktLKS0tbbXdarW2KcceHx9Pgy/YZozOSgNqvH7SbOHVsOPGjWPevHlccsklvPHGGx06N0EQhD8qv6KypqqBMrevZduRViDZfXxjIMTichdpNjN9E6Mw6cTCqMMlAuOC0Ik8t3E+61yVbG2sOaLA+KCxPXh1zt1cPOJBNE3Dc7oe30Q965rqqbhnNoTgw//8xMNvXcMX5hLe2LwCCXir/9n85cHPAXj8r5lUFM2DtPAq2n6DtzL5tMWsbMzgwR0+Jub0wqI3EhWRiDvYiM2c2HL+8sIaTBYDjqTo/c4zr18mA8fm4ax28/cx00nOCGfP9R3elX9uSqKkMJJTziwlOd2CZBzOwu/W8dB1b4AEz395Bzk9U3n681sp3FxJ7yE5h3SNJNmOFPsmAJrqQau/FVDRVA9S9L9b7Xvr05dwxX1nY49tv4+sIAiC8Mdi1jsw69v27LYa0hie/BreUDmpkae0G1SWO3mg2ajT8frY9he5CYIgCMdW79692bo13HJj3bp1IjAuCIKwD5GRkfTu3bvVtkAgQG1tbasM8+rqahobG9sc7/F4KCwsbGlhsVuzyXZM5300SUC9L9gSGD8WAoEARqMo1y4IgnAwKtw+Vu6sJ6ge22Yc5W4f1R4/A5KiSbGJ7PHDIZYUCEIncnZ2PyL1Ri7MGXjgnQ/AYjVjtYdfGHP7p4c36iVScvb0Gn3u7x/xw+PzAEiMiMSi3/NmV0Livlcup38/B6pBo8+AbRj1CgOji1HR2OmtByDF9jQ7A7dhM98IwIqft3DlhEe4fOwMKkvqAKj2uvmmdCPNoUCrOZotRh564xpe+PrPLUFxCGfRTf3TCBrrTVx17nhqgrOQ9NkooXAfcjRQd/2CiYqNpM+wLqxbWkBVmZPDIplBH+5vJRn6tH1YkkRQXBAEQTgoDssg0m2nIUsHXn/aGNhKedM3qNrxk5kidBxVkzvNH0EQjo1u3bphMITbb2zatKlNb11BEAQhLBAIcMsttxAbG0tUVBTXX389mqaRkpJCv379GD16NBs2bOC5557j4Ycf5qmnnmLu3LkkJCSQnZ3dUkp9/fr1PPXUUzz00EO88847NHiaW51nzcKfOat7Cmd1T6GiqKBl+1dvvcpZ3VO4aHB3An4f+7JmwTzuu+xcLhqUx/l9srnppNHM++LjlsfLCrbx+C1Xc9nwfM7rncXNJ4/h2/ffbDXGtROGcFb3FN5+/CFeeeAeLhnai8tG9ObVh/9OtdsLhO9bzZsXvr/35ptvIkkSkiRRVFQEwObNmznnnHOIj4/HZDLRo0cPXnzxxVbnycrKQpIk7rzzTi6//HKio6OZMmXKIf5kBEEQ/ng0TWNzXROLK1wEVO2IM8QPeD4goGosrnCxpa4JTTvWZ/z9ERnjgtCJnJPdj3Oy+x2Vsaw2My/98BdqKur5/oulFH1ZwpR+/bnz6/N47m8fU7Slks2rirEXQ1eief6dq7EajLxw33mEQgqDemfy3Mb5eMbO49KzCykqdpCt1GKV/dyTsZig9zuwXcRNi79hW2MNn5d8weeTrmoJTgcDIerr3CRnxHHenDcp89QzNb0XTw47uHLnF940GYPRQGa3RJLSw0Hz0af0xWi6HFuUny49TC37fvLqPF57ZBYWq4m3F/4Dqz28WraqzElUXCRmy/5Xt0qSDuI+AdWFpEvc776CIAiCcDQElEbml1+IqgXoFn0tebHXd/SUBEEQhA5mNBrJy8tj/fr1eL1eduzYQbdu3Tp6WoIgCJ3OM888g9lsJjo6msLCQl588UXMZjNPPPEEANOmTWP27NlIkkReXh5lZWXMnTuX5cuXs2zZMrp3786iRYt44IEHUFUVq9VKY2Mjb/zfI63O02f4aFKycqgoKmDOJzOZfvvdACz54RsARp40DaOp/Wy9hd/O4onbrkXTNIxmM8mZ2dRWlrNj/RrGTjuLiqIC7j7vVJrdjURGxZCSlUPp9i28cv/dNDrrOPeG21uN9+Wbr2COiMRoNuOsquTrt18ju1t3xt97B0OHDmXjxo243W4cDgddunQBwGQysW3bNoYNG0ZDQwOxsbF069aNDRs2cP3111NTU8M//vGPNtdWp9ORm5tLRETEkf+wBEEQfsc0TWNDrZutTk+HnH9DrZugqtLLYROt8A6BWO4vCL9jsfF28vpmsGr2FsyLFbZ+XYhOp+OWR87l4jtOAkDVy/Tvk4vVEA4e9+uRxqDemQDs9DYyOL4Iiz5IWnodZr2PbKPGaXFl5KoPoSm16H3hF9zGyvAq1cnnDOHqv53GHY9fQI/+WQCEVIVYYxNZlvn4QzsPau5Wu4VL7zyZ8aftyZ6XJImh4830yLgErWYsWnAdAJ7G8LkDviDBYDir4pv3F3Hp6Ie4dvJjBPyhA55PkowiKC4IgiD8ZiRA2vVWXJJ0HTsZ4bigAApSJ/gjCMKxlJ+f3/L1+vXrO3AmgiAInVdKSgqFhYUUFBRwwQUXAPD888/T0NDAnDlzmD17NgBPPPEEmzZtYtOmTURGRtLU1MQjj4SD3y+88AKqqhIVFcWOHTsoLq9g2OSTW51HkiQmn38xAHM//whFUWioq2XTiiUAjDv97H3O8e3HH0bTNJIysnjhh8U8Oesn/rtwLSecMx2AT156hmZ3Ixldu/Py3GU8OesnLr37fgA+feU5vE1NrcaLTUzmhdmLeP77BcQmJAGwetF8/IrK4sWLGTBgAACnnHIKixcvZvHixSQnJzNjxgwaGhrIz8+ntLSUdevW8eSTTwLw6KOP4na7W53HZrOxadMm1q5dyxdffHEoPxZBEIQ/nC1OT4cFxXfb2gnmcLwRGeOC8Adw04xz+PrdRZx84fCWbf1GdOX6GefwxFdLmLl2B91+3shJY3oC4Au6+KnsMvLMDWxp7EN85GYkJpAVbUPyfQnsANkBspVu62KoLnKhOH2ELlTQG3ScccXYVud/f/wlbKk5Gz0lbKguZUDKh4f/ZEKlQLgku7N8DVs3hjj3ugnEp8SQ3T2Z6LhwyfOCjRUAVJc78Xp8GE2iFLogCILQeRh0dkanzqQpWEBixNgDHyAIgiD8IeTm5mI2m/H5fGzevJlgMNhSXl0QBEEImzp1KjZbuB/4+eefz/vvv08gEGDr1q0sW7asZb8LL7wQgLS0NEaPHs0333zD8uXLAdiwYQMAI0eOJDExEU8wxPApU5n3+UetzjX+jHN576lHcVZVsvqXudTtrERVVZIys+k+YEi782tw1lFdVhI+/szziIlPAMBgNJHRNQ+AbetWA1CybTMX9s9tdXzA56N468ZW4w+eMBmrzQ5AQlo6zuqd1NfWsmDRIkwSLb3UnU4nGzZsQK/Xo9frWbBgARBebLW7hPxuXq+XtWvXMnLkyJZtZ511FpmZ4YQZnU4s4BUEQdiXCrePjbXuA+/4G9hQ68Zm1Iue4wdJBMYF4TinhBSQJHS6fReA6D+yG/1GdOXD//zEV+8t5Mq7TyUxJcTY8XP5dn0Nq7anUlFVD8C8Zdt4b/YznHb+duIioLq4gb/1+wqzaffNmBvQQgUgxyNJFi45awS+t4KMObUben3rN8xbG6r4z9afGZfYjQxTIg3+EvSy/ciesGksku1uAr5mrhq6gObGufzpr9MYf+5wvn5vEQA9BmQx/ZbJGE16uvfPJEr0BxcEQRA6IZsxG5sxu6OnIQiCIHQiOp2OHj16sGrVKoLBIFu2bGmVRS4IgiBw0OVi97ff7p6su/dRNaCdzrCRUdGMOvk0fvpkJnM+mUlzUzgIMu60fWeLH5Rd57fHxJKYkdXmYVlufY9td1AcQKfTt4yxdNlyAu4GnM5wa8OSkhI++mhPcN/lcgEQERFBTExMm/O8+eab/Pzzzy2B9ZKSEv7zn/+0BNZ3/zEYDOj1enQ6XcvX+9rnYLeLsr+CIByv/IrKyp31HT2NVlburCcuIgHTfuJEQpgIjAvCcaxkexW3n/k0RpOBZ2bdhiMpuuWxhTVbWFSzjXMyhvGvjZ+zylmE+TsvpjUqsfF2rr31ZyL5mqduMPLNun9w0uBv0PwSvyxvoLTAQaEzDtmsUVHcpU3AW9LntHzdu0cqzz1yYbvze2bTT/y0cws/VGxk2Skv4gmsIto8+LCfr+Zfgub+F5J5CiH9ZYQCdwAQCio89deZrF9awI+fLud/yx8g2mHjqr+ddtjnEgRBEARB6ExUTUbVOv4DbmeYgyD83vXu3ZtVq1YB4Qw/ERgXBEFobdasWdx3333YbDY++OADAIxGI926daNprxLk7777LrfeeitlZWXMnz8fgEGDBgHh1hWrV69mwYIFVFdXY42JZfF3X7d7vikXXMJPn8xk2U/fAxqSJDF22r4D41GxcSSkZVBdVsKcTz9g0jnTiYpzEAoGqSwuJD23G7m9+1O2YxsRNjv3vvQ2tuhw0LrRVce6Rb/Qrd/AfY6/N00JN7rZXV0kGAy2ejw1NZXa2lpMJhPTp09v6Rvu8XgoLCwkNTWVQCCAqqpAOIu8qqrqoM59pHQ63UEH1Y9mQF6n04mgvCAIR2RNVQNBte1iqo4UVDXWVjUwOKXtIiihNREYF4ROrtkXoGxnPV0z49u8adu4vBCP24fH7WPFvC2Mndaf8uCPrHP9zDNb/bhDZrY2VrLSVQhA71MVYgz1DBqbB/pS8IPOkM7UQZ9CYAVa8FsuOnUYfz39O9a5k/mx8S5mXjIJ/WGuMhqZ0IU5O7cw2JGFSWfDfISlYjXPqxBaj9a0gYjEy3nqh3so2ljO6NMH8fJDn7N+aQGZXZOO6ByCIAiCIAiCIAgdKTMzs6UX7vbt2/H5fJjNoiyiIAjCbhUVFWRnZxMVFUVBQQEA1113HVFRUYwfP54TTjiB2bNnc/vtt/Pyyy9TVlZGU1MTkZGR3H333QDcfvvtvPvuu9TX19OtWzcc8fGUlJS2e77c3v3okt+XHevXANBr8HAS0tL3O8eL/nwvT9x2LTuLC7nuhKEkpmdRW1nO+DPO5fJ7HuDMq29k6exv2FlSxDXjB5GSlYO7oR5n1U7iEpMZefLBJXucefppoITYsWMH27dvZ/Pmzbz33ntER0fz6KOPkp6ezk033YTL5eLpp58mOTmZpqYmnE4nMTExTJo0iVAo1FI2fXfwOBQKHdT5j4SiKCiKgt/vP+bn+rXDDaofSUDeYDAgy2KRqSAc7yrcPsrcvo6eRhsaUOr2kdrkIyVSfHbYHxEYF4ROyuMNYDLoufzudyipcHHpmcO4+ryRBFWFF9YvQi/JXHxKPzatKqKq1MlTf53Jh//9mtHPzQY0Bscm8VN1d7Y37cQsGxgZa+Hh/p8inaIQsk7DY7iKyLiTqG+Oo3DzffTLhICchl76HkmCfFsltxQu5I6Iqfudp6Y60ZpeRjL0RLJMa/XYBTlDOC2jHxadoVVQv6HOzfuPf0VWz1ROvGj0QV8TKeJMtOBqME9Bkgzk5KeTkx/+IHLdfWcw9aKRpGQ6Dno8QRAEQRAEQRCEzkaWZXr16sWSJUtQFIVNmzbRv3//jp6WIAhCp3HzzTfj8Xh4++23sdlsXHjhhTz66KMtj3/xxRc8+OCDzJw5k23btmGz2Tj99NN58MEH6d69OwD9+/fnvffe4+6776ayspKszExOvvwGnr3ntnbPOeWCi3nh3nDlwrGnH7iM+ogTT8Vqs/PpK8+zY/0aKosKiE9JpUt+XwBSc3KZ8b9ZzHzu/9iwZAGl27cSFeeg/6jxjDh52gFGD5MkyMvtgiRJPProo1RWVrJ48WK2bt1KXFwc48ePZ/z48QwbNoz77ruPOXPmUF5eTmJiIieddBLnnXceF110EQCPPfYYTqeTUaNGce+996JpGoqiEAqFWv0JBoNtth3MdkVRDvpYZVcW/LG0+1w+328b3JIkqUMC8qJ0vSAcHZqmdZq+4vuyscZNstUk/s3vh6TtbqjyB9bY2EhUVBQNDQ3Y7UfY/1gQjoIvflzLv17+gfxuKWwprCIQVJg4PI8Hb53K54UbueWXLwB4edyZTE7vxgv/+JhZby9A0mlc9X01jUohP1blscmd3DLm3Xn5nB5xHwCPbBnEZ01ZPNDjXNb/VMsnP6wiKb6JFx48g+0NF5GtD/JpTU8a9Rdxb+8z0Pw/o3n+ixRxAZJ5Squ5qo2PQPPrAEjxPyPpDpyxPfPxV/jkxfk0OI28sfoRkjLjAdC8X6IFVyJZr0HSJR6NSykIgiAIgnBcv9/fPfe7F52IOdLQ0dPB1xTkkeHfHpfXUhCOJ+Xl5bz66qsA5OTktAQuBEEQhGPn55I6ar2Bdh/bunoFd59/KuaICF79eTWWyMjfeHZtOSxGxmTEdfQ0jjpN0zokIB8KhVpKyv8eybL8mwXk994mStcLvyd13gDzSuo6ehoHNC4jjliLsaOn0WmJjHFB6ISWrStBA9Zvq+CJu89i7ZZyzpgUXlHaNSoOo6xDliRy7OE3vxfePBmDUU/XfhksbC5klXMjRZ5m9JKOSUm9Kfc68ZKMEvVf5q9awBfN9SDDnMINDE3viTK+ibLMIB9XVXFuxudEGozclJbWMh+t8VFQtqOFtrUJjEuGnmgAciLIUQd8bpp/AWdP/zenniVz9+UTiXaEb6hqqgut4Q5AQ9NCSFEPHIUrKQiCIAiCIAiCcPxJSUkhJiYGl8tFYWFhSwlgQRAE4diJtRio8wbYO4usbMc2PnzhSTYuXwLApHMv6hRBcYnwfH+PJEnCYDC09E3/LamqelQC8vv6s7/jfovn5vf7O7R0/W+VHb/7jyzLIigvHFUFLg8S0JmzjSVgh8sjAuP7IQLjgtAJNAS83L/qW2x6E/f2n8KlZw6lqL6a6K5G+uanMLRvVsu+PWMTWXL2jTR4t/H61sfY7k/lucGXc9XfTuO17T/x6bblAIywd2W4M5ux2X35vOAKLoh4gk01o4gM3oX+x3dR41R6xMdy1pX9+b9vPyGowZuF8/iodDEfjbmdiL3mJ1mmojU9A+a2ZdUly2lgHApyFJJkOfCTVUqQJDBbVP79xcUYraZdA0WCLhOUIiRD7yO4moIgCIIgCIIgCMc3SZLIz89n/vz5aJrGhg0bGDp0aEdPSxAE4Xct2mRoE+yor63hl68+wxxhZeTJp3HBrXd1yNx+TQOizb/PwHhHkmUZo9GI0fjbBpQ0TWsJyh/tYPyBjv0tS9f/1naXrj/YoLpOpzsqAfndQXnh98UfUilz+zp1UBzCvx/K3D76hFRMevH3sD0iMC4IR9F38zexalMpl5wxjOT4gy8tOatkA7NKNmCUg3i3BolrsrC59w6I0Lh70UyeHNW6bF60wYvVeSH/TA/wWGk/ljnHMTm5D99XrgXCq4JK/l3A1jXrKL6wnNOuKAMgXVvBE+8sIGFRkFBAYdjMHmiawt97BtnWuJUPy3PwhKDO58ZhsrWcT4q8HqzXIkntv5AeTPn0FpazkNRGkGMwWIbsGUMygONLUOuRdAkHP54gCIIgCMIfgIaESsdnO2idYA6C8EexOzAOsH79ehEYFwRBOMbiI0xtMgHzh47g480VHTWlfZKAeIupo6chHCWSJKHT6dDpdJhMv+3PdXc/+d86IP9blK7XNI1gMPibZOT/mizLhxRU1+l0RyUgL/rJHzs1zf5OGxQ/q3sKADfMeJIJZ56HBtR4/aTZDiKR8Q9IBMYF4SjZWljN/c99DYDXF+T+m09BVTWWrSvG4w0won82ZtOelZw7GupIsERiM5oYEGvk/MzVDI/fzPp1K6hzRxNviaEGG0aDru3JND86wj2PJjiq6OnoBsClOeN4eftszs0YTunYx8l7ZAe1S1RefbAHZ55XwOyZaSyZuwGA6bdMoUf/LOq8S9GUL8m1wnVdemE1nkqcYTNNgUYijd1bTrmvoPihkiQjRF6z78dEUFwQBEEQBEEQBIGEhAQSEhKorq6mrKwMl8tFTExMR09LEAThd8ukl0mzmTt9RqAEpNnMIhNQOCr2zqr+rf26dP2BguoHynw/lEC+ph3bf+WqqhIIBAgEAsf0PO3Znfn+Wwfkf+/95Ov9wU5fRn03Caj3BUVgfB9EYFwQjoL3Zi3jzU+XtHxfUV3P8vUlfLN1Ix+tXY2lQE+/XsmkTYiASj2yPYKXS5eSYLHy2Yn9KWq4juHx4WN79ChB17uI/DobNc3/4LS8ejbV/Zvc6Gsw6MJZ6JIumdWhOIxaPZi7E2kwA3BSaj9OSu0HwHen34mCSteJJWiVl/Lav9bT4PQAXgDik8P9wCONuZh0iYTURk5JP58m/0o2VD+IhJ6haT9h0h9CNrggCIIgCIJwTCiajKJ1/M3PzjAHQfgj6d27Nz/++CMQzhofPXp0B89IEATh9y0nxkqp29fR09gvDegSY+3oaQjCEesMpeuPRk/5Q824P9YURUFRlA7tJ3+oQfUj7S3/W5Sud3qDaMCKeT/y0QtPUVawjVAgQLQjni75fbn2gcd4/ZH7mPvZB/QaPJxhU07hi//+B3e9i16Dh3PdQ48TE78nKfCnj//H1+/+l/Id25FkiazuvTjjqhsYPGEKANVlpVx3Qrhi1P1vfkT+0BEAXDthCDUVZZx7w+30GjKCf15ydsuYz99zG8/fcxvxKWl8tGj1Mb8mxysRGBd+d5wNzXzy3Sr69UxnUH7GUR9/92oyt8eHNcJEMKjw3Ds/tzweYTawYdtObp3xEbWn+1B6qSg2lY32IlbUekCG5p+jsPX2opndfFH4DRmR4WMbmyIwa6nobNtocEbSxQRbXA8DoJMtdIu5seU8XsO/eGnrqxQ2ZfJhnJdoY+vVP70cd1Hi/pDc6KsZc/dYrrx7Gr5mP8VbdwLQrW/42ph0sUxI/x4NFVky4PaHe5Rru/4nCIIgCIIgCIIgdIz8/HwRGBcEQfgNxZoN2I16GgO/fT/kg2U36okR/cUF4bB1htL1RyMgf6hl7H/LfvI+32+7wGh35YNjFZDX6fS4vBINzjoeu/EKQsEAjpRUrLYoaivLWfTdl1x8599b5rNl9XK2rV1FXFIKvmYPK+bN5s1/3c+tjz8PwEcvPsX7Tz8GgCMllVAwyJZVy3n0+su4+bFnGTvtrIN63hGRkXTtO4Bta1YCkJieiT02jpj4BOr9QTRN+11n8R8uERgXfndefO9nvpq7Af3nS/n+vze2Kl9+pIrK67j+nzPR0Ghw++jRJYmXH7yAMYNzmb98Bwa9zMQRecz6aT3Rdgsmq4mSZhc9E5OwyCE24gG3jKPYhKdfIwCf7DBzdY9EFF0DCxf1YnTG9bz/08dUlMcwoFc1p2bHEVCcRBl7tsyjqdHLB1tLWeTKwh9UeO6jOfztwpNbzTXNdjppttNbbTNHmMjrl9ny/WbnkxQ3vkdezC1kRf0JgFTbnzDpEjHrUzHrk4/atRMEQRAEQRAEQRAOTXR0NGlpaZSVlVFdXU11dTUJCaL9lCAIwrEiSRI9420sLnd19FT2qWe8TQQ6BOE41ZGl6zVN+82D8bu3H+vS9ce6n7zOZKbnGRdTW1FOKBjAZLHwzFfzMFki0DSNHevXYo+Na9lfVRQe/eArsnvk89hNV7Dkh29Yt/gXAHzNzXz80jMADJ10En9++hWUUJC//+lMtq1dxftP/eugA+M5vfrw6MwvW3qMn33drUw48zwAQqqGX1Ex69tp1fsHJwLjwu9OWlK451pCrA29Xsf6rRW8+ekSThjRnUkju7N2SzlZqbFE2yPweQPcee5zVBbX8uCbV9Ojf9Z+x16xvpR6t7fl+y0FVQRDCo/++bSWbZqmceakfiQn2JFNMsVNTnpEJ9HQ2MyLX80j3hTFaf/qww1vvkNxRBXTckdhqZzGcx9+RkNtJGMv05EcNYiqijJOGDaAcWnnoKjNmPQOANwNzVx68sOU3KtiNkoYayXm/7AVfhUY35+vytYxv2ob4+M+RNG8lLo/aQmMS5KOeOuJBz2WIAiCIAiCcOypmoSqdfwN0M4wB0H4o8nPz6esrAwIZ41PmDChg2ckCILw+5YSaSbNZqa8k/Ua391bPCXS3NFTEQThOCRJEgaDAYPBgMXy2/ae3l26/rcOyB+t0vXyroUM6V27kZieSVVpMZeP7ENyVg6ZXXswbMrJ5Pbu27J/RrfuZPfIByCtSzeW/PANDXW1AJRu30JgV0b9yJNPQ5ZlZKOJYZNPZtvaVdRUlNHgrDsq81aP8YKE45UIjAu/OxefPoSRA3JIjrej18m8+P58Vm0sY/n6Ekoqnbz+8WLskWZCIYXumfFsX1+GBCz7aVNLYNzrC1JS6aRrZgKyvOfm36SReazcUIIkSRiNOob1y26TkS5JEnk5iS3f94oJZ13HRFm5Z6/g9czbrqXZFyAywkRjk4/ZC3sjpcLXP29k044qhvbN4tQJvQHQyxEtx7ldHjzVXuQ6I6pDIrUuhounH7icnqqFkJAJqip/XfEJiqYRox/H6PgiukRfDUDAF2T+58vJ7ZtJ5q5VRoIgCIIgCIIgCELH6dWrF9999x2aprF+/XrGjx8vMgUFQRCOsb6JUVR7/ATUzhNUMMgSfRKjOnoagiAIh6yj+8kfaUA+IOkIAEaTmX9//C3zPv+IbWtXUbpjK/O++Ii5n3/IHU+91HJeq23Pa7VOp2uZy6/t9z39Xo+p6p4y+M1N7oN+/krn+RXWqYjAuPC7I0kSuZnxLd+PGdyV1RvLGDM4l7p6DwBNzX5UVWPllgrOv2gktaVOTjx/GJ5mP86GZu7+vy8oKK1l+rTB3DB9TMtY9kgLD98+rc0555Tv4NZfZjE0MZ2Xxp55UDcpZFli3tJtFFc4ufj0oTx5z1kUuZ5hTdF7KJ8MxetrHZhuCvr425r/EVJVbnz8bKoKnIw7cRBdTko64Lnq/etZUnk5Rl0MI5Jn0i8mnRXOEtJspzEiZWjLfm889AmfPP8DZquJ/219AnPEb9tjRRAEQRAEQRAEQWgtMjKS7OxsCgoKcLlclJeXk5aW1tHTEgRB+F0z6WQGJEWzuKLzlFQfkBSNSSd39DQEQRCOG3v3kz8SnmCI7wpqaG5yU16wnZP+dDkn74oB3Xfpuaxb/Asbly0+qLHSc/Mwms0EfD5++epzhk0+BSUUYvEP3wAQn5JGVGwcft+eysUVRQX0GT6aNQt/xtPY0GbM3eP5vc2ttuvEWtp2icC48Lt33skDOGtyX/R6HW6Pj4zkWKJtZr6Ys57B+Rlccc4IIJwlfu4tr1FX78Gwq+9CaeXBvfmdVbSRhoCP70u34fJ7iTWHe0ssqHqYKu9qRiX9jbryJBauKmDahN4kxNkoqXDy8IvfAWDU67jinGEUNzxPdIzG9PMrGJDaOgC/uHYbC2q2AjB5YF+uOG3qQV8Dp3cpitaMN9SMJ1TAm6MvpSnox25sXTJl9y8IWZZEBoIgCIIgCEInoiCj0PE3QjvDHAThjyg/P5+CggIgXE5dBMYFQRCOvRSbmZ4OGxtrDz4771jp5bCRYhMl1AVBEDqCblespKGulrvPP5XIqGhiE5MJBQNUFO4AIDOvJ5tXLjvgWOaICM665mbef/oxlvzwNdedMJRQMEh9TTUAF9z6FwBMZgt5/QayZfUK3nrsARZ9+yXb1q5ElmVUVW01ZmpOLoUb1/PO/81g7mcf0mf4aKbffjeyiPG0SwTGhT8E/a5At81q5sJTBwFw8rhwj4eGgI8Ptq8hxxTbklE+bkhX0pKjOf2EPgc1/uXdB1PsrmdEUiax5nDZc5/iZIf7awC2NXzJgzOicXv8bNqxk//765nEREUQY7fgavTSJTMeSdKRZr+Uas83+Gwncdmy97i06xDOzAr3phgYm003WzI+JUC9z4/T7yHWZG01j/9n777jqyzv/4+/7jOz9yYJKwMyWIEEcOBAceDW1llXtUNtba2ttt9+a/ttte2vVat2Wluttlpb6664Nxg2JCEJIRAgQEgge515//44ciSyIeEk8H4+Hrfc5x7X/bmPGSf357o+V/WSegzDYML0cQA0tD/CpvbfMyrmOjIiz8VpSybeORnDsOyRFAf40g8uJH/6WMYVZeEMP7plTURERERERGTvJk6cyKuvvorP56OqqoozzzwTi0UdVUREhlp+QiRev5+1rT0hiyEvIZK8hMgDHygiIkPCabVgMwyi4+I59aIvULd6Bc2NmzBNP6PG5XDKBZcx97IrDyoxDnDp124nPiWV1/7+V7bUrwMD8qdO56KbbmHGafOCx91634P87offob5yFTubtnHT/97HPx/+FS1bGwe0d+MP/o8//fj7bN1Qz7qKlSSlj8JmMVRlZB8Mc2+F7Y8znZ2dxMbG0tHRQUxMTKjDkaPs+58s4B91K3FYrPxm7Lls2tTKFfOnExN1ZL0wN9Y18faGn+Ac3cTpWffwvXtWUrexhUvOnMIdN54OQE+fm55eFymJ0QPOPeO139HQ3UpKWBQfn3f7gH2XvfdHqtq3UZKYzZMn3RDcvvrjWr47//8B8Kv/fo+iWbl8svkUXL6thFkzKct654juR0RERGSkGsmf93fFfvvH5+OMsoc6HFzdHh484aUR+V6KjHT//Oc/qampAeBLX/oSY8eODXFEIiLHB9M0WdvaQ1UIRo4XJkWTnxh11K8rIiIDfbBpJzv63KEO46AlhTs4OTsx1GEMSxoxLoOi17OJ1r4PSIk8C4c1KdThHJLk8ECPy1hnGHNn5mOffXDzTbT0V/HWlm8RZR/F2Zm/x2YZmEj/xTee5IMzUnB1ZLCpbzt/+MkVbGjcSf64lOAxkeEOIvcyMvvK8SU8vOYDrs6ZTlPPWzT1vMm42OuJcU7AagR6+ez6dxdXnwuLzY/fa8Ht8tDj2USXrx0rVtJjrjmk90REREREhhe/aeA3Q18GbTjEIHK8KioqCibGKyoqlBgXETlKDMMgPzGKaIeN5U3tePwmQznSzADsFoNpaXEqny4iMkwkhNvZ2ece0p//g8UgEK/snRLjMihWbr+Bfu9mWnrfZmraX0MdziH55qQTOTF9DONiErFbDi4pDtDYsxC3v5tWVy0d7o0khuUP2D9qXAqe5I0ArOvaQXiYnYKctD3b2dbGy6+v4uRZeRTmZwBwfV4Z1+eVAbCgYTp+sx+Xr4Wy9L/w+5lX8knLBmanjA+20e9tpiP3Nm5d1EvspnuYdkoB23vexWN68WDFalHPIBERERERkZEsLy8Ph8OB2+2murqac889F6v14P+GFRGRI5MRHUZiRAqrtnfQ2NWP6fdjDMG0FpnRYUxOjcWhErgiIsNGnNM+IpLiACYQF6bE+L7ot6sMCpsl6tN/o/d5jMvt5WhX7v/F8veY9/JjLN6+eZ/HWAyDGSlZJH46N/jByos5n1ERs5gYexkJztw99n/vwav55YRzOS87j4xoKw3dLXtt55ePvM7Tzy/hrp/+Z6/7k8ICCfKk8NkAxDsjOTuziNjd5gjvdFfj9u8Eax9Z03sBSI44iZy4rzIu9kbSos46pHsTERERkeHFj2XYLCISGna7nfz8QIfs/v5+1q1bF+KIRESOP06rhdKMeDz1FfR3tgU2HuHzzl31eGIcNmaOimdGRryS4iIiw0xyhJORUj/NAJLDnaEOY9jSiHEZFFNTn6DDtZL4T5O4n/fcK8t56E9vc+LMHH72/YuOSkzdHhe/r/oEgCdql1GamnXYbTX1LueDph+REj6JOWk/xTAMIu2pzB31632eY7NbuWBGCb9+42X6fG6297fz29IbsFsGftuNzU5iZeVmxmTtfVR3SeojeP1d2K37nsMxKXw2Y2KuxufvIz3qbAAsho28+FsP425FRERERERkOCoqKqKiogKAysrKYKJcRESOnra2NmqWLAIgKXssM+adx5aufkwCyYiDSZObph/DsGD6fcRbTSZnpRIfZscwRkraRUTk+OK0WciMDgtUDAl1MPthEKg84rSpg9W+KDEug8JujSUpYs4+9y9cUo8JLFqyHtM0B+1DXp/Xw9VvPUNjdwd/Pe0yChJSg/ui7E6+MH4S722t59LxxUd0nfVdr9Pn28nG7nfp8+0gwpZ80OdOjB3F8tYNrGhr4MqPHubpE7+BbbeS7d+86XQuPHsKmenxez3fMIz9JsUBLIadgsS7DjomERERERERGXnGjx9PeHg4fX191NbW4na7cTgcoQ5LROS4smTJkuD6pJyxlGbE4/L6aelz0d7vobXPQ3u/B+9eRpLbDIO4MDv+ng5WLPyInu1bmVRYQELe+UfzFkRE5DCMi49kc1d/qMPYLxMYHx8Z6jCGNSXGZdC5vNvZ2PEX4sJKSIk8E4CbrzmJMKedObNyByUpXrGziarW7YyNjmdZyxYA3thcNyAxDvDL2ecc8bUA8mMvYqerltSwyYRbkw76vHZ3L7+ccjU/X/MCbzVVsLFnB30+N9GWz8qgWywGY7MPvk0REREROf74TAOfGfoRRMMhBpHjmdVqpaCggGXLluHxeKitraW4+Mg6gouIyMFzu92sWLECCPxMLikpAXaNJAwnMzrwzM80TVw+P37TxGeC1QhM5+i0WjAMA48nhoXPN+LzeKipqeHcc8/FarXu87oiIhJ6CWF2Yhw2Ot3eUIeyTzEOG/GaX3y/lBiXQVez4x7a+t9ma9dfcVifIi6slPycNH72/QsPu83ePjevvV3JhJw0ssclcsmCJ3H7fdw0sZRLxxfT2N1xxKPC9ycxbALnZT++32NM00dt28Ns6Hic3Piv0WueyzUf/BWH1cqfT7iGOEcEU+PHEG0P3287IiIiIiIiIvtSVFTEsmXLgEA5dSXGRUSOnoqKCvr7A6MFi4uLiYiI2OtxhmEQZtt3ottut5Ofn09lZSV9fX2sX7+e3NzcIYlZREQGh2EYFCRH88mWtlCHsk8FydGaluMAlBiXQeewxrLr266t7xPiwkoPuQ2Xz0uHu5+U8CgAHvv7R/zrpWXYbVaeefxmnFYbbr+PKIeDH0w/bRCjP3Q+v4u1bQ+xues/eM0uABq7XmS7pwSP6cPj9dHjcfO9wgtCGqeIiIiIiIiMfKNHjyY6Opquri7WrVtHX18f4eHqgC0iMtRM02Tx4sXB16Wlh/7Mc3eFhYVUVlYCUFVVpcS4iMgIkBEVRmZ0GFuG2Vzju+YWz4gKC3Uow55mX5dBNyr6S/gBP9DpqsLcy3w6++Px+zjr5b9Q+u9H+GfdKgBiPi1DFB5uJ8bp5LX5N/DE6V/g1qLZRxSraZp8vP1enttwCU29Kw6rjcbuF9jQ+UQwKe60ptLV3cvahfcypWcU3yo4ndKkUaxuuoHyxtPpdlfvs62ezj4Wv7Gavu7hPU+FiIiIiBxdftMYNouIhJZhGBQWFgLg9/uprt7335giIjJ4GhoaaG5uBiArK4v09PQjai8nJwen0wlATU0NXu/wLc0rIiKfmZwai90yvP42tlsMJqXGhjqMEUGJcRk0rX0fs6ble/jpI8I2IbCt/122df07eExXdz8v/HcFDZt27LOdbo+bhq5WAFbu3AbANZfN5Dc/+yKPP3w9TqedzKhY5mSMw2o5si9hl6+ddZ2v0O3dRl3ny8Htpmny11++yp1feIQNNVv320a0IxcDCwY2UsPnkhhehjVsByUnrMVcuJOb8k6iz7Oetv6P6Pduprnnv/ts60eXP8T/fvEhfnrt74/ovkREREREROTYtXv59F2jDUVEZGgN5mhxAJvNxoQJgWeoLpeLdevWHXGbIiIy9JxWC9PS4kIdxgDT0uJwWpXyPRh6l2TQVLXcSVPPC9S13kt27LVYCHyB1bX+D2ua78Dt28kDf3iL+//wFrfc9TR+/95Hksc7w3nwxPO4Jm8at086AQCLxWBqcTZJCVFHHKdpmrh9PQA4rXHkx15MjH00+bEXBo9pbe7k2d+/zZLuTVyx4q88XP3uPttLCJvGzPQnmZX+d0rSHiQ7+hIs/iSaGyZy81WB8ulRjjxSIs8n2lFMWtRF+2yrp7MPgO7O3iO+TxERERERETk2paenk5CQAMCGDRvo6uoKcUQiIse29vZ2amtrAYiKimLixImD0u6uCiAQKCCXbCgAAQAASURBVKcuIiIjQ0Z0GAVJ0aEOA4DCpGgyolVC/WBpjnEZNPFhpTT3vkZ82EySI+dRt/NHmLgBk5bel+lwLSYi4ocAhIfZMfZTaeKCsYVcMLZw3wccgYXN97Ku81WK4q6mJPnrzEz5zh7HeKIMOr+bSkdUH/5wD3+o/YBbJszBYuzZl6TdVcGibVcDBrMz/k5CWAlnjX8Pxn92jGHYmJj8qwPG9uOnb2PRays5Yf60w79BERERETnmmKYFvxn6fs3mMIhBRALl1IuKivjggw+AQDJl5syZIY5KROTYtXTp0uB0kdOnT8dqtQ5Ku+PGjSM8PJy+vj5qa2vxeDzY7fZBaVtERIZWfkIkXr+fta09IYshLyGSvITIkF1/JNJTDRk0hckPcGLWInIS7sRmiSIv8WcD9rt9zVxy+UZ++aNL+NOvr8HYX2Z8P/q9Hlbv3IbX7z+s87f0fBL4t3fRPo95fWsNzUke3OEWEhyR3JAzG4thwfS34W85E3/zLPyedfT2unF5WwAT8OPy7TysmHZJyUrkgptPJykj/ojaERERERERkWNbUVFRcF3l1EVEho7H42H58uUAWCwWSkpKBq1tq9UaLKfu8XhYu3btoLUtIiJDyzAMCpOiKQzRyPHCpGiKkmMOO9d2vFJiXAaNYRg4rAnB1ylR52C1pOED/IAfkw2dDxA3+q/Exg78RjVNk+fqKzn/1cf55ocv4fb59nmdq956hvP/+wQ/KF9w0LH5/SbrNrbgcnuZnfp9xkSdTtleRorvckp6DtmR8RTGjeK1M27jjqIzAjs8leBrAP9OFiz4E2dd/htee9lJbuwNRFssNLY/hM/ff9BxiYiIiIgcDB/GsFlEZHhITk4mLS0NgC1bttDa2hriiEREjk2VlZX09QWmPywsLCQq6sinetzd7h2dVE5dRGRkMQyD/MQoZmbE47AYQ/4XswE4LAYzM+LJTxzc30fHC5VSl0HnNz00tP8On9mLx7+DwLeq+WkvDC9bu/9Ja9/HjI77CqOivwjAW43ruGPhKwCsbm3i46YGyi+5Fatlz74b6zsCf+zXdxx4dPbSlkfY0PUm2yvP4B9/d1GUl86f/u9KMiNn7fe80VEJvH3OLXvucJRB2CVgdvC3FxPJztlGeN7dtPen4jf76XZXsrrlLqamPnjA2ERERERERESORFFREU1NTUAgcXPyySeHOCIRkWOLaZosXrw4+LqsrGzQrzFmzBgiIiLo7e2lrq4Ol8uF0+kc9OuIiMjQyYgOIzEihVXbO2js6sc0zSEZyZ0ZHcbk1FgcVo17Plx652TQ7ex9j4aO37G583GyYq6ndvmJ1FVlAoGC42DQ79tCfVtgzu0napZy03vPDWhjR38vPV538HWvx02/zwuAzwyUUA+37X++HdP0U9X+NL2+Fsz4jwDYtLXtiO7NMBxY4u7DEv87br3pEuZduJXo+FZ2uNZgMeLxmBa29b6F3/Qe0XVEREREREREDkTl1EVEhtbmzZuDHZBGjRrFqFGjBv0aFouFgoICALxeL7W1tYN+DRERGXpOq4XSjHjG2Tz0fzrA0zzMKYF32ZVaj3HYmDkqnhkZ8UqKHyGNGJdBF+nIxWpEYOIjLeoC1izJpKVrBVFRdtJGbwDAakSRFnEBbX0f8+/6gR/2nBYrXyuaSYwjDIDKnU1c+vpThFltvDb/BpLDI+n0uMiMjN1vHIZhYXLCDWzoepOp476M7QInJ00ff8T319a/gmXbv0FU9njOjP06VTv+j9SIOaRFnkl1668YE3kGFkPfWiIiIiIyePwm+M3QlzH3m6GOQER2FxsbS1ZWFps3b6alpYXt27eTmpoa6rBERI4Zu48WLy0tHbLrFBUVsXTpUiBQTn3SpElDdi0RERlatUsXsa6mhvDEFKaedhbdhGGyq7byge06zgAyY8IYHxdJfJhdc4kPEmXvZNBF2MdwQtZHgInNEsX3vtPM2q57Pt1r4LRmUDbqFRY3zmVb99+4c9LlfO3DWHp9HgzDwOX38VDFQuZm5lKUmMaqndvo93np93mp69jJk3Mv570t9Vw6vviAsUxJvJEpiTcCEH9qG3/650dU1zdx2dnTDuveVrX8gG09C/CbLlr7lxLZdB0r/nwFc6+YTeKJEzhx1LOH1a6IiIiIiIjI4SgqKmLz5s0AVFRUKDEuIjJIOjs7WbNmDQCRkZHBUd1DITs7m+joaLq6uli3bh19fX2Eh4cP2fVERGRotLe3Byt/WF29nJafjdc0aOlz0d7vobXPQ3u/B6+5Z4rcZhjEhdlJCLcTF2YnOdyJ06bR4YNNiXEZEjZLZHA9PNwHXYH1CYn/R0rkORhY8Zk9AKRFGFRdeQcAr22s4WsfvIDfNLn6rWf43ZyLuGhsIXUdO3D7vHS7XVz15tNs6GqjqbeLb085+PnT/vZCOW9U1PB8zAre+mgND8+6HIf14L8FPL5utnS/CIDdEk9G5Nn89tp3WV+xhRXvVfNU1f876LZEREREREREBkNhYSELFizANE2qqqo4/fTTNZpERGQQLF26FPPTxEVJSQk229A9SjcMg4KCAsrLy/H7/dTU1DB16tQhu56IiAyNxYsXB393zJgxA6vVihXIjA4nMzrQ4ck0TVw+P37TxGeC1QCLYeC0WvQ5/ihQVwMZcgnhJ1Oc/AjFKb8lPeoybJYorJYwpqQ9TU7C/zIu/s7gsfOy8/n+tFMBaHf38/z6SiLsDm4tms2/6iv5+ocvsKm7A4DK1u3c+O6/eaRi4UHFUTZ5DJ4xHvwJfj7csY6q9q0D9m/o2sn9Fe9S0759r+dv7Xk1uF6QeDeFSd+naFY+AEWz8w7+DREREREROUR+0zJsFhEZXiIjIxk3bhwQGKHS2NgY4ohEREY+r9fL8uXLgcAc4NOnTx/yaxYVFQXXq6qqhvx6IiIyuNxud/B3h9VqpaSkZK/HGYZBmM1KhN1GtMNGhN1GmM2qpPhRohHjMuQMwyA58ow9tkc7C4l2Fg7YZjEMbiooZVtvF+XbN3F1XqDkubnbf7+YM4mksAgaezr5z/pK3m5cx8XjivD4m1jXuY45afOwWa3BNv1+k+07uzhtZh4Jz0TS1OEhyR5FQVz6gGvfUf4CFW3beHVzFW+fc+se8VoMR+B+sBLvDMzz87WfX8Hl3z6X+JSYw317RERERERERI5IUVER9fX1AFRWVpKVlRXiiERERraqqip6egLVLidOnEh0dPSQX3PUqFHExsbS0dHB+vXr6e3tJSIiYsivKyIig2PVqlW4XC4AiouLiYyMPMAZEgpKjMuwYxgGP5oxd8C25PBIXjj7Whq62piXlYfNYuGdxnW80lBNUWIaETYXzzXcgM3i5/rXXyEv4iJ+eEogGf+D+1/i/SXruPCMScQTSe9/vZx1ejFOq33ANcZEJ1DRto3muk5ef7eKeacOTNpnRl1ImDUFpy2JCHtmMNaE1NghfDdERERERERE9m/ixIm88sor+Hw+qqqqmDdvHhaLKjyIiByuxYsXB9dLS0uPyjUNw6CwsJCFCxdimibV1dX7HG0oIiLDi2maA353lJWVhTAa2R8lxmXEKExIpTAhNfj6tMwcqq+4A6vFQqtrKxbDD4DpdPHY5mXc1DuTtIho1tQ3AVC9rolHf3oltRuamVa4Z+/5e6fOZ9Ef1mLpNvm77SPyZ6Swoq0Bv9/PqIgE2j09jIsaR6YjgQ+ba4iyOXFY7BTGZR6dN0BEREREjlt+DPyEvqzacIhBRPbkdDrJy8ujurqanp4eGhoaguXVRUTk0DQ2NrJ1a2AKxrS0tKNahWNXYhwCFUCUGBcRGRnWr1/Pjh07ABg9ejRpaWkhjkj2RYlxGRSm6WNH33tE2scRYR971K5r/bQHfIIzg2Tzbp6veZeFHUkYwLaeLtIiovnJN8/ljY9quGDuJOJiIiibPAYAr8/Pg398i+aWTu68dR7JidGcdtoY3khcRbXRyTULH6Hf59njmmMik2noaQm+/k3JtWzu3YnL7yE3Kp2ypBwM95tgicdwHJ0epSIiIiIiInJ8Kyoqorq6GoCKigolxkVEDtPnR4sfzTlf09PTSUhIoLW1lY0bN9Ld3U1UVNRRu76IiBye8vLy4PrRqjQih0d1tWRQbOx4lIrmr7N464V4fJ1H/fqVa7dy34/WsvqNDPxYMIGVOwI9OydPyOTOL88lb0zKgHOq127jpQWr+GTZBl57uxKXz8MnnavZNQjGghEcD5Pq7ODEhDqirP1s7NkxoJ2fV73Ir6pf4eHa1/nGssepbHoEs/02zNar6elbPcR3LiIiIiLHA59pDJvlUHzwwQecd955ZGRkYBgGL7zwwoD93d3d3HrrrWRmZhIeHs7EiRP5/e9/P+AYl8vFbbfdRlJSEpGRkZx//vk0NjYOOKatrY1rrrmG2NhYYmNjueaaa2hvbz+ct1pkxMrNzcXhcABQXV2N1+sNcUQiIiNPd3c3VVVVAISHh1NUVHRUr7+rnDoEyvKuWbPmqF5fREQO3c6dO6mrqwMgNjaWCRMmhDgi2R8lxuWIuLwtbOx4FJcvUK7cNH2A/6jHsaW5A9MEWwvMT8zn8pzJXDJ+/x9cx49OJmdsCrEx4cyaPo5vL3uSznFmcP9PJn+R/8z5DrfknckN2eWckVLN+ekrKU0cz50F5/GDoou4d8rl9PncA9r1YgXAb8I9q58f/JsVERERERkhenp6mDx5Mo888she93/rW99iwYIFPPXUU1RXV/Otb32L2267jRdffDF4zO23387zzz/PM888w0cffUR3dzfz58/H5/MFj7nyyitZuXIlCxYsYMGCBaxcuZJrrrlmyO9PZDix2+3Bh3Aul4t169aFOCIRkZFn6dKl+P2BZ5vTpk3Dbrcf9Rh2JcaBYJJeRESGr90rjcyYMQOLRanX4Uyl1OWI1Oz8ITv73sVmxFGQ9P+ItOdit8Yd9Pn9Pi9feP3vbOhs5fHTLqMk5eDm6zZNk8q2J+n17mBq4s14PD5MTNon+ajqaeaPsy8mxhG23zYiIhz85TfXBl9v2bQTADsWZiXnMzs5F7vFxnXjT+HDxiy6PHWcnDKb21OuH1BCKTsiiX9uXERGeBw5MelMSZ7Abyu3U97aQru5/xhERERERI5lZ599NmefffY+9y9atIhrr72WU045BYCbb76ZP/7xjyxdupQLLriAjo4OHnvsMZ588knmzp0LwFNPPUVWVhZvvfUW8+bNo7q6mgULFvDJJ59QVlYGwKOPPsqsWbOora0lPz9/yO9TZLgoLi5m9epA5bLKykqNVhEROQQ+n49ly5YBgZHbM2bMCEkcKSkpJCcn09LSwqZNm+jo6CA2NjYksYiIyP719/ezcuVKINBRddq0aaENSA5IiXE5Ik5rcuBfWzJpUecf9HkvbqiiYmcTsfYwVu/cBsCCTWsPOjG+w7WG5Tv/AECkPZUJ487EiLPQl+1lQ38bf161mF/OOfeQ7iUvJp0tfW0kh8fy6+kDR5fMzHiSLnctcc5Je8wrlB+bwf9OumTAtivy7yRx6ypmJ+shnIiIiIgcOb9pwW+Gvtf5rhg6OwdOn+R0OnE6nYfc3oknnshLL73EDTfcQEZGBu+99x5r167lN7/5DQDLli3D4/Fw5plnBs/JyMigqKiIhQsXMm/ePBYtWkRsbGwwKQ4wc+ZMYmNjWbhwoRLjclwZO3YsERER9Pb2Ultbi9vtDpZXFxGR/VuzZg3d3d0ATJgwIWTJ6F3l1N97771gXLNmzQpJLCIisn8rV67E7Q5UFZ40aRLh4eEhjkgOJPRPVmREy0v8X6amPUlJ+tMHfU5zbzff/Ohl/ly9hAdWfxTc/mj1Yn669O2DaiPalkGYNR4DG0nOAnJGJ/PH71yOc7uBpRfsm8wDN/I55qenfL40OoDdEkVCWAkW4+DKJyU5o7ly7ImMiUo+5DhERERERIa7rKys4HzesbGx3HfffYfVzkMPPURBQQGZmZk4HA7OOussfve733HiiScC0NTUhMPhID4+fsB5qampNDU1BY9JSUnZo+2UlJTgMSLHC6vVSkFBAQBer5eampoQRyQiMnLsXgq3tLQ0hJGonLqIyEjg9/sH/O7YvbO2DF8aMS5HxGLYiQ87tA+KUXYHNsOC1/TjZ2AC+2+1y7ljysmE2/afgA6zxXPpmP/gMz04rFF0e1y82b2OAiMZ19J+Lr/z0MtVfL/oQqZsHcP2vnb+su5dvjTuZGwWa3B/p3stNiOcCHvWIbctIiIiInIs2bx5MzExMcHXhzNaHAKJ8U8++YSXXnqJ0aNH88EHH/D1r3+d9PT0YOn0vTFNc0Alp89XddrbMSLHi6KiIpYuXQoEyqlPmjQpxBGJiAx/W7dupbGxEQh0rhs9enRI40lKSiI1NZXt27ezZcsW2tra9ugoKCIioVVXV0dbWxsA48aNIzlZAyVHAiXG5agzDAOf6d/rPrffx+LmzczJGHfAdqwWJ1ac7Ojr4b7l7/Lc+kpIgfdu+gpjYg79g2K8M4pREQk8WPNfADIjEzkzPfAAoaX3I5Zs/yoGNk7KfIEo+5hDbl9ERERE5HD5MfCboU/y+gnEEBMTMyAxfjj6+vr4/ve/z/PPP8+55wamQZo0aRIrV67kV7/6FXPnziUtLQ23273Hw+Dm5mZmz54NQFpaGtu3b9+j/ZaWFlJTU48oRpGRKDs7m5iYGDo7O6mvr6e3t5eIiIhQhyUiMqx9frT4cOhcV1RUFPyMU1VVFayoIyIiw0N5eXlwXaPFRw6VUpfD0ufZzEebT2Jh42m4vM0HdU6nu5/7V37AM3UrOW3UeADi7GGkhEcG1h1hTEsexbSkUQcdR0NnG6e/9GggKf5pG/HOw5/DITsiEYfFht2wMibys949/d5mEix+Ygw3Hl/HYbcvIiIiIiIBHo8Hj8eDxTLwz1Kr1YrfH+hIW1JSgt1u58033wzu37ZtG5WVlcHE+KxZs+jo6BjwQLu8vJyOjo7gMSLHk11z00KgvOOaNWtCHJGIyPDW09NDZWXg2WJYWNiwqbShcuoiIsNXc3MzGzZsACAhIYHc3NwQRyQHSyPG5bC09Zfj9gUS4h2ulaTYzjzgOd/48CXe27p+wLZ2Tz8WT2B9Vtpofj/nogO2s7a9hV+seJ+ZqVn8tmIRHe5+wOTWgk4uGBNPtCNQ/nx9xWYqP6nj9C/MJDL24HrHj4tO5dVT7wJM4hyRwe2j7OGMcnoxAYvVcVBtiYiIiIgc77q7u1m3bl3w9YYNG1i5ciUJCQlkZ2czZ84c7rzzTsLDwxk9ejTvv/8+f/vb37j//vsBiI2N5cYbb+SOO+4gMTGRhIQEvvOd71BcXBwstT5x4kTOOussbrrpJv74xz8CcPPNNzN//nzy8/OP/k2LDAPFxcUsWrQICJRTnz59eogjEhEZvpYvX47P5wNg6tSp2O37n+LxaImPjycjI4OtW7fS1NTEzp07SUxMDHVYIiLCwNHiw6XSiBwcJcblsKREzmNn34dYDAeJ4Scd8PiXNqzZIym+y66i6h9t3cAJz/2OL02YxlcKZ+6zrd9XfsLbjet4u3Ed0fZAkvrk1G5mJD7H1i7479sbeePNTFi4Ht/WdupWbuSO315/0PcWZXPyUXMNf6l/jy19rdxf8iUmhZmY8GnhyL2XgRcRERERGSomRrCMeajjOBRLly7l1FNPDb7+9re/DcC1117L448/zjPPPMPdd9/NVVddRWtrK6NHj+ZnP/sZX/3qV4PnPPDAA9hsNr7whS/Q19fH6aefzuOPP47Vag0e8/e//51vfOMbnHlmoMPu+eefzyOPPHIktyoyoqWlpZGYmMjOnTvZuHEjnZ2dRzz9gYjIscjv97N06dLg6xkzZoQwmj0VFhaydetWINDRac6cOSGOSERE+vr6WL16NQAOh4MpU6aENiA5JEqMy2GxWaIpTvkNpmli4tvvsXXtO/jVyg8AKEzcQm5cMx9uyWVnf9SA47q8brq8bu5b/h7X5pcQZtt778zTMnN4qaGaqUnpLG/ZAkBNh4nHb8Fm+Clf1U9bZx/R6TEYW9uJiju0udQern2dfzR8FHz97vYqJuWfjWE4wYjCsBfu52wREREREdnllFNOwTTNfe5PS0vjr3/9637bCAsL4+GHH+bhhx/e5zEJCQk89dRThx2nyLHGMAyKiop4//33gUAJ3lmzZoU4KhGR4aempobOzk4A8vPziY+PD3FEAxUWFganlKmqqlJiXERkGFi+fDlerxeAKVOm4HQ6QxyRHAolxuWw+U0vy5uupstVSVHKgyRHzN3rcd//ZAGbutuxGn4uzVmOxTBxWjz8c20pextwYjUMpjz7G/5xxhVMS95zvvHzxkzk7Ox83ti8lqWfJsab+2O4Y/EXsFt8nJZbRiTdfO2umZhtfUw5ecIh3Ve/zw2AzbAyOT6bS7LKAmUwwk4/pHZERERERAaL3zTwm6EfMT4cYhCRg1NcXBxMjFdWVioxLiKyF4sXLw6ul5aWhjCSvYuNjSUrK4vNmzfT0tJCc3MzKSkpoQ5LROS45ff7B/zuKCsrC2E0cjiUGJfD5vG10ulaAcDO3vcHJMa9Pj/dPf2c/cZf2NbbDQb4TIPGrjiyY9po6Ezaa5snp43hg6YGfD4v7zSu22tiHMBmsdDh7huwrdMTwbnZE/jZSedit1j3et7B+OaEs5kYO4riuGzGR6cedjsiIiIiIiIioZKYmEh6ejrbtm1j69atmptWRORztm/fzsaNGwFISkpi7NixIY5o7woLC9m8eTMQ6Oh02mmnhTgiEZHj1+6VRnJzc0lISAhxRHKoLKEOQEYupy2F8fF3khQ+l+zYGwEwTZOHH3uHs7/4G8699iG29XXvNirc4C9VJ/LzJWdR3jRur21+0NQQXF/cvHm/12/t/ywxntMZS+p/rTgX+Y8oKQ5Q19WECWRG6AeaiIiIiIiIjFxFRUXB9crKyhBGIiIy/JSXlwfXS0tLAxUjh6GCgoLgelVV1X6nqRERkaG1++8OjRYfmZQYlyMyOvbLTEr9LRH2MQA0NXfyrxeX4XJ76R4PfO5zmolBn9cRfBUR5iM6wsS2lw+eVsNCfcfOAdv6vVvodtcCcGNBKT+aPpe/nnYZ6Q0RWPwWmnd2HdH97HR18ZXyR7m38nmeWB8oOVfb+hDvbDqDpp639nqO2+dlXVcTftN/RNcWEREREdkXv2kZNouIjByFhYXB9crKSiVTREQ+1dvbS0VFBQBOp5PJkyeHOKJ9i46OZsyYMQC0trbS1NQU2oBERI5T27ZtY9OmTUCg0si4cXsfACrDm55qyKBKSYqmdOoYbFYLHbmBbQ6Ll4uzl3FGehXBTLkJkU7A7sFndfHXMy7m3/OuJi/2sxLry1u2cPpLj/J24zoA+jybWdx4Jsu2nseO3ncIs9q4fuJ0Th01nvvuOJ+bv3gC9377/COK326xYTMCI87b3T34/X7qO/5Mv28bDZ3/2Os5X1/8GFd89BC/WvPKEV1bREREREREZDDFxsaSnZ0NwI4dO9i+fXuIIxIRGR5WrFiB1+sFYMqUKTgcjgOcEVqf7+gkIiJH3+dHiw/XSiOyfyFNjN9zzz0YhjFgSUtLC+43TZN77rmHjIwMwsPDOeWUU6iqqhrQhsvl4rbbbiMpKYnIyEjOP/98Ghsbj/atHLd8fhc1O37Impa76HC1cuZLf+bf49fTeJEXwgLHnJy6lgtGr+LqnHLuLH6d8dHNAPS6wWZYiLQ6WbR1C0WJafz33Ou5b+ZZPHLS+UTaOsiNaaKxux0Ar78DEw8Abl/zgDgy0+K57uKZZKXH7zfehtptVC3dsM/9MfZwpiaMAeDlxuU8vfFj3t2RQ5snkvSoL+69zZ4WADZ0N+91v4iIiIiIiEioFBcXB9d3jY4UETme+f1+lixZEnw9Y8aMEEZzcAoKCoIJGJVTFxE5+np6eoIdk8LCwpg0aVKII5LDZQt1AIWFhbz11mclqq3Wz+aH/uUvf8n999/P448/Tl5eHj/96U8544wzqK2tJTo6GoDbb7+dl19+mWeeeYbExETuuOMO5s+fz7Jlywa0JUNjZ9/7bO1+FoBXNtqp74oCwA3BucUbe+LxmwZgUhS/lURnN3ctuRTTbzDG0kRKWBd/rfKS5IzihoLpXJE7BY+vgyjzJQyjn0+arVz/+gbGxyXyxdxfEGHrIS3qkkOOtbG+mVvO/TV+n58f/O5aTjx77yWSJsRk8MmOOrIiE2lz9fDejgl8sHMi54w+Ya/HP1DyJd5rXsNFWaWHHJOIiIiIyMHwm8ann6lDH4eIjCwFBQW89tpr+P1+qqqqmDt3rka3iMhxbe3atXR0dACQk5NDYmJiiCM6sIiICMaNG0d9fT0dHR1s2bKFzMzMUIclInLcWLp0KT6fD4Bp06YN+0ojsm8hT4zbbLYBo8R3MU2TBx98kB/84AdcfPHFADzxxBOkpqbyj3/8g6985St0dHTw2GOP8eSTTzJ37lwAnnrqKbKysnjrrbeYN2/eUb2X41GMcxIefyz9vn7+vf7zc2wHkuE1Hen879JruS7/NXJithPhdJMS0cW4qBa+NvE9AGanrue/DWO5oWA6AH+vXczocBcGsK2nkXe2bODdrRv48xo4I3McuXELuX3aiTg+7fxgmiYerw+Hfd9f0i6XB78vEGNfj2ufx30970zOypjCqIgEwCQ5LIac6DTinVF7Pb44Ppvi+OyDebtEREREREREjqpdyZR169bR0dHB5s2bg+XVRUSOR4sXLw6ul5aOnIEuhYWF1NfXA4Fy6kqMi4gcHT6fj6VLlwJgGMaIqDQi+xbyOcbr6urIyMhg7NixXH755axfvx6ADRs20NTUxJlnnhk81ul0MmfOHBYuXAjAsmXL8Hg8A47JyMigqKgoeIwMLZcvjm8svIzbF11Jc3/MwJ0mBJLjBpePn0PF6pPZ5Elghzcai9+O0+INHuq0eljesoUvv/kfbnv3ZX67qpafrzyHJ2pn8+qmyezemf2Nzev5bUU5Vy14BgCP18d1dz3J3Gsf5qNl9fuMdXzBKH76xFf47oNXcfrF0/d5nGEYjI9OJcxqJ8zq4ItjZlOSOO4w3h0RERERERGR0CsqKgqua25aETmeNTc3s2FDYJrFhIQEcnJyQhzRwZswYQIWS+Bx/po1a1ROXUTkKKmqqqK7uxsI/CyOi4sLbUByREI6YrysrIy//e1v5OXlsX37dn76058ye/ZsqqqqaGpqAiA1NXXAOampqWzcuBGApqYmHA4H8fHxexyz6/y9cblcuFyfjRju7OwcrFs65vX7vCxv2cLkxHQi7Q5cfi8e08TEYFpSBlt7Omnq6wbTxBHhxmIxcfU5+H+rPyJsbQyNi0/B1WvHdWoCHzSFYTV8pIV38lpjMT4/vLlpHWAS7rDR0pFGTVsau2qyf77SW3VrYG7vne091DUE1hevauDEkvH7jL/k5PxBf0+6PH0807CQvJh05qQWDHr7IiIiIiJ+DPyEvvTxcIhBRA7dhAkTsNlseL1eqqqqOOuss4LJFRGR48nnR4uPpKklwsPDycnJYe3atXR1dbFp0yZGjx4d6rBERI55u//uKCsrC2EkMhhCmhg/++yzg+vFxcXMmjWL8ePH88QTTzBz5kyAPT6cmKZ5wA8sBzrmvvvu48c//vERRH78+taHL/PaprWkhkfx2GmXUJSYxt/nzmdr9385PesE4sLG0dLbQ+lzD2GzB8qW2+w+PH4L/eOh/+Msbrv5VL6y5mVMw+DdbQVY/OANVmE3wQr9fu+uweafjjzf08Nz5gOQlhTDLVedTM367Vwxf98jwU3TD5gYxuDOPf+X+vd4asOHGMB/T72LpLCYA54jIiIiIiIicrQ4nU7y8vJYs2YNvb29rF+/fkSNkhQRGQz9/f2sXr0aAIfDwZQpU0Ib0GEoLCxk7dq1QKACiBLjIiJDq7GxkS1btgCBQbmakmjkG1bdgyMjIykuLqauri447/jnR343NzcHR5GnpaXhdrtpa2vb5zF7c/fdd9PR0RFcNm/ePMh3cuza2tMFwPa+bi567Un6vB6irH8g3v4oVS3XAZAcEUlJYhZetwWf18DrtoIfTAPqT+rn5jWvEGa1YzUtXJM3DR9gWAADDOtuI8PNwHJ1/mT+cOr5mCaYJswfk8/GG77LKVnj8Xp9AFx1/gz+7/b5pKfE7jVu07cNs+UkzOZZmN6G/d6jx9/Fmp33Ud/+l4MqSZQdmQRAhM1JuNVxwONFRERERA6V3zSGzSIiI5PKqYvI8W7FihV4PB4AJk+ejNPpDHFEhy4/Px+bLTDWrbq6Gr/ff4AzRETkSJSXlwfXy8rKRlSlEdm7YZUYd7lcVFdXk56eztixY0lLS+PNN98M7ne73bz//vvMnj0bgJKSEux2+4Bjtm3bRmVlZfCYvXE6ncTExAxY5MCWbd9C5c7t7MoV+/0mF7/yFCtbdgDgM238eOUrLGpZz7/OvoorsmbT3xmO32MF08AwDHpNH4YRGBFedc3tFCamBkaFWz5LjgPBpHi4zcOZ48pJjn6b+086i/8pPZUH5swPzit+2rUPsXDF+gMH71kN/hYw28G9fL+Hbur8Fw2df6e27X463Ad+WFAQMwqAHq+Lj3esPXAsIiIiIiIiIkdZbm5uMAlUU1OD1+sNcUQiIkePaZosWbIk+Lq0tDSE0Rw+p9NJbm4uAD09PTQ0NIQ2IBGRY1hnZydr1qwBICIiguLi4hBHJIMhpInx73znO7z//vts2LCB8vJyLr30Ujo7O7n22msxDIPbb7+de++9l+eff57Kykquu+46IiIiuPLKKwGIjY3lxhtv5I477uDtt99mxYoVXH311RQXFzN37txQ3tox6c1N6/D6/cER3X5Mqtta+L+lRaRG/YK/b76YfzYs5fbFz2IYBt8pOYkbCkq4dHzBZ19onya8p0emc9+y9/if8teJ/fQPc5sROCozIgYrFiwY/O/MSBq6F1DV9ndmZbi5qWgGDquVHa3d1DW04PX6KV/VcODgnadA+Bch7BIIm7ffQ+OcRRhYcVgSCLeN2usxHe5enlz/IVXtjVgMI5jP33UPIiIiIiIiIsOJzWZj4sSJQGBgQl1dXYgjEhE5eurq6oJVR8eNG0dSUlKIIzp8hYWFwfWqqqoQRiIicmxbunRpsDJHSUlJsGKHjGwh/b/Y2NjIFVdcwY4dO0hOTmbmzJl88sknwblRvvvd79LX18fXv/512traKCsr44033iA6OjrYxgMPPIDNZuMLX/gCfX19nH766Tz++ONYrYM7j7TAlRMm84fqT4KvzU//6/Zb6XJPIy82khWtjUyOzwIg2uHkRzNPB+COkpP50h/+znpbF4nrLZxWlsWvqsvxWyDK5qA4MZ0v5hZz3tiCYPuvbazhZ8ue4EsFVvq9dj5p8nLx+MC+tOQYvnr5idRuaObyc0oOGLthODFi/++g7jMxvJS52R9iMZxYLXsvqfRAzX95dctywqx23pn7Q/466+v0ePuZkTj+oK4hIiIiInIohksZ8+EQg4gcvqKiIlauXAkEyqnvSpSLiBzrFi9eHFwfqaPFd8nNzcVut+PxeKiuruacc87Rs3ARkUHm9XpZtmwZABaLhRkzZoQ4IhksIU2MP/PMM/vdbxgG99xzD/fcc88+jwkLC+Phhx/m4YcfHuTo5POyo+O4JmcqT65d8dlGA6w2H18uf5ybc3z8vPgF7JZ4PL5LsFvjgodlRMWw4Pab+c2f3ubFhlX8NqEc/9jAvi29XWzp7eKjbQ3EOyM4MWMMAB9sa6CxJ5ZfLD0bv2nwx1MSPrusYfCli8qG7F7t1v2X1090RgEQa4/AYlgojMscslhEREREREREBsPYsWOJjIykp6eHtWvX4nK5RuQcuyIih2LHjh3U19cDEBcXFyxFPlI5HA7y8/OprKykr6+P9evXj/h7EhEZbioqKujt7QWgoKBgwIBdGdk07l/20NzbTbTdydKd99LYs4iZKXfz71qDrT2dLG/ZMvBgA6wOLw6bi/Sw1wATj7+VF9d/yKW55w041Gaz0ryjCwCrZ+/X/uq7/2H1FbdjsVj4WuFMOt39ZEbGckZWLtNThk/y+et5Z3JS8gTGRKVgVfl0ERERERERGQEsFgsFBQUsWbIEr9dLTU0NkydPDnVYIiJDave5xWfMmIHFMvKf5RUWFlJZWQkEyqkrMS4iMnhM06S8vDz4uqxs6AZpytGnxPhxrs/jYUdfD6t2NHFq1jhuefsF3t3agMPw8j8nvg7AB1v/yZubnXR7nWztiR9wvmH4wTSItznoNZ3YfT76fXZ+W/EJl+TMxzA+K7XY3tHLtV+cRXJSNGXTx/IOG/lr9bIB7XV7PXzro1f4zcnnkx0dx29PvnDI34PDYTUsTEkYE+owREREROQ4oVLqIjJYioqKgkmiyspKJcZF5JjmcrmCU0jY7XamTp0a2oAGSU5ODk6nE5fLRU1NDV6vV3PfiogMko0bN7J9+3YARo0aRWbm8Bm0KUdOvy2PYyf/8/ds7OkauNEEDIgJ68M0wTAAyxquKnLjN+GR5aezsz8qeHh4pAesfrDEMCnxy6xufQwMmD/OhWEYtLb18Me/vc/Wpg5Wr2nEMAwee+BaIlPC+N4rbwevtzurcfhz4rhdXt59YSmZ41MpnD72sNvZmz6vG6thwWHVt42IiIiIiIiMTFlZWcTGxtLR0UF9fT09PT1ERkaGOiwRkSGxcuVK3G43AMXFxYSHh4c4osFhs9mYMGECq1atwuVysW7dOiZMmBDqsEREjgmLFy8Ormu0+LFn5NeNkcPS7/XumRSHYJLaavj5bLC3e+AxZmC5dHwxZ2dPBCA/ZgmrWx/DaYklxZnHVwu+SXtHL5ff/Cdee7uKVVWNmCb4/SbPvb2cc154nC3dnZgmmOZnX4hxjjDunXXmPuNeWrGRf766jH7X3mux//uP7/DgXc/y3ct/S2tz50G/HwdS2b6ZuW//lPnv/YIdrr28byIiIiIiIiIjgGEYFBUVAYEykWvWrAlxRCIiQ8M0zQFl1EtLS0MYzeArLCwMrldVVYUwEhGRY0d7ezs1NTUAREVFUVBQEOKIZLBp6Otxymndx6hsM/DP9p4Y/rL6BAqSfGRG1+D1W3izoYAOVzTfmTKbtKhYLskp4rXGSl7bUkWysxuAOEsjDv96Fq7+PX/942j6Xd4BzRtAX4bJzm19gQ1+AzC5veREwh12rs2fRnNfD3aLhdSI6AHn7mzv4fafPYffNGnv6uMrl5+4R/gR0WEA2O1WbPZDG3ne3PshdW2PkBl9EaNjLh+wr6J9E26/F7fby8buFpKc0ftoRURERERk8KmUuogMpqKiIj7++GMgUE59xowZIY5IRGTw1dfXs3PnTgDGjBlDampqiCMaXOPGjSMsLIz+/n5qa2vxeDzY7fZQhyUiMqItXrwY0wwkyqZPn451X7k0GbGUGD9OGYbBP+Z9gStff/ZzOwACQ7g3difR2GPgM1PBhAibi++XdXN6po/RUcUANHQHPly+sW0i30uIwsm/MIGNzeU0NQfmI4+IcDBr+jgWLqlnRnoC793+Io5vjsYTBaYBqY4o7q/4EICWvh7+XL0Yq2HhtfnXkxObBEC3p4lV3b9j2sk7Wfr+OJLi917m7YLrTmJ0XhppWYlEO1/H37kGI/JrGNbEA74nde2/o8NdRXfr+mBi3OXz8MLmJaQ4Y7gseyZxjgimam5xERERERERGcFSU1NJSkpix44dbNq0iY6ODmJjY0MdlojIoNq9FO6xNlocwGq1MnHiRFasWIHH46Gurk4jG0VEjoDb7WbFihVA4Gfs9OnTQxyRDAUlxo9jKRG7J5c/HSpuBJZdZdTPyM4lJyaRMTHx9Pj+AZb3eW/b23xx7CuE2eK5aPRUajpXk+CYwPzsy+hwnUpLzzv8d3kchuFmYl46N1x5AqVTx7Khs5UHbvwzFq9J6tutNF6UgAG0enqwW6x4/D78ph+/aeI3fWzt6Qomxqva/sHmvrcoOQOuP+OrTMkp2us9GYbB1BPyMH3bMFvu+vTOLBgx3z/g+5EVdQk97vVkRV8a3PZ0w0J+u/Z1DOA/c75DZkTCIb7LIiIiIiIiIsPLrnLq7733HhAowTt79uzQBiUiMohaW1upq6sDICYmhvz8/BBHNDSKioqCSZzKykolxkVEjsDq1avp7+8HAj9fIyP3PkBTRjYlxo9jufHJPHTyufxs8bs0u3s+27GrOqIJPymdS8qnJc1rO8r4pPl9ImzJ2C0RAPR5yylJeAa7JYpuz+kkhJ2I05rGz7+fic9rw+kMlO/56jvPsaCxDs4DzhsTaN4MJOC9mDw+52LSIqPJiU0iLSIap9XGSeljgiGlR0yntuM/xDrGMCl7AoZxgBKOljiwZIB/K4a9+KDej+yYS8mOuXTAtkRnFABOq50Iq+Og2hERERERGWwm4Cf0ZczNUAcgIoOmuLg4mBivqKhQYlxEjim7zy0+Y8YMLBZLCKMZOmPGjCEiIoLe3l7q6upwuVw4nc5QhyUiMuKYpkl5eXnwdVlZWQijkaGkxPhx7oKcQv5QVU6z59PEuPnp8ukztzDbZ8ng/NgLSQ+fTrgtAZe/k4+33UenezMAHn8357z9S27L6SPV8SZRjgJKM56nta2HfpcnkBT/nF25bdOENzau494T5gHw5YI9SxtlR53MlePfwmo4MIwDf5A1jHBIfh38nRjW5IN/Qz7nvMwSxkenkuiIJuHTJLmIiIiIiIjISJeQkEBGRgZbt26lqamJHTt2kJSUFOqwRESO2OdL4U6bNi3EEQ0di8VCQUEBS5cuxev1snbtWoqLD26QkIiIfGb9+vXs2LEDgOzsbNLT00MckQyVY7OrnBySTZ3tn734tJQ6gNViEOMY2MMwxpGJ3RJBfecCtvZ+Qrd3S3DfmMgddHvWAdDr2cCWbW1c9uU/cvnNjxJh7KUPxqdJeAOwHaDXZnevi+p1rfgPYYiKYTiPKCm+S0FsJqnhmmtNRERERELHbxrDZhGRY0dR0WfTlFVWVoYwEhGRwbN69WpcLhcQqI4RERER4oiGVmFhYXC9qqoqhJGIiIxcGi1+/FBiXOjxeT6rifhpstpmWLj/hPn7PCczcjZh1gTYrZzjnNRtFCfdQ3rU9SzrvI5vv/dv3D4vAN8O3/8PkrSwCDx+3173mabJ9Xc9xVd++DR/+MeHh3Jrh8Tt8/KLqhf5yern6PG6huw6IiIiIiIiIsPB7smUyspKTFMTJojIyGaaJosXLw6+Ph6SG9nZ2URHB6bCrKurC86PKyIiB2fnzp3U1QWqHsfGxjJhwoQQRyRDSYlxGTBKfNe/N06czgXjC/Z5SrxzPF8c9wrFcdcGtxXazyVhaxpV3WfwWH07FeFb6M310jzLz8LoJvj8nIifJuFNP/xy5cfkPvFrbnvnBV6urx7wx7jPb9LaHij13tzafeT3C/hM/x7bFu1Yy783lfPylmW8ta1iUK4jIiIiIiIiMlzFxMQwZswYIPBAsKmpKbQBiYgcoYaGBlpaWoBAwjgtLS3EEQ29XeXUAfx+PzU1NSGOSERkZNm9Q9WMGTOwHKDCsYxsmmNcBjIh3hHGd6adfFCHT0u+mdy4+ezYupNvlP0Wj2sV1z12BdEOJz7TZOckC6YJ72xfP/AyJuAzMIyB6fKXGtbyUsNa6rft5EvF00iIjcBmtfDQDy9jWeUm5p925HPkvLh5KfdWPc+clAJ+Oe2q4PaJsaNIdEbj9nmZHJ99xNcRERERERksw6WM+XCIQUQGV1FREQ0NDQBUVFRoPkURGdF2T26UlpaGMJKjq7CwMFgGuKqqiilTpoQ2IBGREcLlcrFy5UoAbDYb06ZNC21AMuTU7UEGMuD+k+djt1oP+pRoewaWvkQ8rkDZ9E07OhnHGFpaLZi7PTibkpD22etdA7aDo9VNTEwwAiPF//zSQq6643H6XR4ACnPT+dJFZSTEHvmcQO9sr8Rvmry/fQ3e3cq3p4TF8uqp3+PNuT9gTFTKEV9HREREREREZLibOHFicFRMVVWVyqmLyIjV3t5ObW0tANHR0cdVKdzMzExiY2MBqK+vp7e3N8QRiYiMDCtWrMDtdgMwadIkwsPDQxyRDDUlxmWA9PAoThk17qCP95t+tvd1kp2fzo+f+QZXPF5E+ag3+WR7A2BgmiaOcBdhkX1UtG0FH5geA/yffukZny2GBc7PWcn/nvASM1Ia6Orpx+X27vW6/X3uw/5j/eacucxOyuOuoguxWQZ2ALAaFqyGvi1ERERERETk+BAREcH48eMB6OzsZNOmTSGOSETk8CxZsiT4vHD69OlYD2Hgz0hnGAaFhYVAYJ716urqEEckIjL8maY5oNJIWVlZCKORo0UZQGFeZk5w/Y+nXoxhHHx5xG8v+Renvn4/91UsILykDwqe5fy8lUxJ24xhgNXmx2b3Y7GCI8qFYQC72v90fnHTF/gXYErKZmwWP6fM7eLBH1xKbPSevXNeeuJDLi68ix/d+OdDvte1ndvo8vTx4PRruShrxiGfLyIiIiISCrtKqQ+HRUSOPUVFRcH1ioqKEEYiInJ4PB4PK1asAMBqtVJSUhLiiI6+XYlxCFQAERGR/aurq6OtrQ2AsWPHkpKiSsLHA80xLvzx9EswTRMTsBxCUhxgRWsjAEt3bKS5rYlJaQZWi0mP24lpgt9nwe8Hi+XTJLgZGCAe6LtpBEqqm4El2ubg1XXFTE/fxg0TvkVaxN7n+V7yXg2mCcs/qMXn82O1Hlz/jsaenVyz8BH8psmPii9lfqbmihARERERERGZMGECNpsNr9fLmjVrOPvss4+rkZYiMvJVVFTQ19cHBBLEkZGRIY7o6EtPTyc+Pp62tjYaGhro7u4mKioq1GGJiAxb5eXlwXWNFj9+KDEuQKDczqGO/Xisaint7QYerKzoaGeZ18J7W07HaffS1BWLYQFMg/7OMAyryejwBDb42wNJ8d0vZoDFA50WN8uaxtLUNZlvTijc+0WB6+48h7BwB7POKDzopDhAv8+D/9NySr0+9yHerYiIiIiIiMixyeFwkJ+fT1VVFX19faxfv57c3NxQhyUiclA+Xwq3tLQ0hNGEzq5y6h999BGmabJmzZrj9r0QETmQlpYW1q9fD0B8fDx5eXkhjkiOFpVSl8P2s8Xv0t7rxd3rxO+zACbt7ki298ZiWHaf/9vA9Fto6GnHYgeMPecGdzqt5MQlYgAZW8I44/pHeObVZXu97viCUfzgd9dy2kXTDyneLX1twfVwq/qEiIiIiMjIEery6SqlLnLs272cemVlZQgjERE5NJs2bWL79u0AjBo1ilGjRoU4otDZ/We5yqmLiOzb7qPFS0tLD2mKYRnZlBiXw1aWmvXpmolhmGD5tES6YeLwGZ++MLE5PdicHsDExMTi8O2RHO8zfbx+0fWsuuobNC8LJLDLVzUMarw50alE28IIs9qZGJs5qG2LiIiIiIiIjGQ5OTmEhYUBUFNTg8fjCXFEIiIHR6PFP5OSkkJSUhIQ6DDQ2dkZ4ohERIafvr4+Vq1aBQQqJ02ZMiW0AclRpcS4HLZ/nP1FrpkwOVAy3QDDAKvNhz3ciz/KA4aJ1e7HEe7FEeYlLtxGWLiJLcyPLcITnFscE84ZnY/NYiE2LIz/vfVs5s7O5+tXnjSo8Y6KSOC10+7mzdN/QE502qC2LSIiIiIylEzTGDaLiBybbDYbEyZMAMDtdlNXVxfiiEREDqyjo4Pq6moAIiMjKSzc9/SMx4Nd5dR30ahxEZE9LV++HK/XC8CUKVOCnUPl+KDEuBw2wzDY1ts9cJv105Hgnz4vGxeViMNixYJBR68Xj9cPwNjohE8PMrixcDq/n3tBsI25syfwk2/OJ3dMyqDGW76jjss+fIDf1CwY1HZFREREREREjgXFxcXB9YqKihBGIiJycJYuXYppBp5HlpSUYLVaQxxR6KmcuojIvvn9fpYsWRJ8fbxXGjkeaaJlOSLfKzkZq8XCG5vXAuBzWzFNP6bPIDksimfnfYkOTy8/Wb6AFeZmMm3pfHPqCcxOG8sHjQ1U72zhxuLP5gr3mR4s2IZkPofnNy9hW187/970CbfmzyPS5hz0a4iIiIiIiIiMVGPGjCEyMpKenh7q6uro7+/XCBoRGba8Xi/Lly8HwGKxMH369AOccXxISkoiNTWV7du3s2XLFtra2oiPjw91WCIiw0JNTQ0dHR0A5ObmkpiYGOKI5GjTiHE5InnxyfzptIsIt+7qY2Hg91j5asEsPr7sa8SHhfPdDxbwSVsdLqOfiemxzM3MJ8Lm4KwxeXyr5ARiHIEE9dqOl3my7hTufe1S3l8y+CXbLs0uIzsikStGz1ZSXERERERGFD/GsFlE5NhlsViCJXh9Ph81NTUhjkhEZN8qKyvp7e0FoKCggOjo6BBHNHyonLqIyN4tXrw4uF5WVhbCSCRUlBiXQXH/SfM5KzuPgvgUcuOSuDJ/Ko5PSxdZseB1WzAwODOjYJ9tNHR8iGGYjBq/jXfLqwc9xumJ43luzh18u2D+oLctIiIiIiIicizYvZx6ZWVlCCMREdk30zQHJDdUCncglVMXEdlTU1MTGzduBALVNcaNGxfiiCQUVEpdBsXZo/M5e3T+Xvf9fu6FvLN5PSeNGsPGznbO/s8TnJI1lu/NODl4jN/0UpJyIy9XttFQk8YV5x5ZTx2v38dLjUtJDYvjhJS9xyUiIiIiIiIiA40aNYq4uDja29tZv349PT09REZGhjosEZEBGhsb2bZtGwDp6elkZmaGOKLhJT4+noyMDLZu3UpTUxM7d+5UuWAROe6Vl5cH10tLS4dkSl8Z/pQYlyH1zw1LaejeydfyTybGEc5PFr3DmtZm1rQ287XJZcQ4nLT0V/F6422EWxO4YupfcE6PwTRNTNcHgBPDeehJ8n9vKufX1a8A8OxJtzM2KmWQ70xERERE5OjxmwZ+M/R/tA+HGERkaBmGQVFRER999BGmaVJVVaWRmCIy7Hx+tLiSG3sqLCxk69atQKACyJw5c0IckYhI6PT09FBRUQGA0+lk8uTJIY5IQkWl1GXI1He18ONVr/BE/SL+Vv8JAJfkFpEUHsEluYVE2x0ANPUuw2f20+3dSoc7UMYC17uYbV/GbLsG073ikK8d7wj0ZndYbERYNZ+4iIiIiIiIyMHavQSvyqmLyHDT1dXFmjVrAIiIiBjwM0s+o3nGRUQ+s2zZMnw+HwDTpk3D4XCEOCIJFY0Yl0Gz+I3VPPrDf3HaZWVc8Z35JDujSHRG0urqpTAuA4BTssay7KpbBpyXG3s+7e4NRNhSSA7b9YFt916eh97jc17GZDIjEolzRJAaHnuYdyQiIiIiIiJy/ElNTSU5OZmWlhY2b95Me3s7cXFxoQ5LRAQIJDf8fj8QSG7YbHrEvTexsbFkZWWxefNmWlpaaG5uJiVFVTVF5Pjj8/lYsmQJEKiOpGpIxzeNGJdB89xv32Dz2m08+fOXME2TGEc4b5zxTd4/6w5OTR84z3dPn5t1G1swTZMwaxwnpf2IkqSvYRiBL0kj7FSM+McxEp7GcEw5rHgK4zIZFZFwpLclIiIiIhJypmkMm0VEjg8aNS4iw5HP52PZsmVAILkxY8aMEEc0vO0+alw/y0XkeLVmzRq6u7sByM/PV4fP45wS4zJo5t9wCnGjYjnjm3OC8/qE2xwkhUUNOM7n93P9XU/ype/+jb8+98k+2zOcszEcJYcUQ6enj/sqX+Av697FNM1DvwkRERERERERUWJcRIal3ZMbEydOJCYmJsQRDW8FBQXB9aqqKj0vFZHjUnl5eXC9rKwshJHIcKDEuAyasvlTaL0/i0eL63hh08p9Hufz+dm+swuArW0bWdzyABu73x+UGP6zaTH/2byY39e9yZqOxkFpU0REREQk1PymMWwWETk+JCQkMGrUKAC2b99OS0tLiCMSEYHFixcH11UK98Cio6MZM2YMAK2trTQ1NYU2IBGRo6yxsZEtW7YAgemCRo8eHeKIJNSUGJdB0+npp7G3HYDKtq3B7R9+Use9D/6X9RsDf0Q77Dbuv+tirr9kJrPmVVPd/i/e3/YDqtqe4en6s1i18y+HHcOk+GxshpUkZzSjIhKP6H5EREREREREjmcaNS4iw8mWLVtobAwMhElNTSU7OzvEEY0Mu5dTr6qqCmEkIiJH3+4dqsrKyoLVjuX4pcS4DJqksCh+UXIxV48r46v5JwNgmiY//tXLLHinikceezd4bElRNjd94QQyYgIfzGLs2dR1vILb30l1+78OO4ZpCWN5e+7/8NIpdxLniDiyGxIRERERERE5jhUWFgYfHlZWVqoEr4iE1OdHiyu5cXAmTpwYfK9UTl1EjiddXV3BDkHh4eEDOn3K8csW6gDk2OHz+ZmfWcx5WZOC2wzDIDE+im3bO9ja1LHHORPjvkBW5MmEWxNo7PmYVa1/ZULcxUcUR4TNeUTni4iIiIgMN6ZpYA6DMubDIQYROXp2leDdsGEDra2tbNu2jYyMjFCHJSLHoZ6enmByIywsjOLi4hBHNHJERkYybtw46uvraW9vZ8uWLWRmZoY6LBGRIbdkyRL8fj8AJSUl2O32EEckw4FGjMugKF+wigszvs63zrwPn9c3YF9qSjSmYdLW3rPXc6PsaVgtDkZHn8r5o/9GXuyFRyFiERERERERETmQ3UfWVFRUhDASETmeLVu2DJ8v8Mxx2rRpSm4cIpVTF5HjjdfrZdmyZUBgAOeMGTNCHJEMF0qMy6BY/MZqPG4vNUvX07o9MDJ8bdsOfrNsIWtmttJylYdLb9vzB0+fdxuLt91MRcs9+E0v3Z5ttLnqj3b4IiIiIiIiIrIXEydOxGIJPD6qqqoKjroRETlafD4fS5cuBZTcOFwTJkwY8LNc5dRF5FhXWVlJb28vAAUFBcTExIQ4IhkuVEpdBkX4ValEjBnNOWYhyaMSAPjii0/T6u/DEe0GA5qje3hpwSqWrdrIDVedgDvSpMfzLDv6FwKQEH4S7zT9BL/p4bT0X5IVdWIob0lEREREZNgwTQP/MChjrlLqIsef8PBwcnJyWLt2LV1dXWzatIkxY8aEOiwROY7U1NTQ1dUFQF5eHnFxcaENaATa28/y0aNHhzosEZEhYZom5eXlwddlZWUhjEaGG40YlyPW1NfOH5vfY3NuHx1nOILbHf0m+MHa6Kc4Ip3LRk3h1797g3c/ruWOF15m7n/+wm3vbsVqxBHjKMBuScJvegDo9bbs9Vq/qHqR09/6P97Yuuqo3JuIiIiIiIjI8W73uXxVTl1EjrbFixcH10tLS0MYycimcuoicrzYtGkTTU1NAGRkZJCZmRniiGQ4UWJcDpvP9PPO5u+yZvtJnJu6DQODqQljgvufnX8FZ26Kwx0VwbJtrVS2t1BcMArDgO74wJxAm7oT6XT/jhNHPUtKxGTmpP2U0uRvkxt73h7X85t+ntu0mE5PHy81LjtatykiIiIiIiJyXMvLywvO51tdXR2c51dEZKg1NTWxadMmAJKTkxk7dmyIIxq58vPzsVqtAKxZs0ZTY4jIMevzo8UNQ5XP5DNKjMthe3Tth/S6/gu4mZfSxttz/4fT0oqC+0dnJnPXty/FZwTmrNnc1sFDPz2VN565mjMn5gePS4mICq6PiT6NiXGXYmDB9KzBNF3BfRbDwm3585gQM4prx88Z+hsUERERERkmTMA0h8ES6jdCRELC4XCQnx/4O76vr4/6+voQRyQix4vdkxulpaVKbhwBp9NJbm4uAD09PTQ0NIQ2IBGRIdDe3k5NTQ0AUVFRA6pliIAS43IE3D4fz22dxvruZEbF3Eq0PXzAfq/fx9/r3yXe0Y1h+Knc/F/YcSr2jjO4cHQ4sY4wMqNiKU5KG3Bem6seb8cPMXdeiNl6zYB914w7mSdPuIUZieOH/P5EREREREREJKCo6LOO8JWVlSGMRESOF729vcGfN06nk0mTJoU4opFv95/lKqcuIseiJUuWYJqBLt3Tp08PVsoQ2cUW6gBk5Ppq/sksiEokJyaF7Jj0PfYva93Ay83LsCdDWLubmMhmwA+4GRvVz8qrb8OAAT0913a8yKLmX3BGeA9pNsC78WjdjoiIiIjIsOXHwCD0I6T8wyAGEQmNnJwcwsLC6O/vp6amBo/HEyyvLiIyFJYvX47X6wVg6tSpOByOEEc08uXm5mK32/F4PFRXV3POOecoaSQixwy3283y5csBsFqtlJSUhDgiGY40YlwOm8Nq4/zsyRTEpePz+Vn035U0VG/B6+/mv41v8Os1LxNjDyfM6uCk5DxOy/sGRH2HHdYTWNn2KP3ejXuUP+rybAFgUX843vAvYcT/KRS3JiIiIiIiIiK7sVqtTJw4EQCPx0NtbW2IIxKRY5nf72fp0qXB1zNmzAhhNMcOh8NBXl4eEJgaY8OGDSGOSERk8KxevZr+/n4gUCEjKirqAGfI8UgjxmVQvPD7N3n0h/8iIh6+8U4FYbQTYy2l31rM66fdgc0S6HnY64mmcsevAWjs/DujI+/EGfZZb8/i+GuxWcJJcOTiiDoxJPciIiIiIiIiInsqLi5mxYoVQKCc+u4leUVEBlNtbS0dHR1AYJRzQkJCiCM6dhQVFQXLqFdWVpKTkxPiiEREjpxpmixevDj4urS0NITRyHCmEeMyKHxePwDOWDd+2gHIcHbzxTGzg0lxgDBbBrHOEqxGFG//1eTCiXfx7O/fDu53WCOZnHA9WUqKi4iIiIgEmaYxbBYROX6NHj06OPJm3bp1wRE5IiKDTcmNoZOTk4PT6QSgpqYmWK5eRGQk27BhAy0tLQBkZWWRkZER4ohkuFJiXAbFJbeeyd2P3cz//vXHPFF9Oq9smEyCLRu7+XM2dL0JwOqaRp544mPGWH/PnNHLePPxHgA+eatqr236TS/b+1bi9vUctfsQERERERERkb2zWCwUFhYC4PP5qK6uDnFEInIsam5upqGhAYDExETGjx8f2oCOMTabjfz8fABcLhf19fUhjkhE5MiVl5cH18vKykIYiQx3KqUug8JqszLn4kDvze9n/5jlzVvxWG+jz+flk+Z/cNtHG2j8oBW3w8qHzz7NdRfu4NY/zuHjJ6O59OZT99rmoub/x7rOl4l35HD+6L8dzdsRERERERERkb0oLi4OPnisrKxk6tSpIY5IRI41uyc3ZsyYgWGoYs1gKywsZPXq1QBUVVUFE+UiIiNRa2sra9euBSAmJoaJEyeGOCIZzpQYl0GXn5BMfkIyla03U9/1Gv/dlM7UqA+JOSmWj7eO5qSZFXR7OnFmtfLDP7y7z3b6vIGyF35fHR80Xkhx0o+ID9Mf3CIiIiJy/PGbBsYwKGPuHwYxiEhoZWRkEB8fT1tbGxs2bKC7uztYXl1E5Ej19fVRUVEBgMPhYMqUKaEN6Bg1fvx4wsLC6O/vp6amBo/Hg91uD3VYIiKHZffpN2bMmIHFomLZsm/66pAhUxh/BfOzHuUrWX5+nFvOE1PeJM3ew5JtRViNaEbHXLHf82en3s3k+C/hMLro9qxjY+czRylyEREREREREdkbwzAoKioCwDRNqqr2Pj2aiMjhWLFiBR6PB4DJkycH58KWwWW1WoMjKj0eD3V1dSGOSETk8LhcLlasWAEEpoqYNm1aiCOS4U6JcRkSPn8fn2w5mw82TWdMRODLzO2yUvBRJHcX/5x5YxaRE3fzftuIsCUzOfErjIq6gDBrGpnRFx+N0EVERERERERkP3YlxiFQTl1EZDD4/X6WLFkSfF1aWhrCaI59hYWFwXV1chKRkWrlypW43W4AJk2aRERERIgjkuFOpdRlSLh82+nzbgSg1RrLxwtu5W/v7GB7Kzzz3BLuvGXeAdsw/T1g2Jic/LOhDldEREREZFgzzcASasMhBhEJvZSUFFJSUmhubqaxsZG2tjbi4+NDHZaIjHB1dXW0t7cDgVLfSUlJoQ3oGDd27FgiIiLo7e1l7dq1uFwujdAXkRHFNM0BZdTVoUoOhkaMy5AIt40mJ/67pEVeRFbs9Zx95S1ExYzDMGBacTYAftNDXevPqdnxv3j9PQPONz2rMZvLMJtPwvRtD8UtiIiIiIiIiMg+FBcXB9c1alxEBoOSG0eXxWKhoKAAAK/Xy9q1a0MckYjIoamrq6O1tRUIdPZJTU0NcUQyEigxLoPijX98zC1zfsIHLywFAnOOZcfeyMSk+3B4V2L1lXPZJTO4+OLpzJg2FoDWvo/Z3PlXtnb/k+09rw5s0L0acIPZDt71e72mz+8awjsSERERERk+TNMYNouICKicuogMrh07drB+feAZYHx8PDk5OSGO6PigcuoiMpLt3qGqrKwshJHISKLEuAyKv/74OepXb+Jv974Q3GZ612O23xpY2q7jXy8/yT//u5x/vLwEv+lla/ebGDiwGhHEOqcMbDD8Ioj4EkbUbeDY8wfa6tbHear+VD5q+unQ3piIiIiIiIiI7CEuLo7MzEwAmpubaW5uDnFEIjKS7Z7cmDFjBhaLHlsfDdnZ2URFRQGwbt06+vv7QxyRiMjBaWlpob6+Hgh8Ls3NzQ1xRDJS6BOGDIrzbjqNiJhw5t9wSnCb2f4tcL0ZWDchPN4BQHJiNIvWLKCx50X6TD+jYr7OO09v54HvPcPO7R0AGJZILDH/gxF1G4ax55fppu4PAdjc8+EQ35mIiIiIiIiI7I1GjYvIYHC5XKxatQoAu93O1KlTQxzR8WP3cuo+n4+ampoQRyQicnDKy8uD66WlpepQJQdNXylyxNY2NPNxTw/n3X8lF3517mc7rIG5xLd5R3Nd7emsLXPw1APX8Zd/L+Q7/1pBZ188NiMGa3cxv7/ned54djH//tO7wdP9pmef15yR/A2yIk9idurdQ3ZfIiIiIiLDRajLp6uUuojsTWFhIYYR+LlQWVmJaZohjkhERqKVK1fidrsBmDRpEmFhYSGO6PiyeycnlVMXkZGgr6+P1atXA+pQJYdOiXE5Yk+/spQVaxp59NmFdHb3BbcbcfdjJD7H0x1fo6YvHo/fS3JCBO1hLnYUGvyw6ky2uB9gVEoJo8YmY7EYFM0YB8Cqlh+woGEa9e1/2es1U8Mnc1rGLxgddcrRuEURERERERER+ZyoqCjGjh0LQFtbG1u2bAlxRCIy0pimOaCMemlpaQijOT5lZmYSGxsLwPr16+nt7Q1xRCIi+7dixQo8nsDAyilTpqhDlRwSW6gDkJHr4aoPeG7dKrwbvVgsBrOmjCE68rMfQIZhB3sxt+TnkxudRWF8FtFh4fzqlgu5ceUzeAwffds8OPLs/PGN79Lf6yYyJhyA7T1vAyZNvW8yPu6GEN2hiIiIiIiIiOxPUVER69evBwKjxnfNOy4icjDq6+tpbW0FYOzYsaSkpIQ4ouOPYRgUFBSwaNEi/H4/1dXVlJSUhDosEZG98vv96lAlR0QjxuWweP1+Hl7zAVvcHbRm9+H3m9z55TOCJdR219zzDNH+L7Gz6/9Y3PT/WGO+xejlsSS8Gsbb/6qhfUcXj977Eove/Gw+suKke0gJn8PEhO/sN46Grnd4vuFy1rT9c9DvUURERERkuPCbxrBZRER2N3HiRKxWKxAowev3+0MckYiMJEpuDA8qpy4iI0VtbS0dHR0A5OTkkJSUFOKIZKRRYlwOi8/0c/m4aSTYI8jtTeKL50wjMS5yr8dW7nwG8NPpepsdfU+QbH+Y7RNbsbstnHNKIf/8/du8+NcP+fV3nmZHUzsA6VFnMT3ttySE7b93YkXb3+j0bGJl658H+Q5FRERERERE5EDCwsLIzc0FoLu7m40bN4Y4IhEZKVpbW6mrqwMgNjaWvLy8EEd0/EpPTyc+Ph6AhoYGuru7QxyRiMjelZeXB9fLyspCGImMVEqMyyFrd/dxyqsP8+yGlTww6yJe/N7NjM1MZM7VD/LDB18GYNHWTZz87KP88OM32eE/j7XdKazpyvz0/HA8rSbgYVFaBaumNmNaIDkjnui4iEOKZWLcFwi3JlIYf+Vg36aIiIiIiIiIHITdRxpWVFSEMBIRGUl2Hy0+Y8YMLBY9qg4VwzAoLCwEAvO+r1mzJsQRiYjsqampKdgJMzExkfHjx4c4IhmJNMe4HLItPe3scPUAsKp1C7NTx/JueR1+v8nbC2sZ1+1l+WwbGzvb+VvnSlZOuYD+zkXYHJMwIs7htRXNJH+yFP8MD6u6NoIVHnzzJqZnjMfuNDBNc68l2fcmJ+YccmLOGcrbFREREREJOdMMLKE2HGIQkeEnLy8Ph8OB2+2murqac845B5tNj5xEZN/cbjcrV64EwGazMXXq1NAGJBQVFfHRRx8BgXLqKm0vIsPN50eLH2weSWR36oYnh6wgLo3vTTqda3JmcNX46QB8+bLZxPtMnDXbefbh17liwiRGx8TxpYlT2N76EKnGJyR6/kSCPZqC8f/hrp8vIKG3FXoNkryxTMsezw7PAl5vmM6Spq9g6ombiIiIiIiIyIhgt9vJz88HoL+/n/r6+hBHJCLD3apVq3C5XAAUFxcTEXFoVSRl8KWkpATn6t20aROdnZ0hjkhE5DM9PT3BykROp5PJkyeHOCIZqZQYl0NmGAZfzp/F/06dR4wjDIDC3HS+dtls3HkpdJ+aR6IrjA++cBPXFE3mV7Ve3H4Lzd7R9Pr62d77Dl6jiVOnthD1bCJnVUwg3OZge9/7mPjY0b8In9kX4rsUERERERk+AiPGjWGwhPqdEJHhavdy6pWVlSGMRESGO9M0B5RR18jk4WH3cuoQGDUuIjJcLFu2DJ/PB8DUqVNxOBwhjkhGKiXGZdDE56ZhWi34TJN1G1sASAmPpqI3j2kLr2KN5bdEOsYzKuoCYhwTsKyZRtjiRhY8+j7tO7rIifsKGeGzKU74BjaLeomKiIiIiIiIjBTjx48nPDwcgNraWtxud4gjEpHhasOGDezYsQOA7Oxs0tLSQhyR7LJ7JyclxkVkuPD5fCxdujT4Wh2q5EgoMS6DZuaUMdx46SyuvmAGc2dPACDOEc6759zK06fewPiYJAzDwqSk/yPaMYFRZ79G5Ck2ck7MISYhkmjDxyQ+YlTfA5ie6hDfjYiIiIiIiIgcLKvVSkFBAQAej4fa2toQRyQiw5VGiw9fSUlJpKamArBlyxba2tpCHJGICFRXV9PV1QVAfn4+8fHxIY5IRjIlxmXQWC0WbrxsNl+/8mScDltw+/qunXzhncc587Xfs7p1K53utWzpfgFHzGYKTt2Ie2w8FosFfJsAb2DxbQrZfYiIiIiIDDehL6H+2SIisi8qpy4iB9LW1hbsOBMdHc2ECRNCHJF8nsqpi8hwU15eHlwvKysLYSRyLFBiXIbMzvYeHn7yPd5ZtRY/Jn5Mtvd10dL7UfCYxo3JnFgyPvDCORcj+i6M6LvAOTc0QYuIiIiIiIjIYRk9ejTR0dEArFu3jr6+vhBHJCLDzZIlS4Lr06dPx2q1hjAa2RuVUxeR4WTLli00NjYCkJKSwpgxY0IbkIx4SozLkPnzswt5+pVlPPOHJfxP0Zn8X8k5nJ6RR49nffCY//ftW5k5eQzV9U0YhhUj8obAYhzeh2Kf38Xm7o/o87YO1m2IiIiIiIiIyEEwDCM40tDv91NdrWnSROQzHo+HFStWAIHpF0pKSkIckexNfHw8GRkZADQ1NbFz584QRyQix7PPjxY3DFUxkyOjxLgMKq/fR5urG4Cc0UkAZCTHcVVuCZePm4bFMLCaaQD4/QavvLOe6773JDd+/+8srdh4RNde2FzPo2tv551t3+W1xq8c2Y2IiIiIiAwj5jBaRET2p7i4OLheUVERwkhEZLhZvXo1/f39QGBUcmRkZIgjkn1ROXURGQ66urqCP4PCw8MHfM4UOVxKjMth+V31R8x++UH+07AquM3r93HFRw9x5jv38krjci4+cxKvPWTy9E+asFpcwePC+i/h2doZ/LZ+Dv/PuwRvtB+Azh4Xprn3R21rlm2gduW+E+cev4+vf/IPNnZv+zSW/sG4TRERERERERE5BOnp6SQkJADQ0NBAV1dXiCMSkeHANE0WL14cfF1aWhrCaORAdk+MV1ZWhjASETmeLV26FL8/kD8qKSnBbreHOCI5FigxLoflz7WLaOnv5vG6zz7Qdnv7aehpAWB1+0Zwf0K0+Sesrr9B/0vB4xLS4lnYPZaNvUn4DZMrv1TCLbeewE+7/skF7/+KdnfPgGutXFjHHZc+zO0X/Ybq5Q17jcdmWBgTlciCrYW4/BdwVubvBv+mRURERERERGS/DMPQ/LQisoeNGzfS3NwMQGZmZrBUtwxPsbGxZGVlAdDS0hL8fycicrR4vV6WLVsGBD5fTp8+PcQRybFCiXE5LN8onMPY6ES+OuGE4LY4RyT3TLqUi7NKuXH8aWAbD0YM4AD7Z70ME5wR3FtyPvnR6VwzroyvnzgHW5afLm8f2/raqOnYOuBa7n5PcN3j9g7Y99u/vMu5Vz7MgneqeGbOTfzn1G9xU953iXFkDc2Ni4iIiIiEgGkaw2YRETmQ3ctcaqShiAAaLT4CqZy6iIRSZWUlPT2BQZQFBQXExsaGOCI5VthCHYCMTNfllnJd7sAPsaZpMjoymROSJxDniABiIeUjML3Q9x/8Xb+gx3kL690ZXDxmEpeOnRI896yMKaxu30SMPZySxLED2p1x6kR+9KcbsNqtTJqZM2Df86+uwO3x8cobqzn79CLGRicN1S2LiIiIiIiIyEFISkoiLS2NpqYmtmzZQmtra7C8uogcfzo6OqipqQEgKiqKgoKCEEckB6OgoIAFCxYAgcT4KaecgmGok6SIDD3TNCkvLw++LisrC2E0cqxRYlwGzV/q3+UPdW+R7IzmxVPuxG6xYRhhmHgxu34GmKzZuZVb183kazlZnJYSg8c4kbtXPkdmRAL/b9rV2C17fkkahsHMM4r2vCDwlWvn8NrblVzzhZlDfHciIiIiIiIicrCKiopoamoCAiN+Tj755BBHJCKhsnTpUkzTBAJzxFqt1hBHJAcjOjqaMWPG0NDQwM6dO2lqaiI9PT3UYYnIcWDz5s3Bz5Hp6elkZmaGOCI5lqiUugyKt55ZyD8eD/QgbHP14PX7g/sMwwZh8zFx8kbbKCKsLlKtv2NN630sbX6AjT07+LhlLXVdTYd83cvOL+Evv7mWmSXjBu1eRERERESGHXMYLSIiB2H3ecYrKyuDSTEROb54PJ7gHLEWi0VzxI4wKqcuIqHw+dHiqlYhg0mJcTkkpm8HZt+LmP72Adtf+tM7GC91YPSbOK12WlydA/Zb4n6NNa2CC3N/xpdz5mGzRAKQF5NHfkw6p6cVkRetHociIiIiIiIix4LY2FiysrIAaGlpobm5OcQRiUgoVFZW0tfXBwSSrFFRUSGOSA7FxIkTgwmpqqoqdXISkSHX0dFBdXU1AJGRkQM66IgMBpVSl0PSv+M6nOZacMzCSHgiuP0L3zqb3zz3PB1hfnp8Lla3bSI78rP5vk3TB643KYrKZnTkaFp6v0KELZu0yNN4KkW9fURERERE9ss0MM1h8Ll5OMQgIiNGUVERmzdvBqCiooLU1NQQRyQiR5NpmixevDj4urS0NITRyOGIjIxk7NixrF+/nvb2drZu3cqoUaNCHZaIHMOWLFkS7IQzffp0bDalMWVw6StKDlpdZwuurh0UREGrq5ek3fadeF4JM86ZxAPVr+I1/ZyW9rlePL2PY3b9AhMrS/qsuAALDhLC38RpTcTvN/H6fPi9fv7y81ewO2xcd+c52B36EhUREREREREZiQoLC1mwYAGmaVJVVcXpp5+uUpgix5Hd54jNyMhQQnWEKioqYv369UCgAoD+P4rIUNH0G3I0KOsoB63P6+HmytM5IW4bp429kXM/t99ptXNX0YX7OHtX1X6DwMSEBn7cePxd+FzR3PitJ2je0cUVpxXx8t8+AqBoxjhmnVm0j/ZEREREREREZDiLjIxk3Lhx1NfX097eTmNjY7C8uogc+z4/WlwdY0amCRMm8Morr+D3+6mqquLMM8/U/0sRGRKrV6+mv78fCHTK0fQbMhSUGJeDNikhg/vKrsPpWcTMyIcwe5swIi454Hnt7h6iwq7Cas3CsGYyydPKlu6XSIuYS5R9DGs3bWfLtnYAukyT8EgnNruVcQUZQ3xHIiIiIiIjg2kGllAbDjGIyMhSVFREfX09EBhpqMS4yPGhq6srOEdsRESE5ogdwcLDwxk/fjx1dXV0dXWxefNmsrOzQx2WiBxjTNOkvLw8+LqsrCyE0cixTIlxOSSnpufi3/Fd8FRhetcdMDH+/OYl3Fv5PHnR6fzthFuwGhaS7ZAcMRuADY07+dGLL5J+YjRF1kyuvepEbrnpNAzDUBl1ERERERERkRFu4sSJvPLKK/h8Pqqqqpg3bx4Wi+XAJ4rIiLZ06VL8fj8AJSUlmiN2hCssLKSurg4IdHJSYlxEBtuGDRtoaWkBICsri4wMDZyUoaG/ROSQGeEXAU4IvzS4zex9Fn/nzzH9HQOOXdXWAEBdVxN9Xvcebf32/bdZN7GB9cWbmHF+NgnxkTic9n0mxbs7+/j5bX/jwbv+idvlHbR7EhEREREREZHB53Q6ycvLA6Cnp4eGhobQBiQiQ87r9QbniDUMQ3PEHgMmTJiA1WoFYM2aNcFODyIig2X36Tc0WlyGkhLjcsiMyC9hSavAEnM3AKZ3A2bn/0DvXzB7Hh9w7M05c7kgczo/nnQZUfawPdqaOuGzEmrJ8Z/NF7G9sZXbL3yQe778Z1z9gYR6p7uP69/4C/9OquW1F8pZ8VHtENydiIiIiMjwY5rGsFlERA5VUVFRcL2ioiKEkYjI0bBmzRp6enoAKCgoICYmJsQRyZFyOp3k5uYCgU5OGzduDHFEInIsaW1tpbY2kO+Jjo5mwoQJIY5IjmVKjMuRsyQFFgwM+8QBuzIi4vmf4os5e9SUvZ56VcksHppyHV8Nm0e2kRzc/uGrK6ldtYnyt9dQvTzwQevdplqqbC30TrbTV2Djb/cv0KhxERERERERkWEuNzcXh8MBQHV1NV6v/pYXOZbtPuqvtLQ0hJHIYNp9nvjKysoQRiIix5rdf2/MmDEjWKFCZCgoMS5HzLBEYyS9hZH8IUbYmfs9trG3lVZX94BtC56s4YkHFnPrXU8Ht82eV0x2TiqTZuYwYUpgzprSpLFkRsQT53LirPexfs0WtjfuHPwbEhEREREREZFBY7fbmTgx0JHe5XKxbt26EEckIkNly5YtbNmyBYC0tDSysrIOcIaMFHl5edjtdiDQycnn84U4IhE5FrhcLlauXAmAzWajpKQktAHJMW/vEzmLHCLDEgFE7HVfv8/N1xf/hU09O+jw9BJmtfOvk75FWngcAC7DjTfPhbvvsx7jGWOS+eOb3xvQTnpELG+c+U2aNu/k9zP+xYQzmogatR1IHaK7EhEREREZJkwjsITacIhBREakoqIiVq1aBQRGGqpEpsix6fOjxQ1Dnx2OFQ6Hg7y8PKqqqujr62PDhg3k5OSEOiwRGeFWrVqFy+UCoLi4mIiIveeZRAaLRozLkGtqf4mfZ/6Or6d9AEC/z8NOV1dwf+uJrXhO78VxmfuAbZmmj+RRkVz9//zElv6bT7Z9CZdPo8ZFREREREREhrOxY8cGH3TW1tbidh/4GYCIjCzd3d3BEtvh4eEUFRWFOCIZbLuXU6+qqgphJCJyLDBNk/Ly8uDrsrKyEEYjxwslxuWgNTU08z/n3cdjd/8d0zQP+rwsy3sk2fu5MKmBG8eW8cPiSyiM+6yMkv3T+SIc9v0XMPD6e3m/cT5vbJxJc9+HABiGDYsKH4iIiIjIMc40h88iInI4rFYrBQUFAHi9XmpqakIckYgMtmXLluH3+wGYNm1asOy2HDtyc3NxOBxAoJy61+s9wBkiIvu2bt06WltbARgzZgypqaoOLENPiXE5aC/9dgHlry7nmV+8wObarQP29XT2Ubt8Q/DD7+42eS9gmyuDLeYVfHXCBZyfGZgj4t2mKn5e+QLfmHA2P538RR6aft1+r9/rbaTXuxkTLx2uChKcpZw06j/YrbEAvPnvxfz45seoq9g8ODcsIiIiIiJH5IMPPuC8884jIyMDwzB44YUX9jimurqa888/n9jYWKKjo5k5cyabNm0K7ne5XNx2220kJSURGRnJ+eefT2Nj44A22trauOaaa4iNjSU2NpZrrrmG9vb2Ib47ETlUu48e3TWqVESODT6fj2XLlgFgGAbTp08PcUQyFGw2W3AqDJfLRX19fYgjEpGRTKPFJRSGTWL8vvvuwzAMbr/99uA20zS55557yMjIIDw8nFNOOWWPEi0H85BEBkfZuSWERTrJmz6etLEpwe2maXLbaf/HN0//GY//5D97nPethduZ/ea5XPB2cnCby+fh7pVP89zmxTyx/n3mZUwm3hm13+tH23PJib0Fg0Bv02hHHpH2bAB8Pj8P3vUsn7xZxZP3LxiM2xURERERkSPU09PD5MmTeeSRR/a6v76+nhNPPJEJEybw3nvvsWrVKn74wx8SFhYWPOb222/n+eef55lnnuGjjz6iu7ub+fPn4/P5gsdceeWVrFy5kgULFrBgwQJWrlzJNddcM+T3JyKHJjs7m5iYGCDw/d/b2xviiERksFRXV9PVFZg6MT8/n7i4uNAGJENG5dRFZDDs2LEj2LkmLi6OvLy8EEckx4thUYN6yZIl/OlPf2LSpEkDtv/yl7/k/vvv5/HHHycvL4+f/vSnnHHGGdTW1hIdHQ0EHpK8/PLLPPPMMyQmJnLHHXcwf/58li1bhvXTEt0yOCafUshLnU9iGMaA7X6fn9Zt7QBs37znfN8lqaNY0bKNaSkZwW12i5Wc6DRqO7dSFJu1xzl7YxgGieElrOvwABDlGAuAx9dBc99HzJ4/mo9faqBsbuH+mhERERERGXnMT5dQO8QYzj77bM4+++x97v/BD37AOeecwy9/+cvgtnHjxgXXOzo6eOyxx3jyySeZO3cuAE899RRZWVm89dZbzJs3j+rqahYsWMAnn3wSHGXw6KOPMmvWLGpra8nPzz+0oEVkyBiGQWFhIYsWLcLv97NmzRqNKhU5RixevDi4XlpaGsJIZKiNHz+esLAw+vv7qa2txePxqGy+iByy3UeLl5aWYrEMm3G8cowL+Vdad3c3V111FY8++ijx8fHB7aZp8uCDD/KDH/yAiy++mKKiIp544gl6e3v5xz/+AXz2kOTXv/41c+fOZerUqTz11FNUVFTw1ltvheqWjmmfT4oDWG1W7n3+Dq75/gV89b7L99j/P2Wn8MkVX+VPZ1wU3GYxLDw+62v899S7uHLsiQd9/QhbJlYjHAMr0Y5cAJY338Gqlu8x5873ebHmF5x71ezDuDMRERERETma/H4/r776Knl5ecybN4+UlBTKysoGlFtftmwZHo+HM888M7gtIyODoqIiFi5cCMCiRYuIjY0dUHpv5syZxMbGBo8RkeGjuLg4uK5y6iLHhm3btrF5c2Bqw5SUFMaMGRPagGRIWa3WYDl1t9tNXV1diCMSkZGmv7+fVatWAWC325k6dWqII5LjScgT47fccgvnnntusPf/Lhs2bKCpqWnAAxCn08mcOXOCDzcO5iGJHB0FpeO56s7ziE+J3WOfYRikR0bT7e3n6o8f5qL3fkVjbys2i5XksJhDuk64PYPTst7itOy3SQibBoBpBuY173avpw/NayMiIiIiMtQ6OzsHLC6X65DbaG5upru7m5///OecddZZvPHGG1x00UVcfPHFvP/++wA0NTXhcDgGdKIGSE1NpampKXhMSkrKHu2npKQEjxGR4SMtLY3ExEQANm7cSGdnZ4gjEpEjtfto8RkzZux1YI0cW4qKioLrKqcuIodq+fLleDyBysCTJ08eMJWWyFALaWL8mWeeYfny5dx333177Nv1ACM1NXXA9s8/ADnQQ5K9cblcezzIkQNb9PJSbim9i//++e3DOr+ibRO1ndto7GtlYUvtIZ/v8jazrvX/0eFaidOaFNyel/ANAPy42dL10mHFJiIiIiIynJmmMWwWgKysLGJjY4PL3v6mOxC/P9DB9YILLuBb3/oWU6ZM4a677mL+/Pn84Q9/OMD7YQ546L63B/CfP0ZEhgfDMJRQETmG9PT0UFFRAUBYWNgeU2XKsWns2LFEREQAsHbtWtxud4gjEpGRwu/3s2TJkuDr3St/iRwNIUuMb968mW9+85s89dRT++0N8vkHGQfzcONAx9x3330DHuJkZR3cHNfHuyd+9E/WLq3n0e8+ecBjd25r55Y5P+H2M+6lq60bgJLEsZyWWkhp4nhOTyva63lLWjZxf8W7bOvds7NCffsDbOr8MxXNX8Pn7w1uj3MWkRoxl0jbaEZFnXeYdyciIiIiIgdr8+bNdHR0BJe77777kNtISkrCZrNRUFAwYPvEiRPZtGkTEBhZ6na7aWtrG3BMc3NzsBN1Wloa27dv36P9lpaWPTpai8jwoHLqIseO5cuX4/P5AJgyZQoOhyPEEcnRYLFYmDhxIgBer5fa2kMfBCUix6e1a9fS3t4OwPjx40lKStr/CSKDLGSJ8WXLltHc3ExJSQk2mw2bzcb777/PQw89hM1mCz7A+PzI788/ADnQQ5K9ufvuuwc8xNk1B47s37k3zSU8Ooz5Xz3jgMcufnM19as3UbN0Pas+DHwwCrM6+MW0q/ht6Y0kOqP3OMdn+rnhw6f5fc3H/HTl63vsj7LnBNqxjcIwPvuQbTFslKQ+yJysV4lxTjjc2xMRERERkYMUExMzYHE6nYfchsPhYMaMGXs8SF27di2jR48GoKSkBLvdzptvvhncv23bNiorK5k9ezYAs2bNoqOjY0AZ1/Lycjo6OoLHiMjwkpiYSHp6OgBbt25l586dIY5IRA6H3+9n6dKlwdelpaUhjEaONlX/EJHDUV5eHlzXaHEJBVuoLnz66acHy+zscv311zNhwgS+973vMW7cONLS0njzzTeZOnUqAG63m/fff59f/OIXwMCHJF/4wheAzx6S/PKXv9zntZ1O52E9uDnenfe1eZz3tXnB1x07OmnetIOcqWP3GKE/86zJvFWWgyPMztQ5E/doy+v382jtQqyGhRvzZ2I1LFgwiPTY6bd46Gzs2+OcrJgbSIo4Hac1FYux9y9dn+nGNL3YLBFHeLciIiIiIsOMGeoADl13dzfr1q0Lvt6wYQMrV64kISGB7Oxs7rzzTr74xS9y8sknc+qpp7JgwQJefvll3nvvPQBiY2O58cYbueOOO0hMTCQhIYHvfOc7FBcXM3fuXCAwwvyss87ipptu4o9//CMAN998M/Pnzyc/P/+o37OIHJyioiK2bdsGBEaNz5kzJ8QRicihqqmpCU5RmZeXt8d0l3Jsy87OJioqKvh5r7+/X/MEi8h+bd++nYaGBiDQUTInJye0AclxKWSJ8ejo6AG9ygAiIyNJTEwMbr/99tu59957yc3NJTc3l3vvvZeIiAiuvPJK4OAeksjQ6Ovp54aC2+nc0cUtv7mBC287e8D++JRYfr3grn2e//qWau6vfA+AcdGJzB2Vj2EYpPx/9u46PqorbeD4747H3RVICDGc4C4FalB3b6nLtm+33e7Wt+22263L1qhTWuoCFGmx4hoh7u46PnPfPwYGsgRIIOkEON/PZ2Dm3nvufWaSzNy5zznP2eCB3WzD5G6BSzq3kSQJd3XsUfdpstWzofwCLPY2xoUtxk83HLtsxWApxl09AElSnujTFQRBEARBEAThBOzYsYPp06c7H//lL38B4Nprr+XDDz9k4cKFvP322zz77LPcfffdJCQk8PXXXzNp0iRnm5deegmVSsUll1yCwWBg5syZfPjhhyiVh87vP/vsM+6++27mzJkDwHnnncfrr7/+Jz1LQRBORHJysrMaREZGBlOmTDnu1HmCIPQvh1drEaPFzzwKhYKkpCS2bduGzWYjOzub4cOHuzosQRD6scNHi6elpYlzP8ElXJYY744HH3wQg8HA7bffTlNTE2PHjuXXX3/Fy+tQGe7uXCQRep9Jb6K90TF3eE1JXY/bD/AKQC0pkCSJGC9/5/L/u24m3/y6l0vmjezxPjssJZjtjQA0m9Lx0w0ns+4+6vS/EuxxNilB/+m0vc1mZ8PPewgK9yN59IAeH08QBEEQBEEQ/iyyLCHLrr9o0NMYpk2bhiwfe6j7DTfcwA033HDU9Tqdjtdee43XXnvtqNv4+/vz6aef9ig2QRBcy8fHh5iYGEpKSqivr6empobQ0FBXhyUIQjfV1NRQUlICQGBgIAMHDnRxRIIrpKSkODtIZGZmisS4IAhHpdfrnVWktVotw4YNc3FEwpmqXyXGD5bLO0iSJB5//HEef/zxo7bpzkUSoff5Bvnwz18eIX9XIefeftbxG/yPJN9QNpx7DxIS/tpDZc8nj45j8ug4djeU81LG71w2cARh7j7d2qefdgTxvnditjUQ6bUQgHZzLgAdB/4/3M+fbuKtx79FkiTe//1vhEUH9Ph5CIIgCIIgCIIgCIJwYlJSUpyJtfT0dJEYF4RTyOGjxceMGSNG/Z2hIiMj8fb2prW1lcLCQvR6Pe7uYopLQRCOtHPnTqxWKwAjRowQ0x0LLqNwdQDCqWv0nGFc9tBCPLx7drIj2zuQZSMBWo9OSXHnelnmhvVLeHP/Rh7btaLb+5UkBfF+t5Ic+AhqhScAKUEvEeV9PclB/z5ie41WDYBCKaFUij8FQRAE4dQhyzJfrd3Dm99swmCyuDocQRAEQRCEE5KUlIRC4fg+npmZedwKE4Ig9A8Gg4F9+/YBoNFoxKi/M5gkSSQnJwNgt9vZv3+/iyMSBKE/stlsbN++3flYTL8huFK/GjEunP5kSyZyw2UgaSHwRyRl2BHbSJKEoh3QQXNZBw3GDv6y9Ts81Rr+nbYAN5W628fz0ibhpU3qct1Zl44lOMKPgBAfgiP8TvQpCYIgCMKfLrOomn99thYAH08dV84Z5eKIBEHoc/KBm6v1hxgEQThtuLu7M3DgQPLz82lpaaGsrIzo6GhXhyUIwnHs3r3bOepv+PDhYtTfGS4lJYXNmzcDjk5Oo0aJ76eCIHS2f/9+2traAEhISMDPT+RjBNcRw2SFPmWz2fjxrZWs+WyDo+e3JR0wgdwK1vyu29jtaJZL+K7W0ryqgxXl+/mjtohfK3LYXFt80jFZ7XoKmj+gzrCBkZMTiBksSrUJgiAIp5ZQfy883TRIEgyKCKSpTc836/ZR3dDq6tAEQRAEQRB6JCUlxXk/IyPDhZEIgtAddrtdjPoTOgkLC3MmuYqLi2lvb3dxRIIg9Ddbt2513h87dqwLIxEEMWJc6GNrPt3Aq3e8B0BITCBJo4NBOwNUQ0Azocs2CklCN0BNs81IWlgsU8IGEZ3rh6daw6jAyJOOKbfpLYpbFwMwMewbvLSx2GUzqgPl1wVBEAShvwv09eSn52/GaLYQ6OvJ7S8uY1tWKbGhfiz75/WuDk8QBEEQBKHbhgwZgkqlwmq1kpmZydy5c53l1QVB6H/y8vJobm4GIC4ujoCAANcGJLjcwXLqGzduRJZl9u/fz5gxY1wdliAI/URFRQXl5eUABAcHExsb69qAhDOe+KYh9KnACH8AlGolQaFl0HwrmNYiqRORJGWXbfJb6ykf3kb7KAs+ae60VRlZM/8Ovp99Mz4at5OOyWQ3AGCXoUK/mT/KZ7ChdCxNhq3HaSkIgiAI/Yenu5ZAX0enLp3a0ddRq+n+dCOCIJxqpH50EwRB6D1arZbBgwcDoNfrKSwsdHFEgiAcy7Zt25z3xWhx4SBR/UMQhKP5388NSRLfKQXXEolxoVfVlDbw4h0fsPyj9QCMnDWU9zJf4sOcVwmOCT9sSw2yLPPVpt95aMun7G+pcK7xUGtQKxxJ8yXLdnDTI5+zI6O0W8dvN+dS1voRFlvTEevMditP7f2ZpaWxWEjEpkgiQBuL2VaHjJUW017ntm3NHfz2/U6a69tO4FUQBEEQhD/X07fM5993nMcb91/o6lAEQRAEQRB6TCRUBOHUUFdX5+y84u/vT1xcnIsjEvqL4OBgAgMDASgtLaW1VUzzJQgCtLW1Oc/t3NzcGDp0qIsjEgSRGBd62Rf/+ZlVn//BK/d+THN9G21mE0vbi9hgrkVSpyAFLEPy/4zVXyl4cPaTvFC+nDVNWTy791vnPsLdfVg591b+GTsfXbljBJzRZDnusWVZZlf11eQ1PkN2w+NHrN9WV8ySou38UJZPu/wA58d+iZcmhTa7L202HZJyoHPbf97+Ec/f+xn/uP7dk39RBEEQBKGPues0TBsZh6/nyVdWEQRBEARB+LPFx8ej1WoByM7Oxmq1ujgiQRC6cviovzFjxohRf4LTwXLqB2VlZbkwGkEQ+oudO3dit9sBGDlyJGq1qHQouJ5IjAu9aujEBCRJIjYpAk8fNz7I2Mkbe7fwwPrl5Dc3IKmH0lA3kOevfZ09azNQpesB8C3tfCId5eHHJWNG8vyDC3jmL+cxceRADFYL/0n/jQ/ztiHLcpfHVyu8D/zvc8S6RN9Qwtx88FLrSAuMBcBgq6fZpqTZ7kGbtca57cHdH+04giAIgiAIgvCnkvvRTRAEoZepVCoSExMBMJlM5OXluTgiQRD+l9FoZO9eR7VFtVrN8OHDXRuQ0O8cnhgX1T8EQbBarezYsQNwdJ4ZM2aMiyMSBAeVqwMQTi/TLx5L2pxUdJ46lEoFg/0cJXT8tG4E6twB8PL3JDg6kNrSetyfqUb2rmPh22dTlFGK2WghYfQg5/4mjTp0/8ui3byVvQmAYf7hjAiI7HRsSZIYHfYlbeb9+OqOfJMN0Hqyes69yMgoJEefEH/tYMYH/5UOaw0JPhc4t33kzWvZ8ft+RkxK6KVXRhAEQRAEQRAEQRCEo0lJSWHPnj2AI6FyMFEuCEL/sGfPHiwWR0XHYcOGodPpXByR0N8EBQUREhJCTU0NFRUVNDc34+vr6+qwBEFwkczMTDo6OgBITEzEx+fIwYyC4AoiMS70Og8fd+f92VGD+GvgeIK8PPDROk6YtW5aPtj/Mu3NehqrmmhtaMM/xMovr17L1lVe3PX2k4w5a/gR+x3iE4wCCQ+1hnD3rt9E1Uo//N0mHDU2SZKQkDo9Huxz/hHbeft5MGK+H1qlCfDq5jMXBEEQBEEQhD7SX0Zr94cYBEE4LQ0YMAAPDw86OjrIzc3FZDI5y6sLguBasiyzfft25+O0tDQXRiP0Z8nJydTUOKpyZmZmMnHiRBdHJAiCK8iyzNatW52Px44d68JoBKEzUUpd6FO/rMvk0yVbeemdtaTnVDqXa920BIT5ET9yIKNmDyPA81lue7KCZ5YU0tzQyn2PfMbtf/uMxuYOZ5uxwbFsOvce1p19NyFufZusLmpbzQ+lV/Nt8aUYrA3H3LbBsI3M+n/Sbi7o05gEQRAEQRAEQRAE4XSlUChISkoCHKU3s7OzXRyRIAgH5efn09jYCDg6sQQFBbk4IqG/OrycemZmpgsjEQTBlcrKyqiqqgIgLCyMqKgoF0ckCIeIxLjQp8KDfZAAjVpJgJ/HUbfz9Atz/O8fRm5ZA1vzq9lTUM1X32/rtF2gzhMvde/1GK8ztvHA9mW8nLUGu2x3Lu+wVANglQ2Y7W3H3Meu2vsoaVtCev2TvRaXIAiCIAiCIAiCIJxpUlJSnPfF/LSC0H9s23bo+pwYLS4ci7+/P+Hh4QBUVVXR0HDsAUeCIJye/ne0uCRJx9haEP5copS60KdGp8aw9JUb0WpUBPl7AlBQWs/7X/3B2OGxnD9zKACS7wtgvhif4OGEePyB1KIHrYphcWF9Gt+XxTv5pcLxZXt2eCLJvo4TtwSfBUiSAk91OD6aWMBR/uO7xespza3mmvvn4xfkGLXurUmkwbgFX21Kl8cQBEEQBEEQhJMmS46bq/WHGARBOG1FRUXh4+NDS0sLBQUFdHR04OFx9E72giD0vYaGBvLz8wHw9fVl8ODBLo5I6O+Sk5OprHRUDs3MzGTKlCkujkgQhD9TS0sL+/fvB8DDw6NTJQlB6A/EiHGhz0WG+jqT4gAfLNvM79vyeP7dVZjMFgAkSYeknYKk8OaC22bz3C1zeP+Rixg3cUifxjYuaAA6pZpYzwBiPQIAKG/9jA1lo7FbthDjOc25bUVRHe889T0rlm7l2w/WOZePCX2baZHLGeL/QJ/GKgiCIAiCIAiCIAinM0mSnKPGZVkmKyvLxREJgnD4aPExY8agUIjLycKxiXLqgnBm2759O7IsAzBq1ChUKjE+V+hfxJmM8KcbPyIWSYJRKdFo1IfeFGV7O/b6s6E+jfHztOS2Gdi+r6RPYxkVEMPWsx/i55l34nGgRHudfg0gU69f63wDBwgM9SEkyh+FUkHy6AHO5QpJhbs6CkmSMOpNGA3mPo1ZEARBEARBEARBEE5Xopy6IPQfJpOJPXv2AKBSqRgxYoRrAxJOCT4+PkRGRgJQW1tLbW2tiyMSBOHPYrFY2LVrFwAKhYIxY8a4OCJBOJLoqiH86c6ZnsrsiYlo1MrOc0tYC8CaB0BW1lc8944/EvDFyzcQFebXo2PItjqQ3JAUnsfdVq1QHgrBYmWQ370UN2sJ8jirU3w6dy3vrXkYk9GCh5fuiP2U5FZzz4KXUSglXv/xL4THBvUoZkEQBEEQBEE4Gll23FytP8QgCMLpLSQkhMDAQOrr6yktLaWlpQUfHx9XhyUIZ6S9e/diNjsGgAwdOhQ3NzcXRyScKlJSUigvLwcco8aDg4NdHJEgCH+G9PR0DAYD4Hgf8PQ8fn5GEP5sYsS44BJajapzUhxAnYJZewW7OgbybKMCa1o7imA7Om3P+m/IpnXIdZOQ62Yg2xu73e4/N7/FfN3l/PJyIUND3iLMc4Fz3fa6V/kkfyq57cu6TIoDFGSWYzKYMbSbKMqp6lHMgiAIgiAIgiAIgiB0LqcOogyvILiKLMts377d+TgtLc2F0QinmqSkJOf9zMzMTlU5BUE4PcmyzNatW52PxeeG0F+JxLjQL8iyTEubiT+MF3Fb7kjyrTbkJBMe51sI8vfq2c4s2YAMcjPYqrvVZENNHj/WZmKXYOM3W49Yn9/6M3bZQkHb8qPuY9L84Vx0y3QuvX0WY2ckH3U7QRAEQRAEQRAEQRCOLjU11Xk/PT3dhZEIwpmrsLCQ+vp6AGJiYggJCXFxRMKpxMvLi5iYGAAaGhqoqalxcUSCIPS14uJi59QJkZGRREREuDgiQeiaKKUu9Av/WbyWr1fu4awZQxg/1I0E7S5+a45ApT6Bk273K0FuRVJGgCqx0yqzycLuNekkjBmEb5CjFFtBWx2LNn8G1wcyLCGUW8654IhdpgXdS27LDwz1v/aoh9VoVdz48Lk9j1cQBEEQBEEQjkc+cHO1/hCDIAinPX9/f8LDw6msrKS6upr6+noCAwNdHZYgnFG2bdvmvC9G/QknIjk5mZKSEgAyMjIIDQ11cUSCIPSlw0eLjx071oWRCMKxiRHjwp/u2W3rmLXsA7ZUlTmX7cgoBWBveiUvxu/htvBMXo/fwdtpN3VqW1HTzILb/ssl97xPY3NHl/uXFJ4ovP4Pyf2KI8q1v37X+/z9nGe5a9zfnCV8dEq1c57xq+4+n6FTkpBlO63mcmTZDsAg73nMi3qLCI9xvfMiCIIgCIIgCIIgCIJwVIeXU8/IyHBhJIJw5mlqaiI3NxcAb29vhgwZ4uKIhFNRUlKS89qsKKcuCKe3pqYmcnJyAEfFiMTExOO0EATXEYlx4U/VYTHz9r5t5DU38H76Duoa2wB4+JY5nDU5kb/fNhelMhyAYPfB+Go9aLcY+a06k1aLgR0ZpdQ2tlNe3Ux6bmWPj69v0Tv+bzM4l0W4+/LDjNtZMuVGzo50lGv7ruQBvi25hE01zxyxD7tsJbv+MbZWLKS0dak4qRMEQRAEQRD6niz1n5sgCMKf4H8T4+K7tyD8eQ4fLT569GgUCnEJWeg5Dw8PBgwYAEBzczOVlT2/lisIwqnh8M+NMWPGoFQqXRiNIBybKKUu/Kk81BquHDKM1SUF5K2q4Pz33+Hpe89hxvgEhg5xzDkhyy+C5VpQO74E/9+uT9nRWEicZwhTwpIYPy4GL5UbKYPDePL15ajVSv5y/Qy0muP/Ot/z9i0MnZrM8BkpYFqJbG/GJJ+HVG5kaEIkADkt1ZR07MVPA8Xte5j0P/toNe2hsv0LAPY3PI6HegABbidXUio/o5zs3SXMWDgKd0/dSe1LEARBODPJsoxdllGKi1YCYLXZUSnF74IgCIJw6vLy8iI2Npbi4mIaGhqorq4mLCzM1WEJwmnPbDazZ88eAJRKJaNGjXJtQMIpLTk5mcLCQsDRyUnMOSwIpx+z2czu3bsB8bkhnBp6fLXMZrPx/vvvc8UVVzBr1ixmzJjR6SYIx/PMpDl8O+tyzKUmAHJL6jqtlyQNkmY0kuRIEJvsFgAK2mv4oOQ3vGbKPH7X2WzeXcSKDVn8uDadLXuLunVsLz9Pzrv9LKIG1iM3343c+iif/v1qbky6lyXPfguAQpL4sXwoOxui8NbecMQ+PDUJaJXhyDLIKFErfQHHSPK9NYvYVDaVFtPebr8eRoOZ+y95gzce+5bFz//S7XaCIAiCcJDRZOGyxz5m6h2vsyun3NXhCC5kNFq4/KZ3mHnev/nqux2uDkcQBEEQTsrho8bT09NdGIkgnDn27duH0WgEIDU1FXd3dxdHJJzKEhMTnRUHsrKyRPUPQTgN7dmzB5PJkesRnxvCqaDHifF77rmHe+65B5vNRkpKCsOGDet0E4TjaWjuoKyqmYdumc0V547minNGH3P750dexV+TzidY5wNAyIH/hw2JxMfLjUA/T5IGhXbZ1mw087f5/+TmoX+h/PDS6wpvDhZMKN7vKKteut+RSIj3DuHltAe4dOA/OTdy3hH7VCm8mBj1G/GBr+GmPZsOaysABmspDYbfMdmqqWn/qduvh0KhwM1dA4CHt1u32wmCIAjCQWW1zRRUNGA0W9mcWezqcAQXyS2o4fYHPqWyqhmAn3/tfkc9of+T5P5zEwRB+LMcnlAR89MKQt+TZblTOdy0tJOrkCgIbm5uDBo0CIDW1lbKyspcHJEgCL3pfz83xo0b58JoBKF7elxK/YsvvuDLL79k/vz5fRGPcJqz2uxc99AnNDR1cOnZo7jnmmnOdbJsBrkdSeHfqU2g1osLo9MYHTCANouRZF9HyXOVUkFYkDcBvu54H6X8eO6OArav2APAui83c+XfLwRAUg2AwBUg65l2VS0az21c9/TlANRXNOBn1fDWG7/zubSNp/92Pl/V7KLa0MK9iTPx1jiS13ubltBoyqHGmMklA3/CXRVLmOfFtJv3E+51SbdfE41WxRs//4WS3BqGTYjrdjtBEARBOCguMpDr56dRXN3IRdNER8Uzid0uk1dQQ1SEH//3j69obtE71507f4QLIxMEQRCEk+fu7s6gQYPIy8ujtbWV0tJSYmJiXB2WIJy2iouLqatzVHaMiooS0xcIvSI5OZm8vDzAUU49OjraxREJgtBbCgoKaGhoACA2NpaQkBAXRyQIx9fjxLhGoyEuTiTvhJ7Jyq/mj92FzJuShMFgBkCvNznXy7IJuf5ssJWBz4tIbud0av9y9i98XryJGSHJ/GvklQCs2ZxDdmENABm5VYxKOfKkavDoQYw7ZxR15Q1Mu2xCp3WSKhqzycJb9/2L1oZ2wuNCGTlrKA/NfRrFgFD0iVEAfL1jFy+3rQEg3M2XmwY7Zh0PdRtJoymHYLfhjv1JChIDnz6h1ycgxIeAEJ8TaisIgiAIkiRxx4WTXB2G4ALvfrSez5dtJSrCz3mOdVBIgJeLohIEQRCE3pOSkuJMqKSnp4vEuCD0ITFaXOgLQ4YMQalUYrPZ2L9/P3PnznVWAxEE4dS2detW533xuSGcKnqcGL///vt55ZVXeP3115EkqS9iEk5D9z2zjLYOE1l5Vbz95OXsza7grMmJhzawN4GtFADZsueIxPiuxmIA9jSVOJdNGzuY5euz8Pf1IDm+6x6sGp2Gp3546KhxyXY7ZqNjDnNjh4mSrHJku4y1rI4Bs4bi4eXG7OFJfLxtK81mPcP8I51txwTdRYrfleiUfj16LQRBEARBEHpLepZjKpiyiqZOy93dNQwZ3PVUM8IpSj5wc7X+EIMgCGeUIUOGoFKpsFqtZGVlMW/ePJRKpavDEoTTTnNzMzk5OQB4enqSmJh4nBaC0D1arZb4+Hiys7Npb2+npKSEAQMGuDosQRBOUn19Pfn5+QD4+vqSkJDg4ogEoXt6nBjfuHEjv/32G8uXLyc5ORm1Wt1p/TfffNNrwQmnD5XS0QuwuKKBuJgg4mKCOq2XlKHg/QyyJQPJY9ER7W+Om8HzWT8wzC8GWZaRJInIUF8+e/G6k4pL66bl1T/+Sfa2fKZdNhGFQqKtsR2/UF/OWTTb2flj9Zx7Wf/DVva/vo2k+4Lw8PEAwE3lf6zdC4IgCMKfJqu4mpZ2I+OSY0TnxdOQ3S6zP7eK6Eh/vA5MIfPLr/tIz6rocvt7b5tNoBgxLgg9UlZWRnFxMXq9nqCgIJKTk9Fqta4OSxDOeBqNhoSEBDIzMzEYDBQWFhIfH+/qsAThtLNjxw5k2dEDbvTo0aIDitCrkpOTyc7OBhzl1EViXBBOfYdXGRkzZoyoBCGcMnqcGPf19WXhwoV9EYtwGgsP8aWp1YDeaKGhuYNfN+5nwsiBhAf7sHJDFlFhfgwbchESF3XZfndTMTXGFn6t2sdNcTMY4Bnca7ENSI1hQOqhUmzXPH7k/OCt1S08f9HLyDKYDGaue/Zy8lrriPcOQq3o2RcFi62VstYP8NQkEOwx77jb11Y0odIo8Q/y7tFxBEEQhDNHUWUD1z79ObIMKQNDWXT+BManxLo6LKEXvffJBj77cgthIT58/t4t2GWZf7/+q3O9VqPi9pun4+vtjkKSmDxBJAwEoTtKSkp4++23WbJkCWVlZc6EADiScZMnT+aWW27hwgsvFBd6BMGFUlJSyMzMBBwJFZEYF4TeZbFY2LVrFwAKhYJRo0a5OCLhdDN48GDUajUWi4X9+/czf/580flCEE5hRqORPXv2AKBWqxkxYoRrAxKEHuhxYnzx4sV9EYdwmnvoltksW7GHmRMSeOqN5WzbV8LSX3axcPYw/vvFRhSSxLdv3kyQf9cjmyYFJbCsdAuxHsGEu/35pcvdvd3xCfSmua6VqIRw7t3yDb9W5HBWxBBen9B1Mv9oSlreobT1XQAmaEegUx29zGnG9iL+evmbKFVK3lp+PxEDgo66rSAIgnDmsssyB3M5GYXVPLn4V5a/eItrgxJO2NYdhZhMViZPiHeO/q+tawWgsbkDu92OUqkgMsyXkvJGAK6/aiIL5osvoqc1WXLcXK0/xNBL7rnnHhYvXsycOXN48sknSUtLIyIiAjc3NxobG8nIyGDDhg384x//4IknnmDx4sWMGTPG1WELwhkpLi4OnU6H0WgkOzsbi8VyRAVDQRBOXEZGBgaDAXB0RPH09HRxRMLpRqPRMHjwYGf1j6KiIuLi4lwdliAIJ2j37t1YLI4paocNG4abm5uLIxKE7utxYvyguro6cnJykCSJwYMHExQkEnbC0Q2KDuKvt8wG4Ke16QD4ernh4aYBQK1WolIdvZfgqICBrJ/9uMtKw7p7ubE451WaapqJSojglZVvA1DYVt/jfXloHCd9akUAKsWxS5xWldRjt8vYzVbqqppFYlwQBEHo0sDwAFIHhZFeUAXAhNRY1wYknLD0rHIefGwZALHRATQ2dXD+/OHcefMMYqICGDE02nnOdPVl4/ng002Eh/owb1YqAFU1LTQ1d1BR2cxvGx2lCh+8ey6+Pu60tRkpLqsnKSEcpVKMfBUEjUZDQUFBl99lg4ODmTFjBjNmzOCxxx7jl19+oaSkRCTGBcFFVCoVQ4YMYc+ePZjNZvLy8khKSnJ1WIJwWpBluVM53LS0NBdGI5zOkpOTndU/MjMzRWJcEE5RdrtdfG4Ip7QeJ8Y7Ojq46667+Pjjj7Hb7QAolUquueYaXnvtNdzd3Xs9SOH08rfbzuLsaSkkxoXi4aYhNjKA8EADHupCquujCQ3sXDLcJtv5v12fsr+lgudGXMEwv5ij7Llvefp64OnrmFv81XEX8n1pOudHp/Z4P2GeC/DRjkSj9Eel8DjmttPPH0lzQztuHlqGjRcni4IgCELXTBYrGQeS4gPC/LjpnHEujkg4qKyjic21hZwVkYSP5vg9qDXqQ6fnxaUNAHz65RZuuGoyV1863rnOZLLwzH9+wW6XGTI4FF8fd6prW7h60XtYLLZO+/xx8F72ZZSRsb8SvcHMiNQozp47jOmTEo7ZMVHoZ+QDN1frDzH0khdeeKHb286fP78PIxEEoTtSU1OdJTvT09NFYlwQeklZWRnV1dUAREREEBER4eKIhNNVXFwcGo0Gs9nM/v37Ofvss1GpTnjcniAILpKbm0tzczMAgwYNEoNmhVNOj4eK/OUvf2HdunX8+OOPNDc309zczPfff8+6deu4//77+yJG4TSjUasYMzQGT3ctkiQxKlFLCBeharmA1999iK+W7+q0fZWhmQ212dSb2lhZuddFUXcW7xPEA6kziPc5+pt+ecdmfii5hsymL45Y566ORqU4flkqlVrJxYumc85VE1w2Wl4QBEHo/3QaNf935Qx0GhVFVU089PZPrg5JOOCaDR/y2J6fuG7DR9Qa2o67fUJ8KG+/dDXhob7OZbIMN9/zEVabo1NqemY523YXMyjWcR6SlBAOQIfe3CkpLkng5+POqrWZbNtVjN5gBmB3ehlPv/AT7360vreepiCc8gwGA3q93vm4pKSEl19+mZUrV7owKkEQDhcbG4uHh6NzeV5eHkaj0cURCcLpQYz6E/4sarWaIUOGAGAymSgoKHBxRIIgnIitW7c6748dO9aFkQjCielxYvzrr7/m/fffZ968eXh7e+Pt7c38+fN59913WbZsWV/EKJzu5DYkTAAE+naQU1TbaXWEmx8XRY8l0SeCC6JPnRP09MaPaTLns6vhrR61M5ss/P3ad7hl7nPsL/gWg6W8jyIUBEEQTieXzBhObJg/ALlltdS3dLg4IgFAp3TMf5rdWsPtW5Z0q03i4DA++e+N3HbDVOey/MJaWlr0bN9VxJ0Pfs7fn/qWCWMH8c0nt3PxgtEADIoNwu3ANDVBAZ58+OaNPPSX+c55yN3cOs/FWt/YftLPTxBOF+effz4ff/wxAM3NzYwdO5YXX3yRBQsW8NZbPTufFwShbygUCpKTkwGw2WxkZ2e7OCJBOPW1traSlZUFgIeHh6jEIPS5g+/jgLOsuiAIp46amhqKi4sB8Pf3F1MiCKekHifG9Xo9ISEhRywPDg7u1MNeELpLUsWB532Yrb5MHu7GHZeosddOwt58P7IsI0kSf00+n48n3EGcV6irwz2qorZ6ag2tzseDfc5Dq/BhiM9FPdrPjrVZ7NyQS+yUDVQpH2J71UJsdlOP9iHLMn/8msGuDbk9aicIgiCc2uaOSwTAYrVTUFHv4mh6j122UKf/HaO1ytWh9NinU64n3ssxsvtgkvygTVvzOf+K13j2pV+OaKdSKRmeGu18PGl8PJ6eOl59Z41z2UdLNvP5V1uQ5UO1ra+5bDyBAZ5cf9UkwkJ9yMiqwMdbhyQ5yq8rDitA4+Wpw3ZgFLpwCpD70e00tGvXLiZPngzAsmXLCAkJoaSkhI8//phXX33VxdEJgnBQauqh6cwyMjJcGIkgnB527NjhPJccNWqUKGst9LlBgwah0+kAyMnJwWKxuDgiQRB64vDR4mlpaaLKrXBK6nFifPz48Tz22GOdSlYZDAaeeOIJxo8ff4yWguDQZjbx5t6trC8vOrTQmoNG1cyIAWvxUf4A9low/ghyk+sC7YHfq3M4e83rnLXqVSr1zQAM8p7HZYOWMyboruO2b7NU0GDMAeCTf3yGvaMDrc5RCtUuW4CeXbTetCKdp279kEeufYf9u0t61FYQBEE4dS2YnMLCKalcM3c0oxKiXB1OryloepU9NbexpeIC7LLZ1eH0SIDWg8+m3sCrYy/hzXGXd1q3ck0mzS0GVqzOwGDs/LzaO0xs3VHofFxe0cjGzXmUljV22m7ZD7u4+e6PnI+vuGgsX398O/GDQrjkurf4ZOlmWlqNyDLY7WCXQa1yfAX49qfd/L4xp7efsiCckvR6PV5eXgD8+uuvXHDBBSgUCsaNG0dJiTifFoT+IiIiAl9fXwAKCwvp6BAVcgThRFmtVnbu3Ak4KjKMHj3axREJZwKlUuksp242m8nLy3NxRIIgdJderyc9PR0ArVbL8OHDXRuQIJygHifGX3nlFf744w8iIyOZOXMms2bNIioqij/++INXXnmlL2IUTjOv7P6Df21fz7Urv6bBoEe2N4G9FfAE3UXgfh3txPJT41A+Le5cUmfDjnxe+eg3ahuOP0fnn6niQDLcZLfSbO5Z5YR2SxXfFV/BT2XXU9L2G56+Htjr6qldNYYhAc8wOuxLlAq3Y+5Dlm2dHmu0h3r4qjWit68gCMKpJqOwije+2UhlfUuP2nm6aXnk2tncffEUVMoen+b1WzbZcOB/E7J86o1w9lLrmB2eiLdG12n5xQtGMXhQCNdePgE3nabTur89+TUffLYJXx/HOUBxaQNvL/69y/3nFdaSsb+i07JVvzmS7l2xWOwoFBIKhURoiM8JPitBOL3ExcXx3XffUVZWxsqVK5kzZw4AtbW1eHt7uzg6QRAOkiSJlJQUwFEpTZThFYQTl5mZ6az+mZiY6OwgJgh97eD7OIhy6oJwKtm1axdWqxWA4cOHo9VqXRyRIJyYHmfMUlJSyMvL49NPPyU7OxtZlrnsssu48sorcXM7dvJOEAAiPB0XYH00OtxUKuT2N8G8EQDJ/WIkzQjuKVpIRnMZWsVqrh7oKGloMFp4+MUfsNtlWtqMPHrnPJc9h/91ccwozDYbQTpPknzDAZDtjchNtwNKJL83kBS+XbY12zuw4ygbZLA18cS3D5K+PovUKUm4ex3/b6qi7UtyGh4jyH0WqcGvAZA2I4nnv7gNrU5DXHJErzxHQRAE4c+xM6eMe17+FqPZSlZRNW/c37MpOU5H8X5/wVOTgI92KEqF7vgNThGpSZG8++q1Xa7TGxznBoH+Xvj7eaJWKymraOxyWwBf787nDHNnprB9VzGeHlqycqqwWTt3KFh03VSmTU4gNFgkxk8Z/aWMeX+IoQ88+uijXHHFFdx3333MnDnTWQ3t119/ZcSIES6OThCEw6WkpLBxo+MaQkZGBmlpaS6OSBBOPbIss23bNudj8Xck/JkGDBiAu7s7er2e3NxczGYzGo3m+A0FQXAZm83G9u3bnY/F54ZwKjuhoaRubm7cfPPNvR2LcIa4LmkEo0MiiPD0wl2twd7wlXOdrAhGAi6JHk+VvokFUWOc6zQaJdFhfhRXNBIfG3RSMVitNh5/4Ucqqpp5/MFziYkMOKn9aZQqro+f0Hmh8Xew7HLcN20Et3O6bOuvjWN62L8w2BqI9z4HSf8JYybsRnJ7AIjuss3h6vSrADt1+tXIsg1JUgKQmjboxJ+QIAiC4BL1ze3c9sIy7Afm+YsJ9XdxRP2DUuFOpNfFJ70fWZapNGTgpvTBX3v8z9gTUdbRxM76EmaHJ+Kh1mK2WGnVmwj08ejRfp599AI2bc1n0rg4AgMco3cW3fcx2bnVR2772AVERnT+XRk0IJgP37wBgN/WZ/P4cz8413l56bh4wWiUp1FVAUE4WRdddBGTJk2iqqqKYcOGOZfPnDmThQsXujAyQRD+V0hICEFBQdTV1VFWVkZzc7OzvLogCN1TUVFBZWUlAKGhoURFnT7TMAn9n0KhIDExkZ07d2K1WsnJySE1NdXVYQmCcAzZ2dm0trYCMHjwYPz9xfUq4dTVrcT4Dz/8wLx581Cr1fzwww/H3Pa8887rlcCE05ckSaQGhhy2wH5o5ImtAVQRzIsYzryI4Z3aKRUKFj93NY3NHYSd5OimguI61m92zGHz6+9Z3HzV5JPaX5e0U0CVCpIStBOPuWm0p+P4sq0Oue1Zx32FN5LP08c9zEDfuwCJIPdZzqS4IAiCcGrSqFXoNCr0JgvXzhvDHRdMcnVIp5Wc1jWsrHoOBUquHfgR3prQXt2/LMtcse596k0d/FFXyHTLEJ784FesNjuP3XgW50xM7va+TGYrM6YMwftA9Zjq2hbCQnzJK6jBZus8ZFejPnRKb7fLKBRSp/VDUyI7PZ44dpBIigtCF0JDQwkN7fy+IEZCCEL/lJKSwm+//QY4Ro1PmiTOmQShJ/53tLgkScfYWhB6X0pKinOO+8zMTJEYF4R+buvWrc77Y8eOdWEkgnDyupUYX7BgAdXV1QQHB7NgwYKjbidJEjab7ajrBaFLbheD/j3HfcsfoB0KwGdFG/mkcD03xc3gophxAGg1KmdSXJZlahraCPL3RKno2cXdgTFBTBwziPKqJmZNSey953IYSRmIFPh1zxop/ECVAtb9SNruJeu9tUMZHvLOEctNtnqs9g481DE9i0EQBEE4rmW/7eX9n7Zy7fwxXDazeyV2qxta+fcXvxMfEcgt54/v8uKTt4eOL5++juqGVobFhffLC1R2u8xXv+1BkiQumjbsiCQsQIfBzOerdpI6KIxxybF/fpBHYbJ3AGDHhlU298kxlJLjnKShqYOnv16FxWZHAn7ZnMVzH69mQmosz995fqc2FouN1jYDHXoTNbWttLUbeeJfP+LlqeOzd2/Gx9uNDz7dyG8bsrs8pizb+ee/f2b1b5nIwO03TWfqxARW/ZZJdl41mVkVjBweTU5uDfNmp3DXopl98tyFPiZLjpur9YcYesmtt97KI4880q1RckuXLsVqtXLllVf+CZEJgnA8qampIjEuCCeovb3dOa+zm5tbp/meBeHPEh0djaenJ+3t7eTn52M0GtHpTp9pswThdFJZWUlZWRkAQUFBDBgwwMURCcLJ6VZi3G63d3lfEHqFJf3QfbvBeffTog00mNv5vHiTMzF+uFc//p2lv+xi4siBvPDXnpU3VKuVPPuPC0445L4iSSoI+BqwIEknPreOwVrN+vJzkOR2/HWjGBb8Fmqld+8FKgiCcIb7ZMUO6prb+WT59m4nxpeu2c3vu/L5fVc+Z40bQuxRyqSH+nsR6u/Vm+H2qt935/PC544L0SH+XkwdfmjqjqziarZllfL77nwyCh0lv5NiQ3DTqrn5vPGMSog8Itlvt9tRHKODm122YpMNqBUn/5q0m5MwWecyI3TMSZdSN1msNLcZCDnsZyVJEl9Mu4k9jWW8999tmCyHOoxuzypDBtbuKmDJrztYMHUYSoWEQpK4/o7FlFU0olBI2O0y48YMBKCt3UhrmwEfbze8vY5+keiBfyzrNO/z2vXZrN+US3pWhXPZcG93fll2z0k9Z0E43QQFBZGSksKECRM477zzGD16NOHh4eh0OpqamsjKymLjxo188cUXRERE8M47R3ZGFQTBNfz8/IiIiKCiooKamhrq6uoICjq5KdcE4UyxY8cO5/XdkSNHolarXRyRcCZSKBQkJSWxbds2bDYbOTk5naazEQSh//jf0eL9cRCHIPREj+cY//jjj7n00kvRarWdlpvNZr744guuueaaXgtOOP0VtTSRXmrhnLADCwxfInvdjSQpuTluJp8Xb+T6QdO6bJuRWwVAVsGRc22eytqtJh7YvgyLbOPF0Rfhp+3ZnKQAZlsTsqxHLcm0mnZQq19OhNelfRCtIAiC6+SX17FxXxHnTEgi0Nezx+31RjPuuhPrhHT9OWl8+PM2rpk3ptttJqQOYOnaPcSG+hMWcOp2VgoL8D7wJUhGpVCQXVLD399dzpDoYNbtzsdgtuKuPXRxLau4BoCdL3xFWIuMT4OF5z+6mdBIPx65aTEZO4q4/PYZXL5o+pFJc9nClooL6LAUkBr0AqGeZx8ztlazEYtsI6CLz05Zlrlz61cYbRYKWisYHXhoXaOpg3aLiWjP7s2RZbXauPyxjymtaSY0wAu1UsG/bj+PYF9P6us6+OjDnXiotZ2S1YcXP3/xi/W8+MV6JMWBFQYbOscTBqClRY9GrSIo0BMvLzdy86sJDvTpvJMuvoe6u2mICPdl0fVT+f7n3QAEBnji4+3GwnNHduu5Cf2XJDturtYfYugtTz31FHfddRfvv/8+b7/9NhkZGZ3We3l5MWvWLN577z3mzJnjoigFQTialJQUKiocncAyMjKYPn26iyMShP7PZrM5y1dLksSYMd3/PiMIvS0lJcVZ1j8jI0MkxgWhH2pvb3d+T9LpdAwdOtTFEQnCyetxYvz6669n7ty5BAcHd1re1tbG9ddfLxLjQo/8ULCfV3YP5+z5u3BcY28AWxmoYrkgOo0Loo8+p99fb5nNN7/uYdaEIX9ewECbxcjdW7/AbLfxStqlBOp6now5lo21+WyozQfgjs1fYrDaeH7M+cR5B7KtvpQwN2+iPf2OuQ8fbSKJAY9Q3PQyCkmJn67r17Fevw5JUhDg1gdzrAuCIPSx21/8msZWPbtzy3nl3p5VAfnnR6v4dn06184bw10X9fw9cMHkVBZM7tkcaGMSo9nw5l0oJOlP7V1rt8s0tnYQ4OPRK8eNCPJBlh2ZsdU7cnHTqimuaqS4qpFQf08Mje1MHTGI5nYDY5Ni+HFjJkXVdQT6t1Bn9MTY0s6ezflMnJPCni0FAHzy6mqa6tu58f656NwcnRWqaytpqK2jw8PxmVjZ/McxE+MVHc2ct+ZNTHYbn0y+jhEBnUsjS5LEYO9g9jVVkOR7aA7hWmMb81a9jt5q5o1xlzEjLOG4r4HeZKG0ptkRZ0MbAC8vXce2/aVoVErMFhsSXeSuHf0JnPflg/d1SswqUBhtSBbIyqlGAioqm7n8hv+i15vR+msxBKvQyBKKOkunfdtUEBLrz+N3zCd1cDgAyYnhLDxnJIPjQ3A7wQ4ggnAmCA4O5uGHH+bhhx+mubmZkpISDAYDgYGBDBo0SIyGEIR+LDk5mV9//RVZlsnIyGDatGnib1YQjiMrK4v29nYAhgwZgo+Pj4sjEs5kkZGReHt709raSmFhIXq9Hnd3d1eHJQjCYUSVEeF01OPEuCzLXX7RKC8vFydTQo+dM3AIPxZmo7dq8VCbABUGOYTXM3/ATaXhtvjZqBTKLtvGxQTx4M2z+yy2nXtL0KiVpCZFdlq+ubaQrfXFAPxWncPFsaN69bhjAwcwOdiOu7KOX8vtmO0alhXvIdrDj8d3r0CnVPH72Xd1ORrucDHeVxLtdQVAl3+zDfp17Ku9BYARIR/h53aoXL0syxS2vE+HpYQE//vQKrs3gk4QBOHPFODtTmOr/oRGi2/cV3Tg/8ITSoyfKOUxSob3lf974wfW7SngmrmjufviKc7lBksFaqUvKsWRnyd22YpCcpwmbs4oZl9BJRarjd25Fdx7yVTiIgPJL69neHwE8VGBbMksJjEmhAevnEFRVSOpg8Kcz/Wqs0azOudKZM0utu9OYPOK2Uw+KxUvX3cWXDOB7z7+A4CfPt8Csswd/zifdRXvsqdtKVVb/LE2TCQkqpaOyoGMfODoz7NM34TeZgEgr7WWvPXV5BbUcMu1UwgOcozQ/2TK9VTrW4jycHQw67A2safxJ5RSK6CjpL2hW6+pt4eOB6+YzvMHSsoDKA/8aM2HlU8/wmFJ8U73AZtSxualBFnGDGADTbuddrMZBdAiW5AlBSZJ5rJLR/Hd1ztRHDiU2U9FaWsrb3//B2/830UAaNQqhqUeOW/yTyv38s6H67ng3JFcd8XEbj1fQThT+Pr64uvr6+owBEHoJi8vL2JjYykqKqKxsZGqqirCw8NdHZYg9GsHR+cCpKUdfTCKIPwZJEkiOTmZzZs3Y7fbyc7OZuRIUelKEPoLq9XKjh07AMffq/jcEE4X3U6MjxgxAunACKeZM2eiUh1qarPZKCoqYu7cuX0SpHD6GuTrz+djz+PHD/KYcnYeESm3s6Iqna9KtwAw0n8AE4OOP3Krt/2xvYCHnvoGgLdfuJKkhENfrtOCYhnuF4nZbmNqSHyvHE+2t4P+Y1DF464azcSgtcjYCdKOZGVFAmdHJbOpphAAs82G2XaMi+6HyW6ppd7YzqSQgUckxw+fw1ySOvf0arPkkdP0MgA6VQiD/e48iWcnCILQN9596FJySmsZNqjnF0D/ft1svt+QwaUzh/d+YP3MnnxHidHduYfmm65s+57M+ofQKoOZGLkcpeJQr/z99U9R3raEOL97CNRcyz2vfIvdLpM2cj8xcY18vR4+ffQq2g0mfD3dAPjmmRuc7YfHRzjvd5iLyCx9H5M1G40GQoIbcQ/xxMvXcbxFD53DqImD+ed9n2PUm51zje+s/A2lF/iPbOWPf01i+3ojHqY6do7LZeTEePZtKyQwxIeI2EP10McGxvLX1Dm0WYyMc4vl6vfeB8Dby427F80EQKNQdiqXvrLyWcr0u7g2PhAVd3D5wO6VkqxvbufVZRsAGBjuz4IpQ5kxKp4nP1jBtqyyrqqcO5dp1EpM1sM+x50Jcqnz/0qweCuxAPNSBrE9p5x6iwmApev2Ivur0DZZUVohJsSX4tpmBkcHsXZHHlsyirlm/hgig32PiOPbH3fT0mpg2fc7RWL8VCPTuZy+q/SHGARBEA5ISUmhqMjR4TE9PV0kxgXhGCorKykvLwccFVNiYmJcHJEg4EyMA2RmZorEuCD0I1lZWXR0dACQmJgoBsYKp41uJ8YXLFgAwJ49ezjrrLPw9Dw0Okuj0RAbG8uFF17Y6wEKp78vn/+e79/IZ/ETEp+XDiPF14xOqUarUBPnGXr8HfwPi9XGd6v2EhzoxdQxJ5a4ttsPXfGT/+fin4cKPpty40mXaGtu0ZOTX8PIodEoje9Ax9sAKANWolF4YbK3sDB2Cn8bfgkAQ3xD8Ne6E+sVQJj78eemLW1vYuHq97DJMv8acy4XxHaep8ffbTwjQz9DQomPbkSndW7KcHQKHyz2Fvy0xz4hlWUZWZadyQxBEIQ/i6ebllEJR46I7Y6JqQOYmDqglyPqn55ZdDYrt2Zz6cxD7/XtllwATLZaLPbWTonxmo4VgExNxwoiPG4k0McDi1zJwvkbAVAY96FSXuZMipttDZhs9XhpErDZDbRb8vDSJKGQVGTV/4MW5U7sdjVbtyXg4W1k+sT9ADSaSqgwpJM6YTpvfXc3eZkVjJ02hL/f+D5bxoWQMsxCknsVF9/wM0ufHI65ScmaH/ZQU9HEa098j0qt5NUv72BAguNcQZIkrosb74jJYiU2OoDS8kZGDo0+6mujOfC8/TS+XDGge5UDqg2t3LZ9CU3DWtHtcuO8SSlcMdvxWfnG/RdxxwtfsT27vMu2U4YP5N93nc/5D75HVUMbPu5aWvSOZLd88J+Do8kPO//Ia25xJsV1GhVGs9VRil0poZQl3n3kMlr0JkL9PZl62xvY7HZaO4w8d8e5zn1s3VGIxWLj6svG8eHnf3D+/M6f/YIgCIJwKkpMTOTnn3/GbreTmZnJ7NmzxXdTQTiK/x0tLqYeEPqD8PBw/Pz8aGpqoqioiPb29k55B0EQXEOWZbZu3ep8LEaLC6eTbifGH3vsMQBiY2O59NJL0el0fRaUcGYZNi2ZH99aSdSQCHyDvQnSqFk18+8YbWaazR3HbV/X2IbJbOX5d1fj7+NO/IAQ3vh0HQCfvHAtg6IDj7OHI01MG8Tzj12IVqMiecihHufpjZ+wq+Etoj2mMj382R7v9yBZlrnl/k+orm3lvLnDuP+6GMf1b8kXlTKIBTGf02GtwV97aLS8SpK5KDYZpULbrWPYZDv2A1l9s73rEea+utFdLm82bgG5HrUESunow4JaGju4Z8HLtLcaeWHJbQxIFL3zBUEQ+oOq9p+pav+WWJ9bGJuUxtikzqNBYn1uAsBLk4RO1bkTWmLgo1S0fU2Mz/Vo1Cq+fPJaKhtqqZE3YLRVkRI9zbmtxdbKpvJ5WO1tJAU+TXnrF7SaM4jwvJikoCfx0iTSbNpJTZEfcruKlLQSoIQO8218WXIPJns7Vfos5kQ+SGikYyT37s35mPTuNMZ6MCCoAQY3MO6seCr3DuHcK8eRubMYAKvFxp0Xvsa/PryJlNGdOzlo1Co+eP16zBYrOq2anNZ1qCQNAz3HUq7fh58mEk91IGeFP0S5fg9hbsnHfU0N1hZ0Si9WVe4nu70aQuD8hUlcMmO4cxtJknj0xrks+Ov72OwyaqUCT3ctoQHeBPt58vfr5iBJEu88fBk795exN6OMb7dmOtrK8oFzgYMjxyHQ2x2dRk1+eb3zGEazlYeumYnVaifUw4OUIeH4ervj6+2OLMvERwWSXVJLRNChntx7M8p48LFlADzzj4V8+OahEf6CIAiCcCpzc3MjPj6enJwc2traKC0tJTY21tVhCUK/09HRQUZGBgA6nY6hQ4e6OCJBcDhYTn3jxo3Issz+/fsZM6Z7lbwEQeg75eXlVFZWAhAaGkp09NEHHQjCqabHc4xfe+21fRGHcAZ55+9LWbN0C7f/63KmXpDG5AvH8W3TR2jdNSiVSnJaKnlw12c0mNsw2a3cn3gOl8VOcLY3ma08999fMZosjB4azYvvr8XDXUOH3gxAZKgv4ChV6uXRvSTy/5IkiXGjBh6xvKLDUdqntGMzk5e/wDmRqfw1tedTCMgyzng79CYk9wtBMwwUAUgKT3QK0Kn8nNubbK38WHotRlsTcyJeJdjt+F9gBngF8Pn0a6g1tDM3MrFH8amVvgfuSagUR45Obzalo1UGUpjVRk15EwB7txSIxLggnGEaWjrw8dChUil71G5ffiUPvvkj8VFBvHT3AlRKMaqnt2XXP45Vbsdia2NsxNJO6/ZsKWDl1zs4+7KLCRsVe0TbEI+zCPE4y/nY013LYPco4uTlWO0daJSOz6eyikayCzMgsh0Ag7UCo7UKAL21DID63eexOSePgFEWvIwh2O1ZuKui0CqDUSm0mOztqBWdO1teddcsPnt9DfpHfal72vEZ5Mkorrl7PKERfix9+zeQZWRJoiXanYc//ZVXwy9iQHhAp/0olQrclBpyW9fzS8U/AYjxGEVJxw40kie3DF6CWqFjgOe4476eOxq+ZEPte0S6D2VG6N95P/MPmhsNhGp90Kg7n077ebszJjGaLZklRAT78tU/rztif6H+Xpw9MYm544ZgNVn5ZUMWKpOMxUuBTedIjPt7ubH85Vt59cv1fLJ8B2qlArssc/lZo7hw+rAj9gmO85dh8RFkl9Sy7Le93LxgPDqNGvVhf6MarbrLtoIgCIJwqkpJSSEnJwdwlFMXiXFBONKuXbuwHZiWb8SIEajV4pxQ6D8OJsbBUU5dJMYFwfUOHy0+duxYUWVEOK10KzHu7+9Pbm4ugYGB+Pn5HfOPoLGxsdeCE04Nre1Gvlm9l9T4MEYlR9PYomflxizShsYyKCqQb1ft4ds1+xidHM0NF4zj+/+uwWa188tH65l6gaMEh7uXm3N/K6v2Umlscj4ubq/tdLw7nlhKVn6189jgSDIH+HoQ5O/J5eeOYWpaPN6eOoIDvHr1uY4OuovMps/5uUJBg6mDTwq28mDKWT3+YFAoJN547nJ2pZcye2oSAJIq7qjbt1rK6bDWAFBj2NOtxDjA6MBo7HY7v365DaVKwawLRncrVl/daNLCvweUeGo6l6Mvb/ueffWPoJB0TB79C+dePZHWpg5mLBBzAAnCmeSbdft45uPVDAwP4PPHr+5RcnvV9hzqWzqob+mgoq6FmFC/4zcSqGr/gSbjTgb63opOFXbMbUM85lHRvowQzyM7b73096+prWymMLuS//54HwBGs4WN+4pIjg0lLLDr6ToUkgaNUgM4SpUvuu8TOjpMXHvjLUyf4UGU9xUUtA9kZcVHlBnj+TTYyrefbCT24VJkCQZFxjAzYjsKSYtCUnFZzBvUmvKJ8RjV6TiX3zYTq8XO52+s4ZPbpzsWSjks/yyHwFAfmpo6sLqrsHgoMYa5UdXWwZWPfcJ/b19AYkoUKnXnjhraw8rEl+m3o5DAYtfT0aFHq5Bw60YnurKOfQBU6rMId/cmaLsf7ZUyX7jv5pb5Ezpte+9L37Iju4yRCZH86/Zzu9qdk1KpYNyYQfy4OwebB5w7agi5DQ0E+3tx20LH/N93XTyZy2ePJMDHA4Xi+J/hmgPPXyFJzs/8pCHhvP3S1VitNlKTIo+7D0E4U1mtVn7//XcKCgq44oor8PLyorKyEm9vb1HSUxD6scGDB6NWq7FYLOzfv5/58+ejVPas46YgnM5sNhvbt293PhZJR6G/CQkJISAggIaGBkpKSmhtbcXb+/jTSAqC0DdaW1vJysoCwN3dnZSUFBdHJAi9q1uJ8ZdeegkvLy/nfdE7RDjcf7/cyDer9qJSKljxzu08996vbNhRgK/XNn58cxHPf7AGgLySOtoNJq59ZCFrv9rCxXd1PdL6nIiRbGvIx0OlY6hvNFcOmES5vpHXspfjZ/Jif3MF9kgbymo1116cRsRub4ZGR3LOlFTnPuJjg/vkuQbqEpkY8hCSVEh2y3rOjkw94b+H2OhAYrtZ5j1QO4Rh/jfQYa0h3ue8TuuazXreyP6dQV5BXDbgyC83m1ak88rDXwHgH+TNqCkJR2zTFU/NkC6Xm2wNANhlEyiN3P7Ewm7tTxCE00t6gWNkcFFVA0aTBU/37lfoWDh1KBmF1QyODiIq2LePIuyf7LKVNlMmnprBKBVux29wgMXWQkbdQ4CMLNtIDnr6mNsnBT1JYuBjSNKRF4WHjxvEr9/sZMR4R4csWZa587ll7Cmpws/LjRX/WYSyG3NzHvz009enMsB3JgA7m1Qsr0kBLDSYOlhwxSTWbN1E4Oh6EnxmolJ4ONt7qgPxVHf9Obh3SwHg6EgmKSRsVjsA9dUtWN2VNA3zc5Qcl2WQJMx2O/fc+SG+Zrj36QsZPz0RtUZFW4uebV91YG08F4OiHp9zNgGwf3EEV638DzarnYtvmsINfzl29ZcpITfj3uCLLMu8k3c5MaP8KKqMJy7yyPgr6loAsFht+Hod/2fc0KZ3vqAXnzuKxNiQTuslSSLIr/sJudsumEjKwDAGRwehPWw0e+LgY3emEIQzXUlJCXPnzqW0tBSTycTs2bPx8vLi+eefx2g08vbbb7s6REEQjkKj0ZCQkEBGRgYGg4GCggIGDx7s6rAEod/Izs6mra0NgISEBPz8RMdkoX+RJImUlBTWrXNMjZmVlcW4ccev7CUIQt/Yvn078oEpWkePHo1K1ePC04LQr3XrN/rw8unXXXddX8UinKJCD4ws8/VyQ61WOi8C+3q7oVQq8PLQ0tZhAsDDTcslt0zjknvnHXV/A71C+HTiXZ2WvZ23mrU1jjk4ORuQQLZL3Fn6HnKAzF4pmPlyMgqpb8vxtpuz2VF1KRJqlk75Fjd1VJ8e7yBJUjA84KYu132Uv5nPCrcBMC5oALGenS/S+wd7g+RILvgGdr6wrre28lPZt8R4pjE2qHvl1mN9rkKpcMNDFYWHWswtIghnqkXnj0ejVjJicGSPkuIAA8MDWPzI5X0Sl122IqFA6uPPA1m2k9P4HO3mPJICH8ddHXP8RsD++seobP8GH+0w0sK/6PbxlAoPPNQD6bAU4Ksb0a02XSXFAe596gIuvH4Sj976ERtWZnDzEwtI31+B7C1Rk9jIXVuXMqplAO9+s4WLpw9n6gjH1CKjhxx6z9eoVTz+j/OpqGxm1qQhrPlhN7HxIdwUPxGD1UySbxjh7j6Ez01lMp8eM856/XokSUmA20Tnslv/fi7ffbSJKfOG8trj31Jf1eJc5+XrTpNzHm4JyWxDYZVRt1kwWGWevW8JSSOiueH+uTx0/XtYLXZnW+/fk1Go7TTneAGO5cveX8/0c4YzYHDnudYPMtk62F6/FJVCQ3rLLwBEJDTh9ls0apUKm2zl29K/0WAq5tzIx3nx7vNZsyOXcyYef95ygAumD8VwoHPJc5+uQW8089p9FxAacGIjJNQqJTNGxx9/Q+GUIwGS7OooDnWKOd3cc889jB49mr179xIQcGhqhoULF3LTTV2fhwuC0H+kpKQ450/OyMgQiXFBOMy2bduc99PS0lwYiSAcXXJysjMxnpmZKRLjguAiFouFnTt3AqBQKBg9erSLIxKE3tfjrh67du1CrVaTmuoYnfv999+zePFikpKSePzxx9FoNL0epND/2Ox2tqeXEhvhz1XnjmF0cjThIY55Nv/vhlnMmZDI4NhgJEnik+eu4ZvVewkP9uHsKd27SPy/xgcO5vuy7XiY3WhRdQBgVxy6MljSUU+9qZV38tYSovPhxrjpfZIkbzNlYZeNgJEOS16fJsabmjtY9uMuUhIjGD/6yPnOAar1uwjVfUOcJ7RZBxKoPXJEWfLoAby76kEUCgXhsZ2T5kuL7kBBAb9WfEmUx2eEu/seNy6lpCHWu28SWoIg/HlkWaZNb8LbQ3f8jbsQGuDNw1fP6uWoTk6LKZ2dVdehUfozNnwZaqXPcdvY7CZ2Vt+AwVLC8NC38dF2rzxUh6WQstZPAChv+5LB/v/XrXYGa8WB/yu7tf1BCknFuIhvsdrb0Cj9e9T2f0mSRFlhHTUVzQDUlzbib1VS72PEEmzlt+pcikqasdrs/LAxgyWrdwHw1gMXMSYxGr21kS3Z2Tz48hY0aiVl+8r5ZfEfqDUqPl//ME+NPO8YR++sXr+e3TWLABgV+hH+bo4LdXFJETzwr0sACIv275QY/+j7+/hhYybv/ryVdqMZtcFGSGEHxoMJcEkia3cpD17zLnZ75yxia+GhEes6dzVGvQVZhm3rsvGLtbG36ScGeU0g0t1xnmuT7XxX+haVxtWONgpvjPZWkCWiB1eRud+b579ahi51DwCby5bzx8o4po2MI7Kb1RC0ahU3nDuWdXsKyCxyTBWzcV8RFx1lHnFBEPrGxo0b2bRp0xHfZ2NiYqioqHBRVIIgdFdcXBw6nQ6j0Uh2djYWi0XMoSwIQHV1NaWlpQAEBgYyYMAAF0ckCF0LCgoiODiY2tpaysvLaW5uxtfX19VhCcIZJz09HYPBADg6rBysJC0Ip5MeJ8YXLVrEQw89RGpqKoWFhVx66aVccMEFfPXVV+j1el5++eU+CFPoa0azBbVK2a3SqQB/e+lH1u/Ix91Nw89v3UrioEOjrNQqJaNTDo0qCwn05rbLJp9UfFNDElk/53FsFpmPN/3BlrwCmgY1UW5pINo9gLuHzOPnij18X74DgPFBg0nxPTJpbbPZsJqtaN16NrrxoGCPs2m35KGQNPi7TTmp53Qssixzy/2fUlPXiiRJ/LLkLjy6GJG5te4ljLYCrhjgz8LYl9Equ/7iHzmw69LySizIgEZhQ60Qc7AJwpnkL69+x4Z9Rdx+wURuOHvsSe2rtqmNdoOZgeEBx9+4DzUatmCT9RisesfIauXI47bpsBTQYnIkfus6Vnc7Me6ujsZXO4p2Sz7B7jO7HWNy4D+pbP+uR20OUkjqbifFDVYLSoUCzVHe20dNGszM80ZgMVuZt3AUcy8cTUVbE/emL0MC7p42jW/N6QyNC2fxz44RJrIMemsjnxRcjUVlIDZhJMU54ZhxJJ+VKgVSN+bAPtzho9oV0pGnpct+28t6nYHwadEMaJNY9Ldz8fJ25/K5o1mXXsSu3HJsPhp8AxRUlzU5glQAktQpKR4e7c8/37ue/XvK8AvyIj45gg9eXMEvSx3PrSinijVVKyjV7yKzeQW3J3wLwBvZazDZV6FSgErScsWAN/ii+B70tkYSRpSSuzuGJu9vCbWpMLZ78fqyDtqaCli3t4CYUF9e/XIDY5KiWbTg0Dzk5ZVNfPfzbiaOjSNxSJjz/GvMkCgmDR2A3mhm2si4Hr2OgiCcPLvdjs1mO2J5eXm5uBgkCKcApVJJYmIiu3fvxmKxkJOTI+bDFASOHC0upscU+rOUlBTWrl0LOEaNT5w48TgtBEHoTbIss3XrVufjsWNP7nqhIPRXPU6M5+bmMnz4cAC++uorpk6dyueff86mTZu47LLLRGL8FPTFLzt5/bN1aNRKIsP8ePz2+QyM6jyyuLCsno++38rEEQMZmRTF+h35ABhNFrZnlPLDb+mcPyOVSSMH9VmcX/28h9c/XUd0mB+lVU3wG0RHx/DkLeeRHBKGj9odjUKFr8aDKPcjkzOGdgO3jnyQ2tJ6/vnTw4ycNbTHMSgVWuL9/9obT+eYDAYLNXWtAGg1KrSarv9Uozwm0WwuIMZzMlqlGrssozjwJaeiYwsAER5HLz10YeyrrK/5jnHB0wjSOS74tVuqSG/6lDC3UcR6zThmnEWtq9hQ8yRqhQcLY5aiUx1/dKYgCP3D9uwyALZllZ5UYry6sY0L/7YYk8XKv+88j2kjTj6h127OI6fhX/i5jWag763dbhfhdSHt5hy0qhB8tN0bbeulSSDS61I6LMWEe13Y7WMpJA1jwo9dIrwrbuoIBvnd0eN2x2O3y2zamk+gvyfmIBvXbvgIL7WW72beRoDW44jtdW4aHnju4k7LEjxCWR56p/Px3OGOKTbSEh2d3cYkRlNvKMYiO3oOTxrtx3WT5jJv7BAmjo4jemAwHp49q0AQ4DaRUaEfIUlKfHVHdmT4dVsOVpudapWFbz6/BwC90czVT31GRX0L7u02VGXtVDdbQCFBF2Wmp8xL5YEXFgIy0yOHA2A0mPn16x3YVBIt8V58XV/FBbmgi4QAbayzbZPJiEKhxlNhJtX3PHw0IUwKvoHtdV9hbkwhKqaNsJgmACw2E21NjsotSissW7uXvfmV7M2v5NJZI/D1dEw18/Jbq9i+q5hv1uylw0siOsSXTx+7CnedhpfvWdij1+9odjeU8WLmamaFD+G6uPG9sk+hH5Alx83V+kMMfWD27Nm8/PLLvPPOO4CjukZ7ezuPPfYY8+fPd3F0giB0R2pqKrt37wYc5dRFYlw40+n1etLT0wHQarUMGyYqEgn9W3JyskiMC4ILlZSUUFtbC0BkZCQREREujkgQ+kaPE+OyLGO3O0pVrl69mnPOOQeAqKgo6uvrezc6oc8VVzTwyie/A2AwWckrruPH3zO45+ppnbZ764sNbNxVyOo/cvjmtZsJDfSiur6Nmy4cz5tL1lNc0UhOYQ2T3uy7xPjGnQUAjqQ4gAxlkVVcl/saD6jO4dLYCayZ9Q9UkgJVFyPkakrqqcx3lCjd81vGCSXGeypnRwHPXvUKccMH8LfP70HRxYh8s8nCuw9+gsVoYdGL1+Dm6Ya7u4ZF10xmw+Z8brtxGiqV4/nUGzZT3vYdMd5X4KcbxsjARQz1vw6VQstze1ezOHcrdydPYWGsjtWVfwFgdsQrhLuP6TI+D3Uw8yJv6bRsd8M7FLatJK/leyI8xqFWuB/1+e1v+QoZG2Z7Kz+VXk+cz/yjzoUOUNOxllZzNrE+V6NWiJE3guBKT988nzU7c7nqrJObK6il3YDJYgWguqG1N0KjpOVDGo2baDRuIsLrIrTKwOM3AjRKf1KD/92jY0mSksTAx3sc4ycFW3klay3XDBrH3UnTe9z+oH9vX8WXZTu5c/BUrkk58QTmTyv38uLrv6KQJBY+MQqT3YrJZKWwrb7LxLjZpuen8r9hsrdzduTTrPgwh/Tthdz0f/OJiQ/ptO2YxENVYAytPvz2/Ug8fQwke4/mnCuSABg33ZFEt9tlrDYbGnXnU8z6lg4+Wr6doYPCmD0mwbl81fYc0gv0XDtvDHSRU79t4QTe+WEzZ40d4lxWUddCSbXjXEDTbELbbHGMFJckx+0wE+ckc9uzU3kn7zKsditnRzxPnHcS7a0GrFY7zSP8sOscn7FffxHEWPcZjF14NuXuzQT5eXJ/8hy+LvEg1lNicoijUkyy7xySfedAPOhnd/BB0Q4ssh5zU6zzuP++41wkrZLfdxcQ5O5OQ12bMzEeNzCY7buKcffX0WoyUFTVSF1zO5FBvke+ACfondyN7GwoZVdDKVcMTDtq5QBBEA556aWXmD59OklJSRiNRq644gry8vIIDAxkyZIlrg5PEIRuiImJwdPTk/b2dvLz8zEajeh0JzZtkCCcDnbv3o3V6viuNnz4cDH9pdDv+fv7ExYWRlVVFVVVVTQ2NuLvf3JTiQmC0H2HjxZPS0tzYSSC0Ld6nBgfPXo0Tz/9NLNmzWLdunW89dZbABQVFRESEnKc1kJ/o1GrUCokbHYZfx93lEoFgb4erN2ay/S0eGeJpbTUGDbuKsTLU8uCO9/hsnkjiYsJIjzYF5PFRnHFVqamdW+UYE1HO4tWf4e7Ws1/Zy3AS9O9suZ3XjWFT77bhkajYs0fOcjIyAPMIMGa6gwujZ2A7iilxAFikiK57qnLKM+tZMFd87p1zJO1+uN1VORWUZFbxXVPXUZkfNgR22xfvpvvXlsOwJBxg5l7vSPBcuVF47jyos6jvffW/Q2TrY42cx6TI78BQKVwvH4/lmZgR+bH0gwujB2Lm2RDI8ko6NnF8CBdCoVtK/HVDEQpHftnM8z/Rn6v+huybKfDVs3exg9I9ruiy2S60VrHztp7ABmbbGCI//09iksQhN41bWRcr5RrTogO5plFZ1PX3M6F03pnBEKwxyyqO37GVzsSjaJ/fgn+smgnHVYzS4t2nFRi/MPCzdg0Mq/u+f2EEuPVhv3sb1mBRXfgZynBWcFJNCr1BGg9GBUQ3WW7KkM6lYZ9AGTV/MbilxwjSfwCN/CXZy466vHCg3wY5DWV7KIa5i/q3MHMYLJw5ROfUt3Qyqv3LWT0kEPHfveHzXz9+z6+WOVItPt6utHcZuBvb/+MDJgtNh66+sjy8iMGR/LWA51HtsdFBnLzueP4ddU+2qobjmgjSSDbZNRqBQ+9cBnFhs2Y7XoAHtjxFkun/Aedvw77bX7oMaHZq0MhK0CGvfvN7Kr4GYufhgFh/nzx5DVcG3f06inuWg9uT/gao62VXJWegog1jEuJYXJaPACRZi0VJQ38898/88Eb1wOw6LqpnD1nKAq1gre//4PBUcG9mhQHOCcyha11RcwMGyKS4qcTmS6rIvzp+kMMfSA8PJw9e/awZMkSdu3ahd1u58Ybb+TKK6/Ezc3N1eEJgtANCoWC5ORktm7dis1mY//+/YwYMcLVYQmCS9jtdrZv3+58PGZM1wMmBKG/SU5OpqqqCnBU/5gype+mshQE4ZCmpiays7MB8PLyIikpycURCULf6XFi/OWXX+bKK6/ku+++45FHHiEuznEhdtmyZUyYMOE4rYX+JjzYh4+fu4amVj0jk6LYlVXGnU9/BcDz95/P5NGOn+/Fc0cyf0oy8255E4Avlu9y7uPj567mhgvGHTE67GhWleazu85xgrO5qpQ5MfHdapcUF8azD5wPwBN3nw3AT+W7WFm1lxsGTTtue0mSuPKR7pfJ7Q1nXT+dXWvTiR85gPBBXXcciR81EN8gbyxmK0njBx9zfwG6cVR2/Ii/7sjy6P8YcRZLCnZyw+BxhGg9uNCzAwkzkqKxRzEP8b2QaM+p6JS+KKRjX0yP8BjLlXFrKGvfyKaaf+KljuSX0kUMC7jeWYbdLttQSEoUkg6Nwg+zvREPdQxWu+nA8h6/DfUqs83KPduWUqFv5pGh80gLHCDm3BKEHpqTlnDEMoOlAou9BW9tz0+kg9ynMyNmd7/+W7w7aTr/zdnAFQNP7gLTwIoACv0bSG49sc6FqyqfocVSgW9MFM8+9g8C/T0ZHBXK41HnHLNduPtQoj3GYLK1kxQ0g+Hj9GTuKmH8zGP/vAxGCwsmpzDyxrnotJ07o1XUNVNa4xjJvS2rrFNiPDHG8fzCg3zw0DlGqpgsVkIDvKhqaGNITHC3n7MkSSxaMIEos5LXfis9uBAAWQn6ARKRsg/z/28SHxdtYVpoPPubgrEjkd/qzz/3LSfeJ4TSSEey3KQ04rbDHSQJU7g7stpR3aWkupEVm/YzafhA3NxlMlt+Jb9tI4O9ppLT+hsR7qlMDL4ehaTEXeXH8Hg/vnjyGmec7XoTnkHuyFXNhIf6svSbbUweP5jwMF+iIhwdPp66uW/KM58dlcrZUal9sm9BOJ25ublxww03cMMNN7g6FEEQTlBqaqpztFNGRoZIjAtnrNzcXFpaWgCIi4sjIODIKQcFoT9KTk5m9erVgKOcukiMC8Kf4/DOVKNHj0apFJ3shdNXjzNSQ4cOdc5Pc7gXXnhB/LGcog6fT/zwi9zubp1LLNllGY1GhcVgdi6TcPTK7m5SHGBW9CCWZO/FXa1hXFjXI9m6Y/PuInxs3lwzYAoZzWXEe4Xhqe5fZdLiRgzg/YyXjrlNcFQgX1S8gyzLqI7zOq74YjJr/3BnRPIg/vWPzuvmRiYyN9JRyla27EfiwM/JVtnjuN1VncsWr6vOZX9LFVcOHItXF69xlOckLvNcztLCszHamtjT+B6xXjPIbfmBLbXPHxhYZGeU/+2UdvzBL5WvAa8hoeCCmHcJ1B171OqWNZm0NHQw68LRKJUKmgxbKW/7jHCvSwhwm9Tj5weOaSFWVGRS0FbLupo8AK7f9DEXRI/giRHnopSOLHsvnPrsdhmFov8mW08XBksFf5TPx46ZocGvEOIxp8f76M9JcYDZ4YnMDk886f18cdvNZOdWkZAQiCzLPX7eIW6JtFgqCNUlMaGblVsA1Ao3zov6l/Pxsx/c2K3j3/7iMrKKa5g2YhD/vvP8TusGRQRyy3njKalp4pIZh6oHlBXW4tdu55unryMk0Bu1SsnKrdk88s4vpMQbefG+eQwO63kSd+Z5I3nvheUYOszY1dA0R0lbsgJ8FNTajexqWA0N8E3pEmZG1GKxK9hVH012Sw3zQlIco14lwIrjvl1G02TGFKxDrVLio9bw1NsrSIr3Je2KFRhsjguL9cYijPY2KgwZDPc/Hw/VoaoGZouVN7/ehFIhsTOnnMzaWhJGhlFb38qb7+WxfFUGi9+8nq9/30d1Yys3nD0Wd50oaSkI/UVFRQWbNm2itrbWOX3YQXfffbeLohIEoSfCw8Px8/OjqamJoqIi2tvb8fT0dHVYgvCn27Ztm/P+2LFjXRiJIPSMr68vkZGRlJeXU1tbS11dHUFBQa4OSxBOa2azmV27HAMhlUolo0aNcnFEgtC3Tnio5s6dO9m/fz+SJJGYmMjIkSN7My7BRZLjwvjwmauw2WWSBoV2WpdfWk/HgaT4rAkJnDs1BS8PHYOiujf360GhHl78vPDak4pzd1YZ9z/3DbLGjv2KZuzI1JvauC/x7JPar6soVd3rVFJQVI9Rr6OwuP6Y20nqRPB5Gew14H7ZScXWYGrn9i1LkJFptRh5MOWso247xPcispq+YIiPY2R+afs6ZA5dVCzu+I1qQw4KJOxIyNjJb11zzMR4fmYFT9y82PFAljnr0rHkND6O3lJIq2kfE6N+77T973sKeGXZeoJ9PfnrFTMYGN51r+jNdYXcv2MZACm+4eS0VGOR7fxUns6P5fs4JzKVB5Jn49fF3LzCqWn5yn28+PJKJk6I44l/LHR1OC5htdmprG8hKti3TxPPVrkD+4HOOWZbXZ8dpzfJsh3JBR1i3N00aKL3srj4FaI9RnNu5HM9+tnMDnuIcYE34KU++elsunPcNr2p0///2/6W8zuXg8/ZV8a9F78BwICEMN784R4AMouqGRhTyZWX/kyJ8VPCTF/jpe1ZR4OaykYMHWawy3SkKGmbcNhp7WE/Sg+1I1a1wk5kjQrN0iZ+HroHXbUbNl8bA4vcaW0yoCztQGm2MyMhlivvnMl1j3wKQFljJakHkuISCuK8JpHXtp5w92Tclb6dYlq7I4/PVu4EwNvdMR1JXnENY8IcU6n4+riTU1rLc5+uAcDLXeeYX10QukOUUu9Tixcv5tZbb0Wj0RAQENDpPVGSJJEYF4RThCRJpKSksGHDBmRZJjMzUyQFhTNObW0tRUVFgGPO5kGDBrk4IkHomeTkZMrLywFH9Y/p0098+jJBEI5v7969mEyOayepqal4eIjr4cLprceJ8draWi699FLWrVuHr68vsizT0tLC9OnT+eKLL0QPrtNAwoDOF9f3Zpezdmsu505P5eKzRtDQ3MF918zA3+fIeaSP55u8TJ7fsYGrE4dzx/Ajy4F3l/pgItkm4abQ0mE3EqTzPuH9nSr+dt98fl6VzswpQ467reTWO+VZ3ZQa/DRuNJr1RLn7HXPbYf7XM8zfMYeqLMtE6IKxWb1otMjIVg0qWyAKKQeQscugljwI0MbSai7HWxPZ5T7dPbQoVQpsVjtefo4P5QC3aegthWhV0RS3LiHG6xIkSYksyzz6/go6jGZKa5q5/MlPUUgSGrWSf992LmMSD1Uo8NG4ISEhI/N/KXNQK5R8UrCF5RWZAHxbuoeM5kqWTr35mHPXC6eO9RtysdnsbNyUh81mR6k886oC3P3SN2zbX8plM0fwwBV998XSSzOYYcFvYLLVEOF19Pmq+wNZlvmh7K9U6HczO/wR4r2nndB+7LKNZnM5fpqoHifYSzq2ATJlHTuxY0PZg9MzSVLgrQntcl1RRil+wT74Bvv0KJ6jaWsxEJjfgV2Wufe8id1qU1V2aDqP0vwa5/1r543Bw3fHgUcyFntrj2KRZZmHr30PbI7OV9pSG1hUoHYkspRI2A5k7zKbwrFbJNw+VmDaYiT7PBt7PNNR6bV4NGv58LVb8PVyo7q8kdYWAzUBera27GfMnBKqyzWUZYWx9YcUpk3wI6p2GhWleq675XbcPbRHxJUQE4ybVo1CIXHJ5KF8tGwLKpPMXY/PpK3NSHJiOAazFW8PHW16I/GRPetcKAhC33n00Ud59NFHefjhh1EozrxzBEE4nRxMjIMjoSIS48KZ5vDR4mlpaf2+Gpcg/K/k5GRWrlwJOMqpT5s2TfweC0IfkWVZVBkRzjg9TozfddddtLW1kZmZSWKiY2RPVlYW1157LXfffTdLlizp9SAF13r4pR9patWTXVjDf5+4/IT301Tbwjt7t1HV0cZbe7eeVGI8ZXA47/3zCjbvLuLX3L2Ep3qyMPL0H3E1IDqQO2/snWSWLFuQpOMnfN1VGn6adSe1hjYG+3R/RGKTcTNVbR+gBhSbzuPTvxZw7upNhLs1IyNRZ/VGo1CzoeYpVJKOywZ+h0Z5ZIm78NhA/rvy/+hoMzJ4aBQA8f5/xVubxs7au6g17kIteZGVE0dzm54O46FS/9YDCROjxsx9a5exOOIq4r0d89gm+4bz/YzbsMl2EnwcSaVhfpEM9ArkvzkbsMp28lpr+bZ0D5cPOP1/t84E1149EZvdzqQJ8b2aFLfZ7GTtryQmOgBvb7de229fyC1zjN7OLq3t82MFe8zo82P0BrO9gzK9I0Fb1L6pR4nx9X/k8vKbq5g6KYG4c9ZR1L6JBO85zA5/qEcxjA28HoWkItZzPErp+KdmRRml/PfBTxk+LZnLHjz/iPWLH/uSb19bgUlvQueh5ZO8V/H2P/kSopm7iinPrAKgYE8ZiUMijttm8lkpfJsaSW56OcmT4/nws03Mm51Ku96EsX4UbgP8iI+MwE+X1qNYaiqaaaxtcz7W1Mo8YZ7G10F5NJn12IEKfTMANllB/o5QQreaqbhXgy3M0bnOFmbCfSlcctnrDB9oY+i0aBqHhPLW5g2MCixlVFoZA9PgO4s75ZuC+P6TNrD9AoDOXcNliw59Huv1Jp78148YTVaWPnk13l7uPPj3L9Ea4ZbrppEQd6jzgptOw4//ugmD2UKgj+iFLQj9hV6v57LLLhNJcUE4DQQHBxMSEkJNTQ3l5eU0NTXh53fsTt6CcLowGo3s27cPAI1Gw/Dhw10bkCCcAC8vL2JiYigpKaGhoYGamhpCQ7vuEC4IwskpKCigvt5RnTYmJkb8rQlnhB4nxlesWMHq1audSXGApKQk3njjDebM6fkcokL/Fx8TxLb0EgbHBp/wPvZuyObhBS9iTPMj8uqBXJty8vNUJMWFcd8ry2icV0WhAT4uWs9tg8+M30GLxcb3K/YQFODF1AmDe9xebn8duf01ZLcrUfg8etztfTXu+Gp6ViFAp4pEIemwyxbq8zXogmx4a424Ky0AtNnNeKrDqTc1YpetzpLrNrudJWt2syWjhPMmJTNnTAIRAxyVKCy2Zqrav8ZXNwZ3dRQSKiQs5NQ9i+zXgLevxIKpd4KqAE+Pdr78JQ6zVY15hB6fkGayaubS2BbGyNDPUCt9ifPu/DstSRJ3DJnO8vJMCtsdJwQ6xQnPOCH0M0MSwnj+mUt6fb8ffLiBz5duITjYm88/WtSvR6L/+87zWLMjlwunHZr/udm4m+KW9wnzPIcQj7kAVLZ9R6s5kwG+i9AqT+8RrVqlJ5OCb6OsYxcj/S+npL2RLXWFzI1Ixkdz7I4OP67YS0NTB9/+tIvrZxUC0GAq7HEMgbpBzIt4vNvbL3vpF3avzWT32kzm3zgD7wAv57rVn23gi39973xs7DCRsSmbQUNj2PDNNqqKaxk4NIaYxAgGjxqIRtv9ihjDxw5i/IxEDHozE2cld6uNUqXklWV3UlvTwpX3LmbTV5v46LutmLFj8lbwyW/w+aPnsDlzD4V1TQwZtgalz2qaTXYKjBO4ZciDBOocCXi73c6G2ncx2Foo2yHhO6SdsGmNVKwKoLXAg/XL9rL0O0ep9rWb03m6ZgWNbe2oquz4rrJg9ZGwhSqQDowklyWJpoUmfFfYCFq0lWolrC5PAAJoNjt+9kariuYRMsoWBXaFN74l7chGG3WVTdTXtBAY4hiNv3NPKZu3O37223cWM3l8PBn7K7GpYdWuXObPTcXH89Dvk4ebBg83x9zi361PZ0d2GYvOH09UiB8l1U20dhhIHRTe7Z+NcGaQZMfN1fpDDH3hxhtv5KuvvuKhh3rWuUkQhP4pJSWFmhpHtZqMjAwmT57s4ogE4c+xe/duLBbHdZdhw4ah1R5Z5UgQTgXJycmUlJQAjvdxkawThL6xdetW530xWlw4U/Q442O321Grj7yIqlarsdvtXbQQTjWyLPP3V3/ij92FTEuL5/n/W0BtfRuRob4nvM+irHLsdhndlkbefPwWkoYefU7p4ynXN+Kp0uGrcWfO2CF8Ya4GrUyNsQWD1YybSnPC++4vtu0q4v3PNjJvZgoL5o84Yv13y/fw2ntrAfjwtesYGNOzKQxk4wpABtMK4PiJ8RPhro5mYuTv2GUrw+9WoLr0UvR2LRZ7B3YUSFIkdtkxuttdFYhW6SiF/9a3m3hvwzaQYUtWCdNHxDlL5+c3/Yuq9m9QSDqmRG9nWuQvbCpaBJrcA29mMnGDVxASnAtAU6vEz78PQdIrSPSqxkvdQYclnxr9erw1A8lv/BdqpS8JAY+hOZD8e3jnt86kuAScFdG95I9w5mpobAegpUWP3S6jVJ7Evlo6UKuUeHvoeim6zobHRzA8vvMo39zG52kx7aHRsJUQj7mYrLVk1j98YK3EkIC/9Uks/clw/4sZ7n8xABcsf5E6Yzubagt5deyxO1JcsnAMtXWtTJ88hHmRC8hpWU2S77xeiWnVpxvY+ssuLn9oAYOGxnRaN3HBaNZ/vYXUyUPwOjAS3G6388lTX7P+661H7OutBz7BzV1Lyf6KTsu9Azz5quK/R43BZrPz4s3/pbGqib+8s4jcHQXkLN/GrCsn4RfoddR2Xfl+QzqRSYXYrBJ5edHIB04ZFZLEm+//zpa8Mtw8TCRN/hYAXy2M1Kziy+J8FiV8j1JS8WXJ/VQZHdNdkAAj/qFE7WHDP6WNTXcmU7C/kgeueZXL7zuPZ974lql37kSts/BTWTLV8R54rzLjqTRx3sB9SBL8WJxKq9UN3OxIB/5u1QobWKFkXyjL9vvSHiVhtqvQBNix1WpoC9TiWdrBL19sY+/mAox2O8T68Jf75pEQH4rRZGHc6IH4+Xpwy/VTeHXFZtKra3n1y/X844azjnhd2vUmnv5oleO1UEgsOn8Clz76EVabnUtnDOeBK6aLkoGC8Cd59tlnOeecc1ixYgWpqalHfOf9z3/+46LIBEE4ESkpKaxZswYQiXHhzGG329m+fbvzcVpaz6oyCUJ/kpSUxPLly5FlmczMTGbOnCm+GwlCL2toaCA/Px8AHx8fEhISXByRIPw5epwYnzFjBvfccw9LliwhPNwxkqWiooL77ruPmTNn9nqAwp+vqdXA2i2OxOKKDfuZNzmZtNSY47Q6trlXT6a5rg3fIC8S0wYdd/uKghpsVhvRCZ1HS62tzuCvuz/HU6Xjmyl/4f6rZhOy2ovXTT/xc8VuCtpqeCvtJjzVfZNU+rMs/uIP9udVU1ha32ViPCjQkQjRalR4Hkig2Wx2vvl5N1qNinPPGnrMk0XJ62/IHYuR3C8+6jb7m79nS92r2GU7/poBTAl9hMzmL6k17mdy8F8JcT9+wlitdJSrK1avALUFCyqKLUEosaOQ6lDYHCNrvTWRWKw2ymqb+ToznY6JBpDBY4uOcbe9yqjBEfzr9pHUdqwAQIEXVz39BXVNeqKjojl/TilajRm1Wsl3NRFcE1BIksZC6sQc8nOCaCyO5uoF02kw3IoNBfntGWhtb2CwFgNgsJShkHSkBL3Gqsr9AES6+/Lq2Mtw70ZHi+/fWEHO9nyue/JSgqN71klBOPXdtmgGsTGBDE2NQq0+8az4nrwKbnn+S7RqFUufvIbwwCPnhbba2ylvXYq3NhV/t965yBHkPoMW0x6C3B1loVUKH9xUkRis5fhoU3rlGH3FaGujyVRCiFsiCukkeiQcxk2pOfD/8UdSjxkRy0dv3eh8HKzreQWPrtisNv6z6B3sNjsWk5Unvr6/0/oJ547mx+YPOy1b/sFvfP7sd13ur7akHjfPIz8XWxvasdnsnaoc1Fc08vLt7+EbpsWo28be3420lGv5+d3VZG3Jo66sgaUv/Mh1T1xCTUUTX767juHjBjFl3lAAWtoNlFc3kzQolPS8Sh7893cMiAxg3iwDV4xyJIAXvzef4v2hKCUbCrvE3twCFGo1Fh9bp/gkCSJUZWypupu2jhLqzHpQHPq5qD0c27tFmgiZ0kjI5CaCxuzhpZV56AZ54uFjBCDUs40mqyeNF2iJda/HTWUFINitjY79XrRUu7PlneGovUzUNgbh26xEltW0jgCr1QZmUJc5TpktnoeOX17eSPOwADB0cPszy1jy+JVkbCukrqyR4CBvLr0gjc+37KO2qR2FouvPZHedhuQBoWQVV5OWGI3BZHFOA7J07R6GxYUzZ+yQLtsKgtC7nnnmGVauXOm8GHT4ubS4CCsIpx5fX18iIyMpLy+ntraW2tpagoNPvAqeIJwK8vPzaWpqAmDgwIEEBp7e1b+E05uHhwcDBgygsLCQ5uZmKisriYg4/nRegiB03+GjxceMGSOmlRLOGD1OjL/++uucf/75xMbGEhUVhSRJlJaWkpqayqefftoXMQp/Mj9vN+ZMGMKqP7Jxd9MQG+5/0vvUuWu57u8Lu7Vt/r5S7p7+FHZZ5t8//5WU8fHOdSUdjpG87VYjTeYOzG123nh/I7ZL7aCF7NZKZr/wbx6duJB5U0/dkb5nz0qlqKSes2endrl+2oQEFr9yLZ6eOoIDvTCaLXzw+Ua++MYxT25oiDdpIwYc/QCa8eQXxvLz19tprPuUu/92LkEhh5Jwemsjm2pfhAPlZhvMeXxbep1z/W/Vj3PZwK+6/Xz2Ni49cE9GQkYhgYRMR0cV2pbbmTXxYi597BOKq5tQRR248CiBfCD/sDO3gpe+W8+0iXoA/tg2k5zSBgAas+LYk+WoQPD+Xy8h2/oBr+XN5pfhv4C6kleuqiMg7kmQ7CwrHkWTuYhE95FYzc3OxHi7xZEM31V9OZMLr2C7XM6taeMZ4nNkmSaj3oS+VY9/qCPpX1/ZyOt3vQ+AzkPH3W/c1O3XpTe0NHawe2Muo6Yk4OXbs3L3/8tut/Po9e+RtauEh169irTpicdv1A0/bMxgd24FN507joggH8xGM/o2A75BRyZ++5LB1obB2oq/tne/SPl4u3HZJSdfaqiwsgG7XcZgslBZ39plYryg6VVKWz9BQsnU6E2olSf/Gg7wvZlo72tQKhwl9pQKLeMjfsJqb0Wr6r8dPeyyjaVFt9BmrWGk/2VMCL6lV/b7+dQb2NtYzoTggb2yvxOhUCoYOTOFnav2MXrO0G618fLreq5qWZaRJAl9mwE4Mrmz+YcdTFp4qJPF3ZMepb6ikbOeLmHsxY2kXqXkjYmpDB41kCFpcdSVNzLriklIksRHr6zi95/3svLrHaRNG4JKreTqhz6mtrENnxkabB4yVWktlPjXI1sNXHjgGLYO0CdbUeiVTBiTSczQKqwWJSq1Fb1dg4fS7IxHq7DSbvodSQWhkgY7StSSjezSSLxCDVhRIgNegzoIGO6YczxgdC3bawIIbAxFp7SS33Lo91hv0dBgcKfZoqOkzY+AIY3YN3mQF+SFXeuNe6EGm13GFGvCOtAGEkgmCUkvISsBDxWeoV6Mmp3E2i93YFdJoABsMrdc+gZWDyUWfy2v/vNKRqZEc/3Zafzrk7X8sD6Da+enERns2/lnrZBY/LfLMZjMqFVKNGoVF00byrLfHfNC7i2oFIlx4RCZg6dmrtUfYugD//nPf/jggw+47rrrXB2KIAi9JCUlhfLycsAxanzGjBkujkgQ+ta2bduc98VoceF0kJycTGGhY8qqjIwMkRgXhF5kNBrZu3cv4KgGPXLkSBdHJAh/nh4nxqOioti1axerV69m//79yLJMUlISs2bN6ov4BBew2uw0tekJ8PXg6XvPITigZ+VST1ZLfRt2u+OKW3NdKwBGk4V/vPoTTQY9Vy2czGD/MAZ6hWDSWggP8KFyhRXF+XrMshW5Qcnv2/JO6cT4OXOGcs5xkiGDBgRT19DGt5t284/ylVgUVgI8NOhMyuP+zN58/hd++PLQF6Y7r/ov8y8YzdWLpqFQKNhc+yrHuuqpVXhT2r6FVZWPEqhLYELQHQTqEo46miZQF0+TpQDVgXnEZRmCVa24e5spbV2MxXIpZbWOXs2WMjs6mwZftw4WztpEbkEU23cm8vu2cIKCYjAoVSytUiFp7EjmA73YZEes7loVH065lrWVSygy6whVmVlVl4np46Vc//TlXBT7Hma7Hp3SG1k+i1ifRTQZ95Db6CgVbbMbyX4lCy+gcGEhTOic7Oxo1XND4r00VTfx6LIHmLhgDAXKb5j6ho2tf1cwfPqf/zv32I3vkbO3jNSxA3l+ye0nta/mhnZ2bnBUi9i0Ir1XEuOtHUaeXPyr8/GDl0zhhqT7aKho4B9fPcDkC04soVxY2UB5bTOThg486kjMwxlsbbybdwNGezvnRvyVRJ9pJ3TcvnT2hCTqmtrxdNcyKiEScCQ1n3rmB/aml/HIX8/Ff0AIACqFN9sbfkCr8mak33knPZLtYFL88MdKRd8lxWuNuaQ3fUe89wyiPUaf0D5kZAy2FgDWVu0gvSmRRQldl8hsaGznoSe+RqVU8tzjF+LjffS5wwO0HswIc23pKEmSePr7BzEZzOjcuzcn4JQLx2E122hpaEPrpuH9Rz6nrUmPJEnIsgwySF38raxduomhU5Pw9vfEbLJQX9EIgGx3bCvLEiExQUw8fwyNLXpe/OMp/LzdMBvNBMcF0ZLoi5tahdlmQ5YkmlsN2PztlAY43tM5MFB9XYMbjWvmoqxWkRvkR8dQGwrZQkxKFZIEao1j9HeZJRAfewcBylY0ChkZGbssoZTAW2nGjoSMxLCYYmQ7bPo9kTaDF8U/BtFQ4YXPFa3saYkESWJLzUD+909jTmQOHmozNlnB1LACBno3UH27N9+3Oz5zLQ02bGE2TBEHRq/LIHvJtM8x4Pm7O9gUlMToKMkvwiNA60iKSxIowS7LdAz0Akni45U7GJkS7extLctQ1dDKl2v2MC4lhgmpnTuv3fvqd+zNq+TxG8/itoUTWbengHaDiXMn9u+qDYJwOtFqtUycONHVYQiC0IuSk5NZuXIlsiyTkZHB9OliihLh9FVfX09BQQHgqJgQHx9/nBaC0P8lJiby888/Y7fbycrKYs6cOeJ9XBB6yZ49ezCbHQMThg4dipvb0a+VCcLppkeJ8a+++orvvvsOi8XCrFmzuOuuu/oqLsGFSqua2J5eCsCGHQUMO5Cg6Q271+1HrVaSMuHo5WZHTk/i/96+EZvVxoRzHGXEd+8vZ+MuRw/BWaOHMC91OABajZolL13P6qJMlqzYjr7cRqi3L9ddMK7XYu6vrDY7N933MRV+bZgmWcENFOEKPv/rzYQGe3fadve2Ql549BuGjRnArffPZdVPezqtb27s4PP31pE2KZ7E1CgqOnYc89gt5gqK2tdjlU1UG/bxTekixgTexMiAqwHosNSyre4NGk1lmO1ttFurUIEzQWGTwW5zJBJ8/Rr4rGg6V93oRklmKJU1geQVRHHfvd8T7anngiEFPGPQEDumCKW/idIWPxQDDFisCoLrzHS0umE2OUofv7Dkd9598FICtbP4vnwlAE2VStwqHQkahaRCp/SmztiOxW4j3H0QZluD83l5qAcz5vzhrK2tJs8P/vnxKgqqGpkydCDXzh1NWV41zVYlkp8/2dvyGTzXmz3NnxA0A27fNZEpMeNP9Md5wg52IpHtR3ZksNns7EkvIzY6gIAD8xAfi3+QN1fePZv0bYUsuL535uDzcNMwOCqIvLI6Rg6OpKmmhfpyx2ueuz3/hBLjTW16rnriU8xWG/deMoWrzjp+YtVoa8Nod8wF3miuOM7WrqFVq1i0YEKnZU3Nen5blw3AqjUZPHj/DfjpRlPUkc+vNe8BEKiNIcZjeK/FYbWb2Fz3HiabzE/lgUS5B3Jf8kwUvfjlc03Vf2gw5VLY9gc3D/7uhPahlFQsjH6Rj/K/4OsSG0bbWs6LGsqyT3fw88p93HHzDM6dOwyArTuLyM2vAWDn3hJmTO7/I3AlSep2UvygGZcfSui8dvcHjqQ4YIx3Q1VnQd1iO6LNxm+2YzFaeeq7/8Nut6NQKbBb7ax9JpKSzV5U7fXg85wXKSpv4Nq/fYJVZSemtIGGP4qY+o8LsWsVtHnYuPy857j1uhm88vBFvLJ4NTsaS7H5yI6MsEoCOxS2BtEyzY6qydFJyi4pKCgOYUBkLcWt/lgVCtxtFoK8NWjcTHhjQquQsR/WUctmUaBU2R3PTSlRmRFOSXY41hAzuVM9oTIcDlQmAVBgR6mwY7GrkCRosejwUJtpNrkRiGMUvafahNogYZVkwk2elBzocIEsgYSjgomHjKy2IxkVzrNnU5SnYz2ADdpS/QAJCYgJ88dktjJ7TAJ1jW3YZJnH3l1BXXM7y37by7o376SpTc9ryzYSGezD7lzH+9K369OZPz6JX/59C3ZZRinKmAmHEyPG+9Q999zDa6+9xquvvurqUARB6CWenp7OMrxNTU1UVFQQGdl71zcEoT85fLS4KIcrnC7c3NwYNGgQeXl5tLa2UlZWRnR0tKvDEoRTnt1u7/S5MXbsyVfCFIRTSbcT4++88w633nor8fHx6HQ6vv76a4qKinj22Wf7Mj7hTyLLMu98uYllv+7h+gvGce70FIrLGzl3etelvE/EjtUZ/P3ilwH4z4qHSBob1+V2kiQx89LOCcahg8OJTvOk3Wpk0qjOc5Snt5byWMFSiAdloRfXz51A4qAjS2CfdmQZk8mKrkxBUIc//t4ePHrXWUckxQF++Xo7DXVtrP1lH+t+zcBmdSQlPLx0IMsY9GYCgryIiA6g1VSJWW455qGtdDD0/9k76/AorrYP3zPr2WzcjSSEkJDg7u5QWkq9pS31Un3r7vLW9e3XUneBUgOKS3GXhISEEOLusjoz3x8TkqZ4Swtt574uLrIzZ86c2Z2dmT2/5/k9/udT7yqmxL4LBZkGdwlN7gpWlT6H3VNCvftga/tDCXWtQ0dge24cdfm+9BiWjShAh8ByUkfmIytQ6vLBz2Qn1QhGAR6esYYFzap1eap/KSn+ZXjiBIwGGUWB4rxA9mdGMrJnPEWN29lTPZdISwquOh0BlSmMf24siqJgd1WRWVXKzA0/4ZI99CiNxtLoZOaFAoKg4JSK8B8Yjn1pBVvzStmaVwrArv3F9EqMJHdPEaJVtStOGpqCrzEKAR0KEqWunSf80S3+ahM5e4u46Kax+AefmCODLCss3LAXm9XM8B5t34HH3r2Kbb/so++Iw7O73/90LZ9+vRE/Xy/mfnTDCdW/vvS28cdcv7+wkuXbspg8sMthlsBHQieKfPLwJWQXVvDoe4tZZPPixjevpjiziBl3TD3u9kdClhXkFpeAQ7V4j4e/MYKzIu+jylVA38Dpv2u/LqmGWscOAi0D0Il/zLb+RPH382LG9D7s2l3AtKm9EAQBX3N3gmQ9AiI6QY+P4dTWSsxuWMWumnkAZNWlsLgoCLcscW3nIQSYjmzXfbLsrNIR7Q1ldr8/1E+oJZl+wZfw6YGv6eofRpDZm59+3o3D6WbR0j2twvjAvvF07RKJXifSt0fsHz+AvwG9xnRj6+Jd1E0IoPqSUGx6EyvG3cjqj9fx49tLycstoW5SILoyF3qj+jj42uz3kFvuDy6nji1NsZAiIhpEisprsVvc1I50UoGFkJBUMiry8B3uxYGAahorDbz2yVoWXjgI4aedWA4K1J4XCCgEvFWAdZ+eitnhoBfwBIHYBLIVti1MJuNAKrJRwWOS6HpLOt1sBegFBV2Ly4gZBRcgKoBBQlWjFWrrLGRVRSAH6nCHCCDIHFLsBAFCLbVMjdmDTlD1eUEAu0fHj3ldKC3zJ2SnjrjkYqoWWonPd+F0eHB1c+FVYcLaYOTcGd1ZXLSXKIs/g4LjiQnz5Ze1Wfy8NhOzzUC9UW4TCHVCq0iuAF8s2c73q/fgdHuQZAW5RWAHiAjyQa8T+WLpdhZtVEt5+HiZqG92kl9W0zJ+AZ2WCaGh8ZeyefNmVqxYwU8//URKSgoGg6Hd+m+//fY0jUxDQ+OPkJqa2s6GVxPGNf6JOJ3Odna4PXv2PM0j0tA4daSkpJCdnQ1Aenq6JoxraJwCsrOzqalR5x/i4+MJDj5zSylqaPwZnLAw/vrrr/PAAw/wxBNPAPDhhx9y8803a8L4P4R7X/qeNVtVy6X5y3bxzctXnfJ9KEpbeol8hOzWI7Hgg9XkphfSe3ZvDiTlAbDbk0sUR3/I/3LhdiaPTP3HW+v8sHgXzXYXwf7efDxjFjZv82FtCg5WsmLhLqy/WndIFNfpRe5+fDoDhnXG5XSj04no9DrWl805wt50QFumYYi5O/6mWKbGvEJR03ZK7btJe0fg2+JZdLm5HgEF/a+ECABZaUus06EQElaPjw0kQRVr5Za1MiKSoENRoEkGow5qZZ9WAVoUFEQkxBaRVxAgOraC2LhyHOxgcbG6LxkBTBA7YQm7Gl+gsdQHk7kJUVBI8B5OpFcdGfl26g8EoqAgAHbpIEN6V/HDOlWgOIQgwJbMAgb17oDN1wurr5luAzth0lkZEHw9e6veZoBPNIpUjKCLaPfOOd0eAIx6HS6PRH1FI6/cp9Zn1xv0XPvgWSf0eS/cmMGj76tZ8B89eDEpcWrwh3+wjTHTj5wxXd/oAMBudyHLcsvneHwURSEzr5ywQBv+tvYC8B2vf09RZR0b0g7y4QMXn1B/OlFky94C9hdWAnDFHTM454ZjC/DHItDXygf3X0R+WQ2j+xzdfaLJfRCTLgi9qGbLJ/kO+937BNhWcgWN7ixCvMbRPfTVP9TXkShpTqPGVUBn3zHoBHUyXhAEZl8/+rC2UV4pXN/pI3SCHi+9X7t1y4uzWFu2mjifjSTYBjAo5Jrj7ru0tI5NGdsY1qcnoj0SEROCoKPR7YeIwEc5GylsruWNAReckmPNrOvKsmI/uvi1BXkoikJFVSPBgd4ndf0eEZbIjrPuR0RAEARuvHoEi5alccXFbdnT/n5W3nj+klMy9lOJy+lm6SdrKMurwCfQxtmzx6M36MlNK6C2vA4vHwsfPPw1/Sf1xG9QRyRZYXTvTsiSjMvpxmJtu7YrigLOVaALRTB04cHPbuGGfvdT66++l82SC0kP025QreeeXP4jNdPVHz4Tuk8G1FImmE3IcWHUDPOjfpgbgOe+ms+9F5zL+EnJfNUSBFQzRKY8uBk/gwxuMAe5uGR6AY2VGynMLMKrwUTjWF+EBjf+25uRvQIIXOmiStBjyRWwZItIkpPQVBdhZ1eSvyWMflftJCWoEL2gABIRgkRHI5hFsMtgEaHIA8WSjji9RGlAA3c+9C0+CGQ4rdhFPaXNNhYVpCKicFbMHnQtiTKHTikvg8TAkFwsEdlsK+1C+rqO+BTWEhsTiBGByecPItdpZ0jPeHokRTE7eTgAu9IKeOXTpXgLIj55dbhlBVOsDy6riCKCYjz8+trsdLdf0DKG4qp6Pl28jT7JMXyxbAdRwX6M6p3Ah4u2cJZmna6hcdrw8/Nj+vTfFzynoaFx5nLIhleSJNLT0xk3bpyWSavxj+PXdrhdu3bV7HA1/lF07twZnU6HJEns3buX8ePHa9dxDY0/yKZNm1r/1rLFNf6NnLAwfuDAAa688srW15dddhnXXnstpaWlhIX9C7Jz/+Fs21sAgNmk57rzT7y2niTLrN+RS1VdEz06RxIbGXjUtn3HduWpebejN+pIHXj8WkeleRW8/p9PAGgOkBB7Csgo+BjUB3xZkfnowBpqXc281Hsmn8/fyq6SMvJ11XgkGYP+xETAvyuZ2Wo2c1VNE9ff+SmpyZHceOUINmzMpq6knpHju/LMfd+Qk1VKeJQ//oFWaqqasFiN2JtcSB6ZJ+76kodfuIj+Q9vExcr6HGgRitvw4K2LJMDckZHhj6IXja1rIq29iLT24oX/uw63l56Ey3SEhcQyOuJx5uddDjiRAUEwguJqFSfMFjdmS5uNeY1kpVk24lb0yIiUenz5RXJQUtWX+o9TOfvqKTRHV1BWfxNGsYlmt579NeEYvd3odO0DLUQBRBQURUYvqIK+t3d96/pZHTbibbZTbcvluawLWbu5K0P7pSFJJiqqQnE5S9uUfEFAUeCtb9exvUsHvM9LZtaU/vj4q5mz3QLOJ1X+DDwrUWrKEYLmt+4nr7SGy574FLdbwmTU0+RwcecFIwiK9qeysIbOPU4syrWisoF581V7e1EUsJqNx9lC5forhxMXE0RKUgQmk+G47Vd+uY6tS3ZiG5vCu8u24+dt5sfnrsHyq23Dg3woqqwjMsj3hMZwiNF9OrF4cyYBNi+6dQw/qW2PRHJsKMmxoUddX9Qwl72VD2HUBTEkagk68Y9PDEiKveX/5j/c1695LX01y4q3Mi56ESDTLNXQJ/D4QQc2Q9ARxihz84Z5jIrcTaC7jO3VufQKvBCz7tjOBI9/+iSxk9LI2OfFkrcG43KP5J6rxrJyYnemLH2Tg03VBP0qW7za2UxBUw3d/COOK2LX1jVTUFRNSlJkaz34dwZdzOrSbEZHtFmaP/XiApau3Mvk8d24+5YJxz3+X6MT2n4UT5vUk2mTzqwMCckjgSCg07X/8f7V8z/w6ZNtGYh6g54Bk3txY7/7kDwyCT1j2b/jIJvSD9IwVq17fteVw/n41a/xLCnmya/upO94NSse+1co9Q8DOghaisU7CmtcFH7ri+nVN4IrzxtNYMtnOOXaobjDf+JTYyXpFQG8++YaOj0SwZ1zrufRq+fQeegWgpIcPOfuRp1koqHMhSgKPDp1Ej33VzLK/BpZjX5csXcE3joTo3ziuTxiIUl+6/DIW7j05cexNG6hW6o3yxdFc86223nslk/IO1BJ5McuFEVRrdBlmb4v7kFvlgiIryEmoAqzTkJEIlYnk/irS535ULa1DgJFCbMIgaJCiqEGQYChcjVZbm+WizK+RjuNHhNHKKkOQKC5CUEQSeiTT1FGOA2dfNlf40RX1UzJ+ysp8dUxd+kOvn35GgJ81eCgeT9s58BBNbjH4paQfcyIHgFznYLDR0RRaBW+Y8P9OVhS036nv7pNuTwSny3Zxs8vXceqN2Zj0OvQiSI3nDP4Hx/Up/HHEBT13+nmTBjDn8EHH3xwuoegoaHxJ2A2m+nUqROZmZk0NjaSl5dHXFzc6R6WhsYpQ1EUtmzZ0vq6X79+p3E0GhqnHu06rqFxaikvLyc3NxeAgIAAOnU6vk6jofFP44SFcbvdjrd3W41anU6HyWSiufnUCgQafz27MgsJD/LBaNBz91Vj6Bx3dLHpt3zyw2be/nodAHqdyA9vXoe/z9EthnuPSjnhvv2CfAiJDqSisJpBqSnMGDIeu+QmxU+1PttZk8f/spYAEGHx4+FzpvJy3QrSs0t47eNV3DHr8CzLfxIzLxjI4pXpKAoUFNdQUFxDWkYRBcU1CG6JtSv2Eh4dQE5WKdGxQTzx6qXU1zZjshi486r3ycooxuOSWbFgV6swXu8qokLZzpHiLpukInQuAY8TFszfgNPhZtv6/Uw5vx9Dx6Vy3fMzWbb6U6x+lchKLV46GybRiEt2IiK2iuKHsshNgh9Opba1fwUBp9KmgjgVI6IQzvKzoK5iPYXbynlx3Z3UNDYB4GXwkBJYQFFZAPvrQoiLr2rpp1XPRkCPByN6XK39+ggKSd52ymUF39B4fnnjJpyu67nzjbns2l+CybgHp9tNt9QDuFx66mu6Uddgp9nhYkdWIS6PxFvz1zOwayzVzmaCzd7U2834GCC3VCIuQGbF9v3M3bmdrf65OFIlTNssuO1qpv7zX65CN9iMbmAIc4P2MVTpftzazXPnbeLA3lLMenjwjsnEhgec0Dli9TIxfWovqpxN7KoupJt/5FFFF5fDxbOXvYYsyQR6nGCA+iYnDpe7nTD+6m3nkF1QQVLMydl3RwT58unDl57UNn+ERpfqgOGSqvDIjSctjDe4nciKTE3zZ5Q2LaRTwF30DnufSvta3EII++qWkegzCkH4Y1HKsqLwxt61mHVOZEVAFMAgHO7+cDTyiqv5ePvL2GLymRZ/C7HWXqT4hZFVV0qMdzUBxq6YxOPXl/cKVr9XgqUZGSeSx0hxUQM5e4r4YvhV7Ksvo1egGsjhlDxMXvw2lc4m7uw6kuuSBqMoCgoy4iEHCFnG5XAjGnRcceMH1NQ2MevSIVx+kVpDPdTiw/lxvduNIS1DrbGctvfMrAH/e8nfX8Z/ZryB0aTnte9vw8ffi6cveZ0NP20DwJFgoX6EHz6ra3nnns+ISY5AbikRYA0NQBfSSGRKGHsABYX/liyn4Twb3iEh7F6T0SaMc6isgALIKIpCSX4VgixSvKiGuUWb6PpgOI1NTn75+XrOGbOFKR6R6XdexP6aKj74aj3dekZx6yshxFp3AOBco+PHdV259f7JOJpdGM16zgkrhuZG+gY0cqXBn8W37GRH0QauWhoIfuDwSNREz+PSQVsRUPiFVD55TcblKKJPv2p2bAul77Q8widWsGtlJA3FXvRMLCPNbCbY0Aio5Tdaj6blniEIICmqY7mO9o4kAEYRUk2NeBSBD9xGJEWH1FLeXFEgoyqEKFsdJc0+1Li8SPCpJGOjOpmi6ATs/jrw86bRKIIMDqcHu9MFqM80k8Z2JW1vIY1FtaCA2ORC8DKgGHTIpjYbdRWBL568jHvf+JG80trWY0JWjys4wMo1Z6klY8zGtuurJopraGhoaGj8OaSmppKZmQnAnj17NEFF4x9FTk4OVVXqfEhsbCyhoSc+p6eh8XchJSWl9Tqenp6uXcc1NP4Av84W79evnzYXofGv5ISFcYB33323nTju8Xj48MMPCQpqy1q75ZZbTt3oNP4S3vt2A/vzK9GJIomxJyd2udxt9tqyLJ+wRfqJYLaaeHvz4zyT9h0fuLfwsNiBFFvbA36MVyA+BgvNHhdJvpGE+/ui04nU1NuZt3gno/on0jMl+pSN50wjMsyPxPhQ9uWUYfM2E2yzcKCoBgRQDDrcBpH7nprBgStKieukvm82XwuyrPDKh1cz59WlpG/P45xL2uq5VzmyWuf2W6q0oseMhJop65abefCGj0jbnte6TcGBCrr1jWPzzmLizzGAoNDkKcch1XBWzLtUOjJYU/oKMrWt24wIeRofcyg/5LdZ9gu0JdQdGsNZHd4nc/B7rP9uC6lDkzHqAvEx9qLetR0AnQ5iIqqJCq8mxxVMSzVzrLogmqUygvX1KJKrnYN4JwPYRAV/yco3u26g62jwsZpJjY9he1Y53TuGI5nXM2XiagD6BF+K6Ekmr6yG1TtymLtyF8mxody77m56B65Ar09h7y/TKS+LYEdRKJeMWcf7P27BleLAE+SCcFCsMjbFSUxUFfv2R9Ac6sbjcbOsJJMKRwOhlsPrwpfbG/AxmjHrDOQt3w1OF/p6DwO6xZ7MaYLd42bqsjepcdm5K3UsszoNal337Y/b2bAlh0su6U/njmF07teR3Px9nN27E45OoSR1CD3MSt1k0JMa/8czvgHKiqopzKmgx+BOh2XS/lHCbReQUbcUt2LGpSiYTmLb/MYapi6dg0f28EqvzwCZg7Xv0jv8PSxSX74/qFqTS4qbLn4TKbc3MGvdJ4jAe0NmEmw+vhB9CFEQmJXYnwUFe+no/TDdAqxEeR0723lPVjELVuxhQOcoVmXkYhm+FZcAmyq+Jc67N28OmsGIn/P5IHsQF8f3PaEH3FsnPsiqvC/pFdeXEbdGsz+3nLkPfc93jU5ueXoGEy8c0NrWJUvUutRrQmlzAw6Hky8O3keVnM3UqHtI8BrIbdNf48DeYm59/gIaWyz9q2uajjmGB++YwsJle5jaKvSeWeyoKuTxHYsZFhrP7V1HtlunKG5wLAZ9PIKhS7t1e7cdpKneThOwP72QLx//moxN+1vXV1wTjjvChCPJi5g7c9i4YDsvLH8YX/NrmIyf88pTqRQXhfDp/12KJElcvedLGpwuIjqGcc5Fv8qst1yIIAZSUG7k5/kFTBrmw+PvX80nn/zC5n0lbNmay87dBeQWVdLQqMrOgmAkJiiYEn0zua6vEcqL0IfmEuIWMOsgqX8mIX2zyMrqyXO3bGbElaVMmtKJMKkz+Xn+rHygBNEYTNMgHbf/ny+XzkogKCGPrj13AgbARUO9gYyNu3nlk0X42NysWxfO4MElyAp8crYH30ILZ9vKGGGuYrNHoK/RTYAIjpYbgiBAswzVskCNBFF6hXyPSLkMg4wy1t+aw0jg9OiJ8anGKRkQBTeiACHWJlYv6UaJ2RspUmJHVQcsJWaMThmpjNT7AAEAAElEQVRFAEUUwCAe+kAJD7Rh1unJL6giJjqQAX3j+fbT2fzw5QZefH81iALeVY24PeAye+PxbxO4h3SPpbSwlp4Jka3CuNqvepc6Z0hXpg/vdrKnoIaGxp9Ar169WL58Of7+/vTs2fOY98zt27f/hSPT0NA4lSQmJmI0GnG5XGRkZDBp0iT0+pOaDtPQOGPZvHlz699atrjGP5XExET0ej0ej4eMjAwmTpyITvfPdgrV0PgzaG5uZvfu3QAYjUZ69OhxegekoXGaOOFfAjExMcyZ0772cFhYGJ988knra0EQNGH8b0iv5Ci2pxcwbnDSSUcIXXnOACJCfKmsbqR/91gC/azHbL9tRTorvt7IWdeOonOv40f3pVUWsahiFwA/FGzl5qQ2ESDI7MOCkffgliVsBguSLBMZ6t+6ftEve//RwrggCLz1wqVUVzeydE0Gn769EkOjE0+QFwaDjv/cOwW9QUdil0hkWWbvrnzeeelnMnYXEREdwI13T+L6O9reT4/sYGNFW91kAT2zElexovhhDjauwKzzZ1L0G8zN+uhXg4CRk7uxeP429tctIahDBooCxZuDue6az3j+g2uIjx+DW/LwS/mTCKiVyoOtnbAZwhkb8TxbKt6i1n3gUHeYdeEYxRBGhd+Llz6AaXNiGfKCgWEdzgUgwDygVRg/hChAgrGCco83DXIo58V9yFc5/8NX9/5h71u1BDYRlu2O4LW5WzDqrVw4phc3zxjKhWN6IskKt729HlCzDL8vyuLqxD4E+XnTu3M0q3cf4Pv1O3lq6IKWbMWtRPQy8O1nnXGOdPCGawXKWBAcAoZGPeMSk5h1+xCK5QuRhTK27Ejim18GEdHRxvCYToSYbS37kqh17sDb0IlFRXncs20+ERZfFoydTe/+ndh218d07BGLj48Fh+Rm1tpPyG+q5u2BF5PiH3HYcR7CKXuod6v10svtDW3LnW5ee3sZrkCZhWkZ2LLN3PKJSJSjmQD/PMaFTz1qn5srDvKfLXPp5h/JGwMuPG7G+5FwNDu5ceJLNDc6uOz28Vx889iT7uNYlDsOUuiSgWa2VH1JTuNuuvtNok/gFETh2Fb0uQ1VNHtUlwEnY/AWNxFpU2uO6kQjAiIKMgf2VKLzySfTv4achgoANlfkMjm6K6CWmvjwu004nG6uPncQJuORb7n3dh/Dvd3HnPCx3ffy91TVNfPTgu1MHZZCzuZoYrtW0itSrRMdYrHxfJ/p7Kop4trEISfUZ3RIBJeF/AcAu7eb+fO3UhPsjRGoLqtv19ZmMPHh8EvYVVXE+bE9mX3Xu3S+IQOAnIbNhLp7sD9NzfrO2JzLK89cSPq+YiaPO7YQmNolktQukSf8PvxZKIoLPHmg79jOEeCj7M2k1ZSQVlPC1UkDsRnUzP7a2mb0rnfwkv8HGCDkFwSxzdVh2OTuZGw/iMlipNeQzjy1K6/d/syZzbgjTJgzm1AUhZqyOvw6WIk0LANg8vR88kovbXVpmBtyJfN37GLLiizmLdzFNbPUGtiCIIJ5PLe+MIfSynq2pOUx57GL+U+HQB549CusViMpyRE88H8LcLp6Ud4Uyx3XXs1bb3RkU/7DVEkbEWUZDwIrqwys+XQgY2avBWRycvaSMKSALlN3cJDNvPzoQJS6LihKJc0dbbiDLVQAO7aHM7xjPgANthd565ovWfmdm+RpGXh5q/W2oxJVi3FRgFh9JXpv9b2y6j247VYCLWo7S8tlxS7DPrdItSygAKUuUBR1ZZpboZ+o/MaNREbUQ2pAMVZDW43vQHMTk6dsxeEQaVBMNLn0MFyP1ctB2pIulJYGgUHtVycIXDC2FxfPehun08NTj0xncEsJGIOvBfTqeeEfHUxVRgm+WbXUdvZH8tVhFnV09PfngcfmowAJPUMR9SIv3X422zMLySup5uIJbW4J9U0OGu1OIk6yPIXGvxRFUP+dbs6EMZwipk2bhsmkhs+dffbZp3cwGhoafxoGg4HOnTuzZ88eHA4HOTk5dO7c+XQPS0PjD1NdXU12djYAvr6+2nmt8Y/FaDTSuXNn0tPTaW5uJjc3l4SEhNM9LA2Nvx3bt2/H4/EA0KNHj9bfQhoa/zZOWBg/ePDgnzgMjdPFvCU7efvr9YQG2rj3mpMXpgx6HVOGpx62vLygio+e+o7EXrFMu7bN0vz569+ltqKB/H3FvL7yoeP2v+iHTASTAcVXYlDA4Q/4Zp0Rs06tqXTVojmk6wowBNsIkf2YPOLEbdv/DngkGckjtasVrdeJ7Msp4+2P1oBZR6jFxjXXjGLY2BTMLe1kWeaisS9QW92WrVlcUM2DN3/Kfc/MYMQEVcTbVjkHu1TZ2mZY6L0ADA27j/im0YRaumHR+3PJ9SN558WfSRjWyPhZIQxMSqA0W2ZLsSpACAIEd62irsbOf2a+w5cr7yPRbzx17iIKmjfRI+BibIZwnFIjMnrCvUdQXpWHzeDH8NAH+K7wXqCK3bVzSfadwPqK/wMgsDaCXoEXEOA1mNy6t2jNaW+ZmxUECNE3ktcQwJC730Y3sooHkw0YBA+ionAokDRP8sHq9QP//eEbQCIy2K9le4EQfxvptcV49ezOvHQfDuhqKXNmMyikhIOZtazbnUN+fTX4KngkEYNezbo0GNJ45Kpt1MkWXs0eg7feQb8OB7m04y30DBmGoiiU5buQZRjdJ4pzes1k+bYsvn57J3FnBxPu5Y1PzFdUeb7Aoo8irfZ2ACocVdQ4KjnvjqkMP38g/qG+iKJITm0ZO6oLAFhWknlMYdzPaOH9wZeRVlvMBbFtYozRqGdQvwRWNOxDFhXq3HbKXWoWa6k965jn4sLCNKqcTawszaLUXk+E17EFnSpnE+9nraN7QBTjItVsWskj43apD2L2Jucxtz8Zyoqq8Q+yEWPtR5z3IGTFQ35TBjWuQkrqnmRFw8N0DXmRUOt4ZFlGkRV0+vZRxkPC4rk9dQQOj5uxMUMx6dpulf7GaC6Mm8Pqnzfx5u1bEcXdvLT4VoaEJCAKAsPC2urybN6dx7tz1SCLmHB/po5Qv2vZOWVkHyhn9PDko4rlx6JDmD9Vdc3omtxEmczcctGbmIz61vrdAJOju7YK9CfL/a/8wMZ9eQj+eiJDI5lx3cjD2vQP7kD/4A643RIFuXaU7+Pp1E+if8cZ+Jm8mf3YOaRvPcj5N4wiPCbwjBC8j0VpZT13Pj8fq8XIG7N/RidtAMsFCL5PtLaZ1qEr68tyGRIWj7de/eFQWFTNVdd/wLnjtnP1eWqN9x2V8+kbPKs10MzL28zt/72gtZ+w2GDyM4tb62xHf1NDw7wKdLXq96HD6G7MvPpzbpnZnaljahl89uMMMbU5e0Ra/ShfUY3BexeNvvMpqTcT7tO/bX2IL6WV9USF+gHgG+Dgwns+QVLsyMb++HibKaty4xs2Hi9bRwD8bcFU1YIi+ODdNInspTa27nbg+kTCLEDZOgNYvZElkCWR5kYjXa7IRdxWQ9qWWEAtVTBi0BAQVEuuereLDQtlcHvof30+G516/ESFFVvCsVRY6HVhFna9wpZtYdRbPXj71JLVFMh+t464gHoEoEGGTc06RJ16jT/kZHLoul+v6FjpUEg2SIS3fJU6mZv4vvuPPFvQHbdXLfoW4VzdUsHLIuFFs+qQrr5FhFy/lYWvj6S22QKKgiAKvPbtL4g6GdEo8MzbizF9tpKn75zGgH4d8bJ7cLklFLun9X333VeDohd59bPrKGq53wpA8Y4yLrlgACH+NiYMTG533tU22Jl+7/s0NDv57+ypjOqj1fXS0PireeSRR5g1axavvvoqjzzyyOkejoaGxp9Iamoqe/bsASAtLU0TEDX+Efy6tnifPn0QxVPrxKahcSaRkpJCeno6oNqpa8K4hsbJIctyu/tG//79j9FaQ+OfjeYd9S8nt0itQ1Re3YDd4cZoODWnxNev/szyrzaw/KsNDJ7Si6AINZO725DOrJm/lR7Dk4+6rawo7K+tItbHn84dQvn5Yx9iIvzpMb2Dul5WWLNlP6FBNpI7hgFQ5qgjXcwDP5ATnbw/81ICjpO9/neiscnJrFs/pKq6iRcem0HPrjGt66Ii/DEYdCiKwiWXDeXVJ3/gu8838Pon16HTiVRXNLYTxX/Ni49+x8ARSZjMBmSlzRZfQEeCr5pNbhAthFhSKW7eikUXQNj4jVw5cD+NUiEVIvyQvxDMcONNz5Dd8D0FTRsRdQojntjG9jmdqaqoJzTCn34hV9EP1TpdUWTm591MpesgBsELDzqcsoEIa29CzclUOLLpYO2PjyEcs84Hp9RIiFmtg56WFcBHP11P794/kppYeNgxuWQ99nAnYY0eXOhxKzo87igCxP0IAkT6XE5IQATfP3s1zQ4X0b9yGQB4I+MFIsNy2FebRGWdP+FmGweyqnnsvSUoegXH6CZ0BgkEuXWbCC81E9sbFxOCLcRb1xDrU0Ft08PAKgRBoG/4Z9Q4NhNqnYhB58ONL86l2eHm/R824TrYxIyrtpLUHVxSNdcmDsYoNNDN+0XSy7/HEv4RIdE9UezfI1f/SJL1Os6L7UVeYzXndji27TZAv+BY+gXHtlsmCAJPPzydRpeT1zNX4mMwMzX6XPbVr6a7/6Rj9ndRfF8y6krpERBF+BFs4A+RlVPGgdwK1vvn8k3+dgQE1k26E3+TF1YfCy9+cxM5e4sYOa1X6za1Ljsf7/+BYHMuYyPOI8jc8bjHd4gfP17H/x6dT0RsEO8suYvJUU8CkFa7jHXl7+Al5qEAlc1rsLiGcNPUl2mss/PclzeSkKIKt7KiICJwY/LRM60DTXFY7GXAVhDA12jhmbiJ3DroAWY5lmPz9yayUzhXv3UNXmYjbo9EYgc127ep2cmNd36KyyWRX1DF9bNGnNCxHcyr5NnnFxAXG8xL981g2cIdOCubmXzpIExmw/E7OAlqG1SbdKNJz003jztm/waDjmcen8HW7QeZ3q0XgSb1fJhy2WCmXDb4lI7rz2Tt9hxyCtTAII9rnxpI49nXrs3I8E5snnZHu2VlZfW4XB6+WpBKx2FB5JrSqJbnEmMbRpjlcJEzs+olpny0joV3B5C70gcFheEzBjL95gnsWLOHwZcns/Bb9br22sd96D/qOiJMfsiywqJf0rFaTIzo14lJE7pRYnsCk9lFWu0jhPv83LqPl+6ZTk5BJZ06hCArEpsq3sYlVwNQ59rFh09dyoHCKjp19KbZU4eX3pdOfjcSYO6Dt6EjZn0IA1IUNmfMYfc6kdH9E9hVsB0I4MOZowiPDGLULSZqIlaQmAIlB4KxOHy47PJRdI8Mxx1goKKsghu7/ICrJeglbW4A1tnlbNkTzc/zBhLgUwaDqtGLMjt+iWPlom6kPrgHH5OD79Ah1AQiCgqppnwOxaW0mL/jkHQ0KyZ8dHZAwaHo+Ko6khuCCjCJCnoRErzqGVdTwerCCJJ6q+4FxzK2EAD3ocASBTwCICtINhEEgXJc0Oji7pe/5/tXr+Xr+bfx0xcb+fiVJeo2ooAAdEwMI6lbDJ0Vhc++2sCBg+o59dlXG5EkGT9fC5MndMfmrboN1DQ009CsvkcHS6qPPkANDY0/lY8++ohnn30Wm812uoeioaHxJ9KxY0csFgt2u519+/bhcrkwGo/tJKWhcSbjcrnYsWMHAHq9nl69eh1nCw2NvzcJCQmtZTEyMzOZMmWKZqeuoXESZGZmUl+vukImJiYSEBBwnC00NP65aML4v5hftu5nzZb9pCSEMXNaf3xtllPWd49hSSz8YBUxnSPwDWqbZLrvveuY/fwl+AYefeLpnrWLWFi6hSirP4sm3cTQvgkE+lnZlVHE8g37yMgpIfNAOYIAc1+7mvAQX0LNvkwI78Hm0hxuHj3xHyWKAxSX1lJart64dqYVtBPG42KCmPfB9aDA0/d8jcctkbOvlF1bcxGAD15fjslswOlwM3xcCtfcPo7rz/8fjQ1OXE4P77++jBvumkitK7e1zz4BN5DbsJK8xjXUuQqpdmahICGgQ0EV0Fsdhlu0hE3VLzMi7BEK7RvRmxRCkhsY9/xW0guXk2coJd42lkBTIkXNWznQsJRmTzZmAQyiP+HmVFL8piAKOmZ0eAMFmU3pBeS5K5nZ7Qtk3EhuM58v3cZLX61GERX8AqPp2lkVkBrdArUuG7vqY1hZ2ZmAEDM3xEXjp1MFPp25A/sb6/DWWxjqezUAgb5WAn3bnyeKopDstwdRkFCkfaRX9iCgxIeQGBvhoZUIZols0Ytor5pDTrooCjTZTZSUBVLd6M2PkpMLY6zEUkFzc5vobjXGYTW2lQ+49fxhfLtqN8F6M1sPHmDVD4OZNGwqQdaB7K6pRJbKEGhAAeqdafiZe6LUPwyKHUFp4vGeX/yhc+oQ3kYT93VTgyAcUgOZdbXsrf2ewNDZ6IQjC6KdfUP5asTVR+1TURQaGh3ceMenuN0SXS+JBgv46i3sKyhjQIL6PnTqGkWnrlHttv1f5ipc8qeIYhM/FaZh1t2GrChcGNfnuJbtOXtVAaw0vwpHswurj3pNS/UbQ6rfGPLqPqLGsZVYv6vZv7WEiuJaAPZszCEhJZLMulJmrvkQP6MXX4+8Bj+jun1TkxOz2dCuDvqEC/oTEOxDYJgvYdGBrJm7gfJ8VQSrrWqkqNaDdPfXzPvfLPQGPd5eaoaxKArodTpcSJhMJ34LXrR4N/uyStmXVcoF5/Vj8tl9sTtcpO8rxip5KM0pZ8g5/Q7Lfj8ZFEWBpv/jjVv2s3jXFAb27EV48PHtnXv3iqV3r9jfvd8zgeF9O7F4XQZWiwl83wR5GYLXeQB45CacUiVWQ4fDtuvVswM33TAau91NfKyFncUPYdP742cMO6ytokgcqP8Ag4/C2Hv9mZ8dSNdhSVzzzEXY/L3ZaH2TDw++TkSnAQzrlsCIyT2JCPcDYMn6DJ58ezEAbz96IQP6dWTeAX+gjDKno91+jAY9yfHq/rPr17OpZh2hehtx3t2I9J6CXvQiOr6cdw7MBGBm3GsEm+MIsrRlpctI3P5CNF5iTxJ8+/BpiC9FeVVcdO0IouKC2FW8gWX1K3E2GHC4AnAsT+P1+eqk3Ll3TmH+vFIE3yAEl4hSV88v2/qx4olAEGDwrO2EJFVTJ6jX307n5JH2eUdifOsQkFsFbMWjgOnw73zFXh/mfDaNgRfuIipJ/c4tKE5Bafbj9tjdbZ9pah4L9gSjKG3bHukSoiiwf00Qnnw9Bly4bXrV5/0IG1jRkbY1lzfeWIrBx0RkUhg+FiOPv3Mloihy96Vvc+HAJ3j6g6t47snzePOdFaxcowZYfP3tFmRZoaikljtuHg9AXEQgj10zgYKyWi4ce/wgJw0NFA5ZJ5xezoQxnEIU5R92QBoaGkdEp9PRpUsXtm3bhtvtZt++fXTt+vscljQ0zgR2796N06kGWaampuLl5XWaR6Sh8ediMBhISkpi9+7drWUxEhMTT/ewNDT+NmzatKn17379+p3GkWhonH40YfxfzLylu6ioaaSyppHBveJPad9DzurNvLzXMVqM7cQkQRCOKYoD7KzLxsvbSTWl7KktoHuIKkbc+8L3NDb/ynJZgesf/pLuyZF0T4rEK9eXT8+/meAA71N6LGcCneJDuOriwZSU1XHOpMMnz/181B9AfQclsGuLKnAHBtu4/ry3kGU1z+6JNy6h32D1gfHWh8/iqbu+AeC7zzdy2fUjiLEOo8S+DYAt1W8ccRyKRwd6CXezSH2RF35xja3ZfC5PIz8XPYNZDMTuqUIQQdRBqc+XOGpK2VP4M4PjbmR12X/RISEKqqbeKBUw2v8ObMZgJNmFTjSycH0mj7yvikBBip77rx7Dyws2kNdUjXOAHSVIproplvqGnTQ0mXm5YBQOgxrtf0WHdfRIKaSscjQ2yYBOhN7Bt9A92IZetJFVX0O8TYdF3z47oNnj4vJfPsDfFEqyXymZDaFggDJrHUkd67jl6vkAvP39BPKdwdREeeFnbmZPZixfzR+NKOhwGyQY08j+xhCM9X5c3PVFchoqiPUORCe0tzQ7e2hXzh7aFbvdxZphP9OpQxLxAS2fz8bnaXQ7uKrjMM7u0IGIlvrWmCaA4zsE8/gTOGuOjaK4AEOr3XOty8768nkcaFwOQJz3IDp4qw9JLqmGeuce/M390YnHrj3jkBr45uCN2D21hHVOpXCvL32FDphsBhY2pDNr6yd8a7yWpJj2wqFHbmJv5UN09a5hRaWJIHMTshLIYzsXABBitjEmIgmP7KLKVUCwKRZRaC8CX3b7eCxWE6l94zHbTFy7/jN2VRfycr/zGBQSTwffy+ngezkAqX0lpl81jJrKRsac2weAjeW5NHicNHic7KsrpX9wHKvWZPL4Uz8QHeXPnLeuxNhifS4IAv1Hd2ndd79JvRhz6TDqqxvYn11BvVvHjg05HNhdRK+hbT/ULGYj779xBQfzq+jXO44TZdSIZFav2UdcbDBRkWrAxX2PfcuO3fnoKuowbN/H7JdGMfXm6xCE3ymOezJRGl/GApw9sAOirb2Fer1rH/kNB/jfwmJi8nTcetsFWLxPTUCVx+2hYF8xMcmRpyXiO9jfmzmPXfyrJWrZAUl2sqbwLBxSGSmBD9LB58J2263cnM13G/cyY1wP4ny7cYvtG0RBj044/PGqsLSeA+lDiO6YydB+dzPjwPB26yudau3x9KzNbH0xjZ4xATBCPcf8bOo1XhQFbF5qtnGs3y2sKXuPngFnHfW4Akwx6AUzlZKRiQH3ohdVMbraVYikeFr/Dja3Pxd3VP/IirJ3ALja8i6X3TSm3frI4DDEOjOSWyDYy0iFUy2lIZoUdjrnEnO2H17+ToK615DxmpXqVAM1JaA3eQhNbp8ZLYs63OUCuXUBhFnrEABFBpPiUcW3X1mot2yAYtFTtD+MqKRK6lxmSpt9WKVEtRPGHYJIn+Q8FKW1m8NQFKjcGULa3G7o9GCqspMi+LLTR4ZfPbvglvAqaOLae0bx1F1fUWISoLRlndPJOZe8wXP3n0NORjEAm1ft48LrR/LIfdMYPGAvH322jqKSWgACf/OMMmlQFzQ0NE4/wnGC7zQ0NP4ZpKamsm2b+ps3LS1NE8Y1/rYoisLmzZtbX2t2uBr/FlJSUti9W/3dl5aWpgnjGhonSElJCfn5+QAEBwcTH39qtSANjb8bJyyMFxYWEhUVdfyGGn8bOseFsCe7mPGDkiirrOfH1Wms3bKf6eN6cM6YHn+4f0uLVejJMjt1KE9nzMVLZyLaK7B1eUKHYHZmFCIKYDYb6dY5go07D7Js/T6WrVczssxmA7dfMeoPj/33kJFVwtadeUwe25UA/1ObsS4IApdfOOi47WZcNpjYhFBsPhYsXqZWURxgwdytlBXV0rFzOE/f/U3rcrPFgF6vo7N1MpsqXz6sT0UGR4Oe2lwfahb2p2D7ZmrqolHCghAdHiJ7VxA/vpiA7g3IlLdsZWBQwEwCTHH8vO4zjPGllGbDD1nb8O0BEiKKoqAgoBfgp6LbEIAgUyLTO7zD+4tXEBVfRnFeEKVBbq4v/RpSABMgQqCxkbOSVuJjtmP2cuEp04EMIjK9/fIRBPANXM1Bjz8bi2P5OPcFyhoiKas14vRVBZwU33C+GXld63Fuqsglva4ESGBtWQL6PAPWYB3PjjobSa5obaePtNOtrC9ffn0DXoKJMX0Tee3WUKxe9eTWfkFoSBzV7rkALKu6gB+LuxDrPYYX+553xM+swv0dUsTj7Pd446l7lC1VXzI2MoIt5XasxlF0DmyrTSz6/RdFefr3C5+HPlP7jyh1d4OhJwR8ikdRmLrkHVxyCZd2MmMz+BBsbrOB3lJyCc3uXMK9p5Ea/CwA3+bt4MldizgruhuP9pzS2rbKeYA6t5q5PeDKTXhJMVzS+S42LP1K3bdRocF5eE3xiuaVlDUtwizA5XEP4m/pRYPbG53wAQBhLZbtX+XdR5F9L939JjI+4pZ2fQSG+nLdQ9MAKLXX80uZWjN9cVE6g0LaP/Dp9DqueaC9oDgtpju7a4oIMFnpHagG5OzeU4CiKOQXVFNXbyc46MiBPWYvE/d8fDMAhQcquH/m2/j4WencPfqwtuFhfoSH+R2xn6PROTGcLz+9od2ymlq1RIJi0nPXa/mMmv4KSm0mgv9rJ9V3K7po0EWCVI5g7Ntuld1dzLqi81GQaIzqy4cN0cS+uZgL7zn79+3rNzw87b9s+Xkn464YwV3vzz4lfZ4KJKUZh6Re1xrdBw5b/+689eQWVvF/X61l2qhuGMSj3/fmLtnB14sTgAS+ebk7+YXFBEX449Xi1nJO9MPsLFrKe4+vBRS8fNqCDgZ0j+Wjpy/DZNTTIUK1uuodMI3eAdOOOf5AUxSzEz9DQcGsaxNkO9kGMizkSkChk+3we4tZp57nOsGAQTzcYvRg005knROvIIjyr6GyJdkyfIqLuKvsQDMmURXeez7rQTZsZteSRA7+Ek3G9/EEd6wkb3MUok6hMiMQyUdH1mvJNF2RS7eYthIZdrcJq0m9XigKOGUdC5Z2JaxjNdVlUXzzjR/1XSQUUSTbHsCLud25LCKTzNIA5kthxAdUtfQkoKCofuwt2ldpvi8762IprrIS7W5GcgvUJ3no3i+B+m/SKPLR4fTTg06gc3wYj9w/ipyMYmpKaiHCB4xt12G3W+bB539k2NQe5GWWsOrHHRTnVXLrk+fSMT6EgqIaAEYNT2LmRce/l2toHA1BUf+dbs6EMZxqEhMTjyuOV1drJQ80NP7udOjQAZvNRkNDA/v378dut2OxnDrnPA2Nv4qDBw9SUaHOU8TExBAWdrhjlYbGP5GOHTtiNptxOBzs27cPt9uNwXBqy8tpaPwT+W22uBYYrPFv54SF8dTUVF5//XUuu+yyP3M8Gn8Rbo/EZz9uRZJlFv6SxvzlbVlWz723nJc/WkmflBie+c80TMa/1lhgW202CmDRG/E3tgnM/brHsDOjEFmBCUOTmDyiKxXVjaQkhLN9bwFFZbV0Tzo9wRuyrPCfB7+m2e4iO6eMx+87tljxZyEIAn0HqYLm8w99227dxlX72LhqH9MvGdhqLXv57FFMOLsXZosqfCT7zCCjfm7rNrIE864Yhbe3FbPFwD2Pns26L6OZn1GKXRQQHB6Kt4JgUfDr/us65gJGXSCxthH0CrSxpfJewnvUsnFeMT26gk4nIB8hf6/CmcUH+6cz6KwmTFY3B3JDEUwK+aIvmXWhiIqCGz2TgvcRZG4EwCEZMIlukmwlJPmVUe6xYdM5qZa8URDpGZqPUQcN7nze39cmSKTXljDgiyd5vMtZRMq+lGWU08EvgLy6Gox7zBgLdXz2wCV0igoH4tlefzE7qw+y2xCKEpkFwXCbYyADBsbQwTuArOoX8RKW0eg243aJ6A0yEgopfiVsryprd5ySbKesaQm+pm6toptHaWJX9dfUuPJJ9TvImKAyBJbS5O6H1dCWzflHRXEAxbkakMC9FZRGPLKFKmczbtmbkqYbuLHn5HZODx65od3/AD/k78YuuZmXt6OdMB5uSaWr3zQONKyhSarBoStC0Mk8N2o6T65ZSJJPGH07daC0qAarzYytRfxz1Xeisc4bQRDo7jeIEG/1mBePuwUUiLT6AVDjKgGg2lV0zGMMNdu4utMgdlQXcknHw6PnFUXho/1bKGmu46Yuw7AZTPibvHip34x27S46vz92u4vOieFHFcV/S1R8MB+vfbBtX3IzeNLB0B1BOHV1DJ9+eDpr1mfRKdSXzuFrgFrwZP7u/gTRG4KWAm4Eof0EoYKkCouATpAxlDiJG3C46H+y2D0lZNW8hjkpHX42cTCt4A/3eSox6vzpFfIKtc7dxPtecdj6c8f24O2v13He+OPbYA/tk8BPq9NIiAlm8zcbefvOTwiOCuT99BcxmgxEeiUT2SmZbj+dS01ZHV2HJrfbPjE25ITH7XS4yc0qJSE5ApPh8ECt8rJGCjfEM3xI4mHOCwCdLMNJLXPQqWNHbIbgw9Z39RvDj0t+pK5Y4cBaHUJCLAANObnI7mZkt0jVjgACUhoQfdXzpl9nGyU/uSle3YGir/xwB9tAgI5dCznn6tUU7A9m0f4klGjwEhx00FdzIC+M2iofDgT7sqM+EqdsYPLlVYTbtlDn9EZafznLfsomsU8A2dEVvFvSlff2d6WTuYLRqRnAr7PNBfJ3BrLh+95IJhF3pBtHPwdEgqeLQEmihCvGxMd1afhVNCB6+WGqlQgM8uKp2ZOJCQtg54b9CAqYi+pxhnmjWNomYJqaXRSV1ZGXrV7vD+4vZ/X6LIZP6MbAfh05mFfJmLEp3PPmj8RHBnL9OYO0H6IaGmcQjz32GL6+xy8foqGh8fdGEARSUlLYuHEjsiyTkZGh1WXW+Fui2eFq/FvR6XQkJSWxc+dOXC4X+/fvJzk5+fgbamj8i2lsbCQtLQ0As9lMt27dTvOINDROPyeseD799NPMnj2b7777jnfeeYfAwMDjb6RxRvHqJytZt/0AowcmcdnUvnRJCGVPVglOt3xYW7dHZsOug1z10Gd8/MxMRPHUTd4WHyhj3Y/bGXZOP0JjjnAetexK/I319DcLd7T+/ePyNO68aiyfPK/aInskGYfT3VrH969GECDA34tmuwsf2+/LlD/VdEqOYNlPu1pfiwYZ2SMwYEQSkR0CEUWBidN7I8kKn3y9US2lKvbHHvsjFpuTyjw/Iopu57MF/QgIsrGzYBVLCu/Fa3wvQhuDOFhUA6KANdxOU6mZgtWBRA9Xs/N0GEi0jWFd+dvssH2BV0vmYFQnOy6HEYvV1TouhbYkPgUBh1yLxVvN/k6MK0YUoJNSypCAXIwGDzr3+fhbm1AUcMh6yuu7cGnUFsxe6j7qZSv1cpsQdCipz243Qo4OEtUa6QhQb/Fw2+Z5dHhTRlEgflQ8FQ1qP7JBYd/uQjp1DsctS5TUdSKrSkDRedSNjfCKcQOvrt6AiMA7/dRzuTzPyGevjSd+ZAHBQ6vYWR3LzUkjkSSZ7PQiouODyXc8T2HDF+gFG0Oil2EQffA2dKTS3Uh9+TvEWjvgcC5CQcIj/zrg4NQgeN+AojgRjP0RRB8sInw07BLWFh1gxcf7mPB//+Othy8gIUYVxPqEfUyVYz1h1kmtfdyQNAzXXg+xlT5MH/QEE2b0YXtDHQWlNdx/VzFR+r3ozH2I9buebz/YSHFhFQ/eMgEfPy82rMzgsVs/w2oz896Pt+MXYGXnzmZeeVPNqg9+yEPIAHU/kV5+7cZ+bvTDZDdupJvfse3k0zOKWf74XqIi/OnQ3//w9bWlPLVzCQABJivXJQ1C8eSh1N0FujgE36cQBD3BwT7cc+fk3/tWA6DUzAL3djBPRvA73JXh9xIZ7s9F56qiv+L+H4p9PoLljwXlCIKeIz0aeBmiGRj+MU3uEkJ0nQiP9yEy5sSF2qNxoO4Dihp/pM/NEOl7A2POPz1BRccizDqaMOvoI647d2wPzh3b44T66ZMSw/L3VZeDN25VnRCqiqtxNrswmtoE1ujOkUR3jvxDY77/ug9I357H6Kk9uOvpNrcKWVZwOt3c/8hccg9WsmRpGpIsYzTq+e+T5+HTEqjy9rMLWPj1FkRxI7NuH4fLJTHt0oFsXJlBUIgv3fvHo18/huyVmYDSKvDGxg8hel04X7y7EcmuXnzv+GgIkm8lWbusvPx0L7r2iWVqr0cQyhoQrUa69MnDaPbQMbWE88Rb+HBHGlf33IRJX05SfCEPfX4VHScEoTeXMiW6C97GRQBYDc3cfs0EnrphKoIg8MKeZczJXo/iBRER1a3lwdV7i4ooCujtEggyxjozpkaR0EArvf18+NaRBYCzyoHokTGWNOIK86ampIninEpiwgIYc25v1i5OIzOtAF2zG4+lfWaCbHchG0Rcod6AgsOg54fVe5k0riuxQzszf/UeVu05wKrt+xnWPZ6UjuF/6HPW0NA4dVx44YWEhPzx+5qGhsaZT9euXdm4cSMAe/bs0YRxjb8dtbW1ZGWpz642m42kpKTTPCINjb+W1NRUdu7cCah26powrqFxbLZt24YkqfPhvXr1wmg8dUk7Ghp/V05YGL/xxhuZOHEiV111FSkpKbzzzjucddbR61pqnFmUlNfx5cLtAHw4fyP788oZ1qcje7LV7MvW5N3fWCPm5FdSVtVAeLDPKRvLIxe9QUFWCWt/3M6ryx44bP19KWczJDiJ7v4d2mVTJXUMY8MOtX52ckJ7myi9TjxtojiokedTJ/TgrfdXseKXTK6/cgTe1vbjOVhQRVFxDQP6xLfLxv2zOPviAXTrG8vDt36Gd890Ui45SJi+N90TY+neJ7a13S8bspjz6S8ARIf5Ue0YRmBULUWZodx4kTeP/edLKsvq6HXfLkxhlbh8lhKW3Bm/5CYKlgcy/OldiHoFz6/csSXcZNT/TEHTNgxCW+DF+GH92VkztzVjXWmtHSv+9tRDj4Qoqva5FU4bQeZmAOIDS6m21+GQDegFDwlB21EUKHP7IAhQL1tQFIFfJ+LlrgphzeaeeElGmv3qIFjkUAPBqLSOJ2tPIcS2iOqCwIBR6g/MFSX7WFy1D3Qtgz6ktBwqeYtCVvMYPMvC+e69XNweherE3iw/WAnAneu+IW6jBdfyBqLjg7nj3UN1qnXoRAtxvjMBCAaSfcejKBLFjYMwiP74mlJP+DPPr59LetVTRHhPonvwU63LZUVhY/lB4mwBhHv5Iug7Ivi/3m7bvsExKKUyX5eqNfd2ZBS0CuNWYxxWo5rBfXB/GU67m/5d4/h8+FXcdMGbNDU6+fH7bVRGqqJavXsVeiNYhAYo6ch7r6g16wODfbj0hlHkH1Cz5JsaHNRWNeLjZ2HYoERWrMmkorKBhqbDrdYVRUGpuZpQ10bCfJ9DMB5bUFq/JYemJif7skspLK6hY1z7ye4IL18CTF7Uueyk+qvXE8X+Lbh3qv+sM8GQciJv+/GRWxwDpLJjt/sDCIZkBMOf+2PQ39wDf3MPok4scf6ECDT3Jb/+K6yGOK58+FpE4d9hgXbZQzPw9rOS1D8B2ykuvQFQXlwLQFnL/6CK4jfd/gmZ+0qIbKlT75YkDrZcp3bsymf40M4AFOdVtW7z7ouLAZj34VqaGhwAvDnvJrasyTpsv5ffOYnU3rH4B0aSk1HM5Av7Y7aaePzWzziYncXK7/dy738v4Jo7J7Lwmy3MvHkMSvweHEBtnYXqjq/zYsitRJlHsq/6GSyM4InrpjKiV0eMBvW6Wdbcm7k5b7LxTSeX73mOWz+8kCwqsepNJMrBZFHB1ooYEnwq0QlSu3tBRLdKzkldhigqlKwLoGLRMKQYK/nFdVyR0hNXsIWC7/aznwL1+t4SFNjkUX9ArvxuB2kHy/F08MfXaqKuyYnJpMfpVAOqzN5mjKE2nIb29/iFS/YAIBkFCNAhehR+XriblJs1YVzjJFE47Fn9tHAmjOEUork3aGj8uwgPDycgIIDq6moOHjxIQ0MDNtspfMDV0PiT2bJlC0rLJEafPn3Q6f64q5yGxt+JuLg4vLy8aG5uJisrC5fLpQl9GhpHQZIktm7dCrQ4zfbte5wtNDT+HZyUR3ZcXBwrVqzgjTfe4NxzzyU5ORm9vn0X27dvP6UD1Dg1+Pt6oRMFJFl9eF67/QBrtx+gnZv1bya5/H0sjBmURNgJ2gef8FhCfCjIKsHvKGK7l97E8NBkbtr8AaWOWl7uPZOO3mHsz1PrJyV3DOPVB49cr1lW5MMyzf8qGhtVwaDZ7sLpdLcTxssrG7hi9vsoClwyoz/XXj7sTxlDeWkdS9Z/T1OXuYRbk5iS8AzecRWkXHoQQYAyeTuyImFvcmOy6DjYtA7vMAM6UbVKLt1Tgle4D4VbjYhOCWeNncw9ar3X0g3RhI0rpyLbn+jxLXbNdgVR32Kv/JtnUJshlBFht/ND/i2AHUWBnTVfAG2itSSDIB7585IREFFodhnY9P1IOhszGTY1nrqyPQQFNLZrKwgQZqwHQPQoVLutCIIqqtdWWdjxViI2ex2CxQQ7BepjG6m9XK232zcrgJK6g2AxI+wpQ2eLRrYa6e/nR1Cgeu4n+oS0CuGCBIoehoR2xCV5KLbX0tk3lHNieiOf14MNP82hrqaJO86dwELjPr7M2YpkUshLbCZ8OVSW1ZPgfxf+lj74GFOOKAQKgo5I24zDlh+PkqZFKLgpblxIt6AnWyd6385cx0tpq7AZTPwy5VasevXDamp2otOLmI3qGHolRzNjXA/qGh2MG3y4yHowu4wbz3sDWVZ4/M3L6DskEXeIFUejD0MHdMIQ4U1+cTWx3vfj0P1MB98rMPn6ERzmS3VFA116xgAw7aKBuJwewiL9cTrdnDv4KQKDbSSMTGTnngKefWkhg/p1xMf2KztvpQlcagCH4lyGYDl2FvdZE7uTnVNGTFQAcR0Ot4IOMHmxatLN2CU3ASYvAATzeBT7d6DvAPpOh23zexH854BjOVj+mcFkiqKwb08hgSE2gk+ydnqYdSxjO2xAJ5haywTUVjWyZW0WfYck4hfofZwe/p74Btm44rHz/7T+H3tjJutXpDPmrLYMqGa7i4xMNRguwM/KqOHJjBqRzEuvLcFo1NGnV2xr21seO5tZE15q1+chURzAaNQzfGJXVi3aTVxiGBUldUy5sB9d+6gBNJMuUJ0M6mubuWzsczgdbnUMjU4env0x46b15MVvJlDUMI+C2v0ggNXmJFks5mD1ozx6cBZP9H4ZH2Mz4f7wWf4NNHvqkORm3HhQ9ArxU838si+FK/Z8jlH0MCI8i+gokQMlnWj0WHh33yAGhebQLaC0ddyCAIJOQRAgtH8N639x4SirQvBIpPtlUlPhZvR1iZh2laI0uTBUN3POrGEMH5wIQFLPGGSrev2sawngcTo9eEwikhE21lYiBYqICIQYvKirbsZsM2JHQmyS0LkUvEpVEX3l6gwumtGfiHC/P/x5a2ho/DEOiQsaGhr/DgRBIDU1lTVr1gCQnp7OgAEDTvOoNDRODLfb3TrvqtPp6N2792kekYbGX48oiiQnJ7Nt2zY8Hg9ZWVmkpp54UomGxr+J9PR0GhvVefSkpCT8/PxO74A0NM4QTrp4dF5eHvPmzSMgIIBp06YdJoxrnJmYTQYWvnMjOzIKePzNRTQ73EcUxQ06EUmWmTw8lbuvHov+T8hsfvzLW8jcdoDkvh2P2ia7vpRdtXkArCrbS7x3KE6XOpncISLgiHXPFxRt54k93zIkuDPP97r0L8/+uOS8/vjYLMR1CCIwoL2YszezuDUrObslW/Z4VFQ1sHbTfob0T0CRYdP2A5SU15HUKZwh/RLa2du7ZDurSl9m+8ZsqkrtdOjSSH7TVpo8lVgialqF6K7WC/j8459Zuf1HolOMBA1LAwUGX+BPaI8a0j+Ox1TUn6mzRuF2eRg9uTslBdVUlNZx/vAhvP5oMM2eakISqtGbJcq2B+Cq05FyeV67rDxvfSjxtsEAjIt4mBUl96mChKKgtJx4itKWfH0k3IoeDwqyW8/3D92FIAgUV+wms+mTdu1y80PYvDeR6WPXY9DJZJeEsPpgMvW+euyKEaVMTyQSokXHodx12z4DXjflo4QEUKooCAY9Sn4xYodI/PY7oCCXsc9c2LqPOFsQL/Sdzk/Zu7k+dTg+FjOx3oEIgoDH7WHPL5kIDR78A22899Ptrdv1IgFzo8jnOVvoXR/GiNkJ9BmUiF5nJtQ67qif/bLPfuG9B79kyjVjuOT+c45zprTRyX821EC4dUK787/erQo4Do8bSVbfhfT9Jdzw+FdYzAY+/e/lBPt7o9fruOOKI1tGAzjsLuSW4JrqplL21ORzoLQE0NGkKDxz1dhftW6zxH5/we24XRJeLcEiZi8jl92o7ueLd1Zhb3JS2OSkn3d3APx8LId9xwXRG2z3oTjXIlivPe57ERbiy/OPHzmA5hAWvQGLvi0wQTB0QQhZfdy+TxZBnwDeCae83zOFJd9t4+WH52OyGPjo57vwCzi5DGi96NXu9WO3fkrGrgI6d43i1c9vOJVD/dcQ3zmM+M7tnVUOBW8BZOwrZndaIaVldbz6wsWHbR8SdvQ6u32HJhIdH8zd/z2fu54975j3Wo9Hwu32tC1QFBAENqzIYOD1n9Lo3gctjxn6FncRL52d86M+ZFHxUgTRgYgeGQ/BunoizLXUS2Zy3SF4xzrpNyGZ+eQSb6skwVfNfM9tCORAUTD+gpOYMCuyIiAKbc4gdreJjtZklPwEpozsyNw1e1AMIrUWdZxbCwq4YtYQfnhzJQESjBramZKSWqKjAykrrEHxSLQ+PgsCCuDwF0AQEFCvcTJg8vdCqW6m1qogITB8cCLhgpkfF+5q+TycrN+0nxln92l9rxCE4z53OewujCY94lGCyjQ0NE4eWT68rJSGhsY/m65du7YK42lpaZowrvG3Yc+ePTgc6nN9SkoKVuupd5/S0Pg7kJKSwrZtquNhenq6JoxraBwBRVHYtGlT6+v+/fufxtFoaJxZnJSqPWfOHO644w7GjBlDWloawcGHZ+FpnLn4WM0M79MJp+tHdcGvrKAP4ZZkfp5zI77elsO2P1WYrSZ6DDu25W+ybySTInpSYq9hcmQvdKLI/z12ITszChkz+Mj1k1aWpiMpMmvKM3HLEkbdXxu0YTEbOb9lgvu39OsVR0J8CLW1zdx8zcgT6u+Bp78jM7uUr7/fSlFJbbt1V108mMsvHASok+QZNSvIql+GdxfI3xmLPT+YAd1GIjVYufmi+5m/80Ww2yBkEPlh99LzhmZkT1sB1pBuqnieOtlBdHg+blMR/hWXcP9T3zJ5fHdGDlHtdT/6URV9H7v7Yzav24enSUfNPi9s0c2IegVbTBO+sXZirG1Ry2ZdmzOAXlBQFAkPIoLbBoZmFEVBh6K6gwpCqw16D/NVLM9ZwM6NXRjjX0aniEAevm4eF75Aq8W6IMDS7b3YHeNPRuYkbAYnuU1BYAMcIHgE/Nark52RcYF0GRPPB8JWPKEm/JdEY2t5NhC8vfDtmUhdvfoDM3FoF966/0t++GE3Cd2jQRGor23mySemExjS3ungltlz2FVYSXh5I99sefYwkejOwRO5c/DEI37GuVmlfP/5BoaOS6X3oLYM5fmv/0xVZQNfPv/DSQnjAeZe9A9/77Dlt3QZRrTVjy5+YfgYzQBkHCjF7ZFwN0oUlNQQ7H94Zu7OTTk0NjgYPLoLgiCQ1C2ax16/lKZGB9kdX2F3aRnT702laNEgLr9o0FHHZTDoMRiO/H2ccG4fcvaVEBLmy9B+HZn7vxXYC+pZuySNvbsKqCip5dZHziYwxAfBeiWC9coTfj80fj+y4uZg/eeYdAFEek89ZtuaqiYAnA43DrsL+GOTM2KLMPhXlJz4N6HIv86IVK9Tdrv7iG3FY7z3NVVtjh3HC0ALCLLxwofX8vn/rWDr2jbrdZufF97GJBrd+9AJNiSloV1wVaCxiVJHE5JavwJQ8BbtAHiLDmS3Qu68cA5+k0HYDC+Ku/rR5G/EoxcpafZhUOBBuiUUtvbnqvdl3rou2OMVPIqOBWNmE58QpL4H6RUsqCjBlG7E0dNJfbODH3ZmknxWKpIFbrj9U1AUOgg6KopqUSLVe4AOkADJLNM02gF6Aa91FsQm9b07b3Ivoi7w5qmvV1JW3YBOJzL76lHU1jXzy7psALqnRgFwsKSaK5/4HL1exyePXEJY4JEddVYu2MVz931NeHQA/5t3M2azZhf4r0MB4UxIbj4TxqChoaHxBwgKCiIsLIzS0lKKioqorq4mICDgdA9LQ+OYKIrC5s2bW1/369fvNI5GQ+P00qFDB7y9vWlsbCQ7OxuHw4HZbD7dw9LQOKMoLCykuLgYgLCwMGJiYk7ziDQ0zhxOWDmcMGECmzdv5o033mDmzJl/5pg0/kTqGuytdurAYeJ4SIA3VstfU6t7Q3E+S/ZmMFwMZfjI7u0m2PWijse6t8/2jI0KJDYqEICCpiq2V+cyOiwVb4P64HNVwihcsochIUl/uSh+PLy8jLz36uUnt425ze76t/y0dDeXXziIutpmrjr7Ndy6WkY+a8GjeMjfHc5NM67nf3cs5Mm9z3PTfZMJKD+LL9/7hSV8w+RP1Frdgq7tPBBbSlIJQaUUuIvBDaUZVZh6lrHLNofgmltI9W8Tx26991wuGv0cyBJxE0uJGVWBxy6y/KbedB0Uwuzn2rKmw7y60yfoBrZWvqXuQwCdIuMwNBBqSqDSfgBBp56G29/pyNiBZzNjxlT25Zfz/Zeqff5r7y1Hv7+OwhyZOddNIiC5jixdBwwGiXLFArFOKt02Kt22tvPZAD5LFcL2G/GJsSJ7G/jCvh1PgtqgsTs4I8ATAIHzFeqqXYyY1A0/fyvL3liAEhVOUXEdRcV1rceyYsEuzrtyaOtrWVbY0dgMfl5USDKKopyUU8H/nv2JPVsP8svSdOate7B1eVm4Dw3x3XHkVVJZXE32vjISU6MIDP59ZQ0segMXd2wLVpBlmYpdxcSYLQwZkUyPpKjDtsneW8y913wAwD3PnsfISWo2d//hamDK/mxV/AkP8eOGB09cvP8t/oHePPjiRYBq1a6T1ctSdVUjC75Wf/Qv+W47F107ot12K39aidz8HakDLiI05s/J8FAUhV+WpuNlNdFn8IlZq5cW1WAyG/D/m1uAFzTMI7P6eQCshlj8TF2P2nb6zMF4WU1EdggkrKV29R/h0dcuZdv6/fQa+M/Nsj8SlUXVzHttIT1GpNB/Ys9T3n94uB/33jmZ3IMVjByWRFZOGSOGHjnQTBRFpl7Ynx+/bIss1htERk/tybRLBh51H7Isk7b5AJ17xFBVVs+8d1ezY8sBAsP88PM2UVvTjM5sIGnMZkqb0on0vpAA6/nMy7+BYH0DtU4LBxqCiPWrQhJ0UG8jWZmEx/dlcEKFy5u8zBDWPtsV2S3ithmo6CAj6cx8vqofrg4iIBATUd06JkeTga2LYqHIBgYHpnodezuVcEf5XBRZob6gBHOTFU+MBEZQjArV1LOoRz2KF5hsAvpGkcIFDRicHuwdnTg6wKiERHbpS/HJVai0ugAFvauB3nIYj75yKSH+6vX64+QI7nnjB1Zs28/qta/hVd+WmSq0lH7Zvb+YRrsLgMy88qMK41vWZqEoUJxfzfsvL+bG+44dtKKhoaGhoaFxdFJTUyktVUuupKWlMWzYn1PuTEPjVJGfn09ZWRkAkZGRREZGnuYRaWicPkRRpEuXLmzevBlJkti3bx/du3c/3cPS0Dij+G0w1V/trquhcSZzwuqhJEns3r2bqKjDBRSNvw8+3maiw/0oOJSBfOh6KAAKlFc3HmXLU4vD42Hmz3NxyRLzttXx5P5qzrp21AltqygKV298m2pXI5ur9vNUD9XyOtk3ktf6np5s0oZGBzW1zcREHTnKfOmqdFasyeSOm8YRFNAmbrrcEh98sZYOUYFMGKXa/uzYk88TLy4guVMYTz9wDjabiZvv/bJdf4esVl9+/Dsa6uwgGPB4wOzvJnZCKV6+ZnJaasmm7cinb4uo5+vvhU6vQ0FCFHR09hlDVsNyZEW1kFWQW4MlYoI64opJB2BTxYek+k9lzdJ05n26nprqRmQREEQMPhIAolHG5mfipluuaJ3sP0SYpf3DqSiAEah25SDqQJbBkd2RmZP/w6CRXUiv+Y519lc5++yOLPgkkZy0/ejsHgSgrtybmgpv6np7q9a1iowhDaQQD3KIOpZDx+DqoEAGHGxsxOFtwd1sAFzgBqpMNHdXhQh7b4Gk/BBuvHcKVl8z/l46Pnh3XbsxG4w6+g3r3G5ZxqZsfMsbaQz04tpZo0/a2rZLjxj2bD1IcrfodsurdeoX0xPiw9P/+Zy9e0sJCvXhkyV3tXuI2bRmH067i6HjUtstr65sYNOqTPoNTzpMTF80byvb1mezdqn62Xp3b2/Lfwi9Xmy9LhhNh9dBvyj2eQqb9xDvfeqi1GM7hfLW3JuwN7vokBDCyp92UVFWR58hie3aNTc50dsfZ/CwIuyOVSjKzuM+3FWW1bN2WToDRyYRGtFevJUkmZULdxEY7EPPAW0lHtYsTuOZu78C4NXPrqdz12Pf/3ZtPsC913yAwajj7fm3EH6U68HfAS+9eqyiYMIkBh6zrdGo56yLTl1wgs3XixETu52y/v4uvP/QVyz/fC3fv7mYb8vfxex16oPUxo9ts5fr3Dn8mG1nP3QWsx8666T6v2bsfynOU0VpQQAZAcwGiotq8fYygk4koEMN3abuARQO1i9h1fI+1PqHUR9gYeO3nSgfYKGDdQM2XTPb5kbgn7qLmGHqPSp36QguPesuprzbyJLvt/NVXi4ePzsC4I4VQQHTPj2bDiTRt08WoqBQeiCIukobol3EuskLBYX7O3+PW6feL6wXmBn4lTd9e3RlcUAOxTvKkKpcKC0O/84EBScSTd1MeOWbaI5Vl6/S5WL3uLGGGzBniqCHx86dyohhKZgtamCboihUltVTVasGpMl6obUcBYC3t/oZj+3XmfQDpRj0OgZ1jT3q+3velUNZvWg3kiSj1+tO6rPR0NDQ0NDQaE9qairLli0DVGF86NCh2oSxxhmNli2uodGelJSU1u9Fenq6JoxraPyK+vp69u7dC4CXlxddux494UVD49/ICQvjS5cu/TPHofEXIQgCcx6/mAnX/O/w4s6HxPGqBiJCjl5f9FRgEEVCzF4UNjdgqHLT/Kvap8ejqHkvMdZSat1eGMXTlxleXdPE9Xd9Sml5PaKoTnbfd+tEJo5uX9fmiRd+ZNnqTADWX/5/LJl3OyajHrvDxWU3vk95ZQMAX323BVmG4CAbldWN/LJpP7ffMJagAG++ePtqPpu7iZ+W7gFg+pTerFuRwYaV+zB4uxnz+mZ0JjULLShMISLCn3ueOpcdmw5wwayhREQHkNwtCl9/L7JcseyrW0r/4FnE2wYx2HM97++fgYKE26ljy9cpDL4oG2P8JpCtuOQmRFGHoii89/pSSotq2pwGBIH9P8bgbjATF5xEdWE1j9zyGXPm39LuPchr2oGktJaSBWgxT1dPQh99BNdPfa91IiKnYSUKMoEx+/HNiqRthwqKCDUpbdl0OruMLlMPOTrsAx3IFgXFpoCi4JWu0NTopGGSjubeDYilOszLvREcanFzOcQDJgm/LD1vfn8jBxoqGLfwNQwddVgDdFAtte7H7ZKoKq+nQ8eQ1mVLPl6Dsm4/VmD8S1ed9Dl05S3jmHrBAAKC22cXzz5vMG++s4RwD6TnlSH4eNPc6GyXkZ6+I49HblLrrT8gCAwd13bePXH752TsKqBTly28/uWNrcuryut59bHv1Pfczwu3y0Pfoe1F50PEJYbx+hc30NzkpHvf+MPW2wyBJPuOaLds+4b9PHH753RKieSZd678XVbYsZ1CW//+39ybjtjGbDGAGAQUISt+x+yv1rGbvdXPsnWhhYWvhfPzt1v5v3k3t2vz87dbef2JHwD4v/k34h2Rh48xCZO5JSBAAIPp+Nea4vwqFEXB5fRQVVb/txbGg72GMDxqATrBglkfcvwNNP4wcV1VS6uIjmEYjhCMcqbj8UitojjQUtNbAVlGEQVKY9y4AvV0vagEnV4Vh78vimW1exuxd8QT1ymMR++ZgD3iYZqkCiQFbJc7CLY2Uprth+gtETe4ivBYKxarCZ0oYhWM1DvsKL+q/qKEyxz09WKwnxub2U5AWAMRCRUsemMIBg/ceu1oHmr4obX9+A4pPPXVNABmMoy1zj088c5nmPZacUUpKGbAAIjQHAu6OgXJJmDIE9DFmZgamML6T/eRnBTO2DHd2133Pv96I3M+WINsAINZRG9vX8fY21t1vLGYDNx3+ZjjvsdxiWH8b+7N5GQWM2Rsykl9Psciv7QGs0nfmuWucQajcGbYmJ8JY9DQ0ND4g/j6+hIdHU1BQQEVFRWUl5cTGhp6/A01NE4DdXV1ZGRkAGC1WklJOXXPghoaf1eio6Px8fGhvr6enJwc7HY7FsufVxpUQ+PvxJYtW5BldQ6id+/e6PVnlruuhsbpRvtG/Avx9bbQIcKfvJKaI64PDz6yheepRCeKLJ4xi5XrdmM8y86o89usWSVFpqCpkmhrELrfZB43e+r4Mu8eOvlIDA0exfmx0/70sR6NXzZmU1jfgOIloHcoCMCcT37B22pi6AA1Q1tRFFau3QeALIKih8ee/wGjXk9FdUOrKA6Qc7ASgNz8Svx8vRg9NIlAf7VWb2S4P5ec279VGM/MLiGzRM3uD+xSi96s3ugUGa4efj81lY0owA13T2zNXIuMCaSkOY31FW8DAla9mgVq0ftyafyHZFVu5f5bs4jsVoCit9PosRNqTqLMkUmzpwZJcTPq4iC+fL0Cj9OAICsIKMhukdwloeTKqiBScKACt9uDwaBnc8WHFNl3EGLqglvRYxY9rccrKAIK4GuIZET4/e2i8/PS+1ClK0Z0ODn7k1WUp/mx/pnuIAi4fHQoZjVTTnRI+O1rQvSoxy/vFmjopaNuMiAI6OtkFAGa+6iqvBwhwU6Qgz3oG0WCP1YwNsqMm65GzW2vyqferQZp3PTSRL79z0rqatRMPxSFksL235mJV44gfX0WKYMSCfxNFvKJEhTa9n0rKqrhvy8uJCY6gKVLHmHnijTun/Ycit3Bre9c3S4j3WQ2tAazWKztM0sPZXgbfyPm2vy8iIgJpKSgihvuncyIid2OmRXRqcvJWbOtW7YXe7OL3Vtyqa6oJzjMr936vIxCDEYDER3bTzhJHomvXvgRQRA4/44p6I6TCSmKIoPP/hRX4xa8Q7oe8xhy6z+i1rmbhNFgnDMZb9vhNae8WjJzdXqRct1b7C2dj0UfyYjhP/PiR9dgthiJTww77vGPmdaTJkcZXoGNdOn596/bYzV0ON1D+Fcx47ZJDD6rD4ER/n/L+uprF+0+bFlq31h2j3Jy0L+pNRhvY2M83eyFuGQdQ4KzCKKBLWJXcmorkeOW0tS8C4AGt5kgL/U+Z4zxEGBqBDaQXvUGa99JYvHcregNIr46M83JMp4gEUFWiO9QwpCIbGS57TriabYwMiWOe26biJ+vFzu/zWNNYTa39RzFOb164XJ5MBr1uF0eErtGYfOxkJcsgyAg1igIzQJSBCCAWKEjaJ4BQRJAUZj92XAe/n4ygiCwbOVeVq3J5JILB9DY6OTdD38BQHSD0a3epwIDrDhdHvr2isPbeuKuAJJH4usP1vDx68uZdF5fRk3pcfIf0hHYlJ7HzS/Mw6DX8dVTlxMV4ndK+tXQ0NDQ0Pg7kJqaSkFBAQB79uzRhHGNM5atW7eiqJGn9OnTB51Ocw/S0BAEgZSUFDZs2IAsy2RkZNCrV6/TPSwNjdOO2+1m27ZtgDqH2rdv39M8Ig2NMw9NGP+XMn1cD17+aGX7hQoE+VsRBIH9+RWUVNQzuGc8z7+/jO9X7mZU/0SevOXU1bP0NhqZOrLPYcsf2vkVS0v3MDasG0/3vLDdOp2gRy8accl2li0owJayl3NGnx6rnPAIPxS9OtOvGMCMjsrqRt75eA1D+iegKDDr5g+RJPXHi8dLAEFg1c4DGBxqvvRhWfst1NY10z0lqp3g15q9CmzcdoA3HruAtcszEPW/qlcqwsJvtzL/7X3IkozVZubxly9iztdvEdpJ4pyzJ7a0VMjOy2VzZgOjx3bF1xpJ34hI3nu5moKyEhq856HXmenmdw67auYS6z2QDRVzaOgxjyFPWln88lB0jR6M1Q4QFSwhTvreuhdHrYGiLwei1+uocRawtfojAFxSI2PC7mdXzfs0uAsBOLAjiXOGjaRP+HnoBPVSlFtSRYDNi4/nVyHq+3HlLT8hCBDavRZLoANHlRmdXQZZAVEV1mtSbHjnNmNs8CBI4LNFIj4kmE5x4Rwkn4DuNoqbi5C8QazUIcW7cSc7QdTzv9uuJj4ypFVInhCZwo7qAkyinnO69qbjUwG89sQPBIX4MGhUMuPObl/3N6lfAu/ueu73nD7tqHDkUunM45fFMnvSCimt2UPGQR96jx3MC4sfQGfQ02VA+xrXCckR/O/r2bicHpJ+Y8X+8MsXs2NTDt37tc/0Nhr1vDP/FpqbnPj4ef3hcf+WaZcMoCi/kqRu0QSFtned2LkynXsmPg1AdFIkVz99EWEdgvANsrH7l0w+evQbAKISwxl6zvFt4USdCbPvkOO2i7BOocK+gQDDIB58YRYpPQ8Xe0dM6kZwmC8+/l5UeT0PTeCW6wHliO2PhqBz4jP0aTxyPXkNbuJ8Lztme1mWEQRBs2xsoa6mCY9HIvAvCM46ExEE4bCgkb8DbpeHnRtzMB4K1kE4lC7O3S9cxJCNb7a2tehcDArMIczSFhQWFp3Nslu6Uedn4J1965kRDSDia3Bw6Ksh6Dx4FBERhTJnDSHDizAsdBNwQwOEmtHVmhkbkkm1lwmDKGMQFRDd1JZb2bWlI6ExPZl8ZSI/VabRS4nmW/YgRyoUBzQwcM5T1PpLiJKAWCMh+Yv4/ccEihMEECTw2u6NJ9+D5C9jzNYheGQOpcze+9BcTGYDzz42g+deXojLJVFT20RTs7N18hJUQXzalJ6cPbUXPrYTz2IorqyjuqaRF275gtKW4KzVP+/m5ofaAgPdHomnPlxKVV0TD88aT7C/99G6O4ySynoUwOWRqKpr1oTxMx0tY1xDQ0PjlJKSksLPP/+Moiikp6czevRo7dlc44zD4/Gwfft2QBU4evfufZpHpKFx5nBIGAfVTl0TxjU01BIxdrsdgC5dumCzae5wGhq/RRPG/6VMGNyFj77bRHVdc7vlz/3nbPbmlHDNw18gKwq3zxzJ9yt3oyiwfGMWF00qISXh2HVJ/yhZDaUAbMrL5rafvmb2zBF06qBa+Zp0VmbG/o8rn3iD8lw/1jpyTkoY/3bZLl77dBVTR6RyxxWjT3ps+3PL+fHnXYwd0YVeqTFMGJJMTn4l/5k5ikee+R6n00On+FDOv+YdmptdNP7aIl4GdCCc4GTif1//mf++vpjbrxvNuJEpBAV4M21Cd35cspvpk3sSFumHbBTRB7Tv0N7vHVIJYe8HHWlqcLD44It0ulytJ72nXMeY8HspKKrlgXt2gwKrl6Tzwv8uByAmKqClTnqbLddYy30A7KtbDoDVXz0mxaJXi8gq0OXCA/jGNeELNO5oZGLPR9BbXEx8XxXr7VI9y8qeoXfApeRmKfy0Jo2cPVGc1bk/ugj1MvTtmj089cky/G0WLhvXi5+3LObXcxKKrL5oiLeqRcoluTVz3BlsxNjUko3ulrAsKeWu5VdjvVoVH/JLK7n3nW+xyl5ET/Tny5ItyIpMaKRfu/rZ3gYzT/U6u/V1n0Gd+HjRHSf2gf1OHFIjH+fehqS46DzwLDrvbWTqjT+RL/xEuP0Dug49clRfU30zqz5dQ2TH0MOEcavNzJAxR7ZW0xt0f4ooDhATH8Kzc2YdcV11aW3r3wWZRTwy/QVAFQOtflb0Bh2CIFCcU8bbd3/KBXedhd8pEEhDrSMZZ12vvog4chtBEEjtHQtAmPQg/qbuBFj6IQgnl7UrKU4kWc1wdUqVx2ybm1XKnVe+i7fNzGtf3IBvizvEqeSDV5ewdlk6N943hd6DOh1/g9NISUE1109/DbfLw/MfXnNSAQnH4ocvNrJuWTpX3DKW5O5//yz+M5F3/ruAn77YhF+gFQwt11OPh95DEwmJDCDFGkp6YykIAmdH7mBIUA6Kot4+XJJIVkMotf5GFGBVRWcCTXHsrqnk1s6rW/ehQyHLFYaIHtG9B0/IVqbMicGuz0dRQI4GnQgBNHKgKhhF1iOKLvxDm+g+Npsvc/xYtTUXAIOgQ25R9d7YuxqCBEBA1oEcqt5TanDxcLdJrFizC8eaJvbpPegrdOgr9Qiu9nbo+w+UA/DVt5sZ1D+BVb/so7i0lpqatuerK2cOoaHBQe+esScliheW13L+Ax/h9kjYGhoxAqGR/lxxy9jWNl8v28HaXblsSDsIwML1e7l88onXnJwyuAvNTje+VjPd/uTnOw0NDQ0NjTMNq9VKfHw8OTk51NbWUlhYSHR09PE31ND4C0lLS6O5WX221AQODY32RERE4O/vT01NDbm5uTQ1NWG1nvr5FQ2NvwuKorBp06bW1/379z+No9HQOHM5rV6db731Ft26dcPHxwcfHx8GDhzIokWLWtcrisKjjz5KREQEFouFESNGkJ6e3q4Pp9PJzTffTFBQEFarlbPOOovCwsK/+lD+dvh4m5EkdXK3VXsU4Nn3l/Lk2z8jt2Q5eSQZX++2Sdx5S3ayekv2nzq2p7pfQM/KcJoWG9iUUcCH217gpYyz2VQ5FwBvoy+zxp3N0N4JXHve4JPqe9Ev6ThdHn5anXZS20mSTHpmMc+8vJDvFu7ksed+RK8TeeTGSXz87EzCgmzU1jYjKNBsd1JWXk9DowOdTmxN7tE3K+ibZESnQqeOIcw4qxdD+icwYVQKzz8ygwC/9pPlTc0umpqdvPFBW2b/HTeOY9V3dzJ2YBI//7ATZ4iFrD3xlGS11TLWGaDD4HJ63riPURO6Ykne37rO4iWS5DsOylNRU+EEmhyu4x+/4qbapYoKRrPI1ElJzJymCraiKBDSvRZQkwQPpqnCoMduJP2TOACaW0TCtNrvmNT9UuJtYzlndHf6pLYJVYXlah+1DXYuGtOLly67lgNLw6k54M36Z7rirGmxnDW1WIaJwqHBYa50qSqLIIBOpKDBw+ZFO1v7jgkL4vOHr2XOo5dyb9/xPNvrHD4ffjX+ptP/sCwgtH4Hg4J8ePKJSa0BAZ4WkfVIfP/mYr56/gdeun4OeRm/75rX3GBn9dyN7UTrP4vh5w/kgrvOwtRi7X8IRVForGlEkmRkReH9B7/k29cW8eVz3//pYzoSRp0vsb6X4mM8cu31Y2HSBdAv7F2SA+4mwe+6Y7bdtSWXpgYHZcW1fP/uymO2/T243R6+em8NRXlVfP/5hlPe/6mmrLgGp8ONLCsU5Fackj4lj8T/PfsTuzYf4PO3T/17/GehKAobF25n29LDrcnPJCSPxP69RTTWq1HITru79YFixjUjeeLdqwB4adB0UNQgqnq3ep9r8pgobPbFqJPp4lvCA8kLCDY1oCgCcwtMxFmrDiWd4/b48suC8+lS+ABXJXyNQVT7KKlqK20h/iqIaqBfV6ZHv0KNU21n/FUJDwC3InHEDX/Dqq3pTDUkYyhx4L+1EmtaDYYGD+Y66YjtP/9qI3fcOoFhQxLbieJ6vY51G7KZO38r9zz0DRs35xx1n7+lodmJ26Pub8CEVMZO68Urn17PyElqQGBpVQPPf7aSDWkH8fO2EORrZXD3+GN1eRh6vY6Lx/Vi8uAuWoachoaGhsa/ktTU1Na/09JObp5AQ+PPRlEUNm/e3Pq6X78TD4DU0Pg3IAgCXbp0AdTvy969e0/ziDQ0Ti95eXmUlZUBEBkZSVRU1GkekYbGmclpzRiPiori2WefJSEhAYCPPvqIadOmsWPHDlJSUnjuued46aWX+PDDD0lMTOTJJ59k7Nix7Nu3rzVC8rbbbuPHH3/kyy+/JDAwkDvuuIMpU6awbdu2f13NHUVR2LjrIGaTgZ7Jx7/o3XTxcL5dtpPpY7vzw8o0CktryDpY3irKhQX5cP6Envz8y15qG9SJ70Vr97J4XQZL5szG6nXitTEP8cu2/azasp+LJvUmISb4iG06+0YwqjyejOytKBEivp334FFgU9XXJNj68/GBWyAE7rnpNQJNJ2c7e82MQbw7bwOThx05m/ZovD5nBfMX7MDmrdYnTkxov9+wEF+uu2IYWfvLmDgmlZraZmrrmykprVcbCC2Z4i2JZlkHykEQePflmQA8/8ZiqmvtR9z3qMHJrX+fNehJVXwAPF46CLSgyALb56Yy6b417TKso7roufLcaayoSCOncQ06wcy4iIfUPocmUVJSS3F+FddfM/KwfW7PKODJ//uZXl2ieeDa8dQ486l3FwMg4+HGWUOZ+65q5SXLCk3lRnw72BEEMHl7OHQkoqF9Zp1TasTH28zjN00+bJ9XTuqH2WSgc3QwwX7emBCxHjiL1e/tQ1EUZlw+mNLCGpZm5dIUauLQwerr3BgaW4QPRVHfbJMR6SiCh1HUc1bMqbHfl2WZB856nrT1Wcx64nzOmT0egDn3f8HeDVn85+1riU48dgaeSWfl8vg3qHLmk2AbgIBIz5CXUBQPIV4jjrjNNy/9xNLP1oIANn9v/EP9ftf4X7z2bdbO30JkpzDe3/Ni6/LainoqCqpI6Bl7QkJJfVUDtRX1xCQdvSa5Ticy64kLmPXEBbx03TtsWLCD7sOTqauox+3ykLExG0mW8Am0UV/VQEKP2N91TIeQPBKv3/ohFYVV/Oeta353DfiTJdDSj0DL8ScrRk/pzjuPzkVyuNj07UZm3jWl3XpFUXC7PO0cDQ4t37EiHVuAlU49447av8GgZ/rMQaz4cSf5m/Yx95UFzLjt8O/dmUL3fvHccO8UmhodjJ7a45T0qdPrGDa+K2uXpTNsfNdT0udfwaZFO3hkuvp9fGHpg3QdmnycLU4Przw8n2XfbSelVwyzHz6Lrn3iaKx3UFvVwMDRqsjqkjxMXPpWaxjmwpKu7K0Pp9xh47bEZYCqTYdb6pkYuodUv2Iy60LpHVjQup/k4KuYdNs1ADQ7XKz8cAR2XREWHzv9JqcDSqu+rSjw7beVZBm+w97fSqbJhx3VR8/6EhpkFNuRY0R3r9xP/pp9SN5G3OE2EEWMjapaLxkFnH46RKeCqU5CQL0XLl6eRlLnMNaszQLgghn9mDqxO19/u4Ws7DIaG53c+/Bc7r97CnV1dgb2iycqMuCI+wdIjg3l6RsmU1HVwPnjeqH/Te35AB8LseEB5JfWcN/lYxjV58x2htD44wjKiTsP/dnj0NDQ0PinkJyczE8//YQkSaSnpzN+/HhE8bTmkGhotFJYWEhJSQkA4eHhmsChoXEEUlNTWbduHaDaqWv1lDX+zWjZ4hoaJ8ZpFcanTm1fr/qpp57irbfeYuPGjXTp0oVXXnmFBx54gOnTpwOqcB4aGsrnn3/OddddR11dHe+99x6ffPIJY8aMAeDTTz8lOjqaZcuWMX78+L/8mE4nq7fu576XfgBgeJ+OPDJ7Ehaz8ajtp4xIZcoINTp6yvCufLtsFy9+uJwxAzpz5TkDCAv2Qa/TkRATTHZ+WwZfZKgvpt+INSfKQ68vwOnyUF7dwOv3n3f0sd00Cv9EfyI7+LNIWIWCQoQ5iQpHLm5FtfKucOQSaDo5m7N+XWPp1zX2pMddXqEK3C5F4tnHzqVf98P7uPhc9WZz4dXvUFJWB6jJc4fNHR4KPAhps4ke0Ceehcv2EOBnpaa+GY9HZvrknkwYlUpSp7DWdodEcbWfNsGyqcbKz88NY8wt6zBYJGSPyLI50axzf8iM6dO4YPil+JmiMIiqsK/Ticy8aNBRj/enVWmUVNSzYHU6N144jACfWBJ9RlPcvIdetss5d+CrKLKiqhACrHusB6mX59BYYKE2yweQmPjBBvQWBVmG1nkFAZYVP8uYiHsByCut4bkvVpDcIZTZ5wzm2qkDkGUZRVGY++Fa1i/PAODmO8fx5o3vosRHY9KJNPvrUYxq4IveLiG06u8tNd+BhCN8RqeamrJ6ti9Xswr+785PCY4KwNvPi7kvLwTghn73813FHPSGY19qA03R7c7lcOu4o7b1uD2898AXKAr0GNGF2//vGu6d+DSOZifP/HQvoR2OHHAiSTKSR2ontEoeud3/APZGB1d3v4uG6kZufPlypt1w9LEANNY2cWXKHTTWNnHXe9cz5pKhALilOnZVPoQoGOgW9AR6sc2+/T9vX9t+bB6JuS8vQGfQMfma0TTWNBEcFXjM/R6PzM37WfTeCgDeue8zIjqGUVVcw4QrhtNlwMlng59qbL5eXHLlEH56Zxlnz25/r1IUhYdv+oSta7O56cGpTD6vTWhf/c1Gnpn5BoIo8M72/x4zGOHaOyeRs3wnOzcd5L0H8jn31klnbEaoIAhMu2TgKe/33ucuOOV9/tkYfnW90B3n2nG6cDndHMhQg6XKi+uYcuGAI7aTFIVfh0cpCOQ2qdeoSqeNCEs9TkmkxOGHt8GJVe+id2ABRU3+RFprMIqBhFontG5fUlFPbp4LCCZlaBZHussOPm83zrq9+Pp68MgiK0s7t64ziXqcskfdRFaOKooDmOoE3AEWJNvhQYAei4iiE5C8BGiQUGSQTAKvvb2c8MC2e3tjo4OoyABumz2OpMRwnntZdUV6+rmfAPjym03M+3z2UcfgcUvMe2YxeTnlRGBkxMRu7dYbDXq+fHImDqcHq+Xoz3saGhoaGhoaR8dkMpGYmEhGRgZNTU3k5ubSsWPH0z0sDQ2Aw7LFz9Tfcxoap5PQ0FACAwOpqqoiLy+PhoYGreSAxr+S2tpa9u3bB4C3t3erm4KGhsbhnDEzrpIk8c0339DU1MTAgQPJzc2ltLSUcePaRBmTycTw4cNZv3491113Hdu2bcPtdrdrExERQWpqKuvXr//XCeMLVqe1zhGv3pbD2KvfYO2n/znh7aeP6c7Zo7oh/ibT9sHrJxAaZKO6rpkLJ/YiPMT3sKylE6VHUhSbdh+kV/LRBe0qZwMX/PIqDQY7b0bO4kLzc5Q6sunmNx69aGCA8wJQoJPPqRdRjsZ/bhyHybaanzdncueL3/HJf2cSHxV0xLb+fl6twngrh+btW97aPt078MidbYEhQwd0Yunc29HpRMorGyguraV7SvRhn8WvEVwSrYVaJRn7QQPnh30MvuXcM3sdFeWNINby0pvLSIy/lHd+Ws7aTfu5++YJjBzS+aj9Apw1Koka4yqkxgAWLt7NRef2Y1zEAwBs25iDIm9UG+rU8Zn0VkxpU9j9i5olN+iRPRi81IMWBJClFqdzEbIaFtPHeQl+pmi+WrmTjXvz2bg3n7OHplKWXcljt39ObEIo51yiCi2BwTZyd+QieWTkxiY8HcMwV8k4AgV0DgmvEmfb2+x0QZMdGpu5d9yT3PXudfQe8+dligaE+RIU6U9lUQ0+Xd3M+fg5mre0ZSa7nR7unfRfXlj6wCnbp96gZ+xlw1j33RYmXjWKA3vyydmVB8DWJbuZfM1oti3bwxMXvkJi7zieWXAfTruLG/s/QGVRFbe+eTVDz+mL2Wrm/9m76/CozrSP49+RTNw9IQkx4mgELZQipaXUKaWl7rZ1e7uV3e7Wlbq7bN1poQJtgQCBQBySQEKIu9vMef8YGAiaEDmR+3Ndc3XkyG9okknO/Tz3c/vrV7PuuxTGzdrfQaGtuY2m2iYAKnYffp3svK27+N+T3zPtjAS8gzxp3Lt9cZ65VU99dSPrUl7BGGYuTPvazz9qsV+n13HeHYssj1saWinfXYVXwPEXx0fHBjBqjC8lO8v549P9rcR/fucPHv/5/xg3U/1fDi+490wuuPdMAHLSiljzSzonnzUJBwdrNv29w9w2b00O9g42VJTWEhTmTXubeekDxaRg7Nzf0tlkMpcfD57dMv/imeSm7mL2kmk9vojS0tjKuw99hpO7I0vuXNSjmTNpf2ah1WmJmXr0nzXiUJPmjuXJVf9Eb6UjKmlwzgC+65I3yM8pJSzGn388dOYRt7PVW/FE/Bk8sOUHfG2dWJ50Lk9k/Mqa0lze3zWZca5F5DT4UN1uT7B9Bfb6NtLrRnFp5FOMdfNCq9lf7K2oaeTtb5Kx0mvp6DRhbb9voJgGRelaHLe3dqaTapyVcSR5jGaUvQtu1vacOiqGL39JZtVLG+hwh4rFBvNvwvu+N1oVDKUmThobwz3Pz+Mft39MSXm95bg21npOOTmO7YWVbCoqQdNqQqNAm5OWTnsdGqNCaXk9Wg1MmxLOxRdMo6K2kWc/+QMPF0eef3Ip/3rkWyqrzMtk6PVH/56qr2tmV67552rapp2HFMYBdFqtFMWFEEKIXoqNjSUryzwoOz09XQrjYlBoaGiwtIW2s7Pr0vZfCLGfRqMhJiaGNWvWAOZZ45MnH37wthDD2YYNGyzXR+Lj40dcN2UhekL1wnhaWhpTpkyhtbUVBwcHvvrqK6Kjo1m7di1gHvV1IG9vbwoKzEWg0tJSDAYDrq6uh2xTWlp6xHO2tbXR1ra/mFZfX3/EbQc7o9HE0+/8Sm1DC9V7i1P7iq9Go4LRaELXgyL24QqxWq2GqxdPP+z267fu4qMfNnLGSeOYnXTsWZhP33kWdY0tuDrZHXGbkpZa6jrM63M++9nPPL/4IhLc9/8BcILXJcc8z/EwKh3sbEzB2yYUR6uus2493B1Iig9mxYZsTIpCW/v+NUvb2jpYn5KPo4MNcVGjeOLBc7j9gc/I2m7+Gtz3LzpzWjh/b8ino9PIkjMTsLLq+uGk15sfe3s64enuSHFpDVU1zYyN9rcUtFZsfpD/u+E9Utbmd50jp9UwdrQX5ZUdbP2jkXvvPINr7/zQ8vLd//6C2r2t2lf+kXnUwnjRnhp2KZ8TOm0jigk++G8bYSFeTI43r1s6ITEYrU6Dybg/wfV3nULg9Crsf1xL1iqwdmnrckztQZ/DnxVcwxXh3zFrfCjf/Z3BmABPvF0d+e7PtbS3dbI9Yw+RYwP4cNWd2DtY01DVSHNtM01O9qzJLEbfAa5ZjSQmhNDm0EH6lgJzF/X2DqioBqCmpZWVH/zZr4VxjUbD07/fz/3LHiZkeQ4aHex4zkT9e/u/vtPX5vT5eW977Wpue828hnVrUytTFk6ktbmdaWeY20Wt/XYTLY2tbF2dRVVxDQ01jZTkm4srT17xCh8/+jWvb30CBxd75i47ocuxXbycefibO8nbVsDCq+Yc9vyv3/MRW37LYM0X6zGZFJIWTCAyKYwzbzDP7PzPBc+Tl7OFc96zwsrKBtdRE7r93nZvL+bahHswdhh58tf7iZnS89ndVSU1vHL7+xRtL0Fndegvge8//DnjZt7f4+MCpP6ega2jDRHx+y+WVRRV8eXyn5hwYiyJJ48/ruP+6+YPqapoYOuGPIp+3YyisyJm7ngmnxjJo3f9z7LdeVecwD8/uRlndweCYwMBqCqu4abp/6SttYNn/niAgDF+lu1nL5nG7CXTjivTL++t5qvlKwCInRrB2BOO3dL76X9+yW8/pNJRVAb1jTz92/1SHD8OcdMj1Y5wVMUFVQA4OtkQFu131G1PD4rj9KD9P4dPC4jl95IdNButWVdp/j7ysXNkZxM8kWP+GTLDv5Lx7vvbRDY0tfLCR2tYtX7/z9O6sn0zADRdPw8VDedEPIxS44yDgyNXxNh2yRNc64ShChom68DK/NlqKDTSHqhDq0DQ+yb++csC3DwdeeC+M3j3w7+pqKjnvHOSmDt7/yAik0nBpChs2JjPEx/9RlFDI5q9v0MpCjjYW3P9nR+xW9uKce/AlRPGh3Qphj//5NKj/tu5eThyw32LyN62m/OumHnUbYUQQghx/MLDwzEYDLS3t5OVlcWpp56KXq/65TIxwm3atMkyAHrixInyNSnEUcTGxkphXIxo7e3tbNmyBQCdTkd8fLzKiYQY3FT/rSoiIoLU1FRqa2v54osvuPjii1m9erXl9YNnuCmKcsxZb8fa5pFHHuGhhx7qXfBB4pbHvmBjWiFgXqeTvUssHzxDub8s//AP8ouqyC2s6FIYVxSFguJqfD2dsTbs/zLTajVHLYoDxDiPYrHzVL76dRNF6+v52TWd88/r/19o/ih7k5Tqb7DTOXPdmA/RaroW1OZNjUKj0eBkb0NUyP725k+9vJIVv2VYHmsBk3LoP/3cmTHceu08Wts68PFyPmwGRVHYXVTDLfd9SmW1eUbZtZfOZMlZ5lbKGo2G/754MRmphXz/axo//GEePYxGw92PLubCa96ko9NISVk9F5ybxNc/pNLU3EZtbQsTxwbS1t7J0rO7rn/camxgd3M6gXbjyN1Ry3V3fMgJVyfjHWae4W3vBKP8XFEUhZce/5G0LQU89urF6PV6mhpa6OgwMn6GL+/k3YrTRIXECfsn3+2b0H6wTqUNBYXEqED+fOEGy/NnXDCZsuIawqL88PF3tXwf24xy4863rqGtrYPRn67H0cGGcVH+/PTFJn78bCMAk2dFkv3jJmqAMfEhGNs7WXTN3MP+O/cl7wAPnl71AC/nXISJTvwCfClkf8eAC+878mzKvmBjb8ODn9/W5bnTr5/PnrxSIuND8QxwxzPAnWX3ncXKD/6idFc5pQUVdLZ3ojvCLMNJc8cyae6hMxMtr88Zy5bfMtBZ6TC1dVJZXM3Su8+wvK7VamgoNvD2nGg0Wg2nVTtDN1dfKC+soqPNPPCkJL/suArj/71guWVAgqnTxJWPLGXinDjuWvBf6isbsHM8+s+gI1n77SYeWvwMAC8l/4fQve363/y/T/j907V889IvfF3xBoajLGFxJIGhXlRVNODh4cCOxlaglZnTQ4iMDUCjMX8vAbQ0tzP9jK7rZeWk5FFZXANA+l85XQrjByotquaj1/4gbtJo5p4+8ZiZwieGoLfSYetoi/8BSzociaIo/Pp9KkajCRwdoL6xS5t+cai2lnZeueN9FEXhmieWYWNnbttdVVHPtg07SZwZgb2DjcopD/WvVy5m3W9ZxMUH88htH5NwQgRzuvE1BTDbbwxnBY0juWInZS2NLAyI4Y6xc1hfvouCxmqMiolFAfsHw5VW1bP49rdp79jfIcHBzoBL+xT82sLJa/8Rg20nzm1JzBwzB0crTwo2GHng2mews7Pm5e/+QV11M6PDvbEy6Dn7khk4udiTvCef75pz0eS34/5NJ50TtZweP5FzvpyMm6e56B45xpdHHjrnsO9Dq9WgRcPUyWF8MC6QXzdtZ2yoH3/+kc2vq7NYsTKdThsNRte9vwOZFH78LhUvTyfa2ztZuGA83kf4XeBAC89LYuF5si6YEEII0Z+srKyIiopi69attLW1kZubS2Tk4B6oKIY3o9FISkoKYL4OJGsmC3F0np6eeHl5UV5eTlFREbW1tbi4uKgdS4gBs3XrVlpbzcvPxsXFYW9vr3IiIQY31QvjBoOBsLAwwNziYePGjTz33HPcddddgHlWuK+vr2X78vJyyyxyHx8f2tvbqamp6TJrvLy8nKlTj7x+8j333MOtt+5vMV5fX09AQM/Wqh4sdu6ustw37SuGKxAW6MGSBRPR9aD17fGYPTmC/M/XUtvQwuqNO5iZYG77+vrna3n7q/WEBXrw3iMX9aiFr0aj4dpxc8l4q5Rq6yYS4oP7K34XnSZzi+JOpQPzqqhdC+NarYb50w6dMZmbX77/gYJ5PVWNZfltAHRaDdMnhx3z3+GtD//mvQPaPgMUHPD/eJ+Y8YHo7A2s/DsHRVG4dOk0PD0c8XB3oKSsDj8fZy5eMpXLLpjOUy/+wp6SGu68cT6+Pi6HHOvzwvspbslmtP0k7AsXA5C/PgCv0GoMWjtef+xG3Bxdqapo4Nv/mde3+uW7VG5/cH/B16h04GTlQ31HCZp9gzMOoMPAhSGfUNOeT2bt98S5nsMnn26kvKKeKy49AYe9hR/fUW48+NwFlv062jvR6rTodFoURcHa2opLL5pB6a5y8rYWknRCBL9+l0pYpC//fGoJrf8+iz07SgibMLpHbZ97y17vyqVhL1PfUYbPzdG8Wfk/bOwNXPqv83rUsaGvBEb48egP93R57sL7zmbB5bP5+sWfGTczGuu9RfHSXRU4ezhi24Pi27m3LuSUK2azfVM+v378N6dd3XVm+b0f3MQPb/xK2p9ZTDs9oUeF4oknxXLDc5fQ2tTGrMVTKMzeg1anZVS4+XOgoaaJ/z31HcExAcw+//AzoW2dzDNEPUe584+XLidh3jgAXlz7MFt+S2fq6Ue+qFBf3Uhe6i7iZkQesjZ85wGFuQMLvsFxgfz+6Vr8w3zQG47vY/VfLy5jT0EVAcEe/BDnS11FA/MvnoW1rYE3vr2ZvOxSGhtamH3KuEP2jZ87llOumE1rcxtbssr44KTHuO0/ZzNxcliX7T589XdWfrOFld9sJvGEMdja22A4St7oyeH8r+gV9Aa95evlaDQaDdfefSqrV6SRmBhESJh3t2aZj2Trvk/hxzfMSw6MnR5l+Zq+67I3KdpVyZTZUTzw3IVqRjysiLEBRIwN4N83fcjaVRn89XM6JywYe9Svp33s9AYeTVh0yPOnBR6+NeST7/zWpSgOkBgbxH9vOo2islqevb0NRYE7LjmJMU7j2JlTwscvfw0KNDe1cdPZL1JX00TCzAj+9colGAx6Tl2cyKkk8pCi8McPW3nss8/QrW9HG2BkVLDnYXMcjb2tgUUzzPk7EkN5870/AdC1KugbjaABq3oTv5aZB7N5eTpx2UUzenyeA/26cTsZO0tZdnL8MQccCiGEEOLYYmNj2bp1K2Bupy6FcaGmjIwMmprMXSGjoqJwcnJSOZEQg19MTAzl5eZrtBkZGUybdnzd84QYahRFYcOGDZbHiYmJR9laCAGDoDB+MEVRaGtrIzg4GB8fH1auXMmECeY2vO3t7axevZrHHnsMgEmTJmFlZcXKlStZvNhc0CspKSE9PZ3HH3/8iOewtrbG2tq6/9/MAHjoxlP54LsNJG8twLR3SmFkiDdv/2dgLqSfNjOWNz5fi6LAxvRCZiaEU1JRx+8bzGtN7y6txaQo6Hq4tq2DvTXvvHFFf0Q+ohN9rsTXNgI/u0h0mu5Nb12fkk/uror9Txz0Nj3c7HFxseehO0/r1uCALkV2IPbMbLTxa8mqsyXKeVaX1yLDffj5s5vRajWWY7/5/MUUl9YSFuwFgF6n5a6bTj7qOdtN5tFknaZWTj4plm0ZRdRig0azlQ6lmeS651ng+ABuHg6ceHIc6VsKmHda19bYOo0VS0a/TauxnubOKn7OfYaqinqinRfhEtRKrMvp2OldsbeaxCj7SWTnlPD6W98D5gLB0iWTyU3dRUFOCWk55djZW5OUEMR9pz+Bu68rVz5yPo9d9jLh40fz8Ld3cP2U+2msbeKcm0/htf9dS2VxDVqdlq2rM/nfU9+z6Jq5zF5y5MEx/cHdehTu1ubWvzc8e/GAnru73H1dufzhJZbHP7+7mqevfg0PP1feyni6W8XPfeyd7JgwO5YJsw8tZjm62rPkjkUsuePQ4texaDQaTrvaPNM/Y20Ot570L7QaDc///W/CJwTz2dPf878nvwMgesoYfEYfWsT6vw9uZOuaTGKnRuDgsn+EpFegB/MvmXXEc1cWV3PH3IcpzivjxPOm0trchqOrPTcuvwyDtRUzzkrkgc9uwc7RljGTQiz7Lb5tITPOTMTD3/W4B2RYWekZHWYe9LXomq7rsfsHeeAf5HHEfQ02Bv7xwuXU1TRx3sxHAFj17ZZDCuNxk0az8pstBIZ6cfWZy2ltaefJd64kLOrIrbDtnXtWcBvMs1sz1++gpbGViSfF9ni99f4SGR+Ks4cjJpNCZOL+/1/71oRSTMqRdqW9rQNFAWubbrZj6EPVlQ28+viPbM8sQgFi40cfsjxIX0mMC+KvLfmA+XeO1Zt2kLajmOz8MiJDvHnt/iWUVzdy4t6Bec/+80u2pxVZuufU1ZgvKG5ak8M1i54laVYkF988D61Wi0ajYdap48hOLyJr6+4uX7tvPrOCv37J4Lp7F5Iw49DlAA7uTpSxpYDqigYSZo5hwrhACgqrmJwYwo8/p1m20ek0GI0K8RNH9+rfpKa+mXte+h4FaGvv5I4LZ/fqeGIIUYAj/1gYOIMhgxBC9LHg4GDs7Oxobm4mJyeH9vZ2DIaed4ISoi9IgUOInouNjeX3338HpDAuRpb8/HwqKysBCAwM7DLJVAhxeKoWxu+9914WLFhAQEAADQ0NfPLJJ/zxxx+sWLECjUbDzTffzH//+1/Cw8MJDw/nv//9L3Z2dixdal6T0dnZmcsvv5zbbrsNd3d33NzcuP3224mLi2POnMOvjTvcTIwOYGJ0ALv2VLHsrnfpNCpcde7AffB7uTty0wUzycov5YKF5rUr7n/hB3btqcZKr+P2S0867lnriqLQ2NmKo5XtsTfuAwatLWNd5/don8++TTnkuSVnj6fZcx3xkbHMCjmrR8e78arZ+Pm6EBbsyXe/bCEw6TcUDaTVrjykMA4cMhvZ3s6a8BDvHp3znMB/kdewgXCnKeh0Wu655RT2NG3lq91fAWDC3NZao9Fw938O31IWQK+1xkHriYOVJ8viXmV7Sj6/f7qO+RfPodmo5523fyBuUhAz5sbi6+uCm5s9dXUtREf7UZxXyo3T7sfk6IDGx1wArC0oo721g5Kd5fz+v7W0NbeTvnY7VcU1GDvNsweb6pu5auI9tDa38Y8XLuXL51ewe3sJZQWVzF4yFWOnkdzUAkbHjOpR0Xek2JluXoahsriGprrmQfdvVFNeb+7CoCjUVTYAEBxr7u7h6u2Mk7vDYfezdbBh8inda+u8z28f/81jl75kWSP490/XWl6bee4U4ueORaPRMPW0Q9fo0Wg0+IX27PuuPzi72nPmsqmkrs87bHF63hmTmDI7mpz03dx3zXsAZG4tPGphfCA01TWj0Wqwc+ybn/VGo4ndOcUEjPFFpzcXa3NTd3HLrAcB+OcnNx/Sjl4tPsFefFzwEtD15/ljb17O1g07mTzr8DOViguruOG8F1EUeP7jawk4jlnOvfHtR+tY/dM28wNFYcnVJ/bbYIPF8yYwY2II1gYrdu6u5LvV6dDUxqNvr+Kdf19AqJ87QZ4uaPd+70aMDTAXxvcW7oLCvSnYUYaiQMGOMgp2lDF+SigTppgL6eZOBwu7nLOzw8hnb5lnfX/78fpDCuNvPPUTX72/lmXXn8SSK2exe2cFt138GijwjwfP4JnHzjcfp9PIhk07qaxqZMbUcG696WT0Oi0ODr0bnGlva8Db3ZHSqgbCAsyfmQWlNbzw2Z9MGOPP0vmTenV8IYQQYiTS6XRER0ezadMmOjs7yc7OZuzYIy8vJUR/2bNnD3v27AHA29ubwMBAlRMJMTS4ubnh6+tLSUkJJSUlVFdX4+bmpnYsIfpdcnKy5X5S0uCcrCLEYKNqYbysrIxly5ZRUlKCs7MzY8eOZcWKFcyda54teOedd9LS0sJ1111HTU0NSUlJ/PLLLzg6OlqO8cwzz6DX61m8eDEtLS2cdNJJvPPOO+h0/TNzabAa7e/O1y9cTXNrOwE+rsfeoQ+df2rXQpGPuxPpO0ro6DTy7tfJxMcE4uNx7LZPiqKwpvwdqtoKmeN7HY+kr2JVaRpXhM3m6vDBOdDhjAXjyd5eAhpwcbZj7sxooueU8Ef5Oja0riOqZSzetl1nASan7MTTw5HQvTNdy8rraW5pp6qmkfqGVq6//ERu+b9Pycgqw3HDeGJmNpHksbjf3oOTlScT3E7t8py//ThO9LmN6radTPG86riO+/AFL1BWUMHWNVmEzZvEL99s5rtPkvn8zzCcnWz5+L1r6Ow0Ymdnzf+d/gQmkwItrVhZabF3tOWca+dAYwveQR6cuGQKLY1tRMSH4B/mw/N/Psj2zTuJjA9hxTurAaitbGD+xTN5799fcPIlMwF45to3WfnBn8ROi+CpVff17h9qGDr/rjPQW+kInxiC22Ha7Ktt6qJJ3PrKleisdEyaEwfAiedNJXpyOI5uDn1WSAXYvtk8I1UxKbj5ulBdUotGA35hPoyZODDLOfSFq+845aivOzrZMiExlHMvnUFjfQsnLRw/MMGOIG9bATef8AA6vY4Xk/+Df+iha5lnrt/BL++t5uRLTyQyIfSYx3z80pf443/rmHZGAvd/cjOwfwY2gGI6vnXPjUZTlw4dfeVwyy14eDtz0mnjj7hPXnYJzY1tAORmFfe4MN7e3skHL/6KVqflwmtno+/hbO+xCSF89vafmDpNuHk5Ehxx7DXoe8PXw7wWty7QE71OS6fRxJRxo6ksq+PqM5+ntbmdx968nNhJo7nq7lNJ25jPru1lAIyfHIqDozUZmwstx2tpaj/q+fRWOs65dAZ//pLOaUsmH/L6b99vxWg08ev3qSy5chY6vRatRoNJUdDr9/9bblmXywUnT2D6glg8PZzYvCGPx15cQfyE0dxx86mHHLe7DFZ6PvvPJVQ3NOPr7kTJ7mre/XkDf2zO5Y/Nubg72fHkR3/g6+HE0zefgUGvw9HOetB0ShDHT6OYb2obDBmEEKI/xMbGsmnTJsDcTl0K40INB88Wl9/hhOi+mJgYSkpKAPPP8RNOOEHlREL0r6qqKnbs2AGYJ5HKUjBCdI+qhfE333zzqK9rNBoefPBBHnzwwSNuY2Njw/Lly1m+fHkfpxt63F3sccf+2Bv2s/uvW8Ce8lqy8ssoKqvlsvs+5PuXrrHM5jqSyrYCkqv+B4DNLg/WlppblCdX7hi0hfEZk8OZMTm8y3N5DeY/YgxaW+z1XUcmvv7en3z4eTI6nZZP3rgKY6eRZde9RccB66d23GJE2TvVrWZbFBddelGf5y4qqGRbyi5mzo3F3vHwa0vHuPTson1FbSP/9/pPODvY8O/LFxAcO4qyggqCYwMIj/Hjl282M2q0Oza25ra/BoPesh5ta6O5nbubuz3v/HUvep0OnV7HnW9dYzn+f765w3I/MNKfwEh/AB794S52by9h/sUzMVhbce6t+3OX7DK3pi89sN29sHD2cOSK/y5VO8YRabXaw7Y+9w7q+9mxS+5YhGJSCJsQjH+YD18+/yMnLZ3OlIXDb+alTq/j8lt61h2jv+RvK6S9tQPooDBrz2EL449f+hIlO8tJ/zuHN7Y+ccxj7krfbf5vxm7Lc+ETgnly1T9pbmgh8eTxPc7551cbeOSiF4ieHM7jP//fcbfM7yuTT4zk7Eumo5gUpp0U3eP9//olnf+9tQaA8Bg/pp0U06P9J04J48t196MoClYG/WGL+/3B2dGWVa9dT1NLG+4uDqSn7KKpwfz5kZddQuyk0Tx++6eWojjAN++v7XIMJxc74hJCOJYrbj2ZK249/FIk19x1Kt//L5mzL5kOgF+AO8s/vY7a6iYmTjEPhiveXcU/rzN3ZsjLKWZFZj4ttlraDVryU7NZWjYVL3cnMneWEhHohY31oS3xW5vbeemR72ht6eDC62bj5GzH60/+yOqf04kcG8Bjb1zGPVe+RWpyPp0eNhBkT/Rob/73Wyq1jS3UNraw8NbXMJoUpsaN5rlbe9bFRgghhBhpAgMDcXJyor6+nry8PJqbm7Gz69nSQkL0RlNTExkZGYD5emdcXJzKiYQYWmJiYli1ahVgbqcuhXEx3B04mCohIUH161VCDBWDbo1x0XfKqxrI213B2DH+NLa00d5uJMC3/2eT5xdVcskZk/lxTQarN+ViUpS9hd6jF8ZdDL54WodQ076HT27chK7Vhuhrx3DblNP6PXNfCnVM5OqwdzDo7LDV7e9usLOwkg8/N7c2MRpNmEwm6htbuxTFAWxtrPj3PWewflM+icexDumewir++i2TWfPj8PZ1OeR1k8nEzZe+QUNdC2mbC7jr4bN7fI7DWblpOynbiwA4c0YR93/yD/bkluIf7otOp2XyrEicXe0trY0PdM9717P682QmL5yItXXP2nmPnxXD+FmHL+rc8fpV/PL+n0w7/dD21weqaiuiqbOaALs4GY09Qrl4OXPtU/sHoURP/oeKaUaOmedOZndOMQZr/REL1pFJYZTsLCd6SvhhXz/Y3e9dzy/vr+Gk86d3eT5u+vGPmk3+YTPGDiNpf2bTWNOEk7vjsXc6TuWFlVTsqSZ6cvgRfx5ZWem58rYFx32OkEhfrG2s0Go1lrXte2rf2uZb1uby+J2fEBsfzL3PLO33n6E21laWInLMxCCuuO1k6muamX/WJOprmvjzgDW9D6bVanjx63/g6Ny7bhMnnBzHCSd3vUgZGtl1SQJbW2usba1oa+kgfVcZdc77f+XWa7U4Othy1/Pf8GfaLgJdHXntgaXc+NSXKIrC8tvPxsPZnnV/ZPHL15sBWHPQ+0rbvItrrnid3Vt2o2jB1GHEeWs144OC+Kms3LKdce869Vu276G2oYXMXaXERwZgsJI/AYQQQoiDaTQaYmJiWLduHSaTiczMTOLjj/63pBB9KSUlBaPRfI1o4sSJWFkdOnhSCHFkLi4ujBo1iqKiIsrLy6moqMDTc2CXHhNioLS2tpKamgqAXq9n4sSeLSspxEgmV8WGqZKKOs695U2MJgWtVmNuUw288H/nMimm/9YnKi6v47L7PsRkUrj14tnMTAgnNty3W+uMW2mtuSTkBeqq6rlg420YOtuYuT2QwLPc+y1vf3E2dC00bMso4q0P/7I8Dgv2xMfLGR8vZx648zRqapuJifKjrbWDcXvXUJ4/u2cz+PZ54JaP2L2rkr9/y+L59w5tg67RaLC21tMAWNv0/keAsdPI96/9ikavYZSnM84OtsSFmNf23TerG8DT2/mIx/Dwd+Psfxx/kedIfEZ7cdE/j174b+io4O28azHRyQK/W4hzmdfnOYQQh2ewtuKyf5931G3uevs6LvvXeXgGdO+zIDg2kKsfu7Av4lksvv00GmqbGDsjql+L4vVVDVw54U5am9q4cfmlLLyyf7qljA7z5uM/7kGjAVu741/vOntrIR+8sJLaqib++jmdz95cw+QTI/EJcLd0BDma5qY2yvZU88nLvzN+ShgLFif26PwajYZzLplheazVaizFaIDoiUHkbNuNsdPcPv/8607Cw/vYS7v0BVcPBx774Crufu1Hqk0mdFVtKDoND1w+j0lRgVjrtSSn7gId7C6t5Y8NO9ix29zdZENGAR0761jzy6FFfo1Wg2JSaAhxIFXTjEeCDw3ljbS7W4Oi8NnOAjoOGn9mZ2PFVadP4ZJ/f8SeijpOPyGW+y7d/1m3dUcxf2/LZ+G0GAK8XWSA2GAnbcyFEKJfxcXFsW7dOsDchlcK42KgGI1GSyt/jUZDQkKCyomEGJpiYmIoKjJP3ElPT+fEE09UOZEQ/SM1NZX2dvNScWPHjsXWtu+WnBRiuJPC+DBV19BqmSW0rygOUFpZ36/nNSmK5YKdTqdlwYyetXjVaDS4eDjzxE93k5tRyLvBW3hl1cP8Z/x5zPUdOut7KYpCRnYxfj4uuLna89RLv7CrsAo7WwMT4gK47Yb9F6Rnz+jbtT9c3R3YvasSN8/DF280Gg3Pv3c1ORl7iJ+yf73ekpJaysrrGTc2oEcXxX/7dB0v3fY+AE/8ci9jZ0T17g0MsE6lAxOdALQZm1VOI4Q4mEajwSvQQ9UMgZH+PPT5bf1+nraWdtpazH/U1Fc29Ou57OyPvyAOUFfTxO0Xvoqx04SbpyPtbZ28/dQK3n5qBc5u9rz6/S04ux55eZdNf+bw4LXvYWXQ0drSwZ8/pzHz1HG9ymWwtuLD1fewYXU24yeH4eph/hxM37QTk6Iwthst1PtSfmUte6r2/t6lBRSFnaU1PPHh7ygmhfa9BWz7VgWlvAmrOvP/e31NG88/+r3lOArQ6m2DotVwwdwJzFowlmue+oIOTDh4ORIS4cuGzELQaOjQwYQx/mzJKYK9n+XXnzOdJz743TJIsaGpzXLs4so6rn70U4wmhbe/30BidCAv3H62FMeFEEKMWD4+Pri7u1NVVUVBQQH19fU4OQ3MwDoxsmVnZ9PQYP4bICIiAhcXF3UDCTFExcTE8PPPPwPmduqzZs2Sv2/EsGMymbq0UU9KSlIxjRBDjxTGh6nIEG/OnjuOL1ZutTxnsNIxf3rP1yLtiVHeLrz20PmUVzcwM757bW8P50vbbfwekEF9SwsAqTW7hlRh/OMvN/DqO2twdrLlf29eTeLEYHYVVnHi9AjuvOnwa5b2lX8/dwE5GXuIiht1xG3cPR2ZOmt/Qb6uvoXLrn6L1tYObrxuDmed0f11lb0C3EEDer0OV2+X3kRXhavBjyVBj1HfUUa082y14wghRjDPUe48+sM97N5ezPyLZ6od56h0Oi1WBj3GznbOvHg6X72zvytKXXUTxQVVrFuVSUNdM2dcNA2rvTPIN/+9A72VjoyUAoxGE8YW82zu6ImjsbHtfatIe0dbTlw4octzsfHBvT5ud7zw2Z+sWJ/FgilR/LA2i7FhvkyJDaK908S23D10dJqoa2yhce/gBwAUBU15M28+9hNOinlkoZeHE4GhXuzOL8fN0wnHUFdSOhrN24e5one15b1HL+bn5BzmJIyhsrbRXBjf65mbz+DqK19nu6aVMV5upG4vBsBoMnHzeSdw6vT9HWmufvR/loGUABuzCmnr6MTGIG07hRBCjEwajYbY2FhWr14NmIsqU6ZMUTmVGAkOLHAkJvask5IQYj9HR0eCgoIoKCigqqqKsrIyfHx81I4lRJ/asWMHNTU1AISEhODl5aVyIiGGFimMD2O3XzqH+JhAnn3/DzxcHXjs1kXodcduad5bMWG+xOB73Pu3Gzv5psjcPmqUrRvV7U2Ut9ajKMqQGeFXXdMEQGNTGx2dRq6//EQuOm8KDr2codcdNrYGxvWwCNDR0Ul7u3nWdGNja4/2HXdCFG+lPYmVQW8ukg9BgfZDZ9CFEGLw2pWxG0VRCI49/iVLxp8Yw/gTj28pjYHk4GTLy9/8g+KCKsZPCWXS9HBe/s93AMTPGENnp5Hn7v8SAHsnW05ZnMjGNTncf/U7ADz40kXMPzseOwcbaqoamD4vDm03ll0B+PvXDJJX53DupTMICPakqaEVNGDvYAPAp6/9Qcpf27nyrlMJj/E/xtH6RlVdE+/+uBGAd3/YiAL8unEHvzx3Da5OdpRW1dPY3IaPuxPtHUbWbMmjobmNpBA/clPSUYBr71nI6HBvxiWE8PIXN9Le1oGtnTVF5bWc/8/3aO/o5I1v1/Pmd+t5/8ELuWLRZABG+7pxytRoflybSai/OzbWVrzz9rVUltXh7e9KQWkNOq2GpJggFk6PoaGumeTV2YxLDKG+af9nfpCPC0vnx0tRfDBTGByt1HuYYc2aNTzxxBOkpKRQUlLCV199xRlnnHHYba+++mpee+01nnnmGW6++WbL821tbdx+++18/PHHtLS0cNJJJ/HSSy8xatT+gaA1NTXcdNNNfPvttwAsWrSI5cuXy4w7IUSPxcXFWQrj6enpUhgX/a60tJTCQvNAR09PT0aPHq1uICGGuJiYGAoKCgDzACcpjIvhRgZTCdE7Uhgf5mYljmFW4hi1Y/RI5t87OKE2mBL/FnztXSgqz+aPskxKW2vxtXVVO163XLZ0Op4ejkSG+eC490L9vv8ORh7ujjz75FIKCiuZNyf2kNcVRWFPZR0+bk6HHVzhH+p9yHNCCDGSZG/I5R8zHwAFnv79AWKmDK3P3uPhM8oNn1FuAARH+PL4e1dZXivZXY3BWk97eyd+gYcOmspJK6J0Tw1NDa3kZuzh718y+Cb1X8ccAGfsNPLf2z/B2GmivqaJS2+ax03nvmBeJuTzG3D3duKdZ8xt8x659SOWf3GjpWDen0qrDr9UTd7uSgL9XMnIL+XdHzcSNsqDqromHr1uIQYrPdHB3vw1MQo7B2smz9q/FIlOp7Ws/z7Ky4Xvn7qS31J28N93VqEo0Njc1uU8D115MjcunoGLvY25ZboWy/+b0b5u/PvqUyzb3nX5m+TnlDJ9bgxT44JZtXE7AM4Otpw1SwaKib7X1NTEuHHjuPTSSzn77LOPuN3XX39NcnIyfn5+h7x2880389133/HJJ5/g7u7ObbfdxsKFC0lJSUGnM69LsHTpUoqKilixYgUAV111FcuWLeO7777rnzcmhBi23N3d8fX1paSkhOLiYqqqqnB3H5qDwMXQkJycbLmfmJg4ZCaFCDFYRUdH89NPP6EoCunp6cyePVu+r8SwUV5eTn5+PgCurq6MGTP8rz8J0dekMC4GlZryOu4982lMJoUlt55Cwo2JFDZVEecSiI+Ni9rxus3OzsB5ZySoHaNH4mJHERd7+Pbrz3/xJ+/9nMKEMD+eu3YR9k62A5xOCCEGt4aaRsssyoaaRnXDDAK+AW68vfJO2ts6LAXahBMi+M8bl6G30vHQ9e/T3NiKu7d5zc7Y+NHdulCh1WmJjAsgY0sBsZNGU5BbRnubueNJQW4ZASGeRE8MJHNzISWF1az6ejOnXzi1/97oXpGjvQnxcyO/uLrLZNprn/wcAFtrK1raOsjaVQaABnj+NnOBcPbC8cc8vrODLWecEIe1lR4bg55JkQGHbOPhfOQ13fdJ37yL0j3mdmvNTW08fPUC8our2FVcxXlzJhxjbyGOz4IFC1iwYMFRt9mzZw833HADP//8M6eeemqX1+rq6njzzTd5//33mTNnDgAffPABAQEBrFq1ivnz55OVlcWKFStYv369ZX29119/nSlTppCTk0NERET/vDkhxLAVGxtLSUkJYJ41PnPm4F7mRgxdzc3NpKenA2Btbc3YsTJQUYjesre3Jzg4mPz8fGpraykuLsbff2C6iQnR32QwlRC9J4XxES4jt4TvV6fj4+HEufMnYGdjUDWPwdoKWwcbmupbcPV2JsZlFJ+dcIuqmQabpoZWtm3exdhJowdkFhxAVkE5AFuzdnPuqGt57Me7iZseeYy9umpraefvrzcSPimEgDHH32p/Tdk7pFR/wwlelzDJ/fTjPo4QQvSl+HnjuPvd61EUhaQFUmAEcPN0POS5idPCAZi9aDw/fprM2ZfMYPbpE3B07t6AK41Gw+NvX0FDbTMu7g50dhhZep159H91eT3/WPwiZ148neKCapobW4kaf/xt7XtCp9WSEB1EfnH1YV9vaesAIMjHlaLyOmbH93xEt0aj4ZSp0b3K+cD179Pc2EZAiCd3/vdcdDodnz588ZBarmYk0yjmm9r2Zaiv79opwdraGmvrni8bZDKZWLZsGXfccQcxMYcuJZGSkkJHRwfz5s2zPOfn50dsbCxr165l/vz5rFu3DmdnZ0tRHGDy5Mk4Ozuzdu1aKYwLIXosJiaGlStXAubC+AknnCCflaJfbN68mc5O80DPCRMmYDCoe11OiOEiJibGMqs2IyNDCuNiWGhpaWHbtm0AGAwGxo8fr24gIYYoKYyPYEaTiRv/85nlYm1NfTM3LztR1Uz2zna8tv7flBdVERkfomqWwer+mz8kPbWQiUkhPPLSxT3ef3VqHg+98wvT4oL512Xzu/XH/d0XzOb5t1ex5dXfMXYYyd6Y1+PC+Fv3fcrXL/2CnZMtnxa+iMH6+NYw3Vr7Ex1KK9tqV0hhXAgxaGg0Gk48r/9nJg8X1//zdK67b9FxXWDW6bS4uDsAoLfSsezGuQCcMeF+2lo7+O7Ddbz3212YTArWNgO3Xva1Z03lj825VNY1YTSaLM+7OdlSXd8CwGv3LMbFwQ6tdmAurCuKQnNjG/aO5oF0ASGeZG/bTcL0MZZ/Q0Au9IvjEhDQtXPBAw88wIMPPtjj4zz22GPo9Xpuuummw75eWlqKwWDA1bXrkkre3t6UlpZatvHy8jpkXy8vL8s2QgjRE87OzgQFBVFQUEBlZSVlZWWyRq3ocyaTiY0bN1oeJyQMrc6DQgxmUVFR/PDDD5hMJjIyMpg7d6783SOGvAMHU40fPx4bm8G7dKsQg5kUxkcwrUaDu6s9RaW1ADjZD44fpO6+Lrj7ulgep1Tl8++0L0hwD+Pe2DNG/C8xLS3tADQ3tx/X/j+sz6KuqZUf12dxzwWzu9UloGh9Hhn/+g5nBxtOvPxETrms5wMotHvXJtf0shgwy/sKUqt/YLLnkl4dRwghhLr6+vP8lCVJ/Pz5RuafHY+VYeB/xbW3teabJy6n02git6iS79aks3BGDMG+brz+zToSo4Nwczp2u/NjaW5t58L7P2B3RS1ajYbnbzuLpJigw2773ENfs+KLTZx10TSuuuMUHn/7CkqLqgkI9ux1DqECBRgEM8b3Zdi9ezdOTk6Wp49ntnhKSgrPPfccmzdv7vHPhIM7HRxuf+mGIITojdjYWAoKCgBIS0uTwrjoczk5OZYOLOHh4bi5uamcSIjhw9bWltDQUHbs2EF9fT27d+8mMHBgOooJ0R9MJhMbNmywPE5MTFQxjRBDmxTGRzCNRsM7D1/IluwirK30TIoZnL8cfF20iT0tNewp2sj1EfNxMdipHUlVDz2zlPVrcpg6K+qQ1xRFYUtqIa4udgQf4aL3BXMmUlJZz4yxwd1unb9jyy4AWhpbOeeWU7F37vn/g0v/vZjoyeGETRh93LPFAeJc5hLnMve49xdCCDE8XXXXqVx116nH3rAf6bRadFotMcE+xATvv3h+85JZ3dr/9x+2sm3TTs6/ahZeBwwSPFBKdhG7K2oBMCkKr3z59xEL45v+2m7e5+8dcAcYDHoCQw6dVSvE8XBycupSGD8ef/75J+Xl5V0uUhqNRm677TaeffZZdu3ahY+PD+3t7dTU1HSZNV5eXs7UqeZOHT4+PpSVlR1y/IqKCry9vXuVUQgxckVHR/PTTz9ZZhvOmTNHBtuIPiUFDiH6V0xMDDt27ADM7dSlMC6Gsuzs7C6Dqdzd3VVOJMTQJYXxEc7ezprpE0PVjnFUzla2WGl0JLiHjviiOICntzOnndv1DyZFUXh3xSZS0gpJ+zUXvVbLe29did9hLqqPC/Pj/fuW9uicZ/9jAe0t7QRG+eMfenwXFw3WVsw4S/7QE0IIIQ6nqaGVx+/5H4oC2dt2839PnU9+dglTTorCymr/r+zjx/hhY9DR2m4EYMHUQwfK7XPrv87m5682cdqSyf2eX4jjsWzZMubMmdPlufnz57Ns2TIuvfRSACZNmoSVlRUrV65k8eLFAJSUlJCens7jjz8OwJQpU6irq2PDhg2WwkJycjJ1dXWW4rkQQvSUnZ0dISEh5ObmUldXJ7MNRZ8qKytj165dALi7uxMaOrivzQkxFEVERKDT6TAajWRmZjJ//ny0Wq3asYQ4LsnJyZb7SUlJKiYRYuiTwrjotVZjB/mNZejQ8mPxFk72G0+Us3+fHf/bohQ6FCN1Hc19dsyB0NrcxqZfthGVFN6lNXx/SM8vZfmXfwFg7ahFU2+is8PYZ8d3cnPg6scv6LPjCSGEEKIrGzsDdg42NDW0snN7KTcsfoHWlg7GJ4VyyU1ziRxrXs/Z0c6GlcuvY0NGAaH+Hvh7uRzxmOExftg5TGNMbN/9XtYTOQXlONnb4OvRu1nFwkyjmG9q62mGxsZGcnNzLY937txJamoqbm5uBAYGHjLTwcrKCh8fHyIiIgDzOr+XX345t912G+7u7ri5uXH77bcTFxdnKapHRUVx8sknc+WVV/Lqq68CcNVVV7Fw4ULLcYQQ4njExsZafoalpaVJYVz0mQNniyckJEg3AiH6gY2NDWFhYeTk5NDY2EhhYSGjR49WO5YQPVZSUkJhYSEAHh4ehISEqJxIiKFNhkiJw1pRnMpD2z5nd1MViqJQ2lKLUTGhKArfFm3ik11/02kyF15v2vgWl6x7ies3vsnHBX9zb+pHfZrl/NFTcbGy4+zA7o+Eamxqo66+pU9zHKipvoXrJt/H0pCb2JVZdNhtnr/hbf59/vPccuJD/ZZjn1Fezrg62qLXabnknCk888T5BAYevp3K3+t28MLLq6ioqO/3XEIIIYToHp1Oy+3/OQd7BxumzI5C2Vt8TE3O445L36Cluc2yrY3BihMmhB21KN7ZYeTas5dz8wWv8PGrf/Rv+MN48sPfuPDBDzjzrjcprWoY8POLwWPTpk1MmDCBCRMmAHDrrbcyYcIE7r///m4f45lnnuGMM85g8eLFTJs2DTs7O7777jt0Op1lmw8//JC4uDjmzZvHvHnzGDt2LO+//36fvx8hxMgSGRmJXm+eU5KZmYnJZFI5kRgOWlpaSEtLA8BgMDB+/Hh1AwkxjMXGxlrup6enq5hEiON38NIbMphKiN6RGePiEC2d7Tyw7TMUFDqUTrytnXl/158kuYdxcchMHk7/EgBHK1tO9Z9IcUsNYF5XEyDE0eeIxz4eZwYksiRoKq7WDt3afk9xDVdc8zadnUZeePZCIsb49mkegNzUXeRtLQBg44qtjI4edcg2HW0de//b2atz/fVbJqu+T+XsZdOIm3D4NURdHe34/tEr6OjsxNHO5ojHam3t4P6HvsJkUqhvaOXeOxf2Klt3NHXWsrXmJwLtxzLKLqbfzyeEEEIczsY1Ofz4aTKnLZ3CxGnhh7xeVV7Pru2ljJ8cik6vO8wR+t+UE6P4Yt0/AdidX8G7L6zkr5UZ2Nkbepyps9NIXY25205lWV2fZz2WL37bCoDRpFBWXY+Pu+OAZxCDw6xZs1CU7k8z39dW9kA2NjYsX76c5cuXH3E/Nzc3Pvjgg+OJKIQQR2Rtbc2YMWPIzMykubmZ/Px8wsLC1I4lhrgtW7bQ0WG+ZjRu3Disra1VTiTE8DVmzBj0ej2dnZ1kZWVxyimnSDt1MaQ0NTVZBlPZ2Ngwbtw4lRMJMfRJYVwcwlqnJ8rZn8y6Iia6BvNzifnCZmZdEZ7WTug1OoyKEV9bFwCennQxf5RlcLLfeDoVI4F2Hn2WJbkylxs3vo21Ts9nM27BZ+85j2b37ipaW81/YOzcVdkvhfHoyeHMuWA6NWW1zF5y+HULb37pcuLnjWXsCUde+7M7nv33tzTUt1BZ3sALH1x9xO1sDHpsDEf/lray0hEwyo2CwirCQrx6lau7fit9jaz639FXGvhH5OfoNFYDcl4hhBDiQC889DXlxbXkpO3m1v+cw/IHv8bT14WHX7sUvZWOG85aTm1VI+dcfgKX375A7bgEhHhy75NLSEvZRUCwJ4ZjfMYfzMbWwCOvX0rG5gJOOTehn1IeWXigJ1m7yrHSa4kIGpjfOYY9Ze9NbYMhgxBCDKDY2FgyMzMB82xDKYyL3jCZTGzcuNHyODExUcU0Qgx/BoOhywCnnTt3EhoaqnYsIbpt06ZNGI3mzr0TJkzAYDConEiIoU8K4+IQWo2WNydfQ1NnG05WtoxzHc1nhes4ySeOIAdPvpp5Ox2mTkbZmVt1j3HyZYxT3xefAQqbKlFQaDV2UN5a363CeFZ2CQCeHo7MntW7ovSRWBn03PHGkYvUAPbOdsy/eGavzzVlZiS/fLeFqbMie30snU7Lay9dQnV1Ez4+zr0+Xnc4G8wXwx307mhRZwaeEEIIET9jDD9+uoGaikb+edU7AJQX15KbuYcxYwNobWkHoLmxVcWUXWm1WsYlHP/aYbETRxM7cXTfBeqBd++/gC3bixjt646NQQbFCSGEGLrCw8Oxtramra2N7OxsOjs7Le3VheipHTt2UFtbC0BoaCgeHn03uUQIcXgxMTFdBjhJYVwMFUajkU2bNgGg0WhkMJUQfUR+kxeHpdNocbKyBSDU0Zu7Y86wvOZtMzAFVYDTR8XT0NGCq7UDTZ2trCnLYoZX5FHX0cjZUQpAfX1Lj9o2Dla3PXgGN95zKgbrw19Ubmlpp7GxFU9Pp24dz2DQD1hRHGCG50WEO07BzTAKjUZaFQkhhFBHRkrBIc+FRPgwZmwABoOeJz+4mqzUQmYvmqBCuv7zzvO/8P0nyVx2y3xOOXfg/ojWaDRMjAgYsPMJIYQQ/UWv1xMVFUVqaiptbW3s2LGDqKj+GYQvhr+D14kVQvS/8PBwDAYD7e3tZGdns3DhQnQ6mbwjBr/MzEwaGxsBiIiIwMXFRd1AQgwTUqUSg5pBp+eysBMZbe/BTZve4bbN7/NnefZR97nx2jmcefpEwsd4s2DR03zx1aYur7fsnRHWX3bllvHcf75ly4b849r/qU9XM++2V/k1ZYfluSMVxZua2rjgktdYfMHL/LHm6P8uatFotPjaRmCts1c7ihBCiBGsrrapy2O/QDee+uhaS4vy0Cg/Fp4/GTv74bXG43efJNPY0MoPn2089sZicFMG0U0IIUaY2NhYy/309HQVk4ihrLKykvx887UiV1dXwsPDVU4kxMhgZWVFREQEAK2treTl5amcSIjuSU5OttxPSkpSMYkQw4sUxsWQYKXd39zAoD16owN/f1duvG4O2dklKAqsXZ9ree2Nt1ZzyunP8PhTP/Zb1uWPfs+PX6bwn7v+1+N9TSaFT37dQlV9M1+u2WZ5vqPDyPMvruKxJ3+kqanN8nxtXTM1NeYL/bl55b0PL4QQQgxTj793FeOnhMLepjMnnTEJG7vhvzbXZTfPIzTSlwuvna12FCGEEGLICg4Oxt7ePNg7JyeHtra2Y+whxKEOnC2ekJBw1G6IQoi+FRMTY7mfkZGhYhIhuqeoqIg9e/YA4O3tTVBQkMqJhBg+pJW6GPR+3rWD1UX5nOGfRJCDK5M9jz2iVqPRcOetp7D6z2yWLIknrXYlHtaBrEs2jwhMPs7Z3N0RFRdA+pZCImL9KSis5Lc/spgzO4aAUW7H3Fer1XDN6VNYsSGHC+ZOsjyfsmUXX32TYj5+pB+LFo4HwN/PlbtuP4VdBZWcd4604BJCCCGOJCDYk0feuoLMLQUU7azgxL2fpcPdqYuTOHWxjCwXQgghekOr1RIdHc3GjRsxGo1kZ2czbtw4tWOJIaStrY2tW7cC5tmrEyYMr+V7hBjsQkNDsbGxobW1lezsbDo6OrCyOnyHTiEGg4Nni8tgKiH6jhTGxaDW2tnJtb9+i8G+GUfnFgBmescQYO9+zH3nnBTN+HEBZJu+YV3xR2jRcd2NT/C/j9OYe1LMMfc/XpffNJdF5yXh7unIZVe9ReHuKtauy+X1ly/t3v6nJnH5qfsvYDc2tJCfXoSzky2dRhNxsf5dtj95Xlyf5hdCCCGGs+gJQURPGHkjrfNzStmyPpeTTpuAi5ssbzIUaRTzTW2DIYMQQqghNjaWjRvNS5Okp6dLYVz0SGpqKu3t5qX9xo4di42NjcqJhBhZ9Ho9kZGRlu/F3NxcoqKi1I4lxGHV19eTmZkJgJ2dHXFxcv1fiL4krdTFoGbQ6Yhw9UAxmkdEGbR6bHXdG8338mu/s/iCl/ntV/Na3TqNntbmTjZu3MlTz/5MRWVDj7Lk5Zfz7vt/UVpad8xtc9bmsOGnVHx9nQHw9XHp0bkO9PKTP/Hui7+hlDfwxcfXEzza87iPJYQQQoiRp7GhhRuXvMjrT/7EM/d/qXYcIYQQYkgKCAjA2dn8N35eXh5NTU0qJxJDhaIoXdqoJyZKxz8h1CDt1MVQsWnTJkwmEwCTJk1Cr5f5rUL0JfmOEoOaVqPh2zMupKqlmcqOWtwMDnjYOB11H0VRWF+5g00F5nbpW7525+lF/8bV4MdvPxSjAK2tHVRXN+Hp4djtLPf883MqKhrYklrIs08tPeJ263/YwsMXLAfgP9/fycUXTiMs1Lvb5zmYk7MdAA721uitdMd9HCGEEEKMTJv+2oGx0/xHdWuLrIk6ZCl7b2obDBmEEEIFGo2G2NhY/v77bxRFITMzk4SEBLVjiSEgNzeX6upqwLxevZeXl8qJhBiZgoODsbW1paWlhe3bt9Pe3o7BYFA7lhBddHZ2kpJiXlJVq9USHx+vciIhhh8pjItBz0qrw8PWjsqOWtytHY65/ReFyTyW+S26GVpO9U3g1OnjCXEwt0w97VQvWlo7cHezZ0x4z4rV3l5OVFQ04OPjfNTtbB2sLfcdnOyIjPSzPG5ubSensJzYEF+s9N0rcl9x01wSpoUTEu6NTidNHoQQQgjRM2MTgvEP8qCtpZ1bHjpL7ThCCCHEkLWvMA7mdupSGBfdIbPFhRgcdDod0dHRpKSk0NHRwfbt24mNjVU7lhBdpKWl0dzcDEB0dDROTkefJCiE6DkpjIsh4YFtn/FLyTYS3EN5KfHyQ143KUa+K3qU0tZcrLULAFBQuPKKmfjYuli2Mxj0zJkdzfX/eJ833l7Di88tw8fbGUVRqKltxtXFDo1Gc9gMTz56Hnn5FUSM8Tns64qi8Pun6zCZTDy35kH0VjrCxo/uss3VT35OZkEZp06J4l+Xndyt967T65iYFNqtbYUQQgghDubm4cib39+idgwhhBBiyPP29sbDw4PKykoKCwupq6uztFcX4nCqqqrIzc0FwNnZmTFjxqicSIiRLSYmxjIbNyMjQwrjYlA5eOmNpKQkFdMIMXzJ9FMxJBQ31+z9b/VhX69tLyWn4S/qOkrxs63gGo+5XKGdg7u+a6v0Fb+k8fAj31Fd3UR1dRPpGXsA+O/j33P2eS+w/KVfj5jB2tqK6Ci/I87a3rQyjccufZknLn+V6tLaQ4riAJV15jXIKmoaj/mehRBCCCGEsFAG0U0IIUaofe3U90lPT1cxjRgKNm7caLmfkJCAViuXYoVQU1BQEA4O5o6kO3bsoK1NlpoSg0dhYSGlpaUA+Pn54e/vr3IiIYYnmTEuhoR/j1vMj8VbmO1z+FF8rgZfYpxPoqw1l2DdCTx+/wqMRhO2VdZcuHQqYF5X/PGnfkJRFLy9nRg/NpBpU8IA2LptNwCpWwuPO6OzuwMarQZFUXB2P/za5ctvPpM1W/M5dXLUcZ9HCCGEEEIIIYQQ6oiLi+OPP/4AzIXxadOmqRtIDFrt7e2kpqYCoNfrmTBhgrqBhBBotVqioqLYuHEjRqOR7Oxsxo0bp3YsIQBITk623E9KSjpiZ1shRO9IYVwMCaPs3bkqfA6NHa1UtNbjaXPw2hoaftjjyuZqD9zCW9HptBiNJmxsrCxbWFvriY3xJz2jiAuWTOG0U8dbXrv3zoWs+CWNRQuP/4+UMZNCeC3lEUwmhdHRow67TZi/B2H+Hsd9DiGEEEIIIYQQQqjHzc0NPz8/iouLKS0tpbKyEg8P+TtfHGrr1q2W2ahxcXHY2dmpnEgIARAbG2vp5pCRkSGFcTEo1NbWkp2dDYCDgwMxMTEqJxJi+JLCuBj0sur+oNlYR5DdTBb/uZzGzhaemXQx07wiLNs0dbaRVpuNTqMhpXEnb756KSUldUyaOBqA5tZ2ftucy213noKnkx12dtZdzjF+XCDjxwX2OmtgpLQ3EUIIIYQQfU+jmG9qGwwZhBBCbbGxsRQXFwPmWeOzZs1SN5AYdA5eJzYxMVHFNEKIAwUEBODk5ER9fT15eXm0tLRga2urdiwxwm3cuBFFMf+xFR8fj06nUzmREMOXLGwjBrWSlhy+2/MYv5a+wubqFTR0tqAAuQ2lXbar7cjjtFEZnDYqk3MCoxjl70ZCfDBarbndyJOf/sEDb//MpY9+gvUBs8gHg+y0Is458VFuWPYqba0dascRQgghhBBCCCHEURy8zvi+C9lC7LNz504qKysBCAwMxMfHR+VEQoh9NBoN0dHRAJhMJrKyslROJEa69vZ2Nm/eDIBOp2PSpEkqJxJieJPCuBg0atubuHvLh9yW8h4/7tmCUTFhq3NCpzE3NghzDOWemDO4NHQW5wZN7rJvdVsRoKDVGHExGA85tk6r7fLfgdTU2s5Nz3/N1U9+RnV98yGvJ/+ZQ0N9Czsyi9m9q3LA8wkhhBBCCCGEEKL7HB0dGT16NABVVVWUlpYefQcx4shscSEGtwMHOGVkZKiYRAjYtm0bra2tgPlr08HBQeVEQgxv0kpdDBo/Fm/htzLzLyJ/VmTzS8lWno2/hCvD3qTD1Iq7dSAhjoffN9r5RBo7q7HW2WHfEkoTbdjb72+Xftt5s0iKDiRmtM+AF8eTMwv5O20nAH+k5nLWCWO7vH7ymZPYnlmMf6AbIWO8BzSbEEIIIYQYIpS9N7UNhgxCCDEIxMbGsmvXLgDS0tLw9fVVN5AYNGpqasjJyQHAycmJyMhIlRMJIQ7m5+eHi4sLtbW17Ny5k6amJuzt7dWOJUagg5feSEpKUjGNECODzBgXg0aiexgOehvL441VeQA4WXnhbn309b/1WgNTPc/HmB/H4gteYsmFL1Nd02R53cagZ86kMfi6O/VP+KOYOMafqCAvgn3dmBobfMjr3r4u/OeFZVx356loVZjRLoQQQgghhBBCiJ6Jioqy/A2fkZEh7dSFxcaNGy33ZZ1YIQYnjUZDTEwMYC5MZmZmqpxIjFT5+flUVFQA5qU3ZKCdEP1PqnCi3zR3tvF89o9csvYlHkn7ijbj0dfPDnP04deT/snNYxbgZePMteHzurxe3lLHT8Wp1LYf2o58n507K1AUaGxqo6KioU/eR2+5ONjywX0X8Pm/LsbH7QhT3oUQQgghhDgKjTJ4bkIIIcDOzo7Q0FAA6uvrKSwsVDmRGAw6OjrYsmULYF4nduLEiSonEkIcibRTF4OBzBYXYuBJK3XRbz4vTOaDXX8BkFlfxE/FW3CzduSpSRcR6nj4luEajYalITNYGjKjy/Pptbu5bP3LALhY2fLz7PvQaDSH7L9o4QQaGtvw9HBkTLi0JRdCCCGEEEIIIUT/iI2NZceOHYC5nXpQUJDKiYTaDl4nVlozCzF4eXt74+7uTlVVFQUFBTQ0NODoKJOaxMCprq5m+/btgCy9IcRAkhnjot+EO/p0edyqdFLcWsOq0m09Oo5JMbGhKtfyuLGzDeUIixva2hq44tITOP20CYctnPfG539sJema5/jXu7/06XGFEEIIIYQQQggx9ERGRqLXm+ecZGZmYjQaVU4k1HTwOrGJiYkqphFCHMuB7dRBZo2LgZecnGy5n5CQIMusCjFA5DtN9JsE91Buj1x4yPOxLkdfL3yfdlMr7+Tdyz2pF/FW3k8E2Xngbe3M8/GXotUc+qVb29rC2xmbyamu6HX2w/l5Yw6dRhM/rc/u9j6Kosg6Y0IIIYQQoveUQXQTQggBgMFgICIiAoCWlhby8/NVTiTUVFBQQHl5OQCjRo3Cz89P5URCiGORdupCLW1tbaSmpgKg1+uZNGmSuoGEGEGkMC76zfKcFTyZ/T0Ablb7W0d194tuR/0Gytu24G5dhb9tLSGO3nx34l3Eu4cedvv71q7iwXW/cu73H9PW0cn1z3zJqXe9QVZBWW/fCgDXnj6V+IhR3Ln0xG5tX1Zdz4xrlpN0xbP88WdWn2QQQgghhBBCCCHE4HFgUSU9PV3FJEJtMltciKHH09MTLy8vAIqKiqirq1M5kRgpUlNTaW9vB2Ds2LHY2tqqnEiIkUMK46LfVLc3Wu67We9fnyWtdne39g+wi6Wp046mTgNlrY4kV+6gqq3hiNu7WNsA4GiwpqC0hvWZBZRWN7By4/bjfAddTRwzildvP5czZ8R1a/u1qTtpMRkxauHzHzf3SQYhhBBCCCGEEEIMHmFhYdjYmK9HZGdn09HRoXIioYa6ujqys80dBh0cHIiOjlY5kRCiu6SduhhoBy+9kZSUpGIaIUYevdoBxPC1JGgqRc1VOOhtONl3PHtaqqlqa2Bx0JRu7b+iJIefiiNw0tvQbGwF2ilvrcPN4HDY9cMfmDKb+UHhRLt74WJtw6JpMeQXV7FoesyhBx8AC6ZH89HXG6ipbeLyc6epkkEIIYQQQgwTg6WN+WDIIIQQg4herycyMtIy82v79u1diixiZNi4caNlKb1Jkyah0+lUTiSE6K6YmBh+//13wNz5Y+rUqSonEsPdjh07qK6uBiA4ONjStUAIMTCkMC76zb/TvyC/sRwPa0ceSv8cN4MD3866E4O2e192mXVFANR3tmLQ6jGaTFy+/lUinfx4Lekq9Nquf2TsyCnjtcd/ITbGnztvO4UHLpnX48y7y2u55YVv8HC255kbTsfW2qrL63lbC3j3X5+TePJ4Fl550lGPZWOw4rPnr+xxBiGEEEIIIYQQQgwdcXFxlnVC09PTpTA+wnR0dLB5s7lToFarJT4+XuVEQoiecHd3x9fXl5KSEkpKSqiursbNzU3tWGIYS05OttyX2eJCDDxppS76jfve9ulWGnMhvL6jhXZjJwWNFbQZj91abK5PHDZaKzytnWg3dWLERKdipLo9jRdylrCi+Lku2/+4YhtFe2pY8Us6FRVHbrl+NL+m7GBnSTUbs3eTsav0kNc/fORrkn9M5YWb36W9tf24ziGEEEIIIYQQQojhY/To0djb2wPmWWCtra0qJxIDKT09nZaWFsA889TBwUHlREKInpJ26mKgVFRUkJ+fD4Crqyvh4eEqJxJi5JHCuOg3T01cxiuJV/D25Gu5KWIBLyVezke7/uLcv57h/L+e47Udq6g8yprhGXVFtJo6qGir52SfcXgZnKATgk01tCuNbKtdwZbqHzAq5iL7KSfHMcrflflzY/H0dDzicY9mXsIYokd7c8K4EOJCfA95ffKpE9DqtMTPG4vVQbPJhRBCCCGE6C+aQXQTQgjRlVartRRVjEajZa1pMfwdvE5sYmKiimmEEMdLCuNioBw4WzwxMRGtVkp0Qgw0aaUu+o2NzsBEtxAALgyeAcDHu/4GoKilmjfyfqOwqZKHxi2moaMFF4O9Zd9fS9PQomGiazAB9u5cEXoSp61+DPSQu9OHQBcDHdYVrCx9gTZTI5M9ziM6yp/3376qV5n9PJx5//+WHvH1ectO4KTzp6HTm9u4/74ll19TdrBs3iQiAmUtECGEEEIIIYQQYiSKi4uzFEjT09MZP368uoHEgNi9ezelpeaOg35+fvj7+6ucSAhxPFxcXBg1ahRFRUWUlZVRUVGBp6en2rHEMNPS0sK2bdsAMBgM8ruCECqR4ShiQN0SeSoXjJ6Ol7UTAH52rly+/hXm/fYf3sj9DUVReC9/Nfekfsxreb/ibGXH7VGn4WXjxHmBUwix8+Ka+Iu4KvY59BrzjG1rrT2rU/P47/urKCyr6ff3sK8oDnDfGz/xU3I2T3+2pt/PK4QQQgghRjBlEN2EEEIcwt/fHxcXFwDy8/NpampSN5AYEAfPFtdopLeKEEOVzBoX/W3z5s10dJi7344bNw4bGxuVEwkxMsmMcTGgfGxd+EfkKVwRdhK7myoJdvDknfzVAHy080/87Vx5YfvPlu1/K8vAOu0rTvCJ4taohV3+wLgs9BXqOyrwtY5h+isv0Gk0UVnfzNPXLxqw9xMfMYq/0nYRZGs7YOcUQgghhBBCCCHE4KLRaIiNjeWvv/5CURQyMjKkrfYw19DQQFZWFgB2dnZdimpCiKEnOjqan382X5fOyMhg5syZMthF9BmTycTGjRstj5OSklRMI8TIJjPGhSrs9dZEOvtjrTMQ6uANgKeNM02dbZZtNHtXMFxRmsq9qR+zpjyryzFcDL4E2o9Fr9MSubeN+djDrAven05188Dtf1tZfdsn7MosGtBzCyGEEEIIIYQQYvCIjY213E9PT1cxiRgImzZtwmQyATBp0iT0epl/JMRQ5uTkRFBQEACVlZWUl5ernEgMJzk5OdTV1QEQFhaGu7u7yomEGLnkNzbRa7XtTTR3tuNj48ybeb/T1NlKvHsoUz3HoNUce+zFq0lXsa5iO4keoZhMCs9k/0CHycgkt2A2VedbtrPTWx92f41Gw5t3nUdNQzOeLg599r66Q6/XoW03otFq0OpknIkQQgghhOgfGsV8U9tgyCCEEIOVt7c3np6eVFRUsHv3bmpray3t1cXw0tnZSUpKCgBarZb4+HiVEwkh+kJMTAwFBQWAeYCTt7e3yonEcJGcnGy5L7PFhVCXFMZFr1S01nP2mqdoNXVgpdHRoRgB+Kjgb/4RsYALgmcc8xhOVrbM9I7GWqtHo9Hwv+m3UNFWT5CdB2/k/Yad3poTvWOIdh51xGPoddoBL4oDnHjeFJw9HHFycyAwwm/Azy+EEEIIIYQQQojBIzY2lt9//x0wF1WmT5+uciLRHzIzMy3ryEdFReHk5KRyIiFEX4iKiuKnn36yLIkxe/Zsaacueq20tNQy4MLDw4PQ0FCVEwkxsskUV9ErRU1VtJo6ACxF8X2+KEw+3C6H+L4ohZkrH+SaDW+gKAr+dm6Mdx2Nq7UDd0Qv4vox849aFO9ru8tr2VFUcdRt1q3O5rqlr/Dx63/g7utC+MTgAUonhBBCCCGEEEKIwSouLs5yX9qpD18bNmyw3Je15IUYPhwcHBg9ejQANTU1lJSUqBtIDAsHzhZPTEyUwRZCqEwK46JXUqt3HvE1g7Z7DQnWVW5HQSG1ZictxvYjbtfcWUt1254uz5kUI9n1f1LSsr17gY9hZ0k1Z//zHZY89AFr03cdcbsPXvuDvJwS3n3pN66Ov5fkn1L75PxCCCGEEEIcljKIbkIIIY7I1dUVf39/AMrKyqioOPrAezH0FBUVsWeP+fqUj48PAQEBKicSQvSl2NhYy30Z4CR6q6mpibS0NACsra0ZN26cyomEEFIYF73yVdGGwz4/ytaNJyde2K1jXB42m9nesdwdc8YR1xFv6qzltdzLeCPvCnLq/7I8n1L9Ld8W/ZcPd95KQ0fv/9hsbG7DaDJf7auqbzridqeeHY+1vRVKbb152+LqXp9bCCGEEEIIIYQQQ58UVYa3g2eLy8w/IYaXqKgotFpz2SQjIwNFkZGh4vilpKRgNJo77U6cOBGDwaByIiGEFMZFr4Q6+h7ynIPOmven3sAoe49uHSPEwZtHJyzlzIAjt55qMdbRbmoBoLa92PK81vIlrOHgL+fa1haeSfmb33bndysHQFyoL49dcyr/t2wOp0yOOuJ2AeP8KY9xovWUMC5+YinzL57Z7XMIIYQQQgghhBBi+IqJibEUS9PT06WoMow0NjaSkZEBgK2tbZdBEEKI4cHW1paQkBAA6uvrKSoqUjmRGKqMRiObNm0CQKPRkJCQoHIiIQRIYVz00n/GL8Hdyt7yWIuGRmMbr+Su7NPzeFgHcZr/XczwvJiJbossz090O42zAh7g4pDncbRy77LPs1vW8uyWtVz+y5fUtLZ0+1xzJo3hrBPi0GmP/O2RtrOEjk4jTR2dRM6LQ6fX9fxNCSGEEEII0RNqt1CXuo4QQnSLo6OjZY3a6upqiouLj76DGDJSUlIwmUyAeeaflZWVyomEEP0hJibGcl86f4jjlZmZSUNDAwARERG4urqqnEgIAVIYF71kp7dmpvf+XxSstOYCcWNHa7f27zQZeTPvN97NX41RMR112yjnWUzxXIKV1sbynEajJcxxMp42wYdsH+Rk/qDxsLXDVt+99c676/TpsZw3ezzXnD6F8WH+fXpsIYQQQgghhBBCDG3STn34OXjmX3x8vMqJhBD9JTIyEp3OfJ07MzPTMiBGiJ44cOmNpKQkFZMIIQ7Ut9VCMeIYFRPfFG20PG4zdeJmsGeaZ2S39v+tLJ1Xd6wCYLS9JzO9o/ss2yXRE5jmF4i3nQM2+r4dwWtvY+DO80/s02MKIYQQQghxJBrFfFPbYMgghBBDQVRUFD/88AMmk4mMjAzmzp1rWbNWDE1ZWVk0NjYC5pl/Li4u6gYSQvQbGxsbwsLCyMnJobGxkcLCQksnECG6Y8+ePZY2/N7e3gQFBamcSAixj/xGLnpFi4YYl4Auz1W3N/FO/u9HXUNrQ2Uu/0n/Ei1arDQ6DFo9gd1ck7y7NBoNY1w9cLa2OfbGQgghhBBCCCGEEH3E1taW8PBwABoaGigsLFQ5keitA2f+JSYmqphECDEQpJ266I3k5GTL/cTERDQajYpphBAHksK46BWNRoO3jfP+x3v/u72hlI92/X3E/e7d+jHfFG3i04K1/HDi3fww626CHbz6Oa0QQgghhBBCCCHEwDiwnXpaWpqKSURvlZSUsHv3bgC8vLxk5qgQI0BERAT6vctzZmVlSTt10W0NDQ1kZGQA5oFycXFxKicSQhxICuOi11wM9pb7B84Rfy13Fe2mTsvjrTUF3L3lQ9aUZxHnEgjAONcgXAz2OBvsjuvcnSYjH+38iy8LNxx1hroQQgghhBBDmjKIbkIIIbplzJgxWFmZl3bLysrCaDSqnEgcrwNniyckJMjMPyFGAIPBwJgxYwBobm5m586dKicSQ8WmTZssAykmTZpk+V1ACDE4yBrjotduiTyV8tY6/qrIQYuGDsX8h16HqZPi5mp+Lt7KRwV/46i3obytns3VO1kx+14q2xrwtHbq1bl/KdnGM9k/AjDKzo1Ej7Bevx8hhBBCCCGEEEKI3jIYDERERJCenk5LSwt5eXmWIosYOpqamiwz/m1sbBg7dqzKiYQQAyUmJobMzEzA3E49NDRU5URisOvs7GTTpk2AudtuQkKCyomEEAeTGeOi1/RaHU9MXMa6+Q/z+uSrme4ZyRmjEkhwD2XxX8/ybv5qWoztltnj0zwj0Wq0eNk4HzLCtqqinvde+Y2M1O6tveVn64oGDVYaHV42vSuy99az17/JKU6X8N2rq1TNIYQQQgghhBBCiMHhwHbqskbt0LR582bLbP/x48djMBhUTiSEGCjh4eGW7/ns7Gzp/CGOKT09nebmZgCio6NxclK3ZiGEOJTMGBd9Ktp5FE9PugiAc9Y8BUAnJpz0ttwTeyaT3cOx1R/5D4iXnviJv37N5Iv31/LlmnvR6Y4+dmO822i+nnk7VlodnioXxn/7eC3GDiO/f7qO066eo2oWIYQQQggxvGgU801tgyGDEEIMJWFhYdjY2NDa2kp2djYdHR3SUnUIMZlMlpl/AImJiSqmEUIMNCsrKyIiIkhLS6O1tVU6f4ijUhSF5ORky+OkpCQV0wghjkRmjIt+c3/cudhozWMvPKydGO8adNSiOIB/gBsAXr7OaLXdW6/Jz85V9aI4wPXPXMTYEyK56IGz1Y4ihBBCCCGEEEKIQUCn0xEdHQ1AR0cHOTk5KicSPZGdnU19fT1gXjPe1dVV5URCiIEWExNjuZ+RkaFiEjHYFRYWUlpaCoCfnx+jRo1SOZEQ4nCkMC66RVEUFKVn00PGugbiYnAAIL+pjLs2f3jMfS65/iRe/PAann/vqkParA928y+eyRM//x/jZ0arHUUIIYQQQgghhBCDhLRTH7o2bNhguS+zxYUYmUJDQ7G2tgbMg2U6OztVTiQGqwM/M5KSkoZcfUOIkUIK4+KYvivaxJxfH2b2qn+xvb64R/u2Gtst97vzQaDVagmL9MXWzvqwr/83/Stmr3qIn4u39iiHEEIIIYQQQ5oyiG5CCCF6JCgoCAcH88SB3NxcWltbVU4kuqOsrIyCggIAPDw8CAkJUTmREEINer2eqKgoANrb29mxY4fKicRgVFdXR1ZWFgD29vaWbjFCiMFHCuPiqCrbGvh3+pc0dLbQZGwjuSq3R/snuIdZ7t8WdVqvshgVE98UbaKxs40fizf36lj95ed3V3OWz9W8fs/HakcRQgghhBBCCCHEIKDVai2teI1Go+XCuRjcDpz5l5CQIDP/hBjBpJ26OJYNGzZYOu7Gx8ej1+tVTiSEOBIpjIujctDb4GVtXr870smPU/0m9mj/00ZNwkqjA+DJrG9RFIXVZZk8m/0jFa31PTqWTqPlxoiTiXEexcUhM3u070D58a3faapr5rvXVqkdRQghhBBCDCMaZfDchBBC9FxcXJzlvrRTH/xaWlrYtm0bAAaDgXHjxqmcSAihpuDgYGxtbQHYvn077e3tx9hDjCQdHR1s3myeyKfVaomPj1c5kRDiaGTYijgqG50Vn824lZr2JvzsXHu8/2SPcKZ4jmFNeRapNQU8tO1zVpSmYlIUsuqKeCHhMqy03f8yvDB4BhcGz+hxjoFywT1n8O6/vmD+RSeoHUUIIYQQQgghhBCDhJ+fH66urtTU1LBz504aGxst7dXF4LN582bLOsLjx4+3rC8shBiZdDodUVFRbN68mY6ODrZv305sbKzascQgsW3bNssyKbGxsfL5LsQgJzPGxTHZ6g3HVRTf54Yx8wmy9wTgx5IteFk7A7ClZhd3bP6Ahb8/yjXJr9Hc2dYnedWUePJ4Xlz7bxZdM1ftKEIIIYQQQgghhBgkNBqNpYiiKIq04h3ETCYTmzZtsjxOTExUMY0QYrA4sBAuP8PFPoqikJycbHmclJSkYhohRHdIYVz0u9EOXtwfdzbeNs6c4BXFW5OvxUZrBcDayu2Ut9WzuWYX22oLe32uuvoWqmuaen0cIYQQQgghBhVlEN2EEEIcF2mnPjRs376d2tpaAMLCwnB3d1c3kBBiUAgKCsLe3h6AHTt20NY29Cd5id7buXMnFRUVAAQEBODn56dyIiHEsUhhXAyIOJdAvpt1F09OXIaHjSPvT72BcwL2j56KdPRjvGtQr85RtKea85a+xOKlL5GVXXzYbVpb2qmqaOjVeYQQQgghhBBCCCF6ytPTE29vbwCKioqoqalROZE4nA0bNljuy2xxIcQ+Wq2W6OhoAIxGI9nZ2SonEoOBzBYXYuiRwrhQhaOVLcmVuZbHj028ABudoVfHLC6ppa29E6PRROHu6kNeb2lu47Izn2fpyU+y+hcZmS2EEEIIIYQQQoiBdWArXpk1PvhUVFSwc+dOANzc3AgLC1M5kRBiMJF26uJA1dXVbN++HQAnJyciIyNVTiSE6A4pjIsB92d5Nqf8/gi7W6oASHQLxcfGpdfHjZ8YzHVXz+byS2Ywe1bUIa/X1TRbZovnZpf0+nxCCCGEEEIMGLXbp0srdSGE6BNSGB/cDpwtnpCQgEajUTGNEGKwCQgIwNHREYC8vDxaWlpUTiTUdPBnhk6nUzGNEKK7pDAuBtyqkm2Y9l5Rc7Gy5+7YM/rkDw2tVsO5Zydw4dKpWFkd+iHk4+/KrQ+cwVkXTOHci6Yd93l2ZRZx3eT7ePzyVzAaTb2JLIQQQgghhBBCiBHExcWFUaNGAVBeXk55ebnKicQ+ra2tbN26FQArKyvGjx+vbiAhxKCj0WiIiYkBwGQykZWVpXIioZa2tja2bNkCgF6vZ+LEiSonEkJ0lxTGxYBrNXZY7l8TPgd/W7c+P0dRQSV7dlcd8vz8RRO4+taTcXKxO+5j//LeGvK2FvDrR39TtN0887y0uIamxtbjPqYQQgghhBBCCCFGhgNnjaelpamYRBwoNTWVjg7zNatx48ZhY2OjciIhxGAk7dQFmD8z2tvbAYiLi8PO7vjrDUKIgSWFcTHgFgXEY7t3PfFHM79hZcm2Pj1+5rbdXHH2C1xx1vJ+aZl+4uIp+Iz2JOmUCYwK9+H3FWlcfNqzXHrG8zQ1SHFcCCGEEEL0PY0yeG5CCCF6JyYmxtI5LyMjA0WRH65qUxSFjRs3Wh4nJiaqmEYIMZj5+fnh4uICwM6dO2lqalI3kBhwiqJ0aaOelJSkYhohRE9JYVwAkFKVz6s7VlLWUgtAWm0hK0u2YVT6vlX4NM8Ino+/1PL4uz0pfXr80uoi0BoxmRRqqht7daym+hYKc4q7PBc+MZh3s57mX1/cik6voyDf3PasrqaJhnpZV0YIIYQQQgghhBBH5uDgQHBwMAA1NTXs2bNH5UQiNzeX6upqAEJCQvD09FQ5kRBisDqwnbqiKNJOfQQ68DNj9OjReHt7q5xICNETerUDCPX9WprGPakfA+aC+D0xZ3Ll+lcxoXB7+2ksDprSp+frMHVS0lyDi5UdtR3NBNp79Gj/mpomFMDN1f6Q11KqvmGT1yuc8ooPEUU3ED8l7Lhztre2c9WEu6gsruG6py/i9GvnHna7c5dNQ1EUgkK88PF3Pe7zCSGEEEIIcUTK3pvaBkMGIYQYBmJjY8nPzwcgPT3dsu64UMeBM/9ktrgQ4lhiY2P5+++/AfPP8Pj4eJUTiYGUnJxsuS+zxYUYemTGuCC1ZpflvrvBEZ1Gi3ZvSy+9pu+/RN7K+5370/5HU2cbj41fyi2Rp3Z73/ydFZx3wcucd8FL5OaVH/J6SWsOAG025Zy4cH9rsuPR2txOdWktALsPmjV+oKrKBuKnhnPiyXHHfS4hhBBCCCGEEEKMHFFRUeh0OsDcTt1k6vuOfaJ7qqqqyM3NBcDFxYXw8HCVEwkhBjtvb2/c3d0BKCgooKGhQeVEYqBUVFSQl5cHmD8zxowZo3IiIURPyYxxwbLgE2jsaMXN4MB1EfPRabS8N/UGylvrmOLR9z/Ys+vMRWaTYiLBPQy9VtftfffsqaGj07j3fjVhoV5dXp/heTHWWnuC7Mdj0Nr0KqeTmwMPfHYLORvzOPOG+YfdpnRPDdcseQljp4m7Hj6b2QvG9uqcQgghhBBCCCGEGP5sbGwIDw8nOzubxsZGCgoKLO3VxcA6cLZ4QkICWq3MIxJCHN2+dupr1qwBIDMzU2YOjxAHdxiRzwwhhh4pjAu8bJx5YOy5XZ4Lc/QhzNGnX85X3lYHgI3egINVz4rXU6eEcc2Vs1AUmD7t0KK9s8Gbub7X90lOgMmnTGDyKRNobmrjjed/wdPbmUWLEy0z0dvaOjB2mkd1Nze19dl5hRBCCCGEOJBGUdAo6vcxHwwZhBBiuIiNjSU7OxuAtLQ0KYyroK2tjdTUVAD0ej0TJkxQN5AQYsg4sDCekZEhhfERoKWlha1btwJgZWUlnxlCDFFSGBcD7prwubyZ9ztnBvR8zSadTst553bvl4z2tg7SUwuJjB2Fnb11j891oO8+28Bn75rXjYkeG0B4lB8AQSFePPLSRVRXNkordSGEEEIIIYQQQnTbmDFjMBgMtLe3k5WVxSmnnIJeL5fqBtLWrVtpb28HYOzYsdja2qqcSAgxVHh5eeHl5UV5eTm7d++mrq4OZ2dntWOJfrRlyxY6OjoAGD9+PDY2vetYK4RQh/y2LQbcDK8oZnhF9ft5Hr3vC/7+LYuosaN49u0re3WssAhftFoN9o42ePp0/QVnYlJor44thBBCCCGEEEKIkcfKyoqIiAjS0tJobW0lLy+PiIgItWONGIqiHNISVwgheiImJoby8nLAPGt86tSpKicS/cVkMslnhhDDhCyAMIikVOVz1fpX+bxwvdpRhoW66iYAdrQ2seSh91mfWXDcx5o0JYyPf76d97+/BRdX+76KKIQQQgghRPcog+gmhBCiz8TF7e8+l56ermKSkSc/P5+qqioAgoKC8Pb2VjmREGKoiYmJsdzPyMhQMYnobzk5OdTVmZeIDQsLw8PDQ+VEQojjJYXxQeT1vF9JrS3g6awf1I4yLNzzyLlcefM8yh1hR1El7/+8qVfHa2xoZfeuyj5KJ4QQQgghhBBCiJEuJCTE0r47JyfH0tZb9D+Z+SeE6C13d3d8fHwAKC4uprq6WuVEor8kJydb7st68kIMbVIYH0QW+E3AWqvnNP+JakcZFjy8nDhn2TQWnzgOFwdbTp8ee9zHKiqo5KpzX+TGZa+xbnV2H6YUQgghhBBCCCHESKXT6YiOjgago6ODnJwclRONDDU1NWzfvh0AJycnIiMjVU4khBiqYmP3X3OWWePDU2lpKQUF5m607u7uhIbK0qpCDGVSGB9ETh8Vz5/z/sU9sWeqHWVYueP8E/n1mWuYl3D863Q1N7VhNJoAqK9r6atoQgghhBBCdItGGTw3IYQQfevAooq0Ux8YB84Wj4+PR6uVS6RCiOMj7dSHvwNniycmJqLRaFRMI4ToLb3aAYToL82ddfxY/BRWWhtO8bsVK63NcR9rTLQ/Dz59PvV1Lcw5dVwfphRCCCGEEEIIIcRIFhQUhKOjIw0NDeTm5tLS0mJpry76Xnt7O6mpqYB5xv6kSZPUDSSEGNJcXFzw9/dnz549lJWVUVlZKetPDyNNTU2kpaUBYG1tzfjx49UNJIToNRkOKYaF1WVv8cqOi9nRsN7y3PaGv8lv3EhO/Z/satrS63NMmRnJ/EUT0Onk20YIIYQQQgwwZRDdhBBC9CmNRmOZcWgymcjMzFQ50fC2bds2WltbAYiLi8POzk7lREKIoU46fwxfmzdvxmg0AjBhwgQMBoPKiYQQvSUVPjHkKYqJDVWfU99Rzpbq72hoaOXKa9/m2fuzsNd64m4dhL9ttNoxhRBCCCGEEEIIIQ4rLi7Ocl+KKv1HUZQubdQTExNVTCOEGC6io/dfe87IyEBRZDTpcGA0Gtm4caPlsXxmCDE8qFoYf+SRR0hISMDR0REvLy/OOOMMcnJyumyjKAoPPvggfn5+2NraMmvWrEPW6mhra+PGG2/Ew8MDe3t7Fi1aRFFR0UC+FaEijUbLZPfzcLHyZZLb6WRk7SE3r5yCnE78cv7B5aGvYKd3VjumEEIIIYQQQgghxGH5+vri5uYGwK5du2hoaFA50fC0a9cuKioqAAgICMDX11flREKI4cDJyYnAwEAAKisrKS8vVzmR6AtZWVmWz+OIiAhcXV1VTiSE6AuqFsZXr17N9ddfz/r161m5ciWdnZ3MmzePpqYmyzaPP/44Tz/9NC+88AIbN27Ex8eHuXPndvkD4eabb+arr77ik08+4a+//qKxsZGFCxdaWlyI4W+G98UsGf0Yq8vfJsf9OWaeFET8pNHMPCFS7WhCCCGEEEL0mkYZPDchhBB9T6PRdGnFe/CkENE3ZLa4EKK/7FsSA6Tzx3CRnJxsuZ+UlKRiEiFEX1K1ML5ixQouueQSYmJiGDduHG+//TaFhYWkpKQA5tnizz77LP/3f//HWWedRWxsLO+++y7Nzc189NFHANTV1fHmm2/y1FNPMWfOHCZMmMAHH3xAWloaq1atUvPtDXuKotBq7FA7hkV+40Yq23ZR1raDC64N5IlHzsPN1V7tWEIIIYQQQgghhBDHJO3U+1dtba2lU6WjoyNRUVEqJxJCDCfR0dFoNBpA2qkPB3v27LF0Jfby8mL06NHqBhJC9JlBtcZ4XV0dgKV11M6dOyktLWXevHmWbaytrZk5cyZr164FICUlhY6Oji7b+Pn5ERsba9nmYG1tbdTX13e5iZ67O/UjTlj5AB/t+kvtKACEO05hlF0swfaTCLQfr3YcIYQQQgghhBBCiG7z8PDAx8cHMF+Qr66uVjnR8LJp0yZLoWrSpEnodDqVEwkhhhMHBwdL8bSmpoaSkhJ1A4leOXi2+L5BD0KIoW/QFMYVReHWW29l+vTpltZRpaWlAHh7e3fZ1tvb2/JaaWkpBoPhkPUdDtzmYI888gjOzs6WW0BAQF+/nRHh7wrzKNu/ynOOseXAsNe7snT0E5wb9DDWOrtu7WNSjLQZm469oRBCCCGEEGpSBtFNCCFEvzmwnbrMGu87HR0dbN68GQCdTsekSZNUTiSEGI6knfrw0NDQYFnSxNbWtktHFyHE0DdoCuM33HAD27Zt4+OPPz7ktYNH4yiKcswROkfb5p577qGurs5y27179/EHH0YyanfzS8k2TIqpW9v/M/ZsTvSO4fRRk/i9NB1jN/cbLIxKB2/nXcdzOeeSXf+n2nGEEEIIIYQQQggxwh1cGJdWvH0jPT2dlpYWwFy4cnBwUDmREGI4ioqKQqs1l1wyMzPlZ/gQtWnTJkwmc61j4sSJWFlZqZxICNGXBkVh/MYbb+Tbb7/l999/Z9SoUZbn97WPOnjmd3l5uWUWuY+PD+3t7dTU1Bxxm4NZW1vj5OTU5TbSFTZVcOn6l7lv6yc8lvFtt/aZ7zeOO6MX8VDaF9yV+hEf7/q7n1P2rebOeqraCwGF3U1pascRQgghhBBCCCHECHdgZ8OKigrKy8tVTjT0KYrSpSVuYmKiimmEEMOZnZ0dISEhgHnZ2H1rVIuho7Ozk5SUFMA8YTMhIUHlREKIvqZqYVxRFG644Qa+/PJLfvvtN4KDg7u8HhwcjI+PDytXrrQ8197ezurVq5k6dSpgXhPIysqqyzYlJSWkp6dbthHHVtvebLlf0FShYpKB42jlzlyf64l1nkuSx7lqxxFCCCGEEOKINMrguQkhhOhfB7ZsTUuTgfy9VVhYSFlZGQD+/v74+/urnEgIMZxJO/WhLSMjg6Ym89KrUVFRODs7q5xICNHXVC2MX3/99XzwwQd89NFHODo6UlpaSmlpqaW1kUaj4eabb+a///0vX331Fenp6VxyySXY2dmxdOlSwDyS9vLLL+e2227j119/ZcuWLVx44YXExcUxZ84cNd/ekDLWNYilo6cxwXU0/4w7u9v7uVs78s6U63hs/FLOHz3tqNu2mzp7G7PPTXBbyCn+t+Jk5al2FCGEEEIIIYQQQgiio6MtywNmZGRIK95e2rBhg+W+zBYXQvS3yMhIdDodYG6nvq8ltxj8Du4wkpSUpGIaIUR/0at58pdffhmAWbNmdXn+7bff5pJLLgHgzjvvpKWlheuuu46amhqSkpL45ZdfcHR0tGz/zDPPoNfrWbx4MS0tLZx00km88847lg8g0T03R556XPuNcfJljJPvUbd5LvtHPtz1FxeMns4/Ik85rvP0xraan8lr3MA0zwvwsgk56rYb/97B1pSdnHn+FNw9HY+6rRBCCCGEEEIIIURfsre3JyQkhLy8PGpraykqKrK0Vxc9U19fT1ZWFmD+d42OjlY5kRBiuLOxsSEsLIycnBwaGxspLCxk9OjRascS3bB7925KSkoA8PX1lc9eIYYp1VupH+62rygO5lnjDz74ICUlJbS2trJ69WpiY2O7HMfGxobly5dTVVVFc3Mz3333nfzQUkGbsYN/bv2Uf2x6h6q2hi6v/VGW0eW/x6vV2MFnBevYUr2z2/sYlQ5+LnmeHQ1r+av8g6Mfv6WdB275iM/e/Zu3X1jVq6xCCCGEEEL0GWUQ3YQQQvS7A699SSve47dp0ybLjPtJkyah16s6R0gIMUJIO/Wh6eDZ4vu6twghhhdVC+NieNlcvZOfS7ayrnI73+/Z3OW1O6NPZ4ZnJHdGn96rc7yT/wdPZH3HtRvfoLqtsVv7aNEz2n4CGjSEOiYcdVsrgx4ffxcAgkKlvboQQgghhBBCCCEGXlRUlKUTYkZGhrTiPQ6dnZ2kpKQAoNVqiY+PVzmREGKkiIiIsAzEycrKkp/hQ0BdXV2XDiMHDm4QQgwvMkxS9JkYlwDCHH0oaqrixe0/U9/ezI2RCwCY4jmGKZ5jenzMmvZGPtr5N7EuAcz0jsbZyg4AG60Bg7Z7X74ajYZzAv+NUelArzUcdVudTstLH11LZXk9/oHuh90m5dc0XrvrI2aeO5mld/Wu0C+EEEIIIUR3aWS2thBCjBjW1taMGTOGrKwsmpqa2LlzJ6GhoWrHGlIyMjJobm4GzAMNDlyWUQgh+pPBYGDMmDFkZmbS3NwsP8OHgI0bN1o6jMTHx0uHESGGMZkxLvqMk5UtH027CQcrGwDWVe3o9TFfz/2Vd3eu5o4tH7ChMo/zAqfwauKVfDrjZst5ukOj0RyzKL6Pja2BUUEeR2yV8vkzP7Iro4j3/vUFRqOM9hNCCCGEEEIIIUTfk3bqx09RFDZs2GB5nJiYqGIaIcRIdOCM44yM3i0vKvpXR0cHmzebO+BKhxEhhj8pjIs+d3/cOczzHcvdvWybDhDi4A2AFg03bHqTd3auZoJbMN42zr0+9vGoKqllwSWzcPF0YtE1c9Hp5FtICCGEEEIIIYQQfS88PByDwTzIPysri87OTpUTDR179uyhuLgYAB8fHwICAlROJIQYaQ7+GW40GlVOJI5k27ZttLS0AOZBaQ4ODionEkL0J+kHIfrcZI9wJnuE98mxzgmczDiX0Vy87kVMipGSlpo+Oe7xePuBz/jk8W9JmDeWTwtfVC2HEEIIIYQYgRTFfFPbYMgghBAjhJWVFVFRUWzdupW2tjZyc3OJjIxUO9aQcPBs8SN1BRRCiP5iZWVFREQEaWlptLa2kpeXx5gxPV9qVPQvRVFITk62PJYOI0IMfzLdVQx64U4+vJBwKdeEz+X6MSerliNjbQ4Amet73yJeCCGEEEIIIYQQ4liknXrPNTY2WtoW29radvk3FEKIgSTt1Ae/Xbt2UVFRAcCoUaPw9/dXOZEQor/JjHExJEx0C2GiW0iX55o627DXWw9YhuufuZivX/yZE85OGrBzCiGEEEIIIYQQYuQKDg7Gzs6O5uZmcnJyaG9vt7TmFYe3adMmTCYTAJMmTcLKykrlREKIkSo0NBRra2va2trIzs6ms7MTvV5KMoPJgbPFk5Lkur8QI4HMGBdD0jNZP3Diqod4LOObATtncGwAt7x8BZPmxA3YOYUQQgghhADQKIPnJoQQYuDodDqio6MB6OzsJDs7W+VEg5vRaCQlJQUAjUZDfHy8yomEECOZXq8nKioKgPb2dnbskE6kg0l1dTU5OeYusY6Ojpb/V0KI4U0K42JI+rvC/Ifg2oqcPj+20Whi/Zoc9hRWHfb1lF/T+PTJ72mqb+nzcwshhBBCCCGEEEIcSNqpd19mZiaNjY0AREZG4uzsrHIiIcRIJ+3UB6+NGzda7ickJKDT6VRMI4QYKNK3QwxJd8ecweeFyZwZkNDnx/707T959+XfsLGx4qMVt2PvaGN5rbainvsWPYHJpFBf1cCVj5zf5+cXQgghhBBCCCGE2CcwMBAnJyfq6+vJy8ujubkZOzs7tWMNShs2bLDcT0xMVDGJEEKYBQcHY2trS0tLC9u3b5clMQaJtrY2tmzZAphn9k+aNEnlREKIgSIzxsWQFO8eyqMTlpLkEd7nx+7oMAJgNJkwKV17RdrYGXBwtQfAc5Rbn59bCCGEEEKIw1IG0U0IIcSA0mg0llnjJpOJzMxMlRMNTsXFxRQVFQHg5eVFUFCQyomEEMK8JMa+Ft0dHR3STn2Q2Lp1K21tbQDExcXJgDMhRhCZMS76VEVrPW7WDug0Q2/MhdFkQlFg6RUnMCrIndGhXjg62XbZxsbehjdSH6d8dxVh4+UPLCGEEEIIIYQQQvS/2NhY1q5dC5jbqcva2Yc6eLa4RqNRMY0QQuwXGxvL5s2bAfPP8APbq4uBpyhKl8+MpKQkFdMIIQaaFMZFn3kz91dez1vFRLcQXkq4Uu04PVJSVc+y/3yE0aTw7j1LOOmUcUfc1tnDEWcPxwFMJ4QQQgghRjqNyXxT22DIIIQQI5GPjw/u7u5UVVVRUFBAfX09Tk5OascaNJqamizrr9vY2DB27FiVEwkhxH5BQUHY29vT1NTEjh07aGtrw9raWu1YI1Zubi5VVVUAjB49Gm9vb5UTCSEG0tCb1isGrW21BQBk1u5WOUnPZe4qo6ahhfqmVrbllagdRwghhBBCCCGEEMLiwHbqABkZGSqmGXxSUlIwGs1L402YMAErKyuVEwkhxH5arZbo6GgAjEYjOTk5Kica2ZKTky33Zba4ECOPFMZFn7k5ciGnj0rgv+OXqh2lx6aPDeacWWM5c0YsJ03q+3XLhRBCCCGEEEIIIXojLi7Ocn/f7GhhLjJt2rTJ8jghIUHFNEIIcXgyuGlwqKysJC8vDwAXFxfGjBmjciIhxECTVuqizwQ7eHFPzFm0Gttp7mzDTj902sFYW+m554KT1I4hhBBCCCHE4Sl7b2obDBmEEGKEcnd3x9fXl5KSEoqLi6mqqsLd3V3tWKrLzs6moaEBgIiICFxdXVVOJIQQhwoICMDR0ZGGhgZyc3NpaWnB1tZW7VgjzoGzxRMSEtBqZe6oECONfNeLPlXcXM3CPx5hwe8Ps72+WO04QgghhBBCCCGEEMPGgTMOZda42YYNGyz3ExMTVUwihBBHptFoiImJAcBkMpGdna1yopGntbWVrVu3AmBlZcXEiRNVTiSEUIMUxkWf2tlUTmNnK22mTrY3SGFcCCGEEEIIIYQQoq8cXBhXlJHdyqO0tJTCwkIAPDw8CA4OVjmREEIc2b7COEg7dTVs2bKFjo4OAMaNG4eNjY3KiYQQapDCuOhTSe7hXBYym6WjZzDHZ1yfHFNRFJo62/rkWN1R29jC7vLaATufEEIIIYQQx6JRBs9NCCGEepycnAgKCgLM66SWlZWpnEhdB88W12g0KqYRQoij8/f3x8XFBYD8/HyamprUDTSCmEymLp8ZSUlJKqYRQqhJCuOiT+m1Oq4Kn8tNEadgo7Pqk2P+39ZPOHHVQ7yV93ufHO9oahqaOf3etzjj/97m15Qd/X4+IYQQQgghhrM1a9Zw2mmn4efnh0aj4euvv7a81tHRwV133UVcXBz29vb4+flx0UUXUVzctfNUW1sbN954Ix4eHtjb27No0SKKioq6bFNTU8OyZctwdnbG2dmZZcuWUVtbOwDvUAghBt6Bs8bT0tJUTKKu5uZmy/u3trZm3Li+maAhhBD95cB26oqikJWVpXKikWP79u2Wvw9CQ0Px8PBQN5AQQjVSGBeD3rrK7QCsrdje7+eqbWyhsaUdgILSmn4/nxBCCCGEEMNZU1MT48aN44UXXjjktebmZjZv3sw///lPNm/ezJdffsn27dtZtGhRl+1uvvlmvvrqKz755BP++usvGhsbWbhwIUaj0bLN0qVLSU1NZcWKFaxYsYLU1FSWLVvW7+9PCCHUEB0djVZrvqSXkZExYtupb9myhc7OTgDGjx+PwWBQOZEQQhybtFNXR3JysuW+zBYXYmTTqx1AiGO5OfJUluf8RLupg8aOVhys+m/tj2Bfdx6+YgFFFbWcP2dCv51HCCGEEEKIHlEU801tPcywYMECFixYcNjXnJ2dWblyZZfnli9fTmJiIoWFhQQGBlJXV8ebb77J+++/z5w5cwD44IMPCAgIYNWqVcyfP5+srCxWrFjB+vXrLRe5Xn/9daZMmUJOTg4RERHH8UaFEGLwsrOzIyQkhNzcXOrq6ti9ezeBgYFqxxpQJpOJjRs3Wh4nJiaqmEYIIbrPx8cHNzc3qqur2bVrFw0NDTg6Oqoda1grKytj165dALi7uxMWFqZuICGEqmTGuBj0TIqJ+o4WsuuL2Vid1+/nW5AUyZULJ2Nr3Tet4IUQQgghhBDdU1dXh0ajsay9mJKSQkdHB/PmzbNs4+fnR2xsLGvXrgVg3bp1ODs7d5n5MXnyZJydnS3bCCHEcDPS26lv376duro6AMLDw3Fzc1M5kRBCdI9Go+nyMzwzM1PFNCPDgbPFExMT0Wg0KqYRQqhNCuNi0JvuGUmUkz/jXIIItvcckHP+uD6LCx/+iF825vRov+qaJp58ZgVffLWpn5IJIYQQQoiRSKMMnhtAfX19l1tbW1uv32Nrayt33303S5cuxcnJCYDS0lIMBgOurq5dtvX29qa0tNSyjZeX1yHH8/LysmwjhBDDTWRkJHq9uRFkZmYmJpNJ5UQDa8OGDZb7MltcCDHUSDv1gdPc3GwZQGZtbc24ceNUTiSEUJsUxsWg52njxLtTr8deb2DJ38/w6o5f+v2cy7/8i6yCMl786m8UReHrj9fz+rM/09x09At+n32xkR9+2soLL//Knj2yRrkQQgghhBieAgICcHZ2ttweeeSRXh2vo6ODJUuWYDKZeOmll465vaIoXWZ6HG7Wx8HbCCHEcGJtbc2YMWMA80X//Px8lRMNnPLycnbu3AmAm5sboaGhKicSQoie8fLywtPTPAFs9+7dlg4You+lpKTQ2dkJwP+zd9/RUZxXA4d/s31XvQsJJIGQkJAEiI6NDdgYl7jH3XGJe49jJ07sxI6TL3EcO3HcEvcWl8S94kIzvYqqAkIN9d612r7z/bGwINOxYCW4zzl72J2dmffOAlvmzr3vuHHjMBqNAY5ICBFokhgXg0Z+ZyUAm9p3HPWxLpkxBotRz09njKF0Wz0v/P0bPnp7JV99tO6A22VnJaLRKAwZEkZkZNBRj1MIIYQQQohA2HUCb9ftwQcfPOJ9uVwuLrvsMioqKpg/f76/Whx8czA6nU7a2/tedNrU1ERcXJx/ncbGxr3229zc7F9HCCGOR3u24i0oKAhgJMfWD6vF5SIoIcRgJFXjR5/H42Hdut3n86XDiBACJDEuBpG/jL2K8xIn8qvM84/6WDf+ZArLnr+La8+cSFuwFeeV4B6pMjJjyAG3O3laGp9//Av+89rNmM2Gox6nEEIIIYQ4QagD6AaEhob2uR1p5cWupHhJSQkLFiwgKiqqz/MTJkxAr9czf/58/7L6+noKCgo46aSTAJg2bRqdnZ19EiVr1qyhs7PTv44QQhyP0tLS/O+/27Zt81fEHc9sNhtbtmwBwGAwMG7cuMAGJIQQR2jPi5skMX50bNu2je7ubgDS09OJjIwMcERCiIFAF+gAhDhUU6PTmRqdftTHKahooMtqZ1pWMoqi8Hz1d1izXUTkBjF+yr7bc61fXcYbzy/gtHPGcPFV0456jEIIIYQQQgwGPT09lJaW+h9XVFSwadMmIiMjSUhI4JJLLmHDhg189dVXeDwe/5zgkZGRGAwGwsLCuPHGG7n//vuJiooiMjKSX/3qV+Tk5DB79mwAMjMzOeuss7j55pt56aWXALjllls499xzGTVq1LE/aCGEOEZ0Oh2ZmZls2rQJh8NBSUkJmZmZgQ7rqNq0aRMulwuAsWPHSktcIcSgFRUVRXx8PA0NDdTV1dHW1iaJ2362Zs0a//0pU6YEMBIhxEAiFeNC7KG0toXrH/svdz/zKW9+u461W6uYGDECgIlRu5PiHo+Xb99czLJPfFUp/31tCSVb63jtmfn73K8QQgghhBAnory8PHJzc8nNzQXgvvvuIzc3l0ceeYSamhq++OILampqGDduHEOGDPHfVq5c6d/HP//5Ty688EIuu+wyTj75ZCwWC19++SVarda/zrvvvktOTg5z5sxhzpw5jBkzhrfffvuYH68QQhxrJ1I7da/XKy1xhRDHFWmnfvTU1dVRXV0NQExMDMOHDw9wREKIgUIqxoXYg6qqu7pD8q9PVqACf73lHL477VTC9bvnDP/kre95+Zdvo3F6eGrRw5x14QTKtzcy+9yxAYlbCCGEEEIc3xTVdwu0w41h5syZqOr+NzrQc7uYTCaee+45nnvuuf2uExkZyTvvvHN4wQkhxHFg+PDhBAUFYbVaKS4uxuFwHLdV1KWlpbS3twMwYsQIoqOjAxyREEL8ONnZ2SxcuBDwJcZPOeWUAEd0/PhhtbiiKAGMRggxkEjFuBB7SBsaw6sPXMavr5jpT5C73B4iDMH+D8+lm8t4fNUW2i/MgiADIRFBzP7JWD5Z8iB3/PqcwAUvhBBCCCGEEEKIE4pGo2H06NEAeDwetm3bFuCIjp61a9f670u1uBDieBAeHk5iYiIAjY2NtLS0BDii40NPT4+/i4rZbGbMmDEBjkgIMZBIxbgQP5CblkhuWiJpQ2PotNqYlTuyz/M7GnxXJ6sGHQ9/8SuSMhIDEaYQQgghhBBCCCEEOTk5/hbjBQUFjB17/HWza2lpoaysDPAlktLS0gIckRBC9I+srCxqa2sB33v4zJkzAxvQcSAvLw+v1wvA+PHj0ev1AY5ICDGQSGJciP2YMGroPpdfOnMsdoeL+KhQpp+UeYyjEkIIIYQQJyRV9d0CbSDEIIQQoo+hQ4cSFhZGZ2cnZWVlWK1WgoKCDr7hILJntfikSZPQaKQJphDi+JCVlcW8efMAXzv1GTNmSNvvH8HtdpOXlweAoihMmjQpwBEJIQYa+RYpxGEyG/Xccv40zj85a7/reLxeHC73MYzKp8fVxjd1T5HX+ukxH1sIIYQQQgghhBDHnqIoZGdnA6CqKkVFRQGOqH85HA42b94MgF6vJzc3N8ARCSFE/wkNDSUpKQnwdcdoamoKcESDW2FhIVarFYDMzEzCwsICHJEQYqCRxLgQO62eu4GPn/kGh815RNurqsr/nvyCJ25/lYseeoMZ9/ybtVur+jnKA1vX9gn5HfNZ1Pgy7c66Yzq2EEIIIYQ4ehR14NyEEEIMPLsS44B/XtXjxaZNm3A6fedqcnJyMJvNAY5ICCH6V1bW7gKs4+09/FhSVZU1a9b4H0+ZMiWA0QghBipJjItBp6a3lZXN2/Co3n7bZ31FE3+45J+8/Nv3+OS5b49oH+X5VbzxyId89+kaalu7cLk95G2rxm5zUrK1zj+vydE0zJKNgoYIQwLBuqijPp4QQgghhBBCCCECLy4ujujoaACqqqro7OwMcET9Q1VV//zpAJMnTw5gNEIIcXSMHj3a3z69sLAQVaYvOiI1NTXU19cDEB8fz7BhwwIckRBiIJLEuBhUelx2rln5LPdteIt3KpYecF1VVfF4Di0ZbQ42YQ42ARCdGHlEscUnxxA7LApDr4sLx4zkJ1Mzuey0cdx3w2vc9bOXePmp7/baZltxPb+4/z3++8Gafezx8I0MmcovMj7ixtSX0WuM/bJPIYQQQgghhBBCDGx7tlOH46fisKysjNbWVgBSUlKIi4sLcERCCNH/goODSUlJAaC9vd2f3BWH54fV4jJXuxBiX3SBDkCIw+FRvbi9HgAcHtd+1+vssnHbnW/R1W3jmX9cxcjUA/9wCo8J5bXNT9DR3EXq2OQjii0ozMIbhX/H7XRjCjL5lzfUtQNQW9261zb/+2ANW/Kr2ZJfzYXn5WI2G45o7D0ZNNJSTAghhBDiuKPuvAXaQIhBCCHEPuXk5LB48WLAlxg/+eSTAxtQP1i7dq3/vlSLCyGOZ1lZWVRUVAC+qvGEhIQARzS4dHZ2UlRUBEBQUFCfi8WEEGJPUjEuBpUwg4VXptzOw9mXcH3qrP2uV17eRENjJ729TjZuOrR5vqMSIo44Kb5Lb5eN537xFq8//L6/Wv2x56/lqptmcOFNp9DaZe2z/qwZGZhMemacMgqTSf+jxhZCCCGEEEIIIcSJKzIy0p9IaWhooKWlJcAR/ThtbW2UlJQAEBYWxqhRowIckRBCHD2ZmZloNL50jbRTP3x5eXn+12zChAnodFITKoTYN3l3EINORlgiyUEx/KXgI1xeDw9l/ZRgvYkulw0NCsF6E2NyhvHTiybQ0WFjzhnH7uqwb99cwoJ3lwMw5Zxcsqalk5EzlBpnL7c8+wkWo57PHvs5UaFBAMw4NYMZp2YclVi8qocmezlRxmHoNaaDbyCEEEIIIYQQQohBLTs7m7q6OsBXNT5z5szABvQj7Dm3+MSJE/0JIyGEOB5ZLBZGjBhBaWkpnZ2d1NTUyBzZh8jlcrF+/XoANBoNEydODHBEQoiBTL5RikFpVUsx39VvZlFjAYubCinuquMn3/+Fc5c8RrW1Ba1Ww123z+b3D55HWOixay0+5pQMjGYDscOiGDZqd7ub2uZOAHodLjp77McklgUNL/Cfinv4347fHpPxhBBCCCHE0aOoA+cmhBBi4PrhPOODteLQ6XSyceNGAHQ6HePHjw9wREIIcfRlZWX57xcWFgYwksElPz8fm80G+F7DkJCQAEckhBjIpGJcDEo54ckkmCNwe72MjxzBprYKXKoHl8dDpbWZYUHR/nXtHhd/LviQbpedR3IuxaN6+VP+h8SaQnkw62L0mv77bzBqUiovFT9FdHgwer3Wv/zy03JRVUiIDmVEQlS/jXcgHc5635+u+mMynhBCCCGEEEIIIQIrJCSElJQUduzYQWtrKw0NDQwZMiTQYR22zZs343A4AF+y32KxBDgiIYQ4+jIyMvjqq6/weDwUFhYyZ84c6ZZxEKqqsmbNGv/jKVOmBDAaIcRgIIlxMSjFmEL55NQH/I+jh4RQ09uKXqNjWkzfOac2tJWzoCEfgIUN+dg8TvLaygA4f+gkxkUM77e4nvtkOW99m8epY0fwz7su8C83GXRcf/akfhvnUJw55B62dHzHyJCpx3RcIYQQQgghhBBCBE52djY7duwAfFV0gy0xrqpqnzbqkuQQQpwoTCYTI0eOpLi4mJ6eHqqqqkhJSQl0WAPajh07aGpqAmDo0KEkJiYGOCIhxEAnlxuJQUlVVX678R1OW/AoSxoLMWh03JJ2Bj9PnYVW6fvPOjs8ibSQIQwxRTAtOp3pMRlEG0NJskSzrGkrTfbOfotrY0ktAJtL6/ptn0cqzBDHKbHXMsScHuhQhBBCCCHEj+VVB85NCCHEgJaZmemvMCwsLBx07dQrKipobm4GICkpifj4+ABHJIQQx460Uz88Ui0uhDhckhgXg1Kvx8HipkJ6PQ7mN2w54LqhejNvn3QPn854gGFB0aSGxPPZqQ/QaO/g3R3L+Ev+xzg8rn6J68GrT+eC6dk8dss5AHz31hJe+s17dLX1HNL2Ho+Xgo2VdHfZ+iUeIYQQQgghhBBCnFgsFgupqakAdHV1UVVVFeCIDs/atWv99ydPnhzASIQQ4thLT09Hp/M1+i0qKsLr9QY4ooGrvb2d4uJiwDeVSGZmZoAjEkIMBpIYF4NSkM7ErSPnMDY8matTTjns7bWKhiHmCADWtJVw57pX+iWu9GExPHLdGUwdnUxtWSNP3fYqnzz7DR8/880hbf/qM/O4/6bXuftnLw26K7qFEEIIIcRRpA6gmxBCiAEvJyfHfz8/Pz+AkRyejo4Otm/fDviSHBkZGQGOSAghji2j0Uh6uq8DaG9vLxUVFQGOaODa80KqiRMnotVqAxiNEGKwkMS4GLR+njqLl6bcRmbY0MPeVlEU3ph6F9lhSQDs6Gnm3R3L+KR6Tb8lpMNjQomID8MTbCAlJ+mQtmlr6Qago92K90e0qXR57XhVzxFvL4QQQgghhBBCiMFr1KhRfSoOPZ7BcY5g3bp1/vMykuQQQpyopJ36wTmdTjZu3AiAVqtlwoQJAY5ICDFYSGJcHDd63Q7aHIfWshzArDPwpzGXc83wGVyaPI3nir/miaLPWNdW1i/xBIWaOev5a2i/MJt/b9mG5xDa3tz+63O48Z4zeOKl69Fqj+y/Z1n3Wp7Zdgmvl92Gy+s4on0IIYQQQgghhBBi8DIYDIwaNQoAm81GeXl5gCM6OJfLxYYNGwBJcgghTmxpaWno9XoAtm7dOmgubjqWNm/ejMPhO/edk5NDUFBQgCMSQgwWkhgXx4V2Zw8XLX2Ccxc/xpqW7Ye8XYIlkjvTz2JqdDoaFPQaHXGmMP/zLq+bbZ21uL1H9uWjrKENgMrGdpyug+8jPCKIy66bTvroxCMaD6DKuhkvHtqcNfS4W494P0IIIYQQYuBQAEUdALdAvxBCCCEOWXZ2tv9+QUFBACM5NPn5+djtdsBXLSlJDiHEiUqv1/svbrLb7YPi4qZjSVVV1qxZ4388ZcqUAEYjhBhsdIEOQIj+0GjvpNPVC0BxVz1TotMPa/uxESl8cuoD6DQaoo2h/uUPbHybVS3bmR2fw5/HXnXYcd110XTCg81MyhiG2ag/7O2PxMSoi+j1dBJjTCFcP+SYjCmEEEIIIYQQQoiBZeTIkZhMJux2O9u2bcPlcvkrEAcaVVX7zBU7efLkAEYjhBCBl52d7b+oqaCggLS0tABHNHCUlZXR2uorCEtOTiY+Pj7AEQkhBhNJjIvjwqiQBO7POI8Geyc/TZp6RPuIN4fvtaym1/cBW2X1/elVvWzvrifZEoNZZzjoPuMiQ7j/8plHFM+RCtFH85PEXwHg8PRi0JhRFKntEUIIIYQQQgghTiQ6nY6MjAw2bdqE0+lk+/btfeatHUiqqqpobGwEIDExkcTEI++kJ4QQx4PU1FSMRiMOh4Nt27bhdrvR6SSdA0i1uBDiR5FW6uK4oCgKlyafxN2jziZIZ+y3/f513M+4fsQs/m/sFQA8W/w11696nlvWvthvYxwtG9u+4pniS/hf5W9QVTXQ4QghhBBCiB9DVQfOTQghxKCRk5Pjvz+Q26nvWS0uSQ4hhNh9cROA0+mktLQ0wBENDC0tLf7XIiwszN9yXgghDpUkxoU4gJEh8dyWNofkoBhgdwX5jp4m3q1Yut+Es9vrwep29Hs8leVNfP1JHtYe+0HX3WHdCKjU9BbiUV39HosQQgghhBBCCCEGtpSUFP9c3SUlJf45vAeSzs5Otm7dCkBwcDCjR48OcERCCDEwZGdn++8XFhYGMJKB44fTbmg0kuISQhweedcQ4jD8OvMCTooehUv18Nz2b9jQVg7snAurtZTtXXVY3XZ+uuzvzFn0J9a0lBz2GL12JwvXl9De3dtnucft4Zc3vMYzf/mSF//x7UH3c0rstWSGzuSchPvRaQ7e9l0IIYQQQgghhBDHF41G42+f7vF42LZtW4Aj2lteXp6/8GDChAlotdoARySEEAPD8OHDMZvNABQXF+N0OgMcUWDZ7XY2bdoEgF6vJzc3N7ABCSEGJUmMC3EY4szhXD9iFlpFg1lrINESBcC8+s3ck/ca1696nvVt5TTaO/CoXrZ0VB72GA+/9i0PvPgVt/79o75PKApGg28eGbP54InuaGMy5w39DVnhpx12DEIIIYQQYmBR1IFzE0IIMbgM5HbqbrebDRs2AL4k/oQJEwIckRBCDBxarZbMzEwAXC4XJSWHX4R1PNm4cSMul68z6pgxY/wXDQghxOHQBToAIY6FVc3FtDq7OTthPFrlx10PYrNraKwLJ1hnRIceAJfqBsCLSqI5krvSz6a0u54kSzQurxu95tD/qzldvn053Z4+y7VaDc+/eyslW+sZP3UEW/KrGTIknJjokB91PEIIIYQQQgghhDh+JSYmEh4eTkdHB+Xl5VitVn979UArKCigt9fXMW/06NGEhMg5DiGE2FNWVpb/AqLCwkJ/F5ATjdfr7dNGfcqUKQGMRggxmEliXBz3trRX8ssNbwLQYu/momGTCTP0/QGoqiqlPQ0kmiOx6IwH3l9LAy43tLsdVHZ1EG0O4pyE8Vi0RiIMwaSGxDM8OJbzl/yNb+s3kd9Rya9GX7DXfjqau5j/9jLGzRxN2vjh/uX/d9PZLN5YxpTRSXttExUTSlRMKB98tJYXXv6eoCAjH7x7OxbLgWMWQgghhBCDnLrzFmgDIQYhhBCHRVEUsrOzWb58OaqqUlhYyOTJkwMdlm9auh/MFSuEEKKvlJQUgoKCsFqtlJSU4HA4MBpPvHPBJSUldHR0AJCamkpMTExgAxJCDFqSGBfHvW1dtf77b5R/z4ul8xgfMYKHsi9m6M5W6K+VLeTVsoUMs0Tx1PjruX3dKxg0Wl6ZcjtRxr5XK18xagz11m5izEGMj00AQKNoOC1+d2syFbB7fHO+2Dz7nvvl3/f9hyUfrcEcYuLj+pfQan2V7OHBZi48JfuAx9TZaQPAbnfhcnkOuK4QQgghhBBCCCFObLsS4+Cr0h4ISeiamhrq6+sBGDJkCEOHDg1wREIIMfBoNBpGjx7NunXrcLvdFBcXM2bMmECHdcytWbPGf38gfIYJIQYvSYyL496ZQ8byRc06etwOGuztAGxoL+f1soU8knMZANW9rQA02jvJayujxdEFwJaOSmbF9U1ShxiMPDL1wPN2axUNr0y5jU3tOzgjfuw+14mMDwcgPCYUjUY5rGO65uqTiI4OJnVELGFhlsPaVgghhBBCCCGEECeWuLg4YmJiaG5uprq6mo6ODsLDwwMa0w+rxRXl8M6NCCHEiSIrK4t169YBvnbqJ1pivLGxkYqKCgAiIyNJS0sLcERCiMFMEuPiuBdmCOKdk38BwAeVK3mjfBEdTisTIlP969w96mwSzBFMjEwlPTSBda2lGDQ6pkWnH/Z45T2NODwuMsOGsqGtgtfKFnJD6mmE6M191rv5r1dy8gWTSMkaetg//kwmPRddMOGg6xV1LmZx4yvkhJ/FKbHXHNYYQgghhBBi4FBUFUUNfB/zgRCDEEKII5OTk8OiRYsAX9X49OnTAxZLd3c3RUVFAFgsFrKzD9w5TwghTmRJSUmEhITQ3d1NaWkpNpsNs9l88A2PE3IhlRCiP0liXJxQLks+iUuSpmLzuAjaYy7xaGMot6bN8T9+bNzVR7T/ku56rl35HCoqD2RewJNbPwcgWGfixpGn91lXq9OSM33UEY1zqDa0fUGPu411rR9JYlwIIYQQQgghhDiBZWdnD5jEeF5eHl6vF4Dx48ej08kpSiGE2B9FUcjKymL16tV4vV62bdtGbm5uoMM6Jnp7e9myZQsABoOBcePGBTYgIcSgpwl0AEIcaxpF0ycp3p9sbicqvioanaIlwhAMgNPrpttlOypjAjgdLn59yxtcffY/KN1W718+JeoSIgxDCWmYwS/ue5eirXVHLQYhhBBCCCGEEEIMXBERESQmJgK+trTNzc0BicPj8bB+/XrAl+yZNGlSQOIQQojBJCsry3+/sLAwgJEcWxs2bMDtdgOQm5uL0Xh0zusLIU4ckhgXoh+NiUjmidxreDTnMs4dOoFPT/01o0OH8lbFYn6z6Z2jNm5leTNb1u+gpamLFYuKeG3uGi555C2aqxK4LukF/vu4iy0FNbz3/uqjFoMQQgghhDiKvAPoJoQQYtDas2V5QUFBQGIoLCzEarUCkJmZSWhoaEDiEEKIwSQxMZHw8HAAysvL/e+jxzOv1+ufWx18bdSFEOLHksS4EP3s1NjRnJWQS6fDweamRrw752F0elxHbcwRaXHMOW8cWeOSOP3ccbz4+Soq6tt4Z9569Hots2ZkYjLpOW1m5lGLQQghhBBCCCGEEANbVlaWf27WgoIC1J3nLI6lH84VK4QQ4uAURWH06NEAqKrK1q1bAxzR0bd161a6uroASE9PJzIyMsARCSGOBzKBjxBHgcfr5ZxP/0OdtYvrssZwUdYUpsdk9Mu+dxTVsHruBk674mRih0UBvvnK73/0Iv86V87O5ds127h4Rg6KovDwQ+f3y9hCCCGEEEIIIYQYvEJCQkhJSaGiooK2tjbq6ur87dWPhdraWmprawGIi4sjKSnpmI0thBCDXXZ2NitXrgR83TcmTpwY4IiOrjVr1vjvT5kyJYCRCCGOJ5IYF+Io8KLS4fDNKd7tcHPB0P6bL+v3FzxJc00bGxYW8MS3D+1znfsum8F9l83wP7a6O/hf5W/xeJ1ckfI4ofrYfotHCCGEEEIcfYqqogSgqm9fcQghhBjcsrOzqaioAHxV48cyMf7DavFd1etCCCEOLj4+nsjISNra2tixYwfd3d2EhIQEOqyjoq6ujurqagBiYmIYPnx4gCMSQhwvpJW6EEeBXqPl/Z9cwe8mz+SRqaf1676jhkQAEJ0Q4V/28ZIt3PPsp2ytbNznNjW9BbQ6Kulw1bOjZ2O/xiOEEEIIIYQQQojBIzMzE43Gd0qwsLAQr9d7TMa1Wq0UFhYCYDabycnJOSbjCiHE8UJRFLKysvyPi4qKAhjN0SUXUgkhjhapGBfiKBkTE8+YmPh+3+/jX/+W0k2VZExOBcBmd/LXdxeiqqDVaPjnXRfstc3w4AmkhUzD7XWRFnpSn+c8Hi9fzt1EUJCR2aeNli8ZQgghhBBCCCHEccxsNpOWlkZxcTHd3d1UVVWRkpJy1Mddv349Ho8HgNzcXPR6/VEfUwghjjfZ2dksW7YM8F3cdDy2GO/p6aGgoAAAk8nE2LFjAxyREOJ4IhXjQgwy5mATOdNHoTfo8HpV7rj7P2h7vCgKzModuc9tDBoz5yX+Fpdq542y22m0l/mfm7+wkGeen89jf/uKgsLaY3UYQgghhBDicKgD6CaEEGLQy87O9t/Pz88/6uN5PB7y8vIAX8XjpEn9N+WcEEKcSGJjY4mJiQGgurqazs7OAEfU//Ly8vwXUo0fP14upBJC9CtJjAsxiDmdbqqq27C0uLloxEjOPzlrv+s2O3ZQ01tAj7uV7V0r/Mujo4IB0Ok0hIWZj3rMQgghhBBCCCGECKz09HR/omHr1q3+BMTRsm3bFxzRHAAA0nxJREFUNrq7uwEYNWoU4eHhR3U8IYQ4nu3ZTn3XFBXHC7mQSghxtEliXIhBzGTS88eHL+SiCyZw0w0zDrhunCmVnLA5xGoz+O5pK/9+8mu8Xi8hkWZ+evFYXnn+WpKGRR2jyIUQQgghxGFR1YFzE0IIMegZDAZGjRoFgM1mo6ys7CBb/Dhr1qzx3588efJRHUsIIY53e3b9ON4S44WFhVitVgAyMjLkQiohRL+TxLgQA9SrpQu4buVzbG7fccD1pp+czj13ziYuNvSA62kULWcn/hJ1wU9Y910Dq3d8zauFv+T+d5/ljfVb+d1v/tOP0QshhBBCCCGEEGIg2zOxsmsu16Ohvr6e6upqAGJiYo7JfOZCCHE8i4qKIj4+HoC6ujra29sDHFH/UFW1z4VUx+P86UKIwJPEuBADkM3t5NWyhRR31/G/yhV9nlvcWMiM+Q9z//o3UY+gYmfqqaMIDjGReX01HdrtjDmlBABrr6NfYhdCCCGEEEIIIcTAN3LkSEwmE+Brde5yuY7KOGvXrvXfnzx5MoqiHJVxhBDiRLJnO/WjeXHTsVRTU0NdXR0A8fHxJCUlBTgiIcTxSBLjQgxAZp2BnySMJ0xnJlhnIq91d0uzRY35OLxuVrQU0+O2H/a+M3OG8fHiB5ky7Cdo0DIiNIOLzmjgqWeu6s9DEEIIIYQQ/UhRB85NCCHE8UGr1TJ69GgAXC4XxcXF/T5Gb28v+fn5ABiNRsaMGdPvYwghxInoeJxn/IfV4nIhlRDiaJDEuBAD1MM5l3LhsCl8WZvHPXmvsaalhHcrlnJB4iQmRqZyR9qZhOjNR7z/0+Jv4da0t2gz5mHI3sI8758o717XZ52N3xey9ttNR1SZLoQQQgghhBBCiIHtaLdT37BhAx6PB4Dc3FwMBkO/jyGEECeiiIgIEhMTAWhsbKSlpSXAEf04XV1dFBUVAWCxWPp8PgkhRH+SxLgQA1iEIQgAi87Ibze+zXPbv+Hz2nU8P+kmrh0x80fv36gNwqINB6DL3ch39c/5nytcuZ3fnvM4D1/0D9Z+u/lHjyWEEEIIIYQQQoiBJTk5meDgYABKS0ux2w+/M93+eL1e1q3bfQH+pEmT+m3fQgghjq+q8XXr1vmLsyZMmIBOpwtwREKI45UkxoUYoDyqlwUNW1BQuHXkGYQbfT9Uowwh/TaGQWPippGvEK5PAMDqbsOjugHQaHe/PWi0Glqbu/B4vP02thBCCCGEOAyqOnBuQgghjhsajcafWPF4PGzdurXf9l1cXExXVxcAaWlpREZG9tu+hRBC7D3P+GDt+ulyuVi/fj3g+1ySC6mEEEeTJMaFGICsbgd/3PIBBZ3VqKhs7arlzal38cKkW7hr1Nn9OpZJG8zIkKkAmHWhKPjmbsmcMpKnFj3ME989xPbKNq466x88eMdb/Tq2EEIIIYQQQgghAisnJ8d/vz/bqa9du9Z/f/Lkyf22XyGEED6hoaEkJSUB0NLSQlNTU4AjOjL5+fnYbDbAl+wPCem/wjAhhPgh6UchxACiqiqrW7azqX0H8xp87cvHhCdz/YhZhBks5EYOPyrjzoj7OSnBucQaR6BRtP7lWdPSAXj/gzwAtubXoKoqiqIc0n5VVcXr8aLVaQ++shBCCCGEEEIIIY65hIQEIiIiaG9vp6Kigp6eHn979SPV2NjIjh07AIiKiiI1NbUfIhVCCPFDWVlZVFVVAb526nFxcQGO6PCoqioXUgkhjimpGBdiAFnQkM8vN7zJWxWLsWiNRBlC+PPYK0kKij6q42oVHSOCJxKs33dbs9vuP4uzL5rAw09cfshJcbvVzi3jf8tFsbeQv7y4P8MVQgghhDjhKN6BcxNCCHF8URSF7OxswJeg6I95avdMckyaNOmQzyUIIYQ4PKNHj/a/xxYWFg66duqVlZU0NjYCkJiYyNChQwMckRDieCeJcSEGEJXdZxpfmHwLX8z8LbGmsIDF0+qoJq/1M6KH6bn39+czeXr6QbdZsnQbn3y2nsptdVRtq8Nhc7JhUf+1YhNCCCGEEEIIIUT/6s926jabjfz8fAAMBgPjxo37UfsTQgixf8HBwaSkpADQ1tZGfX19YAM6TGvWrPHfnzJlSgAjEUKcKKSVuhADyBnxY7FojYTozYToTFRZmxkefOza38wtL+bPa77nsvQcfjnhZP5X+Rus7nYqrZv4adKj+9ymq7Wb2tJGRk0aQXlFM4/++XMA7rlzNlc8cD61pQ2ce9Npx+wYhBBCCACPx8uKlSUkJ0WRnHx0O68EQofdxj3z51La3srDJ8/i7NSDX7wmBjlV9d0CbSDEIIQQot/FxMQQFxdHY2MjNTU1tLe3ExERcUT72rhxIy6XC4Bx48ZhNBr7M1QhhBA/kJWVRUVFBeCrGk9ISAhwRIemvb2d4mJfp9Hg4GBGjx4d4IiEECcCSYwLMYAoisL02Ex29DRx2fJ/4Fa9JFmisXtcPD3x54w4ykny1wvXU2ft5t+b1/DLCSdj0oRgpR2zNmSf67tdbm6f/Dta6tq55vcXMfum0zEYtDidHmJiQrnoj5ce1XiFEEKI/Xn33ZW8+dZyDAYdH314F8HBpkCH1C8cHjdur5dZ771Gu90OwOOrlkhiXAghhBA/WnZ2tr+dbUFBAaeccor/OVVVcXi8eFQVrwoaBbSKglGr6dMm3ev1sm7dOv9jmStWCCGOvszMTObOneufDmP27NmDYgqLdevW+Vu/T5o0Ca1WG+CIhBAnAkmMCzEAdbh6cau+tupVvS0ALG/a6k+Mb2grZ2tnDRcOm0yQrv9O9F+eaWJYdDEp5jMAuGr432mwbWeYJWef67tdHjpbuwFoqWsnPi6Mt1+/BavVwfDhMf0WlxBCCHG4vP6qVvW4KXAd8+pzdDkdey3XajS4PB70chJBCCGEED9CdnY2CxcuBKCweDvDx06kw+Gizeaiw+7CvY8vVTpFIdykJ9KsJ9yop7O+mo6ODgBSU1OJioo6locghBAnJIvFQmpqKqWlpXR2dlJbWzvg5+p2Op1s2LABAK1Wy4QJEwIckRDiRCGJcSEGoLHhyfxpzOV0umwUdlTR4ujmzCHjcHs92DxO7s57DY/qpdHeyX2Z5/XZtsrazEOb3iPeHMFj467CoDn0/+aNng9ICOsk3LgMl/cSltU0kBGZik5j2Of6JouRv339IAUrt3P2DTMBiI0N3ee6XVY7Nz/5IV1WOy/c/1NS4iMPOS4hhBDicP3s6pNIToomOTmKkJDBXy3eabftMykOUN7Rzlv5G7lp3MRjHJU4ptSdt0AbCDEIIYQ4KsLCwkjOzMYTFkN4Uipr6ztQOPBbv1tVabE5abU5fR9V3iCGTplJa2kRkyZJtbgQQhwrWVlZlJaWAr6uHwM9Mb5582YcDt9v3JycHIKCggIckRDiRCGJcSEGIEVRmDNkHACXJk3D6rbz81X/osnRyVPjrydUb6bdaSXauHcSel79Zkp7GijtaaCwo4rcyBGHNKZX9WDRhmPzdJISPI6n1q/g35vXEGIwknfV7Zh0+n1ul3VSOlknHbx9a+GORkprfdXvKwt2SGJcCCHEUaXTaZk1KzPQYfSb7W2tfR4nBAVz/ZgJPL5qCV4g9Adzd9rdLt7YsoGhIWGcl5ZxDCMVQgghxGBU122nqKWb0LEnoXq9KBoNcOjXQ+1aT9FoCE8eScTwdKoNOkJ67CQcJ1PaCCHEQJaRkcFXX32Fx+OhqKiIM888c8C2U1dVlbVr1/ofT5kyJYDRCCFONJIYF2IQqLQ2+1uqb2rfwXsn30ttbxtZYcP2WnfPZYWdNYecGK/uzafVWQlAiC4Gh8cNgNvr7ZfCoAnpiZw9JYNOq50zJ4/qhz0KIYQQJ460yCg0gHfn4zprD+8UbsILTEscxqUZ2X3Wfyt/I39bvQyAjKho0iKjj2m8QgghhBgcHB4vmxs7qem2+5ftSoofqV3bdzndrK5tZ2iIibFxYRi1P26/Qggh9s9kMpGamsr27dvp7u6mqqqK5OTkQIe1T2VlZbS0+M51JycnEx8fH+CIhBAnEkmMCzEIZIQm8rOUU2mwd3DB0ElEGIKJMART0NJIjDmIuKBg/7qpIfEYNDqcXjehejN3rnuFNkcPT+Rew7Cg/Z8UjzamEKyLwuGxkmjJ4tcThjE6Mpac6DjM+6kW36XH6eT97VsYEx3PpPh9t+kx6HX8+aazj+wFEEIIIQY4VVVZV19LpNnMyIi+c2n2upy02Wy8sHEtk4YkcmH6aP82n23fitXl5MrRY9BqNNR2d/HU2hXkxg3hZ9nj/Pto7u31J8V36XE6/fd/WAmQFBoOQJBeT7jJ3G/HKQJHUVWUfcztGog4hBBCHB/quu1saOjA5T267+213XaarA7Gx4eTcBxMcSOEEANVdnY227dvB3zt1AdqYnzPavHJk2XaDSHEsSWJcSEGAY2i4a5RfZPKH5cUcN+SbwjS6Vl2+S1EmS0AxJrC+N/Jv6TdacXucbK+rRyAxU2FXDN8BgBza9fzRNHnnBE/ht/nXAJAkC6c29LewuP18Hntn9nRs4GzE+9jVFjfCrR9eWrDcl4rWI9Oo2Hjz+4i1GA86DZCCCHE8eSLkm38Yv7X6DQavr/6BoaFhgGwYEcZt37zOUF6PV1OB+8WbmZm0nDCTWZW11Xzy4VfAxBsMJAbl8C/1q/m4+JCPi4uZM6INGItvnnWTLq+X9t/npPLNdm5LKoq57yRe7dKPzs1nYVX3kCY0Ui0ReZqE0IIIcRuqqpS3GalqKX72IwHOL0qq+vayYoOIT0yaMC29xVCiMEsPT0dnU6H2+2mqKiIs88+G82P7ALS31pbWykpKQEgLCyMjAyZ+ksIcWxJYlyIQare2gOA1e3C6nL6E+MACZZIEiyR2D0upsdk0uroZnb8GP/z39VvwuF18XX9Bh7KvhiN4vuCpFG0uBUX5T15gEpp1yp6etO4d/FcJsUP5ZmZP9nnj9cok2/sEL0RwwD7siWEEEIcCxUdHYBvCpIOu92fGF9VW4VH9dLldPjXfXnjOs5Pz+T2b7/wL8tvauTeBV8TYfRVUY2KjPbfBxgWGsaHF17B+oZafj5mAsadifIREZH7jSn1AM8JIYQQ4sSkqiqFLd1sb7MGZPzClm5cXi9Z0SGSHBdCiH5mNBpJS0tj69at9Pb2smPHDkaMOLRpNo+VNWvW+O9PmjRpwCXuhRDHP0mMCzFI3ZQ9AZNWx/CwCH+71B8yafX8ffy1ey2/IfU0HB43p8fn8FHVavJay7h71NkMC4rGoDFxevytlHfnMTXmCv62Jp86azefl23ld1NmEmcJ3mt/t4+dwuT4oSSHhmM6SNt1IYQQYjCxu11sb2slKzoW7QF+sDs9bv99q2t3i/Obx06k3W5jdFQsr27Oo8Haw9yy7QTpDXQ4fHN5/vP0c9jcVA9Au93G88NP5eyzJu013qSEoUxK2PeUJeIEoKq+W6ANhBiEEEIcseI2a8CS4rtsb7Oi12gYFbX3+QUhhBA/TlZWFlu3bgV87dQHUmLcbrezefNmAHQ6HePHjw9wREKIE1FAL8dZunQp5513HgkJCSiKwmeffdbneVVVefTRR0lISMBsNjNz5kwKCwv7rONwOLj77ruJjo4mKCiI888/n5qammN4FEIEhkmn56aciZyelHrY246LGM5LU25lUtRIntr2JUubi/i/go/8z0+IvICfJj3KhxVPERX5L0ZEdHJ1xlhizftuxapRFCbFDyV2H0nzw7Fxew1/eP07NpfW/aj9CCGEGJycHhsVPZtweR0HX/kYufKzDzn/w3f5/ZIF+12n3W7jzfyNAIyOjiEuKJjfLZnPFyXbMLo0PDTmFNwrO7kyOpNThibzh+mzKPvHCoKKexjXG8S5I0dxz8RpDFnTSeK7Ncz989wDJuH31LCjmXce/5yKQvn+K4QQQogDq+u2H7P26QdT2NJNXbc90GEIIcRxJz09Hb3eV7i0detWPB5PgCPabdOmTTidvgvJx44di9lsDnBEQogTUUAT41arlbFjx/L888/v8/knnniCp556iueff55169YRHx/PGWecQXf37i/x9957L59++in/+9//WL58OT09PZx77rkD6g1fiIHK5d1d3RZrDO3zXLerhV61HL3WS2J4A/dNOPmotzn7wxvz+GpVEX96a95RHUcIIcTA9H7VH3mv8vd8WvNEoEPxq+7qBGBHZ8d+1+lxOul1uQCVkxKH8a/1q3m3cDO/mP8VF132DHfc9joffrCGL55cwTMnn8VpKalUr9rBsDerSJ3fgV6rJdJs4edDswgv7uX0K07y77u8oJorRt7Lnac8Sm+3ba+xn7ztVd756+c8ctnT/XzkYsBRAe8AuEnBuBBCDEoOj5cNDR2BDqOPDQ0dODzeQIchhBDHFb1ez6hRowBfhXZ5eXmAI/Lxer2sXbvW/3jKlCkBjEYIcSILaGL87LPP5s9//jMXX3zxXs+pqsrTTz/N7373Oy6++GKys7N566236O3t5b333gOgs7OT1157jX/84x/Mnj2b3Nxc3nnnHfLz81mwYP9VPUIIn/TQBB4fdzV3p5/No2MuJ7+lgVPff5mLvngX1RvKyKDzabPGkxV6DtHmIKqszdy3/k1eL1t4VOIZn54IwIRR0iZWCCFORFa3Lwnd6+4IbCB7eOPci7ln4lSeOO3M/a4zLDSMF+ecR3pIJK9uWU9pexsAIU4dGje0t/f6VnQ4KcnznZR46M3bmX7Fydz02OX+/dzylyuY2/oKl9xzln/Z2u+20NHcRdmWKsoLqvcaOy4pus+fQgghhBD7srmxE5d3YF3d5PKqbGnsDHQYQghx3MnKyvLf/2EH3kApKSmhvb0dgBEjRhATExPgiIQQJ6oBO8d4RUUFDQ0NzJkzx7/MaDQyY8YMVq5cya233sr69etxuVx91klISCA7O5uVK1dy5pn7PoHpcDhwOHa36Ozq6jp6ByLEADczLtt//zfLvqOyu5PK7k5+tfQb2uyhrG8ajVm3g3NSK5lbt55a20qc3h6CtA4+rylmRlw2KUExxJvCGRWWiEl75HOM/+H6Odx18XSiQi17PdfV2s3G74sYf3o2IRH7bukuhBBicLs8+RGKu1aRGTrdv6ymdyu1vcWMi5iDUbv780FVVVRUNIqG6t5iljd/ztjwUxkdNvWwxy3bUsX6hQXMvupkIuPC+jyXExtHTmwcLXXtfPTmt0w5ayzD0ofstY+Fv/iEiikeiDGytaKezy64nCCNnk/teWSOjOWth/5LcLCJjIm++d3Kmnv4vriRgsfncvsT5zKvsozrcsaRHtU3wT37ypPIX1FMdEKEf9s93fevn3P+LacxPGvYYR+3EEIIIU4Mdd12agZg23IVqO62k9hjJyHYFOhwhBDiuDFy5EiMRiMOh4Nt27bhdrvR6QKbClqzZo3/vlSLCyECacAmxhsaGgCIi4vrszwuLo7Kykr/OgaDgYiIiL3W2bX9vvz1r3/lj3/8Yz9HLMTgN2vYCApbmwCYX1XmX24I6eTWdS+SFhzB+IhqFAU2tn9MuTWW8vJF/vVywpN4ZcrtANRWtxIWbiE4xIzH42XBoiKio4OZkJuy3/EVRSE6bN9J74cvfopta0sZe2omT3z3UD8crRBCiIEmwjCEqdG7Owk5PTbe2fEgHtVNu6ues4b4PmNsnh5eLP01VncXN4z4E9/UvUG1rZiyns0HTYw7HW5efmkRdruLu++Zg9Gk57fnP0l3u5Wt68r4w3t373O7J299hc1Lt/HFywv5T8GTez1fubWO+BYdnafEYanz8nb8Bn510Wk88NtzATjvksn+db8p287vGlfATB0tHTbunv8VXS4n29tauKBnKAsXFHLbnbPp7Oilo6OXR9//BXq91r99Y1ULth47KaOHotPryJiYeugvshi0FFVFUQNf6TcQYhBCCHHoVFUdMPOK709RczdDgoxHffo2IYQ4Ueh0OjIyMti8eTMOh4PS0lIyMjICFk9TUxMVFRUAREREkJaWFrBYhBAioK3UD8UPvxSrqnrQL8oHW+fBBx+ks7PTf6uu3rstpRAnol9PPAWDZs+3BRVQ0ep8c351ujzEm31fXOJMToaYQKvsXr/e5muHs2DuZm648FluuPBZrD125n6zmcefnMuvfvM+lVUtRxSbx+WbD93t8hzR9kIIIQKv29XGosY32dy+gK/rnqfKWgCAw+GivLwJ9QcJN42iw6jxXTClQctXtS+zvXs9jfZK2pwNOLy9lPdsIT10AgDpIeMPGsOKFdv59JM8vvl6M7+4522WLyumJykWb2QIkfHh+90uItZXSR4eE7LP5//w37u56vRJnK0OpSfXxMddpdz6zef7XPejbYU4FC+OGC2dabsT3g093bz51jKqqlp5642l/O2vX/LSCwv58vMNeHe2Pq2vaOLGCQ9x27RHWPPd5oMerxBCCCFObG12F11Od6DDOKAup5t2uyvQYQghxHFlILVT37NafPLkyXIhlBAioAZsxXh8fDzgqwofMmR3u8qmpiZ/FXl8fDxOp5P29vY+VeNNTU2cdNJJ+9230WjEaDQepciFGLycXjeZSQo1vZ309hgJi+zF7dIS4gxhTkI+QyzxnJNwP2+U34ZLbeG0+KGcFH0DO6zNtDi6mLWzLXv1jmYAOjt6sXbbsVh8/9+0Wg0G/b7fdmrLGlk1dyMzfjqZmMTIvZ7/0yf3s27eFqacPe7oHLwQQoijbnHTW2zpWOh/vLH9W6ZGXcwHjyqUlDRy2WWTue3W0/zP6zR6bh75PG2OWpY0fc72njzWty/godHvMC3qXLrd7eRGnIZFG8rQ3pOoLu/ENcTTp7q6oqKZ/7y+hKYtVXSbDCSP3N2NqKqyhTdeX4pToyUocxh3PHEVC3aU8WlxETeNm0hu3O7voPf9+wbOuvZU0sen8H5RPo+vXsI1WeO4b4qv7XvW1DSypqZx373v4La6IUhDiMFIQXMj/16/lrNS0zg/zXeFfpixb6tQu8d3srq6u4ubLs5hy6Jyzj57LBUVzTgdbl749wK+/HIDL758A11tVtw7T2631Xf009+MEEIIIY5X5e1WFHyXvQ9UClDWbiXSbAh0KEIIcdwYMWIEZrMZm81GcXExLpcLvf7Ip8A8UjabjS1btgBgMBjIzc095jEIIcSeBmxifPjw4cTHxzN//nz/m6XT6WTJkiX87W9/A2DChAno9Xrmz5/PZZddBkB9fT0FBQU88cQTAYtdiMGqoKOKJk8zBiOYdB68CugNHk5P9KDTttLsaKXDWQtoAQ/bOndQ3PU9z0+6qc9+Lrt2OlqthpTUOGKHhHN6fBixMSGEh1kYMiR8n2M/fOnT1O1Mjv/juwf3ej4yPpwzrz21/w9aCCFEv2ho6ODzzzcydWoqY8cm7XOdMH3cXstWt35CXdOpgEqNo5Bm+0hiTLu3D9ZFEKyLYFjQVrb35BFvSkGn6Dkn4UZUVeW9yr9S0r2R7e+NoGFtBFdffRI33rD78+IfT31DUVEdeLwonXZqG7vQhmrpMXoJsmk497xxvP7qEi6+ZBJanZb7F35Dp8NObXcnn13yM/9+DEY942ZkAvB2wSba7XbeyN/gT4zv4rC7GVLgQpti5i8XzeLXi+ezrqmOeRWlnJuajkajYXWtr1uRSasjKTSM7e2t/u2VccF8cOc9AJw0PZ03Xl/KN3M3UVXZSlNTF6ljk7jtn9eiuN3M+VnfscVxTgUGQhvzARCCEEKIQ+Nwe6nptvd5637kmp9SuG4VMy+8jLsff5qmmmpun+2b6/WPb31E9pR9F5o899t7WfzZB2RNmsaf3v64X+NUgZpuO2PcXoy6Ad/cUgghBgWtVktmZiYbNmzA5XKxffv2PlXkx8r69etxu30Xd48bN04KFoUQARfQb5s9PT1s2rSJTZs2AVBRUcGmTZuoqqpCURTuvfdeHnvsMT799FMKCgq4/vrrsVgsXHXVVQCEhYVx4403cv/997Nw4UI2btzIz372M3Jycpg9e3YAj0yIwePzmnWcvuBRnt02l8zQoYwLT2GoJYrHci/D0Wugq8NMVWsCscYRJFnGUtajoKq+duYRRhtRxhDmVZYwt7zY3wI3KMTEtbedxqln+L5sKYrCmJxhJCVF7TeO8OgQtEFewmKCaXFU0WAro7xnA3aP9ei/CEIIIX60Z59bwPsfrOHBhz7cqyX6LgbFvNcy1QM3P5zCmX8px3z6d7xSdjf3v3kvD8+/kbrOSv96M2Mv5e4R/6bx/Wn89rcfsGNHC8Vl1WzrXocHN5HZrSgaLz/syJYxylf1rfQ6MGoVwiItlM3QUDdLT3WKh4sunsSXX/+K62+YAcDEKN/6EyKH0NbWs8/juGviVEZFRvPrKaf0WW6zOWls7EDjBu0OB7dc+xrlC31JcLfXyyub1gPw8PSZJASHYPe4+yTFAV7ZtJ5WWy8AUVHBXHf9KZw+O4sbb57J0KGR/Pr+//Lcf1bS4FHQ6rQIIYQQ4sRy/fXXoygKM2fOPOi6zb2Ova5nGjoynbSx44lPSj4q8R0pFWi2OQIdhhBCHFcC3U7d6/Wybt06/+PJkycf8xiEEOKHAloxnpeXx6xZs/yP77vvPgCuu+463nzzTR544AFsNht33HEH7e3tTJkyhXnz5hESsntux3/+85/odDouu+wybDYbp59+Om+++SZarZwoFOJQfFGzDqvHwac1a7kn4ye8OOVWACq6m9Do3Zi0HuZXNXFLzoNMih/KpvYdbGr3tToL1TuYGjqZa779CIBXzriQOclpe42xsq6Kh5bP47SkETwy9bS9ngc47/WhxHQtZ6ipilfKbvMvD1MSsNEBqoYEy0hOjr6S/M5FNGyKRteewlWXT+3TMlcIIURgDB8ezerVpSQlRe13vrBhQaPRKQb0igmbpwsU8HoUCgzvoBq8AKiqh4iJpSgKfFD5GPeOecm//ab17XyzuQRju5d1N76KTqchdnoSiSc3MnRcG0P+2YDTUEO7I40Ioy/Bfeeds7n44klERlgwmvS88PIiNjo3AOA1Kzz37DxuvmUWJpMel8tD0ysVDHc4WeJZwwpdHi++cgNBFiN/evRTQkLN/PL+s6hfXMcfMk7mpJw0urpshISYUBSFfzz5Ne0dNlAU3B4VUAkpg9YsLWhg/tqtpHiDWd5Tw4Vpmfx749q9XqP4oGCC9LvbiMbEhPDQ7y/wPy4rbQRg6dJtbNlSzd33zCEjM+HH/eUJIYQQ4rjU4XDt1Ub9lj/8NVDhHJACdNhdDA3Z+0JKIYQQRyYlJYWgoCCsVislJSU4HI5jWrG9bds2urq6AEhLSyMqav9FU0IIcawENDE+c+bM/VYUga/K9NFHH+XRRx/d7zomk4nnnnuO55577ihEKMTx78bU03m5dD7nJU7ss3xtWwl6vS9JYTC6cHp8VeLjIlLY0j6GBvsWEsyjKbI+wbUT6vmqaEyfE/l7emfrJiq62nmtYD33jZ9OsKHvek6PmzKbr4quwVHa57mWnkb0Qb6xd/Ruoq56O061FzUFlr09hSHxYcyZnb3PcYu3N/DCy4uYPHEEV10x9fBeGCGEEIflphtnMOeM7P1OmQGQaBnFfRn/RaNoeX7bTfR4W9AqBoZZ0qnqzScn7DTiPOOY1/VPFEUlPmR3S3Vbj52/r11Fxyg9KCrOMA+mJnCsiyfjwjI8AAq0uqr49/abAQ2Tos9lzpBbSEjYHdO1V5/Mu9euxR6lEFIFn6xfT1tnD7976EIUBdxhGjpCNXSO1BJe7KWhvpPamjaKimoBuPKy5/3drC+4aAKff7qeU04dBQosW7q9z/HOmJGBx+PBsawUR5RCW0Udv6j/CnusBs0+Lh745eSTuGnsBEy6/X9F/9OfL+H7RUV89eVGGuo7+ejDtfz+kQsP8rcjjguqOkBaqQ+AGIQQ4gSVkpJCZaWvo86SJUv8FyN+//33TJo0iauvvprNmzfT1NSE2+0mJiGRaedcwCW33Yt+5+/wH7ZSPxLz3n+HT156ls7WFrImT+O2Pz1B9JBEABZ//hHfvPM6jdWV9PZ0Y7IEMTJnHFf+4gHSxvimSvR4PPz36b+x4psvaG9qRG80EjcsiTMv+CkvPPYoAA6Hg8cee4z33nuPqqoqwsLCOPfcc3niiSeIjo7+Ea+iEEKcODQaDZmZmeTl5eF2uykuLmbMmDHHbPw1a9b470+ZMuWYjSuEEAcyYOcYF0IcGyfFjCInPIkPq1axumU7Y8JSKGxt4pSY0XxQsYayjg6cDj0dTrt/m2tH/A2bp5saayGf1vyRECPcPLGBkxP23YrtqowxbG6uZ9awEXslxet6S3mp5AGMOjuKAmPCz2CIOZ3VKwtYs7yI7qoQhl7YQOjQbowWLSZTME63r8WsTg/JP2jP7vF40Wp9s0S8/+EaNm+pZvOWarJGJ/LEP74mOMhIbX07c2Znc8+dZ/TnSymEECc0RVFITj74SUq9xnd1+ilxl7O06V0mxZ5PZ0MOqRYtJw1NByDdkUWDrYxRob6Lmjpaurh50u+oPzcRwo04wrx4zQrWZNAZTXTVBBE6zOpvo64qoChe1rfNJSf8DOJNKVRUNPPZZxuYOTODG86ZxrvvraIzSYs1Scd/3TuoXHAzUZFWWs4eRXtXKABt4zQ8UbOGf0w9k+S50dTWtON2e/zHkre2HIB1a8ux213sCiApKYqxP0nl5+eeRFtjD3l3VKB2gcPhxtSmYo9lr4tD9YrC5ZnZBBn2fZHZLuNykxk7LomeHjvr1pZTU9PKqy9/z403z9xvpb4QQgghjg+5ublYrVZaWloICQlh9OjRAISGhmKz2fj888+Ji4sjPT2dlpYWanZU8NG/n8Zpt3PdA4/0SwxlhZspyd9IbOIw3C4nG5d9z9/uvIEnPv4WRVEo2byBqu3biB6SQFT8EGrLy9i8YgnbN63nuW+XExETy7fvvsGnrzyPRqtl2MhROOw2qku2s3zhPFT1DyiKwsUXX8zXX3+NVqslKyuLHTt28MYbb7BmzRry8vIwm6WyXAghDkV2djZ5eXmAr536sUqM19fXU1VVBUB0dDQjRow4JuMKIcTBSGJcCMGrpQt4v2olGhSi7elsbm7m4pFZ/CP351zwxTtEGjWMjY7vs41RY2GHdQMKGlS8xJn338b1pIRh3Dutmib7Emp6ExhqyUJVVVa1fMCS5rcw6Xevq+JhTPhsRp8xi+GefBIuj8TqclNb285Pzh6LqnWwuvVjokjn5qdGExpsQlVVvB4vn/53Na8+M58zz8/ll49cwIxTM1i5upRJE4azbEUxdfUd/nG++GoTd98xW5IIQggBVFQ088aby5g0cTjnnZfbr/veWt/Mw59+R2V1My4VZuek8cSVP2F85NmMjzybf85bxitLvwXg1euNnDQymfYuPTe9shmHawNmg547x42lq81K7FfVDL1hIqtt7bgNKthUXG6V7Z8lM+meoj7jqip4FQ+vlt3NjJif896T3Wzf3sB38/L56qv7eKOhCKvbgaqoBFlsJCa0AZAS00zzzsQ4wIamBlZ21vCvF67n66828eEHa2hp6UZVweF0c/rsLJKHx/CfN5ZiMOiwRFtYPL6TxU2beOb1TXx44aV8OfdXKAo8+/kS3l20nqHfObGHK7RM1vv6hgIGrY7/W7GYu5LGM/fLTVz804mMSI3b52uqKApXXnUSSxZvpWR7IyXbG/mmsQxnhpH7Jp/MrGQ54XBc8uL/9xJQ3kAHIIQQJ65PP/2U66+/nrfeeovx48ezePFi/3NOp5PCwkJ/stzu9nDmTy9n6Rcfs+Lrz/stMe50OPjHZwtIShvFvP+9zUuP/obyonw2LV9M7imzOOdnN3Dtr3+P0WwBoL6ygrvOPBmbtYf1SxYw+5KrqK+sAODU837qr1q3Wa3Ulpfg8HhZs2I5X3/9NQCLFi3i1FNPpb6+ntTUVIqKinjvvfe48cYb++V4hBDieJeUlERISAjd3d2UlpZis9mOycVFP6wWl3OwQoiBQhLjQggSLJEAWHRGmnp7AKi3dpESFsGGq+8EQKvR9NmmpreQje1fApAVNpszhty53/13OBuosPpapW9s+4pFja+jUwxU9m7us55BCebk6CsB0Om1nHHeuN1P7uz0vr7tG7Z2LWWsLpz/O+2/2HsdJIyIpXp7PbEn+RLuyxYW+hLjp4xiximjACivaGbT5mrCwsx0ddlIS41jw8ZKJoxPOfwXbBCprW3n08/Wc/JJaeTm7ruiXwgh3n5nBcuXb2fFiu3Mnp2F2XzgquVD1djVw5Uv/xeH2+P/1jl3Wwlpy9Zx64zJANR0dOHVqigeaOrqwat6WFT1LW5tK729QfS6XCxqqaPq91nQ5eVMYxTP3HkFr7z0PZ+sL0DX68GuCcLjUtDqfVXYccYRdLmasavdaBRY3PQGeVkn43Vr6MhQOP3V12h223GFqXgN4LIbKS0bQmREN6UN8Xsdh1HR8fPrXqa5qQujUefvJJ2cHM2Dvzuf0tJG7L1O3nt3JaXJKurOziUKcNVnH3Lv1OlcnT2Wp2vWo46CUK2WpGINoR85sMUodI7UYh0Kc0u3U/SPfDROWLigkG/mPbDf17aqqgUvvjlDe5IVysPaUZsVns1bJYlxIYQQ4gSk1Wp55513+Oijj6isrMTpdPqfa29q7LdxkkdlkpTm+509/dwLeenR3wBQuX0ruafMorenm8fv/DnlhflYuzr7dMnZFceEmWfw7XtvsvizD9i8YgkJw1NJG5vLGZdejVdVWbt2rX+bGTNm7BXD6tWrJTEuhBCHSFEURo8ezZo1a/B6vWzbto3c3P69IP6Henp6KCgoAHxT4R7L9u1CCHEwkhgXQnBqzGie2TaXHredn41LB0coF4/0XWX+w4T4LjHGFML0cdg8XUyMvACDxrTf/UcYEsiNOJcq6xaqegvpcrf0ed5mTeOSEdeSETEal0fLH1ctIsxo5O5x0/Yaf3nze/R6OlnR8yGdrb5S84rCGgASw40MSRrJ7HPH7RXDiOExvPrizwFYsnQbj/75c76Zl8+/n72GzIz9V7sPds8+N4916yr4+uvNfD33/kCHI4Q4iurqOnj4kY8JD7fw5//76WElt6dMTmXp0mLGjU3CtGcbjx/phcWrfUnxPQxJaKU55D2eXFbEpytsqHEK9jgvkyMSuSB3NMtb3qPZ/C4XnKNj/fILcbl0FHhasFkAi4b/5hex/ueVNLf0sOsadycGVvx+EvFTGzG74vj5bXexzbOE5e2vo9WoaDWQmlbJGjUNNFDl6UYTDN6dL5HXoLBxUxqoYI/xggImjZb44BBCtAbeXbKRylAbEU2+dugAer2W2+88nbfeWMrb/1mBVqcBRcFjwpcRV31Jaxfw5OrlbC6uRmNX8ZgVTHaFW26dxbNPf4elWUXj9uAxK1gavGh2nsN2utwHfG31Iy1UXWrE61DxGn3jmbQ6Ls/M6Z+/PCGEEEIMKo8//jh//etfAUhOTiYmLo7yymraGuvxevuv3YdygPYlNquV/7vpKqxdnRiMJoZnZqPV6ynZvAEAr8f3vTD3lJk8+cl3rPz2Kyq3FVGxtYDCtStZ/OkHXFS8vU8yfV9z0sbH730hoxBCiP3Lzs72V3AXFhYe9cT4+vXr8ex6z8/NxXCQKcOEEOJYksS4ECe4kq56/le53P84PiiESzKnHnQ7sy6UW0a+joqKRtEecF1FUZgafQWb2+fhxomChmj9KGptxXi8Wj7aHIvL2spfZ5r537aNvF7oqy6fGDeU6YnJeNwetDrfGMPNZ7G29VPydkQz4YHxDGmDyLhwSjbt4MZHLmLoyN0/kFXVS4erkZr1nXS1WDnp3PEoioJev/utr7y3gw+Wb+PSjGxGR8ce1ms3GKSNjGfdugpGjDj+jk2I45mqqofdZmzpsmIqKpoB2LqtjvG5KYe87Zln5jBrViZ6vXaf43a2dqMoCqGRwYcV05ihQ3h/XX6fZWPHleHQ2+kwNNJmnYTD5jtRGxqq5/W8z8hrWk3ScNDrNLx7y+WYtEHcNPcz6qzdAOi7FZpbelCAkBATkyePYOHCIly9eqq/HwbAvOGFtA2NYWVvKlOHlwMKcdEdWKrt9Dp8F3IpO8+3ahWFCKsOgrvp6TH72kRrwWv10FHbReyYErJPrmT8KSoVqxKoej+Z4edUgaqSX1TBsqXFAHjcXlAUNDYVwncf767TugsrKxj2vQu3RcHQqfLM1u/865jaVYYucvV5ne66+4x9vqbL15TwxefrWayvxx2ngnHnEwp4VC+nSbX4cUtRVZQfzE0fqDiEEEIEjsXia1FutVr7LF+9ejUA6enpFBcX0+1wMvPMc2hrrO/X8Su3b6WqpJiktFGs+PoL//Lk9EzqKsqwdnUCcMdf/sEp517E9k3refCK8/rsY0dxEWGR0Vz9y98C0FJfy62zJtHR0sxTTz4B7t3fi84991zOOussgoODMZlM5OXlMW7cuH49JiGEON4lJiYSFhZGZ2cn5eXl9Pb2+j9P+pvH4/HPaa4oCpMnTz4q4wghxJGSxLgQJ7g/FXxISXc90cYQHhh9IdNjMg55W0XRHPJUl/kd8/DiRAOMCp3OWUN+zcQ3/kW30wkodNhtlLS1MDYmHoNWi0WnJzUsgj/88j3WLt/Ovb8/nzMvGM8Q/em8s8qX+Ln90jEMj20m0ZzBVcbzqLNtZ0nTd4wNP5NwQzxf1v2dws7FNKw0UfyncH714o3MvvJkTpo2kn/+/UrMJj03r/2Kqq5OVtZU8d0V1+83fofDxeb8arIyEwkKMu53vYHmxhtP5eyzxxAXF0pnZy8PP/IxAP/3p58SFnZ0vgALIX6cfz79HXPnbuLWW2dx6SWH/gNy5oxRLF68lciIILJGJx72uAbDvr8WludXcc9pf0ajUXhuySMkZ+x/3zs628mrr+Xs1HSC9AYuHp/Fqekp3PDGx3RSSli4FU/XcJTgYhK0E4kLCSbaZGFrewta3VyaghoZmgxut4ZLkh/CpA0C4JVzLuCulz5i/aIyLC2+pJzHoHDhdVO5aPZYTjt9NJWVrbz08mIAtm2rI2dqOEk97TQ5Q9EqXhyqjpAgO712E6iQZoniiUvOoqmjhy32/9Cuyae6LJrl20fhDoLkpHpmnrWVPRuXpE2vY8T4FrQWX1l3EX+mq2u270lFAZMGe5zGnw33FY6roCh4zQpaF2g7904qms06klNi2FHRgt3uOxE8aVLfBHdhQQ3/mbuaD407UONA3fOaNNU3hsvrpdNhJzbo8C5gEEIIIcTgkZHh+82el5dHTk4OQUFBfP/994wZM4avvvqK7du3M3z4cJwuF109vf0+vt5g4DeXnk3s0CTqyksBGJ6ZxbjpM7F2dWKyWLD39vLv39/PJy8/T1dby177WPnNl3zy0rNExQ8hNCKKlvpaAIxmMwaDAYPJSGpqKmVlZTz88MM8/fTTaDQaOjo6cLlcXHfddWRmZhIcHLzPW0hIiP++2WyWeW2FECc8RVHIyspi5cqVqKpKUVEREydOPCpjFRYW0tPjm6ozIyOD8PDwozKOEEIcKUmMCzHIeVUvq1tKSDBHkBJ8+FXBGaGJlHTXkxWWxKmxo6ntbeOOdS9j1Oh5cfKtRBqDUVWVz2vWYfc4uSRpGjrN7rPxWztrWN68lfMSJxFvDgegytpCkM5IlDHEv96I4InktX5CkC6Ss4b8AqNWx19mnMnvlsxDg8I35SWsq68l7+d3sPHqu9BpFLSqwtrl2/F6VVYt2caZF4xn0pChvHjWBdhcLjo0XzC3bikaTPwq8wM+rPoDvZ5Oanu3cVXKX6m3lQAQmulLMmj1u+MeNyYJgNHlsVR1dR60WvzPf/2S5StLGJ2ZwL+eueawX+dAURSFxMQIANatq6CgwHfCYe3acs44IzuQoQkh9mPhwkK8XpXvF209rMR4fHw4L75wfZ9lR1J5/kPV2xtwO31tvWtLG/ebGPeqKhd9/B7tdhtr6mp48rSzAIgODuLtW87jyeIbUBSIcEwjXf0zPR4nTd2LaOr2VTtZTDYANBrQaLyoyu6Wn4qi8PjV5/LIto/Y3FKD16DQOdzAMwtW86+5K4lrgCf/foV//fKKFqw9iwFwq1rcqhZVhazhVTS2hYMCvzl3Bku2lvP86uWcOauUMAuExFtx1wIKpMS1oNH4c85+GvPu+TpVPGRflMZnK7bQkaEDreLLhu9spQ5grvdiS9BiqfNVlKvAySen0tbay7Zt9aCq2Gxu7r3vbCwWI9df8wJeL8ybV8ANN+6eU/NPf/yUghE21KFa/+h7vEAAGDRaosxy0ZMQQghxPLvhhhtYunQpCxYs8M/f6vF4eOihh6ipqeGLL76gq6uL66+/nhqblw9eeLpfx0/NGsv0cy/i45eeQavTkzNpKrf96UkURSE4LJz7n36Zt574E41Vlej1eh584S1+c+k5ffYxeuIUyotmUVnsqz43WYLImTqdS267B0tzJVarlSuuuILly5eTn59Pe3s7RqORmJgYRo4cSWxsLHa7HbvdTkvL3on3PWk0mv0m0H940+v7b0ohIYQYaLKzs1m5ciXgS14frcT42rVr/felWlwIMRBJYlyIQe6DypU8XTwXg0bH5zN+Q4Th8KrEHsy6iGuHzyDBEgnAutZSGu2+1mf5HZXMiMsir62Mx4s+BeCpzQuZHJ/EH8ddQpQxhHvXv0Gnq5eCjmqemXgDy5q28uuN/8Gk0fPBKfcTawoDIN6cxj0ZH/YZ+/y0DJweN79a9C0AZp3vLSl4j3ln7n7wXFYvLebqm2f6l501Ig2A+1e+SnQ4WJ0e3E4PbcVuTCPB1WiEFDgv8dds6ZhPhDObCz+JYvxpWXsd/7/mnEdFZzsjwiP3+fqsy6vgu/kF1Df6XpOuLtvhvLwHpaoqr7+xjIqKJu666wzi48L6PG+3u/huXj7pafFkZv64udAnTRrO6NGJoKp7VSLuz5Yt1axdW8755+cSGxv6o8YX4kTh8Xh59dUltHdYueP20wkNNR98oz384p45fDcvn6uumvaj4lg3fwv/97N/kTFxBH/94tdotZqDb/QD8+pfZlPGd5zzdjpxpdNJPz2WJvsOwg3x6BXjXkl33c7HOk3fsUw6ExZtMDZvD6UNDl5Z8y3REXDVZQvQalTKK2MJCnKwq0NzqC6BkSGTcLrd3PbO51S1dfD8Vefzi1+cxY03voqqAXb2LHHrFWw2B4U7L/wByMlJpJq1fWJQFNDpYE5SEsOjYrHrv6Ijaj6XnaOwqTKZ4dFNuFxaRifUsK0+gZL6WIZHN6MoULYjliGhnZgjHNg7tJgjPKBChGYyj3dthRw9qOzuorJHztrSqBCz3oUC9AxRaJqso9JQw+lDEmnV6DA4VNISo0lOjqazo5ddU4AuXFAAqkp7ey+33DaL9PR4itvKd+9Yxdf2HWDny+30eihtb2OyJMePT6oKA6GN+UCIQQghTmDBwcF89NFH+3zurbfe6vN4aVUrl//igT7L/vT2x30exw4dxsfb6g467t2PP83djz/tfzzn8p/tc73xp57G+FNP67Psh/sfN30m46bP3GvbaLOBU5Oi8Hq9WK1W7rzzTnp6eujp6aG7u5uenh6sVqv/fk9PDy6Xa6/97Mnr9dLV1UVXV9dBj9FoNPapOA8KCupTfb7rZrFYpApdCDHoxMfHExkZSVtbG5WVlfT09BAc3L/dxmpqaqit9f02j4uLIzk5uV/3L4QQ/UES40IMck6vr4rPo3rxqN4+z9ndLp7esJIgvYE7xk5Bq9k7KaJRNAwLivY/nhWXzfLmrZg0eqZE+xLQMcZQNGjwqF40Jjt5Hdv5b8UK7so4iwRzBJ2uXhItkTy+dgn/KV9KaATYvS4abZ3+xPj+BOl3J8Evz8yhsrOD5LBw/7JzLp7IORfv+wrGsaFX8WbBR0yIGU9HYzdrbwwmKMVE2OkjYQokmNNJMKfDkN3blHSv5qvapxgRPIHzEx9Aq9EwMiJqv/E9/uRc2tqtDE+O4s7bTmPa1JEHPJ7DVV3dxrvv+q7WLC5uYMiQsD5tzt96aznvf7AGnU7DJx/fQ3Cw6YjHCguz8Pxzh17t7vWq/PbBD7DbXVRVt/KnP158xGMLcSIpKKjh/Q/WAJA6IpZLLz28K6TPOCO7Xzo6rPxqI067iy3Li2lv7CQ6IeKwtnd6bKxr880b6UrNJzk3hpfLX0LdmY0dah7NtcMfR1F8ny0aReHzS37G5qYGZu2c5/rj9QXMKyzhztOmcU/6c9TZSnij62VOPdmFV+NFp/Ul2IYnNflbluuwcN7Qe9AoWkqaGllVXgXAtwXbuXf2yfz5L5fQ0tJDu8nNoo1lGFtcJM4I5oUXFwK+imzXUCMa9HjZ+0Tpw1NPp6BjPZs6vkGnBdWrISW6mSFhvpOlydGtjEqpR6d4/JXi+motK9+fjMEIoaFm7PomDI5YrvrDGcC3ffbvP0VqhZB6BVWrpSdJCxqFzhQPql7Bo6oscNSgJGnwBEMT7cx6+1UUvZaesyxEzO+lvc3Ku+/4Ph/y8sppa+0hIzKI6+bMQa/Tcs+8r7HtnH9T9aiMGzKE6cOSmRCfwLdlJbi8Hs4dOUpO2gohhBAnsEiznlabk8FwSZOCL17wVXmHhIQQEhJy4I0Ah8PhT5Lv79bd3b3XnOz725fD4aC1tfWA62k0GoKCgg6plbtUoQshBopd7dSXLVvmb6fe3xXda9as8d+fMmWK/B4VQgxIkhgXYpC7KuUUYk1hDLNEE23sW9H7WdlWXtjiq5gbExPPjKHDD7q/JnsnG9srCNGZsXtcmLQGSlq6aKgJRaPxEh7Tg1bnZWSQL9t8Qcws2tvWEO5O5K9bFuPFCIqK16Mh2nDwJMzZqel8cOEVvFO4ib+vW8Fbhav4/KcX8MG2KnZ09PLQtBn7nSv12uyJXJM1wf8l64bfXcamrRVMunb/VZaFnd9j9/ZQ1LWEs4bcjVF74Kq68eOTWbCwiFEjYvnpRRP7/QtdfHwYI0fGsWNHM62tPbS29rBuXQWzZ/uq23dUtfjb8u6r2lNVVVpauomKCkGj6d/YFAUSEsIpL29m2LB9V9QLIfaWkhJDbEwIXd12xo5N+lH7crvcNFa1kjAi9rDffy6+cw5N1a2MnjLykJPinxQXsq21mTvGT+Htyjv6PFfQtajP4xpbEXW2EhItowAo7d7E6ta5TIqZg0mnw+tV+cMXC/B4VTyqyqvXXUx1az4h4bWERuwuflWUvq3K3aqdrzfv4OJxkaTHDuH8sZnsaG3ngnGZAEybluZft2JFNUvzKmgMNdGRosMdpKCE6/mwbBv6mpHknlqM3uBFowUU8Hphzj/eJGdqGaNGGDBqXfR6jNR2hDMk1NcZRFHAo2pwebWoai8er8LWgiSMIS5MSd20d0USPyKD2846iY9eW82QOhe6YSZq4j1g3OMF0oHOvrOnukbBFuHFa1b8Vd5ap4JHu/s0da3dCnYgREVJV1CK3ei0GjweL02NvqR9c1M39cvq8U4I9ifFARQUzhmRzi3jJ7GiupLbvvVd0GDU6pgzwndBV5fLyuKmDeRGpDPMEndI/x6EEEIIMbiFG/WDIikOvmY44abDTyIbjUaMRiNRUfu/4B18leO9vb19qs/3d3M6nQfdV3d3N93d3YcU36G0cQ8KCpIEkhDiqMvOzmbZsmUAFBQU9GtivKuri6KiIgAsFgs5OTn9tm8hhOhPkhgXYhBTVZU/Ll3EO9s3EWuysPqaO/r8kBodGYtBo8Wg1TIi7NASmxvay7G6HVjdDkq665kUNZKn1i/D69Hg9WhoqfVVgD/es5R17aV8UVRLU4+DTXWLUb2AomDtNHPeiAyGBB386m6v6iE8uJLo8M3cfMpydBp4u2o+nRoTX5ROY2hIGL+aMt2/fpfDwb82rOazkq2EGoxMSxzGo9NPx6uqJF+Ww0NfbuO9JZ/yduilTB/at12Pqqq0rk/DG1XMhKGnYtRasLtd/Lcon5ERkZwyLMW/brN9By2OKu65fSYbXp7P92uKGR0dzHk3920Jt76hllu//ZwOu40rMnP484w5Bz3m9Rt2UFxcz/nn5xIcZOKlF6+nvb2X+3/9X3qsdjRa+PCjtcyZk0NvrwMU0Gg1mM2Gvfb1zHPz+OLLjcyckcEjv7/woGMfDkVReP65a6mra2f48Jh+3bcQx7OwMDPvvns7qqqi02kPvsEB/Pb8v1OwcjuX/OIsbvrTZYe17bD0Ifzlk/sOef3qrk7uW/gN4Kv+VsI691onI/RkIvRDWNXqa9+5of0bf2J8bt0rtDjraLDvYFToJDQahTNGj2ReYSlnjPYlZ0u7VvuT4Hue9/PdV1BVFRUvraEv82oFxBlTmTltFImWDD6ou4n4rpFclfwX3l61mbLmVgo8bbiN4InU0btr6vOd3VNcDiNr541BUSEsppv44S3UlMaiM3vQBztpcPg+z7qtepyKjipbFFrFAyi4VB2hul4UBbQaFU2mnTE3lqIooKo7yFvbybtbgqmtaMbSqdJj8WIIBZce1J3HpcGLW6PiClVwBqt4Q4GdU5Cj+uZkD1H0dKquPcrMfdpz9PTGe5nTGEtTcze2XidWq2Pn8amcMiSZYaFhdDnsXJqZzdj4IZyV6rtgINhg9E9xHmL0ZepXtmzhr1v/g9PrJlwfzPsn/fmQ/12IAURaqQshhDhMMZbd3wsGOgWIMRsPut6R2nOu8fj4+AOu63Q696o431cC3Wq1oh7kc/FQq9AVRfFXoYeEhPS5/8MkusGw97kBIYQ4FLGxscTExNDc3Ex1dTWdnZ2EhR242+ehysvLw7tzbrAJEyag00nqSQgxMMm7kxCD2LVff8Symh2gQKOtl+Gv/J0dt/za//yYmHjyrr4DnUbTp2X5gZw1JJeizhrC9RZyI3wV5n1+52kU8KrYguuYW1+H06iH7hBULyiq4v/Fffqw1D777XLZWNiwhQmRqSTt0bp9Vcv/WNH8DqYgXxHdrtxAsNGOVuNlU2Mda+trCNEbuX/R1xS1Nvu3bbT2UNLeyjVZ43hg8XdsbKz3P1fXvff8YXV1HbzzrzIgk4ifpsCt8OLGdTydtxIFWHnNrQwJDsHm6eaNil/gUV1MtFxCb5sVFchrqCWns50wo4lFleXEWoL4/dL5tNh6AXinaAuPnHwazbZeEkP6Vu+vzStnxcoSzjwjm988+D5er0p7h5U7b5+NoiiEh1tobOrEbnfx2ONf4fWqbC9p4OYbZ/Luf1dy2qzR+/z7Kiz0zdtTWFS7z+f31GrrJcRgxKDtm6jr6bGzenUZubnJREX1rc43mfSMGBF70H0LIfo6kvm896WioBqA0s1V/bK/A4k0m4m1BNHUa2V0dBzjE//C8ub3STCnkx06g8KupeRGnEWQLowGexnVvUUYNCE8te024k0pjAqdTEvLZ4wOnUp1byGfVf+VEbnwzbkPkhTk64Jh8+5Otu/6bNmdIFd3Jp4V/7JGRxmNjjIqrVtwq05qbEWc+dwz1Ldo/d00IqeHU+aw7z6QXWd/d92AzuYQOlpDQIGck0oIi7Bh0riwefWEBkNosAsvGryqxl/F7t2Z4VZVhfGTtvtbxisKTJxcxqL5ITjSTCRudzLh3GJMSb3saIxmY0UqmcOqGTe8ippxESwrGt33A25njF4jbL7vHupa2rnnf5+gVTSss7fi3TljhjtCw6+uO5fklGicTjf//tcCigprePfdVaxeU87SV2/a59/j2Lh4vr78Wjyql+wYX2X43LqV/qlXNKrCz9f8mTHhqdybfoVUJgkhhBDHMaNOw9AQEzXd9gGdHFeAoSEmjLr++Q79YxkMBiIjI4mMPHCBwZ5V6Adr5X6wKnRVVf3rNzQ0HDS+Q2njbrFY0OxjSj0hxIktKyuLxYsXA1BUVMS0afvvvHmo3G4369evB3wXIk2cuO9pMYUQYiCQxLgQg1hefc3uE+17XAa+sKqMZ/JWsLmpkTiThf+cdykZUYeW3AwzWPjjmMv7LPvbqWfx5LplLK+rhJ3DuJxaDEYPLqdur0q3SbEJXDRqdyLXq3q5cdW/qLa1Eqq38N2s3/tPxHtVj3+9XbtxexS+LRqDy6tjeW0Vy2urGBJsZFhMETlmPfk1w4g2B+Fwu4kJCublzevIb24EICsqlkszs7l4VBYdzV2ERgX7fwjGxIQwPCWa6po2Jo5P8S2zBAFg0Rsw77yS0eXx4vR40GqgztnL/314Lx8U5fOOuZq5S/+BWWukpsqIXtHj9O6OPzUsgks//x+bmxr49eTp3DlhKqqqUlBYw28e+hCAVWvK0Bu02O1uYmND6eiwotNrCbIYSUyIoKy8CZNJT2+vk/BwC9nZQ/nrX/ZfJfqr+87my7mbOGNn6/X9+bxkK/fOn0tSaDjfXXE9pj2u2vzLY1+wZk05yclRvPH6zQfcjxAngtq6drq6bGRmJBzzsSt6ttDlbiMn7BQ0ipZH3rubVXM3cN7Np/frOB9Vf8S3Dd8SogvhphE3kRWWRZDewOKrb6TT4WBIcAjtzgbKezZQ1pPHxrZv6fG0UdixlNvSX+CqlP+jyV7NcyX3ANDuauSqyAeZHXcVOo2eDyr/QI+nDYC8ts/8iXGn1+GP4Yf5WAUNeI04XG70eg97zg6RajmJ4ta5OPU6grKqSNOq2DpNNBTF0ma37/4AUff4U+2TG2dnMTihkVbC9b1oFRW910ObM2gf1evQ4zHhtmsxalxoDH2DVRRIza2mOD+JmGFNRKT5LsbKTGqg225m3PAqFAWGRrcDXtjXCUkdnPnv19nh6MRh9H2WvHrxhSQGh/LR9kLOSBlJcqLvQrL58wr48vMN/k3b23r29dfqlxndt8vH2PA08tq3AdDm7gZ3N3UNLVyZPId404HbjooBRCrGhRBCHIEREUFUd9sPvmIAqUBqRFCgwzhse1ahH4zT6cRqtR60jXtPT89Bq9CdTidtbW20tbUdcL09q9APdAsJCZEqdCFOIHsmxgsKCvolMZ6fn09vr69waPTo0YSGhh5kCyGECBxJjAsxSK2pr8amuvdKBnxdVszt3/vmFkWBJruNCz9+l223/BKAup4uHlm2kLqebs5JTeeqjBw+L9nK8PAITk0agWYflWNjY4fwzk8u48uybTT3WjEqWh5aNQ+tzovHo+0z/q3jJvHg1Bl9tq/oaaLa5msb5vC4+jx3UsyVRBmTqO/dzvr2TwFf29qajgj/MaBCVFgpuUm+xPz5w2dxc/ZFrKip5OovP6SiowUVDfFBwfxt1plkx8Tx9p8/4Z2/fMqUs8fxp0/uB8Bg0PHqizfgdnswGHxvf1eNHsPo6FiGBAUTbjID0ONU+Gj9JCIsVk6NH8V1s3PYFOPAWFCGzuDBRS96kxaTx4zT6SHMaCLKbOaNn/yU2f99A4CPV21mw4sFBAWbyC/cXc3d3NyNe6wD12Q7/1o3j3+/uAidVsPbb97C889eQ21dO5GRwezY0UxO9rCD/jsYNWoIo0b55nvfurUOVVUZPTpxr/U2NtSjApVdHXQ67Jh0wWxpauCFDWvoNFsPOs6e8psaMOp0pEdGH3xlIQaZhsZObrjhVVwuDw///gJmzco8ZmO3OGp4a8fDAHQ6mzk19lLGnpLB2FMysHl66HS1EKY/8v9369rW8VbFWyRZktjasxWADncHz5Y8S4I5gZtH3EyPu4eRwSN3bqGi7nxz35XkbnVVs6r5M8ZGnIZH3VX14kUBYg3D0Cga/lPxALW2YkCDgoac8NlU9xZic3di0YbR7WlGhwGX6kQFtIoRj+ogxj2bJu0CjAbo9eiwaM1ocVHWa2Zj52pUosABeosbRQG9yYrX1UJdwR6tMN2ganxzeqNVQYO/t/nJScNorOikt9OA26hBq3jweCBYZ8OLBodXi1fd86uxgs1jwIuCWePqkzxXVbAZtURltFK9LYph3np/7ntXUhx8CfTs5BoKKvcx17wK293tqDp192fo15/zrzPP4+GTZ7FyRQkPv/ARsXGhjM5MxB6uxZqgZ0xsDH+89szD+rsv6qrYa5lZYyTWeGhzzwshhBBi8Io06Qk16OhyugMdyn6FGnREHMH84oOJwWDAYDAQEXHg71+qqu5Vhb4rmf7DxLrD4TjovnatezB6vb5PxXlQUNA+27gHBQVJFboQg1x0dDTx8fE0NDRQV1dHe3v7Qd+bDkRVVdasWeN/PGXKlP4IUwghjhpJjAsxSH1fVd6nFdrO6Vm5fcEXaHQKXtWXEFBRsXnctNp6iTJbeGHjWhZUlgFQ1NrE39cu77PfG3PG8/uTZu2ztep5qRkA2FwuHlo9358UzwqN4pGTZqPVahgf56uwbOm18n1lOUadnikJCTjtWnQGD3RH88uFX/OH6acRYTKjVfSMDpvJqNDpFHTOx+HtwauC6t2VVfD90dYTjIIGg8bMGUMnsqOjnWfzVpE5pJbpacW0dIdg1LlZ1qghO+YWNi8pAiB/RXGfY9BoFH9SHHxXUOfGDemzTkJwKHeOPYcv1hWQ/10x/60N5rpLJ7OirpzNtnxC9Gb+OHUmpQ1P4VCdDMm/mDtvuB6Ap2eezW9f/QL7jnYqOnbmOny9gQHwGBRcU+wQouIY34tpfShuj5e7732bn119MhecNx6AcWP7zo++P52dvXzyaR5mi4GXX1kMwORJI7jh+lNJT9+dLLpjwhQ8qpecmDjignxXs/911RJW1VZjjNXyrwfPIzfXN6aqqnz66Xqqa9o49yfjeOC7b7CaPPzjzHNo9di59quPUIAZVVGEOfQ8/PsLiY46+BXyQgwGNpsTl8tXvdvZ2XtMx9Yqu08GbupYxKmxlwLQ4+7g+e13YPdaMWmCOD3+GiZFnn1I+1RVla/rP2B7dynl1gasXqs/KQ4qQVonbtVFna2Ex4r+gNXr4oKEC5kdO5MedzdxxhE0Osr67HN+46ssanoVUNABOo3v/e3FslsYahxDjcP3/ltcmkhFdTwhM76iS7u+z3HeMfJNvm/6Dxva5wNOHB4dH21sY3RmMBGWXnrcZkYEz6DTpafNtXtbVYXuRgshcb75v3VmF1q9G7dLi6rd9VmoYDQ5mTY7H0UDxVuGUVcVy7raWhxGL5aSBMzBDoL0dkx6L4qq4saLSQM2j6+dum83XjQKuLxaFNWNWbf7U7ez14RX1WKyuOhKcGN16wkx+C78Mug9NHSFEBvSjUYBi3F320wV1X/Bl6JRds45rvirgrzAffO/YVJEAg8//JF/u4a2LnqSfFU8m9taKO5oZzgH7wTj9Lpxep1s7fJdWKZBwbvz28N9o65Eo8hJTSGEEOJ4pygKo2NCWF3bHuhQ9mt0TIhM77LTrirvoKAg4uLiDriuy+Xab+t2q9XaZ9mueX8PtK/29nba2w/+7+RAVeh7JtMNBoP8vQoxQGVlZfmnbSgsLGT69OlHvK/KykoaG32dPBMTExk6dGi/xCiEEEeLJMaFGKRuGjORVwvW4dp5Mn3PJLnXP3HrzgUa+PX33/D6OT9lWsIw3inctN/5xV7L38C12eNJDgv3Lyttb+WlTes4PTmVs0akYdbruTlrIq8XrufkhCTePmd3q++y9jZ+u/hb1jXU+Zf959xLuCbhbL4tL6G4rYXK5q1kRcdy87hJ/nW0io670t8jv2M+Q0xj2VK2jFV1NaCCVoEnTr2Z0o4alu2o5sUlH+L0eEGBc3Ka0SgQE9KNokC353s8nps46een4U4KI/HMkSxYVsSCbwu57pqTyMzYu5r6h75fXMRnTy3DZvMlM155bQlvbVpP92g9bT1hWLVahk3oZoe3Fx3wVesWLujuZGhIGLOHj0QTrKPpdBdxVV5O1Yxk/ZZKXDqV9GExzE9pxmizEKrY0K8x+pPmra1Wnnl2Huf9JBen001FRTPp6fFotRocDhe/+e0H1Na2ERZuISNjCNdfO50Fi7aycFEhZWVNfSoZ164rp6Ojlxf/fb1/WawliP87dXaf4zw1xUJJZxeTYicwe2cr9mXLi3n33VVs3+77cry6tJL1GZ1gh2v++Q73X+lr56wCxTsaMbfCrbe9zgO//gmTJo5Ao5EfvWJwG54Sw2OPXUprSw9nnZVzTMeOMMQRbxpBg72cGMPuH5I9rnbsXl9nB7vXysKGt1jW+D8ywqZh0Jg4JeYyjFrLPvdZ1LWa1a3/A8DtDfcvjzPGMioogvJe31XdesWNVumgzWWhw9nGsyX3YPN0MynyNJxeG+0u33u6qu45e4aKVoFdFeMANY6NNFZFYgj20tNrZvb0jXRp+1Yn6RUTRm0QqSFz2NA+D42iYtK6SUrroF2x0GM3YlGCef8tB52RTSSMB412Z8VLkxldqAOXV4Ne4yU4ys7ImRVYew2UFQ8Bpw5Dt8Kw1Ho0Wt8n3cisaiIiuomPaQejr0W7RqOiV1TAN5/5zrvoFC9ONGjwoNd4UfDuPEZ1j7nHwaVRCNbZ6XaZCInp9CfFwfd8oyeY5pZgQg0OtlTu0f1Dgz8xrqoqys5XTgFMFidupxabC37y51cxhnvRdfgS1zZz3/fW37z5NaMSYxget/95L3tcvdyw7i90u3q5KnkO5T11hOmD+aZhFaG6IKZGZ+93WzFA/XCu+kA58Hl1IYQQA1BCsImhISZqB9hc47vmFk8INgU6lEFJr9cTERFxSFXoNputT/X5/m52+8Hb7lutVqxWqz8RdqD4DqWNu1ShC3HsZWVlsXDhQuDHJ8bXrl3rvz958uQfHZsQQhxtkhgXYpCKNgcxIiyS4g5fi/I+c43vg8vjq4A8J3UU+cOGs6K2ku/KtvNJ6dY+640IDQdV5el1yxkfl8ipScP5y4rFfF9dwafFRcy/4nqGh0fy+2mz+P20WX22/bqsmDvmfbnX2BEmE7+cdDLX54zn3I/epsNuY2ri3m3CtRo94yLPAeC/F1zBgh1l2N0ufpI6ig6HnZ99ubt6btdxrtsxAq8KuI3EWlqp/C6ap+Z9y9ffbqHqLC2elkKCNuYTu16leHs9n354z17j9rqcVHZ2khEVzYKSUu5eOpeQGC8hVTtfuyAoT7JDj53MqBh+NWU6T65YQmx0DFrFS3lbDI1WK0NDwjAYdKiJbq6auBLjKS5ivGksTQ+ltqeLq6ZlMW/VEsI0dk5P3EpndhiF+aN2H5Liqyb81W/+S1FRHWfNyeGBX/+EzZur2ZJfDQq0tlspr2jm62+2oJq8eId40Oh0xISHcvdds3n/g7UUFtWSk7M7qfbK795nzbebueupaxg3w9cWuqZ3Kx36F/jpRLgq+VL/ui++uIj6+k5/gnv8iEQ2tHTgCgVTjYccYzS/TJvMe2+vwrzzn157Ry8P/u5Dbr5xJldeMXWv1/dQNDR08K8XFpKaGst110yXq8pFQE2dknpMx9uwvQa318vkjCR+Pvwv1NpKGGbJ8D9f2VtAkDaYYF0UTq+DTlc9TnrJa/saAKPGwvSYS2l0VBFpiMegMeLyOljb+hWN9t1TOeSGj2Ntez5axYFFU0S1DUCLb3Zv3ynSFEsU5w75Cc+WzAXAoAnh9rSXWNTwFsXdK2hz1vvn/t6VKFbYY75wFeKT2lBRmBDZibJzvzaPhVaXHg0KTq+B+1Y/TLfaSUKIDr3GiVvV4Nb7Kqw9jiBWf56Ey+olKqcHjRbCdVbijN2oQbDDGolNNaAoEKy1E2K0YTPosYxzUrAlhfQRlYwc3oBJ48aLQqdqYNTwOhQF3KqC3atHt7MafNdx7DpBrNd48HrBoPGgUXYl/gE0qKrvAgAFlXhzDwo9tDosNPQG4fQo6DUqiuLr4h6utdOuBNGuWjCYXNjtRn9CfNfnl8KubiIK0fpOIlO7Ub1QUxlF6PmtoIB3tZmglTH84Y6z+f73L7Gr0Mdi1BNq6XsCWVVVvqxbTpfLymVJs/mkZjGdrp0XVHic/CH7RlRV5ZyEacSbojBo5GeAEEIIcSIZGxdGk9WB0ztwUuN6jcKYuLBAh3HcUxQFi8WCxWIhNvbAXYfcbvc+27jvq5V7f1ahWyyWQ2rlbjQa5XyBEP0gIiKCxMREamtraWhooKWlheho39Rtqqri8HjxqCreXTOVKQpGrWav/38dHR1s27YNgODgYLKyso75sQghxOGSM2JCDGI/Hz2e366Yv3vBfn4bKCo8d8Z5/sfBBgNnDk9jfFzCXonxHd2dzPjfa/7HWsCz83ezW/Uy5/03WXjlDSSFhvfZrrCliTv3SIrrFA3npKaTFhFFuNF38j7CZGbZ1TfjVVV0h3A18OwUX3Jq/nsrePfJL0i8cRi1GhshFSq6XhWvHppHhbKuZBoPREzkpce+ByB+YnffHe2M32wx7jWGV1U578N3KOto456JU/l0YwH2aAVHmIbgKt/FBFoHaG0qHrPCPROncXpKKu8WbmZ+YQ7JoWE8evJk0iJ2V+0l93ox76weXFq3iroeX6v2qu5OXjnnIj7Nf5zgUDvBU+yUfDUCZ5evffKI7Dhm/+85cq9cycQOqF8SQ01tO4Vba9kXxxW9eKM95JDM09N/TlCQkZNPSqetzUpkZBAAdquDj5//DoAvX1nkT4y7vDb/fva8f8YZ2bzzzkquvHIql14ymdBQM1fWTGXeggIirgpihbMOJULPv355GatXllJR2cLmzZV4vfDBR2s49ZRRJCbu/2r1+QsKWLx0Gzdcdwpmi5GIcAtms4FPPlvPipUlrFhZwuzTshg61Pd6qqrKC1+soqy2hV9dPpMhUaH73bcQh2r96jI+fW8V51w0gZOO4RzirY56Ol3NDA/K8f+Y3FhSw81//xCAf917MVNHJzMieCwAXtWDRtGyvOlDbJ5uLNowfjHqJRY2/IdtXavocbfj8PbSZK/hpbJfUm+rINqYwl1pT7O8+SOWNb+PqkK8MYUwfSTl1oUE68yoqoJW8b0xtjpNQAinxebgVe2cEnsl0cY4rk15mMLOpWSHTuOl0ttpd9bjxYMXLVp8741eFLQ/KB1V9kyao/ofW90qvR4juz6onHpfdUm9I4wgt5Nej8G/rtdgIyqjFYdWgynUV7ESa/R1BVEUSApqw+YxUOuIYIipE62iEqZ3EG6wETHORoTFinlnlboWlWCtw5+P9qi+Gu1dn0C7kvs6VcWNiqIoGDUeFEX15bHVXcek+vPamp3Jb4BIYy9Rxt6dSXfQ7Kyor6qJQhfuxmR2M2RoG3abARQFp0OH6t25I1Vl2BdOtKqC4QHfvI+KRmVocgu+DucKmkwH3fMd/OStN3CM62VqxCh+N3km4cEWokJ8XQLyO8poc3axvHkLS1s2AhCmD0an7P6af1rsxJ1/PwrpIfuY71wIIYQQxz2jVsP4+HBW1w2clurj48MxaqVSeCDR6XSEh4cTHh5+wPX2rEI/0K27u/uQqtB7e3vp7e2lqanpoPEdrAJ9V2Jdq9UezqELccLJysqitrYWrcHIhrJKElQDbTYXHXYXbnXvi6h0ikK4SU+kWU+4UU+MxcjatWv9U4NNnDhR/t8JIQYFSYwLMYh9VbZt74W7vrfsPINvUDQU3vgLDLq9/7vHWILYdP2ddDudzPzvqzuvBOz7xcfzg+9BLq+XL7Zv5a6J0/os/76y75znpwxLxunx8I91K3ivaDOrrr0NAI2ioDnMq3vff2ouDeXN/9/efYfHUV19HP/ObFfvkmVJ7r03XAGDjekl9F5CDS0ESCO8AQKhJoSE0EMwHULvxTRTjI17BfduWb1r+8z7x8prC8kV27LN7/M8C9qZO3fursar3T33nEvBP0Nc+dfTePvrWZSVxYIIqcsjfPT6ZSxetLl0+7lnj+K4YwdiJRi88NUsnOEQ3Y7P45xWspmjlsW6uhoAVlRXcXSHbjyxdBap6wxwmkSdNo6AzR0dRjP+mAFkJyTyyKxpTF2/ltN79eW2MeM4663/8cfJk+iansFHZ1zIZcOO53/zKzAyGji83Smc2SWD2SXFXDHoILITElm/4CiWbHyR6hVp9CjowHHHDWLmrFV0ObyQNWufITulDlJgof09F/7ycSzLJjMzEZrWoa2saqCwIIOqfCgN1ZCY5SExMRb0NwyDzC3W+/Ymejj+ssOZ9sFcjr7w0Pj2jomDOLngZmwsuiRtLmm/bFkJlmWTlOQlJcUHQEFBBr+88BA+XbWc37z/BgBF44/h6quOAOCdd2fzj39+RE2Nn8lf/sDZZ42ksqqB99+fy+BBHejduz0ffTyfmbNX8sknsbWHZ89eTSAQJiXJw323nkxmxuYxv/nWTE7+xTCSEt08/PAkXlm5InbOnDR+feohrV4j0UiUuV9+T+d+RaRlbw6eLygr4dUfFjCoIJMNkRJOLDiIfN+2y8ztLrZt88PiYtrlpZGW1nqZa2kbj/39A1avKGP54uKdCozXhMuZXfUJ3ZOHku/rulPnrI9U8++l1xGxQxyXfxnDM2NrhG/5krvc+pwVq4s5LPsMXlxzO/WRCo7Ku4y+aYeyoPoLBmccycbAasblnY/TSOSdNa/h88K8msk4mrKbq0LF2Nj4HMlALKhbEVpFQ6QMgERHiI3BFLyRMJZtUhv1cny7ozmx4ORm413dMIsFNR+zpO4rQltMnsnxdGBKRT1uM0Jj1E2CI4zbDJHiCpLsDDSFvU1i9S9iGdE2BhnuICHbTX3U2yxr2sakPuqJZ2LTtCurTym24SAUdRDF2ezvi9OEZDNER7OMSNNyGxDL8s5JrsOMB+vtpu1sPmH8LM0ZBpi2HQucN2XBN18ZwsbYVHp9i7LqzdrYBmXBRNZvzKBDUSn5CTUYwJK6bLr0LMYwoLw0mdLijPjwig/zkjw/SJbHjo/Q4YhdF5ZtE53voTHPwNVxDYVJQZbXN9A++0QMDGZULOXfy16hONDyy8P/rnyXU9qPxefwcFBab2pn1lDdJ7nZ66PsfwzbxmjlC6q2GIeIiOyf8pO99M5KZlF53fYb72F9spLJT1YJ9f3Vzmah/zjbfGu3aFO1w231VV1dTXV19XbHuCkLfXuBdGWhy8+Rbdu079qDgtowaUVdqDdNllY2bHO5jYhtU+4PUeEPxT/W1xgJ+DJzCFVXMGTIkL00ehGRn0aBcZH92EHtCvhm41qg6ev/TWtPbhF06JCajmsbs/XSvD7SvD4emXACv/7kPfzR5mvBxr+p3+Kd0d+mf0NNKMifRo2NbzutZ1/+NWMKoaZSWuleH5Gmny0bDnr6EQqTUylMSeX0nv0YVbBjGWuP/+dzajrmkhSK8ItfHkZGegpZWSnxwHhuYiI+l4uBAzrw0L/OxzQNevRoFz/+0MHdt9m/y+Hg6eNO5Zt1qzm370ByE5P49cFjmDV/NRflvEUk0eSXuf0565RRAPznqS/5Z/UMAh6Lb9auweN0Mq8sth73sqpK1tTWcNzIPhw38r5m5zmu6+ayyBccdwpnHLKQMpcbh72e++49iwlH9CMcjTLfP5aykg04qqF0USpWU5m7/v2L+L8/nUhNTSMLFq5j8KCOlFu1TKtYyri8ba+DfNV953Llvefw7eTFzJiyjKGjumIYBj1SRrVoO336ytj/v1vBGacPb7avY2o6XoeTqG3RNT0zvn3CEX35duoyyivqGTwmg3898TaT3l1GQ2OIZ59z8Lf7zuSe+95r1pejKZJVWxfgunG3c8ljl8X3vf76TObNW8foAUV89tosHD2TcKR4GNm341Yf4xN/fJE3/v0R2QUZPLP4H/H1ya775D2WVVXyYX0VmBbf16zjX0MvbnZsIBDm9394mfLyOv56x2l07Ji11fMsrijj3WWL+UWP3iS7Pdi2TU5iUqtt//fKdzz22Oekpvp46cUr8XhcW+1X9q5DjujLc49/zsHjd7zEl2VbPLvyz5SH1jOt4l1+3fG/uD1OguEoK4or6FmUg2MblTCidoSoHasksap+IZ+VvMSg9MM5qvsFPHr9qTRGa/jE+j+ohWDUT124AsOAaRXvUhqKZVd/UPwMNhMp8HajOLiYJB/Y9uYXfZfh4eTC32EaJsMzj6c0sIo51Z+Q7Snk0JyzmFv1OYvra7CpJBguJNGdCGzgneJ3GJYxjMKEzUtchO0gEPuwPCjtKMqCq0lx5TCzqh6/FcZvxSbj1ERcQAJlQYueySW4zCgbAqkU+eowMYgQiWdehy2Tqo0JJKUFcHk3Z5r/OAhtGuAxo5hECDtMDNumtWfWaVpEbWOLrG5wYmEaFiY2Fkb8Cy67qQRcxDLBMAjbBg42l0qPlVO3MY3NwflYCN3GtrcsqR7d4uctj439CQ7bBp0KSsl0b55M0Du1jLnV7bEw8Xqb1iK3wYhYuBJs6vu68VV7SUr3N+u3vtaLvzKFNL8Jztjzlew16f3Iv7CB3MIKktMa46XsjabHiWHQGA3w7MwPINvgq5I5fHnyZAD6je7Gfe//sZVnU0RERH4uemQkErEsllQ2tNkYumck0r2pypkc+JxOJ6mpqaSmbrtsvm3bBAKBVku5/ziw7vf7t9kX7HgWusPhaJFtvuX9LW/KhpUDwYa6AIvK66gNRUgr6oLR9F3Gjk5/tbf4f3JBJ1KKukCgkVqctP4NmYjIvkWBcZH92GUDh/OP2d8CTfHreAYesW/oTVhaU0HH//yNbG8C9x92DAe379jqTNgJnbrx+i/O5oTXnyO8nXWiAP4zd0azwHhuYhKpHi9l/kYAXl+yiMlnX8wxXbrz6eoVvPLDAkobG5hZsoE3l37PrwYdxO9HtJ79u0ldnZ+XXp4GQHbfDnxfE+Cre98lIcENQE5OCs89fXm8fa9e+dsd94811vnpEPIwYviY+LbERA/d+rYjMiv2PEWzYx98QqEIz7/4Lcn5BgkDvfxu5MGYhsEfRhzCw7OmMap9ER1T03bovIbXDVGwDINQKIrH48LlcHD7ISewavkIZm5YRtqIckyHwcgRXRkxvCuTPlnA6tUVnHnGcHw+N4VkUZi49SDulr794gduu/ElAO5/8mL6DGx9YsIf/3g8X325mDPO2BwUX7ashL/f/yF9+7bn6/Mu4eHfP899Lz9B1sCOXHTxWPr2LeDOO05jed10/rf2N0SGmkQ+GgZ4CEei/PXOt2mXl0rxxpp4n3+59RSeeehjFnwwG0IRDhnVDds0efe9OaxaWU5WZhLdeuVjAp3L4PGHLyElpXnWddn6SlweJ2lZKSxbX0U0P5O62kZsy47XSe6dlcOyqkoSzQQaqKcoMbvFY162rIT589cB8PU3S7YZGL/0wzepcq7n9dLPKd/oIxIxeeOUs+mfk0dVqJiGSDXtfT0xDIPypiyM+vogoVCUAFFS3JqJvqd88MZMnnxwEsedOowLrxy3zbbnXjaWs355MA7njn+p8fa6hygPxZY1sPwmvzjkTjp1y6O6VxKL15ZxxmED+d1Zh8Xbr2n4gSV1sxiWOYFUVxapriwu7nwH5cENzKr8lMZoLVMr3uOodhcwrGchlp3PkhU9Wde4hHxvJ4r9PxCxg3RKHEBp6GMAbCzAYkNgcTwQbBjgxMsNvf6Ly3DjNN1N2w1OKLiWCe1+idv0YRoOeqeOafaYplVM49EVjzb13fwj8OG5F9HO25V8X3eyvR3i20uCz7G4vuUXSzYmC+rym4KzBhfn/h/98wt5bd1TzKv6lNqoj6DtJj2vkXVLsmnXrQwTmrKwmzOI4jZj9ca9RgivGYk/XpcRwWnE/kaFLAcRHJufC8BhWHibyqjbNoRsJzaxLHAHFknOII2Wm4jlaMppj24RlDe2+NnGxMIwmqYdNG3fMkAfX2Pd2BxIz/U14DSaZ7kYBqS5/TRGXawqy8DljhAOOujUZyPuhAj+GjcuT2TzPDQbQiGTzikVJJ2ygYOrzmLIQf356/S3+XZlXXwOXF1VIr7EIEG/iyNzRrDo+zLWvzifxGFhyDTgyzCc7MH6NBTr27aZP2UJzz/6NudccUKL511ERER+HgzDoE9WMi7TZGEbZI73yUqmR6ZCJ9KSYRj4fD58Ph/Z2S0/u28pGo1utXR7Q0NDs/vby0KPRqPU1NRQU1OzzXYAPp9vu2Xck5KS8Hq9+uwv+5xg1GJuSQ3r6jYvb2DswFKX2xI/3pvA1PVVFCR7GZCbqmUyRGSfpsC4yH7M53ThczhbZHkbRlN53i3KqpcFGjnvw1f5+yFHc2r3vq321ysrhzkXXU1DKMQlH7zBvPISsGF0fiHHde3BH7/8JN7WBmoCflK9vvi2KwYN585vvyBq22QnJJKflEKH1HQ6paaztLKcssYG1tfHPng/Nnv6dgPjPp8bt9tJKBShW9dczKaIRWqKj7v+ehqdOmXj3InA1o8FGoNcMvQmKjfWcP1DFzHh3IPj+/KSkrnv8KNYUFbC1UNiJdjdbicnnTCYr79ZwvUjjmRkt1gp5csGDeOyQcNaPcfW/PvZXzHxic85eFxfkn9UPq5jlxw6dmleimxDcTV33fMuAIZpUHjUIuZVf8S4vMsYlH50q+ewbZv/PvUla9ZWMuagzvHtTtfm52ziM1/xwYfz+NXlhzP20F6MPbQnYw/t2ayft96exeLFxSxeXMxBfQuY8vw0QgO7sHbeOoKPfca/HzwfgMpQrJy902Ph8fkJrotCcgJOh8l/n7yUL7/6gTvvjD2GZUtLuPa6o3nVhCPOHk1mu3RO/sVQjj1mAD8sLqZXz3zcbicvfvRbfAluvD53szHN/2Yxvz/uXlweF395+0ZmlTRAxzzGHdMfC3j0jW8IRaLcfcKR/GbYaPKSElnbWE7X5LwWz1OPHu0YO7YXZWW1jB/XG8uyeOOhjwmHopx67ZEYpsltp/2DpXNWkfLXvoTSgkQBV5JNsCqBVTXVdEp38sTyK4jaYY7Lv4F+aeO48IKDycxMpkf3PF5evoA7pnzBmIIOPHfCaVu7LH6Sd9+dw6pVZZx33hhSU33bbPv12zOZ+v5sTv310XTs1X63nD8atbjl5L+zdPYqbn7hWvqN6bFb+m1NcUUtWamJuLb49//uq9Opq/Hz9svTthsYB+JB8XVl1YQjUTq1y9xm+42BFfGfg41gWTbLFxcTyM6J97OJbds8veo2QlaAksAqzul4EwAdEnvTIbE3yc50Pt74LIPSNwfSTcPBJZ3vZFHt17y2dnPFiUUbZnJqpxt5deN9TcHXzUHaTbI87fE5Wv9y0bvF9opgNU+tfIvChDxOL5zAQRkH4XF4SHAkUJTQfLKM2/QyIP2IFv1d1uVsZlXMpypa2/RYY9tjXzXFsrczyv18mPRbnEm/4qyiKzG/zOfpJV+QOb6R2tJEksva4+gSIEwdThN+/HnZ2VQK3SSKy7Q2LccN2DhNa3N2uGkRtTZfAz9+XoymVHXbjpU/j60dDm4zQkU4Act2ELJNTCO2tviWgemmhwPYRG0b59b634IJmEYsozyWnW7gNGxqI05CthOnCX16bKQ65KF4URYub+xvty81hNsMk+2ppzHioSqcQLInSIe0SgDSO5XwzAfz+arKDzjjlWEa672s+j6fJLeLp1Yvj20/sQOZn5WS/UkZeR2z2XhN6eb3Al4wH0rkhdxPWLqgmD/3uRTT0JcV+xXbbr7+QluOQ0RE9muGYdAjM4lkt5NZG6sJWz+eJrmbzwe4TIPBeWkqny67hcPh2OEs9GAw2Cz7fGu3xsbG7Z7X7/fj9/spKyvb7vi2V8Z9083ZytKHIrvbhrpA/PV+T1pfF6C0IajXexHZp+kvr8h+Lt3rw9/Qcpb3piy3LZZVBWBVbRVLq8qp8DcyJK89LrN5YDnR5SbR5eaVk87i4VnTGJDbjsM7dOaZBbNbnOPl7xc0Cwivrq0iNyGJwzp0Zm1tNY/PmY7H4eSrdasYnl/INUNGMHTiIwSiESxsApEwXmfr5aVDoQiX/+opgqEIRUWZ/OF3x2GaBgeP6U7/foVkZSXvytPVTENNI5VNWcyrv9/Ad9NX8M9/T+KQMd25/NLDOK1nX07r2XwSwa+vPoJfX90yWLSzsnJTufHmk3a4fUqKl7S0BKqrG+nUMYtZ1R8RtoPMr57UamDctm2+mjuVF1/7GivkoKgwg7//55e43E569GlPxIqV833xpamEw1Fee30GYw9tfa3lww/rzZQpy+jdK5/+B3VhyOF9mFtSR6PTwZjRm0vVD0o/mpDlJ8mZQVL6et6Z/zkJHXO497+Xsry4Akeqh8zMROrrg/TrV8hNx99DVWktDTV+Bh7aGwCPx8WA/psDdOlbySRY/P16gmleopV+6isbSEhw09gYome/Qt5f+CFvzZlGxYZ0urbP5PhRsXLZ3VNaryjgcjn48/+dGL8/7aO5PHHz/wDILcqk++BOTJu2AvKyyHq+ioTfZVMVruPEriPJcKZyTJfu1IaL42WyH/3zfxmeVc35fz6FM5sy7//57oxY3xvWErUsnlkwh431dVwzdCRJbjdTy5ewpLaYU4pGkOj0xMdSUr6B5195lPZGP06//NStzjhfv76K+//xIQBer5tLLjm01XYAlmVxz8WPEQ5FqCmv4y+vXMfCKUtwJnl56oWpeH0u/vD74/D9aDLC9pSuKWf6x/MAmPzq1D0WGH/87W957N2p9CrK4dk/nR1/Ts655FCeeexzjj156A73tWx9OWff/hxRy+axG05laI/CrbZNcWexMRgLjmekp3DQmG4MGdmVbiM68vW8lZw4JvZaUR+uxutIJN2dS0lgNZmeltddt+TBhG0/TiP2HPsjddRGysnxdGTzi3bM4g8cpGVUY441MYyWmQ4ZzkLO7XjLDj3edzZMZnJZ7FqcXbWIO/v/moFpA3fo2E1Mw+Tx4fcAUOwvpSJQyayq71m1Yj2zzp+LdWRvOvz6M5zuKPOqPmZQ+tGs/mwjDbMMAu1yyB1UBgULscwwri3KmBtGFIdhY9lG/CnYlBmNYWI1rett2QZmU3572Go5McrCxB91YBoW2Ca2YWJi4TY3P3cOA9KcAUpDKYCJ24hiNZ3MsG1cJoCNgYVpg9vYHAS3m5Yqse1YdrrDsIjYJjYmjnjmuIWJQXEwjaDlYMu324YBTsOiXe8KKpen4glF8YYi5B5US6IzTKIzTFWDh4LUyqZzeOifNob/lc/CjIDlAWzwGg78VpTuKen8tstwLp3zYfwcuQPbc/Xxx3DU+QdzTo/rqSqJ/Z1LvDyVQG5s0sH0yoXMrV7CoPTmE6FERETk5yU/2UtmQk6LDMLdbVMGoVsZhLKXGYaB1+vF6/WSlbXtinvRaLRFtvmmn39cyj0SiWy3rx3NQvd6vS1KubdWxt3n8ykLXXaabdssrmxg0V6qEGIDIctm6oYq+mQl0z0jUdetiOxzFBgX2c+d3WsAf5vxdav7Nq3rGr8DPDRnKg/OmQrAKV37cP/YY1o91uN08puDRm8+T+8B3DftK+pCofg2c4s3No3hEM8smAPA84vmAvDlutXx/ZPXruLJOTOINM1D75ySttWgOMAZZ/2b6toAGAZr1lRw9nmP8L8Xr+bww3pv9ZiS0hoWLNxAl87ZdOyw/RLjme3SuWnir1g+bw2nXnMkd/7jQzYUV/PSK9/xywsPweXauWx027ZZtaqcvLzUrQYVSxvqCUajbPihnClTl3HqycMoLMjYZr8PXv8sHz37FRfcdioHnzKcvNxU0qsuY371JMZkn9usbXVZLX+94GGMw9aRfuwKRv7Oy5Q7h9G5cw59B8XKIVeFinlqxbUAnPXLC/jozTWUl9dz/Q0vcMftp5CQ4GnW56BBHXjt1Wvi9//6xg0AhMPRZs+R03QzOvtMAAb8C0657hhSM5PZWN/Iebe/gG3D3b89hkMHdMHtdpKUnkhVaS3JGUlUBNfhcyST4Nz2bG+AUDjC4z8spfqIrowraMeoI/vz9LAuVFc3YOWs4tW1D3HYGfD1qyPpWZS73f5+LL9TDm6vi2jEoqBrHvmdc8jsUUBFTYDqsiDvHvz7Fm/qMzztOaPoDh69/XGWP1VPceLHnP/nU+L7/zDyENI8Xo7o1JWF5aXc9vVnseN8Pk7t3YvfzHgK24D585Zy30mXEIlaTFm4iqlVtxM9tIR5i2czdP5BdOnfgdakpyeQlZVERUU9PXrGsuKXV1Xy3MI5HNW5G8PzNwd8q8PFDH+xmqplYfqFuvHxs19x/+VPQFE24YJY9vP4w1dy8CGxwHZDrZ9PX/iaPiO702VA6+ef8tE8/vW3D0kY3J0CZ5TjLtt+xvaueu2VKeAz+WF1CVHLxtm04POow3ox6rDWJ3dsTVWdn2jTbOnymm2vsZjn6ciSuu8AWPZaGou/XkrXHu3o0zGPjgU+1jb+wEcr3mVFwxychotLutyLDeR5OwIQtoJ8VvI8TtNNpqsdb2/4JwDndPgLb66/n4ZINUe2u5SDMo7DWXQzRtjFTae/T111iGN+k05R5vF8W/EmAF0SB3FY7pm0T+iGaez469SAtB68vu5TbGwW1q6gLtxAqnvnJhn5o3XMqnyPgoRerC9OY+qGNXzGF9gum0hOGPt/s+l6zUn43XMZk302AOf938mYd7/J3F6LiBrgNsK4jChRHICBw4jgMGwMA0xsYsXPbRxYW2Rlx0LO1VEfDqI4zFjbFlneQAQTFyaGYce3//hzeEPEhU3s71jAcsTKumNgEMVpW7iNaLN1zzexiWWCh22bDFcE0wCnHQs2By0DAxOPGcW2oZ2nFgsoDqQRtmN/75KcAdr7qigPJuKPJFL7XRrBHkF8pQGSC4KUVSezYXoeg4+NVeBw1Hbk5Y82sHBVCckJDmraRcGEYDAKblhSX8mVX79PYWoKa6P1jOvYmfsvPppUb2xm/iG/GMZbj36CnZZEY4MHk9hajF7TTXtfTovHB/DCc98wd/ZqrrhqPJ06t95G2ohlQyvLD7TJOERE5IDhcZgclJ9OwRZrzjYVqNllm45PcTvpnZ1MfpKyBmXf53A4SElJISUlZZvttsxC39atrq5uh7LQA4EAgUCA8vLybbYzTXObmedbBtOVhS4Qu1YXltexpHLb33fsKQvL6whbFn2ykhUcF5F9iv5Kiuznrho4gkE5+fzxq49YU7f9mahbrh4+o2T9Dp/HaZpMv+BKznvnFeaXbeSozt25ZODmzMwEl5tLBwzlk1XLWVlT1WofkS0+WvfI2vZ6UZuC4gAYBnX1QRoagni9LurqAiQmeuKl1QGeeHIyL7wcC/g7HAZ/ve0UBg3sgNu99Ze5HxYXc8/TX+MwTYrmruXE4wexanU5h4zuvtNBcYAXXprKf576knbt0nj2v5fi+NFs+FU1VUx4aSLhaJTCqeDYGKWkpJa7/7rt0tqfvjSFSCjClDemc9qVE4BYdnZrmeLfvj+H+d8soeupFumANyOI6bLo03tzueyN/qUErdib4gGHeKlc05l335tDycYa5s9fx/DhXeJt51d/yucl/2VQxjEcnH1Os3Nt7znK7xwLSodr6uPBqXDUiv9O7v/wjyyZvQr3wHIeX34ZHjORK7r+Z7vB8XDUoqYhls2Q3iUbwzDIzEwiMzOJpXWr4u0e/PUv6Jy6Y2uwb6mwezueXfQ3rKhFek5sLLc9dAEvP/UVY8b13uqb+c5Jgzlx1CXUfPY6x158WLN9PTOzeeCIYwEob2wgzeOlNhQkx/LitExMv000wWDRW4vgJPjvB9/x2NvfcsjJEXIA03CSW5SFZdk8/NY3lFbV85vTDiU9OVYyPSHBw7PPXE5jY4j09EQA/jR5ElM3rOWNxYuYc/HV8bF8sfhtHPn1ZOXDqI6d+e4/sQksdtiGaOwVwuNy8M38lRTlpvPaba/xwX+/wJvo4ZX1j+D2NJ/QMuOTBdx28ROQG5vgceZ9Z9Kxd8FOP+/bMm3DWn73+UeMbl+EPXkZ3i6ZJFUFcP7EjJOhPQq4/ZdHEQiFmTB02xnuqe7Nr1nJExYxeBysrCvmwcWvURHe/FpqGBAlzEur7+asoj9REyrj9S9eY33uJ9jO2KvgppLoAHXhChoi1QCUBdbEylqmHATA4y93Ze2GYjK7RMn1nU1DpJqK0GqOyDuXdgldd/rxDkrvyd8G3sDEFW/SP73HTgfFASaXPs3sqvcxcfDiy4fiSAuSN8QGAzqOKWT4LwbQ3xhGr04XxV8D8zvncs3DF3Lh9GtIcgTpnBArO7jan0nIdjaVMt/8/IHdtHZ3y69jnVgYRqxkeywH3MY0aFp93WRTQXSX6cdtWoSiDgK2I74eOEBDxElN1IPP3NTD5nXKLduB3zJwmuFWA+OhqIOlDZkkO8N4jCqSXaH4sR7TJmgZTWOySXIGcJo2qa4As6raE7GdZHtCmAaku/wsLklgxJmLcGUGWdmYydwNBWxYl8Xx42Zh21BXmcDsLxKpq5wVu2AawBECy4T2JLLWaAAMwikGh3na85uzx5Hua76Mwtwvf8B2OiAnE+srsFa7uPyiwxl32FBSvS2/8KupbuS/j38BwCsvTeN3Nx2/vUtCREREDhD5yV7aJXmoCoRZXtXAurpA/L3rjgTJN7UzgIIUL13SEkn3uhQMkQPOzmahNzY2breMe11d3Xaz0C3Lora2ltra2u2OcVMW+vYC6cpCP7Atrmxos6D4JksqG3CZJj22UhFSRKQtKDAusp8zDIPR7Tvwzknnc/knb7KypoqSxvodOvbCPoN26lxep5NXfnHWVvf/adRY/jRqLNPWr+W1JQvpkZ7F7NJi3l2+uFk7h2Fwy+jDW+2jrKyWVasrmm+0bbIzk/B4XVx02ZOsWlXOgH6FPPD3s+NN3nl/TvznaNTmDze/SudO2WRlJnH1leMoLGi5fvBHkxbQ2BjLgL/jrrcZMbwLd/7lFDp13HbQfmvWrY+tB1taWks4HG0RGN9YX08oGgvEpHdKoXZjFb16tV7ee0u/uudsPnlxCuf8/oRttpv75fd88eo00jrlsOzdBEJ1HqqWpfLwAxeTk7M5ANIteQRDM04EbJ7/+0ZmzViHz+eid+/29O/fvJT0zMq3aYhWMa3itRaB8U0W107hvZWPklo7mAtHXdvicfcsyuGR60+hrjHI4YM3B/OSM5IYMq4vU8pfBiBoNeCP1m03MJ7odfPIb05h3opiTjmkX7N9XZMO4oyi23EabooS+26lh+1LzWweMOzWK5+b7z1ju8eNPnEoo0/cdinvrIREvjn/Mp56/DMevew1Pu/TnmMP7c37pfPoM6IbAMFQ7APxjA8Hct9v+tBrwjCSEhKZt3wDT30wHYBO7TK46OiDNnfshI9r51AYyWJUdg+6pWUwdcNaemQ2/6D+6aO1pJ/kJVqXQF7Prpzwq+4kpPiw3S5efOE78tqnMa+8nEee+hafx8VZyekAJCR7W/xuIbYkAQ2NUO9l8NjeDBm5eWLF2tJqZi9bz7jB3Uj07lxp9i29tGg+q2uqWV1TzaFFmZTM2sDIYwcRaAhw5/kPUV/VyE3PXkVW+21XX/gxwzA4ZsSOZZkPSh+Hw3DyVdmrVCQ1BcJTS6gIt96+JrKRx1ZcEwvTNs1L2fLLwk1bFtV+E79XlNi8IkZ6ZhIvVd1H1apiBqZNYG3jTBqi1byx/h76p45nQPp4kl3bXhv9x7ond+DOAb/eqWO2lOqKZRD7HKn4XF5qykwOMkczokshhz9wEL886V+8/PZ8TrtgNJdcOyF+3Iq6dViAy4jGA8kOwwK75RetFiaGbRGxnTiMCCaxjHDTbJ75bdsGFlusDd5UZN0AHE1BdYdpYUadWxwDXkcEXzRCptuPSZSI7cBlRjGB2oiH2mgiNREPyc4gDmwcZixLHKDe8pLhDpDqClIeTqIxGiLHU98UyIeQZWIaDryOCM5NYzBsUpxBSoJuXIRJdvgJ4aDP4UvJSol9qZUSDlBRmk5CJEyCN/Z3qXRdBnVViYQTbSJJNgm1Jq+fdQTflnzFUR2P5l/fLeKzlcvp5E7l7NFDCFYHWVXSwNRvlzFufB/Axu92Yacmbf6ya42Lx274kMc2PENmnyw2DghQ1CmPB6+/nmR3AskpPgYP7cSCeWsZffDmpTJERETk58EwDDJ8bjJ8bvpHLMr8QaoDYSr9YaoDYSJ2KxMXDYM0r4sMn4s0r4tsnwePUyXTRSCWhZ6cnExy8rYnJdu2TSgUahEsb62Me0PD9gOdO5OFvmXp9sTExBbZ55tuLtfWqz7KvmdDUxWQfcHC8jqS3U6tOS4i+wwFxkUOEKleLy8ddyZr62p4ZM5UshOS6JGRxbfr1xCKRvm+qpQyfyOBSITfDB7F6PYd6ZK2c0GkHTW8fSHD28cCrP5wmEAkwqKKEo4o6soNI8aQ4mn9jVB1dSNnnPso9papfU3KKup57/25rFoVe1M/f+E6olELh8PkvQ/mNluV1+VyEA5HWbGyjBUry/jLHW/zxKMXUVvr59PPF5Hgc7N6TQWZmYnNzjF12nLcLge3/fkXu/S4L714LNlZyQzoX4TX2/IDw/D8Au4aO4G6YJDz+wykttrfLGC9NUeedzBHnnfwdts9/qeXWT5vDYnZKYTr01j2bidOOnEw3brmNWvnNN0ckXc5AK/XTgSgoCCD++49s0WfI7JO48vSZxjYSnb6Jp+teZGgq5yNqZP4YvIExh3estz9Qb2KWjkyZmjGiWBDmjuPTM+OZRoP7l7A4O4t2xqGQeekITvUR1tKdLnZuDh2La9eXkroqmwi1S6+NWIB18uOH0HHvHS6F2bTo3BzKeOOeRnkZ6ZQWdfYYj3sF1d/zaNLP8YA/jvgKj59aRFpTpNTejbPhM4d1JFJM2o5xNMLp+kGE466cCwAR58dWz7hkbemABCORDnrjycx4oj+dOpTiMPZskrAIScPY9asVXz00UIcbieepmvfsmwuuvslqur9zPhhLX/55VG7/Hyd2bsfs0o2MLp9ETe9N4blc1fTe0Q35ny+kGlNk2K+emM6v7j6yB3qLxiN8N6yxfTKzKHXdqpXbGIaDgamH86ahu+pCLVebWPLl64ts8K3tOU2C5ul9TNIdmRQNiPEHSe+yF2vd46XrLexqA/HKnDMr/6MKLEJE9WhEiaXPcvXZS9xRbfHAJtUV85emek/IvM0OiYOIs2dx+nXwKeLlnFU3+5kJicSCUeprYqVCqwsr6MxEiTBGVuaoSixHf6Im/URJxEr9jyUhxJIdoWJYuJwWPHKEjYGtm3iMC1CVux6chDFZcdKq29qF7UNIrYB5qZweOxmA/VRL14zTMByErUdOK0ILjOWie4AXMbmdcedbF5/PMUZpCaSQGPETYY7SFOlftwOm7WNadiGSa6nBo8jis8RYkMgjbDlIM9bS8Q2cJlh3E2l1G2gOuQhxRWiR0oZWcEGMj2x58dtWmQn1VBbnYAVcbDsi84E62J/G+c4upGS1sCy+QXYJjS2t8GE9GQ3r5b8gyD1fFhWykV5lzCyKoP335vLVU9PBCAtLYHq6kZmzFjBqpVlVKWYJJybTkV/P64ZDryfuSEQwE51sOb/AE8Cy6jlzC/v4e1xt+AwTe69/2xs21bmyL7ItpuvG9CW4xARkQOex2lSkOyjoKlKlW3bBKMWlm0TtcFhxJal8ThMvW8Q+YkMw8Dj8eDxeMjM3PbkZ8uymq2Fvq0s9HB4KzO5t+irrq6OurrtB1A9Hs8OlXFPSEjQa0IbC0YtZm2sbuthNDNrYzWZCTl4fmLlPxGR3UGBcZEDTGFyKncevDk4dEynbZcH3tN8Lhf/OWbHAs03/uGlWFD8x5oiISOGd+H1N2dQVx/kikvHxrNXH39yMrV1AdxuJ6FQBKfT5JSThvDSK7H1gNMzElm9ppwLL3myRdcP/O1sNhRX8f6H81i4aD1Dh3Ta5ceakZ7ILy88ZKv7DcPgrN794/e9Obt3tu3BJw1jxfw1DD2yP5OWlALw8aQFXHTBISRvZVbmX/5yMl9/s5TRo7q1ur9nyhh6pozZ5nl7e47ks7L/sGFqLseN3/nSSG7Ty6js7Wdjt4WNG6t5/PEv6NYtj7POGrFb+77qd8fw9v++Y/iY7qzOr+D72vUcnR+r4uBxOTl+VJ8Wx6QkennzrxdhWTauHwWpszyxGeheh5tZU1YStCwcIYNps1Zy+uGbq0NM77aCcJHF6qQKSqvqyU5LbPGh9eJjDqJ9dird2meRkZpIxrjmmflbMgyDGn8E24aZU5cTiURxuZyxAGTTv1GnY+eXJtjS8PxCJp9zSfz+gENiWd69R3an94hu1Fc3MPK4rVfA2PS6sulxPvDdFB6Z/R0eh4MZF11Jstuz3TFYdpRX1zzA/NqvATCBREcKl3S5jwxPHmsafuD7mmnkeYt4Y8MDm88NW2Q0Nw+Mbwrl1kcqWXBTMqFyPzM+nkeXAR2IRi0WzFtJSkIO1ZFinKaLqBWhQ+IAVjfMA2Il2x9ZehkWEcbmnM+orNOwiOIw9tzbu/WVtUz8Yg0juxtMW7WW576dw5NfzuST316M0+Xg3scvYtbMZbzWYTrjP7uNuweeyyE5vUlyJ3Bk3hi+KJ1BJJJNaaSCZGeQqmACUUwCqz1EG934veDND9Ivo7jZcxXFgWXFAtph2wTMpixtC8veIge/6ceI7aQ+nilux4PisCn726Ix5MJhRGmwPKS5/fHS6WvqU6gLJdDeVwdNgfiA5aQi6CPT24g/6sTjiNIYcRGIOglbiVTWJ5DgCNM5oSzej20bpLlD8Yz4qG3GJ0/YNpQHkpjxzgCycmrp0H0ji8rbEW5wsWZpLkbYBqcJBjiCEPVBiR1gXZVBdjpsrA5yz9v3UzItEyu0+d+XxxN7zOnpSfywdh2eX5VheWycITehQ8D7GSTmZFBTkAqeYPy4GquRL9/+jsNOHNH0POqLLBEREWnOMAy8rUyUFZG9yzTNHcpCB+JZ6Nsr5d7Q0ND693FbCAaDBINBKioqttnOMIztlnHfFExXFvqeMbekhrC1b01mDVs280pqGJaf3tZDERFRYFxE9h0JCVsPTp12yjA6FGXy8vNXtth34nEDee3NmZzyiyE0NIQYM6obgwZ2YMSILvzww0YmjO/DORc82uK45GQvnTtlM6B/IUdN6EcgEMbn2/Vyz23tzBuO5bRfHwWGwdzzH6W0tJbGxhCXXP4kWZlJ5OWkcsUV48jO3vzhafXcNXzy93ew1o3klB3Mtv2xQ7sdR/ekMYQLoxS0z+Duu99l6bISbvrjcbgiUe688FHad83lj/+9HKdr//qz88qr0/li8g98MfkHDju8F3m52y7zvjPaFWRw+fWxLOqBdObEgmE7dJzDNGltgu1x7YfSNakdGZ4kouVRnp/4LUGPyRW/GNWs3eCMTnxUPBf/eoOjn36CMw4byO/Oar4mutvl5IRWAvNbc94Vh2MYBsMP7o6r6XdsGAbP3HQWC1ZsZHS/rU84WT5vNamZyTtdBh0gMcXHPz7/8zbbNEQC/HLqw5QHa/n30EvolVqAuylQ7zRNzO0EAENWBMu2WFr3XTwoDiYWkOnpwOzqzxmSPo6ixJ4UJfakOlSKExcWsXLYW5ZP3+qZDBh33iiqgqUUnmZi2VEmPvQZ734yiaF3rQEgw5VPWXA1axsWsGXxcaspi7zYv5RX1tzOsvoZHJN/NQPTJ7R2pp/sgfe+4qO5S3l16nyOGBIrtV0fCGI3PcqiHtl87l7AuhXlgMGsyhUckhOrIlG8NIO589rTaegaemWUkeetozbsZV5NAU+f/FsuuuctapLKySiqbwrMNv8gb9kOgraDqE0s0N1UPN1sCjSHbRvTNjDNpid1C1FMnFiELJOA5cLlMAhjErRdrGjMxq6z6ZRURsByUV2ZDEk2C6rb0S2lDIdpsawuiwyPnwRnhKDlZFZlNv6oCxsDjyOCzxEiajkoDiRT4Nu85p9tG8yraUeSK0xt2EOON7bUyZrGdDaG0vFmBhgxYQGmaeMsDjJ1aTdcNYAbAqkWnpQgYwYuI2qbTJ/bla/m9iYtuZ4jBs+j02k2nmw/jrnDWLeukl6987n1tpNZvryUPn0KmL6yK3/dGPvbZxoWeQ1pZHRIYt3qCqwCq/kv1oAvgos4jN07AUhERERERNqO2+0mIyODjIxtf962LIvGxsYdKuUeCoW22Zdt2zuche52u5tlnG9Z1n3LW0JCAqapTOMdsaEuwLq6QFsPowUbWFsXoH19gPwklVQXkba1f0UoROSA9o/7zuLfj3xCTlYyxSU1vPPeXAByc1O48opxWz3ulxce0mqm9oB+RQzoV0RFRT3+QKTZvpzsZG76/XHxTGrDMPZ4UHxZVQU/VJQxoVO3eGBud9tU6vqC88Zw39/fB6CsrI6ysjq+X1RMbl4al106Nt7+f/94j+Xz1rBq0fpdDowDtGuXBsDatZV8PGkBAB98MI+kylpWLVrHqkXrWLlwPd0Gdtjlc7SFoUM68fbbs+nUMYvMjJ3Pht8ZDZEAf5n/ChY2t/Q9nSRXyw8Kj749hW/mr+K3Z46lf5eW69P3TG1azLoA3nnjRoAW64Lf2u8Mft3jOM7+vxeABmYva70s+M7o0j2PW/5+VovtuenJ5A7Z+iz2z1/+lrsvfBhvgoenFv6NjLy0nzyWH1tRX8LqhjIAplUspVdqAdcMHUnf7Fy6ZWSS6HLzUfHDrGqYzdHtrqUocXN2fGmghvOm/ItANMSdA49p0feqxoWsalzIsro5XN71HqZVvMsHxU9AU2FvaJ4tvuX9H/+cdsk6ahsX8Un9bByVFpUVYRo3eNk4KY/hJ+aS4WlHWXA1TtNFxAJri/LfAIMzjuWl1X/GxmJJ7dQ9Fhjv16EdH81dSvd2WfzphMMYUNSOYZ0KcDR9SfHMys95euXnGAYcntOPszvGloGIWhb/m7cQgNKVGQzMjAX8kxw2r4/+Gx6Hm0l/uYxI1GLCI3dhj6yIZ3hvWWIdDPxRk6BlkO7y/3jVDZymHas2bQBb/Bbqol4MO4rDNJodYxqQ7m7AH3Xgchq4iNA3t5j5dXk0RN3Mq87HNKKELSceR4REV5hg1EVj1BXvPxh1Eog4AYPyQBLL6kIkugJkuv3URnzURX3URsBtRojaBg7DpiHqprHCQ6DCS6DRTWKSnx45G2iXWM3nGwbi7tFIqDGRzLR6fL5Y+cP01EZKK9Kork8iajlwOiIMPagXV1z9y2YZ3gObXmeLCnLwr3NiGjZRy+T+Y37JFfc9AoBjtYOwFY6VPrABw2BN0eaAvuyr9pFS6uwLYxARERGR3cU0zXgQent+vBb6loH0TSXeN/28vSz0UChEZWUllZWV22xnGEZ8/fPtlXJ3u/ffhJefyrbtfWZd8a1ZVFZHu0SPqpSJSJtSYFxE9hkOh8mvr94czBl7SE+WLCvhyPF9f1K/mZlJ/PmmE7nvHx/g98dmtpaW1fGXv77Fay9f85P63lEN4RAnvPIcjZEwVw4ezu9GbH/N8J/iiPF9KC6u4oOP5lNRUR/fHgw2X1/qqAsOYeXCdYw7a9SPu9gl+flpHHxwd5YvL+WII/risSy+eWcW7bvm0qlP+91yjr1p5MiuvPfu9bhcjj3+pv2bsh+YXLoIgK/KFnF0/uBm+xsCIZ54dxoAL3w6u9XA+JZ+HBDfxDAMMjxJ/PXiY3h/2vecemj/VtvtDeXrYx9+A41BGmr92wyMW7bFusYK8n0ZOM0dn1jSO7WQ04tGUhqo5fj2Q4FYpvgRnboC4I/WMavqXQBmV33QLDC+or6EmnBsTejSgEmepxMbgytbnGOdfwm/eexseh1cBFusdr3pK4BN5bO3dQWtbowFjQ3AbXi4/Dfj6Nglh36DO9KzUwFRO0KXpCHkeDuR5Exjed0sltfPYE71xyQ602nv687R7a5kSd00Ds45e4efn511waFDOGpgDzKSfLgcDs4dFSthXx1q4Inlk6gJNQCQ5PTyxz4n43O6WdNQRkFCJh6Hg5ARorHOy8dfDaF70XrWleTxp76bv7hY2jCPIWOWE7BiOejYYAHBqAMDE4dhUR1KINERIuqKvZGNWLE1Ll0/eoIDUQcRy8TriOA0N61dTotgerKjEe8W11RyQoDORgXYkJ9Yi2lAqT+BslAyjfWeWFD8x3XxiX0J4TQtAhEXgaibmlAiHufmzOxA1MnXGzsSKE9k/cpcCJp4bPj8zSH0HbCcXgPX4HXXMvLgRRQVlVNel8Tbs4aQXV6LZRlUVMUmmViWyXvTBpPmaORgX1eM4a1fWavqNxKxHWCDYdrMK15OYpKXhvoAGf5knhj1e9aGy5hXu5pvy77n3E6HtdqPiIiIiIjIJjuThe73+3eolHswGNxmX7Ztx9vuyPh2pJR7YmLiAZeFXhkIUxuKbL9hG6oNRagKhMnYjyt2isj+T4FxEdlnDR7UkcGDOu6Wvg4b25Nu3XK4+PL/EgrFMi0z9nAG8I+1Nk92aWU5iyrKOKpzNzyO3feS7HQ6GDa0M889922z4M0bb8xk8OCO8TXFDz99JIefPnKH+/3yjen8+/pnGXPiUK594PwW+x0Ok9tuPTl+/5spS+lw0nBOO3XYfldGfRO3e++Me3BGZwoTsrCxGZLRpcX+BI+LY4b35JsFqzhmRK+ffL4hPQoY0qPgJ/fzU5x45RE4XA7yOmZT2L3dNtves+hN3lo3ndFZPfj7kAt3+BwOw+T6Xidsdb/XTGJg2tGsapjNwPSjmu0bmtGFCzqPpTES5Kh2g1jnd/PMqr+02k/SKD9roz+Q5W5PdWh9PDJubRklN1rPHN+yqHX/lMMZmH4EhmFw2vljtngcTnqkbP632jN1FD1TR3Fwztl4HUm4TS+DMo5iUEbzx7An5KY2f+20bZuJK/7FwprFLK3N4S/9zqA+8gXflD/JFyWJfFH6A4W+TP54zKE8vPZVLNOgelk6sxZ3xQCq/H7SfT4APi99n5Dtb3rKDGwMLGCjP4WA5cG2oU9SMR53NJYZbkMUA6cRe2ZDlklD2E1lKIGqUAJRy8Q0bHzOENneOtr5Glo8Ho8TPETjQXOnadM+obZZAD3dHaAinNL0u4rNcohaTb9aG6pKnaSmWyQkRXA5LBrDLiK2A5dtYQCRoIOGSh/lKzOJ//bdEMyAoOVk/qoislNqCDS4cSXF/kYleQNEo07mLOoUm5hjx9ZUT8lqINToIrA0i/Hndd/q76kwIRuAooRKOiZW8vZ3/6ZH1jAOvmY8Y8b1JiXJRyqJ9E3vyNkdDt3Zy0BERERERGSrTNMkMTGRxMREcnNzt9k2HA63Wsa9tbXQLcvaZl87k4WekJCwQ6Xc3W73fpHhvKKqodkk/X2RASyvalBgXETa1P4ZpRAR2QUF7TN47aWr8fvDrFpdTu9e28643Z0SXW7eOe3ceCl1aMoif/U5/JEIvxp0EL8f2bIc/E+RkuLD4TCJRpt/aCjfSlml2SXF3Dx5EqMLirhp1NhW23z8/NfUVtbzwcQvuOpv58RLt2/N3Xe/S0NDkNKSGv71r/N26XHsbiHLT124nAx3AYZhsHZtJW+8OYMxo7szeHDHNhtXlieFVw6+Yav7DcPg9ouP3osj2n0s28Ky7RaZ3m6vm5Ov2bFA7tLa4tj/6zbu1rEZhsHR+a1XjnCaDn7VbfMSA92SB/GL9tfwxvoHW7R1GWGchkV1eD1RTIja2CY4MAErtgZ3vMT3Zps/sMZ2VIfKduoDd4ora4fb7ilrGufjt76iRwq4jBTSPWXMqPoUgA2NPQAPa/0V/BD5lGMKFxCIuviypgfra9thA2MffpIxnTqQn5LMMUPGsbTuByKECVsmtWE39REv/qgHf8SJZRlEIw5wR+OB61DEiYMIhgEBywEYLF+VhystjNsTxWVEsA0HJfWp5HpjXxS09hQbBli2jYNNaeUGoaiJhcGGxhQsG0JW0zVsQ9gCcAHgS4eQ3wNJIWw7tqa3jYk/4sRFFLc3Slp+PbUbUggF3M1nRjigHh/vzDkIw4Z2K2spPayEZVY2ltE0lKYLJT23jsz8GrDh+QtuJcuTttXfS4ekXNJdITomVmIYkN2xkQWfL+Qvz1+NaysTfizL5o1XpxMKRTjtzOE4t/MaL3vZptkgbW1fGIOIiIiIHDBcLhfp6emkp6dvs51t2y3WQt9aWfcdyUJvaGigoaGBkpKS7Y5vR8q4t2UWejBisa4uEP+O4YrDD6JswzpOv+p6zrjmxjYZ06YxjD3pdK65+wEg9tF2XV2A/hELj/PAytgXkf2HAuMi8rOSlOQlKclLdvbW1z3eU7qmZ9I1PbPZNqMpOuLYA2+cO3TI4umJl1FRUYdl2VRWNlBd08ixxwxotf0z82ezsLyUheWl/GrwcNK9vhZtTrv2KKpKajj4pGHbDYoDDB7cga++WsKwYZ1/8uPZHaJ2mCeW/4racCnjci/joMyT+NeDHzNz5io++mgB7717fVsP8YBTE2rkgm8fpDrcwMPDLqV3auEu9XNzv1N5a+13HNGu9et3bxmccTgJjmSeX3Nns+1Ow4plGxMlajtxhhIIexvIdnegLLQSDIOIDdgwLO1IAlYdGwMraYzWEbBi5eAMLNI8Gdi2hWHsPx8Q09x5uE0fYSvITX0uIdWVictIoD4SZK3fwGEYRG2bitBiCl2Q4AwzsMtaGsoTqalJoTEc5uMlywAY1+1U/tr3MU74+o/YgLlFBLvx+1TCdW4ChxXjiJq4TQsbiNgGYTs2BcERNElJ9DOm+1Le+24QTk+Ugk6lsdxzp80PNTmkuhvJ9dbT8jO4TarTj2mAP+oiYLlY508jEHVhGAZR2yBiObBsqK32Emj0kpLbCNh43VHCtkWD34nDZeFyWFhWLFu8MLEayzZYXZZFpDEWSMckFhyP2rE68JYdy5A3YX3XFNatTybiszFDULTeSXVFI3TxkFmYDNTgc3rwmNufYX9GUT++r4ut5176iodwKMKszxYy/KjW/x3NmL6CR/49CYCUVB+HjO1JcnLsb0E0avHpxwtITvEycvTWM9VFRERERET2hE1rje9oFnpDQ8N2y7jX19dvNws9HA5TVVVFVVXVdse4rbXQtwym7+4s9LLG4D6dKb4lGyjzBylIbvm9o4jI3qDAuIhIG0l0uXn39PNYXFHO+I4tS2fvDvn5aeTnp+1Q25N79OartasY1b6INI+31TYDDunFQ1/dusPnv/WWX9DQECQpqfX+9rZgOEBtqBwMqAiuBaB79zxmzlxFt67b/lB1oLBsi0A0TILTs1fOt7KhhI2BagBmVa7c5cB456RcftPr+N0ypsY6Px9OnEz3wZ3oO7rHTh+f6d1cbcLEyQl5V/BF+ZMErGryPD1on9CToZnHUBeupr2vC8+u+gurG79nU5pwXkIXDsqMZaLbtk19pIo31/2Ddf6Z/FD3KfNr+tM/7YjtjmNG5dssqP6MQ3POp1PS4O2231NSXTlc1e0ZLDtCgjMVgJ4pv+OvC18DDDLdiVSE6vmhNoNMbzVhy4GFyciDlrB8zljGd+3NMzPnkOb10j07iwSXj/t6XceNi/4Zz6xuSuDGrnbhcNqEcTVlbMdKqS+uySLRESKhwiaxcxDTiKXnW2GTiG2Q4AhjGOD3O/A7PKxvdFOYWIm5xfcQlr05kTtiG6xpSCcQdTZbTty2obHaQ9W62CQnlydCYpofh2njTQxS4KsmYpuUhZLBNEh31lOQUAPAmvntyM8vJ8dXy6jwOJasDzG5ei3BLMfmQHkTwzZwNcY2rM+1INdD7jcBRka7c/qNp5DtTSfZlbDd383JhWczaWOUcLXB92/MITPfS7dtLFHSrl0abreTSCTKw//6mAf/8SEX/PJQNqyvpH1BBv957HMAbrvzVDp1yiG//bYzOmQ3s5pm17Q1ax8Yg4iIiIjINrhcLtLS0khLS9tmO9u242uh/7iU+48D64FAYLvn3dEsdKfTuUNl3BMTE3E4tp+YUh0M7/Nl1DcxgOpAWIFxEWkzCoyLiLShzmkZdE7LaOthAHBwYUdmXHTlbu3TMIx9JigO8MlHy5j9cW/SOtdwysnHAXDJxYdy3LEDyclJaePR7XmWbXHFd48zv3o1N/U5heMLhu7xc/ZL68A5HQ+hIljH8e2H7PHz7Yhnb3+d1x/8EIfLwf/WPERSWuJOHZ/pzqN3ygg2BlZxeuEN5Ps681HpI0RtJ+sDy1gfWMac6k8JWX6GpB9FY7QRuynqaeCgc1LfeF+GYZDsyuCY/Mt5YvkV2Fh4zO0HPAE+K/kPUTvCN+UvtWlgHMDraP4cHtNuKK+vmcaSumIqQk0Z8YZNTTgZe9Oq6gb8+cTujMgaza8PHolhGPEM8UF5HbmVi7jrh+cIREI0lCcS9CcRSbVZPjufbkM3NPUJ4aiLsO2gJuTDKO/K7Mq1lDWk4Kx3AA4i9U7MRJs0Vz2dE2NfZFSHPM2qmds2fF+dQ1FiFVneRiwc1EU8BKMuwMZh2ISiJqGASfmqzFiWN1C7Jg1PQgiXwyLd5SfZHYptj/ho8HupbEikc1Illm3QWO1l2OGLMQywjWWs9ucStJrS1n+cKbDlNxpG7D8lo71M2bCBW1JO2WZmwWsPfshXb85g9PGDmXDewRzf/nJoDyeuiFU12FZpv8KiTF549WpmTF/J3be/BcB/n/g8trZ7v4J4u1tuehXDgHvvP4dBQzputT8RgC+//JL77ruPmTNnUlxczBtvvMFJJ50U32/bNrfddhuPP/44VVVVDB8+nIceeog+ffrE2wSDQW688UZefPFF/H4/48aN4+GHH6agYPN1WVVVxbXXXsvbb78NwAknnMCDDz643S9DRUREROTna9Na4wkJCeTk5GyzbSQS2W72+aZbNBrdbl/V1dVUV1dvd4yb1kLfVin38ga71aB4JBzmqbtuZfJbr2CYJmOOPYkLf38LDqeTcCjIa4/+i6/ee5PyDetJSE5m6NjxnPfbm0lpqni5fME8nv3bHaxdvoT66mocTgcFXbpz7PmXcOgJp8TPU7p+HY/+340smjGNrHbtOe/GP2318dhApT+83cctIrKnKDAuIiI/Gx63k/JFGVQtziL5zFimo2EYtGuX1rYD20sC0TDzq9dgA99VLN0rgXGHYXJNj31rbfS0nFhWc0KyD+dW1lreFtNwcFaH3zfbdkaHP7Gk5jvm1XxO0GokZPkBWF4/m+PaX8Pr6x6k0NeDkwuvwWW2zNbP9BRwSZeHCUQbKEjotUPjGJh2DPNrPqF/2oSdfgwAK+pnUuxfypCM45sFtiuC6/iidCKFCX04KPMXu9S3aZoclteP7+vWx7f1Tq3fHBQHTEx6pMQmCbS2nMTBef1JcF/Mnxc8TlqeyYLVFrbToHP77iwpCWPWm3gCBsU1KaT1rQYHbAwWE56WTjjfhS8Yy/VO6B6hKKG8Wen0VFewRSw6YjsoCyWT7I4QiDoJW86mLxbMWHa6AS6PTWJWI8GAm7DfjScliBV1EIzaFJemkt4uQGOjm2XTOhAyndhRk/UL22NhEIo6qalJIDW1kffmVbO63Bnr1CKWMQ40S0/nxz8brGwX4bGPv+WU0QPITmo5oSMSjvCfm1/GtuGH6cv56Nmv+M/Mu2LPsWPHyvOnpSVy2OG9Kd1Yg98fYsZ3K1i6ZCNjD+tNbY2ftWsqYkO1oaSkZof6lJ+3hoYGBgwYwEUXXcQpp5zSYv+9997L/fffz8SJE+nevTt33HEHRxxxBIsXLyY5Obb0zXXXXcc777zDSy+9RGZmJjfccAPHHXccM2fOjGfQnH322axbt44PP/wQgMsuu4zzzjuPd955Z+89WBERERE5YDmdzh3OQg8EAs2yz7d28/v92z1vY2MjjY2NlJaWbrVN71MuxOFqudzWu888gdvjw+31UllSzPvPPklRt54ccfo53HvNJcya/Cmmw0Fh1x6UrV/LZ6+/zJJ5s7n31Q/weH2UrlvDwu+mkJmXT2G37pStX8fyBXP51++uISkllSFjx2PbNn+79hKWL5yHaZo4nA7++bursaJbL1FfHQxj2/ZuLScvIrKjFBgXEZGfjQkT+pKdnUx6euLPJhi+pQSnh5v6nMx3FUu5uMu4th7OHhW1I9SESkl3twNs/NF6EpyxqgCn33AsfUd1p13nHLwJu6ekfJekQfgcSUyveq/Z9oFp4+mc1J8bez6x3T6yPEU7dc4J7a5gQrsrduqYTRojNfxvzS3YWASidYzLuzS+b2rFqyypm8KSuin0TT08Xh59Zw3L7IpveeyD+dH5g8n2rWdm1RRSXRnUhCuxsFhUM4/R2YdttY9pFQuI2FEiRh2pPpPIKi/LEtZiGAaWz2bNx3n4Ux04NkZwesNYsz14SyNEvQ4sTywQ7Go0W6wnvuVnb7/fSb3pIcUToS7kZXZFPrZhYmPEErebPqzbTUHrlPw6bMuganUauV1iQeKKtWk0lCWwfmk7zKiBuxIMn00kyabRdmFEwcBg6rReuMwokbATDDBssLcso940xb9vbg7FZbVUWFuU6muqov33WdN4YPZ3zPvtNbh/VFLP6XIy7qzRfPbyt1hRi8a67X/J0hqHw+Ts80YDcOEvD6W2zk96eiLDhndh0kfzcLudeL1ujpjQb5f6l11kW7FbW9vJMRx99NEcfXTrE6Rs2+aBBx7gT3/6EyeffDIATz/9NLm5ubzwwgtcfvnl1NTU8OSTT/Lss88yfvx4AJ577jkKCwv55JNPOPLII/n+++/58MMPmTp1KsOHDwfgiSeeYOTIkSxevJgePXZ+2QwRERERkV1hGAY+nw+fz0d2dvY220YiERoaGlqUcW+tlPvWstAdHm+rQXGAtKwc/vbGx7jcbq46YhSVpRuZP/Ur8jt2ZtbkTwG4deIr9Bk2gqrSEq6cMJJ1y5bw1btvMP7Us+k5eBhPfDmbtKzY4wgFA/zmhHFsXL2Sr99/iyFjxzN/6tcsXzgPgEv+fCdHnnk+8779itsuOmPrj9uyCUYtvM7tl4kXEdndFBgXEZGfDcMwGDy4Y1sPo00dXzB0r2SKt7VnVt7M2sZFjMo8mfX+xaxuXMgReb9kZNZJGIZBn1Hdd/s5szyF5Hk7UxJYFc+MzvF22O3n2R1cpgefI5nGaA2p7txm+7okDWVB9ae083XH60gCwB+tY17VxxQm9iPft2PPXc+UAiaNuxXDtplf8ykOozfHtjuVedUzeHPDCwB0TOzc6rHzqmfw/OonyHF0ImIZRC2TxPIIrukhrPGADyI1TqJ1JkaCQdWqdEy/TaLDIJpnYRgmRG1wGJTMzKO4SzkpvgYSHLFy4jaAHQuQe7wRShpSsIGIbRKyYoF0w9gcQN/UPhhw4vDY2Hbz1dsiYQe2I9Zx1GHjTwM7oWnRctvAdgAhGzMKkaizeSa4Fes8s1MlnuQQ5cszWbSxDCtqx/a5tmjbtCh61LJ4+X/TOO+sUS2euxsfvYRL/3oGX74+nUFje+/Q72pbHE6T9PRYdnpBYQYXXTL2J/cpB4ba2tpm9z0eDx7Pzk02WrlyJRs3bmTChM2VLzweD4ceeihTpkzh8ssvZ+bMmYTD4WZt8vPz6du3L1OmTOHII4/k22+/JTU1NR4UBxgxYgSpqalMmTJFgXERERER2Sc5nU5SU1NJTd32hPQts9B/fKsLbr0s+bDDJ5CYHEsSyCkopLJ0I9Xl5SydPzve5s/nndziuKVzZzH+1LMxTJOn77mN+VO/oaayHGuL4HxVaWwd9bVLF8e3jZhwLAD9Rx5MUmo69TVVWx2bZe8PK6KLyIFIgXERERE5IISsAMFoA1WhEor9ywEoDixnbeMPAKxumM/IrJP22PndppfLuj5AY6SWyaUvku0pokfK8O0f2AZcppdLuzxGXaScHE+nZvt6poyhW6/hmDjjZc0+2fg4C2o+xWV4+E3P/+EwXK1124LDMFlUO5n3ix8A4OwOdzMu71j6pg3C50ggxZXW6nHTK7+hMVrPquh8eLETZIFriouw14HxUCqVQ93UpbuhC/g22hhRAyMSy/A2IxaWx8RdEyWc4sSZEqbR8NIY8IIVweeMUBlKJMPdQH5CLPu7IuADw8DCiGeXRyIGDoeNZYPVlK3t9oaJWCaV69MINfgoWZ4Fhk2gwRsrh970tNgeOxYMN4BwU+65G2wXRMM2ZiSWQZ7udnP+QUMY0CWD21c8DEByXh0VS92xAH5TtfVN2eIY4KyLkrwmytMffs6Ew/qQm9fyC5TUzGSOv/Tw+P2oZfF9aRldMjPwuXbsdyeyPYWFhc3u33LLLdx666071cfGjRsByM1tPkEnNzeX1atXx9u43W7S09NbtNl0/MaNG1tdEzInJyfeRkRERERkf7WtLPS6UIRJK8taPW5TUBzA4WgKBdl27Nak24DBLY5Ly4q9t/7n765m3pSvMAyD9l264UtMYt2yJfgb6uNB8i3D280ro2878B1VXFxE2ogC4yIiIrLf+756Cq+uu7fZGtY+M5nBaUfic6TQEKki013AtPK3OSjzuFhG8R6S4Ezh6PzL91j/u0uCMyVeXv7Hfhz4TnJmAOBzpmA0LYi9wb+ElfUzGZB2JEmujK2eJ9GZBoCBic8RWy8415sPQMgK8eSKB6gN13BJ5+vI9MQ+4B+WczSVoXLmv9GAY54bB1De1011H3fsA/ymoDOAbeNssHFnuajOiJA1J0TauiDjjurHnGgdNX2nx8diGw7qI04s28BvuSn2p+CPumhYl4i3IADYxJc7NyFimdgWOBw2htn03YFpkdG+lpJ6H4HGpuzYTWuDt7Y+uEEs89sA2wDcYITAVQ9P//o0erbPIWpbjKjuw5L6tfT19eGDug1EveB2mQTNpmvaH6VoocWffnUMd97+Fl6viz/c+CK33H4K7fJSsaIWviRvq7+Duz6dzNMz59A7N5uXzj2DK159m/LGRh455XiKtrM+nuxDfvQFVpuOA1i7di0pKZtfQ3Y2W3xLP15bcEfWG/xxm9baa91CERERETnQmbvwdrdrv0Hxn0++7GoOGncUANFIhHnffkX7Tl0BWDJnFgDjTzuHK/5yL3XVVfzm+MPxN9THjy/qtrk609SPP2DCGecyf+o31NdUb3MMDr1NF5E2osC4iIiI7HfW+5eysn4+g9LG43F4eW3dfc2C4gB+q47X1t/HplnKqxsXAJDsyqR36uhmbaeWv8eaxh8Yn3s2GZ52e+Ux7E8OzTmfrknDyPQUYRoObNvixdV/JGT52RhYzimFN2/12A6JA7ik88OYhpNMT0GzfasalrKodi4As6umMj7veAA6J3Xntz1v5/OhC7jrrdeJeAxqerjBhILMctqlV7NgbSFhv4fjI3lc/rsjOOJ/z2OYNt4TfDgKankrOoUMo5HEpM1l5QwDHKaN0wwTshz4MWiIuHC3D2DZBoax7XJuRtO64IYJhsPCjjSth/ajNcINDIg03WkKim/Zxo7G+mkMxcbmMExu6xdb5/3DOYv5ePIGfH6TQKMFmbFjeyamc/NvD+W/T3wOQCAQZu2aCt55fTqT//keoUCYv398E90Gdmwx7lVV1QCsq65lzvpipqxeA8BHi5dx6fADf2kF2TNSUlKaBcZ3RV5eHhDL+G7XbvNrb2lpaTyLPC8vj1AoRFVVVbOs8dLSUkaNGhVvU1JS0qL/srKyFtnoIiIiIiIHEscuTATtO3wUA8eMZc7XX3DPVb8kv1MXTIeD8g3rCDQ2ctvTr5JTUEiHHr1YPHsGn776At/P+o6q0pIWE0/7jRhDp959WbloAU/c9gfee/Y/lK5dg9PlIhLeepl3UxNYRaSN7Ll0KREREZHd5KvS//HMypspCawkakd4cvnv+bRkIn9ffB5zqz7DIrqVI1sGOSNWqNn9+kg17xX/h/k1X/NV2Rt7YPT7P9NwUJjYd4sMc4NkZyYAKa7srR/YJNvbsUVQHKBjYld6JPcl31vIwPSWZecPO6Iv73/9J37/xxNIMd04iXDkwHkM7LSag7ou56ETTuSuv5/Np2VrcDsMsgeUEGy/kRq7EUwLb1I4vlb4lp+5bSAYdVAe8NEYiWXHG0bsWrFsA8s2gVig3DDtWCVze9NzATXrk7DCjs0lzjfd2PyzYRmxEu/2j05sg7MRhnUqYHCn9gBU1Tfy5aIVWJbFUQN78NGfLuaj/7uERKcTIxQ75rAhPThoRBc2rK8GICMjkU6ds+ncLo366kZCgTDL5qxu9fm//ajxXD16OBcNG8xFL7+OaRh0zczg6B7dtvu7E9mTOnXqRF5eHpMmTYpvC4VCTJ48OR70HjJkCC6Xq1mb4uJiFixYEG8zcuRIampq+O677+Jtpk2bRk1NTbyNiIiIiMiByOMwce5CkPn3D/2X0678De06dKZ03Rqqy8po37kbp/7qOoq6x7LAr77rAfoOH43L4yHk93PRH2+jQ/dezfoxDIPf/etJ+o0cg+lwEgoEuPKOv5GevfUJqk7TwONQaEpE2oZh2/tCPb62VVtbS2pqKjU1NT8560FERER2r8ZILX/74VwgVh79zA4389TK38f3t/N0o0vyQL6v+ZbK8AZsLFLMbGqt2BpbbsNHpjsfh+kixZXJLwpvwGFsLpoTtaM8vuz3FAdWcnrR9fT9UTa5tC4YbaQ8uIZ2vm6YhmOPnGP+qmLqGoOM7NWBhlCYsoY6Pqz4LdXhjYzN+SUjs07ltfkL+f37H+NKbCSzZ02z49NcjSS4IvGguGWBPwqW5aK23IczPbbPtmMB700/b3pzHK+G3rR90//XzmiPhUG/3GzmlZTF+7d/lBmOzeay7zZggbMWPI0G3fIyef3G8wmGI4y++WGCkSi92mfzv+vPjY//ha9mc9ebXwDQrSCLYb2KGJGWx8r5xRx3wmByclOIRi2ev+st/A0BLvi/k/EmbL2c9enPvMjsDbH1lq8/ZBS/GtVyMsKBan9+v79p7OPbX4HT3PVy5btLxAryyfpHd/i5rK+vZ9myZQAMGjSI+++/n8MOO4yMjAyKioq45557uOuuu3jqqafo1q0bd955J1988QWLFy8mOTm2/MKvfvUr3n33XSZOnEhGRgY33ngjFRUVzJw5E4cj9vpz9NFHs2HDBh577DEALrvsMjp06MA777yzh54JEREREZF9w5drKij3h7bfcB+R5XNzSFFmWw9DRH6mVEpdRERE9lm2bVMWWENhQi/WNn6P36pjeuX7FPh6ss7/AwDZ3kIOzzuPzsmD+KbsVSoC6xifdxERO8TCmq9ZWj+d4uByLu78d9ontMyQdRgOLu96L1E7jGsfCDrtLzyOBNon9Nxt/b385VzmrtzAVceOon1WKkvXl3Pe314C4J5fHsORg3uQ5Mnk4rSHqQuXkeGOZaBvKr/mSoo068+2oSrkw2ubJHsi+CMRNgTcbCqY5E4Px9cTt9mcUW4YkO1OozxU3WKMoagDywbbNjGAdknJLCgpi3dixLPGjXiA3I7Y2A4gCmbUwNMY275iYwWry6rISEogGIlVPFhTXsOLX8/h3x9OweVwkJ7si61NbsP31eUs+racdT278NClJ8TH5HCYnH/zL3boOb5qzAiuf+sD0hO8nNK/zw4dI/JTzZgxg8MOOyx+//rrrwfgggsuYOLEifzud7/D7/dz5ZVXUlVVxfDhw/n444/jQXGAf/zjHzidTk4//XT8fj/jxo1j4sSJ8aA4wPPPP8+1117LhAkTADjhhBP497//vZcepYiIiIhI28nwuajwh1qpmbfvMYiNV0SkrSgwLiIiIvusaRVv8/HGJ3HiplvSMNb7l9A/bSwFvl78b81fMQyTsbln859lN7AhsBSAoelH0zstlvWd7S1ig38Jqe5ccrxFWz2PaZiYhoLibaWyrpG7/vcZAF6Xkz+ffUSztb7tLZaPd5teMj2F8fsn9enFmug6Xin9pFlWd4zBoKwh/FC3nrWBjc1PukWluS0zwgEyXcnNAuO2DRHLxMZoVp1/0rKVm7PBmzp8/ZzTuWXSF8wvKW3q28Boitn7jKYIedN/J3+/kvMPGcyfTj6MN79byMnD+3L7a5/F+6/2++NjtaOAA3rmbb90/dYc2rkTM39z5S4fL7Irxo4dy7aKlBmGwa233sqtt9661TZer5cHH3yQBx98cKttMjIyeO65537KUEVERERE9ktpHtd+ERSH2MfnNK8C4yLSdhQYFxERkX1WY7QWgAgh1jX+wGVdH2BhzVcsrP6KcbkXkJ/QjeX1s+JBcQCXwxv/uZ2vCzf0enavj1t2TkqCl54F2SxZX87wHrEJDD0KsnnqN6dT1xjk4L6dtnqsYRhUGGWxoDU2tg3pzmTqIw2EsXm/eGa8rctwELZjgelwFNyOTX00X4N8ccPaZufwOFyErNjXDCPMg3jPXEek6f6ZA/pzbM/uYMPIjkVELIsRHQrxul3MWLs+HqTvm5vN/849kzXl1fzxhQ/xuV0cNaB7rI/RAzlz9ECWb6zYPFaHSc/22cxfW4IBOAPw2xMP4fwxg3f6+ZUDhG1vOeujbcchIiIiIiL7jOwEz+Y52/s4A8j2KTFBRNqO1hhn/15zUERE5EBWFljLQ0uvwjRa398pcQCnF/2RiSv/SEVwPZ2TBnJ64U2Ym2pky37DsmyC4Qg+T+szx9dUVXHdu+9THwpy1ciRnNi7V3zfsrpibpr7DOv9lRye25/b+5/DBd8+wLL64mZ9HJk3iD/3O5NP1s3h70tfJURjUx311sdU6Mshw5PMie3HcGjOgGb7npo+iwUlJdxwyBjyUzaXfP529RrOe+k1AP5v3FguGDpop56HeauLqW7wc3CvTkQsi5WlVcxcvY77Pvmavu1z+e/5p+B06PreWfvz+/34GuP5l+87a4xveGy/fC5FRERERA5U0zdUsa4usE8Hxw2gINnLsPz0th6KiPyMKWNcRERE9llRO7q1mCUAqxsW4DI9XN71n3ttTLJnmKax1aD4yspKxv93Yvz+je9/0Cww3jW5Hf8b83tqw40kO30APHrQlayqL6E63MDq+lJyvGmMyekNwPiCgRRHSpm48sOtBsW7JbXn0WE3bHW8Fw1rPXO7e1YWuUmJ1AVDDCnI39ZDblX/Du3iP7scDrq3y+LlWfNpDIf5btU6NtbWUZCeutP9ygHAZt/I1t4HhiAiIiIiIs11Tk9kbV2grYexTTbQJT2xrYchIj9zCoyLiIjIXtUYqWVjYAUdEvviMLb9ViTP15EUVzZ1kTJg8zrQA1LHEbT89EkbjWk49sawpQ1NXrmq2X2fy0VxXR15SUk0hsMkut0ApLgSNrdxuOmVGluLfGRWzxZ9nlY4FrfppDAhh5GZfVhRv4GKUC3dkwqpCtfRMTFvl8aamZjA5F9dgmXbuB2759o8Z/gAVpRX0jc/h/ZpytAVERERERGR5jK8LlLcTmpDkbYeylaluJ2ka31xEWljKqXO/l1aUUREZH9i2zb/WHwh9ZEquiQN5pyOt273GMuO8vyqO1lSPwMw6J0ykrM6/H6Pj1XaVkVjI2//8ANjiorITEhg2MOPtmjjczrxRyKcP3Agt4w/nMZQiEq/n/YpKRjGtmoNyM/N/vx+P15Kvd3lOE13Ww+HiBXik2KVUhcRERER2ddsqA8wdX1VWw9jq0a0Tyc/ydvWwxCRnzlljIuIiMheYds235S9Rn0k9iFtef3sHTrONByc1+n/+K7iQ9Y1LuHw3LP25DBlH3HTx5P4ZPlynKZBGBscgAXGFlM6/ZHYTPhnZs/hjQULqQ+HARhRWMBzZ57eBqMW2YNsex8ppb4PjEFERERERFrIT/JSkOxl/T621vimtcUVFBeRfYEC4yIiIrJXVIdL+Kz0mfj9LkkDd+r4gzKP4qDMo3a4fbF/JRYW7X1dduo8sm9I88Y+MEespqA4xD5N2003g2brg28KigPMWL9+L41SREREREREZN8xIDeV0oYgIWvfCY27TIP+ualtPQwREQDMth6AiIiI/DwkOzNJcmYA0C3pIM7ucOseO9faxiU8vOx6Hl12IyvrF+yx88ie85fx45h4ysncdcR4ipJTwQKi0GLau91yW7esLPr881/c/vnne2ewIiIiIiIiIvsAj8NkcF5aWw+jmcF5aXgcCkWJyL5Br0YiIiKyWzREalnXuBjLsvhs43PcvuBEbl/wC0r8KwF4f8Mj1EcqAVha/x0PLr50j40lZPlb/Vn2Hx6nk4M7duT0/v354uKLOadPP0y2SBS3iQXL7WaJ43x6yUUsqawgEIkwcdZsFpSUtMHoRfYAy9p3biIiIiIiss/KT/bSOyu5rYcBQJ+sZPKTVUJdRPYdKqUuIiIiP1nECvPIsmupj1QxKG0cc6s/adoTZXLpy5ze4Q/MiW+LqY6UsqR2Ot1Thu328XRO7M9ZRb/HwqJ78tDd3r/sfbcfeQQFqam8NG8+J/buyUdLllHR2Eil30+XjHTW1dQyrKCAwrQ0Tu7dm/8tWIAJJLhcbT10ERERERERkb2qR0YiEctiSWVDm42he0Yi3TMS2+z8IiKtUWBcREREfrKoHcYfrQMgaAUwMLCb6luPzjoJADcJhGhsdtw7G/7NDSlP7/bxGIZB79QRu71faVuXjziIy0ccBMB1Y0Zj2zahaBSPs/lb2ruOnMAZ/fuR5HbTOSOjLYYqIiIiIiIi0mYMw6BPVjIu02Rhed1eP3+frGR6ZCbt9fOKiGyPAuMiIiLyk3kcCZzX8S+sa/yBIRlHMj73XKJ2lGxvYbzNr7o/yHOrbiUYaaDeipVUT3EqaCm7zjCMFkHxTQa2a7eXRyOyh9l27NbW9oUxiIiIiIjIdhmGQY/MJJLdTmZtrCZsbUph2EPnA1ymweC8NJVPF5F9lgLjIiIislt0TOxDx8Q+APgcLWcFp7qzuar7QwAsrPmKVQ3zGZN12l4do4iIiIiIiIjIz0l+spfMhBzmltSwri6wx85TkOxlQG4qboe5x84hIvJTKTAuIiIie12f1IPpk3pwWw9DRGT/oYxxERERERHZRR6HyUH56RTUBVhUXkdtKIIBPymDfNPxKW4nvbOTyU9SlriI7PsUGBcRERERERERERERETnA5Sd7aZfkoSoQZnlVA+vqAtiww0HyTe0MoCDFS5e0RNK9LgzD2JPDFhHZbRQYFxERERERERERERER+RkwDIMMn5sMn5v+EYsyf5DqQJhKf5jqQJhIK1WinIZBmtdFhs9FmtdFts+Dx6mS6SKy/1FgXEREREREZF9n2fy0Qoe7ibUPjEFERERERHYLj9OkINlHQbIPANu2CUYtLNsmaoPDANMw8DhMZYWLyAFBgXEREREREREREREREZGfOcMw8DodbT0MEZE9RrUuRERERERERERERERERETkgKaMcRERERERkX2cbVvYttXWw9gnxiAiIiIiIiIisiuUMS4iIiIiIiIiIiIiIiIiIgc0BcZFRERERNrIK3MXcM7zrzB19dq2HoqIiIiIiIiIiMgBTaXURURERETayF8mfU4gEuGfX01hRIcz2no4si+zbbDsth5FbBwiIiIiIiIiIvshZYyLiIiIiLSRE/v2wmWaHNe7Z1sPRURERERERERE5ICmjHERERERkTZyx1HjueOo8W09DNkf2DawD2RrK2NcRERERERERPZTyhgXEREREREREREREREREZEDmgLjIiIiIiIiIiIiIiIiIiJyQFMpdRERERERkX2dZYFhtfUowN4HxiAiIiIiIiIisguUMS4iIiIiIiIiIiIiIiIiIgc0BcZFREREREREREREREREROSAplLqIiIiIiIi+zrbBuy2HkXTOERERERERERE9j/KGBcRERERERERERERERERkQOaAuMiIiIiIiIiIiIiIiIiInJAUyl1ERERERGRfZxtWdiG1dbDwLbbfgwiIiIiIiIiIrtCGeMiIiIiIiIiIiIiIiIiInJAU8a4iIiIiIjIvs62AbutR9E0DhERERERERGR/Y8yxkVERERERERERERERERE5ICmwLiIiIiIiIiIiIiIiIiIiBzQVEpdRERERERkX2fZYOwDZcxVSl1ERERERERE9lPKGBcRERERERERERERERERkQOaAuMiIiIiIiIiIiIiIiIiInJAUyl1ERERERGRfZ1tA1Zbj0Kl1EVERERERERkv6WMcREREREREREREREREREROaApMC4iIiIiIiIiIiIiIiIiIge0AyYw/vDDD9OpUye8Xi9Dhgzhq6++aushiYiIiIiI7Ba2Ze8zNxERERERERGR/dEBERh/+eWXue666/jTn/7E7NmzOfjggzn66KNZs2ZNWw9NRERERERERERERERERETa2AERGL///vu5+OKLueSSS+jVqxcPPPAAhYWFPPLII209NBERERERkZ/Otvadm4iIiIiIiIjIfmi/D4yHQiFmzpzJhAkTmm2fMGECU6ZMaaNRiYiIiIiIiIiIiIiIiIjIvsLZ1gP4qcrLy4lGo+Tm5jbbnpuby8aNG1s9JhgMEgwG4/dra2v36BhFRERERERERERERERERKTt7PcZ45sYhtHsvm3bLbZtctddd5Gamhq/FRYW7o0hioiIiIiI7BLbsveZm4iIiIiIiIjI/mi/D4xnZWXhcDhaZIeXlpa2yCLf5I9//CM1NTXx29q1a/fGUEVEREREREREREREREREpA3s94Fxt9vNkCFDmDRpUrPtkyZNYtSoUa0e4/F4SElJaXYTEREREREREREREREREZED036/xjjA9ddfz3nnncfQoUMZOXIkjz/+OGvWrOGKK65o66GJiIiIiIj8dLYFWG09iqZxiIiIiIiIiIjsfw6IwPgZZ5xBRUUFf/nLXyguLqZv3768//77dOjQoa2HJiIiIiIiIiIiIiIiIiIibeyACIwDXHnllVx55ZW7dKxt2wDU1tbuziGJiIiIiMg+YNP7/E3v+/dHEcKwDww/QrithyAiIiIiIiIisksOmMD4T1FXVwdAYWFhG49ERERERET2lLq6OlJTU9t6GDvF7XaTl5fH1xvfb+uhxOXl5eF2u9t6GCIiIiIiIiIiO8Ww9+e0id3Esiw2bNhAcnIyhmG09XD2G7W1tRQWFrJ27VpSUlLaejiyD9I1Ituja0R2hK4T2R5dI7I9tm1TV1dHfn4+pmm29XB2WiAQIBQKtfUw4txuN16vt62HISIiIiIiIiKyU5QxDpimSUFBQVsPY7+VkpKiL6Flm3SNyPboGpEdoetEtkfXiGzL/pYpviWv16tAtIiIiIiIiIjIT7T/pUuIiIiIiIiIiIiIiIiIiIjsBAXGRURERERERERERERERETkgKbAuOwyj8fDLbfcgsfjaeuhyD5K14hsj64R2RG6TmR7dI2IiIiIiIiIiIjI9hi2bdttPQgREREREREREREREREREZE9RRnjIiIiIiIiIiIiIiIiIiJyQFNgXEREREREREREREREREREDmgKjIuIiIiIiIiIiIiIiIiIyAFNgXFp4csvv+T4448nPz8fwzB48803m+23bZtbb72V/Px8fD4fY8eOZeHChc3aBINBrrnmGrKyskhMTOSEE05g3bp1e/FRyJ5y1113MWzYMJKTk8nJyeGkk05i8eLFzdroGvl5e+SRR+jfvz8pKSmkpKQwcuRIPvjgg/h+XR/yY3fddReGYXDdddfFt+k6+Xm79dZbMQyj2S0vLy++X9eHiIiIiIiIiIiI7CwFxqWFhoYGBgwYwL///e9W9997773cf//9/Pvf/2b69Onk5eVxxBFHUFdXF29z3XXX8cYbb/DSSy/x9ddfU19fz3HHHUc0Gt1bD0P2kMmTJ3PVVVcxdepUJk2aRCQSYcKECTQ0NMTb6Br5eSsoKODuu+9mxowZzJgxg8MPP5wTTzwxHrTS9SFbmj59Oo8//jj9+/dvtl3XifTp04fi4uL4bf78+fF9uj5ERERERERERERkp9ki2wDYb7zxRvy+ZVl2Xl6efffdd8e3BQIBOzU11X700Udt27bt6upq2+Vy2S+99FK8zfr1623TNO0PP/xwr41d9o7S0lIbsCdPnmzbtq4RaV16err9n//8R9eHNFNXV2d369bNnjRpkn3ooYfav/71r23b1uuI2PYtt9xiDxgwoNV9uj5ERERERERERERkVyhjXHbKypUr2bhxIxMmTIhv83g8HHrooUyZMgWAmTNnEg6Hm7XJz8+nb9++8TZy4KipqQEgIyMD0DUizUWjUV566SUaGhoYOXKkrg9p5qqrruLYY49l/PjxzbbrOhGApUuXkp+fT6dOnTjzzDNZsWIFoOtDREREREREREREdo2zrQcg+5eNGzcCkJub22x7bm4uq1evjrdxu92kp6e3aLPpeDkw2LbN9ddfz5gxY+jbty+ga0Ri5s+fz8iRIwkEAiQlJfHGG2/Qu3fveEBK14e89NJLzJo1i+nTp7fYp9cRGT58OM888wzdu3enpKSEO+64g1GjRrFw4UJdHyIiIiIiIiIiIrJLFBiXXWIYRrP7tm232PZjO9JG9i9XX3018+bN4+uvv26xT9fIz1uPHj2YM2cO1dXVvPbaa1xwwQVMnjw5vl/Xx8/b2rVr+fWvf83HH3+M1+vdajtdJz9fRx99dPznfv36MXLkSLp06cLTTz/NiBEjAF0fIiIiIiIiIiIisnNUSl12Sl5eHkCLbKvS0tJ45lZeXh6hUIiqqqqttpH93zXXXMPbb7/N559/TkFBQXy7rhEBcLvddO3alaFDh3LXXXcxYMAA/vnPf+r6ECBW5rq0tJQhQ4bgdDpxOp1MnjyZf/3rXzidzvjvWdeJbJKYmEi/fv1YunSpXkdERERERERERERklygwLjulU6dO5OXlMWnSpPi2UCjE5MmTGTVqFABDhgzB5XI1a1NcXMyCBQvibWT/Zds2V199Na+//jqfffYZnTp1arZf14i0xrZtgsGgrg8BYNy4ccyfP585c+bEb0OHDuWcc85hzpw5dO7cWdeJNBMMBvn+++9p166dXkdERERERERERERkl6iUurRQX1/PsmXL4vdXrlzJnDlzyMjIoKioiOuuu44777yTbt260a1bN+68804SEhI4++yzAUhNTeXiiy/mhhtuIDMzk4yMDG688Ub69evH+PHj2+phyW5y1VVX8cILL/DWW2+RnJwcz9hLTU3F5/NhGIaukZ+5m266iaOPPprCwkLq6up46aWX+OKLL/jwww91fQgAycnJ9O3bt9m2xMREMjMz49t1nfy83XjjjRx//PEUFRVRWlrKHXfcQW1tLRdccIFeR0RERERERERERGSXKDAuLcyYMYPDDjssfv/6668H4IILLmDixIn87ne/w+/3c+WVV1JVVcXw4cP5+OOPSU5Ojh/zj3/8A6fTyemnn47f72fcuHFMnDgRh8Ox1x+P7F6PPPIIAGPHjm22/amnnuLCCy8E0DXyM1dSUsJ5551HcXExqamp9O/fnw8//JAjjjgC0PUhO0bXyc/bunXrOOussygvLyc7O5sRI0YwdepUOnToAOj6EBERERERERERkZ1n2LZtt/UgRERERERERERERERERERE9hStMS4iIiIiIiIiIiIiIiIiIgc0BcZFREREREREREREREREROSApsC4iIiIiIiIiIiIiIiIiIgc0BQYFxERERERERERERERERGRA5oC4yIiIiIiIiIiIiIiIiIickBTYFxERERERERERERERERERA5oCoyLiIiIiIiIiIiIiIiIiMgBTYFxERERERERERERERERERE5oCkwLiIiAnzxxRcYhkF1dfU223Xs2JEHHnhgr4xJRERERERERERERER2DwXGRURkr4pGo4waNYpTTjml2faamhoKCwu5+eabt3rs2LFjMQwDwzDweDx0796dO++8k2g0+pPHNWrUKIqLi0lNTQVg4sSJpKWltWg3ffp0Lrvssp98PhERERERERERERER2XsUGBcRkb3K4XDw9NNP8+GHH/L888/Ht19zzTVkZGTw5z//eZvHX3rppRQXF7N48WKuvfZabr75Zv72t7/95HG53W7y8vIwDGOb7bKzs0lISPjJ5xMRERERERERERERkb1HgXEREdnrunXrxl133cU111zDhg0beOutt3jppZd4+umncbvd2zw2ISGBvLw8OnbsyNVXX824ceN48803AaiqquL8888nPT2dhIQEjj76aJYuXRo/dvXq1Rx//PGkp6eTmJhInz59eP/994HmpdS/+OILLrroImpqauIZ6rfeeivQspT6mjVrOPHEE0lKSiIlJYXTTz+dkpKS+P5bb72VgQMH8uyzz9KxY0dSU1M588wzqaur2z1PpoiIiIiIiIiIiIiIbJcC4yIi0iauueYaBgwYwPnnn89ll13Gn//8ZwYOHLjT/fh8PsLhMAAXXnghM2bM4O233+bbb7/Ftm2OOeaY+P6rrrqKYDDIl19+yfz587nnnntISkpq0eeoUaN44IEHSElJobi4mOLiYm688cYW7Wzb5qSTTqKyspLJkyczadIkli9fzhlnnNGs3fLly3nzzTd59913effdd5k8eTJ33333Tj9WERERERERERERERHZNc62HoCIiPw8GYbBI488Qq9evejXrx9/+MMfdup4y7L4+OOP+eijj7juuutYunQpb7/9Nt988w2jRo0C4Pnnn6ewsJA333yT0047jTVr1nDKKafQr18/ADp37txq3263m9TUVAzDIC8vb6tj+OSTT5g3bx4rV66ksLAQgGeffZY+ffowffp0hg0bFh/rxIkTSU5OBuC8887j008/5a9//etOPWYREREREREREREREdk1yhgXEZE289///peEhARWrlzJunXrduiYhx9+mKSkJLxeLyeccALnnnsut9xyC99//z1Op5Phw4fH22ZmZtKjRw++//57AK699lruuOMORo8ezS233MK8efN+0vi///57CgsL40FxgN69e5OWlhY/J8TKr28KigO0a9eO0tLSn3RuERERERERERERERHZcQqMi4hIm/j222/5xz/+wVtvvcXIkSO5+OKLsW17u8edc845zJkzh+XLl+P3+3nyySdJSEjY6rG2bWMYBgCXXHIJK1as4LzzzmP+/PkMHTqUBx98cJcfw5Z9b2u7y+Vqtt8wDCzL2uXzioiIiIiIiIiIiIjIzlFgXERE9jq/388FF1zA5Zdfzvjx4/nPf/7D9OnTeeyxx7Z7bGpqKl27dqWwsBCHwxHf3rt3byKRCNOmTYtvq6ioYMmSJfTq1Su+rbCwkCuuuILXX3+dG264gSeeeKLV87jdbqLR6DbH0rt3b9asWcPatWvj2xYtWkRNTU2zc4qIiIiIiIiIiIiISNtSYFxERPa6P/zhD1iWxT333ANAUVERf//73/ntb3/LqlWrdqnPbt26ceKJJ3LppZfy9ddfM3fuXM4991zat2/PiSeeCMB1113HRx99xMqVK5k1axafffbZVgPYHTt2pL6+nk8//ZTy8nIaGxtbtBk/fjz9+/fnnHPOYdasWXz33Xecf/75HHrooQwdOnSXHoeIiIiIiIiIiIiIiOx+CoyLiMheNXnyZB566CEmTpxIYmJifPull17KqFGjdrikemueeuophgwZwnHHHcfIkSOxbZv3338/Xso8Go1y1VVX0atXL4466ih69OjBww8/3Gpfo0aN4oorruCMM84gOzube++9t0UbwzB48803SU9P55BDDmH8+PF07tyZl19+eZfGLyIiIiIiIiIiIiIie4Zh72r0QUREREREREREREREREREZD+gjHERERERERERERERERERETmgKTAuIiIiIiIiIiIiIiIiIiIHNAXGRURERERERERERERERETkgKbAuIiIiIiIiIiIiIiIiIiIHNAUGBcRERERERERERERERERkQOaAuMiIiIiIiIiIiIiIiIiInJAU2BcREREREREREREREREREQOaAqMi4iIiIiIiIiIiIiIiIjIAU2BcREREREREREREREREREROaApMC4iIiIiIiIiIiIiIiIiIgc0BcZFREREREREREREREREROSApsC4iIiIiIiIiIiIiIiIiIgc0P4f4xyk1HQ/J0YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_pose_estimation(nodes, edges, name_to_data, node_to_name, pes_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Second Session: Experimental Genotype, 50% Reward Condition" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 50% of the time when both rats poked the same well.
identifier: 56a0bb32-994f-414c-bc02-9aa77b963152
session_start_time2023-08-08 00:00:00-04:00
timestamps_reference_time2023-08-08 00:00:00-04:00
file_create_date
02025-07-01 11:01:40.066218-07:00
experimenter('Shukla, Ashutosh', 'Rivera, Edward L.', 'Bladon, John H.', 'Jadhav, Shantanu P.')
acquisition
Video_1-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-08-2023-50_behavior+image/f77254af-8519-4499-aff6-3c9d49413025_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_3-XFN3-XFN1
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-08-2023-50_behavior+image/8732d75b-62a2-4177-b75e-c7bcced172e0_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_5-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-08-2023-50_behavior+image/1b46e0c2-627c-4ce0-9360-33291ba7eb5b_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_7-XFN3-XFN1
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-08-2023-50_behavior+image/4ded1e06-9529-45ee-81e9-8e5b83b7e461_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
keywords
HDF5 dataset
Data typeobject
Shape(3,)
Array size24.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'cooperation' b'social cognition' b'autism spectrum disorders']
processing
behavior
description: Behavioral data recorded during a cooperative maze task, in which a pair of rats must cooperate by picking the same well in order to get a joint reward.
data_interfaces
PoseEstimation_1-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.5596114545656654
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.5486062628773816
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.787707208046191
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.5370285617425203
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.6890164479298604
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_1-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.567074582579389
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.4719867541465548
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.714707416056408
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.5240542511794195
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37418, 2)
Array size584.66 KiB
Chunk shape(37418, 2)
Compressiongzip
Compression opts4
Compression ratio2.542901437764139
timestamps
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shape(37418,)
Compressiongzip
Compression opts4
Compression ratio2.79212760003731
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37418,)
Array size292.33 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_3-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5142222371831555
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.4329287409862497
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.7822815341848304
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5037292794529273
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5676703522425
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_3-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5452160059975637
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.4544151293710748
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.679990670805002
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5092808788698324
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5844737798231803
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.6651442028920864
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_5-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.6083446770813077
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.629044833458923
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.79424100736077
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.584488376773243
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.6781201192673576
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_5-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.588489578866112
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.524632128426706
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.707443873774867
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.5775792489975102
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37724, 2)
Array size589.44 KiB
Chunk shape(37724, 2)
Compressiongzip
Compression opts4
Compression ratio2.5801906553242424
timestamps
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shape(37724,)
Compressiongzip
Compression opts4
Compression ratio2.374819011646207
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37724,)
Array size294.72 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_7-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.5422180425874923
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.452118698976286
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.6643552027737565
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.534556656844361
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.533528026141275
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_7-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.572304869034774
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.5071774297059055
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.6586582367404286
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.558404630627205
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37846, 2)
Array size591.34 KiB
Chunk shape(37846, 2)
Compressiongzip
Compression opts4
Compression ratio2.5809773458645013
timestamps
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shape(37846,)
Compressiongzip
Compression opts4
Compression ratio2.4296662466997825
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37846,)
Array size295.67 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
Skeletons
skeletons
SkeletonPoseEstimation_1-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_1-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_3-XFN1-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_3-XFN3-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_5-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_5-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_7-XFN1-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_7-XFN3-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
behavioral_events
time_series
matched_poke_A1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 1 and Reward Well A).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(29, 1)
Array size232.00 bytes
Chunk shape(29, 1)
Compressiongzip
Compression opts4
Compression ratio13.647058823529411
timestamps
HDF5 dataset
Data typefloat64
Shape(29,)
Array size232.00 bytes
Chunk shape(29,)
Compressiongzip
Compression opts4
Compression ratio1.0
timestamps_unit: seconds
interval: 1
matched_poke_B2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 2 and Reward Well B).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(32, 1)
Array size256.00 bytes
Chunk shape(32, 1)
Compressiongzip
Compression opts4
Compression ratio15.058823529411764
timestamps
HDF5 dataset
Data typefloat64
Shape(32,)
Array size256.00 bytes
Chunk shape(32,)
Compressiongzip
Compression opts4
Compression ratio1.0078740157480315
timestamps_unit: seconds
interval: 1
matched_poke_C3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 3 and Reward Well C).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(29, 1)
Array size232.00 bytes
Chunk shape(29, 1)
Compressiongzip
Compression opts4
Compression ratio13.647058823529411
timestamps
HDF5 dataset
Data typefloat64
Shape(29,)
Array size232.00 bytes
Chunk shape(29,)
Compressiongzip
Compression opts4
Compression ratio0.9914529914529915
timestamps_unit: seconds
interval: 1
reward_well_1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 1.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(590, 1)
Array size4.61 KiB
Chunk shape(590, 1)
Compressiongzip
Compression opts4
Compression ratio127.56756756756756
timestamps
HDF5 dataset
Data typefloat64
Shape(590,)
Array size4.61 KiB
Chunk shape(590,)
Compressiongzip
Compression opts4
Compression ratio1.7045864933188877
timestamps_unit: seconds
interval: 1
reward_well_2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 2.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(743, 1)
Array size5.80 KiB
Chunk shape(743, 1)
Compressiongzip
Compression opts4
Compression ratio156.42105263157896
timestamps
HDF5 dataset
Data typefloat64
Shape(743,)
Array size5.80 KiB
Chunk shape(743,)
Compressiongzip
Compression opts4
Compression ratio1.7179190751445086
timestamps_unit: seconds
interval: 1
reward_well_3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 3.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(613, 1)
Array size4.79 KiB
Chunk shape(613, 1)
Compressiongzip
Compression opts4
Compression ratio132.54054054054055
timestamps
HDF5 dataset
Data typefloat64
Shape(613,)
Array size4.79 KiB
Chunk shape(613,)
Compressiongzip
Compression opts4
Compression ratio1.6771545827633378
timestamps_unit: seconds
interval: 1
reward_well_A
resolution: -1.0
comments: no comments
description: Whenever the animal in the right W maze visits Reward Well A.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(977, 1)
Array size7.63 KiB
Chunk shape(977, 1)
Compressiongzip
Compression opts4
Compression ratio186.0952380952381
timestamps
HDF5 dataset
Data typefloat64
Shape(977,)
Array size7.63 KiB
Chunk shape(977,)
Compressiongzip
Compression opts4
Compression ratio1.7647324452472342
timestamps_unit: seconds
interval: 1
reward_well_B
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well B in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(2098, 1)
Array size16.39 KiB
Chunk shape(2098, 1)
Compressiongzip
Compression opts4
Compression ratio316.6792452830189
timestamps
HDF5 dataset
Data typefloat64
Shape(2098,)
Array size16.39 KiB
Chunk shape(2098,)
Compressiongzip
Compression opts4
Compression ratio1.9550378567268492
timestamps_unit: seconds
interval: 1
reward_well_C
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well C in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(460, 1)
Array size3.59 KiB
Chunk shape(460, 1)
Compressiongzip
Compression opts4
Compression ratio102.22222222222223
timestamps
HDF5 dataset
Data typefloat64
Shape(460,)
Array size3.59 KiB
Chunk shape(460,)
Compressiongzip
Compression opts4
Compression ratio1.6069868995633187
timestamps_unit: seconds
interval: 1
rewarded_poke
resolution: -1.0
comments: no comments
description: Whenever a matched poke resulted in a reward.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(64, 1)
Array size512.00 bytes
Chunk shape(64, 1)
Compressiongzip
Compression opts4
Compression ratio26.94736842105263
timestamps
HDF5 dataset
Data typefloat64
Shape(64,)
Array size512.00 bytes
Chunk shape(64,)
Compressiongzip
Compression opts4
Compression ratio1.0824524312896406
timestamps_unit: seconds
interval: 1
tasks
description: tasks module
data_interfaces
SocialW_Left
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_LeftThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.left_Wmaze[0]front/backhead,neckfront,back[1, 5]
SocialW_Right
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_RightThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.right_Wmaze[0]front/backhead,neckfront,back[3, 7]
devices
camera_device 0
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0303.6881599.107[01]
13611.1984904.121[03]
28292.7089598.954[05]
311371.94312682.254[07]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
04904.1216704.121Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
subject
age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
0303.6881599.107[01]
13611.1984904.121[03]
28292.7089598.954[05]
311371.94312682.254[07]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
04904.1216704.121Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.
session_id: 08-08-2023-50
lab: Jadhav
institution: Brandeis University
source_script: Created using NeuroConv v0.7.4
source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x6040078816\n", + "Fields:\n", + " acquisition: {\n", + " Video_1-XFN1-XFN3 ,\n", + " Video_3-XFN3-XFN1 ,\n", + " Video_5-XFN1-XFN3 ,\n", + " Video_7-XFN3-XFN1 \n", + " }\n", + " devices: {\n", + " camera_device 0 \n", + " }\n", + " epochs: epochs \n", + " experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.\n", + " experimenter: ['Shukla, Ashutosh' 'Rivera, Edward L.' 'Bladon, John H.'\n", + " 'Jadhav, Shantanu P.']\n", + " file_create_date: [datetime.datetime(2025, 7, 1, 11, 1, 40, 66218, tzinfo=tzoffset(None, -25200))]\n", + " identifier: 56a0bb32-994f-414c-bc02-9aa77b963152\n", + " institution: Brandeis University\n", + " intervals: {\n", + " epochs ,\n", + " invalid_times \n", + " }\n", + " invalid_times: invalid_times \n", + " keywords: \n", + " lab: Jadhav\n", + " processing: {\n", + " behavior ,\n", + " tasks \n", + " }\n", + " session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 50% of the time when both rats poked the same well.\n", + " session_id: 08-08-2023-50\n", + " session_start_time: 2023-08-08 00:00:00-04:00\n", + " source_script: Created using NeuroConv v0.7.4\n", + " source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x6042883504\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1\n", + "\n", + " timestamps_reference_time: 2023-08-08 00:00:00-04:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file_path = 'sub-XFN1/sub-XFN1_ses-08-08-2023-50_behavior+image.nwb'\n", + "nwbfile, io = stream_nwbfile(DANDISET_ID, file_path)\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the subject and session description" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

subject (Subject)

age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
" + ], + "text/plain": [ + "subject pynwb.file.Subject at 0x6042883504\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 50% of the time when both rats poked the same well.\n" + ] + } + ], + "source": [ + "display(nwbfile.subject)\n", + "print(nwbfile.session_description)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "dio_event_names = [\n", + " \"matched_poke_A1\",\n", + " \"matched_poke_B2\",\n", + " \"matched_poke_C3\",\n", + " \"reward_well_1\",\n", + " \"reward_well_2\",\n", + " \"reward_well_3\",\n", + " \"reward_well_A\",\n", + " \"reward_well_B\",\n", + " \"reward_well_C\",\n", + " \"rewarded_poke\",\n", + "]\n", + "event_name_to_timestamps = {}\n", + "for dio_event_name in dio_event_names:\n", + " timestamps = nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_events\"].time_series[dio_event_name].timestamps[:]\n", + " event_name_to_timestamps[dio_event_name] = timestamps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAAPbCAYAAAC67N8BAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0lBJREFUeJzs3Wl4FFX69/Ffp0MgKyEEJJBAElllUQFFSCJxYVR0QFGUZVCCK4iIMqiPuIDLMOLoAC7jXxQdlX0ZQIfBDcEkwLAJqKAyEEgCBIGYlYRAp54XbTqdvTt0J53w/VxXX3SdqjrnLvp0Vd85tZgMwzAEAAAAAB7Mq74DAAAAAICakLgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACP510fjRYXF+vo0aMKDAyUyWSqjxAAAAAAeADDMJSbm6u2bdvKy6vqcZV6SVyOHj2qiIiI+mgaAAAAgAdKS0tTeHh4lfPrJXEJDAyUZA0uKCioPkIAAAAA4AFycnIUERFhyxGqUi+JS8npYUFBQSQuAAAAAGq8hISL8wEAAAB4PBIXAAAAAB6vXk4VAwAAQMNnsVh09uzZ+g4DDYDZbJa3t/d53VGYxAUAAABOy8vLU3p6ugzDqO9Q0ED4+fkpLCxMPj4+tVqfxAUAAABOsVgsSk9Pl5+fn1q1asVz+VAtwzBUVFSkEydOKCUlRZ06dar2eS1VIXEBAACAU86ePSvDMNSqVSv5+vrWdzhoAHx9fdWkSRMdPnxYRUVFatasmdN1cHE+AAAAaoWRFjijNqMsZdZ3URwAAABAzSwWacMGadEi678WS31HdF4iIyO1ZcuW867n0KFDtRqFqM7YsWP117/+1aV11icSFwAAANSNlSulyEjpmmukUaOs/0ZGWstdJDIyUkFBQSooKLCV5eTkyNfXV127dnWojvj4eC1evNhlMZ2vDRs2yMvLSwEBAQoMDFSvXr302Wef1WkMH330kUwmk/7zn/+UKf/222919dVXy9/fXzfeeKNbYyBxAQAAgPutXCndcYeUnl62/MgRa7kLk5c2bdpozZo1dk2vVEREhMvqrw+dO3dWXl6esrOz9cADD+jOO+9UZmZmnbX/ySefqEWLFlqwYEGZcj8/Pz300EP6f//v/7k9BhIXAAAAuJfFIj36qFTZrZNLyiZPdtlpYyNHjizzA3vBggUaNWpUmWVefPFFdejQQUFBQerfv7/27NljK09MTNTYsWMVEBCgWbNmSZLWr1+vvn37KigoSJ06dVJiYqKtri1btqhbt25q0aKFJk2aVKadt956S506dVJoaKjuuece5efn2+a9/PLLat26tSIjI7V69WqHts3Ly0sJCQkqKCjQwYMHlZmZqREjRig0NFQdO3bUe++9V+l6x44dU48ePfTuu+9KkjZu3Kg+ffooODhY8fHxOnDgQJVtZmRkaP369XrzzTe1atWqMtvQt29fjRo1SuHh4Q7Ffz5IXAAAAOBeiYkVR1rsGYaUlmZdzgUGDRqknTt3KjMzUxkZGdq/f7+uvvrqMstccskl2r59uzIzMzVo0CDdfffdkqRnn31WcXFx+vDDD5WXl6cnnnhCBw8e1G233abp06frt99+09dff62wsDBbXWvWrFFSUpK+//57LV682JbULFu2TO+++66++uorpaWl6ezZs3ruueckSWvXrtU777yjTZs2adeuXfr0008d2jaLxaL3339f/v7+6tixox5++GF5e3srNTVVK1eu1NNPP62kpKQy66Slpemaa67RlClT9MADDyg1NVXDhw/XnDlzdOrUKd1+++266667qnwmz6JFi9SnTx+NHDlSLVu2dDjJcjUSFwAAALjXsWOuXa4G3t7euvXWW7Vs2TItXrxYw4cPr3BHq9tvv12tWrWSt7e3nn76ae3Zs0d5eXmV1rdo0SINHTpUt9xyi8xms9q3b6+OHTva5k+ePFktW7ZUeHi44uPjtXv3bknS+++/r2nTpqlDhw7y9fXV008/reXLl0uyJjUPPvigOnbsqODgYD311FPVbtP+/fsVHBys1q1b65NPPtGKFSsUGBioFStWaObMmfLz81OvXr107733atGiRbb1Dh06pGuvvVbPPvusEhISJEkLFy7UHXfcodjYWJnNZj3yyCM6fPiwDh06VGnbCxYs0F133SWTyaQ777yzwulidYXEBQAAAO5lNzrhkuUcMHr0aC1cuFALFy7U6NGjK8yfN2+eunfvrubNm6tNmzYyDEOnTp2qtK709HRFR0dX2Vbr1q1t7/38/GwJUGpqqu69914FBwcrODhYsbGxOnnypCTrqVv2193UdA1Op06dlJWVpVOnTmnr1q264YYbdOLECVksljKnaXXo0EFHjx61Ta9cuVJBQUEaPny4rSw1NVUffPCBLa7g4GDl5+eXWa/Ezz//rJ07d9rWv+uuu/TFF1/oxIkT1cbrDiQuAAAAcK+4OCk8XKrquS8mkxQRYV3ORfr3768jR44oLy9Pl112WZl5hw4d0uOPP66PP/5YWVlZOnbsmLy8vGynSpV/Pk1ERIRSUlKcjqFdu3ZasGCBsrKybK+S60PCwsKUlpZmW9b+vaNatWolLy8vpdudhpeamqq2bdvapidPnqzOnTtr5MiRsvx+DVG7du00fvz4MnGdPn1aMTExFdr45JNPJElXXHGF2rRpo1tuuUXnzp3T0qVLnY73fJG4AAAAwL3MZmnOHOv78slLyfTs2dblXGjlypWV/sDOy8uTyWRSy5YtdfbsWT3//PNlru9o3bp1mdOmRo4cqVWrVmnt2rUqLi5WWlpatRezl7j33nv18ssv6+DBg5Ksoyzr1q2TJN1xxx169913deDAAWVnZ9tuAuAMs9msYcOGadq0aSooKNAPP/yg999/XyNGjLAt4+XlpY8++khnzpzRvffeK8MwNGrUKC1ZskTJyckqLi5Wbm6u7RS28hYuXKi///3v2rVrl+317LPP2k4XKy4uVmFhoc6ePVvmvTuQuAAAAMD9hg2Tli+X7EYDJFlHYpYvt853sV69eqlHjx4Vynv06KEHHnhAvXr1UmRkpKKiouTj42Ob/8gjj+i9995TixYt9Le//U1RUVFasWKFpk2bpubNm+u6667TMQeuxxkxYoTGjh2rwYMHKzAwUAMHDtTevXslSTfffLPuu+8+9e/fX7169dItt9xSq2186623VFhYqPDwcA0ZMkQvvPCC4sqNXDVp0kTLly/X4cOH9eijjyoqKkoLFy7UlClTFBISoq5du2rVqlUV6t60aZNOnDihe++9V23atLG9JkyYoO3bt+vAgQP69ttv5evrqwceeEBffvmlfH19df/999dqW2piMqq6fYAb5eTkqHnz5srOzlZQUFBdNw8AAIDzUFhYqJSUFEVFRTn/tHeLxXr3sGPHrNe0xMW5fKQFnqmqfuNobuBdF0ECAAAAkqxJSnx8fUeBBohTxQAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej9shAwAAoM5Yii1KTE3UsdxjCgsMU1z7OJm9eI4LasaICwAAAOrEyn0rFTknUtf88xqNWjlK1/zzGkXOidTKfSvrO7Rai4yM1JYtW867nkOHDjn/MM8ajB07Vn/9619dWmd9InEBAACA263ct1J3LL1D6TnpZcqP5BzRHUvvcFnyEhkZqaCgIBUUFNjKcnJy5Ovrq65duzpUR3x8vBYvXuySeFxhw4YN8vLyUkBAgAIDA9WrVy999tlnddL2hx9+KG9vbwUEBCggIEDdunXTqlWrbPM/++wz9e/fX82bN1d4eLhmzJjhtlhIXAAAAOBWlmKLHl33qAwZFeaVlE1eN1mWYotL2mvTpo3WrFljm165cqUiIiJcUnd96dy5s/Ly8pSdna0HHnhAd955pzIzM+uk7euvv155eXnKy8vT7NmzNXr0aGVnZ0uScnNz9dJLL+nXX3/Vpk2btHjxYn388cduiYPEBQAAAG6VmJpYYaTFniFDaTlpSkxNdEl7I0eO1IIFC2zTCxYs0KhRo8os8+KLL6pDhw4KCgpS//79tWfPHlt5YmKixo4dq4CAAM2aNUuStH79evXt21dBQUHq1KmTEhNLY92yZYu6deumFi1aaNKkSWXaeeutt9SpUyeFhobqnnvuUX5+vm3eyy+/rNatWysyMlKrV692aNu8vLyUkJCggoICHTx4UJmZmRoxYoRCQ0PVsWNHvffee5Wud+zYMfXo0UPvvvuuJGnjxo3q06ePgoODFR8frwMHDjjU/g033CB/f38dOnRIkvX/+rrrrlPTpk3Vvn17DRs2TFu3bnWoLmeRuAAAAMCtjuUec+lyNRk0aJB27typzMxMZWRkaP/+/br66qvLLHPJJZdo+/btyszM1KBBg3T33XdLkp599lnFxcXpww8/VF5enp544gkdPHhQt912m6ZPn67ffvtNX3/9tcLCwmx1rVmzRklJSfr++++1ePFiW1KzbNkyvfvuu/rqq6+Ulpams2fP6rnnnpMkrV27Vu+88442bdqkXbt26dNPP3Vo2ywWi95//335+/urY8eOevjhh+Xt7a3U1FStXLlSTz/9tJKSksqsk5aWpmuuuUZTpkzRAw88oNTUVA0fPlxz5szRqVOndPvtt+uuu+6SYVQcEbNnGIbWrVun4uJidezYsdJlNm3apO7duzu0Lc4icQEAAIBbhQWG1byQE8vVxNvbW7feequWLVumxYsXa/jw4fLyKvuz9/bbb1erVq3k7e2tp59+Wnv27FFeXl6l9S1atEhDhw7VLbfcIrPZrPbt25f54T558mS1bNlS4eHhio+P1+7duyVJ77//vqZNm6YOHTrI19dXTz/9tJYvXy7JmtQ8+OCD6tixo4KDg/XUU09Vu0379+9XcHCwWrdurU8++UQrVqxQYGCgVqxYoZkzZ8rPz0+9evXSvffeq0WLFtnWO3TokK699lo9++yzSkhIkCQtXLhQd9xxh2JjY2U2m/XII4/o8OHDtlGU8r7++msFBwcrICBAN998s55//nn5+/tXWO7//u//dOzYMd1zzz3VbkttkbgAAADAreLaxyk8KFwmmSqdb5JJEUERimsf57I2R48erYULF2rhwoUaPXp0hfnz5s1T9+7d1bx5c7Vp00aGYejUqVOV1pWenq7o6Ogq22rdurXtvZ+fny0BSk1N1b333qvg4GAFBwcrNjZWJ0+elGQ9dcv+upuarsHp1KmTsrKydOrUKW3dulU33HCDTpw4IYvFovDwcNtyHTp00NGjR23TK1euVFBQkIYPH24rS01N1QcffGCLKzg4WPn5+WXWs3fdddcpKytL+fn5+uGHHzRz5swKI0SfffaZXnjhBX322Wfy9fWtdltqi8QFAAAAbmX2MmvOjXMkqULyUjI9+8bZLn2eS//+/XXkyBHl5eXpsssuKzPv0KFDevzxx/Xxxx8rKytLx44dk5eXl+1UKZOpbIwRERFKSUlxOoZ27dppwYIFysrKsr1KrnEJCwtTWlqabVn7945q1aqVvLy8lJ5eev1Qamqq2rZta5uePHmyOnfurJEjR8pisdjiGj9+fJm4Tp8+rZiYmBrb7Natm2JiYvT555/byr799lvde++9WrNmTZWnkLkCiQsAAADcbli3YVp+53K1DWxbpjw8KFzL71yuYd2GubzNlStXaunSpRXK8/LyZDKZ1LJlS509e1bPP/98mes7WrduXea0qZEjR2rVqlVau3atiouLlZaW5tDF7Pfee69efvllHTx4UJJ1lGXdunWSpDvuuEPvvvuuDhw4oOzsbNtNAJxhNps1bNgwTZs2TQUFBfrhhx/0/vvva8SIEbZlvLy89NFHH+nMmTO69957ZRiGRo0apSVLlig5OVnFxcXKzc21ncJWk//9739KTk5Wt27dJEm7du3SHXfcoQULFqhPnz5Ob4MzSFwAAABQJ4Z1G6a9E/bapteOWquUR1PckrRIUq9evdSjR48K5T169NADDzygXr16KTIyUlFRUfLx8bHNf+SRR/Tee++pRYsW+tvf/qaoqCitWLFC06ZNU/PmzXXdddfp2LGabyQwYsQIjR07VoMHD1ZgYKAGDhyovXut23/zzTfrvvvuU//+/dWrVy/dcssttdrGt956S4WFhQoPD9eQIUP0wgsvKC6u7Cl3TZo00fLly3X48GE9+uijioqK0sKFCzVlyhSFhISoa9euZZ7NUt5XX32lgIAA+fv7a+DAgRo5cqQeeughSbJd4H/rrbfanvVy00031WpbamIyarp9gBvk5OSoefPmys7OVlBQUF03DwAAgPNQWFiolJQURUVFufxp72i8quo3juYGjLgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACP513fAQAAAODCYbFIiYnSsWNSWJgUFyeZzfUdFRoCRlwAAABQJ1aulCIjpWuukUaNsv4bGWktb6giIyO1ZcuW867n0KFDLn+Y59ixY/XXv/7VpXXWp/NOXHJycrRq1Srt27fPFfEAAACgEVq5UrrjDik9vWz5kSPWclclL5GRkQoKClJBQYGtLCcnR76+vuratatDdcTHx2vx4sWuCcgFNmzYIC8vLwUEBCgwMFC9evXSZ599VmftHz58WCNHjlRoaKiCg4PVp08fzZ8/X5J08OBBXXHFFWrRooVCQkJ066236tixY26Jw+nE5c4779Sbb74pSSooKFDfvn115513qlevXlqxYoXLAwQAAEDDZrFIjz4qGUbFeSVlkydbl3OFNm3aaM2aNbbplStXKiIiwjWV15POnTsrLy9P2dnZeuCBB3TnnXcqMzPT7e3++uuv6t+/v/z8/LR7925lZWXpww8/1FdffSVJatWqlZYuXarMzExlZGSoa9eumjx5slticTpx+fbbbxUXFydJ+te//iXDMJSVlaW5c+fqpZdecnmAAAAAaNgSEyuOtNgzDCktzbqcK4wcOVILFiywTS9YsECjRo0qs8yLL76oDh06KCgoSP3799eePXts5YmJiRo7dqwCAgI0a9YsSdL69evVt29fBQUFqVOnTkq0C3bLli3q1q2bWrRooUmTJpVp56233lKnTp0UGhqqe+65R/n5+bZ5L7/8slq3bq3IyEitXr3aoW3z8vJSQkKCCgoKdPDgQWVmZmrEiBEKDQ1Vx44d9d5771W63rFjx9SjRw+9++67kqSNGzeqT58+Cg4OVnx8vA4cOFDpen//+9910UUX6b333lO7du0kST179tTChQslSYGBgYqKipLJZLLFl5KS4tC2OMvpxCU7O1shISGSpHXr1un222+Xn5+fbr75Zu3fv9/lAQIAAKBhc/TMIVedYTRo0CDt3LnTNgqwf/9+XX311WWWueSSS7R9+3ZlZmZq0KBBuvvuuyVJzz77rOLi4vThhx8qLy9PTzzxhA4ePKjbbrtN06dP12+//aavv/5aYWFhtrrWrFmjpKQkff/991q8eLEtqVm2bJneffddffXVV0pLS9PZs2f13HPPSZLWrl2rd955R5s2bdKuXbv06aefOrRtFotF77//vvz9/dWxY0c9/PDD8vb2VmpqqlauXKmnn35aSUlJZdZJS0vTNddcoylTpuiBBx5Qamqqhg8frjlz5ujUqVO6/fbbddddd8moZEhs/fr1Gjp0qC0xqUpwcLB8fX31t7/9TVOmTHFoW5zldOISERGhzZs3Kz8/X+vWrdMf/vAHSdJvv/3m8guKAAAA0PDZ/cZ3yXI18fb21q233qply5Zp8eLFGj58uLy8yv7svf3229WqVSt5e3vr6aef1p49e5SXl1dpfYsWLdLQoUN1yy23yGw2q3379urYsaNt/uTJk9WyZUuFh4crPj5eu3fvliS9//77mjZtmjp06CBfX189/fTTWr58uSRrUvPggw+qY8eOCg4O1lNPPVXtNu3fv1/BwcFq3bq1PvnkE61YsUKBgYFasWKFZs6cKT8/P/Xq1Uv33nuvFi1aZFvv0KFDuvbaa/Xss88qISFBkrRw4ULdcccdio2Nldls1iOPPKLDhw/r0KFDFdo9deqU2rRpU+P/eVZWln777TfNnDlTkZGRNS5fG04nLpMnT9bo0aMVHh6usLAwxcfHS7KeQtazZ09XxwcAAIAGLi5OCg+XqvqjvckkRURYl3OV0aNHa+HChVq4cKFGjx5dYf68efPUvXt3NW/eXG3atJFhGDp16lSldaWnpys6OrrKtlq3bm177+fnZ0uAUlNTde+99yo4OFjBwcGKjY3VyZMnJVlP3bK/7qama3A6deqkrKwsnTp1Slu3btUNN9ygEydOyGKxKDw83LZchw4ddPToUdv0ypUrFRQUpOHDh9vKUlNT9cEHH9jiCg4OVn5+fpn1SrRs2VIZGRnVxlYiKChI99xzj2677bZKR2/Ol9PPcZkwYYKuvPJKpaWladCgQbbsNTo6+oK6xqX8PcgHDJA2bap62l33KOde6HCVyvqSVHX/sl++ZH/966911w/p+0Ddq+l7VzL/yBHpxAmpVSupXbuyx8Tq9he1ObZKlcdU3T6qpmO0I/sX9kHOMZulOXOsdw8zmcpepF+SzMye7dr/w/79++vIkSPy8fHRZZddpg0bNtjmpaQc0uOPP67Vqzeqb9/L5e1dqMDAANuPbZPJpIIC6dQpycdHCg+P0C+//CzDkPLypKIia7m/v3VbsrOl3FwpIMBa/5kz1nXbtGmnmTP/qqFDh1SILywsTGlpabbp1FTr+5I2AwKqTvRKtGrVSl5eXkpPT7clPqmpqWrbtq1tmcmTJ+v777/XyJEjtXTpUpnNZrVr107jx4/X66+/XuP/47XXXqs1a9bo+eefr/F0MUkqLi7WsWPHdPr0afn7+9e4vFOMWjpz5ozx008/GWfPnnV63ezsbEOSkZ2dXdvm69WKFYYRHm4Y1q5qfZnN1U+Hh1vXc3cc7mgHjV9lfallS+ursv5V2fJ12Q/p+0Ddq+l7V91+ofwx0dH9Sk3H1qr2U1OnVr+Pqu4Y7cj+hX2QYRQUFBh79+41CgoKnFpvxQrDaNeu7P9dRIRr/+86dOhgbN682TAMw9i9e7fx/fffG4ZhGN98843RpUsXIzPTMJYv/97w9w801qw5ZGzadMYYO3aqYTKZjJSUFCMz0zD+8Ic7jYcfnmls22YY27YZxr//fdAIDAwy3nzz38Z//2sxPv001fjXv/5nbNtmGGFhHYz58zcb27YZxnffGcYf/3iPbd2XX15k9OhxpbFz5wHDMAzj6NGjxn/+8x/DMAzjs88+MyIiIoz//e9/xqFDWcZVVw0yfHya2trcvdswMjONMrFX5s477zTGjBljnD592vj++++N1q1bG99++61hGIZxzz33GDNnzjSKioqMm2++2bjnnnuM4uJi4+DBg0bbtm2NpKQkw2KxGDk5OcayZcsqrf/48eNGWFiYcf/99xtHjhwxDMMwfvjhB2PUqFGGYRjGxo0bjR07dhjnzp0zMjMzjTFjxhhXXnllpXVV1W8czQ2cTlzy8/ONcePGGWaz2TCbzcaBA9YP4pFHHjFmzpzpUB0NOXFZscIwTKaqd4ZVvUwm68tVX8yq4nB1O2j8nOnTziznrn5I3wfqXk3fu6lTa3dsdGa/4s5XTdthv39hH2RV28TFMAwjO7v0/23tWsM4d861sdknLva++eYbo1OnLrbEYPToKYa/f5ARGhpmPPnk24aPT1Nj06YUY9s2w5g3L9EID7/YCAwMNiZNetXYts0w3nzzS6Nz58sMP78Ao337Tsa8eYkVEpdt2wzj5pvvKZP0PPnk20aHDl2MgIAAo1OnTsZrr71mi2nGjBlGaGgro02b9saUKXPKJC4lr8zM6hOXEydOGMOHDzdCQkKMqKgo45133rHNK0lcDMP6mcXHxxuPPPKIYRiGsWHDBqNfv35G8+bNjbZt2xqjR4+u8v80JSXFGDFihBESEmI0b97c6N27tzF//nzDMAzj3//+t9G1a1fD39/faNWqlXHHHXcYhw4dqrSe801cTIZhGM6M0Dz66KNKTk7W7NmzdeONN2rPnj2Kjo62DSF99913NdaRk5Oj5s2bKzs7W0FBQbUaKaoPFov16a7V3c6vOiaT9fzOlJTzGwqtKQ5XtYPG73z7dHXc0Q/p+0Ddc2Q/UXJqVkNX3XaYTNbT3iT2QZJUWFiolJQURUVFNZibMxmG9P331tO86oOPj9SzZ9nTvxyJqbL1Gqqq+o2juYHTF+evWrVKb775pmJjY8uc53bJJZdUef/nxqKme5DXxDBcc4/yur4XOhqv8+3T1XFHP6TvA3XPkf1EY0hapOq3wzCs/w/sgxqukmtT6ktRkTUGe47EVNl6FyqnE5cTJ06UuXNCifz8fIcu2GnIXHVv8fOtp67vhY7Gqy76iCvboO8DdY/vk/P4P/NM9Zm0VBWDozF5QuyewOnE5YorrtC///1v23RJsjJv3jz179/fdZF5IFfdW/x866nre6Gj8aqLPuLKNuj7QN3j++Q8/s88k49PfUdQMQZHY/KE2D2B07dDnjlzpm688Ubt3btX586d05w5c/Tjjz9q8+bN2rhxozti9Bgl9yA/csQ6HOysknNfz/ce5TXF4ap20Pidb5+ujjv6IX0fqHuO7Cca0zUuxcVV719KrnFhH9QwBQRYE4D6vMal5HbJzsRU2XoXKqdHXAYMGKDk5GSdPn1aF198sb744gtddNFF2rx5s/r06eOOGD1GyT3IJecvkHLlPcqri8Nd90JH4+Rsn7Zfprrl3dUP6ftA3avpe2cySY8/XvsLhx3dr7iT/XZUFkfJ9Jw57IPKc/IeT/Wq5CGX1XHgAfG1FhFReb+pKabK1muoiouLz2t9p+8qtmfPHvXq1avSeatWrdKtt95aYx0N9a5iJVaulCZNsv7FpUT5vzaVn46IsO7Mhg1zbxzuaAeNX2V9qWVL618UMzNLy0r6l1RxeXvu7of0faDu1fS9q2x+iepGZKrbr9R0bK1qPzVihLRwYdX7qOqO0Y7sX9gHSRaLRfv375efn59atWrVoK5zzs62Xod07lxpWZMm1qSlefOq5zdvLmVllS0vz/5hqpXVXduYGjrDMFRUVKQTJ07IYrGoU6dOtofYS47nBk4nLmFhYUpOTlZ0dHSZ8hUrVujuu+9Wfn5+jXU09MRFknJySjvS2rXSVVdJISFVT//hD+75C0z5ONzVDhq/yvpSfn7V/ct++WXLpOHDK1+uLuOl7wPuVdP3zn5+ifLHxOr2F7U5tla1n6puH1XTMdqR/Qv7ICkvL0/p6ekNatSlRHGx9Q5wktS6tdSsWdlRjarmly9v2rTiciV3l6uq7trG1Bj4+fkpLCxMPuUu2nFb4vLCCy/ogw8+0KZNmxT2+9VnS5Ys0bhx4/Thhx9qeMmeoRqNIXHJzy8937DkFnXVTfv7100c7moHjV9lfam6/mU/7/hx6aKLKl+uLuMF4F41fe/s55cof0ysbn9Rm2NrVTFVt4+qrB5nttPRZS4EFotFZ8+ere8wnHb6tNS7t/X9zp2Sn59j88uXSxWXq6nu2sbU0JnNZnl7e1c6OudobuD0xfnPPfecTp06peuvv16JiYlat26d7rvvPn388ce6/fbbna0OAAAADZTZbJa5AQ41WSzS4cPW902bWkc3HJlfvlyquFxNddc2JtQicZGkOXPmaMyYMbrqqqt05MgRLVq0SEOHDnV1bAAAAAAgycHEZc2aNRXKbr31Vm3cuFEjR46UyWSyLTNkyBDXRggAAADggudQ4lLdncLmz5+v+fPnS7I+jNLSGG7kDgAAAMCjOJS4nO89lwEAAADgfDj9AEoAAAAAqGu1Slw2btyoP/7xj+rYsaM6deqkIUOGKDEx0dWxAQAAAICkWiQun3zyia6//nr5+flp0qRJmjhxonx9fXXddddp4cKF7ogRAAAAwAXO6dshv/zyy5o1a5Yee+wxW9mjjz6q119/XS+++KJGjRrl0gDdyVJsUWJqoo7lHlNYYJji2sfJ7HX+9yJf+sNStQlsI+lqh9odED5Am9I3uTwOoDx39XkAjVP5fUbvlnGSrPuMbw9/qyzLEbX2by1J+jX/VwWb26n8se+blG90Iv+EpDslScmpSZJibfNyjQzbsfDbw1ts65dfz1JsUXJacpn52cVHlX7qN0kTJUlF54q07ZD1eGofi32bReeKtOVIaTuWYossxbJtZ2v/1io47SXpmgoxss9sWBw95i39Yanat2opydqPy/d1+7pSjv+qkj5ZXsl3wr7vLf1hqaIuam1r2z4m++9OVd8v+l1ZTicuBw8e1B//+McK5UOGDNHTTz/tkqDqwsp9K/XoukeVnpNuKwsPCtecG+doWLdhTte3+qfVkqzPshm3JuH30nyH2jWbzLIYpXdjO584gKq4us8DaNwq22e0bdpJ0i+SpMELbpJ8TpddqchP5Y99f1x0y+/vrD/2hi25TdKJ0nm/12E2mWU509S2fvn1ouZEKbPgVNn5Pqd/b9OauIS+GqriJrkVYrFvM/TVUBUbFtu8qDlRMvmc1qmCU5Vuh32M7DMbjpqOeRV+t5Xry/Z9ffVPq/XktxOtdRX5qaRPrv5ptYZ2LX2Ooe07Ydd/SuoODwrXyB4jteiHRWViqqpN++8X/a6U06eKRURE6Ouvv65Q/vXXXysiIsIlQbnbyn0rdcfSOyp0nCM5R3TH0ju0ct9Kp+pb/dNqjV45utr51bVrn7ScTxxAVVzd5wE0blXtM47mHnFbm+WPheVl2icWVSiuoY7KlsksOFU2aakG+8yGoaZj3hNfPlHt7zZJOpp71PZ+9MrRlSYbo1eO1rSvpzkUU3pOul7d9GqVSYu1zcq/X/S7Uk4nLlOmTNGkSZM0fvx4ffzxx/rkk0/00EMP6dFHH9Wf//xnd8ToUpZiix5d96gMGRXmlZRNXjdZlmLHn0cz9cupUiX1lXjiyydUdK6oynZdFQdQGXf0eQCNV3X7jAsd+0zPV9Mxz5Ch1ze/rup+t5UsXfn7ssu8sfWNWkbqOPpdKacTl/Hjx2vx4sX6/vvvNXnyZD366KP64YcftGTJEj344IPuiNGlElMTq812DRlKy0lTYqrjd0mr6S9QR3LT9fb2t6tt1xVxAJVxtM9bzx0HcKGraZ9xoWOf6dkc6b81je45w5FRPlfgd6GVU9e4GIah//3vf+rSpYs2bNggb2+nL5Gpd8dyj7l0OUcdyDxQq/VcHQcuPI72oYzcDDdHAqAh4LjjGPaZnqmx99/Gvn01cXjE5dChQ7rsssvUtWtX9ezZUx07dtTOnTvdGZtbhAWGuXQ5R10ccnGt1nN1HLjwONqHrHfCA3Ch47jjGPaZnqmx99/Gvn01cThxefLJJ1VYWKiPP/5Yy5YtU1hYWIM4Nay8uPZxCg8Kl0mmSuebZFJEUITi2sc5XGfbwHZSFfVJUrvAcE3oO6Hadl0RB1AZR/t8TERMHUcGwBPVtM+40LHP9GyO9F+zyazqfrdVVPWyXqa6uU0xvwutHE5cEhMT9e6772rUqFEaNmyYli1bpp07d6qgoMCd8bmc2cusOTfOkaQKnbpkevaNs526X/arg16tdv6sQbPk4+1TZbvl1TYOoDLu6PMAGq/q9hkXOvaZnq+mY55JJj3e/3EHaqr8eFl+mUeufKSWkTqOflfK4cQlIyNDXbt2tU2Hh4fL19dXx48fd0tg7jSs2zAtv3O52ga2LVMeHhSu5Xcud/o+2UO7DtWCYQuqnV9du+Zy2Xpt4wCq4uo+D6Bxq2qf0S4w3G1tlj8WltfCN6TGOhz563f5ZUJ8WyrEgbol9pkNRU3HvFmDZlX7u02S2gW2s71fMGxBhbpKyl++7mWHYooIitDUAVPL1Fuxzcq/X/S7Ug4nLiaTSV5eZRf38vKSYTTM2yUO6zZMeyfstU2vHbVWKY+m1LpT2D+ASJJW3vkvh9s98ecTLosDqIqr+zyAxq2yfcbeh/dWWG7ZHcts76s69tWk/LGwMj+O/7HGeg4/erjGWOyXkaSUR1OUMinFNm2/PeVjZJ/ZcNR0zCv/u83+cy/f14d2HVqmLvvyypTveyVtzxo0q0w91bVZVdwXOodvC2YYhjp37iyTqXSoLC8vT5dffnmZhCYzM9O1EbqR/XDb1R2udunwW0z7qs99Ld+uPVfHAdhzZ58H0PhUOF6drbjPsD+OVXfsq075Y2FNsVTFx9unxljsl7HVW81x2b6cfWbD4swxz/5zr6yvO/PZl+979m1X9Ruwuu8X/a6Uw4nLBx984M44AAAAAKBKDicu99xzjzvjAAAAAIAqOXyNCwAAAADUFxIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDyH7ir2+OOPO1zh66+/XutgAAAAAKAyDiUu3333XZnpHTt2yGKxqEuXLpKkX375RWazWX369HF9hHXNYpESE6Vjx6SwMCkuTjLX8OCfpUulNm0k2T20auVKSWOs77/9Vso6UlqfvcRvpYwM18W+wcnYceGyWKQNG0r7S+84SWa7eYlSyq+S7ixbVtnyyUmSYkuXk7lsO85+pwA0HP9aef51OHIsXOlAO8nJpe8tlpqXKVluy7el0yuWV12//f4suJ3KHPfh+ar7/Oz78bKlUsjFpfOXLpXaB1as79uSfnun420fSSkt2+RAf0UZDiUu33zzje3966+/rsDAQP3zn/9UixYtJEm//fabEhISFFf+R3lDs3Kl9OijUnp6aVl4uDRnjjRsWNllV6+WNNT6flzC74X5pfMfeki2xGXwTZJOl9b391dKl7tpsPXfab9Pr1kt3TGqdvF36yYd3V9z7IAkXdJNOnS0dLptJ0m/WN/b+pKfbDvkqCgpM63y5YfdJulE6bpv/NXa75z5TgFomB4aLz3x+/t/fybpLufrKDkWTvWrpp2HStupym23Sc/8/r5Pb0n/q3wZ+3qioqTctNLj8ISHpcmVxLFmtfTYk3b7Mz+VOe7Ds9X0+dn344Rx0lm7+eMSpCanS/tIicE3/f6mhsTFvu0mKq3ntmGlbV7STXr5bdl+W6JSTl/j8tprr2nmzJm2pEWSWrRooZdeekmvvfaaS4OrU2tWS3fcUfYHliQdOWItt/9Lz8qV0ujRtWvnyBFpVDXrjh7t2F+VKnP0SMW2yscOlDhytOz0Ubvp8n1JkjJPlVu+kmVK6rnjDumJJxz/TgFoHMaNq+8ISh075thy5fdtVRk9uuL+rMTq1Y7VgfpT3efnCW0fPVr735YXEKcTl5ycHB0/frxC+a+//qrc3FyXBFUvpk6VDKNieUnZ5MnWYTyLxfoXZFWyrCMqa6O8krYcUd1y5WMHqu0HtezTldVjGNLrrzv2nQLQcDSk76yrdmmO1PfEEw3r/+ZC5Or+UJ3yfcGRtusyvgbM6cTltttuU0JCgpYvX6709HSlp6dr+fLluvfeezWsIZ/6Uf6vz/YMQ0pLs56bmJjo3ozdUGlbjih/rm6F+gzn6kPjtqmG/uJKNSXV9Eug4anxmFM3YXicI+nsz1Bqy5ZarnihfoEc59A1Lvbeeecd/fnPf9af/vQnnT171lqJt7fuvfdevfrqqy4P0KM4Ouxcl205emF/XcYOz+WqG0G4Cv0SaFg8bR/iSdifoUQlZybBNZxOXPz8/PT222/r1Vdf1YEDB2QYhjp27Ch/f393xOdZwsI8r602bVxbHxq3Nm0qvVa13tAvgYbF0WPOhYj9GUpcdFF9R9Bo1foBlMeOHdOxY8fUuXNn+fv7y3Dk2g1P1q6tZDJVPs9kkiIirLdxjYuz3hVJVSx7vkwqbcsRMTE11Gdyrj40bgNq6C+uZDY79p0C0HDUeMypmzDqRXXb1i6c/Zmnq8u+edVVtWy7MX+BXMPpxOXUqVO67rrr1LlzZw0ePFjHfh8ave+++zRlyhSXB1hnSk5zK/9Dq2R69mzrDzGz2Xor19qq6oecvZK2HFFmuRpiB+z7QYWuaKrivbNM1r5X8uDamr5TABqOhvSddcdvwKqO4bNmNaz/mwuVI7/BXKGyvlBT2+QsDnE6cXnsscfUpEkTpaamys+v9D7nd911l9atW+fS4OrUkKHS8uVS27Zly8PDreX2Nx4YNkxasKB27YSHSwurWXfBgto/36L8MHVlsQMlyveXdu2qnidJLULKLR9eeb3t2ln73axZjn+nADQO8+fXdwSlyu97qlJ+31aVBQuqrnMoz97weNV9fp7Qdrt2tf9teQFxOnH54osv9Morryg8vOyPlk6dOunw4cMuC6xeDBsm7d1bOr12rZSSUvkPrPI7qZX/qrn+kvqGVLODq25eTXbsqNgWPw5RlfL9xb7v288r8eOPVS9vb+/e0n7nzHcKQMN38y31HUGp7ZXsxypjv2+rzpChZfdnjhz34Tmc/fzKzz+fZ4+Vb7syP+4lAXaA04lLfn5+mZGWEidPnlTTpk1dElS9sh/eu/pqx4d+azrv19n6aqO2sePC5FVNf6ms7zjav8qX0y8B1IdanXLtxLKOHPfhWZz5/MrPP9/Pu6Z+xrHRIU4nLldffbU++ugj27TJZFJxcbFeffVVXXPNNS4NDgAAAACkWtwO+dVXX1V8fLy2b9+uoqIiPfHEE/rxxx+VmZmp5JoeTAUAAAAAteD0iMsll1yiPXv26Morr9SgQYOUn5+vYcOG6bvvvtPFF1/sjhgBAAAAXOCcHnGRpDZt2mjGjBmujgUAAAAAKlWrxCUrK0tbt27Vr7/+quLi4jLz7r77bpcEBgAAAAAlnE5cPv30U40ePVr5+fkKDAyUye6BOiaTicQFAAAAgMs5fY3LlClTNG7cOOXm5iorK0u//fab7ZWZmemOGAEAAABc4JxOXI4cOaJJkyZV+iwXAAAAAHAHpxOXG264Qdu3b3dHLAAAAABQKYeucVmzZo3t/c0336ypU6dq79696tmzp5o0aVJm2SFDhrg2QgAAAAAXPIcSl1tvvbVC2QsvvFChzGQyyWKxnHdQAAAAAGDPocSl/C2PAQAAAKAuOX2NCwAAAADUNacTl0mTJmnu3LkVyt98801NnjzZFTEBAAAAQBlOJy4rVqxQTExMhfIBAwZo+fLlLgkKAAAAAOw5nbicOnVKzZs3r1AeFBSkkydPuiQoAAAAALDndOLSsWNHrVu3rkL5f/7zH0VHR7skKAAAAACw59Bdxew9/vjjmjhxok6cOKFrr71WkvT111/rtdde0+zZs10dHwAAAAA4n7iMGzdOZ86c0csvv6wXX3xRkhQZGal//OMfuvvuu10eIAAAAAA4nbhI0vjx4zV+/HidOHFCvr6+CggIcHVcAAAAAGDj9DUu1157rbKysiRJrVq1siUtOTk5tlPHAAAAAMCVnE5cNmzYoKKiogrlhYWFSkxMdElQAAAAAGDP4VPF9uzZY3u/d+9eZWRk2KYtFovWrVundu3auTY6AAAAAJATictll10mk8kkk8lU6Slhvr6+euONN1waHAAAAABITiQuKSkpMgxD0dHR2rp1q1q1amWb5+Pjo9atW8tsNrslSAAAAAAXNocTlw4dOkiSiouL3RYMAAAAAFSmVrdDlqzXuaSmpla4UH/IkCHnHRQAAAAA2HM6cTl48KBuu+02ff/99zKZTDIMQ5JkMpkkWS/UBwAAAABXcvp2yI8++qiioqJ0/Phx+fn56ccff9S3336rvn37asOGDW4IEQAAAMCFzukRl82bN2v9+vVq1aqVvLy85OXlpdjYWM2cOVOTJk3Sd9995444AQAAAFzAnB5xsVgsCggIkCSFhobq6NGjkqwX7//888+ujQ4AAAAAVIsRlx49emjPnj2Kjo5Wv379NGvWLPn4+Ojdd99VdHS0O2IEAAAAcIFzOnF55plnlJ+fL0l66aWXdMsttyguLk4tW7bUkiVLXB4gAAAAADiduNxwww2299HR0dq7d68yMzPVokUL253FAAAAAMCVav0cF3shISGuqAYAAAAAKuVw4jJu3DiHlps/f36tgwEAAACAyjicuHz44Yfq0KGDLr/8cttDJwEAAACgLjicuDz00ENavHixDh48qHHjxulPf/oTp4gBAAAAqBMOP8fl7bff1rFjx/Tkk0/q008/VUREhO688059/vnnjMAAAAAAcCunHkDZtGlTjRw5Ul9++aX27t2r7t27a8KECerQoYPy8vLcFSMAAACAC5xTiYs9k8kkk8kkwzBUXFzsypgAAAAAoAynEpczZ85o0aJFGjRokLp06aLvv/9eb775plJTUxUQEOCuGAEAAABc4By+OH/ChAlavHix2rdvr4SEBC1evFgtW7Z0Z2wAAAAAIMmJxOWdd95R+/btFRUVpY0bN2rjxo2VLrdy5UqXBQcAAAAAkhOJy9133y2TyeTOWAAAAACgUk49gBIAAAAA6kOt7yoGAAAAAHWFxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PG866NRwzAkSTk5OfXRvE1+Ub5UKFssFh+LlJ9fukBOjmSxVL6u/WIypNwcSb8ve8ZQrmGdUzLfYldfmXaN3yspH4ej22AfR26+bGtWEzsuXGX7fG6Z/mLXe2x9KV+GbP24XP+yXz5XxaXLle96Dn6nnN4W91QLwE7546TO2n3RzhhSsazHu9+Xyc2xOxbaL2et4ffpYrv31jpsx8IzRtl5duvlGoZ0RhXW1Vmj7DKVxWLXZvl6cnLzJfttMCqJo/j34/NZu/8bu+M++yDPVOF3XhWfn+13m/1vM/vPV4aUk2udb9ffclS+b//+ncgpW7d92/nl+1oN3y9nfxc2VCU5QUmOUBWTUdMSbpCenq6IiIi6bhYAAACAh0pLS1N4eHiV8+slcSkuLtbRo0cVGBgok8nk1Lo5OTmKiIhQWlqagoKC3BQh3I3PsfHgs2wc+BwbDz7LxoPPsnHgc6yZYRjKzc1V27Zt5eVV9ZUs9XKqmJeXV7XZlCOCgoL48BsBPsfGg8+yceBzbDz4LBsPPsvGgc+xes2bN69xGS7OBwAAAODxSFwAAAAAeLwGl7g0bdpUzz//vJo2bVrfoeA88Dk2HnyWjQOfY+PBZ9l48Fk2DnyOrlMvF+cDAAAAgDMa3IgLAAAAgAsPiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB43vXRaHFxsY4eParAwECZTKb6CAEAAACABzAMQ7m5uWrbtq28vKoeV6mXxOXo0aOKiIioj6YBAAAAeKC0tDSFh4dXOb9eEpfAwEBJ1uCCgoLqIwQAAAAAHiAnJ0cRERG2HKEq9ZK4lJweFhQUROICAAAAoMZLSLg4HwAAAIDHI3EBAAAA4PHq5VQxAAAAoITFYtHZs2frOwy4kdlslre393ndUZjEBQAAAPUmLy9P6enpMgyjvkOBm/n5+SksLEw+Pj61Wp/EBQAAAPXCYrEoPT1dfn5+atWqFc/3a6QMw1BRUZFOnDihlJQUderUqdrntVSFxAUAAAD14uzZszIMQ61atZKvr299hwM38vX1VZMmTXT48GEVFRWpWbNmTtfBxfkAAACoV4y0XBhqM8pSZn0XxQEAAAC4X2qqtHNn1a/U1PqOsE5ERkZqy5Ytbqv/0KFDZUZF3N2eI0hcAAAA0DCkpkpdukh9+lT96tLFJclLZGSk/Pz8FBAQoLZt2+qxxx6TxWJxwUa4V0JCgqZNm2ab3rt3r0wmkxYtWmQrW7p0qS699FKXtfnggw/q4osvlslkcmtyQ+ICAACAhuHkSamwsPplCguty7nA+vXrlZeXp8TERC1dulTz5893Sb3OKC4uVnFxscPLx8bGKikpyTadnJyszp07VyiLjY11WYyXX3655s+fr/DwcJfVWRkSFwAAAKAaF198sWJiYrRr1y5b2fLly9W9e3eFhIRoyJAh+vXXXyVJo0aN0rx58yRJGzdulMlk0rZt2yRJc+bM0YMPPihJWrNmjXr27KnAwEB16tRJy5Yts9U9duxYTZo0SfHx8QoICFBqaqrWrl2rjh07KiQkRNOnT68y1tjYWG3dulVFRUWSpKSkJE2ZMkXJycm2ZZKSkhQXF1ftdjjjoYce0sCBA2U2m51e1xkkLgAAAEA19u/fr6SkJEVHR0uStm7dqscff1xLlizR8ePH1bVrV40fP16SFBcXp8TEREnWBCEqKqrMdMlIR1BQkJYvX67s7GzNnTtXCQkJysjIsLW5ePFivf7668rNzZW/v79GjBihuXPnKiMjQ6dPn1Z6enqlsXbp0kVBQUHasWOHJGnTpk0aNmyY8vLylJ2drby8PO3evduW4FS1HZ6IxAUAAACoxKBBgxQQEKDOnTvrqquu0sMPPyxJmj9/viZOnKgePXqoSZMmeu6557RmzRqdO3dOsbGxtkQlMTFRU6dOrTRxiY+PV5cuXeTl5aWbbrpJPXv21Pbt221tDx8+XL1795bZbNbatWt15ZVXavDgwfLx8dH06dOrvUPXgAEDlJSUpIyMDJnNZoWGhqpfv37atGmTtmzZooiICIWHh1e7HZ6IxAUAAACoxJdffqnc3FytWrVKO3fuVF5eniQpNTVVM2bMUHBwsIKDgxUeHi5vb29lZGSoR48eys7O1uHDh7V3714lJCRox44d2r9/v7y8vBQVFSXJmsTExMQoJCREwcHB2r59u06dOmVr2/56kWPHjikiIsI27efnp5YtW1YZd8l1LsnJyYqJiZFUmszYX99S3XZ4IhIXAAAAoAomk0lDhw7VddddpxdffFGS1K5dO82cOVNZWVm2V0FBgcLDw2UymTRgwAC99dZb6tmzp5o1a6bo6GjNmzevzAXxY8aM0bhx43T8+HFlZWWpb9++MgyjTLslwsLClJaWZpsuKCgok+SUFxsbq+TkZFtyJJVNXEqub6luOzwRiQsAAABQg6lTp+q9997TiRMnNG7cOL3xxhvas2ePJCkzM1OrV6+2LRsXF6d33nlHV199dZlp+8QlNzdXISEh8vb21ooVK2zXpFRm8ODB2rp1qz7//HMVFRVpxowZ1d5prHfv3iooKNDChQttiUuvXr20b98+bdmyxRZHTdvhqKKiIhUWFsowjDLvXY3EBQAAAA1DaKhk91DESjVrZl3Oxbp27ar4+HjNmTNH/fv31yuvvKIxY8YoKChIvXv3LnPXrri4OOXm5tpGNkqm7ROXN954QxMnTlSLFi30+eefa+DAgVW23apVKy1YsEATJkxQmzZt5OvrW+2oSJMmTdSvXz9ZLBZ16dJFkmQ2m9WzZ0/5+PioW7duklTjdjjqD3/4g3x9fZWamqqBAwfK19dXhw8fdrqempgMd6RDNcjJyVHz5s2VnZ2toKCgum4eAAAAHqCwsFApKSmKiooq85T2aqWmVv+cltBQqX171wQIl6rq83Y0N/CuiyABAAAAl2jfnsTkAsWpYgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPx+2QAQAA0GCkZqfq5Omqn+MS6heq9s25XXJjROICAACABiE1O1Vd3uyiwnOFVS7TzLuZfp74c6NPXiIjI7V48WJdddVVbqn/0KFD6tq1qwoLC+ukPUdwqhgAAAAahJOnT1abtEhS4bnCakdkHBUZGSk/Pz8FBASobdu2euyxx2SxWM67XndLSEjQtGnTbNN79+6VyWTSokWLbGVLly7VpZde6pL2fv31V91555266KKLFBISoj/+8Y9KTU11Sd3lkbgAAAAAlVi/fr3y8vKUmJiopUuXav78+XUeQ3FxsYqLix1ePjY2VklJSbbp5ORkde7cuUJZbGysS+LLz89XbGysfvzxR2VkZKhjx45KSEhwSd3lkbgAAAAA1bj44osVExOjXbt22cqWL1+u7t27KyQkREOGDNGvv/4qSRo1apTmzZsnSdq4caNMJpO2bdsmSZozZ44efPBBSdKaNWvUs2dPBQYGqlOnTlq2bJmt7rFjx2rSpEmKj49XQECAUlNTtXbtWnXs2FEhISGaPn16lbHGxsZq69atKioqkiQlJSVpypQpSk5Oti2TlJSkuLi4arfDUVFRUZo0aZJCQ0Pl4+OjCRMmaOvWrU7V4SgSFwAAAKAa+/fvV1JSkqKjoyVJW7du1eOPP64lS5bo+PHj6tq1q8aPHy9JiouLU2JioiRrghAVFVVmumSkIygoSMuXL1d2drbmzp2rhIQEZWRk2NpcvHixXn/9deXm5srf318jRozQ3LlzlZGRodOnTys9Pb3SWLt06aKgoCDt2LFDkrRp0yYNGzZMeXl5ys7OVl5ennbv3m1LcKrajtratGmTunfvfl51VIXEBQAAAKjEoEGDFBAQoM6dO+uqq67Sww8/LEmaP3++Jk6cqB49eqhJkyZ67rnntGbNGp07d06xsbG2RCUxMVFTp06tNHGJj49Xly5d5OXlpZtuukk9e/bU9u3bbW0PHz5cvXv3ltls1tq1a3XllVdq8ODB8vHx0fTp0+XlVfXP+AEDBigpKUkZGRkym80KDQ1Vv379tGnTJm3ZskUREREKDw+vdjtqIy0tTU899ZReeumlWq1fExIXAAAAoBJffvmlcnNztWrVKu3cuVN5eXmSpNTUVM2YMUPBwcEKDg5WeHi4vL29lZGRoR49eig7O1uHDx/W3r17lZCQoB07dmj//v3y8vJSVFSUJGsSExMTo5CQEAUHB2v79u06deqUre3w8HDb+2PHjikiIsI27efnp5YtW1YZd8l1LsnJyYqJiZFUmszYX99S3XY4KzMzUzfeeKOefvppXX/99U6v7wgSFwAAAKAKJpNJQ4cO1XXXXacXX3xRktSuXTvNnDlTWVlZtldBQYHCw8NlMpk0YMAAvfXWW+rZs6eaNWum6OhozZs3r8wF8WPGjNG4ceN0/PhxZWVlqW/fvjIMo0y7JcLCwpSWlmabLigoKJPklBcbG6vk5GRbciSVTVxKrm+pbjuckZeXp8GDB2vo0KF65JFHnFrXGSQuAAAAaBBC/ULVzLtZtcs0826mUL9Ql7c9depUvffeezpx4oTGjRunN954Q3v27JFkHW1YvXq1bdm4uDi98847uvrqq8tM2ycuubm5CgkJkbe3t1asWGG7JqUygwcP1tatW/X555+rqKhIM2bMqPZOY71791ZBQYEWLlxoS1x69eqlffv2acuWLbY4atoORxQVFWnYsGHq3r27/vKXvzi1rrNIXAAAANAgtG/eXj9P/Fk7HtihpITS2/smJSRpxwM7tOOBHW57+GTXrl0VHx+vOXPmqH///nrllVc0ZswYBQUFqXfv3mXu2hUXF6fc3FzbyEbJtH3i8sYbb2jixIlq0aKFPv/8cw0cOLDKtlu1aqUFCxZowoQJatOmjXx9fasdFWnSpIn69esni8WiLl26SJLMZrN69uwpHx8fdevWTZJq3A5HbN68WV9++aUWL16sgIAA28sdz3IxGfZjUnUkJydHzZs3V3Z2toKCguq6eQAAAHiAwsJCpaSkKCoqSs2aVT+Sgoavqs/b0dyAERcAAAAAHo/EBQAAAIDHcypxMQxDKSkptns7FxUVacmSJfroo4908uRJtwQIAAAAAN6OLvjzzz/rhhtuUFpamqKjo/XFF19o+PDh+umnn2QYhvz8/LRp0yZ16tTJnfECAAAAuAA5POLy5JNP6tJLL9WuXbt0yy236JZbblF4eLh+++03/fbbb4qJidELL7zgzlgBAAAAXKAcTlw2bdqkGTNmqGfPnnrppZe0b98+/fnPf1aTJk3k4+OjJ598Ut9++607YwUAAABwgXI4ccnLy1NISIgkyd/fX/7+/goLC7PNDw8P1/Hjx10fIQAAAIALnsPXuLRt21apqalq3976QJ9Zs2apdevWtvknTpxQixYtXB8hAAAA8LvUVKm6e0KFhkrtXf/8SXgAh0dcrr/+ev3000+26fHjxyswMNA2/cUXX6h3796ujQ4AAAD4XWqq1KWL1KdP1a8uXazLNXaRkZHasmWL2+o/dOhQmYdEurs9RzicuLzzzju67777qpx/11136b333nNJUAAAAEB5J09KhYXVL1NYWP2IjKMiIyPl5+engIAAtW3bVo899pgsFsv5V+xmCQkJmjZtmm167969MplMWrRoka1s6dKluvTSS13W5s0336zWrVurefPm6tevnzZv3uyyuu2d1wMo09PTVVxcLEmKiooqc80LAAAA0JCtX79eeXl5SkxM1NKlSzV//vw6j6G4uNj2e9sRsbGxSkpKsk0nJyerc+fOFcpiY2NdFuOsWbN09OhRZWdn65lnntFtt90mwzBcVn+J80pcLrnkEh06dMhFoQAAAACe5+KLL1ZMTIx27dplK1u+fLm6d++ukJAQDRkyRL/++qskadSoUZo3b54kaePGjTKZTNq2bZskac6cOXrwwQclSWvWrFHPnj0VGBioTp06admyZba6x44dq0mTJik+Pl4BAQFKTU3V2rVr1bFjR4WEhGj69OlVxhobG6utW7eqqKhIkpSUlKQpU6YoOTnZtkxSUpLi4uKq3Q5ndO/eXd7e3jIMQ15eXjp+/LhOnz7tdD01Oa/ExR2ZFAAAAOBJ9u/fr6SkJEVHR0uStm7dqscff1xLlizR8ePH1bVrV40fP16SFBcXp8TEREnWBCEqKqrMdMlIR1BQkJYvX67s7GzNnTtXCQkJysjIsLW5ePFivf7668rNzZW/v79GjBihuXPnKiMjQ6dPn1Z6enqlsXbp0kVBQUHasWOHJOsjTYYNG6a8vDxlZ2crLy9Pu3fvtiU4VW2Hs2655RY1a9ZMt9xyiyZNmiR/f/9a1VOd80pcAAAAgMZq0KBBCggIUOfOnXXVVVfp4YcfliTNnz9fEydOVI8ePdSkSRM999xzWrNmjc6dO6fY2FhbopKYmKipU6dWmrjEx8erS5cu8vLy0k033aSePXtq+/bttraHDx+u3r17y2w2a+3atbryyis1ePBg+fj4aPr06fLyqvpn/IABA5SUlKSMjAyZzWaFhoaqX79+2rRpk7Zs2aKIiAiFh4dXux3O+uyzz5Sbm6vly5e77YZd55W4PP3007ZnuwAAAACNyZdffqnc3FytWrVKO3fuVF5eniQpNTVVM2bMUHBwsIKDgxUeHi5vb29lZGSoR48eys7O1uHDh7V3714lJCRox44d2r9/v7y8vBQVFSXJmsTExMQoJCREwcHB2r59u06dOmVrOzw83Pb+2LFjioiIsE37+fmpZcuWVcZdcp1LcnKyYmJiJJUmM/bXt1S3HbXh4+Oj22+/Xa+99pr27dtXqzqq4/BzXCrz//7f/3NVHB4hNVVaulQ6eLC0bOFCKTu79nWazZLJVDodECDdc490xRVSdLTUv3/l602YIH38cemdM8onviaT5OMjldyR2t9fsnusjgICpD/8QXrqqdKyv/5Veu456exZx2L39pZCQqSWLaUrr5ReeIH7ojcWmzeX9vP9+6WS01l37JB++knKyam5Dl9fyctLMgxrP/fxkSwWa78JDpZatLD2w9BQ66t1a6lTp4r1VPc9sI+zxPr10p490uHD1jjtb/BS8j0p+c41bWqN02y2Tvv7S127Sj16SDEx0m23Wct5JgBQvc2bpdmzpZSUsuVnzlj3IQUFdR9T06bWf319rcfUm2+2flf375cOHLDOs1isx/AzZ6z7uR9/lOyvcTaZSl8l+5KS/UUJ+31MkyaVH0Pt1wkJkbZvZ59R306flk6dkrKypKIi6+dWXFzx91QJk8l6PJOsn6fFYl1v3z7J29ukdu2G6tJL12jixBf15z/PkY9PO40fP1MjRkwqU09GhvXVvfsAPfvsW2rfvqd++KGZWrWK1osvztOll8bql1+s7Y0cOUYTJjyjefPuVtOmTXTHHf11/Lihw4elvDzpxAmTfvjBGo/ZHKZffvnK1rfPnSsok+ScOVN22/r0idVf/jJTERHR6ts3RmfOWBOXyZMnq2nTprrjjjskSe3atdPMmTM1aVLZ7ZB0Xtexnzt3TikpKerWrVut66jMeSUu9tLS0vT888/Xy90WXCE1VerY0fEf9Y4qf9e8rCxpzpzS6U2bKv5omzBB+sc/qq/XMKyd9MwZ6/TJk9Yfcva++cb671NPWZMWZ/PMc+esO/pff7V+cT/5xPojkp1xw7Z5szRgwPnXU90PFWdvQ1nZ9+B84iw5+BQWlr1tZsn35PPPpddek1auLL3nf3W312zWTPr5Z/o+Lkyu2me4Wsnx78wZ6csvrS9nGUbp/qJEdXe7reo3gv06J05IHTpY9zXsM1wvNNS6T65un920qfX3VvlEuzr2/aCqPjBmzFSNGdNH9977jIYMGafp0+9Wnz7x6tSpl7KzM7VrV6IGDhwqSbrssjh98MHLSkiYZptesmSOxo9/2fbHwdzcXHl7hyg/31uffbZCP/ywQ/n51j5UWGhNnEq287LLBmvGjEe0du3n6tv3Gr3zzgwVFxcrJ8f6Hfjhh7Lb0KxZb50+XaBFixbq//7vW/3wg9StWy/t27dPhYWFmj17tiRp3LhxuvvuuxUfH69evXopMzNTiYmJGjp0qMP/d4cPH9b333+v66+/XiaTSfPmzVN6err69OnjcB2Octk1LpmZmfrnP//pqurq3MmTrk9aHFH+r8mS9S81rvL7dVm2f8+HxeKa+6KjflXW5+pbZTHVRZw//li3zwQAGiJP3Gc0BOwz3KN9e+sfknbskOzu7qukJGvZjh3Sf/8rtWnj+rYjI7uqT594LV48R7169dfEia/o+efHKD4+SGPG9Nbu3aV37brssjjl5+fqssusd+66/PKS6dJbEE+d+oZefXWirr22hTZv/ly9ew+ssu0WLVrphRcW6JVXJujGG9uoWTNftW4dbhtpKZ+Ae3s3UY8e/WSxWBQZ2eX3JN2snj17ysfHxzYS0r9/f73yyisaM2aMgoKC1Lt37zJ3H3PUyy+/rNatW6tNmzZasmSJPv30U1100UVO11MTh0dc1qxZU+38g+zZAAAA4Gbt25eOZlV2g9tTp5wbbanKmjWHKpTNnv1v2/trrx2ma68dVum6l146QNu2lQZ31VV/KDMtSTfcMFI33DCy0vWnT/+wQtnVV/9RV1/9R9v0/fc/r7Ztq47/H/9YX6Hs66+/rlA2bNgwDRtWcTsiIyNVaPeXvapOHevQoYPbHjhZnsOJy6233iqTyVTtLZBN9hdzAAAAAICLOHyqWFhYmFasWGF7emf5186dO90ZJwAAAIALmMOJS58+fapNTmoajQEAAACA2nL4VLGpU6cqPz+/yvkdO3bUNyW3sQIAAAAAF3I4cYmLi6t2vr+/vwYOrPpuCAAAAEBlOGvnwlBs/yClWnDZc1wautDQqh8s5U7R0RXL+vaVtm1zTf0lt9Du00davvz86jKbrf9PaNgq63P1rbKY6iLO7t0deyZAs2b0fVy4PHGf0RCwz3BMkyZNZDKZdOLECbVq1YobPTmp5GGZ9g/QrEzJQ1Zruv2/uxiGoaKiIp04cUJeXl7y8fGpVT0mox5S3JycHDVv3lzZ2dkKCgqq6+arlJoqLV0q/fKLNG+ee9po3lwaO9b6lN/qnhg+YYL08cfWh/xV9SCkJk2koCDrbf9KXHKJ9engAQHSH/5gffhkib/+VXruOeeSs1atrDvfK6+UXniBh2k1FiVPpM/JsfY1SbrrLmnJEsfraNq09AFwVRkwQGrXztqH/PysD32UpLfftvZdqfrvQWVxjhpl/Y7+73/WB4w5o107qUcP6ysmRrrtNmt5aqr1mQsFBVLs77fYT0qyPpFbssZP38eFbPNmafZs61Ppv/uutLxTJyk9vfoH0rpT06bWPyxkZ5eW/b//J6WlWX+gOfoHu5Iff1LNPwCrq0OSQkKsz2Njn+G4vLw8paenu3TUpeT5Jvn5zvfP2vYBZzRrZm2nJLaS403JtJ+ftU8WF5f93ebra13Py8v63s/PWn7unHVZw5AyMqxlbdpYl5Wsy3t7wHCFn5+fwsLCKiQujuYGJC6VyM+3/vAvcfCgtGiRNG2aY+sfP279AThpUuXzWrd2PJbPP5duvLF0+uWXS+P44QdrYmH/fJ+tW61JUXW2bbMmIo7Iy7MmQmicfv21tP/88IP1B70krVtXtt9VxpFl7Pu7fVvOfg8qW/fHH0vjLW/r1sr7+MGDUlRU1e3Yf/fp+0BF9t9FqfSYU/64WRv2xzdJGjxYWru2+nXy8qz/2rdd8t0tH2tVnn9emj69dHrJEmnEiNLpxYutf9h5913pwQetZf/3f9Y/oJT8Mca+XdSOxWLRWTec9nLqlPUPVdV57DHp73+3vv/0U+tx5r77Kl/2ppuk//yndrF8+qn0x98fw/LVV9bEoyS25GRr0nL99aXzw8Mrxl9SXpXTp6Xeva3vd+4sTWw8gdlslre3d6Wjao7mBh6QewEAAOBCZjabZS4ZtnKhJk2kw4erXyY/v3QZLy/rSEdV62Rm1lxfVby8Stc1m8vG1qSJVFRUdn6zZhXjLymvin3sJSOSjYnDt0MGAAAAgPridOLyz3/+U//+979t00888YSCg4M1YMAAHa5tCgoAAAAA1XA6cfnLX/4i39+vINq8ebPefPNNzZo1S6GhoXrsscdcHiAAAAAAOH2NS1pamjp27ChJWrVqle644w498MADiomJUXx8vKvjAwAAAADnR1wCAgJ06vf7737xxRe6/vfbHzRr1kwF9XU/RAAAAACNmtMjLoMGDdJ9992nyy+/XL/88otuvvlmSdKPP/6oyMhIV8cHAAAAAM6PuLz11lvq37+/Tpw4oRUrVqhly5aSpB07dmjkyJEuDxAAAAAAnB5xCQ4O1ptvvlmhfMaMGS4JqC6kZqdqVtIs/XTyp0rnHz2VLWmbbTp6dgdp922SZjtU/0WvtpL2DJX0XuXzAk46Huwv8ZK+sU1O+/oJSbMkSZPXPSrf5vll2vlr0svqmXdW249t17eHvlXu2dyKdaZfJum7iuVotFKzU/V1ytc6knPEVrbtyDYdPlIg6QtJ0mX/uFTSbknSjR9dJ+nrauu8e9WfJH3inoDdZNVPK9U6z3pKa3CzYPVs3VPtm/N4a6C8f+37l17f/Lp2ZexS3tm80hl5oZJO2CavfPdyae0uqchPUv55tflK4ouSnrVNJx/+WtJ11a4T8JeSJz7mly3zOV0h1qrM+PopvWh6VZJkkkmWPbdIWmWbP2LprRrx02pp6xhJH0mSHlx9t3QyWtJ023LBfw3WdZ2v0rox62psE+717vZ3tev4LknSofTTkj6sdvlpX0xWyW+8Hm91lbLDZP/by97S3fMk3V+ruHq81VWS9bdn9OwO1n76ex+96NVWv3+PDpfOD0mt0I+jZ3eQV0i6ZlwzQ91bdddt3W6rVSwNlUOJy549exyusFevXrUOpi6kZqcqena0LLJUvVCRBz1mtDxLke3tVwc+l/xPyT5xWbl3uVbm7Kr7uOCxUrNT1WluJxUVF1WcmRdqe3uu+IzdjOIa6/3VLgnyNBl5xySFVSh/fN1j1gPB75qam+qXR34heQHs/GvfvzRs6bA6bzen4FSZ6ezTv9ZRy8UqdmCfV5NzxWf1+cHPdePHN5K81KN3t7+rB//9YGmB3XGusShWsZ79xprkr7xz5QWVvDiUuFx22WUymUwyDKPS+SXzTCaTLJZqEgIPcPL0yeqTFqCROXn6ZOVJSyOWVZipyhKX8s5Yzujk6ZMkLoCdH0/8WN8hNGjf//p9fYdwQSsZablQ/HjiRxKX8lJSUtwdBwAAAABUyaHEpUOHDu6OAwAAAACq5FDismbNGocrHDJkSK2DAQAAAIDKOJS43HrrrQ5V1hCucQEAAADQ8DiUuBQXn//dNgAAAACgtpx+AKW9wsJCV8UBAAAAAFVyOnGxWCx68cUX1a5dOwUEBOjgwYOSpGeffVbvv/++ywN0tVC/UJllru8wgDoT6hcqHy+f+g6jTgU3C3Fouabmpgr1a3z3+AfOR/dW3es7hAatZ+ue9R3CBe2yiy6r7xDq1IX2fXU6cXn55Zf14YcfatasWfLxKf0x1LNnT733XsUnxXua9s3b6+Dkg3q478O6psM1ZeZdEXaFrou8Tt1aXlJP0TlnYPtrKi2f0n+Kbu50swKbBNZxRPBE7Zu31/5J+zV/6Hw9F/dcmXk9QhvnAbZNQNXPcHn/j+/rk2Gf6LNRn/HwSaASt3W7TSvvXKnYiFj5mn3rrN3Api3qrC138PZqohuib+Dhk/Xsgb4P6P9u/j+N7zted11yV32H4xZe8tKL17x4wT18UnLwGhd7H330kd59911dd911euihh2zlvXr10k8//eTS4NylffP2evPmN5VflK+AmQG28rdufktXtLtC+flSwBT3tP183HTN+G5imbIhFw/RmgOO37mtxAvXztDAZcsrlD8x4Am1DmgtSfr20Lca+M+BtQsWjUb75u2VcFmC8ovy9ULiC7byxcMXq8dT9RhYPbirx13y9/Gv7zAAj3Zbt9t0W7fblPJbiqLnRtdJmxOvGq+ZX9RJU9WaO/gdTVrp/HpZT2XJn12LR3ig7wOSpB9//VFLtn7t9PrXRv5B610dlAM2JiRq4Nyal7n6sgv3D25Oj7gcOXJEHTt2rFBeXFyss2fPuiQoAAAAALDndOLSvXt3JSYmVihftmyZLr/8cpcEBQAAAAD2nD5V7Pnnn9eYMWN05MgRFRcXa+XKlfr555/10Ucf6bPPPnNHjAAAAAAucE6PuPzxj3/UkiVLtHbtWplMJj333HPat2+fPv30Uw0aNMgdMQIAAAC4wDk84vLMM8/o2muv1YABA3TDDTfohhtucGdcAAAAAGDj8IjLokWLdP311ys4OFgDBw7UjBkzlJiYqKKiInfGBwAAAACOJy4HDhxQWlqa5s2bp44dO+qjjz7SwIED1aJFC11//fV6+eWXtWnTJnfGCgAAAOAC5dQ1Lu3atdOYMWP0/vvv68CBAzp8+LD+8Y9/qH379po1a5auvvpqd8UJAAAA4ALm9F3FShw4cEAbNmzQ+vXrtWHDBlksFl1zTeVPcm8w+l4pHTdJhq+kfPe0MXOmdGO5smVrpN61qOufH0l+lZRfcon02xnr+7AiaXQt6i4xebLUxO50wMsukx544DwqRL167bWy0337SEpzX3tRUdLZI9b3xaGSjlrft2kj+WRZ/42Lk44ckX7+WSoqkpo1k5o0sS5nNkt+flJgtKR/uT6+zZulgwdLpwvNkkZY3y9eLF3SQerf3/XtAqjohb9Iml3fUUgTHpK0yvn1/vQnac5fpPYX7sMBPUpqqnRwb+3WXfuFpP/n0nAcEhcn6XD1y3zxufSjn7R9u/TLL9KZ33/vNW8uXXSRdNZHtu9RWprUNcKNAdc9hxOXlJQUffPNN/rmm2+0YcMGZWdnKyYmRgMHDtTEiRN1xRVXyNu71nmQZzAkGYZ728g/47q63ntPmlRJ+alT0unf35+uZL5TbcyrvBKSl4bnr3+Vnn9emmZXVlDo3jZP50kqeTCt3QNqDYt1Z3v4sPVVo6Ouj23zZmnAgHKFfrIlLvfdK+m0tGkTyQuAmq36l/TpYusfQ0he6ldqqtSli+RfKCWE1nc0rvXiS1JeajUL+MmWuPTsKR3Y06j6o8OZxsUXX6z27dtrwoQJmjRpknr37i2z2ezO2OCpdu2q7whQGzt21HcEnsV+pKWm5UhcADjCYpFOnmxUPxQbpJMnpcJCyb++A6ln5842uv7o8DUuw4cP15kzZzRz5ky9+OKLmj17tnbu3CnD3SMUAAAAAC54Do+4LFmyRJL0008/2U4Xe/XVV1VYWKjY2FgNHDhQ8fHxuuKKK9wWLAAAAIALk1N3FZOkrl27avz48VqyZIkyMjK0adMmXXbZZXrppZfUn9MpAAAAALhBra6mP378uDZs2KANGzbom2++0S+//KKmTZsqLi7O1fEBAAAAgOOJy7Jly2yniP3888/y9vbWlVdeqTvvvFPXXHONBgwYoKZNm7ozVgAAAAAXKIcTl9GjR6tv37667bbbdM011ygmJka+vr7ujA0AAAAAJDmRuPz222/y97/Q7ysHSdaHUKLh6dNHWr28vqPwHNHRrl0OAMxmKbSRPTekIQoNtT7MWG5+Vpmn827S6Pqjwxfnk7R4oPvuq5t27rpLGj/e+vq//+Phkw3VU09JM2bUbZvN/KqYUW7XExNT+WLh4VKvXlJMrEvDkmR9NsumTdInn0hvv11x/nvv8/BJAI679TYePukp2reXfv5ZWr60viNxvSmPl76/7rqKD1Iem1D6/vvvG11/dPquYo3a88/XdwTOuefuumnn2WetP+zefpukpaGbMqVu29u+rfLyH74vO71yZeXLrVwp7d4trfyXa+Mq0b+/NHq0dPvtFeeNGEHSAsBxn3zS6H4kNmjt20uXXFLfUbjewPjS9wsXWvudvVdeKX0fEVEnIdUlEhcAAAAAHo/EBQAAAIDHI3EBAAAA4PEcuqvYsGHDHK5wZVXnqgMAAABALTk04tK8eXPbKygoSF9//bW2b99um79jxw59/fXXat68udsCBQAAAHDhcmjE5YMPPrC9f/LJJ3XnnXfqnXfekdlsliRZLBZNmDBBQUFB7okSAAAAwAXN6Wtc5s+frz//+c+2pEWSzGazHn/8cc2fP9+lwQEAAACAVIvE5dy5c9q3b1+F8n379qm4uNglQQEAAACAPYdOFbOXkJCgcePG6X//+5+uuuoqSdKWLVv017/+VQkJCTWsDQAAAADOczpx+dvf/qY2bdro73//u44dOyZJCgsL0xNPPKEpdf1UbgAAAAAXBKcSl3PnzmnBggW6++679cQTTygnJ0eSuCgfAAAAgFs5dY2Lt7e3xo8frzNnzkiyJiwkLQAAAADczemL8/v166fvvvvOHbEAAAAAQKWcvsZlwoQJmjJlitLT09WnTx/5+/uXmd+rVy+XBQcAAAAAUi0Sl7vuukuSNGnSJFuZyWSSYRgymUyyWCyuiw4AAAAAVIvEJSUlxR1xAAAAAECVnE5cOnTo4I44AAAAAKBKTicuJfbu3avU1FQVFRWVKR8yZMh5BwUAAAAA9pxOXA4ePKjbbrtN33//ve3aFsl6nYskrnEBAAAA4HJO3w750UcfVVRUlI4fPy4/Pz/9+OOP+vbbb9W3b19t2LDBDSECAAAAuNA5PeKyefNmrV+/Xq1atZKXl5e8vLwUGxurmTNnatKkSTzjBQAAAIDLOT3iYrFYFBAQIEkKDQ3V0aNHJVkv2v/5559dGx0AAAAAqBYjLj169NCePXsUHR2tfv36adasWfLx8dG7776r6Ohod8QIAAAA4ALndOLyzDPPKD8/X5L00ksv6ZZbblFcXJxatmypJUuWuDxAAAAAAHA6cbnhhhts76Ojo7V3715lZmaqRYsWtjuLAQAAAIArOX2Ny5dffqnTp0+XKQsJCSFpAQAAAOA2To+43H777Tpz5oz69OmjgQMHKj4+XjExMbYL9gEAAADA1Zwecfntt9+0YcMGDRkyRN99952GDx+ukJAQXXXVVXrqqafcESMAAACAC5zTiYvZbFb//v311FNPad26ddq0aZNGjRqlHTt26NVXX3VHjAAAAAAucE6fKrZv3z5t3LhRGzZs0MaNG2WxWBQbG6vXXntNAwcOdEeMAAAAAC5wTicu3bt3V6tWrTR58mQ9++yz6t69uzviAgAAAAAbp08VmzRpktq1a6fp06dr3LhxevLJJ/Wf//xHeXl57ogPAAAAAJxPXGbPnq2dO3fq+PHjeuaZZ2SxWPTcc88pNDRUV111lTtiBAAAAHCBczpxKVFcXKxz586pqKhIZ86c0dmzZ3Xo0CEXhgYAAAAAVk4nLo8++qguvfRStW7dWg8++KCOHj2qBx54QLt371ZGRoY7YgQAAABwgXP64vwjR47o/vvvV3x8vHr06OGOmAAAAACgDKcTl+XLl7sjDgAAAACoUq2ucfn4448VExOjtm3b6vDhw5KsF+2vXr3apcEBAAAAgFSLxOUf//iHHn/8cQ0ePFhZWVmyWCySpODgYM2ePdvV8QEAAACA84nLG2+8oXnz5mnatGkym8228r59++r77793aXAAAAAAINUicUlJSdHll19eobxp06bKz893SVAAAAAAYM/pxCUqKkq7du2qUP6f//xHl1xyiStiAgAAAIAynL6r2NSpU/Xwww+rsLBQhmFo69atWrRokWbOnKn33nvPHTECAAAAuMA5nbgkJCTo3LlzeuKJJ3T69GmNGjVK7dq105w5czRixAh3xAgAAADgAud04iJJ999/v+6//36dPHlSxcXFat26tSTrwynbtWvn0gABAAAAoFbPcSkRGhqq1q1bKyMjQ4888og6duzoqrgAAAAAwMbhxCUrK0ujR49Wq1at1LZtW82dO1fFxcV67rnnFB0drS1btmj+/PnujBUAAADABcrhU8Wefvppffvtt7rnnnu0bt06PfbYY1q3bp0KCwv1n//8RwMHDnRnnAAAAAAuYA4nLv/+97/1wQcf6Prrr9eECRPUsWNHde7cWbNnz3ZjeAAAAADgxKliR48etT2nJTo6Ws2aNdN9993ntsAAAAAAoITDiUtxcbGaNGlimzabzfL393dLUAAAAABgz+FTxQzD0NixY9W0aVNJUmFhoR566KEKycvKlStdGyEAAACAC57Dics999xTZvpPf/qTy4MBAAAAgMo4nLh88MEH7owDAAAAAKp0Xg+gBAAAAIC6QOICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweCQuAAAAADweiQsAAAAAj0fiAgAAAMDjkbgAAAAA8HgkLgAAAAA8HokLAAAAAI9H4gIAAADA45G4AAAAAPB4JC4AAAAAPB6JCwAAAACPR+ICAAAAwOORuAAAAADweN710ahhGJKknJyc+mjeJr8oXyosnc4rOKMcSfkyJNnFdqZYOnembFl1zhRL54oqXf6MpbhMm5J09qwqlJXOPFe2Hrs48vNyrW3Zzy+yKNeQmv0+mV9cSd1FFoe3JUeGLHl5Uj1/VnCNCn3esOs/9v2ifL+rjAPL5Obl2vpirkrbsi+3FuRWXsHvfc9+dm6u1KyZdVZVqpx3plg5OTmy+FjKBWptwP67n5MjWcotBlxocnNyyx5DKjnmqFDS2XLHzVo4o3LH2eLTNdd5xvj9TU7ZsuJKYq3KuTNltrHAOFt2vbNnf99Gu+P62SLJUjZe9hmeJy83z7F+YP8br8iic5Zqjm+Wgprrq4r9cfZMsWR/DD5TrPxy0ypUhfjz8/NKp3Jzpfz8Mk3k5+ZIsnbEhtQnS3KCkhyhKiajpiXcID09XREREXXdLAAAAAAPlZaWpvDw8Crn10viUlxcrKNHjyowMFAmk8mpdXNychQREaG0tDQFBQW5KUK4G59j48Fn2TjwOTYefJaNB59l48DnWDPDMJSbm6u2bdvKy6vqK1nq5VQxLy+varMpRwQFBfHhNwJ8jo0Hn2XjwOfYePBZNh58lo0Dn2P1mjdvXuMyXJwPAAAAwOORuAAAAADweA0ucWnatKmef/55NW3atL5DwXngc2w8+CwbBz7HxoPPsvHgs2wc+Bxdp14uzgcAAAAAZzS4ERcAAAAAFx4SFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PFIXAAAAAB4PBIXAAAAAB6PxAUAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAAAHo/EBQAAAIDHI3EBAAAA4PG866PR4uJiHT16VIGBgTKZTPURAgAAAAAPYBiGcnNz1bZtW3l5VT2uUi+Jy9GjRxUREVEfTQMAAADwQGlpaQoPD69yfr0kLoGBgZKswQUFBdVHCAAAAAA8QE5OjiIiImw5QlXqJXEpOT0sKCiIxAUAAABAjZeQcHE+AAAAAI9H4gIAAADA49XLqWIAAACAJFksFp09e7a+w4Cbmc1meXt7n9cdhUlcAAAAUC/y8vKUnp4uwzDqOxTUAT8/P4WFhcnHx6dW65O4AAAAoM5ZLBalp6fLz89PrVq14tl+jZhhGCoqKtKJEyeUkpKiTp06Vfu8lqqQuAAAAKDOnT17VoZhqFWrVvL19a3vcOBmvr6+atKkiQ4fPqyioiI1a9bM6Tq4OB8AAAD1hpGWC0dtRlnKrO+iOAAAAADUgcjISG3ZssVt9R86dKjMiIi723MUiQsAAAAanq++ki65xPqvi0VGRsrPz08BAQFq27atHnvsMVksFpe342oJCQmaNm2abXrv3r0ymUxatGiRrWzp0qW69NJLXdru6dOnFRgYqLvuusul9ZZH4gIAAICGxTCkp5+W9u2z/uuGu5KtX79eeXl5SkxM1NKlSzV//nyXt1GT4uJiFRcXO7x8bGyskpKSbNPJycnq3LlzhbLY2FiXxrlq1So1adJEn376qXJzc11atz0SFwAAADQsX3whbdtmfb9tm3XaTS6++GLFxMRo165dtrLly5ere/fuCgkJ0ZAhQ/Trr79KkkaNGqV58+ZJkjZu3CiTyaRtv8c5Z84cPfjgg5KkNWvWqGfPngoMDFSnTp20bNkyW91jx47VpEmTFB8fr4CAAKWmpmrt2rXq2LGjQkJCNH369CpjjY2N1datW1VUVCRJSkpK0pQpU5ScnGxbJikpSXFxcdVuh7MWLFigSZMmKSIiQitXrqxVHY4gcQEAAEDDYRjSs89KZrN12my2TrvpWTD79+9XUlKSoqOjJUlbt27V448/riVLluj48ePq2rWrxo8fL0mKi4tTYmKiJGuCEBUVVWa6ZKQjKChIy5cvV3Z2tubOnauEhARlZGTY2ly8eLFef/115ebmyt/fXyNGjNDcuXOVkZGh06dPKz09vdJYu3TpoqCgIO3YsUOStGnTJg0bNkx5eXnKzs5WXl6edu/ebUtwqtoOZ5w4cUJffPGF7rrrLt11111asGCB03U4isQFAAAADUfJaEvJNScWi1tGXQYNGqSAgAB17txZV111lR5++GFJ0vz58zVx4kT16NFDTZo00XPPPac1a9bo3Llzio2NtSUqiYmJmjp1aqWJS3x8vLp06SIvLy/ddNNN6tmzp7Zv325re/jw4erdu7fMZrPWrl2rK6+8UoMHD5aPj4+mT59e7d25BgwYoKSkJGVkZMhsNis0NFT9+vXTpk2btGXLFkVERCg8PLza7XDGkiVL1K1bN3Xr1k133XWX1q9fXyYJcyUSFwAAADQM5UdbSrhh1OXLL79Ubm6uVq1apZ07dyovL0+SlJqaqhkzZig4OFjBwcEKDw+Xt7e3MjIy1KNHD2VnZ+vw4cPau3evEhIStGPHDu3fv19eXl6KioqSZE1iYmJiFBISouDgYG3fvl2nTp2ytR0eHm57f+zYMUVERNim/fz81LJlyyrjLrnOJTk5WTExMZJKkxn761uq2w5nfPLJJ7aL8rt3766uXbtq8eLFTtXhKBIXAAAANAzlR1tKuGnUxWQyaejQobruuuv04osvSpLatWunmTNnKisry/YqKChQeHi4TCaTBgwYoLfeeks9e/ZUs2bNFB0drXnz5pW5IH7MmDEaN26cjh8/rqysLPXt21eGXdJl/2ybsLAwpaWl2aYLCgrKJDnlxcbGKjk52ZYcSWUTl5LrW6rbDkcdOHBA//3vf/W3v/1Nbdq0UZs2bXTgwAG3nS5G4gIAAADPVzLaUtVpUl5ebrvWZerUqXrvvfd04sQJjRs3Tm+88Yb27NkjScrMzNTq1atty8bFxemdd97R1VdfXWbaPnHJzc1VSEiIvL29tWLFCts1KZUZPHiwtm7dqs8//1xFRUWaMWNGtXca6927twoKCrRw4UJb4tKrVy/t27dPW7ZsscVR03Y44pNPPlH//v21b98+7dq1S7t27dJ///tffffdd/r555+dqssRJC4AAADwfEVFUmqqVNWP9uJiKS3NupyLde3aVfHx8ZozZ4769++vV155RWPGjFFQUJB69+5d5q5dcXFxys3NtY1slEzbJy5vvPGGJk6cqBYtWujzzz/XwIEDq2y7VatWWrBggSZMmKA2bdrI19e32lGRJk2aqF+/frJYLOrSpYskyWw2q2fPnvLx8VG3bt0kqcbtcMSCBQv04IMP2kZb2rRpo169eummm25yy6iLyTDcdAuGauTk5Kh58+bKzs5WUFBQXTcPAACAelZYWKiUlBRFRUWVeUp7tdLSpBMnqp7furXkxKlOqFtVfeaO5gbedREkAAAAcN4iIqwvXJA4VQwAAACAxyNxAQAAAODxSFwAAAAAeDwSFwAAAAAej8QFAAAAgMcjcQEAAADg8UhcAAAAAHg8EhcAAAA0OF8d/EqXvHWJvjr4VX2HUuciIyO1ZcsWt9V/6NChMg+IdHd7jiJxAQAAQINiGIae/vpp7Tu5T09//bQMw3Bp/ZGRkfLz81NAQIDatm2rxx57TBaLxaVtuENCQoKmTZtmm967d69MJpMWLVpkK1u6dKkuvfRSl7VpMpnk7++vgIAAtW7dWg8//LDOnTvnsvrtkbgAAACgQfniwBfadnSbJGnb0W364sAXLm9j/fr1ysvLU2JiopYuXar58+e7vI2aFBcXq7i42OHlY2NjlZSUZJtOTk5W586dK5TFxsa6NM4DBw4oLy9PP/zwgzZt2uS2/ysSFwAAADQYhmHo2W+eldlkliSZTWY9+82zLh91KXHxxRcrJiZGu3btspUtX75c3bt3V0hIiIYMGaJff/1VkjRq1CjNmzdPkrRx40aZTCZt22ZNsObMmaMHH3xQkrRmzRr17NlTgYGB6tSpk5YtW2are+zYsZo0aZLi4+MVEBCg1NRUrV27Vh07dlRISIimT59eZayxsbHaunWrioqKJElJSUmaMmWKkpOTbcskJSUpLi6u2u2ordatW2vQoEHat2/fedVTFRIXAAAANBgloy0Ww3rqlsWwuG3URZL279+vpKQkRUdHS5K2bt2qxx9/XEuWLNHx48fVtWtXjR8/XpIUFxenxMRESdYEISoqqsx0yUhHUFCQli9fruzsbM2dO1cJCQnKyMiwtbl48WK9/vrrys3Nlb+/v0aMGKG5c+cqIyNDp0+fVnp6eqWxdunSRUFBQdqxY4ckadOmTRo2bJjy8vKUnZ2tvLw87d6925bgVLUdtZWRkaEvvvhC/fr1O696qkLiAgAAgAah/GhLCXeMugwaNEgBAQHq3LmzrrrqKj388MOSpPnz52vixInq0aOHmjRpoueee05r1qzRuXPnFBsba0tUEhMTNXXq1EoTl/j4eHXp0kVeXl666aab1LNnT23fvt3W9vDhw9W7d2+ZzWatXbtWV155pQYPHiwfHx9Nnz5dXl5V/4QfMGCAkpKSlJGRIbPZrNDQUPXr10+bNm3Sli1bFBERofDw8Gq3w1ldunRRcHCwwsLC1Lx5cw0dOtTpOhxB4gIAAIAGofxoSwl3jLp8+eWXys3N1apVq7Rz507l5eVJklJTUzVjxgwFBwcrODhY4eHh8vb2VkZGhnr06KHs7GwdPnxYe/fuVUJCgnbs2KH9+/fLy8tLUVFRkqxJTExMjEJCQhQcHKzt27fr1KlTtrbDw8Nt748dO6aIiAjbtJ+fn1q2bFll3CXXuSQnJysmJkZSaTJjf31LddvhrJ9//llZWVnKzc1V+/bt9ac//cnpOhxB4gIAAACPVzLa4lXFz1cvebl81MVkMmno0KG67rrr9OKLL0qS2rVrp5kzZyorK8v2KigoUHh4uEwmkwYMGKC33npLPXv2VLNmzRQdHa158+aVuSB+zJgxGjdunI4fP66srCz17du3TNwmk8n2PiwsTGlpabbpgoKCMklOebGxsUpOTrYlR1LZxKXk+pbqtqO2AgICNGLECH3++ee1rqM6JC4AAADweEWWIqVmp6pYld9lq1jFSstJU5GlyOVtT506Ve+9955OnDihcePG6Y033tCePXskSZmZmVq9erVt2bi4OL3zzju6+uqry0zbJy65ubkKCQmRt7e3VqxYYbsmpTKDBw/W1q1b9fnnn6uoqEgzZsyo9k5jvXv3VkFBgRYuXGhLXHr16qV9+/Zpy5Yttjhq2o7aKCgo0NKlS9WtW7fzqqcqJC4AAADweE29m2rb/du044EdSkoovb1vUkKSdjywQzse2KFt929TU++mLm+7a9euio+P15w5c9S/f3+98sorGjNmjIKCgtS7d+8yd+2Ki4tTbm6ubWSjZNo+cXnjjTc0ceJEtWjRQp9//rkGDhxYZdutWrXSggULNGHCBLVp00a+vr7Vjoo0adJE/fr1k8ViUZcuXSRJZrNZPXv2lI+Pjy2pqGk7nHHxxRfbnnlz7Ngxffzxx7WqpyYmw133jqtGTk6OmjdvruzsbAUFBdV18wAAAKhnhYWFSklJUVRUVJmntKPxquozdzQ3YMQFAAAAgMdzKnHJycmp9Jw6i8WinJwclwUFAAAAAPYcTlz+9a9/qW/fviosLKww78yZM7riiiv06aefujQ4AAAAAJCcSFz+8Y9/6IknnpCfn1+FeX5+fnryySf15ptvujQ4AAAAAJCcSFx++OEHxcfHVzn/6quv1vfff++KmAAAAACgDIcTl99++03nzp2rcv7Zs2f122+/uSQoAAAAALDncOISGRmp7du3Vzl/+/bt6tChg0uCAgAAAAB7Dicuw4YN07Rp03T8+PEK8zIyMvTMM8/o9ttvd2lwAAAAACA5kbg89dRTCgwMVKdOnTRhwgTNmTNHc+fO1fjx49W5c2cFBAToqaeecmesAAAAgCTpq6+kSy6x/nuhiYyM1JYtW9xW/6FDh8o8INLd7TnK4cQlMDBQycnJ+tOf/qQlS5boscce0+TJk7V06VL96U9/UnJysgIDA90ZKwAAACDDkJ5+Wtq3z/qvYbi2/sjISPn5+SkgIEBt27bVY489JovF4tpG3CAhIUHTpk2zTe/du1cmk0mLFi2ylS1dulSXXnqpy9q0WCyaOXOmOnfuLH9/f0VFRemRRx7RyZMnXdZGCaceQNm8eXO9/fbbOnnypI4fP66MjAydPHlSb7/9toKDg10eHAAAAFDeF19I27ZZ32/bZp12tfXr1ysvL0+JiYlaunSp5s+f7/pGalBcXFzpw9+rEhsbq6SkJNt0cnKyOnfuXKEsNjbWZTE++OCD+vDDD/XBBx8oKytLO3bsULt27bR161aXtVHCqcSlhMlkUqtWrTR//nxlZ2e7OiYAAACgUoYhPfusZDZbp81m67SrR11KXHzxxYqJidGuXbtsZcuXL1f37t0VEhKiIUOG6Ndff5UkjRo1SvPmzZMkbdy4USaTSdt+z7DmzJmjBx98UJK0Zs0a9ezZ03YZxrJly2x1jx07VpMmTVJ8fLwCAgKUmpqqtWvXqmPHjgoJCdH06dOrjDU2NlZbt25VUVGRJCkpKUlTpkxRcnKybZmkpCTFxcVVux2O+umnnzR//nwtWrRIMTExatKkiUJCQvTUU09p8ODBTtXliFolLiX+8pe/KDMz01WxAAAAANUqGW0pOXPLYnHfqIsk7d+/X0lJSYqOjpYkbd26VY8//riWLFmi48ePq2vXrho/frwkKS4uTomJiZKsCUJUVFSZ6ZKRjqCgIC1fvlzZ2dmaO3euEhISlJGRYWtz8eLFev3115Wbmyt/f3+NGDFCc+fOVUZGhk6fPq309PRKY+3SpYuCgoK0Y8cOSdKmTZs0bNgw5eXlKTs7W3l5edq9e7ctwalqOxz1zTffqH379urdu7dT69XWeSUuhrtSWwAAAKCc8qMtJdwx6jJo0CAFBASoc+fOuuqqq/Twww9LkubPn6+JEyeqR48eatKkiZ577jmtWbNG586dU2xsrC1RSUxM1NSpUytNXOLj49WlSxd5eXnppptuUs+ePcs8dmT48OHq3bu3zGaz1q5dqyuvvFKDBw+Wj4+Ppk+fLi+vqn/CDxgwQElJScrIyJDZbFZoaKj69eunTZs2acuWLYqIiFB4eHi12+GoU6dOqU2bNk7/39bWeSUuAAAAQF0pP9pSwh2jLl9++aVyc3O1atUq7dy5U3l5eZKk1NRUzZgxQ8HBwQoODlZ4eLi8vb2VkZGhHj16KDs7W4cPH9bevXuVkJCgHTt2aP/+/fLy8lJUVJQkaxITExOjkJAQBQcHa/v27Tp16pSt7fDwcNv7Y8eOKSIiwjbt5+enli1bVhl3yXUuycnJiomJkVSazNhf31LddjiqZcuWTi1/vs4rcdm7d2+Zh07an/sHAAAAuErJaEtVgw1eXq4fdTGZTBo6dKiuu+46vfjii5Kkdu3aaebMmcrKyrK9CgoKFB4eLpPJpAEDBuitt95Sz5491axZM0VHR2vevHllLogfM2aMxo0bp+PHjysrK0t9+/YtcyaTyWSyvQ8LC1NaWpptuqCgoEySU15sbKySk5NtyZFUNnEpub6luu1w1DXXXKPU1NQ6ywHOK3GJiIhQXl6e3n77bfXu3Vt9+vRxVVz1YvBgyWSSAgLK3hN81iypaVPrv+WXNZmk+++3loWGWqdDQytf78orrfODgqz/Dh5sneflVVpPyTr33y916GB9VXd/cvs4Stq1d//91nk+PmVjBcr76ivpoousw+0XXVTa7/z8SvuYyWQtnzWrbFlQkNSlS9m+WNLHyyvpk+XX69KlYjwtWlTstyXfo/IvLy/rqyT+++8v/W6VtEH/B2qn5FgzeHDpd7iq71PJccz++2lffv/91u9pVcfL8sfOqo6lV15Z2mbJfsrPr7TMfl9T/mVfb8m65Y+h9u2U3weW7OP8/Cr+PoD7FBVJqalSVTfZKi6W0tKsy9Vk+/bS186d1n/37y+7zC+/lC4zduxUvffee1q//oT69x+nv/3tDS1evEc5OdK332bqtddWa/t2afdu63Uu//jHO4qOvloZGdbpd955p0zikpubq5CQEHl7e+sf/1ih7dt3KCXF2tbJk1J6urRrl/TDD1Jc3GD9979b9cYbn2vz5iI99NAMFRcXKz9f2rHDus4PP5TG3bt3bxUUFGjhwoW2xKVXr17at2+ftmzZotjYWGVkSAMGjNPs2W9oz549kqTMzEytXr3amY9EXbt21bhx4zRy5Eht3rxZ586dU1ZWlmbNmqW1a9c6VZdDjFr6+uuvjdGjRxu+vr5G165djWnTphk7d+50aN3s7GxDkpGdnV3b5l3u7FnDsObo1lffvoZRXGwYFoth+PlZy/z8rNPllzWZDCMvr2xZfn7Z9QoLy84veTVtWna6ZJ3KYqkpZskwCgpK5587V3G+yWQtB+wVFxtGnz4V+135fi0ZxqWXGoa3d+X9ubLX2bOl7VTWJ+1fZ86UxtO7d8V+W1TkeLuVvej/gPMqO+ZV9X2yP2bav06dqry8/PGyWbOyx86zZ6s/lhYVWdcvX19N+5qq4ik5hla3r+nWrWJZye8DOKegoMDYu3evUWD/46UGqamGsWOHYSQllf7/JyVZy3bsMIy0tJrrOHvWMLZtq/xV8nurQ4cOxvz5m23lO3YYxk03DTbGjZtmbNtmGK+8ssLo1KmX4e8faISFdTDGjJlqWzYxMdmQZLz3XrKxY4dhrFv3uSGpzO/khQsXGm3btjWaN29u3Hrr/caVV15vPPfcB8a2bYZx8833GA8/PNNW348/GsZrr60x2rWLNoKCWhgPPDDdCAvrYCxYsLlM7PZ98JprrjFatmxZZruvvfZao2XLlobFUmzs2GFd59VXVxi9evUyAgMDjQ4dOhhTp041DMMwUlJSjKZNm9rW7dChg7F58+ZK/z/PnTtn/OUvfzE6duxo+Pn5GZGRkcYjjzxinDhxosKyVX3mjuYGJsNwfEAtPT1dH374oebPn6/8/Hzdeeedeuedd7R7925dcsklDidLOTk5at68ubKzsxUUFOR0suUOgwZVHNlYt86axT7zTGnZSy9JGzZUXLZJE+ns2dLpZs2kwsLS6bAw6dix2se3bp10ww01xxwSIpWMHo4dK/3znxXruuce6cMPax8LGp/PP5duvLFiefl+XRvXXy99+aX1fVV9ssTFF0v/+1/l8dxzj7Rnj/Tdd+cXD/0fcE5lx5oS5b9PL79c9pjpiPLHS3vXX1+27fLH0ssvtz6A0H79Zs2ku+6qfl9TlZJjaO/ezu9rXnpJsnvuHxxQWFiolP/f3p1HR1GlfRz/dVbWJISAkAVIBHVYVAQFBASEEUVklHFUQFZ3VFAUZRRF3lFQZxF3BwQcHRWGZdxBQLYwICCLgCCoRLaEgAJJSEKW7vv+0aZJk6076U4qyfdzTg70rVtVT+fedNXTt25VUpLi4+PdntLub4XmwBcRFiZdcIFztOPcOeo2m2eXoQUEuI8KxcQ4+25xkpLOnrdVVGio1KFD2fVSUqQjRzyLz9dKanNPcwOPE5cBAwZo3bp1GjhwoIYNG6Zrr71WgYGBCg4OrvaJS36+8wTtXJddJn3/vZSVdbYsJMSzIUhf69xZ2rTp7BB3STFLUna2c1lQUPHLbTbnyei5d+RA7WSMdPnlzuFmf8nLc/a7kvpkYWfOSFde6Ry69wf6P+C50o41kvvfk8MhNWzofsysjtLTnSev3qpXT8rIKHn+BYqqisQlP9+ZlJSmY8eKf0lWWECAc5uFpq1Ich5/fX3sveyy0vugMc73VjixKik+f6ho4uLxn9eyZct05513aurUqbr++usVWIOO+tddV3z51q1FP4CrImmRnN8OFL5TRkkxS87M+Y47Sl5uTOnLUbssW+bfpEVy9ldP+1x8vP+SFon+D3ijtGON5P73NH169U9aJCkionzrZWU5fwewNk/mkPsyaZGcSUJxN976+Wff7keSvvuu9OVHjxadI1RSfFbkceKSmJiojIwMde7cWV26dNFrr72m48eP+zO2SpGfX/rkdyuZPNl5kCgr5hMnyh4if/fdorcSRO1jTOVc2rBiheeXbVTkkkpP0f+Bsnl6fHz3Xeeoy7Rp/o+pMpQ08dsT06ZVbH34lxePJ/G5lBT3y8yM8d0lYoXl5JTcB40p+Rh7bnxW5XHi0q1bN82aNUspKSm65557NG/ePMXExMjhcLjuc10dlfVtkpUUjLr4Ima+dYZUOaMtVkT/B8rm6bHGGKlLl5ox2lJRjLpYW1U+tePcUQ1/jLYUKGnUpbjRlgLVZdTFq8n559q7d69mz56t9957T6dOndLvf/97ffLJJ2WuZ5U5LmVdu2tFl17quz88rvWv3SpjbouV0f+BklXH46NVMNfFcwXzHVq1aqW6dev6dV+ezG3xt4K5JJL/j73nznUpbm5LSfH5c65LVlaWDhw4UO45Lh5MlS3ZhRdeqBdffFHTp0/Xp59+qjlz5lRkc5WuOmSW5yr0/KEKM8Z5WVmTJr7bJqqPgvvh11b0f6Bk1fH4aBVnzkinT5dvgn9tExwcLJvNpuPHj6tJkyZuD130tV9+8dumPeZwOEflKuNywvR05x32CtjtZe+3ID5/fKFnjFFubq6OHz+ugIAAhYSElGs7FRpxKS+rjLhI0uzZ0po1zg/pglu2StJVVznvztWkiVTw/JyhQ50P+DlxwvlgoAIhIc7GLrh2slEj5y3pCj74O3Z0Xjt47oEgNNR5LWKBNm2KPvxIcs5tuegi520aO3Rw3ir2hRec2yt8hV69es5YJOcE/caNpbVr3bd18cXOZe3bO9/jwIGe/65Q8xw6JK1c6fwW5uWXfb/9iAhn/w8NdX7TlZnp3mfPrduunbNfh4W5T4685BLnLSOzsyt2e+YOHZx/Axdd5By9pP8DJZs92/mt8IkT0vz5zrILLnA+lE+SrrlG+u0B3KpbV2rWTHrwQenkyaLbKuk2svXqOdctuNb/1lvP7uv6653H4ILbLXfs6Dxm7t7tfN2okfMky24/e/ytV6/8l6w1anR2HmmDBt4lb82aOX83d9/t/Pfyy8sXQ210+vRpHT58WJVxOnroUNkn7wEBZ/uqL0KKjDw78hEU5DweSs5+euKE7+ZbBgeffUhqnTrF32QiJ8fZvx0O575Li89f6tWrp+bNmxdJXDzODUp9youfWPEBlLt2uT9M6vRpZ3lq6tmy1NTi6+7fb8xHH519/dFHRdfbtKnoA6vWrHF/XVydwrGUFfNHH7kv37+/6Lb27/ff7xDVV3EPmjx92ph33im+D51bNmVK8X131y73/Zy7buH11qwpOZ6CflvS34inP/R/wHuFjzVLl5b+91T42Ffw8+c/F19e3PGy8L5SU0s/lm7a5Nxn4c+pd95xlp37WdOtW9nxFD6GFt7P0KHu9ebNK7puwfkByic/P99kZ2dX2s+kSdmmZcuiPzt2nK3z2Wfuyw4fLlrWsmXRsuXLnXULr1daLD/8UHwshX+Kq7NokfvrtWs9f//exOfLn9zcXOMo7onqxvPcoEKXigEAAAAVERgYWKmP2UhLkw4cKFoeEHD28qr8fPc6wcFFy4qrZ7c76xaUBQe7X7J1rsDA4mMpq05ennuZMaXvpzBv4rMapo4BAAAAsDwSFwAAAACW53Xi8q9//Uuff/656/Vjjz2miIgIXXnllTpQ1lgXAAAAAJSD14nLtGnTXPfa3rBhg1577TW9+OKLioqK0sMPP+zzAAEAAADA68n5hw4dUuvWrSVJH330kW6++Wbdfffd6t69u3r37u3r+AAAAADA+xGXBg0a6Nffbri+bNky9evXT5JUp04dZWdn+zY6AAAAAFA5Rlx+//vf684771THjh21b98+XX/99ZKk7777Tq1atfJ1fAAAAADg/YjL66+/rm7duun48eNatGiRGjduLEnasmWLhgwZ4vMAAQAAAMDrEZeIiAi99tprRcqnTp3qk4Aqm22qzfmf1Aslfe8qb/a3ZoqLitTUy9+Q1NtVfsXMK7R5e7pbXUma8OV4SS9Lkm784Dpp3TeSjkuSzvtrE0XlXibpS7d1es3pJmlDoW13lLStSIz3f36/guvk6u1tb7vK7ux4px46f1aJ7+vF/72oJxbNlPRjiXVW7F+hcUvG6ZXrXlG/hH4l1kPN4urzvzFTjJr9rZmkox6tnzCjpSTv7yB4xcwrtPm71BLX/Sb5a937+hi9ct0r6naee38c/d+RWpPxri7KGSbp317vG0D5tX/9IhUc8659t4+kVZJ++yyIPOhe+XSUCo59BaavflLT82YWKZeKHi8L7+u8vzb5rdbZY6lOxargOHnFzI7SF9ulrbdImi9JGvXxcI36+d/SiRYq/FmzYf8XkgZIkl7f+JKm/3VakXhu/OA6aftS54vDl7r288G2NyXd56r34JKxkt5wW7fb21310xNfF3l/qHrFHfNK0v71i6Tz9jpf7L5W0hLXsvP+2kQ62NmtrDjXvttHWrFLbv22wS8KCQhRzlM5kpznX8MWDdOxrGNF+mpxijvu3vafGyV95Hrda043XfDtCe19cG+p26ruPEpcduzY4fEGL7744nIHU9lKe1+nczO055dUPZc4TQWJS15enjanbJZ0oVvd/Pw87f91X6n7+iXrWLnj/Ne370ghWW5ls7fN1oOt3lThJjTGSLLJ4XBo6pqpstujStymMUZPfPWE9vyyR0989YT6xveVzWYrsT5qhuJuWb5582adzs3w637P/u20cCsv6LOS9M9vZmlfQ2d/XDmkr6tcktYcWC1FSt8f/86vcQJwd+rUqaoOwTv23DKrpGf/UqFdHM9ILlK2/+RPys3NVUhISIW2Dd86fPhwkTLnPO3GlR5LriNXmZmZqlevniYtn+RMWnxs34l9Nb4fepS4XHrppbLZbL+dZBRVsMxms8lut/s0QH+65L+XlFnn26NnR0Cufb9/sXVunP8Hn8XkKSOjez67W9IcV9n2lM26UVdo+rrpysrLKnllSct+WqbNyZslSZuTN2vZT8vUv3Xx7w81R6t3WhUpu+KLKyTV8+t+u8zuUmz5j7/ultROkrTvl91SQ2d//Gr/V5IYBQSqWqOXG+ncL+tQvLZvttWP40u+ygGVL252XJGyqNeidJ9KHnXxp0b/aKRPh3yqLUe3+G0fNb0fepS4JCUl+TuOSufpKJLNFujq3ruO75QaFK2z+/h3ktr6LDZPfX14vdvr93a+r6fsnTRt3bQS1zHGyBjpqVVPKdAWKLuxK9AWqKdWPaVrzr+GUZcazNsHxObl5UkK9qhufn6upOK/4cnLy9O21KKXQErSsv0rVJC4yBYoSQq0Ber/1v6fSFyAqlXtRluq2E+nGHWxkuJGWwpkZR2X1KTE5f6S58jTpGWT/LqPmt4PPUpcWrZs6e84Kp0noy2SZEz1GUHa/+s+3fHJHaWOtiQeWKMfHDmu0RZJshs7oy61QHGjLaXp9a9emhCxvuyKkl7d+JKkx4tdVtJoiyT9knHk7Ivf/tbsxq6tKf77NgqAZ5yjLfBGTf+2uzopbrSlwL++nSvpscoLppDtx7f7fR81uR96lLh88sknHm9w0KBB5Q6msngzZ6d6sendHe+WWuNvG/6uOj8edY22FGDUpWbzdrRFknYc+1b2hp6NuqSf+bXY8vz8kkdbShNgC5TD67UA+AqjLeVT07/tri5KG23xtb988IykZyptf56oyf3Qo8Tlxhtv9Ghj1WWOi6ejLdWPkSnjus1dqTukvINFyhl1qdm8HW0pMGX1ZEkvlHu/ty26RQr0fj1HNRrpBGoiRlvKryZ/211dlDba4mtbtLHS9uWNmtoPPXqOi8Ph8OinOiQtNXe0peICFKCnVj1V4k0YUD2VZ7SlwOG0nyu07+9/2VOh9QFUPkZbKqbg225UjcocbbGymtoPvX4AZWFnzpzxVRyV5r4N95VdqZZyyKFD6YeU68HtJFF9TN1cPZ+xBKBqLP5hcVWHUO39eLLmfdNdXUzfOr2qQ7CMmtgPvU5c7Ha7/vKXvygmJkYNGjTQ/v37JUlPPfWUZs+e7fMAfe1/9/zPq/qxYWefO9E5+gpfh1NuAQpw3YWpwLiuD+svff6iid0mlrje7Bvn6ouhX2jd6HWusnWj12nL3Vu05e4t2nzXZoUGhfotblS+OTfPcfYXL0XXj9EtHYZ5VDesbvH3xJ/Q7VE1rdtUQbYSrkoNKDp/Zt3odVo3xru/UwC+M+byMYoPj1dwQHC5Pjtqo5iGceoR20N9W/XVU1c9pbbnVf6dRuH0+qDXFezhHTFrmgsjL1TfVn1rdD/0+hPpueee0zvvvKMXX3zRbdJPhw4d9Pbbb5eypnWYKUZmitF5dc4rs+7a0Wtd/3/26meLrfPRkNJvXnB1y4rd1nXpsC+LlP047kdtumuT+34SrtHkqybr0SsfLXFbfVpdrevaXKdLm13qKru02aW6rPlluqz5ZYoNi61QrLAm+xS7zBSjbud1cyuPqRejeYPnFbvOvvH7NKCNZzfbePjK4u8oNuayO5X6WKrW31H83cmm9HmuSNmlzS51658AKt/+h/Yr96lcPd6t+L9tuHt9wGtKvCNRK0au0P/1+b+qDqfWy52SKzPF6Oq4q93K77v0PpkpRvd1890dxT4ausSjev8c8E+ZKUan/3zaZ/s+18wbZmrFyBU1uh96nbi8++67mjlzpoYNG6bAwLPf+F988cX6/vvvfRocAAAAAEjlSFyOHDmi1q1bFyl3OBy/PbAOAAAAAHzL68SlXbt2SkxMLFK+YMECdezY0SdBAQAAAEBhHj3HpbApU6Zo+PDhOnLkiBwOhxYvXqy9e/fq3Xff1WeffeaPGAEAAADUcl6PuNxwww2aP3++vvjiC9lsNj399NPas2ePPv30U/3+97/3R4wAAAAAajmPR1wmT56sq6++WldeeaX69++v/v15ujoAAACAyuHxiMuHH36ofv36KSIiQr169dLUqVOVmJhYI5/KCQAAAMBaPE5cfvrpJx06dEizZs1S69at9e6776pXr15q1KiR+vXrp+eee07r1xf/rAYAAAAAqAiv5rjExMRo+PDhmj17tn766ScdOHBAb775plq0aKEXX3xRV111lb/iBAAAAFCLeT05v8BPP/2kZcuW6csvv9SXX34pu92uPn36+DI2a2jV6uz/f39N8XVuKOPp4p+vqFgM/YqZTxSfIF3WqWj5hRdK551X8rYSWkqBgVKvQknmqpXude66S7LZzv4EB5cvbljf3iPSn24rflmD+tKoWz3bztQSnkLc/iLpiiuk5571fL2XXpLCwz3bb3lccYV7/77rLv/tC0DtcMMfqjoCeOL1N52f+2++6Ltt3nidZ/XuuMe57wYNfLfvc9002P34FhQkvejD92oBHicuSUlJmjNnjoYPH664uDh17NhRCxcuVIcOHbRw4UKdOnVKy5cv92esKEt+rrRvX9n1HA5py9azr6dMkYxx/t9ul95++5zt5kunT/suTtQumzdL//3E8/rTnpPs+f6JJT/PGU9hs2c7+z0AlJeRlJ5e1VGgLDX9o/74r+6v7XZp6lTneV8N4fFdxc4//3y1aNFCY8eO1bhx43TZZZcpMDDQn7HBW/fdV771tm6Tli2T+veX7rij+DoREc4EBigP40Xd7DOS6vknjhuL+VbUGGe/f+cd/+wTQO0QEVGjThBRQ2RlSdOnS08+WdWR+ITHIy5/+tOflJOTo+nTp+svf/mLZsyYoa1bt8oYb85I4FfHk8u/7uTJzsTkX/8qfrndzqgLqr/d3xVf/u67jLoAqBhjGHWBNU2bVmOSao8Tl/nz5yslJUUbNmzQddddp02bNmnAgAFq1KiRBg4cqL/+9a/afO4lGFZ3JqeqI7COb76RrivjOs2IiEoJBah0BaMuAFARHCdhRQWjLjWA15PzL7roIt13332aP3++jh49qvXr1+vSSy/Vs88+q27duvkjRv8wRko9VdVRWMuKMm4iwKgLajJGXYCiTM34lrbSMOoCq6ohoy4ez3EpLDU1VatXr9bq1au1atUq7du3T6GhoerZs6ev4/OfZcskpmx4j7kuqKmY6wIU9bEXN9aAE3NdYEU1ZK6LxyMuCxYs0NixY9W2bVtFR0drxIgR2rVrl2655RZ99dVXOnXqlFatWuXPWH3HmGrfcFWGUZfqzZ5b1RFYG6MuwFl2u7RzT1VHUf0w6mIdfJ67qwGjLh6PuAwbNkydO3fWTTfdpD59+qh79+6qW7euP2Pzn9xc6eBB6bKqDqSaWrlSGlTGs2tgTb8cq+oIrM0Y6cQJqUmTqo4EqHonTlR1BNXXF19It5XwjCxUnrSTVR2BtWRn//blc1hVR1JuHicuJ0+eVP369f0ZS+UJDZW2bJHmtJOUUdXR+I4txLvbzhYYeL2UbZdOnZJ27So6ohIQ4HyIUUiIdOmlJC3V2XmxUuqhyt1nnTqSzlTuPssjKkqaO5ekBSjQpIl06+CS78aH4l1yCUmLVURGSZlVHYQFREVJ48ZJ114rhYVVi0NySTy+VKzGJC0F4uKkOn56VkRVefYv5Vtv9hxpyRJpwwZpx46iy2fMkHJypIwMKTGxQiGiFpo3r6ojOOujYq7X37/fOdJy/Lg0cGDlxwRY2QUXVnUE1cPw252fI8ZI27dXdTTAWampzuPbU09Jl19e1dFUmNd3FQMAAACAykbiAgAAAMDySFwAAAAAWB6JCwAAAADL8+iuYoMHD/Z4g4sXLy53MAAAAABQHI9GXMLDw10/YWFh+uqrr/TNN9+4lm/ZskVfffWVwsPD/RYoAAAAgNrLoxGXuXPnuv7/+OOP65ZbbtFbb72lwMBASZLdbtfYsWMVFlZ9H2gDAAAAwLq8nuMyZ84cPfroo66kRZICAwM1YcIEzZkzx6fBAQAAAIBUjsQlPz9fe/bsKVK+Z88eORwOnwQFAAAAAIV5dKlYYaNHj9aYMWP0448/qmvXrpKkr7/+Ws8//7xGjx7t8wABAAAAwOvE5W9/+5uaNWuml156SSkpKZKk5s2b67HHHtMjjzzi8wABAAAAwKvEJT8/X++//75GjBihxx57TOnp6ZLEpHwAAAAAfuXVHJegoCDdd999ysnJkeRMWEhaAAAAAPib15Pzu3Tpom3btvkjFgAAAAAoltdzXMaOHatHHnlEhw8fVqdOnVS/fn235RdffLHPggMAAAAAqRyJy6233ipJGjdunKvMZrPJGCObzSa73e676AAAAABA5UhckpKS/BEHAAAAAJTI68SlZcuW/ogDAAAAAErkdeJSYPfu3Tp48KByc3PdygcNGlThoAAAAACgMK8Tl/379+umm27Szp07XXNbJOc8F0nMcQEAAADgc17fDnn8+PGKj49Xamqq6tWrp++++05r165V586dtXr1aj+ECAAAAKC283rEZcOGDVq5cqWaNGmigIAABQQEqEePHpo+fbrGjRvHM14AAAAA+JzXIy52u10NGjSQJEVFRSk5OVmSc9L+3r17fRsdAAAAAKgcIy7t27fXjh07lJCQoC5duujFF19USEiIZs6cqYSEBH/ECAAAAKCW8zpxmTx5sjIzMyVJzz77rAYOHKiePXuqcePGmj9/vs8DBAAAAACvE5f+/fu7/p+QkKDdu3frxIkTatSokevOYgAAAADgS17PcVm+fLmysrLcyiIjI0laAAAAAPiN1yMuf/zjH5WTk6NOnTqpV69e6t27t7p37+6asA8AAAAAvub1iMvJkye1evVqDRo0SNu2bdOf/vQnRUZGqmvXrpo0aZI/YgQAAABQy3mduAQGBqpbt26aNGmSli5dqvXr12vo0KHasmWL/vrXv/ojRgAAAAC1nNeXiu3Zs0dr1qzR6tWrtWbNGtntdvXo0UN///vf1atXL3/ECAAAAKCW8zpxadeunZo0aaKHHnpITz31lNq1a+ePuAAAAADAxetLxcaNG6eYmBg988wzGjNmjB5//HEtWbJEp0+f9kd8AAAAAOB94jJjxgxt3bpVqampmjx5sux2u55++mlFRUWpa9eu/ogRAAAAQC3ndeJSwOFwKD8/X7m5ucrJyVFeXp5+/vlnH4YGAAAAAE5eJy7jx4/XJZdcoqZNm+qee+5RcnKy7r77bn377bc6evSoP2IEAAAAUMt5PTn/yJEjuuuuu9S7d2+1b9/eHzEBAAAAgBuvE5eFCxf6Iw4AAAAAKFG55ri899576t69u6Kjo3XgwAFJzkn7H3/8sU+DAwAAAACpHInLm2++qQkTJmjAgAE6deqU7Ha7JCkiIkIzZszwdXwAAAAA4H3i8uqrr2rWrFl68sknFRgY6Crv3Lmzdu7c6dPgAAAAAEAqR+KSlJSkjh07FikPDQ1VZmamT4ICAAAAgMK8Tlzi4+O1ffv2IuVLlixR27ZtfRETAAAAALjx+q5iEydO1P33368zZ87IGKNNmzbpww8/1PTp0/X222/7I0YAAAAAtZzXicvo0aOVn5+vxx57TFlZWRo6dKhiYmL08ssv67bbbvNHjAAAAABqOa8TF0m66667dNddd+mXX36Rw+FQ06ZNJTkfThkTE+PTAAEAAACgXM9xKRAVFaWmTZvq6NGjevDBB9W6dWtfxQUAAAAALh4nLqdOndKwYcPUpEkTRUdH65VXXpHD4dDTTz+thIQEff3115ozZ44/YwUAAABQS3l8qdgTTzyhtWvXauTIkVq6dKkefvhhLV26VGfOnNGSJUvUq1cvf8YJAAAAoBbzOHH5/PPPNXfuXPXr109jx45V69atdcEFF2jGjBl+DA8AAAAAvLhULDk52fWcloSEBNWpU0d33nmn3wIDAAAAgAIeJy4Oh0PBwcGu14GBgapfv75fggIAAACAwjy+VMwYo1GjRik0NFSSdObMGd17771FkpfFixf7NkIAAAAAtZ7HicvIkSPdXt9+++0+DwYAAAAAiuNx4jJ37lx/xgEAAAAAJarQAygBAAAAoDKQuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsLqoqdGmMkSenp6VWxexfHGYd05rcXuXZJheLJMZJDyjAOV3mm47f659TNcjikvPyzZXn5Us7Z9fLzHUW3L0m5+e5lxdWRlOkwZ+P8TYaRTptz4jhzWum/LdMZucXgWk8OpUvKLKgjKT09Q/bAOr9VyCiyf2VnS1XcVvCN/Ox8t77kyJWy7HL293P6SrqMspVXpLy4fpWjnKL1JJ2WXelZWTrtULF90m29XGds6UaSzoknp/i/PW9lZJ0uunZGBv0bKEFOZo77313hY12Oo8ixqbjPB+XnFF9esL3CywrvK8fxW6VCrwsvz7U7959X6HMqL6/4458j6+zrkuLJyy/+nMCe7V43r+jnYlZOTpWf06Coc495ufnOlsvVGRXbHwv6lOTe1yVnnzm3TFKWzik7t0/nOKQgKduuIudfruVlHdeK7a/n9MPcfGU6itlSRoZUp06RolIWV4mCv5+CHKEkNlNWDT84fPiw4uLiKnu3AAAAACzq0KFDio2NLXF5lSQuDodDycnJatiwoWw2m1frpqenKy4uTocOHVJYWJifIoS/0Y41B21ZM9CONQdtWXPQljUD7Vg2Y4wyMjIUHR2tgICSZ7JUyaViAQEBpWZTnggLC6PxawDaseagLWsG2rHmoC1rDtqyZqAdSxceHl5mHSbnAwAAALA8EhcAAAAAllftEpfQ0FBNmTJFoaGhVR0KKoB2rDloy5qBdqw5aMuag7asGWhH36mSyfkAAAAA4I1qN+ICAAAAoPYhcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWF5QVezU4XAoOTlZDRs2lM1mq4oQAAAAAFiAMUYZGRmKjo5WQEDJ4ypVkrgkJycrLi6uKnYNAAAAwIIOHTqk2NjYEpdXSeLSsGFDSc7gwsLCqiIEAAAAABaQnp6uuLg4V45QkipJXAouDwsLCyNxAQAAAFDmFBIm5wMAAACwPBIXAAAAAJZXJZeKAQAAoHYxxig/P192u72qQ0EVCAwMVFBQUIXuKEziAgAAAL/Kzc1VSkqKsrKyqjoUVKF69eqpefPmCgkJKdf6JC4AAADwG4fDoaSkJAUGBio6OlohISE8x6+WMcYoNzdXx48fV1JSktq0aVPq81pKQuICAAAAv8nNzZXD4VBcXJzq1atX1eGgitStW1fBwcE6cOCAcnNzVadOHa+3weR8AAAA+F15vmFHzVLRPsCICwAAACzLbrcrMTFRKSkpat68uXr27KnAwMCqDgtVgNQXAAAAlrR48WK1atVKffr00dChQ9WnTx+1atVKixcvrurQKk2rVq309ddfe73eO++8o2uvvdYSsfgKiQsAAAAsZ/Hixbr55pt1+PBht/IjR47o5ptv9lny0qpVK9WrV08NGjRQdHS0Hn744Rp/y+ZnnnlGwcHBatCggRo1aqS+ffvq+++/r+qwykTiAgAAAEux2+0aP368jDFFlhWUPfTQQz5LMFauXKnTp08rMTFR//nPfzRnzhyfbNcbDodDDoej0vZ3xx136PTp00pOTlazZs00atSoStt3eZG4AAAAwFISExOLjLQUZozRoUOHlJiY6NP9nn/++erevbu2b9/uKlu4cKHatWunyMhIDRo0SMeOHZMkDR06VLNmzZIkrVmzRjabTZs3b5Ykvfzyy7rnnnskSZ988ok6dOighg0bqk2bNlqwYIFr26NGjdK4cePUu3dvNWjQQAcPHtQXX3yh1q1bKzIyUs8884xbfNnZ2XrggQcUHR2t2NhYvfDCC65lmZmZGjp0qCIiInTZZZdp3759Hr3nunXraujQodq1a5ckaefOnerevbsiIiLUuXPnEi8NS0xMVMuWLV3v+fXXX1ebNm0UFRWlkSNHKjMz06P9e4PEBQAAAJaSkpLi03qe+uGHH7Ru3TolJCRIkjZt2qQJEyZo/vz5Sk1N1UUXXaT77rtPktSzZ09X4rRu3TrFx8e7ve7Ro4ckKSwsTAsXLlRaWppeeeUVjR49WkePHnXtc968efrHP/6hjIwM1a9fX7fddpteeeUVHT16VFlZWW4J3KOPPqq0tDTt27dPmzZt0rvvvqtPP/1UkjR16lT9+uuvOnjwoD744AO99957Hr3nzMxMffDBB7rkkkuUm5urG264QUOHDtXx48f16KOPauDAgUpLS3NbZ+XKlbr99tv10Ucf6fLLL9eCBQs0c+ZMrVixQocOHVJeXp6efvrp8jRB6UwVSEtLM5JMWlpaVeweAAAAlSQ7O9vs3r3bZGdne7zOqlWrjKQyf1atWlXh+Fq2bGkaNGhg6tevbySZm266yRXrPffcY1544QVX3YyMDBMUFGTy8vLMjh07TKtWrYwxxvTv39+88cYb5sYbbzTGGNOsWTOzf//+YvfXtWtX8+mnnxpjjBk5cqQZO3asa9k777xj+vbt63qdmZlpgoODzYYNG4zD4TB169Y1qampruWvvvqqGTFihDHGmFatWpnExETXsieffNL079+/2BimTJliQkJCTHh4uGnatKm5/vrrzQ8//GDWrFljEhISisT7n//8x/W7mjJlimnRooX59ttvXXX69+9v5s+f73q9c+dO06JFiyL7LakveJobMOICAAAAS+nZs6diY2Nls9mKXW6z2RQXF6eePXv6ZH/Lly9XRkaGPvroI23dulWnT5+WJB08eFBTp05VRESEIiIiFBsbq6CgIB09elTt27dXWlqaDhw4oN27d2v06NHasmWLfvjhBwUEBCg+Pl6Sc/Sle/fuioyMVEREhL755hv9+uuvrn3Hxsa6/p+SkqK4uDjX63r16qlx48aSpOPHjys7O1sXXHCBK54nnnjCdenauesW/n9xRo8erVOnTik1NVWfffaZWrdureTkZLVo0cKtXsuWLZWcnOx6/cYbb+iGG27QxRdf7Co7ePCg7rjjDldcPXr00C+//OLZL98LJC4AAACwlMDAQL388suSVCR5KXg9Y8YMnz7PxWaz6Q9/+IP69u2rv/zlL5KkmJgYTZ8+XadOnXL9ZGdnu5KqK6+8Uq+//ro6dOigOnXqKCEhQbNmzXJdJiZJw4cP15gxY5SamqpTp06pc+fObjcdKPz+mjdvrkOHDrleZ2dnu5KcqKgo1alTRwcOHHDFkp6eriVLlhS7buH/eyo6OrrIegcPHlR0dLTr9Zw5c7Ry5Uq99NJLrrKYmBi9//77br8n5rgAAACgVhg8eLAWLlzodtIsOUcoFi5cqMGDB/tlvxMnTtTbb7+t48ePa8yYMXr11Ve1Y8cOSdKJEyf08ccfu+r27NlTb731lq666iq314UTl4yMDEVGRiooKEiLFi3Sli1bStz3gAEDtGnTJn355ZfKzc3V1KlTXXcaCwgI0MiRI/Xoo4/q1KlTcjgc2rNnjzZt2iRJuvnmm/Xcc88pIyNDe/fu1bvvvuv1e+/atavy8vL05ptvKj8/XwsWLNDevXt1zTXXuOpERUVpxYoVeu211zR79mxJzjuUPffcc9q/f78k5+jP0qVLvd5/WUhcAAAAYEmDBw/WgQMHtGrVKn3wwQdatWqVkpKS/Ja0SNJFF12k3r176+WXX1a3bt30wgsvaPjw4QoLC9Nll12m//3vf666PXv2VEZGhuuStYLXhROXV199VQ888IAaNWqkL7/8Ur169Spx302aNNH777+vsWPHqlmzZqpbt67bpWT/+Mc/VL9+fXXo0EGRkZEaMWKETp48KUmaMmWKwsPDFRsbqyFDhmj48OFev/eQkBB9/PHHeu+999S4cWM9//zz+uSTTxQeHu5WLzo6WsuXL9czzzyj//znP7rttts0atQoDRgwQA0bNlSvXr20e/dur/dfFpsxxdwg28/S09MVHh6utLQ0hYWFVfbuAQAAUEnOnDmjpKQkxcfHq06dOlUdDqpQSX3B09yAERcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAACA3xXc1he1V0X7QJCP4gAAAACKCAkJUUBAgJKTk9WkSROFhIQUeagkajZjjHJzc3X8+HEFBAQoJCSkXNshcQEAAIDfBAQEKD4+XikpKUpOTq7qcFCF6tWrpxYtWiggoHwXfZG4AAAAwK9CQkLUokUL5efny263V3U4qAKBgYEKCgqq0GgbiQsAAAD8zmazKTg4WMHBwVUdCqopJucDAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHleJy5Lly7VunXrXK9ff/11XXrppRo6dKhOnjzp0+AAAAAAQCpH4jJx4kSlp6dLknbu3KlHHnlEAwYM0P79+zVhwgSfBwgAAAAAQd6ukJSUpLZt20qSFi1apIEDB2ratGnaunWrBgwY4PMAAQAAAMDrEZeQkBBlZWVJklasWKFrrrlGkhQZGekaiQEAAAAAX/J6xKVHjx6aMGGCunfvrk2bNmn+/PmSpH379ik2NtbnAQIAAACA1yMur732moKCgrRw4UK9+eabiomJkSQtWbJE1157rc8DBAAAAACbMcZU9k7T09MVHh6utLQ0hYWFVfbuAQAAAFiEp7lBuZ7j8tNPP2ny5MkaMmSIjh07Jsl5m+TvvvuufNECAAAAQCm8TlzWrFmjDh06aOPGjVq8eLFOnz4tSdqxY4emTJni8wABAAAAwOvEZdKkSXr22We1fPlyhYSEuMr79OmjDRs2+DQ4AAAAAJDKkbjs3LlTN910U5HyJk2a6Ndff/VJUAAAAABQmNeJS0REhFJSUoqUb9u2zXWHMQAAAADwJa8Tl6FDh+rxxx/X0aNHZbPZ5HA49L///U+PPvqoRowY4Y8YAQAAANRyXicuzz33nFq0aKGYmBidPn1abdu21VVXXaUrr7xSkydP9keMAAAAAGq5cj/HZf/+/dq6dascDoc6duyoNm3aKDs7W3Xr1i1zXZ7jAgAAAEDy43Nc7r//fklSQkKCbr75Zt1yyy1q06aNMjMzdd1115U/YgAAAAAogdeJy7Jly4pcEpaZmalrr71WdrvdZ4EBAAAAQIEgb1dYtmyZevToocaNG+vhhx9WRkaG+vfvr6CgIC1ZssQfMQIAAACo5bxOXOLj4/Xll1+qd+/eCggI0Lx58xQaGqrPP/9c9evX90eMAAAAAGo5rxMXSWrfvr0+++wz9evXT126dNFnn33m0aR8AAAAACgPjxKXjh07ymazFSkPDQ1VcnKyunfv7irbunWr76IDAAAAAHmYuNx4441+DgMAAAAASlbu57hUBM9xAQAAACB5nhuUa46LJG3ZskV79uyRzWZT27Zt1bFjx/JuCgAAAABK5XXicuzYMd12221avXq1IiIiZIxRWlqa+vTpo3nz5qlJkyb+iBMAAABALeb1AygffPBBpaen67vvvtOJEyd08uRJ7dq1S+np6Ro3bpw/YgQAAABQy3k9xyU8PFwrVqzQ5Zdf7la+adMmXXPNNTp16lSZ22COCwAAAADJ89zA6xEXh8Oh4ODgIuXBwcFyOBzebg4AAAAAyuR14nL11Vdr/PjxSk5OdpUdOXJEDz/8sPr27evT4AAAAABAKkfi8tprrykjI0OtWrXS+eefr9atWys+Pl4ZGRl69dVX/REjAAAAgFrO67uKxcXFaevWrVqxYoX27NkjY4zatm2rfv36+SM+AAAAAPAucVmwYIE++ugj5eXlqV+/fnrwwQf9FRcAAAAAuHicuMycOVP33nuv2rRpozp16mjRokVKSkrS9OnT/RkfAAAAAHg+x+XVV1/Vk08+qb179+rbb7/V7Nmz9dprr/kzNgAAAACQ5EXisn//fo0ePdr1evjw4crJydHRo0f9EhgAAAAAFPA4ccnOzlaDBg1crwMDAxUaGqqsrCy/BAYAAAAABbyanP/222+7JS/5+fl65513FBUV5SobN26c76IDAAAAAEk2Y4zxpGKrVq1ks9lK35jNpv3795e5rfT0dIWHhystLU1hYWGeRQoAAACgxvE0N/B4xOXnn3/2RVwAAAAA4DWP57gAAAAAQFUhcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8j+4qlp6e7vEGub0xAAAAAF/zKHGJiIgo8xkuBex2e4UCAgAAAIBzeZS4rFq1yvX/n3/+WZMmTdKoUaPUrVs3SdKGDRv0r3/9S9OnT/dPlAAAAABqNZsxxnizQt++fXXnnXdqyJAhbuUffPCBZs6cqdWrV5e5DU+fjgkAAACgZvM0N/B6cv6GDRvUuXPnIuWdO3fWpk2bvN0cAAAAAJTJ68QlLi5Ob731VpHyf/7zn4qLi/NJUAAAAABQmEdzXAp76aWX9Mc//lFffvmlunbtKkn6+uuv9dNPP2nRokU+D9Cf7Ha7EhMTlZKSoubNm6tnz54KDAz0eN3Vq1e7Lo3r3bu3evbsqfXr1yslJUVNmzaVJB07dqzItiuyX1++B9Q+pfWXwstK678Aao9zPzOuvPJKrV+/XkeOHFFqaqp+/fVXSVJkZKSaNWumZs2ayW63a82aNTp48KBiY2MVFRWlpk2b6vjx4zp+/LgOHjwom82muLg417Jff/1VjRs3LrZOZGSkTp06Jcl5s6DC/z9x4kSxdQMCAlyfW0ePHnWLtWC9w4cPq0WLFurVq5ckucVceJ8F7y0mJsb1/vmcrB5K6r+FXycmJmr16tVyOBwltvW5ff/48eNq0qSJYmJiXO1e1vmYJ+drnNN5wJTDwYMHzZ///Gdz0003mRtvvNE88cQT5uDBgx6vn5aWZiSZtLS08uzeJxYtWmRiY2ONJNdPbGysWbRokUfrNm7c2G1dSSYgIKBI2bnbrsh+ffkeUPuU1l+KW0a/Amq34j4XAgMDS/ycqA0/pb1/PietxZP+W9p527l1S2r72NhYM3HixFLPxzw5X6vt53Se5gblSlwqqqoTl0WLFhmbzVak89lsNmOz2UrtJIsWLSrXh11x+/Nmv758D6h9SusvnvZf+hVQe5T0mcEPn5PVgRX6b0F/mDhxYpnna5zTeZ4beH1XMUlKTEzUP//5T+3fv18LFixQTEyM3nvvPcXHx6tHjx5lrl+VdxWz2+1q1aqVDh8+XOxym82m2NhYJSUlFTuE17JlSx05csTncZW233NV5D2g9imrv3iKfgXUDr76zKiN+JyselbrvwWXkRXHZrMpJiZGkmr9OZ3f7iq2aNEi9e/fX3Xr1tXWrVuVk5MjScrIyNC0adPKH3ElSUxMLLUzG2N06NAhJSYmFruuP5KWsvZbXBzlfQ+ofcrqL56iXwG1g68+M2ojPierntX6b2kPZjfG6PDhw5zTecHrxOXZZ5/VW2+9pVmzZik4ONhVfuWVV2rr1q0+Dc4fUlJSyl3P03UrwpN9VOQ9oPbxdT+gXwE1G3/jFcfvsOrU1N99TX1f3vI6cdm7d6+uuuqqIuVhYWGuO3BYWfPmzctdz9N1K8KTfVTkPaD28XU/oF8BNRt/4xXH77Dq1NTffU19X97yOnFp3ry5fvzxxyLl69atU0JCgk+C8qeePXsqNjZWNput2OUFt1Ts2bNnsesWXIvoa6Xtt7g4yvseUPuU1V88Rb8CagdffWbURnxOVj2r9d/AwMBSz9diY2M5p/OC14nLPffco/Hjx2vjxo2y2WxKTk7W+++/r0cffVRjx471R4w+FRgYqJdfflmSinSSgtczZswodgJUYGCgXnnllXLtt/C+vN1vcXGU9z2g9vGkvxS3rLh69Cug5ivtMwMl43PSGqzSf202m2w2myZMmFBsLAWvX375Zc7pvFGeW5Y98cQTpm7duq7btNWpU8dMnjzZ57c886dFixaZmJgYt9vOxcXFefwcl8jIyGJvW3du2bnbrsh+ffkeUPuU1l+KW0a/Amq34j4XeI5Lye+fz0lr8aT/+uI5LnFxcWbixImlno95cr5W28/p/P4cl8zMTLN582azceNGk5GR4Zfg/K0gDknmiy++MPn5+eVaV5L57LPPzIkTJ1yvFyxYUOK2K7JfX74H1D6l9ZfCy0rrvwBqj3M/Mwof54r7KfzZUdU/8+fP92m9c98/n5PWV1r/La0/e1q3cLuXdT7myflabT6n8+tzXCqqKp/jUlhmZqYaNGggSTp9+rTq169frnUL1pfkKktNTdV5551X7LYrsl9fvgfUPqX1l8LLSuu/AGqPcz8zJLkd+85V+LOjqnkai6f1vDnOwxpK67+l9WdP6xZu97LOxzw5X6vN53Se5gZBnmxs8ODBHu948eLFHtcFAAAAAE94NDk/PDzc9RMWFqavvvpK33zzjWv5li1b9NVXXyk8PNxvgQIAAACovTwacZk7d67r/48//rhuueUWvfXWW647HNjtdo0dO7ZKL/sCAAAAUHN5fTvkOXPm6NFHH3W7LVtgYKAmTJigOXPm+DQ4AAAAAJDKkbjk5+drz549Rcr37Nkjh8Phk6AAAAAAoDCPLhUrbPTo0RozZox+/PFHde3aVZL09ddf6/nnn9fo0aN9HiAAAAAAeJ24/O1vf1OzZs300ksvKSUlRZLUvHlzPfbYY3rkkUd8HiAAAAAAeJW45Ofn6/3339eIESP02GOPKT09XZKYlA8AAADAr7ya4xIUFKT77rtPOTk5kpwJC0kLAAAAAH/zenJ+ly5dtG3bNn/EAgAAAADF8nqOy9ixY/XII4/o8OHD6tSpk+rXr++2/OKLL/ZZcAAAAAAglSNxufXWWyVJ48aNc5XZbDYZY2Sz2WS3230XHQAAAACoHIlLUlKSP+IAAAAAgBJ5nbi0bNnSH3EAAAAAQIm8TlwK7N69WwcPHlRubq5b+aBBgyocFAAAAAAU5nXisn//ft10003auXOna26L5JznIok5LgAAAAB8zuvbIY8fP17x8fFKTU1VvXr19N1332nt2rXq3LmzVq9e7YcQAQAAANR2Xo+4bNiwQStXrlSTJk0UEBCggIAA9ejRQ9OnT9e4ceN4xgsAAAAAn/N6xMVut6tBgwaSpKioKCUnJ0tyTtrfu3evb6MDAAAAAJVjxKV9+/basWOHEhIS1KVLF7344osKCQnRzJkzlZCQ4I8YAQAAANRyXicukydPVmZmpiTp2Wef1cCBA9WzZ081btxY8+fP93mAAAAAAOB14tK/f3/X/xMSErR7926dOHFCjRo1ct1ZDAAAAAB8yes5LsuXL1dWVpZbWWRkJEkLAAAAAL/xesTlj3/8o3JyctSpUyf16tVLvXv3Vvfu3V0T9gEAAADA17wecTl58qRWr16tQYMGadu2bfrTn/6kyMhIde3aVZMmTfJHjAAAAABqOa8Tl8DAQHXr1k2TJk3S0qVLtX79eg0dOlRbtmzRX//6V3/ECAAAAKCW8/pSsT179mjNmjVavXq11qxZI7vdrh49eujvf/+7evXq5Y8YAQAAANRyXicu7dq1U5MmTfTQQw/pqaeeUrt27fwRFwAAAAC4eH2p2Lhx4xQTE6NnnnlGY8aM0eOPP64lS5bo9OnT/ogPAAAAALxPXGbMmKGtW7cqNTVVkydPlt1u19NPP62oqCh17drVHzECAAAAqOW8TlwKOBwO5efnKzc3Vzk5OcrLy9PPP//sw9AAAAAAwMnrxGX8+PG65JJL1LRpU91zzz1KTk7W3XffrW+//VZHjx71R4wAAAAAajmvJ+cfOXJEd911l3r37q327dv7IyYAAAAAcON14rJw4UJ/xAEAAAAAJSrXHJf33ntP3bt3V3R0tA4cOCDJOWn/448/9mlwAAAAACCVI3F58803NWHCBA0YMECnTp2S3W6XJEVERGjGjBm+jg8AAAAAvE9cXn31Vc2aNUtPPvmkAgMDXeWdO3fWzp07fRocAAAAAEjlSFySkpLUsWPHIuWhoaHKzMz0SVAAAAAAUJjXiUt8fLy2b99epHzJkiVq27atL2ICAAAAADde31Vs4sSJuv/++3XmzBkZY7Rp0yZ9+OGHmj59ut5++21/xAgAAACglvM6cRk9erTy8/P12GOPKSsrS0OHDlVMTIxefvll3Xbbbf6IEQAAAEAt53XiIkl33XWX7rrrLv3yyy9yOBxq2rSpJOfDKWNiYnwaIAAAAACU6zkuBaKiotS0aVMdPXpUDz74oFq3bu2ruAAAAADAxePE5dSpUxo2bJiaNGmi6OhovfLKK3I4HHr66aeVkJCgr7/+WnPmzPFnrAAAAABqKY8vFXviiSe0du1ajRw5UkuXLtXDDz+spUuX6syZM1qyZIl69erlzzgBAAAA1GIeJy6ff/655s6dq379+mns2LFq3bq1LrjgAs2YMcOP4QEAAACAF5eKJScnu57TkpCQoDp16ujOO+/0W2AAAAAAUMDjxMXhcCg4ONj1OjAwUPXr1/dLUAAAAABQmMeXihljNGrUKIWGhkqSzpw5o3vvvbdI8rJ48WLfRggAAACg1vM4cRk5cqTb69tvv93nwQAAAABAcTxOXObOnevPOAAAAACgRBV6ACUAAAAAVAYSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAAAAwPJIXAAAAABYHokLAAAAAMsjcQEAAABgeSQuAAAAACyPxAUAAACA5ZG4AAAAALA8EhcAAAAAlkfiAgAAAMDySFwAAAAAWB6JCwAAAADLI3EBAAAAYHkkLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJYXVBU7NcZIktLT06ti9y6ZmZmu/6enp8tut5dr3YL1C8vIyChx2xXZb2lxVHRbqPlK6y+Fl5XWfwHUHud+ZpSl8GdHVfM0Fk/reXOchzWU1n9L68+e1i3c7mWdj3lyvlabz+kKfscFOUJJbKasGn5w+PBhxcXFVfZuAQAAAFjUoUOHFBsbW+LyKklcHA6HkpOT1bBhQ9lsNq/WTU9PV1xcnA4dOqSwsDA/RQh/ox1rDtqyZqAdaw7asuagLWsG2rFsxhhlZGQoOjpaAQElz2SpkkvFAgICSs2mPBEWFkbj1wC0Y81BW9YMtGPNQVvWHLRlzUA7li48PLzMOkzOBwAAAGB5JC4AAAAALK/aJS6hoaGaMmWKQkNDqzoUVADtWHPQljUD7Vhz0JY1B21ZM9COvlMlk/MBAAAAwBvVbsQFAAAAQO1D4gIAAADA8khcAAAAAFgeiQsAAAAAy6tWicsbb7yh+Ph41alTR506dVJiYmJVh1SrTZ8+XZdffrkaNmyopk2b6sYbb9TevXvd6hhj9Mwzzyg6Olp169ZV79699d1337nVycnJ0YMPPqioqCjVr19fgwYN0uHDh93qnDx5UsOHD1d4eLjCw8M1fPhwnTp1yt9vsVaaPn26bDabHnroIVcZ7Vh9HDlyRLfffrsaN26sevXq6dJLL9WWLVtcy2lL68vPz9fkyZMVHx+vunXrKiEhQf/3f/8nh8PhqkM7WtPatWt1ww03KDo6WjabTR999JHb8spst4MHD+qGG25Q/fr1FRUVpXHjxik3N9cfb7tGKq0t8/Ly9Pjjj6tDhw6qX7++oqOjNWLECCUnJ7ttg7b0A1NNzJs3zwQHB5tZs2aZ3bt3m/Hjx5v69eubAwcOVHVotVb//v3N3Llzza5du8z27dvN9ddfb1q0aGFOnz7tqvP888+bhg0bmkWLFpmdO3eaW2+91TRv3tykp6e76tx7770mJibGLF++3GzdutX06dPHXHLJJSY/P99V59prrzXt27c369evN+vXrzft27c3AwcOrNT3Wxts2rTJtGrVylx88cVm/PjxrnLasXo4ceKEadmypRk1apTZuHGjSUpKMitWrDA//vijqw5taX3PPvusady4sfnss89MUlKSWbBggWnQoIGZMWOGqw7taE1ffPGFefLJJ82iRYuMJPPf//7XbXlltVt+fr5p37696dOnj9m6datZvny5iY6ONg888IDffwc1RWlteerUKdOvXz8zf/588/3335sNGzaYLl26mE6dOrltg7b0vWqTuFxxxRXm3nvvdSu76KKLzKRJk6ooIpzr2LFjRpJZs2aNMcYYh8NhmjVrZp5//nlXnTNnzpjw8HDz1ltvGWOcf/zBwcFm3rx5rjpHjhwxAQEBZunSpcYYY3bv3m0kma+//tpVZ8OGDUaS+f777yvjrdUKGRkZpk2bNmb58uWmV69ersSFdqw+Hn/8cdOjR48Sl9OW1cP1119vxowZ41Y2ePBgc/vttxtjaMfq4tyT3cpsty+++MIEBASYI0eOuOp8+OGHJjQ01KSlpfnl/dZkxSWh59q0aZOR5PpCnbb0j2pxqVhubq62bNmia665xq38mmuu0fr166soKpwrLS1NkhQZGSlJSkpK0tGjR93aLTQ0VL169XK125YtW5SXl+dWJzo6Wu3bt3fV2bBhg8LDw9WlSxdXna5duyo8PJz296H7779f119/vfr16+dWTjtWH5988ok6d+6sP/3pT2ratKk6duyoWbNmuZbTltVDjx499NVXX2nfvn2SpG+//Vbr1q3TgAEDJNGO1VVlttuGDRvUvn17RUdHu+r0799fOTk5bpeOwnfS0tJks9kUEREhibb0l6CqDsATv/zyi+x2u8477zy38vPOO09Hjx6toqhQmDFGEyZMUI8ePdS+fXtJcrVNce124MABV52QkBA1atSoSJ2C9Y8ePaqmTZsW2WfTpk1pfx+ZN2+etm7dqs2bNxdZRjtWH/v379ebb76pCRMm6IknntCmTZs0btw4hYaGasSIEbRlNfH4448rLS1NF110kQIDA2W32/Xcc89pyJAhkvibrK4qs92OHj1aZD+NGjVSSEgIbesHZ86c0aRJkzR06FCFhYVJoi39pVokLgVsNpvba2NMkTJUjQceeEA7duzQunXriiwrT7udW6e4+rS/bxw6dEjjx4/XsmXLVKdOnRLr0Y7W53A41LlzZ02bNk2S1LFjR3333Xd68803NWLECFc92tLa5s+fr3//+9/64IMP1K5dO23fvl0PPfSQoqOjNXLkSFc92rF6qqx2o20rR15enm677TY5HA698cYbZdanLSumWlwqFhUVpcDAwCKZ5bFjx4pkoah8Dz74oD755BOtWrVKsbGxrvJmzZpJUqnt1qxZM+Xm5urkyZOl1klNTS2y3+PHj9P+PrBlyxYdO3ZMnTp1UlBQkIKCgrRmzRq98sorCgoKcv2OaUfra968udq2betW9rvf/U4HDx6UxN9kdTFx4kRNmjRJt912mzp06KDhw4fr4Ycf1vTp0yXRjtVVZbZbs2bNiuzn5MmTysvLo219KC8vT7fccouSkpK0fPly12iLRFv6S7VIXEJCQtSpUyctX77crXz58uW68sorqygqGGP0wAMPaPHixVq5cqXi4+PdlsfHx6tZs2Zu7Zabm6s1a9a42q1Tp04KDg52q5OSkqJdu3a56nTr1k1paWnatGmTq87GjRuVlpZG+/tA3759tXPnTm3fvt3107lzZw0bNkzbt29XQkIC7VhNdO/evcgtyfft26eWLVtK4m+yusjKylJAgPvhOTAw0HU7ZNqxeqrMduvWrZt27dqllJQUV51ly5YpNDRUnTp18uv7rC0KkpYffvhBK1asUOPGjd2W05Z+Upl3AqiIgtshz5492+zevds89NBDpn79+ubnn3+u6tBqrfvuu8+Eh4eb1atXm5SUFNdPVlaWq87zzz9vwsPDzeLFi83OnTvNkCFDir31Y2xsrFmxYoXZunWrufrqq4u9XeDFF19sNmzYYDZs2GA6dOjALTv9qPBdxYyhHauLTZs2maCgIPPcc8+ZH374wbz//vumXr165t///rerDm1pfSNHjjQxMTGu2yEvXrzYREVFmccee8xVh3a0poyMDLNt2zazbds2I8n84x//MNu2bXPdaaqy2q3gFrp9+/Y1W7duNStWrDCxsbG19ha65VFaW+bl5ZlBgwaZ2NhYs337drdzoJycHNc2aEvfqzaJizHGvP7666Zly5YmJCTEXHbZZa7b7qJqSCr2Z+7cua46DofDTJkyxTRr1syEhoaaq666yuzcudNtO9nZ2eaBBx4wkZGRpm7dumbgwIHm4MGDbnV+/fVXM2zYMNOwYUPTsGFDM2zYMHPy5MlKeJe107mJC+1YfXz66aemffv2JjQ01Fx00UVm5syZbstpS+tLT08348ePNy1atDB16tQxCQkJ5sknn3Q7IaIdrWnVqlXFHhdHjhxpjKncdjtw4IC5/vrrTd26dU1kZKR54IEHzJkzZ/z59muU0toyKSmpxHOgVatWubZBW/qezRhjKm98BwAAAAC8Vy3muAAAAACo3UhcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALI/EBQAAAIDlkbgAAAAAsDwSFwAAAACWR+ICAPDKM888o0svvbTK9v/UU0/p7rvv9qjuo48+qnHjxvk5IgBAZbAZY0xVBwEAsAabzVbq8pEjR+q1115TTk6OGjduXElRnZWamqo2bdpox44datWqVZn1jx07pvPPP187duxQfHy8/wMEAPgNiQsAwOXo0aOu/8+fP19PP/209u7d6yqrW7euwsPDqyI0SdK0adO0Zs0affnllx6v88c//lGtW7fWCy+84MfIAAD+xqViAACXZs2auX7Cw8Nls9mKlJ17qdioUaN04403atq0aTrvvPMUERGhqVOnKj8/XxMnTlRkZKRiY2M1Z84ct30dOXJEt956qxo1aqTGjRvrD3/4g37++edS45s3b54GDRrkVrZw4UJ16NBBdevWVePGjdWvXz9lZma6lg8aNEgffvhhhX83AICqReICAKiwlStXKjk5WWvXrtU//vEPPfPMMxo4cKAaNWqkjRs36t5779W9996rQ4cOSZKysrLUp08fNWjQQGvXrtW6devUoEEDXXvttcrNzS12HydPntSuXbvUuXNnV1lKSoqGDBmiMWPGaM+ePVq9erUGDx6swhcTXHHFFTp06JAOHDjg318CAMCvSFwAABUWGRmpV155RRdeeKHGjBmjCy+8UFlZWXriiSfUpk0b/fnPf1ZISIj+97//SXKOnAQEBOjtt99Whw4d9Lvf/U5z587VwYMHtXr16mL3ceDAARljFB0d7SpLSUlRfn6+Bg8erFatWqlDhw4aO3asGjRo4KoTExMjSWWO5gAArC2oqgMAAFR/7dq1U0DA2e/CzjvvPLVv3971OjAwUI0bN9axY8ckSVu2bNGPP/6ohg0bum3nzJkz+umnn4rdR3Z2tiSpTp06rrJLLrlEffv2VYcOHdS/f39dc801uvnmm9WoUSNXnbp160pyjvIAAKovEhcAQIUFBwe7vbbZbMWWORwOSZLD4VCnTp30/vvvF9lWkyZNit1HVFSUJOclYwV1AgMDtXz5cq1fv17Lli3Tq6++qieffFIbN2503UXsxIkTpW4XAFA9cKkYAKDSXXbZZfrhhx/UtGlTtW7d2u2npLuWnX/++QoLC9Pu3bvdym02m7p3766pU6dq27ZtCgkJ0X//+1/X8l27dik4OFjt2rXz63sCAPgXiQsAoNINGzZMUVFR+sMf/qDExEQlJSVpzZo1Gj9+vA4fPlzsOgEBAerXr5/WrVvnKtu4caOmTZumb775RgcPHtTixYt1/Phx/e53v3PVSUxMVM+ePV2XjAEAqicSFwBApatXr57Wrl2rFi1aaPDgwfrd736nMWPGKDs7W2FhYSWud/fdd2vevHmuS87CwsK0du1aDRgwQBdccIEmT56sv//977ruuutc63z44Ye66667/P6eAAD+xQMoAQDVhjFGXbt21UMPPaQhQ4aUWf/zzz/XxIkTtWPHDgUFMa0TAKozRlwAANWGzWbTzJkzlZ+f71H9zMxMzZ07l6QFAGoARlwAAAAAWB4jLgAAAAAsj8QFAAAAgOWRuAAAAACwPBIXAAAAAJZH4gIAAADA8khcAAAAAFgeiQsAAAAAyyNxAQAAAGB5JC4AAAAALO//AZkAXdIyT0WfAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(4, 1, figsize=(10, 12), sharex=True)\n", + "plot_behavior(axs, **event_name_to_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get DLC data for the first epoch" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "pose_estimation = nwbfile.processing[\"behavior\"].data_interfaces[\"PoseEstimation_1-XFN1-1\"]\n", + " \n", + "nodes = pose_estimation.skeleton.nodes[:]\n", + "edges = pose_estimation.skeleton.edges[:]\n", + "pes = pose_estimation.pose_estimation_series\n", + "name_to_data = {name: series.data[:] for name, series in pes.items()}\n", + "pes_timestamps = pes[\"PoseEstimationSeriesBody center\"].timestamps[:]\n", + "node_to_name = {node: f\"PoseEstimationSeries{node.capitalize()}\" for node in nodes}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot DLC data" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:24: RuntimeWarning: Mean of empty slice\n", + " x = np.nanmean(all_x, axis=0)\n", + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:25: RuntimeWarning: Mean of empty slice\n", + " y = np.nanmean(all_y, axis=0)\n" + ] + }, + { + "data": { + "text/plain": [ + "(
,\n", + " (,\n", + " ))" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAMWCAYAAACDduxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV8XFX6x/HP+MRd21g9dTeoGxW8uLRo0cUWWLTAsujCD4fFSpHiUKBonVKHumuapmka90ySmbm/P0IGhtSokLZ83/vKa5Mz55773DvDq3Pvc89zTIZhGIiIiIiIiIiIiIiIiIiIiJygzI0dgIiIiIiIiIiIiIiIiIiIyNGkxLiIiIiIiIiIiIiIiIiIiJzQlBgXEREREREREREREREREZETmhLjIiIiIiIiIiIiIiIiIiJyQlNiXERERERERERERERERERETmhKjIuIiIiIiIiIiIiIiIiIyAlNiXERERERERERERERERERETmhKTEuIiIiIiIiIiIiIiIiIiInNCXGRURERERERERERERERETkhKbEuIjIYXruuecwmUy0b9++sUM55gwcOBCTyeT7CQgIoFOnTjzzzDN4vd4jvr+33noLk8lERkaGr23KlCk888wze+1vMpl44IEHjngc+/P787G/nzlz5hzWfh544AFMJtORCXovFixYwAMPPEBxcfFR24eIiIiIiEhjqb++rP+xWq00bdqUyy67jF27djV2eA3UXwPu6+f318kHsm7dOh544IG9bjN+/HhSU1OPWNx/xv6uQwcOHMjAgQP/8pgAdu7cyXXXXUerVq0ICAggMjKSDh06cNVVV7Fz505fv/HjxxMcHHxE9pmRkYHJZOKtt97609tmZ2fzwAMPsGLFiiMSy6EwDIMPPviAfv36ERsbi9PppGnTpowYMYLXX3/d16+yspIHHnjgsO+RHK5HHnmEqVOnNmoMIiJyZFgbOwARkePdm2++CcDatWtZvHgxvXr1auSIji3NmjXjvffeAyA3N5dXXnmFW265hd27d/P4448f0X2NHj2ahQsXkpCQ4GubMmUKa9as4eabb27Qf+HChTRt2vSIxnAgCxcu9Pv73//+N7Nnz2bWrFl+7W3btj2s/Vx55ZWccsophzXG/ixYsIAHH3yQ8ePHEx4eftT2IyIiIiIi0pgmTZpEmzZtqKqq4scff+TRRx9l7ty5rF69mqCgoMYOr4HvvvuOsLCwBu2/v04+kHXr1vHggw8ycODABknw++67j5tuuulwwzwk+7sOfemllxolpqysLLp27Up4eDi33XYbrVu3pqSkhHXr1vHRRx+xbds2kpKSGiW2fcnOzubBBx8kNTWVzp07N0oMd911F48//jhXXXUVt99+OyEhIezYsYNZs2bxxRdfcOWVVwJ1ifEHH3wQoNEefIC6xPjYsWM544wzGi0GERE5MpQYFxE5DD///DMrV65k9OjRfP3117zxxht/eWLcMAxcLhcBAQF/6X4PVkBAAL179/b9PXLkSNq0acMLL7zAww8/jM1mO2L7iomJISYm5qD7/z6uv8of9xkTE4PZbD5gLJWVlQQGBh70fpo2bfqXJ/2PhD97nCIiIiIiIkdT+/bt6d69OwCDBg3C4/Hw73//m6lTp3LRRRc1cnQNdevWjejo6KM2fvPmzY/a2IfjcB8uP1SvvfYa+fn5LFmyhLS0NF/7GWecwd13331UquUd76qqqnjmmWe49NJLefXVV/1eGz9+/GGds+PtnkJVVdUxez9PROREpVLqIiKH4Y033gDgscceo2/fvnzwwQdUVlYCUFtbS2xsLJdcckmD7YqLiwkICODWW2/1tZWWlvLPf/6TtLQ07HY7TZo04eabb6aiosJvW5PJxA033MArr7xCeno6DoeDyZMnA/Dggw/Sq1cvIiMjCQ0NpWvXrrzxxhsYhuE3RnV1Nbfddhvx8fEEBgbSv39/fvnlF1JTUxk/frxf35ycHCZMmEDTpk2x2+2kpaXx4IMP4na7D+mc2Ww2unXrRmVlJXl5eQCsWbOG008/nYiICJxOJ507d/YdUz2v18vDDz9M69atCQgIIDw8nI4dO/Lss8/6+vyxlPrAgQP5+uuv2bFjh18Jud+fyz+WUj+YWObMmYPJZOL999/nnnvuITExkdDQUIYOHcrGjRsP6bz83sCBA2nfvj0//vgjffv2JTAwkMsvvxyADz/8kOHDh5OQkEBAQADp6en861//avA52Vcp9Q8//JA+ffoQFBREcHAwI0aMYPny5Q36LV68mFNPPZWoqCicTifNmzf3zbp/4IEHuP322wFIS0trUP7d6/XyxBNP0KZNGxwOB7GxsVx66aVkZWUd1HFeccUVREZG+v5b+r3BgwfTrl27P31ORUREREREjoT6h5p37NgBgMvl4q677vK7lr/++usblPueNWsWAwcOJCoqioCAAJKTkzn77LP9rntqamp4+OGHfddSMTExXHbZZb5r5yPl5ZdfplOnTgQHBxMSEkKbNm24++67gbrr6nPOOQeoexCg/nqvvmT33kqp19+nmDRpku+avXv37ixatAjDMHjyySdJS0sjODiYwYMHs2XLFr/tp0+fzumnn07Tpk1xOp20aNGCCRMmkJ+f7+tzoOvQvZVSLyws5LrrrqNJkybY7XaaNWvGPffcQ3V19V7jf+edd0hPTycwMJBOnToxbdq0A57LgoICzGYzsbGxe33dbN7/7ff58+cTHR3NmDFjfNf1mzdv5sILLyQ2NhaHw0F6ejovvvjiAWM5mG3nzJlDjx49ALjssst85/H390a+/PJL+vTpQ2BgICEhIQwbNqxB9bv6ew5r167lggsuICwsjLi4OC6//HJKSkr2G2NFRQXV1dX7rGJQf84yMjJ8kx8efPBBX6z1963qY1i2bBljx44lIiLC9+DGvkrr7+3zW11dzUMPPUR6ejpOp5OoqCgGDRrEggULgLrPR0VFBZMnT/bFUD/2vu697G2pv9TUVMaMGcNnn31Gly5dcDqdvtnwR/rem4iI7JtmjIuIHKKqqiref/99evToQfv27bn88su58sor+fjjjxk3bhw2m42LL76YV155hRdffJHQ0FDftu+//z4ul4vLLrsMqHuidcCAAWRlZXH33XfTsWNH1q5dy/3338/q1auZMWOG3xftqVOnMm/ePO6//37i4+N9F2AZGRlMmDCB5ORkABYtWsSNN97Irl27uP/++33bX3bZZXz44YfccccdDB48mHXr1nHmmWdSWlrqd4w5OTn07NkTs9nM/fffT/PmzVm4cCEPP/wwGRkZTJo06ZDO3datW7FarURERLBx40b69u1LbGwszz33HFFRUbz77ruMHz+ePXv2cMcddwDwxBNP8MADD3DvvffSv39/amtr2bBhw37XuH7ppZe4+uqr2bp1K59//vkB4zrYWOrdfffdnHTSSbz++uuUlpZy5513cuqpp7J+/XosFsshnZt6u3fv5uKLL+aOO+7gkUce8V0Ybt68mVGjRnHzzTcTFBTEhg0bePzxx1myZEmDcux/9Mgjj3Dvvfdy2WWXce+991JTU8OTTz5Jv379WLJkie8J+++//55TTz2V9PR0nn76aZKTk8nIyOCHH34A6sq0FxYW8vzzz/PZZ5/5Lmbrt7/22mt59dVXueGGGxgzZgwZGRncd999zJkzh2XLlvnNXtjbcYaHh/Pmm28yZcoUX/k0qCvnN3v27IO+ISAiIiIiInKk1Sd1Y2JiMAyDM844g5kzZ3LXXXfRr18/Vq1axcSJE1m4cCELFy7E4XCQkZHB6NGj6devH2+++Sbh4eHs2rWL7777jpqaGgIDA/F6vZx++unMmzePO+64g759+7Jjxw4mTpzIwIED+fnnnw9qZqnH42mQTDOZTL5r1A8++IDrrruOG2+8kf/+97+YzWa2bNnCunXrgLolyh555BHuvvtuXnzxRbp27QoceKb4tGnTWL58OY899hgmk4k777yT0aNHM27cOLZt28YLL7xASUkJt956K2effTYrVqzw3efYunUrffr04corryQsLIyMjAyefvppTj75ZFavXo3NZjvgdegfuVwuBg0axNatW3nwwQfp2LEj8+bN49FHH2XFihV8/fXXfv2//vprli5dykMPPURwcDBPPPEEZ555Jhs3bqRZs2b7PO4+ffrw4osvctZZZ3HrrbfSp08fv/s/+/PRRx9x6aWXcvnll/P8889jsVhYt24dffv2JTk5maeeeor4+Hi+//57/vGPf5Cfn8/EiRP3Od7BbNu1a1cmTZrkuy8wevRoAF/FuSlTpnDRRRcxfPhw3n//faqrq3niiScYOHAgM2fO5OSTT/bb59lnn815553HFVdcwerVq7nrrruA35Yd3Jvo6GhatGjBSy+9RGxsLKNGjaJ169YNEswJCQl89913nHLKKVxxxRW++wN/rBR41llncf7553PNNdc0mDRwIG63m5EjRzJv3jxuvvlmBg8ejNvtZtGiRWRmZtK3b18WLlzI4MGDGTRoEPfddx/AQb/Hf7Rs2TLWr1/PvffeS1paGkFBQUft3puIiOyDISIih+Ttt982AOOVV14xDMMwysrKjODgYKNfv36+PqtWrTIA49VXX/XbtmfPnka3bt18fz/66KOG2Ww2li5d6tfvk08+MQDjm2++8bUBRlhYmFFYWLjf+Dwej1FbW2s89NBDRlRUlOH1eg3DMIy1a9cagHHnnXf69X///fcNwBg3bpyvbcKECUZwcLCxY8cOv77//e9/DcBYu3btfmMYMGCA0a5dO6O2ttaora01srOzjX/9618GYJxzzjmGYRjG+eefbzgcDiMzM9Nv25EjRxqBgYFGcXGxYRiGMWbMGKNz58773d+kSZMMwNi+fbuvbfTo0UZKSspe+wPGxIkTfX8fbCyzZ882AGPUqFF+/T766CMDMBYuXLjfOH9v3LhxRlBQkF/bgAEDDMCYOXPmfrf1er1GbW2tMXfuXAMwVq5c6Xtt4sSJxu//mc/MzDSsVqtx4403+o1RVlZmxMfHG+eee66vrXnz5kbz5s2Nqqqqfe77ySefbHCuDcMw1q9fbwDGdddd59e+ePFiAzDuvvvugzrOAQMGNHi/r732WiM0NNQoKyvbZ1wiIiIiIiJHQv315aJFi4za2lqjrKzMmDZtmhETE2OEhIQYOTk5xnfffWcAxhNPPOG37Ycffuh3L6D+2n7FihX73F/9Nfmnn37q17506VIDMF566aX9xlt/Dbi3n+bNm/v63XDDDUZ4ePh+x/r4448NwJg9e3aD18aNG9fgGhsw4uPjjfLycl/b1KlTDcDo3Lmz736EYRjGM888YwDGqlWr9rrv+uvcHTt2GIDxxRdf+F7b13WoYdRdQw4YMMD39yuvvGIAxkcffeTX7/HHHzcA44cffvCLPy4uzigtLfW15eTkGGaz2Xj00Uf3Gufv450wYYJhNpsNwDCZTEZ6erpxyy23NIjz99f/jz32mGGxWIzHH3/cr8+IESOMpk2bGiUlJX7tN9xwg+F0On33grZv324AxqRJk/70tvWfqd9vaxh195ESExONDh06GB6Px9deVlZmxMbGGn379vW11X/e/vjZv+666wyn0+n3nu/NkiVLjOTkZN9nNCQkxBgzZozx9ttv+22bl5fX4N7NH2O4//77G7z2x89DvT9+fuvv7b322mv7jTcoKMjvftkfY/ijvd2fSklJMSwWi7Fx40a/vod7701ERP4clVIXETlEb7zxBgEBAZx//vkABAcHc8455zBv3jw2b94MQIcOHejWrZvf053r169nyZIlvtLYUPdkdfv27encuTNut9v3M2LECL/SYPUGDx5MREREg5hmzZrF0KFDCQsLw2KxYLPZuP/++ykoKCA3NxeAuXPnAnDuuef6bTt27FisVv9CItOmTWPQoEEkJib6xTVy5Ei/sfZn7dq12Gw2bDYbiYmJPPXUU1x00UW89tprvpiHDBlCUlKS33bjx4+nsrLSV66rZ8+erFy5kuuuu47vv/++wez2I+FgY6l32mmn+f3dsWNH4LeSeocjIiKCwYMHN2jftm0bF154IfHx8b73eMCAAUDdZ2tfvv/+e9xuN5deeqnfe+l0OhkwYIDvM7Zp0ya2bt3KFVdcgdPp/NNxz549G6BBSf6ePXuSnp7OzJkzD+o4b7rpJlasWMH8+fOBuqUG3nnnHcaNG0dwcPCfjktERERERORQ9O7dG5vNRkhICGPGjCE+Pp5vv/2WuLg4X9WuP17/nHPOOQQFBfmufzp37ozdbufqq69m8uTJbNu2rcF+pk2bRnh4OKeeeqrfNVvnzp2Jj49vcF9gX2bMmMHSpUv9fqZOnep7vWfPnhQXF3PBBRfwxRdf+JUrPxyDBg0iKCjI93d6ejoAI0eO9JsJXN/+++vm3NxcrrnmGpKSkrBardhsNlJSUoD9X+fuz6xZswgKCmLs2LF+7fXv1R+vTQcNGkRISIjv77i4OGJjYw94fW8ymXjllVfYtm0bL730Epdddhm1tbX83//9H+3atWtw38QwDCZMmMDEiROZMmWKX2U6l8vFzJkzOfPMMwkMDPT7HIwaNQqXy8WiRYv2GsfhbFtv48aNZGdnc8kll/iVgA8ODubss89m0aJFDZY829t9EZfL5bsHtS89evRgy5YtfPfdd9x999306dOHmTNncumll3Laaac1WBJwf84+++yD7vtH3377LU6n0+8e3dHUsWNHWrVq5dd2JO69iYjIwVMpdRGRQ7BlyxZ+/PFHzj77bAzD8JXzHjt2LJMmTeLNN9/k0UcfBeDyyy/n+uuvZ8OGDbRp04ZJkybhcDi44IILfOPt2bOHLVu2YLPZ9rq/P16o7m0dpiVLljB8+HAGDhzIa6+95luXaOrUqfznP/+hqqoKqFv/Cuou8n7ParUSFRXl17Znzx6++uqrg45rb5o3b84HH3yAyWTC6XSSlpZGYGCg7/WCgoK9Hk9iYqJfvHfddRdBQUG8++67vPLKK1gsFvr378/jjz9O9+7dDxjHwTjYWOr98Xw5HA4A37k+HHuLo7y8nH79+uF0Onn44Ydp1aoVgYGB7Ny5k7POOmu/+92zZw+Aby2xP6q/6K1fu66+jNqfVX+O9nUe/3hTYV9rip1++umkpqby4osvctJJJ/HWW29RUVHB9ddff0hxiYiIiIiIHIq3336b9PR0rFYrcXFxftcwBQUFWK3WBqWdTSYT8fHxvuuj5s2bM2PGDJ544gmuv/56KioqaNasGf/4xz+46aabgLprtuLiYux2+17jONgEdqdOnfyWr/qjSy65BLfbzWuvvcbZZ5+N1+ulR48ePPzwwwwbNuyg9rE3kZGRfn/XH8e+2l0uFwBer5fhw4eTnZ3NfffdR4cOHQgKCsLr9dK7d+9Dvr4uKCggPj6+QXnu2NhYrFbrAa/voe4a/2D3n5KSwrXXXuv7+6OPPuKCCy7g9ttvZ8mSJb72mpoaPvzwQ9q1a+dLfP4+ZrfbzfPPP8/zzz+/1/3s63NwONv+fgzY9/W81+ulqKjI757O4dwXsdlsjBgxghEjRvj2P3bsWKZNm8a3337LqFGjDjjGvuI9WHl5eSQmJh5wLfgjZW+xHol7byIicvCUGBcROQRvvvkmhmHwySef8MknnzR4ffLkyTz88MNYLBYuuOACbr31Vt566y3+85//8M4773DGGWf4zfiOjo4mICBgn2sw/fGi9o8XdlC3TpjNZmPatGl+M31//2Q4/HbRsmfPHpo0aeJrd7vdDS4Mo6Oj6dixI//5z3/2Gld9wnh/nE7nfhPXUVFR7N69u0F7dna2LwaoS9zfeuut3HrrrRQXFzNjxgzuvvtuRowYwc6dO/0uzA7VwcbyV9jbezxr1iyys7OZM2eOb5Y4sN911uvVx/7JJ5/4nrzfm/obOllZWX8y4jr1n6/du3c3SK5nZ2cf1GcZ6hL1119/PXfffTdPPfUUL730EkOGDKF169aHFJeIiIiIiMihSE9P3+c1bVRUFG63m7y8PL/kuGEY5OTk+D2Y3K9fP/r164fH4+Hnn3/m+eef5+abbyYuLo7zzz+f6OhooqKi+O677/a6r9/PZj5cl112GZdddhkVFRX8+OOPTJw4kTFjxrBp06b9Xi8eDWvWrGHlypW89dZbjBs3ztdev5b7oYqKimLx4sUYhuF33Zmbm4vb7T7q1/fnnnsujz76KGvWrPFrdzgczJ49mxEjRjB06FC+++473/2hiIgILBYLl1xyyT4fCk9LS9tr++FsW+/31/N/lJ2djdls3mv1wiMlKiqKm2++mTlz5rBmzZqDTozv7b6C0+mkpKSkQfsfk8wxMTH89NNPeL3eQ0qO199/q66u9j0UsLf97C/WI3HvTUREDp4S4yIif5LH42Hy5Mk0b96c119/vcHr06ZN46mnnuLbb79lzJgxREREcMYZZ/D222/Tp08fcnJyGpRoGjNmDI888ghRUVEHvFDZF5PJhNVqxWKx+Nqqqqp45513/Pr1798fgA8//JCuXbv62j/55BPcbneDuL755huaN29+1C5+hgwZwueff052drbfl/23336bwMBAevfu3WCb8PBwxo4dy65du7j55pvJyMigbdu2ex3/zzzhfSix/JXqL6B+f7EF8L///e+A244YMQKr1crWrVv3W2asVatWNG/enDfffJNbb721wb7q7esp8Pqy6O+++67fTaClS5eyfv167rnnngPGWu/KK6/kgQce4KKLLmLjxo08/vjjB72tiIiIiIjI0TZkyBCeeOIJ3n33XW655RZf+6effkpFRQVDhgxpsI3FYqFXr160adOG9957j2XLlnH++eczZswYPvjgAzweD7169fpL4g8KCmLkyJHU1NRwxhlnsHbtWlJSUo5oNbQD+TPXuX8mriFDhvDRRx8xdepUzjzzTF/722+/7Xv9SNi9e/c+K77t3Llzr0nNLl26MHfuXIYOHcrAgQOZPn06sbGxBAYGMmjQIJYvX07Hjh33WT1gb/7Mtvs6j61bt6ZJkyZMmTKFf/7zn773pqKigk8//ZQ+ffockUkJtbW1lJaW7nWWfn3p/PrzdqifxdTUVD7++GO/hHVBQQELFiwgNDTU12/kyJG8//77vPXWW/stp76ve0upqakArFq1yu8eyFdffXXQsf4V995EROQ3SoyLiPxJ3377LdnZ2Tz++OMMHDiwwevt27fnhRde4I033mDMmDFAXTn1Dz/8kBtuuIGmTZsydOhQv21uvvlmPv30U/r3788tt9xCx44d8Xq9ZGZm8sMPP3Dbbbcd8MJ49OjRPP3001x44YVcffXVFBQU8N///rfBxWW7du244IILeOqpp7BYLAwePJi1a9fy1FNPERYW5veE7EMPPcT06dPp27cv//jHP2jdujUul4uMjAy++eYbXnnllUMuuV1v4sSJvvWU7r//fiIjI3nvvff4+uuveeKJJwgLCwPg1FNPpX379nTv3p2YmBh27NjBM888Q0pKCi1bttzn+B06dOCzzz7j5Zdfplu3bpjN5n0+7X+wsTSWvn37EhERwTXXXMPEiROx2Wy89957rFy58oDbpqam8tBDD3HPPfewbds2TjnlFCIiItizZw9LliwhKCiIBx98EIAXX3yRU089ld69e3PLLbeQnJxMZmYm33//Pe+99x5Qd14Bnn32WcaNG4fNZqN169a0bt2aq6++mueffx6z2czIkSPJyMjgvvvuIykpye9m0YGEh4dz6aWX8vLLL5OSksKpp556CGdNRERERETk6Bg2bBgjRozgzjvvpLS0lJNOOolVq1YxceJEunTpwiWXXALAK6+8wqxZsxg9ejTJycm4XC5fxbj6+wPnn38+7733HqNGjeKmm26iZ8+e2Gw2srKymD17Nqeffrpfgndffvnll71eu7Zt25bQ0FCuuuoqAgICOOmkk0hISCAnJ4dHH32UsLAwX2Kvffv2ALz66quEhIT4lkXbWyLzcLVp04bmzZvzr3/9C8MwiIyM5KuvvmL69OkN+u7rOnRvs+kvvfRSXnzxRcaNG0dGRgYdOnTgp59+4pFHHmHUqFEN7sscqv/85z/Mnz+f8847j86dOxMQEMD27dt54YUXKCgo4Mknn9zrdunp6cybN4+hQ4fSv39/ZsyYQdOmTXn22Wc5+eST6devH9deey2pqamUlZWxZcsWvvrqK9+69ntzsNs2b96cgIAA3nvvPdLT0wkODiYxMZHExESeeOIJLrroIsaMGcOECROorq7mySefpLi4mMcee+yInLOSkhJSU1M555xzGDp0KElJSZSXlzNnzhyeffZZ0tPTOeuss4C6SgkpKSl88cUXDBkyhMjISKKjo30J6X255JJL+N///sfFF1/MVVddRUFBAU888YRfUhzgggsuYNKkSVxzzTVs3LiRQYMG4fV6Wbx4Menp6Zx//vlA3Wdvzpw5fPXVVyQkJBASEkLr1q0ZNWoUkZGRXHHFFTz00ENYrVbeeustdu7cedDn46+49yYiIr9jiIjIn3LGGWcYdrvdyM3N3Wef888/37BarUZOTo5hGIbh8XiMpKQkAzDuueeevW5TXl5u3HvvvUbr1q0Nu91uhIWFGR06dDBuueUW3ziGYRiAcf311+91jDfffNNo3bq14XA4jGbNmhmPPvqo8cYbbxiAsX37dl8/l8tl3HrrrUZsbKzhdDqN3r17GwsXLjTCwsKMW265xW/MvLw84x//+IeRlpZm2Gw2IzIy0ujWrZtxzz33GOXl5fs9VwMGDDDatWu33z6GYRirV682Tj31VCMsLMyw2+1Gp06djEmTJvn1eeqpp4y+ffsa0dHRht1uN5KTk40rrrjCyMjI8PWZNGlSg2MtLCw0xo4da4SHhxsmk8n4/T99gDFx4sQ/Hcvs2bMNwPj444/92rdv324ADfrvz7hx44ygoCC/tv2dtwULFhh9+vQxAgMDjZiYGOPKK680li1b1mC/EydONPb2z/zUqVONQYMGGaGhoYbD4TBSUlKMsWPHGjNmzPDrt3DhQmPkyJFGWFiY4XA4jObNmzf4bNx1111GYmKiYTabDcCYPXu2YRh1n/fHH3/caNWqlWGz2Yzo6Gjj4osvNnbu3HnQx1lvzpw5BmA89thj++0nIiIiIiJyJNVfXy5dunS//aqqqow777zTSElJMWw2m5GQkGBce+21RlFRka/PwoULjTPPPNNISUkxHA6HERUVZQwYMMD48ssv/caqra01/vvf/xqdOnUynE6nERwcbLRp08aYMGGCsXnz5v3GUX8NuK+f6dOnG4ZhGJMnTzYGDRpkxMXFGXa73UhMTDTOPfdcY9WqVX7jPfPMM0ZaWpphsVj8rjfHjRtnpKSk+PXd232K+uvjJ5980q99b9fT69atM4YNG2aEhIQYERERxjnnnGNkZmbu9Zp9X9ehAwYMMAYMGODXt6CgwLjmmmuMhIQEw2q1GikpKcZdd91luFyuA8ZvGIaRkpJijBs3rkH77y1atMi4/vrrjU6dOhmRkZGGxWIxYmJijFNOOcX45ptv/Pru7fo/KyvLaNOmjZGammps3brVd+4uv/xyo0mTJobNZjNiYmKMvn37Gg8//LBvu33dfziYbQ3DMN5//32jTZs2hs1ma3Cep06davTq1ctwOp1GUFCQMWTIEGP+/Pl+29d/3vLy8vza93Zf5o+qq6uN//73v8bIkSON5ORkw+FwGE6n00hPTzfuuOMOo6CgwK//jBkzjC5duhgOh8MAfO/JvmKoN3nyZCM9Pd1wOp1G27ZtjQ8//HCvn9+qqirj/vvvN1q2bGnY7XYjKirKGDx4sLFgwQJfnxUrVhgnnXSSERgYaAB+n7UlS5YYffv2NYKCgowmTZoYEydONF5//fUG5yElJcUYPXr0XmM9nHtvIiLy55gMwzCOcu5dRESOAwsWLOCkk07ivffe48ILL2zscOQw3XLLLbzzzjv7XNfqeHHbbbfx8ssvs3PnzqMyO0FERERERERERERE/h5USl1E5G9o+vTpLFy4kG7duhEQEMDKlSt57LHHaNmypa9clRyfcnNzWbhwIZ999hl9+vRp7HAO2aJFi9i0aRMvvfQSEyZMUFJcRERERERERERERA6LEuMiIn9DoaGh/PDDDzzzzDOUlZURHR3NyJEjefTRR3E6nY0dnhyGb775hhtuuIHevXvz7LPPNnY4h6xPnz4EBgYyZswYHn744cYOR0RERERERERERESOcyqlLiIiIiIiIiIiIiIiIiIiJzRzYwcgIiIiIiIiIiIiIiIiIiJyNCkxLiIiIiIiIiIiIiIiIiIiJzQlxkVERERERERERERERERE5IRmbewAjgVer5fs7GxCQkIwmUyNHY6IiIiIiBxBhmFQVlZGYmIiZvPx92ywy+WipqamscPwsdvtOJ3Oxg5DRERERERERORPUWIcyM7OJikpqbHDEBERERGRo2jnzp00bdq0scP4U1wuF2kpweTkeho7FJ/4+Hi2b9+u5LiIiIiIiIiIHFeUGAdCQkKAuhtloaGhjRyNiIiIiIgcSaWlpSQlJfm+9x9PampqyMn1sOOXVEJDGn+2e2mZl5RuGdTU1CgxLiIiIiIiIiLHFSXGwVc+PTQ0VIlxEREREZET1PG8bFJoiJnQEEtjhyEiIiIiIiIictxSYlxEREREROQY58XAi7exw8CL0dghiIiIiIiIiIgcksavxSciIiIiIiIiIiIiIiIiInIUKTEuIiIiIiIiIiIiIiIiIiInNJVSFxEREREROcZ5DC+eY6CKucdo/HLuIiIiIiIiIiKHQjPGRURERERERERERERERETkhKbEuIiIiIiIiIiIiIiIiIiInNBUSl1EREREROQY58XAS+PXUj8WYhARERERERERORSaMS4iIiIiIiIiIiIiIiIiIic0zRgXERERERE5xnnx4m3sIOAYiUJERERERERE5M/TjHERERERERERERERERERETmhKTEuIiIiIiIiIiIiIiIiIiInNJVSFxEREREROcZ5DAOPYTR2GMdEDCIiIiIiIiIih0IzxkVERERERERERERERERE5ISmxLiIiIiIiIiIiIiIiIiIiJzQVEpdRERERETkGOfFwEvjlzE/FmIQERERERERETkUmjEuIiIiIiIiIiIiIiIiIiInNCXGRURERERERERERERERETkhKZS6iIiIiIiIsc4LwaeY6CMuUqpi4iIiIiIiMjxSjPGRURERERERERERERERETkhKYZ4yIiIiIiIsc4L8YxMVv7WIhBRERERERERORQaMa4iIiIiIiIiIiIiIiIiIic0JQYFxERERERERERERERERGRE5pKqYuIiIiIiBzjPIaBx2j8MubHQgwiIiIiIiIiIoeiUWeMp6amYjKZGvxcf/31ABiGwQMPPEBiYiIBAQEMHDiQtWvX+o1RXV3NjTfeSHR0NEFBQZx22mlkZWU1xuGIiIiIiIiIiIiIiIiIiMgxqFET40uXLmX37t2+n+nTpwNwzjnnAPDEE0/w9NNP88ILL7B06VLi4+MZNmwYZWVlvjFuvvlmPv/8cz744AN++uknysvLGTNmDB6Pp1GOSUREREREREREREREREREji2NmhiPiYkhPj7e9zNt2jSaN2/OgAEDMAyDZ555hnvuuYezzjqL9u3bM3nyZCorK5kyZQoAJSUlvPHGGzz11FMMHTqULl268O6777J69WpmzJjRmIcmIiIiIiJyxHiPoR8RERERERERkeNRoybGf6+mpoZ3332Xyy+/HJPJxPbt28nJyWH48OG+Pg6HgwEDBrBgwQIAfvnlF2pra/36JCYm0r59e18fERERERERERERERERERH5e7M2dgD1pk6dSnFxMePHjwcgJycHgLi4OL9+cXFx7Nixw9fHbrcTERHRoE/99ntTXV1NdXW17+/S0tIjcQgiIiIiIiIiIiIiIiIiInIMOmZmjL/xxhuMHDmSxMREv3aTyeT3t2EYDdr+6EB9Hn30UcLCwnw/SUlJhx64iIiIiPylHvxwOv3vfZmZq7Y0digifxkPxjHzIyIiIiIiIiJyPDomEuM7duxgxowZXHnllb62+Ph4gAYzv3Nzc32zyOPj46mpqaGoqGifffbmrrvuoqSkxPezc+fOI3UoIiIiInIU1bjdfLpoDcUVLr5YsraxwxEREREREREREZHjxDGRGJ80aRKxsbGMHj3a15aWlkZ8fDzTp0/3tdXU1DB37lz69u0LQLdu3bDZbH59du/ezZo1a3x99sbhcBAaGur3IyIiIiLHPrvVyg0j+9KmSQyXDuzW2OGI/GU8xrHzIyIiIiIiIiJyPGr0Nca9Xi+TJk1i3LhxWK2/hWMymbj55pt55JFHaNmyJS1btuSRRx4hMDCQCy+8EICwsDCuuOIKbrvtNqKiooiMjOSf//wnHTp0YOjQoY11SCIiIiJyFF09vBdXD+/V2GGIiIiIiIiIiIjIcaTRE+MzZswgMzOTyy+/vMFrd9xxB1VVVVx33XUUFRXRq1cvfvjhB0JCQnx9/u///g+r1cq5555LVVUVQ4YM4a233sJisfyVhyEiIiIiIiIiIiIiIiIiIscok2EYf/tieKWlpYSFhVFSUqKy6iIiIiIiJ5jj+ft+fewr1sUSEtL4K2GVlXnp3Db3uDyXIiIiIiIiIvL31vh3VkRERERERERERERERERERI4iJcZFREREREREREREREREROSE1uhrjIuIiIiIiMj+eTHhwdTYYeA9BmIQaUyGYVDt8eIxDLwGmE1gMZlwWMyYTPrvQ0RERERE5FimxLiIiIiIiIiIyF5Uu73kVVZTXF1LYVUtxa5a3IbRoJ/VZCLcaSMywEa4w0ZMoAOHVUX6REREREREjiVKjIuIiIiIiIiI/MowDApdtWwrqiCrzIUBmICG6fDfuA2D/KoaCqpqfP2bhjhpHhFEhNOm2eQiIiIiIiLHACXGRUREREREjnFeo+6nsR0LMYgcTdllLtbll1Fa4/ZLhh/sR//3/bPKXOwscxFqt9I2JoTEYOcRj1dEREREREQOnhLjIiIiIiIiIvK3Vu3xsnJPCVllLl/b4T4HUr99aY2bRbuKaBripFNcGA6LSqyLiIiIiIg0BiXGRUREREREjnEeTHho/FLMx0IMIkdadpmLZTnF1B7lkgi7ylzkVlTTNT6cxBDNHhcREREREfmr6TFlEREREREREfnbMQyDDQXlLMouosZrHPYM8QPuD6jxGizKLmJjQTmGobUJRERERERE/kpKjIuIiIiIiIjI34phGKzNL2Ndflmj7H9tfhlr88uUHBcREREREfkLqZS6iIiIiIjIMU6l1EWOrI2FFWwqrGjUGDYVVmAzm2kdFdyocYiIiIiIiPxdaMa4iIiIiIiIiPxtZJe5Gm2m+B+tzS8ju8zV2GGIiIiIiIj8LSgxLiIiIiIiIiJ/C9UeL8tyihs7DD/Lcoqp9ngbOwwREREREZETnkqpi4iIiIiIHOO8hgmv0fhlzI+FGEQOx8o9JdR6j611vWu9Bqv2lNAjMaKxQxERERERETmhaca4iIiIiMg+zFq9hUmzfsZV427sUERE5DBll7nIKnNxbKXFwQB2lrnILldJdRERERERkaNJM8ZFRERERPYiM6+Ym9/8CgC3x8tVw3o2ckQiInKoDMM4ZtYV35d1eWUkBDkwmVSZQURERERE5GhQYlxERERE/hbWZ+Vit1poHh91UP2DA+wEOexUVNeQGBlylKMT2T8PJjw0frLsWIhB5FAUumopPcarf5TWuCly1RIZYG/sUERERERERE5ISoyLiIiIyAlv0cYdXP3KZ5hM8NFtF9O6ScwBt4kMDmTaPeMpLK+iZUL0XxCliIgcLduKKjDBMVdG/fdMwNaiCiXGRUREREREjhKtMS4iIiIiJ7ySyrp1Ww0DylzVB71dVEhQg6S412vw6vTF/PeLuVRW1x7ROEVE5MirdnsPaW3x+y85m7PbJPL8v24GIDdrJ2e3SeTsNomsWbzgkGKp337WZx82eM0AsspcVLu9hzS2iIiIiIiI7J8S4yIiIiJyTNq0NotzTn6Ycac8SUlxxWGNNaxTK/5z4QievmwM3Zs3PayxftmWxQvfLODtOcv4cunawxpL5GB5MB8zPyLHi/Hjx2MymRg4aOAhzRRv2qIVLTt1JT455U9tN+uzD30J8D9q2akrLTt1JSxy78t6GEBe1cE/wCUiIiIiIiIHT6XURUREROSY9M6LMykrqaKspIpxw//L8x9eR1LagUug743ZbOLUHm2PSFwpMRGEBTqpqK4hvWncERlTRESOHrfXOKQy6ldPfPSIx/LYh9P2+7oJKHbV0jQk4IjvW0RERERE5O9Oj/uLiIiIyDFp1Dk9MZnqfndV1XDfdZPxer0snbeRrMx8DKNxVoqNDQvmh4lXMvff19ApNaFRYpC/H8Mw4T0GfgzD1NinQuSgpKamMnnyZAB+XvATZ/2uBLqrspLHrr+Ma4f04sIuzTmvQyrXjziJ9597gtqaGt8YfyylfjCe/9fNvHj3Lb6/62eOf/j8f/3+ri+l/vvZ5asX/cStZwylW1IsHTt2ZO7cuUfgTIiIiIiIiEg9JcZFRERE5JjUZ1A6H8y9m6AQJwBlJZV8Mukn7rrtXU59bDLD7n+N3JLyRoktwG4jJMDRKPsWEZED69KlC9HR0QAEBAX7SpgHBgdTU13F0pnfU1PtIjG1GWFRUeTs2M4nLz3DlGceO6z9xienEJf0W+n1+v1GxR/4QapHrrkUd20tmEysXr2a0aNHk52dfVjxiIiIiIiIyG9USl1EREREjllhEUG07ZzE0nmbqSirpqK8ippwG16bmbzSCr5ftJ65L/6ExWKmoqwKrxfu+e/5LJyzgR4nt6JTz2aNfQgiItIIPv/8c8aPH8/kyZNp1rYDD73zqe+12poanpk2h6QWrXxtz95xIz9++Snzv/mCcXfcf8j7Pee6W4iKT/TNGj9Q6fTfu+xfDzL8/EvI3LyR288cRkVFBc899xyPPXZ4yXoRERERERGpo8S4iIiIiBzTzrq0H7uziugzKJ3zJwwix+FhY3kJWSVl/Pebnwg2KgjZUuXr//JjX7NlfTZfTlnI54snYrGoSJIc/zyY8ND4ZcyPhRhEDpfZYuHHLz9l4fdfk5edhbv2t/LpRbl7Gi2uk8ecAUByy9a0a9+elStWsHr16kaLR0RERERE5ESjxLiIiIiIHNO69G7O61/Wzbx7Z/YyPli/EavZjNlcl6BzJIfSvWkSQSFOTEB0XChb1mfTNDXa10dERKTe56+9wGevPg9ATGJTwmNiKcjZTeGe3Xi93kaOTkRERERERI4WTZ8RERERkeOG6Xd57ksHdsFsNlERaMIxMJEx1w3gX0+cxxW3nsIrn/+D3gPb8Mb/fU+1q7bxAhYRkUYTGBgIgKuq0q9904pfAEhMbcYrs5bwyPtfktqm7RHbryMgwPe7q7JyPz39/TRtKgBZWzezds0aADp06HDE4hIREREREfm704xxERERETlmvfj1fN7LXk5YnJNn+5/OBf07kxgZSmJkKFe/9Clew8BV6+aTBWv4ZOEa5jx8DRHBARTkljLlf3MA8Hq8tOmQxMnD22E267lQOT55DDMeo/E/vx6jsSMQOXht2rQBYOualdxy6mAcgYE8OPljUlq35Zc5M8jO2Ma1Q3rhdrupcbmO2H6bNGvh+/2mMQOIiIlj/J3306Zrz/1u9/aT/+brd98gb9dO3G43DoeDXr16sWnTJmJjYwkLC8NkUiUUERERERGRQ6XEuIiIiIgck0orXbwydxHlnWrYXVbGu5uX8VCPEQzu2IJajwe3xwsGYPr1xwDLr6XTk9JiCAp2Uu2q4bO35wNwq+tshp/RtdGOR0RE/lqXX345P/74I9/9MJ3MzRuAuoelzp7wDwpzdrN09g9Ulpcz+KxzsTsD+OTlZ47IflNbt2XsdTcz46P3yM/eRX72LspLSg643T2vvsMb/7kPj9tDbGwsp5xyCqtWrWLVqlUA2Gw2YmNjiYmJITY21vcTHByshLmIiIiIiMhBMBmG8bd/5r+0tJSwsDBKSkoIDQ1t7HBEREREBDAMg9smfcU31RtxRFp5fdBYesQmAfDg59OZXPQzAEHrHZhrTdxy2smMH9zDt/2e7CImXv82GVtyAbj7yfPpf8qhlaStcbtxe7wEOuwAzFq9hSnzVnBR/y4Mat/8cA5T/gLH8/f9+ti/XZVGUEjjzxivKPMysuP24/Jcyt/Xj5kF5FfVNHYYezXrsw958e5bAPh0QzaGYVBTlMfm6V9wsLdrnE7nXhPm9aXkRUREREREpI5mjIuIiIjIX6q4uoqnVs6lSVA4E9r22ucsN5PJxNOXn8bTe3ltm6sAw1H3uyUcfrr1OoIDHH59li/a6kuKn3tlf/qNaH9I8RaUVXD2E+9Q7qrhjevPoVNqAk98PpfsolKyC0uVGJe/hBcTXho/Me7lb/9ctRyHIgNsFFTVHBefXrPJRIcWaZzT424KCgrIzc0lNzeXvLw8cnNzKSoqarCNy+UiMzOTzMxMv/agoKC9JswdDkeDMURERERERP4OlBgXERERkb/Uu5uX8e7m5QCcnJBK+8j4g962tNLF2MffYU9ZGdZUMxhg5ENZVXWDxHhudrHv9+59W/2pMrMfzV/J+qxcrjulDzvyiyksrwJg9Y7ddEpNYHT3Nrw5cymju7U56DFFRKRxhDtsx0VSHOpWCAl32rBarcTFxREXF+f3ek1NDXl5eb5EeX3SvLS0tMFYFRUVbN++ne3bt/u1h4aG+pLk9UnzmJgYbDbb0Tw0ERERERGRRqfEuIiIiMgxxDAMtu/MJy4mjKAA+yGPk5VTTIDDRlRE0BGM7sjoGt0Eq8lMlDOQpKCwg97O7fEw7L5XcXk8gInAbXbqMx1rd+4hIdK/rHNFRV0yOyjYSXLz2AOO/+y0n5i/IYNrhvfm4U9mARBgt/HP0wdw3Sl9KCqv4oxe7QC4cdRJ3DCyr9Z0lb+MBxMeGv/zdizEIPJnxQQ6MMExmRwffNZ5DD7rPN/fJiAmYN8zuu12O02aNKFJkyZ+7S6Xy29mef1PZWVlgzFKS0spLS1ly5Ytfu0RERF+M8tjYmKIjo7GYrEc3kGKiIiIiIgcI5QYFxERETmGvDt1Ca+8N4+E2DA+eP4KrJY/Xzp58Yrt3Pbwp9jtVt575jISYg8++fxX6BufyrJzbsZhtmL/w832bTkF/OO1L4gLD+HFCWfitP/2dfX2SV/jcnsajHdK19acnJ7m1/bP8a+x5pcMADr2TCM8su4BgT3F5Tz8yQwSI8K448wBWMx157e0ysUbM5cC8M2yDSRHh7OzoJjOaYmYzSauGdG7wX6VFBcROT44rGaahjjJKnMdk8nxeiagaYgTh/XP/9vvdDpJTk4mOTnZr72ioqJBOfbc3Fyqq6sbjFFUVERRUREbN270tZnNZqKiovzKscfExBAZGYnZ3PjLO4iIiIiIiPwZSoyLiIiIHEN2ZtetHZpXUEZtrRur5c/PGs/eU4IBVNe4KSyuPOYS4wAhtr3Phpuxcgs780vYmV/C+qw9dGlWNyPOMAzsNv8kepDdyu1nDWJYu+Y8cssUKmweFrd0YZTUErRij2815ujYUAzD4OMFq/hh5WaWbN4JgMNmJTkmnBq3m+e+nk+TyFBctW5O79WOR1slU1VdS2ig86idAxER+es0iwhiZ5mrscPYLwNofoQrvQQFBZGWlkZa2m8PkBmGQVlZWYOEeV5eHrW1tX7be71eX+n2devW+dotFotfGfb6pHlYWJgeHBMRERERkWOWEuMiIiIix5BrLupHdGQwndKbEuA8tFLqYwZ3oMpVS3hYAO1aJRz0djl5pcz4aT39erYkpUnkIe37cI3q3oZ567YRFRJI++Tf1h7/btlGvlu+CUxgt5qwry4lscJM5FAv90yYxMY1uyjo7CSvZSCEQVKclaBsN7GJ4Zx3w2Ben7GE579ZANQlxK1mE2/N/tlv35XVtfz85I3YrXVfkW2Bh1c6Nnd3MYtmr6fvkLZExx17DyfI8cVjmPEYjT8702Mcy/NtRfYt0mkj1G6ltMbd2KHsU6jdSoTz6K/zbTKZCA0NJTQ0lBYtWvjaDcOguLi4QcI8Pz8fj8e/YovH4yEnJ4ecnBy/dpvN1iBZHhsbS3BwsBLmIiIiIiLS6JQYFxERETmGRIYHcfUFJx/WGDabhQtP7/Gnt3vgmWms3pjNV7NW8+HzVx70djdP/4Zfdu/iySGn0LtJ0gH7bykq4MN1qxnVvDVd4v0T902jwkhrEsUnK9cQ+dls7j93KAC1v96Qdwd7KW9Ti7m5hcA3K3n0nx/6tg3ZVkNJKzvWKoOAXDcp3ZoSOiCJ856eQl5pBWaTCQODl64+g48XrOa75Rv99t08PtKXFD9U1a5avv/8F36Zv5kNq3ZSUlTBzGkreHbKtYc1roiIHB6TyUTbmBAW7Spq7FD2qW1MSKMmj00mExEREURERNC6dWtfu9frpbCwsEHCvKCgAOMPD8vU1taya9cudu3a5dfudDr3mjAPDAz8S45NREREREQElBgXEREROep255bw8rs/kt4ingtO+/MJ679K1K/lW6PCgw96m1W5u5m6fS1gcO+c6cy46HK8hsGmwnzSwiNwWKy43LVc/c0XZJeX8cKIMZz9yftUuGv5ZP1axnXswsJdO7m8Y1dyKys4tWVrPtq9Dleiwce71nE/dYnxU3u0JdBhZ3bJFqbsXIE31ExK36ZkzcryxWIv9dLso1LCIoI4/9ZRzK7K4/tVm32v92qZxIMXDCc+PIT2yfEM7diCOyZ/jffX12NDD/6492XSsz8w9d0Ffm3BIQGHPa6IiBy+xGAnTUOc7DrG1hqvX1s8MfjYXL7DbDYTHR1NdHQ0bdu29bW73W4KCgoaJMyLiho+fOByucjMzCQzM9OvPSgoaK8Jc4dj70uuiIiIiIiIHA4lxkVERESOsilfLmXmgo3MXLCRwX1bExcdevhjrlzFm7/8wvW9e3Hm725SH8j/zZ/P9C1buX/wIHon+c/unnjTaMaO3E2b5nEHPV5GRRGmoLqytKkx4XXj/DiTd9aspEdCEz4+63zW5OXy484dADyzeAEV7rr1Sz2GwTNLFwKwYs9uqj0eFmRlEhkaSHZlGSlxEQAUuZaTUZxBYFQ3/tl6AIYDEgJDuXRUZ75qs5gPXp2N2+31xVRcVEFZqJmkkAhYv512SXGc1bs9wzq1JDyoLkkdYLcxvHMrBrRrxqs/LKKyppZLBnQ76OPeF4v1t1LX0XGhXHHbKfQe0Oawx63n8XqxmBu/nLb89byY8NL4ZYiPhRhEDkenuDByK6qp8R47qXGb2UTH43DJDavVSlxcHHFx/t8bampqyM/P9yXM65PmpaWlDcaoqKhg+/btbN++3a89NDS0QcI8JiYGm+3ol5oXEREREZETlxLjIiIiIgeposxFYLDjgGVOM7fsYeeWPfQe2g6L1ULPTql8/t0KTJU1zPpoMRdcN+yg9rfxl2189H/f0P/MHgw4u5ffa88tXEheRQUvLlp80InxarebFxYtBuCtZcsaJMbtNitd2v3W5jUMil1VRAbsu8xpUkgYJsAAru5cNxt+S1EhAFt//f8OsXEMS2vOzpISZm7f4ts2JSyc2MAgFmVnYTWZqPZ4+HnTTj4ZdyE/ZWUyollLymu2sGT3xYDBpJX9OT/9Jh7pNdI3xogLezL28pO568pJrF9RNwvNFWfnv3MW1R3njefSOTURs3nv75nDZuXG0YdXuv73xt04lMK8MuZ8u5IO3dMYNLLTERv7kU9n8eH8ldww8iSuGtbziI0rIvJ34rCY6RofzqLsY6eketf4cByWE+ehJ7vdTmJiIomJiX7tLpfLb2Z5/e8VFRUNxigtLaW0tJQtW7b4tUdERPglymNjY4mOjsZisRzVYxIRERERkRODEuMiIiIiB+HzN+fy6r+/oFv/1jw8ecI++5WVVHLjmKeoqXZz6a0jueDGYfTr0YL4LUWUl1Sx0Lr6oBPjb9z/MavmbeDn6asbJMav6t6d137+mcu7dT3oY3BYrfRNSGLZnmwGJKUCsLV8Aw6zk6aBqQ36X/n158zasZ1bevblph599jpml+gmTBt5ObnlT5BfcjG/VN3FY4OG8/66VQxKLmFZznUkhZ7Ha6POYNKspTyY/yP8eu//rNZtuaxTXfz3ffQ9n65YS3VVNXbDwkXt6xLK5TW/JQq8honKX2ebA/zvh0W8+O1CerZI4v4Hz+Sf41+jtKiS39fHDXba95kUPxrefWkWs79eCcCP36/mjkfP2euDFIZh8Or0xWzNKeDW0/oTHx5ywLG/X74Jw4AfVmxSYlxE5DAkhjhpGx3Cuvyyxg6FdtEhJIYcmyXUjzSn00lycjLJycl+7RUVFQ3Ksefm5lJdXd1gjKKiIoqKiti4caOvzWw2ExUV1WB2eWRkJGZVWRERERERkd9RYlxERETkICybtwmAFQs24/V6MZvNuN0e/v38t+zKKeaBm0fTNCECDAPj18Ss1/itvPc/Hj6H6Z8s4ZxrBu9zH5vy8/l640bOSG9LWmQEPUd0ZNW8DfQY3rFB3yu6d+OK7nsv/f1LTjYP/DiD/imJ3N5rKDUeDw8snEl+VSWrlmVhdcMXS9aww7SW3XwFwB1tHqNJQIrfOIuz69bvXpCVuc/EOECLMAc7S77FYoWZG17mH4OG8q8+/Zm3cxTFNRmU1WxkQPJMujdPImKmFVOwiecuOI2TU1N9Y0wY0pvKilraJsWSEFFXar64upJrF8wixn4hPSJjubBtX05tmV4X2y/b+WzOqrr3ZtsuYhLCadcllYWz1uHMrSFyeQlmt0GrxJh9xn00rFyyDQCTycQN95y2z+oCGblFvPhtXRn5hIhQbjm13wHHvmfsYD5btIbxgw6/5Lscf7yY8dD4CR7vMbUys8ihax0ZhNvrZVNhw9nKf5VWkUG0igxqtP0fK4KCgkhLSyMtLc3XZhgGZWVlDRLmeXl51NbW+m3v9XrJy8sjLy+PdevW+dotFgsxMTEN1i8PCws7YPUfERERERE5MSkxLiIiInIQLr9jNMGhTnoPa++bfbQ5I5cZ8zcA8O3ctVx1/smEhAfx6DsTWDpzLWdePsC3ff8xnek/prPfmG6vF+vvZjJd++WXZBQVM3vbdr685GJMw5OJSBrBHE8lmdOn8vzgMTgsDb++lVS7mL59K32aJNEkJJQ3Vy4luslssuwufsw1Y65txnsb6mYxN0sNo2BLOQtN2WRuK6RHs7oxJs6djq08hnsGDaRpVN06p88NH83XWzZxZee6ROz6rFzKqqrp0aKp3w1lmzmMosKB1LKcNZs7YRla91pc0HC2l7xK0Y62TLj3Na75x1AWTrwei8WE7Q8lT5tGhfHUZWP82gZ/939UeevWL5+em01q0CycVRbu+3EmJSVVhGbXrcvqqPBw7hX/o3WLOAKbR2HOr8RUUEVMfBib1mbRql3TA7/BR0hMfBgbV2dhGAa9Bu57bfGEiFCaxUWyM7+EPq2S99nv94Z3bsXwzq2OVKgiIn9rJpOJdtEh2Mxm1jbCzPF20SG0jgr+y/d7vDCZTISGhhIaGkqLFi187YZhUFxc3CBhnp+fj8fj8RvD4/GQk5NDTk6OX7vNZmuwfnlsbCzBwcFKmIuIiIiInOCUGBcRERH5lfHrVO+93RRNS0/kzmcv8WtrnhJDj44pZO8pZnCf1r725296i4y1WeRtz+H2V6/e674eX/ojL69czNUdenB3r4FA3ZrbGUXFJIeHYRgGd87+ntDQEircdjYXF7Aidze9EpIajHXHrO/5ftsWkkJCefPUs8ivKCI+1gVAtmsLI2L7kBoaTnG1i2dPO5Xxj32A2Q27iiII3xpAq6hEZmwtAUrIer2Iu88dTFpUBENSmzMktTkA23IKuOCp90hP3cH4kQV0S7qW6IC+vvN1TpcX+HlLFsMviuDNR75i2Y8bad+rGVfes4Shtz5HTq8Sfp7/IXcGbSA9uilto+7DYnbgcrspr6khOrDhOuauX5Pi9TIqCrnvh+/JC6rFFOel3GshfJOBrdKgFBdLl+8AoN+o9mz6JYPcTXlMvP4d3p9z117fg3k/rCF3dzGnXtAbu/3IfC0ecmoXFs/ZQKv2TQmL2PcsQKfdymd3XIrH68VmPfLrohaUVXDrpGk4bFaevmwMwU7HEd+H/LU8hhmP0fgzxj2GZozLicNkMtE6KpgQu5VlOcXUeo2jWhPBRN0DXV3jw/825dOPNJPJREREBBEREbRu/dt3L6/XS2FhYYOEeUFBge/7Xb3a2lp27drFrl27/NqdTudeE+aBe/mOIiIiIiIixyclxkVEROS4VVFRzYsvzyAw0ME1Vw/CeoAEY86eEjZu3E2f3i0aJEJLy6q46u4plJZV8eJD59Es+cAluO02K8/cf06D9rKiurKsJfnl+9z26+0bMX79//rE+Munn8aGvDzaxsZiMpkY0daNNXQTbo+FwtwRdIyJB+oS+F+tXU9xbgXnntwZi6kuWWaYYMzUt3F53KRWp5IUVsOIdmcTYQ9gzjlXAvDe5uXYelmxb3XjsVjZnBNMplEOEWCphryaCsa99wmX9llA/1aVdIx5lHBnJ2o9XgwDzhz8E9gq2VDwCH2bfEVFdQ0hTgcWs5lerZJ5+Jo3mf/9GgAyt+xhxidLKT4zCk+IifSkrYQ5l5BdvoS4wMGE2Psx9P23yC4r5fnhYxjTsrXfOXq0y+n8a/kXdWuG//qsQnmLYhxuMNuAYBNsCACgaWI4RcWVYIbvtm7FiICwUDuJKVF7Pf8Zm/fwn9veB8BsNnHmJSft/80+SH0GpTN16QNYLAdOYJrNJszmI58UB5i9eivLt2cDsHjTToZ0bHGALURE/r4SQ5xEBcayck8JWWWuo7afpiFOOsWFYT+IfyPkzzGbzURHRxMdHU3btm197W63m4KCggYJ86KiogZjuFwuMjMzyczM9GsPCgpqkDCPiYnB6dTDDSIiIiIixxslxkVEROS4NXPWOr77fjUAPbqn0atn83329Xi8XHv9W5SUVHH6qV256R/D69rdHl5/9Cu2ZBeQlVd3k3TJyh0HlRjfm90VZVw55UqKF2Yx8JxevvY1Jcv4eOcbdAzrydlJ43igzxAmr13GpW27+Po4rFY6JSQAMG9rBmZ3DQB2i8Grw04jwGoDYMr6ldy9aDp4YcfOQp68YASjmrciPTqakVMnE+Uso01IDWc1u4wIe11iuH4W/FMr51JjlNCmo5X1y+tmNJuKDUKKwRVtUGB3EWatpEezdVS5YdqqZ0kKu4/7v59BeGow67a1oHeHVUQ7h3HJOx+zNHMX940YxCU9OgOwea3/7KtKk5ew5aVUxEeyKT+BsmonkQFhhDk6kFdZxa6yUsDgX2s+4PY18GTnMzglpQNWs5nTUzszc/oOZlSvwWjy6+xxE5jrv8E6DUackk6sO4i2yTHU1rh56ZtF1Nrq1nYP7BrHo/+9jM1rd/H4vz6iRdtE7nj0HMxmM8GhThxOG9WuWmISwg/pvd6Xg0mKH20nt02jVWI0TpuVHi3+ulLyIiLHK4fFTM/ECJqWuViXX0ZpjRsTHNYMcsPrxWQ2E2q30jYmhMRgJVL/alarlbi4OOLi4vzaa2pqyM/Pb5AwLy0tbTBGRUUF27dvZ/v27X7toaGhe02Y22y2o3pMIiIiIiJy6JQYFxERkeNWh/ZNCQy0E+C006J53AH7e711t7c93rrEaV5WAR+9MJ1pHy7BADqd0YnwxHBG9G/bYDuz+cBrTuZUlDHwo9dxedy8NPI0ImLDfK/9lDeD4tpCfsz/jtMSL2BwUjMGJzXDMAxq3G7sVv+vZfd9PYOSajP9OkZxXd9rCLHVjbUhJ481OXvqOplgS20xgTabb7b1l6ddSEbJGZhMpSSFhALt/ca9ok1HEhy3E2xzUZpwFc9/7qTE48IVBTUxBmBQmxOCjWHsKVnMR7NjqLXOYXdVOXZnDT/mN+O7tzvw1lUX8MvO9zDMBt9v3MwlPToz+c2ZbDk5BNcuiPmpiKJBEezpGkjopiqGfOfm5peuoVmTewm02TCZTDQNhccGDePljTPI/TW+fy6fyj0rvuWnMbcQYnNwUnoqM1et9UtMGAaYTODxwnu21byWfgaP3vQJXouJ2hgn5gQzhhmSw8OoqnYz/YtlZOQUs62wjHO35NKsVTzRcWG8+fWtlJVWkdriwJ+d4018eAif3H7JgTvKccOLGS+N/9CF96gWmhZpfIkhThKCHRS5atlaVEFWmctXuORgPv31/Qyvh+IdW+mSkkCX1JZau/oYY7fbSUxMJDEx0a/d5XL5Jcrrf6+oqGgwRmlpKaWlpWzZssWvPSIiwi9RHhsbS3R0NBbL0akSIyIiIiIiB0+JcRERETlupaXFMPXTmzCZTAecpWuxmHnxuUv57KfVNEmNxOs1eOjCF9i8cge2mAhsAXZuu2oozds28dvurg+/Y9ryDZzZqhX3XjzcV4J9Z2Exa7L3MKRNc19Su7SmGpenbmZzTmWZ3zhFucmUedeTkxfONbu+pkt8AhM69+D81z9gXV4uQXEOgh12Php7PrFBwQxulUazxNeJCSnFXZ0IIe3ZllfIWa+8h8fw0r9jCj/tzmSeN4s73pnGVSf3pFWzOFbv2UOg3YPVAluz8rjhpYdIig/gpXE3EeSwc2V6e+burAagU5rBc1ecztUvfoLHZeAyIMhm45MJF9MyJporX/iYHbuzuHBgKvEVhXiaLMETUIitTQVGcDGDTnYzd42HxblZrNy6k5e+mkdRtzBoFcy1N43k6cU/geHB3SqYN569ea/vy/ltO/LK9ulQNzkekwmqjWoyS4vwZFYzskNLtod0Z/K2hQRbHdQuq6aiLVjNYLEA9hremvYT7kArXosJ3AahOz0ArN2RxWkXvUBosIPa+GAA7nxsKh+9MQGTyURUbChRsaEH92ETEZG/DZPJRGSAncgAOx3dXvKqqil21VJYVUuxqxa30TBFbjWZCHfaiAywUV1cyLeffYCnpprQsrZ0TW/VCEchh8LpdJKcnExycrJfe0VFRYPZ5bm5uVRXVzcYo6ioiKKiIjZu3OhrM5vNREZG+q1dHhMTQ2RkJGZz4z/0JCIiIiLyd6HEuIiIiBzXDrSu+O+Vmz38b/kyWA4mi4ng8EAwDNq2ieWRL27fa3L9u1Wb8BoGX/68nrhqO9dfO5Qat4ez/zeFUpeLcwYGc3aXTnQO70WriGj+N/R0dpeXcVF6Z98YSzOyeGtGNu7ADphssM66jZk7ttExKpwBHSYxOrCKV34ZSmZJKD9nZzOqZSvuGzGImTu8eAyo8eQDUOv14jUMTJjoGZfEgl07MYDZP25k/dydPP/UBdw5YwbRgaOY0D2M+XNrufaCD7GYDb7f1JSzOlyA0xpH59hnKavZSJPgi1hfXcnb947GYoEYWyJ2i4VAmx2Ai89KoXbHj7iDbLzZ4Xpe3lrE/ILFpIUn8vTmF6h0VpHWPIhN61LAgKDMKvJ7BWNYDf63cimVhge8BjVlHt78ZC6XnnUS1d4agqyBAPy8exd2i4V/tBvMPcu//O09NZmYOHUqWcv2EGEP5I6bTmNq4WpsZU6qI01ANYZhYDLVJcc3FOfgDKwrT2uq9mBzWOrz7ACUlv920zo3r4yS0irCwwIP+nOzP7W1bp6462Nys4u58/FzSUza+5rmIiJyfHJYzTQNCaBpSAAAhmFQ7an799hjgMUEZpMJh8XsmxXujQpmts1KRU01mzZtorq6GofD0ZiHIYcpKCiItLQ00tLSfG2GYVBWVtYgYZ6Xl0dtba3f9l6vl/z8fPLz81m3bp2v3WKxEBMT06Ace3h4uKoMiIiIiIgcBUqMi4iIyF+mqKaA7KodtAntiMX029eQgy1VXq/WW8O3uz/BarYxIv4sLKaDS44H2K1YTCY8hkGA3Ub4NT2IHpLAdeeegsVi5tVVS1m0O5O7eg6kZURdgvPuUwfy8JQZWKtge36xbyzDMIhNLKQ0fCmTts/mhhb3UV0eRbuwOE5J9Z8ZllNajsljwlpuYGBANEQ6A0iLyqeKbADOTi9hV2kPBqbW3XA1mcz0THiLgqqFhDhO4tNt5xFgDWPSuDvYllNGbmYJT598CvMWbWFh8WYSWoQS6QwgOshBfkUoicFjOOvk9dSY62a1pUb/lvSPCxpKXNBQbvrua2ZmraBj+wxMJriz9U10DG9PjaeMak8hb2/4BneQi3VVK/l8yyqubj6eoXEDSQlM4tEN/8fm8q2clNCWRzufRpzHjscBnhATYKKy3AUWMNeYsJrg5/yNrFr1HfnVBdzc8loWrK7i6TULAfhi7IWcE9uFj3OXA+DBYG3kHhgKJVRyw/IP8EaCO6QSd60Vu7kuKW4YEFpVTd/mu9le1oSi3FCslW5MZbVMm347b70/n0+/Wo5hGISFBuDxeBk1tEODpPjuqmIMwyAxMKLBZyYrv5jLnvsYu83C5JvOIzo0yO/1Leuymff9GgBmTVvBxdcOOajPosif5TFMeIzGT5IcCzGINCaTyYTzAA/lmc1m2rZty9KlS3G73WzYsIFOnTr9RRHKX8VkMhEaGkpoaCgtWrTwtRuGQXFxcYOEeX5+Ph6Px28Mj8dDTk4OOTk5fu02m63B+uWxsbEEBwcrYS4iIiIichiUGBcREZG/hNtbyxMb/kWlp5whsadyWpMLAZj6xS+88NIMhgxuy113nrrfMVzVtSxbkYEnZSczc78C4KVfNmPUNmHKqPMIczj3u31KdASf3XIJJRUutmTnM2lxXSJ26rpNXBoRxH+WzAEgwhnAUwNGATC6cxueemEGYMIRXje+3Wrh4wkXMnHRe8BWMGDZjjzum/o9douFH64bT2LYbyW6R7VvRZmrmsLySl76fhHWLIOnLx3BmnVlbC5NIjSkikvSrycxsqVfvKGOtoQ62vLJjnsxG5tw1UJE5Hrmf17NknWZhMx3MP2Za9k0bA/NkqN5LfNNWrZfyY2xIxmZ1gpoxeZiM/PyZrGssprFPy+iW0JTejZpCkBWaQkWs5f6+6subzVubyXTd55BtaeQzkFjmFnpoKg8kHvWz+bMFh1pFVJ34/ee9NtYumUtL86ZwobA5/HQhtrmQYCB1eLFvqycpnNKKOkYTMr1eZSEuOHXids/ZS/l64yN9OpShttt5vnvfmLRykw4mbrFWQHfgq6A1wu/La1s+OL1uk2cl7iM9L5ZlPdfw4v3nIPHYSEuOJCQYCdXXd4fZ38TUdYQBjdtyw0/v8UPtcs4raIjSUF1Dz5sKt3NxQtewjAMJvWZQPvwJL/3YMnmneSWlAOwcvtuhnRq4fd68zYJdOndnKyMfNYu28GXUxZy2oV99vs5FBGRE1/79u1ZunQpAGvWrFFi/G/EZDIRERFBREQErVu39rV7vV4KCwsbJMwLCgow/lCev7a2ll27drFr1y6/dqfTudeEeWDgkamEIyIiIiJyolNiXERERP4SXgzcRl1ZyU3FORiJBiaTibk/bsTrNZj744YDJsbPv/pldplqCYyppNuFNgxMbC30UlmTy7LcbAYlNQOgxlOE1RyE2WRvMEaLuCgmf7uU5z6dhyXOhC3AyknNk3BYiukV34RfcnczJLm5r3+g086/rhjK0tWZXHnWbwnP1KgIsoqDWJHXlhhnMIGWql/37aGipoaVObv5YtMGzmvXgdZR0VzYsxOGYVCTvRFT6FzigruzZEcAb38yAoDBj0Tv87hjnL3ZWTIdD1bC7Z1o0WQbS9Zl0iwxCqvFTNuWCQCsLKmbuby1cpNv262uAGYWlgPzWLs+g6pFIfxy9fUE2+3834hRTN2wnmYJHmKCnPSI6IrLk0e1pxCAQc2jWP9zd1bs2YSpppYftmxhRMu65L3NbGPxph/p338hFR4H76+0kNcrlM6O7QR1qKFyhw13eyttbi6g1ukm1ZFHhNXF+spYEu3/45/9q/ixpBXbXLEUhi7FbCTgKQdCfg3cg++bqjnLhuGyYLYYBFR68bb/td1qUBFgA6DKZWfPEA9eO1zavg07Sj9kXr6NV7b9AsDr65ewx1I3O//qxa/z7eA7AdjjKsFjeAHIqSppkBgf2qkl89dn4LBZ6Zue0uC9sTtsPPra5Tx598fM/GoFyxdtZfCYzgSHBuzz/RQRkRNfUlISYWFhlJSUsHXrVioqKggKCjrwhnLCMpvNREdHEx0dTdu2bX3tbrebgoKCBgnzoqKiBmO4XC4yMzPJzMz0aw8KCmqQMI+JicHp3P9DoyIiIiIifzdKjIuIiIifzUUFXPDNB4Q5nHw65kLCnUcmwWc32xkWeR0P//IpXxXW0DZwE6ekNufSy5vywXsmBg1od8AxCiur8YZZKC0PInnbpZwzoiu5u2cQ5nDSJ6EuoZlT8QMrc2/BaYnnpKZfYTU3nEFTUVWNxwGBhfDvu9PY4rqIgqx8HuoznpYR/8Ri9l9r/IxBHTljUEe/tqySEq7r2pNF2QlsXpLDD1vW0ap5OLee0xur7Qv+b8EWftwRzdJdWXx1wSUA7MktxRn/DvFphawpu5cLhs7CbrVgRBXxVv6r9Df1ZWBsvwbxDogbwwZnB8bP/IxHfvmAKUMu5Mz+HWgaG+7X75pml7OgYAmjE4b72tJDWhNgceL1WKmsdBDhDMD26/Elh4UzKiiJom1ldB/QBpPJRIA1ll5xT5FbtpZA05mMb2/w/dotmDBh/kPpzq7tyijwlhNjKyfYXEWeKQx7G3fd+93eg7OphVpnDYHmarqF7Ph1Kw9htrqHCGJspWyriiUsOwxbiYsKt5UAD6Q5I8mmmEpqMJeYsG2w43VYsHkMvJE11HrAagWTCb5f2Jttu5qxxRtJdTcvJpOJPaFPs7ZgFwHeUGAQANsKSwiKqYuguKaC+bmb8OKld1QL7mp3Gh7Dy6D4tvxRaKCTpy7f/wMbAN1PbsXsb1aS3imZwGCtIytHngczHswH7njU4zAO3ElEMJlMtG/fnvnz52MYBuvWraNHjx6NHZYcg6xWK3FxccTFxfm119TUkJ+f3yBhXlpa2mCMiooKtm/fzvbt2/3aQ0ND95owt9lsR/WYRERERESOVUqMi4iIiJ95uzLIq6okr6qSVfk59G+a1qBPaW0xX2V/QLwzkcGxp7J9dyErN+9ieM82BAX8Nku70l2FgZcgaxBTf1nL95uz2VFeNzM60GpnVe4/yQ38gfNvGkaXuAsOGNv9NyUydetM5m9qw/Sft7DjvbU8/Mg5pLVJ9PUpqV4FGLg8u6nxFO41MW5EW6lMMBFkszGv6Ct6BRX9uu0KX1LcMLyU1mwj2J6M5Q8zz3eWlDBs0lvUejy8fNpp5C4sJAtIsASRHD2TTUUvc34HWL3nPNrGtKfSXYXDYic6Khh3WRJQSJC5FXablQuGdWXi2kfZUr6NjMqdfonxclc1E974nJIqF9ed0Ys9VS4Alhdkc2V6zwbH1T2yC90ju/i1pQQl8c/Ie8jeU8x1p4fQLDICh7XuK2B2Rh43nf5/eL0Gtz55PsPG9mTmni/5PmsaK3+KYrPpQ6ICApl89ljMJogIDuCV5UvIrajgik7diAkZRkX5XNbmmdhZFINh9bJxZwJxgSXY3/RishkExprYVRZJSc8AQp1V5NaEMt8dQLS9jNUVTcFksGNWLeZwE16HnYpquLHXEJYXZPLxhl9w7TAIqTTjaBdAXlglrgKD3z+3kBfjwVgTSe0ZbiItNWACt1HXobT6twTebV0G80nWQmqtlZS4K/nHL5MBOKtpD+7pcMZ+PnUHZ9CoTpw8rB1Wq0Vrf4qICIAvMQ515dSVGJc/w263k5iYSGJiol+7y+XyS5TX/15RUdFgjNLSUkpLS9myZYtfe0REhF+iPDY2lujoaCwWy1E9JhERERGRxqbEuIiInDD2lJQTYLcSGvD3LhmYXVRKbmk5nZITDilBd3rzdOZn7yDCEUCL4Cge+3IOnZITGNn5tzUS5+R+y5LCuQC0Ce7K5Y9MpcxVw+qtu7n/8rrS4Htcudy1+iE8hoc7mt/GPR//gNcC/VumcPPIk4gyAliyezlhYVBRu9UvBsMwWFuykc9/2YanxskdQ/phsZTiafIopzbx4gyrYtZnHfAuz2fauwu45sEzufXdr9lZuZOLh6XSJvw8wuzpBNqa7vUYy2tqAKj2eOgXNYrVJaW0dNjoFXkXACUuFy8vv4FWsb8QYk3Dwh4Cbcn0iJ9EYW0Fr2a8TmJKATu2xZFfWcEzN53BwjUZ9O2QRrnxDQA2czAfnD2OIgq5+pebiHPG8miHidx4xiTKa3cSbGvii+fk6N7sqNhJ/5i+fnGu2LGbFZm7AcjbXclNHU4m31XBuc39Z6/vT35RORPumoLb4+XGcQPpfupv+/V6DeqXtPR66sqJT9/zJdXmCpp0cLN5TTQFVZWkRoRT5q5m5Od1yWRqTUzftpWdZSWMaXEjw9Ja0Dx8CRvKcymuCKK0IJDWGXsweQ3y/xNO5aVOfihuh606iKTIKLZWZ7K1Og7DgKKtwWw/y4HNa6JfaBJNYiLIKi/mlbV167IaTc10ateUFZ5MKt21EAXmWgs2uwcAt8WCa1gNWLx0DdtB6+A9zMxpw+KsFmzLi8MTAGc178hVHXpzVYfe3LBkEgsLfrs5/HX28iOSGAew2ayUFlfy7suzSEqL5tTzex+RcUUAvIYZr9H4M8a9hmaMixysuLg4oqOjyc/PJzMzk5KSEsLCwho7LDnOOZ1OkpOTSU5O9muvqKhokDDPzc2lurq6wRhFRUUUFRWxceNGX5vZbCYyMrJBwjwyMhKzufH//RERERERORKUGBcRkRPCvA3bue7NqQQ7HXx1+ziiQ/6eazgWlFdy2n8n46p188DZQxnbq8OfHiMqIJA3hp8FwEOfzeSjRat4j+X0aZkM1kx2ln1DUUYAXoeJmhI75QUmUtpk0qvHElZlbKfGMxS7xcJu1x6qvXU34vI8OZgDzHi8XnYXltEmLIZ73vqWTTv60aX9Fi4ecCuGYZBXtRSnNYrFRZm8lTEFT4CJVT+3pF18LGd2SsPjcWCxVFHmCqRnYATFUS4GjOnM5t35/LhpE21Hb+LzAoPTHaM4N/rMfR7jjf370CQ8lHbxsbSPj+P+H3aTW1nB9d0KuL03zN+5A0y7AHC5d2A3V1FSXURF7TZm525km2sLCYkwNmU453bogNVsZlSfujLc4ZxNqL0tDmsMDks07+xYjIFBjmsPpbWlRDuiCLH738gcFjeIYXGDGsTZLa0Jg9o2o7jCxSkdWxMXFnzA96+iohqHw4rVeuAZP02bxfLUJzdSmFdKn2F1C3ePiD+TOTnfEVDYhqExCUQXedk4fxs7mnr8tq1y160Xvzovl/8OPAXvzgo+D8lj+e4qTFsCqIl0YC1xkd8zjMTmhZht4LFVsL26bjbTeeFbGB2WTXZCcwb8FEut2SDr81w8FUWsPWknRP26IwO6NE2kZ2ACH6z7lvGd5lFW6+T1DSfhtVjwekwQ4cZq8nJGwgrMJoi21vDd5jFU1JhpGxrDPzsns6t8GvGBw7m6mZnsynx2VNVVLnBYjmwp0c/ens+XUxYC0LlXc5LSYo7o+CIicvyoL6c+Z84cANauXUvfvn33v5HIIQoKCiItLY20tN+qPRmGQVlZWYNy7Hl5edTW1vpt7/V6yc/PJz8/n3Xr1vnaLRYL0dHRvoR5fdI8PDxcVXJERERE5LijxLiIiJwQNucUYABlrmrySiv+tolxV00t1bV1azwXVVQd1Db5lT+xo/RdkkLOJTZosN9rbZvEAtA0Kowgh53Z2XdSXruD0MimrHjoZPBYCHo2kFMHrSAkMJeE8HkUlFeSEBZCx7B2jG16OrXeWk6K7kWP1D0s2JZJ5+QEbp/yDT9u247NG03yrk60jO9GZtlX/JI3ERNWaq03AmA2GwQ6rHRqEo/VHETL0A94dvZUIhwd+M9Lw31lz2s9HgakNyOfzYCBzdjJjMxzWbMnmbnbuvDU8JE0i4j0HVeg3cbF3TvXnTO3mwp3BZ3abmeNkUV+dTonJaXw8frTqXEv49w2p1Ne+xmBtlRC7K3pGuFkxp65xDljuLJtf6x7mUET6kj3/T4mYQRVnipSA5OJdkQ16Ls/AXYbL4w7/aD7L1y0hfsmfkpcbCivv3oFAQF2oiOCee2xi8neU0y/Hi0abNOmSwrT3/uJL/83k1OvGsyg2NEMih0NHeHlJ6YxecEyprfeSlpSE5z2WprF53Je8+F0j+3GR+vXcFrz1rz0zlxmu78ntEsxHSJNuDJ7EtbezsImbgyTQf7uECLiSjGZ6tYFN2EwJmwXJhM0cWxh7cDtnPnMWFx5VrJdLsyfujl3YmeaxkRwSmIbYoOCeWv1csam1hITUE5MQDlt4veQWRWFy2WlttYMdoMt5bG0DM4lLrCAKzp/zo1d3yU92sqinDGAl1Xcg4GHK1PgtYyBlHkS+eCkG3znwmt4+WDHIryGlwtS+2Ix/fnZUa07NMVkMhEZE0JkTMif3l5ERE4sHTp08CXG16xZo8S4/KVMJhOhoaGEhobSosVv3wMNw6C4uLhBwjw/Px+Px/9hSI/Hw549e9izZ49fu81ma7B+eWxsLMHBwUqYi4iIiMgxS4lxERE5IZzftxMV1TXEhwWT/msy9++oSWQYD140jE+2rqVNy7qZquU1O8itWkyT4OE4LOF+/cura5ix7S4iggoocq1n6O8S44ZhUFTjYlj3Vtw+rB82q4VQW3PKa3fQJKIdT95xLhFhgTRNiKCV+Vyyyp/HWzuEhLC6ZKDZZKadszf/+2UpIdXbeeWi09mUW0CbuBgmvP4ZAKaKWvLfXU7uuQNxR9Stn23gYfKCbAqIZ2yrnky6YaRvTeyWsS154bzbGxy3zWLhuYvPYo/rZHZV5bAh50kM+2aSIzezZlEsH69bw50n9d/rOXNarTwwpAtT8zbgpppVJWsZHNufSadd87teo32/tQhuxqvdnzno9yTCHs7Vzcbj8XoxDOOo3ihcvSYLr9dgd04J+QXlJDWtexigVVosrdL2/t/F6vkbefq6NwEICg1g2EUnA5CdW8K7qzcz8vLl9OiwmYVr23FOy80E2Gr4pWI750a8xz/a9WLEs69SFOuhpaMuiRzqCOakEW1ZlZmLsXE7NruH5u2z/fbpNUwYgOnXH6fFwxv/+JDnvu3J+m+60bNHEncPGI3FUjfmLdO/4fNN6wkPC+BSZyTlHgdZVeFAXaK9vCIQ22Yz/8sZyRnp8+kXvwWL2clJSanUeAoxYcHAi8FvN3ofbN+MjjG3+v7+butq7t/4ER5TXUn5OGcYwxL+fMWFPoPS+WDuXQQE2rE7Dm42+sZdefzn45l0bdaEm049mYzcIuLCgwl02A+8sfxteDDjofFL2XpQKXWRPyMyMpLExESys7PZvXs3+fn5REdHN3ZY8jdnMpmIiIggIiKC1q1/Wy7J6/VSWFjYIGFeUFCA8YelNGpra9m1axe7du3ya3c6nXtNmAcGBv4lxyYiIiIisj9KjIuIyAkh0G7jxhGagQPwWfY65hdmsnJWDmvH3cTsXZdT6y1kUd5bnNvsC6zm35J1G3PzWLwtiRHtCygo6+I3zta8Qp6a8RNgkO9cTUq8k9s730d65LWE2tMwxf9Wqrtj3JV0jLuyQSyP/fQjc3ZsZ9qmDay//mbaJ8YB8ORFo3h5ymzmPDOHiioPm9dk0X/02djNIXi84dyRvxCvYaM0PsCXFD8Ycc5YsopqmbImirHtnOwobEFccDijW7be73anpvQls3Yd5TUuWge15fLZH1HtcfP8yWcQ6Tz8m3irCnZz4YwpRDuD+HLkeELtzkMeK6+0nOe+X0CrhGguObmr32tjz+5BaWkVUTHBfPTdMrq2S2JQn/0fe0RcGFa7FXetm9ikKIqr17C95G327OlEcbyX1ql1Nzs7N99CgL1ubfZOgTtYlH0WzuI7yE/ygAnMkQEABHrDeXbOYgCCdpaTPHgPWMDABIaByQQnBeVQ/3hA/T3WKgPa99rCqvm96D2qHWaziSeWz+GNDUuweVx0a72bohoHyytTcFjdOK1uKmotRGeEsqemlmCni2KPnY7R99AppowoZwdMJjMOazT9mnzK0pxrqfL8duM2s2wSHstoukS2Js9VykMrp+IJqEuKm00mmgREcOfy9/kpbyMPdhhL85A41pXsoqSmAqvZwtjknphNZirc1fx79eeYTCbua38GgVYHYRF1FSvcHi/z1m0nNTaCtLjfKhb8vCWLaT+v59yTOtI2KY73561gZcZuVmbsxmm38vJ3i0iICOWmMSfx749mcHLbNB6/dJRmX4mIHKfat29PdnbdQ2Jr1qxh4MCBjRuQyD6YzWaio6OJjo6mbdu2vna3201BQUGDhHlRUVGDMVwuF5mZmWRmZvq1BwUFNUiYx8TE4HQe+vdiEREREZE/S4lxERH521uxI5vsojJGdGzpK839VzAMLzXeQhyWw5s15PUazP95K/GxobRMjaVdVBzzdu2gTWQMxUUVVFa7sdmguLaCHFcWTQPT2LwzjyXrMxnRqw1B5sv4dEkJ/x51it+4CWEhJEeEUWjk4I3bznYDPtzyPVe3PY9qVw02uwmz2cwP09cw7evlXHhBH3r38i/V3ScpiTk7ttOzSVPMv0vqRQYHcvu44UTl1GAymegzrD0mk4WkkJEAvDomjuU52VzWuS7xm1tRTlRAICaTyW+cvUkJiyC7tBX/mZvClNPPYeLJTRv0+ffs2Uxdt577Bw/i9PR0nBYnpq2d+HjOz6xs+w3LbXUJ1OlZmzmvRac//6b8wYKcDCrcNVSU17CpOJ/usQ1jOlhv/biMz35eC8DA9GYkRYX7XouMCOKft47k4Re+5ds5a5n6/Uq+ezuNoIB9zzxOapnApJWPU+uqJbF5HAuyL6a4egVVjhlUpF7El6u6cfFJ8whwVlNT2QZ7YA52czEuTzbR8T8x0NaGJcVZOM27oQnsqd2J1dQWMBG5tpTAq+uS6dGeUk4KzWabEcT4qAzq38afi2PoHp5HMxsscEVShIsHnvmaJ//3De5z8mkSVkV6bC5Wi0ETA992rcL2kFMZhrtdORfWbqd9m0zm7W7Bd5lpXNDyfL9jDLY3IyXsfDYU/h82c2tqvevZUx3CJxtn8Vaf1ry6ZRbVAS4MA6IqInl3zBWE2gKZkbMGgG93r2Tx6i1UeWp8Y8Y5wxgQl87cPeuZnrMagAGxbRgY3Y5567bRISWBaT+v5/mv5+OwWZnx4FWEBtbd+L3rnW/JLSln/c49fHj7xZzSpRWzVm2hc1oiuSV1a7DvKSnj22Ubqaiu5fvlm3jwguEE2I/seugiIvLXaNeuHT/88ANQlxgfMGCAHnaS44rVaiUuLo64uDi/9pqaGvLz8xskzEtLSxuMUVFRwfbt29m+fbtfe2ho6F4T5jabvveIiIiIyJGnxLiIiPytZRWWcOlLH+E1DIoqBnLRSV0OvNERsmzPdeRX/Uiz8GtpGXHjIY/z6bfLeWbSLKwWM/954Ewuat6RC1p3pElIKPfc9D5bC3rRfkIGLZNPIiEgGcMwuPqJjyirrGbVlmwev+5UALxGrd+4QQ4739w4nu/XreWt/JewOjy0DWvNktnreOjqN0lMjeGFabfy8v9mUlJSxWtvzG2QGL+qaw/OadueUIeTd9as4MlFPzG+Qxdu7XUSdoeNa+4/c6/HNDitGYPTmgHwzJIFPLN0ISHBFiqsVVzaqhsP9Bi+z/MRHRjIgnFXU+v1EGJ37LXPuytW4vZ6+XDVak5Pr1sPfPn2uplc2ZlltOseR7XXTf/EtIN4Bw5sbPOOrC3cQ1xgCF2iEw9rrG7NmvDOT8toGhVGTGgwAHPWb+ORL2ZzSqdW3DqyH21bxPPtnLWkNI3EaW/4dW9nYQ4ff/UjZSm72ROayWWpF9GjSVcMw6BiRwrEr2BDfl2cy4uTOdPlIMhZzRcb43E4AzktfRlgIrdqNv85vR+39Z9GWWI05jMMgne5SHZkkuOIpahLLPb5ZoKiSumesp3w4DK6kk+F10KA2UONx8TS6cn0ODcPgIRAF0/c+SW9w/fg9kItsK7Gxk6Pk5/L08itDibEXk2UtYBro7fzS3UcS6qTSHHUrXnZLDSPVJrs9bw1C7uMtNBxGMDZcyeSVeUm1FbIkoKttAlNqNu/I5xPht5IgL3uQYJ/tB7BT7kbuTjlJH7K3egby2IyE+sMZf76DKKDw4l3huH1GpSWVHDR0v+xZXEVkeZg+rROAeoeXvl99dFOaQlMX7GZLs3qYu3dOoUfH7kWgMLySiKCA+iclkhYoJOSShcD2jVTUlzwAh6j8RNp3sYOQOQ4FBoaSmpqKhkZGRQUFJCTk0NCQkJjhyVy2Ox2O4mJiSQm+n+/dblcviT57xPmFRUVDcYoLS2ltLSULVu2+LVHREQ0SJhHR0djsVgajCEiIiIicrCUGBcRkb81i9mM2WTCaxjY/+KbLEWuZXX/X7UUIura8nNKMAyDmITwBv0Nw2BJwSeUuws4OeYSHJa6cs3eXzNuVcFw5QdTsVnMfHvjeGxmCw6njdKMUHInDePBt67yjRMeHEBVbQURLVezpSwGd82P7Ch9i7Swq2gVeYtvn1aLmdEdOpCe9zAOu5kmYRG89taXeNxedm7ZQ+7uQk4Z2ZbPP1vBKSN+W485t7ycQLudYLudcGddie0pa1ZRWl3N5NUruLXXSQd9nn7eXZewLsOFCfgiY+1+E+NQt264Eyu7MvL48OXZdO3XioFjOvtev73fyXyxbj3X9urpa7v3rMFMmb+CUzq1ok/LlP2OX+2q5a2nvsVqszLulhFYbXWfndLSKqxWM4GB/gn5aGcQz/c746CPeX8Gt23Owgevw2G1Yv11De73F6xgV1Epb875mZtGnMTpwzuRlhpD27R43zrdADXVbp7+3+es7jod2tQla6M8LhLLr2RjcTDLFt/J5AnZ2KJ7UjawPY7mBqZgKK1xYPV62VISyq6sNDKLWnBD34+o8RawuugOxn1ZTeamKPKiQuh2SgaGAW6vmSq3lSBbLSszkrAGG77y6btqDaKtYLcYZOZG8M1PLWjavpAh0Vm+GeE2MwQAvSw1BFdX0TeiBK9hIcxag91qYGDQNGAngaUeFpYk0LS2mKnbO/PSgFb7PHcmkxkTcF/Hy5mSsYCVRTu4dsmbnJ/Sh+8G3UmYLRC75bevx+Oa9Wdcs7q16VODYthSnkOoNYApJ9/A3J8zePTT2ditFv538Tncd9mbPP7A12AHcxsbVWscfP3LBkwmeOaKUwkL+q1M6JPjRpN7RgWxYUENYowMDuTG0b/99zH5pvNYunknIx54ne4tmvLvC4eTmV9CQkQIFrOZhRt30CIhioSI0D/5SRIRkb9S+/btycjIAGD16tVKjMsJzel0kpSURFJSkl97RUWFX6K8/qe6urrBGEVFRRQVFbFx428PJ5pMJqKiovxmlsfGxhIZGYn5L6z8JSIiIiLHLyXGRUSk0eWVlvPvz2eRGBHK7WP6/6XlzBPCQ/j45ovILSmnb6v9J0OPpEp3MW2jH6GwajYpYZcCsG19Nv846zkw4JlPb6BFO/9y27urNjI3900AduZ7Gd/+OgDGjuxCbHQIKwr38L/FP1Pr8fLx7k/IytzGJbdfyIgxnejYOdk3jslk4q17LuC7zNfYwbd8tnMePYPrbkbtqfjeLzFeLyY0mOBfZ9Geflk/CvJKSG0XxbTaO6joW8Rr5z9CUlB7AGZv28ZVn08lzOlkxuWXERFQlxi/uWcfnlu6iIvb+5cmryh3sW7lTjp0TcEZYMfj9lCYV+Z7OGBiv0H8c/p3rMrLJijMwoPd958U/723/+97fvxmFTOn/kKfoe1wOOtm3V7ZvTtXdu/u17d1QgwPjh12UOP++M1Kpr71EwBtu6bQZ2g7NqzPZsI972ByWnjvyctp0iRyn9vvyipk7pz1DBzUlsQmEfvdV/auQtasyqJ7rzTsIQUEWZMIcviXRr+wb2d25BczomMrLGYzd7z4JbOWbWF0n3RuP3cgk5/+jojYUOY5clgasolW1t+S1OOitpBgLwd7OZ+Hv419dDiu3REYeR4iqiFxdCUJoXXlMLukZZO1IYxWzg7Uur7A5qymstxLQAhENyuloqYuLpMJbBYvNktd6fGuzTJZUppMFOWYgGK8FHugoCiYzPIQHtnejbl9P2RfVWXbOMDAi4GHusdAfu1oMujkzMdmL8NsglHN13De+69z77AenNZsAA7L3isGdI1Mo1NECoNmPAxAUU0FMc6GieWCskqmzFtO12ZN+HensXycuZjh8R34eNZaZq3eggG4vV5ydhXhcXux7gJ3GrRNjCMjJhfzVgveLUHsKvQvJ2oymYgLD97f2+7niyVrySkuY9rP64kMCWDynGW0bhJDv/RUXp+xlNAABzMfvBqHTV/tRUSOVenp6XzzzTd4vV7Wrl3LsGHDVE5d/naCgoJIS0sjLe23qkyGYVBWVtZgdnleXh61tf4VrQzDID8/n/z8fNatW+drt1gsREdH+xLm9Unz8PBw/XcmIiIiIn5090xERBrdp0vWMGvtVgBGdW5Nx+S/dgZNy/hoWsYf3jrff8aOihV8tOMeHOZALm/xP4KtkbjdHt74dgmlaQGElZSQnZVNWexkbOZg2kZej9lkJdweD55AvKYqJv20mxFJZSSEhWCxmOnfM5me7nASYsIICzbzbumzAMwvXUDNkiY8/eQ33PzPkfQfWFc2PCw4gPSE1uzY/S1OcwitIm9md/nnJIde5IuzqtxFSUEZn+zZytOL5jO4aSoTmnTkttWzyWldyXPDUsiszAUgq3K1LzG+Pi8PAyh2ucgtL/clxkc0a8mIZi0bnI/7b57CmuU76N63BQ8+ex6PfD6BamsJrfIvZNxVY2kZGcXUcy8kq7SU2KAgHNZ9f33ZlVXI558upc9JrejcOZnY5CgMoGWHJOyOg/vak7kjn5+XbKNzlxSqyqtp2ympwQ21Vh2a4gy04wz00qLN85QWeli05iwKWtQlhl/7dhEPXDlqn/t44L5P2b41l7mz1/LcC0mYLbHY7N0a9Hv52el8+sliMJkYe+tqkjutITZgEN3jn/frNyC9Gd2Tm7Bk0RYKC8rZtLOuNPmGHbl8+NocPv9uNdjMRP1nJ60dXmprwGYHt9vEBlcYXQML8BqQE2Uh5GYPQZWF7Hk0iJQwN93j11PtcmJ3uGgTuZVpIS2ZVbOSxOVxDOi1hV1OO3tqQpm9vQ0Wu0FtkYOkJkVER7qoxIPD5qbCY2ebK45ESyUpQblUY2JhtQ1TUA1nXTGTPVVRWPbxPIxhMjBjxmN4MWHC8KXG6/63vCoGm6MMMwbxjmJ69dzI9JJNZG5Yw23tbt3ne2AxmXm911X8XLCNUU32voTCc1/P5/PFazCbTCx49DruaX8G23MLeX3GlwD0a5vKhOG9aZ8cR3VhFW6vh7792nPv6o9wFddgbgYG8J9PZzFj1WYePH84/8/eWYbHcZ1t+J6ZZRKsmCxZZGZmiikOMzM1aZIG2iaFFNJg27TBhhnacBwGMzPKtmxZshhWWuadme/H2rIVOdQmTfpl7ly5rD1zzpkzs7OzO+c57/PmpX+9yO42j5/mLh/DSvI4feJQdjW0M7q8kMZOLwB1bV2MKk1asccSMrKifll3Gv8PUBBR+P6j4X4IY9DQ+F/EYrFQWlrK3r178fl81NfX06fPf29RpobGDxVBEHA4HDgcDsrKDqdlUlUVj8fTSzB3uVzIstyjD1mWaWtro62trUe5Xq8/av5yu92uCeYaGhoaGhoaGj9SNGFcQ0NDQ+N7Z2JFMc8s3Uh2io3SLOdX1ldVhZbguxhEJxmWr2/J/d9CVVV217SRm+Ug1WHptb09sh8VhYgSwBdrx6ZLZ8X2Wt7q2su4X9Vis0QJZryHy5cU3zLNo8m2TMCiS6Wc3/Kb9z7CrnMgyXDb799E0keZfM4jxBQX0wf8nSzLTJrrprDDW8UU50RuePdNVBU+fH9rtzAOMCRtDhnGMna2h9CLfRmZM6d7WyQU5ZIhP6ezxY3y50kALKmtZe8jO6k/MWn/vGp/lNmDzsGfaGdo2nxUVWXtB1sY47BzxejRFKamUJmZ2ev4d6+v4eMPt5Fa4OSMs8cT8IcBCPgitISrMQ1sxQTUd6wFTgWSE2aFKSlfee4fuv9j1q2p4YN3tzB9QjmfvLuVAZMr+PPjF3/tya+bf/Yina4AOkANxrj0utmcdn7P66xPeQ6vrL2NRPxjIv4riEdg5sRR/HW9gILKp29txdIU4+bfntC9XzlRhyhmI4hmnE4btTXtTJ2yi4D7D4BAatZSJF3fHvvZsGYfzjwvfYc3k19YT6oYxxfbxfP3fcjaz3Zy5W0nUTYiC6No5e7b32HVymoKi5xU5NrxB10YYjt5a8U+MJgwjvQjGZLZgfUGEBSZ6t3FPJeRwo6CVAIY8Ko60nVBQjYD4lQfV564nDHpLSRUWBm1U2x387uBH3Bc5oHu6O4yNcziYCEXl23G3W5l2rgDB98zUFXYHzVz6TPnYLTG2d1RxuRhVWRkuzHLCSr6NxNW9XTpDMiqinSwUxUVAQHliGzGAnTHix9JmtFPl6JDFhQsUhyn1EWn7GR/oJ4Xt2ylLeAn02rjnGFDEQ/2//qzy3njuZWc+5OZnH3KF99DdKHkpKsQTLB3eyNDR/UlP93BwMJsalo7uWD6KIYUJxfynHTeRDbVNHLGn14hq0yPPl8ijoxYEEGpsbJ2bwP/WrmNy44Zg9Vk+MJ9AvjDUeb+4QmUg4e/6s6fMHNYOS1dPvLSUzhp7EDmjejH0OJcynMzGViYjcX4w8pBHorG2dvSwYDCbPRaLlANDQ0NIGmnvnfvXiBpp64J4xoaX4wgCKSlpZGWlkZlZWV3uaIodHV19RLMOzs7UdWevxXj8ThNTU00NTX1KDeZTL0E86ysLCyW3s9uGhoaGhoaGhoa/7/QhHENDQ0Nje+dwUU5rP5D0hb864iXTYE32en6DQDj897AYez3nY7vEFG5E390F+nmsYjCF4tQL7+zgYeeX0paioXXH7kco6Hn1+3QtHmEEh6sunRk1c4t239Pii6dSEkCizlpae6KSpgSOuSYHjmQCwfnaE4aPJTND6xk9SuruXuzzOY2P6mZPsYqyQhhX3QH2dZZXFJyXvf+LrrMzbLFuzj9zHFsXF7N83//iFknjWLBOeN5bMMBntm+GQmBkel5PHXKydgMBoKeEJ0tbgAmthjpOyqLnc/uRO9XSduRIJEmcs7JQ6nMyurez6KXV3L3xf8AAR5dfwfFA3vmFARo3t/GdfPvRu6fnAi22838/r6zWbN0DxNn9CfVbCQ1VoY32s4ps879Ru+PospUVOaybk0NfcuyaW5Mjr+9xdsjz/bnSSgx9vnXkG0uI82Qh81motMV4PgTNjByRB2NjVlAT/F0p+czlrQ9yYjUSfSTilHVMHkZc3j1ajN/+M2fOf289WzdtIMt64cwfExfPn3jOoaPe51AJJXC4k38/k+nsmdXC9b0DwFIGpsLRMIxYrEEjhQLzaFdTL62i9SUzzCbI4ww+BEFFVk/knvu/whEkU9q76Q6fT3xsJNI9CK6Kgy47WGcu5sYcmENuf3dxEI6ut6dSMYp24ihoyaUgVFMYDXEmThsD0t2VyI2ZlNc0MlkRzUFJg91ESfTjq9lVFoLABIwSB9kfcTBgoOiuABICIgCTLc2IAkg93H1sEMXBCgxhkkkDMTdJtDBhztGIil+rFlBRm/KYtf+XM6fs43mmI5842G7TJVkDvSkwK72ksQVRWFXzEyHYgJUUCGi6CgwBegKpLKp2cCi0NsocYGEX8/tSxbzswkTOH9EIbHhN3LCmASe6Ft8dCCbMdl3kmYa0OvamFvRlyWPrUKKyEhXJK8hg07Hyzecjaqqve5Xn22rwW8IEErxM9CSiyDB1NRBfFzTQH2Hm1dWbOH5pRt58urTGFaS94XX5N7mjm5RHOCCB/5JdUtn9+vK/Ex+deoMXlu1nXxnCpX5vRegfN9c9shrbD/QygljBvDHs+Z8dQONr0RWRWT1+4/W/iGMQUPjf5V+/fqh0+lIJBJUVVUxb948JG3xkIbGN0IURTIyMsjIyGDAgMO/3xKJBJ2dnb0Ec7fb3auPSCRCfX099fX1PcqtVutRI8xNJtN3flwaGhoaGhoaGhr/HTRhXENDQ0Pjv4oid4KgRxR72gl/3WjeUMKDP560EhaQkMT/fJJCUWUWtz6OO9bM7Lyf4tD3FplUVWF102lE5VaK7OfQP+NXqKpKXPFjkHoeS3unHwCfP0I0lugljBtEM1OzLwbglfrXqQ81Ao3kmCpZt68vgzMEsv3z+MvvQFUF7Dd4yDvucPv6FTWIcYXOqgZyBvZBEFIpMv4SjE30Sbmw19jPPnciZ5+bFHZvPOMh9mxtoG5PKwvOGY8/FgVUZFVlo6eOSe//hWm5Zdw35lRuee5qarYe4LSfzcfhtLO9aDh1Ne3YnTZK+mbRJzcDVVVZ1FJNisFEL0X0KAiCgBBPgCyDJFHUx0lOXhonnjWuu87lwx44atvk+6Byx/kPse6DLdzwj8uYeupYAJa2PcXaztcYt+B0npv3E7KyHLS3ePlk4WYmzugteB7JsvZn2dD1BjrMnJn6D+578Hyq9+ynJP8RACoHbWbL7kYeeHkZ00aXc96C0Wzqeoeg7GaN+xPG91vR3VdlH7j1+lpycvYxYUINvlDyPET1GwGwGD3s9S2iMnUuQ4YVMeN2KEk/iZzUYm6ak8llp/2VUCDKXY9cwFLLHwineMgwxTgURw3QEn6dE+8r4c0/jiejcjMmMYHJ2kbN4GrCnTYEl4rz+g7MGZHkOZdUKo9R8EoqOuI4dBHUg1bIOkmhT24b03JrEFDJ1Cev3TyDm4kOH+KhVN4COCWFSn0AUUgK5QICgiAgAU0xM7mGEH5FIlU6bG2pqlAXszFt3ibksERjYwY73dnMH7iL8ak1mMQEc4ZuY5Y1AEB71ECWMQFAVwLuaB/BaSl7GG7xHNojAIqqsDNuoVY+lKdbQEaHJECaPsiU1L2EIhLbvIZki4woiXiAh1vfxVMFFbakAK8zRAkm6lndegNzit5GEnvmJB89qYJ77zsfSScyaERxj21Hu2edMWkon8U20WFVqAo2cYFhNoZ2K789bSa3vvgRte1dAGw/0PqlwniKted9rbq589BhApCTauel5Vv46zvLAXjnlgspzvryXPX/TZq7fNR3eABYuesAcVnWosY1NDQ0AIPBQGVlJTt37iQcDrN//37Ky3unmdHQ0Pjm6HQ6srOzyc7O7lEei8VwuVy9BHOfz9erj2AwSG1tLbW1tT3KHQ7HUQVzvf6H5dijoaGhoaGhoaHx1WjCuIaGhobGd46qqoT99xCLbUCOrQPBRGrmZ0i6gs/VUwjE92LR9Tmq4J1QYjxVcxUh2cOE9IsZln4iVn3xfzy+9sh+NrrfBmCb+0MmZZ1Ha6ePfY0uxg0qRieJJMXjIABxxc+2LfXs8P8BU95GSh3ns3zHOCwmAxeOG8GlZ0wkI81K/7JcHLYvF+4nZIxlvXszeaYcnjr9Cpp9forT0wgGonw4aDexWILxE3pOmN78xBV8/Pwy5l00jX5jknn43n9pNWv2wpZxLzMko4A/jFjQbRt9JMecMora3S3MPm00AL+dPJ2moJc1bQ0YHSoRJc6HTbu4PRFj2mnjmHbaYcF68IhiBn9OHHy3cQc3r38TgLfmXs4f37wRR7qN4gE939tD5JZk8cCi39BQ287ASf3Izv5qe/QjiUXiLHttLQBLX1vTLYzv8i0DVHb7ljGl/EIA8grTueAnM7+wL1VVQQ1xSHCOhGNc/tPHeeKFqxk5agABz8nEI59hsZ3K88+uZ2dNK1U1rZw1dwRjM05nWfszDE2b16vf0soTCXjWogrD6VtRTDwh8+L6yZgHBGiTrUxOO3xu8tNTWFvXl2y/wCeJTTQXR9AFVPbtbiZlZAFh1UNjbTqFJV34TBfiDWyiTTlAwZBWEqkQ2jGc/FEfsc2dRVWKhJoSIcvuJKyT6Izb8Hot7H+5guygQtYMKx3ZVhKpEmZ9Ap/HRIffwk8GLkEnKIQVHTpRwR83YpYieBQJs5DoXuMgq5Cpi2NAQhB62pwvDxZR77aDoDDCXM8UW9LB4HVfX9yKhcLMpCBcXNTBRHUXggAGISmAxwSRvREbefowGYbEwfcGPvCXoAoS//L1Z5BpPQZR6bZYFxDoVHqK2ACiQHJUAhyTvZsdvsLu8esOupev7Oyk4pCejgCoROQ2qj3P0D/9il59jhhf1qvsiyjKTOWvc0/jhrUv0lYf5ckdGwEBo15CPmjtqZdEThz75Ys1Hv94XY/XAnDX+fPwhSKU52UyqCibjzYnrXiNeh1Wo54Jv3yIYCSG3WRg+Z0/+d7yZrZ5/JxwxzNEEzII4PIHqWpoY2jxFy8E0NDQ0PgxMWjQIHbu3AnAjh07NGFcQ+M7xmAwkJeXR15ez98ikUikWyQ/UjAPBoO9+vD5fPh8Pvbt29ejPC0trZdg7nQ60em06VYNDQ0NDQ0NjR8q2i81DQ0NDY3vBFVVUeRWFLkGhFTCgSOigNUginyglzC+teFPtMkvYzf0Z0L+6736lNU4ETkZ0RpRLdgMPQWrkP8RIoEHEaVibGkPoTsomquqSktoCQIiudapvfp1GgvJMpbijbdSah9DLJ7g7N+/gC8Y4YJ5o/npqZMRBAlJvItP6t+iLGUub/3iFc68dzsAOzre4/6Vyb4KHHZmD6zg3JPGfq3zVGQp4C9Db+9+XeJMB8BmN/HX+887apuBEyoYOKGCep+HC95/jSKjnfW/+ojOE8z4g0aqgx2MMBWx58W9ZGTZufinx3Rbic89fSxzT0+O7a+rV/Cvqh04U8wAKFE9I3JzmJJdhk3fW3Q8GpJw2FJ3W0crp88d9pVtykeUUD6i5Au3b+lqpMrdwol9hmLR9czFbDQbuPRPZ7Lm/c2cfsOx3eWzcq5kU9e7jEw//muNG8DfdT7x6GLG2n9L8/bTefXhfUTDKgFfhJzcVOxp93fXnTdpD1v2NDF9dDk6nUSFYyLBjak0LW4ldn4cwxH5nU3WczGaTwTBkoyQFwQ83iJu/9spnDB9EAUVgwjH4/jCUR6/7BSOn30HQmeUVzI20LUgeT7LJxaRId3K/S+/iaRkM3vKLGQkPt39Km7LM1R5c4mdaGbuuBewmWNs312OqgqcnO3mZ5NbuHmHnb2dmYzYXYHfV0+filoaXs7EVWekz+mN5E4Q2a9InNV3LXoxKXDrUACBtoADS9zBlMJ9yEBCEamJmbFIMQp0h63OBQQOGZxHFB2pBj+nO2pwSIfr2BSVHZFU8kweRJKR54f02o6EnWmWduyizKaIhY2xfM5JaQSgKW5kRySte09NCQslhgCyKqBLus5jQcbHF0fpBBPGHsYFogCKqjIubX93WbnjQmp8L6AQxyj95xHXqqrySPVnuJUAgk1Amt6FvNVO1G3otoKXFRXTV0QX7Ws9bJuuAoOLshjRt4Ds1G5Fn/1tyTo5qTYsRgPBSAwAfyRGq8dPblpPJ4v/FsFIjFgi6RpgNRooyUqjPPeHZ/X+v4iCgML3s+Dh8+PQ0ND49ykrK8NkMhGJRNi9ezfxeFyLOtXQ+B4wmUwUFhZSWNgz/VMwGOwhlB/6OxKJ9OrD7XbjdrvZs2dPd5kgCDidzl6CeXp6OqKopSPR0NDQ0NDQ0Pi+0YRxDQ0NDY1vxJKqGt7eWMW5k4YzsuToUcGBeBcv1F7DcZZVB22ef4Kkq0BOHMBgPg6dfgA6w4QebYK+MGuXfEjxZPCF9rPbt5cyWwk68fBXlVGyckafO2kO72HYUSJ1w/57gRhyYiu+zlOxZa7lrvVLMep2UJ72NACTch8lyzKmRzu9aOLC0ge7X0dicWLxZORqNJboLn9kWxtrWgrQiRuZU5TB7kQO+XEPjTFHMsRVAWPi35vsWNSyh20tjcwyVzCof+/c3EciKwqSKPJC1RaWNiZt/sYPzSS024NvggklLvLiis0EPkpumzCtPwOHFfXq5/FNG4jKMplWKxcPGsnMPqVMzO/zjcY9L38A9wkr2ed2c/fqFZxePuwbtT+EKxzkio/fQhBgt1xLQlV4e8kmXrrgMiRdz3N62g3HctoRoriiqvhj+czJ/RUphoMiv9yOnNiLzjAOQeht4ayqMvFo0oZajq3gzOlPY/dtJt1po6wyp1f9WeMqmTWusvt164EObjn2LlQVgt4wZ9y0oEd9QTwsYC5uraZuqotsvYNL5xxLKBZn3iPP0OoL8OcT53Hq/FF89OZGxgyvoIpN6AQRh8XC4y+tZfFaDzqLi7RdCf7+wT4ybCl05UwnLMSwEMdw0Ha8PL+Znya8nJRThz4e54FBo7n1uglsKtjNxReuJru0lcgZOl65eRQnX7wbgCOXbqgqLNw9BFHQsamuD0Ns7ZxcsC9pmy4oyKqRvRE7edZWEqhIgoqISEDW8WkgE1EXxCGo2MR4d38qsCOahSdhxBfIxiDEyDYGGWTqYratlQ5ZR7E+KeaW6qN8EDfyWdDJDEsnBYYoZ6XW8LqvmKCi5xl3JXPt+yk1uDEK4FP0tCmHF00oKt024yoCtYFU3moZ9rn3PJmaoMLeDoBeTGOvL3lfKLTNp8RxWq/3/ZsSTERZ5apOXgMHzRCEnBiKOzlWURD47ekz0euObiv+2MdreXrRBk6fMJh4XKHN6yMqy2xvaOeO1xfx90sOL/w40JHMl9nY6WXR9n0HhX+QRIHsFPvXGm+rx891T76D1Wjg/kuPx2b6egtivoy+OU7uv+wE2tx+Tho36AuPVUNDQ+PHik6no1+/fmzZsoVYLMbevXt75EnW0ND4frFarZSUlFBScnghr6qq+P3+owrm8Xi8R3tVVXG5XLhcrh7lkiSRkZHRw4o9KyuL1NTU783pR+O7RVVVorKCrKooKgefrQSMkqi95xoaGhoaGt8jmjCuoaGhofGN+O1rn9AVCNPQ6eW16889ap2WSDXBRCc6IRk1qKpBUjI/A5SjipQAsXCMz35fwKDTjcTmlPB81z1McI7h6rLLetQrtA6m0Dr46H3EMjEYmpL7VDwsadzPkzs2UpneTPnBYNCQHGd/g4v0VCt2q4HGcC3ZpnxMkrm7H5NBz9O3nsXOulbmjunXXX5m5RB2dXYwwJaJfW4qAbWAXSELVimbC+2V5OamMGVI6dc6jwAvVm3h9jVLOKG8krc71qMCL65aTtmgcvqX5XHrhKnoPhdV8K/12/j9wkWMKsvHlKbHrNNTmZ7BE6+chhxJcOvaRaxvbuL0gUN4ydxEWrqVor5Hj9a8buwEXq3awU9Hj2N2aTlvbNrJaQtf4sqpY5nZ/+sdh6yqTM4pZW/HJkbk5wOwct8BVuyt47zxw8lL/XpRq4vq97OxrRlQsacDItTtaGf3riYGDj76QgFVVWnwe3m1fgOPV68i15zCp3N/ikgCT8dsVMWF2XYdFsfNvdsiYku9j1jkY8z2n6LTSZxwyqivNVYAk9mAlG4i7ongcNq+tO46Vx0KKi1xL/t9LjL0dlp9yZzaVa3t/OLm+Vx+83xe37eDlHW1dDVH+XNiJdNKi3h/eRXlp9WzKlZF2VAbO9aX8vopF3DGc68QU+M87BpNvt5PXlorRUKYdtlIMXHW1hXycYXAO2e/SrYtQGvCwLZ4KuFzbJRJIUJIBBWJXClKm2LALiT445CV/G3bZDLy/FwwZC1+WUdY0ZOlD9MhG6mT7cRDMoIgM84YIkOXwCrKSFKcLCGOrMLSUDYVRjcdCT1LfeV0KlZMokqm3keKLsyBqJNSfRNWUcYqykQV0AvQkrAA0JwwdUd5F+iD3Jq1gY64iX0xB2Mth6Oo7VIMi+hhRSQdgWQUuqyKCEJSAG+QMxmY3sy2ziIOKeZyl44BWXms6RzJhIxNxBV3d386wfpvT051+oMEI3GKMlOx6U1c328eazr2kmm0s6OzmZrGWHddQYBjR/an0eXhykffxGEx8eiVJ2M3JwXpf67cSjAaY9GOGhb+6iI8gTAzbnsMUDF8TmD+xUnTqXd5qG528euXP2LFHT9BEgUsxp4uC1/Gkh372dWYXCiwYV8j0wZ9/fvXlzF1YN9vpR8NDQ2N/68MHjyYLVu2AEk7dU0Y19D4YSMIAg6HA4fDQVnZYdcyVVXxeDy97NhdLheyLPfoQ5Zl2traaGtr61Gu1+uPmr/cbrdr4un/GNGEQkcoiicapyscxxOJk1DVXvV0gkCqSU+6WU+qUU+mxYhRp7kJaGhoaGho/LfQhHENDQ0NjW/E1P59eXP9TqYN6C18qKpCPLaSPqYCxqSOoFbNp9xcyg7/p+jClzEi52EEji6Mp2WncOuTv2X/9gaWOBZDvIvOmLtHHW80QrXbRaZXIDMnDWuKpcf2tUuuZejoX6MzqCDcwcCcbNKMZgKkscjTDxWBuvoDvPzManylEuNGdZCaW0uWMY9b+/+ZpoCPj+r2MrekgvLCTMoLewrKJ5UNYGxGATPue5IttHCO9QTmjclgUMpATEO/eaTlq9U7CCfivLNvN9Z0IwE5StwksTrYyuqtrczo05dJhX1obnJTX+9i9JhSPqnah6KqLG+rBxeUp2fw1okHFyiYjDw457ju/k9dMhRBFL7Qsu/KUWO4ctTh6Pl7P1qGJxTh/s9WfS1hvCMcZP77T+IOhRjY7uS2E6YTl2WueuFt4rJMs8fP5dNGk2I2EU4keG3bThb0r2Bwbu+I7GmFJQzJyEYnSlzVZzh/eeBdCuMplPTN+sL9P7h5DX/ZsIJMpwgCdEWDyIqCKMioSlJ43rxmA+HoZmYdN7y73cKG7dyy4W0mZpfyj/EP95pwUg9OXny+fL+3i70eFzMLy9iQaGH//YVkSlamzB/fo14gGuOuj5di1ElM69eHTfevR56uQ4mLfFZTx/VjJ3D38XOo6drO8UOD7Kh9iUbfZ2wIuDmmRObt4Eiq2138fM4Uwrt1JPQRTEKCdJOJc8v6MTA7h2HWHDZ2tLBiUyXmwiBDLFZm51QjKQKPbpvEO+v7oYhBdPrkhFy9P513vIO5bPBasnRxIE5YETCLKiZBQS+o6AWVk0q309g0mmHmZI7wPUEnf24bzUBHB3YxiFlKkCdFSdfFUBHYGbNRoPeTK0WpiVtoits5IJtBgHxTF43+dAxigpG2OgQBHFKYLdFUnFKEloSRUZbkZ9wuqsgKuFQjuyMWSg2h7hzkmfoIabqkdaVwUORWUXGICRT1YNbxI96rQ1NPJh1km/20hZOLMxS9wObmTnbFcyi3W8gyBo5o03vC6uvQ6vFzwp3PEI7FufCsQZTlOTmjcBw7V/ioauvinvPOIWeijXl/fBp3MIzVYGB/ayebapupd3kA2FrXwqT+xdS0dpJqTS7Q+en8iQAccHlIKEmr+8q8jO79JmQFk17HmROH8odXP6M024nFqEf6hvac0weV8s76KqxGPaPLvtypQuP7R1ZFZPX7nzT9pmNYtmwZ9957Lxs3bqSlpYU333yTE0888ah1r7jiCh577DHuu+8+rr/++u7yaDTKTTfdxMsvv0w4HGbmzJk8/PDDFBQcdq5xu91ce+21vPPOOwAcf/zxPPDAA6Smpn7TQ9TQ+M4pLi7GarUSDAaprq4mEolgMpm+72FpaGh8QwRBIC0tjbS0NCorD7tLKYpCV1dXL8G8s7Oz+1njEPF4nKamJpqamnqUm0ymowrmVqv1v3JsGl8PVVXpisTZ7w7S6I9wyMjqy54uEqqKKxyjMxzrrl9gN1GaZiXNpNcWRGhoaGhoaHzHaMK4hoaGxo+ccOA5Qv6HsTp+hsl6xlfW/+Nps7nlhOlYDIdzIUbD75GIrUVWjcRDjwBmBhAGAZSwkXIpSmeiFl90F6mmoV/Y97BpAxk2bSBjQoPZ4N7CxIxxPLljA2/t28XNoybxq5WfUO/3kv5ZBxVrQ0y441T0Bj2XHz8OnU7imFNO5qUHHeQUOllwzngEQeDXA6eycMcObIIOs1FC2J1OzNGCKkIYD6mAN96FisrlH79FVWc7b+2tYuHJ5x91jE6rhRJnGge6PIzr05dR6WVHrfd1+NnIifxt40pOqxzM3L5lfLZyBy1lXh6N7cZhMNLPmUkoFOXyix8nEo5z4SVTuHbmBERBYJnvAFFFxhsP9+pXVVX2dXSSl+rAqvt60aP7qlsxHYiiyxA4cegAnl6zMSm8jRjCA8tWs3D3Hn4+eRJ5UQMVg/LR63Xs8bTjigRBhIaQhyXr93LOsaPom5HGnjYXok7g5CdewiBJFOWksafDxQd7qll65SW9HvazLDbeOeKcH/PUl0dO1e1t4+ONVQB4PXDDxOmMzSzGIOkAHSkZr/Hh60/y5N9MRMKvM2HGACxWI7vbOnh+13oSqsKy1r2E5XiPPOY13k5Oe/9FzDo9by04n33+Nt6q38YJhUO55JM3CSfi3DB8EjEpjAq0y0E6o0GsR+Rk/6Cqmle37EC2yjzZth5hrA7dPgXJaWB8QQHvNL9FJLWTfo5H2e2JoCog2GHCQfdri9KHE/teyarGeiSTm+PzNqEXZN7+RYQVK19itTWTX86eyvX3vIE1Ucwu0UO1WsC1BVux6ONcPngFr7b2QwgbuGDdqYxMa2KvkorRnkA1xFFUCKgSPkWiQIzhUXSEVIkUVP6xfwwtipWVvnzKzG42R3JRRYkaTzqlNplMnZ/oQVFMVlXaZAOTTF4EASxCgMaEg4BsRBRU3AkLnriRNJ1CVNVhEhJIooJXkXiwqx9jLO1UyH5UYE/cgSgkI/lLDUH0ooAeCMkikqjgVyTSRAVBSOY1V1XYHE0BQaI2nI5JTBCSDaTqw7jidg5FiVv1UdRQMlI7EdGhysnyp2oncl3ZOsy6pDBf53+N/mmXY9Z/vVzYVd5GrDoTQb9MOJZASI/zYudS6ASvL8r7m5J5Jt9ZV8WFM0bhCSU/p75wlNdX7+CKOWP5bNs+HBYjI0uTTgvPLN7A3pak5eaosqTYN7gohyvnjKPNE+C0CUOJyzLb6lr402uL2NfayR/Pms3iP1yBw2L8xqJ4lz/EFY+8jiQKPHTZiVhNXz/SXEPjmxAMBhk6dCgXXXQRp5xyyhfWe+utt1i7di15eXm9tl1//fUsXLiQV155BafTyY033siCBQvYuHEjkpRccHf22WfT2NjIhx9+CMDll1/Oeeedx8KFC7+bA9PQ+A8QRZGBAweybt06ZFlm9+7dDBs27PseloaGxreEKIpkZGSQkZHRwxEikUjQ2dnZSzB3u929+ohEItTX11NfX9+j3Gq1HlUw1xbX/Pdp9keocvnxxRI9xPCvu+T2yPqN/ggN/ggOg44BmXbybNr7qaGhoaGh8V2hCeMaGhrfK9HoKkTBit7wxWLp/yd2ehax3fMx4zPPpI912Pc9HABCvt8CCYLem79QGFfkTgKem5B0FUj6EoyG8UAyF7Usewi4rwRUWuIOcvWgEj6U7heRKADpYoJ/bn+Z8hwzMworvnRMBZZ8Ciz5qKrKn9Y+g6wqPLRlNTpjPemKRDxFR7tR5PlPNgFQWZTJzFEVWO1mLrvlcMS0qqr8fuEi4orC0GgJ/7zsLALFURCMrAm0MsoykME5fvo5hiIKIqnG5MPnoX+PhlGvY+HV5xNJJLB9hWXx4gO1/GPTOs4eOIQTKvr32j61sISphYdz1502I5n1+SfKLERBoK6mnXcXV9E0TCGcKtIc9XNuQQ6Pnn8SUx55lEYlQLTGRzAQwXrwwTkajvHMxi38dfFK8tLtDBiQQZ7NwS9HTvtS4WzpZ1XotgXIAeJTYvxlyRoAUgQ9969aA6LALS+8S8ZCF9OPHcov7jqdcdl9uLhiNJ9triZPsjJjTAWCIPCvK8+ixRtgaU0t7++uJibLpBwUjoOuCDMve4gHbjmFgaW5PcYQDX+AqrRhtJyDIBxeeBGKxXlq9Qb0eokzhw9mU3Uz2z7+DQ+duJoPq8dSMeROph1xHgF0hmFIhvMJh96ifEAuJrMebzjCaU++TFQfw1RkRC8YWFxfy7F9D0d3rG6ppysahmiYJzau55W21USFODvczcgHI3cTisIgRyF22cYwZz55Fgf3fPwaTfUKzkonO7raycuIkJLmYUskDVUvMn1zgt/dfx5eewePV7+FXkgwNzWOKICv0UBKUQwlYkJnUrhy5EUg23hh7WYGWCOYdMnIacswGXUlBLwhjKLCeaeO4rGHFpJwpiPKCq6QhaIUL96EkcLyNhIJiR37CmgMpGCNxMnL9/ChXI6+IEQgYUAvKty9aSST+1aTb/PQLkBhRiupBgsfh0v4INgXQRDoCtho7kghtSDEblc2+7zZOAwxjimqwnlE1HVEFTGKCnFVR2vEzkZfMeGEgQPedCTCFJiDiKKCJEAgYeY4exM6QWVfzEa7bEJBwBs3ElEEdIJKWJX4e+dAig0ecg2djDcnRXQVFUGAGCK+uJG2eDqKmpTCW2JpqIJwMJ84VO0qwJiXvAepikgiYECJh4jqdTzXMIiT8zaRaQwCsN//KQPTz/rCz0j3Z6VtFzdsegFJEHl18nXccc5cdrobeS2xFBWVflnZTBlQQm17F/NG9CPVauYvFyzggfdXEonGOX7MADJTbDx1Tc+c5tMHlfL+xj0M75tHqiUZOS6KAk6bmSc+Wcen2/YytryQT7ft626zsaaJE8YM/MoxH40H3l/F/vYuAF5evpmfzJvwb/WjofFVzJs3j3nz5n1pnaamJq655ho++ugjjj322B7bvF4vTz75JM8//zyzZs0C4IUXXqCwsJBPP/2UOXPmsGvXLj788EPWrFnD2LHJ79LHH3+c8ePHs2fPnh5RfBoaPxQGDx7MunXrgKSduiaMa2j8/0en05GdnU12dnaP8lgshsvl6iWY+3y+Xn0Eg0Fqa2upra3tUe5wOHoJ5hkZGRgM2uLHb5uorLC1zUujP9Jd9u/5Tx3mUHtfLMGaJjcFdhNDs1MwSt+/W5CGhoaGhsb/NzRhXEND43sjEv4QT9fFgIAz8yOicpi1dU/TkVjACaUJgoFHsdouxWw56fse6rfGJ60PEVNCxNrCnN/3799q3x81389O72fMzLmKoWlzv1YbX9dtQOLgKwVv3EeKvndOaL/7ShKx1cSjnwAgiNk40l8k4LkJQTRx6DFuSygDkzV20PbYgqQrRlE6UJUOBAHmZv0Ti/gCy944gykn/6XXfpoau9i1o4lJ0/ohCevxu6/hmQl5XLl2JkVp7eRYakCFkubZFE4u5b4VWxAEgbKCTKKh14iG38Rs+yl64zgAtjW2EpeTYmb6QaHJZjXys7OnH/V8PD7nJDa0NjE4JQtvV5CU9KPb1OkkEZtkoMMd4K4nPyEr3c6NF8xAJ4nsWF3N3655msGTK3m6fwBPIkp1ZysnVPQnFo2z9N0t9O2fR+mAfBRVpcnno8DhQBAE3tpaxV8Xr+Tc0UO5fOIYfnHdS6QN38W5Z+zn04aB/PP9MENfSWPOmeM5I17IS5+uw9IYJ3BtGKvNxFsPf8yjt7xM/MLBkCHQmPBSeyCZl/mYwmxU9SF0oo1hmX+godbH7298mUQ4xjkXTWb2/KFsXF9LUR8nQ8sKENcJSKKIPirgqIkTKNKRCIFvnJnmg2KaThT59aiZ8NgB1nyyhe0DK8k7cxyiIHL3S4uoOtCKQVFAFYmrYR48bj63/eU9QsCabXU9hPFEfBcBdzKfvJxI8OErfUnPcjD9pFE8v24zf1+xBlUHD61eh7g/zhOX7cRqjXNsvy3kf04UP8S8U0YzadYgDBY9t639lAa/B1WnosgSPo8KQoJHt65kWlEBVl3yvT6upD9rWxuw6vW8sGQLiVwVIRXqOv0koiJXjxjPNUMmcPUHC3G1qXza1shTuc9Tnb6UqFHP27vKMevi3HnMm0hiDHfkNFINp3D8RQOIygl+9elHkKpDQeDpt2cxviyVLPMEHvl0Oz+dPJPZJeVIgoH7PlnBmxurQMhgZP4x1Mab+ajfUC76Rz8K5/Rj/uvPogpgHJZKcVoH84Zt5rHAYNQWAzuDmaSlhxFQUWUQENE16+lb1EHcqOOVjnEoCOzYUUi6O07ekHXdeb2LU11sDxWhqqAoAuvqS3AFbdw56nVspiiKCj9fNYCorKM64uRnAxaxIpLBcGMXNlGmRBegNmHHqovSx9xJfcRJZUYL+VYviiARSOhpjqShqNAct1BkCLItlEFXzExI1jPe2ohFUlCAgCIz1tLI1lAWK2sKKarYTJYlgKKAT9XjlvXohOTn+1CecX/QiMUUwxMws35TObqwiDFhJSDFSYR1ZNh8TM/Zwb5IBjXBLBrDad3CeGckyK+2vEaWycE1lbOQhKNPQu3yJW0uZVUhlIiyYFR/FtCfM4PDkRWFvvYsRl/WMxXBrKHlzBpaftT+DjFjcBkb7v1pLzeF55ZuIqEo+MNRqpuTFvc2k4FZQ8q5Ys7YL+3zyxhZls/ra7YDML6iiKc+W091s4vrj5tETqr93+5X47tDRkTm+58c/bbHoCgK5513HjfffDMDB/Ze6LFx40bi8TizZ8/uLsvLy2PQoEGsWrWKOXPmsHr1alJSUrpFcYBx48aRkpLCqlWrNGFc4wdJfn4+qampeDwe9u/fTzAY1CySNTR+pBgMBvLy8nq5pkQikW6R/EjBPBgM9urD5/Ph8/nYt29fj/K0tLRegrnT6USn06aE/x2a/RE2tXqIK/+pFP7lNPkjtAejjMhJJc+uRY9raGhoaGh8m2i/gjQ0NL43VDV26C8gQZfrPAY6fKzv2IjLHUVPO7Wtv6KBQczp++WCwv8KA1Kms9X9AQNSpn2jdl3hdVS77yNfb8Mob8ZmvxGLtWdk4w7vJ8hqgirvIp5/T2bNvnruPHMuk/sdXTQEiEee6f5bVaGqYQLFJh0myYkt7Qn0hhLisW2gSt11BAFkpQuva1av/lLt59OmbiKN9zFZz8Wa8lsAwoHHaep8gjR9UlCqHPEv3G1rEXX9SEQ/RRFmkOq8g2svfRGfL8yOnbs587zX0CvtDExpJ61tDDt0QWYM89Ecs3P+1dMR/dczZnIn9ZF76JOTRmfLraCGUJUgjozXSMS3UJDahzSTCU84worNtTybv5ELpo38wvNh1RsYasnkiln3EvCGuf2pSxk+sZyWgJ8UowmLXo+rxYMsK6TlOLjmsbfYU9+OcSvMndSfisJMHn/oY2oiUdwrFzFovIXROU2cW76ZoNfHM48N5mHPNqQN8OnN13HXuo/5ZP9ejq0YyS2Tp/LHtYvxKBEeXbmeyyeOIT1fzynnrCFuVLFKMV7aMZb3g5uYdvJoLrx4Bg7JQEZpGp+F9zHOX8Laj7Ylc5St6CSlwoJzmJNddi9WnQG7YRP7PCsAKLAfx+IPo+yye4kV67jn3rd5+9Nf8/BTl/Dcpxu56s+v4VREZk3pS5WjlevmT2DX/g4aMhZz+pylqLF8VjTNojI9lzSdiTUfb0dRVBZ9tJVpp4yi1e1n9a4DABhDCrJFpK/DwTFDy9l4Uj71zpUYC6wEYjnYDMnrUxAcgBGIsmWlhydufzs51tJs+makH3LGJpSIYxXguWUTuenYnTgzLwfAE61CEszYDYev99UfbefBW/9Fn5MqeKmgGYCLJ4/io001tET8pDnj5BSu4vadHzLAcAwn9D2fFKOJ+6ceR9AXZsfSRvY2yljWyXSNSApBKToT+73/YGrJGzT6h5NnnYBg6IAg6AwyptY4pkIVSUzm9t5Qu4+Pqz7BPE1g9ZrdLDa2INaXY2lS0LebSLcV8qiyEYs9xK0bXmNW2a+R9DCsMBcElWiqwP2b8lAtybzsqYNyaAx6D30kMbkTnDdkGTkpPgoTnTxVP42WfZkUDbSxrsmHKonoBYlTJ6xg5IAaIoqON1yjUFWBqChhyfZ2uzuEZD37I0krcRVobMlAJyhYA3H0UvJ+LQAOMUxHzEHQY+XBDdM4sd82JuclLcD76f00JSzYpBhFZjepYpACixdZFXDJDsxSnNGORqab2ig0RNgdteEVZIqMbrKkCHNsrSgICKqIU1KZZO1knMXFLbumcNozF+Ao8XHxsA3sDqTjTuioiaZhMIMoKNj1USJxHWm2CNmpQeypUQIGM96QCrqkA8HxA9YzIKuZEcoB/rDpWCotGUAjALVhM+81bQVgSlYlw9P79LpHrHXt4/F9i0GFjJZs3C1xYtYEuxs76F+QhV4nfeH95etwtHyCP5k7nttfXUS6zcwd585jTXU9Uwf0pTL/69m+fxELRvanIjcDi0GPosLf3k3eHzIcVm46Ycp/1LfGj4PPR7EZjUaMRuMX1P5i7r77bnQ6Hddee+1Rt7e2tmIwGEhLS+tRnp2dTWtra3edrKysXm2zsrK662ho/NAQBIFBgwaxYsUKVFVl586djBkz5vseloaGxg8Ik8lEYWEhhYWFPcqDwWAPwfyQaB6JRHr14Xa7cbvd7Nmzp7tMEAScTmcvwTw9PR3xG6bn+bGgqip7uoJUufz/nf0BMUVlTbObgRl2KtKtWu5xDQ0NDQ2NbwlNGNfQ0PjOkBNNeD03IIoFGIzjQA1itp6HICSFA5P5OARBjyDY0BuGoYjFwDa8MRs6GgBIKHHuW/fZ/6wwHkm04YluJdM8BUk0MTv3Go7JufobP9Ds9zyGN7qVfMWLIqgEA4/2EsZnZF9JlXcxw+yn86dtyzlp2EbyjH8nGPg5cd1ZOIwmxM/vV8gDNXmuBQEqTB4AFNmFzzUbe/o/8HddAIAolbIv4qWPzoUoxI86znm5xyJJl/YqN9suo6/5RDpbRiOKCXQGFUWuQ5HrkvtWPsbb8QlnXjqIRQvLyBizk22BnZTrTHxQNYDOkI0/Vn7C0PRamsIjsLEPf3wDFh28u+0RLJY+lFuPIxp+Fcl0LI0N12HRvU2Ht5g3Ln+P4+99lqgis2RHzZcK44rcicf1KaGAH0WR2LezifrMBNd98j5ZFivPjj2Wny+4D0VWOO7249nh7qCgyE1/U5zSfCc3XPs8WxIRGJrPGb9YidkeZrCUXM0fCi3k/exUQtl6VEVkk2sj1/f/JTcPTHD75sv55+40OgmBDU4o7Y8vEuGUK19iZEoXXQk9n64ejVqcy1qiXH3Hqzzxu7M47+pZXLvmVT7euot0o4U7biijrTRM+1aB9B0hlBFZSB16YgLkWyfT5H8BnWQjEOzD/rwdtM1NioWyMQ3BkPxcLtxchaxTCcZkXmMj2c1eirLzuXfWlTyz7k1EATA2cdWSFzDpMlh16lWMu3wKq3fXs4gge371LP/60wWcMXUYVQdaGSSb2Zri5p+WakzrPiN3mIsWjwur8AiLGx9iVPZ95FpnIunySc1ahqp60RtV4DEMJj2+RJwih513Lj6Hd3btYWR+LtaEHofVSGFRNoIg0BZazrrWqwGRaQWv8cTOFp7fvZl+W8Hd7qPjmY1U3DuYtnCAkysG8pPB41m+v46CvCCvN65ngn0vsJs7V/q5c8YN3HXNsyx7ZzNzzpuAc5ufktJi8sZU0hEJcma/QSxtupQUM0wtrKKlczpn9zmXcJuJ195oIGu/yNOnnkda3gLWNa7m46oACUXhwecWEj3QiXNEBgExQea7bo49ewpvJdowGaKUF7cB8H7jKk4omcz0fqX8bsFMbln5GYIqMCw9hYB1D6/sfY/5KTPQeUSMeonXrj+XJV3VwHrqPZn4lmQipeiokPojFrhZ3LKfBArO3GREg0BygUuDN5XKvGYuKVtBTJbwqWbMYowh5gYUWaImMA85r4Y+oovMQjdGvdp9nxhfsI/31o9CtMWxpMts6MynK3s76VKCOAI5UhiToFCtKpgMBkBFIWlvniNFOM3egHTwVuSUoggC2MQw6bqkLbuCyiF5WUTAgMC8EVtZbSvi2rS1zM/fi6LC+GUXE1J0mOLx7rGlGkPkKT6CUSPBiAExCqigHPzF2+DJZEB2My2RFIblZHNsyVns9TxDqnEIUWEqZqmGVIOVvrbDovOBDjd7m134w1G8Ng+HTmRrU4Qr//Fm98KCqQP7cv9lJ3zh/eXf5diR/Tl25OFUDEP65H5J7W9GRV7yOCOxBH2z06nv8DC2ovArWml8XyiqgKJ+/xOih8bw+Un62267jd/97nffqK+NGzfy97//nU2bNn3j30aqqvZoc7T2n6+jofFD45AwDkk7dU0Y19DQ+DpYrVasVivFxcXdZaqq4vf7e0SWH/o7Hu/5/K6qKi6XC5fL1aNckiQyMjJ65C7PysoiNTX1R/19qqoqO11+qrt6R+r/N9jp8hNXFAZm2H/U74OGhoaGhsa3hSaMa2j8yFDVeI/cvd8l4dC/iEWXAxAJvwyAIFoxW5J5VQVBwGRO5pxc19zI+pZbmd1HYki+F4GkuJplDnLp4O/Wouq7QlVV1jSfSVRuI992MoMybweOPnF7qH7A/2fisW04Uv+ATnc48jXPfjye6Baiun6YaMFmvxqAuOyjwf8vUo1DGJ5+LMPTk3k5L58R5ZjSx7EafLR23c+Mj13cOqSGM8vt2By/RJIy2On6Pc0RD/2MfbAIEVS1jZ4jC5NIHDhifH76OX9BzHfz0ccPXPXqWkYX5XPp+FF8VL8Xu97AxLxiVmzdT5c/xLyxK5BjKwj570JVOonLWdS3KJQWdAAqMyZsZ8rY3ewTj6MtomePUsq7j4wlx+eh/0VJy/ciRxy9YTz+xFhqXQ0srSvnrPEitrS/0Bj7OWc88Sp3TtrK2HzQie2cecPT3HjpVNbUNHDxjNEARBIJDJLUY6GAqqp4Xcdht9fzpycm8+pLc9njCdBZlRTr2kNB6ho7SMRlVAGebtuGudLDM7OewyDJoAyiRvYi60BSQK+3AmHWbM6jj0XkA8doamxuzIpIjupkdG4C/MncxzeOSaeLPAyiRIrRyNUTxvHCk0sYMTUEgKsrndXLBoKgAgL1re7ucdsP5u6enNbA4OK/8aefidz62lX8bNKlxHIM3L9yNXMqy3EYi5nV5yMApt3+GG1RP1QAIjgNFsxmA5s7mtmY2YLqVCnZZCY1M0J6WhfQhWII8pNp97Cn8wGWNuvwx80k1Bh7DrTz/s5aRGMCk0GlucNLKBrnl2cctqs/5q0nwQMfHNjDk/0m0o/n6WPwsC9h5amd7/P8ni38fcpxzOlTAeQzZiY8vuRWWr1Brv3LW8iqwu+vO5Yti2pZGdnDQzedwgfuFdy34S0KLYVcWDji4J4U4kqQp6s24otHaR2SQsWGHCbNH0afonIWr9uLKSjxk9feZntjK+eMHcLEoRMhvheA7fuaWZlRy6ZlyWiKuu1NPPvuDYc/EZE44UiMYseZ7O16nwOuUVw8cihWnZWuqmzCnZ2QAukF6aSZCphdOpRrJqzFHfGxedxCzDqFyetzmGQaifsEH+deMQf95k08vXVZ9z4+W1pNUaSE4f0LOG3UICTzPtqC2exRNtCgRrA5IixetQu9X0RFJa/Ayck5D/Hy1sVMyB3Ivimb+ayxlqd2b2HVZZfxcf0+KtIyaPQPY6X3AVxxOwmXSKYaoCitE52ooBNBF5Wx6WMggawTMMTWIiScyUEd8WtRVcGdsOLM95GR4SPFHqbC2MzuhBWLnCCLBIOMySjSAl0Qk6gSVUR0gsKiUAHjTe5uUbwmamVr3IqAjE2MEELAI0s4xUN3FAEBAQQYZAxxbelnTLF0IiISUUTCsg5VFom2GzBlhhFFcEeMLKkvocjuoW/fZg6sL0BQQDEKoMIn1YOpWVHITy6ZSbn9Tyxuegqz8Qau2byHkekxlh5zKzpRRDxoo+4PRznlrue6UzKoqAi5NpAFVHfP79K11fWfvy3+z2Ay6Hjj5+cTl2WMeu3xQOPr0dDQgMNxOP3KvxMtvnz5ctrb2ykqKuouk2WZG2+8kb/97W/U1dWRk5NDLBbD7Xb3iBpvb29nwoQJAOTk5NDW1tar/46Ojl55XDU0fkhkZ2eTmZlJR0cHDQ0NeDweUlNTv+9haWho/A8iCAIOhwOHw0FZWVl3uaqqeDyeXnbsLpcLWZZ79CHLMm1tbb2+U/V6fY/I8kOiud3+4xBq93QFvzdR/BDVXUH0okil0/a9jkNDQ0NDQ+P/A9rMl4bGj4hg4DH83t9jMp9EavqD3/n+jKZjCAWfQRCdyIl9QAJRzOlVLyonOO+d14jKMtvay/i0robji2Zx/dAt2ExlnDzwvO66XvcvCIf+iSPl91hsF3yj8ezouA1XeAkDM/5ApmXqf3p4XwtVjeMUo9jii0gk6tDpir+wrizXE/TfB0Ao0AdH6u3d2/Jsx5NnO75Xm32e+6n3vYSAjul9VqIXk3lhr507kVDw1wQDj/BB4zhKbF2ckL+QcAhEKRO74xe4wstREKiJ2rHufYRBE13Ews+QiLtB3QxA2PcXTJbLkOUDWOw/Q9L3xxXci5w4gF5YCQQOj18RWVZTw5J9tUT0cf6yM7ko4p6Rk3ll3Wu461JQlJM5ccqZmKxnoqoRnnx9A0++sYb5M7cwYfQehmW0oJPirNjfSEt4PrH3s6jol8U1l04nK/98opF3MZpPRBCtFBe9TqvSwMUzWnl973ayUq1sam4lGItz+5rZnJC3k3U7S4gmZAblZnPmlOEAvL+vmp9+/C4DMrK4fcpMmvw+5pSWIwoCqpp82G2qrWHZ1lrU/W1Yd5o45ZwBGJCYPGUgS347GZ8cY7fYRK5OQXfQMntRzTZqBuZgwcAdw6Yxo+x8XnvpKV69tx05JlHw6GCglgm5JTwx8RxW7NzHmq0TsVoiFPTvy9zybD6dfwGP//kjXnctg2iC3710PBMG72PDynJmjCln255mRg3pw6nHDOs+77cNm8+c/P4MNC+F4OsYJIW+4/ZRMiyLuJrguTNP/dw1GePUYWuo74L3tw5AH4b7bzgFSRTp8K/h0tI1vN04gNtuOQ3B0MhzB57CKBoxSybE6JsUyc9zfuF8Uk2XMyorn3y9g4IsmbuuegKbJU5N572YpUXIiX5IumSe5dvGzOSpqg2cWTGU/tY43lDSurpCP4irdjlJqAk+PFDNnD4VtAZ8/OLjD+mfksXs3FISooJrnMxVuxZiSQiE+yhcsuh1hPSdFDplGsJ13LwqnzT9dC4fNI1001BuGiHzYvUWfjZsEnPPrgBg+oV/JxJL0NHlp17wIBkS1HZ18uvCG1i2t5T7Fi6jdWcuVVmt3HTfOSx+cyMnXTqt+7z5gxHOuPFpwlntjJhn45KBz3ByxeEJp3PnjKS9y8+IfoWkOSwA1DS7ePqzDcR1IUqnJoXViSf159Q+M4gmEuzq6OCq8WO4btJ49voPcNN9r7N+t4eOnZ/w4j3n8X7dOIzWGEVWiRG2u7hv7wFG2BOkjvoYwdRFTqaH5c1vMijj51wzYQEAXdEwW7p2MK1vgFSjzNzicu7c+BKRWCPLAsMoMLu5buAiAP5ZP5KGSBoGSSaKjhQ5TiCqw6eYqPOmk5/ipi3hoJU09ocjpOkCfLh7CGq2SGlJGx6/GQBFkPAkzIRRGGZtP3idgUlMLmoyisljL9b70R/MCR6QdWyLSxTq3LTKNoKKiUzRj1NSk2I4Ry5agVpZosgYwq6PAwIGUcHilzGlBhlQ0kR1IJuQbEQQwGkNUu7sQi8kGDi1lU07y2hQU1F1ClaTRIslFV04TtScjJCp8a0moaaytrOG/YF2+qUczu3oCYS7RXFISvXFci61HYcXpxwiEk/0KvtfQhQFjKL2aKDx9Tk0+f6fcN555zFrVs/ULHPmzOG8887joosuAmDkyJHo9Xo++eQTTj/9dABaWlrYsWMH99xzDwDjx4/H6/Wybt267ojbtWvX4vV6u8VzDY0fKoMGDWLx4sVAMmp80qRJ3/OINDQ0/j8hCAJpaWmkpaVRWVnZXa4oCl1dXb0E887OTlS1Z3BCPB6nubmZ5ubmHuUmk6mXHXtmZiZWq/W/cmz/DZr9kf+affpXsdPlx27QaTnHNTQ0NDQ0/kO02S8NjR8RkfAHgEo08sF/ZX96wyCycpP5WhOJBlAj6PS9LdF1gkiW1UaDz0umxYqsqrx5YChj+97EmYVDetQNh18DYoTDb/QQxlVVwd15LvHYOlLTH8VomtmjXUIJ0RR4FYAm/5vfqjAuy+2EQ69gNE5BbxjWXS4IAqNzHiHgmgNqHUH/30lJu69Xe1WV2dR2Db7YTgYYK1ETBzCajvla+zZJSUtdnZjCZ/V1jM8tJ8WYfEiyWM/GYj0bc8MGsoxbiCo5GEUXBkNywnhA+h9Yue5vvH6HSv3a+zj+xvnMufivpBkvQ+3Wd7ws3bOMFOdTjLLk0u4JcNbPHcTiA/jrz3/NiMrtdPrfpjW0jBbZzID8ZnY3FXLfkpWQCaiwov1VCke1kju0jce3bKKsKJ2P7v2Q7c4EwSwLiiTw1sbhvBIbwGcL/oFeUsg1efi0NUq7EkUIN1L82Xauv/IYLPrr8UUjXPfe6yiqyj3HzOHsj15BEWDjrjpevvh8dra188HS7bxQOw5zS5QhZgsVfbL4w+1v097uRZyTjqyqbO9o49TXXuaE4i0U6NrpFDpxGAbRWlXIn1faCRUakK0SPoNM/fpqEopCVyDEJ+EDqKiMLymiKeBlS+DPTC6UWLvDDlQhGkTmThuIXpI4Zvql1Kx4m74D8jhr6ix2eVvpn5Jz8LoReLNuIKWT6zH4X6arvgnxoxLWLd3DOuAvT1xM3WsBPn3DwYIpg7joksk4zZZedvgGSceUnHJUtZh3Oj7iQCSAOb2Syzf8mqgS54+DrmNgyuHPXTT0L84a8TEAcwfN4dP2VMLmpLg/0vxbRpZ6OLYwhEd/PBOcEymxFmPXObDrHXi9HwIqauxjCkw30+jxM7BvNk/9YQKxwP0ADCx4g4B7OQhm0rM3I4g2JuUVMymv+OD1HkVnGE8wsodfrqxgbGYpqqRy2aDkdfnTjxey3tfIUk8tdruB8WdW8FbHLkDFVGYiIIWpjnZi7kjHZIihTzjZ0NoJ5DEoI5uR2XB+/xGc338ERzKsXwFrttUxYkARUwfm8mL7K0R17TQEZrCxI4OhxXOZmC1x+qxhpNjMjJ01qEd7lzuI2xci6/QO9ivtPFv7JunNY3hh7WamDyvjrJFDePjnp3XXj8UTXPnHfxLKjENcz7DYDEb3c3JM9kQArlq4kCV1tcwpK+OR446n3N6H8XmDeHv3dsYNKaEjtAaV2MHeZCT5A/418W98WDeJuO1wXt+46mFzx6/Jtc1GEgyc0K8/kmEJKu0sauwkFPczK38nggCTImZC8cNRzqGIiTf2T+Sc/mFSpUIW7qojz3YAj8nEnPydSIJKQzSNHeFC9kTzIAqtSipZqg9VhQMNmTQaZQYObaYxngGqylhzJzZRpvsyTQZ+E1MElvoKmGdvJlUKYBUTTDK5SdNBQo3gSUjdR5u8TlRUVGQVNkVN+FQ9OlVAUVVEAeKKyG+GraDTFiHdFKZ/sJWXG8YgCBBO6JFVgQHmFrIdfkZn7+e29cczraIag05GVgSe76hmbtqJZNoCLGy2oqoJVGBh4xYqHbndkS8ZKVYESUEtD0FQQmo08cgVJ3HiXc8SicuIBw8RwGzQflZrfLcoiCSvuu9/HN+EQCDAvn37ul/X1tayZcsW0tPTKSoqwul09qiv1+vJycnpnrxPSUnhkksu4cYbb8TpdJKens5NN93E4MGDu0X1/v37M3fuXC677DIeffRRAC6//HIWLFjQQwTQ0PghognjGhoa3weiKJKRkUFGRgYDBgzoLk8kEnR2dvYSzN3uoywMjUSor6+nvr6nc5LVaj2qYG4y/W8JulFZYVOr5/seRg82tXpwWrIwSt//b0INDQ0NDY3/VbQZPA2NHxF2x68I+B/AbPn2c6B+GeHQmyhyCxbbxUfdLoki751+Hgv37mZTWwu/mzydvV2d5Nt6RyE5Uv5IOPQaNseNPcoVpZNYdAkAkfB7GE0zUVWFcOhFUBXM1vMoSbmcjtBiihzn/FvHoSgeUGVEqecErs9zK9HI+wSFh7CmPsi/qrew1dOPP4w/BodhABH9UBLxbRiMk3GFg7xXu4dpBSX0cSTtQGu8u3GFlwJwQD6F0XmLvtKOrC0U4MntGxiTM5VxeWP42bL1LGp6nxGZebxx7OEI+50tbdz9YTJye3XJrWSmP4/R/SF2UwbiLif/OCG5klu2GnhubwNP3/Ysf/35AQYcceq3NTvZ+OlnBP6xFcsZlbSVKJg6ocXlwzjseKxifxoCVQiCxL0LLuXYBz5EtYgQAQSVui6ZknQIRo3sCrm4461P0LV9ygnX7abDl0Jd9g2Ylq9Cz17uffs4LjzBzKycf3FsXjU3645lcWMFrTkJDng99ElJZemBOpYeqAPgk701EAOM4GkJYjca+dPcY/j1pMmce94jeDtlUkbYeGHlJj5Zvwt9CE4Ymc+Cskoq0zN4dtNibhmRjJ7Vywb2Rbazes8sAmE3ql5F1Sffh0PvRobJQkpqiLR0PxcOmcGcosPi6y3TYgzJyWd4Xi56KZkhOa+Pkz88cfi6H5Ze0P13SmGMrKmt6AzJVQgROcKUCWW8/uIqsnNSKeuXyz1/OhOA+9etZsxT/2ByYR+eO6FnBPghBEHPMcXPsC+wF0XVs9L1MAANodYewrikKz54REaWeiK8vG8Hb9buZtvl1yDpCpHjHvZFQrzQ9Cx1/jYuKD2uu63FcTNhv4GG8Hgue+9tAB4/9kRmFk8gLNyEqrgAI4lY8ppzR8LctWIluTY7140fjy8e4E+7HkFgNLv3zmd7Wxc2QzvbL/9p9z76pqaz3tcIItxbtby7vMCWwl8nHcu1ixfS6g8QdpvITZ/NrydN5c9bltMU8HFi34FHPTdVDW0MGdOH6y+cTp+cdF5r+BAECMohfvHW26zp8CIA66+8ihSz+ah9lBQ4ufniWXwS+4hW4wHGOYdxz/tVRPQK79ZW815tNUsuvoTClBQAFFVFiSpYWhUGDMjj5onHYzEcFqUbfF4A6r3e7rJfXjqba86eis1iZGVzz/tlV2Qje91Pkm2eTmPw7R7bnKYRhKLNxNUuTLpsQnEfVr1KKL4Ji/6w3JxmCpNmCne/DjTZqG3OJpoyiY/1L3NM8QbSDSFkVSCi6LBKcXxxM+1uG56QGRCpdWXR1JGOikBU0XHn0A+YlVbL1lA6VREnDZEU+pm7krnoSS4QUlGpCqazylfMFKvrYDlk6ERkFHQCOHWJZF1V6L7/xVHYGLcSQkIvqvSRwshIuGWJDCnBcX32siSUgk/VE1eSnzlVhZgssa61gNRsH9kGP3FBZGBRI2aDTIbOR4GxiwaTk6eaUgirRhQ1AQhIgsjz72/l+Vd3kFViJJDlZWhKAczwdN8DHrvgLPKcKay++xoURUWvk9jX0slnW/dy5uRhR712NDR+7GzYsIHp0w+n17jhhmSKigsuuIBnnnnma/Vx3333odPpOP300wmHw8ycOZNnnnkG6eD3LcCLL77Itddey+zZswE4/vjjefDB794hSUPjPyU9PZ38/Hyamppoa2ujo6ODzMzM73tYGhoaP1J0Oh3Z2dm9UpHEYjFcLlcvwdzn8/XqIxgMUltbS21tbY9yh8PRSzDPyMjAYDB8p8f077K1zUtc+WGl9osrKtvavIzOS/vqyhoaGhoaGhpHRRPGNTR+RBiMo0g3Pvsf9aGqKks6lrPbt4c0XQoGycRJBcd9oZAbj+/E607mw0bQY7VddtR6DqORBzeupSXgZ0XDAdqCAV7cuY1Pz7qQsvTDQvShKGgAbyTCDlcbo3MLWNMUZOOBYQxJa0EOzWR2GkQjn+Hz/AJI2odXpF9PRfr13X3FYpsQ0KM3DE6+jq4hFl2F2Xo+kpTRY3yJxH5c7ceAmiBhvZ4M21mIcgYvPL2cwUMFCotAEOwE3BcwPxM+OXACb9bkc+GAETxSeyNrmvfyyxHDeHDL26xxNVJoc/DorBD+aB2vrhiBPreSYnsnUfuE7nOpqirvv7CSSCjGiZdMRZSS9sKCIHDvhuW8tm8bT+5Zw0ezL8EXTz5IRuVEd9u/7X2ELZ7tZOTk4mq1Y7Ouwxuvh3g9zzS2MD/zNFIzHQQ8QSZfMIkX9W2oOngnWIqil+mj9/J27WDebZxJeZWXjgodB3K8qBEj+nwTx09LRtSmGMuZXfgWW12/p0t+nF8dcyp/XLSamAkQBba5C5A/zGWPQ0IVoW9hFqawB4NOJj+9i8HOdPpNfAsIIFPGOu9U8lKS1sVZFh/ICq80VfHaS7v55KwL2bKuHl0EnClWytIbOCFvCyt292dmxeEIX7PNRJbTgbczRG1GjLc2rUCaZGTEThPHTx1CSXFysnF4dhYNwfcpsNQhSxWUWeYz5syTadz6EkpbkNmnjKc5HGb+hH64oxEm9e1D3bqPCclhPnV/2kMYtxkMnDFk8FGv76Nh1pkAAW/cTDycwhutcNosJ28uvRXomYt+bXMDABtamo/WVTcWnZUhqcPY2daG3ltGYZqVGdnjetTRGyeRmrUKQTDhqK8GXGRZrOzc1czAfq8SjG3jldqXAYXHNmxkTvY0cmxJi369YQR657PEWluAl5L71OsRBBGL/XogadWuMwxB0vXnzs+289qunQDM6FuCW2xgXyCZt/6Yfv0JRwXOHtTTFeKu6XMp3pzG3duSi0X6p2Wx293BtUMnMCankAm+PN6X91DYrw27w0Ke3cHfphzHF5GQFS5++FVC0TjVLR3cec485udOJSiHyTI6ufP1LVAIuriAVa//wn4ATp41lJMZSlxJoBd16OYX8MCqNeyLuDFIEsYjBBqTQc9jvzuTqppWZk/oj9nQs+9HFhzHu9V7OL5f/x7lNksyR687srlHeVz1stv9dwT0OPT98cV3ASAgoRcsLG9ZcLCmgM2QnLyx6GPY9f3wx3cjKyCJSeH4EBNK97CvMZ+7Nywnv48RR0YYUEkoIg/vnoEaFWgIpAPJ/NzJkG6BSEwPJihyuDk+twZBgAk2F+OsHcnoaVVAPCglKySt0YfaupgUaUAnHhbqD2YQR0JCPfjfkbhlidaEFasQRScoFOjiGASwCDJxVcCvSPjU5E9Zf9xIttHHpIy9VNraiMg6lnvK2RToQ1A2kWf1o6pQbm7FJCbQIRNSBiMIYMeASW+kPeJHHBBEAFzJwbPW3XMyr8CaDiQXdB0K0ijLdVKW23PBlIaGxmGmTZvWy5L1y6irq+tVZjKZeOCBB3jggQe+sF16ejovvPDCvzNEDY3vnUGDBtHU1AQko8aPXEyioaGh8UPAYDCQl5dHXl5ej/JIJNItkh8pmAeDvXNy+3w+fD5fDycZgLS0tF6CudPpRKf7/qatm/0RGv2R723/X4QKNPgj5Aci5Nn+tyLwNTQ0NDQ0fihowriGxo+YmOxmn/sBrPoSihznfmmUckJJsL5rI10xN680vNZj29qu9dw99I9HbSeK6QiCGVUNI0mFXzqeMXkFvF29i4p0J23BADpRxPglD0Invf4i+71uzug/mDklFirzDpAQVR7d/D4JsYxjCnMACVCRpJ4Pb9HIEtydSYHdmfkhOn0lna7TEJDxhD+hILun3XwisR/UZKRls/ch6gKL8W36PS8/t5JXxEL+8uA/qOiXirszGeGrk0yMyynEF4vyxI5NAFz/yMvEYnEYaKE4xct+74sASMEu3l48gUkjSikfUsEVn77F2f2G4qiL8eCtSft3a1EDcsWD2AzFTMp/gb4pqRhToggCnPrsEzx31gXsjLQzoyCZ0zmqRNnk3ohZipNX2Ea5rj8TCmeytrWK3cEwYcXAnpCL56r+TDga4Za9f2VguJkMX5jqulzu1hewvzWLSFzPsD4WgvlGWlU/CHGygnZuHDIdne6wCNgRWU1HeAUAM4fNpcR6IgvrdrMq0kSZKY3BA3LYuXUdSDC0byFz5z5KlfvP2AxlVKaU4XUZQQ0gsY9xjuRDco0vDdezAzltahH/ijeSUBSWbd/Px8t3Y1fAVuClPf4PZgxXGFNq47h+N/d4z+697xyqdjayONLM1o0bkPQijz96MXajsbvOExs2s/zAiWRbdbx91qUYdRIOs4nnHrvqC6+7UWmDWOZaz8i0o0cnH8IbiXD2W//CF43y3AmnUpLac0V3pb2Evwz9Je8dqOKvtZsAL0/v2MiNoyb36uu3k2fw1JaNzCntnYrgaDy+aSMb9qhsIMBvh8sYTD1FWUmX/Cz+bGwGs/uW8qffvMN1/3yZU04YybVXzGSiMczT21fh91jwRCLdwvghhufk8s7p55JQFIbn5PbYJggGjOYTWLx8N+89uwFhpI5sh43i1DRKJDsDHKUICFxQOZ2fDrL1GrsgCFw1YhxjCwoRBIFhGblE5ARmXfIYrp4zkeolm9E7IuyjisZwK0WWvF79HEIUBFKtZkLROE570iHBojNzQfFJACRmp/DUwtWcu2DMl95vjkR/MA/zcUP7s2BIP9Y3NZFts+E0W/D5wzjsyajz8j5ZlPfJOmofZU4n14//4ry3OZYZtIQ+ISkf67tt1VXiKMRIN46gK7oJlTgdkSVHtEyKT6oKiiLhSbRiM5aSar2chze9wYbGAm6c8B4pphilaS4EVBI6qG/KQO80MKm0DW/CREVmnE5PAQ2Bg3kVBCAGqgxYk6/P6bOVI782JEFEVVUkQey2WVAOWqIjqFyUsR29IKAiHpTED3WcfN8FhG5xPIbI0kgmWVKEiaYACVXgQMJArhTHLKhIAgRV6WCEOQxKaaHM3o5dF0UvKujFGHlmP245eY3pJFBUaI2lUGTsZKu3gLDLhN6SIGiNEUzEEA/e0gQhOSpV5eB4kmOUgJsee59fnDidwX1yvvC909D4rlBUEUX9/m0zfwhj0ND4/8bAgQP5+OOPUVWVHTt2MG3atK90kNLQ0ND4IWAymSgsLKSwsOd8TzAYPKpgHon0Fpvdbjdut5s9e/Z0lwmCgNPp7CWYp6enI4rf7W8RVVV/MHnFv4iqDj+5VqP2XaGhoaHxP4qqqkRlBVlVUVQQBZAEAaMkavf2/wKaMK6h8SPmgPc5GvyvAOA0T8Rm6HvUeqqq8lHDVXijW1jrLwV6illdsd65poLxOkT0mPX5ZGSvRlV86PRlR+0/oSic/87r7HS18495xzO7uJQNrc2km8wUOlKIJBKYPidYtQUD1HqT+23wetnY2s6Q7KSgYtbF+e2yz1hTWsHNo5fwxr6d5CdszOpz5DGFjvg7DOiIqyIGQcYXb+s1RqNxOjbHrTT7X8ejtGLT6elbloVOJ2IwGMjMnoLRlEp65rssXLwFwzojcr8E9jQDZ1YMYdGBGkxrDpBRH2N+bjk/P3se211rCcQaqdtXQH67mT9dfQynffYKdT4PO1xt/HP0iegNOmQpQa3nAwqEKL74HkKJZo7JL+fv1Z+ABHGjSqfLzyBjBul6CwAmyUR/exZt0TpyM7rwtcikm4YwJe8Nbn7pHsymGN6IwEmpblKzRVoi7UxIqaVfXivRhI4/LjqHW8bNoNrfwYs1m0FQsTlEEqrCTydN4MSSwznIWlw+tlSnYs7PRycacJpGkjfcyaThpd11Hlix+uDJhpYOH/ahgxlrvp9EfBfejvFAgs/Txxbkb0/ejNmgZ9iuHWzZ2ciDTy1FJ4lkHdtMWq6PoKLHJkXpm1uKzWTs0d5mNzFmXBlDE8VUZGXQLyOzhygOUJiSioqARedgxp8ex2zQ884N55OT2lMIPpLrKy7gytIzD0Z8fzFb2lqocnUAsORAbS9hHKCvrZBzy5y8sGMv7YEgD69YT2S5jzNOGE1Z38OCaqUzg7tnzvnS/R3JvPJyPt63j/GFhTg+d8xHIgoCAzOy8XUmPw+ugw//Vw2bik1IJc9up1/G0a08B2dlH7X8EB0uP0Yv5C9J8PSDJ5JyMJ/cnwbf8LWOYURWfvffh0RxgNLiTP588gXcuetRCi055JqOLjwfQhQF/vmzc9jb6mJ4SW8B/bi5Qzlu7tCvNaajIQgCYwoKkGWFK3/2PNX72rj52jks+IZ9yrLCA49+RnOrh5t+OodROX9BUeOIgp5A7ACLGw9HxSeUICYpk35p19IRWoEntqFXfyqAqAI+Agkf2dJuluwfREJRqPdmMdjUiN6gI54O9oSEpbqFySe1IQiQpo9wd8HrhPMMCANUQGG/30lYNjA4tZ0dnmx2+TI4u2Q7qpo8B5J68If75367iwIIiEiqyqG0xIdEcRUVURVIHMxYLAoiMioxRWVDNA2DECdfF0YngE5QcUcl9saNTDUFsQoKEUVEJtmtQUpglaKoQFwRaIyk4ZWT98NAXMKmT2AUZfZHMokqOtSYGUtGhG5lX4WjPXcIh84lIAPb7Ht4fqmDe84/9hu9vxoaGhoaGl+G3W6nuLiY2tpaurq6aGlp6RWVqaGhofG/hNVqxWq1Ulxc3F2mqip+v7+HUH7o73g83qO9qqq4XC5cLlePckmSyMjI6CWYp6amfmtCQlckji/We47ih4QvlsAdiZNu/mHa0GtoaGho9CSaUOgIRfFE43SF43gicRJHcVbTCQKpJj3pZj2pRj2ZFiNGnbY4/dtGE8Y1/l+jqiotgYWoqOTZjv+3fiTHZS+u8Aqc5vEYpPTvYJTfHb5oFZvarsaiL2Rk9uNIYk+BLNU0DLwiJikLk+6LRa6o3I5OWYlTn7ShXevvKXD/6ohIXVWN0d5xGuHoRuplByPy3sZmKAcp6+B2FVlV0R2xwrfO42ZVUz0AH7R8yD87dhHxFtPS7qTe60EBLhg8jHH5hTyzbTMXDx2BKAjdYsWgrCwe2rSB/hlzKLAptAWG4Aq7eW7HFgSdwDNVexDYw4ozLqfAnsz/azTNQ1H/SjQqYTCOBUCfch8tvufIS7u21zkQBAmb/Rr6Wi/EEVqJWTeMlzsPcOJvpvLp39by93ve5/Z7zySeGMifn10MwC8++YD2dVF+M3Y6d0+ey2fm9eyvasIxs5iL3n6PS4ffznEV/Zj8yyg6nYQgCbhcQTCAd4uLu9a+xtUfqdTHd7IlmIm8O4XwdicLfl5Mn1SFsq4CRhd8yE9OXUVUfoyf/eM0CmeHGNV3MGcVXc5Y53jeaa7DRja/OTlps2w1GLhpxHweXb6Wxl2dXLXxVRbd/xMuLD6ZfY2PgbWVeESHdEDggf3Lefynp7CyvRZPLML9YxdgM+oZnt5zJfgVd/+LFpePqcOv5M/XJvPXd/lDqKqK05GM0L183Ch2B1YTl6OcPfaw3biSqAcOPQCLxIQiTOYZEF/Hk8sH8dL6h7nnzPmcPWwIwb1BFgFRnYLRGSWuSCzx9MNp1PPzgsu/8Po16nScNGDAUbf9bvp0Th04kM17m7h3zzKC0RhNbl8vYfzJXev4V81Wbh42jVkF5UcVxeuDLjZ31TEzZxA2vYmx+QUsKKvEG42woLzyC8eXZrRwWdk47li2FLMpwrsHNtH8iJuH7j0XdzTIe82bGZtRRrn960eozikrp+qnXy+6XBQF7rvzTDZsrmP+7OR7Y9TpuHTkyK+9v6Nx4oLhiIJAVpaD0uIvF6+/Kf0cfXl27N1fu36K1cSo0oKvrvgfEInG2VuTXFSzdUfjNxbG99a08ea7Sfv0dz/axsXnTkIUkgsCbIY+jM7+O77YXgD2uB8kIrdi1RcyNPN2qrrupiuyGYOYSihRd1Dg7fl9l2+dz7zST6nMfINGXzqv7RyFJOQioBDUC1yd2/MzohcF9GLys6mgMjSto3vb2IxGhqW1HNwG+iPygn+e7shw4Yi/SYriQrKQiKJiElUUZHyKiE2ESWYPm6JmWmQdVkEhqgoEhWTs/OJQKnZRxqvqEFFRVAG9oHZHenclzBj1Kn2kDnYHctnSkcfVZctI0UfxxE049SEqLW20KQZ2B3K7x3ckyWhxEBExChIRNTkxJmbIzOvbD0VREUVtBa+GhoaGxrfHoEGDuvPxbt++XRPGNTQ0/t8hCAIOhwOHw0FZ2eF5JVVV8Xg8vQRzl8uFLMs9+pBlmba2NtraegY06PX6HkL5ob/tdvs3ngvc7w72WCD7Q0QAatxBTRjX0NDQ+AGjqipdkTj73UEa/ZFuT8Iv+35JqCqucIzOcKy7foHdRGmalTSTXosm/5bQhHGN/1eE4o1s77gFsy6fQZl/pDO8iu2uXwKgF+1kWWdwwPsCTf7XKUq5gAL7iXgiW/FGt5FvPxmdaO3RX3NgITs6foVKAodhICWpl9ARWkZJyqVfGF393yahBKnx/AOzLp9C+xk9bo5toU+Jym1E5TYC8X2kGHtaP2dapjKjaBWSaEIUev6YDiZCvHjgFaw6K6cXnIRJP5auyCbqIsnoUQGBwSkDOa3wZIqtRYfHE9+NGl+PSYQUNUxUdmEjKdApqspZ77/ChrYm7p++gGNL+iErCj/5aCEARXYHXmkbMjHixlpaIzLDBzYQT0i8VS3xcW0NAbWdv+/ezPz8GVRmOChMVzmxopLHtmxglyufHGsJd04fy+2bHqYw00WWNRkmbjcYebtmF+/u381NoyZTKaRx6Tn7kRMKf7x3L+MmlpNrP5lc+8ndx1IbaOCv1c9QbM3n+ooLkQSRJ1dV8fclu+hX6WKjtxlUKIlG8azdT0uzm/zCdGaOq2DttgPsMrhJhBSe3LGB40r7MfOU0cw8ZTSTn36cJr+P3y1ZjMNoYkJhHwySRKsvQLxLxSBICAGV3RPrmCEsxmmAzLiZ/Z7pXDHrQoLRGKIosvCyC+lq+S2CABYxwfEnbmCjIYd1XUuZmDGLmdnHMzxtAg5dKjrx8O3+wiEjaN/u4Z/hLdizkgLvCfkzqReG8s9PXyAq5pOINqIis3j7fh4dfzIVuRk9ri13NIRelLDpjegOJto1HLRW39vk4py7XkJF5YVfnE1lQSb7gnuIZmwDYHd0C5PsUwDwCSN53zsaAZV5xY+RZUjgaRsLqOgFO6qaz7qaBuYPq+TCBWPY39HFh5uraV+WQ6reRXZ9X267/zqM0uFFHwlF4e3qXeTbHIwr+HL7fkkUGZqTQ6UzA18oSrrNTGPUx92vL2dmSSlXjBgNwJ+3LiUiJ3hk52pmFfQWnBVV4aI1j+KJhdjQVcsfh56GSafngbkLetU9GpeOHEVhlolbd7xMrBjM3uS5vGPn2yxq24lDb2bRzF99Zz9+KstzqCz/dq2hDXodp5446lvt84eM1WLklhuOZfO2es4/c/w3bt+nyElFaTYt7V7GjynttT3HOp0c63RC8SZaAp/SFazlgP9Vmr0biYt1gIJOTEdBQFB7/8h+ZvuNVGYIFKV2UpTayf6uTPqmb2BQ1hAeWDecvzo6OfNg3UN25oeEbOGIskOIgtL9t/B5VfmIfg7ZoyuqejB6PFlXVtTuHN0iArKqkFAFdkZtTLQEgGQuca+qZ1c8+fkWBJBQMUtRYqqARUggiskI8RjJRQRhWUeMZH29oLClI4/jcneQoo8CYJOiyGpyDJ0xKyZRT0Q5HJ0iAIXmDOpCLkBAQUXyGlHtCQRgXu5QPt22lxueXsicYRXcdd58Hv5gFa+s3Mb1CyZx8rhBRz0XGhrfBjIC8hd83v7b49DQ0Pj26d+/P++99x6KorBz506OOeaY79wuWENDQ+OHgCAIpKWlkZaWRmXl4UXliqLQ1dXVI7L8yiuvpKuri6lTpzJ9+vTuuvF4nObmZpqbm3v0bTKZegjmh0Rzq7Xn/N8hPv5sEXNmzQTg98++xqCxX5z+6vtEBRr9EYYkFC2SUENDQ+MHSLM/QpXLjy+W6CGGf91FV0fWb/RHaPBHcBh0DMi0k2f7chdTja/mexfGm5qa+MUvfsEHH3xAOBymoqKCJ598kpEHI9VUVeX3v/89jz32GG63m7Fjx/LQQw8xcOBhgS8ajXLTTTfx8ssvEw6HmTlzJg8//DAFBd9tdJjGDwdFjeONbqcjtBRPdCOe6EaKHGcdjPBOTt4ZJCeqqrC76y5AYafrVqz6Ija0XIxCjFDiAP2dv+7Rb6PvVdSDFs8qMtvab0ZFJhxvIJiow6YvZ2TOo4iCns7QGkz6fAxiSi+hOSZ70IspXylqqarCAd/zqGqCPikXIAq6Xtt3un5HILaHQZl3YDOUUu97iTrvkwCkGoeiKiXc/NoHCILAH0+YT6pxPRZ9EXZDJcs7VrKw+X3m5c5hvHMs7zZ/gNOYzvSsKb3Gssq1huWuVQAMdOSTbsxFkE5mqmkUOknPpIzx2PXJqNrOQIgnV21gaEEus/v3x2haQDi2iQzrJaSbxnX36YtFWNPaAMBn9TUcW9KPzqiXhkAboKMs3cmOuhTysxQaWjNwpvqxmJN5dSWTH6feSUFuEyZjnEVdb2PPUYga47zZmKAis4XBhQ0caPfx8EYozD2AJCpEddt494Sr+cPKxdyzYTkAD25Zw11l05ETSWHH3RXoHuMre7Zx57qlnN9/GMaUAzSGW2kMt3JG4XwKLDm8s2M3sqpS09oFZrDpDfQvT6df31ycOQ4ufvdNmjP9PPbnc/jbsuUsPLCHtpUu3NNDpDmStr4n9OvHQ+vX0RWNcNG7bzI/t4T7TlrA+sBCfnq8lZaqPLa5qtnnk2j2pZLnUOifcixzTzubPc1eTvnLPzAJOl644BQyjnjPxmc2sc6Ti6wKWKVUANINR9Y4zDWnTuKj6n3U+X28vmYHp44fTFFeBjeffz1xWSY7ZyMb65p4cukGnluxmUW3Xkq6LTn+TZ0NnLfsWUySjoWzruKxW85ga3UTE4aUANDQ4SEuyyCovNv6Bos7VSZlTkMvGJDVBLmmw9EvVf5a3uxKvi5y1jE5oxwEK6gBhvcdRle8P5fPGAOAXidx+XHj2VbfSrBeQF7kxpXi7yGKA7ywfQu/X74YAVh07sUUH8XC/POY9DqunTOBZXV1XPDO6yDC+pYmTu0/EKfZwsX9RvPKvq2cXT78qO0FBAwHP68G8d/7aq1My0YnSCRUmTOPSboYpBmSD+upBy3yvw06owHu2vkOGUY7N/afj06UvrrRv0FYjmEQdcl80z8S5swcyJyZX557/oswmww8/sAFX1nPos+nTPcob9ScQXH/VrxdEgP7nklT4H0qUy9nq+s2FOK92vV1NgIQl2FfVw5FKV0A5Nh8AMQklWf3DuX8si0gJG32D3FI3D7yx3tcVblhyxyu6reUYabetoeCIBy0WU++VgUVGbXbcl0QQFZVBJI26fVxAw2KEVlQWRdxYBQU6uIGbFKUzwdmiwKIwuHR6EUVVYmjcjiCHFT2+LIIywbEI0YeU0R0OgVZFZjkrOeSsrOo8rWxP+jAKOk5rWg0vvgO6gISd1Utoy7oImAPoi5OJSfNwVZ8NHYmv8c+2lLNHefM44VlmwlEYvxzxVZNGNfQ0NDQ+Lcxm82UlZVRXV2N3++nvr6+hwWxhoaGxo8NURTJyMggIyODAQdd4G6++Wa6uroYNWoUJ598co8oc7e7d5q/SCRCQ0MDDQ0NPcqtVmsvO/bMzEy8kd7PUj9UVKAjHKXAbgZg2rRpLF26lAsuuIBnnnnmex2bhoaGxo+VqKywtc1Loz/SXfafOpAcau+LJVjT5KbAbmJodgpG6ccz5/pt870K4263m4kTJzJ9+nQ++OADsrKyqKmpITU1tbvOPffcw1//+leeeeYZKioquP322znmmGPYs2cPdntSlLv++utZuHAhr7zyCk6nkxtvvJEFCxawceNGJOm7mfDX+GFR5foDTYHXsepLMUk5mHT52A2VSKKJifkLARWbIRmBl24aTVdkLQCKGkUSrShKDL3YWzwrSb2EWJcbu76SyvSfs63jRtzRjYBITO6kS+4kFG+gwfcK9f4XDrYSMEnZTCx4B51oo8b9CPs8D5Bpns6InIcIx5vY3nELeimNAttp+GLbicqdlKdfhzuygT1dSXtgky6PXNu8HuMJxmtpCrwGQKP/Nfo5f4HdUAkISIKDUDSFdbW1bOzYhS09yJlPtfL3U+9lcGYyEvStpvdoj7bzZuM7hBIh3m5+F4C+1mL6HBH1DVBhL8ckmjBLJiR5Bc2BtwCYnn9u97k8xENL1/DS+q0IwKqfX0ma8zGOJkWmGs38Zux0VjfXc+WQsbRHOrhlx22MHhInKzYVbJspC7ezY28hvoAFgz6OM9VPPCHh8ZlYMCCHdUETJmMcX9BERmpS0I6pEcaV1mAzRTFLO3l+k51+QhbFGS76WsfxzFvrWB9vAgmMeomz+w2lsiKP2+48FZ8nxOz5SctjVVV5bMs6PNEIrx5YQm5OKyICY9KHkGvOoqvdR/YmHx0ZIoWiHUeKSrysiopxQ7myzywefPxdFpO0P3xv3x7Wb2vCGNURjCp0eoLdwnhnJIwqAQejOhev3clt9mZCmSsByPdN49nfXManrXXk2c9icmExAL5olIs/eJNgSoKoT+bMO17kthPOYWL/F5Ek6OwYxoTckyix9iHTdHRBvM0b4CdPv4VOEunwBwHY3dTeo45ekrhs1hhYvI7le+uSV/URIlm1tw1ZVQgmYjQE3YzNLGbm6Iru7VOH9OX6kybTqaujinchDq+/WccBpYypuUWETSY4qB2NThvMROdIQGVM+hAEwYjO8SJXv/MWKzuMFKc2cYPh8H28JCed9/54CS31nXxYtprxxxy2Zf/lmvd5u24nx+UnhUmdKGL4ht8BoXg86Q0twICMTFKNyRV4Nw+bxs3Dpn1hO0EQeG7CVezwNjIh4+tZmH+eYlsmb0+9gbgiU2h1Jvc7YAGzcgfRz5H3rUWLL2zcxKK2nQDMzh3M8PTib6XfI1nRvocbNr1AvjmNlyZdg1n637Z3c/mCeEMRSnOc3/dQAMjLSSVSew2rqjZx0SkXUZHRh0EZSXcUi6GQjtBKajw7kVneq61egn4ZrQgC7O3M5vWqUYzNK2BtYwP3r5nMu5eUMuKlBuak1yGhUGn2YBZlQgk9JinenYc7rqrIkkxQEEmoKnpBQFFVOGSRfpCoGgcEUA6K5SjdecWPJKjqURBQEWhMGA9+DAW8soBVjCKiIh3sVlEPO58LQvJ/vajik3Vs9+SRaQsjCJBn9iGoKgtbhyIKKiYpjoxAma0TSYB+jgZWtl8DQF/zQLyxGpY35+NL1KATUgl6ZnMwEJ1BZVncc/rxXP3YmwCk28xcM38ioijw0/kTeXXVNi6bPebbeHs1NDQ0NH7EDB48mOrqaiBpp64J4xoaGhpHx2azMXjw4B5lsVgMl8vVI8K8vb0dn8/Xq30wGKS2trY7hcUhQkZ7r7o/VATAE4l3C+PfBbFYDIPhf/t5XkNDQ+O/RbM/wqZWD3Hlu03G0eSP0B6MMiInlTy7Fj3+7/C9CuN33303hYWFPP30091lRz74qarK3/72N371q19x8slJe+Nnn32W7OxsXnrpJa644gq8Xi9PPvkkzz//PLNmzQLghRdeoLCwkE8//ZQ5c+b8V49J47+HosYIx5uw6IuJJFoBiCsephf1FAI+b3k+KucpWoPvIwpGnObxTMx/i2C8jjRT73y6mZapZFqmdr8enfssccVHTO5ip+u32A0VWPXF+GPVR7RSicitRBJt2Aw2OsOrAbrF+ObgQtzRDQC0hz7pbmXW5ZJpmYqAHlCx6HsK1QAWfRFO8yQCsb3kHBTNMy1T6HQ9xJ8XrSIU/ielman0G1eHKCl0NEQ5/bGXeeL8kxEFgf6GUUSVFczLnU2uOSmWWyQLqYbUXvvqYy3kkZF/QxREusKrafG/hEmXi0mX26tuRXZShM1LdWA16HttP0QgEcDqqOOi7AIyrTo+aVtETElGhI8rtvF2cwuSBGkpAXwBC7G4nm17irvbr2is51cTr+FAsJlhffqiSkG65EaW7Y1S5dvP8MID1C/OAgfsbsmjuiEPX10HNU2dWMsFKgbm8peZ8+ibmswVP2lqvx7je375Zpp2e9FlCkwqyqIm1oqCyoUlJyMJIkvf2cT2LhddJXZcpk7625pIlWQ2eDfx6j9y+eiPC8m7wsnUOV6mFI3jUTmGKkBhURplRZl4/WGefm01naakoG9EwPpRM8ERuXy20834KSJyVGXZK/vJja/jvKtn9hifLxolmEiuXhYUFdko8vuPcnk6ZyUNjXuYOW0q4yw9o6c/z8e7dpAo2EgwpOeSY6YwLOdf9C9MoKozegmvF08dRXFmGn2caaRZDz9ondhnKK1hHw6DmTEZfXrtQxJFLjhmFF2xvty64WNiSgxX1EJC0LF8RyM1j77A3XeczujRfTHrTNzU7+LD14jnNyRCT3NsSQUrO4+lzudh8YH9nD6g5wNvRkEqB+ZGWRf5jNvCJ5NtSuH1/dtJqAoNUTcvn3Q6mRYreXbHl56PzzOnrIyHjz0Oo6RjRt9vli4h0+Rguunoucy/Ljnm1B6v9aLEGGdvW+3/hHEZZTyzfynp/8fefYdHVaUPHP/eOz2TSSa9kp5ASOi9d1BQ7CgWXHvv/tZ1d3Uta1nXtZe1d10LNiyoiBTpHQIhkEZ6rzOZfu/vjwmBmNCkBPV8noeHZO65554pmblz33Pe1xBImiXqmPa914aGInyqQklbPTXOFhLN3U/U+C2oa7Ez6+E3cLg9/HveTGYMPHC9+BNFkiT+78bZwOwu20KNA6i3x3HDN2+REmImMbiBMzLXIkt0rODe+6e+uymScpuR2ECV9A1uCjK11I0OYmllOqWEIqkKZslFjOLE6FS4tve6juNYtHBz0nqSdXY8gFfdV/tPg4RWlfF1VEMCJAl/2FxFaZ/rqqrgVCHXHUSVoscke5BRkVDRABpJRYsPvaz6g+F7g/KKv5VB3ndMj6rFoRgwGvcF3AN0XoKNLlq9Rj6tGEJGUBRt3u2kmOuR2NcfQKPbP1mkxVvQfowm7L56TAYJl6LlwbmnEG8N5vUbz2NDQTljM5MIMPgvEM0dN5C54wZ2+1ypqkqdq5Vww5HXNhSEX1JUGUXt+RnhJ8MYBOH3KiMjA51Oh8fjITc3l5kzZ4rJ/oIgCN1wu93ccsstvPPOO/h8Pi666CKefPJJYmNjiY2NxeFw8OCDD/Lhhx9SWlqK2Wxm4MCBzJkzB7PZTE1NDXa7nZycHBYtWoTNZiMpKYkpF3TO4rVl5TIeuNxfdOrZhT8Tm+S/TvD126/y+sP3EmAJ4rWfN6M3dB+Y2LJiKZ+9+jwF27bgcbuJiIvn3OtuZcLscwAoK9zN/57+N9vXrqTNZiOqVwIzL7mCU+buG8e1k4dTW1HGmVdej7OtjZ+//gJZIzN21pnccd9DEBHU6bvGW2+9xVtvvQVAUVERSUlJ7Ny5k3vuuYclS5bQ0tJCSkoKN998M9ddd13HfklJSezZs4c777yT+vp6Pv30UwYNGsRPP/10DJ4xQRCE3y9VVclrsLOjrvXEHA9wKyqrKxrJCreQEWoW15yOUI8Gxr/88ktmzJjBeeedx9KlS4mLi+P666/nqquuAvwf3lVVVUyfPr1jH4PBwIQJE1i5ciXXXHMNGzZswOPxdGoTGxtLdnY2K1eu7DYw7nK5cLlcHb93N3NQOPmtqbiIFvd2UoKvJjviQcptnxNhmnjI/SRJIiZwVsfvBm0EBm3EYR1TkmT0Git6jZURse923N4/8t9srbmTAF0vZEmPWZeMWec/We4T9heKm98iOvAUACIDplDW8hFOXzWgIksGVFXBahxAoD6NCQmLQVW6HZMs6Rga/XKn27ZXVPNx/XyyJjpoqAyiYLPKeE0ADmx43VpU4K1VG1nWvvL3mUsuYUPTjzh8Dp4e+BgGjRGztvs0zXvrUocHjGFK4hpkSY8kdb0wc8HQ/oxNTSTMHIBee+C3la8rFvJN5XcAWLQWWr2tKAqU14SiD0nn1OjpzM9fS1Vt96mvC2ubeG/lOsIzGvhuy1ZaWwKRVInkYCsb9iSzOT+ZWYVhvPXn8dz66ucYixTsIS4kJMZIsbx8zgXd9quqKj/lFbK5vBKdXcbYJnHTheewrCmaRHMsUe2rr4dN7ktb8QaUAFC1sKc5lITgRiYk9CUsOgLZq3Jhv3XE9mqmqHUXHuUMkGBUZhIAH3y5no+/3ogKPHPvTIYnxbM1bBv3F2+lvklm9/LxGJc2oDS00bt/11IQ8UFBhJRqcOp8hLuNNOEm2mphQHYCg/p3DVB3RxdVRoTWn17s9IT1BHgWobgW4fFMQa8f3KmtRpaZmpWGzfY1JTVm4sMnIMsyRo2OW7MmH/JYofpQHuv3BAve+ZlJaRZWOWvZuiwPAJfb2+0+XvdaAMbF1RG9I5DIwEAmJ3UNDO9oLmNB+UYAvi7fxBVpk7h36FQWFO/gln5jGRl18NriByJJEqemZxy64W9Yn+BYfprqLxtxvE6aLkwaTb3bRlpgFAkBJ8cq61+rxeHE4fZPSClvOPnPFxRV5am1/glZhY1RVLfG85+pt9Hq3k25bSF1Tn+JjCankTBzK9P7bGP1j16yJxRx+oACVqansbM1GmJAlWRsmFjdGsYoa1mXY2VYuqYqBH+KdHW/GuTqL1aR+8cJq5zBtKj+C0hafOja06MbZC8exf9ZsreWuQS4FQlZArfqT5nuVvy9N3pNIMm0+bSE6uwoSPhUDc0eA3afHvAvMa9xFtLHouBDg4yPg4UZJAnGJ+5iSEgp9Y5AkoLuAyCvvI7vNu8i2GxkRHrXCWy/9Mj2L5lfupaZsQN4cMCcQ7YXBEEQ/tj0ej29e/cmJycHh8NBQUEBGRm/73NTQRCEX+OZZ57BaDRitVopKirixRdfxGg08sQTTwAwe/ZsFi1ahCRJ9O7dm7KyMpYsWcL69etZt24dffr0YdWqVTzwwAMoioLZbKalpYU3//NIp+P0HzWO2KQUKooL+enTD7no9rsBWPPDtwCMOXX2AYPiKxcu4InbrkVVVfRGIzGJydRVllOQs4UJs8+horiQu88/nbbWFgKDQ4hNSqE0P49X7r+bloZ65txwe6f+vnrrFYwBgeiNRhqqK/nmnddIzujDpL/dwYgRI9ixYwetra2Eh4eTmuq/jmIwGNi9ezcjR46kubmZ0NBQMjIy2L59O9dffz21tbXce++9XR5bjUZDWloaAQHHrqybIAjC75Gqqmyva2VXg71Hjr+9rhWPopAVLhZkHIkene5fWFjIiy++SHp6Ot999x3XXnstN998M2+//TYAVVX+VcBRUZ1XtEVFRXVsq6qqQq/XExIScsA2v/TII48QHBzc8a9Xr18XQBF6hqqq2NyFtLrzAWhx52HURpNqvZYgg38FcJ3DzoNrFvNlwY6O/Upamnhi48/sqK/ptt9fHuPft7/HRSPuY0N7IO9gjNoIhse+RXbEP+kbfi+JwZd0vBEFGfrSP/JfRAZMYnl5MeurNUxIWMzI2A/pE3o343stYnLiSkKMQ8lvquemn5bxfl7JIY+5qzWfsrYK/rVsAWarA4CQ6BZMGU1UVmWTxDQa3LFkJIUzpfe+wOJnpd+wo2Unn5UvQJY0BwyK/5JGNnUbFFdVlW/ydlHQ1IDpF6vFPT4fO6tq8fr8gY2EAP/fmtulpcXjn0Ely6AqEvcuXcK/FlUzLPB0Xph6HneNGIde1jA+PpEwxYjkAG2bSkXgJiqVjWiDN7GzqZLtdTVU222cnZjJOUlZPPjkXIb16sXY7FSCky2kDIoGGfIKq/nny9+xZVd5l/uwaGcB13/wJd/s3MVF4wZx6qRMpr33Dm8srWNw8L406/EpkTx6wSzC9f7HLFh2MDN5A2bNO6RMaiR5VCaKOxKA2gKZ+BaZvtERzB3WH4DMtGgkIDI0kCnpaUQHBTF97hguGDIA2Qkl1TZ0V5eS+GoN1oHdPw+npKRjrpKYOaQPkwam8eCFM5D3K8C7aP46rj/1cRZ/vqHb/YeE90cn6QjXRxAeOBHQIctRaDVJnZ7TSlsriqrSUHs+9par0bkvoqo8Hq+3rVN/rR4HiqKwo7aGRoejy/GCLIHMvW4GL9i2sljdSuAVOm69dzpjRnefbjzQ+hiGgAuIinyJVZdfwxdzLiK8my9i6ZZo+gbHEW6wMD4yE4BLMobw0fRLGBl1eJME/sj8NZ6P38lShDGIB/qfy7yUcb/6OFsa9/B95TYUVTl04+MoJSqMxy+dxW2njePCsd3XmD+ZPLN2Fd8U7MtiYvd62NMcCuoEFhQ0d9xu0TsZEV3M6clbiBxWy/nj15AUUseFg1aT+k4VxZWhKAp4vDJhwW3sUkO5ZccMVtTF4W1/SlTV/++Xarw6Gn0yTgXafHQJioO/TvgAva3jdx8yHlXGp0p4VbmjNrlH1eBWNDgULS7ViN1nRFE17cFvGa+qwSR7MUoerFoHsuRDL3kpaAnly7L+qKo/mD4+fDc3pC5lUsRW9BIdadlbPAZymvsQoIlFSyB7V7h7FZkA2Z/RJMxk45nll3PX299w/0c/8MOW3Tz08eJDPhdFthq+rdgMwKbGPYdsLwiH4gN8SCfBP0EQjqfs7OyOn3NycnpwJIIgCCev2NhYioqKKCwsZO7cuQA8//zzNDc389NPP7Fo0SIAnnjiCXJzc8nNzSUwMBCbzcYjj/iD3y+88AKKohAcHExBQQF7yisYOX1mp+NIksT0C+YBsOSLT/D5fDTX15G7wZ8VcuKZ5x5wjO88/hCqqhKdkMQLP6zmyQWLeX3lVqaedxEAn770DG2tLSSk9+HlJet4csFi/nT3/QB89spzOGy2Tv2FRsXwwqJVPP/9CkIj/VkgN69ajsunsHr1agYP9i92mDVrFqtXr2b16tXExMTw8MMP09zcTHZ2NqWlpWzbto0nn3wSgEcffZTW1s4rHC0WC7m5uWzdupUvv/zySJ4WQRCEP5y8BnuPBcX32nUSjOG3pkdXjCuKwtChQ3n44YcBGDRoENu3b+fFF19k3rx5He1+eVFdVdVDXmg/WJu7776b22/fN+uupaVFBMd/Q3Y3PklR86uYdSlYDYMJMQ5GVX2dgraPb/iZD/K2APDa9g3MP+0iblv2Neury3lz+0ZmJfdm4Z5d/HP0dGYld02La2tuY/Fn/sDij5+uY8j4A6fOrbC1UNrazPDo+G5fc1tqK3lj+wYyQyN4eN1SAN6cfi4WfQi5Ddmcmx6EQeMPKL+wZTXf7dnNd3t2c3ZaFsHdzDqtaWvhg5L/sb55LajgitJi2Jeplr7JFazINbOtrgEVyIozcP6w/sSHBlPbaufRlR+RNtjf9t6f3ueJqdfw5qoN7Kis5c5pY4m17ks9XdzYSK3dztC4uAP+PX2zaxc3f/U1APMvnMvAmH2p1m/58CsW5xVyalYGT86ZhcYTS35+NjVNboYN2IVO5w+qNDRaaPE4sAS38WnZD0QHnsmM9DQypWCeenIhTQN9SIDXCq1eiQjA69Wg+PxjWldVwZb6KswmFw2RP6CTLCxsCkSNkyguL0AXCVKljwXLtrNqSxGnzMjk66JCbpw8itP69UGn2TdHqH9aDDf+6K+97tAVctXPt1BcEY13mZlzh/TnrmumMyurN/9evpyFW7/r2K8wr5ziXVXseTCOCRcPYfknNejc5Tz66dmkRvhXzE4Ykc6C164jwKjHYNg3ieD0QZl8sWEHTZ5aLBFteIAtTZtID8zo8rg/fM0s7rt8BrMef5OKplb21Dfx+W2XdGx/+4lvqa1o4p0nvmXymV3LA6RbMnhm0AtoJA2yJBNo3IEk6ZCkfTWjnlr8OKck/5cNVTEMTSzteG1JEtRVp2ENeQVJY+XFwhbeKf6ZeDmarbvdhJlMLJ93FSZd5wkSbW431WoDIUEuanGRE1LCbKnz6nQAnycfj+tnTJbb0Whiu2zfX4DWwDujrz9oGwBV9SBJ+8bj9exGlsOQNaGH3FfoOaX2eq5Y/QoqKs19Z3Ne4ogj2l9VVX6o2oZXUTg1dsBRTwKYPuC3s1Kr0u6/qKGVZXyKgkGrJSLAzMz5b3BxVj0APgX2vu25fBqqHUE4vDrMev/K+LMf2MVft59CRXMIkqqSmVCJ2eCmuDmIHbHB1Nj19DfUs8cTSIknkH7GOgYZGlCAzW4rNT7/ZBZVVTHiY4ypHtPeld/7PRUepI707qoq4VT8pSC8KmglAP+5nAetP16tKsgdfUh4kfxp12X/sWRJIUxq86/2Di+g2hlMkT0MFZlog39SgCy52T+W/0HpMOrcQWxtjeC1kZfT4PiJNbUPoKoqmcHVHe3CwvN54/M8pvRLo7KxlfF9kw/5XLxesJQ2nz+4flXqpMN9CgVBEIQ/uLS0NIxGI06nk507d+LxeNDpDlyuShAE4Y/otNNOw2Lx1wO/4IIL+OCDD3C73ezatYt16/aVgLrwwgsBiI+PZ9y4cXz77besX+8vb7h9u7+c0pgxY4iKisLu8TJqxmks/eKTTseadNYc3n/qURqqK9n88xLqqypRFIXoxGT6DB7e7fiaG+qpKfMvepl09vmERPgXUej0BhLS/dcYd2/bDEDJ7p1cOCit0/5up5M9u3Z06n/Y5OmY28vFRcb3oqGmiqa6OlasWoVB2pcRtaGhge3bt6PVatFqtaxYsQLwT7Yym82djuNwONi6dStjxozpuO2cc84hMdG/4ECU8xAEQTiwilbnCUuffijb61qx6LWi5vhh6tHAeExMDH37dq7HmpmZyfz58wGIjvbPfquqqiJmv2BbTU1Nxyry6Oho3G43jY2NnVaN19TUMHr06G6PazAYMBgOXodXODbabE6uPeVx6qubSe/Xi4fevApzkOnQOx5Eq9u/gtvuKcfuKaLc9gn5jS+gMIdI00S+Lango11bO9pvrq2kps1GvDmI9ZTT7Hby/t6gec56+oZGkBzcOUhmsZo59+pJLNm2kxFzB6GqKuW2FqLMgejkfSeFLW4X0z59HZvHzb0jJnNF9lBqHXZa3S5S2vu8Z+UPbKmrYlHJvtecw+vhykWf4lUUym0t/GWYv475pF4pfF6Qy5DIWBxeDzsaahgR3Qu5PZJQ1trMRT/9m4So9mwIEhgCuqakHpdZhIyeOpuO05L8F+PHpCayrSGXNGdZR2Air6WQr7bt4NHl/rrs1gAj987yp8iuttk49a23cft8PDp9Ouf1y+5yHICA9os0EmDQdH5LKarzp9ktrGugoc3BvK8+wSF5QS9RuCuF5BgXuXlG2hQ9OrOHAaklyBJsta/ivo9/QlJBl6WASUJ1yuglDeXVYbh3mYkKjgL2pTW2BhgJiqnBJbfgooUAUxJtNv8HgezwEhUVSrGnmYJYO89uXYfs0fDi0jWkR4bzyqr1nD6wD5cMG8SG+jJUWSXK3MQNQ3/ApWr5WedgVUw236/M5a5rpuN0uLlt1GiidYG0NGQzqU8MgSFDyR7+Jm5FIV8fgWeYgUkRUaRmxuJRvJTY60kOjCAkuPOXEICkiBBePH0GV173XxpNgfQdHcK3ZdU8sXzzE1IAAQAASURBVOM+/jP4IkZHdA7K6XVaBibGUtGUR/+EaD7YupVwcwDTUtOYfek4PnxhEafPG9vlOC0eB9uaShgSmoJO9kfFZHnfeNZUl/DsthVMDviREIODoYmFuJwpGIyFnfppavSXuwhwjwQyKXFVAyE0Op04vd4ugfFAg4ER4Unkunei0SoMDu0+oNTSMA/FV4Lb9SPB4Z922+ZINDVci9OxAEvwA8hyOK0t/0TxlQM6QCbI+ggB5u7T6ws9S5YkZEnCp6ro5SP/Ir66Lp+7N38IgEmrZ1LU0dV+P1Y8Ph+3vbGAopoGHp13Cv3iDz4B5EBUVeXrDTtRVJXTh2Z2CvzfPXo8ScFWhsXGExlgxqTTERFgRlFVttYlkBG6L5tOfnME35f25crM5Zh0no7bLZENBOa6sClGVElie3EcYxLzOSNzC5IE9YqJnxzxOD0a3tswEqPJQ6SplUuzVnUapyRJuNCy2BmFHh/xmjb6GvyrHsq9eja7Q1CQcPug1m0hUt+GFw1OVYte8mGS2jqlO5clYL9a6f4I9777LqHs96vEWbHt5RYq++PibNKCmnH66nH6GtDLFkocwdS5/YHrIlstP1btQFYr0cudsxTsKQtn3TZ/Zoo5Y/rz0EUzOuqLH8zYiN58075i/JX8nzij19BD7iMIgiAIGo2GzMxMNm3ahMfjIS8vr9MqckEQBOHwy4IdrJ3anv5qbxtFBeiaEisw2MrYmWew+NMP+enTD2mz+YMgE8848Grxw9J+/KCQUKISkrpsln/xXXhvUBxAs/f6m6qydt163K3NNDQ0AFBSUsInn+wL7jc2+q/NBQQEdMm4Cv6a5MuWLesIrJeUlPDf//63I7C+959Op0Or1aLRaDp+PlCbw71dpP0VBOG3yuVT2FjV1NPD6GRjVRNhAZEYND2aKPw3oUcD42PGjCEvr3Oa6l27dnXMSktOTiY6OpoffviBQYP86UvdbjdLly7lX//6FwBDhgxBp9Pxww8/MGeOv3ZjZWUlOTk5PPbYYyfw3gjd+fnbrdRWNAGQt7mE9cvymHDawKPqMzPs75S0vE+TcxPNbn8A3OEtQ5KeIK/hGb4unM49w1Zg0TuYXzCRkTHnERsYxMNjZ7CotACbx83QyDiqHTY21JQzZf5rLDzrMjJCwjsdJ/qCDJZF5rImdyEXq1W8tn0DQyLj+PT0izrauH1eHF5/MKHR5aC6zcbEj1+hzevh5SlnMSMpnbGxSWypq2J8fBKXZQ3Bpyhkh0Vh0uhoVVxY91sVPjy6F+vnXk+ATsfoD1+i3tnGLYNGc/tgf5Czsq0Vm+vgJ43+wIEXBS+hQaA1laOoQ3D5XGxs2dhptV54tJ3PXM9iCY+npcVMYOC+4L3L68Xj8yfLbHG5Dni8SSkpfHTBBZh0WjIj/XXRFaUZW8uTvHBuGJ9uH8oZA/qys64Wl8MHJpA8UN9iZELsYO47dyCz33ofjU8DPgm0KmFaMypONFovg8YVo9X6KPouitfOuoEbnpxPk0MiP86OXpK4feY4RiT2IjnIwsq6tSyvX0qMKZprp57KntWlvPbFIiZnp7I6uZbwoBqKmiIw6j3EBNcQa4rgz98vZEdZDbIiseepdaw737/ScUB0KQEaDwF48Dq0OKOgPlbmk1XLeO2zRYTWRvPqC1diMu1b+fzvD2/km1U7uPe1haCFgecOQqPVcO3qV9jYWMychBHclTW7++dNlgkoc9D2gp5h2afyDf5V+MtqdnYJjAM8NvdUbp85jsV7Cvnbj/4UYQsuuphzr57EuVd3vzLx2rWvkddSSWRtMHfGn8aUyZ2DhU9sXcbamlLqArNJ1dexZ2cwIwbuRm/ovMpzr9PD1vDfndnYGwO4OGsA01LTCDF1P/HlgxkX4VMV2rxuLLruZ67JciSKrwRZjux2+5FyOhYCKi7HQnxKZXtQHMD/N+uwvycC4yepuIBQ3ht9A7WuVkaFpx16h18I1pva1xKrWHXHpiaaR/Fx6/q3KbDV8J/BF5FljT/iPgqq6lmWV4B2ZBOXb32B542XMTw89dA7/sLPO4v56/sLAbCYDEzK3teH1WjiuiFdV9h/c86fGPfhK2ysSuCBsZ+iQWF3YxQTYnaTElzXkRLdp0iUNidiUwx0RKUl6Bftn7i0V1F9KAt3DcDrk2lzGvAo3Z907+3XhYYCj5kgjX8y1xZXMF5VRgWafBa0GoVWxbTfe40XwyHO4yVpX/9799u7u6qqaNsHfEbcds5LfRn5F+VARqoKgfotvFu4giJ7Pc/v/JSMwBKmRXc+Tm5RIrkFiUiSRJgl4LCC4gAzYvvzY1UOP1Zvx6Q9vH0E4WAUVUZRe/4L7skwBkH4vevXrx+bNm0C/Cv8RGBcEAShswULFnDfffdhsVj46KOPANDr9WRkZGDbLwX5e++9x6233kpZWRnL2xeFDB3qn7CanZ3N5s2bWbFiBTU1NZhDQln93TfdHm/G3EtZ/OmHrFv8PXszW02YfeDAeHBoGJHxCdSUlfDTZx8x7byLCA4Lx+vxULmniF5pGaT1G0RZwW4CLEH87aV3sFj9QeuWxnq2rfqZjIFdswB2R22/drc3u4jH4+m0PS4ujrq6OgwGAxdddFFH3XC73U5RURFxcXG43W4UxT9B2OFwUF1dzYmg0WgOO6h+LAPyGo1GBOUFQTgqW6qb8Sjd1BfsQR5FZWt1M8Niu06CEjrr0cD4bbfdxujRo3n44YeZM2cOa9eu5eWXX+bll18G/DP2br31Vh5++GHS09NJT0/n4YcfJiAgoCMVTnBwMFdccQV33HEHYWFhhIaGcuedd9KvXz+mTp3ak3dPAEZNy+alB7+gzeZC1kh8+dZyRkzpi9H06y8QB+h60SfsLpbs2ff87j2XCdB5uX3QN+jbr30PjdzO0KjbADDr9Hx75p/Iqa9makIaXxft5NalX+NTVZpdzo6+Pt61jX9vWE5WqD845/L52FLnPyHcXl/dKU1/uMnM/2ZewM6GOuZkZFPc0kRbe6C8pLUJgD8PG89V/YZhNRg7nXR9f/Zl7GltYkS0P43/T6WFXPb9JwQbjHx+2sU0Ov21nEtb99WEHRoZx63ZZ1PWVsaUxHgWVf9Irm1n5wdo//M6FbS+AP6R80+K20qYl3ghQdogWrz+WaCy3o0CREe4CFCiuHjIgI5dE6xW3jnvXMqaWzizb+ZBn5MhcbF4vUV4vcVotUm02V6jzf4yJuDmiYvR6cJIUkK4LHsw9W0Oyhqa2GKvYuPbm1ktbaFXnAFPs0L94nDSrpfZEbySsX2hocWMXuc/we8V1YAuwMXnD1/J9zm7+Ofyb/E5jYSF1/FmxcdoK7XUuGpp26TjI48FrfZzFsy5mAvPG4fb18Kn+VPQa718ljMU2apgDWqjyVbP1rK+yBYIL1JpKWlCdhjxmWS2VseRFVlKnd3CygJ/PWybZOd930cYz1BpWOyhtq6VhF5hnR6LoX16kRgVgiTB0N7+wFmhzV/XPt/W/ReLz3bs4Ltdu7n+zUuIxcSgcRlUFTjIaS7jwqTuM19IkkSM1UJEnRkVFU2Ayvw9W0kLm8iC3J28tHYdVw0bypx+/Tr2afX4X+f1dhtPPr2wS2B8VkImG2rL6Bc5kTDpesrbriA4pHNGgoDAa2mz/RcAvX4IL4y+EoNGy6DYQ6981UjyAYPiAEbLDbQ1349Ge/DX2+EKsj6G0/E1gUG34HatxtbyEP4vsKGoagNebz6qqiBJ4gL/ySg9KJp0og/dsBt9g+P5aOzN+FBIt/y6Pn6pxF7H6vp8AH6o2varAuNp0eGMHZjAmgB/2vENDUVHHBhXVRWH1oGkUcEnEWI+vCwsvYKszD/9Qi78+kMeXzeTmMAmNtf2YmhsMRkhVexsjGF5RQa5TTGgSvvOENvP8YsaI0gLrQX8n7nbCxLwIoNWBRXaPAaaXHqsBjeKun86dFDbP5hUNGxw7ZehRfJ/ZO1uDiPTWttpAo5ZdnX6vWOVOJ0n6hzsWoaEggrIaMlteJ0WTxEWfQJ9Q65AQkZCZVyEmTbXj+xo9pBpqWxPy74v6C5JcO30oVw6fBrR1kAe/2IZO8treOKy0xmaeujXwP0DzmVW3SD6hyQcsq0gCIIg7JWYmNhRCzc/Px+n04nRKNIiCoIg7FVRUUFycjLBwcEUFvqz3F133XUEBwczadIkpk6dyqJFi7j99tt5+eWXKSsrw2azERgYyN133w3A7bffznvvvUdTUxMZGRmER0RQUlLa7fHS+g0kNXsABTn+DJRZw0YRGX/wspyX3Pk3nrjtWqr2FHHd1BFE9UqirrKcSWfN4fK/PsDZV9/I2kXfUlVSzDWThhKblEJrcxMN1VWERcUwZuYZh/VYnH3mGeDzUlBQQH5+Pjt37uT999/HarXy6KOP0qtXL2666SYaGxt5+umniYmJwWaz0dDQQEhICNOmTcPr9XakTd8bPPZ6u2aoPNZ8Ph8+nw/XQRbkHC+/Nqh+NAF5nU6HLItrUILwW1fR6qSs1XnohieYCpS2OomzOYkNFN8dDqZHA+PDhg3js88+4+677+aBBx4gOTmZp556iosu2rci989//jMOh4Prr7+exsZGRowYwffff99RRwbgySefRKvVMmfOHBwOB1OmTOHNN98UdVB6iM+nsObHHcQlh5OYHs38rQ/xv+d/5K3/fMuODXvIzykne9iha3MejKK6cSl1XW6XJDqC4gCV9mDWV5cxJtafhSAhyEpCkBWAM1L74lZ8BOr0DIv2X9x2+by8vn0D1W02HF4P942cQqw5iIyQMF7bvoFpCWldZhQOj+7F8Pbgdp/QCJ6ZeBoVtlYuyRzU0SbE2DVwERsYRGzgvjRIuQ01/pVzLidTP32NvYlc4/drI0lSe7/+vt8sfLtjm9sl01gVjNNmYHxWJAWerWh18EnlRx3B8tzmfAZY+7G8bgV2m4GGhkCSwgy8PPl64i1RXe7biPgw+oV8js9dhs50Svtx1gCgN+xbkeh2b6Sh9nRAIiziG3T6AYCELIej0fiDUlpZ5t7Jk/F4fFx/17tElqj49G4Sri1F0qhcYrmCeG8sj7oe7FiVGGq1U1YeRd8YJy2Dmnm64jmeHfwf1ju/oN+EElwrA1jZWEmDt3FfIKOXhG8PxEVX8nD+/VymXMDwkAz0Gn+APbzFTW37B4Pi878FDo6L47qEdN7b/B2yHMoeTSUpGbWsdadSUhuKr31llKpKyJKMDx9DBqSy9JO1xCVHdqrlHRliYf5Dl3V6HJ8acgmLq3dwdq9hXV4Hiqryl+++x6solJob+ezyi5FlmavTp3Rp253paWk8cupU7t7wDW/sWke8wcKba7ZR3tLCs6tWdwqMvzDsMp774XvWflfMpAldg8/zeg/hkozBSJKE07GS8Oi9GT1kaH9FBlruwhRwLpIUjEYTzcj2FZhez25amv+OTj8ES9CfD2vsv+Syv4HiK8Zh+w8my01HFbBus79DS9NfMZpmo9cPRqvtja3lUcCLrLHi8zYgST36ESgcZymWY5N5YK/kwAjOiB9Coa2GM+N/XUpsrUbm+QvP5Y3CSErtdZyfOPKI+3izcBnP5X9Pr1NDeDLzUtJjIg573yHRcVyRPYQXtq6l0h4CKKytSmFtdcq+Rh1Lrvf7XYLv8vuxSPZh0Tkx2FSqsCDp982MVdDw+NpTiQ9tICKiDVA5PWxTRy3z/QPb+1NV2FaZQGpQLYb2z+9AuQ2dpBwwGL4/tyKhldROq9k7tVcByc2OJv+EHuygwcDOpjdQVDetNivmwFqyg/fta/fqCNaPpF/IDLRaD4mWU5FjdZTUNrF6l79O4KItuw8rMG7S6JkQlUmDy9ZpYp0gCIIgHIwsy2RlZbFmzRp8Ph+5ubkdWfQEQRAEuPnmm7Hb7bzzzjtYLBYuvPBCHn300Y7tX375JQ8++CAffvghu3fvxmKxcOaZZ/Lggw/Sp08fAAYNGsT777/P3XffTWVlJUmJicy8/Aae/ett3R5zxtx5vPC3OwCYcOah06iPPuV0zJYgPnvleQpytlBZXEhEbByp2f5FKXEpaTz8vwV8+Nx/2L5mBaX5uwgOC2fQ2EmMntl9tsFfkiTonZaKJEk8+uijVFZWsnr1anbt2kVYWBiTJk1i0qRJjBw5kvvuu4+ffvqJ8vJyoqKiOPXUUzn//PO55JJLAHjsscdoaGhg7Nix/O1vf0NVVXw+H16vt9M/j8fT5bbDud3n8x32vr72VfDH095jOZ0nNrglSVKPBORF6npBODZUVT1p6oofyI7aVmLMBvE3fxCSuregyh9YS0sLwcHBNDc3ExQUdOgdhG7tfSl9+MKPvPWfhej0Gt5ddS9BIWaqSut55KZ3CYsO5i9PX4zecHQBqUbHRtZWXXzIdotK+nJZ9vP0DYs6aLuy1mYeXLOYhXt2Myq6F1VtNuZlDuLy7BNXD9TmdvH8ltV8XrCDCnv7m6sCn59xMYMi963G9SgeVtatIb+miMWVS5HbX7Jej0R9eQiJnpE8dd5Mrtl4I5IMqFBcHEGA2U2abziR6QXk2wrRKCZW/JSM7IZbJ43h2vEDcLs2oKoeNNo43K6l+LxltNn9GRwiotbi9e2hse48AELD56M3jALA6fiWpoYrALCGvY3ROBXFV48kmbD5ZG5fOx+PonBdxFjufuALPF4fiqJiTWwjdI4/yDDbNJvz+s/m+lV30io3oThlYhnMBRmn81XJR+SzHZ3DzGsTnuKK5TfjMTjwFGrwLjVhuMRObEADDkVP1ZJBrDfJjBy4C41GJdWczAPZf6XSvoai1vX0C7kEu8fHxrpNjIkZRn5DC+GaAL5ZuYNlnjK2NFQTFlZDr/hqJAmqmywUVUYTq7USGxjEef2SeWzV99iqA4l+p4L6EcG4+wUyJTWFp2echuZXzPy8av5nLC4qJDTXx5UjhnHNfqnQFUWhtLiO+IQwNNruJ/uU2ZqZ9OmLeCWFUastjDx7IG/v2MYNY0Zy2eDBXdr7fAqaQ9Qa8fmqqKuehKraQQoBtRaQiYrdg/SLdMQeTz71NTMBf7qyiOj1aDRHXjvZ5fgSe9Nf0ZvOJND6zyPef38Ndefjdi0HtO1jlnC5VuBxr8doOg+PezU6/VC0WrGKU/htuXfLx3xdsRmtJLN02r0YNbrD3rfV4+C6NW+wrb6KljozqiKDpPhTpncXEFf3u03B384r7duoUVHbP2eQQPJKqIpEUnwl4VYHsfoGhgfvwaVI5NujyQys7BLA9qnQ5jHTpoSikerRaiBS19yl3V6/DLBXOHqxunEk48N+Ikxfd9AV5PtogX2rH3yKhATIsoqqwpt7RnJ5+jzOTeickl5VVf79+VJyy2q4Z84UUqI6Zww5kKd2fss7RT8zLTqbRwfNPax9hGPvt3y+v3fsd686BWPg4f/NHy9Om4dHRi38TT6WgvBbUl5ezquvvgpASkpKR+BCEARBOH6WldRT53B3u23X5g3cfcHpGAMCeHXZZkyBgSd4dF2Fm/SMTzi87yW/Jaqq9khA3uv1dqSU/z2SZfmEBeT3v02krhd+T+odbpaW1Pf0MA5pYkIYoUeRtfn3TiyXE46Juqpmbj/nWbxeH0GhZgA8bl9H7c/oXmE8/fktx+x4BiUNR2MQhuAWZNUMGnuXi+UtLgNfFg1kTh/PgTtqd8E3/6PU5k9ZvqOhlq2X3HzMxnq4AvUG7ho2gT6hEdy8eIG/WLgMdQ474A+IexQPC6sW8Vn5lwDIQeAth4iQMBoD6olKauDOXiN4Zd1bSO3XTWVJpnpPOIoqMblPOPNSJrCsdgV9zNnkLV9Mk9vJgNgGqisygc6pi/amtJYkK5Jswd22omPb4urF7HRuYF7ihYQYZxBk/TcgYzD4VzrLGv+J+YqKHSyvLgDAWKTB5fYHIyRgevoIlr5bjRSg4k40QH84tWouzzz9Fapbw8Pvn0tiTDiffJBIVXUTzkoT38XtZl1hFJHWZuSPZNwNerJzahk1tRBFhek3PMbOBomP9nxNgWMbXiWRL4tX8E39fFq9rYy2Gbgh7UpmBk4GYEiMhTuf/5Jvd+3Gnu4fmLveginIjkZWKawKR0Hln+OnYjXquHLDSyhhKl6bjuqJwdjTjCB7+apoF302reXGIUe+AvSpU07lvItewGlX+GTHMkweH/Nu8JcKePLBL/n+y00MH5vOg093PxkkPjCYWSvDydm6B12wnu//bxHhXh8p6f4XQU5xFRaTgcQof32RQwXF/W2iiYjeALhRFTd22/MYA87uEhRXVYXGunPZGxTXaDOR5YNPRDkQg2k2BtPhzYo+lEDL/2FDxmg6rePk22AYg8EwBgCt9uxjchxBONFu6j2DcGMQQ0NTjigoDrCuvpDc1nK0ehjaK4wte5pwqzL4lH31xL3tH6SyP0U6+9cSdtOxghxFAh/43xL2z20OxSXR1DY5KA0KpsoRhFYr0eTUk9sUw9CQYiKNzQRo/ecIGgksejteLzS1BfP52kFcMWYRkWb/Z5+qgqJKtPm0uFUdeS1R9LZUE2Zow62EclPfT1m87EneKhnIzak/opMOPd9TUbyoqoxG47/g0dSYQJ/wsdSq76GV47g24zJmxXedVCRJEn8+a+JhPdZun5fXC5dglPWsr/OndtzQUHxY+wqCIAgCQGxsLCEhITQ2NlJUVNSRAlgQBEE4fkJNOuodbvb/VlFWsJuPX3iSHev9GRSnzbnkpAiKS/jH+3skSRI6na6jbvqJpCjKMQnIH+jfwfY7EffN5XL1aOr6E7U6fu8/WZZFUF44pgob7Z3WkpyMJKCg0S4C4wchAuPCMZG7sZjayiYAgkL8gfHAYBPB7UHyY8nn9fHS/d/y/SdjAbj6jXICErZ0Coo7vUY+3H05kQE6dIeRjlnXnnY/0mTm/lE9W5v+jNS+hNVL3LH2O6IjrIyMSaDF08otG/8PL16sGisAMjJeLzjcCYxP7s/PjStoaNJyx4qnCJSb0bVneFVQSPq8HI9PT+gZNqJmB3BO7BCcbTu5N3kB899OJ/6SRfwyKA6g0/WltPD/mP9WLpNn7SBr8LMA+DSDea+sCIB4UzxnxY6htfUFVNWJ3jAarzefNvt7gIn+8o+cFTCYH8pSSW/7ieQpQ/jyRxsq8POqn5mRamRPfgrTb/WvzAsI0INbg1Yro9drKKtuYkthLe62MC4+dRAVbTZa7SZa7SaCEsE5VCYhuLbjMZFlmU+ufY/PxvjwWZLI09ay27scvd6fhqmgpbzL/UyIsuKppiO24/Vq2bU7Hp0so2g9pIYY+ds7H+JQdDDU/7GXHBVEntLWqZ+6NvsRP9+VbS14FB+vvXg5N17yX2x2Dz//sL0jMF6UX93+f81B+/nHQxew/Icc4nqF8rfr/Cn2W5vb+HHTbu585Su0Gpn591xKQqT1sMcmywFAAMgQZL3/AK3cKEpDe/sowiIWdAmeHwmvewuSHI5GG/er+wDQG4YSavjgqPoQhJNRhDGIm3vP+FX7DgtLZWhoCi7Fw+ODzyfcYMGj+Lj51S/4ObcYCdj071v5qbSQK7//rMv+khfUvdclJOi0rLv9G4GkgLFcyw/n3cpjOYtZ3LgJrazgVWRAotAWAV4I9bYxq5eZsNAf8CHjUWUKK9K4tP9UhoddxsrG64k1VVDfnM4r8wehDrEhmxQSA8Jp9AYwIyaN81MnIssys+IG8mrBEprVuwn3vQiaxv0G2fmris+n4YOvJlIbEIghtZEYo8rLIx8gUBeE3TMXozYMjXT0Xxy+q9zKK/k/AXBn5kxSW6KYGTvwqPsVBEEQ/jgkSSI7O5vly5ejqirbt29nxIgRh95REARB+NWsBl2XYEdTXS0/f/05xgAzY2aewdxbf135uGNNBazG32dgvCfJsoxer0evP7EBJVVVO4LyxzoYf6h9T2Tq+hNtb+r6ww2qazSaYxKQ3xuUF35fXF6FslbnSR0UB//nQ1mrk/5eBYNWvA67IwLjwjExbGIfppw1BK/Xx0U3T2fFwm0Mn9y1hvGv9fFLP/G/F37k7CsmsHNjMeuX+WsfR8WFMCz5WnK9l6BI/hXfigoPrptJrcMftHwlZx3PTz6j2349io97Vy4i1mzh6uxhzE7NxKzzn/h4FYWnN62gzevhziHjMGlP3Mnm2OGZrBm+7/Hb2rQbb3va1yZfExo0jNTO5d8/byQ5pZIvqr/EIgfj0jYRkuDD3aBB9YAiQ2ODhV5DUvFubmDi7Axqq0aiqk2oKgwaDdlDNqP9xbleaVMwiwv6ElM4jZ++30FlWQMFO3/k7tdiiTKWUuIYRi+TQo2rjrTAFH4sf4ZsjT9Q7nL9TGvrkyi+CvYGJS6MLqBfdQ0Tz9kB0lJiwtJYvTWZmy/8hqBgFxjnUaIsIsg3ncnTs4mIDCI4xExMbAgf/7CJ+mZ/wLl3SiQ75m/hnNREYhOieGfHOvR6N7UEYpJuYFT8OJTWYH6UavFZ/KuW44OC8LVHvO0OHRsKQmEw5DXWoqgqmaGRXDF7BMUx5ayuKKeyBkINJuINQexorMGo9ZGUsBkpSWHH+gSsjl7M7JNORY2PvMot7L9S8uKsAR0/q6rKR/9bTVODnXmXjccU0PWEuqC5nlO/eRWvovC/aRdzw22nsOTbrZx58eiONv93/1l898UmJs7IPuhrJiQskNkX+Fer//PFS6mvaWHq6QP5YvUOALw+BYer+3RgR0OSjASHPEVry+Po9YORpCP7O1EVGw7b88jaRCR02JpuAYyERK1A1vy6leeCIHTPojPy0ogrOt2mkzVcOHYQJbVNnDKoNxpZJj0kDK2sYA63gQTGugjq69xo22QMBg0PnTOd25d9g1vdL8Xc3rdCDXiNCte/+wUf3ziXezcr1LpaSTaH8eGe9f5j7giiscFKRtJ0AiwWtjQsYu2uNGYmzuWyIYMpstXw9tZ+WLQZjLOOIiHYTpYrigfPmoHcTY71q9OncFXaZCRJQlXPxOGtRUVFJwWxrPI6tLKZn6rLCNQ6qXONYnTyZGojq/ipZRttdg0q/vdnsy7mmD3WqZZItJIGrSwzNqIPc5PGHLO+hT8uFQmFnl/toJ4EYxCEP4q9gXGAnJwcERgXBEE4ziICDF2m12aPGM38nRU9NaQDkoAIk6GnhyEcI5IkodFo0Gg0GAwn9nndW0/+RAfkT0TqelVV8Xg8J2RF/i/JsnxEQXWNRnNMAvKinvzxU9vmOmmD4uf08Zc1veHhJ5l89vmoQK3DRbzF1LMDO0mJwLhwTBgDDNz5n311My+4Ycox6dfW4iB3YzFfvLmctlYnH/93MS6n/4NMo5W5/7Ur0IVtR6lp7tinoCKdVlcI2WHh5DXW4vT5cPt86DVdV7FuqNqDpLzImOgG3L7LMOv2BTaXlxfzzOZVAKRbw7mgd/9jcp9+jff2fNjpdx8+Vns+YdgIN7Lsfzv2SR503hDQ15HgS2asaRZ3L1+MUavl9UfmEWOx0Nr8H+y2JoD2D0gVrb5zCvqSmggu/+JiQhpkzAuWoAswEBnv5R/Pz8elcXJ9zhlUtAWy6szbUVH5sHQ+P1SVcY41lsEhmZhMs/B4cmmzv47DPYz6plIKis8ktNdW/wFUF1PHbGb80B0o7TMSK1q/IFb3NlWVRhqdA1GCs0hIvBeAKcN78/OmQsqCbNy/+Cs0X1Sia/Zx3YLbGfynaL5yvoY3sJwlrY3YVg3lscK3qZ+xL6BaaWsgTZZo8+qobwlkSq++bK6t4Kyv30EFzuqVTa69mFpdBQTCJ5OvZHBoEtNv/i8WN0RmGZBk/0maHO5hR5WNKtsOmjV25CBQWvYV540y70ultT2njFdeXAxARGQQZ583nJ9+2MLzC5dx7oQhXDB7NNWOVjztJ4DvfLyU3S/tZOrsQQwemdbRT2JKJFffdmSrQ4eOSe/4+YzRWciyRJglgN69Io+on8Ol+GpQfMU4HcWYzHM70pUfDof9dRw2fyYCo/ma9lud/trmgiCcEOP6JjOub3LH74lBITw9Ywb3bvsYgD9PGYWjUktyeAijUxORJIk1NWW8k7u5Uz+yxkdgaBtKoMyubTJr8sp4dMg5gP/L6KjINAwaLYmjI6hrtTMwKRZJymJazO24+/gwaP2npUnmCK5MnUx+azXX951KzDDrIe/D3i99kqQhQBfdcfvUXv4MGssaPuXLyhzuzprNmAEZbGosZqA9nv4hCVh0RtbWF/Do9i9JDAhndX0+I8JSeXLIJb/6y2Tf4Hi+m/wXNJKERSe+hAiCIAi/TmRkJJGRkdTU1FBWVkZjYyMhISE9PSxBEITfLYNWJt5iPOlXBEpAvMUoVgIKx8T+q6pPtF+mrj9UUP1QK9+PJJCvqsf3r1xRFNxuN273sV+odCh7V76f6ID8772efJPLc9KnUd9LApqcHhEYPwARGBdOan+b9zK7tpZi7Ga17Y0Pnk1iRjSLi+cg46PjVLCgmRsLkoj/Ux9uXfo1i0ry+Xj3Nk5PyeTZzStJsFi5JHMQACbNi0xNyAVAll4FLuvoP90aRpDegNvnIzusZ1euarpJB++TnOwttRNFBrf0vYg4UwyFzZXMWf85n+X9wNOnzWJKSgrG9oZOx5cd++sNp6Oq/jTdHre/TpLHY6JPyrX8PVLirbd2ARAba+Wpz/rR2PgeJiDB1EyCORlJkpCQSAxIwKNqWGibwJTUh5BlI1brPwkO/jtz7nqf4tom8KmY3QMY1DeIeWepRIV+RaBlCMHWB7C3fU1Q8wsA6CQnkabVwGp2VUj0jnuA0OAA7rp+GuPmP4fPKBMyxkz0Ny34vAqThqVTX9qH5XV7aLCp3PfNj9gT1U7lblvdEFKVgCVJorAeVthKGZOY0PEB9tnuHWi1PqxxEoFaIwnmMCRJYsLwND5bv53sgFQuTJ3AjyXb+bHW/3gFmnQ0utuPE+AFl4Z5fQZhMRg7jhsTY8ViMdLW5iY9wx+k+es331GdoGXLzlWcM2sEo6ISeWTEqTi8Hlb93T8JY9Pqgl/7MumWRpY5c/TBV5sfLb1xArRYkDVWdLqsLtv96aCqkeWoLidHWl0fQEKSrBgDr0aj7YWs6YVGm3JcxywIwsFNiOrD6MoMvKqPyTF9CUnsXBrlH6OnMD4+iZsWL8Dp83FGal+W1G9Ba/CBwYfX6CU8aN8+kiQxJWZfJhTV5OXCFc8RbbLyr4FzO4Lie9tel3Fsy5rc2+9s7u13NgDnLX+aQlsNp8UN4uIUf1mWj/esYY+9jj32OgCW1+Zh97oI1BkP2OehWPUBRz9wQdiPT5XxqT1/8fNkGIMg/JH069ePH3/8EfCvGh83blwPj0gQBOH3LSXETGmrs6eHcVAqkBpy7MtXCsKJdjKkrj8WNeWPdMX98ebz+fD5fD1aT/5Ig+pHW1v+RKSub3B4UIENS3/kkxeeoqxwN163G2t4BKnZA7j2gcd445H7WPL5R2QNG8XIGbP48vX/0trUSNawUVz3z8cJidi3cG3x/P/xzXuvU16QjyRLJPXJ4qyrbmDYZP8iuZqyUq6b6s8Ydf9bn5A9wp9l9trJw6mtKGPODbeTNXw0/7j03I4+n//rbTz/19uIiI3nk1Wbj/tj8lslAuNCj/rqnRUU5VVx/vVTKM6rZN1PuZx1xXhiEkLYkfcjNmUrvQb5aCqOx+PxkZKVxMBRaQQEGph+3nAAfGo9mv1ibbG9mzBoY+gdHo1e1uBWfDy0ZglVdhsvb1sHwLCoePqERtDsXNaxX5C+d6exxVuCWTf3enyq2pFevafcn/V3Ll9/XafbfF4tTpeGtjYDeWUmHh8R1367gWan/0NvT1NTR1AcwGS+FFvL3wE9ILcHxPUgJaOqRWh0Dmy2Bxl3Onz0wlkoSiBPfX4rRpNKgOtiFNXJfcPvwWqMYHtZNbe++wWJKSr3nPJXEsxxGDX7Uv1IkpExfRIprmoksNlOYoqOgtKBRIanYQ0+HVV10dLyb1AhUOOfOaeq+1ave3xLO/pqcS7kX2M+JrchhoUf9gdJoiivktg+0WRrTuWxrSU02YyoVjDZNRjCdNzUdxjPvP4VPoPMKMdgWuPDaW5bTXNbPbGmIJ6bMBu3z8dH27aTU1vDQ33OYnyvZEzteeWbVTcejcr3O/J54JIZDOo/mAGWfFw+L6N7JfJczgq+KNpOIw4SQiw8MGFap+cnLNzC+5/chMfjIyjIPzMruVcE1TQSoNUiSxKSJHFB2kAARvw9igUfrmHaGYOO5qVywqmqSlPtWci0ovpaqa99nvDIu2mzv4/D/gle71rAALjQG04jIGAWeuMU3I4FONveI8ByC9aoNUiSBVm2oDH/qYfvkSAIAIE6I88Ou/SA27WyzLSkdHIvuw2fqqKVZXa3DuG29e8Qog3kvuvOJTUi4oD7L6zYyq7WKna1VpHbUs6AkMTjcTe61ez2l1ppcTs6bjur1zB2NJfT39qLRo+dUeHpRxUUFwRBEIRjJTs7WwTGBUEQTqBQo44gvZYW94mvh3y4gvRaQkR9cUH41U6G1PXHIiB/pGnsT2Q9eafzxE4w2pv54HgF5DUaLY0OieaGeh678Qq8HjfhsXGYLcHUVZaz6ruvmPd/93SMJ2/zenZv3URYdCzONjsbli7irX/dz62PPw/AJy8+xQdPPwZAeGwcXo+HvE3refT6y7j5sWeZMPucw7rfAYGBpA8YzO4tGwGI6pVIUGgYIRGRNLk8qKr6u17F/2uJwLjQYypL6nn+H58B8M37q5A1EopPxWPaQP+53+Ez2Dn/qfZAqepf0ayTI0kJuQqzPoUG588E64cgSyZUtRXwz5hUG0cz6yL/7Jl5mYN4fcdahkdtIzMkBAkIMZpA/ZzFxU8D++qL9It8ussYjQepK15ha+HfG5bTLyyKy7OHHouH5IB8qkRDSwChQf6L+SnmJE4JmsdVn32Ow+sFPDyyZCl3T5xA7/BwHpk+jZLmZuYN6hxkDbRcjsk0HUkOxW57AbcLJMmEqhZ1SgMiSZA2rx/fOFw8+MMSHj5zBtaQxzr19e2WPKT4fFyJDTyRl8uzg/9FQ/2VeDzbsIa8iF4/iFsvn8LUgYkEhV2EVluK2XwFdvuDNDXC3mCpVpsBGNDpsvF4NgIqPhU2l44gO8F/rEbPSmQJ+oZUsbawN14kZJ3MGU++TXWzjYjEGGxqGxcN6seVI4YRFWoBYPeSEr6pKeX1mlLeTB5DfmM9ScEhZIZHkhXhzwIwJjaRnyoKGBIT3xEUB5iUncqPW/MZ1TsBk16HJElMT9mXojxMDkTy+WeijY/pfnWzyaTHtF+2krdvvZSVe0roGxWJLEmdPpj6Dkyg78CEw3k5nFRcro2oakt7BgFQvc9TV/09Pt9uJPZWmfdP1FDc32B3f4M/SboO8NDW8jjWyO9O6Ji93hIa6y5ClsMICf8EWRYfhYLwa0mShLb9fSzdEs1Xk/7vsPabHtOPH6q2EWOy0ico9ngOsYuXRlzBqtrdnBK7r3zK6Ih0vj7MsQuCIAjCiWS1WomPj6esrIyamhpqamqIjDw+JZIEQRAE/3ecvhEWVpc39vRQDqhvhEUEOgThN6onU9erqnrCg/F7bz/eqeuPdz15jcFI37PmUVdRjtfjxmAy8czXSzGYAlBVlYKcrQSFhnW0V3w+Hv3oa5Izs3nspitY88O3bFv9MwDOtjbmv/QMACOmncqdT7+Cz+vhnovPZvfWTXzw1L8OOzCektWfRz/8qqPG+LnX3crks88HwKuouHwKRm3XEsN/dCIaIPSYwCAjsiyhKP43Rb1Bh7PNTeZ5X+JT3ciAKoGK1LGM2KPWsLvhcZT2QJtGMqOqNuT2c0GfKtPcUsdz98xHliVu/vMp9A1dT4j+Z+Bnlp33P8JNWWyonMDeoLhWCiY+6GJ0GssRjf+lbWv5NH87n+ZvZ0ZSBnGBQcfiYenC7fMx/dPXKbXF0j+5nLhAE7dl3IhVb+WC/v14Y+MmANaVl3fsM6dfPwAa2hy8uGktw+LjGBrnX1Gu0cYDEGi5HaNxKmCgufEGJCmQwOD7sbU+idE0nZooI96iUr7cupOHzpiOJEl4PLtparoDnTaTmIBTSDJUMy6okAxDA7VVn7H3MW2ovwBJ0hMW/hnaKBlZLQPA4drVMUa9fjhu988EBMzFHHgVkiSzp3IBC1e9yyerMjFIcVw8Br7N34XDO53oYIgxj2fw5yNpqreROiSBunUrAagrtKFVIHtEVEdQHGD17nKwStg9HnxuHy+cMrvL43v5ko/Y0VjDp0U5fDTt4o7bZw7uwykDeyPLXb9oOL0eHl//M6AyMSGdB4cfXg1wrSwzPjmJZruTM+97k+Y2J6/edh5pseGHtf/JwuveQ2PdOMAHGDp9GZMkCdW3G5l9NX/VjlQAKvvy3PtfK4aAC07gyP1am/6Bz1eAz1eA3fY8AQHndPxd7OXzNdJYfzGSFEBI2DvIslg5KgjHUlJgBB+Pu6VHjp0cGElyoAgoCL89iiqhqD1/AfRkGIMg/NFkZ2dTVub/TpWTk8PkyZN7eESCIAi/b7GBRuItRspPslrje2uLxwaKaxSCIBw5SZLQ6XTodDpMphNbe3pv6voTHZA/Vqnr5faJDL3SM4jqlUh16R4uH9OfmKQUEtMzGTljJmn99i3ASMjoQ3Kmv7xpfGoGa374luZ6f/m+0vw83O0r6sfMPANZlpH1BkZOn8nurZuorSijuaH+mIxbOc4TEn6rRGBc6DEupYJhc/PImlaCIUCil/ocMbHJbHN/3R5U85/w+dT9g2lGdLIVl1IFgE/1rz1V1fbV4oBFGsXH7/nrNUfEWLFrHIRMAwkdEaZwTDo98UHzKGp6FpM2juGxC9D8iqDXqJgE3sndREpwKOGm41dH1OZxUdLahIpMtv50Hho2vWPb3yZOpLixieKmRh6ZPq3Lvo8uW8b87dsxaDRsuvGGjhqu60rK+GhzDnMGZjMsIZ7wqMUd+xgMbwNww4QyFFVlZlaGP9ipOmlrex+Pez0e93qiYldysbaRNGNDx74aTRKq6kVRylBVaG1ZymMvG9DHn06/2DKCg9JJTCghLnA6sWH3o6puJMm/Snv5rkKue3s3uobh9ImM4JozRrOmrJQbvlkAwLOnXMfomN6w3/yDFy47k2U7i/h8ZQ4+SSU9JpyVZSXcteQ7RsbHcPXMkby6eB1jBqeSGdd9EEQn+2dMGeSuM6e6C4oD5G4sJTjPgy1Jy6lRad22OZidpTWU1DYBsDq35DcTGHc6ltPaeAn7Z1qgfZLK/qvffzlr+UCzmFVA1g5E8dUha07cY2AwnYLL5V+lbm99EnvrY4SGf4JPaaal8SaQLEhSIIov39/G/jIWy80nbHyCIAiCIAiCsL+srCy+++47VFUlJyeHSZMmiZWCgiAIx9mAqGBq7C7cyskTVNDJEv2jgnt6GIIgCEesp+vJH21A3i1pcAN6g5F/z1/I0i8+YffWTZQW7GLpl5+w5IuPueOplzqOa7bse6/WaDQdY/mlg57T77dNUfalwW+ztR72/fedPB9hJxURGBd6hMtbzdaW0xh/xb7b9AGfEhXxOGWVI2hyraL7KZlO3Eo9gbrehBpHEWhIZdmyD6mrqyFjfC0yBoYPm8VHwe8gSRLfz19HWUErfZbM5OE3b8ek6wVAsvU6kq3XdXeAw3ZKUgY5l9yCQaNle3013+3J5/ze/UiwWI+qX/DP5JHb3/hCjQE8M/F0NtZUcP2AEZ3aSZLEq2efdcB+oi2BAISbzWzdXcFfnv+K3gkR7DK3UtLUzOaySn64/rJu9x2aGMOzZ+3A51tMS3MiNtszGAyT2ZsCu7e5mHX2WNJoQJZj0enSCQr+B1ptMk1Nf0NVbaxYksqen1ZQn5XOmvXp3HLlAmq9TlpbV5ESBqBj4YpcWuxOnildR1ukiiYQhoRG8cTV7xI3Kh45XUJRVf770MfMn5HGvLEjGN8riWsXfsG6yjKemXYaN88YjaKoBAUYuen7r6iTq1jsKMaekMbiF24CwOZ08e7qzfSODmdSn9SO+/nmpPNZWb2HsdFJh/38lBbXEr3EBbjoNyHskO1/aXB6HOeM7UejzcHM4X2OeP+e0Fh7Ll7PqgNu7/whLgPKL1qEo9KI1H67iooKtDSchiSFEBa1Bkk2H+thdyvAfD4G4zTc7k00N1wCgNdbiK31OVTVDqq909uPQTf8hIxLEARBEARBELoTGBhIcnIyhYWFNDY2Ul5eTnx8/KF3FARBEH41g0ZmcLSV1RUnT0r1wdFWDBq5p4chCILwm7F/PfmjYfd4+a6wljZbK+WF+Zx68eXMbL8eft+f5rBt9c/sWLf6sPrqldYbvdGI2+nk56+/YOT0Wfi8Xlb/8C0AEbHxBIeG4XI6OvapKC6k/6hxbFm5DHtLc5c+9/bncrR1ul0j5tJ2SwTGhR7h9nVNBWHUJaKobsCNLPlXgftDaJ1P+FQ82Dx5BBmyibOcy6C4Ybz0+pdE+EI5+9JT0WtC+WDtfQC8cN9nlBXU0lgWQV2JgV6pHFMBOv8Mp8u+n0+ds42NNeV8MPPoUkPfs/IH3t25mbuGjufa/v5A+OzUTGanZh5xX7eOHs3klBSSQ0J4Zf5KWuxO1uWWMva03vh8xczqE4zHnYPHswO9YQKKUkNLy0PIUiAB5nnYbf5ZTrIcA4DbvYFK7V+QHP9FNpzG8PhrCNHWYdRnIkn70q+EhDxOk8NJuXkjOrOO2EoJr0WLse1MzJGLSbf6g5Hbdlfyj//63/BDJ4UCkBYeSmVuDW6Xl8Klxbx7w5XcfcZj5J8exbamMtZ/X8uiCy/n+yL/at4vduUSbtcTH+ff/6KsAazZsAkfkNdaxMO5DyLZddRuSefb4hIkYMn/XUVkkH/SgNVgYmbCkQWnTzljMLYWJ8EhAWT2O/ILUjqNhr9fOPWI9+tJXs/aw2onSWbCovNQVSf11VNBrSDAchdmy7UAeNzbaaqb3mkfVW1GVZ1InJjAOIBGE4qq1O79DY0cj94wCmfbnv1aWQgN/wS9od8JG5cgCIIgHIgPGR89fyH0ZBiDIPwRZWdnU1hYCPjTqYvAuCAIwvEXazHSN9zCjrrDX513vGSFW4i1iBTqgiAIPUHTHgRvrq/j7gtOJzDYSmhUDF6Pm4qiAgASe/dl58Z1h+zLGBDAOdfczAdPP8aaH77huqkj8Ho8NNXWADD31rsAMBhN9B44hLzNG3j7sQdYtfArdm/diCzLKErnRWlxKWkU7cjh3f88zJLPP6b/qHFcdPvdHYsvhc7EVQ2hR1gMfTFqkzp+10iB7Gl+nrz6f9Dk2gj4M0X88gUaZhzf8XO1zR9QTUyPJqZXKCU5EorLH1jT6jRodRpu+uc56PVaqksb+O8Dnx+3+5MYZAUgOTjkqPv6oiAXRVX5sjD3qPuSJYmBMTEEG42cO3kgg3vHc9GMIfzr9HTeO+dV5vT+O7W102lqupWa6iHU1c7A7VqG0/kNzW3FaDSJSFIAhoBbaHaNAf0/ea9yD09WD+PNKg/x5gRMhsGoGPi64iM+Kn0Np88/K+mOz7/hifVrqB8XyIQJmXz5ynU4g8fz8E+z2VzRFwDVqKLV+p/lvw4ez7OTZlK7poGlzbX4ogy0ZgZzzYuf0uvUfgR53Mg6H8Ni4lhVVILkBrOsI6xE4oab3ubKa17D6/UxMq4X7028itlxgzkvMZVCewEF7GTbpg0ABAcYMRuOLmWL3qDjwisnMOucYX+YFIY6w8yDbtcbzyQg8BaCw95DkiRk2UREzAoiYos6guIAOn0WJss9++0pExz6HrLmyFfeHy2fr6R9BD6aGy/E69nZsS3Qch+RMWtFUFwQBEEQBEE4KWRmZnasdNm+fXuXi2GCIAjC8dE71ExG6ImbyN+djJNgDIIgCH9kBo2MVpKwWEOYdNYcrOER1JSVUF9VQVxKGhfddjdTz7vwsPs797pbuf6h/5DcN5uW+nraWlvoPWgof3nhDSbMPqej3Y2PPEXm0BGoqkp9VSVX3fsIYdGxXfq74m8PkpCRidfjIX/bZiqKC9HKksgycgBixbhwQrS4cihsfAq3pw5J1tE7/H6GRL9Ni2sHVuMIVpdPwaeCoroxa7No8+bQXbxRp9kXeI4MPBWAVT9s56cvNwEwbGIfJs0e3NFGkiT6DE5k6+oC+g5OOm737/1TLyC/qZ7M0Iij7uvB0VP5aNc2rus/4tCNj0BSTCgv/WUOAG7X+m5a7Luw4lUklLa/Ehz8DwIDL+PuDxdR1BzLoPQPmdr7dL6q2sCM6H0rngtsuXxf/RkABocV955UbG3+2tN2m4tvft7G0MFJPLdrNQ0OB/9dv5Yq6nkmdwlD5yXwUJ/ZJMaEsnNPNagSKipOl4vWOBOtyQqrAxuxREG4ZOMf4ybw/JL1aFwaXC4Fn9YLQFNTGxvWFeH1+jD2NtPYqmWItS9Fcg7lO5rRroZ7/zqSU04ZeNSB8T8ia9h/8bhuxNH2Dl7PJnze7Z22B4U8gyQdXkqaQMu1aDVxuByfYQr8P/SGI8+GcCyYA2/A2fYhKFUAeD2bAZDlKMyWy5Ek8REpCIIgCIIgnByMRiPp6ens3LkTm83Gnj17SE5O7ulhCYIg/O5JkkRWuAWdLLO9B1aOZ4Vb6B0WeMKPKwiCIOwjSRJWow5vsJUbH3nqgO1uevQpbnq08/bzb7qT82+6s0vbKefMZco5cw963NjkVP757medbpt01pwu7TKHjODJL3/sdJvVoPvDLOo7UuKqv3DM1bb9SFHTc5i1qWSE/R2NHMj6yvMBfwATH2yovBDwoOKlT9hDRJlPo8G5koTgPxGo70NFywKanZupaPu4U99V9i+INs8iImAy0YH+FaxZw5IItJqwNTl47Nb3aaqzcdbl+1aWP/zONTTWthIeHXzc7rNRqyU7POqY9HVGal/OSO17TPo6EL1hKGAAXO23SOxf1F0rq4CK3f4yFstV+FQv505ajkajEiSt4emBT6Pbry5HhC4Wb6sW2eDj08/3sLNwD2gk7rh4FF++uQ5tsJ6+fWK51jKcNzZv5MrBQ/miyr+Ce2tTOYkx/jToO77aQuCqYsoujqVpkJWp5lZWebS42mc2+VQFt+LlutEjcPl8DOsVx+mpGaTEhhFkMfK3uz6kcRC0jdDjVL2sqiphzTn/Jk9fhu0ZB4NHpYkPg6OgM2SjM/wLxddKY/15KN4dgExA4B2HHRTfyxhwOsaA04/PQA+TLJsJi1xKc8MVuF3LO243mE4TQXFBEAThpKOoEora8+cxJ8MYBOGPKjs7m507/VmOtm3bJgLjgiAIJ4gkSfQOC8Si17KxqgmPou53Fe04HA/QyRKDo60ifbogCMJJItSko97hPq7v/8eKhH+8QvfElX/hmKq1LyK37m68ags29w58qoesiEfoCIq3U3F0/Gz3FFLW+jYAFa0fkxF2D3ta3qbNuwv/n3BnUeYZRJqndfy+ZMEmbE37+nvv6e+ZctYQgkL8KYY0Gpnw6GDytpTQ2tTGkPG9RXAUiIpeh8u1FK12FHW1YwEnxYW9SUrJA/w13j0+DV8vX0vOylJS+wcTqWliWYWdK954hj9PGc8VI4cAEGyw4nltDMXFNaRMjcbWq5Igu4a5owZy1WT/yndZlrgyaihXDh4KwHc7d6I26fDadLh9PvQaDfWVTaB48QZruSR9Ldf1/ZlmdxAPbbuHs7N6E20KJs3in4Dw1Ox9qb0vnDuK/N1VeE3QMFwG1f96GxOThNPrpXe2qL93LMkaC2GRC3t6GMeELAdiDXuPxvo/4XYtBXy4HF+D9cGeHpogCIIgCIIgdJKRkYFer8ftdpObm8usWbM60qsLgiAIx1+sxUhYQCRbqpspa3WiKgqSfOzT1MZbjAyICkYvUuAKgiCcNKwG3W8iKA7+JZBWowiMH4j4dBWOGZe3mm21N+JVWzpua3Ktoqbt+wPuE2qYSHLwDViNI5AlI2ZdBjvr76fNm9elbbL1eobGvNspKF6cV8mbj33bqZ291clfLn6JFQu3dWp369nPcM9lr7J0wWaa6lpZsXAbDruLnlDS0sQr29ZRYWs5dONjyOstpaZ6IjXVs2hpeYTWlv/QUH8WoMPr6c2zLw4ipzQG8Nd411DCtryPaWix83NzCgvqB7K6KgQV+D5vd0e/kiTx7MtX8Mqb12HL0uKIBnsfmSCzEVmWkOWuExFGRCdBhZF0UzS69i8RF911OnNvmcLZEcn0DfMAEKC1sbFqD2ZvMKMj0g9439LSo3n+yUvpFxCJQaPlqdGzSTGG0+f1J7n9p2+O2WMo/P5IkpbQ8HcJsj6GRpNAoOWWnh6SIAiCIHShIJ80/wRB6Bk6nY7evXsD4HQ6yc/P7+ERCYIg/PEYNDLDY0PwFGzD2dLov1E9ulDJ3qtmQXotI+NCGBYbIoLigiAIJ5mIAEM3yzhPThIQYTL09DBOWmLFuHDM+FQ3smRCUds6btNIZkqaX+22vapCrXMJy0rHMzDqeYINg/i5dCQ+tQ0JqdPsG4MmirSQm7r0odF2Pzu+KLeCf17/Fn9+8kLee+YHEtIiOzKFK4rKXRf+l5L8asac0o+/v3Dpr77Pv9blP8xnd1M9Xxfl8fnsi4/bcVyuNTQ2XINePwhD0LOsKH+QbN0uALzeTZ3aanV5nH2HCzXYX2tcVUGrTWR4//PY1PQzkkbCq2oYG9efKFsw14wZ3ml/g0FHYnIEfcsiWVlWSlpIKKu3FzMsMwFNN7Nnrx4zjJlZGURaAjtW8C9q3sHLiRsJ1plYlNefHXaZnOYYVMykh4Yd8v5m9Y3ny75XoKoqkiRx5pZ3Afhhj7hgJBxagHkuAeaD13URBEEQBEEQhJ6UnZ3Ntm3+SeA5OTkdgXJBEAThxGlsbGTnulUAhCckM2zG6ZS3OlH5ZbHCA1NVBUmSURUfIRqVAb2iCDGKerCCIAgnK4NWJt5i9GcM6enBHISEP/OIQSsmWB2IeGSEYyav/l4UtQ29HNFxW1LwNSQEXd5t+70ni2Bjc/W1uL0NyJIJAKthUHto3P8WMzzmk2776JUaye3/ntPtNoNRx9rFuZQX1bLqh+38/cVL+ccrlzHpjEF43P5U226Xt9t9bS0OWpvaut12uP6xchFD33+ehcW7umwLNZo6/X+8OByfoSg1OJ3fsb7+G76tb6bOa6RVjcVoOgdZjgXJ2tG+yBFGldcCgEYTzyLnjXwgvcUp0xMweYMwa8xc1Hs6r1xwFkN7xXU5XmOznZnBKTzYezz1Kxq48clPeeObtV3aeRQfD+V8zmO7PueWO97k0gtfoKy0gT32OgCaPQ4Ur4V39gzFpw5l7Z+uJcUaetj3e++XiEujswkuVUhZr9LWQ9kBBEEQBEEQBEEQjpXU1FRMJv/3yLy8PNxudw+PSBAE4Y9n3bp1HT/3T0tmeGwIM1OjGB5rJT3UTLhJj/YAAW6tJBFu0hOmutiz4gdyP3+X1p2bCDXpRVBcEAThJJcSYj6pg+Lgj6iltpcZFronVowLx4ymPait14aTaX0Yn9pGRMAMAPIbn8KjVHfZZ+/pnqo6+Ll8KuDDpImnxb0RWQJFlbAahmLUhR/wuNPOGc7ureUseGcFAOYgIw+8dgWRcaHUVjSyO6eUvoOTGD09u+ME85H3rmHTz7sZM6Nfl/5KC2q48fQnURWVh9++iqKdVQwYnUZCWtRhPxZeReGt3I2owP/ytnJKUkan7a9PO4dNtZUMjeocXPZ6C/G4czCaZiBJBqpsrXy0I4cJickMiIru1FZVff7HUDpwTTmz+RI87i3o9INJ0Y0i2vAe+d5g8PqYGH4N0aHPoihtVDZ9wd2bFlPhtpDaFsvE4WPoFTSAxRvuxK24+bZgKeXvJXDKxCzihsZ2e6zy6iYuvvVN3G4v2jYfjng9AHbHvgs1T7++gK+Ld3PWtH58avN/iTAYddT2C2DGV2/zzjnnYkjTkWaJol9QEoVNDQyLiUduf97Wlm6mxl7HzN5TOm47mLZtTUR/04aTNkoKa+nTT9QaFwRBEATht8mnSvjUnr9YejKMQRD+yDQaDX379mXDhg14PB7y8vLo16/r91pBEATh+HC73Wza5M/CqNFoGDJkCLB3JaGJeIv/+qiqqrh8Coqq4lNBI4EsSRg0MpIk4fEEsfKzMnweDzt37mTWrFloNAe+xicIgiD0vFCjjiC9lhZ39wsuTwZBei0hor74QYnAuMCyBRvJWVPIeddPISI25Ff3kxXxOA3OVVgNQ9BprAB4FRsubxUjYhdQ2PQElbZPUFFRVF/HenAN/nrWsupFQcLhK+9IZaACQ2LepK5tCQG6RAJ0yd0e+/r7z2LK2UO47ZxncLa5MVtMhEcHEx4dzKs//qWj3cblu3jtX18xafYgzr16Urd9lRbU4Hb661u/+ujX5G0uISjEzP/W33fYMze1ssxtg8fwVVEeV2YP7bI9UG9gXFxSx++K0kRT499xOhcAHsyeawkOvpe/LVnE4uJCXtuygS1X3djR3usto672VFRVISLyK7Ta7h8XnS6LiEh/DXYrcEXqA6ysvAGTNhq3O4rTXnsbr+Ll/BmhqIEqMbQQp+9HonUUABcmzGFZ7Qp2bNMBEhEh/tXkDm8tuQ0vYjX0ISV4DnZvE3n163F7Pf4nU4LZfdPpOziBmaMyAXA7PTxbk4M3WserazaTMiKSepeNuLBIKszNeFQvGyoq+VP/sbxS+F/WNdm4JuW6jgD4rrpcypyXodP7+GT7HczJPnQK/FPOHMyu3AqiYqyk9+0+oC8IgiAIgiAIgvBbkp2dzYYNGwB/OnURGBcEQThxtm3bhtPpBKBfv34EBAR0206SJIwHKAEJoNPp6N27Nzk5OTgcDgoLC0lPTz8uYxYEQRCODUmS6BthYXV5Y08P5YD6RlhEBpJDEIHxPzh7i4NHr38LVVVpabTxl+f/9Kv70sgBRARMAaDKtoAm53rqHD/i9tWSHnI3lbb5qHiRJQs+tbWj5o6qtsdSO4rwSCjtfcoYKWl5nYLGx5ElA2Pil3UE3X+psqQeVQGfolBd3khiRnSXNh+/9BOFOyoozqvinKsmdvsGMWJyJvPuOAXFq1BT0Uje5hICAg1H/HjcMmgMtwwac1ht29o+wen8tON3VXVTX3cJN/TZw7aqyYQHRnRq7/FsQlHqAXC7N6LVJuN2b6S56a/oDeMJDv5rxzafrxqj8RQkSSLcNIDTk5cjSRILt+8iv7ae6OQ6FjeuBEBCw4VpEzuOMyVqIlOiJtKS6KC4vIHsDH9weXfTWxS3fgatMH+ZhDb1Ezy0cNFt4/HuHEF6XDhTJvVFr9/3FqMzaIlt01ESBP2Donlj3CX++zLJx73Lf6S2zc7paX3Y3rSDTU0bAVjXuJZpUf6sAyqt6DT+VfI6TcNhPa5hEUHc/8SFh9VWEARBEARBEAThtyAxMRGLxUJrayv5+fk4HI6O9OqCIAjC8aOqKmvX7isZOHz48KPqLysri5ycHAC2b98uAuOCIAi/AbGBRuItRspPslrje2uLxwYae3ooJz0RGP+DMwbosYZbaKxtYeXCrbQ22rEcZf0Bt6+BHXX/x/5VxNu8xUSaZ1Bt/4ZI06lU2j9ib0xa7Xj3MDA46jXqnUtQFYVWz07SrbfR4Fre3k7Bp7pwuXdi1qV3SSE+7tT+NFS3oNVrGDqhd6dt3/5vNWsX5zJoTDqFueVMnD34gLNmNFoNc2+Y6r8vLi9jT+1Per9ex2WWjaqqtDTfj9O5CCQTEoEEBf0fGk0UDfZLiTbBO7NmEx92Qaf9jMapBJjngerDaDwVRbHT2HAjPl8xHs9WHI6v2OjoywDdt0iSSrD1ccxmf4DYo3pweV2MTUtiSu9U2sJseAEZmacHPYbGY8De5sIc4J8MkLO2gHef+JYJswfTv48/9XuYcQD5ze/T0hrEhysKOTvJhlYDu5Rynrp8MgAFjQ1sK67ilJR0jFodkiTxyd1XsbxiF7MSB3TcF51GwyMTp1PR2sqsd97Bh5vTxyTgk1wMCB7U0a53+HBaXH+n2VXNpN7XHPPnQhAEQRAE4WSmqBLKSZDG/GQYgyD80UmSRFZWFqtXr0ZRFHJzcxk8eHBPD0sQBOF3r7i4mJqaGgB69epFTEzMUfWXlpaGwWDA5XKxc+dOvF4vWq24XC8IgnCyGxAVTI3dhVs5eULjOlmif1RwTw/jN0F80v7BabQaTpk7kg+e+R6P24vT4T7qwLhWtmDSJuLwFhNvuQStHEh80CXoNaH0CX2IVeXT6S7GrKgucutvJ9Q4mszwR9nV8AAbqueQYr2VvuGPEaBLJbfuLhqdq4gJPIfM8Ie73Jezr5zQpV+3y8uzf5uPqqrIssSHGx447PuiN2gZNjHzsNt7Pfm02p5DVVw4nd8hyyFIkp7Q0JfR6bumt1OUeuz2lwEwGs8hJPQpJEmDotjQ60egKI2khs1Bq/XX625uc9LicNIrzIrV+igAqytKKap9lQnhxfv69RUTRR0qKhIgIePx+fh6x3a+c72B3Wfj1owbeH7ubGzeyfxQ9RNplhRqK1xcdffraGSZNx+fR6+YEN79z7dsWbmbnDWFnDJ3FJIkERc4jdNMI7nvw6W43btZunU0Bks1iisbAJfPyxmfvIvN4+ZP/QZz37jJqKrKZatfosrZzI62Mu7pd1anxyK3tpbG9lRU2dJ5nN9NOsBhcXMO+7kQBEEQBEEQBEH4verXrx+rV68G/OnURWBcEATh+DuWq8UBtFotffr0YcuWLbhcLvLz8+nTp89R9ysIgiAcXwaNzOBoK6srTp6U6oOjrRg08qEbCiIwLsCcm6ZjCTGTkB59VDXG92pzKgR6X2VgnAGTLrLTtqLmZ3Er1R2/qyr+tOmqhISK21dDlf1zUkJupcr2FaBSYfuY0fE/+vv2FAFg9xQe1ljqqpp56z/fEp8aQXlhLcMn9z2q+6aoKlX2VmLM3ddpaG55GJdz4b72SqV/3I7PCO4mMC7LYZhMZ+FyrcRsntOxCl6WAwmP+KxT2ya7g5mPvUGLw8UTF89iev8MAK75/jMSzc2MCwN5vyEVupP4zhbPlUmnYwo4kxeWruGVdUvoN74VgCJ7MYNDBhKoDeSs+NMB+G7LDjweHx58FJfV0ysmhN6TerNxdyXJfePxeHwd6dH1Ggv/vGAW10xrwmI2sKS0iLG9kgB49+HPaQtwgEmDZr9BuRR/7Xanz93lsRifmMiVQ4bg8Hg5rXfvLtsFQRAEQRAEQRAEv5iYGEJDQ2loaKCoqIjW1lYsFktPD0sQBOF3q6mpiby8PAACAwPJzDz8hTQHk5WVxZYtWwB/OnURGBcEQfhtiLUY6RtuYUdda08PhaxwC7EWkUL9cInAuIDRpOesqyYdk74UReXCR9+ntLaJP00fyi1ndg6My1JAp98lCQLkJNp8Jf7E66oJCxMwaKIJMQ6nzrEIp7cMp7cSozaGfpHPU2NfSKzlXAAaHCupsS8kPuhiAvUZXcbzycs/sWj+egBeX3I3MQlhR3X/blnyFV8W5jK39wAeHeuvfd1U14rPpxAWFYxeP7I9ML63YHoAWm0yAQHn+9OmtzyM15NDsPURtNokJEkiJPT5wzp2o91Bi8MFQGGNv8a22+dD8YFV7+gIiusNEzAaJnBu7DWdgveyJOG0GyjPjeOisenMiJ7a5RiTRmWwp7wBnVbDqMEp/LA6j2e2bqXtzBCa8lv4duFWzpjtX4mQ31rN1+WbODV2AIkBIZzdO6ujn43fbSOprBJNnxD+fM04wJ/u77WR17ChoYhp0V0nCeg0Gv46vuuKf0EQBEEQBAFUVUZRe372t3oSjEEQBP/3q+zsbJYtWwb4gykjR47s4VEJgiD8fq1fvx61vR7k0KFD0Wg0h9jj8KSkpGAymXA4HOTl5eHxeNDpdMekb0EQBOH46h1qxqso7Gqw99gYMkLNZIQeXRboPxoRGBeOKUVVqW22AbCrrBabw0WgydCxPcl6NZW2j3D5qjpuSwm5EY0cQHFRLvefXYjq03DHvzfQIscQPBB0cgha2T/zPciQTZAhu2PfnNpb8Cot2D0FDIl5D1VVcHtb+fL1jaiKStaQZBa8vYLY5AjCjkF9hY015QBsaP9//dKd/OOK1/BpJW5/bg4jh7e0t1QxGKcSHPwwbvcaNJpofN5C7DZ/ENxue5Ng631HdOzkyFAeveAUiusamTfOH5ze09SEvcnDWlsyu9In0D/aitX6L2Q5qMv+V40dRlpkGCnhIaRGdD9BQK/TcvXcsR2/1zS00pqs4jVDfaBMTIy1Y9vft3zE7tYqFldu5z+h55LaPwFJkthVXUfZWckEl4Ry1ykTMGj2vc0kmsNJNIcf0f0WBEEQBEEQBEEQuto/MJ6TkyMC44IgCMeJx+Nh48aNAMiyzJAhQ45Z3xqNhj59+rBp0yY8Hg+7du0iKyvr0DsKgiAIPU6SJLLCLehkme09sHI8K9xC77DAE37c3zox3V84prQamf/efA4j+iSwcscezn/4Xbw+pWO7LOlIC/lzp312Nz6I1TgQX+VEFK8MksLmkn9Q3foDm9+6iJFx36GVu//jDtIPACDYMAhVVdlYdQkryoezaedzvPHvb0CCt1dH88Bbr+J2v3rU9++piadxQUZ/Hh93KgAfvrCIwVOKSZ/XwsqCp7C1PgGAJAVjNJ5CQ/2FNDXeRGPjTWi0vdDphyBJZoym6Yc8VpO7mfu3P8I1P/+Ny9/9H2WNzZw2OJMbp48mwOCvOZ4aGsqfBg1mSEwqSTEvEBr6YrdBcfA/N/1ionj1x3W8tWzDYd3f86YNZExMAgCzevdh+LCUjm3JgREANK+r5cZx9/G/x78C4IO1W9jV1MjOIIVeI5MP6ziCIAiCIAjCwfmQTpp/giCcHCIiIoiOjgagvLychoaGHh6RIAjC71NOTg4OhwPwpz4PDDy2QYjs7H2LgLZv335M+xYEQRCOL0mS6B0WyMjYEPSydNy/MUuAXpYYGRsiguK/klgxLhxzA1JiiQ7xr/CuabLh8frQavbNwYgwT6O/9BIVto+pcyzCqzRjd+9m5NQR3PavOTQoXxI5It+/v7mGwpxmfvz0R6bPGUFKZgzLv9lKSISF/iNSGRD1EnZnJXnr7TRnNdHs2gRA4pB6tn6dSmxSOB7P+6iqjdbWp3C71xFsfRiNJqrLuB1eD0aNttva4XsNi4pnWFR8x++nX+oibcAKAN5cOA5V9b8Rqmozra1PIkv7UlhIkp6IiAWH/ThubNpMvq0AdJDfqufDDfHcMXVspzayJHHv5MNPg//Wsg0s2JjLgo25TMlOIz704KvoN64rour1AqakhPGfq2Z22vZg//O4OHY0f573AD6gak8tAKdm9+b77bvJjo0iOrhrjbvle4r5cudO5g0cRL+ors+DIAiCIAiCIAiCcHiys7OpqvJnZMvJyWH8+PE9PCJBEITfF1VVWbt2bcfvI0aMOObHSEpKIiAggLa2Nnbv3o3L5cJgMBx6R0EQBOGkEWsxEhYQyZbqZspanaiqetBY068VbzEyICoYvUase/61xCP3G7NjfSE7Nxb39DAO6eYzx3L1zBE8d8NZmAyd6+Lsqv8nW2uvodW9A6thBHo5ErevAUmSGDCzjsC0bwFQVZg+40r+dct7LHhnJY/f8QHffbSWR29+l7vmvkhJfjWSpOG1B1fx90tf4Y5zX6Jv+L+wqDPI+WIoPq/Cc/d+yuJPxwLJqGoLTue3tNnf7zLet3ZsJPOtJ7ns+/kHvE+lbZWsqt+MT/V13DZiyoj2sUpkJJ1JkHU5RuNsAHTaDCwh7/Fz7U28X3AxHp+v234PZKC1PwmmXij2YGgLZXLvFFpcLuYt+IQLv/iQRqfjiPoDGJoSjyxDSmQoERZ/0N7j83HHj99y4RcfUtHa0qn9+nWF+LwKe3bV0lBv67RNK2vIikzg4fl3cMlfz+Ty+88DYHhyPCv+ci0vzTsLjdz1Lea2b79l/o4d3Lv4xyMevyAIgiAIgiAIgrDP/qsMc3JyenAkgiAIv0+lpaUdE5Di4uKIi4s75seQZZm+ffsC4PV6ycvLO+bHEARBEI4/g0ZmeGwIKVoPzmZ/NidVUQ6x18HtDa0H6bWMjAthWGyICIofJbFi/Ddky4pd/OX85wB4/LNbydovrfXJJtQSwHWnje52m0fxB199ahttnmLcSg3b625HxceOujsJCANVgdaSvoQmDyQtexuVJfWkZ8djMPqD7LJGQqvVANDa2AaArdlBdODp/GXmNqrL/G86zW2bWbrYy7KvpnPl3z8gJKKNPbnRjJraeUw/lRaiAsvKi/EpSpeArs3bxh2bH8WjergvsYJIeRchIU9jNE0jPGIhkqTj3PhMAFTzc3i9N6PVpvHFrnzu+lkPbCMjLJkZqemH/xjqQ3io/z/8v0z2//dV/k6WlRYDsKi4ABcePi/czu2DxjE6JpHq+laefn8pKfFhXHHmSCRJYsOSXMqKagmZEM+NP39N4oBQ/nfOXAw6/5//5ppK5uf50zR9tmsHNwzZV5fuvPNH0tRoJz0jhqjo7leXDxifyYDxmYd9v4bHxbEwP5+R8fGHbnyS8PlqkeVQJEnT00MRBEEQBOEPSlFBUXs+jbmi9vQIBEHYX3BwML169aK0tJTa2lqqq6uJEpm5BEEQjpn9V4sPHz78uB0nOzub9evXA/506v379z9uxxIEQRCOr7z1q8jfuRNTWCSDJp+CDSMq/iD34Xyl3ttOAuKDjKRazYQYdcdlBfofkQiM/4a4Xd6Onz1u70Fantz6hN1HiHEYIcYRFDW9QE3b14BKtf0rtFIIXrURSYbkPv5aaX955iL+dOepRCeEIkkSoZFBBIcGEpsUDsBND51LvxEpDBzjDzpbw8xUlzXQdxzMuv9nAD67x8s9l8xCkkBVNzBgVBMPvH4l+vbV7P83dBwmrY5piWndrnJWVf/blUn2ECGtRVXB4fgUo2kaen3nE1VJ0qDTZaKoCnXyVnonVVNZFU24RcMHJV8xPLQ/qYEJ3T42ldXN7M6vZuTwFPS6fX+ebxV9xvrGHC6IP4Ps8Eg8ikLfkAhO+/ZNVOCJTctJloJ58L/fsaGgnB/XwrSRvTF6Vf4+77+g0WC8PANniJe8+joq7a2k6sMAUKrdxEpmPAaVqUmpncYTFR3M3+87m1q7nfe3bmFCUjJxQd3XMD9cz592OvUOB+EBAUfVz4nS2vo8rS0PodUNwWy+CL1+CDrd4U9wEARBEARBEARBOJ6ys7MpLS0FYNu2bSIwLgiCcIy0tLSwY8cOAMxmc8eq7uMhISEBi8VCa2sr+fn5OBwOTCbTcTueIAiCcHw0NTV1ZP7QuNqY3DsBrypR63DR5PTQ4PDQ5PTgVbuGyLWShNWoI9Skw2rUEWEyYNCK1eHHmgiM/4YMnZTJP964ClmWGTgmo6eH86vpNFbigy4CwO1r6rjdp7joF/Ecm2r82+qdi2l0riPEOKwjCA4wcHTnoGRwqJkz/jSu4/eH3r6GXVtKSBhgZ0u9v6Z3bHIIxWs0eL3+tBVbVhXwr1vf454X/wRAVlgUL045A1VV8XnLkTWx/jGpClpZg0Vn5t8D/kyZo4oAXToe11I2LBnOp6/+h3l3nMLIKVld7mehvZilDT8QEQFXDxjPFzUL2Na8i++qfubZgfdj0XeuFeT1+rj65rdoaXVyzuwhXHXlMNp8TZi1UXxesQiAFQ1r+GrOVaiqyrvrNiPZZNQAhWxLNPc89Dk7S2qRgjSkxIcRFWbB2epCNuhRkLB/voep9w8nMyKSFGso4A/4P3DPZxidHiaOTKN3WES3z9nln33G9toatKrE4ssvJ9568NrkByNJ0m8mKA7gdvtnBns9m2hu2oAkBREdsw1J0h1iT0EQBEEQBEEQhOMvKyuLhQsXoqoq27dvZ8qUKWI1iSAIwjGwfv36jsUyQ4YMQas9fpfSJUmib9++rFmzBkVR2LlzJ4MGDTpuxxMEQRCOj7Vr13Z8dgwbNgyNRoMGiLeYiLf4JzypqorLp6CoKj4VNBLIkoRBI4vz+BNATDX4DZEkiZHT+jG8myBsT3O5PGzcvAeH031E+2llc8fPTa5VbKq5uNP2Nk/REY/FbDEyaGwGYZZBDIp6m/6RL/KX+5/lnHuaufKdH0kfVwnQkZZ9f02Nt1JdPYymxlv5x/ZnOH/VrSyrXQdAojmOMeFDsAb/mYjIr3n+3t0U7azkf893Xys7yhBJiM6KVtKSFZxBtNEfdK5v9THgtedYWLi7U3tVBV97bsotm3J5fselvFZwDbtbl3FK9DjC9SFMixqDw+Xh/H+8zQtvLyNFCWWklMgdw8YRYjWj8aiM6hXHew/Pw6jXYQ0L5LzrpgCQFhPJSzPP4PYRYzreXCVJIi7eHyRPTAg74GPq8vgzFHgVlW0V1Yf3RPxOBAfdQ0DAXAyGSQDtAXHx4SQIgiAIwomlqPJJ808QhJOL2WwmJcVfaq2pqYmysrIeHpEgCMJvn9frZePGjYC/BvjQoUOP+zGzs7M7ft6+fftxP54gCIJwbLnd7o7PDo1Gw5AhQ7ptJ0kSRq2GAJ0Wi15LgE6LUasRQfETRKwYF46J+x79kpVrChjYvxdPPzr3sPfrHfYgdWXf73dL5/QRMvqjGleIaUTHzwljV4DkYey8UsaPuZJpF5hxeoow6pI72rg9GwBwudezrdkfDF7fkMP4iGGd+t2YV0b4rHTqlxQz68JR3R7bogvkiYGP4lV9GDUG0iypDLQM4KJPv0ZVVdZWlDE1MZVVm4tIjg8jPsrKk4+ezx1vf8FmYzW9tU4AmtyVXJM6j2vas5zvKq2lsKIegHMS+nDdmWMAePBvZ7JjZwV9+8R2egP90+2ncOr5IwiNsCC3p4lXVQWbt4FAbRjPPnUxZeVVJCfFHfBxfOe8c7nr6++IDwxicsbJW9v+eNDq0rCG/AdVdeF0Lkav648kibdOQRAEQRAEQRBOHtnZ2RQUFACQk5NDr169enhEgiAIv23bt2/HbrcDkJmZicViOe7HjIuLIzg4mObmZgoLC2lrayPgN5R1URAE4Y9uy5YtuFwuAPr164fZbD7EHkJPENP9hWOisbHN/39T2xHtp9dYONjLsLz1g6MZVifJIddi0MQwYeRfmHTBNuytZ1JbPRaba3NHm5CQZwgIuIjQ0Ge5KuU8hoX249xeMzr14/Up/OmDj/g+o5aaK6KZdu4wDkQrazFq/CnTNZKG0VFZ/GPMVOb0yeaaQcN46/PV/Pk/n3Pp3W/T0NzGbc99Qa7FTpM+kGVL+zPSehHDw87t1Gd6fDiXzRzOlCHpnDNhX31zo1GHN05lZ1vXFd1RcSHo9PuCuV+UPcyLuy9hcdVL1Li/YQensarqclRV6bJvo8PBlzt3csfEsfxz1jQMxzFt1MlMkgyYTKei0R54AoEgCIIgCIIgCEJPyMzMRKPRAP5gjqJ0/W4nCIIgHL61a9d2/Dx8+PATckxJksjK8mcKVVWV3NzcE3JcQRAE4eipqtrps2PEiBEHaS30pD9mhEs4Yqqq8s+rXiNnTQF/fnYeQyZmdtp+392zWbxsJ+OPsPa5JGkYEPEaW2ov55erxQFiLXOOZtidJFtvJNl6IwAVdVcCoJFUnO5dBBoGAqDXD0avHwzAzBiYGTOxUx8VrS2EmwLwhftXZFdp/DNH61yNNLibSQ9MPGS6iz/1H8yu1mIezHsCNdA/69PrU7A5XNQ12TEaQI7UctX4Sxkf2xeANpuTwu3l9BmchFan4Yazx3bpd1nVbq5e6Z9I8PHEK+gXeuAAboXDf2Jd5tiOVS4EVOodG6m01WHVWdlVXktcQADWMAv3L/mJL3fuxKzTsen6G9DKYj6NIAiCIAjCiaYgoZwE5VxOhjEIgtCVwWAgIyOD3Nxc7HY7xcXFHenVBUEQhCNTVlZGRUUFANHR0Sc0C0dWVhYrV64E/BlADpSGVxAEQTi5FBYWUldXB0BiYiLR0dE9PCLhQERgXDgszfU2Vi7cCsCSLzZ0CYxHRwVz4Xm/bgZMmHk0EwO24vCUopEC2VpzPbKko3/UC+g1oUc99u5Ehvybyno7kvz/7N13eFRl2sfx75meOumNJCQkIaQBoSR0AUGxITbsbdVdy1rXuuqqq2tZe3tde+8dFQEVpbdQk5CQkEp678lkynn/GB2IdAUmgftzXbmYcspvDiFM5n6e+wkj0Pvs/e8AvJi1hidWL2d4SBhvzDmLFzet5vyUEbRa2/n7hn9jcfRyXfyFzAidsM/jLPgxh0WOH6n0qgVvuPnqi0kfPIToMH8eve403vtqDZUr69EmW+HX5eRvP/s5inIrOWFuJjc/eQEAT6xazge5W/jnxCmcnZSKdZcZAYu2bac2oIcZiXF7zHDqoDvY2vozI/1PwaQozC/ZxtaGUBaWrKZpXTv5O+owbW8kucFGzBPOGfP+Hh5oZI0LIYQQQgghhOiXUlNTXbMLs7OzpTAuhBB/0O9nix/JNV/Dw8MJCAigqamJsrIyOjo68Pb2PmLnF0II8cesWbPGdftIdRoRf4xM/RT71VDdwm1nPYu32YPAMDOZM1MP+Tk0igEvQxwmfSgZgz5nTMRHh6worqpWVLWnz2M6rT9RIR8SGfQ0inJg/ww211YDkN9QT2iPgfRl4JNvwWLvxeLoBaDZ0kbrPtrJ5xdU88hT89n8aTvedh+OC87gnMmZJAwOAWD6mAQqc+vp6bIyf1G2a7+mujYAGmpaXY+9tiGL5p5uHln0i3Pf8KG8NP48Lg+fxCs/buC6T+aRU717W3WAaK/hzIq4kTCPeMzGIfxSPptVVQmE6jypb+kAwOFpoHJ7LdekpvPROXOZd+GFUhgXQgghhHATu6r0my8hRP+UkJCAwWAAIC8vD5vN5uZEQggx8HR0dJCbmwuAh4cHqamH/nPQffl9O/WtW7ce0fMLIYQ4eI2NjRQWFgJgNpsZNmyYmxOJfZHCuNivjcu3UVFUR0drN401rbz24FfujrQbh6OLhoZzqaudis1W4nrcbq+htmY0NdWpdHYvpbFrKQ71j304cPekqVyUNoKXTp7NO48vYNGna7n/wQ8pbezivuS/c2XsOax4spazZj/Npx+t3uMxAvy9MBn12CqNnN1wFqMLR+Cw91377ZorpzJsaDiXXrBz5vk9713OWQ9M4KbHz3M9lthtRtehouRZaO3poaStmWnhQxkTMBgArUbB+9cPRTo7LXz0yRo2bCjdLZOiKDyROJ3Yz7tZfcdK7jljKn+ZNoozY6O57ZWrCArxIyMyEj+Txx+6bkIIIYQQQgghDj+9Xu/6EM5isbB9+3Y3JxJCiIEnKysLx69dGUeNGoVerz/iGX4rjAOuIr0QQoj+a9dOI2PHjkUjy9H2a/K3I/Zr3IxUxkxLIiDUFwC/IJ+D2j+3rIZrn/+Cj37ZdMgytbU9RVVlAk1N1wBgtW6m17IMm62A7u5vXdtZrfk4HA2oahfbG65lc91VFDc/tc9jN9e3c8Ppz3DTmc/R2tTpenyw2Y8Hj5vB9JghpI6NpSdIy/ZLA5j73Uc0tOmZFTqFvOwq7Hr4cEsOa0t27HbskGBfPnzjr7z85IW8dtuHPHz1m3z2v8V9tplzSjovP3MxmWOcbe+sDiuvW59n9fDv2aDZWXB/dM4sTnfEcteZ05k17w2mf/kq7+Rt4PjEOD669FzemDOHwQF+ALz97jJez/2aNwvupayh70jTXrudn/OLUbpU7DY7njaF6885jjuevozjz9t3W3ghhBBCCCGEEP1HWlqa63ZOTo4bkwghxMBjt9tZv3494JxIMnbsWLfkCAkJITg4GIDy8nJaW1v3s4cQQgh36enpYdOmTYBzoOqoUaPcG0jslxTGxX75+Hvx4LvX8ObK+3j047/z8IfXHdT+ry9Yy6q8Mv776c/0Wg9NK7eO9ueBTnq6v8Zur8NgSMdomolePxwPj9Nd2xmNk/D2vhYPzwtpdWgBsDk69nnsrKX5FGZXsG1TORuXF+xxmzOvPI4H3/8b/NpJstPai1ar4e5/nYHX5FAKDC08ueopClvX7bZvgL8X4aHmA3qdWZtLeee9X2i3OlupV3bVuJ5Lig/niX+exfHHDaOmqx2A7a2NqKrKqw8u4J5r3uftN5YC0BNq5aSz1nBCxmY2tl5Lk6UC+68z559csoL/K91C/Wn+/O32WYyZEH9A2YQQQgghxJHjUDX95ksI0X/Fxsbi6ekJwLZt2+jt7XVzIiGEGDi2bt1KR4fzc8Nhw4ZhNh/Y53eH2q7t1H/LJYQQon/atGmT6z338OHD8fCQzrv9nc7dAcRO1eX1/G3aw1gtdoyeBl5ccDuDhoS4O5aLwahnxMShB73f9JHxLMspYUraEPQ67Z/O0d61BIMhg97eZWi1cWg0QSiKhsDAt3fbVlF0+JrvASDd6wraejYS6n3aPo+fMS2Z1LGxKBqF0VMS97rdpIQhvGk8i/ZeC6fGDaPb3oM1qZkpaiS+9RsZmVrMl5X3cY3nu/joA/vsaw7w5rlvb6WypI7xJ+wc0d9mbeHF7f9BRWWm7ipueMw5+z28PJbm1HY25LRwUlA7NY1tpEaFoddpsaq1PDElhaIWH65MHouqQllpPQBF251rjF84awJvbTP+elEcvFZ0FYO9RnLu4EewOewAaPQaTjlL2nwIIYQQQgghxECl1WpJTk4mKysLm81Gfn4+w4cPd3csIYQYEHZthZuRkeHGJM526r/88gvgbKc+fvx4t+YRQgixO4fD0ef/jszMTDemEQdKCuP9yM2nPYXV4ixSWrp6ueWMp/l48yNuTvXnnZqZzCkZSSiK8qeP9WPRuySb7gDAP+AzPDwOvNW3j2EYPoZh+93OHODF4x/vPivebneg1fYtGk+LHuK6/XrxZ/xUtwovD08uGjuJnO5ijBpP9BrjHs8TmxRBbFJEn8cK2nOp6akAoFyfD4DNALmqJ5YqD8DOze99w9bttcwckcC954/h7eLrCNS1MDYkke7uOP63oJCTrhmPtsrCnDOdLZ9CPcxck/wh9d1rWd34LVBAedM2avTNzE1PRTHAOUmpGHXyI0EIIYQQQgghBrLU1FSysrIAZzt1KYwLIcT+VVVVUVHh/EwuJCSEwYMHuzVPUFAQoaGh1NbWUllZSXNzM/7+/m7NJIQQoq/CwkKam5sBGDJkiGsZDNG/SRWsH+ls6+lz3261uynJoXcoiuIA2Y1VJA9y3u7o+hKTafxBHduh9pJbfxs9th2kBD+Fpz7mgPZ7/JYP+GXeRv567+mcfumkPW6j1+gB0Gm0nDB4LumWUfjogjFpvQ84X68tiPouLxQgfthwHrp2KK8tXsuWjkYcWrh5xkS++9HZPqmmuR2HasOg9BCka6ejN4tvSl/g/VWhOAzwyTUXEB7h5zq2r8GMr2EmProEHnr1AWpW+9Mes4DPE2vptFrx9TaSKD+4hRBCCCH6JQcKDvXQvKf+szmEEP1bdHQ0vr6+tLW1UVRURFdXl6u9uhBCiD37/WzxQ/VZ5p+RmppKba2zG2Rubi6TJu35M0khhBDusWbNGtdtmS0+cEjP5H7kjhcv7XP/lEsnuynJobW5JZ9Xij6msrv2Tx9r9tAryWp2Xhdrz/tYe7MOav/a9i3Udy2gvTeXmo55B7zf8u+34HCoLP9+y163uTz2TO4YdhVPjLgDnUZLmGkoX39ZwH+f+Z6W1q497mOx23hu7Spe37Qeh6rS1mtnQ20062uj6bSrHD8piUevmU1GbBR/SRnF1WMyef6K0/n7SRN47OKTCTBGclrkw+g0AWgUI6FeGVi9weoN1341j2e/Wsatr3xDXcvOddWDPQdjW5tBa6EPQxJCsTocziy2o2cghhBCCCGEEEIcq3Zdm9bhcMjatEIIsR+dnZ3k5OQAYDKZ+k2njV3XGc/NzXVjEiGEEL9XV1dHSUkJAAEBASQkJLg5kThQMmO8H5l08kj0Rh1Wiw2A7vae/ewxMDyS9zIWRy/VPfXcl/L3P3WsOL9AIj1uorFhJYrijVYXfVD7v/1LEz5+kQT5tpMcMP2A97v+P2ez5JtNnHfd8bs9tzqnlLzSOs6ZPoJxgSNdjxeX1vPSB8tQNeDta+Lav0zbbd+vt+Xx1NoVoFMJ8/HmpCFJPDTqNAwaLeOCYiiqa2SQv5k3rz7Htc+Q0ED+OnPnmuWxPpnEeP+EAztaxcDCoq/5sagYnaLhrUXOgQNxEYFcc6qz7byiKDzz1lU01bcTGuHH2MYU8pvqOTVu/23mhRBCCCGEEEL0f2lpaaxatQpwtlMfM2aMmxMJIUT/tWHDBux254SR9PR09Hq9mxM5+fv7ExERQVVVFTU1NTQ2NhIYGLj/HYUQQhx2u84W7y+dRsSBkcJ4P3Pu9TN574nvATjx/PFuTrNvDV1dZNfVMCEqGqN2799KQ7yiyGsvIsH70KzNYzSOJyxsMygmNJqDawcXZg7kiW9PJdDbk9PvOvBC8IwzxzDjzN0/SGjp6ObGp77Eoaqs+DmXv56cQcbxv47M14Dd09mUoaa9c4/HjfcPBJMDdCpPZS+mSVPPrPDhBJt8efbHFby4fA0Y4fLhadx1yszd9u+12Xhk/hJ6rDbuPmUq3iZ4+vST+Tovjw2NVWxos1Pd08mX9QVMa0hgWJCzVbrBoCNskHNdopSgUFKCQg/4WgghhBBCiCNPRekXbczVfpBBCLF/YWFhBAYG0tjYSFlZGW1tbfj6+ro7lhBC9DsOh4OsrJ0dKceOHevGNLtLSUmhqqoKcA50Ou6449ycSAghRHd3N1u2OLsLGwwGRo4c6d5A4qBIK/V+5sKbTuLpebfwf4vuIC4l0t1x9kpVVc787AP+8u2X3Ldk8T63fTDtRl4e/W/Ojz71kJzbZrPjUM04HDU0N11LZ+d7B7zvpVNG8dH15/PVPy7BpN97MV9VVVRV3e/xTHodZm8TANtXFfHAX16l49e26YNC/QiN0hF5Shmh45v3uP+o8AjGREQA0Gao4Zn877l386cAbKttQDWBzUvlgx1ryakrBqC9t5gVVZeR0/AoywpL+XDdFr7I2crbazYC4KHX80tNMZ8UZlMW2EGXr4PtLU18uGXvbeCFEEIIIYQQQhw9FEUhNTXVdV9a8AohxJ7l5+fT1tYGQGJiIv7+/m5O1Je0UxdCiP5nw4YN2GzOzs8jR47EaDS6OZE4GFIY74eGjYohNnmQu2PsV2dvLwAdvRbquzq5YeG33LfkJ55ft5rrvv+Gil/fVGoVLSGmQBRFobqtnTPf+ZBLP/6cDkvvQZ+zrKqJk65+iVOve5m6+sfp7v6K1pbbcThaD2h/RVHwDujlw+p3yWraQENXJ7M/e485n71PU7ezoF1d3sgF4x/goskPUl/dss/jmYx6Pnn4Mq4YOQzTjnYCw8wYPQwAeJoMzPmbL+bENjZqfqKld8/F8Venn8WTk04hzicIAH+jFwD3nDINr06VaL8G/nX852xvv5BOawVlbZ/Q1LOBkrYPSAizYfTWYTfB/7LW0WN1/jBODgoBIME/kOkxsYR4eXFaorRKF0IIIYQYqByq0m++hBADQ1pamuv2b2vnCiGE6Gvt2rWu2xkZGW5Msmdms5moqCgA6uvrqaurc3MiIYQ4tjkcjj7/d2RmZroxjfgjpJW6+EMUReGTs85jVUU5pyUM476lP/FN4bY+24R5e3Pv5L7rav9QWMSW6hoA1lVUMC1uyEGdN3d7NR1dFgCqG1IID5iHXj8SRfE54GN8UPYxee3b2NC8iZN8rmNLnTPPsooyTk9IYtWGLXTfXw8KrNiwiTmnTN3n8fy8PfjbDSdxyimjCQwzozfs/Gc1wn84q5qXE+kRhY9+z23r/E0enBWfyomD49naWslI/8HYHQ6MOh1r776ebze/CBoVBz10WCsI95pJZcf3+BoTifSL59wxtbyRtQG9VguovPV/P1FaXMnjZ87k9Mw0DFrtAV8bIYQQQgghhBBHh8DAQMLDw6murqaqqkrWphVCiN+pra2lrKwMgKCgIGJjY92caM9SUlLYsWMH4BzoNH36dDcnEkKIY9eunUYSEhIICAhwcyJxsKQwLv6wIX7+hJu88TQZGBoQ5Ho8zMubxq4uajo6WF2xg3GRUa7nZiQM4dMt2Xh5W0kND9rtmBZ7L3qNDo2y52YG0zOHklNYTWrcfMIDvsDT62+Yzfeg7GX7PUk1p5DXvo0U3ySmRscyJmwQGkXhuKgYAMyjTSjlzm1XFhYyh6n7PaaiKETF775Od7r/aB4d8hQ6jZ7VjSuZV/U1M0NPYEboCbtt6603kREUh6qqXPLSJ2wsreLWU6Zw8ZTr2NbsgU7jSYhHBoqi4cSYJQA0Wsq5ZlIKoyMjSAoNpqq0kXc+WkFzqg8/v/czUQH+jBt2aNZ2F0IIIYQQQggxsKSmplJdXQ3I2rRCCPF7a9ascd3OyMhAUfpnZ5zk5GQWLFgAONupT5s2rd9mFUKIo92u/3fIbPGBSVqpH2XsdgevPfgVT970Hu3NnYf1XP/89xecdNYzXHPLu0zzjebd08/i9VPmsOLSq5gaE8v8ogIu//YL7A6Hax/FAiNierBErOeB/Kf7rOP9Ufl3nLf6Zv6x6VE2t2zD5rDvdk6TUc/tV8xgTNJ6oJee7s8PqigOMHvQyfxv9HPcNPTvBHp48sC46fRUW3li4XJUVWVSxGjUTWYs67wwlPsd1LGr69v45pds2jp6ACjJr+bSSY9x0aT/8E35NzT2NvBd9Tf7PIbdobKlzPnBxcJ1eWgVA8kBVzPU75I+r3Vb2zJeL/obbxZfycS4QKL9/IiIDCAkcmfmbovtoPILIYQQQoj+yaFq+s2XEGLg2HVt2pycnD6/gwshxLGsq6uL7OxsAIxGIyNGjHBzor3z8fEhJiYGgKamJmpqatwbSAghjlHV1dWUlztnVQYFBTFkyMF1RBb9g3yqcZTJXVPE5y8v5sfP1vLjZ2t3e75wSznfvr2Mrl8Lt39Ue0cPK9cUAbA1v5q77v+cSVExTI+NQ6PRMDTQORs8xuzHxppqemxWAG557HOySgsBqLc048BZNLc57Hy6wznysbSrkvtzn+P1kk/3en5f37vRG8bia77/gDMXND7Iz6WpVLS9h5fO0zWy8tMNORTUNfDZxhwqW9owag08dfJNXB55NrfecAoOh3pAHx6Utjdw4oLnubPga+575TsAyrbXYu210dtjJbEtHV+dPzNCTnLt09ZbSEnLF7yxaBmfL9+CqqrotBoSe7wwNdppWr33dYNquysBsKkWFpZsAcDkYeDD96/nmb+dxhNXncrU4fKDWQghhBBCCCGOVWazmejoaAAaGhqora11cyIhhOgfNm7ciM3mnFAycuRIDAaDmxPt2+8HOgkhhDjyfj9bXLp3DEzSSv0oM3hYOIFhvnS0dpM2Lr7Pcz3dvdx65rP09lgpL6jh2v+c84fPoygKer0Wq9U5q7u9vYeu7l48PZxvIv+ROZHThybx9JoVnPPFR4wbFMWHZ8zF08NA+YpAwj1CuO2kOWgVret4Zr0PzdZWNCg4UKnpadjtvKqqoigKJo8TMHns3o58X6o7vkTFSk3H10T6XuR6/PQRSSzbXkpaRCgRZuc64ENiQxgSG0JFZROXXP06er2Wl5+5mKDAPa9lXtBWzSUrX0IbaKe3x0Cb6hx4MOnENCpvmIlGo6E1wIsvNpSzxquME86yo8HK8sqLsKvdbG9N4rt54xgUaGb72nL8ujSYd9g4YdbeR6tGmqaxsmQ57T0enDJ45z9lRVE4bkT8XvcTQgghhBBCCHHsSEtLc81syc7OJiwszM2JhBDCvRwOB+vWrXPdHzt2rBvTHJjk5GTmz5+Pqqrk5uYyY8YMKcgIIcQR1NnZ6RqYZDKZGD58uJsTiT9KZowfRVRV5fP/Laapth2Th4HgQf59ntdoFDw8jQA01rVy78X/Y9OKgj90Lm8vI2+8eBkGg7OwbbM7WLwkj6rqFsBZnE0ICKSmowOAqvY2AJ658yweu/ZsXpxzA8nmncVbraLhuVH38HDaLfgZnMXpbrulzzk/r1jE2Suv51+bXuP8+R/xY/n2g8qcEHA3ZuMYhvjf5HqsrbmTH5/+hfO6QnjyzJPQaPq+odycU0FrWzcNjR3kF+xsU9Te3NlnFvnG5lKsqh2NAnEmfx6/6Axaunr49/c/U5/syXnXTqe0vRmAmq4OLHYbKBo0ih4AK1p6/eHOeQt58/WlFG+rYe6csZwwNYm/nPEczz/67W6z1oeYQ7l06DXMiprNlcP7/xt4IYQQQgjxxzlUpd98CSEGluTkZDQa58c/ubm50k5dCHHMKygooLW1FYD4+HgCAwPdnGj/PD09XS17W1tbqaysdHMiIYQ4tmRlZWG3OyeKjho1qt93GhF7JzPGjxLFWytZ+s1GPv2/HwFobeqkpqwRc4C3axuDUc+Li+6gvLCGR697i7amTppqW3lx0R1/6JzRkYH4mb2oq2/Dz+zB488txNvLyBfvX4fR4PzWevbEU/hqWx6z4hIA0Bu1bHE00FTey+yhSX2O563zJMk3jiCDP029rQQb+xb2l9avw4HKprYtbK6OpLKjjRnRu8+Mru6uwVfvi5fOs8/jET5nEeFzVp/Hfvh8HYu/2gBA5vHJDM+M6/P81MmJbNxSjsGgY+zoWABe+tdnzHtzGbMuGM+Nj50HwMkR6eS3VuGj9+CGxBPRabQ89v0SPt6UDQpodRpuyzyOYA8vxoRG4q13DlCYMugT2noL+MXRhqoUUWXrJDbdjCangzEZQ/j2s3UUWDvIX5fDGdUTiIwI6JPvjIQUhBBCCCGEEEKIvfmtmLJ9+3ZaW1vZsWOHq726EEIci9au3bn8ZEZGhhuTHJyUlBSKipxLW+bk5BAZGenmREIIcWyw2+1kZWUBzkmhA6HTiNg7mTF+FFj27UauO+ExPn5+keuxky6cwNCRu/+iGxhmJn1yIpNPTQcF/IJ9eOGfH5O3vuQPnTs0xNlavK29GwCLxcrHn6+lptY56jLK18z1Y8eREOAcefn2lk08vno5Ny6az7bGna3SW3t6KPj1/v0p1/PvlBu5IeHiPuea7j2NECJI0I1BqyicEZ+8W56l9Su4fcs93Lb5n3Tb97+O+ohx8Xh4GQkZ5E94fADrm3LotHW7nvfyNHLPbady+42zXMX+DUu3YUnT8nFyNu8ULwPAR2/ivuFncUvSyeg0zln0Q4J3FrG7ensJNHkyM2wo7y3bzCcbswHw1EcQ5jWVm07MICbSF4cOiiOsfDjvRkaPiSV5Sjwdg000phm4YcH3dFmt+31NQgghhBBCCCHErlJTU123ZW1aIcSxrK6ujpIS5+egAQEBxMcPnOUIhw0b5uoAsnXrVukAIoQQR0hubi4dv3ZHHjZsGH5+fu4NJP4UKYwfBRprWvvcv+DGE7nhsfP2uc7M3x+ey4nnjWfDkny+e2cFd533Ana746DPHR3pLHg7ft3VanPw+rvLuf72D/a4fYzZDwAvvYEAkwcA3VYrM95/kxM/fJv3sjfhoTOR5jcUvUbv2s9itfHgW+tZ8bUnvtURFF1+KzePmrTb8au7ne3O220ddNm69ps/PjWSTzf+mzeX3MXLtR/xUN5LXPnTQ2Rvr+LFj5fx5eItu+1z3WNno73QD0sIPJ+/kF6b3fWcQ1V5ds1KrvvoMz69+DXGlTi46bjxXH/cBACeX7qKJUWl3Pf9T9h/vWjb29fwUdUVnDDxR4w6O2MiB+HraQJg2pQkPIKNWM2wqbWWRdsPrn28EEIIIYQ4OjhQ+s2XEGLgGTZsGDqdc7B3bm4uDsfB//4vhBBHg9/PFh9I63R7eHi4Cvnt7e2Ul5e7OZEQQhwbdv2/IzMz041JxKEgrdSPAqdcMglFo+DhZWRwYjhDRxxYSzQvXw/X7aAI/93W1z4Qt/z9BNZkFdHQ2NnncavVtsftT4xLYPFFf8HXaCTQw9nqvNNqpbHbWcQubW3ZbR+73cGz932Jw2IDLZg9dYCdPX37nhZxEnqNjijPSAKNzhnbFlstVkcL3obE3bZXVZXNbeX46T3psDpfQ7u1k4deX0RpRRMAqfHhJEQHA1DTU81r+meIGWqjrTaQrlovNuyoYlxsFADrqyv5v3XLiDI30hmr4PvRJmbffSGeBmeRf0ZiPMuKy5iRGIf21xGeVd15qDiwKS38ePXZhHkOdr0p9/U08cENF3D2xx8CCqPCw/d4XYUQQgghhBBCiL0xGo0MHTqUrVu30tXVRXFx8YCaJSmEEIdCT08PW7Y4J8EYDAZGjhzp3kB/QEpKCgUFBYCzA8jgwYPdnEgIIY5uFRUVVFZWAhAaGipLEh0FpDB+FNAbdIyZmsRd57+It68Hj31yPT7+Xvvd7/I7T2PExAQUFFIyhvyhEZI6rYZzz8zkxVcX93l8+pQkthfX4eVpwGTS4++3M0+snz9ZTTm8Vb6W0yKmMdQnltdOPYOculouG5G+2znKi+pY/O1mAg0KJ/8llHNH/I3aGiPBIQvQaiP6bOup8+TMyNNd9y22elZVnohD7SYl+GlCvU7us/3C6s3cu/kTtIqG18ddwePffE3BGgtTMqIoq2jC19tEsP/OddpLOkvocXSDAoGNvkRYo0kND9nltQVwTeYS4gIrqPCNoHfIXMKH7Hz+3PQ0zh6R4iqKA4wJOIMeeweBxijCvWJ2e/2xAf6s/dvVAH32E0IIIYQQxw6HquBQ3T+jqT9kEEL8MampqWzduhVwFlOkMC6EONZs3LgR66/LFI4YMQKj0ejmRAcvMTERnU6HzWYjLy+Pk046ydVeXQghxKG3Zs0a1+3MzMwB1WlE7JkUxo8C9VXN/OvSl6mvbKa+spn8jWWMnb77+tu/p9NryZie8qfPP/eMMWzOKWf5qp1tvj+ft4HP520AwGjUcc0VU1m5pojzzspg9MjBPFv4Dh22Tmp6Gnh8xO1MjxnC9Jghezx+VGwwYyYmsKOknjkzNahqO6rajrU3G61HxB73+Y3N0YZD/XX9c1v1bs932SwA2FUHnjov3rzoRixzbZiMev4yOxMPowEvD4Nr+9H+YyjpLEaDhrNGndOn3TtAkKcnw8MMdFohZbSZKaf/Zbdz/r647akzc0L43/f5OqQgLoQQQgghhBDiz0hISMBoNGKxWMjPz8dms7naqwshxNFOVVXWrVvnup+RkeHGNH+c0WgkISGBvLw8Ojs7KS0tZciQPX+mKoQQ4s9pa2tzDSz19PQkLS3NzYnEoSC/AR0Ffvp8HVUl9QCMnDSUERMSjniGWcen9imM76rFx8a9G37Go9JO02udvP7CZYz0G8byhvWk+yXt99g6vZaHXroUAIejk7bWEhTFRPHWIdRXb2LSScPRavdcOPYyxJEW/ALdtgoG+VwAQFtvDw9vWIy/0YMzDEMI/MCBr8NE0DgvFEXBZHQWu4P8vPsca31NFRpF4YLoi1yPqaqKqtKnDX1G6DNUdS5ikHff2elCCCGEEEIIIYS76HQ6kpKS2LRpExaLhcLCQpKS9v87uRBCHA0KCwtpbm4GYMiQIQQFBbk50R+XkpJCXl4eALm5uVIYF0KIwyQrKwuHwwHA6NGjZVDpUUL+Fo8C42am8t07ywkMM3PfG1dhMOn3v9MhNjo9homZ8ZTtaKCru5fmlm7mnDISh1HhU9t2Oq2ddHtpmBY5DIBbhl7O1XHn46Xz2M+R+9JovPDzf5zq8kZunfsoqqpyzf1zmH3JpL3uE+w1s8/9L0py+Lhos/NOTyvKL920003R1koGp0WytaiGMSnRGA07/3msrCzngq8/AeDzM85ndPgg2rt6uPi/H9LQ1sWrN51NUnQoAN6GGIYa/npQr0sIIYQQQoh9kVbqQohDITU1lU2bNgHOdupSGBdCHCvWrl3ruj1QZ4v/JiEhAb1ej9VqJS8vj5NPPhmtVuvuWEIIcVSx2WysX78eAI1Gw9ixY92cSBwqUhg/CsQMi+Dddf92awZPDwMP33cm4JxF3dlp4dlPl/LZuhzUMA1KAFw0Op2Lpo4DQFGUgy6K70qr1aDRKthtKnrDwX0bjwmOxEOrx1tv4JzpE7BnNWMO9CZqZATnPf0Grdt6mDEhkeWhVVR1tqKg4czYnS0yLHY7ANurGimrawFgdX65qzC+o7yRf9zwLiYPA+fMzWDScUn4B3jxwprVfF9QyN3HHceE6Og//NqFEEIIIYQQQog/IjY2Fi8vLzo7OykoKMBisQzINXaFEOJgNDQ0UFRUBICfnx8JCUe+2+ahZDAYSExMJCcnh+7uboqLiwf8axJCiP4mOzubrq4uAJKTk/Hx8XFzInGoSGH8KDH/vRV8/foSzr/pRKaePvqQHLPXYqWrowe/wIP7B68oCv97cwnzVmWDnxZNrYOV1/+VMH8f5n2/iV+WbePyiyZiNOoJCfLBz+y512PZ7dUoihmNpu82IYP8eeGbm2msbWPU5KF9nlNVB93WEkz6KDSKgd9LDQhj4zk3oVU06DQa/vnS5QCcvfg1ypKb0PlpKVSbKOtuAg2oNgfr6st5YuosFuVvp6mlCyIhLTac86eNpL6lk9PHO9dq//7L9Xz1xTqq1G7o6ubZJxbw/bxNPPva5Ty9ciUq8Nr69VIYF0IIIYQQQghxxGk0GpKTk1m3bh02m438/HxGjBjh7lhCCHFY7bq2+NixY9Fo9rwk40CSkpJCTk4O4GynLoVxIYQ4dFRVZc2aNa77mZmZbkwjDjUpjB8l3nn8O1obO/jwmYWHpDDe093L36Y9TF1lE3f932VMOW3UAe9b19TOLznFaHpVzF0KN101g1tenkeAjyc5C7aj2lVqbHV0Hl+AkqPjtePvJ8jbDEBnRw+KouDpZaSr6wtamv+OXQliUOhqNNq+xfGYxHBiEsN3O//2pv9Q1f4uZmMG8UGvkd9WyQj/weg1O7/djdrdv/W77L0AREX58ciEUzjzp/do6+1hkKeZW0dNYWXODpbklrA0t4QJQwYT4OnB7edMc+3f22vj2f98Q2eghprpzsEEocu7UVXQa7VcOHwE8wsLmJuaesDXUgghhBBCCJBW6kKIQyc1NdVVJMrJyZHCuBDiqGaxWFxLSOj1etLT090b6BCJj4/HaDRisVjIz8/HZrPJ2rdCCHGIlJWVUVtbC8CgQYOIjIx0cyJxKA384XECgDOumoo50JvZf5lySI7X2thBXUUTqLBtUznlhTVs21R2QPv+tGobje1dYNBw+2UzaO3qIa+8jhW5paSNiUan1eAxtBeNtwMlqJeCllIASrfXcsH0x7hg+qPsKKmnsWsFAFq1gU0ty3Y7j6qqVHe0Y3c4XPeX1a+gvGMVAF3WQq5a8wrXrH2dR3K/3m/u1yZeyP0jT+bdEy9lSHAQj8TN4h9+k/n+1L8wa3AiaRFhAEQH+OFj3H0mul6vZdS4IWh0Oz8snHvxeP716NksXJvPNSPHknX1NcySEZxCCCGEEEIIIdwkKioKs9k5OL2oqIjOzk43JxJCiMNn06ZN9PY6J8OkpaXh4fHHl3bsT3Q6HcOGDQOcxf/t27e7OZEQQhw91q5d67ots8WPPjKM7Chx7t9P4Ny/n3BA2zocDhpr2wgKM6Moe57xERoZwI3/PY/i3EomzBrONTMexWF3cN+bVzFuZtpu21tsNq75fh7VHe3cO3oKg0LMmH08SEuI4K3PVhFm9mZwWAD/vXo226sauOeDb9AH+ZEcOoixEc425KWFtVh6rACUba8jctwlrGpcRVWvLxMHBe52zqfXreC5rNVMGBTNB6fPpbizhFeK38RX68dZYTMYGXQlzYULAGjsad/vdYnwNHPekDEAVDS08M83v3c+oShcd9oEzklPxaTT8a95P3DFu19w7tjhvLBsNeePHs4lY9NRFIX/PH8xVqudVTt2oAJT42L591uLmLc8hwBfTxY88Tc0GpllI4QQQgghhBDCPRRFITU1lRUrVqCqKlu3bmXs2LHujiWEEIecqqp92qhnZGS4Mc2hl5KSwubNmwFnO/XfCuVCCCH+uJaWFvLz8wHw9vYmOTnZzYnEoSaF8WPQI9e+zfLvNnHaZZO59sGz97rdrAsmALBtUxkOu3NWdv6GMtInJWL06DtjOru+lp/LSgBY31rLZ89cCcCTzy/kx4W5KMBjd12Eh1HP16tyKa/shMog7rlhNp9/uYHjJiUycUYy5111HBqNwripw9DptVgi3iLR3sNw8+7F+KzqKgA211UDYNabMWgMtNkhyPtaVCWWnsb5YNcQpw4+qGtk9vLA39uD5o5u4sJ3FuXXl1XSbbWxtrSCBksXRY1NPLd0FZeMdbZhUhQFg0HHcXGxrn1UVe3zpxBCCCGEEAdLWqkLIQ6l3wrj4GynLoVxIcTRqKioiMbGRgBiYmIIDQ11c6JDa8iQIZhMJnp6eti2bRtWqxW9Xu/uWEIIMaCtXbvWVcsZM2YMWq3WzYnEoSaF8aPAT5+tZcPSfM674USi4vf/Bi9vvbOAvTWr5ICOnzhyMPe9eRXvPfk9Hz+/iIJNZTz84XV9tkkLDmVqdCz5TfW8s2UjWkXh2jGZhIX5ARAQ4IXnr8X02eNTWLdtB2mx4Tz73CKKSxt4+8OVPPfY+Vx2/cy+5/YZit3h4KP8LfibPJgVO9T13AOTp/PGlg3MGuJsTR5kDOTJEY9gcVgINYXwZfk6On26AMiqLAGmcaB8PIzMe+By2rp6iAg0ux6/JDOd8qYWRkaGExHgy5O/rGDOiCR+KitiUuTgPa5dfvsF08lMjiZtSITMFhdCCCGEEEII4XahoaEEBQXR0NBAeXk5ra2trvbqQghxtNi1Fe7RNlscQKvVkpSUxMaNG7FarRQWFsrMRiGE+BN6e3vZuHEj4PwZO2bMGDcnEoeDrDE+wFm6e3ny5vdY/EUWN576BAs+WNnn+c72Hu489wVuOOUJGqpbALj9uUuYdf54bnzsvAM+z7iZaa6ibn1VMysXbKGsoNr1/CMfLiZ7UTkam0JDdxcvZa3h7f9+x8Zfi/DNLV2oOEfZDI8N5+sHLueGmRk07GgCoKurlzffXU5TXdtu5/68IJe7li3i6h++ds0OB0gICOKRqSdwXPTO2dl+BjOhphAAxgcnEKj1wbvXg7nxI/c7Y7u5tpX3Hv6SDWsXsLzyYiq6X+tTFAcYEhzAG5ecxQ3TJ3D2yFRW3PhXvqzK5YqFX/DvlYv3eFwPo55ZmUkMCpYPGYQQQgghhBBCuN9v7dR/k5ub68Y0Qghx6DU1NVFYWAiAr68viYmJbk50eOz6szwnJ8eNSYQQYuDbsmULPT09gPPnq5eXl5sTicNBZowPYN++s4zNKwrx8DLS1WGhu8PC/93zqasFOsD6X/LYvNL5JvDNR79hymnpZM5IZfj4+IM+310vXc4vX6+no7mLB698DYNRx7tZD+Lr78X3WfnYHSr+HQb0gX7oVzfx/qKf6Y0LBo1C1KAA9DpnywlVVXn0urdZt3grvV29KLGBKN4mNszbyGlZuXgnh+LXqSXAYOSxf59NoIcnADqNho0/5PPKBx9y/t9nMOmk4fvMG+bhxxcTb+GSEx/nhbYvsN1hYc6F4/e6/ct3vM/PH6/iBJ8Khp7SSLNlM0PMF2LQ+mF3ONjR2kaojxdaRYNhl/YZPTYbAF1W636vod1m55nr36KyqJZbX7qCiLijq4WTEEIIIYQ4PFTAgfu7D8niQEIcPdLS0vjll18AyM7OZsKECfveQQghBpBd1xYfO3YsGs3ROT8sJiYGT09Purq6KCwsxGKxYDQa3R1LCCEGHFVVWbNmjet+ZmamG9OIw0kK4wNUZ3s3L/7zUwDi06LYnr0DFDj+rAwKt5SzeUUh1WUNzH/fOYM8IMSXxV9ksfiLLJ6ffyvxaVEHfc7wwUGcf8OJfPjcQgAcquqahX3XudP5fl0+Fxw3kq8/yWJ9SSPEBcGvs8zPPzsDRVFY9PFqvn1nOYVbdgCgVcCjuIHgQf7UtHXRNi2AVqWDpjaVmkYHGzeXc/ykRL478xK8DQZun/Y0bc1dvP/cIlKOj8Li6CXMtLO43Ghp58sd6xgbGMcI/8H09ljp6rAA0FS/+2z0XYUODgagPiua5NN6CTJloNc4Z3nfNG8+8wsK0HkqeOj1fHXuhcT4+aNRFD47/QLWVldwatyw/V7D4pwKfvjAuY7bog9WcNm9Zx7w9RdCCCGEEEIIIQ6VgIAAIiIiqKqqoqamhoaGBoKCgtwdSwgh/rTft8IdNWqUmxMdPhqNhuTkZLKysrDZbBQUFJCWlubuWEIIMeAUFxfT0NAAQHR0NOHh4W5OJA4XKYwPUB5eRlIyhpCXVcIZV04l84RUjCY937yznBtOeXK37UdMHMrPX2ah1Wowef25UYPnXDODiJhgouJDMQd4AzBnQipzJqTywis/sX5TuXNDjYYZU5MwGvVMnexsV/TKv7+is60bc6AX5gBvygtrAaivbMYaqKMtyQqKQoSnD6lR/oxOjwEgJchZ/J59ySS+emsZUy9N47bNd2FVrdyaeDNpZmfboKfyvmNR9RbeLlrCzzP/hV+gN//532UUF9Rw8tn7Xg/i0vvOYtLpY4iID8PL16PPc7m1daABq8OB1WLhsY9/omJtHf+4agZTxw0l3i/wgK7d4GERDJ88jKqiWibNHn1A+wghhBBCCOFQFRyq+2eM94cMQohDJzU1laqqKsDZgnfq1KnuDSSEEIfAli1bsFicE2XS0tLw9PR0c6LDKyUlhaysLMC5NIYUxoUQ4uDJbPFjhxTGByiNRsPDH1xHS0M7FcV1XDHpQVobO5xPKn0/rNIbdNz42Lmc/pcpePmYiBwS8qfOrdNrOW5235GWHd0WHvvkZxra2rHrQOeh47YrZ3LKzL5vxE48bxzfvrOcC26axWmXTuay8Q9QV9nsjK3Zmb3K0Y2nwYRW17fN0YU3nsCFN57A9o4i5m+14qWx0NDxId2ef8VDP5hwD38Agk2+/FRVgNlgYty4ONLHxe33dWk0GhJGxdLe1s36VdtJGzUYg1EPwDOzT+ajvEV0GgvwtQ9n8fOloMI3P2UzddzQ3Y5VXNtIfVsnGfFRKLv8fRhMev777e37zSKEEEIIIYQQQhxuKSkpLFq0CHAWxo877rg+v8MKIcRAo6oqa9eudd0/Foob0dHR+Pj40N7eTmFhIT09PZhMJnfHEkKIAaOxsZHCQueSxGazmWHD9t8dWAxcR+fiKseAXouVv01/mEvH3c/dF/zfzqI4wK/tzQNCfDj9L1N4e/V9GD0MJI4cTOQua1o7HA62rCqkqW7fLcYPxML12/h2TR6riytwBOqxaFVWbi3ts43NZmdHtxWP1EgKN5fSWNXM8AkJrudfeedmpq0xEbiyF109lNW1UN20M5vNYWdNw3aaLR3EeQ3hqiFXcHZwPRrrpywsPZeLlr7CJbGTeXvCtZwYksGNaz/lsuXvkttcfVCv5dar3uCff3+Xpx+c53pseHgYSvAK8CzCL3QLV86dSFx0EOedtvss9OrmNs5+/D2ueulzvl639aDOLYQQQgghhBBCHCm+vr7ExMQAzg8Ea2pq3BtICCH+pNLSUurr6wFnwTgsLMzNiQ6/39qpg/Pz3vz8fDcnEkKIgWXXAVVjx45Fo5HS6dFMZowPUCvnb6amvHGf24REBnL1A2ft9fkPn13Ie09+jznAi3fW/huDSX9QGba1luBt8GSQRyjpcYPw9TRi1Ovw99JTXtnEkKi+a5OVlzWycnkBAAtyyulpaOOK/5xPW1MHscMiiEsZhKGkh6CKNjTjvDnn3AnEhgW49n8mfz4fl61Cg8IDI+aypraaKJ1KnA80WzVs6yzlhfyf+Ofw03g4awngHCPQZe3d5+tYv20H28rrmTM5FU+TgY62bgDaWrv6bDfEK5EtreuI8xrGnHPGc/k54/d4vF6bHbvDAUC3xXoQV1QIIYQQQog9k1bqQojDJTU1ldLSUgCys7NlPUUhxIC2a3EjIyPDjUmOrJSUFFcb4NzcXEaOHOneQEIIMUBYLBY2bdoEgE6nY9SoUfveQQx4UhgfoD57efG+N1BVksfE7HOTtqZOADraurHZ7FRuraO9pYsl89az8KPVzDw3kwtunMXTt35AyKAArn9kLlqdFoD//fINC/ULwKHw4uh/MSQ8hMX/vRoFhV6bjdqGdqLD/fucb/DgIKYen8yKRdnYG1qJTowgLDqQf712JT/P30LO+lIeeP0KVv+Qy9gZySxdW8TPS/OZMnko75Us59Oy1QA4UHmveCnb2qvw1KYSmR9Pibc3qgrjguMBOD9uNKuX7yDBHMyooKi9XoOWjm6uffIz7A6V+pZ2bjznOB596TKyVhYybVbfNvB/ib2Zdlsr3joz9y1eTEFjA4/MnEmM3+9eZ7A/r197DjUt7Zw0KnHff09CCCGEEEIIIYQbJSUlMX/+fBwOB7m5ucycOVPaqQshBqSWlha2bdsGgI+PzzHVCjcyMhKz2UxraytFRUV0dXUd9WurCyHEobBx40Z6e52TK4cPH46Hh4ebE4nDTQrjA9TxZ4+lbFs1igasFjuKBlRH323yN5Tt8xhjpiYx782l2G0OvntnOW89+g0Oh+p6fsH7qzCaDGxc6nxDeeJ540gaHQtATnE5JAIaldaeTiI8QftrewmTQc/giIDdzqfVabjnvjPoue1kakrrGZw0iJw1RSz9MZd5H69FUeCVL29g8kXpXPTDCzRZOtGs0GHv6sVba8SBikGjI8DgxeVxU1lTeR/D/EvYnDuc56Y+hkNRCTb5AnBKzDBmRt2GXqPZ5y/0Bp0Wg7eeRlMvrRrnD7+omCCiYoJ221ZRFHz1fhQ0NPDu5k0AfLQlmzunTNn92sZH7vPaCyGEEEIIIYQQ/YGnpydxcXEUFhbS1tZGeXk5gwcPdncsIYQ4aOvWrUP9dYnJMWPGoNVq3ZzoyFEUhZSUFFauXImqquTl5TF69Gh3xxJCiH5NVdU+nUYyMzPdmEYcKVIYH6DOuHIaZ1w5jabaVsq31+LpbeKFuz6mtamTnq5ePH2M3Pz4+fs8ho+/l+v2Gw/P2+M2YVGB+Af7EBTuR2xSBDabnQU/5nB82HgWZNtJjo4iKSD2oLKbPI3EJEeyZVUhd8x9AdWgBy8TqkPlnSfmM/qekTRq2yEQ7N7OYrVGo2G4TxhBnjV4sI6mjkWkB1rodsCEEZ0Eevj0OceOthZu+OE7Irx9eHrGKRj28kbY02RgyLgwqnaU83FFHveoM9DsZ2R8jL8/GYMGsb2piRPi4w/qtQshhBBCCPFHSCt1IcThlJqaSmFhIeBspy6FcSHEQGO1Wtm4cSMAWq32mCwK/1YYB2c79WPxGgghxMEoLCykubkZgNjYWEJCQtycSBwJUhgf4AJCzQSEmgF4bv5tB7XvsFExXHDzLD54egEAnj5GujstqA5QFLjg5pM47fIpzLlyqmufj79Yy/+99gsK8P7rVzHod+3SD4bd/usU914rOBzUTfHijdRawposjA8ayqr6AjCCyaYjzMePeLOWoq4q5vhvw0drQVECCPA4gTjzubsd+6uCPDbWVrOxtprLh49mTPigveYYOSic5TvKSQwK2m9RHKC0sI7YVXYunJzBqIiIP/z6hRBCCCGEEEKI/mDYsGHodDpsNhtbt27lpJNOOqZmWgohBr7s7Gy6u7sBZ4HYy8trP3scfcLDw/H396e5uZnS0lI6Ojrw9vZ2dywhhOi31qxZ47ots8WPHRp3BxDudcpFEwmLDsTb7MlF/zjZ1Y5dVaG5tpXqsoY+23t5GQHQ6bUYDQc/rqK6u44Xt7/PyoYNpE9K5KH3ruHGR+fi7WWgeawXev9eXitbyIWxExns7Wxn3qOzUdBezXcVJfjofKm2BgMQ7n0amWGPEeQxarfznDRkKNG+ZjIjIkkJ2vcon5smTOC7iy/mrbPOPKDX8N6by8haU8zzTy7AarUf5BUQQgghhBBCCCH6F4PBQGJiIgDd3d0UFxe7OZEQQhy437fCzcjIcGMa9/mtnTo4r8nWrVvdnEgIIfqv+vp613tef39/hg4d6uZE4kiRGePHoJ4uC6/++yu0Wg1X3juHN1feBzjfMDXVtLHok9VYunuZ//5KinIreebbfwDgcKh8/d0mAM4/K4OgQJ+9nWKv3iubx8rGjfxct5qxAWmMPm4YACeeP57Hvl3EF7ql2BR4ffvPvDPhOo7/4UFsOKv1Fruev8bcSJJfJHZHN1qNx17PEx8QyNKLrjqgTNsbGjn3rY/QKBq+vvJCov399rn9xCmJrF25nXETE9DpZGyJEEIIIYQ4/KSVuhDicEtNTSU3NxeAnJwcEhIS3JxICCEOTHl5ObW1tQAMGjSIQYP23jnyaJeamsry5csBZzv1Y3WQgBBC7M+us8UzMjJQDqCbsDg6SFXvGLR8/mbmv7eCb95extqfcl2PK4rCFfeczsdbHiF5zBAABsXtnG1ttdnZXlwHQEVV8wGfz2Z38NmGHJYUlDDMNw6AwZ6RLK7OpcHS7tym187KW35AqXMWwbe1VXHhiuddRfHfbGzJ5qltz7KhJZdDZWtNPd1WG529veTXNux3+xNPGcH8JXdx/6PnuH5Y2m0yc1wIIYQQQgghxMAVHx+PyWQCID8/H6vV6uZEQghxYGS2+E4hISEEBTm7cJaXl9PW1ubmREII0f90d3ezefNmwNk5aeTIke4NJI4omTF+DBo2KgZvswdarZaEEdF73OaBt/9GWUE1scN2rqFtNOj41x2nkbWxlAvO2ft6C0Xttbxc+CNlHfXcknwqJaVd3P/tTwB8ffVFvDl2DLet/JB7qj8hyhTIF9P+gVavpfM6E2qoCkCXvZeuribnAVUVUOi1wtcV32EydFPUWczYgDF9zruhportzY2cPjQJo/bAv7VnJSWQX1ePTqNhWkLsbs9v3lLOjh1NnDAzFcOv7eM1mp2jhz564lvefugLTrliGn9/8uIDPq8QQgghhBAHSlUV1H4wW7s/ZBBCHB46nY5hw4axadMment7KSwsJDk52d2xhBBin1pbW8nLywPAy8vL1Ur8WPVbO/UlS5YAzlnj48ePd3MqIYToXzZs2IDNZgNg5MiRrsGh4tjg1hnj999/P4qi9PkKCwtzPa+qKvfffz8RERF4eHgwdepUV1uv31gsFq6//nqCgoLw8vJi9uzZVFRUHOmXMqBEDgnho80P8/6GBwmNDNjjNnqDjvjUKLQ6bZ/Hp00exs3XzCTQz8v1WH1XJz8Ub+fz0rVcvuL/uGDJc/xcm0txZx33bPoIPw/nDxW9RoOX0YDSoyUnrxKAxuYOAB7fsIzWX7u0eWtN6JRdvjUVBRXnG7uaduexRnqP5KG/v8PDN7xLV0cP9V2dnPPlR9z+80Ku/3kez2Uvp8e259Ht9V2d1HS0u+4bdTruOH4K/5g2Cb227+utb2jnH7d9yFPPLOCTT9f+/lAALP1qHaoKS79ct8fnhRBCCCGEEEKIgSAtLc11Ozs7241JhBDiwGRlZaGqzok2o0ePRvu7z/aORampqa7bv/8sXQghjnUOh4N163bWco71TiPHIre3Uk9JSaG6utr1tesvXv/973956qmneOGFF1i3bh1hYWHMnDmT9vadRc2bbrqJL7/8ko8++ojly5fT0dHBqaeeit0ura33RavT7lb0/r3/XP0mZyXdwaKPV2O32bH22mhr7uSy8Q8wZ/w9LFy6hXM+/5BpH7/InVvf4NG8r8hpq8CuUV3H0LRoefnhH/jXxCl8c90lRPqbeen1JegXemD4wZP0LbF09vbyQf5mWpu9MNnM/G/clSw6/m6SfXeuB6QooNerqFYzr495mSFbh7NiYQ5lVYtZm/Uxeo0Gg1YDGpUfarfx9JZlvFu4YbfXVNTUyOQ3X2Xym6+ysboKAKvdTu+vo4PAOSDjw2WbeOH7lThwoNc7r5OPz55HDf31P+cxZmYaNzx9yYH/BQghhBBCCCGEEP1MTEwMXl7OgfCFhYX09PS4OZEQQuydzWZjwwbn538ajYYxY8bsZ49jQ1BQEKGhoQBUVlbS3HzgS2IKIcTRLj8/n9bWVgASEhIIDAx0cyJxpLm9MK7T6QgLC3N9BQcHA87i5DPPPMPdd9/NmWeeSWpqKm+//TZdXV188MEHgLNVzuuvv86TTz7JjBkzSE9P57333iM7O5sff/zRnS9rwNuaVczybzfS1dHDyw98ydkpdzJ3+D9ZsXALRVE6tl0RwnVbfmBjQzla33Y0WjBobYR5txFo7MS+1puRJQl0v6GhqbmTgqwKYgL9AQgM8ELp1aDN0bCwq5r0p1/k9OgkUsxR3D/iLBJ9I2jY3kziF2aMaFEUZ2EcwNfbgE6jY3hmHGnH9XLBEytQYv6D3bGGd+ecyRUZw/DS69AoKoO8fPi2cgMFbdWu11XZ3k6v3Y5dVSlrbaGurYPp/3mViQ/8j23V9QBsKavhkS9/5pUf1vDj1mLefO1Knn7yAmaflr7HazXyuCQe+uxmJp0ub76FEEIIIcTh4UDpN18HY+nSpZx22mlERESgKApfffWV6zmr1codd9xBWloaXl5eREREcMkll1BVVdXnGAfSJay5uZmLL74Ys9mM2Wzm4osvpqWl5Y9ebiGOWRqNxtWG2G63k5+f7+ZEQgixdzk5OXR1dQGQnJyMj4+PmxP1H7u2lJdZ40IIsdPatTs7A2dm7n3JYHH0cnthvLCwkIiICGJjYznvvPMoLi4GoKSkhJqaGk444QTXtkajkeOOO46VK1cCsH79eqxWa59tIiIiSE1NdW0jDk5Pdy+qquIb4I1GqwFVpau9h56uXno6LWzOr8aWoMNosqLz7cY/uhW9h3N2vqfeik6j4mmyce30yfzv6ku5aO444mKDOGv2SGx2B80tnVxx8WSuv3Ai+somrIEGHIDequPr2RdzfHQ8AK89+i1Lv9oEOc526L92ROKaoTMBCA734+4Xds7QXvztFv6d8xHf1K1ieISBoIAOnir8nH9nf8ZfVr9Eh805yn1S9GDuP246d06cwqlDh7Gtqp6mzm66eq1sLqum297F4p6XyDw1Fw+vXuLDAwkL82PE8GgURdZTFEIIIYQQ4mB0dnYyYsQIXnjhhd2e6+rqYsOGDdx7771s2LCBL774goKCAmbPnt1nuwPpEnbBBRewadMmFixYwIIFC9i0aRMXX3zxYX99QhyNdm2nnpOT48YkQgixd6qq9iluSCvcvqSduhBC7K6mpoaysjLA2V1jyJAhbk4k3EHnzpNnZmbyzjvvMHToUGpra3nooYeYMGECubm51NTUALjavvwmNDTU9Y1bU1ODwWDA399/t21+239PLBYLFovFdb+tre1QvaQBbfHn63jy5vdITI/hiS9v5I3l91Jd3sC/r3yd7k4LGdNTyDxrCKubf0LRQmOrH904Z3Pfk3IWL+R+T6+2lq5uA49sW8WM5FSSp/gzacqz+Bof4cFHL+enLD1RsYE8/I/T+ZfPBayxN9FgsHNVRt/Z1umThrJCtx1LqgZ+LYorwMmDds7aNptGMSLsfR65/X02/1JH991aMEO33YoKtFm7AdApWjS/zmx5/9Gv+fiJ7zj/tlPRjR7LuIRoLp8ymk5LL6ekD6OoI5vyngK8A+DeKxLJjIk+AldeCCGEEEKIo9NJJ53ESSedtMfnzGYzP/zwQ5/Hnn/+eTIyMigvLyc6OtrVJezdd99lxowZALz33ntERUXx448/cuKJJ5KXl8eCBQtYvXq1a8T/q6++yvjx49m2bRuJiYmH90UKcZQZNGgQfn5+tLS0UFxcTGdnp6u9uhBC9BcVFRVUVzu7RIaHhxMZGenmRP2Lv78/ERERVFVVUVNTQ2Njo7QLFkIc89asWeO6nZGRIZMhj1FuLYzv+gFJWloa48ePJy4ujrfffptx48YB7PaNqarqfr9Z97fNI488wgMPPPAnkg9MeetLqK1oYvKp6Wi1zmYBdpudHz9bS0hkABuW5uNwqOStL6GrvYfQqEBCowJ5d80D9Fqs+Af7kttaiPLrOAJHuwN8FbQoPLhuHm07vLEq0agegAnK2lp4Y9WHPDLV2aLcx2czdo8MSmuaeeSJeez4bBORcSG89NMdvLfjHcoryrg85kqiPKM4+6qp1E/o5Y3yX5yFcQX8DV67/b36mcbi6NgMlDIzbxjjr04l3juMd0uXMcwnnFAPP4Js3hhU57f6jx+uxG6z88MHK7joztPRa7VcMs3Ijo7F9DKIaGMCHeW+oLWxdbPCqTFH5K9GCCGEEEKIfXKoCg7V/b+0H+4Mra2tKIqCn58fsP8uYSeeeCKrVq3CbDb3aYM3btw4zGYzK1eulMK4EAdJURRSU1NZvnw5qqqSm5srMzGFEP3O72eLS3FjdykpKa4lanJycjjuuOPcnEgIIdyns7OT7OxswNmdesSIEW5OJNzF7a3Ud+Xl5UVaWhqFhYWEhYUB7Dbzu66uzjWLPCwsjN7eXpqbm/e6zZ7cddddtLa2ur527NhxiF9J/1O7o5Fbz3iGx657m2/fWuZ6/Nu3l/PMrR/yz/NfZNqZY5gyexTXP3ou3mZP1zZ60zZs6vm0tj6C6jDiTRQN5Wa6NVoA7KgonlZMgV3ExdUyPL6GE2OimBwTg9lrHJ/kjaa0fTxj0m8myNcTo16Ld7cNgJryRmo6aljesJTyrjKWNSxBVVW6enq5Mmk6Z5jGw3IvlA0eXO9x2h5f239eupRnP7iau+6Zy/FhaQz2Duae1DM5e/B4Wpa0c9Npr3H9JS9jtzu46qFzSZ0wlL/+51zX/uvq/klZ+9dsqv8PHlovKr4YztY3k/HA93D8VQghhBBCCDHgtbW19fnatSPXH9XT08Odd97JBRdcgK+v8734gXQJq6mpISQkZLfjhYSE7LOTmBBi73ZtwSvt1IUQ/U17eztbt24FwNPTs8/PLLGTrDMuhBA7rV+/3rUc16hRozAYDG5OJNzFrTPGf89isZCXl8fkyZOJjY0lLCyMH374gfR0Z/vs3t5elixZwmOPPQbA6NGj0ev1/PDDD8ydOxeA6upqcnJy+O9//7vX8xiNRoxG4+F/Qf2IRqtB0SjgUNEbd/61e5k9ANDptUQnhHHX/122276dHa9jtW7Eat3IDbn1tNtNYAaN4nBuoILDBrpe8PF3ti+fNTQQjaIw1zCYR29Opi0zgXtfzWTq5HGoqkpTbRtfRYcyckICEb4RjPRLp7yrjHEB47nn7QXMX5vPNaeO57IxU1j+cQVKM4xOiKGppZNH/7eQALMXt141A51Oi8GoJzF1z+2S8rIrACgprKPXYmXS7NFMmj26zzaBpnSqOn8i0DQKvV7Lm49fTGFJPePSY//sZRdCCCGEEOKoFBUV1ef+fffdx/333/+Hj2e1WjnvvPNwOBz83//93363/32XsD3NEjuQbmNCiD0LDQ0lODiY+vp6duzYQUtLi6uTgxBCuNv69etxOJyfS44aNQqdrl99xN1vmM1moqKi2LFjB/X19dTV1e1xMKEQQhzt7HY769atA5y/O0o3pGObW9813HrrrZx22mlER0dTV1fHQw89RFtbG5deeimKonDTTTfx8MMPk5CQQEJCAg8//DCenp5ccMEFgPM/9yuuuIJ//OMfBAYGEhAQwK233kpaWppr/TnhFBzhz4sL76ChuoVRxw1zPX78WWMJiw7EP8iH4Aj/Pe7r4XkmPZbFrGgy027/dUCBCvZeDVqjAxWY7XEc31cVoh9kY1CoJxODRgHw9XdZdKt2Vi7M5v15a2nu6OEvZ44nMMzMRbeezHMf/MLH67fxj8suJ3iIDwDLchb++mcJfz15HN/+39UAaDQKH3y9BrvhG6ratWzKH8aY1MH7fN2XXD0No1HHiDGxeHjueTBEZujj9NgbMGmDAAgLNhMWbD6wCyuEEEIIIcQRoKoKaj9opf5bhh07drhmdQN/auCx1Wpl7ty5lJSUsHjx4j7H3bVL2K6zxuvq6pgwYYJrm9ra2t2OW19fv89OYkKIfUtNTeXnn38GnLPGJ02a5OZEQgjhLG6sX78ecBY3xo4d6+ZE/VtKSoqrW2pOTg7Tp093cyIhhDjytm7dSkdHBwCJiYky4PMY59bCeEVFBeeffz4NDQ0EBwczbtw4Vq9ezeDBzmLn7bffTnd3N9deey3Nzc1kZmayaNEifHx8XMd4+umn0el0zJ07l+7ubo4//njeeusttFqtu15WvzU4MZzBieF9HlMUhdSMuH3uZzJNw+a7lMc2PbnzQQ14bPSjI64TfaCFb61L6HH4s3VxADf//RTabZ1s2tzI917tMCuCCfjz4sfLAajRdVHvZWHVhjKUBjvGVpXgb735Pnc7Wo3CTWdMZtXWMi463llc12h2fgA4OG0jg0asACDCXAzsuzAeFuHPjXfPRlVVNpVUEe7vS6if927XwEMXvM/jCCGEEEIIIXby9fXtU8D+o34rihcWFvLzzz8TGBjY5/kD6RI2fvx4WltbWbt2rWvk/5o1a2htbXUVz4UQB08K40KI/mjX4kZSUtIheT9yNEtOTmbBggWAs536tGnTpKOOEOKYs2bNGtftzMxMNyYR/YFbC+MfffTRPp9XFIX7779/ny35TCYTzz//PM8///whTid21WPv7XNfg8K4CdH8VJGH8utK9QHDbGRo43mq4gVsO+yM6Jny68YKnmFmPCwdVAzr5IPuzVCvA18FvaLB0KPgZfagucPZht3Hw8jjV526W4Y1jWv5qvVHTvEDRdFh9hq0x6yFm8pY9tU6TrhoEpHxzrXq31+2kf9+tQRvk4FF/7oSb9Ox1UpfCCGEEEIMbA5VwdEPZowfbIaOjg62b9/uul9SUsKmTZsICAggIiKCs88+mw0bNvDtt99it9tda4IHBARgMBgOqEtYUlISs2bN4qqrruLll18G4K9//SunnnoqiYmJh+iVC3HsCQgIYNCgQVRWVlJbW0t9fT3BwTKoXAjhXmvXrnXdlla4++fj40NMTAylpaU0NTVRU1NDeHj4/ncUQoijREVFBZWVlYBzuaDfJuaKY5fG3QHEwJDgG84zoy/lktgpRHkE4kBlqWMT+giLa5su33ZGjPLBptoB0BscaCyg7YETJyYx969jsPqpoFdBp6I4FDS9kBYdymWzxnJaZjKnj09hcuqQPWZosDRQZzXzWdMYYoM+wMswdI/b/fvC5/nk6fk88bfXXI81/Vp07+q1YrHaD9VlEUIIIYQQQuxDVlYW6enppKenA3DLLbeQnp7Ov/71LyoqKpg3bx4VFRWMHDmS8PBw19fKlStdx3j66aeZM2cOc+fOZeLEiXh6evLNN9/06RL2/vvvk5aWxgknnMAJJ5zA8OHDeffdd4/46xXiaJOamuq6nZOT48YkQggBlZWVVFRUAM7iRnR0tJsTDQwpKSmu27m5uW5MIoQQR96uA6oyMzOla4Zw74xxMbBMDElkYkgiH5Qu3+s2z25bzH2Dzmbehz+iOix4qFr0Oi0j4geRZoxgXvlWfA0mHjz5RJZvKqGxup2r50zE02Tg35eeuM/zzwybQWNHN7ZuE4M8h+91u8iEMOormojapW38VTMyCPLxJCE8iEAfzz3u19lpwWq14+e35+eFEEIIIYQQB2fq1KmoqrrX5/f13G8OpEtYQEAA77333h/KKITYu5SUFBYtWoSqquTk5DB16lT5MFEI4Ta/ny0uP48OTFJSEvPnz0dVVXJzczn++OPl2gkhjgnt7e2uAUEeHh59Bn2KY5cUxsVBy/CPZ2VTAb+9f9r1s6xAgzelb5ZT9r9yyijnvQ0P0uH1Fzq6nkavfZz5p1zh2jZhWtBBnberx8Ezb1disdmxzwrmqmkZ1Hd14qXX46k3uLb79yc3saOgmsFJO1utexj0XDA5fbdjWuwtlLR9htaSyC1XZ9Hd3cuTj5+Pv1HHvFd+YvLpYxgxJemgcgohhBBCCHGoqaqC2g9aqfeHDEKII+e3FrwlJSU0NTVRXV1NRESEu2MJIY5BnZ2druKGyWQiLS3NzYkGDi8vL4YMGUJRUREtLS1UVlYSGRnp7lhCCHHYrVu3DofDAcDo0aPR6/VuTiT6A2mlLg5aV9Xex1Nc2TSWibPH4GX2ZPiUYSxaOI9QbT7emi5q2t7ebfteu42718/j76s/odnStc/zqqqK49civENV+am0iIy3XmLye6/S0tPt2k5v0DEkNQqtdv/f3rmNz7G16UU2t91Mp6Ybh0OluLie5295l29f+5kHL35xv8cQQgghhBBCCCGOVrvOrMnOznZjEiHEsWz9+vXY7c7lEUeNGiXFjYMk7dSFEMcam83G+vXrAVAUhbFjx7o5kegvpDAuDojNup262ik01M8l3bfv6HBFwTV7/LlPv6AkZwdf1LzMVU9dxjdv1LBiewxVFj9CvM+jo+N1bLYy175r6kv5vGwTP1bl813F7uuVWewW1jVl0dLbir+XB/ceN4lzhyRy8bh0chvqUIHG7m4q29uw2ve+dnh2yzoW1XxOj71v8d1DFwZAR4eRbh8D55yTwUmzhpM4OhaAhJExf+BqCSGEEEIIIYQQR4ekpCQ0GufHR7m5ua5ZN0IIcaTY7XaysrIAKW78UcOGDevzs/xAlrMRQoiBLCcnh64uZz0oOTkZX19fNycS/YW0UhcHpLtnPjbbdmA7V0y8hbd+2fmc632UqqJf0oluupbN2yp57K0f8EwL46t/n84DL1yM2X4Dba0r6ex4g9CwFQCk+kcw2CuAdlsPE0KGuI5ptdt5a80GtvYupMmzhGBjMLeG3Mnib15mxkVZ/LT2Zy4b/xAdvRY8NHouefMz9FotX155IeFmnz7ZW3qbeKP0SQA6bd2MNicTZArDUx/BMP+ryMsN4Y138kiKieBvV05Do1G44oFzOPWK6QQP8j+MV1UIIYQQQogDo6oKjn7QxlxaqQtx7PHw8CA+Pp6CggLa29spLy8nJibG3bGEEMeQ/Px82tvbARg6dCh+fn7uDTQA7eln+eDBg90dSwghDgtVVVmzZo3rfmZmphvTiP5GCuPigHh4nE5P9wK02jD0hpGgzgPFWRRXfv0TRaHjrUFsCF/FmuKfKavxx6FqWPj1jfh6m2hqNP96NA0ORxcajSf+Rk8Wnvj33c73yZYcHlu2nMSURoI8wabaMJn0ZJ6cT0BYO6r6DT6G//LPCVP5bFMOHZZeALbW1O1WGDdpPfDS+tBpb+fH0kWo4U8Cek4a/C0euhDOnDyHGaNm4eVhQKNxftCnKAphgw9uDXQhhBBCCCGEEOJolJaWRkFBAeBspy6FcSHEkbR27VrX7YyMDDcmGdhSUlJcP8tzc3OlMC6EOGqVl5dTU1MDQEREBJGRkW5OJPoTaaUuDohON5jgkPkEBL5BRXcHKjuL4rCznbq/sQtPwyrMgzeSOrGBU6em4uNlBMDP/3l0umHY7UXU183C4ejoc45dW/hE+DqL20W5Eeh+iOLupDvx8/diwsibsVkD+WlDOte88iUOh8pJyUM5d1Qal2amMzk+ZrfsJq0HdyU9zfHmm+iw/PYtb8Xm2NlW3dfLhFYj/xyEEEIIIYQQQojfGzp0qGs937y8PNc6v0IIcbjV1NRQXl4OQHBwMLGxsW5ONHAlJiai1WoB2Lp1qyyNIYQ4av1+triiSOczsZNUAsVBCzb6YtZ7guosju+6JE23XY/NoQEV7rxoLnf/9UQURWH92mJuu/5zOtqdxXC7fTstLbcCoKp2VlRdzvzSDGq7lgEwLW4I7548m9v8RvDI5TcSbHTO3o6PmMPidffx9YoMVm4ro7WrBy+DgX+fMoN/njAVw69v7n7PS+fNlOARbPlpKN+sGc38ZzPxMcQcvoskhBBCCCHEIfTbwFS3f7n7Qggh3MJgMJCYmAhAd3c3RUVFbk4khDhW7FrcyMjIkOLGn2A0GklISACgs7OT0tJS9wYSQojDoKWlhfz8fAC8vb1JSUlxcyLR30hhXBw0D52BBdPvYk7oePxUM7u+H+22G/i+Kpkr414n1nu06/E3/vczWzaW8eB9k1yF9F7LOgB67A009azHoVqo6fzZtc/4tDiu+NsJhET0Xef70qljCNV74FtjY83Sgj7PfVG+lokL7+XiFS/0mYEO4Ovtwbm9UZQ95Et8z6hDcSmEEEIIIYQQQohjQmpqqut2Tk6OG5MIIY4VXV1drp83RqOR4cOHuznRwLfrz/Lc3Fw3JhFCiMNj3bp1rtrQmDFjXJ0yhPiNFMbFQbNaC2ltvpIbE2uZf+Kt3DbsNNdzOsWOUWfjrCUvceO6t2ixdLKhqYSpJ6ag02lob49i6ZJhzjbsmmDs9io8dKEk+l9HsMdE4swX7/GcDlWlqquZmu4W4sMCUdY0Yaro5eef+r6Be7dkKVbVzrb2Koraa3Y7zp1PXMzXKx7kjpevOrQXRQghhBBCiMPIgdJvvoQQx6b4+HhMJhMA+fn5WK1WNycSQhztNmzYgM1mAyA9PR2DweDmRANfQkKCLI0hhDhq9fb2smHDBgC0Wi2jR4/ezx7iWKRzdwAxsLR2dNPR/iSKYyGWnoWc8XwDw8LjmTkijR9qs4nza8CotdPc08OqRjtzlz9Ni7WLU5NH8f3Sf1Jb08q6tdHA9dhtW2hpvo3AoPcZ6v+3vZ6zsq2NMz57CzW8Bq2i8NToS7juxhNYsjiPiy6dTFNPDhvq7ifIYxSnDsrk5e0/AZDbVkm8b/hux/Px9zpcl0cIIYQQQgghhDgqabVakpKS2LhxI1arlW3btvWZeSiEEIeSw+EgKyvLdX/s2LFuTHP0MBgMDB06lNzcXLq7uykpKSE+Pt7dsYQQ4pDYsmULPT09gLNDhre3t5sTif5IZoyLA9bS3s0Zt7/B8/O7sasKZV3htFkMrCndwWWx0wDQ/LrqoKI4/2zp7QLg+4pNPJPzPXaDhVHpT7narzfX2/lxQTbvrV3PzUs/ZmNT6W7n3VRdTZu9E0UBByo3rX8bn/Emnnr+YtKGR1HS9hlt1iKK2z7l+NDBrv3qeloP49UQQgghhBBCCCGOLWlpaa7b0k5dCHE4bdu2jdZW52d7CQkJBAQEuDnR0UOWxhBCHI1UVWXt2rWu+xkZGW5MI/ozmTF+DLPbHTz75s/sqG7mjqtnEhZs3uu29RVNvPHsd3R0WSg0+fNgzfE4UJiWFMXE2AQS/MJI8AqjqNWGl76XFouzvRoKKJ0qdi8H75cup3HL+1xzXInruE995EPOmm9ouciGKaiH1Wuz+WnGvXjqjAC09fQwKiKc0wePothRShllAGxvr2F6mPNN3GCf06jrXkOQKZ3B3nH8N/0iSjvqOHfwhMN05YQQQgghhDiyVFVBVd3fxrw/ZBBCuM/gwYPx9vamo6OD7du309PT42qvLoQQh5IUNw6f+Ph4jEYjFouF/Px8bDYbOp2UCYQQA1tJSQn19fUAREVFERER4eZEor+SGePHsKKyej5fsJG1m0uZ92P2Prd97V+f8PMrP+NV0ELnMk96m/SMD5jEi3PP5sKMkQC8P/kGMr8JpaLRm/ZuI4negznelkTscl+8bSaspZ546Hv6HnhYL9peFdXq/FY0aQzoNFoAipubGffqK0x9800uHZnOp7P+xr2pZ3Fx7BTOj5noOoSPYTifV5/O3TmerK5fyeLqL1jXuB2LQ9Y7E0IIIYQQQgghDhWNRkNKSgoAdrudvLw8NycSQhyN6urqKC0tBSAwMJC4uDj3BjrK6HQ6EhMTAbBYLBQVFbk5kRBC/Hlr1qxx3c7MzHRjEtHfyVCwY9jgQQEkxYVRWdvCpDH7foM5JDWKJZ+vJdKq0pPrxZio07nihNm7bbepsBmC/FA8bTw+43zCfHzhVHA4VD5etZlAT19gJQA/NQ7hF2MM06ZHc+PME9lmrWJ8RBwGjfPbsqSpiR6bDYCCxgaSQ0I4LXL0bucs62xgS0s5HloLFW03MdLHxsK6ZJbVpe9xeyGEEEIIIYQQQvwxaWlprg8ec3JySE9Pd3MiIcTRZtfixtixY1EU6VhzqKWkpLBlyxYAcnNzXYVyIYQYiJqamigoKADA19eXpKQkNycS/ZkUxo9hRqOe1x67aLfHbQ4HV37zJTl1tfzfybPJGBTJ3JtPZvKcsQQN8sdg1JNbXUtZUwuDA/wAqOlo5/5fFmM8NQbK29B3e+ChNbiOuTVnB69sXsfwiI2khjgfW9oYj92qI8u/k6GRIQwlpE+OqbGx/GPiRHptdk4e6nxzpqrqbm+G431COSUinSbLDrSKHYAIk4lxQQmH6EoJIYQQQgjhXg5VQekHbcwd/SCDEMK9IiIi8Pf3p7m5mZKSEjo6OvD29nZ3LCHEUaK7u5vsbGdnS4PBwMiRI90b6CgVFxeHyWSip6eH/Px8rFYrer3e3bGEEOIP2XX5jbFjx6LRSLNssXdSGBe7qWpvY2lZKQBvrd/A6PAItBoNNY0d3P3Pj5lz5TqqlHpe2zCN68ZNZ13hDsyDPFlUvB2A8XpfItp1aG0qAI317dx8/VuUzfGmqSKeU2JTaOu1EWdvBsrZYYwGwOawU9HVSLRXEBpFg1aj4bqMnS0vGrt+JrfuenyNIxkR9jaK4my5vqBqM99VbSTM5MftyS/Ra69gzpDZaBR5MyeEEEIIIYQQQhxKiqKQmprKsmXLUFWV3NxcaVcphDhkNm7ciNXqXB5xxIgRGI1GNyc6Omm1WpKSklzXu7CwkOTkZHfHEkKIg2axWNi4cSPgXCpi1KhRbk4k+jspjB/j6hrbKSqrZ+yIGHRa5yiaKF8zJ/pH8WNlOT+v2c6jjl+4e8505n2xnsExaxibtBiAouYQnltkwmaxE91sRlEd6FttNHxaQJNNZfnEdUw7HXocem58/Ev0Hio1rQE01zsYOzSYCRErAPDwuwOAOza+z7L6fE4bNJp7087aLWtD1w+o9NJqWUtlRzl5rTamhMeS31YFQE1PCwZtEoO85BdyIYQQQgghhBDicPmtMA7OdupSGBdCHAoOh4N169a57mdkZLgxzdEvJSXFVUzKzc2VwrgQYkDatGkTvb29AAwfPhxPT083JxL9nRTGj2FWq53Lbn2H1vZuLpqTwTUXTQGco78HbW8kPaOY9mYvihsiuWnF1+SOaOKfibkAqKrC7BHno7WqzN+UzyT/cBz/2gSAf3gAAGnj36SxcSEOzIwa1Op8LKDOuT/O9R40mgDMHs4W6oXtNQAUtFf3yZm3tZJvvtrA1JNPxOZdjNk0mjMWfUNDTyeXDB3NTSOOAyDJHEGwyfdwXS4hhBBCCCHcRlWdX+7WHzIIIdwvJCSEkJAQ6urqqKiooLm5GX9/f3fHEkIMcIWFhbS0tADOVt9BQUHuDXSUi42NxdPTk66uLgoKCrBYLDJDXwgxoKiq2qeNugyoEgdCCuPHMIeqYum1AdDV3dvnOf8zHPjauvAN7SIaI9l1CzgnvoBmnG+ODIbRpJgn8431Fy6bOJobT55IXLcOTy8jHkG+RMYEYjBdi9UKWkWFXT7IUxRQVSMhoT+i1Qah0TiL2Y+mX8CCqs2cHjm6T5YnHvmWsrIGPtumozU+E4NOgxLnzN1jt+Jv8OaWpFMO56USQgghhBBCCCHELtLS0vjpp58A56zxyZMnuzmREGKgk+LGkaXRaEhOTiYrKwubzUZBQQFpaWnujiWEEAessLCQpqYmwDnYJzQ01M2JxEAghfFjmNGg4+X/XEBuYRUzJyX1eW76kGkUFG0l1msImb7DOSvwFvwN3WxtCuWlBddw9qwLeWb+96zL3oGiQuOKcjZ+ugmPIB867Q7OvmQdp5y9CY02isCA97Hbi3CodpqbrgRga30AHv7hBHrtbGuRbI4k2Ry5W87wUF/KyhrAagdAQcO7U88hv62e6YP8mFd6AdXdMDr4PsYEJR7GKyaEEEIIIYR7qKqCqirujtEvMggh+ofU1FQpjAshDpmGhgaKi4sB8Pf3Jz4+3s2Jjg0pKSlkZWUBznbqUhgXQgwkuw6okqV9xIGSwvgxLj4mmPiYYAAsdgurm1YS5TGYJN9knk1/EXC2o/gpNwF/wxbyCwfxwxIPPjd9hF9gKyPPaqSz0ZNvv7UQFKBF7ewBk4GYuEbnvo5GStv96bWlkxgcxBMbbsRLs5EF28ayOElzQBnvfegsnrjjE6y9VkbOGkNqTATxwYGMCIkgv/k1bPY8gg3wZtHbjAl6+PBcKCGEEEIIIYQQQrj4+fkRGRlJRUUFdXV11NXVERIS4u5YQogBatfixtixY9FoDuxzQ/HnREdH4+3tTUdHB9u3b6enpweTyeTuWEIIsV/19fUUFRUBzvelCQkJbk4kBgopjAuXb6q/ZkHNfLSKlqdHPIenzguAVksPXxeHkjwaJqYUg89NvNC+kqjAZkwGG6bwNraNCcEw3cbzGd9B7yAe/mw6o3y34Ol5Eo8seRsVuHfaNL4u0gMZXDF6FD5GIzd89x0/Fm9neJIZu72XMUt0zDh+LKOP3zk60WgycPezF+0xc7jnVDY3vkdtj0Kq/4QjcJWEEEIIIYQQQggBzlnjFRUVgHPW+PTp092cSAgxEFksFjZv3gyAXq8nPT3dzYmOHb+1U1+7di12u538/HxGjhzp7lhCCLFfa9ascd3OyMiQAVXigElhXLiYNM7RgHrFgEbRsm1jGU/d8j7JY2OZe4Xzh0qIdytXThvBtnVNVPX24NBX0dNmoNumZ0poEV6GNjC0URsxkifzp+KvcRDi00yQdzuKvob0aCPl9RrOSE6m127nu4JtYLSzqa0cgB1FDSz/3wq+bnj1gH6QmY3xnBv/Cz12Kyat/vBdHCGEEEIIIdxIWqkLIfqjlJQUFi5ciKqq5OTkMG3aNBRFfk4IIQ7Opk2b6O3tBWD48OEyY/kIS01Ndc3Yz83NlcK4EKLf6+7uZsuWLYAMqBIHTwrjwuXk8FOJ9RpCmCkck9bE9++voLywhvLCGi646Z/oTIPYvi2I7LxqCt+tZVRqJv+8eiYXf/QBfh5d1FlmUVbVQH2JLy0LvTEOtzPRbGTaid+jKHaKe7YSHRfAMyc9QpSns73aXVOmsKCoEKtPGzWNTXis7yQ2JfKgR/dIUVwIIYQQQgghhDiyvL29iY2Npbi4mObmZiorK4mMjHR3LCHEAKKqap826hkZGW5Mc2yKjIzEbDbT2tpKcXExXV1deHp6ujuWEELs1caNG7FarQCMHDlSBlSJgyKFceGiUTSkmFNd92eeO47NKwtJGhNLUHg8lz0azVKfdjxrvsevU8uSNYVceFEmGzRNYIdvtvYyv+NMNForkUF6wr7rZNncGqaoKjoFFEUFwOrodZ3jhNh43lq6AVOtnm8uux5bRifBkYFH/LULIYQQQgghhBDi4KWmplJcXAw426lLYVwIcTCKiopoamoCIDY2lpCQEDcnOvYoikJycjKrVq3C4XCQl5fH6NGj3R1LCCH2yOFwyIAq8adI032xVyljh/Dmyvu47dmLeXfDJjYaOgDoDtQQHRnApWePIykslDPikonw8EHXoeGE0et5/Lz3ST9jHbq6etrw4N3siezoDqCpzY8TfK6gvsWT6vZ2VpWUs2R7CfUdnexoaWVLZQ0RQ0LRG/Y+XqPJ0sF/sr/gkV++oiC/6khdCiGEEEIIIdzKoSr95ksIIXaVlJSEVqsFnC14HQ6HmxMJIQYSKW70D6mpOydL5ebmujGJEELs27Zt22htbQUgPj6eoKAgNycSA43MGBdY7BZeKX6JDlsHf4u7lgBDQJ/nc2vr+PePv6BqINLhgWOHlZL6ZnTZJZw2YzjPTD2VZT/l8t/vFjF+diUAaeEl1Dw0ijGf1pN6tRGLxoDZt4O8+k5eWPUpRq0Wa7sdjaeCOdDExJAoksP6jghVVQe1nV+h05hpt6UT5OHFR2Ur+LoyC4Af/5nDO89dy6DIvnmFEEIIIYQQQghxZJhMJhISEsjPz6ejo4OysjJiY2PdHUsIMQA0NTVRWFgIgNlsZujQoW5OdOwKDw/H39+f5uZmSktL6ejowNvb292xhBBiN2vWrHHdzszMdGMSMVDJjHHB9o5CNrduoqhzO1lN6/o8Z7Xa2VpYg06jQeNQeOCkE9E1qqgKFJTX88oXy8iqvY0Kr+vw6Spj6QvJVHXEs6x+KMa4XCLu7uS6STcw2Cud0QFzaOr0ch7X7kDVgQ2VRks3SwtKmfl/r3Lz8s/Z2lINQF3nPLY13Elu3TVc+fNDzPzmFZJ9o1BUBaVZQWlTUFX1iF8vIYQQQgghhBBC7LTrTMPs7Gw3JhFCDCS7zhYfO3YsGo18VO0uiqKQkpICONd937p1q5sTCSHE7mpqaigrKwMgMDCQuLg4NycSA5G82xDEeccR75VAuCmcdP/0Ps89/OR3PPT5j9gcDlRgxKBw/vevcwkM9KIrVMUjtIHqzoV4hzQxbEoZKYNnkRb0DF2OaABsqh3V5kdt0anQMoPbJ03h3uOm8srs05k1JJ4QkyfTomPo6u7FHt3N93W53LjmMwB0GjMAqqrBS99DY08rqX6D+fH4e/lvxIU89+xlREbJeuRCCCGEEOLop6r950sIIX5v6NChGAwGAPLy8rDZbG5OJITo73p7e9m0aRMAOp2O9PT0fe8gDjtppy6E6O9+P1tcUWSpL3HwpJW6wKT14M6ku/f4XENjB6YmB91hGhICAikurmds6mAmn53EqxuzeKW0luutEfhGt1Ky3Z8J560hwjeSN6bcy7rmtQTpe/mm4Ha+2erPS8uC+faGszg5ORSsZq7NL0IFhiUEcdzJMXxav45CWy0JvsEABHpOY1T45+Q1vc1VwxahKMkEmZwzzo87LvlIXR4hhBBCCCGEEELsg16vJzExkezsbHp6eigqKiIxMdHdsYQQ/djmzZuxWCwApKWl4enp6eZEIiQkhKCgIBoaGigvL6etrQ1fX193xxJCCAA6OztdnYmMRiMjRoxwcyIxUElhXOzTPbedyqKfc/EO9OCxN37ihl8+IzU2DHWIcyQ4FoU3yjKwaHScdulWmr038OWOfL77+VQMWg3Xn/gFfuZyzpnowyer5vB/ZXfhwM7lg+/E39ODpq5uYgL9OSc9jQvVkRS11fNZYTazv36dO9NnMCE6DZvaBIBeqd4t35a1Rbz+6HdMnzOa0y+ZeCQvjRBCCCGEEEeMc7a2+0fDy4xxIcTepKamuj6szMnJkcK4EGKvVFXt00Y9IyPDjWnEb35rp75kyRLAOWt8/Pjxbk4lhBBO69evx263A5Cenu7qViTEwZJW6mKfQkN8ufjc8QwK9eO3j+FyC6rZsLaM6eExXG6LISU2CgCbEgaAzh5FeXML2xua6O0dAsDQwAk8fd7xOHD+4LKobSy49jLmX30J56SnAaBVNHTaenmnfCUF9kr+sXweAGlB9+KlT0BRfGmxbOuT74lbPqAgu4L/Pfi1rDcuhBBCCCGEEEK4SVxcHB4eHgBs27aN3t5eNycSQvRXJSUlNDQ0ABAdHU1YWJibE4nfSDt1IUR/ZLfbycrKct2XAVXiz5DCuNirjtYu3ntyPqsXZZORFsPzd5/DDedPweChoyVZYXF1KZbx/rwx+zIeSDuVRTmDmbd5OjND/8nU+FhmDo0j1nQ7O4ofIFR7C6n+w7ko+u+cHfkXRvtPwuxhIi44kG21DVz7yTw+yNpMsMkbDQqqCqOCIwFQFC0tvcV02CoobfuyT0a9w46qqugcNllPQgghhBBCCCGEcBOtVktysnPZM6vVyrZt2/azhxDiWCWzxfuvoKAgQkNDAaisrKS5udnNiYQQAvLy8mhvbwcgMTERf39/NycSA5m0Uhd79eGzC3lrxSp6N+v5Mi2cMSnRpCVGMGfWCGa+9xZV7e0M9vPjjNc+YHtnI1YfO51WKG5r5uW5p/PAtz9y8Vuf0NtpZ8HGBh46/0Su/mgLQwL9GXuJg16blX98Mp/N9TU0dXWzeFsRG4b/nV9OuomG7k6SA5yjRb10g4jwnE5zbx7RPif3yXjva1cy75XFTJ4zxh2XSAghhBBCiCNCVZV+0krd/RmEEP1Xamoq69evB5zt1NPS0tycSAjR3zQ3N7sGzvj4+DBs2DA3JxK/l5KSQm1tLeCcNT5p0iQ3JxJCHOvWrFnjup2ZmenGJOJoIIVxsVfGWF8qowMB+GBHDjE1/vxz5U8kBQXz3fmX0NTTzfbSWrYqteAL2g4FnUVhqHcgX+Zu5d2CbPACnR0cDT28u3AtbT0WNlXWUNbUQlFdEz9VF2PzUVF0MDUwFg+9Dk+DDyEePq4ciqJlXPiTe8wYkxzJDc9cckSuhxBCCCGEEEIIIfZu8ODB+Pj40N7ezvbt2+nu7na1VxdCCIB169a5bo8ZMwatVuvGNGJPUlNTWbx4MSCFcSGE+1VWVlJRUQFASEgIMTEx7g0kBjxppS726vS5E/HVGQEI9tDx6Mc/YFdVcurrsNhtxPr5c8enXzuHV2jAt87GKT1hxIUEolMU+HXJb78qK8pXpWx7dT2ZgyOZPSyRIUEBZMRG4uGtB8Bg0vHGhWf2aYeuqg56bA1H+mULIYQQQgghhBDiD1AUhZSUFAAcDgd5eXluTiSE6E+sVisbN24EnMsvjB492s2JxJ74+/sTEREBQE1NDY2NjW5OJIQ4lv1+trgsqSv+LCmMiz16d/kGZv3nDa4IG8sjUxNYYXmNpPHb8aq0M8s0mBAvbwA0VgWsoLXCj/+6gafvvwgV+M+CJWgsoOtSOCcoBkWFkckx1GU1suS7fD7+YSMBXp58ecGFXJA8gpdnnUqXtQhVtbsyrK75B/PLZpLT+BwADlXF7nC443IIIYQQQgjhVmo/+hJCiH3ZtX16dna2G5MIIfqbLVu20NPTAzhnJXt5ebk5kdib3wY5gXPWuBBCuEN7e7vrZ5CHh4cs0yMOCSmMH6OKS+ooL9/7aL+PV22hvcfCx0s3U9ZSDIDnoF7uyziOZy+Zg0NVeW/rJi6aPZ4LvRL5+tSLCPJwvpntsFiYkLSUO079goTwan78eB2+vh7c8sS5tHR0A1DT2A5AvH8gD0+dSbDpabKqTia/4TZXhoaeDQDUdWVR39nJ5NdeZfT/XqKgQWaRCyGEEEIIIYQQ/VF4eDgBAQEAlJaW0t7e7uZEQoj+QFVV1q5d67qfkZHhxjRif3YtjOfk5LgxiRDiWJaVlYXj18mSo0ePRq/XuzmROBpIYfwYtHlLOVf+9Q0uv/JVCrfX7HGb62aOJ9Tbi96qbr5/pZfz/G3cNaiGOaf6YjDo+LFsO/cs/4Fntq5m2uQU0iIjXPt6GhxMH5ZLqE8bE4bm0TbMi0ZPlRcWr+LOK2Zy7dmT+Ouc8X3O12ktcP7ZW+B6bFnuKWQVxfFN1ji21tdR3dFBm8XCoux8ls7fTGtTJ/Vdq1hRdTnl7V8d+gslhBBCCCGEEEKIg6IoCqmpqa77MtNQCAFQVlZGXV0dAJGRka5W3aJ/MpvNREVFAVBfX+/6uxNCiCPFZrOxfv16wPn+csyYMW5OJI4WOncHEEdea2sXAKoK7W09e9zmpJGJ9DZZePS1H/DUQrJpMTigo/1/+Ac8S5iXD9pf13II+7Wtut3h4KIXP2ZbTT1Xnj4OL89sVpQOpXaqGXOrls+ycsmJqsPgpac7S+WaKZmu8yUFP0td59eEep/pemxbVTj5tRNJCvNlfFQ0F48YyfotpXz+0BK+buslKTKQc15YTYslhzZLPtE+cw7TFRNCCCGEEMK9VFVBVd2/llp/yCCE6P/S0tJYunQp4JxpOG7cODcnEkK4m8wWH3hSUlLYsWMH4BzkFBIS4uZEQohjSU5ODp2dnQAkJydjNpvdnEgcLaQwfgyaPCmRO28/BZ1OS3r64L1uN3taGkH+3mS31dKtZuGhbMTkcRIAw4PD+M/EmXyYv4WVVeUMMQfw8tq1rGuvQvFSWLn5eGrax1KitqPV24kK8Wd7VQslHS10NlvZsKOK8TFRjIyOwG5zkLNOR0zs1XgH+LvO/8I5s1mYV8iJSQkYtFoemD6daz54nUIrqAYdNqudSO/TaLNsI9Jn9mG/bkIIIYQQQgghhNi/oKAgwsLCqKmpobKykqamJld7dSHEsae1tZX8/HwAvL29SU5OdnMicSCSk5NZsGAB4CyMT506FUWRQZJCiMNPVVXWrFnjup+ZmbmPrYU4OFIYPwYpisIJM9MOaLtCewtPrF7Nk6sn8+Nf38DDww+A9dWV3LVkEaoWNjfU8Pqq9TT0doEXoKh0mKzMHZLKO4Xfc/LE9fgZArjX4z5u/+IXOqy9WH0cXPnV58y/4nK+e28dH7y9Ak8vIx9/cxMmk3OdiCh/M1dO6Nse46ZbT+Kzj1YT7OvJWReOJ9BsJtZ8/qG+REIIIYQQQgghhPgTUlNTqalxLt+Wk5PDlClT3JxICOEuWVlZqKoKONeI1Wq1bk4kDoSPjw8xMTGUlpbS2NhITU0N4eHh7o4lhDgG7Nixw/U+Mjw8nMjISDcnEkcTWWNc7JPN7gBAp9Vg2OVNa0NXF9gVUCFQ70lDh7OlBb8OGsxuruWx3JWEBTSj0zrosDfw6ZYlVLW049CCaoQGnYWFJduxWu3Oc9nsqA51n3kSh0Vw9/1n8tdbZhEYKq0zhBBCCCHEMULtR19CCHEAdl1nPCcnx1UUE0IcW6xWq2uNWI1GI2vEDjApKSmu27m5uW5MIoQ4lvx+trh0qxCHkhTGxV712my8tHQNig1OHBJPuK+P67kThsTzn+Nm4tVpoK3KQqTBl6E+CrEaG97oXZ+ZFZZHUr4jmlj9aczLagVA262iWEFjgwTfQC67aiq33XMaz796OR6ehkOSvdtWy/q6eyhseUt++RZCCCGEEEIIIY4ws9lMVFQUAPX19dTV1bk5kRDCHXJycuju7gacRVZvb283JxIHIykpyVWQys3Nlc9ZhRCHXWtrK3l5eQB4eXn1GaAjxKEghXGxV3ZVpaO3FwVYkV9Kft53lO6YRE7JjQDMSUxGZ9OgoHDyCF+mZfzACdN+weRXh91ox1tvYOm1N/DU8S8y1OMMNBoHsSE1eNlsGNq06Fu1VNa18tP6AiqiWrlg2wtctOB/+8y0eWke7z70Bc21rfvcrqj1fSo6vmVr0zN02nYcqksihBBCCCGEe6gKaj/4QpWR+kKIA7frrPHs7Gw3JhFCuIOqqqxdu9Z1PyMjw41pxB/h5eVFbGwsAP/P3l2HR3VmDxz/jmYycXeDJERx19JihQqlQt3dttv+atutbr1b1627C6VGgeKugXhCCBHiruP398e0U9LgBQY5n+eZpzNz33vn3OmEkfOe87a0tFBVVeXmiIQQx7v169e7JuEMHToUrVZWhBaHliTGxW7ZHA7mlOaSHBaIpguslSayCp5Fr95OoP4rlhdtxqjX8fUVF/D0GVMZEeiFSgUqFXh6W0ALbXRzyo9vMeSbF+nSmrnttGxunPYL18z8BYNaw2XDB/G/D5bx4JvzeDdvGQ6NnUKlnNq2dlccFrONsuJaFEXBYrJw3xlP8/Fj3/HWvz7rEW9DRycXf/AlV3/6LR1mC8GeQ1GhwVsXj6cm9Eg/fUIIIYQQQgghxAkvPT1dKg2FOIHtukZsZGQkUVFRbo5IHIy/Lo0hhBCHiyy/IY4ESYyL3fqsKIt7V/1KtraG8zNTMdY6WLg5nbp2H+YVpqPRBAKQFBLMzMw0Hnkhj2Wb0lm5IpWa0iCwKagcKhqtnXTYLDyzeQktOGcUevt206VYqexspU98BVNOWk9KdwB06IhsjyJkl5ZKd1/8BtdPf5a3n/wRjU5LcJTzcSP79Ex2LywsYX35TpaXlLG6tJxw43imx6/g5Ohv0KgNR+hZE0IIIYQQQgghxB+8vLzo06cP4Kw0rKysdHNEQogj6a/V4rJG7LEpJSUFtdqZRpBJTkKIw2nr1q2YTCbAOSlHlt8Qh4P0IBC7FWgwAqBTa4j29UOlUpGfF8fyrW8yanhfhsZH9xhvCTewsywKlU0hPkuFubuNsilG6FYDCrkFtZR2jGBoSBm5TZHYAhwsrM/jf7O+Q61yYLd78KT3iwSH+fU4bkWJcw2ysuJaNBo1r615lOrSOjyDfPjlpyzGjU/B28fAhMQEkkKC8NTpGBbnjE2r9jz8T5QQQgghhBBHgKI4L+52NMQghDi2ZGRkUFJSAjgrDf9Yd1wIcXxrb293rRFrNBpljdhjmKenJ3379qW4uJj29nYqKiqIjY11d1hCiOOMoiisXbvWdXvEiBFujEYczyQxLnZrRnwK0af54a83EKw1UlvaiqdBx/VnjUWn0/Qa//ZN5/Pi/BUEajy55vJhdHSZuOyn72nuMKGyA03QpvFhbecg/jFiCI/WrMPuUNPp0OGjMbNxRw1P//MZnn7nSvoP64PN7uDeL+ZhPi+BUxz+XHTxeACMPp707R/HeWe9SFNjBxvWbef+h2cR4efDj9dfeoSfJSGEEEIIIYQQQuxNamoqP/74I3a7ndzcXKZOneqqPBRCHL82bNiAw+EAYMiQIbJG7DEuPT2d4uJiwDnJSRLjQohDrbS0lPr6egBiYmKIjIx0c0TieCWfSI4Tc7fnUdPVzmWpQ/DQHJr/rQOCI1zX/3XTNAAau7rwMH9DV+c7ePv8A6PxLACSw0Mo7myloqWcmIogvO06OjssOMIcoAcVKjKtEVxysh9zaz5kfKovGxZE8fW6MwiNrWBNVgTqMBWb1hTz3o58ShuaKCprQKXApJOTiYgN6hGb/vfk/O6S9EIIIYQQQgghhDg6eHh4kJycTH5+Pp2dnezYscPVXl0IcXyy2WyuNWJVKpWsEXscSElJQaPRYLfbycvLY9q0aTLJSQhxSO26/IZUi4vDSd69jgN5TXXcuuwHHt+whE8Ksw7b47y4YjUjXv4fVfWPYrMV0dH+PAB2xYrFZqOmrR2AHc0tjEtNwOCjdU29cHjDP6aOpsJUDoDWu4tXzz2TF077N8tqhlIZ4UfrLG/6TevHL7lF5NfXYYzV4BGt5eT03l+YX3r9ch78z9nc9n/TD9v5CiGEEEIIcbRQFNVRcxFCiAOVkZHhup6dne3GSIQQR0JeXh6dnZ0ApKWl4evr6+aIxN/l4eFBUlISAJ2dnZSVlbk5IiHE8aSpqYnCwkIAfHx8SElJcXNE4ngmifHjQKCHJ55aHQDR3n77GH3w1pZXAvBlwVDU6iC8vK6itGMjLxTM4rOKW/nf7NO4aewI7pw4lvjQAO6ZehJqsxqVRQVdKgKMBi6Inc2E4DFcHn8hJw1KorK0Afs2EwBnDB3IgLgoMhOC8BvahCq+hhbfDvK7Gnqfc5A34yakYDDoDtv5CiGEEEIIIYQQ4u9LSkpCr9cDkJ+fj81mc3NEQojDadeqv+HDh7sxEnEo7bpOfE5OjhsjEUIcb3Z93xg2bBgajXQKFoePJMaPA+FePiyddS2/nXU1U2KTDtvj3D/pJGZlpDE2+VHCI7Lx8r6M0o5N2BUbDeYy0qIM/GPCaIK9vfhmxVbef2k5KQWe6BrUaExqLvj4K/KKailsX8a3O1/n3hXv8Okva/H73kLcew5uih2JUa/jxmlDQK2gUoOnXsHe7eC0Vz/k2QXL9xmjoih0WiuwK5bD9jwIIYQQQgghhBBi/+l0OlJTUwEwm81s27bNzREJIQ6XnTt3snPnTgDCw8OJiYlxc0TiUElOTkancxYp5efnY7fb3RyREOJ4YDabycrKAkCr1TJkyBD3BiSOe7LG+HEi1OhNKN6H/LiK4gAcqFRaUkNDeHrG1B7bBweMo8NaQ7AhkQB9JHd++hMLy0sxtVtRQh1YAxxoVWoc3eBQFL5dthbtWGeF+PqGfBoC4xnWJ4S0jGhCQp1tlYYHJnBZn3GUNDWB3siC/GK21Teyrb6RmGYdk07JIDBo9+da1PIWBc2v4afvx4Soz1GppNWjEEIIIYQ4Digq58XdjoYYhBDHpIyMDLZs2QI4Kw2lRaYQx6e/VovLb3PHD71eT3JyMrm5uXR3d1NaWkpiYqK7wxJCHOO2bNmC2WwGIDMzE6PR6OaIxPFOEuNij+z2Rurrp6E42ggO+ZZWUzzeBg8MOufLpqvra7qab2WELp4FNS/w/q/fsLi0DJVajUoPVn8Fu1HBhh2vBjXGGjWnTBjB5lYHaxsKKK0PIcHbyFsfX+l6zLLOcv6T9zhalZZl20IwqXUEWDwJ8/FGKevirRcWsn75Np55+eJe8XZad1LbtQKAdmspCnZU8hIXQgghhBBCCCHcLiEhAaPRSFdXF4WFhVgsFld7dSHE8aGjo8PVYtvT05OMjAw3RyQOtfT0dHJzcwHIzc2VxLgQ4m9RFIW1a9e6bo8YMcKN0YgThbRSF3tks+bhsO9EUdrZWjqXif95k+lPvUunydmm3GLZBIDdvoPnNv3M/K5SVFoHDqOVk6NiSAkNdr7C1OAX48n1Z41m5kmZ3DHoYuz5KWjqtNSva6asusn1mKWdO7AqVrod3XjhfJyOVitL77iGzA5nlbiXl0evWO0OE0t2zqbZvBV/j3RGhL2AWiVJcSGEEEIIcXxQlKPnIoQQB0Oj0ZCWlgaAzWajoKDAzREJIQ61jRs34nA4ABg8eLCr7bY4fiQlJbkmNeXn52Oz2dwckRDiWLZt2zaampz5ofj4eMLCwtwckTgRSGJc7JHeYxReXtfg6Xk2a3YMQgHq2jpp7OgCwMfnHxi9LsNmeIxWszcoCpZQB7YAhe4YB+/MmEWowQuAGms371dn091t5oZZL+GVkcOIcQWoEsyYzM4PUFUNrZRu0jLGdzwzwqeTrokjoE7DOdH9eXL1N0y9o45TJhiI9tKyLaeyR6wKCoriXNcmyDCIUOPoI/dECSGEEEIIIYQQYp92rR79o6pUCHF8sNvtbNy4EQCVSsXQoUPdHJE4HLRarWspDLPZTElJiZsjEkIcy6RaXLiDlNSK3Wpr/S+dXe/Rob6Zj0vHMiklkUtMBvqGBREb7A+ARhOGv/8T+APLL2jjt1X5vLh9FQ2eFlICQzn3vc9pNXfRN9VCfbODuhoVc756ndFXLKS+r5FWu5H+KW1UdbTz4PMLaG3sor6mnb6RQYT0ayUvaAeaAMg31zJG9zE2QwNhUz348sqxfPv+Kl7/5Q7iksMB0Ko9GR/1ES3mfKK8JrvteRNCCCGEEEIIIcTuxcbG4uvrS1tbGyUlJXR1dck6kkIcJ/Lz82lvbwegX79++Pv7uzcgcdikp6ezdetWwNlOvV+/fm6OSAhxLGpoaHBNrvH39yc5OdnNEYkThVSMi93q7HwHxdFMfetbfFCwiZsWfc9dp0/gnBGZrjHza1bwcdn3dNtNRPr4Mioqkmsa4/lo0JlcnTqM+o5OIpPriQkrJSOpgsgV9fhlvk3GmHIG6atx2PSkBQ/l1XmryKuoo9bUhV0Hhc2NbNrorAjXKRr6BYTSanJ+Ue5s0KPoFJrTvPi+oBBll16OvvpEYn1OR6M2HNknSwghhBBCiMNNOYouQghxkFQqFenp6QA4HA7y8vLcHJEQ4lBZt26d6/rw4cPdGIk43Pr27YvB4Pz9tbCwEKvV6uaIhBDHol2rxYcPH45aLelKcWTIK02wY1stLz32A1nrS133+freg1abyg9FEwCw1Fqob+5wbS/trOT1ks/4pnI+v1QvA+Dx695lzhuL+eLuuQR7e/GPMSMxqJxt0vUaB15WDV0NCQDUdg3k+3X9eWP9Dob3j8XLQ88l4weh9dLg0Kno7jIS8K4XL/W5gsfHTeOStP+RHvgM+XHpRLzfQeisVjZ2fMqq7cVH6mkSQgghhBBCCCHE35SZ+eeEe2mnLsTxobq6moqKCgBCQ0OJj493b0DisNJoNK526haLheJi+X1WCHFgTCYTW7ZsAUCn0zFo0CA3RyROJNJKXfDioz+Qt6WC5Qvz+Grx3QB4eV/Gt98nsvKTFURG6xmZGEuwv7drn0C9H95aI3G67WRq52CzpRGTFE51WSNxyeH8d9FyXtu0Fm1oIFYPMJcYSRiTSmXQNB5Z/hutFk+0ahUBHp5cPW4Yd01xJuBr6tr4JacIjV3Ni49fSUpiBABJgeFsaKqiQ7HgobVyybj1qFUKdY7PGfhxAKmBIXw47Vwau7sobG5gTGQcWplhJIQQQgghhBBCHFXCw8MJCgqisbGRsrIy2tra8PX1dXdYQoi/Yddq8WHDhqFSqdwYjTgSMjIyyMrKApzt1NPS0twbkBDimLJp0yZXt4kBAwa4ulAIcSRIYlyQ2j+avC0V9EuP7HH/ypXFaK0KgQ0qnnvz7B7b/HQ+vDH4Plrr+oPdRlurnfvfeo2KbbXEJocz7IXXUAxg1WjY3hiC4g21HtWkVQTRajGissKVgf25Y9ZEDNo/X4Zjk+NZsrQIgJYuc4/HHOjfn2nhU7A7OtHaS3DQRWWngxZbJ6vrOilpbuSCeV/QZOrm5v4DmBy/Dq3aSFrgrahVusP07AkhhBBCCHH4KYoKRXH/j8xHQwxCiGObSqUiIyODpUuXAs6EyqhRo9wclRDiYHV2dpKdnQ2AwWCgf//+bo5IHAkJCQkYjUa6urooKirCYrGg1+vdHZYQ4hjgcDhYv3696/aIESPcGI04EUliXHDNP6dy5vkjCQr1xmxajkabgFYbzY03nMKXX61jyuSM3e5n1PrSqU3GZstDp89Eq9OQkBpJW1s3/Qz+rFFqUayABhQFtLouFj64iPDxkVjNdoJONaJTq3lq+TJ+yCvgjnFjmTEqhXkNeZSqGjBGOZPZhbUN/Pv7+WREhfHA9PNQqVR02abTZa3mxq+3otbvBODzwi10/T7LSK9dR1n7NwCEeA4nzDju8D+RQgghhBBCCCGE2KfMzExXYjwnJ0cS40IcwzZt2oTdbgdg4MCBkhw9QajValJTU9m4cSM2m43CwsIeS2UIIcSeFBUV0dLSAkDfvn0JDg52b0DihCOJcYFKpSIs0p/29ldpb3sMlcqbsPCN9M+MoX9mTK/xiqKwuuEz6k07OCnsQ/wc29HqUl3b3319EaaOzQzMtJHfHooJLSPithMV0Erz+V5cNPgidCFejO3fhxt+ncv80m1gg4/yv8PuE8kKTSlmu5b/FS3n1VHn8+XGbLKrasmuqqUqt4Guedvx8TLw1EfX0VY2n+unL8Hi0PDRZpidMoKoABX9glvo7J6HRu2Brz75SD6dQgghhBBCCCGE2IugoCAiIiKorq6mqqqKxsZGgoKC3B2WEOIAORwONmzY4Lo9fPhwN0YjjrSMjAw2btwIOLt/SGJcCLE/1q5d67ou1eLCHSQxLlwUR5vzv4oJZ6n37jVbdrKi/iMAorR1RDq+RKXyITRsFVbFj52RLQSlNgIwtSmMBctUhCWZAAiZaGDS8P6utYa21tUAoNdaie2TzcrGbMZExLFsp57Jkc5k+4yMZH7ckk9ns4lNO3ai8bPTFWPn6a8XMdBaRKJfPQBJATUkBfqyrPtdVpVbmBlxO2dGn4latX8v86XbSjFZbUxJSZS1kIQQQgghxNFHcXcAQghx6GRkZFBdXQ04q8YnTJjg5oiEEAeqoKCAtjbn74nJyckEBAS4OSJxJMXGxuLt7U1HRwfbtm3DZDLJOsFCiL2qra1lx44dgHOiZGJionsDEicktbsDEEcPH9/b8PN/muCQ71BrAvc4zlcXSohHPBqVllCd88OOorSjOJp5ct1SvjFV0tHtgcMB6MNY9X83E6qeTmlVCAuzwllUXILNYef9kiVkxBjxtGlQ12noNDtbLaktoSw56TbyFtby5fzNDI6N4qcbLqOv3Rd/bwMkeGP31PBreRkTB59HU7MvFV3+dBrDODMpBUVx/mLoUKn3Oym+qaKKaz+bw61f/8j8gm1/74kUQgghhBBCCCHEXqWnp7uu5+TkuL7LCyGOHevWrXNdl2rxE49arSYtLQ0Au91OQUGBmyMSQhztdq0WHz58uBQoCreQinHholJ54uV18T7HadV6Lu/zGg7sqBQLnZ2RaDVxaHWJKMoOHIqaDQVJ+KPnuSknk2eq493t24FIov3b+LzxRXIZxsfbnR+WFL0vVoOORZvS0Hnb+L/B4/l03ka+X5IDwJiBCUSF+jPnv1cB8POWXF5fvIpzhgxh6vgh3LfRzDfFWaisdj5/dy0PXfpvKrt3MjRgyH6fu4dW47ruqdMdwLMmhBBCCCHE4acoKhTF/T8aHA0xCCGOD35+fsTFxVFWVkZDQwO1tbWEh4e7OywhxH6qra2lrKwMgODgYPr06ePmiIQ7ZGRkuCZI5ObmMnDgQPcGJIQ4anV1dZGdnQ2Ah4cHAwYMcHNE4kQliXGxR5WtrahQoVPUBPh4otNo2NI8j0ZzOaNCLsBT4wMqLT4+t9LeYeKhJ75H66Hhv6dOY3BEFAE6T2a//Cn1qg6Idh4zNrQRi8bO1oaNaPBBAfSKB6em9YVuuHTMUAZFR7LUvI3PftlEZIgvQX5egHMt9DZrC6s0L5A8sYs6rQ8tljTuypxMzvwdNK9vZU7jeq64dhQ6KgAr+/sST48I49urL8RsszM4JvKwPJ9CCCGEEEIIIYT4U0ZGhiuxlp2dLYlxIY4hu1aLDxs2TKr+TlDR0dH4+vrS1tbG9u3b6erqwmg0ujssIcRRaOPGjdhsNgAGDRqEh4eHmyMSJypppS52K7u6hlP+9x4T33iXSQ++xaVPf0ajaSe/Vr/IhqbvWN/4jWtsZ8e71NeNwWqdw8KFeYS3GOjjH0hhdT07m9uwNDlIbwrlocGTOSv+TCytekqX+zGhZhi/nHwPX190Pms91rM+YAO+fs7K7QlDEpn/+g3cf9M0WrvNrsdqMNfQZe9AwcFvNWt4NX8pfnpP7h47jSRDCJddM4GVVTezsvpG1tXe0+OcOlq6uGPaE9w07iEaqpp7nXN6RJgkxYUQQgghhBBCiCMkLS0Ntdr501Rubq60UxfiGNHd3c3WrVsB0Ov1UvV3AlOpVK6lMRwOB/n5+W6OSAhxNLLb7axfv951W5bfEO4kiXHRi9lm45nVK7Do7NhxoGiheGcDOnzw0jrXHg83JLnGt7e/gMGjmlmnbaB7jJb327fSbOpmaEI0yf6BaLoUKsqbeGjTAu5fk0fr0sG0FvvTNyiUAL035V0N2BQ7FoeN8q4G13F/3VrMBe9+wei33uSOH38GIMGrH9PCzqO+M5hQYwca7VYcioPR45J54d0rGHtaBlZHKwAWeytVHW1026wAZK8sJHd1MSVby1nzc9YRejaFEEIIIYQ4BJSj6CKEEIeI0Wh0tV9ubW2loqLCzREJIfbH5s2bXVV/AwcOlKq/E1xGRobrem5urhsjEUIcrfLz82lvbwegX79+BAQEuDkicSKTVuqil6VlpSzfWQZamJzQl5gYL5JjQ9GqDFyb+A5mRxfevyfIAby9b6Sj4y0qPc6kLsrKwqpiVpS/z5S4ITx09iTuf/VnduiaADA5bDx5ywz0Zi39YkIAOCk0jRR9Iptrq1m8sJjRs5Lw8NSzo7IBmxFQww+FhTx72nRUKhVTI2bRae9kecNP1Fo3UWOqZNmWJp5YuAyzzc7z591OZuQOsutjGfXrG0R4+bDknKvpPy6FgRNS6e40M2rGQDc8s0IIIYQQQgghhNhVRkYG27ZtAyAnJ4fY2Fg3RySE2BuHwyFVf6KHiIgIAgICaG5uZseOHXR0dODt7e3usIQQR5G1a9e6ro8YMcKNkQghFeNiN/qHheOn9UBtBfJNpCaG8/Dc3zj9mQ+w2TR8ObeQK//9MVsKdwLg7XM9du/F3LbICHY4NWIbQ7z+Q2PDTNISWvn+hauZ6ZdCdJGBu+LG0T8skpTYUNfaQ1q1ho0lHbQ3e/BlzlZev/tTAC4eN4igQgv6RhvnBif2iHFQwHAMaiOxxr5Yu4w88v1izDY7AKs3teCrj2d5aREA1Z3tFLfUU6vq5Mm5d/Lib/8mKEJmJAkhhBBCCCGEEO6WkpKCVuus28jNzcXhcLg5IiHE3hQXF9PS0gJAYmIiQUFB7g1IuN2u7dQVRZF26kKIHnbu3EllZSUAoaGhxMfHuzcgccKTinHRS7i3DzM6Y1i8ppgcKohJcVZ217Z10NjWyVtfrwLg8583MqBfFAA+ej3+ek+aO7tQ253rhDuXBlOjUql45O4z9/qY/x49gcc+/QH/BfWYxkRQ1tlAXHgw3z9xHU31HaT0j+4xvrnLiwDHJZwbOYgAnZEQbyN1nV14VndjUz5mTU0Bo+M0LNl8Fv3C47hwxXtYHXbeHnMRY8P67jWWOVvzqG5t54qRQzDo5E9ECCGEEEIcDVS/X9ztaIhBCHE88fDwIDk5mby8PLq6uti+fTuJiYn73lEI4Rbr1q1zXZdqcfGHjIwMVqxYATi7fwwbNszNEQkhjhZ/fd/4o2BSCHeRrJ/g6VXLWVhawiMTTmFkdAwAl509CpPZxshBCUyakIqnh460qFCig/05dVwaKzdvZ9rYVADKm1t4celqbuw/nIyYcC74+TMazGdxUuwACnJLaOjO5rlJpxK2lxY6F6QPYMJVEWRlFPBS6Aq+Xf4c/0o/i5kxwwiL7F3dffmSz+mmmx8rtzJ3yuU8dW0aGz6v56ev1uB3kw4ArdZBYlQdg4JHkdVVCkBNVz2K0meP//gW1NZz9/e/AqDXarhq1NCDf2KFEEIIIYQQQgixTxkZGeTl5QHOhIokxoU4OtXX17N9+3YAAgMD5W9VuISGhhIcHExDQwPl5eW0tbXh6+vr7rCEEG7W3t5OTk4OAJ6envTv39/NEQkhifETXrfVyusbnTN2Pti62ZUYT04I5dn7znaNu336ONf1B244tccx/rdqPT/kFjA3T+GN2Wfw5JAItlZZCdSOYFXlt5yRtInFOyo4P+P2Xo/f1WnG6OUBQGSfUPRRnjQvngfA4nWbmWhMwS/Ip8c+ldXNWDrMaPwU6iytvFT8KM3WCvpOS+W1yf8kNNqHL2ruY0tbLcbkTm4bMpa0naG0W+ahdtzIiurhjI14fbfJ8SAvI156PZ0WC/GB0m5dCCGEEEIIIYQ43JKSkvDw8MBsNlNQUIDNZnO1VxdCHD12rfobNmyYVP0Jlz/aqS9duhSAvLw8Ro4c6eaohBDutnHjRtcyOYMHD0an07k5IiFkjfETnqdOx4UZ/Qnz8ua8tIyDOsbohFhUanB4K/x35f8YH343Nw9+lfK8OVzeP4/xsYVEeP8Pm6OdLlsHdsW5FvjLz8/jjCnP8PJ/f3EdK9jDhycHXUTQKlj3YT4j3nqTK9/7goKsMteYkvIG/FZqwQJRnnYaLM61ziu7GkhIicDL25tRoTdg1CYyI/xUPDQenB6bSYJXNaBQ370eBdtuzyXE24uFt1zJwpuv4JR+e2+5LoQQQgghxBGjHEUXIYQ4xLRaLampzq50ZrOZ4uJiN0ckhPgrk8nEli1bANDpdAwcONC9AYmjzh/rjAOuClEhxInLZrOxYcMGwDl5RpZYEEcLmX4reGziZB6buH9j27pMmCw2Qv3/bIueERaG2qygGEGntrvujw40cFLKuRQ1bsFLl8J3ld+yqukXgvXhzDTeyYc5eZDkyco1xdzCn1XocV7BNI0AxyhPlFIbSxsrqT73Fd6cdycxfUMZM6QPV5aMxmq1E5JWw8L6HWhUdrZ3+LmOkeqbwhP9H+0Re1rgjTTVdmLemYQtWkWzrQOtWk2Qp7HHuECjJ4FGzwN5CoUQQgghhBBCCPE3ZGRkkJWVBTgTKn8kyoUQR4esrCysVisAAwYMwGAwuDkicbQJCQkhLCyM2tpadu7cSUtLC/7+/u4OSwjhJrm5uXR2dgKQmpqKn5/fPvYQ4siQxLjYb3UtHcx65AO6zBZeu2UWI1PiADDbbNh1oNgVmlT9+L7mdiYERXLepPPRaNQEGydjdmh4d+uNeGigwVLDlvoyFBWgVTHjwuE9Hqfe1IaiARUQ6qnFsqgdlQP+6M6k1Wq47kJna/cWSzPbOsspbW/n+sRZe42/pcybV2b5ADXsuPdXXrUVoFNr+GX2ZST4S9t0IYQQQghxFDtaqrWPhhiEEMelhIQEvLy86OzspKioCLPZjIeHh7vDEkIAiqKwfv161+3hw4fvZbQ4kaWnp1NbWws4k2Jjxoxxc0RCCHdQFIW1a9e6bo8YMcKN0QjRkyTGxX6rbW6n02QBYHt1kysxnhwWjNZfgxU7ldYWnsqGgkgfXohzZrJ1mgBUKhve2kjabVUMDxzNzJShVO404WXQc+HMnh+mhwclcm/6TMx2K2dPHsGm2CL8g72J7hPaY5zN4WBh0U5O8pnNfWlx+4zf288TD4MOs8lKt68ae6OC3W5jZ3ubJMaFEEIIIYQQQgg3UqvVpKWlsX79emw2GwUFBQwYMMDdYQkhgG3bttHU1AQ4J7GEhIS4OSJxtEpPT2fRokWAJMaFOJFVVFRQXV0NQEREBDExMW6OSIg/SWJc7LeM+HD+df7JNLZ1MWtMZo9tF/UfwCc5W7CqrFjtdn7KKuLytGoGRUcCoFVreTTzMdqt7QR5BAJw14Un7/ZxVCoVZ8X8mSwfcUoa4Jxl9OkzP1CWt5NrHp3NvPpyHvr9g9b8yy+nb1Cgax+H4kCFCtUfZeZAUJgfby+6h/aWLqKSQvHPCsSg1TAyKrpXDE2WZurN9SR7J/U4hhBCCCGEEEIIIQ6PjIwMV1VqTk6OJMaFOEqsW7fOdV2qxcXeBAYGEhkZSVVVFdXV1TQ2NhIUFOTusIQQR9hfq8UlxyKOJpIYF/tNpVJx7vjdfym9fOBgon198dV6cPfcXzFq9UT4+vQYo1frXEnxg7GzpJaPHpsDQEh0EKEXOZPzOrUag+7Pl3JFVymvbXsEH50//0x6FE+tF9XtdTzx1s+0V6t5/M4zKc2tYsEDv7LtEhXvVS7lm5OvJczTGa/JbuK+7AfosncRZxvJknVw+8ljmNk/7aBjF0IIIYQQ4m9RVM6Lux0NMQghjlsxMTH4+fnR2tpKSUkJnZ2deHl5uTssIU5ojY2NbNu2DQB/f3+Sk5PdHJE42qWnp1NVVQU4q8bHjx/v5oiEEEdSa2sr+fn5AHh5eZGenu7miIToSe3uAMSxZ2d7G3f/9itf5eW47rv2hzk8vHQxH+Zkseyma1l689WE/yUx/neFRgcRnx6NTq9l8MQ0hnoGc0FXJM+kjyPK19c1rqh9KyZHN/XmaqpNFSzcmc2duf+idexyKrXbWLKmiNULc6n3N+Hj00mEbxEr6v6cwWRz2DDZTQBsqCqltr2DD9ZuPqTnIoQQQgghhBBCiJ5UKhUZGRmAs2tcXl6emyMSQuxaLT5s2DDUavk5Wezdrkmw3NxcN0YihHCH9evXoygKAEOGDEGrlfpccXSRTzLigL28fg1f5udw16Jfae7uBsDXwwMAD42GN5Y/T1HZFNo7PjrgYyuKQmF+FU2NHb226Q06Xl/5MN9VvcaQUzJ48z/gqKVlAAEAAElEQVRz2fjeBt6+7WscDodr3PDAk+jvN4JxwdOI8Ezgu/J1aNTOf4iD++o4aWQyU88Zxkh9DEOCqon2aaWw8yd+KyyhtLEZb5036frT6WpLZJD/OGID/Lhm9NCDeaqEEEIIIYQQQghxAP5IjIOznboQwn3MZjNZWVkAaLVaBg0a5N6AxDHBz8+P6Gjn0pV1dXXU1dW5OSIhxJFitVrZtGkTAGq1mmHDhrk5IiF6k6kaYr/Ut83HYf4Cf98rGRYZxZd52SQFBuPze0L8zdNmsqF6J7/mFTMqag5RPtW0tDyAj/clezymw9FGV/dcPPQj0ekSKa1q5IMvV7Hi2614Gz345Oub8fI29NhHpVKh/b1telJmNGsX5xPdN7THbFUfnR9XJPwTgDs3fcz61hKC9KFk+Ebx2BXXotfoAXj2vRv4rBzWNS3F3BHEjb/OJdjHwpdXnsGrmwpxKBr0kW38fMNl6DSaQ/p8CiGEEEIIcSAUxXlxt6MhBiHE8S0sLIzg4GAaGhooLy+ntbUVPz8/d4clxAlpy5YtWCwWAPr374+np6ebIxLHioyMDCorKwFn1XhoaKibIxJCHAnZ2dl0/15MmZGRgbe3t5sjEqK3o6Zi/IknnkClUnHbbbe57lMUhYceeojIyEg8PT056aSTerVfMZvN3HLLLQQHB+Pl5cUZZ5zhetMVh8bW+hrKa2/FbvmF+sY7OTslnc1X38RP51+C9veEtI+HBxPj+xAX7M+88nRMNi1Ntul7PW5D4/U0t9xJbf1pWG02rnzyc37MKaYrVEdXpwWTybrX/c+9fiIBccGUlDXy01fOtk5dti7mVs1hc/NGAGpNrc7/dmpoa4l2JcX/cH7M9TyU/jqBXRPx9ezkllO/Ym39hVyXqcVbp2dnSzupb73ILyVFB/XcCSGEEEIIIYQQYv/t2k4dpA2vEO6iKArr16933R4+fLgboxHHmrS0NNf13NxcV1tlIcTxS1EU1q79c8laed8QR6ujIjG+fv163nzzTfr379/j/qeffprnnnuOV155hfXr1xMeHs7kyZNpb293jbntttv47rvv+Pzzz1mxYgUdHR2cdtpp2O32I30ax5SSpkbuXDiPX7btO+Fb3NzAyroEAFrsIwDwMxhcSfFdXTN0GP0ibmJh/TekxrzER5te5cvN9/H6hhU8vGwRbWYzAJ3WDrrMSwBwKCZUKhX63yvBMzJieOK58wkK3vsa5d1dVlqanC3Xy0vqAfi55kfmVs3h1ZKXabY088TACwghgpYmL+aXF2PfpeU6OL9w++kCuGHcSP49bQh6rfN1c05SGMvOvZYdzS3YHA4Wl23f5/MkhBBCCCGEEEKIvy8zM9N1PTs7242RCHHi2r59Ow0NDQDExcURFhbm5ojEscTHx4e4uDgAGhsbqa2tdXNEQojDbceOHa6lE6Kjo4mKinJzRELsnttbqXd0dHDRRRfx1ltv8eijj7ruVxSFF154gfvuu49Zs2YB8MEHHxAWFsann37KddddR2trK++88w4fffQRkyZNAuDjjz8mJiaGhQsXMnXqVLec07HgyVXLWVhawpzCfPL7JO42yV3R2IJBp+X0vqm80XE/PzdYubL/+L0eV6NSsSK/nPUVlXR2b+fchMdQq+DVnG18WjycUC8vbhgygsrunXTaPAnRddHECGI1Gj7694UUlNUxKiMenXbfrcv9A724//kLKcrZyaxLxwAQ5uH8kO6t9cFTYyBA78njQ87h+U0rmRqXxNaKGtZsK+fc4ZkE+3i5jqXXaDgz41SWbqgiu3w1oVHxJI4w8u/RJ7G8YgeZwWGYbTY8tM4/mbWN66gx1TI1fDIGjaF3cEIIIYQQQhxKyu8XdzsaYhBCHPcCAwOJjIykqqqKmpoaGhoaCA4OdndYQpxQ1q1b57ouVX/iYKSnp1NWVgZATk4O4eHhbo5ICHE47VotPmLECDdGIsTeub1i/KabbmLGjBmuxPYfSktLqampYcqUKa77PDw8mDBhAqtWrQJg48aNWK3WHmMiIyPJyMhwjdkds9lMW1tbj8uJZnhkNACDwiPQqFS9tq8pLmf6U+8x7cl3qWvt4NbBo7l6wATUuxm7q26rjfXllTgUhZUVdVgdzkSy1eGLRqViQFgEAIk+ieRxD0u6LyM+5HUAgv28ae80syanbL/PY/TJaVx+62R8/Y0AjAuZwH/SH+exjCcxaJzrHg0IieD9qedwTlIGV7/9Da8sWM2TPyylvKOZ8xd+zL1rf3ZVkn/661ZK+nTwtfIKZruJqwYMoaS2mQd/W8z9v/2G1WGnpruG10r+x7c75/BrzYL9jlUIIYQQQgghhBD7Z9d26jk5OW6MRIgTT3NzM0VFzi6Tvr6+pKSkuDkicSxKS0tD9ftvydJOXYjjW3NzM4WFhYCzY0RqaqqbIxJiz9yaGP/888/ZtGkTTzzxRK9tNTU1AL3a9ISFhbm21dTUoNfrCQgI2OOY3XniiSfw8/NzXWJiYv7uqRxzrhk8lI1X38Dns2a7PqDsqrKpFQUw2+zUtXXs9hgby3Yy+bl3ueebea4PNka9jv9Mn0SfqEA2Nlq4aMHlmD0+5pFJr7HxqhsZHR0LgEal4eL4a7gk8Un89YEA/Lwqj4ffmscdL8whb/ue///tS4RnJF5ar173a1RqQn29nWMCvXivcDXr6sr4oiSL/BZni4/IROdrSa0Dh+Jsq2622UClsLAri6E/PMW2thaMGmciPtzw5+uz3WSWD3hCCCGEEOLwUFRHz0UIIY6AvybG5fu2EEfOrtXiQ4cORb2bTpNC7IuXlxcJCb8vz9nSQlVVlZsjEkIcLru+bwwbNgyNZt8dgYVwF7e1Uq+oqOAf//gH8+fPx2DYcyvqvyZtFUXZbSL3QMbce++93H777a7bbW1tJ2RyPNDTuMdtZw5Jo91kRqfW8Pp3q9BpNTx19Qx8PD1cY77dlEtlcyuVza0MSIpEo1VxTmoG5w3KxKFXuHfRAiwObyoa3sFXs5xA//v2Go+fl/N1oFar8DToDs1J7kKtVvHVLReyvb6Jx8u+ZHt9LcHe3ngrgZhNziT4v879F6url5AQkITn78n1L2efz3fbsnmzYgnYIauplmf6P0GHvdOVGH939UaeWriMsX3ieOeiWYc8diGEEEIIIYQQ4kTi4+NDfHw8O3bsoLGxkZqaGiIiItwdlhDHPYvFQlZWFgAajYYhQ4a4NyBxTEtPT2f79u2Ac5KTrDksxPHHYrGwefNmQN43xLHhgBPjdrud999/n99++426ujocv7eg/sOiRYv26zgbN26krq6uxx+J3W5n2bJlvPLKK662C3/94lNXV+eqIg8PD8disdDc3Nyjaryuro7Ro0fv8bE9PDzw8PDY43YBOq2GKyYM5fvVuWworgRgdd4OAg2efLNgAWNG5HHW4MlkVQQSE+bHv5Y6W4rr1BrOSknj/PT++HkYWFT4MIk+izF3LcbieTIehnF7fMxxg/ry3gMXYDToSYgM2u9YXyv6lR92buKfKdOZEjFgr2O9DR6kRIVQnlcPQIzRh83ZXVxY9jXrr70OX4OBhIA0NjVvxqjxxWbyoLiygesHjEJttFHR2czshCF467zx1nm7jruqtByAtWUVOBRlny3nhRBCCCGEEEIIsXcZGRns2LEDgOzsbEmMC3EEbN26FZPJBEBmZiZG454La4TYl9TUVH766SccDgd5eXlMmTJln0VvQohjS1ZWFmazGZD3DXFsOODE+D/+8Q/ef/99ZsyYQUZGxkG/kZ1yyilkZ2f3uO+KK64gJSWFu+++mz59+hAeHs6CBQsYNGgQ4Jx5snTpUp566ikAhgwZgk6nY8GCBZx33nkAVFdXk5OTw9NPP31QcYmeRqXGkRQVjEqtIjU+jDse+5YJJ3+JT0QpHbZf+fGWrcwr2cav80pAAX+Dc11vi93O2pIK8ptj6Lbp0Gp80er2va5Eep8D/5L7SekKrIqdr8rW7DMxDqBXa3lm8CWsa9iGtcWLzWxCr1a72kI9W/QCzZZm8tryWTgngJrWDmYOSeOxc6fu8Zh3njIOP08Dk/r1laS4EEIIIYQ45FSK8+JuR0MMQogTR2pqKj///DMOh4Pc3FwmT54sCRUhDiNFUXq0wx0+fLgboxHHA09PT/r27UtxcTFtbW1UVFQQGxvr7rCEEIfIX983Ro4c6cZohNg/B5wY//zzz/nyyy+ZPn3633pgHx+fHutFgXPdkaCgINf9t912G48//jhJSUkkJSXx+OOPYzQaufDCCwHw8/Pjqquu4o477iAoKIjAwED+7//+j8zMTCZNmvS34hNOof7evPN/53Haux8z6d33OTU5jvoGPwCsXcGAinVVzopyVBDn59y2uHg7n27Yiq+HNxsbn+fcQWegUh2ezv3XJk3ip52buKTP+P3eZ0xIP8aE9MPucDAiIo4+AYF46/UABOkDabY0E6QPxKFYmDJ8A+EhpTiUk1Gr/mzx3m3rpLx7O329UugXFsyzZ516yM9NCCGEEEIIIYQ4URmNxh4JlfLycuLi4twdlhDHrR07dlBf/3uXxZgY6dIgDon09HSKi4sBZzt1SYwLcfwoKSmhsbERgPj4eFe3ZyGOZgecqdTr9SQmJh6OWHq566676O7u5sYbb6S5uZkRI0Ywf/58fHx8XGOef/55tFot5513Ht3d3Zxyyim8//77aDSaIxLjiaC6rZ2dbW0AxKeHMVb/ODuKfyY6MwybYubslHSWle8gLSSUOD9/AFLDQoj2tfK/097GS2/BZNLj6XnaYYnvsj4TuKzPhIPaV6NWMyE+ocd9d/W7g/KuChK84km++HZarLkowG8r3qdP0izu+n4eIT5exA9aSa25gqEB47ko7sZex65pbOPRDxcQFezHXRedjOb3inQhhBBCCCGEEELsn4yMDFdCJTs7WxLjQhxGUi0uDoeUlBQ0Gg12u538/HymTZvm6twphDi2rV271nVd3jfEseKA34HuuOMOXnzxRRTl0PfQW7JkCS+88ILrtkql4qGHHqK6uhqTycTSpUt7VZkbDAZefvllGhsb6erq4ocffiAmJuaQx3YiSwoO4u6TxjF7QAaXDBlI6pBgSqN+ZVnT+6xu+JyM0DAWXnQFRoOWCV+8zZqqCmID/PnhmtPx0lsAsNlK9/k4JvNKmpr/icWSdZjPaO88NB4Ee4SzpamcRlMuKpWzZeQ792fxyCtzyK2uY0lRKa2WFgA6be27Pc7clbmsyS3jm6Vbyd9R22v7hoXZvHL7R1RuqzmcpyOEEEIIIY4HylF0EUKIIyglJQWt1lnXkZeXh91ud3NEQhyfWlpaKCwsBMDb25vU1H0viSjE/vDw8CApKQmAjo4OysrK3ByREOJQaGhoYNu2bQD4+/vTr18/N0ckxP454IrxFStWsHjxYn755RfS09PR6XQ9tn/77beHLDhxdFCpVFwzYqjrttmuoFMbsDi6MGr8AWg2d/NFoXPN+G8L15Hs8QgKVvz8/4vD0YCX11X7fJzGpptwOGqxWLIJD1t4WM5lf9gcdi5a+TIN5nbiulMYGVpCyYJ4Wnd6kWnV0jc8kFAfb67vcxal3bkMCRjTY3+7zU5NRRNjMuP5clEWEUG+JEYF9xijKAqPXPQKFpOVmvIGHv36n0fyFIUQQohjjsVkxWazY/Q2uDsUIcRxqqKigh07dtDV1UVISAjp6el4eHi4OywhTnh6vZ5+/fqRm5tLd3c327dvdyVYhBCHzoYNG1yFUEOHDpVunOKQSk9Pp6CgAHC2U09ISNjHHkKIo92uXUaGDRsmnSDEMeOAE+P+/v6cddZZhyMWcYzw0HhxVd//0WqtJcozDYAAD08uSRvIqp3lXJrSgcn0EwDtXSUEB1yFWm3c93E9RtDdPRcPj5EHHJOiKGxtrCbSy5cQT+9e25sbO9iybjvDxibj5bP3H9RtioM2azcA2zvCyc9O5uXTp7Eltoy3i3MJaPbkkytn4280EOcT32v/R65/n3WL8jn1gpEsfOGG3T6GSqUiaWAcuWu2kTK0zwGfrxBCCHEiaa5v44aJj9HZbuKpr/9B2jB57xRCHBplZWW88cYbfPbZZ1RUVPTojKbX6xk3bhzXXnstZ599tvzQI4QbZWRkkJubCzgTKpIYF+LQslqtbNq0CQC1Ws2QIUPcHJE43iQnJ6PT6bBareTn5zN9+nSZfCHEMcxkMpGVlQWATqdj0KBB7g1IiANwwInx995773DEIY4xPrpgfHR/VkGrVCr+M3YyAFbrdurqVIADvbqEttZ/oThG4OO79xZMQQFv4PD7D2p1yAHH81HRRh7aOB9fnQfLZ96Mj65nZce9177HjuJaBpwZTvpVXowIGkU/n5TdHsug0fHG8GvY0lzG+NHpGNUeBHkbKWhpRimCps5u6ts68Dc6E+zrKivJq6mjvbyTgX2j2J5XBcD68gpOfu9dYvU+PDr+ZKJjgno8ztM/3U1TTSsh0YEHfL5CCCHEiWRnSR2tjR0AFG7eIYlxcWJSVM6Lux0NMRwi//jHP3jvvfeYMmUKjzzyCMOHDycqKgpPT0+amprIyclh+fLl3H///Tz88MO89957DBs2zN1hC3FCSkxMxGAwYDKZKCgowGq19upgKIQ4eDk5OXR3O4tEMjIy8PbuXXQixN+h1+tJTk52df8oLS0lMTHR3WEJIQ7S5s2bsVqtAAwYMABPT083RyTE/jvgxPgf6uvrKSwsRKVSkZycTEjIgSczxfHKjgMHKgBFQaVSUVZxOxnpv+x1L5VKhUYTinM355phDkc97R3vYjCMx+Axdo/71nY7fyzvsFow2ay9EuOKw1n50TqmgGUNHWys38jzQ17aY9VHhn8MW9fWcfn3n3LpjGFcNmM4F48ZRKfZQnSgH0nhzkkBVe3tXPj1VzgUBc9a8PplA689ez4bFuSSl6ZiZUUJO2jhyuve4ouPbyEg0Mv1GBqtRpLiQgghxH5IG96HS+48jZbGdqZcMGqP4zqsZgwaHVqp6hRC7Ae9Xk9JScluv8uGhoZy8sknc/LJJ/Pggw/y888/U1ZWJolxIdxEq9WSkpJCVlYWFouF4uJi0tLS3B2WEMcFRVF6tMMdPny4G6MRx7P09HRX94/c3FxJjAtxjHI4HPK+IY5pB5wY7+zs5JZbbuHDDz/E4XAAoNFouPTSS3n55ZcxGvfdMlscH3KKq/jXC3PJSPLikVsuQqtx/gjd3HI/AA4FNL8XlHh5OfZ6LEWx0tn1BVpNLDZ7Oc0td/bY3t7xJtGRRahU+t3uf1PGaAI8PEkJCN1tK/XH/3c5m9eUUBa/mdUdy6hfa+HLdYs5/6ZT9hjT179tocmjm0frf2Pl0jLeGH8O/zd9fI8xOrXCaWmb0WnM/LZwMCEBgfQfmsDQUUlsqalm1ReVdDR20+kJNpt9r8+BEEIIIXZPrVZz4e2n0tbUwe2n/ZfOtm6e/PofRPcNc435raKEaxZ+S5S3L7/OvAKjbvefGYQ4Zim/X9ztaIjhEHnmmWf2e+z06dMPYyRCiP2RmZnpatmZnZ0tiXEhDpGKigpqamoAiIqKIioqys0RieNVYmIier0ei8VCfn4+M2bMQKs96Lo9IYSbFBUV0dLSAkDfvn2laFYccw64nOb2229n6dKl/PDDD7S0tNDS0sL333/P0qVLueOOOw5HjOIgORSF6xZ9x5DPX2ZVddkhP/6C1YXMPPk7bjj3LqpqnIlsRbFjtiwFQKUCB2BHTXTUq3s9VnvHOzS33El942xaWh7rtV2jCWNv8ziMWj1Xp45gbHjCbrfrA3R8HLyan2oaqX4gmObnfWht6thrTNfNGo0hUYddr7BwZzHVXW09tiuKgp2tTEzcytiEQt68IYwvH7kMvc4Z54DwCMZGxaPoNDQNMuATIJNGhBBCiL+jcHMZ5UU1NNa0smlpfo9t62sqsSsK5e2t1HTt/T1eCCH+qru7m66uLtftsrIyXnjhBX799Vc3RiWE2FV8fDxeXs4ubMXFxZhMJjdHJMTxQar+xJGi0+lISXEubWk2mykpKXFzREKIg7F27VrX9REjRrgxEiEOzgEnxr/55hveeecdTj31VHx9ffH19WX69Om89dZbfP3114cjRnGQGro7+bW8iEZTF3O25x7y4595ciZD0yoB0GnW4nC0UVUzDOUvVSRqdSQ63d5b45jNG1zXFVqAnmsXhgb/iEp18G1Rs1vKyWurpNLUzJR/ncT198/k0tun7XWfycP7MbQ+EM96FdN8k4g0+rq2NXd3M+i5V5jx9hIcNm80KgNJYSPxMjir06wOO89sWE6DvhMFhZSwEDRqFcpfn5z9sGp+DldOfILPXl14wPsKIYQQx4qGqma2LC9wdSTanQFjkjn5nOGMmJzB+DOG9Nh2VcZQZidncv/wiST4BhzucIUQx5kzzzyTDz/8EICWlhZGjBjBs88+y8yZM3n99dfdHJ0QApwdZNLT0wGw2+0UFBS4OSIhjn1tbW3k5eUB4OXlJZ0YxGH3x7/jgKutuhDi2FFbW8uOHTsACAwMlCURxDHpgDONXV1dhIWF9bo/NDS0xwx74X4hnl5cnTaMAcERXJoyZN87HABFsRAXoZDc5y2MnmcRGPBfOrvm4nBUo1L9MQZs6pNZ0XA3Td17f21YLKt63DZ47Jq09kKr3f92HO2W7dR2LUdR/vxhfXBgAhNC0xgS2IeLho7nzMvH4enlsZejQGtrFwULy4n8ykHCVgOq30+sJK+Kdz5fQjtWWmxGPppzOafGLcHPI8W174Kybbyft5hgv294+Bw9t00YzZDHX+XsNz/FYrPt97nYHQ6+eWcJ1WWNfPrSgv3eTwghhDiWmDrNXD/qfu4+7Wm+fP6XPY7TG3Tc+fJlPPThDfgH+/TYFuLpxdNjT+XqjGGu92whjivKUXQ5AMuWLeP0008nMjISlUrFnDlzep6WovDQQw8RGRmJp6cnJ510Uq8fSc1mM7fccgvBwcF4eXlxxhlnUFlZ2WNMc3Mzl1xyCX5+fvj5+XHJJZe42vvtj02bNjFu3DgAvv76a8LCwigrK+PDDz/kpZdeOrCTFkIcNpmZma7rOTk5boxEiOPDhg0bXEUcQ4YMkbbW4rDr27cvBoMBgMLCQqxWq5sjEkIciF2rxYcPHy6/v4hj0gEnxkeNGsWDDz7Yo2VVd3c3Dz/8MKNGjTqkwYm/R6VS8e/hJ/P9aZeSEdR7MsPBUhQbNXWTqKrpj81WiofHBFrbX6Cra06Pcdva7mLWj6O5Z8kO/r1479XO3t5XAhq02jTCw7MJCnwerXYAanU4ocHf7HdsJlsjSypns6bmFra3fea636DR88zgi3l9+NUEG3z3coQ/BQR4ceFlY8joH81Z5w4DoLGxg+tueodf3lhFP72JAX1quWbqADRqQ499UwJDmBZfwPjoIjz077CubAsWu5286jpq2vavvWtlYwsnP/gmaxLAMymQQRcMkXXKhRBCHJdsVjumTjMA7c2dbo5GCHEodXZ2MmDAAF555ZXdbn/66ad57rnneOWVV1i/fj3h4eFMnjyZ9vZ215jbbruN7777js8//5wVK1bQ0dHBaaedht3+52fjCy+8kKysLObNm8e8efPIysrikksu2e84u7q68PFxTriZP38+s2bNQq1WM3LkSMrKDv2yVEKIgxMVFYW/vz8A27dvp7NTPjcIcbBsNhsbN24EnB0Zhg4d6uaIxIlAo9G42qlbLBaKi4vdHJEQYn91dXWRnZ0NgIeHBwMHDnRvQEIcpAOeBvjiiy8ybdo0oqOjGTBgACqViqysLAwGg6y/doJQlA5stm0AdHf/ism84C/bwaF4MLrvafhvWEaLyUSAp+dej+njfQNt7a9gs+XR0f4yAf4PExE278Bjw46Cs1LcoRzcjEOHYkOtcv5pXHHNST22ffnzRrqDPCHIk77DCnBobcxp+4pHn9nIU2edytjEOAD6+AVyff/zyW58EKM2gtlDRlPWqCY1PJSYAL89x68ofLQ+i26LlXC9F82d3QBYk4yUV1YS/fM6rj1DJqAIIYQ4vnj7G3n657vZtqWMKReOdXc4QohD6NRTT+XUU0/d7TZFUXjhhRe47777mDVrFgAffPABYWFhfPrpp1x33XW0trbyzjvv8NFHHzFp0iQAPv74Y2JiYli4cCFTp04lPz+fefPmsWbNGtcad2+99RajRo2isLCQfv367TPOxMRE5syZw1lnncWvv/7KP//5TwDq6urw9d2/ibVCiMNPpVKRkZHBihUrUBSF3NxcWRNZiIOUm5vr6v6ZmprqmiAmxOGWkZFBVlYW4HwdSgt/IY4NmzZtwvZ7N9yBAwfi4bH3jrxCHK0OuGI8IyOD4uJinnjiCQYOHEj//v158sknKS4u7rFGiDi61Xa1c/68T7lh8XeYDqC1N4Ba7Y+/78MYPWdhtuTtssXZNkOlAh+vWRg8kvjuvAt59KRT8PcwUNHausdjKqj4oy+johx8+w1PbSjjIj9gSOgT9PW7+ID3L237kh9Kh7O+9s7dbk9MCAXA21NPvE88ADsqFRo7u5m7Na/H2CT/Mzg1bj6TY74jNjCUV84/g6vHDSW7vhbr79Ut2zsKWVb/C2a7swPDqtJyHvt1Cc8tXsmPC7NIMvgyY1A/tHbnc3Iwa5QLIYQQx4K04Ymccc0pGPax1IkQJyx3t08/yFbqe1NaWkpNTQ1Tpkxx3efh4cGECRNYtcq51NLGjRuxWq09xkRGRpKRkeEas3r1avz8/FxJcYCRI0fi5+fnGrMvDzzwAP/3f/9HfHw8I0aMcHVDmz9/PoMGDfrb5yqEOHQyMjJc16WduhAHR1EU1q1b57otE0zEkZSQkIDRaASgqKgIi8Xi5oiEEPtit9tZv36967a8b4hj2UEtHOPp6ck111xzqGMRR9APpfmsqakA4KJ+lYyNjN/tOKvVzocfrUClVnHpxWPQajVYrPm0tD0MOACNa2x46HpaWu/GYtmEl5ez4sPf4MnL69dQ29nJhuoqvjh79m4fx24rAZwfgrpN32K334BGc3Dt3wMMGQSQ0ev+suomVm4tZcqIfgT7ewOwrbERP4OBEC8vAKo7FwMOqjsXoyhKrzUyJo9NJbNfJD5eBgyeWposTbzXlMeaiEouHt77BzPPv6yNft0vc1hSvoORQVEkthjoHvEVDhw0WeqZGXUpkX6+eGg1WG12CleU4dHiYOrJI7nm/hFsr2rkpIF9D+o5EUIIIYQQ4lBqa2vrcdvDw+OAKwZqamoACAvr+bn/j/W9/xij1+sJCAjoNeaP/WtqaggNDe11/NDQUNeYfTnnnHMYO3Ys1dXVDBgwwHX/KaecwllnnbX/JyWEOOzCwsIICQmhvr6eiooKWlpaXO3VhRD7Z+fOnVRVVQEQHh5OTEyMmyMSJxK1Wk1qaiobN27EZrNRWFhIZmamu8MSQuxFQUGB6ztgcnIygYGBbo5IiIO3X4nxuXPncuqpp6LT6Zg7d+5ex55xxhmHJDBxeJ0Sk8iHBZsJ8PBkQHDEHsetWFnEJ5+tBqBvn1AmjE/BYa8FnBXPikODSm0DPGhonI1J/Rxf5JmYltqXgVHOY8T6+VPb2Umcn7/ruDbbThoaL0Ol9iIk6Eu02jicDQwcOBz1NDXfTkjwJ4f0nG/577fUNLaxakspr9x1Dj8VFnLLzz9hUGtYeNkVRPr70i/gBix2hQTfab2S4n8ID/mzFXqIRwh3TZngfC4UB3aHqdd647va0doCwObKaspy7AwfqEHt4aCtW8WMdz6EehvPTpmGn28F7zf8Ql1xJCnpUYRH+NMnMujQPRlCCCGEEEL8DX/9Af3BBx/koYceOqhj/fVz9+4mqP7VX8fsbvz+HGdX4eHhhIeH97hPKiGEODplZGSwePFiwFk1PnasLMUixIH4a7X4gbxfCnEoZGRkuNa4z83NlcS4EEe5tWvXuq7v2qlLiGPRfiXGZ86c6ZqFP3PmzD2OU6lU2H9vES2Obgm+gSw7+zoAFmdt4/4Pf2VUahxPXz2jx4fhhIQQPDy0qFQqEhKc1c8eHhOw2h9kdVYhDfkFzLo4CzBjs5dgM5/HgoKLmZuTz6rbnMf/6MxzKGxsIC3kzyqOtvYXsdpyAWhtfRy70g6/rw0OHHS1+J5UdbXSntiFzWHH38e53nn5763dTQ47b7++gAfuPZtn8rNZVBvIrBi45wBWBrArFhZXXkS7pZSR4c8S4TWh1xhFUXhyosKanfVsWdefPFstiTsvZsjYQO74dQM1nZ2odGp+XvMT46Z9yKRbYXjos4T7+Pc6Vs2OeuZ/soJRMwaTNDDuoJ4TIYQQQghxDFFUzou7/R5DRUVFj7W3D2Z9uT+S0DU1NURE/DlZt66uzlVFHh4ejsViobm5uUfVeF1dHaNHj3aNqa2t7XX8+vr6XtXou7r++uu577779qtK7osvvsBms3HRRRft38kJIQ6rzMxMSYwLcZA6OjrIzXX+Jufp6dljeQIhjpTY2Fi8vb3p6Ohg27ZtmEwmDIY9FxsJIdynqqqKigpn9+GQkBASEhLcHJEQf89+rTHucDhcrekcDsceL5IUPzbN21hIp8nCws3FdJp6rukSHxfMN1/ewtdf3ExsjLNieXtRDf982MErn0dTpe5ZUWHQmrmw/2ra7RYqf088e2i19A8LR6v+8+WmUv35w1lH1zt0d3/25zE8phPg/9QhPceHs36mOqwF+3grZ091tka8tP8AIrMtRCxqx8fkjC23tRKAnJaKAzq+2dZAm2UbCnbqutfudkx991pqTa+SEPQrptCVvP7YbG6ZNZW3s8qpsrTjMDowtMO4gX++sahUu1/E8bmb3uXTp3/gwdkv9LjfYrfz5sr1fL5xq6xHLoQQQgghDhtfX98el4NJjCckJBAeHs6CBQtc91ksFpYuXepKeg8ZMgSdTtdjTHV1NTk5Oa4xo0aNorW1tUf129q1a2ltbXWN2Z2QkBAyMjI49dRTef3111m/fj07d+6ksbGRbdu2MXfuXO666y5iY2N54YUX6N+//wGfoxDi8AgICCAqytmmrra2lvr6ejdHJMSxY8OGDTgczuKUwYMHo9Pp3ByROBGp1WrS0tIA59rFhYWFbo5ICLEnf60Wly4j4li3X4nxXX344YeYzeZe91ssFj788MNDEpQ4si49ZQgD+0Ry4+mj8fbs/YOW0eiB0fjn/a8++TOtO5oBaDNPprE9pcd4m6Km22ZjYXHJHh/TaDwb5/rkWv5oy+6kw9//EVSqQ/uhvI+3M6lv7VC47JWv+HZNDl4GDz67/yoeuPI0rr97OgCPDjifWTHDuT/z7AM6fu12FTt/GwN1Q0jyu2S3Y4y6SFB02B0q6jp80eqd67OnBTknnfQPCSfvoduZNWYm4yLfYlT4i0R6nbzbY0X0+b2CJr7nGubfb83j2UUrePDn39hQvvOAzkEIIYT4w6pftvDUje+xbWu5u0MRQvxOpRw9lwPR0dFBVlYWWVlZAJSWlpKVlUV5eTkqlYrbbruNxx9/nO+++46cnBwuv/xyjEYjF154IQB+fn5cddVV3HHHHfz2229s3ryZiy++mMzMTCZNmgRAamoq06ZN45prrmHNmjWsWbOGa665htNOO41+/frtMbb//Oc/FBcXM378eN544w1GjhxJbGwsoaGh9OvXj0svvZTt27fz9ttvs3r1amnxKcRRZtcq15ycHDdGIsSxw263u9pXq1Qqhg0b5uaIxIlM/h0X4ujX0dHh+vs0GAwyWVgcF/arlfqurrjiCqZNm+aqIP9De3s7V1xxBZdeeukhC04cGenx4bz3f7P3e/yAYXGMnfoOSentfFdxHed/exovTTeRGrIDgDAfXwZGhjM1OWmPx/DQDyQyfAsAbe0vYLasx8f7RjwNJ6NWe/+t89mdOzMnM9q/Lze99D0ADe2dAMQkhBCT8GdyeUBAHAMCDrw1+ZdvLGbJj0bAyNRNAbCbvL63LpapcfOYk5fN1Bg1sb7+ANwxeCxnJ6YT5b3L2uWeQ/f6eLe+cCmnXXkSsSmRPe6PDfBHpQK9Rku476F/HoUQQhz9ygqrKMmuZOxpg9AbDm6i2TM3v4+py0JjTStPf3vboQ1QCHFC2bBhAxMnTnTdvv322wG47LLLeP/997nrrrvo7u7mxhtvpLm5mREjRjB//nx8fHxc+zz//PNotVrOO+88uru7OeWUU3j//ffRaDSuMZ988gm33norU6ZMAeCMM87glVde2Wd8oaGh3Hvvvdx77720tLRQVlZGd3c3wcHB9O3bV6ohhDiKpaenM3/+fBRFIScnh5NOOkn+ZoXYh7y8PDo6OgBISUnBz89vH3sIcfhER0fj6+tLW1sb27dvp6urC6PR6O6whBC7kC4j4nh0wIlxRVF2+0WjsrJSPkwdY/69eCELSrfxxMQpnJzQZ7/3u/CaOGrqSgFI615NlG+CKymuVodwxsB3mTl4368FjcZZxR3g/58DD/4AqVUqxsX25dWrzmJHXTPnjjq0M5tGTkpj+bytDBiZiNHbWV2vKArK74/9hypTC3OLVpC71YMVq4v575lTSO4fQ4Jf4H4/VkldI14eepIGxffaNiI+ht9uvgoPrYZgby/X/T+UZ/NawTIuTRzBBX32nnQXQghx7DJ1mblt+jOYuiyU5FZyzYOzDuo4A8elsObXrQyekLLvwUeYoihsrq8m1sePYE+vfe8ghHCrk046aa9L/KhUKh566CEeeuihPY4xGAy8/PLLvPzyy3scExgYyMcff/x3QsXf3x9/f/+/dQwhxJHj4+NDfHw8paWlNDU1UV1dTWRk5L53FOIEtuuyI8OHD3djJEI4Pwemp6ezevVqHA4HBQUFDB482N1hCSF+Z7PZ2LBhA+D8e5X3DXG82O/E+KBBg1CpVKhUKk455RS02j93tdvtlJaWMm3atMMSpDj0TDYrn+Q4K7a/yMve78S43d5AV/dcPPTjsDvqWPtTAqo6K7bTdGh1VgL8HkGtPjITJLpsXfxc8yPhhnDGBo/fr33GpSYwLjVh3wMP0IQZAxl3an/Uv6+jXtfdwcx572Gy2/h6yqX08Q3C5rDx36KnMMZbiCOAyh9t3Dn7Vb7Y+DAG4/6tybg4r4SbP5yLXqMhIzyUxLAg7jv7FLSaP1dFiPL37bXf64XLKe1o5OX8pZIYF0KI45oK9e/vCVqtZh9j9+yB966ls60bb7+jb7b+61vX8tTGZQQZjKw673oM2gOe5ynEsUn5/eJuR0MMQgjxu4yMDEpLnRP3s7OzJTEuxF5UVVVRWVkJODumxMUdeMdEIQ61PxLjALm5uZIYF+IokpeXR2ens/NuamqqFMaK48Z+/5I4c+ZMALKyspg6dSre3n+2adbr9cTHx3P22Qe2LrNwH4NWx41DhrOgtITLBwza7/1aWh+iq/sbVBhoUy3ke/33DBpZyvqKGE4acBVG48zDF/RfLKybz7yanwHo65VIhOf+fQEuKqtn4dpCZoxLIy5i/yu19+WPpLjZbmZpzRZqutsAFevrKujjG4RapcZb60OTpZE4RwDm1U14eHm6Ehi7cihW2i2l+Oj7oFY5/0yzG2q4cd1cTDFWlEqFrB3VbCmt5uyRmWTEhu81tovjh/FqwTKuSBp5yM5XCCEElORU8OAlbxAWG8jjn9+Ch6ferfEYjHpenn8PpXk7GTH54NfCValUfPnKfDYsyuOmJ2aTPrzvIYzy76nrdn4pa7WYsDjsGA68AZIQQgghjhOpqan89NNPOBwOcnNzmTx5suu7uRCip79Wi8vSA+JoEBkZSUBAAM3NzZSWltLR0dEj7yCEcA9FUVi7dq3rtlSLi+PJfv+S+OCDDwIQHx/P7NmzMRgMhy0ocWTcOXocd44ed0D7aLUxAKjUXng7xvLRLD9CvVtpU/SUtn1CqO+VhyPU3YrxdMbirfXBV9d7tpKiKKxfUYTR6EHGkHjX/fe8NJedda2szd7BB/+5uNd+m9eU0N1lZtTE1F5fElZu2c73y3I4b9JAhqbG0tjVxSVffY3FbufDc84h3MeLh3L/Q5WpmumJqehtSZwa62xDq1apeSDtYWpM1cQNTCAncjsxiWHoPXqvy7Gu5g5qu5cR5XUqQ8OeAOC38hK67FYwwHnj+/PLknxM3VbmryrYa2LcYrHxy71rMVZ1E3OfNyQ77283mflw3WZSw0M4OfnoSXgIIcSxZNUvW2isaaGxpoUdhdX0G+j+qovI+BAi40P+1jE627r56pUFAMx9d+lRlRi/Y/BYIrx8GBgSga9+/zquCCGEEOL45OnpSVJSEoWFhbS3t1NeXk58fLy7wxLiqNPZ2UlOTg7gXKKkf/9Du8SgEAfrj3bqK1asQFEU8vPzGTZsmLvDEuKEV1lZSVVVFQDh4eHExsa6OSIhDp0DnkZ72WWXSVL8BOZlvApfn8fo7spEBUT4tKJVg6/aSojxjCMay6CAITzd/zmezHwaL23vNUZXLszjgZs+4v+ueJvivCrX/TFhAQC7rRYvzK7k3mvf45HbPmX5gtxe2x9/fyFLNm7jvx8tZmV9IeetfI5KbSmlzc2sKNuBQ3FQb24AoGldKQPWeuCr//PvxVvrTaJ3EjqtlkFjkwkOdyb07XYHPy3KZtWm7QC0W3v+F+C85EzGR8VzccpA7p96MmEqT3RdsGxLyV6fp84OEzVVLQAUFVS77n9jxTpeWrqaG7+YS117x16PIYQQYvcmzx5J5qhEJs8eSWJG9BF5TEVRqNlRj8PhOKTHdTgUsrbt5PX5q/lscw4TzxtOQKgvk84d0WPc9rom7vjsJ75en31IH39/+eg9uC5zOCPCY/Z7n1ZLFyvrCrA6bPu9j11xUNC2E5PdejBhCiGEEOIIycjIcF3PznbP5xMhjnabNm3CbrcDzuUydbreRRpCuEt6errrem5u799jhRBH3q7V4iNGjJAuI+K4sl8V44GBgRQVFREcHExAQMBe/wiampoOWXDi6KIoCnUNM7Dby9m0ORlzbDJtip407xqWvxjPgJED6XPkCsYBCNTvpRX6Li/TXV+y/739TEoqG0iM6V1Np9X9uR6rTtd7bdZxA/vw7eKtjBvUh+8r19Nu78IQBIMM6UxOTESr1nJHv9v471vv0fCFjZ9Zy2X/nNbjGIqikFddR7ivD0HezrVbf1qcw1NvzAfgvWcuxaC5k5+L36K8aSDDzrbgrdcT6e3LR9POcx3n7otO4evFWzj35AF7fY4CAr2558EzKcir4oJLx7Dws5XkrComYGY/APyNnnh57H/rX0VR6LbaMOrlS5QQQoTHBvP0t/88oo/5wq3v8+uHyxk3cyj3fXDjQR1j/sfLefuBr5hx5UQu+/dZALz07XLeX7QRi79zzH3nT+SuFy/rte/ri9bwS3YR87KLOLV/vwN6D3EHq93G9MWPYcdBgM6LX07+937t93z+D3xdsYY032jeHXXTYY5SCHE0sNlsLFmyhJKSEi688EJ8fHyoqqrC19dXWnoKcRRLTk5Gp9NhtVrJz89n+vTpaDS9v88LcaKy2+2sX7/edVuqccXRJiwsjKCgIBobGykrK6OtrQ1fX193hyXECautrY28vDwAjEZjj0mIQhwP9isx/vzzz+Pj4+O6LrNDTlQKDkcLACqVwnvfnErqKTv59tX+dNcYqM+oZqrVhkF3dKz1OeaUNB574zI8vTxITP1z/XGdVkNKfNhu9+mbEsFLn92AqdtC/6EJvbbfc9kkbjt/AgYPHRsaIynraGB8aCo39ZvqGpPqm8LVAy7ls5W/cdqFo3od44sNW3nop0X4GjxYdNtVeBs88PV2VpVr1GqMBh0btmuZmzMYgB8qvqbEvJbTIi9goP+fa4SPyUxgTGbvGHfnlKmZnDI1k/amDp694R0UBaYqCj89eCnB3l546fc/qXHHd7/wU24ht08cw3VjZW0RIYQ4nKxWOwtWFpAQHURqYjid7SY2LC8GrZaiTaUHfdwf315Ma1MH372+wJUYr6hvQaUACqCC6EA/Slqa+HFbAWckppLg7+y4Mjopjp+zCxkUG4mnmytNclrKqTO1cVJYGmpV70ZIC6u38k35Guw4q+ubrZ04FMdux+5KURR2dNYDUNktkz6FOBGUlZUxbdo0ysvLMZvNTJ48GR8fH55++mlMJhNvvPGGu0MUQuyBXq+nX79+5OTk0N3dTUlJCcnJye4OS4ijRkFBAe3t7QD069ePgIAAN0ckRE8qlYqMjAyWLl0KQF5eHiNHjtzHXkKIw2X9+vUoigLA0KFD0WqPjnyPEIfKfr2iL7vsz2qhyy+//HDFIo5yKpWa0JA51DcupNyzlrdvfA2d1kbng8mc8flMfm2vJnb1atKiQ5kan4RWfcCd+g9xvCqGjE464P2S06N63G5oaOezD1eSlhHNKVMyMPy+JvjQoL58Me623R5j1KR0Rk1K3+22qlbnl5F2s5kuqxVvgwcnjUzm+UfOJdjXi+iIAC72HUhlaxtx/v6sb30VRW3ji/zPGDjq730oNPp6EjoohvKqJtJG9KVPcCBLaoqItgSQ7Be6X8dYus2ZiFlcvF0S40IIcZh9NGcd73y5Cq1GzZz/Xcenz82jqcOKJsif2169wjXu/W/W8MuSXG6+dALjhiXu87jDrhjHqhXeBHh60Gmy4GXQc88FJ2M06Om2Wrlg0iACA7w4d85nNJi6mFdazC/nOj8PnjUknamZyXjqtD0mS1ptdvLKaukXE4pBv+ePmO8Wr+b53EVc3Gc4d/effNDPTWVXI9esfQMFhQy/WM6KGc6MqCE0mttZXpePt87Av7d+BoBOpUGtUnNZwkn7TIoD3Jv1CRuaShga2Jcbkqbuc7wQR4IKnJNX3Ox4nSL9j3/8g6FDh7JlyxaCgoJc95911llcffXVboxMCLE/MjIyXOsn5+TkSGJciF2sW7fOdX34cPkdRxyd0tPTXYnx3NxcSYwL4SZWq5WNGzcCoFarGTp0qJsjEuLQO+DM5aZNm3qs2fT9998zc+ZM/vWvf2GxWA5pcOLoo9elMq9xJL4hq9Bpnet0aujCqNOBWuF/heu4aeFc/rdl3T6O5D6/VP/Ec0X/pbKrYr/Gf/L+CuZ+u5EnH/melubOv/34UzOT6BsfxPljBhDq42zJ+HN5Phdkfcq1m7/GbLcR4uXFs9NP5dbRo2jaGou5TU/F+t6t3w9UQ0c3OUMDaZzRh86kQD4qWcuNq7/g7EVvUm/av3XGnzh9ClNTErln8oS/HY8QQhyPKoprqN5R77rtcDj4zyWvcn7SbWxZln9Ax/L4PcGs0ajRqFX4BTrfN3wCjKSP+HPy13tfraa8roVPftyw2+PUtnawobQSRVGw2O2s8GjB7AeNZgvldc3OuM1t2PqouWTmUIb0iebq776joaMLgGhvX6x2Owuzi9le14RRr+vVQejf7/7CFU9/wW2vfu+6b35ZMWf/+AlztzvPu9Vs4s38lVgddr4t24yp07xfz4OiKLxb8hsPbf2CRrNzgpkalStBl9NazqM5X9NpM/GPDe/yZN53PJf/g2v/MSH9WDr5Ea5MPHm/Hm9NYxHgXGc83X//1zIXQhy7VqxYwb///W/0f+mkFBcXx86dO90UlRBifyUmJmIwODuxFRQUYLVa3RyREEeHmpoaysvLAQgODiYhYf86DwpxpIWEhBAa6izaqayspKWlxb0BCXGCys7Opru7G3BOWPmjk7QQx5MD7oFw3XXXcc8995CZmcn27duZPXs2s2bN4quvvqKrq4sXXnjhMIQp3ElRTNQ1zMZm205w0EfE+QbwfFEmqT41dG/Xk57+Hotv7ktNZztnzv0Y7Lh+LFcUhe0tzUR6+7i93SpAh62Db3Z+BcCvtb5clXAtAJ2dZrK3lNN/YCxGo0ePffqlRvLjnE1ERgfg9XvL87/jvc2byW9uIL+5gX+OHY2vwcCGugoUFLa3N9Fk7kJBYV39DiZFpnD1gKv5cv5mrps88G8/ttVuw+ZwtpPtNFtc1x2AQ9m/EqQpqUlMST3wSnwhhDgRZK8s4s7Tn0ajUfPq0geJT4uiubaVlXOds21/+3I1A8an7vfxLjh9KH1ig3HYHTzyyi8My4zlqU+uJ6ZvKOgcPF90H43mOsbNmsDn5XWs0tezaUcV97z2I6NGr2XUIAv9/e9j+jPzsTjs3DZ5DFmmGn5tKYG+cHnQAK757jvqujsx+GpoU9tYsGMbp8T1xc/TgLpFxfDwaMZmq7hq/pts1pjw1Gv55V9X8n1ePsY2B+eeNASNVkN1ozNhXd3U5or/iQ1L2N7aTHl7C2f0SeXt3PXUtljReqjQfFXLRTfezmsrHyYsNnivz0NJRy1vblsIQIRnANclTSHSGMj7o27mp50b+aJ8Fck+kejUWrZ31AJgddi4uu8peGsNzI4bc0D/Hx/IOJffarK5OGH8Ae0nhDh2ORwO7HZ7r/srKyvlxyAhjgEajYbU1FQ2b96M1WqlsLBQ1sMUgt7V4rI8pjiaZWRksGjRIsBZNT5mzIF9jxNC/D2KorB27VrX7REjRrgxGiEOnwNOjBcVFTFw4EAAvvrqKyZMmMCnn37KypUrOf/88yUxfhyyWrdhsTg/SHd3/8ykmH/R1+9B7O33srlfFktVOzjb0I9UYygfjD+Lb+atZ2i3s/3g/zat56lVy4n392fhRVegcXN7daPGSJpPOkUdhQzyH+K6//57v2RrVjmDBsfzzAsX9dhn2owBDB/ZF28fA1pt7/jfXriOuRvyuP30cZyU3nefMYxJyMVoXEFZw1S8PZxJ+GvTRtFps5IRGE6E0ZeJv7xAdXcbU2uKeHHEuYwd1GePxzPZGthYdy86tQ+DQx9Dq/bc49joIH/evuEcqpramDEkFZUaIo1+xHgFEOYpP/gJIQTAlpVF/OfKN+mbEc3jX9yCRqvZ730ba1pAAbvNQUtDGxBFYLg/Z900mQ1Rq8gdvpI5RWFMj5+Kfpd243bFRrOlkSB9KCqVCrti59nCZynvKufmxJv57N1tLKwqZZG9gH/PhjWtGtIYTnlXCQDhyU0oldBps/Jz3ma8UvIY3H8jZjss2fkIinoAY9KKqXLks7g9Eo2nB0q3ntTkUD6qzAa9iu5WE5oIaLK38UVBNldmDuGusePwqjFx45MvUj89HBWeOKzOSV6vr18HikLhvDzWDYJtPo1MHtGX26eNc53XME04pfYmAraDw6HQPzgcxabBYDPgtaiMTpODiqIaQmICKWyrItYrGC+tcxKa1W7n4a8WUt3cxqkn9UPt0IHazpDAP99rk30jSfaN5KrESXhpPVCjIsYYRFlXA8k+kVwUPx5Pbc/qz33Ja63g5cKfSfSJIMknYo/jFEVh3fYKfsgqYHifaE4fmCo/NIrDS1E5L+52NMRwGEyePJkXXniBN998E3BO9O3o6ODBBx9k+vTpbo5OCLE/MjMz2bx5M+Bspy6JcXGi6+rqcnX99PDwYMCAAW6OSIi9S09Pl8S4EG5UVlZGXV0dANHR0URFRe1jDyGOTQecGFcUBcfvVaYLFy7ktNNOAyAmJoaGhoZDG504Kuh0qXgZL8Vm24a3lzNpnOAbSLajiE93ONuUBun9OSlkFP/7YAk71pfRtmY5/Qc/SnFTIwCVbW1Y7HY83ZwYV6vU3N7vThRF6fHjdXeXcxmArq7dt3T1DdCwoupiOq0VjIp4lUDDQNe2135djc3u4IPFG/eaGFcUhYrKIhTtxwyMgpn9Gln+7Xoi+4SSNCiep0bOcI3V/L7+6d7WQa2tbGL5z1voO6WEBsd6ABpNGwkzjt3rczAssWdL2FOjd78W+tr6Hdy+7hsGBEbxysjZqOXHfiHECWLlz1l0tnWzdVUxdTubiYjrXc28uG4xVd1VnBl1Jt5aZ3tzRVEYfeZAbm2/BL1Bz4BxKYAzuXLd4xewYcMiHIqDLzf+yI+PVvLm+9eiVjv/bX1t26Ns7yzglNAzOTXibHIrN5Lf7mw/vqF5AyOHDOJjexGXj1iNRlOBr13HT1UtjA6aTIOlhtPDzsHa8jERASUU2LcRGNJJi80TX42JEkcbM89axWC/MgB2aAey0+LPIN8Y1tSUgmLHoVYR4+9Bja+z6tvarGZddSWjo6L5ypJF3R2hmM1aAhUdn027gHV1zrbCKqtCaXsTOWYbGCHPUU+fyD/X5g3Jg6SfbSi00H5TN/3VQbwTP43BQ/rwv5WfoDVoaU3R8cCWr1hYm0WUZyBfjbsDtUpNXmUd32/IA6DYt5mdZi80KhVDAntPFqsobGTu1+tZXltA05nOivWNzdt5KednrkuYxEsLfmFwXB9OGzak175/Nb96C9WmFqpNLezsbiLOa/dLmby5ZD0vLlgJwLcbcwn0MjI2OX6fxxdCHJ2ef/55Jk6cSFpaGiaTiQsvvJDi4mKCg4P57LPP3B2eEGI/xMXF4e3tTUdHB9u2bcNkMrnaqwtxItq8eTM2m3MZxIEDB/ZaLkSIo01gYCARERFUV1dTXV1NU1MTgYGB7g5LiBPGrtXiw4cPd2MkQhxeB5wYHzp0KI8++iiTJk1i6dKlvP766wCUlpYSFhZ2yAMU7rWltoZ7fvuVYZFTeHjCkz2SyWGGIAxqPRaHjRhjBO+t3cgqzxYuvH0LE/vlktOwg7tHf0aI0YuRUTFHRSv1P/y1ouuRx89l1YoixoxL3u34Tms5rZYCAGq6lvdIjF9+0hC+X5/H7DF7n3n7v8fmMvfj5Vz4bjBeYc1sWNfBdze9gdqq4aO8/xIY5uca+8mEy9nYWMGE8CQe/m0RPxQU8OApJ3N6SoprzKM3fsi2nEpSl3kx/fFYdBofAg0DaLLU83XFO4QZojg98qI9Jte7TBZ+XpNPoKJiwXO/MHB8Guf932kUFVQTGu7HTxU5NJo7WVRdRG13GxFGv90eB8Bss/HZxq3EBvhxcvK+q+aFEGJP6iqb8PL1xMt3z90vDrczrphAeWE1SQNiCY8N6rW9xlTDh2UfAuCh8eCc6HNwKA5e3fYIOzqLuPjMmxkUMKrHPts68ogwaGluViguCqN6YCfPrVjBmcEJlGq7qOwuBaCiq4Rft52DVVNObFUiSlw/+vulkT46lfjsNVhtzo9udtT09+/PuTEXAPD9hq2kRX+GRq0Q0x1AQ1c8P1X3Z1BgNE32XAxqC3ZFjQoHXp42oo2t1NNKfncjtgB/sEC53oIeUKEixNObnIZa7l+1gGZDAyoP0Ch2zuyTTlJEMInhQfi2K1SuK2f6vSPIX/4N9eZOrhg4tMd5z75oFO2t3WQOjEWrUXPDjGfp7rQw/IIBfBpdjz1Gi37dFxg9zOi10GBuw644UKvUJEcE0z82nOqWds7p15/X8tdyZt/eVdltbd3cfuOHOBwK5nEW2GXzmgXF/NK8GdMECz/Xb2LJPblcc+kkTGYrgYHexMT1/v97WtRQNjZtJ8knghhj7+1/yNlZ0+O2p/7o+ZwjjlPK7xd3OxpiOAwiIyPJysris88+Y9OmTTgcDq666iouuugiPD3d954khNh/arWa9PR01q5di91uJz8/n0GDBrk7LCHcwuFwsH79etftYcOGuTEaIfZfeno61dXVgLP7x/jxsryVEEdCc3MzBQXO/IePjw9paWlujkiIw+eAE+MvvPACF110EXPmzOG+++4jMTERgK+//prRo0cf8gDF4bNgbhY/fbOeC66ewIg9JIQ/zdlCQWMDBY0N3DR0BGHe3q5toYYg3hr2GDaHDX+9L1keHQAEe3cCYLbXEOrlzT1jjv4PMCGhvpw5a+get/vqk+jrewkdtjLifc/pse3WGWO5dcbeq7QBirZWotjV/Hj7GJLftlMWVoXvPdD5mMpVMfiHME9fpken09C9hZ1dH2Nx9OWr7JweifGAYOf/Cw9VJJNiH3bdv6rhR/Lbs8hvz2JY4AQiPWN3G88r367gy0VZaAC/xblsWpiDPcSf995ehq+vJ/e/dy4FrbUMCowm3NN3r+f2wdrNPLtoBQDzb7qCuED/fT4fQohji8Vh54fyrcR5BzI0OO6wPMbKn7J49Oq38Anw4p2VD+IT4HVYHmdfohPDePLrf+x226IFOaxYlYfvDD/alTb6eDmrl5eXF7O90/kFIq8ti0EBPT8Traj/lXZbM1of6PT3A7vC+ys38mH1ctrS9KSEpnLN8DBGB53EuqpvAfBTdVJBCe/veIaI+tnUbW/jp4aR5I0Mx6aJ48NxZ7mOv21HA/qoIGLDGshpiqLe3IdRviO5LWUsSxp+wFvry09V82ixNhBhSKe4cxtqlUJbl8GVbHNYNJgbDagUFYPiopjXVswZCWmUKdUUt9Xz2NgzGBkaz/b2Bl4rWMaYmL7cMPYMANbG38hXOTm8v2kT3W1mzh86AF9fT2LjgnnkqfMAaG/pwmqxY/NU8UlYDTaNAbXKuZ5vt1nPrNj+nB49CJ3a+fHUU6/jk1svcJ3jjUNHuq5/sWoL67ZVcPO00fhp9Dgczkydfp0OxaCg6gZ1hZr2MjOWa6yu/Tav38Htaz/AYrGj1ar54IubCA3vOfEr0Secj0bfus/Xyb9OO4ncnbW0dpn4v2njGBIvLcaEONZ5enpy5ZVXcuWVV7o7FCHEQcrMzHRVO+Xk5EhiXJywioqKaG1tBSAxMZGgoD1P+BTiaJKens7ChQsBZzt1SYwLcWTsOplq6NChaDT7v6ygEMeaA06M9+/f37U+za6eeeYZ+WM5xvzvuXm0t3bz/iu/7TExPislneXlZQyJiCTUq3eCwltrdF0/f3B/+gQHEuJ9GhrNQgI9j58PLiqVmozgO/7WMW599Gx+/GQ146f351PHuwAkDo3lmmXX4B/SO/HsUGysrL6BaWndRPm1kREws8f2+167jPxNO0gZ1DNBleY7mBUN8wn1iCDEI3yP8XgZnC20DHoteg8d/Ucn097hbCXf0WEiwSOILydetcf981qq+Wz7BmbEZBDm40zSG3U6vD2kNZcQx6P3i1fzXO4i1Kj4bdqtPbpI1JQ3sPLnLMbOGIQx3IuS9gYyAyJdy0Lsr7JC56zw9uZOWhraDzoxXmOq5N2Cl2gsVDPJ+3xOnTGw15iqtjbKWloYERODWqXCZLXxceGPKIYmzok9iwB9AHbFTlH7VsINMQTog2lv6eSJh+aASkVSTTrPv3gefno/zDYb18+ZR1RELJkxCpNSzuz1eCOCJrKjq5g030FMnzGRh+YswFzSRWeU89/MnS1enBV1OWqViiEh/2Xt1rkEeKdQwRIUFOo7WgCw+qnJ6YgALBS11bomKUTovHj8x1Px9OkmLCKUEnU72eWbSfAN4cIUZ2I63W84he2FrF3TwapK52c2P7WB4cnN1HU3U1QRjs2mRQF+Ky2h+Nrb0e5mCZSX85bwy848fqrIZVpUGp5aZ6X0sytXUt/ZSUlpHYteWstHX92MTqchp6WcJ3K/ZXBgH575/EbmZefzQrvzs6TDosHc5MHw8Cj+nXlWr8fanfZuM49+61x3zkOn5fELpvHfly/mo3eXsmVTOYb5elCpQFFApcIR/Ht5qxpMs834zTFisdix2R1YLLZex+8wmVm7vZJhCVH4ehrotljYtKOKj1dtpk9oILOGZhAT6I/JaqOm1TkpsKK5bb9iF0Ic3Xbu3MnKlSupq6tzLR/2h1tv3feEGSGE+0VGRhIQEEBzczOlpaV0dHTgvcsEfyFOFOvWrXNdHzFihBsjEeLA+Pv7Ex0dTWVlJXV1ddTX1xMSsvvlrYQQh4bFYmHTpk0AaDQahgzZ9zJ0QhzLDjgx/oeNGzeSn5+PSqUiNTWVwYMHH8q4xGGkKAqv/7gay9BA1BvqmXrmnmdQj4iKZtUV1/a63+Zw0NzdTYiXF01d3ZQ2NTEoKpIRcX+sX530+2PZMNl2YtDG9mp9erxoau3ipie/wmq18+q95xIW5LPbcfHJ4dz8sPNH/yjzHWS3ZjM4YDC+ut2PV6FGpw7Ebt9JU7OBrJYqzs78cz1wD4OOgaOTeu3Xx7sfT/Z/r9f9nxVuYUHZNv45eAyZweGcM1VDUkYDKUEXE/PqLahUKkoq6qk1m5gyuh9+/sZex9jVA5t+JKelmkXVRayccQfJoUEEGo0EefXcz2q38+SCZbR2m7h/2kT8PGWNNyGORd5aDwB0ag16dc+PDw9f/j925FexZM4Giv7pTVlnE1cmjeKuzMkH9Bgzr52I1WIjsk8IMUl7ntizL6sbf6OecugHbzw+p1divN1sZtqHH9JpsXDP+PFcM3Qo9/z0A61Rc6Eb9FoNl8Vfxryar1hYOwejxpuH0l+jensddHTT0c+H38I7uPbjn/nsivPRaTRE+vhQWhnO6dEjCTP0rhxO9R3IQ+mvuW53D+zi6XULiNd6M3BwPOeOG4L69/fJaN+TiR57MoqisKklA73aQGTfNPp4byUlLpjvmjYTYvBmYGCM63hnTRvEh1u2Ut+h4+ZhE7h+zfcA1Hd3usYE6gMZFTSK2GF1LFfNxaJS4WNPQmPcToK3lbYuA5W1zvXU/T09ufTHr7lj+FiGhEf2OJdIqz8Ag4OiMWj+fC1clNGfV1evwbfERmuLFavVhk6n4duKtZR01FLSUcv7VSV0m3v2YVasGgK0+/+DtZeHnoHxkWwtq2Z0P+fEgAGD4mg6YzBbNpUDcPFlYwAVHp46bLE23i37jS6dBXucg5c/vpLcNRWEhvkRvZtW+de89x1bKqoZEBPOHdPGcdnbX6H8HvLSoh28t2ITg2IjePeqc0iNDGF7XTPjZG1xcSRIK/XD6r333uP6669Hr9cTFBTU47uLSqWSxLgQxwiVSkVGRgbLly9HURRyc3MlKShOOHV1dZSWOpdqCgwMpG9fWfJOHFvS09OprKwEnN0/Jk6c6OaIhDi+bdmyBbPZWTCXmZmJ124KJIU4nhxwYryuro7Zs2ezdOlS/P39URSF1tZWJk6cyOeffy4zuI4BNc3tvPWLs7XYudeNZOYFI1EUhfyGeiK8fQjYxxp6iqJw3jefs7mmmrtHjeOjtVnUdnRy8+gR3DbO2Tq2oqWVm777gQsGf0qk3zaifC4jMei+w35u7rC5sJLtlY0ArM0p44wJGfvcJ8gjkJNCJ+x1jEql5uSoT7j9u7dZVqDmuXPiDzpGm8PBv1bOx/H7L/vvTjmb9XV3YNd2UWluIlb1Bg6Hwo1Pf01zezeaAD0jR/VOuu9qSFAsOS3VDA5yJmZSw0N3O25dWSUfr88CYEBUOJcMP7hWdna7gzlfrUdRFM46bzgazYFVogoheltSXcQ9G79nTGgf/jts1l4nMF3QZyh9fIOJ9PQjyNDzA7JfoDOp6RfsQ725HYDq7tZex1hZVkZBQwMX9O+PUdd7PWajt4HL7jmd7i7LXuOuaG7hoi+/Qq/V8uUFswk09pyQM8h/NGuql9NYpGJU/wEAOBSF9WWV9A0ORK1RY7I622u3mkwAdJsUujo8MHqb6evt/OHIbHduszosKCgkDozjvNP785WphiaVgy2VNXRbrXjp9cy9+GLKW1tJCXYmlrc27eSXyjxirUEMiYwlOSK4R4wTx/QjPS2ShPBAilvfYV39XK5fGY2qLoj7x01mYnIfVCoVQwLG0mE1M/vnz6nv7uSjoefyYvK5vZ4TTw898x64xnX7I7/z2NbSyAX9+vcaW6beSmxkPQBnhJ1JVcdneGu6cDSrqaxzxlnf3UlddwfV3zSRtlnPP++aTmJyOIXba5nz4hYCtUYuvdH5I7OiOMhv20lRVj7R33fi4+3JQ8+dg9HonEwxI2oIG5pKaGuHGpONPxYB13TasHs5P4qWt7RitdvR7Uf3IbVaxT2njueJD3/j1Q+W4WFTExXsR2lLG3c9cAZ6rZbR4/uxZlUxTz3yPYOHJTAhPJ35qq1od2jQDdAwZfoAiraUcdes54lODCP82jg+rVzBuTFj2FLh7FxQ2dzG8qIdrqT4rrbVNeKh0/L1TRfhUBQ0u6msF0IcWx544AEeeOAB7r33XtTyNy3EMe2PxDg4EyqSGBcnml2rxYcPH37cFqqI41d6ejq//vor4GynftJJJ8nrWIjDRFEU6TIiTjgHnBi/5ZZbaG9vJzc3l9TUVADy8vK47LLLuPXWW/nss88OeZDi0Arx82ZwYhT55bVMHOBcI/7DrVk8tGwRgQZPll9+zW4TFn+wORxk19UCsLG6ipZuZ+KgvvP3tcVtNv7vh3nk1dXjY3DO7uuw5B7OU3KrkZnxTBjSF4vNzoQhBzcLd9WCHEoLqpl5+Ti8fP6sqDbo/Hj13Nux2h3otQe/VIFWreaUmL78VlHCoOBI3v5pDV2e3sTFd+Hvkc7OplZemr+KDq2zpezukgB/UBSFppoW7s6czJXJowgx7L7i/Q+pYSFE+vrQbjYzPC5mr2P3Zs2KYt54aQEAYeF+jJuYetDHEkI4/VCRQ4ulm58qc3lw4Ax89Xvu6KBSqRgZkrDbbQ99eD35G0pJHdqH80z1rKrbzjnxPSfB1Hd2ctk336AAzd3d/HPUaLYsyycmOYKQqEDXuBef+Zkfv9/MeReO5LQrkqk17yTTbxga1Z//Bj69ZAU7O50J+I83b+HWMaN6PFa8VxJPDX2bD4I+ZGXyLyytD2RLro5Xl60l0OjJ0n9ew2ezZ1NQX8/ZaWkAPHHGqfycG8+guBDSg53/Vs2IOJ8IzxhijYno1c4k7zWPzmZSYzMv/raSSJsHismOGRvbSupI6RuOSqWiqbuL61d9RpOlC1WrBsOX3iz499UE+zgnFHSaLMy8/z2a27t5+Oq+OIJexVcLyQHpLGlM44ZPv2dGSjLPnj8DgNzGOnIane+7iyq20y9g35MQx0XFMy4qfrfbIvR90Ko86LI4eHLdD1yf0QVAqLEdFPDRwy3DfsHP0MoHcyey0jOItfO/4kXjGYRrjM60tk1Fjb2FBRXnYrZX8nHFIMoS/bGfbiBwpYaWYAfjP3mLqvY2Ynz96RuQjKmyAWhzvsnYoe9aE9tO9sYBFBfXc/+PC3hoxil0d1tZl1vOgKRIwoOcS43MXZbD29+v5qJpQ5g9eTBPfvgbRWV1ALz/w1qKyxtABSFWDf3DQnj8oe9ISonEbLaxekUxTz53AcVP19LW0s0jd3zKbf86nX9MfQqA7FXFdI/Iw+Rt57Xseeg1IVjsDs4aksbwhGjeWupcZyshKID+sREYPXScmulcgkalUqGRH2iEOC50dXVx/vnnS1JciONAaGgoYWFh1NbWUllZSXNzMwEBAe4OS4gjwmQysXXrVgD0ej0DBw50b0BCHAQfHx/i4uIoKyujsbGR2tpawsMPvqucEGLPSkpKaGhoACAuLk7+1sQJ4YAT4/PmzWPhwoWupDhAWloar776KlOmTDmkwYnDQ6tR887t5/W4r7LdWdnXbOqmy2rdbWJ8cWUJ32/P4//ZO+/wKuq0Dd8zp7f03nsghd67NEVBwN5772Utu6ufurrqFnVdde0Ne0XpSFHpnUASSEhI7z05vc18fxwMRkDQBVF37uviIufMb2beM2famed9n/fKnGG8cNpMvq6u5Lohw+kc4mRHXQPnDgxUSi8vKWNHTQOoYGHR+dw5wU9S8MUn/HN1tFn543VvggyPv3Il4ZE/LtgeL0wGLX+/49B+ssdKa2MXj948D2TwenxccfeMPtMFQTgmUbzL7eT5ovVkBIdzQcahVdmvTTuLrysquGb+FyDJhJVOJ8LkZOHTN/HXBV+zqKAEdPDw5ZOZOSb30BUc4IV73mPh22uJGZHJ9X88k+hxh/ZHf2//Vr6o2cXtOacwLjqdVbddjfxfVtTFxoegVovIQGy88lDjt4ZX8vOHLZ9Tbe9gQnQGpd0tXJs9lmERSSc7tN8dsixz37Yv2dxayZPDZjM6Ku2IYy/PGEmNvYPx0ekEafU0O9ZTZ1tCWvBFhOqOfB44uC4/dW0FdDQEMXBcNqIoMMAYz4CwQ63E9Wo1Fp2OHrebELWOGyc9Rk1pA2aTlvf2/BOdIdBre/PG/QBs2rGXfWPfwid7mRFzHtNjzgLA2uUgrlNE8INKJXJ69pHdLda1r8Un+1jftp4WWx5+g59Go43nt2/irhFjGRp30CI8zGjgkuFDerfhU0WrKLO28uDAGcQbQgD48OsC3l+9iavOaSK1uZtlz6po/LwE9bAENmyvYNSgFG68aRJnfDoP2eJCo/OTbmqjTaemx+3itZJtZIVGMDoskU6rE4CaRi3pUZE4fR00O6JRdemQfPBVURmSJCOKAkOi4jgnI49mh4256TmH/axevx8BAfVR3DQ+2LObP377FYKQC7JAXnIdRc4EQlR2lu4fcGBbtBJtDjihpAxsZI8xGgQ3rxRs5e2Z5/Dak5ewvLqMl2oXc39SOQCpxhaqnSHY40XmPDCBK5d83utSUtndSWV3JwAhO124og0IfoFrbpjNqj3lfNNagzdI4oOGQta+X430jQO/JBNk0rHs3zeiVom8s2QrTe1W3lq0hUhZS8PeFjCCTqtmfF4qZdWtIAjYbW62V1ciyzIGg5oBg5Koq+3gz/d+REZGNM1NPZRWd3DjdW8hBpsQuwNJfdJSJ9IsPc5aI3Nys5k0MJMJ2akICFw9fhhNPVbuP2MS4eYfbzOioHAiEeTAv5PNryGGE8HVV1/NJ598wv3333+yQ1FQUDgO5OXl0dwcSCwsKipi/PjxJzkiBYVfhp07d+I94I41cOBAdDrdSY5IQeHnkZubS3V1NRA4jytinYLCiWHz5s29fyvV4gr/K/xkYVySJDSHEU01Gg2SJB2XoBR+eW4bMZoQnYG8qCgijId/6HvX2sV0up2UtrUyvTaeuWMySQ0JRadScWq/TIL1gUrDvNhozFotKkHgz5OvJCk05Bf5DAWb91NdHqgeW7lgJ+dfPeG4Ln9PUR2NDV1MmpyDSn38KklMFj1BIUZ6Oh3EJUccfYYj8HrJZt4oDdiejIxKJjUo7JAxjVZb4A9RAI+fS2adilqlYmR6Ip9uKSI7LoSZ4zIw/IhjQPGGfUix4TR0u3n40c95/aMbSQwJ7jPm74UrcEs+/lOyhnHR6YG+uT9SUbeluo7PC4q5YOgABiXEHnZMWkY0735+KwDhEb9M0oPC8aO0u5nlDXsBKOkOPKBa01zG4mk3kWb5+fu9wqF0eZwsqA1UCMyv3vWjwviAsHg+OeWa3tc7Wv6MR+rC7q1mQvy7fcZ6/H5uXriQqs5Onp81i+yICApa/kqN/XMam8LYufUhrrimb4uIbncJLc6NJJrPxKIL56srrqDRaqVjUx2flTcjqFQ4nV6Kuovp6GljYuRE7rzvdJYuLOC0s3L4hMDN+da2anIsXSSYQvjbH95nd3MR4zSRvPrJ/WhUKtbXVbO7tYlLcgdh0R588HNR0kVsbN9IVVcQazwF6BK1+LrUvF24g/PT4jGYuwnVDTjEkq3c2sprZRsACNOYKK7pJi8imq1LK8nK2oZg2UbKGRCxeCROhwdXe6B6vaXDRk1PF26/H7p0PDypAZN2A5rh8XxaNZoXCwOfZ+251/G3686gvL6NS6YNxaSfgiR7mZtuZFe/Rp5ftZHpeZmIYiAujajiqQmn98YnSTJPLV1DaVMbfzlrGi6vlwv+8yHqCBepg9RcnDqe0+OHHPY7X1kVSDyQ5cB1rKQ+lvSQCPLihnFBvyCe374JweynzBmJWeWmxBaDKEKwzsB5/fMBiIg142+HRlsIKytymZlhprttKJ1NbWh8JvJT4hB3CEiyjE5UMTA6hm2NDQyIjKZnyw5ax0ejcvt54qsVqHpE9FoBV3JAaauz9xBmEFE7wOP191qYXHbGcF77chMXnTqUxV/sQKx3EKoVWbb6j3g9fjYt3UNtcyeZ0WFkj4mns8NGfEIYa78toaM9cO2rrWkHSQpcjwQBf4gBW6IGbYcb/UoP7cGxyFoRd0srp1xwGgAbyqp5e/0OIoNM6P4L5xYFBYVfP0888QQzZ85k2bJl5OfnH/Kb9+mnnz5JkSkoKPwc8vLyWLVqFaAI4wr/O0iSxNatW3tfjxgx4iRGo6Dw35GTk8PSpUuRZZni4mKmTJmi2KkrKBxn2tvbKS8PFDwEBweTnZ19kiNSUPhl+MnC+OTJk7n99tv54IMPiDtQaVVfX8+dd97JlClTjnuACr8MFq2Om4f/eEbQ2NhkFlWVIFR6WLhsJ1+tKOTZt6/gjA/fQZJlPjn7AobExpEWHsamO69HALTqn7yL/WxGjM8mZ3ASe3bW8OazX5GUFsno42S33dLcw503zUOSZDrabZx74Sg+fWsd+0sbuer26UTGBB99IUfAaNbz2lf30tVuIzE9ClmWuf/Ot9jWWM8jN85l3KSjV20C5IXFIgARehMRBtNhx5yTl0tTWzdbV+9j4rAkLjpzOACnDchmRIaFzS0Xs7LuP4yLfYNQ/eF7pd/x3JU8++QC9tit1E/RMunN13nn7HMYk3Sw8ve81CHMr97F2cmDjin2+75cRkO3lcLGZhbfcNkRxymC+G+XrOBoxkSmsqm1ComA0CUDnW4HKF/rcSVUZ+TyjFFsaqngovTAMV5nW4bVU0G0/nwkDH0SoJpr27n7zKdQqVVc++lA2vmWCP1IyqzFVDvKGBM+FaPazL62NlZXVACwsKSE7HHjsHlrAAiOstO8y967zM3tm1nR/BUD9EuQcbKt/RNOiX+FGFMCkSYT7aP0xCRHYO9xcP2zc3ih9jlkZOw+O8NydUxOXExSSCR3CY9z+5Y3WNbew67WT/n4lGuwjawhfFA39NgRBJkul5PLFn+KX5Zpc1q5YXAQQdoMdKowTok6hVOiTmH68ucAMGlVGEUDwp4e1o86D12Ph0zj7eTEXNlnGyaZwsgNiaXS2kZLl4tdnY3s6mjk7lPGUFxRhyyDWjBx3lVzGDluFB4BVm0oZfKYbOJjQnhg9CTcfh9pwY00O0EQHPQLC9ifRxpMhOkNTBuaxbShWb3rFIWAADMwKZZXrzyrTzxFXTU0OjuZHJOPShApa27jrXU7ALjr/UWEmY3Y3B5M8Z3st/t5oWzZEYXxe0eOo9HWg1/txG5sIEITyt9H/gGtSs06dTUSMt0OI7vtifglgcbuYP4ybiqX5A3C6/dT1dXJaR+/jUcKVKgvLBuM1ZnK2rJqZHRcN3IoYQ4VZwX7MSUY+ePo69CqNHj8fjSiyMV/2o52XilttyZhG+IDD6gLDN+1HUenVtGZJxHrN/LGmeeiPiBGzxqfx6zxgetSqtmC1epi+Kh0br3uTRISw3jpxauYNf3vFAR3s6PIyiVjBvDpe1v6fHaHwwPfcy7pSdJgywwFSSbh/QoSPqlC0oic9/pB55bt1fX4JInGLisNXVayYpSKGwWF3yuPP/44y5cv730Y9P0Hr8pDWAWF3x4hISEkJCRQV1dHS0sLLS0tREVFneywFBROKOXl5XR2Bpya0tLSiIhQktAVfruYTCZSU1OpqKigq6uLhoYG4uMPdadTUFD4+Xy/Wnz48OFKWymF/xl+smr5/PPPM3v2bFJSUkhMTEQQBGpqasjPz+fdd989+gIUfrM8N/FM/jr6VOZ/uJV5rCc7K5ZGmw3fAaeAOms3Q2IDyRJevx+X10eE+ZcTxpvqOyktrOt93dLYddyWrVIJqFQikuRHp1PTVNfBa08vAyAkzMT195x+lCX8OJYQI5aQgFDV1W7js7gWfFl6Ht3yLcsPCONtdjvra2qYmJJCib0OEYERERm9yzg1MZtNc2/DrNFhUB++4lurUnHXlPEwpW+2vM3t4a/L32fCwMAPqNrWLbz+r0LSc+KZe/UEbJ5qyrvfJsY4kdgBQ9D8qYY0r42OXYnYbEaqurrIjY7i9m8WIQjw7KRZ/Hngacf8+UckJ/DF7r2MSE74SdtN4beDVlRxbfZYNrRW9r6Xbo5gSPjP7zuvcGT+OOBgaxO7t47tLQFb2JfLtrBkz0A+OP/8Xhvx3Rv20d4UaKchFV7FjBmPIKHlz4XXIuGny9vBOQlXkR0RwYzMTCq7uphzoJ3K0OhH2F7xDt7aNK65cXLvOj+u+5gOTzvpGgGjCjq9Dta0LuO8xEB1enhMCG9uegQAm8/Gp7t0uCQXwZpgitofw+1vx9PezeTEz9ALKchUE20ItG3Im5TM+q5aNMECMjI6lZpgnZ4Ol5OMsBVsaFyOXhXF9KSlCAf6kj817CwunfcunlqBTIOJrvZONLqAveDGbzeSc/5BYdzmctNmdfDZ5GuRZZk/rV8BB34XjB6cwm0zHsXpuwWVYECbdrCVxOVnj2LtvipK2tu4esBQBEHA4+9HnW04kYaRWLRpDI2KJ1inw6w5dnG1wdnJdZtfQkKmw2Pj/OSxJIWHoBIFfJJMq9Xea5/ubTBgyHRxVsLhE92sLjdb9tfxj/GnsaxrM5/UVNPka6HZ1UWiKYKh0bFcmT+Ez5ZsY5MzHZUTxm2L4pIrBvFe8S4eWLOCKKMZl9+HTuUhOdjDvg4TayqrEGQQ3RLJPRr++fLrdM0tpRV4srSdK1OuJNEYONb/s/4Rln2+ga39bSxu24MggLHah7qpB3eUFkeqGQEBfZiOjKTD91IfMTqDEaMzeP2l1ZTuaaB0TwNnnz8CY4SRbn0g8WbZ2j1oNCJeb+AeJTzCgrXHgcfj712OyuEDQPRIJCRHcNvjFxAUZiYt9+C16OJRg2iz2kkKDyEzOvyYvzcFhROCfODfyebXEMMJ4Omnn+aNN97giiuuONmhKCgoHCfy8vKoqws8IygqKmLy5MlHmUNB4bfNli0HE0OVanGF3wO5ublUHEjQLyoqUoRxBYXjiMvlYteuXUDADXrIkMMXWCgo/B75yaplYmIiO3bsYOXKlezduxdZlsnJyWHq1KknIj6FXxGCIGDRaKldV0pIczfn3j2DMUnJ/PWUqbj9fs7ICFRXtNrszHjpbWweD69fOJexqcm/SHxV5c34fYEH4KfOHcrp5w4/bssOj7Dw4pvX0NLUTZBZh1qjIiktkvrqdgaNOLJN8c8hJNyMwajDio+o+FCsXQ4sIUau/Hw+e1paGJgaQp0xYHHy4vBrGBp+cP2RBvPPWufXFYXs7GlH2pPLmNRoVr0qsmr+dlbN307+iFTaIp+i2bGGWutCMsLn0eXtAuDCoQkE+3I4OyeHxVWlfF0XuFldXbufOUfog9vs7MGs0WNSa3vfe/LMU7lnynjCTUrv1t8bW9uq+aRyB7HGEL6q34NJrcXu8wAQrjcpFVgnkC5PO/Oq/41FpSdaDMYrdVPfbcYvy5S1tfUK42NmDGLb6j2oNCpGTM5Dq9Lhk7yY1RZ6fF2EagJioEal4vlZs/qsw6iJZ3z2/fADp6WJkRNZ3LgYk+F2Wl0bqPV0My5sEH97YRlL1u3l+gvH9TpWmNVmHs9/nE5PJ5FiHF/Vj0QT/BWJlpkAvDzmIoq6GhgQGvgBfFHqhQRVRrB+eRuv79vE9ReO4/0Z5+KUfcjiy9TawCtZkZEQCAjjOaGxxDaH0Wy3MXJkCmkTBvH1M+3ojfUkmU/pjdvp8TLrb2/RZnXw0DlTOWdUPhf1G8DiqhJijGb6hweEWoM6+pDtvbO6gevfmg/Avy6ayfS8TLSqENKCL+wdE28OOmS+o6EWRERBRJL9aEQ1nXYnBq2GURlJrCurprHHxoR+aeyoacRTb2Rm6niuzjh8K5G/rVjDJzuLMGjUfHDjXIq6akgza6lx7iTGMJFbVyxmZfV+tGaI/Qj8GoF9c2Tu+3o5TXYrMtDssBGq1/DAuCWoVR102Gbx6MoQEATiFjSTPi6YqqB4OtyliFqotFfySd0n3JV1F7IsM+rr5/GFStAkE6YzYny4HH114JzQPiEcZ6oFZMjotvDBUwtJHp7CV8ZairqaeGTwDHLDD7bbSBsST/gqC2pZxb//uQx7qwOtrEHSCLhbnIh+UKtFUtKiuPfPs7jnn5/R2m2FcA8qt4x5eReGGitqq5cmt58BY7MOyY4OMxt5ZO60n/y9KSgo/PbQ6XSMHTv2ZIehoKBwHMnNzWX58uXIskxRURGnnHKK8vtD4XdLW1sb+/cH2iaFhISQmZl5kiNSUPjv6d+/P4sXL0aSJPbs2cP06dOV87iCwnGioKAAjyfwPGbAgAEYDIaTHJGCwi/HTxLGP/nkE7744gu8Xi9Tp07l1ltvPVFxKfxKeerO92hpXEV6Px9rvtzO2NMGclHewD5jGrqt9LjdAJS2tP1iwnhUbDBTZg0iITmC866egEr131l/NNS2ExZhQW8ICLjJKRFs+7aEV59aRkiYibeW3oUgiOj0R+7H/VOQJJl3Fm/F5nDz5UWXsnDjbpbeu4zL/17My8v+gCwfWp5zvG4G13vmk5zTiFXQYNMNQu3XBNbn89NY3kR04iCaHWsI0eWQHZTNrLgz6PH2cH7ieRhVBu5/dylr91cSl2XBpNMS2qHi8j/9h0FDUrjj3hm9cS6v38vtmz8hQmdi6fSbsWj0vZ8jwnzQ/t3r9/P06vXsq2zGXOJk5pyhjByZgU/yE2b47YjnpdYSNrZtQK/SU22rosyxDxD4U9afSQvKOOr8v2VkWaaws4H7tn1Bg6P7sGP6B8f8wlH99qmzt7ClZRHjYqYRZfjxavudXRuptJcCcG3q30gyxNHW2crYBDdzcw4mrpiCDPzx5av7zKsWNdzb75+0e5pJNKTRY3NR39xFv7RoOjwdvLD/BUwqE7dk3IJOdWj185lxZ3Jm3JkHXp2Pw+bi6il/ozrRiNcisuDbIi46cziyLOOTJEK1oYRqQ3ns3ZW8vzccX9iFvHX+FDJDwKDWMDzi4HXEqDbSuD6Ibd+Ws40tOEwyb67dTm5CNG/fchfBuiw0Qg4Pbvya9OAwrswZikoUef+BS6hoaGdQRhwqUWTysAz2F9czYFR677Ltbg/tVgcAFS0dAORHxLD7ktuO+t18v/+0XnPk2yuHz40oCOhV2iOO+T5R+mDmjbmVZmcXzlYV4156iQizCfF75/+YEAsPzZ5CaVMrV08YdsRlBRsC51yzTkdmUBz/GnYxfym+mU/rVmP1dSObtjF9cAM796dgHRFMXmoca5z1VJcUElpshdxA3wOhzYNKCBzX3VRgSsljpJzMzf84ncHj+zFwXBZ7S0bzsf8DalwV9DMH9rdNzVX4kA5EI9DhdmG7NILEvzYgyBC2rh1/qAkp2MJOey3fprjwlRcimgPzzF71On/Mm0pGpZ5dzk5e2lGAOUeD+ZtuKgQHvhQ92h4fhmYv4oHV+HwSDz56Fk78VEgufJngHhiYqN0nom32IHokUnMTFMswhV8/SsX4CeX222/nueee49///vfJDkVBQeE4YTabe214Ozs7qa+vJyFBcSlT+H3y/WpxxQ5X4feCwWAgPT2dsrIyenp6qK2tJel7rRwVFBR+HpIk9blujBz54y12FRR+bxyzMP7KK69www03kJmZiV6v57PPPqOyspInnnjiRMan8CujvXkj9778DQDOzhmHHTMgLpoHp59Ci83GBYMH/CJx7dlVw71XvQHAX1+6/KiiuMvpYdv6MnIGJRH2g77V1m4HT97/CdvXlxGTEMprX96BWhMQPFoaA0JAT7cDr1fCEtRXEGpvs7JiWSEjRqWTlnFoReGPsW1PDf/5eB0A8VHBpHXqEDwyTo+Hhuo2zvcl0JwUyzUzxlLhbERAYHBY6k9ax5EI0QbT6glYzO117OKB+x6msaQWo8XA8FMHoDcOxy+P5aP9FWjVtZyTcBbNHVaefnstcrDIZw0lqASY7e/H388+nb89uoCG+k4a6ju58rqJhIQGRO+SriYA2tx2OtyOXmH8h2yqquWNTdsDL4Jklq5ZjrD3K/yyzCdzL2RwdOxh5/s1sbJ5OR/WfnCYKTKP73uMV4e++bvOcn25dB3/2vM1WvoeiwND48kMiqLJ2cOlGcpN109l3r5byA3ex+q6Nzk/Y82P7kN5wcPY2L4Kk8pCmnkgepWBs9LCkSUZnfrol3+T2oxJbcbr9XPZ3W/T2mHjugvHETumm0p7wBL//774ALk9ggcunkqQ6fDHM4C120lXuw3nQCO+IBFrGPgliYvf+pjChmZunT6KCempmPRaHAkyCPBiwWbGJBz+B+/YoWl8sbyA2DAL1R1dAOxrbEUUzKQHX8w/t6/l3ZICAMbHp5IZEk6o2cDQrIMPQkPCzQyd0LfUPcJi4pkrZrGnroXLJvw0C6mc+Gg+ufki3D4fQ5IPb++239rE1Zv+gyiIzBtzKwnGY7PmTjNHk2aO5rldG5BlaLXaGZGWQHOPjQizkcvGDMagPXqS1p2TxzIuLZn2LVUsfvErhs7JQ/YIoAW1rCYouAqAlOhWjMEDuGP4WPZ/tRDnzkZs5sC+ppYE9Fvh084pnHedmbcrPbhlH5t8VUwzZ/Hnr57DIwn8dchMFm7U4PCnkKyWmBErYz5Mmw9Psh53vAZNu4+YhHD6S6HscIFd48UTqUPAB71iuswTu1cQ8b6f7jwLAiI2jxdtjBafIXCd9oRpCEkP5c9nT2LJwgKayxp55MIXSOwfg7rDiWRRgSwjyAKOPC1Nt4US6zTw7Pl3HXabdTmcvLexgMHJcYzJ+GUS/RQUFE4OW7ZsYfXq1SxatIjc3Fw0mr7nrM8///wkRaagoPDfkJeX18eGVxHGFX6PuN3uPna4gwcPPskRKSgcP3JzcykrKwOguLhYEcYVFI4DZWVldHYGWqqmpaURGXn4VnYKCr9XjlkYf+655/jzn//Mo48+CsBbb73Frbfeqgjj/2NcdNfpQMAqNiE9UO3Z5bHyr31vYVDruSHlYpweiUuHD/pF45J8Uu/ffr/0IyMD/PsvX7J68S5iEkJ5a8ndve9vWVvKuy+uZl9RPRDoW37D2f/G7fLxt9eu4rKbpxAWaSY7LwFL0KH2Is/8fQmbN5Tz6Yeb+XTRnT/pMyTGhGLUa/F4fWQmRZI5pj89nXaCw0yU7qrl/X8uBeDC4QMZmJzC5rYy6h0dxBvDftJ6DsedWbexsmUl+6wlTImaQlCIhccX3NtnzCPbtrCltZYFVSVsmnsV39afT8qQHl5eOR1ZHYTPDHNHBfqhn37mIPbuqcc4NJSHNn7DTSNGkh0RwRWZo/BIPtIskSSb+8YtyxLbWv6PNlcR2aEPEmk20mlz4lOBrJbx+AN9YReXlFDb0sXMvH59KiZPBl7JS6W9gmRjyiFVswsbFv7ovE2uRmINcScyvJNKo7MHAA99j8fbciaRaonAK/lJMIWchMh+22jFwHGgElx8WPMSZydejVY8fOVxpC6GP/V/pvd1dWUrN171OpIk8++XryCr37ElmHh9fjp7AlXUza09nBE6hHVt6/C6RFasbkPydTI8O5FzJx50D9nT0MJ9Hy2lf1wUT557GtHxodz79EX8Y+MWar0OIkNMdDld7KxrxK+TeKLoW54s+pYFsy5j57pmtrTVMzfr8O0YANzV7WhX7KXDYkFd1cHZlw1iUl46GlVAHB0SFYcoCMQYzcQYf7zFxJaKWj7dVsR5w/MZlprAlLwMpuT9NEcHr+RjY9s+ssLiiDEcOSlqn7UBlxTobb7f2nTMwvh3XDpmCDaXhzWllWypCCQztdkcuLy+IwrjXq8fWZCxuj2Em4yEd/p46NL/ADBi1XDKijVootW0nCky/oLTWFv2NV0f+LE5q7j3owaevWc2bb4KXn1nKfaoSKSiHrQ6E1OGzSXZnIjd9yYAPsHLfOfLRARLuHwqLl/XhiSLgMCy2j0sqSvCqNYSKDXte+6uuycOtAJVKoExkWFYFzUhI2Oo8SOpZcwxAj1REoIYkMhb5uqRXBLaFjA1CngNB6v1JZ1EbXIn1bFWzjpjAH867xsQBCprWmC8AVeKgZD5Diw7nbSfE0iMazG4QDz89eSZ5ev5ZGshalFk44M3YtIdW6W/goLCb4+QkBDOOuuskx2GgoLCceY7G16/309xcTHTp09XKmkVfnd83w43Pz9fscNV+F2RnZ2NSqXC7/ezZ88eTj31VOU8rqDwX7J58+bev5VqcYX/RY5ZGK+oqODKK6/sfX3ppZdy3XXX0dTUREyMYof7v8KAETNxuxciyzZ0uokAbGzfya7uEgBWbrFSXSvw5MzpnDUw9xeLK29oCo+/cgV+r8Tw8VlHHe9x+wDwevy971m7HTx867tIUsAfUm/QcuaFI/n4jbUAbN9QzqwLRnL+1ROPuNyw8IAAExpmOuKYIxEbEcSif1+HX5J6Ky9jEsOoKW8hODywPFElIqpE3tr/DS+Xr8So0rLklD9iVB9qZXysNHfZCDbqOSP2DM6IPeOI4/LDYtnSWsvgaB8fVT9CkKkJHTA6vp1mnZoJaa3kpwSEhfyBSbz+3vX0e+7f+EsbAv3m58xFskvcnn0KWu2hpx6Hr4Fa22IAvml5nW9ufx6/JPF5QTEbKmtYUrUPBJi3ZicCAm6fj1EpSXxeUMy0fhnkxEb97G3wc3mt4mW2d20j29KPe7Lv7zMt0ZhIiXUvAgLyDzxHRVSEav/7hIZfKw6Pl5D2IMJURjr8jj7TdKKaU5c/h0+WeHv8ZYyITDk5QZ5EbF43JrX2qI4Be1paWLJvH2fn5pIaGgrAxZkvsKrhGfY4ynBK35IbPJQBISMOO3+PzcUL874lJMjAdReOo7GhC683cM6rr+voI4yX9OzltcpXyDJnMcR4Jk12K1OT0tlcXkv/+CieeeAcCksbmDttAEE6A3/J+wsdPQ6KQj7A4fIyPLuvrfv87cWUt7azz9rOxLJUzsjuxylnDmb49By27q9jWFoCFoOO+6ZNYGHFXna4G5ABj+Rn3txzj7oNt3W10z45gZB9DlpLW7k3LYO83LTe6ZMT0ym46FYMag1alepHlgQPfLaCus5uCmubWHr3lT869ki8sG8ZH1avJ1hjZPGkP6EWD7/OydH5lFubUYsiYyP7/eT1hBj1/HHmJEoaW6lu7yLYoOf2aWMINR3+wdeWXVXc88R8urNEnGqJv5wxhQlhMRBroCdWz0p7PcEtIt4m+LB0MQv+8DILphUgN3TQMw1kwc2r2zdx2+yJPHxmNlc/OY9wrQtbYwf/qhdQfb4NDmj7Wq0fnTqQCGPQ+BkQ3UBZRyQg0+X1E6Tz0OVVMyQsjR0d9QciDLgDYBRAAEGU2dRVCWMBAcRyPaouDd1hdr47XAQR1EFeJJ0f2a7FY1Lh08CcEf25fvoo7tu4gK3+Gv6vYAlmUYv/mmCMhRL23FAcA30gQPssC+bdLjRtgePBrNGR98VjhGqN/HHAdE6Nz0GnClynksKDgYCbgFb94/vSz6GivBmzRU9UdPBxX7bC7w9BDvw72fwaYjgRvPnmmyc7BAUFhROAXq8nMzOTkpISbDYb1dXVpKYeH+c1BYVfA7Iss3Xr1t7XI0Yc/vehgsJvFeU8rqBwfGlpaaGyMuAEGRYWRmZm5kmOSEHhl+eYhXGn04nZfLDqSqVSodPpcDgcPzKXwu8Rne5g/1Kb/W3yhHmMDUqi2pPOykYJUFHc1PKLCuMAQ0Yde4XfHQ/PYdi4TAaOOCik6PQaQsPNtLdaOe/qCZx/1QTUGhWtTd3YbW4mnJp31OXedvdpTD01n/SMnyfSmgwHK9Eaqtv55z0fATBiUkBAkfwSFXsbcSUHKg69kh+/fPQK+SOxcNse/vz+cmJDLXx53xXoDyNYf8efhkzh0uyhPL//dgp6XAw1J5BkSOThcx7im4Y5+CQbu1vdjIl7CQBREBiVkMD6mhrGJSXz9cpiHn/4C6Jjg3n93evR6fpWNxrVcezpTiZK38bK+jAqaldz7/hxXDhsILmx0aws3Y8sy8gHig3dXj9/XLCcrdX1fFpQxEXDBrKkeB9/nD6BMWlHtrv1SRJtDhvXLfsSq8fNqzPmkhF6+KrNDk87Lx7opXxj+qG9lDu9gR7EnZ7OQ+a9NeMOinuK+LDmPTq8HYRqQnki/x/YfFYMKuNh+zIfD6o7utCpVUSaTbTZHURbfrxa9kTw3sadvLp6G1K6C0JBRGBWQj6zkvPxIeE9sM9+V1X+W8cnSXQ6nUSajp4Q8/q+DTxTvJxLUq1cljGbGNOEIzof3LBgAfU9PWyoqeHziy4CINYYw6mJd1Ja9n+EqNQkm4583lvyTTGLvi4CYNTgVEaMzuD6W6bi8/mZMKk/AO09doJMeja0r6PL28mWzs089U03bq+asZZEdu9sIDLIxIoHrmFI7kHxW5Zl1rdVc/v1E5mSmE5jew/3v7qYvNRYLpk6hDlDcliyv5R6vY2bv15EWkQ4/cMjMet1nJJ7sKf3VaOHcuWoISyqLMGo1jAs+vAW5N/H4fHyyt4i5AwLlkgLpxpiyB54qJVasO7I1u7fp19mEO3WGjJCju7g4PdL7Fi3j+TMaKLiQnvf90gHkq0k/yGJMN9Hp9Jwa/bh25D8FJ69eCZrSisZm5lCuNl4xHFbdlXhkfw4VYET547aBp6tX0Hb02nIEkj+QAV22KYuUnMDtqJ/fOdWVr67hu6kcBabKlhpKGPFV2WIIgw7rYoLU7fR49bzxI7TsHu0gV7eoozLr8bpVWPQBLaFQeMnP6oJQQC/BCoRJBl2NgqIKnXgXC4LiKrDbK8Dh4QU40boDFQC9F7qDhQGiDoJ4tzQbMQTJvPp3j18VlyMf7irdzE2yQODjTgGgSx5Qf5OXRdwpWmR+weO2W5vYJ4Oj4N7tn3BPdu+YG7SAJ4cNoerxg9jbGYK8aFBvY4Ex4s1X+/l0Qc+Q6tT89aHNxEZFXRcl6+goKCgoKAQIC8vj5KSQDJ/YWGhIqgo/K7Yv38/7e3tAKSkpBAd/dPa+iko/BbIzc3tPY8XFxcr53EFhf+C71eLjxgx4nfd6lNB4UgcszAO8Nprr/URx30+H2+99RYRERG97912223HLzqFk0JTQycP3voeZouex56/BJP5oLjQ7gwkQoQbAg/iu7ofA9nGpdE6oqPeZKGuhMLGJq4fM4I2m51ul5v0iF9fZaw5yMBpZw3r855Wp+GVL26nraWHpLTI3ovCfU+ed8zLVatVDBj083vd2Lw25lW/h0VtZnbYbILDTHR32MkdlkLJrlpMFh05Q5IZFppNkimCTEsMFs3Pt8jaW9cCyDR29dDjdKHXHllEFQSBJHMoucFDKejaSGzQDYyLmglAkCaDDncBQbpAtX51zxfs71hKtn0gQwYmMSJdz5p1gQrB5sZuerqdREZpfrB8kamJz/B26Ra2761hu3c3KaEhXDNsGAPiY3j3inP4urSSV9dvAxlGpyWxp6mFrdX1JIQE8+w3gd67b2zcfkRhvMftZvjb/8EtBaoEjXoXD29YwLtnHL5KdFvHNirtgX505bYycoP7Jkdcl3Yjmzs2MSRk6CHz6lQ6hoQOZXXLSjq8HUTqolCLakK0oYeM/Tls/mYPr/xtMYnT0qmMlNhWXQcI+CQJjUqkX3QkhQ3N3D5pDDdN+GUtcVLCQ5EFGUICSpaEzDfN+3h82JmIgsBfh5zJjtp66svt2KM9fayJa2wdhOqMR+w/fzLxy362dWwhQhdJujkgSMuyzPkffkhBUxP3T5jAtcOG/egy1jaXMyGqjP5Be9jasprnt17IezNvJsrU99jb1lhPvb8Hv04iKaRvJWmkLoa/5L4M0HueanDWY/c5yLQczPIc2D8evU6DxaQjJSEcURQ454KD+8LH3+7iLwtXgxYeumgoiYZa4nSpfO3rAOTethQury8gYn6PJVWl3PJNoF3Ap2dcxMpV+/hqW+Df9KFZ5MZHc//MSdy6ctFRt6sgCMxK63/Ucd+hV6sZkBDD7tombrpiKucOzz/meQ9HZ1QDGoOb/dryo45977kVfPD8SkxBet7b8H/o9IHz2K1Zp5MTnEBucCIa8SfdWv0sQowGzhycQ2O3lYve+ohIk4l/zD0NrVpNVXcnFy74GJNGwwtTZtLSZsUZBJpoLZoYP23Vgeu4IAbEasdoPWEbZUq3VzL7mX9RGONAHCkg0IgkSgjCQePzWEM3AEE6F6YgNz6PiNAuIIeDIMCe1mhyoxrQq/3IMr3zqg7spwICoiD3Vn9LP9yxDvDdvJhl/KkuhHoNcoQPPCJyiA/EwHRZI+OM8yPpAwtUiR5UP5KY8H0H97aLQ/nboFn8tXAZPbgOGfplTSFPDpuDIAj0iz0xvbbaWq1AwMWmtqYdS5ABvf7oveIVFBSOH0OGDGHVqlWEhoYyePDgH30otGPHjl8wMgUFheNJVlYWWq0Wj8fD3r17Of3001GrT/w9m4LCL8GWLVt6/1aqxRV+r2RlZaFWq/H5fOzdu5cZM2agOs6JywoK/ws4HA52794NgFarZdCgQSc3IAWFk8Qx/xJISkri1Vdf7fNeTEwM77zzTu9rQRAUYfx3wKZvSqmpaAVgT0Etw8cFhJa9ba3M/ug9ABacfzH9IiIxmS7Dbp+HyXQhdq8HlVHg2rHDkSWZKS++gV3yctfEsdw0KiDGFO6oZuu6fcw8dzhRsSEn5fP9GCaLHpPl5Aly69o3sLkj8KNm/dOVXHr7dLIHJvHQdW/S02ln6PgsQiMCPVFnJRwqxv5Urp4ynDWabbSqOtli28fM4CFHneey5Nu4MOlGtKIWv8+PrcvB2LhXsXvrMWuSkWWJXW2PIuMnNHsfu8R4CkqXcvvZd+DzDSUzK+aIVXGjIlPJNEWzs+gduiUXQ+ICFZzfVFZy9RfzMWm13H/qRLIiwkkLD+X8IfnMyMlkV10zPU4X7Q4n5w45KJL5JB/q74lUcz55t1cUDzHbGZpdCZRT65hKojFQDev1+7n78yVUtnfx0OxRxOnjqe10cv2n64hTFTI8Pp4/TB2PIAhE6CI5I3bWj26vDk/Hgf/bj7ptjxWHx8u1K5fjHqUCWzXYvpsiH/gMEiXNgWN4R23Djy7L7vNQZ+8kKyjqiA+Dl9fvpcbWwSXpIzCo+4o2TY4ent3zNTmhsVyaHvgRPi0vk2V3XsntBR9T0tMMBCoyS3uayQmJZWRQKg8u/RoASYJbpo4G4IvqXdy//UvCdSaWT78Fs+boVfXbKuto6bFzWn4W4hF6BB8vVjWv4OO6DxEQ+NuAfxKmDccnSRS1tACwo+HHtzXAPXnTWFRTDuzBJ4m4hQ52NjaSLllITY9CpQqUw66oLg+4QajguhHDAXho/gpW7dnPw3OnMjUnIMw7vB6KOip4rfbvSEjcmH4zQ0MD4/unx7D0zZtQiWLvcr/P9rI6pAM5CVuL7fz9/L8AMC60lWa7jaGRsSzL2seQlHjUP5j/u+9GAIxqDaNykvh87W4y4iMIDQok68xMz8as0RKk09E//FBhscLWjNPnITck8ZBpP4YoCrx3/QU02Dt5ouQz1m3byl8HXoT5ZyZTjI7IoszayKiIo1tHuexuALxuH5L/oFuHQa1lZvyPJ0X8XJocPdy04WP2dTczICyeeRMvQ32gn9qiohK21wT2u4uGD2RkSiJra6tptAUE11XNlfzlrlnsaq/nwm/eQqo+1GHElaqj7OUMDDusOIKthBlcuPwqRDW43GokDn73Kxv74Ueg0RVCjzfwPcvhB4VovwR6lR8B+H7Lt0xDI/0MTchAiraBOk8UXR4DRS2xyLLAD089372WZVCFe1GFudDpJHweFXavFiSQxcB0SU/A11nlxa/xI8p9l9GLVwaVfCAwGVmUuG/3F8guEHTADw6R8VE/rc/8z2HW3KFU7m9h2aIC7rv9PdRqkadeuIycvIQTvm6F3yiycND54GTH8Tth9uzZ6HSBa9qcOXNObjAKCgonDI1GQ3Z2NoWFhbhcLvbv3092dvbJDktB4b+mo6ODsrIyAIKDg5X9WuF3i1arJTs7m+LiYhwOB5WVlWRknPjfbAoKvzd27NiBzxdw+hs0aFDvbyEFhf81jlkYr6qqOoFhKJxsZNlLe+et+H11jJ3yN9asSMIcpCd/6MHK28quTrwHRMWqri76RUQSGvwgocEPAnDryk/Y3bIdtTqDlyfPxS578Rtl/rF1HdOzMkgLCeWBW97F5fRQU9HKw/+66IR+JkmSEAThN2UHkhPUH5wifivUrO3i+aXzA8rTgQf9W77Ze1zXZzRoaFV1IAMbWkuZGX90YVwQBLSCFr9f4pYx/0dFYQ23v3AVp191yncjiDGeQoN9JdHhXcwQOimwJ+KTBW6967Q+y/rso818+uFmLr1qPKfPGowsyzz27TeoVCKvzJndK4yXd7QjCzKukG6+6NnKKwMu4oPtu3lkyWpMWg12T8Ba/taJozm1f0DcerXiZbZ0bOL8xAuZGj2dHc0NVFg7eysGtRpfr3DS7enqFcbLWtpZvjdQObpmTzNzc27m7BUfAg6a3A521TRxzpB8UsMPrfy2eTyYNJo++9ylyZezov4r2pq6eaTgIa7OuoYE408TAn/IU6vW4tYGtvXhGJoYx7VjhrG6rIIrRgUSKOQDlZnfj02SZc5Z/SqVtnZu6jeB23ImHbKsKls7t2/+BAC/LHFDv/F9pr9etoH5NbuYX7OLKbHZxBkD1c3JEaF8PuU6Pq8u4NGCpSSaQskMCrQYsBh0BBl09DjdJIWH9C5rvzUg5re77Vi9rqMK45WtHVz+6ifIgNXl5vyRA350/HfbobC5mSiTiRiL5ajjv6Oxuo2Wpk5QgUpQ0eFyEqqR0ahUPDdzJt9WVh61WhwgNzSWtKD7ebx4Nx5ZzchUFYueWk9FTzn9LhK4dOxZDAoZzCU5AylobMTf7sXe6MQT4uOTrQFb9Pnbipmak4Ffkjj903do8zQwKjcgeDr9LtaVVPGnD5YxMjORv198+iHnwFcKt/D5/mKuHTucKmsXDtnH1RMOxt4/PLJXyD531OG36bj4ZJ6ffCrJ5khyw6PJDY9m3b9vQaNS9SYoCILAKclph51/v7WJSzf8GwmZp4Zc/pP7bYuiQEFPBds7Ao4Om9vLmBLz8yrHb8o6jctSJ2FSH/3HwGV3nUZSRjQZeQkYTL/Mj4f51bsp6moEYFt7LdvaqhkVFbCNm5Kdzsc7Cgk3GcmLC1gmnpGexRu7t1PZ3ck/t6xlYkoIzxW8jyCAJB962yfrAoqwc6iF/uFNZEW24var2NGWiEbtp9t+QACXwenXsaQuHwQZvcZHnKWbLpeRbrcB2Q8mjbePIH5gDSTq2nqrxwcFNZEjtbKiK4fMsGaC9R7UoozNo6GoJfZ7+6uMVu3HoPUeOFcLqDU+3O0Cfo0GEJB9IDol5BgfoigjqvqK6oLwPQt2zcHABPFg1Trf+xp755Hh68b9DJn/dz6dfBVpwQedkY4XkiSzcP52Ojt6M5vw+SQWzt+uCOMKCr8gDz30EFdddRXPPvssDz300MkOR0FB4QSSl5dHYWEhAEVFRYqAqPC74Pu9xYcNG4Z46M24gsLvhtzcXIqLi4GAnboijCso/DQkSepz3Rg58pd1GFVQ+DWh3DEpAODx7sbp/BKPdztaw3KefvNq/vLsxei/1/N6eloG940Zz31jxjMtLb3P/LIsc3nKk7w78W1mJawiIyKci4cOBAIPwgUCIkl8UsBWPTH1xNiSfkfJ7lrOHvMY1839N44DFX6/BZKMibRdH0r7nSHItgOH5/dcYRNTf17v8iNhUGu5L2c2k6JyuTr9lKPPcIA6Ry0PFf+Z7nPqQITiDfv6TM+P/AsFjkQ0oowoQJTGiq+jb/9lt9/HC+vXUo+VTz7YBECr3c6XJSU02qws3FfaO/biAQOZPTAT0eCn1NrM1V9/xIbGamRkevCgMatQiwLDkg72J97RuQ0ZmR2d2/mstJiz5r/fJ8mgpTOImroUOptyWLvfwb2rl/Hpuh08/eJCBodFkhYRxsz8fuRFRTMiNh6NLKKTVAxJjCM+pG/Fu0fyctb8Zxj68r+Y+Nprfab1D8rB9p6FBksltb5qPtr5CZL08/vCA+ysbQx8kFAPBHvhB9bBeo2aU7LTeXTmNNIjwuhw25m6/N+MXvxP9ve09o7zyRINjoA1crXt8BXtQRo9JnXgPJBgOjQZYHhEMiICaeZwInR9v2NREDgnZTC75vyJRdNuRCMGbK6CDXqW3X0li+64nDMHH7TQvjZrHDdmj+eZEWcTazxoH/5hxXamLX+OT6t29ln+90VYvUZNq8POhvoa/EfYvs2uJl7ZtYK577/P9LffpsvpPOy4H9LZ2sMNkx7jvTlrmdCWS5SQzMyVb3Df1gXM+fxdlteU8ZcpU0gJPTabfIPKyJCwuYRok7i+/yU01XUSNreV7uha3qgM7D+JQSGklxtoXN7CfU9+gUoQuWXKaPrFRnLZ2MHs7qymw22nztqNzWnAaJ/ANanXMSZ8LIt27KXT7mRZwT56nIee//6xfS2l3c38q/ozIsc5+ei2C8j+iVbRT+1dwF9LP+T5/Qt639Np1Mdcte/0e5AO7LdW77F9Dz9kZHgWGeYY+gXFMzTs8AL8sWLW6I+YRGX31mH1VAKgN2g57fyRZOT27YXul9zI8n93XH/H6g2lLFi5u9fKfnJcJkbVwWvxd8cRQFpEGCtuvYoPr7oAkzYwJsxg5ML+AxieuZ8zR27jtZqHsISXMiy6Br/re59RBp8P9Fo/YcF29DoPem0gyUgtSgiAz9/3NlGWQZYEcAqkhrQTH9RD/8gmkGVkARwVwbjaA/3DJRl8ksy4oH2YVb4+y9GKfoJVTjJDOgjX2RAEHxadBzVOZElGJfrRqX0YdV5U4nf3ETICEBrhJTzIQZDRjkojIwR7EVUywpHuaA8I3SAjIAFSH/EcQERkTMSBvuuSEPiMgNXn4ezVbxzjN/fT2LyhjBef/YrNG8oZOfrgA51N68v4090f8Pwzy2ht6Tkh61ZQUOjL22+/jfMY7wkUFBR+u6Snp2MwBBL+SktL8Xg8JzkiBYX/Do/Hw86dgd/IarWaIUOOXuigoPBbJiMjA+2B370lJSX4/f6THJGCwm+LkpISenoCzxmysrIIC/v1tb9VUPilUJoqKQCg0eSg047B56/DaDjjsGPUosgNQ4/Ur8hPtCEgrJ2drmXbjkrktrd4+bQd6DVXkh4WDsAzb11DY10HyenHV+D9Ids3lOF0eKitaKW2opXs/N9O9VVmXhKlu2pQa0R83oAwMmnmIBLSIznrygnHfX1nJY3krKSfliG2oX09TZ5GjJMF8ruGc+n1Z/WZ3ulpwSYZaPAEE6vpJkHXRWRcOZDKwt0l/HPlWhIyTVSN8sBwgTM7An3ZI00mLh04kC119VjcGu57Zwl3zhxPTKiFv4ybTvOGdgrbmyhqbqdO48Ri0tMpugiKamVqVjSDkg5W9V2eciVbOjZzesxMLvh4RZ/4ko3BXD9kBA+sWIWMzPaatQB86gVCRdSdfgZnJ7FyXzlvb9wZEFEcMrIIb15yFld/MZ/qri7Ozslhf0cnrqAdWOKrGBSuYev2TGRZ7iOymeQgXDs0aDJ8fPtoETGzl3LxHYc/zo6Fx2dPZ+5HbyLHB0RP2WsAh5pXL5zDnqZW5gzs26+5uLOR+gMC+KbWKtKDAiKoVlTxytiL2NhSwUVpww+7rjCdia+m30qnx0FG0KHi6fT4/myZdS8GtQbVEZWpQwkxGggxGvq8F6TVc3vuoQkaL5WupcnZw0slazknZXDv+wlhwXx2yyW02xxkxocx9fNX6LL5uGXwaP4wYlzvOLffxdctS/iiYSE+WSYsKonWriBe2rseOy5u6T+BaEPfZAdJlnil4kVqHTWcbboQr9tHdJ6V4Kz3GAoUWMayrnk/DS0SBS1NXDNwGP3DI9m+r475Ozdgz9yAWRXE7Zl/IMJ4aOuAuQmX9/796D+C+Wjfx9Syi/zgg1XPKYkRfLulnPjoYPZuq+CacUO5acooni1ZzAdb1pFkjODVU+eyubGOq/KH9PYpv3jcYKpaOhmVlUSw8VB78ctzhvBF7Sa8gottHfsp6KxiTOThK2Yk2UtF9yfoVGEkWg46PlTbAwkWtY62w853NPJCkvjn4Muw+9xMiz16pf/hiNQH8e7Y23/WvMdKj2c/q2rPR8bP+LhXiTQc6grQZF/HxqY7MWuSmJzwHiqx7zYv72gnWK8n0mg6ZN4fsrukngefDvRuRwVvtBdSa+3mjRmXsLOnhhCtgSHhP+440eOyU9n0FHPT97HHGYNdDux/Fr2bMLWT9m4T6k4JyQukCJgMDkQRTHoP+7vD8QsCNp8evyxgdx0U5L87pamaRCQt2L06InDg9GqQCSS/eRO9bLMmY26RsRtldGofc8J3AQdFaBmocEUhiyoEQC2ASeXBKekZkdiMDLQ5jdg8WvyI+CQ1wg/OLYIAWg3otV4cZu3BnuX+gKt6r/AN4OeAaB4Qz4UDE+TeAQI+WWZ9SyUBFb1vgkSI1ni0r+1nERMXglotIsswcGgSoeEmli3ahc3qYuum/QB0tNv4v8fOOSHrV/iNIvPDXLiTw68hhuPId646CgoKv29UKhU5OTls374dr9dLaWkp+fk/z3FIQeHXwO7du3G7A88E8vLyMBpPzH2rgsKvBY1GQ79+/di9e3dvW4ysrKyTHZaCwm+GzZs39/49YsSRNB4Fhf8NFGFcAQBRMBAV+dnPnl8Q1ERGvIvL9Q1m05U8/vIaZpyzG53Gi8u7APgDADq9hpSM6OMU9ZE57ezhVJQ2ER0fSkZO3Alf3/HkqQ9vpK25h/aWbh69cR7RCWH84Z8XHLZH8MliVPhodnUVEG+I5/q/3oRKUPWZrpa1yLJAu89CnDYgyNq8TQC8s3kHzT02Wqp7IAwESaasJGATLAgCj0yeQm1bF2c8/iYAkUEm/jB7IhaNnvcnXsnT29fyae0SBkaqKekMwqnrJCe7lgZqebsKfHIHI8MmMip8IqPCx+CTJHqcCzFrXTglPX4Bqu3dTE/N4P3I3VR1dRJi0ePT1pAY3U5dYzhNzaFsra9nd3UjkvPgw1KVILB6fwXra2oAeHZToNI9v383IToQRYlgnZZmdzOhmlB0qoBH743/N5e8JSn87fLXaTgnnSdb9pFbM5hBSX33TY/Px5aKOvISYgg5jKAJ4PQ1o9Gv4qVzxnP9phUIfpnZKVlcOmYkeXExTMhMPWSeYRGx3JbdQ4/PxMzEvD7TRkamMDIy5Ue/73C9iXD9kUW9Y+kF/nOwetwUtTZzRcYo3izbyNVZY3h7507+uW4dlw4axL3jxxMbamFZy3Je2rkHr1GNVq2mw3Ww6kuWZV6rfJpy2270Itj8OjR6H2hl3qraAAQqcP9v0Iw+625xN7OtM2AvVBpczJOf3sZa+YXe6eOiUsi2TOfv3RtIDwkjPSSQZfnAG0sheT/xUhdWqYsr3nmNL6+9A9URLO28/h7qjDcwLL+DG6KfJ8owqHfateePYdrYfvznznncc+ZTjJ05mAdev45mV+CYanNbmZiUcohdeX5SDB/eceRWFQ+MOIVr8wdzX8G7WNR6BoWmHHFsVc98drf/A4CtnbtIC5rIoJBR/Cn3bBbUbWVCVM4R5z0a46L6H33QScbt70AmkIXu8rUeMv35TZso63qRiZk+rN4KnP4WzGJS7/QFZSXctmIRJo2Wby++mogjiOOLS0spaW1jcqwFs8WNzarDpvFR0BI4N35TU8VdI8b2jn941WrWVVfz12njsfEAdm8d4+L+g0Edy9f1ZzEqO9BjfJi5gW02Nd1+EzIwJKOG8roo6uri8YX40AiuPtbnep1EkzMEWQa3W40kCSDTpxpb1y3jEjRUB4fSbjeRGdHMqIRq9rbG0OUMJLsccF/H7VNj92swq714ZSh1xdPtN+L2qxGQ0By4dHx3lv3Obj3K6CDK6ADALwmUd0ciyYdWr3v9Yq/1uSyD7BPo44gvA5LMd5eoPpXiLgFZy2ERgXRLBP1Conli+KzDD/ovSU2L4rF/nM/9d37AK8+vDqxXJSAg9LoFJCUdfwt3BQWFw/Nbar2koKDw88nLy2P79u1AwE5dEcYVfqvIssyWLVt6Xyt2uAr/K+Tm5rJ7924gcB5XhHEFhWOjsbGRmgPPsyMjI0lL+++cFxUUfuscszBeV1dHQsJvp+pW4ZdHrxuHXheo0rz1/EWYTS2UWcOJsNz0i8cSHmnhwWdObA/zE4VKrSI6PpTo+FA+2PR/v+i693d28PC6VQyMiuXuEWOP+JAwyZjMX/OfPOT9zUsLePmB9znl1hjUuTqM2g5ckoo2n4X2ngYGR8BVY4bxxMLVZDaKBElx7FhTTYnRyr/f/5bbLpoIQFSwmfSYcKpbOhmZmdRnHQNDtOzyt+CghetOn8uDK9vxeFVoNX62t28hSOemzlHOsLDAsrY21nHx0K/Jj6pjT8soXtuVToTBSJjRyKJLLkWWZfyyzB077sEqeUhKaKWxIwTcIHkkvt/H2+OX2N/cwdz+/dlZ30h1ZxeyCsZaZrCqZgO1rWoiwxt5oOh+QtRhPDng76hFNVqdmilzh9NlkHlwzXoAdtc2kZcQgk9yoFcHxI//m7+SBTv3kh4VxsI7Lu/zua1uN89t3ER23LOo1RXo5VTi/hyF4JFJOSeTvHNiDvtdybJMUeerxBtWEg8IXAJkHm1XOO7Isowsw5bKWhLDgokPDabd4eDNHTsYHBvLlPT0Q+a5aMHHFLY1MzezP9+eficA0954E4fXy0eFhdyQO4jrl76LKXszGi3EWUJxuZK4f+RBZ4UtHZvY01OMVgSdSs+c+Mt4vq6JZrmRSK2ZNo/tsBW4UbpoRoaNptZRzdiIcSQlJbN6XxC77ImYVCbuGfAHBEFgdlrfRIPBGfGs2tOBJb4bt09HbS34/NIRhfEeTzl2Xy0A7254n2DByzVTRlBv62H+/mKmJ2XSWd8FQFt9JwB3959FdlAcw8PTEX9Clf73iTaE8NboW446zqAO7FcyKrZ2bmFdRwHZefnEG8O4MevUn7XuXwuyLPNpUTEtdjvXDBuKTn3oLVGEfhiDIx9mbetiPmlYwxUpQwnTRWHtsCGIIl/u3Uu7ox+RZg/n5s7AqEpAkqXe76XOGkhisHs9dLvdRBhNeD0+Cr7dQ8bAZEKjgmnosXLbosWkhLWQEvMVNzygIU34D1mJ+RT52qju7uK8/gf3sy6nk3kFO5G1Mi8UfMGcnEDbiUbHWmqsG/Bj5btUJUGAJG07e91GQEaLRGpsGzVlscga8DlVyCGBsV6vCp3uQBKAW43VcdDRQZbkA/23BTwGH6JTh6fLgM8rYYkP2K8nh7STFeGnw2ogw9CCTaUnUduGURWYrhUhRdfGp1VDqbOFMCktUBXt8YPDr0MUDlaVf//SoxJldCofTt9BFVuWweoEn//gdyZLIirtYezsPYAvoLh/53Yv7jcgelX4Btl6mwp9v2BUlESWnHbDocs6zny9srjPa8kvc/s9pzF0RBoul5eUE9x2RuG3hyAH/p1sfg0xHG+ysrKOKo53dHT8QtEoKCicKJKTk7FYLFitVsrLy3E6nb326goKvyWqqqpobQ0k7iYlJRETc/jnAQoKvzfS09PR6/W4XC5KS0vxer1oNJqTHZaCwq+eH1aLK4nBCv/rHLMwnpeXx3PPPcell156IuNROIlsKqthX2Mb54zKx6g98k2FJMl8W1ZJbJCFvd+U02V1csmVE9FoDlYNG43rEATQyGaSIkf/EuErHAfeLtzB2tpq1tZWc37/fBKDgo8+0/d474XFhD5WSVD2V+T7dRhEL2pBIljlxCEHxJGpWWk8/8QT1Hp8DDxjCB5U+ESZd7/azrVnj0GnVdNmd/Dp3ZfgkyR0moOnqTUF+3ngra/JOFdEpZEZHJnJ2Vka1u+3MC4rkirXCkK0DuJ0+fj8EmqViFoUSQttAWBAdCcPThpLYXcdZT0tZAdHIwgCxW2PMzVsHZs741nT3A9kCPc7GZtfQlljHLIvBwQBo0bNnAE5JIYGc8/8pdQdECxvGDoWzQ4Dz9VuwmgM/Djt8nbS0N3JF1vLGJORxLC0BOZOH06LVqLD7mTW4ARW1JyOR+pmZMyzxBgn0ON0ARy2L/Q7BQW8vn0712pd9I8Boz6UiYPzqCisYfJ5ow77fezs3M7bVW9iEusZYQG1YEQrHlsf7J+Kze5GFAWMhkNLMNe1fsX8+rcI9ubw7W4HCf1aODtxDlv36Xl/925EQWDbjTcSrNez69tiPn1qIdMvn0Sb0w7AvqoGXv/je/S7eCQORxXx4T4mmcdwQfz11F+XzoBUNVqND91SF2NdepoTmwkaGEio0Io63JIav6zi+rR76BeUy8TZMl4p0GfY7vMQoj30YZgoiFybdn3va4/bi2teNLbkbM6cfvERbyD/evUMEt7R88bHApLGz00T83v3YZvXRZu7hxTzwVYSofoBpAVdxI7qPXzybSh253pmDu3PnRsWsbmpjvdKdvHxvBtZt3AHk84K2N2H6yxcnjbpJ30/y99bz7btBcRd5SMvbjDDw46tLUOsaQJTEz+loGs7buvnROli0aoOuhl8VVnOhrpqrhs0HI2g4unV68mKDOfK0UN/Unwng8LmZu7/6isATFoNVxymJ58gCOxss7DT2gP0sKVjHRktQ7lj6l9RqUTO/uwMNviLMAfPJckymydK78Lm7eHmjAdJMKZy1YAhiIJAclAI6aEBV4FX/vQhC19dTUR8KPOK/kGwXke40UiE2YogyMh4+PPuD2nYvop5Uy6hf1A0m5ftQs6OJTEzlmC9nll5BsqcpaxtiWV2/1Oxdlbx4BorI4a00c/c9zO0eS34JQGVGFCyvH6RoPguOnosaL0wNaQYr6xifvUQnB4JlSjhdGl6e3MHdnUBwQWCT0RXZ0Bf60aXpUbfrqdJDEeT5CDO0I0bLXMTdhKhtWPzaTGr+/butPt1+GWBEL0TnySgFmU8sg6HR4tG5UMQZDQ/yPXosOtptxow6AOivdcHXSXBqDrVkO0CNQiVKtRmAeJ+IIzLMIQURqhjeH13UaAXuiwhJfjwS77eQVq1H79fwCcFjtWxEYc6b5wIrrh2EiuW7kb6XthDhqURG3diztMKCgpH5pFHHiE4+Kfd9yooKPz2EASB3NxcNm3ahCRJ7N27V+nLrPCbRLHDVfhfRaVS0a9fPwoKCvB4PJSXl9O//6/fjU5B4WRis9koKioCQK/XM2DAz2tpqKDwe+KYhfHHH3+cm2++mS+++IJXXnmF8PDwExmXwi9Mm9XOda99jiTLdNgd3DEjUPltdbuxuj3EBVl6x360bTePLFqFbJCJ3OpBaxWwOTxcfcNkXvtsA2FBJtqNF5Ecspp2s5ZN+2/k0tR/EWtQ7G1+7UxPzeSz0mLyIqOJNVuOPsP3kGWZ/IuG0xAcsBc3i278soBXFnEL/bg4+TZqHNV0ebqIy4qhuqiOvMHJNFW3s89tZVRuMnqtmps+WsDqfRWMCo7hvqnj2VnTRFJMKOMGpfFNQTlem5Z972fy8DWnkmHK5K7MSDK0RlZ2vcNFGVvx+o38dZ6fFeHvMHtyAnGeMBqsF5IYu49Tk29hwrLP8csSLr+Pl8ZciCzLVFs/R8DP1IgQGsqHcEpqMDrDCwxIqWJ8v718vmEQ71/R14HgqtFD2VBeg9fjY1vFekamfkpkUCL/WBuHz6diTvo4nl2yhWWF+1het5ipXoEZsedy4+SAiF3UthWP1AVAt7uUGOMEbjptBA3hrYyJDYgydbUdaDUqomKCyYuORhQEFhaexrn980gKHsn493+8Z/GypqXY/DZs/mDWdOfzl7yne6vTv4/N7mbBqt3kZsYysP/hnUGaHTaCtDo0osCOznVE6eNIMQWO6YLCau54/HO0GjVv//MyosLNFK7dy9fvr6O9qYuuP9Wg0Ut0qIuJzTCj0fn4fPcntLyXAsODiTGbEQWBRRXrWPD3L6hcWk3xhlLm7fsHC4uKWTj7ZT7s9jLI3MyIMwLVsapqM4NvasKsVrN+dy6RJd0Ev1LL5uAitswv5pW1D5KQHs3g0CHcl/1n9Co9icaAWC4IAlqVig6rg+dXb2RHdQOPzJ3KwMTYI27L3ev38c1bpfgToyh+fzkvz0smITHskHEOu5t5q3chmTSAhjETApW+Lr+H89c9TbvHyn05c5ibGLC6a6/vxl4whYSkOXg8S8lPCaFHrCX2QL/wWJOZxMwYLrzr9B/9rgF8khO3vwOTJr7P+067i2fvfpfo2+20+TzsrtlITtAQTGrzEZbUlyBtOhOi0hkQMhWz2tLbOsHp9XLjsi/xyzLdbjdxWPi8IFABe0pWGinhv25xL9JkQouIR5aI4Aie2kBJk0SLx4Je6yVSlUN1SQM+jw9XsIrC1m8R4roocK6mzjmQNnegZcR9G99kVtw5XNB/ADcMDjyokmSJje2b8A/9lssv2cXu9Uksqy1lRlI/Vl11Je0OKwUNr7C2Yycekxu1v4s7d7zJ5dvzePfxL9EZtLxf+jSCycrEjDeYiJ/Py4axad4oltuiUSU4aWoahBizk0xzIBlIBvZ9HY0m2oI/zYYkgaiRyc+oxyuJaHokhkYGHAv2dMazp+tgewe1yo/F5MLnFbG26jHuMyAJ4Er1oe3vYVD+fuL1ndhrjbisKqYn7KHLa8B2oLLbLmlxuTVE6AIJLmXOKJp8IWRFtSEI4JUEOt0GOlwGartDkRDQq3zkRDUD0GE10NYaRKNkAVnA1gVoAJuAtk2Hyi8j7DIFTD1k8Nq9+KMAFch+QACxUsXe1jY6OlqJX1tD0zkJuPu7wSwFNo4AOo0Pk96LLENXt8gzQ87h9My+LQIkSaKltoOoxDDEI7g//BwiIoNYvvYBvF4/a7/dS15+ElHRQcdt+QoKCsfOBRdcQFRU1NEHKigo/ObJz89n04GWWIWFhYowrvCbo6uri3379gFgsVjo16/fSY5IQeGXJS8vj4KCAiBgp64I4woKP8727dvx+wPFBkOGDEGrPfIzMAWF/xWOWRi/6aabmDFjBldffTW5ubm88sornHnmmScyNoVfEL1GjUmnxepyExUUEEs6HE6mvfoWPS4XL551JlMzA1bHkiTjifAhBck0ThZI/hK0GhULvi7kg8WBfl0P3HUpm7oSsBgWATIuv/VkfbRfJX6fn6p9zSRlRKHRHvNheMIZl5hM8bW3/6R53H4v125+hWp7K0+fehnW8htotb9NpGkfakGmwpnFVZnPYPM5eXTPw8jIXPzlZaTZ+mFKCGbPlnUMDfGhM+/i69ZF7G4ICEvba+q5/rEPcetEZOD8OUP4qmwrxmiZODGJJ95ezGczXqPKqaWiNZzT+wX2MY3KgUHrxRK3kQjzJmptFl7eNwupNI1B50QwMjKFjS0VjI0O7M+CIJAbfhd7OuazoiWTaycNZlx0Opvri2hyV+Fwh/L6Recc8rlFWaCz04EmyM2mxn+Rq6/FYtyIx3c+jXVJzDltGPPatmCpt5E5qIIap8yypk/oFzSQlVX7uWbZt0xMGs1NQ1JIC74QgM8bdlHibqSkqhGpVmbV3zejVom8PO86JqSksOmG6zFqNBiO0SZqctQUWmpbiNHFMDfhbEyagC1vh6cDg8qAQRWolH75g7V8vnwXarXIkjduxvS9qu9aRy2vlM1jVaUNrzOBhyZEsar1MwBuSP8zhvow7jn3Kbz5yXh9HqrrO1j89EI++vuXRA9yEjfCSW1PPxK1Im5JTYK9H53ectpe7sK7eA/v3vsYA3JTeWjjK/iD16H/i4hqE4w7aySZYRHcNGwUW0zvQUwTo4a3swEZCQE5YhMjbu5gmNwBtUb2kElSRDc2L8jISP5AdWx9Tw9ORxCZP7CW27y3hpue+wxnSOD1R5t3MzAxlkWrdrNyfSlXnDOaQTkJyLKM1eUma1AyockRtAkiHq+f8n1NJCSG8Xl5Mc8XbGRWcn+uSB3ADac/hSreABEaYkItZCQEEhEcPg8dnsA+Wm0PuAr4vD5uGnovXa09nH3HGWz5x608XXYfL1YsZXTqZC7Jvojc8L4P6Svtpbxa8XfCtVGcm3AjSaaA2O+X3KyoOQunv4nBkQ+SGnRW7zw6g5b+w9Ko37uXkBkeonUJFDa2oxa6GZYQENFlWeaNqrfZ072Ha9Kuon/QoQ9XQrR9EwG0KhVpwaGUu1rY46xnTMpIVIJAfGgw0UHHJrqfTMROD4nPlaGbIrEwu4Xk1GvID804ZNyVA0by1w1Oss0RDInMxjfXz8dtxawIbcHd2UFauMDY+DGkmfsRqxtEYVcZRZ2wsXw5p6dkEWQIVNh/3fIt86rfZdKQPejUEjlTGrhl/XxedM0hvktLzvA0/rNNixSpItfSws42DSrRjN8X+PHyXTsCQZYQkJGBOwaP5pXCIrJynNQVxDN33ESS9Gfxzy9WMyG3gMj6BKpedZD4ihMRFYIYKE0WBNCqJNoEAzaPDq+kotb+g+9X7UOlklCpZGI6rcyY8y2VXRHYIzXIAhhED8NCqiAEGqyBKkuL2kWxK552RxD1zhC+2ZPFsLRK0oPbafVY0Kl8+GURnSqgXMuCiFbtZ1BsA3XdQexvi6TYDWoRGhpCMbf7ICPgzmAoUiGjxhfjRwr2YiqXUXeBLVODM1JCMorQpQNBQjT4EWUJtSAgCTItehlz/2jc+S7QH9kD+uPxVzIw7tDWCk/f9AYrP9jAlAtGc8/L1/60He0Y0GhUTJ6ad/SBCgrygX8nm19DDMcRxUZQQeF/i9jYWMLCwujo6KCqqgqr1YrF8tOSwhUUTiZbt25FPtAHaNiwYahUqqPMoaDw+yI1NRWj0YjD4WDfvn14PB5F6FNQOAJ+v59t27YBgd89w4cPP8kRKSj8OvhJilxqaiqrV6/m+eef5+yzz6Z///6of9CTc8eOHcc1QIVfBrNex8J7Lqex00peYjQAbXY73a6AtfO+tvZeYfyCEQP4rKmQHV0NmMw6brx0OOdcOpaCknpUoojJoGVURjKnB9/Enu5+iIKKFJOShf19nr7/Y1Z/uZOh47N47I1rTnY4/xX1zg5KeuoRkNnWvpSbh11IiyudxXtvRjJLNPhkREFFu6sz8ONNgIc3rKKmbQcWjZYer4dh6RUk0kGpbTeJ6acTskugwmCjpb+AoVVGUsGHNesYNLccgKKNPpKHthES08YgoLonjB21gxgbnYm1PRo5WCQ9NlC5GmWyold5cXh1tPXYeX3sxTj8XkzqgzfN6cEXc+X6ZlpcNgq7lrN42k0kB1+D1D2SEbpUXnhxGbrMYBIyIvjHlnVcnDOI6wcOJ2d4ByGJtTg1IpIMXlnFRRPXUu2O4qHi7RAEI6a5EQ404xwRNimwzWyBvsPf1qRz9/CLqbTXE29IYFx0Gh/s34rkEnlrfxHxItSNELhv+zLOVVnwyi5Oiz0NA32tPh1eLyKg/4FgPjJ8NCPD+7Yy2Nq+jef3v4hFbeZvA57ApDYSERoQMYNMejRqsfdHtiAIfFL2EY3eMvrHw+qiYKzegw+Nvq5eyf73o/G39CDub2DSmSMYPiCZtc8tQaWVmPNOPRqDTH9rF9+4DUhOmaIHavH3mElOiMX/WCzvNexjS3crJdYaMoNBFCXerv4X0eZ45v1rOYWb9vPAF3dTGXY5Eos5x3g6jy8OIjx8P4Njq3FJGoxGN2GL9nHFg+cQEh9JaGQQSVkxNFmtTHvjTdx+P8+cPoMzv5dFXFLTguQH0Q06nUjjwn1si0zmyReWEzSsi2c6VnBW/SwWLfKwqayGe86cyD+W3sLn72xBK6nZNG8Vf5/5GFXPD8Uu+PlXwXpie7T0dNixdNq55rZpXHnr9N71iYKPU+ND8UoiV6SdwluPfc6mpbtwuQJ2zt0uN9fNex9zTiMqHVh9XQxPOrR6v7B7G06/nTpnJQ/veYjbM+9iYEg+PtmO0x+otG1x7KWgcQ8Tk1IIMxgRRZFHPr2NlcVlDEgOo6HHzcUfB5IbPjz/PIYnJGD32VnTujawX7auPaww/kNUosh/zpjFqYtfpczaygvr1/LmOXMZmp2I+kBV7f76Nu565guiQy38+w9nodf9enp/hURaSEgLw3ddAy6hlYeL/s1LmY8QGdO30j3WbOH56bN6X2u0aoT8EKhroV4VypjnErj246sA2NGup8IWjdrgR90h0G519Arj3yWilDkTGBHkZXFtJALwwi3v4t3dycV/OIOZF45gfts2vH6RqZGjuDJzClHjgkjKjiO5XzxFm8sJjQpiUv95OHwNqFX5uCeuxwTMjTax7fLVbPL6ef7TW4lOvZmmmhZeuP9jwv01mNVeZA8IuoBFul8SKWmO4/9qk0n8uJYJ42NZHNWO2iLjlwSGxNQSondSUhjD6MwqkmJaSYppZaMtHa+kpt1lxCOp0Ip+9vbEsL87ik7RQKjFTbfPiMOrRdIKbKlMZ4smHZ3Wi8XsRpAlzG0SmngXLklDgrkr8H3oXQgCNHcHg1ckfIeE4NPgSPWBCqQICX+8EwyBBIH2cB3qDvAb/ciaA6KWLKAOc6M6sJtJQR6kRA9SkRmvQ0Rl8+LXHxh74D+TEIzP7cJTK3DFgk959sbZTMhP67MPlGyrCPy/teK/3/EUFBR+dXx336OgoPC/gSAI5OXlsWbNGgCKi4sZNerwrakUFH5teL3e3ueuKpWKoUN//S2sFBSON6Io0r9/f7Zv347P52Pfvn3k5SmJxgoKh6O4uBibzQZAv379CAkJObkBKSj8SvjJparV1dV89tlnhIWFMXv27EOEcYXfLhEWExGWg9bMWZERPDFjGrVd3Vw2ZFDv+ypR5M0Z57K0upTRMUkkBwVEhMH9E1j80g3oNOpe8SM3ZAoV7R2c/vI8YoIsvHTemeh+gX3G75d4/6WvcdjdXH7LVPTGX1fmYG1FoGK07sD/vyTlxfW8/fQyRpzSn1mXjPmvl5dqiuKy1AlIvs+JUS9lYdVbbLdn4dVE4G0Az7cWLAOD+bZpF7ua49Cq/DR0WZCBHm+g/6xO70GWZbxekU2NzaR7dEgHhA2V04eoAlE8+NDSGyNRJ1tIkNvosBvx+NTUewRe25ZC7f4uPBESX5bnoFXpqK4Ox9tiQCPD35evZcKNqX1EcQg8EJ0UkcUndTs4Nb4/CyqLuWvFUvyChCFoFb4Y8NTqCWrU0+N185+dm7h5yEhiEx04gUZvKK3ediI0dvobG6n2RPKd6uKXBVSCjL0hkrDUBFaW7iPNHMr9IyewdHMJT6x5AVNyHeHaCCJ6ZjNNPZjl+8sYmZJI/5vMvOjYTYN2F0uaW5FlKLWW8X+5D/TGXtLaytkffIBGFFl06aUkHOiPaXd5aO6xkRZ1sAp0wfpCXt3zMZGD/Dj83dQ76skKyuTSuSMZkpeI2itzyalPsGuOFn2ogc/PvJiyN2uRL5TpatYxhAjOjD+PJvc+attrWPBhF92NErrzB9KQ5+crUyd3e91c949L8QIeqRkNNiTicXwVzR6VhKG/m8jN3YRPTOc9UyNUB5IERFUEHr+K+4adTrQ5nn2VTTy/cRsaq4+YT7eRc4Mej+Ti8711dO7MocGWiG2xGu14Nx1SCK6QKJ5cvpu0lEheeuxC5m8p4p2NBbgPWAW12u3s62wjxmQhSKvjnIkD6LA60CPw5f0LaAK+ENagbrURPKgDtH5WNq9m2/4U/Bp4pnAl/3F2EtzfyMfj7ua8u15D8ktEVniwp6kQ3SIpmTFc+YcZdLRaOe+Kvj28v275lkpHwAa+paeBD59ags+iod+MAZw+dRC1+UZWb19P8N4sLowsJCF0DXW2gdR09OebikouHTyIxOBgxoRPpcy6h3JbNX5ZoMPTETiGVGGMjP4bHe5iHltrYnPDEobHxvPe7LNQCxoeXrKahUUlxAZZeHTO1N64fAeaG5s1ZqZGTaG4Zw+ToyYd8/GfbA4jLzSGorYmuvY5+Mi1k5H9k3unf7O9nMa2HhrbethX08qAzLgfWdovi86g5aXlD3LzznvwYMPaI3DrhEd4t/ifqDU/fp26f/BkQtR6UnoMXPHmuN73r06fzKtlq4i0RjFtyiBSv3f8jQ4fSZg2lCCNhThDHBkhTfhcXv7v/r8DsNfWyryCBgZGzuEvg2dg0R5MgDnlnFEsf38D/7rzHURR4JX1DxOflsvW5krcHhGtWsLZHUpPR8BScem/liEKfvbE72D8LLB7dTTN18FrrcQ9G0ZIfws9Hf3weDqIsXQx7Il2tO4t9CvQEpnmo8NuINzoACAcH6ViJP2kWtrdJnyyCr9fRVFFAmaVixCdC8moZsnKfngSBMJMdvxusHqMCGqZSFMXVqcJZ6Mej06D2Kmmu0eDUO3Dp5Lp6a8nOshKky0IUSWj0khoqtUgq5AMIkgBYdwbJyEavi9eycixEqJXwO9VIbgFdO0C0g87/RgAk0RmWiSOT8spvsHw/UXQ4XGQZ4qlrMyKzwB3v7eYrU/e2mcR97x8DcvfWcepl45DQUHh94d04FqooKDwv0N+fn6vMF5UVKQI4wq/GQoLC3EdKGDJzc3FZPrx9moKCr9XcnNz2b494FpaXFysCOMKCodBlmU2b97c+3rkyJEnMRoFhV8XP0mhfPXVV7n77ruZOnUqRUVFREZGnqi4FH4lnDvg8DcWwTo9F2QNPPR988EHzj5fDQhqlu2tZX97B/vbOyhqbGZoYvwh8x1vdm2p4L2XvwYgISWCM84bccLXeSzIsszuzfu5/M5T2b25gvEzBvziMXz4n1VsW1PK9rWlnHrucLT/ZQWnIAjcnDWdTU2LaHGCiA+ZwAPG7lUaml4SuGnrU2jzLchjg7E1uLAUefAneRmZvJ8aKQKVWmaAsY5wjR13io5Nlbmcl7+ZIUPLaakORfJp8YWrUGtdLKrNY1pcMblhDXywbQTFznhQB0Toqq5OdIIKjyTR7TbS1XM+147OZ13NZ/gkCfEHVpnlre1sqarj2a/W0e11cXrsQJxpcEfBl8gmEH0gayT6hbagj/ZR256ITxaYE5fL7q4C1Ko6+mk7qfeEUu8JI0TtpN4dyndNbw2iF5Co7QrGEOzgn2VPUtEUQWVVDA8MmkDlvnbSImyYgE53N59u2QIIfHrNBQyKjaWgvpEF66rQCj29MZe1d3PfN8v564RpqEWRopYW3H4vWf0q+GfF7QwIGcjwkKk8U/IvHN1aTjddxWXjh9PjdvOHghWER2qIPrAZWj1NZJGJKArkZ8ez5P2N1OtcuMw6XF4Xt36+AHwpdF9ZSP1tmUAXH5fs4TzL7Vxz2d9xpGohBMJzw6kQWmh22NhR38Cjb31Fh96Bd+OpRIX1UN0TTooxCJ/Nhi7fzIy0fsRmRfFJdwse/CCBJItk2IcwJWE8AAsKS7Fm63HF+tkZAjfGf8CNXz3P2ppgQvMNRP2tFbtHQ6UuGVuUDjJkIoplyqpbufs/C1jfUIuETEZcCJdNHopT7WHa/DeIMphYe+71mPRa7jxnAn6/RP3iEsqK6pgwdyi7nu3E+1UEqZcLnJYwnZkXR3HvomVI+kCf5G6vg3a3lSnPnkvF4iJuPm0OjhQzgiAwIiGBUTccasMMkBucw5KmZYRpw0gMTWDkFWP4KKiLWpXAJVOyiDeqUW1eh61JTcaoWpw+N6Wdb3Lb/DG4fD4qOzt5de4cInTR3J39Vza2b8bmtTE+YmzvOuLN0zA6RmB3fgGAwVTP/buvIN6Qil8OJMFIssy45GRuCMqku6WHgWFRB96XuDTlop98/GtVKr487UoeeHkJa6z7mT4iu8/0GaP7s6mwipjwIPqnRv/k5Z9Ilq/Zw/bCGu6Z80de/PADGl7cg8Mq4vdJqDXQ5rTzhzVLCNYZ+Nu409B/L6krxRLGk2NmHrLMabEDmBZ7+PO6IAj0Czq4ffLCYvD5/Dzx6R2U7qhkc56T8ppCynvauD1XxvLDfK4DFY3fL2wssq0h1mzFJwks2tTIpItG4tlVx9fzvibsHJG4cwIHuyjKtDqTiUo1c3vsZQwanEdBXQNrt79PpMkFgoxH7yQ214QPHxadm/27oxg9KIgI1UDWqDewtHMgINP0ThCt5jg8fpHKqAiyI1qpswYxfHAlQZKbr5qzURlkrh2wlmxLM6IAkgz/+Po06qVQDAluBKcXT7sWX7hMe4cZq1ePIAYs3tUGCZ0DUIlIWhlBAtknI2lAkOit9FZrfIimwLVGU6JC3SmCDNJePf5sF+gObqfrR43i8tFDabqsi8e/WsqOrnr8kg5/ggeMMnsbW1AfqOh3en2sKCxDEOGUfuks2bKXjcXVXHPfGaTF/lB1V1D4hZFB+DUUN/8aYlBQUFD4L4iIiCAmJoampibq6+vp6OggLCzs6DMqKJxEZFlmy5Ytva9HjPh1POdSUDgZJCcnYzabsdlslJWV4XK50Ov1JzssBYVfFXV1dTQ0NAAQExNDUlLSSY5IQeHXwzEL46eddhpbtmzh+eef57LLLjuRMSn8CrH7Oml27SfZNBCVcKiQWtTSzP2rv2JoTBwPT5yMx7OVlrY5gJqZ/efzVWkUcUEW8mN/GWEkMTUSS7ABt9NLVt6JF+KPlaUfbea5Bz9Ho1Xz1tf3ExYV9IvHMHpaLptW7WHYxOxj6m9u89bg9rURph98xB6M+7vfocW5DkkWKXWlMCPmYtr2eHm9YBmhZ3up3tCAtE/klVnXsMxRxQfCTmZbtjJy6H78ksAzq05nzpSAHVi6rpW1JjX5gyoRRYhJ7eyzrvyQWkbHVgIwIrOK4j0H7aZlB2i1KnztEohgStDQI7lxBgfsqq+cdNBmrNVmZ84r76EzWnGHgkvU8aWvnMt8+QCoBRGtQ0tsRA/poe0AWIwuCpoTsKlsVNtrGWqqwqJ2E6vt5tvubOrcgYcpggAqJNQH+vm6PVosxkB1vFbjQ1bLrFtYgKWrB2uxkWG6dLKyBrOaLQTr9aSEhrKzqoErXvgYBHjttlvwmBv5pGw7H5a045cK0RW6SFJbuODKsRQOTaPFtBNB8FHYvRmnV0bU+DFHOClvqAGG4/b78AkyrZ1BSDYnWTHhDAgOJLcsfHkF5QVVnHXHGYxcn0KDvQsEqGjuRKMXOPXW01mkqsPl95EUFIxWoyajXwwur58r75hFv8EJ/GPLOmJMZjxWH21OFxjVyNUqKlWR5Fkicf5zK8a8MGYPH0hVaRNLP9hMTpKJ+Kv6s+OlTRj22xh3a8C++KPq9SzQr0KTpcLhMbDWWY/bH8KcjItptm7hmkHDGDQmmMKNZbjyQvn7N+uIdWqJTzURnxzGgt2lSFoZd4KMP0KmStzPxuYKRJVEm8uB0+dFr1bjk3zstRVw98tzCdVGsHD+dlweH65tes489zxGRWZCJDS5bLy+eSuDDMlMT89hYcl+/kMVlrnhPD0qHaPmoILZ7XFyw5rP8Msy/xw9FUQHiYY0siyZvDT0eUREBEFg5h3T+fDtTwBo7OlhelgK0z5sx9pmJfncC2lVLSYj+CIyw60UNjfT7weJaKPDD83yrNvXwPWD/oBLK/CH967CkllCQbdMnbOC+0+7i4mZaQxPSqByTz2rH1iCJ1zFw+HACFjbupf7cmYzJ/Gn9xoSBIG/3nDGYafFRQbz6p8v+MnLPNE4nB4efW4Jsgwer5/Hrr2Bleb19B+ejs4Q+D4X7N/L13WBc81ZGblMTEg9rjEs2lTMky+vID4qhLf/cjGp1hY2tdcyKCKOOFOgWry7rQePy0tkQjjTLxpDcLiZ0Khg4tMCCQ2xJhO7rSDKoO0QSD4ljYy8RPas2U1PagxxNIMMXXtDcHYE0R0iMuiUPDpbuskKC2daVAYV9SZyBqaTHZ7OM6v34oqooqXHQrcnmKLtcI3WjLQmGutkQBVKR34o9no3ouyj0hpBpTWCRH0H1/TbAIDcYGC3KYz+Qc29n1UUIC+yng6HiZCwQCW6VafHrwNJJR7cKAfENrXDhagSsI2UUWkPWL/7RCSfgEobGKTqBskCSDLhjS46MjTISR5UiITIJrq9drQaFeemDMbv8XDXh1+yN7gYKdmHuiMYoU2NqkeFFOIHr4AvzoOqWYMsCNzx/iIA+sVGUrWn9YD1vMTfrjs0GUJBQUFBQUHht0leXh5NTU1AoGp8woQJR5lDQeHkUlNTQ3Nz4B47Pj6e+Phfz7MuBYVfGlEUycnJYcuWLfj9fkpLSxk48NACLgWF/2V+mEx1pOf6Cgr/ixyzMO73+9m9ezcJCYf2PFX4beP3t+FwLkSvn4RGfeiDf1mWmVdxO1ZfK4NDZzIt9uZDxrxbuIvi1haKW1u4YdgIgsRaAk+4vUSZbHxx9cW9y9pV30RCSBDhJuMJ+0yRMcG8u+JeJEnCYNQdfYYTjM/r57PXv6WkoKb3tdfjOymxTJkzlFPOHIwoikcdW1JUQIn2agS1n4iuGxiZf81hLYY90ncVzRLdfoF6ZxXvlRjJ+ksParVE+EA99c9b+OiJ+SwcpccfrqM1LGDB7/Zq6GwL5t1vJjHIVMvWPXmggW2bMxg9eh+dPSaCguzYvTpUosS2pjR6PEZyw+v5tj4LCIjYfhugEujBiwYBJPhwRxHvFxbCgZbBuxua+PfyDVwzZhhTszMIDe9g2KgSJElg1e5cZI8Fy+dtnD2sP/Nry7HrJJpaTOTGBsRuQYDBsfVYpUb2tU7DqNNjUbtxSBr0Ki/tVdPwhW7GYnbj9qqRXVrCLXoq6uLQuC0IldVUCuHo20X2NLYw4ppS1EESeaZ85mSOY3zcQMxaLRadjq099oBGJEOXw02GKgX91+VYwp2EqfWs/6CIjX7onxvPH0ZP5ul9a+jyNmFRB3F6/GyabQ48NgO3Tz4NgEijiXfPPJeS9lYuzBmA4UA/8ubqVh5csw5XShB1by7hzw+ey+azH8WVGoYcakBj0XDlzHHcG25h0WebeOfyjzEbVOzfUYnepGPU6AxEUeSJSYF+2g63lzMG98NqdXLbhOEkZ8XgaLNzcfVqIsu7SBw6nLLOgDDmruhhuisSYVA2m3IclMcEzglf1G7BI3uJilER1BHMuLgUQnR65mbnMDc7p3e/y8gPVGdfOGZw73s+v4T1VT+72hopt/RQ5WllYWOgN/0paRlckjKJUH2gMnRBw7usbVuGWR3Ew7kvMnFKDtu3VmIwahky7OC58PKRQ7h85JDe149XfxOI3+/D/4O+pGsaKtjcUoNa9PNc+R/x4eKs+CsYH3kaKkHVO25YUjx/m30qNreHWfn92bliN/s37QegdtHpnHX7VwB8dIGPhh4rKaEhhxx3P6SpqhWPy4vogux2NYPjzkEU/KSasok2RTBnQAQA3X4Rc6iJgtuCqQyqIqIlUA2/onZXrzC+Z9M+itbu5bSrJxMUZjniOn+r6HUaslKjKa1oZlBOAqYgA7OvD1jMr9tbxZtfb2Xc4FRijGaCdXpK39zM5orFXPu3SwmNOmhxXtPUiVolEhcZfKRV4bA6ef7W19HoNNz87JVo9VreXb+TJxZ+gxAu42nooKG1m8EJ8Xw7+6be+ZqqWrg2/y7cTg//WPkQofnxvFhdSpozjD/mx9NS2crktDMJ10ZRs99P+ikifpWMnBPLdQvu5JE1m+haHsHZ+YPY9tY2VAYH4R12Lkq5ibb6gAX/7JtP5T//urF3nTHjB3Px2++idgt4k3wgw4KNhdjDJMrbIxEEkE1WhH6g1voQgP5BjUTpenD5A/3GQ8KzCS0UqEsJJt4QaJVg9WrZ+3k60rTAdUeWwRIVsIB0e1U43FpkDv5As004MOjAISMIMqZyD6FlfnoyNTh1GmRRCJSQqwRaTwFB8IAAPiQ6ZTuoBFySxDsVAXs9MVgixBKIWQz34m/XIXgFxHYBz3A7iCBrJVS1B6sM6jq6GZQeR0F5AyP6Hcys/qaxjBpbJ+enDUGnUloKKSgoKCgo/BbJy8tj5cqVQEAYHz9+vPLAWOFXjVItrqDQl9zc3N7jori4WBHGFRS+R09PD3v27AHAaDSSn59/kiNSUPh1ccxP81asWHEi41A4iXR03YnLtRKVLY64mO2HGSHjlZwAuP32Q6fKMqE9asyChrEpyUSbzAjMRpI6EAQ9Ot3BzOu3t+7k8RXfEmLQ880t12DU/nc23j+GTn/ilv1TWbNkF289tQyAuVeOZ8y0PKITTp5V2w9FcafNyWNXvIzP6+WeF68hPDaE5tp2XvzTO5zydKBH84I3F7FNbeT2Zy5DlmXaXPt5p+Y/SIhckngHHruXvd6d+FQeqla7qGp2k+YXUaslEjNDKKuqpaCqgYmzzmB1SyNr9uZQ1RpJh82C169BJQ3nykn/xz1nGjmr390U+iLYmZJH2wAdjngNvjAfPqMMMpR1R7N4/0A48DGCfFp63D5kLQj+H3xWr4DZquHaU4bz3qZddHU7+ceKtZyR2487pg1hnbUEUZTJcusJX+Fmxfr19DTE4R+sB2RsLj1rd/QjwiKTlF4LSIiixIbubwkzJVPn6cEp6xCR6dntRx5mwGJ243WrMTlPpcrl4p1ZkzDVuNlauoeuzjpa3C40Lh8qQ6CifM3WNVhq45ky+eCxMjU/k0fOnYZaJTI6K4m/3voOG5YVkqRV88yXt3PHB/MQgLJ9TTQlb6TL2wjAnZmPE6oL5y9DHuCHjElIYkxCX9scdbAeV2YIAK2ROgwmHVEtEjYB5ConF14yiNzEGAC+fnkjbU3d2MyBZJPoxHD27KjmmwU7Of3CUaT1j8Oo03DfueNRCSqCNAEBWh8TwrNrH6GutJEJ54xk9Jzh3HP2s0guPwPGZPNZWzNSpZOvCsr5P+D6zOm8XfENZyeNYmb8UH4KHQ2dJBa3EzwijGpVBxq/mmRjFO2eHu7Kn0aqOYwv6ucRo0+g2tYGgN3nAmSCggw8/Pg5R13HXSPGkhYSRm5EFBbtwcQbj9fHJ+8XoAtTkRxnwY8bgG5v5yHLEASBOQMPivwDJvRn7JzhWDvsTDh3dO/7OrWa1ANJJAC1ti7er1rPksatnJs0iluyT+udNnTaAG7615W4HW5OuXAsao2aS1Nu67PeLbuqWLW+hAc/u53rSj6nxW3HWGfE095Jz9ZqGAMel4d7pjyCx+mhtqSeu1+/iZ+DT5LY1dpI/7DIPlX1x5O2Lhu3PzUflUrg33efTYjFcPSZAFEUePWJi7E53AT/YJ5nFq2lrLGN8sZ2Nj96E+U7K7nxnHsBiE2JZtBV46nr6CZSa+CWxz9FFAXeeexS0hMjepfhlyRUB86zaz7ZyIp53wIw/LRBjJs7krLmwL4nqwUumzWUlLgwFm/cg1atYuqwLARBoLW2HZc9sA/Vljaw2tXJtsp6tlXWs+v1rVg3lHPaWcO4+7UbGR4G9y55n9W1TTgjZTwhXiKig9HYjWz7sAa9S4PP7aApw4vcbMM5LRtZLTL/9dXc/K8re+O2+fzY3SrwSwy3R+KxiIzICOONqEK+e04sfHf5kCHa0MOVaRsB+KqxH1t39Cdxp5O064op98VS3h2F1aOn/MVUdOVqdBEiPVlGsuOa0IT7aLRbQAOy7IWdKrTNArY8GV/kAUVckgPl5oKAN05FU86B21b5Byf6A7HJP2LvLCHgdemJ8ZmprfreQBnwCaCVUdtF1N0yPrOALP4/e/cdFtW1NXD4d6YXeu9VUIodxN5LbDExzSSm9/p5c9OTm957b/fmpsck3sSYotHE2CsWlKaCIAjSOwPTz/fHGJSAHcWy3+dBYc45e9YZYJg5a6+1wdZs5ZGbxxPo445R5/oZLm6u5eY13wDwRf5G9prq0EhKenkH8XzqdGLdxTJDwkkkc3q0MT8dYhAEQThBnp6ehIeHs3fvXqqqqqisrCQw8PRa+kcQ/tLQ0EBubi4ARqORpKSkbo5IELpfeHg4Hh4eNDY2snv3blpbW9Hrj+6agCCc7dLT03E6XdedBw4ciEolJvULwsHEb4SAQnJVA0pS51WBkqTgiqhX2NuSSYLn6A7b84ur+HHeVtyAwWGB+9dxVuHudlOHfSuamgFoMlsw2+0nNTF+OgmJ9EOpVKBUKZgyK42w/W1wT6ata/LYsCyX868aRkikL07ZhoQKp2who/pp7E4T/f2fQKP04rnrP2Tz0iwAPn7if+zJKaUwuwS1VkXTbfF4hlnZ+YsP2nH1mBpaePFfdzJwzhbClCo2maK5+Yf3KCjywuboj1LlRFnpwO6joTQzhpiUXbQEZ3P5r/UUFgaR3WzhqjQPKs3L2Zgfh8Lk5NI0K1cOHEl4oDd7dlcgK1Vgt4HZiqzQYujRgNLNjjnbQJOPCtSgrpcIkg1UaFpobrGjtAEWkOg4y18lK3h901pQgUorYW6289Evq7n3kmm4lSjJya0irLyF4Hu/w3STjd/XRlCqdYIdooOqiY2qwGLWsmt3KHExe5EkMGgs7FvoSex5sZiUO6nK9qJmZxMWZxRNfvXcM3gK/9jnqkB47IcF2P+VgT0uEqVawZMPTOKP91YStHIURe7p6AbV8bPtfT64JxOFTcd7T83C19vIzLTktnOI7hnMmt8yCY/xJzTak0/n3sbsi9/hq09XM9boBQngofLGqHbr9OfBarGhUChQqZXtbvf1cueesUNZlVfIwKEFvFx8L48vvYHPn99OTW0LveIOXBy69JYxzPtoOZfdNoaeyWGExQZy48SXqKloZNf2vbz+/V3kNpZwa/qHqBRKPht8F5/u2MqeplqeGTSZsQNicMpOvALcefbL24lJCkWlVnE7Q/nol/WcP9T15n50YBKjA4/8Rr/ZtheVpEenOpCQnPvyz/z2+UpKjcE4+hhxKK18OewB1ArXef9a9g0rqhYCUFM3kuLWMOpbjEh9lZ3eR2d0KjUX9Ywmr+ELSppjCXObBMDeynp27KrAHTVTJvdlUuwo9rUWM9R3fIcxZFkmd0sRgWHe+AZ6Ui+Z+ec3d3PFou8Y9cfnfDrxYlKD2ndoqbe0ct6v/0ZjbECtcvLD3o3cET+prbJFkiQuvHvKYWN//PVfaGw2s6e0lh8fuZ4t1SWsvHcRGYsLUEa6HgOlSomnrzuVJTVogjyQZfm4qmceXrOYb3dl0tcviJ9mnJwlWNZl7iFvbxUA6TnFTEjreYQjDlAqFR2S4gBTB/bi7YVrmJ6SAEBwbCBB0QHUlNYSmhbDle99g0OWmZHUCxmwKmV2lVURG+6HLMvMeetH1mXv4bFrJzFtaCLJIxLw8HNHpVbRa1APAO6aMBQPvY5Wh426VjP3P/w1y6srAfBy02N0KFB6uXP3uzfSWNvMxGtHE1FZw/xN2TgbreTHqJGiepGzaQ/g6vyw8YtVMDqO1iAnTq0Kp9LJyn/cxn13fUmVqpaa241YNDq4xAucEppdavwbw9ude255JU5kUEpobVvo41VKVctY3NDT5GxFtslE+1ajVTjY1RiAyazEKUsoJBk3tY1ms559KbVE7C+6liUl7jobCbcUkPNsL3yUZiL7lbQl2aM96nDIEnm1/tQnaWhJghg3XyQkQmx6Vln2AmBshdYGLXi6qsLbPc07ZUBCliTX7YdM2EloygwU71KgbLICThweaiQnaLbokZQOLIkWHNF21Ns0qGpcL5EXb9rBbecPaxvFqNKiV6ppddgoMrkmvZhlBxm1pUxe/AHLp9xNiOHQHQQEQRAEQTh9JCcns3ev6/VGZmamSIwLp61NmzYh758FmpKSglJ59O9fBeFsJUkSSUlJrFu3DqfTSW5uLgMGDDjygYJwlrPZbGzevL97nkJBauqxL5soCGc7kRgX8PZ+FYNhJhr1oV88+Oki8dNFdrotwNcdNx8dlRoz/iGuNbNl2Uld/cPY7bvw9n61rUX7HcMH42c0kBgUgI/h3JnFZ7HaGTSpNxNm9D8pSfGm+hae+78vQYaH35qNm6eeJ2/9FIvZRllxJSMe/QmTvRiDMoxk3/soaf4VgNLmxUR7XkZ+5t62sZZ/vwHZNaEMm8XOvk0eqLw9GfWJOwMSo8nLKUThtQ8ArcKOYo+N2alLIBXeWuRaf/WmG5ZgsmhZsNZV7RuiqcM7qhHvqAZ++V9fLo74ld5aEzGelRg0FgKD6vlpwxpefD4ajzEt6HoH0rrTgrKqHpVdjcLHtT63MsSOdq8OtSxxWWgCM8f24fLn/os1WA8OGdSKdgmTWC9P6jaWoChuon5WACgkVM0yCquT/F+yaZ0+ElN+OFU/lNHi+JNo/wZ0/hChN7MhXw9q0Otc963WWNlrMhC3f2ytWsYcrKWx1k6znwZDDzsX3eFBvm4j4/zOY3LIAJ7aupo6nZnqpRUoBkViDjWiq7YR6efNuz/N4dX7v6W1Wo9uUAuSSqa6vgFrk5ntO0oZM8TVJt7hcPL0mz+zpaKKWz+4EmNiEQ9lXUeyewoGo5bGhlYirH25JeESjCoPNIqOSwfkZe7lpvs/w+Gp4d3HL6dPwoFkWGnLHvb6fEzSUHf2WEoB2K3I4LlXZ3P9oH/xzBXvcMeLs5h27SimXzWMnqPi+f7PbQRrJHRGLYHD/NkT3ky2wUTyCy8Qa5OxD3FidzhZX1XAZ7s2AfDd7gxuSBjENWvfpryhFuNT9dx4xfnMumcKgxMjGZzY/vnlp38v5bvXFzHrnqlMu3FMh3OqaFnLmrI7UaBhxVuXorD78dSLl5I0JI5Fn62k5y4lVYM9GRIYjeSQ+fjJ/2G32UmZ4zp3D5UXHq3hrC2rR1ehoqqumcBjaBm+q/4zdtZ/DIC3tjdGdQjRwb7MmtCfvH1VjB4eQ0/3MHq69+n0+AWfrubDpxdgdNeR9Eo/Fjm2EKrzZXu1HZBYund3h8S4zenA6nRgb9UQ5aVB+1Uts26Zw2tLHiY09sBFvMXfbmDlr9uYPWciCQOi2o3Ru1coazbtpm+vUIIM7kyJSGDY+2Gs/nETA8a6JiMoVUo+2Poyz3z7B//O30PhZ7/w2rXTO5yDze5AAlSqzi/KlDa7lljYZ2o6mof0uIzoF8vAXuGoVAoGJ3f+N+pYXT82levGpLRNBjB6GPh011ssW7CFFb9lIxkAGfyMemZM78vnOdt5YPHv9I4Lwc9oYG1mITKwcttupg1NJCwumHnl/wEOdOvwczcyuV9PZn74FQAeu5vB04gkQUVJHW8+/jMAr757FX36u86rT3gQKx+9hQffXcCPVQUADP2X6/vi4edOiEOi4n8ZUOxN84QQ7pzk6jzwzCuX8d/0NbxRudJ1gpIESrBGW7npkwF8u/cjpgbPwk3lgcZdhSNAxrumiYvPX4VCAWUhCrbln0djo4OI4HLmJC0D4Mv8QWTmBbM0vBc+2hayq0Mx+YJN5UZJpScBPk0olU6UgKyB0hkq4sKqOXiOhSSBSpLx0Jipb3UtpVDQXAPA7oO+JyY9eGy0YDLpcfrZkf3sBz3XHzRgh6S4TLRBi1Ky0fyDiSZZCx5KZLUChUOFygT6nXXgZsA8CCxGcOCEARZ81hrRa9RcOqofzTYLZS0N9PDwx1dnZPGk2/nfngzeylnR4eenyWoGkRgXThZRMS4IgtClkpKS+O2335BlmezsbMaNGyfaqQunHbvdzpYtWwDX+4mBA4+tq5ognM3+SoyDq526SIwLgmuJmNZWV/ffxMRE3N3PviUSBeFEicS4gELSo9eNx2bbRVPz+xj0M9Boko984H6ebnp0wz1prDLzQcEWpg5KxGbfhanlMwAamj7n3U0jsTsdxPn44mc0Mjgy/Aijnl1ef2I+5SV1FBVUMmRs4pEPOEr52aW8MOcrDO468jJLANi4PJdxFwwkqmcQO7ftpccAIya7a23zFkcJrY4y3NRR2J0m/A2DXbc3tiIpZJIvq8RuVpA73w+lSsn1T1zM3opiimb+QTmwsHEHkT7xuPuNoXJNJsWboXFfC9oXXOulh3jX4qFvwcvo+vDZ3cB6TS9qfN2Z2n8L9TYDMk5qS7SExpqor3LHK8bVnl+ptdNvznaiUuuoLXVn7o1DkMwWgn+rIOaqNKoVDezIsSM5wcusoUVv55bFP2EJMyAh4VFWQ8SURpqa9BQVBuG7sAhVQTM6XwPqFieRP1twaBVEWzWUFZRSNjaO65/9msKSWpQyBGz0IX5LPf2GJdPTewywHlUj7G4JwmJW01RmQDYo2V3hT2xgFZIETpsSNa5EtJ+bJ9VyFlHKIopM3/DLwnCUa8EPHeo6O/ZIIwDaIAP9B0ZTX9PM0vmbQaknJrI/F158Hl8n7EGtUhAf6tNWpfvH95v4KScflArmrtrOiKg9AOxs3s6/P3+P0pJaknqHo1Ac+gLOuvW7aIxw3f+nCzfy2kGJ8ZzGrTTbG2m2N5LkMYB6Ww2DfcdRUltF8Q0OpEYDxQXlrvssreLyN7/CYXOybEseS966DY/ZPtjLirDThFnhSVGOhWu9B4NZJrk1mGSfIPY21zM2JI7C5grKzHWglbAnqakoru403j1NtTzQuh75el/q5y7vNDFe01AAyDixUFlbQuXuFrZnFDP+8mEMmtSXFbXFvJ7xXyTnH8xbVsm8t1YDENP7Op68+AN0Sj3zy7LxWZWHQiG1zb7/iyzL/PLFWmqr6rns9gno9O1bgbtrYgDQKLzRKF0TghQKidsuG8Ylq1/nxswMnpYuY1JI52tc1Ve7ksXNNju/7cyCHrCvtZbrk8ZQ2FDPlb36dTjGX+/GN+Nnk99YTXCuned+eA8rsH3VjrbEuCzLvP2v73HYnTidMs9/eUu7MV64/wJqG0z4eR/oLODp687UG9o/xh6+7hSZXWvBZxS6JsIU5ZXzzr9+IL53GGOvHsKNT32LRq3k86dnE+jb8UX2yyMm87+8LMZH9Oj0MegKXu563n/wki4ft8MFURneeGAeDoeT2L4hVFkt/LlxA7Oemwg5YHU4qGtpJczbk/uvHMvq7YXcMDWt7fC/L18B4O9mxE2rodlsRV9uJsUnmDsfv5Dakoa2faxWe4fj/nn1eHI++x6VWsmFo11v+vVGHZ/kvIGpoQWjpwHtQT+vWq2aaf378ubClcj75zAYlBpu6J/E8gZXYl6DGyP9LmDujm3YFE4mjcngr5DTa9x4a/w0ntz0LtGBe9rG7R9Sgn67hfX/i0JO0NBcaiAssZq40CocTomluQn4eDQR4NGEVVaidTdTXOmHj1cTDkClAKUCrA4F1S2GI35Pks4PYYeilql+/fmyPv3ABgVtSbq2X2On63bJBg3u9a7deqnQbVRitznQ59dhSvBDlkDVaseQu5crb5nBm2bX+nRqhZKvn5mNm0qDXqVm4m/vUtrSwAO9x3NDzyEEGTy4PWEEIQZPvspPJ7u+HLVCwXU90ujpJSrNBEEQBOFMYTQaiYmJYffu3dTX11NSUkJ4+Ll1rUI4/WVlZdHS4npvJhIcgtBeSEgI3t7e1NXVUVhYiMlkwmg0dndYgtBtZFlmw4YNbV+npaUdZm9BOHeJxLjQpqbuDmy2LFpafyYkaP0xHeuudV2Et+Ng3b5i0oKikSQvZLmesoadfLHFlTiSHCDJEOjuxuCoc+cN54AhPVg4L52BQzsmiHZkFPP+Uz8SGuVHZHwQM64Z3iEJ15k1S7L46q0llO5xJRfDYwPQaFUMGO6qNH7569uoKmsgMMyDX4peBVwJFgmJceE/thsrItGf+Gv/JGKIK1nXVKahZL0npfkVDH20B0V7/2jbt6h1F4yEQG0ooWl+JOwKJWfVF7Tu01G4yx9/gwNLcC1FmY00zlehW9xAc4rE+nhXrXXc1j2s+j4Sx3n9KSoOxtPTRHzsHnb96M6Ee3cDdTidINU1YNcpMUV6sen1EvRGLZrqRtzCPbFIZua25IAalB4KtPscBI1vISLK1Yq4utyDpmR/CNOyb7w/qjobN1WFMXjqQAYPj+O5//7OdxXZtEQ0oddI+OyUMFc4WfFMCjXnD2L0uADeDBjLy/OXYPPUUuMRhMMgofa1Uyj5U7XPA+8qO+7zLFz88SzskY0seS4dVeoaogdVApVU1W1BW2vDoVHw8JzpfPbafPaowbPGjEIh4eXrxrTZQ9m+YTeXpF1Cgl8kz9/Xl/ce+Job+j7ImEvSeOCjm3Dz0mPYa6I11MjkgfGM8B/ML43fMSR0FD6+bvj4tm+dLssydZZsdCo/DCrX2uAzLhnC3Iwd1DhszJzQv93+qT6jKDDtwEvty8XhN6CUXJmzr2yrsCe6ljpI7JlAnTmbVTuqscsyqCTCAlzrXkfIQTidYLWokO0S08J7kVoVyfP/9xV/Ktfy4aJ727okOGQnV0aNZFdRMW5SK0lpPfghJ4vHVv1OL4Ufc6+7ArVKyY+FWVj8XD2RrWkd1+vNKShn+a9eFJX0oKVBg8YSQ7+BXm2VtR4+bigalFzeaz2+ehNK5/8wesbgsDuI6xeFzmHkzTs+pbmphcduHk9MZABBvh7t7mPntmK21TxPwvmlLFy9kZkTnmz/O+M+BV9dHzQKT9SKA9+DBlsLlWZXYnNbRSHSsiZSJ/TGO6B9BemsO8fj7e+Of4QPj327hGZLI7MGDmbO4I5t1w820D+Mgf5hWENtTLxqOJYWKyMuONASSZIkRk7ty4pftjFiSsdqdYVCapcUP5zHLxnPt2u2MXWgq6X4G5/9zh/BrazI2IYuMYAWs5UWM+wqqmxLjNvsDkytVrzc9YS4eXB3/6FHdV+nO4VSQe+0GDLW5hMX5EvTtr0Y/fRc3D8ZJ+BrNNA71PX7dsmYflwypt8Rx/R3N/LH/91As8WMfLWVkCjXkhvRIb488/JlyEBKWmynx/10Z8fW9Fq9pl1C/GDhRm9mRfZnbslWADxavfkjt4rAUA06jZUfc6r4R+F7uKs1xHh6o1cFAoW02hWsK43H7lxFVGgRDlSsrY7BQylRrVThM1iiT4GSLZU6evbZh2+Qq0uASimjVjoorfElxKcRT20r7rpSdnzdgz1Gf3Q+FkLdXPs227SYTGrUCgm76tBlqOu0ZQAsKMgEd+BvK7EcmNsigQ3QAo1KrFYdSk8rUo6E0glTByayPaiCwsparB4ytUP9CRoRxR3TJjGkJomrl3+O2Wln3KK3UEgKPh1xJeWtrr+Nf1WzAygkiZlRfZkZ1fnkF0EQBEEQzgzJycns3u3qVZOVlSUS48JpRZZlNm7c2Pb1oEGDujEaQTj9SJJEYmIia9asQZZlcnJyRNto4ZxWVFRERUUFAKGhoYSFhR3hCEE4N4nEuNBGrYrDZstCrYprd7ssy9yxfAEr9hXy6vCpnBcZ3+HYD6fO4LPMrbyyaTWX//wdsfNqee8dCwZ38NI24K3XYbU7aLXbUCqkLmuj/vuCLWRu3sMVN48mKMynS8Y8GW5/cBo9EkKISwztsO3HT1exa/tedm13tTP/+p3fCQjxJnFgFBffOJrKfXX0HhTLom/WsyuzhGvumYSXrzvP3/0lDocTg5uWQWMSuPflWSiVB6oS1RoVIZG+VLSs46+kuFbhR6THzA4xjLlNj7Kf68K/0w6mCldyZU9uKTd4XECYLpqS1sJ2HWsrLKVUUIIyPAPCfXA2BvDijMmEhPvy+pwvKM53/RHu1yuCyKggMn7+HafTSaDaytivtmOzKHn//QsJCKhj/OQMUtK8+OST8URFV1Cxyg1niILmeHecBlf2wwboyxqJ8nFDmRhIlbMclK7JFiqTlWqLgVgZzE0qrE1anAFKmkMkZKUTu4+K2+65FA+tq7p76qhkvlqWjULhRBlrJUQZRJQtiQaVjpXLctmwPh/nHQGUXKjCK8OGrkqB1aBhtGcUvuhZvHkXLUh88fNsQkJUZK6q48/PNhOSYyM6VUKlMJAQGo9P2Z8EB3owfkJvchekU/vpcvpOd7U9kySJC+8fxSjrQKIMwby5cDVeBj3b1+wCIGut6/9hE3vzcaAnRncdYTEBPHvjv1n9cyn7hm8i9fsRAFRWNPDf95cRGx9I6rQKtlQ9iVLSMSniV3QqHzy9DCx6945O14r20vhwS+xDlO6uwGqyoXdzJcaH+/fi++J1eKmNeBr/ZFnpZ4TEhDG813W467Q8ffl5AAQ1+9Gw2Qebp0xCOjz/+WUs+Z+rmtPpkLEdVPGqlBTc1XMyv65dwdsLvmDrgiwaXu5Pk8pGuqOMzPx9DOgVzpSIBL7K3YKj0cnDl57XLt6cgnKue/xrAIL39sVXoeL1edfi9bcJAlOi4vl1zyCszmVEeg1l7o77kGUZrV7DhsXbWPqtq9VWytjeJI7pmEAOCPEmdmwFkgIcYZu5M/2/XBY5hBEBCW37GNUdX1wG6b14rPfF5DWWsfuBrfy5ooCeKTG8ufTRdvvp9BpmXOv6/s0bGEVDk5moMN8O48myzMNrlrC9upxXRk4mwcc1yUCjU3PPO9d32B/g/tev5N5XL++0SvlIMvJKWZe9h5kj+5AYHsiTsya2bav0VeC0K2iKd2ODuZKJI3vhazAwuE8UAGarjcse/5x9VQ08d8tUJqQe/XrfpztJknj285tpbbagM2rZvrWIqJgAdFo1Vw/uf+QBDsHLoMPLoAPv9renDYvr/IATcEfv0Xy1KwuHXaLI3EQRIFUlo1TI2G02UECTzcr3k64gt9a1rIJe5eSZ0d9R3ORHEb6ARPG+aAKNyZRLGzB6tiAnlJIcrcJi3j9BzqFiX1Uggcu0qIeYMGptgKtlep8rd6HYX7VeZjKgQqKqxYBDVuFwOHBXO9Hq7NhlGUkGlRIkSUYrqWmqApOsxlIMGrMRa18T6A6cn6JMjc3bgaQE5R41kocTVDKtu92RHBJuTU388d/bqaKFqx78iuahZhzeTpTFGuqaXUH19QnBTaOl1tKCQ5ZxyA6Kmuv4aNgsNlcXc3WcuBApdC9Jdn10t9MhBkEQhK6SkJDAL7/8gsPhIDs7m0mTJh3X62hBOBlKSkooK3NNEA0ODhYJDkHoRHJyMmvWrAFc7dRFYlw4l4lqcUE4OiIxLrTx8X4Ld/c7OyTGTXYrC4t2AvBzYW6niXF3jZaBwSFtX1utdt67L4173wkgKOR21t0ZhyzLvPfxUjauyqO5oAEC/E4o3ubGVl577Adk2ZU8+ufTF53QeCfTd5+s5PN3lqJUKfjq9/vbJfHGnN+f9BW5tDRZALCa7ZQUVFFSUMX637NprG9h+OTerP4tC4B9RdWMnzmQ6F7B5GeXcuVdE5h5/chD3rfbQck7i7OafaY/CXOb1G6f1n2BqKKVSJLMr/8XT12ha+JCzoZ8NszPZnrcLcyZ/jTBD7biMXz/AuQyILmq9CQJ/EapGNsnhWevfZ+irGIklZI3Fj9EzwFRyLJMXtkAanMtNI9fhEmxHY3ewWdPTaPW/ht7mmW8/epQaxzk5kRhMJtRu8lIsiuJ65RlFFY7pl5q1o6XMVgqYX9yJaSxibgri6hudmPFv8N4dPAkcmsyaC6robG/GpQqJKu9LSkO4GeHoXVuZAWUonJ3UqQrZmLfaXjUO/n4g2WERfuwuK4KgMQhoZxfG0xkpA9PXfwq5UGejPnnRAb0CsfTv5zFRdfiDFbgNmI8JVURqLZfx6Tz07iw953YbQ4KgJ3p+cz54EYuu286QTGuNruV5gZmrXkdq9POJG0aP/xZCMBTj0yh4JcsJlwxrC3enn0j2j6vKql1HV9a13bb999sYOmSLJYuySJ6mCvD5pAtOOTWdt/ng5PiFa31vLbjV2LdAglYBu8/9A1Nl4eTdtFAnhg6nkijPz+MvB+AjeUPAmCTq3nnpvNRSAf+dIwbFM+gz1dRvLSc4UnRAIyfORCNVoWnj5HoXiH8nU+gqzpbpVFxUXgC7+3ZTLDJQM9I12MT7+VP+mVzOhwHropkcP34XfzgeVwxcWCnbeQlSWJq1KtYHLVolT7tzr1XSgxh8UG0Npnb1tX+i93uYN3WQuKi/EkJ/hclLb/wTb0bWxvyKW2paZcYP5RpoQMgFP5p3Q7QbsJKZ7w9jXh7dt7qq7ipnq93bgNg7s7tPDXk8BXlfzmei3lOp8xdb/xAq8XG7tIaXrnj/Hbb/+/8kTz78zJ21tfwx87dzB7UjzlTRgPQYrFy8/vfU9jSgFqC7bvLzqrEOLgeU6OH67mxf0p0t8ZisllZuHsXKUGhGNVq/m/pr3hodbwxdgp6tbrTY/z17rw2+EL+ufRXrPt7j8uyArsFJMmJj7uJQG0IZue/cdNspXn/nBalAqI9qylp9MbmVNJSG0VccCIFdVvQ738i9ndz457+9/NS5lz+2G2ixapl6IwIqsry2u5fpWyfSVMgUWs1olSBh1srWo2zbf3xv9e9W7Ch8QcWu2O3qXC6O11JcQlX23QZPJR6apQm/DRGFFolNSGu50jJqSS6woNbrxnGwuodPLL5FzzG63DaXfGoQ2TmJLs6G2yu3kutxdWmclb0ADw0OqZHJKNVqhgR1LF6XxAEQRCEM59WqyU+Pp7c3FxMJhOFhYXExoq/+8Lp4e/V4h2WfBIEgcDAQHx9fampqaGoqIimpiax5IBwTqqvr2fnTlcOx83NjcTErlvOVRDONiIxLrSRJBUadccnTDe1lvsGjGR5SQE3Jx+6WmpISARfTb2E6soGtq5fy/m3bEehycThvAyduidms40F324GhcQbry3i8+/uPKF49UYtMT2D2b2zjN4Do457nKz0AhZ9s56VC7cz8eJU7nr6IuprmjG4adFoO08wHCu12vWrplQqUPwtSTZoTALunsa2xPjBHE5XEtrSascvyJPqsnp2bC1ix9YiZs+ZyJMfXYdPgEeH4w5mVIfjpuxBsyMfgK2Vj3VIjP/8diaNT/7VDlZFXL9w8jKK2rZ7+rqjsmuo/kLCfVgzkgThtX3Znp6P+zATKneZGFs/AJKHxrNqwWZ69o8gso8r0flr2dcsr/qJsPAY7urxOPkNvuhVAYS798PPHkSzqZp5X++jsd4IErQGaFAXWTCW27C6O2kO1+IwqKnt4+oK0KJ1tsUWGl+Fp8GMp8GMQhfPRVdPYED/nnz/5kK2GmE1jfRXHegmUFVSwy2XP0HTywFoFJJrKVqbkqEDokiODiJjfT6bM/YS1Ay9r0ygIr+JrZomPp/1OU6njGVfPbcM6U3PlFi++fpR9IMdSGoHHoEmGhqNrHdUo1mfg/OgNatj+0WhUChYX1DG/x75img7XP3+ZVidrsyTm4capUJCr1EzZEgCF04+9O/ZAx9cz/If0hk27UCVav+UaBb8bxNh4T4kBV6Nt8UXN3UkRnXHDgV/+bZ4HcsqsllWkc304hhMPQyU9tfzQ0EO/QJDuCZxQNu+ffzuw10TTYA+rV1SHECtUpLskGgtqmHs/a5EqkKhYPT0/nxZuIp//D6Xa2JGcV3s6LZjhkzpz3srH8fgoSMo0p97GXvIOP+ub3wob9x7Ic9+9Qdv/G8lVY0m/nHpqE73lSQJnapjFbanrzv/SX+u02M+nLuarxek4+GmY8G/byUu4HxyrYvZ1rCSicHH1jL5ia/vYvOf2R2S78cizM2TiRE9yKyuYEbMkZPyJ0KSINTPk/zSaiICvTpsHxQbzrw7r+TSf88lv6qGobEHJmxsLypne3E5KCWSewVzzeQze4b2r2tyKK9u5MrzBqLror8DXenJ1X/y3c4svLQ67ho4mHX7XB1HNpSVMDri0En7fgFByJLU1nf8ovhElI0SzV5LcfPewyC3xRQ2mvfvrQLsOGWwOUfjpBKNQsu7F80i1MOPPdvmU21rBqDF0UKoMZDcUk9a9neJ2FC5F51V1TZ56i+yDLITmu0Hyr21KieHvcYng6JGjdGmxalV0uC0uBLiSlAWa3Cr09Pg75oIVGVt5j+zL+SRTYuotbTw1KSJXBzXD4AXt7uWBWlymFHv1mGNMWNW2fi1MZOpJFK3PykOcF5YIkMDu3cChCAIgiAIp0ZycjK5ubmAq526SIwLp4OmpiZycnIAMBgMJCcnd3NEgnB6kiSJpKQkVq5cCbiqxgcPHtzNUQnCqbdx40bk/dd7UlJSUCqV3RyRIJy+RGJcOCp39BnCHX2GHHG/YWGREAZT/+1LWcWTOJ1Q3/w/grRDsVrtSAoJGQiO7JisOlZKpYK35t5Gi8mCu8fxtWYv3VPFfVe8z/7iORbOXU9megF7d1fiG+DJXU/PxNRkZtS0fkes+jycmVcPIyLGn5AIXzy8DO22WcxWKvZXAf+dh5eBK++awJjzB5CzZQ9P3/ZZ2zZPLyM+AR4s/GY937y7lAuvG8GFh6gcTw16kWWlrop6Sep4HhOuGMa8Nxbt/8pJXkYRkkaN5OHOgm82MGpmKv/d8hz3XPYe+TdWExDvxutzH2JfbBUrF21AjmjkoskXAzDj5nGMnJnCJzUv8XDW9VwWfgvran4HoMxcjELS0tP7prb71quCSAt7kU/+eAG1lwObpwq1VcbH10htjQmlxQmyTEu4A7TtY9eqbPj41uG0Q8NGiWFNrurk6N4R3PufW7E7nVz1y3fsqq1hc3kpA4NCkWVwekigdGVhbogZyxVRwzEotaRXlLCzqBynEmSHhvSfCrC7KymgBj9/Jap9dgLDfYkfGAPAT49VEzPDD5tJgS3Tk8h/+vCnWyZ/1mwjKsSLoBBfLrjzPBasz+XN71ZgszhRahWU7ihhwrK9vD7uWsrN9UwPTeHGnmNZtaOQlxeu5PqRKSSFBXb6vQyO8ufye6a0u23wsDgW/HEfarUKhUIiVjer02P/YjVbyXhhPdKFMmEGX26+60I8te78V1FOq+Rg/bZiEoy+GD0VJHqGoVP5kuBzS6djtTSZWTZvPQDLvl3PkMkHEvbfF22gxWHhh70b2iXGP3nsO7LX7eSO1689bJyHMrhPFI0fuZJ3JZX1xzXGoVj3J/VsdkfbmsW3x0/i1rgJKDr53Tkcdx83Rl98Ym2LlAoF/57QcfmDzjS2mrnmw3nUt5j5+MaLiAk4tuUlJEnik4cvp7iijriwjmu7A2hUSn645UrsTgca1YGXEP2iQhiVGENtcwsvXDMFv0NUwJ8J8vZW8eS/fwNAo1Zy1ZTTL8mv3v/mRq1UMjYils+zMvDUaukfGHzY4woa6rA5D0wsWlS4lVfHrcLiKAfaJ7AlApDZhwQ0OTYzwGCl2akly/QnKs0oFIoDk390Sh0Wm53C0now4OroYQO93twhKW76DzQtVBB3UwDeYwJYY9qNhALZYUaWXH+OO/65lXF7pRZjYxNv/f4gLy1fz7Lt+cgamQlR8WxqLMHu4QAZenhreHj7FyT6hfHKgFvx0R74Wby11zB0ShUROm+e2bgcW7AV2egk0s31mmRiaC9eTD0fjULFkICoo/peCIIgCIJw5ouLi0Oj0WC1WsnNzWXq1KmoVOJymdC9Nm3ahHP/a/cBAwaIn0lBOIzk5GSRGBfOaVarla1btwKgVCpJSUnp5ogE4fQmXlUJbZxOGbPNhkH79yamHcmyzIqyHTyyZhkqm5KJnvHcN2lEW6LEbFkLgN2p5Obf4eq+27k8oQ+vvHw5O3eVM31qP4pq68mrqmF0XDSq41zDS6lUHHdSHEClUiIhIXPgAv/e/EoAaioaeOLmT1zn02JhyuVHnhhwuDjTRvXqdNtHz/x8yOPKimtJGdkLL183hk5I5tXv7sDUaEZn0JCc6qpk+99Hy6kqq+ej536mtqqJGx6YCsAPH69gw7Jcrr9/KvG9YwjQD6PWvI1+fo91uJ8bHr+IPTmlpC/Z3nabrFaDLLNrewlNDa34hXgzeno/5n20nCF9XBXNIVH+1E7YTIEpB3NRKddF3weAxktJaUk+ErClbiUWp6uSL1QfjSRJZK3bxZcv/ERwTAC3vXA5KxduY8xFg2j6eSs1tS3ceOUwLrh6OL/9spW1q/LYWVROibaBnikNmG1qdlYEoik106OmBO21ru/dlN5TufDG9gnhgvoa1pftRZYlft29i4FBoQSE+/Le2w+zsHQLUf0jmBGeikJScMv3/+O3hgK04yBoiRKnXonCCZJNRhdYTesHQajSW6h6pqqtfdn1T85m/tuLSJnYh38tnMZnlavILtyLZJZpbWzhtV1voVAouPqZr7A5nK5nXAcEeRjoOzoRH3+vtli9jXqemL8Ui91ObXMLn9x8ySF/LjqjPYaq1uLcfZR8lYfHXJh6X18Cx/ty978u4w6nk5HPfMjK1gIy3LfgUNm5JW48N8S6KrqXfL6St+78mBEXpXH/f2/D1GzBzUPP5fdNI31JJhfcNqHtPnYVVFD9mw1lbzVXDjwwYaNmXx1zX/gRgB/f+Y1/fHATx0qSJN655yLWZe3hwpG9222zO5z8mZlPuJ8XCWEBxzz2bbNHEh8TSEKPILSaA38ijzUpfjLN/WMLH/y4ltmTBnLT9APPS1klFewqrwZg9a49NNS2oFBI9I0/dOeAv9Nr1fSMOPzjplBIaBTtXz7oNCrevnHGMZzF6cvHw4BRr8HUaiUy+NgmF5wKVpud+wcOZ0R4FH39gwh2c2fFFTce1bEjwqK4b9AIMqvKWVyYx+DQUqzO8k6rtbVKiUabAo3Cia+6CUkCdyxsq/0v35Uubvu7aVAYeCzxMSRJwqDQ0Lh/CQeVVoHJpGs3piRBz5vCSEsZwYQrhrGkdhcLN+8BwGcZ1I7Ro1Q4MWgtKKT2iXoUYDZZKM2v4O3rZ5BdUoFGqeS2j36gQdWM0ujA4VBiVbq6r5S21rZLigN4avT8X9JodpZWYbU7UWfqmTW+D/f1Hrc/PokLI4+tM4QgCIIgCGc+tVpNQkIC27Ztw2KxkJ+fT69enb9/F4RTweFwsHnzZsD1GlWsmSwIh+fv709AQACVlZWUlJRQX1+Pl5dXd4clCKfMtm3bMJtdRUS9e/fGaDxzC1YE4VQQiXEBcCWTLn/7a3aUVfHCrMlM7X/oN4Hb1+XxfsHXlEdVonIzUFThx+ebt5ISGcqk5HjWbC3AbF5MfASoFA7+kfwni8tGc3lCH/r3i6R/v0iaLVZmvPclLVYbd44YzN0jjz/pfCICw3zwD/GksrQegGGTklmzOIvwWH9GTx/A12//jsPhRGfQsjunFK1OTVjMsSfbDicoovPqeaVSQa/+EYQcVF2fOCCqw36X3TqWt/71PU6HkzWLM7nhgalYzDb+88IvyDLM+/BPHn33GoYEv3vYOGbeNoGMFTnYrQ5X25VWM+G9Qpgye1jbmujX3z+Vq+ZMQn1QwrDJXt/ufwCb80CVoLvaEx9NALXWSppt9fwv63O+fmAZLZlKMlbuILp3BO8/9ysAunDw7tdC+uZtzLp5DBdcPIjszFIas814j2shNsC17ndVsxuh3kFc6z+AWvccZJxMTb4A9UEzqJtsrdyX+V+Cohpwbwnn4p4HlgnomRJLz5QD7fGKCqtYnZEP0QpsOhlVkx2luxJlC3ivq6L1BhsOdNh7aenR70Br3fFXDmf8lcMBWPj5Kir+2M1d147DtLeWUQsHtq3zfPuFw/n4l/VMSO3J8N7RhPh7AvDunE9Z+9Mm/u+9Gxl0Xj+Gx0eyNGc3w3t2/D4fzGa1Y7PYMLgf36SQ6D4RnHfdaErzyjnv2jFttysVClKjw/g9Nw9Z6VrLu7K1oW37sm/XYjXbWDZ3DdbQQFb+mcuV1w3n2kdncs2j7auad+yuwJmvRpGvJioxqO127yBPBk7oQ+6GPEZcdPzV1H1iQ+gT23H98i9WbOH1X1ahUihY8tiN+Hkc2wtBnVbN1DEnp0Vdk9nCZ6s246bUYKpqZdrIpONKvH6/Yjsms5V5y7a1S4ynRIcyvX8CdaZWQnRuXP/md1g94e7xw7hl/IlVrh9sT0EVq1fsYNykZIJDvLts3NOFr6eR+S/fgKnVSuj+39Wu9OY3K1iyYSf3zR7L6IE9junYipomrnzsC6w2O/959HKC3Y5t3TSFJHHHgDScskzcR6+ztTyAaT0UKCWna73u/Zyygt5+/yS7YRMlzQvQSDaMCiuSBF7KFozKVmQkTA4NLc4WFpYtZJjnebTarUhKCVklo1YoadYryS/2JzKkCpXSlegeGzGKkjp35q7K5OJxvRniFsPmkr3Uj3K1eHc4FTSa9DgcErIdvB0ymqImrEPVhKXr6T/C9frkr64awZE6moLqMAB1jQZK6iT0Wg21Nuj59Qu8O/IixofFtXsc4kP8eHjmGPbVNnLL6DQUYq1GQRAEQTjnJScns23bNsDVTl0kxoXulJ2djclkAiAhIQEPj8MvoScIAiQlJVFZ6Sp2ys7OZtiwYd0ckSCcGrIss3HjxravBw069BKdgiC4iMS4ALgSNrn7XEnHDfl7D5sYf+muz2m6txYF4GWwU2FS4aHUkhgSgMVq58HXFqDTRvHuQ27odc0keFfQKyzyb6PIbetnWx2Ok3RWR7b8561tSXGApoZWfsp5vi3xO2xSbxpqm7FabNx5/hsolBLv/XwPkfFBtDSb+ert3/EL8uKCa4e3VREfq3EXDuCTlxd2skXmlW/uOOLxky4dhE+gBwu/Xse02UMB0GhVDDuvDxuX5TJ88oHqt3efmM/q37Zz19MXMXRC++Rf/9EJ/Fz+AaaGFq5PeYSGmiau/cckhk7t326/g5PiADdEP0Bmwwb6eR14wemp9mWU3zSKWvIYF3Ahv5V/S621ErtsZ419IeGvQNlrGoLvtFHjkYneqKXVZMHj7lrU4Q7MVQVtY40el8jiPXk0WNxwOiWsDiVG2YePrplNiLsHML3Tx6W0tZYKc73rc0sV//hzEYsuuabTBIjRXUfYFonqGgeGUidKWcKt1Ap1TSh270P/gQrLdHfUq1t4c9WHHY63mm28c/9cZFlGrVLxr/+2bzs+OCmSwUntfwcsrVYWvLcEgIX/+ZNB5/Xjzaum02K1YTxM14bGmiZu7v8AjTVNvPDbw/QZcezrTiuVCu758OZOt70+exq1plaKrBVk1hdzQdiBmemzH7kQm8XGiJmD+OynLAA2byjg2ptGdxhn4sgEivbVoNdpSO1z4NwVCgXP//rgMccMUF7VgNXmICLk0MlkhcL1/ZX+Xm16GvjP8nT+szwdAEO5zKacYj558spjHufWGUP5ZOFGZo1r/7upUal44bLzAFi/fQ9mH5DVEl9nbOvSxPhj939L2b56Nq7N561/X9dl455OvNz0eLkdfzeSQ3E4nXz922Zk4Idl2445MZ5fUkWjyTUDOKewnPiIzlveH4lCkkj1DmJ9rZMF2Q9izchFVjQwYloONq2daI9ryK6M4OPtVYSGpuBUlTPYLR+d5MBdZcFP3UyjQ4/FqcIuK/mz6k9WVq1k7HANxprxjI9J5PZVC0CCusYgKpv8scp2UgNDUGsjeeuHn5CRUXjKmPc4sPrZ2sUnKcBN1tMoWWnS2fEepMKMitK6FlYu2MyEWQcmhNwwaSAPbs/df14ydqcSU6t2/1Ynz235o0NiXJIkLh/e77geO0HoVjIc1OSo+5wOMQiCIHSx6OhoDAYDLS0t7Ny5E6vVikZz5G56gnAyiASHIBy75ORkli1bBojEuHBuKSgooLra1UEyIiKC4ODDL7MnCIJIjAv7eRv1/OvCsWwt2sfN4w7/ojthYDRr3qsn9rYg7px2BdHDwgEJjUqJ0ykTEeJDwV4nZlskel02oMVDWkR9w094etyHJOlw02qZd+3l7KisYkpC/Ck5x86kN44mHwABAABJREFUr9jRdm1PArav3+2qlt4vMi4QCOTPBVsAcDpkmptcbWIXzl3PDx+71q9JSokivnc4VWX1ePq4odEe/lfL6XTy9r9+oCB3H0Z3Xaf7OBwyO7cX07NPxBHPI3VUL1IPatUuSRKPvH1Vu33sNge/fOlqcb/4u40dEuN/MXoa+CzjBUxNrfgGeR3xvv20QYwJaN9CWZIkpoceuP+rIuewt2U3OU3b+KNiPs4GBX5TQeEmk+Vcx3///IisDfl8WP4WhIO7yo0GWy2F2cV8ePNnJAe6s7O8jjx3f3ZVBaKsdHDxm1/xxg2TmFe2msF+8Yz17ENVbRNxUQFIkkRP9xBu6TGR7/MzqGi0UUAtNqcDrbLj98bPz50vP7mNe276mPKalgMbzBZARllkw/BOLbJTpqKomtAeQe2OV2tVpIxNYvPyHNImtG/tfShavYbL7pvO2p82M+P2iW2P2+GS4gCluyuoLa8HIHd93nElxg9HkiR83Qz4Es0An+h225KG9uSVP/4FQFDfGJYuyWLmZZ0/X+i0au66Zkyn247HnpIarvnnZzgcTt564lIGJHf+ezF7ZH8i/LwI8/XE17372gbVNJlQK5V4GA78fkf5uaqr1ZICyeloqxa3O5x8nZ6BUaNhZv8kiqrq8XU34K7Xdjr2+JR4xqcc/nlzcJ8oZuQmsHBXHrMH9z/svsfKP9CDsn31BASdWDW1xWI7piUAzgZKhYIbZgzm9407uXzigGM+Pi05imunDaLVYuO8wSdWxbT31xwY4sWKsmKm+fdm48Y9DMubwTUXJCE7DAz87D1k4LygWvQqidyWEII1DRgVFvoZ91JpdSOzNQyLQ41VVmHHDtjZay/B4ojDaNXQItl4YOhI/ijLZ2XpHvr5hRIe4IVGraQ1zMyLFYvB70BM0W6+FDbXoFOqWDb1dq5f+g2ZjftwOl0TXcomeaMLd6PW0syfFZkM9otnVFAij8uXUlrXwIuL1kGw3K76fWRwzAk9ToIgCIIgnBuUSiWJiYls2rQJu93Ojh076NOnT3eHJZyDSktLKS0tBSAwMJCIiCNfExIEAXx8fAgODqasrIyysjJqa2vx8Tn9lkcThK62YcOGts/T0rquMEYQzmYiMS60uWxIXy4bcuS1NR/+4DpqymfiG+TZoUpaoZD45Jkrqa4zEeB7OSbTXEBBY9NLAKjVPTEaLgWgV6A/vQKPr9qtq4TFB4FBCw4HWOz07BeBppNEzejp/bDbHBjctCQNdCULY5NCUSgl3Dz0BIR4s3DuOt7+1w+4e+p555d/EBB8oMWwLMvtHqt9e6r57dsN+8dxtYMOi/HnoTdnc/+V72NqdFUE+vh3XbsslVrJ7LsnsHpxJhdcN+Kw++qMWnTGjkk5p+xkcfl3mBxNTA2+Er3ScHT3rVAT7daLSGM8NUsdfPPQUnTxDvq9GMSIiPGuNdTP68Put2ZQsryYi64ax9M5d+FwOml0U1CjqaPPKNdj4pQU5NpCqKwz8X7eEnJbi1hdlcu/56XT1GDlnzeOY/KYJG56ZR4lVfU8dtN01rrvZXhYVKdJ8b/4B3hwycWpvP32H6BWgSQhHTTBQXa6JkxsWZrZITEuSRJPfnU7DrsTlVp5VI8JwA3PXs4Nz15+1PsD9EqN5bqnLqWqtJapN407pmO7UtqwONKGxZFZWs7XG7cxo2/CEZP6J6K23oTd4eoyUVXbfMj9lAoFY5JjD7n9aFjtDsrqG4nw9TquThBbC0u57t15aFVKvr/vasJ8PXE6nUzv25P+kSG467TU1JqIDXctk/BzZi7P/bYCgN1lNXy5dAt+7gZ+feR69JrjTxy/cNlkXmDycR9/KM+9djm7d1UQ1+v4Z6B+9p8VfPnfVUye3o97HprWhdGd/m6+cCg3Xzj0uI5VKRXcfvHwI+43/53f2L4yl+ueupSIXp2vMe9f6aDU7sTDpuC22cN4avYkfPYvPWC22/HU6qi3mNlaGElUQDVFsg9FHn6M98oBQKNwoJRAq7QTpx2Et87Il5k7KCwzs6nkN14bM5m0kHBCPTyYndyPfaYmwtw8kCSJ3164ieezF7OgdDsACiTeG3IZo4Li2FC1h1CjF95aA1OiE9m2tZyaOjeQZGSlgltLFhHW6qTB0UCwzov5ox5gckh/TD5WvrHkscdUhdO1+gd+OgOPp0w8rsdaEE5Hkuz66G6nQwyCIAgnQ3JyMps2bQJc7dRFYlzoDn+vFj/e7oSCcC5KSkqirKwMcD2Pjxw5spsjEoSTq6amhry8PAA8PT3FUjCCcJREYlw4ZpIk4RfsdcjtGrWKkABPwBNPj39SVnEgeadWH1017amSsbHQ9YlCgcFNy6vfHmhdvm9vDeUldfRLi0GhUDDx4tR2x/YfGsfX6x5Hq1OjM2jYuW0v4GrHfu2o5xkyPonklGiUaiX/fu5nBo1J4NF3r0aSJIIjfEkd3YvCHWXc/viFKBQKwmMDMLrrmLf5KTLW5REY6oP/YR7n43Hl3RO58u7jTxIUmHJZWjkfgEBtKCP8pxzT8QpJwfnnTadwUS1uXgbu6n1Vu4kIw8cPICx2MgW2HByyAxQQMTyAnLJm7E4rKoUTk00DCrD5Otld14pCL9HPPZptjQ2AREVVI3vKasmoLUfhhB15lbipVLy0YhmqCyWG94o6ZHznXzUcnSTz1sPfEj4whud/ngM2O4+c/xJ5WwoJ7RHEqIsHd3qsJEltSfFn31nEyo35PHDrRMYO7XlMj9GRSJLE5Q9e0KVjHq/sgjIu+/wbnMDHq9JxWpy8fuU0+kV2XPv7RIX5e6JzQH0A7KypZtJB2/Iqq/lmUyZTkuIZGNl5EvDvGlvMVDWaiA3y7bDtuo/mkVFcxg2jUrh74jCUCumYLkbsLq/F6ZRptdq54ukviPH3Qfp2C1V7qnjulweJGpmAr7uBwt2VrF6xA78+/ki4kp6Nza4JIDVNLbRYrCeUGD9ZtFo1ib3DTmiMtSt3ArB+TV5XhCQcpLG2mffv+RwAg7ue+z6+tdP9Pv38ITLW5vK9roKp33/B5Og43p/k6v6hU6n4fNrFzPzhKyrrvbgp4QJkhRk3j1Li3Gaxt/kXcpv2IcvgJUUz3vdiJEni6bLatvE/ztzMzF5JgGvCSrj7gQ4DXm56Huw3EbVKya7GSi6LHsjoYFcXhMEBBzpVeGhcHRdkJJAlFEi0OuxUtLSi00KJqZFV+wpI8glEpVDS0MuE0wJ9fILx0Gj518AJALz721p2llbzwIWjCPXp+nXjBUEQBEE4O0RERODh4UFjYyO7d++mpaUFg+HoJoMLQlcwmUxkZ2cDoNPp6N379LqGJginu6SkJP744w/A1U5dJMaFs93Bk6lSU1NRKBTdGI0gnDlEYlw46ZzO6rbP1aq4TvexOhy8tXIdEnDXyCFolEdfdXsirv+/iTxw3b8xN5m56amZKJWuPx5Nja3cdvE7WFpt3HTvZC66uvN1aTx9DrRqnv1/E1mzJBNToxnZKbN2SRZrl2Th6WPEbnOw7vcsbFY7Gq0apUrJU/+5odMxJUmi/9Duay9/OIHaUNxVnpgdrUQajy9GLz93Hv/qzg63f/T49yz4z3Li+kbw5qL7uSjseuxOGyNeP4/JnteQHeBBSx93ypS+IMsgSXhKvvTXJzM/NxePKe40W62kjo5hc30ZzT2cSDKk9Yvk2re/A2DumozDJsYBJs4ewcTZ7Svq31r9FDX76giI8DvEUQdYbXYWLc9GBhavzOnyxPjp5NufNiHbZVBJ7KtrQmGHRdt2npTEeGFBJdWhYPVW8kH6Zq6fnIabztXV4LGf/mBrSRm/Ze9kzX2dJwEP1mKxMv35T6kztfLYJeO4eEj7SpBd5a7nrHUFxXz2/FYifLyYd9MV6NRH9yfz/NQEqhqbydhVyqZtxWQ1l+NRUYfKbGPL0kz6jHS1v//Xfd9SUd5AUu8wFj9/HRqlEoNaTZCHO4lhAd3aCv5ku/0fk5j/3UYmTjlylxLh2Lh5GUge1pPcDXmkTjr04+vl78HoGWk8/92nACwtLmBBXg4z4hIB6OMfxJrZt2B1OAj3aJ9MLquL5Lv1P2FQ6Wi2Wfmcr/hsykWEGt0oNbk6OkyKbr9+usVq54l/L6KmoYWnb5lCoK87zwycfthzuTSmL2FGT/x1RqLcfcmpK+fxTUuwOW0UNJZjsyu5dvk3yIBWocLitAMwKCCChwe4JuUVVdXxwRJXh5ZwP0/umzHq6B5IQRAEQRDOOZIkkZSUxLp163A6neTk5JCSktLdYQnnkM2bN+NwOAAYMGAAavXpN1FaEE5nXl5ehIWFUVJSQmVlJVVVVfj7d2+3UkE4WcxmMxkZGQCoVCoGDDj2JfsE4VwlEuPCSefj/Sp1dQ9jMFyAJHX+I/fHznw+WpsOQEKgP1MS2ycTZVmmqu6fWKwb8fd+A522a96c9uwdxry1/8LUZMbL163tdofNgd3qejPSarIc1Vj+wV58sepRVv22nYVz11NT3kB1eQPRvVxJwrSxCZ22aT+TuKu9eDTxPZyyE7XiyG2zq0preXDGqyiUCl76+V68Aw5dqVeyuxKA/O3FbPg9i+ETJ/Ll2q2M+Ogjrv7hDn686B2UjmbklFa0tVYm3TGROydNI+Wz97A5nTRhBWBZaSG+etesfoPeisrYyjUjB/J7Zh6XDT2+JJxSpTyqpDi4OibceuUIVmzI54oZqUc+4AwWFe6LW0YeDo3MgP7hNDvsXJJ27DPaWyw2HvtmMRabnWcuPw9Po67DPst3FGH1UiArQa1WYtAc+PlLCglka0kZCcEBR3V/JouVelMrAIWVde22OZ0yoXY9e5qtlO6uxuLhJK+yhtL6BmL9O1aXd0ajUnHbpCGUDKjnWcvvRAb5EBQaRml+OdNvmdC2X0CQJxXlDQQEeRLh49V2+52Tj6/N9pmkb/9I+vaP7O4wzkoKhYJX/3wMu82BWnPkl3mvjZnM1O+/wOpwMGfpQkaFR+Ol0wMQaHTr9Jj8uhqcsoJmm7XtNqcss3r2LdRbzJQ2N5Lk2/73MXP3PpamuzoELNmwg6umHPn5UZIkhgUdqCDv5xfKgvOuo6ipjst+/4IGhxmL7EqG/5UUB0gLOLAOY7C3OwlhARSU1zA8IeqI9ykIpz3RxlwQBOGk6t27N+vWrQNcbXhFYlw4VRwOR1srf0mSSE09u68nCMLJkpSURElJCeB6Hh8zZkw3RyQIJ0dGRgZWq+u6TJ8+fdDr9d0ckSCcOURiXDghRY2upFKkh3e72xfszGX+jhxuS0kjLXQ8+uDxrN1TzP9WLmJ2/74MCGtfUdozwB+9WoWERM+AjjP5HM5ymlvmAtBkmttliXEAtUbVLikO4OXrxiuf3sTewkpGH0NFo96oZeJFqUy8KBVTUys7t+0lOTX6jE+IH0wpqVAeZVfpjJW5lO6uACBzzS5GXnjoN3a3PXsJ1457mtKLA/jnpt/5bXQ8X63LoMFu4uvN27D19MQcYcD3z0qULQ5W3P0Dk2LieWjwKH7YlYOnVkuL3cbFPZOJ8PBEoa5ntelL3tnzLI+Me4x7zz917ZNmX5jG7AvTTtn9dZcRqXF8tGA9ila4cVgqg/tEHdc463YWsWSbK2H2R2YeFw3ujcPpJHdPBf5eRrILKzCZraibweoFl6Qko1Ac+CF8ZPJorh7cnxBPj6O6Pz93I35KPbWmFppqWtpts1jtVJQ0opXBabag95XoFeJPjJ/PMZ9XmL8X7997ySG3P//65ezOqyD+BNbqPt3UVTSwa3MB/ccln1XPe2caSZKOKikOkOQfSKSHF0WN9agVSpRH0Xbrxr4pyECslw8GtRqHLDM6IhpJkvDW6fHWdXwzlhgdRJ8eIdQ0mhg5oEfHQY9BpLs362fejcPp5P3stfxclENeo6vTQ4SbF8OCotr21ahUfPuPK3DK8lGdmyAIgiAI57agoCB8fX2pqamhqKiIxsZGPDyO7n2GIJyIHTt20NTUBEDPnj3x8vLq3oAE4QyVlJTE4sWLAVc79dGjRx/T8niCcCZwOp3t2qinpZ3916EFoSuJxLhw3LZVlnHhgq8AWHDBbHr7B7Vte2TZH5hsVhqtFn645AoAHli4mLKmZnZUVrHwhqvbjRXr58PaObdgbvkYh/02rNZH0Ghc7Y2ttlxaW3/HqJ+OxZqFu3EWyxdtJ2tLEZfdMBL/oJOzXmhC33AS+oYf9/FGdz0Dhp+eLdEPZrI3oVMaUEpd077earGRm76bnv2jGTy5H4Mm9kGpUpAyvn0lsdMps6e6jnBfTyr2VGNqbCXhzkHkGSpowcnqkiLOGx7B3LpdSFIjFV6ROGUlskaJW74DyWLnkRvfYcDzF3Jz/EDOT0lsN37fIG9W75aRgQZbQ5ecm9BeXIQ/Xz93NRarnYSYoCMfcAj9okOICfDBYrczON5V6fnat8v5dmkGOo0Ks9VO3x4hPHPhROKi/EmIDGx3vCRJ7Squj4Zkk1FawW5ztrtdr1Pz1O1TSM8uJkyjpyS/imuuH3VS3kRptWoSk09sre6uJMuuMsTjPVdZlrlr2L+oLK5m8vVj+McHNx3XOM31JrYszaLfmCQ8fDqvWD6WmCqKqvEP921bKkPoaOms6/l9Tz69/QNx12iPuL+7Rss9qZ0vMXIoBp2G/zw663hD7JRSoeDO3sO5LWkoD21cSEFjDS8Pno5O1X5ShiRJKMWFEEEQBEEQjoIkSSQnJ7NixQrAlVQZMmRIN0clnAsOTnAMGjSoGyMRhDObu7s7kZGRFBUVUVNTQ0VFBUFBx3/NShBOR3l5edTVuQoWY2JiCAg4ui6agiC4iMT4Wa6+uZXK+mbiQv26PLFT0dKIc38iJa+8iob8JlIHRqNUVnN+XAwri9bzQP81VNduwtvzUYZERvBDVg5DoyI6jFVUW0+1qYYAxVMANDZ54Of7bwCqqmfhdFai1Y4kIngtzY2tvPjgc8iyjNVq454nZ3bpeZ1LNtYu47u9HxCkC+cf8S92SI5nN2xmScU80nzGMdRvwiFGae/lW/7DqgWbSRrcg1cXPchT397d6X5P//wn327YzsDQYOpeWIvD7uDW968kx2JHq1CSFhxGtVQG9WDBhtpqx6JW4vT2oqW/q9W2tdnEL1t28OvWHYzvHYfhoArVfl79uSbyOiRJQR9PsY7xyRITdnQt5g/H193Ajw9e0+62smrXTHmrzbWkgc3u4PxRySd8X+C62PWfBy9j884SJqZ2nLwyYXBPJgw+PdeGb6pr5stnfiAkNpDzb5vYZc/rteX13D3sX1harby+/AnC4o+vit28f+mJ1mbzccfy1GVvkLEsm4S0Hry56qnjHgfgg3u/YP7bvzFocj+eWXD/CY11NlMpFEyOOf0nch2KUqHgpcHTTtn9WW12VEplu84VgnBKyJwerdRPhxgEQRBOot69e7clxrOyskRiXDjpysvLKS4uBsDf35+oqKjuDUgQznBJSUkUFRUBrglOIjEunG3EZCpBODEiMX4WazFbufDJT6k3mXlo1lguHdl1ycHq2vtIUH/NZ+NuYJ/lIr58fiU1NSaef3IpIcHbubmnjpt7OgErzS3raG6Zy+19w7g+9XLi/No/WZc3NjH1o8+xOuz87/KheGvT0euntG1XKgNxOitRKl2JGr1BQ1i0H3sLqujV+/grugXYY9oJQLl5LxZHKwZV++rM3yv+R2lrIb+WfXXUifGasnoA6ioa291e2WLi5t9+RKNU8mzySHJLXC3W82tqUPTUomp2oG508MfV17Fwz07+uWoh1yT25+roUQTqvNiQVc6KjflINjVWdxlJlrniouF8vHYrvSOC0KnbP51JksQI/1HH87AIp4GHrhpHYlQgiVGBlNc2MbJvTJeOHxXkQ1TQsbdH724L3l3C/Ld/A6DPyESik7vmOXDnpt1U7q0BYNvKnONKjEuSxGvLHmP7ylxGXTL4uGOxWWyu/632I+x5ZLkb8gHYtbnghMcSzg0fL1jPV4s3c+vMoVw6vn+H7Vt2lnD3y98T4OPGF09ehVGv6YYoBUEQBEE4mXx9fQkODqasrIx9+/ZRU1ODr69vd4clnMU2bNjQ9vmgQYNE22dBOEGJiYksWrQIWZbJyspi7Nix4vdKOGtUVlZSUOC6zuXt7U18/Jlb6CAI3UUkxs9irVYbDS2uqr191V3XSjq7uhJF8zzc1E56GDcwIvpJ5tqXYktpJSho+/69zPzVtPZAcUsJppY3KW4woNdcSZDR3RWnzY7N4QAktlQ/wjWp/du9WAnw+wGbLQuNZiAASpWS9+bdQVNDKz5+7l12XueiCYEXI6Eg2tizQ1IcYLDvOH7ZV85Q36NLigNc9tKlfPvreq6fPrzd7cuKCsioLAPg2jdew69ZxeUPjUcbrObdMBPI8OXu3Sx7voolESXUW8xUtDTzy/muSuKUWbUY1RoG94tiQN8I1EolXm56rp88BKNWIyr3zjL+Xm7cOP34k6tnq/iB0SgUEl4BnviHdV1if+D43ky+fgytJgujLj7+xz2iVygRvUJPKJbHvv0H63/dwqDJ/U5oHIB/vH8jP3/0B6MvPb4qH1mW2Zdfjn+4LxqdSIB2p0aTmfvf+gm7w8lLd5+Pj4fhpNzPd0u30txi4fs/t3WaGN+UU4zV7qCksoGSynp6Rop2ZYIgCIJwNkpOTqaszPX+NSsri1GjxKRr4eRoaWkhKysLAK1WS58+fbo5IkE48xmNRqKjoykoKKC+vp59+/YRGnpi1yoE4XQhJlMJwokTifGzmK+Hkbduv4Cde6u4bFTXVYuv37eX9cXjmByWRaT/LQTJNbzx0kdIHEi+S8Bfz8kS4GhruSjz6tY9/FL0Pk+mjeeaxAFE+3rz3ytmsq+hiQt6J3R4Mlco3NBq2ydq1GqVSIp3AW+NH5eE33zI7YN9xzPYd/wxjXnPL0uoazFj376Nt3pHtt0+JjKGvgFBNOxrQFPQitXs5Pp+fVjvqARcPy+791RT1FJDSlIkSy0FDA2IZNSTH6BSKJj7f1fw+N1TOtyfu/7I6+EKwtli0OT+fFvyPjqjDm0XVqpqdJrjXhO8q3kHejL5+jFdMlZ07wjufvv64z7+6+d/5LMn5hGdHM4Hm184qjcbiz9bTu6GfGY/MhO/0DOvK8HpakN2EVt2lgCwZlsB00d0zdIKf3fHxSP47o+tXDc9rdPtF43tS2llA6EBnsRH+J+UGAThUCTZ9dHdTocYBEEQTrakpCR+//13wJUYHzlypLjwLJwUW7ZswW53dcvq378/Go2YkCsIXSEpKamtqjY7O1skxoWzQmtrK9u3uwoTNRoN/fr1696ABOEMJRLjZ7nhSdEMT4ru0jEvik8ks2om2S2zOT94FDZbOgqpfUX6X28X5b9dOPNVqVlY7AvIbKsua7t9WHQkdkclTmc+KE/PtX3PVmarHYUEGvXxPR3IsowsyzhxrVPrqddR12LGy6AHwCk7eTtrIaVNNXwy9SK0ViXfN/9OWI9AVEYNn936CzHKVm67Yxo/ZWbjHqHjlQnno9EqWbh5B9+aMgDILC4nyEtMhhAETz+P7g7hnFGY5Vrnr2RXGQ67A9URnifrKhp49aaPAFAoFSeUlBfaG5QYQe/YYOwOJ0P7HN3rGlmW2bqzBF8vNyKDvA+7b2VdEwathvNHJnP+SFfSfWn6LsqqG7lkXD+0Gtf33tfTyJO3TD6xkxEEQRAE4bTn6elJZGQkRUVFVFdXU1FRIdaoFbqc0+kkPT297evU1NRujEYQzi4JCQn8+uuvOJ1OsrOzmTBhgpjgJJzxDp5M1a9fP3Q6XTdHJAhnJpEYF46JQ3ayz1LKUyNH4aF2td5WalJRqCfhtC1u2+/g1xnOdiO08OUYLYvLErkl2bXWuMNZT2nFNOyO3QB4ut2Br9ejJ/lMBICdeyu57qVvMbrJPHRHL1IDB+Gu9jrq41uazNw96VnWTNRhD9bz8ZSZfHXzZeSUVZIa7Vr7eOu+AubuWwOAdvF8npw+m5SbBhPj6cO/3vqJkgAtODTYc2r58vVr240/oU8c6btLUCsVjEjo2gkegiAIR3LzC1cSEO7HgPG9j5gUB3DzNhIWF0xJXhmJgztf48nSaqWxpgn/sFO/TmVpXhkPTH4eNy8DL//+KO7eHZfQOF15uun5+F+XH9Mxv6zO5umPl6BWKZn/8vUEeHc+uWrd9kLmvDYfo0HLvOevxdfTSEFpDQ+9+0vbPrMnp5xQ/ILQJQ6sT9S9TocYBEEQToHk5GSKiooAyMzMFIlxocvt3LmTxsZGAOLi4vDxER2nBKGr6PV6YmNjycvLo7Gxkb179xIREdHdYQnCcXM6nWzcuLHt60GDBnVjNIJwZlMceZeT5/3336dPnz54eHjg4eHBkCFDWLRoUdt2WZZ54oknCAkJQa/XM3r0aLKzs9uNYbFYuOuuu/Dz88NoNHL++edTUlJyqk/lnDG3+BceyXqdezKexyE7APg0dwsjFyVw39Z72vb7e6X4wWIMK7kz/mcczddS0ZhHQ9NXbUlxgIbm97Dvb68tnFxZheWYrXbChmaxsOZjPip47piO37trHwWV1bQGabHJTh77ZTFj7n+bj+6Zi2xz/Xx4WfUoKp1gkXErUvDE+qVMXvApsxZ9Q4+4YABUSomIYbEdxjdoNTwzaxKPXzIB3XFWtAuCIByvgAg/bn7xSlImHN06f2qNio8yXmTevg8Yf+XwDtutZis3JP+TK2PuYsnnK7s63CNKX7KdyuJqCrYXk7sh/5Tf/6nW3GIFwG53YN3/N6kz+SXVyEBzi4WdRa7XHx5GHXqtGoBg0aVBEARBEM5JiYmJKBSuy2bZ2dnIh7vQIQjHQSQ4BOHkSkpKavv87zkFQTjT7Nixo91kKl/fU19wIQhni25NjIeFhfHCCy+wadMmNm3axNixY5kxY0bbH6qXXnqJ1157jXfeeYf09HSCgoKYMGECTU1NbWPMmTOH+fPn880337B69Wqam5uZNm0aDsehL4AKx6/e6nrybbabcMquWvDNlaUApFc7WbBrAKDGCTjlv6rFFYQH5+Lj+RRazQD0uvMwtXyHw76O91c9QmlzbLtEukLhhUIynsrTOmdNSUvgstH9CD3Ki/4/laTz2Pa5FJmqAOjRL4pLLx3JgCIVg31DKd9nwuqlYYfSzL49rn1io0O5Xzmd2Zmp3HntTHY31ABQ2FjLTVMH8+rt03F6K7nty59ZuHXHyTlRQRCEU0SlVh2y3X1zfQuVe13PgfkZhacyLABGXTKYlIl9GH3pEPqOSjzl93+qXTK+H4/dMIl3H7iYsACvQ+538bh+XDN1ED4eBua8Np//Lc3Az8vI9y9ezzfPXsO41M6r/wVBEARBOLsZDAZiYmIAaGhoYO/evd0ckXA2qaioYM+ePQD4+voSG9uxWEAQhBPTs2dPlEolADk5OTidziMcIQinrw0bNrR9npaW1o2RCMKZr1tLMKdPn97u62effZb333+f9evXk5iYyBtvvMEjjzzCzJkzAfjss88IDAzk66+/5pZbbqGhoYGPP/6YL774gvHjxwPw5ZdfEh4ezh9//MGkSZNO+Tmd7a6Nnkm4IYgEjx6oFa5KqvsHjqKsoYmthRW8nT6eqX0+x1v1Fk3NrnVWJUkNOPFwvwkP95uw2fZSW/8UYMOoaiG3OpTXlt7C6Ohc3PUDeHDCTSgUIjF+Kui1ah64fAwt9lR2NG0lzq33IfdtsVt4Ief7tu6ZDyTOxKjScutzl3Mr4HA6ub1hPlt27eX8AYlIEiz4zzIiUqN5bcFGZGB8ZSPPD5vENzu349Oo4YOvVzF0SCwWu2siS1Wj6aSfsyAIQnfxCfLioc/vZOfm3cy6f8Ypv3/vAE+e++XBU36/3UWlVDBtRNIR99Nr1VwzLZUvFrrWd8zdUwGAn5cRPy/xekQ4fUiy66O7nQ4xCIIgnCrJycnk57s67WRmZoo2vEKXObhaPDU1Vax9LAgngU6no0ePHuzcuZPm5maKi4uJiorq7rAE4ZiVlZVRXFwMgJ+fX9vEPUEQjs9p05vY4XAwb948TCYTQ4YMobCwkPLyciZOnNi2j1arZdSoUaxdu5ZbbrmFzZs3Y7PZ2u0TEhJCcnIya9euFYnxk8BNZWBG6Pi2r51OmR82ZBNl8WFCWjzx/n7E+KhpbukBuFoSSFiorrmKwIBfAbA7diNJNgAuSdqMRvMU9akj+XDVCKa6hcF4z1N+Xuc6g8qNAd4jDruPTqkm2TOSrIYi8pvKGP/n4/xf/FRmRbmOUyoUfHjjRYBrGYRZyQ/QWGsiblIyDqfrCmp5dSOjY+O4KS6F6Te+jwxYrHbevu589tU1ccngQyfmBUEQzgZjZg1lzKyhR9xv7osLWD1/I7e8NJs+IxO65L4ba5tZ+vVq+o5MJKaPuKh7MDe9ludun8rWXaVcNUWsJy4IgiAIgkuvXr1QqVTY7XZycnKYPHlyW3t1QThera2tZGZmAqDRaOjXr1/3BiQIZ7Hk5GR27twJQFZWlkiMC2ekvy+9ISZTCcKJ6fZX85mZmbi5uaHVarn11luZP38+iYmJlJeXAxAYGNhu/8DAwLZt5eXlaDQavL29D7lPZywWC42Nje0+hOOTU1bBhys2sjBzJ06zk7E9YqisuoCGhvvRqHohSQYAnPKBSmCddigKhV/b11brasaGfoTfvCo2fLKVDat2HfY+ZVlm7Z85rP5DrPF1KtWZzNwXdQlxmb0paHKtwfrpkiUdvgcVLc1c8du3FFzghVMFsX4e3HPDWP5x/VhGpromTBj0Gvx93QGIjfBjdFIsVwzvh1qlPLUnJQiCcBqy2+x8+ti35G0pZN5rv3TZuO/O+ZT37/mcf457SrSQ68TY1Hj+eeUYArzduzsUQRAEQRBOE1qtlvh417IqLS0tFBQUdHNEwtlg69at2GyugpG+ffui1Wq7OSJBOHvFx8ejUrlqA3Nzc8V7YeGMYzKZ2iZT6XQ6+vbt280RCcKZr9srxnv27ElGRgb19fV8//33XHPNNaxYsaJt+99nv8iyfMQZMUfa5/nnn+fJJ588scAFAKJ8vQn38aSy0URaTDgADmc1AGpVKA6nGadzDxbbLqzWfCy2DSikQJy2ABzU4HTqUatbUCrS0GhVKCSJiBj/w97n1vW7eWrO1wA89e5VDBrR8+Se5ElSkl/Onh37GDypLyp11ySEW+zN/Fr2FZ5qH8YHXoRC6pq5L9nl5Vzx729oCLCCEby3eaDTm5C/asB6lQ2tXtO2788FuawtK4ZYFbd+eBlXjx+KWtP+qUarUfH1G9dR19BCSKDoECAIgnAwlVrF5OvHsmr+RiZcNbLLxvXwcQPA6GkQs4sF4Uwk7//obqdDDIIgCKdQcnIyOTk5gKvasEePHt0ckXAmczqdpKent309aNCgboxGEM5+Go2G+Ph4cnJyaGlpobCwkNjY2O4OSxCO2qZNm3A4XMuQ9u/fH41Gc4QjBEE4km5PjGs0mrY3FSkpKaSnp/Pmm2/ywAMPAK6q8ODg4Lb9Kysr26rIg4KCsFqt1NXVtasar6ysZOjQQ7cpfeihh7jnnnvavm5sbCQ8PLxLz+ts0Gq1oVOrDnvx3E2n5bf/uw6704lmf7Wvv993mM3LMBouorRi7P5rZzL7KkfiupKmAKUTJaBUtuDl9i2eniP45ncLDmRu+/FnciuqePfi6QyJ6tjqVXdQElavPzP/ELSazNw14QXMLRZmzTmPax7qmrVm19f8wYbaPwHo6d6PSGNch31KWgrIbtxMqs9ofDSHn4QA8M7m9bySvhp8ZWTXsvKoJQ8m7Apm9P1J7ZLiAGPDY/kkZzPeWj2Xjk/j1YWrWLuziMcuHk9KbFjbfnqdGr1OJMUFQRA6M+f9G5nz/o1dOuYtL89myPSBxPaNFIlxQRAEQRCEoxQXF4dWq8VisbBjxw7sdntb9aEgHKu8vDzq6+sBiI2Nxc/P7/AHCIJwwpKSktpNcBKJceFM4XA42LRpE+AqIBWTqQSha3R7K/W/k2UZi8VCdHQ0QUFB/P77723brFYrK1asaEt6Dxw4ELVa3W6fsrIysrKyDpsY12q1eHh4tPsQ2vti9RZSH32Huz796Yj7KhRSW1IcQKPuhYf7bfxZ1Miy8kcAt/1b/iovaf8GsrjuapYWfs2OrBIuu+A10otLabZY+WPn7k7vL7FfBG9/cxtvfn0rvVOij+Psjs/Kql95LOsGllf+fMJjyTJtLchlZ9eV3UQbe6GS1HiqffDXBne6z38KX+D3iv/xXfH7RzXmhr3FACiVCjzsWgxmNa9cOJWn3rmOsRd1/GMc4+nDmktv5ZcZ1+C0y3y1OoPCqjq+W7/9+E9MEARBOGEqtYoB43rj6Sde9wiCIAiCIBwtlUpFQkIC4FqaLy8vr5sjEs5kf18nVhCEky8uLq6tynbHjh1t1beCcLrLycmhubkZcHVe9vLy6t6ABOEs0a1TXB9++GEmT55MeHg4TU1NfPPNNyxfvpzffvsNSZKYM2cOzz33HHFxccTFxfHcc89hMBi44oorAPD09OSGG27gn//8J76+vvj4+HDvvffSu3dvxo8f352ndsZbtaMQgDW79hy2NX2tuYqt9d8TpI8nyXNs2+1lzU3c8usCZGBO6htcGPEgTmc1oAZ0yLIVq1mBVu/EQ22hquld1i7zxFFrxXOHgrgx0cxO6XfI+OISQ7vuZI/S6urfaHE0s7r6N0YHTD+hsQxuOt5c/CCFOSUMm9r/uMdxyjK762qI8vRGrVQS7daLp5I/RikpUUqd/3r7aPxptjfgow084vh2m53G59LxStQwJSGB5x6Y3el+Vpsdjbrj/XnotVw8uDdrdxZx0aDkYzs5QRAEge0rc3nhmndJGhbPjc9eTkCEn6j2FoRzlWilLgiC0G2Sk5PJyMgAXNWGfyXKBeFYVFdXt61T7+3tTVxcxy5/giB0PbVaTc+ePcnMzMRsNrN7927i4+O7OyxBOKINGza0fZ6WltaNkQjC2aVbE+MVFRVcddVVlJWV4enpSZ8+ffjtt9+YMGECAPfffz+tra3cfvvt1NXVkZaWxpIlS3B3d28b4/XXX0elUnHppZfS2trKuHHj+PTTT1Equ2bN5nPVPyaPwE27kfHJPQ55Af6+5Ysos/9An5ASfJUmwrUeuGl6UVt3D05bCX38B7CvWUWwexAG3QRaWn/BKbcAjUgSaHTOtrFi3AqxTlrDoH09iEuM5urrxrTd79L83Xy+OYOrBvRjfFz3tbqZFHQpyyt/YpT/NAAcDid7cksJjwtCo1Uf83iRPYOJ7Nl5VffRemTl78zN3c6IsEi+mHYJABqF9rDH3Br7GOXmvYTqO6+2r69uwtPXDUmScNidyHubCcqzEezTq9P9v1qwkfe+XMWkkQk8dteUdtskSeLxi8UkFUEQhOP1+xcrqS6tZcV361nx3XqufPhCrnniku4OSxAEQRAE4ZwSHR2N0WjEZDKxc+dOLBYLWu3h33sLwt8dXC2empoqJrwKwimUlJREZmYmANnZ2SIxLpz2SkpKKC0tBSAwMJDIyMhujkgQzh7dmhj/+OOPD7tdkiSeeOIJnnjiiUPuo9PpePvtt3n77be7OLpzW0JoAK9dNe2w+/xelE+gpzuhqnpGGvfQUDODJskPp1wJwNsjtgKgVq+mtTUbCYmDS0zavf6XoGfgp6Q+fR1+3je0u59n/ljB3oYGiurquzUxPtB7BAO9R7R9/fZ9X7H4q7X0HhrHS/PvOcyRJ8+O2ioA8upqjvoYjUJLhKFHp9vef3IeP361grHjB/LAe9eh1Wt4ZeED5KbvZvyszpcnWLYhD5selm/O57FjPwVBEAThMKbePI5dWwoozinF4XCyY2N+d4ckCIIgCIJwzlEoFCQmJpKeno7D4WDHjh307du3u8MSziAWi4Vt27YBrurV/v2Pv3ugIAjHLjY2Fp1Oh9lsZseOHdhsNtTqYy90EoRT5e/V4mIylSB0ndNujXHhzPHCyEn4qtLwdE7cf4uzLSl+MJstd/9nMgrJq+32dt0g93+ypXIve5sa2h0/PbEnkgTTE3pibrHSajIfU5zmFisv3f4JT1//IRUlNTx25bs8fOmbNNQ0H9M4f1eSXwFAaUHHcz5VXh59Hjf1TeGDiTNOeCyb0863PbfS+I4bayy7qKtqZPvaXcT2iWDGzeMweug7PU4RrqU1QIEcKWbLC4IgdLVeqT34cPOLPP3T/Uy7ZTy3v35Nd4ckCEI3keTT50MQBOFclJx8YHmwrKysboxEOBNlZGRgtVoB6NOnDzqdrpsjEoRzi0qlolcvVzdMq9VKfr6YdC6cvhobG8nJyQHAYDDQu3fvbo5IEM4uIjEuHLd+AcGkl5Vy1wo3MuruPsyeB1qmGw2TUCn74+RAYlwGZEkisy6MN3O8+deST7G0WtuOuWfkMHbeNwf/9XXMjJ3Dpb3uozCn9Kjj3LI8h2Xfb2Ttrxl8+8Zi0v/IYuuKHaxfvP1YT7mde968msvunsQTn992QuOciB7evjwyZDT9Ajtvyd5qt7Fozy6u+Plbxn/zX/IPU1neZGvF4uP6XvWcFccd457jgYve5KtXfj1sDAa9BgCV2vV0sjK3kPu/XMi2orLjOSVBEAShEykT+nD329cT3jOku0MRBEEQBEE4J4WHh+Pp6QnA7t27MZlM3RyRcKaQZbldG/VBgwZ1YzSCcO5KSkpq+zw7O7sbIxGEw9u0aRNOp+s6/cCBA1GpurXxsyCcdURiXDhudqcTh1NGRuKxDxU4HL77t3h1ur/NqabZVIHFvrXd7fL+f5O9Sng7dR739n2Vdx/9T7t9JGDeO0uQnTJ2q538zOKjjjMhJYbgKH98gzyZdOVQopNCiYgPYsDohKMeozMh0QFc+8gFxPU9fdf3uHfVIm7980fWVBSRX1/LL/k7Drlv9q4qbOkeOHbrGeE1AFOTqzL/SJX1T102kScvmcAnt10KwKPfLGZRxk6em/9n152IIAiCIAjCuU4+jT4EQRDOQZIktVWNy7LcVsklCEeSn59PbW0t4FqvPiAgoJsjEoRzU3R0NHq9qyPmrl272ro4CMLpxG63s3nzZsC1lEtKSko3RyQIZx+RGBeOW5i7J68MnIjfJifuBRIbN39IcOAGtNr5bN0WjnzQRTOLA5BsOFjetra40/m3ASVX5bFOY8Nma5+M/fWzlditdmTAJy6E5ct2UlXewNHwDvDgvxue4sttL9CzfxTv/fkoH656HP8Q72M+Z6dT5q1Fa3j8u99paDm2lu7dwWRzvcCTAMkK1gZHh33MLRZ++2IVTWUNOIv1ODI8iPINJOnRcTRc3Yvoi/oc9j489DpmpiUT5uuaOT803jVRYFjPqC49F0EQBEEQBEEQBEHoTqKdunA8RLW4IJwelEoliYmJANhsNnbt2tXNEQlCR5mZmbS0tACQmJiIh4dHN0ckCGcf0YNBOCEXDkxGeYGd6ppmpk9ORaXSEOAHev0n/LK4gGGTvkBHOmrFgSRyq0nF3NcvIuM3G3PeaaD/iBR0mvGc99HvDA7fhIclhrufuL3d/VhabQAoNCpqGi3UrM1nyYItXHnLmFN6vhlF+/j3UtcbmpgAH64ZPfCU3v+xem3kFL7Py+aNH1YjW8EaZe+wz2fP/sjc+StoHOHD/TddxMDgcGKDffl1x26cssyCjB1MS0vqZPTOPX/FeTw8cwweerFeliAIgiAIgiAIgnD2CAwMxM/Pj+rqaoqLi2loaGhrry4InampqWlby9jT05P4+PhujkgQzm1JSUlt1bjZ2dntJjwJQnf7+9IbaWlp3RiNIJy9RGJcOGatDjNf7FmAQaXj8ohpzJjav8M+E8YkMXTwPqrq9uB0tq+srt/3EVc/PpCmCRuoCY/CpojmvTXpNNnULMhN4YqBfVHrt/DnrleYX5zItb3vYsaNo/H0dcMv2JuP3vqdqvIGBo049jcThTmlqNRKwuOCjuvcowN8CPB0o6HFTP/o03+dVx+dgZt6p5JsCGT73nJmpbmqv51OJ06HjEqtRNKpKbssCHO4jld2rWVTyh0A3DZxMIu27uSaUceW/JckSSTFBUEQBEEQutrp0sb8dIhBEAShm/zVTn358uWAq2p82LBh3RuUcFpLT09v+zw1NRWFQjTvFITuFBkZiZubG83NzeTl5WGxWNBqtd0dliAAUFxcTHl5OQAhISGEhoZ2c0SCcHYSiXHhmK2oTGdR+UoAkjzi6O+d2Ol+1fUP4HSWtbvN3XAtMWMm8+DCJfyan8+v+flMT+jJz7k7UUgSz0+fyNSEnpRXDSfKUMRlEbv4ZNtgGh9Mp7XZzCs//ZP35t15XHFvW72TBy96A4VC4u0/HiYmKeyYx/A26ln88A04nE606jPn12dIbARDYiMAaDWZuXviC1TureWe/97IlzVlEKgHZPr6H5gwcOuEwXjodTz49SKuHTWQG8eJdl+CIAiCIAiCIAjCua13794iMS4cFavVSkZGBgAqlYr+/TsWlgiCcGopFAoSEhJIT0/H4XCwY8cO+vbt291hCQIAGzZsaPs8LS0N6a81aQVB6FJimqJwzOLdo9Aq1LirjEQYDl01bdRN6XBbU8unVNTcRUpoMBKQFBhA3xBXMjbK24sZyQno1Crc9JMAyKzvRYrdh6rSWpobWti25vjXfmmoca1b7nTKNNWZjnsclVLRrUnx9fv2kvzxW1w0/2usjo5rhrc0m/n1s1UUZJd0enzZnmpK8iuwWmysW7OD5lYrhj1K7g8dzkfjLmy37zdrMmhoMfPl6q0n5VwEQRAEQRAEQRAE4Uzi4+NDSIjrWkh5eTnV1dXdHJFwutq2bRsWiwVwTagwGAzdHJEgCEC79unZ2dndGIkgHFBfX8+OHTsAcHNzIynp6Jc2FQTh2Jw5Ja/CaSPGLZzPBr2EQpJQK9SH3M/NeDHNLStxynntbje1/o9Vv1qYoZvCS9fMQCFJTIjrgYdOy+a9pSQFBbDu96n8+3U7/Qcl8ejLQ2m+tpTmhhbGXJR63HEPn96fe968Go1OTZ9hJ76mU/bG3WStz2fy7GF4+Lid8HhH6/c9+TTbrGyu2EdJUwMxXj7ttv/3mR/59bNV6Awavs1+CY2u/fcoOjGUy++Zwr7CSm66ZSIR2QXUNLZw/ZhUlH9r6XXbxCF8tHQDaeFhzLj5A8YMjmfO9WNP+jkKgiAIgiAI7Umy66O7nQ4xCIIgdLfk5GT27dsHuKrGR48e3b0BCaedv68TO2iQ6MInCKeL8PBwPDw8aGxsZPfu3bS2tqLX67s7LOEcl56ejiy73mylpKSgVCq7OSJBOHuJxLhwXLRKTYfbnLKDhftepcq8h2mh99FSex1OuRxwA5rb7dvUoiMvt5C/moGEenrwwM+Lmb89h4RAf3pvA4tZxeYNuSiUCu588fITjlmhUDBh1pATHgfA0mrloUvfwmaxU1ZUzZxXr+yScY/GVUn92FVbTYKvP9Ge3h22G9xd63tr9RokRcd2K5IkcfUD09u+viJowCHva3L/nkzu35P7np9PdZ2JeYu2cufVo1CpxB9mQRAEQRAEQRAE4dyUnJzMkiVLAFdifNSoUaLdqdBOYWFhWzeBiIgIgoKCjnCEIAiniiRJJCYmsn79epxOJ7m5uQwYcOjro4JwslmtVrZs2QKAUqlk4MCB3RyRIJzdRGJcOGG5NVX46PQoVTXkNCwDYEXpTwzQeQHl6DR9cTNeSnXd/wFgsz2Bv08gl54X3+6NY3Wzq715tamFa26fRnyfZQw7byHf/7SS7Vvu4sH7p+Lmfnyz95rqTbQ2WwgI8znyzkdBpVbi6eNGdVk9fsFeXTLm0Yry9OaLaZcccvs1D0ynz5A4ohJCUWtUbFqaRUleOZOvGYlW33FCw9G4dOoA9lU2MDotTiTFBUEQBEEQBEEQhHOau7s7UVFR7Nmzh5qaGsrLywkODu7usITTiKgWF4TTW3JyMuvXrwdc7dRFYlzoTtu3b8dsNgOun003t1PXnVYQzkUiMS6ckAX5ufzf0l/Rq9Qsm3Udce5DKG7K5/UF9Tw3oZJwbzBbM3DIMtubrsWpSOLC+Ct58R5XQnzz8lw2/JHNBTeO4rlpE/kpK5fBkWF8uS2HwYmZSBL06bubD97N49rJr/Gfn+bg5WM8phjrqxq5cegTmJpaefyz2xg8qc8Jn7dSpeS9pQ9TWlhJfL/IEx6vKylVSlLGutYgqSqp5dFL3gAZTI2tXHn/9MMffAipfSL56vVruy5IQRAEQRAE4djI+z+62+kQgyAIwmkgOTmZPXv2AJCZmSkS40Kburo6du7cCYCHhwe9evXq5ogEQfi7kJAQvLy8qK+vp7CwEJPJhNF4bNecBaEr/H3pjbS0tG6MRhDODYoj7yIIh1bW3ARAq92GyWbnwvDHiDA/QG2dB0t29kaWNYAJm20tdS1ruGftPjZVlgLgdDp56oZ/8/OnK/noifkEurtx05BU8qprmbtlO+9mjWTzpnDmfjIeZbOV5sZWaiobjznGuqomTI2tIEPxrrIuO3d3byO9BkSjUJy+v0Y6owa90dVa3SfIs5ujEQRBEARBEARBEISzQ0JCQtv1gOzs7LZ1QQUhPT297XOxTqwgnJ4kSSIpyVVYJMsyOTk53RyRcK4qKCigqqoKcC29ISbaCcLJJyrGhRNybfIAvDVr8TdsxV9fAvhwfr8EbE4nXvppxIT1oKLmekzmP/DVNjPAp4oQowfgegESnRDKzowi4vqGt43ZNyQYHw8HlwzcgEOl5/rhTxLlt5OAYC9ieh77mkzRiaH8442rqNhbw/nXj+6iMz8zuHu78Z+Nz1BTXk/c/sp2U4uFx9/4FYvNzlNzpuHtaejmKAVBEARBEIQjkWTXR3c7HWIQBEE4HRgMBmJjY8nLy6OxsZHi4mIiI0+vjnLCqWez2di6dSvgWidWtGcWhNNXcnIya9asAVwTnFJTU7s5IuFcJKrFBeHUE4lx4YRolUqCDf9GxkZh3av0DfoMpULBpSm9sVizKauaiUE3AbN1E8leZbyelkGomwey7MAht/LK/DnUlNe3W/s71s+HBybI9HXLB6DS/D3X/d89Rx3TL5+sYMvyXK5+cDpRCaEATLx8aNee+Cm0s7yKtfnFzOifgI+x8yR2raUJg0qHTqnusM032Avfg9ZB37i9iHVbCwFYtSmf88edeGt5QRAEQRAEQRAEQTjXJCcnk5eXB7jaqYvEuPD3dWJFa2ZBOH0FBgbi6+tLTU0NRUVFNDU14e7u3t1hCeeQ2tpadu3aBYilNwThVDp9e0ALZwRJkvA1jAX++v+AsupZmK3rqW18Gp0mBQA33Vicso1N+2awpnggtZZFBIb7IklS23E2p4MPc51UtLohy+Ajv4XNXnhU8bSazLz30Des+20b37zxW5edZ3eRZZlr/jOPlxet5MkFSzvdZ2n5dqateJbLVr9Ci91yxDEHJIUTHx1AdJgvg/tFd3XIgiAIgiAIgiAIgnBO6NWrFyqVq+YkJycHh8PRzREJ3env68QOGjSoG6MRBOFIDm6nDq6qcUE4lTZs2ND2eWpq6mm9ZKsgnE3Eb5pwwhL932JExHbCPK5pd7ssm9s+t9vrCPT9HB/PB7E76mmx7QJk6i3p/J3V4SCvQcGnu4ciSSBJFn7c9hs/Zubg7GTNLpvVzvL56RTvKkNn0NJ3eE8USgWDJiR32TnKsnzK1gsr21NFU11z29feBj3AIavFdzSWIgOVlgbqraYjju/prueTl67iy9evJcBXzIIUBEEQBEE4I8in0YcgCIIAgEajoWfPngC0trZSUFDQzREJ3amoqIjKykoAwsLCCAkJ6eaIBEE4kuTkA9ePRWJcOJUsFgsZGRkAqFQqBg4c2L0BCcI5RLRSF06YJElIkrbD7cF+31BWNRuZeqz2DVTUbCDA5z3cDBcS5/MkjZYMIjxvweFwkrNtL5Ex/nh4GTCqNdybPJI31joJtjdjtav5PrsVmcVolEqmJPZsdz9fvfwL37y1GJWPnu/Sn+W5ef+H3eZAremaH+99rUW8v/tJDEo37o57FqPq5CWTV/+0mWeueR+jp4H/bn4WT193vrntcnaUVTEgsv0bKlmWsbRYuTJqJFannVi3IEIMPocYWRAEQRAEQRAEQRCErpacnNyWTMnKyiIuLq6bIxK6i6gWF4Qzj7+/PwEBAVRWVlJSUkJDQwOenp7dHZZwDsjIyMBqtQLQp08f9Hp9N0ckCOcOUTEuHBOnU+aTFZv4cOkGrHYbu2tfJLPiFsz20g776rQDCQ9airfH/Qcd76poDvG4nF7+L6JThfDJO3/wwavP8uyDT+BwOAG4deAgXhwzHb3u/+gX+Qjsb7Xuqdd1DEqSqBsayr6R4Xzw6wYkSeqypDhAfnMWrQ4TNdYK9rXu6bJxO7N3VxkApoYWGmtcVeOeeh1pMeGolcq2/WRZ5sGL3mBm7BzWfbuVf/SazvlhqSc1NkEQBEEQBEEQBEEQ2uvRowc6netaxY4dO7DZbN0ckdAdGhoa2LFjBwBubm4kJiZ2c0SCIBwt0U5dONX+vvRGWlpaN0YjCOceUTEuHJPVO/fw6q+rAAjzq8XN82MA9jXFEeN9b4f9VaoQvD3+gU6Tgtlazpu/e2GzL+HB80dj0GoA0OrX888XfwbAYrkcg6E/NeYWmtUWrkjrS7i7Jz39/XhvyToWb9zJwLBQdOoDP7qz75vGR3OKsNkd7Cip6vJzHug9gj2mXRhVHsS4JXT5+Ae78LYJOBxOQqIDCI8PPuR+NoudzLV5yDJsWZHL5KuGn9S4BEEQBEEQhG52urQxPx1iEARBOI2oVCp69erVVvm1a9eudkkW4dyQnp7etgTfwIEDUR5U3CAIwuktKSmJZcuWAa7OH0OHDu3miISzXV5eHrW1tQBER0cTEBDQzREJwrlFJMaFYxLsY8Q9wEprrYYI70SsqiRabXvw1Y8+7HF63QjW5Ofz7TpXArx/VCgXprreKJ43szdN+5cjVygdANy94mfWlhUT7eHN3Amz+HDVRlbvLELhgFFJMYxL7tE2tkqt5PU7L2DpljxmjenX5edsVHlwddQ/TmiMSlMzNeZWEnz9AaixVKBR6HBXu1rzNFtaySkuIrVHT2Y/cP4Rx9Po1PzjjavY9Gc2V9wz5YRiEwRBEARBEARBEATh+PXu3bttndCsrCyRGD/H2Gw2tmzZAoBCoSAlJaWbIxIE4Vj4+voSHBxMWVkZZWVl1NbW4uMjlqsUTp4NGza0fS6qxQXh1BOJceGYfFM9j6AhxfTxSKB3RCQwH1mWkfa3Oj+cpLBAfN0M2B1O+kcdWC/b03MgCtVt6LSD0Wldbx6MKlc1uU6h4rFFS1leUIjkDhG40yciqMPYaQkRpCVEdM1JdrGa1hbGfPMxJpuN18dOoVeQhY8LX0Cj0HJ/z9fxUHsz/YenMfs6SV0XzltX33FU406YNYQJs4ac5OgFQRAEQRAEQRAEQTicqKgojEYjJpOJvLw8zGZzW3t14eyXlZXF/7N33/FV1fcfx193Ze9NQiCBkBCSsAkKKii4t61b696jVFs7tFU7tLWt+nPPOotatdaBWhUFB7JnQhJCCJC997jz/P64eEvY+ybwfj4e9+G553zPOZ9zJet8zufz7enpAbyVp2FhYX6OSET2Vk5ODjU13ikuCwsLOfbYY/0ckRyuGhoa2LBhAwDR0dGMGDHCzxGJHHk0x7jslUZHCwAd7g4Mw6C317nbpLjD5aK6tZ1BUeF8ec91fH3vDaTFRwNgGB5qGk6nrfNpuns+9+1zT+YxZLzXjunuAkKd3uOPTIrns7uvIT5iYP2B0eGw07VljrHqzg4a7bUAODx2OlytuNxuesO9lfKbuw98K3gRERERGfhM/eglIiJ9mc1mX5W42+32zTUth79t54nNz8/3YzQisq80z7gcKltXi+fn52M2K0UncqipYvwI5fF0Y3d8T2DAJMzmiD3e766R17GgcTnHxE3gDw99xNz5RVx3xXFcduFROxzv9ng498nX2dDYwm9Om87lR4/bZoSBgWfLkse3tnlTC7bl7RjACZ4YrrpqMhlxsXtUmd7fpEVG8/wp57CxrYXLc8ZiMRs4PL1E2KJJDRkOwO2BJzK3bBWzTjjHv8GKiIiIiIiIyF7Ly8vzJUgLCgoYO3asfwOSQ6KiooLaWm8BRHJyMikpKX6OSET2RVRUFIMHD6ayspK6ujoaGhqIj4/3d1hymOnp6WH16tUABAQE6HcFET/R4yhHqKaWm2hsuoyGxkv2ar+U4ETOTz2VQcEJfL+kDIAFi9fvdHyv08XGplYA1tbUA+B0t2IYLuyOVbS0/53EmBeIj36cuKg/+PYbPWUEl//8NM65fjopxw1jRHwsIQG2vbzKnWt32Llh7n+4+cv36XI6Dthxd+bEtAyuHT2R0iUbqSxpYEbiuXzwfi/HzXqSz5et4+ITZ/LCjXeSmzn8oMciIiIiIgOQ0Y9ee8jlcnHPPfeQnp5OcHAww4YN4/e//z0ez/8eiDUMg/vuu4/k5GSCg4OZPn36dlU6drud2267jbi4OEJDQznrrLOorKzc80BERA6BlJQUoqKiANiwYQNdXV3+DUgOiW2rxQdiQYeIeKlqXA625cuX49zSWXbMmDGadkXET5QYP0J5PG3e/xptOx1jGAaG0bvT7b+adSrHTcnklutO2OmY0MAAHr3oDC4/ehw/nTGF2o53WVCRz7Lqc6ltvJzWjkdo6XiY8NAfYzaH+PazWMxcMusUavOjuPCfb3Hpa29vE9de3JHbgc83lfLppnXM2VjClxVl+3WsnVnevIE3N31Lj8ubeP/2oxXcdd6j3DrzQcqLq5mzsIjOHgcfLyo6KOcXEREREfGnv/zlLzzzzDM88cQTFBUV8dBDD/HXv/6Vxx9/3DfmoYce4uGHH+aJJ55gyZIlJCUlceKJJ9LR0eEbM2vWLN577z3efPNNvv32Wzo7OznjjDNwu93+uCwRkR0ymUzk5uYC3vsWSqoc/jo6Oigq8t7TCQkJ6ZNUE5GBZ9SoUb7lwsLC/b7/LLI1j8fDkiVLfO8nT57sx2hEjmxqpX6Eiot5hu6ejwgOOnGH2z0eN1U1uUArZnMSgxKXbTffxbRjsph2TNZuz3XiqAxOHJUBQEnjUgC6nOtICh6G29OAzTJ0p/t+WleCc5CLkh7v3Nub61q46qG3CLBZePVXFxMftW/zjR81aAiDwyKwmMzkJw32rV/VspH59YWcmzqZ1JC4XR5jfUsTgRYLqRFR221rdXRx29Ln8WDQZO/glsxT6e22A+DxGBhuD7eeM5X5q8q44qSJ+3QNIiIiIiL92ffff8/ZZ5/N6aefDkBaWhpvvPEGS5d6/yYwDINHH32Uu+++m/POOw+AV155hcTERGbPns0NN9xAW1sbL774Iq+99hozZ84E4PXXXyc1NZUvvviCk08+2T8XJyKyA7m5uXz77beAt5265ps+vC1dutTXBWXChAlYrbrNKjKQRUREMHToUDZt2kRjYyP19fUkJib6Oyw5TJSUlNDW5i1SzMjIIDY21s8RiRy5VDF+hLJYkggPuxar9X9JacOw+yrJXa5CoBUAj6cWp7Ngh8d5r3gtWU89yu2ffrTdttdWryT/xWd4ccUy37qhUbeSFPZjsuIeJDnh3wyKe4+YyN/uNM52cy+YIGVQOADLS6to6eyhrqWTgo21e3vZPilhEXx3wY18ff71JIaE+9bftfJV3tj0DX8p/Pcu919QtZmZb73E9Df+QWlz43bbA8xWQq3eVij2Njd3/+0DbGmx/PLpq/jVa9dz28ov+H3NPPJPTWdshuafEhEREZFdMxn957WnjjnmGObOncu6desAWLVqFd9++y2nnXYaAOXl5dTW1nLSSSf59gkMDGTatGksWLAAgGXLluF0OvuMSU5OJjc31zdGRKS/SExM9M1JW1FRQWtrq38DkoPG5XKxbJn3fpfZbGbiRBU9iBwOtu78UFCw4/vhIvti0aJFvmVVi4v4lxLjAoDH005N7dFU1eTQ0/sVNttIzGbvU0smUxg228gd7jentASH281HpSU4t2ll+OLKZTR0d/H8iqW+dUHWFLLiHiAp7DzsjrXUNP6YTTUj2VCZTFX92RhG32M8OPUUjh88jD9M8Va2z5gwglPzR3LO1Fym5KQBULR0A5/+8zscdud+fw7DQhO8/w1P2uW4uq5OANyGh8aebpwud5/2OiHWQN6YegfP5d9E0XttzFtUyp+f/ozp50xkQWczhV31GMArixf3mWNRRERERGQgaG9v7/Oy2+3bjfnlL3/JxRdfzMiRI7HZbIwbN45Zs2Zx8cUXA1Bb633QddtKnMTERN+22tpaAgICiI6O3ukYEZH+5Id26qCkyuFs7dq1vnnks7OziYiI8HNEInIgZGdnYzKZALVTlwOntraWTZs2ARAXF8fw4cP9HJHIkU09fgQAl7sKt6cGAIdjOcFBx5MyqADD8GAy7fz5iVsmTabL6eSk4RnYLJY+226bdBRPLl3EteN2/NRsQ/Ms4IdEuIHdsRiXaxPzy9zMWVXCrTOO5qxh2Zw1LNu3T3hwIH+65lTf+9bGDn5xziO43R4aqlu4/Bdn7PBchmHwUXkxXS4nF4zIw7zlF5xtPTbxWqq6mxkSuvM26na3izOHZ9HldBBis+FudjP1T0+QnhTDa7++mACb98sqNjCc2MBwpk6oYW1pLUePGwbAqJQEglZZcIa7CXx3I8uGrWXSjNydnk9EREREpL9JTU3t8/7ee+/lvvvu67Purbfe4vXXX2f27Nnk5OSwcuVKZs2aRXJyMldccYVvnGmb380Nw9hu3bb2ZIyIiD/k5eXx1VdfAd7E+DHHHOPniORgWLx4sW9ZLfNFDh9hYWGkpaVRXl5OS0sLNTU1JCcn+zssGeC2rhbPz8/X3zEifqbEuABgs44kKvI+XK6NhIVd7Vu/q6Q4wLikZN4474IdbvtRdg6nZYRjM0ftcLvVkorLvd73vrUniz+8soTva6rxmKFoQw2f/vo63/aeLjuGYRASFvS/Y9gs2AKtuLsdhIYH7zTOxXWV3DrvQwCCLFbOGT5qh+NsZitpYQm+93aHi46uXuKivXOZ/7e8lJs/+5DUoHD+Mu5EJuek8fd/zccdbmdD3AYWVZdx7NC+865f+aOjuPD0CQQFer/czp6UQ7zDzB8vfgqbycSgtPidxi0iIrIzv/9wLh+sLOKeM47nnHE5u99BRAY2Y8vL37bEUFFR0ac6LjAwcLuhv/jFL/jVr37FRRddBHiTRZs2beLBBx/kiiuuICnJ26WptraWQYMG+fbbej7HpKQkHA4HLS0tfarG6+vrmTJlygG/PBGR/RUdHU1KSgpVVVXU1dXR0NDga68uh4fKykqqqqoA78+pbR8WE5GBLTc3l/LycsD7gJMS47I/urq6WLNmDeD9m2nMmDF+jkhE1EpdAG+VRnjYDURHPYjFHL37HfZAfdccFlfNZFHVTJzuNt96p3MDdU030etYQljwj4mLfpHA0AIue/lsFpVXM3bEei486WuSIzb79qncUM8l4+7mknF3s6mkxrc+LDKEp7+6mwf+dRvnXH/8TmOJCgzCsuVJrLjg0D2K3+5wcemslzj7+mf5dP5aAL6u2Ijb8FDhbOb+wsf426pHOP+EUUQe1401o4enK+fs8FjBQbY+T4JNmZrN7GV/4rUVDzB4eOIO9xEREdkZwzB4e2kBXQ4n/1mx1t/hiMgRKCIios9rR4nx7u5uzOa+f3JaLBbfVELp6ekkJSXx+eef+7Y7HA7mz5/vS3pPmDABm83WZ0xNTQ0FBQVKjItIv6V26oe3bavFVfkncnjJzs72/Q6rduqyv5YtW4Z7yxS048ePJyAgwM8RiYgS43LQdDvKAHB5WnF5WgGwOwqpqDuWrp7/AJ3YHVWc/FI5x73+Clnp8QRarYzP3UR4aC9JaaWsXet9AndTcQ293Q7sPU42bFn3g6QhcYw7duR2N922lhUdz9zzruGzc6/imOShexR/R1cvNQ3tABSXeecvvGHsJCZFJZMc2sKoUVXUspDFTXM4evAIADLD9/wJwqj4CCJiwvZ4vIiIyA9MJhO/PPU4xgxO4sbpk/0djojIDp155pn86U9/Ys6cOWzcuJH33nuPhx9+mHPPPRfwfi+bNWsWDzzwAO+99x4FBQVceeWVhISEcMkllwAQGRnJNddcw5133sncuXNZsWIFl112GXl5ecycOdOflycislM5OTm+ZGlBQYGSKoeRzs5OCgsLAQgODu7zEISIHB6Cg4MZNsw7JWZ7ezuVlZV+jkgGKrfbzdKlSwHv3z6TJk3yc0QiAmqlLgfR4MirAYNg2zCCbd5ktMfTDHgrRKyWocz7ZCK1Ri8AWalxxIaFsmrdcDISN1P+VQqFvVWMGpXC5BNzufinJ+Nxe5h62hgMw+DJX7/F6gXrmPX3yxg1adhu40mPjNmr+OOiw/jtradSXFbLT86bjNvjYUhEFG9fdAm//8Kg2bMRq9lgwzeN/P6aO7i++yRSQ2L36hwiIiL76rKjxnHZUeP8HYaIHEoDLK/y+OOP89vf/pabb76Z+vp6kpOTueGGG/jd737nG3PXXXfR09PDzTffTEtLC5MnT+azzz4jPDzcN+aRRx7BarVywQUX0NPTw4wZM3j55ZexWCz+uCwRkd0KDw/3zVHb3NxMdXU1KSkp/g5LDoBly5b5Op+MHz8em83m54hE5GDIyclh/XrvFKAFBQWaMkH2ydq1a+no6AAgKyurz9RQIuI/JkOPrdLe3k5kZCRtbW195smTA8swXDQ0/xK7cxkdnpN5amE2jWua2bCmHHdSIM/eeQWXzH4HgDGhcUwxJXDdtdMICw3a7litjR1cnPcrAGacP5mfP/aTAxSj98th6zZYvS4X5773Tza0NvPSaT9iSsoQHHYnt17+RxqrG/jV/TeTP8O/TwgvLavku5KNXDhlDElR4bvfQUREROQIMpB/3/8h9pwbHsASsP3vxYea29FL4bO/GZCfpYjIobR8+XI+/PBDAI466ihOPvlkP0ck+8vtdvPoo4/S2dmJyWTi9ttvJyoqyt9hichB0Nvby9/+9jfcbjdhYWH87Gc/22W3UpEdefHFF30dB6644grS0tL8G5CIAKoYl0PI7iygs2c2AIX1dtZ1tlBuSyTGZSFtlZPxQwdz/dETWV5Zzb2nzCArIW6nx4qMDePEi45i9XelnHzx0X22tdp7+Pk3nxBstfLQMacSbN2zp3cr19dy5yl/JjA4gEe/uJuYxEgAqjrbKWpqAGDe5g1MSRlCQKCNZ968F5fTTUCg9/gfbSjmr8u/4bKRY7kud8/aojTVtjL/P8vIPzF3n+Ya/+/Xa3np3e9ZF9iJ0+NhQ30z/3flWXt9HBERERHp30yG9+Vv/SEGEZGBIDs7mzlz5uDxeCgsLOTEE09UUmWAKyoqorOzE/BW/ikpLnL4CgoKIiMjg5KSEjo7O9m8ebOSmrJXqqqqfEnxxMREhg7ds+ldReTg02/kcsgEWDMJDBgPBDIhYSOPHPcmVo8bT2Q4lUMjuPald3hx4TJ6nS6Gxe66rYjJZOKORy7n5cW/J+/oEX22fbJxHZ9vXs8HG4r5umrjHse3+tsS2po6qa9sZt3yct/6YZHR3D7haE5Oy+CK3PEAtDu7+W/tStqMHt+4p9csYmN7C4+u+G6Pz/nQrS/z/P3/5p5Lntzjfbb2yruL2FzdCk7vHcphCXvXLl5EREREREREDrzg4GBGjPDer+jo6GDz5s1+jkj21+LFi33L+fn5foxERA6FnJwc33JBQYEfI5GBaNGiRb7l/Pz8Ph1qRcS/lBiXPeLyuPl7yT+4a9VD1PTU79MxzOYQUhLmEBl2NQA2SwyvnHEuth5ozTDxbW0lbsOgoLae5u6enR7n1e+Xc9kL/2L5pqodbp86aCiDQsNJj4hmQkLyHsd33LmTmP6jfE6+/BjGH/+/X3xMJhN3TJrKs6ecQ0q4t13kfWve5PcF/+L2ZS/4xl2TM5HEkDBuzJu8x+eMjPW2PY+KDdvjfbZ24RkTiIsK5fZjj+Lfd17O7adO3afjiIiIiIiIiMiBlZv7v2nX1qxZ48dIZH/V1NRQUVEBQEJCgipHRY4AWVlZWK3ehrtFRUV4PB4/RyQDRUdHB4WFhYD3Qbm8vDw/RyQiW1MrddkjG7oq+LZxGQDzG5Zw0ZDTdzq2sruAZU3vkxM1k4xwb5LY7enB4a4lyJpGTORvCAwYT1fPRyREzeWVhy7jorfeocPlwNLjYUR3EHee+xTRcWE88NxVtPT08td/zSMnLYlrT8vnz5/MxzDgmfmLee4n5253/iERUSy88Ka9vsawyBB+9cL1fdb1upwUNzWSG5+IdauWZyZMW/77P+dl5HBeRg574+f/9xNOvWwqmWP3rZXK2SeO5uwTR+/TviIiIiIygBhbXv7WH2IQERkgMjMzsdlsOJ1OioqKOO2007BYLP4OS/bB1tXikyZNUuWfyBEgICCAzMxM1q5dS3d3N+Xl5QwfPtzfYckAsHTpUt+DFBMmTMBm27OpXkXk0FDFuOyRtNAURkdmkRQUx9Gx43Y59ouaZyjp+JZPqx8FwOOxU1B1FDV1U9hUdxomkxW7YxldPe/T3HY/sQmbeeSi4QyvsRBe5aZ+fT0N9e2Urq1m7crN/HPuCr4r2MhzHy2kvrWLs8ZkE2SzcvrorL26hq62bj584SvKCyt3OqbH4aRwYy0ut/cH12Ufvc057/2TX83/b59x9+ddzP15F/H4xOv2KoZtBQTZGHfsSELDg/frOCIiIiIiIiLSvwQEBJCV5b130dPTQ1lZmZ8jkn3R1dXlq/gPCgpi9GgVKIgcKdROXfaWy+Vi6dKlgLcT7aRJk/wckYhsS4lx2SMBZhv3597O0xPuZ2joztuTVzW3kR46EYD69kROf+dV1rdWYDOaAHC7tvwhETgFsGK1pjO74s8s7Po/Lri5l9YMG82To3AOtnH0CdmMmZTOtDHDCLRZGTM8mYSoMP78o1N4/adTWGr9G//c9DiGsWdlK8/85i2e/MU/ufPUP+N2uXc45oaH3+HyB9/gwdlzAajsaAegor2tz7gwWxAnDRpLbGD4dsdYMb+Ix+94jU3F1XsU1w+aOrr5eu0GHC7XXu0nIiIiIiIiIv3T1u3UlVQZmJYvX47b7b2PNHbsWAICAvwckYgcKiNGjPB9zRcXF/u+F4jsTEFBAd3d3QCMGjWKiIgIP0ckIttSK3XZZ3aXix6Xk6ggb7XzP+Yt5eGPv2FEUhz3XPI0P/rmHcJtm5hbHsw5Gb+ku/stYsNvACA0+ETSkktwGyZcrZcSae4hLqABiykFgL89cTXjh6UCMCUnjQWP39qnTdWylq/pcXexovVbfjT4WoIsu6+4Do3wjgkOC4KdtLyqafImwqsa22hxdPKbY49ifX0n54/c83lA/njF03S1dbN5XQ1//eiu3Y5fsGwDH88rYEFHDQ2d3fwoP5f7Ljhxj88nIiIiIoc/k+F9+Vt/iEFEZCDJyMggKCiI3t5eiouLcTqdaqk6gHg8Hl/lH0B+fr4foxGRQ81ms5GVlcWaNWvo7e2lrKyMzMxMf4cl/ZRhGCxatMj3fvLkyX6MRkR2Rolx2ScdDjsnvf4y9d1dPH/6OZyQPozi6noAyuubyYwaxKlpidyUeS9hth7CbU8yaNC3fY5hNodgBi4efC1drdcAJXx+w2uYrfkkR/Z9kmrbuZumxZ9Oi6OB7Ihxe5QUB7j29z9m4oxchuWlYrHsuFnC47edy7xVZZxyVBaXLniUFkcnR9em89gDi7n2vh/RUtNCSkYSqSOSdnqezHFprJi3lpETh223raCylvqOLqZnDcNs9l7Tn576lJb2HnqGeucZ67Q79uh6RERERERERKR/s1gsjBo1iuXLl+N0OikpKelTRS79W3FxMe3t3iKKzMxMoqOj/RyRiBxqOTk5vukUCgsLlRiXndq8eTO1tbUAJCcnM3jwYD9HJCI7osS47JO6zk5quzoB+HbDRqYNSeNnpx5DTFgIR2UMITwokMdmHEdFbQ8ADucGAFweB1XdhSQFZxJoCQUgwhpO15bjPrP8S+6ePm235x8amslPMx/Yq5itNisTZ+bicnuYv6qMYcmxpMZH9RkzckgCI4ck0OXqpcPpjX3ZmhJCFtl57I7XKVtRTkCQjX8W/Y3wqNAdnueP78yisaqFhNSYPus3N7Vy0TNv4jEM7j9nJudP8lahHzUunU/nr+XCnFyGZcVz8ti9mztdRERERERERPqv3Nxcli9fDnhbrCoxPnAsXrzYt6xqcZEj0/DhwwkMDMRut1NcXIzL5cJqVVpFtrf1z4zJkydvV+wnIv2DvoPLPsmIieW+407gvW9W8dljS+n6upm/3P9jfnXWdN8Ym3UoCTHP4nSVEhnmbaH+bPF9dLGCuMBhXD38SQCCAo9hcdNdfFq2lvlVMbhdX/LgqScftNifn7OQ5+csIiTQxmcPXU9I0PZzQ4Vag3h84rUUtlZQ8u5aCsLWkToiibIV5XjcHjxuz06Pb7GYSRwSu8fx3HPLKdxxzQxCgzVHlYiIiIjshLHl5W/9IQYRkQFm6NChhIWF0dnZyfr16+nt7SUoKMjfYclu1NXVsWnTJgDi4uIYNmz7zoAicvizWq1kZ2ezcuVKHA4HpaWlZGdn+zss6Wfa2tooKioCIDQ0lFGjRvk5IhHZGSXGZZ9dMWYcC18uoMUJJaW1OxwTFnIWAAtLN/Pm0nm4B28iNRaaehp9Y0wmE6MHXcJvvnodkweCzQEYhsFTv36LdSs3cubV03n/hXlMmpnLT+46Y7/jdrrcALg9xi7v642NTmdsdDo8exwALqeL/Bk5DBmZTGRs+F6fd0hsFG/eeJGvlfoPTCaTkuIiIiIiIiIihymz2UxOTg6LFi3C7XZTVFTEuHHj/B2W7MbWlX+TJk1S5Z/IESwnJ4eVK1cC3nbqSozLthYvXoxheLMNEydOVFcBkX5MX52yX35++ym8//EKZkzb9S8Dd776EW32XsztuQxLquGanAv6bB+VkMh7519KfevLZEb/mqqKq/jopZUAzH74E2o2NbJ+TQXn3zITp83EkrpKjk5KJcT2v4Ry8dINVK6vZdp5+dgCdv5P+8Yzj2ZYciyZg+MJ3UG1+M5YbVZOuOCoPR6/I7mDdz43uYiIiIjIzpgM78vf+kMMIiIDUV5eHosWLQK87dSVGO/fenp6WL16NQABAQGMGTPGzxGJiD+lp6cTHBxMT08P69atw+FwEBCgQifxcjqdvilTzGYzEydO9HNEIrIrZn8HIAPb8PR47rjlJMbkpu5y3JihgzB5TFw8aDJPnfBHzsw4BrvLRUldA81d3d4xKUkMj3oDt2cTLutzHHXyaGISIznlsqlExIQx4/zJBIcG8ZP/vs3Vn7/LLV994Dt+U20rd576Z/520z949/H/7jKWAJuVM44aRebg+B1ur+/u4tbPP+Qvi77GY+jOn4iIiIiIiIjsn+TkZKKjowEoLy+ns7PTzxHJrixfvhyXywXA2LFjCQwM9HNEIuJPFovFVyXudDpZt26dnyOS/mT16tX09vYCkJubS1hYmJ8jEpFdUcW4HBJPXH0O9e2dJEaGYTKZ6HE6mfHkP2js6sbmMvHBTZczNC6clT1BZAbYaCOLe1+9ybf/BbeeBEBnr50Ohx2ADqfDt91qs2CxWnC7PASG7N/TerPXruKjshIALAvqueL8E4gfHLNfxxQRERERERGRI5fJZCI3N5dvvvkGwzAoLCxk8uTJ/g5LdsDj8bB06VLf+/z8fD9GIyL9RW5urq8quLCwkNzcXD9HJP2BYRi+jjCAfraLDACqGJdDwmw2kRQV7puPaenmKhq3VIq7MNjc0obFZKWZMXzcmUN770xuvPllHvjzh7jdHgBeWbCcSX96iqSOMO4/aiZPHn+W7/iRseE8/e19/PGdWZx9w4x9jtMwDKYmDyHYaiW42cV///wZf7vlHzscW17fzN1vfMrHK4oBKKlt4MKn3+CBj77yzSciIiIiInJAGP3oJSIi+yQvL8+3XFBQ4MdIZFfWrVtHa2srABkZGcTGxvo3IBHpF4YOHUpoaCgApaWl2O12P0ck/UF5eTkNDQ0ApKamkpyc7OeIRGR3lBiXQ+6LkjKuefM9LCYTOQnx3H7cUUwbkY7JZOaKYY9xzfDn2DwvnXWltXwxt5Dy8nocHjsL1m8CYHV5LZePHEtiSN+WJCnDE5k4Ixezecf/rJfNK+LCUXfxh6uf22HienP3en5bcBXz2h9h6RXXMXOuC4vDQ3xy9A6P9/inC/hgWRG/nv0pdqeLNxetZk1lLa9/v5Lq1o79/JRERERERERE5HASHx9PYmIiAJWVlbS0tPg5ItmRxYsX+5ZVLS4iPzCbzYwaNQoAt9tNcXGxnyOS/kDV4iIDj1qpyyHxasEKXilcwe0TjqahuQsAt2HwxzNOJGdQom+czRxEbGAqM6YH8PXXxWSPtPCt+RUK1ixnxtRzCA/K4oTs4Vh2kvzelXnvLaG9pYsFn6yiramTqLjwPtvXdayi19NDr72SRkc1D73/c8rWVDByYvoOjzdp+GA+X13K6KGDCLBaOG10Fl8UlpI7OIlBkeE73EdEREREREREjly5ubnU1dUB3qrxY4891s8RydYaGhooLy8HICYmhoyMDD9HJCL9SW5uLkuWLAG87dTHjBnj54jEn5qbm33zzUdERDBy5Eg/RyQie0KJcdkrVW3tfF++idjEXtIiBpEeOniP9ntk6Xe02Ht5cvlCzhqU7Vvv3knL8YyMRJ580kRz2700usIoYBxflH5FzaqjuOe04/cp9rOvmU7F+jpGTxmxXVIcwFUzjJbNscQHJ5I6ejhmk5nco0fs9HgXTx3LaeNGEh4UiMlkYlL6YL75zY37FJuIiIiIyC71lzbm/SEGEZEBLDc3l7lz5wJKjPdHW1eLT5o0yTcloIgIeFtlh4eH09HRQVlZGT09PQQHB/s7LPGTbX9mWCwWP0YjIntKiXHZK5e8+i8cERUkZTRixkxg42QuyZ7IGZm7fhrqujGTeGnNcq7Om8CwkBhsZjOxoSEMjY7yjVlRW0OozUZmbBwAdscqAKItXdS3RrLx+8F0NraxrrKB/JFD9jjm6vJ6nrv3XUaMHcojH/18p3/UfLGwkhUrvInwe6e5CQ7YfVV6ZEjQHschIiIiIiIiIke2qKgoBg8eTGVlJfX19dTX15OQkODvsATo7e1l1SrvvSibzcbYsWP9G5CI9Dsmk4mcnBwWLlyIx+OhqKiI8ePH+zss8QO73c6KFSsAsFqt+ncgMoBojnHZK1azmR/KRNyGwZLqKu6d/+Vu97tx7ET+dV4+Z2QMxsDgysnjefOKC4kM9iaWP9+wnvPens2pb7zK+uYmAGIif0N5zyncu/IMvtmQydiU0Vw4fQxjhw/iX49+wvP3v0tHRw/17Z3c8+/PeG3Bih2e+z/Pf8Wizwt4/a9zqK9s3mmMl84cT/aQBG4882iCA2x7+cmIiIiIiIiIiOxebm6ub3nNmjV+jES2tnLlSpxOJwBjxowhKEjFECKyva2/hxcWFvoxEvGnlStX4nA4AMjLyyMkJMTPEYnInlLFuOyVN35yAQs3bWZ5awElDZ143K2cnZO92/3m17/EkqZ3CbFE8ex/JmN3GdS2d/L3c04FoN1uB8BjGHRv+SPEZk1lStpztHg+52cTRzJp0DAAls9by7OPfkjDWcN47g/Pc/Lkkfx7ufeXkBOyh5ESHdnn3Pkzc/nv7O9Jz0khNilqpzGOy0jhn3df6nv/TkkBL65exgU5WVyRnY/Z5H2OpLPXG2tYUOCefGQiIiIiIvvNZHhf/tYfYhARGehycnL473//i2EYFBYWcsIJJ6hlt58ZhuGbNxggPz/fj9GISH+WnJxMVFQUra2tlJeX09XVRWhoqL/DkkPIMIw+bdQnT57sx2hEZG8pMS57JSE8jPiwMGa/XwXAH0+ZwcUTxux2v5aeVgC6nF0kR4ZR3tTB0Jgo3/ZzR47CbDIRFRTE6MQk3/renicZH/oXAsw5GMbnmEwmUoYlwuAIjAALvR43MSHBmE0mhsREEhe2/S8hE0/I4b0ND2M277xBQmVNCzff+xZBAVae+ePFxESF8tCib3BGVPNcZRF1RjW/yjmP0ppGLn7sDcwmeGvWpaQnxOzhJyciIiIiIiIiAmFhYaSnp7NhwwZaWlqoqqpi8ODB/g7riLZ+/Xqam71dBocNG0Z8fLyfIxKR/uqHdurfffcdhmFQVFTExIkT/R2WHEJb/8xIS0sjMTHRzxGJyN5QYlz22tDoKEIDAuh1ORmZuGd/KFSWTeD7yirqmqO47+RpDImNIishzrfdbDJx7shR2+3ncBZu+W8p4AJsJA6J5e0P7uGJzxcQEhLEbSdO4frj8wmy2bBadpz83lVSHGB5YQVNLV0AFJbWcOykDH6SM47X6zZjMXlY31kDwPraJuxOFwBldU1KjIuIiIjIoWHww4xG/tUfYhAROQzk5uayYcMGAAoKCpQY97OtK/9ULS4iu5Obm8t3330HeL+HKzF+ZFm0aJFvWdXiIgOPEuOy15IjI/j6tmtxejzEhATv0T7HZ2Xz5PcrMUzwxy/m8cXNV9Frd2FgEBIUsNP9YiJ/h8UyiJCg6ZhM/5v3OyYmjN9deJLvvc1q2fcLAqYflcmilRsJCrSRP3ooAFePyaW++EW63R2cM+hMAGbmZXDdjHwsZhPTRg3br3OKiIiIiIiIyJEpOzubOXPm4Ha7KSws5KSTTtrtQ/1ycDQ1NbF+/XoAoqKiGDFihJ8jEpH+LjExkdjYWJqamti0aRMdHR2Eh4f7Oyw5BBoaGigrKwO8PzMyMzP9HJGI7C0lxmWfhO/l/Np5g5NIj4umvKmZtt4mXv1+BW+89D1uj8GLf7iU4alxFLXNo9fdyZjoUzGbvIlukzmRmMh7fe8PloiwIP7087P6rGt21NPtbgeg16gHvAn420+delBjEREREREREZHDW1BQECNGjKC4uJjOzk42bdpEenq6v8M6Im1dLT5p0iQ9oCAiu/VDO/Wvv/4agLVr16py+AixbYcR/cwQGXiUGJdD5u9nn8qCzReRmVhFU6OT7t4QANZvaiAotoEPq/4CgNUcQF7USdT0rOPNjXcRaAnjymFPEGKNOqTxpgSnc9qgS2hxNDAl9uRDem4RERERka2ZDAOT4f8+5v0hBhGRw0Vubi7FxcUArFmzRolxP7Db7axcuRIAq9XKuHHj/BuQiAwYWyfGCwsLlRg/AvT09LBq1SoAbDabfmaIDFB6nEUOqo3NLUx59FlOePJFEsODyEysBWDE4CquPGcyl505ieMnjyDYEoF5y3MaYdZYAKq6C3EadjpdTTTaNx/0WD8tL2Xmm//ghVVLAe+TfycknM2PBl9LiDXsoJ9fRERERERERI4cmZmZBAR4p5crKirC5XL5OaIjz6pVq3A4HACMHj2a4OA9mzJQRCQhIYGEhAQAKioqaGtr83NEcrCtWLECp9MJwNixYwkKCvJzRCKyL1QxLgfVwo0VNHZ1A7C6upHc5L/S1DOPIZE3kndBhm9cDClcl/ECTk8vcUHeOb5zo06kwb6JEEsEg0Ny9un8mztaCbJYSQjZfWL7D/O/pKq3gz99O49lXy0kfuZKUoLTuHbYr7CY9KUiIiIiIiIiIgeOzWYjKyuLNWvW0NvbS1lZGVlZWf4O64hhGMZ2LXFFRPZGTk4O9fXeKTgLCwuZMmWKnyOSg8Xj8ehnhshhQhXjclCdPHIE4YHe+cjXNzaREHYG2fF/IzQgY7uxkQGJvqQ4QJAljFOTZzEt8ep9mmP826qNHPf2cxz79nNs7mjd5diuXgdNmzoxuSCgAdqyC+h2d1DauYZLX3qRO96cg9Pt3usYREREREQOCKMfvURE5IDJy8vzLRcUFPgxkiPPhg0baGpqAmDo0KEkJib6OSIRGWhycv5XzFVYWOjHSORgKykp8XUFyMjIIC4uzs8Rici+UmJcDqqQABvdTm9LqsLahkN67k0drRhAr9tFfXfXDseUbqxneWEFwQFWThySQUxFAGPd8TSZI2l3BNLSHcfqsi4+XbOOkppDG7+IiIiIiIiIHN6GDRvma99dUlLia+stB58q/0Rkf8XGxpKUlARAdXU1zc3Nfo5IDpZFixb5ljWfvMjApv7QclAFWq08dt4ZfLdhE9ccPXGP9/tkfQENnZu4MPdkAq379s/0/BF5dDjsRAUFMyEhGYCWrh4e/+Q7UmOjmD4ijat++Toew+APs87g8avO9u27qHEdbyyfz8jeVKpjaxgSG0Vmkp4CExEREREREZEDx2KxMGrUKJYtW4bT6aSkpKRPFbkcHC0tLaxbtw6AiIgIRo4c6eeIRGSgys3Npba2FvBWjR977LF+jkgOtNraWjZt2gR4H4YYPny4nyMSkf2hinE5ICq6a2h3du5w24lZGdx36gxSoyL36FilTfUEOi7imLhr+ar0vu22d3X08tqTc/n2i123pwmwWLhx9GQuyhyNyWQC4M3vVvL2wjU8POcbyuqa8RjeXpB2h8u3n8fwYKy2U3LFSt6/4UMemHQ0z15xLgH7mKAXEREREdlfJqP/vERE5MDKzc31Laud+qGxdbX4xIkTMZt1i1RE9o3aqR/+tq4Wz8/P9+UaRGRgUqZP9tvcuu95Yv3rhFlDeGbC7wm1Bu/X8SIDTRDmbTuTGFKx3fa3XpzPv/7xDQCvffYL4pP2LOEOMCYtGYvZRHxEGJNHDeWx351PW3sPxx+VCUCv28GVCx+nytVEYI6FoEonLYHVGEaWfuCJiIiIiIiIyAE3dOhQwsPD6ejoYP369fT09Pjaq8uB53A4WLlyJeCt2J8wYYJ/AxKRAS0qKoqUlBSqqqqoq6ujsbFR808fRrq6ulizZg0AgYGBjB071r8Bich+U2Jc9lttbyMAna5uety92yXGi+oa+LD0fYLj5jE6egbTEq/a5fESwuJxOZ+i2/4deUk/22774DTvLxaRMaGEhgftVaxTMofy3e9vJsBqwWa1MDF3SN9r6WllU5d3LvEZv83HFfklH5uexdTQwfEJZ+/okCIiIiIiB5+x5eVv/SEGEZHDjMlkIicnh4ULF+LxeFi7dq2StQfR6tWr6e3tBSAvL4+QkBA/RyQiA11ubi5VVVWAt/PH9OnT/RuQHDDLly/H7XYDMG7cOAICAvwckYjsL/UJkv12XsqJXDLkDH418nriAqO32z7r33OodH5Fj6eJRY1vM3vZCgxj13fUkqPPISPpr1itydttO+mcCbzwwSxeeP+nrCqtZs26agCqupr597qF9Ljsuzx2aFAAdoeLh577nOfe/I7S5kau+/g97pgzhxB3MDdknMRJSWO5euIMHKYeANqdLXv6cYiIiIiIiIiI7JWt5xVXO/WDxzCMPm3U8/Pz/RiNiBwuRo0a5VsuLCzc7b1vGRjcbjdLlizxvdfPDJHDgyrGZb8FW4M4P/XUnW7PiI+lcMNQ4iKdrC2P54XieQyKiOT4EcP2+ZyD0+L4YmEJv33sIwBefuAyri94HEeAi/fWLOG1H922y/3nfFXAf75YDcDXtkq+bagAA+re6uCf11/kG3fD8N9S0V3GUbEz9jlWEREREREREZFdGTRoEDExMTQ3N7Nx40Y6OjoIDw/3d1iHnY0bN9LQ4O0UmJqayqBBg/wckYgcDiIiIhgyZAibN2+msbGR+vp6EhMT/R2W7KeioiI6OjoAyMrKIjp6+6JAERl4VDEuB93/nXc6T515B80br2B5cQYmEwyK2P0fd0+u+p7z5/yTVQ01223b1NTKF6VleLZ6tMPl9gDQ3Ny522PnZSUTGGAlNiqU6WnDwQCzA6K2mcNreNgopiecSZBFbbVERERExH9MRv95iYjIgWcymcjNzfW9Lyws9GM0hy9Vi4vIwZKTk+NbVuePw8OiRYt8y5MnT/ZjJCJyIKliXA46q9lMVkIcyyu9Lc9TIyMZmRi/y306nXb+uvwbAJ4rWMzDx57OJ2Wl5MUnMDwmlltfe5+yhmbSRsfw57NOIistkXsbLuKjVcu5ftrOq7sNw+CbpWUAfPLiTVgtFqxWC6ePyKSkupHJw1IP0FWLiIiIiIiIiOy5vLw8vv76a8CbVDnqqKP8HNHhpbW1lZKSEgDCw8PJzs72c0QicjgZNWoUn376KYZhUFhYyAknnIDJZPJ3WLKPqqqqqKysBCAhIYG0tDT/BiQiB4wqxuWQufeUE5g2PI37Tt19W/JQawCnpWURagvgzGHZ/PX7b/nZZx9z9r/+Sa/LSWyYt4LbWdfF+oUbcdidnDRpNI9deyW5mTtPbi9atYlf/fV9fvXX91lZVI3VagFgUEQE00cOI8hm5Yu6d3lr89N0utoPzIWLiIiIiIiIiOxGXFwcSUlJgPeGfHNzs58jOrwsXbrUN+/vhAkTsFgsfo5IRA4nYWFhvuRpS0sLNTXbd0GVgWPbanE95CBy+FDFuBwyMzKHMyNz+B6NNZlMPHX82b73yyu8v0iYTSZMmLh28Ag2PrYAkymE5/5bi8Ph4qJrp/U5hsPl4tOCUjIT4xg5yFuhHhTo/SdvJDr4e8s7nLh+NNdnnOTbp7pnI5/W/guA6IB4Tkr68b5fsIiIiIjIgWJseflbf4hBROQwlpubS21tLeCtGj/uuOP8HNHhwel0snz5cgAsFgsTJkzwc0QicjjKycmhvLwc8H4PT05O9nNEsi86Ojp8U5oEBweTl5fn54hE5EBSxbj0K0urq3howTdUtLXS0v4I9c234nLX8fOjj+GpU8/kw4suJ9BqJSM7hahWJ2a3d7+YuLDtjvXk3IX86u1PueiZN2jv6QVgbPZgXnjgUsZfGE+ls5GXNnxJr9vh2ycmMJFoWzwWk5VhYWqpJSIiIiIiIiKHztbzjBcUFPgqnGX/FBQU0NPTA3gTV2Fh299HEhHZX9nZ2ZjN3pTL2rVr9T18gFq6dCkejweA8ePHY7PZ/ByRiBxIqhiXfuWqD/9Np8NBQ+cqbhr1EABWSwoxkb/m1IxM37ikofHMLvwb9TWt2B0usnIH9znOpk2NvPvOEkgAi8mEeatWJ6Mykrgg/GhKC6uYGpdNkCXAty3YEsKvsv8Pj+HGZg5ARERERERERORQiYyMJDU1lYqKChoaGqivrycxMdHfYQ1ohmH0aYmbn5/vx2hE5HAWEhLCsGHDWL9+PW1tbVRWVpKauvNpP6X/cblcLFu2DPB2tZ00aZKfIxKRA00V49KvpEdFAxAbkoHNOgwIIDjwGADc7kbqmq6nseUeDMNFSHgQaZlJ2yXFAdYUVmLbaCdqnZN7jjmWsKDAPtu/29DAunWhzCvs2O7JPYvJoqS4iIiIiPQrJqP/vERE5ODaumXrmjVr/BjJ4WHz5s3U1dUBkJKSQkpKip8jEpHDWU5Ojm+5oKDAj5HIvigsLKSrqwvwdgCIjIz0c0QicqApMS79yts/uohPLrqEWflDSUn4iqHJhQQGeOd96uh+m66eD2nvepFNNWOoqjsNj6drh8c5YXo2p50ymounj+OMadvPAVLV0QFAXVcnHrW0EREREREREZF+YtSoUZi2dL4rLCxUK979tHjxYt+yqsVF5GAbOXIkFosF8LZT/6Elt/R/23YYmTx5sh+jEZGDRa3UpV8JtFqJNt9Hdf0HBAediNNZjMtdS1Lsq/TalwBWzKYwPJ5m7J5m7M41BAcetd1xQkIC+cWdp/VZ98WCYtaur+Wys/O575gTyI6N5+iUVFqcncQFRhyaCxQRERERERER2YXQ0FCGDRtGWVkZra2tasW7H9rb2ykqKgK8n+uoUaP8HJGIHO6CgoLIyMigpKSEzs5ONm/eTFpamr/Dkj1QUVFBTU0NAIMGDdLPXpHDlCrGpd9xONcB4HQW4XJXAE7WN/2D7t5PABcRYTcRFDAVs/t0bOYxffYt29xIUVntdsdsbu3id4/O4c2PlvHyuwuJDwnl1glH8VLlx5w5/wFeLPsCgOL2lbxT8Rx1vZUH+zJFRERERPac0Y9eIiJy0OXm5vqW1Yp33y1dutRXcT9hwgSsVtUIicjBp3bqA9O21eI/dG8RkcOLEuNy0FV217KqtXiHrb+q69uwO1x91iXGPkVk2E0kxLxERNgvmFs7mtsWJNHtjsVsjiYs5DTeefBsbhwLv7/8ed9+6zbW85NfvMI1v/4ni1dv7HPM0JBAEuPCAchMi/etL2zdDMCqFu/4Vzc9zMLmufyn6uX9v3ARERERERERkX2QnZ3ta8VbWFioVrz7wOVysWzZMgDMZjMTJ070c0QicqTIysryPYhTVFSk7+EDQFtbW58OI1s/3CAihxc9JikHVbO9lZ+tfACX4ebG4RdxctKxvm1vzFnKY/+cT/yQSP56x9lkJXgT1gG2bGKjfgeAYcni4bXQ43bxTs0j3Dt5BiaTmfWr3wRgw5oKKpvKqK1twmIaxA+5984ue584bDYLT//5YtraeshIifOt/9OYS5lfX8hFQ48BYEhwBuu7CkkLzTpon4mIiIiIyL4wqVpbROSIERgYSGZmJkVFRXR1dVFeXs7w4cP9HdaAUlhYSHd3N+B90CA8PNzPEYnIkSIgIIDMzEzWrl1Ld3e3vocPAEuWLPEV9k2cOFEdRkQOY/rqloPq32sKcHrcmEzQ63b02bZuUz32cCgO7+Ca2U/z6kUW4sNH4PY0Eh56MRZzNMFWG++cfimrG2s5e1g2JpO3ycEdj1/FJ69+zZjzkvln9a2YLBC3+kL+/Iuz6bU7Of6ozD7nuuLjd/imchO2FhNjwpP4102XYDabmBI/kinxI33jrh9+Dx2uViJtMQf/wxERERERERER2Ync3Fxf9VpBQYGSKnvBMAwWL17se5+fn+/HaETkSJSTk8PatWsB74M6+h7efzmdTpYvXw6ow4jIkUCt1OWgeu7rNZSvSMFdNZwzkqf32XbThccyaexQAG4/+hNwPUFDy09pbvsDTa33+cblxCZycdYYQmwBvnVpo1K46c8Xk5ARhsnbWYyWzgaOm5TBScdk80lZKUf/41n+uuAbDMNgUY13znB3kEFRTT09TucO4zWbzEqKi4iIiIiIiIjfjRgxgoAA772QoqIiXC7XbvaQH1RVVVFdXQ1AUlISqampfo5IRI40234Pd7vdfo5Idmb16tX09PQA3ofSwsLC/ByRiBxMSozLQXXFpHEEOWO4JGMmlh8y2FskxIbz9I0/4q9nncLIpDFb1toAsFoS6LUvp7P7Iwxj53OwpEWOZVTPFUSXnsK1P7oJgM83l/L3pd9Q09XBs8uXAvDYCadz8tAMTkvO5M8/PoXQwICdHlNEREREpN8xjP7zEhGRQ8Jms5GdnQ2A3W5n/fr1fo5o4Ni2WtxkMvkxGhE5EtlsNrKyvNN19vb2UlZW5ueIZEcMw2DRokW+9+owInL482ti/MEHH2TSpEmEh4eTkJDAOeecQ0lJSZ8xhmFw3333kZycTHBwMNOnT6ewsLDPGLvdzm233UZcXByhoaGcddZZVFZWHspLkZ245dijWHTHjVw0frRvXZujjpqedQCYTSbOzssmb8gTJMfPITVpIcnx/yEs5GKqG86kvvk62jpf2eGx7S4X0198gdu/qyIw8mgio8NY2VDDtV+8x/ruJuIjQpg1+WhMJhOnDMvkyZln8vA5p3Hm2OxDcu0iIiIiIiIiIvsjNzfXt1xQUODHSAaOzs5O373D4ODgPp+hiMihlJOT41veNqch/cPGjRtpaGgAYPDgwaSkpPg5IhE52PyaGJ8/fz633HILCxcu5PPPP8flcnHSSSfR1dXlG/PQQw/x8MMP88QTT7BkyRKSkpI48cQT6ejo8I2ZNWsW7733Hm+++SbffvstnZ2dnHHGGWpP0g91OBt5oex6Xiv/KWvb5vnWm0xWggLHY7MmExQ4GZPJBnif5n1o7gIqWtu2O1ZtVydV9k4ME7zy3+/p6bYz59XvMW0pYvnzCSdz66SjAGht7ebiS5/m7HMfpai4+mBfpoiIiIiIiIjIfktPTyckJASAkpISHA6HnyPq/5YuXYrH4+0+OGHCBGw2m58jEpEj1fDhwwkMDASguLhYU2L0Q1tXi0+ePNmPkYjIoeLXxPinn37KlVdeSU5ODmPGjOGll15i8+bNLFu2DPBWiz/66KPcfffdnHfeeeTm5vLKK6/Q3d3N7NmzAWhra+PFF1/k73//OzNnzmTcuHG8/vrrrFmzhi+++MKflyc74PD04Da8f8R1u1p2Ou7NtU38dflt/PbL83inMJvV1bUAuD0ebnnnQ6Y//gItHd3kt0QQUWrnrEEZfP7+Cr55ZTnpr3by9+EnMCN1uO94mzY10tTcid3hoqBQ3QREREREZGAxGf3nJSIih47FYmHUqFEAuFwuiouL/RxR/+Z2u333FU0mExMnTvRzRCJyJLNarb4pMRwOB6WlpX6OSLbW3Nzs62AcHh7u+38lIoc3q78D2Fpbm7cqOCYmBoDy8nJqa2s56aSTfGMCAwOZNm0aCxYs4IYbbmDZsmU4nc4+Y5KTk8nNzWXBggWcfPLJ253Hbrdjt9t979vb2w/WJck2YgNT+VHq/bQ76xkdvf3/G4AOh53fzZ8LWEkLG8/F49OYMcKb5K5obePzEu+cWh8UlvDmb6+ls72H8MgQildXYLVZCPcEcHx2pu94KzavZ3bFfGZcnEVQWxCnnjx6R6cVEREREREREel3cnNzWbp0KeBtpz56tO5r7MzatWvp7OwEYOTIkURGRvo5IhE50uXk5LBy5UrA205dydf+Y8mSJb7lSZMmYbFY/BiNiBwq/SYxbhgGd9xxB8ccc4xv7p/aWm+VcGJiYp+xiYmJbNq0yTcmICCA6Ojo7cb8sP+2HnzwQe6///4DfQmyh4aH5+9ye5gtgMkpg1laXcXtRx/NuSNH+bYNiY7ix2NyKKyt5/yxuZhMJsIjvS3FRo5O5a35v8ZqtRAYZKOjtYun7prNnKPW4xxsIjjCwudX/gGL2a+NEkRERERERERE9tiQIUOIiIigvb2dsrIyuru7fe3Vpa/Fixf7lvPzd33/SUTkUEhPTyc4OJienh7WrVuHw+EgICDA32Ed8ex2OytWrAC8lf0TJkzwc0Qicqj0mwzhrbfeyurVq3njjTe222Yymfq8Nwxju3Xb2tWYX//617S1tfleFRUV+x64HHAmk4k3zr2AtTf9tE9SHMBsMvHAGSfx/rWXkZ0Yv92+oWFBBAZ55456/sGP+PKztRibnAB0d1o56dfPU9OsDgEiIiIiMsAY/eglIiKHlMlk8hWReDwe1q5d6+eI+qfq6moqK73T5yUkJDB06FA/RyQi4p0S44cqcafTqXbq/cSqVat8XYXz8vL0wJnIEaRfJMZvu+02PvjgA7766isGDx7sW5+UlASwXeV3fX29r4o8KSkJh8NBS0vLTsdsKzAwkIiIiD4v6V9MJhMBu2hd4vZ42NzSisfY/s6cYRj85sU5vNxTSVduHDHvBXBMcS72JZE0d3SzdlMdAB+sK+KZZYuxu1wH7TpERERERERERPbXD4lx8LZTl+1tWy2+u6IaEZFDRd/D+xfDMPr8zJg8ebIfoxGRQ82viXHDMLj11lv597//zZdffkl6enqf7enp6SQlJfH555/71jkcDubPn8+UKVMAmDBhAjabrc+YmpoaCgoKfGNk4OjqtvPRvAKq6lp3OW7We3OY+dRL3DPn8+22vfrm93y0pgRPoInW7ABu+OOPuf/6Czj36DzOP3Y0x+SmU9TYwE//+zF/WfANr69ZdZCuRkRERETkwDB5+s9LREQOvaSkJGJjYwHYtGkT7e3qhre1rq4uX7IpKChI87CLSL8ydOhQQkNDASgtLfVVKot/rF+/nqamJgDS0tJ2WmApIocnvybGb7nlFl5//XVmz55NeHg4tbW11NbW0tPTA3irhmfNmsUDDzzAe++9R0FBAVdeeSUhISFccsklAERGRnLNNddw5513MnfuXFasWMFll11GXl4eM2fO9OflyT74y4uf8+onr/KLR57F2EE1OIDT7aaguo6RcdWcPeIO6ptv6zN28YJSghs89Ax20ZFt8J/QCkKCAvjdZSfym4tnEGizEhMUTIjN23I9NTLykFybiIiIiIiIiMi+2LqdOkBhYaEfo+l/li1bhtvtBmDcuHHYttzzERHpD8xmM6NGeacMdbvdlJSU+DmiI9uiRYt8y6oWFznyWP158qeffhqA6dOn91n/0ksvceWVVwJw11130dPTw80330xLSwuTJ0/ms88+Izw83Df+kUcewWq1csEFF9DT08OMGTN4+eWXseyiFbf0T4OHLmPGmf/B6bRid11JkK3v01o17R2c88Lr9Dhd/GzqZuJDm+jsfoeYiF9itXrb8GenxFK8fBNNEwIAMw09XdudJzEsjHk/uYZ2u53h0TGH4tJERERERERERPZZXl4e8+fPB7yteI8++mg/R9Q/uN1uli5d6ns/adIkP0YjIrJjubm5LFmyBPA+3KTOFv7R2NhIWVkZAFFRUWRmZvo5IhE51PyaGN9ZRfDWTCYT9913H/fdd99OxwQFBfH444/z+OOPH8Do5GD6pmEp5V2VnJtyIuG2UN/6E6cOYnMHhAf00t75f9gi7sRiifVtL65roKWnFwBLwPnYrNUEBkzAYknxjbny1pkkJUURnB5GRYydM9OzdxhDfEgo8SHec7s8btqc3cQGhu9wrIiIiIiIXxlbXv7WH2IQETlCxcbGMmjQIGpqaqiurqapqcnXXv1IVlxcTEdHBwBZWVlER0f7OSIRke2lpqYSHh5OR0cH69evp6enh+DgYH+HdcTZulp80qRJmM1+baosIn7g18S4HJma7K08vO4lADyGhyvTz/NtGxpzJQFWM/aO39HZ9RJmIC76Ad/2/KGDuTJ/PA6Xi+MzjyMk4McAGIYHh3MdHxf0cs9/vmJa5jCeOG4qJpNpt/EYhsH1i5+mqL2Sn2adwUVDjzmwFywiIiIiIiIicgDk5uZSU1MDeKvGp02b5ueI/G/x4sW+5fz8fD9GIiKycyaTiZycHBYuXIjH46G4uJhx48b5O6wjSm9vL6tWrQLAZrMxfvx4P0ckIv6gx2HkkAu1BhNt887rPTQ0pc82symA5IjLsViSAOi2z6O7Zy6r6mqZ8PxTjHnqCT4rLmXW9KmEBHjni6rv7uTrssuprJtOmPnnuD0GX5WU4dwyt9QPOp3tLKj7jB5Xe5/1TsPNuo5qANa0bjoo1ywiIiIiIiIisr+2nme8oKBgj7oxHs5qa2vZvHkzAHFxcaSnp/s5IhGRncvJyfEtFxYW+jGSI9OKFStwOp0AjBkzhqCgID9HJCL+oIpxOeSCLIE8OeF3dDi7SAjavuWXyRRIauLXbK7Jx+Uqp6ntD3xcdj/NvT1ggarOdopq65icNgSzycTvFn7BWYmFEARpsY0ckzGU40cOJ8Da95/3n1f9lIiQWr6tT+GuvBd86wPMVv4w+mIWNZZyWbqetBYRERGR/sdkeF/+1h9iEBE5kkVERDB06FA2bdpEY2MjdXV1JCUl+Tssv9m2WnxPOgeKiPhLSkoKUVFRtLa2smHDBrq6uggNDd39jrLfPB5Pn58ZkydP9mM0IuJPqhgXvwi2BO0wKf4DszmM8NCLACvhIT/iglF55CUkkhYaxUkjMrj6zfc46/nXcLhcpISG85fCk/msZgqD4//B81ecxyWTx2x3zB6Xd27ytp4uyjc29Nl2fGIev8o5j8EhmptLRERERERERPqvravG16xZ48dI/Ku7u9t3/YGBgYwZs/29IBGR/uSHdurgnd6zqKjIzxEdOdatW0draysAw4cPJy4uzr8BiYjfKDEu/VZs1O9IT9lMVMRtDI+O4YMLL+Orq68hJTICt8dgXUMTdZ1d/GbS8Tw8/XYuHTOboMCdz8tyevJvWL1iNAufGMktj77J3Qs+o7ytuc+YTXUtPPX+AtZXNR7syxMRERERERER2WujRo3CbPbe0issLDxi26mvWLECl8sFwNixYwkICPBzRCIiu6d26v6xaNEi37KqxUWObEqMS7/U7ShjWfV5FDfehWH0nSv8qskTODNnJL+ccSypUZFYzGYmJKQQHhC4y2OeMCSPrI1T8NQGUpTbw+vFK/nD4q/6jPnNCx/zwseLuPOZDw/4NYmIiIiI7DPD6D8vERHxq5CQEIYNGwZAW1sbFRUVfo7o0PN4PCxZssT3Pj8/34/RiIjsuaSkJGJiYgDYuHEjHR0dfo7o8FdXV8fGjRsBiI2NJSMjw78BiYhfKTEu/VJt57/pdBRQ3/U+Xc7SPtsGRYTz93NO5ZqjJu71cX911xn84ndnMDg0EoBx8cl9tg9OiMQ6rh372Doa7e37fgEiIiIiIiIiIgfJkd5Ofd26dbS1tQEwYsQIX5JJRKS/M5lMfb6Hr1271o/RHBm2rhbPz8/HZDL5MRoR8TclxqVfig89nSDrYKKCjmVuiYPFmyr3aL82ey/PrFnE0rodj+91OvntF1/RWNDFpbGjuW3s0X22n39uNpZhPbSFt/Jx9fL9vg4RERERkQPBZPSfl4iI+N/IkSOxWq2AN6ni8Xj8HNGhtXjxYt+yqsVFZKBRO/VDp7u72/cAWWBgIGPGjPFzRCLib0qMS78UHjiKyYO/ZHXFbfzig7lc/vrbLK+6l4UVx1Pf+SkuTycAn6z/iocXfkxLTw8Af146nz8vnc8ln77FJ3NXc+ElT/La698BsLG0jstm/hVHtxMTJuKCQrc7b3ZUCsPDkoi0hXB0XOahu2ARERERERERkT0UGBhIZqb3vkV3dzcbNmzwc0SHTn19PeXl5QDExMQwfPhwP0ckIrJ3EhISiI+PB6CiosLXAUMOvGXLluFyuQAYO3YsgYG7no5VRA5/SoxLvxYSYAMg0OKhw/kGdncVRY2z+L5iKsUNzxNivYHs2F/w3PIvAEgKDQMgOiiYD99fQUNDB7Pf/B6AolWbsXfaSZzfyk/HTeCG6fl8tmodlU3/+8Uj1BrE61Nm8enxv2NEeDIiIiIiIiIiIv3R1q14CwoK/BjJobVttbha4orIQKSq8YPP7XazZMkS33t1GBERAKu/AxDZFRPeXo1RIREMCruGxu73cXoa8Rg9uAzv/CshNifjEp+hpHEhN+b+gmOT00mPiGb1oE08/8I8TjvN2x5l+mmjKS2qJig4gKvPnspfPpjHm9+vJjIkiK/uvR6bxeK36xQRERER2SVjy8vf+kMMIiICeOfWDgwMxG63U1xcjMvl8rVXP1z19PSwevVqAAICAhg7dqx/AxIR2Ue5ubnMmzcP8CbGp0yZ4t+ADkPFxcV0dHQAkJmZSUxMjJ8jEpH+4PD+bVn6LbfhpqSjnLSQFEKswTscs76xiXs+ngtAbUcnEQE3kxH7Mza1PkVLt52/fZHEtBFmMhNXg7WU2s5Sel01jE/6BwDTjhvJtONG+o4XHBLI7b89G4CPX/2Gj97+GrKi8HiMnd7gq93UwII5Kzj27InEp+gHp4iIiIiIiIj0D1arlezsbFauXIndbqe0tJTs7Gx/h3VQrVy5EqfTCcCYMWPUEldEBqzY2FiSkpKora2lurqa5uZmJW4PsEWLFvmWJ0+e7MdIRKQ/USt18Yvny/7F3Wse4ddr/r7TMSX1jbg8HgAuGpdHUkQ4ZlMA6dGz+KRwMt9tauL3S5NYWpdBIC7AoLX3W+o6P9jt+Rd/vobIZQ1EL67jt5eegMXS90uhvLKJrxau43cXPc5zd/+LP135zH5dr4iIiIiIiIjIgXYktVP3eDxqiSsihxW1Uz94qqurqaioACA+Pp709HQ/RyQi/YUS4+IXTY5WAJodbTvcXtfRSXxYKDccPYkbp+Tz25OP77P9pJEZBIVbMAW5yY+aS4K1h0izA4BV9R/g8nTu8vyX//JMjj45j66rBnHj9x/w03/9m/pabyztnb1c9cvXuPvhD2lL8M5ZHhETusvjdfc6dnvNIiIiIiL7ymT0n5eIiPQf6enphIZ671mUlJRgt9v9HNHBs379elpaWgAYNmwYcXFxfo5IRGT/bP1wkxLjB9a21eImk8mP0YhIf6LEuPjFTRmXcNnQs/l9zu2+dYZh0NH9LvWtL3P6sy9z2WtvEx8eyh3HT91u/u9JQwYz54orGBwWTlRALwAb2uJxe0wEmr+msP7mXZ5/eG4qv3rhOjrMLgDmLS3mzqte/F8sW/57wgVH88d3ZvGbl27c6bEenD2XY376JA+/PX9vPgIRERERERERkf1iNpsZNWoUAG63m+LiYj9HdPAsXrzYt6xqcRE5HERFRZGSkgJAXV0djY2Nfo7o8NDZ2enrohIcHMzo0aP9HJGI9CdKjItfxARE8qPBJ5Eelupb12tfQEPzrXR2/prfTHuNnIRKmrq6d3qMIeFRfH3+LaQP+oCYyHvx2M7GYvamtNt7V9Pc/S2G4dnp/oEWK6+ffAETG6MI3exm7dFultRWEhEWxD8evJQ/zDqDay6cwsQZuQSF9J2zqrWxg3svf5qHZ73GN6vLAfhmTfn+fCQiIiIiIiIiInstLy/Pt3y4tlNvbGykrKwM8CaSRowY4eeIREQOjK3bqR+u38MPtaVLl+LZMkXr+PHjsdlsfo5IRPoTJcal37BYYgFvZfjYQZv548zPOTsve7f7BQWMJSr8Rs7JnEWAJREAD92sqb+ayvZ/bDfeMP7X/zE/KZXXbrmCjlPCaRxscN+iuQAMHxLPjClZWK0WVq3azOw3v6ejo9e331fvLmHxFwV8/tZCfjxxMDNOd3DTxbuPVURERERknxhG/3mJiEi/MnjwYCIjIwEoKyujq6vLzxEdeFtXi0+aNAmzWbc0ReTwsO0844Z+394vLpeLpUuXAmAymZg0aZKfIxKR/ka/RUq/EWAbSWrSt4QEnwXA4so4Tnv2VVZW1ex0n5ae72nrXQFAR+eLJJrWE212+ra73B19xq+orWH0c09w6uxX6HY6qe2t4PGKX3FqXiUmk4eZqcP7jO/utvPzX77JCy/O58WX/tcqffz0bKITIhiaNQjX6OUYQ5fznfv5/f4MRERERERERET2hslk8s1TaxgGa9eu9XNEB5bdbmfVqlUA2Gw2xo0b5+eIREQOnIiICIYMGQJ4u2PU19f7OaKBrbCw0PeAWHZ2tu/BMRGRHygxLv2KzZpGYswz1Nj/w4Nfn4HHMKhoadvh2MbuL1lddwUray+kw76Grp6PAQg1mwCo7Y5gXu3RffaZv6mcToeD4qZGylqaWdHyHQ32arBV8sWPzuVn44/pG4/NSlRkCAAJ8RG+9UOzBjF71YM8M+8eYoLjAQizen/I/tCmRURERETkQDEZ/eclIiL9zw+JcTj8WvGuXLkSh8MBeNvGBwcH+zkiEZEDS+3UDwzDMFi0aJHv/eTJk/0YjYj0V1Z/ByCyLZPJxJRh+dx7chAOt5tTR2WyrKKK0oYmzh09ikCrlQ57IaVN9/r2MfAQG3UfbR3P4LGexayPC2m1B3L7WFefY1+Yk0dBQx1DIqLIiU8g0X4sa9uXEx+YRHr48G1DwWaz8OLz11Bd00rmiETWtzYxOCyCIKt3XhK328PRnMO4YVNJDknjhXvf5t9PfMYld53JZb886+B+UCIiIiIiIiIiQGJiInFxcTQ2NrJ582ba2toOiyo5wzBYsmSJ731+fr4foxEROThGjRrFp59+imEYFBYWcsIJJ2Aymfwd1oBTWVlJTY23+2xSUhKpqal+jkhE+iMlxqVfMplMXDpxDAANHZ1c8uq/CA3oYUjobxgel0ybJxaHuw6A4dF3ExHoHRscOAWAZ0+YTGlrEz/KyO1z3EFh4bxwxrm+9wlBKdyZ9dAuY4mICCYiIpiHl3/L/61cwMjoeD4950pMJhN/+NlsFs4r5vQL8rntnlHMe2cxHo/BvHcWKTEuIiIiIiIiIofED+3U582bB3grDqdOnerfoA6AsrIympqaAEhLSyMxMdHPEYmIHHhhYWGkpaVRXl5OS0sLNTU1JCcn+zusAWfbanE9XCAiO6JW6tKvOdxu/rF4OQYwdUgpSaHL6Or5EI+71DfGYPvW5flJqVw6cixB1gP37Me6lkYA1jc30trcCUDp2mrvtsIqAG76y8WMmz6K6/90IcXtlVy/6CmeX//5AYtBRERERI5QRj96iYhIv5SXl+dbPlxa8S5evNi3rGpxETmcbd1OvbCw0I+RDExtbW2sXbsWgNDQ0D5TjIiIbE2JcenXHp33HS8uXAbAypqhuI1EnIaZht6VBFgSCLIOJjbk+EMSy6/HHUfCdx2kvFDNS79/D4Df/PVCzrhwMj+7/1yee+tbfvPG12RfMZX8k0bz5qZvWdO2mX9smEubs/uAx+Nyeyiqqsfhcu1+sIiIiIiIiIgc1mJiYnwVhrW1tTQ2Nvo5ov3T3NxMaam3MCIyMpKsrCw/RyQicvBkZ2djNnvTNYWFhRiGnkjdG0uXLvV9ZhMmTMB6AAvmROTwosS49GstPb2+5U5HCKubb6bOHYsHM0OjbmXy4C8JsaUBUNf5ISWNv6XLsX6/z/vef5Zx060vs2RpuW/d4IhIRi53Ebqhl5iECAByxg3l1rvPZFhmEnO+KsTpdPPxPO8TfScmjSXcGsz0hBwirMH7HdO27nv3c87/v39y44vvUVLZQI/Dud0Yu93JQ49+yp/+9hHd3fYDHoOIiIiIiIiI9B9bV8gN9KrxrecWnzhxoi9hJCJyOAoJCWHYsGGAt/q5srLSzxENHE6nk2XLvMV1ZrOZiRMn+jkiEenP9Bul9Guzph3tW/7pCe8TF/k3gq355CX8k0FhF/q29bqqKW68k9rOt1hafSY9zgrftm5HGatqf8KG5r9t96Rdc1c3L36/lHNf/Ce3vPMh9i3V188+/yUlJbW89vq3vrEWq4Un597N3z78OT/59fbzh996+TTyspK56ZJjAZgaP5LPTriXq4eP5f9Kf8PXDXP26JrrKpu58uj7uW7aH2lpaN/puI0NrQAUVtRx0QOv85OH3tzu+hYtLWfOZ6v57Mu1zP9u3R6dX0RERET6H5PRf14iItJ/bZsYH6gVhw6HgxUrVgBgtVoZP368nyMSETn41E5936xZs4aenh7A+xmGh4f7OSIR6c+UGJd+LTE8nA+vvYy7T15KWmwDAMsqy/j1h1WYTCbfOJs5EospbMs7N05PM2uqazn1mVd4+vu7ae1dSEX7c9R1ftTn+Lf9+yP+8uU3FNbW83nJelZW1QBwxuljCQkJ4NRTRvcZHxETRk7+8B0+pXzi1JE8+4eLmZY/AoDGlk5KyuuYW/celT0b+Kj6dQzD4N2vV3P3i59QsSWxva2V35RQV9FEZVk9hYs37PSzeeDCk7nuhHzyEhIBqGpsZdu/d7OzBhEXG0ZUZDB5OYN3eiwRERERERERGfjCw8NJS0sDoKmpidraWv8GtI9WrVqF3e7tfJebm0tISIifIxIROfhGjhyJxWIBvIlxj8fj54j6P8MwWLRoke/95MmT/RiNiAwEmmhB+r0RCVHU9iwFoLkrjn8sOAGbpb7PGIs5lPzBc6lse5nQgHQiAsfw7qq5uClifUMQE4d6x61r+hVJ4Wf+bz+TN8FtM5sJDwqkvqMLgFtvPpFbbz4RAJfHw88//5SNbS08etJppEVF7zbm1vZuzvjDCzSmOBjpbCfnxACOSjyejm47f/rnXACsFjP3X3nydvtOOWU033+2BluAlQnTs3d6jiFxUfz0lKnUTe7gnW/XMCV7KGazqc+Y+Lhw3nn1JoA+DxKIiIiIiIiIyOEpNzeXjRs3At4qukGDBvk3oL1kGEafNupKcojIkSIoKIiMjAxKSkro7Oxk8+bNvoedZMc2btxIfb03VzB48GBSUlL8HJGI9HeqGJd+z2yyMSz6l0QEjmd49P1cP7WXv57TjmG4ePH773j+26spqHoEqymSQeG3khh2DgDBAUu4+5R/c/74BXh8ldR9k8OP/+gMHjn3NEanJNHc3cPdcz7f7vxrG+p5f10Rq+pqebd47R7F3N3rpGGoA2c0rA2Pp+He8Zw7+GpCgwMYNTQRkwkmjUzd4b7h0aHc99L13P3s1QSHBu72XInR4dxy5hTGZez4h77JZFJSXERERGSg8xj95yUiIv1adna2r9NdYWHhgGunXl5eTkODt2vgkCFDSEpK8nNEIiKHjtqp7x1Vi4vI3lLFuAwIqZFXkxp5NU3d8xjheBunARtbhrCicg7XTf4St/sznvt2Hc8uHILbCOPFi8+lrGkzRw0HixnWVp/PUWmVpEXf2Oe4kcFBnD4qi8rWNpZVVDMlfch2586Ki+OY1CFsbGvltIzMPYo3OSGSC7NG81bVGjIagrj+5ycBYDGbefVXF9PrcBISFLD/H4yIiIiIiIiIyFZCQkIYPnw4paWltLe3s3nzZoYOHervsPbY4sWLfcv5+fl+jERE5NDLzMzEarXicrlYu3Ytp5566g6n9RRoaWmhpKQE8E4lkp298+6rIiI/UGJcBpQg62DABjip7HiA1OjTcXtMhJjhpGH/IS0ikdvnXMFHBcXML83A7vLQaQ9i5oizGJc8GYezhPau2dQ7juX1knWcnp7FpMTB3DAln0vGj8Fm2f6XjECLldfOOX+H8XR39vLgDS/S223n189eQ0RsOE9/tZBuh5PfzpzBAwGn0OboIswW7NvHbDYpKS4iIiIie8fY8vK3/hCDiIjsVl5eHqWlpYC3nfpASYy3traybt06wJvkGDlypJ8jEhE5tAIDA8nMzGTt2rV0d3dTXl7O8OHD/R1Wv7T1g1QTJ070zc8uIrIretRIBpTQgAxGxj0AgMfo5vL8PHJTFhFkiQAgNriXvEGJ/CR/PJOGpLKwPIv6jhzW1Tdid3ZTVX8mjS13snjT7bxctIwbv/yP79izl69i9ENPcNcHn+5xPKu/W8fSL9dSsLCMBZ+sYsH6TTz91SJe+W45H60q5u3NCzhl3h+4YfHTO2xd5tmHVpQLN2xmblHZgGuFJiIiIiIiIiKHRlZWFlartx5m7dq1uN1uP0e0Z5YsWeK736Ekh4gcqdROffccDgcrVqwAwGKxMGHCBD9HJCIDhRLjMuDEh55KYujZmAhgU9sT2J0FeIxmANITz+fdqy9heFwMr132Y2477mjqOjqZU7SOJRU1GIb3j0KrKQSA7Jh433G/KCkDYO66sj2OZeT4dKw2CxgGNRsbyUiMJSI4kECrlZyURFa2lANQ1FaJw+Pqs+/Hq0sYe+9jXPfyv/c4yb26sparXnqXW2d/wH8LS/c4ThERERERERE5cgQEBJCVlQVAT08PGzZs8HNEu+d0Olm+fDmgJIeIHNlGjBiBzWYDoKioaMA83HQorVq1CrvdDni7pISGhvo5IhEZKNRKXQYcsymAyKB86rrex+Gup9dwEhw4DZe7kojQy33j5pUu5t2VczCbYhkeF8Po5BR+O+cOmjtXUNSYyVfXXk5qeJRv/K9mHscLC5dydu6O5yIxDDcdXbMxm6MJCzkDgKCQAPB4MEzw5YYa1j07lzPyR+HCQ1pcNDdGnkywJYDJsZkYDoOyTTWkZyZiNpv5sqgMl8fDd6Wb6LI7CAsK3O21W7eaTyZAT02LiIiIHDFMgKkfNAwy+TsAERHZY7m5ub5Kw4KCAkaMGOHniHZtzZo19Pb2At5qSSU5RORIZbPZyMrKoqCggN7eXjZs2NDvv4cfSoZhsGjRIt/7yZMn+zEaERlolBiXASk+9FRaexdjNgUSGzwDc+hpfbY7XRUMDjqfF891cs8XP+Z3p17KT/89h8JaJ609GYwfnER6ZEyffSakpjAhNWWn5+zo/heNrXcBYLV+TFDAOIJCA3ng3bOobH6RN78q48vSXtq2NGIYmRDHRWNHc0/u+RiGwc3nP0n5ulp+fOUxXHvHKVw3bRIdvXamZgzdo6Q4wKjkBP51w8X0OJ3kp6fuzUcmIiIiIiIiIkeQjIwMgoKC6O3tpbi4GKfT6atA7G8Mw+gzV2x+fr4foxER8b/c3FwKCgqAgfFw06FUVlZGU1MTAEOHDiUpKcnPEYnIQKJW6jIgWc1hZMf/leExv6TXVbnddrenCYvZCcA1+Ul02O18V76Z1p5eRibEYTJBeVPLTo/v9nj6vK+vbKarJeiHs2M2Rfi2xaQ/QVbe19xxzYckBoYQHhBAoMVCblJin2PUVnrbvVdt8v7QzkqK59krzuUnU8fv1bXnDU7a76R4t93BNc++w/mPvk5NS/t+HUtERERERERE+h+r1crIkSMB71ys69at83NEO7d582bq6uoASElJISVl54ULIiJHguHDhxMY6C2mKi4uxuVy7WaPI4eqxUVkfygxLgOW29PLkqpTWFJ9KtXtb/TZFhQwlvjoJ4iOuJcTsn/B6OQkThgxjOGx0RTXN7KsopqH5323w+P+7L055P75Md5cvhqA0lWbuCr/t1yX/wVG++ukJn1DgG24b3ygLQ+AhJiJfPzkTXx/6w0suu06chITfGNMJhM/ffR8em9KofakUBx+nhdm+cZqFpVVUFTdwLkPv8b8ov4/15iIiIjIEc0w+s9LREQGjLy8PN/yD5WH/dHW1eJKcoiIbP9w0/r16/0cUf/Q2Njo+ywiIyPJysryc0QiMtAoMS4DltvowuFuBKDbVd5nm8Pl4idv9jLtaScLN9USaLXyzAVn8/51lxNs884gsGTz9pXmhmHwaXEpbsPgv8WlgLda3OP20JwTym8WVVPaEtJnn9ioP5Ka+B1Jca95j+FZRW1jHpvqjsXt6fCNKwxsZ6O5i08q17OyvqbPMTZvqKepfseV2w6Xi7+8P48//ftLehzOvfmIdmp8WjL5wwYD0Gl38O8lhQfkuCIiIiIiIiLSf6Slpfnm6i4tLfXN4d2ftLW1UVRUBEBYWBijRo3yc0QiIv1Dbm6ub7mwUPdvge2m3TCbleISkb2j7xoyYAVYYslJeIq4kFPodVZR2fYyRQ0/p8NeQFVbB4W19fS6XPzyg//62qYHWCxcNH40ANMz0rc7pslk4venzuTYYUP56bQpABx96hiu/9MF1J2VyOLOeh5e+N12+9hswzCZvAn3Hvs3GEY3TtcGnK7/Pcl34tDhDAoNZ2zCIHLj/ldN/v1XRVx/zmNcfcYjNNS2bRfT/LXlvP7NCt5csIov1pTu56fmFRIYwD9uPJ/rjp/E8MRYLp0y9oAcV0RERERERET6D7PZTE5ODgBut5vi4mI/R7S9pUuXYmzpSDJhwgQsFoufIxIR6R/S09MJDg4GoKSkBIfD4eeI/Ku3t5eVK1cCYLPZGDdunH8DEpEByervAET2R1zIDNbWz8LATlPP5wD0uqqoaPwdQ6Ij2dzSRm1HJ7OXreLuk6YD8OuZ07hp6mQigwJ3eMzzx+Zy/ljv03jLK6upae/gzKuO4/2Pmvl680aOTxu2y5giQi/F7izGZhlMoG2Mb31mTBzfX3bDduPrqlsBsPc6aW/tJj4pko1d9XxavYKZSWPITkkgIjgQu9OF1TDt7Ue0Sz899Rh+euoxB/SYIiIiInLgmQzvy9/6QwwiIrJ38vLyfBV2BQUFjB071r8BbcXlcrF8+XLAm8SfMGGCnyMSEek/LBYL2dnZLF++HKfTSWlpqe9hpyPRihUrcDq9HVVHjx7te2hARGRvKDEuA5bb3cP3lcdgYO+73mPnrg//i8cwCLHZsFnMnDQyw7e9dlMjHa1dRI0Zusvjb25p5eJX38Iw4HcnH89LZ52H3e0iyGrb5X5WSzyDYp/Z4+s47fxJuN0e4hIiMJng/GP/ROONPfTGu5hbt5q3j/kFZ40ayZvzVnHvPz7j2JxhhAXvOKm/K4/PXcCXxRu4+/TpTEwbvNf7i4iIiIiIiMjAk5KSQlRUFK2trWzYsIGuri5fe3V/KygooLu7G4BRo0YRHh7u54hERPqXnJwc3wNEhYWFR2xi3OPx9GmjPnnyZD9GIyIDmVqpy4CzrvFevt00gSXVZ+A2Orbb3uko4PdnvM5VR82l2+ngy1uuZmJqCoU1dawvq+H6Y+7n9pP+zNfvL9vleSxmM2aTt0I7wGLBZDLtNim+tY2d9XzfWILH8OxyXECAlR/9ZCrTTslj6XeldLT14KpyAzAkJA6A2MhQTEB4cCA26/YtxUpXbeLq8b/hDz95Crd7+/P1OJw8NW8RxbUNvPr9ij2+BhERERHpJ4x+9NoLVVVVXHbZZcTGxhISEsLYsWNZtux/v4cbhsF9991HcnIywcHBTJ8+fbv5E+12O7fddhtxcXGEhoZy1llnUVlZuXeBiIgcwUwmk2+eWsMw+s08tYZhbDdXrIiI9JWWluZ7mKm0tBS73b6bPQ5PpaWltLa2AjB8+HDi4+P9G5CIDFiqGJcBxTAMajr/Bbhxu7t2OMZkgsSIdhIj2nl/dT61HZ3MW7GGv375LbFBQUS6XJiAlob2XZ4rJTKC/1xzGfUdnRwzbNfV5dtqtLdzxfePMCliPW3dJ3DKkJv2aL+ZZ41j7crNRDtCmTlxAplRyQBcfUo+EzIHMyQhikDb9l+2X771PdXl9VSX11O1vpYhWcl9tgcH2PjR+By+KtnAueNG7dW1iIiIiIjsi5aWFqZOncrxxx/PJ598QkJCAmVlZURFRfnGPPTQQzz88MO8/PLLZGZm8sc//pETTzyRkpISX9XgrFmz+PDDD3nzzTeJjY3lzjvv5IwzzmDZsmWah1ZEZA/l5uby7bffAt4q7f6QhK6srKSmpgaAQYMGMXiwutuJiGzLbDYzatQolixZgsvloqSkhNGjR/s7rENu0aJFvuX+8DNMRAYuJcZlQDEMBwmhp9PpKMZiCqPDsXwXYyEuNJw/fDaPotp6AFrtdh78x/WU19XzbNQmPp77Ho9PP4uAndxQy0qIIyshbg/i8uAx2rCYowFwGx6mRq7jquTvge+wO48n0DZyt8eJiQvnvscu22692WxiXEbKTvc78ZKprJhfRHrOYFIyknY45o/nnrTb84uIiIiIHCh/+ctfSE1N5aWXXvKtS0tL8y0bhsGjjz7K3XffzXnnnQfAK6+8QmJiIrNnz+aGG26gra2NF198kddee42ZM2cC8Prrr5OamsoXX3zBySeffEivSURkoEpMTCQ+Pp6GhgYqKipobW3t86CSP2xbLW7a0rVPRET6ysnJYcmSJYC3nfqRlhivq6ujvLwcgJiYGEaMGOHniERkIFMrdRlQylsfob7rA3pdleQkPEaAORETgYAHKy7w/K+NuMkEbqpZuKmCtl47mCAtNpppp4ylbUwYa1vq+e/mUgqa6nZ5zs0trfxrxRrae3vpcNixu119thuGQXXDOWyqHkVb5z8AiDSVctXgLry9Ji2YTEF7fa2d3f+hvDKNuqbrMIxd96wclpvKM9/dzy+fuw6P28Nnb35P0dINe31OEREREemfTIbRb1576oMPPmDixImcf/75JCQkMG7cOJ5//nnf9vLycmpraznppP89wBkYGMi0adNYsGABAMuWLcPpdPYZk5ycTG5urm+MiIjsmby8PN9yQUGBHyOBjo4O1q5dC0BISIiv1buIiGxvyJAhvm5K69evp6enx88RHVp6kEpEDiQlxmVAcXt6AfAYXayouZTxg95hcOhFBODGajIINLtp6wnA7QGXaxJlDYPA8CbJAcqbW3C43ZyRPpKMyBimpaSTE5uwy3Ne8uq/uOfjL7jh3+8z7rmnOO7lF2jr7fVtN7Bj31K53tP7PQANLb/A4lmFzRzH0MQvCbCm7fT4huHC6droS357PN109fyXju53MLDT1TMHg96d7j+vcgPvlBbg3vJQwDtPfcEjP3udn5/zCM11bbv+QEVERERE9kF7e3uf147mOtywYQNPP/00I0aM4L///S833ngjt99+O6+++ioAtbW1gLeKcWuJiYm+bbW1tQQEBBAdHb3TMSIisme2Tj77OzG+dOlSPFvuY4wfPx6rVU0tRUR2xmQykZOTA4DH46G4uNjPER063d3drF69GoCAgADGjh3r34BEZMDTb50yoDjcdYAHE+B0r2dF9VGYAPNWD4kF21xUtqTzty8mc0r2MKKCArlg3GheW7qSY4YNJdBqJSMqli/Ou3aPzhm05Y+zDpcdt+GhvruLivY2IoO8VeBmUxAJMU/Q3fsVUeG3e2MIPAanq4SQoBmYzRH02pcRGDAel7uSptZ7CbBlEx3xc0wmE7WNV9Jjn0tE6JXERT9IQ8vP6ep5D6tlMEEBUwgJPhGzKXiHsRU113PFZ+8A4PS4uThrDCFhgQBYbRYsVs25KCIiIiIHXmpqap/39957L/fdd1+fdR6Ph4kTJ/LAAw8AMG7cOAoLC3n66af5yU9+4hu3bcWHYRi7rQLZkzEiItJXdHQ0KSkpVFVVUVdXR0NDA/Hx8Yc8DrfbzbJlywDvz4BJkyYd8hhERAaanJwcFi5cCHjbqY8bN87PER0ay5cvx+XydnAdN24cgYGBfo5IRAY6JcZlQAmwxPvaHNgA762w/7Vz9GAiwOphaGw5AdYOOu0OHjvvDAD+cua+zT/4xhUX8tn6UubUFJMXHs+xCWnUt3bijI3DtmVu8rCQcwgLOce3T1z0H4mO+Blgo6J2Eh6jndjIP+ByV9Hd+wndvZ/gdFcTEnQCDucaAOxO75NvhtG15ao8JCe8C8Dq1kVU9pQxLf5MQq3hvvMEW21YTGbchoeIgCAW11TyUmw1k546jRvH5RMZG7ZP1ywiIiIi/Yxny8vftsRQUVFBRESEb/WOblANGjSIUaNG9VmXnZ3Nu+96f8dNSkoCvFXhgwYN8o2pr6/3VZEnJSXhcDhoaWnpUzVeX1/PlClTDsw1iYgcQXJzc6mqqgK8VePHH3/8IY+hsLCQri7vvY/s7Ow+P09ERGTHUlJSiIqKorW1lQ0bNtDV1UVoaKi/wzqoPB6Pb2518LZRFxHZX2qlLgNKRsxvtyz9cFfQ8FWMm4BAy2AiAsbQ1vVjMuNHcPMxk/f7nPFhoazrbWRB7WZWt9by1tICbnz7A/7+1Xe73M9iiQUceIxOAJyuzdgdhb7tnd1vUtt8A+Fh1xMRejXx0Q97zxf9CHFRfyE53nvDsMPZxqubHubL+vf5ou7dPudIi4jms3Ov4t9nXMrp6Vk8s3IxK+treK2+iPjUmD26PrfLjcv5v3nTPR4Dh9O1iz1ERERE5EgXERHR57WjxPjUqVMpKSnps27dunUMHToUgPT0dJKSkvj888992x0OB/Pnz/clvSdMmIDNZuszpqamhoKCAiXGRUT2QU5Ojq/jRkFBgW9at0Np27liRURk90wmk++hU8MwKCoq8nNEB19RURHt7e0AZGZmEhOzZ/e7RUR2RYlxGVDMZpv3vxiYTN6k+A8dFE0mcHsqsJjcnJXzALN/cgETU1MOyHlnpA4nyGJlbNwgXA43AD1OJ+taGnlq9UJqujp2uJ/FEseguLeIjbwfiyWGXsc3242p7konLvpPBNiytuwTQ0TYT7BtmZc8yBJMpM37Qz8xKHW7/TOiYpmQ4L3Oc0eMIjwggB9n5mKzWPj6mxJe/+cCenoc/O2DrzntwX+woGSTb9/azY1cnHUnF2XeQVVZHT29Ti654yVOvOIJlqzetN25RERERET21M9+9jMWLlzIAw88wPr165k9ezbPPfcct9xyC+C9uTdr1iweeOAB3nvvPQoKCrjyyisJCQnhkksuASAyMpJrrrmGO++8k7lz57JixQouu+wy8vLymDlzpj8vT0RkQAoPDyctLQ2A5uZmqqurD+n5q6qqfBXriYmJDBky5JCeX0RkIMvNzfUtFxYW7mLk4WHRokW+5cmT978ATkQE1EpdBqAhkT9lc9vDfZLiPzCAQOv+JcOX1FXy2aZSLh05lrQIb7vG41LSKbr8Z5hMJkomN7KqqobTc7KY+Z8Xqenq4Nvqjcw+5aIdHi846BiCg46h17GS1o7HsZhjGBT/Hi+v+oq3CtewuaOERVcfT3TwjucRt5kDuCvrETpcrcQFJu0y9jMzRnJmxkgAamtbue/37wHQ63TySsFyAN5csJIpWd4qnXXLN9Le7K1oL166gWGBVjZXtwCwrGAzMWYzL/z+PSYcP4of36QbjyIiIiL+YjIMTH6o6ttRHHtq0qRJvPfee/z617/m97//Penp6Tz66KNceumlvjF33XUXPT093HzzzbS0tDB58mQ+++wzwsP/N33QI488gtVq5YILLqCnp4cZM2bw8ssvY9kyrZGIiOyd3NxcysvLAW/VeErKgSkq2BPbVoubtr2xIyIiO5WUlERMTAzNzc1s3LiRjo6OPr83H06qq6upqKgAID4+nvT0dD9HJCKHC1WMy4AzNPo2jhq8ZLukOIDbgPquj+m0F+/TsT2Gneu+eJfnC5dw94LP+mz74Y+1rIQ4LhiXR2hAAPHB3nlcEkN2P5d3UMBY0pKLSU1ahM06GJeRSVlbIjaLBYt511+KgZagnSbFC9sqqOpu2m59aGgQYWFBAAxJieXyY8eTEhPBhVPG+MYcdcoYzrz2eE6/ahpTzxxPWkoM1104lZOOyeZHp4zj7Sc/Z+U3Jbz4+/fo6uhh+by13Hvx4yz6dNVur1dERERE5IwzzmDNmjX09vZSVFTEdddd12e7yWTivvvuo6amht7eXubPn9+nEgYgKCiIxx9/nKamJrq7u/nwww9JTd2+k5KIiOyZ7OxszFvuQxQWFuLxeHazx4HR1dXlq3AMDg4mLy/vkJxXRORwYTKZyMnJ8b1fu3atH6M5uPQglYgcLKoYlwHJ5Wnebt0PxSsBJjc17c8TGZRHdMhp2CwJuz1et2M1Gxuuxemu5eH8aG7+/nxGRsftdr9zE3MI7w3ipuyj9ihuk8nmW75hQj6j4hNIj4omYgdzMu6Jz2pWcu+aN7GZLLx97C9IDIrybQsPD+K1l6+ntbWboUPjOAm46+xpffYPCLJxy18vpbmnmzu++i8xwSHce87x2LZU30w9fSwLPlnFuONGEhIWxFN3zaaytJay1ZuZfMoYRERERERERGRgCQ4OZsSIEZSUlNDR0cHmzZt97dUPpmXLluF2e6enGzduHDabbTd7iIjItnJzc/nmG+90nYWFhYdli/HOzk4KCgoA70OyY8boPrSIHDiqGJcBKTggk+jgU33vnR6wG2A1gdkEHT3vU9nyO8obf7pHx2vufBunuwYwiA1s5oPTZ3BP/gm73Ketp5cHv/iaJaVVvLBw6V5fg9lkYtrQdIZERu31vj9odXQBYOBgbdsynB5Hn+2RkSEMHbr7BP97xUV8UlbKPwtWsbi6ko2NLbzy3XKyjsvkg43/x/2v3oTJZOKYs8YDMPXM8Ts8Tkt7Nx6P/1t8ioiIiBx2jH70EhGRAW/r7hxr1qw56Odzu90sXeq9d2IymZg0adJBP6eIyOEoISGB+Ph4ACoqKmhra/NzRAfe0qVLfQ9SjR8/Xg9SicgBpcS4DFhxYedvWTJhM6cAVtyYMAx8VeIW887nWGnr/px1tafT1PlPAixpW20xE2T8h+Ka49nYeCtuT/sO9w8PCiQrIRYTMDVtiG99r8vJg0vm8djKBbgPcjuy81KP4pejzmVmcjdzap/jrYqnd7tPaWsTzxcsob6707duauoQogKDGBoZRU58Aje88h5/+Xg+v/jXJ332vfKe8/ig9mlu+vPF2x33pXcXcvq1T3Png//e/wsTERERERERkYMmMzPTl2goKiryJSAOluLiYjo6OgDIysoiKirqoJ5PRORwtnU79R+mqDhc6EEqETnY1EpdBqyo4BPIiHuB9Y03YBhVmLDgMiw4gKERdxBkjSE88Oid7l/X9jA9zgKqmssx6N1qi4eW7tkAOFxlmDAzNO4x31bDcOExeqhsdbO+oRkDsFoslDe1cNGrb9Fh7aU7zFu5PTZ+EMelpB+Eq4dlTe8zv/4lxsecgWXLFCsOT++udwIu+eRN6nu6+K56Ey+f9GMARsbFs/y6mwHvLxxRIcFUNLcRHRK03f4BgTt+Qm/F2goAVhZV7svliIiIiMiuGMb/5g7ydxwiIjLgBQQEkJWVRUFBAT09PZSVlZGZmXnQzrdo0SLfcn5+/kE7j4jIkSA3N5d58+YB3sT4lClT/BvQAVRYWEhXl7dL6siRI/UglYgccKoYlwHNYg4F3JhMYMbAAExAh72EyOATMJuDd7pvTNglmE1hxIZdTqB1GAAmU+h241zuBt+yx+ilpGYGBZW5dNs/w73lxmCXw8E3GzbS0tODo9cNBoRYbQyLjDkg12ns4AbkmtbPcBl2Vrf8lxuH/5bzUq7lwtSbd3usmKCQLf/t+9mYTCZMJm+G/cWrzuOFq87jz+d729WXtjZx59cfM6e8ZKfH/ekV0zltWg5/mHXGHl+XiIiIiIiIiPjH1u3Uf5jL9WCoqamhosL7MH18fPwhmc9cRORwFhsbS1JSEgDV1dW0tLT4OaIDwzCMPg9SHY7zp4uI/ykxLgOW3VVHaePfcHjMOD1mTOY4THgT49WdL9Hcs2Cn+zZ3vkVn7zcEWIZitUSTOegjRg76mviw6/uMM5vCiQo9x/fe5W7E7toAeIgIWsvLF/+Iv599Kj8ek8vpo7IICwzA7DRjq7Py4nE/YnBY5H5fZ2PrfZRXpdLa/kSf9ccmXEFycDbHJ11PXGASU+JOJNS689bxP/jXaRfzz5Mv4LrIHJrrd9wmPiwokCkZQ2mpa6ejvYe/LJnPO+sLuH3+h7h20h5++JB47rnlFI6ZOHy7bZvqWnjqwwWUVTfuwRWLiIiIiIiIyMGWkZFBUJC3U1xxcTFOp/OgnGfx4sW+5fz8fN9D+SIisu+2bqd+MB9uOpQqKyuprq4GICkpiSFDhuxmDxGRvadW6jJgbWx9jE7XGnz/jD0tvic9TEBh3bXkD/6SQGtSn/2crhoqmn/ue1/bVkhc+OUE2tIJCcyFjh+OYcNjdNDcOZvYsAsBCLAOJiX6D/Q4CkgIv5GU6P8dOzY0hMU/u4nZy1aRHBnO0UP7/uA2DIPy5hZSIiMItO75l15n97uAm47ud4mKuNW3fnh4PsPD96792NslBTyy5DuOdsaw9rffEBoexMsL7yMsMqTPuI6OXn75yzcpWV1BFCZOePQEPq9Yz4SEZCw7+AO2tauHpRsqOXrEUEKDArbb/st/zKGkooHPlq3jP/dduVcxi4iIiAiYDO/L3/pDDCIicmBYLBZGjRrF8uXLcTqdlJSU9KkiPxC6u7tZs2YNAIGBgYwePfqAHl9E5EiVk5PD3LlzAW/78WOPPdbPEe2/bavF9SCViBwMqhiXASs8IGebNSa2vk9n4GB90x+3289iiSbAMmSrvYLxeHoACA3K54cviwBrGmDCYjuRPy7+ko83etuIx4VfSWrs37Btk3DvcTpxuT38ZNI4ZmZmbHfex77+nlOefYULXnlzh63RdyYu6o8E/T979x0fRbU2cPw320t67ySQACGhd+kIKEVRwd7AXq+967Xca7/2e/Xae8EKiIgUqSK9J5BGeu/ZbN+def9YSIhJ6Bi87/n6icnOnJk5swm7O/Oc5zn60YQGPXbU23TmvZ1bKLNaWOzwzQNubXZgtzrbtVu9dh/7cipQjFosTjczw3qy47Lb+WrqpR1+ILnp3R+46+NF3PvZTx0eNz4sCIC4sLYZ9DsKy5j4z3e55YP5eDvJRBcEQRAEQRAEQRAE4dQ41eXUt23bhtfrBWDgwIHodO0H0wuCIAjHLjg4mNjYWAAqKyupqflrV+psamoiMzMTAJPJdNIHagmCIBwkAuNCl3J762hybMDtqT2mYDFATMBlDIn5hdSwlxkS/TM6KapdG5Mupd0ylWSgV8yvJIZ9gIQeBTsFNdcDoFEFER/yL8z6kcSFPEO/+Hzey0rhvYwt3LpyAfUOe4d9ya2pZeSrb3PG629TWNfQYZvsat+Hk/zaeuRjOFc/00xiwr/BZJh41Nt05qYBw4j3D2Ri31CC/53ArR9fQnhMcLt2gwYmEhbqR4BZz9/un05cYhjBBiOqTkbpOdweAJwHvv/RM9dM5bP7L+XlG89ps3zxjiyqmppZsy+f0rqOy7oLgiAIgiAIgiAIgnBqdOvWDT8/PwByc3NxOBwnbd+yLLN58+aWx0OHDj1p+xYEQRDallPPyMjowp6cuM2bN7fEBwYPHozmGCquCoIgHAvx6iJ0mZKGNyhtfBkJBUmCMPNlqFVB2N05JIY8gV4Te8R9mHVJmHVJAMQFXklBw/MAKAe+PHLHwVaVpEeSVCj4sqW9ckPLujrrd1idv1NYcytpcVvpExLh279fIGZtxyOb91ZWYzswF9e+qmq6hQS1a/Pw5PEkBAcR4efHJZ/MY0qvZK4eNgidWn3E8zxRtc4q1tUspk/0QBbMupTpq/8JJtgZWcaMDtrHRAfx9Ve+su02l5s12fkMSojBz6DvcP//vf581u0rYEJa+/nFAbRqNWmJ7QcuXDi8L7uLKkiNDSc+9MTnYxcEQRCErqAoCnXVFkLC/UWpN+HUURTfV1c7HfogCIIgnDQqlYq0tDQ2btyI1+tl7969DBw48KTsOysri6Ym332ZlJQUQkJCTsp+BUEQBJ+0tDSWLl0K+Kp+jB079i95Tep2u9m6dSvge18SA6kEQTiVRGBc6DKljS+3eVxr/Q6v4gIgq7Kc7mHP4vQU45GbCTFNRqtun9kMYHPlUm75kjLLFweWqFBQAImK5u9JCe24BLlR1x+tKgav0kR86Ksty3WaWKxO33eAK3oPZHxcd8IMpg6D2M1OJ0X1DZzVK4WEkEAmpHTv8HixgQE8cOZYbvh6PjvLKthZVsHLq3/jlZnT8DfoCTIaSIuKPMwzdvwWln1CRtNmfq9dzj/SP2JgcHf2NBQyNrzPEbe986tFrM0pYHC3GD677uIO20QF+TN7RN8O12VtL8BudTJgdK9261Kiwvjy9kuP7WQEQRAE4TTz6pPz+eWHbUw+dyD3/OOCru6OIAiCIAjCMenbt2/LvK579uw5aYHxTZs2tfw8bNiwk7JPQRAEoVVAQAAJCQkUFRVRU1NDVVUVkZGn5v7yqbR7927sdl+l1rS0NPz9/bu4R4Ig/C8TgXGhC6mA1nmlFZxI+DK97Z4MMirObVlXUPcAcYH3Eht0a7u97Ku5G6srs+VxfMDNFDa95TuCZGjXXpatVNRciVeuIzlyHlpNtzYj6eJDnifU73KM2lQAPN56/FWb0apGA9p2+/v3uo18sHErKkli/d9uOGIG+NSUZFZn5KHoVXhlhXsW/ozbKyMBfz9rApcO6t9pyfLjFWvsRkbTZqIM8WgkNW8OvQFZkVFJR55NocnuOPC9/VzkR5K3p5g7p70IwGMf3EBk/1hUSKzblEef5CgGpyccYQ+CIAiCcPrL2Fbk+769sIt7IgiCIAiCcOxiYmIIDg6mvr6e/Px8mpubW8qrH6/KykoKCgoACA0NpUePjivMCYIgCCcmLS2NoqID16QZGX+5wLiiKGIglSAIfyoRGBe6jG9+b1vbZQci4x0VaCxp/HeHgXGjpntLYFyrCiM+6Aa8ClQ0f01yyMPt2jtcW3G4fgfA5lhCkP9Nf+iDBrN+UMvjvKpLcLgzkVRj+b7kGs7p3pvBEa1l3mMCfCPYAo0GDNr2gfM/OislmY8+eoeqVDPNYyJxen2DAxTgyV9WolGpuXhgx9nXnZEVhRqblQhzxxeukyNnMyh4DEHasJZBAEcTFAd47dJzWJqRw8TUY7+I9XpaBz5sK67gg/m/olZJaOq8aCQVi9+/GX9z+8ELgiAIgvBXcvc/zmfJd1s56/xBR24sCMdJkn1fXe106IMgCIJwckmSRHp6OmvXrkVRFDIyMhg+fPgJ7fPQIMfQoUP/kqV9BUEQ/gr69OnDkiVLWl6/J0yY8Jd6zS0sLKSyshKA2NhY4uLiurhHgiD8rxOBcaHLKAeyxVvfp5UD/+/4jVurimi7veLB5a0mIegWamyLAHDLNbi8tfQIvYseoXd1uB+DbghGwyRkby1+xo5m2AZZtqEodtTqULyy1bfMu4bcWiO3FA5k48W3kldTx7sbNjO+RxI/XHMZ0QEBmHRHDoyb/Ay8+vMD7M8owZLixxvrN9AnMoKl2bkoCnyzaw///n0Dd445g1l909psu7+2jl/25TIjrRfxQb45ud2eQr7d+SDf5YYxstsl3DNiVLtjSpJEmL79HN9HIzLAjytHHl8ZtZ4DuvH8d3dgszjIU7thK3hlBbUEAf4GdFrxEiQIgiCcOlanizXZ+QzuFktEwIllPR1On/4J9OkvqqAIgiAIgvDX1bdvX9auXQv4yqmfSGDcbreze/duAHQ6HQMGDDgZXRQEQRA64OfnR2JiIvn5+dTV1VFeXk5MTExXd+uoHZzKAzjhQVmCIAhHQ0SlhC7hkZsAX2luRQFJUlApvsC43Elg3E/fu+Vnm6uAbWUzUHAQZprasjzcfB4GTfxhj61SmYgO+7TT9V5vDcWVY5HlRqLDvqJb2BvkVp6LJMFdaUtpcO1Clq/hrd8WYrWv5bGfe7Lmb3/jh5IXsHmbuDD+QQJ14YftQ1KfWJL6+LLOzxvgC37vLq/g250ZfL5jF0jwwqp1zOqbhtPj4fGfV1DWZKGksZGShiY+2bKdH665nCh/P2ob/s7wyFUMCFPz1NYzgPaBcYDspt/Y37yF4WEXEqz78z4c9TujJwDuPXlozAqBdR6evGMmfdLi0es6fwlSFIUvV26nsqGZG6aNwGzQ/VldFgRBELqYoignZYT7Yz8sY8mebOKCA1l6zzUnoWftNdZbcTk9GE06/vXodyBJ3Pf0LMx+oiKKcJIpiu+rq50OfRAEQRBOuvDwcCIjI6msrKSkpIT6+nqCg4OPa1/bt2/H7XYDMGDAAPR6/cnsqiAIgvAHaWlp5OfnA75y6n+VwHh9fT1ZWVmAL8Dfp0+fLu6RIAj/HxxdLWVBOOmkA//5MsZbvkugRkaNjFZqDXBHmC8jOuAW8mofoda2lNyav6Pgm/u6xrakpV20/8UnfCPd7S1BlusBGad7D2b9QGKDn8ag6Y1GpRBmKMfpKeSK9Ne5b/RiHp/wC2X2feQ2b6XMnkNm02/Hddy+0VFMSO6OpAAKhBqN3DBvPh9v2s73uzPZUFhMSUMTALVWG3fN/wkAva4fAI2uBB4fO6llf4ripKJmLiWVZ+Fw57Kw5Fl2NSxhdeWHR90nh8fNjqpyPPKJ18x8/ed1NBslSqM1fP/ZegoLalrWFdc08MDnPzNv/c6WZZlFlbz47Wo+Wb6Vb9bs7GiXgiAIwv+ghdl76fXmq1zz4/coJxiA8x54/5KVU1P7uaq8gaunvsxVZ7/EvA/WsmF1FhtW7WPT2uxTcjxBEARBEIRTKT09veXnPXv2tFmnKAoOjxer24PF5cHq9uDweNt9XpNlmc2bN7c8FnPFCoIgnHqpqakt98QzMjJO+Fr6z7J58+aWvg4dOhS1Wt3FPRIE4f8DkTEudAmNyh+dOhK3XA74iqj7MsUVVJJviawU0jdyGUZ9dyRJw76qm6mz/0Jl81cY1L0ObHVgUvIDihveITBq6An1Ta/tT2jgU3i8FQSYrwQgzP8qAoyTKa3/O1p1GBb7KqwuJwF60Kg0xJt6E2PsSbk9h+UVH+GvDiY9eNwxH3t8chI/X3cVGRVV3PfjEnKraltKpv+RxeHLuA/yvxs/02yS1NFIUmtWtcO1HZvDN2jAbl9EpCGZckcWsaajG3m3Yk8u961fQp3i4PyUVF6ZOP2Yz+dQ54/oS+bPqzDXetmWX8neR7/lp4V3A/Dur5tYvH0fi7fvY0r/ngSbjUSHBBBoNmCxOemdEHGEvQuCIAh/VZnVVdy3fAl9I6J4duJkfsnLxS3LrCzIx+Z2Y9Ydf8WQf14whYmpPRiadGrmKKupbMJhdwGgN2qI7RaKJEn0G5J0So4nCIIgCIJwKqWnp7NixQoAMrKySeo/hAanmzq7mwaHG08HgRaNJBFk0BJi1BKk19JYXkxDQwMAPXr0IDQ09M88BUEQhP+XTCYTPXr0IDc3l8bGRkpLS0/7ubpdLhfbtm0DQK1WM3jw4C7ukSAI/1+IwLjQZaICbqa44e8HHkkHwtwH5xn3lVffWzWZgXE5SBL46wdSZ/8FUHB49+GvG4DFtavNPptde064/KokSQT6X99uuU4TTVL4u2SVT6LW/RlN7kg+WnMOcSEzCIhZQqU9HwVfuvf3pS+hSBJ9g8Ye8/GTw0MJ9zOTEh5Kk8PJ5UP6MyQhljt+8GWIGzVqNBoNz86Y0tJfraZbu/3odf0x6sfi8ZZjNp7D5UmJ2L1NmDVHVwrtie+WUx/qAC0UNTUe83n80WVjBnHp6IE88t5CVlr30ju49eJ4ZEo3FmzOJC4wANnlRTEpvPvZWih3cudFZzCid/vzEwRBEP43fJWxm8yaajJrqrllyDBuGTKMZpeL8d2STigoDuBv0DNz4KkrxZbaP55r7zqLL95ZybcfruNfH15Hcupfo2Sd8Bd0oKpQlzsd+iAIgiCcEoGBgXRLTccbGE5QQg82lTf8IR2hPY+iUGN3UWt3+d6qZDNxw8dTm5vJ0KEiW1wQBOHPkpaWRm5uLuCr+nG6B8Z37tyJ0+lL/Orbty9ms7mLeyQIwv8XIjAudJmogKvw1w8ks/KcDtf7QtsKeyvOJiXic2IDb8Co7UFuzYOY9b1IjfgQh7uc3NonaHSuAcAtV7OusCfxgbeRGHxHu30qioJbrkOnPpERy77AcnmzibiICVw3Mp338+9s12pZxftHFRhvqLHw6l2f4hdo4m//uhydQUug0cBP11/V0qZ7aAiTevZArVKhOsqgv0oyEh0+r82yow2KA0xM68HXO3YzqG8sz04866i3O6i5yc7DN32ErdnJP9+6mqjYYDZWFPO5OgvOVPHcpDEtbacO7MWanzL4bX0ud5fMI8nuZqnFAhoVqzfkcOW54mJaEAThf9V5vVJZkZ9H34hIYv0DUKtUfDxzVld3qx1rswOHzUVoREDLMkmSSE6Nxm71ZY1nbC8SgXFBEARBEP6SyiwOMmssBPQ/A0WWkVS+2RePdjzUwXaSSkVQt2SCk3pSrNPg3+wgxs9wSvosCIIgtOrduzeLFi3C6/WSmZnJWWeddcJTjp4qiqKwadOmlsfDhw/vwt4IgvD/jQiMC13KrO/LkPh8PHIjedX3YHEtRwYUFFT4guNOTy5NjpWE+V1GkHEUMQGXU2n5hrKmd4kLvIVe4c+wqWT0IXtVKGl8B49cT3zgTZQ2fYQKHV7FTpnlM8CNRCCjum05rg8Hof5vcfM3TyP7eenf+0vez/8SCSMK9jbtTKqOS6D/0ZoFW9m4dDcA484fwtAz0ztsp/0T51hRFIWHZibx4LkjMGj9WLNgK3lemfEX+MrU17oqCdSGoFV1nsmXsb2Q7D2lAGxam8W5l4xAPuSSWq1WtWkvu33F9J0uD7t/z8Fo0qJJDuf6i0ed/BMUBEEQThuDomP4be4NXd0NwDcnpsvhwWBq+/7WWG/lunNfo9li54nXr2D42F4t6/oNTmTW1aOwNNo5c0b/P7vLgiAIgiAIJ8TpldlZ2UiJxdGy7GBQ/Hgd3L7J5WFDaT1x/gb6RwaiV5/YfgVBEITOGQwGevToQXZ2NhaLhaKiIrp1Oz2rcObl5VFTUwNAt27diIqK6uIeCYLw/4kIjAtdTpIktOogksNfYnvpgAOhUzUD4nayv+YWFMVOoHEy1ZZPKG98HY9chaxASeObxAXegoQOvToUj9yEhD8epQ4FJ+WWz3B4iqm3r253TIVG8mtfoHvYA0fdz0a7g7fWbyIpJJhHJ5/F3ub3yPXIyKj4rSAatzuIC9PrqHIWYFD5cXniE1Q2WXj05+UMS4jj+pEdz30+aFxvQiIDMQcY6TUwsX1fFYUqZwFB2kj0atNR97dN35s/pNHyJkH+dxDgd8UR21db/k1l4/PoNclYsv7Ncze+D4DRrKd5YB5LKuYRZUjgnp4vdDq4oP/Q7owY3xtbs5PRk9IAOCO6G5+ffTEoCqNj257rw/dMZ836bIYMTKR4dzFrFm7j/Bsm0CM9vk07r1fmqSv+Q872Ah7+8CbSR6YcxzMiCIIg/BmqrVZe3/w7/SKiuLBPxwO/Thdut4fbL/0vRfureOTFSxh1ZmsJ9tpqC5Ym3wC4gpzKNoFxtUbN9Xef/af3V/j/R1IUpA7mdu2KfgiCIAj/G8osDrZVNOCWT+1re6nFQZXVyaCoIGL8Rfa4IAjCqZKenk52djbgK6d+ugbGD80WHzZMVAoVBOHPJQLjwmlDow6if8wOamzziDBfjFrlT0rEp9hcGVQ0vkl18/stbVUSSFjZVTKMEL8r8cjVACi46R32Krl1TyArLoIMIw8ExtWA98DWvszk8ua3CTIOI8Q8oU0/FMWLy1uCTp2AJEm4vV4yKqpYkZ3HBxu3EmRs5t1Z75Fqkgn09uf3+h7sq44i3OjHDcmPY3HX4KcNRi1puPLTz8isrGZ1XgFr8vL59IqL2p13XHIUn+96rtPnZXXVF6ypnoeExJyk54g3px72eay3W2jwZBNr7oNOZQSgwfIGXm85DZZ/H1Vg3On2fYByeQoxB2o5OKmYX5CJHHshANXOMmS8qDt5GTGYdDzxevtjjY7p+ANZYICRc872ZdpFRwYybFLHAZSqklpWlJTjSQlk4Te/i8C4IAjCaezNrRv5bPdOYCdjExKJ9PPr6i51qqHOSkFOJQA7Nu5vExjv3jOKvz12LpVlDZxzSdsSb00NNgwmHTqd+FgtCIIgCMJfg6IoZNVZyayx/DnHA1yywoayetLC/OkZYj5ty/sKgiD8lfXs2RONRoPH4yEzM5OpU6eiOsEqICdbbW0tOTk5AAQGBtK7d+8u7pEgCP/fiDt4wkmjKB4qGl9GUZxEBd2HSjr2UcA6TRAxATe2WZZXfS1ubxmSZERRfNlaEiDhxSNXUNr4EnDwDV4mr/Z+uoc8SVnT+xQ3vEywYSRWZwYyTryK3bftgeuv3JqrMdT6428cQ2LYG0iSlv3VN9DoWEao6XL8DIP4eHMO//3dSEpYKBIQaPBDQoeCg4EhkxgWMYiRIeH0D4tFJUkE6sLJrKjiju8XUdzY1HIeG4tKkRXlqOcIP6jcsd/3/KKwr+n3wwbGv9i+k/UN/yIhspp4Uz/Oi74YjTqKIP+/HcgYv+2ojhkV9AiKFM43pU7yPWt4fvk9+EsGktLiiHVdSaAulF5+/VBLJ/clpLqiAb8AI0aTvtM2Lr0aW59wAOwpRz9nuiAIgvDnGxAZDWwnISCQIMPpnR0UHhnITfdPI2tPCRfOHd1u/bTZ7Su/rF22h2fum0dEdBBvf387BmPnU4x0pLigGr1eS0R00PF2WxAEQRAE4ZgoikJGjYXsOmuXHD+jxoJblkkL8xfBcUEQhJNMr9eTkpLC3r17sdlsFBQU0L17967uVhsbN25s+Xno0KGnXeBeEIT/fSIwLpw0TfZfqWp6AwCDtjchfheelP3qNUm4vWUEGaYSH/IUhXX3UW/7uWW2ai8SKmQAZFTIOMiray2R3uT8reVnlaSgQUaFghsVWklBoYkm+09Y7BcSYDoTm3s3oNDkWEat7XPG94CNRTPZU67iybMnIiuQWdObs3rpKa2/A6/8EpL1MrRhf+e+hUv4KTMLWZYP9KhVSljIMQfFAWbE3MJXhf9ERmZwyNTDtv2toIhxPbPo719CrbeKkurPkCQTiVEbCfSbc9TH1KqjyHOfz7flnwN5FEQP4Nw4X0AgWBfGuTFXHfN5/JGiKGyoW45HdjMq7GzWLc3gmfvmERRi5v1Fd2H26ziAEhMWSHpiFLllNZwzQczlKgiCcDqb2SuV0Qnd8NPp0KtP/4+dfQcnsnT+Nj5/eyV3Pn5ehzdrF365geU/7uCqW89k364SFAUqyxqor23G5fQQGRPUEiBXFKXTG77bfs/l4Zs+RqNV8/Z3txPbLbRdm6Xzt5G7t4xLbxhPcOjpm20v/EkUxffV1U6HPgiCIAjHLavO2mVB8YOy66xoVSp6ic83giAIJ11aWhp79+4FfOXUT6fAuMPhYOfOnQBoNBoGDRrUxT0SBOH/o9P/DqXwl2HQ9sT3J+U9rmzxziRHfITDnY1Rm4okaegR/jbrC3vAgdC4Cg+6A/ecXYqMjAaQ0SGjAG4ktHAgGC6hkQ7MYq7IeBVaMsjLGp4DSU2E39VUND6HLFchoSAB03tvxeNV4/LMY2VuOr8VpGLUjiYp0AbA1pJ9zNu5hPUFRXR0q/AfU8/k4oH9juv88zfXsvhymdgekcxdFNZhG6c7i4bmD7jzjDE02yyoJIjQOg7cP7VR0/AgAeYrMRnGsrN+BdmWzYwJv5goYxIAdlc2WZXn4VR0hAXMo0dQLwYGd6eXfwwu2cOIsJ7H1XeH3UVFaT3dekS0CwxkN+/iu5L3APDTBLI/2/dc1jVYeWvp7/RJimbawPaldLQaNf+64xzym+oZEhmH0+nmgUe+prrGwrNPXUhCQvvAgiAIgtA1FEUh1Gjq6m4ctSXfb2V/dgX7syu4+NpxxMSHtGvz3su/4HJ5+PKdVTz68qU4nW6694zi10U7+fStX4nvHs7b393Gvx79ntVLdnPbI+cwddaQdvuprmgEwOP20lhvbRcYr65s5OXHfwBArVFx433TAJBlGUmSRIaVIAiCIAjHrMzi+NPKpx9JRo0Ff51GzDkuCIJwkvXs2ROtVovb7Wbv3r1Mnz4dtVrd1d0CYMeOHbhcLgD69++P0Wjs4h4JgvD/kahTIZw0Cl7AAyhYXVtP2n5Vkh6Tri/SIWW7h8RtQCtFA6A9pK3vZy96ZFQSqCXQoaCWFCTJFxz3Hki28aLGqahbAtlOzz4Kqq9Bow5vOSMVvsB5v6hiHp74PelRxcwduhIJiA6Ipkfktyzaey5f7RhFoNHAzL7ty5zrVKqjDoorioJbdrZZtnlFBg6bi7zdxWTm76DQmtFuu+r6h2myforKcw9aXTAezIQEPE540D/Ra7pjsy+iqu4WZMXLwtI32Nu0npVVnwHg9lZRVHcfapowSTV8tfcuXtnwG0E6Mx+N/BtfjLqbCENgy7EqHQVUOgqO6lxuv/xtbrzwTT7978p26wO1oaglNRISwbowZl89mouuGUPa7X1YULOSh39YSF5lbbvtHB4PZ8//kIt//pL/7Pyd9dv386unkl0hNr75ZdsR+yUIgiD8OZ5dsJIBD73GR6uP/jPBr6v38tZ7K2lotB2x7dJfM5hx4Wu8/tbyE+lmGxNn9CciOpBRZ/YhKjaowzbTLhyCyaxnynmDCA7147aHz2Ha7KEU51cDUFFSh8fjZfWS3Xi9Mqt/2d3hfiadM4CbH5jOfU/Pos+AhHbrAwJNRMb4+tArPQ7wZZmfN+If3HnFO7jdHgB2btrP/M9/x2F3neDZH56iKCz5fiuLvt6ELP+xLo7wp1AA+TT4EgnjgiAIf0lOr8y2ioau7kYb2yoacHrF5wpBEISTSavV0qtXL8CXob1///4u7pGPLMts2rSp5fHw4cO7sDeCIPx/JjLGhZNGr0kk0DQDhyuDYPOsU3osnTqcoQm/YXNlsK+itby4JIH+QJb3QSoJPApoJD1ePAfWapAVDwbJi6pNwpWakrqHgLb3/CQJNJKCrECIaSRLb5pLt5AgII7bx73E2JQKhiXE4ZFl1uQVUGezt2z7j2mTj+qcZMXLB/vvp9yexwXx95IW6JvfdMacsRTnVBAz0MSP3qdR8mVmx99Pkmk4+XX19I4IR68bjN31O7IUhuItxAPk2TIZGvkkXk8pjc1vYtSPwOut4qyACmrcdiL8bsDhziG34iwU3Af6ABtKkjGpSjrsY7FtHx/uvx+Aa7q/QJypNy7ZwSf5j9Doruaybo8TbewBgNcjU1HW4NuuoOaQ81SosVuJNMbyUO83kPGidQdQWFXPnL9NYe6GhwlTmvCPthNkbj9q0KN4aXb7bv7XOmw0GHXoIx04ag0EJQS2a38kdocLg14rMu8EQRBOskXb9+GVFRZt38uccYOP2L62rpmnnvsRAI9H5vabzjxs+8W/7KK52cmCn3bwt5sntSxXFIUFP+3AanVy0QVD0WqPfmR8ar94Plly72Hb3HT/dG66f3q75dfdfTYRMUEMHNEDnU7LrQ/PYM3SPVx588QO96PWqJl52YhOj6M3aHl3wR3YLA6CDpQZ3bgmC5fTQ9aeEmoqmzAYdTx040fIskJDXTNzbj+6zxzHY+v6XF59cj4AAUEmxk5JP2XHEgRBEATh5NtZ2YhbPr1GN7llhV2VjQyNCe7qrgiCIPxPSUtLY8+ePQBkZGSQkpLSxT2CnJwc6uvrAejevTvh4eFH2EIQBOHUEIFx4aSRJDWJYW+d9P0qioLFsRqv7KDK8l806jCSwv6NSjJg0PQi2HgR9fbv8WWrQ/vwpkRM4ENEB1yNWtUaaJUVF3tLR+GRK1qPhaPNljIqJGQkfIFyRQJJKjwQFPcJMBgY0z0RgLomS0tQ/IzEBB6dPJ7k8M5Le1scTr7YtpO+0VH0jw+gzJ4DwP7mHS2B8cj4UJ745GYq7Pm8k/ctvfXluG1vccWCTHaWW7lu2GAeGP8QQX5XY3HXkVV1PrIC4YaxAIQGPUag/02oVWHUW94gWFVEsB7i/CJwe0pQ8AWZowIfI6N2ML2Da5jbv+P5XexeyyE/NwNQ5Shs6Xe2ZXNLYFyjVfOPN65g+8Y8zrloWMt2t/z6Pbn1v3NmwmRuTYf6xldZtUnNhp3xDOkzi+69jOxoamJM9xRC/Xzld4ttFbyc9QExxgju6jmXL8++hJ015UxOTOCenU8TN9ZDt4ZB6N0SWQWV9EqM7PQ5P9SPS3by0hu/MKBvAq88e7EIjguCIByjJqeD/fX19IuMQvWH19CHZ07gu027uXbCsE62bsvPrCc8zJ/qGgs9ko58gXz5RSOw2VxMntgH8H1eaHI42Z9Txav/WQZAUJCJ6Wcd31QmxyosMoBr7pjS8nja7KFMmz30hPap02nQHTL35nmXj6SytJ4eqTFExQZjszoxmnRYm50EhZzaOTpDwvxQq1XIskJYZMApPZYgCIIgCCdXmcVBicVx5IZ/MgUotjiIbXYQ4ydKqguCIJwsycnJ6PV6nE4n+/btw+PxoNF0bSho48aNLT+LbHFBELqSCIwLp72a5s8orn+kzbKcystIjviS7MrzsLvblxY/SMKPvrHr0KjbzxGqknQkhr9JjeULLPYVyIodleSPV6lDwkCA8UwSQl4mo/wMPHIVoAdcyIoXAEWRya68GKtrE6Ai0v9mYoPv5+WZ09hXVc31I4YQaDz8hd3ra3/n483bUUsSG+68ibOjb6DYtpdRYe0z7qOMSVwadwkOywPgqSAlRM3O8oEU1DcgSRJaTSwhmljSIjfjURyEGKNbtj1YHt5smEh989toVFHotKkYJDPRQf9AUZyE+V/L+AAN45M672+K3xAuiLsHkEj282X/xRiTGRg8hQZXJQOC2mb3DRiaxIChSWTX17A8+2t6+q1naNBu7uq5l1LbCsprKwEYORDOGLQNRVmAJME5IZcja6aiKAqSJLG6ehMFtlIKbKVcYJvC4MgEBkfGUm6vxq34BkR4bA7+88MaTAYtv7xzKxrNkTMEN2/NR1Fg555iXG4vep14SRQEQThaXllm2pefUmpp4m9DR3DXiFFt1k8f2Juz+/WksLgWj8d7xNdlvV7LJ+9eS2OjnajII1cAGTo4iaGDW9+0bv50PmuyC7h2xCD0Og1uj5f4WF/2kaIo1DTbCPMzHfMgKJfLw0uPfU99jYX7nplN+FH07VSJjgvhidevaHls9jPwzg9/o7K8gdR+8Sf1WGVFtSz/cQdjpqSRlBJF917RvP/jnciy0m7udUujDa1Og8GoO6l9ENqSFAVJ6fpMv9OhD4IgCMLRUxTltJlXvDOZ1RaizXoxWF0QBOEk0Wg09O7dm507d+J0OsnNzaV3795d1p+qqiry8/MBCA4OPi0y2AVB+P9LRIGE055Hbmi3zOraQq3l68MGxQGCTdM7DIofZNYPxaz3ZXMdDMLWWRdQUHs79fYfsVdm0StqAVbnNqqbPsfq/h23t4g662L0mlisroMj3bxUWt4iNvh+ZqT1YkZar6M6t+gAfwCCjEb0Gg3DQmcwLHRGu3aybMftrUSxfwBokVBxcf8zGRybxxlJA1ra5e5dzgfPvU3B9iT+vewRQv5w816vSyd31bv8+MEqLr0rl1HTBxLmP/eI/fzylZ+Z//YKrnzwHGbMGddmnUpSc07sbZ1u6/R6mP3TJ3wx5mW0XpkzDiQBxpha5w8/eO178LvR+zk3/yZxdfrFzO0zmDFhQ/i9ZhsxhmASTDEt20Ubw3ky7XYqHbVkFDjZynb8THok1dFdTM+9YjQqlcTwId1FUFwQhP95xdUNVNRZGNIzruWmo8Pl4fb//EBFvYVXb55Jj+jOq5z8kUeWqbZZAfh22x5uHDQMk07bps0Lry9hybI9DB+SxAtPXXjEfRoNOoyG1uCq3eXmvq8X02BzMGZQEh/s2sZ1A4Zw/aAh7bbduN83DUhmdQ3zPr6JnbuLWbo6k1fWbyCruoYGu4MrRgzg4RkTWrZxuj1UW6zEhQRSWNvAI9/9QlJ4CE/MPBO1SgXA3h1FrF7imyd81c+7uXDO6KN+jv4MoREBhEac/Azu5x/6lqw9Jfy6eCcf/XQ3AFGx7cuc7tqSz0M3fITZ38A739/eUvZdEARBEITTQ53DTZPL09XdOKwml4d6h5sQMchOEAThpElLS2Pnzp2Ar5x6VwbGD80WHzZsmBgIJQhClxKRIOG0FxVwM/XNC3B4s9ssL2l8HEnSoyhe1JIfXqWhZZ2KUJLC3yLQOIIm+3LqrN/jcGURbD6PyMDbURSF0vpHaXasJS7kRfwMw1vekPWaxJb9ODw5eLz1hJjPpbjusdZj1z2JVtM2eBBkaB/QPpK5wwYxLCGO2MAADNr2/xx9ZeRXUFR7E6BGUXwBiOig56iyvELvsErc7mLgQ1yeUmzma7j0nzLzX7CQn1naLjAO8OE/f6CxtplPn/+RUdMHAuCVm5AkHSqp4wz3Be/+SlO9lUUfrG4XGD8SlSShU6tQSfKBx+CVVeTWRdErrOO5zFUSDAotosLqG9Ueb4xkQGAT5Y5t7KhPZmho69yu/YJ8H+omXCIzekAyPeLDWoIZR5LULYwnHpp5TOcjCIJwuvllSxZ7CiuYO2UoIf6+KSgyiyqZt2oHU4f1ZkTvbtRZbFz4z09xuj08ePEELh43AIB9xVVsyfG9Fv+6I/eoAuMur69yil6j4cru/fhk8w4arFa25Zcyuldim7YFhTUA5BfW/nE3AOwoKmN5Zi4XDu1Ht9Cgduu3FZbx6779vr5SS63TzjvbNncYGH/xoqkszcjhmtFDCAoy8fK/l1KtOGjo2fr+urmg9X3HK8tc8J/PyK+p58Fp46hptrGtqIxtRWVcPmIAvaN9I7lS0mLp1TeOhtpmRow7uoFvJ9u+PSWUFdcxbnIa6k4y77dtyOPbj9Yx5bxBjD+77wkfMzo+mKw9JUTHtQ4wrKlsYtE3mxg8Mpm+gxMByMkow+uVaWqwUV5aLwLjgiAIgnCa2V9vbZke7nQlAXn1VhEYFwRBOIm6d++O0WjEbreTlZWF2+1Gq9UeecOTzG63s2vXLgB0Oh0DBw780/sgCIJwqKOLHglCF5IkDdFBD3ewxgOKGoOmd5ugOIBMLWUNT+GVLeRXX0ej7UecnmwqGl9EUTx45QZqmz/B6cmntvlzwBeEBjDr+5MS/jWgBRSK6x/C4arAq9S3Hlkpx+7e0+aYel3scZybRHp0JMEmY4frKxtfpLBmDoriQFGsqCRfRlhF4/OoMAOgVh3MEpNagvvK2Fhu3bGG3wuK2u1zxtxxmPwNTL1qDABWx3qyStPJKRuOx1vXYT+uevBcElNjuOye6R2u74zd6qBkbzkLzplLhqW19KtKktlrb5/J7/sNGHAylr6R1/C3AWfwQ8mHPLj7csodeQAU2TI7PJZGrWJIWgLBAaZ26xqb7Vx+/8ecd/s7FJfXd7C1IAjCX1OdxcZDHyzmsxXbeGfxhpblz3y5goUbMnn4g58B8Hhl3B5fQLvZ7mppl9YtkimDe9IvKYppQ488eryoqYGhn77J4E/eZH9DHdcMH0K6XzhDE+MZ2C2mXfuH75nOJbOG8c9Hz+twf7d8toAP1m3l8fnLO1zfPz6KAfHRJIYFc8PAoSQGBvG3YSM7bDupTzIvXDi1JaDdMyUSrVUhRmcmJsifyWkpPHXe5Jb2DreHotoGAPaVVzMlLZkIfzPDkuLoHt6aGW0y63ntsxv5+Od7iD+Kuc9PttqqJu6e8z7PP/wd33/+e8tyryKzsnIH+5p87/X/fWEx2zbk8cLD37Jne+EJH/fef8zitc9v5MnXL29Z9tYLP/HVu6t55OaP8Xp9A96mzh7C+VecwXV3n0XvvnEnfFzhMBRAUU6Dr65+IgRBEISj5fTIlFgcbV66/37lLGb1juGNB+8EoKqkmFm9Y5jVO4Y9G9d3uq83HryTWb1j+PuV7ad+O1EKUGJx4PTIJ33fgiAI/1+p1WpSU1MBcLvdZGdnH2GLU2Pr1q14PL7KJQMGDECv13dJPwRBEA4SGePCX0KgcSytd+FaS60o2HB49nS4jd29Bwk9OnUsLm8RkmQixDwLSdKgkgLwN0zA4c4i1O9SSmofotb6JTHBjxPuPxe9Nh5wA+B0l5FZMewwvVMDXuyuvUc8j4PB96MtF9NoW9Dyc6BxNo32bwGQFStJEUtxuDPxM/jmdNVpYkiOXEx1cy6f5+ShYOfHjCxGJia02ecV983givtmoCgKDdavabIvB7x45RoabT8S6n81xQ2N3D1/Mb0jrFw7bBsjLhjLtKtaM+atzq002RcTYr4cvbZ7h32XZZnbJz9LaV4Vl90zjUvueoC88s+QJKi3RvF5znBmxO5Bo/Jd+FY6knlqy3DscgrrLruefvG+52hbw1pkFIzqWHoHpDIqbDY/lq1kZdUGLk84h8Eh6Z0+fxsrivm1OI80OYz9Jb6sxQ27CoiPbl8KVhAE4a/Iz6AjOjSAstomesVFAL5M6CE948gorGRQsm/QVkSQH+/ddSEFlXVommV++HEb504bgFaj5vlrp2NzuzFofB8L/7tjE1/v280Dw8dyVlLbeb92V1fS6HS2/DwzJZXv77qyXb/qHXYanQ4S40O5+drxnfa/R3goWwtLSY5on6nu9cq8ctOH6PeU8Op719NzQDduGDr0qJ+bZ5+cTVVVE9FRgR2+75r1Ol697By25JcwZ/RgIgP8WPXADUe9/z+LpJJ8U4R4QXtIdZkndn/Mupo9SMC8Mx7DaNahAF5Z4f5rP2DxtidP6LgarZpe6W0D3fGJYYBvrnPVgWlLTGY9N9439YSOJQiCIAjC0ZszZw4ff/wx48aNY9WqVYdtW21zthvPFJfcE5fLSVRCt1PWx+OhANV2J3H+HScOCIIgCMcuLS2Nbdu2Ab5y6mlpaX/q8WVZZvPmzS2Phw073D12QRCEP4cIjAt/CbXNH6LGd6F0cPywhAkFGyChV6fh9GYDrVlwOnVPVCodSRGf4fFU4Gf0ZZhZ7GsoqLkRWWkGDBh0qdRVzQG81DS9j1HbB702qWU/XqWmk16pAJkI/+uQFRsR/tce9hya3DV8uP9BXLKDud2fI0x/FFlVUmsZMaujNUssKvABdJpodJroNs2NujTig/swd/hathaXcsWQ/p3u2mL/hbK6uwDfcyoB5Q2f4nDtoLR+Kw220UT7bcJi34fF/iOBpnNQq3xZ6oU1c/HKddhcO+kR8S0et5eMjbn06BuPX6AvY9vrkaku8WVnl+VX8/e1W1mRdz1z+pq4adh9LA2zEBxwGw32L9hT1Y0v8xRym/II0Pku3A+GMM6PncumulVMjJhJT/9+AHxW+Dwu2c23Jb90GhhXFIW5y77F5nEzPiaJKWf0ptnmZNLIrimD+2d6Zds63svYzN2DxnBtmq/csM3totLWTFJg+0x9QRD+unRaDd8+dhUNzXaiQwJ4fuMa/rtjEzcPGMby525oKa0OMDA5FsXq4a6n5wFgNuuZMjGN7/dlcu+yn+kfGc13F17Kq1vW4/B6eHvn5naB8UmJPZibPggFhbOSkjvs07J9Ody4aiGypPDfyedydvee7dpYLXa0Wg3vz51FYW09PcLbB8bL86tY/9MOAH79ZiM9B3TD5fWyr66a3iHh6NRqFEWhYG8ZmZ5G1DoNZ/VKaQmCa9QqYqKDDvv8nZnagzNTexy2TVcLCfPnzS9vorKsgSGjWp/zfU3FgO+z0d5dxRTkVYMkgaIgywper4xaffzFoXZvK2R/dgVnzRyI4UBZ06tvm8TYs/oSEx8i5oQTBEEQhL+ABqe7XRn1Gx5/tqu6c1gS0OBwi8C4IAjCSZSYmIjZbMZqtZKTk4PT6fxTM7b37dtHU1MTACkpKYSGHnn6NkEQhFOtS0upr1mzhnPOOYeYmBgkSWL+/Plt1iuKwhNPPEFMTAxGo5Hx48eTkZHRpo3T6eT2228nLCwMs9nMueeeS0lJx/MWC39dTfYVAKjQMTB+P32iVzIgPpO06HX0jd1BWuxiBiXk0i9uF+kxm+gXu5u0mGU43Dlkl08ir/oSrM7NNNp+obD29gNBcQA3bk8VB8PtLm8heVUXoShe/HQHS7W2v/EbbJpNavQKekUuJC74ERJCnsbi1ZLVtAlZkZGV1vJfO+pX8ELmZbyWdS2N7irs3iYKmncd8Zxl2YbLk9Py2KOUAhBoPJcw/+s73U6SJB48cyzfzLmUPpERnbbTqEMPnJuEWvI/8NNeGm1fE6DP48K+e2l2DQAkTLrBqKTWi1O91hfkMGh8ZXf//cCXPDjrVe49518tbbQ6Df/48jYuvWsq1z8xi99Liql2BPBNdhgqlYqo8ED0+nD+symdGxbuZ1VBPqNjE/j63EtQHXKzfVDwGG7s/ih2l54n9rzBr1UbmBo1Fj+NiclRow77PCQH+j5s9Q4J58nbpvPS/Rd0WGq9K7jcHhwuzynZ9+dZO7B63HyZtQMAt+zlrPkfMuH79/ggY8spOaYgCCeXoig0Oh1H1dao0xId4ptWY1FeFgrwY14WoQHmdsHLkGA/1GoVEhAR7g/Ab8WFKMCOynKaXU5u6D+ECJOZq/oMYH1uIaX1TS3b69UaHh81kSdGnYlB0/HcZN9s24Ms+W6/7q2pbrd+z4ZcLul1L1cNeAhrnZWUyLCW7ONDxXSPYNLFIwgdmYAyOhqnx8Otyxdy7vefcd2P35Gxo4gf/rucix77N7euX8xNKxayaG/WUT1nh6qts7Bk1S5cTvcxb/tn6dYjgmFjeqJStX50v7PXLMIIIGJLCE/f8A0Om29wYGCwmQeemX1CQfHGeiv3X/8hbz6/mC/eXd2yXJIkuveMagmUC3+yLi+hfsiXIAiC0CUSExP5+OOPAVi9ejWS5JtSbdWqVVitVs477zySkpIwm83o9XrOHjaAL15/AberNYngj6XUj8fSeZ9x08RhXNq/O/+8/nJqyktb1q1a8C0PXDiNOSPSuCg9gauGpfLUtZeSs2t7Sxuv18tnLz3DzZNGcEm/JK4c2pt7LpjCf155uaWN0+nk8ccfJyUlBb1eT0REBNdccw01NZ0lLwiCIAh/pFKpWsqpezwesrKO/Zr5RGzcuLHl5+HDh/+pxxYEQehMl2aMW61W+vfvz9y5c5k1q/0cRS+88AIvv/wyH330ET179uSf//wnkydPJisrC39/383cO++8kx9//JGvvvqK0NBQ7rnnHmbMmMHWrVtRq9V/9ikJp0h08MNUNf6HQNM0JEmDQevL7tJr25YJ16iC2gz3cHvKUQ5kkbs8JVQ2vopX9s2jrVXFkxj+FiCj0Bp8kCQdkqQlJfIrnJ58JIwU1t1Js3Mz4CEh+EXC/C8GoNnTwJ7GdRQ3Z7KpfpGvD2jx4EaFirHhl7K6+vO252JIIc+6C7MmlNTAw3wgkFSoJH9kxdKySK0KJjLwHiTpxMe0mPRD6R61Agk1xXXP4HL9ggLYvSEEaDVcPuxBzPrheOUnUUnGNsdMCv8Cl6cAvcaXuVZf1QhAQ01rX+ubv0Lb7REmpZ5PSMi5XBPUkw/2beLS8Lbl2mRZwauXQQXrSotwy9426xVF4f7rPyJ77A5UPTzsteQxb+SrzEm64Ijn+PW0yyhubmgJkAO4ZTfrarYRoPVje30G/YNSGRrS95ifv844HG7cHi/+foZO21TWW7jkmc9wuD18dM/F9IrvfADD4ZTWN/KfXzcwJDGOCwa3lkJ6cMh4Ptm3jVv6jvD1yeOh1OoLbGU3iJsIgnCsPsjYwt76au4dNJpIk/+fcszblv/IT/uz+dugkdw9tPNBQH/05KiJfJyxnavTBna4PjEhlC/fvwG324NHJ1Fc28Alyelk5JUzJjGRAL2Bu4eO5u6ho3ln9SYeXvYLZr2OVfdfj1mvI6ewispaC2cM6N4SzN6wZCdvPTSPsecN4drHL+D6kUPZ82MF8VEabhzgq1ohywqKorA2K5/MjXtxub3Y3XZK91cSHOEL6tc4y9hev4p6SyzB2lgmJyZz/b8uYcQb77Bx5xasRomCxgYANu4t4O4nMxiQFoU9zuAb56WBuloL//juZ8oiCkgJD+OWlJn8VrObb4vXcFH8eCZEtn1evLLM2A/fweqnMGb9Vj59eO4x/qaO7Oui1WQ2FnBD8gxijCdvdPyIkFRsD0h4PC5fpvgBb867mbADz+nheDxesnMq6J4UgcHQdpBDUWkdcpAe2eIiMNjMwnkbydtXwVU3TyD0KPYtCIIgCMKpMXDgQKxWKzU1Nfj7+9OnTx8AAgICsNvtLFiwgMjISHr27ElNTQ0lBfl8++aruBwOrr7/7yelD3kZO8nZvZ2I2Hg8bhfb167k+Vuv4YXvliBJEjk7t1GUvY+w6BhCo6Ip3Z/Hzt9Wk71jK28sWUdweARLPv+QH979Nyq1mvjkXjgddopzslm3YimK8jiSJHHBBRewePFi1Go1aWlpFBQU8OGHH7Jx40a2bNmC0SgyywVBEI5Geno6W7b4EmUyMjLo16/fn3Lc8vJyioqKAAgLC6N7946n4xQEQfizdWlgfOrUqUyd2vGchIqi8Oqrr/LII49wwQW+ANjHH39MZGQkX3zxBTfeeCONjY28//77fPrpp0yaNAmAzz77jPj4eJYvX85ZZ531p52LcHg1lo9osi8nKugBTLpjD0KadP1IDH+7w3VeuQlJMqCS2mcv+RnGEBf8LLJiJ8h0Dm5vOeUNzwEKXqWOBtsvRARcT3zoq7jcxRj1/TBoktCqfXNoGg7Mn90zch6K4kVWHC3lxF2yk/9k34ZdtgBKSzzey8FSZTKrDgTFD82DK3XkUOrIZW/TegwlBjyKGzU63NhRoaNv4HgmR1+NSeNPz6gV5FROwyvXIGEmNWYHknTiAz5sVie11RbiE31lxXtEvMuaksUUNlZwXsolBOhbAz8Hz/dQKkmHQdtaGveOl6/g1283MXi876L894IiHPb3ifRz0GD9hujgF1n/0iqM+8pYFFnLT69v4No7JnPuxcN55MxxlJRXsspVDsDT61ZTUNLATSOHMmfIILLKqvm9tAS/XQaMSc2Y9vlRFF6Jy+4iJikc02EC0N/8vosPVm0mdWIDDm0D9/W+js11u/mhdFlLObmfylfz1qAniDKGn/DzWlNrYc7NH2J3uHjt+UtJT43tsF1OWQ0NVt9gjD2FFZ0GxmVZobyxiZiggA5L1r65ciPzt2cyf3smZ/bpQaDR91zMTklndkpriXl/nZ53Jp7P5soSrks/+vl5BeF/ndPjYXtFOf0jozBqO85+LrY08NSmXwEI1Ol5dNjEYzpGnd1GoN6AWqXi2c2r+KUoh6dGTGJsbNJht1tX6rt4XFtScMTAuFeWUR/IJJ6Q0J2J3Q5fGjwyIoCt+SXMee0bVCqJsWHxNG6tZ8lvjdw/aRxaje99ptl5cGCZB48sU1VrYe7Dn+GVFe6deyazpgwAYNGHq6kqqeO7/yxl1l1nMyQxlodmadlQu5j5ZfUMk+Zw4+Nf4Q1UUaN30713Gak/NbK7NI6XanbxrrcHTpeHeSWvUGbPo8lu4Mcdg5h3zsWkh0WiU6vQ65sxaOHNyefw2dbtrJ63Hm2wm7Rx3YlpimSloYl+sbF8/MT31F7sR1hILdnlORRtaKayZwlVznre3/9Tu8C43ePBavZNKLLfUX/Y5235op18+MZyzr14GBdfM6bNuuZmB5n7yhjQLwGdrvXjdY2zkbdyFwLgpzVyb++LDnuMY6FSSfTuF8eebYUtGbxhkQFHFRQHeOm1X1iydDdqlcTZZ/Xl3jtbP5P/971VuDQqTLEBjJqYytUzXgXAaNZx071iPvEuc3Dum64mH7mJIAiCcGr88MMPLXOMDxo0qM0c4y6Xi4yMjJZgucPj5axZF7Nm4Xf8tnjBSQuMu5xOXpq/nISUXiz96lPefuIB9mfuZse6VQwcM4FpV1zDVfc9it7oq9ZWXpjPbWeNwm5tZuvq5UyafRnlhfkAjD1nFrc/9yoAdquV0v05OL0yG39bx+LFiwH49ddfGTt2LOXl5fTo0YPMzEy++OILrr328NPZCYIgCD4JCQn4+/tjsVjIzc3Fbrf/KYOL/pgtLqbjEgThdNGlpdQPJz8/n4qKCqZMmdKyTK/XM27cONavXw/A1q1bcbvdbdrExMSQnp7e0kboes2O3ymtfwyLYzUV9c+d1H032Veyp6Qf+8rG4pWb262XJIlQ/ysID7geSdIQEXALSeEfoVX1RFasVFveoKjmHkLMs4gKupNA48Q284u33Ze6TZB4Y+2iA0Hxju9RKn/4OrhMdeAnCXApDmS8uLEDIONie+NSXtx3NbIio9XEkBz5E9FB/6BXzJqTEhR3Od1cf8EbXHf+G/z49aaWcxsXfw5XpV/fEhR3unMorLqYqsYXUI5QMjMkIpDZt0wmqY8vEHz7d4t4/be+FDd0JyroSSRJYuLsYag1KmSDAYfdzZIftgFg1GoJWViOvsyJ5JHZX1FPjc3GB5u30eRwMOurLymdYiKrWwR5X0RQ8XgTL9z2MbdPfZG/TXvxsH37cPUW6r2NlFNEvbuJd/LmUeP0BT4O3eqD/O+O9+lso6SsHkuzA49HJju3stN2I3p3Y+6UoVw8rj9Th/TutN2D3z+sQ9UAAORDSURBVC1h8ksf8PD3SztcPzQxFgnoHR2On/7wZW37B0cxOSyZUP3xl5KvsjXz1MYV/JS/77j3Ifz/0eh0MD8vgypb+9fm08VtSxZx6Q9fc+2iHzptE240kxQQjFqSGB4Vf0z7f3/XVgZ98iYXL5yHw+3m7T2bKGiq59O929u1zdqWz0OzX+XH91cB8PKEqZyb3JsnRh0+ED8/ay+93nyNuQu/Y8/2Qs4f/Qy3XPIWDrvrsNtVNVpRAK+sEBbqe28L1Gh54cb3qS71VVa5ZcIInpw5iU+vv5hAo4FadxkpZ+USmlyHLLdGxmZeP5GY7hF0v3QYU298i0dfX0SR1fc6UWTL4ouvN2BzurHYnAAk9ynGbHDSJ6aUbVXlXPjgB5x54xt4m339aHYYkACTVotZp+P8Pnamjd+CNeBzegQF8+Skydz7/CD6v7KPojM+5/o7JjP/6jmc2y0Zt82Fs0mL161CsUvsXFrOjOgRGNV6pkePIKtpGw2u1soZfjodI3aoCdxuxb2njt3F5Z0+Z99/tp6aqibmfbiu3bq7H/iKBx75hmdf/KnN8iCtH1GGEAB+q87A5T155dolSeKFd+Ywb8X9zLxkOAGBRq67c0qbNg0NNhb+tIOKisZ221dU+pZ5ZYWfft6F291asaVfehwAA/olEBLmR2yCb07x9IHd2u1HEARBEITTg1qt5rPPPqNnz57o9XqMWg1rFvqudeurOr8+PVbdeqWSkOIbZD96xnktywuz9wJga7bw3K1zuXp4H2anxnLbWa2DPA/2Y/D4yb4S8PO/5roxA/n7VbP59r+v4hcYhKwobNq0qWWbcePGIUkSMTEx2O2+eycbNmw4aecjCILwv06SpJZBU7Iss2/fqb+v19zczJ49ewAwGAx/Wpa6IAjC0ejSjPHDqaioACAyMrLN8sjISAoLC1va6HQ6goOD27U5uH1HnE4nTqez5XFTU1OnbYUTV1R7R8vPFudvOD2F6DVHvrHq9lZhdWzE3zgBtcqvwzZW5xbAi9tbittbhlrV8w/rt1NjeZ9g8yz0mm5UNb1NgPFMPHLrjW+Xt+iozsPqaeLLwn9SZs8lQBNGg6fjC0ulzXfpwM8KCq0B9M7Gx7Vu6+X3mgWMCj8fnSaWMP/OS7s63flUW97C3zCOQNP0I56Hw+6mttoXqCrO77ysdp3lPazOdVid6wg2X45W0zb7ubj6CRptn6KSjCRGvI3J0Hqxmx4dyfoCJzurz+OsvmMBuOj2s7jwtil8tWgFi6pXMTK59W9g9vWTqH/ye4ZOTqYgWGGTn4ak0BA+2rodm9bT8oR5uvuh0zdiNOt9fayrY3vNEqrcMsn+6ST7t/27umnSCD5as4VeKj9KVfkU2EopsJZxQdRZfF/5S0u7foFt/26OV7+0eK6/eixNFjtTJ6d32k6jVvG380YfcX+7SyrafP+j8walMTG1B2a9riVbtCN2l5tzX/+URruDOyeP4oZxw4547I68sn0dX2bv4sPMrYyOSSRQ33m2viDcuWYRK0v2kxwYyvILji2bo7zZQlmzhSg/MzHmjismHK0Gp51fCnMYFdONOL/ANuuqrL7XwmqrtdPtDRoty86/FofXjZ9Wf0zH3lheDMD2qnLUKhXX9BnM0qIcLu89oF3bL15azI7V+9i+IQdpQAQWs5snRk0kxHD4wSyLMjLxKjKrCwsYUeiH3eYiL6uC0qI6evSKatO23mFnXVkBY2OTmNIvBYvjTJob7Ezrm8L0Pj149NyXWScrRMSFcP2TszFoNVw4tLXKyyb7N8QMqCCufw3npbde1A6dlM7QSelc//cvoAo27y7kw+tvZlPdUgYEjWVjVD3Lmtxo6hXuvngyxtBotlgWU1GVyOXJ/XireTPEQs2Oodx08eVUW/Tcl26gT2gEdY02iupyiYqBJm81XsWDSlJjTnBCJdi9zVg89eyorOfyX79DNSeGa/2MlORUkPtzENMnDeLypMlcnjSZZRVf8EnBmxjVfjyQ+h5alW9A0RXDB/PI+jXUDwtl9gdf8nS/scw+f0i75/qiOaP5+M1fmXFh+8obFouvCkhTk71lmSwrqCUVqQEJVDjqaHA3U+1sJNYUdtjf6ZHs2JzPq08tYPDIZG5/eAZBIWZueXA6tzzY/jPA0y/8yJatBcTGBPHZhze2LM/PqcBodZPeMwqLw82kiWlota2D7268bgKzzx9KcLAZlUrinW9vw+Fw4ecvSpYKgiAIwunqueee49lnnwWgW7duhEdGsr+wmLrK8jaDGk+UdJjyJXarlX9cdxnWpkZ0egNJqemotVpydvoGxste30C8gWPG8+L3v7B+ySIK92WSv3cPGZvWs+qHrzk/K7vNAPiO5qSNiopqt0wQBEHoXHp6eksGd0ZGBgMHdjz92smydetWvAdf8wcORKc7fEKPIAjCn+m0DYwf9Meb4YqiHPEG+ZHaPPvsszz55JMnpX/CkRm1abi9BwPRXuqt8wkwjMOkH3DY7fIqZ+P05BNonNZpGfVw/2vwyLUYNN3Ra1LarS+texS7exdN9tVoNRE43dnUW79FkgJRDszdHWA8EwCXpxSPtwaTvn+Hx/qi8B+U2rMB2gXFY/V9qHeVYlUOZmT98e+vNUDu+07L90OD5dIh61xy67znh1PR+BxN9p+ot35NmnESKqnjwM2CLzew/KedzLltEk+8cin79pRwweUjO92vv2kaDbbvMeoGoFG3vehstv2CzfEOWhWAndLau4kJfQ6zYQIA719yPuVNFmID25ZzlSSJ7O57sYXU86O0lCuUqdjdHoIGx/D+hie5cdSTFO+vwjk9gbU9LawpKEBrVuGWZQZFRXPvyNGMuDeeqooGfvpyPaaJO1he/ToeWeL9gu48l/IIsk1NSjdfafKLRvTjohG+4M3r279hpWcVbquanKIGdAYdLsVFgNrMjNhjK43cGZVK4oqLR5yUfQE8f+FUftiWwQWD0jptE2A8cnDaI8vYXL7s0Xqr/QitO5ceGgXsopt/EKZOyk4LwkHHG8qud9iZ9PUHWBUnqGBun8E8PvxMftiXSWFjA9cPHIL5GC6o7lmzmBUlecT7BbL2whvbrPvP1HNYlJPFWT3av38cyuJyUm2z0jOk/eurpd6KWqvucFqHB4aPJVBvYEJCElq1mr8PP5O/Dz+zZf13ezNYU1TA7UNHMObcwWxdmUnDjBTu2LAIrwkW5Gfy1dRL2+3X7fWCAluX76Hq86WMv8pN/+hJnJ8wgrLcWmK7hZKU0n6KhrnLv2VHdTkjouL5auqlmNSFbNJ8xm8fB/Po7CdI6hVDSV4lgw5Mi/FHCabeZFu2EW9OQatu/Qjp9HjQazTcdfVEvlq8lSmjehNr6sH5ppt9210mExbsT1hkAAOGJgFDuIBLYBB8k7nH98eihuHDexBvSiH+kLEAwQFGQuvGUbF1E+cOmoJW5fsdnBE2HbfiJEQXSaQhgd+sGSiARuOiOf03giWIiAymtCKMmvJ6Hr3oDfwuKkM/Djyyq+X9GGDK5aP4zF7K1qZKVB6FLVvzOwyMjz+7L+PP7ng6mBefvYgNm/YzcZyvCkjm3lLuvv8rgkPMnPFg6yBPi8fW4fbH4ufvtlBeUs+ibzYz9/YzDxusNhp8/1b0+rav2V+8s4pt63KQJPjh98cwGNv/mwoNbR2UqNGq8dOKoHhXkxQF6QhVfP6sfgiCIAhdx2TyfViy/mFw58Es6p49e5KVlYXF6WL8WdOoq+y8Is7xKMzeS1FOFgkpvfht8cKW5d16plKWn4e1yXdf5JanX2LMjPPJ3rGVhy45p80+CrIyCQwJ4/K7HgSgpryUGycMpaGmmpdffAE8rVV2ZsyYwdlnn42fnx8Gg4EtW7YwYMCAk3pOgiAI/+tiY2MJDAyksbGR/fv3Y7PZWt5PTjav19syp7kkSQwbdnwJOoIgCKfKaRsYPzj6s6Kigujo6JblVVVVLVnkUVFRuFwu6uvr22SNV1VVccYZZ3S674ceeoi777675XFTUxPx8cdWHlU4eonh7+F076fZuQGrcxOVjf+isvFf6NTdUBQ13cJex6Tv18EgCN+oMgVvu33aXZlUNf2XINNU4kPal2cvrr2PeusP+BlGgRtUkhan2xfUNur6EhP0FHlVF4CkIsTvItzeSvaVj0dRHCSEvkaw+QK8cjO1lvepaX6PyMD729xEb9tPKHLsPVAmXeKPYzLUaLg68Wk+KHgAkNrtxbdd24D56NDZjAmffbintYVZP4Qm+08YdWlIdB4seueVpXjcXr54dzUvvX8NI8b1Oux+/QzjSI3LAcDh2kmd5Q3M+gnUW97E7c1vCeJLAEoxZTXXkRKX5ztnlYq4oMAO95sWkMKOhn30CfDNgXvBJ1+QW1uHVq1CnhGIutaAX7lvNHuASs9b556DRq1mcHQMkiTR6HBw3s9fU6u3cbfBBbKvML2iwA2PfYmtSeGxm85mwvCeGA8JBMzpdQ5L3i1GNziP3dLGlid7YsTh5+7tTGZTLhtqd3JW1GhijZFH3uA49IuLol/ciY+E9zfo+ejaC8koreT8wwTZj+S8pD5MiOtOiMGEVnXiZf2F/22vjJ3BypI8zog+ttLLdo8bm9sNB/75bqsqJa+ulruX/Qz4Xl9uH3r0A1A0B6opWFxOXF4vOnXr325cQCA3DT78BZrF5WTCV+/T4HTw3NgpXJLamim9d/N+7jv3JfRGLW+t+TsRcSFttu0RFMKL48/ucL8Oj5v7V/yCrCi4ZZk3Lz6HiRcOY+IDb4Psaul7QVEt+YXVjBmZgkajprzBwkWvfY7b4+UK/1h6XFGHKclLM0uJiLqMx16+hE8XbOLDHzZy9cxhaDSt5+s9kCnkPRDU2iuvQh/hJnJaFc1WO2+ufhSvR0aj7fjf94TI2QwOmYifpvX1/eMt23l6+Sqm9u7Ja+dN56nb22ctq9UqJs3oeNDZzF6pVFmtmHVapqW2f1+SJIkXbrsMuAxZVigsqyMuKgi92siUqMtb95OcitXtwqCBTZYd6HRulFiJraG5vLd6KYX7ylC9oHB52jRSBybz4t4bCNXHcG33J/n62y1ULCwmLEhiVK9Err96HADF+dUs/nYLYyan0WdAQof9PyguNoTZ57f+/l99YylOl4eKikbiq4YwNKQX0cYQUvzjOtz+YFaUoiis/2k7JbmVuBxuxl0wlG69Ytq0nTZ7CNl7yxgyMrldUFxRFMrstUQYgtCqNDx0/3SmbEunb3rb4w4b04vflmcyYFh39AYx0EkQBEEQ/kp69/YNxNuyZQt9+/bFbDazcuVK+vXrx6JFi8jOziYpKQmX201T84kPyvsjrU7HAxdOJSIugbL9uQAkpaYxYPR4rE2NGEwmHDYbbz56D9+/82+a6tpXqlv/8498//brhEZFExAcSk15KQB6oxGdTofOoKdHjx7k5eXx2GOP8eqrr6JSqWhoaMDtdnP11VeTmpqKn59fh1/+/v4tPxuNRjGvrSAI/+9JkkRaWhrr169HURQyMzMZMqT9gPCTISMjg+ZmX4W+3r17ExQUdEqOIwiCcLxO28B4UlISUVFRLFu2rKW0h8vlYvXq1Tz//PMADB48GK1Wy7Jly7jooosAKC8vZ8+ePbzwwgud7luv16PXH1s5VOH4SZIagy4Fgy4FRbHTYJsPgMvrK4mfWzUDk24QZv0QooLuQyX5su56RH5Ds+M3Ak1T2u2ztO5JrK71NNgW0z/BdyHm8dbj9BRh1KZTZ/0W8CArDtLj9lBYcxfNjqVo1QkkR36LJGlIj9sNgEplxOnej6L4MrTd3ipK6x6hzvoxEnoUnJTXP8l5Ec/zeUkDjd7qP5zfgUxvBWRoCbhOCL+EaGMSsaYU/DUh9AucQGbTOmRFJsV/CI3uKvw1oThkK2eEzmRT7Y+kB41lQPBk1Mcwl3iY//UEms5Dowo+7MXe9NlDWLZwB2fNPPZSOTWNT2N3rsNq/7nlBCUJZEWNSvINXNBrj64c+ez4s5kSNRo/jQmvLJNb65vL1u2VQQ3eCD0aBXplQVYvF1d9+T09Q0N5fMoEhsbHUdTUSLOzmiT/Bmoaz2C/VIjVqyNEE4JlYBXSlmBe+nEtj329jH9dN4MJA5Jxel1IWi8eraHN0AFFgT7+vn57ZRmn24PpCHN1H/Tc3neweKzsby7mn33vPKptOiPLSsuAiqKSOmKigrAqNpyym0hDyOE3PkoDE2IYmBBz5IadeHz+Mr7ZsodrRg/m3rPHnpQ+Cf/bAvUGzuvhG4hR1NhAsNGIv+7I770xfgF8Mn02y4tyscturk4dRIjRRKBeT6PTSXLwsf2bmByXwi95uTS4nCwtyGFGj97HtL3V7aLR6Xt/KGpqxOJyMnfh9zQ6nFzpisXr8WKzeCnLryIiLgSX28Njn/xCVUMzT8+ZSkxoQIf71as1DI6OYUtZKaPjE3wXpvVbuePCPlQ16AiKNzMuOpGr5r6H0+nhqktGcu1VY9hbWtVS+SFsSjcc1anUs4fy5mAyaiupzmvinW9+A6BbTDCTRrae7/uTZrG6NJ+J8b6BSdN6Xsi3eW8TYU8nbVQ3JEnqNCh+UIC27fO/PDsPBViek3dMz+tBOrWaW4e2L495KLfXy6drt7NqYzbZO8oZPzSZ5+6e2aaNWqXiyjTf+1tUwRO8uO07rMG1vsFr8bWkTU7G4NUzc8jlfJn1Lja9BZsti4+z3+C/ZUacaRpicuDRu2YQFOQbNf/qk/PJ2F7EysU7+Wrlg0c8l4qKRl5/cxn786uprGqdpictNp5eDaEse38jeZeX0LN/a5B95XebeOm2D/F6vegMOpy2tnPDr/phMx9s+mfLY5fXTY/+UXy44A7+yOpxcP7av+NWvBjUOn4e9yz1VRY+en4xQSFm/vGfKzGafP8GJ587kPFT+6LRqI/5RrFXkclsLGR99R7GRvYnNeDwgwYEQRAEQTi5rrnmGtasWcPy5ctb5m/1er08/PDDlJSUsHDhQpqampgzZw4ldpmv33r1pB6/R1p/Rs84n+/efg21RkvfoSO46akXkSQJv8Ag7nn1HT5+4SkqiwrRarU89NbHPHDhtDb76DNkOPszJ1CY5cs+N5jM9B0xmtk3/Q1TdSFWq5VLLrmEdevWsXv3burr69Hr9YSHh5OcnExERAQOhwOHw0FNTedTxAGoVKpOA+h//NKKymiCIPwPS09PZ/369YAveH2qAuObNm1q+VlkiwuCcDrq0sB4c3Mzubm5LY/z8/PZsWMHISEhJCQkcOedd/LMM8+QkpJCSkoKzzzzDCaTicsuuwyAwMBArr32Wu655x5CQ0MJCQnh3nvvpW/fvkyaNKmrTks4jDD/69BrU6hs/A8218aW5TbXNmyubRh16QSbzwdAp4khxO/CDvcjSb4/XQkoqrmXIPOF5FdfBrhQSSYiA++m2bGaqMA7UasC0aiMSBJ45DIUxY0kaVCpWrOsdJp4/A0jcXlKCDBOoqD6SgBUKj+8shMFB5UNdxKpjkVRAmiSOysnerAgOqys/poHUj/ETxMEwAXxd3IBd3Za6j81sPOy5keiVYcfsc0t90/jlvunHbFdR8yGSdidv6FWReOVywDwKuBGxqDti1k/mtCAh456fwFaX3nWz3fuQDbIyCYvKpsanUuDVq0iYXAEYYqOrNICZEVhX00Nt/3wIef1yaF/9EC+mf7mgUDylzR5Tfy3YiTVnlpM6dCreyRrf/AFjRaW/sovqh8osVZi9diRnPHkZMSiNzsZEBHBzG5nMDQ8FbfXy8Wvf0FuRS3PXzqVqQMOn00PkGCKIaMph0Rz7BHbHs6m3GJu+XA+SeHBjDZG8f2CbfQaHEr5lH24ZQ/P9buZAcEnZw70E7Emu6DluwiM/28qtjSyojiXaYm9iDD5HXmDo/TDvkzuXvYzoUYTq666Fr+jKIM+Ji6RMXGJbZatvuo6mpxO4gPbV6OwOJw8+v1SNGoV/zh/CiZd6w2tgZExmDW+Y/YJbV9e/EiizP68c9Z5ZNXVMCd9EFvKStla7nsddI5I4+I7zkYT4cGvvxNFUVi4Yy8/7ctGY4WfN+/j2rM7vgiUFYVBhijCQ0xMSUxma/0Kfih9E1krEVJ9FTdOmYnN5myzjdXlYlBSDFeOHojT4+Xc4elYvT0Z+fVreGQNJWVLacpzoASp0VkhMSa0zfYRJj8uTGktBZ4WPIJ8UzD3rPiZFfnzmHfFxagPZNgfrXvHj+at3zcytffJe536rbiQPdVVXJbeD3+dnsU7snh58VpktYI+AHIKqw+7/ZjEVD5ZlcrvFfuITK0ly5XLuY+OYqIyHINZT8GaIFwjNOj8PeS7fqNZPgNvuJp/3jCrJSgO0L1nFHu2F+EI0HP51W/z5N/PJ7mH729o9dI9fP3ROqbPGoxs1LJk7U4y4rIgQIIaf0BCq1Vz/rmDSEmOZO7IJ6goqiVjcx4vzb8LS4ON6G5hvHLHx3jcvgFmfwyKg2+KjoMa3VbmbnyRJreVFwfcyMDg5DZtvy1ejftAtR2H14WiKPz2615KCmooKagha3cpA4Z3b2mv1R7fZcBDO99jc10WAL9UbuX70U8c136E46Aovq+udjr0QRAE4f8xPz8/vv322w7Xffzxx20erymq5eI77m+z7KlPv2vzOCIunu/2lR3xuLc/9yq3P/dqy+MpF1/RYbtBYycyaGzb6cr+uP8Bo8czYPT4dtuGGXWMTQhFlmWsViu33norzc3NNDc3Y7FYaG5uxmq1tvzc3NyM2+1ut59DybJMU1MTTU1Nh20HvkSaQzPOzWZzm+zzg18mk0lkoQuC8JcTFRVFSEgIdXV1FBYW0tzcjJ/fybv/A1BSUkJpqa8KSGRkJN26HVsVQUEQhD9DlwbGt2zZwoQJE1oeHyxvfvXVV/PRRx9x//33Y7fbueWWW6ivr2f48OEsXboUf3//lm1eeeUVNBoNF110EXa7nTPPPJOPPvoItVqU+T0dSZKKAOME/A1jKal/DK+3EQkNjfafAAmjLv2o9qNS+W5cKzipt807kIXuu6EsKzYM2iSiAm9vae/yFB74ydthQXS7aw9Wp2/EXKNtAXEhL1DX/DkhfldSXHcXHm8ZiqLQ11hCT1nDIkv7krAmlT/NcuscXwaVCZ2qfQD9r3jxFOx/A/6mWVQ3voksl+BVFBodvt+Z02snMeixdts4vR4sLidhRnOH+1QUhX355chmL6hBNnuZsN/MOurY4vaArBwYZyARbGjmg5n/RaNSUJTlh5SrVwhQW3kkScVLJRGUOao4v/8ZDFdrySyqYG/QYhTLgd+4ClTlZdjiu2Fz6UlOTGdmL192YaPNQXa5b5T5prziowqM3518LRWOGlKDEo/tyfyDNfvycbg97C2rht4l6K6toSjDgSL7Lu5L7dWnRWD8H+dP5rute7h8+ICu7opwisxd9g25jXUsLsji62mXnbT95tTVAlBrt9HodBxVYLwjgQYDgYb283gDLM/MZVmmb6Dd5LQUzk5v/TfTIyiELVfeAoCxgwwQr8eLSq1q99q8cl8eu4oruHrUICYnJjM50ReEHBYbx8TEJBocDop3VOMJdKMb+T17C5xMDL+Sx1cV4woFc4CeCf17dHo+u0sq+OT37QD0i42if7rv37wkKVTV++ZlNJn0vPPa1ewvqCaxTzij/v0OXlnhm6suoXeEb0CUQdEwIbY3mypLKNhfh9si06tPGB/NnU2g35HnhF6b7xuAtLOsAovTRZCx4+e4My6Lm9nd+3Bmn+QjNwYKK+uxOV2kJkRSZK3i7dwfSQmIZ06SrzpMvd3O1Qu+w6so1NisPDxqHLX6CnQxdupVOuwxEhcNH0pZVSMffP87A3rHMWN8OvsL8vhi60tEmOO5/qwHiXGZ8CswE5leQai5ht/yVzP/+0xivBGMGd2Tpd8lkXJpHipHIHGmAGqymnjiwe/olRLFow+egzFQ4sp7R9NrSCJP/2sxjXYXt97xCW+8dDlf/Hclv6/yBYZfee4nPCFGGGyD1AMDGbINBDcF8/pLl7F1yS4uTn+Q0GjfgI7kvvHMPeNJmhts3PL0hUR1C6Moq3XeT4NZR3K/buTuLMRhc1GSW0lTXTMBIX6U22upd1kA2NdUxICgHrgVL7sb9tM7IIEkc+vUQ/5q383acWel89uKDIJD/Ujtf3KmDdrbVNTyc4Lp2AebCIIgCILw5wkxaqm1uzqZGO70IuHrL/iyvP39/dvc/+uM0+lsCZJ39mWxWNrNyd7ZvpxOJ7W1tYdtp1KpMJvNR1XKXWShC4JwujhYTn3t2rUt5dRPdkb3xo2tiXDDhw//S94HFwThf1+XBsbHjx/fMqdiRyRJ4oknnuCJJ57otI3BYOCNN97gjTfeOAU9FE4VSVITH/IM4JsPXMGJRhWBXtP2xrrHW0e99Tv8DKMx6lJblscEP4ZWHUGDdQlepQoFBwcztQHUUlCb/Zj0g7G7d6CWAlFJ7f/sDdremPUjcHmKCTROw6BLxc8wBlm24z1QOl2likJRKnAqvu0Pxm0P/gU78XJx/P1srl9CjC6JsZGz0Kn+/JL9bpeHouxyEnvHoNacvAEiDdavqbf+FwCzcQYHn++IgNvatXV4PJw1/wMKLQ28NnYGM3v0adfmH/fOY2V+NtrRWjwmiQlSNFvzs1G6HcjWOyRLLsZcj0bVWsK9HW8Rrw58D6vHTpDOH+8EL9XOBL4orGRD7Q76aXuz/edsQrJD6NkvFINWw7UDBrVk74f5m3n0vImsr9hFcexaLlm/BINKzzU9zmdsePuyQu/u+56falaAAvcm3MLobsc/b/dlowZQWFNPUlQwvxi/RwX0mRTMpKTJWNxWpkQdvsTwn2V0SiKjUxK7uhvCKeSv8wVEA46i3PmRNLtcXP/LDzS7Xbw0fioqSSLOL4BP124jNTqCmQPbvib8Wvk1q6u+Y1zELCZG+qZGqbfbuffHn9GpNbw442z8DjPNwbCkeKID/dGoVQzu1jplwKbapZTa9lO5pQdeu57rZp+BXud7Dd+UXcitCxZhq7Iwab+WV765C9WBbOkGm53bv1iALEtYnC4endE6iM+k1fL+ORewaXchdzzzLVqTizFjXSCBS7ajPvAidf6wNLpHt83YPlRyRChJYcFUWayckZxAWuhg6mq95OfYufCy1nnJExNCSUwIZUVOHlaXL3i+t7K6JTCukiTenXQBAO+v3cyXG3dy7dihRxUUB7h55DCcHg9D4mJbguIWl5PdNRUMjoxFr+78o2JWcRU3vObLVvrn1WczfXhqp20BCirrmP2PT/DKCq/dPJONms2sr81kfW0mDU4Ld/aehUGjIUBvoN5hJ8rsz5LyzXxa9ROB/cBdGkhzg4n1lcVkbS3j5zWZ/LQ6g7FDkvlq7/PIvSqooISrbr2e3IbexKaXk2wuQaP3Yop1UTPFQOkHOpatyqD/qBRc+hzQ1zNQX8mWLB02vGzfUcQv6zaR0/19nF4H+xamAb4BXi6Xly8/W98SFAffZ1WNRoWnUAd2CRwSVGq4877JxMWG8PiHa2iqt9JYb6VpUjRfBNRhSNITtN3G+/+cz2db/0l+ZgnZ2woIjgzgvce/Y8/vOS37D40KRH+g/Hmg1kzwgYorXxWu5N28n0j2iyWnuZRe/nFc36N1fnen4hssGBEdxKuf3sie7YUs/HoT084fjNnf93su2l9NXY2F/kOTjulmxePpV7KqcifDQnszMqz9+7sgCIIgCKePIL32LxEUB9+9lSDDsQeRD06XGBra+Wdv8GWO22y2NtnnnX25XO0r+fxxXxaLBYvFclT9O5oy7mazWQSQBEE45dLT01m7di0Ae/bsOamB8aamJjIzMwEwmUz07dv3CFsIgiB0jdN2jnHhf5/bW0N5/T+xuzIPLPG2We+VbWSVT8YjV6GSAkiP29NykaDXJBAb/CTNjmUoXgX5D1d6GnXrBVG15UMc7mKigp4g0HgWktT+QkulMtI9om0pMkVxU1z3N5QDl5FhfrNxeeswqfrzYPx56FQG6p1VvJrjy0T0Km56BgwiPej4S6KfDP+Y8zabV+xh3PlDePC/1560/Rp0aYAKlSqAqMD7MWhTMekHInsryC7ug0qlR69LJSb0TZpcGgotDQBsry5rExgvtjTw7JbV7LDnUzFFj6yX6KUOYmhyb9Y0+OYbR1HaRMAzauOYt2II543LRK+xteub27sPjQTlJVaWZuewJ2Yduy1ZzIiewNdnvOZrNBSeWP0r63f5MjRnfPUpXkVh3qxLSAkJ5aKRfZn32/vIbhkAu+zgrZyv+PePa6mqcPHC7EsY1rMbDreH5ZW/I2kACT7dvY6R8ak8/fYvFJbV8febp9It5ujnQN5aX0Bu2D6iw9I5J3A0v9fs5uKeExke2j7YPu/7TSxetpsb5oxj1PCjy84U/jc4PB5sHhchBtORGx+nj6dcyNaqUoZHxp3wvjaWF/N7WTEAG8qKuXfkaJ7/eTWfrPf9+xvePZ6owNbsj611K/AoblYW/QQFA5g4vCfLs/NYs99X7WNdfiFl3+xh92/Z3PrCpST3azuncWxwACvuu67NsgZXNQtKfYN5impjyF2RRGJsCNPHpfP5Dxt5ftU67NEqCNWzfXUJ1kY7/sG+AOjWpkWcO2sd+XnRdA+bQEd6JUYQFxlEU7OD6QH3ow1oYkDQOMK3/YdmyUOdvQrO6vw58jPoWXTH1ShKa7nsab1mQCcFK8b1SOK2UcNxeb1MS+24isS1Y4Zy7ZihnR+0A4khwbw6c3qbZZctmcfu2gpmdk/ltXHndLidoig4ZA+S5HvJ1h1mbnKX18uGiiI0VgnvgTfshmY7I5L7sLjcN/fY4rLNzE2YTqDJwNLL51BqaSItLIzz1j5+4HgQFttIaEwj6/bbMJSHgQpS4sMxm3RE+MdSRgUAsefX0C1oHTqj3NIHreRBLtBRk67GOagSJc5FT7cKlVomwhhHSLCVhkYbWq2ab35ZSeqNdpBAG9rMwcA4wNjxvdmweDeyrKBI4DZqwCNDjQZeDzvQSmLn7iLGju7FpXeezetPzad4gAlnvBFQcPYPImBHPSqVCp1BS9+RPek7sidZWdkE3ldMbD8vnnw9pY/HUNvs4p5z/sW/lz3Ehtq91Lub2zy3xTbf4L0Gl5Xu5mhMaj12r4vLElrLl9qsTh644WM8Hi+5e8vIz65EUkkU5Fb5ft/Xj+PqW9qWO3XLDlRo2NO4kvpGDfsKTMwanEa4vx9DQnoxJOTIlVWEU0CUUhcEQRCOUbhJ32ZA/+lMAsKNpy654NC5xqOiog7b1uVytcs47yiAbrVaD5vwA0efhS5JUksWur+/f5uf/xhE1x1nFS5BEISIiAjCw8Oprq6muLiYxsZGAjuYsu54bNmyBVn2XYcPHjwYjUaEngRBOD2JVyehy9Q2f0q9zTe3VZjfdYT5X91mdKzV+TseuerAIzUebz0adTD11i8pb3iKINNFeLy+8tcGTU8cnhzAQPfwL1uyy71yE2X1fz/wcz3h/m0DJ4fjcO+jyf4zAEbtYKotbwIy8AVq/8moJDP+uhD0kgmnYiNUF4NW6vqLk5I8X2CgJLfypO7XzzCWnjHbUUlGVCozkYF30mxfQWX9Yyg045XB5qik2baECL9LeHH0VHbVVHBLvxEoikJVcR1hMUG8u2cziwuyYKiaaJuecpz00Abz8X9+hX6+LDZJgv6R+xkYXcTWsiT2ZcWyZNMo9q4eTZL8O5c+tpG2Sa1qHC6Zm5+ah9PlIe7GEtBAXnNRm3MY3y2JL/bsxC3L1Nh985CvLy4iJSQUWZGRDxmcIQE22Q49cwnsCc+Xv0IPeyzqim40ed0YAsHtUlFdY2J/cQ0/r/UN8PhpTQa3XDKm3fPX0dzy84qW82npAgzBMhvtRXzR/0VuS5nd4baPfPgzSzbtQ9vk5ePvfheB8S7y1q6NfJC5hXsGjeaSnu2nVDhoT00FBo2W5KDDZy0cDavbxaTv36fCZuGtiedxdrdTU1o/QKdnQlz3Izc8hKIobCwqIcrfj8SQ4Jblw6LjGBkTT7PL1VKCPC0mEoCoQH8C/1Cue2r01czL+JSdy4NYkf0jv7xzK6MSE0gMDkKnVtPTGMBrr/8CwMJ3V3L3G1cfsW9mTQDBugjqXVU4qoLRadWkdPOVfV66IweVV4XaBhEuidvmntUSFAfY27QBSYLUFAuX9R3Q4f4D/Y18/co1QNspMrqHhZCdW0lSQljLMkVR2PJbLkEhZlL6tGa0S5LUcRWMDmhUKu4Yc8bRNT5BtQ7fAKQae+flJucu+5ZVpfkMOSOGgYYYzhzg+z3LisL9635mR+Ne9P61DA/tjbMxks+zdxLvF8hL18+g0eYk3uhPrBJEqNafWrcFe7PMswtW8tylU7EpzSytW8M7xRU4lbZzRkoSGMJsNOY4effvsxiWkoBapeLaUX/nqd0zkVRgipbb9VerUihVQlBFyhiibdR7wdE8lv7VvRg1vD+LP/HNx+l0egg027DmmDHL8dRs8Uen0+ByedDrNYwa04un/3MlLz2zkLIIC/Szwu8mqNNyaOWa7xdupXBLIXF9osk9JwwkCcnkQnGqwCahSwjnX+9eg0ar5rtPfyMn5mfqwrLwH3igv8lObGYtaAzklTaiKApjwvuyomI7JrWeKmcDFY46bk2Zic3rZERoKhvr9mHz+sq5r6/Ywc6Fi1FqQrnuwjn4BRhoqG/G2mMjmohaCr6OBXyDGXIKcvmyYCUmTRDTY/7G5roF/Fr5EZGGHlQ68lAU+HHjSPaUVvLvy889rr8pQRAEQRC6hl6jIs7fQInFcVoHxyUgzt+AXqPq6q4AoNPpCAkJISTk8IPeD81CP1Ip9yNloSuK0tK+oqLiiP07mjLuJpOppSqWIAjCQWlpaaxatQqAzMxMRo488SQvj8fD1q1bAd9ApCFD2lfgFARBOF2IwLjQZfz0I6lEC7ipaX4fjTqMyMBbW9YbdemoicFLGbJST2ZZfwJN5+LxFiMrzdTbviQp4kuszk2EmC9Ho25/wSJhRkKPghOba8cx9U+v7YW/YTIuz35c3iJ8QXGfkvr7URQ7cSEvkOSXxj7LZqpdxby69zwGhc5iXORVx/msnLhHP7iR1T9s4cyLTn4Jbo3aF+hxe8rJKJ+BQSlvE9TxKhr2Nfpz/5J3GBgewytjpyNJEh89s4Av//MLPUf3YOaLM/kieye9gsL47soraHI5eP2B+ShuGbVNRu3x8v5V7xBi8gVmzuu9mYe+vIxZ129jxIh9qCRQ5ENHvJvpFrEEjVqN2ajD6fIwsG4M4f09nB3VNkA9PjGJmwcP4/XNGwDoHRpG35AIlmXkMLZXImaNAbvX0dL+0HiVV+0mp7mAQIMdyRdTx4CZByZOIDEmlKHpCRSV13Pm8LZBS48sc+mSr9hdU8FbE89jQlx3FEWhPL+KpaVbW5KutCotGlXHL8l2p5uft2ThDoC6ARKrVTWUN1uI9jvyfGvCyfXunk3UOe18kLGl08D4ypL9zF32LWpJ4tNJFxFp9KdH6NFXEfijaruVcpuvRN/O6vJTFhg/HvN27uaxJSvQqdWsvPkaIvx8ZZ79dXq+POfiNm1n9O/NsKQ4AowGDNq2f+vpQWeQbTezPGs58VFBGPVa/M0Glt04F/DdcBo5tT8ZG3MZd8HRZURrVXru7PkGLtmB1NOALMuYD5SknjNzOPe+/xMJTiPzn5yLydB2UNPUmDmsrZ7P4OAzD3uMjkod/vtfl1NaVk/iIYHx5T/u5F+P/4BKJfHe97cT2+3EB0wcyYIft/Pzkl3MuXo0I4Z1Ptd5Rz6ZciG/Fucxs4dvkFlzo5V1P25j8IQ0wmNDUBSF9eW+gUfb68rZV1zNWQN7khQbwH3b3yXTUo3B6MbrhZVVO+nBYACaXE7GD0jmzbdW8Pr8nzAZdVx660T+nbcSW6WJVaX7+IxA5scvo9bVBIBJracmzw+vU40p3Iak8+JoDGb6yN4YA/Rc9N08RsbFc8+IUYTp46l1F7c5l4OvsSWVQSQNKaQ8NxxHjomEHh5GJXsI6JlHbNhIZkzrT05uJVWWUvpd7SuV7mf1552vLiJWl8Ybby5HpVLh8XgZNKIHzUYVXNIIKiDBBd8HosgScoobebgdVLChsQ55UQXEmwg8oxy1ztcfR7mO2lwjAVEmPtz+JJm6LNRhHg591/FYweP0Ba4VnY7C3CoSUyL595DbO/29fZq/jGCdlWhDExJlhE62oMh5PHCbg4f+NZN9hgVUqPYRC4RoY8ld4Ider2XS3wL4rdFXzUFSJModeQDUOIsOPIcqvF4VMYHiPafLiYxxQRAE4Th0DzZTbHEcuWEXUoAehwxU/as4NAv9SFwuF1ar9Yhl3Jubm4+Yhe5yuairq6Ouru6w7Q7NQj/cl7+/v8hCF4T/Rw4NjO/Zs+ekBMZ3796Nzea7l9unTx8CAgJOeJ+CIAinigiMC13GzzCCbmFvUVhzHaBQ0fgcOnUsdbav8defSUXjMyi4OBgClYAm2yKSwj+ksvElgs0XYdYPx6zvPADs9GSj4MueMmhTjql/KklHYviHANRYPqC84R8H+uKh2bEcgMrGlxgXcTt2rxWDvJH+hn04HbvxyrMAmYLqOXiVRhLDPkSniT+2J+g4dU+Lo3vaiZdCPpz8hvcwUt42cgzIeNB7b0aRL2X+/gbuGzyWWL8AMnfls/+eWLKCvQwuryHzirvQqlRIkoRB48cVN4zn20Xf4FXBgPDKlqA4gFYFL73/FV5F3XI4SaXGpJ9AsP+1mA3jWtp+8uxV5JfWMjA1DnUHo6K31P5AheoLuoX2oDQ/lNRMN3Myv8GDwk1nDsahc3Z6zpIEGknD5T0nUVOuYsnedfhVR2GniX+/v5k7LxtN917R7bartlvZXFkCwLLCHCIdJpa8sZSln6yh8aZkdKl+hKkD+e/sG9GrO74QNRl03DxjJPOyd9MsNeJUvJT9ITBuc7u4/pf51NrtvHvWTOIDgjo9F6FzC/bs5bFfljO1d0+en96+DvZdA0fz7p5NXJLcebZ4g9M3csKrKMz95gdkp8L7F53P2O6Jx9WnxIBgnh45heyGGq5PP7Yy2cdrf30dapWKboFBh21ndfqyed1eLy6P97BtASICOr9hdMGk/owamESQvwmNpm1ZbpVKxd8/ufnIHf8DjUqLRqVt92lnwqAUfu97Gxq1uqWM+aF6+PWlh9+xzYUlywq5lbXEhwbSPTH8D+t8A6sUxZdR/Wf477srcTjcfPLZb8ccGE8OCiU5KJSCfWVcecnT1JbVI8sKKpXEBbdO5rrHZ/PK2Ol8mbmTHfmlmHRaYoL8+Xb3OvJtZRgNbeNm5mI9UV4zFS4rl376GVULykACu8PF+//6Hb3agNqkoLW4+HT/clyRTS3bTokawkUDJ3HjvAXszanG4+fb8deWTH5akIvV7WJbRRk/52aTZphAUOKnaIytB5ckqNoVRHy/OpKkGvLVNqKdXowxFeQeqEq+enkhg7tdyD13ns2m3LUsc64HoNlcxJdFjzJMfR0/LfEFy6OiArn4omGoe3tRpANvg7ICcxpAAVlWtU4FEgzSJU0EKU2odK39MUS76BvXjUrNLqqMmwnrC43NelQGCQkFt6KmakFEm9/Jgs9+444nL+j0d+aWPWyo28vAoHL0ai92r++P3m3V4HWoWVL0LobevswjNVpuufYqYm7zDbKpcRaz0/oTzZ56djf9CkCEpg8h8nCGJPRCrfhxzhU6+sa1Lzla2FzJ37b9G3+NibeG3oG/9tRN9yAIgiAIwvEJMWgJ0Glocnm6uiudCtBpCD6O+cX/SnQ6HTqdjuDg4MO2UxSlXRb6wWD6HwPrTmfn9zAO7utg2yPRarVtMs7NZnOHZdzNZrPIQheEv7iwsDCioqKoqKigrKyM+vr6I742HY6iKGzcuLHl8fDhJz9ZSxAE4WQSgXGhSwUaJxNkOp8G2w+opVDKGp7CI1fT7PiNQzO0W+MWXoy6ASRH/YRXbqLe+gN+hjPQqiPb7FdR3Dg9JdRbFyFhQMFJVOB9NNqWodcmYdAeWxnqMP9rCPO/htK6h6mzftKy3O2ppbsphet6PM3uylvAtQ+dyoXLU4TDvQ+by/ehoMn+C2HHUMb9z6QoCmX2/ZTYcjFp/LF5mxgYPAGdqu3cXmX2fJaUf0yqUSaYXTR7dZhVrtZgteQbjaxG5ozYOoYro4k2+VHT+Apznp3P7m392dsUx6c/rOaKIcm4vVZeXr+fLzJ2MMOczA2jhvHljl3Ehg+kyfk1/jrXgX0CyEht/h7CiQv/hD8KDTITGtQ6ytwjy6wrKqSooYHPF29m/PSFhPp5GZSYT1FlOGsbK/EEGUCtQq1oubfXNbyV+xXN3o7LB7+Q9ghXLJpPo92BtBdQVZK3bCEUN5OfU85Fl48kuW88UYdkikab/blzwCi2V5ehZLq57r+f4D+1Gqm7HuNvLhoaI7h65ijC9MEU1Tdw7Vc/EGQ08OGlF+Cnb/0d3DBtBFdNGcwrm9fza/Z+3l23mdRzp6HICqX1TVR6mvmt1JfdtyQ/h+v7/zkB1CMpamigvNHCsIS4DrNrj5aiKJQ7CgjRRVJv9RJkNGDUHvuNE1mR2VT7Cwoyw0PPRiW1DcAuyNyL3e1h/p69PDN1crsBFsND43k2bw3P566lf1A0g+Nj2x1jZvc+eGWFmmYrL/3iC7CVNTW1a3csLu894Kjaldry2F6/ikEhE4kxJh3XsbaWl3Lht1+hkiQWXnwFfcIjOm171ZABBBoNJAQFEhcUiKIoLP/qd9xuL2dfMeqYb5hEhv55I4p12uP7CFTtaOKZjG8JNwRwf+r5aFS+v6HXlqzj/VVb6Bkdxnd3XtHm733KzIH4BxoJCvEjPjGss12fVOdMH8Din3cxfWrngziOZMPPO6guac1CkWWFb99YypCJaUwb3Zuhugi8I9SYTXp+/HEHXzavQUr0tT14+gEaG2Wq1bjUIYCJLdZyDs4Qf9Gsocz7djPB3RoJTa2naFM0mm4aDi0yGaoPIDoggIXXX0l+XR13LlvMrirfVCEJYRXIOMguj6LenM8Ws4uIongG9iw6pJqJghImo1X53kO6R5Zz6OcLRYbszbAx+1fOO3cQfRMH8FtOMDa5gYMD84pU6/H3j6UppImCmBI+2t9E1ZhyuhnrCdU3U1AThgWj75h/eJmTtO0WIckwOCYKb2Uwsuzbxl5uILSH773H65CoWRZy8EkHj4cVH6+md/8EPn7zV0aM68XfHpvZZp+P7PqQZo+depeJKKOFKocf5c2B8K9AZJcKe1EAht4VRBmSuSLxWfRqY8u2Yfp4run+Kq9nz2k55w8WBNLYVERqtIPvbr2cuE6Sxf+TO58mj40mj42t9dmMjxjQcUNBEARBELqMJEn0CfdnQ2l9V3elU33C/U/oevF/ycEsb7PZTGRk5GHbut3uTku3W63WNssODtY93L7q6+uprz/y38nhstAPDabrdDrxexWE01RaWlrLtA0ZGRmMHj36uPdVWFhIZaXvOj02Npa4uFObsCUIgnCiRGBc6FKSpKJb2OtEue+ivOFfNNoXHljTNqNOUVpvsrs8BWjUIRTV3kGTfTkadRTh/tcS5nc1KpXvRm9e1aVYna0j1cL8rsPiWEVtsy+Ymhj2HoGm9tmgh+PyFGNzbcN3i9vXvwDTpJb1fcKfpcbSHS9GcivPBhQkTIAXnfros8WdXjtqSePLcjxEoXUvm+uWMyRkEonm1HbbOdzZ2F17CDRNQyUZ2q3vSLXlM7Lrv2C/rY5idwiphnIiNBZ22yIpUqahUoUyPeZaNCota6vnk9e8iwHqLbhVMnpNOIpShQLssUXjr/GSYJpKpmUV02PWIP0fe2cdJkl1vu27qtp93H1nZ3Zn3RV2WXZxdye4JkhICAkBkvwgCRAkAYIFCxrcbYE11t1l3K2ne9ql6nx/9OzMDqsQgeTr+7r6mumuqlOnqqurTtXzvs+r66bOvRI1/BR6PTw0aScvfj6OEaONVLc8DAgyraVMKyvh9XUxlp94LTfOnEpL9+2sbijEb2wn1+FDE5DwqtX6j4G48PBe0x+YlXUZdv3+LYkfXP41j6zqOw7skLU5jxFVHWxpzkfoIJwrk/dBK2fceSI/OnwSekUhVe/i1o3371X316oZeXX1Z3hoIzXPQzjFRFdLKsE0E8GtGp5IkFXPfEbO1i5eXvN/GIwD398NY6cn/v7udcwze5Dzo5Cv4/gJpfx4yrnolIR4+OXOGup7PNT3wNrmVmZ+I8PYpNOTGjZQ1+qhDg+Lqut48K1FNLm9XHPUFA4vKKY7FOSY0v1bbTcEttAarmas60gMewgj/w7cwRDHPfUC4XicO+bO5vzxY75zW191vMHn7S9hwMWLH40gy2bn0ysu/tbi+Hbfat5reRIAuz6VEc7BdlHXTJ1MMBrj6IryfboOtPt82Gy9+AJmWnv3HXUvSxKnl48AINfgpCcU4rSRVYPmWdr1IU3BnRyZfQ4phv0Lz9+W52v+iF/rZJd/PTdUPPyd2mgPBBAkMt47gwPuDe3dvaQ5rYOyufWKwumjBrZtzVdb+dOPE+dZk9nA9BPGYfwBZH7EtTjN7l6sRiPp9sEWjbX+dn6/5U2GOfL5ScXxB31w81HrGpZ17wDgmJxxjE1N1GWv7Uw8QGrs9gy6ZkHi4da02Xuft/9d1NV38dEnG7BYDEydfOjZ4msWbOH5e96lvb6TslFF5JZmkFmQiqYJ4lEVT2ciwON3lzxOPBInHIySXZTO08t/S2enD75x6Uk1BBjtaoFUqNLqqW45me4vgpDWycgfbcdWGsb6qZnRl29BMWqYCsMsW1WBY6AMOx1hDwDnvvwqSzuaQAYdEmlWD9OHrQcEMyq30RxysKU3l0YcVEUVjEaVQJceR0aIrCwPwYARizXCnqI4QGnXZazTr+XIo8tRFBkzdo7LvZ7nt/8egzmChESaeRojftHLwp5mPoysIL5JISfVR4EtsT+GV3b0Z8grUipLO9OICRUhQI2A7hv7Rdks0xuIogulUL8yA+eEAEp2vP+4iXQYQZMTg5/2LlA1osBn76zF3eXnwzdWE4nEue624/F5Q2RkO2kNdQGwtTePCvtEbD0eit8XBI1RmuhGt3001193G1adC0Xae/hv16dxWu5v+OuKl6hvyMLbm/idb2vtIK5q/depb1Jmy2OlewcyMqOc386ZIMl3oC+Q4nvnwM/VkyRJkiTJD5Bcm4l8u4nmH1it8d21xXNth/YMI8lg9Ho9KSkph5SFHgqFBmWf7+8VDh/cdj8QCBAIBPqFsAP171Bs3JNZ6EmS/Oepqqpi/vz5wD8vjK9YsaL//0mTJv3TfUuSJEmSfzdJYTzJDwKjvgS9LmE9q5NzyEu5C2/wIwLR1cTUBgQCRXLgMB9LXPMjxMATubjaRqvn/wDIdFwFQCi6GaAvWzyOwzybLt8L/csEImu+tTDuDb5POLap752EIjtxWU7on67ITly2a1lYP5VsfcJSWJAQlbr9L+A4hPXVBbbwt5o7MSs2rii+GB29OMzHIkkybzT+he5oKw2BbdxU+Uj/Mr2h+TS5b0DVvIBGT+A1JGw4TEeQaj9nnyKPEAJfZDudnp+TIsF4KwxV27Eru/P06ugNfcCOSDZD7eMY5pzECOdUtniXJ9LfiCAhk+64GYCJKXNJN+ZjUiw0Bj8hW+8DlhEJLkPXd28jSXD+3DV9QneCqZk1zMisYaijnSd3TeHHo9Lwh56hIgPc0YQda0SVMSoDNsSSBBtDqdTEvsKipGMzTCQQ72WMq5xU4+Bo6mAsNui9e+t4zpt9Br72VYR99Vw8o5y51wwjrzST3kiET2p2sSO+CoEMQmNa2lh8oQCbAtvJNjbhc9YxxWqnJeLCZg2Qlh5IWKyPk/AuyMJQpydskGno6eT5FWuZWFTKCaMHxLBbr5rHQ0v9rCNRy/WI4ZPQKTKqqvHgC1+yuaGdnFwrnnCQL9/fwJBLbNy760ksionbhl2FRWcmtqodfU8UKaqx4st1tBvaQTLS4vbx3Fmn0+ULsGBrLaZhur0EwJDq5/naX6Kh0hvrYm52on7z/J3VbGnv4KIJY3GYBj+Q6A4HSTWav1OUd1RViaqJ30LvPizeGlt7+HDRZo6YPJTyogOLw+5oIoo1InqRJY02nx9PKPythXGXPh0ZBYEgRb/3OicU5PHK+WftY8kEPvMC5h62FqOWxTHDEuUZhBDc9M5HfF3bwB9PPIrDywYytU+sqtyrjd6Ym/dbngLAoJg4Ke/KQ+q7pgmC0Sg2k3Gf07uDQbY1Q34O+PzfPfP66LJy7p49F70ic1hhEQAvvLuCR19ZRGVJFn/73Xn7PR5SMhzIiowqSzz4h4945IHPeOS1a8jO/+411v9ZGoK7eGTnnfgDEms+G8ubP7mcHNdA+usbjcvY4Klno6eOKelpjHKNwqLbv+X7tPQKXqxegD6iJ0N19n/+i5NmU5qZyszK4n3as/8nWb+hEb8/gt8fYeeudiZPOnjNQ4D7r3uWrg4v/mGpNNc2YJm/aZ/z+XuCaHoZJGit7yIUiHDphTMxva/j3Z4lSELhr3OupE1bw0etiQANRYYLRgvcFV4iPQ7qDQFqQqt56Knf8X5THV6aqMqvYunnCinVJUyfmUWG0cmRmRN5f/smmsVadHoXcVWPKsUZVtSAEFrCqUQWFFi85Ji8RDN0xFEIanoMaSqyBLJeQ8Ti/eK1YEBbbMv6hOIL3TgsGnAKvlgXbzTdidUGmpDY1pvJJ+1fY5BjGGVBVNOjt8ZJMYYG7ZPdPwkNN8VWHd5ImEKbD70CUVVmTU8BAhl5vUz51zmc/seZ1NqW4ZoQRJIEOpNKQNWTZyrlsLzjaLMsxFPfzqhzXOQeqZHtnkTFsHE8+re/0VEdY/7762lp7Gbr+iasdiNXP3IsW1PrOTpnAuWOfKgAjoKTpifGR2uX19C+K0r5sMFD/w6vn2ufeQeTXse5M8fw6aJEVMKxI4dS29XDmRNH7VcUB7is7FhGukootGSSakzWIE+SJEmSJEl+yIzOctIRiBDVfjjSuF6WGJXlPPiMSf4pJEnCYrFgsVjIzDzwvXc8Ht+njfu+rNz/lVnoFovlkKzcjUZjMgs9SZJ/ASkpKeTl5dHc3ExbWxtdXV2kpycc7oQQRFQNVQg0kXByVSQJoyLv9fvzeDxs27YNAJvNRlVV1V7rSpIkSZIfGklhPMkPhlzXL3GYjsBkGI5eScdlPYaY2klrz/+hESPL8RN2tZ+AO/AqOa5fUpj2IO7AW7T23I0ghEGXsGnp6H0MIWJYDGMpSL0fgy4fWTZjMY6hsVsBJDIdV3zr/jksx9ATeB1FTkHV3MTUVqLxBnTKgC1uMO4jVenuf7/74bvTcvxe7UW1MEKIQXamDYHtqCIOWhst3ef2faqnLPNtSmxVdLtbKbYOH2gj3kBD12UIBgTgQGQxAP7IxwSiyylMf2jQehs6L8Ef/pQdkTzy9XoscmJZixxDExISErKcTbeah0PnJM+SsJ2vck7B1V2JsC0FHbRHg6jaREanzBzU/pjMX+H13oAQMYQEqpYQRBL7Q8ZimEwouhQAhYSYcHTuFv5vy9eEowXo5DRUEWRFuJhxUj1Z+kT2qkBBlhIZeLWhLDRF8Ez1MkLSKsptHcxvF1xccjsufQZfdbxBhWM8P506g/LUNIakpGIwBFjgfoxPQg9x+5G/4O6LnubVT19h3bhirnzlTG5Z+zBxoaHIu1M9ZRZ0bgBA26VDNyYh8OrkgTrKu8eCRpMgY14bIqzjzvyzeKPzakzFce75dDJ6/+m89t5qTps3huOOGMk9J1xMQ/AYrIoRh87OeY+/wpaWDpTGGLIm6CjQwAqv79hKbFUPtfom9FKcjZ6tTE4fx9wjx/DV2YuxFjj5cM5qjAYo6sjmhmMTkZ0/ef491te3UpWfxd2XDGNp55uMTT2KKucMFEmHQTETVn00+Lbwi/rbKTYfx/0fLkUAnlCY2+fO7t++P61dzMPrvubIgjKeOvK0vY7h/VG9rZXbrnyGtAwHT999Eo0hN6dWjUocA0L0D6LvfPRDtlS38cmSrbz50OUAhCIxdjR1Mrw4C70ykJl8dM4FtDWpvLa0GzWucNLwSnIc316EyTGXcHPlY3S6fTz3WTV5RV4uGD0W+RBvrN3R1sR26Lz9y/giET7Ykqg//M7GrYOE8X1h1TnINhXRHm6gzHpodaxVTeOcx19hc3M7vz1lHqeO3/tGQ5Fk1mysYsMOH1dPmoemaSx8ezXBcAydzczMI4djtuxbVN8TWZI4Z8SoQZ9tqU4EJuxq6ERVtb1qgO+mdEQ+Ty27i4WfbeaZP39ONBqndmf7AYXxuKZyx8ZXaAp2c9fIs2n8ugObw8zYKWVU+7fQFWljfMph6OTvNmSp8W9FJYbZCjqLjy5fgByXneeXrOGTTTs4fmYJTr2FYU4vrzc/xBcd2eR2XIDdbOTUSSP6j1dN05BlmRx9Gj1v2dEiKk+tXcidvzoFgByXnRuO+e4R1v8KtL6HnHOOGM7mrc1YzAbGjS3e7/wftqzmq/ZN/Kh0DsOc+YyZWcnbW3fRO74vUM0TweAeCGoRigw6hWihlc5p2WjpcSzFIZ6tX8J1o+ZSWpVH7RsWrMN7uGrVXznVnoZk0xDAcMfhLOt+G4AxWUcSDBbi1GdgNdqZlD2PPPNQCizDcNQuY+nmWlLbixiZksWvdzxGcd5ijh4DoaiOlxZN56LDF6JTRJ/QndhmSQK9AjoRRxMqEaEnJhTCmg5JaOjNGmKg+Aeib7mIlrgGhtVEIFtLsGaQcB6M67HpwszMqAYES7tKiQmFmKbs5QywmzRTB+kmaeAaodMY2t5N3Zc5TLVUMvPuSbzvXka9/wVMSgSjrCEERIVCa7SOXunvBEJxRESP80fb8OvibIh1EPF0U3TdOvKjsPyB4WwcX0N0WoxQToDftv8dAby8eRHj0yrR2xLX4OMvG8/rDy9FkqR9ujcs2FrD1uYOAM6ZNpojKkvpDUf4+bGHk2E/eECFIslMS08++EiSJEmSJEn+GzAqMuOyXSxr+eFYqo/LdmE8QBBekv88Op0Ol8uFy+U64Hx7ZqEf6OXz+Q4pCz0YDBIMBuno6Dho/w6Wgb5bWFeUfd+3JkmSJEFVVRXNzc0oBiNrquvJFQbcoRiecIy42DuISidJuEx6Us16XEY9GRYjK1asQPTNO2HChOTvLkmSJP8VJIXxJD8YJEmP3XzYoM/0SgaF6Q8CEFfdaCKR0axpfhTZSYb9YlyWY1E1DyZ9wj662/8ygggxtRWToby/LUV2UJzx1+/cP6OumKE58wlFN7Kr/RgAfOH5aCJEt+959Los9Eo+etkIJAb9u5+XCxEd1JY72sajO29GFXGuLPsD2eZiVM3LEEMdodShmGUnqBv65o7R5L6Zk/M+48isc7DpXP3thKKb+kVxi2EqKdbTaO65hd1CQTC6hqbgTjojzYxwTCMQfgt/+BMASg3NvOkdx2xbExm6dvyakb9cNZ3xw2Zy0wOXU9GXlS8QLOl8j3c27eLw9Lcw6FSimsziwBBOcA3OyAZwGStwizggIQR87h9KviFErq6DFF2YSGx9v1ggROKlSBo3D/+aTs+qvv0mMzr1TBzR+xLzCpClAUH6hJR1rPQXUq1PR9I0MnR+3KqFrkgLK7o/ZUvvctb1LKTz1gmc+aNZTDxzFAs73qI90kB7pIGm4A7qtrUAsH1NHfevfx4hqyh9fZIGfXsgD4FdoQxsugjdkYEs7L1EEZNKq74OKR5FB1QWatz16Ecg4HdPfkpxYTpVQ3IotCQy25vcXtY2JITW/Hw7cmcMTafRFQ+RphpZ1OinpCxIiaOL5d2PMCblz5SOzuVHX44jFNC4f9tGQGJ0XjZp9kSG/W4x2aBT+Kz1GToidbSFa6lyzsAgm7h6yF9Y6/6AZd0vkWKHV7ZHUORc4prg0/U7uHryJNIdiW1c2pqoWb68rWmv73l9YyuXPv06eS4Hr1xzLmbDgOCyctF2PD1BNk8XVG97gvFF29m8Mp2J0vXc/o/PUYTEP246j9wsFxua2sjJHMgQuPrBN9hQ08rxU4bxmx8d3f+5VefE0TWV1tBiJAk6fPu2MT8UXIZ0fvSXd1hb0ANtYDLpOavy0ATqE3IvJ8tUxFD7uH7B1GEycdW0SSypreeiiWMP2oYi6bi2/H7iIopBPjTLwNpWN5uaEzZ1K2ob9ymMu8wm3r3kAhp6PMwsLWbhW6u452evgs0CksSmtfXcdMfJh7S+b3LduYeR5rIyZXTxfkXx3eQUZ3DyBdPxeILoDTomzti/tT/ALn8rX7RvBODxRR+z9ucJm/K7Xz6Hl+O/RSAIqD6OyDxpr2WFELQF/GRbbXtFLUcjMdqae5hYMIuWUAP1rWFunj2PkQXZqJrGHz5agBBgXWHg44t/zU0rfwoKtIe6eOmDhQhJojDNxcQhBTz758949amFnHnpTKwzc/DkSYCOiPOH8xCvscvDuX9+GUWWefnH53Dbz/YOyNoTIQR3b34DVWhsam/jrSNv5rxfncK7P0m4Gch6lcj5GRh7JSb1OhkxdhjPfriBUDhGybwiOrraMBUH0aeFebFtPj8aPpOmYC9yRgRTaoSo0kur7Wt2J89/Vt/NiIwCvGobI5yHcWLejwG4f9uFBOIeKuyTcaWU8ORzC2k8UmFp41bGqE0U5Xb0t2HSxzll2gp0yoAYntiWb1rXgw6NmNAR0fRY5Qj7qPQNQFx0UBU4lhOGnY7XG8SscxIXMrIQuCNm2iNOMo29yFJinS59hHxrN5KUCPbae78mXt90gjQ44vzt1htYLL3LZ72/Bp1ARmCQvpllIwjgYfizEPwslXRdEZ1U07VFwZ+5gMxcgayHibdsYWtvJu3hlEHbrrhgk7oNvIn364qq+fUTF2G3m7m19Vnaanq4tGwe5xXPAmD28DLeXrUFk17HzMoSxpfm4wmEDkkUT/KfRxICaR8PqL6PfiRJkiRJkv9Ocu0mhqfb2dLl+767QlW6nVx70kL9v5Vvm4X+zWzz/b1UVT1oWx6PB4/Hc9A+7s5CP5iQnsxCT/L/I0II8oZUkN8bw1VYhl+W2ekOHLDcRlwIukJRukPR/oByr2TBnJZJ1NPN+PHj/0O9T5IkSZJ/jqQwnuS/Bp2SypCsNwjHtpNiPaX/c72SiV4ZGITnuG6ls/evpNsv+dbrCEbX0+17GqflJBzmOfucx6SvIs12KdF4PSnW86jtPItovLZ/eob9Rlq9f0YvD9QLtRgn0hqqpS6wmTEps+gINxLREtlpreEaXEqIpp6fE4quIReFVNPZuAMD61TkFCRJwq5P1I1q9dyNL7QAs34YNtPhGHWlZDtvQ5bNCKHR4vkZAHG1h5XNZ2OSIvg9Kmm63v42/SKX8anHMzbjRNZ0PshXf4/Rsz5Eq9GLEAJZSjzVX9ezgA9bn0GfBht780gxB5hfX4XOdCJjRsw66D7tUjOptJ2MJ3g/KbQQ1EAvgW6Pew4VM554HXZD4r0mJMqUzwnJe4ufkgQKgin2eqbY64lqegxyjABlDLFPJBKOsYXl+HaYqW8L8ccH3+fXHRvJS4Xxo/IxSnba18pYinMQbb1I0RjtuAHIMvZiUqK0hFxENd0gsSEYNxBSDYkMRWmgL3sKMlpU4pPlXsKhYlAEM9KPZKtI1DhXjXDxy29w/qxx/HjGVCRJoqfNxznjR9Hk6+W242dTlOYiHI/TEw7xxopNPLxkKcW5MnqnSlht4fWG2ylzHMuXne8AcNfIywiE7JxQMRFVxFBFnIcvOoFlOxuYPKSQjQGFL9sbMHdWcs8b7/DjnxyF3Z5KpXM6y7pfI6ZqFNvLSLfb2NTSQbca5Iz7XuDL3yRKEtw0roqPmjYzKjUhGrd0e7nmz29hNRmwqDGC8Tjbe7r54+IFXDl5MtnWRAb33JPGsXpjHdvLO3DZ3In9ZO3iwVc+R0gQlwS/e+ZT7KV2AnkykdwBobWtJ/GAptXtQwjB68s30u0L8qNZEzjnmPFs8nexw9fDjbOnH/TYOxBWoyFRI1UG6yHYsX/etoHeWJCT8icxN/vcvabfNGs6N806tD55wp08u/x+TNE0jh/6IzKzE4EBW1fWUD6mCMs+6uvdfM8bmKMaGYVOrp49Zb9tl6SmIMfh1qc/IDUmoc/Vk39iM75qK3r9d7/k52W5+OmP9n1O3BdGk54rbzn2kOYts2UzLb2SxmAX40OlrGUHkiRh0hvRqXpiIopJtuxz2Zs++4i3t2/l7KqR3HPEvEHTbr74KXZububMS2ZyyQ3XQtHANEWWOXHMMD7dvIuUgMJ1T73BttRiJKMgFExHMyR+1JtbO5g4pICvPtyAEIKvPtrILWeMxqAoKDK0l8e4+ou3+eOMY7AbDp6N/+9kbV0LnkAiKGtjQxs5KQe205ckCa3XjLAFaGyKs7CmjiEGJ3qPiiuoIl0XwGb2MszVTlgzYm4YRSicCIayNYaYN7IEf8ZKotZ2LDoHr9b8hSE5czhhymqMhhhdvoz+dQkBtYEwwVCcMysuoNAyki927WRn/CMC8cR53qRYsdlMjBiZT7O+kWNGbsKoxJH2uC0XAqyG6KD3ACFVxqRo/QK6KiQiqg4k0BPbSxKP+HQYbXGQQNPgufs7eNb8EpFwDEurj5lXTqCppJ2tEQtCQEfEzhZvFnpVJlUN4NAl9nNTdwqBVjPZlZ4BkR6Iib6CDWLgOmHLC7PVMp/1nZ/0ieYaDiXSv5wqEv1O5LJLIIFjTpBsxwg6e6vJO6EdWRZIiER2vAQjnR1EVAPeuJUD8WDgDeY6J9IQ7ATg1YaF/cK4y2rm5hNmUpGdQSgS4/g/PEMoFueP5x3LsWMqDthukiRJkiRJkuS/k4pUK3FNY8eeDx3+wwxNtTI09cBjmCT/O+h0OpxOJ07ngW3zhRCEw+F9Wrl/U1gPhUIHbAsOPQtdUZS9ss33fL/nK5kNm+R/gRZfmC1dPnqjcVyFZUh9kd2HGv4q9vhrzy/BUVgG4SC96EiGWCdJkuS/gaQwnuS/CqtxHFbjuEGfReON1HVehV7JpCjjMVyWY3FZDk2Q+SYtPbcTiq7BF/qC4fn7rq0qSTK5KXf1v7eb5tDtfwr6MseEiKCX4wC0ilnMyXsUWbby9M4LiWhBmkO7KLONwao4STfYcWib2dl+FfTVIwcjRv3wQevMdPyk//+42kOX71EAIvFELXWrczqqCBCN1pFqOxuLcTQ1HWehiR6GGgdn1SFBbsr9DLOeidQnfs/K+z2rW59DaMvYtKwab5cPV0ZCVEkxZCIhoQmBz27iXd9o3lkzhVNHFCJLMpqI0NZzO6rmJRarJ651I0uZaKIDoTuMGyv/ghRdRIcaIRjXEdAE6frBgrKfURQYlvdvoyyphKOLD+k700sJocZKNX9fcQGPLjqS3JdyEPpUQhk63DNTCAcCdARgbWPC4vrN6o+w7PKROaKIW24/gTu0xxEiRI45ETgQ1fw0hVzIe4gaGoBIDPpkBvq/pxgiGzQacnfQ/UIRaYqFkb8oIjdzK23hAD6bSkQf4y9LlnPayCp2bWrjjrvfQdFJXHKfmzc7X+AEw8/Z3OLgo107mJlThCEu07ZlFOPzQoS0HgLxHnLNRSiSgk4yMCF3DKmGDIJxD89UX0NY83FW0e+ZNyqRTTzDcjppXVO46p4XQdqOu9vHvQ+cTzSaDt7rmZlXxG0jhtI5KcDFj7xGQ7cXty/AtUf/kZ+9dAqfdf4amyVKTXgNHeHJLN7US31HwnZvlt2FqdWPd7SBZ3auY0NvB2+cnBCM0zId3PvwxWSsXshnu3Q0eQWeRhfhlT1Iw12gQdv7G2k6PWHT3+wZCNi46eJZ3LTkA5aoTbyyci13v74AALvZyHkzxvKHc77bb3uru4MbP34HV5vKn049jb/efCYfrN1Cbn4KuT6FdRvrGVaZh3Ef4vFGTz23b3gJgJg/xlnDZuLtCbBhdT3jppQS0nexvmc+Vc6ZZJtLCcfjaELDojfssy9vrX2B3rQt9ALX3tJBZryQ0jQTC99eTcW4Yh785NZ9LmfwwyRXDkVpLoQQvPLGChqb3Fx+8WGs7mkjrmocVTaEv328gs/W7ATg9BtV1PJOoJPzS/YvqP8zCCESwTR7pMj6Y2Ger/uKfHMa+R0ZPPfCYubNHclxx44mEPfwRfsLpBnymJp+CnpZx/3jLu5fdujf8rBYjQwZmsvNkXvxxtyUWoftc92rW1sG/d2zT401CRGwblf7Xsvd/+Vi3tyxlWNKS1nwyTYsJ7sZW1qHiBZxbNoZ/GTdewggPy3x4Oaqnx/HOy8t5aRzpzIiJ4ulP7mSjxt2cMuSjwDwBaP838x5FDkT380DC75mV1c3v5o7i1xn4lwaicVRZPmA9Zr/GY4cOYRV1U0ossRhw0sPOK+mCVZ1rGJC/i5au2xsducwIjuLHIedP9xzFp3dXv6kexuLLookgapEePKBf6ALpiPpFba/spzCBhsFv0scZ2HNy5ZQG556L5achHDt7jEjS3Ys4Rjr3MNIS20nM83Llz0v88cNq1GNYaZmNSChY6htBMflXossSzzy+/NY3LiJD3tWIJGw9pf6srVlGYyo1PWmUGjvYbczybLOMvxeE2PzGukNGKmPpTEitRGnMYpR1gZdAzUhserPoyk9s4aUwl6a12QRNNoRqopql4nabHz8FUjLC1DmetCFNFSDoGGDC31dKVMum9/fnl0fodWfxa4PC8if3ogmy/hVE1YlQqnd3T+fJAEKfNH5Zv93IMUE0h6nGwn6LNU1QiIRhBVXwqzq+AKjCRSFflF897ZIElh0Mbzxwd/v7oCB3devHjWApIVJ1ccJqEYuLprLnz/+GkmCZQ2NrKlvYVhOBveecSyhWKKxds/3n0WWJEmSJEmSJPn3IEkSVel29LLM5u8hc7wq3U5FWlI6SbI3kiRhNpsxm81kZGQccF5VVfdr3R4IBAa9P1gWuqqqeL1evF7vQftoNpsPauNus9kwmUzJLPQkPzgiqsb6di9NvoHyBtI37c6+Jf3Lmywsa+4h325idJYzWSYjSZIkP2iSwniS/3o8wfcIxTYQikEwshabaep3bstumkkougaradohL5ObcidZzp+iCT9CqKial27/k2jIjMu8CZ3iQBMaJsVCRAtiUex80f4SZpoYo99JMDh4gB7QwGac1P/eoJQhGKjxqsgubMZZ+CNf9X0i0e69m07vY2j0kGo9H1myognP7sn9SBKkOn5Liu3svbbjxEtn0bizjVHThvaL4gBF1mHcVPkoy7o+YknXu8RVBZNOz89nJWqLB8JL8ARe3Oe+cRmcOPVpVHfchhAezAqYlXh/X3aTrreh7u3Kjs18MoHw2/us4brnNsU10Mmgc4XIn95IeJMeeXkvLWcV7e2eC6jFFljpY/Yxoxg1bSgZK3KoCzTijxmw6KJ4Y2YEMioakgBNJAIiEkKESLzfo73d9uuSBHF9FMthbWxvzOfsN/5BwQQHzb1x8kx2et1RhmVlkGW3sc6fGITKhggt8XUAbO9dxC2fK8Q0jUAsxvLbrkGvKIS0s9na+xXl9mmkGQu4Y/gTyJKCqa8+fU+0hYCaEKxbglvJtwzYbAtTgPxprXRuScPuSMx/+1ef81V9DYs65xMyjGdm2oncNmM6t/7+dYw9caobu9myZStqXzC3hII32sWcscP5bO0OrCYDR1eWsfxRN4G4QAVSTIm2w6qPDxtfIt9Syc/GH84t42byzBOf8+zfP0Mu1jFPWNnwxnoMpek09AkvU0oK+/v78Pav8ctRkODFj5dgMepQS928ry6g6dU2vvi4mtMvczFtRCVVzgn7PzD24P1Xl/NA3XKqM8OQAg/+4RXG3ioj8gWxDeO4+L4PCVSm4dAb+PRPV/Lxm6v4++NfUTGtlMuumoMz1YIiyahC48lrXib7RiuPPrMId7OH8mmF5Fz4NcLQzmbvYk7Pu59jX3+ecDzO6yefg83s5s3Gv1BsHc4p+dcgSRKF9irqxQKCcT3ecQqx19244okHQ57OfT+YeuKuc1i/vZkZ48oAqG/s5k/vLiZukdj6jIevdAlh+MnjT2bq8GLeX7GVEUVZHHP4CN5v2YZLn4ndfODo/O9CKBjhxxc+QUdrL/c8eiHDRxcA8GrDYl6o/QqAqgVDqNnUxc5d7Rx37GiWd7/P2p7PACi3TyDDNPD9e0JhXGUpFKa4AEg3ZpNuzB60zrXr6nnxpa+ZN3ckf5p7DG/u+pyizEYWNX3NzPzEuVuSJH7zyAUsXbKeo07d28rrgy3bEcAadwemuEJeWkLElI2NHFFayqvXnskm/4ekZdQiRBmRFD2n3nwkEysK2NzVwcKmWrJTdnDBuOWsbcpjca3M3dICfjPncG5a9RzbOrrx1bgoSU3hliNmsmZnE1c/+AYWh5GHrj6JUYU5/+JvAixGA785a97BZwR++uoHtFg+Ir84TFF+GM+zadyz7u/86bkrmDghEUBUv8HHM9sX4uh1EXytjUizCdmiosXihMrsbDFCRkyHURcn7NEhDOD+xMTcn51LjbeBv7epRJuLODutgpS4j2ZPlOxUL91tTmLGKKDQ2J1CeapEhjqLzkCI895+gWAsynMnn0ZtQxlltp2YFG2vqHWXKYQ7YsUkx9jgyaPHb6OrPYXWlgxkBGl5PWyQizk8YztSX0KHEFDTkcaSmkrSZgZxlgTQUMie0MWa5lKiYQMgYRvTg5wSI7LdjMMRJyPTR4nFjVIu6K71EI7pkCWBTlJxOYNMmrqNN1+dyfZVpbhGdiMpEAorFEo96GxiUBAYgBqRiEcUQh1WHJVdQOIas7tuiCwJdEIlJhSQoLPHiRZW0BtipKT40enjxGIK4ZiOsKyjJbRvZ4Dd5dc1YIitE4/6LJPTIZ85/OX5TXT0+tH07I7po73XT2lmKg9ddALN7l7OmjrqkI6lJP9hdnv1f9/8EPqQJEmSJEn+KSRJoiLNht2gY02bh5gmDjlT8DutD9DLEuOyXUn79CT/EhRFOeQs9EgkMij7fH+vYDB4wLYAQqEQoVCIzs7Og/bvYDbuu186XfLxfJJ/Py2+cP/5/t9Jsy9MRyCSPN8nSZLkB03yypvkvx6n+Rjc/tfRKWn0BN6iN/QlOa6fIUnf7vAORjcRim7FaT6RvNT7vtWyimxD6TeLyWN43kYkZOQ++19Zkrl6yH20hesotlaRItVhjX046GF5RFMQQEO0jPb2TygSEookiKrV1HddSlX+dmQpUffIaTlhkDAOAo2EMBqIrEITwf5pkpRDYdojBCOLUBQnqbaL97kN5aOLePCjn+9zWqohi6NzLuDhz5to6dYRigjUvttmISIkTiUDKWsO8xmo8SDNG47FOS6AzXw83uDfYU/bcUG/7a0eD8hZqFo7ginIUj0ptvPYFMwlW7wzyEr3myK5EPCbpSdiVFTcmUYkCcyXaYgrocBXj6c9DV+XjT2l7OcvP5P8Gx2YzImM3p8PP5fH17zPxg4dWKIIEna2mkikhIu+9SASooXo3+/77pNRMaKZFFAEdQEPKNAZDbLtpp/0Z9UeM3ckOr1CitNCPKOEhsB6JqadyhHFG/m0ZhdHlJQm7L4BvcgkQzcXmy4hgFh0g6Prc82VzMi4AH/czaiUowdNW6L+lYpTahh9dIifjv8lAGWuFLb09lJRVMdn7XXc8/Vqzik5jYxaLyF/hMwMO7PGzCMzamWz90vqAut5peH/uKHiaZ684QwA7vpDws49ZR0cffQwfj4nIcg9v/PPeLRF7AiAUynmD++soicaxHX2cHa5e/jaGqbkegveBWF0cUHMALtqO1i1vZEJFQXkBPVsAuSQxoSQk1NvmsWVax+lLhKiqdVHammA7bZFbK97jx+X/x+FliEciFgsziN3v0+0QMZ4qgFjU4TIGI3VnrUAlEd1xNISv9PeaITVa+p48/kldEoa7Wvr2Par1xh/RRUl3uE037sE3Y4Yr72/mrZIBNJMfG32MrYZSkogzZjHzp5uPJFE0MOGjjYM9oV0R1vpjrby9SMSZtXFuKOG8YlvGFgFk0eHKT0qyNz0k9j8zkgmHzVYjPpk207u/XIRZ44ZyRXTJtIY7GJHj49CZyZxW+JY8sai/Vdzk6zQuGQXPykdyjnXzUNv0DHEPhazYkcnD7aMV7UYSBLKtzxX7klNTQcLJ/iJpuq49+vPOdLeic1gpMR2GBLg1FuZO2UEf1u7CKMq+MUVz3DBPcORUXDo0/hiXTt//vgDzps+lrOmj2beY8/QG4nw8CnHcfSwfdcmf+rpr9i6rZVt21p5/92bWOpbSnushV3NG7jx6dUU6+3M01wccUkF3Uf+nRd7X+DiwB+pd+sZnpGBy2Tm9nmzeWH1Os4fNxpx2hZq/DpCkpfJ6TORJRm/YRU7ou+xoxnq6xQe+/RLKg6rYd2WKfxlBXgjES6cvAa9LsbonA421xQxMjOLL9o3UhNsxeACfWaEvzWtJGOLhXhdnJBOwyeHOP/J15j/s8vIsH9/1pHrGlsJGTNxZPpp9zroLQBPbCON7Y0U5Ray4qut3Fu3DLNRI720GsOlGms36nGX2ghbFSJ56Qgtzmsr0jAY4wSFAdsGH+N7rQzRH8OkPBMv7niIHjWEMzvOrh1NdI1Pp6U6lZTNMrGRMaT0KOs6ylgTU3hFWofZtgmfHAUNnliznDpNIS4yGeFspStiZG13AVUp7eRZenFHrGzy5iE0kGTQKSpSSMKaGcSZ5UeNJTLJfWETVn3Cqr2+NY11HSVEVD09moW4KqFTBJIkKK9qItBtpcmTgs6ViNKS0+OIsEyGM9CfsZ5a7CWOTETTo0kSOimKJiRGTdtG9fYChjg6SDMG2VqfxVpfMbEeK1pakKq0VlJcIYQqUb26gIb1eWSmuMnI92KyxojFdciKhiIl7OBNcoyopiR+Q5kBli0YTmeTi8OOXEeqy8/CRaPodiceAKZObUVn0gaV+YCEMC6AUc4msk0DZUk2dC+jo3cKQqZfFM922nn0/JMAmDPiwOfUJEmSJEmSJMn/Frl2E2mWzL0yCP/V7M4gNCQzCJP8h5EkCZPJhMlkIj09/YDzqqq6V7b57v+/aeUej8cP2tahZqGbTKa9rNz3ZeNuNpuTWehJvjVCCLa7A2z5DzmECCCqCZa19FCVbmdoqjV53CZJkuQHR1IYT/Jfj1FfQmXuF3T7/k5Tzy8AsJmm4jDPBsDtf41gdC1Zjp/Q0fsY3uDbZNhvxKjPxWwchV7Jxh9eRG3nOf1tOsMn4LQc8537pMh724JZdU5KraPoCb6BQ30dbQ871DWhoTTErMSEjvGueazzfETRHkGvEVKIaSpx4WWDZyGl1nGk2S7DH/6KSHzXoPXYTDOwGqfS0H05oOGwHI7NPAmraSztvQ/S7v09mc6bkaVvVw93RUMLvt5MUCOcMaoClykR9dfV+xB7iuKKlMlTa07k/SXrsb/5BVOHLeei33l54+HRrPowhwvvXU3lpE72vB2eX1vK9NIHyXe6MRnGIUkKn7au4KGdf8elHMPV2QvIMAQSYjoJQV0TcH/TEXTE7MRyEoKfCAskE5AoLYvFIbA4ughn+/D1mHE3uzhnzCiGZAy+GerqifPhpi4yCiUs/YM1QZ45A1kz0hnxkmVKxaDTqA00APQFBgxshSZA1SRkZN447zd8vqOWbZ2dvNW4hc5ggOuGTeDLjzYyY85wjCY9iiJz9JwRfUuXMj3jPAAeO7aEqKpi3CNi+N4Vi3l03XJGZ2Tzzqnn7/XdSJLMtIyButdCCN5+6isCvSH0JycyuTPT0rhx7TM0Bbsx1mcTbTVBlQ4NFW/QzFNrVvHexz+jemMTE4+swmDUM545xEWQusAGZElBlgZqaZ170iQWf7UVnQZXHjEFc1+d7mjMAQqEYgZWN3WwNrYFDYURtlJwQ8XoDZQUdhI6Qk9waQE1zhArWpr41VMf8fG9V9D58yWUWATlmZnc9tk5yHqZialDqPG3M69yEhu3rQNqkZAxyeZB+2FLZweXvf82BQ4nT51wLBu975FiyGXq7EoWt2wlNd8H+dCyK4OsgB5FhpPmnUB450r+saGaVL2Ryooczr1yNg89Ph8/AilTz+NrVmLUxTjjN1aym9IxSOVsen0FFrOBgqJsVqxQKdbP4ex5p7G9qZuiiIPUFAvzistZ0+Yl2vk17e0uNvaGsQfq6PAsoSgq07A6i9Szt+IBtktfcvp1N+713T69bDUNPV7+smgZp46r4LyvHySmxfnF8NO4/qTpfLm+mptPO5zVK7bicQeIre3imce/ACEoLs9Gp1N464kvOOnSWcw4fiz+WISYqqFK3Txd/VNkScflZX/CZcjca9272exdRUQNY1IsmBULJbbK/mnGPDORrMRx0ejaQnVwOwTh1PyxPD7xaj5+ZgkvPPgyE+aOZPXKOtY2eTi7+nBuGf8iOtnAMb9/Dk8wzAuL1zBv7FB6Iwl3jFp3z377c8Ts4Wzf0cacOYmSE1mGCnpiLbR3uwjE42z39eB5fwMe23biRyZsvZ9Y/wnPrw5RmGrl0eOOZXZ5KVufXcVjz91L0e8T6zo171Impx0BQIo+FyFA1RQ6/IKcyg4MljjbY4vJtMzDG4lAZBppxq3sfMXA7K1Rzj+niqAlxvvNq3DqLSztCtMTifDMupX8yjyW4cWZbOjqQAiB9m+O0D4YF4wezZe77PjbK/H4e5l3/BL0mW7mR/5M6hPH8uj976D9NJ+sNC82YwSMIM4z06Z3IEU1TG7QhQS5v2+i+ZJsyJcIVNr52q0y994nOaPeiPJFLbFT0vl7fDvObomMJYAkE7dLqM0GIiEDql5GkiTiFhWfPgxGQIM3tm7DbHQQcVnZVFOMPd2LopNY21PAVm+csKZDUyHcZgYhEYwaQAcmW58Thy5hOV4dyMBpCaMJGWdmmCMytzJ/zXB8nXbe+XwqpfmtpNr8jBtWA0AwomOJewgRTU+owUbA60QpURg9rgZZEvjDeuyWSKI+OzIB1YgGpGf7ScvahkWJIkswvrQJSQJ30EQoZmRdSwGpQT8jc1sYOq2e0rFNOK0hJAmCYQPLvh6OPc/P6PI6jHKcmFCQ+uqfCyHRqxox5QQpzEtkmBeVtfUL4+5lWdiG9aBLCSMrICuwWyFXJI0cs3/Qd5+aFuCYySms3hmjLZCY9uwlp1GYlvKtjqFnaj7hs7Y1nFFwGFXOItKMDtKMB65rn+RfgCZA+gFka3/P57AkSZIkSfKvxajITMpNIX+PmrOJ8Pvvzu7lHQYdwzPs5NqSWYNJfvgoioLD4cDhOPC4ds8s9AO9fD7fIWWhh8NhwuEwXV1dB5xPluUDZp7vKaYns9CTQOJY3dzlY4c78L2sf3OXj5imUZVuT4rjSZIk+UGRvEom+Z/BYhyHLFmQJTNmfUK4iamdNLpvBkATcTyBl5EkaPX+qi/LV09V3hai8Yb+dnRyBpZv1DH/Z+n2PUer5y6sxin4IwsHTYsJPXML/kpdYBsmxcrYlNlUB9bxhT9EqhKgI24noJmQrF+zrXcF23wrsSpObh3+LP7wIprcP8VmPBxZdtET2YJsPJW4kopOySSutqFXsgDoDc2ns/chAIz6ClKspx1y/8PRbXy+42M6/Ilb44leMzub23l87VoOLxrNkJRNWAyHo2lR3vprGi+a14MZtNEuRh++BNmymTNuhWFTW8kqCfDyxsmcPWI5ClDdk8HdCwvRFrzLLYfP4MopCZHtk9Y1CAEe1cJ9LfOYYq+hLepguKWVw527WNxbRnMsdVA/JdO+B1kmewSTPcJYx3DOn1DKyu63KLdPwWVI2Bk/2fgmWcO6iIcU0BI3Q6pQKbPlctvwS/vbuXfrs9QFE8eKLCBLSqdV6wINZElPHA0VaAl1cuLwSk6kkp+KGXy1s4Z773yJ+Z0Btm2cybW3HrfffS1JEkadjo0d7cyvreaM4SPY5k5YdO3o6UYIccDBZFRVeXv+Kv7227eQNLg29xSmHXcKES2Fx3c9BYCmxgn7zHSsO4a4KY63swt9b5jf3fUWM6dXMt04kFk8KfU40gy56DQXzyzcSlVuJrMryyivzOHPL1zCus4W6hq7MJgMpGXYuXzYVfx9WxljUwpoU92YShKD7yuGjcGuzuSh7VsAUGWZdmtCBI07BY6exOVo9LQKln+ygcMvGY+hrx8PT7hsYAOPnktjsBqjbCbTlDto2z+u3kmr30er38dnzS+zK/QWANf94Smmdo/g15teBuCUaRNZvCiXE6ZVkW3P4ye35nG9JvpqxkvMO2kcs44dxabNzeQWp3D6269QkrMOe0EtgQI4r+wSJk4spSAvFYfTTEO3h5L0VGRZ4rUFG+jdFsCLn3N4lV0eN65NI0Ayk1HQw/CJNRizotiRcW920bUzg+yhfhbU63CKamYXlA3apilFBaxvaSXFYiYQixDXEkEo/niIS446jEuOmsTK9av4+NlX8W81EjhjKvG8hMDl1wQv/vEtaixBmv7wFqWzypj39t8Ix+PcO7uYiJa4QV+waiFzx53AF9V1jMzJoijV1b/+2sA2nqm7d1Cfbii/h3xLooZ1mSuN60ZN5e1tm+luixEqNSA0mL/Vw2u+j9CGC2yF0LKthSHDckhJt1M5qgCjoqehy0NLdy9IUJ7m4tXPl3J2WTlZeelcNHEcnW1eHrjjTTKyXVz/qxPR6RPnhtNOncipp0zo/x2cUXwDn+6chUHfi5bVQsvX9Sjo6Vrn4Phzz0MgeK3RjKzbTiStjstWPMqdI87ik/dXUHNVNnmqF50syDLl92+jTivj9WWTiaky5076gKEpXoJ+C/oteTw553g6DTHGZuXy5esreP+FF4Am1i/ZweEnjefFaYkAh9dcG3l67XL8f9nE/RtX8ZO/XIx6xHgKU11kOb+fmopxVePl91by5MuLAUhzWfni0St4eMMmfLiRUQgHo+j9Kjkfehh26WRKLakYFYXWwiK2tjajD6hkfNVJodlKVxiy33GjP7uYVr1KwCaIW+Dr57cSLnfQO9EOQGAeGDt0qFaVeKqWeEoqAVEN2SeDRRsYkfad3qJeE/EuCYFAzurtnxjWEucFWYGYz0jMo0dN1dCboxitid+H2mFAdsVpb8hg9TYL9iI/hQWJh0z6sISkSWgxmZot+dhGDgSXWYxxUghR1+RA7TGAAsEcieXuEmZnbsflCCMEBFWQpIT1ugQokkCTQBVSv6uIBKRbgiiyn0KXG2/EhF7SiAsFkyXW7zRiNMbJL+pk2aYKAn4940fXIknQHLSzuaGQcIeZeMgIQrC9Ppc0p4+d1XkDX6oqU9AxlG2buxEIps41UKc1c1zuRK4ccizvNv2RmsCKQcfBL088mnjUzt8WrWZMYc63FsWFEDxXmyiH8NCOt/o/v7hkHheXHpqdf5IkSZIkSZLkh0eu3USOzUhPOEZ1T4AmX7h/XHMoIvnu+SQg32GizGUlxaRPiiFJ/uf4tlnowWDwoDbuPp/voFnomqbR29tLb2/vAeeDgSz0gwnpySz0/222uwPfmyi+mx3uAHpZpiLt+3kOkiRJkiT7IimMJ/mfwWwYTlX+ekBGlhIW1IrsxKgrJRKvwWoYjSeQEMYGxnwxBFFSrGeiigCK5MRlOaPf7vpfRU/wTQRR/JFl/Z/JkpPCtMexmiYhSwbyLAO2wVcNuZf3mh9nc+9SQKCgJ8tURK1/MwAh1U9buJ5s00wqc5cTiHv5pPV51noC0HkHAJW2ozg552QsxkR9XZO+oq/2eBRP4C1UzUu79z7MhhGUZLw0yHreG3wfd+AVMuxXI0spVLfP4+RKQYvnVJYsy+cWsRLqV4IkEYp0cN2UaWSl/Izuxmw+e/QObMd6YWgKFx82kbFHf9FfinLE4R0AnOpcg9ZnkP5F3TBOqVxFusWHUWzE3buEFPu1nFN0BL9YV48sBUCnsKi3HIBd4Uw+6BmJNui2G0xylGHmNuJCZnsom6gYfHoTAq6dOZFVnkdoDm1hfc+HHC39Dr8phEd09Vunt68bSt64elShoYrBNwcn5RzJV52rkQA5ZuPpI35Fc1sXv6p9mpbIQGRve9jDEHtCZFvV2MzNn73I6b9Yjk7WUFcV7Pc4iUXj3PWjJ6jf2c66C1PxizirW1s4tnwoixvqGZ06UGtZCMGuba2kZzpI2WNwec1H7zK/tgbHaVnkv9lJyZBCWpeF0BlizMseTWOwm5MKZrI2tZPzJo8hEIly5zvzkUIhdq5pYueaJk48exIms4EbPv2QhQ113Hfk0aza1sSzX69BkmDhz67AbjZy+scv4Y9Fca2PUbFJx/Mf3ojRYODSEQm3haVd25EAk2JgWEYOmSYnM5ou4tUV7xBdIDFOB+tSwth3wa/umgPAnS9fj68ngCN1/wPmAkvZPj8/fVgVS5saKHKmUJFiYlcIjLIVs87BkTm5IIFR1jEhrYxzx0wZtKwsD/6uDXod48YU8fbOLTRFesmMuQCw6lKx6B2MGTmQYV2Wmdb//1HjK/hy/S5Gl+byZaARgNyJuXg7wkw+ahl6Y5i4JtPtdzKragonjxzPTZs+YltPJ4sbP2bl2dcO6kcgFkUArb0+pJieP0+4nOagm2NzE8E7a3uW8J78R0beL/C36fF1rkDanIlQZYYMy6P23FRadRYMMQv1Pg/+WCKD+tZ3arh8+njqFjby1xfW8Np5QVZGunEYjVwyaiyBSIzr5k2lOxzkm4/CVFWwcnsjwwozsZmN/HT8TK4dNYXHNt1DW0Ri5YoKJlXE0CSBLGsUzcjiiiNPZNKRIwZtmxLTkKMqwqCwo72VhVIrUlTj3SGnYjHoeefdtaxZWp3Yr6eMZ/iYgVrku2/cH77lJRa+u4br/nA2t558OMyFv3jf4/1Ny9mwppkbwmeSW5jGyFlB3G/2Uie7AVjX2MScW+ewPryRDzaNJH2Tym/uHDiuSlwpHFc6gZ2eejAsJQ70fKlR/cc2Mq6YzzV/SDg0TJk7krEzK5B1ChNmJzLY4zGVv9//IbFonEdPPYrrNi1HAHpF5pjRA9n2e7KytYmnN67mtKFVzC0esLJe+cVmVny+mVOumE1uccY+lz1UVFXjpCv/So8v1P9ZtyfAW5+t562Xc0gvNTFh7pnMvW40GXkuCsqzqRxX0j/viflxljU14vTBtWtepVqvw1ycgrHZy5nBArrnZPDYmhVYfYLYzCHE0DB6NCIOQJWJWQV7mE4kkEFL0QbMNzQ4KnsoEzLz+OOnC0lP7WXGmM3oTTEiQsdqdxFhVd9/DZdQMcsC21DPoGaV9ChqkxFphYWmFCthXxYtHWngk+httyEbBHIQsvPcjKmqRdMSCbA9ARttHieRZivowFzkQ9JrABhlNbFOCSwKqCKKJElENR2i7zoUjOpQNYW6+ixiQQMTxtShyCEkBDZDFJAwiEQ7gZABkzFGRNNR605HUgU1nixqlmeQkpWwuPN4rchhBTkCuqDEkpVVyDFQogIUQMD0kkJuP20Ox/zpGUBipm4qT88Y378vWkIlwIAwnqMvx2XIBgP87JjDvu1h1LcPJFx6G57Y4Gz0jZ7a79RekiRJkiRJkuSHgyRJpJoNpJoNjIprdIYieMIx3KEYnnCMuNhbItdJEi6TnlSzHpdJT4bZiFGXtExPkgQSiRd2ux273X7A+YQQRKPRvcTyfdm4BwIHFzq/TRb6ntbtVqt1r+zz3S+9Xn/AtpL8sGjpcwH5IbC5y4fdoEvWHE+SJMkPhqQwnuR/ClkyfeO9gaE5n6FpPnRKGmbDWHpDX9DpewCIIsul1AfrKbGOJMN+xb+tX9nOW2j3PoDLehpu/4uEY5vJT/0DdvOM/nlq/ZtY2v0+41OOpMIxgdMLbiCjI4/WcB3bfSt5teFeTsv/Ceu9X6Gh8lbTnzHLVroiLXjjXViUwYPsbf4t+MUVWKXEDWnCcn4NO1pn4I98RSi2Hk30Eoh8TVRtwqgr7l+2uecXqFoPcbULk/4IlD7bznxXPYGMkv7IAlnSuHriZyAEnd77KSh9jtOvncO4M3+OxRbusyKG3XEGQiQkNr0+1t9GScpQ5pY81b/u7t6P0etKmZB2Ip/NuYe4FuekxTf1T99d/9upi9AbNxHTJCQJfpT5NeXmxIC/O2Zhub+Imc5drPUV8rZ7LAJwGWyY+vZTrFfm8qPugJ8b0SZKKBJ07khHjUQp11kIx2KkGvbwsweMeh3abgVHSdjphm1RGiMJwX+sq5wp6cOZmj68fxlZkkjN7UWvJMSV/MO/qQwN0LSrndULtqG57MQ6wpCho9DhZFlTI7GoxvKmJnzRCA6jiQ9eX8Wf734fq93ECx/ciLVvcNnYV78qa1wuf7/tejZvaOLun/8DgPue+hEjpxQjhEAxbGe9p41Th1bx9vUXsOjzLdy/6C0mTBuCyWzAH4vy7o5tALy9fSvT0xKCvh6ZXzz3HndfeHxfriRYXSFyf1vNH3fewI0Vv++vhT41vYI3Zv4Ms2LEZUjUU758xgzOqBxN8IgwO9bUcd+1zzLmsEpGjkqInpIk7VMUf2DVEhY31XPn9CMYmZG913SAQqeLf5w+UBJBtLl459FlfDV5I8ecN425OaO5a9Oz3LXlaS4tPZZzi47c73exm23uxDG1pjmVe6b/hRJnHgZ5/wN5TRHcdclRHD6slHXtrXxVV0tLl493OrbS1OGkpCDMrh25rFs7hOvmpDF8SDZHeMvY1tPJ7PzSvdq7YMIY6tw9jMjOosDlpFByITxGqtvdVORk0ByqRe4TrU1ZKsGMVkpG2KhbpWfn2loyslNo6WoltzCdydkF3DrhcB5YtATND8vWlxN5USDicVQ10YaqaTzyWSKAp9bTxYaMVRj1udiWxrl05hwy8nK44Pr38Bk1Mors3HbKLGaWlyLJUfz6Vdj0cMy0OB882IC5Ss+s47ehnA93PyuRNn8dj951NkZDYuiRk+ViTpuOLZsaSLtoGG30IsUFSt9DtMmHV/DuK8tIz3JSMjRr0H6JRmI8+cvX+OjFrwH4/LXlzDp5AgAz51Yx//11lA7NIjPHBYBTb6RsdZxdNhfCovJ6wy5evO08tqwKsnxTLfPSh2A2G/rb7wwE+PGkqeTY5vFpq0R9YAstKyUk2cfwKeU8tmo5XaEgN06ezt2v/XhQ31Z9uYVX//wpAMUVOTz4+W14u3xMnDtyv8fNXV9/waauDla0NvUL46qq8dtLnyIWjdPV2sMdz1y53+UPhWXLd/aL4rq+QJC4Jnj69a+Jh/W0bcnEdYKLaFzlpTW76PlqIw/+8jSK89PodPv5wxOfkpnmYN70CkSfm0OoMAUpy8727c3MPryCv848jvse/gy/FqHtMA1MIPfKifN2HERUQh+UkGMSml4Qs5HIFoeE84ZHZlNjE3+4eR5/+mQxw0oaSXUmHvrYiZJn9lATyAAPeLtshCQT9lw/eyY4CK+M5NTQFUbQE8JsTqXLF8XT7cLSJLBJglCulDjXWIJ9ThEw/6sxRMpVcAgsQ71IsobeFUcvxSmV3MRU6Dt0kSTQSQACWRPEJBkhZOq+LMJW6CctJUDqkHZmpV9BUOvk5R0LKc9sI6YqGHQJYbzV56CnzUarNwW3146Wtfshs4y73YGkgYhIyHEZg1ujcmwjQ4c3sv3zQjxfOpkztYJbf38WSl+dzqcuOY1mt5eTxg1cfwCG2IfwfksKOaYAp+Rfw9jUg5/3DoU3ZtxOU6iLhmAnK7u2ERMqZxUe/i9pO8kBEAL2IUh8L/1IkiRJkiT/8xh1Mvl2M/n2RAkrIQQRVUMTAlWAIiXud42KnMw4TZLkn0SSJIxGI0ajkbS0tAPOq2naoFroB8pCj8ViB23L5/Ph8x1cQDUajYdk426xWJLnhO+ZiKqxps3zfXdjEGvaPKRZMjEqycCpJEmSfP8khfEk//PIkgFZSQwqLcYqLMYqMhyX0BHawmM19yDcd3Bmwc2MdM04SEsDBCObaOy+GrNhLAVpDx10wGczzcBmSrSfZjsXITQkafBA4IOWJ2mPNLCjdzX5lqFU2MfzVec/+qd7Y12kGXMZ7phCrX8TLaHqQcuH1SBHZV3MJ+3P9n/2ePXPKbAM5cKSX6NIOhTZis00G0/wNRymo4mqDZj1IzEoRQBEtQgyMk7zCbgDL+C0HI/DNAtv4BFiKnywfexAur0QpBp9bNicx9iRrViNRxPX2jnyqieJxROiuJBAUwdyTTVAL48CdQMyAknASZW1BCO7e6wDJAz68v5tiGqDB/EGKcYvCz7GqYuwyFvKa13jEQL0ktY/T6o+yBzXNiRJYpKjlte7xyCETEdvmBPzb6UpuJmVL7QAHyC2xmGiHmoEpxWNYFhRLieMHEJtoJWRrsFCZZE1mxNyDuOrzrWcmp+oYV9qy+Gswtk0BTu5vvxUMkyuQctMKMhj3K7prHN7sEoaV5SdO2i6KjSEEOhkhcKKHI48YxILFldT8GEQLUWi5YWFXPLsRTT2ejm8sBiHsa+2e0fCOivojxAORfuF8UePOYF3d2zjxKGVpKQ6sFj7aslLYOoT/pa1NnLd5+8DYNLpOL6skplHDmfmkQOCit1g5NLKMby/YTNjei2cffRoti3ZxatdDSxpaeWZz1ag+QFNZtQ4M4pFwxvvpiVUx1D7qP52csyD7e4BXOl2XOl2sgvT2LWlma5WD95uP42hAL99cz6Tygr46fEDmYxv79jKQ6uXAvC3jWt44Ihj92pzX7z74BoWv7+FJW9tYfapEzCZDax0bwfgi+b1zLJPIjf1wLXDrh4zCYBhqRlUpOw7U303q2qauPLphK3wXy4+iVnDSxmbncvy+kYW7KzFKZfg1PUwPCsd65BiThlXRXvYzYnlRVw7agpWvWGvNotTU3j67FP733+2cSc3vvA+siTx1k0XEAsOZ1t7DnZjBJsUJKZXqBsTobfbyZ2rlnHTeUdwadUEDs8rwRMOka5YKclKYae5i9kjSznqhcOp3dHOlLnDWVBbT47NxnVPv0MwFuOrHbU40jTUuAG1RbD9tR4is3IIq3FiDpmd9l5+9Pm7jPhdhIfuv5LJqSewy7+G4bqjeTu6GpdfBSmCCuhTu9m6zkBTm4eywnSefOorntu5jvYjNa695TSuGz+V5z5cREVqGsNGJ7KUSytyePmLWwftjy272qhr6sbSE+S9p78ERSG7NIszr5vbP8/oSaW8tfT2QcttXr6LVc8swVLgwDc1EeTh7g3x15NPg5MH7/Md3V0c/8oLaELwj9PP4ajcywFQX1MJBSJsDbj54xuvApBnd3DJmPGDli+uzMFqNxGPqwwZVUjJsMGW//tiTlEZm7o6mFM4cIzJskTp8Dy2r6tn6Oiig7ZxMFItJqRoHKFXiGsDp/L0FBteX5jcLBeTx5SwdksT22sTwT5fr6mhOD+ND77axNdrE9nAR88cRtWQbDbvagNAGHUs1+IsfuRjSkrTcUtR3DM0sNA3XSB7JTQLIEvEVdC7IWe5SvdYiWAxlEoudFtjtBAh1h7m9ttexu7VaEtLIz+3ExlBJKan2edKZJkbJNR2I6SD2qqDPiMOEQHd24L4ORKSQaCdHqBzkw0E2GokjEBP5kA5itqduRgsMaIxPZ07ndgL3EgG0KdE+/dbmbWLErt7r/25u8RyXE6EpiiSytB5NQhJYreTyUub3uWorIsozHiPkNAzKWUeG3o/ACDFEmRYdhvxqMwLn0xHdmhE4zoMisrRIzegV+LULsum6x0HhpGCMRN2oVM0yqc3sf41GyefO61fFAeYWlYI+zhFnZQ/lfGp5aQa7Fh0xm91zBwIRVYosmZRZM1iZsaIgy+QJEmSJEmSJPmvR5IkTLr9B3onSZLkP4Msy4eUhQ70Z6EfzMo9EAggDhL8GIlEiEQidHd3H3A+SZIOauO+W0xPZqH/e1jf7iWm/bCCWWOaYEO7l4m5366UV5IkSZL8O0gK40n+v0SRrUhKJqJPso2J6EGWGExt52loIkA0VEta9EKsxgnfavlviuIAFY5JtHc2oBKnPriFXHPiCbeMQqVjIpWOidj1KTj0aYS0hH2pgg4NjSxTEbMzz2K4czIruz7Brbb2bVeEmsBGtnqXM8I1HV/MDcarKHf+ApMuA02oLOv+kJ2db7LTt4764BYsip3ryh8kN+W3SH2+t6oyn/Nfe4OIOiDcHVmzkut/uRAhJBa/X8Xby5bzu1sfwWarHZS9F/DpsLjUvncCTWxCv3vzJQhG5vftEwdC9KJXSlDVGF2hR5EkHS7rxRSYs2gMtZOp7+WCzCU4lISSPsNRg1UJY5GjvNM1iuPSNjLE3I0AopqMURFsD2YhhIIq4J71r/HG0bdQYhtP7sUjqVnbzoK3VsFiFTywQfcBVy+4HafBxhjDgDi/G1XV6LirHf26GCOeLIRCkCWZK8pOOOD3fe/sU6jzzCLTasPSN+iPhmN4CXD16geIqjEeHv9jiq3ZXHvfmRTtXMqGl2tY+8oyenQq7PTy5hkDgromBCNPrECx6RlWnkta5oC4W5aaxo1Tpve/HzeljIeev4zPXl7KS3e/zRW/OwOn3YQsSWhCkGqy7Lffpg9aSXl9F29I1Zx9zFRGpaXzRm01mklhTH42z3VsQlIl8lInUOpyYNHZKLMNzlZc1FTHp7W7uHjkOMpcg0Xy7WvreeOvXwBQXJnLxkzBluYOtjR38KNZE0izWWjyebnhyw92Hy50+PwHrbO+m/GzhrH4g/WMnDoEo0lPk8/LKON4GgMNrJof46T3nuOzX12Gy2rebxtOo4krxlTh0O9bQN+2po6VX2zh6HOnolcGHhIZ9nhgNLmogBU3Xs3zNT+hLRzAlrGJJ2f+Bnekl/OW/YGoFuPnw85hXvbEvdrvjHjQSzpchkQWfTAaQwBxSXDN399hxsQS1jQXYbZFOKlwCEv8ayFPJV4Zw6/quPODLzh2pcbURy/hmq8/YWVrE9gSQSRN8SW8Lb6kcMwEntoepCo1i/FFecz/5WW8tmUTD3++hNC6dEoy9GyoilKdbefS2VUsXV3DdrOPLSSCM6oLTZz90Et8eceVHJV7OUIILr1lOR5DLYX2ychxBz1yJjOPy6IkPw0hBK+9voK2uRJxIfHajk3cMHE6lx5/4GzTnt4gV93+MnFV4+x5Y3Cm2YjHNX730jXkD9m3i8BuSqryyS3LxO0OgKoQCsdwd/r3OW+Lz0dMS+yjxl4PY7NzAFB0CjanhWKdwGUy4Y9GGZmZtdfy2YXpvLj2/2jwenhq63oOMwQ4qmzv88me3DhhOleNnoR5j4cCkiRx39s34u7wkpm3d4DJt2XYmCLuv/pYXpq/nlV17UhI3Hb1PI6YUoE/GMHlMKPIMqMqcjlqxjDc3gBzZwwDYOrYEl79cDUZqXbKijI494SJ/PKB9wBw2k14e8NELbDC7kZLB7GH6YOQBZoVkEBIAgwQTREocYilgNBBddxD1WIv9hwnep8X+fjVHJkbZUNDEZ+1DcOoxDHJMQxynAg6NL2MZpJwbRKYRvZHVqFrMKO2qYR6FCxZIeJBBdWkgQIv3XMR5enpTL7hAXYbD1aMriW32M2ObfnkpvTi320GERGk2IMUWXsQfjPYIRJSMJoT17K4gJBmBCT8nSasqSEkJRFsIBBYcNDYJbF9expOxyMYrIkArwXNSzFaDCBJxKOJc0Q8oHD0yA3Y8yMIAc1147CaEmOSipktOM0BMsf1oiKDKti2MREFkFNwaMeEEIJFnZvojHi5pHQeNt3+z3dJkiRJkiRJkiRJkiT538JgMJCamkpq6oHvHzRNIxgMHpKVezR64GeoQohDzkI3GAyDMs73tHXf82WxWP7lZS//V2nxhWnyhb/vbuyFABp9YfL8YXJtSUv1JEmSfL8khfEk/9+SbSrikpLf4o97qXJO/VbLChHv/7/N83/kpz0wyIr8uzA3+zwmps7j1Yb7EAgOyzyVCalz2ehdxFcd/6AusIURzuk49Insd6vi4IaKxzApg4XNcelz+Lz974M+e7/lSVRUXm98AACDZEYnDMSJEGXwYCmgelnvWcD0jJP6PytLL6TAlU1rr4+TKitJ7VUxqV8jySAhmHH8JsLTYzQHfQyxgSwS2eFCQDwuE4uo6Ax9VmsMZHYLkRASFDkDva6EcHQFMbWBus6j2Z1xp8guHptwG3etv5zT0j7HgDZQX1aCcbYWNAGleQv4We0pDLO0EVJ1tMRSSNMFqI+kQp/pd6Urv3/dRrMBQ58dsNSXDBiPqjTt6mDZJxtIyXBgdZgZOqaY1OyEpXpXs5vln2wA4Ku3VjJi6oHFrj0pdg1ERL75xBc89du3qbyslJ7DEjcKm721FFuzeaL6Pd5pXULqXJhxahPoNLL7LHbrAm14o34+3tLCX9espMSVwq0lZl6s+5zTCw5DL+t4uX4+ATXMhcVHYVISgQxOu4kP/v4Folwm/akUrv3dOXx6xsXENI1hafuvW5xfmUM0L4UUuwmj2cApFxxGcXEmzgw7ZcPyeWdIFps6OzimrByj7qh9tnHlJ+8QjMeo6+3hhePOGDStsDyb3OJ03B29jJk+lCK7xOLtdUwszSe1T6y2G4zYDUZ80QgiDl83NNLs85HvOHCmN8BRZ09l1knjMZj0SJLET+Z/wOr2FuyyAdErESfOhoY2DhtWst82nqt5lLbQe8SFk1uH/x1FHnzZ/NV5jxLwhdm5sYHfPHcVL113NnFVY1xJXv887b0+/rZoNSPK56AaY2SaJuGPhQipkX5HhJ5o4jio8beww9fE7Mwx7PA1cePaR9DLOp6a+FPyLBmcMHYYXWIF63vms2FzCes3GMkcEkSV49TGOhliy8OmmMkZN5wnVq7F2Bxk6/IWFr27BjlDQkIiW++gMM1JZcYm2iMqtf7lPLHeiCYUlp91DWvaW7lzxRfggL8ddQpPbFiJ1trEF90NpKZY+dM9ZyOE4O2V63nmzcXUxmMIgyCsRrFiQEOl2/oVAGtrd1HsvogHbp01aL+dduI4Xt+6GSbZ+Mnk6ewPX9TN528vxqplMPm4MSiKTFzVSMt08NK2+xNuC/r9D2Wq/c38dN1fSTHYeWjpr+jqCnHUM8+gmWB1fRPHUsWGmlYkCUaWJATww4qKuevwI4ipGscOqdirzQyrlaU/uoKoqvY7OHwTo9nAQ18t54NdO3h18yY2X3U9Rt2Bh1zmfUTK6/TKv0QU382UeSNpkzVWPdmOJgQWswGzSY/ZNLBug17HHT8e7MpQUZLFR09d2/9+9pShHD97BItX7eK8EyfxyN8X4i+Q0Mwaaso3bELickIUR4A5UU9cjoPkD+NcJ+OeZiQjbCK2axf2XZ1Ef5lK9shESYgpKdt5p2YUDkeMGRnVKJJgY2MeKxrLUW0S4TTQ9xiQRQQkcA3XYTPnsNPaQKDVglhpRhuR6MynDbuoaXOTWeOn0QqyzcDQkS0AjJ2wC2kibKzPJyezm2xLL3pZQwJiOj9hVYemSVRX55Jd1I4myQgBgWo9kc8m45HWUHCpF1mfuHKF8JIvzyGY3Y7RmvhtqzEDNlsvqiZR05BJflYXIVVPUK8ntSCAKmQ0SabY3ECoV0ZnT1zrskb70SRBTOjo8Vvo/DyVFF0MZ5qFB7f/DE+si0tKfkGhdd/Xo22+Jh7blQguSjc6OLdo9j95FCX5fvmBWKnzQ+hDkiRJkiRJkiRJkn8Vsiz3i9AH45u10PcU0ndbvO/+/2BZ6NFoFLfbjdu9t0vXnkiS1F///GBW7gbD3m58/78ghPjB1BXfH1s6feRYjUm7/SRJknyvJIXxJP9fU2L7bvafxRnP09H7CIHIQoLRlfT4XyHbdevBFzwILkMGVw75Q/97m85FxJ0QrkOqn5gWZUb6yRRbq0g1ZO0ligNMTj2GBR3/ICYGsuhSDFk0BXf0v4+KEFFC++2HO9I+6L3NaOCjSy8E6B+4aNphvF89lzJjIkN8jms7t714HD8qX8rQyX0DWgkc6TEaNjsprPIOalMIUAWk239CquNqhAjQ43uSuOanJ/AiuxvQKwVIksRZ2RbkmMb+hk0yAofeSLb9FFqDPUTDddSrA6KVIkn8bvLZg5Y564ajiYSiVE4sJR6NYzAZqKtv5rn73oG+ZNL03BQeX/xrtq+pY9jEUk64dBbb19Ry3EUJq++6rc3UbG5ixgnjMBj1aJpGNBTDZN2/Ze2yzzYhBOx6sYFTzp1JRI0yO3MsALq+LH2zoiLpE0EEQaWL5mAnV6y8D1Vo5MUSWdldsW7+sO1lAIyKnhJrDn+r/QiAHFMaJ+RN698G3d0OQnlxtsYT9sdDUtJoCnbyRPV7HJYxikrH3lbNPr2CcJhxA41NbkqKMxh32LD+6UNS0xiSeuDaVyMzslje2sTojJy9plkdZp5adDuaqqH0ZVgv+PXgOspOo4kvz76ExY31PLRsKWOzc8j7hl3YszUf8UrDl1xYMm+vuuFGs4HWnl6eXrWIXvsGsnUSdl85rVLiePSGDhxF2xjcgEEGveTlulX38cD4mzApBuo6e1i0rZbUsnQC65rILU4EGIwqHLydqqZx0kMv0BuOIC2Fqy+Yx592LOSVxmaen3wb94y6nNawm2NyJhNWo1y/+mHCWpSnP/8KKWxGDBFEtRjt4R7yLBnIskSv9V3yLSFMRpUPPkjB7FDQZ8eZlFbB9RXH9a/7wnHj+P2PnqS3NJMpR43kiBw7CxvqmFFQRKrZQltoJws7wBvKRxU+0kwWrHoDtj5Ld4mECHzDhOk8uGoJJ5UPuAFIksQpk8Zw/LiRvL9hMy8H3+KclXdyY/bZbP+0m6JZ89gSXczijixeaV/JOd5J2J2J81XAG+STe95G5w9zeeWZnDCkcp/73hfr5vEdl6CNiLLx9ixSM2/hhfsupKnNw6RRxcjywW+iVnZvpzcWoDcWoDbQShgd0b5D1lxuYfWOJi6/P1Gy4qmfnsG48nxkSeLCUWMP2K5Jp8ek27flW11TwrVibHYuH+zawfCMDAzKoVtOBoIRHn9lMSlOKxedMvmQtvPbcNjEcj5dtBW9XsfEkQO/+2ZfL6km8z4F+n1x21VHAYmAGFmWeHzlShp252JLoHQrpDjMuEUoIaHt8TzEWuPHWN+DFDXQOSeLNnOY4kursDZ5WK83EozosRhjqEA0qlBOJ4qUaKAorZul2ytAgnC2IIyJnFAvkkWiO+ajNS2EwRxHb40j1xkJlCWyyz94cz11BGGUjZPkdIrSMli7dRdpld39wVY5di/ZFj8mJZEZrglQdHEMEgirRG5hK/64iVDjeAo/TKUrfQFZV33JN+/nNQ18AYWzpheytHsTAGrfAyGBoKSwAxkNVSjYzWEMioYQ0Bs1QnYXe34Dkl5FEhATMkZrnLThfo67uZBFne/TEk7Y27/b/CipBjNjUo5iuHOw80KOKRWX3oovHqLSXnBI322SJEmSJEmSJEmSJEmS7I9vk4UeCoUOyco9EokcsC0hRP+8h9K/Q7Fyt1qt/3NZ6O5wjN5o/OAzfo/0RuP0hGOkmv//DWBIkiTJ909SGE+S5DtgM03HYhxPbce5ROI1OMxH/9vWdUTW2dj1KeSZy7DoEoJggWXofuc36Sz8esQrCCEIqyHc0RYyTAVE1CDhuJ/eeA81gQ3fWErCIJuIagmxPN+yd+bZNyP5ZNlMjjkPSdQiBLh7cjknbzWv/WYsE45vYN6VO5FlaNrqIB5JDDSjURmTIZEFJ0kgA93+p9EpFegUC+nOXwFxDPoKZMxYzdMx6IqIRLehi7++O4mceF/SudL3fnswg0+9w/HGY8zvWMGRrk7OKVlNUyidJzrGI5BIxcZazw7GuMrZ2lvDhp7tjEqv4BdPJeoHL+5cxwbvLj5pXgpPG5DuUhFbVKLhKL8+5y9sXl7NlKNHcccL1/Tvg4AvxE/m/Z5oOEb91hYu+uVJ3HLC/WxdWcOND13A3HOm7fM7uvS2k3jtkc+YefxYZpUPrk98WdnxjHSVMsSaR3tkOWHVzwjXHBqD3agiseHHlpcz3qlnZE4af6p7lpAaIc+cTr4lA6tiIqLFKLcPZCzrDTpcpU5CkW627ahjlbyZCXOquH/bq2zw1vBp6ypen3HXXv2cOKGEN99cRW6ui5xs1z635WC8ePyZtAV85Nn2neEtSVK/KL4/0s1WTh46nJOHDt/n9I/aVhATcT5uXbGXMA7wq398ymZlI9bSKFYrPDxjLivyOugNR3h6ySr++PFCnr7kNIZmp++17Mn51/BK/QM0BCWawx00BNsZai/g8iffoNXjY8oJpfz5nnMorcrba1kAfzhCbzhxg2fU6XDHEvbj7qgPTWhMShsINIiqMXSyAhq0d/gJbFUwBpzohI6xswZ+k0Md09ns+Zya+gyEDqJbXPxp2gkcNmTIoHVnpjn407s3D/rsxKGJ9cXiKtXVOuYU3kZakZXZ2d1kmK1Y9QZm5Bfx9innoZcVqtIzAXjlxMFBJbvR6xRGD03nLysTgQYvLPyKtvfiWOYbyDr1DBrCTdjD0kCteyAWjRMJJazXfD2BfbYLEFK9aHJiPkt+nJRMB/nZKeRnH3o9qnnZE9jkrSXVYMcdXsiKntc4Z/QoNjWP4IzhI2lu8vTPG42p+2/oENmyq5XLf/kSCPjr785h+SVXkmq2fKtI6Pe+2MTrH68DYFxVPqMr8w+8wLck1Wnh0bsGf5+vbdvIzxZ8Qp7NwfyzLsF0kOz2b3LO8RM45/gJXPfFu7xfvw00UM0abm8IOS6Rajfj9ocwCT1ZehlpWSvjZgzh+DuP49xlbyKADaUBco7y4pRgo7eUQnsLO3vTqbB0kmEcOE62tuQyyDYEUGUZXZ/yrjfF+xNqteP9pC+xI1SZTrkXinRIOo3OI30s6t5EQQqk9zW1aX0hubYO5DQNVQNFBllKXHYkCRACSRHoJEGjqZnpP0khqO77oYwsQyhtAa9tc5KXqqBXJMx6iYiQEXEJk0FFCOjyWshyxQENDQlNkpDFoE1LlI7ob1mi/PRqanTVbK3RYTAl5lNFJ/VBNx2Rmr2EcZfByj+m/5KIGuXx6o+4b9sb3Dr8TEa59u+UkSRJkiRJkiRJkiRJkiT/LLIsY7VasVqtZGXtXYZsT2Kx2D5t3PdVC13TtAO29W2y0C0WyyFZuRsMhv+KDOeangASP2x/Jwmo7gkkhfEkSZJ8rySF8SRJviOyZKIs681/+3pMioWZGad86+UkScKss5CnS4hlBtnIaYU3APDHzZfi0wYGiFmGYqZlHM9bzX8G4NO2Fyi3j8Wmdx1wHSWOGXR4F2PUl5CWWkvabHA3WnjvwSpWf1CIMytE7dpUskr8zDy3hi2Ls7j0/hXo5MTDfAmQ8dPmuQaBRJr9WrJct5Fmv3TQerRv2L17tALe6irgosyv0UkQFCYao2kkfHsl5jgXY5BVhlr9TLW7+No3BA9e7tz0Z2RJ6q8t/0rTR5xbcBxzc6bzf1uf6dtxgE7i7IePJXODkxHTyrnr/McA8HYPFkFkSUJREqK/olcIB6NsXVmNELBmwdb9CuMVY4u4/anL9jnNIOuYmTEKgBzLgJ1xsTWb+8ZcjTvay+zMscglifWOy/4lQTVMrjkh6r467Q5UoWHTD64j+2P7yfzq8ceQl6psu6yGCXOqKLRmscFbQ6F13zcoY0YX8f67NyHL0ne+AdDJMvl253da9lC5eshJvNW0iDMKZu1zen6qk1WbrTizNeaWjaDCmcewwwpYVdvEYwuWA/DOtjWkB1XmZk8g3zJgLz/CNYofm/7EA9v/wcS0dMpsCQHcYTbS6vGRarcwZOT+szBrO3qQYiBkOG1iFdcOncQQey7jUspR5MEBAQZFz+MTbubTLRt4fuMGclLtVKWOZO6EikH7f2j3GTx0ViNNJxWAAneePncvUTyuqXzVsRZDzMK03Ep0yuAo6PtfW8BrC9aTlWLnw3suZYhrcOb/mMy9M/z3R4k1h8tKj6M51IWpPoU3WUPF0GzuvfAs5m/ewZad7aypbmFiRWI/uTIc/PG9W6jb0sTcc/dvo55pKuW4vFtobq/j3BuPJr8496B98XuDPH3H66RmOTnv5yeQanTwu1GJ88mTuxK/ucLUVu6ZknDmKHQ4eeCaE5EkiSnD93ZNOBg90Ra6IvWU2SYhSwpeX7hflPX0Bhk59OB9/iZV5dnodQo2i4GCnH+djfqB2NzVAUCzvxd/LHJQYbwtVE1chMm3VA36XN1dKkMGLALNqKJJ0KH6qMhOp1broVpW0Z2eTuidRqZv7mT6hzG6Z6bRkdHcF/wkmJixHVkClxLBnJUIjoj4ZVY3l7KpsTAxnxAYugXRdBlPh53UvF5khcHZ26Ux5BI3WjwRSGXsNpGiWdkaqgcLtMfsmN1xousVVHOEwvEeAEJxBbOs9pf7APB6LYQVha6IjXBUwS3vhH3EUuxexmKOoDe7CcZ02JSE1Xt7Wxp5WQPXXpMhTlgzEBM6VJG4MMYRgEARAgmBRRdBkSCoGohoenabDyh6tb9vXVE/VkWmyrlvm3SjoieoRnivJXG+e695eVIY/29F/ECs1H8IfUiSJEmSJEmSJEnyP4NeryclJYWUlAMHwgsh9qqFvj9b90PJQg8EAgQCAdrb2w84r16vPyQb9+8zCz0S12jyhftF8auOmERnSxNnXnsTZ13/0++lT7v7MOvkM7n+9w8CCdG+yRdmVFzDqPvfythPkiTJfw9JYTxJkm9Q7V/PG40PUWodyWkFN/xXRAQejLgW48uOVwEY7TqcUwuvZ1fveuJEsejsjE2Zw5+2X9E/v1/tYZP3a6akH7u/JgFIs1+Hw3ICspzCzoZTiMZ34WsfCWi4Wyy4WxLWye21dhpWnU9nXRORyGowq8hiION7dzRjKLpun+sxG8ZgN5+NL/RKYr1KI9tCE9gVzmK4pZ1x1kaqLM38o2sc7VEnCgIFgcrumuYqSl+WuvhG3ORLjR+QYnSSZnDSHfUyM30M2eY0ziyci2l0InrxrpeuZelH6zjspMHZ3WabiT/Pv4367a1MmjsSnV7hx/efz7pF2zjvp8fxr2Zsyt6Z/C6DDRcDNaDMun1buE8cMZyrp55Mc1YHJ16WEE9+MvQ0TsqbToElc7/rVJQf/iB1VuYYZmWO2e/020+Zw+mTRjIkOw2zYcCkeHRhDqeNr6K9N8Bawwra692scG/jsQk3Dlo+05TCPaOvGPTZM1edwcbGdiaU7DtTfDdDczIYk59Nm9fPGZNH4TLY9pnVvptscyoXjp/Fxym11DW5qSrNZuo3BNvswnQyrXak91q5+t6zOHnC3iUh/tH4FU/VfIDQIP+j8YzPL+KFRWu5/qhpXDRrPL5Q4gYxFIkOEv++C5IkcU7RHABEheCMYyeTnmZHliSWrK7n3a838+Jna1nw4DX9+3/E1HJGTN13TeQ9qXIeQdW3iKv45IVFfPTcQoQeyg8vYcq0Uf3Tjsy+mtXudxiTkvhthtUof6v5CKvDyPnF84BETfKdvmZmZ47BqBjwRP20hLoY5ija61oQ1UI8W3MdMS3EtPRzmZF5AVPGFHPH9ceiCcGM8WWH1OeIGsAdbSLbVI4kyYysyOPDp69Br5MxHKB++ndFCI1tvYux6lIotI4E4PrxU9ArMqMzckg3Ww+4fHu4hmdqrwfgjII7GWKf1D/tF+Nn8VHtjoQwDrA79kOG7XQNuH7Y9LSdlMO17kXoJkikrajGcKFMJK4giYGSGXvWozPaNKoKmtnUVARCoAsI4qka1pQwFleI3XEmex7PqgqKAkrfz96SFaanS8IUByQItRlJCxzF2vcWo95mIKIq6GWVrbV55Ge6iUkSeY5EfTaXK5j4aw5S7OohqLmQMKCKhHC/2/E+pkkYlN226dDR68CrxLBoFuqbnGRn9iA0EEgYTSpCSKgoe/RbAiTiAmRJ69+VIZ+BqKLDYIglrmWaAiQs8iKanitL7yffuv9jzqW3ckLuZFa0b6fx0Xr+lvsOP7rtxP+JMU6SJEmSJEmSJEmSJEn+/2B3rfFDzUIPBAIHtXH3+/0HzUKPxWL09PTQ09Nz0D4eqBb6nmL6vzoLvTMY+UFniu+JADpDEfLt5oPOmyRJkiT/DpLCeJIk32Btz5f44j2s9y7k2NxLsej2bQH938Q23woWdr4BwKLOtxBojHYezqkF1yNLCp3hpkHz6zAw1H7gGruQGJAadMUAVBbNBzRGPSTjsL5KU3UHY2dW8Nw97xKPqZx8+RGMPXwYbn8lbT2/RiPWbxm7e/ipk9Np67mdTOdtyPLgwVF22p8wB6bS7b2bmHIEgggLe8upNLcjS2CSNM5MX8sKf3F/fdhA3MCqQAl6qa9W7H7Gm4/teplT8+dhVczMzZ7KPxo/4dX6jzi/5AQUSSa3JIPTrpm7z2XzyrLIKxsYjB99wQyOvmDGQffdfxpJkjjlqsGCrCzJlNq+fUbrfxs6RWZkYfZen+sVhd+emhBEf76+g/aIm1zzgWum78ZhNjF96MEzjC1GPS/++Jxv12HAF0wI177A3jXQ7S4Lz3x9B7FoHIvNtM/l9XLf5V3AzpYuGlr8RGJx3ly5iYtmjefWc2YzZkgu48vzD1rDWtVU1np2UWzNJt14YJVakiSyMgfmyc9I/J/psqH/FnW2vyvDJw9B79QTvt/MLyPPcmfnxf0ODCW28ZTYBoJbPmtbxRtNCwCocpYw3FHEdasfJqrFqA+086OSo7lsxR/pifm5tPTYvQIahNAQYnct6sRfSZI4auYwDhUhNJ6tuQ5vrI2p6WczM/MiAKz/Rkux9Z5P+aj1YQAuL/sr6cZC0s1WfjV139nG3ySuRfv/j2mDj8+PtuxA9spoLg0OcFhJcQnNrCH0EMvUETnWhFHEiAuF7hYXn3SNoCyjg22t2Rw3biOSJJAkaOhKI3NJEFttjJrznaTmezHZYux+hiEEeFrs0HfOj8d12J0BzM5ov1iuRRW61mViUBT+Nu947v/Va4RvsoAGX7QMRY4KRFiiLNhGZs7Atu4WrndvVkD1sNmTSYohjFkXIcUQIRaX2bC9iGHlzfgDBlauGUrUY8CxI8J1h0/H7Wlh8cs2FEXBObSTqrF1/e1pMRkhCxQlsa16KY5dH8EfMFK9K4faZQX4HQaOOX05AoHPYyY7PU5UDiEhkWUu2KOvgs0ra8guSCM9x0VjcDPvN99PpWM4xufK+PCdJdRJTRx/8Uwy8/4zrgRJ/kVoCUeB7x3tB9CHJEmSJEmSJEmSJEkOgF6vx+Vy4XK5DjifEKK/Fvo3rdy/KayHw3s/o/kmh5qFrtPpDsnG3Wq1ohzC8xRPJPaDt1HfjQR4wrGkMJ4kSZLvjaQwniTJN5icdgzt4XpKraP+J0RxgCxjEQbZRFyLofV5v673LmCoYzyjXDOJixh6DMRIiAA3Vf4Vu/7Q6/jC7hrkiYHa1fcM1K898pxpREJRsgoSgmOq7SIi0W30BJ7vs4wFm+loLMZJdHh/C4DJMAKX9ay91uG0noHTegYAR3tfYnX3p+yp6TVFnKz1FzDFVote1ogJBQ0ZSdq/KA6gIXi96RMAnqt/u//zd1q+4DcjrmOE6+CZrUn+u/ntyEup8bcwxHbgDPD/FH+540yWr6tj7ozKfU7XG3ToDfu/hJ+aPxN91MyKTW2ceN4YOn0BXv16PZfMngiA3WJiwvhMPmhZwGzvWKqc+7dVfqb2Y15umI9Tb+XVaXcMiO59bPbWsqx7K8fnTiXLNPi8cekxk5g5soS8dOdedu7/DoZNLOPhNb/msvX3ArC1t75fGP8mFY4C9JIOo6Kn0JKJJEnoJIUoMQyyjqiI0xtPZAl3R3r3Wt6oWLmg5EE6wrVUOL5bMIyGSiCesNb2xjq+9fLdkSY+a/srueYKZmacf0jR5jopIbpLyMjStx8G5lkqObPwN0S1EJX2wds9u6yUexcsRgsIMIuBjHEBRGBq+U4qMttZsrOcnQ05oBNIMTDmxvqFa5M+QkAz8WV1FQKJV76eiixUAhhR/QpZ8QDxFAWdP4aiT1zPzH4j2ocyMQ+Ep5oRRhCyAB30uJ0EWzWM9ghaWEHZZCAvqucfD1zCT29/jUaXAVlISAg0RcFsizCzdBdy3/VJCBAqyDrw+w1sbctlWHEbABWOTnSyQFMTx3YgbGJnWy5GVKaM2oFWqWPZohHovRGGTSjiT39bj8BELBXcu3IosQ0jP30b7pRaOnqcLFszDJc+yNCyFhwWH/b8CFZLhO07i7E1RBBVJmq255CT76ZuYwauegu3/fFqXIZ0ZGng9/XWE1/y5G/ewmo38fyq37Kh9zM8sTY83jamHn8bb402IVIk2s1eMkkK40mSJEmSJEmSJEmSJPn/l921xi0WC5mZ+3dUBIjH4wfNPt/9UtV91N76RlsejwePx3PQPu6uhX4gK/euwDc9MvvWE4vxzD13suCdfyDJMjOOO5mLf34Hik5HLBrhjb8+zKIP3qarpRmL3c6EWUdywS2/wpGSeI5bvWkDL9z3Oxqrd+D3eFB0CvllQznuwss4/MTT+tfT0dzEX2//KVtWLSc9J48LfvrL/W6PANyh2EG3O0mSJEn+XSSF8SRJvkGBpYJryx/4vrvxLyXDlM/PKv/GZu8y3mp+uP/zNxof4qPWp/HHvYPmj6jBby2M7w9Xun2vz7Jcv0aRXXT5En1Js1+GXldAl+/PIGKYDQfPVh/uLOPTDhtvdI8hW+9lpb+ItqiDM9LX0BBNYVcokzX+gn/KJlpF5e6tT/DS1Hu/WwNJ/mswyDoqHYXfdzf6KcpNpSj3uwtWsiRzUtkkTtrDWfn4cYMzme/b9irbfA0s7NzAa9Pv3G9bgXgISFiPa2KwvZgQglvXP0FQjVDjb+H/Rl02aLokSVQUHPjG8l9NSWoON1acQa2/lTML9p8FPdRewJszfoMiyRiVhFj8xMSbqQu0MSm1EkVWuG/M1WzrbeDY3Cn7bCPDVEKG6bvXalYkPWcV3UNDYD2jU4751suvcr9DbWANtYE1jHbNw2k4sJUcQJVzNjZdKhadk1TDd3OMKLNN2OfnOS47zjwD3ZEghKWEMC4BMQkJiarsFhRZUJndwq6WXIgqnJRWwvyeDVhTwkgSHFO1mRRjiE0tuSyprsQXM/WPVmUF2ubaQIDZHkZv1ACB9EEc02qF8BAjQohE+ePdOrEANawjFEz4qV89eywnTqoiw2ajMxACVUJ7JxUtO/b/2rvz8KjKu//jnzMzmS0zmaxkgbAHJOwCAnHDslRcwOVxRUXrxgOiVK1L66+i9QHlqWutVNEW3IpPWwHbIotaQQSVRSQCsoYlkBASQvZMMjPn90dkMAaQfULyfl3XXBdzn/uc8z0zN8lkvuf+3rKdX6pYe6WsxsGvEwxDClQbCtlM1Vht6tI2T6ZpyGKE5LIEZbGYSgj218J1hdriT1TIbap9Sr4MQ2rXskBfWAxF92mhqU/+U57aStV6bbpmYC+tyc1XzfxqfbqwWlGdWmjD4PaKia5QdbldA703qbxmj3Zsn6ekqLP06wHn6o1X35QKK+Vxn63ty0t11kXLpMFBLd77b13R6rZ670PJvnJJUlVljWr8teoVe7F2Va5XururktLSFfTXvTBfl2xV93jWGgcAAACAo2Gz2Y56Fnp1dXW92eeHe1RVVf3keSsrK1VZWamCgsPfUJ959a2yRjWsPvevN6fJ7nDJ7nRq3548zX3rDbXOOEtDrx2lKePv0KpFH8titSq9Y2ft3bVTn7z/njau+VpT/v6hHE6XCnJ3aO1XS5WQkqb0jE7auytXW779Ri89NF6eGJ/6DBoi0zT1+3vv0Ja1a2SxWGS1WfXiQ/coFDx8ifr9/lqZpsnyXgAigsQ40Ew4rC6dHX+Rkl2tVRuq1jvbJqs6VNEgKe6wuBTnaFh2+niYpqnK6v/IaomV03F2uN1icSnGfZmKK96VzZIsl7239lf+n6IdFyjB+98qr1qsQHCfop2HTkZJUlWwrnzRsrL24baOzgL18dSVhV9XmabCgKdeUtw8xK2ThiF1jm4n0zBVHfRrZ1VevTssWziYTYczg2ma+tuL87RjY55+8fjVik8+ctnzDG8rfVe2Qx29R54lf2eHy9TWk6rMmDbhBPIBhmEozZWozeW7lO5KOuFr+CnbKvIVbXUqyRl7xH6XpQ08quO5bfVL0ae6EpT6g3L6PWI7qEfs0a0VfrxaujPV0p15XPtmeAcqe/9HSnZ2lDcq8aj2MQxDbT29jut8P2Vp3g4VBSrDCXEjUL9KwJebOyojJV+rtx1MxvpjbTKLrXW3jBtStK2uckmLmGopKCkkGX7JahpSjSl7gl9R9oCqKuzq4t2tdt4i5XVrp8qCjtrVxi/To4NJcUmeLZI1ZKoyyZDFMDR6+DlKiHZLkkYM7qkZs7+Uymwq6miTr7xSeUaMuvp2K8piKhCqO1Reeazs0bVK8ZYrZBqqDNpVW21VtKcu1vkfO7SxvI2qU0JSyFTixoEq3LVEW/JbKVZRSs0NKnd7kdyGIeX5dUX3Llr83FLtlySnS4F1lRpxc6kS+iyX6XfqYu/1sqm92na8QlLd/23HU5Uqyi/RVXf9TFvX7tTfY1fKb1Zpf6Cowftww4SLFZ/sU/vMlopN8CpWZ+mujq9KkkJmSDe2uUh7qot1SVpf7aosUoorTlbj1Fd0wElghuoekdYYYgAAAAAaKcMw5HK55HK5lJR05O9KAoGAKioqGpRxP1Qp98PNQrc6nIdMiktSbGIL/X7WAkXZ7Ro3NEv7CvKV/cVnSmvbXqsWfSxJmjj9b+rab4CKC/Zo7LCByt28UZ/9a5aG/NeNOuvsfpq2+GvFJtZdR42/Wr8cMVj523O0ZO4c9Rk0RNlfLNGWtWskSXf8dpJ+fv0tWrPsMz1xW8NqoOHrDpnyB0Ny2k79snsA8GMkxoFmpqWrLslzUfJ1WpD/ljxWn/onXqKaYJVCCikrYYSsxsn5UFJeNVv5+8ZJMpQU+7SsFo88rpEyDItKq+YpGCpUMFSoSv+Xyi/+tSSprOpDSXXldDqmfim7rdX3x/qPisqmyx7VWpKhFpYYGTJlylCyI1751fu00x+nnf5Yeax+rauqn9w3zQPr7NS/E7G9u5Wm9H6gQex7q4u0q6pAXWJObVIMOBEL3v1c899eohsfvExJLeP05yf+IUlKSInVbb+96oj73tfpal2TfqFSfmJddbfNqZEtzz3s9hfPHq9dVXvVLjr12C/gGCwrXKvHst+Q3WLTne0v1bbKPRrVZoiSnc335pX2nrP1YJdZp/QcXxdvkstq11kxbX6y74DkVkqKilZhZYWs5VZltkpS0GIqFArpu31F+nZna327s64yw4G1z85u7dNqW3n4GF8UtlWKq0w7KuLksgXkSKxWoMwm8zu3HGZA7t4lshghWSzRSnOVyGJI7n4F+iSQKndLv2pqXPLX2KWQ5A7V6I6bitUpIV0tNFKziz7WxO9e128yb1KKK16jLuurj7/K1t79JTq//0ZFOfzaXpWg4ppotXCWy2rU3TyVnlysgGn5Pu663ySFm9yKyghpf4lHRmySAiqSI08Kuqx6V6ZaPttStoqA/jhzqNav2603V+XJrPKrW89W+uarrercraU2ZOfK8NeVka/I26EESbJXa/z4aQrlSZOmjlafgR1lGIZG3HahJOnJ0VO19N9fq+tVbXXp73qpX/ygBu+D02XXyF9ceMj3yGJYdEvbwRq/cqquWvJUuKpKL197vdT3v496XAAAAAAATpzNZpPP55PPd+TJDT+chf7jR5n/8GXJ+/1smKK9dUuFtmiVrn0F+dpfWKhN2V+H+/z25obfH236ZpWG/NeNMiwWzXjmCWV/8blK9hUq9IPkfHFB3TrqOzdtCLcNGHapJKnHwPPl8cWpvKT4sLGFDjWDCQBOAxLjQDOVlXi5shIvP6XnOLi6jam9+x+WJCXE5MvnuVGx0deovOoz1Qa3aUfhzT/Y68CHOUMWwxFuzSv+jWqD21Xhr3vuljS53VmKjZ+pVFeStpTu1Hu585Wc8Cu9sPFN7ampW7e3/mcsQy1dLbSr6mDpoSe6jTtk7EnOBCU5j5wwBCLtT4/8VZVl1Zrx1CxN+eevlNa+hfbsKFKP8zr/5L6GYail+8RneTutdnU4DWuz7/XvlyTVhAL64+Y5kqTaUFAPd7nhlJ/7ZAiGglpWtFZtolOU7j695eUPpSrg19y8L9U2Olkh01QXXxt5bK56fZbszdbj3/5FkvRq3wfU0dtS+/ylyq3aq26+dvXWtZak3OJS7d9ZI5vqypav3VugoDcoS5UhW7lNnhbl6nOWV7e1H6420SmqDgQ09uuXZOjgkhelAbdKy+pmdMe3Ka6bsh0n7amxa5DRXuute2QYks9fqWUbOqlTyzx9s7u1YruWy+WuUXRtlXauT5WlSurUvkBVURv1TelaDUjopGX7vpUkfbxnpa5vc5HWVv1TZ9/+L+kHdUKSXLXaUBarJEe5DKPud8j+WqfsFlMhM6igaZFpGip7x62e51+pi67oqTHbPlDAK1mqa2XIqVqZ6nJBhtp4YtSlbzu99NBfpcL9uurOQfrnP7O1dsPH6t6rlX5xx3masyJb+StztW1WimptTpXu8qg66JEtqkq/HvuW/vS3scrN2au/vvGZbKGgdnxZ94VDwZdV+lnyFYd9f3duytOeHUU6+6JMWSz136fN5bu1qXyX9IPXfXXJVu3zlyne0XD5EwAAAABAZB1pFnpZTUALc/Yecr8DSXFJslq/TwWZZr0vTDN6nv3j3RSbWPe9xYsP3aM1Sz+r+w6pQ4Zc0R7lbt6oqorycJL8h1+91q+MfuTEd5C8OIAIITEO4JTxuq6UJcGrUKhce4rHSwqpqPR32l/+R7VJWapWiS9oc96hZqJa1DJ+qorLXpXN2kKxnjsV47pEReVT6/UyQ98pMSogSeoQk65fZ9atbzztnCclSTnlu7StYpcGJvbUprIdKgtUaGBCTy0uWKk3t/9TQ5IHyGf3nMqXADilht54ruZOX6TB1w+UM9qhaV89pVp/rZxux0/v/D3TNGXKbJDkbGwuSR2ggBmUL8qjv27/WDkVeerqa3vcxyuprVBu5V51iWl9Wq797e0L9ea2BXJa7Pq/cycq+kdl3E+Hff5SeaLcsltsmrFtvv6289PwzO1O3nRN7fvLev2D5sE7wUMKqSZYqzuW/69Kait0a7uLdXPbYZKk/TXleiz7DRWUlcticygUsMrmrJWvwz75a+0qNjyylpuKa1esnJpivb1toaYOvEeS1Da6hb4t3SHJlNUIyZQUMi2qq8Ved+5AjUVei1NPjLpEY775VsU1ZbLnWrUpLlGbiuuqgyRGFcvllmr9NlmrLOqTlKKyKsmqXMXYY9U7rp96+Dar0F+i85J6aOnemVpS+G6D12h/pUUphjf8x7wpi7JLWqq7b5dMS93HZsOQ3F3K9eFz83XF1QPVpdqtNbZSJWdX6oqbByizY0sNP6uTJKm2JqCiPSWS067NG/bIFx8t98ANirtmpT7+MkXL+nSV0bOl2r+2Wzl/S1HI6/z+vHXvzNirXlLIYj347YJhlSEpJu7wv7uKC0o1dtDvZI2v1tWP99eNV98uq3HwI39mTGt1jWmjb0u21/vSwhflPuwx0Uj86AusiMYBAAAAoFGwHMcy3R279w7/+6q77tE5gy+WJAUDAa1Z9platusoSdq4epUkacg1ozTmySkq21+sX17+M1VVHKz81jrj4OSMLxZ8qGHX3aTsLz5Xecn+I8ZgZXlxABFCYhzASVMb2K1tBVdJMtS2xfuKsqXK4xoqSXLYu6i47BWVVf5dwdA+hUIlirK2lttxvir9n0s6uF5ltON85e0bK6tRl/R2RHVVctxjinZmKW/fY6oNbZckeZ2Xy2Y9/Hro7Twt1e77mazdYzPC7Rcm99WFyX1P8tUDp99/P32D/vvpgzOmrVaLrMeQFK8K+HXPqheVX71PU3rera6+dj+9U4TYLFZd1eoCSdKFST1VFqhUnP34ZrcGQkHd+dX/qqimVKPb/ly3tPt5ve1zdn2uT/d8rV+0v0TdY9s32P+dbQv1t52LdFv74UcsM/9DB0qEhRT6QTWN02dB/nI9s/6vSnUm6M/9H1bc9zcFWQyLgmZI5bWVDfa5IKmnftf9F3JZHerkTVdloFqVgWpJdcnwA5bv+07rS+t+Ljt98aosipY3pVzRnhpFq0bl+XUJ1+oSh5w+v77bWi19vwz8q/3H6oYlv1d+TZ6s39+fUBOQQqZVtZvcipJNRnq5qm3l+t3nn+rRXrepvGa/Jj/4d8X3qda+Xk4pKJV941VZK48cIbd+O/RC3XR2TxmGIfP7190wDD1/9j3hmLdX1H8PqmqtsluDKiiPUa/U9eH2kHmOakL7tbK4jYYnmyqu3aFApbQhp5V8A5365cVPq6a0Sp0tkhGSfvGHPoprcfCO/Ci7TUNGX6C5769S9ro8/WHmf2tGzlgZVim1e6H0lWRaJDMUkm1PiWqqaqQkr0KeKFn2+xUKhCTHDz6uOx1SeaXOvbzhHf3hmIMhmZaA+ryxR7meOfqswKFBybeGt9ssVt3afqge+Pp1maaU5ozTI5nXymphbTcAAAAAONNYjWPPMHfrn6Ve5w3S6iWf6plxv1Bauw6yWK0q3J2r6spKPTHj72rRKl1tOnfRhq9X6OO/v6v1q75SccEeGT86X/cB56ldZjflrPtW0554RP9+63UV7NwhW1SUArWHL/NuOY64AeBkIDEO4KSp8C9TbXCnJKnS/6V8tivC2xxRZykp9ilFWVvJHtVZUbZ0BUOlqq5ZpR8mxeuOs6hu/fDv8xbF5f+nkAI/KrluVYvYXzX4MAbg6O2s2qttFfmSpOX7NjTqxPgP2SzWQybF5+V9pT9tnqPhqf11d8cRkupKry/MX6HW7hZyWx3aUVmgFUXfqaimVJL01+0fKxgK6ZZ2w2S1WBUyQ3p54yyFFNJb2xZoSq8xDc7zfu5nKgtUak7ukkMmxk3T1P+se1trS3L0aOYo9YjtoJvaDlWb6GS1i05tULL8aJimqSWF2XJZHXJYomTIULfYg+/XlvJdemfbR8pK7KYhKX0kSQvzV2h18Wbd1Hao5uctlyTlVRepvLZS16ZfpK4x7eSy2rV6/xYNSOjS4JyGYSgrsVv4udvm1LO9x+m70u26OLV/uP2c+LPUNaatDMOQt02G3itar6pip6JblKumwi6V2CXD0N4NSZIhDWidXu8cM8//lR5b87qWFa2TJD3V4yZ9sihXH6zdKO+VuyVbSFZrSB9s/E7/3PidHs26QPZEt0xD8uQEZKk1lbi8Smdf310P3naxUjzeesc/lHOTblBMVJIWF7ylskCZHNaALBapd1puvX79Enro072LJRk6J/FWnZfYXU/9Y4EKz1mvQkmtN+xTlKROPdroirsG10uKH5B5dlvNfX+VnC67klrEKPO7kfpuwwL1ihuu8a1StWf5Ln2bVKlKt0MHFv02o6w6u3crrV6xre42CtOULy5av3p5lLr1bC2X5/AVBxJSY/X07F/q345HFFKtgmbDLyL6J3TWX/r/Ug6LTa2jI1/aHwAAAABwfBxWi2yGocAxVnZ6+I9/1vuv/kFL/j1HBbk75HR71LJ9hnqff5Fad6qbBX7P5Bf06uMPa9OaVaqpqtJtjz6h/7z/ntYuXxY+jmEYeuilN/TK/3tA61d8pZrqao196vd65/mntXd37iHPbbMYclgbd+VCAE2XYZrUwistLZXP51NJSYliYhp+oQng6ARDZdq9735JhtLin5PVcuQy5YHgPm3c3UtSsME2Q1bZvp8xHpJPcZ47VVj2rCTJ47hEyXEPyRGV0WA/AEcvZIb0+tZ/a3dlke7pdKUSHb5Ih3RC7l35ktaWblOUYdOdHS7Tz1P7aXbuEv0l50NZZCh0hJnaHT0t9Wq/ByRJz6z/qz4t+Fr3dfovXZx6ToO+/969TLNyl+imtkM1qEWvBtv3+vfr+qV1SzoMT+2vB8+67oSvbVHBaj259s16bc/3HqcesR0kSb/+Zpq+3LdeVsOiDy+coupgjUZ+9muZqpv5vXjvN5Kks+M66X8Pkew/WUzT1Kzs9fpo02bFupxKj/XprMRErdi1S9uKS9Q61qd7zhugaLu93n4/XM+8fXSatlbs1iBfXzmchubvWa7yvXEq2HOw1He3hBb6tqhAMk11fKtU1486V6PuvkhOV/3j/pSQGdR+f6Wmbr5OP1qKW3bDrXEZb+qzwnUKmEH9PKWfLIZF877bpPGz/yWvw66Jnfpo+o5sDe3bTWP6Dggn4kOhkEr3VSg2sS5Jv2n9bsXFe5SYfOjPmQ8+PFMrv94efn7h+Z018f9doddfWKC/zfhcgy/toYeeuvqYrm1v9TblVW9Wl5jzFWU5+koSTdWZ/Hn/QOxDWo6RrRG8l4GQXx/t+tMZ+VoCAAAATdHiHUUqrKqJdBhHLdFl1wWtEyIdBoBmihnjAE4aq8Wr9MRpR93fZo1X2xazVFT2J5VVza1rs6TI4xosl7239hbXJalCqg4nxSWp3D9X/sK6Urex7mvlcV4gl6PXybsQoJmwGBbd1eHySIdx0oxqO0Svb5mr7ZX5emXzbG2ryFM7T6qkumsNfb9mdvvoVO2uKlJ16OAfjTsq9oT//XCXG/Rwlxt0OJemDdSlaQMPuz3R7tOItCx9W5Kjy37Ub9W+jfpy33pd0fI8pboa/hFomqZe2Txb35Xu1P2drwnHb7dENegbCB28qeichLP01b71OjsuQ1bDIqfVrg6eltpcvktnx2Voa/lu7araq+E/mOl9KhiGoat6ZOqqHpn12i/q1OGI+6W6EmSRRaZCKqguliQVmIX6Q+a9euCsa1Xir9EzSxfr7+vXKmSaSo3x6tuiAqU6PXrxz9cps3v6EY9/OBbDqnin95C3TNSYlVpZ/IEGtbhSe8v8ennJlxqc0V4Xn5Whj+6+TVfOeUf35i6RLNKqVZ+rS3KKBrWum8U/cfSrWv7JOo26f7iGjuuszx1/UMvQWRpi3i1JqiirlifmYOWA+8YP1S9umKqQJJ/PpQfvHy5JumPCMF33i/Pl8R77mvRJzrZKcrY95v0AAAAAAGeWeFeUiqpqIrBw27EzVBcvAEQKiXEAEVPlz1ZZ5YLvS6ZbJQWVHPe4fO4R8tduV0B2STXfP+qrDeRIkvaWPq19pU/L4xgpi8WUxz1CXvclp/EqADQW/RMy1Seus25c9jsV1ZTKF+XRlS3PD5cv//PWuQqEQnqyx21aXPCNpnw3M7zv5S2zTlochmHovs7/1aA9ZIb0WPYb8odqtauyUE/1uL1Bnz3VxXo/9zNJ0ge7Pg8fZ2BiVz3f+x45rXYV15TJIkNnx3cK73dFq/P189Rz5LTUzZi2Gha90veXqghUKSYqWsNT+6syWK2YqOiTdp0nUwdPmmYMeERBM6R9/lJ9uvcbjUire0+sFqviXS49M/jnuqVHL+UUF+vijp1UUFGuBJdbDtuJfZzdVVaiHxZcP1BLyTCkxXvfVFWwVG99mqCl23bo3a/X6It771abuFjt81fVO06L6IOv7bdfbZEkrVm2SQk3bFFe9UblVW9U/8Sr9eLDH+nzj9fp5rE/06i7L5IkpbdKUGefS5s35Mu/s1DR7oMz370xx156HwAAAADQfMQ6os6IpLgkmZJinSTGAUQOiXEAEVFaOU+5RQeTQh7nECX57ldtYJfyih+T1YiRVCvJkMcxTFG21gqZZSqr/EghFUmyy25rpWBgiyyGVFkzR5JUXv1PuZ1rZbXERuKyAESYzWLVq/0e0PaKPeoe216GYah3XN2yC5N73hXu9/PUc9Q/vou+3r9ZURabzkvqfspjM2SoTXSyNpblqoMn7ZB9kpyxOie+izaW7WxQpr1HbPsjHt9lrV9i2WpYwolwm8WqGEvjTIofkOZKlCSlu1uoZ1zHQ/bpmpSsrknJdf29J6eEc6zDpTkremlk39UyDOmbLSmaeO6vNbfgEdWYlbIYVqX76s7V0nfwnJ3jErWhuFCS5LM7dFZ8gj7c/ZKKanJ1758u18o5O3TlnRfJ5ivWprIvlObqLK8tQV9/UZc0X7VsczgxLkmX35SlPz76nlLbJenNKf/WTQ8Ml9VmPSnXiCbCNA/euRHpOAAAAAA0GkluhwzpjEiOG5KSXJFfIgpA88Ua4zqz1xwEzlRFpdO0p2Ri+HlK3GRV+deopPKvkiRnVE/VBnYqaO6Ty36O2iXPkiRV1Xyr4vI35XNfKbfjHG3Z3VmmWRk+jmFEq0PaWhnGsa0zCwCnQ00ooD3V+9TKlRRejxqRl19ervlbNuj89LZqH5+gTzZv1YNz/6rWiTV644oHFeuM1to9BcpITJAr6uCd7SX+as3L2aSBaely2Pfpz1vvkSQNTLhGg5JvO+S5ln26XovmZevqW85VRmbLetvmvbtUL/6q7vfgk2+NUb+fdT1FV9z8nMmf98NrjKfd3XjWGN/96hn5WgIAAABN1fLdxcotq27UyXFDUiuvU/3S4iIdCoBmjBnjACIiznuLagI5qgnkKTn2ITntXbSuuF14e3XtN3JGdVOwdp9qgzvD7S57N7nip4SfpyZM1+7C0ZLqStq2iP09SXEAjZbdYlO6u0Wkw8CPpHg8Gt2zj5Zt26FPN29TabVfZZVurd3hVlGFXwlur3qkpjTYz+dw6rqz6qoNBELRSnd30z7/LnWKOfew5xo4qIsGDupyyG0ZPVrL7oyS3WFTm86pJ+fi0HSYahyztRtBCAAAAADqax8XrZ1l1ZEO44hMSR3iGnc1OwBNH4lxABFhMRxKjZ9Ur80wLAfXdpVdybFPqsL/mWJcww97nGjneerQcp2Ky16WxXDL6778VIYNAGiiiioqdet77ytkmrq1b2/d0b+PWsfGqlNS4lHtb7NE6aa2U3664xF06NZK72VPlsVikZ011wAAAAAARyneGaUYu02lNYFIh3JYMXab4vhbF0CEkRgH0GikxT+vkop/yOsarmjnubLb0hXt7P+T+1kMhxJiHjgNEQIAmiqHzSaPw67Sar9axfo0um/viMThdEe+VDYAAAAA4MxiGIYyk7z6YldxpEM5rMwkL8vKAYg4EuMAGg2fe4R87hGRDgMA0Ax5HHbNu2O0dpeWqUdqcqTDARoyzUZSSr0RxAAAAACggTSPU628Tu1qZGuNH1hbPM3jjHQoACBLpAMAgDNFRfV/tGvvKJVXzQu3lZS/rb37/5+CwaIIRgYAOBmSPNHqmZbCHewAAAAAgDNSz2SfoiyN62/aKIuhHsm+SIcBAJKYMQ4AR23v/sdVG9gsf+A7eVwXqzawXQX7H5IkGYZTib7fRDhCAAAAAAAAAM2Vw2rR2Smx+mJ34ympfnZKrBxW5mgCaBz4aQQAR8nrulySIa+rrty71ZIomzVVkiGnPTJr0QIAgGYiFGo8DwAAAACNVprXqcxEb6TDkCR1TfQqzUsJdQCNBzPGgSPYWp6t/OocJdhTtbNykwYkXCJPVGykw0KEJPh+pfiY+2UYVkmSxRKtNimfKxQql82aGOHoAAAAAAAAAEDqHB+tQCikjfsqIhZDp/hodYqPjtj5AeBQSIwDh1ERKNH0nIkyFZIhQ6ZMLS38QEEzoGvT71fX2KxIh4gIOJAUP8BiOGWxctcjAAAAAAAAgMbBMAx1TfQqymLR2sKy037+roledU7wnPbzAsBPoZQ6cBg2wy6H1SVJclnrfonXmn6FFNTive9HMjQAAAA0N6bZeB4AAAAAGj3DMNQ5waMBaXGyWwwZp/p8kuwWQwPS4kiKA2i0mDEOHIbD6tK9GX/Q/toCJdnTtdefqxk5T8hvVqpf/M8jHR4AAAAAAAAAAEeU5nUqwd1C3+wpUW5Z9Sk7TyuvUz2TfbJbmY8JoPEiMQ4cgTcqTt6oOElSuq2THu36pgKhmvBMcgAAAOC0aCyztRtDDAAAAACOicNq0TlpcWpVVq11hWUqrQnIkHQin+4P7B9jtykzyas0D8tNAmj8SIwDx8BqWGUlKQ4AAAAAAAAAOMOkeZ1K9ThUXF2rLcUVyi2rlikddZL8QD9DUqsYpzrERivOGSXDONWF2gHg5CAxDgAAAAAAAAAA0AwYhqF4l13xLrt6BELaW+XX/upa7auq1f7qWgUOUSXKZhiKdUYp3hWlWGeUklwOOWyUTAdw5iExDgAAAACNXcjUiRU6PElCjSAGAAAAACeFw2ZRK69Lrbx1VVJN05Q/GFLINBU0JashWQxDDquFWeEAmgQS4wAAAAAAAAAAAM2cYRhy2qyRDgMAThlqXQAAAAAAAAAAAAAAmjRmjAMAAABAI2eaIZlmKNJhNIoYAAAAAAAAjgczxgEAAAAAAAAAAAAATRqJcQAAAKAR2p2zV4/d+Ef9+X/myDTNSIcDnLDJkyfLMAxNmDAh3GaapiZOnKi0tDS5XC4NGjRIa9eurbef3+/X+PHjlZiYqOjoaI0YMUK5ubmnOXoAAAAAAHCmIzEOAAAANEL/nL5YKxd9p7+98pF25+yNdDiINNOUQo3gcZw3aSxfvlyvvfaaevToUa99ypQpeu655/Tyyy9r+fLlSklJ0dChQ1VWVhbuM2HCBM2aNUszZ87UkiVLVF5erssuu0zBYPCEXlIAAAAAANC8kBgHAAAAGqEBw7rLFe1Qlz7t1KJVfKTDAY5beXm5Ro0apWnTpikuLi7cbpqmXnjhBf3mN7/RVVddpW7dumnGjBmqrKzUu+++K0kqKSnRG2+8oWeffVZDhgxR79699fbbbys7O1sfffRRpC4JAAAAAACcgUiMAwAAAI1Qz3M76f2Nv9dzH9yvKLst0uEg0kyz8TyO0bhx43TppZdqyJAh9dpzcnKUn5+vYcOGhdscDocuvPBCLV26VJK0cuVK1dbW1uuTlpambt26hfsAAAAAAAAcDb5hAwAAAAAck9LS0nrPHQ6HHA5Hg34zZ87UqlWrtHz58gbb8vPzJUnJycn12pOTk7V9+/ZwH7vdXm+m+YE+B/YHAAAAAAA4GswYBwAAAAAck/T0dPl8vvBj8uTJDfrs3LlT9913n95++205nc7DHsswjHrPTdNs0PZjR9MHAAAAAADgh5gxDgAAAACNXSgkGaFIRyGZdTHs3LlTMTEx4eZDzRZfuXKlCgoK1KdPn3BbMBjU4sWL9fLLL2vDhg2S6maFp6amhvsUFBSEZ5GnpKSopqZGxcXF9WaNFxQUKCsr6+ReGwAAAAAAaNKYMQ4AAAAAOCYxMTH1HodKjA8ePFjZ2dlavXp1+NG3b1+NGjVKq1evVvv27ZWSkqKFCxeG96mpqdGiRYvCSe8+ffooKiqqXp+8vDx9++23JMYBAAAAAMAxYcY4AAAAAOCk83q96tatW7226OhoJSQkhNsnTJigSZMmKSMjQxkZGZo0aZLcbrduvPFGSZLP59Ptt9+uBx54QAkJCYqPj9eDDz6o7t27a8iQIaf9mgAAAAAAwJmLxDgAAAAANHamKcmMdBTfx3HyPPTQQ6qqqtLYsWNVXFys/v37a8GCBfJ6veE+zz//vGw2m6699lpVVVVp8ODBmj59uqxW60mNBQAAAAAANG2GaZ7kbzbOQKWlpfL5fCopKam3Th4AAACAM9+Z/Hn/QOyDPTfKZtgjHY4CZo0+Ln/3jHwtAQAAAABA88Ya4wAAAAAAAAAAAACAJo1S6gAAAADQyJmhkEwjFOkwZJqRjwEAAAAAAOB4MGMcAAAAAAAAAAAAANCkMWMcAAAAABo705RkRjqK7+MAAAAAAAA48zBjHAAAAAAAAAAAAADQpJEYBwAAAAAAAAAAAAA0aZRSBwAAAIDGLmRKRiMoY04pdQAAAAAAcIZixjgAAAAAAAAAAAAAoEkjMQ4AAAAAAAAAAAAAaNIopQ4AAAAAjZ1pSgpFOgpKqQMAAAAAgDMWM8YBAAAAAAAAAAAAAE0aiXEAAAAAAAAAAAAAQJNGKXUAAAAAaOTMkCnTiHwZc5NS6gAAAAAA4AzFjHEAAAAAAAAAAAAAQJPGjHEAAAAAaOzMkKRQpKP4Pg4AAAAAAIAzDzPGAQAAAAAAAAAAAABNGolxAAAAAAAAAAAAAECTRil1AAAAAGjkzJAp0zAjHYZMM/IxAAAAAAAAHI8mM2P8lVdeUbt27eR0OtWnTx999tlnkQ4JAAAAAAAAAAAAANAINInE+HvvvacJEyboN7/5jb7++mudf/75Gj58uHbs2BHp0AAAAAAAAAAAAAAAEdYkEuPPPfecbr/9dt1xxx3q0qWLXnjhBaWnp2vq1KmRDg0AAAAATpwZajwPAAAAAACAM9AZnxivqanRypUrNWzYsHrtw4YN09KlSw+5j9/vV2lpab0HAAAAAAAAAAAAAKBpskU6gBNVWFioYDCo5OTkeu3JycnKz88/5D6TJ0/WE0880aCdBDkAAADQ9Bz4nG+aZoQjOX4B1UqNIPyAaiMdAgAAAAAAwHE54xPjBxiGUe+5aZoN2g549NFHdf/994ef79q1S5mZmUpPTz+lMQIAAACInLKyMvl8vkiHcUzsdrtSUlK0JH9upEMJS0lJkd1uj3QYAAAAAAAAx+SMT4wnJibKarU2mB1eUFDQYBb5AQ6HQw6HI/zc4/Fo586d8nq9h02m/5TS0lKlp6dr586diomJOa5joOlhXOBwGBs4FMYFDoVxgUNhXBwb0zRVVlamtLS0SIdyzJxOp3JyclRTUxPpUMLsdrucTmekwwAAAAAAADgmZ3xi3G63q0+fPlq4cKGuvPLKcPvChQs1cuTIozqGxWJRq1atTko8MTExfDmJBhgXOBzGBg6FcYFDYVzgUBgXR+9Mmyn+Q06nk0Q0AAAAAADACTrjE+OSdP/99+vmm29W3759NXDgQL322mvasWOHxowZE+nQAAAAAAAAAAAAAAAR1iQS49ddd52Kior05JNPKi8vT926ddPcuXPVpk2bSIcGAAAAAAAAAAAAAIiwJpEYl6SxY8dq7NixETu/w+HQ448/Xm/tcoBxgcNhbOBQGBc4FMYFDoVxAQAAAAAAABwbwzRNM9JBAAAAAAAAAAAAAABwqlgiHQAAAAAAAAAAAAAAAKcSiXEAAAAAAAAAAAAAQJNGYhwAAAAAAAAAAAAA0KSRGD+CxYsX6/LLL1daWpoMw9Ds2bPrbTdNUxMnTlRaWppcLpcGDRqktWvX1uvj9/s1fvx4JSYmKjo6WiNGjFBubu5pvAqcbJMnT1a/fv3k9XrVokULXXHFFdqwYUO9PoyN5mfq1Knq0aOHYmJiFBMTo4EDB+rDDz8Mb2dMQKr7+WEYhiZMmBBuY2w0TxMnTpRhGPUeKSkp4e2Mi+Zr165duummm5SQkCC3261evXpp5cqV4e2MDQAAAAAAAOD4kBg/goqKCvXs2VMvv/zyIbdPmTJFzz33nF5++WUtX75cKSkpGjp0qMrKysJ9JkyYoFmzZmnmzJlasmSJysvLddlllykYDJ6uy8BJtmjRIo0bN05ffPGFFi5cqEAgoGHDhqmioiLch7HR/LRq1UpPP/20VqxYoRUrVuhnP/uZRo4cGU5WMCawfPlyvfbaa+rRo0e9dsZG89W1a1fl5eWFH9nZ2eFtjIvmqbi4WOeee66ioqL04Ycfat26dXr22WcVGxsb7sPYAAAAAAAAAI6TiaMiyZw1a1b4eSgUMlNSUsynn3463FZdXW36fD7zT3/6k2maprl//34zKirKnDlzZrjPrl27TIvFYs6bN++0xY5Tq6CgwJRkLlq0yDRNxgYOiouLM19//XXGBMyysjIzIyPDXLhwoXnhhRea9913n2ma/Lxozh5//HGzZ8+eh9zGuGi+Hn74YfO888477HbGBgAAAAAAAHD8mDF+nHJycpSfn69hw4aF2xwOhy688EItXbpUkrRy5UrV1tbW65OWlqZu3bqF++DMV1JSIkmKj4+XxNiAFAwGNXPmTFVUVGjgwIGMCWjcuHG69NJLNWTIkHrtjI3mbdOmTUpLS1O7du10/fXXa+vWrZIYF83ZBx98oL59++qaa65RixYt1Lt3b02bNi28nbEBAAAAAAAAHD8S48cpPz9fkpScnFyvPTk5ObwtPz9fdrtdcXFxh+2DM5tpmrr//vt13nnnqVu3bpIYG81Zdna2PB6PHA6HxowZo1mzZikzM5Mx0czNnDlTq1at0uTJkxtsY2w0X/3799ebb76p+fPna9q0acrPz1dWVpaKiooYF83Y1q1bNXXqVGVkZGj+/PkaM2aM7r33Xr355puS+JkBAAAAAAAAnAhbpAM40xmGUe+5aZoN2n7saPrgzHDPPfdozZo1WrJkSYNtjI3mp3Pnzlq9erX279+vf/zjHxo9erQWLVoU3s6YaH527typ++67TwsWLJDT6TxsP8ZG8zN8+PDwv7t3766BAweqQ4cOmjFjhgYMGCCJcdEchUIh9e3bV5MmTZIk9e7dW2vXrtXUqVN1yy23hPsxNgAAAAAAAIBjx4zx45SSkiJJDWbeFBQUhGfxpKSkqKamRsXFxYftgzPX+PHj9cEHH+g///mPWrVqFW5nbDRfdrtdHTt2VN++fTV58mT17NlTL774ImOiGVu5cqUKCgrUp08f2Ww22Ww2LVq0SC+99JJsNlv4vWVsIDo6Wt27d9emTZv4mdGMpaamKjMzs15bly5dtGPHDkl8xgAAAAAAAABOBInx49SuXTulpKRo4cKF4baamhotWrRIWVlZkqQ+ffooKiqqXp+8vDx9++234T4485imqXvuuUfvv/++PvnkE7Vr167edsYGDjBNU36/nzHRjA0ePFjZ2dlavXp1+NG3b1+NGjVKq1evVvv27RkbkCT5/X6tX79eqamp/Mxoxs4991xt2LChXtvGjRvVpk0bSXzGAAAAAAAAAE4EpdSPoLy8XJs3bw4/z8nJ0erVqxUfH6/WrVtrwoQJmjRpkjIyMpSRkaFJkybJ7XbrxhtvlCT5fD7dfvvteuCBB5SQkKD4+Hg9+OCD6t69u4YMGRKpy8IJGjdunN59913NmTNHXq83PGvL5/PJ5XLJMAzGRjP061//WsOHD1d6errKyso0c+ZMffrpp5o3bx5johnzer3q1q1bvbbo6GglJCSE2xkbzdODDz6oyy+/XK1bt1ZBQYGeeuoplZaWavTo0fzMaMZ++ctfKisrS5MmTdK1116rr776Sq+99ppee+01SWJsAAAAAAAAACeAxPgRrFixQhdddFH4+f333y9JGj16tKZPn66HHnpIVVVVGjt2rIqLi9W/f38tWLBAXq83vM/zzz8vm82ma6+9VlVVVRo8eLCmT58uq9V62q8HJ8fUqVMlSYMGDarX/pe//EW33nqrJDE2mqE9e/bo5ptvVl5ennw+n3r06KF58+Zp6NChkhgTODzGRvOUm5urG264QYWFhUpKStKAAQP0xRdfhGcGMy6ap379+mnWrFl69NFH9eSTT6pdu3Z64YUXNGrUqHAfxgYAAAAAAABwfAzTNM1IBwEAAAAAAAAAAAAAwKnCGuMAAAAAAAAAAAAAgCaNxDgAAAAAAAAAAAAAoEkjMQ4AAAAAAAAAAAAAaNJIjAMAAAAAAAAAAAAAmjQS4wAAAAAAAAAAAACAJo3EOAAAAAAAAAAAAACgSSMxDgAAAAAAAAAAAABo0kiMAwAAAAAAAAAAAACaNBLjAABI+vTTT2UYhvbv33/Efm3bttULL7xwWmICAAAAAAAAAAAnB4lxAMBpFQwGlZWVpauvvrpee0lJidLT0/XYY48ddt9BgwbJMAwZhiGHw6FOnTpp0qRJCgaDJxxXVlaW8vLy5PP5JEnTp09XbGxsg37Lly/XXXfddcLnAwAAAAAAAAAApw+JcQDAaWW1WjVjxgzNmzdP77zzTrh9/Pjxio+P129/+9sj7n/nnXcqLy9PGzZs0L333qvHHntMv//97084LrvdrpSUFBmGccR+SUlJcrvdJ3w+AAAAAAAAAABw+pAYBwCcdhkZGZo8ebLGjx+v3bt3a86cOZo5c6ZmzJghu91+xH3dbrdSUlLUtm1b3XPPPRo8eLBmz54tSSouLtYtt9yiuLg4ud1uDR8+XJs2bQrvu337dl1++eWKi4tTdHS0unbtqrlz50qqX0r9008/1W233aaSkpLwDPWJEydKalhKfceOHRo5cqQ8Ho9iYmJ07bXXas+ePeHtEydOVK9evfTWW2+pbdu28vl8uv7661VWVnZyXkwAAAAAAAAAAPCTSIwDACJi/Pjx6tmzp2655Rbddddd+u1vf6tevXod83FcLpdqa2slSbfeeqtWrFihDz74QMuWLZNpmrrkkkvC28eNGye/36/FixcrOztbzzzzjDweT4NjZmVl6YUXXlBMTIzy8vKUl5enBx98sEE/0zR1xRVXaN++fVq0aJEWLlyoLVu26LrrrqvXb8uWLZo9e7b+9a9/6V//+pcWLVqkp59++pivFQAAAAAAAAAAHB9bpAMAADRPhmFo6tSp6tKli7p3765HHnnkmPYPhUJasGCB5s+frwkTJmjTpk364IMP9PnnnysrK0uS9M477yg9PV2zZ8/WNddcox07dujqq69W9+7dJUnt27c/5LHtdrt8Pp8Mw1BKSsphY/joo4+0Zs0a5eTkKD09XZL01ltvqWvXrlq+fLn69esXjnX69Onyer2SpJtvvlkff/yx/ud//ueYrhkAAAAAAAAAABwfZowDACLmz3/+s9xut3JycpSbm3tU+7zyyivyeDxyOp0aMWKEbrrpJj3++ONav369bDab+vfvH+6bkJCgzp07a/369ZKke++9V0899ZTOPfdcPf7441qzZs0Jxb9+/Xqlp6eHk+KSlJmZqdjY2PA5pbry6weS4pKUmpqqgoKCEzo3AAAAAAAAAAA4eiTGAQARsWzZMj3//POaM2eOBg4cqNtvv12maf7kfqNGjdLq1au1ZcsWVVVV6Y033pDb7T7svqZpyjAMSdIdd9yhrVu36uabb1Z2drb69u2rP/zhD8d9DT889pHao6Ki6m03DEOhUOi4zwsAAAAAAAAAAI4NiXEAwGlXVVWl0aNH6+6779aQIUP0+uuva/ny5Xr11Vd/cl+fz6eOHTsqPT1dVqs13J6ZmalAIKAvv/wy3FZUVKSNGzeqS5cu4bb09HSNGTNG77//vh544AFNmzbtkOex2+0KBoNHjCUzM1M7duzQzp07w23r1q1TSUlJvXMCAAAAAAAAAIDIIjEOADjtHnnkEYVCIT3zzDOSpNatW+vZZ5/Vr371K23btu24jpmRkaGRI0fqzjvv1JIlS/TNN9/opptuUsuWLTVy5EhJ0oQJEzR//nzl5ORo1apV+uSTTw6bwG7btq3Ky8v18ccfq7CwUJWVlQ36DBkyRD169NCoUaO0atUqffXVV7rlllt04YUXqm/fvsd1HQAAAAAAAAAA4OQjMQ4AOK0WLVqkP/7xj5o+fbqio6PD7XfeeaeysrKOuqT6ofzlL39Rnz59dNlll2ngwIEyTVNz584NlzIPBoMaN26cunTpoosvvlidO3fWK6+8cshjZWVlacyYMbruuuuUlJSkKVOmNOhjGIZmz56tuLg4XXDBBRoyZIjat2+v995777jiBwAAAAAAAAAAp4ZhHm/2AQAAAAAAAAAAAACAMwAzxgEAAAAAAAAAAAAATRqJcQAAAAAAAAAAAABAk0ZiHAAAAAAAAAAAAADQpJEYBwAAAAAAAAAAAAA0aSTGAQAAAAAAAAAAAABNGolxAAAAAAAAAAAAAECTRmIcAAAAAAAAAAAAANCkkRgHAAAAAAAAAAAAADRpJMYBAAAAAAAAAAAAAE0aiXEAAAAAAAAAAAAAQJNGYhwAAAAAAAAAAAAA0KSRGAcAAAAAAAAAAAAANGn/H2Ys4RRl+r/+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_pose_estimation(nodes, edges, name_to_data, node_to_name, pes_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Third Session: Experimental Genotype, Opaque Reward Condition" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well, but an opaque barrier was placed between the two mazes so the rats could not see each other.
identifier: a3cf905d-99ee-4b59-94b8-c873a73afb9a
session_start_time2023-08-16 00:00:00-04:00
timestamps_reference_time2023-08-16 00:00:00-04:00
file_create_date
02025-07-01 11:02:04.771554-07:00
experimenter('Shukla, Ashutosh', 'Rivera, Edward L.', 'Bladon, John H.', 'Jadhav, Shantanu P.')
acquisition
Video_3-XFN3-XFN1
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-16-2023-Opaque_behavior+image/c69d075f-99eb-4385-8124-a2f5ad4e7304_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_9-XFN1-XFN3
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN1_ses-08-16-2023-Opaque_behavior+image/2de75d6e-8982-486b-bbbe-aaf777283136_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
keywords
HDF5 dataset
Data typeobject
Shape(3,)
Array size24.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'cooperation' b'social cognition' b'autism spectrum disorders']
processing
behavior
description: Behavioral data recorded during a cooperative maze task, in which a pair of rats must cooperate by picking the same well in order to get a joint reward.
data_interfaces
PoseEstimation_3-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.669001313238697
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.572922138877167
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.8351806863042817
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.6537809005231883
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.751747704267254
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_3-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5600904892072767
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.4916184344403116
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.7468900269393086
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.5796869940636804
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37345, 2)
Array size583.52 KiB
Chunk shape(37345, 2)
Compressiongzip
Compression opts4
Compression ratio2.6105230046004833
timestamps
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shape(37345,)
Compressiongzip
Compression opts4
Compression ratio2.666000374789181
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37345,)
Array size291.76 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_9-XFN1-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.547563270478897
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.5026996210469834
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.6440858119718684
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.542886592668944
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.578324804042236
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_9-XFN3-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.704341720834371
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.685124468731026
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.823756438331544
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.6529683611802346
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(37314, 2)
Array size583.03 KiB
Chunk shape(37314, 2)
Compressiongzip
Compression opts4
Compression ratio2.700354152814904
timestamps
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shape(37314,)
Compressiongzip
Compression opts4
Compression ratio2.4073936676398007
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(37314,)
Array size291.52 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
Skeletons
skeletons
SkeletonPoseEstimation_3-XFN1-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_3-XFN3-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_9-XFN1-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_9-XFN3-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
behavioral_events
time_series
matched_poke_A1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 1 and Reward Well A).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(6, 1)
Array size48.00 bytes
Chunk shape(6, 1)
Compressiongzip
Compression opts4
Compression ratio2.823529411764706

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(6,)
Array size48.00 bytes
Chunk shape(6,)
Compressiongzip
Compression opts4
Compression ratio0.8135593220338984

[ 3685.789 10057.379 10221.161 10312.256 10461.226 10889.03 ]
timestamps_unit: seconds
interval: 1
matched_poke_B2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 2 and Reward Well B).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(9, 1)
Array size72.00 bytes
Chunk shape(9, 1)
Compressiongzip
Compression opts4
Compression ratio4.235294117647059

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(9,)
Array size72.00 bytes
Chunk shape(9,)
Compressiongzip
Compression opts4
Compression ratio0.9113924050632911

[ 3564.801 3849.249 4140.71 9974.391 10281.14 10377.966 10520.712\n", + " 10714.337 10964.924]
timestamps_unit: seconds
interval: 1
matched_poke_C3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 3 and Reward Well C).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(6, 1)
Array size48.00 bytes
Chunk shape(6, 1)
Compressiongzip
Compression opts4
Compression ratio2.823529411764706

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(6,)
Array size48.00 bytes
Chunk shape(6,)
Compressiongzip
Compression opts4
Compression ratio0.8421052631578947

[ 3618.642 3952.767 4263.183 10109.278 10621.877 11053.879]
timestamps_unit: seconds
interval: 1
reward_well_1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 1.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(71, 1)
Array size568.00 bytes
Chunk shape(71, 1)
Compressiongzip
Compression opts4
Compression ratio28.4
timestamps
HDF5 dataset
Data typefloat64
Shape(71,)
Array size568.00 bytes
Chunk shape(71,)
Compressiongzip
Compression opts4
Compression ratio1.105058365758755
timestamps_unit: seconds
interval: 1
reward_well_2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 2.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(110, 1)
Array size880.00 bytes
Chunk shape(110, 1)
Compressiongzip
Compression opts4
Compression ratio40.0
timestamps
HDF5 dataset
Data typefloat64
Shape(110,)
Array size880.00 bytes
Chunk shape(110,)
Compressiongzip
Compression opts4
Compression ratio1.2517780938833571
timestamps_unit: seconds
interval: 1
reward_well_3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 3.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(313, 1)
Array size2.45 KiB
Chunk shape(313, 1)
Compressiongzip
Compression opts4
Compression ratio75.87878787878788
timestamps
HDF5 dataset
Data typefloat64
Shape(313,)
Array size2.45 KiB
Chunk shape(313,)
Compressiongzip
Compression opts4
Compression ratio1.500299580587178
timestamps_unit: seconds
interval: 1
reward_well_A
resolution: -1.0
comments: no comments
description: Whenever the animal in the right W maze visits Reward Well A.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(311, 1)
Array size2.43 KiB
Chunk shape(311, 1)
Compressiongzip
Compression opts4
Compression ratio75.39393939393939
timestamps
HDF5 dataset
Data typefloat64
Shape(311,)
Array size2.43 KiB
Chunk shape(311,)
Compressiongzip
Compression opts4
Compression ratio1.5472636815920398
timestamps_unit: seconds
interval: 1
reward_well_B
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well B in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(325, 1)
Array size2.54 KiB
Chunk shape(325, 1)
Compressiongzip
Compression opts4
Compression ratio78.78787878787878
timestamps
HDF5 dataset
Data typefloat64
Shape(325,)
Array size2.54 KiB
Chunk shape(325,)
Compressiongzip
Compression opts4
Compression ratio1.5222482435597189
timestamps_unit: seconds
interval: 1
reward_well_C
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well C in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(395, 1)
Array size3.09 KiB
Chunk shape(395, 1)
Compressiongzip
Compression opts4
Compression ratio90.28571428571429
timestamps
HDF5 dataset
Data typefloat64
Shape(395,)
Array size3.09 KiB
Chunk shape(395,)
Compressiongzip
Compression opts4
Compression ratio1.6544502617801047
timestamps_unit: seconds
interval: 1
rewarded_poke
resolution: -1.0
comments: no comments
description: Whenever a matched poke resulted in a reward.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(21, 1)
Array size168.00 bytes
Chunk shape(21, 1)
Compressiongzip
Compression opts4
Compression ratio9.882352941176471
timestamps
HDF5 dataset
Data typefloat64
Shape(21,)
Array size168.00 bytes
Chunk shape(21,)
Compressiongzip
Compression opts4
Compression ratio0.9710982658959537
timestamps_unit: seconds
interval: 1
tasks
description: tasks module
data_interfaces
SocialW_Left
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_LeftThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.left_Wmaze[0]front/backhead,neckfront,back[9]
SocialW_Right
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_RightThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.right_Wmaze[0]front/backhead,neckfront,back[3]
devices
camera_device 0
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
03511.0084804.042[03]
19914.15111206.043[09]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
04804.0426604.042Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
subject
age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
03511.0084804.042[03]
19914.15111206.043[09]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
04804.0426604.042Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.
session_id: 08-16-2023-Opaque
lab: Jadhav
institution: Brandeis University
source_script: Created using NeuroConv v0.7.4
source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x6058704240\n", + "Fields:\n", + " acquisition: {\n", + " Video_3-XFN3-XFN1 ,\n", + " Video_9-XFN1-XFN3 \n", + " }\n", + " devices: {\n", + " camera_device 0 \n", + " }\n", + " epochs: epochs \n", + " experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.\n", + " experimenter: ['Shukla, Ashutosh' 'Rivera, Edward L.' 'Bladon, John H.'\n", + " 'Jadhav, Shantanu P.']\n", + " file_create_date: [datetime.datetime(2025, 7, 1, 11, 2, 4, 771554, tzinfo=tzoffset(None, -25200))]\n", + " identifier: a3cf905d-99ee-4b59-94b8-c873a73afb9a\n", + " institution: Brandeis University\n", + " intervals: {\n", + " epochs ,\n", + " invalid_times \n", + " }\n", + " invalid_times: invalid_times \n", + " keywords: \n", + " lab: Jadhav\n", + " processing: {\n", + " behavior ,\n", + " tasks \n", + " }\n", + " session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well, but an opaque barrier was placed between the two mazes so the rats could not see each other.\n", + " session_id: 08-16-2023-Opaque\n", + " session_start_time: 2023-08-16 00:00:00-04:00\n", + " source_script: Created using NeuroConv v0.7.4\n", + " source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x6057260384\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1\n", + "\n", + " timestamps_reference_time: 2023-08-16 00:00:00-04:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file_path = 'sub-XFN1/sub-XFN1_ses-08-16-2023-Opaque_behavior+image.nwb'\n", + "nwbfile, io = stream_nwbfile(DANDISET_ID, file_path)\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the subject and session description" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

subject (Subject)

age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: Fmr1-/y
sex: M
species: Rattus norvegicus
subject_id: XFN1
" + ], + "text/plain": [ + "subject pynwb.file.Subject at 0x6057260384\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: Fmr1-/y\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN1" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well, but an opaque barrier was placed between the two mazes so the rats could not see each other.\n" + ] + } + ], + "source": [ + "display(nwbfile.subject)\n", + "print(nwbfile.session_description)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "dio_event_names = [\n", + " \"matched_poke_A1\",\n", + " \"matched_poke_B2\",\n", + " \"matched_poke_C3\",\n", + " \"reward_well_1\",\n", + " \"reward_well_2\",\n", + " \"reward_well_3\",\n", + " \"reward_well_A\",\n", + " \"reward_well_B\",\n", + " \"reward_well_C\",\n", + " \"rewarded_poke\",\n", + "]\n", + "event_name_to_timestamps = {}\n", + "for dio_event_name in dio_event_names:\n", + " timestamps = nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_events\"].time_series[dio_event_name].timestamps[:]\n", + " event_name_to_timestamps[dio_event_name] = timestamps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy4AAAPbCAYAAAC67N8BAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwyRJREFUeJzs3XtclGX+//H3MICCnEQxUVAgPKVYqWUKJB3cylot01LLEm11NTPLtVrtoFutZbt902rXVbOj58PPrDW1Mg1Q11Ompdu6ngAFT8hhFARn5vfHLCPIaQZnYMzX8/Hg4dyHua7Pfeeu95vrvq/bYLVarQIAAAAAD+ZV3wUAAAAAQE0ILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj+ddH51aLBYdO3ZMgYGBMhgM9VECAAAAAA9gtVpVUFCgFi1ayMur6nGVegkux44dU2RkZH10DQAAAMADZWRkKCIiosrt9RJcAgMDJdmKCwoKqo8SAAAAAHiA/Px8RUZG2jNCVeoluJTeHhYUFERwAQAAAFDjIyQ8nA8AAADA4xFcAAAAAHi8erlVDAAAAFc+s9mskpKS+i4DVwCj0Shvb+/LmlGY4AIAAACnmUwmZWZmymq11ncpuEL4+/srPDxcvr6+tfo+wQUAAABOMZvNyszMlL+/v8LCwngvH6pltVpVXFyskydP6tChQ2rTpk2172upCsEFAAAATikpKZHValVYWJj8/PzquxxcAfz8/OTj46MjR46ouLhYDRs2dLoNHs4HAABArTDSAmfUZpSl3PddVAcAAABQM7NZ2rBBWrjQ9qfZXN8VXZaoqCht2bLlsts5fPhwrUYhqjNs2DC98cYbLm2zPhFcAAAAUDdWrJCioqTbbpOGDLH9GRVlW+8iUVFRCgoKUmFhoX1dfn6+/Pz81L59e4faSEpK0qJFi1xW0+XasGGDvLy8FBAQoMDAQHXu3FlffvllndbwySefyGAw6Kuvviq3/vvvv9ett96qRo0a6e6773ZrDQQXAAAAuN+KFdKAAVJmZvn1R4/a1rswvDRv3lyrVq0q0/UKRUZGuqz9+tC2bVuZTCbl5eVp5MiReuihh5STk1Nn/X/22Wdq3Lix5s+fX269v7+/fv/73+uPf/yj22sguAAAAMC9zGbp6aelyqZOLl03frzLbhsbPHhwuQvs+fPna8iQIeX2efXVV9W6dWsFBQWpR48e2r17t319SkqKhg0bpoCAAE2fPl2StH79enXr1k1BQUFq06aNUlJS7G1t2bJFHTp0UOPGjTVu3Lhy/bz//vtq06aNmjZtqscff1xnz561b3v99dfVrFkzRUVF6fPPP3fo2Ly8vJScnKzCwkIdPHhQOTk5GjRokJo2barY2FjNnTu30u9lZWWpU6dOmj17tiRp48aN6tq1q0JCQpSUlKQDBw5U2Wd2drbWr1+v9957TytXrix3DN26ddOQIUMUERHhUP2Xg+ACAAAA90pJqTjSUpbVKmVk2PZzgd69e2vnzp3KyclRdna29u/fr1tvvbXcPtddd522b9+unJwc9e7dW4899pgk6aWXXlJiYqI++ugjmUwmPffcczp48KAeeOABTZkyRWfOnNG3336r8PBwe1urVq1Samqq9uzZo0WLFtlDzdKlSzV79mx98803ysjIUElJiV5++WVJ0urVqzVr1ixt2rRJu3bt0hdffOHQsZnNZn3wwQdq1KiRYmNj9eSTT8rb21vp6elasWKFJk2apNTU1HLfycjI0G233aYJEyZo5MiRSk9P18CBAzVjxgydPn1aDz74oB5++OEq38mzcOFCde3aVYMHD1aTJk0cDlmuRnABAACAe2VluXa/Gnh7e+v+++/X0qVLtWjRIg0cOLDCjFYPPvigwsLC5O3trUmTJmn37t0ymUyVtrdw4UL169dP9913n4xGo1q1aqXY2Fj79vHjx6tJkyaKiIhQUlKSfvzxR0nSBx98oMmTJ6t169by8/PTpEmTtGzZMkm2UDNq1CjFxsYqJCREL7zwQrXHtH//foWEhKhZs2b67LPPtHz5cgUGBmr58uWaNm2a/P391blzZ40YMUILFy60f+/w4cO6/fbb9dJLLyk5OVmStGDBAg0YMEAJCQkyGo166qmndOTIER0+fLjSvufPn6+HH35YBoNBDz30UIXbxeoKwQUAAADuVWZ0wiX7OeCRRx7RggULtGDBAj3yyCMVts+ZM0cdO3ZUcHCwmjdvLqvVqtOnT1faVmZmpmJiYqrsq1mzZvbP/v7+9gCUnp6uESNGKCQkRCEhIUpISNCpU6ck2W7dKvvcTU3P4LRp00a5ubk6ffq0tm7dqrvuuksnT56U2Wwud5tW69atdezYMfvyihUrFBQUpIEDB9rXpaen68MPP7TXFRISorNnz5b7XqlffvlFO3futH//4Ycf1rp163Ty5Mlq63UHggsAAADcKzFRioiQqnrvi8EgRUba9nORHj166OjRozKZTLrhhhvKbTt8+LCeffZZffrpp8rNzVVWVpa8vLzst0pd+n6ayMhIHTp0yOkaWrZsqfnz5ys3N9f+U/p8SHh4uDIyMuz7lv3sqLCwMHl5eSmzzG146enpatGihX15/Pjxatu2rQYPHizz/54hatmypUaPHl2urnPnzik+Pr5CH5999pkk6aabblLz5s1133336cKFC1qyZInT9V4uggsAAADcy2iUZsywfb40vJQuv/OObT8XWrFiRaUX2CaTSQaDQU2aNFFJSYleeeWVcs93NGvWrNxtU4MHD9bKlSu1evVqWSwWZWRkVPswe6kRI0bo9ddf18GDByXZRlnWrFkjSRowYIBmz56tAwcOKC8vzz4JgDOMRqP69++vyZMnq7CwUD/99JM++OADDRo0yL6Pl5eXPvnkE50/f14jRoyQ1WrVkCFDtHjxYqWlpclisaigoMB+C9ulFixYoP/7v//Trl277D8vvfSS/XYxi8WioqIilZSUlPvsDgQXAAAAuF///tKyZVKZ0QBJtpGYZcts212sc+fO6tSpU4X1nTp10siRI9W5c2dFRUUpOjpavr6+9u1PPfWU5s6dq8aNG+svf/mLoqOjtXz5ck2ePFnBwcG64447lOXA8ziDBg3SsGHD1KdPHwUGBqpXr17au3evJOnee+/VE088oR49eqhz58667777anWM77//voqKihQREaG+ffvqT3/6kxIvGbny8fHRsmXLdOTIET399NOKjo7WggULNGHCBIWGhqp9+/ZauXJlhbY3bdqkkydPasSIEWrevLn9Z8yYMdq+fbsOHDig77//Xn5+fho5cqS+/vpr+fn56Xe/+12tjqUmBmtV0we4UX5+voKDg5WXl6egoKC67h4AAACXoaioSIcOHVJ0dLTzb3s3m22zh2Vl2Z5pSUx0+UgLPFNVf28czQbedVEkAAAAIMkWUpKS6rsKXIG4VQwAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPx3TIAAAAqDNmi1kp6SnKKshSeGC4ElslyujFe1xQM0ZcAAAAUCdW7FuhqBlRuu3j2zRkxRDd9vFtipoRpRX7VtR3abUWFRWlLVu2XHY7hw8fdv5lnjUYNmyY3njjDZe2WZ8ILgAAAHC7FftWaMCSAcrMzyy3/mj+UQ1YMsBl4SUqKkpBQUEqLCy0r8vPz5efn5/at2/vUBtJSUlatGiRS+pxhQ0bNsjLy0sBAQEKDAxU586d9eWXX9ZJ3x999JG8vb0VEBCggIAAdejQQStXrrRv//LLL9WjRw8FBwcrIiJCU6dOdVstBBcAAAC4ldli1tNrnpZV1grbSteNXzNeZovZJf01b95cq1atsi+vWLFCkZGRLmm7vrRt21Ymk0l5eXkaOXKkHnroIeXk5NRJ33feeadMJpNMJpPeeecdPfLII8rLy5MkFRQU6LXXXtOJEye0adMmLVq0SJ9++qlb6iC4AAAAwK1S0lMqjLSUZZVVGfkZSklPcUl/gwcP1vz58+3L8+fP15AhQ8rt8+qrr6p169YKCgpSjx49tHv3bvv6lJQUDRs2TAEBAZo+fbokaf369erWrZuCgoLUpk0bpaRcrHXLli3q0KGDGjdurHHjxpXr5/3331ebNm3UtGlTPf744zp79qx92+uvv65mzZopKipKn3/+uUPH5uXlpeTkZBUWFurgwYPKycnRoEGD1LRpU8XGxmru3LmVfi8rK0udOnXS7NmzJUkbN25U165dFRISoqSkJB04cMCh/u+66y41atRIhw8flmQ713fccYcaNGigVq1aqX///tq6datDbTmL4AIAAAC3yirIcul+Nendu7d27typnJwcZWdna//+/br11lvL7XPddddp+/btysnJUe/evfXYY49Jkl566SUlJibqo48+kslk0nPPPaeDBw/qgQce0JQpU3TmzBl9++23Cg8Pt7e1atUqpaamas+ePVq0aJE91CxdulSzZ8/WN998o4yMDJWUlOjll1+WJK1evVqzZs3Spk2btGvXLn3xxRcOHZvZbNYHH3ygRo0aKTY2Vk8++aS8vb2Vnp6uFStWaNKkSUpNTS33nYyMDN12222aMGGCRo4cqfT0dA0cOFAzZszQ6dOn9eCDD+rhhx+W1VpxRKwsq9WqNWvWyGKxKDY2ttJ9Nm3apI4dOzp0LM4iuAAAAMCtwgPDa97Jif1q4u3trfvvv19Lly7VokWLNHDgQHl5lb/sffDBBxUWFiZvb29NmjRJu3fvlslkqrS9hQsXql+/frrvvvtkNBrVqlWrchfu48ePV5MmTRQREaGkpCT9+OOPkqQPPvhAkydPVuvWreXn56dJkyZp2bJlkmyhZtSoUYqNjVVISIheeOGFao9p//79CgkJUbNmzfTZZ59p+fLlCgwM1PLlyzVt2jT5+/urc+fOGjFihBYuXGj/3uHDh3X77bfrpZdeUnJysiRpwYIFGjBggBISEmQ0GvXUU0/pyJEj9lGUS3377bcKCQlRQECA7r33Xr3yyitq1KhRhf3+8Y9/KCsrS48//ni1x1JbBBcAAAC4VWKrREUERcggQ6XbDTIoMihSia0SXdbnI488ogULFmjBggV65JFHKmyfM2eOOnbsqODgYDVv3lxWq1WnT5+utK3MzEzFxMRU2VezZs3sn/39/e0BKD09XSNGjFBISIhCQkKUkJCgU6dOSbLdulX2uZuansFp06aNcnNzdfr0aW3dulV33XWXTp48KbPZrIiICPt+rVu31rFjx+zLK1asUFBQkAYOHGhfl56erg8//NBeV0hIiM6ePVvue2Xdcccdys3N1dmzZ/XTTz9p2rRpFUaIvvzyS/3pT3/Sl19+KT8/v2qPpbYILgAAAHAro5dRM+6eIUkVwkvp8jt3v+PS97n06NFDR48elclk0g033FBu2+HDh/Xss8/q008/VW5urrKysuTl5WW/VcpgKF9jZGSkDh065HQNLVu21Pz585Wbm2v/KX3GJTw8XBkZGfZ9y352VFhYmLy8vJSZefH5ofT0dLVo0cK+PH78eLVt21aDBw+W2Wy21zV69OhydZ07d07x8fE19tmhQwfFx8dr7dq19nXff/+9RowYoVWrVlV5C5krEFwAAADgdv079Neyh5apRWCLcusjgiK07KFl6t+hv8v7XLFihZYsWVJhvclkksFgUJMmTVRSUqJXXnml3PMdzZo1K3fb1ODBg7Vy5UqtXr1aFotFGRkZDj3MPmLECL3++us6ePCgJNsoy5o1ayRJAwYM0OzZs3XgwAHl5eXZJwFwhtFoVP/+/TV58mQVFhbqp59+0gcffKBBgwbZ9/Hy8tInn3yi8+fPa8SIEbJarRoyZIgWL16stLQ0WSwWFRQU2G9hq8l///tfpaWlqUOHDpKkXbt2acCAAZo/f766du3q9DE4g+ACAACAOtG/Q3/tHbPXvrx6yGodevqQW0KLJHXu3FmdOnWqsL5Tp04aOXKkOnfurKioKEVHR8vX19e+/amnntLcuXPVuHFj/eUvf1F0dLSWL1+uyZMnKzg4WHfccYeysmqeSGDQoEEaNmyY+vTpo8DAQPXq1Ut799qO/95779UTTzyhHj16qHPnzrrvvvtqdYzvv/++ioqKFBERob59++pPf/qTEhPL33Ln4+OjZcuW6ciRI3r66acVHR2tBQsWaMKECQoNDVX79u3LvZvlUt98840CAgLUqFEj9erVS4MHD9bvf/97SbI/4H///ffb3/Vyzz331OpYamKw1jR9gBvk5+crODhYeXl5CgoKquvuAQAAcBmKiop06NAhRUdHu/xt7/j1qurvjaPZgBEXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDH867vAgAAAHD1MJullBQpK0sKD5cSEyWjsb6rwpWAERcAAADUiRUrpKgo6bbbpCFDbH9GRdnWX6mioqK0ZcuWy27n8OHDLn+Z57Bhw/TGG2+4tM36dNnBJT8/XytXrtS+fftcUQ8AAAB+hVaskAYMkDIzy68/etS23lXhJSoqSkFBQSosLLSvy8/Pl5+fn9q3b+9QG0lJSVq0aJFrCnKBDRs2yMvLSwEBAQoMDFTnzp315Zdf1ln/R44c0eDBg9W0aVOFhISoa9eumjdvniTp4MGDuummm9S4cWOFhobq/vvvV1ZWllvqcDq4PPTQQ3rvvfckSYWFherWrZseeughde7cWcuXL3d5gQAAALiymc3S009LVmvFbaXrxo+37ecKzZs316pVq+zLK1asUGRkpGsarydt27aVyWRSXl6eRo4cqYceekg5OTlu7/fEiRPq0aOH/P399eOPPyo3N1cfffSRvvnmG0lSWFiYlixZopycHGVnZ6t9+/YaP368W2pxOrh8//33SkxMlCT9v//3/2S1WpWbm6uZM2fqtddec3mBAAAAuLKlpFQcaSnLapUyMmz7ucLgwYM1f/58+/L8+fM1ZMiQcvu8+uqrat26tYKCgtSjRw/t3r3bvj4lJUXDhg1TQECApk+fLklav369unXrpqCgILVp00YpZYrdsmWLOnTooMaNG2vcuHHl+nn//ffVpk0bNW3aVI8//rjOnj1r3/b666+rWbNmioqK0ueff+7QsXl5eSk5OVmFhYU6ePCgcnJyNGjQIDVt2lSxsbGaO3dupd/LyspSp06dNHv2bEnSxo0b1bVrV4WEhCgpKUkHDhyo9Hv/93//p2uuuUZz585Vy5YtJUlxcXFasGCBJCkwMFDR0dEyGAz2+g4dOuTQsTjL6eCSl5en0NBQSdKaNWv04IMPyt/fX/fee6/279/v8gIBAABwZXP0ziFX3WHUu3dv7dy50z4KsH//ft16663l9rnuuuu0fft25eTkqHfv3nrsscckSS+99JISExP10UcfyWQy6bnnntPBgwf1wAMPaMqUKTpz5oy+/fZbhYeH29tatWqVUlNTtWfPHi1atMgeapYuXarZs2frm2++UUZGhkpKSvTyyy9LklavXq1Zs2Zp06ZN2rVrl7744guHjs1sNuuDDz5Qo0aNFBsbqyeffFLe3t5KT0/XihUrNGnSJKWmppb7TkZGhm677TZNmDBBI0eOVHp6ugYOHKgZM2bo9OnTevDBB/Xwww/LWsmQ2Pr169WvXz97MKlKSEiI/Pz89Je//EUTJkxw6Fic5XRwiYyM1ObNm3X27FmtWbNGv/nNbyRJZ86ccfkDRQAAALjylbnGd8l+NfH29tb999+vpUuXatGiRRo4cKC8vMpf9j744IMKCwuTt7e3Jk2apN27d8tkMlXa3sKFC9WvXz/dd999MhqNatWqlWJjY+3bx48fryZNmigiIkJJSUn68ccfJUkffPCBJk+erNatW8vPz0+TJk3SsmXLJNlCzahRoxQbG6uQkBC98MIL1R7T/v37FRISombNmumzzz7T8uXLFRgYqOXLl2vatGny9/dX586dNWLECC1cuND+vcOHD+v222/XSy+9pOTkZEnSggULNGDAACUkJMhoNOqpp57SkSNHdPjw4Qr9nj59Ws2bN6/xnOfm5urMmTOaNm2aoqKiaty/NpwOLuPHj9cjjzyiiIgIhYeHKykpSZLtFrK4uDhX1wcAAIArXGKiFBEhVfVLe4NBioy07ecqjzzyiBYsWKAFCxbokUceqbB9zpw56tixo4KDg9W8eXNZrVadPn260rYyMzMVExNTZV/NmjWzf/b397cHoPT0dI0YMUIhISEKCQlRQkKCTp06Jcl261bZ525qeganTZs2ys3N1enTp7V161bdddddOnnypMxmsyIiIuz7tW7dWseOHbMvr1ixQkFBQRo4cKB9XXp6uj788EN7XSEhITp79my575Vq0qSJsrOzq62tVFBQkB5//HE98MADlY7eXC6ng8uYMWO0efNmzZs3T2lpafb0GhMT86t6xsVsljZskBYutP3pqofFPLXv+jxeAADw62W1SufOSaWXiZeGl9Lld95x7ftcevTooaNHj8pkMumGG24ot+3w4cN69tln9emnnyo3N1dZWVny8vKyX2yX3hZltUoFBVKTJpH6z38OVTq5QHVatmyp+fPnKzc31/5T+oxLeHi4MjIy7PuW/ewIq1Vq2DBMXl5e+ve/M+21paenq0WLFvb9xo8fr7Zt22rw4MEy/+8Cr2XLlho9enS5us6dO6f4+PgK/dx+++1atWqVw0HEYrEoKytL586dc+p4HFGr6ZC7deume++9V0ePHtWFCxckSffee2+lB3slqs85xuuj71/jnOoAAKD+nTkj7dkj/fKL1LGj9MYbUlhY+X0iIqRly6T+/V3f/4oVK7RkyZIK600mkwwGg5o0aaKSkhK98sor5S7MmzVrpn37Dttrv+mmwVq1aqX+9rfVOn3aooyMjCofZi9rxIgRev3113Xw4EFJtlGWNWvWSJIGDBig2bNn68CBA8rLy7NPAuCI0vP63/8alZTUX3/4w2Rt21aotLSf9MEHH2jQoEH2fb28vPTJJ5/o/PnzGjFihKxWq4YMGaLFixcrLS1NFotFBQUF9lvYLvXMM88oOztbo0aNso/I/Pzzz/ZRrO+//147d+6U2WzWmTNn9Ic//EE333yzGjVq5PDxOMrp4HLu3DmNGDFC/v7+6tixo9LT0yVJ48aN+1W84Kau5hj3lL7r83gBAMCv15kz0oEDUnHxxXW33y4tXnxxefVq6dAh94QWSercubM6depUYX2nTp00cuRIde7cWVFRUYqOjpavr699+7BhT2nevLlKSGisTz/9i1q2jNabby7XzJmT1apVsG677Q6H3lUyaNAgDRs2TH369FFgYKB69eqlvXv3SrL90v+JJ55Qjx491LlzZ913330OHdOl5/X5599XcXGRfvObCD30UF+98MKf7DMAl/Lx8dGyZct05MgRPf3004qOjtaCBQs0YcIEhYaGqn379lq5cmWl/TVr1kybNm1SQUGB4uLiFBISoscee0x33nmnJFsIfOSRRxQcHKx27dqpsLCw0rDoCgarkzegPf3000pLS9M777yju+++W7t371ZMTIxWrVqlV155RT/88EONbeTn5ys4OFh5eXkKCgqqdfGuZjbbRhqqmq7PYLD9VuDQIdcOZdZX3/V5vAAA4MpVVFSkQ4cOKTo6utLJmaxW24hA2dByKV9fKS6u6ude6osn1+7JtTmiqr83jmYDp0dcVq5cqffee08JCQnlpkW77rrrHBoy82R1Pcd4ffddn8cLAAB+vUym6i+uJdv2KibxqleeXLsn11YXnA4uJ0+eLDdzQqmzZ8/WOL+zp6vrOcbru+/6PF4AAPDrVdPFtbP71SVPrt2Ta6sLTgeXm266Sf/85z/ty6VhZc6cOerRo4frKqsHdT3HeH33XZ/HCwAAfr3KPC7ikv3qkifX7sm11QVvZ78wbdo03X333dq7d68uXLigGTNm6Oeff9bmzZu1ceNGd9RYZ0rnGD96VJVOd1f6zIcr5xivz77r83gBAMCvV0CA7eK5pmcxAgLqriZHeXLtnlxbXXB6xKVnz55KS0vTuXPndO2112rdunW65pprtHnzZnXt2tUdNdYZo1GaMcP2ua7mGK/PvuvzeAEAwJWvqjmeSl8oWZ3ISM98gNyTa/fk2hxhsVgu6/tOzyq2e/dude7cudJtK1eu1P33319jG546q1ipFSukceNsIxGlIiNtF/Humq6vPvuuz+MFAABXHrPZrP3798vf319hYWFVPuecl2d7VvZ/r/2TJPn4SM2bS8HBdVRsLXly7Z5cW2WsVquKi4t18uRJmc1mtWnTxv4Se8nxbOB0cAkPD1daWppiYmLKrV++fLkee+wx+9tAq+PpwUWS8vMv/odfvVr6zW/qbuShPvquz+MFAABXHpPJpMzMzBrfqG6x2GYplaRmzaSGDT13ROBSnly7J9dWFX9/f4WHh5d7Z47keDZw+hmX0aNH64477tCmTZsU/r+nthcvXqzhw4fro48+crY5j1X2ov3WW+v2Ir4++q7P4wUAAFeegIAAtWnTRiUlJdXud+6cdO+9ts87d0r+/nVQnIt4cu2eXFtljEajvL29L2sWYqeDy8svv6zTp0/rzjvvVEpKitasWaMnnnhCn376qR588MFaFwIAAIAri9FolLGG33aazdKRI7bPDRrYRgauFJ5cuyfX5i5OBxdJmjFjhoYOHapbbrlFR48e1cKFC9WvXz9X1wYAAAAAkhwMLqtWraqw7v7779fGjRs1ePBgGQwG+z59+/Z1bYUAAAAArnoOBZfqZgqbN2+e5s2bJ8n2Mkqz2eySwgAAAACglEPB5XLnXAYAAACAy+H0CygBAAAAoK7VKrhs3LhRv/3tbxUbG6s2bdqob9++SklJcXVtAAAAACCpFsHls88+05133il/f3+NGzdOY8eOlZ+fn+644w4tWLDAHTUCAAAAuMo5PR3y66+/runTp+uZZ56xr3v66af19ttv69VXX9WQIUNcWmBdMVvMSklPUVZBlsIDw9WlSaIk17+F8dJ+Elslyuh15fYDAACuHnV9feFIf7WpyVXH4c7zwbVcRU4Hl4MHD+q3v/1thfV9+/bVpEmTXFJUXVuxb4WeXvO0MvMz7etaNGgj6T9u7yciKEIz7p6h/h36X3H9AACAq0ddX1840l9tanLVcbjzfHAtVzmnbxWLjIzUt99+W2H9t99+q8jISJcUVZdW7FuhAUsGlPuLIUnHCo7VST9H849qwJIBWrFvxRXVDwAAuHrU9fWFI/3VpiZXHYc7zwfXclUzWK1WqzNf+Pvf/67x48dr+PDh6tmzpwwGg1JTU/XRRx9pxowZGjVqVI1t5OfnKzg4WHl5eQoKCqp18ZfLbDErakZUhb8YkqRif+nPZyVJeflmBQXWfmiu2n4kGWRQRFCEDj19SEYvo86elQICbNtMJqlRI/f0U1Zt+wQAAL9ul3N9ITl/jeFIfy0DW0qSMgscr6k2x1FZ7Zd7PqrjTNtFhcZfzbWbo9nA6RGX0aNHa9GiRdqzZ4/Gjx+vp59+Wj/99JMWL17sUGjxJCnpKVX+xSgrLSPNrf1YZVVGfoZS0i9vZra66gcAAFw96vr6wpH+MgsyqwwtVdXkquNw5/ngWq56Tj3jYrVa9d///lft2rXThg0b5O3t9CMyHiWrIMuh/bILsuukH0f3q+9+AADA1aOury9ceZ1Sti1XHYc7z4dTbYc53fwVz+ERl8OHD+uGG25Q+/btFRcXp9jYWO3cudOdtbldeGC4Q/s1D2xeJ/04ul999wMAAK4edX194crrlLJtueo43Hk+uJarnsPB5fnnn1dRUZE+/fRTLV26VOHh4VfcrWGXSmyVqIigCBlkqHa/+Mh4t/ZjkEGRQZFKbJV4RfQDAACuHnV9feFIfxGBEYoIdK4mVx2HO88H13LVczi4pKSkaPbs2RoyZIj69++vpUuXaufOnSosLHRnfW5l9DJqxt0zJKmSvyCGcvu5q5/S5XfufueK6QcAAFw96vr6wpH+ZtwzQzPuca4mVx2HO88H13LVczi4ZGdnq3379vbliIgI+fn56fjx424prK7079Bfyx5aphaBLcqtL52twt39RARFaNlDy1w2J3dd9QMAAK4edX194Uh/tanJVcfhzvPBtVzVHJ4O2Wg0Kjs7W2FhF58ECgoK0o8//qjo6GinOvWU6ZDLyi/KV/CbwZKk1UNWK775bxQcZEuzrpxi7tJ+fnPtb9wyNbEj/bi6TwAA8Ovm7PWFdHnXGI70V5uaHP1OTbXXpm9H1dT2r+nazdFs4PC0YFarVW3btpXBcHHYymQy6cYbb5SX18WBm5ycnFqWXL/K/kW4tfWtUol7huAu7cddQ3111Q8AALh61PX1hSP91aYmVx2HO88H13IVORxcPvzwQ3fWAQAAAABVcji4PP744+6sAwAAAACq5PDD+QAAAABQXwguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHs+hWcWeffZZhxt8++23a10MAAAAAFTGoeDyww8/lFvesWOHzGaz2rVrJ0n6z3/+I6PRqK5du7q+Qk9kNkspKVJWlhQeLiUmSkZeCgQAAK5ylV0jycFrpEq/e8n2DRucv/6qqd36xDWlUxwKLt99953989tvv63AwEB9/PHHaty4sSTpzJkzSk5OVqIn/UVwlxUrpKefljIzL66LiJBmzJD696+/ugAAAOpTVddIb74nqV/tvvt/b15cvq6DdPhY+e0zZkj33XV57dYXrimd5vQzLn/96181bdo0e2iRpMaNG+u1117TX//6V5cW53FWrJAGDCj/F0ySjh61rV+xon7qAgAAqE/VXSM98ohrvnv0WMXtAwZIqz53fU3uxjVlrTgdXPLz83X8+PEK60+cOKGCggKXFOWRzGZbKrZaK24rXTd+vG0/AACAq4Uj10i1/W51Xy/9znPPubYmd+OastacDi4PPPCAkpOTtWzZMmVmZiozM1PLli3TiBEj1P/XPKyVklIxFZdltUoZGbb9AAAArhY1XSNVlz5q/G4NrFYp86jz7dZndnH0mnJTWt3VdIVw6BmXsmbNmqU//OEPevTRR1VSUmJrxNtbI0aM0FtvveXyAj1GVpZr9wMAAPg1uJxrH3ddN3ny9ZijtWVnu7eOK5DTwcXf319/+9vf9NZbb+nAgQOyWq2KjY1Vo0aN3FGf5wgPd+1+AAAAvwaXc+3jrusmT74ec7S25s2l/7q3lCtNrV9AmZWVpaysLLVt21aNGjWStb7vF3S3xETbTA8GQ+XbDQYpMtKzptgDAABwt5qukVTVeke+WwODQYpo6Xy7tezOJRy9puwZX7d1XQGcDi6nT5/WHXfcobZt26pPnz7K+t9w1xNPPKEJEya4vECPYTTapqeTKv5FK11+5x3m3gYAAFcXR66Ravvdsqsubap0/+nTXVuTu3FNWWtOB5dnnnlGPj4+Sk9Pl7+/v339ww8/rDVr1ri0OI/Tv7+0bJnUokX59RERtvW/5skJAAAAqlLdNdL8+a757qW3WJVef/Wt4h0xl1OTu3FNWStOP+Oybt06rV27VhEREeXWt2nTRkeOHHFZYR6rf3/pzjul4GDb8urV0m9+QyoGAABXt6qukYocuEaq6rvmIunn/+2zY4fUtEX57UajVHz28tqtL1xTOs3pEZezZ8+WG2kpderUKTVo0MAlRXm8sn+hbr2Vv2AAAADS5V0j1fRdr1q27cnXbZ5cmwdyOrjceuut+uSTT+zLBoNBFotFb731lm677TaXFgcAAAAAUi1uFXvrrbeUlJSk7du3q7i4WM8995x+/vln5eTkKC2NF+UAAAAAcD2nR1yuu+467d69WzfffLN69+6ts2fPqn///vrhhx907bXXuqNGAAAAAFc5p0dcJKl58+aaOnWqq2sBAAAAgErVKrjk5uZq69atOnHihCwWS7ltjz32mEsKAwAAAIBSTgeXL774Qo888ojOnj2rwMBAGcq8OMdgMBBcAAAAALic08+4TJgwQcOHD1dBQYFyc3N15swZ+09OTo47agQAAABwlXM6uBw9elTjxo2r9F0uAAAAAOAOTgeXu+66S9u3b3dHLQAAAABQKYeecVm1apX987333quJEydq7969iouLk4+PT7l9+/bt69oKAQAAAFz1HAou999/f4V1f/rTnyqsMxgMMpvNl10UAAAAAJTlUHC5dMpjAAAAAKhLTj/jAgAAAAB1zengMm7cOM2cObPC+vfee0/jx493RU0AAAAAUI7TwWX58uWKj4+vsL5nz55atmyZS4oCAAAAgLKcDi6nT59WcHBwhfVBQUE6deqUS4oCAAAAgLKcDi6xsbFas2ZNhfVfffWVYmJiXFIUAAAAAJTl0KxiZT377LMaO3asTp48qdtvv12S9O233+qvf/2r3nnnHVfXBwAAAADOB5fhw4fr/Pnzev311/Xqq69KkqKiovT3v/9djz32mMsLBAAAAACng4skjR49WqNHj9bJkyfl5+engIAAV9cFAAAAAHZOP+Ny++23Kzc3V5IUFhZmDy35+fn2W8cAAAAAwJWcDi4bNmxQcXFxhfVFRUVKSUlxSVEAAAAAUJbDt4rt3r3b/nnv3r3Kzs62L5vNZq1Zs0YtW7Z0bXUAAAAAICeCyw033CCDwSCDwVDpLWF+fn569913XVocAAAAAEhOBJdDhw7JarUqJiZGW7duVVhYmH2br6+vmjVrJqPR6JYiAQAAAFzdHA4urVu3liRZLBa3FQMAAAAAlanVdMiS7TmX9PT0Cg/q9+3b97KLAgAAAICynA4uBw8e1AMPPKA9e/bIYDDIarVKkgwGgyTbg/oAAAAA4EpOT4f89NNPKzo6WsePH5e/v79+/vlnff/99+rWrZs2bNjghhIBAAAAXO2cHnHZvHmz1q9fr7CwMHl5ecnLy0sJCQmaNm2axo0bpx9++MEddQIAAAC4ijk94mI2mxUQECBJatq0qY4dOybJ9vD+L7/84trqAAAAAEC1GHHp1KmTdu/erZiYGHXv3l3Tp0+Xr6+vZs+erZiYGHfUCAAAAOAq53RwefHFF3X27FlJ0muvvab77rtPiYmJatKkiRYvXuzyAgEAAADA6eBy11132T/HxMRo7969ysnJUePGje0ziwEAAACAK9X6PS5lhYaGuqIZAAAAAKiUw8Fl+PDhDu03b968WhcDAAAAAJVxOLh89NFHat26tW688Ub7SycBAAAAoC44HFx+//vfa9GiRTp48KCGDx+uRx99lFvEAAAAANQJh9/j8re//U1ZWVl6/vnn9cUXXygyMlIPPfSQ1q5dywgMAAAAALdy6gWUDRo00ODBg/X1119r79696tixo8aMGaPWrVvLZDK5q0YAAAAAVzmngktZBoNBBoNBVqtVFovFlTUBAAAAQDlOBZfz589r4cKF6t27t9q1a6c9e/bovffeU3p6ugICAtxVIwAAAICrnMMP548ZM0aLFi1Sq1atlJycrEWLFqlJkyburA0AAAAAJDkRXGbNmqVWrVopOjpaGzdu1MaNGyvdb8WKFS4rDgAAAAAkJ4LLY489JoPB4M5aAAAAAKBSTr2AEgAAAADqQ61nFQMAAACAukJwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAej+ACAAAAwOMRXAAAAAB4PIILAAAAAI9HcAEAAADg8QguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAej+ACAAAAwOMRXAAAAAB4PIILAAAAAI9HcAEAAADg8QguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA43nXR6dWq1WSlJ+fXx/dV+ps8VmpyPY5Pz9fKjHbt+XnS2Zz2Z3PquqNzvVj9q343cto3ql+XN0nAAD4davx+qKSCwqHrzEq+265/gpkvmR7rWty8Dqpptqdvd5ypoOa2v41XbuVZoLSjFAVg7WmPdwgMzNTkZGRdd0tAAAAAA+VkZGhiIiIKrfXS3CxWCw6duyYAgMDZTAY6rr7K1J+fr4iIyOVkZGhoKCg+i7nV4/zXbc433WL8123ON91i/NdtzjfdefXfK6tVqsKCgrUokULeXlV/SRLvdwq5uXlVW2aQtWCgoJ+dX9ZPRnnu25xvusW57tucb7rFue7bnG+686v9VwHBwfXuA8P5wMAAADweAQXAAAAAB6P4HKFaNCggV555RU1aNCgvku5KnC+6xbnu25xvusW57tucb7rFue77nCu6+nhfAAAAABwBiMuAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAej+ACAAAAwOMRXAAAAAB4PIILAAAAAI9HcAEAAADg8QguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PG866NTi8WiY8eOKTAwUAaDoT5KAAAAAOABrFarCgoK1KJFC3l5VT2uUi/B5dixY4qMjKyPrgEAAAB4oIyMDEVERFS5vV6CS2BgoCRbcUFBQfVRAgAAAAAPkJ+fr8jISHtGqEq9BJfS28OCgoIILgAAAABqfISEh/MBAAAAeDyCCwAAAACPVy+3igEAAAClzGazSkpK6rsMuJHRaJS3t/dlzShMcAEAAEC9MZlMyszMlNVqre9S4Gb+/v4KDw+Xr69vrb5PcAEAAEC9MJvNyszMlL+/v8LCwni/36+U1WpVcXGxTp48qUOHDqlNmzbVvq+lKgQXAAAA1IuSkhJZrVaFhYXJz8+vvsuBG/n5+cnHx0dHjhxRcXGxGjZs6HQbPJwPAACAesVIy9WhNqMs5b7vojoAAAAA90tPl3burPonPb2+K6wTUVFR2rJli9vaP3z4cLlREXf35wiCCwAAAK4M6elSu3ZS165V/7Rr55LwEhUVJX9/fwUEBKhFixZ65plnZDabXXAQ7pWcnKzJkyfbl/fu3SuDwaCFCxfa1y1ZskTXX3+9y/ocNWqUrr32WhkMBreGG4ILAAAArgynTklFRdXvU1Rk288F1q9fL5PJpJSUFC1ZskTz5s1zSbvOsFgsslgsDu+fkJCg1NRU+3JaWpratm1bYV1CQoLLarzxxhs1b948RUREuKzNyhBcAAAAgGpce+21io+P165du+zrli1bpo4dOyo0NFR9+/bViRMnJElDhgzRnDlzJEkbN26UwWDQtm3bJEkzZszQqFGjJEmrVq1SXFycAgMD1aZNGy1dutTe9rBhwzRu3DglJSUpICBA6enpWr16tWJjYxUaGqopU6ZUWWtCQoK2bt2q4uJiSVJqaqomTJigtLQ0+z6pqalKTEys9jic8fvf/169evWS0Wh0+rvOILgAAAAA1di/f79SU1MVExMjSdq6daueffZZLV68WMePH1f79u01evRoSVJiYqJSUlIk2QJCdHR0ueXSkY6goCAtW7ZMeXl5mjlzppKTk5WdnW3vc9GiRXr77bdVUFCgRo0aadCgQZo5c6ays7N17tw5ZWZmVlpru3btFBQUpB07dkiSNm3apP79+8tkMikvL08mk0k//vijPeBUdRyeiOACAAAAVKJ3794KCAhQ27Ztdcstt+jJJ5+UJM2bN09jx45Vp06d5OPjo5dfflmrVq3ShQsXlJCQYA8qKSkpmjhxYqXBJSkpSe3atZOXl5fuuecexcXFafv27fa+Bw4cqC5dushoNGr16tW6+eab1adPH/n6+mrKlCnVztDVs2dPpaamKjs7W0ajUU2bNlX37t21adMmbdmyRZGRkYqIiKj2ODwRwQUAAACoxNdff62CggKtXLlSO3fulMlkkiSlp6dr6tSpCgkJUUhIiCIiIuTt7a3s7Gx16tRJeXl5OnLkiPbu3avk5GTt2LFD+/fvl5eXl6KjoyXZQkx8fLxCQ0MVEhKi7du36/Tp0/a+yz4vkpWVpcjISPuyv7+/mjRpUmXdpc+5pKWlKT4+XtLFMFP2+ZbqjsMTEVwAAACAKhgMBvXr10933HGHXn31VUlSy5YtNW3aNOXm5tp/CgsLFRERIYPBoJ49e+r9999XXFycGjZsqJiYGM2ZM6fcA/FDhw7V8OHDdfz4ceXm5qpbt26yWq3l+i0VHh6ujIwM+3JhYWG5kHOphIQEpaWl2cORVD64lD7fUt1xeCKCCwAAAFCDiRMnau7cuTp58qSGDx+ud999V7t375Yk5eTk6PPPP7fvm5iYqFmzZunWW28tt1w2uBQUFCg0NFTe3t5avny5/ZmUyvTp00dbt27V2rVrVVxcrKlTp1Y701iXLl1UWFioBQsW2INL586dtW/fPm3ZssVeR03H4aji4mIVFRXJarWW++xqBBcAAABcGZo2lcq8FLFSDRva9nOx9u3bKykpSTNmzFCPHj305ptvaujQoQoKClKXLl3KzdqVmJiogoIC+8hG6XLZ4PLuu+9q7Nixaty4sdauXatevXpV2XdYWJjmz5+vMWPGqHnz5vLz86t2VMTHx0fdu3eX2WxWu3btJElGo1FxcXHy9fVVhw4dJKnG43DUb37zG/n5+Sk9PV29evWSn5+fjhw54nQ7NTFY3RGHapCfn6/g4GDl5eUpKCiorrsHAACABygqKtKhQ4cUHR1d7i3t1UpPr/49LU2bSq1auaZAuFRV/70dzQbedVEkAAAA4BKtWhFMrlLcKgYAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHYzpkAAAAXDHS89J16lzV73Fp6t9UrYKZLvnXiOACAACAK0J6XrravddORReKqtynoXdD/TL2l199eImKitKiRYt0yy23uKX9w4cPq3379ioqKqqT/hzBrWIAAAC4Ipw6d6ra0CJJRReKqh2RcVRUVJT8/f0VEBCgFi1a6JlnnpHZbL7sdt0tOTlZkydPti/v3btXBoNBCxcutK9bsmSJrr/+epf0d+LECT300EO65pprFBoaqt/+9rdKT093SduXIrgAAAAAlVi/fr1MJpNSUlK0ZMkSzZs3r85rsFgsslgsDu+fkJCg1NRU+3JaWpratm1bYV1CQoJL6jt79qwSEhL0888/Kzs7W7GxsUpOTnZJ25ciuAAAAADVuPbaaxUfH69du3bZ1y1btkwdO3ZUaGio+vbtqxMnTkiShgwZojlz5kiSNm7cKIPBoG3btkmSZsyYoVGjRkmSVq1apbi4OAUGBqpNmzZaunSpve1hw4Zp3LhxSkpKUkBAgNLT07V69WrFxsYqNDRUU6ZMqbLWhIQEbd26VcXFxZKk1NRUTZgwQWlpafZ9UlNTlZiYWO1xOCo6Olrjxo1T06ZN5evrqzFjxmjr1q1OteEoggsAAABQjf379ys1NVUxMTGSpK1bt+rZZ5/V4sWLdfz4cbVv316jR4+WJCUmJiolJUWSLSBER0eXWy4d6QgKCtKyZcuUl5enmTNnKjk5WdnZ2fY+Fy1apLffflsFBQVq1KiRBg0apJkzZyo7O1vnzp1TZmZmpbW2a9dOQUFB2rFjhyRp06ZN6t+/v0wmk/Ly8mQymfTjjz/aA05Vx1FbmzZtUseOHS+rjaoQXAAAAIBK9O7dWwEBAWrbtq1uueUWPfnkk5KkefPmaezYserUqZN8fHz08ssva9WqVbpw4YISEhLsQSUlJUUTJ06sNLgkJSWpXbt28vLy0j333KO4uDht377d3vfAgQPVpUsXGY1GrV69WjfffLP69OkjX19fTZkyRV5eVV/G9+zZU6mpqcrOzpbRaFTTpk3VvXt3bdq0SVu2bFFkZKQiIiKqPY7ayMjI0AsvvKDXXnutVt+vCcEFAAAAqMTXX3+tgoICrVy5Ujt37pTJZJIkpaena+rUqQoJCVFISIgiIiLk7e2t7OxsderUSXl5eTpy5Ij27t2r5ORk7dixQ/v375eXl5eio6Ml2UJMfHy8QkNDFRISou3bt+v06dP2viMiIuyfs7KyFBkZaV/29/dXkyZNqqy79DmXtLQ0xcfHS7oYZso+31LdcTgrJydHd999tyZNmqQ777zT6e87guACAAAAVMFgMKhfv36644479Oqrr0qSWrZsqWnTpik3N9f+U1hYqIiICBkMBvXs2VPvv/++4uLi1LBhQ8XExGjOnDnlHogfOnSohg8fruPHjys3N1fdunWT1Wot12+p8PBwZWRk2JcLCwvLhZxLJSQkKC0tzR6OpPLBpfT5luqOwxkmk0l9+vRRv3799NRTTzn1XWcQXAAAAHBFaOrfVA29G1a7T0Pvhmrq39TlfU+cOFFz587VyZMnNXz4cL377rvavXu3JNtow+eff27fNzExUbNmzdKtt95abrlscCkoKFBoaKi8vb21fPly+zMplenTp4+2bt2qtWvXqri4WFOnTq12prEuXbqosLBQCxYssAeXzp07a9++fdqyZYu9jpqOwxHFxcXq37+/OnbsqD//+c9OfddZBBcAAABcEVoFt9IvY3/RjpE7lJp8cXrf1ORU7Ri5QztG7nDbyyfbt2+vpKQkzZgxQz169NCbb76poUOHKigoSF26dCk3a1diYqIKCgrsIxuly2WDy7vvvquxY8eqcePGWrt2rXr16lVl32FhYZo/f77GjBmj5s2by8/Pr9pRER8fH3Xv3l1ms1nt2rWTJBmNRsXFxcnX11cdOnSQpBqPwxGbN2/W119/rUWLFikgIMD+4453uRisZcek6kh+fr6Cg4OVl5enoKCguu4eAAAAHqCoqEiHDh1SdHS0GjasfiQFV76q/ns7mg0YcQEAAADg8QguAAAAADyeU8HFarXq0KFD9rmdi4uLtXjxYn3yySc6deqUWwoEAAAAAG9Hd/zll1901113KSMjQzExMVq3bp0GDhyof//737JarfL399emTZvUpk0bd9YLAAAA4Crk8IjL888/r+uvv167du3Sfffdp/vuu08RERE6c+aMzpw5o/j4eP3pT39yZ60AAAAArlIOB5dNmzZp6tSpiouL02uvvaZ9+/bpD3/4g3x8fOTr66vnn39e33//vTtrBQAAAHCVcji4mEwmhYaGSpIaNWqkRo0aKTw83L49IiJCx48fd32FAAAAAK56Dj/j0qJFC6Wnp6tVK9sLfaZPn65mzZrZt588eVKNGzd2fYUAAADA/6SnS9XNCdW0qdTK9e+fhAdweMTlzjvv1L///W/78ujRoxUYGGhfXrdunbp06eLa6gAAAID/SU+X2rWTunat+qddO9t+v3ZRUVHasmWL29o/fPhwuZdEurs/RzgcXGbNmqUnnniiyu0PP/yw5s6d65KiAAAAgEudOiUVFVW/T1FR9SMyjoqKipK/v78CAgLUokULPfPMMzKbzZffsJslJydr8uTJ9uW9e/fKYDBo4cKF9nVLlizR9ddf77I+7733XjVr1kzBwcHq3r27Nm/e7LK2y7qsF1BmZmbKYrFIkqKjo8s98wIAAABcydavXy+TyaSUlBQtWbJE8+bNq/MaLBaL/XrbEQkJCUpNTbUvp6WlqW3bthXWJSQkuKzG6dOn69ixY8rLy9OLL76oBx54QFar1WXtl7qs4HLdddfp8OHDLioFAAAA8DzXXnut4uPjtWvXLvu6ZcuWqWPHjgoNDVXfvn114sQJSdKQIUM0Z84cSdLGjRtlMBi0bds2SdKMGTM0atQoSdKqVasUFxenwMBAtWnTRkuXLrW3PWzYMI0bN05JSUkKCAhQenq6Vq9erdjYWIWGhmrKlClV1pqQkKCtW7equLhYkpSamqoJEyYoLS3Nvk9qaqoSExOrPQ5ndOzYUd7e3rJarfLy8tLx48d17tw5p9upyWUFF3ckKQAAAMCT7N+/X6mpqYqJiZEkbd26Vc8++6wWL16s48ePq3379ho9erQkKTExUSkpKZJsASE6OrrcculIR1BQkJYtW6a8vDzNnDlTycnJys7Otve5aNEivf322yooKFCjRo00aNAgzZw5U9nZ2Tp37pwyMzMrrbVdu3YKCgrSjh07JNleadK/f3+ZTCbl5eXJZDLpxx9/tAecqo7DWffdd58aNmyo++67T+PGjVOjRo1q1U51Liu4AAAAAL9WvXv3VkBAgNq2batbbrlFTz75pCRp3rx5Gjt2rDp16iQfHx+9/PLLWrVqlS5cuKCEhAR7UElJSdHEiRMrDS5JSUlq166dvLy8dM899yguLk7bt2+39z1w4EB16dJFRqNRq1ev1s0336w+ffrI19dXU6ZMkZdX1ZfxPXv2VGpqqrKzs2U0GtW0aVN1795dmzZt0pYtWxQZGamIiIhqj8NZX375pQoKCrRs2TK3Tdh1WcFl0qRJ9ne7AAAAAL8mX3/9tQoKCrRy5Urt3LlTJpNJkpSenq6pU6cqJCREISEhioiIkLe3t7Kzs9WpUyfl5eXpyJEj2rt3r5KTk7Vjxw7t379fXl5eio6OlmQLMfHx8QoNDVVISIi2b9+u06dP2/uOiIiwf87KylJkZKR92d/fX02aNKmy7tLnXNLS0hQfHy/pYpgp+3xLdcdRG76+vnrwwQf117/+Vfv27atVG9Vx+D0ulfnjH//oqjo8xt13S3v2SBcuSIWFtj/LatJE+u1vJX9/qW1bqVs3acwYae9eqaDAdXU0by5df7107Jjt5/x5yWq9+FNUZPvTYLD9VPbMVmkQ9/KSGjWSgoMlo9G2LiBACg21tVs6QUZoqBQWJuXkSHl5tuM3mWx/ZmTUXLPRKPn4SH5+UlSUdPvtUqdOtj8vdz71N96QUlJs9VamQwdp4kTmbQcAwN02b5aWLJH+85/K/10ODpY2bZJOnLh43VKZFi2kW2+Vfv972zWE2Wy7nvHysi03aFB+/wYNJEffdb53b8VrI4PB1rafn9S+vW1dVpZU2aMYxcVSSYltWuVWrQy66aZ+uuWWVZo48VVNmTJDjRu31JQp0zRmzDhJtmvAkhLbddNPP0lxcT310kvvq1WrOP30U0OFhcXo1VfnqGPHBP34o62PQYOGaurUF/XYY4/Jx8dHPXr0KPcYhsFgsH8ODw/XunXfKDvbdl5NpkKdOnVav/wi+fqWP0Zvb6l16wR9//00hYTEqE2beO3bJ4WH99THH49Xw4YN1L//AJ0/L7Vs2VLTpk3TuHHjKpyDy3mO/cKFCzp06JA6dOhQ6zYqc1nBpayMjAy98sor9TLbgqvcfbe0dm31+2RmSn//u/tryc62/dSkuv9DKP0frMViCyJ5ea6rrzJms+2nqEg6c0b64Qfbel9faf/+2oeKN96QasrI334rzZolHThAeAEAwF02b5Z69nRNW8eO2dp7/HEpP9+x75jNtuuK/z13XilfXykkpOJ6q9X2fZNJ+ve/bQHr6NGq27FapbNnbXVK0oABEzV0aFcNGfKi7rhjuKZMeUwREUlq06az8vJytGtXinr16idJ6tw5UR9++LqSk23TEt9wQ6IWL56h0aNfV0mJrT2TqUBFRaHy9vbW8uXL7c+kVOaOO/roySef0tKla9Wt2236xz+mymq1yGKpGNDMZikioouKigr15ZcL9I9/fK+zZ6WWLTvrv//dp+LiIo0d+45++kl69NHheuKJx5SUlKTOnTsrJydHKSkp6tevX9Un5hJHjhzRnj17dOedd8pgMGjOnDnKzMxU165dHW7DUS57xiUnJ0cff/yxq5qrF3v21HcFv07FxZc3n3o1/zsu58IF18zbDgAAKnfwYP3237y5tHy59Omn0v8m7pJk+/zpp7af5ctt+1WnqKjykZbqREW1V9euSVq0aIY6d+6hsWPf1CuvDFVSUpCGDu2iH3+8OGvXDTck6uzZAt1wg23mrhtvLF2+OAXxxInvaurUsWrcuLHWrl2rXr16Vdl348Zh+tOf5uvNN8fo7rubq2FDPzVrFlHl/t7ePurUqbvMZrOiotpJkoxGo669Nk7e3r6Kju4gq1Xq1q2H3nzzTQ0dOlRBQUHq0qVLudnHHPX666+rWbNmat68uRYvXqwvvvhC11xzjdPt1MRgdXBqsFWrVlW7/eDBg5owYYJDL+bJz89XcHCw8vLyFBQU5FildaBly4upGq61Y4dU2+e0Bg6Uli1zfz8AAKB68+dLjz7quvZaty7SrFmH1LRptKSGNe7vKt7eUmCg7Q6R+uTjY3s0oCZnz0pueGREHTrYHieoK0VFRTp06JCio6PVsOHF/96OZgOHbxW7//77ZTAYqp0Cuey9eAAAAADgKg7fKhYeHq7ly5fb39556c/OnTvdWScAAACAq5jDwaVr167VhpOaRmMAAAAAoLYcvlVs4sSJOnv2bJXbY2Nj9d1337mkKAAAAAAoy+HgkpiYWO32Ro0aVTsbAgAAAFDWxdc6cNfO1cBS2YsHneCy97j8GsTFMauYO/j6Sk2b1v77Xbs6NquYt/fl9QMAAKoXE+Pa9k6e9FFenkGhoSdlNIZJqpuJnnx9bTN61TdfX9vUzDUxm20vl3TlUxkGw8X377mb1WpVcXGxTp48KS8vL/mWfWumExyeDtmVPHU6ZMn2Eso9e2wvJ6rsZUjNm0sPPCD5+0tt20rdukmjRknbt7unnjZtbC9vrK3K/pJHRNhepClJN95o+7P0ZZGSdMcdtrnNN2+ufb9xcdJvfiN16iTdfvvlvxTyjTeklBTp5Elp27aL62+7zfYW3A4dpIkTefkkAADutnmztGSJ7Xrp22/Lb7vtNqlxY2nTJtsb3h35BXunTiZNnpypsLCLFyylL2mUpIAA258+PhdfIFmbX9wbDLYfH5+L73nJy7O9b85iuXgB37Ch7drJYrFdY5w/X74OyVaDZGvHYLB9tzQEVPdyTEkyGi8ejzOvOrlwwXZ9lp9v6+vSYyvb/oULlbfRsKGtXz8/25/edTyE4e/vr/Dw8ArBxdFsQHCpwscfS8OGVVx/8KAUHV1+3dmz5f8y1+Snn6T//le6//6K20wm2//QS3+j8dNPtov/2tq4Ubr0Dr6ybR48aJu/u+z/cI4ft61z5pguZTK5Z17wbdukm292fz8AAKB6J05UvPC+9N/lv/zF9ovFSx08WH70xs/PrN27S+y/XL3zzovbdu60/cK4rD17bO95K+ubb2y/nN22TRo6tPy2qVOlhx+u+ljKtrd0qe0XsFL5WkrbP3fu4jvjLq3t0tol2y+4//EP2+dp02y/AL8cZfsv9fbbUp8+VW8vVdm5rCtGo1He3t6Vvj7F5e9xAQAAANyhsNAoo9Gohg1tIwZHjlzc1qCBbaTgUmX3kWzfKx0tuXTb+fOVt1FVe6X7lq2ltH2z+eK6S2u7tHZJKii4uK64uOY6alK2/1IlJRfbrWx7qarO5ZXC4emQAQAAAKC+OB1cPv74Y/3zn/+0Lz/33HMKCQlRz549daSqeAcAAAAAl8Hp4PLnP/9Zfn5+kqTNmzfrvffe0/Tp09W0aVM988wzLi8QAAAAAJx+xiUjI0OxsbGSpJUrV2rAgAEaOXKk4uPjlZSU5Or6AAAAAMD5EZeAgACdPn1akrRu3Trd+b+pExo2bKjCwkLXVgcAAAAAqsWIS+/evfXEE0/oxhtv1H/+8x/de++9kqSff/5ZUVFRrq4PAAAAAJwfcXn//ffVo0cPnTx5UsuXL1eTJk0kSTt27NDgwYNdXiAAAAAAOD3iEhISovfee6/C+qlTp7qkoLqwOWOzlvy8RP/K/JeyTFkqNhfrguWCLFbba1h9jD7SrkckveWW/mdt/5tOHQ2RNKTCtkeXP6qi/EBJf5ckTfnuZUl/qnVfL62fJOnP5dZNXDdB0l8lSS+unyyfhiWSptu3//M//9RDN95b6z4BAMCvw+zts/W3bX/T/pz9On/B9gp5q2zvLreYmko6Xm7/Z9c8q91nNstssb3aPWPzg5Kev6waklcmK+dChvKK8nTuwjlJkiGrm6SPy+33+y9G6dprjTq6J0rSc+W2bc5MUaM96dp/er9OnD2hZv7N1KZpG/v2A/8NlnSf07WNXzNe/8n/QafOnZIkFZ8Kl/RNuX3+ummapD9KkoavGqaxR5fbt/kYfXTDNTfoowc+0tH8o1p7YK22ZGxRlilLOYU5KrpQpMKSQhVdKJIkeXl5yftCsKST5fr45sAaPay7na7/SuNQcNm9e7fDDXbu3LnWxdSFzRmb1XNez5p3zE93Ww3v/WumdDpalQWXlb/8P8nU1L68bO8SXU5w+f7wdxXWfbX/nyoNLgt2fyb5nlPZ4DL882Fq6PeBpL617hcAAFzZZm+frVH/HFXNHpaK39n5j/9dV/xPbrdKv7kza4ekrpVuW/vfNVKZi/Cle5eUb1OSjvtW+N66A2ukM+nSoVt0aXD5aMccfWT8tNL+JEmZN6g0uOw+/qNu0vVV7jpv5zxJwyVJc3fOKV9bjqnC/sXFF9dZLhTKVFJmnxLpuyPfqfU7rauurQyzxaySC+cqrJ+7Y5Zu2p6ukd1GOtTOlcqh4HLDDTfIYDDIarVWur10m8FgkNlsdmmBrnYw92B9l3BF2HdqnwguAABcvXYd3+W2ttPzjqiq4PKfnP9I9Th6cLQgQ6omuOw+4fgv9OuSO/97eQqHgsuhQ4fcXQcAAAAAVMmh4NK6tWPDVwAAAADgDg4Fl1WrVjncYN++3F4EAAAAwLUcCi7333+/Q41dCc+4AAAAALjyOBRcLJaKs0YAAAAAQF1x+gWUZRUVFbmqDgAAAACoktPBxWw269VXX1XLli0VEBCggwdt0wu/9NJL+uCDD1xeoKvFhMTUdwlXhA5NO9R3CQAAoB7dcM0Nbmu7VXDVEz+1DW3rtn4d0TIwstrtnZt55jsL3fnfy1M4HVxef/11ffTRR5o+fbp8fS++/CcuLk5z5851aXHu0COyhzYN36Tx3cer2zWVvxTJkwy47iGXt3lPm3ur3T6v30fq255JFgAAuJqN7DZS/7j3H7q+2fVq6NXQse90GaVbWt6i65peV+1+XcIrf4eLJN0VW/k7XC430Pztnr/plV6vaHS30ZrQY0K59VNvf9W+3Pmaqt/hIknDuwy3f36w/QD754jAiEr39/UNqHR9gE+AGjdsrNta36Yj449o0/BNeqXXK7qt1W0OHU9ZT3T9/a/+5ZOSg8+4lPXJJ59o9uzZuuOOO/T73//evr5z587697//7dLi3KVHZA/1iOyhE6YTuuav19R3OdWactuftMzFbb71m7/qq2q239u2+mADAACuDiO7jdTIbiP184mf1envnWrc/+2731ajRtK2o9t089ybXVrLnN/OUa+Pe9X6+w9e96CaBTSTJJ0wndBfN//Vvv6IoZleqUWbzyc8r+UHP5EkvXfPe7p/1rgK+0zo+UdN21jxu9l/yFYj30b25VbBrWzXp92cvz6989r6e2FnXXJ6xOXo0aOKjY2tsN5isaikpMQlRQEAAABAWU4Hl44dOyolJaXC+qVLl+rGG290SVEAAAAAUJbTt4q98sorGjp0qI4ePSqLxaIVK1bol19+0SeffKIvv/zSHTUCAAAAuMo5PeLy29/+VosXL9bq1atlMBj08ssva9++ffriiy/Uu3dvd9QIAAAA4Crn8IjLiy++qNtvv109e/bUXXfdpbvuusuddQEAAACAncMjLgsXLtSdd96pkJAQ9erVS1OnTlVKSoqKi4vdWR8AAAAAOB5cDhw4oIyMDM2ZM0exsbH65JNP1KtXLzVu3Fh33nmnXn/9dW3atMmdtQIAAAC4Sjn1jEvLli01dOhQffDBBzpw4ICOHDmiv//972rVqpWmT5+uW2+91V11AgAAALiKOT2rWKkDBw5ow4YNWr9+vTZs2CCz2azbbnP+TZ9XnNuSJK/08uv8wyT9yz39ffG5pH7uabsqy5ZK7VtJ6l63/QIAgCvbm29KviWSOdP57z46RPI7IRU2k7Sg4vaPP7682jrHSbklktUqNbRIpe9Rv7ePFNpP0kvOt7ln98XP333n3HcDAqTKXoHY2Ed62vlSrgYOB5dDhw7pu+++03fffacNGzYoLy9P8fHx6tWrl8aOHaubbrpJ3t61zkFXjiOHJF0SXHTcff398Xm5PLjs+kFSNe/ceXKMpHOSzrq2XwAA8Ov26p8knZOukTTaye9uSpPtGqtV5dvnzJN+dxm1HT9hu7yRJP8y67fvkM6ZZQ8u2VmSwh1rM3mENO5/n9+eId1bSe3pByRd63id53mhe1UcThrXXnutWrVqpTFjxmjcuHHq0qWLjEajO2uDu2Skq9rgAgAAcLXKzZHDwcWh9nJd19ZVzuFnXAYOHKjz589r2rRpevXVV/XOO+9o586dslqt7qwPAAAAABwfcVm8eLEk6d///rf9drG33npLRUVFSkhIUK9evZSUlKSbbrrJbcUCAAAAuDo5NauYJLVv316jR4/W4sWLlZ2drU2bNumGG27Qa6+9ph49erijRgAAAABXuVo9TX/8+HFt2LBBGzZs0Hfffaf//Oc/atCggRITE11dHwAAAAA4HlyWLl1qv0Xsl19+kbe3t26++WY99NBDuu2229SzZ081aNDAnbUCAAAAuEo5HFweeeQRdevWTQ888IBuu+02xcfHy8/Pz521AQAAAIAkJ4LLmTNn1KhRI3fWgroSWcX86AAAAFe7kFAXtxfi2vauYg4/nE9oqUaH69zX9rQ3Xd/mDTW8w+X9v0nfrnd9vwAAAFXpdH3124cOdk+/XW6Q7u9/cbm5E+9w+fCDmvdp5cTLJyWpgY9z+19FnJ5VDJXYsMF9bf+2n/varsqAgVL37nXfLwAAuHq99mr12x962D39Ll8hTXqpdt+N6+zaWiTp37+4vs1fCYILAAAAAI9HcAEAAADg8QguAAAAADyeQ7OK9e/fv+ad/mfFihW1LgYAAAAAKuPQiEtwcLD9JygoSN9++622b99u375jxw59++23Cg4OdluhAAAAAK5eDo24fPjhh/bPzz//vB566CHNmjVLRqNRkmQ2mzVmzBgFBQW5p0oAAAAAVzWnn3GZN2+e/vCHP9hDiyQZjUY9++yzmjdvnkuLAwAAAACpFsHlwoUL2rdvX4X1+/btk8VicUlRAAAAAFCWQ7eKlZWcnKzhw4frv//9r2655RZJ0pYtW/TGG28oOTnZ5QUCAAAAgNPB5S9/+YuaN2+u//u//1NWVpYkKTw8XM8995wmTJjg8gIBAAAAwKngcuHCBc2fP1+PPfaYnnvuOeXn50sSD+UDAAAAcCunnnHx9vbW6NGjdf78eUm2wEJoAQAAAOBuTj+c3717d/3www/uqAUAAAAAKuX0My5jxozRhAkTlJmZqa5du6pRo0bltnfu3NllxQEAAACAVIvg8vDDD0uSxo0bZ19nMBhktVplMBhkNptdVx0AAAAAqBbB5dChQ+6oAwAAAACq5HRwad26tTvqAAAAAIAqOR1cSu3du1fp6ekqLi4ut75v376XXRQAAAAAlOV0cDl48KAeeOAB7dmzx/5si2R7zkUSz7gAAAAAcDmnp0N++umnFR0drePHj8vf318///yzvv/+e3Xr1k0bNmxwQ4kAAAAArnZOj7hs3rxZ69evV1hYmLy8vOTl5aWEhARNmzZN48aN4x0vAAAAAFzO6REXs9msgIAASVLTpk117NgxSbaH9n/55RfXVgcAAAAAqsWIS6dOnbR7927FxMSoe/fumj59unx9fTV79mzFxMS4o0YAAAAAVzmng8uLL76os2fPSpJee+013XfffUpMTFSTJk20ePFilxcIAAAAAE4Hl7vuusv+OSYmRnv37lVOTo4aN25sn1kMAAAAAFzJ6Wdcvv76a507d67cutDQUEILAAAAALdxesTlwQcf1Pnz59W1a1f16tVLSUlJio+Ptz+wDwAAAACu5vSIy5kzZ7Rhwwb17dtXP/zwgwYOHKjQ0FDdcssteuGFF9xRIwAAAICrnNPBxWg0qkePHnrhhRe0Zs0abdq0SUOGDNGOHTv01ltvuaNGAAAAAFc5p28V27dvnzZu3KgNGzZo48aNMpvNSkhI0F//+lf16tXLHTUCAAAAuMo5HVw6duyosLAwjR8/Xi+99JI6duzojroAAAAAwM7pW8XGjRunli1basqUKRo+fLief/55ffXVVzKZTO6oDwAAAACcDy7vvPOOdu7cqePHj+vFF1+U2WzWyy+/rKZNm+qWW25xR40AAAAArnJOB5dSFotFFy5cUHFxsc6fP6+SkhIdPnzYhaUBAAAAgI3TweXpp5/W9ddfr2bNmmnUqFE6duyYRo4cqR9//FHZ2dnuqBEAAADAVc7ph/OPHj2q3/3ud0pKSlKnTp3cURMAAAAAlON0cFm2bJk76gAAAACAKtXqGZdPP/1U8fHxatGihY4cOSLJ9tD+559/7tLiAAAAAECqRXD5+9//rmeffVZ9+vRRbm6uzGazJCkkJETvvPOOq+sDAAAAAOeDy7vvvqs5c+Zo8uTJMhqN9vXdunXTnj17XFocAAAAAEi1CC6HDh3SjTfeWGF9gwYNdPbsWZcUBQAAAABlOR1coqOjtWvXrgrrv/rqK1133XWuqAkAAAAAynF6VrGJEyfqySefVFFRkaxWq7Zu3aqFCxdq2rRpmjt3rjtqBAAAAHCVczq4JCcn68KFC3ruued07tw5DRkyRC1bttSMGTM0aNAgd9QIAAAA4CrndHCRpN/97nf63e9+p1OnTslisahZs2aSbC+nbNmypUsLBAAAAIBavcelVNOmTdWsWTNlZ2frqaeeUmxsrKvqAgAAAAA7h4NLbm6uHnnkEYWFhalFixaaOXOmLBaLXn75ZcXExGjLli2aN2+eO2sFAAAAcJVy+FaxSZMm6fvvv9fjjz+uNWvW6JlnntGaNWtUVFSkr776Sr169XJnnQAAAACuYg4Hl3/+85/68MMPdeedd2rMmDGKjY1V27Zt9c4777ixPAAAAABw4laxY8eO2d/TEhMTo4YNG+qJJ55wW2EAAAAAUMrh4GKxWOTj42NfNhqNatSokVuKAgAAAICyHL5VzGq1atiwYWrQoIEkqaioSL///e8rhJcVK1a4tkIAAAAAVz2Hg8vjjz9ebvnRRx91eTEAAAAAUBmHg8uHH37ozjoAAAAAoEqX9QJKAAAAAKgLBBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAej+ACAAAAwOMRXAAAAAB4PIILAAAAAI9HcAEAAADg8QguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPJ53fXRqtVolSfn5+fXRvV2BqUAqqmJjSYmkivUVyFJh7dmCfElmxzsuNkslFyptX+et0nmLfZvJ5HizlfdVsZ9ybZ63SFZLuX0KCiSzE4dTmfz8y2+jMpeeD3f1AwAALjIVmCpeM50vf/0gSfmyyizJZJFt/wvFFfaRbNcaFdadMylftmutct85b5Us0lnTuYs1FJsrtnveYtteybWPSopVYJUalvZllb2tgoICmUwX9zeZbNcXl9ZZUGBbf/bsxXVlz8s5iyo9J+fPl62jxL5/vrXyq8eCgmquTyWpxFqhj3PnLtZctr5Leep1U2kmKM0IVTFYa9rDDTIzMxUZGVnX3QIAAADwUBkZGYqIiKhye70EF4vFomPHjikwMFAGg6Guu78i5efnKzIyUhkZGQoKCqrvcn71ON91i/NdtzjfdYvzXbc433WL8113fs3n2mq1qqCgQC1atJCXV9VPstTLrWJeXl7VpilULSgo6Ff3l9WTcb7rFue7bnG+6xbnu25xvusW57vu/FrPdXBwcI378HA+AAAAAI9HcAEAAADg8QguV4gGDRrolVdeUYMGDeq7lKsC57tucb7rFue7bnG+6xbnu25xvusO57qeHs4HAAAAAGcw4gIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAej+ACAAAAwOMRXAAAAAB4PIILAAAAAI9HcAEAAADg8QguAAAAADwewQUAAACAxyO4AAAAAPB4BBcAAAAAHo/gAgAAAMDjEVwAAAAAeDyCCwAAAACPR3ABAAAA4PEILgAAAAA8HsEFAAAAgMcjuAAAAADweAQXAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAAAA8HgEFwAAAAAez7s+OrVYLDp27JgCAwNlMBjqowQAAAAAHsBqtaqgoEAtWrSQl1fV4yr1ElyOHTumyMjI+ugaAAAAgAfKyMhQREREldvrJbgEBgZKshUXFBRUHyUAAAAA8AD5+fmKjIy0Z4Sq1EtwKb09LCgoiOACAAAAoMZHSHg4HwAAAIDHI7gAAAAA8Hj1cqsYAAAAIElms1klJSX1XQbczGg0ytvb+7JmFCa4AAAAoF6YTCZlZmbKarXWdymoA/7+/goPD5evr2+tvk9wAQAAQJ0zm83KzMyUv7+/wsLCeLffr5jValVxcbFOnjypQ4cOqU2bNtW+r6UqBBcAAADUuZKSElmtVoWFhcnPz6++y4Gb+fn5ycfHR0eOHFFxcbEaNmzodBs8nA8AAIB6w0jL1aM2oyzlvu+iOgAAAADUgaioKG3ZssVt7R8+fLjciIi7+3MUwQUAAABXnm++ka67zvani0VFRcnf318BAQFq0aKFnnnmGZnNZpf342rJycmaPHmyfXnv3r0yGAxauHChfd2SJUt0/fXXu7Tfc+fOKTAwUA8//LBL270UwQUAAABXFqtVmjRJ2rfP9qcbZiVbv369TCaTUlJStGTJEs2bN8/lfdTEYrHIYrE4vH9CQoJSU1Pty2lpaWrbtm2FdQkJCS6tc+XKlfLx8dEXX3yhgoICl7ZdFsEFAAAAV5Z166Rt22yft22zLbvJtddeq/j4eO3atcu+btmyZerYsaNCQ0PVt29fnThxQpI0ZMgQzZkzR5K0ceNGGQwGbftfnTNmzNCoUaMkSatWrVJcXJwCAwPVpk0bLV261N72sGHDNG7cOCUlJSkgIEDp6elavXq1YmNjFRoaqilTplRZa0JCgrZu3ari4mJJUmpqqiZMmKC0tDT7PqmpqUpMTKz2OJw1f/58jRs3TpGRkVqxYkWt2nAEwQUAAABXDqtVeuklyWi0LRuNtmU3vQtm//79Sk1NVUxMjCRp69atevbZZ7V48WIdP35c7du31+jRoyVJiYmJSklJkWQLCNHR0eWWS0c6goKCtGzZMuXl5WnmzJlKTk5Wdna2vc9Fixbp7bffVkFBgRo1aqRBgwZp5syZys7O1rlz55SZmVlpre3atVNQUJB27NghSdq0aZP69+8vk8mkvLw8mUwm/fjjj/aAU9VxOOPkyZNat26dHn74YT388MOaP3++0204iuACAACAK0fpaEvpMydms1tGXXr37q2AgAC1bdtWt9xyi5588klJ0rx58zR27Fh16tRJPj4+evnll7Vq1SpduHBBCQkJ9qCSkpKiiRMnVhpckpKS1K5dO3l5eemee+5RXFyctm/fbu974MCB6tKli4xGo1avXq2bb75Zffr0ka+vr6ZMmVLt7Fw9e/ZUamqqsrOzZTQa1bRpU3Xv3l2bNm3Sli1bFBkZqYiIiGqPwxmLFy9Whw4d1KFDBz388MNav359uRDmSgQXAAAAXBkuHW0p5YZRl6+//loFBQVauXKldu7cKZPJJElKT0/X1KlTFRISopCQEEVERMjb21vZ2dnq1KmT8vLydOTIEe3du1fJycnasWOH9u/fLy8vL0VHR0uyhZj4+HiFhoYqJCRE27dv1+nTp+19R0RE2D9nZWUpMjLSvuzv768mTZpUWXfpcy5paWmKj4+XdDHMlH2+pbrjcMZnn31mfyi/Y8eOat++vRYtWuRUG44iuAAAAODKcOloSyk3jboYDAb169dPd9xxh1599VVJUsuWLTVt2jTl5ubafwoLCxURESGDwaCePXvq/fffV1xcnBo2bKiYmBjNmTOn3APxQ4cO1fDhw3X8+HHl5uaqW7duspYJXWXfbRMeHq6MjAz7cmFhYbmQc6mEhASlpaXZw5FUPriUPt9S3XE46sCBA/rXv/6lv/zlL2revLmaN2+uAwcOuO12MYILAAAAPF/paEtVt0l5ebntWZeJEydq7ty5OnnypIYPH653331Xu3fvliTl5OTo888/t++bmJioWbNm6dZbby23XDa4FBQUKDQ0VN7e3lq+fLn9mZTK9OnTR1u3btXatWtVXFysqVOnVjvTWJcuXVRYWKgFCxbYg0vnzp21b98+bdmyxV5HTcfhiM8++0w9evTQvn37tGvXLu3atUv/+te/9MMPP+iXX35xqi1HEFwAAADg+YqLpfR0qaqLdotFysiw7edi7du3V1JSkmbMmKEePXrozTff1NChQxUUFKQuXbqUm7UrMTFRBQUF9pGN0uWyweXdd9/V2LFj1bhxY61du1a9evWqsu+wsDDNnz9fY8aMUfPmzeXn51ftqIiPj4+6d+8us9msdu3aSZKMRqPi4uLk6+urDh06SFKNx+GI+fPna9SoUfbRlubNm6tz586655573DLqYrBa3TQFQzXy8/MVHBysvLw8BQUF1XX3AAAAqGdFRUU6dOiQoqOjy72lvVoZGdLJk1Vvb9ZMcuJWJ9Stqv6bO5oNvOuiSAAAAOCyRUbafnBV4lYxAAAAAB6P4AIAAADA4xFcAAAAAHg8ggsAAAAAj0dwAQAAAODxCC4AAAAAPB7BBQAAAIDHI7gAAADgivPNwW903fvX6ZuD39R3KXUuKipKW7ZscVv7hw8fLveCSHf35yiCCwAAAK4oVqtVk76dpH2n9mnSt5NktVpd2n5UVJT8/f0VEBCgFi1a6JlnnpHZbHZpH+6QnJysyZMn25f37t0rg8GghQsX2tctWbJE119/vcv6NBgMatSokQICAtSsWTM9+eSTunDhgsvaL4vgAgAAgCvKugPrtO3YNknStmPbtO7AOpf3sX79eplMJqWkpGjJkiWaN2+ey/uoicVikcVicXj/hIQEpaam2pfT0tLUtm3bCusSEhJcWueBAwdkMpn0008/adOmTW47VwQXAAAAXDGsVqte+u4lGQ1GSZLRYNRL373k8lGXUtdee63i4+O1a9cu+7ply5apY8eOCg0NVd++fXXixAlJ0pAhQzRnzhxJ0saNG2UwGLRtmy1gzZgxQ6NGjZIkrVq1SnFxcQoMDFSbNm20dOlSe9vDhg3TuHHjlJSUpICAAKWnp2v16tWKjY1VaGiopkyZUmWtCQkJ2rp1q4qLiyVJqampmjBhgtLS0uz7pKamKjExsdrjqK1mzZqpd+/e2rdv32W1UxWCCwAAAK4YpaMtZqvt1i2z1ey2URdJ2r9/v1JTUxUTEyNJ2rp1q5599lktXrxYx48fV/v27TV69GhJUmJiolJSUiTZAkJ0dHS55dKRjqCgIC1btkx5eXmaOXOmkpOTlZ2dbe9z0aJFevvtt1VQUKBGjRpp0KBBmjlzprKzs3Xu3DllZmZWWmu7du0UFBSkHTt2SJI2bdqk/v37y2QyKS8vTyaTST/++KM94FR1HLWVnZ2tdevWqXv37pfVTlUILgAAALgiXDraUsodoy69e/dWQECA2rZtq1tuuUVPPvmkJGnevHkaO3asOnXqJB8fH7388statWqVLly4oISEBHtQSUlJ0cSJEysNLklJSWrXrp28vLx0zz33KC4uTtu3b7f3PXDgQHXp0kVGo1GrV6/WzTffrD59+sjX11dTpkyRl1fVl/A9e/ZUamqqsrOzZTQa1bRpU3Xv3l2bNm3Sli1bFBkZqYiIiGqPw1nt2rVTSEiIwsPDFRwcrH79+jndhiMILgAAALgiXDraUsodoy5ff/21CgoKtHLlSu3cuVMmk0mSlJ6erqlTpyokJEQhISGKiIiQt7e3srOz1alTJ+Xl5enIkSPau3evkpOTtWPHDu3fv19eXl6Kjo6WZAsx8fHxCg0NVUhIiLZv367Tp0/b+46IiLB/zsrKUmRkpH3Z399fTZo0qbLu0udc0tLSFB8fL+limCn7fEt1x+GsX375Rbm5uSooKFCrVq306KOPOt2GIwguAAAA8Hiloy1eVVy+esnL5aMuBoNB/fr10x133KFXX31VktSyZUtNmzZNubm59p/CwkJFRETIYDCoZ8+eev/99xUXF6eGDRsqJiZGc+bMKfdA/NChQzV8+HAdP35cubm56tatW7m6DQaD/XN4eLgyMjLsy4WFheVCzqUSEhKUlpZmD0dS+eBS+nxLdcdRWwEBARo0aJDWrl1b6zaqQ3ABAACAxys2Fys9L10WVT7LlkUWZeRnqNhc7PK+J06cqLlz5+rkyZMaPny43n33Xe3evVuSlJOTo88//9y+b2JiombNmqVbb7213HLZ4FJQUKDQ0FB5e3tr+fLl9mdSKtOnTx9t3bpVa9euVXFxsaZOnVrtTGNdunRRYWGhFixYYA8unTt31r59+7RlyxZ7HTUdR20UFhZqyZIl6tChw2W1UxWCCwAAADxeA+8G2va7bdoxcodSky9O75uanKodI3dox8gd2va7bWrg3cDlfbdv315JSUmaMWOGevTooTfffFNDhw5VUFCQunTpUm7WrsTERBUUFNhHNkqXywaXd999V2PHjlXjxo21du1a9erVq8q+w8LCNH/+fI0ZM0bNmzeXn59ftaMiPj4+6t69u8xms9q1aydJMhqNiouLk6+vrz1U1HQczrj22mvt77zJysrSp59+Wqt2amKwumvuuGrk5+crODhYeXl5CgoKquvuAQAAUM+Kiop06NAhRUdHl3tLO369qvpv7mg2YMQFAAAAgMdzKrjk5+dXek+d2WxWfn6+y4oCAAAAgLIcDi7/7//9P3Xr1k1FRUUVtp0/f1433XSTvvjiC5cWBwAAAACSE8Hl73//u5577jn5+/tX2Obv76/nn39e7733nkuLAwAAAADJieDy008/KSkpqcrtt956q/bs2eOKmgAAAACgHIeDy5kzZ3ThwoUqt5eUlOjMmTMuKQoAAAAAynI4uERFRWn79u1Vbt++fbtat27tkqIAAAAAoCyHg0v//v01efJkHT9+vMK27Oxsvfjii3rwwQddWhwAAAAASE4ElxdeeEGBgYFq06aNxowZoxkzZmjmzJkaPXq02rZtq4CAAL3wwgvurBUAAACQJH3zjXTddbY/rzZRUVHasmWL29o/fPhwuRdEurs/RzkcXAIDA5WWlqZHH31Uixcv1jPPPKPx48dryZIlevTRR5WWlqbAwEB31goAAADIapUmTZL27bP9abW6tv2oqCj5+/srICBALVq00DPPPCOz2ezaTtwgOTlZkydPti/v3btXBoNBCxcutK9bsmSJrr/+epf1aTabNW3aNLVt21aNGjVSdHS0nnrqKZ06dcplfZRy6gWUwcHB+tvf/qZTp07p+PHjys7O1qlTp/S3v/1NISEhLi8OAAAAuNS6ddK2bbbP27bZll1t/fr1MplMSklJ0ZIlSzRv3jzXd1IDi8VS6cvfq5KQkKDU1FT7clpamtq2bVthXUJCgstqHDVqlD766CN9+OGHys3N1Y4dO9SyZUtt3brVZX2Uciq4lDIYDAoLC9O8efOUl5fn6poAAACASlmt0ksvSUajbdlotC27etSl1LXXXqv4+Hjt2rXLvm7ZsmXq2LGjQkND1bdvX504cUKSNGTIEM2ZM0eStHHjRhkMBm37X8KaMWOGRo0aJUlatWqV4uLi7I9hLF261N72sGHDNG7cOCUlJSkgIEDp6elavXq1YmNjFRoaqilTplRZa0JCgrZu3ari4mJJUmpqqiZMmKC0tDT7PqmpqUpMTKz2OBz173//W/PmzdPChQsVHx8vHx8fhYaG6oUXXlCfPn2cassRtQoupf785z8rJyfHVbUAAAAA1SodbSm9c8tsdt+oiyTt379fqampiomJkSRt3bpVzz77rBYvXqzjx4+rffv2Gj16tCQpMTFRKSkpkmwBITo6utxy6UhHUFCQli1bpry8PM2cOVPJycnKzs6297lo0SK9/fbbKigoUKNGjTRo0CDNnDlT2dnZOnfunDIzMyuttV27dgoKCtKOHTskSZs2bVL//v1lMpmUl5cnk8mkH3/80R5wqjoOR3333Xdq1aqVunTp4tT3auuygovVXdEWAAAAuMSloy2l3DHq0rt3bwUEBKht27a65ZZb9OSTT0qS5s2bp7Fjx6pTp07y8fHRyy+/rFWrVunChQtKSEiwB5WUlBRNnDix0uCSlJSkdu3aycvLS/fcc4/i4uLKvXZk4MCB6tKli4xGo1avXq2bb75Zffr0ka+vr6ZMmSIvr6ov4Xv27KnU1FRlZ2fLaDSqadOm6t69uzZt2qQtW7YoMjJSERER1R6Ho06fPq3mzZs7fW5r67KCCwAAAFBXLh1tKeWOUZevv/5aBQUFWrlypXbu3CmTySRJSk9P19SpUxUSEqKQkBBFRETI29tb2dnZ6tSpk/Ly8nTkyBHt3btXycnJ2rFjh/bv3y8vLy9FR0dLsoWY+Ph4hYaGKiQkRNu3b9fp06ftfUdERNg/Z2VlKTIy0r7s7++vJk2aVFl36XMuaWlpio+Pl3QxzJR9vqW643BUkyZNnNr/cl1WcNm7d2+5l06WvfcPAAAAcJXS0ZaqBhu8vFw/6mIwGNSvXz/dcccdevXVVyVJLVu21LRp05Sbm2v/KSwsVEREhAwGg3r27Kn3339fcXFxatiwoWJiYjRnzpxyD8QPHTpUw4cP1/Hjx5Wbm6tu3bqVu5PJYDDYP4eHhysjI8O+XFhYWC7kXCohIUFpaWn2cCSVDy6lz7dUdxyOuu2225Senl5nGeCygktkZKRMJpP+9re/qUuXLurataur6vII33wjGQyV/zRu7J55w/v0qbrP3/3O9f2VdWl/DRp4xtzojs7TXnru3PAsGAAAcEBV/2aXvb4ovc1r7lzpyBHpp5+k7dulH3+svu3iYik9Xapqki2LRcrIsO3nKtnZttruuWeiZs+eq+++O6nhw4fr//7vXS1cuFuHD0s5OTn6/PPP7d9JTEzUrFmzdOutt5ZbLhtcCgoKlJcXql27vDV9+nL7MymV6dOnj7Zu3aq1a9equLhYU6dOtc80dviwrb7Snx07pC5duqiwsFALFixQ27bx2rFDatass/bt26ctW7bY6xg+fLjeffdd7d69W1LF43BE+/btNXz4cA0ePFibN2/WhQsXlJubq+nTp2v16tVOteWIWgeX9evX69FHH1V4eLjeffdd9enTp9y9eVc6q1UaMaLq7bm50h//6NpUf+GC9NVXVW//4IOKQ6OusndvxXXFxdILL7hvlg5HODpPe9lz99VXtmUAAFB3qvo3+9J5nCwWKS9Peu+98utLSqoOJZLtF6rbttkuzsvM7qvUVNu6HTts2xs0cN3xlD4DHxXVXl27Jumzz2bo5pt7aPToN/XKK0PVqVOQunTpUm7WrsTERBUUFNhHNkqXywaXGTPe1RtvjNXttzfW5s1rdeONvaq8xgkLC9P8+fM1ZswYNW/eXH5+foqIiJDVKl36qhSrVfLy8lH37t1lNpvl799OVqt0/LhRcXFx8vX1VYcOHSRJPXr00JtvvqmhQ4cqKKjicTjqH//4hx577DE99thjCg4O1o033qjMzEzdfPPNTrdVE4PViSfsMzMz9dFHH2nevHk6e/asHnroIc2aNUs//vijrrvuOoc7zc/PV3BwsPLy8hQUFFSrwt1t7Vrp7rtr3m/NGumuu1zTZ+/eNY8qPP649NFHrumvrDIjkhW48hiddel/h6pqufTc3Xmn9PXX7q8PAADYVPVvdlXXGK1bF2nWrENq2jRaku0t7T4+kgvfjXhZsrKko0crrjcYyv8itUkT6X+Prjhs166Kv2R1tp1Dh6Sq7hjr1q1i/S1bSuHhztXpakVFRTp06JCio6PVsGFD+3pHs4HDIy59+vTRddddp7179+rdd9/VsWPH9O67715e9R7KapVGjnRs3xdfdM2IxIULjt2W9cknrh91qWy0pazJk+tn1MXRedorO3fffMOoCwAAdaWqf7OreRSjUjWNutQVq7Xy0FK6razTp527TrJYKr9GcaYdq7X6c2s224JLWVlZ9XsXjSs4HFzWrVunJ554QlOnTtW9994r46Xz0P2KrFtnu4fSEdu3u2YGi3vucWy/mm5hq42OHavfvmOH++ZGr46j87RXde4cPacAAODyVPVvdtOmzre1Z49ra6sNZyfKOnzY8X3/90jJZbVT034//FAxAFoszh+Xp3E4uKSkpKigoEDdunVT9+7d9d577+nkyZPurK1eODPaUupyR10cHW0p5cpRl5pGW0rV9aiLo/O0V3fuGHUBAMD9qvo3u7bqe9SlutGWqjg6WlLVaIsz7dQ02lKdK33UxeHg0qNHD82ZM0dZWVkaNWqUFi1apJYtW8pisdjnuf41cGa0pdTljro4OzLgylGXmkZbStX1qIuj87TXdO4YdQEAwL2q+jf7ctTnqEttRyUcGS2pbrTF0XacGd251JU+6uL0rGL+/v4aPny4UlNTtWfPHk2YMEFvvPGGmjVrpr59+7qjxjpTm9GWUrUddXF2tKWUK0ZdHB1tKVVXoy6OztNeUlLzuWPUBQAA96np3+yavmu7rqh4cVFfoy61GW0pVdNoSU2jLY60czmjLaXqc9TFcpn/Ub0v58vt2rXT9OnTNW3aNH3xxReaN2/eZRVT30rnB6+N9HTb952dgq+2qddqtU0vGBZWu+9L0lNPObf/kSO1O0ZnOTpPu6P/rbKzJSfepQQAABxU07/Z1Tl50kd5eQaFhp6U0Rgmqfz0Y3l5kp+fa+p01OX+Uthkss2MVplz5y6/nZKS2tVVlsViq6UuH1e3Wq0qLi7WyZMn5eXlJV9f31q149R0yK7iydMhZ2RI7dpJhYWO7e/tLb31ljRgQO0vjj/4wDZi40iI8fKS2rSR/vIX6b77atdfWdVNg1zWE09Ir7xSdwEgI0M6edL236F02vPU1Iv/B9asma2WDz6w3caWkyMtXmzb9vDDUmio7fPNN0vDhtVNzQAAXI2q+jf7/vsrvmfkUp06mTR5cqaCg60yGm3XOV5etl+Slv5bXtfOn3f8F8tBQRdHm3x9aw5ap05JRUW28FD2Cry0DW9vKSSk+nbOnbOd75p4e18c4QkNLd+Hu38JXRV/f3+Fh4dXCC6OZgOCSxXOnpUCAqrfx2SSGjVyXZ8//yx16lT19oMHnZ8n3FFRUbYRlUu5+hidVfa/Q3W1lD13P/3k+LM7AADANar6N/vpp6WZMy/u99Zb0mOPSddcY1v28zMrLKxEH3xwMfh4gtOnpfj48uvmzrVdM915p235m29q90vdb7+Vnnzy4nJt2snMvFhHqRdflB591Pa5bP1pabb3xNQno9Eob29vGSr5rbmj2eCybhUDAAAALkdhoVHp6UaZzVKZdxLWOx+fir/UNZttt1iVrjcaa1fzhQvl265NO2XrKFVYeLGdsvX7+HjWua2tWjxKBQAAAAB1i+ACAAAAwOM5HVw+/vhj/fOf/7QvP/fccwoJCVHPnj11pLKHJAAAAADgMjkdXP785z/L739THWzevFnvvfeepk+frqZNm+qZZ55xeYEAAAAA4PTD+RkZGYqNjZUkrVy5UgMGDNDIkSMVHx+vpKQkV9cHAAAAAM6PuAQEBOj0/17ZuW7dOt35v3nYGjZsqEJHX34CAAAAAE5wesSld+/eeuKJJ3TjjTfqP//5j+69915J0s8//6yoqChX1wcAAAAAzo+4vP/+++rRo4dOnjyp5cuXq8n/3mazY8cODR482OUFAgAAAIDTIy4hISF67733KqyfOnWqSwqqT30+66OvDnylm8Jv0uGTJyUdckm709Om64/f/lEWq6Xc+nuuvUc7snYopyhHr9/+uu4Nec4l/f1u1e8094e55fp5tuezuvuzu2W2mtXEr4nyz+erxFKitqFt9ctTv1xWf+3ebaf/5PxHXvKSRZZK97kp/CZtHbn1svoBAAD1b3radL3wzQuyyqqQBiH6Y+If9ddNf9WJ3LOSTJKk9YfW67edbpckrf3vF5J+W66N33zyG0nrHOqv6fSmOl14Wn7efjJbzXr1tlf1XLztmumbg9+o96e97fsaZJDlFYv92kSSnrjxCc3pO6dcm5deK3l7eev1219Xl/AuGvH5CKXnp0umppJOlvvekp8Xat7qFyTZZtJNTf9eMZ/0srVh8NYF64Vy+3899GvdGXOnpqdN1/PfPG9fP9R3saSHajz20mvTe669R6sfXW0/5nFfjdMfO82SdGu5/cd9+TuNy7Ed1/WNeqv0HF/zVjMp4OKxvHnnm/po10eaec9M3RlzZ411eAqD1Wq11rTT7t27HW6wc+fONe6Tn5+v4OBg5eXlKSgoyOG23enChQvyed3n4opif+nPZ6v9jskkNWpUfbsWi0WN/txIReaiavfz9/HXv/oWKC6u6kGwgwel6Ojq+zObzfJ+rWIejQuN056cPZV+5/wfz6ttW98Kb1+Vaj7G4uJiNZjWoPqiSvedVCwfH5+adyzj7FkpIKDmWn7+WerUyfb5p5+kjh2d6gYAADjAYrHI/3V/nbect69raGxou84pc+1048xE7Rj7vSwWi7y7vyntmGTf/403SvTCqRbSX8qHgjVrpLvuKt9fUVGR/N70K7fO38dfBS8UyGAw6No3rtWh4vK/aD755EmFvR9mXzbIoJIXS2Q0GiVVfa3k5+2n65pepx3ZO2wrTE0r1Kght0lND0ozbRdNUX9M0uEGG6s6XepyTRdt/d3WCv15/dJPloUr7cuVXeNdem1aMtl2DN3ndte2Y9vU0fte/fzil+W/9JsnpJ4fVKz/D2FSwKlyx1p4oVA3tbhJ/3riXzIYDFUeQ11wNBs4NOJyww03yGAwqKqMU7rNYDDIbDbXruJ6ds+Ce9zS7rTUaTWGFkk6V3JOs3f8Q9Loy+pvxKoRla6vKrRI0nV/v07Sf2vVn+27jun+QXft/P3OWvUDAADq37TUaeVCi6RKr3N+yN6pdQfWaeGehZLalNv29pa3pFjH+mv5TssK686VnNO01Gnq1qJbhdAiqVxokSSrrBqxaoQ+euAjSVVfKxVeKLwYWhx0+OwhqZrf3+48vrPS/izm85XsXd6l16b3LLhHf+j5B207tk2S9POJqq/talJ4wTah1rZj27TuwDrdFXtXDd/wDA4Fl0OHXHPLlKe6cOGCvjn0jcvbtVgseu371xze/x87Z+tygovZbNbHuz92+nsHcg+olbVYkq9T3ysuLtaB3AMO7//D8R9UUlLi9KgLAACofxaLRa9ufNXh/f/49R+168QuSeW/cyI/06HvFxUVKed8TqXbXk95Xdf8//buOz6qKv//+HtSCYEESAiQhBbAVYqIsEsXEH6iiKhYAamKBRUQQVhByq6IuquC6OKCgmKDpawdEJS6NCUoVYoEAiQBFFKBhGTO7w++GROSkJlkZnIhr+fjkccjc++593zmbHzseXNusdVwupb5O+brvV4XVyJKMlcqDWf6u7g48MeqR2Fz01Vxq5R8Plm+Nl/lGPcsFPjafPXC6hd0S4NbynzVxRlOBZe6det6uo4yVdarLbmyLpTucdJF/QuCM+KT90tq6tIxrqy25GLVBQCAK1Nhqy2Xs/3k9lL1V9hqS65z2ed0WIedPlfuqotVrT+yVjExnR2fi5qb/pj4o1v7zTE5V9Sqi1PB5YsvvnD6hL169SpxMWXBKqstpVXS1RYHe5ZLzV1dbcnFqgsAAFceV1dbSiIn54Kki/ODy622lJS3V1pc8c9Nr2tA506y2Wwem5sW5UpadXEquNx1111OnexKvMfFKqstpeXtf0UoyWpLLlZdAAC4sri62lISTy8bph49Lj7963KrLVejXSd+dqx6eGpuWpQradXFqfe42O12p36utNDCakvJlHS1JVfuqgsAALA+b6y2SNKh0wd14cIFj6y2WJ+PXlj9gi5cuODV1ZY/er/YvxMPGy5TLr+AMq/z5723ouAJSelJHjlvela6V1dbTp/z7n/cB8+U7AlkecWnxLuhEgAA4GnpWekeX23JFZ8Srx2nnH8Nx9XDrqOpR8tsfmT/v/6zcly7dcDbXH4BZU5Ojl566SW98847OnHihPbv36+YmBi98MILqlevnh5+2Lo3Pl0qukq03r3jXW1L3KZjKcf05YEv3XLekAoh2vzwZi0/uFxf/vKltp0o/tF69153r2rW66K3ZrneX/VK1fX5A5/rtY2v6ecTPyslK8XpY6sEVlGjao30g19Q8Y3/T+MajfV8h+e19vBaHUs9piOphbwA5hKVAyqrRnAN/SnsT7o55mY1CG/gdH8AAKDs5M5rFu5aqJ1JO7XqSPErAk0jmikoyK6wimFafsm+0IrhKmym8kirx9UgvIEaqIEGXj9QPyT8oFMZp3TqXP53qVSvUF2nzp8q5AyFi64cLX9ff1X0q6iDpw96LYS54ou+X6nFdVUVHfLH3PT02dNauGehJOmORnco0C9QOfYc/XfffyVJD9/4iN4rZb/hQeGaf/d81ahUQxHBEQr0c+7dfGXF5eAydepUffDBB3r11Vc1dOhQx/ZmzZrpjTfeuKKCiyQ9fOPDelgPa/fJ3W4LLpLUOrq1Wke31hOtnlCN14p/XN/bPd7WqSMRequE/fW6tpd6XdtLcWfiFPNmTL59Wx/Zqr+8+5dCj/v8wc91U72bVO8l6Uiy8/1N7TpVkrTu8Dp1+qBTse2/G/Cd/hz1Z+c7AAAAlpE7rzmZftKpec13A75TRNXgi/OS6Z/k2zfwhgF683zBf6m9t/EDjt9z37ny+d7Pddd/7srXbteTuxRRKUIZWRmqNK1Svn1TO01Vh3od8s1N1g1ep/pV/3i7Y2FzJUk6NPxQoduddXPtm/X90e/zbUv/a7oysjKKHbOmEc0U/X/vXcw7N80NLtO6TVOTiCb5vvOA5gNLHVwOjzys4IBi3qZuIS5fKjZ//nzNnj1b/fr1c7yBVJKuv/56/fLLL24tDgAAAACkEgSX48ePq2HDgq87tdvt3HANAAAAwCNcDi5NmjTR+vXrC2xftGiRWrRo4ZaiAAAAACAvl+9xmTRpkvr376/jx4/Lbrdr6dKl2rdvn+bPn6+vvvrKEzUCAAAAKOdcXnG54447tHDhQn3zzTey2WyaOHGi9u7dqy+//FL/7//9P0/UCAAAAKCcc3rFZcKECbr55pvVrl07de/eXd27W/vNmgAAAACuHk6vuHz66afq1q2bqlSpok6dOmnKlClav369srKs/aIaAAAAAFc+p4PLr7/+qqNHj2rOnDlq2LCh5s+fr06dOqlq1arq1q2bpk6dqo0bN3qyVgAAAADllEv3uERFRal///5677339Ouvv+rIkSOaNWuW6tSpo1dffVU33XSTp+oEAAAAUI65fHN+rl9//VXffvutVqxYoRUrVignJ0ddunRxZ23WVylY+stfpMBA6dVXL24bOlSy2S7+/OlPnun31VclH58/+sn7c00jz/TpDa++mv+75I4pAAC4skRESD16SIMHF9z3+uuFH3PrLVJ4eP451GOPFmxXo8bFNs6qH/PH3KJixcu3c7dKlS7WW5yYuhfHS7o4/wkMlG7r8cf+jZsKHtOxY+nre+rJ0p/Di5wOLnFxcZo7d6769++v2rVrq0WLFlq8eLGaNWumxYsXKzk5WStXrvRkrdb0ww9SVpY0ZYp04YL07rt/7Nu/X7rg5nuA7HZp4kTJmML3X8hxb3/eYrdLY8fm3zZlysXtAADgyrNsmbRmrQsHXJB+//3ir/v3S+npUsLJopuf/t31ms6dk86edf04ZxQ1N3PWsmV/zCmzsqQj8X/sm/5G6c9fmA8+kHKunLmj08GlQYMG+tvf/qZmzZpp6dKlOnPmjJYtW6Zx48apbdu28vNz+ZUwV5ezZ6XWrQtu79DBvf1MmyZlZrr3nFYwbVrBbWfPSv/8p/drAQAAZa9Klcvvr1O3ZOdtfn3JjivODz+W/hyNGxcerHbtkb79tvTnv5SR9PDD7j+vhzgdXO677z5lZmZq2rRp+vvf/67p06crNjZWxhPp70q1fXvBbYePuO/8xi79/e/uO59V2O3ShAmF7/vHP7xbCwAAsIaSrAQYJ67UyPbQ1Ry/pZX+HL/+WvS+CROkjIzS93Gp+fOvmFUXp4PLwoULlZiYqE2bNum2227T1q1b1aNHD1WtWlU9e/bUP/7xD/3www+erBVvv11+VltynfPQci4AALj6LPpPWVfgOT/+KEVHuf+8xlwxqy4u35x/7bXX6oknntDChQuVlJSkjRs36oYbbtCLL76otm3beqJG5HrzzZIdZ7fwqtjlVlsAAIC1WP3e0207r+5/9LyQ7ZnzXiGrLiW6MeXEiRNas2aN1qxZo9WrV2v//v0KDAxUR3c83QBFyy7hjf5z57m3Dne63GoLAACwlhkzyrqC4nW/TboyFhCsI3fV5f33y7qSy3J6xWXRokUaNmyYGjdurMjISA0YMEC7du3S/fffr++++07JyclavXq1J2tFSc17r6wrKJyrqy1W/1ceAACuZna79MrLZV1F8ZgulMwVsOri9IpLv3791KpVK919993q0qWL2rdvr6CgIE/WBnfJulDWFRQuPd319pVDPFMLAAC4vPT0i0+hwtXJGOn0aal69bKupEhOr7icOXNGGzdu1NSpU9WtWzdCy6WqVr34kqG8atWS6tR2Xx9DHpauL8Ej/Ky67BcSIm3eLDVoIAUEFNzv7y8FBOZvDwAAykZIiLTsG+fbV61a8r4CAi6+hPFyCnsHZY8uUtPGJe+3NEr8Wvf/07q11LBh4ftatbz4Us8A/1J2colKlaSwMKlFC+nLLy0dWiQXhjg4ONiTdVz5fvlF2rEj/7YFC9zzTO9cEyZKJXnJZ5My+g/YGa1bSwcPSkePFtx37NjF5A8AAKzhxpbOt51XintsV668/HtL/vpXaeeugts7dZPemVX0ce+/L+0u5Dh3uPXm0h3/3nvS//5X+L53ZkknTkinz5Suj0tt3iz99psUGyv17Onec3tAabMhAAAAAHgcwQUAAACA5RFcAAAAAFgewQUAAACA5Tn1OOTevXs7fcKlS5eWuBgAAAAAKIxTKy6hoaGOn5CQEH333Xf68cc/npa1bds2fffddwoNDfVYoQAAAADKL6dWXObleZzd2LFjdf/99+udd96Rr6+vJCknJ0fDhg1TCO/ZAAAAAOABLt/jMnfuXI0ePdoRWiTJ19dXo0aN0ty5c91aHAAAAABIJQgu2dnZ2rt3b4Hte/fuld1ud0tRAAAAAJCXU5eK5TV48GANGTJEBw8eVJs2bSRJmzdv1ssvv6zBgwe7vUAAAAAAcDm4/POf/1TNmjX1xhtvKDExUZJUq1YtPffcc3r22WfdXiAAAAAAuBRcsrOz9fHHH2vAgAF67rnnlJqaKknclA8AAADAo1y6x8XPz09PPPGEMjMzJV0MLIQWAAAAAJ7m8s35rVu31vbt2z1RCwAAAAAUyuV7XIYNG6Znn31Wx44dU8uWLRUcHJxv//XXX++24gAAAABAKkFweeCBByRJw4cPd2yz2WwyxshmsyknJ8d91QEAAACAShBc4uLiPFEHAAAAABTJ5eBSt25dT9QBAAAAAEVyObjk2rNnj+Lj45WVlZVve69evUpdFAAAAADk5XJwOXTokO6++27t3LnTcW+LdPE+F0nc4wIAAADA7Vx+HPKIESNUv359nThxQhUrVtTu3bu1bt06tWrVSmvWrPFAiQAAAADKO5dXXDZt2qTvv/9e1atXl4+Pj3x8fNShQwdNmzZNw4cP5x0vAAAAANzO5RWXnJwcVapUSZIUHh6uhIQESRdv2t+3b597qwMAAAAAlWDFpWnTptqxY4diYmLUunVrvfrqqwoICNDs2bMVExPjiRoBAAAAlHMuB5cJEyYoIyNDkvTiiy+qZ8+e6tixo8LCwrRw4UK3FwgAAAAALgeX7t27O36PiYnRnj17dPr0aVWtWtXxZDEAAAAAcCeX73FZuXKlzp49m29btWrVCC0AAAAAPMblFZd77rlHmZmZatmypTp16qTOnTurffv2jhv2AQAAAMDdXF5xOXPmjNasWaNevXpp+/btuu+++1StWjW1adNG48aN80SNAAAAAMo5l4OLr6+v2rZtq3Hjxmn58uXauHGj+vbtq23btukf//iHJ2oEAAAAUM65fKnY3r17tXbtWq1Zs0Zr165VTk6OOnTooNdee02dOnXyRI0AAAAAyjmXg0uTJk1UvXp1jRw5Ui+88IKaNGniiboAAAAAwMHlS8WGDx+uqKgoTZ48WUOGDNHYsWO1bNkypaene6I+AAAAAHA9uEyfPl2xsbE6ceKEJkyYoJycHE2cOFHh4eFq06aNJ2oEAAAAUM65HFxy2e12ZWdnKysrS5mZmbpw4YIOHz7sxtIAAAAA4CKXg8uIESPUvHlzRURE6LHHHlNCQoIeffRR/fzzz0pKSvJEjQAAAADKOZdvzj9+/LiGDh2qzp07q2nTpp6oCQAAAADycTm4LF682BN1AAAAAECRSnSPy4cffqj27dsrMjJSR44ckXTxpv3PP//crcUBAAAAgFSC4DJr1iyNGjVKPXr0UHJysnJyciRJVapU0fTp091dHwAAAAC4HlxmzpypOXPmaPz48fL19XVsb9WqlXbu3OnW4gAAAABAKkFwiYuLU4sWLQpsDwwMVEZGhluKAgAAAIC8XA4u9evX108//VRg+7Jly9S4cWN31AQAAAAA+bj8VLExY8boySef1Pnz52WM0datW/Xpp59q2rRpevfddz1RIwAAAIByzuXgMnjwYGVnZ+u5557T2bNn1bdvX0VFRWnGjBl68MEHPVEjAAAAgHLO5eAiSUOHDtXQoUP122+/yW63KyIiQtLFl1NGRUW5tUAAAAAAKNF7XHKFh4crIiJCSUlJevrpp9WwYUN31QUAAAAADk4Hl+TkZPXr10/Vq1dXZGSk3nzzTdntdk2cOFExMTHavHmz5s6d68laAQAAAJRTTl8q9vzzz2vdunUaOHCgli9frmeeeUbLly/X+fPntWzZMnXq1MmTdQIAAAAox5wOLl9//bXmzZunbt26adiwYWrYsKGuueYaTZ8+3YPlAQAAAIALl4olJCQ43tMSExOjChUq6JFHHvFYYQAAAACQy+ngYrfb5e/v7/js6+ur4OBgjxQFAAAAAHk5famYMUaDBg1SYGCgJOn8+fN6/PHHC4SXpUuXurdCAAAAAOWe08Fl4MCB+T4/9NBDbi8GAAAAAArjdHCZN2+eJ+sAAAAAgCKV6gWUAAAAAOANBBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAludXFp0aYyRJqampZdF9odLT0qXzeTZcMJIuX1+qjHJyP6SlSRkZ+RtkZCgtNS3/eYuQlpqm9PQKl2+TJqXa0y7fxqhAfwW+W94S0zKUmpoqu73w/ampUk5O4ftyj3fm+6WnpV/+f++0Qr5XWpoycv4Yk8vVkp6e/3cL/WkBAHDVSEu/zLwmz9wpzRhVOHv24rwk57zyzqkyTZaUadel86wMZf+x5f/mVGftKtBfmpEqZGYqI73g/OZ8xvkCc5M0k6enc+eUVsS8qMAcqpAadSE7//ZMu+OY7HPZBc6baqSzhczNdCE737nTZFdqerpU4Y95T3qe7547j8rI+uO7ZZhC6svO+qOvS+ssZNafmp6uHAtMmnLniLkZoSg2U1wLDzh27Jhq167t7W4BAAAAWNTRo0cVHR1d5P4yCS52u10JCQmqXLmybDabt7u/IqWmpqp27do6evSoQkJCyrqcqx7j7V2Mt3cx3t7FeHsX4+1djLf3XM1jbYxRWlqaIiMj5eNT9J0sZXKpmI+Pz2XTFIoWEhJy1f2xWhnj7V2Mt3cx3t7FeHsX4+1djLf3XK1jHRoaWmwbbs4HAAAAYHkEFwAAAACWR3C5QgQGBmrSpEkKDAws61LKBcbbuxhv72K8vYvx9i7G27sYb+9hrMvo5nwAAAAAcAUrLgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPL8yqJTu92uhIQEVa5cWTabrSxKAAAAAGABxhilpaUpMjJSPj5Fr6uUSXBJSEhQ7dq1y6JrAAAAABZ09OhRRUdHF7m/TIJL5cqVJV0sLiQkpCxKAAAAAGABqampql27tiMjFKVMgkvu5WEhISEEFwAAAADF3kLCzfkAAAAALI/gAgAAAMDyyuRSMQAAAJQvxhhlZ2crJyenrEtBGfD19ZWfn1+pnihMcAEAAIBHZWVlKTExUWfPni3rUlCGKlasqFq1aikgIKBExxNcAAAA4DF2u11xcXHy9fVVZGSkAgICeI9fOWOMUVZWlk6dOqW4uDg1atTosu9rKQrBBQAAAB6TlZUlu92u2rVrq2LFimVdDspIUFCQ/P39deTIEWVlZalChQoun4Ob8wEAAOBxJfkXdlxdSvs3wIoLAAAALCsnJ0fr169XYmKiatWqpY4dO8rX17esy0IZIPoCAADAkpYuXap69eqpS5cu6tu3r7p06aJ69epp6dKlZV2a19SrV0+bN292+bj3339ft956qyVqcReCCwAAACxn6dKluvfee3Xs2LF8248fP657773XbeGlXr16qlixoipVqqTIyEg988wzV/0jmydPnix/f39VqlRJVatWVdeuXfXLL7+UdVnFIrgAAADAUnJycjRixAgZYwrsy902cuRItwWM77//Xunp6Vq/fr3+85//aO7cuW45ryvsdrvsdrvX+nv44YeVnp6uhIQE1axZU4MGDfJa3yVFcAEAAIClrF+/vsBKS17GGB09elTr1693a78NGjRQ+/bt9dNPPzm2LV68WE2aNFG1atXUq1cvnTx5UpLUt29fzZkzR5K0du1a2Ww2/fDDD5KkGTNm6LHHHpMkffHFF2rWrJkqV66sRo0aadGiRY5zDxo0SMOHD1fnzp1VqVIlxcfH65tvvlHDhg1VrVo1TZ48OV99586d01NPPaXIyEhFR0frlVdecezLyMhQ3759VaVKFd14443av3+/U985KChIffv21a5duyRJO3fuVPv27VWlShW1atWqyEvD1q9fr7p16zq+89tvv61GjRopPDxcAwcOVEZGhlP9u4LgAgAAAEtJTEx0aztnHThwQBs2bFBMTIwkaevWrRo1apQWLlyoEydO6Nprr9UTTzwhSerYsaMjOG3YsEH169fP97lDhw6SpJCQEC1evFgpKSl68803NXjwYCUlJTn6XLBggV5//XWlpaUpODhYDz74oN58800lJSXp7Nmz+QLc6NGjlZKSov3792vr1q2aP3++vvzyS0nSlClT9Pvvvys+Pl6ffPKJPvzwQ6e+c0ZGhj755BM1b95cWVlZuuOOO9S3b1+dOnVKo0ePVs+ePZWSkpLvmO+//14PPfSQPvvsM/35z3/WokWLNHv2bK1atUpHjx7VhQsXNHHixJL8T3B5pgykpKQYSSYlJaUsugcAAICXnDt3zuzZs8ecO3fO6WNWr15tJBX7s3r16lLXV7duXVOpUiUTHBxsJJm7777bUetjjz1mXnnlFUfbtLQ04+fnZy5cuGB27Nhh6tWrZ4wxpnv37uZf//qXueuuu4wxxtSsWdMcOnSo0P7atGljvvzyS2OMMQMHDjTDhg1z7Hv//fdN165dHZ8zMjKMv7+/2bRpk7Hb7SYoKMicOHHCsX/mzJlmwIABxhhj6tWrZ9avX+/YN378eNO9e/dCa5g0aZIJCAgwoaGhJiIiwtx+++3mwIEDZu3atSYmJqZAvf/5z38cYzVp0iRTp04d8/PPPzvadO/e3SxcuNDxeefOnaZOnToF+i3qb8HZbMCKCwAAACylY8eOio6Ols1mK3S/zWZT7dq11bFjR7f0t3LlSqWlpemzzz5TbGys0tPTJUnx8fGaMmWKqlSpoipVqig6Olp+fn5KSkpS06ZNlZKSoiNHjmjPnj0aPHiwtm3bpgMHDsjHx0f169eXdHH1pX379qpWrZqqVKmiH3/8Ub///ruj7+joaMfviYmJql27tuNzxYoVFRYWJkk6deqUzp07p2uuucZRz/PPP++4dO3SY/P+XpjBgwcrOTlZJ06c0FdffaWGDRsqISFBderUydeubt26SkhIcHz+17/+pTvuuEPXX3+9Y1t8fLwefvhhR10dOnTQb7/95tzgu4DgAgAAAEvx9fXVjBkzJKlAeMn9PH36dLe+z8Vms+nOO+9U165d9fe//12SFBUVpWnTpik5Odnxc+7cOUeoateund5++201a9ZMFSpUUExMjObMmeO4TEyS+vfvryFDhujEiRNKTk5Wq1at8j10IO/3q1Wrlo4ePer4fO7cOUfICQ8PV4UKFXTkyBFHLampqVq2bFmhx+b93VmRkZEFjouPj1dkZKTj89y5c/X999/rjTfecGyLiorSxx9/nG+cuMcFAAAA5ULv3r21ePHifJNm6eIKxeLFi9W7d2+P9DtmzBi9++67OnXqlIYMGaKZM2dqx44dkqTTp0/r888/d7Tt2LGj3nnnHd100035PucNLmlpaapWrZr8/Py0ZMkSbdu2rci+e/Tooa1bt2rFihXKysrSlClTHE8a8/Hx0cCBAzV69GglJyfLbrdr79692rp1qyTp3nvv1dSpU5WWlqZ9+/Zp/vz5Ln/3Nm3a6MKFC5o1a5ays7O1aNEi7du3T7fccoujTXh4uFatWqW33npL7733nqSLTyibOnWqDh06JOni6s/y5ctd7r84BBcAAABYUu/evXXkyBGtXr1an3zyiVavXq24uDiPhRZJuvbaa9W5c2fNmDFDbdu21SuvvKL+/fsrJCREN954o/73v/852nbs2FFpaWmOS9ZyP+cNLjNnztRTTz2lqlWrasWKFerUqVORfVevXl0ff/yxhg0bppo1ayooKCjfpWSvv/66goOD1axZM1WrVk0DBgzQmTNnJEmTJk1SaGiooqOj1adPH/Xv39/l7x4QEKDPP/9cH374ocLCwvTyyy/riy++UGhoaL52kZGRWrlypSZPnqz//Oc/evDBBzVo0CD16NFDlStXVqdOnbRnzx6X+y+OzZhCHpDtYampqQoNDVVKSopCQkK83T0AAAC85Pz584qLi1P9+vVVoUKFsi4HZaiovwVnswErLgAAAAAsj+ACAAAAwPIILgAAAAAsj+ACAAAAwPIILgAAAPC43Mf6ovwq7d+An5vqAAAAAAoICAiQj4+PEhISVL16dQUEBBR4qSSubsYYZWVl6dSpU/Lx8VFAQECJzkNwAQAAgMf4+Piofv36SkxMVEJCQlmXgzJUsWJF1alTRz4+Jbvoi+ACAAAAjwoICFCdOnWUnZ2tnJycsi4HZcDX11d+fn6lWm0juAAAAMDjbDab/P395e/vX9al4ArFzfkAAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyCC4AAAAALI/gAgAAAMDyXA4uy5cv14YNGxyf3377bd1www3q27evzpw549biAAAAAEAqQXAZM2aMUlNTJUk7d+7Us88+qx49eujQoUMaNWqU2wsEAAAAAD9XD4iLi1Pjxo0lSUuWLFHPnj310ksvKTY2Vj169HB7gQAAAADg8opLQECAzp49K0latWqVbrnlFklStWrVHCsxAAAAAOBOLq+4dOjQQaNGjVL79u21detWLVy4UJK0f/9+RUdHu71AAAAAAHB5xeWtt96Sn5+fFi9erFmzZikqKkqStGzZMt16661uLxAAAAAAbMYY4+1OU1NTFRoaqpSUFIWEhHi7ewAAAAAW4Ww2KNF7XH799VdNmDBBffr00cmTJyVdfEzy7t27S1YtAAAAAFyGy8Fl7dq1atasmbZs2aKlS5cqPT1dkrRjxw5NmjTJ7QUCAAAAgMvBZdy4cXrxxRe1cuVKBQQEOLZ36dJFmzZtcmtxAAAAACCVILjs3LlTd999d4Ht1atX1++//+6WogAAAAAgL5eDS5UqVZSYmFhg+/bt2x1PGAMAAAAAd3I5uPTt21djx45VUlKSbDab7Ha7/ve//2n06NEaMGCAJ2oEAAAAUM65HFymTp2qOnXqKCoqSunp6WrcuLFuuukmtWvXThMmTPBEjQAAAADKuRK/x+XQoUOKjY2V3W5XixYt1KhRI507d05BQUHFHst7XAAAAABIHnyPy5NPPilJiomJ0b333qv7779fjRo1UkZGhm677baSVwwAAAAARXA5uHz77bcFLgnLyMjQrbfeqpycHLcVBgAAAAC5/Fw94Ntvv1WHDh0UFhamZ555Rmlpaerevbv8/Py0bNkyT9QIAAAAoJxzObjUr19fK1asUOfOneXj46MFCxYoMDBQX3/9tYKDgz1RIwAAAIByzuXgIklNmzbVV199pW7duql169b66quvnLopHwAAAABKwqng0qJFC9lstgLbAwMDlZCQoPbt2zu2xcbGuq86AAAAAJCTweWuu+7ycBkAAAAAULQSv8elNHiPCwAAAADJ+WxQontcJGnbtm3au3evbDabGjdurBYtWpT0VAAAAABwWS4Hl5MnT+rBBx/UmjVrVKVKFRljlJKSoi5dumjBggWqXr26J+oEAAAAUI65/ALKp59+Wqmpqdq9e7dOnz6tM2fOaNeuXUpNTdXw4cM9USMAAACAcs7le1xCQ0O1atUq/fnPf863fevWrbrllluUnJxc7Dm4xwUAAACA5Hw2cHnFxW63y9/fv8B2f39/2e12V08HAAAAAMVyObjcfPPNGjFihBISEhzbjh8/rmeeeUZdu3Z1a3EAAAAAIJUguLz11ltKS0tTvXr11KBBAzVs2FD169dXWlqaZs6c6YkaAQAAAJRzLj9VrHbt2oqNjdWqVau0d+9eGWPUuHFjdevWzRP1AQAAAIBrwWXRokX67LPPdOHCBXXr1k1PP/20p+oCAAAAAAeng8vs2bP1+OOPq1GjRqpQoYKWLFmiuLg4TZs2zZP1AQAAAIDz97jMnDlT48eP1759+/Tzzz/rvffe01tvveXJ2gAAAABAkgvB5dChQxo8eLDjc//+/ZWZmamkpCSPFAYAAAAAuZwOLufOnVOlSpUcn319fRUYGKizZ896pDAAAAAAyOXSzfnvvvtuvvCSnZ2t999/X+Hh4Y5tw4cPd191AAAAACDJZowxzjSsV6+ebDbb5U9ms+nQoUPFnis1NVWhoaFKSUlRSEiIc5UCAAAAuOo4mw2cXnE5fPiwO+oCAAAAAJc5fY8LAAAAAJQVggsAAAAAyyO4AAAAALA8ggsAAAAAyyO4AAAAALA8p54qlpqa6vQJebwxAAAAAHdzKrhUqVKl2He45MrJySlVQQAAAABwKaeCy+rVqx2/Hz58WOPGjdOgQYPUtm1bSdKmTZv0wQcfaNq0aZ6pEgAAAEC5ZjPGGFcO6Nq1qx555BH16dMn3/ZPPvlEs2fP1po1a4o9h7NvxwQAAABwdXM2G7h8c/6mTZvUqlWrAttbtWqlrVu3uno6AAAAACiWy8Gldu3aeueddwps//e//63atWu7pSgAAAAAyMupe1zyeuONN3TPPfdoxYoVatOmjSRp8+bN+vXXX7VkyRK3F+gtOTk5Wr9+vRITE1WrVi21a9dOGzdudHzu2LGjfH19C22bd5+r/RR2bGnOX9JzuKNPAABwdStuvlDYfklOzTGKOzYiIkKSdPLkyXzn8XZNxZ3blfnT5Y73dN9XJFMC8fHx5q9//au5++67zV133WWef/55Ex8f7/TxKSkpRpJJSUkpSfdut2TJEhMdHW0kOX58fX3zfY6OjjZLliwptG3uvpL0c+mxpTl/Sc/hjj4BAMDVrbj5QmH7w8LCTFhYWLFzDGePvfQ8Y8aM8WpNxZ3blfnT5Y73dN9W42w2KFFwKS0rBZclS5YYm81W5H8UuT+Xa2Oz2YzNZrvsH0tR/eQ91pk2Jf0+RZ3DHX0CAICrW3HzhTFjxjg1nypsjuHsXMzZH0/WVNy5nZ0/Xe78Jf1eV/Lczdls4PJTxaSLS2v//ve/dejQIS1atEhRUVH68MMPVb9+fXXo0KHY463yVLGcnBzVq1dPx44dK/W5bDaboqOjFRcXV+ilX5frx2azKSoqSpIu26ao87vST95zuNoeAACUP87Ml3LnFc7KnWMcPHhQDRo0cMtczJs1Xe7cxc2fSjv/LE3fVuWxp4otWbJE3bt3V1BQkGJjY5WZmSlJSktL00svvVTyisvA+vXr3fYfijFGR48e1fr1613uxxijY8eOFdumqPO70k/ec7jaHgAAlD/OzJdcfQF57hzjX//6l0dCi6druty5i5s/lXb+WZq+r3QuB5cXX3xR77zzjubMmSN/f3/H9nbt2ik2NtatxXlaYmKiV87pzn4udy5n+8lt52p7AABQ/nhyHvDrr7967Nwl5a6aiho3b8yrrta5m8vBZd++fbrpppsKbA8JCVFycrI7avKaWrVqeeWc7uzncudytp/cdq62BwAA5Y8n5wENGjTw2LlLyl01FTVu3phXXa1zN5eDS61atXTw4MEC2zds2KCYmBi3FOUtHTt2VHR0tGw2W6nPZbPZVLt2bccj9lzpJ/d6xOLaFHV+V/rJew5X2wMAgPLHmfmSr6+vS/Op3DnGsGHD3DYX82ZNlzt3cfOn0s4/S9P3lc7l4PLYY49pxIgR2rJli2w2mxISEvTxxx9r9OjRGjZsmCdq9BhfX1/NmDFDkor948m7/9K2uZ+nT59e6I1Ql+sn9/OMGTOKbVPU+V3pJ+85XG0PAADKn+LmCzabTaNGjSp0f2HyzjECAgKcnos5y5M1FXduZ+ZPzsy/PNX3Fa8kjyx7/vnnTVBQkOOxaxUqVDATJkxw+yPPvGXJkiUmKioq3yPlLn2PS+3atR2PLL60be6+kvRz6bGlOX9Jz+GOPgEAwNWtuPlCYfvDwsJMtWrVip1jOHvspecZM2aMV2sq7tyuzJ8ud7yn+7Yaj7/HJSMjw/zwww9my5YtJi0tzSPFeVNuTZLMN998Y06fPp3vc3Z2dpFt8+5ztZ/Cji3N+Ut6Dnf0CQAArm7FzRcK2+/sHKO4YxctWlToebxdkyv7SzOenu7bSjz6HpfSssp7XPLKyMhQpUqVJEnp6emSlO9zcHBwkW3z7nO1n8KOLc35S3oOd/QJAACubsXNFwrb7+wco7hjT5w4oRo1ahQ4j7drcmV/cS53vKf7thJns4GfMyfr3bu30x0vXbrU6bYAAAAA4Aynbs4PDQ11/ISEhOi7777Tjz/+6Ni/bds2fffddwoNDfVYoQAAAADKL6dWXObNm+f4fezYsbr//vv1zjvvOJ5YkJOTo2HDhlnmsi8AAAAAVxeXH4c8d+5cjR49Ot9j1nx9fTVq1CjNnTvXrcUBAAAAgFSC4JKdna29e/cW2L53717Z7Xa3FAUAAAAAeTl1qVhegwcP1pAhQ3Tw4EG1adNGkrR582a9/PLLGjx4sNsLBAAAAACXg8s///lP1axZU2+88YYSExMlSbVq1dJzzz2nZ5991u0FAgAAAIBLwSU7O1sff/yxBgwYoOeee06pqamSxE35AAAAADzKpXtc/Pz89MQTTygzM1PSxcBCaAEAAADgaS7fnN+6dWtt377dE7UAAAAAQKFcvsdl2LBhevbZZ3Xs2DG1bNlSwcHB+fZff/31bisOAAAAAKQSBJcHHnhAkjR8+HDHNpvNJmOMbDabcnJy3FcdAAAAAKgEwSUuLs4TdQAAAABAkVwOLnXr1vVEHQAAAABQJJeDS649e/YoPj5eWVlZ+bb36tWr1EUBAAAAQF4uB5dDhw7p7rvv1s6dOx33tkgX73ORxD0uAAAAANzO5cchjxgxQvXr19eJEydUsWJF7d69W+vWrVOrVq20Zs0aD5QIAAAAoLxzecVl06ZN+v7771W9enX5+PjIx8dHHTp00LRp0zR8+HDe8QIAAADA7VxeccnJyVGlSpUkSeHh4UpISJB08ab9ffv2ubc6AAAAAFAJVlyaNm2qHTt2KCYmRq1bt9arr76qgIAAzZ49WzExMZ6oEQAAAEA553JwmTBhgjIyMiRJL774onr27KmOHTsqLCxMCxcudHuBAAAAAOBycOnevbvj95iYGO3Zs0enT59W1apVHU8WAwAAAAB3cvkel5UrV+rs2bP5tlWrVo3QAgAAAMBjXF5xueeee5SZmamWLVuqU6dO6ty5s9q3b++4YR8AAAAA3M3lFZczZ85ozZo16tWrl7Zv36777rtP1apVU5s2bTRu3DhP1AgAAACgnHM5uPj6+qpt27YaN26cli9fro0bN6pv377atm2b/vGPf3iiRgAAAADlnMuXiu3du1dr167VmjVrtHbtWuXk5KhDhw567bXX1KlTJ0/UCAAAAKCcczm4NGnSRNWrV9fIkSP1wgsvqEmTJp6oCwAAAAAcXL5UbPjw4YqKitLkyZM1ZMgQjR07VsuWLVN6eron6gMAAAAA14PL9OnTFRsbqxMnTmjChAnKycnRxIkTFR4erjZt2niiRgAAAADlnMvBJZfdbld2draysrKUmZmpCxcu6PDhw24sDQAAAAAucjm4jBgxQs2bN1dERIQee+wxJSQk6NFHH9XPP/+spKQkT9QIAAAAoJxz+eb848ePa+jQoercubOaNm3qiZoAAAAAIB+Xg8vixYs9UQcAAAAAFKlE97h8+OGHat++vSIjI3XkyBFJF2/a//zzz91aHAAAAABIJQgus2bN0qhRo9SjRw8lJycrJydHklSlShVNnz7d3fUBAAAAgOvBZebMmZozZ47Gjx8vX19fx/ZWrVpp586dbi0OAAAAAKQSBJe4uDi1aNGiwPbAwEBlZGS4pSgAAAAAyMvl4FK/fn399NNPBbYvW7ZMjRs3dkdNAAAAAJCPy08VGzNmjJ588kmdP39exhht3bpVn376qaZNm6Z3333XEzUCAAAAKOdcDi6DBw9Wdna2nnvuOZ09e1Z9+/ZVVFSUZsyYoQcffNATNQIAAAAo51wOLpI0dOhQDR06VL/99pvsdrsiIiIkXXw5ZVRUlFsLBAAAAIASvcclV3h4uCIiIpSUlKSnn35aDRs2dFddAAAAAODgdHBJTk5Wv379VL16dUVGRurNN9+U3W7XxIkTFRMTo82bN2vu3LmerBUAAABAOeX0pWLPP/+81q1bp4EDB2r58uV65plntHz5cp0/f17Lli1Tp06dPFknAAAAgHLM6eDy9ddfa968eerWrZuGDRumhg0b6pprrtH06dM9WB4AAAAAuHCpWEJCguM9LTExMapQoYIeeeQRjxUGAAAAALmcDi52u13+/v6Oz76+vgoODvZIUQAAAACQl9OXihljNGjQIAUGBkqSzp8/r8cff7xAeFm6dKl7KwQAAABQ7jkdXAYOHJjv80MPPeT2YgAAAACgME4Hl3nz5nmyDgAAAAAoUqleQAkAAAAA3kBwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5fmXRqTFGkpSamloW3RcqIyPD8fuldaWmpionJ6fItnn3udpPYceW5vwlPYc7+gQAAFe34uYLhe13do5R3LFpaWmFnsfbNbmyvziXO97TfVtJ7tw7NyMUxWaKa+EBx44dU+3atb3dLQAAAACLOnr0qKKjo4vcXybBxW63KyEhQZUrV5bNZvN291ek1NRU1a5dW0ePHlVISEhZl3PVY7y9i/H2Lsbbuxhv72K8vYvx9p6reayNMUpLS1NkZKR8fIq+k6VMLhXz8fG5bJpC0UJCQq66P1YrY7y9i/H2Lsbbuxhv72K8vYvx9p6rdaxDQ0OLbcPN+QAAAAAsj+ACAAAAwPIILleIwMBATZo0SYGBgWVdSrnAeHsX4+1djLd3Md7exXh7F+PtPYx1Gd2cDwAAAACuYMUFAAAAgOURXAAAAABYHsEFAAAAgOURXAAAAABYHsGljEybNk02m00jR450bDPGaPLkyYqMjFRQUJA6d+6s3bt35zsuMzNTTz/9tMLDwxUcHKxevXrp2LFj+dqcOXNG/fv3V2hoqEJDQ9W/f38lJyd74VtZy+TJk2Wz2fL91KxZ07Gf8Xav48eP66GHHlJYWJgqVqyoG264Qdu2bXPsZ7zdp169egX+tm02m5588klJjLW7ZWdna8KECapfv76CgoIUExOjv/3tb7Lb7Y42jLl7paWlaeTIkapbt66CgoLUrl07/fDDD479jHfJrVu3TnfccYciIyNls9n02Wef5dvvzbGNj4/XHXfcoeDgYIWHh2v48OHKysryxNcuM8WN99KlS9W9e3eFh4fLZrPpp59+KnAOxjsPA6/bunWrqVevnrn++uvNiBEjHNtffvllU7lyZbNkyRKzc+dO88ADD5hatWqZ1NRUR5vHH3/cREVFmZUrV5rY2FjTpUsX07x5c5Odne1oc+utt5qmTZuajRs3mo0bN5qmTZuanj17evMrWsKkSZNMkyZNTGJiouPn5MmTjv2Mt/ucPn3a1K1b1wwaNMhs2bLFxMXFmVWrVpmDBw862jDe7nPy5Ml8f9crV640kszq1auNMYy1u7344osmLCzMfPXVVyYuLs4sWrTIVKpUyUyfPt3RhjF3r/vvv980btzYrF271hw4cMBMmjTJhISEmGPHjhljGO/S+Oabb8z48ePNkiVLjCTz3//+N99+b41tdna2adq0qenSpYuJjY01K1euNJGRkeapp57y+Bh4U3HjPX/+fDNlyhQzZ84cI8ls3769wDkY7z8QXLwsLS3NNGrUyKxcudJ06tTJEVzsdrupWbOmefnllx1tz58/b0JDQ80777xjjDEmOTnZ+Pv7mwULFjjaHD9+3Pj4+Jjly5cbY4zZs2ePkWQ2b97saLNp0yYjyfzyyy9e+IbWMWnSJNO8efNC9zHe7jV27FjToUOHIvcz3p41YsQI06BBA2O32xlrD7j99tvNkCFD8m3r3bu3eeihh4wx/H2729mzZ42vr6/56quv8m1v3ry5GT9+POPtRpdOpL05tt98843x8fExx48fd7T59NNPTWBgoElJSfHI9y1rhQWXXHFxcYUGF8Y7Py4V87Inn3xSt99+u7p165Zve1xcnJKSknTLLbc4tgUGBqpTp07auHGjJGnbtm26cOFCvjaRkZFq2rSpo82mTZsUGhqq1q1bO9q0adNGoaGhjjblyYEDBxQZGan69evrwQcf1KFDhyQx3u72xRdfqFWrVrrvvvsUERGhFi1aaM6cOY79jLfnZGVl6aOPPtKQIUNks9kYaw/o0KGDvvvuO+3fv1+S9PPPP2vDhg3q0aOHJP6+3S07O1s5OTmqUKFCvu1BQUHasGED4+1B3hzbTZs2qWnTpoqMjHS06d69uzIzM/NdZlzeMd75EVy8aMGCBYqNjdW0adMK7EtKSpIk1ahRI9/2GjVqOPYlJSUpICBAVatWvWybiIiIAuePiIhwtCkvWrdurfnz52vFihWaM2eOkpKS1K5dO/3++++Mt5sdOnRIs2bNUqNGjbRixQo9/vjjGj58uObPny+Jv29P+uyzz5ScnKxBgwZJYqw9YezYserTp4+uvfZa+fv7q0WLFho5cqT69OkjiTF3t8qVK6tt27b6+9//roSEBOXk5Oijjz7Sli1blJiYyHh7kDfHNikpqUA/VatWVUBAQLkd/8Iw3vn5lXUB5cXRo0c1YsQIffvttwX+FSkvm82W77MxpsC2S13aprD2zpznanPbbbc5fm/WrJnatm2rBg0a6IMPPlCbNm0kMd7uYrfb1apVK7300kuSpBYtWmj37t2aNWuWBgwY4GjHeLvfe++9p9tuuy3fv6JJjLU7LVy4UB999JE++eQTNWnSRD/99JNGjhypyMhIDRw40NGOMXefDz/8UEOGDFFUVJR8fX114403qm/fvoqNjXW0Ybw9x1tjy/iXXHkdb1ZcvGTbtm06efKkWrZsKT8/P/n5+Wnt2rV688035efn50jBl6bekydPOvbVrFlTWVlZOnPmzGXbnDhxokD/p06dKpC0y5vg4GA1a9ZMBw4ccDxdjPF2j1q1aqlx48b5tl133XWKj4+XJMbbQ44cOaJVq1bpkUcecWxjrN1vzJgxGjdunB588EE1a9ZM/fv31zPPPONYPWfM3a9BgwZau3at0tPTdfToUW3dulUXLlxQ/fr1GW8P8ubY1qxZs0A/Z86c0YULF8rt+BeG8c6P4OIlXbt21c6dO/XTTz85flq1aqV+/frpp59+UkxMjGrWrKmVK1c6jsnKytLatWvVrl07SVLLli3l7++fr01iYqJ27drlaNO2bVulpKRo69atjjZbtmxRSkqKo015lZmZqb1796pWrVqO//NjvN2jffv22rdvX75t+/fvV926dSWJ8faQefPmKSIiQrfffrtjG2PtfmfPnpWPT/7/u/T19XU8Dpkx95zg4GDVqlVLZ86c0YoVK3TnnXcy3h7kzbFt27atdu3apcTEREebb7/9VoGBgWrZsqVHv+eVhPG+hNceA4AC8j5VzJiLjyAMDQ01S5cuNTt37jR9+vQp9BGE0dHRZtWqVSY2NtbcfPPNhT4S7/rrrzebNm0ymzZtMs2aNbvqH+9YmGeffdasWbPGHDp0yGzevNn07NnTVK5c2Rw+fNgYw3i709atW42fn5+ZOnWqOXDggPn4449NxYoVzUcffeRow3i7V05OjqlTp44ZO3ZsgX2MtXsNHDjQREVFOR6HvHTpUhMeHm6ee+45RxvG3L2WL19uli1bZg4dOmS+/fZb07x5c/OXv/zFZGVlGWMY79JIS0sz27dvN9u3bzeSzOuvv262b99ujhw5Yozx3tjmPp63a9euJjY21qxatcpER0dfcY/nLU5x4/3777+b7du3m6+//tpIMgsWLDDbt283iYmJjnMw3n8guJShS4OL3W43kyZNMjVr1jSBgYHmpptuMjt37sx3zLlz58xTTz1lqlWrZoKCgkzPnj1NfHx8vja///676devn6lcubKpXLmy6devnzlz5owXvpG15D573t/f30RGRprevXub3bt3O/Yz3u715ZdfmqZNm5rAwEBz7bXXmtmzZ+fbz3i714oVK4wks2/fvgL7GGv3Sk1NNSNGjDB16tQxFSpUMDExMWb8+PEmMzPT0YYxd6+FCxeamJgYExAQYGrWrGmefPJJk5yc7NjPeJfc6tWrjaQCPwMHDjTGeHdsjxw5Ym6//XYTFBRkqlWrZp566ilz/vx5T359rytuvOfNm1fo/kmTJjnOwXj/wWaMMV5e5AEAAAAAl3CPCwAAAADLI7gAAAAAsDyCCwAAAADLI7gAAAAAsDyCCwAAAADLI7gAAAAAsDyCCwAAAADLI7gAAAAAsDyCCwDAJZMnT9YNN9xQZv2/8MILevTRR51qO3r0aA0fPtzDFQEAvMFmjDFlXQQAwBpsNttl9w8cOFBvvfWWMjMzFRYW5qWq/nDixAk1atRIO3bsUL169Yptf/LkSTVo0EA7duxQ/fr1PV8gAMBjCC4AAIekpCTH7wsXLtTEiRO1b98+x7agoCCFhoaWRWmSpJdeeklr167VihUrnD7mnnvuUcOGDfXKK694sDIAgKdxqRgAwKFmzZqOn9DQUNlstgLbLr1UbNCgQbrrrrv00ksvqUaNGqpSpYqmTJmi7OxsjRkzRtWqVVN0dLTmzp2br6/jx4/rgQceUNWqVRUWFqY777xThw8fvmx9CxYsUK9evfJtW7x4sZo1a6agoCCFhYWpW7duysjIcOzv1auXPv3001KPDQCgbBFcAACl9v333yshIUHr1q3T66+/rsmTJ6tnz56qWrWqtmzZoscff1yPP/64jh49Kkk6e/asunTpokqVKmndunXasGGDKlWqpFtvvVVZWVmF9nHmzBnt2rVLrVq1cmxLTExUnz59NGTIEO3du1dr1qxR7969lfdigr/85S86evSojhw54tlBAAB4FMEFAFBq1apV05tvvqk//elPGjJkiP70pz/p7Nmzev7559WoUSP99a9/VUBAgP73v/9Jurhy4uPjo3fffVfNmjXTddddp3nz5ik+Pl5r1qwptI8jR47IGKPIyEjHtsTERGVnZ6t3796qV6+emjVrpmHDhqlSpUqONlFRUZJU7GoOAMDa/Mq6AADAla9Jkyby8fnj38Jq1Kihpk2bOj77+voqLCxMJ0+elCRt27ZNBw8eVOXKlfOd5/z58/r1118L7ePcuXOSpAoVKji2NW/eXF27dlWzZs3UvXt33XLLLbr33ntVtWpVR5ugoCBJF1d5AABXLoILAKDU/P3983222WyFbrPb7ZIku92uli1b6uOPPy5wrurVqxfaR3h4uKSLl4zltvH19dXKlSu1ceNGffvtt5o5c6bGjx+vLVu2OJ4idvr06cueFwBwZeBSMQCA19144406cOCAIiIi1LBhw3w/RT21rEGDBgoJCdGePXvybbfZbGrfvr2mTJmi7du3KyAgQP/9738d+3ft2iV/f381adLEo98JAOBZBBcAgNf169dP4eHhuvPOO7V+/XrFxcVp7dq1GjFihI4dO1boMT4+PurWrZs2bNjg2LZlyxa99NJL+vHHHxUfH6+lS5fq1KlTuu666xxt1q9fr44dOzouGQMAXJkILgAAr6tYsaLWrVunOnXqqHfv3rruuus0ZMgQnTt3TiEhIUUe9+ijj2rBggWOS85CQkK0bt069ejRQ9dcc40mTJig1157TbfddpvjmE8//VRDhw71+HcCAHgWL6AEAFwxjDFq06aNRo4cqT59+hTb/uuvv9aYMWO0Y8cO+flxWycAXMlYcQEAXDFsNptmz56t7Oxsp9pnZGRo3rx5hBYAuAqw4gIAAADA8lhxAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5BBcAAAAAlkdwAQAAAGB5/x/COOFuG7S27wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(4, 1, figsize=(10, 12), sharex=True)\n", + "plot_behavior(axs, **event_name_to_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get DLC data for the first epoch" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "pose_estimation = nwbfile.processing[\"behavior\"].data_interfaces[\"PoseEstimation_3-XFN1-1\"]\n", + " \n", + "nodes = pose_estimation.skeleton.nodes[:]\n", + "edges = pose_estimation.skeleton.edges[:]\n", + "pes = pose_estimation.pose_estimation_series\n", + "name_to_data = {name: series.data[:] for name, series in pes.items()}\n", + "pes_timestamps = pes[\"PoseEstimationSeriesBody center\"].timestamps[:]\n", + "node_to_name = {node: f\"PoseEstimationSeries{node.capitalize()}\" for node in nodes}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot DLC data" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:24: RuntimeWarning: Mean of empty slice\n", + " x = np.nanmean(all_x, axis=0)\n", + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:25: RuntimeWarning: Mean of empty slice\n", + " y = np.nanmean(all_y, axis=0)\n" + ] + }, + { + "data": { + "text/plain": [ + "(
,\n", + " (,\n", + " ))" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAMWCAYAAACDduxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFX3wPHvbE/vhZCQhAAhoYNSRaogRUXBLmLH+grW1woqFlDfn70X7GLFihQFQekgvdcAIb2X7ff3x5KFJQkECCTg+TzPPiZ37p05O1lJZs7cczWllEIIIYQQQgghhBBCCCGEEEIIIYQ4Q+kaOgAhhBBCCCGEEEIIIYQQQgghhBDiZJLEuBBCCCGEEEIIIYQQQgghhBBCiDOaJMaFEEIIIYQQQgghhBBCCCGEEEKc0SQxLoQQQgghhBBCCCGEEEIIIYQQ4owmiXEhhBBCCCGEEEIIIYQQQgghhBBnNEmMCyGEEEIIIYQQQgghhBBCCCGEOKNJYlwIIYQQQgghhBBCCCGEEEIIIcQZTRLjQgghhBBCCCGEEEIIIYQQQgghzmiSGBdCCCGEEEIIIYQQQgghhBBCCHFGk8S4EEKcoFdeeQVN02jbtm1Dh9Lo9O3bF03TvC8/Pz86dOjASy+9hNvtrvfjTZ06FU3T2LVrl7ft888/56WXXqqxv6ZpTJw4sd7jOJJDz8eRXvPmzTuh40ycOBFN0+on6BosXLiQiRMnUlRUdNKOIYQQQgghhBANper6suplMBiIj4/n+uuvZ9++fQ0dXjVV14C1vQ69Tj6aDRs2MHHixBrHXHfddSQlJdVb3MfiSNehffv2pW/fvqc8JoA9e/Zw++2306pVK/z8/AgPD6ddu3bcfPPN7Nmzx9vvuuuuIzAwsF6OuWvXLjRNY+rUqcc8NjMzk4kTJ7Jq1ap6ieV4KKX48ssv6d27N9HR0VgsFuLj4xk8eDDvvfeet19FRQUTJ0484XskJ+qZZ55h+vTpDRqDEEKI+mFo6ACEEOJ098EHHwCwfv16lixZQrdu3Ro4osalefPmfPbZZwDk5OTw1ltvMX78ePbv38/kyZPr9VjDhg1j0aJFNGnSxNv2+eefs27dOsaNG1et/6JFi4iPj6/XGI5m0aJFPt8/9dRTzJ07lz/++MOnPT09/YSOc9NNN3H++eef0D6OZOHChTzxxBNcd911hIaGnrTjCCGEEEIIIURD+vDDD2ndujWVlZXMnz+fZ599lj///JO1a9cSEBDQ0OFV89tvvxESElKt/dDr5KPZsGEDTzzxBH379q2WBH/ssce4++67TzTM43Kk69A33nijQWLau3cvnTt3JjQ0lHvvvZfU1FSKi4vZsGEDX331FTt27CAhIaFBYqtNZmYmTzzxBElJSXTs2LFBYnjooYeYPHkyN998M/fffz9BQUHs3r2bP/74gx9++IGbbroJ8CTGn3jiCYAGe/ABPInxUaNGMWLEiAaLQQghRP2QxLgQQpyA5cuXs3r1aoYNG8Yvv/zC+++/f8oT40oprFYrfn5+p/S4deXn50f37t293w8ZMoTWrVvz2muvMWnSJIxGY70dKyoqiqioqDr3PzSuU+XwY0ZFRaHT6Y4aS0VFBf7+/nU+Tnx8/ClP+teHY32fQgghhBBCCHEytW3blrPOOguAfv364XK5eOqpp5g+fTpXX311A0dXXZcuXYiMjDxp+09JSTlp+z4RJ/pw+fF69913ycvLY+nSpSQnJ3vbR4wYwcMPP3xSquWd7iorK3nppZe49tpreeedd3y2XXfddSd0zk63ewqVlZWN9n6eEEKcqaSUuhBCnID3338fgOeee46ePXvy5ZdfUlFRAYDD4SA6OprRo0dXG1dUVISfnx/33HOPt62kpIT77ruP5ORkTCYTTZs2Zdy4cZSXl/uM1TSNO++8k7feeou0tDTMZjMfffQRAE888QTdunUjPDyc4OBgOnfuzPvvv49SymcfNpuNe++9l9jYWPz9/Tn33HNZsWIFSUlJXHfddT59s7KyGDt2LPHx8ZhMJpKTk3niiSdwOp3Hdc6MRiNdunShoqKC3NxcANatW8dFF11EWFgYFouFjh07et9TFbfbzaRJk0hNTcXPz4/Q0FDat2/Pyy+/7O1zeCn1vn378ssvv7B7926fEnKHnsvDS6nXJZZ58+ahaRpffPEFjzzyCHFxcQQHBzNw4EA2b958XOflUH379qVt27bMnz+fnj174u/vzw033ADAtGnTGDRoEE2aNMHPz4+0tDT++9//Vvuc1FZKfdq0afTo0YOAgAACAwMZPHgw//zzT7V+S5Ys4YILLiAiIgKLxUJKSop31v3EiRO5//77AUhOTq5W/t3tdjNlyhRat26N2WwmOjqaa6+9lr1799bpfd54442Eh4d7/186VP/+/WnTps0xn1MhhBBCCCGEqA9VDzXv3r0bAKvVykMPPeRzLX/HHXdUK/f9xx9/0LdvXyIiIvDz86NZs2aMHDnS57rHbrczadIk77VUVFQU119/vffaub68+eabdOjQgcDAQIKCgmjdujUPP/ww4LmuvvTSSwHPgwBV13tVJbtrKqVedZ/iww8/9F6zn3XWWSxevBilFM8//zzJyckEBgbSv39/tm3b5jN+9uzZXHTRRcTHx2OxWGjRogVjx44lLy/P2+do16E1lVIvKCjg9ttvp2nTpphMJpo3b84jjzyCzWarMf5PPvmEtLQ0/P396dChAz///PNRz2V+fj46nY7o6Ogat+t0R779/vfffxMZGcnw4cO91/Vbt27lqquuIjo6GrPZTFpaGq+//vpRY6nL2Hnz5nH22WcDcP3113vP46H3Rn788Ud69OiBv78/QUFBnHfeedWq31Xdc1i/fj1XXnklISEhxMTEcMMNN1BcXHzEGMvLy7HZbLVWMag6Z7t27fJOfnjiiSe8sVbdt6qKYeXKlYwaNYqwsDDvgxu1ldav6fNrs9l48sknSUtLw2KxEBERQb9+/Vi4cCHg+XyUl5fz0UcfeWOo2ndt915qWuovKSmJ4cOH891339GpUycsFot3Nnx933sTQghRO5kxLoQQx6myspIvvviCs88+m7Zt23LDDTdw00038fXXXzNmzBiMRiPXXHMNb731Fq+//jrBwcHesV988QVWq5Xrr78e8DzR2qdPH/bu3cvDDz9M+/btWb9+PY8//jhr165lzpw5Pn9oT58+nQULFvD4448TGxvrvQDbtWsXY8eOpVmzZgAsXryYu+66i3379vH44497x19//fVMmzaNBx54gP79+7NhwwYuvvhiSkpKfN5jVlYWXbt2RafT8fjjj5OSksKiRYuYNGkSu3bt4sMPPzyuc7d9+3YMBgNhYWFs3ryZnj17Eh0dzSuvvEJERASffvop1113HdnZ2TzwwAMATJkyhYkTJ/Loo49y7rnn4nA42LRp0xHXuH7jjTe45ZZb2L59O99///1R46prLFUefvhhevXqxXvvvUdJSQkPPvggF1xwARs3bkSv1x/Xuamyf/9+rrnmGh544AGeeeYZ74Xh1q1bGTp0KOPGjSMgIIBNmzYxefJkli5dWq0c++GeeeYZHn30Ua6//noeffRR7HY7zz//PL1792bp0qXeJ+xnzpzJBRdcQFpaGv/73/9o1qwZu3btYtasWYCnTHtBQQGvvvoq3333nfditmr8bbfdxjvvvMOdd97J8OHD2bVrF4899hjz5s1j5cqVPrMXanqfoaGhfPDBB3z++efe8mngKec3d+7cOt8QEEIIIYQQQoj6VpXUjYqKQinFiBEj+P3333nooYfo3bs3a9asYcKECSxatIhFixZhNpvZtWsXw4YNo3fv3nzwwQeEhoayb98+fvvtN+x2O/7+/rjdbi666CIWLFjAAw88QM+ePdm9ezcTJkygb9++LF++vE4zS10uV7VkmqZp3mvUL7/8kttvv5277rqLF154AZ1Ox7Zt29iwYQPgWaLsmWee4eGHH+b111+nc+fOwNFniv/888/8888/PPfcc2iaxoMPPsiwYcMYM2YMO3bs4LXXXqO4uJh77rmHkSNHsmrVKu99ju3bt9OjRw9uuukmQkJC2LVrF//73/8455xzWLt2LUaj8ajXoYezWq3069eP7du388QTT9C+fXsWLFjAs88+y6pVq/jll198+v/yyy8sW7aMJ598ksDAQKZMmcLFF1/M5s2bad68ea3vu0ePHrz++utccskl3HPPPfTo0cPn/s+RfPXVV1x77bXccMMNvPrqq+j1ejZs2EDPnj1p1qwZL774IrGxscycOZP//Oc/5OXlMWHChFr3V5exnTt35sMPP/TeFxg2bBiAt+Lc559/ztVXX82gQYP44osvsNlsTJkyhb59+/L7779zzjnn+Bxz5MiRXH755dx4442sXbuWhx56CDi47GBNIiMjadGiBW+88QbR0dEMHTqU1NTUagnmJk2a8Ntvv3H++edz4403eu8PHF4p8JJLLuGKK67g1ltvrTZp4GicTidDhgxhwYIFjBs3jv79++N0Olm8eDEZGRn07NmTRYsW0b9/f/r168djjz0GUOef8eFWrlzJxo0befTRR0lOTiYgIOCk3XsTQghRCyWEEOK4fPzxxwpQb731llJKqdLSUhUYGKh69+7t7bNmzRoFqHfeecdnbNeuXVWXLl283z/77LNKp9OpZcuW+fT75ptvFKB+/fVXbxugQkJCVEFBwRHjc7lcyuFwqCeffFJFREQot9utlFJq/fr1ClAPPvigT/8vvvhCAWrMmDHetrFjx6rAwEC1e/dun74vvPCCAtT69euPGEOfPn1UmzZtlMPhUA6HQ2VmZqr//ve/ClCXXnqpUkqpK664QpnNZpWRkeEzdsiQIcrf318VFRUppZQaPny46tix4xGP9+GHHypA7dy509s2bNgwlZiYWGN/QE2YMMH7fV1jmTt3rgLU0KFDffp99dVXClCLFi06YpyHGjNmjAoICPBp69OnjwLU77//fsSxbrdbORwO9eeffypArV692rttwoQJ6tBf8xkZGcpgMKi77rrLZx+lpaUqNjZWXXbZZd62lJQUlZKSoiorK2s99vPPP1/tXCul1MaNGxWgbr/9dp/2JUuWKEA9/PDDdXqfffr0qfbzvu2221RwcLAqLS2tNS4hhBBCCCGEqA9V15eLFy9WDodDlZaWqp9//llFRUWpoKAglZWVpX777TcFqClTpviMnTZtms+9gKpr+1WrVtV6vKpr8m+//danfdmyZQpQb7zxxhHjrboGrOmVkpLi7XfnnXeq0NDQI+7r66+/VoCaO3dutW1jxoypdo0NqNjYWFVWVuZtmz59ugJUx44dvfcjlFLqpZdeUoBas2ZNjceuus7dvXu3AtQPP/zg3VbbdahSnmvIPn36eL9/6623FKC++uorn36TJ09WgJo1a5ZP/DExMaqkpMTblpWVpXQ6nXr22WdrjPPQeMeOHat0Op0ClKZpKi0tTY0fP75anIde/z/33HNKr9eryZMn+/QZPHiwio+PV8XFxT7td955p7JYLN57QTt37lSA+vDDD495bNVn6tCxSnnuI8XFxal27dopl8vlbS8tLVXR0dGqZ8+e3raqz9vhn/3bb79dWSwWn595TZYuXaqaNWvm/YwGBQWp4cOHq48//thnbG5ubrV7N4fH8Pjjj1fbdvjnocrhn9+qe3vvvvvuEeMNCAjwuV92eAyHq+n+VGJiotLr9Wrz5s0+fU/03psQQohjI6XUhRDiOL3//vv4+flxxRVXABAYGMill17KggUL2Lp1KwDt2rWjS5cuPk93bty4kaVLl3pLY4Pnyeq2bdvSsWNHnE6n9zV48GCf0mBV+vfvT1hYWLWY/vjjDwYOHEhISAh6vR6j0cjjjz9Ofn4+OTk5APz5558AXHbZZT5jR40ahcHgW0jk559/pl+/fsTFxfnENWTIEJ99Hcn69esxGo0YjUbi4uJ48cUXufrqq3n33Xe9MQ8YMICEhASfcddddx0VFRXecl1du3Zl9erV3H777cycObPa7Pb6UNdYqlx44YU+37dv3x44WFLvRISFhdG/f/9q7Tt27OCqq64iNjbW+zPu06cP4Pls1WbmzJk4nU6uvfZan5+lxWKhT58+3s/Yli1b2L59OzfeeCMWi+WY4547dy5AtZL8Xbt2JS0tjd9//71O7/Puu+9m1apV/P3334BnqYFPPvmEMWPGEBgYeMxxCSGEEEIIIcTx6N69O0ajkaCgIIYPH05sbCwzZswgJibGW7Xr8OufSy+9lICAAO/1T8eOHTGZTNxyyy189NFH7Nixo9pxfv75Z0JDQ7ngggt8rtk6duxIbGxstfsCtZkzZw7Lli3zeU2fPt27vWvXrhQVFXHllVfyww8/+JQrPxH9+vUjICDA+31aWhoAQ4YM8ZkJXNV+6HVzTk4Ot956KwkJCRgMBoxGI4mJicCRr3OP5I8//iAgIIBRo0b5tFf9rA6/Nu3Xrx9BQUHe72NiYoiOjj7q9b2mabz11lvs2LGDN954g+uvvx6Hw8H//d//0aZNm2r3TZRSjB07lgkTJvD555/7VKazWq38/vvvXHzxxfj7+/t8DoYOHYrVamXx4sU1xnEiY6ts3ryZzMxMRo8e7VMCPjAwkJEjR7J48eJqS57VdF/EarV670HV5uyzz2bbtm389ttvPPzww/To0YPff/+da6+9lgsvvLDakoBHMnLkyDr3PdyMGTOwWCw+9+hOpvbt29OqVSuftvq49yaEEKLupJS6EEIch23btjF//nxGjhyJUspbznvUqFF8+OGHfPDBBzz77LMA3HDDDdxxxx1s2rSJ1q1b8+GHH2I2m7nyyiu9+8vOzmbbtm0YjcYaj3f4hWpN6zAtXbqUQYMG0bdvX959913vukTTp0/n6aefprKyEvCsfwWei7xDGQwGIiIifNqys7P56aef6hxXTVJSUvjyyy/RNA2LxUJycjL+/v7e7fn5+TW+n7i4OJ94H3roIQICAvj0009566230Ov1nHvuuUyePJmzzjrrqHHURV1jqXL4+TKbzQDec30iaoqjrKyM3r17Y7FYmDRpEq1atcLf3589e/ZwySWXHPG42dnZAN61xA5XddFbtXZdVRm1Y1V1jmo7j4ffVKhtTbGLLrqIpKQkXn/9dXr16sXUqVMpLy/njjvuOK64hBBCCCGEEOJ4fPzxx6SlpWEwGIiJifG5hsnPz8dgMFQr7axpGrGxsd7ro5SUFObMmcOUKVO44447KC8vp3nz5vznP//h7rvvBjzXbEVFRZhMphrjqGsCu0OHDj7LVx1u9OjROJ1O3n33XUaOHInb7ebss89m0qRJnHfeeXU6Rk3Cw8N9vq96H7W1W61WANxuN4MGDSIzM5PHHnuMdu3aERAQgNvtpnv37sd9fZ2fn09sbGy18tzR0dEYDIajXt+D5xq/rsdPTEzktttu837/1VdfceWVV3L//fezdOlSb7vdbmfatGm0adPGm/g8NGan08mrr77Kq6++WuNxavscnMjYQ/cBtV/Pu91uCgsLfe7pnMh9EaPRyODBgxk8eLD3+KNGjeLnn39mxowZDB069Kj7qC3eusrNzSUuLu6oa8HXl5pirY97b0IIIepOEuNCCHEcPvjgA5RSfPPNN3zzzTfVtn/00UdMmjQJvV7PlVdeyT333MPUqVN5+umn+eSTTxgxYoTPjO/IyEj8/PxqXYPp8Ivawy/swLNOmNFo5Oeff/aZ6Xvok+Fw8KIlOzubpk2betudTme1C8PIyEjat2/P008/XWNcVQnjI7FYLEdMXEdERLB///5q7ZmZmd4YwJO4v+eee7jnnnsoKipizpw5PPzwwwwePJg9e/b4XJgdr7rGcirU9DP+448/yMzMZN68ed5Z4sAR11mvUhX7N998433yviZVN3T27t17jBF7VH2+9u/fXy25npmZWafPMngS9XfccQcPP/wwL774Im+88QYDBgwgNTX1uOISQgghhBBCiOORlpZW6zVtREQETqeT3Nxcn+S4UoqsrCyfB5N79+5N7969cblcLF++nFdffZVx48YRExPDFVdcQWRkJBEREfz22281HuvQ2cwn6vrrr+f666+nvLyc+fPnM2HCBIYPH86WLVuOeL14Mqxbt47Vq1czdepUxowZ422vWsv9eEVERLBkyRKUUj7XnTk5OTidzpN+fX/ZZZfx7LPPsm7dOp92s9nM3LlzGTx4MAMHDuS3337z3h8KCwtDr9czevToWh8KT05OrrH9RMZWOfR6/nCZmZnodLoaqxfWl4iICMaNG8e8efNYt25dnRPjNd1XsFgsFBcXV2s/PMkcFRXFX3/9hdvtPq7keNX9N5vN5n0ooKbjHCnW+rj3JoQQou4kMS6EEMfI5XLx0UcfkZKSwnvvvVdt+88//8yLL77IjBkzGD58OGFhYYwYMYKPP/6YHj16kJWVVa1E0/Dhw3nmmWeIiIg46oVKbTRNw2AwoNfrvW2VlZV88sknPv3OPfdcAKZNm0bnzp297d988w1Op7NaXL/++ispKSkn7eJnwIABfP/992RmZvr8sf/xxx/j7+9P9+7dq40JDQ1l1KhR7Nu3j3HjxrFr1y7S09Nr3P+xPOF9PLGcSlUXUIdebAG8/fbbRx07ePBgDAYD27dvP2KZsVatWpGSksIHH3zAPffcU+1YVWp7CryqLPqnn37qcxNo2bJlbNy4kUceeeSosVa56aabmDhxIldffTWbN29m8uTJdR4rhBBCCCGEECfbgAEDmDJlCp9++injx4/3tn/77beUl5czYMCAamP0ej3dunWjdevWfPbZZ6xcuZIrrriC4cOH8+WXX+JyuejWrdspiT8gIIAhQ4Zgt9sZMWIE69evJzExsV6roR3NsVznHktcAwYM4KuvvmL69OlcfPHF3vaPP/7Yu70+7N+/v9aKb3v27KkxqdmpUyf+/PNPBg4cSN++fZk9ezbR0dH4+/vTr18//vnnH9q3b19r9YCaHMvY2s5jamoqTZs25fPPP+e+++7z/mzKy8v59ttv6dGjR71MSnA4HJSUlNQ4S7+qdH7VeTvez2JSUhJff/21T8I6Pz+fhQsXEhwc7O03ZMgQvvjiC6ZOnXrEcuq13VtKSkoCYM2aNT73QH766ac6x3oq7r0JIYQ4SBLjQghxjGbMmEFmZiaTJ0+mb9++1ba3bduW1157jffff5/hw4cDnnLq06ZN48477yQ+Pp6BAwf6jBk3bhzffvst5557LuPHj6d9+/a43W4yMjKYNWsW995771EvjIcNG8b//vc/rrrqKm655Rby8/N54YUXql1ctmnThiuvvJIXX3wRvV5P//79Wb9+PS+++CIhISE+T8g++eSTzJ49m549e/Kf//yH1NRUrFYru3bt4tdff+Wtt9467pLbVSZMmOBdT+nxxx8nPDyczz77jF9++YUpU6YQEhICwAUXXEDbtm0566yziIqKYvfu3bz00kskJibSsmXLWvffrl07vvvuO9588026dOmCTqer9Wn/usbSUHr27ElYWBi33norEyZMwGg08tlnn7F69eqjjk1KSuLJJ5/kkUceYceOHZx//vmEhYWRnZ3N0qVLCQgI4IknngDg9ddf54ILLqB79+6MHz+eZs2akZGRwcyZM/nss88Az3kFePnllxkzZgxGo5HU1FRSU1O55ZZbePXVV9HpdAwZMoRdu3bx2GOPkZCQ4HOz6GhCQ0O59tprefPNN0lMTOSCCy44jrMmhBBCCCGEECfHeeedx+DBg3nwwQcpKSmhV69erFmzhgkTJtCpUydGjx4NwFtvvcUff/zBsGHDaNasGVar1Vsxrur+wBVXXMFnn33G0KFDufvuu+natStGo5G9e/cyd+5cLrroIp8Eb21WrFhR47Vreno6wcHB3Hzzzfj5+dGrVy+aNGlCVlYWzz77LCEhId7EXtu2bQF45513CAoK8i6LVlMi80S1bt2alJQU/vvf/6KUIjw8nJ9++onZs2dX61vbdWhNs+mvvfZaXn/9dcaMGcOuXbto164df/31F8888wxDhw6tdl/meD399NP8/fffXH755XTs2BE/Pz927tzJa6+9Rn5+Ps8//3yN49LS0liwYAEDBw7k3HPPZc6cOcTHx/Pyyy9zzjnn0Lt3b2677TaSkpIoLS1l27Zt/PTTT9517WtS17EpKSn4+fnx2WefkZaWRmBgIHFxccTFxTFlyhSuvvpqhg8fztixY7HZbDz//PMUFRXx3HPP1cs5Ky4uJikpiUsvvZSBAweSkJBAWVkZ8+bN4+WXXyYtLY1LLrkE8FRKSExM5IcffmDAgAGEh4cTGRnpTUjXZvTo0bz99ttcc8013HzzzeTn5zNlyhSfpDjAlVdeyYcffsitt97K5s2b6devH263myVLlpCWlsYVV1wBeD578+bN46effqJJkyYEBQWRmprK0KFDCQ8P58Ybb+TJJ5/EYDAwdepU9uzZU+fzcSruvQkhhDiEEkIIcUxGjBihTCaTysnJqbXPFVdcoQwGg8rKylJKKeVyuVRCQoIC1COPPFLjmLKyMvXoo4+q1NRUZTKZVEhIiGrXrp0aP368dz9KKQWoO+64o8Z9fPDBByo1NVWZzWbVvHlz9eyzz6r3339fAWrnzp3eflarVd1zzz0qOjpaWSwW1b17d7Vo0SIVEhKixo8f77PP3Nxc9Z///EclJycro9GowsPDVZcuXdQjjzyiysrKjniu+vTpo9q0aXPEPkoptXbtWnXBBReokJAQZTKZVIcOHdSHH37o0+fFF19UPXv2VJGRkcpkMqlmzZqpG2+8Ue3atcvb58MPP6z2XgsKCtSoUaNUaGio0jRNHfqrD1ATJkw45ljmzp2rAPX111/7tO/cuVMB1fofyZgxY1RAQIBP25HO28KFC1WPHj2Uv7+/ioqKUjfddJNauXJlteNOmDBB1fRrfvr06apfv34qODhYmc1mlZiYqEaNGqXmzJnj02/RokVqyJAhKiQkRJnNZpWSklLts/HQQw+puLg4pdPpFKDmzp2rlPJ83idPnqxatWqljEajioyMVNdcc43as2dPnd9nlXnz5ilAPffcc0fsJ4QQQgghhBD1qer6ctmyZUfsV1lZqR588EGVmJiojEajatKkibrttttUYWGht8+iRYvUxRdfrBITE5XZbFYRERGqT58+6scff/TZl8PhUC+88ILq0KGDslgsKjAwULVu3VqNHTtWbd269YhxVF0D1vaaPXu2Ukqpjz76SPXr10/FxMQok8mk4uLi1GWXXabWrFnjs7+XXnpJJScnK71e73O9OWbMGJWYmOjTt6b7FFXXx88//7xPe03X0xs2bFDnnXeeCgoKUmFhYerSSy9VGRkZNV6z13Yd2qdPH9WnTx+fvvn5+erWW29VTZo0UQaDQSUmJqqHHnpIWa3Wo8avlFKJiYlqzJgx1doPtXjxYnXHHXeoDh06qPDwcKXX61VUVJQ6//zz1a+//urTt6br/71796rWrVurpKQktX37du+5u+GGG1TTpk2V0WhUUVFRqmfPnmrSpEnecbXdf6jLWKWU+uKLL1Tr1q2V0Wisdp6nT5+uunXrpiwWiwoICFADBgxQf//9t8/4qs9bbm6uT3tN92UOZ7PZ1AsvvKCGDBmimjVrpsxms7JYLCotLU098MADKj8/36f/nDlzVKdOnZTZbFaA92dSWwxVPvroI5WWlqYsFotKT09X06ZNq/HzW1lZqR5//HHVsmVLZTKZVEREhOrfv79auHCht8+qVatUr169lL+/vwJ8PmtLly5VPXv2VAEBAapp06ZqwoQJ6r333qt2HhITE9WwYcNqjPVE7r0JIYQ4NppSSp3k3LsQQojTwMKFC+nVqxefffYZV111VUOHI07Q+PHj+eSTT2pd1+p0ce+99/Lmm2+yZ8+ekzI7QQghhBBCCCGEEEIIIcS/g5RSF0KIf6HZs2ezaNEiunTpgp+fH6tXr+a5556jZcuW3nJV4vSUk5PDokWL+O677+jRo0dDh3PcFi9ezJYtW3jjjTcYO3asJMWFEEIIIYQQQgghhBBCnBBJjAshxL9QcHAws2bN4qWXXqK0tJTIyEiGDBnCs88+i8ViaejwxAn49ddfufPOO+nevTsvv/xyQ4dz3Hr06IG/vz/Dhw9n0qRJDR2OEEIIIYQQQgghhBBCiNOclFIXQgghhBBCCCGEEEIIIYQQQghxRtM1dABCCCGEEEIIIYQQQgghhBBCCCHEySSJcSGEEEIIIYQQQgghhBBCCCGEEGc0SYwLIYQQQgghhDjpnn32WTRNY9y4cd62srIy7rzzTuLj4/Hz8yMtLY0333zTZ5zNZuOuu+4iMjKSgIAALrzwQvbu3evTp7CwkNGjRxMSEkJISAijR4+mqKjoFLwrIYQQQgghhBBCnC4MDR1AY+B2u8nMzCQoKAhN0xo6HCGEEEIIIUQ9UkpRWlpKXFwcOt3p92yw1WrFbrc3dBheJpMJi8VyTGOWLVvGO++8Q/v27X3ax48fz9y5c/n0009JSkpi1qxZ3H777cTFxXHRRRcBMG7cOH766Se+/PJLIiIiuPfeexk+fDgrVqxAr9cDcNVVV7F3715+++03AG655RZGjx7NTz/9VA/vWAghhBBCCCGEEGcCTSmlGjqIhrZ3714SEhIaOgwhhBBCCCHESbRnzx7i4+MbOoxjYrVaSU4MJCvH1dCheMXGxrJz5846J8fLysro3Lkzb7zxBpMmTaJjx4689NJLALRt25bLL7+cxx57zNu/S5cuDB06lKeeeori4mKioqL45JNPuPzyywHIzMwkISGBX3/9lcGDB7Nx40bS09NZvHgx3bp1A2Dx4sX06NGDTZs2kZqaWr8nQAghhBBCCCGEEKclmTEOBAUFAZ4bZcHBwQ0cjRBCCCGEEKI+lZSUkJCQ4P27/3Rit9vJynGxe0USwUENP9u9pNRNYpdd2O32OifG77jjDoYNG8bAgQOZNGmSz7ZzzjmHH3/8kRtuuIG4uDjmzZvHli1bePnllwFYsWIFDoeDQYMGecfExcXRtm1bFi5cyODBg1m0aBEhISHepDhA9+7dCQkJYeHChZIYF0IIIYQQQgghBCCJcQBv+fTg4GBJjAshhBBCCHGGOp2XTQoO0hEcpG/oMLxKSkp8vjebzZjN5mr9vvzyS1auXMmyZctq3M8rr7zCzTffTHx8PAaDAZ1Ox3vvvcc555wDQFZWFiaTibCwMJ9xMTExZGVleftER0dX23d0dLS3jxBCCCGEEEIIIYQkxoUQQgghhBCikXOjcONu6DBw41mJ6/ClqCZMmMDEiRN92vbs2cPdd9/NrFmzap1d/sorr7B48WJ+/PFHEhMTmT9/PrfffjtNmjRh4MCBtcahlPJ50KGmhx4O7yOEEEIIIYQQQoh/N0mMCyGEEEIIIYQ4JocvQ1XTbPEVK1aQk5NDly5dvG0ul4v58+fz2muvUVxczMMPP8z333/PsGHDAGjfvj2rVq3ihRdeYODAgcTGxmK32yksLPSZNZ6Tk0PPnj0Bz5rn2dnZ1Y6fm5tLTExMvb1nIYQQQgghhBBCnN4afpE6IYQQQgghhBCnlaplqKpeNSXGBwwYwNq1a1m1apX3ddZZZ3H11VezatUqXC4XDocDnc73slSv1+N2e2bHd+nSBaPRyOzZs73b9+/fz7p167yJ8R49elBcXMzSpUu9fZYsWUJxcbG3jxBCCCGEEEIIIYTMGBdCCCGEEEKIRs6l3LhUQ0fhiaOugoKCaNu2rU9bQEAAERER3vY+ffpw//334+fnR2JiIn/++Scff/wx//vf/wAICQnhxhtv5N577yUiIoLw8HDuu+8+2rVr5y21npaWxvnnn8/NN9/M22+/DcAtt9zC8OHDSU1NrY+3LYQQQgghhBBCiDOAJMaFEEIIIYQQQjSIL7/8koceeoirr76agoICEhMTefrpp7n11lu9ff7v//4Pg8HAZZddRmVlJQMGDGDq1Kno9Xpvn88++4z//Oc/DBo0CIALL7yQ11577ZS/HyGEEEIIIYQQQjRemlKqEcw7aFglJSWEhIRQXFzss06eEEIIIYQQ4vR3Ov+9XxV7zuZEgoMafiWsklI30am7T8tzKYQQQgghhBBCiH83mTEuhBBCCCGEEI2cG4Wbhn+muTHEIIQQQgghhBBCCHE8Gn7KgRBCCCGEEEIIIYQQQgghhBBCCHESyYxxIYQQQgghhGjk3LhxN3QQ0EiiEEIIIYQQQgghhDh2MmNcCCGEEEIIIYQQQgghhBBCCCHEGU0S40IIIYQQQgghhBBCCCGEEEIIIc5oUkpdCCGEEEIIIRo5l1K4lGroMBpFDEIIIYQQQgghhBDHQ2aMCyGEEEIIIYQQQgghhBBCCCGEOKNJYlwIIYQQQgghhBBCCCGEEEIIIcQZTUqpCyGEEEIIIUQj50bhpuHLmDeGGIQQQgghhBBCCCGOh8wYF0IIIYQQQgghhBBCCCGEEEIIcUaTxLgQQgghhBBCCCGEEEIIIYQQQogzmpRSF0IIIYQQQohGzo3C1QjKmEspdSGEEEIIIYQQQpyuZMa4EEIIIYQQQgghhBBCCCGEEEKIM5rMGBdCCCGEEEKIRs6NahSztRtDDEIIIYQQQgghhBDHQ2aMCyGEEEIIIYQQQgghhBBCCCGEOKNJYlwIIYQQQgghhBBCCCGEEEIIIcQZTUqpCyGEEEIIIUQj51IKl2r4MuaNIQYhhBBCCCGEEEKI4yEzxoUQQgghhBBCCCGEEEIIIYQQQpzRJDEuhBBCCCGEEEIIIYQQQgghhBDijCal1IUQQgghhBCikXMfeDW0xhCDEEIIIYQQQgghxPGQGeNCCCGEEEIIIYQQQgghhBBCCCHOaJIYF0IIIYQQQgghhBBCCCGEEEIIcUaTUupCCCGEEOK0tmZfFnd89SMtoyK4rXc3Plu2mhHt0+jbqnlDhyZEvXGhcKEaOoxGEYMQQgghhBBCCCHE8ZDEuBBCCCGEOK3NWL+FnNJyckrLySopY3teAYt37WHxfbc2dGhCCCGEEEIIIYQQQohGQhLjQgghhBCi0couLaPC7iA5IqzWPqM6t2Xl3n20io4kwt+fN/9aSu+UxFMYpRAnn0t5Xg2tMcQghBBCCCGEEEIIcTwkMS6EEEIIIRqlvUXFDH3jI2xOF+9edTHntkjybtuel89Nn31PTHAgn1x7KdNuuNK77aZeZxFgMjVAxEIIIYQQQgghhBBCiMZK19ABCCGEEEKIf5+HfphJ26df4et/1tXaJ7+sApvTBXiS5Id6+rd5ZBaX8s+e/cxYv9lnW6DZjKZp9R+0EEIIIYQQQgghhBDitCWJcSGEEEIIUWc2p5NKh+OIfRwuFx8sWsHX/6xDqep1l5VS/Lh2Ew6Xi5/Xbqp1Px3imzB5xGD+e965jOrU1mdbn5bJAOg0jc4JTbG7XPy6fjPb8wqO410J0fi5G9FLCCGEEEIIIYQQ4nQkpdSFEEIIIUSd7Cks5pJ3P8PhcvHVjVfSKjqyxn7T12xk8uz5ACSHh3JWYrzPdk3TePT8vvy6fgt39el+xGOOaJ9eY/uYbp3p0yKZYIuZ8AB/XpizgHcXLsffaOTve8fibzIexzsUQgghhBBCCCGEEEKcqSQxLoQQQggh6mRzTh4lVhsA6/dn15oYjw8NRgOMej3RQYE19rnyrA5ceVaH44ojv7yCMpudpIgwb5uUThdCCCGEEEIIIYQQQhyJJMaFEEIIIf7l3EqhcfTkcp8WSdzS62xsTidD0lNr7dcjuRmz77oes8FQa2L8eGWXlnH+a1OpcDh48/IL6Z+aAsBdfXuQFhtF65gomS0uzkhuNFw0/AMg7kYQgxANSSmFzeXGpRRuBToN9JqGWa+Th7SEEEIIIYQQopGTxLgQQgghxL/Y1pw8rpr6FYFmM9/edCXhAf619jXq9dw74Jw67TchLLSeIvQkIfYWldA0NJiC8goqDqxxnlFY7O1j0usZ2qb2ZH1NsotKufh/n+Bwuph6+6W0iY+tt5iFEEKcGWxON7kVNopsDgoqHRRZHTiVqtbPoGmEWoyE+xkJNRuJ8jdjNugaIGIhhBBCCCGEELWRxLgQQgghxL/Ykl17KbHaKLHaWL8/h94tkho6pGom/vo7X65Yy3mtW/DaZRcwZcT5ZJeWceVZ7eu8j5JyK1e88hk5xeWMG3YOM1dvYU1GFq4DyY3LX/6CIR1SmXL1EJnxJ4QQ/3JKKQqsDnYUlrO31IoCNKB6Ovwgp1LkVdrJr7R7+8cHWUgJCyDMYpTfLUIIIYQQQgjRCEhiXAghhBDiX+yCdq1ZuSeTED8z3ZITGjqcGq3elwXA2kzPfy9qn1bnsTaHk+ve+Ip1e7K9bc/98Kfni8NyFDNWbebGfmfRumn0iQUsxEngVp5XQ2sMMQhxMmWWWtmQV0qJ3emTDK/rR//Q/ntLrewptRJsMpAeFURcoKXe4xVCCCGEEEIIUXeSGBdCCCGE+BcL8bPwv5FDGzqMI3r2wkFMW7mWC9vVPSFe5a9NO32S4tVUZTAOJMl35xZKYlwIIf6FbC43q7OL2Vtq9bad6HMgVeNL7E4W7yskPshCh5gQzHopsS6EEEIIIYQQDUES40IIIYQQolFLi41m4tABxzX2sa9mV2vzzgCsIePx6LRZdGvZjNAAv+M6nhAniwsN1+FlDhooDiHONJmlVlZmFeE4ySUR9pVaySm30Tk2lLggmT0uhBBCCCGEEKeaPKYshBBCCCHOWBZjzc+Baoe8DlXpcPLVojUnOywhhBCNgFKKTfllLM4sxO5WJzxD/KjHA+xuxeLMQjbnl6GUrE0ghBBCCCGEEKdSgybGk5KS0DSt2uuOO+4APBepEydOJC4uDj8/P/r27cv69et99mGz2bjrrruIjIwkICCACy+8kL179zbE2xFCCCGEOCnsrlIWZk1gWc4UXMpBpTOfMkdmrf2VUtz3/Qx6/e9t/t6++xRG2nAWzt/MraPf5sdvlvm0W+2OWsd0SoylfbOYgw2aJ1HeObnpSYpSCCFEY6GUYn1eKRvyShvk+OvzSlmfVyrJcSGEEEIIIYQ4hRq0lPqyZctwuVze79etW8d5553HpZdeCsCUKVP43//+x9SpU2nVqhWTJk3ivPPOY/PmzQQFBQEwbtw4fvrpJ7788ksiIiK49957GT58OCtWrECv1zfI+xJCCCGEqA9Ftm3sKp2JpunZVfYbAIGGVNYUvohL2WgVcjldIsehab7POhZVWvlp7SYApq/ZQK+UxFMe+6n02gsz+OG75aDg1f/9xp+/r+fZl0eTUVBIqdVerX9EoB93Dz2HC89Kx+Fy8+6cxUxbvBajXsfbN19CqyZRDfAuhDgyKaUuRP3aXFDOloLyBo1hS0E5Rp2O1IjABo1DCCGEEEIIIf4tGjQxHhXle9PxueeeIyUlhT59+qCU4qWXXuKRRx7hkksuAeCjjz4iJiaGzz//nLFjx1JcXMz777/PJ598wsCBAwH49NNPSUhIYM6cOQwePPiUvychhBBCiPryV9bDlDh2E2RMwKQLoqRS477vFnB1XxsAW4qn0cS/K00DzgGg0LYF0Ajzb8lNPbqwcGcG15zdseHewCny03cr8E73Btas2sOwc5+mONkETc3efjpNo3/b5jxx6SCC/T1ru+p1OowGA0UVVs++Vmzg3uF9TvVbEEIIcQplllobbKb44dbnlRJkMsia40IIIYQQQghxCjSaNcbtdjuffvopN9xwA5qmsXPnTrKyshg0aJC3j9lspk+fPixcuBCAFStW4HA4fPrExcXRtm1bb5+a2Gw2SkpKfF5CCCGEEEfidFuxu47+N0NG2R98vWMAC7MnHvexKp355FnXE2ho5m0bkvAp/zd9ONsy49i+pzueLLAOf0M0ADkVq5ixZzQz9lxDdsVK7j/vXL6/5Ro6xDc57jhOB9O/WYa7lm2mMt8tbqWYs3Y793/6i0/p2plrtni/7tI8/mSEKYQQopGwudyszCpq6DB8rMwqwuaq7beZEEIIIYQQQoj60mgS49OnT6eoqIjrrrsOgKysLABiYmJ8+sXExHi3ZWVlYTKZCAsLq7VPTZ599llCQkK8r4SEhHp8J0IIIYQ401Q68/lh14V8u/N8cir/OWLfXaUzcbjL2FU6A6fbils5+TPzPn7aPerAjO4jc7gr+CXjCmbtvYEov3Zo6Ch17GFNwdtMHnE+g9NacXHqw1yY+B0XJX5PmLkVALnWVd597Cmfe0LvtyGt2ZnJOfe+zPk3vETm3oKj9v/8o798G9xunCZw+mk4zRrUsHbrwi0ZDHjqXQAqbHa2ZuUD0DI2gr7pKSf+JoQ4CdxKazQvIU5nq7OLcbgb17reDrdiTXZxQ4chhBBCCCGEEGe8RpMYf//99xkyZAhxcXE+7Zrme+NFKVWt7XBH6/PQQw9RXFzsfe3Zs+f4AxdCCCHEGa/MkYnNXYzCRb514xH7poVeTYS5LR3Cb8Ogs1Bs38m+igWUOvawq3SWT1+7y8Ud037korc/YUeeJwnsUjYc7jIAbO5igoyeB/hCTS0Z2iaVVy4dTtu4GAKNcQQYY737SgwchA4joJEQ0L8e3339cDndTHrkG2668k12bMvGZrWTl119Bv6LMxeQG+JmZ6KbRYu2HXW/hfnl2IN0ZHf1oyDdTGWojpweAeR0C6C8qQlq+Zswt6Sc3XmFDJz8HgqICLQwbug5J/o2hRBCNGKZpVb2llppXGlxUMCeUiuZZdaGDkUIIYQQQgghzmgNusZ4ld27dzNnzhy+++47b1tsrOdGb1ZWFk2aHCwBmpOT451FHhsbi91up7Cw0GfWeE5ODj179qz1eGazGbPZXOt2IYQQQgiAfOtGiuzbSAwcRMeIO6l05tMi5KJq/Rbu2M3r85dwcYd0RnVqz+CE973bQkzJNAs8jxL7TpKDhvqM27g/hzmbtxMbVsjf+ZezrTKR/k1fo1/cKxTattAi5GI6hI+l0pVHoLHpEWMNNMVxSfKvuJQDP0NE/ZyAepSxO4/5f3geKnjkrk8p3FcIwLiJIzj/krO8/c7v3JrFMzKJcJkYcF6bI+7TanUAUBltwOWnwxGgw+EHSvOsN+4M1sAGygxKA50TlAE0JzSNDGbk+19Qig0CIBsrY7/6gTHdO/HQ4L4n5yQIIYRoMEqpRrOueG025JbSJMB81MkAQgghhBBCCCGOT6NIjH/44YdER0czbNgwb1tycjKxsbHMnj2bTp06AZ51yP/8808mT54MQJcuXTAajcyePZvLLrsMgP3797Nu3TqmTJly6t+IEEIIIc4YNlcxs/fehBsnZY59dIi4tda+L81dxOp9+9mQlcOoTm19tuk0A+fETqpxXFpsFH1bJhMWvg29voQ821qK7TuI9T+bWP+zvf0CdUdOilcx6YOrtSmlKHVk4G+IwaCz1Gk/J0OzxEh6909j9fKdFGQWUXXLf9uGTLjkYL8ru3bggg5p+JuM6GpJDPz+21pm/vwPl1zRHQD/LAeVETqc4XpsUQZ0doXboHlqI+nx1kjSjBpupcAAe8pKvDFwyGE+WvwPczZtJyk8lDevvAiToVH8uSwELjRcNHyyrDHEIMTxKLA6KLE7GzqMIyqxOym0Ogj3MzV0KEIIIYQQQghxRmrwO31ut5sPP/yQMWPGYDjkxqOmaYwbN45nnnmGli1b0rJlS5555hn8/f256qqrAAgJCeHGG2/k3nvvJSIigvDwcO677z7atWvHwIEDG+otCSGEEOIMoKFHpxlxKycG7cgJ5Yvat2ZDVg4j2qcf0zFMBgNvXzmCMkdXFudMItAQ510zvL5sKPyI1QVvEmxMZFizL9G0U7+STm5OCf8s28lV1/Zi2ax1aAfW/Y6MDeaqW/tV6x9orp4Q+PvPTXz09lyGXNSZj9+dR1mZje3bcgBwGTScRp2nFq0GyoEnIQ4EmoyU2RwE+pkY2DqFWZu2kRAawuacPPq3as7vm3d4x1XZV1TCvqIStuTk0zYupp7PhhBCiIawo7AcDRpdGfVDacD2wnJJjAshhBBCCCHESdLgifE5c+aQkZHBDTfcUG3bAw88QGVlJbfffjuFhYV069aNWbNmERQU5O3zf//3fxgMBi677DIqKysZMGAAU6dORa/Xn8q3IYQQQogzjEkfyJBmn1JqzyDWv9sR+159dkeuPrvjcR8r0BjHwKZvHPf4Iym27wSgzLEPt3Kg1+p/ORmlFH/PWU9JcSWt2sXTvGUsyu3mlUk/kr2vkH35ZWTvL6Z5ShR2m2e2XrsuSUz54MY6l4v9Yupf7NqRy9S355LePoHlS3dQVG6loomB0iQjyqJ5k9s6TUNXDrcP7cHonh0pKLOi18EH81fw/AXnMyA9hVKbjYd/mOUZclgIzSPDSY+NonVsVP2dJCGEEA3G5nQf19rij48eyfpli+g74jLueu4lcvbu4baBnr8JnvjoG9p2q30Jt9qMbB0HwB3P/B/9L7ncZ5sC9pZaae90Yzac+gfZhBBCCCGEEOJM1+CJ8UGDBqFUzZenmqYxceJEJk6cWOt4i8XCq6++yquvvnqSIhRCCCHEmcil7Ows+ZUQU3Oi/NrX2CfIGE+QMf4UR1a/OkbeiZ8hilj/s9DrTiwp7nK50ek0n2S22+3moVumsmrpDpTFCHodg4d3IHt7DmuW7wJAC/TMuI+MDqFJvyBMJgPjn7i4TknxbZv388JTP2DxN2HxM3FWjxYUF1dSkmSiLMEImoZbD0oHuEBTgFthMRgYdVZb5qzdRm5ZBav37Gfexh18s3QtS5+4k0Czmb35xT7H0oCkiDC+uukKAs31/wCBECfChQ4XDZ8oczV0AEIcg+uuu46PPvqI7uf05v73ph3z+PgWrbDbbcQ2SzymcX98N43XHx4PwLebMn22tezQGYCQ8Igaxyogt9JGfJDfMccrhBBCCCGEEOLIGjwxLoQQQgjREDYUfszagnfR0DEi6Wf8DDXfoD7d+Rui6BR5p0+bUoolOc+QVbmE7tGPEuvftdq4KwdPpiCvAoDAYAs6TaOksNK7feAFHRn/2IVsXJPB6qU7PLPwdJ5E95IFWyjJLPL2dZdZ6TkwnQeeugT/AE/Cec7m7dz73a90S4zn7StHsHrlbub/sZELR55F5r5CKsptxDcLZ/ytH+F0uEAp0OmYP3cTw27sRtmWPE/ZdMBtwpPVdoHeDmFb7cz89Hae/+x3vt65BQD9gdhaxkaiQ+ODv5ezKTfPswMXfDDmYjo2i8PPaKzzLHYhhBCnB6dbHVcZ9VsmPFvvsTw37ecjbteAIqtDEuNCCCGEEEIIcRJIYlwIIYQQ/0pGXQAAes3M9twSnvx1Fp0S4vjveeeecYlRl9uGwo1B57nJ7nCXsaP0RwC2l/zokxivKLcxeuiLlJXZvG1lJdZq2YQ5P61izk+rCI/wR2kamA2gaaAURQXloNfRsmUMwaF+7N2Vz9U39cE/wEx+bilrVu7k1eXLsLqc/LltF8VWG08+8i2lJZWsX7OHHdtzfA+macTGhZK1vxhXkJ73Nq7zriGuaaC5QOlB5wJ9uRu/HCc3XfMOhRHAgWroLpebcYN7kVtWTtcnX8OOGw6E/PD5fejZIqk+T7kQ9U4pDbdq+H+bVCOIQYi6SEpKYvfu3QAsX/gXlxwoYf7ER9/Qol1HXrr/DnZv2kBxQR4up4vIuKacM+wiRt06DqPJs8b34aXU6+LV/45j3vSvvN9XlU6/7I57uPyu+6qVUj90dvnEqV8x9bmJZO7cTmqrVrz66qv06dOnXs6HEEIIIYQQQghJjAshhBDiNGR1OPl8+WqahYUwsHWL49pHasgVhJpaEmiMY8rMDazel8XqfVlc370zscFB9Rxxw6lw5vBrxjU4VSXnNX2HCEsaJn0QqSFXsL9iCS1DRnr77tqRw9hLX695R7VMtSvIrwCdzpNhrqLTwKhn69YcuvVuydQZ96LX6ygvs3LtBf+H0+nGHqzD0sbCRT3aEepnITWtCcuX7CClVUy1xHhcQhg4XeB2U94ywDNTXPMkwzUFegdYspz4ZbswFbsoa2ogO8aOK1APboXO6sbtr+elWQsBcBnxJtYV8P7fy8kpLaNfWgqdE5se/8kWQgjRaHTq1Iny8nLy8vLwCwgkvkUrAPwDA7HbKln2+0xCI6OIS2pOSWEBWbt38s0bL2G3WhnzwOPHfdzYZonEJCSSvceTlK8qnR4R2+SoY5+59VqimyaAprF27VqGDRvGli1biIuLO+54hBBCCCGEEEIcJIlxIYQQQpx2Pl6ykhf/+BuAmXdcR1JEWJ3GuZWT7SU/YNKFkBg0kFj/swAY2sbF7E3b6BDfhOigwJMWd0Mose/C7vaspZ1vW0+EJQ0Aw+4RVG7oinF4S374cQl6vcbb//ut9h25leelab5JcDzJ5djYEPbnloDy5NDRaWDSsWThNoacPRG9Xsf1d52Hw+lGA0wlblLWuTlnUCyL/tzEpBeuIDenhOiYYFYs3UFBfjkAxUlGsuLsBCk9WjIEhxVTXhiC0rlxm3WgFPpyMBW48Mt3URpvoDTZdDA4nYbJClb/QwLWDgkcyCop572/VvDBXyv46e4xNI8KP97TLYQQopH4/vvvvWuMN09vx5OffOvd5rDbeenneSQcSJYDvPzAXcz/8Vv+/vWHE0qMX3r7eCJi47yzwI9WOv1Q1//3CQZdMZqMrZu5/+LzKC8v55VXXuG555477niEEEIIIYQQQhwkiXEhhBBCnHaahAQD4G8yEmQx13ncjpJfWJY7BYAAYxMiLW0A6J6cwKL7bq3/QBuBaL8utA27Ebu7lOSgoQDMn7OOpx/8GoD3Xp5V61izRYfJZKa0sAzNDf4BJu57ZhSZewtBKb748C8sQWbyCyvZn1sKaKDTUG5P8htNA4NnerfbpXjxl/mUnhdM4C47LQoNXHVTb1584gcArr65D9eO7ceEe76gIKcE9HpQCmuU589VU1g+N1/uSdzv3BzNl3P74rYcCFSnUZJioqSZQnMdNq1dwfQJ1/PEjLm4Fdw5sAffrlzPz+s3YbO7PElyIyg3KBfozrAy+uLM4ULDRcN/PhtDDEKcKJ1ez/wfv2XRzF/IzdyL02H3bivMyW6wuM4ZPgKAZi1TadO2LatXrWLt2rUNFo8QQgghhBBCnGkkMS6EEEKI084F7VrTKjqS8AA/IgL8a+zjVk72lf9NqDmFIGM8AH6GSAB0GDDrgk9ZvA1Jp+lpH3GLT9uvi19j6KQdrPq6JZlrw2kzchv7VkRRtDMclCexrDMZiGoWQVF+GcpoQNmcXHlzX3r2SwcgP7eUd974g5JKu6eU+qEOrDV+6MxyW6iO0kQzaBoVcUY2BTiZ8vZM/A5s/+qjv7h2bD9WLN7mHWMP0WPOd2CNMdE5bYt3d0ktcwh5x0ZRKzPKoB1M05l0nkngVheYdaAgZLONX7/7h/fuHOXd740ffYtNuTx/CVfl0TW4rEs7kiLrVn1ACCHE6ev7d1/ju3deBSAqLp7QqGjys/ZTkL0ft9vdwNEJIYQQQgghhDhZdEfvIoQQQgjRcErsGTjc5dXaEyP1LMm/gR92jaDMkVlt+9qCd1mQ9QC/7bkWp9sKQNOAXgxN+JzhiV8TZEo46bE3Rvm5JaRfvJqolsV0GLmVyz6dS9tL9jBo0kp63b8UpWkoTcMF7NmVT2mpDQx6CDCze3e+dz8BQRYiozxrsae3bYrBcPDPyqSU6INJcaXA5aYw1XJg9rjCbdKwRpvI6xKINUyPG3ApmPjfrwntGYejbTDFSUYK2vphjTUTvt1BlLPMu3+dHtKb7yF6lQ1DhdszS/zQmeIGHXF/VRL3dyUBeW6Smkf5nIOOzeIOllM/sHZ6YkgIdw/qVY9nWgghREPz9/c8PGetrPBp37JqBQBxSc1564+lPPPFjyS1Tq+345r9/LxfWysqjtDT118/Twdg7/atrF+3DoB27drVW1xCCCGEEEII8W8nM8aFEEII0WhtLf6OZbmT8dNHcWHit+h1B8um51auocSxC4CsiqW0CBnhM9atHAf+6+LgtGAINaec7LAbtVef+hFncjwtBuyjNN9CcEvPDXtNg6YdS8Cor8oV+1KKWb+spteAdEwmPRtW7+Gld68HNKJjQ/hj1jqenTgdgF07cr3DKqIMFKVbUBoHZqMfUoZZp5HbJQBDpSJqRSV/LttCXid/CAPCDq4T/sgTF9OkaSxri97wtiV3y2R1QTIufz0AYSvKKW7jj9uoEZhxsCQuwCcfLGDw0A4APPrjbJZk7PG+QU2DF0YNZVjb1OM7oUKcIi6lw6Ua/rnmw1crEKIxa926NQDb161m/AX9Mfv788RHX5OYms6KeXPI3LWD2wZ0w+l0Yrda6+24TZu38H599/A+hEXFcN2Dj9O6c9cjjvv4+af45dP3yd23B6fTidlsplu3bmzZsoXo6GhCQkLQZMkPIYQQQgghhDhukhgXQgghRL0od2Szt/xPEgL74G+IqbWf1eHEbNCztfgbthR/S/uIm2kWOKDGvsX2nQBUuvJwqEr0HEyMN/HvSkLgAFxuKwmB/aqNbR8+llBzS8JMrTDo/Kpt/zcqq7SyaP5m1KI2LJ3Wjsjm+4nrVnBwcrcb2o/awpqvW4Cm85ZVR9MOvOCX75az/O9tKKX45fsVnNW9BeMfu5AuZyfTNj2OdRsyD45RiqJUM+g032R71T39A+XWXf4a+W0shG2yorO5cZs0cHv6DYhtSqwys31JNFqqHqU864IHttCI1Jspd3u+L+4YSOTKSgw25bNvgPJym/cc/LJuE27AqGk47QpNg4e/nkmz0BDaxceevJMvhBDilLvhhhuYP38+v82aTcbWTQC4XW5Gjv0PBVn7WTZ3FhVlZfS/5DJMFj++efOlejluUmo6o24fx5yvPiMvcx95mfsoKy4+6rhH3vmE959+DJfTRXR0NOeffz5r1qxhzZo1ABiNRqKjo4mKiiI6Otr7CgwMlIS5EEIIIYQQQtSBppT61z/zX1JSQkhICMXFxQQH/zvWGxVCiPqglKLcmYmfIQq9Zjr6AHFGm5ExmkL7FsLNaZyfMLXGPj+u3ciD02fSoWkso/q+h91dSqipJUObfVpjf5urmE1FnxNuTichsM9JjL7+lRZXsGXNHtp1bY7JbGzocPh+yTomfDWbGIMF5uehAd3H/kNSzxzAd0nwv19rR8ayOAA0pdB0oOkUbqfmyW4rhXbIX5AXX92db79fjnIpcLjApAc3OC1QkGbGFWjwJsMP/8NTs7vR9DpwQ+TqSvQ2hfKu/a0wKs+64Uln76Hv2JXecRsz4tg89wIKdhSz/0BV/LCNNvzyXT77j4kN4akpl+EO0hMXGsy3K9fx9C/z0ByA/mC/ILOJBQ/dismgR5x5Tue/96tin7EmmYCghp8xXl7qZkj7nafluRT/XvMz8smrtB+9YwP447tpvP7weAC+3ZSJUgp7YS5bZ/9AXW/XWCyWGhPmVaXkhRBCCCGEEEJ4yIxxIYQQx21T0SesyX+VEFMKgxM+56/9D5BZsQDPVE8wEMTFzWej00mi6d/ApPesN23UBdba5+/tu3ErxT9793N/4OXsKv+W1NDLau1v1ofQIeK2eo/1VHjgqrfYtSWLfhd24oEXrzypx3r9t4Ws2r2fh0b0pXlMRI19Fm3JQAHZTiupYf4U55cT0erg7DVnJeiMGnqjotedazF/6iA2PQ/l1hGeXIQ50ElFgRmUxuJ321CwJdQ78fuHr5ei9DoqYgyUJPmhdBqGfAfOKCMoDUumHWucETSNw+ezGaxu9DY3BqtCb1NogObEm6m3hFUw4K6luN3gdh+cvJ5fFEr2siwMFYq+vVqzbPF2LAWepHhIqB+9+6ZhMOg4a1hrRk37mnK7nWZhIYxMT0dvBXdVVfcDecZSm50eT7/B52OvIDU2CiEaGzcabho+Me6uvtCCEI1euJ+R/Er7afHp1Wka7Vokc+nZD5Ofn09OTg45OTnk5uaSk5NDYWFhtTFWq5WMjAwyMjJ82gMCAmpMmJvN5mr7EEIIIYQQQoh/A0mMCyGEOC67SmewJv81wFPuesbuyyh17vbp46SUIvsWwi1pDRGiOEmUclNo30qQMQGj7uBMpHObPE9O5Sqi/TrVOvbW3t2wu1x0TYynS3QHunDzqQj5hCil+Pj/ZrJvVx5jH7mAiJiQOo0rK6kEPDPHAdxuN288MZ1dW7IY98ylxCfXT/I1u7iMt2YvAeCT+f8w4dKBlJRU8sYrswgO8WfsbQPQG3TcOqg7AME2HfMXLgOdxvzl7enfdxV+FgdGfw6WTgfOumZTtWMFN/G8p3PuXMMv9/XCZdcTHO5HUZmdkhgdZSkmb/LbEeOpIqEB1mgDVLjBiGc2OQdnjuvsirANdjQ93vLrB2u7Q/w5e4lM8i0/m7khku2vJePv1giPCuKZq4bwueMvftmzguSUGF54fTTZFeW8//dyXp6/mHK7Z5ZgRmExL81a5Nm9AQ7PMVY6nPyzO1MS40IIcYYJNRtPi6Q4eH4/hlqMGAwGYmJiiInxXZ7GbreTm5vrTZRXJc1LSkqq7au8vJydO3eyc+dOn/bg4GBvkrwqaR4VFYXR2PAVboQQQgghhBDiZJLEuBBCiGOSW7mKxdmP4nY7OZjaUtWS4lXCzK0pse9iS9GXNA04lwhLW9YWvIm/IZbWodeiaRpKuSl3ZONviEGna/jZcOLIVue/yYaijwk2JjKs2TTvmpZGXQBNA3odcWxyRBj/N3JYnY/lVi4WZk+g0LaJnjFPEXECD1lsWLkLm9VBp54tj2nczk37+fLNPwCIT47i2vGD6zTu2Y9vYcX8zfQZ3hGAPdtz+eXzxQD8Nm0JN/13eI3jxj37JYv3ZHJr37O57rLePtuUUtzz0c8s2bqHZ68+nz7pzYkM8qdriwTW7N5PWkgYSinmzFzLnFnrAEhtFYtRg6bNInhq1EAuHTDZmwDfsb4pu/fHMuayWQQE2Kg2nRtwVwawfWEY/uFWYtrkYzAp/CNsDH5mEYvfa0feLj2OAB1lLcwHEtsH/mU4sKi4AjSjzpMUP5wGtigj9jAX5kIXuF1gPPBvgKbhH1xB94uqJ+gzN0bicupxKTctWsUQEupPxtZsHGV2tq3di0Mphrw6FdfhJWjdoBmp8X0C6DUY3qF1zRuFaGAuNFy1fXhPcRxCnG6i/M1Vv5Yanf6XXE7/Sy73fq8BUX61z+g2mUw0bdqUpk2b+rRbrVafmeVVr4qKimr7KCkpoaSkhG3btvm0h4WF+cwsj4qKIjIyEr1eqj8JIYQQQgghzgySGBdCCHFMdpX+TIUz2/t9oCGRslqS4qDxw87zcborcVHJrtKfSQu9gW3F3wAQ49eVcEsaf2f9l33lc9Ewcm7cy7iVjVj/7ug0+TXVGJU69gFQ7sxG4Ubj+G+Wbi/5kW3F39M2/EaaBpxTbXu5I5OMstkA7Cz95bgT45vX7OHey98AYOLb19Gtf3qdx8YlRpKQEk32vkI69ap7Uj0+OcpnVnhMQhimAQnkV1TStk/N+3G53Pyemwl+GlPnr6yWGC+ptDFnrecm9q8rN9MnvTnfffw3+95aRYSCD379Ht09lXTs1QI/PxMGvY4pD36FpsBt0IHxwM9K08DlJmpJEfZQA8v2d6Lnff9gNNoObNaxY0UHVm0NpHR5CMYi14GZ3DD40YVEJJUQ3KSSgQ8t47t7+lFh9uNgtlkd/LqWLIS+zIUzUO9dR1xf4URnc4FZd2AhBo+m7XLR66rvwO08OKN84YKt7MnI5/yLOrN9Sxb9Brej1GbzSYr3at6Mv7dleNYVP0JOz6XA6a7ftMmHi1bw45qNnJ/eklvO6ep9kEQIIcSpYzboiA+ysLfU2iiT41U0ID7Igtlw7A+KWiwWmjVrRrNmzXzay8vLq5Vjz8nJwWazVdtHYWEhhYWFbN682dum0+mIiIjwKcceFRVFeHi4PNAqhBBCCCGEOO1IxkEIIcQxSQm+hOyK5ZQ7PcnRmpLiRi0YhyoBFDZ3gbc9zJxGpF87tEIDZn0oAcY4APKtawBQOPhr/z24lJW00DG0j7zzqPGUOTLJqfyHhMA+R1zbWtSfs6LuIcSURKx/V3Taic0gWpn3Cg53KWvy36kxMR5obEpS0BAKrJtoHlTzDOu6UIckO93HmPi0+Jt4e8a9uF1u9Ibjf7+bs/PZEeCEACNry4vpXkMfvV5HB/8w1pUUcmFn35nLSilmTP+HDv7huMKM8E8u9/78Bhs37fdJPmftK6R5SjQhCnL3FXly0zrNkxQ/NCmrFDo3WAqcDLz0fEr2XsLrs5dw1dBNRMevZ5/Nwe7iaAxNXEQUu71j/3q7M2dftY64dnk47Xocmg5nkP6QhPPBpDXKs2b4ocfVbG4sRW7KA/UoIHx1JQarwm3SofQ6rFEG9FaFqcyNVkv6osulG3HaYfPvLTE29eP9Vf9wVfeOfDXrfgBmbtjq0z9jfyE6G9VKp9dkxtpNXNmt49E71sGewiImz5oPwMasXD5buorCSivXde/MvQN7H2W0EEKI+tQ8LIA9pdaGDuOIFJASFlCv+wwICCA5OZnk5OSDx1GK0tLSagnz3NxcHA6Hz3i32+0t3b5hwwZvu16v9ynDXpU0DwkJkYfAhBBCCCGEEI2WJMaFEEIckzBza5oHj2Bv6R/YVYk3QX4ot3LQK2YKK/P+h1s58DfE0iXqfsIsqeg0Axc3n41OM6HXPGsQ94h9huU5z+KnjyTPuhYApzr6jUulFLP23ojVVcD+ikH0in2qft/sv9S0FWvIKCzm1nO6EmTxlPIsrKjE32TEbDDgZ4ikfcQt9XKsFsEXs7X4a1KCL6hxu6bp6Bkz0fv9B8//yu/fr2Dsoxdy7tAOdT5O647NmPzpWKyVds7uc+ylsjVNO6GkOEDz6HCaRYaSW1JOt5YJtfb7dNL1Nbb//MM/vPf2XAB0Oo3CfUVoSqH8TAc7KcXlN/ZGKagosx3MVes036Q4gMNFs+Qorr61H32GtAfg+r5n8cmmQWgatErcy/LVrTAXuihpZkRvdeOf46I8z58ffuhB+L5iolQR8VfsJ3tbC/TKicupBzTPoSpd+Nvt+G92UZzqhyNYh86mCNtqBzdUxBgwlrswl7i9M9nLY/WUtDCDUkQvrSQ4trzaeVAHJqR3GbWVq897hAeXzOXLf9ayPjuHr2++CoCHf5jpM2ZPaSm6Ov7V26lZ06N3qqPIwACiAgPILfO8j5wyTznbd/9ezq29uxFgNh1puBA+XEqHSzX87MxqSxQIcZoItxgJNhkosTsbOpRaBZsMhFlO/jrfmqYRHBxMcHAwLVq08LYrpSgqKqqWMM/Ly8Plcvnsw+VykZWVRVZWlk+70WisliyPjo4mMDBQEuZCCCGEEEKIBieJcSGEOIMp5caprBh1/vWyP4e7nKXZT7K3/A+fdh0W3BxMZLuoJMe6kguTf6pxP4fP7I7268zQxK8BKLJtpcC2gWaBvus4lzuyybetI86/Fwad5ZBje36VaWdg2fV/8l5nc9HntI8YS3rYtafkmFtz8nj8l98B8DcZuePc7szdsoPbp/1IVGAAv95+LYHm2te9PFadIu+gU+Qdde7/3QfzcTnd/Pz5omNKjAO075ZyrOHVqyA/Mz//9zpcboVBf+zJLZvj4I18t1uR3KYJOQUVlAI4nWB3gU7j2f9OY8vqvThtDoz+FhwOFzjdYHBDVclTpYhrHsltD19Ip7M8M8iyMotYu3wnG5Z3Jqr9TjbObE70VislzQxURhnQAGuYE1uYHvQaxnILl4/0VHvodtYmjAYXi1elsm5Dcy6/aA4BAZ54K4pNZPzdhH2rYsjbHu4tr95kYblnJrtOh6Z3027IVqx+eubtbwcKNDes+6k5RrOLmNR8wuJLvbl9pTSahwyjR7uWpGWsJ2frTtKbRAPw0fwVlFsd1WaHK1X92YDDNQkOpHWTqCN3OgZ+RiMfXTuKoW98VG2batTFfIUQ4syjaRrpUUEs3lfY0KHUKj0qqEGTx5qmERYWRlhYGKmpqd52t9tNQUFBtYR5fn4+6rCHZRwOB/v27WPfPt+HZy0WS40Jc3//+rlOEUIIIYQQQoi6OPOyCEIIIQBwKycz99xAoX0L8f7nkh52LZF+bU9onztKfqiWFAd8kuJVQkzHl4QMNbck1Oy7/rJnZvgNVLrySAm6kLSwq9hY+BFxAecyKOF98qxrifPvdVzHayhOt5VV+a+joaNj5B3e2fOH2ln6C26c7Cj59ZQlxqOCAgnz96OoopK0GE+CcPW+LNxKkV1aRnZp+TEnxjev2cP65TsZNOpsAoP9Tii+0XcP4vfpKxl5w7kntJ+TyepwMnPVZtokxNAiNtJnm6ZpGPTHd8P7wos689Zrc7zfby+oOLjRYPC8gDU78kCvQ6/TERrqT25uqWfmuNWJMupAg4jYEDL3lzDpkW/4dub9/PT1Ul6b/OuBnQWzYWZHMBvIa2/CEaw/ME0bXJEH/3S02YzY7AbMJicmo2cWWfeOmzm7/WZ0VUuZA0GhNtoM20X60J3kbA5l8+/JpPTaS2hcMQajC3OgHb3hYM6+U/kW5n5wFq4YEz1HlhDVaRebdscR5nkEALeCzYua8Mm7iui39/H6FRfy8z8b+XP9Dj5esILJv8yHQz9mDsB44C04j7jEOImhoXX/gdRRk9AgmoWHsqegiL4tk8goLObmXmfX6wMmQggh6iYu0EJ8kIV9jWyt8aq1xeMCLUft2xB0Oh2RkZFERkaSnp7ubXc6neTn51dLmBcWVn/4wGq1kpGRQUZGhk97QEBAjQlzs/yeFEIIIYQQQpwEmjr88d5/oZKSEkJCQiguLiY4OLihwxFCiDpbnfc6e8vn0DnyAZoE9PDZZnUV8d1O31nXrUOupHPUuFr351YuCm2bKXfsJcqvM34GT1JPKcW+8nmU2vewtuBNNHS4sfuMTQwcRrApkXBzOjqdkShLp3qb8aKUm+92DsHmLiI5aChOVzGZFQvQMDAq5a8TXuf6ZHC4y9lW/D1h5tbE+p9VbfvO0t9YlD0BgHNin6FZ4IBqfXaVzmJr8bekh42ucf3tKltz8sgpLadVXDFbir8iKWgITQOO/0GBcrudcpud6CDPzP7Cikpe+3MxyRFhXNO14zHty25zctlZE7BZHQy+9GzGPXPpccd1upg8fR6fLvgHP5OR+U/eisV4/M8hKqWw25xs2LCP8PAAbhzzbp3H6sptnD+0PTs2Z9NvWAcC/I289NA3oNOIbBFDTkE5fiY9w4Z0YMmyHezdnX/ogdFKKtl/SRMcNf3v5QadEwIsVs7vuYzEFjkcqHBe7b/eeHCjad4cO5qm0NWSlqia3R2gj8TqzsXpAk136HaN/3tuJCm5BqZOu50eT7zpWTv+QB+XCdADLtAUKKMnIM0BOjf0at6Mv3ZlHAxQeV46F6ybPL7O57iunG43VoeTQCmd3mBO57/3q2L/dnUrAoIa/vddeamLkR22nJbnUggAm8vN7B052N2N51aISadxXvNozMdRUaYxstvt5OXleRPmVUnzkpKSOu8jODi4WsI8KioKo/Hkl5oXQgghhBBCnLlkxrgQQpym3MrJpqKpAGwt/gqdzoyGRrRfJwD0mgmjLhCHu8w7JrtyxRH3uWD/eLIqFvm0mbRQ/AyxFDs2edvaht9BjP/ZuNxWcq2rSAgcQLApqX7eWA00TceghPfJrVxDQmBfthd/S2bFAiIt7dAOr5fcSKwreJ+NRZ+hoePi5BlY9KE+2yPM6Rh1AWjoCDfXvOZ1UtAgkoIGVWtXSjF3yw6igwIJD/BjxDuf4XS7mXD5ItDvJqtyOSOTf6tzrJtXZzD1xd/oPrANF13biwCTiQDTwQRemL8fjw3pV+f9HUqv1wgM9sNmdRAaGXRc+2gslmzNILu4jKGdWh+xFLrxwFrkBr3uiLOTq2TuK2T79mx6nZPKgj83sWTxNkZd1pW/5m/hx+krKCuz4nS6aZ0eh7+/iYoK34dScB9SIh0OZpVdilnfrwSgQ9dkwts0xRDmj8OlyNlfDCY9lTYn33yzFO3AuuBVSWujSc9Dr4/GHmniodd+pCxEh9viWadccyhMxW4SE7Lp2mMTwZGemdxV7/XQXHPV94emHg4+L6OqJc8P71NR0hItIBeD3jNTvGq/breGI8LApnBFtwlveBLiuoMH0zvwzBQ/cDqUAvSgNHDrYMHODHB5xmgKT6L/KD+nE2HQ6SQpLoQQjYRZr6NzbCiLMxtPSfXOsaFnTFIcwGQyERcXR1xcnE+71Wr1mVle9XV5eXm1fZSUlFBSUsK2bdt82sPCwnwS5dHR0URGRqLXN/yDQ0IIIYQQQojGTxLjQghxmtJpBlJDrmZP+R9EWDrw+77bAEgOHIqfMYrkoGHepHisX1cs+nBahV52xH0WWDdUa7OrIuyOIp+2Slc2EZY2AET7d6mHd3N0QcZ4gozxALQOG01y8AWYdMENug7jkfgZPGXIjbogDFr1UpDBpmZckvwboKHXjm3myzer1vPoT7PRaRofXnMJLuUGQNnT0fx2o5Sbv7IepWfMRHR1WHv9yzf/YNWibaxevJ2hV3TDaKq/Pw/0Bj2v/TiOPdtzSO+SVG/7PdV25RZy81vfooAyq52rzulYa9+7hvSkY1IccUGBmAx65sxaR0ZGHpdf2YOAAN/PQklJJdePfguXS5GW3pQtm/fjcrnZuiWLnTtyffoWF1Yw7dv/cON175CTfXDGVYC/2bOmdhVNg9JKdE434ZGBFOaXs+D3DXzz+WLPNk0DvXYw+6zXg8tN/yHt+f1Xz5rh/Yd2wK3X8dyt0whWimBNw60HkpwMGrMMW6mZ2PR89MaaZ9u5OZCM1jyJ7MJif0L9KzCZ3AfD5MhlzW12A2/9GMH4Kz3f67zri0NeURCXD5nHL392pbTC/+AOD/0vByaC6wHjgXYdKNeBLnpPoLpDTt1VPY9t3XohhBCnp7ggC+mRQWzIK23oUGgTGURcUOMsoV7fLBYLzZo1o1mzZj7t5eXl1cqx5+TkYLPZqu2jsLCQwsJCNm/e7G3T6XRERERUm10eHh6OTnfmPHAghBBCCCGEOHGSGBdCiNNYx6hxdIwax/6Kxd62nWWedYIDDLGEmlriUla6RT9CgDH2qPs7O/pRFmY9gjqsTPpBGnH+59A2/Nb6CP+EmA+bgX0qKKVwKRsG3dFvXqaGXEGUpQMBhlgMuprX1a5pXfE6BuL9sklIMJ+NuYz9JaUMSW/FmoIoNhZ9TEbZbFqHXkGk5ejryvce0p7l8zfTY2Cbek2KVwmNCCQ0IrDe93sqmQ169HodTpebIMuRf25GvZ4dCzN45rNFdOvRgiWLPDOd9HodY673XRvd5XThcnl+nnv35NM6PY71a/eSmhbHzh256PQaHTok0q5DAv36p+Pnb+LNd27gi88WsmNbDkXFFSQmRTL398Meagm0oIoqmfrbfVRW2Lli8AuHTtU+OI26qs2tWLxgi3dzYV4pLz/7C0pTNOmYh19EJQln5RCWWIIl2AmUUtNiPEp5ktF/L0wjIzuali32YzI5mb+0LanJexjSe4X3kIfOKD90/K/zOlHsDCKvIJQKux+rtybToeVO7zi71UBMZDExFNOv6xp+mtfdtyB7VUJe8yTF1eEH0R+SHNegdZMILu3egZFd2x2xEoAQDc2NDlcjqJLiblQrMwtx/FLDA3C63WwpqD5b+VRpFR5Aq/CABjt+YxEQEEBycjLJycneNqUUpaWl1RLmubm5OBwOn/Fut5vc3Fxyc3PZsOHg30R6vZ6oqKhq65eHhIQ02odrhRBCCCGEECeXJMaFEOIM0MS/O32bvEylM5cVeS+icGN1FVBk3wpAnnVdnRLj8YF9GRD/DnP2XldtW5x/X7rHPoFR51/f4Z8wpRR/Zz9GZvlfdIt+lMSggSflGH9k3kV25XK6Rj1Ei5CLjthf0zQiLOn1HgfAyE5tCQvwJ9LPj1U/rycoxI/hF3UGIDnofDLK5hBobEKYqWWd9tf/os70u7D+1oQ/mexOJ+/OWYrFZOT6vmeh0x1/zEopflu1BYfLxQVd0o74/puEBfPdfaPJL62gS/Om3vaNG/bx9ZdL6Dcwnd7nHiyJv3L5Tu/24BA/SoorSUqKqrbfsPBA/jN+MLN+W8t1N55LSKvtlFaY6Rg7mMuv6I5/gJmIwx4qCAn159Y7Dn7G8/JK2be3gIAAC2vX7MHpdAHQrEUUJrMRk9lITGww+/cVgaZhDraTOnw3+duD2bs8FlwKNCgvtVJVT10flUG/+3azc0MZrYfvRlM15NUPm5ldkuvHl28MJHCXnSuv6Ylz53YW5EV6/9rctKMZQ3qv8I63leswmt0o5Zm07rTq+WpGb3Y7Yg6WQwdWb/Mkxt0KKq1GAvwO3gwPCKj0xFFTkv6Q0uo48cRRFbMe1IF10puEhXB5D5kpLoQQ/zaaptEmMgijTsf6Bpg53iYyiNTT/MHBk0nTNIKDgwkODqZFixbedqUURUVF1RLmeXl5uFwun324XC6ysrLIysryaTcajdXWL4+OjiYwMPC0+HtYCCGEEEIIcfwkMS6EEGeIuIDuADQLGgC4sbtK2VnyK05Vyd/Zj7C7bA69Y59B04482yzcnEZa2HVsK/4Wh7sUsy6MEFMrEoPPb5RJcQC3spNRNhuA3WWz65QYt7mK0WkGjDrfWTout41C+zbCzak+Zcjdyk525XJAsb9i0VET4yeTTtMYmJrCzK+X8dZTPwAQmxBOeuckQs0pXJT0/THv81TcBCyptGIxGjAZjv/Pj19Xbuat2UsASI2L4pzWSQC43HYyK1cSaU7FzxBWp30t3prBA596Kiz4m4wMbH/kBwmSo8NJjg73aXvz9TlsWLeP5ct2+CTG/zP+fL7/dhkDzmtLepumlJfZiIkNqXG/F47owoUjupBduZaf9jwJQIBfIPuNy8ksWkZvyyMkBPSoNa7IyCDeeOcGAJYv28HXXy6mc+ck1izZzsgBk2nfOYn9e4u8tcjTL9lJi0F7UQp+vDWMVkN3E92mkH8+bE3hzmBQiviLf0cz2miTFIAL36T4odSBTLNyw9yJZxNa7Cl56qhw8Mnbt/DC9/P4cMk/ADidenbuiSEpPocFn3cgY25TcCk0t0LpNJQOiloYIRlPLfYDwkNKPRXgwScpbrXrWbC6DUo7OPvbUzvd87Xm8nwZaDFS5vadWVZVVj0y2J8b+p7Np0v/4ftVG7hnwDn0Skms9VwL0ZBcSodLNfyMcVdN5SKEOE1pmkZqRCBBJgMrs4pwuNVJrYmgAUadRufY0H9N+fT6pmkaYWFhhIWFkZqa6m13u90UFBRUS5jn5+ejDvt3y+FwsG/fPvbt2+fTbrFYakyY+/s3zmsgIYQQQgghxLGTxLgQQpxhqpLXRl0gFyZ9x5y9t2J1FbC3fC7z999Pn7gXjzhe03S0j7iD5sEXkVE6i50lP5NjXUJO1hJ0sZOJD+x/Kt7GMdHrzHSMuJN95X/RKmQUGWV/EOPXBbO+5kRkbuVa5uy7FYPOwtCEzwkwxni3zds/nuzKFSQGDqZX7JM+x+gW/TCZ5QtpF37TSX9PdRHVxPP+DEZ9oy9VvmDjTu58/weiggOY/sC1BFqqr7teFy1iIzDodRj1OhIjQ73tf+e8yJaSXwkyNuXy5C/rtK8Qf0vVBGnCAmsud788713WF33DWRG30CZsZLXt3bu3YMO6fXTtnuLT3jotjocevQin20a+bQuR0anVxh7Oog9BhwE3Tkz6AHaUeh722F4ys8bEeE7lBmbuu58gYxzDE17FoLPQsVMiH34yla3maeRbYigracrCeZt8xhXtDgKgIs+CzqBIuygDgLYXZ7P/jwRGjm7LbuM8FGAyGOkQeh+rCj7AToF3H5oGzQJ6kVu5g7y8QlZ/3gpb8cEb/P4H1lIfd+G5YNbx4x+rsW8tZeaObvgXOdFZARS4PTeqlQbZXf1w++nQ2X0rn+cVBXu/LisLp6BEx5aMJizekO47bR0OJsfdnhh1LrioczqfLV9d/YRrkGOv4MqPpnmbxn/zC0sfvB2AUquNAJPphKoSHK7cbsdiMKCX9U6FEKJRiQuyEOEfzersYvaWWk/aceKDLHSICcEkS3fUO51OR2RkJJGRkaSnH6za5HQ6yc/Pr5YwLywsrLYPq9VKRkYGGRkZPu0BAQHVEuZRUVFYLPJwgxBCCCGEEKcbSYwLIcQZrkPE7czLHI9DlZFnW1/ncYHGeNLDb8DmKmJL8RcAZFUsbZSJcYD0sNGkh41m7r672V+5mHBzGucnTK2xb5F9CwonDncZZY49PonxMsf+A//dW21cSvCFpARfCIDT5T7iesQ78wt5cPpvNI8M5+kLzjtiIszhdDHlhz8ps9p56JK+BPvV7SZb53Na8c5v92H2MxIdV7dZ0g1l9e79uJUiu7iM7KIyAmOPLzHetlksfzx+C3q95nOe7G7P+qAOd93XCU2Pj2H6/dficitaNomssc/Goh9wuCvYVPxjjYnxq0b34uJRZ2OxGGscPzvzv+yrWE5S4LkMjHv6iPGEmJpxafLnON1WwszJ5FtHs69iKemhl9bYP6N8ITZ3CTZbCUX23URaUsnOLKLJuauJbV9AdJtCds6NAzTMZgM2p2ca9s55TcleF46txITLrmPPoiii0ovYvTyI3vd8xX7jl+ixYNCFcXbk7azKn+qTFK9SYN3OVS2+wZnkYuR/pwAHZ2WntIrBbnNiMhu45/zezH3qT5xON26dhjLqPU8juBU6ICw5lHUJDpTRk4DWABSkRIeRkV2IJctJZVEAfqHlBAYWkLHtDhavzqdqqWXt0Elg2iGvA+udz12z/WBoNf+YvMx6HU/8MIe80gp+37idFtHhTL/r2npJjs9Yv5l7v51Bq+hIvr75Sox6/QnvUwghRP0x63V0jQsjvtTKhrxSSuxO7/NWx0u53Wg6HcEmA+lRQcQFSiL1VDMYDMTExBATE+PTbrfbycvLq5YwLykpqbaP8vJydu7cyc6dO33ag4ODa0yYG41H+YNDCCGEEEII0WAkMd6IKKXYV5lPjCUUo05+NKJuHA4XBoMOl8uNXq+TNdFENVF+7RkY/xZbi78hMXDQMY9vF3Ebes1CuXMfrcNGn4QI65cLOwDljiwW7H+IzpHjfBLfAMlBwyh3ZGHSBxHt19lnW58mz5NR9gfJwUNrPcZ7vy/llV//ZmT3dky4tOay7d+vWs/qfVms3pfFmG6dSI2OZM/2HJo0i8Bk9r1ZtmTbHr5c6JnR2iGpCVf0qvt6xwkp0TW27ysoZs3uLPq2aY6fqe4355RSfDL/H8qtNm4ccPYJlT0/1DW9O1FUXkmzqCCU/0oKbCmEm5sf175qmt19Tsz9xPl3Js6/yzHtq3lMxBG3d426jY1F39Mx4tpa+/j5mWrdVubIPvDfnDrFE2Rs4v36rKixnMXYWvumhgwn17qREGNTws2etTfjEsIJ+rMLbtcc9iyKwT/AxH8njaLT2c25Zvj/UVxUQUiYPyX5ntw0bjfLX2mHy62I6ViBweRJniu3nX5NnqCJf2f+zp5S4/GbB3sekrFW2qms8C1V/tR/vyEhKRKjUY/RqMepDpSm1WkHZ4Mrz8Ll1hDtYFLc7kZf4aa9MYRP776Oxx76isSR3+MX6inRrmGgU8sW7Mv3Y+mOvWhAZICF3HKrN3OhDkmOKwX7i8vQdIAOlAvQ41Ny/dDp6bmllUxbttb7/bacAu6f9guXdetAt+YJtf4s6mLxzj24lWJTdi7FlVYiAwOOPkiIQ7jR4abhZ5m6T2qhaSEaXlyQhSaBZgqtDrYXlrO31Or9lVGXT793ZQ+3i6Ld2+mU2IROSS3lOq2RMZlMxMXFERcX59NutVp9EuVVX5eXV3/4sqSkhJKSErZt2+bTHhYW5pMoj46OJjIyEr08FCeEEEIIIUSD09Thiy39C5WUlBASEkJxcTHBwcFHH3CSvLl1Bp/umkfbkGa83fWOBotDnB7+/nsz/3txBkVFld62oGALL754NSm1JMqEOFZOdyW/7h5JpSuXrtETSQ4e1sDxuDEcpQSx1VnA1pLvWVvwDgBpoaPpFHlnnfavlCK/vIKIAP8j3ry87P8+Y+PeHEL8Lfz11G019lm/P5vbp/1IckQ471w1go+fn8G378+nZbt4XvnuPz5980rLueL/PqfC7uDjOy+jeUwo64u+xaj5kRpywTHfSHW7Ff2eeJuCskou6daWJy47r85jl2zN4Ka3vgVg4qUDGdm93TEd+2iW573HqoKP0Gsmrm7+AyZ94y4Bf6KK7LvZWTqXlKDzCDY1PWXHVUpV+9zY7U7yc0uJjg1h+5Ys3nh+Bi1bN2HsPYPR63VUlNvYWvo1+51/Eu3Xjc4RN1Li2M2Ggq/YWPIjoJEScD7hlhZYDCG0CD4fTdMoLCjn8vOrL9Gg13se2vKJCzzrfyvPdG6Ln5FKh4P8NhasUQbQ67xJhzHdO3Jdry4szhpPhXGddx+/LOvC8k0tMVgh0GLi53vHcNnLn5NbWu5JRFQlwfH8Fw3PmuW6Q2I40KwUnsdEq06VAp2TGjMf654ad0Izx/cWFfPK3IV0jI/jqrPr/vCLqB+N5e/941EV++er2uIf1PBJlYpSF1d1XHdankshjofN6Sa30kaR1UFBpYMiqwNnDbdRDJpGqMVIuJ8RW1EBM775EpfdRnp6OpdeWnP1F3H6KC8vrza7PCcnB5vNVqfxOp2O8PBwn7XLo6KiCA8PRydLrAghhBBCCHHKyLTkRmRraSYA28uyGjiSf4+1a/fw8ENfkZAQwUsvX4PJdHr8L7FjRw6PP/ZdtfbSEiu33Pw+Tz01kqVLd5CXV8r4e4YQ0cjXHhaNl91dQqUrF4Bi+9aTfrxyq52Zq7fQKTmO5Ohwn22P/zKHr1asZXz/Xow9p2ut+7AYwkkLvZqMst8pc+yhiX/3Oh//3u9m8Mv6zYzp1omHB/ettd99F5zLh3OXM6Jrm1r7tGkSw5/jbvZ+n7HNM2N4747can0jgwKY9ehNKBR6nY4txTNYkvsaAMGmeOL8O1cbU1dHe/4t37aNxTmv0sS/I50jrqdpeAh+JgN2p4uUo8ymPh7ageyk5s1YntlCTYl0irjulB+3pocpTCYDTZp6Su4v/WsLG9fuZePavfQf0o60dgkEBFroGDiajngqQ1Q685mRMRo3DnpGj6d16BU1His0zJ+YuFCyM4sACAy2cHaPFnToksTnHywgJ6v4YFxKEeBnoqLCU9mhVO+iOM0PFWYCveez6jYAOvhw2SoWZ/7MmL5hRJjbkW/zzOTunLKd5Vta4tZDmdXO6De/YsZ/b+DnFRvZlJXL54tX+2a/wZsUxzNJ/WA8ugPJce1gfzegq2Fa4IlO9IsPDWHKxUNObCdCCCFOObNBR3yQH/FBnoo1SilsLjdupXAp0Gug0zTMh1TvckcEMtdooNxuY8uWLdhsNszm41tGRjQOAQEBJCcnk5yc7G1TSlFaWlotYZ6bm4vD4VtNx+12k5eXR15eHhs2bPC26/V6oqKiqpVjDw0NlSoDQgghhBBCnASnRxbwX+Ke1hfx7Z5FnBOV3tChnJE++2wh/6zcxW23DyQszJ9HH/mavXsLqKiws3nzfpYu2c45vVMbOsw6WbUq44jbX3rpN/LzPaXe2sxcy5VX9TgVYYnjlJNZyHvP/UJy6yZccVv/RnUDxN8QQ/eYSRTZNtM6rPZS0vXlme/n8uPyDYT4W/jzibE+63LP3LAVBczcuPWIifGl2/ZQUFbB+e0+RdO50WlH/lVntznI2JZNcus4lu32rCu+dFf19cUP1bVFAl1bHFtZ5TsmjuDnzxfTrX9ajds9M1E9P3tPOW0NnWYgwFDz2tdHotNpfPafK1m9ez/926Ycse+6wmnsr1zJ/sqVpIWMID4ijNmP3YzD5SIyqP5LPXeKuJYIcwtCzUmY9FJK+lDPP/czs2euITIqmPem3ozZZEShKCqswG53Ete0/taRDwo+WI5+8/pMPnxjLq3Sm3DjnQO9/wYp3Cg8M77dylFtH0W2bazKf51Y/65M/fZOdm7Lxmg04IhYiM1dROvQtgwd0Zl1qzKY+tZcQkL82bh+L3nZnrU7NaC0uRlrlJGqLHST4ED2VpYBEBFSwmX9/6ISqLRBUZk/ARYbK7a1AA0MJh3uSjd2pwuL0cCo7u3oMfEN70xwTQeqasJ61T8lNf3zevizIwdKsB/aNT0uslH92yz+nVxKw6Ua/nPYGGIQoiFpmobFcOTqDTqdjvT0dJYtW4bT6WTTpk106CDVQs40mqYRHBxMcHAwLVq08LYrpSgqKqqWMM/Ly8Plcvnsw+VykZWVRVaW7wQJo9FYbf3y6OhoAgMD5W8SIYQQQgghToAkxhuReP9I7k69oKHDOCMVF1fwwft/AvD1V0tondaEzZt9LzwnT/6ZHj1botc3/jJmbdseuRxvVVIcwGyp+9rComH88NFfLJixhgUz1tBnWAfiEo89EVoXmzNzMeh0pMQe2yzgxKDBJAYNPikxHc5i9PxaMhn0HLISMaXFFTTbYEMX4uaWIZ1qHb9lfx43vvkNAE9dPuiIM7qrPHzdu6xfvovBl57NlJvP58c1G7nyrIM3Lt+a9AMrFmzhP0+NpF3XY18TO9+6lR1lf9Aqegg3PlD7uuWHauLfkcuTv0SHkQBj1DEfEyA+IoT4iJCj9ksO7MvO0j+J9WuPRe/pH+JvOa5j1oVOM5AUdO5J2//pau7v65k5Yw0AOdklfDJ1ATN/W4vT6cZuc+ByuZnyv6vo1DmpXo6X3j4BnU7D7Va8+eJvAKxevpPiogruefRCNE3D3xDFoPj3KXVk0CxwgM/4jYWfs7rgTdzKTmbFQlKCL6BFahNyK9cye98zAHzz8Sp2/pXCc69cwwtvjWHG9JUsmLsR9BAUU0F5jhlLjoOKGAOB5RrP3jKcp3+ci+YEdGCrNGJ36DEZPTeQ1+9uw5zVBx/06JmUwDktkuiXnsLuvCIMeg3jgUSFhicp3j4hhrsG9eSuz39Cp9OosDl8Zod7HTprXA84D24yG/R8cnPNs+WFEEKI2rRt25Zly5YBsG7dOkmM/4tomkZYWBhhYWGkph58+N7tdlNQUFAtYZ6fn1+typPD4WDfvn3s27fPp91isdSYMPf39z8l700IIYQQQojTnSTGxb9CUJAfZ5/dnH/+2cX+rGLmzdtYrY/N5qxhZOPUqlUTAgNNlJXZj9r37782c8klZ52CqMSRlJda2bUli9YdEtAfNsOk8zmt+PGThSQ0jyYy9uiJzOOxdNsebnzzGzQNpo27mrT4o69D73CX8ee+/2B3l3Bu3EsEGuMB2F9YwripPxHib+Gl6y7A32yqtzgfHNGHXq2TaJMQ47OW7/rluyj7K5NQwHl2MZwN//fQ1yydu5G7nx5F9wGeShtGvQ6dpuFWyptkP5r9u/MByNydR4/kZvRIbubdVlZSyQ8f/Q3AL58vOq7E+OzMhylzZpFZsYKLmr1T53FBxjhPDI5sMiuW0yywNxZ9/a/l2iywF9e1nFXv+xXHJj+vzOf70LBASoorfdqys4rZtDGTZ5/6gdbpTXnw4QuOe83rhKRILP4mKspsnnW5jZ5FuWf+uIqrbziX2AOz0yMsaURY0ih37Gdl3ivkVP5DfOC57Cv7G7fy/A6K9euGQfPM/vc3RKLXzLjcNjI22wlts4LFq2MY0eRSOndrDhp0vGQrHS/ZSt6OYH55pBcB2Q6Se2SycrGe/RVOUuKyKCn3J8LSnMyd9xMXovjin93sKvDErgNUJfy1cTfNI8JZtHU3E7//3ff8+VuICg7klvQOvHz714w8K4nMVkbmb9mJS6vaCZ71zrUDM8ur2g9h0Gn88cBN+JmMuN0KTTtYpn75zr3M3bSDK7q1JyE89Lh+DkIIIc5cCQkJhISEUFxczPbt2ykvLycgQKrl/JvpdDoiIyOJjIwkPf1gpUCn00l+fn61hHlhYWG1fVitVjIyMsjI8K0iFxAQUC1hHhUVhcVy8h54FUIIIYQQ4nQkiXHxr6DTaTz43+GMGvkK69bu8bYfWmbVz894WswWr5KaGseKFbuO2m/16iOXXRcnn1KKey57jYxtOVw4uie3PT7CZ3uX3ql8t+opDEZ9vZXFs1bYefXx73C5XNz15EiKyisPxAKlVlud9pFXuda7pm9m+QJahV4JwO9rt7Fhr2e97JU7MzmndVK1sW7lJLNiBWHmlGMqBW4yGGos/d2xRwv6Xx9EVL/5RMc3xVrRhVnfeGbgzPl+hTcxnhwdzlf3XE1ReWWdS50/8e71LJy1nvNGVn+AJCDIwpDLu7Hiry0Mvqz28u1HEmKKp8yZRYix2dE71+DXveMocewlofRPBsdPOa59HKuSkkqWLN5G5y7JREQEHtPYygo7Gzbso03beCxSsaLOLry4C3qDjoiIQHr2aoXbrcjJLsblcpPSIga73cl5g9rx6ssz2bevkH37Crn+xnOJbRIKQGZhMde//y3npibxyAX9j3q83TtyqSjz/FvgNunB4Pn9FxRiISrm4AM6dpsTvV7HiryX2Fs+D4DtJT/QOWI820q+Iy3sWlKCh3v7BxibcFHidMoqSyka/CyhbTZQyVbG3Z7Pnu2l9Dw3FXPCcgBC48tIbhGJOeUful23DqVWMzgqha7p21FKo7X1Jd6YvIIvmlqxBxz8/ewG9Ad+d3+3fD1Wx8EH23RAn7TmPHJRf5qEBjH5se8o+X/27js+qirv4/jnTk8mk2TSeyMQSui9SRcFRQXF3ruuXXcfy+7q2l3X3ntDxY6iomIB6b0kQCAF0sukzWSSqfc+fwxMGJLQIQHP2xcvM+e2MzPJ5OZ+7/mdhmb+WLSVCtnky8I1gLK7gvruj9w95dfx+g6gVUm8dtk5jMpMBWBzaSVXvv0FJoOe5y6YTv/UBG78cB52p4sdVRbeuGLmgd9kQThCXlR49717o1P6se/8A4IgtEeSJLKzs1m6dCmKorBlyxaGDh3a2d0SuiCNRkNsbCyxsbEB7S6XC4vF0iYwt1qtbfZht9spKiqiqKgooD00NLTdwFyrFefpgiAIgiAIwl+TCMaFv4yQEAOJiWbKyuoZNbo7GenRjBrdgw8/WIJKJXH++SM6u4uH5IF/ns277yzm22/X+Ua7dXCNsqN24fiqrfZdvKipbGx3uVbX/sexxWanqqGJ3kkxhxSar160jd/mrQN8wfuUcwbz2EWnodModEtyoigykrT/i+vRQQNJCD4Fm3sXBY3foFOFkRY6jUl9M5m3ex7wQekJ7W67xvIWm+rnYFCHc2HGV6ilI7vwUuH5mbTzf0JWnBQ5P2Jw0E1cePMkVv62lbMvHxOwblbCoZUez+yTRGafpHaXSZLErY/MOux+A5ya8CT1rp1E6A99tDmAavdrp5L2P5flgh83Ul1lZfYFI444kH704W9Ys7qI1LQo3nnvukPa9v77PmPjhmJGjMjk0SdmH/R2O4tqWLpkO5OnZBN7jConHC9FhdU89vA8UlKjuO+Bs5jz4RIW/bGNq64Zx+ixWe1uo9NpOGdW4MXyW25vO4XBadP6s3FDMb16JxBuDubN+cuJjDXxwNe/ADBn+UaWbirk+/uu3u9nRmbPeGLjw6iqaESnVePa/ctiwLAM1LtD8tyNxfzfTR/S/+xSBsz0XWRVoSXaMAiDxsz0lLntHsOgicBgimDs2KFsrluPWgkiL6cSr1tNSkY0P87tR5Mln/LNcbz81rX8Uvw37ICiSAzoUQiAJCksK3mbzUoGLmPgSKfI4CAyo82s3VlOkzOwcooMnNIznfhwEwBnXzCckl0W+g5Nw5Ki4aOVG30puLTX/OO7qVQg714WrNUxJK31c2Hpjl00u9w0u9xc+MZcfrjjCrpFR7CptJLuscdm+gtBEAThxLcnGAdfOXURjAuHQqfTkZCQQEJC4N9cDocjICjf87Xdbm+zD6vVitVqJT8/P6DdbDYHBOUxMTFERUWhVu//bw5BEARBEARBONGJYFz4y9Bq1bz9zrXYbA4iIlpL2D3y6Hmd2KvDV1/fTHV1I9On92fqaX259ZaP2l0vM/PAJbMF2GmbT7FtAb0jriXKcGTz/7m9XtYWlJGVEI05JAhJknjig+tY++d2psw6+IthTQ4npz/6Dg63h/vOGc+FYzqeW3tfvQamEh0fjtfrpe/QDCRJ4szBvfi+5Fa+Ll5Pz7CzGBN79373oVEZGJvwP77feQ42zy421b5MWug04s2hfH7nJfvd1i37Lsp4ZAeKIgfO5XsYttS9h6z4Rrd2M52LWtJy2e1Tuayd4PB4aGl2kbuljOyDGBWtVumIMvQ47GNNT3qeipYNJBmHd7hOQX4V/33yewD0Bi3nX3BkN/rsCTs7KtOtKAofz1lGeVk911w3AbO59TO1oaHZ9//Gthfm9ue+/5tLVZWVNasLefaFSw+z58eXoih88N6fVJQ1cP1NEzFH+EbX//JTDkWFNRQV1jB6bA8+eG8JAM8/s6BNMF5fb+eDd/8kPj6c5ct2oFJLPPjwLEymoHaP2bNXAu9+eD0AZ178PAWpcpt1dlqtLF+ynVEdhPAAarWKD7693T+f5cwzn8Vmc1BQUO1fZ/O6XYSnV9Pr7HW4FAjTZlL0ywDk8V9Q5VhJztpq6rcnc96lozAEtZ1SIdt8JbFBgwhRJ1N91hpKd1mYdvYgjCF6Pnx7MUFBOl747/ckX7QJCfC6UnHK5eg0vrA7svsm0rOi2KAYAAXJpaDoVVidLv5xwXhmv/Rxu8/N1uwAoK6pmTJaKOqn44+yXAY5on2B+J6zXxX+kBzFF6oD6LRqPrvxIiTgrSWrmdAjnVlDsnlh4bLW16a0gg+uPY+SukYyoiM6fJ0F4WiSFRWy0vkjxmVx16UgHLTY2FiioqKwWCwUFxfT2NhIWNiJfQOg0PkMBgMpKSmkpARWpLLb7W0C8+rqapzOthXD6uvrqa+vJy8vz9+mUqmIiIhoE5hHRESgUnX+7x9BEARBEARBOBpEMC78pWi16oBQ/ERVXFzLNVe/iSz7Lkz+9nvbOdP3+M/DRzbadX9aWlzo9drDnuP2eFEUhfvv+5z163dx330zGHtK27Bobc2jyIqLuoocJI+R4iVJJET3Y/ppF2DQRB7S8f733WLm/LmB+HATC+6/GpVK2u+o5I6sLSz1lwhesm3XIQXjUXFhfLD4vjbtDa5du/+/86D3lRl2Lrn1b9E9/OBvIhkWfSMR+m7EGPqgUekPeruOaNXBsLtaslNuO9fe8XbfvZ+xaeOhj4o+HEEaMxmmCftdxxxhxGjU09zsJCXl0L5f2/PAP89m1aoCBgxMbXd5YWEN77y1CICoaBNXXjXOv+yRx85jyZ/bGTe+5yEdMyrKRFWVleiYoz+P+tFktzvZuGEX/fqnUFnRyIe7Q+/4hHAuv+oUACZN6cOypdtJTY0iIcHs33bAoLQ2+/v04+V8t7u6wx5rVhUyYVKfA/bFVmuHFINvkuw9FAVjuZuI3SXwnU43arUKjab90T97boKYeno/vvx8FRMmts53Oe2cwbR0f9G/+0ZXPpvWhzBunO+Qn76xlqqinXzx1Rr++fBMhgzN2GffKmKCfJ9bf7vrNH/7oGEZvP3Kb7icHtav3kmNLotuoyo4e8gd/Fl5L152jwKXoNfYXWxYHEMIGk6LTmGj3srMAX3okxSLOTiIentLmxtvdI0yZ13xIgWxnoCCz7lbyiF6d9n4PYH4vhRwebyc+uK7/jnIn/5lCXqVhDFIi73FDcDYHunoNBq6xRz5z5sgCIJw8tpTTv2PP/4AIDc3l1GjRnVup4STltFoJD09nfT0dH+boijYbLY25dhrampwu90B28uyjMViwWKxsGXLFn+7Wq0mKirKH5jvCc3Dw8OP2lRggiAIgiAIgnC8iGBcEE5AmzYW45VbL/c7HYF/0EoSnH/BCIYOTSc2NvyY9OG337bw+GPfkp4ezSuvXtFh6NIV2O1OVq4oAODPxdsCgnGnp45F5TejQoeMC7dsA5WN2LGVeFnDvJ3vEhs0kiEx/4cKFcHa+AMer8HuG61oczhR9iQre2n21KJRBaFTBe93P2nREahVEl5ZYebw7EN81u2bkvA4O5sWkRV2xoFX3i3LfDFZ5osP6ThaVTC9ws/e7zo2Wwu//pJLvwEpZGR0XNnALTehU7WGpeXNfx5SX46Fxt2johsbmzu5Jz4RESHM+fQmmu2uNmXIHbs/Hw40st3l8rB0yXa694gjKSmCifsJZuPjw4iMCqHW0kStxRawLCHBzOzzOx7d3pHHnjyfd95aRFx8GLKsHJcbbpYt3c7cT1Yw4+zBTJoc+HzffON3fvxhIzfeNJkpp7b+/D34wBesX+cLxh954jwSEs3UVFsZMKj1JoJumbG899EN/scvvHI5LS0uBg9JDzjGv+77nGVLd/gfx8eHExYexKDBget15G+XT+ST71ZhcTioS1GDohC1wYHGA/EJZrZtLefO2z4ixKjn9XeuCRjZv68bbp7MtddP9JdRBwgND2ZEn3NYX/ucr0GClD4S374yleABEZS3OFBpvdhbXLzywi+8s3sk+4FkdIuld98ktmwupb7OTv133XHuOIXMliAMPdKxK7n+dcNUE4k1ydwwdjjnDuzDOc98yLPzFvO/bxYTqd9dYl2BYWmJ9E+P56MlG3hi+XL0Gg/KXqe52kYPoUUuDLUq6voEoew9wL3tx7T/+e75v1NRcHp8P0sqfJVBBEEQBOFg9O3b1x+M5+TkiGBcOK4kSSI0NJTQ0FAyMzP97Yqi0NDQ0CYwt1gsePc5z/F6vVRVVVFVVRXQrtVq28xfHhMTQ0hIiAjMBUEQBEEQhC5LBOOCcAKaP3+974vdk4t7ZSXgmv7ll4/h0svGHtS+FEXBqyhoDrE02ob1u5BlhYKCau69dy4bNxTTp08S58wcwtixWcf1D2FFUfjfr0vYUlnNv6dNIjUiPGB5SIiBa64bz9o1Rczep8T0H+U3YnX75ltLMU6n2P49itI6AFNRoKplOT8Wn40ETEr6ALO+1377c+85E8hOjmVoZjLqfV7XEvsKfir7O3qVifPSfXNwexU3suJCqwoMrRIjDcz/v8toccl0jz+8OWxrHFtpcleSGnIKKklNTFBvYoJ6H3jD4+ClF35h4S85GI16vvzmNtbVPkyjeyfDYh4gXN/dv15+45dUtawEQEJDumlGZ3XZ75HHD29U9LFkMgW1Kb9dvMvCjTe8i4TEq29cSXJyx6Nb337rD774bBXBRj1ffnUbOn3HpwjBwXr690/lt19z+fGHTVx/46QOS38frDWrC5n3zVoAkpIjSUuN4sUXfqZ791iuvHrcIX+mOBxuykrrSM+I6TBkf+3VXykrraesvL5NMP7l56twu73M/3ZdQDDe3OIbzdzS4iI4WM97H92Ax+NFp+v49erdJ7FNW0uLKyAUV6kkHnliNqlpB/+zfu6FIzj3whHU19vJ317JfXd+AkBQkJYQk4EtC0txOT3UOT3s2mnB4/aSs7mUoqJqaqpttLS4qKtt4sabJ+PxyvTu3bafvcwXEqSJYl3NM2hVRu687mGmPP8Vll3NJI+LRvVFJbJKYfTo7m223dv6NUU4HW6yeifw+8+5TJsxiC2bSwFfLr1tRyXLv/yJlrTeDO+Wilq3k+rGCJKNMfxx+5lsKa/i/rk/sbO2wb/PWqeDPR/YuTvKUa1rpMXsBknCE+z77FU5vJi3ODE0+i7wqptloj0tVA/dPdLeTeDZcEch+W4GLbjccPfcH3n/mhNzKhbhxOVFhZfOL2XrRZRSF4RDERERQUJCAuXl5VRUVGCxWIiKOrxze0E4WiRJwmw2YzabycpqvXFclmXq6uraBOa1tbX+KXj2cLvdlJWVUVZWFtBuMBjaDcyDg/d/Y7ggCIIgCIIgHA8iGBeEE5B679HZkoQpRM+jj5xLSWkd48f3IqiduV7boygKZ77+ITtqarlu1BDumjS2zfL/PbOAkpJa/vXPs4iMNPmXXXjRSJxON1qdih9/2AzApk0lbNpUwsiR3fjnv85Br9//CNWDVevYiMtjY2v9u6gkPX0jb8LeksRPW3dwep8eeLwyby5bA8Cc1Ru4b+r4Nvu48MKRXHjhyIC2vPoP/aE4QLHdN0fz7vsN9iGjAJaWnAMG42HBBi45ZVD7z8W5A1BwylbsHgsq1CwovgCHt45xCS8QG+ybg7zc/idLKu4hRJvIoOi/s6jsIVJNp5MWOs2/L4/sYG3tOwSro8g2n0ejw8mGknJGpKdg0GpoclfxbfENKMiMiL6NbPO5++330bR1SxlOp6fDUtwAplDfaM9go57chlfY2fQDADl1b5ASMoW44JFIkopQbToSKnSqUE5P/Ry9Ovx4PIX9OpxR0V6PzHffrsMYomfylOwDBr0FBdW89fpvDBmawazzhh1WP/Pzq3DsLv1cWFC932D8UKeMHTe+J0uX5DFgYBohIYbD6t/eEhLMqNUqJAni48L4+qs1rFpZwKqVBUw9rR+JSW3ncV69qpDHHplHv/4pPPifmf7XVFEU/nbTexQV1nDBhSO59vq2pehXrSygvMxXln/v8uF7XHXNeH5asIkLLgr83HjokXNZtmQ7o0b75o1XqaT9huIdMRi09OydwLYt5UREGHnsqfMPKRTfm9lsZOjwbnzw2c1szytnxOgeqNUqTj2tH7t2WggLDya7bxKXnP8Kln1G+APc9rcPkGWFs2cN4W+3ntpmeZppCmmmKf7HZ/XrxXsr1nHekL6ce/FsnE43Ce28P3tszS3jH7d8BEBW7wTytpQTFh7Me5/fzMZ1O3nv9T+otTbjDlHhldUs2xEK9ANgh7uAfpufR1YUNCqpbW69+z1vxsuu3ErMURo8QSrCe0VQ0tKEJEv+UFyrVRMcqqfM6IE9N0uo8U0u3l7WuHvu8b3tqc/i8ng6fL6CIAiCsK/s7GzKy8sB36jx8ePHd26HBKEDKpWKqKgooqKi6N279RzZ4/FQW1vbJjCvr287zZXD4aC4uJji4uKAdqPR2CYwj46OxmA48r8lBEEQBEEQBOFgiWBcEE4wDQ3NbMur8IcBkZFG3nj9KsxmIxqtmnvu+QRLjY0pp2azds1OunWL4Y47T293xGST08mOmloA3ly2pk0wvnx5Pj/8sBGAp576gSefPN+/LD4+nHvvm8FLL/3cZr/LlxVw+20f8uprV+FVXJQ0/UyYrhtmfS9kReGqj75ifWk5z8+azvgeGW2231uJ7UdWV9+HAsi7J4X9rXwlny+6io2lLn7csp1Pr7qAQckJ5FVZmJTV7YCvodVVSFHjfLZb3+9wHUkCWdECXkBBVnyv37KaF4kzjsakTTjgcdrTO3wWTk8TGhWYNDHYPeW0eKsBsDg2+YPx6pa1KHixuYvZZHmJetc2ahwbA4LxpZUPUmH/FRmIMGRw4we57KqvZEKPbJ6bNR1p938KICsO8hu/IiF4FMHauMPqO4Db7aWgoIpu3WLRatsvn5+3rYK/3eR7bR99fDYjRma2u94NN05ixMjudOsWwxbHI/72MvsSyux/EKHPpsG1HRUaJie9R6guHY3qxL1o8ssvObz4gu/nJS4unL79kve7/idzlrFqVSGrVhVy+vT+BAcf+lztY8Zmcf6FI5CQ/EFuR665djy9eiXQvUfcfkeL773vH376+yH3qSM9suKZ8+nNqFQSkZEhjBrdnR++30B6ejQxsWHtbvPbr7lYrS0s+TOPhoZmf6lwRYGK8gYASktq2912x45K/80Ap53Wr83y2ecPb/fmh6goEzPOHnwYzzCQJEm89OoVR7yfvcUnmolPbJ3TPCTEwB13+z4zFEVBlmUA9HoNTmdrsCvvnpqjtqZtaN6ev085hXsmjz3oUfx//t46R6UxxPd9bAoNIi7BjKXGRmS0iWpXC67wfT5TFN8/efcb5ZEV0IDiVUCRfAH57mWmQieSRyaoxo0kQ49IDefOGsXyTzZSgh2A2+6dTu/+Kdxw3ds02rx4TWpfMO4GtSIho6DsCcg7eGpxQUFUuFvYUl6NpclOqEGPWqVqUx1EEARBEPbWp08ffv7Zdx6Yk5PDuHGHXg1HEDqTRqMhNjaW2NjYgHaXy4XFYmkTmFut1jb7sNvtFBUVUVRUFNAeGhrabmCu1R6dG+0FQRAEQRAEYW8iGBdOKJuqnmSXfQ4AQWQxOePzTu7R8eF0urnu+vdoaGjinw+cTXhYMPUNzVx26Wguv3yM/6LK88//xPa8SgA+nrMcgLy8CiZO7M3AQWlt9qtRq/2j4RTA7nJh1LWONk9IMBNkchAW3URmZmtAVO/cSmHjXJJDTueSS8bw3bfr8Xhk9uzJGO6g/4Uf8k3hh0QFDaCieTESKkzabljtUZTaQnG4o/l5W/4Bg3GX7PuDet/LRuZgI+AiOsSITq3mkyvPb7PtHooiU25fRK0zB7MuixXV99FmGOA+eoXdSO/IK5hXNA2XXI+EGpei4FZkWjwNmLQJ/Lowl8KCai64aMRBl5HWqYIxaQxsrnuFMtt8pqV+Tb/Iv2F3V5AZ1jqiOyv8YpzeBsJ0mUioqa/dTkrI5IB91TrWIEm+XEejqDh16CdEh9WSW9iMopyORqXjrNS3sLuryG94nxrHevJ13Tgt5dOD6mt7/vPgVyxbuoNRo7vz8KPtlxH2emX/1x5Px/PwajRqhuyec3mA+zbqnVuwe8rRSDo8ioddJSWYYlzIuGjx1hCh2v9I/a4uJsZXcUGjURFuPnAZwVGju7N48TYGDkw96CoQ+9LpNFx3/cSDXre9kdPHU3R0a1WKgYPSmP/j3fu9aHzOrKGUlNQyYEBqwPzZKpXEE09dwOpVBZw5o/3qDWedPRirtYX4uHAyunU8x/3JQpIknn/lcjZvLGHkqEx27bLw3tuL2bB+F2q1xMzzhh1SFYRDuZj/64++qiJRUSb+898L+PyjZWT1SeS+Oz5m3apCAKy9dK2htP8gEG4KotHagkoCec/Htnp3ZQAZkCUi1zcT1ODlpjunUlnRyKKfcjhv1nDGTurNNZOGs+T3rdgaW5h0ej/UahXDhmRgXZ1H9TADqCQkry98N2jVqHQq7G53668IL6CCII2K+NBQdlY3+JplhSvf+pyCmnpUErx71bkMzdj/zS6CcKRkwKt0fpAmH3gVQRD2ERoaSlpaGjt37qS2tpbKykri4+M7u1uCcMR0Oh0JCQkkJATeOO5wOPwh+d6Bud1ub7MPq9WK1WolPz8/oN1sNrcJzKOiolCr279BWxAEQRAEQRAOhqTsO0nQX5DVaiUsLIzGxkZCQ0M7uztCBxRFZn7RgIC2mKBTGBr3LCrp5L6T+JeFuTz++HcAREQYeevNq6mrayIjIzDMeeON35n76QrAVzLW7faiUkl8/MlNREe3/d6+7Yv5LNi6e45bBZ48eypn92sNxryyk/lFU/BiI0SbyqSkT1GrDPxeegn1zlz06gimp/2KzbWLr/58GDl0C8GhTnZuTCBjcNnu8d06ZH/xWR+nW4NKUtCqJRKCx9Po3kaMYQiDov+PosZ5FFo/JUyfxeCYfyFJanZZ51HY+A317jx0UhhjEp4nSN2djaWVDEiKR69Rk59fRVxcWEBA3eQqZfHyVTh1W/HEfAWARjLiUdr+MR5AgakpXxCqS2dz7WtsqX+HrLBLUGtiMajDSQjqx47KRdx3wzacdh3nXziCy67uT07dm4Tru5MZNitwd4rC9oaPcXrr6R1xDRssz1Jg/QoJDedk/IpWdeCQVFa8qKTACwDra55le+PHhGozmJj4Ft/snAQoxAdNxUst1S1r6B95Kz3Nl7Ko/DYqm5cRoe/DlOT3Dni8jlx1xRvs2mkhPT2at969tsP11q0twuH0MHJk5kEHaF7FRb1jKwZNNAtXfM3bT1eQPbmQsWOyOW3A31FJJ/69XCXFtej0GmI7GAG9L1lWOpwfWxCOhoYGO2q16ojniO/IiiXb+fff5yJJEv0Hp5GUEsl3X64BCYxGPfYmJwCOcBWWkUYUqXWEeFJ4KC+edya942Nwe7288Msyvt+4jUprk3//EmAsdBJW4OSef57FqWcOaLcfiqLw4D2fsS2nhHEzB/By4UYUjQQeCUUN7LlPTIW/hLrWC+OzuvHiJTOwO108+cMivliT0+7+eydE88XNlxytl004Bk7k8/09fX993WCCQjr/d2FLk4frB609IV9LQehMa9euZf78+QCMHDmSU09tO32JIJzs7HZ7QFC+55/T6Tyo7SVJIjIyMmBkeUxMDBEREahEBR9BEARBEAThIHT+lRVBOAi5lufJt761uzB0q+qWxTS5igjV779E8InI6XTz1VdrSEqOZMTwDDQaFR6PTF2dnaXLtjN92oA221x22Rh/MD5yZCbnzR5GUlIkoaHtBx6V1sCyuTpVYPAq40beXYK2yb2LWscmYoKHEWkYRL0zF7VkYH7RBIzaZExpm/1zv2YOLEWRJVQqBY2kYUjsfylo/IyqllUoeNCoPah3/81a3rIQgKKmUhpcO2h0bUYCbJ4CGkvzmZz8MWmhM2lwFaCoVAyN/idhel9p7hHpvtF5n36ynDdf/53IqBDmfHIzFRUNvPL6XAZe9g6qJIWSnBiSd99DEKSJQSmfitO0GJ2xCbu3GEXxV6b3kWDhii+Yeco9FC8fzpvP1DF4cDRPPDUbSZL4bucMmj0VTLkuifnPDiUjI4ZtDR9SYP0SgPjgkdQ5t7HTOp8s88VIqNlQ+xwABk00fSNvIlgTS6Sh30GF4kCbUBxgYPQd9Im4Fq3KiCRJDIv5N9Uta+htvpoFxbMBqG5ZQ0/zpYyKe4yq5tVEBw08qON15N8PzeS3X3OZNKnPftcbNDi9Tdua1YX8+59fktk9lmeevQS1JvDChVrSERXUH4AJ/a5kVa/v0FsGMaHnGSdFKA6QnNLxHN/tEaG4cKyFhxsPvNIRWLFkO4riC6bXry5i/erdpTMVuPyacXz9+WomnJrNObOHYQoL4ov1Ofxz/kKMOh0fXH4eoXo9iqIgSRJ3nTaWW6eM4p9f/cK3G7bu2Q1NGXomDenB+KnZHfZj/epCli/OA2Deoo14e/g+fyQZ34hxFb7yG7tD8ZfOP4PJvboDUFrXyBnPvY/L23EFjLMGdm61BUEQBKHr69WrFz/88AOyLJObm8uUKVNEOXXhL8doNJKenk56euvfi4qiYLPZ2owur6mpwe0OvMleURQsFgsWi4UtW1qn61Gr1URFRfkD8z2heXh4uPg5EwRBEARBEAKcHEmDcNJpchXzZ9lsFHyjwhTftKJ4UfAN5wI1UcQZh2HSHXhO6RPRq6/9xrffrgfghecvZuSITP5csh2Ab+etazcY1+s19O+fwqZNJQwfnknv3kn7PYbN6Qp4/NuOQvIttVw7eihBWi1aVQhDYh5jk+W/hOjSiDD0BaBv5B10C7uQn4p9c9da6jSE7pWtKEjEBo2mxrmEEG0KCcaxJBjHMvbZ10FVzuT+6+mVVBYQRodoUmhw5fhvfFCABvcO8hs+Jz5kDPnWuQC8u+5pbhvxasAft5UVDQB4VTUsXj+PX1d9TuQgKyqNb9ShpTiMIT3OICE+hsot3fn3fT8AvXjq6QsZPCSdBQU3YVNWogCVBaE01Yaiq0yDU2DligIUGdat3Ynb7UWn06CWfGWthwzuzkWf3kxsXBjLcreg6CSC1XHo1RGsqX4Ul2ylxVvDmPj/oVWF4JGbCdd3R68Oo3fEVW3ejxa3m/JGGxmR5oP+412nDvF/nR46nfTQ6QCMjHuUMvsiepovA0CrMpIUMv6g9rk/qalRXHnVuMPadunS7TgcbnI2l2Kx2IiN63jUdFhYMI890XF5fEEQTgwLF2xqtz0pJYKzzx/O2fuUbz9vYDa94qJxejxMf+V93B4vqZFmdtbW8+iMKZzTvw9PnHcaD5w5ga/X5vLMz0tRqySuu2w8Ol3Hp7Wy1/f7wB0sQZyWYKdMs1ZG0fl+Z+3rgXkLCTMYSI0w8+WaHH8orlGp8MiBhaSHZyRz6aj2S/YLwtEko0Km80fDdYU+CMKJKDg4mG7durFjxw6sVivFxcWkpqZ2drcEodNJkkRoaCihoaFkZmb62xVFoaGhoU1gbrFY8O5zw6LX66WqqoqqqqqAdq1W2+785SaTSQTmgiAIgiAIf1EiGBe6pA3Vd/tDcWgdzatSfIGpWgpiauoPqFWGzungceBoab0z+t77Psdubw2xDR3MNyxJEv975iJcLg96/f7Ly3+ydiMujxeVJBGk1TCtVxafb/CViDXp9Yzulord6WJg8lSSTVPbHMeojcesvoicmgXMXzuYC0fIGE2/+Eb1q7Q0egoYHvs0MUHD/NvV2lvwyuF8vHgCKdFVJEZaOLtvf4YlD2NFoQPJeMeewXq756+U2FD3NGXNf2BpyESvL+WHDWayW7Yw/pSeaDS+UdRXXTOeqEQX+sGPUSf9wMDTfTdTAKBouOrM/2COTiI8yECzsXT3c/CV8QU4rdsruGU7stfD+ys38HXRNsb0CUNRFC6/8hQkSWL4iG7+0GVi4htYHBuICx6JRhWE1yPzyJ07QTMN7Yh4HtK9zf/NGAjaxSQZJxCsieHMtPl4FRcGtbnd90NWFM55Yw5FtfXcOXE0148Z1u56ByspZAJJIROOaB9H28xZQykva6Bnr3hiYkXpVUH4a2j/gmOPXgnttkuSRN+EOH7Zlk+L2wNAgaUOgN+3F3JOf1+1ihCDnktHD2LmEN8ocaO+/d+Lewwa3o2LrhrLnKrtlNBM21Ihe1GgodnB5W99AcD141s/jy8c3o9VhSXkVdUCYNLrePWys/d7bEEQBEHYIzs7mx07fFNZbd68WQTjgrAfkiRhNpsxm81kZWX522VZpq6urk1gXltby76zRbrdbsrKyigrKwtoNxgMbQLzmJgYgoMPrqKbIAiCIAiCcOISwfgJKt9Wwfr6Ql7Z/gMR+hA+GHknRo2+s7t11Bi13bC6W8ti7bl+7QtNJSYmf3dSh+IAV145loW/5iLLCmga0eo1uJ0a1FovJlPHz12SpAOG4gCP/7wIp8fLoOQEPrnifJYW7vIH41sqq3lq4Z/IisJZfXty1+Sx5FfXMiwtkc11T1LdtBy3bMONleq6fthbjGwt6suV4/vS6Myn2D6fFm8VtU16bv54HlMHLiQuIo9+qcNYX5QGgLslg1VrYinK1XLxFIn//baO0VlDOGvoFlJNZxKq7872ho+wuXdR41jNqLi5PLtwA5acnfxj3fdcX5HHhOlOqlpW4fBamDD9GpZVeVpfB7eZMSkPYdKl8vmaKp744HUGJsXzyZXn89qbV6FSqejWrXWOdq3KCCqoj5YoL2jms825XDFmMN26xfDQw4Fzhhs0ESSFTMRma2Hd2q0MHJRGdHQopaUeipQWZKfCK191Z0hdP8beeaZ//1o6Llns9noprW8EIL+m9oDv34koOTmSJ/97QWd3QxCE4+iFt67i43f/xGptJjwihNoaGz17J3DlDRP3u9347ulcOWIg767wVU5RSaBWqcirspAVG+Vf70CB+B4qlcQVN0zAsTiY535fBi0yBLedogLwl1Pfo6ze6v/6w+UbAla1OV0YtOJ0Wjg+vIoKr9L5o7W7Qh8E4UTVs2dPNBoNHo+HLVu2cPrpp6NWd/D7SBCEdqlUKqKiooiKiqJ379bpbDweD7W1tW0C8/r6+jb7cDgcFBcXU1xcHNBuNBrbHWFuMJzc158EQRAEQRD+SsSVvBPQutoCbln3hv9xpaOBdwt/4W89zujEXh2ZFreF/Pp3afGWExs8hqigkVQ0f+dfvvegLrUUhEET085ejo5mTwXrqh6g1rkWAA0mJiTPJVjb/ui2gyUrbvIbPkarNpFmOqfdsl2KolDvzMGoTeaNNxchywoZA0s4/YZlyB4Je10Eppg6uhvuOex+lNQ3sLaknIRQE2WNVmb29/0hmWIO95eI7REThaxsA2De5m38saOIRoeTm8ZHkZz4RcD+BnTbRL/MHBTlGwrq+tKC74YGoyaZhbky26srudS8EQXom1LI+qI0NCoVg2MT+blsO00OF3qN76NodX42T05/lugQX4AcaejPptrniQ0aRo/wTO6fHMZF1du44bQFhBgcbKhtTS7qXbms+GgSLrkOd10mLz1/GxqVb271tSW+YGVzeRUeWaZ797gOX5/JPbvx5YZcMqMjSI4I3+9r+cC9n5OTU0r//im8+saVlJbWs6K+gi/WbKZ2YTnr6muZ981abrx5csB2O3fW0NLsolfvRH+bXqPhtQvPZkVRMZcOP7J5wAVBELqKjMxYHnj03EPeTqtWc8Hgfv5gXFbgh9ztlDZY+fzqCw+7PzecMpyi8lrmbc3zt+k1Gpye1hurUOBv40ewvcKC2RjE7VNG0T0uimd/WtJmfxlR7VcBEQRBEIT26HQ6srKyyM3NpaWlhcLCQrp3797Z3RKEk4JGoyE2NpbY2NiAdpfLhcViaROYW63WNvuw2+0UFRVRVFQU0B4aGtpuYK7VHnhQgiAIgiAIgtC1iGD8BFTS0nY06eb6XZ3Qk6PD7bWzsKR15FhVy6+opYiAKqfK7hLqChCqObbl5rbWvegPxQE8WFlUehGnp/+x3+0Uxcu6moexuYoYHPMfTLrAfhbb5pNT9xwAJm0qUUGD2+wjr+FtttS9jEEdhTHkNgBGn7sBSQK1ViE01vfet2jWA4ceDNTZm5n+2of+AECtkjirny8YTzaHseDmy7E6nPSJj0WjUvHfhX9i0GqwOZwA7KoJJj3JiEex+/fpe48UJEmiWdnsr5pbVW1h2ZzNxPc3s3j1MIb12kKPhHKun1jJ9cMeptGRx+CMFvokjKZfShw9YqKIDzP5Q3GAMF03xsa/4H+cHGOmT1ITocEt/jatKhSdKpQk4xSKN/5AXV04I0Zm+ENxgLsmjSEsyMC4zDS0BxiRMTglkVV/v/GgXk+3xzevmcvtIThYT48ecfQgjslJaVz6+asA2KwtAdsU77Jw7VVvIcsKDz08izFjW0vCjemWyphuopyiIAgCgDk4qE1bdnxsO2semMcrIysKT/20uDUU332icWrPbizYsgP37rnDE0whjMxIYXxWOn0SYpEkiWtPGcpnKzdR1uC7gDq9XxZ3n3YKMaEdVwIRBEEQhPZkZ2eTm5sLQE5OjgjGBeEY0+l0JCQkkJAQONjB4XD4Q/K9A3O73d5mH1arFavVSn5+fkC72WxuE5hHRkai0YjLrYIgCIIgCF2VOFPrgj7duYgvS5ZzdbdTOS1hUJvl0xMG88zWr/HsnoUZIMdazLrafAZFZh7Prh4VTq+lTZtXsaDea0C1JIFXkVCQMOoyjml/1IAKN3sSXgUJj1JHYeOHZIRd2uF2VlcBu2zzANhl+4bsyNsClhu1yYCEStK2O+K9yV3MLuu3ADi9Ddx44zg2bd5JcKjDv060YQQ6tYleEdcf1HPJr6nlrWVrmNgjg4HJCVTbmnB7vf7l/RPi0apay2Emm8P9X185cjAzB/Qhv6aWi977DIAYUyRG7zto9Z9jteXhMmwmYAav3e+Zt8XMz68MoL6okVO7p/Dz66kMfnoTapVMlHYVf7/3MSbdNA9DDKxcci0frAnjuusnkha5/5F3Bq2GV2Y9wNoaLVq1hwTjBOKNo9GqjCiK4p9PLMgQWFo3PdLMo2dOOajX7FA88uh5rFiRz4iRgT93oWFBmEwGbDYH2f2SA5Y5nB5feXzAbnce9T4JgiCcLMKCgrh9wmheXrwct1dGLUncOHbYgTfcTVEUHv7+Nz5evcnf5j+1UHY/UuC7TXlE6HW04KXF7aXC2sQl7/h+7z1y9hRmDfLNY/7TXVfR0Nzim+/S2Da0F4RjTUZCpm3Foc7ohyAIhy8zMxODwYDD4WDbtm243W4x6lQQOoHBYCA5OZnk5MC/2e12e0BQvudrh8PRZh/19fXU19eTl9dajUiSJCIjI9sE5hEREahUYjoSQRAEQRCEziaC8S5mYeVGXtzxAwDPbZvXJhhvcrfwv23fMCq6J5saimlwN/mXPZf3HR+MuuO49vdoCNGlEqrpg9WTu1erhKwoSPhCcd+IcQlQERd8ykHvu6zpFxpd+XQPuwSt2nTA9ZfsmkWLvAW9BF5AQY1XBiSwOrfvd1uTLp3ooGHYXDtJNE5uszw6aAhTU+ajlnQYNFFtlm+rfxu7pwSAEXFP46Scqbd/hFYv424JZkq3V4kI6ndQz9vl8qBSSTy1cDGL8nfyXc42/8i4h6ZNQpLglMx0oozBbUq6V9maQIHY0BDCggzklFf5p1vdWlGzu6xtMN/f8AwvL3uGEX0WoFIF7iPKlE7fbmMp1lj4+afNACydO4C+E/NZvyALV0ujf91Va3IpWp/IKy//QmFBNcnJkUya1Ifsfslk9Yxv89yCdSGMTXy4TbskSfz7oZk89eT3NLc4cTrdBzXX+pGIiAxh2vQBbdpDQgy89OrlvPv2YhobW1AUxf869+gRx2NPzMZqdTBpcp9j2j9BEIQT3Y1jh6HXqHnyl8UgQU2Njcfu/YqoaBP/uG8GWm37VUAcbg///WlRQCgOe00dvk+uV+dw+c459tmPxdbs/1qlkogICT6i5yMIgiAIGo2Gnj17smHDBlwuFzt27AiYJ1kQhM5lNBpJT08nPT3d36YoCjabrd3A3O12B2yvKAoWiwWLJXAQiFqtJioqKqAUe0xMDOHh4e1OtSec+BRFwemV8SoKsgIqCdSShF6tEu+5IAiCIHQiEYx3MZ/sXOT/2u514pY9aFW+t+nH8nW8V/grpS2+k+vdg2P95cYL7JWcvfhRvh573wl3gpUZcR0rq25Dh4xW8qIAbjTsicO9QIrxfBJM44gJGn3A/dU6NlBpX0pew1sAyIqH7Mhb9rvN1sqXsctbUIH/4rhHhi9WjSI61MpdY6/Z7/YqScvYhNf3u46xg3nKG5x5NDp9dxib9X2ICx7Dn7vuQx/sG1HsceoPOhTfsaOSG//vI2q6q0lP8QXwYZKWWtkJikKIXse0PlntbrutqoZZb36MgsLnV19In/hYnvltqT9IKGlsnYPrhy3b6dkwhcLtm8jsWYHHC+6WaPonnk63sJlMfiCZe+782L9+/upk8lcno9WqcLtl/nhnAk6Xg6L1vtfE2thMc7OLvLwK8vIqUKtVxMSEcunlY5h62sE997y8SsrL6ikvq2fzphKGDD221QX2Z/GiPP74fSt//L6VQYPSAkL+4SNOvMoOgiAIx4vD4WbhT5vJ7BFHz14JXD58IHGhIaSYw9n4Wz45m3w3kZ119mD69k9pdx//+GoBP23Zcdh90KpVTOmdyRWj2lbuEQRBEIQj1bdvXzZs2AD4yqmLYFwQujZJkggNDSU0NJTMzNa/5xVFoaGhoU05dovFgnevan0AXq+XqqoqqqqqAtq1Wm2785ebTKYT7treX53TI1PT7KTB6aauxU2Dw41HUdqsp5Ekwg1aIoK0hOu1RAfr0WtENQFBEARBOF5EMN6FbGrYSZ6tzP9YRmF9fRF1Tht1zibeLPgFh+zyj2Zq7/y4xmmlxesiWKM/Pp0+SoLUMWhxo5Nan5ekeHAoEi5FC0gU2+fTN/rONn8YeLx2cuteRac20dN8DV7FyZ9l1yHjRoUeGScmXVq7x3V5rSwpvwGX14asFO0ek+4bUSYD2ysTWJHfE61axUNT4vfZtpH1NY/ike20eCykhp5B9/COS63vyy03UWL7ia11ryHjxC3bAImx8W8iSWq+fEdm1Plq7A0mJqS/giwrtLS4MBp9761H9pWVlSQJm8PJy3+uICk8jO+X51DSTwUq2FprIWalA43dwexrBpCWEc2pvXxz2NVYm1hfVM6YnukE7x5ZXdZgxbN7jtVCSz2rd5UxKj2FxQU7GZwazCl95+CVvbz16xReXrySqEIvhp0jWRLq4KmnrqdP/6SA53jvA2fx2CPfUFpSR2NjM/0HpPLQw+dSUV5PYlIE7769iPzVKwCYPCWbzZtLaWpysHVLObIsU1HRwJwPlzL1tH5s3lzCB+/9Sa9eCVx+5SlUVTYSbg4mOLj1e91mbdldtsxIr96JB/1eHAu9eyeiVqsIDw8mPiG8U/siCIJwInn/ncV8/ukKtFo1n8+7nZAQg/+GLtMYNT98t57IKBOZPeI63EdOeVWHy9qnEKkx8PFNF5BvqSfZHEZmTKS4GCl0KV5FhVfp/IumXaEPgnCiS0tLw2g0Yrfb2b59Ow6HA4PB0NndEgThEEmShNlsxmw2k5XVOgBBlmXq6uraBOa1tbX+KeD2cLvdlJWVUVZWFtBuMBjaDcyNRuNxeW7CwVEUhTqHm8J6O6U2Bwr4qy52xKMoWFpc1La4/OsnmQx0MxsxG7TibxBBEARBOMZEMN6FrK7d0ebE6Y51vhHPvlLivrI7uytid6jGaSVVE33M+nksONy1AaE4+L42oNC8u4y6JGmQ9ily6vLa+GnXGbgV30hmsyGb6KChaNUmnN46MsMvJs00gxBdarvHrXVspMG1FVDQSqCW1Lj970IwK/KmEG4w8MrsM7F7NrLB8gG1jvUMiX2YFk8NZfZf/PvKqX0hIBj3yM0oKGhVRryyEyQJtdQ69/WS8hupd+bs1RsVsUEjUat8F0S2rYph89JzCQrScuV3Wdx2+xw25pcyeXQvSrx2lqpq6B0XwydXns+cNRt5d8W6vXYlgVfB2ABau+8ke1JCKuNHto5EuOzFzyita2TawCweunAUWxu+oWdSX67q3ZfK0jq2V1Tzxoo1JEXWctfICazJ+Z4IUz0AmXEVrCvKxO2VMSDhsAbRq0fbIDoiwsjTz1zcpj0t3ff9ee31E4iLD8PjljnrnMFcrFbh9cps2ljM5k0lzP9uPeedPxyXy8Pdd3yMx+Nl3dqdNDe7+PqrNQQF6Xj4sXNptruwNzn46MOlvve1tongYF2b4x5PAwam8vW3d6DVqtHpxEetIAjCvhRFYe7HyykoqOaa6ycQGxsGgNHo+/zW6zWo1YEBXGpaFB/N/dsB9z25Zybv7/17cS+3TRjFwrx8csur/W3aRi/3TR5JSlQEd3/9E5tKK7nxlOHcNmlUwLYri0p45Y8VzBjQm1kDxXQYgiAIwuFRqVT06dOHVatW4fV62bZtGwMGDOjsbgmCcJSoVCqioqKIiooKqAjh8Xiora1tE5jX19e32YfD4aC4uJji4uKAdqPR2G5gLm6uOf7KbQ62WGxYXZ6AMHx/ofje9l6/1OagxOYgVKehd7SJhBDxfgqCIAjCsSLSmi5kRuIw3ilc6H9sUOlwyK4266kkSAmOQa/SsL2pvM3y1/N/5LH+lx3Tvh5tW+qfwgP4xoa3UklgxEULUWSFXc0u23yMmmRijcMB2Gn92h+KS2gJ1aajlnRMSvqcJvcuIg39kSQVLq+XFpebsKDAE8vooCEkGCfi8tqwuzYiKTYA9Kr+eFUerp7wFXqVgmTIZ0nFb/7tSpsW0NN8PTpVOL750N2kmmb4l9tcO/mt9CJAYWjs46ypegBJUjMx6WOMWl+A7JJ9/daqTMQHj2dA9P+hloL8d4am9oxhbXM13ZLjcLk8rKyvoGGEnk9t+WgbFDwJajaVV1Jrb6Z3XAwqSSI8yEBqs4HcegthhR70ja2n48OGB5bv9si+sl5uj5fVNa+TZ52PCjXVSxNR3Ar59acyvt9mpg7YgLX5d1ZYppFQkoxKktlalEhwmYeQUo9/fw31diIiQw7pfZckiRlnDQ5oU6tVDByUxsBBaVx2xVgAvB6ZkBA9DQ3NqNUqmlt8PxctLS7u/7/PcDp9/dBoVHg8Mr37JHWJO2z3jO4XBEEQWjU2NKPRqmlsbOat138HfDdS3fi3KQBceMloevVOJDkliqCgw7vJ6Z5Tx9IvKZa/f7UAr9z6u/Afp47lytFDGNsjjZs+nke1zQ6AvkkhNS0aRVHYXuWbsmZLRXWb/T7361LWl1SwZlcpL/2+jHumjGVa356H1UdBEAThr61v376sWrUK8JVTF8G4IJz8NBoNsbGxxMbGBrS7XC4sFkubwNxqtbbZh91up6ioiKKiooD20NDQNoF5VFQUOl3nDho4GTm9MhurGim1OfxtBxuGd2TP9laXhxVl9SSZDPSPDUOvFpV6BEEQBOFoE8F4FxJtCONffc5nzs5FBKsNbGzc6Q+Js0NTGBbVg77hqUTqTWSa4ml02Zm+6D9tTr7GRu1/BJOiKBQ0VZEYFEGQpmucIOuIwEkhyu45xSEwIPcqTeTWP+9/PDLueSqaF1Nq+8nf1i/q7wRp4mlyuthR4yA1oieSpKK0oZHTXn4Ptywze2BfHj5jMgA5FVWsKS5jZv9H0Wtb+G3XaP+IdZdSgN3tJkRy4JGh0bHKf5wQTRqZYZdiUEczKPohooOGUNL0A1XNy2h07iBM3x2rKx+v0gLAt1vmEhNhBwWq7LmkhyXwx44iQnUP0C1yO+G68Xy1vhy7rYpxmekA2O1OVrtqaE7WsFipYn1OCZlDE1nTUIUnSEXEFhfd+8Rx6qAsYk0hxJpCWHrHdVSXN3Lzde8Rs9drl5wcwajRPdqMoH7v5tmszi9lUt9MCloaAAhWBzH6b1sAcK4dSF6YL4AO1jtx67V8uHiCf3t9nIR6hwdZUUhJjSTcfOzKeak1Kt557zq2bi2jdx9fufadhTXk5VUQExNGaWktigL3/P0MgoJ1DB/R7Zj1RRAEQTh8OZtLuOvWj9AbtLz65tWkpUdTUlLLoMHp/nXUahWDh2Yc0XE0ahXT+/Yk1mTi3/MXMjYzjf87bZx/eXZCLIvvvo75m7axvaKG2f36kBQfAcCrF53FH3mFXDJ8QJv9ntG3J5tKK/EqChWNTdz3zc8iGBeOGy8qvHT+xdGu0AdBOBkkJiYSHh5OQ0MDhYWF2O12USJZEP6idDodCQkJJCQkBLQ7HA5/SL53YG6329vsw2q1YrVayc/PD2g3m81tAvPIyEg0GnFJ+HCU2xysq2zALR9pFL5/ZTYH1XYng+LCSTCJ0eOCIAiCcDSJs6AuZmrCIKYmDOKude8i0Vpa/O99ZpJpCpzjOkxn5L0Rt/PEli/Y2VSNRqVmZtIITk8c3HbHQIvHxduFC8mzlrGmroAYfRjdQuLwyB4UCe7ueRZ5tnJM2iBGRmXh8LqpbmkgQm8iRGtgu7Uch+ymX3j7ZckPl1d20ORdg3r34z3z6+xhd6tR1IFl1jfWPE2zt8T/WK+KJC3kLK6c8xXLi3xlpqJDgvnt1mtYsGUH7t3zZn+2fjO3jh9JmEHPhe/OxeX18ubS1fx8ywV4FAnt7tsMJHohK5twoMHrMpAVOQlPcw42TwEt3irM+t78UXY59c4cYoPGUNWyFFDwyhLB8l30SzyFLPM1fLRqHd9vSGX6QCsON3xdV8vFQ3Zw25ffA/DlNRfxwbodvL50NZIEi2+7lhhTCAaDlhhtEDtxoW5R2LBmJ+rcZoyyh16R0bz16UVtRtFFGINZti0voK1btxjeeOvqdl/3xIgwEof5ytb2N1xCUvBwFLmJPyuuAUVB2/8L/vxlIhW1eirzInDRerxgrYY7TxvD+ff1BYnjUio8LDyYESO7+x+/9OoVFBZUk5wSQUlxHV6vTFbP+P3sQRAEQehsBflVeL0yzXYnFouVN969Fo/bi05/bH6PDElL5Pu/Xd7h8jP69YR+gcH2yIwURmaktLv+xcMHMCYzlakvvAeAXitOpQXhUDz++OPcd9993HbbbTz33HP+9q1bt/KPf/yDRYsWIcsyffr04bPPPiMlxfez6HQ6ufvuu/nkk09oaWlh0qRJvPLKKyQlJfn3UV9fz6233sq3334LwIwZM3jxxRcJDw8/nk9REA6aJElkZ2ezZMkSFEUhNzeXYcOGdXa3BEHoQgwGA8nJySQnJwe02+32gMB8T2jucDja7KO+vp76+nry8lqvF0mSRGRkZJvAPCIiApVK3ADXHkVRyKuzs8ViOz7HA1yyworyevpEmegRYewSlREFQRAE4WQgruZ1QfNKVrLMsvuEVQG1pEJRYFnNNkZE9UAl+U5ScxqKKWyq4syE4Tyx9Svwuhkf28+/n2aPk3s3foTd4+Cx/pewuHoLc3Yu9i+vdjZS7Wz0P75s+Qu4FF9J6nt7z+KJLV+iAEa1nmcGXckNq19DAf478HLGRPc6as+3wbkNFXuCbwnFH077BGu9uBQJ917frkHqWH8wbtQkMyn5M7yKipU7W8PyhhYnHq/MzP69eXv5GuqaW4gJMRJq0KNSqVCrJPCCxd5MZYOH9TvH0j99BYoCa7b35Ov12aDAo7PmUNY0F43UAwCdKgGQaHb5XrttVSUgdcNsKuTjFRK/bpnLdaOGctekm3HYv8fp3s6inLHUNreQYm5BvdcfGSok4sNMAITqDQTvLnGlVqv4/n838MRLC7A2N3H2WYNYu3Yn4QVeEsINHZaW/f23LQGPCwqqcTjcGAza/b4HkiQRZfA9vwFR97LB8hgqjYs4cyN/5PUlcr0DBvgmtz8zuRtPXzljv/s7HlQqiczuvvJje/4vCIIgdG2nTeuPpcaGyRREv/4pSJJ0zELxYyU10sz9p4/j97wi7t1rFLogHGuyIiErnX9B9HD7sHr1at544w369esX0F5QUMCYMWO4+uqreeihhwgLC2Pr1q0Bc6XefvvtfPfdd3z66adERkZy1113ccYZZ7B27VrUat/ttRdddBGlpaUsWLAAgOuuu45LL72U77777jCfqSAce3uCcfCVUxfBuCAIB8NoNGI0GklLS/O3KYqCzWYLGFm+52u32x2wvaIoWCwWLBZLQLtarSYqKipg7vKYmBjCw8P/0qGsoijkWmxsr2s7Uv94yLXYcMsyfaJMf+n3QRAEQRCOlhPrSuRfxEf+8FpCAUK1Rq5Y8TwycGfPM7G5HciKwruFvyKjMDG2L+ALWXXq1rd0Q30Rq2p3ALCoOoes0CQ0kgq9Wsu0+MEsqs6h2tk6X5FX8fr3s6Yu31+i3e51Uue0+R+3eNrOe34kgtTR7O+8TiWBDg9uxffcLNZgVpbM4J+n/xNJ0RCkjUYlaXF5vUzr3Z35uduRgIemTSRYpyVYp2X5XTdQZWsiPMiAfne5qPcvOZd//fArg5MTSI+KYErGfXy+6QvGdevFaT168cWar0GS0aq1gJP1xSH8sPk0pvYpp6XpKZ78eQj9U5JZW5RIk8PAs7MeYumOXwEPVbYmAJ6ZOY3/O3UcLo+HH3K3M7lnJhmRZt69eCbBOh2942PoFRfNgMR4Yk0hhOhbA2+NRs0Dt0/3P37yifNZt24nw4d3XCbc4/UGPNbp1Gi16g7Wbl9a6NnM3bCARoeVTbvSCGoBrb21RJQSKj42BEEQhEMjywqvvPgz69fuZMzYLGaeN/SEvqhz6YhBXDpiUGd3QxBOGE1NTVx88cW8+eabPPLIIwHL7r//fqZNm8ZTTz3lb8vIaJ1OobGxkbfffpsPP/yQyZN9UyJ99NFHJCcns3DhQqZOncrWrVtZsGABK1asYPjw4QC8+eabjBw5kry8PLKyso7DsxSEQxcbG0t0dDQ1NTWUlJTQ0NAgqhwIgnBYJEkiNDSU0NBQMjMz/e2KotDQ0NCmHLvFYsG7zzUkr9dLVVUVVVVVAe1arTZgZPme0Nxk+msEtXl19k4LxffYXmdHq1KRFRnSqf0QBEEQhJOBSLi6kLLmWu5Z/z6SBBG6EKyuZjzI1Lma/OvkNJTwc+UGALQqNbLspU9YMrNTRhOiMZBmbJ1dur85jYHmdGxuB2Oj+xAXFM734x9AK2kI0ug4L2UUr+1YQH9zOoqikB2egheFYLUenaRmYeVGFGBERHfGx/XlGc2V2D1OJu0O4o+WmpYl+7S0jhpXAGl3JqvCQ7XVzP/mnwPkMyY9kzP7to5c/8c3C/hhy3b/dhtKK5k1INu/PNYUePLYPymeeddd4n88Mj2Fkel3+h9vvPcWZrz+IQ9/O4M7JkWTUxJOVtyPDEhdBazCpD+HxVsziQ4xEh2pY3hqGh9cei4rd5Zy7kDfcSVJ8h/3+jGtd/+PymgtR19a28jP67YzKTuTCGNwh69TRISRyZNb54/3eLzc838foO3+B8G6MG44/SGcDo9/+bnnDWHWrGGo1YdWBkslaflt/SiKrbtvmggCKUNLfCEMP6cXN58y4pD2JwiCIAjFuyx88+UaAHbttBAZbWLG2e1P/XK8fTdvLbmbS7n8qnHEJ4R3dncE4aR08803M336dCZPnhwQjMuyzPfff8/f//53pk6dyvr160lPT+fee+/l7LPPBmDt2rW43W5OPfVU/3YJCQlkZ2ezbNkypk6dyvLlywkLC/OH4gAjRowgLCyMZcuWiWBc6NKys7P5/fffAd+o8TFjxnRyjwRBOJlIkoTZbMZsNgf8PpRlmbq6ujaBeW1tLYoSOH+22+2mvLyc8vLygHaDwdCmHHt0dDRGo/G4PLfjodzmOG7l0w8k12LDpNOIOccFQRAE4QiJYLwLWVyzhSJ7NQCP9buYf+fMhd1zY4NCYpCZOlcjaklCI2l4euDlyCgMiejmL6++N6PGwCtDrw9oC9W2Bq/JxigeHXDJvpv5/TzhQayeZhKCIgAYGXVsLihtqv0vewp9t95oKvlHqCuSggQYJQ919a2lF5/8ZbE/GFcUhbXFpQH7TY0IO6J+ub0yJfWNeJUQNpYk8+iMGLbUGNjzjtw+ZRlG6SUmdG8N3yONwfRPPLR5rv8192fWFJbx1cpcFj10/YE32G3btnKaQ1cydEIhAD+t/I7pZwzguWd/AuCLz9fwxedrkCT414PnkJNTxvTp/UlNjepwn4qi8Lf/+4jmXbVoE1S4Q1SgkRjcJ4X7pk8gIyOmw20FQRAEoSOJSRH06BnP9m0VAMTEhnZyj3waG5p5/n++sstarZq7/nFGJ/dIEDomo8JL58/7Ke/ug9VqDWjX6/Xo9fo263/66aesW7eO1atXt1lWXV1NU1MTTzzxBI888ghPPvkkCxYsYObMmfz++++MGzeOyspKdDodZrM5YNvY2FgqKysBqKysJCam7XlqTEyMfx1B6KpEMC4IQmdQqVRERUURFRVF7969/e0ej4fa2to2gXl9fX2bfTgcDoqLiykuLg5oNxqN7Qbme0+TciJwemXWVTZ0djcCrKtsIDI4Bv0hDoIRBEEQBKGVCMa7kImxffm1chPVjkYe2PQxl6aPx6QJoshehQr4vmINFY56nuh/Of3MaYRpOx5dfDSEaA2EaI/tSausuJHx4EQLyEgKaPGi6qASU1xYBZHGFAakbKF3jK+Uosvj4Zw351DV1OxfLyHMxOXDj6zEaYhexwvnncnakh0M6/44OZZqkEAjmfAoNvTaKgbGH3lZ+fSYCNYUlpEWHX5I26lUKup2heF1S3hcGvql9eOtF9e2WU9R4OGH5+GVFbZsLeOlFy9rs47N4eSxnxYxb9MWvEYFemtJt+oJL1IYMiWLOy6ZGDA3uiAIgiAcCq1WzStvXEVNtZXmZhepaR3fpHU8hYQYyOweS0F+NQMHp3d2dwThhJKcnBzw+N///jcPPvhgQFtJSQm33XYbP//8c7sXw+XdNwGfddZZ3HHHHQAMGDCAZcuW8dprrzFu3LgOj68oSkD51vZKue67jiB0RRERESQmJlJWVkZVVRU1NTVER0d3drcEQfiL0mg0xMbGEhsbG9DucrmwWCxtAvN9b5QDsNvtFBUVUVRUFNAeGhraJjCPiopCp9O12UdXsLGqEbesHHjF48gtK2yqamRogvnAKwuCIAiC0C4RjHchsYZw3hx2E6csvB8ZhZzGYl4aci0Au+zVbGwoIsYQzrDI7ujV2gPsbf/sHgdeRSZUG8y80lVsaSzh6m6TiTGE8Wf1Ftyyl5FRPQjStB31cTSpJC3xwZOpaF4IqFEAD6BVvPuMHlewO428sySbGQMXMTitELWUi6JcyEerN5JvqfPv89wB2dw3dRxa9aHNrd2eYWkO0mMKKWyo9reZ9H3QqILRq2MJ1ffbz9b7V+PYyu8VDzFqdA9mj7qZjNjIQ9o+MjIEb0MiX/3jVP7z4Hk01rgoKKhud12vVwZJorGhmX//8wsiI02sX78Ts9nIo4/N5oU/l/PVxtyAbbr1T+DlS88+3KcnCIIgCG1Ex3SNkeJ7qDUqXnnzapwON0HBvgtyXo+MWqNClpWAdkEQApWUlBAa2voz3d5o8bVr11JdXc3gwa1TJ3i9XhYvXsxLL72E3W5Ho9EEjFQD6NWrF0uW+KZbiouLw+VyUV9fHzBqvLq6mlGjRvnX2Xc+VICampo2F/YFoSvKzs6mrKwM8I0anzBhQif3SBAEIZBOpyMhIYGEhISAdofD4Q/J9w7M7fa2c3JbrVasViv5+fkB7WazuU1gHhkZiUbTeZety20OSm2OTjt+RxSgxOYgsclBQsiJNQJfEARBELoKEYx3MZIkcU+vs1lYuYmru032t6caY5g75u8AbKgv4sXt8xkXk82laeNZU5ePVtLQz5zabkl1AFmR/ctK7RYuXPY0MgpXpU/mrcJfAdCpNHQzxfHklq/9212SOo6bs04/Vk8XgGFxT/NM7n/JMMzx9VVS40ZBq8iwOxxXkGj2KFRZw7A5fCPldWozoGJdaescR1cMG8htE0YTrDuyGwcAPHITq8rPR8GLXhWDU64mWJ3OwNjXUKv2f8NATnElkiTRJ7njC3E7rAuwusuwussYmnYduoM44V+xIp9XXv2NqqpG3G4vs2YN4ZKLRxMWFsSaNYUdbygrgEJZSR3lJa03ERTvquXZZ37E0z0IALUkkRgeSp/4WP49beIB+yMIgiAIXZHT6SZncym9eyceMNjetbOGp5/4noryetRqifr6ZgwGDXHx4ezaaeGW20+jT98kMrrFiJGnQqeSFRWy0vkVfPb0ITQ0NCAYb8+kSZPYvHlzQNuVV15Jz549+cc//oFer2fo0KHk5eUFrLN9+3ZSU1MBGDx4MFqtll9++YXZs2cDUFFRQU5ODk899RQAI0eOpLGxkVWrVjFs2DAAVq5cSWNjoz88F4SurE+fPvz8888oikJOTg7jx48Xv3MEQTghGAwGkpOT21SSsdvt7QbmDkfbsLm+vp76+vqA8wFJkoiMjGwTmEdERKA6xhUNFUXpMvOKd2RLjY14o178rhAEQThBKYqC0yvjVRRkBVSSL5vRq1Xis/04EMF4FzQjaRgzkoZ1uPzjnYvYZi1lm7WUYLWeZ/PmATA8ojvPDL6GBeXr2NSwkxCNgUi9iUXVuWxqKOK2rBmMje7NlsZi5N0zeC+v3UZKcDQlzTX0C0+joKki4Fhfliw/psF4id3CTWvewOK0YlKP58a0P5AAGTWy5Atzfem4hNnoJEjn4qu1I2hqGczk7pP4ybaDlUUlAIxKT+HeqeOPWt+szlwUvAC4FV9pqGbvrt196tjq/BKuevULAD685XwGpCW0u16P0GmUN68jWt+TUG3767z3/p8sWrSNm26azNAh6Tzz7AIslib/8uXL87n5Jt8NFJs2lnTYp30/SvUGDcnJETQ2Ovh1YS7SbxIxRtC64Oknz6Ff/xTxASwIgiCcsB558GuWL91B3/7JPPviZbicHrZvr6BHj3h0+tbTX0VReOetReRtKw/Y3uHwsLPIAsCbr/1KS4ubS68Yy+VXnXJcn4cgnOhMJhPZ2dkBbUajkcjISH/7Pffcw/nnn88pp5zChAkTWLBgAd999x1//PEHAGFhYVx99dXcddddREZGEhERwd13303fvn2ZPNl3HtyrVy9OO+00rr32Wl5//XUArrvuOs444wyysrKO3xMWhMNkMplIS0ujqKiIuro6Kioq2ozKFARBOJEYjUaMRiNpaWn+NkVRsNlsAUH5nq/dbnfA9oqiYLFYsFgsAe1qtZqoqKg2gXl4ePhRu45V53BjdXmOyr6OFavLQ73DTUSQqG4lCIJwInB6ZGqanTQ43dS1uGlwuPEobXMmjSQRbtASEaQlXK8lOliPXtP5N8ifbEQwfgI6PWEQmxp2ckpMH1xy64njyrodzN31Jy9sn9/udnN3/clzed+SZoxhkDmD0uZarut2GnN2LqbJ3cIz277lH73Ppm9YCpsbiwGYlTzimD6X1XX5WJy+0NnmNbCqPpXh5l24vVBvDyI6zHcnqSSBxWakxeUbqV1jTefub5Yg0RpTO9xH96S11Pap/+vU0CtwemuIDBqFWrX/UkXNrtb3pMXl7nC9KEMW56Z92OFyr1fmww+XoijwxRer6ZYR3eYkf/bs1hsoevdu58JJOx+uAP/4vzMZN74Xcz9dwRuv/YZep0Gx+fp65+1zuP6Gicy+4Ni+94IgCIJwNFVVNaKSJKJjQmloaAagcff/H/rXl6xcns+wEd147KkL/Ns89p95LF+yHfDNg+7xeFEUiI0N49TT+1G8y8LSP30jV8rL6hAE4eg755xzeO2113j88ce59dZbycrK4ssvv2TMmDH+dZ599lk0Gg2zZ8+mpaWFSZMm8d5776Hea+qkOXPmcOutt3LqqacCMGPGDF566aXj/nwE4XBlZ2f75+PdvHmzCMYFQTjpSJLkrziTmZnpb1cUhYaGhjaBucViwev1BuzD6/VSVVXVZgoVrVYbEJTv+dpkMh1yYF5Ybw+43tgVSUBBvV0E44IgCF2YoijUOdwU1tsptTn8Q0D39/vFoyhYWlzUtrj86yeZDHQzGzEbtGIw41EigvET0ITYfnQLiceg1rK2riBg2dq6AqTdc3LvLTkoivhgMxWOeortNbw1/Bb0koYrVr7IDlvrKPHvy9fxxvCbAHDLHrSqY/stYnU1Bzz+o64Xi+t682b/W7noy89p8XiJD6sjMsTGlMzzuWmMQmljI7GmENaWlKNSqVBkGbMxiIemTzqqfYsznkGVfSHgoaJpHmOSfz2oD55TeqXz7OVnoFKpGNkj9bCPn5dXwZAh6RQUVHPmGQP4/fet1NT4SjnNPGcwffsmM25cT//6w0dkYo4wUl/XOo/TjLMGUVXdyMrlvu+TsLAgnnvhUlJSowCYff5whg/vxs6d1Tz80Dz/dvn5bedoFARBEISuKm9bObfc8B6SJPHKm1fxzwdnsuj3LYwe6xspWl3tuwmvZvf/98jd7Ku2kp4RzRvvXktLiwuvV8ZkCvKvs3HDLtav3cmMswcjCJ3Ji4S3TR2gzunHkdgzEnxvV111FVdddVWH2xgMBl588UVefPHFDteJiIjgo48+OqK+CUJn6tWrF99//z2yLJObm8uUKVOOeblgQRCErkCSJMxmM2azOaDSiyzL1NXVBYwsv+GGG6irq2PcuHFMmDDBv67b7aa8vJzy8sBKUAaDISAw3xOaG43Gdvvy86+/MXWy7/riQ+9/QfbwrjkliwKU2hz088hiJKEgCEIXVG5zsMViw+ryBIThB3vT1d7rl9oclNgchOo09I42kRCy/4GbwoGJYPwE9NmuP3l+96jw/uHp/vYEg5krMyaTZUrg3aJf/T88OknNy0NvwKN4+WTXYgabMwlS6/jP5rn+UFwjqUgMiuTCVN/IDK8iY3O3YNQY8CgyRs3+59Ruj6Io/Fy5EY/sZVrCICRJwuZuYaVlO6/n/4zFaUVF4MmbBNzf51x6x8aTHmlmS5WFisYIKhojyClbQZQxGIu9mThTCCPSkrlm1BBGpCVjd7qQd4+OXr2rlH//8CvjMtP5x5TDL3kaY5xEkCaOFk8pDm8Fbq8VnSbsgNtJksTkft0P+7jgu4B/620fIcsKN1w/gTFjelBWVs+XX63BZDJwxRVjCdnnA1CSJL748lbKymqpr2+mV69E1GoVVmsz55/7Ii6XlwsuHUhSSnjANmnp0ZgjjGRkxFBYWI0kwaWXjUEQBEEQThRVlY3Ism8KlppqK90yYzlvr8on//7PLP74bQvjJ/YO2O7ef57Fzws2MX2G7zwlOLjt+U7/Aan0H3D4N7oJgiAIwsEICgoiMzOT7du3Y7PZKC4uDihBLAiC8FejUqmIiooiKiqK3r195/H33HMPdXV1DBkyhJkzZwaMMq+vr2+zD4fDQUlJCSUlgdMPGo3GNuXYo6OjaXR0XPmxq1GAmhYnSbtv6h0/fjyLFi3i8ssv57333uvUvgmCIPxVOb0yG6saKbU5/G1HWoFkz/ZWl4cVZfUkmQz0jw1DrxY3Rh0uEYyfYN7O/5l3in71P44xhJEdlkqMIYwHsy9ArVLTKyyJqzNPpc5po7KlntSQGIwaX4h6e9YM/7aravMBCFbreWXodWSFJgK+QPvG1a+S21iMXqXDLcu8PPQ6+oUf2kXhVbU7eHCzrxy5w+tim7WMDfVFlLbUdrjN1d0mMy3RNyLL204ZcHNwEBZ7M5W2JiptTSSEmUg1hzPjjQ9xe2U+ufJ85qzZSIGljgJLHTefMpwQ/aGH+g2OdZTa5hKuH0yLpxStKoxv1+Tz7ep8bpo6khE9UtrdTla8lNiXYdImEKHvdsjH3UOtVqFWq5BlLzqd78c0MdHMx3NuPOC2iYmRJCZG+h+HhgYz77u72NH4M8sb/sVXu1I4J/Vd1JLWv84dt33Irp2t78ueYwqCIAjCiWD02CzOnjWEivJ6evSMb7M8KTmCSy5ve9NX3/4p9O3f/u90QRAEQTje+vbty/btvik+Nm/eLIJxQRCEDoSEhNC3b9+ANpfLhcViCRhhXl1djdVqbbO93W6nqKjIP4XFHs160zHt99EkAQ0Otz8YPxZcLhc6nSjXLgiCcDDKbQ7WVTbglo/tZBxlNgfVdieD4sJJMInR44dDpF8nkAJbRUAoDmDSGHhw2E3trh+hNxGxnxO6B7LP44fytcxKHukPxQE8ipc8ayngC7QVJHIbiw85GA/TBfvLur+24yeavK13yQSpdDhlN8peRd81qJiZ1Dq6a1ByInnVgSH6+5fMxOpwcefXP7K1sprhacnsrGugZff84vk1tZw7IJutVYWMSk8+rFAcYIvln9jdhRjUiQxP+IIgTSKjXv0Qh9vDKz8t7zAYz6n/nFWWl1Gh4YKMLwnWRBzW8SMjQ3jj9SupqrIydGj6gTc4AJ1eQ4OyDVBocO3C6bUSrGkNzx0trXfEKgq4XEd3vnZBEARBOJY8Hi/ff7set9vL26//zj33ntnZXRKEo05WVMhK598R3hX6IAgnqx49eqDVanG73WzdupVp06ahVqs7u1uCIAhdjsvl4rbbbuPDDz/E6/Vy8cUX8+yzz5KQkEBCQgItLS08/PDDzJ07l5KSEoxGIwMGDGD27NkYjUaqq6ux2+3k5OSwcOFCmpqaSEtLY9IFlwccZ+OyxfznqgsAeHHBEhLSMgD4/oO3eOexfxFsCuXtJRvQ6dsPJjYuXcTXb71MweaNuF0uohOTOPfG2xk3YxYApYU7+PT5/5K7ahnNTU3EJqcw7dKrOe3C1n7cMHEYNeWlnH3NTTiam1ny/TxUahVjpp/NXQ8+CtGhAVM/vv/++7z//vsAFBUVkZaWxrZt2/jnP//JH3/8gdVqJSMjg1tvvZUbb2wdgJOWlsauXbu4++67qa2t5auvvmLgwIH8/vvvR+EdEwRBOHkpikJenZ0tFtvxOR7gkhVWlNfTJ8pEjwijmHv8EIlg/ARic7e0aVtuyTuobWVF5t4NH7GxYScP9b2A4VE9GLH73760Kg0P9b2Y5ZZtBKl1eBWFGYlDD7m/PUOT+Hj0HciKwq1r3qLJ60CFxC1Z0zk1rj8RehOVLfX8UrGRWEM4o6J7EqJtPZF84LQJzOjbkyaHm0X5BVwydACRISFEhsAXV19Ii9tNiF6PrCjcM2ksLW43Z2T3xO0t5u/T3kZRZGzOLEz6Xgfd58p6G68vXMmw7B5oDIVEBA0nVN8HgLOH9eHrlTmcMWR/+5N3/1/hcIpk1NTYePSxbzGHB3PvvWeSunsu8KNhQMQleBUXMYbeAaE4wDPPXcL8+RuotdiYOKkPySmRHexFEARBELoejUZNZGQIlZWNxMWHd3Z3BEEQBOGw6HQ6srKyyMnJoaWlhYKCAnr0aPs3uyAIwl/dCy+8gMFgIDw8nKKiIl599VUMBgPPPPMMADNmzGDhwoVIkkRWVhalpaX88ccfrFmzhtWrV9OzZ0+WL1/Of/7zH2RZxmg0YrVaee9/jwccp9/IsSSkZVC+s5Dfv5rLxXfeC8DKX34EYPTpMzoMxZct+I5n7rgBRVHQGQzEp6ZjqSijIGcj42bMonxnIfeefybNNishYWYS0jIoyc/jzYfuxVpXy+yb7wzY3/z338QQHILOYKCuqoIfPnyb9B49mXD/XQwfPpwtW7Zgs9mIioqiWzdfFUu9Xs+OHTsYMWIEjY2NRERE0KNHD3Jzc7npppuoqanhX//6V5vXVq1Wk5mZSXBw8JG/WYIgCCcxRVHItdjYXmfvlOPnWmy4ZZk+USYRjh8CSVHaqVf9F2O1WgkLC6OxsZHQ0NDO7k6HFEVhQcU6XtnxA3WuJkLUBu7Pns0pMX0OuO2uphouWPY/AMI0wXw/4QHU0vEb7VHjaOSjnYuZljAoYHT6sVBt/42N1TcDkB39X+JDzjjobf899xe+WpWDhMJvD11ApDH+kD5QZMXDzqY/CdUmEmU49AsYn322ktde992J+fR/L2DQoLRD3ocgCIIg/BXZ7U7Ky+rJ7B4r/hgQ2jhRzvfbs6fv/1o5GUOI9sAbHGOOJjf/Gb7whHwtBeFEkJeXx6ef+qYk69u3LzNnzuzkHgmCIHQde0Y1d+/enbVr12Iymbjooov45JNP0Ol0VFdXs27dOiZOnAjAs88+y+23305paSm9evWiqamJyy67jPfff59LL72Ujz76iLCwMPLy8giLjOK0cy9g0bwvAHjo/S/IHj6K7957g/eeeJCI2Hhe+20VTQ31XDN2ALIs8+jH39Bz0LB2+3rj5BFUlxYTl5LGI3O+wRwdg9vlpGLXTlK6Z/HSvbfz+9efkdK9J098Nh99UDDzP3iLdx/7FzqDgXeWbCIoJMQ/YjwmKYWnv/4ZrU7HzVNGUVddyehpM1g47ysMGnWHc4xfeeWVvPfee2RnZ7Ny5UqCg4N5/vnnuf322wkKCqKqqgqTyeR/bSMjI1m7di2pqal4vV5RuUQQBGE/ttU2HbeR4vvTJ8pEVmRIZ3fjhCFGjJ8gZEVGQmJkVE8aXc18X74au8fJfRs/INYQzgBzBvf1Oa/DsPvh3M/8Xzd6mml02fdbZv1oizaEcUfP41PWNDp4HJnm25EVD7HGUztcT1G8FDS8TF2ThYzw24kyRdA/LZ6vVuWQERtJeFDcIV9YV0kaMkwTDrvvI0d2Z9636wkPDyYrq+0cqYIgCIIgtM9o1NO9R1xnd0MQBEEQjkhmZiYGgwGHw8G2bdtwu91otZ1/U4wgCEJXcsYZZ2Ay+a5rXnDBBXzyySe4XC62b9/O6tWr/etddNFFACQlJTF27Fh+/PFH1qxZA0Bubi4Ao0ePJjY2Frvbw8ipZ/iD8T0mnDObj597grqqCjYs+YPaygpkWSYuNb3DULyxrpbq0mLf9jPPxxwdA4BWpyelexYAOzZvAKB4xzYuGpgZsL3L4WDX9i0B+x868VSMJt9NiTFJydRVV9JgsbB0+XL0Ev651Ovq6sjNzUWj0aDRaFi6dCkAOTk5GI3GgOO0tLSwadMmRo8e7W+bNWsWqam+6TRFKC4IgtCxcpujS4Ti4Bs5btJpxJzjB0kE4yeAwqZKblr9GsEaPXVOG27FG7C80tHAgop1XJI2nvSQ2Hb3sXdhgGkJg49rKL6vAlsltS4bQyMyj8mILklSkx5+/QHXq2tZQVHDqwA8PK+G/8x8lpnDsxnXO4PQYD0a9bEZUV9XY+W9p38kJTOWWdeMC3gNkpMjmPPRDcfkuIIgCIIgCIIgCELXplar6dWrF+vXr8ftdpOXl0d2dnZnd0sQBKFLOdjriftbb8+10j3ryAq0Ny1iSFg4Y6adxW9fzeX3r+bS3OQLQcafde6hdbptBwAINUcQm5LWZrFKFRhK7wnFAdRqjX8fq1avwWVrpK6uDoDi4mK++KI13K+vrwcgODgYs9nc5jjvv/8+ixcv9gfrxcXFvPbaa/5gfc8/rVaLRqNBrVb7v+5onYNtF5W+BEE4UTm9MusqGzq7GwHWVTYQGRyD/hjlWicTEYyfANbVFWLztGDzBM4xHqMPI0xnpLy5lj7hqSQHdzwf9WP9L+Hx3C/RSGouSx93rLvsV+OwEqoNQq/23eFe0VLH5StewKvI3N/nXM5IHHLc+rIvo64bXq8RWXGwvdSMtcVBWLCBSNOxnT9n3ntL+OVL392pwyf2JrlbzEFv6/Ta+LH0DlxyE6cl/o9Q3bEtSy8IgiAIgiB0DbKiQlY6/w/crtAHQTjZ9e3bl/Xr1wO+EX4iGBcEQQj03Xff8eCDD2IymfjsM1+VTJ1OR48ePWhqavKvN2fOHH8p9T///BOAIUN81yKzs7PZsGEDS5cupbq6GqM5ghU//dDu8aZeeDm/fTWX1b/9DChIksS4GR0H42ERkcQkpVBdWszvX3/GlPMuJiwyCo/bTcWuIpIze5DZdyClBTsINoVy/+sfYgr3hdbW+lo2L19CjwGDD+q1ULy+AVR7qou43e6A5YmJiVgsFvR6PRdffLF/3nC73U5RURGJiYm4XC5kWQZ8o8irqqoO6thHSq1WH3SofjQDebVaLUJ5QRCOyMaqRtxy15ql2i0rbKpqZGhC25ughEAiGD8BnBo/gM2NO1FkhV+rNwFwe48zOS91DGcsehi714lOpUajar+8jUf28k3pSlbW7QBgxbLtfDb6bhKCI45pv78rW81juV+SEBTBv/uez9clKxgb3Qt59x2RTq/7AHs4dlzeWnJr7icyaAA5+VO4c9ogkiPDAShtaESjUhEXemxG1fcdlsGXby0iJtFMdHz4IW1b7diCxZkHQLF9Odm6I7w7VRAEQRAEQRAEQehSUlNTCQkJoampifz8fBwOBwaDKIsoCIKwR3l5Oenp6YSFhVFYWAjAjTfeSFhYGBMmTGDy5MksXLiQO++8kzfeeIPS0lKampoICQnh3nvvBeDOO+9kzpw5NDQ00KNHD6KioykuLmn3eJl9B9Atuz8FORsB6DN0JDFJyfvt46V3388zd9xA5a4ibpw8nNjkNCwVZUw4ZzZX3fcfZl73N1Yt/JHK4p1cP2EICWkZ2BobqKuqJDI2ntHTzjqo12Lm2WeB10NBQQH5+fls27aNjz/+mPDwcJ544gmSk5O55ZZbqK+v5/nnnyc+Pp6mpibq6uowm81MmTIFj8fjL5u+Jzz2eDwHdfwj4fV68Xq9OJ3OY36sfR1uqH4kgbxWq0WlEjeZCsKJrtzmoNTm6OxutKEAJTYHiU0OEkLE3w77I4LxE0CoNpiH+vrmxLnLdTZeRfaXQg/VBlPvaiJcG9Lh9nN2Lua9ot/9j72KjMVlO+bB+LbGMgDKW+q4afXreBWZP6pyeHXo9VQ5GpgU1++YHr8jbm8jOdX3U+dYBkBSylIGx70PwPrSci567zNUksQ3115M95iOR+EfriHjevLF+ofR6tSoNYc2V0980ADSQsbh9NqOaC5zQRAEQRAEQRAEoWtSqVT06dOHlStX4vV62bp1KwMHDuzsbgmCIHQZt956K3a7nQ8//BCTycRFF13EE0884V/+7bff8vDDDzN37lx27NiByWTi7LPP5uGHH6Znz54ADBw4kI8//ph7772XiooK0lJTmXbVzbx43x3tHnPqhZfxyv13ATDu7AMPVBl12pkYTaF8/ebLFORspGJnIdEJiXTL7g9AYkYmj336HXNf+h+5K5dSkr+dsMgoBo6ZwKhpMw7qdZAkyMrshiRJPPHEE1RUVLBixQq2b99OZGQkEyZMYMKECYwYMYIHH3yQ33//nbKyMmJjYzn99NM5//zzufTSSwF46qmnqKurY8yYMdx///0oioLX68Xj8QT8c7vdbdoOpt3r9R70tl6v9wDP/MjtOZbDcXzDLUmSOiWQF6XrBeHoUBSly8wr3pEtNTbijXrxM78fkrL35NN/UVarlbCwMBobGwkNDT3wBp1ou60cjaQiIyQOAKu7me3Wcvqb09Cq2r/PYc7Oxby0/QfUqLg0fRyJwZFMTxh8zH8wiptqeGrb1yQHR/FN6SoANJKKP6c8dkyPeyB/7joXh5wb0NYr8iGSQmczP2cbd339IwBvXXQOY7ul4ZVlVJJ02K9X3qYS5r76K2Om9mXi2QdXBqk9suKhonkDZn0GwZpje1ODIAiCIAjCyeREOt/f156+37v8NAwh2s7uDo4mN4+PXHBCvpaCcCIpKyvjrbfeAiAjI8MfXAiCIAjHzuLiWiwtrnaXbd+wlnsvOBNDcDBvLd5AUEjHg5SOl6ggHaekRHZ2N446RVE6JZD3eDz+kvInI5VKddwC+b3bROl64WRS2+JiUXFtZ3fjgManRBIRpOvsbnRZYsT4CWR9XSF/W/s6EvDqkJuwuKxkhMQyJDKTEruFXyo3MCmuH6nGwDmrL0wdQ0pwFEnBkaSHxB5RHypa6gnTBhOs0Qe0W93NmDRBAb/k3i36jbV1hWy3ltPNGEu5o54H+nR+6e/y+hoiwlofa6RQmlzbURQvp/fuQV1zCzq1mjEZqSwvKub6T7+hW1QEc6+8AJ3m0H9k3nv6RzYs28HqP7Yx4axBh30isMbyJpvqPyZIHcmFGV+gksSPryAIgiAIgiAIwskoISEBs9lMfX09RUVF/hLAgiAIwrETEaSltsXF3qPISgt28Pkrz7JlzUoApsy+tEuE4hK+/p6MJElCq9X6500/nmRZPiqBfEf/9rfd8XhuTqezU0vXH6/R8Xv+qVQqEcoLR1VhvR0J6MqjjSWgoN4ugvH9EMnaCcTmaQF8P3R3r3+HJq8DnaThk9F3c9Oa16hz2VhYuYGPR98dsJ1KUjE2pvdhH9eryHxbupp8WyVflqwgUhfCuyP+RkyQL11+K/8X3i78lfExfXh8QOtd7EFq3w+eQa3jg1G3oZK6xhwq2/JvxBT+Hn277cKgScThKaPENoe4kGmEGwZx2bDWEnWL8otwerxsqayhvNFGWqT5kI83YnJvNi7fwfBJvY/oF7HTawXALdtRFNn3CScIgiAIgiAIgiCcdCRJIjs7mz///BNFUcjNzWX48OGd3S1BEISTWrhe2ybsaLDUsOT7bzAEGxk97SwuvP3vndK3fSlAuOHkDMY7k0qlQqfTodMd30BJURR/KH+0w/gDbXs8S9cfb3tK1x9sqK5Wq49KIL8nlBdOLk6PTKnN0aVDcfD9fii1OejnkdFrxPdhe0QwfgIZG92bf2dfwA/la1ldtwMAj+LltR0/UufyzWuwq7mGz4uXcl7K6KN23AXl63lyyzf+x7UuG2f9+TgDzenc1P00vihZDsDK2h0B293e80xGRfekZ2hilwjFXR4Pjc6VnDLkGdT0ZmDcO8jUsLbyavTqKIzazDbbXDJ0ACX1jWTFRJEaEX5Yxz3rsjGcfv4ItLpDm098X8OjbyZCn0lsUF/UKnG3jyAIgiAIwl+JgoTcBe6MVLpAHwThr2JPMA6Qk5MjgnFBEIRjLDpY32YkYPbwUXy5rbyzutQhCYgO0h9wPeHEIEkSarUatVqNXn9839c988kf70D+eJSuVxQFt9t9XEbk70ulUh1SqK5Wq49KIC/mkz92apqdXTYUn9UzAYCbH3uWiTPPRwFqWpwkmYI6t2NdlAjGTyCSJHFq/EBCtUZ/MH5r1plsrt8ZsN4vlRuOajAepTcBoJZUTI7rx2+VG/Egs76+iGtXvepfzyPLfFS0mEvSTwFAp9IwJrrXfvftkb2opWNf0mTptp3c8s48Lpu6nD4ZNjysRKvRYND0Z0LqKqB1DvH1peV4vDJDU5NICg/j5dkzjvj4Ov2R/6jp1CH0Mc864v0IgiAIgiAIgiAIXV9MTAwxMTFUV1dTWlpKfX09ZvOhVzETBEEQDo5eoyLJZOjyIwIlIMlkECMBhaNi71HVx9u+pesPFKofaOT7oQT5inJsf8plWcblcuFyuY7pcdqzZ+T78Q7kT/b55Buc7i5fRn0PCWhwuEUw3gERjJ+ARkT14OfxD+GU3UToTfQwJfBr9SYA0oJjuD7ztCPa/9xdS5i7aylmbQgxhlCavA5OSxjAxSljuHHNG3hovZNLUUCSfD9oLtnDG/m/+IPxfZW31LOgfB07bJV0D4njk11LafK0MCyyO88NvvKYfGgqioIkSSzfXozbK/PDyu4MyZSINQ3DoPHNxS7tNZp9fWk5F7w7F4B3Lp7J6IzUo94nQRAEQRAEQThUXkWFV+n8i59doQ+C8FfSt29ffv31V8A3anzs2LGd3CNBEISTW4bZSInN0dnd2C8F6GY2dnY3BOGIdYXS9UdjTvlDHXF/rHm9Xrxeb6fOJ3+oofqRzi1/PErX17W4UYC1i37li1eeo7RwBx6Xi/CoaLpl9+eG/zzFu48/yB/ffEafoSMZMXU6377zGraGevoMHcmNjzyNOTrGv7/fvvyUH+a8Q1lBPpJKIq1nH8659maGTpwKQHVpCTdO9lWMeuj9L8gePgqAGyYOo6a8lNk330mfYaP49+Xn+vf58n138PJ9dxCdkMQXyzcc89fkRCWC8ROUUWvAiIH1dYX8UL7G335lt0kMjuh22Pv1KjLP581HASoc9WyxtS77qWK9PwhXFNBKajQqNdd3PxWTJohX8n/izMQh7e53bV0hf1v9Fsru+2lWWXZg9/o+mFfW7uCb0tWckzzssPvdnhd+WMo7v6/musnDuWTsQKoabfSIj2Z0ytAOQ3iPV273a0EQBEEQBEEQBEE43rKzs0UwLgiCcBxFGLSE6jRYXcd/PuSDFarTYBbziwvCYesKpeuPRiB/qGXsj+d88g7H8b3BaE/lg2MVyKvVGupbJBrrannqb1fjcbuISkjEaArDUlHG8p/mc9k9//T3J2/DGnZsWk9kXAKOZjtrFy3k/Scf4vanXwbgi1ef45PnnwIgKiERj9tN3vo1PHHTldz61IuMm3FwlYODQ0Lo3n8QOzauAyA2OZXQiEjM0TE0ON3+gaNCIBGMn+DuXv82Drn1RM1zhPNyqJDQShpcSvsnf5IEeklDakgM/x10OWHaYPRq34nY9KTBHe63tLnWH4oDBKl9v3D2hONPbfmawREZpBijDrvvsqwgKwoate/uoO/WbsUrK8xfu5Wbpo7kv5dOP+A+hqYm8c7FM3F7vZySmXbYfREEQRAEQRAEQRCEIxUeHk5SUhKlpaVUV1dTXV1NTEzMgTcUBEEQDoskSfSONrGirL6zu9Kh3tEmEXQIwgmqM0vXK4py3MP4Pe3HunT9sZ5PXq030Pucy7CUl+Fxu9AHBfHC94vQBwWjKAoFOZsIjYj0ry97vTzx2fek98rmqVuuZuUvP7J5xRIAHM3NfPn6CwAMn3I6dz//Jl6Pm39eMpMdm9bzyXNPHnQwntGnH0/Mne+fY/zcG29n4szzAfDICk6vjEGjPpovxUlBBOMnuFCtEYezEYBruk1hUmxf5petYZA5nYTgyANs3ZYkSbw27AbuXvse9R57QJi9h1PxsL2pnI92LuLOnvuff7uqpYFvy1YzNCKTnqGJbLOWAWBxWQPWU/CF54cbjNsdLs5/dg5VjU28ft1MzCFB3H3mWD5fvplLThl4SPuqb27h4QW/c2Z2Tx44bcJh9UcQBEEQBEEQjiZZkZCVzr8A2hX6IAh/NdnZ2ZSWlgK+UeMTJ07s5B4JgiCc3BJCDCSZDJR1sbnG98wtnhBi6OyuCIJwApIkCa1Wi1arJSjo+M49vad0/fEO5I9W6XrV7hsZkrv3IDY5laqSXVw1uh/xaRmkdu/FiKnTyOzb379+So+epPfKBiCpWw9W/vIjjbUWAEry83DtHlE/etpZqFQqVDo9I06dxo5N66kpL6Wxrvao9Fs+xjcknKhEMH6Ce23oTTycO5fEoEgGhmdw2h8P4ZDdqJBYOPFh/2juQ9ErLInvJz4AwIRfHsCxz+hxFRIyCpE60wH39cSWr1lu2c6coj9xyB3frSMBiUERh9zXPXbW1LHL0gDASwuWsbqglO7xUXx51yWHfAflFxtyaGhx8PGajdw/dby4A1MQBEEQBEEQBEHoNH369OGnn35CURRycnKYMGGC+DtVEAThGOsfG0a13YlL7jqhglYl0S82rLO7IQiCcMg6ez75Iw3kXZIaF6DTG/jvlwtYNO8LdmxaT0nBdhZ9+wV/zPucu5573X9co6n1s1qtVvv7sq/9ntPvtUyWW8vgNzfZ2lu7Xd6u8yusSxHB+AkuNiicl4ZcD8CDmz/xh88yCk6v+7CC8b29NvxGrl/5Ks69wvH/DbwcozaI7LCUdrdp9jjZWL+T/uY0f9ht0gbhcHYcjCuASz78u3d6JcZyzaShlNVaaXa6ANhVU49HltGqD61UxLWjhtLQ7OCM7J5tPpjWL93OxhUFzLhsNBHRoYfd3735Lm6UEhMTSqw4uRUEQRAEQRAEQRD2EhISQnp6OoWFhdTX11NWVkZSUlJnd0sQBOGkplerGBQXzoryrlNSfVBcOPrdU0gKgiAIB7b3fPJHwu728FNhDc1NNsoK8zn9kquYtjs7evCK2WxesYQtq1cc1L6SM7PQGQy4HA6WfD+PEadOx+vxsOKXHwGITkgiLCISp6PFv035zkL6jRzLxmWLsVsb2+xzz/6cLc0B7WpxL227RDB+EpmWMJjF1bk4d48YVx3hHeTr6wr5tHgJD/W/ELM2hPs3ziErNIEhkd3RqNp+kCiKwjJLHm/s+IU8WzmDIzJ4YcjVTE8cTHyQmUuXvUCN09rOkSBGH0r30PjD7qtKJXHbtDEAVNbbSF+ynpE9Uv2huNtrpcVTiknX64B31o/OSGX0dalt2l1ON/+65h08bi+WigbufvrCw+7v3ubNW8cLL/6CwaDl009uIjT0+JYxEQRBEARBELo+Lyq8dP6F0K7QB0H4K8rOzqawsBDwlVMXwbggCMKxl2Ay0DvKxBbLwY/OO1b6RJlIMIkS6oIgCJ1BvTtTaqy1cO8FZxISFk5EbDwet4vyogIAUrN6s23d6gPuyxAczKzrb+WT559i5S8/cOPk4XjcbhpqqgG48PZ/AKA3BJE1YDB5G9bywVP/YfmC+ezYtA6VSoUsywH7TMzIpGhLDh/97zH++OZz+o0cy8V33nvEGeHJSlzVOIkMi+zBFRmTAN8Iba3qyO57eC5vPourt/BE7lf0M6fy3fj7eHrQFe2G4gBLarZx17r3ybOVA2BzO1BLKnqFJbHdVuEPxff9UQxSaXlj+A1H1FeAWlszV7/6OQ9/+Ss3njqCUVm+cFtW3CwvO4uV5bPY2fjWYe9frVETk2gGIDEj5oj7u4fV6rvzx+Xy4HIdnTkvBEEQBEEQBEEQhJNHr169/CNdcnNz21wMEwRBEI6NrAgjPSKMndqHHl2gD4IgCH9lerUKjSRhCjcz4ZzZhEdFU11aTG1lOYkZmVx8x71MPu+ig97fuTfezk2P/o/03tlYa2tptlnJGjiE/3vlXcbNmOVf72+PP0evIcNRFIXaygqu/dfjRMYltNnf1fc/TEqPXnjcbvI3b6B8ZyEalSSqjHRAjBg/iZQ31/Jj+Rp6mZJ4tP+lR1xG/ZSY3my3lTM2ptdBra+RWn/ILkgdzQWpvhHcZc11/Fm9xb/s331n8+Dmz/yP44LMxAWZj6ivAL/m5LMqvxSAFTtKmJjdDQBZceHyWgBo8ZS2u63L40GjVu/3Dhq1WsXL395BVWkdKd1jj7i/e1xwwQjCwoJJTY0kKurA87YLgiAIgiAIgiAIfy0Gg4Hu3buzbds2mpqa2LVrF+np6Z3dLUEQhJOeJEn0iTKhVanI7YSR432iTGRFhhz34wqCIAitJEki3KDFExbO3x5/rsP1bnniOW55InD5+bfczfm33N1m3UmzLmTSrP1XJU5I78YjH30d0DbhnNlt1us1eDjPfvtrQFu4XnvA6sl/VSIYP4lcufIFmjwOANbVF3B60OCA5atr82nxuhgbfeBy4gBXd5vMJWnjDjpgHxmdxctDr0WnUtM3vLUU+fWrXsfitNI7NIlofSjvFPzGqXH9WFS9BafsoVtI3CE8y/Y1NjuIDTWSERtBkFbL4IxE/zKNysiguDdpcKwjKbTtB80fOwq5+bPvyIiK4MurL0Sn6fjHwhCsI7XHkfd3bzqdhrPOGnRU9ykIgiAIgiCcXGRFQlY6/4/artAHQfirys7OZtu2bQBs3rxZBOOCIAjHiSRJZEWGYNJpWFfZgFtWUI7l8QCtSmJQXLgony4IgtBFRARpqW1xHdPP/6NFwtdfoX0iGD+JODwu/9ehmuCAZTkNxdyy5m0AHut/MRPjsg9qnwcTiuc0FPNh0WKGR3ZnUXUucUHh9ApN4vvydXyy8088sheAgqZKtlh9I7aLmy3+7cfE9DyovnTE7fFyzn8/oMZq57Zpo7lm0rA260QEjSAiaES72y8tLMYjy2yvtlBls5NsDjui/giCIAiCIAiCIAjC0dajRw90Oh0ul4utW7cyffp0f3l1QRAE4dhLMBmIDI5hY1UjpTYHiiwjqY5+mdokk4H+sWHoRAlcQRCELiNcrz0hQnEABQg3iGC8IyIYP4lcmjGRdwsXArDcso3Re5VA33tecG0Hc4QfCpfs4d4NcyhvrkMjqdnRVMHi6i3suV/yjMTBvJn/CxanjYQgM7f1nM7Dmz9vs584QzjDo7ofVh+anW7e/X01kSYj9U2+ebor6g+9pNGVIwZRa2+mV1w0SeGhHa63+M88XnjhZyZM6MXNN00+rD4LgiAIgiAIwuGQUSHT+RdHu0IfBOGvSqvVkpWVxebNm3E4HOTn55OVldXZ3RIEQfhL0atVDEswU/TDz3giEwgKjwRFgSMoVyvhCzFCdRp6R5tICBGjxAVBELqa6GC9//O6q5OA6CB9Z3ejy+r0qxplZWVccsklREZGEhwczIABA1i7dq1/uaIoPPjggyQkJBAUFMT48ePJzc0N2IfT6eSWW24hKioKo9HIjBkzKC1tfy7pk1lPU2v58K/LVjB315+4ZA/bbeVkhsTx9vCbeHnotf45w6taGqlz2ChtrsXhdR/0cYrtNWyq38XSmm0U2auxe33l2xUUVEj0DE0kMySeC1PHEK41cmHqGE5PGMjY6F74Pjb2/IPeYUmYdYc2T06NtQmPV+aTpRt47ZeVPPrVb/zz3EncNm00t04bHbCuR7ZT27wUr9zSZj8et5eHbniPf816lb/1GsC1o4but8T89/M3UFdn56uv1uL1yofUZ0EQBEEQBEEQBEE4UtnZrdXfcnJyOrEngiAIf1319fVsW72c/AVf8v/s3Wd4HOXZ9vH/bFHvXbIlWbZ6cZeEbTqmlwAJPEkIhFBCGgklyRtSyRMCTyoE0mgJLYQAgYTewRSDe5FkNcuWbUlWsa1eVlvm/bCwWLjgIntUzt9xzOHZnbLnWJa82mvu696+9FWmRoXy0SeKB1oeN03/Z4umz0uM4eHEjHhOmZagoriIyBgV7LAxNTLkgH/OW8XA33kk2GF5+XfMsnTEeGdnJ4sWLeKkk07ixRdfJCkpiYaGBmJiYgL7/PrXv+b3v/89DzzwALm5udxyyy2ceuqp1NbWEhkZCcB1113Hs88+y2OPPUZ8fDw33ngj55xzDqtWrZpUbcWOScjjkswTeXTLEkxMlu6o4Y3W9VT2bOWExCJunX0ZAx4Xy3bU0zSwk99U/zdwbFpoHPeVf5244L0XqZ/e9gG/2fAMTpsDl89NqC0osK1jsCewbhgGDyz4FgCXZB3PJVnHB7aZxsc3TzoNBzHOCK7PP/egrvHBJav47TNvUzg1ia+degwGEBEazAmF04mPDNtj/7Vt36BzaDnxoccxN+WeEdu2bWrng9f8N1m8+cxqphek7fe1P3dRGR07ejnpxALsamUkIiIiIiIiR9mMGTMIDQ1lcHCQ2tpahoeHCQoK+vQDRURk1KxYsSKwPjM7i7K0WFweHx2DLrqG3OwadNM15MZj7jmu0GEYxIQ48fV3s2bpu/S3tTCzqJC43POO5iWIiMghmB4bzrbeIatj7JcJzIgNtzrGmGZpYfxXv/oV6enp/P3vfw88N23atMC6aZrccccd/OhHP+LCCy8E4MEHHyQ5OZlHH32Ua665hu7ubu6//34efvhhFi/2t7d+5JFHSE9P57XXXuP0008/qtdkJYfNzjdyzyQ3Ko1Xtq9h+c463KZ/fu8lHVW0DOzktqqnWbGrgfhPjNJuGdzFZ9/+Df867gaSQkbOsf1KyzrurH0RHyYun39k+aDv4/nM3XiJcYTT6x3Ea/p4aNMSLpt+wh75flh0IT9Z76J5YCctg520u7rpGu4nMWTf7cs/qWLLdgBqWzpYlJ/Jyz++krDgIKLD9n43pdvbOeLP3WXMSGLh2TPZvrGDxRfM/9TXLp2fRen9Vx1wVhERERGR0eI1Dbym9femj4UMIpOZ3W6nsLCQVatW4Xa7qa2tpaSkxOpYIiKTxvDwMGvWrAH8P5PnzZsHfDSSMJSpkaGA/3Ntl9eHzzTxmmA3wGYYBNttGIaB2x3F0qeb8Lrd1NTUcPbZZ0+qAV4iIuNRXIiTqCAHPcMeq6PsU1SQg1jNL75flg57feaZZ5g/fz4XXXQRSUlJzJkzh3vvvTewffPmzbS2tnLaaacFngsODuaEE05g6dKlAIFfBnffJy0tjeLi4sA+n+Ryuejp6RmxTCSLU2bxxWnHB4riH3mhZRVd7n4AYvcyMnzQN0zH0Md/F80DO1mxYyM/rXiMQe/wHvvvrs87hP3DJhLLdtbtdZ+YoHDumn8V38o9GzCwGzZC7J/+DdrVP8gfXniX1ys28p2zj+WiBSX87rJzCHI4SI2N2mdRHCAz+kpCHekkR5y1x7afvPg6jyTsIP97x5CZm7LHdrfbu8dzIiIiIiIiIlZSO3UREetUVFQwNOQfLVhSUkJY2J4dLMHfVTPEYSfM6SAyyEGY00GIwx6YxtHpdJKXlwfA4OAgmzZtOjoXICIih8wwDAoTI62OsV+FiZH7nTJYLC6Mb9q0ib/85S/k5OTw8ssv87WvfY1vf/vbPPTQQwC0trYCkJycPOK45OTkwLbW1laCgoKIjY3d5z6fdNtttxEdHR1Y0tPTR/vSLDcrJosvZh4/4rlHtyzhO3lnc2rKLC6YWs6cmGmBbYsS8vh/hedTGD0VgDdbK/nsO7/l2lX3B/YJs49sz5YVnkSkI4Sk4Gh+OesLfHn6SZyQVMi3884GYHtnD29Xb8bj9dEy0Mljje+yc6iXk1OKua/86zy66DrSwxM+9Vr++uoH3Pf6Cq5/4FnCgoL46ecWc0pJ9gH9PWzr+QeDnm1s6vzzHtverPO/4Xyzfs83nnfe9Sqnn/Eb/va3JQf0OiIiIvITYRIAAQAASURBVCIiIiJHQ2ZmZmBquY0bNzI4OGhxIhGRycE0TZYvXx54XFZWdljnKyoqCqxXVVUd1rlEROToSIsIGZNzjRtAemQIaRH7Hkgqfpa2Uvf5fMyfP59bb70VgDlz5lBVVcVf/vIXLrvsssB+n7y7wTTNT73jYX/73HTTTdxwww2Bxz09PROuOG4YBt/MPZuFCQU807yMV1rX4PK5ea55Ja+2ruPV1nUj9r8w/RgWJeUHHj+65Z0R28+dMp+vzjiVJ7e9T11PC9FBYXywo56z0ubhNX38asN/2DXcR2xQOO4eg3P//ABNu7rxeH2cc0oWb9o/wDDgT/UvkhYaz/cLPkNxTMZ+r2FX3wD/eGctPp9/Pp7E6AjCQw5u7rTUiHPp3VVDWsRn9tj2y3NP5T/rNnBZ+dw9tr37bi0Ab79TxxVX7NkWXkRERETkaPKZBr4x0MZ8LGQQmewMw6CoqIgPPvgAn89HdXU1c+fu+XutiIiMrsbGRtrb2wFIT08nNTX1sM6XnZ1NcHAwLpeLmpoaPB4PDoelH9eLiMgBmJUcTXu/i+EPa1djgdNmMDM5+tN3FGtHjKemplJYWDjiuYKCArZu3QpASoq/vfUnR363t7cHRpGnpKQwPDxMZ2fnPvf5pODgYKKiokYsE9WcuOms7drER/cILOmoAEZ+s0bYgylPyBnx3HlTSkc8fr21gsrurRRFp7O6cxMvbV9Ll7ufx7e+x5Pb3mfXcB8APe5Bbl3/FE227Xi8PgA2DX789XP7vGzp7+CJre9/fO6KjfzmmSV09PSNeM0/vrSUe15bxuPvr+fx6y/hme9/mRDngb05NE2Ths676Hat47j018lP+PEe+5ycO4M7LzqX+RlT9th23XdOZ8GCbK791qkH9HoiIiIiIiIiR8vu84qrnbqIyNExmqPFARwOB/n5/oFKLpeLjRs3HvY5RUTkyAu225ibEmN1jBHmpsQQbLe05DtuWPq3tGjRImpra0c8V1dXR2ZmJgBZWVmkpKTw6quvBrYPDw+zZMkSFi5cCMC8efNwOp0j9tm+fTuVlZWBfSarruF+vrPqbnrdAyOe/3HRRZyaPJNTkks4JbmEfyy6DofNDkDHUA9DXjfnTp3P66fczNez/XO3D3hd3LbhKb6/9mFcPg/gb83gL7GbgbWMsHg2O7YRPKsbHD6uOGk+l+edgG/IwPywHu8wbMwJycHnM+kddHHDg8/x0JLV/PHF90fknJYYB0BSVATZKfEHNVq8b7iGTV1/prX/eZp6HzuovzeAhQtz+OUtn2PevGkHfayIiIiIiIjIkZSamkpcnP935s2bN9Pb22txIhGRia2rqyvwOXZERAQFBQWjcl61UxcRGZ/SIkMoTBgb840XJUSSFqkW6gfK0t4s119/PQsXLuTWW2/l4osvZvny5dxzzz3cc889gL892HXXXcett95KTk4OOTk53HrrrYSFhfHFL34RgOjoaK688kpuvPFG4uPjiYuL47vf/S4lJSUsXrzYysuz3Fvt61nV2RB4fF3eecyKnU5uZBrnTJ23x/4vtqzh5xWPkxwSw7+OvYFwRzBfnnESg95hXm5dh8vrBiAuKAK3z0OvZwgwMQw+LHqbbO5v9z/utxNsOPifhTNJjY3igZU5bI7biM1nI2JbGre8vJSWk4b51pkLmRofzdYdXeRNSRyR59Lj57AoL5OUmEicDvtBXXuoM4MwRyZD3lZiQ8oDz7+7eiO3vvsOibGR/Oni84gIPrjW7CIiIiIiVjBNGz7T+ru/zTGQQUT8n5cUFxfz9ttvA/5iyjHHHGNxKhGRiWvlypWYH476mT9/Pnb7wX1WuS/Tp08nNDSUwcFBamtrcbvdOJ3OUTm3iIgcWXlx4Xh8Pup29VuWITcunNy4cMtefzyytDBeWlrK008/zU033cT//u//kpWVxR133MEll1wS2Of73/8+g4ODfOMb36Czs5Py8nJeeeUVIiM/vhPj9ttvx+FwcPHFFzM4OMgpp5zCAw88MGpvUMajAc8QG7q3jXjuM1OPIci27y95bU8zAG1DXfS4Bwix++cj+Fru6Xwt93Q29rZyT/2rvNtRje8T7dg/Lo4blMfmULXcQ6u7n1fW1XP5SfP54dmn8Fx1Cp+dMY/Llj0OQNOubpx2O//+7qXs6Olnanz0J85pMCMl/pCu32ELZ+HUFxj0NBPi8Lfkr69v5Ybbn6I710lDdxcrtjRxUu70Qzq/iIiIiIiIiJV2L4xXVlaqMC4icoS43W5Wr14NgM1mY968PQccHSq73U5+fj5r1qzB7XZTV1c3YhS5iIiMXYZhUJQQidNmo2rH0e/gVJQQSV58xFF/3fHO0sI4wDnnnMM555yzz+2GYXDzzTdz880373OfkJAQ7rrrLu66664jkHB8eq5lBS9sXxl4bMPYb1Ec4MvTTwQgL2oKSSHRe2zPjkxhTefmQFE81h5Bp7cX0wQ7NubFzyDGGc512edw8uP3AdDQtosdrl6+vvpePKaPzOFI7vnqZ1lat4WLFvjnRAtxOvYoih8Or8fL/b96nqDMV5iy6HUig4ooT3sCn88kdKePgV4fWVMTKM3cc25xEREREZGxyIuBF8PqGGMig4j4JSYmkpKSQmtrK83NzezatSvQXl1EREZPZWUlg4ODgL/1eUTE6BYhiouLWbNmDeDvAKLCuIjI+GEYBnnxEUQGOVjd2oXbZ35iWOkovx7gtBnMTYlR+/RDZHlhXI6MvKipu80BDlNCP33kdWxQBNfl7/smBZ/po88zFHj80LHX8j/v/p4Br4ursk/lKzNOCmz745Xns2pTE5ccNwfwwYcfoBkYzM5KY3ZW2iFc1f41NLSxdu1WUmPCefrv73DOT/zz8vQN12LiJi8vlT/c+gUGBoZZsCAbw9CHeiIiIiIiIjJ+FRcX09raCvgLN8cff7zFiUREJhbTNFm+fHngcXl5+X72PjTTpk0jLCyMgYEB6uvrcblcBAcHj/rriIjIkZMWGUJ8WBLr2rpp6h3CNM0jUoOaGhnCrORoguya5uxQqTA+AQ37PCzbUctpKXN4udV/t+GChPzDPq+BQVpoLM2Du5gVM43EkCiePfEHtA11kxWeNGLfY/OncWz+tMDjBxd+g6aBXWSFJ9E53Eds0OjeWen1+vjOdf9gYGCY44/LIzEthuX/mMW8BWXMmHoGNsM/l/js2Zmj+roiIiIiIiIiVikuLua1114DVBgXETkStm3bFrgBacqUKUyZMvodKG02G4WFhaxcuRKPx0NtbS0zZ84c9dcREZEjK9huoywtlqCGrVTt6CE0Jh7T58OwHXoR+6MBsFFBDgoTI0mL0Cjxw6XC+AT0Vtt6Hmp8A4AQexAur5ui6IzDPq9hGDyy8Ds0DexkRmQyAOGOEKYfwDdiTmQqzQOdXPzu7YTZg3ny+BtICI781OMOJltkZAjJ0zZTeHwj37vpJkLsU7E7Ju888yIiIiIycfhM8JnWdzzyHcmecCJy0KKjo0lPT2fbtm10dHTQ1tZGcnKy1bFERCaM3UeLl5WVHbHXKS4uZuVK/7SYVVVVKoyLiIxjtSvfZ2NNDaHxScw5+Qz6CMGEEV2e9+ej/QxgalQIM2LCiQ1xqgvyKFFhfAKaHpFKkM2BgcGQdxiAut4WTkmZfdjnDnUEkROVekjHbhvYAcCA10XXcP+oFsZtNoO//PkyVuxaBMYwdZ02ihLv4rtPvUBLVze/veBM0mNjRu31RERERERERMaC4uJitm3bBkBFRYUK4yIio6Snp4cNGzYAEB4eTmFh4RF7rYyMDCIjI+nt7WXjxo0MDg4SGhp6xF5PRESOjK6uLmprawGwuwY4OS8Dj2nQMeiia8jNrkE3XUNuPOaeJXKHYRAT4iQu1ElMiJPE0GCCHWqZPtpUGJ+AsiNTeeb4n2CY8MS299jc38bn0hdZHYuLMhbg8flIDY0hOzLlkM9jmiYPPPAO9Rvb+NY3TyUtLQaA6Ohwovrz6BmuICq4iKrtbbxQ5f8B9N+KGr51/DGjcRkiIiIiIiIiY0ZRUREvvfQSpmlSVVXFKaecotEkIiKjYOXKlZgfFi7mzZuHw3HkPko3DIPCwkKWLVuGz+ejpqaGOXPmHLHXExGRI2P58uWB/ztKS0ux2+3YgamRoUyN9N/wZJomLq8Pn2niNcFugM0wCLbb9D7+KFBhfIL515a3eW9HNV/PPouC6HQun77Y6kgBIXYnF2cu4M91L7Olv4Orsk/Bbhz83S4t27t4+JGlAGTPbOOE00zSoy4hyB5HadojuDzthDim4IrwUj4tnZbuHk7Pzx7tyxEREREROWp8pg2faf2d4mMhg4iMFB4ezvTp02loaKCrq4umpibS09OtjiUiMq55PB5Wr14N+OcAnz9//hF/zeLiYpYtWwb426mrMC4iMr4MDw8H/u+w2+3Mmzdvr/sZhkGIpgG2jArjE4jL6+aP9c9hAn/f9BpnT5nP3NhsIp1jp+3OC82reWLrBwDMicuiLP7gC9ZJiVHk56fS1NJCeulf2dTlxeVppzDxF9iMIEKdUwEIcTp46NLPjWp+ERERERERkbGmuLiYhoYGACorK1UYFxE5TFVVVfT39wNQUFBAZOToTQm5L1OmTCE6Opru7m42bdrEwMAAYWFhR/x1RURkdKxbtw6XywVASUkJ4eHhFieSvdHt/hNIkM3BCUklBNkcNA3u4EfrH+aH6x885POZpsnDb6/mN88soW/INSoZi2LSCbI5iHaGkRWedEjncDrt/PlPX+bpf99IiNM/d1qoM2NU8omIiIiIiIiMNwUFBdjt/lEnVVVV+Hw+ixOJiIxvy5cvD6yXlZUdldc0DIOioiLA/7lsdXX1UXldERE5fKZpjvi/o7y83MI0sj8aMT6BGIbBLTMvBeCqZXcCMOz1HPL5NjS18ev/LgEgPiKMK04uPeyMhdFTefXkH2O32QiyHfo/vyHPdnymmwVT/sugp4UIZ85hZxMRERERGat8GPiwfq6xsZBBRPYUHBxMbm4u1dXV9Pf309jYyPTp062OJSIyLjU1NdHS0gJASkrKUe3CUVRUxNKl/ikkKysr99mGV0RExpZNmzaxY8cOADIzM0lJSbE4keyLRoxPQMM+D9mRacyJnc7Pir94yOdJjY0iJjwEm82gYOqhje7+pJaBTn5Z9RRPfthO/WB0dPRy6WV3c+13b+PdbafxXtMZ9LqqiQzKxTD2/QGd13Szpe9d+txthxNdREREREREZMwqLi4OrFdUVFiYRERkfPvkaPH9fe442lJTU4mLiwNgy5Yt9PX1HbXXFhGRQ7ds2bLA+tHqNCKHRoXxCej9HdU817KcNZ2bWN+9+ZDPExcRxss/uoq3fnYNC3IzRyXbI41v88r29dxR8wLtQ90HdeyatVtobu6kb7AVEw9gMuTd/qnHrdhxN6+23MTTW67Ea7oPMbmIiIiIiHW8pjFmFhEZm3JycggKCgKguroaj+fQO8iJiExWfX19VFVVARAaGjripqOj4ZPt1Dds2HBUX19ERA7ezp07qa+vByA6Opr8/HyLE8n+qDA+AeVGTiHcEQLAn+qe4891z9PvGTqkc4UFO4mNCB21bKXx2dgMg+zIFGKDwg/q2IULslm4MIep8ccxI/Jm8uJ+REr42Z96nNc3DIAPN5jmIeUWERERERERGcucTmfgQziXy8XGjRstTiQiMv6sXLkSn88HwNy5c3E6nUc9w0eFcSBQpBcRkbFr904jpaWl2GwqvY5lmmN8AkoNjePyaafwp43P0+nu59GtS7DbbFyTfabV0TgpuYi3Ft9MkM2OzTiwHw4+n8l3v/kgTVt38uObL2Bm6cHNk1aW+HUSQ/JIDCnEbgs6lNgiIiIiIiIiY15JSQnr168H/HPTarSKiMiB83q9rFq1CvCP3C4tLbUkR1JSEomJiXR0dLB161a6u7uJjo62JIuIiOzf0NAQa9euBfw3qs6dO9faQPKpdNvCBHVG2jwWJhQQZPjvfcgIG505wkdDiN15wEVxgFUrNrG2rpUdQ24efOhJNnfdzZqm5Xzmnof5+YtvYH7KKHCnLZTc6LOJDc463OgiIiIiIpbwmbYxs4jI2JWVlUVYWBgAtbW1DA8PW5xIRGT82LBhQ2BO7/z8fMuK0bu3U/8ol4iIjE1r164NvOeeOXMmoaGj14FZjgx9qjFBxQZF8OvZX+E/x/+YRxd8jzPT5lkdKWD1rs3ctPZR3u+oO6D9c/NTCbLbwDRZfOXbbOy8g619N1LTtoNHV66jvbf/CCcWERERERERGfvsdjuFhYUAeDweampqLE4kIjJ+7N4Kt6yszMIkaqcuIjIe+Hy+Ef93lJeXW5hGDpQK4xOQ1/RR3b2NIe8wUc4wMsITrY40wq83/JfXWyv5ZeVTB7R/dHQYz7/4XV588bukpWYDEBmcSkpUBGcV5pIUeXBzlYuIiIiIiIhMVMXFxYH1yspKC5OIiIwfLS0tNDU1Af5W5pmZmZbmSUhIIDk5GYDm5mY6OzstzSMiInuqr68P/HyePn06iYljqxYne6c5xscx0zSp6m4iOSSKmp4WqrqaSA2NZWVnDW+2ryc/cir3lX/b6ph7WJiQx6a+dhYk5h7wMXa7DbvdRknSr+l2fYmooEKWfCfsCKYUERERERk7fBj4TMPqGPiwPoOI7F9GRgZRUVH09PTQ0NDAwMBAoL26iIjs3SdHixuG9e95iouLaWtrA/yjxo899liLE4mIyO6WLVsWWNdo8fFDhfFx6sXmtdxW+TRDphswMQwT0wSH3f9RlWFA65D/TpXWwS4SgiNx2OwADHhcLNtRz9SweNLC4gh3BB/V7F/NWcyl048jNijiU/cddDfTM1xFYtiJ2IwgbEYQsSHz97rvkLeHl5u/i8c3xBlTfku4c+zMqy4iIiIiIiJyNHw0N+3777+Pz+djw4YNzJ+/99+jRUQE+vv7Ax02QkJCmDlzpsWJ/IqKinj99dcBFcZFRMaa9vZ2Nm/eDEBcXBw5OTkWJ5IDpVbq49CAx8XPKh4PFMXtNh9Ou3+xGf6iOKZBqC2Ceze+znlLfs05b/0f/9z8LqZp8uN1j/H/1j7KJUvv4uw3b6PLdfTm6K7pbubEV2/mjDduY2lH7R7bh13uwLrPHOaDls+yvv071O/6PQAe3xD97o69nrt1cC0dQ9V0Dm9ma//7R+YCRERERERERMa4kpKSwLraqYuI7N/q1avxer0AzJkzB6fTaXEiv9jYWNLS0gBobW1l586dFicSEZGP7D5afKx0GpEDo8L4OGTutm4zTOw2/zOGAaYPfD4Y9trY0r+TlTsbANg13M/ttS9Q09PCtoGP30QNeIf555b3jlr2Je0b8GFiYvJc8+oR2/7406f4TNEP+dWPn+Tmm59mxYrNmKb/TenWzp24fYM83vhF/rn5Qhp6Xtvj3Glh85kadgwpobPJjDjuqFyPiIiIiMjRYGL426lbvJhqpS4yLqSkpBAfHw/Ali1b6OnpsTiRiMjY5PP5WLlyZeBxaWmphWn2VFRUFFjXjU4iImPD4OAg69evByAoKIjZs2dbG0gOigrj41C4I5jPTPlEGzQTPp9+Ap9PP4mSmCwyw2M5LaWEc6fMJdORCCaE2YJJCY3mmuxTRxz60Oa3ubPmBUzT5Ei7ZNqxZIYlkBAUydUzThmx7YPX1hOVMsCbH9Tz9ju1/O53r9Hc8VMeeu9Ern88ibqOLQx4/KPFd7jq9jh3kC2MM6b+hnPS7yLMEXfEr0VERERERERkLDIMg+Li4sDjqqoqC9OIiIxdNTU1gZuH8vLyiI2NtTjRSLsXxvWzXERkbFi9ejUejweA2bNnExx8dKcrlsOjOcbHqesKzub55tV4TROfD3ymwcObl2KzubF/eLtD8+AO3uxYA4BnYyRGQhArd27i1NSZzIrN5A81z/NKawVe08cjje+yw9XL/ys6f8Sc4519g0SHhWCzjc7IkAhnKE8cf8Net11xz2a84ctprSnj778tYMExM4gPy2L55o2EOBwkhk3lhNAfsdO1kVlxl4xKHhERERGR8cBnGvhM60drj4UMInJgSkpKWLJkCeAfZbhgwQKLE4mIjD3Lly8PrJeVlVmYZO+io6NJT09n27ZtdHR00N7eTlJSktWxREQmLZ/PN+L/jvLycgvTyKHQiPFxKtwRzD1lV2O3ebHZwG7ztyffvX5ts/nbqxsGODOG6I/t5ifr/sWQ101iSBTX5Z9NQnBEYP+Xtq/j4ndu58WWNXQN9/PgW6s4/md/5Yq/PDFqo8lbB7t4qWUt/R5X4LmurgGuuOI+ejz+ux5zZvbz/HM3cP31Z3BWUR7/vfpLvPzNy0mKjCAn6gyOSfwWIfboUckjIiIiIiIiMhHFx8eTmpoKQEtLi+amFRH5hLa2NrZs2QJAQkICWVlZFifaO7VTFxEZO3bvNJKTk0NcnLoXjzcqjI9j/1f7BLYPv4LhtlA+P62cb+ScRW74lMBE5D6PjXB7BJfnnwBAfvQU+j1DbO5t46lty7k290xOSf64vVqHq4efrX+C/3nnDl7Yvhr71EHWNbbg9Y1OYfzqZXfz0/WPc2vlU4HnKiq30bhlB//+y/F4d51KUcIthIYGBbbnpySSEhU5Kq8vIiIiIiIiMlns3k5dxRQRkZGWLVsWWC8rK8MwxmZnnMLCwsB6VVXVUZkOU0RE9m73/zs0Wnx8Uiv1caJ5YCdbB9opi8/DbtjwmT563YMAHBOfx5TQeP7d9B4hNic/Tv0KP219CF/kEOFBDl4+6acAfCFrEa2DXZy/5Le4fO7AuX9S9Fleb/P/gmzgr6l3uwfojN1MUCxctGAuDvvo3ENh4H+DufsbzayiRm648ynaGgpZkP0XIoNDR+W1REREREQmCp9pw2daf1/zWMggIgeuqKiIV199FfAXxo8//vgxW/gRETmaBgYGqKioACA4OJhZs2ZZnGjfIiMjmTZtGo2NjezatYvW1tZARxARETl6tm/fztatWwF/p5Hp06dbnEgOhQrjY5jL6+aJbe+SGBTFb2ufZtA7zDUzzuDSrJP53tq/s3O4l7K4XH5c9Hn+ucU/b1iQ3cmj76xl0GEQHAmzYj/+xtzQ3cT1qx5k93sKo51hHJuUz+f7FtHt7uea7MW81lpJXeNOXnWtxDRMTsrO4cfrHmPtrkb+d9bFzI079G/2e4+5hrW7GjkuKT/w3Kad/yQ4rJf04mVERumfpIiIiIiIiMhoiI6OJiMjg61bt7Jjxw7a2tpISUmxOpaIiOXWrFmDx+MBYPbs2QQFBX3KEdYqKiqisbER8N/opMK4iMjR98nR4rrhdHxSFXIMu7PuGf7b7P9Gs3840vqjkd6V3f75b4Z9HmKCwrl6xunMjs1iekQqD4a+y4aeQRymg0syT8Br+rAbNiq7tgWK4v+TsYALMspICI4iyhnKDQVnB173gtRyFv7pzxghsZxYnMW0iERe2b4egL/Wvcafy67EYbMf0jUlh0RzetrHd2B+8MFG/vpCDKdfEMvarVkkBnUwZ2raIZ1bREREREREREYqKSkJjGypqKhQYVxEJj2fz8eKFSsCj0tLSy1Mc2AKCwt54YUXME2TqqoqFi9erIKMiMhR1N/fH5iaKCQkhJkzZ1qcSA6V+uCNYZv72gLrF6Ufy48KL+ayrFMA+G7+BZydOp/r8z8DgMNmZ0FCAckhMUTG+r+sHsPDtavv5nc1TwNwceZCLso4hhvzz+GGgnOYHpFMlHPPtuUNbTuxGWAO2Tk+K5f44EhOT/UXs9d2NfL41vcPKL9pmjT2tTPgce1zn57eIRo3pHLrcxfxSmUZ8WFhB3RuEREREZHJxGcaY2YRkfGlsLAQm83/OYHmphURgbq6Orq7uwHIzs4mPj7e4kSfLiwsLNCyt7u7m+bmZosTiYhMLitXrsTr9QIwd+7cMd9pRPZNI8bHsJig8MD6Y9veITE4mkWJhTy4+XUe3Pw6C+LzmRGxZ9ucC1IW0bi9izWeagZ8LpoHdn54vjC+V3jep77uyoYmfB/+npydHI9hGMQEfVywdtocDAy7+cVLb2Ca8NMzTyYsyLnHeR5tfJc/1L5IWmgsTx53w15HmS8+pQhMkx7Dw7Hl2aRERX5qPhERERERERE5MB8VUzZu3Eh3dzfbtm0jIyPD6lgiIpZZvnx5YL2srMzCJAenqKiIhoYGwN9OferUqRYnEhGZHLxeLytXrgTAMIxx0WlE9k2F8THsK9NPpc8zxOpO/xueDlc39b0trO3cBMD67sa9Hvfrp97h1fVtJKQlcfn5uZyddnDfpBeWF9PQupO4yDCCnHa8Ph9BNn/hO8hm56zU2bxR28BT6zYAsGh6JueWfDxneF3Pdh7f+j47hnoAaBvqxuXz7LUwbrMZnHZayUHlExEREREREZEDV1xczMaNGwF/MUWFcRGZrNrb29m8eTMAcXFxZGdnW5zowOXn5/Pcc8/h8/nYsGEDp59+utqpi4gcBVVVVfT19QH+n8UxMTHWBpLDosL4GJYTmcad867hX1ve4amm9yiOnsbMmGlcn3c+j299h5OTZ+31uCCHvwAdMhTOVTNOP+jXjYsI47ZLzuTLf/wXDy1ZzUULSvjBhYuZEZFMXlQq4c4Q5kxNIyHcP4p8bvrIOcF/XvEk9b3bCbE5uXz6CcyOnUa4I3i/rznkaad3eAPxoQuxGWpBISIiIiKyOx8GPqz/4HMsZBCRg5efn4/D4cDj8VBVVcUZZ5wRaK8uIjKZfHK0+HgqLIeGhpKdnU1dXR29vb1s3bqVzMxMq2OJiEx4u//fUV5ebmESGQ0qjI8D/5N5HP+TeVzgcXZkKj8sunif+19QWoTL7eHKkw+vnUNjRxdgsqG7iV73IGdNmUPLQCcvtazlhKRC3r3+q4C/dUR1dzM/Xfcv8qLTGPIOAzDkc3PljJMJtu/ZZv0jXq+Pe+59g8wTfogzpJeMqEvJi//hYeUWERERERERkY8FBweTm5vLhg0bGBgYYNOmTeNqlKSIyGgYGhpi/fr1AAQFBTF79mxrAx2CoqIi6urqAH8HEBXGRUSOrKamJpqbmwFITk5W56UJQLcHTzCmafKdB57ltYqN/OrtF3m1dQ0+03dI57rhnGPJmO1k05Q6zn3zV1z1wd18+f0/8dP1j/PrDf/FMIzAXZXPN69my8AOXtm+nrPS5gAwLzaLINv+771YvbqRfz+1HK9vCACPb+CQsoqIiIiITGQ+0xgzi4iMT8XFxYH1yspKC5OIiFhjzZo1uN1uAGbNmkVw8P47XI5FeXl5OBz+z1urq6vx+Q7tc18RETkwy5YtC6yXl5ePq04jsncaMT7BGIZBRkI0tb0tbE6p5ueV1Xh8Ps5Mm3dAx7u9Xl5YVcNt/3mTfpcbR04fzkTw4GN91xZCPpxr/JPf/GemzWbZznryo6bwlRkncknWsQTbnJ/6Q2L69CSioyJ5/PbzuOGmaeTFf/7QLlxERERERERE9iknJ4fg4GBcLhc1NTV4PJ5AcUVEZKIzTZMVK1YEHpeVlVmY5tAFBweTk5NDdXU1/f39NDY2Mn36dKtjiYhMSD09PWzYsAGAsLAwSkpKLE4ko0G/AU0wPp/J2fMKKOiN5U3exoeJicn9DW8wJzaLuXFZ+z3+4SWruf25d/lo6kDPpnBs4R7sif67KReGFTElLoqvZJ/Iio3bSIoLY8PgNu6sfYF+j4ufz7wYm2EjxH5g84THx0fw+L++ic9n4nTaD+vaRURERERERGTvHA4HBQUFrF27FpfLRX19PQUFBVbHEhE5Kurr6+ns7ARg+vTpJCQkWJzo0BUVFVFdXQ1AVVWVCuMiIkfIypUrA5055s2bp5tKJwh9FSeYd2o289tn3gbge184n9nZqfxn20qea15NkM3Ba6f8hJD9zPkdGvSJbV4DT3NIoDD+eu9ajD6o39jNm2+1EHZMN2bUcGD3dZ1bKIyeelCZ7XYbXnbh9jlx2iIP6lgRERERkclgrLQxHwsZROTQFRcXs3btWsDfTl2FcRGZLJYvXx5YH6+jxT+Sk5OD0+nE7XZTXV3NWWedhd2uAUciIqPJ4/GwatUqAGw2G6WlpRYnktGiOcYnmNTYKBw2GzabwdykLGbGTCM1NBaA+KAIHMb+v+SfXzSLu6+5kISIMDAhxGHHFuUJbP+oM/qW7p0A+Az/3TKJwVF8Zup8zpky96Azdw2t5u2tx/PO1hMZ9LQc9PEiIiIiIiIi8umysrIIDw8HoK6uDpfLZXEiEZEjb8eOHTQ0NAAQExNDTk6OxYkOT1BQEHl5eQAMDg6yadMmixOJiEw8FRUVDAwMAFBYWEhkpAZ1ThQaMT7B5KYm8NKPr8T0maTE+r9Rr5pxMosS80gPi8dh2//dg4ZhsDAvE8eHdxkOebwY20KxxbvBC56tYdicPja1DHFBWTGnzMmi3bmDE5OLSAyJOuCcXq+Pvr4hoqPD6B2uw8SL1xxg0N1EqCPt0P8CRERERERERGSvbDYbhYWFrFixAo/HQ01NDbNmzbI6lojIEbX73OKlpaXYbON/rFhRURGVlZWAv536eC/2i4iMJaZpsmzZssDj8vJyC9PIaBv/7wJkhJfX1XHN3U/xdvXHdwoahkFh9FQinaEHfJ7fffmswDzjYYQQuWEK83pn8cgXvoynORSvw+DfDdX8Z10dF2UuOKiiuGma3HjjP7ngwjt54onlpEVcQFbM18iN+3/EhqgdhYiIiIjIJ33USn0sLCIyvhUXFwfWPyqqiIhMVC6XKzCFhNPpZM6cOdYGGiXZ2dkEBwcDUFNTg8fj+ZQjRETkQG3ZsoW2tjYApkyZwtSpBzd9sIxtKoxPMH995QMa2nZy14tL2eXq44vv3snF79xO21D3QZ1nZmYa933ts3x+0SyeuPFLvPXza7jnms9SkpnKLV84jYwpMXh8Pl7cUIfrIN94+XwmVRuaAVi/fht2WzDZsd8hM/pyDEMftImIiIiIiIgcKenp6URHRwPQ0NBAf3+/xYlERI6ctWvXMjw8DEBJSQmhoQc+cGgsczgc5OfnA/7i/8aNGy1OJCIycSxfvjywrtHiE48K4xPMF4+dTWx4KJeeMJfVnZvZ2NdKY38Hy3cc/Juj8pwMfnThyaQnxASee3blBp76oJIvzJ3J/IwpfG/xcQQ7Dq4jv91u4yc/Po/TTy/h6qtPPOhcIiIiIiIiInJoDMMIjBo3TZMNGzZYnEhE5MgwTXNEG/WysjIL04y+oqKiwHpVVZWFSUREJo6uri5qamoAiIiIoLCw0OJEMto0x/gEc9GCmVy0YCYAfZ4hFiXm4fF5MQyDm9Y+ypemHUdRTPohn///nn6LnkEXA8NunrjxS4d8nuOPz+f44/MxTR+bu+7Faw4wPebr2IygQz6niIiIiMhENVbamI+FDCJy+IqLi3nvvfcAfzv10lJNayYiE09DQwM7d+4EYNq0aSQnJ1ucaHRNnz6dkJAQhoaGqK2txe1243Q6rY4lIjKuLV++HNM0AZg/fz52u93iRDLaNGJ8AotwhHD7vC9zV+kV/HbDs7zeWsntNS8c0LGrdm7iqg/+yuNb3h/x/PllRQQ57IQHB3HJH/5JXcuOvR7f2z2A1+vb72sMD3v4/d2/YmPn79nc9Ve29z17YBcmIiIiIiIiIocsOTmZhIQEALZu3Up398FNvyYiMh7s3gp3oo0WB7Db7RQUFADgdrupr6+3OJGIyPg2PDzMmjVrAP/P2Pnz51ucSI4EFcYniQWJuQAsSsw7oP3vb3iD9V1bub3meQbcrsDz3/vMCTzzgy+zalMz67e08vjSdXsc+/yj73PxvJ9x48V/xOfbd3G8oaGd997sY3jIgemzExGUe5BXJSIiIiIiIiIHa/d26qAWvCIy8ezatStQKI6KiiIv78A+Ex1vdv9ZXllZaWESEZHxb/369QwNDQH+n6/h4eEWJ5IjQYXxSeLWWZ/nrcU/4yszTjyg/c9Km0OIzUmQzcHiN34xYo7ylJhIji/IIi4ilDPm7PmmsmL5JgDq1jcxPOQZsc3r9fHSS+tZvaaRGTOSKMiZwzN3fY0c5zNEB5cc+gWKiIiIiExgJuDDsHwxrf6LEJFRU1Ly8e/gFRUVFiYRERl9u88tXlpais02MT8GnzZtGmFhYQDU19fjcrk+5QgREdkb0zRZtmxZ4HF5ebmFaeRI0hzjk4RhGIQ5gg94/3OmziMvOo1L3rsLgDWdmylLyAbAbrPxp6vPB2B7Zw+/+s9bLMjN5PjCLIa9/Zx8bTBBMXnMnjOXkLCRc4Y/8+wa7rrrVQwDHvj7V/nlLZ8bnQsUERERERERkQMWFxdHWloaLS0ttLa2smPHjkB7dRGR8eyTrXDnzp1rcaIjx2azUVhYyMqVK/F4PNTV1Y248UlERA7Mpk2b2LHDP3VwRkYGqampFieSI0WFcdmn7IgUvpFzGtsGdnJRxoK97vP7Z9/hpbV1/PPdteQWJpM7/TmmpW0l7bIUTp5+1R77h39YKLfbbQQF2Y9ofhERERGRicJnGvhMw+oYYyKDiIye4uJiWlpaAH8L3hNPPNHaQCIio2D9+vWBkdMlJSWBEdUTVVFREStXrgT8U2OoMC4icvA0WnzyUGFc9skwDC7/lNbreVMSeWltHSmJUaxrbiUz07vf/U89tZiUlBiiYkyi4nqB6NELLCIiIiIiIiIHrKioiFdeeQXwF8ZPOOEEDEM3wIjI+GWaJsuXLw88ngzFjYyMDCIjI+nt7aW+vp6hoSFCQkKsjiUiMm7s3LmT+vp6AKKjo8nPz7c4kRxJE3NyFTkqtu3oYv70qbz4oyt46vov8dnZRexoPYeZUTdybvqf9nqMYRgUFMfQaH6ed5tOpbXv+aOcWkREREREREQAoqKimDZtGuD/QLC1tdXaQCIih6mxsZGOjg7AXzBOSUmxONGR91E7dQCfz0dNTY3FiURExpfdb6gqLS3FZlPpdCLTV1cOSWtnL5/51UNcete/WNe4nbCgIG499zT+fsmXKEs5nyB7BHXdz9M1vGWPY93eLty+TgD63BuPdnQRERERkXHno1bqY2ERkYmluLg4sF5RUWFhEhGRw7d7caOsrMzCJEdXUVFRYL2qqsrCJCIi44vL5WLt2rUAOBwO5s6da20gOeJUGJ/EfrvhWU549Wb+s23FiOfbWzp57+UKhl3ufR47MOzG7fW3Te8aGAT8dyQ+94+lvPDP9/mg/Y+83fZ/PLP1Gnymx3/MgItvXfswX73iedLsPyMr5mtkRl9xhK5ORERERERERD5NQUFBYFRMVVUVpmlanEhE5NB0dXVRW1sLQGRk5KRqhTt16lSio/1TVjY0NDAwMGBxIhGR8WHNmjUMDw8DMHPmTEJDQy1OJEeaCuOT2H+bVjDoHea55lWB57xeH9++4A/c8s2HuO+25/Z5rNvj5YcXnsTNFy/m4oUzAXj/tSr+9LOnuesnT9HR3AeAzXAGjqmp3c6GDc20tHRR+UEW2bHfwYYD0/QdoSsUERERERERkf0JCwtjxowZAPT09LB161aLE4mIHJoVK1YEbu6ZP38+drvd4kRHj2EYgVHjpmlSXV1tcSIRkbHPNM0RnUbKy8stTCNHiwrjk9h38s+iKHoqV2Wf8vGTponX4y9Uu92evR63fst2Pve7R7j1qTeZlhSL88M3mQkpMdhsBja7QXHIFZyadivnZ9yHzXAAUFw0leOPz2NmSTonn1RAW/8rvLGllA9aPovP3PfodBERERGRyc7q9ulqpS4ysamduoiMd263mzVr1gBgt9uZN2+exYmOPrVTFxE5OPX19XR2+qf9zcrKIikpyeJEcjQ4rA4g1vlcxjF8LuOYEc/ZHXZuf/Jaqtds4bgzZu71uL6h4Y/XB/3rna5GNsf9iZteyiEn+CKSp8QC0wBYsWITf/zja5x4Yj43/+yCwLHVO5YCXvqGa3B7Owl26IeOiIiIiIiIyNGWn5+Pw+HA4/GwYcMGzjzzzEk10lJExr+KigoGB/3TPRYVFREeHm5xoqMvNTWV2NhYOjs7aWxspK+vj4iICKtjiYiMWcuWLQusa7T45KER47KHqVmJnHrhfELCgva6fUFuBr/78tn8+MKTmRofBUBF52M0DXxAjedhopJH7v/vp1ayrWkXj/xjKV7vx23Tp0VfTUr4ueTF/UhFcRERERERERGLBAUFkZeXB8Dg4CCbNm2yOJGIyIH7ZCvcsrIyC9NY55Pt1Dds2GBxIhGRsaujoyPwnjc2Npbc3FyLE8nRosL4BPZeRy0f7Kjf7z5b+3ewua/9oM5rGAaFU5P59TNLOP/XD/P2hs1kRhyL3XCSGjqHEHv0iP3PPXcOiYmRfPbCUuz2j//JhTqnUJL0azKiv3RQry8iIiIiMtlY3T5drdRFJr7d26lXVlZamERE5OBs3bqVtrY2AKZMmcKUKVMsTmSd3X+Wq526iMi+7T5avKysDMPQ77qThVqpT1Dvd9Rx/aoHAfhL6VXMi5++xz51Pdu5bOkfMTH5a9nVzInLOuDzd/UPMuzxAtDa1cuC7GM40XyEjLQUDGPk/RaLFuawaGHOPs/l9naxqeuvhDunMzXq4gPOICIiIiIiIiKjIzs7m5CQEIaGhqipqcHtduN0Oq2OJSLyqTRa/GNJSUkkJCSwY8cOtm7dSk9PD1FRUVbHEhEZUwYHB1m3bh3g75w0e/ZsawPJUaUR4+NU21AX//Per7hk6W/Z5erdY7vd9vGX1mHb+7xgXcP9+DAxgZ3DfQf1+sUZKfzqS2fyg/NP5ILyIn561d/4xlm3c9eP/31Q5wHY0v0AW3sepHrnz+h3bz7o40VEREREJjrTNMbMIiITk8PhID8/H4Dh4WHq6/ffgU5EZCzo7u6muroagPDw8EAr8clq93bqoFHjIiJ7s3r1ajweDwCzZ88mJCTE4kRyNKkwPk6t2rWR5sGdbBloZ03XnnN/lcVn89eyq7mv/BpmxWbu9Ryl8TP4+cyL+FHxhRwbk8tPr7qfb5z9e5obOwBwe734THOP4/67ooqTb76Hpp3dXHL8HJx2O9sa/O2KNte38sorFbS0dB3wtUQFFwEGQfZEgu2JB3yciIiIiIiIiIyekpKSwHpFRYWFSUREDszKlSsxP/z8ct68edjtex8gNJmonbqIyL75fD5WrFgReDzZO41MRmqlPk4dm1jIwoR8HIadBfF5e91n7qe0Ru/1DLJloJXpESk0VLWw4q0aAN5+fh1FFxRz2UNPEBcWxtNXX0LV1jYefGsVFy0o4R9vr6Wjp5+/v7mSr55aDsBP/nI57764jsbeQf7vV88TExPGv5+89oDmZUgKP5XjM97GYYRjt4Ue5N+EiIiIiIiIiIyGadOmER4eTn9/P/X19QwNDWkEjYiMWR6Ph9WrVwNgs9mYP3++xYnGhoSEBJKTk2lra6O5uZnOzk5iY2OtjiUiMibU1NTQ3d0NQE5ODvHx8RYnkqNNhfFxKsoZxq9nX3HIx6/YWc+vq59k+1AnALeXXEXpifl0bO/i+LNn8UJjI4NuD83dPWzcsZPf/HcJG1t3UtvSwQ8uOJE/vriUixfOCpwvb2Y6eTPT+fVvngfAbj+4ZgTB9oRDvhYRERERkYnOh4EP69uYj4UMInLk2Gw2ioqKWL58OV6vl5qaGs25KCJjVmVlJQMDAwAUFhYSGRlpcaKxo6ioiLY2f4fPqqoqjj32WIsTiYiMDcuXLw+sl5eXW5hErKLC+CRjmiZe08fPKh6hxzMYeP76ivv4xx03khmRDMBnkyKoa9tBUmQEs6ekcvrsXBpeep8zZudyxuw8Tp+VQ0Pv6zT3r2RK+Md3Y3772tMoK5tBYUHaAY0WFxEREREREZGxo6SkJPCBYWVlpQrjIjImmaY5orihVrgjFRcX88YbbwAqjIuIfKS1tZUtW7YA/u4a06dPtziRWEGF8XGmeWAnL21fxQlJJWRHph7UsaZpct3qe1nTuYn00PgRhXGAF7av4us5ZwEQFxbKby44M7Dta6cdw9WLy7Db/CPB63pe5J22/wPgwswHiAueAUBIiJMTT8g/5OsTEREREREREetMmTKFmJgYurq62LRpE/39/YSHh1sdS0RkhKamJrZv3w5AamoqU6dOtTjR2BIbG0taWhotLS20trayc+dOtQsWkUlv2bJlgfWysjIN7pykDq7ftVjuF1WP8ffNr/GDdQ8c9LGDXherOjfiw0d2ZBrfzD4bx27/BGbH7P/umI+K4gDOD+cCN7BhN4IAGBhw4fX6DjqXiIiIiIjsn880xswiIhObYRgUFxcD/hvsq6qqLE4kIrKnT44WV3FjT0VFRYH1yspKC5OIiFivv7+fiooKAIKDg5k1a9anHCETlQrj40xaaBwAqaGxB31smCOE6/M+w7EJhXx5+ilMD0/Gg7+QHWpzUhqfM2L/92oaeX5VDT6fuce5pkeezDlT/8iFmQ8QHZTO2+/Uct5n7uDKK+9jeNhzCFcmIiIiIiIiImPBR4VxUDFFRMae3t5eNmzYAEBYWNiIn1nysd0L47rJSUQmu1WrVuH1egGYO3cuQUFBFicSq6gwPg50DvfRPdwPwA8LL+be0mv57ewrD+lcn01fxP/NvpzpESlU9WwLPD/oc7PD1RN4vKGpja/d8zQ/+MeLPLtqw17PlRI2i9jgLADWr9uKz2eyddsuuroGDimbiIiIiIhMXLfddhuGYXDdddftdfs111yDYRjccccdI553uVxce+21JCQkEB4eznnnnUdTU9OIfTo7O7n00kuJjo4mOjqaSy+9lK6uriNzISKTQHJyMomJiQBs27ZN308iMqasWrUKn88/2Gfu3Lk4HJotdG+io6NJT08HoKOjg/b2dosTiYhYw+v1smLFCsDfHamsrMziRGIlFcbHuLqeZi5455dc8O4vaexvw2GzUxCdTrDdSVtXLw8vWU1rZ+8hnftzGYtGPO7dbc7xEKcD24ctiMKDP/3Omf/5n2M444wSrr32VJKSog4pj4iIiIiI7J1pGmNmORQrVqzgnnvuYebMmXvd/p///Idly5aRlpa2x7brrruOp59+mscee4x3332Xvr4+zjnnnMDd/gBf/OIXWbt2LS+99BIvvfQSa9eu5dJLLz2krCLip1HjIjIWeb1eVq1aBfiLG6WlpRYnGtvUTl1EBDZs2EBfXx8AeXl5xMTEWBtILKXC+Bi3ZaAdj+ll2OehaWBH4Pl1jc0s/t/7+PV/l3DqL+7ba7tzgGGPB9Pc+7YoZxjX5pwDgA2DCEdoYNv05HieuPFLPHTtxSyembPX43eXmBjJ9793NhecP+9gLk9ERERERCa4vr4+LrnkEu69915iY/ecEqq5uZlvfetb/OMf/8DpdI7Y1t3dzf3338/vfvc7Fi9ezJw5c3jkkUeoqKjgtddeA6C6upqXXnqJ++67jwULFrBgwQLuvfdennvuOWpra4/KNYpMRCqMi8hYtHtxo6CggKgoDdDZn8LCwsB6VVXVPj8nFhGZyJYtWxZYLy8vtzCJjAUqjI9xJyXN5OoZp/P17LNYkFAAgMfr49I7Hx+x37vVmwDYtrOLk352N6f/4n6efH89ZT/4I1+68zG8Ph9bO7po7+4bcZzD5m815MNkY08LT75fwb8/qMDnM8lNS2BO1pSjcJUiIiIiIrI/PtMYMwtAT0/PiMXlcu0z+ze/+U3OPvtsFi9evOd1+XxceumlfO973xsxoukjq1atwu12c9pppwWeS0tLo7i4mKVLlwLw/vvvEx0dPeIDjmOOOYbo6OjAPiJy8OLi4pgyxf+ZQFtbGx0dHRYnEhGB5cuXB9bVCvfTRUZGMm3aNAB27dpFa2urtYFERI6ypqYmmpubAf90QZmZmRYnEqtpApYxzmGz8+WsU0Y899yqaj55b98373+GedOnsHZzC94P7/x7YU0tXp/J+i2t3PLkGzz5QQVBDjv/+f5lpCfEALAosYC/NbxCt2eAB2rfZPl/3ADERYRxUvGMI315IiIiIiIyDn00X+VHfvazn3HzzTfvsd9jjz3G6tWrA/O5fdKvfvUrHA4H3/72t/e6vbW1laCgoD1GmicnJwc+2G1tbSUpKWmPY5OSkvThr8hhKi4uDnyQWFlZyUknnWRxIhGZzJqbm2lqagL87wUyMjIsTjQ+FBUV0djYCPhHjaemplobSETkKNr9hqry8nIM49CmB5OJQyPGx4HHt77DLyofY/vALtweL1Pi9t4iaNWm5kBRPDMxhrPn5ge2PflBBQDDHi/n/d+DPL+qBtM0eez1KnZ1eQBoHG7FZhjYDIOk6PAjfFUiIiIiIjJebdu2je7u7sBy00037XWf73znOzzyyCOEhITssX3VqlX84Q9/4IEHHjjoDydM0xxxzN6O/+Q+InLwioqKAt9HlZWVasErIpb65Ghx/T9/YAoKCgJ/V2qnLiKTSW9vL1VVVQCEhoaOmCpIJi8Vxse4tqEu7qx7lpdbV/OFf/+VhT/6M8FOB/+64YvMzUojKSqc/CkJJEWFg91H0JwuguZ1cVxJOqfNymVGSjwRwUEjzunx+XhxTQ3Vze08UPkO7iEbQzuCmeWbzXM3Xc5zN11OUXrKiGNM02Rjz6s09LymN08iIiIiIkeZaRpjZgGIiooasQQHB++RedWqVbS3tzNv3jwcDgcOh4MlS5Zw55134nA4eOutt2hvbycjIyOwfcuWLdx4442Blp8pKSkMDw/T2dk54tzt7e0kJycH9mlra9vj9Ts6OgL7iMih+WQL3u3bt1sbSEQmrf7+/kBxIyQkhJKSEosTjR/h4eFMnz4dgK6urkAnEBGRiW7FihX4fD4A5s2bh9PptDiRjAUqjI9xsUERZIUnY8Ogu8VgyO1hWf1Wbv33G6ze3EJ7Tz81zTto7+nHluDGnujGHu/mP5tXExkazH++fxmP3fBFpsRGMjUuiuMLsgD/6HKP4SZibichCUMYXoN54TNIT4gJtFnf3bb+pbzV+r+82fpzmgaWHeW/BRERERERGW9OOeUUKioqWLt2bWCZP38+l1xyCWvXruXyyy9n/fr1I7anpaXxve99j5dffhn4+MOLV199NXDe7du3U1lZycKFCwFYsGAB3d3dI0aRLVu2jO7u7sA+InLodh9ZU1FRYWESEZnMVq1ahdfrBWDu3LkqbhykoqKiwPpHNxiIiExkHo+HVatWAf4OY6WlpRYnkrFCc4yPcUE2Bw8ccz1DHjf/u/11Kr1tPPL2Gnb1De6xr2+XE5/LwBZsYk90BZ7/0aMv09LZC8C0JP/cfH1Dw1z57N8JmgEGYPbbWVG3jUsWzdlrjmD7R+3bDYJtkaN6jSIiIiIiMvFERkbu0aouPDyc+Pj4wPPx8fEjtjudTlJSUsjLywMgOjqaK6+8khtvvJH4+Hji4uL47ne/S0lJCYsXLwb87UHPOOMMrr76au6++24AvvrVr3LOOecEziMih66goIDnn38en89HVVUVp556KjabxlmIyNHj9XpZuXIloOLGocrPz+e5554L/Cw/7bTT1IpeRCa0yspKBgYGACgsLCQqau9TFMvko99kxgG7YSPcGcy7tY1s3dG116I4AG4b5qAdgLDE3efb+7j1eU5qIpedMBfDAHv8EIYBpgmexgi+emr5PjPc9/ZOnnrrLBLdN5MUWrTP/UREREREZPSZpoFvDCwftVI/mm6//XbOP/98Lr74YhYtWkRYWBjPPvssdrs9sM8//vEPSkpKOO200zjttNOYOXMmDz/88FHPKjIRhYaGkp2dDfjnady6davFiURksqmpqaG31z/oJzc3l5iYGGsDjUP6WS4ik4lpmixb9nHn4/Lyfde+ZPLRiPEx6qltS/lz/fN8ZuoxXJt7LgAl6Sm8V7uFBbnpTI2LYWVDE5s7Pp5rzwA81RGc99ksTk+bDcA7GzZTsaU1sM/ikmymp8Tx5AcV+AbsEOuGPidXH7+Awql7n3/PNE0eWbEWnxnC02t28RnVxUVERERE5BC89dZb+93e2Ni4x3MhISHcdddd3HXXXfs8Li4ujkceeeQw04nIvpSUlFBXVwf426l/NO+4iMjRsPt0KWVlZRYmGd+KiooCP8urqqrIzMy0OJGIyJGxdetWWlv9dbG0tDSmTp1qcSIZS1QYH6Oeb1nJkM/Nc83LA4XxP119Pu3dfaTERI5odXPaz++ltbsPgMXT8/nZzPMA8PlMbn/+HXwfDhgPDXIyc1qq/1zfPovrqv7qPz57JnNSRrYw3J1hGFx/0iKeq6zhqgVqVSQiIiIiIiIymeTm5uJ0OnG73VRXV3PWWWeN6NogInKktLa2BkY3JyYmkpWVZXGi8SsvLw+73Y7X62XDhg2cccYZmhpDRCakT44W19QRsjv9zzdGXTXjNIqjMwJFcQC7zUZqbNQe38R/uPI8clLiOWVmNv/3pbMDzy+r38rG7TsDj2dNSwmsp0ZHYzf8X/4XW9Zw3aoHWb5z4z7zfHVRKc9ccynHztCdhCIiIiIiR5uJfwokyxer/yJExBJBQUHk5eUBMDg4SENDg8WJRGSy2L24UVZWpuLGYQgODiYnJweA/v7+vXbqEREZ77q6uqipqQEgIiKCoiK1QJaRVBgfoxYk5PPX0m9xzpRPbw9UMDWZf3//Mm6//Fycu92xXbFlOwb+Fuu3fOE0fnbRqaxqaMI0TaaExfP38uu4fNqp+D6cJ/BbK/7G/RvfOEJXJCIiIiIiIiLjVXFxcWC9srLSwiQiMlkMDAwEft4EBwczc+ZMixONf7v/LK+qqrIwiYjIkbFixQpM039L9/z589XlSPagwvgYdX/DK5z25k94cut7h3yOfy1djwnYbAbTk+I565d/4yt/eoLf/HcJANMjUrgq+1TuP+brOA3/D4dXtu35hqim+1n+Xn8K77b95pCziIiIiIjIofNhjJlFRCan7OxsQkJCAKipqcHtdlucSEQmutWrV+PxeACYM2cOQUFBFica/3JycnA6nQBUV1fj9XotTiQiMnqGh4dZvXo1AHa7nXnz5lmcSMYiFcbHqKeb3mfA6+K/zR8c0vFuj5eegSEAvD6TF9fUBNoe1rbs4LH31nHFn55g9aZmSmIyOD38GIY7glm/coiKltYR59rY8wpec5i6nhcP55JEREREREREZJyy2+0UFBQA4Ha7qa2ttTiRiExkPp+PlStXBh6XlpZamGbiCAoKIjc3F/BPjbF582aLE4mIjJ7169czNOSvixUXFxMREWFxIhmLVBgfo76ecxa5kVO4asZp+EwfPtN3UMd7fL5Au4jEqHCuWlzG2XPzmZmZyq1fOJ1fPf0mKxua+MEjL/LStnW82Pc+tlAvTk8w8eFhI841N/4KUkJnsSDxO6N2fSIiIiIiIiIyvpSUlATW1U5dRI6k2tpauru7Af8o57i4OIsTTRyaGkNEJiLTNFm+fHngcVnZp09TLJOTw+oAsndnp5VydlopHUPdXPjurbh9Hv4y/5tkhCce0PGhQU7+9q2LWde4nfPLiogMDea2L50Z2L4wbxrvVG+mtauXf25Yhhcfjggf//zqxaRFR9Hv7qC25znSwxeQFjaHtLA/HqlLFRERERGRT2GaBqZpfRvzsZBBRKyTmZlJREQEfX19bNy4kaGhoUB7dRGR0aTixpGTnZ1NcHAwLpeLmpoaPB4PDofKBCIyvm3evJmOjg4A0tPTSUtLsziRjFUaMT7GbejZxg5XD93uAdZ3NR7UsTMzU7n0hLlEhgbvse0Xnz+NsCD/fDKVH3Rj//CfQvXANgDebf8tq3f+jRebbji8CxARERERERGRCcFms1FUVASA1+ulurra4kQiMhG1t7fT2NgIQHx8PDNmzLA20ATjcDjIy8sDwOVy0dDQYHEiEZHDt2zZssB6eXm5hUlkrFNhfIw7Jj6P89LKODGphFdaV/O/lf9k2Oc57PP+5LGXGRh2A+AeNPB82Kr9vo2vs3rXJiIdyQBEOJIO+7VEREREREREZGJQO3UROdJ2L26UlpZiGOpYM9o+uskJoKqqysIkIiKHb9euXdTV1QEQFRVFQUGBxYlkLFNhfIwLtjv5fuHnKIrOYHVnA6+0rmF91+bDOuegy8071Y0fPzFsx9drB6Dd1cNf617lmKTvcF763Zyb8efDei0RERERETl8PtMYM4uITG5paWnExsYC/paVfX19FicSkYlkcHCQiooKAIKCgpg9e7a1gSaoGTNmBKbCqKmpwe12W5xIROTQ7T79RmlpKTabSp+yb/rXMQ4MeodZvrMOh2HDbth4efvqwzrfwPDwJ54xMRxm4NFpabOwGXaSQgtx2sIO67VEREREREREZOIwDIPi4mIATNPUSEMRGVVr1qwJFGlnzZpFcPCeU0TK4bPb7YERlW63m/r6eosTiYgcGpfLxZo1awD/VBFz5861OJGMdSqMjwMrdtaxYlc9HtOH1/Tx4vZVbOlrO+TzRYWGjHhsxLqxhflbqc/05fC5jGMOK6+IiIiIiIiITFwfFcZB7dRFZPT4fD5WrFgReFxWVmZhmolP7dRFZCJYu3Ytwx8OBp05cyZhYRrsKfunwvg4UBIzjWnhSUQ5Pv6GvqXqXwd1js7hPtZ1bsFn+nA67KTFRTFjSguXnv4606PbMd0Gpg/OnTF7lNOLiIiIiMjhMs2xs4iIJCUlkZSUBEBTUxOdnZ0WJxKRiaC+vp6uri7A3+o7ISHB2kATXFZWVqCAVFdXh8vlsjiRiMjBMU1zRBt13VAlB0KF8XGgY6iL7uEBbBgE25wA1PY2Y+7jU6kdvf28tr6eAZe/7ZDb5+GL797J1cvu5v6GNwF48Fv/w9c/s5LZuQ1cfNy7eBrCMAdsLN3sn7+8a3gLS9vuYPvAuhHn9pqab0ZERERERERksispKQmsa9S4iIwGFTeOLpvNRmFhIQAej4e6ujqLE4mIHJz6+np27doF+G/2SU5OtjiRjAcqjI8DD2x+nU53H12eftJDE8gIS+TrOWdhGMYe+/YNuTj15/dx/QPPccwP/8iazc14fD563IMA7HT1ApAcE0F6zIkA1GydiiN7AFuEjwpnHZ3DfbzS8As2dP+b/1TfwEDfEADLO/7C3+tPZln7n47OhYuIiIiICACmaYyZRUQE1E5dREbXjh072LRpEwCxsbFkZ2dbnGhyUDt1ERnPdr+hqry83MIkMp6oMD4OnJo8GxsGNgw29m+nw9XN+VMXjNjH5zP5xZOv87nfPILH558v3DThur89S7DNyR/mfoWvZJzMN3NPB6DfvRmbEURlzTX8Z8mxOFsisRs2drh7uGHVw/Q3RQOwa2MI2zZ1ANDYtwSAzR/+KSIiIiIiIiKTU0xMDFOnTgWgvb2d9vZ2ixOJyHi2e3GjtLQUm00fWx8NGRkZREREALBx40aGhoYsTiQicmA6OjpoaGgA/O9Lc3JyLE4k44XeYYwDSzoq8WES5ggGYMjr5ucVjzLg+Xjel83tu3h86XqaO3tGHLurf5A/vvgeX7ntv/z5vgr+8Ya/NXr1jpvZ2vMQcwr/xbrfX8/Sr/6Akuh0AExMzpv5U9r//jkSN11NTvEUABYkXU96+AIWJV1/NC5bRERERERERMYwjRoXkdHgcrlYt87/maXT6WTOnDkWJ5o8dm+n7vV6qampsTiRiMiBWbZsWWC9rKxMN1TJAbP0X8rNN9+MYRgjlpSUlMB20zS5+eabSUtLIzQ0lBNPPHGPli4ul4trr72WhIQEwsPDOe+882hqajral3JEuU0vAEGGf35xE5N3d2zg/Z0fv1HJSIihPCed+MgwEiNCAs/bgHtfXxF4/OdX3gcgIijvwz8/vovm13Mv5eczL+L2eZcRnxzND2/7Dl+96fzAD5T08HJOn/Jr0iNGjlYXEREREZEjy+r26WqlLiJ7U1RUFJjmrbKyEtM0LU4kIuPR2rVrGR4eBmDmzJmEhIR8yhEymna/yUnt1EVkPBgcHGT9+vWAbqiSg+ewOkBRURGvvfZa4LHdbg+s//rXv+b3v/89DzzwALm5udxyyy2ceuqp1NbWEhkZCcB1113Hs88+y2OPPUZ8fDw33ngj55xzDqtWrRpxrvHsBwUXsTChgLzIKXxz5V/o97qIdoQzK2ZaYB+nw859X/9c4PF7NY0Me7xMjY/iwt88Enj+o99R8+JuIj3yC4Q6/W3Pdrp6eXLrB8yLm05sUMRRuS4RERERERERGb8iIiLIyspi06ZNdHZ20tzcHGivLiJyIEzTHNFGvayszMI0k9PUqVOJjo6mu7ubTZs2MTAwQFhYmNWxRET2ac2aNbjdbgBmz56tG6rkoFjeW8DhcJCSkhJYEhMTAf+bojvuuIMf/ehHXHjhhRQXF/Pggw8yMDDAo48+CkB3dzf3338/v/vd71i8eDFz5szhkUceoaKiYkSxfbyLdIZydloppgmD3mEM4HdzryAhOHqfxyzKn8ZJxTP46WOvBp6zxQxjS3Txu2eWYBgG4UFZ2D4chX5X7Uvc3/Am31n5AC6v+0hfkoiIiIiIiIhMAGqnLiKHo6GhgV27dgGQlZVFUlKSxYkmH8MwAu3UfT4f1dXVFicSEdk3n8+nG6rksFheGK+vryctLY2srCw+//nPs2nTJgA2b95Ma2srp512WmDf4OBgTjjhBJYuXQrAqlWrcLvdI/ZJS0ujuLg4sM/euFwuenp6Rizjwb0NL+HDxAS29nd86v4vr65hw7Y2AIwID8Fl3QTP6eH5prV77JseFg9Ackg0dnVHFBEREREZU3ymMWYWEZHdFRQUBDr2VVVV4fP5LE4kIuOJihtjg9qpi8h4UVtbS3d3NwDZ2dkkJCRYnEjGG0sL4+Xl5Tz00EO8/PLL3HvvvbS2trJw4UJ27txJa2srAMnJySOOSU5ODmxrbW0lKCiI2NjYfe6zN7fddhvR0dGBJT09fZSv7MgIdQQDYMMg3B68331dbg/fe+RFPprdqyAtkY8eXFBWPGJfr2+A42JX8afZSdyUU8tbW+awve8ZANoHq3hy84W80fJTTFO/3IqIiIiIiIjIx0JCQsjJyQGgr6+PLVu2WJxIRMaLXbt2UV9fD0B0dDS5ubkWJ5q8UlNTA5+xNzY20tfXZ3EiEZG9W7ZsWWC9vLzcwiQyXllaGD/zzDP57Gc/S0lJCYsXL+b5558H4MEHHwzsYxgjRySYprnHc5/0afvcdNNNdHd3B5Zt27YdxlUcPTfmX0BsUAQ+TP7f+gf58fqHMT+aNHw/DOCxa77MAwu/wZ3zv8K35p1MXV0rr7+xAa/XR3Pvk2zp+Rtdg3fTOfQuJl4+2PQEnX2DVHb8lGiq6Rt8ml73vm82EBEREREREZHJafeRhhUVFRYmEZHxZPfR4qWlpdhsljc3nbQMw6CoqAjwf7a+YcMGixOJiOyptbU1cBNmfHw8M2bMsDiRjEdj6t1GeHg4JSUl1NfXk5KSArDHyO/29vbAKPKUlBSGh4fp7Ozc5z57ExwcTFRU1IhlPIhyhnF6ytzA47faK3ildQ1fX/FnXt6+esS+wU4H15xaTkRwEN8+a6F/rpjoqRyTkENnZz/f/NZD/PKXz/D448uJDCrAwI7bF8KrOwqp6Uvmry+m84fn3yXkw38hoTYHkc6UwPl9ppd1ux5hzc6H8Jmeo3L9IiIiIiKTlWmOnUVE5JNyc3MJCgoCoLq6Go9HnxOIyP4NDw+zdu1aABwOB3PmzLE2kKiduoiMeZ8cLf5pg2hF9mZMFcZdLhfV1dWkpqaSlZVFSkoKr776amD78PAwS5YsYeHChQDMmzcPp9M5Yp/t27dTWVkZ2Gei+VbuOWSGJQYe/6LqMSq6G7ltwxM09+/gxZaVPLblbXrdA3zzzIUsve2bXLV4ZDsJwzCw2fw/MBwOG7GhpRyf8Q5J0f9g09BC/rX6DLa3JTIlPppZyb8lI+pySlP/hmF8/M9la/97rNhxN6t23svm3reOxqWLiIiIiIiIyBjkdDrJy8sDYGhoiIaGBosTichYt27dOlwuFwAlJSWEhYVZnEiSkpICc/Vu3bqVnp4eixOJiHysv78/0JkoODiYWbNmWZxIxiuHlS/+3e9+l3PPPZeMjAza29u55ZZb6Onp4ctf/jKGYXDddddx6623kpOTQ05ODrfeeithYWF88YtfBPxzz1x55ZXceOONxMfHExcXx3e/+91Aa/aJ6tTUOdzX8MqI5zyml2tX30O7qwuABze/zn+O+zHBducex8fGhnPP3V+hpaWL8nJ/q4kgeyzzE2L59/GF9Ja6aF7cTV5aIoZhkBf///Y4R7QzHbsRhGn6iAmeNurXKCIiIiIiH/OP1rb+bniNGBeRfSkuLg58WFlZWRkolIuIfJJpmiPaqJeVlVmYRj7yUTv1JUuWAP5R4wsWLLA4lYiI36pVq/B6vQDMmTMn0K1I5GBZWhhvamriC1/4Ajt27CAxMZFjjjmGDz74gMzMTAC+//3vMzg4yDe+8Q06OzspLy/nlVdeITIyMnCO22+/HYfDwcUXX8zg4CCnnHIKDzzwAHa73arLOuIuz1qMx+fl7fYqopxhrO3aBIwc/t/rGeTZ5mV0uLq5NOtkIhyhI86RmZlAZmbCiOdM08eAu5HwkAySE8Nw+TyE2J00dv+dhs67yIy6nMzoy/GZQ8QGZ/GF6U8BJiH2mCN7wSIiIiIiIiIyps2YMYPQ0FAGBwepra1leHhYH1iKyF5t3ryZHTt2AJCRkRGYUlOsV1xcrMK4iIw5Xq+XlStXBh7rhio5HJYWxh977LH9bjcMg5tvvpmbb755n/uEhIRw1113cdddd41yurHtqhmnc9WM0wG4u/5FHt7yJq2uLr6dew5b+3eQGZ7EHXXPALCxdzsnJpdweuo8gmx7/5LvGlzO6tarMHFj2Obyo+ppJARH8K/jrqe59wl85iBNvY+xtedhvGY/c1PuIz50YrarFxEREREREZGDY7fbKSwsZNWqVbjdbmpraykpKbE6loiMQRotPnYlJCSQnJxMW1sbzc3NdHZ2Ehsba3UsEZnkqqur6e3tBSAvL08/l+SwjKk5xuXQzI/LCaynhyXy3YILyYucGnhu2a46flX9b/5Q+999nqN94DVM3AC4vRsxMelw9bLT1UdO7PVEBc8kPeoSvGYfYNI3XH/ErkdEREREREYyTWPMLCIi+1JcXBxYr6ystDCJiIxVnZ2d1NbWAhAZGUl+fr7FieSTioqKAutVVVUWJhER8Vu2bFlgvby83MIkMhGoMD4BJIREBdbXdPrbqpfEZPKFjOOZGzM9sG1d1+Z9niM98vNEBRUTGVRAceKdnJ46i7PS5pAcEk1S+KmUp/2LpPDPEhV6FlMiv8TUyIuP3AWJiIiIiIiIyLiTmZkZmP5u48aNDA4OWpxIRMaaFStWBNbnz58/oafDHK92v8lJhXERsVpzczNNTU0AJCUlMW3aNGsDybinwvgEkBISS2ZYEk7DzuyY6fys4h9csewPmJjcMusyMsMSAciNnIJpmvz+2be55A//pLqpPXCO8KDplE95gmOmPEVc6GzeaqvihZY13FP/WmCf17f/hIqe5dT01WO3he6RQ0REREREREQmL8MwAiMNfT4f1dXVFicSkbHE7XazZs0awD/9wrx58yxOJHsTGxtLWloaAK2trezcudPiRCIymX1ytLhhqIuZHB4VxieAYLuThxfcwMsn/YKmgR283raO+r4WHtv6Ducs+TlbBjoAeKV1DQ/WvckDb66iYksrD7y5ktWbmvH5zMC5+oY30utag8Pw3635TNNKNvW1ARBij/nw9aIZdDernbqIiIiIyFFijqFFRGR/dp9XvKKiwsIkIjLWrF+/nqGhIcA/Kjk8PNziRLIvaqcuImNBb29v4GdQaGjoiPeZIodKhfEJwmbY6PcM7dEu3feJj67+vu0VTi6eQUx4CEtrt3D5Hx/nLy+/D8CAeysfNJ9PRftXOM7XD0CPZ5DXtvt/kV2c9gvOmPJ7jk36Ou81ncn7zeexY+CdveYZ8vawre99PD7XaF+qiIiIiIiIiIxRqampxMXFAdDY2Ehvb6/FiURkLDBNk+XLlwcel5WVWZhGPs3uhfHKykoLk4jIZLZy5Up8Ph8A8+bNw+l0WpxIJgIVxieQX1Q+xpKO/b9R8eLjd185h1d+cjVDw24AdvT6i+A+04WJF4DtTV14W4OIJ5oz0+YA4LCFMDW8FNMcwsR/rMvbvpdXgee3fYuXW77PO23/NyrXJiIiIiIiIiJjn2EYmp9WRPawZcsW2tv9nyNOnTo10Kpbxqbo6GjS09MB6OjoCHztRESOFo/Hw6pVqwD/+8v58+dbnEgmChXGJ5AwRzAANgzs+/nSPrblbUKCHNx55WdIiorg3epGGts7iQjKYW7K/eTF3orDcxpTW6fxpzlXUdW9jR+vfYyG3lYAYkJmU5L4O/Ljf0pqxGf2+hrDvgEAXN6+Ub5KEREREZHJxzSNMbOIiHya3dtcaqShiAAaLT4OqZ26iFipsrKS/n7/oM7CwkKio6MtTiQThcPqADJ6flz0P5yVNp/i6EyW76zl5spHd9v68QdYPtPH8p21mGYw7T3+wvU71ZuZlhRLfOhC4kPhL9eA2+vlpfU13NL2BCYmg95hfjfvMgBSIs7ab5azpt5OU/9ypkeePOrXKSIiIiIiIiJjV0JCAikpKbS2ttLc3MyuXbsC7dVFZPLp7u6mpqYGgIiICAoLCy1OJAeisLCQl156CfAXxk888UQMQzdJisiRZ5omy5YtCzwuLy+3MI1MNBoxPoGE2INYmFBAlDOMcHswNgNsgfcqJnbDJNIWxL2bXuS7a+9jV0Q7Z8zJY35+ChWRq/lz3TP4TB9dQ2uo3/U77nn1GX5e9xjmh/OUl8dPY2PnnWzpfgDTNPeZAyA6KJ2i2M8S6og9shctIiIiIiIiImPO7u3UNWpcZHJbuXJl4LPEefPmYbfbLU4kByIyMpJp06YBsHPnTlpbW60NJCKTxrZt2wI/c1JTU5k6darFiWQiUWF8grqj7r+BdZsBdgNMoN90BZ5/sPFVfn3pWRxzYjTLO2t4fNvb/GDt/bzT9GUau+8jNOkv2KL9c46n2eJYGLedzV1/oW7Xr+gcWv7JlxQRERERkSPFHEOLiMgB+GRh/NNusBeRicntdgfmiLXZbJojdpxRO3URscInR4urW4WMJhXGJ6iZMdPZ/XfOvf362ebq4s7qZ3jolfWYPv9zy3fVssMdDsCg3T/aO87ZxwlJXsIcMzCwYzfCCHXoDh0RERERERER2bvo6GjS09MB6OjooL293eJEImKFyspKBgcHAX+RNSIiwuJEcjAKCgoCBamqqird5CQiR1x3dzfV1dUAhIeHj7hBR2Q0aI7xCeqHhRdzRupcfrj+AQa9w4HnDR+YH94OYQBPtryDkQ/DHUFEJxkEOx08sv0Y4hz9dLgjmRMVyWeS/4vT5mNLXxzHZyzBwInTHmXNhYmIiIiITEamgWmOgbvkx0IGERk3iouL2bZtGwAVFRUkJydbnEhEjibTNFm+/OOuk2VlZRamkUMRHh5OVlYWmzZtoquri5aWFqZMmWJ1LBGZwFasWBG4CWf+/Pk4HCpjyujSiPEJyjAM5sXl8PiiH/Kz4i8Fnv/y9MXYDRuRjlAyw5I+3BeciW6+nn0uQbZgMsOm0uGOAgzmxE/BbviHk9f1NPBG2zbuqnubKz/4Kw29bVZcmoiIiIiIiIiMA0VFRRppKDKJ7T5HbFpamgqq49Qnp8YQETlSNP2GHA261WKCi3aGc0ryLNJC4wDIj5yKy+tmffdmpoen0jjQjh0bs2Oy+N3GJzGAdpe/9foXM07kqhln0to/g7db3+TOhj58PB4497+3fUCkI5Qntn7At3JP58KMcmsuUkRERERERETGnPDwcKZPn05DQwNdXV00NTUF2quLyMT3ydHimiN2fMrPz+e5557D5/NRVVXFaaedpq+liBwR69evZ2hoCPDflKPpN+RI0IjxCc40TZ7Y+g613dvY3LudK5fdzj+3LaGqZyvPbl8GgMOwsap7Izb87dU/Wh7b+hYPbH6FIXc2z7ZG4vvwn8vs2Exig8JZnDKTJ7d+QJ9niKe2Ld/r66/d+RB/r1/Mmp0PHZXrFRERERGZiExz7CwiIgdDIw1FJqfe3t7AHLFhYWGaI3YcCw0NZcaMGYD/6/rRFBkiIqPJNE2WLVsWeFxeroGYcmRoxPgEd+uGx3i5dfV+9/ExxDHRjbQPR9E4mAj4C+MAL2xbyV/XLsUW7gUgxhnGXfOvINjuBOCbuafz9LYVXJV98l7PXdP9HF7TRW33s8yJv2x0LkpERERERERExoWCggKee+45vF4vVVVVnH766dhsGqchMtGtXLkSn88/PeO8efM0R+w4V1RURH19PeC/ySkjI8PiRCIy0WzevJmOjg4A0tPTSUtLsziRTFT6TWSC2zrQsc9t9g/L38fF1HNqfA1fSFlOuN01Yp8MT7q/rzqQG5bKv467LlAUB7gwo5yHF32LE5IL9/oaZYlfJzGkiLLErx/mlYiIiIiIiIjIeBMcHExubi4A/f39NDY2WhtIRI44j8cTmCPWMAzNETsB5OfnY7fbAdiwYUPgpgcRkdGy+/QbGi0uR5IK4xPcz4ovYVpYMsXRmdgYOfdLeVw+eAz6vUEAmBjY8GHib5HocdmIdKXxGedxnO4s4y8LriI2yD+nwz9WruPEP9zHP1et2+/rT488ic9k/JXpkXsfUS4iIiIiIp/ONI0xs4iIHKzd26lXVFRYmEREjoYNGzbQ398PQGFhIVFRURYnksMVHBxMTk4O4L/JacuWLRYnEpGJZNeuXdTW1gIQGRlJfn6+xYlkIlNhfIJLC43noQXf5c/zv8W/j/0xPyn8IoucBeS7pvDN6ecRExpOvy8YALthkh66i3NSyuivmErHqlS8XoiNjSLSjGOg34v54aSC9763gu09vdz73korL09ERERERERExricnByCgvw35VdXV+PxeCxOJCJH0u6j/srKyixMIqNp93niKysrLUwiIhPN7v9vlJaWBjpUiBwJKoxPIvHBUcx3ZlNxdS3bvt3M2w+u5vOZx7PLnUlbfwytQ5G0DEzlyuwz+eclX+IXZy/mxJws/rL2LR7ZtoRTfn83Nz/+GgBfO7aMqTFRXHNsqcVXJSIiIiIiIiJjmdPppKCgAACXy8XGjRstTiQiR0pzczPNzc0ApKSkkJ6ebnEiGS25ubk4nf4pNqurq/F6vRYnEpGJwOVysXbtWgAcDgfz5s2zNpBMeA6rA8jR5XDYcQTZ8Q76CIsI4YLM4/l8xokc89u/0j00yLklBcQFRxKXFMnUuCie2rySsJweDAM8pskHdf42OZ+fN5PPz5tp8dWIiIiIiEwSpuFfrDYWMojIuFRcXMy6df7p2CorK9UiU2SC+uRoccPQe4eJIigoiNzcXKqqqhgcHGTz5s1kZ2dbHUtExrl169bhcrkAKCkpISwszOJEMtGpMD7JRMaE8Zfnb6S1aRezF/jfuNgMg39efjErtjZzdlFeYN/bqp7mpe3rcNhseE0f+dGpfOe40/j9s2/zRkUDP/rsySzIy7TqUkRERERERERknMjKyiIsLIyBgQFqa2sZHh4OtFcXkYmhr68v0GI7NDSU4uJiixPJaCsqKqKqqgqAqqoqFcZF5LCYpsmyZcsCj8vLyy1MI5OFWqlPQqkZ8cxZmDPijs0ZifF8ft5MIkOCA895TB8Asc5wnjjuBv5x4VXMnpbGA2+uYuuOLn7wyIvc9tSb+HzmUb8GEREREZHJxDTHziIicijsdjuFhYUAeDweampqLE4kIqNt1apV+Hz+zxPnzp0baLstE0dOTk7gpqbq6mo8Ho/FiURkPNu4cSO7du0CYNq0aSQnJ1ucSCYDFcZlhHXrt/L1bzzAo4++zw+LLuCnxZ/lvmO+RmZ4AoZhEOx08KXj5xAREkRn/yD/fHctNzzwLA2tO+nuH+LJ9yto2tlt9WWIiIjIOGeaJjU7O+h2DVkdRUREREbJ7qNHPxpVKiITg9frZdWqVQAYhsH8+fMtTiRHgsPhCEyF4XK5aGhosDiRiIxnGi0uVlArdRnh8X8tp7a2ldraVi66qIxzps7bY5/vn38iZ8zJ45v3/oeegSHeqGxgYNhNsMPOkg2bSYuL4qUfX2lBehEREZko/rZ+Nb9Y+ibJYRG8/aWrCLbrbauIiMh4l5GRQVRUFD09PTQ0NDAwMKB5JEUmiOrqanp7ewHIy8sjJibG2kByxBQVFbF+/XrA3049Ly/vU44QEdnTjh07AjfXxMTEkJuba3EimSw0YlxGOO20YiIjQzjrzJm82r6eU1+/hTtrXtxjv5mZqbxzy9cpy0kHoDg9hWGPF4AQhz64FhERkcOzpacTgB2D/QypPZ8ImGNoERE5RIZhUFRUBIDP52PDhg0WJxKR0bJ8+fLAellZmYVJ5EibMWMGISEhANTW1uJ2uy1OJCLj0e6jxcvKyrDZVK6Uo0MVTBnhhBPyOeEEfzucqz+4m273AI9vfZ9v55+51/3vvuaz7Ojp57K7HqOls5cTi6Zz8/+cejQji4iIyAR0Q+ki4kLCmJ2cSnRwiNVxREREZJSUlJTw/vvvA/526mq3LDL+bd++nW3btgGQlJTEtGnTrA0kR5Tdbic/P5+1a9cyPDxMfX09hYWFVscSkXFkaGiIdevWAeB0OpkzZ47FiWQy0S0Ysk+XzziRnMgUvpF72j73sdkMYiNCaen0t0qq3NpKXITaoImIiMjhiQkJ5brShZyYkWV1FBERERlFKSkpxMfHA7BlyxZ6enosTiQih2v30eKlpaUYhmFhGjkaiouLA+tVVVUWJhGR8Wj16tWBbhOzZs0KdKEQORpUGJd9WpSYx51zr6ShqZclH871sDdOh52MhBgA8jMSeLFlBY19rUcppYiIiIjIxGeaxphZREQOh2EYKqiITCD9/f1UVFQAEBISwsyZMy1OJEdDVlYWYWH+wVF1dXUMDw9bnEhExgufz8eKFSsCj8vLyy1MI5ORCuOyX5e//Vee7XuH61c+zM7+gX3u9+h1X+CPV32GGQvgV9X/4usr78Ll1fwyIiIiIiIiIjJSSUlJYL2ystLCJCJyuFavXo3X6wVg9uzZBAUFWZxIjgabzUZBQQEAHo+H2tpaixOJyHhRV1dHV1cXADNmzCAhIcHaQDLpqDAu++W1eQCwOX3YfPveb5evi4f7/sv67k0AOAw7NrVNEhEREREREZFPiI+PJzU1FYCWlhZ27txpcSIRORQ+n4+VK1cGHpeVlVmYRo42df8QkUOxbNmywLpGi4sVVBifpCpXbOKOm56gdv22/e53z8KriFwXTehjIdx391v73O+F7Suo721my0AbWeHJ/Hn+tThtjkPK5vYNUNX5b9oHNxzS8SIiIiIiE5I5BhYRkVGye0FFo8ZFxqeamhp6enoAyM3NJTY21uJEcjRlZGQQEREBwMaNGxkaGrI4kYiMdW1tbTQ2NgL+GyWzs7OtDSSTkgrjk9Svb/wnLz+xnDtuepztg7u4Z+OLVHY37rHflLA4opaF4NxpY6Dftc/znZI8h3BHCACb+9sY9O5730+zcse9vN9xB881fQu3b9/t20VERERERERkfCoqKgqsV1ZWYpq6+0ZkvFm+fHlgXaPFJx+bzUZhYSEAXq+XmpoaixOJyFi3+2jxsrIyDHUdFgsc2pBeGbM29bXywOZXKY3LYfvgLpbu2MAJSTNZvrOOtNA4flj0eeyGjaJ503irZS358zO5ad3f2dTfyn+al/LCCb8YcT7DMLjj9kt4bN1SZpZk8L9LnsXT4eQ7px9PfGRYYL+8qKn8ad63+N/KR5gSlsj0iNRDvoZgexQATiMMA/shn0dEREREZKIwTQPTtP5Dg7GQQUQmhujoaDIzM9myZQs7duygra2NlJQUq2OJyAFqa2tjy5YtACQkJDB9+nSLE4kViouLAzdIVFVVMXv2bGsDiciYNTAwQEVFBQDBwcHMmjXL4kQyWakwPsHcXPEIjQNtvNW+PvDcps2vAlDVs4Xjk0o4IamE7//+i1z2vTN4uOsNNm1vBSA1JH6v56xxNvPvoA/4d+0HAHiHncS8FcYN5x4/Yr9pESn87ZjvHvY1zIn7Mimhs4gJysBhCz7s84mIiIiIiIjI2FNcXBworFVUVKgwLjKO7D5avLS0VKP+JqmpU6cSFRVFT08PmzZtYmBggLCwsE8/UEQmnVWrVuHxeACYM2cOwcGq/Yg11Ep9Anm26QMaB9r2u0+oLQjwjwT/ZctjPLfd/yY22Obgd3Ou3OsxTtsnRm3bTPJTEwMPN/Vt5/y3b+YrH/yWPs/goV/AhwzDRlrYXMIcCYd9LhEREREREREZmwoLC7HZ/B9NVVVVqZ26yDgxODjI+vX+QTlBQUEa9TeJGYYRmBrD5/NRXV1tcSIRGYu8Xi8rVqwIPNb0G2IlFcYnkC0DHfvdHmw46H6nh5suu5v1HzSwZaAdgBnhqfy9/EZigiL3etxJyUX8sfQKTvfMAR/Yozw07mjBNE1M0+S11tV0ufvY3N/Kxt6WUb8uEREREZFJzxxDi4jIKAkLCwu0X+7u7mbbtm0WJxKRA7FmzZrAqL/Zs2dr1N8kV1xcHFivqqqyMImIjFXV1dX09vYCkJeXR2xsrMWJZDJTK/UJ5BvZZ/NCy3L6vEN73e4yPfz55qcZ6nfjGnTzf/ddwdsdlZyXVs6UsH2PzjYMg+nOVF6u/Tf4bwDkzw3LqXi8jwVl4Ty65U3C7SEcn1hCcfS0I3BlIiIiIiIiIjIRFRcXs3HjRgAqKyvJyMiwOJGI7I/P59OoPxkhNTWV2NhYOjs7aWxspK+vj4iICKtjicgYsmzZssB6eXm5hUlENGJ8QrHZbDx7ws+5v+w6Ls04mQVxBXvsc8z5xdjsNk44ZzZF0Zl8PfvsPYriPtNHbU8TAx5X4Lm3tldjFnZjemB4cxjuXcG8t3ELz61cCcCwz82NBZ/D8cm266Nsx1Atz2/7Nut2PXJEX0dEREREREREjrz8/HwcDv+4jaqqKnw+n8WJRGR/6uvr6erqAiA7O5v4+HhrA4nldm+nbpqm2qmLyAjNzc00NTUBkJSUxLRp06wNJJOeCuMTjN2wkRM5hatzzuRXc67gr/O/PWL73K/l81zN//GZLx+7z3Pc1/AyV6/4A1ev+ENgfq9eRx+GAYYDwlbaCG31kVTno/2fHuy9Dhw2O2s6Nx7RawNY3/lPtg+uYcWOuxn29h/x1xMRERERGRuMMbSIiIye4OBgcnNzARgYGGDTpk0WJxKR/Vm+fHlgXaPF5SO7t1OvrKy0MImIjDWf/H/DMPQ7pVhLhfEJrjA6nV/NuiLw+E8bn/vUHzwbe1oB2D7Qidf00Tncx4sta4hwhFDgnsHpC+fwrTmlnFacg+Gx4Y30MOgd5s22dUf0WgCyIk7CbgSTGX4sTlvYEX89ERERERERETmyVFARGR86OjoCN6/ExcWRnZ1tcSIZK5KSkkhI8Hcl3bp1Kz09PRYnEpGxoLe3N/DeLjQ0lJkzZ1qcSERzjE8KCxIKOCGxmCUdlaSGxH3q/sPb4ujrjMDdHczQsV5Wd26msb8DgPW1baxp6eHZmy4nIyGG5KQo7l37KmamG48RyebUHazpq2FmzHSyI9NG/VqyIk8gK/KEUT+viIiIiIiIiFgjJyeH4OBgXC4XNTU1eDyeQHt1ERk7dh/1V1paqlF/EvBRO/UlS5YAsGHDBo455hiLU4mI1VatWhWYJmfu3Lk4nU6LE4moMD5p/Kz4S9T0biM74tOL1eVTp/Hi+k3kJycS6nRwTEIuxybm09bTS2XHEIlR4cRHhmEYBg+2VtPhioFqgwep4T+tSwlLHiTY5uS8KQs4OXk2BdEZR/4CRUREREQmMvPDxWpjIYOITDgOh4OCggLWrl2Ly+Wivr6egoICq2OJyG6GhoZYt87fLdLpdDJ79mxrA8mYs3thvLKyUoVxkUnO4/GwcuVKwH/zTGlpqcWJRPxUGJ8kHDY7xdHTDmjfL8ybxWn5OUSHhmC32Xiy8QNM0+SXpRcROT+C8OAgQoIc7Ozvp3m4H3a7O9TntQPg8Xl5YtvbvNCynEcW/D/uqHuaWGcEF0xdxKb+7SxKLCbIpn9+IiIik51pmjT19pASHoHTbt/nfi6vB6fNjk2jUkRERCak4uJi1q5dC/gLKiqMi4wta9euxe12AzBr1ixCQkIsTiRjTWJiIsnJybS1tdHc3ExXVxcxMTFWxxIRi1RVVdHf3w9AQUEB0dHRFicS8VNlUvYqPtw/f/dOVy9/qnsZgNxtDcyJqiIz+gpSg84mLiyMqdFRNHX3kJsYT//wMD3bnZw2fT5L3R/Q5x2i3zvEbRseY/muWgBe2r6SId8w504pJ8oRzpzYbObH51p2nSIiImKtP61exm+Xv8vMxGT++9kv7bUd45Ktm7nqxaeZFh3Ls5/7EiEOtd6SSUgjxkVkgsvKyiI8PJz+/n7q6upwuVwEBwdbHUtE8N/MumLFisDjsrIyC9PIWFZUVERbWxvgL4otWrTI4kQiYgXTNFm2bFngcXl5uYVpREayWR1Ajr6NVc388Mv38NT9S0Y83+ca5tmKGrZ39waeiwkKZ3bsNJyGnezQN+kd3kBD5x2Av/3FVYvmA1DXsZNrT1jAkMfHg2/UE+dNCpzDMAwiHKGkhcQFRnm9176Bf2x5g++tvQeX132Er1hERESstHNwgNqdHSxt2spdq96na2gwsG19eysANTt34DX3XnF7r2kLbp+P+s6dbO/rOyqZRURE5Oiy2WwUFhYC/tabNTU1FicSkY9s3LiRXbt2Af6bWBITEy1OJGNVUVFRYL2qqsrCJCJipW3btrF9+3YAUlNTSU9PtziRyMc0YnwSevyvb7DmvXrWvFfPmZ8/htBw/x3YP33+NZ6vqiU1KpK3vnMVAHbDxj3lX8Vn+tjSfT+NXfeQEHoRW3Z1cctLb7J8SxOhDgdDHg8/eOaVwGssW+ohJCGaGfkw4HHxt7IbSQyJpmlwBw9vepVX2lYD/gEnLu8wwfbDG/m1secVWgfXMzvuUiKcyYd1LhERERk93a4hTv7n/XS7XNgMA59p0trXxy9POBWAHy86kdSISE7MyMJh2/s9m1+ZOY/W/j7y4hOZFh1zFNOLiIjI0VRcXBwYlVpZWcmsWbMsTiQiAMuXLw+sa7S47E9cXBxpaWm0tLSwfft2du7cSXx8vNWxROQo++Ro8b11BxSxikaMT0KLzijB4bRTfnIhIWFBAHg9XipXbgbA4/bscYyBQaj5eYri3+Tie12c9qe/83ZDI0MeD2kxUR93VAyM9DLwDTvZ5eumonszr7evwTAM0sMSWbpzw4hz37/pJZZ2VLGus+GQrsfl7eWt1luo6f4vq3f+/ZDOISIiIkdG3/Aw3S4XAKEO/z2ZU6OiAtszomL4+XGncFLm9H2eIzUikjtPPYdvztUvUzKJmcbYWUREjpD09PTA/JMNDQ2BeSlFxDo7d+5k48aNAMTExJCbqykRZf80alxkcuvu7qa6uhqA8PDwET8TRMYCjRifhE44ezbHnzVrxAfLTZt3YDy1haT0EE6Yl8wDD7zN8cfn40yys6pzE8uXtvPcsjpmTE/A5fEXzguSE4kODeFzs4v4/n9fxmeaOHp9mHEGdtNJZmgKyeFB9Hj6WRBfEHitYFsQfQxhN2x4TR/rujbx3+b3Abi37HpyIqcc1PU4baHEBGXSNdxIcmjxKPwNiYiIyGiZEhnFvWecT13nTi7MLeC5J5ey5EtPkPLNbs6+4iSCQg6va0xzbw9/Wr2M8rSpfCan4NMPEBERkTHLMAyKi4t57733ME2TDRs2UFpaanUskUlt99HipaWl2PbR5UnkI0VFRbz66quAvzB+/P9n777joyqzBo7/7vRJZtJ7h1BT6L0jVUQE7NjF3rDtWte2vrqruzasuNgVFFQEQemg9BJaCiGQ3nufPvf9Y2AghpJAIJTn6ycfMzO3nDtMZu7c8zznjBjRzhEJgnAubd++HfnwBMq+ffuiUok0pHB+Ea/IS9RfZ1tFdAxkzKReHNxfyKbtuWzcnsvHv2+FG2txah3oZAOgp7rahISr99e/p06ga5Crp9CEuC5Y7XbeSJ/PH2X7uDlmDHfFXn7cfc/u9yC7qg4SrPVlZ1UGgVpv3juwCIDMOlffidYkxxWSiunRn2Nx1KFX+bb6uRAEQRAE4ewa16ET4zp0AmDrB39Qnl/JZy8tZM6z87nntRuY9sD4097229s3sjA9hXmpexgd1REvrbatwhYEQRAEoR0cSYyDq5y6SIwLQvuxWCzs3r0bAJVKRe/evds3IOGC4O3tTUREBPn5+ZSWllJaWkpQUFB7hyUIwjlgs9lISnK10VUoFOI8TjgvicT4JebTg7+xunQ3s7pMZXDA0VlVSqWCv781g9zcCm6/41McOonGMBUah4wC6OTnT/SgjkwdEE+QrxGNSklZXQMzv/uJ4R1juH1QHzRKJbsPl0PfWZlxwsR4mN6fML2rt0w//y7IskyURxBZDUW8njYfCZjTypnjCkklkuKCIAiCcB6rsZj5MT2FAQ+PwPafNZQXVCLLsOW33WeUGO8TEsbC9BS6+AXgqT6z2eeCcD6T5WO6FrVzHIIgCGdTcHAwAQEBlJeXk5ubS01Njbu8uiAI59aePXuwWq0A9OjRA71e384RCReKhIQE8vPzAdescZEYF4RLw759+zCZTIDrfcBgMLRzRILQnEiMX0LqbSa+zlkDwI95G5okxgEO1Rfx7L6vcA5tRLHZAx0KzFt9MFjMdAwN4fmnxjVZ/pEFS9iRV8iGQzlc0zuBxT/uRN5hoPvEYGZ1nXLKeGRZJq1mEU7ZRh+/6dTbXW+YMmBx2NrmoAVBEARBOC+8vnk989P2oVep2L3rNd6e9xtJuw9y6/VXntF2Z8T1ZHxMJ7y1OpSirKMgCIIgXPCOlFNft24d4EqoDBkypH2DEoRLkCzLbN++3X17wIAB7RiNcKGJi4vj999/B1zv46NGjWpWwVQQhIuLLMts3brVfVt8bgjnK3H18BJgc9r5x94vuW3Lf933TQpt/qb0fe56inTlOEeaCI4ysOLFu7jGuzORRb5cMb5Xk2U3ZuawI68QgMSwYDw1an5YsI2GPU6sP2jp5hUJwNxDv/NY0sdk1Rc3219+4zY2lb7FlrLZZNatZWRQD15KuIV/95xJgk8MjXYLi/M3k1FX0IbPhiAIgiAI7cFX55pdYtRoSSsv5eO6dLbFOtjlUX/G2w7w8EStVDa5T5Zld0+rc6G4rJbXP1rO0rXJ52yfgiAIgnCxSkxMdP++b9++doxEEC5dmZmZlJeXAxAdHU1wcHA7RyRcSIxGI9HR0QBUVFRQUlLSzhEJgnC2ZWdnU1paCkBERATh4S2vCCwI55KYMX4JmHtoOevLjl6k9VTpGBoY12y5EYGJLC9MQpZlLn+gGz7enrzw7FXH3eaxF5+fGjsCSZK44/bh/LxoJzffNBSAMnMNX2evAuDHvD95svu1TbZhUAWhQIWME6M6FEmSGBXc0/34p4eW8XP+RrQKNYtHvIJWKcqjCoIgCMKF6skBwxgRGUNnX39MdjsapRKrw0GYwdjm+8qvq+Hqn+chSfDTtBmEGbzafB9/9b/vN/Lb+lR+XZPMsH6xeBtFmUmhjcmHf9rb+RCDIAgXPT8/P8LCwigsLKS4uJjy8nICAgLaOyxBuKRs27bN/buY9Secjvj4eHJycgBITk4mJCSknSMSBOFsOna2+MCBA9sxEkE4OTFj/BKQ3Vja5HaUR+Bxk8zBNf7IyKCA70rXnXSbA6IjeGrscPpHhaNSKqipMbFteyYdOwYihWo5WFaBn9ZIX9/OeCi1jAjq0WwbvtoOXN/hB67r8D3B+oRmj3sotQDolJozKrXjcFpZnv83FmbfQrU157S3IwiCIAjC6VMqFAwOjyLAw5NIL2/WzZjJyutv57Lo2Dbf1/zUvZQ01lPcUM+Wwrw23/5fVdc2snZLBgAhgV54emjP+j4FQRAE4WKXkHD0OkFysqjIIgjnUlVVFQcOHADAy8uLbt26tXNEwoUoLi7OfU03JSXlnFb0EgTh3KqqqiI9PR1wVYzo3r37KdYQhPYjZoxfAmxOe5Pb/f26NFumqqqBRx77GvlhkJSglfQsyN3Ehwd+Y0RgAi/1uA5JknDKMkuT0zHqtLy5egNOWeahH5bwVOcBbN58kIZQBd8uyEKtULDyoTv5b597TxqbpzrwhI/d0XECPX1jifYIIqUmmwCtN5EeJ17+RCosGeQ1bgEgs24NffzvaPU2BEEQBEFoW2dzFne91eqe1drZ1/+s7eeIssp6zBYbAFeOSUSlFGNPhbNAllw/7e18iEEQhEtCQkICK1asAFyJ8ZEjR4r+tIJwjhw7W7xfv34oFOL8Vmg9T09POnToQGZmJtXV1RQWForSyoJwkTr2c6N///4o/9LuThDOJyIxfgmY1eUqFuZtYFhgPJ2N4fhqDM2WaWiwYGl0UL/FFynKRlmxhg+UP4NCZlXJDnbOsbDwzhks3pfGP5aucq+nVtq5ecgiDEFLCI8ZQJ5aw+g+m2mw6rA5bjmjuFUKJQP8u7K0cCtvpi1ALSn5bsizBOq8W7Udf21nojyHUW8rJtY45oxiEgRBEATh/Hdnz75k1VTRzT+Qjt5+bCrIpU9wKDrV2WnL0ik6kCfvGkNRWS3XXt77rOxDEARBEC41RqORmJgYsrOzqaiooLi4mNDQ0PYOSxAuelarld27dwOgVCrp27dv+wYkXNDi4+PJzMwEXIOcRGJcEC4+VquVXbt2AeJzQ7gwtDox7nA4+OKLL1i9ejWlpaU4nc4mj69Zs6bNghPaRpRnEI93m37SZSIi/Hjl5eks35/B0pIsqLfitINCA44GNRmlFeRX1+ChaXpBOca/hE7B2TiA8L4+eKnUjInbB4BBfxA48x5EjXYLADbZwZqSXVwdORyVouUjjpQKDePDXz/jOARBEARBuDBEefnw5eRrAJix5Ac2FeTipdHy/rgrGREZ0+b7kySJaRN6tfl2BUEQBOFSl5CQQHZ2NgD79u0TiXFBOAf27t2L2WwGIDExEQ8Pj3aOSLiQde/enaVLl+J0OklNTWX8+PGi+ocgXGR2796NxeLK4YjPDeFC0Oo6OLNmzWLWrFk4HA4SEhLo2bNnkx/hwjVsWBf+edcV/DHrbjrofDBtCWGiYRh97QN4YPhAYgP8uCK+K32jDo/sc0J2RTApBRHkV/nxp7kTpWoDTidYzGo81DFtEte0iKHc33kyEhIfHfyVeTlr22S7giAIgiBc/MobGwGotVp4Z8emdo5GEE6fJJ8/P4IgCOdK9+7d3SWcRX9aQTj7ZFluUg53wIAzn/AiXNr0ej2xsbEA1NbWkpeX184RCYLQlv76uTFo0KB2jEYQWqbVM8bnz5/PDz/8wKRJk85GPEI7yyqpZPHmFGw7KlFeV0W6bS/XDBzJFVFT3ctkV1QCoFYpsDlUfLT26Gvh2gEbUShAoVChUwW1SUwqhZKxwX3438HfsMkO5mb+TpGpkr/HXXfa25RlmZ0VcykzpzEkaBbemqg2iVUQBEEQhPPLpxOn8vjaZaSUlXJN1/j2DkcQBEEQhFbw8PAgNjaWjIwMamtryc3NJTo6ur3DEoSLVnZ2NmVlZQBERkaKKg1Cm4iPjycjIwNwlVOPihLXYQXhYnHo0CEqKioAiImJITg4uJ0jEoRTa/WMcY1GQ6dOnc5GLMJ54N5PfmTuHzuoDJeJi8pnRvg2NI43qTbvci/z1NDheFWA7S9l9AEq6r0AaLT7t2lc/lov/jfwCUJ0fgBsrdh/Rturtxezu/JLChq3kVL1Y1uEKAiCIAjCeSja24cfp85g/92PMiOu9dWNqmoa+WFpEtn5FWchOkEQBEEQTiUhIcH9+759+9oxEkG4+InZ4sLZ0K1bN5RKV1vMtLS0Zq1ZBUG4cG3dutX9u/jcEC4UrU6MP/HEE7z77ruifNVFytfg6v/QKTSYuLojAyAklJLOvYy6wo5hnwV1teskxkN9tPDAgi2DeWPpVIqzn27z2KI9g3g27gZGB/U8o9niAJ6qQIJ1PVBJOqIMw9ooQkEQBEG4tJgbLSz5dDVrF2zBarG1dzhnxb8/WcG7X6zloZd+aO9QhEudfB79CIIgnEPdunVDpXJdd0hNTcXhcLRzRIJwcaquriY9PR0Ag8FA9+7d2zki4WKh1Wrp3LkzAPX19eTk5LRzRIIgtIXy8nIOHjwIgI+PD127dm3niAShZVpdSn3Dhg2sXbuW3377jfj4eNRqdZPHf/rppzYLTjh7rBY7H770E6YGKw/9czpGbw9kWaa30wdnfR0Te3ZgaOx4gkIno5C0GLVHT4ZHjuzGnr15aDRKHn5oHGq1kvu+/4X1GVn4ZMnE1Di58hpDm8e87Lc9fPPdJiLC/bBPUcCQ09+WQlJxZdQHbRecIAiCIFyCvvv3Yn545zcA1FoVT316D8Ou6tfOUbUtL4Pe9X9P3SmWFAThQpeXl0d2djaNjY0EBgYSHx+PVqtt77AE4ZKn0Wjo2rUrKSkpmEwmMjMz3QkWQRDazo4dO9wTofr16+ee4SsIbSE+Pp79+10VQJOTk+nQoUM7RyQIwpk6tspI//79UShaPQ9XENpFqxPjPj4+TJs27WzEIpxDuzdlsHzBdgB6DIrlihmD2ZuSx+LNKagbnXz91Ua+/WYTC354CC9fTw4dKuG33/YyblwCXbuG8szTk93bcjid/HEwGxmI7FXAdVOXc8C0GB/LAry1CSeIoPW+/nYjJSW1FBfXsGNnFsOGdub6awcSHx9xxtvOa9hCiSmZBN9r0Cl9zjxYQRAEQbgEGH2PDoSzWezMf2vpRZcY/9vdYxk7tCvdOoo+WYJwMcrJyeHjjz9m3rx55OXlNamMptFoGD58OPfccw9XX321uNAjCO0oISGBlJQUwJVQEYlxQWhbNpuNpKQkABQKBX379m3niISLTZcuXVCr1dhsNtLS0pg0aZIYfCEIFzCz2czu3bsBUKvV9O7du30DEoRWaHVi/PPPPz8bcQjnWJcekQRH+GJutNJzUCwAc9bvoD5ajWSX8UuxIssypdZa7lz/ERVF9Sh/07Bl6yG++fq+JttSKhTMGjiQj37diLfN6r7fKVvaNObrrhnIJ5+uwWp1lU3bsDGDDRszuOnGwVxxRU8C/I2oVK0/obI66llR8BQyTsyOaoYFP9mmcQuCIAjCxerqRyYQEO7Ljx+soCS7jKvuHdveIZ0Rm81BdW0jgf5G931qtZIBPWPaLyhBOEKWXD/t7XyIoY3MmjWLzz//nPHjx/PKK68wYMAAwsPD0ev1VFZWkpyczJ9//sk//vEPXn75ZT7//HP69+/f3mELwiWpU6dO6HQ6zGYz+/fvx2azNatgKAjC6UtOTsZkMgGugSgGQ9tXghQubRqNhi5durirf2RlZdGpU6dTrygIwnlp165d2Gyulno9e/ZEr9e3c0SC0HKtTowfUVZWRnp6OpIk0aVLFwIDA9syLuEs8/E38PnaZwCQJNfFrcAAIxwCxeHbBoOOZEsuBaZK8AFduJJO4cefLXXfuMGo8238+BOkxYRy4/Uj8VTHsKPoNpSSjsSgt1ApPI+7blVVA78u3U2vXlEkJkSeMOZpU/ty+cRE3vjPb2zYmI7d7upx/u28zXw3fzNKnYKn/jaJkYO7typBrlRo8VAF0GAvxVtz4v0LgiAIgtCUQqFg9LWDGH3toCb3Z+7LZdOvu/AL9WHA+B4EhPmes5iyG7LQKfWE6EIoqq/j4VW/4qvTM3vsFehUJ76A7nA4ueOpr8nKq+DRO0dz7eV9zlnMgiC0D41Gw6FDh477XTYoKIjLLruMyy67jBdffJFly5aRk5MjEuOC0E5UKhXdunVj9+7dWK1WMjIyiIuLa++wBOGiIMtyk3K4AwYMaMdohItZfHy8u/pHSkqKSIwLwgXK6XSKzw3hgtbqxHhDQwMPP/wwX331FU6nKzGpVCq59dZbmT17Nh4eHm0epHB2HEmIH/H0tNHE+vqyefl+KgJrmDlzJP1DYlhfmopeoWHmc2OIjQg64fY6DY/kxngj1/VJRKtSkV/7PVVm1xtkpWkLQZ5jjrvehx+vZvWaVNTfKfn1l8dRq0+c1NbpNLzw/FVUVTXwj5d+5MCBYux2J06jA8edFfyz4Qs+fiKSm8cMJyE+nNjYU5c9VUpqro7+igZ7KT6amFMuLwiCIAjCyT0x4XVMDa7KMQFhvnyd+p9m5x2tVVRfx+OrlxHiaeDfoyeiVihYnnUQnUrFqChXf7pdVUl8cOg9JCQsZSMJ1gazo7gAgO1FBQyPjDnh9i1WOzn5lQDsP1hyRrEKwlkhH/5pb+dDDG3kzTffbPGykyZNOouRCILQEomJie6Snfv27ROJcUFoI3l5eRQXFwMQHh5OeHh4O0ckXKw6deqERqPBarWSlpbGFVdcgUp12vP2BEFoJwcOHKC6uhqA2NhYMWlWuOC0+pPn8ccfZ/369SxZsoShQ4cCsGHDBh555BGeeOIJPvroozYPUjg3JFnmu3fWYbHYAdiSksGPXpvx03ryUuK1aJUnnmWVV1XNPfMWAWCy2bhn6AACPEbgWdsJpaTDW9OHPzekExToRVSUPw0NFgICXGVKS0pqAddMLddgi1PP9vb19eT9d2/FarWzdNlu/ihMZpeuCoByVRXvzl6BUqlg5p0juP7agae8GK9ReqJRdjjlfgVBEARBODlZlt1JcYC6qgaWfb6OK+4cfUbbfXz1MjYX5gFwQ1wPqswm7lu+GIAfp91I35Bw6u11rhiQ2VWWR11jOSEenoQbvekdHAa4yqVnF1SweVcWl4+MJ9DPVSbSQ6/hlccnk5Scx01XtWxGqCzL3PngZ2TmVODpoWHx/EdQKUUPYkG4EJlMJmRZdg/0zsnJ4eeff6Z79+5MmDChnaMTBAEgJiYGT09PGhoayMjIwGw2o9Pp2jssQbjgiVl/wrmiVqvp1q0be/fuxWKxcOjQIbp27dreYQmC0Epbt251/z5w4MB2jEQQTk+rr9z9+OOPzJ07l8svvxwvLy+8vLyYNGkSn376KQsXLjwbMQrniCRJ7hLkSqUCqZeTXVVZrC5OZk91zknX9dBo0Ktd4ywCDK6S6TpVKEMiljAwfAG/L8vixRd/5v6HvuCL5VeyuWQov679DICYaH+A07qQrNGomDa1H2/edwtXBw2nY3kU/fRdkZFxOJzM+XQdPy3awbbtmcjymU9vMdWbSNmUjt1mP+NtCYIgCMLFSJIkxt88DI1OTWyPKCwmK7Mf+5q07YdOe5tmu92dFFdKEgmBwU3KomuUrvOXoQHDiZJGsTsjirpGV3+rF4eN4cdpMzBoNLz+0XJGz3iH+56fxyffbeDFd35l8eq91B9O5I8e1IUn7hpDSKDXSeP5Y+MBnn/1Z7buzCIzpwKAhkYr73y08rSPURCE9nXVVVfx1VdfAVBdXc3AgQP573//y9SpU8Xgb0E4TygUCuLj4wFwOBzs37+/nSMShAtfbW0tqampAHh6eopKDMJZd+R9HHCXVRcE4cJRUlJCdnY2AH5+fqIlgnBBanUmsrGxkeDg5uWpg4KCaGxsbJOghPah0aj4dM4d/POV6fy27AmydaUAeKn1xHufvPe2v6cHvz9wOwtn3sj0nvHNHrc7XGX39R4WOvXMRedho8y8HLPDSuCVGq54OI533r4ZrfbEs9KPtb+kjEV7UrHYXQlqlULJw4lX8dn1jxB1sx6eqoRBJjQaFR98uJqnn/2BPzekn3K7WXVr+TJjAmuLXjnu40+MepFHhz3Pew982qI4BUEQBOFCkpmcx5JP19BQc2bndI9/cCeLSz7h5meuct/35as/n3K9pOJC+n3xIVMWfs34+Z9z05IfWJ+XxW+ZB9zL9A8Nx1OtYVRUBxZMvYHFV99MYmAIAApJgc4eS3mNK7F9c1xPOit9efK1n/hhaRLrtx50VaM+PFYu7WAx//54Jf/536pmsVgcdmos5uPG+frby/hzcwZffLsBg0Hjvn/N+rRTHqMgnDb5PPq5CCUlJTF8+HAAFi5cSHBwMDk5OXz11Ve899577RydIAhHJCYmun9PTk5ux0gE4eKwY8cO90SSvn37irLWwlkXGxvrrvaRnp6OzWZr54gEQWiNY2eLDxgw4Izb5glCe2j12c7gwYN58cUX+eqrr9wfYiaTiZdffpnBgwe3eYDCuWOzO3hm4QoySyp5L9xItdV1UTxC74+nSnvK9UO8jIR4GSmurWP1gUzGdo0l2OgqT+rl5Zq1ZarXcWB3JOGxZSR2mM78nHV8kbMCyRNuiR5xyn3UmMzc8c2PpBaXIgObs3J59LIh5FfV0icyDKVCwarSXciSTNREA49dfS2P/21ei5+Dg3WrsMmNHKpbyfDgp1Apmh532eHeo6V5FS3epiAIgiBcCOw2O09MfB1TnZmM3dk8/sGdZ7zNwZN6ExztT0lOxQmT7SuyDvJb5gFivf3YWJBLuamRcpNr2QPVFWwsyOWm7j3dy78xaiIAZRV1VGbUMrRvrCt+hxMJuLdXfxyyk65+AUzvEs+L7/zK5l1ZbN6VxfMPTmTtlgNMm9ALvU7NS+8spayyHq3GdUosyzLz0/aRXVPJd6l7qbNa6RMUSl5dDRVmE1d3jefZfiOwHq4cYzLbiY4IIGV/IeDqUy4IwoWpsbERo9HV6mnFihVMnz4dhULBoEGDyMk5efUsQRDOnfDwcHx8fKiuriYzM5OGhgY8PT3bOyxBuCDZ7XZ27twJuCoy9OvXr50jEi4FSqWSbt26sXv3bqxWKxkZGaJSgSBcIBobG9m3bx8AWq2WXr16tW9AgnCaWp0Yf/fdd5k4cSIRERH07NkTSZLYvXs3Op2O5cuXn40YhXMkp7yKnZkFAPy2L5UH+o0ns76Uy8N7tWo7933/C2nFZfyyN5Uf7rwRgPi4cIxGHWZ7HZ165KFQgNZzOwG2awHQK7XolJrjbk+WZbIqqojw8WJHbgEpxaXuxxbtS2PRPtfsrNsH9uaB4YN4pMtUfi3cyo3Ro+nlH817b99Mo8lK/36n7iHew/dGTPZKog1DmyXFAf61/Hm2/LqT8beNatVzIgiCIAjnO0mhQO+pxVRnxvPwgLa24B/qS0lOBYf25mKz2lFrjp5+birI5f7lv+A4pt2JRqFkeEQ024sLqLVZ0CiV3JbYBz+9nk6+/kR5+wDw0Ms/kF9UTc9u4dQ1WsgrrMTLoGfuv2/mmUEj3dsb3r8T67Zk0Cchiokj47h81NHKNv/7102kHSxmQM8YAFLKS3lm/Yom8SeVFrl/X7A/GZVTwul0xZudW95k2fAwnzN6rgRBaD+dOnVi0aJFTJs2jeXLl/PYY48BUFpaipfXydsrCIJw7kiSREJCAhs2bECWZVJSUkRPZEE4TSkpKe7qn927d3cPEBOEsy0hIYHdu3cDrtehSIwLwoUhKSkJ++EKvr169UKrPfVkSkE4H7U6MZ6QkEBGRgbffPMN+/fvR5ZlbrjhBm666Sb0+ra7iCqcex2D/LlhaE8yisv5w3M7P+2p5d7OY4nw8G/R+rIsI0kSnhpXgttDczTRHRbmQ2ioNwcOmijMDCQ8tozN6ySmjY5jTv9H8dd64aX2OO52X1+xni+37SIuJJCnx42gW3AAh8oqsTmdTZb7ISmZL7fu4v3rpvB2n/uwOhzYnU66x4cxL3stG5J2M7PbRBwWJz4+nigUzct8BOsTmBJ14h6CsT1jiD188VwQBEEQLgTV5bXMfuwrfAK9uf/fN6JSH//0T6lU0CE+ksriGsz245cQb63ywirStrl6i/uFeKNSK92P5ddWM2PxD83jUEh8OmkaCkkiqaSQAL0HUV4+PDFgGABph4rx0KmRD58G5BdXUVHtuqBXUd1ARlYpgX4G9/bGDu3G6EFdUCqbdxAK8DUwvL+rH1ajyQoNDvQKFSanHYNGQ73V2mydtQVZfPjqdaxcl8qyFa6R0hKu6tIBfuJionAWnS9lzM+HGM6CF154gRkzZvDYY48xZswYdzW0FStW0Lt373aOThCEYx1JjIOrnLpIjAtC68myzLZt29y3xd+RcC516NABDw8PGhsbOXDgAFarFY3m+BOmBEE4PzgcDrZv3+6+LT43hAvZaTWO0ev13H333W0di9DOFAqJ+ycMJiknn3/kuy70Lly5jX2zC8jMKufvf5/MsKGdj7vu5qxc7v/+F7oEBfDx9VexK7+IzPJKerz+HhO6d+HNqRMpKqwBWWLb6jimd1pPcPeV3HmvN4sWPHvci9VHLNzt6huWWlzGrV//iFGrweZ0YtRq6BjgR7i3NyFeBj7b4ir/9P76zUR4e3Hjl9/jqVFzWd9g/rC5vjSveDUNy04l/QZ35P/+MR2N6J0kCIIgXKAKD5WwcUkSw6f1R6NT89IN76JSq3h5/iMYj0kMr563iY2LkwAYMbUfPUd0P+E2s1Ly8L7Pyb5r17Mgz4NrI68/oxitshnPcWDaJTPtwfFNek9tLyp0/65RKLE6HQA8PWgEisPL9QkOa7K9TTsz+du/fkahkPDzdg2o694plD1p+RgNOob07kD/HtHN4jjZeQZARWU9t93/GXX1ZvzVYAqX+PvMETy1tXnv8UFhkRSX1rqT4nA0T+jjffxBfoIgnP+uueYahg0bRlFRET17Hm3fMGbMGKZNm9aOkQmC8FfBwcEEBgZSVlZGXl4e1dXV+Pj4tHdYgnBBKSgooLDQdT4eEhJCZGRkO0ckXEoUCgXdu3dn586d2O120tPTSUxMbO+wBEE4if3791NbWwtAly5d8PPza+eIBOH0tSgruHjxYi6//HLUajWLFy8+6bJTpkxpk8CE9nHLe/PJc5Ti10OLnGvFvNzJXpOrvPonn6w5YWJ8bUYmJpudPQXF1Fms9IoI5aEFS3DKMov3pfHaleOwWG3EJuYz4catAHgYLGg9GpDl4087qbdYScorRKdW02C1oZQkHLJMsJcBTaOZmYP7MnPw0f5Hv6UeoKi2jrzqGnbmFdBotdFotbFwawYBPSUkZMq6WKn3NLLYWcCOD7/kt/tvQ3eCmXOCIAiCcD57ecZscvYXsn7RdvS3dmNjQAP+a8rZtT6NEdP6u5crH1hKwAcKND960yEhkiUH9+OUZaZ06tYkUQ3w7Of384H1LWyY2VW9s8WJcbPDDMjolE2rB/1qWYTP3x2EOTyZ1n8cAI32RpYU/YKnwZsQT0+KGxqwOh0MC4siN7OSFZ/vYczfOhAR6ttsP7X1rpnsTqfs/l2vVfP7Fw+dMsafl+/m+6VJ3H71ICaObFqqr6i4hrrD26uPhOo4iae3riLa6E1OXU2TZUd4RvLGf5bgf38BKl8H9nIlFZ9Fgl1B357Nk/KCIFw4QkJCCAkJaXKfmAkhCOenhIQE1q5dC7hmjQ8bNqydIxKEC8tfZ4v/9XuBIJxtCQkJ7h73KSkpIjEuCOe5rVu3un8fOHBgO0YiCGeuRRnBqVOnUlxcTFBQEFOnTj3hcpIk4XA42io2oR3UmSyoujfSoLVBB5BMR2dYeXho2J6czVvLNzChXzduH3k0KX1zv15klVcRFxJElK83+dU1OA8nvEd26oBaqUSv1zJoQjKeXmacTolfPx+Kh7oDKpWyWRw78wq47euF2BxO+kSEcc/Q/sQG+LGnoJhresUT4tW8VOnrU8bzycZtTO8Zz+jOHUktLkOrUvJ72gHKd0NQnxKMUQ1ICom6XG8Ka2qpajQR6n3isqdp1YvYXj6HeJ+r6Rsw8wyeWUEQBEFoO05ZxhDmDfsLsXcxssCaC2MCiQryp/eoo0nfrOpytklr0HWDkBf92NVQxsOrfgXAoNEwJjq2yXYThnThwZoHWFe6ltFBY1oUS4m5mFdSX0RG5rnuLxKuD3c/psB1HqHT61AoXL+vLVvNypLlALw38Une3ZJKWkUZFrMd++Z6suUG1m45wC3Tjn7Rsjjs5NRUM25YN5yyjNFTi6+3BzuT85gypmUXUD5buJnK6ka+/GkLY4d1Q3bKqA+Xdo/vHsYDd40mM6uM1dZcqqlHBhyyk/9NnMrqnEw25GfTMyiUXHMqQU/kcuTaoTrIwfibo7h79GSCAkQfYuEskiXXT3s7gxhef/11nn32WWbNmsU777yDzWbj+eefZ9myZWRmZuLt7c3YsWP517/+RVjY0YoRFouFJ598knnz5mEymRgzZgwffvghERER7mWqqqp45JFH3AO5p0yZwuzZs086i/S+++7jueeea9Esue+//x673c5NN9102scvCELbSUxMFIlxQThN9fX1pKSkAK6qoAkJCe0ckXApioqKwmAwUF9fz8GDBzGbzeh0uvYOSxCE4ygsLCQvLw+AwMBAOnTo0M4RCcKZaVFi3HlML2fnX/o6CxeXzx+6ljkpa1lv242UpkBGRsJ18auwoIqH5/xMVSAk/VHGlH5x+Hm6SoZG+fnw6YxpmG127E4nkb4+zLlhKtmVVdzQtwcAb/33RtbtaKS+5nv2bYolZWssOm0td8z8lBf+MZUOMYHuOJYmp2NzuF5rDVYrtw/sA8Dw2JgTxj64QxSDO0S5b//fla6ZaX8bO5yShhruSnoTu+xAp1UwMqELgztEnzQpDq7EuNVZR2r1TyIxLgiCIJwXHE4n03/+jrQrHNx3x3VcPaQ/G375FpPdxtPP3YjR19O9rNUhU1rlRaBPHT5SR7w0Onc/bG/N8S86JHj3IMG7R4vjKTAVYHFaAMhvzG2SGL8l+nZ6+PSis6GL+75ojxgkJAwqA7Ge4XTxKmFjQS6VZhNj+4XjKLdz2ZCuHKgsRwI6+wUwZv5n5NfVckXHLlRbzOQV1HBXz37cOq3ls1tmTOnPvMU7mDw6ken3zaHRbOWjf95A55ggJEni+sOz7G+qqWLEd3Ndx1Nfx12/L+LD8Vfy6oixlFhKeXrbG/x1l1eN7U2Qr0iKC8LJbN++nTlz5tCjx9H3l8bGRpKSkvjHP/5Bz549qaqq4tFHH2XKlCns2LHDvdyjjz7KkiVLmD9/Pv7+/jzxxBNMnjyZnTt3olS6BrjMmDGD/Px8fv/9dwDuuecebrnlFpYsWXLCmAIDA0lISGDIkCFMmTKFfv36ERYWhk6no6qqitTUVDZs2MD8+fMJDw9nzpw5Z+nZEQShtXx9fQkPD6egoICSkhLKysoIDAw89YqCILBjxw739d0+ffqgVqvbOSLhUqRQKIiLi2Pbtm04HA7S09ObtLMRBOH88dfZ4qLKiHCha3UN6a+++orrr78erVbb5H6r1cr8+fO59dZb2yw44dzrGOzPv4KvoahxDLdI71MbW4/Ht54oqhU0NFqRKxQQqMaACr1KxcZNGTidToYN7UJKcSk3ffkDBo2GRffczMjOHRjJ0dFDHToEEhPzFA8+GMr+9CIAzBY7ObkVrF6dyl0zR7qXva5PIttzCjBoNfx32uVndEx6tZqN1Xuwy65qBqrAWvxCalhrWoehyEQfQ3c2ZeUyunNHvPVNkwS9/e9gV+UXdPeeekYxCIIgCMLxWBwWtlVuIcazAyGqMN587Xu2eFTzwNQxTOzSjRqLGYvDQZDH0WR3vc1KkT2d4T3zSJPzCPW7jE0334vVaSdA79lk+139A3my+2MU19dxddcEVAoFv117G05ZJi4gyL1cg83KbUsXUtrYyOeTphPr0/JeUT28ezI59Eqcskwf335NHtMqtQzwa1piK8E7kbd7zWZryTYeXfpPcrb4EZEYSI+wUN4bNxmVQsHOogKunj8PgGBPT0oaG0CCNTmZmBx2AF7YsBqVQsGMuJZdPLnxyn7ceGU/tu7OpqK6AYB96YV0jglqstznn2xAXydjCgEUri97D6xYQle/AMb0aMSiaUSWaZIc16nEzAbh7JNk1097O50Y6uvruemmm/j000959dVX3fd7e3uzcuXKJsvOnj2bAQMGkJubS1RUFDU1NcydO5evv/6asWPHAvDNN98QGRnJqlWrmDBhAmlpafz+++9s2bLFXdbv008/ZfDgwaSnp9O1a9fjxvXPf/6Thx9+mLlz5/Lxxx+TnJzc5HGj0cjYsWP53//+x/jx41t/4IIgnFUJCQkUFLhavyUnJzN69Oh2jkgQzn8Oh8NdvlqSJPr373+KNQTh7ElISHCX9U9OThaJcUE4D9XX17u/J+l0uiYDnQXhQtXqxPgdd9zBxIkTCQpqehGxrq6OO+64QyTGLxIptfnUOk3gAdpOCoyZnlgsdii2EGCDhM7BTL7iLY60B582tQ+Gvn6YbXbMNjtJh/Kx55sZPDgWPz+De7uSJFFZ1eC+nZgQQV29mTFjmvb67BYcyJL7bmmz49Ermw7k2Fq+n1p7I7kNJTjT0jhYVsHQjtF8dtN0AGRZ5pfFSRQV2bnllo8weIoL3oIgCELb+6lgIatLV6JRaLix6C6+qc2gMcTAw2uW8UdYOOO+/5xGu43vrryOQWGuUr/eWh1XdA0kz56HLDVQZ6vFXxsAaI+7j5GRTUtcdfNvPptqb2kxO4oLAViZdZDY3i3vqatSqJgafjUAVTWNfP3zRrp2DGLCiKaf7bIsU2Etx0/jj16pZ37RN2g7Ogl12BhuG85DE44OkKuymN2/lzQcPW/o7h9IUmkRCbFZ+HmZWV6XxnTHB+iULf+c7psYxY1X9qWuwcL4Yd2bPb5rby5BNaDTqZl4dx82NRSwvbiA9MpyeqR7QnDT5UcEDKKTUZQREy49tbW1TW5rtdpmg6ePePDBB7niiisYO3Zsk8T48dTU1CBJkrsE+s6dO7HZbE0S02FhYSQkJLBp0yYmTJjA5s2b8fb2btLrbtCgQXh7e7Np06YTJsYBgoKCeOaZZ3jmmWeorq4mJycHk8lEQEAAsbGxYjaEIJzH4uPjWbFiBbIsk5yczKhRo8TfrCCcQmpqKvX19QB069YNb2/vdo5IuJRFRETg5eVFbW0tmZmZNDY24uHh0d5hCYJwDFFlRLgYtToxLsvycb9o5Ofni5Opi4TD6URT7cGEoF6o1Qqe/L8rKcqp5tHHvkOnU/PCE1fy7HML3UlxgJ8XJTFd25/r+yTio9ex4H+b2KKrRLt1Pcv/PpMAw9EZbDPvHMEXX25g/LgEbrvt3PQBmxYxlCjPIGqtDZRaqnHIMl9mrWRS2ACW7a9GoXHQqKvE4rCRXlxBdn45773vmr1iMOq4ecYQsurXopS0RBuGnpOYBUEQhIvTmh82M/vRrxg+rT8xz7jKb6skFR0SIvH5zk5jF0jwCSC/roZ6mxWAA5Xl7sQ4wKPxt/FroQ+RHlGHk+JnpndwGJM6dqG0sYEpnbud9na+/nkb3y91zUDpEx9JoP/RliVf5nzOhvI/6Ondi4c6zSLeK57kmn109Yzj5lH9KWmop6ShnsTAYDp6+xJp9CKv7nDi7fCp56TYrhg9bMheae4Z2yuKVjIl4soTxrRuawY//b6bGyb3ZUjfjqiUCh66ddQJl7/v9hF8+Pl6unUOYfqAHjjTFQR4eBJvCGDBa38S/AxIyqPLXxYkzguES9Nf+3K/+OKLvPTSS82Wmz9/PklJSWzfvv2U2zSbzTz99NPMmDEDLy/X+2NxcTEajQZfX98mywYHB1NcXOxe5q8Dt8GV9D6yTEv4+PictCe5IAjnF6PRSExMDFlZWVRWVlJUVERYWFh7hyUI57Ujs3MBBgxo+WBYQTgbJEkiPj6ezZs343Q62b9/P3369GnvsARBOMxut7tbXEmSJD43hItGixPjvXv3RpIkJElizJgxqFRHV3U4HGRlZTFx4sSzEqRwbr2/bBNz12zH3+jBihfuQq1UsmDhdhoaXP1DN2zM4JGHx7NxUwY7dmQhS1DdScUfDYXMHXMdRp2W65anYzMosOFgw6EcpvaMw+aoJrvmc3oM6c634+47p8ckSRL9/Lo0ue+mmMsAuDqkjjt2vEmxs5hXds1n4W/lAERH6HEUmOnSOYTs+vWsKXoRgMkR7xPi4Srt89PPO8jJKef224bj69u0fO2Z2Lgpg5Wrkrnm6v4kxEe02XYFQRCE9rV/xyG+fv0XTA0WVn63kV/e/Zj8KiV/ZFWSFWBh3WcvUtrQQJivNxLw4tDLqDQ1cl23hCbb8VZ7c1N021Xp0alUfDh+Ciabjef+XInd6eT/RozDqHHN/iyqr2N20hb6Bodxddf4JuuazDbUKgUqlZKuHV2JqSB/I0bD0Vnc+2vT2FD+BwCZDYdYn5fNb0l+TOl8Fw9OGUaV2cRlX8+lwWbjX6PGszA9hbz6Wnx1OqotZmQgNqKY1XUfo/ZtWse5o+fJZ2u/89kayirrKa2oY0jfjqd8LgpLaqipNbF1ZxZJS37iYF0lHX18yS4pxzrMTM0WH3yGVgOgV+qINUSfcpuC0Cbkwz/t7XAMeXl57uQ1cNzZ4nl5ecyaNYsVK1ag0528soPNZuOGG27A6XTy4YcfnjqMvwzYPt7g7RMN6hYE4eKRkJBAVlYWAPv27ROJcUE4icLCQvLz8wHX4LHoaHEeK7S/I4lxgJSUFJEYF4TzSGpqKg2Hq/h1795dTIwVLhotToxPnToVgN27dzNhwgQMhqPlsTUaDTExMVx99dVtHqBw7tU0usqXNlqsOJ0yX+X8wa7+B1EclFHlq5l8RW+6dg1hypTe/O3v89mUnUdjuJI99eU88M4CRvfqzH+fmM5D3y9Bo1cR7GVAlmWyqueQU/s5AMMj+6BTNZ/V0R4CDJ4oFIATLE6b+/7Hn7icQRER+Ph4kN9QcfheCZXCdVEvL7+S9z9cBYDRqOeumSMpLq5m0+aDDB/elcAAI6frzf8spbbOTElJDR99cPtpb0cQBEE4fzidTp656r+Y6s0YfT258W9XolGp+WhrDia7nbcdm/hp2gwitD7ude5IPLcXBdbmZvLTgVQABodEUpFUjcFTy37/Gubv38d3qXsYHdUBL62Ov639jT2FxRRnVuFn0bDs2XuYMCKOPvGRGA06dNqj5bVW5+90/+7r6MMnu7aRXlnBW9uqeKDPUBptNhptrs/gkoZ6PA8PwKyymLm2hzelym2gcDaJ1emE6hojCb5NBw381fjh3Zm3eAfjhzcvm95os7ImO5MQg4EaiwU/nQc/KzKR47X46jw4ZKoDoN5qxeqdS9SoKhwOyd1j3GQ388nurWRV1/HUoBEEexqa7UMQLlZeXl5NEuPHs3PnTkpLS+nbt6/7PofDwR9//MH777+PxWJBqVRis9m47rrryMrKYs2aNU22GxISgtVqpaqqqsms8dLSUoYMGeJepqSkpNn+y8rKCA4Obna/IAgXj+7du7N06VKcTicpKSmMGzcOhULR3mEJwnnpr7PFxeAx4XwQFhaGr68vVVVVZGVlUV9f3yTvIAhC+5Blma1bt7pvi9niwsWkxYnxF190zZaNiYnh+uuvP+WIf+HC9fiU4XQODaBnh1BUKgUfHFiOjMzgezvzbr873MtJksSTT0zi+js+QmGRQSmxzVHKtu1lzNmbxMNd+vD2gR3c/s2PvHLFGIZ17gSARhmIWnH6SeO2ppAUfNj/YbZXpOOnMXL5DR5U1lvYmJ2DxengKp/uRHgOYErkJygVGvy1ruMI8DcQHOxFWVkd8fHhADz7j4VkZ5ezZl0a7797/B7pjY0Wnnl+AXW1Zv7vn9cQGurTbJmBA2NZuSqFQYM6nbXjFgRBEM6+4vo6vkvbw/CIGPqFhBMQ5kvegSLGzRjK9Add/XKv75bI/P37ms3EPptKK+qY+/0muncOYeq4nu77+wSHEWowYnc6acw1MW+Jq2TWlHtcSa1YHz9Mdhu3L/uRvWWHk1DB0IiVFWkHSOgYSle/gCYX2TYX5PLWHwV0DPfHYlOzqricN0dPZH95GVd3i0eSJMKNXrwzdhJf7NuFr06Pl/bIeaZMsXILf72+LcuQciicOOPJk+IAD9w8gvtvGn7cC3/X/jyflPLSo3ccWSQKcp0WsLvu6BkUQpbzEABKpdxk+W+zfqe4zJcAvQfPDhl1yngE4VIyZswY9u3b1+S+O+64g27duvHUU081SYpnZGSwdu1a/P39myzft29f1Go1K1eu5LrrrgOgqKiI5ORk3njjDQAGDx5MTU0N27Ztc1+w2bp1KzU1Ne7kuSAIFye9Xk/nzp1JT0+nrq6O3NxcYmJi2jssQTjvNDQ0kJycDIBOp6NHjx7tHJEguBwpp75hwwZkWSYtLY3+/fu3d1iCcMnLz8+nsLAQcA1EjoqKaueIBKHttLrH+G233XY24hDOIwadlhuH93LfviqiH6uL9zE5vG+zZYOCvBg9qCspqfl0SAjhF1wlmaosZt5Y+QfmENdLrLi2nnDjdHx1/dEo/VAq9OfkWFoq0iOQ/6QtYE91Jv38uqDN78DC3cks2JXMqM4d8NbrCNLHNVlHr9fw1ef3YrHYMBwuF2t0/795KckjUlIK2LfP9Txt2HSAa69uPtrq6b9P5tFHJqDXa9rqEAVBEISzJL2yjHuX/0KU0UhidA75RflMtEzl8isv4+WNa/gtK4NP9+wg+c5HeHfN8+QdKKJTrxj3+i8NG8NLw8accPvrt2ZwMKeM667og9GzbQYmfv3zVn5dm8yva5MZ1i+WAF/XiPwQg5FNN90DwP5DJXyt2oJWo+K2Xn24a9gAvDRavkhOcifFDxdccR3H3rXU77TxtwHDmNKpG5FePsiyzKrsQzicSjLyQ0EChULi39v+xIaTqV3jWJyxn2fXrcDisGNzOtlVUsR/x0xkyaF0QMJqU6LTOgBwOCSUSplGs4bKOi/2VhTwz41reXrQCNRKV+Nvu93BVz9vZee+PK6+vCeXDe523KR4g9XaNCn+VwqJI1PD/yg4QN8EE45jHj4ya9xX50G5QsHg8ON/SVy4P5k1OZk83G8w3f0DW/xvJAgXA6PRSEJC0wEsnp6e+Pv7k5CQgN1u55prriEpKYlff/0Vh8Ph7gnu5+eHRqPB29ubmTNn8sQTT+Dv74+fnx9PPvkkiYmJjB07FnDNGJ04cSJ33303n3zyCQD33HMPkydPpmvXruf2oAVBOOcSEhJIT08HXOXURWJcEJpLSkrC4XCdzfbu3Ru1Wn2KNQTh3DmSGAdXOXWRGBeE9nfsbPGBAweKKiPCRaVFiXE/Pz8OHDhAQEAAvr6+J/0jqKysbLPghPPDswnTGBbUjcX5O/DTGOjrf7Q/p0Ih8dKL0wCwORzseP9zCmpdZUfNISpUksTfJziJj/iaGrMn3rqex93H+aDebgKgwW5iUGQoC3cnExvgh1NRgc3pi1rh0WwdtVqJWq10337t1WtJTsmnR2LkCfeTmBjJoIGx1NSYGDWi23GXkSRJJMUFQRDamcVhYW3ZaoK1wfT2bT447Iilh9LJrqmmxpmPxpINfvDZnK8ZOnQAHXz8AIgweqOQJDyMerq2oM/1EWWV9Tz3n8XIgMVq54GbR7R43aVrk1m7+QB3XDuY+M6hTR7r2T2Cn1fsITrMD29D08FqR87zuncK4df/3Y9SqUCvO3rh7LLoWL5M3oWfTs8jfQbz0KpfcchOdyn0d3ds4s1tG3i072AkYO6+na4M+mFOZMpNjQDMT93LLwf2U2+zNonhUFUlEk6C/Gooq/IgIrgOSXLN1rabVeTsD0RnsVGrgbl7dzIoLJJxHTrhdMqMuuFtdxvm3al5pE0p5sFbRzV7fswOW9M7jpzeyuCpVGFusCNZwe4FUeElOI5Ji1ttEvsPRmCss7L23id4dM1v3Lv8F/4z+nKmdD762W5zOPj7uuU4ZRmb08Gnl0873j+VIFyy8vPzWbx4MQC9evVq8tjatWsZNWoUAG+//TYqlYrrrrsOk8nEmDFj+OKLL1Aqj56Hf/vttzzyyCOMH++qxjFlyhTef//9VsVjt9tZt24dhw4dYsaMGRiNRgoLC/Hy8hIlPQXhPNalSxfUajU2m420tDQmTZrU5P1BEC51DoeD7du3u2+LpKNwvgkODsbf35+KigpycnKora09ZcseQRDOntraWlJTXW32PDw8mg12FoQLXYsS42+//TZGo9H9uxgdcul5LflnKq31FDZW8be4K/kxdytTIvsxwP9oqW+1UsmXt17L2Pc/c99nl2VC/T+nymwno8pEv9Av2iH6lnmt551sLEthWGACQTofLuvckWLrKn7MuQG15M8Iv0/o4H/yHoWenloGDojFKTvZVJZCiN6PjoamyQidTs1rr157Ng9FEARBaAMrS5azqPAnAF6Ne50Qj6Pv57Isu8+HpnWOZ21OFpHeHfGqM1NUXoxnph96g44nBwxjcmxXYrx9qK41MX/JDhK7hTOsX2yLYvDUa/Dx0lNVayIy1PfUKxwT3xufrMTucGKzO3j3haafO2OHdmNgrxj0Og0q5Yn7cBo8m1dAifXxY8PhWeUAKTMfwSHLbCnMY31eJnP3JgHw04FUd65ZrbSjUDix2DT4aLSMiYmluKGeb1L3uBY4JikNsDYnkyE9D6FS2ZvtX5KcxPUuwGlTkJTWCbXCk7iAIAB+Xr6LYwqdU90F/lOzg82zC3hs1HD6Jh6d1e2v98RHq6PaYj7miYM7e/TGc4+DxWv3UNURar3Ax7vx8PPqmiVeWuSDlKlBu1fNF16bWGl2lVlfdii9SWJcpVAwNDyKDfk5DA6P4q5lP1NntfDeuMk02KxEe/mgFH1QhUvMunXr3L/HxMQgy/KJFz5Mp9Mxe/ZsZs+efcJl/Pz8+Oabb047rpycHCZOnEhubi4Wi4Vx48ZhNBp54403MJvNfPzxx6e9bUEQzi6NRkPXrl1JTk7GZDJx6NAhunTp0t5hCcJ5Y//+/dTVuSaxdO3aFV/fln+vEIRzQZIkEhISWL9+PQCpqakMGjSonaMShEvX9u3b3d/T+vXrh0rV6sLTgnBea9Er+tjy6bfffvvZikU4j0U4g6ikno7KMF5PWUR2Qxl7q3P5eMDdNFh+p9a8go4+D+Dn0bRHkQR4qkbQ6FhLkMdl7RN8CwXrfJkeOcx928/Tg/SGbACszgqu/+JLFs28j2927Ca1uJQXLx9DB//jf5n4MW8DH2QsRiUp+X7oc/hrXaMc02pyeGLXHIJ1vnzU/xF0ytbPCp83fwupaQXce/doIiL8Wn+ggiAIl6D0uv3MzZpDZ0NXrg+/jdy6GuL9g0462C8/sx50YHco+HzpFp65dhqyLPP4//3ErpQ8Xnr0CkYN7EwHH1+WXHPL4bWmU5pXgfdkI2qN6zTrSNL2/e/X88vKvSgW72DZ5w+0qCy6h17DvPfupLK6kejwlr/nS5LEiIGdWLc5g5EDOx93mZbsX5ZlMrPKCA72wnCC5ZUKBUpgRGQMwyOi2VSQR1pFGR18fNleVIBWbWNwQgZKhZNdGdEkekXzwtDLGPbFJ8cEfPR/BrWG2/t0ZlnVn8fdn0Grx0QDCrWTtyf3Z1TgSDSHZ4X99d+zIQxQwraqIh55+QemjEvkqXsnuB/vHhDI5sK8JnGMjenM/72/CJMv1HaR8PQwI0muL4SyU6Jxe0+kdXUE2l33VZTV8fyEUazJyeSBPgOb7F+SJL6afA1mu53Nhbm8snEtAPf+vojdpcVM6NCZTyZedbJ/AkFwkwDp1Dnks+5iHSI9a9Ys+vXrx549e5r0OZ82bRp33XVXO0YmCEJLJCQkuPsnJycni8S4IBxj27Zt7t8HDGjezk8Qzgfx8fHuxHhKSopIjAtCO7HZbOzcuRMAhUJBv3792jkiQWh7rZ6ikpSUxL59+9y3f/nlF6ZOncqzzz6L1Wo9yZrChWzvShPmVQHkbrczKMB1gT3GEMi0P94ko/JVKs1bOFj1Hp5aLW9Pm4Svhx6dSsU/Lr+MoVEfMCZmN1Het7bzUbTO+wd+4fW0XKob+rB40wBqGtUcqqhk7uadbM7K49sdu0+4rkN2dVyVD/93xNzM5TQ6LGQ1FJNWk9vqmMrL6/h07jo2bspgwcJtp15BEAThIlRdVsvu9Wk4HM5TL3zYxvINVFor2Vq5mat+nsvkhV/zny0bWLRyDweyjt9nuqMUz+aUTmza1wXt4XYadQ0Wtu3JxmZ38MfWjOOuFxTpj/Y47TA6RLoSLcEBRnSalvf0M3rqWpUUP+Kfj13J2nmPMn1Cr5Mu57A7eGbKm9wQ+wibliaxY9U+GmpcM6R/WLiNu+/9jJl3z8Vmc5x0O+BKBC+75lbmBAxlfW4WjXYbEd4aVEonkgSeWisGjY4nVi2jzmFzNSg/JtHX1SeAV0aMIUjfdOymLLt+9Bh5pOv99Pd1fTH7NvdbSixF7uWmTehFaNDRknveB0FdA8YsqIuGuVX72FFUgMPpZEnGfqZ3iW92DDm11Vw2vBvWgWZ6JWQRG12EQpJRSDJKpRPjoF0YBx19zTz+4ATu6tmP76ZcR4+gkOM+J3q1mr4h4fQKCiXWx4+6w+fM6/OyWJ+bdcrnVRCEs2/Dhg08//zzaDRN37+jo6MpKChop6gEQWipTp06odO5BvHt378fm812ijUE4dJQXFxMbq7r+lNAQAAdOnRo54gE4fgCAwMJCnINKs/Pz6e6urp9AxKES9S+ffswmVwtZ+Pj492VpAXhYtLqGgj33nsvTz/9NImJiWRmZnL99dczffp0FixYQGNjI++8885ZCFNob1cPSuTnbclcNSCeq7snclenMSzN38mW8gz21EbQxzsPf52rn9+khK5MSujaZH2FdH73y3Y4nby9diMltfU8M34kfp4eLC3ciskBB20dubnnKDyHSAyKiaR/VDj7S8sZ17XTCbd3TeRwgnU+hOkDCNB6u++P8ghiR+UBJCDKM4g6s4WX1/zGQW0y/YM78lTc9agUTXuhHSqvJNjoiUGrxdfXk7i4cA4cKGLgwJaV4RUE4dLgdMps25NNWLA3UWEXZzWJ9WXr+CFvHvVLoeQ/Nq57bBJ3vnRNk2Wya6q4cfH3eKo1LJh6I746V//sUYGjyWnMJtajM3/sqgBg9d4MFq2qQqtR8dtnD6DVNk1Wjx/ak3/abFSbGrlj4nAAvAw6Hrh5ODv25XLTVa3rzXft5X0Y1KsDAb4G1Opz0/fyZGXSj8hOLWDXOlfvqH/d8TEWuxOpT0e8Ar3okRgJQGVlAxarrUVxS5LEb5+swTeonrqe3jw5fjqexr58k7aVgnKJvLJ0uvsG/KV8upOwgAo0Ptm8vC0brcZEt5hjtwkmi5KMrFjiBnSnzl7P9qodKFCgUaib7Hvhh/dQ12Bm0crdfPzNBgz5ICugoo9rmTl7tjM8IoZ//LEKgEBPT8oaGwjxNHBNl3imd4njjr3z6RJViWsCupMjE9GP/N97VC2JAd144+6WzyL11upYdPVNAKRVlHHtz/Oot1n5x5+r+OOmu1u8HUEQzg6n04nD0XwAUH5+vrgYJAgXAKVSSffu3dm1axc2m4309HTRD1MQaD5bXLTHFM5nCQkJrFmzBnDNGh86dGg7RyQIlxZZltm6dav79sCBA0+ytCBcuFqdGD9w4AC9evUCYMGCBYwcOZLvvvuOjRs3csMNN4jE+EXqqWmj+PvUkWSWVFJnsuCl1zM9aiDLi/fycwn8XNKHcck6/u/J9o709OwpKObTTTsA6Bzkzz1DB/Bg5yksK9zGbR3Hs7HkVQzk8FXmRL657blTbk+lUDI6uFez++/tdAXRnkF0NITir/Xiy61JrCvbjSGinpUlSVwXPZLOxnByKqt5YekqnLLMtpx8goyerHroTrQqFbPfuRmnU0Z5TLLjYFkFX25NYnz3zgyPjQGgzmzhwR8WY7bbef/aKwkyGprF43TKbNqcQXCwF507NZ/ldipHeo2IL1aC0P5+WJbE7C/XoVEr+fnje/Dx8mjvkNpUcnohy2pWYFFYUI0G/qOgrrK+2XJ/5mVT1OC6f1dJIZdFuwYRdTTE8nL8qwB0uSKPLYV52NPM/EwVOq0aSXH897Hpo5qXjLrpqgHcdNXplSBsTZ/ws2nPnlyW/raHKyb1JK5bGAYfD+qrG9EbdJjtTmySgvLyejp1CiYiwo/4uAj0Og1Op4zimOfqjz/3s2ZdGkaDnptmDCYk2DUYbPqDEyh95Ud8NL74V6gY0HEUCksH1uz/kXCDkZk9+/Hkut8BCPSpJTE2lyOttgN96tme1sHdz/sIvdaBTt/ApO++pLCulu6d/ekc4INeqW92fHqdhjnfbUTmcPlpJ+iLwB6s4PIOXViXmwmAQoJOPn6UNTZQ3FDP+7u2srliB6roSnfe/nivDEmCmuD8037+u/sHcmNcDz7ds4OJHY6Wut9XVoyfzoNwo9dJ1hYuWbLk+mlv50MMZ8G4ceN45513mDNnDuA6v62vr+fFF19k0qRJ7RydIAgtkZiYyK5duwBXOXWRGBcudY2Nje6qn1qtlp49e7ZzRIJwcvHx8SIxLgjtKCcnh9JSV4W8iIgIwsPD2zkiQTg7Wp0Yl2UZp9NVunTVqlVMnjwZgMjISMrLy9s2OuG8Mm/Dbv718zoCvTxZ9tydaNVqXki8mtsXfIQjBxzW86DpYQvVWyz8kJRMj/Bg+kVF0CnQjwgfLyoaGhkY45odNzl8EJPDByHLMnvKc1FI4HD+zh8lXRkR3HSGYkltPU8u+g0/Dz1vTJ2IVnX8Py2tUs1VEUPct3tHhuHYYkQONNMrKJoYz2AA5iftZUv20Z6nZfUNNFhtaFUqJElCqWx6QfKfv69lS3Yev6aks+uphwDYkp3H1hzXRfu1GZlc36dp/3eAxUuSeO/9lSiVCr796j6Cglp+IT61qJTbvllIoMGT7++4AaNOe9LlrQ4HX25Nwkun5breie5kelZ2GQH+RozG4/eutdjtKCQJtfLczK4UhPZS32Bh865M+sRH4e/r2er1LVY7AA6HE4fj5O/HDoeTRrO1RT2mW2rekh3sSsnjgZtHEBPhf+oVjlFYX8s/N66lk68/j/cf2mywTUFxNdcs+A7PGDUDYvy5TD8Y9b+9GXdj8y/JV8R2ZV1eFga1hiHhUcfd36CwSAaFRWLv7WRYQgc6RgWgUbf6lOiC9uZ/l1FYVE3a/kI+fu8WRl49EA8vHUmrUzAfKiEiJgDfUF8un9gTby89GQeLmTLtHYwGLZ98dAfe3h5UVTXw0iuL3NtsaDDzwvNTAehzeSKqjXtI3V3G08/+wNxPZ1K6u4wFQ64hMS4CCShprCeruopcxS/upDi4ks5eno1kF/oTGVyB1a5Ar3XN2vbyy2PPfhXehgY0hgpyzBV8nP4tf0+4372+LMs88MtiCgYDSOhzZHzywS8VfPO1rI7I4NfCDJQKiZ6yf9Me40CxpZiIY+q7O2VQSrgT9bITnGY48JWGyuEN+J3G3yvAc0NG8eTAYWiVrtfeogOpPLp6GVqlilvje9HFP4Bru4kL+oJwrrz99tuMHj2auLg4zGYzM2bMICMjg4CAAObNm9fe4QmC0ALR0dEYDAbq6+s5ePAgZrPZXV5dEC5Fu3btwm53fU/s1atXs3YhgnC+8fPzIzQ0lKKiIoqKiqisrMTP7+KsiCcI56NjZ4sPGHB6E0IE4ULQ6qvA/fr149VXX2Xs2LGsX7+ejz76CICsrCyCg4PbPEDh7JFlmd+/30ZdTSPT7hiOWnPyl0NOWTUAFXWNmK12tGoVHQ3BXN1rID+EbCI6yufsB91G3l23ma+27UKlULDlifvw0ulY+dCdOJzOZglYSZLw1fanxroNhQR7KufSyTiSg/XFDArojkahYllqOnvrDmDwqeOlLXXkHlIyslMH7hl68jK7PcJC2PzALJSKponfcV078dPuFKJ9fYiP8aVbcAB+Hs1nxB3ROyKMLdl59AwPBWDpsj18/cMmOvTwxtNLx+jOHY+7niy7ystWxSj4cMs2nr1iNJoWJqDXpGZQa7ZQa7aQWljMwI7RAFSV1pC8YT/9JvREf0zS7Ze9qfxn9QYAOvr70T86gl8WJ/Hu7BX4+nry7Vf3odM1LWOcUlTCjC9/wFOj4Zd7bibQcHrJB0G4ELwyexkbd2YSE+HPt2/f3ur1b5rSj2B/I1FhvidNrDscTu5+9jsOZJbw9P3jmXxZYqv2I8syn+7ZQZXFxCN9BqNXq6mpM/H+V+sB8Dbqee7BidRZLWzMz2FQWCQ+uhO/fwF8nbKb37IyICuDKzt1o4tfQJPH6x1WzAFgrjdSnt2Fa2++Bvoef1t+eg/mXj69RceiUioY1PvS7LHXp08MhUt306d3DE9OeJ2slKazn5UHCnn106NlwvfszcNksmIyWcnMKqN3r2g8PDT4+3tSUdEAQJfOrsojs37/lcUZ6RAFCj8lxjyZGT/8gG1/Pb6FEr36RENPDyb3iyfBN5hnt27AGFvQZHa4r8FEnHYS3+9NRq2yMzjR1c/dx2gmLKiCRpMWpxMUCkhp3EFeYz6RHhHIsszfVixnVW6me7q5KUZCV+9AVw61xfX8uSYduimQzU4KdpTCEOno1HQZVCoHEjKSBE5ZQpIUOGUZkLFWaPBZ25NDaVV4emrRas9sQMWRpDhAWaPrebQ47Hy611XFJr2ijCcHDkd3ggF3wiVGPvzT3s6HGM6CsLAwdu/ezbx580hKSsLpdDJz5kxuuukm9PqTf44JgnB+UCgUxMfHs3XrVhwOB2lpafTu3bu9wxKEduF0Otm+fbv7dv/+rWsDJQjtJT4+nqKiIsBV/WPEiBHtHJEgXBqqqqrYv38/AEajkbi4uHaOSBDOnlZfZXvnnXe46aabWLRoEc899xydOrn6LC9cuJAhQ4acYm3hfJKyM5v3nl8IgMFbz6QbBp10+QcmDMbLQ0uPqFC8j0l4rq1NxiY5mHdgI6teTOeZf4ZT5/FvfLX96Bn8/nlZZjvQ4CoxbNRp3QlphSShOEFSuI/f5awtdvVl0ivr+Sj9frJMRvZWX8VDXaYysGM4vvVVIMFm806KcsPZkVuAj4cOjULJVT26n/B50B1nlmKfyDC2Pnk/+2vzuH/7e6wrgYTIQOK9o4+7jUdHD+HGvj0IOHxc387bRGlxDYFWI99/d+cJn4erpvQhw17D3LQ9zNuzj6FdYhjX7cS904/lf6AWfWoFyjorjt5lcDgx/sSoF8jbX8iIawfxj++fcC8f5euDJIFGqST4cFn3gsIqAKqrGzCZrM0S47vyizDb7JhtdjJKy0ViXLioOZ2uTIPsPL2Mg0qlZOLIU5+0msw2DmSWIAO7UvJbnRjfWpTPa1tcSfBQTyO3JvTG6KmjV1wEyemFDOnrGojz0Mol7K1OpluwxEfDH2HN/7Zjt9q5+uEJKFVN32tHRMTw+d4kor19iPLybrbPruFBzOzSh63Febw8flyr4hWO77FZE5h550i8vfTc9fU6nEqJmgGBKBvteO+rQndtd279cgFPTRjJ7PWb2ZFbwKDLOhDvG+DuO67Vqvnq83spLatFq1ERFOyFLMssPXjAvR+nQUFNd6jBDL1V6EwOfvLKxVmqYOHSdHBKoPAjPKQCL4OZwx060Kht7DevIM43kfy6OjJygukcXYIkQaBfPXZ7Y5NZ5vUWK72+/IBaq+W4STuzUUJXJeNUSXgdBIsX2D0UVMVK6PIdmCMPLyhBWYU3oYG17nVdM8UlQELtZ6f7FVqeuOtmQoK88PQ4ebWU1rgtsQ9alYryxkbe27kZgP/t3cnvWRk80GcgM+JE6UtBONv0ej133nknd9554vNnQRDOb4mJie7ZTsnJySIxLlyyDhw4QE1NDQCdOnXC3791Vb0Eob3Ex8ezatUqwFVOXSTGBeHcOHYwVb9+/VCK6q3CRazVifEePXq4+9Mc68033zyjP5bXX3+dZ599llmzZrn7lMuyzMsvv8ycOXOoqqpi4MCBfPDBB8THx7vXs1gsPPnkk8ybNw+TycSYMWP48MMPiYiIOO1YLhUBwd5odGpsFjth0QGnXN7bU8eDE5sPfniwywS+OLCO3MU1VFU1kFX2Cz6RtZSZ1mBzVqJRnn8n33cP6U//6AiifH2Om5j+q1ivsciyzLqSVwCI9iwh2rMEszMNmEqIt6ervCoQrPanRq2mW0gA//jVdSJn1GkZ0zW21XFWWeuQD1/hz20oYe6h3/BSe/JM3A1olU2TyMFeR3uIX3/dQL79bjM3XHfywQ4KhcT0kT2ZdzAVpUKiW/CpXwdHDBmZQIfnv0fnoaVbv6PHZjXbALCZ7U2WHxgTyeqHZqJRKd0J7ltvHorBU0uXLiH4HmeG69Qe3TlQWo63Tkcnoy933vU/kOA//74BP7/mPdMLqmvRq1X4eR7trWwyWamubiQ01KfFxyZcHPbuLyCnoJIJI7pfEGWyX5w1iY07MumbePzy323F4KnlmQcmsCslnzuuPfl7REVRFcmbMhgwoQd6g2tAVLSXD0aNlkabjTj/IMD1XvL+S9fhdMoola5spcVupXfnHBQKmY+3z2Hds+kABEX6M+qagU32Mzg8iuSZj6CUpBMOIvrHZZed0XFfagoKqjh4qITOiWGsz8xidOeOhHgZ3Y9LkoS3l2sG5FvLn+PuZz4hO8r1b/ePt+7gkeUrkKolbnt+DrUxrvdnYw8fPEP9+GrHbm7t3wulQoFeryE6KoBv09axLv8bAjR+jIzuy5rsY2agH9Ms3DbcgNNhOhLE4QbgkFcUQLfYApQKGVkGXy8TYGJfRSYOWU9xiT84FQT515BTEIhWa8PP29VLXqGAN/b/F/9QPaEaBxazhuzcII7tDm71lyAPZI2EbHPi0CuQkJB1YFcrXPXRD8fYwbMS2Sphztdhq9BgSfPEa3IpKl9XOfcAPwPx3cLa/N9Mo1Rya4Lr4v2YmFhuWDQfk8NOfl0tr2xcKxLjgnAOFBQUsHHjRkpLS93tw4545JFH2ikqQRBaIywsDF9fX6qqqsjKyqK+vh6Dofl3R0G42G3bts39+8CBA0+ypCCcX3x8fIiIiCA/P5/S0lLKysoIDAxs77AE4aJmtVpJSkoCQKlU0rfvCco0CsJF4rQzBTt37iQtLQ1JkujevTt9+vQ57SC2b9/OnDlz6NGjaQ/kN954g7feeosvvviCLl268OqrrzJu3DjS09MxGl0Xdx999FGWLFnC/Pnz8ff354knnmDy5Mns3LlTjGo5hZBIP75Y9wxWi53gcN9TLm93OFm0LYVAL09Gxh8tzd3BEEQDFnzGaIlQBbJluZP4kdkEew1G0+H8S4qDKyHQO6J1F7U7eY/jj5J/4cTqvm9MiOsCtp/WyJu97+FgXSFTwgfjMVLL3sJirvtsHsjg53l65RcH+Xfn6bjrkWWZeruZpKqDAEwKG8AA/64nXO+qK/swZXJvdlUdpMhUSaj+xP14OgX6s+mJe1FIEjarg7ue+5aK6gYevW00Iwd0PuF60XGRLCydiyRJKI6ZtvfftS+TtGovw6Y3/+IV7tO0h7nBoOPWW4adcB8GrZZXrhgLwMpVyWTnlAOwa3cOYy6Lb7LsxswcZn77Ezq1imX330aYtxdWq5077vofpaW1PP7oRCZf0eu4+zlUVoFDlukS1HRgwM6kbP7v9cX0SIzkxX9MPS+rHwjHV15Vz4Mvfo/TKVNeVc8d1wxu75BOyeipa9GM77ZwxegErhh9tHexLMuszD6EU9FIpu0PQvWhXBl0FY9PeJ2SnHJGTh/AM5/fB0Cowcjmm+/F5nTge0yJdEmSUCqP/o28N+5K/pm2FZNcQ7hXGGrtIZwOmfDY47ddUR07/Vc4pRUrk1mzNpWbZwwhIaHpYECLxca9D3xOY6MV5xhfCu2NzNu5l8X33HLcbXn5G5g2fShJ2zdi94AHNi8HLxnsEto95XRAhc+wGOJCg/jn8nUABBk8CfMz8ltGBnvfXU/5LbXERNgps5YyQukgqkdvvti7y7WDIyPHJCg9khQ/TFXtwO6npLjcl8jQcrwMZiQJrDYFNruK7rH5qFQy+9KjKC7zpbjs8PlKHVRWGxjcxzU73ak0ExFmdm+3vNJIfcPRQVIOA9QGgsNLwuat4ti67ZJCQlkr4dCBCjteUa6S5poAK1Xzw1D6W1H7HU2Q5WRWQxvnqB0OJ2v+2E9QoJGeCZH0DArhqi5xzE/bi1KSuLZr/Kk3Ilz8RCn1s+rzzz/nvvvuQ6PR4O/v3+S8T5IkkRgXhAuEJEkkJCTw559/IssyKSkpIikoXHJKS0vJysoCXD2bY2NbP1FDENpTfHw8+fmuwdbJycmMHj26nSMShIvbnj17sFgsgKv6jqenqNoqXNxanRgvLS3l+uuvZ/369fj4+CDLMjU1NYwePZr58+e3egRXfX09N910E59++imvvvqq+35ZlnnnnXd47rnnmD7d1Sv0yy+/JDg4mO+++457772Xmpoa5s6dy9dff83Ysa7k2TfffENkZCSrVq1iwoQJrT28S45vgPHUCx3245Z9/N+PawBY+OQtdAlzJRHXFCdTaKoCT5g6qT/fvlnCri2XM+m6BmJinyXG+248NRdHD9fLQl9iVdGz7ttbSv9LqEccPpoo+vl1oZ9fF/djPcJCWHrfbSDLxAae3gABSZKYGOrqA5XfWMZPeRswqj3o7nXqGaUL8/7kg4zF6JQaFgx9HqPa44TL6tVqZFlm2qw5VNe6khbP/Hcx/37yKob3P3Fp9eMNPgmODuTymWNOGV9rDRrYif79OiJJMHBALKYGMyq1ErXGNXM+u7IaGTDZ7JTWNRDm7YXJZKWszFUO91Bm6XG3u6+wmGs/m4csw7e3XUe/qHD3Y6vXpFBd3cgff6ZTVdVw3FnqLdXQYGHHzix69YzC2/vE/xZrDhzi6V+WM7RjNG9NnySS8adJrVKiVimxWO0Y2rDU8flqd0kh7+zYjJ9Ozz9HjMVTrWnV+r8eSufhVb8SG1ZCh7AyqIZvrlmOqcCVDHQ4ms6aM2hOvf0gDyNv9voXZZYyIvSRXJlyFU6njF9w81LpQuu9/e7vWCx2qqwmanvr8dPr+e+Vl7uroBwpSa6SXAMOPDTqE20KgC+u+4SwIB25s46850ughoaOOmI3lfHV/57mQGk5aoUCB042FObw/apk15ID9AQ3WNzbWjZ/FfUTR7puHE6Iu///Fw6jwj2jPCUjkoQueSgUTrRqO2Wl/sREu3rL6bUWcAKSjEZtx2pXYbepKM+PISAi29UP/HDPcYDoyFJS06OQ5SMDLiQaukjgAMkGTYZhSBIKlCjMAApsVgVqjZO6bAO+NxSh7WjGXqNEaXBgPuDBjt9r+E/u71wxsSfdu4ae/B+qBVauTeWtD1bQ2OgaeDfr/jFoNWp+z3JVWfBUaRgWGXPG+xEE4eReeOEFXnjhBZ555pkmgz4FQbjwHEmMgyuhIhLjwqXm2NniAwYMENcVhAtOfHw8y5cvB1zl1EeNGiVex4JwlsiyLKqMCJecVifGH374Yerq6khJSaF79+4ApKamctttt/HII48wb968Vm3vwQcf5IorrmDs2LFNEuNZWVkUFxczfvx4931arZaRI0eyadMm7r33Xnbu3InNZmuyTFhYGAkJCWzatOmEiXGLxeIeAQNQW1t73OWEpnwNrpmBKqUCD+3RC+yTwnuzpTyDcA8/PDNcyyiUDnqO+5nCegd2ZwM9g99tl5jbWoxxOMoiDY7Ds8YdmKmyHMJHc/xEdWzAiWdqt1aERyDzhj576gUPq7e7EtxWhx2b03HK5fcdKHQnxY945r+/sOx/D+Jl0J1grXPHaNTx79evAyBlUzp/G/MyRj8Dc/b8B+8AL67tFU+d2YK/p56e4SEAeHt78OI/ppK2v4jrrz3+h3qNyeJOIFU3Nj3+qVf1JSu7nJ49IlucFK81m1melsGgmEgifX3c97/62i9s3ZZJp07BzPnojhOuv2TffmrMFpalHuCVK8Zi1J06qZuXX4lOpyawFQNdLnbeRj1fv3UbxaW19EmIPPUKF7BD1ZVM+/k79wS+YZHRTO/Sutml6sMJgIpaA1Eh5WhNHjRmNiLbJWY8dSVXPzTxtGLTKfVEerjeH30CvU6x9IVrV34hPno9HfxPXX3lZLKyyqitM9EjMfKUX/pHDO/KqtWp6Lt7sybPNRvknT83YdBq6B8Rzkcf3EZGRjG9+3dgZ2EhA6NP3GKmpqIOAHOUrknZc4CaoQHcd+sYZFmmYE06L4bEsTXMzvepye5lZI2C8lxfCj0a8U6rRJfhT0pkGYRIhEp6jOU2siUzDn8VTT6NZBlZLaFslAnS6fDTB7Btj5bLBicjSRAUVE5KegQ6rZ2CzAAUMsT3yiHIv46cggAO5oaSVuiBb3UkvoZGaqo8ieudiySBn28DkeHl5Oa7yv0fScrLKhnJIbkqpx/32ZDYs7kLKqUDR6OSnrGuSi3OKjXl70YfXsfGr7/vZceubOZ/cd9J/51aYu5Xf7qT4gDvfrQaAE0AqBIlag0W7v39F966bBLTu56bqhKCcClqbGzkhhtuEElxQbgIBAUFERwcTElJCfn5+VRVVeHre2bnaYJwoTCbzezduxcAjUZDr1692jcgQTgNRqOR6OhocnJyqKiooKSkhJCQkPYOSxAuSocOHaK83FWlNTo6WvytCZeEVifGf//9d1atWuVOigPExcXxwQcfNElQt8T8+fNJSkpi+/btzR4rLi4GIDi4acnV4OBgcnJy3MtoNJpmX3CCg4Pd6x/P66+/zssvv9yqWAUY37ML3z3qhbeHjgh/14y/7PpSvs/ZzH2dxzEgoBP2eAeeWi1BwV5IuhRqLLvw1bVPT4o/th/kmdmL8dCpee2RKezLKGRkv87ERra8j/bxDAx8kM1l76GSdHT1uZJow/A2irhtzYi+jECtN9Gewfhpj58wrbOZeDN5ARpJRcPa5rOYnTIcyC6lX8LZ7XncWikb92Oz2KgsqiIvvRDvAC8UMuhXZtEIOBK6ozo8a3LE8G6MGN7thNsa2jGKt6ZNwuZ0NOsD36VzCB+9f1urYnv+11UsT8sgyOjJn4/e477fZnOlg2xW+4lWBeD2QX0oqKlleGxMi5Li27dn8tSzP6DRKPn8f3eftJe6w+kkuaiE2AB/DNrWzSg+V6pqGvHQqdFqTz67tSXCg30ID/Y586DOc2t+3uZOihvUGvqFhJ90+eOZ0KEz/5s4jR/27yPaMZy7uvTis0k/EBTpz81PXyWSBCexNCWdx35ehkqh4Pf7byPqmAExrZGfX8nd932G0ynzwvNXMWpkd2RZJjs1n+CoADyMTVtyPPPUlfz9ySvIr61l45dFVJvNzN22E3AlfMd37cS0hDj8jB6M69q88ocsH62FfGv8kwCUXhnWJCnu2pjEkCt6k7R6H6/NeAe7t4bKV1wDjfQqFY56O7rdVVgijZR8psW+Rkb2rMbfNxCDNxjNJmy5lYRr1fToHcTKBDtKhcQ9vfvzzYLNlAc6cGgkiiQzRVVmkCTyiv2JCq3AQ29DrXaSUxAEEsg6GR+vRgB8vBroFF2Ev08d+w+EkXsoFCQoLzMSGFSHLEN0ZBkGTxM2u4q8Qn8abRqQwKGWUZhAYZGQFIrmGXIn2J0qFHYn9Zu88Bpdg9PafLGOMYHIsnzGMxemT+nDJ5+vx6aGmkgnMuCVDfpyMOTIVMe7tv/s+uVM7tQVjWgVdMmSZNdPezsfYjgbZs6cyYIFC3j66afbOxRBENpAQkICJSUlgGvW+PDh5+f3dkFoa7t27cJmswHQs2dPtNqLv4KacHGKj4935wCSk5NFsk4QzpKtW7e6fxezxYVLRasT406nE7W6ecJCrVbjdDqPs8bx5eXlMWvWLFasWIFOd+LZqH+92NiSC5CnWuaZZ57h8ccfd9+ura0lMvLinlHYVhKimp6EvJG6hO0Vh1hWsJv1419EpVJy5ZW9D19w/xqbsxaN8uyPzN5b/Se/FX6GvzaMqaEPkba/nr+/sxgkGbVPCY+//S02s5bF65JZ9O7dZ7SvON/pxPlOb6PIzx6tUs3k8EHHfczhcPL4W4tIsqaiHFQNgGdD82SaVqOkQ8Txy8C3RTLgdE26eyyFh0rwC/EhbrCrfP3GRdv55p8LAYhJiGLktS3rKS1JElcknLhfe2tpVa6EhVbpenv9/Ms/WLBwOzdeP4gxl8XRr+/J2wr0DA/lhztvPOkyFRX1qFQKvL09KC6pAcBqdVBd3XjSxPjrK9bz9fbddA7059f7bm3FUZ2c1eFApVCgOMPXw5/bD/LMm7/g72Pgu3dux/MSKIF+xI6dWfy8aCdXTu7FoIEnbl9wPHs+30pkfTnKAD2rf/8XVZUNpKUV0q1baIv/RiVJYmxMLGNjjg4OOdJTHJq+5oSm6syuCjR2pxOz7eQDX07GarPjdLqyTSaTFXOjhYdGvET+gWI8jDq+PfAOes+mfxNKpYJoXx+mJXTn8x273PfLwPL0g6zKOISnWo2PXk9VXQNqpYpJcV25uV9Prp47j0abDX8PPXq1jAaQbE5kVdNBELrDgyK8/A0oFBKmTl7UOV3HGenlzU933sC0gLupj/elbHI0lkgDYV8dQFlUhc7mhUWSkQJc1QL8A4NJuvsqkFzvkeYNlfy4dR/FQ1VNss45BYGEBVahVDppaNC6DujwqWfygShCAqoprfCiV5zrIknvHlns2NIVc4OOmnIvAoPq3Pl9f796ADQaG/sOHR7kJYHTE1DIKCwykhNQSIcfcqLSOfANqiUwtBqlygEqGV0XM84rC6lbGorslOjUM5iNWw9x4x2f0L9PB+6+YwRefxm8cDK1Fgt7y4rx13kwTz5A4MwIkktLqLe7LmKqotVMtXZgZUYGDklFnWzD5nRicdhFYlwQzpLXX3+dyZMn8/vvv5OYmNjsO+9bb73VTpEJgnA6EhISWL3aVYVFJMaFS4XT6Wwy+WjAgAHtGI0gnJm4uDh+++03ZFkmJSWFMWPGiHLqgtDGKioqOHjQVSnP29ubrl3b7hq5IJzPWp0Yv+yyy5g1axbz5s0jLCwMgIKCAh577DHGjGl5X+GdO3dSWlpK375HZxM7HA7++OMP3n//fdLTXX0Vi4uLCQ092r+xtLTUPYs8JCQEq9XarCxWaWkpQ4YMOeG+tVqtGDHZRuK9I9hecYhu3mHu+1bt+DcOn6+wlI0mMfRFYqLPbgL1l/yP2VG1HJCxmUqYkzWTkmINSs0gJjyyAbXWieyElR8NJtj/1DMpZVkmtXYfNoeVUH0YBrUXHkrP0z6G5RtTWbstg4E9orlsQFe8W3Hh/Gy59/++Z19GEZKXBoVZgWwHZ6UasDRZzmJ1MOW+j3nu/olMGnm0NPPOygye3fMZHQ0hvNf3QdSKVr+VnBGDjyePfnxPk/tiEiLR6F2zoGPiT1wy+Gx75YqxjO/WmV4RrvetX5fuwWy2sXptKl/MPbNBGQApqQXMeuwbVColc+fM5PKJPTBbbPh4e9C9e9hJ1y2ocbWNKK6tcw9sKCmtQadVtyrhWVBSzXtfrKVzTBA9BkZx17yfCfEy8tNdN53RTPS0g8XIMpRX1VNR3XBBJcYzDhbz2ed/MGhQJ666sk+r15/9wUry8io5eKiE7787dWLc7rSzqzqJcH0EM/5+JY7XFzHp2lGYGq3cPvNTGhutzHp4PFdNaX0sf5Wcks+jj3/res19OpPwMFGG8ljX9k5Ao1ISaPCkS9DpVSRJyivk/c1buOKhwfQyBhDtb+DWuCeprXQldRvrzLw8ZxG7dSYeGDaQKYlHq/ZUNZr4cusuV/L4L2/FDqdMrcVKrcXq6q2NnW937uG7nXvcLSQqGk2o7+xK5NvJqEpN2KKbVhi5o5frPK1Trw58mvw26VUV3LttFQAHKiu46u9v8/meN7jmlU9AIWEN88Q/NpDymiqsEV6oLXCkpMHaJUnUlNcxbVIv4vp3YKdXLRWJahQWGecxYyStNjUbd3ZDITmx2tSoVHZiIkpxqmTsagW1spp6qwaHQ0KplFEqoGPXQtRKBxWlXmQeDKJjp9Imx1FXqwcboMSVhJfAqQdNrRNtOTSEK/AIqiM2tgSdzu5+fpzy0YECHr3NmMsakXwiWK0pw0MtIe2oZclve0hLL+T/Xrya4KDmLQNya6v5dPcORkV1YMzhwSc3LfmBfWUlxPr4cai6stk6PkGe/GzJo8pLBtnGzfE9ubxjF4yaC+d9URAuNK+99hrLly93Xww69txfXIQVhAuPj48PERER5OfnU1paSmlpKUFBQe0dliCcVQcPHqSqqgqAjh07EhBwZhUTBaE9eXp60qFDBzIzM6murqawsJDw8NZXyBME4cSOnS3ev39/UTFSuGS0Opv1/vvvc9VVVxETE0NkpKsHZm5uLomJiXzzzTct3s6YMWPYt29fk/vuuOMOunXrxlNPPUXHjh0JCQlh5cqV9O7dGwCr1cr69ev597//DUDfvn1Rq9WsXLmS665z9R4uKioiOTmZN954o7WHJpyGB7qMZ1rkAIJ0Ry8El1t+w1/pRPL6g5l3z+WhB8YyfVq/s7J/u9PO9srlSBIosaM8/N4dEmNl3IN/oD58/VhSgHdwHZNHJjRZP7v+EFW2Knr59HVf8PqtaDGLixYed39KlLya+Ba+mpb1Di+rqueFD38DYN2Og/z7s9XotEomju7EjHFDiAppXQ/yYnMRXiovPFSerVrvrzLzKwCQa1WY57sGmlhsFo43B02W4atFW5skxjeXp2Jx2kirzaPEXE2ER/t/2YruHsEPhXMA8PQ+s+fnTOjVasZ1O5rYvPfuUSz6JYkbbzj+7P3Wys2twOmUsVrtFBVXEx7uy7VXt2wU+EuTxpAQGsyITjFIksT2HVk8/ez3aLVqvvzsbgJb2AN6wbJdbNiRyYYdmVxusGKxO8iprCavqpruIad/semGyX1pNFmJjvAnKqx1fxtHlNbV4+OhP+mMSqdTZtXqZIxGPYMHtW529on834KVpBQXsnV2FpdP6IFG0/KP172lxaQNtGHyVzCtQ5cWrbOk6BeWFi1Bo9Dw1uXvMmSyKwFeXl6HyeTqVVx5OKl6pvLyKt2vueLiGpEY/wulQsH0nq3r6f5Xb6/byNacfLYq80l55hH+fdcn7qT4Eaut5dQ0WHn+y8VsP/ALL/30N5QqJR4aNcEGA8V19YToPamxWGh02F3JXxnX//9S0Ef+Sxlkm/Jw5+xAPSCjN1qwWVTYrSos1Sb3clHdwlHUGtClmtF6WKmrMJCvtTGz11P4R3ihNeq44cqh1CvD+dSeD5JEwB4b2hrZ1U/c34udB0rYsXU+IbKTXdNCAQmlVUKyO3Ho4cgHkd2hdN2QICqinOgIV7+r3HofbE4lYTE15DR4E+5Ri0bpxODViEblxOBlIr/BG6cTlAonjXYVDqeCsLAKoiLLkWXYntoBs8WVibcZZRRqJ17+jXSOK0Q6nMWXpGbt1l0Dd2Khus5VqcMUJFHaH/z3yhzMLOOLbzby1OOXN/v3fW3zen7PzGB+2l5S75qFWqmk2mwGwFOtJtRgpN5qoc7q+tsN8TQwKCKK71L3urdxddcEegeHNtu2cImRcQ80aVfnQwxnwVtvvcVnn33G7bff3t6hCILQRhISEsjPzwdcs8Yvu+yydo5IEM6ubdu2uX8Xs8WFi0F8fDyZmZmA631cJMYFoe2YzWb27NkDuKpB9+lz5pNrBOFC0erEeGRkJElJSaxatYq0tDRkWSYuLo6xY8e2ajtGo5GEhKZJSk9PT/z9/d33P/roo7z22mt07tyZzp0789prr+Hh4cGMGTMAV3mHmTNn8sQTT+Dv74+fnx9PPvkkiYmJrY5HaJnk3GKen7ecnjFhzJgYj1GtJ8yjaZLEyzaT/Iwv2PVnRwDyC5rPhDpTNqcFk72el1Luw/Pwq9j5lyv/mmMmZtttCorTg8jpVIHD6eCNlJfIs2VyuGotfbwHck+nRwBYXfr7CffrwMH8nC+5v/NjTe63O5z8+/NV7DlQwIv3TCS+k+vi9VNv/+wuDyvLoPa00uGmA2R67uKBbzbw/QMvN5kV++OqPSglialjegCQ35iHt9obnVLPhvI/+Db3a4wqI68nvolOeeIWBKfyfw9dwZL1KQxMiOLj7zdSVdN40n6Rvl56Ghot7linRw4jv7GczsZwwvXHL7V+PNXWeh7Z+SFWp423+9xPqP70kp8n0p4J8RMZPy6R8eMS22x7Y8fEU1FRj16vpk/vmFatG2w08OCIown6vPwKZBnMZhvl5fUtTowP6dOBX1buoWNUADOH9KXKYiLKz4duwYGtiudYm1IP8dDi34j29+W70adX5nDezj28tGwNnQL8+OXeW1CdYJTjylXJ/PvNpQB89P5tdO3q+nuVZZkHVy5hTU4mb4yawN79BWzfm8mTwwczfMSJ/w13FhewzrcE+ivpEhuAWt00KW+22fnzUDY9w0MIMhqarf9d6h5KZRPEKrjm5jMbQBEQYOSNf91AdnYZV0zqdUbbOuLIa87DQ0Of3tFntC2r1c6/3viViop6nntmCkHHmV17KgWFVRQX19Cnd/R5OYOvwWrlwQVLqDVb+PDaK9E5lcx6/BvMJhtv/WcG4eHNBxZM7N6F7bkFXN69MwBjbhzC2h+2uB/v1i+WhBEDeX/lBnR/5LFlRwkFB4uJ6haOVqXi13tvZdInX1Jc39B0w0cS4xxTqVyW+Wu3bMniACDo92Is93jjE1SP0wn5+4NI2rGea7y3cn+nK4nI9+KXr1cRdGUlSKCQHeg/dX3G2/Nr0X2ZytLvM6gJ1cH1rpnRZm8JZYOMXN2ANVRPbZwWpy6YQllGsjpApQBJwqHFlRT/a3gSWJ2uO+xOcBz+PdLTn1xTKXkNPkgSGNRm/JUmHE4JleRAqXAiSaBX2l37OLI5CXrE5pBf7UuQXz2yDBqljCS5diwD9bUaPDwtSIq/PE8S+Po0UFVrBBlkFTSGSmirZBxqifm6DPJW2BkYFsEtCb35dPd2vkzeRc8gVxuabv6B7velLydfzZqcTKZ06kaQpwFZlvkt8wBWh4MpnbvzR24W36XuRQKeHzxKJMUF4RzQarUMHTq0vcMQBKENxcfHs3z5cmRZJjk5mdGjR5+X54+C0BbKy8s5dOgQ4KqY0Llz53aOSBDOXPfu3Vm6dClOp5PU1FTGjx8v3scFoY3s3r0b6+EB+j169ECvb/8qt4JwrrQqMb5gwQIWLVqEzWZj7NixPPzww2crLgD+/ve/YzKZeOCBB6iqqmLgwIGsWLECo/Fomc+3334blUrFddddh8lkYsyYMXzxxRcoRf/Fs+LHLfvILKkk21nEsk1rUUtKFox4DIdtGdWWJDr5zmLSqFuAW+jufYj9nQuZPrVtZ4vbnBbeTr+bRkcNBhVIsowTGVlSIct29+yuY8+TKvO96T1cxRUTYvnP/lfIt2WiBJSHZ4Ql1WzjH3uf5Nqom/BR+9LgOPFMy16+/ZvcbrQ38OnyFSxenwlI3PnyPFZ+/ABXPzGX2nrLMYHIhAwtQe3pSuD79yonpTKd1akr2LDETF2hDpsFZKeCfRmFVBjSaOy2G73SA1BicjQCUGevw+QwtToxftuvC9hclMeU2G5EefnQf1A0NUUmqqsaOVWRlL0H83l33VfcPGocUR4xhOn9+Vevma3aP8C+mmxyG13lbXdWHjhhD/RjWRw2Hk36iLzGMv7VcyYJPjEt2tfe6ixeTf6WOO9oXki4CYV08qOsazDz9mdrUPk4mTwpgcXz9+Nj1BMe4sOGHYe45ar+6HQaYqOaJz5PZHN5KlXWeiaE9kN5iv23lFqt5OabTtwq4mQ2JWXy1tzVjB7UhQdvGcnkSb1oaLDg6+tJt24tT7oM6BnD6m9moTicNPrv9EnIssyyz9ZhtzuYfNdlKJUtP97ywir+9uznNPT1J7W4lKzyKuJCWzbz3CnLmOw2SvYX8+47v0AXI4fKKzFZbRh1RwedfLZ3J29s/ZNbE3oz0uAqOa9QSOj1R0u/Wxx2lmUeAGB+6j527i0A4Kn/zOePwd1RqY//kWnQaFBIEk5Z5p5bRjb7kvbSstX8vDeVMC8DT10XTomlmGnh1+CldiWFp3eNZ31eNn1DwgjxbJ44P54rQ68iUh+JzWTgjq8W0zMihKfGjkCSJPr2iaFvn5gWbedE8qtreO7XlUT7+fDixMtO+zX3V2lphaxbvx+A1WtSW11JoabWxF33zMVisfPg/WO4enr/U690lqSnF3Eos5SxY+KbVAjYnlvApqxcAFakH6ST3UBenit5vDMp+7iJ8Zv69eTGvj1QHH7t9BuTiFqrwmZx9fK+85Vr6DG4G2O9gnlj8Ww63jGaiC5H/2bzqqopPZIU/8ss5yP3HXX0QRXQQ2WkxDMF85e+eM2ux7bVDldqkZzQ8V/7qfncH6fFylfpq9j/z1I8MqphiAEClAwuMpJxKBdZCc6JOqhywiYr+iwbgYuzqRwaSn2MloYwGVl9+LiP+ZCWNUqQZRxq59Ez0iMz3Y8JPijANUNbIYETCaNKz/XWcbw5bwnS5XXgI4NJiaQDlVLGV2Vuci5gMivQ6Y4OntPpnPj6NKBVNR1QZ7MpKC31wttoIjMzmIioCtQqV4L9yPYaTbqjM/BlUCsVeNRAwWAAK78eSufXQ+mUNzby0a5tWJ0OPNUaNt1yD4H6o21ZOvr40dHn6OAwSZKYFHu0l9eo6I78edNd6FVqAjzOv0FfQjsRM8bPqlmzZjF79mzee++99g5FEIQ2YjAY3GV4q6qqKCgoICKi/dpuCcLZdOxscVEOV7hY6PV6YmNjycjIoLa2lry8PKKioto7LEG44DmdziafGwMHDmzHaATh3GtxYnzOnDncd999dO7cGZ1Ox48//khWVhavv/56mwWzbt26JrclSeKll17ipZdeOuE6Op2O2bNnM3v27DaLQzixq/rHs/VAHv6dYD+19PQ6RFbl3zHZNgKglDyID3wVgEEDYxk0MLbNYzA56pGdpQSrTNicCtQKJxJQadeDO8Uru0vF1tj12ENkVKHbefPgDuxWBZpjrjFLEihkmTJbCR8eeuuE+43SdeCW6JlEGlwzJmVZ5uucOWyt3Igc6iRscAiFm10Jt3H3fQiAUmfHYVOi8bQiKZxYqjQcuaLuNKn5MPUDNH4mgscpCdM4sdWrOfB1V5ZuSCV4UBHBgMnReHgNiXhjAsMDR+KraV0p4xlLvmdTYR4ACzNSUSoceOnNWPZ64KVUHO49e5S3UUdMuD85hZVU15oIGVZEbvBeXt33J/9KmI2fp3er9n9EP7/OjArqicVhY0RQjxatU2AqJ63WlWTaWJ7S4sT4iqIdlFqqKS2t5n7LZIJ1J3/O5v6wieW79qG6oYwVu9dhz/FBzjo6Um53ah5mi51h/WL591NTT7n/jLoCntnzGQBO2dmiQQDHKrfU8OCO93HITmb3fbBNZtf/vHwPRaW1fLd4B/fcMAyNRsUtN7VuZlRdVQN1VQ2EdXQlruvtJv6Z/C2VZTXkvpCKVC/jG+jFiOktL9tWXliJfkcZel81feJi6BbSspnnTlnm2kXzSCop5BprKIa1BdgbArn7lrFNkuIAC9KTMTvs/LB/H8/eMZIPZt+Kp4eWqKijFQ90KjXPDR7J6uxDPNJvME/s+YUKm5nQBgnFSRL9Xf0CWXHd7ZjtdhICg5s9bnG4kpto61lY8AMAXmpvpoVfDcCA0Ag233Jvi475CJVCRT+/Aby4bDVJ+YUk5RdyS//ehPu0fgb28SzcncLm7Dw2Z+dxfe9E4kObH9fp6NIlhPi4cCqrGhg6tPUzGOw2Bzaba3azyWQ743hMJiuzP1iJVqPm/vsua3EJ/Pp6M4889g02m4OCwip6hHrx68crmPLgRPqNimNgdAR1FivjunTCT6djzGVxmExWRo7sdsJtKv6SzX7/z5dY9d1GLrt+MB3iIwGIiY/kwx3NW8V08PfDR6ej2mRuvuGTJLDswC65htCBrsE+jpFaNG/XYi4zUtU3CusD4fgUNxIYaGZPqpXG0WE0dPPB961iqqYEUq7w5Yt9b/DiV3M4MMyVvOb5ahxX6tHW2XEeHkQkq/lLTfJjgpAkZKXcbJb4kZnjap0dSelawSlLaBw6puaP5z9fr0Cp0NHhzwgOOMqobXQScNchUDrRauzHbh4PvR2HE6RjBigZ1Ic/i2UZ5eGSKRq1k/DwShQS6D1N1No9kOwATuoq9dRUGWho1CEdCdYJ3SVfVI5GGossWMIVmJx2fHV63t25GXCVSr+nV3/CDK3/24z08mn1OoIgnL5t27axZs0afv31V+Lj41Gr1U0e/+mnn9opMkEQzkRCQkKTMrwiMS5cjCwWS5NyuEdaUgrCxSA+Pp6MjAwAUlJSRGJcENpARkYGVVVVAHTs2JHAwNOvAioI/8/efYdHVWcNHP/eOzWT3ntCCBBIQicgImChCPbee6/r6hZd3fXVdXfdZt9i2VVXXV1dXXtBsKAgnQAJSYAE0nsv0+99/5gwIQYh1AlwPs+T55ly750zaTNzz++ccyQadGL86aef5v777+fXv/41AC+99BJ33HHHQU2Mi6HHbnexeHEh2dlJZGbGMyEjiY/uv4Zf5L9BVaPGOQnrsbvBpIbj1jqJDjo4VYV70ukqJ9xgR1HAYuir9goyeHDovupPFd/JcLcGPd4g/wl31ahjMviSKjtnh+o66P3OyOu7FKz13X595m3EWfuSQ3ZvDytavvFfj8xqprEokrBRbSgWnfhR9VhCdV+7Vd0357y1LBSDoqMoEJzQiWoATQd3txWj1Yk5zI0pxI2z1UDj2jisRiv3XXQOO3p2sL27lJLOjZR0bWBT+wlckzEwkdbp7iTIEIRR7f+nvaW5qd/1qVllhNoc1MaG0/hqOsFjWzHGuqguj8DcYKS9y0FBWQ3m+E4yL6jCEuZrq6J7FM644TliwkLJHpnI2XPGM238sEH93Hw/Iwv/N/aKQW8PMCw4nvNTZ7Kju54z9yG5fEbydIo6KsgJH0acJWK323R2OXjsH0swm42kJUWCWUfpLQZXgrR+uRtHb+VmVV3boB7fZrBgUFS8usbKlRUkjExkytjBt6He0FJGvcP3BmVZdRHnjzjw1p7nnTqBHdXNjEuP5fKsH5M2Jpnf/u8eTLskAxe9+g0fv/Q1l/zkdKadOqHf/p0tXVw76T46W7v5xYs3M+vcqaxqLmFlczGoYJpiwvCVC+37A4x7lRdX8/bTnzH9tIlMX9j3QT1r8nB+/PAltDa0c8HtCwYkCH+I3eNmXX0NOtA53MaMGdnEJEVy/RkDW7H/dOoJ/GXdSi7J9i3IGDM6qd/9zc4OljUWcnZWNjeM91UhL73/Fras30HaTxL3utp+RGRfgv29quVU9TRxZcYcQk02Hl44h+Mz0pmYGsvzNdW0uloYGTL4pPCmtu0sayzkzJTpJH1vdMGC7FF8unkLY5PiSQgbXLX5YJwyajhvrNtIWmQ4mTGDH5fwfV5N47a3PmBjTR1PnnsaeekpPP3kvv0P2FV0dAhPPn45FRXNzDnlwOZ6A3z1dTGffrYJgMmTh3HCjMHNeFdVBZPJgNvtJchq5unbXqC+vJGK4mpe3vI0r1xxQb/t77/vzH2OLX10Mtc9fOHgNnZ7mfpePYtODvW1De/9EzQpCnnpKSzfUTlge0wG8GjoikpnVQiWcAftYTG47x7me9Gy+/4ZtlbacH7hpmekDQDFq6HlJePCwjqti/xlRZR9vg1OiAWXjpYF+jQLOhD2SRvt5hjwAoZdStl13Vf+Db7XSC8DW6j33mDEQ6jZiaZDXU8oLoOTVzyfohCGpun89hcXUNvUyd8//JAedav/EF4NNA12NnpQld5iWx1auozYgnyv9Wrva/JO/h4virrL7Somq0ZPj61fiGdkjGL9c0UYXJDqtvLOg7fT5rRjNhi44N032NLSxG9mzeXsUdmD+zkKIQIqIiKCc889N9BhCCEOsp1teL1eL4WFhcybN08qacVRZ9d2uGPHjpV2uOKokpWVhcFgwOv1snnzZubPny//x4U4QCtXrvRflmpxcSwadGK8rKyMa665xn/9iiuu4MYbb6Suro6EhIRDEpwIvGef+5L331+P1Wri3f/9CLPZiEvzsLhuEwoK7d5kIow1jIz8KQkhp2FQrXR3O/nuu22MH5866JnF+2JH9/KBbWIBs+LGoyt4MYCugAJGxVfZvbN16a7tUDV8J81940r72p2rfRf7JUa/afyCVncTVT3lRJijmGybiVmx4NKdAFgj3Yy9ughF8Z1sV3ofA8VfW0ZYRqf/8dXeBKyz2ULZf4aTcEIDzlYLzlZfpavmNtC+IQnL3CRidZVFnZ+wM6Lvmr8lxBjBhIiJhJsi+G/Vf9DRWd+2jiRrMg/mPIyhN8Or6Tp35R3PA98u6ftemXyVlonR7Viv2UJ4mO85JI1rQNMVSt7PRK83kn7Bdn+cXl3F7VGJP7maukUpfL1qG1+v2sbrj15OesbBqSbdHVVRSVez+Kysg5XB9UyLMPLyOyuZlJPKvJljdruP2+Whe207T0y4mdDI/i1oG1u6eO3dVdgdLj76shBN0anPA2uDkZvOPB6v3klqZjg9nUYKgmpZU1CB0+khOiKYU2dns2D24JJxybYYXj7upzzx2hK+WFTJUmM1i166HYvFtPedgZCWCLQtVlChoxMYMajdflB3h501deuYeXM06n+7aW/uYtO3Jdw97zf8+bNfYO6N67n736SrrZt//ebdAYnx9pYuOlt97Zort9YBMDEyk+EhiXS2ddOxoRVFUcgcN3D1rq7r3PXsG+xobWLxjSv5qPLv/r/LtS1bKZ7exLmpJ2DZpbX53gSbzPz+xPl8W1XOj6YcT+bpP1xVf3J6Jien/3AHi19t+heF7TsYUb2cm0fOJDEomeSgZMZM2beuF+Xd9Txe4qsosxktXDN8PqFWCxdMzAXgN1GP4tHdWA2DP1Fx34Z/0uWxs7Wzmj9P6r8g5rhhqaz8yS37FONgjE1KYMXdNx/wceo6uvhiq69C58PCEvLS971Cx+5289dvVhITYuPKvInkZCeTk518wLEB5OamEBpqxWg0kDVq8O9lbDYLLzx7LZWVLUyaNIyudVt5+/EPmXnegc2I31+XZtyBvdtJQo2Nrqlx/Oney1Gi3BR0b+X05ON49osNvLNxs29jHeLfLMPU4abq2pFgUumsCqezqrcTyK6TItwath2dhK1qpCctBNWtEfduOaf84WxeXbeRoMIm/jTGTf24EcT8tAxjtR2CFLTTQqFLI/jzLkz36hiDvLQVR+DwWFCNGsYgN65OC0q7Cz3CgmLufXXb5UU31eBFS2oiIsqOofd106hqODUg3Yk+zs5wy3Aufuc/tHTUMX52Wb/3Bk7NiM3oof86HV+yPdgGP7B+B133LVjr9pj63dZQ27/riBl4cuHpXPxmNfUNHXR0OujstBMT4XvN+eiCK+l2uwi37NvYEyH2RNF9X4E2FGI4FF588cVAhyCEOASsVisjR46kuLiYrq4uysvLycjICHRYQhw0uq6zevVq//WpUwffvU2II4H8Hxfi4GpoaGD79u0AREVFMXLkvnd0FOJIN+jEuN1uJySkrxrNYDBgsVjo6ek5JIGJocHWm6SyWIz+JJbFYOLOrLl02f9OvDWTvISXCTL1JSl+/4eP+PbbLSQlRfDqKweeWNmV16sxNuI88pv/h1H19LvPAISovhWydt2IGS9GVScs2EWpPQpnbzX5zqK0XZPWeu89Cn2V5HzvclFHATXOcgAaXHUU1RdjdCnExLXh1XQsqo5DM9LuDUHtTYUr+BLTwR4HkUE9WA1uzKpGSWs8XouvGs0a5ST35s2MDsnlvMjr2Ti5mtdWfUzI9C3E6qn8+B/PMOw83+Nq+s7YFT6r/4TP6j9B8ZjQjX0thWsc1Ti8DoKNwVR0tPHOls08sXZ5X8JBgbVbhjNx5HaCzB5Cgl3+fVUVVHRsqV14OkL9SXFQ0AFjsE7UhDaCEu00fpNA1/ZQnnjsAx5/+noAuu1Onvrsv6SGJnP5KSfu889X13V+e83fyP+qiEkn57D8g3UsuHo2b0zsoaKjnd+v/Ibp7XF8tbmU97/YiK3TwQkLJ7J55TY++seXGMxGYpMiqa9oYvHry0kbncRzKx/p9xhPv7CEJau3+a93DAdvGPRobhYpnxGmmCjaMo5nzjgL89m+b0Bnt4MgiwmjcXCzxXdKscWSGzWM76gmISZsn/bPGZZE+j9G0tTaxcwHD/wNyv23PkH+Nc1QD2eePo3YN6NorG5h6/pyyjZVMLo3Abzg6lm8/9wS5l1+wsDnMyKBn79wI1Xb6jj3tnkARJpD+ee0e9B1nbUvFBAWFULqyIHzyvMb6lifpUNWNGkxkf3mcD9Y8C+6PQ4qehp4cvKt+/S8Lhw9lgtHj92nfXbHqvqSYAa1ib+X/RWTYuJP458g2Lhvs32jzGFEmkNpc3WRFTowCWxUjRgH/9ILQLotjsKOcjJCjrxFaEnhoVyZN4H86joumTxwfMLXby5n+furufjnZ5PxAx0V3lpfwLPLfSd6xiYmMCk1abfb7c2S175h7RcbmX3nPKaOG4GiKKSmRPHOW3cCYNhDu3zwVb8vLiklKTyUsUkJJCREkJAQAcDNf76Ka397qX+ByeFk73Jg7/Ytbgqq7SHovR2EX+vkt+3/o9nVweaOcp5YeBvjkhPodro4IS2NruPqaa5p487tq3Z/UI/GKdZYqv/+Ha52X3v2jCcL0TWdOb8/ixcqtqJEB2Gp7aFytgkwUXt6NtHvlhJc0IzpoioAWm/MJCTO9xoTldeMs8aMMdqDwaLhWWsl6C/llN87ATyg7LomRtdRsxpQFejxmmlz+pLLXW6z7zVZAfW0Hjavb6XW6yEiQetf9a34usjsvNx3WN9COYvqwaWBjrF/kXrv9gYFbAYX3d4g0KGjzoajy4y+y6+IE/i0dAu52cnUN3SgqgpWa9/P36iqkhQXQgghhojc3FyKi4sB2LRpkyRUxFGltLSU5uZmAIYNG0Z8/KErXBAiUHJycvz/xwsLC+X/uBAHYNdq8alTp/Y7RyvEsWKfzs6/8MIL/ZLjHo+Hl156iZiYGP9td95558GLTgTMkiWF/OuVZZxz9mQe/d2FZGTE4vJ6efKTZcSFBbNwqpn19RtxeqC8/WVGx/zCv++h+lf6v3fX8sxfF3Pi7NF4zwohljYMu1SAK0rfYwcru8wXxcOIoAY29ySh+1PWvmpyb2+aXO8tHRv4OqD7W63XOCpA6UuWa3aVpGTfifudFXYmgweD0kWzOxQVnSDVBV4voyP7tzKPC+6k0RuODmiqjqJolNg38nb+On586Ry+iXyOdo+TFraRcqqRnen88eGT2N61jW6tHdDw6AY0gxsF8LoVmqrD6egO5ub2p7Dr7WzYEYHXY8Rfwu57SnQ5rKzfNozUmBZcusJocKoCAAEAAElEQVSwuBZ/W3m3w4B9VSSaw0jlx6mYwpx4TBA7rglLkK91fVC8g4zzS1EUaCwP5un1DtrNjWytqceU4mCbDu/fW8Dl82bhcHo4Z+54TL1J4U53D8urKpkQl0x8cN//k20byvnPnz/im/fWAPDNe2vQPBrvP7eEk186j7fsdhamZPJiZz7aOAgrcnPb229zXlAzFT//kqqSWt/TUxUMM0bSPTWD1uq2Ab9HRYs2QqTNt8pAVfD2jqKODu8kIbYagI3bPRz3ai2fnH8V8cEhhAb7khsFJTWs2riDM+eMIyZycG2rrzp3GrPyRpAQG7bXxNuuQoItvPLYVYPefm88zR5o0SBKZWLqSBL/MYy//28J5v/t4O5Zv+Txrx8mK28E1z10Adc9dMEPHuekC3ZfEasoClPm/HCCOjUsjEirFU1t466fnN/vvjFhaaxp2UJO+LD9em4d7g4+qPmY9yo3YjVE8MyU2wkz2fbpGA+Pu4p1LVupd5bwaf2HwP79Lws1BfH68fdh9zqJNIfuxxEGenzyLdT0NJEWHHdQjnc4KYrCA/NP2u19mqbx6JVP43F56Gzp4rcf37/b7bLiYlAVhWCzab9nqPd02vn9VU9Tc8NYXvjgQ25umcrdJ/nGEwz27/K1tRt45LOvMCgKS26/lqTw/rEEIikOYLGZsdjMOHt8CeiTLzmesTNHM6IoiebmDkaGpmAxGrl08vi+nVLiWf7hOhIfKaV2YQrYjL4W7FYjd848jttnTQfgrkXlFK/2Vfyj6Si6TlhyFLTuQFcg0mzGW2OnNTEI3WKkc1oiwQW+k3Izz5tGaayNouZagiIcKAYda6TLn1w2RjhwPx1FlKWJ9uYw/+I1FJ2ksB7/KjYdhRanjdigLhJsnTQ7bL2jUox4yu0wyohVdWD3GLD2jkr5oc90voVwGoqiYlbB6dXZOXZ814VwAEZVx6i5eWriL/j8v1t49fNVVM02QFDfRrd89iH3xU7xX6+vb2dYuszlEuJIMmnSJJYsWUJkZCQTJ07c40mhdevWHcbIhBAH06hRozCbzbhcLoqKili4cCFG474tVhViqFq1qm+xq1SLi6PVqFGjMBqNeDweioqKWLBgAQbDvhWvCCGgp6eHjRs3AmA2m5kwYUJgAxIiQAb9SSAtLY3nn3++320JCQm88sor/uuKokhi/CjxyqvLqaxs4V+vLOOdt30/05e/Wsu/vlqLEunCFZ3D8NBgvHo3VZ2vE22bQYdzE8mhFxEXH8aYSY2ced0nLK34D6lhl5IRccMBx/Ttsi3ous63y7Zw1nlpNHtcRBp6MDKwwrvvBHdfmbSq6Hi/3/pRhy6ngs0ysFocYGe+xNtbqq33tlfXNDBFu3abOPPYDax/dgLzrllOanwTdm/fGzWnZsCrq7RrNv/jo/hmn3rd8PF3G4hPVegMbvW3dDeH+FrBGhQDXZ42urV2f4wmDzSVhEAElLTH0t5jIyTIycjwEizAuMwOKuqjaesOxu3pTbBrvlnruq5Q1xbG5FHl/vgsqoXyl3LQ7W4UBdqKw2nN1XHFQNX2EKaOLkNVfcmFnd+bsGHdFOkr0BxgivT9S1EU6Aqp4ZWaf9BeFEHJ9nrWFVQy59QU1ie+g9ur8X/LxrLssrtQFd/ChD/e+DzlxTX+WFIy46noTXZHf9PMdw9cy1svLkG3aKCquI1O7HkR/LMkn7SL4nAschC9pg2iQmgPMqEHmUidkcWCa/7CxKlp3HLZLFLDwsm0WWn/uoSQjGjqU6NxRvger9thwev1ra7oslvocti54ebHSdrm4t5/3kxZZDEv17yON9hA8auz+cMdl+7u13QARVEYnhaz9w0PkNPu5KenPETNtnoe+fBeRk/tX2X+0It3sPTj1WRPHUVmbCpj3nsC93AjwadEkfRcM0UrtpKVd4D92vcgJiiYh+am8X7tGj5qfZaZKX/EqPp+X34/4XqanR3EWsL369hvVP6bVS0rCLFAWYeToo4KpkWP3qdjBButzIwbi1fPJi0ola+fWMnDv3iMHz93M/H7mOiyGsxYDYNvCb8nrQ3ttNW3/WA19YEo765ndfMW5iRMJMJ88OaTD5aqqkw4MYc1izYwac7AavKdpg1L5dsf3YDVZCTEYtmvx7IGWxg+fhjlsb4W9iUNjfser38VFiiHbAnY4Gi6xlsVS+nyOLh82Cm8Xf03Ni4tJnv6SIJ6F/L8Ztw11DlaBsyl3+n40yfxdPiPsIZYSB+TjLPbRVh0/9+D7YVV/a6PnzWGG86YSXJmPGazxtSfJhJpjuSX/3qfd/ILSC/t5mdv3k1IZAgTTsrh/W3raC35AIMznJhoE+3tkbQ0epg+MopvMtcAJqy4McU2U5+fQGhYGyEjHP5k9U42o4tQk6v3cjuqAgaXjdroNoI+jibi553YvVbsXh3QMSo6oSbHgOes9LaI2flWQN+1mpze9wC92+koxBrDyAxLJuqcCF773ypf//TvzUIfn5vC62+tRNN0Vq8rl8S4OLR0pf8vbiDjOEqcddZZWHpfW84+++zABiOEOGRMJhNZWVls2rQJh8NBaWkpWVlZgQ5LiAPW0tLC1q1bAQgPD5ffa3HUMpvNZGVlUVhYSE9PD9u3b2fEiEN3DkuIo9W6devweHwFhRMmTPB/FhLiWDPoxPiOHTsOYRgi0DRNo6qskaT0GIwmA+efl8dLL33D+efn+bcZkxyHIcSLcUo7z1Yt51djTsXK2xiUEDbU34mOi7K2v5BxioGYtiBUSxdOL2xrfYz08KtQlQNLFF13zSxe/fdyTpw9mkr9C4zKVjwYAQ2jrvWbHw6+ZLZJ9Z3+Nmkj8Og66K4B7VY1zUx5fQgZCc39Hm/X7XYmqX3b+65oGLB7ILz3ZL1HV/BoRkpKkkmeVU1YtG8Ws0nRKHdEEaQ6aXBF+Gag05eEVwENHYNJQTd38fLHX5P5vYJdRQEND+X20v6VcCYvMbltlNXG0N5jAwXsTiNOl4rF5CUytJuIkB4UBUprYkmPa0b1mul2QWiog5b2vkSkV4Ou7hRyLhtOmNHMvws24DXQ23MeuuxBbFo7jIS4Niod4YxNryIkyNm3KKH3OWlOhY4t4USMbcWWbCdkWCeb3kyjvrmTL8q/ITLJg8kIXqUFXddprmvj89eX9yXFdR3N4+Hk86eSMS6dR69/jo/+8RXtTZ1ceNdC0i/5FEeCmbpz+tp1VwS74ZxEYrPi2J6u4rDqGDtgWWEFmgn+rZfwxutb+N85l/J/r99J8ZoyiupaeOa/K9CCfL8jdqeFpRtHoygQodvQipuwf17NDrvGX+9/hZb7ijGFginUQ0vsIl4r93BZ+pW7/2UNgMriGopW+D4QL39v9YDEeHRCBOdcOxfwtRMeG5vAuvoapg/PYPytw5l39Yl7PH5HSyf3nfobnD1OfvvJ/cSl7nuyv93TAkCnpwOP7va3FDcoKnHWiH0+3k5RZt9scaNiZV78ZCZG7v+HI4NiIKoyjkW//QaAj59fzDWPXDKofV0OF7Vl9aSNSTkobYg6Wjq5JutOutt7+OmLtzHvqhMP+Ji7umvd32l1dbKudSu/HX/tAR3r7cpveK/qO67LPJXZcT+c5P6+335yPz0dPQSH77llfUzIvrW0/z5VVfnLyt/xVeFWVjc2cPmU8Xvf6XsunTyepLBQEsPDSAw/ON0A9mZrZzUlHZXMSZjUb7FFfmspf9vm62wQZ43gjOTjmPy9jg1G1UCKbc9J2nEz+xaQWKy7e43uW00WnRDB9Y9chEFVmZWVyAMF9/LWRjt3jbybuy+eyZy5YUyMmkjYLgtc/lXxHyzRXQC0AS00U1GfSGVTFYmT+h7FYISECXUAA5Liug4OrwmXV0VR+l7XveYeYhf20LE+Ak+FGVOGC1DQNQW3Ah4NTIb+x/E9IwVdB68Omm5AxVdlvvN13qMp6LqCV1fBbeDXG17iq5aNGO+C8Doj7a3x/ZLj364tBSA0xMrJs/dtQY4QIvAefPBBrr32Wp588kkefPDBQIcjhDiEcnNz2bRpEwAFBQWSQBRHhV1ni0+ZMgVVHXyXOiGONDk5ORQWFgK+duqSGBdi32ia1u91Y9q0aQGMRojAkt5RAoC7zn2arQVVJKZH888l93L66RM4/fQJ/vubnJ2Exxn4952Xcs2av+LVNQzGc5gSczZBhlTW1F2J3VMBgMnsJTK2y79vYsjZB5wUB8jOTua3j1zAmyUbeTa/jjNyDHh0FwbAqygouo5KX0J71zbrLXo1Hi0O0/c+IyiAzeLCFteKpjEgub47SUFJJFsziDIlsqXjL/5jGnUdJx5yxlcRpLvQdKjqjqDZY8OpWAEdVfdi0KGr3kxokssfgwI4qiPpqQoGFJoLIknJ9tDhVtHVTswmX3bajBWX7iTcFOlPMgKkxzdRXJXkO1K3gWCDAU3xNYpH8Z3Bjw/uxmjUwOjAZuydga5o3Dr8R/xi6eeUNCi9KZCi3ifUe/DexIKhG2IKY2juDMUUqlPqzSZ2Ug2JM+p9SQR8M9MNVh13uwV3hxlbsp1oZzpXXHICf3v9G0aNc1OPrwrcuspG2ykdXDvpPn8L4N6gwOPB43Qzdf54ImJCsXc6CIkIZtSkDKI7vBSeGw3W/v++FB0KR6v+7IYrEuzxYOwGVN+s94qOdr6rriQizkpe+kj47wos9eBMAMUDXqOBtLBwXsqdz52/eASvRycqMZyC/BIS2aVIUIHvmr8j+ONEVny6gQvvWsCkk3L2/ItziGWMS+OMW+dTvaWGhTfM2eO2iqLw5lkX0+KwE2cbXMJx49eb2bLGlwBa82n+Xh9jd85JPp8IUyQjQkZiNQTt8/4/5Nzk85kYMYlEayK2fZwJvjupo5PImjqCmtI6pp85Ze879Lr7xAcpWbWN8+85g5v+eOCLJno67HS39wBQv2PfK5z3JtQYRKurkzDTgX/P/lH6KT1eJ6/tWLJPiXFFUfxJcYfXhVk1on4/M3qQGIwGThk/mlPYv+SlqiicPCrzIEf1w3o8Tm5f8wxOzc2O7npuH3WW/76koGiCDBZcmpvhB2n2fJ29hRtWP4ZX1/jr5DuoWFSJs8ftvz8qMYJRk3xz3Npcrdi9dgAKW0p5peM1mt31rO1cw3DrWF6rehcA9Xt/5gaTLwmteVXcdgNGa1/rc9UIboeKatT82+/sAOPVVSq7I7GobhJtnSheHdXk+5980qws7jn3x3zV/g3r21aR1pPD1nw3PRPW0qrXA76FX77XNxWvBi6vAa/imy9u14wYFC9mVe9d/AY9PQasFujq0vlK97UYU1WISfJgsjTTVO+rwrdi4MP38wFwuT1ERx3+zgtCiAP38ssv8+ijjxIaengWPQkhAiMzM5OgoCDsdjslJSW4XC7M5oPT5UmIQHC5XKxfvx4Ao9HIpEmT9rKHEEe2ESNG+MdiFBcXc/rpp0s7dSH2QXFxMR0dHYBvPEFUVFSAIxIicCQxLgDYscWXrKyvbBlwX7urh/OXPka3x8kDuefy7xl30OrqZlJUhr8q8rjkd9hc+zT1rpeBvuSyWY0mJmgmuq4flApKgKfzV9DQGUmPy4DN6suD+o6toOPtTV7qvpbnOui6QllnJJpR8VeM7eTS8ZenaRgweiK5YdRl/GP706iKikf3oHkVWlZmYExowt1p5mdn3MEfPlrFJstazhyn0VsrjaKAUVEJMdiJNvuSWbXO8N6kOICCFyOVXyfRuCWKvJvz/e3bG5umsLbFzc/umUF+QTWLWjTWfgmecN9zSXDpaJodd1kQwc0KEcHBhJ1YQMSoTsD3Pbhy2HCW7mjm9pnTWW2sptXta/V+YuwcOu123nixgZhpjXjtRmrCIgkNbaOuKYZJJ0/k/TPG0e50cPUn/6WopZEZSWl8W12Bjo7ZYMDl9XLOpBz+dPdC8ouqCLKaiAyz8e26UhIS3MSFR5BsTeHJrY/R6GjGoo+iq9bEbWGzmDA5HUVRGJ2bwP+tehNVs2JujeKpmy+jckutPyl+3ILxrPhkAwAnXjyDC396Joqi8MSSB9iWX+6vbFx4/RzWxW73/wzNNXYiv21h3rSxvJbSjIbv52DWVeYNH8ak1GQK9WZGDIul3eng0ZVLAfjd+FMAiClQiKwN5vXHrqHG0UFGeBRmg4G/bPwN29pbyEtM4bbpD9L6fy1EXK+jpvp+iYwYeO7bt3Ct1sk/ezNn3zKHmx8dXHv1/bG8uoLbPn+fiXFJvLDgnL62zr0MBgN3PnP9oI9nVNVBJcWbnc38tfRpgrKCmHLmeFztbqaflbfX/XYnxBjCGUln7X3DfaQqKpkhB2+lsCXIwjMrfrfP+1UW+WbU7yioPChxJAyL46F3f0ZlcQ1n3jb/oBxzV89MuZ2SjkrGRx54sveitNm8W72cc1JO2K/9v2nYxIObXmFYSDzP5v0Ik3rkvD3RdO2QJPMNiopZNeLU3AQZ+re2MjTr3Oc6h5wTRhJt278RBN/3duU3dHl8ye6fb3ie0R9F9Lu/taHdfznNls4V6VdT1l7NI29uJyevnZAw6Pb08FrVuxjwYDF4/O8FXB7o9loxhjsZNqWcyg3JNBTEA6CqLmJzWjCZPQS5vajBXjya7+fv+2+roKATYnJiNXgwqDqoEFYxitvmXUhm7wiIpaWf0+hspIxtPHbFY9y98WN/vKoCPW4jTk3Fq/sS4maj7+ixhli69Fp/UhwVEoLjqXC2odt6MCoaBkXDq4EXI2FRDpp8+Xa0Zg+6AfDomE0GHnvqM358x7yD9n5HiAF0dm3kEDhDIYaDSP/+BwQhxFHJYDCQnZ3N2rVrcbvdlJSUMHbs2L3vKMQQtXHjRpxOJ+DriGCz2QIckRCHlslkYvTo0WzcuNE/FmPUqFGBDkuII8bKlSv9l6dOnRrASIQIvCPnzLM4pK792Wm89dxXnHnF8QPus3td9Hh8b7YbHO0MDx1YQWlUg/lueQXDe+/SvWZsxjHYtQ1sarwHsyGaqKCD057jjOGj+cuGFbgV84BfYBUdg9Lb5VQBtxe+KM1mQ0MaMWFdBFsduDwmokI7iQ33tTr3eBQcbhMer0pJVSQ/ykznsQkvYFSMtHR10dDcgf1kjd+/uIRpY9N5bMkaPmkvZWxmG17dgIqLnSkRVfECHpxeIx5U7Jq1X3yKAnFTGmnaGMvqdbmEJjZR1x5Ot9uXHC5yNPGFtwLvrp9ndIU6owJqMIwB61cKLa0OQpymfscdmdXKQ/NuRFEUFrh/wz+2/53EoGTOS7kQBQXD7OUs+qaIE6YN59nOfOo7rJw/Mpsn1yxnfFwiE+ISePfsy3FrXmwmM+1OB6VtLSQGh7KhsZYTU32VghPGpACwfnMVj72wBFuQmX8/fg1BIUHcO+Z+X0AToaqznes//R8hm81UdLTTYO/ujXYEiUEhFDUtIuhX69FVhRNOn8TPn7+Rrfk7aK5t44SzJvtbgIVHhzL5lFz/c736wfMo+fe7vNnjS45P2WLAudXFpPNTmJw+hm1Nzbi/qeSCOxaSnp3CwqufocflwT06mbNvPh4FsBiMzMjOIPau0+jqcXL6ybkYDQayetsOezWNS5a8Q01XJzeMn8I/8x/F2ePi5tt/gvUu36KHLq2LkButNJ0dQlJCE+sWraLDeR7XffI/utxOXjj1HJJDw/xxt7naeL/mf6Ta0jkp7uTd/m432btxeDykhA5MdH2wrZhWh4MvKsqo7+4iMeTwVDWta1tDec8OAO56+R5yww/s5FG9o44PCz+k5wsv555zJskjEve+0xHikQ/vY8UHazj9lnkH7ZjHn5kHZx60w/UTZrKRF31wWkheNXweVw3f/+e9tmUrGhplXbW0ubqJtR6cZO+h9qeit/i4ZjW3jjyD89Nm7nabbxsLeKTw30yKHMFvxl0z6KSpxWDihWl3s6OrjslRfR/2XQ43t854kM7Wbi7+yelc/avzDspzOSt5Ou9VL8Ote2lwttPSWM2ua++ba9p46ddvkzYqidaGdlrq20hdOBanu4FNa4Zzy5xMqt1bUBUN6y5JcQCzEVy6E1W3oJshflQjugqtFeE4Wm20lkSRe1wZaqhvsViTI9jf8lxRINraTbjZiaZDj8eAVQvj4VPvJsRmxe328Op7q7GneMHg2/+CD58mOUVBVXX/AjmLUcfhNOLSDBgUHVXzoirQ0NyCNVLx3aaCGZ0erRazasDSmzzf+Vw0zUVHmwVjt47XAta2nTNRdDo7Hbz/cT5XXXY80dFSdSrEkUYWtAhxbMjNzWXt2rWAr526JMbFkUrXdVatWuW/Lu1wxbEiJyeHjRt9Xb0KCgokMS7EINXW1lJR4ev2Gxsby/DhwwMckRCBNejEeFVVFSkpKYcyFhFAZ189k7Ov3v1J/YSgCB6ffBXbuxs4P20aizZswe5yc8bkbFS17yRSS/kUYjNXoChGFo77mG5XKWvrrgZUTOrBS3L8LG8WY+J7+LZ1JV7AoPedtN6ZoPafxNZhQ00mLqCmJdJ/jIrGKEKsTpwuIy6vkV2aZDP/nZf58qLrSQoK5apfvE5TWzc/unQ2b/7xGn795RLe37oVLFBcn8D4hB2EBvfNLTcoYEHBWH4TX3mWEhbdjaE3f23AiM1oI6Q7l2K1hxsTTiImJxyLy0CZvYV1LTXcNm46Js3IWyUFfSEpfeFZNJV7b5lLRXkLby7xEDq8DVOwr+3sdy1fc2rimcRa4gk2BXPnqHv6fd9uuHAGN1w4g1aHnb+/sgF0+Hj7Vnrcfa1yY23BGBRfMuK5+WeRX19LcIqJUzMGvtHcWFKNpkNXj4szb3qWKWPTeOqXvuHohU0N/Oa7ryhuadrtz7DW7mu1H3x2ChHlJootBsxWEznHjdzt9rsq62jFkxLErbapTEtOZdy1ETy84UHea/g3jXcpeBt836yKzbU89fWD2O0uMKgUrNjKH359MUsvvQGr0UisLZi0GRG7fQxN12m1+yonm3t6MJmNmMxGHvrFz3mu+q90RbXj0jxUN0aRkdyAaobQMxXW1FWxuq4KgMXl27gqt6+V2Wf1n7C06WsAFm3p4OaxJ5Ie3vf4lR3tzH3zRZweD6+efgEzUtL7xXRl7kS2tDYxOT6JhODD1653UsRkljctI9gYzIiQvf989uYf25+nTC/FM0Zj21UVPLnsNwchyqFh7MwxjJ05JtBhHJEuTj+RLo+drLDUQSfFNV3jj0VvUdZVy33ZFzPsAFuKezQvG9rKGB6SQKR5cInNJfXr0dD4sj7/BxPjX9VvwOF1sbxpM10eO6GmwVdyxFsjibdG9rtN0zTsXQ4AStaWDfpYe5MSHMfrxz/AXev+isvtxlHWg/N727zxxw/73/DUZ8y58ThGz87i5gmz2NaxnYeKHh0wkkRRwKTqqLqOSwNLqBMdlbisJhrejubU0xOpUst22V5D03xpebPqwaT2zgHHQG1POFHmMGxWM8vWlvGXV75ibXQrals008a2oKiQkrodh9eEQddQlb6B4NdknMH/thazpamB0Dg7QUY3pkgvXlQ6nEYizE5f7IoXi1Ed8DxUFYJLQrG2QneyQmcGhO3QMegKuqajAJ1dDkmMi0NG0Xsn5AyBOI42o0aN2mtyvKVlYGctIcSRJT09ndDQUDo7O9m2bRt2u52goIM34kmIw2XHjh00NvrGbaWlpZGQcHDGKwkx1GVmZmK1WnE4HJSUlOB2uzGZTHvfUYhj3PerxWVhsDjWDToxnpuby9NPP80VV1xxKOMRQ9SMuCxmkMWa0ip+8vJHAJiNRhZM7Ks2vOu2y/lu63YMYd/S7sgnLngOxyW/h4qJYHPGQYlD03WKWxtJCg7F2Ob1FWr5O9hqaCiouu4/mW1SweNLn/cdRAfdrdLpCgIFVA9oFnbNjbOjvZUYYxAtHb7q4OqGNlxuDx9+XgDDfMdQuy3EGi5AUf7ZL0ZFgStOOZWTy08kONJItVJKnCWO9ODe78EE+L/TfK3lF31XzC//+iEhNjPv/Pk6wkOC+OOJC+hxuviofIv/mEZFYXbqcJZUlPLLsq/44qLrOGnaKF7p/COd+D4MhRkjiDJH7/V7GGkN4t1zLuOtkk28tGl9v/sa7d3+9pj3f/M5BU0NRFisrL/6tgEvmCOHxfa7vmZTBS63B7PJyG2fv8+OjjaCjEYmxCayorbS33VzZ/t4gKB2EygKO9q7cbk8mM0D/yX1uF002+2khvmSZb9f+Q2Ly0sxKCp3Tz2Bv2x7gk6lA2M8WCZCz2e+/aISIjCZDFw8PoMP3l7JpVfMAvAfZ080l4dhT5fQGGckd+4w8HVdJzM7nd9n/x6ALpeLV435WIPrqPKsZ37CArJDU5mZkk6nyzVgMcGIkBEsrl9Ej8PEfwq30NwFz516tv/+hp4uHB4PANvbW/2J8ZLOYl4tf5ncsLG8ffbBa9VeXlRFZFw4YXtJ4ERbYngw5+FBH3fD14V0NHdxwjm7f5MVb4mnrLsUd4VGyqikPR6reNVW/vXQW5xwzjQWXn/KoGMQR56EoCgeyL1sn/ap6G7gk9rVAHxcu4pbRx5Yaf3zpR/zn4qviTGH8Z8THsAwiPboP846j89q13B5xg//fl6UfiKNznamRI3ap6T47rQ1dmANtmAJMuNx22mqaQVg1WcbqCtvYsHVszGZjfR02vn7z/+NyWLipkcvwWwZ3ImCaEsYr0y/F4Du5XYuH/1j7F3fT4+DalDRvL5FWdtf+46eukI8C6dR9FopSV9l0PiTbb0J6b454ToGdHRClVCa8SX2VRXODgsnNKOHqjb82xsVL5piQNd1koI7MCg6mcEjOCvpYpY2FjE7bjxX3P0yZXUteKzgzAScFhw9oQSFdPreGyh67+uN4n9P8EHte/x44s28suMDCtu7cWsqJl1HVa24NZ0ut47N6MKrGwYkxXdydXiwtOh0JyugKNRPgqSV+FbpeeGZZ7/g4V+egy1IZpYKcSR56KGHCA8/MrqVCCH2n6Io5OTksGLFCjRNo6ioSOYyiyOStMMVxyqDwcDo0aPJz8/H5XKxbds2xoyRAgUh9qSrq4uCggIArFYr48aNC3BEQgTeoBPjv/3tb7ntttt49913ee6554iO3nsCThxdqnta+EXZvzDP6MG1OoLI4P5twq1WE97Qd/DqGpUdrxEXPIdQ88FtafPgis95pWQ9UZYgZgw3EGXwtTDto6Cj75rjZlh0I2XNCbtuAkD8Cl+yXEeneZKGNxhwwpy4YXz87iaqMpt57O6z+ejbzRyXO4z8kmqo8BDVqqK64O7zZnPJ+Mn8YvW7pIT1VZCkWqdhM0UwsnfkcRIxA57HzoThl6t8ye+uHhdbyhvIy/ElQ+89/kQ2tTRQ0dkGwDkjcxgRGc2SilI6XE7qu7vIHZXEbT138mjxLwHo8LTxfvVbnJNyyV6/j9nRsZyZOYaPtpXQ6XLi8Hr990VYrUxPTMVmMlHQ1EC4xbrbY0wdm05kWBCtHb7K6iCrCZPR9z0dERnNjo42RkZEc0b8CL6rqfQtQuiCuHWA11dtpGp9P6mL7vwHL//xSsJC+1bsOzxuTnnjn9R2d/H72fO5aMxYpiensbi8lLyEZAyKglv3VbwrusItl1zL25WLCA638eC/7wDg9gfP5/YHz9/r92RXHpcHvaSVyAIvzrFdu90mxGzm5ok7P4D2JeReOf2C3W4/OTKPx8c/zaXvv42mNzI+rn8L8UnxSTw6ex4tDjsXjO5rHf9lwxfUOmqpddRyRtLZ2IwHPjfss5e+5E/X/pXQ6BBe2fYMweF7nzU+GNs3lfOTk/4PgJ+9fDtzr5g9YJurM67jxKhTcCleRt2459nWL//qP6xZtIG1izZw6rUn+dvrCwGQYotlWvRotnfVcXL8hAM+Xqfb97+s2+tA07VBJcbnJU5mXuLkPW4zMjSZJyffesDxrfgkn4cueZqI2FAuuGshn7z8NRfdfTpVW+v41QVPAFC9tY4L7zmNNZ9vZNGr3wIw+ZRcjj9930/4BocF8fcVj/DhP77gnac/w+vxJcLveOJKjj9jEl/+ZwVfv7OKlitLMeZ28JctT7P4F0XoOsywTGbDWdtRkzswqx4UxYBxZ8JbbULxBve+UuuUn1mPrdPb77GNioZT0/F6daKMUbR7m+nsDuKDzbXMTB3P/1aVUlrfQuMU8O5S5FX2XSYpszdjVjVURRuwOMetu3lsy9MAhJtVWl3B9GywYpvSRXJQBNV2BY+uYjV4+yXGdy7mcjmgyRWKM6o3268oeEJ7N+h9CmvW7eCLr4o4fcH4ff6eCyEC5+KLLyYuLi7QYQghDoOxY8eyYsUKADZt2iSJcXHEaWtrY8sW37mk0NBQRo8eHeCIhDi8cnNzyc/PB3zt1CUxLsSerV27Fm/vuf9JkyZhNstCfiEGnRi/9dZbWbBgAddddx05OTk899xznHnmIRp8Koaktc1ltHq6UGxw7cVjiYzvq0Dzak50PAyPuIXarg9IC7/ykMRQ2t4MQIvTzgdFUzGrDu6a9pX//t76NLy9Z7G7Nehw2Hz3qL0b6Arm9r5jKihEr1fRTGBwKmxSKgFYurqUq06fyuLvSlj8XQnP/vJCRqbGUt/cyU0XHc/58yYCkBv2Sx5b/wVXjM7jrom7b6X7ffU9nfxo0fusNFehz4TQMpUtOxr9ifHU0HC+uvh63t5SSLDJxMLhWfS4XXS7XSSFhJETEw9Amq1/Jf4XDZ/uNTGu6Tonv/5PdnS09rs91mrj4VlzmJGcTpjFgsvr5eyR2eTGxvuTCxUlNbz2+/dpqGohbVQi5y+YyPP/WQ7AHVfM9m/3t7lnMu+tl9jYVM/Gpnr/YgQVMLh2X4bX0NxFRU0ruVl9WY5Ol4u6bl9iuqjZVxl/3bjJnJ+VQ6jZgqIoXDXsWr5u/JIJERMZkTeSuecM7mewJ8Hhwfzpi/9jy+pSTr1u9/PA90eIKYS3z76cRns3SSG++eO6rvPC9ufY3FHANcOuZ1xE/9lgM2NmUda9jdywcQclKQ5Qs60OgM7mLrrbew5aYlw1GlBUX0th026q/wEMioHMiEzYcy4RgBPOnca6xRs54ZypkhQXAxhVA7+fcP1BO94tI88gMzSRcRHDMamDfnt02GzN34Gu67Q2dHD8GZO4+CenA9Bc14bZasLlcPPes4v56J9f8rN/3EhoZDBGk4GRE4ft92PGp8Vw3UMXcuGPT+Pjf35FbHIUJ114HIqicO7t8znzplN4IP8XNNGACxfTT5/Eqs82knPOKFbEbgGPGbO5b/GaooABHYOi4dVVzAYnPbqDbreOqkPv2ip0j0qKrQOjwcuWhjBmxs7nb99Vo7OK59avxqt7yTi9meQQnYqqWMyqEZfmxV3todthwmpzoqLg7X3pVxTQNF+F+s655QZFQ29WMSe6QAENBybFiFsDt6YSbHSjKr63DTunxjR/lEhrZu97H48ORlBd/b9nJpOBnDF77oYhxH7T8Xf2CaihEMNBJG0EhTi2JCYmEhUVRUtLCzt27KCzs5PQUBmDIo4cq1evRu895zVlyhQMBsNe9hDi6JKRkYHNZqOnp4ctW7bgcrkk0SfED/B6vaxZswbwfe7Jy8sLcERCDA37dOY3IyODL774gmeeeYbzzjuPMWPGYDT2P8S6desOaoBi6Dg5IZflTVtweN38u/ZrXqv9mmk947l07GhcllvxaJ1MSXyZzMjbD1kMvzv+VE585zn/+TiXZqWgMYmcmBoURQU0dg7l1nX4V/5M2pwhYOxLjBu9KhPs0XSEOrjxhhPoVF089u8vcIXoBO8w9EvcRoT5krSKAjvcbVx1y/HMTRvRL6bLRk/gstETBv0cHB43v/zuc1a0VUFvDrgzS2PB7P4rHFVF4YKsvsphm8nM3VNO2OOxQ4xhe338oqbGAUlxgJsnTmXB8L4Kf7PBwMzUYf22efmR/7Hs/bW+46zcRvB7a7jlscsIibBx1py+NiwmgwGrYeC/F2uVG3QTiqJw9fnHUdvQjtlkxKtpxEWHkj2yfxV1rC2Yp+eczqbGem6a0PfCvWsVe6wllvNTLtzr895XuTNGkztj/1deV9urWFL/OZMj88gJ7/s5mgwGf1IcwO7tYWXLdwCsaFnOuIj+VYY54bn8Ydxj+x3H7lz087MxW82k56QQlxa79x0GKX1MCn9Z9SidLV1MPGXsAR/vtBvncup1J8sHfXFYhJqCOC/1wBfWHCpn3zyXnk4HKZnxpGX1JV6jEyJ4Ye3v+Ncj77D49eV43F4+f3UZb5Q9BYDBcOCLSkIjgrno7tMG3G40GfnZ+J+zoS2fiRGTiXgtAl3X6fba+dd3n+LWfUlms0EDDVKdw9jWWg+Kh7hEl78q26tDR2cEISEdKAqE2xyYjb7VzPHRHSxvWUaQcSROr5cgk4ngyGaikjoAUFtVnMsiwKugdhqwvxeH4bIKADxelVhzBB2eVlo7g4gO7/E9pg7dbjNKtEbP4hBMbjvtzZE8cOa5/HnLe7TrjXTpFl87dk0jxOpB1yHx3FqMjeHU1ESjmDxMHl+KokBLWRLu7b6FS48+fD4Zww7e/1UhxKG3M7kghDg2KIpCbm4uS5cuBaCwsJDjjjsuwFEJMThut9t/3tVgMDB58iBWnAtxlFFVlTFjxrB27Vo8Hg9btmwhNzd37zsKcQwqLCykq8tXdDZ69GgiIiICG5AQQ8Q+l0SVl5fz9ttvExUVxVlnnTUgMS6OXiEmK49OvJSPqtexrLEEgG9Ly2ip2cg1p/taibc7N9Ll3kZD9+dkRt5OuOXgzqxID4vkjIxs3t++2X/bx9vG4fTChLgaNAVMvSfal1Vm0OYK7R1q3buxDh5do2qcg+TgMH6y8RM0XYfenHR6ajiztXQ6uh1cc+Y0RqbFMiotljJXCz9a45utviB9FH876Zz9fg4PrVrCosqt/W6zqSbCbEE/sMeePTz6MR7b9ghBBis/yXpoj9u6vV4eX7us3zx1dEgKDuW8rJy9PtaEWWP8iXGA7g476UYTs+ZOGLDttKRUiloa/ddnV9mo/+caLrhnIZffezaWH6go1nWdh5Z9SX5DDcclpVHQWMdPp80kKujgVEvvD7fm5vWK17B77VyefiXBxr1XWL9W/gpbukpY3bqKpyf+7Qe3sxmDWZhwOoUdBZwSN/dghv3DjxkaxGUPnHdIjj1y0vCDejxJigvhExoZzE2/vXi398WlRnPbn6+g4Lst1O1oIm/u2IOSEB+MKHM0J8X1zVhXFIUQo40Xpv6Kf+/4hNr6OrYuKcS1ROOKP1zCkg+X81XElyhJffGpQFqkDZfbiEetx62ruLwGjKoXVYEeh5mfT5/JGSNH49F0nt78CpvdvgVeUcnt2K5tRHMpNH+ZgKMyiO41sSQfp3H58IuYFjsJp8fDgnceQwvdgsNlovH9OCxn+BLrXaqJ2tYIMChc98EneFUzkExYZBdRsZ10tQUTktTqS6grEBXdSU1NNHkTStn57ynmyhpqHxnO8NQ4csYkH5bvuxDi4NE0LdAhCCEOs7Fjx/oT4wUFBZIYF0eMTZs24XA4AMjJySE4+OB0fxPiSJOTk8Patb7zk4WFhZIYF2I3dF1n5cqV/uvTpk3bw9ZCHFv2Kav9/PPPc8899zBnzhwKCgqIjZWKmGPRX0oWARCmBdNYZyF89CgyI1Jwac0khZzNVxUz2Dlsc1LCcwf98Z+afQaPnbCQf2xaye/yv0HXYXHpWFrcwWREtpJgtbF0axQFjQm+s+0751hrgA6hVjM13R3UdHdg+F7rxDnjRvGTSbP63TYlJ42KbR3+619Ulh5Q/F7dd/It1GRhWmQyk2OSuXzCZIz72So6xhbHb8c9NahtS1qaWFzui9+gKISaLbx62gXkxsbvdd/uDjv1FU2YLEaGj02lZM12UCA5c+C+1Z0daJrGzhr+cTEJvHzT5TjudWKxmenxuLEAn5RtYVlVBdeMncgrhfmAwhW543mpwLcCOr/B1/I7aN0Knj91/xcjHKjiziKWNn0FwKjQUf2SQD8kM2QEW7pKyAje8xxtgHNTzudc9m0OuhBC7CooxMo/839PT4eDkIgDW0jUXNdGY1Uz6aOT+eifXzIsO4Upc/p3gdB1nWfL/saWzmKuH34T2WH9F1fFWCK4M+sSyIL6YU18ytc8/8AbXPfwhZisbr51Lve3Ndd0qHc1EW7qwaiAontxeM24vSpl5bHUN0fSnuAkKshGa1c3Jc61WHrfwXqDQVHBYNWJW1CL16Uwp+kqrp3c12HFYjRyQ86p3P81aLqCkgq2CiOqCp3RfYvSvOBfSNfRGkJHawjmdh1Xjx1jigNvu5EaeyRpqXWoKv6KdxUIP7uOydpUrNa+MTNCHHQ6KEOhuHkoxCCEEAcgJiaGhIQE6urqqK6upqWlhaioqECHJcQe6brOqlWr/NenTp0awGiECKz09HRCQkLo6upi69atOBwOrFbr3ncU4hhSVVVFTU0NAAkJCaSlpQU4IiGGjkEnxk899VRWrVrFM888w5VXHpr50eLIEGsNo9HZwQkpo7jlV6cSFxaCqvYlmGOCZtNk/5Iw84G3Uv4hRoOBmyYcT7vHw182rgAU1lWM4NZR5zA3bSQ19R9S0FgEGv7k7M6TeG8suIR7v/uElJBwbhs7nR2dbSyv2UGMLYQfT5ix28dbvEuF95WjJx1Q7P83dQ7TE9IZHRHDM5tWUNDTcEDH2xejomI4OW0429tbeeLkhYyJjsO8h4pct8vDS79+hw+f/wK3y4Pm9SX1q7fV+zbQQd1NVeI9X37CippK4mzB/PfsS0gLiwDAGmzhts/f56PSLdwyYSp/y/d9qPtP8UbcvdU6E+MTOSU9k40NtQwPj2JdQ02/Fu+BkG4bRrQ5BofXQVbomL3vAJybfD4nxZ1ChCni0AYnhBC9VFU94KR4d4eda8b/HJfDTVxaFA3lzSiKwqsljxGdEOHfrtPTyZpW3//wFc3LByTGd+V2eXj9jx8C8Kebnmf4v6PBqftneLs0XzLZpRmwGrx0OSy0dgTT2RNEfXMEoGA2GOjqdnL1xw8QnNaXlDYadLTKSGISzbQY6zGYdYIm1Q6IIS0sHE1XQQHdDN2dQYDieyes6Ri6QdFA8Spoqo5uxpeE1DTMIxyAjsHoJKWnGXO40zfqWe+LIyirh+41zgP4zgshhBDicMrNzaWuzrcQu6CggFmzZu1lDyECq6Kigvp637mY5ORkkpOlU5E4dqmqSnZ2NqtWrcLr9VJSUsL48eP3vqMQx5DvL6ZSvlcgKMSxbNCJca/Xy8aNG0lJSTmU8YgAePFPH7PsswJuffBsJp2w9wTkyNAENrdXYXAbeODfn5E3IoWb5vW1HjMZwgCdio5/MTzyFlTl0LXb/9mUWZyZMZpPyrdwVfYkoqy+hMATJ5/OfcedyOamBqYmJNPtcdPQ001ujK+6+YMzrvYfIzcmgdMz9jxL+rOKbYCvyvr+qScfUMw2k5lzMnN4r2wzH+0oBmBu6kjOztx7K/MDZTYY+OeCc/e4TXlxNas+3cjJFx3H568t4+2nPu13f0xyJNc9fAEKCuExoWTkDPyfkNw7Qzs5NIy3Swp5YeMa7s47gevGTearih0ArKypxGY00eNx49Y0QkxmVEVhfFwCZ43sSz7ruh7wF+4wUxiPjv0jwKBjURSFKLNUHQghjiyfvvw1LocbgIYK35gUW1gQVpul33ZhpjDmxZ9KSWcxUyKnoukaqrL7zifvP7fEn0HuaOni8vTbeLT4d3hxoGngdBto7ghhW3sCnZ0WNHwLtqYnpVJPJSZVZeHwUbR29KAmfT/5rJBJLjGxPbS0+k4UVvRUDohhfHwiY6LjKGpu8O/npypEFHlIGREDUSYq6lowxnRgC3HQUBkJmo7J6MFgAYvFucv+vhV3igKqGdbblgML9/5NFkIIIUTA5ebmsnjxYsCXGJ85c2bAP3cKsSdSLS5Efzk5Of6/i8LCQkmMC7GLjo4ONm/2jaK12WyMHXvoChiFOBINOmP5+eefH8o4RIC4nB7e/PuXAHzwyrJBJcZ3zhf/sm4zzduCWbWtkvOnjyM61EZTz1LqunxVYUY1GIVD/8FydHQco6PjBtwebwshPi0EgGCzhThbyH4/xsJhWXywvYg5qSP2+xjfNzU+hZSQcHRdZ2pC6kE77v6or2jiqR+9zI7N1TjsLrrbe1j3ZSHHLZzg38ZkMXLubfO48K6FBIfvuSLx0dnzuDR7HGOiY5n57xfodrt5vWgj142bzJ9PXsAHW4u4YXwesbZg/rp+JVMTU/xV4d+vYB8qJyeGShxCCHGo6LrOkje/8183mo089J87GZ6bSnBYEJtXbgUUsqf5XgsvTL2YNyr+zVPbHmdSxGRuHXEHPZ5uDIoRi8GXSO/xdBO10Iz6ho7WBp4oJ17cRJpDaXI5UFUIC3ERFtJERW00mm5AURRCzWYemT2XuOBgDIqCzWSGcDCUqrg1AwbVi9kdTELpBK5fsJA/VP/eH/fIkIEjLELMZn5yYi6/WPYeTY3BeL39X2uapxhp72hHaVMwhnoYP7YKRQGDQUPVdAy7vATsWim+kwJ4M1sO6PsvxF7pDI025kMhBiGEOEDh4eGkpqZSWVlJY2MjDQ0NxMfvfcSYEIHQ3t5OUVERAMHBweTkHPrCCiGGutTUVMLCwujo6KC0tBS73U5QUNDedxTiGLB69Wq03u6skydPxmg8dIWLQhyJ5C/iGGe2GDnr6hNY/lkBCy4+bu87APfnnsN7VWvI8KbwUng+kxPSiAz2vfGo7/4MHQ8AExOeRdPd2N3bCTZlHtGJxadnn8mTs85APYjPITE4jG/Pv/mgHe9APHvfG6z9ohAApffsf2hUCGfeeAqxyVHsKKrm5Aunk5AeM6jjmQwGJif42nrdd9ws/lWQz62TpgFwasZITs0Y6d/2N7PmHsynIoQQYj90d9i586SHaahs9t/267fuYuKJ2QBs/LaYny30JZ//+Mm9jJ2RBcDWri0AbOvaRllXGb8v/g2KR+WexHuJDY7l6R1PUB5SxqgXwyl/vJ3oB708WvSI7wF6X1J3JppHpddRWJaKrut8cem1xNiCB8SZHZbI9p7tgBm3UaE5ey2/2P4tug5qb8G6yTBwznedvYVHi/9FWLSCYnRTVxWNNchBaISdjrZgnD1m3+wVQNNVPG4DJrOXoMgeMOrouyQCNcCwm8xg28dR1OS2kpQYOdhvuxBCCCECKDc3l8pKX6eZTZs2SWJcDFlr1qxB731DOmXKFAx7GIknxLFCURRycnL47rvv0DSNoqIiJk06sPGXQhwN3G43a9euBXxjB/Ly8gIckRBDz+57Xopjys0PnMXvXrmR/734DS88+qH/zfYPOSFuNA+Nu4D3OpajT23g1IVp/hnjqaFXEWmdxvCI2wgxjWJVzUV8V30GpW1PH46nckgdzKT4UJOR62uHrhoUfyvc0AgbiqJw/OmTuPSnZww6Kf5952fl8v55l/dLhgshhBhaKkpqqN5Wj9vpITg8iId2SYoDuJ2evssu3+WN3xZT+atuosuSGL5qHMs3rMCLF4/RzV//9DI3TX2AkvVlAEQkhDLrd+N8yfDeL2+n73h988K9AEzWw/m2+CtuXXMX1666hT8XP0VVTzW3r7mb7fbtvjnhuDCqnbh0u6+VuepLsJtVM2PC+o9HqbO38F3zWuKsXURbulFVL7EJLaRkNBER1U1SWgN4NZTePjeaV6VgZSa1lZGYg71oGHBqJhxeI3a7EY+m+p7C994WuHZYefGVbw/Wj0SIgfQh9CWEEEeBnJwc/wL+wsLCvZ4LESIQPB4P69atA3wJjsmTJwc4IiGGjl27JxQWFgYwEiGGjoKCAux2OwDZ2dmEhoYGOCIhhh6pGBcAfPDqcvKXbyV/+VYWXDyN5GGxe9y+x+Ok1dUFwI7uRgDue+0TPl1fwn3n3sWZUxPRdDc9nnIAul2lh/YJiANy+b1ncfKF04mIDeXaCffS3txFaNT+t54XQghxZBk1KYOwqBA6Wrrobrfz8CVP8WbZU/7RGZNPyeWhN+9CUWDSSb6TD+8/u4SKRU1ULIIN1GIMUUm+K5yW7R0M64mnpK0GHlY4/oEczpy+gC8+W4Z3EihG8LaCKaXv8SvrIymrisPY6MRVuZL/TulLPOe3b2TjpgI0NP/2itK/pbmuw5SIydw+6gaMat/b27UtJdy38e+EmdwEGUFVNIweI8HR3ewsWTcaYWR2HfcNuw2b0cBvFn/NqNgYyjwlwDYAvF6d9voQPK9Hk/bTbQNbqSsQf085s9QLD94PRQghhBCHVHBwMMOHD6e0tJS2tjaqqqpITQ3smDMhvq+goICenh5AEhxCfF9SUhKRkZG0trayfft2uru7CQ4e2HlMiGOFruusXLnSf33atGkBjEaIoUsS4wKA4+fmsvjtNQzLSiA+OWqv28dYw7gv52wK2iq5ZvhsABbll5CdUUa3+hXfVJYQZ5vHxPhnabZ/S2rYpYf6KYgDoCgKyZm+tnF/XfYQ5UU1jJ89JsBRCSGEOFwMBpWUUQlsXrEzEazx9TurWHjNif5tpp06vt8+86+YSdGqbUQnRbJl7XZCg0M52TiXF1/7L5sTtzL7vDw8Li+hRcHce++f0bw6O5PRNz15EV/HfUw7HZRsiKdzrYn0j7ZhvN5IyLUDq7F3TYrvtPNomg66HsNdo28ZsE21vREd6PQYiDVH0exuIzWxHl2HdrcFl2b2bWjSOHnkcADeufYyZjz1HG12sNakoCg6UUntxCR34r7cOSA2//fQBDOnjdrLd1oIIYQQQ0lubi6lpb6F/AUFBZIYF0OKruusWrXKf33q1KkBjEaIoUdRFLKzs1m2bBm6rrN582ZpGy2OaeXl5dTX1wOQnJxMSkrKXvYQ4tgkiXEBwLhpmfx3/a8HvX2bq5vHiz/G7nWRG5nGaYkTuXCWnUm5n/u3aXfmMz7oSaKCjs2VSR9sL2JFXQW3jD2OlJDwQIczaNGJkUTLfFQhhDjmXP/whTx+x4tUltSCDk/d9S/y5o0j9gcWzOXNG8drJY+zeeVW7p7/O9oaO8n/ejMALbXtfPmfFQP2URSFS356BmdfPZ+zmc8FGbcR1tJAGKC+aEOJNeDSXBhUz4AEtK6DywsaCjoGskLH0OZuZkd3K7eOOH23MZ6aeBw9Hgetrk7eqV5KhFlB7W3lHmVxoutO/7aXrbyehbFzmR43Ha/ua+ueYk1mW1MztrB6VDRCknp+MDGeZE7c8zdYiAOk6L6vQBsKMQghxMEyZswYPvzwQ7xeL4WFhcyfPx9VlamDYmioqqqitrYWgMTERElwCLEbubm5LFu2DPC1U5fEuDiWSbW4EIMjiXGxXxxeNw6vG4AWZyf/W1nImtJGJuX67o8NOoW08Ct3u2+Pu5wu1zZibLNRlaPzV7CwuY47vn4fgB63m8dn7f6E/VDyyctL+fRfS7n83jPJmzsu0OEIIYQ4zLKnjeD5Vb/hzPibcDncoPhmi++ct/nte2sJDgti0sm+Vup/uOE5vv1gLSeeNw100NE5bsFE1n+5ebfHDwq1cuaNp3DlA+cAoGka9o6+xLQS7TsJ7dDMWPH45xjvbJnumyWu0uW2ogO/Hfcj33F0DVXZ/Qlss2rk4vQ5PF70JgCdbgtGxY5R9R181yS3Anzc+DkfNy5m9AwIIZo4q4uQxiZc3VFoxnoUmy9h7tVAR2FnkOPCcrk/50f78N0WQgghxFBgsVgYNWoURUVFdHd3s337djIzMwMdlhAAA6rFlR9aoSnEMSw+Pp7o6Giam5spLy+ns7NTRg6IY1JbWxslJSUAhISEkJ2dHeCIhBi6js6spDikNrSW49Y8PJ13NeXdTZyVMoXv9Ce4euEiVheN5qK8e8mMnUZ7t4Pmzh6iQ23+fT1aNyuqz8Wr9zA84lYyI+8I4DM5dP5X2pcUSA4JC2Akg/f8/W/Q0+ngld+8K4lxIYQ4hqWPSWbr+h0Eh9m4duK9TFswnhPPn8bvr3sOgNv/fDl588bxxZu+ivAVH6/nnr9dh6IqnHLRdJa9v4aN35b0O2bO9JH8+bNf9LutcMU2vB5fi3ST2Yim9p3oa3PZ6GuWDqEmBybFVyuuA4+O7Xv/8ENJ8V1dPmwuH9d/h1c30OQMIcxkx2b09Nvm+0WwXTTT5WjGFAqm0DaGB6fj0b1MjBhHs7ObxQ3LAcgOyZSkuBBCCHEEy83NpaioCPC1U5fEuBgKOjs72bzZd27JZrORm5sb4IiEGJoURSEnJ4elS5cCvqrx4447LsBRCXH4rVq1yl/YMGXKFAwGQ4AjEmLokv5QYtA0XeO/5Su4fsWz3LLqH3h0jQvTp2MxmDBZv8Bs8nJ8djOZsdOobGpj7sPPM+eh59hYXrvLUXR0vL3H8+z+gY5wS1ZtwdqoEmUJYlJsEneOnxHokAZlwVWzMQeZyZo8HE0bOMtVCCHEseEXL97MFfefTWJGLAAbvynBGmTx3//MT16lvakTs8UEwKxzpzL30hnMufh4FEXhoTfv4tw75jN2ZhbjZ43m1Ktm8YePfj7gcYKC+455zu3zmBHTf4a5CSNm1cij4+7gtIQz6HZbyIucxSeznmJ85Mh9ek6xQZFEmfqqBk6MPgmLYvVf70uK/3AVjsPr4ndjH+TC1HO4ZcTlvJT3R/4y8SEeHnv3PsUihBBCiKFl5MiRmM1mAIqKivB4js5zFeLIsmbNGv+5mUmTJmE0Sm2TED9k14UjhYWFAYxEiMBwuVysX78eAIPBwJQpUwIckRBDm7yrEoP2ctlS/rplkf+6Z5fk6YioH7O97e+YDdF8ueM48JyCwx0DwPb6Fsal++ZuGtUQpia9SZermPjgUw/vEzjEnC4PP338XVYWVADwwNWncO4p4/ey19Bx6c/O4MN/fskHL3xBdFIkF99zWqBDEkIIEQCJGXFc9rMzOe7UCbzzl8+YdU4e006dwEV3L+Q/j32M0WQkMj6clzb9gdb6djLHpfXbPyjEyo2/uXivjzNifDpPL30Qp91F7vRRAHg0L0Z14KrmsREjuSLjjAN6Xv+Z8XC/65p+AXWOemItMaxqXsuy5pWclbSQzW3FfNn8LRcmn0N2RBYOj4NVreuYFjW53/6hpmBCTcEHFJMQQgghAs9kMjFmzBg2bNiA0+lk27ZtjB49OtBhiWOY1+tl7dq1gK8aVmYmC7FnsbGxxMXF0dDQQFVVFW1tbURERAQ6LCEOmw0bNuBwOAAYO3YswcFyrkKIPZHEuBi0Nlc3ACoqv5lwEbPi+j4oxtnmsLXlYXrchWg6aOr7RIXcxtj0BBZO6v+BUsGAxRCHgumwxn+wOZxulm3YztgRicRFhZJfUu1PigPERoYc1MfTNA1FUQ7ZTKk/3PQ8zh4XAC6H65A8hhBCiCNH5rg0fvrsDf7rV//qPPLmjiMyPpzY5CgAouLDD+gxRk4Y1u/67pLih4qqqCQF+RbuzYg9jhmxvnZ7WWEjOSdtlyS8Gc62yWIxIYQQ4miWm5vLhg0bAF87dUmMi0AqLCyku9t3Dm7MmDGEhR0ZI/qECKScnBwaGhoA39/QjBlHRgdPIQ6UruusWrXKf33q1KkBjEaII4MkxsWg3TRyDsm2KEaHJTMuMm3A/Xpva3SPx0Zx+XCS4jZTUA4mowFd96Kj4/I2sqL6HHTcZMc8QnLoeYf7aRw0P3n8PVYXVhAVbuPjp28iJzOB0cPiaOno4WdXn8LMiQdvLlnxmlLuO+tPxCRH8eSSB7CFBh20YwM4HS5Wfuo7CZCcGc/FPzn9oB5fCCHEkU9RFHKPHxXoMIQ4duns2vc/cIZCDEIIcZBlZGRgs9no6emhpKQEl8vlb68uxOEmCQ4h9l1ubi5ffvklIIlxcWwpKyujqakJgLS0NBITEwMckRBDnyTGxaDous7yxi2kB8cMSIq//m0+H6zezMWzHuHzgvdo6dK5euEScjI301A7EYengZU156FpTsbG/RkdXwLdq9kD8VQOCpfbw5rNvurw9k47p9z0F86fM56Xf335IXm8tUsKsXc5qSyppXJLHVmTMw7q8Us3VPhPcmqa5p8bK4QQQgghhBBCHO0MBgPZ2dmsWbMGj8dDcXEx48aNC3RY4hhUXV1NdXU1APHx8aSlDSxMEUIMFBUVRWJiIrW1tdTW1tLS0kJUVFSgwxLikFu5cqX/8rRp0wIYiRBHDjXQAYgjw2e1G7gv/3VuX/0iRe2+N+ger8aNf3ub373zJQWV9fzuv8Xo7lPotvdVM582aSKdrkJc3iY8eicOTy1TEl4mN/b3pIZdEqinc8CMBgPpib43V2EhVrrsTv65cQ2PrvmKNsfBT/ifetUsZpw5mfNun8/IiekH/fjDx6ays0N77fZGOlu7D/pjCCGEEEKI/afoQ+dLCCGORrm5uf7LBQUFAYxEHMu+Xy1+qMbpCXE0ysnJ8V+W/+PiWNDc3MzWrVsBCA8Pl1EwQgySVIyLQbEafC3EFBRMvfM/12+vZsXWvpnaJ48dwa8vnk9DxykEWa9EUQyEWbLRdBepYZfj1XpICFmIUT24s7cDQVUV/vXry6lv6WR7dTOPf/I1+SlN/L1gJW9s2cDKi27DYjh4f17RCRH88pXbDtrxvq+mrIFhOalsL6gkLSuJ4PCD26pdCCGEEEIIIYQYytLS0ggLC6Ojo4PS0lJ6enqw2WyBDkscQ7q7uyksLATAarUyduzYAEckxJElJyeHxYsXA7526rNmzQpwREIcWrsupsrLy0NVpQ5WiMGQxLgYlBPjs3l22g0EGy1YVBOtzi4qGlv99586YRS/ufRUABIiQoG+N++qYmZ09P2HO+RDpq3TjtGgEmKz0GFy8kjlV2RMj4JK3yyPNpeDbrfroCbGDwV7l4Ofn/EHmmvbUA0qjVUtZI5L45mlD8qKZCGEEEIIIYQQxxRFUcjJyeG7775D0zQ2b97MlClTAh2WOIasXbsWr9cLwKRJkzCZZMydEPsiIiKClJQUqqqqaGhooLGxkdjY2ECHJcQh4XA4yM/PB8BoNDJp0qTABiTEEUSWkAg/j9vL/Vc/z6XTH6Zo3Y4B90+KyqDW3sa5S//M2V//mdjYIHamTz/N38LH64p3e1xd1/FoR0dr7k3bajjtzmc5467nqG5o42+bVrC1rZlFlVv928xPG0mUdeitKu9o6eK6yfdx8Yi7qNxSS+nGCras20FzbRtmq+/DVuqoREmKCyGEEEIMVfoQ+BJCiKPYrhW60oZXHE5er5c1a9YAvkUaeXl5AY5IiCOTtFMXx4r8/HxcLhcA48aNIyhIOsAKMViSGBd+dZXNrPt2C62NnSz9eONut6nsbgagx+skKT6UF249339fdUvHgO11XWdt3dV8WZ5HVcebhybww6isqhmPV6PH4eYvG1bw0Y4Sdk0jh5ks3DL2uIDFtyefvryU6m31tDV2sP6rzWRNGc6cS45nwuwxPPL23Tyz9EF++uz1gQ5TCCGEEEIIIYQIiISEBKKjowEoLy+no2PgeQ4hDoXi4mI6OzsByMrKIiIiIrABCXGE2jUxXlhYiK7Lyk5x9NE0rV8b9WnTpgUwGiGOPEO717M4rJKGxXDapdMpK6phwcW7/2d6QfpxeHQvZZ0NLKp8ityQpfzphvlU1szn0pkTB2yv6S5aHWsAnWb7clLCLjzEz+LQaoy2o8yxMD90BJ5g320GRWV++kgSbKHcN+UkjEN0lsfi15cBYLKYOPH8aZjMRn7yd0mECyGEEEIIIYQQ4KvUzc3N5euvvwZ8SZXp06cHOCpxLNg1wTF16tQARiLEkS00NJT09HTKy8tpbm6mvr6ehISEQIclxEG1detWWlt9Y26HDx9OXFxcgCMS4sgyNDN4IiBUVeX2h8/lsbduJ21E/G63sRpMLEiawKe1+YQqS/BojbjVN2nptBNkHjj7yKBayIn5DfHBC8mMvP1QP4WDStd1frfmSy745DW2tDYC8Mf8pdRpXXzQWMxXLxVxblw2/5p3IX858Wx+OfWUIZcUb2/uZO2SAtwuD8ef4ZszMu/yEwiLCglwZEIIIYQQYp8EuoW6tFMXQhwjpJ26ONzq6uqoqKgAIDY2lmHDhgU2ICGOcN+vGhfiaCOLqYQ4MEMriyeOCFHmEDJC4vi6JYuW7nA+XTmZxZu2/uD2SaFnMy7uz4SYR6DpHgoa72N1zWX0uCsPY9T7rqa7k2cLVrG6voqXi9cBcFnWREJNZjzb3HgcGmGVRo5PTGdLRSN/+tcXFJTWHvK47F0Ommtb97qdruv86KRfc/+5j/G3n73G1b88j/frn+WOx6445DEKIYQQQgghhBBHoujoaBITEwGoqamhubk5wBGJo93KlSv9l6dOnYqiKHvYWgixN9nZ2f6/o4KCAmmnLo4qDQ0NlJWVARAZGcmoUaMCHJEQRx5JjIt9ZjYYef2EO3l62gtEG+/HFjqK+849cVD7drqKqO16lzbnOmq73j2kce6vou31VNa3kmALYVZSBqEmC3OTRwAw25BO+BKVTG8EU3PSuHzhFAAefvZT3lqczwN/+WifHy//6yLunvdbPnj+i71u29XWwzUT7uWyMfew7IO1e9y2p9NOe3OXb7/2HgDM1oFV/UIIIYQQQgghhOiTm5vrvyxV4+JQ6unp8f+OWSwWxo0bF+CIhDjyBQcHk5GRAUBbWxs1NTUBjkiIg0cWUwlx4CQxLvaLQVFxuNejW37G/IkvU6R+MKj9QkwjibBOwWJIIM429xBHue++WrOVqx98jYvvfZm6pg4uDxuH7TONPz+2BLvTzTfrS3F7vNQ0dvDQLQsZkRoLwOgMX+v5rPR9n+fx2u/fZ/PKbTz7izf63V65pZYrsn/CrSc8SHdvYrutqYO2xg7QoWxT/4r7uh2N/PKCx3nhV2+i6zr3n/sY9i4HmePSuOPPUiUuhBBCCHEkU/Sh8yWEEEe7XdvwSrWhOJTWrVuHx+MBYOLEiZjN5gBHJMTRQdqpi6OR3W5n48aNAJjNZiZMmBDYgIQ4QhkDHYA4cul4/ZcbHHtv7Q1gUK3E2+ayrfUp6rs/J9Qy+lCFt1/eXLQegI5EN1d9/CbTSAagoaWL9k47ly2YQkt7DxOykokKs/n3+8W1c7nqjDySYsP3+TFPuXg6W9ZvZ87Fx/e7fdWijTRWt9BY3ULJuu1MOimHlBEJ/PiZa6jcUss5t87rt/0HL3zJ6kWbWL1oEyHhwbQ1dgJgC7USKjPFhRBCCCGEEEKIQQkPDyc9PZ3y8nKampqor68nISEh0GGJo4ymaaxevdp/PS8vL4DRCHF0GTNmDB999BGaplFYWMjcuXOlslYc8XZdTDVhwgSsVmuAIxLiyCSJcbHfooKOJyL4UTa1VXDj6CsHvV9V55t49W6qOt9gRNQdhzDCfWN3ullbXIXXpNM5SqOTVhSPwiXzJzEyLZaEmDC63S7KR3ezzpHPzI4RZIRFAaCqCqnxkfv1uKdeOYtTr5w14PaTLjiOtUsKCI8JJff4vlkh86+YudvjHLdgPO/+bRFej8ZLv36bZ5Y+SP5XRcw+b+p+xSWEEEIIIYYQvfcr0IZCDEIIcRjk5uZSXl4OwKZNmyQxLg66kpISOjo6ABg5ciRRUVEBjkiIo0dQUBCZmZls3bqVjo4OKisrSUtLC3RYQuw3TdNYtWqV//rUqXLOX4j9Ja3UxQGZEHMaF2dcSmLQ4JPCmZF3EmrOYVTUTw5hZPvOajaSm5mA6gFTpwI6TIhI4K7LTuS0mb72OxuaalnbWM2OzlY+r9h6SOOJig/nt/+7h58/fyNmy95ng4+dkcXtj12JosCYvEyG56Zy/p2nEpssH6yEEEIIIYQQQoh9kZ2djar6TpsVFhZKO3Vx0EmCQ4hDS9qpi6NJcXFxv8VU0dHRAY5IiCOXVIyL/abpLlZWn4bdU8GY6N+xviOD0s56rsqcTZgp6Af3iw+eR3zwvB+8/3Cq6e7AZjQRYQlCURT+8eCldPU4qaxv5c0l+Vw4eUK/7SfFJrMgfRRN9h5Ozxizz49XXlzNmsUFnHzhcUTG7Xvb9b1ZcNUsZp2TR1CIxf8BXgghhBBCCCGEEPvGZrMxfPhwtm3bRnt7u1QbioOqvr6eHTt2ABAdHU1mZmZgAxLiKJSVlYXBYMDr9bJ582bmz58v50vFEWvlypX+y9OmTQtgJEIc+SQxLgbwejWeeuC/VJU2cPcfLiJ5WOxut/NoXdg9FQBUdi3iwY2+ymRFUbg9a/5hi3d/La3ezlWfv4nNaGLJOTeQEBwKQIjNwhP//pr8kmpWbSzno6duAsCjaZgNBv520jn7/Zj3nvknWuvb2fB1EQ+/ddfBeBoDBIf98KIEIYQQQghxZFJ031egDYUYhBDicMnNzWXbtm2Ar526JMbFwbJrtXheXp7MPhbiELBarYwYMYKSkhK6urqoqKhg2LBhgQ5LiH1WW1tLRYUvDxMTE8Pw4cMDHJEQRzZZIiUGKN9Sx6K3VrN5XTmL3lr9g9sZlOC+yziJNocAMCr0yJi7VdrejA50e9zU9XT2u2/nvHBVVZhxzRP87p3FTHj9SWb89280O3r2+zHDo33J9/CY0P0+hhBCCCGEEEIIIQ690aNHYzT6ako2b96MpmkBjkgcDex2O5s2bQLAbDYzYcKEwAYkxFEsNzfXf7mgoCCAkQix/74/ekMWUwlxYKRiXAyQMjyO8cdlUrW9kRMWjPvB7VTFTKztVJp6viA59FzemT2PDredhKCIwxfsAbhk1Hg6XE5ig4IZH5Pov727w054cQMXj0hlUUMzHq/GJ1tK6Epw0eV2UdLayPGJ6YCvul7XNIwmI5/8ayllmyq57GdnEBEbttvH/NMn97I1fwe5x486LM9RCCGEEEIIIYQQ+8disTBq1Cg2b95MT08PZWVljBgxItBhiSPc+vXrcbvdAIwfPx6LxRLgiIQ4eo0aNQqj0YjH46GoqIiFCxdKO3VxROnu7vYvprJarYwfPz7AEQlx5JPEuBjAbDHy6Ks373U7RVEYG/dkv9tsxiPnzbzVaOJHE2b0u62rvYdXf/8+H/3jKzSTgfYLsvCadSZ4IpmckUa0LZip8akAtDV1cvvsh+nusHPfP27iyR/9CwCz1cQNv75wt48ZEmFj4onZh/aJCSGEEEKIo4/e+xVoQyEGIYQ4jHJzc9m8eTPgqzaUxLg4EJqmsXp1X3fGqVOnBjAaIY5+ZrO53wKn7du3k5mZGeiwhBi0NWvW4PV6AZg4cSJmsznAEQlx5JPlUeKA6LpOt2sbXs3R7/YutwNNP7JajHk9Xm494f9492+LAegcF0x9npum6R7WLtnEpOUaD+SdjLF3VeH2wiqaalqxdzmoKKkmLjUaRYGsyTLjQwghhBBCCCGEOBqMHDnSX9FbXFyMx+MJcETiSLZ161ba2toAyMzMJCYmJrABCXEMyMnJ8V+WduriSOL1elmzZg3gK1KUxVRCHBySGBcHZHvbk6ysOY01tRei677ykXcqVnHy4oe5ccXz/tuGMl3XaW1ox+P20trY4b/da+ud1WEAY1MHXo+3337jZozi3NvmMueS6cy/YiYvrH6E17c8zqyzpxzO8IUQQgghhBBCCHGIGI1GxowZA4DT6WTr1q0Bjkgcyb4/J1YIceiNHDnSX2VbXFzsr74VYqjbvHkzXV1dAGRlZRERERHYgIQ4SkgrdXFAut2lANg95YAGGFjdXIoObGwr5721BSyYMBqL0RTIMPfo4Sv+yncfreeiHy/gd/+7h/ylRXS2dGGLCcY5OQFjm4eMB42ccObkfvsZjAZufOSifreZLUP3eQohhBBCiCOYtFIXQoiAyc3NJT8/H/BVG+5MlAuxL5qamigrKwMgMjKSkSNHBjgiIY4NJpOJrKwsNm3ahMPhoLS0lFGjRgU6LCH2auXKlf7L06ZNC2AkQhxdJDEuDsjIqF8QZEwnOugEFMUAwE0jT6HH4ebr7yp5xPEf/tCo8o/jb2JMeHKAo929guVbANj4bQnX/Oo8cqfLBxMhhBBCCCGEEEL4ZGRkEBwcTHd3NyUlJTidTn97dSEGa9dq8by8PBRFCWA0QhxbcnJy2LRpEwCFhYWSGBdDXlVVFdXV1QDEx8eTnp4e4IiEOHpIK3VxQKzGREZE/YTIoOP8tw0LiePHmWdgsBs4MamIE6ILWN/S12qsy7UFp6cxEOH6aZpGa0M7APe+cCNzLz2e2/50OQB2p5v/e/YTHvjrR3TZnYEMUwghhBBCCCGEEAGmqirZ2dmAb95ncXFxgCMSRxqn08mGDRsAX/XqxIkTAxyREMeWzMxMrFYr4Gun7na7AxyREHv2/WpxWUwlxMEjiXFxSAyLi+T5K0cwP24zc2OLUJo20uVwUtf1Ed9Vn8WyqlNxepsCFt8vznmMS7Lu4bU/fsDkk3O45y/XMmJcGgDLN2znk2VFfL6ihK/XbAtYjEIIIYQQQuyk6EPnSwghjkW5ubn+ywUFBQGMRByJ8vPzcblcAIwbN86foBNCHB5Go5HRo0cD4HK52LZNzvmKoaujo4PNmzcDYLPZGDt2bIAjEuLoIolxcciMip+AghmPV+WlRQ088eG32D01AHj1HjzezsMe03cf5/Pec0soXOl781OwfOuAbcaOSCQ+KpSYiGAmjk453CEKIYQQQgghhBBiiElNTSU8PByA0tJSuru7AxyROFLout6vjfrUqVMDGI0Qx66cnBz/5cLCwgBGIsSerVmzBk3TAJg8eTJGo0xEFuJgkr8o8YM2r9vBB68sY+55eUw6YeDcFZe3CYMSikHd/VwtkyGdQvsDvL+qkMaWMCKDg0gLuxJFMRBkTCHYnHGonwLdHXbuP+9xOlu7ueX3l/DQZc8AMP+KE9B1OPfWuQP2CQ6y8PLDlxERGiQtSoQQQgghxNCg934F2lCIQQghAkBRFHJzc1m2bBm6rrN582by8vICHZY4Amzbto2WlhbAN68+Li4uwBEJcWzKyMggKCgIu93Oli1bcLlcmM3mQIclRD8ej4e1a9cCvlEuU6ZMCXBEQhx9pGJc/KCnf/k2X32Qz2M//8+A++q6PuDbyhmsrFmAV3Psdv/Pazfxavl6OuJd/OiKKdwyfzoG1cKw8GuJD553qMMHoHDlNorXlFFdWk/xmjLMVhMAk07M5u6nr2bYmOR+2ze1dXHmj59n4Z3Psr6k6rDEKIQQQgghhBBCiKFP2qmL/SHV4kIMDQaDgezsbADcbjdbtmwJcERCDLRp0yZ6enoAyM7OJiwsLMARCXH0kcS4+EGTe6vEJ84YOeC+TtcmAByeatxaW//7nJtZUb2AYP2vGBUFi2pi/qhcVPXwVl93tHTx9N2voBpUMsemsuDKWfxj9W/4y9JfMfvc3X8QqWnsoKvHiabpbClvPKzxCiGEEEIIIYQQYuiKj48nJiYGgIqKCtrb2wMckRjqmpub/bOMw8PDGTVqYEdGIcThI+3UxVD2/dEb06ZNC2A0Qhy9pJW6+EHX33cGF91yCiHhQQPuSw+/EU1z0+naREHDHWTH/hmbKQ2A2q7/0eMuA8qIMM2jxRVGvPXwr2zaUVRNY5WvVdXJF00nOjECgNiUqB/cZ+yIRH50yWxaOro568SxhyNMIYQQQggh9k5aqQshRMDtbKf+1VdfAb6q8RkzZgQ2KDGkrV692n85Ly8PVZUaJSECKT09nZCQELq6uti6dStOpxOLZfdjQoU43CoqKqirqwMgKSmJ5OTkvewhhNgf8m5M7FFohG23c7bNhhgSQs6iw7WJDtdG6rvf99+XGHI2NmMGdvJodoWQE5GCUTEczrAByJk2goXXzCZ7WibHnzZhUPsoisKlCyZz+0WzCLKYDm2AQgghhBBCCCGEOKKMHdu3iF7aqYs9cblc5OfnA2A0Gpk4cWJgAxJCoKoqY8aMAcDr9VJcXBzgiITos3LlSv/ladOm7TYvI4Q4cJIYF/stxDyGSOt0goypxNrm+28PteQQGfZPPqifzVUZJ/L8cTdR29pJc2fPYY3PYDRQvLqUzStLeeae1w7rYwshhBBCCCGEEOLoExUVRVJSEgB1dXU0NTUFOCIxVG3YsAGn0wn4FlTYbLYARySEAMjNzfVflnbqYqhoa2vzL9QICQnp1/ZfCHFwSSt1sd8MqoWJCS/5r+u6zpJN2wgLsvJhz3esbdnO2pbtjNYzuPv5j7AYjfzv3itJjgo/bDFqmq/Xo67tuefj028s5a3F+dx24QlcNG/S4QhNCCGEEEKIQVN031egDYUYhBAi0HJzc6mpqQF8VeMnnnhiYAMSQ87358ROnTo1gNEIIXaVmppKWFgYHR0dlJaWYrfbCQoaOEpUiMNp9erV6Lrvw9aUKVMwGA5/B14hjhVSMS4OiEfrQtM9AHy8roS7X/yQ6//6X0aZUrEaTJwQm0Vzix1dB4fbQ0Nb12GLrammlcyxaZx65Uzu++eNe9z2/a834XR5+HCprBIUQgghhBBCCCHED9u12rCgoMB/IluInbZv3+7vJpCWlkZCQkKAIxJC7KQoCtnZ2QBomkZRUVGAIxLHOpfLxbp16wAwGAxMnjw5wBEJcXSTxLjYbw3di1hakcfK6tPwak7MRt8qJkWBrT01JFgjuDxjJudMy+VHp83gVxfOYUJG0mGL740/f8SS/3zHp//6Bq9HG3D/p698w6u/fx9Hj5MfXXoiY0ckctP5Mw5bfEIIIYQQQgghhDjyhIaGMmzYMACam5upq6sLbEBiyJFqcSGGNmmnLoaSjRs34nA4AN/vZkhISIAjEuLoJq3UxX5rc6wGNOyeHbi1ZuaMG8Hzt56H0QQ3F/0dgP9WrGTyxOFcN+fQfwjYmr+D8uJaZp+bh8lsZHReJh/+8yuSR8QTHN5/jtO2jRU8cefLAAQFWzjv9vmcPlPmdgghhBBCiCFK7/0KtKEQgxBCDAG5ubns2LEDgE2bNpGYmBjYgMSQ0draSklJCQBhYWGMHj06wBEJIb4vKSmJiIgI2tra2L59O93d3QQHBwc6LHEM+v7ojWnTpgUwGiGODZIYF3vl9nox7WamRXr49Xj1LkLNOViNvkrwGms9jxV9yPCQOLo9Ts5OnXJYYmxv7uTH836Hx+2lrryRy39+JnMuns6UObmEhAdhNPX/VY+KD8cWaqWny0HqKPnwKoQQQgghhBBCiMEbM2YMH3/8MZqmUVhYyNy5c1EUJdBhiSFg9erV/ssyJ1aIoUlRFHJycli2bBm6rrN582by8vICHZY4BpWVldHY2Aj4Rm/IQjshDj1ppS726J9frGbKT5/iwTcWDbjPYoxnTMzvSAm73H/bR1XrcHjdVPe08OFJP2dazMhDGl9Pp4Nn7nmVN5/4BNXg+3U2W0z++yNiQgckxQGe+3g19aeM4KJnr2HqvHGHNEYhhBBCCCEOlKIPnS8hhBBgs9nIzMwEoKOjg4qKigBHJIYCt9vN+vXrAd+c2EmTJgU4IiHED5F26mIokGpxIQ4/SYyLPVq8cSs6sHjjtkFtf8PIk8mNSOWu0QtxuDyHNjhg8evL+fCfX/H2M4u48/EreOiNOznvjvl73e+TZZvxeDWWF1ce8hiFEEIIIYQQQghx9Nk1qbJp06YARiKGiu/PiZXWzEIMXfHx8URHRwNQXl5OZ2dngCMSx5qWlha2bNkCyOgNIQ4nSYyLPbr7jFnMHDOMX114yqC2nxYzkhen38JXi+qY9vOneePb/EMa3+i84ZitJsJjQpl0Ug7T5o/DYNj7r/U9V5zMpNEp3HTe8Yc0PiGEEEIIIYQQQhydRo8ejdHo61K3efNmvF5vgCMSgfT9ObFTp04NYDRCiL3Z2U59J6kaF4fbypUr/Zfz8vJQVUnXCXE4yIxxsUdTMlOYkpky4Ha7u4r8+msxKDYmJrzI5o4O1jSXcm7qVMJMNpYV70AHlm7ezsUnTDhk8Y2aOIw3S5/AYDRgMg/+1/nM2bmcOTt37xsKIYQQQggxFOi9X4E2FGIQQoghwmw2k5WVRWFhIXa7nbKyMkaOPLQj5cTQVV5eTkNDAwApKSkkJSUFOCIhxN7k5uaydOlSwJcYP+644wIckThWOJ1O8vPzATAajUyePDmwAQlxDJHEuNgvLfZvsHvKAWi2r+a2Vd/i1DxUdDfz0PgLePjieXxZUMoNcw98LsaLv36Hd/6yiHEnjEbTNIpXlTL7/Gnc9cSVAFhtlgM6/oZvi/nrT//NcQvGc82vzjvgeIUQQgghhBBCCHFsyM3N9VcZFhQUSGL8GCbV4kIceWJjY4mLi6OhoYGqqira29sJDw8PdFjiGJCfn4/L5QJg3LhxBAUFBTgiIY4d0ptBDEpdWye/fmsxH6zZDEBs8HwirccTY5tLVNDxRFtCAUgIigDgjLxsHrvmDMakxB3wY7/11Ce4nR7WLilg/ZebsXc7+fTlpXS19xzwsQHef+4Lyotr+M/jn+DocR6UYwohhBBCCCGEEOLoN2LECKxWKwDFxcW43e4ARyQCob29neLiYgBCQkLIzs4OcERCiMGSduricPv+6I1p0w68uFAIMXiSGBeD8uyiFbz13Sbu//dntHXbMRuimJjwIuPinsFsCOG1GXfw8vG3ctPIwc0iH4y6iibuOOnXaJ6+fo3mIDOqQWXeZTMICbcd8GO4HG7MVhO2sCAWXjP7gKvPhRBCCCGEOCT0IfQlhBDCz2g0Mnr0aABcLhdbtmwJcEQiEFavXo2u+14kJ0+ejMFgCHBEQojB2jUxXlBQEMBIxLFi69attLS0AJCRkUFc3IEXFwohBk8S42JQJgzzzUUaHh+F1azR6SxE173++0NMVrLDU1AVle31LfxvZQE9Ttd+P96ify/jnlMfZWt+uf+2hPQY3ql4mg8b/s7dz1yz/09mF4vfWM6Xb62kp8POiedJmyshhBBCCCGEEELsm7Fjx/ovS1Ll2ON2u1m3bh0AqqoyZcqUAEckhNgX0dHRJCYmAlBbW+tPWApxqKxcudJ/WarFhTj8ZMa4GJSzpuYwMzuD0CAL+fUX0enaRHLoZWRF/wpd1/nD5vdZ3VzKz7PP4kdPfEqXw8Wm8jp+deGcfX6sHZureey2F/3XDUaVrEkZ/OaduzEa923F7bqGal7bnE9sq5UL88YzPCWm3/1poxJRVAWzxURcavQ+xyqEEEIIIYQQQohj27BhwwgODqa7u5utW7ficDj87dXF0a+goAC73Q74Kk9DQkICHJEQYl/l5ORQW1sL+Nqpz5w5M8ARiaNVY2MjZWVlAERGRjJy5MgARyTEsUcqxsWgRYXYMBkM2D2VACwt/pYXFq+i3d3DfytWUt7dxHtVazAbfestzPuYxN4pIi6M4N426Zf97HT++NHP+POn9xIUvPc25y2OHp7esJyVdb4Y71z6Pm/vKOCFqjX86I/vDNh+5MRhRMaF4bS72PhN8X7FK4QQQgghxKGmDKEvIYQQ/amq6m/F6/V6/bOmxdHv+3Nip06VboRCHIlkzrg4XHatFp86dSqqKik6IQ43+asT+2xs7JNs2JrHq4tO4MUv1xBusnFWyhSSgyI5JzWPN+65lCevPZN7zpy1X8ePiAnlpfzf8eK637HkzRXcPf9RXvvDB4Pa99G1X/Hn/G+44vP/YPe4GRfta4Nj7FSIiQgesH13h52WunYAthdW7Ve8QgghhBBCCCGEOLZJO/VjU2VlJXV1dQAkJSWRnJwc4IiEEPsjIiKClJQUAOrr62lsbAxwROJoZLfb2bhxIwBms5kJEyYENiAhjlHSSl3sE5e3hU2NdzJuRDtl1cOYNvw4AB4Ye26/7RIiQgd9THuXgzef/BSXw0XVtjrmXHw8JrMRRVWpr2gGoGTtdt5+5jMShsUy4/RJP3islJBwAGKCgjGpBp458Sy2t7XQXtdD1rD4Adt7PV5Cwm24nG5my4xxIYQQQggxVOm9X4E2FGIQQoghKDk5mYiICNra2igrK6O7u5vg4IEL9MXR5fvV4ooivVWEOFLl5ORQVeUrnCosLOTEE08MbEDiqLNu3TrcbjcA48ePl7ErQgSIJMbFPnF66vFo7SgKXDpnJc2uNcxZnMMF6ady86i5+3XMD//xJa//6UP/9Q1LS3D0OH19GntPvOUvLWL155sAeH7VI6SOTNjtse4YdzwnpWSSFhqBsbcNSWZkNETufn74lvU76GrvAaCiuIbRk4fv13MQQgghhBBCCCHEsUtRFHJzc/n222/RdZ3CwkJpq32U6+zspKioCACbzdavFbMQ4siTnZ3NZ599BvgS47Nnz5bFLuKg0TSN1atX+69PmzYtgNEIcWyTVupin4SYR5MV/RCxtnnYPRXY1O2MCanm05r8/T5m+phkUMBsNQEwfGwq0H9+YVCIb/WUoiq0uu1s72jZ7bEURWFsdALh5sGttpp8cg4LrprJnEuO54Qzp+z3cxBCCCGEEEIIIcSxLTc3139Z2qkf/dasWYOmaQBMnjwZo1Hqj4Q4koWFhZGeng5AU1MTDQ0NAY5IHE1KSkpob/eNdB0xYgTR0bsv5BNCHHryjk3sE0VRSA69mDjbQpzeRjpcbRgMedyRNf8H93F7vTz0n8U0tHfx60vmEx8R0u/+qfPG8cqmP2ALsWIOMmMwqnz3cT4xSZHYQoOo3d5ATVkDf7/vDVwhKmd/+waaReX5k87l5JRMvl67jeTYCLKGxe01/lWLNrJmSQHn3jaPFZ/k848H/0tIuI1nvv4VtlBpXSKEEEIIIYYmRfd9BdpQiEEIIYaq+Ph4YmNjaWxspLKykra2NiIiIgIdljgEPB4Pa9euBUBVVaZMkWILIY4GOTk5lJeXA74FTvHxA0dzCrE/Vq5c6b8s1eJCBJZUjIv9YjKEMSXxDcJD/sqqllb+VPQBba6e3W67cUct76/ezIotFXy4ZvNut4lNjiI43IbJbERVVWacPomsSRmkjkxg6rxx/8/efcdXVd9/HH/dkdzsvUgIO4EsNokoKiri3tZaLXXVulvraGttq7UtbmvVX6lV67aOVtxSNwpKIMwkhLACCZBByN53nN8fV66EISvJuQnv5+NxHpx77/ee8zkx3pt7P9/P58ux504mdXQS7jAbHof31/bLJcW8/tFy7nj8Pa784ytsr2/53phdThf3/Pj/eOefn/HPO1/jyd++hrPTRX1NE2uXbTqsn4eIiIiIiIiIiKrGjwyrV6+mtbUVgIyMDCIiIkyOSER6QkZGhq99enFxMYahWaFy+KqqqnwTLuLi4hg5cqTJEYkc2ZQYl4O2tfk1llVdRkNHAYUNFbgMD7WdzWxt23t78zEpCWSlJhIfEcpxWYe2hndsUhT/WHgP551+NMlfdBDzaRNLb5qH4en+x0lZUx1tzq49nt+w3Zv8HjImGYD0CcMYNXaIN74pI5h0otaBEhEREREREZHDk5OT49tXYnzgWrx4sW9fa8mLDBxhYWEMGzYMgPr6eiorK80NSAaEXavFc3NztXa9iMnUSl0OimEYrN1xDwYuNjbA+UP+QVVHA4lBkWRGpuz1OaFBgfz7lksO+9w2m5XA3GG4360hwDCwBTWz7YNV3HvTmQxOjOb9qlLuXvwJg8Mi+ezcqwm02QDobO/iZ0f9gaa6Fi773Xn84aUbSBoSxw9+cRrNdS1ExWtWr4iIiIj4OePbzWz+EIOIiB+Ljo4mJSWFrVu3Ul1dzfbt24mPjzc7LOlBW7ZsYevWrQAkJSWRmppqckQi0pOys7MpKysDvBOckpOTTY5I+rPW1lYKCwsBcDgcjBs3zuSIREQV43JQLBYLiaFnATaC7YMJtwfxm6xzuGLk9D6Z6RQf7V2fPMBqpau5g09e/ppBho30IfGUNmwHYFtrE+1up+85zi4XrU3tADTtaCZpSBzgTbQrKS4iIiIi0jfuvfdeLBYLN998s+8+wzC4++67SU5OJjg4mOnTp1NcXNzteZ2dndx0003ExcURGhrK2WefzZYtW7qNqa+vZ9asWURGRhIZGcmsWbNoaGjog6sSEdmT2qkPbLtXi6vyT2RgycjIwGr1pk3UTl0O19KlS3G73QBMnDiRwMBAkyMSESXG5aDFh5wEuKls+Q81rR/06bkvOGkcz919CbPShmBxeQCo3OxNiN86/liuzc7jnyecT2RgkO85YZEh3P/2rVz954uYdce5fRqviIiIiIjAkiVL+Oc//8nYsWO73f/AAw/wyCOP8MQTT7BkyRKSkpI4+eSTaW5u9o25+eabmTt3Lq+++ioLFiygpaWFM8880/cFE8All1zCihUrmDdvHvPmzWPFihXMmjWrz65PRGRXWVlZvmRpUVGRkioDSEtLi28CV3BwcLdJECIyMAQHBzNihHc50Kampj0mZIocKLfbTUFBAeAtOJwyZYrJEYkIKDEuh2B9/QO+fbstAo/h4a2KJczbtqJXPuy53B7Ktu7A4zGwWCxkjEji3J9MJ35wDIOGxzPu2DEYhkFccCi/mTSdGamj9jhG9tHpXHDDTELCg/ZyBhERERGRfsDwg+0QtLS0cOmll/LUU08RHR393eUYBo8++ih33nkn559/PtnZ2Tz//PO0tbXxyiuvANDY2MgzzzzDww8/zIwZM5gwYQIvvfQShYWFfPLJJwCUlJQwb948nn76aaZOncrUqVN56qmneO+99ygtLT20oEVEDkN4eLhvjdq6ujq2bdtmbkDSY5YuXYrH4y3UmDhxIgEBASZHJCK9ISsry7evzh9yqFavXu2b8Dt69Ohun4VExDxKjMtBs1u97cwjHBOIDT6WjysL+UvRXH6/8nWW1m3s8fPd/ujbXHzH88z+18e++xKHxPJi4QM8u+xePmjYyKgXH+LXCz/s8XOLiIiIiMiempqaum2dnZ37HHvDDTdwxhlnMGPGjG73l5WVUVVVxcyZM333ORwOjj/+eL7++mvAm4BwOp3dxiQnJ5Odne0b88033xAZGUleXp5vzFFHHUVkZKRvjIhIX1M79YFn98q/yZMnmxyRiPSWMWPGYLPZAG9yc+eEGJGDsevSG7t+VhERcykxLgdtXOIzZMc/xvjEp3F53HxUuRIAKxaiAkN7/HwbttR++6+3Zfr2LXU8+ovn+eiVhQC8W1aC2/DwdtnqHj+3iIiIiIg/sBj+swGkpqb61vOOjIzk3nvv3Wvcr776KsuWLdvr41VVVQAkJiZ2uz8xMdH3WFVVFYGBgXtUV+w+JiEhYY/jJyQk+MaIiPS13deoVVKl/yspKaGlpQXwVv5FRUWZG5CI9JqgoCBGjfJ2JW1paaG8vNzkiKS/2bp1q68Nf2JiIkOHDjU5IhHZyW52ANL/BNpiSAg9BYClOzbyZc0aAH48fBqjwpN6/Hz33XQWHy8q5azjvbOtX3noPea98BXzXviK3JljuXXCcTy2aiHnDM/s8XOLiIiIiMieKioqiIiI8N12OBx7HfOLX/yCjz76iKCgfS9ptHMd3p0Mw9jjvt3tPmZv4w/kOCIivSU4OJi0tDRKS0tpbm6mvLzc115d+qddK/9yc3NNjERE+kJWVpZvWZ6ioiK9hstByc/P9+3n5ubqc4mIH1HFuByW9IhBDA2NI9wezMzkcT1+/KUlFTS1dPCLS45nREosAFlHeWfrDRk9iLDIYPKSUnl55sVclDa2x88vIiIiIiJ7ioiI6LbtLTG+dOlSampqmDRpEna7Hbvdzvz583nsscew2+2+SvHdq7pramp8jyUlJdHV1UV9ff33jqmurt7j/Nu3b9+jGl1EpC/t2k69sLDQxEjkcFVWVlJRUQF4O5IoQSYy8I0ePRq73VtXWFJSos4fcsCam5spLi4GvBPlcnJyTI5IRHalxLgclvCAYN449pd8OuN3OEs7uPz42Tx0+6sYhnHYxy5ct43r732DXzz0JguWf7d2+YyLj+YfX/+RqLgIHvjZ03R1OA/7XCIiIiIifs3wo+0AnXTSSRQWFrJixQrfNnnyZC699FJWrFjBiBEjSEpK4uOPP/Y9p6uri/nz53P00UcDMGnSJAICArqNqayspKioyDdm6tSpNDY2dqvky8/Pp7Gx0TdGRMQM6enpBAQEAN6kitvtNjkiOVS7vsdMmTJFlX8iR4DAwEDS09MBaGtro6yszOSIpL8oKCjwTaTY+XlGRPyHqYnxOXPmMHbsWF+VwdSpU/nwww99jxuGwd13301ycjLBwcFMnz7dN9Nmp87OTm666Sbi4uIIDQ3l7LPP9q3dIH3DYrFgsVj46D9LqN5az6dzl1K/vbkHDrzL7m6/qUs/K2bVwlK+fKuAokXrvru/Ziv/LMqnsavj8M8vIiIiIiKHLDw8nOzs7G5baGgosbGxZGdnY7FYuPnmm5k9ezZz586lqKiIyy+/nJCQEC655BIAIiMjueqqq7j11lv59NNPWb58OT/+8Y/JyclhxowZgHcd31NPPZWrr76aRYsWsWjRIq6++mrOPPNMRo8ebeaPQESOcIGBgb7Xofb2djZs2GByRHIoWltbfRX/QUFBjB2rjoUiR4qsrCzfflFRkYmRSH/hcrkoKCgAvHmTKVOmmByRiOzO1MT44MGDue+++ygoKKCgoIATTzyRc845x5f8fuCBB3jkkUd44oknWLJkCUlJSZx88sk0N3+XdL355puZO3cur776KgsWLKClpYUzzzxTs3D7gGEYPLdhPves+i87Ops57eKjGDIqgdN/dBTR8eGHffwxwxI5+/hszjthLFNzhnd7bPCo71oiOjtdALS7nPzof/9m9tIvuG/pF4d9fhERERER6V2/+tWvuPnmm7n++uuZPHkyW7du5aOPPiI8/LvPE3/9618599xzueiiizjmmGMICQnh3XffxWaz+ca8/PLL5OTkMHPmTGbOnMnYsWN58cUXzbgkEZFudm2nrqRK/7Rs2TLf94zjx48nMDDQ5IhEpK+kpaX5/p9fs2aNcg6yX0VFRbS1tQGQmZlJRESEyRGJyO7sZp78rLPO6nb7L3/5C3PmzGHRokVkZmby6KOPcuedd3L++ecD8Pzzz5OYmMgrr7zCNddcQ2NjI8888wwvvviir1rgpZdeIjU1lU8++YRTTjmlz6/pSLKxpYb/W/s/AOKDwrluwkyenHd7jx3/o2/W8M5874fG6ZNGcdTYYb7HgkK/W8OwrakdALvVSpQjmJr2FhKCw3osDhERERERs1kM72a2w43hiy++6H48i4W7776bu+++e5/PCQoK4vHHH+fxxx/f55iYmBheeumlwwtORKQXjBo1iqCgIDo6OlizZg1Op1MtVfsRj8fjq/wDyM3NNTEaEelrAQEBjB49msLCQjo6OtiwYYOvvbrI7gzDID8/33c7Ly/PxGhEZF/8Zo1xt9vNq6++SmtrK1OnTqWsrIyqqipmzpzpG+NwODj++OP5+uuvAVi6dClOp7PbmOTkZLKzs31j9qazs5OmpqZumxy8QcFRpATHYLdYmRgzfI/H21s7+fMNL/CHnz5Dc0PbQR9/aHIMNqsFR4Cd5ITIbo+NPWY0t//jKm56ZBbHne9tRxJgtTHv7Cv472mX8otxxxzaRYmIiIiIiIiI9BCbzUZmZiYATqeT0tJSkyOSg7FmzRrf94bp6elER0ebHJGI9LVd26nvvsyryK7Ky8upqqoCvHmqwYMHmxyRiOyNqRXjAIWFhUydOpWOjg7CwsKYO3cumZmZvsR2YmJit/GJiYls3rwZgKqqKgIDA/f4ozQxMdH3ArQ39957L3/84x97+EoGNsPwloZYLN8t/L1geyljIpO5Pe0cJkaP2OM5S78qZeH/vGswff1REadcdHCzarNHDuLdv/0Mu9VKZHhwt8csFgsn/XDqHs+JCQohJijkoM4jIiIiIiIiItJbsrOzWbZsGeBtsbpre3Xxb4sXL/btq1pc5Mg0cuRIHA4HnZ2drFmzBpfLhd1uelpF/NCu7xl5eXndciki4j9MrxgfPXo0K1asYNGiRVx33XVcdtllrF692vf47i8ehmHs9wVlf2PuuOMOGhsbfVtFRcXhXcQAt21TLZccdQ+XT7+Xuu3eWbKGYXDXyjf4tKqImz57iR8+9DIut6fb87KnjGDIqAQGDYll/DFp3Y+5sZrPXl9ER1sn899czEPX/4uKdXtOZoiNDN0jKS4iIiIicsQx/GgTEZGDMnToUMLCvEu+rV+/no6ODpMjkgNRXV3tK86Ji4tjxIg9i0JEZOCz2+1kZGQA0NXVxbp160yOSPxRY2MjJSUlAISGhvq6xYiI/zF9alNgYCCjRo0CYPLkySxZsoS//e1v/PrXvwa8VeGDBg3yja+pqfFVkSclJdHV1UV9fX23qvGamhqOPvrofZ7T4XDgcDj2+bh0t3LRBhp2tABQuqKcqSdnY7FYyIsbycLtazFqA9lQtYO2ri4igoN8z4uKDdvrmuNul5tfzJhNc30rMy89hk9e/QaP20N7Swe/f+F637iOLicvvV9ATGQI550wVjOsRERERERERKTfsVqtZGVlkZ+fj9vtpqSkhAkTJpgdluzHrpV/U6ZM0fdSIkewrKwsVqxYAXjbqe9MlIvstHjxYl/X3cmTJ6urgIgfM71ifHeGYdDZ2cnw4cNJSkri448/9j3W1dXF/PnzfUnvSZMmERAQ0G1MZWUlRUVF35sYl4Nz7OljOf6McZx8wWQmHTfad/9fJ13Gq1N+yXkpecz+8andkuL743Z5q8s//89iRo1NBSDnmPRuY975ooin5n7D/c99StGGyh64EhERERGR/sli+M8mIiIHLycnx7dfVFRkYiRyINrb21m1ahXgLeoZN26cyRGJiJmGDx9OcLC3q+natWvp6uoyOSLxJ06n07dkitVqZfLkySZHJCLfx9RpK7/97W857bTTSE1Npbm5mVdffZUvvviCefPmYbFYuPnmm5k9ezZpaWmkpaUxe/ZsQkJCuOSSSwCIjIzkqquu4tZbbyU2NpaYmBhuu+02cnJymDFjhpmXNqCERQTzm7/9eI/7LRYLI+Pi+cNFB/ezttltnP2zE3j14Q9wdjr52eyLGZI+iIiYsG7jhiXHYLFAsCOAhJjww7oGERERERERERGzJCcnEx0dTX19PWVlZbS0tPjaq4v/WbZsGS6XC4Dx48er86TIEc5ms5GRkcGyZctwOp2sXbuW7Oxss8MSP7Fq1SrfMinZ2dl6fxfxc6Ymxqurq5k1axaVlZVERkYyduxY5s2bx8knnwzAr371K9rb27n++uupr68nLy+Pjz76iPDw75Kkf/3rX7Hb7Vx00UW0t7dz0kkn8dxzz2Gz2cy6LDkAF/3idDrbuohJjCQrb9Re21HlZg/lzYev4pEXP+fav7zGn68/g6yRg/ZyNBERERERERER/2WxWMjOzuarr77CMAyKi4vJy8szOyzZC4/HQ0FBge92bm6uidGIiL/Izs72VQUXFxcrMS6AtwNyfn6+77be20X8n6mJ8WeeeeZ7H7dYLNx9993cfffd+xwTFBTE448/zuOPP97D0cnB+M/mRcyvWc21aSeTFZW63/Eh4UFcM/vi/Y5zuz18tXwjAB8uLFFiXERERESOTMa3m9n8IQYRkX4qJyeHr776CvC2U9eX5/5p7dq1NDQ0ADBq1ChiY2PNDUhE/MLQoUMJDQ2ltbWVdevW0dnZqW4SQllZGdu3bwcgNTWV5ORkkyMSkf3xuzXGpf9xedw8uPpdFtWu56n1n/XosVPiozjz2CxGpcZx9vGahSciIiIiIiIi/VN8fDyJiYkAbNmyhfr6epMjkr1ZvHixb1/V4iKyk9VqJTMzEwC3282aNWtMjkj8garFRfofJcblsNmtNk5IysJmsXJiUs8mr61WC7+/+hRe/stPSB+a0KPHFhERERERERHpS7u23i0qKjIxEtmb7du3U1ZWBkBMTAyjRo0yOSIR8Se7voYXFxebGIn4g7q6OtauXQtAREQEY8aMMTkiETkQSoxLj7hvwiV8fco9nD14ktmhiIiIiIgMPIYfbSIicsiUGPdvu1aLT5kyBYvFYmI0IuJvUlNTCQ8PB2DDhg20t7ebHJGYaff3DJvNZmI0InKglBiXHmO16NdJRERERERERGRfoqKiGDx4MAA1NTXU1NSYHJHs1NHRwcqVKwEICAhg/Pjx5gYkIn7HYrGQlZUFgMfjoaSkxOSIxCydnZ0sX74cALvdzsSJE02OSEQOlDKZIiIiIiIiIiIifWTXqvHCwkITI5FdrVixAqfTCcC4ceMICgoyOSIR8Udqpy7gfc/o6uoCICcnh5CQEJMjEpEDpcS49Kj1zVWc8fl9XP7132lzdfbIMZ9/dzHHXPEof3/9KzY21vHM6iXUtLdgGAYv3f8Od/3oMbaVaYa1iIiIiAxcFsN/NhEROTxZWVm+Ft3FxcUYhl5czWYYBkuWLPHdzs3NNTEaEfFnycnJREVFAVBWVkZra6u5AUmfMwyjWxv1vLw8E6MRkYOlxLj0qK9q1lDT0URx4xZKm7b1yDHfX1CMy+3hva9WM+vj1/jTks+49av3qS6v5aX73iF/3iremvNJj5xLRERERERERKQ3hYWFMXz4cADq6+vZunWryRHJ+vXrqaurA2DEiBHEx8ebHJGI+Ktd26kbhqF26kegXd8zhg0bRmJioskRicjBUGJcDpuzy8Xr//iM91/5htOSxzM5ZgSnJ08gOyq1R45/08XHMT49hZsvPZ4oh7eNVZQjmLbmdkIjgrHZreSeMrZHziUiIiIi4pcMP9pEROSw7dqKt6ioyMRIBOhW+adqcRHZH72GH9ny8/N9+6oWF+l/7GYHIP3fp3OX8uxDHwJw/8hrmZP3UwCau7azqv5vJASPZnD4j31twg7WsRNGcuyEkQDkdQ1j5fZKcpNS+fsvXqS1qR2AUWOH9MCViIiIiIiIiIj0voyMDN5//33cbjfFxcXMnDkTq1X1K2bYsWMH69evByAqKoq0tDSTIxIRf5eYmEhsbCw7duxg8+bNNDc3Ex4ebnZY0ge2b9/Ohg0bAO97Rnp6uskRicjB0l/cctiSh8VhsVgIDAogflAUAF0uJ48V/5zG9jdYV/dnWp3rDuhYnW4XS2u20OF27fXxyMAgjksZTpDNjsvpBgsMHZNMRGxYT12OiIiIiIiIiEivCgoK8iVgW1pa2Lx5s8kRHbl2rRafMmWKJiiIyH7t2k4dYPXq1SZGI31p9w4jes8Q6X/0f60ctrF5I3l+/m95fv5vGTQklvbWTn529sOUNAbhMaDLE47DdmDrbPz8y3e54MOX+dlnb+718eodzZSUVQOw8L1lYEBQaJDegERERERkQLMYht9sIiLSM3ZtxVtYWGhiJEeuzs5OVqxYAYDdbmfChAnmBiQi/cauifHi4mITI5G+0t7ezsqVKwEICAjQe4ZIP6VsovSI+OQoor6t2q6q2EH12h1U/jWed/KvYXLyPAJskQd0nK0tjd3+3dWOhlZ+8Otnufyul/lw4Wp+dMsZJKTGcM7PTuy5CxERERERERER6QPp6ekEBgYCUFJSgsu19+550ntWrlxJV1cXAGPHjiU4ONjkiESkv0hISCAhIQGAiooKGhv3/D5bBpbly5fjdDoBGD9+PEFBQSZHJCKHQolx6XHDRg/ix7+YyamjJnD3ST8lLijugJ/7xPHn8Mvx03jyxPP3eKy1o4vOLu+HxNqGVk79ybG4XR4e++ULrFuxqafCFxERERERERHpdQEBAYwePRqAjo4O35ql0jcMw9ijJa6IyMFQ1fiRw+Px6D1DZIBQYlx61LbmN1hbdw8/uH4Ctz/8I2LiIw7q+cMiovnFuGMYFRm7x2NDkqJ55NZzuW3WCfxw5gQ2l25jR2UDHW1dFH1zYGuYi4iIiIj0S4YfbSIi0mNycnJ8+0VFRSZGcuTZuHEjO3bsAGDo0KEkJh7YMoAiIjspMX7kKC0t9XUFGDVqFHFxB14MKCL+RYlx6TEdrm2s2fE7tja/wubGp3r8+G6PhwIqWR/TiMdikD01ndMvO47AoADmzvmY+hq1qxERERERERGR/mPEiBG+9t2lpaW+tt7S+1T5JyKHKzY2lqSkJAC2bdtGXV2dyRFJb8nPz/ft5+XlmRiJiBwuJcalxwRYYwiyDwYsRDjG9fjxv9xWxl9XLODJonzeKSvBZrNSV91IV4eTmoo6SpZs7PFzioiIiIiIiIj0FpvNRmZmJgBOp5PS0lKTIzoy1NfXs3btWgAiIiIYM2aMyRGJSH+VnZ3t21fV+MBUVVXF5s2bAe9kiJEjR5ockYgcDiXGpcfYrEEclfIh01K/JjH09B4//qioOMICAgm02ohvt3PXjx5j/apy77ntViadmLWfI4iIiIiI9E8Ww382ERHpWbsmVdROvW/sWi0+efJkrFZ9RSoih0bt1Ae+XavFc3NzsVgsJkYjIofLbnYAMnB4DBdbml7CagkiJfxHe7xBGIbBnRf8lfUry3EEB/CLR3/C5Bk5+zjanlLDIln8gxtwGwYv3Pkf8uetAmDqGRM49cfTcAQH9uj1iIiIiIiIiIj0tqFDhxIeHk5zczPr16+nvb3d115del5XVxcrVqwAvBX7kyZNMjcgEenXoqKiSElJYevWrVRXV1NbW6v1pweQ1tZWCgsLAXA4HIwfP97cgETksGk6pPSYmtb3WV9/P2vr/kh9x9e++7/ZvpZzvniQS//vfpZ9vpqmuha2b63ndz/4G4vmrTyoc4QEBBIe6GDKzLEEBgUwZsoI7nz2GvJO7fnW7SIiIiIifsPwo01ERHqUxWLxVRx6PB5Wr15tckQD26pVq+jo6AAgJyeHkJAQkyMSkf5OnT8GrmXLluF2uwGYMGECgYEqzhPp75QYlx4TbE8FrFgIwGFL8t3/ZsVitrXXs25kE0ZA9+c8fsuLB3UOwzC4/dG3ufnlT7n6tRt49KPfYg9Q4wMRERERERER6b9ycr7rqKekSu8xDKNbG/Xc3FwToxGRgSIzM9O3X1xcjGFoNulA4Ha7WbJkie+23jNEBgYlxqXHRAZN5OjBn3L04M8IDRzpu//CIUeRGhLLRYPysO/2Kzc0I+WgzuF0uflq+QbcHg9fLduAx+PpkdhFRERERERERMwyaNAgYmJiANi0aRPNzc0mRzQwbdq0ie3btwOQmprKoEGDTI5IRAaCiIgIhgwZAkBtbS01NTUmRyQ9oaSkxPd+PHr0aKKjo02OSER6ghLj0qOC7Mk47Al8/s5ybrv47+R/tpq8uFG8efyt3D7+HG5+7DLfWHuAjT/++6aDOn5ggJ3bZp3I5NGD2fDSIn446pdUrKvq6csQEREREfErFsN/NhER6XkWi6VbK97i4mIToxm4VC0uIr1l55IYoM4fA0V+fr5vPy8vz8RIRKQnKTEuPcLlaWFz41PsaP8KgH/+5R2KC8p49sEPuo076aKpjMhJJTQimNlv3kJA4MG3Qb9wxnhmTUyndcN2mutbKfp6bY9cg4iIiIiIiIiIWdROvXc1NDRQWloKQHh4OBkZGSZHJCIDSWZmJhaLBVA79YFg69atbNmyBYCEhASGDRtmbkAi0mO0OLP0iE0NcyhvehqwMC11ASdfOIW5//qSGedP7jbOarXy9y/vOujjtzq7uGXBe7S7XDx67JlMPDGLM66cTmdbJ8edN6WHrkJERERERERExBxxcXEkJSVRVVXF1q1bqaur87VXl8NXUFDgS1RNmjQJm81mckQiMpCEhYUxbNgwysrKqK+vp7KykuTkZLPDkkO0e7X4zkkPItL/KTEuPSLI7n2Tt1sjsVqCufL207ny9tN77PgLKjfxv/J1AFzzm//j4rRx3PTwj3vs+CIiIiIifs34djObP8QgIjKAZWdnU1XlXTKuqKiI4447zuSIBgan08myZcsAsNlsTJo0yeSIRGQgysrKoqysDPC+hisx3j81Nzf7ljQJDg7u1tFFRPo/tVKXHpESfglTBr3JUSkfYreGfu9Yl8dNfu16dnQ2H/DxpyQMZkx0PBFtVure2cBTv3ud9pYOmls7aGxpP9zwRURERERERERMt+s640VFRWrF20OKiopob/d+f5SVlUVYWJjJEYnIQJSRkYHV6k25rF69Wq/h/VRBQQEejweAiRMnEhAQYHJEItKTlBiXHmGxWAh3ZBFo23+Lr/9b+xE3LvkXP174BC6P+4COHxMUwryzr+TxxOMJaYW8U8dR3dTKmb/4J2f8/J+s3VxzuJcgIiIiIiIiImKqyMhIUlNTAdi+fTs1Nfq+43AZhtGtJW5ubq6J0YjIQBYSEsKIESMAaGxs9K1RLf2Hy+Vi6dKlgDfnMWWKlnEVGWiUGJc+1+z0ztBtdXViHGQvxmlnT+LYcyfRsL2J5cvL6Ohy4XS5Kdu6ozdCFRERERHxCxbDfzYREeldu7ZsLSwsNDGSgaG8vJzq6moAUlJSSElJMTkiERnIsrKyfPtFRUUmRiKHori4mNbWVsDbASAyMtLkiESkpykxLj3G7WmnqbMQw/j+KvCbx5zO7Zln8VTezwiwHtwy9+uKyvn4vSWULi2jflk51114DD899yhOzE0/nNBFRERERERERPxCZmYmFosF8H5Br1a8h2fx4sW+fVWLi0hvGzNmDDabDfC2U9/Zklv83+4dRvLy8kyMRkR6y8FlJUW+x7KqH9PcVURK+CWMjr1rn+PCAoK4aOjUgz6+YRj8ZstXrJs9klGftTH93CmMyEk9nJBFRERERERERPxKaGgoI0aMYMOGDTQ0NLBlyxZfe3U5OE1NTZSUlADen2tmZqbJEYnIQBcUFMSoUaMoLS2lpaWF8vJyhg0bZnZYcgAqKiqorKwEYNCgQXrvFRmgVDEuPabd5V0zpd1ZcdDPfeepz3jsly/SsL1pn2M6PW4K66oAGH3lRCXFRUREROTIYfjRJiIivS47O9u3r1a8h66goMBXcT9p0iTsdtUIiUjvUzv1/mn3avGd3VtEZGBRYlx6zPjEpxkWeQNj4u454OcYhsGz97zJ33/1Ch88N5//PP6/vY5rqmvhsxcXcveY47lwZDa3TTh2r+NKNlbx4vtLaGhuP6RrEBERERERERExW0ZGhq8Vb3FxsVrxHgKXy8XSpUsBsFqtTJ482eSIRORIMXr0aN9EnJKSEr2G9wONjY3dOozsOrlBRAYWTZOUHhPhyMFuDaOs4Qlig48jIfTU/T5nc8k2XvvrB77bmXmj9jruoeueYfFHhSQOjeP5FfftdYzL7eG6e9+gvdPJuvLt3HPd6Yd2ISIiIiIifsiiam0RkSOGw+EgPT2dkpISWltbKSsrY+TIkWaH1a8UFxfT1tYGeCcahIeHmxyRiBwpAgMDSU9PZ/Xq1bS1tek1vB9YsmSJr8PI5MmT1WFEZABTxbj0qA31j1DZ8l+Kt9+Cx+ja7/j4wTHEp8RAkp3TXjiDCafsfSaWI9gBQFBw4D6PZbVYiI4IBiAuKvQQohcRERERERER8Q9qp37oDMNg8eLFvtu5ubkmRiMiR6JdK46Li4tNjET2x+l0smzZMkAdRkSOBEqMS4+KckwCINwxFgsB+x0fGhHM00v/jOfxVF6yL+HB1e/sddyt/3cFd718A/e/e/s+j2W1Wnjuj5fy5J0/5IYf7r3VuoiIiIiIiIhIf5CWlkZgoLdAoKSkBJfLZXJE/cfWrVvZtm0bAElJSaSmppockYgcaXZ/DXe73SZHJPuyatUq2tu9S7NmZ2cTFhZmckQi0puUGJcelRp5OVNTPicsYDSlO+7C7fn+tb4rN21n64YaLBYLADu7Qzq7XLww+y1euv8d3C43QaEOpp4+gai47297FRkWzPjRKdis+tUWERERkQHEMPxnExGRPhEQEEBGRgYAnZ2drF+/3uSI+o/dq8V3fu8kItJXAgICGD16NAAdHR1s2LDB5IhkbwzDID8/33dbHUZEBj4tlCA9rqlrBdtaXgUgKmgySWFn7zFm9eL1PPrLF6nYXI/R2cUtr14B44I4LsH7gW/BO0t55cH3ABieNZhjzpzYdxcgIiIiIiIiIuIHsrOzWblyJeBtpz5mzBiTI/J/LS0tvrbFwcHB3VrSi4j0paysLAoLCwFvO/X09HSTI5Ldbdq0ie3btwMwePBgUlJSTI5IRHqbEuPS4yICcwiwRmNgEOEYv9cxs694ktoWJ5YgBwQG8PFfvyAyNpx8zwK6Opyc8uNjCXQEYLFaGDI6uW8vQERERERERETEDwwfPpyQkBDa2tooLS2lq6vL15pX9q6goACPxwPApEmTCAjY/1J/IiK9YeTIkTgcDjo7O1mzZg0ulwu7XSkZf7JrtXheXp6JkYhIX9GrsPS44IBUjkldAIDVsvdfsVHjhlA7fy0EBIDLTdHCdd0eL/ikiLteuZGxx4wmNCK412MWEREREfFnFsO7mc0fYhAROZLYbDYyMzMpKCjA5XKxZs0axo4da3ZYfsvtdrN06VIALBYLkydPNjkiETmS2e12MjIyWLFiBV1dXaxbt863RIaYr66ujtLSUgDCw8P130bkCKGFmKVXWC32fSbFAe56+UZmv3Qdg+NDoLllr2Nevu+dQ0qKv/nZSh564TMamr9/fXMREREREREREX+3ayvwoqIiEyPxf6tXr6alxfs905gxY4iMjDQ5IhE50mVlZfn2dy7zIP5hyZIlvv0pU6Zgs9lMjEZE+ooS42IKi8XCxBMy+dWcKxiclrjXMetXlbN1QzWtjW0HfNyK6nruf+5T3vhkBa/MW9pT4YqIiIiIiIiImGLIkCFEREQAsGHDBtraDvx7kiPN4sWLffu5ubkmRiIi4jV8+HCCg73FX2vXrqWrq8vkiASgs7OT5cuXA97K/kmTJpkckYj0FSXGxVRp44dhtXz3a2gAxi6/lVdNvpPLxv+GhtrmAzpebGQoCTFhWCyQNSKph6MVERERETGJ4UebiIj0KYvF4qsa93g8rF692uSI/NO2bdvYsmULAAkJCQwdOtTkiEREvEti7GzR7XQ6Wbdu3X6eIX1h5cqVdHZ2ApCTk0NISIjJEYlIX1FiXHqVx3CypekVtrd9us8xt/79ChwhgRgWaPp9FHXPx9OZ6/A93tLQRl1VwwGdLyQokP88cCXznriO4yeNOtzwRURERERERERMp3bq+7d7tbjFYjExGhGR7+g13L8YhtHtPSMvL8/EaESkrykxLr1qW/PrrK37I4U119PSVbrXMaMnjeDtrX/n6ZLZuDICwWbBOSHQ97g9wEZbczvXTbuLe3/6T7o6nd97Tkegnajwg1+bXERERETEX1k8/rOJiEjfS0pKIjY2FoDNmzfT1NRkckT+pbW11ZdsCgoKYuzYsSZHJCLynaFDhxIaGgrAunXrfJXKYo7169ezY8cOAIYNG0Zi4t6XehWRgUmJcelVgTbvhzYLgdit4d87NjUxgV+OOZ2jo9K4bORxvvtdTjd3nPdXyoq3Mv+/i3np04Wc8/4LPFtS0Kuxi4iIiIiIiIj4g13bqQMUFxebGI3/Wbp0KW63G4AJEyYQEBBgckQiIt+xWq1kZmYC4Ha7KS3dewGZ9I38/HzfvqrFRY48SoxLr0oIPZUpg+ZyVMqHBNmT9zv+kuHT+NvUK7jyirMZf9wYLFYLQ0YPwhHy3QeaJwq/YWVtJbMLPu/N0EVERERERERE/EZOTo5vX614v+N2uyko+K54YsqUKSZGIyKyd5rc5B9qa2vZsGEDAFFRUaSnp5sckYj0NbvZAcjAF+7IPOjn2Ow27nv7Nt/tom/WctvpDwDg+LQG6/nx/DB7XI/FKCIiIiLi14xvN7P5QwwiIkeo2NhYBg0aRGVlJdu2bWPHjh2+9upHsjVr1tDc3AzA6NGjiY6ONjkiEZE9paamEh4eTnNzM+vXr6e9vZ3gYC0H2td2rRafMmUKVqtqR0WONPq/XvqF7KnpxKV4P9hELmnmog8D+dMxpwBQ1drMqtpKM8MTEREREREREel1u1Ycqmrca/Hixb793NxcEyMREdk3i8VCVlYWAB6PhzVr1pgc0ZGno6ODlStXAhAQEMDEiRNNjkhEzKDEuPQb199/CSNzUrn2vouJTY7m5pmzKSzZxIlvPcXZ77/A6+tWmR2iiIiIiIiIiEiv2T0xbhhHdiuPqqoqysvLAYiLi2P48OEmRyQism87E+OgdupmWL58OU6nE4Bx48YRFBRkckQiYga1Upc+1ebcRKeriqigPCwWy37HezwG/11UiN1m5dzTx9Pa1MZn5UV8aV9Lx5AY6v/9Ce0jvW9m29tbaWnv5MOFJYwdlczoYQm9fTkiIiIiIn3CYng3s/lDDCIiR7KIiAiGDh3K5s2bqa2tpbq6mqSkJLPDMs3u1eIH8l2TiIhZUlJSiIqKoqGhgY0bN9La2kpoaKjZYR0RPB5Pt/eMvLw8E6MRETMpMS59ptO1nfytZ2HQxejYP5ISfvF+n/PJqnX86Y1PAXBub+Xp3zxH/d/jYKwDzyYPK9Y289QJ51PR2siP0sfz6AtfMPfzVQQ57Hz0f9fjCNSvuIiIiIiIiIgMHNnZ2WzevBmAwsLCIzYx3tbWRmFhIQAOh4Nx48aZHJGIyPfb2U594cKFGIZBSUkJkydPNjusI8LatWtpaGgAYOTIkcTFxZkbkIiYRq3Upc946MLABYDb03pAz0mIDMNiAavVQuu2RgKwYWnxlqkEux1cODWHGUPSuCJjMkE2O+EhDgBCHIHYrJolLCIiIiIiIiIDS2ZmJlar9yu94uLiI7ad+vLly3G5vN8zjR8/nsDAQJMjEhHZP7VTN0d+fr5vX9XiIkc2ldNKnwm2pzAx6UXaneUkhp11QM8ZPzyZubfN4t8Pvs9rv34dq9XC5BfDWFtewYVn5HDtjTO6jb/mwmOYnDWEkYNjsdttvXEZIiIiIiJ9zzC8m9n8IQYRkSNcSEgII0aMYP369TQ2NlJRUcGQIUPMDqtPeTwelixZ4rudm5trYjQiIgcuKSmJmJgY6urq2LRpE83NzYSHh5sd1oBWXV3Npk2bAIiNjWXUqFHmBiQiplLFuPSpqKDJDAo/H6sl4ICf8+Ff/8dXz30FeNcc37hwE/YKN8s+X73HWLvNypi0RF4tX8WCbZt6KmwREREREREREb+RnZ3t29/ZTvxIsnbtWhobGwFIS0sjJibG5IhERA6MxWLp9hq+evWe33FLz9q1Wjw3NxeLRZ1mRY5kSoyL32ttagfAFtD913XaOXtff+WRFV/x0PKvuOyTN2js6uj1+EREREREepvF8J9NRETMN2bMGOx2byPI1atX4/F4TI6oby1evNi3r2pxEelv1E6977S1tfkmkDkcDsaNG2dyRCJiNiXGxTSNHcvZWP8oHa7KPR7rbO/iq7cLqKnYQYDD+0Evb+Y4bv37FUQnRBCbHMUpl07b63EHh0UCEBMUjMOm1QJEREREREREZGBxOBykp6cD3i/9N27caHJEfaempoaysjIAYmJiGDlypMkRiYgcnISEBOLj4wGoqKjwdcCQnrd06VJcLhcA48ePx+FwmByRiJhNWUMxzYrqn+I2WmjuKmFc4pO++5d8XMizf3qTjYUVRCdEEBoZAsCGwgr+8NINnPyjY773uD/NnMLUpKEMDosgSIlxERERERERERmAsrOzfS14i4qKjpg1U3evFldLXBHpj7Kysvjiiy8Ab9X40UcfbW5AA5Db7WbJkiW+2+owIiKginExUbA99dt/h/rua2vu4K4fPc7GwgoAmupasVgsTDt7Irf9/Uo2tWznpiXP8uS6T2jvcvLQ218yZ943vDJvKSde8wRPv/WNd52W2ESiHMGmXJeIiIiISI8z/GgTERG/kJaW5qt8W7Nmja8ibiBrb29n1apVAAQGBjJ+/HhzAxIROUS7rjOuduq9Y82aNTQ3NwOQnp5OTEyMyRGJiD9QYlxMM2nQv5kyaC5pMb/x3RcYZCdhsPcNKufodNwuNxVrK8k5ZjQ5x6TzTOkXLKpdx9PrP+Pfiwt44YulzPnfIl7+bBmt7V28+elKsy5HRERERERERKTP2O12MjIyAOjs7GTdunUmR9T7VqxYgdPpBGDcuHFqiSsi/VZsbCxJSUkAbNu2jbq6OpMjGnjy8/N9+3l5eSZGIiL+RIlxMY3NGky4IxOL5btfQ3uAnTkL7uap/D9x1ys3MnriMKITIkhN8/6RsGl1G4YbaAhkcupQAu02woMdXHl6LmOGJXDDRcfu83wtzk7aXc7eviwRERERERERkT6xa8VhUVGRiZH0Po/Ho5a4IjKgZGVl+fZVNd6ztm3bRkWFtyttfHw8w4cPNzkiEfEXWoBZ/E5wWBCp6YMAsNis1Nc08dgtL/Lc8vuYFDWClZ/WMSYlnrFDk/niT9dgs1oJDgzggunj9nnMoh3VXPDhiwRa7Xxw9hWkhkX21eWIiIiIiBw2i+HdzOYPMYiIyHeGDx9OaGgora2tlJaW0tnZOWCrqNevX099fT0AI0aMIC4uzuSIREQOT3Z2Np9++ingTYwfe+y+i77k4OxeLW6xWEyMRkT8iSrGxe9sa/4vCyuOY3Pj0ySmxgKQMNj77y/OnMZ/fzWLF35+MQAhgYF8/M0aPliwGsPY97d0xXVVdLrdNDs7Wd9Q2/sXISIiIiIiIiLSy6xWK5mZmQC43W7WrFljckS9Z/Hixb59VYuLyEAQFRVFSkoKANXV1dTW6nvrntDS0uLrohIcHMzYsWNNjkhE/IkqxsXvVDQ9S6e7mvLGp7htzkLOuWYGI3NSWfjeMkoWb+CCG2cSFOj91f1i6Tr+8szHAMREhBAXH8ZNT79NUnQ4c352vm/cOcMz2dBYR7A9gOOS1TZFRERERERERAaGnJwcX4vxoqIixo3bd0e9/qq2tpYNGzYA3kRSWlqayRGJiPSMrKwstm7dCnhfw6dPn25uQANAQUEBHo8HgIkTJxIQEGByRCLiT1QxLn5naOQ1BNuHMCzqBgIC7WTmjqSro4s/XzaH/zz+P16Y/TaGYfDB1uUsNdaB1cBqsRATGcKnhevZWtfE0g1bKd1W4ztmkD2A304+gV+On4bNql97EREREelnDMN/NhER8SuDBw8mMtK7ZNyGDRtobW01OaKet2u1+JQpU7Dqux0RGSB2X2f8+7qiyv65XC4KCgoAsFgsTJkyxeSIRMTfqGJc/E5S2FkkhZ0FgGF4Z3YFhQaRMDiG6vIdfPzvhSzdtp6SK1wAXH3LDE5LnEBqYjQhYQ4WlGxiUHQEmYMTTbsGEREREREREZG+YLFYyM7OZuHChRiGwerVqwdUIqCzs5OVK1cCEBAQwIQJE0yOSESk50RERDBkyBDKy8upra2lpqaGxER9r32oiouLfRPEMjIyfBPHRER20vRK8VvtzgoWVBzDwi3H4bbW8OQ393D6Fcfj6nJTuaKKAIsNgOxBg0lNjAYgMTKM60+dyu8uPJEAu83M8EVEREREeozF8J9NRET8T3Z2tm9/57qqA8WKFSvo6uoCvG3jg4ODTY5IRKRn7Vo1PtBew/uSYRjk5+f7bufl5ZkYjYj4KyXGxW81dC7F6amjy72dxs4VBIU4uPiXp3PUaeP40SUzmXv8rbyYdyNrVjXy1eoyujpd3PPGJ1zzjzf5yWOvmR2+iIiIiIiIiEifSExMJC4uDoDy8nIaGxtNjqhnGIbhWz8dIDc318RoRER6R2ZmJhaLBVA79cOxZcsWKisrAUhKSiI1NdXkiETEH6mVuvit+JCTqQ/Nx2KxEBd8AgAJqbHc/cpNvjGvf17MUx9715ka9EkVlhNTwQqNbR17PWaHy0lZUz2jo+OxfvvHhoiIiIiIiIhIf7aznfoXX3wBeCsOjznmGHOD6gEbNmxgx44dAAwbNkzthUVkQAoLC2PYsGGUlZVRX19PZWUlycnJZofV7+xeLW7R9/8isheqGBe/ZbeGkhl/Lxlxs7FZu7fJ8ng8vPLQe5R+VuId6wFPiIGzdiu/PGcaz9xw4V6PedG8Vzjt3Wf5S8FnvR6/iIiIiEiPMfxoExERv5STk+PbHyiteBcvXuzbV7W4iAxku7ZTLy4uNjGS/qmxsZHVq1cDEBoa2m2JERGRXSkxLn6vqbOIkto7qGv/xnff6kXreeEvb7H+mUVcN3Qkcy4+nfZfO2j6sYUtseWMSIzd67E2NtUBsKGxrk9iFxERERERERHpCzExMb4Kw6qqKmpra02O6PDU1dWxbt06ACIjIxk9erTJEYmI9J6MjAysVm+6Ru3UD15BQYHvZzZp0iTsdjVLFpG9U2Jc/F7pjruobHmT4u23+u5LGZVIZGwY9kA7x0/NJPeodEIjvVXlLo97n8d6fsYPuD7nKP581Mxej1tEREREREREpC/tWiHX36vGd11bfPLkyb6EkYjIQBQSEsKIESMAb/Xzli1bTI6o/3A6nSxduhQAq9XK5MmTTY5IRPyZps2I34sKmkJzVxFRQVN890UnRPJi0YO4nG4aOjpxutw8M/VaVtRt4oSkrH0ea0J8ChPiU7S+uIiIiIj0KxbDu5nNH2IQEZF9y87O5qOPPgK8ifHjjz++X66x2tXVxfLlywGw2+1MnDjR5IhERHpfVlYW69evB7xV46mpqSZH1D8UFhbS3t4OeH+G4eHhJkckIv5MUy3F742K/jVTBr1Dp7uaZVU/weluAiAwKID/flnIebc+wxV3v0JyUDRnDp5IqN2x1+NsaNzBxFcf4+j//J3qtua+vAQRERERERERkV4XHh7OsGHDANixYwdVVVXmBnSIVq5cSWdnJ+BN9oeEhJgckYhI7xszZgw2mw3wJsY9Ho/JEfk/wzDIz8/33c7LyzMxGhHpD5QYF79nsVho7lpFU+dyGjryKa6YxwPPf0rRhkpKN9cAsGlbHU7XvluoAyyp3kJDVwdVbS2squ2fHwxFRERERERERL7Pru3UCwsLTYzk0BiG0a2NupIcInKkCAoKYtSoUQC0tLRQXl5uckT+b9OmTdTUeHMEgwcPJiUlxeSIRMTfqZW69AuxwccTas+gvsnNvS9Ws2nrFuZ9XcLzf7yUmIgQcrOG4gj8/l/nM4aNYXF1BcH2AI5LGd5HkYuIiIiI9ACP4d3M5g8xiIjI98rIyOCDDz7A4/FQXFzMySef3K/aqZeVlbF9+3YAhgwZQlJSkskRiYj0naysLEpLSwFv1fjOLiCyd6oWF5GDpYpx6Rcc9gQKvr6Vu+47gU1bnQC0tndRtq2OH+SOofg/S1i9eINv/PaOJs754kHO+vx+KtvrAQgPdPDIsWfyl6mn4LB5k+jtLif5VRV0ul19f1EiIiIiIiIiIj0sJCSEkSNHAtDU1NTvKg4XL17s28/NzTUxEhGRvpeeno7d7v3uevXq1Wqn/j3q6+t9kwjCw8PJyMgwOSIR6Q+UGJd+IzYyFICM0ds4feZikhOdpA+J55GfP8/cOZ/wp5/83Td2ef0mtrXXU9XRyLK6Mt/9nxWu54Z/vsWitd4PhZd/8gY//N8r3PzVu317MSIiIiIiB8Pwo01ERPxeTk6Ob78/tVNvaGhg7dq1gDfJMWbMGJMjEhHpWw6Hg/T0dADa2tooKyvbzzOOXLtOpJo8ebJvfXYRke+jxLj0G45AOzabm0t++D7HTlvONT9ZS1JcBCOyBgMw/Nt/AabFjyazLRHHki7W/d9q3/1/euNTviop44G5XwBQ3dYCQNW3/4qIiIiIiIiI9HejR4/uVnHodrtNjujALFmyBMPwzsJSkkNEjlRZWVm+/eLiYhMj8V9dXV0sX74cAJvNxqRJk0yOSET6CyXGpd8o27oDj8dKXX04AF8u6eLJ/y7khgcv4alF93DPqzf5xobYHUTNaSHs0Ua+fPm7dUZOHpeGBZg53jvr7umTLuD2icfx6LQz+/RaRERERERERER6S2BgIKNHjwagvb2djRs3mhzR/jmdTpYtWwYoySEiR7a0tDQCAgIAKCkp6TeTm/rSypUr6ezsBLxdUkJDQ02OSET6CyXGpd+46pyj+MmZeWwtvYd/Pj2LT78YzxufrMBiMUhNH4Q9wN5t/GV3nkf21DSunX2x777fXnAiBQ/9nGtPOQqAUZGxsMXg7Luf46/vftWn1yMiIiIicqAsgMXwg83sH4SIiByw7Oxs335RUZGJkRyYwsJCOjo6AG+1pJIcInKkCggI8E1u6ujo6BeTm/qSYRjk539XDJeXl2diNCLS3ygxLv1GZHgw1/9gGmcdO5Gu9kFEhgXzy6ur+HxzFvNW3kJ7p7Pb+IknZHLb369g0byV/Pvh932tuAJ2a8P19jdFGAa8t6QEgOK6an799Ycs2LapT65LRERERERERKSnjRo1iqCgIADWrFmD0+nczzPMYxhGt7Vic3NzTYxGRMR8/W1yU1/asGEDO3bsAGDo0KEkJSWZHJGI9CdKjEu/8+Znq9i6vZHGlg4iYpcABh3Wz3n81S/3HDvnE75+fznP/+Utqit27PV4lgWVOGo6GF7tbUlzzf/m8tq6VVzz2dzevAwRERERERERkV5jt9sZM2YM4F2Lde3atSZHtG/l5eVUV1cDkJKSQkpKiskRiYiYa+TIkTgcDsA7ucnlcpkckf9QtbiIHA4lxqXfOfXoDOKjw5g+aRRp0XewYeNQ3nnvGIIdAXuMnXJSNgGBdtLGDyU2KWqvx8uIjiYuv46jhqcC0FDZBkBAm5VOt4ufff4mZ7/3PBXNDb11SSIiIiIi388w/GcTEZF+Iycnx7fvzxWHu1aLK8khIrLn5Kb169ebHJF/qK2t9f0sIiMjfS3nRUQOlBLj0u+UlFUxcnAsV503laSI4zl73H+54tRf8oMz2tne9omvZTrAlJNzeGvLEzz26Z0EBNr3erzTLpiEva2NmnVbAfjl2GmMqIjmngkns7K2ko/K17FqRxXvlJX0yfWJiIiIiIiIiPSEYcOG+dbqXrdunW8Nb3/S2NhISYn3O5ewsDAyMzNNjkhExD/s2k69uLjYxEj8x+7LblitSnGJyMHZe6ZQxE+1tnfx6CvzAaisfY/rfzCN6ZPTsAcvZ2XNzwEYHD6LUTG/wWrx/nrb7N3XFDcMgxc2fklF2w6mxY/mj5aP6Lg2gvlzlvErp4urZuRy1QzvWlYdLidHJw2huq2FU4emdztOh8tJk7OThOCw3r5sEREREREREZGDZrVaycrKYvHixbjdbtasWcP48ePNDqubgoICX5HDpEmTsNls+3mGiMiRYfjw4QQHB9Pe3k5paSldXV0EBgaaHZZpOjo6WLFiBQABAQFMmDDB3IBEpF/SdBrpV0KCApg6dhgWC2yurOc3j79LY0s7NmuIb8yW5hepatn3+uAbWqp5Yu3/eHtLAX8ufAtnlBPrZAsT7zkBe0D3uSLtHS6eO+kHfHre1YyMjPXd3+rsYvrcf5L3+v/xwaY1PX+hIiIiIiK7sBj+s4mISP/iz+3UXS4Xy5YtA7xJ/EmTJpkckYiI/7DZbGRkZADgdDpZt26dyRGZa/ny5TidTgDGjh1LcHCwyRGJSH+kxLj0KxaLhUdvO5/bZp0IQFJsBCFBgUQFTSY7/jEs3zZBCLTF7vMYSUFRDAqKwm6xckx8OoYBri4HV1x4UrdxH61Yy/Tf/4OzZz9Pe5ez22M7OtqoamvBAFbtqOrZixQRERERERER6SEpKSlERUUBsHHjRlpbW80NaBdFRUW0tbUBkJmZSXh4uMkRiYj4l6ysLN/+kdxO3ePxdGujnpeXZ2I0ItKfqZW69EsXzhjP1LHDiI0MJeDbVukJoacQHjgPl9FKeOCYfT43LCCIN4+/lS6PixC7g19nn4PVYiXI1v1/h8LyKgxgW30TdS1tpMRE+h4bEh7F/Uefypr67VyTpTdhEREREellxreb2fwhBhEROSgWi4Xs7GwWLFiAYRgUFxeTm5trdlgYhrHHWrEiItLdsGHDCA0NpbW1lXXr1tHZ2YnD4TA7rD63bt06GhoaABg5ciTx8fHmBiQi/ZYqxqXfigoPYVHhJhpb2n33BQekfm9SfCe71UaI3fsHRIg9cI+kOMDlJ0zmh8eM4w8/OKlbUnynH6aN467cGUQHqWWLiIiIiIiIiPiv7Oxs376/tFPfsmULlZWVAAwaNIjBgwebHJGIiP+xWq1kZmYC3uUnSktLTY7IHPn5+b59TaQSkcOhxLj0W3f+33v8+rF3+cWDb/bK8WPDQ7jzwhO58OixeDwGhqHyGBERERERERHpfxITE33VdRUVFb6qOzPtXi1usVhMjEZExH8d6e3Uq6urKSsrAyAmJoa0tDSTIxKR/kyJcem3Ortc3f49WC5PK3Xt31DTXsOW1h37HFdcXsXU3zzBjDvmsKO++ZDOJSIiIiJyOCyG4TebiIj0Tzk5Ob59s6vGm5ubWb16NQAhISHdKtpFRKS7IUOGEB4eDsD69etpb2/fzzMGFk2kEpGepMS49Atbaxr4vGAdLpfbd99fbjyT31wxg0dvO/+Qjrmq+hpWVF/OG+t/yPlfPkx+7fq9jvti5XranS62d3Yy5+F3DulcIiIiIiIiIiJm8qd26gUFBXg8HgAmTpyI3b7nEnciIuJlsVh8VeMej4c1a9aYHFHfaWtrY9WqVQAEBgYyfvx4cwMSkX5PiXHxex1dTmb94SV+/fi7/OPNr333x0SEcN4JY0mMDT+k43Z5vFXiIbYODKC0adtex50zJZPQLS2EFu9gaEQ4X324ik/nLlVrdRERERERERHpN6Kjo0lJSQG8bWm3b99uShxut5ulS5cC3mTPlClTTIlDRKQ/OVLbqS9btgyXy9sxdsKECTgcDpMjEpH+ztTE+L333suUKVMIDw8nISGBc889l9LS0m5jDMPg7rvvJjk5meDgYKZPn77HC39nZyc33XQTcXFxhIaGcvbZZ7Nly5a+vBTpBR6PwZ+e+Yir7nkVp8s7i9jl9nQbU9/URvGGykNKUo9N+Acjo27n/ZrpACysKd3ruMFJMVxzxcmkHDsSa3o8s296kYduf5UF8woP+pwiIiIiIofE40ebiIj0W/5QNV5cXExraysAGRkZREREmBKHiEh/kpKSQlRUFAAbN270vY4OZB6PhyVLlvhu5+bmmhiNiAwUpibG58+fzw033MCiRYv4+OOPcblczJw5s9uL+gMPPMAjjzzCE088wZIlS0hKSuLkk0+mufm7tZ5vvvlm5s6dy6uvvsqCBQtoaWnhzDPPxO127+200k9UVNfz7pdFrKvYzolT0rj7Z6dy3QXH+B7v6HJy8R3Pc+Uf/83LHy496OOHBAxlaNRPCQ4YDEBUYEi3xz2G07f/9y+WsLaugbfXrPOtYRIe1X28iIiIiIiIiIg/y8rK8n2vUVRUZEo3vN3XihURkf2zWCxkZmYC3mLCkpISkyPqfSUlJTQ1NQGQnp5OTEyMyRGJyEBgamJ83rx5XH755WRlZTFu3DieffZZysvLfe2UDMPg0Ucf5c477+T8888nOzub559/nra2Nl555RUAGhsbeeaZZ3j44YeZMWMGEyZM4KWXXqKwsJBPPvnEzMuTw5SSEMWx40eQGBvORTPGc/oxmTgCv1tzqsvpprm1A4Dt9S2HfJ6/517J3yZfzh/HXeS7b+2OP/HF5mw21j8GwNlTMgmw2bjg2HHM+eBWnnjnZsZPHXXI5xQRERERGejmzJnD2LFjiYiIICIigqlTp/Lhhx/6Hm9paeHGG29k8ODBBAcHk5GRwZw5c7od40C6g9XX1zNr1iwiIyOJjIxk1qxZNDQ09MUlioj0O+Hh4QwbNgyAuro6tm3b+7JyvWXr1q1s3boVgMTERIYMGdKn5xcR6c927fpxJLRTz8/P9+3n5eWZGImIDCR+tcZ4Y2MjgG/mT1lZGVVVVcycOdM3xuFwcPzxx/P11961ppcuXYrT6ew2Jjk5mezsbN+Y3XV2dtLU1NRtE//idLl54rUvyRyRxNsP/ZSskYP2GBMRGsQPZ04kZ9QgLpwx7pDPFR4QzNHx6QTZAjAMg61tdVS2zgNga8v7APzuByex9KGf88NjxjE0LZGRmSmHfD4RERERkYNlMQy/2Q7U4MGDue+++ygoKKCgoIATTzyRc845x/cl3i9/+UvmzZvHSy+9RElJCb/85S+56aabePvtt33HOJDuYJdccgkrVqxg3rx5zJs3jxUrVjBr1qye++GLiAwwZrZT371afGf1uoiI7F9SUpIvd7Jp06ZuXXUHmm3btlFRUQFAfHw8w4cPNzkiERko/CYxbhgGt9xyC9OmTfP9gV5VVQV4Z5DuKjEx0fdYVVUVgYGBREdH73PM7u69915fNUFkZCSpqak9fTlymB544VNe+d8ynnzza/77+cq9jtm2vZFX5i2lcH0lb362qkfO+68Nn3Pu/Id4qWIMJc1J/Gdbpu8xj8fgd6/8j3PufY7i8r3/bomIiIiIiNdZZ53F6aefTnp6Ounp6fzlL38hLCyMRYsWAfDNN99w2WWXMX36dIYNG8bPfvYzxo0bR0FBAXBg3cFKSkqYN28eTz/9NFOnTmXq1Kk89dRTvPfee5SWlpp27SIi/iwjIwOr1fuVYHFxMR6Pp0/O29ra6pscFRwcTE5OTp+cV0RkoLBYLGRlZflur1692sRoepcmUolIb/GbxPiNN97IqlWr+Pe//73HY7u/6BmGsd8Xwu8bc8cdd9DY2Ojbds48Ev8R7Ajw7YcFB+51TExECElxEViA7L1UlB8sj8fDp8uXA7CyKYnnthxDmzHG93hlQxPvLFlNWU09b+YP/FY1IiIiIiL7snsHrs7Ozu8d73a7efXVV2ltbWXq1KkATJs2jXfeeYetW7diGAaff/45a9eu5ZRTTgEOrDvYN998Q2RkZLfWikcddRSRkZH77CAmInKkCw4OJi0tDYDm5mbKy8v75LxLly71dfyYMGECAQEB+3mGiIjs7khop97S0uLraBIUFMS4cYfeLVZEZHf2/Q/pfTfddBPvvPMOX375JYMHD/bdn5SUBHirwgcN+i7xWVNT46siT0pKoquri/r6+m5V4zU1NRx99NF7PZ/D4cDhcPTGpUgPMAyDlWu9602dNCWN047O3Ou4IEcAb9x/OW0dTqLCgw/7vKsWlLL9d2sJOjWYc/OO5rhTJpEV+d3vY6tzGWcctYXlpWmck/tdTIZhULl5B4mDo7HZbYcdh4iIiIjIHoxvN7N9G8PuXbfuuusu7r777j2GFxYWMnXqVDo6OggLC2Pu3LlkZnr/ln7ssce4+uqrGTx4MHa7HavVytNPP820adOAA+sOVlVVRUJCwh7nTUhI2GcHMRER8SZWdnbWKCws9K073lvcbrevI4jFYmHKlCm9ej4RkYEqISGB+Ph4tm/fTkVFBY2NjURGRpodVo8qKCjwTaSaOHGiJlKJSI8ytWLcMAxuvPFG3nzzTT777LM91okYPnw4SUlJfPzxx777urq6mD9/vi/pPWnSJAICArqNqayspKioaJ+JcfFvHsNgw5YdAHS53Hsds658OwtXbiTAbuuRpDhA8ogEwtoDifh3O6eNmkRTVxsXfPkIj635kHbnFiraruPkvPfIOnY+b9R/SafbCcBT977LVTPu584rnu6ROERERERE/N3OL+F2bnfcccdex40ePZoVK1awaNEirrvuOi677DJfy8fHHnuMRYsW8c4777B06VIefvhhrr/+el+b9H3ZvTvY3jqFHUiXMRGRI1l6erov0VBSUuJLQPSWNWvW+NbCHT16NFFRUb16PhGRgWzXduoDrWpcE6lEpLeZWjF+ww038Morr/D2228THh7um9EfGRlJcHAwFouFm2++mdmzZ5OWlkZaWhqzZ88mJCSESy65xDf2qquu4tZbbyU2NpaYmBhuu+02cnJymDFjhpmXJ4fIZrXy4M3n8PXKMi6eOWGPx6t3NHPZH17C7TH49eUzOP/EsT1y3oTBsbxU9ACvV3zDFeX/gh3gweDFsq8I3uhm2BgbNouLjiD4snIloQFB/HjYNNYXeavbN5Zs65E4RERERET2YBjezWzfxhAREUFERMR+hwcGBjJq1CgAJk+ezJIlS/jb3/7Go48+ym9/+1vmzp3LGWecAcDYsWNZsWIFDz30EDNmzDig7mBJSUlUV1fvcd7t27f7uoyJiMieAgMDGT16NEVFRbS3t7NhwwbS09N77Xz5+fm+/dzc3F47j4jIkSA7O5svvvgC8CbGB1KBYHFxMa2trQCMGTNGE6lEpMeZmhifM2cOANOnT+92/7PPPsvll18OwK9+9Sva29u5/vrrqa+vJy8vj48++ojw8HDf+L/+9a/Y7XYuuugi2tvbOemkk3juueew2dTWur+amjOMqTnD9vqY2+PxfSfY0zOabaE23tm+DM9ufSr/+UkxiUt+SFxKG8WxVgiC/5bns6C6hDl/upL3Xv6aaaf2TIJeRERERGSgMgyDzs5OnE4nTqcTq7V7EzObzYbH4wG6dwe76KKLgO+6gz3wwAMATJ06lcbGRhYvXuxLtOTn59PY2DigviAUEekN2dnZvjVci4qKei0xXllZSUVFBQDx8fG93rZdRGSgi42NJSkpiaqqKrZt27bHRNL+yjCMbhOp8vLyTIxGRAYqUxPjxgFUPFgsFu6+++69rle3U1BQEI8//jiPP/54D0Yn/io5PpKn/nAxVbVNnDAlrceO+9qmr3m45D3SwpMIsQUSGxhOtCOUmi1tbAvpZGuUlS2N4dii27Hi/bLO5TFYWFnJj249hajQnmnpLiIiIiIyEPz2t7/ltNNOIzU1lebmZl599VW++OIL5s2bR0REBMcffzy33347wcHBDB06lPnz5/PCCy/wyCOPAAfWHSwjI4NTTz2Vq6++mieffBKAn/3sZ5x55pmMHj3atGsXEekPRo0aRVBQEB0dHaxZswan09kr67guXrzYt5+bm6ulLkREekBWVpavA29RURHHHnusyREdvi1btrBtm7cra1JSEkOGDDE5IhEZiExNjIscqjFDExiREotttwqTw/H19rUYwMaWGhaecg9Wi/fYDxW/y2th32AFMIBvP7/FE03bN8HMrvuMr9ds4rGfntNjsYiIiIiI7MpieDezHUwM1dXVzJo1i8rKSiIjIxk7dizz5s3j5JNPBuDVV1/ljjvu4NJLL6Wuro6hQ4fyl7/8hWuvvdZ3jAPpDvbyyy/z85//nJkzZwJw9tln88QTT/TMBYuIDGA2m43MzEyWLVuG0+mktLSU7OzsHj1HW1sbhYWFADgcDsaOVbc9EZGekJWVxaeffgp4248PhMT47tXimkglIr1BiXHpd5pbO7jkzheoa2zjb7efz+TMnpk5dv3omQTZAohzRFDYUMG46KEANDrbfGMcVjudXW7cdQFsWWkjPNB7/zdry2nvchIc2PMzq0VERERE+qNnnnnmex9PSkri2Wef/d4xB9IdLCYmhpdeeumQYhQROdJlZ2ezbNkywFtx2NOJ8WXLlvmWwZswYQKBgYE9enwRkSNVdHQ0KSkpbN26lerqampra4mLizM7rEPW1NTE6tWrAQgJCenx9yMRkZ16rtxWpI9s295ETV0LLreHlWu3HfJxDMPgjifeZeaNc3h/QTGjI5IZQiKvl3/D1Yv+yedVxfyp8L/MSMrh5jGnc8/YH/DW9NtILk7HtTIS3AZGdRshjg7cng4a2zp68CpFRERERERERHrX0KFDCQsLA2D9+vV0dPTcdxsej4clS5b4bk+ZMqXHji0iIt6q8Z2Ki4tNjOTwLVmyxLf07qRJk7DbVdMpIr1DiXHpd9KHxnPdD6Zx7gk5XHjSuEM+Tk19C58uWUdDczuP/ns+JWXVPPeOd90rCzBn3ce8s2Up961+m0uHT+O0lAmEBwRz79UnM9ETTGCThWEjK/nzz57n/uv+wy+eeZnz73+BHc2t+z232+U+5LhFRERE5AhkGP6ziYjIgGG1Wn2JFbfbTUlJSY8du7S0lKamJgDS0tKIiYnpsWOLiEj3xHhRUZEvsdzfOJ1Oli5dCnjflzSRSkR6kxLj0q8YhoHT5ebys3K544qTiQwPPuRjxUWFEh8VCsBROUPpcrqgzAFfRPDz6LPJjR0JwPjoYQC4DQ8/XvgEly15gmOuTSc0MIAhyduxWg1stgYaOypYX7WDJeu3fO95X37gXc5MvJZ/3PHqIccuIiIiIiIiItITcnJyfPtFRUU9dtzFixf79nNzc3vsuCIi4hUREcGQId5lRmtra6mpqTE5okNTWFhIe3s74E32h4eHmxyRiAxk6kch/YZhGFx/7xusKN3K7392Cqcfk3lYx7NZrbz/t2vo6HQS5PCuDf7YrefT0eVi+qRRAFw24njiHN434i63i/K2WgC2dO3gP/dfwY7G07GG/xs8SQyPi2Z4nIWMwQnfe94v3yrAMLz/XnvvxYd1DSIiIiIiIiIihyM5OZno6Gjq6+spKyujpaXF1179UFVXV7Np0yYAYmNjGTlyZA9EKiIiu8vKyqK8vBzwtlNPTEw0OaKDYxiGJlKJSJ9Sxbj0G20dTpav2YLHMHh13jK2bW/skePuTIoDTB07nBMmp2GxWLBYLMQHRWCxWAAItgfywIQf86Nhx3B9+kzio8MYM2wk6bG/Iz3+p8y+9HSKK6o5+97n+KqkbI/zGIaHmtb/cdVD45l8UhY3PHhJj8QvIiIiIgOfxeM/m4iIDCwWi4Xs7GzAm6DoiXVqd01yTJkyxffdioiI9KzMzEzfa2xxcXG/a6e+efNmqqurAUhJSWHw4MEmRyQiA50S49JvhAYHcvtlJxERGkTp5hpueXhun8dwfGIGt2ScQWJwJAAbmqv5qmYNHsNDdWMzjdZmCHOxpfF15nx5DRc8+CRrtnpb2Gxrfo2i7T+nJfkOfvvK+Rxz5sQ+j19EREREREREZHc92U69vb2dwsJCAAIDAxk/fvxhHU9ERPYtLCyMYcOGAVBXV0dlZaW5AR2k/Px8335eXp6JkYjIkUKt1KVfOfeEHD4vWMeS4nLCQ4NMjaW2s5lZC5/Aabi5JeMM0sMHETi1gcTAJhKTPiYR2NBezxtfj6Ksuo4xw1cxOQvAigXvLD7DMGhu7yQiZM9raWhtxzAgOuzQ11EXERGRga29y4nDbsdqVRXWgGcY3s1s/hCDiIj0uPj4eBITE6murmbLli3U19cTHR19SMdavnw5TqcTgPHjx+NwOHoyVBER2U1WVhZlZd4OpsXFxSQnJ5sc0YGpr6+ntLQU8Cb4MzMPb+lUEZEDoYpx6TcMw+CaP7/GkuJyzj4um7/edp7p8XjwfjHo8nhodXUC0Ox20OoKxDCgzhZJTGgQBRu28NIn8RhtdzNl0H8JDkilvn0Rf/voN5zwh8f51xevU9nyFi5PG/Udi1lbWcZJdz3FiXc9yapN383yW7W5ktP//C9ue/49PB59KSkiInIkm7e0lGNu+z9mPfxv3B71txYREZHDs7OdOuxZNW4YBh0uN61OF81dLlqdLjpc7j1a9no8HpYsWeK7rbViRUR6X0ZGRr9sp75kyRJfrFOmTMFms5kckYgcCVQxLv2G22NQUuZdb2RR4SYub84lLNi8WcfxQRE8O/U6Ktp2cGJiFs4uN5YF4bQFhHK/cSoOq4tQ+yCOnTSUTws34AiwM3noeYQ7guh0VbO8+grGjvYws2k8g1Ofo6TWRUXAi7Q4izDcSTjd5wAWfvvyPFJiI/jVudN5d0kJW3Y0smVHIxOHr+BHx47XOl0iIiJHmM019XyzZjMrN27DYxgUl1fT3N5JVKi6zIiIiMihy87O5tNPPwWguHQtw8dNpqHTSV27k4YOJ669JFrsFgtRQQHEBAcQ5QigsbKChoYGAEaOHElsbGxfXoKIyBEpJCSEkSNHsn79ehobG9m6davfr9Xd1dXFsmXLALDZbEyaNMnkiETkSKGKcek37DYrd1wxA4Ca+haefSd/P8/ofRmRKcwcNBa71UaQI4ApEaOwbg4mhkSaXMFUdjTwXs0SXr/9Uv59yyVEftv+3WoJwmbx7qfGDiXAFgCAx+gAwGKr4cozPsZmc1Ne28A3peW8tfQNjst2+s5939wvmPO/RQcU559e/4SJt/2NVxes6MGrFxERETPMeuTf3PfG5+xoauOUien8+sITlBQ/Ehh+tImIyIAUGRnJ0IxsBh91AvHHnMriygbW1bVS296116Q4gMswqG3vYl1dK4srG1jjCWVw3nSCYxOYMkXV4iIifSUrK8u3v3vXD3+0cuVKOju9HVhzcnIIDQ01OSIROVIoMS79ysypGcRFhQAwZmgCAGs311BSVmVmWABYLBae+NWFfPnkz/nvjJsZHhqPBVjRsJljPvoDL2yYz5fVJby26WuwhJKX8iFNW/9E6bI84ox/MTZhDuOTniMm6DjAw9hRG3ng8hGcMtHCWccsYULWX3EG/ZyzjwrwnbN8ez1fFG3gj699TFlNXbd4KmobWLhmEx6PwXtLS3C5PXywdE3f/lBERESkR/3k3VfYOqGejqFdtFo6+Tx6LQ/Wfcqc1Qv5a+F8Wp1dZocoIiIi/dC25g4+3VRLxLijiRoyEovV+5Xhgc6H2jnOYrUSNXQUo04+l4rAaLa1dPRKvCIi0t2YMWN8rchXr17t1+3UDcNg8eLFvtt5eXkmRiMiRxq1Upd+5bMla6ltaAPgg4UlDE6M5hcPvQnAacdkcPc1p5kZHhaLBUeg93+rV6b9nO0dTZw9/0EAHl/7P984l+HhotSp3PvUFgwDAux2Hrr5HADSYn7DqppNBNoSyEiegD3sdxi4fc+97ZypnDMpgfy1Ffzg6LGc/ud/4XS7WdqyFWe8wY1jp3JswjAufPBF2rtc3HL2sdxx/om8s2Q1155yVB/+NERERI5sZU07eLd8NWcOyWRExJ5tRN0eD0X1VYyMiCUsYN/Lwzg9bq5b8B9W11dR19YGVnDFuamLamVHp/fvoocKvwAgyGbnusxjeuNyREREZADqdHtYWd3IlubvEtg7k+KHaufzm7pcLNpaz+DwIMYlRuKwqT5HRKS3BAUFMXLkSNauXUtzczPl5eUMHTrU7LD2asOGDdTW1gIwdOhQkpKSTI5IRI4k+otU+pWIb1uRA8REhlDX1Oa7/enitZRX1psR1l7ZrTYGhURzZspE330BFu+svSBbAHableMmjMRmtTJ90ijfmNDAkUwd/DGTBr2MzRoCeNcQHxT2A8YlPk1U0CSmjErlxtOPJjEqjMHDI3FGelgfsIOS+hr+umIBLo8Hp8sDQHunk3PzsvjXjT9g1KBYnvxoEUs3bOm7H4SIiMgRqK6jjdPnPc3fir7i1A/+SU17yx5j7lvxGed//BwXfPzc987mX7ljG59Xrqe6owWr3UpwewBGkMHazu2ANxkebg8EYGREXO9ckJjOYhh+s4mIyMCwrbmDjzfWsLW5d6u6t357nm29fB4RkSNddna2b9+f26nvWi2em6tlN0Skb6liXPqVo8cNZ84dF7GttpFTpo7BarWwdE057325mi6nm9/PeZ/W9i5uv+wk8rL9Y0bcH3IuYErsSIJtgbg8bn678lUeKXmfvLg0HvzFOXw1bxWvP/wxVDcx9axsYh3hvuc67IlMTv4vHa6txAWfgMXSfS7L2vrtrAyrgjA4ZXAai6ormDV6AjFhITz/8x+ysXoHp00YzdamV9nS/DINbRWsq83i6Y/zWHjv9QTa9RIgIiLS05bWbuHST1/CaXgnqbkx2Ni0g4TgsG7jtrY1AlDZ1ozBzqlwe8qISiTWEcKOzjZsFguxcSFUtDb6Hr9g2FhuHTudFmcXKaGRvXFJIiIiMoAYhkFpXSura5v75nxAl8dg0bZ6suLCSY8JxWLZ118+IiJyqNLT07Hb7bhcLlavXs1pp52G9TC7gPS0HTt2sG7dOgAiIyMZM2aMyRGJyJFGWTHpdyZmDGYig32377j8ZLZWN7KufDtrNtUA8MbHy/0mMW6xWDg9ZQIAb1UsAaDL4+Llsq94q2IJtjoI2dzJYuNdjM/e467RFzJ9UBahwYF0uJ0UN9rIiZ6Gy9PCqpprcBsdjEv4Bw57InarDavFgscwOH3YGJ488XzfeXOGJpEzNImGjqWU1t0FQEAAnHLUUlaVH4fNz/4oEhERGSi+rirzJcUBLFj2Wsl996RTyIhK5LhBI7B+z5fDDpud/zv6fH70+Uu0uZ207ZIUB9jUUk9kYDCRgcE9dxEiIiIyIBmGQXFtM2vrWk05f3FtM06Ph6y4cCXHRUR6mMPhIC0tjZKSEtra2ti0aRMjRowwO6xu8vPzfftTpkzxu8S9iAx8SoxLv2e32/jHnT9k2ZoKrpv9BgDDkvdcx9MfnJEygSZnO2H2IP6x9mNchgdXNIRlBeAJAzD44xvv87eKRfzn/iv445o3+LKmhLFRQ7hv7EgaO5cBsKXlI0ZGzWJEZAyzp02nqauFk1LsdDi30ercSHTQUbS5NtDYuZIIx3gsBGLQhWFAeXs0ydO+ZuH2Yzk2IYPPN5QyMjqBobExpv5sRERE+qtWZxf/21LKxLgUhoXHcPHICaxrqmVHRxuLajYTZLMTaLNS3d7MgqoyTkpOI8oRTEJwGDdlT9vrMbe1NvBUaT5HJQzl5fXLWFhdts/zp6pK/MhgGN7NbP4Qg4iIHLLSulbTkuI7ra1rJcBqZXRs2P4Hi4jIQcnKyqKkpATwtlP3p8R4R0cHK1euBMButzNx4sT9PENEpOcpMS4DRliww7e/qHATN/7wWBOj2bsAq52fjDgOgMauNp5c/wkjwhJ4/vnrebsin2Ub/8fCLdDQ3M6OxlYau7xrqDd0tWK3j6POOZwmZyMvbdvCv46GJTs2sKjmQabHlrK4shO304otwMM3ddkcHbsBw2gnJvgCjkn9HKe7ib+tfIyj4j9keOgiypry+aC0mE9bl0OLnXdm3M6g6PDvC19ERET24o/LPuK/ZauIDgxm8Xk3Ex8cxmNHn4fHMFhQVcbQsGgiA4P54Qf/ZF1TLdOShvP89B/t83g7Olo54f05uAwPL6wrINTmXT88wGrD5XGza1oyyGZn1qjJvXyFIiIiMhBsa+7os/bp+1Nc20x4oJ3k8CCzQxERGVDS09MJCAjA6XRSUlLCGWecgc1mMzssAFasWEFXVxcA48aNIzhYXc9EpO+pT4UMGOlDE8gZNQiALdUN5gZzAK4YNZ1Fp/6ZV6b9nACbnbHhXzBjxGvcccMH3HnlDIYnxzJ7wsVcNuI4qtobOfOLJ5hXex5zNp/A9k7v/7o2o4Gzk1YREdAJgMXmbdtq0EaH23ueDytLsFqiCQ0cwUmDjwHAY1g5K3Ua5R3bveNDXFzz5H+obmjp45+CiIhI/2e3fPu+vFsLOKvFwnGDRjA0PPrb29+Os3z/n+CbWupx7dKKfVBIBCkhkTh3S4oDdLhdXPTZC4d5BdIvGIDHDzYVjIuI9Eudbg/LqhrMDqObZVUNdLo9+x8oIiIHLCAggNGjRwPeCu2NGzeaHJGXx+Nh8eLFvtt5eXkmRiMiRzJVjEu/t6W6geodTdz//KfUNrRy7ISRXHjSOLPDOmhOdx0AwcGdnHJcFgAJQZFkRg6my3CBAaenjOfkQTlMjU8HYHzsWL5qG4nbs5EdJcMpeCuSxCtjcQcdxcpWJ0X1X7GlI5Vbv215mR07kZU1qQTZU4hyDOXBoy/m1k9eZ82mWrambOLBZe9zSkYGxyaMIejb6jQRERH5fn+YeDLHDhrOuJjk710r/IUTfsSims0cn/T9rewmxqZwTMJwFtZ426d3edxsbWvc5/guj/vQAhcREZEjxsrqRpwe/5rd5PQYrKpuZEpytNmhiIgMKFlZWRQVFQFQXFxMWlqayRHBunXrqK+vB2DEiBHEx8ebHJGIHKmUGJd+7fif/o2Orl2qpyzw5YoNfLlig2/MxNHJ/OO3F5sS38FIj/0d4Y4cooPysFi+a29zXEIGPxt1Em7Dw9mDJ2O32ihes5WHlnzGcRNHcVzme3iMLmzDgvjBad8dr9XVyf+2ZZETNYRAm/d/9erW9+lwVdDhqqClaw0pYWN5+tQrOPPDh2gNcjK/cyXzV6zknMGT+V3O+X39IxAREemXguwBnJaasd9xcUGhnDkkc7/jLBYLL5xwCX9a9hFLa7fwq7EncPmX/8a9j7Wd7xx30kHHLCIiIkeObc0dbGnuMDuMPRhARXMHKS0dJIeppbqISE8ZNWoUDoeDzs5O1qxZg8vlwm43NxWUn5/v21e1uIiYSYlx6dc6unapkNpHgday0m14PAZW674ruPxBgC2aIZGX73G/3Wrj6rTvvvB+67mvePC/X+GMCeKdr4qY/+RN2Kx7foAMtTs4f4j3jwyP0UV543MAhNjTCAkYQljgGADCghxcODKX57Z8DoDFAh5DrcxERER6yw0L/8MnW9fxk7TJ3Dnh5H2O+/3Emb79z8+4gQdWfkpYgIPbx51Ip8vFdQte5/TULGalT+mLsMVkFsPAso/JEX0dh4iI9B+GYfjNuuL7snp7M4NCHVi+p/OOiIgcOLvdzpgxY1i5ciWdnZ2sX7+eMWPGmBZPTU0NZWXejmjR0dF+UcEuIkcuJcZl4Nj5Hd1ePkf5e1L8YBQtKcPe6sQZE8TIlLgD+uBY1fI2GxseBmB84vO0bR2GK8pCoOPbx4s8NJdH4xrsZFScg5+MOK43L0FEROSINm9LKQAvrCv43sT4rlJCI/nb0bt0cwmEN2de1RvhiYiIyABS1+Gkqctldhjfq6nLRX2Hk5hgLekmItJTsrKyWLlyJeBtp25mYnzXavHc3FxNhBIRU1nNDkDkcLz9sPcLYQu75MO/TZBbLZAcF847j/zUjNB6zeW3ncY5U8ZwxxlTeerOHx7Qc0IChuP9CVn55I3P+Gnu7/nlzHsxvq34mTkujeiGYIYH26kzdvDzJc8B3spxt6rHRUREetS0pOEATIlPNTkSERERGeg21rfuq8Ge37AAG+pbzQ5DRGRAGTFiBMHBwQCUlpbidDpNiaO9vZ1Vq1YBEBgYyIQJE0yJQ0RkJyXGpV9Lio9k/lM3MXRQNOD9MJU2OJb8537Joudu4a2HryYpNsLcIHvY4OHx3HL/DznvoqnY7bb9PwGICpqM3RoOeAgcPg+AinVVeDzexPhxWSNYdN+N5I7wfkHf1N7JHa+/x+mf3cdJH/+ZN1etwOl27+vwIiIiR4QOl5Pi+ircnsObNPb88Zew4rxbeXH6pb77DMNgxcZtbN3ReLhhykBlAIbhB5vZPwgRETlQnS4PW5o7ur10/2HWBVwwJpnHf3MzADVbKrhgTDIXjEmmKP/rfR7r8d/czAVjkvnDrAt6PE4D2NLcQadLE/NFRHqKzWYjIyMDAKfTydq1a02JY+nSpbhc3s4l48ePx+FwmBKHiMhOSoxLvxfkCOD1+68g/4VbyH/hFl6efdkR146ltqqRK064l8un38v2ygbf/cvWVPDax8vp6HQSHTQVgOGpM7nghpnc/cqN2GzdXwJ+l3M+P4k/ibovg/lwXRE7ulpodXfwl6I3ufDdJ2hzdeIxPLxStpAXN36Jy+NmQ3M1F375CDcXPIfT49/t2URERA7Hjz5/kbM/eoZ7ln902McKDwyiYHsFD638gm2tTby9qJjL//oa5//lBWqbVDElIiIie3f55ZdjsViYPn36fsdub+vcYz7T4FHppI2bSNKQob0S36EygO3tnWaHISIyoGRlZfn2i4uL+/z8Ho+HJUuW+G7n5ub2eQwiIrvTGuMiA0Dh4o1UVdT59k88ZyJ1TW1cf/9/8HgMdjS2ct0Ff8PpqSfQFsO4P+39OCF2Bxen5fFm4HpaGjuwLW/COdSONcbFNqo57bP7cHs8dBre1jvhLgef1q9mc2stm1trWddcRWbk4L66bBERkT61ur4agM+3ruOWnOOJDAw+oOd1uJxUtjUxLDzGN3nPYxhc+eVrtLmcrGvaztROb3v1LqeLji5zWtyJiIjIwNLQ6cRC92YfP7vrXrPC+V4WoKHDyeDwA/v7SkRE9m/YsGGEhobS2trKunXr6Ozs7NOK7TVr1tDU1ARAWloasbGxfXZuEZF9UWJcZADIPSGDaafmYBiQd2ImAIEBNkIcAbS0dxETEYLFYiHQFgNAa9cGKlvmkhh6OuGOzG7Hio8MY97vL2HevNm8/fhGViVnYj3PICDISpvbO3t757Lj9//fm7hO9bZzTySG9PBB+4211dlFsD0A6xFW1S8iIv3XttZGfvjZC7i/fQPc1t7ExLmPMCM5DcOALsPNI0edQ4wjZI/negyDcz76F+ubdmDFwsS4FP590iwswNCwaEoaaiipr2a5eys/PncC01KGMzguqm8vUPqHna3MzeYPMYiIHKGGDRvG5s2bAZg/f75vwt3nn3/OlClTuPTSS1m5ciU1NTW4XC7ik1OYevo5XHjtzQQEBgLeVurFS75h+rkXcdN9jx5SHB+99hJvPvkYjTtqycqdyrX3PEDcoBQAvnj7P3z40r+orthMW0szQSGhjMoZz49+8SvSxnrXlXW73fz70ftZ+OE71NdUE+BwkJg6hFPOuYA5s+8GoLOzk9mzZ/PKK69QXl5OZGQkZ555Jg888ABxcXGH8VMUETlyWK1WMjIyKCgowOVyUVpaytixY/vs/Pn5+b79vLy8PjuviMj3UWJcxM91dTopXVlB+thUHEEBex0TGh7EnU/8pNt9YcEOXp19GZW1TYxNS+722OraX9HcVURN2wccPfizPY5X3vx3wnPe5JI5Vo7/79n8+MyLKWqs4Nm1t3NU9EY+XDKJ5YXpGEYrFsObLM/oHInd+v1rnr+9cTU3f/Ue2bEJvHX6T7BZtZqDiIj4v/zt5Wxra/Ld3pkW/GTbOt99Ny74L+cNH8sPRozr9lynx82mZm9XFw8GBbVbqO1oJSE4jP/MuIyFVWX8bMF/AGiPdnLUGP9qayoiIiL+Y8KECbS2tlJbW0t4eDiZmd6J7hEREbS3t/P222+TmJhIeno6tbW1bNlUxn/+/ihdHR1c9qs/9EgMG4pXsq5wOQkpqbicXSz/6nPuv+FKHvjvPCwWC+tWLqN87RriBiUTmzSIrRs3sHLhfNauWMrj8xYQHZ/AvJefZe5TT2C12UgdNZrOjnYq1q1lwacfYRh3YbFYOP/88/nggw+w2WxkZWWxadMmnn32WfLz8ykoKCA4WJXlIiIHIjs7m4KCAsDbTr2vEuOVlZWUl5cDEBcXx4gRI/rkvCIi+6OslIifm33TS/zqkjncc+1zB/3chJhwxqWnsGXjdtasKPfdHxIw0vuvfe9/kATaor3/BoTx49vOw2azMS5mGOcO2kiCo4WLp2xipCOKky2DuTXqLH4cPJO7TzuDueVL+Ok3T7K8rmyvx11YuQkDg8Id1TR1ae0wERHpH0ZFxBERELTX+8Pt3uqr/NpyfrPkPVbt2NZtjMNm55/HXkRSUDgAM5LTSAgOAyDIHsCJKWnMSpvEpLjBXDJqwvfG0dHl4uPla6mub2Zj1Q7u+ffHLCguw+Mx6HS6euJSxZ95/GgTERFTzJ07lzPOOAOAiRMnsmjRIhYtWsTEiROJiIiguLiYqqoqli9fzrqyTRx39gUALPzg7R6Loauzk/vf+JC/vT+fq//gbcu+cXUhKxZ8AcDpP76S5xYV8fi8BTz81if89V3vZPz21haWzv8EgMrN3u8MjjvrAh55+xP+738LeW5RMbNu/z2dbg/z58/ngw8+AOCzzz5j5cqVrFmzhuDgYFavXs0rr7zSY9cjIjLQDRkyhPBw7+fR9evX097e3ifn3b1a3KLuoSLiJ1QxLuLndlQ3dvv3YG3ZWMO1pz+Ex23w+zmXcfTJ2WTG3cvQyCsJCdh7YnxIxE+JdEwk2J6KzfpdW9hhkVezpfllMpKvZe495wNQuLmKo4ICwW4wu3guAL9c+iJfnLznbPQbxx5Nl8fN5ITBRAdpdreIiPQPf1j6IU3ODgDfOp3BVjvDw2Moa9rhG2cB4oJCfbff2VzMJ1tLmT5oFL+eMJ2pCcOIDw7vdmyLxcLdk045oDjue+Mz3lpUTHxkKKOSYvmmtJwPlqxhcFwkZdV1PPzTs5ieM/Iwr1ZERET6I5vNxksvvcR//vMfNm/eTFdXl++x+prqHjvP0NEZDEkbDcC0M8/lybt/DcDmtSVMOPYE2lqaue+GK9hYXEhrUyPGLktw7Ixj0vSTmffKc3zx1uusXDif5OEjSRs3gZN/cCkew2Dx4sW+5xx//PF7xLBo0SKuuuqqHrsmEZGBzGKxkJmZSX5+Ph6PhzVr1jBhwvdPyj5cLS0tFBUVARAUFNSn7dtFRPZHiXERP/fbx2fx5fsrmXZaziE9v6OtC4/b+0G0tck7I/Czt1bwvzcW88NrLUw6bvQez7FYrEQFTd7j/mFR1zIs6lrf7c+LNvCLZ94mc3gFv7/wXIJtAbS7ncQGhu01liHhUTx67FmHdB0iItJ/fbxtNb8qeJMYRwjvnHgDoQEOs0M6KCMj4lhVV8mYyAROTB7F30u+pt3j4uOtawGwY2FQSAQ/TZvK0+8tJiE2jDOOGsMvF70FGLxfsRqLBaICg3j/lGuIdYRiP4TlRJxub6mu22MwbkQy35SWk54Sx6pNVQC8vaiYsIQA7l4xj0lxqdw98VTNyhcRETlC3Hfffdx7r7eCe+jQocQnJrJxcwV11ZV4PD3X7sPCvv+2aG9t5U8/vYTWpkYCHUEMz8jGFhDAupXLAPC43QBMOHY6D775P76e9x6b16ymrKSI4sVf88Xc1zmvdG23ZPre1qRNSkrqsesRETkSZGdn+yq4i4uLez0xvnTpUtw7X/MnTCAwMLBXzycicjCUGBfpA7XtreRXV3Bc8nDCAw8uGTBoSCw/vO7EQz73qOzB/PGpK2msb+WkcycC8I8/v01LYzvtrZ17TYy7PR66nG6CHXtf03ynprYOJqRv4LLTPqG660NeP+Y1CpssHJuQccjxiojIwPNEyed0elxUtjfxYNFH3JI1g4jA3ukcYhhGjyeD759yJj8dnceI8Di6PC7aXU5eL1tJq8tbieUyDCraGrlr5TxwA7Xw4HufYbF4q8t3htPQ1cGx7z5GgNVKtCOEE5LSWNtYS3Z0Eh0eJxNiU5iePIq4oL1PMPvtRSeSNzqViSNTGBwXxfnH5BAbHsJLny/jxc+W8fmqDSwLLGdrcANrGmu4NuMYBoVE9OjPQsxjMQwsuyQKzIxDRETMExLi7erW2tra7f5FixYBkJ6eTmlpKc2dXUw/5XTqqit79Pyb15ZQvq6UIWmjWfjBO777h6ZnsK1sA61N3m531//lYY498zzWrljKHRd3nyC/qXQ1kTFxXPrL3wBQW7mVa06YQkPtdh558AFwOX1jzzzzTE499VTCwsIICgqioKCA8ePH9+g1iYgMdCkpKURGRtLY2MjGjRtpa2vzvZ/0NLfb7VvT3GKxkJub2yvnERE5VEqMi/SBSz56lbUNtcxIHcXTJ17Q5+fPPaF7onrGeZN47+VvOPHcSXuM7XK6mPWHl9hcVc99N57F9Emjuj3udLmZ879FGBhce/JRBASNBT4BDMICgjh50HeJdo/hYmvzK9gtYSSFnaeqNRGRI1Cbq4t1zdt9t1/fvJSvt2/k38dfRaxj7wngQ9HpdnH6J09Q1d7EfRPP46whh9ZpZW9sVitjohIBCLTZ+N3EmcxKn8JVX75KWXPdboO/2zXYM4HowaDT46aqvZlXNi4Dw0LBjnIsFnitbDl2i5UFZ/18r8nx0KBAzs7L8t1OiPSOueykyXxYUEptUyvBdQ4GjYpgQtxgknZr2y4iIiL935gxYwAoKCggJyeH0NBQPv/8c8aOHct7773H2rVrGT58OF1OJ00tbT1+/oDAQH79g9NIGDyEbRvXAzA8I4vx06bT2tRIUEgIHW1t/P13t/LmP5+gqa52j2N8/eG7vPnkY8QmDSIiOpbayq0AOIKDCQwMJDDIwciRI9mwYQO///3vefTRR7FarTQ0NOB0OrnsssvIyMggLCxsr1t4eLhvPzg4WN9FiMgRz2KxkJWVxddff41hGKxevZrJk/fsFtoTiouLaWlpAbzvWVFRUb1yHhGRQ6XEuEgfcH3btsz5bQsZs13zu3O45nfn7HF/V6eLHc1tlG3zfsm/tKRij8T450UbePoT73pfY5LjOW38z9jRnk57ZxBXPV6A05XPnGvOJzEqjOqWd1hX9xcAggJSiQ6a0stXJiIi/qTD7WTmx4/ucf+Wtnp++MVTnD90AlemHUOQzduhxG14WFK7iVHhCbS6OgmxBxIfdGDJ3eL6bWxr81Yo/W75Oz2aGN+boWHRzD35ShbXbCYyMJh31hfxdfkmtloa6DK87/sXDx+Pw26nobMdh83GMUkjmL9tA2+XF+HB+Lai3GDX72pdhofHCr/k6oyjGRQSccAt1x++6kw+Wr6WGePTSI2P6oUr3j+Xy43dbmPjth1ceteLuNweJqUn84/fXGxKPCIiIgPRlVdeyZdffsknn3ziW7/V7Xbz29/+li1btvDOO+/Q1NTE5ZdfzpZ2D6/PebRHzz8yaxzTzjyP/z75N2z2AHKmHMW19zyIxWIhLDKKWx/9J88/cA/V5ZsJCAjgjjnP8+sfnN7tGJmT89i4+gQ2l3qrz4NCQsk5ahoXXvtzQrZvprW1lYsvvpgFCxZQWFhIfX09DoeD+Ph4Ro0aRUJCAh0dHXR0dFBbu2fifVdWq3WfCfTdt4CA7++aJyLSn2VnZ/P1118D3uR1byXGFy9e7NtXtbiI+COLYagXXlNTk6+VSESE2k1Kz6tsbeKrbZuYOSSNKEfvtI49XM89/CGvzfmMs39yDFF5Q1izqZrrfzCNxJjuCYmy6joufuRlAP59yyWMSIwF4KMVa7nt+fcB+OPFJ3NeXjbb2xawqvoqDGxMGvQW0UHpfXtRIiLS52ram/jv5mVsa29kdEQSsws//N7xv8k+hZ+MmgrAI8Uf8/S6hUQEBNHk7MACTE9M57GjLsZm+f4EcafLyfh3Z/tu3zXudC4e0TsTsmqbWnlnUTFTM4aSkeqtJP/Fk28xv6gMm83CH286mXmLS8mOHMTPTj0Kq9Wb+TYMgw63i8lvPkKH4fQmxr/9S3zX5Lg3r+693mEhkWxpb8D17WNjo5N47aTLCbTtUpruB/74r3m8u3A1wQ47HZ0uDAPfCqT/nX05Q5JiTI2vP/+9vzP2k7Jux247uCV5eoPL3cmnxQ/2y5+liMiR5svyHdS2d5kdxgGLCw7kuCGxeDweWltbaWlp8W3Nzc20tLTQ2trq229pacHpdO7/wAfI4XB0qzgPDQ3tVn2+cwsJCVEVuoj0O4Zh8MQTT1BXV4fFYuGWW24hLKznurgBbNmyhWeeeQaAxMRErrnmGr1eiojfUcW4SB8YFBrBRWljzQ7jey38XyEAX39cxIt/OHef44YnxvD5PdcAEOII9N1/VPoQhsVH0+l0kZeWCkBRUzT/z95dh7dxZQ0c/o1YsmWm2I7toB1mhqZhatMmZWbm3S1st7ztlulrt8zMEGjDzJzYYccxM0kWSzPfH7JlO8ZQk3bv28dPrdHMnSs5lqU595zzQuYUvIqKe3U1zEg4dfMXBEEQTr9cWwXXr/2UPHtVYNtDfaawpGAvm8tzmj2mszk68H212wGAo7avpAIsLz5ATk0FncxRrZ47x15JSlAER2z+qifv7F9zygLjT3+zlOW7MvloyRZWPXcrFruLDfv9jy88yEhxpo0167JZQzYj0pJZUL2HD/ZvQgFUSMj+zuOB4PGAyHi2V/pLiPoD5fUXDo7YqxreZFdlERcv+4S7e4+lb0Q8Xp9MjKn5ixnZJZU8991yeibHcvuMkaf0gsTSrf5Sqg6Xt8l9VrvrlJ1XEARBEISWRRi1lDvczTR3OfNI+OcL/ixvs9mM2dx25SCXy9UogN7cl9VqbdKTvaWxXC4X5eXlre6nUqkICgpqVyl3kYUuCMKZoq6c+urVqwPl1E92RvfGjRsD3w8bNkwExQVBOCOJwLgg/MUt3rifT+dv5pLJA5kxumeL+9322Hn88skaZFnh8Zs+4s6nZhMZG9rsvg0D4nUOF1dwpLQSgGW7M7nirIGkhsTjIRofMr1CE5sdq9yxmvSSewjV96df7Hsc2VsAQKeeze8vCIJwogrsVTy+Yy5JQRE81Hdam5nIQsvm5e7ivQNruLrrCGYnD+D+LT82CopH6oM4P2kAV3YZwSsZS9hQmsXQyGQ+zFyHXtLwweirGBCZFNj/770n0y0klj7h8SzIS+e3/AwGRyWTFNxytnGFy0aerYr7t/xItq0CraTCo8iMieva4jHHorLGwTWvfI3N6eaF62ZwIL+cYIP/72BkiAmAgopqXB5/uxSrw8XALgnoNGrCgowsrNrH+wfqS8nJgUvT/gsEPUNj+WrC1Ty9YxGrCjNRFAmDSsN+S4OyoAqNg+MVhVy/6pvA7ZeHzWJWSu8mc/9q5Q7W7ctm3b5szh/em4So5v+unwwPXzWRJz9aiMvtfx4aXv7w+uRTdl5BEARBEFoWptf+KYLi4H+7E2Y49iCyXq9Hr9cTGRnZ6n6yLGO32xtln7f05Xa3nmUvyzJWqxWr1dqu+bWnjHtQUJAIIAmCcMr17t2b1atXA5Cenn5SA+MWi4U9e/YAYDKZ6NPn1LY3EwRBOF4iMC4If3Fv/7CW3OIq/vv9mlYD4wNGdcdg1HHfRW8CkNo/iUtvm9Dq2CUVVtbtOsJZA7uQEBFCiFGPzeUmLTEGgHhTOL+PfwhFAZ26+ZebEttCfEoNFc41ZGzbwt8nvQfAy789QM9hJyeoIQiC0NAP2dtYU5IJZDI7eQA9w+JP95T+tN7ct4JsWwWv711GlduOy+fP9E4LieX5wXPoYAolSOMv/Xxvr4mB467qNgKdSkOornF7EbPWwBVdhgHQL6IjD/Wd1ur5nT4PUxb9HzVeF1H6IADGd0jl/j5T6GA8/hLPZRYbG/ZlM6ZXZ9Kzi8guqQLg4c8WUlBuoVt8FB/dcxFd46OQJIm0xBhG90xhzZ4jTOrfnQFdElj53K1sLc/l6pVfNxrboFLjkn0oQK+wOH6deh0Ajw2c2mi/cXP/S67Nf14kf2H1lsLL7+xdxycHN/PU4Gn0Co8LbI+PCEElScRHhBATfnJL5B1tyrA0nvl4EXWXkXt3iSO3uIqEqFC6J8Wc0nP/z1CU+tr7p3segiAIwp9CtEmPBH+K4LgERBtPXcuQhr3G4+LiWt3X7XY3W8b96C+bzUZbHSrbm4UuSVIgC91sNjf6/ugguk7XNFlBEAShPWJiYoiOjqa0tJTc3Fyqq6sJDT05C6i3bNmCLPs/tQ4aNAiNRoSeBEE4M4lXJ0H4i5s9vh/v/7yeOeP7tblvcvc4UlLjKCuqJjMjn9n9/sXtj5/PhPMHNdnXJ8tc/dzXlJZZ+X39Xt5+6CIWPXYDbq+PsKD6QIdW1frLTMeQq3B4sgkzDKL8YP1x1mr7MTxKQRCE9jsrrjtfHt5MYlA4nYJbL8/9Z5JdU859m7+jgzGUl4dc2OKCpJPpss5DeWv/SkZEd+bFjMUA3NVjPNd0HYFB3XLGT7Sh7bKY7eHyeanx+st0Wz0uvjnrBnqExaFVta//tt3l5tVf1hCk13L7zFE43B7sLg93vv0TB/LLGJaaxOs3z+KcoT2ocbqxOlwUlFsIMugY0KW+P4gkSdx/5Tgi923i7Hj/oi6jTst9G35tfEKPQsaVD7Rrbm+PuYBrV3xNicufidRazvV+SykAd6//iSXTbw1sX51xGFlRKKqyolGd/MoIPlnG4/Fh0Pt/1k/cOJ1Pf9vEnHH9mDGq10k/nyAIgiAIx0avUZFoNpBndZ7RwXEJSDQb0GvOjEpOOp2OiIgIIiJarloEjbPQ2yrl3lYWuqIogf2LioranF97yribTCZUp+A9oCAIf269evVixYoVAOzZs4cRI0ac8Jher5etW7cC/oVIgwcPPuExBUEQThURGBeEv7jLpw7i8qlNA9vNMQUbeGv+31AUhZlpDyL7ZBb/uKXZwPj363eT764BM3hrL9eb9DpMzSzw3lR2iBf2zOWsmB7ckdY4Iy5Y152BHT4DoNNEhQffuxGAoZNEuR1BENpHURRy7ZXEG0PRtCMg2jc8kfUz2hec/DPYWJrF3Nxd6FRq9lYXsbe6iPOXv8UFyYO4tttIAFYVH+TzzI1c2mkIZ3dIDRxb5bajkVRIkkSBvYqu5hhe27OUTw9v5O4e47m6a+sfkK/sMpwruwznoKWYBfnpoCiMje3WalD8ZArVGbkwZSA/ZG/n4pRB9I1IaPugBhZs3se3q3cCkJoYzTPfLMPqcJEQ6c82lwC9VsNTV/r/dtmcbjYfzGVgl6bneWb7UhbnH+DbwzvYfcE/WFeURbmr8SIvtdXX7rmlhcWw/ry7GDfvDXJt1a3uW5cJFq1vnBU+Y0gPdh0pYvrgtJNemnNfdgnXP/MVHq+PV++Zzcg+KYwb2JVxA0W1l1NGZIwLgiAIx6FzeBC5VufpnkarFKBLeNDpnsYxa5iF3ha3243NZmuzjHtNTU2bWehut5uKigoqKipa3a9hFnprX2azWWShC8L/kIaB8fT09JMSGN+9ezd2u//zb8+ePQkJOf4KboIgCKeaCIwLgtCEJEnc+NBMVszdziVHlVOvrHFQUWOntLoG8H8QfODqlkuu59jK+Hf6jxQ6qjiSVUq0IYQLkocHevoqisLNaz9jbflhjGj4aeptdAxqfVW2IAj/mxxeN19lbaazOYpxcfXB3RczFvHRofUMjUrh49HXnL4JniJLC/eRaS3l8s5DCdLoybKW8WLGIgZGJnN9t1Hcv+UHSl01dDFH08UcTbmzhqyacl7KWMzVXYejklQ8s+s3cmwVHLaWBgLjOytyuXL1R+jVGkK1Rgoc1dzdYzzfZ2/D6fPwY/b2VgPjdq+b2zZ8SYXLxhvDL2XZlHtRFIgynNqS3Q1tKjvC4vy9DI5MwuJx8sSO+TzYZwr6dmbL90npgFGnQa/VEGoyYnH4s8+nDe5B57gIRvVMabR/kEHHuD5dmh8rogOL8w+QGhqDT5b5+8a5jXdQFCJWuliVsp2x0we0+zHemDqcR7ctbHWf14afR5XbyblH9Rk/b0RvQoOMeHw+FEUhPbuYF35YQXRoELuzi7hodD9umHJ8PeW+WboNd21f9V9W7WJkn5TjGkcQBEEQhFMrwqAlRKfB4vae7qm0KESnIfw4+ov/meh0OnQ6HeHh4a3upyhKkyz0umD60YF1l8vV5lh1+7ZFq9U2yjgPCgpqtox7UFCQyEIXhD+5qKgo4uLiKCoqoqCggMrKyjZfm1qjKAobN24M3B42bNjJmKYgCMIpIwLjgiA067xrxjB2Rj8euvIdFAX+8+lNaM16znnmo0DgAOCla2bQtUMUu7ILiQszExPaOCDyxv6FFDqqArdf3DsPnUrD+UlDKXVa+ceW79lcng2AAy8vZyzhpSEXoJLEBy1BEBr78NA63ty3AglYNPkeEkxhAGRUFQKwr7rlkoMe2cfnmRsJ0RqYnTzgpGfPnihFUZAkKZAdUje/fHsVd27096h2+bzc2eNsPjy0luVFB1hedIBZHfsxKDKJ3wv2MCqmMw/2mca83F08tWsB0xN6B15Lpyb04r0Dq5maUF/eer+lGK8i4/W6cXr9F0qP1JRzf+8pfJ21mRu7j2l1zjsr89hUdgSAJQV7ua7bqJP6nBzN6/Oxs6KAHuGxmDT+jJaFeXuo8jjYVJYN+P+WDI1KZlpi7ybHl1lsvP7rGiRJ4s5zRhEVEkRqYjTL/3MrapWEVqPmkUsmUlBh4dpJgzHpjy1r5vZeo5iV3ItgrZ6ndyxpki2OJBF8yMMr93/bZmB8/ro9/OezJUwc3J3HrpvClpI8fs3LAI7qNa5AVKGRqR17oG7mAuXmg7nc+56/nPtTV07h7fnrya+wBO7/eMnmdgXGd+zP40BOKRGhJsYN6oZGreL8sX2Yv3YPigLLth7CandiNhnaHEsQBEEQhD+WJEn0jDazIb/ydE+lRT2jzWfc+/PTpS7LOygoiNjY2Fb39Xg8LZZut9lsjbbV9f1tbazKykoqK9v+d9JaFnrDYLpOpxM/V0E4Q/Xq1SvQtiEjI4PRo0cf91jZ2dkUFxcDkJCQQGJi4kmZoyAIwqkiAuOCIDTh8frQqFXs2pBJzqESAHasO0RMWkyjoDhAVEgw36zdxTM/LCPYoOP3R68nxGjAJ8v8+/ulZDgqIAai9GbKavuk5tkr+PrIOlYVHmZz+RH8RWD9FhXu4dfcXZyX1P8PerSCIJyIw9ZSVhUfZEZin5PWN/q3vHSybRVc1WV4IAAKoK59rTCqdQQ12P5Yv5l8mbWJyfE9Wxzz15ydvJCxCIDk4EgGRyWflLker2WF+9hansPlnYZyz+ZvybSW8mDvqby0ZzFR+mC+OusGzFoDwRo9Zq0Bq8dJxyD/Cu6zYrvza84u+oTHE6438dKQC3nIVUNUbRntmR37MrNj30bnu6fnBO5IG9eo1Py5HftRYK/GrNWTGhLH1vJsLus8lGiDmXOT+rX5GAZEdGRcbHfK3bZGAfdTwSfL9PnpObyKjFGtYcd5d5NRWc6Xh7aj1MaD6665HbSWMq2ZMT5YtIlfN+4BYPeRQn58+GoADLr6t8NzRh1/G49SRw2vpK8it6aKrWV5AGgkFV5FRqtI6Hc60VTKOJGx25yYghoHkX9auYuc4kqumzmM3zfuw+n2smD9Xh65djKvjDqPVzgvsK9H9nH/R7+yam0mKrUKj9eHWtc0MG7UaQNl1rcezAsExbt2iMTl8XLh6LZ/znNXZ/DUB/UZ69eeM5Rb54ymb9cEOsaEk1Psv3haXSMC46ecTMO3TKdP69fVBUEQhDNQfLCBRLOB/DOs13hdb/H4YPEe4nhotVrCw8PblYXucDgaZZ+39OV0tl1232azYbPZAoGw1ubXnjLuIgtdEP54vXr1YunSpcCJB8Y3bdoU+H7o0OOrSCYIgvBHEoFxQRAambsqnac/XMzQXkk8c/M0ho3vgSwrdOwaw99mv0lElJbx14ygX59kIswm+qV0YPWeLABqnG7eXriB26eOJL+imh/WpwMQFZnEe/deyJVr36DG5+LTrFWAv0WlhBoFFQ2v9DYMeNVZVbyXz7NWc27iYGYmDjz1T4QgCO1yw9rPKHJaWFN8iPdHXXXC4x2pKeNvW74P3L4ldWzg+7l5uwCIN4USpjMFtncyR/Fw3+mtjpsYFI4EaFVqog3B5Noq+C0/g8nxPUkJjgzs9/2RrbyYsZhLUgZzT6+JJ/x4wB/E1EgqfIqMjILL5+Wujd8go5BvryS9qgCAX3N3YvE4sXic7K8uZnBUMqE6I79NvJNyl41uITEATIzvwdZz/om6tjc40K5FCUf3XzeotdzTs74VxujYY+sNbVBr+e+Iy1q8v8JqR6tRYzbq+X7tLhZvP8htM0bQr1N8k30P5Jfy9aodTBmYyrDUpKZjuex4FX80bmjIEZSSgaQpMj/0D+Xy9Ck4lfq3tL3D4tlYksXXWVu5NXUM3cP8mTa9k+IC+1TZTk6fzZJKK+FmEwdzSvmhbDc/H0kP3BeqM7Dm3Du4ddqLlGSWNzru6ds+5aG3rkanVaPTajhSWMHTny4BwKDXcv3MYThcbob2TGby3W9RY3dx7pjePHzNZMD/7/hfF0zm2/AdDErriEHXfOnR3slxfPXA5Xh9Mm6PlwVb9hFhNvHhPRcR0s4g9uH8ska3dx30/3v1+mQqrbbA9rBgY7vGEwRBEATh9OgXG0qJzYVbPnNC41qVRN/Y0NM9jb88SZIwmUyYTCZiYmJa3dfr9TZbxr25Uu4nMwvdZDK1q5S7Xq8XWeiCcBKEh4eTkJBAfn4+RUVFlJWVERUVBfgX07h8Mj5FQVZAJYFaktCrVU1+/6qqqti3bx8AwcHB9Op1ahfNC4IgnAwiMC4IQiNrd2YhKwobM7LRGLQ8/u51AKRvPozX48NY6GN4aDSTh9a/0bluwmDeW7IRRYHPV25ny6E8Pr/7ksD9ZeUOQnUmanyNs80lCdQqGZ+sQkEBJC5LGcKko7I+ZUXm/u1f4FNktlceoX9ECokm0YdcEM4E4XoTRU4LEfqg4x6jym3H6fMQZwwlVGvErNFj9bpIDmr8e94xKIKsmnI6m6OP+RzDojvx+6S70Ks0xBhDuGD5O+ypLmRu7i7mTrg9sN83R7Zg8Tj5Imtzk8D4zoo8ntw5D7PGwD5LETd2H8313VpfVf1zzg4e2f4LgyKSybSW4JS9fDL6GhKCwsi1VTIoIpnk4EgOVBdza+pZvHtgNbHGEPpH1Jcei9AHNXl+jw5ynwmsdhcv/bySHh1jSE2I4frXvkWv1fDidTN45pulyArszS2mQ3gI54/szaJtB7hy/CDO7tuFZ75Zxo6sApbuOMTK524FILe0ijfnr6Nvpw7syCwgSK/iq2E/0NVkRQLUEqQFV5FqrGS/M4GLOw3kks6DidAEMXTB8wAsyt9LxuxHAJg8qDtPfb0Ep8fL4K7+59ft86GSJA5ZSukaEo2sKGhUKlRtXGyz2px8u2Q77/y0noToUPJLq/FG+GAwSA4wZ2hZ8OQNmDQ6Sg9XNDl+d04xE+7+L5GhQXzz5FVEhpqICDFRabFjqXEyd00G91x0Frc89x0uj7/M/c+r0rn5vJFEhfkrA0SGBnHr7LbL16cl1l/8XPXcbWjUKjTq9mfk3HbBaHYfLGD34UIUBS6Z7F+clplXhtXuBvxL28QFSkEQBEE4s+nVKgbGhbGh4MwpqT4wLgz9MbwvEU49jUZDWFgYYWFhre7XMAu9tS+r1dquLHS73Y7dbqekpKTN+bWVgV4XWFerz7zPTIJwJunVqxf5+fmodXq2ZWYTr+iocHiocnrwKk0XUWkkiTCDlgijljC9lmiTnk2bNgVawg0ePFj83gmC8KcgAuOCIDRy/azh+GSZkX07NcpA69o7kT7DOuNxexk1uXHvVpNex6Wj+/Pl6h0AHCgoo8LmCNwfHmzErDUytUM/fi/cGdiuKCArKiTJ/z1Al5Cmq5dVkop4Yzi59nLUkoo9VXlct/4t+oUn8/yAy5Ekice3/8pPuTvQSiqeGnge0xKa9pc9UbLiJc/yGSpJR3zwJXgVBZ1ag9cnH1OQQRD+Sj4efQ3pVQUMimia5dsehfZqzln6Jg6fh/dHXcmI6M78Pukuqj0OUoKjGu37+tCL2W8pJi00roXRWtexQaA91mhmT3UhMUdlWt+aehZv7F3OBSmDmhz/xeGN7G3Qx/zLw5voHBzNvLxdXN11BH3D64PZPkXmv/tWMi93Fz5FYVP5kcB9uyrz+fnsWyl11ZB0VPD/jeGXHtdjO52sDid/+2AeGw/kAvDThgwMWjVeWcHn8nDbWz+jkiRUkoLF7sJiL+WNuWupNtg5tLKIPt2vo2+nOHZkFdC3U4fAuB8u3szvW/fz+9b9ADw8bT2pwf6WHIpSVzo9hPjgs9hq2Y/PLeGRZYb++iKK2n+/D4X5+/fw7fxdhwQtIgAAh81JREFU9O3UgQ/uvpCth/KZNbwXG0qOcPXKL/EpjTNd9CoNC6feQmJwWLOP96XPl/PNku3otf4P/EXl/vLkmgo1EUtUIIOih3/9vIApqngaXk/o3COe0KggKruHUnC4gJLKGgrLrXTvGM0vz17PzkP53PnSjwD8vn4vbq8vcGxUaBDhIfWVEo5Hw7Lx7aXVqHn/kUtxe7w43V5CakvAJ3cIRyWBrECfLh0IMh5bT3bh2EmKgtTMBarTMQ9BEAThzynebKBnlJk9ZdbTPRV6RZmJN4sS6n9Wx5qFfnS2eUtfPp+vzbGqqqqoqqpqc451WehtBdJFFrrwv0hRFBK6ppJo8RCW1IUalYqDFbZW2214FYUyh5tyh7s2vQmqJRPGyBjcVeUMGtT0OoogCMKZSATGBUFopFtSNC/cPavJ9k3L9rJ742EAFn6/mdnXjW10/4OzzybIoOO9xZuYOqA7FVZ74L6IICMer4+n+l/MnspicpxFDY5UAAWptgvqv3fNo4MxlLPiujca/5vRd/Nd9iaq3E6WFO2m0m1jRfEeyt016FVavsvZBoBXkXk5Ywn/3PYTJrWOyzsP47LOQxuVXT5eBTXzOVT5LAB/27KSdGs8Aywp7NlRTMxYI3qzmv8MPJ+eYU3LBAvCX5VZa2BEdOfjPr7YacHu82edZlnLGBHdmXB9EOHNZKDr1Br6hCcc97kaennIheyuzKf3UeON75DG+A5pzR5zXlJ/NpRmkWgKx+51cW23kTy47SesHicF9mq+OuuGwL5byrJ5a/9KALqZo7mo0xDybJXYvS5mJvbBqNGRpPlrVL644qWvOVLSOPPI6fGBBBP6dmHpzkxkReHDuy/k3YUbyaYMJc5LucpOKXbG/PYS3c0x/P741djVFdi9blSSxJiedqI1m8koGYVLFY0UXP+2te66laJY2Fa0GQjh091bCNMY8UkyDZcqvbFrJYVZTnZmFXL5uIFcNcH/YX1tZlaToDiAS/ZyyW+fsPz8O1CTi6TugCTp2XEgn8P55XyzZLt/P4+PKcPTOHtwNwpLq3ntm1VIsn9i1YNdLNccZn3WAeqWjMR1jKCy1MLYW0bzws9rAJh9Vl+6JfoXgBj1WjrH15f1d3t9nDe2N16fzPUzh5EY23rvyFNp7c7DfDp/M+eP68vUkT0AUEkSWo0Gl8eLzelm5fZDnDXg2MrxC4IgCILwx0uNCMIryxyosLW98ynSPSKI7hHHX3FK+HPRaDSEhoYSGtp62XxFUXA6nc2Wcj86sO5wOFodC9qfha5Wq5tkmze83fBLZMMKfwUFVid7yqxY3F7CkrogqfyfoNu7/FVp8H9zYidCkrqA044FDcGnYsKCIAgnmQiMC4LQLqn9OmIK1mOvcfHRCwsYM7Uv0fFhjfa5c/oobp0yAo1ahcfno3dSLOk5xWQWV7B410GmD0yj2Fka2F+SQK+RARmXVwNIKAq8s38lH2eu4cpOI9hekcv8vN2UumqQa996SZLMgMh4BkZ0IkRjbLKyt8BRBYBbdvDm/hX8mruT+RPuQH2CpYfn5ZXQxSChKBJlbv+H+O2GIzAWcnGAFd7Yt5w708bTI6xD64MJggBAv/BEHus3kwqXjTnJA/6w8+rVWgZHpRzTMSNjurBq2t8bbVtZfJDf8zOa9OfubI4iXGfC5nXx1MBZjbLJ/yoOFpRx+9s/UVxV0+I+/7lmOj+uTScixMTAromMVxfz2I70JvsdtBYjOy4gSZPDk+mj+KqwG2uGfc3YsU4cksKz2ediMNY0yBT3kyT4pPcSpiy7EG2+lv6jEpnVsS9birIplqtRI5EaHUtFfB5Dw5OICa3/mH5Oci/e2re22XkX+azs3vM4PaI/p8adxLebnuLTBVtQFH8v7aoaB1NHpPHkzfW97b9atJWSytoLzIErChI6g4Zr/zGDd576BYCs3fmBY6YNT2v0Nywm3Fy7TMzv6hlDSYwOa/H5bQ+Xx8uny7YSHmxkzsg+x5QN4/Z40WrUvPndGg7llZFVUBEIjOu0Gv77jwt49ZuV7M4s5B9v/Mqi124VvcYFQRAE4QwnSRK9osxoVSoyTkPmeK8oM6mRInQiNCVJEkajEaPRSHR06+2zfD5fi6XbbTZbo9ttZaH7fD6qq6uprq5uc45Go7HNMu7BwcEYDAaRhS6ccVw+mZ3F1eRZ69sb1AXFj1fgeIOJDfmVJJoN9IsNFW0yBEE4o4nAuCAI7RKbGMEVd0/h3ad/xevx4bC7mt2vrqS4Vq3mmcuncfFLX6AoCha7k8e/WYQrpPEHkvrPCf4iPJIEu6vzANhSno2sNP0goSgq/tHjPG7d8AVfHd7JS4MvDAQShkV1Ir0qH5vXHdi/2Gml79yn6B+eyO6qfPSShu/PvoXk4MgmY7cmyx7JZ1nnICsqLN7aC/8NKsdqJRUriw+ysvgg13QewYDIJCbG9zimcwhCnUxrKR8eXMvZcal/6X9HkiRxcafBp3sax+2lwRfwRP9zMGsbl4GMNphZPuU+vIqMSfPXLDH96bKtrQbFwf+34OLRHUHlz45XS/6/ESrgong3ibpDfJDXGYdPTZQ6B4D+5kK+KexCpUdHpM6JVt7OI4k70Kmav6Blc3Xk2ujh9B4cx8huKYySOgXu+zJzK49t+w26wu2TRqBS1f9N6RgUTqTeRLmrtsKJDFiAMP/3dtduAPSqPL5auAFF8b9tvvWCUZw9qBth5sYBYJ+3NpytKIRs1iLrXQwqMFHotfLxiwsAMAbpuf6as9GvjuCLRVt56uNFfPvUNY3acZgMWmxOD0EG7QkHxQF+Wp/Om/PWAdAtPorqagf//WEN547pw2W1/cKb89u6PTzx3kL6dU9g+sgevPXjOmaM7tlon75d4wkN9v/bDzbqMem1zQ0lnCyKAmdCGfMzYQ6CIAjCCZEkidTIYMw6DduKqvDISrszBY/rfIBWJTEwLkyUTxdOCrVa3e4sdJfL1Sj7vKUvu93e6lgADocDh8NBaWlpq/vVZaG350ujEZfnhVOvwOoMvN6fSvlWJyU2l3i9FwThjCb+8gqC0G7nXDESnV5DeLSZpK6xbe6fEhPO8idv4nBRBZe9+hUA2qFqVGG+Rll/EZoISrx2DGoNNd7mA+5aVMQYzRQ5rcxO6k+Zq4Yqj7901meHNwQ+xE9P7M2zA8/n4lXv4fC4ubjTEL49shW37GVHpT/gblc8XLP6Y5ZP+9sxPf4bu41iXt4uANRI+BpcOrivx0Q0ahXPpy8C4KPM9XyUuZ470s7itrSzj+k8Z4p91UUUOyyMje0GwNLCfciKwqT4Ho1WPiuKQoGjmliDGc0JZuUL9V5IX8Sq4oPMy9vN9nMeRiU1XW37UvoivszazH29JnJ552GnYZaCJElNguJ1dGoNf8WQ+N7cYg4VljN9UBrzt+zF19wH69rVSqs2XMWoTuuRjBeiDv0Ps5P7E20IJlqvpptrOuAlSLLwenZ/SlwGjGofy8oTWTv8a0I0/gVOGsnrHw9VoI8ZAKpUMEwkrfft9Ozb/Ftabe3vjQQ8sf13rus+nEkJqQAYNVp+mXgD16/+CqOSyeXa7SzKSWNxSCxo4IHcHlyBj42V8diDJHqHx3DHhWMY0jOpSfaHpdKGe3M+qsQg5GAdKo+E2qYjb0chAD6vv2S7VqchOj4Mq92/Qj+vpBqn20OwUR8Y69qZw/hy0TZuPm/kMf5kmpcSE44kgUGrISY0mFe/WElmfjlv/bimUWB82ZYDrE/PxmzUMXZAV9btOoKsKGzfn8d/bp/BFdOHNDv+5j3+3vJWuwun24tOKz5eCIIgCMKfRbzZQKQppkkG4clWl0GoExmEwh9MkiQMBgMGg4GoqKhW9/X5fE2yzeu+P7qUu9frbXOs9mahGwyGJqXcmyvjbjQ2rZgoCG1RFIX9FTb2/EEVQhTALStsKKikV5SZ7hFB4t+tIAhnHHHlShCEdtNo1Wxbc4D1i9O5+V+zmHX16DaPMel1LNx5IHDbsymcWZO78bu0PrDt57PvRK/Wsq+6iPcOrGJt6SEcPg9pIXGkhnRgTvJABkQmNRrXLXu5pssInD4vP2b7+4t3MUczJ2kgkiSxfEp90LtnWAfePrCSA5b6vlIlbivlrhoi9e0v4ZZgCkcjqfAqcqOgOMCG0sO8NeJyfs7ZyUFLceDeN/atZFbSABJMYe0+z5kg317FhSvexafIPN5/JommcO7a9A0Abw2/rFEP+Df2Leet/asYGJHE52OvO11T/ssZHJnMquKD9AtPbDYoDvBd9jYcPg8/Zm8XgXHhlCuz2Phq5XY+XrYVr09m+uA0RvfsRLBBy/zN+/3R54afdyXoGLofAMW9HkVxIUl6xsZ1Y1d5Dg4lHKNUissH/0jZTLTen6HxdC8LQUp91Q/U3ZG0/cEwFUnTDazPg3s9ilyOYv8/cP2OFDUfqZnfE4vHv9hKAbaU5ZJTU0lCUCjXrPyCUJ2Rc62d2E8p60f8RLDGy+Sehxiz/nIsPgPF3iBeyvL/Xl13QX/uHnwWBp2Gd/79K6WFVdz+xPlERIcA8NNHq9CVOdGWOakYHgsaFdqq+oVe5141CnOYiWETegFw2/mjMJsMDOie0CgoDnD19KFcPX3oCfykGhuelsyCx6/HoNMSHmzkgrP7kV9axayxfQL7bN2bwwNvzqPuyfpm8XaeveMcFm7YB8DbP6zln9dObnb8AakJbEjPBsDp9hASJLICThlZAekMyNY+xVkmgiAIwh9Lr1YxND6cxAY9Zxu2djkedceH6DT0jDYTHyzeHwhnPrVaTUhICCEhIa3u1zALvbUvq9Xarix0p9OJ0+mkrKys1f1UKlWrmecNg+kiC10A/7/VjDIrBypsp+X8GWVWPLJMryizCI4LgnBGEX8lBUFoN0VR2LR8L4oCG5buaVdg3OP18cnyrQ22SFzUczCW4nLWlR9geHhXjBp/UKBnWDyvDL2EHRU5FDksjItLxaBuviyrTqXhH72nABBtCOaH7G3cnjqu2TdaUxJ6Mb5DGpMWvkKpu77sb6allIiopisXC+xVBGv1hGgbl8mdn5eOV5Gbnc+Gsiw0KjU/nX0rdq+b4fOfDezra+GY06HYYeHbI1sZE9uV/hEdA9t9ioxH9gWeb0VRUGpLpfrkxqWgg44qC727sgCAPdWFKIpyWt/sljis/HvnfPpGJHJ9t1Fn3BvvDw6u5d39q7k5dQzXdRvV6r43dB/N+cn9CdOZWtznH70n8/2RbdySOvZkT1UQmnjmu2Us3XkocHvtniNU251EhZhQVApoQfLU/s4poJLAoX8c9L+juBbiLerFDvsolpX0JMmwgiKNjglRElfEHwIJFFQoioJB3oaMhEo3FlXI/Ugafx9uxVeAUnYRKJWAO3DBVfEdxFU6C03wDcjebGRPOmrDOCScjI+M5nmPhCIrKDooK67hvN/eR9FApdvBF7/mopoYhEntz/hQSRBltWExNb54+0nhJoyHNIx1JfLLJ2sA6JQax/TLRhARHcKSn/x/58whRkaHRbN6aQYhBj01QExCGLc+fj6yrAQqpUSFBXPvxWcFxl+wbg8/rd7NrNG9mTmq10n/2XWIqL+4N2NUT2aMqi+J7vJ4uefVn+t3lkBWFFKTYlCrVPhkmbmrM7jn0nGYDI1f/wvLLPRIjqVrQhTDe6cQE24+6XMXBEEQBOGPEW820CFYT6XTQ2aljTyrM1Ctpz1B8rr9JCAxxECXsCDCDdoz7jOZIJyoY81Ct9vtbZZxt1qtbWahy7KMxWLBYrG0Oce6LPS2AukiC/2vbX+F7bQFxescqLChValIjWx/YpIgCMKpJimKaBJnsVgIDQ2lurq6zVWBgvC/btnPW1n9+y5MQQbSNx/m1sfOZ/iEni3un11SyTn/+Thwe1RaMv+96XwkSaLabSdE2/hN+E8523l0x8+YNQZ+n3RPk+D0ifr+yBYe2zkvcFsrqdGr1Nh8bswaA1d2Gc6b+1egliSe7n8eY+K64ZF9RBvM3Lz+c9aUHGp23PM79uffA88L3C5yVPNF5kbGxHZjaHSnZo85HW7f8BXLi/Zj0ujYPOMhJEnC7nUza+l/KXJU8+aIywKl03dW5FHkqGZSfA9Ukoo9VQXIikLv8IRGYx6pKeOzzI2M75DKqJiurZ7fI/t4IX0h5S47j/Sb3mrQ91i9vX8Vr+9dFrj9+qALmdjx5AeYTsTEha9Q4KgmwRTG4sn3nO7pCMIxefSLhfyycQ8alURSdBgur48cbwWe3i7k2pdxTZYGVYWaN24+jy6ROmLc92B35RGiqQTqWxNLEqhonOEtI/sX5eDvcSnpZ6Ax346ieJGdv4BjMWqlILC/Aii1x3hpfgGSrEjMeeZaKmqCsHdx40rzX2xK0lfxXNpSbIe1vPD0KEZcXcBl49OZW9qVN9MHIoeoG823bs5JpnA6v26jvMiCCrDVOOk5uBNTLxrK/C83MOeGsxgzra8/i8ThZuuqA/QclEKZ08nNz3yDOcjAJ49d3qg/+Zqdh7nn9Z8B0GvVrH377uP7AR0np9vD2be9gden1F/1lqBLQiTFZVZsTjfR4cH8/ML1aDWN22Xc9sL3bN6bQ2iwgeduP4eB3RPP2Atrf+b3+3Vzn9jlHjRqfdsHnGJen4slma/+KZ9LQRAEof1cXplSh4sqp4cKh4cqpwdvM5cQNZJEmEFLhFFLmEFLtFGPXiNKpgvCsVAUBbfb3SRY3lwZd5vt5AU6VSpVo9LtQUFBTbLP67602uYTV4QzU4HVyYaCytM9jYDh8eGi57ggCGcMkTEuCMIx6TeiKx88P5+KEn9vmnlfrGs1MJ6RVxz4fmi3jrxx43mBi+ahzQRFC+z+N201Xic2j6vZwPjSwr1Uue2clzSAEoeFoGayuwGqXXbm5m+lszmW4VFdQYE8eyUSUm3YBTyKD4/PB4DF6+STTH+Jd5+i8ND2nwIxgucGzsbiqi+B1TukA1n2CuIMZh7oPYVRtcHkOnHGUP7Wu/mys3+k9SWZ/J6/h8s6DyE1NI7koAgAEk1hgZ/Dkzvnk++oAmBjaVYgMN4vIpF+JAbG6hkW3+w5UoKjeKTfjHbNZ2t5Np8f3uQfPzyBK7sMp8bratSjeW3JIb46vJkLUgYyNrZbi2XEG5IVmfcPrGm07a6t33FbTQl39DibUqeVx7bPJcZo5l99pzfphe6Rffxt83dk1ZTz8pAL6RYS067HA7CiaD/FDiuzkwegbaPH+t09J/DRoXVc1/Xk9A4WhD9S57hIALyywuFi/2u1foxEfcFwBW9nD3T2cNPWrxkXlsNbfXYToiFQTaK1mKmE5M8MR0FWFGTXPFyuebX3gRYNDQeQ8Gc21wfFVXBUgNwjq+g2OYsV61JxdfAGAt1v9V5AgtEG/WDO1Ay+fK0PH4fWlhY3Kf79fAqoG084115JzmWgLw+mwweVaCSJPVuPcOFNZ/PqD3fWz02SMJj0jJrqH/P3hQepcbipcbg5kFvK0J717UGKKut7vQ3tmdzyE3SK1Nhd9ZWxGzzczLzywM1Ki50Pft2ApJLILa7k3DG9GdA9EbvTX/LeUuPklue+475Lx3HppIEIp4iiNF6tcTrnIQiCIPzl6TUqEs1GEmsX9CmKgssnIytK4G2SSpLQq1Vn7MI4QfizkCQJvV6PXq8nMjKy1X1lWW7UC721LHSPx9PmWFarFau17f7Ter2+XWXcTSaTeE04zVw+mW1FVad7Go1sK6oi0hSDXi0WTgmCcPqJwLggCMfkUEZ+ICgeGhnUZjn18b27MqhzAlsP57PpYC5Tn3qfef+8Dr22+Zefa7uOQq/W0sUcTYdm+nJvK8/mns1fA/Dl4Q0csJYQrNFzccoQ+oQnMj4uLfAGfPaql7B4HQCEaU10DUphVW3G99T4niwr3I9b8TUaP8EUSrnLTpmrplG5uAe2/YhOqg965tgreH3oxQyP7tzs45Blhf98vJgDOaU8esMUuiS2Xl7rZPLIPn44so25ubvYXpkLwHfZW9FKaj4cdSUzO/YhJbh+PmVO/89TK6m5qsvwUzq3tNA4Ek1hVLsdDI3uxMPbf+HnnB1ckDyQDaVZhOtNVDht5DuqWFa0n27mGL4ddyP6Fkrqv7l3OV8c3kScKRS7z93k/v/uX4lZa8Ale1lR7O91f27Hfgw8qmf9QUsJSwr9vXTn5u7ivl4T2/V4DlpKuG3DVwB4FV+bfb7P6diXczr2bdfYggD+dhS7jhSSlhhD0FFlrAFqnC70Gk2TTF6AbZl5fLR0K+cM6cHkAd1PeC5TB6byf3PX4pVltBoPep2HSGKxUERdqnHD6x9XJ+yujZ/Vt1ho2G5Bafgqq9Do4omC3KRkp4KCROMLLCpJDRhANwWr+gqq7Ssx+36iymUl1xHE6Mh8nh+ynC/jC1hQ2o10azQ9w+PxYgb8mRYXXrufi287h6/29ufNX5fiCjLiifWhzdfiTnCjhCm1c699lEZwJnqpGGsmZnE1QSEGMqKquf/XN7ml5wgu69o0MDxtVA/SDxcSFmxkYPfGVTfOG90br9dHaLCRacN7tOMncXLtzylFPqpndFykmfiIELYfyEcBPD6ZD+ZtDNy/cON+rpo2mIysIqA+0XxjxhERGBcEQRCEvyhJkjA0855TEIQ/lkqlwmw2Yza33caoLgu9rVLuNpuNtorKulwuXC4X5eXlre4nSVKbZdzrgukiC/3U2FlcjUc+sxazemSFXcXVDIkPP91TEQRBEIFxQRCOTZDZSFK3WOISI7j/5csIaqMMjkGnYVK/bmw9nA9AcZWN+x75lOf/eQlBIU0zxk0aPTd0G9PieB8fWhf4/oC1BIAar4sPDvmzhS9LGcqgqESiDSHYffV5jFUeOxtKDwduj4tL5YXBFzBtyevk2as4O7Y7o2K7Mjm+J4oC05f+HzavC4NKg1v2IaNg0ujweBwogMXr4pfcnS0GxnOLK/llZToAv6xM577Lx7X6PLVlQd5uvj+yjX/2nUrXkNhW9/0mawvP7P6tyXaP4uOujd+ydsb9jbY/3v8cvj2yhfEd0og1ntqSqGE6Ewsn3Y2CgkpSsbbYv1BhZdEBSl015NkrmRzfI5DBftBaQqGjOhDIX5C3m2d2/cY5HfvyQJ+pfHZ4IxaPk6pqR4vnXFywl4f7TuPjg+uIMZrp3kw2eLeQGCZ2SONITfkxBa6DNDq0KjUe2UeEPugYnglBaJ8nvl7M3M176dkxlq/+flmj+9buPcKd7/5MdEgwPzx0JcEGPSvSM3n+x5VMH5TK+n3ZpOcUsy0zj2q7kxFpySRGhh73XOLCzfzz0vH8Z/sC/jXua8x6O17bg9y1UIOc5AkExTsbK0kxVDEsvKx2W4Ms7wbBb1mR/RniihIoq64oCv5X3PoP8TsqIxkYXoEXH4oso5PU9eMoMHHduRS6zKD8jgKopKkowLeDfgyMcWn8fi5L2M+PRd1ZUn0tCfELUDuex+f8CUlyIXl/4/qRd/Lx97uQLW40RQrOni6UkMbB+8BDkaGXKhxPpI9//t+V3Ja9gAK7hbf3rG82MB4WbOTpW5uvrKHRqLlk4h8bTF6+K5Pc0iouGtOPYT2TuHTyQGrsLuac3Zf8kirGD+6OSqXiwTfnsnx78y1EgoxNS3oP751yimcuCIIgCIIgCEJ76XQ6IiIiiIiIaHU/WZax2+3tKuXudjdNSmhIUZR2Z6HrdLpGGecNy7o3/DKZTKhUItO4PQqsTvKsztM9jSYUINfqJKHGSXywKKkuCMLpJQLjgiAck1ce/JaC7DJkn4yiyLz+r+8ZenYPhk9ouZfz9IFpPPvTisDtHWv28dNbS7jigXOP+fwWj73V+xcXbefH/LUADAxLYVvVEQDGRvdgVVEubp8bUPjg4Gq6hsTw/bhbSK/MZ1BkMjp1/Uvi7xPvIqOqgGFRndhXXcQ3R7ZwflJ/eobG88rexWwpz2FIeCc+3LOFC7r2IUTXOECQEBPG6H6dOJhbxuThqcf8OBvy+Lz8Y+sPAFy66n02z3y4xX1LnVa+ytrU4v2xhqYrihODwrmv16QTmuOxkCQpkPX574Gz+DlnB9MTevPZ4Y2E60w8O+h87u1h4fV9y+gWEktyUH0Zse+ObKXCbefzw5u4v/cU7uk5gXf3r6bIaUGrUvPKkAswqfVct+5T/7mA29LOokdYB9bNeKDFOWlVal4fdskxP5Z4UxjzJ9xBldvepPe6IByvrOIK1CoVSdFhlFb7s5rLLE37yO3MKsAnKxRVWSmssNItXs9XK3eQX17NB4s3c/v0EWTkFGPS6/j3t0tJjAxl/qPXNRrDK8tsKs4lLTyaCIN/sZLsWIJsfQ6XXIpdiiNMOxaV+1NkDGx2zyYyoYwQg/+1eLFlHnLH/oHxbkjcxp3JO2ozwBtnFNVli9f1Ea97HZAkiS2VYQwKrwQJpAatrrNrghkaXo0kafy9xBWJht0V3snu5Q+Kg/8XvsGxrxweytt9f0MtgUuWMKgVzo89wLkxD/HjvgKu7v8cXsdYPI5v0QXdDEB8ZCj7C0pBBb4on38+FglNpRpPsr8/ufmQmu7rJV58+zJiEvyr3W89NJK39qzjlh4jqCqvITQi6JjKB5ZX27DYnHSKb71sYnspisKTHy1i894cnrhhKoNSOwbuyymt4t73fgXA6/Nx3eSh3HfpuMD9vTp3QJYVXv1lNVvyClBqfyad4yM4XFBBQnQot80ZzaQh3UlLiuFf7y5Ao5a466KzmD6i5dYqwslwhpRSb1LPQRAEQRAEQfgzU6lUgSB0W47uhd4wkF5X4r3u+7ay0N1uNxUVFVRUVLS6nyRJgf7nbZVy1+maVlr7X6EoCnvK2l6QcDrtKbXSIUgvyu0LgnBaicC4IAjHJK1/EgXZZfi8MhcOfAyA377eyFsL/kZK97hmjwkLNjK4SwJbMv1Z45oqN1361JeyVhSFzw6vp8BexW1pZzfbLxzg6R3z2FqR0+x9KiRmJw9kVcnOwLYiZ5X/Pkni8X4X8FnwBt7cvxIJyKwp5Zb1n7Fy6v2MiOnSZLwIfRBjantt941IpG9Efa/th/vOwOnzMuCr13D4vBysLuM/I6Y2Ol6jVvHyfec3O9dj1fhjROtvHJcU7CWrpr6slaI0Lm1c4Kw+KXNqzbLCfby1fyUXpQzmwpRBre47JrZb4HmeEF9fQjjZHMlLQy5ssv/13UZT6XZwTsc+SJLEJZ2GcEmnIeypKiRCbyLOGIqiKNzSfSy/5u6k1FnDAUsxI5v5GZ8siUHhJAad2lJQdo8bSZIwao6tzFh1jYPiihq6dYwSHzpqfXNwJweryrmj7wjC9M2/1rTHwaoyXD4fvSNbr+BwrLZl5nHd698hqSS+/vvlPHn5FOZt3sPYXk2rU1w6dgDlVjtJ0eF07RBZu60/OWVVTB+Uxg2Th3H1+ME8+OkCluw8RHGVlR/XpzN7RO/AGP/ZupwP9mwhPiiENXNuQSVJyNV3Ah50ioJasaB2+6ttqLDxeJfPQILXc3tQJUssKe6BpAJFBiSYGFVbmUMCt6xCK8lIkv91Xj4qqFf3L9Lpk3gtdwifhi8CoNytI0TrX+Fu9ekB//eSJKE9qnrnivKWF6Ssr0yk34obwacwKi6Hd/ssQpJAI8HMyLeB+/BU3QGA27UBY4f9xEeZ2V9YiqRI6A7p8EV60R3RobKp8Bp8KAYFX6GWA7Gw5OetXHa7v+3CWeqO1OxK4ufHfuKzageDxqby749vbOvHjdPtobDMwtX//hK7y8N/bpnBpCHHtpjq2c+X8vuGffz9snHMHOlfpHbVU1+wN9tfVeXtn9fx3gMXB/YPNugw6bXYXR5iw5sullq39wiv/rKGA/mlAISF6BnSOZHn7zgXp9uLUV//OjSybycWv34rEhIqlXiNEQRBEARBEIS/umPJQnc4HO0q5e5yuVodS1GUwL7tmV97SrkHBQX95bLQK5weLG7v6Z5GqyxuL5VODxHG/90FDIIgnH4iMC4IwjH5+4uXcNV9U7l23H8abf/3bZ/w/pKWM3Kfv2oGD33+GxEmA9deMwePy4ssy6hUKvZbinghYyHgD0jf1P2sJscrisLXOZtbHF9GIVSnxe51BwLJBc4qrkwZzaCoLpi1Rm5LO5uru4zk2fTf+Dl3OwnN9DBvL7UkEazT43B4CT+B4Fp76NQanht4Pj/kbOfRvjNb3fesuO58mrmBbJt/ta1Ro8Xp8wTut3ic+BQZtXRsb/4zqgp4c98KJsSlMSdlYGBbkcPC2XHdsXic7KsuYlBkMm/sW8G+6iJeyljcZmD8WI2O7cro2K5NtvcM6xD4XpIk7uo5nq+PbMaj+PglZyfXdB15UufxR9pfWcp58z9FrVLxdNQoCg5XcunlYwgzN21F0JDT5eHihz6hwmLnb1eczcWTBjS63yfLeBUZvfrkvBVw+rz8engPPSNi6B0Zh8fnY8GWfSRGhjKoa2LbA9QqqLBQXGWlf6d4AO5c9Subi/N4ZcxMRnZIbvE4WfFSbJuHQZNAuGFIs/scsVTywLrfCdXZSTCt4bLUm9Frjj2wvbnwdYpt77Igpy+Xpj3NmPhOxzxGS8osdhRAkRUqrHZSE6K5ftLQZvcNDzbyyMUTG20b16cL4/rULwTRatQ8dflUth56n0qbk/cWbWT2iN6BntLlTn/mt8XtRFYUVJIEqhiQ/QuZGr5SSEhoVf5sb9ln5Pv83vVxbskfHH9j70ieG7CQGpeWSimSviZ/cFbyR8cbzdWn+APlz2UNZZulA48cHEGoxs2nBT2J0dm4peN2ZsUewiOr0ambD7qmBVezpTq+2fvqTidpJNaWJeGVQVP7gEpcel5ceiOPBhKc3ci+Su4+bwyrM7Lwygq6Qi0U+oPAjlQHSqx/QPsIJ+Y1Qbz1wyqqS6q59Yk5PHnLx+QcLA6ce/vaA83Oyec9gs+xiHJpAgtzy/jso61Ul9eXuSsoszR7XEtkWeGHFbtQFIWnPlrEkLQkYiPMgaA4QEmFlbzSKhKjwwCIMJv45ZFrqLI56RYf1WTMN+auDQTFAfqkJvDCLbMAGgXF66j/YheTBEEQBEEQBEE4cSqViqCgIIKCgoiNbf1zt8fjabaMe3O90GVZbnWsY8lCN5lM7SrlrtPp/hTJBocrbXWF1M5YEpBZaROBcUEQTisRGBcE4ZhIkkRsQjg9BiaxZ2t2YHt5SesX86NCgnjvtgtwuzxccdbTlPvcXHv12VxxxyQ6GEOJ1Af5y1GHNQ2gKYrC3qzco7fWzQiDpOHBvtN4Zs9PgXvrLtOH6YIZFV2ffZdbY+GaTmPoYo7mkLWEw9ZSOpujj+UpAPyltxeccy07y/LZVJXBuweXcEPX8ajaCDgfKaggKjwIg0aN1+3DENS0R2tzZnbsx8yO/drcL94Uxm+T7iLLWsqCvAymJvbC7fNywYp3UIBQjYFcWyVxxhAM6pazj0udVlYUHWBEdGd+ObyPRcU7OVhTxKqig8xK6seKNTu4p2IeMgqP9p3BR5nryLVVcmmnIVyUMoiXM5ZwScrgdj22U+XBPlP5LmsrN3QffdrmIMsylSUWIuPCjnuM9IpiHD4v+OCJbxah8ZpYtOcIP71+c6vHOd1eqqz+3usFpY0rBVjdLmbO+5hCm5XPJl3MsLiOzQ1xTF7ZsYZ30jeiU6nZevGd/LgmnZd/WYUkwfxHriOhHb2tK2sczP7PJzjcXh6+cDzjBnVh3pF9APx0OKPVwHi+9UsOVjwNSAxPWIRJm9Rkn0iDiRhjMDemzSU5qJSdJdsZGv9T08HaUOP+GZPGw/j4vRwuK282MO50ezHomr7NOlJcQZXdGQj8H21iv248dslEtGo1w1ObPobjYdJruXnqCD5YvImrxw+iqNLKZS99iSwrvHnHefSJjKNvRAbZ1a+SHHoTGGbjs70G1FUn95c993jh/YJ+6NVecnxTeaRfL1SSije3r6ZUtqGuUFNQPIgpS7ozMjWZW875FUUpCWSMBwLVUv3/55d258fiPlzVdTD5tlR+LNiPAhS4zfjqcspVMo1D9H6yAjstjV+/JUBlAZ8ZaHiYJDUaYV1FBwaF7298rKQiJTaUza/dzeOfL+KXDXsC9ykNP7OrwWf24QlXeCN0F+98tJ+QJBeoNGhLfSg6iQin/7Vdln24q/6O4lqNLJcjSf7HbZb/w7Pp1+IdpMK0WceMrj1JS47l4gn92/dDraVSSYwb0IXl2w7hkxUefnc+V0wZTGJMKHkl/t/7/DILsx/6kK+euIouCf5AeHRoMNGh/jKJy3YeYv7mvVwxfiADOidw7rBeZBZVIAFOj1cEvs8kyhlSSv1MmIMgCIIgCILwl6HVagkPDyc8vPVqfIqiNOmF3lJZ9/ZkodtsNmw2G8XFxa3uq9Vq21XG/XRmobu8MnlWZ+Bq6S3jh1JakMdFt9/HxXf+/bTMqW4O4867iDuffRXwX83Nszrp65XRa8RnTUEQTg8RGBcE4Zgt3nGApCv603VQCvM+WInsA6fdjdfjQ3N0ndsGHF431XY7h9KM+EJDee1gBl88kcNbt5zP9YYJLD98CHMfE58t3kJIiJGZg9OQJIlXH/yORT9uQfeMCbcBUBQkRQG1gn6Tj68vvYnOSfGsK9vHipK9gP+NlhoV53asz1heXZDFlYu/RS1JhIQ78CoyFS4b/x1+xXE9D9HGIAo9xfyU589kHxbVjX7hLQfuvl+6g+c/XUZkqImIFVlUF1fz9A/30m/0ifUgb04nczS39xgXuD0wIomtFTkoEkxf8n90Co7ik9FXMy9vN8OjO5MW2rgM/u0bviK9qoAOhjAyi12otV4MJolxcd3ZtWo/z974HvKzsaCWkCSocvsDsBUuW6C8+emSX2Ph16w9TErqxmdj215McCzKHDZ+ydrDWQmd6Rradi/gRy56na3LMrjs7zO56p+zyLVWcdfquXQwmXl1zDno1E1/X6prHFRaHKTE+8uSzUhJY19FCY5KB0uLt+GLBK/cdlAizGzklfvOY++REi6a2L/RfdnWKrKtVQCsL8o+KYFxY23muU6tRi1JBBn8Cy+0ajU6TcuvCw25vV6cHn/Zryqbk2hDENf2GMTGolyuSB3Q6rFqyZ9BL6FBJTW/8tis07Ny9k3sKl6PzVMaOOajpZv5YsV2bps+gtkj+rQ5z55Rf2f1kReYu60bmXs2cVmvAWgb/CzfmL+W9xZtYs7IPjzaIKM7r7yaOc9+hleWefbq6Uwb2PR3X6WS2jWHY3Xp2P5cOrY/4H8NL7f6M8UP51UwtUsQ+63/weoECS2J8rbAcVKD9g0ajYrbh37fZOzzEvvy7A/LWZ2XRWGNFQWFFblZ+JbMILFnN1yODPqElJCVlcSuHaOpqCznuwc/QaO2M7XjSJ46rOHLw+u4ueMuEuN1fFzQEwUVL2QNx+LRc01iOh7FhwY1dYnny8o68Oj+URS7gxv3jPBAxHoDsl6ha+9oNkXlBXqPZ9RE0tvsbzXxS3Eq93b2P04FkFTTkVShrF+UztO3f0zJsGgI09XeCfrdOhzDnKD33/aF+KgZrMHdUY0bGdskDUjawFyKLAo/bt7CtJTHwOsPsDe8PqJWwYtpS7hn72SCB+t46JyJhAQZjutn++QN0/jvj2tYvPkAOw4WcDD3d2xOd6N9ZAUqaxfK1LHYnDzx3u+sysrGI8ts3J/DJ/ddwiVn9eeSs/qTWVjOhv3ZTBuUdlzzEgRBEARBEARBOJnqeo23NwvdZrO1Wca9pqamzSx0j8dDZWUllZWVbc6xtV7oDYPpJzsLvdTuOqMzxRtSgFKHi0Tzqa3AKQiC0BIRGBcEoRFFUfh10x7KLDY2H8ojp6SSl64/hx6JMQCUWWz8/aP5AFw0vA+yz39cxy4xTYLiiqLwbPoCMqoKmBDXg1f2Lva/SZsO5LlxOjTk6e3c/+vPHEivRgHu3PsdlZJ/0NdfnEfUETumYAMS0O8dIx8ufZBSp5WJS54HJDDBJ3tX8VjaRQyO7FwbGJeIN4bz3wHXE6IxoSgKlko7JXYb4C/f2zk4hgPWIgZGnlhGZt/wJHQqDWatkeSgpiVpGzpS6C/jVFFtx1dSjcrjI2PDwVMSGD/a84PnMD9vN1vLs1lZfJBcWwX/3rWARQV7Mal1JJjC6BOewN09xvOPrT+Qa/O/2Q/W6pFwoVOM/DbhWpLM4WxZmo6m3Efcv0u5/MU5XJgyiP4RHdlQmsW5Hfu2OIfKEgtfvjiPbv2SmXz5qFP2WO9ZPZfNJXl8dWAHq+bc0ub+dquTf855hapSC099ezcdu8W1uO9dK39lXXEOr21by64r7mlz7D2bMgFI33AQgF+y9rC9tICakCLW5f0fHYLH0j3i0cCHoRq7iwse+IjqGieP3jiFmaN7YVBreHjIeADOC+7K+vRsLpwzvM1zA4zo24kRfZtmM/eKiOHufqPItVZxeRsB5/a6s+9I+kV1oGtoJCatjjkj+pAUHU5sg8zUllQ41rG75A7Mul68fduT5JRYOG94LyRJ4rGhE1s9tk6H4DkYNYk4XSFc+vxCHG4P799xAYlRYY3206rcxAQNR1YGk2i+liWbDvDB4s1YHS4+W7GNPsYQMjYcZOKlIwkObb5cfWzQdA7sNbBjy06a+xy3fLe/z/bK9MNQ39oZp9uDt/YDt9XubHrgMVq94zC5RZXMHt8Xg675ChAleeV8OHcTO3JLuO/ysxnaK4kxPTsze0RvfD6ZbrGRXP3ox9x1m4HgICfBulQ0uil4Ku8D3x4kSUKp/Q9kFLkKSRXW6Bwb92Vz5FAR1TX+wKurgwdPko+FHIRMCehN2EE9t8WM5EDOeoZ0LcSgdgNqPM6v8MgXMivmMLd23O1/nvCxujKRfEcEr+QMYaMlHqPKw6upa9FKCk5ZzV2Lz8KrUqMNAxcSkrY2Nu7yz7djaChPz57OpJXvBpqZX7JtNtE6GzavFptXx1MHRnN5YjrVylgu63obJUWVrFu0G68s4w6tez79kXG1oiZovQlPJzeKFnQFGnxhRpDd/qz0hmnwgCdE4tE185gQk4OuhQpxEVp/BsMjoyY3GxTPKark7ld+wuHy8Oj1UxjZJ6XZcabf+w41DjeKBEhgc7hpsJ6BzvGRXDN9CINS/RVZFEUhq7iCbXtyWb3jMF4DoJWocbr5dNlWnrh8MgBdOkTSpUPzC4C+WbKdPVlF3HL+KDpEhTT/AIWTT1Y4IwojtmNxliAIgiAIgiCcTlqtlrCwMMLCwlrdT1GUQC/0o0u5Hx1Ydzrb/hzf3ix0jUbTrjLuQUFBqJtJqjhalctzxpdRryMBVU6PCIwLgnDaiMC4IAiN7M4u4tEvFzXatnDb/kBgPMigIzo0iNJqG2nJsRzqGEFBSQU+lRzoGV4nz17Jl1mbANhZmVc/oAHo6gX8maF7yWaILpUd20vgiBWSjSBJlHXQokl3MPOKkVSV1zBptj8LOdpg5q7uE/li51oq+9qYJ6Uzf2E6elX9S1q+o5IZL7zPkNgUBlZomfvZWibMGcSTV0/EUuPixoFDsXodRBnMJ/R89QtPZsmEf6FRqdCqWn9JvfG8EZhNenqkxJLfdz/FOeXMvG7cCZ2/vTqYQrmh+2jOcfTl08wNDIvuxOoif7BWJUkctJZw0FpCB2MIm8qO+OfbbTTXdxtFtcuFSasj0uAPEg6e0Jt/f3c3KrWKfmPTWJGxg4iwdC7tNB2dOqjFOXz76m/MfX85AAPG9SA6IaLZ/RyeXDbnf8OhbR05Z+gkohOb368lMUZ/EDba2Howts7BHUfYt8UfyNzw204Su8ay62ABCTFhRIU1fjwlpTUAWO0uyq12Is0mPL5K1KqgZrOUH/7wZlb9soXzb/UHd6cmdee7Q7uZ03kLspJHvvVLOoXdSZbFx03LfyRWH0yVzYGExI/LdmLQaekdG05Rdhn9xqQxeGQqg0fWL6SwuNKpcm6hQ/D5aNVtlyqvI0kS9/ZvXGK+zL4Cj1xJXNC5SFL7MrwbUqtUnJ1Y39takiSGdmtfJnqpfTE+xUaVaxMlufu5ZMLUYz6/JEmEG4ezIjOTw8X+RSjr9mVz0eiwRvvlVL/Hkeq3AIlNW3rwyucZyHqJxMRQrhk3iH/MfB6n3U3Wnnzuff3qFs9337lj6Z8ST6+k2EbZ4gAPzhnHl6t2cN6wXo22d+0QxVu3zqa0uoaZQ3oc82NsKL+kir+98jMAuzMLyS2q5PKpg5g2KtA0m/LCKq4f9gjFE7sC8PWibQztlYRBp+GxSyYBsGH3ESw1Wl547VKSSsv46KuzUWm16GPm4bV/h1L9UCDm6/OZUdP03/n9H83H0+Djtze86Wr7pAo10+ak8VX+esb32VM7poQJH8kaGzOjs1AU8CgSk+N3MTounUfTZ1HhDmJ9VQKSBBfvMjM7JpMvilIJ22AlYpWT7Gs64uqhRvEqtSXUJUrHePHsqOTZ7SsxZGpwxnlRgv0fvuOMFRjVHjaWdibLFsZ7Wf34Zfi7SNXvcdvrlzO610iMM2JxpTrQ5OnQlajx6fxZ4CoF9If1/pizrKAp1hCyWI0ryY0c5EIOUaEp86E2a7FHKxiy4N4PpvPMtT8jqWVMai+yArurTKg0wdy1cxJPRk1lWseejZ6rGoeLKquD+ev2kFdSBcCLXyzjx2eva/K87jpYQE1tIFyiaYXrKcNSeejKiQQb/aXd80qq+Gz5Vr5Zs4vOsRHERZrRadSYYozsyytt1J/+aAVl1dz2wndYbC6sdn9Q3+Z08+Kds1o8RhAEQRAEQRAE4UxW12vcZDIRExPT6r5er7fN7PO6L5/P1+ZYVVVVVFVVtTnHul7orZVyL7MpzQbFvR4PH/3ncVb+8h2SSsXoGedxzQOPodZo8Lhd/PD266ye/zNlBfmYzGYGj5vIlf/4FyHh/kXSmem7+OzFf5ObeYCaqirUGjWJXboz46obOOvcOYHzlOTn8fYjf2fPlo1EdUjgyr8/3OLjUYAKh6fNxy0IgnCqiMC4IAiNRJpN6LUa3B4vQ7t3xOpwMatBcMeo0/LLP6+hssZOYlQYPyYvoOAOI4VuG1eufI+9NUVcHDOYgw+nYzDrGHRHR7Zac5trD9tID62Jgnn5aDQq4hMjydA4CFFpmThzAHOuPwtTcONsuuu7n8Wm8sNsrjwUCNq4ZG/jQVUKO7IKUO3xl5TdvT4TZ6SXffmlzFuwh+smDuGi0SdeatuoaSEd8CihwUauO3c4ny7fSvDQRK65PR6Z/cCgNo9tTmZROXe9+wuxYcG8ecv5GFvIGG0o1hjCP3r7swFHRndmUnwPPLKPx3fOo1dYB7QlBtQONVGmYK7rNooQnZEQXdMVnIMn9AbgwyWb8Rn+DsFFbC34iREdW+7X3H1Qin8OSZGERLQctN5QcD0K2fi6RnPjTbv4ecHTbT6uhl4eM4Mr0wbQJ7LlzO+GegztwtjzBlNZYmHcnCF8tmALb3y7mtBgA3NfvhGDvv55nZnUg1ePrEXRw9aKPPqrMkkvvRefPYIfbxnHFfdfwKiZA5FlhWd/WM7GzQfpVGwPLBjpGhbFytk3U+kcwN6yfxJuGI5WFc78I2sC5c0fuW4cWzfsoGPnb/l5w3Jee8WIp9rBzU9fHAiwA8iKh+1FV+JT7NS499Ez+tnAfaUOG2atDoOm7X8TAFZXBrtK/D3LFUUm3jynjSNOrsSQK9mXu40tuwwsXJrB6N7DSYwNa/O4wxl5bFmymwkXjwj0cR/WPYmpA1Oxu9xM6t+9yTEGTQIAGpUZCf9iD51X4pO7LiI82Mi3ISacdjehkf5/o8UVVm555luQ4J2HLiImwr+YxqDTMH1w4xLTVpuTJ99fiEat5ukbpmAyNH1tGJnWcruFoz31/kIWbdyPyaDlkskDufacYYH7TAYdJoMWu9PD1j05VNU4eeuHtY0C43arA4/Dg/5wBZrUGGad1bvJOYb1TmZ4SCg71x+gsMTOjKc/osrmRKtRMXtkCkPD72Pf/J/IzDAz+47bGZbQNIs+VK2hzOf/UKuoFBSDEihB7t+oYH13H7d3/5L8OCuvV/dlhKuQcK2T+YeTyLOZGBRSjCTBPlsoLo0Vg6TwWe9FWL06bt4zER8KIQYL7+X34JHOW4h9TEtZwSPc/+0mfHky6hpwh8n4QgAtWNNkFlccgmQYE3WIjmEVHLJE8XCvhQCUdTZy/YZrebbXEoK1XtDC13//mF2W73D3TWP3kQEMTtpHaA7szErh3LM3UFltZuGawQzqfRC7w0DGwWRQVOjyDSDr0ZU6CN9lQdYqlM4y4UgysmuvmZlP3ERicij/d+cFzHruPSxDanvdSVAQZWn0XNqdbuY8+BEVFju3zB5JkEGHzelm2ojmF1IcXamlwVPO2QO7MGVoGgdzS1mz4zC7MwvZfjAfrx7QSOSWVbH2+dspqrRSXeOgd+cOrZbyu/zxz6mxN+7Tt3rnYSotdsJDmq+uIAiCIAiCIAiC8Feh0WjanYXudDobZZ+39OVwOFodC8But2O32ykpKWlxn55zrkGtbXoNYt6n76HTG9EZDFQUF7Lgsw9I6pbGpIsu5/k7b2DbyqWo1Go6dk2lND+XZT9+w4Fd23n++9/QG4yU5OWQsWkdkXHxdOzWndL8PDLTd/L6/XcSHBLKoHETURSFF++6gcyMXahUKtQaNa/dfweyr+US9VUuD4qinNRy8oIgCO0lAuOCIDSSEBnKgkevw+H20PGoEsR1ggw6ggw6fD6ZHKUKtDoULeyyFgDwedEmEo/4+9dOXTqUI7sOUnGJAcWjBq8CMbL/6r0Tf/Y44PP6cCQa8YTpeOmec9mUV8CXq3aQ08GIwaRvdh4vD7qUUYufahRzl0vVYJJRrFqGdEnmkn4DiZe1zP9iPZMvGMLd85YAUFhp5ZnvljFzSA9M+vYFtuuUW+1k5BQxPDUJnebYXkbnbt7L6/PW0im+kOiOvwDQP/ZjIowjjmkcgGW7DpFXXk1eeTX78koY0DnhmI7XqNQMjfaX2V48+R4ALnj2M1SFwchBBkJntV3SSJYVZMX/JratLOOz5wxjwNgemEKM6PQtB2wV/IFHq9uArPH/dAtKq3nlyxV0S4rmxvNGNHnjXO3cRpFtLvHmizHr0hge1/4S+Tq9ln9+eHPgdsUqfzlnm8NNmX0dJllDhNFf+n1sz068emQttQ+YatdOQEFtKqe8PJdP3vidfT43XTtF8c2anQCUV5Sw4LtPuOnh+1Cr9PhkB+GGoYxMXBI45/lderEi/zDJ5nCuGj2Y+LCv0IfsBfby1rsj8VRrsB/VH1hChUYVgs9nR6cOD2yfe3gvd67+lXCNkdUX3Uyw1v/7M//jlSz6Yi1XPnhuYGFDHbXKBKgBX7szz1dnZJGeU8RlYwcQepy9kesEaTsTwSssWf4LyXFhRIW3XHmgoYfOf5nqMivp6w7y5Dd3Af7FO89dPb3FY+LNF2LW90GvjkaTGEF8ZDzx0SFEhfkD4W+ufITsfQX0HukPqm/fl0d+aTUA2/bnMbWFACXAiq2HWLnNXz5/4rDuTBjSNDDfXj5ZZt6aDBQFXG4vH/yyoVFgPDzExHfPXkulxc6mjBw+nLuRCyb0bzRGx+4dePzLOyjJLWfa1WPR6pq+XkmSxJOPXcSvX7xP8FmrOJCfy1eLzsYjK3Tt+i+8wQ7KxnZni64/kd71eHIeI8I4Bo0qiDW7E1i4SRsIigMoWgUa/nrX/qoa+0ehC9aBFUo8QUzYNtu/vwLo4cXsQYwJy+fV7IFotXZGmEu5vWMGABfG7uOqxAxq8JFpD2F8iP/nsabkcVTe6QQfUoNPQVMt4YvyMLvbFnqaCgkPsbE8uztXp24EoNRR/5oWpbNza5fVjTKsVSroFWrDZcxgV0U016atgT7QZX8+/VKzAJAVicmj/L3JX/lkNmWVofi8KrweLe5IAygytl56rEP0gIwnxoECVOmc/HfrWryqxmv4F+bv4+/9xgduW2wuKiz+v592h5sVb92BT5ZRq5pfXdYzJZZzRvVg7rq9jRYjSPizw//2+i/IKv8Gyeffrnb7n3fZ4eOht+ezaof/3+xTN05r9d+3Vt10DrKssDe7mJF9mrZsEE4BRfZ/nW5nwhwEQRAEQRAE4QwlSRJGoxGj0Uh0dHSr+3q9Xmw2W5My7s2Vcm8pC12tNzQbFAcIi4rhxZ8WodXpuH3SSCpKiti9YTXxKZ3ZtnIpAI9//B29hgynsqSY2yaPIO/QAVbP+4mJF1xG2sAhvLdqO2FR/sfhdjm599wJFGVnsWbBLwwaN5HdG9aQmbELgBsefYYpl1zFrvWreeLai5udE4BXVnD5ZAyaY69YKAiCcKJEYFwQhCaiQtoXlFKrVVyUOoTvt+6kYhAEOtlIUPCMkVkrkpl19Wgy7jqCea6JO1++mPcWb2Lesv0okgJqULo4uOasIVwSO4SvtuUA8LdvFpJbVgVAQaWVRTv2M3VgWpPzVxVYuSJ4OJ9VbUJVrMV3KAiSnRDhAoOPrdJe/p06lThjKD0HpgDwTlIoz32xhK15hegrPFQVWTAlt94bvCFFUbjyla/IL7dw/vDePH7ppHYfC5ASE4ZKkjDo6gO7iuI+pjHqTB+Uxpo9R4gNC6Z3Uvuyo9ty05RhvLNwAxe3M5P+mgmDWbr7RcJVB+jVYSo+WWbVtkyS4sLpktj0eQ2LbrsX7diOn7Ik8xfUWSY+fPssAL5ZvJ2V2zJZuS2TaSN70DE2vNEx6aX34vIVUe3awdD4lrPW2+Om80cQG2GmS6cCDlTfBNXQL/YDIo2jGRidwJeTL8Hl8zIuoTMe+QZkxUn6Uhcqr5v8zmG88+M6uiVF0yc5jn2HC7no0g2kTihgZ8legrWp5Fk/pWPItXSLeDBwzk4hEfw6s75s98Auk8ko/R2DOonHP7ifnP1lTLi4cV9xSVIzJP4nbO4DhBoGB7Z/t8UfkK/0OtiVU8jILikAvPev73DaXXz+3NwmgXG9KhnnxkfRmbxEzZzQ4nNzxFJJjcdFoiGUu977BVlRqLY7eXDO2cf9fNcZ078zy96+A51W3WIQ8GjhMSFUl1kJj2t/GXkAs67+9WTswMalo8OiQxr9Ox09oDPjBnVFJUmM7t+51XEH90yiQ1QIGrWKft1aXqiyKSObj+Zu4twxvRpleDekVqm46+Kx/Lh8l7/3/FFBb4Do8GCiw4PpnhzDFdMHNx0EGD617d/lsCgzw66oIt9awdCwCn7fMBhLTRDmIP9ijIGpmQzvfQCbQ49bdlFY8yOSBNGxevblX9toLJVLhemIFm9nHx5kf+BZkthzgQnKikkJDaPAWcXRi8I/K+zJpwU9AQkFyLFFMTK0mF7BFdyTvBNJgkhgo0dLuVtPpM7F6B7ZdImtILM4EiQJs+JmopTBtKT0wLjndt6BrIBKgmijA68MWkmhgwZuSNmFxa7GLYOu7p+cImOWUrgpfCNxqhpKfUb2qKLo4cnBYg2iuMz/2uPzSUSFV3PXFT/jdGl48cOL/fePTyBkXwkqm4Ksl1BqY/GKD34+mI6pTAM+/OtQgCxrBV5ZprLazjs/r6NnShzP3DqDg7mlXDF1cODfQkOyrPC3139mx8F8nr5lBo/eMI1DBRXsPdK4h92hvHIUCXwG/89A7VT8wXEFdD4Jj6ywIT0rsP8PK3YyZXhaiyv2eyRHsy49p8n22FYqgAiCIAiCIAiCIAgt02g0hIaGEhra+nWNhlnoR39ZXS2XJR8yfjJBZv81jpjEjlSUFFFVVsbB3dsD+zx65ewmxx3cuY2JF1yGpFLxyXNPsHvDWqorypAbBOcrS/yfQXMP7g9sGz55BgB9R4whODScmurKFucmH90LTBAE4Q8iAuOCIJyQO/85mynVI5mz8i2AQLBDMUL5VXpSUjvw7sJ/BPZ/5LLJjO7TmYLyaj5ZsY2ZcQP5W69xuDxeEiJCyK+wBILidVITmq6uXPzDZl5+4Ft0eg0xKoXiif4+1KFKENX4S70qKChHvclKTYjmvMRk8j/YhuSD6vIa4o8hMA7gqH3DaXMee0B7YJdEfn/8erQaNYpqOgoyEcaxxzwO+LP7P7mn5dWXx2PygO5MHtBylmve4RIev+kjImJCePKD6zEYdUzpPxgYjN2TzfLMOeRYFZ58fyY/vXA7Yea2s86PplEFMbXbZUztVr9tVL9O/LBsJ53iI4mNaNoX3qzrjctRRIiuzzGf72gmg45Lpwyk0ulje5F/m9SgLsHIDvWlsHXqKFIjHyf1IphzEdz1wg+UpmcTHxXCC3f7++5uKdyExVWAw5OL05sPQJl9WaPA+NFig6YTYRjp713eUUt4dAlfv7SAMecNolPPRAA8vkpyLZ8Qqu+HSqr/cz4rviebV+RidKrpPqv+d2fqVaP5/bM1TL5sVJPzrfppM6/f6l8pHPXzIPqPrc8aVRSFjMNFeA0yFyz9Eq8i8+bYWUSaTZRabCRFh7X3qW2TsZVKAs15acEDHE7PpceQ1gPWJyLYqOf5u85t174dokL45aUb2tzvjW/XsO9IMfuzS1oMjANcPm0wl09rPuB9snUInkOFYwNuVxfev+02okPMpJdtwKXsxu7Uo9Pa0Wi8FJWH4XDq6ZRQTH5pZLNjrb/nLp7NWMbXmduPukfFkepqdA2KgAT+ZtRWX6/Lei73GPm4sBevpa6sH7cqihcPjWd+UBXvpC2lsDyE/PIQkOGKaYMI7fgwSQmluD1qJElGo1ZQqSU8ioRe8v8tUCSJIJWESvJnvJqMPnJ8EtEe0GllvCis+q/EuXf6S9StK+zG8so0NmzsjSZfC7JEWWUYTreWHl1yUKtlgkwuHr/tU1xuLfklEfzw7ShSnqqmZFIU9qE+tF4INZixHXIjIRG6xYCtvxuvWsacq2f6Pe+QHBfOjoMF/LIqnfkv38ikoakt/qwqrXbW7PIHtN//dQNb9uZyw7nD+NvrvzZ/wFGBbgn44okryS6q5LVvV5JX4s/ATz9cxHkPfMCEwd0xm/RcNX0IdqebGrubDlEhdE+OazYw/sPyXdx/RcsLagRBEARBEARBEIQT01oWutXtZXFWabPH1QXFAdTq2mtHikLD8mnd+g1sclxYlL/f+mv338GudauRJImELt0wBgWTd+gADltNIEje8Mpr44+frQe+fSIuLgjCaSIC44IgBNicbt76fT17cou555wx9E3p0K7jqtz2ZrdvLctqss2g0zBtkD9b8/rJ9WWB9VoNP//zagoqLFz7+rdU1DjoEhfBFWcNpFNs0+BLTmYJ3iA1xUMj0Pqgp8tAaJ8Y1h/IgXwz40encMOokXQwhTU6Lr+8mhd27cA5PZG7B/UnbUDTfr9HSir524dziY8I4aXrZjYqly5JEh/ddRGbDuYydWDLgYvWxIbVBXbPanGfM7XPztqF6eQfKSP/SBkHd+fRZ2h9QLLUvhitoYAunSAhobjJooQTMbRXMivfvROVJDX7vPSJeR2ntwCDJvGknTPcMIQBcZ+D4iPcOLztA4AX7p7F/uwS0lJiAtt6Rj1PUc2PRAdNxe0ro8D6NQnmy9ocS6sOC3z/3M3vs39rFsu+28DH2/8DQFbVG+RZPwckxnRcj7a2nPqc0X3pk9SBsGADUWH11R9ueeYSbnnmkmbPFdkhDCR/FYijs/q/X7qTFz5bhjZKjbevP5ho8Tj56Z9XU1xlJS7UzJvfriYlPpIZo1sO8p4KQSFG+ow8/nLlp8vUEWkczCll2siWy1b/0UL0fRmRuLDRtpGmb3B6C6m2V1Nk+4KVe+L5ZLEXnywTFVZNhaXpIpWHLxyP2aTn0YGTGB2bwmNbFlLmavg3Qg14Gx0TCIoj1TfJBtZWxbO0PJE+5jK+Lkzl3fy+KIrEFkscwxdcgXGtCYNWw42zhnD9rGEsPOBPw87Nj+aV/eN5atxPhOvteNCgUzxIEsgKVHs0hKndKApU+MDtUGP3yahCFWQfLP++CzGDawjt6GL+nv6onWpUpToUFah8kFfsvwixabeJlIQi+qdlolKB0eChS1Ix/7jvRz45OBz1Og1ndRnBPffM4NUfXiNq1q/sPZjMio0DCF1lxCcrIEMlDmRZQZKgY0w4YcGtLyiKDA3iupnDWLcri92ZhezOLCTYOIq4yBCKyi0MTE2kY3QoP6/OQNaA5FaQZH8pdRQICdKT0iGCTvGRzF+7JxAY9/pkCsosfPb7FgBiI8y8+OVyrHYXL9xxLrfPGY3F5uTHFbsazWfd7iOtzlc4iY66gHVa5yEIgiAIgiAIwhlBdRyXD7v2GRD4fvZNdzB0wlQAfF4vu9avJqFTVwAO7PC3Ept44eXc8uTzWKsqufec8ThsNYHjk7rVXx/dsOg3Jl98Bbs3rKWmuqrVOajPvMuegiD8jxCBcUEQAH9p1ote+Jy8cv8F8g+XbubV69uXJTkkqhMTYtNYWry30Xa74sHqcWLWNu0/fMhazN7qQiZ36IVe7c8S1Wk0pMRE8NujN+DyeFvtW3zxLePZ6ahmZUUxPuCe26bTv1MCU558n0qbg8K9LnrPaFrK+EBBGRaHP6M8pHtUs0HW37ft51BhOYcKy9lyMI/3Fm3C6fHy+o3nEh0aTEpsBCmxEe16bo7HvM17efyrRYzp1ZmXr5t5RgXIx53Tn/VLMoiKCyW1X+M+3rFB0ymxLcRiMfDIVXcTHmI6qedurby2JKkxajue1PPVWBy8+9hBTMF6bnnE22x/5qPpdRr6dotvtM2kTaJz+D2B25HG0cc8lw4p0ezfmkWHTvWrgk1a/6IEvToGMPDcTe9zcMcR7n/nBroPSDmm8fuOSuW9DU+h1amJS2688risygaAr1zmxaHT8aplLujaB41Khdmo5+0f1vLJ/M3+cbp1aFLmXmjqsqmDuHTKwDPqd7s5/t+rRIyhicSFPkP/eLhzqkKVzUGVzc5zP66ge4dofIrCecN60b1BdQ+9WsO0pB6YdQZuW/EdNYo/GB6qM2LWQ7mrmie7rCPFZOVv+8dQ5A72L6aRACR0khqXDPccaFymX+vUwGE1mgINeLw8fdkERkzow6XPfUlpzQTG9CvFWj0Ap7mIR3eex4ioQ1zaaTOVPjUbP0hhx6IUcpKT6dDVQaeoAvqaC1n1dRcMumrOvW4Py37oijU+nJdWzgmcMxCm9irgAdQKSBIut45vFoyjf/dM6opKSICkgmvf2UDvmHcI1Z/FO79fz8jhqwGF7p3yyS6IJiu3fhGPSpK486IxnD2oGya9Fk07eqzdOnsUl04eyAX//AiLzUlcpJmicgsA+44U8+Kd51LhcLJs32EAeneIYd8hf5m7apsLh8uDyaDjrovGYA7S06dzBzbtycHt9bI+/QgqSYU5yIDV7v97mVVQTnRYUJOgOEDvzrFtzlcQBEEQBEEQBEE4NdTHcW2h97CR9B89jh1rVvDc7dcR36kLKrWasoI8nHY7T3zyPTGJHUlO7cH+7VtY+v2X7N22icqS4ibXMvoMH02nnr3J2pPOe088yPzP3qckNweNVovX03KZd9UZfk1EEIS/LhEYFwQBAJ8sU1JlBfxvTKb0b38WpiRJvDrsUgrslcxe/gZ2ue5Nj49xS54CYHB4J94Z7i8xbPe6uWLNOzh8Hg5airiv59RG4xl0GgxtBCGDQ4z8655zsX/2G+FBJgZ0TkCv1ZAcHe4PjFdZqaixExHcODg7umcK14wfhNvrY1ILj3HqwFSW7DxIh3AzFoeTbYf95a9XZhzmgpF9W5yT1eHC7vIQG3Zi/VaX7jqIxyezfNch3F4feu2Z81IdmxjBqz/c2ex9Bk08Q+K/g/hm7/7DKIpCSX4lETEhbQazy4uruffCN/B5ZV78+jY6JNVXJ1gxdzsr5vpLQQ+f2IshZzXtc/9H+ft/r2X2bZNI6Vm/2CMx5HLCjSPQq2Mozalh+fcbAVj05dpjDowDdOzWfJ/6a88ZSniIkc4JUQztkdTk/q4d/cHQcLORcLP/981abeexGz7E5fTwxHvXEXWMPcD/F5zpQfGWqFQSEWYTEWYT79x2QZv7j47rxK5L7kdRFCqqPiXU/QaYruD7HDWzIv1VRd5IW8aFu88NlFxTKxJPDzyXTeVHUEsq5ubuQlEULus0hHt7TeD7XzfzbME6PBE6vtqQTtchnTlQUIZCMN9k6fAk+3sgOGUdy4p7srk8BfN3Dkwb3FSOTULRqcgrM5IYl0zfc36m3zlHqNh0Fy/dvQAAKV5u+kAUBZUHkmJDybZYAtt6dc5G3cKanSLLD2S67mZgrypUqDCofCgKPHztd6zblcq8VSOwWE388+rNpCV/To1jCGbT6wQakLchLNjIr8/fgMPlISLExJqdh9m0N4fb54zGbDJwx5zRrHkuG1lRePjKSdzz0o+UV/uz9zW1C406xobz6HVTADh/nP/vW1WNA5UkERJk4LHrp5BXUsXFEwewMSO72XlEhooe44IgCIIgCIIgCKeLXq1CI0l4j7Gy0wNvfsiP7/wfa+b/QkleDgZTMAmduzFgzNkkdfdngd/xn1d557EHOLhrG26Hg2sfeoLlP35Dxub1gXEkSeL+1z/gv4/8jb1bNuF2Ornt3y/yxSvPUlqQ1+y5NSoJfUsfpgVBEE4xSTmZtW7/pCwWC6GhoVRXVxMSEtL2AYLwF7U1M4+NB3K4aFQ/okKCWtxvb14JkiSh16pJiQ5vFOC5bcOnrCk9BCho1HKj3jJ3h89itbyHCreNfEcFDp+bqzqP5G89p520x3CkpJLznv0EWVE4f1hvnrhk0gmNZ7E7ufeDubg8Xl65/hyiWwgAVNTYmfX0J1jtTl6/aRZjex1/z+M9ucW8NncNZ/XuzGVjB7R9gNDIV/9dyqcv/07XXgm8/vPdrQYg1/y+i6fv+AyA+567iElzhgTuyzlUzN8v/i+GIB2v/XgX4VFNy0afKWRZ5sVbP+TA9qYZ46UFVZjDTRiMulN2/uJyK8EmPUG151i7aDf/vu1TAO789xymX9K+UvTCX5u3bBZ4M1DwV2KuK/fmk6H/xisD+12QPICnBrZcscTp9jLuH//F6fNxzfhB3DN7LC/OXc5blvX+zG2pvtJzgtHM90MuY8GHK/jxp40UDqhfADK8/0EuPmcxAN2jXuKanssBkLUqiqYlABJSXW13Wam93YBHIdZczb03fYdeX18evu4lR48DXV0mudK4vJ0s+zDV3tewGEZkyL+ICLmt5SfxGFXZ/GXaI8wm7nzpBzak+4Pbi1675Ziresiyws+rduPyeHE43ezKLKTCYuex66fQJSHqpM35VPkzv9+vm/vEhFvQqPSnezp4ZRdL8t/+Uz6XgiAIgiAIgvBXtCqnnDKH+3RPo92ijDrGJjVtnSkIgvBHOHPSEAVBOO0GdUlkUJfWezSvyjjMne/9ErgdatKTlhjDvrwSbpw0lAKPvxS7JCkcHY98teQXvFJt1AIFtQQ/5Wzj6s6jiTKcnKBjYmQocWFmCiotdIw68SzVEJOBD+68sM39yqptWOxOAA4WlJ1QYLxnx1jeuW1O2zsKzTqU7l+NeuRAEbJPRt1KWeLBZ6Ux4fxBeN1eRk7u0+i+pK6xfL35MaQW+pqfqBqLA0uljfjkEw8oqVQq7n/nhibbl/y0hZf+8Q1RcaG8t/j+UxYcj41s/Pvbf0Q3+o/shsvpZviEP7bvuHAm0/l7iStKo5JpLqXxKvFCRzV/2/wD9/WaQIIprMkoBp2G7x+5ioMF5YzulQLAdmM+2Or3kSRQZMh3WPm4ZAd/f/h8rvnXbK575mt2Hy4EYNe+jvTvmYjZaOC9xzOwJ5sx5lgpmxmGfZQDVZUKwy4DKiSMNTKOYHV9D3QFJiYnsGNuJavVqUy6PQOA31/tzbSbfISEBKH4VqMCZECp7W8u4X/zHaNRYVJJyApUKl6U2v1q7PNPODBusTuxOd10iAghLKi+X/nD10zivV/W07dr/HG1ulCpJGaPa7lqiiAIgiAIgiAIgnB6RBi1lDvc/BkyICX88xUEQThdRGBcEIRjUmVzNLpdbXex8UAuAC/+shrF6IVhoKgkfJISyJCTJJC0oJZlfLIESMiA1etkypIX2TT9UdSq9pWPbY1GreL7+69geXomHy3dTH55NY9eNPGUly3unhDNoxdPpKDCwqVj+5/Scwmtu/Ghc4iKC2XQ2NRWg+IABqOOv79wSYv3q1rpa34ibFYH1094FkulnQdeuYxx55yaygCH9xQAUFZUjc3iOKVZ4w0FmQ3859Ob/pBzCX8OiuIA7/baFuL1r8eyAjO2ntdo37Ul/r7Y4Toj/+o3vdnxEqPCSIwKqx1DYUNZTtOdak/zzr6NfPvRbkb37MR1M4Zy7//5F3dVh2h4LnsiWllCk6hBpw7HY9Zi664FyYccJuNIddDXl4DZrWdHdlHDB8Tuj7cwYHAnwjtsxF6toeRwCNEpVuzWAszBlvq/f+DPkpckfAp00kpopPo5xihaqmQvLhQ8vvx2P6fNqbDaOffJj7A53bx28yzG9q5fpBUXGcIjtWXTBUEQBEEQBEEQhL+OML32TxEUB//n4zCDCIwLgnD6iMC4IAjHZMbgHjjcXn7ZkM7e/BJ/ddkGJIcGVoSjGHykjDJx2FsEahmNxp9BrlKBggKKgoI/QO5FZuayV7kjbSJT4nujOcEAebBBz/M/raTa7uRQUQUhJgP3njPmhMZsjzkj+7S9k3DKxXWM4NZHzzvd02iVtcqBpdLf6zfnUPEpO8/Ft05ApVbRtVcCkbF/rj7fToeb9E2H6TEwhSCz4XRPRzhBkmQEwzngnAfqZJzufAxqD7Ii8V7/O7hw40d4a9+VqgBJUjEi+vgqb9Q3Car9RpZwhnhZfvggWxKyCJmt47bI0Tya9xso4EHB09eNI8WNLlcLvtpDJVDiFHZa8gjadlR7ERWUD43E5ixj8OwjAKQMqCBlQDlGydUwsRwJiFNL6AF9M4u0JEkiWKXGJXtB8R3XY65TWm2jxukvn5dZVN4oMC78BShKw3/gp3cegiAIgiAIgiCcMaJN+sCi7DOdBEQbT3+LKEEQ/neJwLggCMdErVJx8eh+XDy6HwcLyvjbR3PJLq0CwKTXYtRqCTbqKKmu4dGe53L3B3OpNlrR9LHhq+3BqvLHw1EUpTawLpHvqOKh7d+zuvgAzw5qu3R5W3yyHPh+f37pCY8nCCdTXMcIHnj1cnIOFTPn+rNO2XlCI4K44cGZp2z8U+m5e75gw9I99BiQzMvf3XG6pyOcBJqwV1CUFwEVsmMXh8qeR9GPp0d8EnfZJ/Dy3qUAxBpDWDDpDgzq9q0gD5RllxQkSUHxSSApqFT+D9w+FDx9XMgqiRKnv+VFbnIVjS4ZSEAouEN8cHTs2kRgmwTotWqcHh+eCD0Hllewe1EivSbko1LLSMiB8umq2uENKplQVfNvuWXFv0TMIcvI+P/GnojUxGgeu2wShRUWLhnT/4TGEgRBEARBEARBEP4c9BoViWYDeVbnGR0cl4BEswG95tRUaBQEQWgPERgXBOG4dYuP4tXrz+X2d38mOiSIt2+djUmvQ1EUFMXfj/TDOy7ks/R1zPNuBKW2pHqDoIOkKP6MutqNvxXuomB1FQPDk7i71+TjLoH+0R0X8cnyLbi9Pm6ZMvwkPFpBOLnGzex/uqdwRrNW2xv9X/jzc7u8PHfvF5QXV/Pgq1eQlvRF4L4b00aTZI5gccFe/tFrUruC4jk1leysyGdSQiqKIvsD4RKo1Erg7w3U9htXKXhrLw9oVWqmd+xBtD6IJ7YvbBoIP1ptrDw6LJj37rwAJHj2u+UEORXSF+Qz/9kBHFoTx/mPb0Kn8qGSFCQUNJL/fOEqBaU2w9aLjBoVKklCURSqZS8uWaGyBkJDJIy6kcf0nMqygkrV+AGcP6L3MY0h/IkonBnZ2mfAFARBEARBEARBaKxzeBC5VufpnkarFKBLeFCb+wmCIJxKIjAuCMIJ6RwXyW+PXt9omyRJgYCELgTmeTdR12VVOSpYoVLVVQaVa6/3qthRlcOOqhy+PLKBTTMfO655pSZE88wV0477cQmCcHo9+OoVrPl9F8PG9zzdUxFOkv07c1i3KB2AFXO3c8ltExrdPyWhJ1MSmv68K0otbF19gGFn9yCk9gO0x+fj3MXvYfO6uazLIKTaoLgSWIAl+dt2AJMTU/EoXtyyj+eHnkucMQSvLFO4Kp/BC7RkqqtR7DI1/cNQ9Aq+BF994M8H+o16FOD1W2aRFBNCuW0v9182nAxrFeuSsnmw+2eEh1ajxYtRkgmVFIwqBR0qNJIKBTmwyEtSJJz4kPyxewrdGh744Hoqqs2EB9sY1WMw/766fc/nsp2HeOCjBfTvHM87d8xpEiAXBEEQBEEQBEEQ/ndEGLSE6DRY3N7TPZUWheg0hIv+4oIgnGYiMC4Iwil144b3G9yqD45DwwC5EvheVmQUxV9r3al4qXTZCNeLlYSC8L8mKi6U864Zc7qnIZxE3fok0ndYFypKLIye2qfdx/3r2vfJ2ldIv+FdePbzWwBYWZSJzevvpV3qqKFvRBzpVUWBvyVqVHgUH2pJYlHeAVLMkXw74Uqe2bEUp8XJ8oosfOVugswuqkcFo81XYcjSYzQ4efHsT+kUUYNBUuH2aGAEmDQSKu0qKgs2AwoaRWawJPHTCAmvImOTIVgNGklCJUmokdBJaupmU5cx7lF8IEnItdVSft8+gApLCACVNcGEmY3tfl5W7M7E4/Ox+WAuVTYHEWZTu48VBEEQBEEQBEEQ/lokSaJntJkN+ZWneyot6hltPu7qoIIgCCeLCIwLgnDKHKkppcxdc9TWujc//iDB0e+FVIASyPOTWF10gHOTB5zSeQqC8Nd2KD2PA7tzGT9rEAaT7nRP53+WwajjuS9uOebj1Gp/7zGVur4HmV6tDnx/VbchpARH8MT2hbh9XtJCogm1atnsLKTIWs0eXznlh8p53v0bP7sO1A8cqcbWUw+AN1KGLHj3ureJDvWgRkKvUqNX16WOKyi+regkFTIKBkntbwMCyKgwq0GFFNjWHIfiRQa8skKpT0KSVPRMymZ3Yi4HchJBkhiRmtzu5+XqCYOpsNoZ1DVRBMX/V/hL7JzuWZwZcxAEQRAEQRAEoYn4YAOJZgP5Z1iv8bre4vHBhtM9FUEQBBEYFwTh1NlcfviYj5EaxM0VFCbGizLKgiAcP4fNxd8ufhO3y0tuZik3/+vc0z2lM5bPW4y34mK8igZ9xDdotJEnZdyV83fww3srmX39WMadc+wLnZ768AZ2rD/E4LGpACiKwo7/20bS1hp8Th9PPvgaF906gWlRsXz37nKWFWwKHCtrFBJSdBhyPGQPVSNNVlDZZIy5XrQVXmKLNVSdF0b1QSf2NBchQR7/OZqZR92qdpVS+72i+FuHKP4P+ZIkNRsUVxQFr6JQI4MbcCqqwFhJ0ZXcesFcHnjjRtweLXe98TPv3nMBg1I7tvqcFFfV8MuGDC4Z25/RvTod61MqCIIgCIIgCIIg/EX1iw2lxObCLZ85oXGtSqJvbOjpnoYgCALgT84UBEE4JabE92VMdPdG2+qSjNqT9HReQn9MWv0pmp0gCP8LVGoV+tr+Vabg43s9kWWZ/TtzqLE4TubUzji+yutRy3nolSN4ykaftHE/euE3Dqbn8dELC47r+LDIYMbN7E9wiBFZlvn05d9Y8MU6dPtcGI94UXzwzRtLeevxnygrqGp0rMorEXTIg9qpcPnk0cxeGEbnFypJ/LaGu7qN4uM37+H8oN5oLGp8UTLPHRoHgIyCT5GbnY8kSSi1pdDr/i/Xfd/gi9ptdsXr7ysugRep0d8+DyosNSa8XjUoCopHYcveXAAy88t48K15vPrtSjxeL/+dv45nvl2GzenmtV9W8+myrdzz3q84z+D+cYIgCIIgCIIgCMIfS69WMTAu7HRPo5GBcWHo1SIUJQjCmUFkjAuCcMqEaI28NuQqPD4vl67+L4dsJQAoMiiyBCoFlb92eqOS6rID7u8xg4osmdHf/pfbp43gkjH9RQ8aQRCOmd6g5c1595FzqJj+I7sd1xifv7aIr95cSmxiOB8sfTBQ2vuvxi0lY2AfABo8KLUZ0SdqxmXD+erNpUy/dMQJj/XyP75i6Q9b2rdzg7nPum4051w1Go1Wze51mcg+hb4juhEdH87fLzib3OJqFh8+wPLqftzRLYRQ1a/YFR9BKn8WuIJCXT54w3B5w/VdR4fRZZ8PpyQjK+BU/Nnicu20fAo4/7+9e4+qqs7/P/7acC7cDxeVI4m3RBQFLDUF/XlJNC0vXSYtTa2vZU6mUVlTM5XOfBtxmiltcsau3yyzHzN9S7JJSauRxswUHUrN1IxCE8QL97gIZ3//MM5EgIkpB+j5WOusxf7s9977vY/vhWfxPp/PNi2qNr31xOrr5DK9JEMyDFPPvbVVz721tc65jpWU6e2sfZKkbuEhiopoJ0mKbBcsm8Vb+JlwuVS/0jzA1QJyAAAAANCoiEAfxbQL1GfHSzydivq0C1REIEuoA2g5aIwDuOCs3hb974j5kqQn396sF97b7t7n62uT6V2j8otPyrvcqocunaBBUV0VERqkIS//RaUVVVryxiY99faHyvj9L2WlAQCgidp3DFb7jsHnfHz+d7OQC46VqKba1WYb474BU3WqIEMyK1VpvUZBrpOS97kvp15WUiEfX6uunz1S188eeV5yPJ5bdHaBtU1x05S31VuzH7lGkjTq2oE6cbRI/oG+ik/o4Q5/cu7V7p/Lq3Yp++hbkqTqmmpZDcliGLJ8f6Gl091ymYYplyQv05BhSIYMmaefBaLjpkvGdw1xU4ZqJJmmIcnQt1VWVZgWPbdmnIq+DXTn2tgzyr0khQT4qqyiSn27dFTfLuEa1S9KHRwB8vLiS2MAAAAAgLqiQ/1V7XJp/8kyj+XQM9RfPUP9PXZ9AGgIjXEAzerbiqo626Xl321/4pBL0sL972nTf9+ujN1fqux7sWWVp7Thk/26qn/vZswWAKRbHxivTt3aK3ZQd9nsZ/fR6eSxYn383l5dNrKXwlrJc7TM4gdkMSokQ/KufkM1x9LkHfp3GbZ+jR5TXlapb0sr6t3jRxt369G5L6tjlzD95a173MvZ/1T3L7tJjy94VTs/2HdW8VdMuUx3LbnBPfPdZrfopuSxZzzG1xYrL3WVS1+pWMbpaeGmVTZVyX760eKyG1LNd81xL1MqqJHaWwwZhqFq09QJl/TDFrdhSgf+7dTghIf19ZHOeuSVTXUv7GXIZTPlVfGfoZhu4Roc00VTx/TXw3aralymfO2n38vO7YPP6j0AAAAAAPz8GIahPu0CZfXy0h4PzBzv0y5Q0WEBzX5dAPgxNMYBNKvXP9p15gBTuvzhZxp8/vil3S66MEkBwBkEhwXohjtGNemYR+94WXv//bV69L1IT6UlN/ma61K36uCebzRt3miFdghqMKamukZLH3xNR746rgV/vEERXds1+Tp12IZKFa9Jqp1w7ZJZfbDRxnhZSbluTXpMhSdK9Zvl0zV0bJx73+7t2XK5TH2TfVwFx0rkjAz9abl9J7RDkH7/8hz3dk11jb7Yc1iLbn1eFWVVGjPlMk2cMUxvr96i/sN6qf+w6HO6Tq/IDyVJZRU7JVXK3ydBp6pPyOIdrKrqHFV8u0NlpQsk+SisQ7qctq7avOsDvfbBK5o94W0Z3zXQa5mmVFnWR5dc+nvd/OcsFX2bo/huHfVJdm6d63p5GXrxwcn67Ot8XXFZLwUH+p5T/mijTFMNfkDyRB4AAAAAWjzDMBQdFqBAm0U78wp1ymXqQn6aNyRZvQxd6gxm+XQALRaNcQDN6sr+0UrbtrfxAENymfWXkn36l9eqY2jDzSEAaGlqZ5ZbbU3/qHXsSKGeeuj108fbLZrz0KQG4778PFfvrdkhSXp3TaZm3N34TOhDB/P1z7f+reFX9VOXqPAGY149PlGr91fqtz0y1S+oVFafy2X4Tmj0nIUnSlV4olSS9OKf1stVY2rYVfGSpGtnDVNpcbm69444b03xhnhbvBUd30X/f/t/1xmf3ch71lT+Ppe6f7ZaTi8rb7d2k93RTQ7HL+rEDo0dpqPFwVry2hDlF36lo4WBqv3fzBkcoKd+eY2+yDup/KLT79nwuIs1Kj5KT6R9cPoEpvTQ1CTF9rhIsT34IhgAAAAA4PyICPRRmF8HfXK0SIdLKn78gHPUKdBH8eEO2droI+gAtA00xgE0q9/dOFYj+/bQfS+vU1V1Td2djXxlcfKQOCVEd7nwyQHAefLwipn694cH6jzH+mw5wvzVsXOY8g6dUMwlXRuN6xLlVPzgi3Uk54SGXBF7xnOmzH9F2fty9WH6p3om/b4GYz4tOKKcSodu/SxJ/xt9i47sP6ahY72U/XmOTuQXa/CoGOV/U6gVv0tT155OXX/7CHl5e8lV49KRr45r6YN/dzfGw8IdunvJ5Cbfe2t33ZA4XTfk9Mz5Z9Zv1Yp1H0mSLN7euj5llby/ex54t/AQ/WJIrIL8fHTjiH7atu+QIts71LlDiMdyRyvAjHEAAAAA58ju7aXLIkLUqaRCnx0vUXFVtb57Qtg5qz0+yGZRTPtARQQwSxxAy0djHECzGxnbQ2P79dTazPozx384U1ySLouKvPBJAcB55B/oW2dp8aaw2a16Jn2BKr6tUmCw3xniLFryypxG93+fs3OosvflyhkZ1mjM3TGjFGD1UTd7qO6/foVOVZzSZzu+0vrUrXK5TM1/9BfKyT6qdMsXqjl6UAk5sfLzt6u0uFySdNnI3k270TbuqoG99F7WATn8fWS3WnT4RJFqXKf/5BDdqYOC/E7/wcBq8daQPl09mCkAAAAA4OciItBHHQPsKqg4pYMFZTpcUiFTOusmeW2cIalTkI8uDvZXiI9VhtHQX3UBoOWhMQ7AI35z/SjZrd56bcvuRmN8rRaNvTRao/v1bMbMAMDzrDbLOS3D3pgHn7xJX36eq+69OjYac5F/sLJLjutv2ZkKutai0FdPydvyn+XPvLwMret9SEXRpxu6V+9/UX4P21Upb93afYiS45r2HPa2rlO7YP39wemSpNyTxXpt86fq7gxVaUWVrhzQy8PZAQAAAAB+rgzDUKivTaG+NsVVu3SsvFKFFad0svyUCitOqbqBVaIshqFgH6tCfa0K9rGqva9ddgtLpgNofQzTZC284uJiORwOFRUVKSiIZxgDzSnzi8Patj9HDj8fHS8pkwxDPTuGaeylvfimIQA0o2qXS3Fv/rdMSQFeNj3pN0GDRvZW9ue5OnmsRANH9FLvNb+rd1ztr+p/jbtXN2a8oJJTlRrXKUZze41QO5+A5r0JoBGt+fN+be5JobfI4mXzdDqqdlXp3ZMvtsr3EgAAAMCZmaapyhqXXKapGlPyNiQvw5Dd24u/1QJoE5gxDsCjBvTopAE9Onk6DQD42fM2DHXwCdTRihJd2r6LXvXarWNHajSp7+nnhn9WkCvpP43wH7px0ws6XF4oSUrN3qETFWX68+ApTcqhpPBb+Qf5yMuLb50DAAAAANDcDMOQj8Xb02kAwAXj0b86fvDBB5owYYIiIiJkGIbS0tLq7DdNU4sWLVJERIR8fX01YsQI7dmzp05MZWWl5s2bp3bt2snf318TJ07U4cOHm/EuAAAAWj/DMLR21B16ddh/aW/BEb2Xu08P7EiTy+WSJHX0czR4XO3aQ7VN8VpHyouadP01L/5Lkwcs1K+mPS0WNAIAAAAAAABwvnm0MV5WVqb4+HgtX768wf2PPfaYnnjiCS1fvlzbt2+X0+nU6NGjVVJS4o5JTk7WmjVrlJqaqs2bN6u0tFTjx49XTU1Nc90GAABAmxBk89HBkmM6VlXmHntm378kSSF2P3X0Dax3jGFIVqP+t8n/q0eiVh74SDuO55zVtT/d+oUkae/Or+WqcZ1L+kCbZpquFvMCAAAAAABojTy6lPq4ceM0bty4BveZpqlly5bpN7/5ja699lpJ0ksvvaTw8HC9+uqruv3221VUVKQXXnhBq1atUlJSkiTplVdeUWRkpN59911dccUVzXYvAAAAbcG733xeZ/uNr3fql72HS5KeSZymu7a9pjCbv3ac/E/DO8jmo2s7X6I3c7KUX1mqUJuf/n3ykF75cpushpe2XHW/Aqz2M173lvuulH+QrwaN7C1vlm0DAAAAAAAAcJ612Ac4ZmdnKy8vT2PGjHGP2e12DR8+XFu2bJEk7dixQ6dOnaoTExERob59+7pjGlJZWani4uI6LwAAAEj3xY2usz2pcz/3zz0d4Vo/+k4tGXB1nZgTlWXytVi1atgtur3nUD2bOE1hPv6SpACrj6xeP97o7twjXAv+eIP+35XxP/keAAAAAAAAAOCHPDpj/Ezy8vIkSeHh4XXGw8PD9fXXX7tjbDabQkJC6sXUHt+QlJQU/fa3vz3PGQMAALR+Fwe2195rFmrjN58p3CdIcWGd6sV08g/R0oG/0H2Zb6j6u2WV/7z3n5rVc4iS+4ySJPUO7qjL2nVVZ/9Q2b1b7EdOoPUwTcllejqL03kAAAAAAAC0Qi12xngtwzDqbJumWW/sh34s5sEHH1RRUZH7dejQofOSKwAAQFsx+qKYBpvitcZ26qNXh89SO7u/DEljInrL9r2Z4V6GoUvDOqudT0AzZAsAAAAAAAAAZ9Zip+84nU5Jp2eFd+zY0T2en5/vnkXudDpVVVWlgoKCOrPG8/PzlZiY2Oi57Xa77PYzP+cSAAAAZxYbEqF/XbnA02kAPw+mKakFzNZmxjgAAAAAAGilWuyM8W7dusnpdGrjxo3usaqqKmVkZLib3v3795fVaq0Tk5ubq927d5+xMQ4AAAAAAAAAAAAA+Pnw6Izx0tJSffHFF+7t7OxsZWVlKTQ0VJ07d1ZycrIWL16sqKgoRUVFafHixfLz89PUqVMlSQ6HQ7NmzdK9996rsLAwhYaGasGCBYqNjVVSUpKnbgsAAAAAAAAAAAAA0IJ4tDGemZmpkSNHurfvueceSdLMmTO1cuVK3X///SovL9cdd9yhgoICDRo0SBs2bFBgYKD7mKVLl8pisWjy5MkqLy/XqFGjtHLlSnl7e9e7HgAAAAC0Si6XZLg8nYVktoAcAAAAAAAAzoFhmjwkrri4WA6HQ0VFRQoKCvJ0OgAAAADOo9b8eb8291GB02QxbJ5OR9Vmld4rWd0q30sAAAAAAPDz1mKfMQ4AAAAAAAAAAAAAwPlAYxwAAAAAWjrTbDmvs7RixQrFxcUpKChIQUFBSkhI0Pr16+vE7N27VxMnTpTD4VBgYKAGDx6snJwc9/7KykrNmzdP7dq1k7+/vyZOnKjDhw/XOUdBQYGmT58uh8Mhh8Oh6dOnq7Cw8Ce93QAAAAAAoO2hMQ4AAAAAOO86deqkJUuWKDMzU5mZmbr88ss1adIk7dmzR5J08OBBDR06VL169dKmTZv0ySef6OGHH5aPj4/7HMnJyVqzZo1SU1O1efNmlZaWavz48aqpqXHHTJ06VVlZWUpPT1d6erqysrI0ffr0Zr9fAAAAAADQsvGMcbXuZw4CAAAAOLPW/Hnf/YzxgKkt5xnjpa+e83sZGhqqP/7xj5o1a5ZuuOEGWa1WrVq1qsHYoqIitW/fXqtWrdKUKVMkSUeOHFFkZKTWrVunK664Qnv37lVMTIy2bt2qQYMGSZK2bt2qhIQEff7554qOjj73mwUAAAAAAG0KM8YBAAAAoIUzXa4W85JON+y//6qsrDxj/jU1NUpNTVVZWZkSEhLkcrn09ttvq2fPnrriiivUoUMHDRo0SGlpae5jduzYoVOnTmnMmDHusYiICPXt21dbtmyRJH300UdyOBzuprgkDR48WA6Hwx0DAAAAAAAg0RgHAAAAADRRZGSk+5neDodDKSkpDcbt2rVLAQEBstvtmjNnjtasWaOYmBjl5+ertLRUS5Ys0dixY7VhwwZdc801uvbaa5WRkSFJysvLk81mU0hISJ1zhoeHKy8vzx3ToUOHetft0KGDOwYAAAAAAECSLJ5OAAAAAADwI0xTUgt4CtZ3T+I6dOhQnaXU7XZ7g+HR0dHKyspSYWGhXn/9dc2cOVMZGRkKDg6WJE2aNEl33323JKlfv37asmWLnn76aQ0fPvwMKZgyDMO9/f2fG4sBAAAAAABgxjgAAAAAoEmCgoLqvBprjNtsNvXo0UMDBgxQSkqK4uPj9eSTT6pdu3ayWCyKiYmpE9+7d2/l5ORIkpxOp6qqqlRQUFAnJj8/X+Hh4e6Yo0eP1rvusWPH3DEAAAAAAAASjXEAAAAAQDMxTVOVlZWy2WwaOHCg9u3bV2f//v371aVLF0lS//79ZbVatXHjRvf+3Nxc7d69W4mJiZKkhIQEFRUVadu2be6Yjz/+WEVFRe4YAAAAAAAAiaXUAQAAAKDlc5mS0XKWUj8bv/71rzVu3DhFRkaqpKREqamp2rRpk9LT0yVJ9913n6ZMmaJhw4Zp5MiRSk9P11tvvaVNmzZJkhwOh2bNmqV7771XYWFhCg0N1YIFCxQbG6ukpCRJp2eYjx07VrfddpueeeYZSdLs2bM1fvx4RUdHn997BwAAAAAArRqNcQAAAADAeXf06FFNnz5dubm5cjgciouLU3p6ukaPHi1Juuaaa/T0008rJSVF8+fPV3R0tF5//XUNHTrUfY6lS5fKYrFo8uTJKi8v16hRo7Ry5Up5e3u7Y1avXq358+drzJgxkqSJEydq+fLlzXuzAAAAAACgxTNMswlf+W+jiouL5XA4VFRUpKCgIE+nAwAAAOA8as2f92tzv9w+WRbD5ul0VG1W6f3Kv7fK9xIAAAAAAPy8MWMcAAAAAFo605Tk8nQWTVpKHQAAAAAAoCXx8nQCAAAAAAAAAAAAAABcSDTGAQAAAAAAAAAAAABtGkupAwAAAEALZ7pMmYbnlzE3WUodAAAAAAC0UswYBwAAAAAAAAAAAAC0acwYBwAAAICWznRJcnk6i+/yAAAAAAAAaH2YMQ4AAAAAAAAAAAAAaNNojAMAAAAAAAAAAAAA2jSWUgcAAACAFs50mTIN09NpyDQ9nwMAAAAAAMC5YMY4AAAAAAAAAAAAAKBNozEOAAAAAAAAAAAAAGjTWEodAAAAAFo60yXJ5eksvssDAAAAAACg9WHGOAAAAAAAAAAAAACgTWPGuCTTNCVJxcXFHs4EAAAAwPlW+zm/9nN/a1StU1ILSL9apzydAgAAAAAAwDmhMS6ppKREkhQZGenhTAAAAABcKCUlJXI4HJ5Oo0lsNpucTqc2563zdCpuTqdTNpvN02kAAAAAAAA0iWG25mkT54nL5dKRI0cUGBgowzA8nY6Ki4sVGRmpQ4cOKSgoyNPpoIWjXtAU1AuagnpBU1AvaIrmrhfTNFVSUqKIiAh5ebW+p0lVVFSoqqrK02m42Ww2+fj4eDoNAAAAAACAJmHGuCQvLy916tTJ02nUExQUxB+WcdaoFzQF9YKmoF7QFNQLmqI566W1zRT/Ph8fHxrRAAAAAAAAP1Hrmy4BAAAAAAAAAAAAAEAT0BgHAAAAAAAAAAAAALRpNMZbILvdroULF8put3s6FbQC1AuagnpBU1AvaArqBU1BvQAAAAAAAKC5GaZpmp5OAgAAAAAAAAAAAACAC4UZ4wAAAAAAAAAAAACANo3GOAAAAAAAAAAAAACgTaMxDgAAAAAAAAAAAABo02iMN5MPPvhAEyZMUEREhAzDUFpaWp39pmlq0aJFioiIkK+vr0aMGKE9e/bUiamsrNS8efPUrl07+fv7a+LEiTp8+HAz3gWaS0pKigYOHKjAwEB16NBBV199tfbt21cnhppBrRUrViguLk5BQUEKCgpSQkKC1q9f795PreBMUlJSZBiGkpOT3WPUDGotWrRIhmHUeTmdTvd+agU/9M033+imm25SWFiY/Pz81K9fP+3YscO9n5oBAAAAAACAp9AYbyZlZWWKj4/X8uXLG9z/2GOP6YknntDy5cu1fft2OZ1OjR49WiUlJe6Y5ORkrVmzRqmpqdq8ebNKS0s1fvx41dTUNNdtoJlkZGRo7ty52rp1qzZu3Kjq6mqNGTNGZWVl7hhqBrU6deqkJUuWKDMzU5mZmbr88ss1adIkd6OBWkFjtm/frmeffVZxcXF1xqkZfF+fPn2Um5vrfu3atcu9j1rB9xUUFGjIkCGyWq1av369PvvsMz3++OMKDg52x1AzAAAAAAAA8BgTzU6SuWbNGve2y+UynU6nuWTJEvdYRUWF6XA4zKeffto0TdMsLCw0rVarmZqa6o755ptvTC8vLzM9Pb3Zcodn5Ofnm5LMjIwM0zSpGfy4kJAQ8/nnn6dW0KiSkhIzKirK3Lhxozl8+HDzrrvuMk2T3y+oa+HChWZ8fHyD+6gV/NCvfvUrc+jQoY3up2YAAAAAAADgScwYbwGys7OVl5enMWPGuMfsdruGDx+uLVu2SJJ27NihU6dO1YmJiIhQ37593TFou4qKiiRJoaGhkqgZNK6mpkapqakqKytTQkICtYJGzZ07V1dddZWSkpLqjFMz+KEDBw4oIiJC3bp10w033KAvv/xSErWC+tauXasBAwbo+uuvV4cOHXTJJZfoueeec++nZgAAAAAAAOBJNMZbgLy8PElSeHh4nfHw8HD3vry8PNlsNoWEhDQag7bJNE3dc889Gjp0qPr27SuJmkF9u3btUkBAgOx2u+bMmaM1a9YoJiaGWkGDUlNTtXPnTqWkpNTbR83g+wYNGqSXX35Z77zzjp577jnl5eUpMTFRJ06coFZQz5dffqkVK1YoKipK77zzjubMmaP58+fr5ZdflsTvFwAAAAAAAHiWxdMJ4D8Mw6izbZpmvbEfOpsYtG533nmnPv30U23evLnePmoGtaKjo5WVlaXCwkK9/vrrmjlzpjIyMtz7qRXUOnTokO666y5t2LBBPj4+jcZRM5CkcePGuX+OjY1VQkKCLr74Yr300ksaPHiwJGoF/+FyuTRgwAAtXrxYknTJJZdoz549WrFihWbMmOGOo2YAAAAAAADgCcwYbwGcTqck1ZsFk5+f755R43Q6VVVVpYKCgkZj0PbMmzdPa9eu1T//+U916tTJPU7N4IdsNpt69OihAQMGKCUlRfHx8XryySepFdSzY8cO5efnq3///rJYLLJYLMrIyNCf//xnWSwW9785NYOG+Pv7KzY2VgcOHOD3C+rp2LGjYmJi6oz17t1bOTk5kvj8AgAAAAAAAM+iMd4CdOvWTU6nUxs3bnSPVVVVKSMjQ4mJiZKk/v37y2q11onJzc3V7t273TFoO0zT1J133qk33nhD77//vrp161ZnPzWDH2OapiorK6kV1DNq1Cjt2rVLWVlZ7teAAQM0bdo0ZWVlqXv37tQMGlVZWam9e/eqY8eO/H5BPUOGDNG+ffvqjO3fv19dunSRxOcXAAAAAAAAeBZLqTeT0tJSffHFF+7t7OxsZWVlKTQ0VJ07d1ZycrIWL16sqKgoRUVFafHixfLz89PUqVMlSQ6HQ7NmzdK9996rsLAwhYaGasGCBYqNjVVSUpKnbgsXyNy5c/Xqq6/qzTffVGBgoHtmlcPhkK+vrwzDoGbg9utf/1rjxo1TZGSkSkpKlJqaqk2bNik9PZ1aQT2BgYHq27dvnTF/f3+FhYW5x6kZ1FqwYIEmTJigzp07Kz8/X48++qiKi4s1c+ZMfr+gnrvvvluJiYlavHixJk+erG3btunZZ5/Vs88+K0nUDAAAAAAAADyKxngzyczM1MiRI93b99xzjyRp5syZWrlype6//36Vl5frjjvuUEFBgQYNGqQNGzYoMDDQfczSpUtlsVg0efJklZeXa9SoUVq5cqW8vb2b/X5wYa1YsUKSNGLEiDrjL774om6++WZJombgdvToUU2fPl25ublyOByKi4tTenq6Ro8eLYlaQdNRM6h1+PBh3XjjjTp+/Ljat2+vwYMHa+vWre4ZwNQKvm/gwIFas2aNHnzwQf3ud79Tt27dtGzZMk2bNs0dQ80AAAAAAADAUwzTNE1PJwEAAAAAAAAAAAAAwIXCM8YBAAAAAAAAAAAAAG0ajXEAAAAAAAAAAAAAQJtGYxwAAAAAAAAAAAAA0KbRGAcAAAAAAAAAAAAAtGk0xgEAAAAAAAAAAAAAbRqNcQAAAAAAAAAAAABAm0ZjHAAAAAAAAAAAAADQptEYBwAAAAAAAAAAAAC0aTTGAQCQtGnTJhmGocLCwjPGde3aVcuWLWuWnAAAAAAAAAAAwPlBYxwA0KxqamqUmJio6667rs54UVGRIiMj9dBDDzV67IgRI2QYhgzDkN1uV8+ePbV48WLV1NT85LwSExOVm5srh8MhSVq5cqWCg4PrxW3fvl2zZ8/+ydcDAAAAAAAAAADNh8Y4AKBZeXt766WXXlJ6erpWr17tHp83b55CQ0P1yCOPnPH42267Tbm5udq3b5/mz5+vhx56SH/6059+cl42m01Op1OGYZwxrn379vLz8/vJ1wMAAAAAAAAAAM2HxjgAoNlFRUUpJSVF8+bN05EjR/Tmm28qNTVVL730kmw22xmP9fPzk9PpVNeuXXXnnXdq1KhRSktLkyQVFBRoxowZCgkJkZ+fn8aNG6cDBw64j/366681YcIEhYSEyN/fX3369NG6desk1V1KfdOmTbrllltUVFTknqG+aNEiSfWXUs/JydGkSZMUEBCgoKAgTZ48WUePHnXvX7Rokfr166dVq1apa9eucjgcuuGGG1RSUnJ+3kwAAAAAAAAAAPCjaIwDADxi3rx5io+P14wZMzR79mw98sgj6tevX5PP4+vrq1OnTkmSbr75ZmVmZmrt2rX66KOPZJqmrrzySvf+uXPnqrKyUh988IF27dqlP/zhDwoICKh3zsTERC1btkxBQUHKzc1Vbm6uFixYUC/ONE1dffXVOnnypDIyMrRx40YdPHhQU6ZMqRN38OBBpaWl6R//+If+8Y9/KCMjQ0uWLGnyvQIAAAAAAAAAgHNj8XQCAICfJ8MwtGLFCvXu3VuxsbF64IEHmnS8y+XShg0b9M477yg5OVkHDhzQ2rVr9eGHHyoxMVGStHr1akVGRiotLU3XX3+9cnJydN111yk2NlaS1L179wbPbbPZ5HA4ZBiGnE5nozm8++67+vTTT5Wdna3IyEhJ0qpVq9SnTx9t375dAwcOdOe6cuVKBQYGSpKmT5+u9957T7///e+bdM8AAAAAAAAAAODcMGMcAOAx//M//yM/Pz9lZ2fr8OHDZ3XMX//6VwUEBMjHx0cTJ07UTTfdpIULF2rv3r2yWCwaNGiQOzYsLEzR0dHau3evJGn+/Pl69NFHNWTIEC1cuFCffvrpT8p/7969ioyMdDfFJSkmJkbBwcHua0qnl1+vbYpLUseOHZWfn/+Trg0AAAAAAAAAAM4ejXEAgEd89NFHWrp0qd58800lJCRo1qxZMk3zR4+bNm2asrKydPDgQZWXl+uFF16Qn59fo8eapinDMCRJt956q7788ktNnz5du3bt0oABA/TUU0+d8z18/9xnGrdarXX2G4Yhl8t1ztcFAAAAAAAAAABNQ2McANDsysvLNXPmTN1+++1KSkrS888/r+3bt+uZZ5750WMdDod69OihyMhIeXt7u8djYmJUXV2tjz/+2D124sQJ7d+/X71793aPRUZGas6cOXrjjTd077336rnnnmvwOjabTTU1NWfMJSYmRjk5OTp06JB77LPPPlNRUVGdawIAAAAAAAAAAM+iMQ4AaHYPPPCAXC6X/vCHP0iSOnfurMcff1z33Xefvvrqq3M6Z1RUlCZNmqTbbrtNmzdv1ieffKKbbrpJF110kSZNmiRJSk5O1jvvvKPs7Gzt3LlT77//fqMN7K5du6q0tFTvvfeejh8/rm+//bZeTFJSkuLi4jRt2jTt3LlT27Zt04wZMzR8+HANGDDgnO4DAAAAAAAAAACcfzTGAQDNKiMjQ3/5y1+0cuVK+fv7u8dvu+02JSYmnvWS6g158cUX1b9/f40fP14JCQkyTVPr1q1zL2VeU1OjuXPnqnfv3ho7dqyio6P117/+tcFzJSYmas6cOZoyZYrat2+vxx57rF6MYRhKS0tTSEiIhg0bpqSkJHXv3l1/+9vfzil/AAAAAAAAAABwYRjmuXYfAAAAAAAAAAAAAABoBZgxDgAAAAAAAAAAAABo02iMAwAAAAAAAAAAAADaNBrjAAAAAAAAAAAAAIA2jcY4AAAAAAAAAAAAAKBNozEOAAAAAAAAAAAAAGjTaIwDAAAAAAAAAAAAANo0GuMAAAAAAAAAAAAAgDaNxjgAAAAAAAAAAAAAoE2jMQ4AAAAAAAAAAAAAaNNojAMAAAAAAAAAAAAA2jQa4wAAAAAAAAAAAACANo3GOAAAAAAAAAAAAACgTfs/P0f6zN1xMkgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_pose_estimation(nodes, edges, name_to_data, node_to_name, pes_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fourth Session: Control Genotype, 100% Reward Condition" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

root (NWBFile)

session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.
identifier: 6c0c0f4d-66fc-4021-95a3-5e3290387721
session_start_time2023-07-19 00:00:00-04:00
timestamps_reference_time2023-07-19 00:00:00-04:00
file_create_date
02025-07-01 11:02:18.987564-07:00
experimenter('Shukla, Ashutosh', 'Rivera, Edward L.', 'Bladon, John H.', 'Jadhav, Shantanu P.')
acquisition
Video_2-XFN2-XFN4
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN2_ses-07-19-2023-100_behavior+image/1af15d9c-60f9-4ef5-a24f-b17f4a1a2ea7_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
Video_4-XFN4-XFN2
resolution: -1.0
comments: no comments
description: Video of the pair of rats in the social W mazes.
conversion: 1.0
offset: 0.0
unit: Frames
data
HDF5 dataset
Data typeuint8
Shape(0, 0, 0)
Array size0.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratioundefined

[]
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
external_file
HDF5 dataset
Data typeobject
Shape(1,)
Array size8.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'sub-XFN2_ses-07-19-2023-100_behavior+image/6129151c-f3ae-4764-aef8-bbdc95def4a8_external_file_0.mp4']
starting_frame
NumPy array
Data typeint64
Shape(1,)
Array size8.00 bytes

[0]
format: external
device
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
keywords
HDF5 dataset
Data typeobject
Shape(3,)
Array size24.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'cooperation' b'social cognition' b'autism spectrum disorders']
processing
behavior
description: Behavioral data recorded during a cooperative maze task, in which a pair of rats must cooperate by picking the same well in order to get a joint reward.
data_interfaces
PoseEstimation_2-XFN2-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.609827452385217
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.566852456288873
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.730791056042898
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.6068572734908084
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.7688019931590726
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_2-XFN4-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.5969838896535333
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.525780542768543
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.7881255481436202
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.575839717147908
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(32784, 2)
Array size512.25 KiB
Chunk shape(32784, 2)
Compressiongzip
Compression opts4
Compression ratio2.5672544672353794
timestamps
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shape(32784,)
Compressiongzip
Compression opts4
Compression ratio2.671229528232706
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(32784,)
Array size256.12 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_4-XFN2-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.59891601343785
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.4998836678242435
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.611679022681953
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.6372611407065327
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.7528930599773207
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
PoseEstimation_4-XFN4-1
pose_estimation_series
PoseEstimationSeriesBody center
resolution: -1.0
comments: no comments
description: Pose estimation series for body center.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.5750970863014
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesHead
resolution: -1.0
comments: no comments
description: Pose estimation series for head.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.5294179192968995
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesSnout
resolution: -1.0
comments: no comments
description: Pose estimation series for snout.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.8569430835060836
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail base
resolution: -1.0
comments: no comments
description: Pose estimation series for tail base.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.5799635377295567
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
PoseEstimationSeriesTail tip
resolution: -1.0
comments: no comments
description: Pose estimation series for tail tip.
conversion: 1.0
offset: 0.0
unit: pixels
data
HDF5 dataset
Data typefloat64
Shape(36263, 2)
Array size566.61 KiB
Chunk shape(36263, 2)
Compressiongzip
Compression opts4
Compression ratio2.65862644110046
timestamps
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shape(36263,)
Compressiongzip
Compression opts4
Compression ratio2.4932234416494063
timestamps_unit: seconds
interval: 1
reference_frame: (0,0) corresponds to the bottom left corner of the video.
confidence
HDF5 dataset
Data typefloat64
Shape(36263,)
Array size283.30 KiB
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
confidence__definition: Softmax output of the deep neural network.
description: 2D keypoint coordinates estimated using DeepLabCut.
scorer: DLC_resnet50_SocialWSep18shuffle5_100000_el
source_software: DeepLabCut
skeleton
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
Skeletons
skeletons
SkeletonPoseEstimation_2-XFN2-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_2-XFN4-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_4-XFN2-1_Rat 2
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
SkeletonPoseEstimation_4-XFN4-1_Rat 1
nodes
HDF5 dataset
Data typeobject
Shape(5,)
Array size40.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio0.5

[b'snout' b'head' b'body center' b'tail base' b'tail tip']
edges
HDF5 dataset
Data typeuint64
Shape(7, 2)
Array size112.00 bytes
Chunk shapeNone
CompressionNone
Compression optsNone
Compression ratio1.0
behavioral_events
time_series
matched_poke_A1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 1 and Reward Well A).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(5, 1)
Array size40.00 bytes
Chunk shape(5, 1)
Compressiongzip
Compression opts4
Compression ratio2.3529411764705883

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(5,)
Array size40.00 bytes
Chunk shape(5,)
Compressiongzip
Compression opts4
Compression ratio0.7843137254901961

[2996.908 3079.988 3371.105 7636.741 8190.372]
timestamps_unit: seconds
interval: 1
matched_poke_B2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 2 and Reward Well B).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(2, 1)
Array size16.00 bytes
Chunk shape(2, 1)
Compressiongzip
Compression opts4
Compression ratio0.9411764705882353

[[1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(2,)
Array size16.00 bytes
Chunk shape(2,)
Compressiongzip
Compression opts4
Compression ratio0.64

[2936.305 3157.65 ]
timestamps_unit: seconds
interval: 1
matched_poke_C3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze matches the position of the partner in the right W maze (Reward Well 3 and Reward Well C).
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(3, 1)
Array size24.00 bytes
Chunk shape(3, 1)
Compressiongzip
Compression opts4
Compression ratio1.411764705882353

[[1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(3,)
Array size24.00 bytes
Chunk shape(3,)
Compressiongzip
Compression opts4
Compression ratio0.7272727272727273

[3036.299 8072.916 8825.122]
timestamps_unit: seconds
interval: 1
reward_well_1
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 1.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(308, 1)
Array size2.41 KiB
Chunk shape(308, 1)
Compressiongzip
Compression opts4
Compression ratio74.66666666666667
timestamps
HDF5 dataset
Data typefloat64
Shape(308,)
Array size2.41 KiB
Chunk shape(308,)
Compressiongzip
Compression opts4
Compression ratio1.4597156398104265
timestamps_unit: seconds
interval: 1
reward_well_2
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 2.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(81, 1)
Array size648.00 bytes
Chunk shape(81, 1)
Compressiongzip
Compression opts4
Compression ratio30.857142857142858
timestamps
HDF5 dataset
Data typefloat64
Shape(81,)
Array size648.00 bytes
Chunk shape(81,)
Compressiongzip
Compression opts4
Compression ratio1.1448763250883391
timestamps_unit: seconds
interval: 1
reward_well_3
resolution: -1.0
comments: no comments
description: Whenever the animal in the left W maze visits Reward Well 3.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(145, 1)
Array size1.13 KiB
Chunk shape(145, 1)
Compressiongzip
Compression opts4
Compression ratio48.333333333333336
timestamps
HDF5 dataset
Data typefloat64
Shape(145,)
Array size1.13 KiB
Chunk shape(145,)
Compressiongzip
Compression opts4
Compression ratio1.2705366922234391
timestamps_unit: seconds
interval: 1
reward_well_A
resolution: -1.0
comments: no comments
description: Whenever the animal in the right W maze visits Reward Well A.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(407, 1)
Array size3.18 KiB
Chunk shape(407, 1)
Compressiongzip
Compression opts4
Compression ratio93.02857142857142
timestamps
HDF5 dataset
Data typefloat64
Shape(407,)
Array size3.18 KiB
Chunk shape(407,)
Compressiongzip
Compression opts4
Compression ratio1.5968612064737617
timestamps_unit: seconds
interval: 1
reward_well_B
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well B in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(167, 1)
Array size1.30 KiB
Chunk shape(167, 1)
Compressiongzip
Compression opts4
Compression ratio51.38461538461539
timestamps
HDF5 dataset
Data typefloat64
Shape(167,)
Array size1.30 KiB
Chunk shape(167,)
Compressiongzip
Compression opts4
Compression ratio1.31237721021611
timestamps_unit: seconds
interval: 1
reward_well_C
resolution: -1.0
comments: no comments
description: Whenever the animal visits Reward Well C in the right W maze.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(3501, 1)
Array size27.35 KiB
Chunk shape(3501, 1)
Compressiongzip
Compression opts4
Compression ratio394.4788732394366
timestamps
HDF5 dataset
Data typefloat64
Shape(3501,)
Array size27.35 KiB
Chunk shape(3501,)
Compressiongzip
Compression opts4
Compression ratio2.657053410492363
timestamps_unit: seconds
interval: 1
rewarded_poke
resolution: -1.0
comments: no comments
description: Whenever a matched poke resulted in a reward.
conversion: 1.0
offset: 0.0
unit: n.a.
data
HDF5 dataset
Data typefloat64
Shape(10, 1)
Array size80.00 bytes
Chunk shape(10, 1)
Compressiongzip
Compression opts4
Compression ratio4.705882352941177

[[1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]\n", + " [1.]]
timestamps
HDF5 dataset
Data typefloat64
Shape(10,)
Array size80.00 bytes
Chunk shape(10,)
Compressiongzip
Compression opts4
Compression ratio0.8791208791208791

[2936.305 2996.908 3036.299 3079.988 3157.65 3371.105 7636.741 8072.916\n", + " 8190.372 8825.122]
timestamps_unit: seconds
interval: 1
tasks
description: tasks module
data_interfaces
SocialW_Left
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_LeftThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.left_Wmaze[0]front/backhead,neckfront,back[2]
SocialW_Right
description: The animal makes coordinated well/arm transitions with a partner to collect joint rewards.
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
task_nametask_descriptiontask_environmentcamera_idled_configurationled_listled_positionstask_epochs
id
0SocialW_RightThe animal makes coordinated well/arm transitions with a partner to collect joint rewards.right_Wmaze[0]front/backhead,neckfront,back[4]
devices
camera_device 0
meters_per_pixel: 0.0016
camera_name: Track
model: Mako G-158C
lens: Theia SL183M
intervals
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
02850.0623985.393[02]
17584.1358839.728[04]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
03985.3935785.393Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
subject
age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: WT
sex: M
species: Rattus norvegicus
subject_id: XFN2
epochs
description: experimental epochs
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timetags
id
02850.0623985.393[02]
17584.1358839.728[04]
invalid_times
description: time intervals to be removed from analysis
table\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
start_timestop_timecommenttag
id
03985.3935785.393Between epochs (some time after start_time) the experimenter closed the program used to acquire data, causing the clock to reset. As a result, the interval between epochs was approximated as 1800 seconds. Due to the inherent uncertainty, this inter-epoch interval should be considered invalid.clock_reset
experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.
session_id: 07-19-2023-100
lab: Jadhav
institution: Brandeis University
source_script: Created using NeuroConv v0.7.4
source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py
" + ], + "text/plain": [ + "root pynwb.file.NWBFile at 0x6058869056\n", + "Fields:\n", + " acquisition: {\n", + " Video_2-XFN2-XFN4 ,\n", + " Video_4-XFN4-XFN2 \n", + " }\n", + " devices: {\n", + " camera_device 0 \n", + " }\n", + " epochs: epochs \n", + " experiment_description: Pro-social behaviors involve affiliative social interactions between individuals aimed at either mutual benefits for individuals involved or benefiting others. These behaviors are essential for social cohesiveness and well-being of social species. Individuals with autism spectrum disorders have severe cognitive and social deficits. However, little is known about the underlying causes and neural mechanisms associated with these deficits. Our study involves looking into the behavior of wild-type and Fmr1-/y rat pairs on W mazes where they are required to cooperate in order to get a joint reward.\n", + " experimenter: ['Shukla, Ashutosh' 'Rivera, Edward L.' 'Bladon, John H.'\n", + " 'Jadhav, Shantanu P.']\n", + " file_create_date: [datetime.datetime(2025, 7, 1, 11, 2, 18, 987564, tzinfo=tzoffset(None, -25200))]\n", + " identifier: 6c0c0f4d-66fc-4021-95a3-5e3290387721\n", + " institution: Brandeis University\n", + " intervals: {\n", + " epochs ,\n", + " invalid_times \n", + " }\n", + " invalid_times: invalid_times \n", + " keywords: \n", + " lab: Jadhav\n", + " processing: {\n", + " behavior ,\n", + " tasks \n", + " }\n", + " session_description: Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.\n", + " session_id: 07-19-2023-100\n", + " session_start_time: 2023-07-19 00:00:00-04:00\n", + " source_script: Created using NeuroConv v0.7.4\n", + " source_script_file_name: /Users/pauladkisson/Documents/CatalystNeuro/Neuroconv/neuroconv/src/neuroconv/basedatainterface.py\n", + " subject: subject pynwb.file.Subject at 0x6058991856\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: WT\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN2\n", + "\n", + " timestamps_reference_time: 2023-07-19 00:00:00-04:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "file_path = 'sub-XFN2/sub-XFN2_ses-07-19-2023-100_behavior+image.nwb'\n", + "nwbfile, io = stream_nwbfile(DANDISET_ID, file_path)\n", + "display(nwbfile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Notice the subject and session description" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + "

subject (Subject)

age: P3M/P5M
age__reference: birth
description: Long Evans Rat
genotype: WT
sex: M
species: Rattus norvegicus
subject_id: XFN2
" + ], + "text/plain": [ + "subject pynwb.file.Subject at 0x6058991856\n", + "Fields:\n", + " age: P3M/P5M\n", + " age__reference: birth\n", + " description: Long Evans Rat\n", + " genotype: WT\n", + " sex: M\n", + " species: Rattus norvegicus\n", + " subject_id: XFN2" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Rats performed a cooperative maze task in which a pair of rats must cooperate by picking the same well in order to get a joint reward. Rewards were delivered 100% of the time when both rats poked the same well.\n" + ] + } + ], + "source": [ + "display(nwbfile.subject)\n", + "print(nwbfile.session_description)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "dio_event_names = [\n", + " \"matched_poke_A1\",\n", + " \"matched_poke_B2\",\n", + " \"matched_poke_C3\",\n", + " \"reward_well_1\",\n", + " \"reward_well_2\",\n", + " \"reward_well_3\",\n", + " \"reward_well_A\",\n", + " \"reward_well_B\",\n", + " \"reward_well_C\",\n", + " \"rewarded_poke\",\n", + "]\n", + "event_name_to_timestamps = {}\n", + "for dio_event_name in dio_event_names:\n", + " timestamps = nwbfile.processing[\"behavior\"].data_interfaces[\"behavioral_events\"].time_series[dio_event_name].timestamps[:]\n", + " event_name_to_timestamps[dio_event_name] = timestamps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot Behavior Data" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzEAAAPbCAYAAABsSQVkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwUFJREFUeJzs3XtclGX+//H3MICCnMRDoqBAKJ6wUssUUDq4lbValqaWJVq6mtnBtVrtoNvBrXbb1Nrt56m28nxYs9bUyjRA/Zqah9I1V1FAwTOHUQgZ5vfHxAhymoEZcOz13AcP5z7MdX3umVzut9d93bfBYrFYBAAAAABuwqO+CwAAAAAARxBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuxbM+Oi0uLtbx48fl7+8vg8FQHyUAAAAAuAJYLBbl5eWpZcuW8vCwb4ylXkLM8ePHFRYWVh9dAwAAALgCpaenKzQ01K596yXE+Pv7S7IWGhAQUB8lAAAAALgC5ObmKiwszJYR7FEvIabkErKAgABCDAAAAACHppkwsR8AAACAWyHEAAAAAHAr9XI5GQAAANyf2WzWxYsX67sMuAGj0ShPT0+n3ZmYEAMAAACHmUwmZWRkyGKx1HcpcBO+vr4KCQmRt7d3rdsixAAAAMAhZrNZGRkZ8vX1VbNmzXjuH6pksVhUWFioU6dOKTU1VW3btrX7eTCVIcQAAADAIRcvXpTFYlGzZs3k4+NT3+XADfj4+MjLy0tHjx5VYWGhGjZsWKv2mNgPAACAGmEEBo6o7ehLmbac1hIAAABQHbNZ2rhRWrTI+qfZXN8V1Up4eLi2bt1a63aOHDlS69GJy40YMUJ/+ctfnNrmlYIQAwAAgLqxcqUUHi7dcos0bJj1z/Bw63onCQ8PV0BAgPLz823rcnNz5ePjo/bt29vVRkJCghYvXuy0mmpr48aN8vDwkJ+fn/z9/dWlSxd98cUXdVrDxx9/LIPBoC+//LLM+u+++069e/dWo0aNdOedd9ZZPYQYAAAAuN7KldIDD0gZGWXXHztmXe/EINOiRQutXr26VNcrFRYW5rT260O7du1kMpmUk5Oj0aNHa/DgwTp79myd9f/pp5+qcePGWrBgQZn1vr6++sMf/qA//elPdVaLRIgBAACAq5nN0lNPSRXdjrlk3dNPO+3SsqFDh5Y52V6wYIGGDRtWZp9XX31Vbdq0UUBAgHr27Kk9e/bY1iclJWnEiBHy8/PTW2+9JUnasGGDunfvroCAALVt21ZJSUm2trZu3aoOHTqocePGmjBhQpl+3n//fbVt21ZNmzbVo48+qvPnz9u2vf7662revLnCw8P12Wef2XVsHh4eSkxMVH5+vg4fPqyzZ89qyJAhatq0qaKiojR37twK35eZmanOnTtr9uzZkqRNmzapW7duCgoKUkJCgg4dOlRpn1lZWdqwYYPee+89rVq1qswxdO/eXcOGDVNoaKhd9TsLIQYAAACulZRUfgSmNItFSk+37ucEffv21c6dO3X27FllZWXp4MGD6t27d5l9OnbsqO3bt+vs2bPq27evHnnkEUnSSy+9pPj4eH300UcymUx67rnndPjwYd13332aOnWqzp07p2+++UYhISG2tlavXq3k5GTt3btXixcvtgWcZcuWafbs2fr666+Vnp6uixcv6uWXX5YkrVmzRh988IE2b96sXbt26fPPP7fr2Mxms+bNm6dGjRopKipKTzzxhDw9PZWWlqaVK1dq8uTJSk5OLvOe9PR03XLLLZo4caJGjx6ttLQ0DRo0SDNmzNCZM2d0//3368EHH6z0mT+LFi1St27dNHToUDVp0sTuwOVKhBgAAAC4Vmamc/erhqenp+69914tW7ZMixcv1qBBg8rdGev+++9Xs2bN5OnpqcmTJ2vPnj0ymUwVtrdo0SINGDBA99xzj4xGo1q3bq2oqCjb9qefflpNmjRRaGioEhIStHv3bknSvHnzNGXKFLVp00Y+Pj6aPHmyli9fLskacMaMGaOoqCgFBQXphRdeqPKYDh48qKCgIDVv3lyffvqpVqxYIX9/f61YsULTp0+Xr6+vunTpolGjRmnRokW29x05ckS33nqrXnrpJSUmJkqSFi5cqAceeEBxcXEyGo168skndfToUR05cqTCvhcsWKAHH3xQBoNBgwcPLndJWX0gxAAAAMC1So1aOGU/Ozz00ENauHChFi5cqIceeqjc9jlz5qhTp04KDAxUixYtZLFYdObMmQrbysjIUGRkZKV9NW/e3Pba19fXFobS0tI0atQoBQUFKSgoSHFxcTp9+rQk6+VdpefpVDdnp23btsrOztaZM2e0bds23XHHHTp16pTMZnOZS7natGmj48eP25ZXrlypgIAADRo0yLYuLS1NH374oa2uoKAgnT9/vsz7Shw4cEA7d+60vf/BBx/U+vXrderUqSrrdTVCDAAAAFwrPl4KDZUqe66MwSCFhVn3c5KePXvq2LFjMplMuv7668tsO3LkiJ599ll98sknys7OVmZmpjw8PGyXU13+/JuwsDClpqY6XEOrVq20YMECZWdn235K5pOEhIQoPT3dtm/p1/Zq1qyZPDw8lFHqUr20tDS1bNnStvz000+rXbt2Gjp0qMy/zjlq1aqVxo4dW6auCxcuKDY2tlwfn376qSTpxhtvVIsWLXTPPfeoqKhIS5cudbheZyLEAAAAwLWMRmnGDOvry4NMyfK771r3c6KVK1dWeLJtMplkMBjUpEkTXbx4Ua+88kqZ+SDNmzcvc2nV0KFDtWrVKq1Zs0bFxcVKT0+vciJ8iVGjRun111/X4cOHJVlHX9auXStJeuCBBzR79mwdOnRIOTk5thsIOMJoNGrgwIGaMmWK8vPz9eOPP2revHkaMmSIbR8PDw99/PHH+uWXXzRq1ChZLBYNGzZMS5YsUUpKioqLi5WXl2e7zO1yCxcu1N///nft2rXL9vPSSy/ZLikrLi5WQUGBLl68WOa1qxFiAAAA4HoDB0rLl0ulRgkkWUdoli+3bneyLl26qHPnzuXWd+7cWaNHj1aXLl0UHh6uiIgIeXt727Y/+eSTmjt3rho3bqy//vWvioiI0IoVKzRlyhQFBgbqtttuU6Yd83eGDBmiESNGqF+/fvL391efPn20b98+SdLdd9+txx57TD179lSXLl10zz331OgY33//fRUUFCg0NFT9+/fXn//8Z8VfNqLl5eWl5cuX6+jRo3rqqacUERGhhQsXauLEiQoODlb79u21atWqcm1v3rxZp06d0qhRo9SiRQvbz7hx47R9+3YdOnRI3333nXx8fDR69Gh99dVX8vHx0eOPP16jY3GEwVLZbQhcKDc3V4GBgcrJyVFAQEBddw8AAIBaKCgoUGpqqiIiIhx/yrzZbL0LWWamdQ5MfLzTR2BwZarsv5uaZANPVxUJAAAAlGM0SgkJ9V0F3ByXkwEAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWuMUyAAAA6oy52KyktCRl5mUqxD9E8a3jZfTgOTFwDCMxAAAAqBMr969U+Ixw3fKvWzRs5TDd8q9bFD4jXCv3r6zv0mosPDxcW7durXU7R44ccfzBodUYMWKE/vKXvzi1zSsFIQYAAAAut3L/Sj2w9AFl5GaUWX8s95geWPqA04JMeHi4AgIClJ+fb1uXm5srHx8ftW/f3q42EhIStHjxYqfU4wwbN26Uh4eH/Pz85O/vry5duuiLL76ok74/+ugjeXp6ys/PT35+furQoYNWrVpl2/7FF1+oZ8+eCgwMVGhoqKZNm1YndRFiAAAA4FLmYrOeWvuULLKU21ay7um1T8tcbHZKfy1atNDq1attyytXrlRYWJhT2q4v7dq1k8lkUk5OjkaPHq3Bgwfr7NmzddL37bffLpPJJJPJpHfffVcPPfSQcnJyJEl5eXl67bXXdPLkSW3evFmLFy/WJ5984vKaCDEAAABwqaS0pHIjMKVZZFF6brqS0pKc0t/QoUO1YMEC2/KCBQs0bNiwMvu8+uqratOmjQICAtSzZ0/t2bPHtj4pKUkjRoyQn5+f3nrrLUnShg0b1L17dwUEBKht27ZKSrpU69atW9WhQwc1btxYEyZMKNPP+++/r7Zt26pp06Z69NFHdf78edu2119/Xc2bN1d4eLg+++wzu47Nw8NDiYmJys/P1+HDh3X27FkNGTJETZs2VVRUlObOnVvh+zIzM9W5c2fNnj1bkrRp0yZ169ZNQUFBSkhI0KFDh+zq/4477lCjRo105MgRSdbP+rbbblODBg3UunVrDRw4UNu2bbOrrdogxAAAAMClMvMynbpfdfr27audO3fq7NmzysrK0sGDB9W7d+8y+3Ts2FHbt2/X2bNn1bdvXz3yyCOSpJdeeknx8fH66KOPZDKZ9Nxzz+nw4cO67777NHXqVJ07d07ffPONQkJCbG2tXr1aycnJ2rt3rxYvXmwLOMuWLdPs2bP19ddfKz09XRcvXtTLL78sSVqzZo0++OADbd68Wbt27dLnn39u17GZzWbNmzdPjRo1UlRUlJ544gl5enoqLS1NK1eu1OTJk5WcnFzmPenp6brllls0ceJEjR49WmlpaRo0aJBmzJihM2fO6P7779eDDz4oi6X8SFlpFotFa9euVXFxsaKioircZ/PmzerUqZNdx1IbhBgAAAC4VIh/SPU7ObBfdTw9PXXvvfdq2bJlWrx4sQYNGiQPj7Knvffff7+aNWsmT09PTZ48WXv27JHJZKqwvUWLFmnAgAG65557ZDQa1bp16zIn8U8//bSaNGmi0NBQJSQkaPfu3ZKkefPmacqUKWrTpo18fHw0efJkLV++XJI14IwZM0ZRUVEKCgrSCy+8UOUxHTx4UEFBQWrevLk+/fRTrVixQv7+/lqxYoWmT58uX19fdenSRaNGjdKiRYts7zty5IhuvfVWvfTSS0pMTJQkLVy4UA888IDi4uJkNBr15JNP6ujRo7bRlct98803CgoKkp+fn+6++2698soratSoUbn9/t//+3/KzMzUo48+WuWxOAMhBgAAAC4V3zpeoQGhMshQ4XaDDAoLCFN863in9fnQQw9p4cKFWrhwoR566KFy2+fMmaNOnTopMDBQLVq0kMVi0ZkzZypsKyMjQ5GRkZX21bx5c9trX19fWxhKS0vTqFGjFBQUpKCgIMXFxen06dOSrJd3lZ6nU92cnbZt2yo7O1tnzpzRtm3bdMcdd+jUqVMym80KDQ217demTRsdP37ctrxy5UoFBARo0KBBtnVpaWn68MMPbXUFBQXp/PnzZd5X2m233abs7GydP39eP/74o6ZPn15u5OiLL77Qn//8Z33xxRfy8fGp8licgRADAAAAlzJ6GDXjzhmSVC7IlCy/e+e7Tn1eTM+ePXXs2DGZTCZdf/31ZbYdOXJEzz77rD755BNlZ2crMzNTHh4etsupDIayNYaFhSk1NdXhGlq1aqUFCxYoOzvb9lMyJyYkJETp6em2fUu/tlezZs3k4eGhjIxL843S0tLUsmVL2/LTTz+tdu3aaejQoTKbzba6xo4dW6auCxcuKDY2tto+O3TooNjYWK1bt8627rvvvtOoUaO0evXqSi8zczZCDAAAAFxuYIeBWj54uVr6tyyzPjQgVMsHL9fADgOd3ufKlSu1dOnScutNJpMMBoOaNGmiixcv6pVXXikzH6R58+ZlLq0aOnSoVq1apTVr1qi4uFjp6el2TYQfNWqUXn/9dR0+fFiSdfRl7dq1kqQHHnhAs2fP1qFDh5STk2O7gYAjjEajBg4cqClTpig/P18//vij5s2bpyFDhtj28fDw0Mcff6xffvlFo0aNksVi0bBhw7RkyRKlpKSouLhYeXl5tsvcqvO///1PKSkp6tChgyRp165deuCBB7RgwQJ169bN4WOoKUIMAAAA6sTADgO1b9w+2/KaYWuU+lSqSwKMJHXp0kWdO3cut75z584aPXq0unTpovDwcEVERMjb29u2/cknn9TcuXPVuHFj/fWvf1VERIRWrFihKVOmKDAwULfddpsyM6u/CcGQIUM0YsQI9evXT/7+/urTp4/27bMe/913363HHntMPXv2VJcuXXTPPffU6Bjff/99FRQUKDQ0VP3799ef//xnxceXvSzPy8tLy5cv19GjR/XUU08pIiJCCxcu1MSJExUcHKz27duXefbL5b7++mv5+fmpUaNG6tOnj4YOHao//OEPkmS7OcC9995re5bMXXfdVaNjcYTBUt1tCFwgNzdXgYGBysnJUUBAQF13DwAAgFooKChQamqqIiIinP6UeVy9KvvvpibZgJEYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBb8azvAgAAAPDbYTZLSUlSZqYUEiLFx0tGY31XBXfDSAwAAADqxMqVUni4dMst0rBh1j/Dw63r3VV4eLi2bt1a63aOHDni9AeHjhgxQn/5y1+c2uaVotYhJjc3V6tWrdL+/fudUQ8AAACuQitXSg88IGVklF1/7Jh1vbOCTHh4uAICApSfn29bl5ubKx8fH7Vv396uNhISErR48WLnFOQEGzdulIeHh/z8/OTv768uXbroiy++qLP+jx49qqFDh6pp06YKCgpSt27dNH/+fEnS4cOHdeONN6px48YKDg7Wvffeq8zMTJfX5HCIGTx4sN577z1JUn5+vrp3767BgwerS5cuWrFihdMLBAAAgHszm6WnnpIslvLbStY9/bR1P2do0aKFVq9ebVteuXKlwsLCnNN4PWnXrp1MJpNycnI0evRoDR48WGfPnnV5vydPnlTPnj3l6+ur3bt3Kzs7Wx999JG+/vprSVKzZs20dOlSnT17VllZWWrfvr2efvppl9flcIj57rvvFB8fL0n697//LYvFouzsbM2cOVOvvfaa0wsEAACAe0tKKj8CU5rFIqWnW/dzhqFDh2rBggW25QULFmjYsGFl9nn11VfVpk0bBQQEqGfPntqzZ49tfVJSkkaMGCE/Pz+99dZbkqQNGzaoe/fuCggIUNu2bZVUqtitW7eqQ4cOaty4sSZMmFCmn/fff19t27ZV06ZN9eijj+r8+fO2ba+//rqaN2+u8PBwffbZZ3Ydm4eHhxITE5Wfn6/Dhw/r7NmzGjJkiJo2baqoqCjNnTu3wvdlZmaqc+fOmj17tiRp06ZN6tatm4KCgpSQkKBDhw5V+L6///3vuuaaazR37ly1atVKkhQTE6OFCxdKkvz9/RURESGDwWCrLzU11a5jqQ2HQ0xOTo6Cg4MlSWvXrtX9998vX19f3X333Tp48KDTCwQAAIB7s/fqImddhdS3b1/t3LnTNjpw8OBB9e7du8w+HTt21Pbt23X27Fn17dtXjzzyiCTppZdeUnx8vD766COZTCY999xzOnz4sO677z5NnTpV586d0zfffKOQkBBbW6tXr1ZycrL27t2rxYsX2wLOsmXLNHv2bH399ddKT0/XxYsX9fLLL0uS1qxZow8++ECbN2/Wrl279Pnnn9t1bGazWfPmzVOjRo0UFRWlJ554Qp6enkpLS9PKlSs1efJkJScnl3lPenq6brnlFk2cOFGjR49WWlqaBg0apBkzZujMmTO6//779eCDD8pSwVDZhg0bNGDAAFtIqUxQUJB8fHz017/+VRMnTrTrWGrD4RATFhamLVu26Pz581q7dq1+97vfSZLOnTvn9MlIAAAAcH+lzvedsl91PD09de+992rZsmVavHixBg0aJA+Psqe9999/v5o1ayZPT09NnjxZe/bskclkqrC9RYsWacCAAbrnnntkNBrVunVrRUVF2bY//fTTatKkiUJDQ5WQkKDdu3dLkubNm6cpU6aoTZs28vHx0eTJk7V8+XJJ1oAzZswYRUVFKSgoSC+88EKVx3Tw4EEFBQWpefPm+vTTT7VixQr5+/trxYoVmj59unx9fdWlSxeNGjVKixYtsr3vyJEjuvXWW/XSSy8pMTFRkrRw4UI98MADiouLk9Fo1JNPPqmjR4/qyJEj5fo9c+aMWrRoUe1nnp2drXPnzmn69OkKDw+vdv/acjjEPP3003rooYcUGhqqkJAQJSQkSLJeZhYTE+Ps+gAAAODm4uOl0FCpsn/MNxiksDDrfs7y0EMPaeHChVq4cKEeeuihctvnzJmjTp06KTAwUC1atJDFYtGZM2cqbCsjI0ORkZGV9tW8eXPba19fX1sYSktL06hRoxQUFKSgoCDFxcXp9OnTkqyXd5Wep1PdnJ22bdsqOztbZ86c0bZt23THHXfo1KlTMpvNCg0Nte3Xpk0bHT9+3La8cuVKBQQEaNCgQbZ1aWlp+vDDD211BQUF6fz582XeV6JJkybKysqqsrYSAQEBevTRR3XfffdVOKrjTA6HmHHjxmnLli2aP3++UlJSbKk2MjLyNzcnxmyWNm6UFi2y/umsyWgAAABXE6NRmjHD+vryIFOy/O67koeHlJcnnTlj/bM258E9e/bUsWPHZDKZdP3115fZduTIET377LP65JNPlJ2drczMTHl4eNhOvC+/dCosLKxG8zxatWqlBQsWKDs72/ZTMicmJCRE6enptn1Lv7ZXs2bN5OHhoYxSE47S0tLUsmVL2/LTTz+tdu3aaejQoTKbzbJYpKZNW2nEiLFKT8/WuXPWui5cuKDY2Nhyfdx6661avXq13aGkuLhYmZmZunDhgsPH44ga3WK5e/fuuvvuu3Xs2DEVFRVJku6+++4KD/xqdTXe5xwAAMBVBg6Uli+XSp1fS7KO0Cxfbj2X2rtXOnBASk21/rl3r3TuXM37XLlypZYuXVpuvclkksFgUJMmTXTx4kW98sorZU7SmzdvXubSqqFDh2rVqlVas2aNiouLlZ6eXulE+NJGjRql119/XYcPH5ZkHX1Zu3atJOmBBx7Q7NmzdejQIeXk5NhuIOAIo9GogQMHasqUKcrPz9ePP/6oefPmaciQIbZ9PDw89PHHH+uXX37R8OGjtGePRd26DdOKFUu0dGmKdu8uVlpanu0yt8s988wzysrK0pgxY2wjNT/99JNtdOu7777Tzp07ZTabde7cOf3xj3/UTTfdpEaNGjl8PI5wOMRcuHBBo0aNkq+vrzp16qS0tDRJ0oQJE67ah+lcrq7ucw4AAHA1GThQ2rfv0vKaNdbAcsst0qFDUmFh2f0LC63raxpkunTpos6dO5db37lzZ40ePVpdunRReHi4IiIi5O3tbdv+5JNPau7cuWrcuLH++te/KiIiQitWrNCUKVMUGBio2267za5noQwZMkQjRoxQv3795O/vrz59+mjfrx/A3Xffrccee0w9e/ZUly5ddM8999ToGN9//30VFBQoNDRU/fv315///GfbnYRLeHl5ac6c5fr556OaPv0ptWoVoVdfXah3352o+Phgde/eXkuXrqqw/ebNm2vz5s3Ky8tTTEyMgoKC9Mgjj+j222+XZA2EDz30kAIDAxUdHa38/PwKg6OzGSwOXrD21FNPKSUlRe+++67uvPNO7dmzR5GRkVq9erVeeeUV/fDDD9W2kZubq8DAQOXk5CggIKDGxdcHs9k64lLZbQINBuu/KKSmWodOAQAArjYFBQVKTU1VRERErW/sZLFYR1wuDzCleXtLMTGVz6lB1a6Uz7iy/25qkg0cHolZtWqV3nvvPcXFxZW5XrBjx452Dau5u7q+zzkAAMDVzGSq+uRasm6v5MZhsMPV+Bk7HGJOnTpV5g4MJc6fP1/t/aOvBnV9n3MAAICrWXUn147uh/Kuxs/Y4RBz44036j//+Y9tuSS4zJkzRz179nReZVeour7POQAAwNWs1FQUp+yH8q7Gz9jT0TdMnz5dd955p/bt26eioiLNmDFDP/30k7Zs2aJNmza5osYrSsl9zo8dq/i2fyVzYpx5n3MAAICrlZ+f9eS5uvkafn51V9PV5mr8jB0eienVq5dSUlJ04cIFXXvttVq/fr2uueYabdmyRd26dXNFjVcUe+9zzqR+AABwtXPGAw1LHnRZlbAwJvXXxpXyGRcXFzutLYfvTrZnzx516dKlwm2rVq3SvffeW20b7nx3shIrV0oTJlhHZEqEhVkDzMCB9VYWAACAy5nNZh08eFC+vr5q1qyZU+ZF5+RY5xT/+ghCSZKXl9SihRQYWOvmofr7jC0WiwoLC3Xq1CmZzWa1bdtWHh6XxlJqkg0cDjEhISFKSUlRZGRkmfUrVqzQI488YnsKaVWuhhAjSbm5l77wNWuk3/2OERgAAPDbYDKZlJGR4ZTRmBLFxda7vEpS8+ZSw4aMwDhbfX7Gvr6+CgkJKfNMHqlm2cDhOTFjx47Vbbfdps2bNyvk19nrS5Ys0ciRI/XRRx852pxbKx1YevcmwAAAgN8OPz8/tW3bVhcvXnRamxcuSHffbX29c6fk6+u0pvGr+vqMjUajPD09nXY3Y4dDzMsvv6wzZ87o9ttvV1JSktauXavHHntMn3zyie6//36nFAUAAIArn9FolNGJ/4prNktHj1pfN2hgHSWAc10tn7HDIUaSZsyYoeHDh+vmm2/WsWPHtGjRIg0YMMDZtQEAAABAOXaFmNWrV5dbd++992rTpk0aOnSoDAaDbZ/+/fs7t0IAAAAAKMWuif2l7x5QZWMGg8xmc7X7XS0T+8+fv3Q/bZNJatSofusBAABwZ5xbud6V+Bm7bGK/M+/pDAAAAAC14fDDLgEAAACgPtUoxGzatEm///3vFRUVpbZt26p///5KSkpydm0AAAAAUI7DIebTTz/V7bffLl9fX02YMEHjx4+Xj4+PbrvtNi1cuNAVNQIAAACAjV0T+0vr0KGDRo8erWeeeabM+nfeeUdz5szR/v37q23jSp3Yby42KyktSZl5mQrxD1F863gZPSq/93ltJkY52hcAAMDV7kqcdH61uRI/Y5dN7C/t8OHD+v3vf19uff/+/TV58mRHm7tirNy/Uk+tfUoZuRm2daEBoZpx5wwN7DDQbfsCAAAArjYOX04WFhamb775ptz6b775RmFhYU4pqq6t3L9SDyx9oEyokKRjucf0wNIHtHL/SrfsCwAAALgaOTwSM3HiRE2YMEG7du1Sr169ZDAYlJycrI8++kgzZsxwRY0uZS4266m1T8mi8lfVWWSRQQY9vfZpDYgeUOvLveqyLwAAAOBq5XCIGTt2rFq0aKG//e1vWrp0qSTrPJklS5ZowIABTi/Q1ZLSksqNipRmkUXpuelKSktSQniC2/QFAAAAXK0cCjEWi0X/+9//FB0drY0bN8rT0+EMdMXJzMt06n5XSl8AAADA1cruOTFHjhzR9ddfr/bt2ysmJkZRUVHauXOnK2urEyH+IU7d70rpCwAAALha2R1inn/+eRUUFOiTTz7RsmXLFBISojFjxriytjoR3zpeoQGhMshQ4XaDDAoLCFN863i36gsAAAC4WtkdYpKSkjR79mwNGzZMAwcO1LJly7Rz507l5+e7sj6XM3oYNeNO6w0JLg8XJcvv3vmuUyba12VfAAAAwNXK7hCTlZWl9u3b25ZDQ0Pl4+OjEydOuKSwujSww0AtH7xcLf1bllkfGhCq5YOXO/XZLXXZFwAAAHA1sntmvsFgkIdH2czj4eEhi6X87YLd0cAOA3V7xO0KfDNQkrRm2Br97trfuWRUpC77AgAAAK42docYi8Widu3ayWC4dBmUyWTSDTfcUCbcnD171rkV1qHSIaJ3m94uDRV12RcAAABwNbE7xHz44YeurAMAAAAA7GJ3iHn00UddWQcAAAAA2MXuif0AAAAAcCUgxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVu+5O9uyzz9rd4DvvvFPjYgAAAACgOnaFmB9++KHM8o4dO2Q2mxUdHS1J+vnnn2U0GtWtWzfnV3ilMJulpCQpM1MKCZHi4yVV8IDKivYz1tODLK+kWgAAgPPxu96Kz+E3x64Q8+2339pev/POO/L399e//vUvNW7cWJJ07tw5JSYmKj4+3jVV1reVK6WnnpIyMi6tCw2V3nxP0oDq95sxQxo4sM7KveJqAQAAzsfveis+h98kg8VisTjyhlatWmn9+vXq1KlTmfU//vijfve73+n48ePVtpGbm6vAwEDl5OQoICDAsYpd6HzheflN95Mkmf5kUiPvRta/GA88IF3+MRkMOm/xlZ9M1v0XfKZGD99X4X6SpOXLy/xFqrAvZ6mi5opqAQAAbuYq/V1//rzkZz09kskkNaru9Ogq/RxcyeHPuA7UJBs4PLE/NzdXJ06cKLf+5MmTysvLc7S5K5vZbE32FeW8y9dNmlT1fk8/bW3P1eypua5qAQAAzsfveis+h980h0PMfffdp8TERC1fvlwZGRnKyMjQ8uXLNWrUKA282pJuUlLZoclySv2lOX6sit0sUnq6tT1Xq67muqwFAAA4H7/rrfgcftPsmhNT2gcffKA//vGPevjhh3Xx4kVrI56eGjVqlN5++22nF1ivMjOv7PZq00dd1AIAAJyP3/VWfA6/aQ6HGF9fX/3jH//Q22+/rUOHDslisSgqKkqNroQL6pwtJOTKbq82fdRFLQAAwPn4XW/F5/CbVuOHXWZmZiozM1Pt2rVTo0aN5OD9AdxDfLz17hYlk8PKKbW+ZavK9zMYpLCwX2/L7GLV1VyXtQAAAOfjd70Vn8NvmsMh5syZM7rtttvUrl079evXT5m/DtE99thjmjhxotMLrFdGo/X2fFL5vyCXL5dcSlfZfu++Wzf3K7en5rqqBQAAOB+/6634HH7THA4xzzzzjLy8vJSWliZfX1/b+gcffFBr1651anFXhIEDrbfna9my7PrQUGnBgkvLAwZUvl9d396vqpq51SAAAO6P3/VWfA6/WQ7PiVm/fr3WrVun0NDQMuvbtm2ro0ePOq2wK8rAgdLtt0uBgdblNWuk3/1OKjDat199/AvAlVQLAABwPn7XW/E5/CY5PBJz/vz5MiMwJU6fPq0GDRo4pagrUum/CL17V/4Xw9796sKVVAsAAHA+ftdb8Tn85jgcYnr37q2PP/7YtmwwGFRcXKy3335bt9xyi1OLAwAAAIDLOXw52dtvv62EhARt375dhYWFeu655/TTTz/p7NmzSklJcUWNAAAAAGDj8EhMx44dtWfPHt10003q27evzp8/r4EDB+qHH37Qtdde64oaAQAAAMDG4ZEYSWrRooWmTZvm7FoAAAAAoFo1CjHZ2dnatm2bTp48qeLi4jLbHnnkEacUBgAAAAAVcTjEfP7553rooYd0/vx5+fv7y1Dq4UIGg4EQAwAAAMClHJ4TM3HiRI0cOVJ5eXnKzs7WuXPnbD9nz551RY0AAAAAYONwiDl27JgmTJhQ4bNiAAAAAMDVHA4xd9xxh7Zv3+6KWgAAAACgWnbNiVm9erXt9d13361JkyZp3759iomJkZeXV5l9+/fv79wKAQAAAKAUu0LMvffeW27dn//853LrDAaDzGZzrYsCAAAAgMrYFWIuv40yAAAAANQXh+fEAAAAAEB9cjjETJgwQTNnziy3/r333tPTTz/tjJoAAAAAoFIOh5gVK1YoNja23PpevXpp+fLlTikKAAAAACrjcIg5c+aMAgMDy60PCAjQ6dOnnVIUAAAAAFTG4RATFRWltWvXllv/5ZdfKjIy0ilFAQAAAEBl7Lo7WWnPPvusxo8fr1OnTunWW2+VJH3zzTf629/+pnfffdfZ9QEAAABAGQ6HmJEjR+qXX37R66+/rldffVWSFB4ern/+85965JFHnF4gAAAAAJTmcIiRpLFjx2rs2LE6deqUfHx85Ofn5+y6AAAAAKBCDs+JufXWW5WdnS1JatasmS3A5Obm2i4vAwAAAABXcTjEbNy4UYWFheXWFxQUKCkpySlFAQAAAEBl7L6cbM+ePbbX+/btU1ZWlm3ZbDZr7dq1atWqlXOrAwAAAIDL2B1irr/+ehkMBhkMhgovG/Px8dGsWbOcWhwAAAAAXM7uEJOamiqLxaLIyEht27ZNzZo1s23z9vZW8+bNZTQaXVIkAAAAAJSwO8S0adNGklRcXOyyYgAAAACgOjW6xbJknReTlpZWbpJ///79a10UAAAAAFTG4RBz+PBh3Xfffdq7d68MBoMsFoskyWAwSLJO8gcAAAAAV3H4FstPPfWUIiIidOLECfn6+uqnn37Sd999p+7du2vjxo0uKBEAAAAALnF4JGbLli3asGGDmjVrJg8PD3l4eCguLk7Tp0/XhAkT9MMPP7iiTgAAAACQVIORGLPZLD8/P0lS06ZNdfz4cUnWif8HDhxwbnUAAAAAcBmHR2I6d+6sPXv2KDIyUj169NBbb70lb29vzZ49W5GRka6oEQAAAABsHA4xL774os6fPy9Jeu2113TPPfcoPj5eTZo00ZIlS5xeIAAAAACU5nCIueOOO2yvIyMjtW/fPp09e1aNGze23aEMAAAAAFylxs+JKS04ONgZzQAAAABAtewOMSNHjrRrv/nz59e4GAAAAACojt0h5qOPPlKbNm10ww032B5wCQAAAAB1ze4Q84c//EGLFy/W4cOHNXLkSD388MNcRgYAAACgztn9nJh//OMfyszM1PPPP6/PP/9cYWFhGjx4sNatW8fIDAAAAIA649DDLhs0aKChQ4fqq6++0r59+9SpUyeNGzdObdq0kclkclWNAAAAAGDjUIgpzWAwyGAwyGKxqLi42Jk1AQAAAEClHAoxv/zyixYtWqS+ffsqOjpae/fu1Xvvvae0tDT5+fm5qkYAAAAAsLF7Yv+4ceO0ePFitW7dWomJiVq8eLGaNGniytoAAAAAoBy7Q8wHH3yg1q1bKyIiQps2bdKmTZsq3G/lypVOKw4AAAAALmd3iHnkkUdkMBhcWQsAAAAAVMuhh10CAAAAQH2r8d3JAAAAAKA+EGIAAAAAuBVCDAAAAAC3QogBAAAA4FYIMQAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArhBgAAAAAboUQAwAAAMCtEGIAAAAAuBVCDAAAAAC3QogBAAAA4FYIMQAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArnvXRqcVikSTl5ubWR/eVOl94Xiqwvs7NzZXZ21xq4/lLr3NzJbO5olUV7udwX85iZy0AAMBNXWW/62t8OFfZ5+BKV+JHVZIJSjKCPQwWR/Z2koyMDIWFhdV1twAAAACuUOnp6QoNDbVr33oJMcXFxTp+/Lj8/f1lMBjquvtayc3NVVhYmNLT0xUQEFDf5cCJ+G6vXny3Vye+16sX3+3Vi+/26lWb79ZisSgvL08tW7aUh4d9s13q5XIyDw8Pu1PWlSogIIC/fFcpvturF9/t1Ynv9erFd3v14ru9etX0uw0MDHRofyb2AwAAAHArhBgAAAAAboUQ46AGDRrolVdeUYMGDeq7FDgZ3+3Vi+/26sT3evXiu7168d1ever6u62Xif0AAAAAUFOMxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArhBgAAAAAboUQAwAAAMCtEGIAAAAAuBVCDAAAAAC3QogBAAAA4FYIMQAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBb8ayPTouLi3X8+HH5+/vLYDDURwkAAAAArgAWi0V5eXlq2bKlPDzsG2OplxBz/PhxhYWF1UfXAAAAAK5A6enpCg0NtWvfegkx/v7+kqyFBgQE1EcJAAAAAK4Aubm5CgsLs2UEe9RLiCm5hCwgIIAQAwAAAMChaSZM7AcAAADgVggxAAAAANxKvVxOBgAAAJQwm826ePFifZcBFzIajfL09HTanYkJMQAAAKg3JpNJGRkZslgs9V0KXMzX11chISHy9vaudVuEGAAAANQLs9msjIwM+fr6qlmzZjw/8CplsVhUWFioU6dOKTU1VW3btrX7eTCVIcQAAACgXly8eFEWi0XNmjWTj49PfZcDF/Lx8ZGXl5eOHj2qwsJCNWzYsFbtMbEfAAAA9YoRmN+G2o6+lGnLaS0BAAAArpaWJu3cWflPWlp9V1gnwsPDtXXrVpe1f+TIkTKjJa7uz1GEGAAAALiHtDQpOlrq1q3yn+hopwSZ8PBw+fr6ys/PTy1bttQzzzwjs9nshINwrcTERE2ZMsW2vG/fPhkMBi1atMi2bunSpbruuuuc1ueYMWN07bXXymAw1FnQIcQAAADAPZw+LRUUVL1PQYF1PyfYsGGDTCaTkpKStHTpUs2fP98p7TqiuLhYxcXFdu8fFxen5ORk23JKSoratWtXbl1cXJzTarzhhhs0f/58hYaGOq3N6hBiAAAAgCpce+21io2N1a5du2zrli9frk6dOik4OFj9+/fXyZMnJUnDhg3TnDlzJEmbNm2SwWDQ999/L0maMWOGxowZI0lavXq1YmJi5O/vr7Zt22rZsmW2tkeMGKEJEyYoISFBfn5+SktL05o1axQVFaXg4GBNnTq10lrj4uK0bds2FRYWSpKSk5M1ceJEpaSk2PZJTk5WfHx8lcfhiD/84Q/q06ePjEajw++tKUIMAAAAUIWDBw8qOTlZkZGRkqRt27bp2Wef1ZIlS3TixAm1b99eY8eOlSTFx8crKSlJkjUsRERElFkuGQEJCAjQ8uXLlZOTo5kzZyoxMVFZWVm2PhcvXqx33nlHeXl5atSokYYMGaKZM2cqKytLFy5cUEZGRoW1RkdHKyAgQDt27JAkbd68WQMHDpTJZFJOTo5MJpN2795tCzuVHceVjhADAAAAVKBv377y8/NTu3btdPPNN+uJJ56QJM2fP1/jx49X586d5eXlpZdfflmrV69WUVGR4uLibKElKSlJkyZNqjDEJCQkKDo6Wh4eHrrrrrsUExOj7du32/oeNGiQunbtKqPRqDVr1uimm25Sv3795O3tralTp1Z5p69evXopOTlZWVlZMhqNatq0qXr06KHNmzdr69atCgsLU2hoaJXHcaUjxAAAAAAV+Oqrr5SXl6dVq1Zp586dMplMkqS0tDRNmzZNQUFBCgoKUmhoqDw9PZWVlaXOnTsrJydHR48e1b59+5SYmKgdO3bo4MGD8vDwUEREhCRroImNjVVwcLCCgoK0fft2nTlzxtZ36fklmZmZCgsLsy37+vqqSZMmldZdMi8mJSVFsbGxki4Fm9LzYao6jisdIQYAAACohMFg0IABA3Tbbbfp1VdflSS1atVK06dPV3Z2tu0nPz9foaGhMhgM6tWrl95//33FxMSoYcOGioyM1Jw5c8pMph8+fLhGjhypEydOKDs7W927d5fFYinTb4mQkBClp6fblvPz88sEnsvFxcUpJSXFFpSksiGmZD5MVcdxpSPEAAAAANWYNGmS5s6dq1OnTmnkyJGaNWuW9uzZI0k6e/asPvvsM9u+8fHx+uCDD9S7d+8yy6VDTF5enoKDg+Xp6akVK1bY5rBUpF+/ftq2bZvWrVunwsJCTZs2rco7lnXt2lX5+flauHChLcR06dJF+/fv19atW211VHcc9iosLFRBQYEsFkuZ165EiAEAAIB7aNpUKvUAxgo1bGjdz8nat2+vhIQEzZgxQz179tSbb76p4cOHKyAgQF27di1z96/4+Hjl5eXZRjxKlkuHmFmzZmn8+PFq3Lix1q1bpz59+lTad7NmzbRgwQKNGzdOLVq0kI+PT5WjJV5eXurRo4fMZrOio6MlSUajUTExMfL29laHDh0kqdrjsNfvfvc7+fj4KC0tTX369JGPj4+OHj3qcDuOMFhcHZMqkJubq8DAQOXk5CggIKCuuwcAAMAVoKCgQKmpqYqIiCjzdPgqpaVV/RyYpk2l1q2dUyCcqrLvuybZwNNVRQIAAABO17o1IQVcTgYAAADAvRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBb4RbLAAAAcBtpOWk6faHy58Q09W2q1oHcgvlqR4gBAACAW0jLSVP0e9EqKCqodJ+Gng11YPyBqz7IhIeHa/Hixbr55ptd0v6RI0fUvn17FRQU1El/juJyMgAAALiF0xdOVxlgJKmgqKDKkRp7hYeHy9fXV35+fmrZsqWeeeYZmc3mWrfraomJiZoyZYpted++fTIYDFq0aJFt3dKlS3Xdddc5pb+TJ09q8ODBuuaaaxQcHKzf//73SktLc0rbVSHEAAAAABXYsGGDTCaTkpKStHTpUs2fP7/OayguLlZxcbHd+8fFxSk5Odm2nJKSonbt2pVbFxcX55T6zp8/r7i4OP3000/KyspSVFSUEhMTndJ2VQgxAAAAQBWuvfZaxcbGateuXbZ1y5cvV6dOnRQcHKz+/fvr5MmTkqRhw4Zpzpw5kqRNmzbJYDDo+++/lyTNmDFDY8aMkSStXr1aMTEx8vf3V9u2bbVs2TJb2yNGjNCECROUkJAgPz8/paWlac2aNYqKilJwcLCmTp1aaa1xcXHatm2bCgsLJUnJycmaOHGiUlJSbPskJycrPj6+yuOwV0REhCZMmKCmTZvK29tb48aN07Zt2xxqoyYIMQAAAEAVDh48qOTkZEVGRkqStm3bpmeffVZLlizRiRMn1L59e40dO1aSFB8fr6SkJEnWsBAREVFmuWQEJCAgQMuXL1dOTo5mzpypxMREZWVl2fpcvHix3nnnHeXl5alRo0YaMmSIZs6cqaysLF24cEEZGRkV1hodHa2AgADt2LFDkrR582YNHDhQJpNJOTk5MplM2r17ty3sVHYcNbV582Z16tSpVm3YgxADAAAAVKBv377y8/NTu3btdPPNN+uJJ56QJM2fP1/jx49X586d5eXlpZdfflmrV69WUVGR4uLibKElKSlJkyZNqjDEJCQkKDo6Wh4eHrrrrrsUExOj7du32/oeNGiQunbtKqPRqDVr1uimm25Sv3795O3tralTp8rDo/LT+F69eik5OVlZWVkyGo1q2rSpevTooc2bN2vr1q0KCwtTaGholcdRE+np6XrhhRf02muv1ej9jiDEAAAAABX46quvlJeXp1WrVmnnzp0ymUySpLS0NE2bNk1BQUEKCgpSaGioPD09lZWVpc6dOysnJ0dHjx7Vvn37lJiYqB07dujgwYPy8PBQRESEJGugiY2NVXBwsIKCgrR9+3adOXPG1ndoaKjtdWZmpsLCwmzLvr6+atKkSaV1l8yLSUlJUWxsrKRLwab0fJiqjsNRZ8+e1Z133qnJkyfr9ttvd/j9jiLEAAAAAJUwGAwaMGCAbrvtNr366quSpFatWmn69OnKzs62/eTn5ys0NFQGg0G9evXS+++/r5iYGDVs2FCRkZGaM2dOmcn0w4cP18iRI3XixAllZ2ere/fuslgsZfotERISovT0dNtyfn5+mcBzubi4OKWkpNiCklQ2xJTMh6nqOBxhMpnUr18/DRgwQE8++aRD760pQgwAAADcQlPfpmro2bDKfRp6NlRT36ZO73vSpEmaO3euTp06pZEjR2rWrFnas2ePJOsoxGeffWbbNz4+Xh988IF69+5dZrl0iMnLy1NwcLA8PT21YsUK2xyWivTr10/btm3TunXrVFhYqGnTplV5x7KuXbsqPz9fCxcutIWYLl26aP/+/dq6dautjuqOwx6FhYUaOHCgOnXqpDfeeMOh99YGIQYAAABuoXVgax0Yf0A7Ru9QcuKlWwYnJyZrx+gd2jF6h8sedNm+fXslJCRoxowZ6tmzp958800NHz5cAQEB6tq1a5m7f8XHxysvL8824lGyXDrEzJo1S+PHj1fjxo21bt069enTp9K+mzVrpgULFmjcuHFq0aKFfHx8qhwt8fLyUo8ePWQ2mxUdHS1JMhqNiomJkbe3tzp06CBJ1R6HPbZs2aKvvvpKixcvlp+fn+3H1c+KMVhKj1vVkdzcXAUGBionJ0cBAQF13T0AAACuAAUFBUpNTVVERIQaNqx6hAXur7LvuybZgJEYAAAAAG6FEAMAAADArTgUYiwWi1JTU233ji4sLNSSJUv08ccf6/Tp0y4pEAAAAABK87R3xwMHDuiOO+5Qenq6IiMjtX79eg0aNEj//e9/ZbFY5Ovrq82bN6tt27aurBcAAADAb5zdIzHPP/+8rrvuOu3atUv33HOP7rnnHoWGhurcuXM6d+6cYmNj9ec//9mVtQIAAACA/SFm8+bNmjZtmmJiYvTaa69p//79+uMf/ygvLy95e3vr+eef13fffefKWgEAAADA/hBjMpkUHBwsSWrUqJEaNWqkkJAQ2/bQ0FCdOHHC+RUCAAAAQCl2z4lp2bKl0tLS1Lq19eFBb731lpo3b27bfurUKTVu3Nj5FQIAAAC/SkuTqrqfVNOmUmvnP+sSVxi7R2Juv/12/fe//7Utjx07Vv7+/rbl9evXq2vXrs6tDgAAAPhVWpoUHS1161b5T3S0db+rXXh4uLZu3eqy9o8cOVLmgZSu7s9RdoeYDz74QI899lil2x988EHNnTvXKUUBAAAAlzt9WiooqHqfgoKqR2rsFR4eLl9fX/n5+ally5Z65plnZDaba9+wiyUmJmrKlCm25X379slgMGjRokW2dUuXLtV1113ntD7vvvtuNW/eXIGBgerRo4e2bNnitLYrU6uHXWZkZKi4uFiSFBERUWaODAAAAODONmzYIJPJpKSkJC1dulTz58+v8xqKi4tt59v2iIuLU3Jysm05JSVF7dq1K7cuLi7OaTW+9dZbOn78uHJycvTiiy/qvvvuk8VicVr7FalViOnYsaOOHDnipFIAAACAK8+1116r2NhY7dq1y7Zu+fLl6tSpk4KDg9W/f3+dPHlSkjRs2DDNmTNHkrRp0yYZDAZ9//33kqQZM2ZozJgxkqTVq1crJiZG/v7+atu2rZYtW2Zre8SIEZowYYISEhLk5+entLQ0rVmzRlFRUQoODtbUqVMrrTUuLk7btm1TYWGhJCk5OVkTJ05USkqKbZ/k5GTFx8dXeRyO6NSpkzw9PWWxWOTh4aETJ07owoULDrfjiFqFGFcnLAAAAKC+HTx4UMnJyYqMjJQkbdu2Tc8++6yWLFmiEydOqH379ho7dqwkKT4+XklJSZKsYSEiIqLMcskISEBAgJYvX66cnBzNnDlTiYmJysrKsvW5ePFivfPOO8rLy1OjRo00ZMgQzZw5U1lZWbpw4YIyMjIqrDU6OloBAQHasWOHJOtjUgYOHCiTyaScnByZTCbt3r3bFnYqOw5H3XPPPWrYsKHuueceTZgwQY0aNapRO/aqVYgBAAAArlZ9+/aVn5+f2rVrp5tvvllPPPGEJGn+/PkaP368OnfuLC8vL7388stavXq1ioqKFBcXZwstSUlJmjRpUoUhJiEhQdHR0fLw8NBdd92lmJgYbd++3db3oEGD1LVrVxmNRq1Zs0Y33XST+vXrJ29vb02dOlUeHpWfxvfq1UvJycnKysqS0WhU06ZN1aNHD23evFlbt25VWFiYQkNDqzwOR33xxRfKy8vT8uXL6+RmX7UKMZMnT7Y9OwYAAAC4mnz11VfKy8vTqlWrtHPnTplMJklSWlqapk2bpqCgIAUFBSk0NFSenp7KyspS586dlZOTo6NHj2rfvn1KTEzUjh07dPDgQXl4eCgiIkKSNdDExsYqODhYQUFB2r59u86cOWPrOzQ01PY6MzNTYWFhtmVfX181adKk0rpL5sWkpKQoNjZW0qVgU3o+TFXHURPe3t66//779be//U379++vURv2svs5MRX505/+5Kw63EZamvTNN9JXX1lf/3q5oY2Xl9SihdSzpzR4cM3uU15y//MVK6Rvv5UOHJDOnZNKX71nMEgeHtb+goKk++6T/vGPWh2aJGn2bGnlSul//5Py88tv9/eXunaVBg2y9lnauHHWenNypIsXy7+3eXPr++64w/r5AACAmvvLX6T166UffpDy8qTLb5xlMEienpKfn1TyKL9Sd8yVJJ09K2VnW88pAgPLbw8Kkvr1k0aPrvmzV/79b+nLL6UdO6znM6W1bClNm2Z97e0t+fhYX5vNUnGx9XzCbJaMRmuNhw7VrIbKnDpl/ewsFmt/pefPX7wopadLLVoYdP31A9Sjx2r98Y+v6qWXZsjPr5Weemq6Hn54gjw8Lp2XFRRIhw9LN9zQS2+++b6io2NkNjdU69aR+tvf5uj66+NsxzB06HCNG/ei5s17RN7eXho8uKcKCy+d7BkMBklSZqZUXByiffu+VsmUnIKCfJ0+fUY//yw1amT97q65RmrQwLo9Li5O06dPV2RkpC3EdO7cS59++rS8vRvo7rsf0PHjUuPGrfTCC9M1atQE+fhc+u9EUq3mvRcVFSk1NVUdOnSocRvVqVWIKS09PV2vvPJKvdy1oa6kpUlt25YPLhVZuVKaPNkaBhz5S19y//Pqbh9osVj/UpvNUlaW9M9/WtfXJsjMni39OtesSgcOSIsWWY+xJMiMG3ephsqcPm39P6pp06TNmwkyAADU1F/+IlX3b8kWi/VE/Ny58uGhIpXNw/7hB+nNN60BwtEg8+9/SwMHVr69JKicP2/9qa5OHx9r2KnqXKxBA+sDL6tz6pR09Gjl2y0WyWS6dLvmQYMmafjwbnrooRd1550jNXXqI4qJSVDbtl2Uk3NWu3YlqU+fAZKkjh3j9eGHrysxcYr275eio+P16aczNHbs67ZjzMvLk6dnsPLyPPXttyu0e/cOHTsm/fLLpRoyM6Vjx6Qbb+ynN954UklJ69S9+y364INpsliKZTZb9z950no8nTtbj79r167Kz8/XwoUL9d133+ncOalhwy46cGC/CgsL9MQT7+r4cem226zHERVlPY7g4LPauzdJAwYMqP4D/NXRo0e1d+9e3X777TIYDJozZ44yMjLUrVs3u9uoCafNiTl79qz+9a9/Oau5K9Lp0/YFmBIXLzp+n3J77n9emVKXUdZIqRtu2OWnn2re9+HDju0PAAAu+XXOdp0pKqrZs1dKnys4Q4sW1itVPvlE+vUGYJKsrz/5xPrz1Vf2hS1Hb54VHt5e3bolaPHiGerSpafGj39Tr7wyXAkJARo+vKt2775096/rr4/X+fN5uv566x3AbrihZPnSbY0nTZqlt98er1tvbawtW9apa9c+slisn/XlNTZu3Ex//vMCvfnmON15Zws1bOij5s0vXW4mqcx7vby81KNHD5nNZkVHRys/XzIajbr22hh5enorIsI6QnL5cfTp07XMXczs9frrr6t58+Zq0aKFlixZos8//1zXXHONw+04wu6RmNWrV1e5/TBnpQAAAHCxFi2sP5L0652Lyyh9SVRtrF59pNy6d9/9j+31rbcO1K23VjzMdN11vfT995cuDbv55t+VWZakO+4YqjvuGFrh+z/66CNJZS+f69379+rd+/e25ccff6XK+jds2FBu3T//+U25daWPo2VL649kfdhnQal/Wa/s8rI2bdrUycMtL2d3iLn33ntlMBiqvK1yybV7AAAAAOAqdl9OFhISohUrVtieGnr5z86dO11ZJwAAAABIciDEdOvWrcqgUt0oDQAAAAA4g92Xk02aNEnnz5+vdHtUVJS+/fZbpxQFAAAAAJWxO8TEx8dXub1Ro0bq06dPrQsCAADAb4PFUvIcPK7m+S0oLv0gnlpy2nNifguaNq3+3uSleXnZd5/yy/to2LBmt1nu3t3x95R2/fWO7d+pU9m+K7pDSGUiIx3rCwAAXNKtm7R8ed315+np+DmNVPZcoSKnTnkpJ8eg4OBTMhqbSar9TaK8vOw7j/LyqnVXTmcwWJ8BWFK/IzVe/t7SjEb72jAaa/6oj6pYLBYVFhbq1KlT8vDwkLe3d63bNFjqYSJLbm6uAgMDlZOTo4CAgLruvlbS0qRvvrE+eXbZsvLbb77Zemu6nj2lwYNr9nTbtDTrvdgXL5befrvy/QwG6wONgoKsD52szYMuS8yebX2I5b591qfUlta8ufW2hV27SoMGXXrQZYlx46Rvv7U+cOns2bLbmjSxPkl20CDpjjt40CUAALX1l79I69dbn9WWl1fxPp6ekr//pdsOFxdLpe+U27y5lJtrHQ0p/ZBFSQoPt76vXz9p9OiandNI1gdefvml9UHXlz83JjRU6tbNpMcey1BAgEWentZ6Svj4SPn5Zd/j4WE9jhJeXtZzIg8P6z8EBwbaX1tenvW4Kzv59/GxnthbLNaHcdqj5D0mk3W5RQtrvfn51ue4XH48vr7W+r29ra89LxtiyMmx9m02lz1uyXrMHh7WPgMCyr+3tAsXrM8wLC6+9BkHBFjfL1k/R19f+46xpnx9fRUSElIuxNQkGxBiauj8ecnPr/x6k0lq1Mi1fZRYu9YaCFzhp5+sT30t7fBhKSKi+veuWyfdeWfZdSdOWP+PEgAAONf330s33VTxtst/d3/3nVT66v+S388V/d535jmNJKWmlr8S48cfraM1ZrNZFy9e1JkzUmzspe0pKWWXJenzz6XfX3pcipYtk2JialfbwYNl2yyxc6f1xP7yuqqSkmINFV27lm1DsgaJkvWX91GdvXut/xhck/eWlpEh3X679fXXX1uDZF0wGo3y9PSs8JEsNckGXE4GAACAemU0GmU0GuXlJR09emn95cuSdeTg8nUNG9au/4ralKxXvDRsWHEdlfHysr6vZP+SNiTraMrl7ZTeXp3avLeE0XipHaOx9p9dfbH7FssAAAAAcCVwOMT861//0n/+8x/b8nPPPaegoCD16tVLR+2NqAAAAABQQw6HmDfeeEM+Pj6SpC1btui9997TW2+9paZNm+qZZ55xeoEAAAAAUJrDc2LS09MVFRUlSVq1apUeeOABjR49WrGxsUpISHB2fQAAAABQhsMjMX5+fjpz5owkaf369br919sbNGzYUPmX3zMOAAAAAJzM4ZGYvn376rHHHtMNN9ygn3/+WXfffbck6aefflJ4eLiz6wMAAACAMhweiXn//ffVs2dPnTp1SitWrFCTJk0kSTt27NDQoUOdXiAAAAAAlObwSExQUJDee++9cuunTZvmlILq0pb0LZq7c64OnD6gQnOhfjH/oqLiItt2X09fdWnRRQM7DlSIX4ia+jZV68AaPq721/4OZx/W9mPb9d2R73Q056hyCnJkllmSZCj5n8Gghp4N1dgYKml/pe3d+cnt8vy/TbZlLw8vRTSO0FM9ntLo7qMlSf/e/299+b8vdSz3mA6dPaT03HQVFBWoWMW2Po0GozwMHvI2equVXyvd2e5O3ej1qKQbanysAACg/h3PO6a//We6/nv6v5Kkswc6SJpl237dP69Tm5Y+anPxTklTy7x3/s75ejJ+ZJl1s7fP1q4Tu5T3S54Kiso/4j66SbQGdhxY63MmoDp2hZg9e/bY3WCXLl1qXExd2pK+Rb3m96p2v+1Z2zV/13xJUkPPhjow/kCN/lLa059FlpIXMl00yXQ+repGLWYVWS6FriJzkfad3qcx/xkjSWrWqJkGLh1YbZ9FliLJIhUWF+rAuQM68H8HpBNrJf232uMCAABXrrh58VJw6qUVx8+X2Z5lOq6s46f1fyeydXmImbD2STXwKbL9w+js7bNt5xhVeT359VqdMwH2sCvEXH/99TIYDLJYLBVuL9lmMBhkNpudWqCrHM4+7PB7CooKdPrC6Rr9haxJf7Wx68QutfRvWad9AgCAK03tzst2ndhV4evq1OacCbCHXSEmNTW1+p0AAAAAoA7YFWLatGnj6joAAAAAwC52hZjVq1fb3WD//v1rXAwAAAAAVMeuEHPvvffa1Zg7zYkBAAAA4J7sCjHFxcWurgMAAAAA7OLwwy5LKygof39wAAAAAHAlh0OM2WzWq6++qlatWsnPz0+HD1tvHfzSSy9p3rx5Ti/QVSKDIh1+T0PPhmrq27TO+quN66+5Xp2adarTPgEAwJXGWKt3X3/N9RW+rk5tzpkAe9h1OVlpr7/+uv71r3/prbfe0uOPP25bHxMTo7///e8aNWqUUwt0lZ5hPbV55GbN3TlXe7P26vus7yvc75GYRzQ4ZrBC/EJq9fTZkv4OZx/Wd6nfafYPs6vc38/TT40bhirdzvaNMsrb6K2IxhF6qsdTtgdTrRy8Ul/+70sdPHNQG49urLINX09fhfmH6c52d+pGr0f18D/t7BwAAFyRkkclaVH6dO07tU/fHv223PYWfi3VrFmI9p4oLLdt5p2zNLr7SNtyybnFrhO7lJ6Tri8OflFm//ui71PHZh01sOPAWp0zAfZwOMR8/PHHmj17tm677Tb94Q9/sK3v0qWL/vtf93rCe8+wnuoZ1lMnTSd1zd+uqXCff9zzDzXybuTU/vpG9K02xGRNypIuNpLfC/a1vXvsbnVqXn7k5b4O9+m+Dvcp9VyqImdWPRqU+lSqmvs1lyT99JN9/QIAgCtXS/9Weu/u93S+8Lz8pvuV27577G6d0k/q/OP95baN7Dqy3LqSIPPTyZ/KhZhPBn7itHMmoDoOX0527NgxRUVFlVtfXFysixcvOqUoAAAAAKiMwyGmU6dOSkpKKrd+2bJluuGGG5xSFAAAAABUxuHLyV555RUNHz5cx44dU3FxsVauXKkDBw7o448/1hdffFF9AwAAAABQCw6PxPz+97/XkiVLtGbNGhkMBr388svav3+/Pv/8c/Xt29cVNQIAAACAjd0jMS+++KJuvfVW9erVS3fccYfuuOMOV9YFAAAAABWyeyRm0aJFuv322xUUFKQ+ffpo2rRpSkpKUmFh+VvyAQAAAICr2B1iDh06pPT0dM2ZM0dRUVH6+OOP1adPHzVu3Fi33367Xn/9dW3evNmVtQIAAACAY3NiWrVqpeHDh2vevHk6dOiQjh49qn/+859q3bq13nrrLfXu3dtVdQIAAACApBrcnazEoUOHtHHjRm3YsEEbN26U2WzWLbfc4szaXCctTdq7V8rOti4X5VS+b1CgVCjJbL5sQyNJpvL7N24smXOtr4uLrX96ekoGg/W1h4cU4Ck9UfPyK9Sxs3Smkm1Go9TcWxpTyz5u7CYZ0qyvzWbpwgXJYrEek4+P1KSJ5O0t5d4k6cOy773+ein/qFRUVHa9l5cUHi7deqsUGyvdd9+lbf/+t5SSIn3/vfTzz9b+Cgulixet/RsM1v7t0aDBpe/Ay0sKDJQCAqx/xsRIYWFSaKi1jtY8YRgAcIXbskU6fNj6+lCgpHsq3i+yjaQ0yUvSlAq2t2kjtTgr3dWq/Da/RpIulF/fsKHU2lcadtn6p5+WfvpZOn267HpPTykkRGrSTdLrZbd98A/pmrOXlk2+kp6t+Fgqc9fvpAa/PqW7qMh6nlBcLAUHW88/jEbpzBnr+d/589ZziOJi63mBh4e1vuL2kr5xrF9nadZM+uXspfPGyzVoYD1f8YmVtLJOS7uS2R1iUlNT9e233+rbb7/Vxo0blZOTo9jYWPXp00fjx4/XjTfeKE/PGmeiupOWJrVrJ/3yy6V1vpKeq2T/IrN0eX6RJFVy8nyxUNJl/xFefuJ+/hfVKbNZupBf+3bOnJZ0uuJtBQXSuXO/LjQvvz3zmKTsit977pz0ww/S3/4mrVxpDTL//rc0cGDV9dgbYKSy33dBgZSXd2l5y5ZLr729pYMHCTIAgCvXli1Sr16lVlyvSkNMdQouSHkV/KNsle8pkM4UlF8/d65U2XPP9+yRtF/lQsx7MyUdKLWiqaoNMbt+kFTq2YRnTkk6Xn6/nBwpNbXqtmz87dzPBfIvqNy5Y2m//CKdPCnJ3mP5bbA7dVx77bVq3bq1xo0bpwkTJqhr164yGo2urM01Tp8ue0KLK8tPP1lDzE8/1U//hYXW/0YIMQCAK1XJCMxvVXqayoQY/CbZPSdm0KBB+uWXXzR9+nS9+uqrevfdd7Vz505ZHPnXcAAAAACoJbtHYpYsWSJJ+u9//2u7pOztt99WQUGB4uLi1KdPHyUkJOjGG290WbEAAAAA4NDdySSpffv2Gjt2rJYsWaKsrCxt3rxZ119/vV577TX17NnTFTUCAAAAgE2NZuKfOHFCGzdu1MaNG/Xtt9/q559/VoMGDRQfH+/s+gAAAACgDLtDzLJly2yXkR04cECenp666aabNHjwYN1yyy3q1auXGjRo4MpaAQAAAMD+EPPQQw+pe/fuuu+++3TLLbcoNjZWPj4+rqwNAAAAAMqxO8ScO3dOjRo1cmUtdaNpU+tDg7jN8pWpU6eyf9Y1b2/rfyMAAFypIiPru4L6FcZjEOBAiLkqAoxkff7Hzz9Le/dKJ05Io0bVd0V1o2EDSS4Ibl5e1ifjVqdZc+lUBQ/KDAy0/p/xrbdKsbHWZ8RI1j9XrpRSUqTvvpO+/965dZeWmGitITTUWgfPiAEAXMl69pQ2b7Y+LyY3Vxo3u74rskocIc3+qPz66GgpPFxq0k1aWMl7n31WatxYMvlKb1bTz/XVPCOmcWPrg75zc6st+Yrg4/vrAy+rEBws+UdIR+umJHdQo4n9bq91a+vP+fO/nRCTlCQtvMn57WZkSNdcU/1+/1kj3RRefv0PP0gRERW/5777rD+pqa79V6dZs6SrJaQDAH4beva0/pw8eeWEmL+8WXGIWbHCeoVFqioPMePHW88HTqr6EFOd9HTrn35+tWyojpw6JS3/lzRiROX7fPeddKGT5IJTOXfl8C2WAQAAAKA+EWIAAAAAuBVCDAAAAAC3YtecmIEDB9rd4MqVK2tcDAAAAABUx66RmMDAQNtPQECAvvnmG23fvt22fceOHfrmm28UGBjoskIBAAAAQLJzJObDDz+0vX7++ec1ePBgffDBBzIajZIks9mscePGKSAgwDVVAgAAAMCvHJ4TM3/+fP3xj3+0BRhJMhqNevbZZzV//nynFgcAAAAAl3M4xBQVFWn//v3l1u/fv1/FxcVOKQoAAAAAKuPwwy4TExM1cuRI/e9//9PNN98sSdq6dav+8pe/KDEx0ekFAgAAAEBpDoeYv/71r2rRooX+/ve/KzMzU5IUEhKi5557ThMnTnR6gQAAAABQmkMhpqioSAsWLNAjjzyi5557Trm5uZLEhH4AAAAAdcahOTGenp4aO3asfvnlF0nW8EKAAQAAAFCXHJ7Y36NHD/3www+uqAUAAAAAquXwnJhx48Zp4sSJysjIULdu3dSoUaMy27t06eK04gAAAADgcg6HmAcffFCSNGHCBNs6g8Egi8Uig8Egs9nsvOoAAAAA4DIOh5jU1FRX1AEAAAAAdnE4xLRp08YVdQAAAACAXRwOMSX27duntLQ0FRYWllnfv3//WhcFAAAAAJVxOMQcPnxY9913n/bu3WubCyNZ58VIYk4MAAAAAJdy+BbLTz31lCIiInTixAn5+vrqp59+0nfffafu3btr48aNLigRAAAAAC5xeCRmy5Yt2rBhg5o1ayYPDw95eHgoLi5O06dP14QJE3iGDAAAAACXcngkxmw2y8/PT5LUtGlTHT9+XJJ1wv+BAwecWx0AAAAAXMbhkZjOnTtrz549ioyMVI8ePfTWW2/J29tbs2fPVmRkpCtqBAAAAAAbh0PMiy++qPPnz0uSXnvtNd1zzz2Kj49XkyZNtGTJEqcXCAAAAAClORxi7rjjDtvryMhI7du3T2fPnlXjxo1tdygDAAAAAFdxeE7MV199pQsXLpRZFxwcTIABAAAAUCccHom5//779csvv6hbt27q06ePEhISFBsba5vsDwAAAACu5PBIzLlz57Rx40b1799fP/zwgwYNGqTg4GDdfPPNeuGFF1xRIwAAAADYOBxijEajevbsqRdeeEFr167V5s2bNWzYMO3YsUNvv/22K2oEAAAAABuHLyfbv3+/Nm3apI0bN2rTpk0ym82Ki4vT3/72N/Xp08cVNQIAAACAjcMhplOnTmrWrJmefvppvfTSS+rUqZMr6gIAAACACjl8OdmECRPUqlUrTZ06VSNHjtTzzz+vL7/8UiaTyRX1AQAAAEAZDoeYd999Vzt37tSJEyf04osvymw26+WXX1bTpk118803u6JGAAAAALBxOMSUKC4uVlFRkQoLC/XLL7/o4sWLOnLkiBNLAwAAAIDyHA4xTz31lK677jo1b95cY8aM0fHjxzV69Gjt3r1bWVlZrqgRAAAAAGwcnth/7NgxPf7440pISFDnzp1dURMAAAAAVMrhELN8+XJX1AEAAAAAdqnRnJhPPvlEsbGxatmypY4ePSrJOuH/s88+c2pxAAAAAHA5h0PMP//5Tz377LPq16+fsrOzZTabJUlBQUF69913nV0fAAAAAJThcIiZNWuW5syZoylTpshoNNrWd+/eXXv37nVqcQAAAABwOYdDTGpqqm644YZy6xs0aKDz5887pSgAAAAAqIzDISYiIkK7du0qt/7LL79Ux44dnVETAAAAAFTK4buTTZo0SU888YQKCgpksVi0bds2LVq0SNOnT9fcuXNdUSMAAAAA2DgcYhITE1VUVKTnnntOFy5c0LBhw9SqVSvNmDFDQ4YMcUWNAAAAAGDjcIiRpMcff1yPP/64Tp8+reLiYjVv3lyS9UGYrVq1cmqBAAAAAFBajZ4TU6Jp06Zq3ry5srKy9OSTTyoqKspZdQEAAABAhewOMdnZ2XrooYfUrFkztWzZUjNnzlRxcbFefvllRUZGauvWrZo/f74rawUAAAAA+y8nmzx5sr777js9+uijWrt2rZ555hmtXbtWBQUF+vLLL9WnTx9X1gkAAAAAkhwIMf/5z3/04Ycf6vbbb9e4ceMUFRWldu3a6d1333VheQAAAABQlt2Xkx0/ftz2HJjIyEg1bNhQjz32mMsKAwAAAICK2B1iiouL5eXlZVs2Go1q1KiRS4oCAAAAgMrYfTmZxWLRiBEj1KBBA0lSQUGB/vCHP5QLMitXrnRuhQAAAABQit0h5tFHHy2z/PDDDzu9GAAAAACojt0h5sMPP3RlHQAAAABgl1o97BIAAAAA6hohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArhBgAAAAAboUQAwAAAMCtEGIAAAAAuBVCDAAAAAC3QogBAAAA4FYIMQAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArhBgAAAAAboUQAwAAAMCtEGIAAAAAuBVCDAAAAAC34lkfnVosFklSbm5ufXR/yfnzkqQ8i6SCinfJtUjmit4qi6Ty9efKUuH+pVXVn62d3FzpYjUtXSyytWMqrqiaUn2aTNX2mZebp4bFDa3tmSrYruLyfeTlldvvvIp0eTV5pjw1rLDTPKm6/w4q6MOpcnMlc3XfGgAAV6C8PJlkVmVnASW/u8+XnHsUlv0dnadimYolFZZvo6pzGlOxyp1X5ObmVby/ySTl5lb469wks7XXX88HLt+nwvdcdo5ia+NSIZVUXbnKPsOSUwRHTkXy8sqeVpQ+zfj11LN8H/n51RRokulC5fU5ovSx2HMaVhdKMkFJRrCHweLI3k6SkZGhsLCwuu4WAAAAwBUqPT1doaGhdu1bLyGmuLhYx48fl7+/vwwGQ113Xyu5ubkKCwtTenq6AgIC6rscOBHf7dWL7/bqxPd69eK7vXrx3V69avPdWiwW5eXlqWXLlvLwsG+2S71cTubh4WF3yrpSBQQE8JfvKsV3e/Xiu7068b1evfhur158t1evmn63gYGBDu3PxH4AAAAAboUQAwAAAMCtEGIc1KBBA73yyitq0KBBfZcCJ+O7vXrx3V6d+F6vXny3Vy++26tXXX+39TKxHwAAAABqipEYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCuEGAAAAABuhRADAAAAwK0QYgAAAAC4FUIMAAAAALdCiAEAAADgVggxAAAAANwKIQYAAACAWyHEAAAAAHArhBgAAAAAboUQAwAAAMCtEGIAAAAAuBVCDAAAAAC3QogBAAAA4FYIMQAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAAOBWCDEAAAAA3AohBgAAAIBbIcQAAAAAcCue9dFpcXGxjh8/Ln9/fxkMhvooAQAAAMAVwGKxKC8vTy1btpSHh31jLPUSYo4fP66wsLD66BoAAADAFSg9PV2hoaF27VsvIcbf31+StdCAgID6KAEAAADAFSA3N1dhYWG2jGCPegkxJZeQBQQEEGIAAAAAODTNhIn9AAAAANwKIQYAAACAW6mXy8kAAAAASTKbzbp48WJ9lwEXMxqN8vT0dNqdiQkxAAAAqBcmk0kZGRmyWCz1XQrqgK+vr0JCQuTt7V3rtggxAAAAqHNms1kZGRny9fVVs2bNeHbgVcxisaiwsFCnTp1Samqq2rZta/fzYCpDiAEAAECdu3jxoiwWi5o1ayYfH5/6Lgcu5uPjIy8vLx09elSFhYVq2LBhrdpjYj8AAADqDSMwvx21HX0p05bTWgIAAADgcuHh4dq6davL2j9y5EiZkRJX91cThBgAAAC4n6+/ljp2tP7pZOHh4fL19ZWfn59atmypZ555Rmaz2en9OFtiYqKmTJliW963b58MBoMWLVpkW7d06VJdd911Tu33woUL8vf314MPPujUdqtCiAEAAIB7sVikyZOl/futf7rg7mYbNmyQyWRSUlKSli5dqvnz5zu9j+oUFxeruLjY7v3j4uKUnJxsW05JSVG7du3KrYuLi3NqnatWrZKXl5c+//xz5eXlObXtyhBiAAAA4F7Wr5e+/976+vvvrcsucu211yo2Nla7du2yrVu+fLk6deqk4OBg9e/fXydPnpQkDRs2THPmzJEkbdq0SQaDQd//WueMGTM0ZswYSdLq1asVExMjf39/tW3bVsuWLbO1PWLECE2YMEEJCQny8/NTWlqa1qxZo6ioKAUHB2vq1KmV1hoXF6dt27apsLBQkpScnKyJEycqJSXFtk9ycrLi4+OrPA5HLViwQBMmTFBYWJhWrlxZozYcRYgBAACA+7BYpJdekoxG67LRaF120bNmDh48qOTkZEVGRkqStm3bpmeffVZLlizRiRMn1L59e40dO1aSFB8fr6SkJEnWsBAREVFmuWQEJCAgQMuXL1dOTo5mzpypxMREZWVl2fpcvHix3nnnHeXl5alRo0YaMmSIZs6cqaysLF24cEEZGRkV1hodHa2AgADt2LFDkrR582YNHDhQJpNJOTk5MplM2r17ty3sVHYcjjh16pTWr1+vBx98UA8++KAWLFjgcBs1QYgBAACA+ygZhSmZo2I2u2Q0pm/fvvLz81O7du10880364knnpAkzZ8/X+PHj1fnzp3l5eWll19+WatXr1ZRUZHi4uJsoSUpKUmTJk2qMMQkJCQoOjpaHh4euuuuuxQTE6Pt27fb+h40aJC6du0qo9GoNWvW6KabblK/fv3k7e2tqVOnVnmXr169eik5OVlZWVkyGo1q2rSpevTooc2bN2vr1q0KCwtTaGholcfhiCVLlqhDhw7q0KGDHnzwQW3YsKFMIHMVQgwAAADcw+WjMCVcMBrz1VdfKS8vT6tWrdLOnTtlMpkkSWlpaZo2bZqCgoIUFBSk0NBQeXp6KisrS507d1ZOTo6OHj2qffv2KTExUTt27NDBgwfl4eGhiIgISdZAExsbq+DgYAUFBWn79u06c+aMre/Q0FDb68zMTIWFhdmWfX191aRJk0rrLpkXk5KSotjYWEmXgk3p+TBVHYcjPv30U9uE/k6dOql9+/ZavHixQ23UBCEGAAAA7uHyUZgSLhqNMRgMGjBggG677Ta9+uqrkqRWrVpp+vTpys7Otv3k5+crNDRUBoNBvXr10vvvv6+YmBg1bNhQkZGRmjNnTpnJ9MOHD9fIkSN14sQJZWdnq3v37rKUCmCln50TEhKi9PR023J+fn6ZwHO5uLg4paSk2IKSVDbElMyHqeo47HXo0CH93//9n/7617+qRYsWatGihQ4dOlQnl5QRYgAAAHDlKxmFqexSKg8Pl82NmTRpkubOnatTp05p5MiRmjVrlvbs2SNJOnv2rD777DPbvvHx8frggw/Uu3fvMsulQ0xeXp6Cg4Pl6empFStW2OawVKRfv37atm2b1q1bp8LCQk2bNq3KO5Z17dpV+fn5WrhwoS3EdOnSRfv379fWrVttdVR3HPb49NNP1bNnT+3fv1+7du3Srl279H//93/64YcfdODAAYfachQhBgAAAFe+wkIpLU2q7AS+uFhKT7fu52Tt27dXQkKCZsyYoZ49e+rNN9/U8OHDFRAQoK5du5a5+1d8fLzy8vJsIx4ly6VDzKxZszR+/Hg1btxY69atU58+fSrtu1mzZlqwYIHGjRunFi1ayMfHp8rREi8vL/Xo0UNms1nR0dGSJKPRqJiYGHl7e6tDhw6SVO1x2GPBggUaM2aMbRSmRYsW6tKli+666y6Xj8YYLBYX3cqhCrm5uQoMDFROTo4CAgLqunsAAADUs4KCAqWmpioiIqLM0+GrlJ4unTpV+fbmzSUHLodC3arsO69JNvB0VZEAAACAU4WFWX/wm8flZAAAAADcCiEGAAAAgFshxAAAAABwK4QYAAAAAG6FEAMAAADArRBiAAAAALgVQgwAAAAAt0KIAQAAgNv5+vDX6vh+R319+Ov6LqXOhYeHa+vWrS5r/8iRI2UeRunq/mqCEAMAAAC3YrFYNPmbydp/er8mfzNZFovFqe2Hh4fL19dXfn5+atmypZ555hmZzWan9uEKiYmJmjJlim153759MhgMWrRokW3d0qVLdd111zmtT4PBoEaNGsnPz0/NmzfXE088oaKiIqe1XxlCDAAAANzK+kPr9f3x7yVJ3x//XusPrXd6Hxs2bJDJZFJSUpKWLl2q+fPnO72P6hQXF6u4uNju/ePi4pScnGxbTklJUbt27cqti4uLc2qdhw4dkslk0o8//qjNmzfXyWdFiAEAAIDbsFgseunbl2Q0GCVJRoNRL337ktNHY0pce+21io2N1a5du2zrli9frk6dOik4OFj9+/fXyZMnJUnDhg3TnDlzJEmbNm2SwWDQ999bw9aMGTM0ZswYSdLq1asVExMjf39/tW3bVsuWLbO1PWLECE2YMEEJCQny8/NTWlqa1qxZo6ioKAUHB2vq1KmV1hoXF6dt27apsLBQkpScnKyJEycqJSXFtk9ycrLi4+OrPI6aat68ufr27av9+/fXqh17EGIAAADgNkpGYcwW6+VdZovZZaMxknTw4EElJycrMjJSkrRt2zY9++yzWrJkiU6cOKH27dtr7NixkqT4+HglJSVJsoaFiIiIMsslIyABAQFavny5cnJyNHPmTCUmJiorK8vW5+LFi/XOO+8oLy9PjRo10pAhQzRz5kxlZWXpwoULysjIqLDW6OhoBQQEaMeOHZKkzZs3a+DAgTKZTMrJyZHJZNLu3bttYaey46iprKwsrV+/Xj169KhVO/YgxAAAAMAtXD4KU8IVozF9+/aVn5+f2rVrp5tvvllPPPGEJGn+/PkaP368OnfuLC8vL7388stavXq1ioqKFBcXZwstSUlJmjRpUoUhJiEhQdHR0fLw8NBdd92lmJgYbd++3db3oEGD1LVrVxmNRq1Zs0Y33XST+vXrJ29vb02dOlUeHpWfwvfq1UvJycnKysqS0WhU06ZN1aNHD23evFlbt25VWFiYQkNDqzwOR0VHRysoKEghISEKDAzUgAEDHG7DUYQYAAAAuIXLR2FKuGI05quvvlJeXp5WrVqlnTt3ymQySZLS0tI0bdo0BQUFKSgoSKGhofL09FRWVpY6d+6snJwcHT16VPv27VNiYqJ27NihgwcPysPDQxEREZKsgSY2NlbBwcEKCgrS9u3bdebMGVvfoaGhtteZmZkKCwuzLfv6+qpJkyaV1l0yLyYlJUWxsbGSLgWb0vNhqjoORx04cEDZ2dnKy8tT69at9fDDDzvchqMIMQAAALjilYzCeFRy+uohD6ePxhgMBg0YMEC33XabXn31VUlSq1atNH36dGVnZ9t+8vPzFRoaKoPBoF69eun9999XTEyMGjZsqMjISM2ZM6fMZPrhw4dr5MiROnHihLKzs9W9e/cydRsMBtvrkJAQpaen25bz8/PLBJ7LxcXFKSUlxRaUpLIhpmQ+TFXHUVN+fn4aMmSI1q1bV+M27EWIAQAAwBWv0FyotJw0Faviu3UVq1jpuekqNBc6ve9JkyZp7ty5OnXqlEaOHKlZs2Zpz549kqSzZ8/qs88+s+0bHx+vDz74QL179y6zXDrE5OXlKTg4WJ6enlqxYoVtDktF+vXrp23btmndunUqLCzUtGnTqrxjWdeuXZWfn6+FCxfaQkyXLl20f/9+bd261VZHdcdRE/n5+Vq6dKk6dOhQq3bsQYgBAADAFa+BZwN9//j32jF6h5ITL90yODkxWTtG79CO0Tv0/ePfq4FnA6f33b59eyUkJGjGjBnq2bOn3nzzTQ0fPlwBAQHq2rVrmbt/xcfHKy8vzzbiUbJcOsTMmjVL48ePV+PGjbVu3Tr16dOn0r6bNWumBQsWaNy4cWrRooV8fHyqHC3x8vJSjx49ZDabFR0dLUkyGo2KiYmRt7e3LWBUdxyOuPbaa23P1MnMzNQnn3xSo3YcYbC46n50VcjNzVVgYKBycnIUEBBQ190DAACgnhUUFCg1NVURERFlng6Pq1dl33lNsgEjMQAAAADcikMhJjc3t8Jr8Mxms3Jzc51WFAAAAABUxu4Q8+9//1vdu3dXQUFBuW2//PKLbrzxRn3++edOLQ4AAAAALmd3iPnnP/+p5557Tr6+vuW2+fr66vnnn9d7773n1OIAAAAA4HJ2h5gff/xRCQkJlW7v3bu39u7d64yaAAAAAKBSdoeYc+fOqaioqNLtFy9e1Llz55xSFAAAAABUxu4QEx4eru3bt1e6ffv27WrTpo1TigIAAACAytgdYgYOHKgpU6boxIkT5bZlZWXpxRdf1P333+/U4gAAAADgcnaHmBdeeEH+/v5q27atxo0bpxkzZmjmzJkaO3as2rVrJz8/P73wwguurBUAAACQJH39tdSxo/XP35rw8HBt3brVZe0fOXKkzMMoXd1fTdgdYvz9/ZWSkqKHH35YS5Ys0TPPPKOnn35aS5cu1cMPP6yUlBT5+/u7slYAAABAFos0ebK0f7/1T4vFue2Hh4fL19dXfn5+atmypZ555hmZzWbnduICiYmJmjJlim153759MhgMWrRokW3d0qVLdd111zmtT7PZrOnTp6tdu3Zq1KiRIiIi9OSTT+r06dNO66MiDj3sMjAwUP/4xz90+vRpnThxQllZWTp9+rT+8Y9/KCgoyEUlAgAAAJesXy99/7319fffW5edbcOGDTKZTEpKStLSpUs1f/5853dSjeLi4gofNF+ZuLg4JScn25ZTUlLUrl27cuvi4uKcVuOYMWP00Ucf6cMPP1R2drZ27NihVq1aadu2bU7royIOhZgSBoNBzZo10/z585WTk+PsmgAAAIAKWSzSSy9JRqN12Wi0Ljt7NKbEtddeq9jYWO3atcu2bvny5erUqZOCg4PVv39/nTx5UpI0bNgwzZkzR5K0adMmGQwGff9r2poxY4bGjBkjSVq9erViYmJsUzWWLVtma3vEiBGaMGGCEhIS5Ofnp7S0NK1Zs0ZRUVEKDg7W1KlTK601Li5O27ZtU2FhoSQpOTlZEydOVEpKim2f5ORkxcfHV3kc9vrvf/+r+fPna9GiRYqNjZWXl5eCg4P1wgsvqF+/fg615agahZgSb7zxhs6ePeusWgAAAIAqlYzClFzdZTa7bjRGkg4ePKjk5GRFRkZKkrZt26Znn31WS5Ys0YkTJ9S+fXuNHTtWkhQfH6+kpCRJ1rAQERFRZrlkBCQgIEDLly9XTk6OZs6cqcTERGVlZdn6XLx4sd555x3l5eWpUaNGGjJkiGbOnKmsrCxduHBBGRkZFdYaHR2tgIAA7dixQ5K0efNmDRw4UCaTSTk5OTKZTNq9e7ct7FR2HPb69ttv1bp1a3Xt2tWh9zlDrUKMxVWRFwAAALjM5aMwJVwxGtO3b1/5+fmpXbt2uvnmm/XEE09IkubPn6/x48erc+fO8vLy0ssvv6zVq1erqKhIcXFxttCSlJSkSZMmVRhiEhISFB0dLQ8PD911112KiYkp8yiTQYMGqWvXrjIajVqzZo1uuukm9evXT97e3po6dao8PCo/he/Vq5eSk5OVlZUlo9Gopk2bqkePHtq8ebO2bt2qsLAwhYaGVnkc9jpz5oxatGjh8GfrDLUKMQAAAEBduXwUpoQrRmO++uor5eXladWqVdq5c6dMJpMkKS0tTdOmTVNQUJCCgoIUGhoqT09PZWVlqXPnzsrJydHRo0e1b98+JSYmaseOHTp48KA8PDwUEREhyRpoYmNjFRwcrKCgIG3fvl1nzpyx9R0aGmp7nZmZqbCwMNuyr6+vmjRpUmndJfNiUlJSFBsbK+lSsCk9H6aq47BXkyZNHNrfmWoVYvbt21fmAZelrxUEAAAAnKVkFKayQQgPD+ePxhgMBg0YMEC33XabXn31VUlSq1atNH36dGVnZ9t+8vPzFRoaKoPBoF69eun9999XTEyMGjZsqMjISM2ZM6fMZPrhw4dr5MiROnHihLKzs9W9e/cyVzgZDAbb65CQEKWnp9uW8/PzywSey8XFxSklJcUWlKSyIaZkPkxVx2GvW265RWlpafWSAWoVYsLCwmQymfSPf/xDXbt2Vbdu3ZxVV70zGCr+qel+le3vijrrgytquBKOCwCAq0HJM1Uef1xq0EAKDbX+br3ppqrf9/jj5X8fN21a9Xveesvax1tv1azWrCxpxw7r7ZO3b7f+7NolnT4tpaVJld2sq7hYSk+Xfp3T7hS5udKPP0ojRkzSnDlzdfjwKY0cOVKzZs3Snj17JElnz57VZ599ZntPfHy8PvjgA/Xu3bvMcukQk5eXp+DgYHl6emrFihW2OSwViY/vp61bt2nWrHXasqVQzz03rco7lnXt2lX5+fn6+OOFCgiI1Y4dUmFhF+3du1+bN29VUFCctm+XevYcqb//vfLjsEf79u01cuRIDR06VFu2bFFRUZGys7P11ltvac2aNQ615agah5gNGzbo4YcfVkhIiGbNmqV+/fqVuZbPnd14Y+XbOnW69Pqaayrf7z//Kb+uohPxefPsr+tyv978wq5+XKmiZ5yuXVu7Njt3Lr9uy5batQkAwG9R6WeqzJtnPck/dsy67fvvpYsXK36f2SzNnVt+/ZkzUkFBxe8pLpamTbP2MW1a5YGjqlqPH7f+ef78pfVFRdKpU9K2bdaAU+qOwUpOtq7bscN6PA0aONZnVbUcO2Y91kaN2qtr1wS99dYM3XxzT7355psaPny4AgIC1LVr1zJ3/4qPj1deXp5txKNkuXSImTVrlsaPH6/GjRtr3bp16tOnT6U1FBQ005//vEBvvjlOd97ZQhcv+lQ5WuLp6aXOnXvIbDYrPDxaFotkNBp17bUx8vT0VkREB0lSly49NXZs5cdhr//3//6fHnnkET3yyCMKDAzUDTfcoIyMDN1UXUKuJYPFgdn5GRkZ+uijjzR//nydP39egwcP1gcffKDdu3erY8eOdneam5urwMBA5eTkKCAgoEaFu1J1IaDkE7N3v+raremwZ1X91+U9F5x9XK5qEwCA36J166Q776x8+w03SDt3ll8/YoT0r39V/J7gYGuYudzrr0svvnhp+bXXpFLPXiyjoKBAqampioiIsD0dPjPzUsCqSNu2UmBg5dudKSdHOnjwyqyhVSspJMSx91SmSRPp16k6LlfRdy7VLBvYPRLTr18/dezYUfv27dOsWbN0/PhxzZo1y/Hqr3BVjcKU6NSp6lGYEqVHY6oKHDUZjalsFMae/pypolGYEjUdjaloFKYEozEAANivZB5JVecFP/xQfjTGbK48wEjS2bPlR2OKi6U33ii77o037B+NsVisIaYqx47VzT9olowIVaRkpKguaqgs0GVmVlxDVe+pzJkz7vmPxHaHmPXr1+uxxx7TtGnTdPfdd8t4+b3trhL2XBG3b59kz7OA7rnHvj4fe8y+/UobPdrx97jCm29Wvu2uu2rW5k8/Vb6tV6+atQkAwG9Ryd28qjtJ7dGj7PKoUdW33apV2eXp06ULF8quu3DBut4eWVnVB54LF6zzVFwtN7fs5WylnT9fdzVc/nmWKC62fl6OvKcqR444/p76ZneISUpKUl5enrp3764ePXrovffe06lTp1xZW52zZxTGUf/5j32jIo6MxlQ3ClPC1aMxVY3ClHB0NKaqUZgSjMYAAFA9e0ZhSpQejaluFKZE6dGYikZhStgzGmPPKEwJV4/GVDUKU8LVozH2jKhcPhpTk1GYEu44GmN3iOnZs6fmzJmjzMxMjRkzRosXL1arVq1UXFxsu4+2u3PFfQlcMRrjDqMwJRwdjalqFKYEozEAAFTP3lGYEiWjMfaMwpQoGY2paBSmhD2jMfaMwpRuz5UjIVWNwpRw9WiMPSMql4/G1HQUpoS7jcY4fHcyX19fjRw5UsnJydq7d68mTpyov/zlL2revLn69+/vihrrhCtGYRxlz2iMvaMwJVw1GmPPKEwJe0dj7BmFKcFoDAAAlSsZhXHEDz9YR1bsGYUpcfas9cS5slGYElWNxhQXW+wehSnhqtEYe0ZhSrhqNMaREZWS0ZjajMKUqIvRmKpuDe0oh+5OVhmz2azPP/9c8+fP1+rVq6vd/0q8O9mV8hyS6r6NmtTpiv8gHamjWTP75hA50mZUlGN33gAA4Lfkl1+kNm2kEycce9///V/5+THV+eYbqW/fqkdSPDykc+ek0qd9ZrNZBw8elI+Pr06daibJ/hMBo1GKjq78wZc1VVws/fyz9ZbO1fH0lNq1c00NBw5YL+uzR4cO1nMoR95Tmehoycurdm1UxGKxqLCwUKdOnZLZbFbbtm3lUeqDq0k2cEqIcdSVGGKk+g8y9n4TjtTpym/X3jocqcEVbQIA8FuUnm59tsr27dKYMRXv07Gj1KKF9ZbJPXtKzz4rrV5tndObklLxZd6enlLDhpK/v/Wy8XnzrOHnf/+zXtI0bpx1v3/841Joadeu4qteTCaTMjIyVFBgUVGRdSTIZKq41oYNreGlYUPrj6en45+JPYqKrEGi5Nk0pTVpYq3BaLSGF1fWUFBgDaOXfx4+Ppf69vG59FycoiLrqFhhYfWXw5UwGC6107Ch9U9X8vX1VUhIiLy9vcusJ8Q4ib3PX3H0OS0V7X81PEvF2cdVUZt+ftJVMO0KAIA6d/689fdoRbZtq/yS+tRUKTKy/PpVq6QBAyp+z8mTlx5DceKE1Lx59fWZzWZd/PWuAmfOSLGxFe+3c6fk61t9e85y4YLUteuVV0NKijVMOfKeynz9tVTFczOdymg0ytPTU4YKThxrkg1clB8BAACA6hmNRtujO7y8pKNHK96vQQPraEFdMZvL13Il1ODlVXUNFb2nMiUjW+7IyVfxAQAAAIBrEWIAAAAAuBWHQ8y//vUv/ec//7EtP/fccwoKClKvXr101N6xKwAAAACoIYdDzBtvvCGfX29dsGXLFr333nt666231LRpUz3zzDNOLxAAAAAASnN4Yn96erqioqIkSatWrdIDDzyg0aNHKzY2VgkJCc6uDwAAAADKcHgkxs/PT2fOnJEkrV+/XrfffrskqWHDhsrPz3dudQAAAABwGYdHYvr27avHHntMN9xwg37++WfdfffdkqSffvpJ4eHhzq4PAAAAAMpweCTm/fffV8+ePXXq1CmtWLFCTX592s6OHTs0dOhQpxcIAAAAAKU5PBITFBSk9957r9z6adOmOaWg+tbv036SPpR0TQVbT6jNuzdpXv95uj3y9ipaOSHDtBa669q7tObhNdXuVyKoQZCWDV5WZdtfH/5aoz4bpZPnT0o6UkGdZdu8MeRGbRu9rYoaaubrw1/rd5/8ThZZJGVdVselGt68/U09F/tcrfszmVLlMe1aeXp46mLxRdtn+1bKW3rp25f06i2vOtxPyWcpg+z4TgEAcC/Rs6L189mfpUJfSeftft/Xh7/W7xf+XgWnmkuq+M6zvq/7Kr8oXwYZtH74eod/h/b7tJ++PPSlJCmoYZACGgRoXv956uLH7+LqXPN2M8nvtFr5t9KxvGPlthsu+knKq/vC6phdIzF79uyx+8edFRUV2f5CVSYtJ01/+uZPslgs1bb35aEvVVRUZHf/2b9k609fV962xWLRn77+k9Jy01RgLrCrze8zv9fFixftrsEeFotFz3zxzK8BpmrTNk5TcXGxc/qVRReLrcfy5aEvVVhYqGmbpqnQbP3TkX5Kf5aOfKcAALiDwsJCa4BxkMVi0aS1k6o8z/jllwvKL7LOg7bIoue/et6h36GXn29lF2Tzu7gGKgowkmSxOOe860pnV4i5/vrrdcMNN+j666+v8Kdk2w033ODqel3qroV32bXf9uPbtf7Qeqe2aWs7s/K21x9ar+2Z2x1qT5J6zOvh8Huqsv7Qev147ke79r1QdEHTk6c7tf8SHf/ZURcuXrD2c9Gxfi7/LB35TgEAuNJ1/GfHGr1v/aH12nVqV5X7PPjvstMHdmbtdOh3aGXnRtuPb9fG1G/tbge/bXaFmNTUVB0+fFipqakV/pRsO3z4sKvrdZmioiJ9nfq13fu/+O2Lkh0jEV+nfu3QaIwkvbjhxXL/EmGxWPTihhcdaqfEDyd+cNpojMVi0R/X/NGh97yR9IbTRmNKO5R9qGw/yfb1U9ln+eK35T93AADcTWFhYbnfkfawWCx6Yf0L1e9YXFhu1eRvJtv1O7S68603UlzzD5+4+tgVYtq0aWP3j7tyeMTk+HZJJ13TdgWjMTUdhSnhrNEYR0ZhSrhyNKZMP3aOxlT2WTIaAwC4GrhyFKYy9o7GVHdOtCerZv3jt8euif2rV6+2u8H+/fvXuJj64ugojKMujcbYfx+FFze8qN9d+zsZDIZajcKUKBmN8fLyqnEbNRmFKfFG0hv6U9yf5OFh7w3xzJKMjveTXHU/1X2WL3576XMHAMDduHwUpgqTv5msNff+TlLFv0Ndfb6F3xa7zqrvvfdeuxozGAwym821qadeODpSUvM+vrJ7/5LRmDui7qj1KEyJHvN6aOcfdtb4/TUZhSlRMhozpfcUO99xWhXfIa6afi5W3U91n2XJaMwdUXc43DcAAPWtPkZhSuzM2vnrnJZbK9xeF+db+O2w65/Fi4uL7fpxxwBTV/8qYO3DvjuKlXhxw4sqLi6u9ShMidrMjanNKEwJe+fG1Pa/o8rmxtg7osXcGACAO6rPUZgSryW9XuF6RmFqxhVziq8WDj/ssrSCAsdOyq9EWaasOuwtx6G903LSZCo06f+3d9/hUVX5H8c/k0ogJJAEhCSUBLBQRJRdQEBg4SeKiIoVkLqiiCuggiCg4K6CdQVxxQWEtYOUtVOVupSsFKkLaCIEkoArpENCZs7vj2yGhCQwE2aS3Ph+PU8eM+eeued77wFnPtx2NO2oxyoo67py7bmXXceZvDPKzM28ZL9TZ05d1jhn886WOI6r25CYlqhce/GLFgEAqMx+PP1jmd7nic/4AonpJa+nfL9vVR2ufG/6rXL7YZd2u13Tpk3TO++8oxMnTujQoUOKjY3Vs88+q8aNG+uPf/yjN+r0muha0Zp3+zwt2b9Ex9KOae9/L3261Lu3v6tA/0A9OPXi/dpFtlNwQLBqBdVS7yt7a+jUS58eVa9GPV1T5xr1uaqP7ml+j0Kqhej7h7/XnpN7tHjvYv1j9z9c27D/CfYPVnX/6moY2lD9WvVTk4gmbr2/QKBfoPaO2qsh/xyifyX+SzmOHNfe5xOoAL8AtanXRq/d/JpCqoVc8j11gutIOnHRPuHVwhUeFK5Dp/Pvgf/2rW8rJCh/3VeGXVniOIF+gc59mZKRoj9+ef7PasGchlULU6srWinQL9Cl7QMAoLJofkVzTew0Uat+XKXDpw4rLde1fzwN9AvUrpG79OrmV7U2fu0lvwv5+Aaq8PGBiKAISdI1EdfozS4L1eaF4u8p+L71zeFvFH86XrtO7CrW56YGN6l9WB+98ppLZf8muPK96bfKZtw8b+bPf/6z3nvvPf35z3/W8OHDtXfvXsXGxurTTz/VG2+8oS1btlxyHenp6QoNDVVaWppCQirP5Ow7uU8tZ7eUpl74BPoCJ6Sp9ZT5TKZqBNRQ6dd+5/fb++hetajbwtlavH9+v8IK1l2SrNwsBU8PPt9QYp1F1xn3UJx+F/W70gotk0vXcb6GE0+dUN3gum6PUXxfJUhTY52v9j66V3Wq19EVr19RpnEu3IaL7XcAAKxmw88b1OW9LvkvcqtL07JK7BcXJ/2u0NeEIp+PpxpKbx4p9p5Rr6/Smxnnrx0t/Bl68qR0xf++Epw4IdUt4aPZ+X3rApnPZCortYbz/cWWZ0o1yvGjOitLCg4u2lYZatDYOlLwf0t/00Xm+0Lx8VJMTNnr85SyZAO3Tyd7//33NWfOHA0YMEC+vufvHnXttdfqP//5j7urAwAAAAC3uB1ijh8/rqZNmxZrdzgcHnugIgAAAACUxu0Q06JFC23cuLFY++LFi9WmTRuPFAUAAAAApXH7wv4pU6Zo4MCBOn78uBwOh5YtW6aDBw/q/fff11dffeWNGgEAAADAye0jMbfffrsWLVqkb775RjabTc8995wOHDigL7/8Uv/3f//njRoBAAAAwMnlIzGTJ0/WH/7wB914443q2bOnevbkieYAAAAAyp/LR2I++eQT9ejRQ7Vq1VKXLl30/PPPa+PGjcrN5aGAAAAAAMqPyyHmp59+UmJioubOnaumTZvq/fffV5cuXVS7dm316NFDL774ojZv3uzNWgEAAADAvWtioqKiNHDgQL377rv66aefdOTIEc2ePVsNGzbUK6+8optuuslbdQIAAACApDJc2F/gp59+0qpVq7Ry5UqtXLlSdrtd3bp182Rt5eOVV6TAwPz/uio4WHLlaaLNW55/9PxVV0k6cen3rP0uf/02mxQRkf9fmy2/7U+PuV5jgRt+f34dNlv+tjZvLvn6nm9bs+bS6ynYT716SSE13avh9xfU0KuX1KhR/k9JY69ZI5f2VWk1FozXq1f+tvbqVXR/+vqW8PhbAAAs6sLPWZtNeuVlF9/btuj7yvL5WPC9xc9PemvW+fYrrjj/uevKd41LCQ2VgoKK1hsUdH7dF+6DC/td7PXw4cX3Y7NmpddS0Dc6On/7fHyKj3nVVUX3zYXj/v7359dX8B0mJCR/mY+P5O8vvfHG5e+3KsrlEJOQkKD58+dr4MCBatCggdq0aaMlS5aoVatWWrJkiVJTU7V69Wpv1up5Dof0/PNSbm7+fx3G9fdmZEg641rflBTp0CHX+k6eLGVl5f/+66/n27OypPfec72+0uTmSgcO5G97gfHjJXORbS+8n5Yvd28/nTsn/fvfRduWL5eOHs3/eeaZomMbI02c6Pr6S6qxYLzly/O3dfny/NcF+7PwtgMAYGUlfc5K0pffuLgCu+dqsdulV18r1PC/z1uHQ5ow4eLfNVxaf5509mzRtrNn89dd+DtTSUp6X2Hz5hXfj8lJJa+r8D4/fjx/+0ratkOHzn+ns9uLj/vvf+evq/B3mIyM/GXGSHl50rRpF9+u3zCX707WpEkTNWzYUCNHjtSoUaN0/fXXy9fX15u1ed/06VJ2dv7v2dnS3+e4uYJ0SUGX7la/vuur/GF36csu8+9+qXbskFatkkq741zh/eSuW2+5+PLvvy869qpVJf/P+FJmzix7jQAAWFW7diW3e+s7w6WcLeWzePv2i3/XuBzbt+efbVFeStvnZV3X3XeX/h3mDN9tSuPykZh7771XOTk5mj59uv7yl79oxowZ2rFjh8zlpuqK4nAUT7dz/14xtVQGEyeW/K8IJe0nd+zZe+k+kyfnj22M9Oyz+Ydl3TVzhvvvAQDAys6dk3buLP9xy/rdb9Kkyz8aU9E8vc937uRoSxm5HGIWLVqk5ORkbdmyRbfeeqvi4uLUq1cv1a5dW71799arr76qf5flX9ArSklHF87+hm8XXXA05kKXcxTGVQVHYwqOwtjLcGj7zNlL9wEAoCrx5BEBd8RtK9v7Co7GWFmXLp5fJ2eSlInbF/ZfffXVevTRR7Vo0SKlpKRo8+bNuu666/TCCy+oQ4cO3qjR8y736EJVdeHRmPLcT5Mm5R+RqahTFMsSnAAAqCgVdRRGkrZsKft7rX40ZvcPFV0B/sfla2IKO3HihNatW6d169Zp7dq1OnTokAIDA9W5c2dP1+cd5XF0wYouvDamPPfT9u3lM05pRj4qLfioYmsAAMBVFXUURrq8ewFs3y5t4rmCuHwuH4lZvHixRo4cqebNmysyMlKDBg3S3r17dd999+nbb79Vamqq1q5d681aPYOjMBdXcDTGCvvJk3cZ+/hjjsYAAKyhIo/CeMKbMyq6AlQBLh+JGTBggNq2bau77rpL3bp1U8eOHRUU5MKduSqbzMzit9XDefHx+bf4y8mp/PspO8tz6zKSTp2S6tTx3DoBAPCGo0cruoLLc7yUWxcDbnA5xJw+fVo1atTwZi3lIyRE2rxZ+vFHKT1dGjkyv/3tt6WANOnYM66tp3Zt6bT3yixX1avnP1SpaVPpyy/zH7YUGHh+P+3aJb322iVXU6JAfyn7XOnLR43Kf9iT3Z4fIEJCpE6dXFt3cKGHbg56UHrnw7LVKEmLFxNgAADW0KRJ/sMR581z/Tl0ntSyhaQVJS/zC5DySmivXz//4Y3XXSf9ZbT0z+5eLNCL7rxLSvyPZ06Dr1Ur/3tPamr+d9KS1L1COnn5Q1VFLp9OViUCTIF27aQBA/Lvy13g7rul2293fR2zZ0u64tL9Ro2S1q93u8RydfJk/sOVdu7Mf/JsgYL9NG5c2df9+ZcXXz5tWv4YgwZJt96a/z+3shg/oWzvK3DrrZf3fgAAytO4cdLBg1JcXMnLP13ovbF73lz6sl2lnOZ2+LB05Ij0+edSPRe+P7kjMzP/+9bl+OyzEto+L9724Yf/+w7oAatW5e+Tw4dL77N1q2fGqoLcvjsZAAAAAFQkQgwAAAAASyHEAAAAALAUQgwAAAAAS3Hp7mR9+/Z1eYXLli0rczEAAAAAcCkuHYkJDQ11/oSEhOjbb7/V999/71y+fft2ffvttwoNDfVaoQAAAAAguXgkZsGCBc7fx48fr/vuu0/vvPOOfH19JUl2u10jR45USEiId6oEAAAAgP9x+5qY+fPna+zYsc4AI0m+vr568sknNX/+fI8WBwAAAAAXcjvE5OXl6cCBA8XaDxw4IIfD4ZGiAAAAAKA0Lp1OVtjQoUM1bNgw/fjjj2rfvr0kaevWrXrppZc0dOhQjxcIAAAAAIW5HWJee+011atXT2+88YaSk5MlSfXr19fTTz+tp556yuMFAgAAAEBhboWYvLw8ffTRRxo0aJCefvpppaenSxIX9AMAAAAoN25dE+Pn56dHH31UOTk5kvLDCwEGAAAAQHly+8L+du3aaefOnd6oBQAAAAAuye1rYkaOHKmnnnpKx44d0w033KAaNWoUWX7ttdd6rDgAAAAAuJDbIeb++++XJI0aNcrZZrPZZIyRzWaT3W73XHUAAAAAcAG3Q0xCQoI36gAAAAAAl7gdYho1auSNOgAAAADAJW6HmAL79+/X0aNHlZubW6S9T58+l10UAAAAAJTG7RATHx+vu+66S3v27HFeCyPlXxcjiWtiAAAAAHiV27dYHj16tGJiYnTixAlVr15d+/bt04YNG9S2bVutW7fOCyUCAAAAwHluH4nZsmWLvvvuO9WpU0c+Pj7y8fFRp06dNH36dI0aNYpnyAAAAADwKrePxNjtdgUHB0uSIiIilJSUJCn/gv+DBw96tjoAAAAAuIDbR2Jatmyp3bt3KzY2Vu3atdMrr7yigIAAzZkzR7Gxsd6oEQAAAACc3A4xkydPVlZWliTphRdeUO/evdW5c2eFh4dr0aJFHi8QAAAAAApzO8T07NnT+XtsbKz279+vU6dOqXbt2s47lAEAAACAt7h9Tczq1auVnZ1dpC0sLIwAAwAAAKBcuH0k5u6771ZOTo5uuOEGdenSRV27dlXHjh2dF/sDAAAAgDe5fSTm9OnTWrdunfr06aOdO3fq3nvvVVhYmNq3b68JEyZ4o0YAAAAAcHI7xPj6+qpDhw6aMGGCVqxYoc2bN6t///7avn27Xn31VW/UCAAAAABObp9OduDAAa1fv17r1q3T+vXrZbfb1alTJ73++uvq0qWLN2oEAAAAACe3Q0yLFi1Up04djRkzRs8++6xatGjhjboAAAAAoERun042atQoRUVFaerUqRo2bJjGjx+v5cuXKzMz0xv1AQAAAEARboeYGTNmaMeOHTpx4oQmT54su92u5557ThEREWrfvr03agQAAAAAJ7dDTAGHw6G8vDzl5uYqJydH586d088//+zB0gAAAACgOLdDzOjRo9W6dWvVrVtXjzzyiJKSkvTwww/rhx9+UEpKijdqBAAAAAAnty/sP378uIYPH66uXbuqZcuW3qgJAAAAAErldohZsmSJN+oAAAAAAJeU6ZqYDz74QB07dlRkZKSOHDkiKf+C/88//9yjxQEAAADAhdwOMbNnz9aTTz6pXr16KTU1VXa7XZJUq1YtzZgxw9P1AQAAAEARboeYWbNmae7cuZo0aZJ8fX2d7W3bttWePXs8WhwAAAAAXMjtEJOQkKA2bdoUaw8MDFRWVpZHigIAAACA0rgdYmJiYrRr165i7cuXL1fz5s09URMAAAAAlMrtu5ONGzdOjz32mM6ePStjjOLi4vTJJ59o+vTpmjdvnjdqBAAAAAAnt0PM0KFDlZeXp6efflrZ2dnq37+/oqKiNHPmTD3wwAPeqBEAAAAAnNwOMZI0fPhwDR8+XP/973/lcDhUt25dSfkPwoyKivJogQAAAABQWJmeE1MgIiJCdevWVUpKih5//HE1bdrUU3UBAAAAQIlcDjGpqakaMGCA6tSpo8jISL355ptyOBx67rnnFBsbq61bt2r+/PnerBUAAAAAXD+dbOLEidqwYYMGDx6sFStW6IknntCKFSt09uxZLV++XF26dPFmnQAAAAAgyY0Q8/XXX2vBggXq0aOHRo4cqaZNm+rKK6/UjBkzvFgeAAAAABTl8ulkSUlJzufAxMbGqlq1anrooYe8VhgAAAAAlMTlEONwOOTv7+987evrqxo1anilKAAAAAAojcunkxljNGTIEAUGBkqSzp49qxEjRhQLMsuWLfNshQAAAABQiMshZvDgwUVeP/jggx4vBgAAAAAuxeUQs2DBAm/WAQAAAAAuuayHXQIAAABAeSPEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUQgwAAAAASyHEAAAAALAUv4oY1BgjSUpPT6+I4c/LyCjye6YypbOSlCEpqKQ3SGeldCPZs7MllVZ/fr9Mh5SekyNlZZ1vL7LejP+Nd166keylrDXL6IL+JdVZdJ2ZjtKrPD9oumQvbVQV3U8u1XG+hoysLFVzZ2wX91VmRqaq5VU7P05G5sXHucCF25Ceni57wEX2AQAAlVFmZonNWVnZ5z/nzhmV9m0gU/YiS4p8PuY4Snxfztmsop+hhb67ZGRmSP/7RM6Q4/xnc6HP+8yMzGLff/K7pCs7o/TP4nSZkr8jpadLOTmlvs8l2dnFmrKys3Th9qenS/ZS9rnbMjPzV3jB96wiNWSc359OOY6Lf4O/yHxfKCMjv4SKVpAJCjKCK2zGnd4ecuzYMTVo0KC8hwUAAABQSSUmJio6OtqlvhUSYhwOh5KSklSzZk3ZbLbyHv6ypKenq0GDBkpMTFRISEhFlwMPYm6rLua2amJeqy7mtupibquuy5lbY4wyMjIUGRkpHx/XrnapkNPJfHx8XE5ZlVVISAh/+aoo5rbqYm6rJua16mJuqy7mtuoq69yGhoa61Z8L+wEAAABYCiEGAAAAgKUQYtwUGBioKVOmKDAwsKJLgYcxt1UXc1s1Ma9VF3NbdTG3VVd5z22FXNgPAAAAAGXFkRgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGApfhUxqMPhUFJSkmrWrCmbzVYRJQAAAACoBIwxysjIUGRkpHx8XDvGUiEhJikpSQ0aNKiIoQEAAABUQomJiYqOjnapb4WEmJo1a0rKLzQkJKQiSgAAAABQCaSnp6tBgwbOjOCKCgkxBaeQhYSEEGIAAAAAuHWZCRf2AwAAALAUQgwAAAAAS6mQ08kAAADw22KMUV5enux2e0WXggrg6+srPz8/j92ZmBADAAAAr8rNzVVycrKys7MruhRUoOrVq6t+/foKCAi47HURYgAAAOA1DodDCQkJ8vX1VWRkpAICAnhO4G+MMUa5ubn65ZdflJCQoGbNmrn8PJjSEGIAAADgNbm5uXI4HGrQoIGqV69e0eWgggQFBcnf319HjhxRbm6uqlWrdlnr48J+AAAAeN3l/ss7rM+TfwY4EgMAAIBKy263a+PGjUpOTlb9+vXVuXNn+fr6VnRZqGBEYgAAAFRKy5YtU+PGjdWtWzf1799f3bp1U+PGjbVs2bKKLq3cNG7cWFu3bnX7ff/4xz90yy23VIpavIEQAwAAgEpn2bJluueee3Ts2LEi7cePH9c999zjsSDTuHFjVa9eXcHBwYqMjNQTTzxR5W8DPXXqVPn7+ys4OFi1a9dW9+7d9Z///Keiy3ILIQYAAACVit1u1+jRo2WMKbasoG3MmDEeCxvfffedMjMztXHjRn366aeaP3++R9brDofDIYfDUW7j/fGPf1RmZqaSkpJUr149DRkypNzG9gRCDAAAACqVjRs3FjsCU5gxRomJidq4caNHx23SpIk6duyoXbt2OduWLFmiFi1aKCwsTH369NHJkyclSf3799fcuXMlSevXr5fNZtO///1vSdLMmTP1yCOPSJK++OILtWrVSjVr1lSzZs20ePFi57qHDBmiUaNGqWvXrgoODtbRo0f1zTffqGnTpgoLC9PUqVOL1HfmzBn96U9/UmRkpKKjo/Xyyy87l2VlZal///6qVauWrr/+eh06dMilbQ4KClL//v21d+9eSdKePXvUsWNH1apVS23bti319LGNGzeqUaNGzm3+29/+pmbNmikiIkKDBw9WVlaWS+OXFSEGAAAAlUpycrJH+7nq8OHD2rRpk2JjYyVJcXFxevLJJ7Vo0SKdOHFCV199tR599FFJUufOnZ0hatOmTYqJiSnyulOnTpKkkJAQLVmyRGlpaXrzzTc1dOhQpaSkOMdcuHCh/vrXvyojI0M1atTQAw88oDfffFMpKSnKzs4uEubGjh2rtLQ0HTp0SHFxcXr//ff15ZdfSpKef/55/frrrzp69Kg+/vhjffDBBy5tc1ZWlj7++GO1bt1aubm5uv3229W/f3/98ssvGjt2rHr37q20tLQi7/nuu+/04IMP6rPPPtPvfvc7LV68WHPmzNGaNWuUmJioc+fO6bnnnivLFLjOVIC0tDQjyaSlpVXE8AAAACgnZ86cMfv37zdnzpxx+T1r1641ki75s3bt2suur1GjRiY4ONjUqFHDSDJ33XWXs9ZHHnnEvPzyy86+GRkZxs/Pz5w7d87s3r3bNG7c2BhjTM+ePc3bb79t7rzzTmOMMfXq1TPx8fEljte+fXvz5ZdfGmOMGTx4sBk5cqRz2T/+8Q/TvXt35+usrCzj7+9vtmzZYhwOhwkKCjInTpxwLp81a5YZNGiQMcaYxo0bm40bNzqXTZo0yfTs2bPEGqZMmWICAgJMaGioqVu3rrntttvM4cOHzfr1601sbGyxej/99FPnvpoyZYpp2LCh+eGHH5x9evbsaRYtWuR8vWfPHtOwYcNi45b2Z6Es2YAjMQAAAKhUOnfurOjoaNlsthKX22w2NWjQQJ07d/bIeKtXr1ZGRoY+++wz7dixQ5mZmZKko0eP6vnnn1etWrVUq1YtRUdHy8/PTykpKWrZsqXS0tJ05MgR7d+/X0OHDtX27dt1+PBh+fj4KCYmRlL+UZmOHTsqLCxMtWrV0vfff69ff/3VOXZ0dLTz9+TkZDVo0MD5unr16goPD5ck/fLLLzpz5oyuvPJKZz0TJ050nt524XsL/16SoUOHKjU1VSdOnNBXX32lpk2bKikpSQ0bNizSr1GjRkpKSnK+fvvtt3X77bfr2muvdbYdPXpUf/zjH511derUSf/9739d2/llRIgBAABApeLr66uZM2dKUrEgU/B6xowZHn1ejM1m0x133KHu3bvrL3/5iyQpKipK06dPV2pqqvPnzJkzzoB144036m9/+5tatWqlatWqKTY2VnPnznWeSiZJAwcO1LBhw3TixAmlpqaqbdu2RW5YUHj76tevr8TEROfrM2fOOANPRESEqlWrpiNHjjhrSU9P1/Lly0t8b+HfXRUZGVnsfUePHlVkZKTz9fz58/Xdd9/pjTfecLZFRUXpo48+KrKfuCYGAAAAvzl9+/bVkiVLinyBlvKPXCxZskR9+/b1yrjjxo3TvHnz9Msvv2jYsGGaNWuWdu/eLUk6deqUPv/8c2ffzp0765133tFNN91U5HXhEJORkaGwsDD5+flp6dKl2r59e6lj9+rVS3FxcVq5cqVyc3P1/PPPO+9Y5uPjo8GDB2vs2LFKTU2Vw+HQgQMHFBcXJ0m655579OKLLyojI0MHDx7U+++/7/a2t2/fXufOndPs2bOVl5enxYsX6+DBg7r55pudfSIiIrRmzRq99dZbevfddyXl3+nsxRdfVHx8vKT8o0IrVqxwe3x3EGIAAABQKfXt21dHjhzR2rVr9fHHH2vt2rVKSEjwWoCRpKuvvlpdu3bVzJkz1aFDB7388ssaOHCgQkJCdP311+tf//qXs2/nzp2VkZHhPK2t4HXhEDNr1iz96U9/Uu3atbVy5Up16dKl1LHr1Kmjjz76SCNHjlS9evUUFBRU5HSzv/71r6pRo4ZatWqlsLAwDRo0SKdPn5YkTZkyRaGhoYqOjla/fv00cOBAt7c9ICBAn3/+uT744AOFh4frpZde0hdffKHQ0NAi/SIjI7V69WpNnTpVn376qR544AENGTJEvXr1Us2aNdWlSxft37/f7fHdYTOmhBtwe1l6erpCQ0OVlpamkJCQ8h4eAAAA5eTs2bNKSEhQTEyMqlWrVtHloAKV9mehLNmAIzEAAAAALIUQAwAAAMBSCDEAAAAALIUQAwAAAMBSCDEAAADwuoJbBeO3y5N/Bvw8tiYAAADgAgEBAfLx8VFSUpLq1KmjgICAYg+wRNVmjFFubq5++eUX+fj4KCAg4LLXSYgBAACA1/j4+CgmJkbJyclKSkqq6HJQgapXr66GDRvKx+fyTwYjxAAAAMCrAgIC1LBhQ+Xl5clut1d0OagAvr6+8vPz89hROEIMAAAAvM5ms8nf31/+/v4VXQqqAC7sBwAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAlkKIAQAAAGAphBgAAAAAluJ2iFmxYoU2bdrkfP23v/1N1113nfr376/Tp097tDgAAAAAuJDbIWbcuHFKT0+XJO3Zs0dPPfWUevXqpfj4eD355JMeLxAAAAAACvNz9w0JCQlq3ry5JGnp0qXq3bu3pk2bph07dqhXr14eLxAAAAAACnP7SExAQICys7MlSWvWrNHNN98sSQoLC3MeoQEAAAAAb3H7SEynTp305JNPqmPHjoqLi9OiRYskSYcOHVJ0dLTHCwQAAACAwtw+EvPWW2/Jz89PS5Ys0ezZsxUVFSVJWr58uW655RaPFwgAAAAAhdmMMaa8B01PT1doaKjS0tIUEhJS3sMDAAAAqCTKkg3K9JyYn376SZMnT1a/fv108uRJSfm3Xt63b19ZVgcAAAAALnM7xKxfv16tWrXStm3btGzZMmVmZkqSdu/erSlTpni8QAAAAAAozO0QM2HCBL3wwgtavXq1AgICnO3dunXTli1bPFocAAAAAFzI7RCzZ88e3XXXXcXa69Spo19//dUjRQEAAABAadwOMbVq1VJycnKx9p07dzrvVAYAAAAA3uJ2iOnfv7/Gjx+vlJQU2Ww2ORwO/etf/9LYsWM1aNAgb9QIAAAAAE5uh5gXX3xRDRs2VFRUlDIzM9W8eXPddNNNuvHGGzV58mRv1AgAAAAATmV+Tkx8fLx27Nghh8OhNm3aqFmzZjpz5oyCgoIu+V6eEwMAAABAKqfnxDz22GOSpNjYWN1zzz2677771KxZM2VlZenWW291d3UAAAAA4Ba3Q8yqVauKnTaWlZWlW265RXa73WOFAQAAAEBJ/Nx9w6pVq9SpUyeFh4friSeeUEZGhnr27Ck/Pz8tX77cGzUCAAAAgJPbISYmJkYrV65U165d5ePjo4ULFyowMFBff/21atSo4Y0aAQAAAMDJ7RAjSS1bttRXX32lHj16qF27dvrqq69cuqAfAAAAAC6XSyGmTZs2stlsxdoDAwOVlJSkjh07Ott27NjhueoAAAAA4AIuhZg777zTy2UAAAAAgGvK/JyYy8FzYgAAAABIZcsGZbomRpK2b9+uAwcOyGazqXnz5mrTpk1ZVwUAAAAALnM7xJw8eVIPPPCA1q1bp1q1askYo7S0NHXr1k0LFy5UnTp1vFEnAAAAAEgqw8MuH3/8caWnp2vfvn06deqUTp8+rb179yo9PV2jRo3yRo0AAAAA4OT2NTGhoaFas2aNfve73xVpj4uL080336zU1NRLroNrYgAAAABIZcsGbh+JcTgc8vf3L9bu7+8vh8Ph7uoAAAAAwC1uh5g//OEPGj16tJKSkpxtx48f1xNPPKHu3bt7tDgAAAAAuJDbIeatt95SRkaGGjdurCZNmqhp06aKiYlRRkaGZs2a5Y0aAQAAAMDJ7buTNWjQQDt27NCaNWt04MABGWPUvHlz9ejRwxv1AQAAAEARboWYxYsX67PPPtO5c+fUo0cPPf74496qCwAAAABK5HKImTNnjkaMGKFmzZqpWrVqWrp0qRISEjR9+nRv1gcAAAAARbh8TcysWbM0adIkHTx4UD/88IPeffddvfXWW96sDQAAAACKcTnExMfHa+jQoc7XAwcOVE5OjlJSUrxSGAAAAACUxOUQc+bMGQUHBztf+/r6KjAwUNnZ2V4pDAAAAABK4taF/fPmzSsSZPLy8vSPf/xDERERzrZRo0Z5rjoAAAAAuIDNGGNc6di4cWPZbLaLr8xmU3x8/CXXlZ6ertDQUKWlpSkkJMS1SgEAAABUOWXJBi4fifn555/LWhcAAAAAeIzL18QAAAAAQGVAiAEAAABgKYQYAAAAAJZCiAEAAABgKYQYAAAAAJbi0t3J0tPTXV4ht0wGAAAA4E0uhZhatWpd8hkxBex2+2UVBAAAAAAX41KIWbt2rfP3n3/+WRMmTNCQIUPUoUMHSdKWLVv03nvvafr06d6pEgAAAAD+x2aMMe68oXv37nrooYfUr1+/Iu0ff/yx5syZo3Xr1l1yHWV5KicAAACAqqcs2cDtC/u3bNmitm3bFmtv27at4uLi3F0dAAAAALjF7RDToEEDvfPOO8Xa//73v6tBgwYeKQoAAAAASuPSNTGFvfHGG7r77ru1cuVKtW/fXpK0detW/fTTT1q6dKnHCyxPdrtdGzduVHJysurXr6/OnTvL19e31GWSXGorWIerY5XH9gAAAOurap/1Zd2eqrYfvKnK7CtTBkePHjXPPPOMueuuu8ydd95pJk6caI4ePery+9PS0owkk5aWVpbhvWLp0qUmOjraSHL+REdHm6VLl5a4LDw83ISHh1+yrWAdro5VHtsDAACsr6p91pd1e6rafvCmyrqvypINyhRiLldlCzFLly41NputyIRKKrHN3R+bzWZsNpvzD8fFxircz1vb46kxAABAxalqn/Vl3Z6qth+8qTLvq7JkA7fvTiblny7197//XfHx8Vq8eLGioqL0wQcfKCYmRp06dbrk+yvT3cnsdrsaN26sY8eOeW0Mm82m6Oho/fjjj2rSpEmpYxX0S0hIKPNhvUttjyfGAAAAFaeqfdaXdXuq2n7wpsq+r8rl7mRLly5Vz549FRQUpB07dignJ0eSlJGRoWnTprm7ugq3ceNGrwYYSTLGKDExUW+//fZFxyrot3HjxjKPdant8cQYAACg4lS1z/qybk9V2w/eVBX3ldsh5oUXXtA777yjuXPnyt/f39l+4403aseOHR4trjwkJyeX21g//fSTS/0upyZX31ue2w0AADynqn3Wl3V7qtp+8KaquK/cDjEHDx7UTTfdVKw9JCREqampnqipXNWvX7/cxmrSpIlL/S6nJlffW57bDQAAPKeqfdaXdXuq2n7wpqq4r9wOMfXr19ePP/5YrH3Tpk2KjY31SFHlqXPnzoqOjpbNZvPaGDabTQ0aNNDIkSMvOlZBv4JbNZfFpbbHE2MAAICKU9U+68u6PVVtP3hTVdxXboeYRx55RKNHj9a2bdtks9mUlJSkjz76SGPHjtXIkSO9UaNX+fr6aubMmZJUbGILvy5ryCl434wZMxQQEHDJsWbMmHFZF1S5sj2XOwYAAKg4Ve2zvqzbU9X2gzdVyX1VltugTZw40QQFBTlvyVatWjUzefJkl99f2W6xbEz+beeioqKK3HKuQYMGzufEXLgsPDzchIWFXbKtYB2ujlUe2wMAAKyvqn3Wl3V7qtp+8KbKuq/K7RbLkpSdna39+/fL4XCoefPmCg4Odvm9lekWy4UV1CVJ33zzjW6++WZnIi1pWVZWlkttJaXai41VHtsDAACsr6p91pd1e6rafvCmyrivypINyhxiLkdlDTFZWVnOMJaZmakaNWpcdJmrbe6OVR7bAwAArK+qfdaXdXuq2n7wpsq4r8qSDfxc6dS3b1+Xi1i2bJnLfQEAAADAXS5d2B8aGur8CQkJ0bfffqvvv//euXz79u369ttvnYemAAAAAMBbXDoSs2DBAufv48eP13333ad33nnHef6c3W7XyJEjK9WpYQAAAACqJrdvsTx//nyNHTu2yAVAvr6+evLJJzV//nyPFgcAAAAAF3I7xOTl5enAgQPF2g8cOCCHw+GRogAAAACgNC6dTlbY0KFDNWzYMP34449q3769JGnr1q166aWXNHToUI8XCAAAAACFuR1iXnvtNdWrV09vvPGGkpOTJUn169fX008/raeeesrjBQIAAABAYW6FmLy8PH300UcaNGiQnn76aaWnp0sSF/QDAAAAKDduXRPj5+enRx99VDk5OZLywwsBBgAAAEB5cvvC/nbt2mnnzp3eqAUAAAAALsnta2JGjhypp556SseOHdMNN9ygGjVqFFl+7bXXeqw4AAAAALiQ2yHm/vvvlySNGjXK2Waz2WSMkc1mk91u91x1AAAAAHABt0NMQkKCN+oAAAAAAJe4HWIaNWrkjToAAAAAwCVuh5gC+/fv19GjR5Wbm1ukvU+fPpddFAAAAACUxu0QEx8fr7vuukt79uxxXgsj5V8XI4lrYgAAAAB4ldu3WB49erRiYmJ04sQJVa9eXfv27dOGDRvUtm1brVu3zgslAgAAAMB5bh+J2bJli7777jvVqVNHPj4+8vHxUadOnTR9+nSNGjWKZ8gAAAAA8Cq3j8TY7XYFBwdLkiIiIpSUlCQp/4L/gwcPerY6AAAAALiA20diWrZsqd27dys2Nlbt2rXTK6+8ooCAAM2ZM0exsbHeqBEAAAAAnNwOMZMnT1ZWVpYk6YUXXlDv3r3VuXNnhYeHa9GiRR4vEAAAAAAKczvE9OzZ0/l7bGys9u/fr1OnTql27drOO5QBAAAAgLe4fU3M6tWrlZ2dXaQtLCyMAAMAAACgXLh9JObuu+9WTk6ObrjhBnXp0kVdu3ZVx44dnRf7AwAAAIA3uX0k5vTp01q3bp369OmjnTt36t5771VYWJjat2+vCRMmeKNGAAAAAHByO8T4+vqqQ4cOmjBhglasWKHNmzerf//+2r59u1599VVv1AgAAAAATm6fTnbgwAGtX79e69at0/r162W329WpUye9/vrr6tKlizdqBAAAAAAnt0NMixYtVKdOHY0ZM0bPPvusWrRo4Y26AAAAAKBEbp9ONmrUKEVFRWnq1KkaNmyYxo8fr+XLlyszM9Mb9QEAAABAEW6HmBkzZmjHjh06ceKEJk+eLLvdrueee04RERFq3769N2oEAAAAACe3Q0wBh8OhvLw85ebmKicnR+fOndPPP//swdIAAAAAoDi3Q8zo0aPVunVr1a1bV4888oiSkpL08MMP64cfflBKSoo3agQAAAAAJ7cv7D9+/LiGDx+url27qmXLlt6oCQAAAABK5XaIWbJkiTfqAAAAAACXlOmamA8++EAdO3ZUZGSkjhw5Iin/gv/PP//co8UBAAAAwIXcDjGzZ8/Wk08+qV69eik1NVV2u12SVKtWLc2YMcPT9QEAAABAEW6HmFmzZmnu3LmaNGmSfH19ne1t27bVnj17PFocAAAAAFzI7RCTkJCgNm3aFGsPDAxUVlaWR4oCAAAAgNK4HWJiYmK0a9euYu3Lly9X8+bNPVETAAAAAJTK7buTjRs3To899pjOnj0rY4zi4uL0ySefaPr06Zo3b543agQAAAAAJ7dDzNChQ5WXl6enn35a2dnZ6t+/v6KiojRz5kw98MAD3qgRAAAAAJzcDjGSNHz4cA0fPlz//e9/5XA4VLduXUn5D8KMioryaIEAAAAAUFiZnhNTICIiQnXr1lVKSooef/xxNW3a1FN1AQAAAECJXA4xqampGjBggOrUqaPIyEi9+eabcjgceu655xQbG6utW7dq/vz53qwVAAAAAFw/nWzixInasGGDBg8erBUrVuiJJ57QihUrdPbsWS1fvlxdunTxZp0AAAAAIMmNEPP1119rwYIF6tGjh0aOHKmmTZvqyiuv1IwZM7xYHgAAAAAU5fLpZElJSc7nwMTGxqpatWp66KGHvFYYAAAAAJTE5RDjcDjk7+/vfO3r66saNWp4pSgAAAAAKI3Lp5MZYzRkyBAFBgZKks6ePasRI0YUCzLLli3zbIUAAAAAUIjLIWbw4MFFXj/44IMeLwYAAAAALsXlELNgwQJv1gEAAAAALrmsh10CAAAAQHkjxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEshxAAAAACwFL+KGNQYI0lKT0+viOFLlZWV5fw9PT1ddrv9ostcbXN3LE8pjzEAAEDFqWqf9WXdnqq2H7ypMu6rgkxQkBFcYTPu9PaQY8eOqUGDBuU9LAAAAIBKKjExUdHR0S71rZAQ43A4lJSUpJo1a8pms5X38JclPT1dDRo0UGJiokJCQiq6HHgQc1t1MbdVE/NadTG3VRdzW3VdztwaY5SRkaHIyEj5+Lh2tUuFnE7m4+PjcsqqrEJCQvjLV0Uxt1UXc1s1Ma9VF3NbdTG3VVdZ5zY0NNSt/lzYDwAAAMBSCDEAAAAALIUQ46bAwEBNmTJFgYGBFV0KPIy5rbqY26qJea26mNuqi7mtusp7bivkwn4AAAAAKCuOxAAAAACwFEIMAAAAAEshxAAAAACwFEIMAAAAAEv5zYWY2bNn69prr3U+iKdDhw5avny5c7kxRlOnTlVkZKSCgoLUtWtX7du3r8g6cnJy9PjjjysiIkI1atRQnz59dOzYsSJ9Tp8+rYEDByo0NFShoaEaOHCgUlNTy2MT8T/Tp0+XzWbTmDFjnG3MrzVNnTpVNputyE+9evWcy5lXazt+/LgefPBBhYeHq3r16rruuuu0fft253Lm15oaN25c7O+tzWbTY489Jol5taq8vDxNnjxZMTExCgoKUmxsrP785z/L4XA4+zC31pWRkaExY8aoUaNGCgoK0o033qh///vfzuWVam7Nb8wXX3xhvv76a3Pw4EFz8OBBM3HiROPv72/27t1rjDHmpZdeMjVr1jRLly41e/bsMffff7+pX7++SU9Pd65jxIgRJioqyqxevdrs2LHDdOvWzbRu3drk5eU5+9xyyy2mZcuWZvPmzWbz5s2mZcuWpnfv3uW+vb9VcXFxpnHjxubaa681o0ePdrYzv9Y0ZcoU06JFC5OcnOz8OXnypHM582pdp06dMo0aNTJDhgwx27ZtMwkJCWbNmjXmxx9/dPZhfq3p5MmTRf7Orl692kgya9euNcYwr1b1wgsvmPDwcPPVV1+ZhIQEs3jxYhMcHGxmzJjh7MPcWtd9991nmjdvbtavX28OHz5spkyZYkJCQsyxY8eMMZVrbn9zIaYktWvXNvPmzTMOh8PUq1fPvPTSS85lZ8+eNaGhoeadd94xxhiTmppq/P39zcKFC519jh8/bnx8fMyKFSuMMcbs37/fSDJbt2519tmyZYuRZP7zn/+U01b9dmVkZJhmzZqZ1atXmy5dujhDDPNrXVOmTDGtW7cucRnzam3jx483nTp1KnU581t1jB492jRp0sQ4HA7m1cJuu+02M2zYsCJtffv2NQ8++KAxhr+zVpadnW18fX3NV199VaS9devWZtKkSZVubn9zp5MVZrfbtXDhQmVlZalDhw5KSEhQSkqKbr75ZmefwMBAdenSRZs3b5Ykbd++XefOnSvSJzIyUi1btnT22bJli0JDQ9WuXTtnn/bt2ys0NNTZB97z2GOP6bbbblOPHj2KtDO/1nb48GFFRkYqJiZGDzzwgOLj4yUxr1b3xRdfqG3btrr33ntVt25dtWnTRnPnznUuZ36rhtzcXH344YcaNmyYbDYb82phnTp10rfffqtDhw5Jkn744Qdt2rRJvXr1ksTfWSvLy8uT3W5XtWrVirQHBQVp06ZNlW5uf5MhZs+ePQoODlZgYKBGjBihf/7zn2revLlSUlIkSVdccUWR/ldccYVzWUpKigICAlS7du2L9qlbt26xcevWrevsA+9YuHChduzYoenTpxdbxvxaV7t27fT+++9r5cqVmjt3rlJSUnTjjTfq119/ZV4tLj4+XrNnz1azZs20cuVKjRgxQqNGjdL7778vib+3VcVnn32m1NRUDRkyRBLzamXjx49Xv379dPXVV8vf319t2rTRmDFj1K9fP0nMrZXVrFlTHTp00F/+8hclJSXJbrfrww8/1LZt25ScnFzp5tbPra2rIq666irt2rVLqampWrp0qQYPHqz169c7l9tstiL9jTHF2i50YZ+S+ruyHpRdYmKiRo8erVWrVhX7V4TCmF/rufXWW52/t2rVSh06dFCTJk303nvvqX379pKYV6tyOBxq27atpk2bJklq06aN9u3bp9mzZ2vQoEHOfsyvtb377ru69dZbFRkZWaSdebWeRYsW6cMPP9THH3+sFi1aaNeuXRozZowiIyM1ePBgZz/m1po++OADDRs2TFFRUfL19dX111+v/v37a8eOHc4+lWVuf5NHYgICAtS0aVO1bdtW06dPV+vWrTVz5kzn3Y4uTIEnT550ps569eopNzdXp0+fvmifEydOFBv3l19+KZZe4Tnbt2/XyZMndcMNN8jPz09+fn5av3693nzzTfn5+Tn3PfNrfTVq1FCrVq10+PBh/t5aXP369dW8efMibddcc42OHj0qScxvFXDkyBGtWbNGDz30kLONebWucePGacKECXrggQfUqlUrDRw4UE888YTzDAjm1tqaNGmi9evXKzMzU4mJiYqLi9O5c+cUExNT6eb2NxliLmSMUU5OjnOCVq9e7VyWm5ur9evX68Ybb5Qk3XDDDfL39y/SJzk5WXv37nX26dChg9LS0hQXF+fss23bNqWlpTn7wPO6d++uPXv2aNeuXc6ftm3basCAAdq1a5diY2OZ3yoiJydHBw4cUP369fl7a3EdO3bUwYMHi7QdOnRIjRo1kiTmtwpYsGCB6tatq9tuu83ZxrxaV3Z2tnx8in599PX1dd5imbmtGmrUqKH69evr9OnTWrlype64447KN7cu3wKginjmmWfMhg0bTEJCgtm9e7eZOHGi8fHxMatWrTLG5N86LjQ01Cxbtszs2bPH9OvXr8Rbx0VHR5s1a9aYHTt2mD/84Q8l3jru2muvNVu2bDFbtmwxrVq14raAFaDw3cmMYX6t6qmnnjLr1q0z8fHxZuvWraZ3796mZs2a5ueffzbGMK9WFhcXZ/z8/MyLL75oDh8+bD766CNTvXp18+GHHzr7ML/WZbfbTcOGDc348eOLLWNerWnw4MEmKirKeYvlZcuWmYiICPP00087+zC31rVixQqzfPlyEx8fb1atWmVat25tfv/735vc3FxjTOWa299ciBk2bJhp1KiRCQgIMHXq1DHdu3d3Bhhj8m8NOGXKFFOvXj0TGBhobrrpJrNnz54i6zhz5oz505/+ZMLCwkxQUJDp3bu3OXr0aJE+v/76qxkwYICpWbOmqVmzphkwYIA5ffp0eWwiCrkwxDC/1lRwH3p/f38TGRlp+vbta/bt2+dczrxa25dffmlatmxpAgMDzdVXX23mzJlTZDnza10rV640kszBgweLLWNerSk9Pd2MHj3aNGzY0FSrVs3ExsaaSZMmmZycHGcf5ta6Fi1aZGJjY01AQICpV6+eeeyxx0xqaqpzeWWaW5sxxlzeAScAAAAAKD9cEwMAAADAUggxAAAAACyFEAMAAADAUggxAAAAACyFEAMAAADAUggxAAAAACyFEAMAAADAUggxAAAAACyFEAMAcMvUqVN13XXXVdj4zz77rB5++GGX+o4dO1ajRo3yckUAgPJmM8aYii4CAFA52Gy2iy4fPHiw3nrrLeXk5Cg8PLycqjrvxIkTatasmXbv3q3GjRtfsv/JkyfVpEkT7d69WzExMd4vEABQLggxAACnlJQU5++LFi3Sc889p4MHDzrbgoKCFBoaWhGlSZKmTZum9evXa+XKlS6/5+6771bTpk318ssve7EyAEB54nQyAIBTvXr1nD+hoaGy2WzF2i48nWzIkCG68847NW3aNF1xxRWqVauWnn/+eeXl5WncuHEKCwtTdHS05s+fX2Ss48eP6/7771ft2rUVHh6uO+64Qz///PNF61u4cKH69OlTpG3JkiVq1aqVgoKCFB4erh49eigrK8u5vE+fPvrkk08ue98AACoPQgwA4LJ99913SkpK0oYNG/TXv/5VU6dOVe/evVW7dm1t27ZNI0aM0IgRI5SYmChJys7OVrdu3RQcHKwNGzZo06ZNCg4O1i233KLc3NwSxzh9+rT27t2rtm3bOtuSk5PVr18/DRs2TAcOHNC6devUt29fFT7J4Pe//70SExN15MgR7+4EAEC5IcQAAC5bWFiY3nzzTV111VUaNmyYrrrqKmVnZ2vixIlq1qyZnnnmGQUEBOhf//qXpPwjKj4+Ppo3b55atWqla665RgsWLNDRo0e1bt26Esc4cuSIjDGKjIx0tiUnJysvL099+/ZV48aN1apVK40cOVLBwcHOPlFRUZJ0yaM8AADr8KvoAgAA1teiRQv5+Jz/d7ErrrhCLVu2dL729fVVeHi4Tp48KUnavn27fvzxR9WsWbPIes6ePauffvqpxDHOnDkjSapWrZqzrXXr1urevbtatWqlnj176uabb9Y999yj2rVrO/sEBQVJyj/6AwCoGggxAIDL5u/vX+S1zWYrsc3hcEiSHA6HbrjhBn300UfF1lWnTp0Sx4iIiJCUf1pZQR9fX1+tXr1amzdv1qpVqzRr1ixNmjRJ27Ztc96N7NSpUxddLwDAejidDABQ7q6//nodPnxYdevWVdOmTYv8lHb3syZNmigkJET79+8v0m6z2dSxY0c9//zz2rlzpwICAvTPf/7TuXzv3r3y9/dXixYtvLpNAIDyQ4gBAJS7AQMGKCIiQnfccYc2btyohIQErV+/XqNHj9axY8dKfI+Pj4969OihTZs2Odu2bdumadOm6fvvv9fRo0e1bNky/fLLL7rmmmucfTZu3KjOnTs7TysDAFgfIQYAUO6qV6+uDRs2qGHDhurbt6+uueYaDRs2TGfOnFFISEip73v44Ye1cOFC52lpISEh2rBhg3r16qUrr7xSkydP1uuvv65bb73V+Z5PPvlEw4cP9/o2AQDKDw+7BABYhjFG7du315gxY9SvX79L9v/66681btw47d69W35+XAYKAFUFR2IAAJZhs9k0Z84c5eXludQ/KytLCxYsIMAAQBXDkRgAAAAAlsKRGAAAAACWQogBAAAAYCmEGAAAAACWQogBAAAAYCmEGAAAAACWQogBAAAAYCmEGAAAAACWQogBAAAAYCmEGAAAAACW8v/w5BeVaQU+DAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axs = plt.subplots(4, 1, figsize=(10, 12), sharex=True)\n", + "plot_behavior(axs, **event_name_to_timestamps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get DLC data for the first epoch" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "pose_estimation = nwbfile.processing[\"behavior\"].data_interfaces[\"PoseEstimation_2-XFN2-1\"]\n", + " \n", + "nodes = pose_estimation.skeleton.nodes[:]\n", + "edges = pose_estimation.skeleton.edges[:]\n", + "pes = pose_estimation.pose_estimation_series\n", + "name_to_data = {name: series.data[:] for name, series in pes.items()}\n", + "pes_timestamps = pes[\"PoseEstimationSeriesBody center\"].timestamps[:]\n", + "node_to_name = {node: f\"PoseEstimationSeries{node.capitalize()}\" for node in nodes}" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot DLC data" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:24: RuntimeWarning: Mean of empty slice\n", + " x = np.nanmean(all_x, axis=0)\n", + "/var/folders/s3/qb42pmpn5jd0xb6fm2gt65qm0000gn/T/ipykernel_64435/468386134.py:25: RuntimeWarning: Mean of empty slice\n", + " y = np.nanmean(all_y, axis=0)\n" + ] + }, + { + "data": { + "text/plain": [ + "(
,\n", + " (,\n", + " ))" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAMWCAYAAACDduxsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FcX6wPHvnp7eCyGQhAAh9CZVOoo0O9arCPbe7s+ugF3s18a1YUMFG0ovCop0RXovKZDe66k7vz8OORATOhjgvp/nOY85c2Z2392zmMy+OzOaUkohhBBCCCGEEEIIIYQQQgghhBBCnKUMDR2AEEIIIYQQQgghhBBCCCGEEEIIcSpJYlwIIYQQQgghhBBCCCGEEEIIIcRZTRLjQgghhBBCCCGEEEIIIYQQQgghzmqSGBdCCCGEEEIIIYQQQgghhBBCCHFWk8S4EEIIIYQQQgghhBBCCCGEEEKIs5okxoUQQgghhBBCCCGEEEIIIYQQQpzVJDEuhBBCCCGEEEIIIYQQQgghhBDirCaJcSGEEEIIIYQQQgghhBBCCCGEEGc1SYwLIYQQQgghhBBCCCGEEEIIIYQ4q0liXAghTtB//vMfNE2jbdu2DR3Kaad///5omuZ7+fn50aFDB9544w10XT/p+/vkk0/QNI20tDRf2Zdffskbb7xRb31N0xg/fvxJj+NwDj4fh3stXrz4hPYzfvx4NE07OUHXY9myZYwfP56SkpJTtg8hhBBCCCGEaCg1/cual8lkIj4+njFjxrBv376GDq+Omj7goV4H95OPZPPmzYwfP77eNjfccAOJiYknLe5jcbh+aP/+/enfv/8/HhNAZmYmd9xxBy1btsTPz4/w8HDatWvHzTffTGZmpq/eDTfcQGBg4EnZZ1paGpqm8cknnxxz26ysLMaPH8/atWtPSizHQynF119/TZ8+fYiOjsZmsxEfH8+QIUP48MMPffWqqqoYP378Cd8jOVHPP/8806dPb9AYhBBCnBymhg5ACCHOdB9//DEAmzZtYuXKlXTv3r2BIzq9NGvWjClTpgCQl5fHpEmTuP/++8nOzuall146qfsaPnw4y5cvp1GjRr6yL7/8ko0bN3LffffVqb98+XLi4+NPagxHsnz58lrvn3nmGRYtWsQvv/xSq7x169YntJ+bbrqJCy644IS2cTjLli1jwoQJ3HDDDYSGhp6y/QghhBBCCCFEQ5o8eTKtWrWiurqa3377jRdeeIFff/2VDRs2EBAQ0NDh1TF37lxCQkLqlB/cTz6SzZs3M2HCBPr3718nCf7kk09y7733nmiYx+Vw/dB33323QWLau3cvnTt3JjQ0lAcffJCUlBRKS0vZvHkz06ZNY/fu3TRp0qRBYjuUrKwsJkyYQGJiIh07dmyQGB599FFeeuklbr75Zv7v//6PoKAg0tPT+eWXX/jxxx+56aabAG9ifMKECQAN9uADeBPjl19+ORdffHGDxSCEEOLkkMS4EEKcgD/++IN169YxfPhwZs2axUcfffSPJ8aVUtjtdvz8/P7R/R4tPz8/evTo4Xs/dOhQWrVqxdtvv82zzz6L2Ww+afuKiooiKirqqOsfHNc/5e/7jIqKwmAwHDGWqqoq/P39j3o/8fHx/3jS/2Q41uMUQgghhBBCiFOpbdu2dO3aFYABAwbg8Xh45plnmD59Otdee20DR1dXly5diIyMPGXbT05OPmXbPhEn+nD58frggw8oKChg1apVJCUl+covvvhiHnvssVMyW96Zrrq6mjfeeIPrr7+e999/v9ZnN9xwwwmdszPtnkJ1dfVpez9PCCHOVjKVuhBCnICPPvoIgBdffJFevXrx9ddfU1VVBYDL5SI6OprrrruuTruSkhL8/Px44IEHfGVlZWX8+9//JikpCYvFQuPGjbnvvvuorKys1VbTNO666y4mTZpEamoqVquVTz/9FIAJEybQvXt3wsPDCQ4OpnPnznz00UcopWptw+Fw8OCDDxIbG4u/vz99+/blzz//JDExkRtuuKFW3ZycHG699Vbi4+OxWCwkJSUxYcIE3G73cZ0zs9lMly5dqKqqIj8/H4CNGzdy0UUXERYWhs1mo2PHjr5jqqHrOs8++ywpKSn4+fkRGhpK+/btefPNN311/j6Vev/+/Zk1axbp6em1ppA7+Fz+fSr1o4ll8eLFaJrGV199xeOPP05cXBzBwcEMHjyYbdu2Hdd5OVj//v1p27Ytv/32G7169cLf35+xY8cCMHXqVM4//3waNWqEn58fqampPPLII3Wuk0NNpT516lR69uxJQEAAgYGBDBkyhL/++qtOvZUrVzJy5EgiIiKw2WwkJyf7Rt2PHz+e//u//wMgKSmpzvTvuq4zceJEWrVqhdVqJTo6muuvv569e/ce1XHeeOONhIeH+/4tHWzgwIG0adPmmM+pEEIIIYQQQpwMNQ81p6enA2C323n00Udr9eXvvPPOOtN9//LLL/Tv35+IiAj8/Pxo2rQpl112Wa1+j9Pp5Nlnn/X1paKiohgzZoyv73yyvPfee3To0IHAwECCgoJo1aoVjz32GODtV48aNQrwPghQ09+rmbK7vqnUa+5TTJ482ddn79q1KytWrEApxcsvv0xSUhKBgYEMHDiQnTt31mq/YMECLrroIuLj47HZbDRv3pxbb72VgoICX50j9UPrm0q9qKiIO+64g8aNG2OxWGjWrBmPP/44Doej3vg///xzUlNT8ff3p0OHDsycOfOI57KwsBCDwUB0dHS9nxsMh7/9vnTpUiIjIxkxYoSvX79jxw6uueYaoqOjsVqtpKam8s477xwxlqNpu3jxYs455xwAxowZ4zuPB98b+emnn+jZsyf+/v4EBQVx3nnn1Zn9ruaew6ZNm7j66qsJCQkhJiaGsWPHUlpaetgYKysrcTgch5zFoOacpaWl+QY/TJgwwRdrzX2rmhjWrFnD5ZdfTlhYmO/BjUNNrV/f9etwOHj66adJTU3FZrMRERHBgAEDWLZsGeC9PiorK/n00099MdRs+1D3Xupb6i8xMZERI0bw/fff06lTJ2w2m280/Mm+9yaEEOLQZMS4EEIcp+rqar766ivOOecc2rZty9ixY7npppv45ptvGD16NGazmX/9619MmjSJd955h+DgYF/br776CrvdzpgxYwDvE639+vVj7969PPbYY7Rv355Nmzbx1FNPsWHDBhYuXFjrD+3p06ezZMkSnnrqKWJjY30dsLS0NG699VaaNm0KwIoVK7j77rvZt28fTz31lK/9mDFjmDp1Kg899BADBw5k8+bNXHLJJZSVldU6xpycHLp164bBYOCpp54iOTmZ5cuX8+yzz5KWlsbkyZOP69zt2rULk8lEWFgY27Zto1evXkRHR/Of//yHiIgIvvjiC2644QZyc3N56KGHAJg4cSLjx4/niSeeoG/fvrhcLrZu3XrYNa7fffddbrnlFnbt2sUPP/xwxLiONpYajz32GL179+bDDz+krKyMhx9+mJEjR7JlyxaMRuNxnZsa2dnZ/Otf/+Khhx7i+eef93UMd+zYwbBhw7jvvvsICAhg69atvPTSS6xatarOdOx/9/zzz/PEE08wZswYnnjiCZxOJy+//DJ9+vRh1apVvifs582bx8iRI0lNTeW1116jadOmpKWlMX/+fMA7TXtRURFvvfUW33//va8zW9P+9ttv5/333+euu+5ixIgRpKWl8eSTT7J48WLWrFlTa/RCfccZGhrKxx9/zJdffumbPg280/ktWrToqG8ICCGEEEIIIcTJVpPUjYqKQinFxRdfzM8//8yjjz5Knz59WL9+PePGjWP58uUsX74cq9VKWloaw4cPp0+fPnz88ceEhoayb98+5s6di9PpxN/fH13Xueiii1iyZAkPPfQQvXr1Ij09nXHjxtG/f3/++OOPoxpZ6vF46iTTNE3z9VG//vpr7rjjDu6++25eeeUVDAYDO3fuZPPmzYB3ibLnn3+exx57jHfeeYfOnTsDRx4pPnPmTP766y9efPFFNE3j4YcfZvjw4YwePZrdu3fz9ttvU1paygMPPMBll13G2rVrffc5du3aRc+ePbnpppsICQkhLS2N1157jXPPPZcNGzZgNpuP2A/9O7vdzoABA9i1axcTJkygffv2LFmyhBdeeIG1a9cya9asWvVnzZrF6tWrefrppwkMDGTixIlccsklbNu2jWbNmh3yuHv27Mk777zDpZdeygMPPEDPnj1r3f85nGnTpnH99dczduxY3nrrLYxGI5s3b6ZXr140bdqUV199ldjYWObNm8c999xDQUEB48aNO+T2jqZt586dmTx5su++wPDhwwF8M859+eWXXHvttZx//vl89dVXOBwOJk6cSP/+/fn5558599xza+3zsssu48orr+TGG29kw4YNPProo8CBZQfrExkZSfPmzXn33XeJjo5m2LBhpKSk1EkwN2rUiLlz53LBBRdw4403+u4P/H2mwEsvvZSrrrqK2267rc6ggSNxu90MHTqUJUuWcN999zFw4EDcbjcrVqwgIyODXr16sXz5cgYOHMiAAQN48sknAY76O/67NWvWsGXLFp544gmSkpIICAg4ZffehBBCHIISQghxXD777DMFqEmTJimllCovL1eBgYGqT58+vjrr169XgHr//fdrte3WrZvq0qWL7/0LL7ygDAaDWr16da163377rQLU7NmzfWWACgkJUUVFRYeNz+PxKJfLpZ5++mkVERGhdF1XSim1adMmBaiHH364Vv2vvvpKAWr06NG+sltvvVUFBgaq9PT0WnVfeeUVBahNmzYdNoZ+/fqpNm3aKJfLpVwul8rKylKPPPKIAtSoUaOUUkpdddVVymq1qoyMjFpthw4dqvz9/VVJSYlSSqkRI0aojh07HnZ/kydPVoDas2ePr2z48OEqISGh3vqAGjdunO/90cayaNEiBahhw4bVqjdt2jQFqOXLlx82zoONHj1aBQQE1Crr16+fAtTPP/982La6riuXy6V+/fVXBah169b5Phs3bpw6+Nd8RkaGMplM6u677661jfLychUbG6uuuOIKX1lycrJKTk5W1dXVh9z3yy+/XOdcK6XUli1bFKDuuOOOWuUrV65UgHrssceO6jj79etX5/u+/fbbVXBwsCovLz9kXEIIIYQQQghxMtT0L1esWKFcLpcqLy9XM2fOVFFRUSooKEjl5OSouXPnKkBNnDixVtupU6fWuhdQ07dfu3btIfdX0yf/7rvvapWvXr1aAerdd989bLw1fcD6XsnJyb56d911lwoNDT3str755hsFqEWLFtX5bPTo0XX62ICKjY1VFRUVvrLp06crQHXs2NF3P0Ippd544w0FqPXr19e775p+bnp6ugLUjz/+6PvsUP1Qpbx9yH79+vneT5o0SQFq2rRpteq99NJLClDz58+vFX9MTIwqKyvzleXk5CiDwaBeeOGFeuM8ON5bb71VGQwGBShN01Rqaqq6//7768R5cP//xRdfVEajUb300ku16gwZMkTFx8er0tLSWuV33XWXstlsvntBe/bsUYCaPHnyMbetuaYObquU9z5SXFycateunfJ4PL7y8vJyFR0drXr16uUrq7ne/n7t33HHHcpms9X6zuuzatUq1bRpU981GhQUpEaMGKE+++yzWm3z8/Pr3Lv5ewxPPfVUnc/+fj3U+Pv1W3Nv74MPPjhsvAEBAbXul/09hr+r7/5UQkKCMhqNatu2bbXqnui9NyGEEMdGplIXQojj9NFHH+Hn58dVV10FQGBgIKNGjWLJkiXs2LEDgHbt2tGlS5daT3du2bKFVatW+abGBu+T1W3btqVjx4643W7fa8iQIbWmBqsxcOBAwsLC6sT0yy+/MHjwYEJCQjAajZjNZp566ikKCwvJy8sD4NdffwXgiiuuqNX28ssvx2SqPZHIzJkzGTBgAHFxcbXiGjp0aK1tHc6mTZswm82YzWbi4uJ49dVXufbaa/nggw98MQ8aNIgmTZrUanfDDTdQVVXlm66rW7durFu3jjvuuIN58+bVGd1+MhxtLDUuvPDCWu/bt28PHJhS70SEhYUxcODAOuW7d+/mmmuuITY21vcd9+vXD/BeW4cyb9483G43119/fa3v0maz0a9fP981tn37dnbt2sWNN96IzWY75rgXLVoEUGdK/m7dupGamsrPP/98VMd57733snbtWpYuXQp4lxr4/PPPGT16NIGBgccclxBCCCGEEEIcjx49emA2mwkKCmLEiBHExsYyZ84cYmJifLN2/b3/M2rUKAICAnz9n44dO2KxWLjlllv49NNP2b17d539zJw5k9DQUEaOHFmrz9axY0diY2Pr3Bc4lIULF7J69epar+nTp/s+79atGyUlJVx99dX8+OOPtaYrPxEDBgwgICDA9z41NRWAoUOH1hoJXFN+cL85Ly+P2267jSZNmmAymTCbzSQkJACH7+cezi+//EJAQACXX355rfKa7+rvfdMBAwYQFBTkex8TE0N0dPQR+/eapjFp0iR2797Nu+++y5gxY3C5XLz++uu0adOmzn0TpRS33nor48aN48svv6w1M53dbufnn3/mkksuwd/fv9Z1MGzYMOx2OytWrKg3jhNpW2Pbtm1kZWVx3XXX1ZoCPjAwkMsuu4wVK1bUWfKsvvsidrvddw/qUM455xx27tzJ3Llzeeyxx+jZsyc///wz119/PRdeeGGdJQEP57LLLjvqun83Z84cbDZbrXt0p1L79u1p2bJlrbKTce9NCCHE0ZOp1IUQ4jjs3LmT3377jcsuuwyllG8678svv5zJkyfz8ccf88ILLwAwduxY7rzzTrZu3UqrVq2YPHkyVquVq6++2re93Nxcdu7cidlsrnd/f++o1rcO06pVqzj//PPp378/H3zwgW9dounTp/Pcc89RXV0NeNe/Am8n72Amk4mIiIhaZbm5ucyYMeOo46pPcnIyX3/9NZqmYbPZSEpKwt/f3/d5YWFhvccTFxdXK95HH32UgIAAvvjiCyZNmoTRaKRv37689NJLdO3a9YhxHI2jjaXG38+X1WoF8J3rE1FfHBUVFfTp0webzcazzz5Ly5Yt8ff3JzMzk0svvfSw+83NzQXwrSX2dzWd3pq162qmUTtWNefoUOfx7zcVDrWm2EUXXURiYiLvvPMOvXv35pNPPqGyspI777zzuOISQgghhBBCiOPx2WefkZqaislkIiYmplYfprCwEJPJVGdqZ03TiI2N9fWPkpOTWbhwIRMnTuTOO++ksrKSZs2acc8993DvvfcC3j5bSUkJFoul3jiONoHdoUOHWstX/d11112H2+3mgw8+4LLLLkPXdc455xyeffZZzjvvvKPaR33Cw8Nrva85jkOV2+12AHRd5/zzzycrK4snn3ySdu3aERAQgK7r9OjR47j714WFhcTGxtaZnjs6OhqTyXTE/j14+/hHu/+EhARuv/123/tp06Zx9dVX83//93+sWrXKV+50Opk6dSpt2rTxJT4PjtntdvPWW2/x1ltv1bufQ10HJ9L24G3Aofvzuq5TXFxc657OidwXMZvNDBkyhCFDhvj2f/nllzNz5kzmzJnDsGHDjriNQ8V7tPLz84mLizviWvAnS32xnox7b0IIIY6eJMaFEOI4fPzxxyil+Pbbb/n222/rfP7pp5/y7LPPYjQaufrqq3nggQf45JNPeO655/j888+5+OKLa434joyMxM/P75BrMP29U/v3jh141wkzm83MnDmz1kjfg58MhwOdltzcXBo3buwrd7vddTqGkZGRtG/fnueee67euGoSxodjs9kOm7iOiIggOzu7TnlWVpYvBvAm7h944AEeeOABSkpKWLhwIY899hhDhgwhMzOzVsfseB1tLP+E+r7jX375haysLBYvXuwbJQ4cdp31GjWxf/vtt74n7+tTc0Nn7969xxixV831lZ2dXSe5npWVdVTXMngT9XfeeSePPfYYr776Ku+++y6DBg0iJSXluOISQgghhBBCiOORmpp6yD5tREQEbreb/Pz8WslxpRQ5OTm1Hkzu06cPffr0wePx8Mcff/DWW29x3333ERMTw1VXXUVkZCQRERHMnTu33n0dPJr5RI0ZM4YxY8ZQWVnJb7/9xrhx4xgxYgTbt28/bH/xVNi4cSPr1q3jk08+YfTo0b7ymrXcj1dERAQrV65EKVWr35mXl4fb7T7l/fsrrriCF154gY0bN9Yqt1qtLFq0iCFDhjB48GDmzp3ruz8UFhaG0WjkuuuuO+RD4UlJSfWWn0jbGgf35/8uKysLg8FQ7+yFJ0tERAT33XcfixcvZuPGjUedGK/vvoLNZqO0tLRO+d+TzFFRUfz+++/oun5cyfGa+28Oh8P3UEB9+zlcrCfj3psQQoijJ4lxIYQ4Rh6Ph08//ZTk5GQ+/PDDOp/PnDmTV199lTlz5jBixAjCwsK4+OKL+eyzz+jZsyc5OTl1pmgaMWIEzz//PBEREUfsqByKpmmYTCaMRqOvrLq6ms8//7xWvb59+wIwdepUOnfu7Cv/9ttvcbvddeKaPXs2ycnJp6zzM2jQIH744QeysrJq/bH/2Wef4e/vT48ePeq0CQ0N5fLLL2ffvn3cd999pKWl0bp163q3fyxPeB9PLP+kmg7UwZ0tgP/+979HbDtkyBBMJhO7du067DRjLVu2JDk5mY8//pgHHnigzr5qHOop8Jpp0b/44otaN4FWr17Nli1bePzxx48Ya42bbrqJ8ePHc+2117Jt2zZeeumlo24rhBBCCCGEEKfaoEGDmDhxIl988QX333+/r/y7776jsrKSQYMG1WljNBrp3r07rVq1YsqUKaxZs4arrrqKESNG8PXXX+PxeOjevfs/En9AQABDhw7F6XRy8cUXs2nTJhISEk7qbGhHciz93GOJa9CgQUybNo3p06dzySWX+Mo/++wz3+cnQ3Z29iFnfMvMzKw3qdmpUyd+/fVXBg8eTP/+/VmwYAHR0dH4+/szYMAA/vrrL9q3b3/I2QPqcyxtD3UeU1JSaNy4MV9++SX//ve/fd9NZWUl3333HT179jwpgxJcLhdlZWX1jtKvmTq/5rwd77WYmJjIN998UythXVhYyLJlywgODvbVGzp0KF999RWffPLJYadTP9S9pcTERADWr19f6x7IjBkzjjrWf+LemxBCiAMkMS6EEMdozpw5ZGVl8dJLL9G/f/86n7dt25a3336bjz76iBEjRgDe6dSnTp3KXXfdRXx8PIMHD67V5r777uO7776jb9++3H///bRv3x5d18nIyGD+/Pk8+OCDR+wYDx8+nNdee41rrrmGW265hcLCQl555ZU6ncs2bdpw9dVX8+qrr2I0Ghk4cCCbNm3i1VdfJSQkpNYTsk8//TQLFiygV69e3HPPPaSkpGC320lLS2P27NlMmjTpuKfcrjFu3DjfekpPPfUU4eHhTJkyhVmzZjFx4kRCQkIAGDlyJG3btqVr165ERUWRnp7OG2+8QUJCAi1atDjk9tu1a8f333/Pe++9R5cuXTAYDId82v9oY2kovXr1IiwsjNtuu41x48ZhNpuZMmUK69atO2LbxMREnn76aR5//HF2797NBRdcQFhYGLm5uaxatYqAgAAmTJgAwDvvvMPIkSPp0aMH999/P02bNiUjI4N58+YxZcoUwHteAd58801Gjx6N2WwmJSWFlJQUbrnlFt566y0MBgNDhw4lLS2NJ598kiZNmtS6WXQkoaGhXH/99bz33nskJCQwcuTI4zhrQgghhBBCCHFqnHfeeQwZMoSHH36YsrIyevfuzfr16xk3bhydOnXiuuuuA2DSpEn88ssvDB8+nKZNm2K3230zxtXcH7jqqquYMmUKw4YN495776Vbt26YzWb27t3LokWLuOiii2oleA/lzz//rLfv2rp1a4KDg7n55pvx8/Ojd+/eNGrUiJycHF544QVCQkJ8ib22bdsC8P777xMUFORbFq2+ROaJatWqFcnJyTzyyCMopQgPD2fGjBksWLCgTt1D9UPrG01//fXX88477zB69GjS0tJo164dv//+O88//zzDhg2rc1/meD333HMsXbqUK6+8ko4dO+Ln58eePXt4++23KSws5OWXX663XWpqKkuWLGHw4MH07duXhQsXEh8fz5tvvsm5555Lnz59uP3220lMTKS8vJydO3cyY8YM37r29TnatsnJyfj5+TFlyhRSU1MJDAwkLi6OuLg4Jk6cyLXXXsuIESO49dZbcTgcvPzyy5SUlPDiiy+elHNWWlpKYmIio0aNYvDgwTRp0oSKigoWL17Mm2++SWpqKpdeeingnSkhISGBH3/8kUGDBhEeHk5kZKQvIX0o1113Hf/973/517/+xc0330xhYSETJ06slRQHuPrqq5k8eTK33XYb27ZtY8CAAei6zsqVK0lNTeWqq64CvNfe4sWLmTFjBo0aNSIoKIiUlBSGDRtGeHg4N954I08//TQmk4lPPvmEzMzMoz4f/8S9NyGEEAdRQgghjsnFF1+sLBaLysvLO2Sdq666SplMJpWTk6OUUsrj8agmTZooQD3++OP1tqmoqFBPPPGESklJURaLRYWEhKh27dqp+++/37cdpZQC1J133lnvNj7++GOVkpKirFaratasmXrhhRfURx99pAC1Z88eXz273a4eeOABFR0drWw2m+rRo4davny5CgkJUffff3+tbebn56t77rlHJSUlKbPZrMLDw1WXLl3U448/rioqKg57rvr166fatGlz2DpKKbVhwwY1cuRIFRISoiwWi+rQoYOaPHlyrTqvvvqq6tWrl4qMjFQWi0U1bdpU3XjjjSotLc1XZ/LkyXWOtaioSF1++eUqNDRUaZqmDv7VB6hx48YdcyyLFi1SgPrmm29qle/Zs0cBdeofzujRo1VAQECtssOdt2XLlqmePXsqf39/FRUVpW666Sa1Zs2aOvsdN26cqu/X/PTp09WAAQNUcHCwslqtKiEhQV1++eVq4cKFteotX75cDR06VIWEhCir1aqSk5PrXBuPPvqoiouLUwaDQQFq0aJFSinv9f7SSy+pli1bKrPZrCIjI9W//vUvlZmZedTHWWPx4sUKUC+++OJh6wkhhBBCCCHEyVTTv1y9evVh61VXV6uHH35YJSQkKLPZrBo1aqRuv/12VVxc7KuzfPlydckll6iEhARltVpVRESE6tevn/rpp59qbcvlcqlXXnlFdejQQdlsNhUYGKhatWqlbr31VrVjx47DxlHTBzzUa8GCBUoppT799FM1YMAAFRMToywWi4qLi1NXXHGFWr9+fa3tvfHGGyopKUkZjcZa/c3Ro0erhISEWnXru09R0z9++eWXa5XX15/evHmzOu+881RQUJAKCwtTo0aNUhkZGfX22Q/VD+3Xr5/q169frbqFhYXqtttuU40aNVImk0klJCSoRx99VNnt9iPGr5RSCQkJavTo0XXKD7ZixQp15513qg4dOqjw8HBlNBpVVFSUuuCCC9Ts2bNr1a2v/793717VqlUrlZiYqHbt2uU7d2PHjlWNGzdWZrNZRUVFqV69eqlnn33W1+5Q9x+Opq1SSn311VeqVatWymw21znP06dPV927d1c2m00FBASoQYMGqaVLl9ZqX3O95efn1yqv777M3zkcDvXKK6+ooUOHqqZNmyqr1apsNptKTU1VDz30kCosLKxVf+HChapTp07KarUqwPedHCqGGp9++qlKTU1VNptNtW7dWk2dOrXe67e6ulo99dRTqkWLFspisaiIiAg1cOBAtWzZMl+dtWvXqt69eyt/f38F1LrWVq1apXr16qUCAgJU48aN1bhx49SHH35Y5zwkJCSo4cOH1xvridx7E0IIcWw0pZQ6xbl3IYQQZ4Bly5bRu3dvpkyZwjXXXNPQ4YgTdP/99/P5558fcl2rM8WDDz7Ie++9R2Zm5ikZnSCEEEIIIYQQQgghhBDif4NMpS6EEP+DFixYwPLly+nSpQt+fn6sW7eOF198kRYtWvimqxJnpry8PJYvX873339Pz549Gzqc47ZixQq2b9/Ou+++y6233ipJcSGEEEIIIYQQQgghhBAnRBLjQgjxPyg4OJj58+fzxhtvUF5eTmRkJEOHDuWFF17AZrM1dHjiBMyePZu77rqLHj168OabbzZ0OMetZ8+e+Pv7M2LECJ599tmGDkcIIYQQQgghhBBCCCHEGU6mUhdCCCGEEEIIIYQQQgghhBBCCHFWMzR0AEIIIYQQQgghhBBCCCGEEEIIIcSpJIlxIYQQQgghhBBCCCGEEEIIIYQQZzVJjAshhBBCCCGEEEIIIYQQQgghhDirmRo6gNOBrutkZWURFBSEpmkNHY4QQgghhBDiJFJKUV5eTlxcHAbDmfdssN1ux+l0NnQYPhaLBZvN1tBhCCGEEEIIIYQQQhwTSYwDWVlZNGnSpKHDEEIIIYQQQpxCmZmZxMfHN3QYx8Rut5OUEEhOnqehQ/GJjY1lz549khwXQgghhBBCCCHEGUUS40BQUBDgvVEWHBzcwNEIIYQQQgghTqaysjKaNGni+7v/TOJ0OsnJ85D+ZyLBQQ0/2r2sXCehSxpOp1MS40IIIYQQQgghhDijSGIcfNOnBwcHS2JcCCGEEEKIs9SZvGxScJCB4CBjQ4chhBBCCCGEEEIIccaSxLgQQgghhBBCnOZ0FDp6Q4eBjmroEIQQQgghhBBCCCGOS8PPxSeEEEIIIYQQQgghhBBCCCGEEEKcQpIYF0IIIYQQQgghhBBCCCGEEEIIcVaTqdSFEEIIIYQQ4jTnUTqe02AWc49q+OnchRBCCCGEEEIIIY6HjBgXQgghhBBCCCGEEEIIIYQQQghxVpPEuBBCCCGEEEIIIYQQQgghhBBCiLOaTKUuhBBCCCGEEKc5HYVOw8+lfjrEIIQQQgghhBBCCHE8ZMS4EEIIIYQQQgghhBBCCCGEEEKIs5qMGBdCCCGEEEKI05yOjt7QQcBpEoUQQgghhBBCCCHEsZMR40IIIYQQQgghhBBCCCGEEEIIIc5qkhgXQgghhBBCCCGEEEIIIYQQQghxVmvQxHhiYiKaptV53XnnnQAopRg/fjxxcXH4+fnRv39/Nm3aVGsbDoeDu+++m8jISAICArjwwgvZu3dvQxyOEEIIIYQQQpwSHqVOm5cQQgghhBBCCCHEmahBE+OrV68mOzvb91qwYAEAo0aNAmDixIm89tprvP3226xevZrY2FjOO+88ysvLfdu47777+OGHH/j666/5/fffqaioYMSIEXg8ngY5JiGEEEIIIYQQQgghhBBCCCGEEKeXBk2MR0VFERsb63vNnDmT5ORk+vXrh1KKN954g8cff5xLL72Utm3b8umnn1JVVcWXX34JQGlpKR999BGvvvoqgwcPplOnTnzxxRds2LCBhQsXNuShCSGEEEIIIYQQQgghhBBCCCGEOE2cNmuMO51OvvjiC8aOHYumaezZs4ecnBzOP/98Xx2r1Uq/fv1YtmwZAH/++Scul6tWnbi4ONq2beurI4QQQgghhBBnOh112ryEEEIIIYQQQgghzkSmhg6gxvTp0ykpKeGGG24AICcnB4CYmJha9WJiYkhPT/fVsVgshIWF1alT074+DocDh8Phe19WVnYyDkEIIYQQQgghhBBCCCGEEEIIIcRp6LQZMf7RRx8xdOhQ4uLiapVrmlbrvVKqTtnfHanOCy+8QEhIiO/VpEmT4w9cCCGEEEIIIYQQQgghhBBCCCHEae20SIynp6ezcOFCbrrpJl9ZbGwsQJ2R33l5eb5R5LGxsTidToqLiw9Zpz6PPvoopaWlvldmZubJOhQhhBBCCCGEOOl0FJ7T4CVTqQshhBBCCCGEEOJMdVokxidPnkx0dDTDhw/3lSUlJREbG8uCBQt8ZU6nk19//ZVevXoB0KVLF8xmc6062dnZbNy40VenPlarleDg4FovIYQQQgghhBBCCCGEEEIIIYQQZ6cGX2Nc13UmT57M6NGjMZkOhKNpGvfddx/PP/88LVq0oEWLFjz//PP4+/tzzTXXABASEsKNN97Igw8+SEREBOHh4fz73/+mXbt2DB48uKEOSQghhBBCCCFOKv00Ga19OsQghBBCCCGEEEIIcTwaPDG+cOFCMjIyGDt2bJ3PHnroIaqrq7njjjsoLi6me/fuzJ8/n6CgIF+d119/HZPJxBVXXEF1dTWDBg3ik08+wWg0/pOHIYQQQgghhBBCCCGEEEIIIYQQ4jSlKaX+5x/5LysrIyQkhNLSUplWXQghhBBCiLPMmfz3fk3su7bGEhTU8CthlZfrJLfKOSPPpRBCCCGEEEIIIf63NfiIcSGEEEIIIYQQh+dRCs9p8Ezz6RCDEEIIIYQQQgghxPFo+CEHQgghhBBCCCGEEEIIIYQQQgghxCkkiXEhhBBCCCGEEEIIIYQQQgghhBBnNZlKXQghhBBCCCFOc/r+V0M7HWIQQgghhBBCCCGEOB4yYlwIIYQQQgghhBBCCCGEEEIIIcRZTRLjQgghhBBCCCGEEEIIIYQQQgghzmqSGBdCCCGEEGe98Z/MY9ADk/h17a6GDkWI4+JBnTYvIYQQQgghhBBCiDORJMaFEEIIIcRZrdrhYsayzZRUVDNz+eaGDkcIIYQQQgghhBBCCNEATA0dgBBCCCGEEKeSn9XMLSN68Nv63VwzuHNDhyPEcfEo76uhnQ4xCCGEEEIIIYQQQhwPSYwLIYQQQoiz3q0X9uTWC3ue8v0snb+RbesyufTGPoSGB57y/QkhhBBCCCGEEEIIIY6OJMaFEEIIIcQZqdRpp8LloHFASEOHAkBZcSXP3f0FSimqKx3cOf7ihg5JCCGEEEIIIYQQQgixn6wxLoQQQgghzjiF9ir6/jCJ3t+/x/zM7UfVxul0s/CHP9m9JeuUxGQLsBLZyJukT2gZc0r2If536afRSwghhBBCCCGEEOJMJCPGhRBCCCHEGaegupJSpx2AGWlbSAwKo2Vo1GHbTPnPAqa9vxiDQeP/XrmS/iM6nbR4pk5axJ+/b+fhV68mLCqIuKYRJ23bQgghhBBCCCGEEEKIEycjxoUQQgghxBknJSyKl3sNo3t0E2akbeGCmR/z300rDtvGbPE+E6rripce+JrZXx++/tGqLK/mk9fmsmHVbmZOWS5JcSGEEEIIIYQQQgghTkOSGBdCCCGEEKe1KpeT19ctYdrOdbXKRyW3p1ejBAB0pXhhzWLeWLeEq+d/yV/53unSd2/J4tWHp7Fq0RauvmMg7bo187XfsXHfSYnPP9BGh57JoMHWdRn88du2k7JdIQ6mo+E5DV46WkOfCiEalFIKu9tDpctNudNNpcuN3e1BKdXQoQkhhBBCCCGEOAKZSl0IIYQQQjQIp9NNeWkVzmoXsU3C0bT6E26fb/+LN9cvBaBteCytww+s331n215UOB18uGU1gWYrb+yv98raX5ly3tVMem4GG1btZun8jXz/19O89Pkt/PT5MrLSC7jilgEn5Tg0TaNpcgzrlu8iJ7OICbd/yvT1z2I0yjOoQghxpnO4dfKrHJQ4XBRVuyixu3DXkwQ3aRqhNjPhfmZCrWai/K1YTfJ7QAghhBBCCCFOJ5IYF0IIIYQQ/7i8fcXcNOQVXE43ADc8cAFX3lZ/orp5SAQaEGi2EuUXWOszk8HA410HYcTApC0rvYUKlmal0eyzFxnZKwFWQdtzkgBvEvui63uf9OPpdV4b5kxdidvlISmlEQaDN8mfl1VMaEQgFqv5pO9TCCHEqaGUosjuYndxJXvL7ShAAw43JtytFAXVTgqrnb768UE2ksMCCLOZD/nwlxBCCCGEEEKIf44kxoUQQgghxD/up8+X+pLiALu2ZPl+rnQ5eX/zShKDwrikWVsGxTdnySW3E2S2EmK11bu9zkGNwKP2LxSkgaahAz8GprPs94dpFBV2So+nY8/m/LTxOXL3FhMZG4Kmacz6agVvj/uBuIQI/jv7QUxm4ymNQZzddOV9NbTTIQYhTqWscjubC8opc7prJcOP9tI/uP7ecjuZ5XaCLSZaRwURF1j/7zAhhBBCCCGEEP8MSYwLIYQQQoh/hMft4YmbPiZ9RzpXP7uea1rk890zPUlpl8KNDw3DreuszM3g9+w03tu0AoB2EY1oHhJBfGDIYbd9fkorzv0mnN+bFtf5rMDgIBZO+crImqYR2yTc937zmnQAstILqa5yEBTif4ojEEIIcbwcHp11uaXsLbf7yk70OZCa9mVONyv2FRMfZKNDTAhWWWpDCCGEEEIIIRqE9MaEEEIIIcQ/Ii+rhLXLdpLQeRsRzTaS3DWXa5/ex9MfjCWmcRgT/1rMtQu/5rPNfwAQYrERYfNn454cpixYQ3mV/bDbf/X+a+otv3D2p9z0y7e+90opypy1t5VVXk6l04nD7ear9ev5Kzvr75s5pEqnE72e9WYry6oBMJoM7EsrOOrtCVEfD9pp8xLibJNVbmfB7jz2lR/+98yJ2rd/P1mneD9CCCGEEEIIIeoniXEhhBBCCHHclNJJL36F7fkP4PQcSP5m5BZTXF5dq25sk3AuHduHlHMO/Ama3KWY6cs28NXPf1Hs8Navcrho9nYpn7e9GD/NzC2vfMNr3/zKm98tOWwsMQFBpF3/CGNSutT57I+8vfyweTPlDgdXzJtC+6/f4Po509iUl8fMbds498MPGDD5Y15btpTHf17IldOmUVRdO/7K8mruufQ/XNj2MWZ95R3RPnPzNjq/9i6XTJ6CW9dr1Q+LCgLA49Z547FvEUIIcXpRSrG1sIIVWcU4dXXCI8SPuD/AqStWZBWzrbACVc9DVUIIIYQQQgghTh2ZSl0IIYQQQhy3CucG9pW9C4DVFEeoX29Wbwrh4f/OI9DPwvRnxxAW5J1CXNM0bn5kBDsKfiO/cjUAdvdOPp43nYKSUHqHR9I7KIysuen4lSpmrtzGgg/nYDZpGBLLKIpKp9JdTVZ1Ps0CG2PU6l+ze1z38xiW2IonVs6nbXgMZoORH7Zs5v4VPxG10p98YxUAv2XtZt3uPC5MTUFpioKqKlZl7AXAYjRiMtR+hvT7j5ewY+M+AGZ8sYzhV/dgeVoGulJszs1n+obNXN6hra/+HU9dRFZ6AetX7iYg2Ma4Wydz8R39IdpKx9hGaJqMvBVCiIailGJTQTnbiyobZP+bCspx6TptIoPk94EQQgghhBBC/EMkMS6EEEIIIY6bnzkJq6kpTncuuRVfs6/sXRzGgUAbKqqdlFTYmTl5KRtW7+b2xy8kqVUjiqv/PLAB1RFtQBnRxjK2vJqHabfi/gkXsjl5Bz9vXkK5I4xmrfyo7FjINgq5b002WfZ8zovpzn0p1/o2k1mVy/ObPyLGFsHjrcdyTkwT5o4c690F8PWOdYRbKvm6+8fYjB6+3dea+btTKDKEMmXvGlSYQss3sy47FzSwKxdb8nLp3qSpdxtKsXXtTi751yZKqmzMjE5iyPufcEWHNr4Yxs/7pVZi3Gwx8eJnt7AvrYBbLngFXYNvm5dSbdJ5sFdv7uze/ZR+N+LscrpMY346xCDEybCtqLLBkuI1thdVYjYYSIkIbNA4hBBCCCGEEOJ/hSTGhRBCCCHOMp9+9jtff72C0defy1VX9Til+9KVg/jgO9lV8jlufSMACbEw9tLWZEb8ymvbn6SqQyWVRX48u2UP53g20i5gDzWD43Y6emH0zwDA0tRNWEUYwb2tLElbg6UZJLjC+VfXHkyu3IVLd1Ph9o72zqrOrxXHkvw1ZFTlkFGVw9s7pnF5zHAunzoVk62aB/t1ZkRkc0Y2fpUom3dd1zGJ67ghYR3rywdw3apU0ACjQll0lJ+OXm1g9uaXaGx0EBV6DeuXvkuXHoUMHrkLgJWzk1ifH0d6UakvhkbBQXXOj6ZpNE6MpHPvlvy5eicuk3fa3JyKipP3JQghhDgmWeV2NheUN3QYgHfkeJDFRFyQraFDEUIIIYQQQoizniTGhRBCCCHOMrNmrcXhcDN7zrpTkhhXSrHor534B09Hs0zBo8pwKysmDao8JgzuEtq3eoCC0iQ0s4XzArfjuMZCucdKK//cWtv6K2cFRmcM3Rp14NaXryDUL5BSVUHYvmCcuotXrr2GaMJpvu9uIpsEU+6uZFnBegbHHBhtXWa3E6U3IdQcSImrgoW5KzFVR6KFZRASU85HGbu5tu1QutWeGR1Ng/ZBizCUtgHdgObQCI0uIymomM0lUdzXdiZGFLm5K0lpU0rzVhq6Di6XieZRqYQHh/Ng/95EBwWSXV7O+PMH1nu+NE3j2Y9vxOP2sCY3h7+ys7iqbbuT/r0IIYQ4ModHZ01OSUOHUcuanBIi/KOxGg1HriyEEEIIIYQQ4rhJYlwIIYQQ4ixz6y0D+P6HP7jyyh5MnbaSnTtzuenGfsTEhByyzeyVW3jpy0UM7d6KR66pP8FbY97qbbw89RueuWeyd55ywONMYJsey+bKKkZF/oFRg8Ehm3EoEzaDG/CO9FYKKt1m0p0RBBkdRPmVMypxDen2VXyTlcCbqzfSq1ECnwya4B1V7oFbhr5KVnohNz48jMtv7EdyYBMASu12Plz5B5/9uZZKl4vQ0FBiWlWABnNKZxEReyBmk2bCbGuE7trnK1MK8hzn0CW4CWuzcujRNJZX+n2Kn6GEz3adw9qSWDqFZrOyOJIhsaVs3xHBW0/2xGwNYvIvY33buevco3v4QDNozHvhF9at2EXoLZVccUv/o2onBICuNHTV8NOYnw4xCHEi1uWW4tJVQ4dRi0tXrM8t5Zy4sIYORQghhBBCCCHOapIYF0IIIYQ4y3Tvnkx+QQVKKf7730UAhIT4c9edgw/Z5qelm/D3y2HFtr24Pd0odSwl2NoVszGiTl2LyUhZpR8OpwmrxY3brbF9t5MdeT0parWKDZVxtPXPQtPAqHRfO6du5Ju8LuS7gwgyu3A4jIyOywEg2lzG7Kzfadu0gGJ9NxuKWtEpsi12p5OcvcW4g23MnLmWdSt38dfvOzAYDbQe35tvd27zbb+kxIw5O4jwuHLfVO1ul0ZpfhBbgtIZ3Ki41h+/1W4zz6y4mm9GX05ueQUR/gaqcscBEOu0M/bPi/EzuqjyWHh+WzWlVRY6VNp5/q0bfdtwuzxsXpNGs9Q4AoP9Dnl+XR4PV335Nevic2kc6GbyK3MYfHFnwqODD/1FCiGEOKmyyu3sLbc3dBh1KCCz3E7jCjtxgTKluhBCCCGEEEKcKpIYF0IIIYQ4y3zwwWJmzFyL2WwkISGCvXuL6dwp4bBtxgyLxmWdgsGgWLVvI6iN+Jlb0iluLgAFlbMps68gwDiaNdsy0d0GNM2b9DaZFO1S00jPXM+w2IuYl7OYPNdWkv3y2WWPJtxYwT5HGBXKD5fRglXpGA0Kfz83adXnEe7nz1+lMdisGfjtzwf8d/PbvHvue1j9zLR5tBlrdqeTvrKa7LRsDHFuPD11/ixeTnhjA1VlVuzlNkCjcG8YfkEOjGYPeenhVFb50aHDbnZX5/Dmvq70MjrpGrkXo6b4dd853N6rGwAxQYEArKt4hd82f8eMpQmothpVHgsAxS4/MMGef4cTmhLuO29vT/iBed/8QXh0EJ//+igGQ/3T4GaVl/NXQS5YDZQn2fDPdmGxmY/7OxZCCHFslFKnzbrih7I5v5xGAVY0TWZmEEIIIYQQQohTQRLjQgghhBBnmYoqBwBBQTYmvTcGUFith0/Ctk4KZEOOd2rZ9LIsEoKg3JFNQeVswvz6sr3gHkBn4/alzF3VD41AHA4zFrPDt4245K18lmZBR6fMlUyGMwpNg0wiqXYasZo96EqjzGXFoOkYNcWq6jVEuj2U6cUc/KdphXLy/JIvCC4MY0PiRsyJoEU5MbRzgNtbNchYQLjmQinI3hdJ9p4YdI+RjI2NAW8SJDSogreT5+FvcLG6pBHjd/YjpMyO2wO9rBdyZWLTWufhgz+cLE/vCKGK6N/LyTvXCjX5CQ1KdAePr5jHx4NGAZCxIw+Aorxyfpu9nv4jOtZ7fpuGhHBzly7MW7kJ46YCgkL88fO3HOmrPCZ70vKZ/tMa+vdtRaeOh38QQpx5PGh4aPhk2ekQgxDHo8juoszpbugwDqvM6abY7iLc7+T+fhBCCCGEEEII4VX/kBYhhBBCCHFGWvNXGosWbwEDXHxxZ2bPWYfL5TlsG5enCI9ehYaV7KoQXlo7jN+yW2AylLO94C4qndvxMycD0LblHp6443NCg8qZ9NUIPLp3rW6A4iAbOt5R5EFV8VwddzNK9ybRLCYPf2XGk20PxqnM5JUFYdQUnQIyGBm2lgvD12DQDqz56ufvYam2ihlFv6Fc3n2Y2u1PwhvBYnARYHJhMYLVBAlNC+jWewvNU/fQtvNOUtqm0aHrLgZ320KA0YWmQbewbLqGZgNgMMAvpfMY/suDrMjdjFv3YPc4ubF7FxKCg+nhDuW90Vez8er74cBs8ACkhEb6fh79wBDfyL7QiMBDnmNN03i0bz/m33Mz4ydcxVvf343RZDzCt3lsXn9zHj/NXMv4Z6af1O0KIcTZYHdx5Wn/WIcG7CqubOgwhBBCCCGEEOKsJSPGhRBCCCFOY0opFv28GbPZyLl9U444vaqfzTvKzGDUWfDbt+RkRrBrVx6jr+/NxFdmExNj4eKLurNw5dMkt9lMUlx/8qqmYDZEoHDQyN+Bn0lnfX4qfRvtQNdNWIwRdGg0gx+WPUSj+J+wWDzcdvUMXvroSh6efCNBzYqISylk17ZGmP08oMAvy0B47BM8HJHONxWp7HFFkRwQSoeA1szfvIncvBAGdcsiKSQfAH+DEwPKNxpV08Co6dDSgV5sQPPTwQYuuxGTyYPBeCBbraFAA6NZJyqman+pN4leqKy+enaPga3lURiD3ei6RlBANUZN8ejyLwkMdaAZ3Dzf/k4+H3sROysyaR+RhNtDnUdJo/2CfD936J7MB3MfxOV0k9gy9ojfp8Vqps/Q9kesdzxSU+PYsGkfKSmNTsn2hRDiTOVw6+wtt6OOXLWWp667jE2rl9P/4iu4+8U3yNubye2DuwMw4dNvadu91zHHclmrOADufP51Bl56Za3PFLC33E57t47VJOMYhBBCCCGEEOJkk8S4EEIIIcRpbOmSbTz/9HQAJr5+DZ27JNVbb8fefD6evYr+HZvz3/duYMXW20hut569eyIIDV7K2oxPqXCHceFFC9hRFkTbnmUYDIrs0pkYzeDSi/A4OrF+WxBjtQv4efkuXvrNH4spiG9eSEAphbJfy77spTRuVEh0RAmhA3MxNXLhyLKQnRNGo6RiSnaGUvR7FPc++SGRNu9arjfb1rO1LIpHp7SgR4/G5GcXEOlfQK+mawBwuY1sdMThwYBS3qS4rsCjvCOqm6k4UioT+KHiL4pyA2mcmodTN6OUG7PBg9XoxqM07B4z/G08oEMZ2VodRoqtGLOm45+j2JkRg9tppGO3XRiNikqDHd3gBOCxv97F43KDDS5q3J9IRytvpuKgzc5K28yY1l197xsnRtba5/yM7awvzOHG1HMIs/kd71d/zG67eQCXXNSFqMigI1cWZxwPBjynwYRfh59/QojTyw033MCnn35Kj3P78H8fTj3m9vHNW+J0OohtemzLU/zy/VTeeex+AL7bmlXrsxYdOgMQEh5Rb1sF5Fc7iA/6535/CCGEEEIIIcT/CkmMCyGEEEKcRpRSeHSFyehNgAXuvzGuaRAQYD1ku/989zt/bN9BQuIbNG4aTYtUDzoQ27gKk2UbAOf0TcFo0gkJL+Wv5c1p2XYvAepqlHM3fsae3P1SMQ503P4r6R4WC6SQ0DSQf3/1IUHVscz6dTt9u4xhcN8NfLXAiGrh3XdAqIPwcO/Ur7Ht8qES/M3lvtg0DVJD8umemMGXC9Zw11U9+a1yOtUeK4EGO5g8xNtLmPFbHNXFVmyxdkp2BhOSX0yMI5QhI3uy8Ps/CSqzkTckgL2bYomw6ewutNCq025iwiswoFA6aAYARZK5hCCji+3VITQxl+8fgQ73d13KjXOuxmBzohm8Ywc9bgP5WSFExZXiMbp9eXC3x01ScChUAf74kuOXh6eyMjeDFTkZfLL1T+7vcC7LczLYWpLH890v4NbF36OACpeD8d3OO+5rQdcV//fIVDZt3se4Jy6iZ4/mh62vaRqxMSHHvT8hhDhbuXWFBsc8YvyWcS+c9FhenDrzsJ9rQIndJYlxIYQQQgghhDgFJDEuhBBCnOGUUkecXrtGVXk1/nKj9bTldLkZ/crX7M4u4vXbLqRX60Q6dkrgvQ9vxGg00Cw5+pBte7ZNoNSxiPYpuyhz7CI+4j40zifA0po9xc9gMoRy9bDX2Vf6HjZzMyK6XITNamb58p28/6GOyy8XV5iJyqbg9jewxlPMnLtu4M6lD2OLsrN3XxAJl7nZoxl4Zm4MQT2K0cp1KlaHofKNhF9SCRooHWK651HoCcTfWAF41wevcoazJz8cj5/i6zV/0K/nHrpYK9HRWG+3Mie3DVlZEViKNRybrATsq0IrM1LgKeM/mXOojrEQlFuNqcifamxElAZRXlXClsJGOCjAudyGnhlI5DVZ3Bb/J10Dcn37rvnnoRTkua9m0hUXceOv37IhrQkBNgd5uaEYHWaMRp2g0Cq0zWHEttSZnbOUH5evg8igAyPGFTyyZSFs17AajDh0Dx9t+YP08mIA5mVuJ8Y/kJyqCpJD6h8NeLRKSqtYszYdgCVLtx8xMS7Obkpp6KrhV0hWp0EMQhyNxMRE0tO9/w/9Y9nvXLp/CvMJn35L83YdeeP/7iR962ZKiwrwuD1ExjXm3OEXcflt92G2eJcl+ftU6kfjrUfuY/H0ab73NVOnX3HnA1x597/rTKV+8Ojy8Z9M45MXx5O1ZxcpLVvy1ltv0a9fv5NyPoQQQgghhBBCSGJcCCGEOKNNvOFtfvnqd+5+60aG33L4kalv3fUhP707j0vvHc7tr9/wzwQojkluSQVbM71rbi/bnEav1okAtGgZy9Il27j7tsl06pzIMy9eUedhiPN7ZJHUfDFGQxgmQwjRAZdgMzcBINx/kK9e88iJ3h/2DyyetWA99hAjBqfC5AH2L93duFEooYF+WP28+wmN1ag2VgMQFqDwGAzYQh2Et8yn0Bmyf5S1opmliFHh26nWD/yZqWlgNRcx6fYvmLB2BDOLEtHtRgwaGFD4G3SGxm1io94Gh8uCf2Ylpe3CwKjRWBnZmehGmQ04Iky0+r2aHKubrMBqPElW7HYLm/fFEZpnxhGhyFjVgmaJv9TaN3iT4uOXjeD1Uffz865dKKCs2o+ySj80h5Gr2ralaUgoaaVFeLq42eSZ523YtRz2HjQ1uYZ36DnQMiwKp8fDXe16siBzB1tL8rmyRQf+3akvedWVNAsOP8YroLbwsADGXH8u6zfuZdRl55zQtoQQ4n9Np06dqKyspKCgAL+AQOKbtwTAPzAQp6Oa1T/PIzQyirjEZpQVF5GTvodv330Dp93O6IeeOu79xjZNIKZJArmZ3qR8zdTpEbGNjtj2+duuJ7pxE9A0NmzYwPDhw9m+fTtxcXHHHY8QQgghhBBCiAMkMS6EEEKcoZRS/PLV73hcHhZPW3bExPjKWd71nFfOWSOJ8dNURbWDplGh2KxmrhnQqdZnvy3eisPhZsXynVRU2AnaP/J/x/Yc/vPaHIaPnU5wTAVuXaNr/AoMmvmo9pnlrMYdYAR/RWCOi5hCRZeRrRgwxJ9ntj7PjW2upMrlYOWfaWRELyfCXEF2eTDuYj8atclBxSr8YqrQ3RopAQXcFrkWkwYKhfug/Zj2L43c3JQFJDJ7fXtiNuo0b1tKaMttRPmVc+PQKF7YVExpu2CsezUs1Rp78WA0GHGj6NO/NfERDqbm70VZjJiqIXyFZf8eNFyh0KPJHkrdVqo0E36aiwizA13B//06nFXZqdx007u0CAujR/cI8i1bKcwPwhAQzrnNE7ggoQU3T5nCItJIaeLNgXs8xgMHcdBa41cmtePfXfoR5R8IwMik1rXOa6D50NPeH419afncf/UkPG4Pr065jcTEqBPanhBC/K/54YcffGuMN2vdjqc//873mcvp5I2Zi2myP1kO8OZDd/PbT9+xdPaPJ5QYH3XH/UTExvlGgR9p6vSDjXlkAudfdR0ZO7bxf5ecR2VlJf/5z3948cUXjzseIYQQQgghhBAHSGJcCCGEOENpmsY9b9/E4mnLuH7cqCPWf+CD25j1wUJG3nb+PxCdOBpOp5t9e4tISIzi57U7eOXbX8krqUDTICI4oFbdUVd1p7CgnM5dk3xJcYAfv/+D7dszSVzroe8FCcSFXMWUX9bx2eo1jO7emX8N6Erm3iKmTl1B9+7J9Dk3BQCH3cWGVbtpFusd1WxwKUBhcMOmWTsp7LAdZfawqGAxSYU9WRm2gQnRf9LKr4ifstoyae0g9NbZaJp3VLbBpOjin42m6Sg0dAUOpWHWFIb9yeQt1RGsyYyn5b4yjOsiaXPXODp0CmFb5cO4CeKLNCfOCG8cbpOOcZcRo1MjYLuTfuemsPj33TQO8MdgMuKpOQG6hm4GQ6UbzaXxQI9FJNlK8SiNe/cOxlliYtvmVMqdCnCzuJmLjCnrCOpRRVxMFTGRJSzbZuP2RdN5vu1AMk1/0irOg65747bZ3LSIz2LHvkaABuUGLm6awp4H/+Be81+8+d3dRMWenHW9d2/NJjgsgMAgGy8//A3lJVUAzJ66kjuevOik7EOcuTxoeGj4acxPhxiEOFEGo5HffvqO5fNmkZ+1F7fL6fusOC+3weI6d8TFADRtkUKbtm1Zt3YtGzZsaLB4hBBCCCGEEOJsI4lxIYQQ4gw27ObBDLt58FHV7Ty4PZ0Htz/FEYljcfdtn7AlO58uvZJZlp+D0+1N9/Zp2wyLyTtSubC6kh/TNrC5NI/qUX4kNm9caxsDBrdBD/ySnkM241IQ4X8BE5d8j90GLy75nX8N6Mr7Hyxi6bIdzFuwkbmz/o3BoDH/69twqDS+XDmQAFsITYwWLr+rK59/uYzCwgpKlwcR1a+aflF9qTCaIQ9izZUAxIeVMCAhiRxtB07lQMObHF9bFUMX/2x0TbGuOpqvS9phVi76mzIx+OvMKm2J1t5Bo/a55O8OoHWnbJaVvMaMAiNO5SQudSN7Mxrj8JjRw9x4h5wb0cxmlqzajQZkVVZhsLvB3/tnbGVjSIwt4OPzp+JvdmHXvUPTjZriAtMenlo7Au9Qby/No9AUlBdb8I+vorLywMjundpWTI2849yNhgPTsNssihg/JzGuJIaek0JShoE3S5cDsH1D5gknxovyyrj1wjeoKK2u/YGmgVI0aXboteWFEEIcux8+eJvv338LgKi4eEKjoinMyaYoNxtd1xs4OiGEEEIIIYQQp4okxoUQQgghGkBGegHbMvMob+HH4ux9xEUEk1VYxs1Du1NaVs1rP/3K1/paihxVtdrN3buNRcNvZ3H2LlLDYohqNo1zo1YBYNBsGAwBtDAHs4Ey4lxW5sxdR9s2jVm6bAfNk6MZ9/g3mPUd3H/fAgByjOF89nNPbr9zCD27tWDHzlxmb1uFA3+eaf04P+b8yobKnZxr6MG3mxphK1nNnDVtsWdl8FT3W5ha/hHt4rfRyFxB78C9pDuCyXCF8Gt5AgAuzcwnv/fCZg9Hd+YSfF4pWjW8+dg63JWTiDWY6BLQhOUVLTBYXCQEF7O9OBpNB0waOEFpB6e2Qfc3EWA0Uunx4DFD99gMgqze0X4BBt9YcobG7KS4XTRrKgJYlbmXvsnxNC0tZTG55KwKJdMVgR0j2MBqcbKyahVo+Ea4H0y5nWzMLeDVIcN4L38VJTfGM9QeRYfezVmbnU1qVBRWU+0/re0eJxmV2TQLjMdk8D7osLpoAxtLd3Bh3EAirKEArFu1u25SvIamkZgSezSXlBBCiL/x9/cHwF5d+3fp9rV/AhCX2Iy35v6Oruu8cPtoinKzT8p+rX4HZnaxV1Vh2x/Hkfw+czrnX3Ude3ftYNPGjQC0a9fupMQkhBBCCCGEEEIS40IIIYQ4Spnb9jFt4o90G96FPpd2b+hwznh2uwtNAUqBppFVWEZIgJUP5qxE80B1shNnU0+9bd/cuIQf0jYSY6vg1c5f+8qbhDyIxRjJd4+NZfa8dbz66lxeXjGHp8dfynfT7mbe7PV8+N9fsAS5ySsIJDy0Ek3vSGBGBROu/YCxTwwhNtEfc8cilAn+u/t7lhd7p3DduLOY8mWRxIcPpbK0mtuu6cqkZ39i2JCtXNBuG2p/5jrWXMmkwnMA0BWoagvV31qoMnnQDNFUrAulTcJewu9fBkCI0in3HEggxESWsasoEo/ZQEUrN2FbjRgsbioCTRicYCky0iouhzdv1cmvvoA/csPZXBRHuduJVduBxRwO+nbAO+rbEL2bj4Z514qduPU5dlZsJ/Apf2xfWCnpGILy00HpKBRKKQyawmzw4NEN6Bh8cTnLwukU2wi728307VvBDHN37mHzV9+xqiyX3k2b8vlll/vqbyzZySPr/4MC4myRvNThXubnLuWrjNkAlLkqubfldQB069eKdt2asWHV7jrfdaeeybTulHDU15U4e3mUAY8yHLniKY+joSMQ4ui1atUKgF0b13H/yIFY/f2Z8Ok3JKS05s/FC8lK283tg7rjdrtx2u0nbb+NmzX3/XzviH6ERcVww8NP0apzt8O2++zlZ5j1xUfk78vE7XZjtVrp3r0727dvJzo6mpCQEDRNljMQQgghhBBCiOMliXEhhBBCHJUPH5nCsh9Xs+CL35hVOQXj/qm+xfFxOt3Ehgbhl+WkOtlGid1BaaUDAGUEq8uMk3oS4wpmrd0IoeDRa69D/teyFIydSoiNDaVFs1gMBg2lFOFhAYSFBdCtRzLTpi4nP8Sf614fQ4i/xsTrL2Hm3v9iiPIwI+lLNCuYKv3wYCR9dSkehw1TMxeutCAALuyWyoa5fzI78AMs4xWODd5EXc19+vllSegKPErDXmolY0YiZhsYdA00hV9KFQOHbvIeioLpxa3JsIcxLDKE+QVF2D1mcGhggzD/Slpduw+DEXblhbO3OIJGqwy8fctSjCqDYH7ntaX/otzjJCvjYj6+5UoMBhcFuVfhcGxkYV4Se4s7AlBsryazcv+6sY0U/rdXk2KoYGd+NG63hsXsxmgAm9GNv8mFUlDptqCh40g38cfY+zCZjZQ7HPSKb8KqLWlYN1WwK7EA/GBvaRkAO8szmZ+zgkW5q3yj3LPsBdz718uUuUt839W+6gNr2AYE2Zj46c289tg3LPhhDQAPv3wVfYa2w2hs+ESoEEKcqcaOHctvv/3G3PkLyNixFQDdo3PZrfdQlJPN6kXzqaqoYOClV2Cx+fHte2+clP0mprTm8jvuY+G0KRRk7aMgax8VpaVHbPf4+5/z0XNP4nF7iI6O5oILLmD9+vWsX78eALPZTHR0NFFRUURHR/tegYGBkjAXQgghhBBCiKOgKaX+55/5LysrIyQkhNLSUoKDgxs6HCGEEOK09M2rM3j//z6jTa8UXl/yjNyAPQr7Sst4cu5CkiPCeXRQPwwHnbPLLnyd0pIqQHH3w0NZmp3NgjU7AOjbN5kZzk1gUqB5k87hpirebT8LgNvXDadqsz9vDr2YkNgbcatclILn7hlNZHgk7//Hjsejszf/Svz8AmjaJMK33/tf+4Gl6/YA0LlVPO89MopX/u9rlpUvI/hG71SzZS4r6scoWhpT+eOPNCxRfmgBBioyyghKribq2n0YLN7tdXf1o2LZSvr3XsOmLZHMsCfj164SzaCR8UMTnGn+WEs9aICtbTlRV+cwMmQbA4LSKPNYeDq7L1cHriQwwIHRNJBtO0fzxpercQcr2l+0BaPF+6eqUlDtMBFuMzEhoQJ/zyLmr2vFo38NRRkhIM3OnYntyB3xB5nVe1AK8v8KpfS7Rnz16e1M3LGEuXvXEBNcToXdQusmOQDsSovGPc1CdX9o2qEIP6MTP5O7ZiC/j6E8nPtaP8A1335DsNXKje4kflm5Bb/zGtE4LoJ/te9AckQ4lyx5AA9116cNMweREBDFxrKd+98H80n35+vUK8ovJyQ8QBLiJ9mZ/Pd+Texz1icRENTw10Vluc7Q9nvOyHMp/nf9llFIQbWzocOo1y/fT+Wdx+4H4LutWSilcBbns2PBjxzt7RqbzVZvwtz/KKdwF0IIIYQQQoj/FTJiXAghhBBHZdSDIxl8XV+qSqv4zx0f0HVIR3pffPgpQc8GMzI2sTIvndtTe9M4IKTeOrt25vL+uz/TtVsTRg5biqZZsQTezddr17NkTzpL9qRzabs2pMZE+dpERQVhry7lhaen07jxZ/Tr/Qm6ak6wn42k1hHM2LTRV1cp6BG+l5TAQsD78+yWLbE2MqGU90Z/VXkA9morSU024KzwTtf95efbueiSx2slxjNzSwBoEhdC60sV7+z8hrtfvJSqlensZgdKQUB+OO898zCuSp2vpq/my9UbcLhcEGcl8fI9vqR4T1sb2thnYe29naSEQqIiizAsU3zwXl9cbhO2Ejc2dWDUuynEBcCs0hZsq44gyxlEQUEwup83A71ndwVvfvEHFpMJraT2aHlNA3+bGztuHk+3EGLoS36QjeTofUS3KsTT0sCyiG2YqxTa/ocJQjuWkvdnPGOWfgNVoJnBrEKZ2P1SpuybRLWnipLSAKp6WfFLd5PlCMURaSYuphi/AAchFocvOV7lX8q4eR9gC/OQVxhE20tT+ch/E27DJkoLk2kZOYhNJTvrTYoDXBw/kMubDGJ9yTZmZ//GoJge9dYLjwqqt1wIHa3W9P4NF8f//HPV4gwU7memsNp5Rly9Bk2jXfMkRp3zGIWFheTl5ZGXl0d+fj55eXkUFxfXaWO328nIyCAjI6NWeUBAQL0Jc6vV+k8djhBCCCGEEEKcViQxLoQQQoijFhYdwtt3fchv365gzke/8FP551is5oYO67Ce/GMO8/Zu5ZmuQxkS3+qY2pa7HNy//EcUCofHw8vdR9apM/XL5Xz/7SoKCyoI8pvHkL6LADCY25IS2gQ8CoNLIyOzqFZi/K1JN/Dhu2+TmFAEgMWwnFdufhAApRR77IXsrSxhYY53FPlvhQksL4oHYEmRd83pu+ZP5d2BJRgMYLG5MBh00jJCcbrMKKWTlhnG8hU76dQp4aAR/gpTtB1Tt2rm5OZh0twUOHaREt+M3Tk7CCuJ4um+j+DS7Hy69xtm5e/D4QoFwBTkxhR0IGHdMzKduIjlvveBAdUMO289bTtk8tjHl5PaIptgk50ly1OwWc3o28JQ/UvxWNys+iKJTbFN0QN0xmdeQqp/Dhs3NwPA5fZgLXUTbYmkkHzv+uUKNIM3peHGQ77HjNHioVEH78MCxngdjQOjvD0KNDTUYH+2VOUT5HbQq2UamlFRZdjOxA4T+GTNRrZUraHC6sLa2U5cfAl2u4kdO+IICa1CeRTNEnMxG3Wq3WY8SQXEatCmqT9d4+KISMxEGdwUlGxh7s6tvJ31nu9c/H3E+Zay3cAg2oem0D405WguPyGEECdJqNV8RiTFARQQajNjMpmIiYkhJiam1udOp5P8/HxforwmaV5WVlZnW5WVlezZs4c9e/bUKg8ODvYlyWuS5lFRUZjNp/ffdEIIIYQQQghxoiQxLoQQQpxESil+nbYMzWCg7+U9zsrpxlt1b8lv366gWYcEzJbT80+Jv/Zl89OmLVzarg1f7vKu2fztnvXHnBg3omHxmHAYXQTotUdXOR1u3p/0M9O/+wMAg0EjMKQDur4Ut0ejKCucGbvWoidXY0o34XbVHgFtNpu47Z57sJeVo9xpWAKu8X2maRpPdTsPgGm71vL0mgWUu+H/Nl5CaJaZ8ugqMILaa2TvniiaJudhtjjp3T2O8MD2jL7LH01TOF1+fPfDHwSH+HHdtb0BqHI7CR6eS5kJzJqJUEsle6p2kl61m/e6vIWf0Q9N0/h4z6esta8irj+UZwQSaw2l3L8I3Tu7OwEmfyL9z8NT8RNlTjNLf2/O4HO3YLN6aBpdzKV9/+DSXn8B0L9/Kmm2vrSN+pl4ayfGDEkDDDQNK2bPmAByzMHk6MHQCsKW6xg8BpQOWbmVWGPAVWDG8XMIXUdvIdMVglsZcNfMMQ8YcGPUwK2DWxkwAJoBAjU/2iStJlUHl9ofODAr+yd+zPqBjlGd6ZZQwLJCI6lNM3BjAJs/GlBSFIjV5sCpzDjdNd+LN61SqO9j1JfjCEqyUaZX4HAamLziT1ST/VPf6wYwHBg53jq4GVc3veCYrj3w/v9kfu6vVLmrsRmtBJj86RPZ/aT+f8XusZPvKCLer9FZ+f+rs4kHDQ8N/x2dDjEIcayi/K1ocFomxwdeeiUDL73S914DovwOPaLbYrHQuHFjGjduXKvcbrfXGlle86qqqqqzjbKyMsrKyti5c2et8rCwsFojy6OiooiMjMRoNJ7YQQohhBBCCCHEaeL0vJsthBBCnKFWzV7Dc1e/AcDzcx7nnCEdGzSeU2HUgyMZcFUvinNK+f6NWZx3fT+CI0799M8eXee3nF0kBoWTFBRx2Lr3/jiL7LJy1uzL4r5ufZmbuZWxLY887Xul3YnRYMBmMaF7Ciksz8WZYUIzmDBFWGrVXTh/gy8pbjQaeHLCJZzbtxWXXViBo1ontc1WlnfYC/7giXYztHtqnf1pmgG/kCfrjcWle/h82x+8tWkJHt07GtpoMpKHC82tQZVGdGgRTZPzANi4qwfLv92G0bWZc0Z1ZW9OCRl7vdOtpqcX+rb7nwcu5aEdr1FNNef6nUOm/idlFKHvnwK8JjnaPDCZX/N/w1IZgP+GchzZBUye8wBz1GzWF+3CndOGx/KyMEYMwKM0QitTmXZvZx759zwCQ5w0Crf79jm/vJSAqlcYmbAMgHZdB7PhjzhaN4niztZf0CI2C7vHRITNgb2XhadevopcRzguj4YVwKx4dNRCUqLy+asqmiklbTCi9ifoFKb9OXKzAdh/HAqophwwYDR4iwuqAiirspEc7T0ff5X8iRYP3RvX5Nh1QtHICS8jPy+EkNByatIoB6cClaZwJpTh8mjE5HVkb1o56Wv24W+NROtSTb6fjfgWhb4R45vLdvPh7h+4osn5dA5vhcPh4tMvlpKbV8ZVo7rTonnt0YA1NpVt4+M9X9cqi7CE0Sbk5Iw415XOQ+ueI9eRz1VNL+aSxseevBdCiDOB1WQgPsjG3nL7aZkcr6EB8UE2rKZjXzbBZrPRtGlTmjZtWqu8srKyznTseXl5OByOOtsoLi6muLiYbdu2+coMBgMRERG1pmOPiooiPDwcg6Hhl3cQQgghhBBCiGMhiXEhhBDiMJwOF9+/PpPgiCCG3jToiCMqA0L86/35bBPeKIyb2j5AZWkVW1bt4Imv7q+33q6yAu5Y+h3xASG82/tyrMbj/9Pjg20reHn9ImxGE8suvIcQi98h67aNiSa7rJxBSdXc0TKSu9vcfMTtb9yTw00vT8Pfambqk4OwOkYSouxMPP9xfkmP44aunWrV/3H6nwCYzUY++uwW4hqHA9AypSWrV+6iU9dEGofFMnnnKs4LbI7BcGyjLC+c+xHbSvPRDN5puQFKXXa0GMAI2BS9mm331V9rVJR1CSB0RRnn90vlpfu/xGjUCOgWx2p7IQv/2kHL8DACTCbifmzJXlXAd5WZWBP9CWmkU7kniN0RpbRN9l63faPOpanejHWL0piUPZ2gED/CIoLYviqWuduKQWVjNHroGRBBk9AABvYZysN/LOD+z67l+Zvb07PVDd648jqQXV7KKwOWoRQoZaSiwkyzztlccMU82jbNAiAY74j6AD8nd94zi6cfuI6c72KJOS+X67r/ScvAfG89o2P/+VBYNO9Q7pp/lgf/89QATXnT5Bpg1CC9IIyo4PIDder5SlyeMmIbK6qqzYSFV+D92monxxWgKwgpjGTPB/mEawo0hRarUbo9hIpmFrb95U/b5oW4g70j9TaU7mRj6S6+7/0Ks+dt4KtpKwFYsnQ7t4ztR4f2TeskyJ1FBu/OaoY5Kg1nKVD/UvfHzKW7KXR6p/LPrs45ORsVQojTVLOwADLL7Ueu2IAUkBwWcFK3GRAQQFJSEklJSQf2oxTl5eV1Eub5+fm4XK5a7XVd903dvnnzZl+50WisNQ17TdI8JCREZiARQgghhBBCnLYkMS6EEEIcxrzJi/josS8BSGjThDa9Dj9Ss+25qby3ZiKappHcIfEfiLBhaJpGUHgglaVVhEYF+8qrHS4e/mAWFVUOXrp1OLMyN7OzrICdZQVsLs6lU2Tjw2z10CrtTub9uQ3M3pHjHnX48V5vXTKCnKIFBDlvpjJfIyByBkZL+8O22ZyWg8vtodTtIadwNwkB1QCMSLFyaecRterm5pSya0cuAEnNon1JcYDnJ15Jebmd4GBv4v4+Bh3z8QJsKy2oW1i9/0azvwIF7aIzfR/1itjOX01b8a++Q4loFIxm1ChP9KfI34EhtIg7Nk4j+E+I2mmh3KRjtOsE316AKcyNvcBMxd4gFi7ezOZ1e/h55gbOO78jH32wCLdb57F3rqdr92Z8v2crszZtRVm9+/d4jIRXDuK5PsP4+Y8DSfrwkGTW5yeQHJLN1K1tCbN5k6+aBkFhH3Hl08/hF7SbaKOzziEqBVmOYPJ6u/FPqOZfTf6ib0AmmgbFZX68v6YzWgsdg1Z/YvtQdKWREpeLyajqrP9d87NSUOyyoRQkJecfSLhTu36iX2NK3g8nM60YLdCD7aY8sOloJrAqMKyMwLHXnzx/M+EH/nmgUDyz6QMuTxqJpnn3p3TFO//9BavVxI/f3IPVaiY9K58tOWm8+d4cTKlBmBMd2NcE4tjhz3OGBXz71ckZMW41Wni41V1sLtvOBbEDTso2xanjUQY8quFHZx7p/79CnK7CbWaCLSbKatbHOA0FW0yE2U79Ot+aphEcHExwcDDNmzf3lSulKCkpqZMwLygowOOpvSSMx+MhJyeHnJzaD1aZzeY6yfLo6GgCAwMlYS6EEEIIIYRocJIYF0IIIQ6jcYtGaAYNi81MRFxYnc/XFe7jzY1LGBKfwpXJ3hHFzTsm1al3OsstLmfWii30apvAm+lLSKso4j89L6FFSNQh22iaxjurXmTXujTa9TkwRfgf2zP5fcMeAH5es5ORXdswf9924gNCaBMWe9wxLvxzB2m/F+MXY+HBC/oRbj38aHyjwUB0gKLaCaBQqvKI+xjRszUZeSUEB9ho3awbHvtElF6A2f+qOnUzMg4krXv0al7rM+/N5gOj2Tel5ZCeV8x5XVpi3r9G584dOUz7agV9+rWiT7/61z2PNQWS4y5H+Zaq1tDsBrQiE5gVeDSWWltxZZflADQLKua8lht4dWUwYZtWExhvp7pJBD1HrcM/xEFhlR9LVAs8diMYTAQEVmAK8yYHjBEuQq/Yx4+zy7BeWgKXGJj0Zh4eTGAxMH32Wvqd14ZnlyzGbdNRfjooCP/dzjk2G098MJuF+xPjrZpGExcRzvkTL8MeAdG2Cm7tuIbcigBCLNVU599NTJCbMuomqL3nD3pEpPPu1Z+Tq0cwONib/M92+PNTSXP0ljqHGnx/8PZqcne9gi/k1+KZeNAwGb3n0a4bsRg8GAC7W8NqUig0Klxm3Mr8t5iUb9B2jfTKLKqblOM/tApjuBtlAF0ZAIVBg/C4MvJ2+ZNbGYqx0E5IxIHpateUbOWZvncw7Ys72LBpH2vXpfPTrLVomobbrZOTW8ADa5/GFOUieKy3TclX0Ti3eUcQWmJO7p/v7UNTaR9ad5p/IYQ422iaRuuoIFbsK27oUA6pdVRQgyaPNU0jLCyMsLAwUlIOPISl6zpFRUV1EuaFhYWovz0s43K52LdvH/v27atVbrPZ6k2Y+/ufvTMsCSGEEEIIIU4/khgXQghxVtN1nZmTFmA0GRh28+BjvtnYeVA7Pt/1DhY/C2HRdecvfn3jbyzJ2c3vubsZ1awjhlN0M3NNwV5u+m0qSUHhfDnwuhOakvzvxn0yj1VbM/ls5R9kpnpvFv+YvpF/tz/8CNLgiCA6DWxXq6xj88a0b9aIimonfds3Iy4omJlDbjqh+CqdTiJCF/LTv//LL5s6ckGr246qnck2BL+wtwErJmvPI9b3t1n495X9fe+NAXUT4tUOF1azic5dkrjuhnOpqnJy/siOTPh8PrFhQdw8rEetKdPzSyoYPfFrdKVYtS2TzRm5DOmSwrZ5O1jzZxq//7aN5LZxOF1uEmPD2VdQyqqtGQzq1IJnWwzjpjXTwAZooJUoDJoHvZkHQ7YZzWlgzuaulFYF8q9uv2IzO8nYHcPwgcsY0vUvAFaua0F2kHfIcoR/NfE5fpRo3iSvw2AmcP8845oGxgAPejMnmhEI0THeUIKhzIRrRhjbduVi0DR6h8Txa6k3Ua0ZFEF7nPxcuoH1YQdGke3dksPMVRuw718G/vvLPsBsPPimeTl+QLAbvtzUgStar8Ns1Lyj1Bwm/K1uTCadRFMp0Z4qitxWbAYPnxa3ocjsz6H+hSkF9nQNk9GIpYnOueEDOD9uKDvL9/BLsbFWPU0z4NS9iWwMGlX7Bw9WOC0YfFVVvftSCkwOC7b+ZQcS6PvnVtcMYDQoDAkOYqIzCSjxJyLAjQcdHe9IXzPeHURGBjGgXyvCQv35aeZa7NUufl60mYSECIyhtUcz+vco9SXGnS43f65Jo0vnRIqKKti1J5/OHRMwGk9sJHGFu5IAo7+M5hNCnNXiAm3EB9nYd5qtNV6ztnhcoK2hQ6mXwWAgMjKSyMhIWrdu7St3u90UFhbWSZgXF9d9+MBut5ORkUFGRkat8oCAgHoT5lar9ZQflxBCCCGEEOJ/jyTGhRBCnNV+/34lb931IQCR8RF0H9YZgPWFWXy8fRUXJbRhQFyLw24jJuHQI6eHxKewNHcP5zdOOWVJcYCfs3ZQ6rKztiiLtPIiUkKjT9q2o0MDAWhsDSElLoq0iiIuTGh7XNsK8rPyycMHEspKL0HXizCamh13fHd+P4MxKV8RElbNJeesITgs6KjaaZqG2e9C3/ud+wq4+fVvCPG3cZE1iKTmjeh/Ze+jjmPWyi089elc2iTEMvn/rmT02H4AfDhnJT8u2wTAuW2TaJN4YGT8hvWZ6B4dDBrLN6aRV17Jzn0FJAQH4wwy0ia1MRePm4zbozPp3ssY/9l8corL+X3jHl697UJiJwdSYXZR2cGBCtXQ919iBqMHzW5A99NYltaKVRktsBhd2N1Wnmm1wrf/ru12Um73I80dTl5hCKU4qI60oUwKsOKaF49J8xCQXI6nwgSrrRjcOlqIjqGVE3Cjr3fi2K1x6QUvo+eVk2J3Uz1C4Te8CsZDvsuJmhqJPVqjsqnCsdPJnA3bSAot5PYOi/6WFD/AaoLR7TaAZqj5woi06VTqkJsfREhYFR6DAQwVbHCE4zRoBJTaGdVkA34GO7pSFHgCWV6VxD5nGJoGfokKp0PhUhr5zhKibTGU2J2+keRKQVGFlczCKPokWijx7MZohD15keSUhWDUdJIa5WM1e+pM1e7bBuCy7U9c7z80w75APHFVBwoAo81DQtMCNA2cHgMVbhsoGNvswDVZXe1k4S+bfO8DAq2sWr2HhMqu5Fj2YW+RjcFPoZwHkt6FRZU8N3EG0764gyuvew+3W6d1qzjeefO6I1/Eh/DTvvlMyfieDiGteaz1Pce9HXFq6Wjoh3w05J+NQ4gzWYeYEPIqHTj10yc1bjZotI+p+wDm6c5kMhETE0NMTEytcqfTSUFBgS9hXpM0Lysrq7ONyspK9uzZw549e2qVBwcH10mYR0VFYTaf+qnmhRBCCCGEEGcvSYwLIYQ4q0U1icRg0NAMGpEHrQM9Yc081hZl8VvOLtZc8uBxb//q5M5ckdQRo+HUrvt6VbNObCzKJjk48rBTnB+PJ68/j0v6tCMlPgp/m+WkbVfpJZTn9gVVgl/om5j9Lzmu7ZQ7nHyy8RxCzEuJMl9JzZLNHz02hZ/encdNL1zLyNuH1GmXvTuX5TP+4Ldvl3PNY5exODOb0ko7pZV2Pp3xO+asMsxWMzMmzafzoHZc8X8X+dpu2JPNvD+2cUnvtiTHRQKwcks6SsGGtBw+mrOSnk0aUVRYRevGUZhNRiKC/WkaHUp6bjEPfzSLuIhgburbhZBMF26TxoAuiczfvhu3x0N6aRlR7cK5fmw/lrz+LQB7S3KJ7bgL1y4zFrP3T7SgAD+qSzyYq0w4g92o/TfxzQUGjKVgqNCpDgS32YjbZAQbfLu+B1d0XYZVcxFithPqX0VHqiB4LylB2Tw/7wrcyjtq2Rmo4S4x4skMJjqhiKBrCsla0Qh9t0ZwXAEet5HCZLAMLKXKqRG81EVuUiSNOuf4ksZ2k4OAy7JxlQdBRQDlrS2M615Bk9BPOXh21UNNm67+9j7AoOEfqvP0rguY0HI+JqCFpYi2kcsxRddsy9sqjmKSrUX8UNKWHc5YlAKDRQcMbCrfSKmzglt+mU2+swlhAVXklATj8pjQNPgrPYhcRzPaNN5H89gCYkPL+GtnU3ZkxRLsX03TqEIMHIhZ00DXa5KCCpQ3eL3CQMttrejcPRK37qbUXca28gxy7fvQASPgURpKgXVnKOHmeGgCU75ezoeTf6t1Ptaty2DGrHUA3Hzj+fTu2oTVeevpmdKVz/JXMn+hN4leUeHg9ns+xe3SQYPNW7Pq/bdztDaWbgVgU9l2lFIyalwIcVazGg10jg1lRdbpM6V659hQrCc488fpxGKxEBcXR1xcXK1yu91ea2R5zc+VlXWXvCkrK6OsrIydO3fWKg8LC6uVKI+OjiYyMhKj0VhnG0IIIYQQQgjxd5r6+4JQ/4PKysoICQmhtLSU4ODgIzcQQoizmFIKl9ODxXrqn51yOFz8uWoPrds2JjQs4JTtJ3tPLgaDodbI79c3/Mrbm39neJNU/tPr0lO277OBUjoe52oMpmYYjEeflNfd6VTk9QHAEngvtuDjewAhu6ycf13zPPrSDFKS4pi05mUALgm/gYqSSpp3SuK9PyfWarN20UYeGjzBl5hN7phIm8Ht+GLddgx2FwFL9+AfYKPLee34/ftVAPxQ9AmBod7r8IJHPyCvpILWCTF88cg1AGTklfDm97+xaP0ubzLXozC4FVF/5aPtyGTI3SMgLBhHnI2vl64H4JN/X0nmljxee20uAIbVm1GdG1OSGk2PxHhevGMEv27eQ2W1E0OzVaws/hmUxmMtJxHuH8q3S9bz3szlXD2wI5Vx1XyTPQujQfcmlB0GDD8H0zs8hZVF+aQHOgANTNC+/U5aJObQ0ZJOI1tJrYR0Vmkov+9qRW5pGLf2mY9BUxgNOkXuAFZUJLNxSxLbt8d7H59UimZ90rGa3IRa7N5zm9aYmOjSWtvUAI+u4VEapbtC+Lx3OjGhC2p9J2V2E4FWN4b9CWbNoA45ja0GmJQRTVM40eskaw9+X6XrZLkC+Kiw1/6WB+q53RZ+3d4MpTRMaLh1BQawGozYXR4C/B10SfJO6aor+H17MqChaRATWkJkSAWaAoOmEW4NpthZSbA5CLdLUabKiDfFMCh7MFtiytBNcG/H7uyqSsds0Hh12xsAmAml0FVN/L7mbP7ICcAjE0byzNuzMRV4vBFrGlGRQeTllVGTd2/fLp4nHr2QqEjvDAmbt2bx74e/ptru+tvTBODnZ2b29AcOcTaPLKNyHz9lzeec8A50j+h83Ns5nZ3Jf+/XxP7dupYEBDV84qey3MNlHbafkedSiINtLaxgc0F5Q4dBm8ggUiICGzqMBlVZWVlnOva8vDwcDsdRtTcYDERERNQZXR4eHo7hFD+8KoQQQgghhDizyIhxIYQQPkopHr5nCmvXpPPAo8O5YETHU7q/116YxS/zN9K4STifTL3jlO2nUVJMnbL72/XjxpTuBJnPnPULPbrOR7NXUeVwctvIXtgs/8yvcWfFf3CUv4ZmiCAwZgWadnTnzK3FU2qaSJQtB2vg8a8z3ig4iL62CH4v3UnLrskAlFfZcY/pQUVRORcM6VGnTc6ePF9S3GQxcv7o/px7STfy78kmoXM8/f5zGxvW7mXNDG9S3OpnITcjnx/fnUf34Z2wlntvxDYO8ibKl/20mr3bsrjxgk4sXrMTZdLAqKEbNapC/bA0T2TmrzvBaCCpbSMsFQ5UYSXvjHqdy5/3TnHtae5ED/bHOGMn4aYQtmzfxdvqZx59ZARKKX4vyIZi8DcFsKbsZ1xLwthU8gu3j2nJT9nbyczMwmzTfceo2XT0oSXMqlqHfV0waAdG+1usHlyYWOVIxr+8goGR2zEZ1P7zWcIVnVeQVx6MxXRgbfAIcyXdAnazqKg9ug2sfk4MeND12qOHI0JK0GqmP9+/DremedfWjjOV8s55s6hwm3F6wHJQDk/HwMO/D6NrYBUj2q7Az1DNwc9nHpz41tDwLtWuYQB0Tdv/fapadZ26jg6kOcKAuje+jUYnRk3HrYwkmCLYXVqE8teJ8w9hd2kRNpMTXXlz0VUOMxGBVRRWBICC3JJQcktCwQkdQuL578VXMWPbFj7Z9Bcb8/Ow2gLo27ony6Pz+WGXdyT30vI5BPg5SQls7IuhwmMHNNzRlYAZlx/cvmIOnGMgeJcibJtOcJDVmxQ/yPoNe7nhpg954ZnLiYkJZs7c9d6kOBAbG4zFbOLmsX3JySvj4pEnlsxuGtCYu1qMOaFtiFNPx4Cnnuv8n4/jf/65anGWSAkPwK3rbC+qO1r5n9IyPICW4afu4dAzRUBAAElJSSQlJfnKlFKUl5fXSZjn5+fjcrlqtdd1nfz8fPLz89m8ebOv3Gg0EhUVVWf98pCQEJkdRQghhBBCiP9RkhgXQvxPK6qqJr24mA5xjU7p+tBnCofDzdo1aSgFq5bvOqbE+IxJ81k99y9uePoqmrVPOKo2drt39KTD7qr3829e+Yk1P6/nlonXkdTu6Lb5dwvmrOeT9xdz4WVdufJfvWp9FmyxHdc2a6SnFbB9SxZ9B6ZitZ769Q5Xbslg0ozlADSNDuPSPu1O+T4BdE8BAEovB+WGo0yMj/7qW/7Ym82Yczrz2KATGwn15LQHyE3LJzbJO5f2hrQc9lVVg81EYYCJPRszSGrb1Fd/8HV9KS+uJDDUnwvGDvTd/Bz33f+haRrvvziTH79YjtJ10DQc1U7u7vEoLpfik+/WoswmQstK2frdJrKH9mDcxd4R6b02ZhOxthBXkInKhEAMHjC7jRDk7z1HKDL+yiR0byH6vmz2AO+P/g80s+K+PBAIQTOaUR5FYRtFtn85Ywe8QGFOKeM/GMu1be5lSsabzM2dhh4FhlhY4dhBiR6F02jB8re1fQ0GCA20o/e0U5Xth73EhsGs2Li1KVFRJRiMigpLELPLOhJuLCfWUkqop4pI/0qyq0LIcIYTZysizr8UgIzqcN4dOg2DBz4u7UCZ8ienOAinyUSR3YZbGdAshv3Toh9IirP/v6Oj1xNtqSLaAn+fk8huMFOdAEvwp5euiFPeEeMGTUNX3m3VTLfuVoqaScudCoo9fkSZq9H3j96uYdY0LJpG74AcNtgTyHMfuM50HTZvTqRjdFNiA4IY0/wcPl7xJ90S43l/3UpwazQOL8Wwf+3xYJudjvEZaBq4PLBxX2NKqwPxKAMKxbhFvzB14waU2XuwDruFX9MzKDTUjDZUmPY/aKAwcX/LuzBgoMhZxZKCP7miyVB+uyKdjxev9p00R4iGPRQ8FXZ8zxAoSG3ViC1bs6mqdnLvv79E0+DWm/r7jq1j+wQe/vewI/67EUIIcWiaptEmMgizwcCmBhg5LiPFD0/TNIKDgwkODqZ58+a+cqUUJSUldRLmBQUFeDyeWtvweDzk5OSQk5NTq9xsNtdZvzw6OprAwEBJmAshhBBCCHGWk8S4EOJ/ltPj4YIPPqW4uprE0FCmjb6KMD+/hg4Ll8uDyWRokJsyNpuZ+x4axuqVu7lubJ+jbueodvDWnR+gFJgsJp6adnRTZj/42EjO6bGZzl2T6nxWUVLJ+w99DkBIZDCPfH7PUcdzsO++Xklebhlffba0TmL8RDgcLu6+8WOqq53s2JbDHfedf9K2fSiJseEE+llwujy0ahp9yvdXwxb8MAZTIkZLJzTD0Y9q2l5QCMC2vPwTjsFgMNCo2YGR/52bxzOoU3OKy6r48c7JfLW3mPv/eyvDbh4MgMlsYtSDI2ttIzO9kHtvnYzZYuLcc7zXnEEDD9Chfxs2LdsGflawetPPZmsAeggEhPjjH+xHVVk1jsoqsJgxlrsISrfj6eHCMdCJZjdiWmnBeWklmqZhnueH88IkTAaNvE8K8Ayy+qb/NmAjr4ODyhQLs917aJ5RjAas/GULV3TrhVJGwIPhoNHWzUILaWHUybUHsq8qFMpAzQ5EjapAM3gT5IGNqwlsXA14E71OZcCGd4S5GyM57lD+KmtCicOPeFsJaXkRGEMUD4XOwWhQKKW4NHwHfkZvm5usyynVTeiRMCWnK7sdjaiZplxXOkbtQFK8JqG9oiKe9v65QO31xN06vJnbDe+Ib41Yi937/7j92XOHMuCnHcikG7QDo1JNGkRq3uP6+/8Va/4/6WfUGRP+Jy/m9qMwpw0XpzZl426IMju4PaUnvZsm8PuedB4/rx8XffUF+e5KNF0jJz+YIFs1RqPCsn+KegCjCbom7KOkysaqbc1YX5DNuqJsCNTABZryjtoNCjCzuajC+7O/HavZe0N+VJMhdA5r74uzW0R7vtu7gOQRMTzYshff5m0kba+b4gAnub0M4FHcZWvLsi0bCWjhJn5gFbn/NVK0w+M7v7GxIbRsHsP2nbnMXbCBIee1pWOHAw+DiLOfRxnwqIYfMe6RlbjEWUTTNFIiAgmymFiTU4JLP/QyHydlf4DZoNE5NpS4oBN7QPN/laZphIWFERYWRkpKiq9c13WKiorqJMwLCwv5+wqCLpeLffv2sW/fvlrlNput3oS5v7//P3JsQvw/e+cZHkd1tuF7ZnvVrnq3ZMtF7t3GNq6YYnrvLaEGQiDwJSSkEAIhjRBKQgKEGnrHGIONjQvuvcuyZMmyulZtV6utM+f7MapIBpvQEua+Llu7Z+a8c2Z2dnZ3nvM+r46Ojo6Ojo6OzlePLozr6Oh8Z4krKi0hTWwpb2lh/j+fZs3N12ExfnOXxlXL9/G7X7/F0MJM/vLYFRgMX/0N8KC/nf2bShk5fShmq5kFZ45nwZnHZstrtpqZMH8MW5ftYuqpE466n9tt47Sz+l/fkWBn4olj2LFiD9PPmnxM4+nJBZcex9OPr+CMcyZ+4Rj9ISF1vT5G49cjVGQmufnwD9cRV1Vctq/PAl6SXV/ICv0f557BR8WlXDJ+zBHXUVWBLHfUig6EMFtNGE2934PRcJSyMh/PP7WaaccPYcEZ47CajfzputNprGnm4p++DkB1aW2f+AAvHVrJi4dWMiU4jIBfq5M9dsYQJk0fQka2BzUSJW9kLgd3VfDWQ4sIeT1s21JBe2s7p39/Du4kF8/sf5jfX/EIWzaXQ2YquA1E5jchJmj25YI40bQwuI0IIHqu5s+tSAKuTdIE3Q4r8MhEcFdKBIeCu1lCMhtBkhgwLINEcwpnp/+Ct2p/o8VVQZKBuEAygtccojLoARdwYVuvWtOqQpeYLklQEkhhiLsekyyQJKg85KHNY8FhilLamkrCbpmLz/0IhzGG0Epvd4niUQFtwqBZpEtwecZm3mgYw+7ggI79lbSbzB3atgAUBfYHkihL8JBuCmA3dGdtbW1PI0i3ALCuLYcpjkpqIg5SrQEkCaIqmHvUARUC4kLCJAtaFDN2QwRFFYSFCY8h1sflw2OMUlqWTJlfsK3+UKcGz7Ufv8m5aaN4e/c+El02fIYgOFUQ0FDvIT/Th9EQ7ffcsZliYO4YjCKR7AzgcbRzqCaJeNTMprpKMIEkqWQmtXT121Syh+dKnmdu1gzOyT6Td6qW82ZlR811GUiH+6ZfzvWvrNHaDBIjznayZlwpbcCWANhPSKTpgAu73czkCfnMnD4Up8PKHXe+AkAo1P+YdXR0dHSOnUyXlSR7KjvqWqkMhL+y7WS7rIxJS8D8NXzH/64hyzLJyckkJyczfPjwrvZ4PE5jY2Mfwby5ublPjHA4TEVFBRUVFb3aHQ5HH8E8JSUFq1Wf3KCjo6Ojo6Ojo6Pz34YkPj119juI3+8nISGB1tZW3G73Nz0cHR2dr5FLXniFTYeru56vv/k6kpxfXp2/WCyOyXT0QvsDv1vIB+/tAOC1Rbfh8X71NQdvmnwnxZtLmX3hNO566bYvHEcIgRJX+oia/ymdWbYAMVWhNRom2frtqMVYU9VMaUkdU6YNxmQy0OgP4nXau4Te/2VaGlo5sLWMsXNGYDJ/MRv5O59cxLJtB/jZxfPIbVf5xWm/Iykzkcd3PoDDrWXmbFm6g1+c/nuMIwsImy3IssSiFXdiNHanU69buJlNxfsIz7ex0reHoBrh7uEXUR/zs6p+D8VtlbQrEbKsSUxYUYjFbOTGH52I2XLkczUajdNQ3YI13cyqhj1MTR7KXy78Fzu2HkKkJxE5K4wypZ+OZRHMGVaiVpUjmj4ISLUk8Oex17N9yz6e3PI6CUPbaXW4+PnI76EiOBjcTIV/K42rMsiL5rC6dCsJVzTTFLPTGtWcLXokXAPQfsjO/DE7mZBwiDXNgzBIKm2Khf1tacR3mmlptDL7jHJkcwx3fTtzCvZhlBUMkkASghgyA41RTJKgJm7CL3ofnz3BdN5sGI8qZGQU3KYIqiQRVsxaJut2G7eOWs1xww4BEFFUjJJEDGhTBU/VT6Ailo6/xYLDHUEKKszJLGGB50B3pjZgRCIunNxzcDKyE+xSlNG2SmY4yxACVMAgZFyfevnCisS8ZTcSUXqfjxJwmreQD/eXkOiw0WQNErPENeE8ApkpzQzJrkOSVIwdx7U9YsAgC9oiFkrq02htt5FoDzAuvwpJgppGN3tKcvFYzERtASzWMLlp2g320fJw9lbtw54bQgjYumIIc0cmcdizrde4flhwKf9YWc62mhpOGzKUcYVhFtYs61q+IG0202IzKBiUhsnUfb5/svYAiqIyc8YQ3e71GPhv/r7fOfaXtw/H7jJ8foevmPaAwkVj9/5XHksdnaOhOhBmry+APxrXynz8B7GEqiLJMm6zkeEpLjKdupD6bSEajeLz+foI5n6//6hjuN3ufgVzk+mrL7Gko6Ojo6Ojo6Ojo/PF0DPGdXR0vrMU1Tf0EsUB7vnoYx4667T/OLaqqpw3/V7a2yIkprh4cfmdR9Xvwsum0dYWYdSYnK9FFAdoafD3+vtFkSTpSxfFO+MCKKrKmUv+xf7WBn474RQuKTi2rPavgowsLxlZXgAee3ctTyzawPQReTxyy9nf8Mi+WoQQ3DzlZ9SVN3DaDSfyo79fe8wxVFWwbNsBlI6/kxqiKHGV+gofH725mdwhmYybVsCWJTuIR+PED9cjFeQyZfrgXqI4wHGnT+RPK5dSV9fS1XbXnhd6jhhZgjNzppJ6jYe/H3gfZ4WJZLOLd2o2ckX+XGanjewV02w2kpWXzC2bH2dLcylZ1iTa9jRgMFuZMD+Hj6cc0FYMC7B2+4mbnCai1s+5hS5BfbQVm1Hm72IhhXMbsBgU0tQAb1Xfy8FAIs1RO0KxQGET9U0O4rkJKOEwhc4aAnYrijByKJDAuRlbcRoivFQxherWFKa4DmIxKMxN2oexY1ivB8azPH0Yl01bzzBPLXvC2cwqKMIga+P0SBFkGYKKEXNHm01W8Stdu0VINbK9PZfChHoE4As7EZIMCNJNTUxzljD5rBpMchxFSChAsCNNvtNm/ftpW3ii/Dje2T6ZDy77a1dt747EbkCztY8LgUqA2iYPra0WZuUWM95e3hXHAEiohNXefZ+uG8u4IRVsL8khHDN3KRmDjSn85qR5HD8wj6m5OXjsFua+/QSNkRBYodrvxVYfYUBaM1KHnbvNrCBJYDGF8NgP0Ro147FGuyYipCX6qfP4MZhUCjIbiCMTaTfjcQbZFtwLSBiiMnX+BNrTBe9V+phuyKDNVUM0aCC7qIC506dwwoXHAeCLNHHjll92nSJGycCpWXNJtyb3OX1mTBv82eeXzv8sKjIq33yWqfqVGk3r6HzzZLqsZDgtNIdjlDYHqQyEuz5vjubs71xPqAoth0oZNyCDcXmD9clM3zLMZjOZmZlkZmb2ag+Hw72E8s7HwWCwTwy/34/f76ekpKRXu9fr7SWUp6amkpycjMHwzU9u0tHR0dHR0dHR0fmuowvjOjo631k+LCrp07b2YPlR9Q0GI9hs5n4zg8tL6lj48gba2yIANDUEjnpM2blJ/Pp35x31+l8Gv//gLta/t5U5F0//Wrd7rLQrMYpbfQBsa6z6VgjjPdl6QKtRuL20+nPWPHqikTi/u/stGhsC/OK355CW4fmP4kXaniIeWYHV/VMMphH/Uax2v1aGoK2lrd/lLc1BXG7bEcsByLLEzy6ex7JtB7j+1OMY4HbQUtdK3GzhH3/8ACVDkHKzl5ryAyR4HJz9g3lc/PNzMJmMPHNwGTtbyrllyGnkObW64/7KIPQpuy56PXr8wGJAJiYUnir5CCkEwgVPli5hdtpIVCG4Z8sSSlp9DLOYcSSasRi0jB+H0ULSkDTK99cyZmwB6+RywmoM6/MqapZEdIEMkkQspfua0DObu8+98BCk27yY5FjXOI0donSKNUBYMRBCs8uvsldisce4PncVRklwOJpIUTiLQU4fOdYWADLkFnalZ9OumrEQQuqhGMsCMi2tTEs9qD1vUtkXTWds0mFccozOy1hEMRJS4xgk8Cty1/gX+UdTE/KQZG3vGr7VECOsmhlvP8T53t04ZAlJkhBCokkVvfa35+MrB6zDZop0bbOzTnmn6N25vqLA3MzdDE+sItMcxCyLLgFcdOxbp1F752G+NG07D9R6SfEEONyQpO1rROC3HGTeKw9z4bDjeH/LPuySmbZopLunBKW+VIxmhWRnEIc53mvMsixwmGO99kWWYOSgSlQJTLJmP48lhCSBw9wGXm2c2ysSNOt0K6wrMjJsrIzZoVBqqOaOZYsJizj3HX8iAaW9R011A78d8eN+RXEdHR0dna8HSZJItJlJtJkZHVdpCEVoCcdoCsVoCceI92O8Z5QkPFYTiTYTkZYmFr/5Mko0gjswnPGFQ76BvdD5IlitVnJzc8nNze3VHgwG+2SX19fXE4lE+sRobm6mubmZ/fv3d7XJskxiYmKv2uUpKSkkJiYiy9/8pCcdHR0dHR0dHR2d7wq6MK6jo/Od5alNW/q0qXx+Jseit7fy0J/eZ/jIbB78x5W9sj+2byjlZ9c9jVC7b5Z925NDcoZmkTM065sexufiMln4y9Qz2VB/iB8M//aJ+D+5aA4vfLSV+RO+vGzOfXurWLNSu6H28dI9XHTFdNR4OaHmHyEZcrB5H0SS+rdqjMfivPv3D3EnuTjhspkItZ2I/24AIgEH9sTHiERivPTsGtwJNs6+YPJRZzJJksRfVt7D9o93M/eSGX2Wv/biOh5/dBmjxubywN8uRwjBkje3kJGbyJjJg7rWO2fGKM6ZMarr+a3/vJ6NK/ezbFkxkfmCcmcjXJdIYHEZJ145G5PJiC/i54nSJQC8XLGaO4drE0myX3JzcEojymTomVDZc5fiqAihvcuFQSCVSZhHmTgzW/NEL2qp59WKddgtUcpUBarg2kEncmLqeNburifnF15+lT+QlTvK+GnixQwqSKTNEWD72iL+9c4yYjMdyF4FOQhqZQQ534Jq7v8aoCBz8m+fZOKZASJowqpNijDKVkHYZmanKYeDzSnUNXiQa83Eh/sJKyacxiiBuIW2mInytkT2WtNxGiKUK4kMSPKxrqGAKd6DrCsfjCRDc8zOukNDkOwxDjW7yUtoYUryAWxyjCRDpGtsbYoBYVBp78jCVlGIYaIm5iUqzERVA3FVItUYYLqjBLscwSlHMMlg6xDFoSNDruNBz/3u1A8sMlyWtbVrnU9fcoWAGOBHYl76AUwIbLImgncK4Z1x1U8dU0mCua4iwsJEZlIjFXWpOMwRBqQ2YZFjLKv20xgxMjS1loJUCxUtiQRiNhAwKLWBTG8AqUdUQbcIrwoIhkw4bLGu5Uaj2kvQ/zSSBE5rO01tbpAlRKLAYNAORCxb8ObBvQBMzsjB4tYm1qiqxJ5duWxxBhgyqv+4Ojo6OjpfLxajTLbLRrZLK2UihCCiqKhCoAhtkpcsSVgMctfnoZrk5GOTkWA0QnFxMZFIBIvF8k3uhs5/iMPhID8/n/z8/K42IQSBQKCPYN7Q0EAsFuvVX1VVfD4fPp+PvXv3drUbDAZSUlL62LF7PB7dZUBHR0dHR0dHR0fnK0AXxnV0dL6znD2qkFe27eqV8fHjWZ8vuG7boln67t1dRSQSx2rtFib/+uu3eoniCV47V9960pc78O8wZwwYwRkD/rNM56+KwVnJ3H3liV9qzCHDMhg9LpemxiAzZg8DINr+JkpsG8S2ocauwWAe22/fJc+s4LHbngEgc1AahVOHYLTMJR5ZhcmqnZMfvreDF575BICCIemMHjeg31ivrtzB/sP13HD6caQkOAHIG5FD3oicftffua0CgH27K1FVwf9d/jj7tmttf3/7FvKHpB9xnyfPGsofnr2Gx955jZ3xRlxlElf96hLS87R0cK/ZyTjvQPa0VjAzRTsXlr6xicF5GcxPmkDu0HR+WfICbrOdGwadxO/3vd6ViTvSnYuiGNjfVopsAPtQM2/O+BXCJKOoKnlOL15nGCTRpcKO8uSxZW8jL27YDUD1wGY+WbeGYNDGGw/8gEHTMhgzbQgZqwdx27sfIFIUHKkRRk5Mpzx4mIH2Bg6HEmlXu2+Gx9sM+Eu8NMcDjIqFoOMSkm5qIcEYJoEwCcYQdp9E6OMUThw/hLWLD/Ko9xwyZ5dTHfXQqSi/2zAOAMkgGJtYTYLcjsMQJSO5kSWHRnG4KgORHmFuxl7yPS1Y5Tg2QBGi2xZWQIJBIsEQo13V3OETDAotQSt7wmNoCMcxSCrRiMS5yVsx9LhHa6B7HkJYVQmK7uzvT2eB9ySO1JH1LZCFNg4jEO9wprfKvbPODUi0d4xZpo+e3kWLcJBoCeMxhzFnCmoaPSSYQxgkwcicSsJRgdMaBQ8MS69n0b7hhGMWFKHthSok4ghtnyQQSAgBYcXMmd6rke21rGpeRFz0ziA/EgPTm7C1KFQ1JiIkidLKFJxynPYWD7kJTvzRCNOzclndUtrVJxyXuGv5R1w4chSyfkNcpweKkFDEN39OfBvGoKPzTSJJElbjZ1tiy7LM8OHD2bRpE/F4nKKiIsaMGfM1jVDn60KSJNxuN263m4KCgq52IQQtLS19BHOfz4eiKL1iKIpCbW0ttbW1vdpNJlOf+uWpqak4nU5dMNfR0dHR0dHR0dH5D9CFcR0dne8s4ZjSSxQ3SBIXj//8G1ZXXjMLo0FmwpSBvURxgNRMD7VVzV3PL/j+LE4+Z+KXN2idbx1qvAJJ9iLJri89ts1m5oG/XdGrzWQ7lVjoDWRDDrJp2BH7puRqNswmiwlPagKSJGFPekbLmJY0ETB/UCqyLGG1mkjP9PQbp6Khhd+9thxJAbvVzO3nzfrccV970zwSPHamzhiMwSBTVe7rWtbTWl0IwVuV6wnEQlycNxOzrH0tGTUxn4PTtmITKqPnjOKipWd195dkHp14PUIIJEki0NrOX37yCgiwOyxcmjePxTl3Y5RkTLKREzPGY5DkXjcQf7Xj36zybeesYdNYc7iSH762kLxEL6m1BtQsM3J+hCn1g7h6wgmMShxIJNOIQZJIsFkpyNvMpOmv0tzkwmz5QVfM+TOGs6D6EIsO78aSHeBAW4Dz0rZT6KylLuLi8UrtuE3zDGV8QhvWYc+wfc8gkpSZHDKtAaAunkC60kpYNdEWd5NhmcPkk9O5bM54Ehyn8NzWLTzrfxlJggGWRoySSmk4RTuWgKJKnObZgUkW5DmaWJCxl9qgg7uLzmBm2oFeanJUGKlX7EhCEMXASItWN1NGRpO7Y4zPuJwT3Hfw4+2XMsRaw1xHcR8hWIauY9uZFyVL3YJx5yVW6si67nwuAKMEspCIA7Kk1SI3SfR7s1cVmmgtSVqmuKIIzD00CSEgoEBRJB0kbQxGWeVwi4eClHpclii+VhsmQ1QTxjuYmJzBJ9VNHKpPIhQ2E44ZUIQRSYozKqcau1lBAkIhE3ftWYUkJK4aeTbvlGxiXGEZn66moY0TjHJH9ruQsVu6t9cesxBvc/DkaecwNDGRyz98nTtWLibP4qKiOYX2oAVPYhtOi4QqVGRJr0Wqo6Oj89/KyJEj2bRpEwC7d+/WhfHvEJIk4fV68Xq9DB06tKtdVVWampr6COaNjY2IT9nzx2IxqqqqqKqq6tVutVr7FcztdvvXsm86Ojo6Ojo6Ojo6/+1I4tPfvr+D+P1+EhISaG1txe12f9PD0dHR+ZpYXFTMbe++zwCPh+GpKUwfOAAhYHJuNgO8ni8UMxyKcsvFf6eitAGA3EGpNDX4yclP4Zd/vZTE5C9PPFUUBYNBF02OlsqGFv61eCOThuawYErhlxIz1v4OoZYfIslJOFNXIsnfrs+Qw/ursDqspGQnHXGd5qYgZrMBh9PaZ5kQgnOeeZHddfVYWuChC09j3rjBbFy5HyEEU2YfWZjvyc5NB3n18ZXMPm0MJ5zZXRt+e/NBbtr8TwBm1xWy/8+lzD59LDf/9lze/Osilr/0Cd+//xLGzT2yp7QSV/jhGX+lrKiGH//xQuafN+moxhRRYlgMJu77cAXPbdgGQMJBFTkG82fk88vrZmM2JHat39wewmoy8uSSKxgyfAdCwNzctZiNnl7Hq6ihnt8ceJb6SAuXpG0ix15FU9TO3w7PBeBvo2/kYN3t2J1FSBhwtL5Ds2crK1pfw4ARRajkGsfzyHsGQOLn82Zx9aTxrD90mMtffpXrT/yQBUl7MEja17eHq2aztz0DIUCpNvGX6S9hNvY2GVcF3F90IpcN2oBVjhNVJB7ZP48CVyOqBOfkbMcjx2gNeDm452JOHH8G6QOCWEyjeHf/IhzGn5Blbu0SgRUB29qzGGj2McgSxSBJxITA/6na4kJASNUmM1hklbiAkOiek5kpC+yyRFyohIWC0pldTreGL3U8igloUmUckrZvbULGjMAsqUQFRDCiCAP/rppMQywBg1GloiWJisYkJARONUKg3Y7ZGGdsfjkeZzsBfw7rSxMR1rg2VVSla8tCgEWOMnHwIQQSmw/kEY2ZQIVUu41xQ0sJqQHiqsBmUJE7hPDqgAtJErQ1uZAcMcwmhUN1iURj5o7QglGJ6dw/6RROffe57h1VwBA24HCGGFpYiYTgrKyTuXTAWQAE4+1YDVYMkl6D9Ivy3/x9v3Psz28bhd31zX/utwcULh+367/yWOrofJ0IIXjooYdobW1FkiRuv/12HA7HNz0snW8h8XicxsbGPoJ5c3Pz53fuwOFw9BHMU1JSsFr7fsfX0dHR0dHR0dHR+S6jZ4zr6Oh8Zzll2BDmDR6EqqrMeuxfvFdUDECi3cb6H17/hSzqFr64ntqKZowmA/GYQn11M+FQjH07DnPNaQ/y7Id34Er4z2fzL3l2BQ9c8xiTTh7Lb9+987/aTq98fw3vv7SemaeOZeSk/M/v8AX5x8J1vL+hiHfX7GHm6IE4bf95nUclrp0zQm1k39ad7NwQ4dRLj8Pl+fzX+PD+KiqLa5i8YNxXMsEhFImxoc7H8AHpyO3tvLN7H9PychmWmtJrPW+ig3XL9vL3+xYya8ForrnjlK5lqhAU+xoBmDo+j3njBrNtXQm/vvFZAO59/CqGTsnhxs2P0RwN8vCEaxno7GuTPnrSQEZPGtin3RExYZFNRJUYG5/fjdEP77+4nhvvPptzbj2Vc2499XP302A08Mi7t7J0TREfbCzGszuVSSP7t4TvicVgIhSv4dzxQVpDBRSmZZIet7GlqJjjTvgrH1f8kjGpD5Lu0OzxvXatrujyZePwNSlUVKQy6lrISgVFqDx24H3Kg3XUhVsY6EznqSm3cMvD/2bbqOWUmzoE9jUp3PrBByQnD+SUWQ3s3z2UlSvewmiQOXHeOYwYkEc8ZESYwGZcSzgeZ1CS1jfd5cQsm5jr2d8ligNYajwkkoe9LpHy7Y3cs+NS7rn5eeQe+qkswUlpRdy38zROzNhLkT+DkrZMKmtSuWTsWnxhBysac2l7aBbF26tYl/M6Ty+/k7ASpVZ5kNmO1q5YQcVISBgZaqtnuX8oueYiDJJKe9yMyRAhTndWeBwIqWZCqo1sSysSmlW6AS2D3NRx3ZIlCQMSAq1Wa4fLep8a5HGM+IUmjAtkQkDoU9M75bDK2vIOK1NDh1W8JBEI2UCViMZMbCgbCGYBKki2eLcXvEyX/7vdGGFITj3NEQdFFemocZn0pBaS3G3Iwk5IbQMkAkE7++u9xOtl1CorwSwDFh/kbYXQ5S4ORDuOnQp01Bff1VTLGW8/171duvczFjMio00wWN+4mUsHnMVvdj3I7kAxMjLPTfkLFoNeo/a7ioKMwjc/OULhOz+vWkfnqJAkiZEjR7JmzRqEEOzdu5dJk45uAp/Odwuj0UhaWhppaWm92qPRKD6fr49g7vf7+8QIBoOUlZVRVlbWq93tdvcrmJtMpj4xdHR0dHR0dHR0dL4L6MK4jo7Od5aYovDomvWEozFaQ+GudtN/IFIufHkD0Wi8S+QIh2JIkoQQgvZghDZ/GFeCHSWuULK9nPyROZit5mPezrqFm1EVlY3vbyUWiR1zjCcXbWDplmJ+fP4sphTmHvP2/1NUpY6g70IC7WHu/eupVC5pZfX7O3hp491f2TbHDMzk/Q1FGPxR3n1yFZf8cP5/HNPivB4ARc3jp5cuJB5TqKtq4ke/O7/f9ZVYCdHgM8Ris7h+/DM0j80k8aMNPPh/FzAkO6XfPl+UR99Zw0sfb8NsMlA4KZNPqg5jViW23X4TZkvvG2GLXt6Ar7aVN5/+hKtvO6nL7twgyzx27hmsKCnjqslaLWuTufurw6aPi2C4gYNtdQCs9+3vI4z7qhrZt6GEyaeM5WC0ge3NBzk1ayL1e+r40XF3YfMamX7RTDYfKALgsltP7GW3fjQYjAYeeWUVja3t1Pj8vPiHK3l31z6eWb+Va6ZNZMGIoX36qCLGuqrziKnNfO/4KxiWdDoAs6a6WF1ZD4A/srtLGO/ktkvP5XdPOBg1OJOM5AQA9rUe5uWKVV3rlAXrKGqewbYDAcSBiRhTYoiAESUsI6QwvoYsKl89H7U+ponFisr7Syp5n8quGDYjPH/PxYwZkAlAXqKXP42fzbrli5k3fweRaAalpZeyfD20pUZQ7VWYcgw0Nydz2T9u4dzxazl36uaueBO8FTww9jWEDPPS93HjpsuYUxBncvIhAEamjuJQVjLF26tITk+guq2Z9+vWcjCUwCxXtzV6TIDToJmmz3MXsbItnVHWVjLNQVQh0yLUrnWNAiqiSVgkrZamIiQWN48m29LMGPthahTwSCpmWUUCzJJMHNEtuXXEiQhoUrVzViD3ql3eiRCajn7hwC28VTZZe9JRkxxFQjIJECpS3ICwg2RAU+j71fcECa4wRoOCyaAwNLsWkzGG3ayJ8ooaJRw3kmh20aDEGZTXgJoLTUtySdmhIMUEwijz1MkXMP+Fp7WxSSrYla5v3qqsQj8Cpxo1o7QnYXQ0MilxDPfueZjdAW0CjorKi4fe4eqBF/Q3aB0dHR2dbyGdwjhoduq6MK5zLJjNZjIzM8nMzOzVHg6HewnlnY+DwWCfGH6/H7/fT0lJSa92r9fbSyhPTU0lOTlZdyTT0dHR0dHR0dH5n0cXxnV0dP4r6awv/J/w3ObtPLZ2IwB5Xg8Os4nLJ4xlen7eZ8YWQrD+4yIsVhPjpxWwd/shinZWctI5E7jqR/N55J53CIWimMxGYtE4QgimzxvOnNPGkpGjZX/++ft/56PnVzFm9gj+vPzufrdz9yUPse6dLaTnJ/Ps7r/0WnbpXecSi8SZsmDcUYviwdYgvznvASLhKJ8MT0IA//5oS7/CeNAf4qM3N1M4Po8ho3OOKn5bLMLDu1eTanPy/aFTjngMK4qqSPCuRlIO4rRA0ojDlG5PY3Bh9lFt54vgbwpgO9BA+upa1LBCXe7n2xK+/PE2nlmymWtOmcx5M/uvCSnJbqzu/yMeU/AkFeGrbSU1y3vEmOHWX6BE1yJ4k7h1EpHRmdREo7y2agd3XXLCF96//nDatPPCajIRqm0DQPijHNhVyYiJvTPzz7x8GrWVTcxaMKaPKD1zYB4zB+Z1PR85IY9xk/PZtrqYd55exUW3zOW0zEk0RQOclDG+V18hBDdP+RmN1c2cdO1cFl9QRViNUdpWy9Td6cQiMaiNMXtyISMG5TNiUh6jJg/qsy+heIwbP3qTQDDK3+afRbq7b0mC2ZOH8MbS7cydPBiAB5Z9Qq2/jb8sX9OvMA4CITSBVxWRrla7KYfhSb+hLVZMXsLVfXpNHTWAiekZ+Mr81Na1kpnhIc+ZSrYtibpQCzE0EdholBmcnUJxZQPxBu21GJSZSIMrSlW4jQyvG2O4nSZ/qJ+xgRSHFx5dQd5dZ5HQ4UBQvLWSRe/M4MX35qDYDZrQ64b4CG0yTlQWoJoBI6/sP55Eh5E5o9ZreyuB3RijXTVRE0wg1mimuMkEHS9tpjXMB6caWXDGKexqaOXCFb/H7IhhFjnUJe4h3dSGEGA1KKgdgq4qSRTY6mmMu8kk2CuLVKuvLVFgrUeVZAKqZg0/37MHs6xSGfGysSmfGzI3E6f7C6lEt1YdUSGKjF8x0Onj3imAC9Fhud5pvy5pbWpHZ5OIk5TURnPAgdGiMjy/GkWR2bk3B3PcTMwYQxGiIzNdAkloOesdASNRA5GojMOi4LZFOrYtetRPl2mKteGwdWxfhitvnUD99igHSxr44Y9OZHttDUgCiyVOanIzycl+2sNmKuoTaY9YwaloOxGXuX3cDGQhc9HI0STZbLTFg7hMTi5Y213HHqAscLjf80Xnu4EqZFTxzWeMq3olLh2doyYtLY3k5GR8Ph8VFRW0traSkJDwTQ9L578cq9VKbm4uubm9f8cFg8E+gnl9fT2RSKRPjObmZpqbm9m/f39XmyzLJCYm9hHMExMTkeVv/vNHR0dHR0dHR0dH58tAF8Z1dHT+63hq4xZ+v2wVGXXw5HUXMHh4FkIIDjY1k+V2IxC8tXsvhampjMvKQBWCpzZuwR+O8INpU2iPxWgItvGXVVr2hixJlDe3AJDudpHucn7m9td/vI/f/PAFAO57/Cp+/cPniccUag43ctNdZzDn1DFEwlqm+N/vX0g0EufmX5zRq4ZzdUktADUH67raIqEIZ6Zdh1B633CuLfNx3cSf8diG+zhcUkfOoFQKxuVz78I7j+m4bV22m23LdgEwadZplIRDnDV9ZL/r/usPi1j80nosVhOvbrunT4Zxf7xcuo1/FW8AYGJKDmOTsvqss/ylT7j/0odIyjTz4CfHs6OsmvUlg7jnwbOYMWnwMe1PTxQRxyAd+SPt/sseZvMH20kdnMWCWxdw6qXTPjfmM0s2E7NX8WHTs4xqPQErjWS5zsYo9z0/jCYDf198OzWHGhk86sgCv8E0FiW6FqN5NI8u+TW/eWMFtbEoJ088ulrdbdFSdjXcicM0kFEpv0OSjpzRcd2pUxlXkMXAjCQCdX7uuPM5BjhcFIzsO75JM4cyaWZf8VgIwZuV66hqb+TqgSfgMmkq4AlnTWDHmgOMmJCP22XnZyPO63cMQgjiMU0ojodjJJgdhMMtJFqczLrgOCqLqzFZTEw+O4vmyHrSHeP6jfPkng2sai4F4L5VH/PIaWf0WeeOK+dwwVkNmAw+hBBcMnEM//xkIxdNGN1vTFkyMyXzRVoiO0h3nNJrWY67/4x/gKL9NaxZdwCA5Sv2cdnFx+E02njxuP/jgrV/oDasTbqoCjXy/J0X88eXP+aNT3aRm+LhwVtO4wernqGpJkwwaCfTZuHmS2bx4Zp9bNh1qM+2VlVVs+qmx7jjyrmMLcxml78Z05AEBiU6KaptxD9IRhjA2CIR9wrkcMcNS0VgtAsWhuaxZa+LFHuA7GArpvqBLNyeSa3ZipQiUyeFu7KvSwPbWFnrZYPhMCmNUeZO3stoTyUxRWZDWx6ZZj+jbIdBkhFIPeycVfLNTagCop8Sy+JIyJJmu9wppseETI4cIdPeQIGhDaOsdqwLQhWowM6GLA4FEnl422yiQTNpGVbm5i/htAE7kCS6Jt0INJVcoAniB1pTeKN+IrnpPpymCG5XhLSEAG0BJwZZYJAVHAkhWttl5qYOIkm28XrlLvLT6/G6giDBwZpUZFllYLqvu855h6+7SVK0x4rcMf0BlHYZya0iAO9AD1edOLlr/zPDXkaPqsBgjCMJzR7d5YgyPK+Wbe25KB1i/11TZ3HtiCm9jp3LpF1npnjHsL55e1d7UA0RVWP8o+TftCshflBwBW7TZ39m6ejo6Oh8c3Taqa9YsQKAPXv2MG3a538P1dH5IjgcDvLz88nP754EK4QgEAj0sWNvaGggFov16q+qKj6fD5/Px969e7vaDQYDycnJXYJ5p2ju8Xj+q0t66ejo6Ojo6OjofDfRhXEdHZ1vDZUtraQ4Hby9ey+v79jD1ZPH47HZGJ2Rzm8/+piPDpRy38nzeWfHXoQENUkqH76xhcHDs3jkk/U8smY9aUYbuZKDTTEfJllm3S3Xs7e2nj98vBqAt59cQm1hAkKWMHVkxqYcCNCSYycnM5mR6WmfNUQApB5Fb602Mw6XldamIJ4kTZyQJAlrR7bubb85p98YP33uhyx5dgXHnzu1q+3m43/TRxTv5NC+Kh644yU+fmcbU+eP4Nf/7JvJ+nmMnTOC4ccNIRKKcu+Np5GclXTEdd0dGap2pxWJVmKhdRgtM5Hk7gyXhpY29lXUc9zwAZiMBkYmZmCQZFwmC9kODwCKUHjp0KM0RGu4NPeHXRMCGqujqPGHmTDexatjBWnevhnAR8uLhx5lW8snnJ55OTNT+q9J7fJEkWWB3SJz6S0n9rvOp7nmlMl8Yn4Asy3EwcafIEsqwVg5w5N/2e/6DpeNnCHpn3lzyOL+KWbHpUiGDIYkG3lhQt+62z158PmP2byngju/P59RgzOpansbf3QP/uge8j3fw2XuLxNawyDLTC3Uam2nepy89daxTaQAzRL8L0XvAOA02vjeIC2rfe5Z45lxymhMZsNn7q8syzy05l52f1JE9tyhfLx0MTmeDK7KOwGTycRV91wEwMrD8wnHq1i+4wXaq37CDy46vlecsamZsAdQYXpO//XDa4MfUNR8DwBF+yJ8b8o5XD9jcr/rduI0F+A0FxzVsehk6JB0JowbQIOvjVnHD0UIgdKRSdwS1TLzUy0JbGk6QL4zld3l2jnfHonxTt0a/PYaEgeBeMfG4UbBbx/7QMuQ7u8wdhzbPz+7HKNBJqaoRF1gSXAyemAuqxorQQJPix15awRiYGsMEfOEqTvLSnk8QnlLAcYdJjKWxshJT+Tun8xgYcW9lJjdTEws78q4ViQZCTgtsZJLp7/RmaANwBBRz7ON09nZlk6quY3htsMkmyMIARZJxSFrQ7UiEekhjhvQhO54HOqDiYSCVjZHBnDbIO167DRGWVJaSHuLFYc7gYn5q1hZNow/7psPNsAFDm8Qb+ZhtsTzOFybxMmuHQxyNXXUMZe6jpssQUk0A6tTkImfQKjDSUMykmR2AtqEBZOstX9cVQoSDEhrJNXTbTuan+bTRPSOuP3ZtkuS6Eprd9ekE3b6UOQYT9c8w5M71nJhwRwkYFndOgzOjhvOUs/+8MSCU1laUYUv3M7ZA0cSiyls23GIoYPTSUiwd617Sd7ZrG3e3jUNYaynkJX161nt09xO1vo2c3LG7H5OHh0dHR2dbwujRo3qEsZ3796tC+M6XyuSJOF2u3G73RQUdH/vFULQ0tLSRzD3+XwoitIrhqIo1NXVUVdX16vdZDL1qV+empqK0+nUBXMdHR0dHR0dHZ1vLbowrqOj863gmU1buW/ZSjLdLqr9AQB+uuhDwnGFsZnpbK/WxKW39+zlpyfM5M7n38NVGmb+7eMIt0dYsmIbmKAu0k6kuBUKzQgEpzzxHD+bOxOH2UwoGqUh3YLoUHxiikrq0krMa6tIsZswxiT+79GdBJqD/P7DXzCgh7V3LBrj+8N/TN1hHwUnTAAZLFYTBcMz+ccbt1BV4WP42P5rdW9cvI3fXvAAhVMGc/+Hv8BgMJA5KL1LFOzEV+XreiyMEuGBViyHwsgRTYHZulKrwVy+v+YLHWOX18lDa+47qnUv//HJjJsxhNyCNCL+S1Fj2zGYj8OR/AoAiqpy6X0v4PO3c9GcsfzkojlMTR3AxjNvxWIwYjNqGea1oQq2t64FYHPzKs6+7TRsBdtJ9AwlqyDjC+3Hp9nWvA4hCTY1rO1XGI+0PcXNf36aq39VgNX75FHHPW/mGELl49jZuhZJsgLtWGQroebbkQwpWFz/15WxHVdUvvfLFyipaOCem0/lhKn9C9aSJCEZe1vTx9V22sIV3Pvn12gx13DtnBuYMmU0LYF2XvlgKwBvLN2u1bR2nEJd8AMcpoE4TPn9beJzEUKwo7iK1EQXmSmfbeWZbHGTaHbSHA0yzN0709xsMRJTWqnwv4hNLkQNjyU7zdMnRlZBBlkFGTy6Zj0HG/zQAEV1PsZnd9dKNEqaENjYrPLawo1cePJ4kjyOruXHZwxk7Zk3o6qCTJc25pZQGFUIEu1aFrvFkAJIqAr847EtFE9L5oZr5/S7/4oQGI/CDjIQC1EcqGS0J59ITKUlFCLbk8Cff6+9dxVV5aJ/v8rOmlr+euYCHhh/DWsb9vFm5Vo+qN3KwWAdU4+byO7NTYwekoHLqLlGpFo81DeqGCcGwCCIb3ZrdbA77MD7I66oRDwQSpfZK5rJq491fYs7feIILr1yFO+8tpHKojrWRg529ZNCkLY6hkGVSM9IIG5+gQUjNyMENMe0Y9cWt5CR8APmPL+PeY8u7RLFO0VhCUg1+jnRvZeWuIXtgVw2NOSTLfu5cvAaoqhYkDBIEmYhiAhQhCZWS0JgM0j8buG52NJDxKvNbA5mkJa3lO2BbM7IK6HK50E1NbB8/3geqJymieIAMgwbWIPRIBACIphxWjShub8a4xtq8nEmRgE4WJ+M2agSDFkwtEnk59lQ42Yem3k5j+7YwMqag/0eb1kSyFLfF0EIiZiQkSSIqzIq4JAdPHjJD7luy10AGAwgpxfzq+UKIGG1hSkcpR2HnhEvz72AuVmjmZs1GlUVfP+Gpyg/1H39d7lszJtTyPTjChg5IovpSRPZ1bKPyYljWVSzHAUVm2zFZrQyxjO8/xNG538SBbmHW8M3OQ7dSl1H51hITEwkMzOT6upqampq8Pl8JCcnf9PD0vmOI0kSXq8Xr9fL0KHdv11UVaWpqamPYN7Y2Ij41BenWCxGVVUVVVVVvdqtVmu/grndbkdHR0dHR0dHR0fnm0YXxnV0dL4V7K1rAOgSxQEcZjPheIjmUJgfz5zORwdKuGbyRCbmZLHqVzd1rffWw+8T/Msa3NOz8FiTMdYrXHvJVP60bT0NwSCry8p584yz+MG0u6ifmExgpmbxbZAkEg8FKfnBaOIpNhIXlhFeV6HFfOh9bv3HdV3bePVP71JTVg/AgW0HkZO8XQmA3mQn3uQjW9mueWsD4WCEbct301zXSnJmIu1tIV7947vkFmYz/LjBWOwW/rL8l9wwURNY6r6XTttUN5aSEDm/08bUXFKJZLNRv6eVUFsYWw9r9qNlT3Mtr5Ru48y8UUxI/gzLb4PMmOO0jIK2ek2IagpvoKLxfgqTfqaJVB0W2aFItwWfx2LrFSfNmsMkdx5jDR+SbFpDXawV59Q3iWEgHD8JqzH1mPehJ81tIXYvzyOtwIctOgz60YiU6CYAHO4yXKm2vit8BpcNuJVA/GrMRGmPl+OIbyUSeAQAo2UuRouWkdzaFqL4kHZ+bN5TcURh/NMIobKu6nza42Xkn59KWTSNJWWvM4XRJDhtLJgxnM17KzhtlmZ577YMZ2bO0s+MGYk3sKXuekBmQvo/sRh6OwO8tWwnf3zjA4yDo/ztkisYk947A7sxtB5VREm2HY/bZOe1GT+lPR7hiTXbeLh6B/ecNI8hKdrN3JKWv1Hh/zeqKvHH+y/hBxcs4PwTe9uh76yq5doX3yLV7aAwNYXsBDcj0nu/7pMynmVj0Yd89EE108fl4XX3vWmW7nB3PS7xNXLW0y+gAq9fcRHD01JJtE1iUspb3Pyjl2iotqKoap8YqhBc/uLrbKmq5oHTTiI93UC6NZEse//uCTdvfpRD7XWckDqB9z7209jezl/OOIXTh2vW9y2hMFurqgFYWVrObQMms7phDyFFE2cHuzJYvrecsIiz0bqazWUqV+SdwPk5szj53QcwjdYylUWjCaXEzrjBWWw/UEVuRiIV1U1aHd8u23DoWVq4xhxiXEY6F00Yw5wBA3jm8ZXYvBZ2nRUl1OQie22MsF/CUSmBKiFn29nmb2JBLBOjFQIRK89vncXYtAqumvhrshMm8F76AWpiCWRa/bTGrdRFnQyx+zgUTcIjt2OWFVLN7ZyYVMQsTzEmWUWWIKQKzLJ2g9UuSWzypTA40YdRCBQkVGDG8dvZJ7IYNqqeIcnbWXcgB092BKcxxtD0BiIoDEyq4lnfGHzR7utppwCuqhKKqtUt/zQRVeZve+exvzYTqV4FEwhVJmwAYqDGjRTvz0aOSZTn+xnryqAl1s7OxloO+xJpj5gxGjQx22KOkZwQBFXg8zuwmWIYDSqxuMBpl5A7xySgLWwkyeLhnKyTeLPqA20sYSPJKa0kpfgRgi4Js3PUDoONM7K7J2xs2VbWSxQHCARCfCItYme0Ffmfg3nilp8DcLi9muUNWgmQkBrmgVG/JMWS2O+5+2mEEKyuOITNaGJSlvYZuKmqkqvffpP2eByv1cq/zzmfwpSUo4qno6Ojo3NsjBw5kupq7TvD7t27mT179jc7IB2dIyDLMsnJySQnJzN8ePePq3g8TmNjYx/BvLm5uU+McDhMRUUFFRUVvdodDkcfwTwlJQWr9dh/1+ro6Ojo6Ojo6Oh8UXRhXEdH5xuhuMHHE+s3IUkSswflc/P0Kaw8WEZTe4hMt4urJo3npCEFvF9UzAmDB5GX6OXGaf3bIg8cMwBzW5ycNXU8uvl23Clu3G4bPmOUj3YWsfm2N/k//+sojSESlx5GnZJJ0CLxwxlTOfuKy5n9zHMAuCZkk16rUFvu44NnVnD9A1dgc2g/0h09sldFfSNqKEIwHGHj4m1EMTBwWAb5hZn9ju+cW0+lpqyekdOHkZypiRg/nnU3pdvLwWEDITDGYzy976+k5iZRX9GImqhlXCcMS2bgSMHB3YdBURBtbcSBukMN5I3I6Xd7ndS0LWZ/0+/JdJ7NkMRbAfjpxvfY11LHxzUlrD79h0f1WtmTnmFfzVnUxlowqEsoTPoZRoPM0z+5kO2l1Zw4ccgR+xplI2cmOokGmyD6LpWtCWAFSTIif0ZN8KMlwW4lm7HsWFLNFdcc12tZU2s7Dzy7jEGZM7longOTdTaSZDmm+JIk4TZ5ALCaUlGiFiJtNiTJi2zqromelODgjivnsvNANVec/tn23T0RxAnHtQwLZ0fV4gmF47q2/asbTzli3yPhC60lENXcBZpC68lw9s6i9wfDyLP8iKQ49x14hVfTf9K1rDm8jc213wNgXNrfSLXPwWow0xyM8OTGLQA8v2U7vz1Zs1S3d2S/B4NWYjEjpYd7C3wAy/aX0hIK0xIK8+a1lzAio2+5ArPBw4wRF7L470e3j+VNLUQ6LB5LG5sYnqYJ7YnOIfz+1zezv6SWWTP6Tk4IRCLsaC0hqbCZP1U/CR3mC3NSx/CrkZf1sXz0xzThujGiieKgXbs6SXLY+emc49lSWc21UyfyXvVGKtq1ST4GZKYmDmXMVCv3L/8YyaAJ9Sv3HuBvD+zDaLRgjEggg6g14jaYOG/6SH593cn88m+LUAFF1kTluF0inIm2rqSiJimE2xW2V9Zy76nzWfbBbha9s41gHtSdJoEZCuwO2pbVoyQ7kWWBXyiIkMLdfzfhdF5MxsgaRmZW8t7OiRwuLiOluozKNoWyg5PZlJLHRFsl5ySXAZBjb2RRyMn2tiwKbTVYDCp2WcWAwCKBTZJ61P2GFz84kdPmrmZMWlVHTXDBD/LWY5UEQdWI0xDn5BF7KA8mcjjspKImg/y0Q+xoyKIx4uhlO77nUCYeRzsNrU7iqpG6Kje/GL2IJGe3/XlbzMqGukEQNYBqREgCnHFtMNHOuusgJPjp0g9BgvHp6YBACAmf36UtlEGWVNojFtojZszGOGkZDciSqmWL9xiYDJySNoemcBsp0jDmObw8vG4Vw0dUMWBgQ9d6hpiRuCne1XNS4hjtOAnB629uZuuO8n7OcHCNa0UyCtozDtPWFsbptJJjz2SIM5/iNu11aYn6j0oYf/9AMb9a/hFN4TAAr59/EVuqq7h/zequdZrDYd7dX6QL4zo6OjpfESNGjGDJkiWAJozPmjVLt5rW+a/CaDSSlpZGWlrv7/LRaBSfz9dHMPf7/X1iBINBysrKKCsr69Xudrv7FcxNJtNXuk86Ojo6Ojo6OjrfTXRhXEdH52tn4d4ifvzu4q7nb+3ex4JhQ8jxJNDUHiLP6+XqSeMBuGbKxM+NN2bWCF6pfhyz1Yzd1Z0R/PN5s+CpHXx8sJXOn+WSCqcXS2yZk8Qzm7cxc2A+j55zOpsOV3LNlIksS1/C0798BZfXidFkoLSomj/e+Rr5Q9NJzknCd7gRBAi/Vkv4d9c/BU4nskEiIdaO02vnz8t+jTuxO+NxwPAc/rj0VwBsXVtC0c7DtAfD4LRjyNXE9PjhGnxVTTg9DuorGhm9NM7M8+YwM2Ugt17xE03fyXYjB2OYmkOk5n6+/WKF/0UiSgPlrU93CeNjEjPZ11LH6MT+Rfz+kA1ppCU9QLj1eXLcF3S1D8xMYmDmkeuUd2K0nUo09A7bDtr5vxc8fO+Mm7l87gLMhqPLdPzMsckST/z4fBRVxfApa+z3Vu5i2YZilgETR9/G6CFZ//H2DOYxuNJ3AYYuG/VOzjtxHOd9Klu6k1g0jsnc9yNXlsyMT/8HDe3rUKOTuCw9hYEJ/dfQPlpS7LNItE4BJJJtM/osv2TBBFas2MgBKhng7C2CST0seiW69y/V6WDmwDx2VteyYFj3RIhc92Uk2iazdVeI809q4XBugO+teIX7Jy8gza7Vjb9g/Ch2V9eRl+RlWNqXI7rNKcjn9lnTUVTByUMH91qWm5tEbm7/52WC1crI4UZqld7Z5B/X7+Ca0Clk2Xu/r/4y/gY2Ne1nfvp45tiqKG7wce2nrknXTJnINVO0xxFjIa9WfILVYMYXaeWXu1/g1iFn8MC8Bdz00gsYEmOEwy6EaEYSZjKXF1Cztwl7VKLV0saNa5fAWsAEpkSIu2WEWaA6FdS0GHKrEdWsgktF8cCIthzWNpfxkesAItVAVruFcRlZqOZS5g7J49017fiqWxGyRPLsNlInNhCPSZgllQtGrUWSwGaM8tTHTuz1CvEBMt6Xkgl+z885OWVd2doScHryISqCLva3JTE8oYEMI8iS1GGpLCGEQJIkhGqgujyJR565gNOnruPMWeuRJbBIAkkCpyHedezyHE0oqsStK7+HqsgICYQrDk4BUcAMoaiZUNRMx2aoDiZxy8Lv8acFz5GZ0ArA5qp8pKARBFisEmFTjK7T16pCwACSJkarVgWMsLmxCsnVsXOdp4MAVcg0tGruBFE5jlmOI0mgxgUqRi1Ox0FZ2vIeH2x9m/pWJzXNbjIz4/Api2nF1L2/Z2aeyETvaH689R5qwg0E21TkkQbM7W6iu7T3i8lkQFFUfO+l4Rrjp3VlKvZzuyf03D3yNt6rXo7H5KLAeXTXioc3rOsSxQHOe+3lftebkHH0nws63wwqoPTjmvBNjENHR+fYcLvd5OXlUV5eTmNjI7W1tWRkfDllhXR0vknMZjOZmZlkZvb+HhEOh7tE8p6CeTAY7BPD7/fj9/spKSnp1e71evsI5snJyRgMhj4xdHR0dHR0dHR0dI4WXRjX0dH52ohG4nzw3nYeqdnZZ1lzKMST55/NukMVzMg7dmHQc4RayRf+5AxaG/yMmD6UmtI6gv52Rl43g5fXfQLAn1d8wrMXn8uJQzXb8LQBmnDXUt/Kz075HQUnTuRQaT2HSuv50b0X8/7fPqBoY/cPdjWuVfv058uUzUjAvbyJq4fdyuk3zOeqey6ksqGF+59bSnB/HWeNG8I//74SoULukHwSvX5a2yIAGHMz2LG2GH9jGyAI7m/k+sJphIKamBEenETblFxQBdNqIhiM2s2AcHuE5/7yIXanhYt/OB+DoVvYzE+4muLmJjKdZ3a13TvxFG4onEaW47NrS3+aZNs0km3T2Fx8mJ1txcwdOxhZPrqb80bzeKxJ6/nlH/9JXI3S2lKIw5R3TNv/PD4tigNMGjkA+zsbSUywk5/12QL+H5/6iGUb9vPT781n7pQjZ8ADSJK56/Gifft5adtOrpkykdmD+q/5/ff7FrLwhXVcfMMcrrhlfp/lSbapPLdJ5e9rN2CQJBQhuHn6FH50/LTPHMeR+Ki2hPv3pGNvSuDR42MkeUMsLipmRv4ABng9mE1Gnph3IwcCNRS4et+Q9VjHMDnjBVQRJck2pavdIMv864Kz+zkWEi7zUGZNAEfuYS746HkA3ijbxQ9GaOPP8rj512XnfKF9ORIGWeaG444+M78n1xXO5/7dLxOjW7A0SDJpVm+fdfOd6eQ70wE4Y8Swz409zJ3N4tm/4a/73+b1w2sBKAnUct6IGTx99dW8U72XPS21DLOm0Dh4P7WWMOn2DCo2RmmZYqWnEh1LkRCyQMmMgk0FCVRvHKnFiEAlxWLjpIm1fNSwgm3tOcy4cTjz0lRWxd9BBlaxG+P0ZGwVCgkLgriGh7vC55kbMElxFAxkJzZgr1MI5hhBEhhPbGJAQkufGt4AOfYAVkXLfpY7ao8bkRCAguYvvq8oA7lOEBmikJtRj1VSsUiCsAp2mV7Z4ELAsrJCVMkAMszIKea2qcspbU7hZ5+ciRRTCFtkMAqIS9rxiQAC7nz/Mm6a+j4eVzuLD47FKMdJTvKTkBKkwuelPdIhJssgJIFkklBlFTrfvsbPrpFsNMRx2UPEFBmzUQWkHrbuYJBB6TiHklxBEpwhbXmHz3qnC34PN3yW1K7ineolgEACrINBoGDMaKRxlwvVBNG4giQgsNlLeEcy/3z0yl7XWpNs4uzskz5z7Dtb9vFe9VKmJU9kduo0Lhs9lvtWrehyWeiPwqRkZuf3fw3T0dHR0flyGDlyJOXl5QDs2rVLF8Z1/qexWq3k5OSQk9Pb5SwYDPYSyjv/RSKRPjGam5tpbm5m//79XW2SJJGUlNQrszw1NZXExETkfn4T6ujo6Ojo6Ojo6HwaXRjX0dH52njtxXU888RKKo+3glcTdiXg5KGD+eX8OXhsVjwH/Lz18juc/aMFuLxHrtt9tAwak8cflvwCgEN7D3PH3N9Qekcd0rnZCKBu0W52DxhB7rAsnB4HobburLoDW8u4/uFr2LhqP4OGZXDixdMJ1rcQjUSIhOLUlNahtvqR4nF812URzbfRlGPFdc0eXvnjO1x1z4W8tHwb64orQYKKn7+AJScbZKg42NCdWChr4slzv30LkyXK1e8V48lSaI3sIsExih89cjUvfLiZfUB+qo/pQ1ex4lUnJ135Q5a/vZW3nloFwPAJ+Yw/vlvUTXXMJdUxt9fxkCSJHKfnCx3L4soGrnvwdQDuufIkTpvaT0HvI2A2GXnuJxez51Ad88YN/vwOXwKFA9NZ+sRNyD1snvsjrqi8tWwHAli4cvfnCuOdNNb7+b9XFxGzSNT72/oI40IIdrSUs3KTNhFkzdLd/QrjQFc9bEVoJ8XqskOfK4zXh1v4qHYHx6eMIMfRnen87uHNqJJKILGZ19fspFz2s7ykjAyXk1U3XQuASTYyPKF/K36vtf+s989jmCeVQk8qdaE2ZmcO+kIxvg7mpo2lNFDNC4eWA+A1OnlgwvUY5S8v82RWyqguYbwtrlmwp6Y5eWL1RgAynTbMlhAAhwr8NBnd9FGiJcAkwK6dG5ICUpMRc8DC/x03j0n5Fv5x8H48Njgu5yBSvIQV7QK5e94GrgvqcX8qrIzKBHu5ZnEuFLz2EBnTq2ho8yA7FQw2wa72jF6CbteQJEh1hwgoRhDxHu8rgREIxlUGFx7mtUceBqDS78Qjq0gSmJExSzJRoRLtyDcNxYzct3oBIDhl8HbumPYRZgnSHAH+fuLTZLhb+d3602luOw7JILGv1YekSFitUQyywpPb5xOtsjJsVhPZieVd48zw+CmtS+k+jhIISxwsHQK7KuG1B0lNayMYMdPit2I2KTQHHdpOqjAktx6bJUZUMXRls0t0CN0yqKL7Eq72EM17ogrtn6Hj2IXUMJ2ieM9sfEUWyDNDVGSacKlRUnYJ1CoLTzx4NQOyj81loT0e4g9FjxIXCjta92KSTVw2ehKXjhrNsEcfIqb2yPXt2IFzhhfyx/knI+uWvjo6OjpfKYWFhbz//vuoqsqePXuYP3++bqeu853D4XCQn59Pfo8JeUIIAoFAn+zyhoYGYrFYr/5CCHw+Hz6fj71793a1GwwGkpOTuwTzTtHc4/Ho7zMdHR0dHR0dHZ1e6MK4jo7OV0IsGiMUCONOcnW1JXjtAKSXqYhcD8kuB7fPmo4/HCEcj9Nc38qvz/4jQhXUVbdwy8NXY7F+OXXFdqzcw4v3vUlLfSvUtzKoOUAAhfjBALe9+CuQJGxOKy9X/QN/Y4Dda4o47fr5ZOZ4eWrRjwGIRmI8/n/PIQQcd8ZEHlz5G2oO1pGak8yTe9bxXmgdNw7bTMujcTwt1wMwY9RAXvt4B6I+QF5OMo5hmRzYV02XLzCgNrciWgMYJYm0YRG8eZq9nK99DVIwnzEzCxk7dwTXnP8n7vr9YgoK/TTXPwr8kMGjcjCZjVhsJnIGpX4px+pImIwGZElCFQKz6dhFxLz0RPLS/3P79GOhv0zyT2M0yNxwwQyWbSjmslM/37q/k50bD+Ioa6dliI2xZi+HKnys31DKCXNHkJTk5N2qjfxx35uYbjJw3KJBXHDBLACiahyjJCNL3WP74YypDE5JojkU5L369UzIsqEIFYN05PHfvesldrSU807lBl6Z0V0n/NpBJ3D7in8Tq7Qw7+RBvFSymURPALtBy4huirRTH2pjmKf3+aIKwY9ee4+d1bU8eO6pjM85Nltlp8nColOuOaY+X4SIEuPDmi0Mc2czxJ39hWLsbi3vepxiTWCg88vN2BrjzcdrctIca6Mtrk22SbTYGZOUwe6mOlJVDxX7/Rg9MQI1DmSzihrreE/1TDWOSEjNBiwWiffPvxaXwYpRlnBbrUTVCKlyFvVqFVaTAn0ulf2bHatIVPsSyExuRUXGZFRIKmglFpGw17loRxAUJppjJhLNsX5juAzdNbMFQqu9LYHVIKMiUAETEsMSQsSRkJAwdPSQe6SMW4xxHjz9adzGGLG4GZlusXmYt4V2AePTDvFxdAb7ahowGFSczjCzj9uNJAnCqpFwxERjyAFAPK4J1E01doijKdJRTejGolm5C1ngkGMMGqTVinc5w6Ql+pEkqG2IUVWfCKqETTYDMWSDpAnfnSOTtP9Ex95r/6t0pKajICGEJn+Lzmu8EJil7tfj0/dmZQmck32MsWuTCCgE4hI/rrib89UFjPYMoz0eYoJ35Ofe2H3y4AvERXdm+IbGbUxPnoQkSWy89gbuXPoh03NzuXjUGBYW78dtsTA3f+BnxtT59qAio/LNZ8N9G8ago/PfiN1uZ9CgQRw4cAC/309FRQUDBvxnJXR0dP4XkCQJt9uN2+2moKCgq10IQUtLSx/B3OfzoXzKCUdRFOrq6qirq+vVbjKZ+q1f7nK5dMFcR0dHR0dHR+c7ii6M6+jofOlEw1GuHX07NaW13PnvHzH3Yq3O8alnjid/UCopKW5S0zUr798vX8W/Nm7BbbHw7OwFuNITCURh2ZpDFJ3zCA++eANuj/0LjWNrZTV2s4kCr5efnvhblJiC2WoiGo4RP9iMDbTUvw5CbWHuu/ghtizdiVBVNi/ZidFk4KFPfsvg8QMxW0zMvnA6a97dxOwLp+NNTcCbqu3HnVmncm7zQQ62VJB8MkzNLATguOEDWPf3W2hrasORYEdVBX+44UlWv7sVKcHNxCl57FhcRUKKg+lnT8GeYIXq1SQPhIT4SVw16naCre1YnVaUtjDlO+wUFPqpLk9iwFgYPCqblzffjcFo+NImERyJ/PREXvjZJbQGw0wa2n+28Rdh8eq9bNpziKvPmkpOel876/+EBl+AJ55aSf6AZC66YAqvP7Wadcv3cs0dp5A+JAWv3YYkSVx55hSuPHNKr77L63byfvVmLhkwi/GJfTOgSwfXY740wKhqiV+fczJX3/AUDb4Am7eW86f7LyQQ0zKC46j86P5zSLd5+aRhL3fteJ48RxpPTrkZk6x9DO+ureO+j1aSkSPwuQ7zXv1h5jQWMjV56BH3zWPWHBW85m5nhYZQkOc27ab9AyuOSomqgnrc+R9wfK6fmUlDCcQizHvvH7RGw9w/eQEXDhrb1beqxc+SIq1MwMJdRccsjH9d/HLXc6xvLALgmck/ZqDr2EXtW4acxQ2bHkIRKhcMmHXM/T/eUcp76/dy6bxxjC/oK85XtzfSGtMyxTc3l1Dqr+G1xfuoLGnFoBrZRxPghEZB0ugGzM4YbdUOoq0WIj4LGCQkBZw+CXuLkyduPY8Brt7vjZVv7WLjNsjr16Ve0LPSQafWHoob8MdsbKkaQFLyXkBiT1s6tdEEkCCc4UcG7HIEt6l/Ubwznqb5dtuRCwQGSeoSvjv/GoWs1R4XgnYFkLtvYkaBId4mnLLok6FukMAqJAoSqpmf+wv+umsugRQzRkVFlkXHNgQWS5y2ww5kg0yNz0UwaENSQDYqjBhbjssWJRKRaWpzUtnkIdZuRRi17cmS0GqIIwDBwLQGBiWa+N6AS8l0J/CbnU8QMtQCEFehc55Nz4xvueNfXAjMsgmBSkwoPYRzLWV9RtIkPmncRHc99o7j2LGW0aL0PgBGbUyLa1bwWuUiQOLHQ77P9OQJR3xdAFIsvctG9Lzdm2C18tjp3aU1zhpW+JmxdHR0dHS+fEaOHMmBAwcAzU5dF8Z1dI6MJEl4vV68Xi9Dh3b/LlJVlaampj6CeWNjI0KIXjFisRhVVVVUVVX1ardarX0E89TUVOz2L3bvQUdHR0dHR0dH578HXRjX0dH50vE3Bqgu0cSEfeuKmX3hNKQOO+sRo7oF1ec2b+OZTVsBiCkKt1/5JFJCEvmDkjlU6qPqUCMXzfwdz3x4B6kZnmMaw/KSg1z/+jtIwKsXnY8S08QYu9tONNzavWKPH87OJCebth5GSk9FrakHRSEWiVO6/RCDx2sZdWfeeS6rW2M8v3gP086egrWHGJ1mn0dV4A1sxmycpu6Z7gZZJiHZDUDlwQb27a3DlpiATWln0zsbkSSJhho/bz/yodbhXphz0TSaal8k2KqJa/GoJlL96zfDaAtezKnfv6Irvt1pPaZj858wNKf/rHQhBG3+MK4E2zHFaw9HueefixFCszS/56ZTaYtEeW7DNganJjF/WMGR+wYjWKymXnXVP80bb21m6bI9AEydPJCnHvgAgJ+8uogDtgjnjB3OkJEGDgUbuGnwqaRY3V19/7TvLfyxdhojAZ6e+qNecQOxCAtrtHPXnxPG4bLi8dhp8AXwerXs1QsHzMBtspFtTybd5uVwcytr6ouIC5WSthoaIwHSbZrY+UHRAZpDIQKVMVKHG7DIRgY4PttC+dcjL2JD/QFybWldbX/ZsZp3GotgFgx+20DB0BTWhzvOIYIEY1H8US2D+XBbS6942R43F44fxc7qWi4YP/Izt91JabWP5AQnCY4vdg5GYnHMRsMxZWt0TjgAqI+0fCFhfJArk6Vz/3DM/Tq554WltLSFqG5q5aWfXdZrmRCCqzb8FbVHxvai4h28uGofkTT67KvJrr23nZlByAzStsFLxGdHjkpEXQrBlDb++N7H3Hf2yWT0uA4e2FuF72Ayli0xbN4g7gFB5B5J54JunbU5aiOiGmmN2lCBkweXIQmBioTbNJfLcidSG25kecNmANymMGpHzfDOeJKk1da+5Z8Xcec5q8hJq9YyxTuQOgVf7Ul3e4coHkegSEp3prkAmwxhtUPk7mEt3nlVNsmCSSkNSBL8ZvyHPN4wgZq4h0P1iYiYjMMdItRuJFdUk27180rrLE2GjknYE0K47VEArFaVRFMQrydETUUSTXUuWkoSOH68g/JQWa/XQzHV8EjlQ7x63KOcnDuW1ys/7NqPT0846PlKShLEiHU97t5PTQT/xLepq7FLLu98LqDJZ8eTEEayCCY4RrM1tAMJaFeCHcdE9Mq2PxIX5J5BS7SNT3zrsRgsnJF54uf20fnvQREyivjms7W/DWPQ0flvZdiwYRiNRuLxOHv37uWUU07BYPjyyrno6HwXkGWZ5ORkkpOTGT68u7xXPB6nsbGxj2De3NzcJ0Y4HKaiooKKiope7Q6Ho98Mc6v16/vNraOjo6Ojo6Oj89WiC+M6OjpfOslZSdz2+A0Uby5l6nnTOH/afThcVgYNy2D8tAJOv3gqAG/s2osiBFajkfvHz+SRp18F6LKfBVAVwfdOeYDf/+v7jJyQd9RjCEajHbFgz+aSLrXlwp+eSc7QLPZvKqH+cCPluyso3lKKzWHl+keu4a/3LQLAbkxlYKabwqlDmHPxdAAikRj/eGMNddlG6pQgRUXVjB3bneXhtgxndu6KzxzXllVFNDe0ARBuDHUkXYpeAj3AJ+9sJh7VxPzEDA+/evlHlGwrZ+5F03AkHNssdl9rEIvZiMtmOeI6bbEIte0BBrmTvpCl3B9+8ior3t/JhdfO4upbP1+I2bnpIO/8ex2DJ+YxdEAqReX1jC/UJk38a+1m/r56AwDLb/k+WR5NrN5QUclfVq4hwWqhzRek4akiCrKSeeS1mzEewdo9uTCBxhkquUEXmZle5pw2hvUfF9HoNUAY1leXssp2CIA0q4cbB5/S1Xd26kgWVm1kTtroPnGf3LeeooYoDpuJ20adCsCDf7yY4gO1jBieBWh1vKckDifRaueDvcX86PVFJLiMzJ09AkfEyYHSZtJHasL4xeNGs6eunmGpKdw6cwpP79/Mo7s38H+jZ+Ox9D/ZwB+K8uPnPqYtGuXJS85hxqABDPNoYnq2M4E3/n0VbruNG4O/4lD7AaYkzsVqsPP4zPPZ39LAFUN6Z55KksQ9p53wua8dQCDWykubl/LPlw6RYHPw3m++h91q/vyOPXh/4z5++dyHjB2YyRO3no8sH9159/uxV/Ng0dvkO1KZkjTsmLb5efjbw9gtZoyfMdkCYNaogbyzbg+zR3c7CWxqPMC7VRuYkVxIRI1iQEWSBDNTRnJu7hSeS9pPpEMslwwKCYNaMAiV0FYPlkI/BkfHMgRGbe4CweFRhBnWNhzkkiv+wYN/urjrmpM8IRu1uJTDq3Kw1IfxDmom5/vVmtiqStREnKTbA8iSlhndHNUmbPw4rxon5QgBUSRGuYuZmPELWmPBLmG8KebgMd94TnYdZIC5lYO1yQzPrKem2UN5kZff//5y/vHoCpTYxk+Jw93PNEG4+3lYqF1Z0pLUI+NaAulT2eKfFpwBjLLgqpTNRAUEUsxEoya21eUwZ9j+rnUuHbWF7y+8Fv8hN3KtFWUkGAzdl1hJAm9ygIzEJlzeMBWhvtcNgywwE0cRKufnnMTSurW0xto6BHHRZ/2+iB7ifnft8e7iGRqq6H6+/3AqI13D+cOQ+ZisBtJTPLxc8S5vVC7uOh7nZZ/C1KRxn7t1g2TgxsGXc+Pgy49irDo6Ojo6Xzdms5mhQ4eyZ88eQqEQBw8eZPDgwd/0sHR0/icwGo2kpaWRlpbWqz0ajeLz+foI5n6/v0+MYDBIWVkZZWW9J0+63e5+BXOT6at1bdPR0dHR0dHR0fny0YVxHR2dr4QF18xjwTXzeO2p1QQDYYKBMPXVLaxbvo85p44hZgIEuC0WTk7PI1wR4Pb7zuXjdcU0+doQpQ1dokE8pvLMQ0v483PXHfX2TysciixJWJB4/dInuvSMGWdPIT0vlZzReQSDEQYP1bJNhRBs2FFO9rA0Wqr9/O7lGxkyotsiORZTuPr6pyhr94PXCAaJ1GxPv9sORqNc+sJr1LW18dh5pzM0JQWbUfvBPPPUsWxeWcSmZbtQhYKsdmSV9hDG519+PFs+2k1zvfZDPT03mcLJBRROPnL29JHYUFTBTQ+/id1q4o1fX0my29FH+I4qCie//wTV7X5+Me4Evjdscp84i/e9yyeRt5ieOp8FmZf0Wb51nWbBvXVtyVEJ44/+5h1KW4MsL6pk1Igslj5+EwaLJkYOSPQAmu2vq4fY+uia9Wytqu567hlmpXxLHf6WdhJTXPTHwlgxbQWCEjmI2WzkJ3+8EIAtFVW8snUXZ4weyt9r3qA61MTExN7H96fDz+X2YWdhlPuKZwUJycTiRqSoixMzxgLgcFgY12OixJN7N3LvluWMTEzjZKcm4LYG4kyKjOPe5z/iTQ7xjx+ey5RhuQxMSuTFSy8AYGdjDQ/t/gSATLubm0ZM77P9WFzhhZXbCES0CSAH6n3MGDSAK4dNYHbWQFJtzq5zLs8xlDxHt/XgvKzBzMv6Yjdgn923hT9uWcGC4fsQ9gDDjk9m34oCgpHoMQvja/aWowrB1tIqgpHoZ07c6EmCycHdoy79IsP/TN7fuI9fPPMBeemJvHLXZZiOkL2lCJUDA7fiymxkiWkZOzdu447Cc/jt7pdpigVY3bCVkZ56DJKWKdwcr6MmNJmASXuv29PbcOe3dgmmarWN6G4ntil+1ICBeGX3RAgpKCHMgrgZyi6HX37wAVmvu9hb18io/I4bfkJgjEBgn5dYcz3mxDjD1AaOT93PgXAKKgaMpiiTnQdJNLtIMycSjHbvT0tkM0/sm8O7jRO72qKqkbUteXisFzMu7xw2Hyrm3ldXkerK4fgBAc48dyKO5JsQaguvvfpvQrlvMCv7EEkmRbNMF9CqgkUx4DLHaIybea96JLPTSsk0tyHRLQyb6Vtzu5NP26t3Zlm7jVEwRpmfX4TStURbdtfxb/N719m0NrvYuWEQ2YPqsdrDmOxglBTMcgyrK9zxWiq9xPpOZGTMsvb+eWjcz1nVsIkCRx537/0rKgpCgFt24bbYCcTbSJIHcDBSpNnJo73uqqAj675jX+gpjEskmjw0xZqxSlYennYVk9KzcZi630MX5JyGSTaxp3U/oxMKOT1rvl4HU0dHR+d/hJEjR7Jnj+ZotHv3bl0Y19H5ijGbzWRmZpKZ2btUVDgc7hLJewrmwWCwTwy/34/f76ekpKRXu9fr7SOYJyUlYTTqt1t1dHR0dHR0dL6t6N/UdHR0vlLmnzWe/bsO094WYfv6UoaNycHutPDm7n3sra8H4NVD+3mnPoYkgeeAJvIYrUYM4XhXnJPO/uy6qqDVGnvlD+/Q1tzG5XdfwKmFQ/nzz68kedohDhUlo9g8NDaFCISquemapxAChhekkpWVyK5IgD3BFoxJEh7JwQWvv4G8xARCcMvxx5GuWtmZ0oalFUYkeLnhitlkJid0bVsIFamjXnlRfQN76uoRJpULVz6HxWhi4UnfI9Pu5pG/v0Wjbw+/fm0DwYiJv1wzmPihSK9ExLNuPplLfn4Of772H7i8Tn7+3E1f+PgfqPKhCkFbKMrfHljMprd38v3bT+acK7vF1rASoy4UAOBgoLFPjKpDPhbufR17QYTlNYs43nUOLldvK7n/u/88li/cwVmXHXfEsYRiMWwdM+onzRxKyfvbAGhuaedfBzfy8O5POCd/FH+eejqjMtNIdNhx97CsO2tEITuqajAZDIRiMabl5TL/1MFHFMUBpqTmsrr2IBOSs7l97SKKWxp4cPrp5Ke5MebVszES5pmpPwJJwiz3/Uj8tCi+vOQgMUXhtCHDGZOUicdsw23u31Zvm08T8fc1N/DcnAtRhSAvyUumpbsmuNnYV3wd4PKQbnPRGAkyIblv/WqAFz/exjPvb8Jsg/PnjObCCaN79P9y67T35G+b1xAkRrsSwmaAwTkerrvhDFISnJ/fuQdCCM6cPZJIPE7B8CDLm17GWzuOQL3gpPkjMfZzXDpZvKmIe1/6iBPGDeY3l5/UK2ZDuIVU2xfb/22l1QigrLaJQHuERJfmzLCruYyHit9mVtIo1jTtoyhwGLXjDdsQa6U+2srlG/5Mp+xpM8QxyoIkY4CpzhJiwsDi+qdAzgYEFm+oS4wVQQPxGiuq3wBlNpS4BDYZ1SyIpsZRPQIpBIpZC19kb6ayoh2Mgo1Fh0mqV4iF48iKoGCkA/cGhRFzysjPrEcFbFIErylEXMgICaCW3a1Osq1yD89yQa61jgRjM76oE5cxQkyVCcXMJPnSMA81ccrUQoYmJ5KSmsB772/nrXe2ctddryOlxxBCxXzjaBZXD2am8yAzE4pRgZa4lUeqT2CkrYbicAptMROT1MO9MsWBPubgn86s/izEpx5LgLAIBg6toLnJgVEI3EntxIVEVDFiNcaxuuJEVZmQIiOjYpZVYqqEURYIFZIMGdwxqvua6zW7OTNrHgCPTfgNC6uWUx9p4tTMOYxM6BYymiIt3L/vn5QFy+n2PeneGxUJRRWMTRjKyRmzGJ4wmFUNGxiVMJQBjr7vc1mSOTf7FM7NPqXPMp3vLipSrwkX3+Q4dHR0vjgFBQVYrVbC4TBFRUXEYjE961RH5xvAarWSk5NDTk5Or/ZgMNhLKO98HA6H+8Robm6mubmZ/fv3d7VJkkRSUlIfwTwxMRFZ1suR6Ojo6Ojo6Oh80+jCuI6OzjHR0tLO+k2lDClIZ8euw0ydPJCMdM8R1/ckOvjFg1qGcTQSw2Q2IkkS0/NySbXYqY9o9Y8jqdrNoFBLHFeFghRXSU5zkzMwhdvvPZd4PMyb//oFSRkTmbXgrH63tWvVPp6660UA0vJSGX+2l1HXbgJAMTjY9tFQ/u/KJzj1kqldCdr7dlWys6KBUKoJ4TUSF9BiiRG0mCASAeD5LdsxNitEkmQiSTJp7TYmDM1md20dhakpNIZWsL3+NjzWMUxKf5rRGemcP3oE2/1VFIkaYrEIRS31PLpsHW9bGrnwggZG5NQAUDg3h93PGklIceFOcjLuwungspM1KI0Hl//6mF6btkiE97buZdbwAjISNLH43BmjaG0LkZzg4NWfLURRVD5etKOXMO42W3l85vls81Vx1dBJfeJGwnHq304k9ZJmfJuSefijpdz109MJx+LEVQWnxcKk44cy6fihffp28uia9Ty0eh1njSzkT6edzLU/WcD8CyaxftNBZkwbzA92vQ3AimptBv6glCQAYmqcPa0VDHFlce7oEZw7egRCCGKqirlHRm8gFuIXO/+NIlTuHX0ZHrNmG/2DEdO4cNAY6tuDnLLoKQBeLd3JgESZlQ1aps689DGM8eZ/7vHdUFHJ9a+/A8A/zj2DeYMHfeb6Px2n2aDPzMgn0W7nltnTupY9c/uFSJLE6Py+9bETzDZWnP4DYqrSK4O01zoOKxLgiBv5wYyp2M1fz83UE80DeaV2N7veHsqvb5jAcRmzsBuPTRQH+NXGpTxfvJXThg6kxPEWJT5o2LyRijdzCUdinHvWxCP2XbRxH+2RGAs37OWXl8zvsj2/c/vtKHIVhuhk/jDp9j79Dje08JMnF5HudfGH7y/AbOr9Fei02YNpllqZnD2wSxT/qHYr9+x5CYDituo+MQEkSSB3CMwKEFJMtEXgTO9+ZAnMKORZV3LqyQOpj9qpDCaRaWsjVmPm4LI8hDAAAsIGHGYjd113Ej/Y/QaiY3jCBt6KGBOGlFFRnkmrOQFFMWCIqJilAIqiTcw46YpXScqs7xKLJQFNPhfejBAyKs0xO0KSSLO0IbqqgwsMEhgkwZXpa1njH4ZfWBACtr04gocbtvLe+4fIVcysPngYEzKGxhhybhRpUgzTqQFEHKL77VjHBNkYGsBAUx0plgCb6vL4cdYSDkUSmenZh9fYjllS+2Rn9ySuQpEvkeEpTZrFeo8a3HEgQree31nBXSCBACFBm2JkkX8SsiRITAx2bcuIQJGVruu+ImTiqgFJklEUgUCirdlA9Zv5nDV/KOsyNhMToxnoHNBrfMmWRK4eeF6/Y0+0eBidMJSSYDkmQJZBqKKHgChxQfZpXJB7UteEm9My5/V/IHR0dHR0/qcxGo0MGzaM7du3E41GOXDgQK86yTo6Ot8sDoeD/Px88vO7fyMKIQgEAv0K5rFYrFd/IQQ+nw+fz9er3WAwkJyc3MuKPTU1FY/HozsD/Y8ihCCiqChCoAptcrBBkrAYZP0119HR0dHR+QbRhXEdHR0O7T3Mj697AtXj5I9/vYLBBels2lLGe4t3cNbp4xk3Jrdr3bvueZM9e6uw2820t0d55Y0EZs0YggBqalsZmJfMeWdPwuXsm0XbM7svw+3i7Ysv4qJbH8NvU1EybSgWiTneNA6XVjNgbCu3/jpGau75GIwJrHz3x5xwylLCoRfx+5xYbXWY7OciSd3bcSe7MFqMqDGVgnF5OO02oj4Zs1Ol+ZC2nslsZO6C0Sx6fTNxRUWKKahmaJkVI+aNcbY0AkNRjN2mACLBiCoEP5g2hcOHfPx120YsrYLG4hquevkNtlRVc/7okVwyaRWCGM3hzbRHitm2cRXzHVP59UlzeWDHCravLWXRT5fRMD8RgFXVgzinZh+hiJl9W5KAVlobAjRZLZR+XMRbq4p59YUfkOh1HNPreMnD/2af4sexdCXbf3UrADaLiZvO1ETw5J/Dkjc3c+F1s/v0nZNZwJzM/q3aBw5N5yfX/YD7/roYf1sY15k26gJtnP7Y87THYrxw5fmMye4r8Pbk45KDvf4C5OWlkJen1cT+lXk+T+3fyLn5vet537fnNZbWbmdEQi6PT9ayOCVJ6iWKA2xoLGZzkyaqr/Ht49TMbmE1yerAbbYyL2sQxa0+zswbjtmk8Hz5xySZXQxypn/m2Dux9rDDsx1FVk+uy8N9U07qd9mYgZn9tndiNhj67GNPzjxuBHnpiaS4HSQnHNt58p9wz/mnsmDjMDIzPOTlJH/hOJsbKgHYWl/H6clpNEbriNRo++F2919TvZPvnTSJtnCEeWMHd4niqlCJSdXIgC/W296wrLyBPz6wmJBXpsjXQNHhevYcqmNcQVbXOotrNnP/3peRUqBC+pAVW6J4jeNY7Tv8GSMRXQnBnfc0JngKEELhBM+H9CyZnmluIytpJ0KAIiQOhlNQvTLUGyndkYspojB31laMpjj//qCEOxZsY1dLNh9UjwLgvDnrmJpSRqTQgN0UJa7IHNyfzqCRdWxeOoSGw16sztbOURFUzGxpzGfTo6M571zB5uwGDoateE1BLk3bgEAghEAITWCWJTBKKgMstewKa2LwqPP30lbnomjxIJpPrcM9T8W/KB1jXhjzaS0IzcMcyQjtexNoVFXsme3c9+rFhJttXH3Ghziyogy313YdhzgyAaHg7rAajwmIqAaMKJgM4Acyk5r65KKGBIQ7JHGZTlFcQlFhdySTA5FUoqqJkLDQGDDicMYAibqaBDIymzvWlro+g4TQan8bJRVzh2AuXIL8y8o4aKlmd2WQpbWreGLSnz7j9e9LXaiJHqn4XeeHCSMvTP0zJoOeDaijo6OjozFq1Ci2b98OaHbqujCuo/PtRpIk3G43brebgoLu381CCFpaWvrYsft8PhRF6RVDURTq6uqoq6vr1W4ymfqtX+5yuXTx9L+MSFyloT1CSyRGUyhGSzhGXIg+6xklCY/VRKLNhMdiIsVuwWLU3QR0dHR0dHS+LnRhXOd/jrJyHz/6yQsEAmES3DZ+dsepTJmkZXYG2sKs+mQ/JrOR2TOGYjbrbwGAhU99TKPTAXHB00+v5Hf3Xcgf/7qYhoYAZYd8PPfENV3rGjrUHkOHINUWDPPKG5u6lq9eU8yzL6zl7rvOZPbxw7raX359A/94cgWzjx/KVRccx9N//ZBwKMqMpExu/uUZpHRknQshQLQSqJsDopFwczGOlDdJzdSWywYgeg3hqIqq1GJ1d2eGrnptHfGIZr9ucVj58J/bKN17EVtWbaHZZ6NghMxvXr2FjJxE5pw4ko/e3YZiNaC4DcSStR+tm+1VvHPX90gwf0qcGwH1iw+yYfl+/CY4UKaCWaKipYXmtpOo9u0k1TCeIJczuqCepasKKS1+issSRrPqsY/xAyeOyWZIdgHqjnpu+ekZYJCxHSgjXJhCNDcB2+GgJggJgSxJbFq9nwd/+RaTZw7l1nvO/szX8G8vr6K0qRUSJCIxhZ/8/FWuvHYC+6WVNK2PMz7lOI4/cQTzTh97dCfFp5h8/BCeHZVNSWkdY8fksvlwNa0dVnK7a+o+Vxj/+bxZPLVxK2eNLOx3+cSUHCam5PRp90X8vf4eiYmJBQxzZaEgmJI0pM9yRRE8Oee8XjcWPph9N8BR32wYk5nOW1ddQlxVGZv52fv7VSNJEmM/R1z/KpBliWlTj73W/af5w3Gn8ELxNs4ZOJLxKekE436CKQZaLmhnxPCsz+w7viCbZ26/qPe4JJnjPJew1vcJ5+X0fq+8t3gHRcU1KCbIGZ9CZEIFtx56EOmQxHvH340/HuaNQ6uRABlBjqMFSYLayBYglW5bbPjRkLPJsCYx0pPLeSvuJSJHocbA/FFjkY0SBa5M/nbgXU5NjPcaQ+cppomxgiF2rYxE3vwlPHTwXGbN2cXUKfsAUMUOZGCIq475aTtZXjsCqxzFiILBpCDLYJZVho6oJo7EyOkHsNsVDGhCtyJJ+H05tL95CmccP5zzFxxP86FnOSHxIcxyHFnS9kgIMGqp7l2Z1R5jCEXVHhtMkJAdIOXcw8RN2iQNU0aYOBIWABmCWxJQms0ofhPBageN6xOJtcngho82jCM9qZn9h7JoCLo57fj1JDvaCQmZqKKJ28GYCbspDsgdWfdglwSS1D2udqFlinccQdSO9jbFxDO+qZiNYOroLEngdrRTtD+XkN+K1RVhhKUKgySIKAbaYhZiwoDoiKEqklbkHJAlgWyKE1TiSBKkWjXXilAkxgOvrGBveR1jCzJJdNs5fdoI0hJ7l3BQVYHaaANZItJqJDeQz2/mX0+i99gdFXR0joQiZBTxzd80/TaMQUfnv528vDwcDgfBYJDi4mLC4TBWa//leXR0dL69SJKE1+vF6/UydGi3g5qqqjQ1NfURzBsbG7V7Hj2IxWJUVVVRVVXVq91qtfYrmDscX9/EaJ3PRwhBUzjGweYglYFwd4mnz+gTFwJfKEpjKNq1frbLyiCvA6/VpE+I0NHR0dHR+YrRVUGd/ymWLNvD7/70XtfzltYQf37oQ/791HVYzEbu+Pkr7C/Wstf27Knk+OlDGDo4o0+95KNBFSoCFYP09byNKqub+dmvXseTYOeeX5zFBx/vYXBBGhNHD/j8zkBjYxvhSIyszL71d0++bCYv3v8yYa+Z5EItg/e4yYN4d9F2MtISOOmMB5g9cxg/u+NU7v31OWzaUsau3ZW8/d422toifeIB7Npd2UsYX7ehFID1Gw9ibYmwYUV3Da547C3ue/xqlm0/wOPvPcffrngBoxxHlkE2aTGGTfg9bc3TcXsHEG65DESQ5pjMXStfZkxSJifFB5A9LBtJlnAnuXjs1mfYsXY/uBw0z5+M6rIyef5E0rK0/fc1+Ikm2xA2E4Y2ga1Uon2goKKthYUH9zKq1cvQ0dns3lvFjl2HOfvMCVz0/VlsWL6fYAw8/y7h5J/P54cL5nLGE8/TpszG0hDlox8EAbBaYjTV+xkybQgTZwymrLgOS3OQ9Xe/x6xLp5NdG6LZF0AoCsHJ2ZqiE1Vx7zhE4ZhcPB47H765laaGAO8u2cq8a6YyKvfIYuw7H+/CHhLIBgkpINhQXIa5aCfhzAOIIfDGyauxGR08tv5e0nK/WKavx2Nn4gTNTm5yXja3zD6O1lCYs8Z8fobLhOwsJmT3FTybIgFCSpQse1K//X458kKW1GxjRspnb8NjdnBb+gU0t4VIMvcWrN7bu5/bFy5mVEYar1x2IYaOum5f5MfmyPS0Y+6j05fRSRmMPq77fPaYk/Fk0u/16Wg5P+8Mzs87o0/73FmFrFq9n4EFyWyYpU3i0W5UCM5e/VsiKHRmIgskmiJ2vJZ2mqL2rhidZ0qhO4fCBM1BI0FxUi83IdeZufmMs0hw29jWXIKMxO7AAMYllAN8pnW42aBw9lUrSIq1d7QIjHSuL0i0RDgvdyv+mAUJkOTueJIEcUXCYutxy0XS/ktM83PCjY+QbJtPVErjigET2VQT7zUeSYKgYsIux7rGVxV2dr0vhIDmeidxu/Z+iVZYiZQ4EDEZEZNR2gzEa2wIIGNuFd7CFqLNJs5svortjXV8tBXuf/oiZAUko0rBkCpmDNwPSMQ7xmCSBKqQEEIgyVpbGDB2JOOHVIgLiUNhN5lWP0agKW7ntabx+OJePKYgJjkKQEyRMMgCryUCcZn2ejuZMQlDh8huMShIaphVW4fhTgzTWOfGa5E4Y4IFpzORFQ3rug6jx5jA7YNvAGDxhiLeWr0bgKLD9UhIPL14E8sevBFrj8l1zy/ZzCtv1GJzDeKM/GHkDc+kqMrHNF0Y19HR0dHpB1mWGTFiBBs3bkRRFIqKihg7duw3PSwdHZ0vCVmWSU5OJjk5uZcjRDwep7GxsY9g3tzc3CdGOBymoqKCioqKXu0Oh6NfwVyfXPP1Ux0Is9cXwB+N9xLDP0sU70nP9SsDYQ4HwrjNRoanuMjsx4VRR0dHR0dH58tBF8Z1/qdYt6GkT1uDL8BJZzzApAn5VBxu7Grfur2CdxZtx2iUSUp0kpXp5Wd3nEpKsiaqVbYfpDiwk0mJs3GZPL1itsaa+GvxncTUGDcPvod0a99M1/4QQhBSgn1q8iqKSk1tC5kZXuQe/rvtoSgIgd1u4ZO1xRyubOJwZRO/emghn9RXIy2F1+66gkHZyWzeWs6+/dWcddp4rFYTC9/fRlswwvnnTKK5uZ0rr3uSWEzh+Cw3d//zOgzGbpvmgrF5xNPsCEVhT4NWB+vHPzyJG66Zw933vU0kGmfp8j385LZTcLtszJs9nCefWXXE/RwzKoeLL5jSq+2Ga2bz0qsbmD1zGFIgyqoPdhFMMdOWZ2env4V4TGHljn2Myz2I2agJOCuXncZpl90LgCSZcCWegxCCHf4HWN/+N3YHtrGmPsCq2hKWPuTDEU3gJ4t+wcJHFrP1UCNy4UBkFVSnBYCFn+zj30+uxemwEApFETbN1laKKiQ/dpDQ74YjO0386a1VKI0x/lC+haEjdrGrcjaH/9nMpWdo9twxhwFpUC6FKRnkeBIY7PSwrbUBa32c7dt+y67Nr7JxzUAeeSkNo8nAvf+8ilp/gIt/+nfqbhjB02kRklpcePYZufb+i1lac5hN5TVYy5sxtrRx1hUzATjz0qnsra1n67g457z4Ev++5AKm5Gb3e8xvuWQWj3+8gf2yH5IMxJIEh5f4SLkKolWghiGotLNvY8kXFsbb41FsBm32sixJ3DRz6heK00lduIVL1vyZiBrjz+O+Ryxq5rY17zEtPZeHZpyBJEmkWT1cnj/nc2OV1TZxxZ9fQgi498qTOXVyd2b6J2WHUIVgR3Ut/kgEr+2zrbp1/rcYMTyL1168iYs++V3P1GMkIEL3DQwVsEhGStuSoK37PXJh7kw+qN5MutXLAEf3xIhn597Owg1bmXhuAQkd9u/jvAW8NuOXLK99hWDsIWyGjnqDPcRx0SH6duah51qbCEla2QYDvUX0Dp0bt0kbuKJK+CJWPJYoRlmh8zKuImlZ4IAijBikJgAa2pdSG/yIYYl3UeC5jZK2nWxsKWWYtRaHIYLDEKdnwkqho4HSlixUIVP+SRb1B1JwHt+I0mwiuDaxc0REDnR/hqkGkCyaubkrwcRFJ02lM59/5dYSfvGP97APaeSAK5lxykEchm4h3my08ejhSVyWuQ6vFNIy3pFY1pJFsMXF+/vHkpnkIJzuw2awYwiMpVxsxuPQ3CqiqhGIImHi7Myrea/ucQDOGZ1KYtokjh89iDrLVpbWvUZQ8WM2qfz2hOMZlOQhEG/l7aqnqBdRJrgvoiiQQl2kAUmClngrd+35PY+Muxeb2YgsgX9QjEiGir3cAIdhS/Fhpo/M55Xl29lZWoPDqn2exNoNZBWm84eXPwbgqTsvYMygz3ZB0NHR0dH5bjJq1Cg2btwIaHbqujCuo/O/j9FoJC0tjbS03hOuo9EoPp+vj2Du9/d1TgsGg5SVlVFWVtar3e129xHMk5OTMZvNX+k+fReJKCo76lqpDIS72o5WDD8Snf390Tjrq5rJdlkZk5aAxaA79ejo6Ojo6HzZ6MK4zv8Ul188jeraFg4ebCAW713PadMW7UfDhHEDmDa1gPUbSzlc1YRkC+MLRKnb7ued97ZxzVUzEULwz4O/JaS0UxEq4aq8O3rFqgqVEYhr9VzLg8Vdwngw7ufNyqdwGt2ckXVFn2zylyr+xtaW1cxJOZNTMy/pav/1vW/zyboDnHLSaH562ymAliF+7U1PoyqCxx66grmzClm99gCeBDshB9AgISRYtecgCzfu5e2n1kNcUF/fyu591ZSVawK3JEmMG5NLLKYdj7VLdrJ3XTGjju9taf2js2bw3sZ9fP+kyV1tdpuZyy6aRjgcY9aMoV326QA3Xz/v/9m76/AorraBw7+Z9Ww2ycaVCCFBgru7W0uNQkuFutvbfpX3rVN3oUZbatQpUKzQIsVdAsGSkBB326zPfH8sBNJAoS3W9tzXxUV2dubMmdnNZnaec56H/z45G0U5evnff7If5lg7N/QaRW2+g2nT5tO2cwJ7dhxi2/os7p12EZ16JlOQW06A1Q/tqGoSWuSTvS6GAxkF3DFkBnppK7vzI1i7P4kI8yQkScarKJRW2wgLMHP3/bMoDdtEzEh/LIFOAsvtvJy4hLbflDB9em+efnkhsgTNe3m5+aoFZGwOY/qSAXj8dFQeqkQG6mxOhvffxZA+Gcya25WdS0KQzWF0nGeg0wN9eGLvMuQwDX36rEWSYHT/nfzvpShumtiLB78YyVfrt7Fuq5s3flzLpYM7MevGSfyyfBcxIwKwxARSa0lk8m0JRMYGN5ybj9ZuoSBKj3K4xKwjTg8ZdmLiQ3jtsm6MD/Glq+8ysgODJvYCoG2XREY/HkVU/XeUlgVSVld33Pc9wJj+aXRoH8fED7/C6/JgXJpOUa2b8rl6PGUqeH2RKJfdzT1DniRrxyEuf2Asl907FoDqslr2b82mff/W6I5TYuDLA1t5eONCuoc34/NBk48723p/bQEZ1XkMjeqASXPyL98Vzlocii9wmFdfzppD5ZQ5bMw9mMFjXYcSbPQ7SQtHqUfqPQPKb1LT3dSzK3a3my5xMSIo/i9m8zqaLJM4OhtcRUIja3m81eW8s38+/cPbc0vKaABubdF0JrpJb+DSvj2bLA8xBGBX60i3J9HDfACtpOJS/DFq6gA9Cgp+2njqPb4sGjpZYc6Sbowatp4gU+M+KocrY6uSL4W4R4JAowsNKhIy0uEa4ZJ0JCgOEr7P+iMBeI2kcqDqKd9jqSO9LFm4FQ062bfebwPxOsmDQRNOzcpoFKNKzfzIJsfYq108q3fk+PpogPx10TiKLbw66ZqGdVRV5eG35uLygqbCSIXbzH5bJB0CjtZt9zeNxK2rItMRRhf/XPY5w1lX34Iat4Hsgkgq10QyfmwPburZq2Gbovpx7KnezSubZuHSagkuH8C0SRPRSXq0GhflrmKGRV6CSeNLMdmCYbTwb830zMfBa+Cdr1bRatQuAGQO16hHobs8gB9sc9CavCiylypXDS7FzUvLV1LR3oViVkECZ6iC6RDc+9Y8vn/yKp6f5QuAj+/dhvsvH0hqszBKq2wN/b322a95cuoIRvU4fhkJgDpPPWaNCRWVMmclYYbgE2a0qPfYmZ75ObIkc1PzSZg0YibJv4kXGS/n/ubo+dAHQfgniImJISgoiKqqKrKysrDZbCJFsiD8S+n1eqKjo4mOblwuy+FwNATJjw2Y22y2Jm3U1NRQU1PDgQONJ4xYrdYmAfOQkBC0WnFL+M8oqHWwpagKt/JXQ+G/L7/WQYnNSafIIKL/RJZLQRAEQRBOTFwFCf8oSYlhvP3aFbgUB6++sozFS3c1WefqK/rQtk0sg/q14sG33sE8eguKW2b3K21YvGQnPy/PYOTwNNRkI+jr0bmbpkFN8W9P39CRuBQnHYKO3rDfXPkr26t96VjbBnUj2T8N8AUIvnruB7b2XQf+sK9uO0Ncl/LL8t3EJPhTYNiOzqJl//6ihrYO5pRht/uChgeyShg2uA1vvXwFAPUON9M+XUJkqIW356/F41UwR+jR5jtZ/PZilOSjs9Nioq20aRXD1Rd15cuXfyTSrCOxbbMmxzR5UCcmD+rUZHm7tFhef3Fyk+W9e7bglwX3oygqZeW1lNvKmFH9IDbgjYWvkPGqiYrSWlYu2tmwzQ+zNxKcFMyejdlU1NtpO/ggkgxmRSYxJRJXVQ6qAk63jk9W9+DhiQEA3DH9B9bszmHSgA7sTM9DDg7Br3kd9R4DhuX+pP23BEmCtI7FLN7oq/U6atBOkhPKSE4o45tlXamqsiBJasMszWsuXY2fyc2kMet5ZMEI0GjI2FWI/uVlWCPdWIMDmLW4M/26ZvLdxo5ocitYvWUFa5t/g193CKtoRQtzO/wMOspLapDqPAS3CWLCM59id7q5RfFwfWwIiqrwec5r1EfuIcQaQ0WegSCXxEvXX0z8nQHEJvhmpk596jLWzt/C5fc3DsC5dDm+erdhNQxNTWryOhwrJjCAYZvtrF+4vaHWurtIakidnNIpkc+e+o7iXF/mhA8f+ZqL7xqNLEvc2e8xCrNLGDV1IHe+eW2TtlcWZaGikl67n88OrmBSQj800tEb4w6vixs3vI1TcZNVV8RdLZsGEn+rVWAcD7e5lApnLeNiu5GzbzUmp5bekfEYZR2bDuXTLjoSvUZz0raSIkP4+L6JVNbV0y+t8XlKCLby2gWjT9qG8M/2fIfruXHTa8cEwo868nO910kHa3O+6vPQX9rXhTHXMjvfwjdFh+gb1parkyYgHfP7oqge0kseoLDmV9ZtaMa2jS3JrQnngSu+OSZQfTil+eH/JTicZr3xDRinIlHvNeBBQ7C2Hs0x9baPDa1KEmjZCtAQFFdUKHFbcKsaLBoHRe5AVNXCrS0e4vInZDZtOUj3Hs0x+OlYtnEfnyzYRJ/2SVwytAPrMw7hb9Jj1yrYnG7KdgZRfMjL4WocZOWX4zo8Pq2+wMz+malMuf42NNL1eNViAFZU5hJi0LC2uAW/7E0jLKEaCfCoGvoHptFiUlsuG9Kx0fFG+gUQ6deD/RIsXruXiy7ph172ZQXpEzbyuK9HhCmWx9Le5+lPl1Jbva7hM3Fs9BTMWgvtg3pwz1c/krUzEdng4d7/pNAqsAV+WhOV0Q68kopGldBWyRhyfa+j1WLCavEjNS6M/Xll9ExLYGiXlIZ9+hl03PHmbKydSvm65mtiKy9jXcVW1pZvJcoYTreQdlwQM4zPDv7A7IKf6BfaDafiYn3FNmJNkUyJv5AiZxnLS9Yxqdl4Olp9KTg3VOxgTfkWALoFt6N3aJfjHrMgCIJw/pMkibS0NFatWoWqquzatYtu3bqdfENBEP41jEYjcXFxxMU1zlJos9kaBcyPBM0djqaDgSsrK6msrGTv3qPl7CRJIiQkpEnAPDg4GFkWA+COR1VV9lbY2F1We3b2B7gUlXUFlbQJtZASbBa1xwVBEAThNBGBceFvz604mZv/MV7Vy5joKbyx/0HKXUUkX9iW/4zqyAv37AbAZNJx1y1DMcZV8dLuN0mzdmbwVWbWV6hoDAqjLkxm9oe+GXAfzlyFxhiHKTIUu9mPyS813qdW1jI+5uomfUn2b4NJ44dJ40+U8Wjt76KDJcx46AssPaHtvdFMGD6VmZ+t5ouv15FyTSbBI6sJ7x/E9RE3NmzTo1tzpkzqhdvjZUDf1Eb78TPqeOr6UXgVhcXb9pNXVo011ETd3O0o5XWEWf2x+xkZ0DeV1vGhSJLE1dcPYsrUAUiS9KcvphVVQZYaf0mSZYnwsAD27DiIS9WiD/Ow66cKqkp9QW23vwZbnB8RBiPz64v58YmZPHbxIFyhZqr3BBDUqpar+l2MwahDE/whbvtC6qTO3DY2mHE9fIGA9IO+AQMZh0oZN7ELn67bQcXPrUAjgRZe/XgwnVod4uuvOqCttCO5vPw6L5aOrXPYszMcZ65E6n17MbewcfDLRMq3B/HTqtaMGpDBkrXNMRi1OB0eDAYtW7/dRJCqoug0zBzXm4+X9kGbX4FfejZ+zY+mV37y6qF0i+wNwL1XvkdxfhUd+iXj1ftSCrs8vsB0lbuc7dXrAOgToGfFwWaglcnJKqf3mKMB3EvvHcOl945pcs6HR16KLGloFdAR/e/Mwi7NK+eHt39i9Q+bAWjVPZkD2w7iPhwgN5oN5B0oor6qvtF2C2b8wgcPf4nb4VuvrqrpyHOAu9r2o9ZbSZZrP+8cWEicXwhR+kiizBYC9EZkScYga3EqbhQF1uUcomtcTEM97xMZFd254eeFP+/BWKOhLNzG1ZXfsTW/kLGtU3l53KjfbeOIdoknrsEuCK0C4wjXB1Hiqm60/Lfj/IvsFVj1f60utEUXyJSE65iScPznZUlLu4iXyEzfxsKFvyABlXtDWLe1Fd067GkIbv/WsR/dqgpeVUInSwTKLuxe7QlrmZ9IgTuIzbYk9Bhx4aCZvjnPtPsfOo2eqNa+NPRHJI7vybXje+JwuRl25zt4vApVdQ5untCL1TuzCQ/0p2NKDIvWZTBj7nqkYzI3SBqF2DgY0KEtTvf7HCj2DZzxeouBaEx+brZ+2g6m7kbWqoDEvUMvwaQ5cYaHjxZsxOn28PHiTfRqm3hKx3v54I7kVRcQURLLpb17kWA+Gsi+eEA7DuSXMbhzCybG929Yflf3vkzbvIwrUjrS0RPF2/mrMURpufOivpgMOj57ZDJOtweTQddoX73bJnLFFUms0hyglmoez3i94bmaujr21mXRN7Qr26ozANhenYFW8g0CyrMX8cLe9wFwqx6+y1tIu6CWvH3gMzLrcgjSWdDJOlpakk/puIV/DkWVUNRzf0P0fOiDIPxTHAmMgy+dugiMC4JwKsxmM2azmYSEhIZlqqpSW1vbaGb5kZ/dbnej7VVVpaysjLKyskbLNRoNoaGhjWqXh4eHExQU9K8Oyqqqyq6yWvZVHP9+yZm2q6wWt6LQJtTyr34dBEEQBOF0EYFx4W+txl3JxvJfWF+xFIAoYzzlLl8Q9UDdTg6wk6k33ExlkcK1V/XF32zg/p9vRQ0tobjEl8ZWBvqFjWXND41vansdGuoO+rOLQrZsy6FTh3hOJtqUwONtZiAhUVlVz/xfNtC1cyIx0cEktY8nd3M+owxTiDenYDQeTXUOEGL1p3lSeENbWo3MtVP6Njz+euV2Pl+2hRtG9mion6yRZR6/cjhTX/mavLp6jJe2R+tS2OfxELQkk4Ub9rP41fl8mfkGgaEWZFmmpLSG9N359OzeHJPx1GtNfXrwFXZUr+ei2OvoETKkyfNfvb2SrKxmaC1e3OVHz2Vtshl3kJ5CWUJRfEHjekVBo9FwYGZzpl7fl7cW5vJlwByevWE0psBOjP5NduJnrx3Ns9t/xhXiItQYCOsAVUJr96KpU1h+oCUrV6QSUO1i7Oh29BzUmlvf/YFl09OIzvMgyxVYWvm+wAQnlFG4L4CXNw5kmqYPrngvwZ0dhK4Gp9OD6meCOhuS24txXRbeEH/0+4pIbBfH7Dd2kROeikarYLoiASJh/tcbKM6v8r1miszM+yayv6CM4Z18ARerLpTuwYPJrd9Pl3bj+fWn9b6Rv17lpOd8+ddreee+Txk6pR/dnjp+ne36Ojur52zk1Ztm4Ha6QZZAkti9eg/IMoq/hvLHo3HpdYS9UIyhWqKhqLAEb97zKagqilYi/r8DSBve9bj7SQkM47+dRnH9+jcBeH/1FlbbCokw+bPywpswaLR83PMu9lTnc/9XK5len8ltvbtzZ99ex23veKYM7sKnP2/mikGdeGOnr95iUe2J08cLwh/1de+H+Dr3V/LtZXQLSUWDzP/t/KjROr+W7qJVYNOsGmfCjyt3N3q8bGsH2rfdj5/sOe76R2Y6HyFLejyqG0mSMMgeDjpDAJUEQzkaqem2cHR7SYogvT6RWFM096Y+3WjQU73DhVGvQ5ab3nS54cWvqZU8SDrQuGH692sAFUlWWbpxP8e7TdNm7D6CE6v5LOdVrk68j4TQD6h3ZZJfcwhFLaafZTyV8XX0c6dRE5JB79BemDQmCu1FfH3oG1IsKYyMGg6A3elm3ppdtE2KZNPePPqcYlAcYFdBFv59FlMieahxN05t3rddEn3bNc3KcWVqJ65M7USd3cnc1btQFThYWMkLXy6nX/vmyLLUJCh+RMvkIFYdU/rRqgtEI8lUuKpJMMcSqAvg+qTLWFC4nAFh3TFqDHyc/R0HbDk094+nuX8zlpWsY3BEbwrsxSwv9Q2yGhc9mKsSLjrl4xYEQRDOXxEREYSFhVFaWsqhQ4eoqqoiKCjoXHdLEIS/IUmSCAgIICAggOTkowMoVVWlqqqqSTr2srIyvN7GJQi9Xi/FxcUUFxc3Wq7T6RrNLD8SNLdY/h2B2r0VtnMWFD9iX4UNnSyTGvLXBnELgiAIgnAeBMbz8/N54IEHWLhwIXa7nZSUFGbMmEHnzr5ZhKqq8vjjj/Pee+9RWVlJ9+7deeutt2jTpk1DG06nk/vuu49Zs2Zht9sZPHgwb7/9NrGxsefqsIQzRFEVsm0ZhBti0MsGXtp7N3avDb1sRCvpSA3oyE/FX+FU7AAYZT/aDtTTwdqnoY3SHf6EDSppeCwh0SGgLy+t+wqAAIuRmloHkeEBFJXUAOA9hSDmEUeCCy+8spC1GzKxfrOe2V/ezjtbXsDj9qDT+26gT76sB6ktIoiI8aPSlEVz/zaN2jlQl06du4YwTytmLdvO92vTsbvcvDVvNW/OXY1Bp26uYo0AAQAASURBVOHDey4j0M/QsI0DFfQS6HVUDknCb3cZfrtLqCyuJjDUAsCtd39GaVktQwa25pEHxqKqKrtrNqOVdaRa2gNQVem74A+ymhvO+87qDaio7KzecNzA+ORbBvHEHZ/jLvcdvwqoGtBXuHEH6ZELbLQPtjL2qt5c2KstnROiqaioI6O8omFG+I6sQrqmxjVp2xplJH1HIVRA+5YxPDR5MBaTgVmPzKMwrxrFqEV2eXEoKgu+3khql2a4A33nuf0FafQLDOeb7z9Fm1RD6dwgvGFakMAt+b4EegM0qKoHPF4khxNVVdH76SG/Ct3hoHf2jkMoewpxtI8lMjSANo/5an8V5lY09DOtTQQt48JpGXd0gENFURVjQ67i6bvf4rmfP8TP34ASYERqXQDjT/w+qnE5mPvuEiqKqvj2lflMfWpik3XWL9jKfy94ofFCRfWdfQlQFBxXBuPXQsWkuqgaG0rgIhuGzIpjkjMDkkTgA53Z1XE/u0r2k1hqpV1Y09chxRLN7L4P8toPv/JlbjpEQpnDhsPrwaDREmEMwiKbsbl+BqDK3jSN2++ZMqQzU4b4Pvvbt4xm6f4sxrdp+YfaEITfI8syExP6N1r2Qbe7sHucvLTnewoc5XQJbnHW+lNQ2nj2emTnInI9wbTUHf0bdWwwvFE9cAk0ONlW3wyrtp4SdwBFnkBUFXKc4Zg1DrS4SfPLQ1UlltWmYJIlgjQ2ytwW+odfwfMdjgZXFUVFliVmr07nyc+X0KF5NDPuubTJja6ducUgS6ga4PDEk7Rx+whOrOLALwkU7ohoWHdY91TunNifD4v/S6mzmkq3b0BYoN9wAv3g0SDfeh6vwuj/U9hYvY6c+nCijdEUOYpZULiQLVXb2FK1jd6hPQnQBTB9zho+X7IFjSyx6IXrCQs68Y2hvbklLNqwhzE9W2N3eXjhm5/oNsk36OC9xT+za81mPIpC28QourduxpThXRodr8eroNXI1NjsPPHJEpZtyUQ+/Hy3VicfPNEmMAWdpMWrKqQFpnBVwgQSzLG4FQ9aSYMkSaRakki1HA3IP9f+AcqdVQTpLWgkDdcmXgKAV/XS2ZpGbn2BSJ8uCILwD5OWlsayZcsA36zxPn36nGQLQRCEUydJElarFavVSmrq0WyEiqJQUVHRJGBeXl6OqjbOYOV2uykoKKCgoKDRcqPR2CQde1hYGGaz+awc29lQUOs4a+nTT2ZXWS0WvVbUHBcEQRCEv+icBsYrKyvp3bs3AwcOZOHChYSHh5OZmdlohPTzzz/Pyy+/zMcff0xKSgpPPfUUQ4cOZe/evVgsvkDfXXfdxbx58/jyyy8JCQnh3nvvZcyYMWzevBnNKdSmFc5vla5Saj1VNPNrwdLib1la/A1mbQB3tXgBh9cXAO8RMpRRUZORJQ33pL5Ebv1+Mqo3s6VqJV/kvkayf1v8dYEA3DHoVubtmktSex1dYrsSoLcSbUrgxmsH8Ouafeze47vQLyqp4YqJPWmbFkvXzqc+I+2IoCA/AAIDff9LktQQFAfQaGS6d20OQAJRLP9mHT9M/4nm7RPocFkic0y+mbmuXZ35dYWu4be11u6kzu4isfMhXs3cwMSk63jn9gnc+sq3eLUyODxg0KCa9dg6RxMe7I9fwNF0tKqq4jFKlDp8KbV312zho4O+4OotzR+DomBum/ohAG99OJXE5uHIksxFsdezs3o9wyIvOe7x9hrcmkW7nsbj9vLV3DW8mb0Fe56XUcFxFK7OonB/BUlDo7ioTzsAWjSPgOYRRJWEMG/tbkIC/EhLiDxu2/H+wbQMDCfXVsnA6GS6tPcFbT3XVvHGE3PROBrPrnzviR/p2ieOMtwMbZHIgg9WkRrVm1+e3w5AQEUd3aZ2RVNpY3tODs5lNqiqQS07GuR22pxIx6QB9wswUV9jx2/jQaK6Nm+YSXn5jQNY8vmvVOWV8d1L85h4x4iGbRZ/spKXb5lBeFwIJYd8db3lWge1XaJ4e2cGrmdh8VtLSOmcxLBJvel7UXc0GpmZ+zby+OYlhI7WELJei9GkZ+sv6XyYuYVtJTkkLveQ4G9h3fwtTc5V8w7xZG7zlQSQJAnF4Qt/qyp4dUHU9A8jyO5GX1ALqoreoOPG5yazOa2Wwtp8APKdpbSjaWAcINhgITk0AuPqPfhrNTx/0WgC9Ue/lPnpdXw+6VK2FxQyoW2b47ZxKlqEhdIiLPTkKwrCX5Ri8aULn9njXryqglY+e9cN/7txBA++Po+QQDN2u5OS7eFsC3Vgikgg2hhM/5jnsLn2s73oUqDpAC2jtjmFbn8OuUPQSL7qEh5VolYxUav4Pvfzq8PQSCoqUO2RqPb4gQSbq9YyPNoXGH/008XMX5/BvRf1Z1tWASqwLasAh6tpinCNG7xalYZJ7ZJKcEIVkgTBiVVUZETjVVTuntSfiwd18JXyMN3L9qq1dLQ2vdFfbXNw2dOfUqtUkzzBl1b85+JlKCiMiRqFRtKQZE7EX+sLgO/K9g2kkiQJf5OhSXtHfLN8G89+7gsyfPnzVgLMJmzVfuxckILB30lBugFVcQKwPiOX9Rm5FJTXcN9lA9BpNTw/axlf/7KNtKQodmYVNrQbaDYy69ErCA08+c2+Zn7RzOj6LABmrV/Dcp38+5ffIYagJss0koaHWt1y0n0K/2wKMl7Ofd1P5Q/0Yfr06UyfPp2DBw8C0KZNG/73v/8xcuRIAOrq6vi///s/fvjhB8rLy0lISOCOO+7g5ptvbmjjVAZBV1ZWcscddzB37lwAxo0bxxtvvCFm3gp/CyIwLgjCuSDLMqGhoYSGhtK6deuG5R6Ph/Ly8iYB88rKyiZtOBwOcnNzyc3NbbTcbDYfN2BuNP69ArpOr8KWoqpz3Y1GthRVEeIXjkFz7q8JBUEQBOHv6pwGxp977jni4uL46KOjaUx/Wx/n1Vdf5eGHH2bChAkAzJw5k4iICL744gtuvPFGqqurmTFjBp9++ilDhvhmsX722WfExcWxdOlShg8fflaPSTi9atyVvLjnLtyqi8vibsPm8c3gdnrtmDR+3Nj8UQrs2XQNHoR8uDanVR+GVR+Gw1vPlqqVBGitGI6pU9qxfTM6tr+tyb4mXtKdiZd0Z+DI5xqWbduRy3VX9/tTfb/n9uEMHdSGFskRJ11309KdPHPNdAAyNmTy00KFlC9A0kDh5nwgAb1Wg8vjpc7uwupvJKlTPvUSLC+aT8n6biiHA7X+SAS4JQp0gAplBVV88sZCWl8TS2yUiWtvG8DDn/3EypICtmXmYwo/+jGgkbTkHqrA7fbNpM47VEFic9/s5+4hg+geMqhRv1VVpbymnpAAv4ZZdlqdhve1OyiJq0NjkfEPDOaVW0ZQkPU6sfHzcDtbs6egGXFhQQT5m4gLC6TF6BB2VBSQaSsjzdC0TnRdWT1Rb9URbzDRYlBww/LRl3UnwGrmtcd+oK7a3rDcVufEtugAAC8syUXx+kY73/h/o1g+fwdDL+jIyo+WsGlZRqNjOfxDQ87h+NYxpPVJZcjkvjRvn0DevkL2bsqkx+hODduZLUYuu64fHz/2LSOvHtCo37vX+/pQcqicZi2jqK91UGrW4I72Der5Ys5a9JU2Ni/dyeaftrN9ZQa7Ez38HF4GWigLh0BFwVZdz0fvz2PzNVVICbDfKVP0bOOgeFBEAE/+8B9SOzfnP8OeYsfKDOpbBFLUMg5tuROPV8akkUFRkQ4PJBg+pS/XPHkZ1vBAhnhdeHbUY9bpGRTVtslrcKwrBnWiZ6t4IqwWLMcJTLWPjqR99PEHOQjC+UqSpIYaz2dLz/aJLJ9xBwBzlu3k47nrGeq8mAkt2jesE2RsR/uIWWwvvqzRtn661nSN+YEAy3Y+yH4O8H1ux5kSybUfxCT541YdqJIbSfINkPFK0MXam0p3BYPDxzS09dOmfXgVlaXp2+k1rBo1XKF36IgmQfGNFSsYdGUem38KpKbQ9zmGKrF3SRIhSZXkbojh1/fvbHKcEcbYEw6qyimppLiqDkkjYfD649TUoRweBBCoC+D9LtORkRv+xtQ7XQD4m/QnTGEO8PJXKxp+dnkUyqpt9Ggdz7rdYNBpUBVvk22+X7GTOat2cUn/dr606dAoKC5LMPOhy393lvpvHRsQF4R/o9jYWJ599tmGlK4zZ85k/PjxbN26lTZt2nD33XezbNkyPvvsMxISEvjpp5+45ZZbiI6OZvx4X2qdUxkEPWnSJPLy8li0aBEAN9xwA1deeSXz5s07NwcuCH9AcHAwMTEx5OfnU1xcTGlpKWFhYee6W4Ig/EtptVoiIiKIiGh8L8vlclFWVtYkYF5TU9OkDZvNRnZ2NtnZ2Y2WBwQENAmYh4aGotefepm/s2l7cTVuRT35imeRW1HZUVxN12jrue6KIAiCIPxtndPA+Ny5cxk+fDiXXHIJK1asICYmhltuuYXrr78egOzsbIqKihg2bFjDNgaDgf79+7NmzRpuvPFGNm/ejNvtbrROdHQ0aWlprFmzRgTGzyOqqlJtc2DXlJBtyyBAZyUtsPtx19tWtRq9bCDCGItb9d0Er/PUMDJqEmGGKJr5paDXGEnyb02Sf+smbQAE630X8Q6vnXpvLYFyyEn7uCP9EMdmjGqXFseassVk1GxieOTlxPo1rT96Ijqd5pTqkgPY6xqnnHblyey/Wo82SKVuSyWRQXae/fZenly6jszCCga0T6ZzeCCrc5eyelYdu2szfHfsPV7kQBMRESEk6XXkfLsZZ1EtC/WHKHLNgxzo7H80uOLxKqRa2nNr88fRyFqa+SUT21dh6s2+AHivvim/2+9HPlzEwg17mDiwA/dPPFoDu6zCBn6gQ4Ot3kVWZSXJsR+A10t29pNc9cpgwoLM/Pj0VIoctXyT7ZvJ/XXWNtKCmwbGN63aR16WLwXvzk0H6TP06EzkvsPS6DmwJdeMeInSohqim4Vgq3NQfbj+05GgeIDVj0Crmb3peRQcqqB6055G+5A4WndbBVAholkod755XcM6yR0SSO6Q0KR/E24dzoRbfZ81+6vK+HDPJgK21bB8xs8gy6Cq5KYfIjIhjG9+fYq7351HvdNFN0sYi3cuAdU3m3PBgY3ktIvAgwFNvZeIz4uQZQ3+IWY692zJJs860IE2z0bLbsnEt46h/8U96DKsfaP+XDftch4c9Qw2rYTs1OCya2kWGMSjY/vgLLQx4IWbkSUJo/noaG2jRs+THS//nVf7mHMlSSRHi9ncgnA6jR/YlvEDjz8oJcjUkX7xu6l2bEErW/E3HE333iqwPS91+IKDtn04vfWkWNo3BJFVVaXUWcDnOW9S4ixCq5EZGD6GWL+ERu0/ePkgFmzYQ+dBxWQ41kAz6NPyyib9+C7vfRSrm3ZDXBgyOjGubxqJ0SHMX7ULnU5mynPd/vBxp8VHcsOo7pRU2bg17Qa0BoWMmgwq3JUMCB+A5jeDFR66YghfL9vGqB7H/9t/hEYjg8cXYI+yWogOC+SRKUOosTkIDTJzsKiSG174BoC2iZFU1znILa1C8Xj54uetABh1Whxu30CitklR3Hphb2LCAv/wMQrCv9nYsWMbPX766aeZPn0669ato02bNqxdu5arrrqKAQMGAL6A9rvvvsumTZsYP378KQ2CzsjIYNGiRaxbt47u3X3fLd5//3169uzJ3r17G6WNFYTzVVpaGvn5vuxN6enpDBw48CRbCIIgnF16vZ7o6Giio6MbLXc4HA1B8mMD5jZb05rcNTU11NTUcODAgUbLrVZrk4B5SEgIWu25u21dUOsgr/aPlYc7G1TgUK2DmDoH0f5/rxn4giAIgnC+OKeB8aysLKZPn84999zDQw89xIYNG7jjjjswGAxMmTKFoiJfuszfjlKMiIggJ8eXKrioqAi9Xo/Vam2yzpHtf8vpdOJ0OhseH290o3D6/d/788nWLyGh49GaRF2sA9hftxOP4kZFZXD4RQTqg5mV+xoANzd/gqmJD1HhKqFr8CC0so4+YaNPaX/FjkMAuFQHVa5yAnUnD4xrNDIufxl7mAZdncLXP6zjQKfNIKloJT32Ij/2OjbQ2jmS60c0rfn8Z/UZ34WLbx/J7Hd+wnt4trYzS8bJ4Vl+lQ6enfwW722cxqGqGtrERzLn7Z/Y/KAXV1gdjFCR3F5Ug5Yap4ut2YVIKgSU1aFXVNwetaFObWyIlTdu7oBWo6FLii9ddqL/0TrOGq3MxCt7AYcHKRzIJzYs6LhpYzfvy2v0/xEt8sI5YC8j0GmkJGIxu/d+RMuew/E4f2FXYVsiw8spr5DxeBVizIGMimvFjvICgstMrN6aRe+OjQcg9BrcmpULd6IzaOnUK7lJP7Q6LZ/+/EDDY7fLw7xZ6wm0+uEfaCIvu4zRl3Vj9ierQYXaqnqk+FjUkjKot/tmiGu1viC2x4OkKKiolBVUUpBTTlSzYCRJ4q17P+XnL9dw28tX0rZ/azb+uo9eg9sQFHz03Dy6cQlrinLQ6FSSAZSj6Y+LDpaydf5WPrznUgDyDhSx+LXFvj6PMeO6IYBgpZ7yfRA0rwLLBl8dq7paB188/AN3vDORKuqZ/NJw/IPMTWr/HpHapTnfl3yAoigs3Z+FSa+jb+KpDdIQBOH8JElagkwnDjwnmJsOZJIkiXBjDHenPtOQFeN4nxvjerRhXI82pFdvZN/BlYToIwjQBTVZr21gd7ZVreaidmPoM+ho2YjrLuj5J47IR5Ylbh7Tq9GynqE9Trh+26Qo2ib5BlDtO1TKs1/8QmG57zru9TsupEWsb9DOBX3aMutwgHv6vRcRF+G7TowKCQAgJMDM909ejUYjERsWhKqqfLRgIzsyC1ifkYvb4+Wxa4Yxd81uWsSEcvtFfU74mSsIZ4uiyijquU+b+Wf74PV6+eabb7DZbPTs6fvc6NOnD3PnzuXaa68lOjqa5cuXs2/fPl57zfdd4FQGQa9du5bAwMCGoDhAjx49CAwMZM2aNSIwLvwttGnThp9++glVVUlPT2fAgAHi744gCH8LRqORuLg44uIal2Oz2WzHDZg7HE2DzZWVlVRWVrJ3796GZZIkERIS0iRgHhwcjCyf2eshVVXPm7riJ7K7tJYos0H8rRAEQfibUlUVp1fBq6ooqm/Oo0aSMGhk8dl+FpzTwLiiKHTp0oVp06YB0LFjR3bt2sX06dOZMmVKw3q/fSOoqnrSN8fvrfPMM8/w+OOP/8XeC6eq2lVBfn0WGw5kkdSvrmG5jIZNlcsbrftj4UymJj3c8NigMZLo36rhcb2nFoPGhEY6+Vu3W8hgbN4aLNogmvm1OOn6ACUuB8Qawe3BbZFxl3pQ8iPRxpbQOqALX1e/jc4PthxYQln5aEJDLKfU7slIksT1z0zkqkcnsHHJTl6+ZQaVfkaUsABwuJBzyygKC+TF5+by9LOX8+Env7JwWQaKnwFnXADIEjFhQRQV1KDoQJEkJC9o6j1o3ArN/OPZ+I1CRKiWO/dsZURXO9OuG3XC/lS77Pw6exsf/LCO3ABfTdUFz16H6Zga6Zk1ZYQN8iO0xI/7ew9kR3YhMSEB6L3w4V2XsmV/PmszMrmxz0sYdF4O7GhF9r5XCBg+jTuvrcTfe0tDGtw3ek3gm8VbeXnmL3zFZj5//iqSYo/OSA60mpn2wTW8/Mj3XDvyZe55agJd+6ac8Hdcp9cy4areDY+79/f9P/6KXtTVOvjuo1VIOi0EWlBt9YAKsu+PjirLoChIkoQjJJRrR73MtXcP55Kpffnxg19QvAqLP1nJrC82cCirlBWLdvLcjKkN++ocFsOaohxamUMIjg+l5FA5qqKiWmScVwawyLWD/qrvZvAL104/2ukjE9YVaPZiDnL5b+oJq7Bn3l7ufnPq7wbFjyXLMsNSmw4kEATh3+dUPjPSArvyZNqH6GRDk5naAJPjb+fyZrciS+c+MAfw+ZItbD9wdLDdim2ZtIgN5ZEPFrJ0834mD+nI+D5pDUHx34qPPLpckiSuHe0beFBeY8Pp8hAdGsjQriKgJggn8tvBxQaDAYOhaYmVnTt30rNnTxwOB/7+/syePbuhlunrr7/O9ddfT2xsLFqtFlmW+eCDDxpqLJ/KIOiioiLCw8Ob7Dc8PPyEA6UF4XxjsVhISEggOzubiooKCgsLm8zKFARB+Dsxm82YzeYmJTNra2sbBcqP/Ox2uxttr6oqZWVllJWVNVqu0WgIDQ1tEjAPCgo6bYGECoebGpfntLR1ptS4PFQ63ASbzs809IIgCEJjTo9Cab2TKqebCrubKocbj9q0XIdWkggy6gg26Qgy6AjzM2DQnh/34f5JzmlgPCoqquGmyBGtWrXiu+++AyAy0lejtqioiKioo+mVS0pKGmaRR0ZG4nK5qKysbHTDpKSkhF69Gs9AOuLBBx/knnvuaXhcU1PTZGSj8NdVukr57tB77KvbBkDXSeBy+W60F2da+b8+97PfvYotlSuxe+tQUTFrA0ixtOf2Fs+glXREmY7Oct1auYpZua8RZojm7pQX0conri0KoJcNDI/8Y7O631+4DrvbgyxJ9E2Kp0ap4tKIS+nSLh5Z0rB+71YOeDZRtCaMR1f9wFuvNE01+1fojXp6j+3M9Bd/pNx0OCWSvwlPWAD2SB1LiguxPDSLxVt9s+FTR3eiIFQmr95GflUtAcW+C3fJ4UGurENbaaP3hG7s8HipKzPjqtIAXrbsz2+03yde/J4fN+0lOsRC8OAQVrizwKtiNamAPzaHC5fLw9bKfEKNZlICw3gt/VfWVB1E0kus3Z/DO3PXoVcUpgbNZcAF/gzs/DYDOwyjujgZ1L1s+MnOvE8/55ah1SBBiNXGnk2ZfPi/b+gxuiPWzgkA6LQa/IxNL+zt9S6W/OCrq/3l9F/4v9vepHZsAleO6MUdfY8/W/Gjx79l3rtLufaJSxlz3SD8zAauv28kEvDr4nSK9tcjtUhELa8EQK2vB69vxv6d71zP268vByB7fxGSJHHdU5ex7Ou1TLxvLDOmLz/8mmn5uWg7KjA4oh33dujH5JSOhBnNaCbKHNpXwPUd7sc12oxnpD+/ks1Dqz7muqgh7NlwAJBAklD9JOR9LvTf1CGXHa59e+RL3eHp/mt/3MraH2/D6Kfn3Y3TiIwXtQcFQTi9jJrfr4l9OoPibsVFtbuSUEPEyVc+jqFdU1i29QBmo57YsEBG92zFovV7WLjeVyojq7CC5jF/vOxDSEDTDCmCIDT12+9Pjz76KI899liT9VJTU9m2bRtVVVV89913XHXVVaxYsYLWrVvz+uuvs27dOubOnUt8fDwrV67klltuISoqqiF1+vH8dhD08W6En8pgakE4n6SlpTXU4925c6cIjAuC8I8jSRIBAQEEBASQnHx0EL+qqlRVVTUJmJeVleE9fI/mCK/XS3FxMcXFxY2W63S6RoHyIz9bLJY/fD2QVWlDomH+wnlJAjIrbSIwLgiCcB5TVZUKh5usSht5tQ5UOOnfF4+qUmZ3UW53NawfazHS3GrGatSJ77inyTkNjPfu3btRmhyAffv2ER/vC4YmJiYSGRnJkiVL6NixIwAul4sVK1bw3HPPAdC5c2d0Oh1Llizh0kt96YkLCwtJT0/n+eefP+5+TzSbQTh9tmcW8JPjRUo9h44ulECv913QhvmFkxranFZyMuNirsajuMmx7SXO7JvZHefXdJbrQZvvRnepswC7tw6L7BsIoaoqKupxb9a7FSc6+dRf64v7tuPV2b9yab/23Daud6PnnC4P9vWt2LbYN4o1PEU5XhMnZHO4MOq1aI6T8qm+1k51WS1RieG4nG6SkiPJy6tsCIx6/DV4/HzbLZy3Do1fALrwIK69dRirt2cxa+U2PCEekq6K5dCHueBSGTq+K8tem8uv329g4I2DGDquJ4mRwaxKP8iYHq0a7X/OvmzsLTTsSqhBqa8GHaCRqBwu0XKJm6tvGc603T/zbfZ2NJLMz6Nupk9kIgsO7aZzaCzVFQ5aRxfSMqqQiSN8N3NcthkYA58gKHIeW39ZyndvfUNoTAhpQVNxyPtpFjCZabd+yPaVGez4NYO5ZR8w48nJBPobiQwNaHKO/MwGJt7Qnw0r9+GHh/JOwdRbZN5YvY4benTFqGv6cfbj+z9jq7Gz4MNljLluUMPy6+4bydR7RzCm/f9wyyplI+OQvdDTaeGmu4ZDgI4NmnKuih9D9bYKLjycWv6i20dw0e0jcDrcjK9xsk7aR2ZoEf/b+YWvjxo9vcJaEel3NJNAXEo0kiQhZ7jAq4JGYqVjD8lqLEntmpG1MxclWMZ9pe+YPZ0MaDccTi125A+d5KuA7ogzo61xQ5WTGzs9yGsrHyWhjRjUIwjC349H8fD4rhtxKPXE+7XgluTHTikbzLH6tE1k5Ru3Njx2e7z878NFAOg0MvUOF1V1doL8Tae174JwrniR8HLuvwQf6cOhQ4cICDh6zXai71d6vb7h5neXLl3YuHEjr732Gq+++ioPPfQQs2fPZvRoX6mkdu3asW3bNl588UWGDBlySoOgIyMjm9wcBygtLW1SkksQzmetWrVi/vz5KIrCrl27GDp06BlPFywIgnA+kCQJq9WK1WptVAJFURQqKioazSy/6aabqKiooH///gwcOLBhXbfbTUFBAQUFBY3aNhqNjQLmR4LmZvPxB8P+9PMvDB8yGIDHZ35LWvfjT7o611Qgr9ZBO48iZhIKgiCchwpqHewuq6XG5WkUDD/VQVfHrp9X6+BQrYMAvZbWYRai/Y2nvb//Nuc0MH733XfTq1cvpk2bxqWXXsqGDRt47733eO+99wDfhdFdd93FtGnTaNGiBS1atGDatGn4+fkxadIkAAIDA5k6dSr33nsvISEhBAcHc99999G2bdvfnWUgnDkLN+zh4Q8X0vXCSgIjGz+X4t+eFgHt6ZY2CFk+emNPK+tobkkDwONV+GTJJjSyzBVDOjUEkgdFXIhX9RDn1wKLzuqr+VOYzXcVz6CicFuLp7Hqwyl1FhCij+CH/BlsqPiZIREXMyzyst/ts8Nbz6qyBaSmxbOy9y0Ny2tq7cyet4WObZuxYXM28xfvaHhu+OC0Uz4nS7fu54EZ80mIsDLr/yajPyaI66h3clWb+6ipqKPr8Ha07p7M+q/WoDPq8IRbUQNN6MrcuPQBoKgYCuuQndW8+MqVtO2SxGuL1+IKkajr7mUFOYyYFMfYsHb06tOCTZ/8QnVZLc3jwrhktK9m65DOjevQfrx8E1X9HSf8NHD5Kzy6bxFOxTcbXVEV3IqXSxLbMzK2FWadHpstG6XXV0iSSk1lAJYgB1qD74uEJBnpNHgMX+cMxGg2oNNrAd9zfS/sysYlO+h7QRo6vULr5pHH78RhV985jKvvHEZORj55L8xiKzKj2rU6blAcYOoTlzL/w+VM/r/xTZ6TJInbHx3PzFWbybHWAyC7rbTplcK9q3/ku6x0zFo92+65E53cOKXwW9PmsfjHTdQ96wXb0eX+uuMHX57+8X7eunMmsT/Gsu6Ccmyqg5TAaK5dPw2P28PlqbfjyHCiNNej3WAHRQVUUBR0ZiNuu5vaLqGUjYpDcnlp9mo6jnonT056gz4XdCUwxJ8Lbx8hRowJgnDeyazbzbKSOXS29qOj9eiAs09zXsah+D57c+r3827m09yS/Ohf2pdWI9OueTRb9+fj9ipszyzkwXcXMP3ei/5Su4IgHN+RGV9/lKqqOJ1O3G43bre7SeBPo9GgKL4BqKcyCLpnz55UV1ezYcMGunXzlURYv3491dXVJ8wgJgjnI5PJRHJyMvv27aO2tpbc3NxGKYgFQRD+bWRZJjQ0lNDQ0IaMo//5z3+oqKigS5cuTJgwodEs88rKyiZtOBwODh06xKFDhxotN5vNTdKxh4WFUe1wN2njfKUCpXYnsRbfvagBAwawYsUKrrrqKj7++ONz2jdBEIR/K6dXYXtxNXm1joZlfzUDyZHta1we1uVXEmsx0j4iEINGDIz6s85pYLxr167Mnj2bBx98kCeeeILExEReffVVJk+e3LDO/fffj91u55ZbbqGyspLu3bvz008/YbEcnZH5yiuvoNVqufTSS7Hb7QwePJiPP/4YjaZpfUzhzFmz6yD1DhfVNjsAW35szRU31ZDv8c30VhWYknQ/evnEaX5q6x2s2XWQN39YDUB8uJUBHZoDEKgL4eK4mxrW/WLZVj7Z8h3th1YBkG3bw6+l81lTvogkc2tKnL504burN9EteDA7qtfSJqArIYamwddfir9neekcAB5u/S6BumAApr3wI+s2ZPER4O9/dBbMxEu6MXZUh1M+N5v256GoKllFFVTW2YmwHn3/bli8g5oKX+31jYt3sPFw8F12uPEvrqRdy0i2LduFcc/RUa9hl3Ti0W+Wob/7Y2r6JiC5JCSXiqqXcGwrYcRrvr69t3EaRQdLSe2SdMK+Lc3ZCycaZFQrUxBmxKDx4FQ8DI9J5aqUrvgrBkY88gEut4eP751IXKiJuhoN4MEa2RPFvR1FKWnUlMXadDTuoMt60f9CA47yidQXz0Qf+AoafUdkTdDvns+oFhFccOcorvIzsq+sjOyKShKDm9aQHXXtQEZdO/A4LfiMuKgLyf0Smfjhl2hleOC2sQBYDSb8/RwEWKqYdXAlU5J8bdjqHMz7cj1FeRXgBuM+LZ6WClObD6VnaEtaWI6f7rDTwLbM2PGirw2Pk3qPgzBjIAA6vY5vs9/h1dtmsOD/fkE6JhHBdc9MxFHv5rOnZuM1+j7PVK1MaFIYlbuK0Om1fPn8XABadEqibR9RC1cQhPPL/MIvyK3fT7Ztb6PAeE59ZqP1cusP/OW0x5Ik8d59l5BXWsUVT32BzeFiw55c6uxO/E0iU5AgnAsPPfQQI0eOJC4ujtraWr788kuWL1/OokWLCAgIoH///vznP//BZDIRHx/PihUr+OSTT3j55ZeBUxsE3apVK0aMGMH111/Pu+++C8ANN9zAmDFjGs06E4S/g7Zt27Jv3z7Al05dBMYFQRCOz9/fn7Zt2zZa5nK5KCsrazTDvKSkhJqamibb22w2srOzG0pYHFFvsDRZ93wlAVUOd0Ng/ExwuVzo9SJduyAIwqkoqHWwpagKt3Jmi3Hk1zoosTnpFBlEtEXMHv8zzmlgHGDMmDGMGTPmhM9LksRjjz123Hp1RxiNRt544w3eeOONM9DDv5edVes4ULeTAeEXYNWfvfrDO7MLue2N2QA8fe1IHp0yjPAgf3q0asZz65+i0J1JN93lHCyo5oH355MUFcxz149Be8yolunz1vD+/PV0bxmHViMjSxLNwoNOuM+sonLKcq3k7wlnZNcU0gK7s6liGQDFjjwujruJzZXL6RM6ms9yXiG3fh8byn/hvpavNGkr1OCrYW/WBGCQj15QejwKiga8eolquxN3kExyiJWbpg6kqLgak0lPYMDJL0CvHtqFeoeL1s0iGgXFAQJD/AFwxgVS06cZ+vwaAlbm0HlwGne/eS0BIf6MD78BAGtEIJc8PJ6n1+8Aux2jRUPI7J0EWHQE/1BHUKSZu18/OuPdP8SfpxcsZtfPi3jrsrH0TGzWpG//Gz6Ukcvfp0lmTg+YS81M7taBK3u150BNGb0jEtHIMsu2H6CkyhfM35KZT3xEGuawhajeQuorbwe1GlfdB+j9LjnpuVFcWwEXqC5cVVcDoDGOw2ht+vu8qSSPXwuzsZV4+HTtNlQdqBJ8t3M3P91w9XHbL7HX8eyWZSQFhHBrWs8mQZfksBDun9ie1/bN49msrxha34H4EA3xtRqqPCo/5K9jcmJ/Htj2MVuKspDne9FlarjxP6PoMaAVkXHWP1Rz16w1YNY2DdDc9eZU7npzKl6vguY3o71GTx3EjrV7+SFjL/EBAdy25nZyMwqorazjwTHPYzQbiEwQ9cYFQTj/tAvszqH6A7QP6tFo+RXN7mBO/seUugrxqG48qotiZx6Rxr9WHkKWJZpFWHnupjE89ckSerdNEEFx4R9DUWUU9dyPCP8jfSguLubKK6+ksLCQwMBA2rVrx6JFixg6dCgAX375JQ8++CCTJ0+moqKC+Ph4nn76aW666ehg2FMZBP35559zxx13MGzYMADGjRvHm2++eZqOWBDOnpSUFHQ6HW63m4yMDEaNGiUG/AuCIByHy+Xizjvv5NNPP8Xr9TJ58mReeeUVoqOjiY6Oxm638+STT/LVV19x6NAhzGYzHTp04NJLL8VsNlNSUoLNZiM9PZ2lS5dSV1dHQkICgyde1Wg/29es5IlrJwLwxqJVRCf4Jp7M/+QDPpz2P/wsAcxYtQ294fiBie2rVzD7g7fI3Lkdt8tFWEwsF998F/3H+bJa5WXt58vXXmDXhjXU19UREdeMUVdOZcTlR/tx06BulBbkccF1t+Cor2fV/DnIGpk+oy/g3seehrCARve6Zs6cycyZMwHIzs4mISGBPXv28N///pfly5dTU1NDUlISd9xxBzfffHPDdgkJCeTk5HDfffdRXl7O999/T8eOHVm2bNlpeMUEQRD+uVRVZW+Fjd1ltWdnf4BLUVlXUEmbUAspwWaRSfYPOueBceH0cXkdfJbzMioqDq+dy+PvOGv7Nui0DbUSzEY9I9sl4XJ7yMgt5t6uD6E7/GX+te9/Jae4kpziSrIKy0mJ9QXzCsqqWbDBN7N8d04xi565HkmWsP5OXdBbx/Ym0GyiY/MJ9E3yXZheFHcj68uXkhbYnQRzKm0CuwJg1vqC0XZvHQX2bKJNiY3a6hYymHhzChZtEEbN0X3+78FxDH/ofRyKF60XPBo4ZHKxbmMm9zz/PbJBw6znryYuOrhRe6XVdeg0GlxuL1V1dlLiwnhiyvDjHkf7fq2YNu8/3PX696h6Dc5EK10tVv7vnRsaZllPun8c6xZu5ZYXriCle3PezN1LYVANAXUS6lY7ppJaWvdowctLHmbfwRIuuWcGyXFh3DSlLxty8gBYuifzuIHxlMhwvh9yDRN+/ggADRJeVNBCu5Ag2rQ2odco9I1MRDocAO7VOoEJvdNwuDwM7eirC6/RpYIuFYPlTly2T9CZLsRZ+yo60wXI2oQm+1U8h6ivuA5J1QAycHSqtNexCLftE3TmKQ3LCmpqmLRkFi7FS6qf730jH+5r2AlqQwHM3LOZ77N2ATAsrgVrK3cy6+BKpjYfyiXNfLMXN1f6Zi5uqcxq+HlMdFf21eYzMb4fZc4a1pbtBS3oOkhYS02MuKgrfubTH2z5bVAcIDgyiAEXdmfAhd0bljVvHw/ArOw30Bl0mE9hgIYgCMLZNiB8LH3DRqGRGt/UT7a0IdnShsKyXACsujCsutM3wKdnm3jmP3fdaWtPEIQ/Z8aMGb/7fGRkJB999NHvrnMqg6CDg4P57LPP/lQfBeF8otfrSU1NJT09HbvdTmZmJikpKSffUBAE4V/m9ddfx2g0EhQURHZ2NtOnT8doNDZknRk3bhxLly5FkiRSU1PJy8tj+fLlbNq0iY0bN9KyZUvWrl3LE088gaIomM1mampq+PilZxrtp13PvkQnJFFwMItl33/F5HseBGD9koUA9B457oRB8TWL5vHy3Tehqip6o5Go+ETKCvPJTN9O/3EXUXAwiwcvG0t9bQ3+gVaiE5I4dGAv7z/+IDUV5Vx66z2N2vtx5vsY/fzRG41UFBey4NMZJKa0ZODD99K9e3d2795NbW0toaGhNG/uy75pMBjYv38/PXr0oLq6muDgYFJSUti1axe33HILpaWl/O9//2tybjUaDcnJyfj5+f31F0sQBOEfTFVVdpXVsq/CdvKVz4BdZbW4FYU2oRYRHP8Dzv2UA+G00cp6Io2+wGecX/IZ35+qqhTac3B67aTEhvHWHRPolBzD2t05eLwKd741hyuemcU9b8/li5+34HS5GdOjFcnRIQzt1IKkqBAAqursXPT4TPJLqwHonBJHcIDf7wbFAYItftwxvg99046mCQ8zRDMmegoJ5qNpE+1ON0u/jcHj1FLrqeKbQ+8ct70IYxx+2sazuf38DGj0h2/m63wfLJHBAXy1YjuOYC31ZolvV/hSn+9Iz+PCiW8w6d4PGX7/+wy69x3GPjyDiU99xttzVp/wOPZVl/KN+SDX/m8EsSYTw2KjeerLuxqlHr/qfxcx6NlLeH39Tr5atp38yGrcUV5Kxvvz6Fd30u+i7tz47OVIksScVTvJLatk+cb9uG1uBicm0jYynMld2ze0V1hfw+7KIraV5/PyzuWEmcx80n8SAAoK/YObM1hOQdumkg8PfMCW/D4UFrSivnwKqmLDoNPy30lDefrqkU1m4hn8r8MSsRK3/SuctS9TX3nrcY/bZf8BxZOB6k3n2KD44Wdx1fwXVfHVh/IqChNmfoHL6VuvrV8or184ih+nXsFnl1/M+5dccMLz2zMyHp0sk2CxEmsO5LvcNdR67Hx/aG3DOjcmD2dIRHtuSxmNQfYN8hgS2Z6PetzJ0Ij2BKom/FZrkbOhj7Y1b39722kJiru9Xr7Yup1lB7L+dBtBYQEiKC4Iwnntt0HxI9oF9sAom9GiRZJkXIrzLPdMEP5evIAX6Tz4JwjCmZSWltbwc3p6+jnsiSAIwvkrOjqa7OxssrKyuPzyywF46623qK6uZtmyZSxduhSAl19+mYyMDDIyMvD396euro5nnvEFv99++20URSEwMJDMzExy8gvoMWxUo/1IksSwib5JG8vnfIvX66W6vIyMzesBGHDBxSfs46cvPo2qqkQ2S+DtJet4Zd4vfLhmB0Mu8ZUQ/f7d16mvraFZi5a8t3wjr8z7hasffByA2e+/ib2urlF7wRFRvL10LW/9tJrgcF+ZyG1rf8XpVVi3bh2dOnUCYPTo0axbt45169YRFRXFtGnTqK6uJi0tjUOHDrFz505eecWXTfPZZ5+ltrbxDEeLxUJGRgY7duxg7ty5f+RlEQRB+NfZW2E7Z0HxI/adB334uxEzxv9BZEnmjpRnqfPUNNTIPpOWFn/LkuKvCdFH8p+Wr7I7t5gtB/LZciCf4V1SyCvzBbpX7zrI6l0HeWvOah6YOIhPH5yEQXf0ref2eHG5j95ii/ud9Ol/RmZhObsPlqFtEUBEYgXxfqc+4l6rkbljXG+embUMj0elT9sEoqwBfLtyR8M6fTv5RmEuX7mHyqp68nQu8PONOXF7fYHcDxZsoE/bJNolRTXZxyMbF7C5PA+DrGX3iw8A4PR6uG/9XEoddbzc4wKiTBae/3IZXkVFUVUCNEYqrfW0D4qmuKiSuQUHWfaf93jh01v5yLAJzwiFsdUt2XAgj3VrspEkMEzwBSZK7XUMWTAdh9eDSaPD7nWTXlHElJQuDAw5yAutluKS22P1H0197avUeWWCNB4kCVTXCjzO5ehMo0967iRNDHgykTWxDctU1VdfQ3Fvwlv3CrKkQWoSFAeQkHXtQQrwra+qON1etKU6/Itc7Fy6gfK4A3y04F5ONgSkT1QCOyfeg06S0cgyNyYP5+vc1UxJHIjiLcZt/4EYVeWhRCd68wUMjeyAU3ETbQomfctBHrnpYyJigvHL06JxwFbNfm6a/zpvfXMbkTFN65r/EZ9v2c7TP68AYMF1U2gRGvKX2hMEQTgbVFVlWckcyl0ljIq6vCEryx+V6N+S9oE9WF/5MxWuYr7Pn8FVCfecfMO/qcLCKupsTlokR5zrrgiCIAjnseTkZIxGIw6Hgz179uB2u9HpdOe6W4IgCOeVMWPGYLH4vodMnDiRWbNm4XK52LdvHxs3bmxYb9Ik3ySQ2NhY+vbty8KFC9m0aRMAu3b5sgv27t2biIgIbG4PPYePYcWcbxvta+CFl/LFq89SUVzItlXLKS8qRFEUIuMTadmp23H7V11RTkmeLzvWwAmXYQ0LB0CnN9CshW8yz/6d2wDI3b+HSR0b391yORzk7NvdqP2ug4Zhtvjuk4XHxlFRUkRVWRmr167FINFQS72iooJdu3ah1WrRarWsXu2brJOeno75NxkX7XY7O3bsoHfv3g3LLrroIuLjfVkKRTkPQRCEEyuodZy19Okns6usFoteK2qOnyIRGP+H0UjasxIUByh3FQFQ5S7Dq3rp0SqejxdvJDTQTPOYUF6+eRxzVqfzxS9bAbC7PDz2yU98umQzX/33SmTZNwM7LMifPmmJ/JqeDcCILqnU2p1Y/kRN0CpXGQfq0mkT2BWTxnex16pZOBf3aUt+XjOu692ZFqHxTbaze22sKJlDuDGWTtZ+Dcv3Hirh2a+XgQasfiauGd6VxRv3Ar6U8d89fhXhQb4a4T36JLNuTy7NYqz8lHUQAI0s4VV8wWCt3DiVRZ3TRZXdziFb1eHnfcH0Fdszue+beVS09Y3yueCnGXw+8ApGdW/F4o17GduzNe/1vJhyRz1hJjM3Pv4RVX2jqAKWHzyAS/WCBkaMbUPdQdfhfviCwgDZdSVo9XXoXDoC9BbsdjfxFisDopJJUCX0koKerdTX7kEnKQRplUblxz31X55SYNwv+AO87l1odG0BKKiu4bIPv0RVYfYUL354G7WrAhJGNKbR6AOeQpJMDek/dBoNX195Gbf952PU7XVIQElh1Un7cIRRc/SjbnRMV0bH+FLs15VORHGvOWZNmRDL7Q2PNq3ah8PuJudAMf1HtMXrVVi1ZBe2WgfZ+4r+cmA89PAXEr1Gg79e/5faEgRBOFsKHDksKJoFQKAumGGRJ54lcSptHRGsC//LfTtfFRVXc9V1H+B2e3nsvxfQv2/qyTcSBEEQ/pU0Gg2tWrVi69atuN1u9u7d22gWuSAIgsApp4v9vfWOTN44so7v9p3aZD3/wCD6jBrPL99/xbLvv6K+zhcEGTD+z38POtwBAAKswUQ0S2jytCw3DkofCYoDaI7c51JVNmzchKu2moqKCgByc3P59tujwf3KSl82Rj8/P6zWpvexZs6cycqVKxsC67m5ubzzzjsNgfUj/3Q6HVqtFo1G0/DzidY51eUi7a8gCH9XTq/ClqKqc92NRrYUVRHiF47hOKVahcZEYFz400ZHXYFVH0Zz/zR0sp7W8RGsePkWwHdRaYkxcN+lA9i49xD788satsspqcTt9WKQj779RnRryapd2UQFBzD5mS+w+Bn44fGrsVpOvZZNlauc1/Y9gM1bQ+vqrlydeD/gCwo/fPmQRuvuzStlVXo2Y3u0JjzIn5Ul8/ilZDYA8X4phBh8KYk8itJwSfx/EwfSqUUsreIjSEuMpFl4EBpZYtPeQ6xOP8g3K7dT73TTr1UrehgU1mXkNgTFw7VGWidENuzf5nIx4q2PKK2rJ6mTPyXUkWaNxOXxsHjjXpw1CpJNQjWrlDvrmZu7i8evHk5sj0C+KdhGUlUw7YKjfa/D2G6smL8Ek6xhUvuuqIEyWklmUHQLNDESUcEBhAeZiQz2jaSdlfsL/iYXIWaY3fs6SmuXEWfIQPV2oVnYffx64ABJfvkE6+2+11L21RZXvb7a2w57Bl98t4YJQztgDTjx6yNJRrT6zg2PDxQu4eXB77I6L4ENhQ8zpNl1eOpnATZUVcXm1eK1riPKT0ZVSpCOqUvudLhRih2MT01l4Y6NeCSFidcPOOX3xoko3uxGj2Vt49rzoy/tRk5mCbu25LBi0U4SUyK58Ipe6PRauvY5fuYBRVVxebwYdSf/eB3TOpV4ayBBJhNRAX9uxqUgCMLZFqwPI0gXQo27ikRzy7/Ulkf1DeDSSwbMOgsexY1W/ufNiquvd+E+nB2nolKktxL+HEWVUdRz/wX3fOiDIPzTtW3blq1bfQPM09PTRWBcEAThN+bNm8djjz2GxWLh66+/BkCv15OSkkLdMSnIP//8c+666y7y8vL49ddfAejSpQvgK12xbds2Vq9eTUlJCWZrMOsWLzju/oZffhW/fP8VG3/5CVCRJIn+404cGA8MDiE8thklebksm/01Qy+ZTGBIKB63m8KcbOKSU0hu25G8zP34WQJ4+N1PsQT5gtY1leXsXLuKlA6dT9j+sVSv73vGkewibre70fMxMTGUlZVhMBiYPHlyQ91wm81GdnY2MTExuFwuFMWX0dFut1NcXHxK+/6rNBrNKQfVT2dAXqPRiKC8IAh/yfbiatxK08FU55JbUdlRXE3X6L82me/fQATGhT/NorMyPHJio2XHu6iYfucEHvloMQBxYYH0bZvUKJU6wMhuLenXLokvl23lrTlrqK13kl1UyfLtmXRvFU90SECTdn/rg6wnsXl9oxtlfv/i5pY3v6eitp4tB/J467YJRBjjADBrAhrVGW8TH8n02ydQ73AzsL0vZbpJr8Og1TL1hW+QJN8xe7wKRw79w4Ub8KrHpAd3q7Twb9z/GruT0rp6APoaWjDA1Jwvv91Gj6/eoH1SNO5QGTnPSFiqnoBAPePj07B73Dy7/WcAblvwPe/0vZgWcWHMrttJYDuJl7qOIcJi4Z62Axrtq2frxjPkY/1C2VCxn25BerRV3YhSa/F4QPUewGh9k+3ex2kpXwP4Rs9q9J0wWV/GVfMSbvtcHv+gPesz1lJVU8Q9V49Ckoz8nHeApzd8St9IC4/2vBf5OO+DjqFLUF2lpIaWIluDUR12wHcOVMDm0WNR9lBbfD2oNRiDXkHvdxEA/3fdDDK2H2po66l3rqZL7xa/+xqfCo2uDV5nIchx+Id+jnxMMB4gLDKIR1+7gkdunsmmVfsIjw7ixgdOPFve5fVy4cdfkFlezpsXjGVISvOT9qFtVORJ1xEEQTifmDRmHmz1Oh7Fg0Hz11I0yZIvwOZSnSwo/AK7p57R0Zefjm6eV5ISw3jq8QmUldUxemS7c90dQRAE4TwXHx/fUAv3wIEDOBwOjEaRFlEQBOGIgoICEhMTCQwMJCsrC4Cbb76ZwMBABg4cyJAhQ1i6dCn33HMP7733Hnl5edTV1eHv78+DDz4IwD333MPnn39OVVUVKSkphIaFkZt76Lj7S27bgeZp7clM3w5Am649CY+N+90+Xnnfw7x8900U5WRz85DuRMQlUFaYz8ALL+Xah55gwg23sWHpQopyD3LjwC5EJyRRW11FRXERIRFR9B41/pTOxYQLxoPXQ2ZmJgcOHGDPnj188cUXBAUF8eyzzxIXF8ftt99OZWUlr732GlFRUdTV1VFRUYHVamXo0KF4PJ6GtOlHgscej+eU9v9XeL1evF4vTqfzjO/rt/5sUP2vBOR1Oh2yLAaZCsLfXUGtg7xax7nuRhMqcKjWQUydg2h/8d3h94jAuHBSHsVNhasEg2xkd80mWlo641BsBOiCT6muaHCAmbfvnHDS9cxGPZcP7IjD5SE6JICPF29k9e5M0npU0DI6jmR9Dy7p1+GE22sk3wVcjCmRS5vd9rv7Cgs0U1FbT4TV1/8O1t7Em1MwacwYNb6RkwdteylzFtAlpU+T2WvPzPoFRVVBhdBAP8qqbVzYJ42VO7Ipq248EyzEaia+ZTj/fXo210/pR7O4EKICLbw0YSRbCwtQQtysXJaN5PUFk7dlFRDdOoC86hpGBabx8IgBgC9IPTw2lcU5e6nYZ+f5/GWk1Dv5tXU+ACtLMukbk/S7x62qXm6NLWVKSBF+2MB7tAaG17EQR/WT3NbqRrzuT3BUXo2KA72hFwD6gHuRzXeTUzqDDsnpTB32BnXFT2IO+5nlhzYwq+unmDQeqmoiCQ684mi77gxcde+i0zfH7QlFaxiIWncnXs+2w30CJ6HIAU9iqLscDtccVzyZDW0UF1Q1Oo7jBd4BFu7ZR0mdjcs7tkN/CnWQ/Kyv4XH8gsbQA1lz4pqv/3t1Evt3F9CiTczvtlduq2dfqS87wpqDuacUGBcEQfg70kjao+n7/oIp8fewrHgu6yqXArCqbCG9Q4cSpA/9y22fb3r3/OsDugRBEIR/B1mWadOmDevXr8fr9ZKRkUHHjh3PdbcEQRDOG3fccQc2m41PP/0Ui8XCpEmTePbZZxuenzt3Lk8++SRfffUV+/fvx2KxcMEFF/Dkk0/SsqUv61XHjh354osvePDBByksLCQhPp5R197KGw/dfdx9Dr98Cm8/fC8A/S84eRr1XiPGYrYEMPv9t8hM307hwSzComNontYegJikZKZ9OY+v3nyJXetXc+jAPgJDQunYZyC9Ro07pfMgSZCa3BxJknj22WcpLCxk3bp17Nu3j5CQEAYOHMjAgQPp0aMHjz32GMuWLSM/P5+IiAhGjhzJZZddxpVXXgnA888/T0VFBX369OHhhx9GVVW8Xi8ej6fRP7fb3WTZqSz3er2nvK338Cz4M+nIvhyOsxvckiTpnATkRep6QTg9VFU9b+qKn8ju0lqizAbxO/87JPVIQZV/sZqaGgIDA6muriYg4OQzk/8NShz5LC+ZQ8uAjqwpW0yWbRcWTRC13ioCtcFUeyowawJ4sNVb6P/ibLET+c+789jjXEWr/r6Rnxu/T+Pd628hJTbsuOvXearJqttNiqV9Q3D7RGwOF/vzS2mTEInuOAHUancF03bfjIpCx6C+TGx2O5IkoSgqCzZk8MnizRwoKKN1fARv3zmBospaWsSE8uHCjbw1ZzXgC94adBrsLt8IS9mucEGbFB55YGzDfh7aOJ+vsrYhI+G/wtgQHB/duxVztmTQLDCAOY9eg4LC3pp8WliieWTGIn7eeoA+gVb2vLWMkinhGAZGc2mLTtzTrt/vfuB57D/irLr1d8+N1jQBQ9ArKN4KVKUMja5xyvC6eifVZa9h0b4JgDl0HgdqPEQ6L0SSwGD5PwyWW46e67JJeF2rACMB0fsAqC8ZhOrNRFVVJE0MBuvbgEp92QUAaAzD8LO+jCT7fh8PZBSw9pfdNGseTlCwP+27NR0AsLu4hPEffQ7Ao0MHckXnDr97nH9ErdOJn07XUKf993y4YTPpRSXc17830YHi80QQBOFkdlZvYObBlxoed7UO4LJmN5+7Dgn/SH/n6/0jfX9w7QiM/ue+1ICjzs0zPRf9Lc+lIPyd5Ofn88EHHwCQlJTUELgQBEEQzpyVueWU2V3HfW7fts08OHEsRj8/Pli5DZO//1nuXVOhJj39moWc626cdqqqnpOAvMfjaUgp/08ky/JZC8gfu0ykrhf+ScrtLlbklp/rbpzUgGYhBJv057ob5y0xY/w85vDWo5V0Z7TWplf1MDP7BUqceUxJuI9oUyL1nlqmH/gfNm8NmytXYJLNAHhUX42aIyMp6r21OBXHaQ2M19gc7M4pplOLGB65YggXvbwJVQXFK6NV/AkLOvFFp782kHZBPU9pP2ajng7NTzz7VyNpkJHxorC16ldaWNrRJXgAizbu4X+H08I/ec0IRnRLRSPLuLQu7toyA2usP9PvncB3uWtRA9wsm1UCLl8wVdFBZSs3b+1exQ0te1LlqiP2cIr1KL8AjP46yqrr0QcoHDTnoNV5KKmy4fEqPLbrC1aW7qJbSAovX38t9U436ct38+jbywks15Bjd/LGjrUMiE6mc5jvuDyKgsPrxl9naDguSRMHyByZlQ2gD3oXV/V9oNYeXscXdJY1wSiylYzKEpICgjEcnhno72fAHHsTztp6JE00sq4dqaESHscnKN6D6Pwap8DVGnrhda1CYzj62hiDZ+Kouhvce0ApwFl+MX7hGzBZ30NVa9CZLkY6nF5XURR+mr2ZgweKGTy2I9EnuOAPMhoxaDQ4vV4iLKfvy8mCjL3cNXcBySEh/HDN5JPORL+226nVgBIEQRB8jmR8OaLGXXVuOiIIgiAI55Ho6GisViuVlZVkZ2c3pAAWBEEQzpxgk45yu4tjZ5HlZe7nm7dfYfem9QAMvfTK8yIoLuHr7z+RJEnodLqGuulnk6IopyUgf6J/v7fd2Tg2p9N5TlPXn63Z8Uf+ybIsgvLCaZVVaUMCzufZxhKQWWkTgfHfIQLj56lfimezuGgWFq2Ve1u+jEljPm1t17qrDqdAl9hS8St7arcAsK1yNdGmRDJqtjTU6g7RR3BJ3M2k12ygY1Bfqt3lRJsS2Fr5K1GmBCy6oNPWL4BrX/yKrMIKuqTEEuRvoiI/iNWfd0LxyHz38HVY/U2ndX8n4q8N5KrEB/gwexqgNty0DzT7BgFoIl28ZvuajempPNr2Mn4q3MaG8gMA9ExL5VdlG1SBnOyHmmUCrYoaorCULXj2alibm85BTTZ+WiNfDbqG+Uv2Mad6FwAhgx1kaUqIGhLAY4kTMei0FDkqASi2VyJJEmajnu4jOvDlgdfZVl/Mtau+x0+rI8bsC7TbPW5GLfyAPFsV0/tcxICQfbht76MzX4cx7BccpUMBN5ImGa1xMLL8Hu76WWgMg9CaLmg4D//b8BOf7dtKx5BoZo+a0rBckgMwBj7W6JxpjQOOey4NltvQm68AKfCY7YNQ3Zs5GqDXUphXzbT/ZBIeHcSDLyjodL7AeG5WKXNnrQNgwbcbue6eEcfdT3RgAPf0783P+zP/UGDcqyh8v3M3IWY/BiU3nYm+PjcPVYX9ZeVU2e2EnwdffgRBEP5JWgd0RoMWL74MK+Wu4nPcI0EQBEE49yRJIi0tjV9//RVVVdm1axfdu3c/190SBEH4Rwsy6JoEO6rKSlk1/weMfmZ6jxrP5Xfdf0769lsqEGT8ZwbGzyVZltHr9ej1ZzegpKpqQ1D+dAfjT7bt2Uxdf7YdSV1/qkF1jUZzWgLyR4Lywj+L06OQV+s4r4Pi4Pv7kFfroJ1HwaAV78PjEYHx89BB2x4WFX0BQI2ngipXGSbT6QmMLyuezcKiL0g0tybZP40lxV+jlXSEG2LoHDwAgBRLO6KM8aioXJf0MAG6YBL9WwEQiy9wOCji5DXD/4yqOjsAm/blNSxz1BppnxRFTGjgiTY7IypcxYQbYuho7UuAvRWFag290xL57MHL+aB4EWur97C4aBv3tbqAXmEt+SpnNUF6M11DWpBgDie3vpQJXTrxXfNVSDJIHpB0KqrqJpNsZMDmcbAvp5g5K3xBcYNWQ0JQKNtqa0gNi6RrShwAT7abzE+F20itDae8qIqQyCAAgsID6OwycGPrbrSxRhDp56uZXmKvI6fOF0zfWHqIXvpnUL15uGqfxS98Ncbgz/G61qHzm4wk6dAYeqE5XEv8WCtysgHYXlqI2+s9btr5UyHJQb9ZYMTjsaDVVvse60fzyw/ZHMgo8P3bXUCr9s0AiIkPIa1zAoeySug9uPUJ96GqKi8sX4VHUXhl5Rpu6tmN/5u/mB7xcUwbOfSEowO/3bGLRxb5atvOuWYyrSPCGz1/U89uODwe2kdHiqC4IAjCGZJsSWNv7TYAAvXB57YzgnCeUpFQOPezHdTzoA+C8G9xJDAOkJ6eLgLjgiAIZ1iYn6HJTMC07r34bk/BuerSCUlAmMlw0vWEvwdJktBoNGg0GgyGs/u6Hqknf7YD8mcjdb2qqrjd7rMyI/+3ZFn+Q0F1jUZzWgLyop78mVNa7zxvg+IXtYwG4NZprzBowmWoQKndSazl7Ew0/bsRgfHzSIWrhHVlPzX65Yo1NSfS2Oy07SPbtgeA3Pp9RBpiAVBRuTn5CQwa3y+JRWfl7tQXT9s+T8RV+xruuteR5ODDNabhvetmMX9LBB+taJwS3eE++yPK5hd8ilt1sqFoNf95OwedVuabR6+idUIk1wYNonJPLd1CWuCvM+KvMzKn/4MN237W6y5cXg8H60r4fsMqAFS7jKQ7OgIvwhtKq7Bo2gTFcuRv1Vt3TaBNUgQZNYdoFRDXsG6sXyiJm808ce1LGM0GPt7xAtYI30CBN9PX8O6u9UhAt8hmhJv8ibdYeaTjYMLVT+gbNhuNfhye+o/QHk5zrjF0R2M4+U2VLoZYCopr0Tu0uL3Knw6MN6WhqiqIkJBqJAlslWvoO+wBli/cQWS0leatohvW1Om0vPjx9SdtUZIkBrdI4qd9BxjSojnfbk8nr7qGb3fs4r4BfQjxO37deavJ977XyjLm44wGjQqw8Nzo4X/yOAVBEIRTcXHMdbx+4BEAJsaJ+uKCIAiCABAeHk54eDglJSXk5eVRWVmJ1Wo9190SBEH4xzJoZWItxvN+RqAExFqMYiagcFocO6v6bPtt6vqTBdVPNvP9jwTyVfXM/pYrioLL5cLlcp3R/RzPkZnvZzsg/0+vJ1/ldJ/3adSPkIAqh1sExk9ABMbPIz/kfcCe2q0YZCPN/Fpg99iYknDfaf0wGRM9BUtpEK0DutDcvw2hxmia+SU3BMVPN3f9jyjeUjQaK763mwONoS/I4bjrPgI8qEoJ9RWPIasHiAhwcO2Ag3y3PY0RPXbTIqQ32YVtGd877U/tP6tuN9urVtMjZBhRpvhT3m7e2l1k7gshLq2EQGdbkCpxexXyy6ppFh5EWlAzXu08lVf2zOWVPXO5PWU0Wvlo0FgjyZi0eloFxfJ8hylUumy01SUy5dmPKO9cj+yvIJvLKK4oo71/c666oBOzypbx/N7ZfNr8ZjpYj6b09noV0nfnk5NVAoDD5sRWY28IjDfzDwJ8gd2VBdlc3LwtAFc3D8Je9iO4QTLchjlyzx8+f48NG0KrLRF0iovGT3/i9ExlxdUsnbuVbv1SSUqNavScoii8/N/v2b8rn/umXUyL1jEo3kOEhuYA4PFIzHgzkQHjK/hg7t1/uI/HevPCsQ0z21uGh7KzqJjuzWIJNp34/T0sNZnvr7oci8FAvDXoL+1fEARB+HOshjAebfPuue6GIJzXvKqMVz33Nz/Phz4Iwr9J27Zt+fnnnwHfrPG+ffue4x4JgiD8syVZzRyqdZzrbvwuFWhuPX1lNwXhXDkfUtefjpryf3TG/Znm9Xrxer3ntJ78Hw2q/9Xa8mcjdX2F3Y0KbF7xM9++/Sp5WfvxuFwEhYbRPK09Nz3xPB898xjLf/iaNl170mP4aOZ++A61VZW06dqTm596EWvY0Wy1v3z3JQs+/5D8zANIskRCyzZceP2tdB3km6RXkneIm4f4Jjc+PvNb0rr7Mv7eNKgbpQV5XHrrPbTp1otHr7q4oc23Hrqbtx66m7DoWL5du+2Mn5O/KxEYP4+EGWLYU7uVMEMMt7WYdkb2EW6M4ZJjZmL1DRt9RvYD4HGuwV19G0CjtI9uOQr0g4FKPF4Ju1tLrT2XaKsDVQW7NIZLx+3gqsSNKOo6zL3WI2tC/1QfPst5mTpPNfn27D90TlftzGbf5gT2r0nguRt7gTQfgEOlVfTEF2BfVLCFxYXbAOgT1pquIckA3LVmDgsPZfB011FcnNSOvuG+9N+qqhJUbqBA60Lr8aKqIEkguWSWFm+HKAc55NNtzgt0tCbxQf9LkSWJjz5dxWdfriUk2MzUpy4jtnkEsS0iG/o6OaUjXx/YwfbyQh5at4gLm4Gr+lFkfVckTQKqtwCNvmma9FMRaDJyQ++uJ13vlUdns3n1fn74bA1frnio0XNF+ZUsnbsVgMXfb6ZF6xgkORLQAy7WrIhnxc9JjJ5s/FN9/K0js9o7x8aw6PqrTmmbtlGRJ19JEARBEARBEAThLEtLSxOBcUEQhLMo2KgjQK+lxnX2s1eeqgC9FquoLy4If9r5kLr+dATk/2ga+7NZT97hOLsDjI5kPjhTAXmNRkulXaK6opznb5uKx+0iNDoGsyWQssJ81i7+kSn/+W9Df/Zu28T+HVsJiYzGUW9j84qlzHzuce568S0Avp3+KrNeex6A0OgYPG43e7du4tlbruGO59+g/7iLTum4/fz9adG+E/u3bwEgIi6egOAQrGHhVDndqKr6j57F/2eJwPh5ZHT0lXQNHkiI4Z8RpPO6dyMdExBXUX2PlUJUx6fIyMgSjH7+Jvr1281N3TfwxaE0kiKvwa39CACHYsRfapoCO6umnGt/+YYwk5mPB12GWXf8UWVxfslk1Gwmzi/5D/X94v7tKa6sY2T3lnRKjiUy2EK9w0WXlNiGdToFJ2HWGPDTGHnpozVovBt49eZx/Ji7G0VV+TF3NxcntWtYX5Ik3nt+Cu9tXkOt1U2Ew0SEn4VL2nZDo2h5Oe97ZI2GEqfC8sJMyh02wkz+VFbZAKirczL+lmEY9E1/bccmtGJ7eSEDYpLw2D5EcW9GcW/GFL4JSbYgSacn6HwiYZG+2esh4QFNnouMsdJ/RFv278pn6PiOAMiyAVPYzyjunaR2bcubX2tJPiZ9uiAIgiAIgiAIggBBQUHExsaSl5dHSUkJJSUlhIeHn3xDQRAE4U+RJInWYRbW5Vee666cUOswiwh0CMLf1LlMXa+q6lkPxh9ZfqZT15/pevIag5HWF06hrCAfj9uFwWTi9fkrMJj8UFWVzPQdBASHNKyveL08+/V8Elul8fztU1m/ZCE71/lK7jrq6/nu3dcB6D50JPe99j5ej5v/XjGB/Tu2MuvV5045MJ7Uph3PfvVjQ43xi2++i0ETLgPAo6g4vQpG7ekqj/vPIQLj5xFZkok0nb564uea1jQZZ+1TDY/Vw9UXjg2W7yyMxNHHRoHFzNi1E5ElA/PaJ2CMepKlxQMJssfx4PMfM7F3GTeOaU2mox8ajZZl+Znk1FWSU1fJjvJCekb6ZnGXOWwE6o04lToW5f+Mra4ztyZNopl/HKdiW+VqVhTPZ9VPJjKz/ElLjCQ4wI/5T01FVUGWj/a9hSWaxYMeZeGGPfw3ezEAG/cc4tHOw1h0aA93pPVp0n5UZBCPjh7VZPmE9p2Y0L4Te6pKuPqTD/GsL2Fh5k9MeWQCN103kIRmoaS1iTluUBzAf42dlu/U0X2yBzrFAgFoDD2x1Zox+Gk5NhuNqqo4HW6Mpr+WokZRlIYUJbc/Mo6h4zuRlNp0UIcsyzz4wsSmy7XNkLXNSEr9S90QBEEQBEH4V1BUCUU99zdAz4c+CMK/TVpaGnl5eYBv1vigQYPOcY8EQRD+2aL9jcRajOSfZ7XGj9QWj/Y/sxNgBEH4Z5IkCZ1Oh06nw/Q7pUfPhCOp6892QP50pa6XDw9kiGuRQkRcPMWHcri2dzuiEpKIb9GKHsNHkdy2fcP6zVJaktjKVx44tnkK65cspLq8DIBDB/biOjyjvveo8ciyjKw30GPYKPbv2EppQR7VFeWnpd/KGR6Q8HclAuPCGaPRmFCNt4DjrYZlKipur4RGVtmdF8Utq8bw4ag5tAss5cei5thMz2BGT//vp+PRKnR215MUdoip/b7CUwPv7hrIvKJU3h9wCV3CYgkzmekUFgPAF/u28vCGRaQGhTE2JYcc+x6qHQYO7W3FfW2vJcwQdaKuApBbXMlnB99FNtoJb28kc28H9nKQXFspzcxh/HYgpuItxFkxhf4Jevq2uYR6l5nebRIJNBu5skXnP3XOWgaFE/XMQepr7WwvzQDA4m/kkglH05mrqgPFvQ9Z1xpJ8v0KL1+wHZwq3bq9gMdWys7S1tjLbueFu6cRHGbh3R/uxHz4ovmFh7/ll3nbmHLbECbdOPAP91FRFB664SPSt+Twf89dSp+haWi0Gtp0PPUa7oIgCIIgCIIgCMKpadOmDYsXL0ZVVdLT0xk4cKCYKSgIgnCGtY8IpMTmxKWcP0EFnSzRLiLwXHdDEAThDzvX9eT/akDeJWlwAXqDkRe+W8SKOd+yf8dWDmXuY8Xcb1k+5xvuffXdhv2aLUc/qzWHS78eb9b8717TH/OcohxNg19fV3vKx+89f/6EnVdEYFw4o7QaL8eOyamoNXD3ZxdxSLXgrjWhqgqhWjsAkS4HXsnKO/PX4NEoNDdXEoKZKDUBRZWRJYVKt5E2AcU003zF10NuRDqm9vjmMt8I+n1VZRyZyBJgcKJK2/g85xXuSnn+d/v69Bc/Ux4QTELHAor2RNB+vJl09nD9hlwWDHgEjSQ3Wt/rXI7q2YcMvHzNbWhNIwFQFRuOiomo3mKMwZ8g61oCkJlVwOLFM8jY7881kyy0b9sKjaF3k37830c3sfL7DUy4bTiKtxBVKUOja4uqVOOxL8BV8yxQhaK5GEv4SwBcf99Ivv3oVwLDfR+yDlcNP23di6KolBXXUF5Sg9nfiKKqfK3up3aKHz9t3sUkmgbGZ765hF/mbePG+0fTa3DrJs/bah1sW58FwNplGfQZmva751UQBEEQBEEQBEH48/z9/UlMTCQrK4vKykry8/OJjY09+YaCIAjCn2bQyHSKDGJdwfmTUr1TZBAGjXzyFQVBEASgcT35v8Lm9rA4q5T6ulrysw4w8oprGXU4cP3Y1Zeyc90qdm9cd0ptxSWnojcacTkcrJo/hx7DRuP1eFi3ZCEAYdGxBAaH4HTYG7YpOJhFu5592b5mJbaa6iZtHmnPaa9vtFwjxtIelwiMC2dUbfVPmI55l1XW+7PLaMXRzIvscRKwXs+9H11An9RsftqZSqXtR7yKysW9K3mixze4PDJT37+aD1c9xk1jO3BxS4n+hkvQ4sBZU4Qh6BXctS+iKpX8p1VfegdWove7jI4RVl7b/0DDoJoQfQTrinI4WFvJhKS26H/zQehx7eby3ot5bnY0tth6UjrUsTOnFIJAJ2k43ueH1jAMj34OSHo0hqNp0xXPbhT3Dl+7zqXodS2xu9ys33Y3V12wjnq7Dj+TG0cFGIK/Q2vo0qjd7iM60H1EB4rz9lNbMASt1oXO/07cdW/BMcMMcvatpaVlAbK+I+07HaRT93GU1vVhxto32V7alkcnDWSuXU9sYihxiWEAHKytpKy17wI6oE3Tmt6qqvL1ByvxehXmfLH2uIFxS6Af1907gu3rs7jk2n4neukFQRAEQRCE08iLjJdzfyP0fOiDIPwbpaWlkZXlG6Ccnp4uAuOCIAhnQbTFSOtQC7vLTn123pnSJtRCtEWkUBcEQTgXNIcDTdXlZTw4cSz+gUEER0ThcbsoyM4EID61NXu2bDxpW0Y/Py668Q5mvfY865cs4OYh3fG43VSVlgBw+V0PAGAwmkjt0Jm92zbzyfNPsHbRj+zfsQVZllEUpVGbMUnJZO9O57OXprH8h29o17Mvk+95EFlkmTouERgXzgiPVyGrsJyZ63owuJWD1pYyLHoX9S49fv56HNhRZRUkyC0P5os1wWhlGVkGr6KSFuRrR69V0AbWMPPnCnSGOm4e1wt7aQSqNwdZE4niWo/bNh0AC18xPFhFZw5BZ7qf3qGjyK/PpFfYSKyalgyc8x4qUOVycFObHgB8uWwrq7Yv5OlL3qNrnMqMWyy8WtEKLyDVmdGVRPPhddchS01vAEqaEEwhXzZZLus6oDFdjOotRGu6CIAf1qSDoQ4Ag/5ocFv15lJblkve/tdYsyKCCyaW4G/thz7gcT546Tvuut8FgOLew5GguKqCy6khOqYYZ9XNgAmwAwaCg17hjhGvN7R/2yPjGvUt3j+IobHJ7Koo4ZquPZoekyQx8YYB/DxvKxdM7nnC1/fiq/ty8dV9T/i8IAiCIAiCIAiCcPq0atWK+fPn4/V62bVrF8OGDUOWxUAVQRCEMy012IxHUdhXYTtnfUgJNpMSbD5n+xcEQfi3M2hktJKEJcjKwAsvZf+OrZTk5aKqCjFJyQwYfwlDLpl0SoFxgItvvgtreAQLP/+I/MwDIEFqxy5ceP2tdB00vGG92555lbf/ex+Z6dspLyrk+v89w1dvvEhpQV6j9qY+/CTvPf4QBdmZHNi5jdCoGLSyJLKMnICkHi+x/b9MTU0NgYGBVFdXExAQcK6787f17codrE7P5uZxvbj/px9Jry/GG6CCDHGmaq7V17ApKw3/gHjm5exGWyejqZVpmI59+J2oSiqeaBdj+6VT5Tbwy9ZU/DK1zLg5g4iAHHLrbqZryzhkXUdQKrGXjURVavE1VI/e8giV7st56P3XubrvIkyhPakxX88tK2bj8Hp4uvsILk9uj7P6P+w9uIqowHLMRjcAigqLnJewubSeYE8RU5tto1p7FRtt43l150qmta2hm9/HaEwXYgx64ZTPzeb9edz1zueMbr+P60aOxk95EUkTSU39mzjKBxIa6cBm02E2+/phCt/Ai4+spLr0Rzp01XPR9S/iqXuL0ioNuQX1tIv/+Lj7keQo/CJOLWWHIAiCIAjCv8Xf+Xr/SN/vWj0Og7/uXHcHZ52bV3vP/VueS0H4u/vqq6/Ys2cPAFOmTCExMfEc90gQBOHfQVVV9lXY2HUOZo63CbWQGuJ/1vcrCIIgNLYyt5wyu+tcd+OUhZr09GsWcq67cV4SM8b/5Q7WVnCgupy+kYnUuJ2EmY4/+rC23sH7C9bTLDyIi/u1B+CdeWv4duUO7pzQl6GdU3n666V4jSp1C5xsNxVB0NHtg0ypXD3qGq4Gau1OohcGkFlYzq87slEPR8SlwxFyZ5QXe5LKrENtkOvAv1BDjLWalhFLAfh5x8dYAt6lTYIGNKGYwtcCXlSliqqavazbF8mWA5sY0mYVHRNygBwGrdPyep8pBOhNdDSvpb7oKqCa5Aiwe47+GsgSjDItpU3cVKT6XzFqvCjeuTy52Y96rxudeyHgxl0/m1rDY2RUFvP85mXsqvaluZjR72IGNWvR5PwlhloJK/Fnxdw0Lu3bl9DECQDsXZHBtqXhXHjDIQ4WBNM8uYTyeh1lK4u454kJHMjoQWJKJLKsw627j0n/fRuT3sVrd6TRLDocjb4X7rp3gVJAQnN4hrogCIIgCILwz6KoEop67tOgnQ99EIR/q7S0tIbA+M6dO0VgXBAE4SyRJInUEH8sei1biqpwK0fuZp6h/QE6WaJTZJBIny4IgnCeCDbpKLe7zujn/+ki4euvcHwiMP4vVut2MnrBh9R73MSZgzhkqyLE4EensBje7HNhozrcs5Zt47OlWwDomBxD8+hQPvt5CzaXi/fWrmdg52ScXb3YNR48ASrUHN1PckAIj7YfwvbMAtolRWExGXB6PPy6MxtFr1LTwYmqBct2Pf0SEvFEKSx27gcV/DMMaJwSuoA4Suu7gmc3yzJaMrD30YvCeqfCjqwiOibHcN2rWRws2kz/diFM7JiFqkJmfRC3xm+kmSGNRH8j7ur7G7ZVsKDT+EZ7qipIkgxqJQmar9lruIsa9Vvml3TF5naDBGXyVDLrv+CTnGhWVHxAqb2eY8s0TF35La/2Hsf4xDaNzvWBzGIqSn2p1LfvPETS4Zrf7fu1JGvnw8yZaaPV5A1scs5DUSWy1++h18D2tGwX19CGRiNh0Guptvmxat/DTG3bCwCd/xRQ7Uhy0F94NwiCIAiCIAiCIAjns5SUFPR6PS6Xi4yMDEaPHo3mmO/tgiAIwpkVbTES4hfO9uJq8modqIqCdAbKWsRajLSPCEQvUuAKgiCcN4IMur9FUBx8yZmDjCIwfiIiMP4v5VUUPszYgNPrq1tdUO+LZJc761mSt58tZXn0iIhvWL9lXDiSBFZ/P8ICfel7bhnbi2czl5HuV8zdq+fi1amgQGiomXm9r2FtUQ6uUjd1RS7ueWkuZWY7MeEBRNktRAZbfP3wU1ANvn3cMKUHt3Xojaqq/HzoAMF6E9reMv83YwEHS2q54PmeWP0Hce2obsSGBaGqKjX1Tu5+aw7bMgsY0L45LrcXgPiQUoL97b6f/VSSzXvB+3+4q49eULow8WppMv8J3QqAJIGKgleK5MviFIqx8EjafMKdGWj4ke7hcYxvcTk3rwxkccE+oHFQ/IhSe+OaQ4qiYne4Gdy/FbJGZsig1g3PSZLEhNtG+PrjHcSilSoHtwVwyeShTdo16nV8+uwUDuZX0CWt2TFtGEAynOQVFwRBEARBEP7OFGQUzv3N0fOhD4Lwb6XT6UhNTWXnzp04HA4OHDhAamrque6WIAjCv4pBI9Mt2kr2gp/whERjCgo5MtvmT7cp4QtiBOi1tA6zEO0vZokLgiCcb8L8DA2f1+c7CQgziZjRiYjA+L/U0vz9vLpzFQBTUjrTMyKed3evZVt5IQAHayobAuMer8KBgjISI4IJtBgZ9Oh0hnVIJdEaTEi4mdo6FwerKvlo4GVsLstjcouOBBv9iNJZGPrGewC4g7zUt3Szn3IKMmq4JLIdceGB6HUa2iRHYVc9TGndGfAFi4ccTkdud7opqfbNtEaCyjo7L3+9gvlrM7C73OQUVxJ0+GJxuyafyi71DDWncm3vAWiVelRvKTKgOOYcPnLl8P8altb3w65W8mt9Av3MZbgVO98UtGROzRDKvSXAFqYkDmBcYhtGxbdCI0lIksRzPUbRP7o5M3ZvILO2HPWYT8KWgSFMSe3c6Fx/N2cTb737C1qtzJczb2LVop3UVtvpObAV3878lRato+k5qDUhYVbGDXweBp74dYsICSAi5MS1HMvsNl7fuZrW1ggmtmh/4oYEQRAEQRAEQRCEv520tDR27twJQHp6ugiMC4IgnAOVlZXs2bgWgNBmiXQdPpb8WgcqnHLQRFUVJElGVbxYNSrt4yKwGnVIfyHALgiCIJw5Bq1MrMXoyxhyrjvzOyR8mUcMWjGo/UREYPxfKt7fik7WACqXJbentTWCdiFRXLDoYzyqQveIozOSP1myiTd/WA2AXefG0cHLLHU7ugwJY4GWyDgzJRtrWVK7l/9eMRRZlrA5XGQWlhNkNlJlc+AKPhyQViFIZ+SC3mkkRgXz2uxfabs/mueuHHXcfpoMOl69eRyfLd1CSWUdB4sqUYF9eUU8d/k8UqNLmbHyCprHD+elmmXUuB2kq4UE+PsD//XtUlVRvP/Ba1+AJOvRGMYgySb6OMuhbD7Ng3pjtrRnxIL32FddRlKgjmhLMM38QrHqfDXXtcekRQo0mLi8RQcub9GBJzcsYW7Wbi5IasV1aT2J8LM07PPN3asorK8hxRt0eBns2ZHHa4//AMCqpen8P3t3Hh9Vee9x/HNmkpns+04ChCXrhC0kAQQVF9z3vVWr1VpbW6u1e2+tt5vWa22tttaqtVrbam2r1g23uiuBhADZCWEPZCH7nlnO/WN0IAKyBSbL933vvDwz5zlnvicNIczvPL9nfUUDr/67lN/+5hVyznJw0RnzWJI//bD/d/1D5QqeqPW2vF+SMpVJoZGHfS4REREREREZXaZPn05wcDD9/f3U1tYyNDSEzWbzdywRkQll1apVvu1ZM9IpTIlm0OWhpX+QjgEnbf1OOgacuMy9SycBhkFUUCCe3k7KPnyf3qYdzMrNISbj3GN5CSIichimRYeyrXvA3zE+kwlMjw71d4xRTYXxCSorOoEPL7gJgLgg7x+SlNAIVlz4dQAse9yd+MnWQIoLV6rpe9GZZGJxewiodWM1LDz/YSVvrF7P3Tecw11Pvcm25k7mZ6Syqn4bQ0neFufZ0Qm8/OPrAPjVP9/BNOGNsvXcftXercM/sdgxjcWOaQw6Xdz5tzd5dVUtsWGdLMrYAsCNp7WRmDoPywaTv2wo5Wu5i4cdbxgG1oA0rOFfHvZ6cnAYF6V+hQcq3+eJ/lf4ZeHZ/HfnBs6dkkOXq4uvlTzMhe/fzd+P+yYJQfsuMP+o8FR+VLh39nVtO/hNxbsAfNNxAnf88DxSkqIID7JhswfgHHKTPXsy6ysaAOhNDKG4ais1W5tZ/seb9vu1OJA5cSkYwKTQSGLtIYd9HhEREREZXdymgdv0/wyi0ZBBZCKzWq3k5ORQWlqK0+mktraWvLw8f8cSEZkwhoaGKCvzLstotVrJz/d2jvTOJAwmNTwY8E6aGXR78JgmbhOshvfzVrvVgmEYOJ0RfPjsdtxOJzU1NZx11llYrVa/XZeIiBxYTFAgEbYAuoZc/o6yXxG2AKK1vvhnUmF8Aou1h/Dn2hKq2pvoGOwnOCCQb805gclh0cPGzZuZypzsZN6K3QSAMQRmAGABw+X9YKw/zcVAqouBrS5u+u2/wQBPkMl7zk3EnBhKx9AgdmsANzkW+c77jQuX8OdXV3F2UQ4Hwx4YwB1fOI1vXLiEK3/xV54tmcuZ+S7iE78EwOdm5PO5GfkHOMtwZbsa+E35e4B3Fv2teccD8M+tdXgw6XMPsqO/bb+F8T25nG6Wb65mu6uLcyfnkhQcTutgL9nhT+AOXUNUwi9JCFnK48u/zdCQk8SUaC67/gT+++IaPqxv4KP6BhbOST+k/J929tRsFiZNISzQht2qP94iIiIiIiLjjcPhoLS0FPC2U1dhXETk2CkvL2dgwDtbMC8vj5CQfU9MMQyDoID9F7oDAwPJzMykoqKC/v5+Nm7cyMyZM49KZhERGRmGYZATH86KhnZ/R9mvnPhwLctxAKqcTWAbulr5Sekbw157YXM1Ky/6OvHBYQC83VDP/7z4Cj3rBwmeHcBQiJug+gACui24gz0EdHpbjA8musAKg0lughq831Z96U6ccR52DnUBkBOdwBlpWb73yp+ZSv7MVN/z4ndruPNbT+OYN4Wf/P5qLJZ9r4EQHR7Ci7+4Hrj+sP+Au00XpW3vYLVEEB8USsfQAHPjJvn2nz1pPq2DXUTZQpkdNXWv43//8H/579vVfOOrp7LkuAwGB5xcc9HdrLzKBMOg3+Xk7bNvot/ZwUc7lgCwqflZEqYuJTouzHeemLhwLr5mCRcDvf1DhHzqTh6PabKiaSvTImJI+rhN+4HEBmmmuIiIiIiIyHg1ZcoUwsPD6e7uZsOGDfT39xMcHOzvWCIi455pmqxcudL3vLCw8IjOl5ubS0VFBQCVlZUqjIuIjAEpYUGkhgfRMMrWGv9kbfGUsCB/Rxn1VBifYEzT5Pq3/sF/d24k+JMm6Z/86f346bkvPsofT7qUpJBwvvj2PzDjwN5vZUFHGmdmZfGfbVV0GgOckDeNV1bV0t7TT8jmQAZSXL6iOIC1z8AJpIfH8PmZc2nf0E/h1+7jqlPz+cYFS/bK9v5rlQz0D1HyQR1d7X1ExYbtNeYTByqIm54+BtuuwnQ3Yo95DEtgBp0dfaxaUc/8ommsc73FizseB+C5035DpC2ekIDd67IFWQP58szT9jrvroFevvrBP6noaSCu28LzL5Wx5LgM2lu6aG7uxTIYgicIerb08LillIB+k03Ls5kyt4kdDTkU3bB31qGBIV578n0mZ6Ywa0nWsH0PlH/IvWvfI8oWxIqLbiIoQC0wRERERCYij2ngGQVtzEdDBpGJzjAMcnNzWbFiBR6Ph+rqaubNm+fvWCIi497mzZtpbm4GIC0tjeTk5CM634wZM7Db7QwODlJTU4PL5SIgQB/Xi4iMdrMTI2nuHWTIM3pK44EWg1mJB+58LCqMTwge0+Sa/z5NScs2vpK7kP/u3AhAP7vXC99T42AfFyx/nPfO/yoRgUF0OgewOa2sa2hk3cZG37jEmAjevOdGHn9tFfc9+z62XbvbA01NiMaRksRlp81lelQMQQGBXPD0n/GYJq+srNlnYfzCq4+jeWcHs+anf2ZR/GC4naWYztXe7YHXsARm8OPv/oPK8u1k507i6l9OBSDACCQkMNhXFH+nuZKH6l7l3NRCLp+yeK/zvrWjjtJd2yEFwhyhXHJhgfdrkRoD8VEkPevBCPTwkn0Vjad578zJ6V7M+w918X/fOwWAR6pW8sLmar4770QWJU3hH79+mb/8/FksFoMna39NbPLuVvYdg/0A9LmcOD0edK+PiIiIiIiI5OXlsWLFCsDbTl2FcRGRo28kZ4sDBAQEkJWVxdq1axkcHGTDhg1kZWUd+EAREfEru9XCvKQoVuwYPS3V5yVFYbfuuwuzDKfC+ATQNtjHe43e9cEr2nYe1DFu06SyrZFBjwsrFox9/PlelDsFgC8sK2BDQysvrawmOiyYx759GZMTovcaf9vFJ/Dkm6VcesKcfb5nekYSv3z0us/M5TFNHqldQb/LyY3Zi/a7jrZnYPnHWxZaOYEk8N0AYBgG+dEnEmtLIiIwmsjAGN9xT2x8i029zfxxw2u+wrjL7WHFynoiQ+xkhsaQG51EoGHhkR9fRmRgEC6nm4BAK/Pz0yletZHgdhNPpAeAAMNClWMQHHZsmWF4TJNfrH4Lj2ny+/KPWJQ0hfDoUABsQYEE2obPCP/WnOOZGhFNXkwy4Tb7Z35tREREREREZGJITk4mJiaGtrY2Nm3aRHd3N+HhB7f8loiIHLqOjg5qa2sBCAsLIzs7e0TOm5uby9q1awFvO3UVxkVExoaU8CBy4sKp2tXt7yjkxoWTEq5plQdLhfEJIC4olFtnLWFl8za+OftE3t1ez2etfrA0eToLkifjND0MuF0AmOEm9O0eE2IPZFpy7O4XPi46t/f088bqOr54uveuyXfW1vPchxV87qR5LHaks9iRfkTX8kHTJn659r8ApIREcMm0OfscZxgRAHS5gjjhpef4et4OzvxBBCevP57j58/HMAzSw/b+BfaiyQvZuf5lzp9U5Hvtr099xGN/eR9ME3tjN3f+4VrmLZxBT1c/Xzz/Xtp39XDXI1/krp9cTG/fEO1NXdRWbielKJk1HTv5QfGrvnNZDIMrZszhP5uruHh6HgDnfvkUpjnSSJgcR8SnZsqHBNq4OjP/iL5mIiIiIjL2maYFj+n/u7/NUZBBRLw3fDscDt59913AW0xZsGCBn1OJiIxfJSUlmKb389T58+djtVoPcMTBmTZtGsHBwfT391NbW4vT6SQwUEspioiMBZkxobg8Hta39fotQ0ZMKBkxoX57/7FIhfEJ4ua83W3Bqz//PfpcQ7QN9JMaFkmfc4gfFL/Cpu52/njCRSSGhFPSvJ0Hqz7i9LRMpkfE8pWLF2Ix4ck3V2MYBp8/ed6wdb7Xb2/xbVdu2d1u/Wd/e4PWrj4adnXxjx9ddcTXMSUsmmBrIE6Pm4zI+P2OCwi/DU9gARcvfwunaWXTwL/Z6mojMS2Nc6KO32u8aZpUlW5mTvwU/r34e/xr8zpKWrYxaSCUhi2tewyEpo/bY2zb1EJjQxuGYbJ25UayZ08mLNRO2LR40qZ5s2XHJzIpLJKwABuO2CTv16RoGT+adSJBId4Z4IZhkLdYd4OKiIiIiIjIwduzMF5RUaHCuIjIUeJ0Olm92rtko8ViIT9/5CaxWK1WsrKyKCsrw+l0sn79enJzc0fs/CIicvQYhkFuXDiBFguVfpg5nhsXTuYRLks8EakwPkGFBNgICfOuqx0SaOM3i88btv8XZf+lbFcDdouV0pbt2CxWbp61mOvPLGLI496rhXldwy7f9qz0FN/20jkz+Oe761g6Z/qI5J4cFs2H596M0+MmNmj3XTButwer1ULph3XU12zmrIsyCY08iTsK03hnZz2JEU629LURah3eWu6RDa/zVnMFS5oyeO47b2MNCmTBH4/nz1tLsRoGMx8YwtXu5LRL5pOWGkNIQACnnutduy09J4Sv//1tjIA+Zkdfss+8hmFwQsq0Ya/9+NLfsHL5Gm785ec5/6vLRuTrIiIiIiLjmxsDN8aBBx6DHCIyOsTHx5OUlERjYyMNDQ20tbURExNz4ANFROSQVFRU0N/fD3hbn4eFjWwRwuFwUFZWBng7gKgwLiIydhiGQWZsGOG2AFY3duD0mJ/Rr3kE3g8ItBjMS4pS+/TDpMK47NOy1AzKdjUw5PHQMtDLb8rfI8oezJ9rV7Glu51rswr44byTMQyDtfU7iI8Ko6Wjh5jwEK4+dfddkz+44mRuu/gE7IGH/63W0dpDSJgdm93bRijCFkTNum1UNm/kOWcdH62oJezFHs4+r4C3XlzBbx9+AUtfHy7bbzh50nmcPGkmQ56lbO6tYUpIBgAba3dSsqKOR5PfBKCxsQ331BiwWti6fhcEgd0SwNBQPwQFMCk2nCu/eMKwXL2uDQSEdADgslfS3++gvbWHlNT9fxDh8XgoeaMc04SVr61TYVxEREREREQOm8PhoLHR27WtoqKC44/fu0OaiIgcPtM0Wblype95UVHRZ4w+PFOnTiUkJIS+vj7q6uoYHBzEbreP+PuIiMjRkxIeRGxIAmubOtnePYBpmsO6Lo+U1PAgZidGYrNqmbPDpcK47NONuQuYF5/CZa//FYCIQDs/LnnNt//RmlU8XluCYRrY11kJ7LJy53Vnsiw/Y68/7IdTFP/bQ2/x6rOlLDoph2ef/ICEpEjuuP8q7v3Rv4mMDqH0ww30pltpuDwIMsHcFMBHb1aRNMlCfIJ3MXTTWQ7B3pnwNoudjPDZeDwm7e29fPvaR+jtHiD6qmA60vsx33PDxz9INv5xIz+9cxlL5mRy498ep7dvkM59/IyJDprPlIgvMORuJ85+Ftdf8Qeam7q4+VtncM6F+26pZLFY+NYfrueD/5RyxXfOPeSvi4iIiIiIiMgnHA4Hb7zxBqDCuIjI0bBt2zbfDUiTJk1i0qRJI/4eFouFnJwcSkpKcLlc1NbWMmvWrBF/HxERObrsVguFKdHY6rdSuauL4KhYTI8Hw3L4RWwDMIEIWwA58eGkhGmW+JFSYVz269617/m2PebezR9cpgmYuGZ6iCq10tTefUR3wDz0fy/z0tPFnHTWHP774hqGhly8u3wdmNC8s5PXni9lQ/UOAAwD7M0eQlxWBjwukvqC+NqPzmXW/HTads0gPr6BgLCv7vUe37v9GVaWbCI6Mgi6Bzi+NYvW6i6mz04hYlIUf/rdG1h7hwhrgMQF4ZgfX7fb7dnrXBYjgKzY71KzsYl/fbCe5hbvGhKbNjZ/5nWedNkiTrps0WF/nURERERk4vGY4DH938bcczR7wonIIYuMjCQtLY1t27bR0tJCU1MTiYmJ/o4lIjJu7DlbvLCw8Ki9j8PhoKSkBPC2U1dhXERk7Kot+YgNNTUExyYw96TT6SEIk91F7gP5ZJwBpEYEMT0qlOigwKMyA30iUmFc9uu0tAyKm7dis1i5YuYc/rJ+NVPCo5kdm8xbDfU0D/QCYAZDZHQQ5y1yHNH7vfD3Fbicbl59toQrv3oyrz1byhVfXsrG2kamZSaRPXsyJe/VkZgSzee/spTurn7mHjcDE7Bfs/tbOSLqiwD09Q/xr+c+ZOrkOJYc522hvrZ8GwBpuSlc95OLmDErhVC79w4b0zQJwaCzvZfTLsjHZgvg97+5iuraHZx4fJZvjNPlxvbxLPghp4uv/OQpBoZcFC2biSMujouvGPmWSiIiIiIiIiL74nA42LbN+2/d8vJyFcZFREZIV1cXVVVVAISGhpKTk3PU3mvy5MmEh4fT3d3Nhg0b6O/vJzg4+Ki9n4iIHB0dHR3U1tYCYB3s46TMybhMg5b+QToGnLT1O+kYcH488XS4AMMgKiiQmOBAooICiQ+2Yw9Qy/SRpsK47Ne1WQVcOn02IQGBfO295+h3u6jpaKGmo2XYOIvL4JnvXU1k6JG1cCg8PoMP36wmMy+Nz994Ep+/8aS9xjzywq0Hfb6nninmib996N1+/EaSEiM58ZvTeKF/JXEx03glcBMPP/d3rplZwI/mLcMwDM6/cvhM7qlT4pg6JQ4Aj8fkht/+k7INDfzvVcs4uygHi8VCWIidgSEXGRnJXH/5kiP4CoiIiIiIiIgcmtzcXJYvX45pmlRWVnLyySdrNomIyAgoKSnxdZPMz88nIODofZRuGAY5OTkUFxfj8Xioqalh7ty5R+39RETk6Fi5cqXv746CggKsVitWIDU8mNRw7w1Ppmky6PbgMU3cJlgNsBgGdqtFv8cfAyqMy2cKDbQBUNneuNe+FGsEO5xdBG2w0trZS1xE6BG91+2/uZKhIRc2WwAej4fOtj6i48L2OdZjmvy+8gPaBvv55qzjCQu0+/b1d/yVoa4HmZN5Pk8A4eFBhIZ696+1bsK0mLzfU4W7Px6A1xvW86N5yw6Yr3/Iyeq67ZjAB1WbObsohwCrhcfvvIpN21uZk516RNcvIiIiIrI/HtOCx/T/neKjIYOIDBcaGsq0adOor6+no6OD7du3k5aW5u9YIiJjmsvlYvXq1YB3DfD58+cf9fd0OBwUFxcD3nbqKoyLiIwtQ0NDvr87rFYr+fn5+xxnGAZBAdZjGU32oML4BGOaJl9/4FnKNzfyk6tP44TZ0w/uuH289pslZ/HW+5uYdGIkGanxI5LPZvN+S/7vN/5K8ds1XHb9CVz7jb2L1iUt27h33bsATA6L4prMAt++9u13Ex3bRUr8Y9zwm29wWtJlbHO3sH5rM2ubugkJsnLR1MU4Iqbxlw0lXDF9HgC9zs1s7fo7iSGnEhPs/WXX4zH557trqd+6i2vOKOT7l59Ecc1Wrj99d7v0mMhQYiL3fVOAaZqseLmMyLgIcopmjMjXSERERERERGRPDoeD+vp6ACoqKlQYFxE5QpWVlfT2epeRzM7OJjw8/Ki/56RJk4iMjKSzs5ONGzfS19dHSEjIUX9fEREZGWvXrmVwcBCAvLw8QkOPbDKpHB0qjE8QT7+9hv+WbSA+MpQPq7YA8O/3yw+6MP77JRdwziuPDSuQX/r233n73BuZEh494nkrV28GoLx0E92d/QQGWgkKsfn2Tw2PIdoeTI9ziFkxycOOff0/Dk69oJSPrLGsGXyd4J5o7q4qBcAkmI6eEGaGTea4pHSOS0r3HVe16w7aBlayo+d5Tp6yAoBXS2u585m3AChes4nn7v0SlyyZPez9mrbu4omf/Zus+dM554aTh+174+8fcM8ND4MBf1z5C6ZkTxqZL5CIiIiIiIjIx7Kzs3nxxRdxu91UVlZy2mmnYbGow4OIyOFauXKlb7uwsPCYvKdhGOTm5vLhhx9imibV1dX7nW0oIiKji2maw/7uKCoq+ozR4k/6V9IEsKmxjV8+/Rar1m/j5VU1vtfPP85x0OfIjUnipEl7z3he09IwIhk/7Xt3X86y8+dx1iWFXHHinXz+lF/S0tjp258QHMYH532NkotuYV58Ki27unn+xTJ2tXZz8uW/5s2P7qJsYAoBRiCh1gTfcV/KKuL/Cs9hafLe1xJuywHA5ZrsWwMiLPjjFu2mSbA9cJ9Zn/7Vi7zxtw944JtP0NbUMWyfxeJdD8LA0NoQIiIiInLYPBij5iEio4/dbicjIwOA3t5eNm/e7N9AIiJj2Pbt29mxYwcASUlJx7QLR25urm+7oqLimL2viIgcmY0bN7Jr1y4ApkyZQlJSkp8Tyf5oxvgEEBcRgsVi4PHsnu99x9WnsnTOobX2/uPxF3Hha0+wtnWn77VT0jJGLOee5h83k/nHzeTFp4txudy4ut3s2NpKfFIkLf09bO3pYF7cJII+Ljb/4I5/UbehieWvl/PgfVdz1bTzGXKfjgcPQdYQgq3xmJgsic/Zb4G6rfMyfvp8H6094dx3/nraynaRkZ3Mw9+4mI1bd3H6gux9Hjf7+GxefuxtpmRNIiJm+JroJ122iPDoMCJiw5iclTKyXyQRERERERGRjzkcDqqrqwEoLy9n2rRpfk4kIjI2fXq2+LGc7JKcnExMTAxtbW1s2bKFnp4ewsLCDnygiIj4VXFxsW/7WHUakcOjwvgEEB4SxFUn5/P46yWE2AP5wqnzOWdB7oEP/FhLfw9Ww0KELYiKtiYAkkPCuT3/VEIDbQc4+siccu5cttQ3Ex0bRt78qQy4nJz+8sO0D/bznTlLuTFnIQDBQd7Z3EFBu2d126xBvu0lCTkHfK+ugUFauiMB+PcrZdQ/twGLxeCZl7/J/Iz93xl6wkVFFCybhT3EjtU6vAmDYRgUnjZ7P0eKiIiIiBwct2ngNv0/W3s0ZBCRfZs5cyY2m42hoSGqq6s566yzCAjQxz4iIoeip6eHyspKAIKDg3E4Dr7j5kj4pJ36e++9h2maVFVVqcAiIjLKtba2UldXB0BkZCRZWVl+TiSfRa3UJ4ibL1jMUz+8ktfuuoEvnbXgoO90LNvVwMJnf8ei537H1p52frXwbM6Zks2fTryU0ydnHlaWoUEnD971Ig/e9SJDg87PHPv+65W88PcVvPXSWjxukyGPm+6hQcBbsP9E+tR4AOLSQrnqw/u44oN7aR7o3Oc59ycyaHchPSoyBICIyGBstuEfJKx4uYxnf/fasOwh4cF7FcVFREREREREjpXAwEDfh3CDg4Ns2LDBz4lERMaekpISPB4PAPPmzSMwcN9LKx5Ne7ZT/6RILyIio9eenUYKCgqwWFQrGs106/AEYRgGGanxh3zc6pYG3KYbt9vDtp4OzkvP5bz0XLqdg3Q7BwkPtB/yOT/8bzXP//UjAOqqGuju7Oe7d13KjOy9W41XrdkCwLZNLfR0DxAVE8qTJ3+O8rZGLpvunYm9o6+ND7bWkJvRwMzpK1g9lMKOoXBWtdZx1qT5B52rKD2N7556PN0Dg3x5cQHbTiwgITFy2Cz0hg2N/PjS3wDgcrq45JYzD/n6RURERERERI6GvLw81q1bB3jXptVsFRGRg+d2uyktLQW8n6UWFBT4JUdCQgLx8fG0tLSwdetWOjs7iYyM9EsWERH5bAMDA6xZswbw3qg6b948/waSA1JhXPZr7a4d3LXmTawWg+syi1iS7F2fbGNXK+e88idMTJ497RoyoxJo6O0kLigUu/Wzv6VM06SqbDMBARYwDKrKtgLw2nOr8Xg8RMeGEZ8U5Rt/xQ1LMU3Inj2ZqJhQAAoTJlOYMJldrd1c96NH2Hb2dsxTTB7KfI0Q2yDZA5080vZ5Fsfve03w/bEYBl9cmO97PjMzea8xweFBBIXYGOgbIjY5aq/9IiIiIiJHg8e04DH9f9f5aMggIvuXnp5OSEgIfX191NbWMjQ0hM12dJdAExEZL6qqqujp8XaozMrK8lsx+pN26m+//bYv18KFC/2SRUREPtuaNWsYGhoCYNasWQQHB/s5kRyICuPis7W7nSfrVrOqaRtBgYGcNzUHt2kCUJQ4GcvH7dfXd7bQ7/a2EV/f0cJ7Ozfxi7I3yYiM5+Uzr/eN25dN6xt5/uli2gsDsQyYRK6B2PhwIqJCuPnyB7EHB/Lnl7/FprpG3C43BUsy+caPz9/nucrWbabd1Yxp9QAGfQGTCaGOzJhTuC/9upH80vjEJEbxSNkv6dzVzYzZU47Ke4iIiIiIiIgcDqvVSk5ODiUlJbhcLmpqapg1a5a/Y4mIjAl7tsL197reexbGKysrVRgXERmFPB7PsL87ioqK/JhGDpYK4+Jz4fI/0zrU73t+wVQHP5x3CoGGhRNTpvteP3nSTL7uWIxpmpyWlsV3VrwIQH1XK0NuF0EB+197JzktBsuJkewqcgEQ0g4/vedqSj/YgGnAQL+Ttas2ctd3ngbgJ7+7msLjvWuZOz0ufrDqr1TvaODKsJNoTHuWOTdtZHBTBgvzziAx6XYCzJ0Y1mkHvFaPx8Qw2Oda69vrGvnJTQ/jauulcUMT1//sMi782um+/fGTYoifFHPA9xARERERERE51hwOByUlJYC3nboK4yIiB7Zjxw62b98OeFuZT5ni3wkxcXFxJCYm0tTURENDA+3t7URHR/s1k4iIDFdXV0d7ezsA06ZNIz7+0JczlmNPhXGhfbCPDxs20ebs55M68dTQGE6cNJ2E4LC9xgdarNw663jf82/POZEYezDHJaV/ZlEcIDjEzv987xKufuvv2CwB/Pb3XyA9LZnnB+rY/N1wwgPs2OJ3r1tuDfC2auxs66W6fzvvd1ZDKPzuvVdYfLG3Dfvc2RFcnr744yOmf/ot97JlRxtfvuPv2GwB/Omnnycuevg13vPIK6yaGYalO5DY9Y288fcPhxXGRURERESONQ8GHnP/nZmOZQ4RGd0mT55MREQEXV1d1NfX09fXR0hIiL9jiYiMap+eLb6vyTTHmsPhoKmpCfDOGl+8ePEBjhARkWOpuLjYt63Z4mOHCuMT3JqWBi58/fG9Xn9m2ZXE7qMovi+TQiO5ff6yg37P45LTefe8m7BbA4gLCuU/myt5oOoDMKDN3U9HnIdfPXEDLpebWfPTeeyRt3n6gTcIsnpI/mkMO3s7mDKUzNVp57Cj9zXmxF223/caGnLhHHIRGhbke21V1RaaAgawDkD1xkaW5M8YdowtLRqqO/CE2chcNJNrvn3uQV+biIiIiIiIiD99sjbtRx99hMfjoaqqivnz5/s7lojIqNXb20tFRQUAQUFBo6bTRm5uLm+++SagwriIyGjT3NzMpk2bAIiJiWHmzJl+TiQHS4XxCaimvYmzXnkUE7DuZ0xIoH0/e0bGpNBI33a0ffid67UtTZxZcCIAb79bw+P/LIakcDzbOrgn9iKmLkkh9EI77p67mGp9GKP7Awh6aa/36O7q50tXPkRHex+/+PUVzJufDkCD0Udfkncm+uQpsXsd992rTyX5jVJmT0vhpDkz9tovIiIiIiIiMprl5eXx0UcfAd526iqMi4js3+rVq3G73QDMnTuXwMDP7oh5rERHR5OSksKOHTtobGyktbWV2Ni9P8sUEZFjb8/Z4qOl04gcHIu/A8ixd+bHRXEA937GBB+gJfpIWpKczn05ZxM8aMFmWjgxfSYuj5viko289Oo637gLr11MXuE0IsKDsVotmO6NAJjuLZimudd5m3Z20rqrB7fbQ3X5dt/rydERAIQEBhIR4p1J7nZ72LWjDYDYiFBuvfB4FcVFREREZNQwMbzt1P38MNVKXWRMSEpK8hVPtmzZQldXl58TiYiMTh6Ph5KSEt/zgoICP6bZW25urm/7k1ntIiLiX/39/axb561d2Ww25syZ499Ackg0Y3yC2dm3/38MxweFYrNY+eeyLxzDRF7nzJnFqXnZPFe1ittWP0RggBXLE6H0N7qZMT2BH377bNKnxg87JjDyJ7h7M7EELd3n3TjpM6O58QcJNNZHc85Fu++Ov2Sug8yEOBIjwogOCQbg++fczdp3q7ny++dz1Q8vOLoXKyIiIiIiInIUGYaBw+HgnXfeAbwteBcuXOjnVCIio09NTY3v5qHMzEyio6P9nGi43NxcXn/9dcD7s/yEE07wcyIREVm9ejUulwuAOXPmYLcf3Q7MMrJUGJ9gYuwhBGEwwN4zrFsGegEobt7KuVNz99o/EgZcTn5e9iYe08P/zDt12Mz075f9hRVt6wHod8GcMz3YEutI7S0cVhQ3TReu3j9hGIEEhN+GYey78UF1688Jy/0ns2ZPJjz8Yt/rhmEwOzV52NjaEu/s86riuhG7VhERERGRkeIxDTym/2drj4YMInJw8vLyfIXxiooKFcZFRPZh5cqVvu3CwkI/Jtm3yMhI0tLS2LZtGy0tLTQ3N5OQkODvWCIiE5bH4xn2d0dRUZEf08jhUCv1CcZuDWDt5d/hW7NOIMkeCni/Cf6y9ApOnjSDUybNZOmko9dC/M2GOv5at5q/b1jDfzaX4zE9vn07BrytzOkziNoYSVpmG/YoJ72T1w07h3vgFVzdd+Ls+gmewbf2+14uj/duT6en+4C5/uevX+PMa0/kK3dfeegXJSIiIiIiIjLKxMbGkpzsvSl8x44dtLa2+jmRiMjo0tTUxJYtWwCIi4sjPT3dz4n2Te3URURGjz07jcycOZOYmBg/J5JDpRnjE1CgxcpXHcfxldxF1He1khIaQUiAjeOSR/6XvyG3m1+UvUm/y8mP8k9hdmwKMfYQCOjhNxv/wTvtJfxu/pcwDIO75lzFdQ88jGudlamxKaxbs4PECwNZnHbasHNarFMAK2DBsKbt971z4u4gureA2KAF+2y1vqeCU2dRcOqsEbhiERERERERkdHB4XCwc+dOwFtMUQteEZHdiouLfduFhYUH/PzQX3Jycli+fDngbae+dOm+l5UUEZGjb8+/OzRbfGzSjPEJzDAMZkTGERJgG/Fzuz0eTNPknZ0beby2lH/Ur+PFLdWkhkWx4oKbOWnyZADWdmzCZboBCOqxk908lVnJkzn9uEw6Poig9rZ0pvUP/+Fisc0iKOEDghI+wBKYsd8MFk8Ynq3HE2wdnXd7ioiIiIgcLI9pGTUPERk7Pj3L0DT3XlZNRGQi6uvro7y8HAC73c7s2bP9nGj/wsPDmTp1KgBtbW00Njb6N5CIyAS1c+dOtm7dCng7jUybNs3PieRw6FMNGXFPrl9NztP3sOzFh5kREUtcUCjhtkA6PLvY3NtMgMVCZ68N55Cdc5KOw8DCTe/9m7Pf+BMlbdupqGogtzCdW/73An5wz+U45k3d6z0MayKGNX6v12s3NbG9qQOAOy6/jxsX/A/3fuWRo3zFIiIiIiIiIqNPZGQkkz++MX3Xrl00NTX5OZGIyOhQVlaGy+UCYM6cOdhsIz9xaCSpnbqIiP99era4uneMTSqMy4iq72zlR6teZcjjZkNXK51D/ay44Guck5HM45vf4MaVf2DA5eSNrRtp67Kzsa2f9Z0tvLKthnbLAC2neEibHcsznRXszPWwZJkDANM0cQ++g3uoZL/v/faqOq754ZNc8a3HaGjqYGv1DgC2VDcck2sXERERERERGW3y8vJ825/MjhQRmcg8Hg+rVq3yPS8oKPBjmoOTk5PjK8BUVlaqA4iIyDHW29vruzEpKCiIWbO0NO9YpcK4jKhP3yDz9w1rsVoshAcEARBitWO3BvC9uSeRH5fKjTkLmRERy4yIWO8BFsi+fDKPrP+In615ndWtDXS09fLHO29lqO0ahlovwePc912RHV39ALjcHlq7+pjx41PJ+eaJfOfhLx+16xURERERORY8pjFqHiIytuTk5GCxeD/+UTFFRATWr19PZ2cnADNmzCA2NtbPiQ4sJCTE17K3s7OThgZNBBIROZZKSkpwu73LAs+bN2/UdxqR/QvwdwDxD4/poaStnimh8SQGRY3YeZNDwilMC6auq4XOrhASg8MA+Gb2eRyfkEtWRCqGYfCl7AV8KXsB/3l5DV+ue5rW+EGOS5zKGVOjKe/9M6dMtVCyw0FqaCSr36xj57bWPd5l9z/id+1o46Hv/Z3JmSlc/t1zAYiNCmFF03b+WlsNAXBTrH3Erk9ERERERERkLPmkmLJhwwY6OzvZtm2br726iMhEtHLlSt92YWGhH5McmtzcXOrr6wFvO/XU1FQ/JxIRmRjcbjclJd5uxoZhjIlOI7J/mjE+QT2+6S2+UfooV3xwL/2uIVweN13OviM+7+r2jWwdaMRuc3NVTg63zloCgM0SwKL4LGLsYcPG/+kv79MePghAr2uI6JB23OYQkUED/O34cyl+ohirc4jegeP5y2OX4bI9gSUwjx09L/LutlP57wc/4d1/r+TJO5+jYf1Ozj95FkvyZ5AeFwNAuN1GTEjwEV+XiIiIiIiIyFjlcDh821qbVkQmsubmZjZt2gRATEwMM2bM8HOig5eVleXrAFJVVaUOICIix0hlZSU9PT2A92dxVFSUfwPJEdGM8Qlqe18bAP3uIS5895d0uHoBuHP2lZyY6PisQ/fS7xriq6seonGgg5/P/jxZEZPocw1yQ8YJvrVv9ufSCwrofv8j4pZE8z8Fy0gLC6R5oIGEoBTWPFHPn370DAB/Wns3k6Yn+o7b3Pkn+l0NRM1rJzBkLpEZScSmxvj2n5o1gze+fi3hQUFEBQcd0vWIiIiIiIw2Hgw8+L+N+WjIICKHLisri4CAAFwuF5WVlZx++um+4oqIyETy6dniB/rscjQJDg5mxowZrF+/nu7ubrZu3cqUKVP8HUtEZNzb8++OoqIiPyaRkaB/BU1QZ6XM821/UhQHWNex+ZDPtbGnkZruBjqcvZS1b+SxBV/n6cXfIiUk5oDHfu7SIt787S38duE5NL3dQOBgGF9I/zZnJH+emIQoAOzBNoLDhrdDnxp5DUHWFGbGfoXUr57ExslR/N8Tbw0bkxYdpaK4iIiIiIiITHh2u52MjAwA+vr62Lhxo58TiYgcewMDA6xbtw4Am83GnDlz/BvoMOTm5vq21QFEROTo2759Ow0NDQAkJiZqSaJxQDPGJ6h5MdP51dxr6HH28+CGV2kc6CA3Mo3PTz3hkM+VGTGJ81OL2NnfxtmT5h9WntsueYDWpi5OOGcO37vvSgByL5jFD6bfRvakScQkRg0bnxJ2Lilh3jXFm9sfBqBpV9dhvbeIiIiIyGjnMQ08pv9nNI2GDCJyeBwOB1VVVYC3mDKW2geLiIyEsrIynE4nALNnz8Zutx/giNEnMzPT1wGkurqaM844Qx1ARESOouLiYt92UVHRmOo0IvumwvgEtig+C4BlKXN5ZcdqVrbW0e3qJ9YevtfYt5sqKGmr58qpJ5AUHDVsX4DFyndzLjiiLBar9xe4T36Rq+1o5tzXHsVjmjw942oSPuPYe759Ae+s2sDpi7OPKIOIiIiIiIjIeDVz5kzsdjuDg4PU1NTgcrkICNDHQiIyMZimyapVq3zPCwsL/Zjm8NntdmbOnEl1dTW9vb1s3ryZadOm+TuWiMi41NXV5buxNCQkhLy8PD8nkpGgfwEJg24nP6t4Bg8mg24nv5hz5bD9/a4hfrj2r3gw6XUN8OO8y0bsvf/y949YV7mNW++7ku7GDgqXeovbVZs+ZElCFStb02no62QeqcOOM02TB1/6iLX1O/jOpUu59oIFI5ZJREREREREZLwJCAggOzubNWvWMDg4SF1dHdnZusFcRCaGuro62tvbAZg2bRpxcXF+TnT4cnNzqa6uBqCyslKFcRGRo6SkpASPxwNAfn6+biodJ9RnRbBZAsiLmgJAfsz0vfdbA0gPSwQgOyJ1r/2Hq629l0efeI9VpZt5/d1qjj9rDkEhdtxuN7H2H3D3zA/4S/aLnDHJO7PdNE1++5Pn+OolD7CypJ6HXylm5fpt/P2tMtr6+vnZ8rd4unTdiOUTERERERktPmmlPhoeIjJ2ORwO37bWphWRiWTlypW+7bE6W/wTM2fOJDAwEIDq6mrcbrefE4mIjD8ul4vS0lLA2+m4oKDAz4lkpOj2BsEwDH5fcAO9rkHCA4P32m81LDy24Gu0D/WSEBQ5Yu8bGRHM3NmTqaxuYPGimcP2pQS4CbaYZES3YzW6gSiaGtp5+Rlvy6Pi5RUUZqRRsaWRk+bM4LGPSvnLyjUALEyfzOSYqBHLKSIiIiIiIjIepKenExoaSm9vL+vXr2dwcHBMrrErInIodu3aRX19PQBRUVHMnDnzAEeMbjabjczMTCoqKujv72fjxo1j/ppEREab8vJy+vr6AMjJySE8fO8liGVs0ozxCew/21dy8ps/5r6aF7EYln0WxT8RaAkY0aI4gNVq4Z47L+ZXjx9HxpzQPV63Ehn6S/oHY8H2OQxLFAAJKVEcd0oO8UmRnHLOXB76xsV8cO/XWJQzlbyURAwgKSKM2LCQEc0pIiIiIiIiMh5YLBZycnIA7yyYmpoaPycSETn69lxbvKCgAItl7H8knpub69uurKz0YxIRkfHHNE2Ki4t9z4uKivyYRkaaZoxPYC80lNDnHuS57cV8I+tsv2R4rfEfvNX8LHZLMD/KfRibxXunevyk84Hzea+0np99/3csnJ3Oj796Bj/69ef3eZ5l2TP58LYvE2q3Ydc6DyIiIiIyzoyWNuajIYOIHBmHw+ErElVUVDB79mw/JxIROXoGBwdZs2YNAIGBgcydO9e/gUbIjBkzsNvtDA4OUlNTg8vl0tq3IiIjZMuWLTQ1NQEwadIkUlNHbolh8b+xf3ucHLYvTj+Z7IhUvpZxpt8yeEzvGjgePGCae+1/9YMqunoGePWDat5cvo6Xn1mJ27XvdXNiQkNUFBcRERERERH5DGlpaURGejvC1dfX09vb6+dEIiJHz5o1axgaGgIgLy+P4OD9d8wcSwICAsjKygK8xf8NGzb4OZGIyPixcuVK37Zmi48/qiJOYAvjMlkYlznstR7nAIMeJ7H2o7NegmmaGMbuWSanJV1OcvBUUoKnYrMG7TX+stPz2dHcRUZKLPd85x8AWKwWTr9w/lHJJyIiIiIiIjKeGYaBw+Hggw8+wDRNqqqqKCgo8HcsEZERZ5rmsDbqhYWFfkwz8nJzc1m7di3gbaf+SaFcREQOX0dHh2+5obCwMN8yRDJ+aMa4+Owa7OKC9+7i3Hd+warWkb/LcNXr6zg3/kvcesrPfLO+AyyBzIteQlJQ2j6PyctI4U8/+zxXn12ANcD77RodGzbi2URERERERrNPWqmPhoeIjH0Oh8O3XVFR4cckIiJHT319Pa2trQBMnTqVxMREPycaWdOmTSMoyDvRqLa2FqfT6edEIiJj38qVKzE/7m48f/58rFarnxPJSNOMcfFp6u+gxzUAQH1PIwWxM0bkvKY5iGHYKX55DUMDTipX1LFz2076wv/DmrfaSLJFsvCUeKzBF7GmppG1Azv4v/q3WZg4hUeWXIZhGKRMjuWR/9xKZ28vWyJ3cdn79xBlC+XeeV8kNMA+IjlFREREREREJoLExETi4uLYtWsXW7dupbOz09deXURkvNizFe54my0OYLVayc7OpqysDKfTSV1dnWY2iogcgaGhIcrKygDvz9j589W5eDxSYVx8ciLTuDB1AavbNzI9dGTuoHR234er5zdYgy/jgptuYfPmFirc8NALt7P4nBUkF3iYbx/E1QXrN23npl8YdOU7GUx18/bOerqdg0TYvHc+JqfFcP/al3mr3Hs3+9a+XZR3bGFBXMaIZBURERERERGZCD5pp/72228D3ha8ixYt8m8oEZER1NbWRl1dHQARERFkZmYe4IixyeFw+Io4FRUVKoyLiByBdevWMTDgnTzqcDgIDQ31cyI5GtRKXXwMw+DNpnVs7m3m7urnRuSc7oHXPv7v60yakcS53zqHAaebndu9P1AG+gJwOb3tGPuHvK8F11mZGzmJ78xa6iuKf6J1sBsAmxHA4vhs5kRPHZGcIiIiIiKjmQl4MPz+MP39hRCREZOXl+fbLi8v92MSEZGRt+fa4gUFBVgs4/Nj8KlTpxISEgJAXV0dg4ODfk4kIjI2maZJcXGx73lRUZEf08jRpBnj41Cfa5BfVj2Licl3cy48pFbjHtMDQNNABxu6dzIjPPmIsgRG3I6r908EhFwEwIKCaVx47jycrtkUxN+Ku9+GJbAHe0g/8xLn8LOb1xMVHkx+7uR9nu8ns67g9Z1rOT4hh8mh8bzdVMEvq/7NCQm5fC/3oiPKKiIiIiIiIjJRxMTEkJKSwo4dO2hsbGTXrl3ExcX5O5aIyBH7dCvcefPm+TnR0WOxWMjJyaGkpASXy8X69euH3fgkIiIHZ+PGjezatQuAyZMnk5x8ZLUxGb3G561yE4Rpmry0o5Tb1/2d57evpGWgC4APWmp4rXENrzeu5b3mqkM65/HxuQA4TTdfL3nkiDNa7UXYYx7CGrQMAJstgJu/cgq3ff00YsKmER+fSmhUFhbbXCwWg5MXZO6zKP7fxnJuWvUwG7obuTL9BCaHxgPwUkMpHc4+nm9YhdPjOuK8IiIiIiKjkcc0Rs1DRMYPh8Ph266oqPBjEhGRkbNu3TrfzOm8vDzfjOrxKjc317ddWVnpxyQiImOXZotPHJoxPoat69jCzyqeAeD1xrXYLYH8e8l3mR09lQR7JB5MZh9iq/EfOi5mwDPEm03lxNnDj0Lqw3NvzQvsGuxm12A3x8Vn+V6/YuoSmgc7OTExl0CLvp1FREREREREDlZubi6vveZdAq2iooITTjgBw9ANMCIydpmmycqVK33PJ0JxY/LkyYSHh9Pd3U1dXR0DAwMEBQUd+EAREQGgtbWVuro6ACIjI8nKyjrAETKWacb4GBZlC8XC7n+wDnqc9LoHSAiK5PkTvs8LJ/yA5ODogzrXgNvJ5t5mAO7Iu5wHC77MHwpvPCq5D6R67Vb+9fj79HT1+147I2UeVsPC6clzh42dFzONPy/4OtdOO/lYxxQREREREREZ0yIiIpg6dSrg/UCwsbHRv4FERI7Q5s2baWlpAbwF46SkJD8nOvo+aacO4PF4qKmp8XMiEZGxZc8bqgoKCrBYVDodz/S/7hg2JTSeZxZ/m5Qgb/E7MzyFtJBDXw/MNE2uK36AKz64lz9tfJMAi5U50emEBhz5nYW9Xf1875xf8o2lP2HXznY6hnZhmuZ+x3f09HLV04/xs+o3eOi+V3yv35RxOu+f+jOunb4UgC5nH72uAf6x5QOWvPFD7q569oizioiIiIiMVv5un65W6iLj157t1MvLy/2YRETkyO1Z3CgsLPRjkmNL7dRFRA7P4OAga9asASAgIIB58+b5N5Acdeo9PcalhMTw2MKvs6Z9E/kxMw7rHG7Tw/a+VgA29jSNZDzWvbeOth0r2VYXyhOV99IYX8PcqCVcMeXmfY5/t2UjHXOsADR2DQ3b90k7t5qu7Xyp+EE8podgayBu08OrO9fwnZwLRjS7iIiIiIiIyHiXnZ3Nyy+/jMfjobKyklNPPVXt1EVkTOro6KC2thaA8PDwCdUKNzU1lcjISDo7O6mvr6evr2/cr60uIjISysrKGBry1qJmzZpFcHCwnxPJ0aYZ4+NARGAIxyfkEhpgP6zjAyxW7pp9JeenFvL1jDNHNNvkmXdx34urufWhnQwldQCwpW/9fsfnJ6QRHRhMuMXOTZeeus8xG7obcZluPJj0uoeYGZ7MbdnnjmhuERERERERkYkgJCSE6dOnA9DV1cXWrVv9nEhE5PCsWrXK16ly/vz5WK1WPyc6dgzD8M0aN02T6upqPycSERn9TNMc1mmkqKjIj2nkWNGMccE0Tf5Y/zo1XQ3E2yP54vQRXK/bvRGApKk9fG7azaxsfZOCmKX7HT4pNIri87+JaZpY97OOg9PjIjIwBKfHxYywZO7N/+Jh3xQgIiIiIjIWjJY25qMhg4iMPIfDQV1dHeBtpz5lyhQ/JxIROTROp5OysjIArFYr+fn5fk507OXm5vLhhx8C3nbqE/FrICJyKOrq6mhvbwcgPT2dhIQEPyeSY0EzxgUPpq+Fem1Xw4ieu7rhRzz7Wj61O25lcshMLk67kSmhmZ95jMUw9lsUB3i4/nU6nX0kBEXxUNFXVBQXEREREREROQJZWVkEBHjnTlRVVeF2u/2cSETk0JSXl9Pf3w94C8ShoaF+TnTsJScnEx0dDcDmzZvp6enxcyIRkdGtuLjYt63Z4hOHCuOC1bBw15yruGTyIm7OPOuwzuFyuand3ITLNfwfz6eccjGf+8I/ueSiS0ciKgAXpy0iPCCIC9MWjNg5RURERERERCYqm81GZqb3Jvb+/n42btzo50QiIgfv061wCwsL/ZjGfz7dTr2qqsrPiURERq+Wlhbf77zR0dFkZGT4OZEcK34tjN9xxx0YhjHskZSU5NtvmiZ33HEHKSkpBAcHc+KJJ1JZWTnsHIODg3z9618nLi6O0NBQzj33XLZv336sL2XMWxiXyTezziUsMJgvr3yQ61Y8QNtg90Ef/8Pfvsg1P3iSH93/ku810/Rgmp4DHlu2op4//eZVdjV1+l7zmB52DXbtc/wXp5/MayfdwSWTFx10PhERERGRseyTVuqj4SEi45PD4fBtV1RU+DGJiMih2bp1K01N3m6YkyZNYtKkSX5O5D97/iz/9OfoIiKy256zxQsLCzEM/Vt3ovD7jPHc3Fx27tzpe5SXl/v23X333dx777088MADrFq1iqSkJE499VS6u3cXbG+55RaeffZZnnrqKd5//316eno4++yz1fbrMK1q3cC6ji1UdW3nw121B33c1p3tH/+3DQDTvZOB5gUMNOXjcW3a73FOp4vbb3qCfzz6Lg/f84rv9ZtLH+Wcd37B8a//kK+sfIg+1+BhXpGIiIiIiIiIHMiMGTMICgoCoKamBqfT6edEIiIHR7PFd0tISCAuLg7w3jDQ1bXviUciIhNZf38/a9euBbydk+bMmePfQHJM+b0wHhAQQFJSku8RHx8PeGeL/+Y3v+GHP/whF154IQ6Hg8cff5y+vj7+9re/AdDZ2cmjjz7Kr371K0455RTmzp3Lk08+SXl5OW+88YY/L2vMKoydwZyoqTgiJ7MoLuugjhkYcnL1uYV8/uz5/PTmswGoeP/f4GkBswPPUMl+j7VaLSSlete+GcwM5JxXH+ax9cWsbd8MgNN0s6ZjExWdW4/swkRERERExjDTNEbNQ0TGp4CAALKyvJ8DDA0NUVdX5+dEIiIH1tnZSXV1NQChoaG+VuIT1Z7t1EGzxkVE9mX16tW4XC4A5syZ47s5VCYGvxfG6+rqSElJIT09ncsvv9zX03/Tpk00NjaybNky31i73c4JJ5zAhx9+CEBpaSlOp3PYmJSUFBwOh2+MHJrXdq6labCTcyflEmTpOKhjbvvls/zkwVfY2dLFtNQ4BnoH+eFFxSz/exJVqx1Yg87Y77EWi4X7n/oqDz33DaqmdrFlYCsPrH8Rl7l7xn+iPYopIXFHemkiIiIiIiIi8hny8vJ823t29BMRGa1KSkowTROA/Px8rFarnxP5n9qpi4jsn8fjYdWqVb7nE73TyETk18J4UVERTzzxBK+++ioPP/wwjY2NLFq0iNbWVhobGwFITEwcdkxiYqJvX2NjIzabjejo6P2O2ZfBwUG6urqGPSYy9x7rgD++6b+0DTbjHriF97YvY2fPS59xpFdTq/frt7PFu0Z4YFAgydPT+MPtGWzfejOGJewzjw8KtjFlegK58VGEBjux2Ya3a2sa7OCprR8c6mWJiIiIiIiIyCGYOnUqoaGhgHciw8DAgJ8TiYjsn8vlYvXq1YB38s38+fP9nGh0iIuL832m3tDQQHt7u58TiYiMHjU1NXR2emtZM2fOJDY21s+J5Fjza2H8jDPO4KKLLiIvL49TTjmFl17yFmEff/xx35hPL3hvmuZer33agcbceeedREZG+h5paWlHcBVjy29qXuDkN3/MTyv+gWma3FfzIkte/wG/qn6ed5sr+fyUE0gLthNs9a7p3TO04YDn/J8bTyPIHkDdlhbK1++g3+zmtlcv56/r7+W8r5x60NkumDJvr9eCLIEAZISnHPR5RERERETGGw/GqHmIyPhlsVh8LXjdbjc1NTV+TiQisn8VFRX09fUBkJOTQ3h4uJ8TjR5qpy4ism8rV670bRcVFfkxifiL31up7yk0NJS8vDzq6upISkoC2Gvmd3Nzs++Ot6SkJIaGhva6623PMfvy/e9/n87OTt9j27ZtI3wlo9P6zgae3voBfe5BXt6xmqrObbzZtA4T+Ne2j/jumr/Q7xnkqxlf4F878/mwPZtvrGjm+J//goWf+xWn3/A7Nje3MOh2furMBgODLlxuDxX12/l17bd5ZMtPKDVeHzbKdO/E9PTsN9+sqCk8WPBlLkxdwK/nXcurS2/nlaU/4vnjv88ZKXsXzUVERERERERkZO3ZTr2iosKPSURE9s80zWHFDbXCHU7t1EVE9tbY2MiWLVsAb3eNadOm+TmR+MOoKowPDg5SXV1NcnIy6enpJCUl8frru4urQ0NDvPPOOyxatAjwrhsTGBg4bMzOnTupqKjwjdkXu91ORETEsMd4t613F9cWPzDstZAAO7dln8f86OlYDe+3Qm3XDsraN1LeM4nXds2kPcCNM78LLCadwd1cUforTl5+Bx/V1vvOMytjEtdfvIiLTp3DGUuy6Xd7i9/drg7fmIqqhxloXkTn1kWYnv23rp8Tnc63c85nQVwmEYEhBFltJARFjuBXQkRERERERET2Z9KkSURFRQGwceNGent7/RtIRGQftm/fzs6dOwFITk4mNTXVz4lGl+joaFJSvB04GxsbaW1t9XMiERH/Ky4u9m0XFhYesDu1jE9+LYx/61vf4p133mHTpk0UFxdz8cUX09XVxRe+8AUMw+CWW27hF7/4Bc8++ywVFRVcc801hISE8LnPfQ6AyMhIrrvuOm677TbefPNNysrKuPLKK32t2WW3PvcgHkwArFi4Nv0k0sMSOSEhl/sLvsSfFnyNtJA43mmupLRtI6cnzeXj4d7vkvPaIWEIrOAOdPM/NU/SPtRDTWcDN5X+kebYRsreq+df/17DjdP/l7NTrubkxMsBeLupgveHngfAbu9moG+HH74CIiIiIiJjl8c0Rs1DRMY3wzB8Mw1N09RMQxEZlT49W1zFjb3t2U5dHUBEZKLr7e2lvLwc8E6enT17tp8Tib8E+PPNt2/fzhVXXMGuXbuIj49nwYIFrFixgilTpgDwne98h/7+fr761a/S3t5OUVERr7322rD1Yn79618TEBDApZdeSn9/PyeffDJ//vOfsVqt/rqsUWlKaLxve3F8FjfMXDZs/8zwFCIDQ9gGGAZcnX4iyxvLdg+IcMNmG8zrAyv0Bfdz+/PPUhGygYHAQdawCWtUCH95exevTbPhNj009H/Al2csw2Oa/HNXBjbDTVhVJpdcnnlsLlpEREREREREDpnD4eD9998HvMUUtSgWkdGku7ubqqoqAEJCQoa1DZfdcnNzfZ1WKysrOeGEE/ycSETEf0pLS3G73QDMmzcPm83m50TiL34tjD/11FOfud8wDO644w7uuOOO/Y4JCgri/vvv5/777x/hdOOL3RLIcXFZfLirhndaqnhqy/tcPmXxsDF3z72aD1tqyIlIIyE4CisW3HigHSgPh/4AcBtgNWHAoGT5TjhnCAK9x7uX9TGtP5W6vu2+c/6jrpinT7oVp8dFYsjnOeuK/GN41SIiIiIiIiJyqBITE4mPj6elpYVt27bR0dHha68uIuJvpaWleDwewFvcCAjw60fco1ZkZCRpaWls27aNlpYWmpubSUhI8HcsEZFjzu12s2rVKsBbd9RNnxPbqFpjXI4ewzA4KzUKR9ROQqyDLN+xmm29u+hy9vnGRNvCeL+lhEfX38CPV9/iLYoDhAAbg8BjEPJGAucHHgfPxBJKMLwVSazTu0b7nJipfPvEc0gLicPoDmKozcaWSgsrKzbz5ZmncdYkFcVFRERERA6HaRqj5iEiE8OeMzDVgldERgu3201paSng/byzoKDAz4lGN7VTFxGBqqoqenp6AMjMzNQNnxOcbqebIHpd3byy869E2SHVY6G2aweXfnAPFgzslgBcpoevZpxBKMspiKkD6ljXvYxudxA07W4pkWKL4btLz+HGglMICbLRP+AkIiyITmcf4QFBWAwL/1j8LRb+7AF6PE5wm4T0uIdleWVbNa811HBD1iKyoxKP8VdCRERERERERA7E4XDw1ltvAd5iyuLFiw9whIjI0bdncSM7O5uIiAg/JxrdcnJyWL58OeBtp7506VKtxy4iE05xcbFvu6ioyI9JZDTQjPEJItgayoywPCxYaR0M9b3uwaTf48Rpuvn31o9Ykuhde7zbZWfAE8DkgDh4a/cvmJ29AwBEhgUTGGAlIizI+zwwBIux+9vp8WsuYZE7jFtjZpA/61n6G/Nx9j7Hu6+Wc+tHz/LC1kp+ufbNY3HpIiIiIiJjnsc0Rs1DRCaGmJgYJk2aBEBTUxMtLS1+TiQiAitXrvRtqxXugYWHhzN16lQA2traaGxs9G8gEZFjbPv27TQ0NADe5YKmTJni50Tib5oxPkFYDAs3TL8dt8fNKzvL8Jge/ttYTnFbHQCBBHDDjGVkB0/nj+VBbAnp5Hs5x/Pfv25mq7nZd56B7n4G+gaxB9voc3cTGrD3XZl/em0lL6+s4dZLT+W43Kn07/wW4KR1+8P84ltzsF1uwzXTyuLE9GN09SIiIiIiIiJyqBwOh++DxIqKCpYuXernRCIykTU0NLB9+3bAW9yYPHmynxONDbm5uWzevBnwzhpPTk72byARkWNozxuqioqK1DVDNGN8orFarJw9aT7nphbym/nX8dNZV/Dt7PN569SfkBu+g6eK/5fnXmij8l8BnJY8l+pNzbsPdnvwvLSOFx5+k39s+x3/W3kdv/ro/xhyugBob+vhK9c+zP3PfUD9zlaeeKMEgIDwb2MEZLGz5RIAJv3DyQtzruH6rIXH/PpFRERERERE5ODk5ub6PjysqKjANE0/JxKRiezTs8VV3Dg42dnZvq9VZWWlfpaLyITR3d1NZWUlAMHBwTgcDj8nktFAhfEJ7pSk2VyYtoDeoVrWtdxGZsZLFM2uJjkmgiGni66eft/YyKqdWIfcpGWkUNu5DoCNPeX87SVvAbykeCMbapsIanYSZrdx4eI8AALDvsS2wD+SOP1V/vqfdfz+H5eQnZF67C9WRERERGSMMk1j1DxEZOL4dAvenTt3+jeQiExYvb29vuJGUFAQeXl5fk40doSGhjJt2jQAOjo6fJ1ARETGu1WrVuHxeADIz88nMDDQz4lkNFAr9QlqyN3BgKuRcFsmhmGwq9XAwI7JINecfCYJ9qWc/7U/4nLvvoPw0Vd+QIAHEifHYW/6Eg+89RjbShI49YwQAIoWzWDW3MkYhsHtd1xMREQwAI19XdxV8gseyF0BQRCZsBqY7Y/LFhEREREREZFD4HA42LRpEwDl5eWkpKT4OZGITESlpaW43W4A5s2bp+LGIcrNzaW+vh7wzhpPTdWkJREZ31wuF6WlpQAYhkFBQYGfE8loocL4BOT29PPB9rMZ8rSRFftDtqwv4rv3vkRE5IUEBznZ1bIFt+cx3/jAAAt//79rmZQY5XttbmIBPz8lk5Z5PThmeteliYgMIfbcyfxjdTn569dzxfzZeEwP/97+EdWDkazpjCc9LJAE+ynH+pJFRERERERE5DBkZ2fz0ksv4fF4qKys5NRTT8ViUQNCETl23G43JSXejpUqbhyerKwsXnzxRd/P8mXLlqkVvYiMaxUVFfT19QGQk5NDRESEnxPJaKF/yUxAbrOfIU8HAP3O7Xy0diMAXZ0hNDVF4vbsniVutwXwyP9+blhR/BNJcRHkZaQM+yXqmbIK+p0unl1bhdvjYXXbRv6y+S3MQPif7Wewwvw1d9YWU9K64aheo4iIiIjIeGKaBp5R8FArdZGJJzg4mBkzZgDedRq3bt3q50QiMtHU1NTQ3d0NQEZGBlFRUf4NNAbpZ7mITCSmaVJcXOx7XlRU5Mc0MtqoMD4B2awxzEt8kBnRN9PbfD4d3bvXEQ+2BxBg2f1h1+fOyicjPXGvcwwOufjZ3S/yvdv/SUdHn+/17y87gTmpycxNS8Fx16+54cl/YPn4w7M+zyAPbljOiw0l/Lj8qaN4hSIiIiIiIiIyUvZcy7e8vNyPSURkIlq5cqVvu7Cw0I9Jxrbc3Fzf9ifrtYuIjEdbt26lsbERgJSUFC0fIcOolfoEMeDu45ltDwJwSdpXiA9ZQllZHD/+3YskJLYxecoQW7ckcc5JeVxw6mwq1jcSGxHMwjnT9nm+Neu28sZbVQD8951qLjwvH4BL5+Vx6bw8rvnH34jMb8EwwAPEBPRzfdIGXNYs7t0SyOyoqcfiskVERERERETkCGVkZBAYGIjT6aS6upozzzwTq9Xq71giMgE0Njb6ZjfHx8eTnp7u50RjV2ZmJlarFbfbTVVVFaeffrqWxhCRcenTs8W1dITsSYXxCaKqq5TyzhUA5EYWMi96Cc+8VEpsXAc3fu05LBaT/75yDrGJEVzw0yeIDQ/hP3dcu9/zZWcmkz4ljp7eQQry9/6FtCG2DsO9+/kV8dWcHl0HVHHykteJDpo+0pcoIiIiIjJumYBpHnDYUTcKIoiIH9hsNjIzM6moqKC/v5/6+noyMjL8HUtEJoA9ixuFhYUqbhwBu93OzJkzqampobe3l82bNzNt2r4nRYmIjFUdHR3U1NQAEBYWNqxbhgiolfqEMS00h+jAeKID45kSnMWamu30dvYTYHVhsXg/3rrx8gLa+7xt1Vu7++jqH9zv+SLCg3nsD1/kmb98hbTUmGH7XB43ve6B3S+YUN0TC4BhTSM6KE2/xIqIiIiIiIiMIQ6Hw7ddUVHhxyQiMlH09fX5ft7Y7XZmzZrl50Rj354/y9VOXUTGo1WrVmF+fFf5/Pnz1eVI9qIZ4xNElC2W7+f8HoB7H/8vz7xa9vGeOJ740+lceuZ0pk69kGuXDWExDDJS40mKDv/Mczo9Lm4tfYxNvU38cs7VOKImA7C9t5OOHjt2m5MpQTGc1DCT82Z8k6AEC1jCMQz70bxUEREREZFxx4OBgf9vLvWMggwi4h8zZswgKCiIgYEBampqcDqdBAYG+juWiIxjq1evxuVyATB37lxsNpufE419M2fO1NIYIjJuDQ0NsXr1agCsViv5+fl+TiSjkQrjE1BTazcAFgM8JmzdnEZkwKkYhoWIkCC+ft5iAD5au4mnXi4lDQvTI8I498ZTsFp3NxnY3tdKaXs9AG81VTAtJJkXyqvJSU7g5KQ8qjoa+em8C8g7JeXYX6SIiIiIiIiIjBir1Up2djZlZWU4nU5qa2uHzTwUERlJHo+HkpIS3/OCggI/phk/bDYbGRkZVFZW0t/fz6ZNm5gxY4a/Y4mIjIh169YxMODtZuxwOAgLC/NzIhmNVBifYEzTZPP2VsBbFM+Znkh1fRPf//ULzM6cxBlLcjh3aR6GYXDfX95my442VvU7CVm5madrNnPqiQ6uu2jRx8eb4P1/JgXH8Ou3PuCJ4jLsAQGs+NaNhNh057iIiIiIiIjIeJGXl0dZmbcDXUVFhQrjInLU1NbW0tnZCXhnOcfExBzgCDlYDofD10a9oqJChXERGRdM02TlypW+54WFhX5MI6OZ1hgfpzp2dXPjaf/Hl075JS07O4bta+3s9W1X1TcRFd3F9Tf+h4y5T/B/jy1nVcUWAE5dlIVhgG1nJ0PT49jS2s0j//qIzp5+6rsbeWXnarwrNRgEB9gI/bidUVBAAFaLWiyKiIiIiIwU0zRGzUNEJq4pU6b4Zt5s2LDBNyNHRGSkqbhx9MyYMQO73bvUZU1Nja9dvYjIWLZp0yZaWloASEtLIyVFnYxl3zRjfJxaV1zPlromANZ8UMepF3vbDRmGwW9/cAm/fOJV1te1AAZz5m0iNa2F1LQWVhW3Ev/x2uLXXbiQa84vom1nB8UVW/jNP94nP3cyoSE2Ln77D/S4BsiPmcbZkwo4LXk2y5IgPy2FGfGx2AP0rSUiIiIiIiIynlgsFnJzcykuLsbtdlNdXc3cuXP9HUtExpnm5mY2b94MQGxsLNOnT/dvoHEmICCAzMxM1q1bx+DgIPX19WRmZvo7lojIESkuLvZtFxUV+TGJjHaqXo5T+cdnseCUXFwuNwtOyaWqcxt/3PAaWeGpPL+9mI7j+iDXAsuj6A3IIzigGYsnnntvvY3kuFjfeawWC/GTYjh7Ugxnn+b9x67H9BBitdPjGmBaWCJnpHz8j2AD8idPwhZg3SvPPf98mxU1W/mfz53CnGm6U0dERERERERkLMrLy/N98FhRUaHCuIiMuD2LGwUFBRiGOtaMtNzcXNatWwdAZWWlCuMiMqa1tbWxfv16ACIiIsjOzvZzIhnN1Ep9nAoND+LHf7yWn/7pesKjQvhT/ZsUt9bx+Oa36HD1eQdFeYj43AArk1v5qPsGwt2/5Ht//i+PvbbqM8/9Ydkm5tQ5+O7ki7k58yzf6x9t3Erh3b/n1Psfo2dw0Pd6R08/f32rjPqdrTzz7tqjcr0iIiIiIuOZxzRGzeNgPfjgg8yaNYuIiAgiIiJYuHAhr7zyyrAx1dXVnHvuuURGRhIeHs6CBQvYunWrb//g4CBf//rXiYuLIzQ0lHPPPZft27cPO0d7eztXXXUVkZGRREZGctVVV9HR0XFEX28R2b+UlBSio6MBb8vKnp4ePycSkfGkv7+f8vJyAGw2G3PmzPFvoHFq+vTpBAUFAd526k6n08+JREQO357LbxQUFGCxqPQp+6fvjgliaaKDAMPCrMgpw153Gx4AOof6ePyNEtZt2slvn3+fgaF9ry3T3TPAd+55jtf+u54Xn6wl0LK76UDJ1gacHg87OrvY3tHlez0yNIhzFuSQGB3GeQtzj8LViYiIiIjIaJOamspdd91FSUkJJSUlnHTSSZx33nlUVlYCUF9fz+LFi8nKyuLtt99m7dq1/OhHP/J9SAtwyy238Oyzz/LUU0/x/vvv09PTw9lnn43b7faN+dznPseaNWtYvnw5y5cvZ82aNVx11VXH/HpFJgrDMHA4HACYpun7My0iMhLKysp8RdrZs2f71sKWkWW1Wn0zKp1OJ3V1dX5OJCJyeAYHBykrKwO8S0XMmzfPz4lktFMr9XGksb8DgKTgqL32nTVpPmekzKNjqJez3vm57/Uf511KQ38bpyfPZZWngZW121iSm06Qbd/fGg0N7eA0IdAgJDBw2L4L5uTwQkUNYXYbk6Mjfa8bhsFPrjrtyC9QRERERETGjHPOOWfY85///Oc8+OCDrFixgtzcXH74wx9y5plncvfdd/vGTJs2zbfd2dnJo48+yl/+8hdOOeUUAJ588knS0tJ44403OO2006iurmb58uWsWLHCt47cww8/zMKFC6mtrVVbUJGjxOFw8N577wHedupax1FERoLH42HVqt2dLAsLC/2YZvzLzc31FZMqKyvJycnxcyIRkUO3Zs0ahoaGAJg1axYhISF+TiSjnWaMjxO1XQ1c/P7dXPz+3dR0bd/nGIthIcYeztdmnkGQJZAT4nNYkpDD5VMWc/s9r3D7PS/g2d5P7f0fsa2+eZ/nyJiZxDVnFnByzjT+9xtnDdtXunUHW9o6qNzZzNt1m0b8GkVEREREJirTHD2Pw+F2u3nqqafo7e1l4cKFeDweXnrpJTIyMjjttNNISEigqKiI5557zndMaWkpTqeTZcuW+V5LSUnB4XDw4YcfAvDRRx8RGRk5rCi3YMECIiMjfWNEZOQlJCSQkJAAwPbt22lvb/dzIhEZD+rq6nzLoUyfPp24uDj/Bhrn0tPTfQWk9evXM7jH0pgiImOBaZrD2qjrhio5GCqMjxNNAx24TQ9u0+ObOb4/n08/gbdO+Sl3zb0agOa2blZVbAHAtBp02K386s4X6ers2+tYi8XghmtP4Gf/cwHRUaHD9s1LSyE2NIT4sBDmpCaPzIWJiIiIiMio09XVNeyxvw9Sy8vLCQsLw263c+ONN/Lss8+Sk5NDc3MzPT093HXXXZx++um89tprXHDBBVx44YW88847ADQ2NmKz2XxrGX8iMTGRxsZG35hPinN7SkhI8I0RkaMjLy/Pt11RUeHHJCIyXqi4cWxZLBbfLHGXy8X69ev9nEhE5NDU1dXR1tYGeG/2SUxM9HMiGQtUGB8nFsdnc1vWedyWdR7HJxxc2xvTNGnsfY03yh4Ddk/9sFgCqKzawfIX1+732P4BJ7fc9S+u/eGT7GzxrieeFh3JB9+8gXe+cT2B/Sbm4U4nERERERGRYUzTGDUPgLS0NCIjI32PO++8c5+5MzMzWbNmDStWrOArX/kKX/jCF6iqqsLj8QBw3nnnceuttzJnzhy+973vcfbZZ/OHP/zhAF8LE8MwfM/33N7fGBEZeZ+sMw4qjIvIkdu1axcbN24EIDo6mhkzZvg50cSQm5vr266srPRjEhGRQ7fnDVVa2kcOlgrj44TFsHDx5IVcPHkhFuPg/mdt7f+Qtc23EDvtD8zM3OZ7PSYxDLs9kLw5k/d7bHldA8XrNlOzqYm3V+6+m9AwDO769tNcderdPHjXi4d/QSIiIiIiMmpt27aNzs5O3+P73//+PsfZbDZmzJjB/PnzufPOO5k9ezb33XcfcXFxBAQE7LWWZXZ2Nlu3bgUgKSmJoaGhvVo0Nzc3+2YCJCUl0dTUtNf7trS0aLaAyFEWFRVFamoq4P1z2dy87yXZREQOxp7FjYKCAiwWfWx9LEyePJmwsDAANmzYwMDAgJ8TiYgcnJaWFurr6wHv76UzZ870cyIZK/QbxgQWYAnzbQ8O2Hzbt999Kc++9i1SEiN49S/v0rpz77XCHDNTmJ87mRmT4zm5oAdnz0OYHu/M8ao13g+yKsu2HOUrEBERERERf4iIiBj2sNvtB3WcaZoMDg5is9koKCigtrZ22P7169czZcoUAPLz8wkMDOT111/37d+5cycVFRUsWrQIgIULF9LZ2Tnsw/Ti4mI6Ozt9Y0Tk6NGscREZCYODg6xd6+1cGRgYyNy5c/2caOLYs5262+2mpqbGz4lERA5OcXGxb7uwsFA3VMlBC/B3ADl0pmnywfJy7MGBFJyYfdjniQqazcKUfwEmXScM8Ph/VrIkfxq5M5IxDIOff+F3rH2nmqm5qTxU/PNhx4YE2bj/h5dgevoYaJqLq3sI070VW+TP+e4vL+O1F1dz3qULjvBKRUREREQEGNbG3N85DtYPfvADzjjjDNLS0uju7uapp57i7bffZvny5QB8+9vf5rLLLuP4449n6dKlLF++nBdeeIG3334bgMjISK677jpuu+02YmNjiYmJ4Vvf+hZ5eXmccsopgHeG+emnn86XvvQlHnroIQBuuOEGzj77bDIzM0f24kVkL7m5ubz66quYpklFRQVLly7VMgYicsjWrFnD0NAQALNmzSIoKMjPiSYWh8Phu8mwsrKSOXPm+DeQiMgB9Pf3s27dOkA3VMmhU2F8DPrw1Qp+ftMTANzzj5vInZ9+2OeKsHsL65ecDpecPm/YvoBAq/e/Adb9n8AIAEsUeJoxLN5Whc/XbeDfu7YSuimZmbmTDjubiIiIiIiMXU1NTVx11VXs3LmTyMhIZs2axfLlyzn11FMBuOCCC/jDH/7AnXfeyc0330xmZib/+te/WLx4se8cv/71rwkICODSSy+lv7+fk08+mT//+c9Yrbv/jfLXv/6Vm2++mWXLlgFw7rnn8sADDxzbixWZoMLCwkhPT2fjxo20t7fT0NDga68uInIwTNMc1vmlsLDQj2kmptTUVCIjI+ns7GTjxo309fUREhLi71giIvtVVlaG0+kEYM6cObqhSg6JCuNjkD04cPd2UOBnjDx0H1ZtJsBqoTBzMj98/CZK36xg9vH7n5VuGDbcEc+zs72CaaFLAXh7Xb3vv185W+0LRUREREQmokcfffSAY774xS/yxS9+cb/7g4KCuP/++7n//vv3OyYmJoYnn3zysDKKyJFzOBxs3LgR8LZTV2FcRA5FfX09bW1tAKSnp5OQkODnRBOPYRjk5OTw0Ucf4fF4qK6uJj8/39+xRET2yePx6IYqOSJquj8GzT8hi1898zXu/88tzHCM3D8436/cxE2/e5Yv//ZfrN6wndDIEI6/sJDIuPB9jt/Z307zQCcXPPIyZz9Szm/fXgHAjz53KifNnsG3L1k6YtlERERERCYyj2mMmoeIyJ6ys7N9XRwqKyvxeDx+TiQiY4mKG6ODw+HwbVdWVvoxiYjIZ6utraWzsxOAGTNmEBcX5+dEMtZoxvgYlZM/dcTPabXsvk/CYtn7noldjZ08++g7zF44A9vcYL6y8mECLBa6hmIAg0c+LGFGfCznzMrixFnTRzyfiIiIiIiIiIwuQUFBzJw5k5qaGnp6etiyZQvp6Ye/5JuITBxtbW3U1dUBEBkZSUZGhp8TTVzJyclER0fT3t7O5s2b6enpISwszN+xRET2Ulxc7NsuKiryYxIZqzRjXHwWZk/hj9+4mD/deilzpqXstf+xu1/i34++y0++/Gc2d7RgYuL0uPn2GYswAJfHw7NrdUehiIiIiIiIyESy50zD8vJyPyYRkbFkz9niBQUF+5yoI8eGYRjk5uYC3nXfq6qq/JxIRGRvjY2NbNmyBYDY2FimT9cETTl0+m1jghscdPLYk+/z/ItlmKZJQUYac2dM2ufY9GxvsTxlahxnpM7lCylLuWXG2Xw+u4jvnHo8eSmJfOm4gmMZX0RERERkQjDN0fMQEfm0jIwMbDYbANXV1bhcLj8nEpHRbmhoiDVr1gAQEBDA3Llz/RtI1E5dREa9T88WNwwt9SWHTq3UJ7iXlq/j8b9+CMCM6QnkZu+7KA5w0fUnsGiZg9jESN5dVc8TD5QTERrEm0OVWDH4471XEBOrFjsiIiIiIiIiE0lgYCCZmZmUl5czMDBAfX09mZmZ/o4lIqPY2rVrGRwcBCAvL4+QkBA/J5KEhATi4uLYtWsXW7dupauri4iICH/HEhEBoLe319eZyG63M3v2bD8nkrFKM8YnuCmT4zAMCAm2ER/32b/oGIZBypQ47EGBbGpoBSA6bAc33/BHzj3jaUpX1h2LyCIiIiIiE453trYxCh7+/kqIyGi150zDiooKPyYRkdHONM1hbdQLCwv9mEY+sWc7ddCscREZXUpLS3G73QDMnTvX161I5FBpxvgElz93Cs/85SvYbYGEhwcd9HGfP2s+AEuy/snUuFZmTGulorX1aMUUERERERERkVFs+vTpBAcH09/fT21tLUNDQ/rAUkT2adOmTezatQuAyZMnk5SU5OdE8gmHw8E777wDeAvjCxcu9HMiERFwu92UlJT4nuuGKjkSmjEuxMWGH1JRHCA0xM4NlxxHZtZ1DHmS+aBuKl95aA0l67ftc3zfkJMBp9YYExERERERERmPrFYrOTk5ADidTmpra/2cSERGK80WH73i4uJITEwEoKGhgfb2dj8nEhGB6upquru7AcjMzCQ6OtrPiWQsU2Fc9mv1qo08/Ls3aW7q3O8YS6CDmu6n+PbT5+L2WHF79u6tWNPYwoJ7/sCSX/+Rho6uoxlZRERERGRc8n8L9d0PEZH9UTt1ETmQ9vZ2340z4eHhZGVl+TmRfJraqYvIaFNcXOzbLioq8mMSGQ9UGJ9gOgbWUNZ0M429r37mOJfLzf98+2n+8dePeOj+Nz5zbFHWZB782oU8+LULKcqavNf+ip1NDLpcdA0MUte864jyi4iIiIiIiMjoNGXKFMLDwwHYsGED/f39fk4kIqPNqlWrfNvz58/HarX6MY3sy543OakwLiL+1tDQwPbt2wFISEhg6tSp/g0kY54K4xNMTdsvae57g4qWH33mOKvVwqTUGADs4XZu/9lzfLSyfr/jF2RPYUH2FN/zHZt30dvl/Qfw2Y4srimax42LC1k8Y+qRX4SIiIiIiIiIjDqGYfhmGno8Hqqrq/2cSERGE6fTSVlZGeBdfiE/P9/PiWRfoqOjSUlJAaCxsZHW1lY/JxKRiezTs8UNQ13M5MioMD7BJISc9PF/T/zMcYZh8MCjX+RPf/8K1ZubefeD9dxz3/KDeo83/l3CdSfdxXUn/5K+ngGCAgP4/mkncOtJxxFg0beciIiIiMihMkfRQ0Tks+Tl5fm2y8vL/ZhEREabdevWMTAwAHhnJYeGhvo5keyP2qmLyGjQ3d3t+xkUHBw87PdMkcOlKuUEMy3qS5wypYxZCXcfcKzdHkjalFgWFc0AYOHH/z2QbRuaAehs7aG3a+Dww4qIiIiIiIjImJKcnExMjLcD3ebNm+nu7vZzIhEZDUzTZOXKlb7nhYWFfkwjB7JnYbyiosKPSURkIispKcHj8QCQn59PYGCgnxPJeBDg7wBy7Fkt9kMaf+3Vx7F9zk42O7fRPNBJQlDkZ46/9MalWAMtpGcmE58SdQRJRURERERERGQsMQwDh8PBu+++C3hnGi5YsMDPqUTE37Zs2UJzs3cyTWpqqq9Vt4xOkZGRpKWlsW3bNlpaWmhubiYhIcHfsURkAnG5XJSWlgLe3y/nz5/v50QyXmjGuBxQRec2Xm1aQ0lbPa/sKDvg+NCIYK6+9XSWnDn7M8e5PR5u+eeLnPG7P1Pd2DxScUVERERExh3TNEbNQ0TkQPZsc6mZhiICaLb4GKR26iLiTxUVFfT29gKQk5NDZORnT9gUOVgqjMsBZYQnkx2RSpw9AmO7jadeKcXpch/yeda1b+Gct+/kW6ufwG16qNnRzCtVdWxsbee5tdVHIbmIiIiIiIiIHGtxcXEkJSUB0NDQQFtbm58TiYg/dXZ2UlNTA0BYWBg5OTl+TiQHY8//nSorKzFN049pRGQiMU2T4uJi3/OioiI/ppHxRoVxOaCQADuPLbyJu9Ou5cE/fMR9f3mbF94+9Du+X2tcS8tgF++3VLOzv52//OpNQna4CHNZuWC2fiEWERERERERGS8cDodvW7PGRSa2kpISX1E1Pz8fq9Xq50RyMMLDw5k6dSoAra2tNDY2+jeQiEwY27Zt8/3MSU5OJjU11c+JZDxRYVwOWnREMLZA7y+uSbHhh3z8+amFZEdM4sK0IiYFx9DTNUDcukHyNwWRlRQ/0nFFRERERMYPcxQ9REQOwqcL45ppKDIxOZ1O3xqxFotFa8SOMWqnLiL+8OnZ4oahJb1k5AT4O4AcfS5PL9u7nyHClktMcMFhnyc5PpJnfn0dDZ0dBEXbDvn4GeFJPLbwa77nt//iYt5/u4ZFx2cediYRERERERERGX0iIyNJS0tj27ZttLS00NzcTGJior9jicgxVlFRQX9/P+AtsoaFhfk5kRyK7OxsXn75ZUzTpLKykpNPPlkFKhE5qjo7O6mu9i69GxoaOuwGHZGRoBnjE0B9+++obbubksYvMuTu8L2+YWMzu1q7D+lcttAAri17inNee5h/bVp7RLkSEiO58LIikpKj9jvmP+XVnPzbR3nso9Ijei8RERERkTHNNDBHwQNTH4SKyMHbc9Z4eXm5H5OIiD+YpsnKlSt9zwsLC/2YRg5HaGgo6enpAHR0dLBjxw4/JxKR8W7VqlW+TkPz588nIEDze2VkqTA+AdgC4gAIsIRjMbwzvd94q4rrb/ozV17/CG3tvQd9rl7XIL2uQQB29HWOaM4uZz8uj3vYa498WML2ji4efK94P0eJiIiIiIiIyGiUm5vrm1lYWVmpduoiE8yea8SmpKQwadIkPyeSw/HppTFERI4WLb8hx4IK4xPA1IhrKUr+O8el/ocASwgAzS3emeIDA056ewcP+lyTQqN4aPFlfHfWyVyfuXDEMv7f8/9i2Zs/4fK3fz2sOP7FhfmkRIbz5cW6o1RERERERERkLAkNDWXatGmAd6bh9u3b/ZxIRI6lT88WVwvusSkrKwuLxVtG0E1OInI0rVu3joGBAcB7U46W35CjQT0IJgDDMIgKmj3stYvOzycw0EJyUhRpqTGHdL6TUmZyUsrMEcs3OODkxVUrYYmF7c5Wul39RNu8P/DOn5XD+bNyRuy9RERERETGItP0PvxtNGQQkbHF4XBQX18PeGcapqWl+TmRiBwL3d3dvjViQ0JCtEbsGBYcHMz06dOpq6uju7ubbdu2MXnyZH/HEpFxxjRNiot3dw4uKiryYxoZzzRjfIKy2wK45IICFi8cuQL3J0zT5N+b1/LPTWsO6g5Cmz2A2TsnYf/Awzm9c3xFcREREREREREZ27Kzs7FarYB3pqHH4/FzIhE5FkpKSnx/3vPz87VG7Bi3540NaqcuIkfDpk2baGlpASAtLY2UlBQ/J5LxSr+RTFA9A93c++7/4sHDLcfdTlRo1D7H9fYO8o0b/kxbazd3//ZKZmQk7TXG46wCwBLondn9TmM931n5AgCRtmBOnZT5mVkMw+C+R77OQN8QwaH2I7gqERERERERERlN7HY7GRkZVFdX09vby+bNm33t1UVkfHK5XL41Yg3D0Bqx40BWVhZWqxW3201VVRWnn366r726iMhI2HP5Dc0Wl6NJf3tNUC+veoWexC30JW7j+RXP73fcpg1NbNnUQnfXACUr6vfa7x5axeCusxjcdRaeoTIAYu0hGB//X1xQ6AGzbFjfSEd73wGL4v1OJ219/Qc8n4iIiIjIeGOaxqh5iIgcKofD4dsuLy/3YxIRORaqqqro7e0FICcnh4iICD8nkiNlt9uZOdPbebS3t5ctW7b4OZGIjCdtbW3U1tYCEB4eTlZWlp8TyXimwvgENW9qAUNNNoZaAsmfvGC/47JzUznngnwWLs5g2Vm71ymv62zh5Jd/x71r/+N7zTS7AciLSeG1M27k1dNvZG5s6mfmePn51Xzlmkf44hUP0tszsN9x7X39nHTfoxz3q4d4v16/eImIiIiIiIiMFTNnzsRmswFQXV2Ny+XycyIROZr2nPVXWFjoxyQyktROXUSOlj3/3igoKPAtwyNyNKgwPkEZ7RY8d2aQ/eY55M7I2O84a4CFm799Bj+5+1JiYr1rf9/58Gtc/dBf2NLTzkObbGy33oEt6ndYbEt8x6WHxzItIvaAOZqbugDo7Rmgr29ov+N2dnbT1tePxzSp3Nl0sJcpIiIiIiIiIn4WGBhIdnY2AIODg2zYsMHPiUTkaGloaKChoQGApKQk0tLS/JxIRkpGRgaBgYGA9yYnt9vt50QiMh4MDg6yZs0aAAICAsjPz/dvIBn3tMb4BPWfh96gdtVGaldt5OKbTyc2OfqgjtvR0smz75djBnqISQlm4bQ00oIa8Li6seDmUL+lLrtyEcEhNqZOSyA+Yf9tlbKT4vnhaSeyo7OLz82fvd9xIiIiIiLjkml4H/42GjKIyJjkcDhYu3Yt4J1pqBaZIuPTp2eLG4Z+dxgvbDYbGRkZVFZW0t/fz6ZNm5gxY4a/Y4nIGLd27VoGBwcByMvLIyQkxM+JZLxTYXwcGRpw8vwfXicmKYqTL1+EaXpwerqwWaP2GnvCxQv48IXV5CycSXRiJBUfric0Mpj03H3fxbmzpYtf/flNypqbcIZZCLPa+W3++eRNXY2z47e4AEtgBtagZYeUOTjExmVXLhr2msvj5o7yp9nSu4ufzLqc9LAEDMPg6qK5h3RuERERERERERkd0tPTCQkJoa+vj9raWoaGhnzt1UVkfOjp6fG12A4ODsbhcPg5kYy03NxcKisrAaisrFRhXESOiGmaFBcX+54XFRX5MY1MFGqlPo68/Ke3ePT2Z/i/Gx5mw9otlDRez1tbF7Gx45G9xs5bmsszW3/H/z59C+8/X8q3Tr+Tmxbfwba6nfs897NvrOGDso20d/cB4JiZzNzsVCwBMwEbEIQRMP2gcpqmiWma+91f39PEG43l1HXv5JUdqw/qnCIiIiIi45lpjp6HiMjhsFqt5OTkAOByuaipqfFzIhEZaaWlpXg8HgDmzZvna7st48fMmTN9NzVVV1fjcrn8nEhExrINGzbQ1tYGwNSpU0lMTPRzIpkIVBgfR5LTEwCwh9iIjAunY9BbVN7S+Tjbu/+13+MGegcA8Lg9OAf3/cvMornTCLYHkhUVw7cvPpGfX3MGAJbAbIISiwlKLMZyEIXx1oFeTnr5dxT959fUd+3a55hpYQkURM4gwRLByQmzDnhOERERERERERn99pw9+smsUhEZH9xuN6WlpQAYhsH8+fP9nEiOhoCAAN9SGIODg9TX1/s5kYiMZZotLv6gVurjSNEZc/hT2V0EhwcRnRDJrN57qGm9kwH3Tip33U5K2DlYjL3blJ3yueMItAcSGRfONMe+W6nPyUrlxQdvZMjlJioseNg+wxJ10BnL23eyrbcDgI+aNzM9Im6vMaYLdv6kk/4ONx9ds57MG1KG7X/gnRU8tqKUW5Yu4qpCtVcXERERERERGQsmT55MREQEXV1d1NfX09fXp3UkRcaJ6upquru7AcjMzCQqKsq/geSoyc3NZd26dYC3nXpmZqafE4nIWLRr1y7fzTVRUVFkZGT4OZFMFJoxPs6kTE8kOiESgMTQU5ge/VXAIDZoIQbD2xcN9A7S1dqDxWJh6SULmLc0d7/nbe3q5czbH+Xk7z9Eyfpth51vYcJULk2fw+mp2Zydtu/383hM+vuGAOjuHsDtctPXM+Db/7eSNfQMDvH3knWHnUNEREREZEwxR9FDROQwGYZBbq73swCPx0NVVZWfE4nISFm5cqVvu7Cw0I9J5GibPn06QUFBANTW1uJ0Ov2cSETGoj1nixcWFmKxqFwpx4a+08a51PCLOHVqGflJD2MYhu/19qZOrsz+JpdN+zpr3qk+4Hl2tHbR2TuAx2NStbWZ1oFe2gf7GHK6eP6/61hbs33YeNPdwlDHrTi77xu2nrjdGsAvCs7mgUUXEWUP/vTbABAUFMi9v7+am755Gld9cTFfPu0eLpnzIz58zdtm7baTl5CTlMA3li46nC+JiIiIiIiIiPhJXl6eb1vt1EXGh507d7Jtm3ciTUJCAlOnTvVvIDmqrFarr5360NAQdXV1fk4kImPNwMAAa9euBSAwMJC5c9UZWI4dtVKfAPbVPr1p6y6623oA2LB2M3NOyN7v8Y1bdnHPufeSNjWChZcvIMcRz3Ev3IfVsHCNMZ9//2stFovB8/ffQFx0GACuvidw9z8HgDVoGUbg/s+/L5k5KWTmpNDU0EbDphYAKlZuJLooir7IXTx2zflE2UIP6ZwiIiIiIiIi4l9JSUnExsbS2trKli1b6OrqIiIiwt+xROQI7DlbvKCgYNjkHBmfHA4Ha9asAbzt1HNycvwbSETGlNWrV/u6TcyePdvXhULkWNCM8XHq0Sfe4/zLH+DVN/Z993Xm/Gl86ReXc+HXT+fMa0/8zHOVvVVJ05ZdDL2zkRMiY2kY7MRlehj0uOi3eX942QKtBAZYfcdYbIsAG4Z1KoZ18mFfR+KkGG68/TxOvbiA869fwldXPczv1i/n3poXDvucIiIiIiJjjWkao+YhInIkDMPA4XD4nldWVvoxjYgcqd7eXsrLywEICgpi1qxZfk4kx0J6ejohISEArF+/nqGhIT8nEpGxwuPxsGrVKt/zoqIiP6aRiUgzxsepZ54tYWDAyXMvlnHaKY699huGQfYX4hhwhxAUZgegqW8H/1nxHDMC81m6ZPcPo+POyee///iI3s4+ZsyaQkFqFNt7O7BZArg2o5CzpuWSHB9JZPju1uhW+0KCktYBgRjGkd1/cd41SwDwmB6i14fS3z9EvH333eS/fftDniot5zunLOH82bo7UURERERERGQ0y8vL45133gG87dQXLlzo50QicrhWr16N2+0GYM6cOdhse3eulPHHYrGQnZ1NaWkpLpeL2traYUtliIjsz/r16+no6ABg+vTpxMXF+TeQTDiaMT5OXXf1EqZOieVzly7Y5/4tvbU8vvlunt72AGs7PgDg95V3UBf7Fv/c+QAbqnf4xrY0tLG+dBMby7fxh+//jUCLlZtylvClrIUEWKzk504mJSFyr/cwDPsRF8X3ZDEs/Hnh1/lD4Zf5asbpvtcfW7Ga1t4+nly1ZsTeS0RERERERESOjtjYWJKTkwHYsWMHra2tfk4kIofD4/FQUlLie15YWOjHNHKsqfuHiByO4uJi37Zmi4s/qDA+Tl1ywXz+/IfrWLJo5j732y3BGHjbIIZYveuCBxve/7q7AwgO2X135x2X38dgv7cdTkRM2FHJ29TfTY9zELfHw+aGVtwezz7HRQQGMyd6KlbDgtvlYUNtIzctLmJaXAw3HFdwVLKJiIiIiIwK5ih4iIiMkD0LKhUV+14GTkRGt5qaGrq6ugDIyMggOjraz4nkWJo8eTJhYd7Pijds2MDAwICfE4nIaNfU1MTmzZsB742SM2bM8G8gmZDUSn2C6q83cN+TybT8VDJnzwXglrk/56Oqj0g/KZtJU3a3r0iZlkDL9jbmLc3lpl9d5Xvd7fGwYWsLU1NisdsO71vJPfA629r+w7UlwXR7EjlxyzQ+WLGRZcdl8b9fO2uv8Z1Dfby4o5R50em8cP9qXn95HXPyp/LK/V84rPcXERERERERkWMvNzeX119/HfAWxo8//ngMw/BzKhE5FCtXrvRta7b4xGOxWMjJyWHlypW43W5qamqYM2eOv2OJyCi252zxwsJC/e4nfqHC+AT13B9ep/zZrZQ/u5VLL72EuJQYgqzBLM07aa+xP/3XN9lS3cA0RxrWAKvv9Xsee5Pn3lxHXkYKf7zjikPOYJpOhtq/SqLh4pvpU7i1+hRqm5sBqNvSss9j7lr7LG+1VRBkDSRvWzoADdvaDvm9RURERETGEtM0ME3/f2gwGjKIyPgQGRnJlClT2LJlC7t27aKpqYmkpCR/xxKRg9TU1MSWLVsAiIuLY9q0aX5OJP7gcDh8N0hUVlaqMC4i+9XX10d5eTkAdrud2bNn+zmRTFRqpT5BzV82i+DoMOafkkdMUtRnjrXZA7EFBfLjS+/jqV+96Ht92852ALY3dhxmigCMwBwAgoMK+Fn+mdxz/flcdsY8/vdrZ+41enNDK++8t9E73rQzKyORRQum85NfXnqY7y8iIiIiIiIi/rJnO/VPPigVkbFhz9niBQUFmvU3QaWmphIREQHAxo0b6evr83MiERmtSktLcblcAMydOxe73e7nRDJRqTA+AbXt6ubXd77MQHQU537zbCyWA38b/PP+5by7dQf3v/Ah27d5Z3Pf8sWlBJ9vx3mWyfbejkPOYRgG9th/EZTwEafM/D8unz6PzPREbrl6KTOnJOw1vqW9B09JMLwSyYKyDP79u/+y8rlSqnY28q+yCobc7kPOICIiIiIiIiL+kZOT4/tMorKyEtM0/ZxIRA5Gf38/69atA8Bms2nW3wRmGAa5ubkAeDweqqur/ZxIREYjt9vNqlWrfM+1/Ib4kwrjE1D7rm76egbBhOLXD+4fnpOXZNBdNIm+3HiWV9QD0GjpZisdbOpv49XtNYeVxTACMKwH1yptfu5kfnD9Mm49bRnL5mUDYImy87133+aH/3mdRz8oOawMIiIiIiKjnjmKHiIiIyQkJMTXfrmzs5Nt27b5OZGIHIyysjLfrL85c+Zo1t8Et2f3j8rKSj8mEZHRqrq6mu7ubgAyMzOJjo72cyKZyFQYn4CmZ6Vw3S3LMDq7eek3L/Dak+8d8Ji8vKlYBlxgmrgbuhgccrGhpJncoCQc0Umcnpp12HnW1Tbw4FPvsX5z82eOMwyDc0+axWVnzGPhKQ4efuM73P/szdg+Xvc8xBZ42BlERERERERE5Njbs6BSUVHhxyQicjA8Ho9m/ckwycnJviLX5s2b6enp8XMiERltiouLfdtFRUV+TCKiwviEtejELDztnWCaPP1kMRcs+AmrP9qw3/E2j0ncs9XE/7OKNKuNZ14t46G/fUDzU538JucCJoVGHVaOf7++hi/f8RRPPL+S237570M6NnVaAtOmJPKfG6/iT1f9P3v3HR9FtTZw/DezPb33RhJIp/fekWLBhr0XbNd6Ldf7Wq5ee+9Xxa6oqCiKCgIKglJDIAVIAum99+3z/rG4EEMLBDbA+fLZD7szZ2ae3U0yu/Oc85xzuWLEoKOKQRAEQRAEQRAEQRAE10hMTEStVgOOkYZ2u93FEQmCcCh5eXk0NjYCEB8fj7+/v2sDElxu/3LqiqKIcuqCIHRSVlZGaWkpAEFBQcTExLg2IOG0JxLjp6nwuGCe/fEBbnz+csrLG+loM/HHypyDto9Ni+I/n93O3c9fwYwrxhMS4AmAQafBy0N/1HHsLKhy3g8J8EKxN2BtX4xiq+3S1mSzdnq84udMHrrvS9or2xgdG40kSUcdhyAIgiAIgiD0blIvugmCIPQcnU5Hv379AGhvb2fPnj0ujkgQhEPZuHGj874YLS78RVT/EAThYP5+3hB5HMHV1K4OQHCd/uMSSRubQJPRzq6sUs6+ZNQh2484Y4Dz/tRRifSJCMDbQ4+ftzsAdksuNuPPqAxzkdWRnbY1W6xsyS4hKTYYHy835/Lrzx+DTqMmyM+TC2YOwtxwOXbzBqyaVPQB3zvbPbLlJz7ZvYWbEkdzd//JALzw5A9YLDaMHWaeeeWyY349BEEQBEEQBEEQBEE48VJTU8nJcXTWz8rKIj4+3sURCYJwIDU1Nc7OK35+fuJ3VXAKCgoiICCA2tpaiouLaW5uxsvLy9VhCYLgYi0tLc7OMgaDgf79+7s4IkEQifHT1uLXl1OYU8KVD53H1bdPP6JtjGYrL3yzGoB5YwewfN0OJgzrS4CvBwDmhmtRbKXYTKvRB3zdadvn3lvJ979lERHsw6KXrnUuD/Tz4O6rpzgfm5wjUDr3GvqlPBeAFeW53N1/MnnVtZRPcsPWamXQkNhuPXdBEARBEARBEARBEHqPvn37otPpMJlM7Ny5E6vV6iyvLghC77H/qL9hw4aJUX+C01/l1Fevdlw7zsnJYeTIkS6OShAEV9uyZYtzmpzBgwej0WhcHJEgiMT4aal8TxVv3fcpAO5ebgRHB6DRqpl59cRDfqD9dXs+i37fDsDW7cWUFtbzw+oslr55EwCSKgzFVoqkCuuybWu7qdP/f6coNmztX6DSz0E2XIhaN67T+seHzOKLPVu5su8wANbkF2KU7OAp02ekY3R6WVUj9zyzGC9PPS/cdx7uBm03XhVBEARBEARB6MWUvTdX6w0xCIJwylGr1SQlJZGRkYHJZCIvL4+kpCRXhyUIwn6MRiPbtm0DQKPRMHDgQNcGJPQ6+yfGs7KyRGJcEE5zVquVzZs3A47OM8OGDXNxRILgIBLjpyG/EB9CY4OoKqpFkiXeuOcTAIKiAhg6Ne2g26VGh+Dl5phPvKm+HQCtZt+PkNbvQ+yWHGRNapdt77tuGoOSIxmWGnXAfduMS7E0P7h3P59RYdLgqTHhqdEBMCmsL5PC+jrbn9U/iQ0FJQR4uDE4ypGIX7NlN4Xl9QC88vpyzpzWn9QBBz6eIAiCIAiCIAiCIAi9R2pqKhkZGYAjoSIS44LQu2RkZGCxWAAYMGAAer3exREJvU1gYCDBwcFUVVVRVlZGY2MjPj4+rg5LEAQXyc7Opq2tDYCkpCS8vb1dHJEgOMiuDkA48fRuOhakP8VXJW8w5qyhyLKESq0iINTX2aahuom1SzbT0tDGso/XkPVnLpGBPqx86kaWP3E9HW1mALzc930IliQ9Ku1gJMkxUttuV9iYWURlbTPengYumDGImHD/A8YkyUF776n4s6aZ8T+8yqSlr9Fo6ujUrrithkczv2RLcy5vXzqXJ86egValAmDKiH6k9g0lxMONlYszuO/2zzCbrT31sgmCIAiCIAiC6yi96CYIgnAc9OnTB3d3dwByc3MxmQ5ccU4QhBNPURQ2bdrkfDx8+HAXRiP0ZikpKc772dnZLoxEEARXUhSFDRs2OB+PGDHChdEIQmdixPhpSqVW4e5lIHlEPO9vfxZZJRMY4ceW+tWoJDWvzfye0rwqopPCKdpRhixLfJTzPAFhvqhVMmdOSuXrVdvJqqnh/Z82cvXMrh+IP/puA//7ch3uBi1L3rgRN/3BS5urdCPRBfwCkpaMXUUANJo7qDW14aMzONv9L/8XVlZmsqw8g3Vba9haVMl/z5rGgIhQgvw9eec/l/DBO7/xafZa/AI8UKlE3w9BEARBEARBEARB6O1kWSY5OZlNmzZhtVrZuXMnAwYMcHVYgiAA+fn51Nc7qjT26dOHwMBAF0ck9FYpKSmsWrUKcCTGx4wZ4+KIBEFwhZKSEioqKgAIDQ0lMjLSxREJwj4iMS5gCoTFJX/St0Jidc0HAEh9gyEP/ppyXK1Vo9aqnNuM7N+Hz//MRNFKvLZ0HVfMGIpKdiShFcUO9lraOhyjyk1mKzab/bBxyJp4AK7sF4zJbiXaw5d4r4BObYb4xbGyMpN+nmEs+iULkPhiSyYDIkKdba64dgKjxvYjItJPJMYFQRAEQRAEQRAE4SSRmprqHJWalZUlEuOC0Ets3LjReV+MFhcOxc/Pj7CwMMrLy6moqKCurg5//wNXEBUE4dT199Hi0l+JJkHoBURi/BSjKArba+6muv1XUgMeJ9Rj9mG3eSLra7Y1FhHhBrFeICFx63+vpmJWG6PnDGZPZjFBkQH4BHg5txk/NJ6w77wpq29GkmRnUhzAXH81dvMa0iLPZN7MuUwbnYin+5HPO+Sp0XF32qQDrjs3cgTTQvrjptLyQNUvbCosZXRsFCsXbyEvs4SLbp6CT4AnCUlhR3w8QRAEQRAEQej1FMlxc7XeEIMgCKesyMhIvL29aWpqYvfu3bS1tTnLqwuC4Bp1dXXk5+cD4OPjQ79+/VwckdDbpaSkUF5eDjhGjY8fP97FEQmCcCI1NTWxY8cOANzd3TtNsSAIvYEYTnuKsStmKtuWYVdMVLb9fETbxHuGABCo7UPF75PI+XEkHm4xnHHFeLz8PBg4IZmw2KAu241LiwWgX3jnUd12yxYAVEo6367cTlJsyLE8pS48NQYy6svZrN1NjVcDd3/zI4+8/i1fLN3I86//2KPHEgRBEARBEARBEAThxJAkidTUVMDR8T8nJ8fFEQmCsP9o8WHDhiHL4nKycGhinnFBOL1t2rQJRVEAGDJkCGq1GJ8r9C7ik8wpRiXrSPD7J776YfTxvu6Itrk76Sw+H3MnV/pMJ2uHidJSiXXZBYfcRlEUYt080DbZMVV0YLZYneu0Pq+RVzmB1xaPJzYyAFnumVEl1raPMNacgc24jC/2bKW4rQGjpwlUCkq8FxWzAllEORsKS3rkeIIgCIIgCIIgCIIgnFh/JcbBUU5dEATXMZlMZGRkAKBWqxk0aJBrAxJOCt7e3kRERABQXV1NdXW1iyMSBOFEsVgspKenAyDLMsOGDXNxRILQleiqcQqK8b6KGO+rjri9LMksW72bBcs2khAeiL+XGzOHJR60vdFm4fmr32Z5XhlyjD/l1U00txrx93Gnsc2Ij/sE0gZO4JnQRkL2K79+rCwtz4HSgqXlNS7s8zqba0sIV/swfEwf+gX6c/vXjtHi2zbkMyImsseOKwiCIAiCIAiupiiOm6v1hhgEQTi1BQcHExAQQG1tLcXFxTQ1NeHt7e3qsAThtLRt2zbMZjMA/fv3x2AwuDgi4WSRmppKaWkp4Bg1HhTUtRqpIAinnszMTDo6OgDH3wEPDw8XRyQIXYnE+GnOZrXx7INfsbipHIsK2kxmPr/1soO2fyf/FxbsXoVHjBXtT43oQryIH9SHusY2Xlv6B9/9mY0nas4flcY/LpvYo7Gq3K7C1v4JavfLGOoWxapZt3Raf97idNYuy2Txh99z3qTBpNfV4K7TMDo2ukfjEARBEARBOFKO8mEKkiQKNQmCIAjCkfirnPpvv/0GOBIqo0ePdm1QgnAaUhSFTZs2OR8PHz7chdEIJ5vk5GR+/tkxzWd2djYTJ05EknqmqqggCL2Toihs2LDB+VicN4TeqtdcoXvyySeRJIk77rjDuUxRFB555BHCwsIwGAxMnDixy7wkJpOJ2267jYCAANzd3TnrrLOcvdGEwyvMr+K3H7dj2NVMqN7AHXPHHbL9muodAEhjPAi+cCA1YTo2lJTx6Bs/sWmXo4R5q9XCwqVbsFhtPRqr1usuDCHpqN3msboqm0krHuaf6R8556sY368PbmVG/AK9WFdWxm1ffs81H3/D9rLKTvvZnlvGe9/8SX1jW4/GJwiCIAiCsD+b3cziohtZkDuDbwrn8/auSXxTOB+bYnF1aIIgCILQq6WlpTnvZ2ZmujASQTh97dmzh9raWgCio6MJDg52cUTCycTT05PoaMdgpbq6OqqqqlwckSAIx1thYaFz6oSIiAjCw8NdHJEgHFivSIxv2rSJt99+m/79+3da/swzz/DCCy/w2muvsWnTJkJCQpg2bRotLS3ONnfccQeLFy/m888/Z+3atbS2tjJnzhxstp5Nyp6qouKCGDauH30MHrx2w9lMGdj3gO12btrNkrdXckv0DCYEpfB/gy5AGxcIgF0NSbHBPHr5dIbHRxCmc+eyM4ehUauOW9wrKzPpsJn5vWYHrVYjADPmjWTBrw/wv+X34uGmA0ACtKp9cVitNm7/71e8s+gPnn7nl+MWnyAIgiAIQou1khrTLmyYqTHtQMFOjWkHTeYSV4cmnIyUXnQTBEE4zvz8/AgLCwOgsrLSmZwTBOHE2bhxo/O+GPUnHI2UlBTn/aysLBdGIgjCibD/aPERI0a4MBJBODSXl1JvbW3l0ksv5Z133uHxxx93LlcUhZdeeokHH3yQc889F4APP/yQ4OBgPvvsM2688UaamppYsGABH3/8MVOnTgXgk08+ITIykhUrVjBjxgyXPKeTiUaj5rE3rjxkm7bmDu6Z+RRWs5W5e6bz9FOOUuuh84JY+NtWhsSGM3NEErIsMbTfvrm9K2qaUckSQf6ePR73OREjKG2vZ1xQEp4ax/xGdrudlx9YRE56Afe/cjkfXnE+tdZWIvz3zXMuyzJe7nqM5lY2rN5F0fk1RPcJ7PH4BEEQBEE4vTWZS8lp+IF+XmdgtDZS2r4ZO1YMKl98tGKaF0EQBEE4nNTUVMrLywFHQmXixImuDUgQTiMNDQ3k5uYC4OXlRWJioosjEk5GycnJ/PTTTyiKQnZ2NlOmTBHl1AXhFNXQ0MCuXbsAR8WIpKQkF0ckCAfn8hHjt9xyC7Nnz3Ymtv9SUFBAZWUl06dPdy7T6XRMmDCBP/74A4AtW7ZgsVg6tQkLCyM1NdXZRjh2ao0Kg7tjBHabTsUnSzbS2NxO3/AAHrp0GnERARRW13faJiuvnPNvf5fzbn+XPSU927O7xdzB/LXfsKakHn/1vqR2S2M729fnYzXbWP9LNttNpdy+9WtmL3sbi91RQUCWJW6cNQJDhRF1vYXqquYejU0QBEEQBAHgt8pnyGz8gpK2DcyMfJp5fT5hXPDdXNjnQ2Tp+FXVEU5hitR7boIgCCdAamqq835WVpZzGjVBEI6//UeLDx06FFl2+SVk4STk7u5Onz59AGhsbHR2dhIE4dSz/3lj2LBhqFTiuofQe7l0xPjnn39Oeno6mzZt6rKustIxL/Tf568JDg6mqKjI2Uar1eLr69ulzV/bH4jJZMJkMjkfNzeL5Oih6Axa3lr/GEW7yrnng5V05JaQX1zLI7fOYv2OIm567RtkSWLhA5fSL9yRqC6vbsKuKNhtCtX1rcRGBvRILDbTGlT1N/Bqohf/zh1PEvdibhqJxuv/8Pbz4Jr75pC5cTfnXD+Bx0tWA1DZ0YLZZkMjO/4Yz5jZH2ObGa1OxdARsT0SlyAIgiAIwl9aLFXUmfIA8NQ4ysB6aUNJ1p7lyrAEQRAE4aTi6elJTEwMhYWF1NXVUVlZSWhoqKvDEoRTntlsJiMjAwCVSsWQIUNcG5BwUktJSWHPnj2Ao5OTmHNYEE49ZrOZrVu3AuK8IZwcup0Yt9lsfPDBB6xcuZLq6mrsdnun9atWrTqi/ZSUlHD77bezfPly9Hr9Qdv9vbyKoiiHLblyuDZPPvkkjz766BHFKTj4h/riG+yD7zd/0lHThL+vOwCNbY75ve2KQmvHvs4GU0Yl0NDcQX5xDe8sWkdru4mpoxKOOQ6b8VckTPT3quGplGoitDuwte9A7XYJkiaeC+ZP5oL5k7ll4RL+2F2B5KthWnQC7hqtcx8qlcy588TcSIIgCIIgHB9l7Vuw2NsBSPM9z8XRCIIgCMLJKzU1lcLCQgAyMzNFYlwQToDt27djNDqu96WlpeHm5ubiiISTWVJSEkuXLsVut5OTk8P06dNFOXVBOMVkZGQ4B6KK84ZwMuh2Yvz222/ngw8+YPbs2aSmph71iWzLli1UV1d36j1is9lYs2YNr732mnM+gr/3CK6urnaOIg8JCcFsNtPQ0NBp1Hh1dTWjR48+6LEfeOAB7rrrLufj5uZmIiMjD9r+dFXYtotVVV8z0Hcsg33HI8sS7z9xGdn55QxKdrxe0wf3w2KzYdBqGBwfwS/pueyuqOOyyYOZN3Mwc297h8raZt78/PceSYyr3a9GsZUga1IZ4DcGS8N2ZHU/JHUUAB1WM//c+hFb3UtQqT2RarU0uZuP+biCIAiCIAhHqo/HOArc16CSNER7jHJ1OMIpQlIcN1frDTEIgnD6SEpK4scff8Rut5Odnc20adNEQkUQjiNFUTqVwx0+XAwsEY6NwWAgLi6OvLw8mpubKSkpISoqytVhCYLQQ/5+3hg5cqQLoxGEI9PtxPjnn3/Ol19+yaxZs47pwFOmTCEzM7PTsquvvprExETuu+8+YmNjCQkJ4ZdffmHQoEGAoyTD6tWrefrppwEYMmQIGo2GX375hQsvvBCAiooKsrKyeOaZZw56bJ1Oh06nO6b4Twc/VXxKQdsOdrdmM9h3PADbdpVx//PfERzgyafPXIVBr+HMEckAVNQ3c++CpQDY7HZuOXMMZ0/pz0ffbuDsyWk9EpOsjkLn967zsTokA7slF0vzU6gMc8hs8WJz/W7QQViUmtI8hU1FZRTWNRDj73uIPQuCIAiCIPQMncqTmRFPuToMQRAEQTjpubm5dUqoFBcXEx0d7eqwBOGUVVhYSE1NDQCRkZGiSoPQI1JSUsjLc0w1lZWVJRLjgnAK2b17N3V1dQDExMR0mRpZEHojubsbaLVa4uPjj/nAnp6epKamdrq5u7vj7+/vHIl+xx138MQTT7B48WKysrK46qqrcHNz45JLLgHA29uba6+9lrvvvpuVK1eydetWLrvsMtLS0pg6deoxx3gyareUsKfxf7RZCgFHj50PPl3Hk8//SENjW7f2leY9AgmJVO8RzmWZuWXYFYWKmmZqG1qdy5taO8jYUYq3u6MsfnSQIwk9fkgcl8wZyqQR/fjgP18z2+86Pnz8G8wmyzE+033MTfdia38fc8PN9PeJYlRAPxK9wjmvz1BkSSLE04NVH/1J1qY9PXZMQRAEQRCEv7PY21lcdBOf7r6QBlOhq8MRBEEQhFNCamqq8/7fB1gIgtCzxGhx4XhITExEpVIBsGPHji5TswqCcPLasGGD8744bwgni26PGL/77rt5+eWXee211457+ap7772Xjo4Obr75ZhoaGhgxYgTLly/H09PT2ebFF19ErVZz4YUX0tHRwZQpU/jggw+cJ9vTzbbqu2g2Z1Pe+j1jI34gb3cVH3yyDoCwEG+uvHTMEe9rbOBsRgXMQCXt+zG5aNZQmttMxEX4Exm6bwT2HU9+zc49VQxNi+Keu6cSHexYd9/z31Fa1cgfGXswf5WOzWpj4TPfs/yTtby94XHcvY99vglZnYLNsg1Zk4xOpeXFIVfzxM+/8fKGTaSFBzNwu5VF369gyTur+WrbE6g1p+fPhiAIgiAI3ddurUcjG9DIBmyKBUVRUMvaA7atMeZRbcwBoLB1HQbC0WnVouSr0DOUvTdX6w0xCIJwWklMTEStVmO1WsnJyWHmzJmn7TUfQTieGhsbnVNbenh4kJSU5OKIhFOFTqejb9++7Ny5k9bWVoqKiujTp4+rwxIE4RjV1taSn58PgI+PDwkJxz6VriCcCN1OjK9du5Zff/2Vn376iZSUFDQaTaf133zzzVEH89tvv3V6LEkSjzzyCI888shBt9Hr9bz66qu8+uqrR33cU4lOHQzmbHSqIADCQn0JCfamrr6VAWndn0d9/6Q4gJ+3G/dfN61LO5PZCoDNancmxQFCA70orWokPMiHaU9ezLv//oKqkjqqOkxs317EqHHH/iFb4/0Yao9rkVT7yvDkVdei9jJT7JVHUkof+B708b489OMKzuqfxMg+R1ayp7iwlu8Xb2H8pCTSBooyP4IgCIJwumiz1rKo8EbabfVIqBgdeBN/1vwPBRuzwp8i0n0wstT5onywIZl4z6m0WWsoyorkljdeIcDXjbNu3IhiKGNC6D30857uomckCMLhlJSUUFhYSHt7O4GBgaSkpIgpuAShF9BqtSQkJJCdnU1HRwd79uyhb9++rg5LEE45mzdvRlEcPeCGDh0qOqAIPSolJYWdO3cCjnLqIjEuCCe//auMDBs2DFnudoFqQXCJbifGfXx8mDt37vGIReimRuM2GoybCfc8D63KB4CBQS/QZNqOl9ZRaszDXcenC67HarOj0x747TaZrSxbm0NcVCAp8Uc2d1C70UxNfStRob5s2F7EOVP6o1WrGD/M8eW0qLoBs8XKxAmJJKaEcd2sEWi1agaOT+LRBxfyR1Mz/3zrJx6SISU+lPBgn6N+HSRJRlLHdlr26JypXL8pjyaMbAgo4rUld3L377/yTUYOa/ILWXv3jUe075ef/ZHtW4tZ9ksWZ18zignD+hIfHXjUsQqCIAiC0PtZ7Ebymn+l3VYPgIKNdTWvOdcvLbsXb004F/V5H5W0r5OoStIwJez/aGkz8vDni/ALbaSjoxWbm2M6lzUVLxHnNblLx0NBEFynqKiIt956i4ULF1JSUuJMCIAjGTdu3DhuuOEGzjvvPHGhRxBcKDU1lezsbMCRUBGJcUHoWRaLhfT0dABkWWbIkCEujkg41fTr1w+NRoPFYmHHjh3MmjVLdL4QhJOY0WgkIyMDAI1Gw6BBg1wbkCB0Q7evyr3//vvHIw6hm2x2E5sqr8KumGizFJIa+BgAsqTFVz+0U1uVSkalOvhFnPcXr+fDbzegVsn88NZ8vD0Mhzy2xWrj0n9+SGVtM2MGx7Iu3XGx99/zZ+Dn7UZ+eS3znvwEu33fRaXEmGAmD4zHy9+DkXOH8scHq7DZFR5+7Uf0OjXfvnbDYY/bHVF+PswNG8QHZatpa+ngeuN7VDW5AyqGRoV3ams3b8VuzUVlOAdJ6jwiJL5fCNu3FmPy1/Du13+y5Lcsvnvthh6LUxAEQRCE3sWmWFhYcCWt1upOy3WSJ3ZsWJR2AJosZRS0rKOP55hOyfHG5nau/Ne7TL52CQluFuw2UBSQJLBJbawqf4xp4Y+e0OcknCIUyXFztd4QQw+5/fbbef/995k+fTr/+c9/GD58OOHh4RgMBurr68nKyuL333/n//7v/3j00Ud5//33GTZsmKvDFoTTUnx8PHq9HqPRyM6dO7FYLF0qGAqCcPSysrLo6OgAHB1RPDw8XByRcKrRarX069fPWf2joKCA+Ph4V4clCMJR2rp1KxaLBYABAwZgMPRcbkcQjrejHq5SU1PDrl27kCSJfv36ERgoRtGeSJKkQiP7YrJVolMFdHv74op6/vXi94QEeJESHwKAVqNCfZBREEt+zWRt+m6aWjqYN3MI1fUtAM6kOIC7QccPG3J4ZtFvzqS4JAEK+Hvtm0t87tQBGHQa0nNK+On3HMxmKxk5pUwY3rM9vvvk+OL2hZX2G9VYMaILkQhsieDF82c72yi2Wkx1FwA2FFsFGs87Ou1j/j+mcdZ5Q3n3u/X8vHYHIQGeCIIgCIJwalpV/gR5Lcv2m0JZRkbD5ND7iPEYhUrSsrTkfqqMO1DJWpZXPEpi2xlMDr0PAJvdzoW3L8AqtaIzOL4gyn8bBGGyt56w5yMIwqFptVp27959wO+yQUFBTJ48mcmTJ/Pwww/z448/UlRUJBLjguAiarWaxMREMjIyMJvN5OXlkZyc7OqwBOGUoChKp3K4w4cPd2E0wqksJSXFWf0jOztbJMYF4SRlt9vFeUM4qXU7Md7W1sZtt93GRx99hN1uB0ClUnHFFVfw6quv4ubmdpg9CD1BltSMDv+GNssefHQDD9jGbLGi1Rz4LV7x5y52l9Syu6SWy84axksPnEdUqC/ubl3n0Ptq+Vaef3+V83F7h5ln7j6HT3/YxNYdpajVMk/ffTajB8Zy5bOf09JhQqOSeeCiKQyKDUMB+oT4ObdXq2TmTExl+phETGYrqzbkcv+LS3j3sUuOuJT7kRg6MZG+nwVTUNpMc4QFfVgH9bvrWLQ1i2BPDyb07QOSBiQtKB0gde0NK0kS4RF+PHjjDM6fMYi4qO53QhAEQRAEofdrNleS17IMAAmQAQU7dsx4a8LRyo7PuGdFPQfAB/nnAVDctpnKjhyC9Uls3ZOO0dqO1bzv85SiOG6yDKYmX6bE/fuEPi/hFKLsvblab4ihhzz77LNH3HbWrFnHMRJBEI5EWlqas2RnZmamSIwLQg8pKSmhsrISgPDwcMLDww+zhSAcnfj4eLRaLWYrRIosAAEAAElEQVSzmR07djB79mzUajHNlCCcbHJzc2lsbAQgLi5ODJoVTjrdPvPcddddrF69mu+//54xY8YAsHbtWv7xj39w99138+abb/Z4kMKBaVU+aFWDuyyfcf1rNLeanI8fvHEGcyamdmozdVQCq9bnEhzgSXJcSJcE+v++WMs3K7bhbtBSUdPsXC7LEmeMS2bM4FhGDIhh7ZbdRIX6EhvpSBhfPWMYry1Zx9mjUpg7uvMxwdEL9eGPl7Mlv5THrpjB7l1lznUtbaYu7Y+Ff7A3//vuHnY0lXL1+tcdx0fhoe9XADA0Kpz3Lj+XFusX1Fdk0XfwBQfdl1qt6tGk/d9l7Cxld3EtsyemoNeKcnCCIAiCcKI1moo7PZb23mxAm7UaSOy0/qzI5/m6+BbabbWsrnqBeM9JbLS9y+ybDGSvjcWOhIyCxSqz4r0LaNHW0D8gFcNw3xP1lARB6IaOjg4URXF29C4qKmLx4sUkJSUxY8YMF0cnCAJATEwM7u7utLW1kZeXh9FoRK/XuzosQTjpiVF/womi0WhITExk+/btmEwmdu/eTUJCgqvDEgShmzZs2OC8P2LECBdGIghHp9uJ8a+//pqvvvqKiRMnOpfNmjULg8HAhRdeKBLjLma12TslxQH++79lTBreD3c3rXNZVKgfnzxzZZft8wqr2ZBZyBc/p9NhtNDcanSuu2buSK6/cIzzsVolM3G/8ufbCyrIKqzklZvOIczf64Dx1TW38/2GHACeee0HLFuKIdIHTZuJJquJ3eW1xIX17KjsJO8IXhx0NX8WFRLkE8jjP/8GwObiMtILynj23IW0txq54u4ALr51Wo8e+0jUN7Vzy2NfYrcr1Da0cuO8sSc8BkEQBEFwpT3Nv1NjzCfeczL1lgKC9Ym4qX1RSVok6cTMZ2xWWjo9/mtQrIcUQrhb546IFpuNsko90W6jyW9dgZs5iT9zNiEHKXj7tTHqzEwUScKOjNoWQruXhtomL4ptbSfkuQiC0H1nn3025557LvPnz6exsZERI0ag0Wiora3lhRde4KabbnJ1iIJw2pNlmZSUFDZu3IjNZmPnzp0MHDjQ1WEJwkmtubmZnBzHdTp3d3dRiUE47lJSUti+fTvgKKcuEuOCcHKpqqqisLAQAD8/PzElgnBS6nZivL29neDg4C7Lg4KCaG9v75GghKOnkg988XjG9a9x11VTOGdKf+SDtMnZXcm1//4UgLBAL8KCvPH3dsditXHpmUPZVV3HT5t2MnNYIqszd7Mpt5Tzx6YRHeSLJEnc9sZimttN7Cip4vVbzj3gMfy93LhgXH9+3bCT6u8y0da2M0ijxn1OCve/9yM6jZpfnrgeT7dj6/X9a1UWy8ozGOIXx5SQNEYF9WNUUD8Aatvaeet3R29YxWbHbLKgAE0trvn51WpU6LUa2o1mvDwNLolBEARBEI6nOlMhhc3r2dzwCTa7mdnhj+Gvj+OXiidRFDvlHdsA2FT/cZdtPVTBXB77CSqVqsu6/ZnMVnILq0noE3TQqWQOxU2137QvuGOiHRUaLopbgFbl3qntvz75mWUZucQEhdHYPpvGFgk3dTBTxgcRlVCFJIFNASQYHDqVgtgQft6ay8A+Yd2OSxCcRCn14yo9PZ0XX3wRgK+++org4GC2bt3K119/zUMPPSQS44LQS6SlpTlHt2ZlZYnEuCAco82bN6MojpP7kCFDRFlr4biLi4tDr9djNBrZtWsXFosFjUZUzxSEk8X+o8WHDx9+wgYzCEJP6vannVGjRvHwww/z0UcfOUtWdXR08OijjzJq1KgeD1DoHkmS+Py5K7nong87LbfZFZ59bwV5RVXce+00dpfU4umup7y6CR9PPS9/vJrdJTXO9kH+Xrz58DwAKhtaePCDn0jPd5Q931NRz4JlG1CAT1elM3t4Eo9feQaRgT5kF1URHXTwEqGSJPGvi6YwMySUBz9Ix8Pfgye+u4c7HnYk5O02Oza7HUVRjumP6uNZX9NmNfJbdTYfFvzGt+PvRZYk2q1mkkKCAAUkMGttPPnFTdy1bCUvm/bgn55FKh64exmIiu/aAeR48HDT8dlzV1Je3czARDGPkyAIgnB4ZpOF9T9mED8gmrDYIFeHc0h1xgIWFl7badnGuo/o6zWRsvath92+1VbFyqqnmR72r0O2+9cLS/hzawHjhsbx9D/PAaCt3YRdUfB0d3xmzS2sxtfLjUA/jy7b++r6OO9baEMFyNhRSV0v0pTVNwFQWN0IqECCdpueld8PYXjdTqxmNZUFATx05zj6B85g+OUyd501nmDvrscVBKF3aG9vx9PTE4Dly5dz7rnnIssyI0eOpKioyMXRCYLwl/DwcHx8fGhsbGTPnj20tbXh7u5++A0FQejCarWyZcsWwFGRYejQoS6OSDgdqFQqEhMTycjIwGw2k5eXJyoVCMJJor29nczMTAB0Op3ooCictLqdGH/55Zc544wziIiIYMCAAUiSREZGBnq9nmXLlh2PGIVuig4PYPm7t5CdX8mXP29hU2YxVpsdgF0F1SxcuoVXP12NWiVjtdkx6DR0mCzO7aePSeTe66YCjjnBz3n0fUwWm3P9u8s2dDre71l7HMvvuJCi6gb6HkEp9EETk/k8/2W0Bg0oUPHJRrwjvQnuG8QZ/15An2BfPrjnInRHMeILYExgAssrHKPP2qxG7IqdWzYtYFtjETfFTydidCsmxcx9eQuQAEu8GiXHlzd/+QPdWztRqWT+98t9hPcJPKrjd1ewvxfBByk/LwiCIAh/98Fji/nmjV9w9zKwcOfzaPW9t4d9eXtml2VVxh1UGXeilT3w0YZjtVmot+w56D78NPuS1rUNrSiKwuodBbz6/TrajWbOHpxMZU0zABV7/y8ur+eq+z/GZldY8N9LySuq4bHXf8Kg07Do1evw83brdAyD2oco95EUt63nr655dqxYlA5UaDu1feqyWXy8Op0v1m3bt1BRoF3N5p9TAbjxorEMDN4311aIj+fhXyxBEFwmPj6eb7/9lrlz57Js2TLuvPNOAKqrq/HyEp/TBaG3kCSJ1NRU1q5di6IoZGdnizmRBeEoZWdnO6t/JiUlOTuICcLxlpqaSkZGBuD4ORSJcUE4OaSnp2O1WgEYOHAgOp3OxREJwtGRu7tBamoqeXl5PPnkkwwcOJD+/fvz1FNPkZeXR0pKyvGIUThCiqLQYSnDrljxdNczckAML9x3Hr+8dyvjh8aT0CeIR2+bRWlVI4AzWb5/UnzC0HgevXU27nodRlsH6dWbsNjNBzzeX2XbzVYbRrMVvVZNQkTgQUu1/52Xvwd6Nx16dx3TLxmDvriJ0oZWTBYrO0trKK1u5KtXfuL7d1Y5yzodqUfT5rFkwv3cmTiHN4ffgAJkNhYD8EftLlrtHVgUR7JfAdSeVmSdjVCNo5R53Zk6bt6ykNya6k77bbZ08Fnh7+Q0lRzwuIqiUFRQg9ls7Va8giAIgtAdf50XD3R+rK9qYun7v1FTWn+iwzqgBO8pBOjigL9/PlAw21sZF3Q7l8S9y9zIl+jrMfnvTUCRyGz8jhZzA7uLazj3lneY+4//8cuOBfj6FWC22/l6QxZP3H0W110wmv/eeSYAhWX1dJismK029pTUUl3bjF2GdpOF9g4TAM2tHazbspu6tnJ+q3yOcLcR+GnjnZWi9bIfjy78g/Oe+Zjc8n2VdaICfUiK2Nd5bsSwHK67+kcSBhQ6l8VG7CvNfiC55TU8990adpXVHLKdIDgpveh2CnrooYe45557iImJYcSIEc5qaMuXL2fQoEEujk4QhP2lpqY672dlZbkwEkE4eSmK4pyWABAdTIQTqk+fPri5OToq5+bmYjYf+NqzIAi9h81mY9OmTc7H4rwhnMyOajiuwWDg+uuv7+lYhGOU1/AyBU1v46cfwbDQ953L9VoNT999tvPxjReOwc/bjZKKepb/savTPv514wzn/QV7HqeoPZehM4LY+GN8l+OlRIewvaACSZJQjvEK2Tk3TeeXz9bhtquWvlOSGD4ojoI1u3j3318CEB4XzODJR97xQpIkgvTezIse41z2UNoFrK/N5fI+E/i+bDP15lasNhv5rZUkGqKImxDH3P7JfBkZyLteq6migtuWfMSya++hvKgWi8nKJ+Z1fF+2Gb2sYfmUh9DKnX+F3nl9JYs+W09CchivvXvNMb0mgiAIgnAwV//fuSQM7kP8gKguo8X/e9VbZG/Ip0/Kat78/WEXRbhPh7UYXykPg9ZKqVmD8rcEeY1xF6FuiYS79yfcvT+D26exve5Z1FICH37VyOAzdtBmq+aKh59BlvtiVNsZOH4XcyZvQFHgpffPJcYtgegwP64535HIajHvIT6xlMBEH4oamtlZX0dBXT0dgTLjE2KICPGl3WTm5ke/ZE9xLeffth1DYBHS3s8zf0WYoL2Z57c4Lrh/uyGbe+dOBKCktpEALw889VpaOsykpe5Bp7PSb2gReVtiAFjxxy7GDet70Nfl3o9+ZE9VPWty9rDkgat66uUWBOEonX/++YwdO5aKigoGDBjgXD5lyhTmzp3rwsgEQfi74OBgAgMDqampoaSkhMbGRnx8fFwdliCcVMrKyigvLwcgJCSEyMhIF0cknE5kWSYpKYktW7ZgtVrZtWsXaWlprg5LEIRD2LlzJ83Njgp9/fr1w8/v0IMBBKE3O6LE+JIlS5g5cyYajYYlS5Ycsu1ZZ53VI4EJ3ddk2rb3/0P3mPb2NDBhYBwfZFcyZWhfoiL92ZxVxIj+MXh56J3t2qyOP3QD+vnxj9SLiQ8LIHNPOR+tTOfiSQMZHB/BL+m5JEUFY9AeWwnXuP5RvP77o5g6TCSPcFxEztmQhyxLyGoVgRF+2Ox27v/f9+worOLpG+eQEhvWrWOcETaIM8Icoz3uSJxz0HbnnDmGd1asQdIoWDNbKcqr5PqLXqJqpA+xE93ACzw0BuT9LuxXNbfyxM+/UVhWjgKUFNYCUN5ezyOZXxJq8OX/Us9HLau6+coIgiAIQldavYaJ5x24d67e3VHKSmfQHnD9iVbU8gNmez0yoJG8MSsa9LI3RnsTGsmd/n5nd2q/s+EV2i25yJRSWXIRe7Kb0MtqPCKb2VVYjclHh9ny1+cOFT88fANumn2fCUy2OtaUXYhdMRMdN4KizcksWLEJtewolFTV2kZueS2XvbQQs8WKXgVav1KkvSl7BbDZYMf6OGRPN6b2j2dXeQ1zhibRbjJz30c/sianAAWQJYkEnTfZv6URMyCf7b/1c8YRHeZ/yNelb2gAe6rq6Rt66HaCIJw4ISEhhISEdFomRkIIQu+UmprKr7/+CjhGjY8dO9bFEQnCyeXvo8Ul6ciqPwpCT0lNTXXOcZ+dnS0S44LQy23YsG963REjRhyipSD0fkeUGD/nnHOorKwkKCiIc84556DtJEnCZrMddL1wfCX5/x/FzZ8S7D7lsG0XfPQ76zftQZYlHllyNzdcOKZLm2ti/0VO82YG+IzGW+O4aDs0IYqhCVHONnNGHN0cMBarjc9/3IKXu56zJqdR19jGtqoGxg6OZcWfO/nhtywunTOMD7OeRaVR4xfsze7yWlbsnc/88We/YeGbtx7VsQ8nQO/J45rz+Grhai6aO4GWhnYa490wBenYkWNlhr4P1509tVOSe+HmbSzbkQd6uGLeQM6c0B+An8q3sr2xiO2NRVwQNYpUH8drl91YwvraXM6KGEagXsxZKAiCIPScB9+fz7bfd5I2pt/hG58AhW3FGO0arIpMjMcZjAm+CXf1wXsW+2umUN+RxeYtEZRZFMpWD+H6G1cRllRM0O4G0teNZ97wf1BTOoqZg0d0SoqDoyykfe90KbLaTpCPB1WNrVjsds4clshlEwezq6wao8UKEpx7kQF/XR8arHmocIwWL8sNZcuyFCKmtPPCDY7S7Ha7wvJtuazOKXAey64o7KlvxD+mHb+QFmIHlFKyKxSAC2cPPuTr8tTlM7lx+ghigkQva+EIKZLj5mq9IYYeMn/+fB588MEjGiX3xRdfYLVaufTSS09AZIIgHE5aWppIjAvCUWptbSU7OxtwVAXdf3oCQThRoqKi8PDwoLW1lfz8fIxGI3q9/vAbCoJwwpWXl1NS4phaNjAwkD59+rg4IkE4NkeUGLfb7Qe8L/QuHtpYkgP+r8vy9g4zra0mggI9nctGjYhjw+Y9jBgai1p14KnmA3ShjA8887jE+uPqbN5Y+DsA0eF+vPrpanLyK3n1UzUSEh0mCxszi5g6MoF5s4bg5qGncVcl7lVtGN3URB/nD0rTZgxh2owhgOMC+43njOet3VnYS1vZtXwnn2638dSnNznbj42L5u0dfyL52hg4Jo60aEcCfGJwCj+UbSbE4Eu8Z6hzf//YsoA2q4ldLeU8M+jy4/pcBEEQhFOboijs3FpEcIQffkFeuHnqGTVrYKc2Npsd1UHO9z2pvKqRwtI6hg/s4/x8oVUHUtzhjZvKj0mhd6ORD3wOX5tTwJdrtzMxeRjPvXY5NrUEfiBJYFB70qG0MaZfEv838Up83A1A4gH3o1cHkLX9FrIrMsjK68MtM/vza/YGvP22odIGkBQZTGyIP3kVtWgMtaiiXqXBCv08p7O7ZTkAQxOTSLxkHGdPcXR0+3pZBi9+sIrxI+MJ9HSnqbUdq9EOCmjaFMLiqgGI7FdHQp8grjl/NB5uukO+VipZJj404GheZkEQekhgYCCpqamMHj2as846i6FDhxIWFoZer6ehoYGcnBzWrl3L559/Tnh4OG+//barQxYEYS9fX1/Cw8MpKyujqqqKmpoaAgMDXR2WIJwUNm/e7Ly+O3jwYDSaY6sCKQhHQ5ZlkpOT2bhxIzabjV27dnWazkYQhN7j76PFRZUR4WTX7TnGP/roI+bNm4dO1/lin9ls5vPPP+eKK67oseCEY9faZuLy696hobGdR/51NhPHJQBw9uxBnDEtDa3GNaW9I0J8kCTQatQE+Xlitzvm9DSarAT6edBhsqAo8Mufu9icXURKcQuZ63YxfnIKk2eOZvScQScsVkmSuPbiiVzLRB647E0ylGr69Y/k1jnPU13WwBMfz2doagSqEBsdNgsL8v5kVnQSAHGeISyecJ/juVms7Kippl9QAME6b/ZYqwkz+HY6VnlHA//N+ooIN3/uTT4HlXT8kxiCIAjCye3b99fw9mPf4e5l4KN1/4ebR+fE89M3vMtvizcy48qJ3PDIuV3WH055QTW70gsYPWsQOoOWJtMOMmufxF8/jCT/2wDHaOr3Fv3BJ4s3YLHaueaCUVx+/iBM9lZaLTUAaGRDl6T4J79uobC6gXvmTuCJL1dRVt/M7oo6Hpx/BiUVDYwdGY+7m47QgGupNuYS7jYAleS4cFfT1Mp7qzYzICaUMwYldNrvphwN+VVx6LVqLh0/CLXvvwnwq6K2YQ9wOTqNmrvOGk9lRzbfFDu2abVUOrcfF30xfglxyJLjc9Kq9buw2xV+35CP3a6gVWD/QvWbfkrj7IubmZF8ITc/1bUKjyD0BElx3FytN8TQUx577DFuu+02FixYwFtvvUVWVucpqTw9PZk6dSrvvvsu06dPd1GUgiAcTGpqKmVlZYBj1PikSZNcHJEg9H42m81ZvlqSJIYNG+biiITTWWpqqrOsf1ZWlkiMC0Iv1Nra6vyepNfr6d+/v4sjEoRj1+2s29VXX01TU1OX5S0tLVx99dU9EpTQcxqb2mlobAdgd0F1p3U6rfqAvXv27KrgvZeWUbynusu6njIkJYqvX76eb16+jrAgb5675xyiw/wI8vfkwRs7X3RqaDbSUO34mWtvMTL14tG4eRqOW2yH8viHN/LJ+ocZPT2N3dlltDS2s3FVDgBX9h2Gj9bAxXGDURSFF/65kBumPcWubY4r7ld8uIi5//uUJ5et5q2hN3Jp03j65YehKPuuLv5Qupkt9Xv4rnQTec0VLnmOgiAIwuFt/CWTzSuzDt/wBGioaQGgo82E2WTtsv73JVtQDAaWfb2ZZ+745LD7UxSFvIxC/nv1W6z8Yj23T32Cp69/l3cf/gqAPU2f0mDKIL/pHUy2OgA2Zxbx/qI/sVgdI086bK18vOdyPtx9ETbFAoBB5d3pON/8kcWzi9ewaF0m4+5/E7+953adRWJYWjTzLx5Hap9Q+gT7oVd5EeU+1JkUB3hr+QY+XbOV+z76kca2DufyLfmleBh0JIYF8Mi8qeg1GiL9HJVc/LzVvJF1Hgu2z2ZT+ZPUGLOd24Ua0pBR46ftw3clt/Nh/lk0mkpoazdxw7zRTL98Cxc98D0jz8zo9DzOnTGQF/95DfFRYTSbSzud1wVB6P2CgoJ44IEH2LZtG3V1daSnp7Nu3Tp27dpFQ0MDX331lUiKC0IvlZKS4rymkZWVJc7BgnAEcnJyaG1tBSAxMRFvb+/DbCEIx09ERAReXo4pJvfs2UN7e7uLIxIE4e9ElRHhVNTtEeOKohwwmVpaWio+TPVCEWG+3HfXTIqL67jw3CPrBfr4nZ9RXlLPlnV5vL7o+MzjDRAauG9ubX9fDz5/3tGx4rb/LurUTquWefSL2/njh3QmnDeiW8f49OklfPH8D1z8zzO5+J/HXhZepZLxD/bGx9+D2ZeNprq0gWkXDAfgnv6Tuaf/ZACqSuv55atNACz/cgMJA6Ioqm8EoKCugT9W5LLkJUcP3Yhwf/oPigZgfFAy35ZuJNzgR4xH0DHHKwiCIPS8Tb9k8tC8VwB4esk9DBibcJgtjq9LbpuGb6Anccnh+Ph7dFl/+4uX88Z/vsVotGI2Wg66n5K8Sl66/UPytxWjKApmo4U/f8zA4O4Y5a0oClaLlXCPM6hq/w0//WC0smN+7KgwX9wNWowmC6MHxzJlXAQr2xoAkIxxjPW9GGNzKP/66CcmpsUxMTWWd5bvK8VlttrILKpyxFFWz1fLtnLzJeMP+byTIx3nyQh/b9x1WixWG2/9vJ5v/syivqUdD4OWfy9cztsrNvLZnS+xuvp+CtuzUWuqCdI0UWlcSFtrGM3NbrQ1+5EQOY9WUy357cscB1DgsQ/+R+ZWLefe9iuhfR1fBPsOKWbjj2nYrCqCAzy5++rJbKj9H7vqfwQg2mMM3tqIw75vgiD0Pj4+Pvj4+Lg6DEEQjpCnpycxMTEUFBRQX19PRUUFYWFhrg5LEHq1v0bnAgwfPtyFkQiCo2pBSkoKf/75J3a7nZ07dzJ48GBXhyUIwl5Wq5XNmzcDjt9Xcd4QThVHnBgfNGgQkiQhSRJTpkxBrd63qc1mo6CggDPOOOO4BCkcm5nT0rrVPqJPIOUl9UT2cc38XJm7yjrHE+rDFf9dxLP/PIegSP9u7WvZR2swGy38/NGaHkmM/0WlVnHrY+cfdH1gmA+Tzh7Mzoxipp3vOGG8fck5rNq1hwuGpFK7uwFJArVahf9+c78neofz46QHeyxOQRAEoeeptfs+A6nVB56SpCCnFGObiaRhcUe837LdVeRuLWT0bEfJ8iOld9Mx95oJB10/7eLRDBifxJY1Oxk1/cCfCdpbjPzrvBepKa3vtHzo1FRuePxCfvtqE9+8sZxlH6/l6e/u5owRax3bdZgpLq+nX59gvn17Po++spTfN+0mr6iG/z51Px9v+JRi+xbe+66RinLHfNo/p+/i03supry++YCxWLUSnoeZnxvgvJFpjE3sg6dBy4pt+RRX1/Pu8o38NVYs2Ned+EE/ExjYSF59P6y4oyBhR8Zik1HLdtppwctLy9dfj+fKZMu+pPheNn0hc28v4a+ZTRQFWhsN2KwykgT/mn8GkiQRaujPdr7AUxOCm1rMGy4cJ8rem6v1hhgEQRD2Sk1NpaCgAIDMzEyRGBeEQygvL6e0tBRwVEyJjo52cUSCgDMxDpCdnS0S44LQi+Tk5NDW1gZAUlKSGBgrnDKOODF+zjnnAJCRkcGMGTPw8Ng3Ikmr1RITE8N5553X4wEKJ95DL11K0e4qYuKDXXL8R2+bzZc/b0WW4MzJaTz8qmME1u9bdjM4ObJb+7ru8Xksfn0Z594643iEekCKYkUxr+Wfz09BUoU6lw+ICCUlOIhHr19AUV4lDz96HgkDoig3t5G+fQczUxNQy4ee3cBoM7OxLp9U7yj8dF1HBQqCIAjH36AJSTz3473Iskzy8K6J78KcMm4e9x8UReHRhbcyYsbh50mzmK38Y+p/aWvq4MzrJnHLM5f0aMxB4b7MvHjUAddZLVYeumUBBWFe4G9ApZKx+rhx8ezBREX6szKjgIU/bsbWZkSy2tnyWw5uXgYi+4Vww78+paCkjovPHMqtV05Eq3F8tHT3a8ZN6YOXfw3u7kY8PDv46ouJSECAlzvebnoGxISwrXDfvN6qxBbkCCNSjgGd9tCluepNRdSZCoj1HsPC3zJ5dvFqJECWLUyengEWhSDfRjyDjQA0SRsYEXANZcUZqGUdY8MW0GTN5beqNzA2RnDzjMnEBHnC33L1SSNLuhz7t/fO4q1Hz8bHy0BUmGPEfITbUGI8xmG0NWKyNXeZS10QBEEQhOMjKSmJpUuXYrfbyc7OZtq0aciH+V4tCKerv48WP1BFUEE40cLCwvD19aWhoYGCggJaW1s75R0EQXANRVHYsGFfpT8xWlw4lRxxYvzhhx8GICYmhnnz5qHXiwt+pyq1RkVc4pH3sjZbrMiSdNBRc901YVhfJgzrCzj+AOcWVpOTX0lzawcr/tzF1FFHXrJ2/NxhjJ97ZCXke4q15XmsbW+B5Is+eD2StG/UX1lBDZtX7wQgZ8Nu4kdEc/Gbn2NTFKpaWrluzKFjfTL7G5ZVbCPKLYAvx919XJ+HIAiC0FV+Vin/uvwt/IO9ef6r27qs37m1iEVvrUSRJbAptLcYj2i/koTzIq4kH58LVL9+tYHPnlvK3PlTsdmt1NlWMuHM8ZRtDGBjQRVKsBd46PhrlvLvVmbRbjQ7Hvi7o430JcKisGl5Jp88+wMxcwZQbnaUZi+ragTggZtmMHy0iiKf5/iu4kcqK0OIi6uksCgYvVaFXqPhsctmcNEzn9LUbmLawL4EB7jzuXElkocdSQL6d9DQfPC55cy2Nr4snI9VMTHU/zIkBgIQHFrHlKmb8fAydWrvqQ4hxfcs/HWxXNv3OyRUqGUtQcTT13vWAY+hKI73pMuypoG89+TlBPl7dlpXZcymoHU1APnNKxjo37MdGwRBEARBODCDwUDfvn3ZtWsXLS0tFBcXExMT4+qwBKHXaWtrIysrCwC9Xk///v1dHJEgOPxVTn3t2rUoisKOHTsYNuzEXssVBKGr0tJSysvLAQgJCSEqKsrFEQlCz+l2N9orr7xSJMUFAEoqGlifUcDMG95gzs3/o6ruwCVRj4UkSdx6yQQiQ3z5cU0OD73yA82tR5ZkcBVFad17z4ii2DHVX0NHRSK2jp+IiAti+gXD6ZsWyfQLh2MzWbFbHXOWVuyuOeD+alvbMNtsAHTYHAkIo81CQWs1Le0drFu9i9qaluP+vARBEA4l849cPnh8MbXlDa4OpdtsVhtbVmVTV9F42LabfttBS2M7hbsqKMqt7LL+2bs+5Y/lWQTGh3HfO9cx4dwj+0Kv1qh5ZeWD/GvBDVz3yMGn6jhaLY1tvHLXJ5TkVvDB49+w/JdX8Z/yPVnt/yQgqQXpAKXbE+ODsWlwZojPvnoi72x8jJyaRlpH9iGrtQOT2cqApHCumjsCADeDltQUR2ktSYLcHVEseGcWFRX+nHtmAd89MhsfNwNN7Y7ktUqWyfXJR/a0d0pE9x8ZwsVrX+H+rZ9htds6PxdLFYriOHfmZJayK8sxBcv4iducSXFFgZpd3lTmBjLZ70X8dbEAaGQDannfc603bqO0ZSl2xdEd4IrY7+mnuwbfpsfZ8P1gdueGsOmPIQQwnkn+T3HjiJe7JMUBAvQJBOmT8VCHEO0xplvvjSAIgiAIxyY1NdV5PzMz04WRCELvlZ6ejm3vtaVBgwah0Ry6QpMgnEgpKSnO+9nZ2S6MRBCEv+w/WnzEiBGiyohwSjmiEeN+fn7k5uYSEBCAr6/vIX8J6uvrD7pOODEUxY6CHVk64oIA3bZtVxk3Pfr53uMBRgt5RTUE+3sdl+Mlxgaz5NdMIkJ8cNO77sP7npwydmwtYtLZg3Hz2NdBJKuwEk83HdFBvmg870fWJCFrBiFhxm76FYCm1u94co+Z8bemcmfURQCUF9YQtqQSq4ea0Fldy/F+k5HNv75bToy/D0tuuoIHU85jdEAC+S0VXLzuRbzb3bA9C0FBXny6+B/iBCUIgkvYbHYePP8lzEYLJXmV/N+HN7k6pG758Inv+PKln/D29+CT7GfRaA9+/px+wXB2bi0iKNyHfv27Tu+RMDCa8sJaBo7px6TzRnQrjtCYQEJjArsd/5F45JLX6NjbsWzU7EGUNzU6VigS4dERjJqcwu+bdzvbazQqqgxm2kNUjIyNQFdrZ9FvWXyzJhtb36BOw6m37Shj/uWv8eCdc5g6bxQxHqOZEnofZrONjlgDHxdnMH36ZjQaG6urXsajfr5z29FJ0ez2tJPRVrAvWAXSTbvJb6kkv6WSq2MnkuDtqGTTaC7ji8L52LHiWz+Fjx6yYtZtJ/H8enz9HB3Tqku8yP0okTxdECYPmV25K/ni7ku7vCbtlnLWlV8J2DHZ6onzuRyDxotJMVdij1L432vp7NwUwbhh8ZyXcPYhX1+t7Mbc6De785YIgtALWa1WfvvtN3bv3s0ll1yCp6cn5eXleHl5iZKegtCL9evXD41Gg8ViYceOHcyaNQuVqmcq2gnCqcBms7Fp0ybnYzEaV+htgoOD8ff3p66ujqKiIpqbm/HyOj7XmAVBOLzm5mZycnIAcHNz69QJURBOBUeUOX3xxRfx9PR03hfJt97LZK3hz/ILsNk7GBH2CR7avsflODX1rY6EODBmUCxRYb6M7B9zXI4FMHfqAMYMjsXH09BjJdu7y2yycvcFr2JsN7Mnp4zb/nsBAL+k53LvgqWoVTKLH7qSiAAf1G77SqiqPe/DblrLWwXJLC7K5LuiLKaHJ6JTqQmLCeS22+dQuLOCc6+f2OWY20orACisa6TVaMLP3Y1zIodz/9ZPAGjRGXGT9JjNti7bCoIgnCiyLBEaE0jRznIi+4a4Opxua2/uAMDYbkaxK4ds6x/szaMLrjvo+nuev5gr755JULhvj8Z4NLLW59FY00JwlD/FuRVYvbQgwVUPnoO79yVUN23By8cfT208D98RzbTLX3ae2y0WG3nltSBD5p5KQjsco6xt9gPUGAfsssTC55Yyds5g9O46krxnADDgXJg3bhArGzfQZqumxphPdEQr1013zE01a0girbYYNtTuZk9bFQDmDA/kUDXR7gFEuQcQ6xlEi6UDN7WO5o567HuLvWttAWCvwd0qc9mUQEr2xr5pwySWfnQH173xFRvzSlCrDlwgSZbUyKiwY0cl6zqvkyWeu/9c1m8r4NzpA4/pfRAE4eRQVFTEGWecQXFxMSaTiWnTpuHp6ckzzzyD0WjkrbfecnWIgiAchFarJSEhgaysLDo6Oti9ezf9+vVzdViC0Gvs3LmTlhZHpcGEhAR8fV3/XUUQ9idJEqmpqaxe7ZieKicnh5EjR7o4KkE4fW3atAll7wWioUOHolYfvwGYguAKR/QTfeWVVzrvX3XVVccrFqEHNJtzMNmqAWgwbjluifHJI/rRcu1UNGoVsyeknJDOEkF+XUuXnkiyLKEzaDG2mzuNFm9ud4zAs9rstJssXbbTeMwHj/lE1m8GfmaAfzhaeV9y/5yrxzvvv/DnSja0lPDg0On09wvj5gkjkSWJgRGh+Lm7OdvdkTiHCDd/BnrE0HK/kbSB0Uf8HmzKKqKkooE5E1PRasRJTRCEYydJEi+v+BcVhTXEJIW7Ohzamtt56KJX6Wg18uhntxEY4XfI9tc8fB4xyeEkDo1Fe4xVSWRZJvgwxzta323M5qs/M7l+6nDGp8R2WW+z2bHb7Gi0agp3lHHPrGcAcPd2o0Fjp/acOCRJoqSjnf5B3kQE7bvQYNBr+Ozla7jnia8pq2wCQF9jw2KQoNVEtc2El4feOZ2JClBUNgIiG6kv88Ya4k1+WSPP3fo+/35/fqe41rflk9ciE+YGJnsLv9fcTUPEZTw88BoAbv7jM3Y01aJTgWKU0Qxs5b2qlQQ0BFBe2MLVy98kd2AZQ/1UXK27gM3vpaD1sDA6rh9xlwTQ0G7EYGjCWq9jx5YwLOtN2Kx2Xrh6Dn/uLGJEvwPPg6VXBzE+YhEd1koCDaMAqKxtZtnvOxgwGPyj7dyUPE50CBV6DQmQDt1354Q4VX8jbr/9doYOHcq2bdvw9/d3Lp87dy7XXXfwDlGCIPQOqampzvmTs7KyRGJcEPazceNG5/3hw4e7MBJBOLiUlBRnYjw7O1skxgXBRSwWC1u2bAEc17iGDh3q4ogEoed1OyuWnp6ORqMhLS0NgO+++47333+f5ORkHnnkEbTarnNUCieOv2EUUV6XYLW1EeIx+7gdR5Yl5k4dcNz23xupNSpeX3o3BTvLGTRm35fsc0anopJl/L3c6Rd+8BK4l/cdyplRKXioNYDC3y8r/rk6hzeq/gTg5fRfWTD1UoI9PXh49pQu+wox+HBrwkzHg7/loBrNbVgVGwG6riWHKmubuf2Jr1AUaG4zcdU53SvzKwiCcDB6Nx19kiNcHQYAWX/mkb0+H4A/f97GWddN6tKmtrIRgIAQH9w89cy5ZuIJjPDoPPfdGprajbz64x+dEuNWezsdLXDbnBdorGvhyU9vwsNdhyRJKIpCW1M79ggPkCQUYPHyDO787QsunD2EGy8Z59xPVJgf8+YM5YV3VwIgm0FncmThFHAmxaP9PCiqaWHsRRlEplZRXejLyndG0Zrmx1dSAxvH/puExD7c+cg5FFvaeTP3N4z2SC6JqUSSQJagvKPQedxWiwmbXYW2wYCxxYIc65gnvMKrjuIUDZpmGOVXQrJ3BRuU9SSlTaNiYzAhZwazbuFWQkLryG1bj1pvJ8S3gQ69O7JKwkutZ8aghEO+pp7aWDy1+17L/7z2E7urdtKRuArJCBNC7iPRe9axvG2CIJwk1q5dy7p167p8n42OjqasrMxFUQmCcKTi4+PR6/UYjUZ27tyJxWIRcygLAlBZWUlxcTEAAQEB9OnTx8URCcKBBQYGEhQURHV1NaWlpTQ2NuLj4+PqsAThtJOZmUlHh6OyYkpKirOStCCcSg5cW/IQbrzxRnJzcwHYs2cP8+bNw83NjUWLFnHvvff2eIBC98iSliT/f5MW9CQaWfzR6mn+wd4k9I/ijx/SaW1sB0Aly5wzOpVxqYf/cuGlqsNSOwpj9Qjs1tJO6+rLGnDfbkIyKwzXHnzEZXF9I4vSM2nae4LqtK6tlrNXP8XZq58mq7G4y3qdVo1u79y5vp6Gw8YrCIJwMkobncDgSckkDo1lzOxBXdbnZ5dy1djHuWrc4+zOObHJjlajiUV/bCevorbb284dkYJeo+acESnOZdl1L/BT4UjSyx+hqrQeU4eFzPW7iewXyisr/0V0gmNubl1pK/6bq0nTebP8uwyMJivfLd/W5RhnjE9meP/ofQv278NltBDkaaB0ZzmoJPSejgS23sOEXQVt4TLGMD0lKd5k5FRw1r1vctWHi+iwNRDpXt/pOJFudVjtjmlA3hp1KbFbvdF9bMN9vYRiA0UBjUpBwo652oBs3DtMVlJInFHHk29eSmCcgckTizj73D+QJTUa2Z3QJBs3vuzRrVHebe0mcvIrsdsVgvw8HJXi/9pc6QXDcwVBOCHsdjs2W9fpiUpLS8XFIEE4CahUKpKSkgDHSKddu3a5OCJB6B3+PlpcVEMSerP95zHOzs52YSSCcHpSFIUNGzY4H48YIQbVCaembo8Yz83NZeDAgQAsWrSICRMm8Nlnn7Fu3TouuugiXnrppR4OURB6l4cvfImcDfn0H5fIM0vv69a2dks62B3JEJt5LZbmXwAbdrfnGDNnEA+3W/AyuDN1/LCD7uOS97+gWmrmwXwz40PieGfcPOcXm/KOekx2x9yrRW01pPp0Lh/r6+XGZ89eTU1DC2l9w7oVuyAIwsnCzVPPE1/fedD1VSX12Gx2x/3SeuKST1z59+eXrOHr9Vm467SseWw+GrXq8BvtdddZ47nrrPGdllW3O0rNmd0ymHfz7dRWNDFjnuOLS3BcMMPvmE7ND1toWZ2LWtFQmF8Peg1yi5HkIB8Adm0p4Nu3V5IyIp6Q6ABmjejHxu1FXQPQaWgxNaMN19FhgT++HER0WjmlOcFIdlC3KVjdQGV2jEy3aQAJFEmhr2dNp6nJs1tM3LrpHfx16wjSVzL1LC+WrhyAnC/Rlu7GmJmZaGUrGXtiKGv05vdfB6Ibs5VA30Z2W7bzRstZLC1PJtnHcU61K3b8tRHUGHexveVzrDsmMCYhBlnufOGvpc1IcXkDSXEhyLKE3a5w9QOfUFrZyBXnDOf++RPZuac/fqFzscvNRHuMOeL3RxCOO0Vy3FytN8RwHEybNo2XXnqJt99+G3BME9La2srDDz/MrFmicoQgnAzS0tLYunUr4Cinvn+CRRBOR+3t7WRmZgKg0+kYMOD0qvwonHxSUlJYtWoV4EiMjxkjvo8JwolUVFREdbVjmt6IiAjCw10/XaIgHA/dTowrioLd7riYvGLFCubMmQNAZGQktbXdH/0knDwURWFV9TeUdRQwJ+wK/LRBrg7JJSxmR+LZcoD5xA9HpZuK3XABoCChwW5yfNh77ruH+CEjkffvnkdyVDC520t4+vaPiU+J4L5XLkOW9xV30KvVKG5WFBR+q8ynzWrGQ6MDYLh/PHckzKbDZmF66IG/8IQGehEa2LXMuiAIwuli5LRUbnzoHCRg5NSUw7bfn7J3BPHRjrRw0zlK9Oq16h4ZrZEW8G8Kmz8nyvM8pv1ztHN5fmEN197/MVar4zPbwHkjmDCqHy9/9juS0YLblmImXTyOtUu28OR1b2Oz2vl1kaNXsAL0v2EChZWNfPTAh/h5NXU57r8XTGRNRj92rI0DBSQJvAodx5KtduQ9ZQQUKrQmeSOVetAx1wOlTzM2BZZVJFFv8cJLs5Mk74q9L0wTYQ82sfP7MAIDqojzrAMgMm0b7Qnbsdpl3FU2tGobsuwYyD0rLAuLVSZ9WywX97+UaF+JtdVvsWZ9AK9v+ZZ7z5nAZRMGO2O22xWuvv8TyqqbuPzsYdx8yXjsdjs19a0A2Nx/5JfSWwnxmUKU9wvH/N4IgnByefHFF5k0aRLJyckYjUYuueQS8vLyCAgIYOHCha4OTxCEIxAdHY2Hhwetra3k5+djNBrR6/WuDksQXGbr1q1YrY5rWAMHDhTTXwq9np+fH6GhoVRUVFBRUUF9fT1+fn6uDksQThv7jxYfPny4CyMRhOOr24nxoUOH8vjjjzN16lRWr17Nm2++CUBBQQHBwcE9HqDQezSYq1lW+TkA3ho/zg6/xsURucYjX9zOxmXbGDlz4BG1t9nslO+pIiw2GJXKDa3PMwAothqs6n50mIys2RWK2Wojt6SAOPd/orMVERkVysZVlVQUzSS8j2Pu8rbmDt44axbrGkv5tWkXE0Lj8dDosNhsqGUZWZK5KGYsdbUtvPD4UqJiArjockeipNVqxFNzdOXTTWYrz763gg6jmfuum46Xh7i4IAgno+JdFfz88e+MP2coiUNjD7/BCWa32/m/C18he0M+/3rvRoZPS+vSRlEUln7yB031rVwwfzJaXffnjlSpZM65evzhG/5NfmUtV7+2CE+Djk9vvxhfj+7/Tb1jzlhG9osiISwQtarbM9p0EWAYRoCha5WRgtJaZ1JcJcucN3c4YwbHEujjQUykP9Z2E/H9o3joolexeHuAjwdSbRNSUxsAN505jNSRQSjVr3Cg/P0jV/3G5Dv6ObLoe0ngSJLbFdpHxaKuasIjrxFLuDexseUA7G4OoqTFD0+1ETMyNrtjznFJguTI7WRP0dLeLGFXHPuTJHDT2lFh7VTV3WqT0Kus6FUwIK0Af99WOtq9iWz4D+npPwEKi5Zt5dLxg5wdEGx2O9XNrbQHSby/eSsTxiaQEhXMK/8+n81ZxcQNfIcmq0J1x5pjfl8E4bhQ6PQ75zK9IYbjICwsjIyMDBYuXEh6ejp2u51rr72WSy+9FINBTEEkCCcDWZZJSUlhw4YN2Gw2duzYwaBBXafVEYTTgd1uZ9OmTc7Hw4YdvDKhIPQmKSkpVFQ4OlBnZWUxfnz3v7sLgtB9DQ0N7Ny5EwBPT0+Sk5NdHJEgHD/dToy/9NJLXHrppXz77bc8+OCDxMfHA/DVV18xevTow2wtnMy8NH6EGfpQZSwhwfP0/XLpH+LDzCsnHHH75258h1+/XM+4ucN48MObncslVSD6wGVo7HbOG7eBVqOZGQMasbf8TlAI3PdUMZXlEYRG+wPQWNvC9VOfoq3ZyKPvXcfVEy8D4M89xcxf+C3Rfr58ed3F6DVqvl20iRU/O8pljR6fwPvNK/m5IoMr+kzg5n5ndPs5b8oqYulqx9w+Q1KiOXeaKL8lCCejF257n52bC1i9eBMvLX+AquJaUkb2PeqRy4qiUJBdSlCkPx7ebsccX1NtK1tWOf7WrF2y5YCJ8R3phbz+0NcAePm6c+YVY4/5uEdqY14JTe1GmtqN7CirZnRC9OE3+huNSsW4pD6HbKMoCnbFhEru2gnpkwWr2bAuj5vunEFyWiQA/3llKdt2lHHuhFTaato4/5JRtLU75v+WbXb0v+2ielQiT323jdUbdhGVHMwHb9wAwHm3TGPTvV9iR8I3IZwQXzdyCupY8+ce6hp/Yvxghc4TjTuYrSoGjSxjw44IdI2KcypuqaENRaMCDz3WEG/kymYs5R0UlQcSHlJHflMg08J2EuPVgMmmYv++ARpZQedhY1p8Fn+rgO58bLFKqFQKKtW+uCRJYW39iyDB9k0JuNUmYJHtVJc3smN3JcnxoY79q1VcceFIXv3lT8x2O5e88BkXjR3AA+dPJi0hnEaTF3kN72JUdCwquIbRQbcS7j4YQRBOHwaDgWuuuYZrrjk9OwALwqkgLS3NOdopKytLJMaF01Zubi5NTY7KT/Hx8fj7+7s4IkE4MikpKaxYsQJwlFMXiXFBODH270w1dOhQVKojn/pPEE423U6M9+/f3zk/zf6effZZ8cvSCzSZMilr+ZZwz3Px1nWvPOzhqGUNt/d9Gjs2VFK3f3ROW3u2Fzv+zyw+4HqVLDN/9igAFHszJuNQFEsO0I5WXUdeeiEJQ2Opq26mtakDgMKdFQybmATA2t2FmKw2cqtrKW9qJjbAj4FDYvhq4XqCQ30ICvZiQ0EeABtq844qMZ4cF0pYkDdGk4VhqVGH30AQhOPu89dXsH5FFtc/eDYpQw+daP1Ln5RIdm4uIKpfCDeOfpj2FiM3PH4h59487ahi+OrV5Sx45Cv8Q334YOuTaLTHdm7wDfLisvvOJPOPXM696cAxBYb6YHDXYeowExl/YivVzBqcSPqecrwMOobFRRz1fmw2Ox+/u5qmxnauu2UK7n+rwpFefT/lbT8R63ELsZ5XYzA4Sh52tJv56B3HnOJfL1xPclokRaV1LFuzA4A3Fq1D3WqlpbkDW4Bjn3ZZQpJlSvMrqbQpVIx1p1zVxuKMbOYOTGHg+CRuvW8OP3yzmcuuGc8n7zlGS69ekc3V895EQeo8KnxvJwp3vY1XLlvKf9aN5Lu1qQQ3KYxNyCOzIISiNjcUvR1NvYw5NRwJhZVfDKN1aDv4SowKKQBALTlGtFttMjUmd3a1hGBVVNid8xcrSCiOQbJ7Y1Akx2jy/RPnEiDtLa+u8jLT5qaAVsLsAXc+/TWfPnMVAb4eAOyoqun0Wi/PyOWB8ycD4KNLYVDQMyzImwrA9oYvRGJcEE4zZWVlrFu3jurqauf0YX/5xz/+4aKoBEHojrCwMHx9fWloaKCgoIDW1lY8PDxcHZYgnHAbN2503h8xYoQLIxGE7vHx8SEiIoLS0lKqq6upqakhMDDQ1WEJwinNbDaTnp4OgEqlYsiQIS6OSBCOr6O+gr1lyxZ27NiBJEkkJSUxeLC4cNgbbK++l3ZrEfXGDYyN+OGg7XbmVvCvR74hItyX5/57IdojTGZIkoTq6H9sTkv3vnsjv3y6likXH76igiR7oQ9YRHn+dn548w42rgpgyLQ/SRgaS2xSGLf99wJqyhuYc/kY5zaXDR9EaWMzfQP9ifTx5j+f/UJFXTO33T6ZovJypvzyBjqNGxNCYrisz7ijeg5+3m58/fJ1R7WtIAg9z2Q08+FzPwLw9Tu/HnFi/LbnL2Xu/Km4e+m5vP/9ADTVtXT7+O1tJn5YvIWsjCIAGmuaMRstx5wYB7jsvrM6PW5u6qCkqJak1AhkWSIwzJcP1/4bk9FCQIjPEe/XZLHy5rI/0ahV3Dht5FGVMfdxN/DclbO7vd3fZW8r5rP3fwcgMtqfcy8a2Wl9Vbsj+b0m80tufL2F0CAv9DoNkcE+qExGrBot/m6OEvLeXvuV95UkbG4qYuODGTstBZVKxtMO2sHxnH39FAobm/n100UAmEyFtDRm8t2OcPoP68tbcx1fetw9dCz69E9mnjUYm2ozVmVjp1LqKsUxbcdf/jXqTz63x3Fn4h9MCyzAZJdY0uaJHYn3vphK+1Z/TCFWmscbwS4h2eDn4hTiPaqp6PAikA6Kd4YycGA+fto2WlHjqTU5ktzYUclgV8Bkl5Ek2fEcFYVmk4rc4jAGxBahVSmoJLBaVWzKTAD93oBlqFSZ2bmnijGD3XnxmzWs2JbvHACvAHqNmv53vogswbkjU/HvswStlx0/VTt6pRCrvQ217H7M77kg9AhRSv24ev/995k/fz5arRZ/f/9O1VQkSRKJcUE4SUiSRGpqKr///juKopCdnS2SgsJpp7q6moICR2dUPz8/4uLiXByRIHRPSkoKpaWlgKP6x6RJk1wckSCc2rZt24bJ5Kg8mJaWhru7uA4inNq6fQW7urqaefPmsXr1anx8fFAUhaamJiZNmsTnn38uenC5mLculXZrEV7a1EO2+/2PPOob2qhvaKOopI6+cWJ++OMlrn8Ucf0v6dY2IbGptHZcis69mDOudJQMkiSJmRePBKxI0r45dUO9PXn5gjkAbC+oYPG6LACyvtiI1c9IzWWBYIT/GzCCNJ/ulf1VFIVNWcUE+3sSHebXrW0FQTi8wl0VWMxW+u4tiX2kdHotU84dyoYV2Uw+59C9OBvq21jx0zYGD48lrm8IUQmOstLPLLmbPdllTL9kNIqisGdHOSGR/rh7di3f/XefvLeGrz79E1mWOP+OmQwel4i7V8/Pv2qz2rnpiv9RU9XMxVeO5eqbHCN7PX3c8ezmvpZl5PLeqs0AJIUFoWuwEhkdQFRMwFHHl729hFXLMpl9zhBi+3Y9j9oVK42mTDy18WjkfRFHxgTi6+dOW6vJWQ59fwMD/8PqrA/59XvHqPSK6mYACkrqINIb1Cq+/G4j866byJrFm9HtqMTUxx+VBHfOn8Hc2Y7OindfN7XTfn2DvFh4ZTxR8r3o1EZUHTA7QsW8L6/iuysLkZQaBgx6nQFDLmH7zjLatP9jd8On9PEooblxAnuK/8OItEo0SHvn/5ZQyxIPxG5irJ/jwptGUghUWai1a7jivBW8ve18LAF7JwxXOcZ/V9d7UL8hBNwtlNplhsXnkxzmmINcq7Ki2puLqjO6E2RoQ0FCkv6qSqQgS3Y8dArbpTC250Sg9rDgUafQWOSLUacFCTRGkAEkieH9o/ljZxEf/p6+LymuKCBJlDW2oNOYSelbiNWwFp2+Gp1sQStbaLXsoLZjIyHu4iKMIJwOHnroIR566CEeeOABZLn7nacEQeg9/kqMgyOhIhLjwulm/9Hiw4cPP+qpswTBVVJSUli2bBngKKc+ceJE8XMsCMeJoiiiyohw2ul2Yvy2226jpaWF7OxskpIcpZxzcnK48sor+cc//sHChQt7PEjhyKUFPk287z8wqMMP2W7W9DQys0uJivAnNkZ0ZuhtZFnmrjeu7bRMUeyY6y7CbklH4/MSaoMjGV66uxpjh5n41Aj6hgXQNzKQ8sZmvBrMmHe3EnJRArGxYYwOijmiY2/+JZP1P2Uw9+ZpbCio5Nn3VqJRq1j86vX4+4jeYoLQU/KzS/nHmS+iKApPfDyfQWP7dWv7e54/sg43rzyzlHW/7cTDU8/Xy//p/DKZOqofqaMcx/z89RV8+NyPBIX78t5v/0KlPvTUKAGBjiSvu6eeS/85x1nq+0DyMkt44LK3CAz14YWv/4HBXXdEcQPY7HaaGtsBqKvt/sj2/SWGB6LTqFHLMjv/LOTb9/9Aq1Pz+Q934XEEnQEO5L///ora6hZ2Zpfx+gfXd1mfXfcchc2f4a6JYVLEd87X3tfPnU+X3IHNaken13TZLsxjOn/8eyPlejX8/aXdO9JdCfRE76ajoqgGbUUTuspmnvn+HtJGd/05sthsLNy4DV93N2ZEb8bWbnSu06ttvDhjCZhrUIC2uq/4v7X+/FGTj7ncnbZQO5paL76Y3Ie7qs/iwsrfuS4oF0+VDbWiQpIkLgnNxWJ3fJmSJYmJbh3UW03kqbS89MTHJOnNqGQbtVaZGzNns1MJwJbSjM5gw6C2UoYBm11ClhRSfCqwKhKyBGa7TL3JgLvGsu/pY0eWFBTFMa+5SSVDh57WJi1YHElxdGBRg64V+gT5oNWo8fN0Q5L2lWRHkkCCyOBqLj9zBe4Gk/MYJXWRhAYHoFf54qcX5cME4XTR3t7ORRddJJLignAKCAoKIjg4mKqqKkpLS2loaMDX19fVYQnCCWE0Gtm+fTsAWq2WgQMHujYgQTgKnp6eREdHU1RURF1dHVVVVYSEhLg6LEE4Je3evZva2loAoqOjxe+acFrodmL8559/ZsWKFc6kOEBycjKvv/4606dP79HghO6TJBk3zeFHHoaH+fLKs90bxbz0yw38vjybK26dSvJAMc/0Cac0Y7dsAsBu+g0McyjZXcX8Gc9it9l5dMF1pI7tS4ncQoPBxOUvX8CUwHDiBxz5KHFFUfjPpa9iNlqoKq4l8aqxgGM+XKvN5mwjemkKwrHraDU5Rq0Crc0dx+04vn6OORV9fA/esaWi2PEBuMKrhV/Ks5gR2f+Qv+dz540gpX8kQSE+B02Kb6kroKKjkcZfq2lr7qCtuYOi3EoSBx353yStVs2zr19B5tYizjhr0BFvdyD9wgL59dEbkCWZrz/+AwDFrmC3H31N4L6JYdRW76JfUtgB1xut1QCYbLU4ag/ve03VahXqg3RAUBSFkqwS5NQI7Fo1UoeZoYNj2LSjHCSJiCAvbr5sPO5eBi6//yy8/T1JGBzjTIrbFDsyEpIkYbdb2ZV/G+FyDo8tm4K1XxzTBoNKDa0mDR46C7F+jnm3O8xqbv5iJ4UDfJE9QAmyo1h1mP3g7ReWcM1/xrCqvBRPtza8sTDdowZ/lYJKllDJ+yWdAV+VjRFq437PSkWIrPBA3O/8YIzEU2sGHPlpux3a7Cq81FbHSHQ7qGWFCPcWLHYZO38lqRRsdpBV0GrVYbFKOOu8h5rB2+J4mdtlqNJz1qhUYgZ5sLm2kKERMdwwfQT/W7ah02s9Yeh2Z1J87yByEoM1TI769lBvvSC4hKQ4bq7WG2I4Hq699loWLVrE/fff7+pQBEHoAampqVRVVQGOUePjxh3dtGKCcLLZunUrFoujY+mAAQPQ6Y68Y7Ig9CYpKSkUFTmmb8vKyhLJOkE4TjZs2HedRIwWF04X3U6M2+12NJquo5s0Gg12u71HghJ6H5vNzutPfI/dpqBSy/z3ratcHdJpR5J90Hg9hM20HrXHTQCY23dw8/2b2LA6jKaGNkxWK01GxwX+JruV6NQIrHY76gOMfPlwzUY+bFqGl4eOt0beQIjBB0mSiB8QTc6GfBKG9GHeGYPx9XIjIsSHAB8P/jnzKXal7+HfH93C8BkDTujzF4RTTdqIOP7vf1djNloYO7P/cTvOzXfNYOLUZGL7hhw02X31vXNQYtR8Ep3Bv7IWoahgZvjBf8clSSIh+eCVSUra6rhhwwIU4KrR40jOSiQuNIC+/btXMh4gKTWCpNSIbm93IB56x0Whi68aS0SUP1F9AvDyPnAJ+IKmz8lteJN4n6txb5qDp697l3LxDz15AdWVTYSE+RxwH/0DHsSnNYVAwyjH/NhHSJIkHv78dr5c8Csbc8vxtdrZsrMCWbYTE1qP0QQJwd9iaR+Ih/ckLv3nHOe2m6ryuTvjA/x1niwYcRMfP/QsN9z1M3FeMG9MOjmbEvjuqSl4Xq6izO7D87OW4qvrQCfb2WYMpHCALyq7jWn+ReSYAkm3hqBpsrJd18ANWjcMvhHY2UYbEr92+HKeRwP7/1TZFcdnQYkD/KxJkOLRxBolaN8CQJZBQYXRpqCSbLBfkl3CjhqFDrsGk02Nr9aI1S7zU3kyKrUjq27QWJAk6FCpsSsyeNohuJVVuu005LQjAVM1qWz5vcoZilqWSByfg93PisUuUd7uQ02JH8OTSonxPu+I3ytBEE4dTz75JHPmzOHnn38mLS2ty3feF154wUWRCYJwNFJTU1m5ciUgEuPC6cNut7Np0ybn4+HDh7swGkE4NsnJyfz0008oikJ2djZTpkwRA3UEoYfV1dWRn58PgLe3NwkJCS6OSBBOjG4nxidPnsztt9/OwoULCQtzjJAqKyvjzjvvZMqUKT0eoNA7qFQy42eksfaXbCbMSHN1OEekpOVrCpo+Js7nesI9Zrs6nB6hdr8atfvVzscRYe8RNruYCWdUoA8ZjFqt4p1L57KjspoYtTvDn34DvUbDtzdeRrCXh3O7DpOFV9asRDOsnXZzOxvq8jg7YhgAz/50P3UVjQRF+gMwa3wKALXlDWSu2wXAnz9u7VZivLXdxA0PL6ShqZ1XH7yA+OjDl+//ZMlGPlqykavnjuTi2UOP+FiC0JMa61p58taP0GhVPPDqFT0+j/bo6cf/76laraL/4JhDtvHx9+Csy8bx6e/bUFDQyt3+eNCJRlahklRYFRufrN2O0UPN9LkTUKmOrjxtQ2sHu8qrGRIXgUZ16DLvR0KtVjFpeuoh2xQ0fYLZ3sCOyvd4bfhqvAM8eW/rU7h7uznbqFQyoeH7ynLu2Lib799ZybRLxzJoYjI6tT99fa490O4BKN9TjaySCYnuOs/5oInJDJqYjNlk4s8/7sDYvhFZVhg7sICyCk+8PFqwNoG1SYPW7yNUupEAvPrFt/imNvNq7NcYaz5klTSLiXm+BPVpY701iNHTFxIzqwKA7wvHscrihZ+iJ1A2U2CXmN9nNYHNMDm8Aku4xBOrBzFkUhHGSSoypbUYfBzxKQrYJHh5TyzjQqsYqG92VCffe6FC2ftPZr/3XIECM/TR1O6/iFKLFwbZjiyB1S6hIGNWFCQkVNiRJNDJFix2x74kScGqyNgVBVlyJNYd74eCYtt3uAazoww/EqywZCGbvZCQUAw2PBKruLj/egDW18WwuGwwn4y+hsFBoiKOIJyunnjiCZYtW+a8GLT/hVdxEVYQTj4+Pj5ERERQWlpKdXU11dXVBAUFHX5DQTiJ5efn09DQAEBsbCwBAV2/ZwjCycLd3Z0+ffqwZ88eGhsbKS8vJzz80FOHCoLQPfuPFh82bJiYVko4bXT7yvdrr73G2WefTUxMDJGRkUiSRHFxMWlpaXzyySfHI0ahl7j/6XkoT/XuMtqKYqei7RdKW7+hyZSFxd5EfsMbp0xi/O9k3Ujs5t/RGIY7S/KOiYumPaOafy5dTEe0Gx0WK9vLK5nmFY+iWLG1f4FGDmCwdxzbKnKIj/RjYlDyfjuV2KFuxNqmJszd27k4IMyXyx44mx0bd3PuLTO6FWduYTUFpXUArN9WcESJ8a+WZ9DSZuKr5RmHTYybLVY2ZxWTFBeCr5fbIdsKQndsWJHF9vWOnpPpa3MZN6t3VEpYvCGL13/6g0vGDeKaKcN6ZJ/eijtPJV6Mj7eeoX59jmlfIQYfvhh3K5mVZfx7xSoASuuajmpfiqJw8UufUV7fzPhxYRT4lDArbAC3JEw75HbV7Wspb11GH+9L8dYlOpebbVawKORuLaCkzURDSwfnzxmMVtP5I1E/3/nkNb5L1foUoJym2haa61s7Jcb/7tU7PmRPVgkZq3fwWe6LzuXlHQ1ISIT+lVUGcjbkc/f0J5BVEq+ufpjYtH0J2R9Kt/Ja7i/Mix7BtPZnGZ6YDYDR7Pg77+W2f+l9C3bzOmdifFBdNXrDbvw1jjLmsf1buPuHqwiaacPHfRMe6gpn9fHpUX+gV9noUFQU2wzoNVYAAgLaAEcC+u4JGXjIdmptaraaPPGRbZTbdNj2jvb29Gkj366lqd2D8e6t/NVt4e/Tbigo1FoUchVf9v8YIQHh6mYa7B57jwlWRUJBQkbCBsiKHTsqdCorZruKdqsKGyrctFYsVsk5ulyrsqGSbHSY1UjI+NrdUAx2mq1G6JCwDWiFOjX0MaMzmJ2l0wd6l7C4bDCDArtf0UAQTihl783VekMMx8ELL7zAe++9x1VXXeXqUARB6CGpqamUlpYCjlHjkydPdnFEgnB8bdy40XlfjBYXTgUpKSns2bMHcPwdF4lxQeg5RqORbdu2AY5q0IMHD3ZxRIJw4nQ7MR4ZGUl6ejorVqxgx44dKIpCcnIyU6dOPR7xCb1Mb06Kd1gr+aP8Iky2OkBBK/ujkX2J9r7M1aEdNxqPm1Eb5oHs22l56e4qVCZHOVsZ8NXrMdtsyMYvsDT/G4C3blyKXT4PjVrFntYqvinZyBlhA/ly93ZezfkdL42edWfejkG9r4zkZQ+cc1Rx9u8XxtmT+1PX2MrMvSPQD+fGeWNZuHQzl845fNLv+fdXseTXTMKCvPnqpWt79c+pcHIZMiGRmIRQNFo1/UfGuTocp49Xp1Pd3Mrb2auJTnZjSuiR/V4dTHVTK2c++T4dZivPXzkHyf/Ifodym2q4c/1i4rwCeGHEOZ2mbejjEUhIhDf5IxrRuKu5dNzRfcBWFGhudyR5M20FtHS08v7uNdzcb+ohf9e3VN+H1d5Cm6WYMeEfYrJZeTJrCUvK0umXbqDujRKMwx3vqUat4oIzh3TaPsJzDhGec2ib3Y7xnp+ISggjINqflRXZxHsGE+3RdfTFgAlJ7MkqYeCEJOeynKYyrvjjLSQkPh49n0RvR7Wd2vIGFEXBZlWoq2h0JsbTM4t5tegXauRmtlYsZLb/Tue+Oowavv1tAJOH7saTJhQ8Mdv6UV+dw66WXxnqrTB//iIActtjaTHbyOvw4erzx7OkaBsR/g0c6CVrs2qQJTt62YZVkfm1MZQW7xpMdplJBseIkwCVlYmGRjSSQoVRj6fGQotFSwkGBro1YLLLLG3zIU424qExs8vsTojUQX+DI5PXYIHfzL5dDw7YAaNdjVa2YceR6FYkaW8OUEbhr5HiYEdCr1FwV5tpter4W38G1CrwNFixt0q4Zfvw44PXMPa252kb2wHeCniZQXIk5P96LTSyjdv7buSnolkk+99HjOfEA8YpCMKpTafTMWbMGFeHIQhCD0pJSWHZsmUoikJWVhaTJk0S3xWFU1ZtbS27d+8GHBUT+vbt6+KIBOHYJSUlsXTpUux2Ozk5OUyfPl38HReEHpKRkYHZbAagf//+GAw9WyVTEHqzbiXGFy1axLfffovFYmHq1KncdtttxysuQTgku2KhuPkLNCpvwj3OBKDJlI3Jtq88a4z3JcT73OiqEE8YSeXfZdmF86dgeVei0NtKpdbKZR8uYnh0OGd67GHOGLApatYX1jOmn2Ns311bPqDS2MiGulyitLEAWOngvq0fcX70KMbvP6L8MDqsFlosRoIMns5lpjYTVV9soLWpHcsFY8HH/bD7mTkumZnjjuy4rR2OedXbO8xHHKcgHImAEB/e/Pmfrg6ji2unDOf5jctpjK7mn1sX8p7uegb6RR/1/prajXSYHaOFKxqaj3i7b4sysdkz0SgV5DTE0t9/YKf1z7y+jBW/7yQ02Jvb5ow9on1a7K1sqf6c13KqCXJL5rkRZ/PBrfP4JX0XH69YjTRSYrh7/GG/DPtqBlFjWsOmRR3oz8jn+h3fomibkCQoDe3AzWxDsisoskRosPdB9+Pu7cZVDznmnH5t1y+8t3s1BpWWFVPux6DWdmp745MXc9E9c/Dy2zd1RWVHE3bFkeKtMjY5E+Njzx7CrS9cjkqjYug0R0n91jYT/3nxQ0xBdiZMr+KJuBUAZO8OosOs5fNlQ9iWF0FUsJkgvyaqq+IJCtqCzg1iTOu5f/Uonh/kOO4mk0INbowZk0l26UiavDYTbah3xmW2yRTUz2BVdjN1Wk/OjsnCJ6ANiwkSPaups6kw2WWyzO4kadtos8to7DIajZVgnRFZAg9VB6F6x+h1rcpGQXMoT+0YQFp0EZOC82hAR27b3qGlf80ZLu2bPxzArkC11RcbMmXtHgQbWv6aehz73jZ/dbf4azNFgTar9oD7++vHQuWp0HeCFptkxzzDDDJICih711cYfVlanszssBxUMoQZSrHZYUvN/xHj+ftBfx4EwaXEiPHj6vbbb+fVV1/llVdecXUogiD0EA8PD2cZ3oaGBsrKyoiIiHB1WIJwXOw/WlyUwxVOFQaDgbi4OPLy8mhubqakpISoKDH9lSAcK7vd3um8MWLECBdGIwgn3hEnxt9++23mz59P37590ev1fP311xQUFPDkk08ez/gE4YDKWpeQU/8UAG7qCHz1gwg0jCXKcx52xUyS3z/RqLxcHKXruHsZuOEuR/n4897+FIDNRWVsxIMvc86jzsOD8pZNrLqjP2HeXgTpvak0NhKs9+bO5IkM8m4hUX6U/A4PXsip7JQYT6/fQ5WxiemhA1BJ+75omSxWlmXs4ony5dSa2nh51LnMjnRsl7Mhnx0bHT2X1/+UwTk3HboEcnfde+1UBidFMiQl8pDJsrXpuyksq+e8aQMx6DUHbSd0T4Mxk5qOdUR5noteLebt25+iKBS01LKxPp/poWn46TywKzYazBX4acOQpO5drDCZLPz6Ry6pfUP47/kzuWXTh8iShJdmX6/O4rZMmi01JHtPQJYOPx+3xWLjuRd/xrsOzjgjjYvGHnm5+DMjk4l3uweNbKXd/A7weqf1Vqu90/9HIqfuWWraF3N2pJoHM87hluSx9AsLwN+gZ/FHGzF9ruGs24ccdj9uhbfw3iWNdDRoqNWupznAiNquZlBgIFcNH0n9fWX0n5KKZ7A3UeF+h9xXfnMtf1YV0mG1AI6y4OlZxbzxzmrGDI/j5isnOtt6+3t22nZicCL3Jc9BkiTGBSU4l8uyzJzrOpfzlGy/8Nnj79FmVfP2gsGwd+D5jtKrWPB+A+ryRhLHGnn30WQW+Edjs7nz3rtbkSSwKTLrWsO5PXMqqSGlmNU2AtVNdNg1lBRnMXtkZqfR4n9Ux/JrpYqoBxoIi1BTOd4f/WhIHFTomCsc+LkslWe/T8Zf04ZHlhV1mprYiCpSQss4b0QOatlRUF2WoMRiwK4zk+BeAR0qllckMcy3kGBDC1ZkLHYJvcqRTTPZYXHZAPRqG0k+tVS0e1Jt9iTFuxL2llCvM2lxU1totagJ1Dted7vdkUhfWx2DXZFwZtDhgCPh65Qm7CjIagnsMC0siRXlO5wJ9zW1CUwKysVNbd1Xjl1qYlXx2YyP+By1LHpLC8LpZOPGjaxatYoffviBlJQUNJrOnxW/+eYbF0UmCMKxSE1N7VSGVyTGhVORyWTqVA530KBBLo5IEHpOSkoKeXl5AGRnZ4vEuCD0gLy8PBoaHBUCY2NjCQw8/LSngnAqOeLE+KuvvsqDDz7IY489BsAHH3zAbbfdJhLjvUyjcRtWeyv+htGnbGkZi62ZirZf9j5So907Ylol60gN+D/XBdZLPXvuTL7ems3Hf6ZjVuzk1wTSoWjx0uvw0DlG3L0y9Bp2NpXz6X9+5/xtz/P663UE+zYTom2mXNpXLri4rZZbNr2DArRaOrggerRz3QvfrOHzDVtpG+kYPZjdUOlMjKeNSWDEGQNobWxn3DmHni/8L4qiULE3Wa86RPKwwdzKk3nf4BXmxlmhqQdtV1nbzL3PfouCI7l47fmjD9pWOHKKorC+4kasSiuNph0MD3nZ1SEB0NbcwRtv/0SJXuGWueNJCD/yD3gltY3sKKtmYkosWrWa0rpGlm7ZybQBfYkN7lqh4WDMViuXvfw5+X1yQW9nbU0urw27km9Ln2JXyzpSvadwZvjdzvaKoqDYypBUB0+Yv/nRGr5emo67m5YlH97CwrG3oJc1zrLe9eZyPi26DwCjvY2hfmcecD8F+VUUFdQydlIilTXN5ORWAODZLqNVH3kxmSTfEGrbE2k0ZeGtS+iy/r5bz2DU0DgGpx353M0qyVFRwqpomRzUl7JfC/Afo8U/wItPXruG+sZ2kvuFHnY/CYPjSBw4gLqKRq6dOgl9WzYKCheFDKakuokL7hqIWnX4jgmKonDxqg9pMHdwRngCTw68kL6eISx4/Q+Ky+opXlzPNReNQa/rnECx2i1sbViKtyaIeTGH/3tjtxZh63gLjQQeGisdOislFY8TlxJHWlo4E8ZsRDPgZ1R9sygqDObXnYm4xbRyc/p0bgix88g2Pzq0GlY1RhEbXkSEpglZAjfZyrCRP6LV7eucYLSqSK9zVBiof74vnitg5i0rUakUrGb4a6LwKKUBnwE7aG01sCcvGv37u1l7nj/LwoJ4fXt/UBRSdNUMdK/E6mWltVnH3LStAGSVRRDp1ogkgUpRUKn2ddLQq2BG8C5e3TWJrJJofANlJgSlE6BrQ1HAaFPzU0kq3loTZ0ZlO8rpW3SsrYmnydI5Wf3XR52/5gvf975BvKUP7modn46/lpzGcirbm/GNcaOsvZEWSxt66f/ZO+vwOMq1D98zs5rNZuOubZJG6+4uUEqhOBR358PlIAcOcDjIQQ7uWhyK1Gih7pYmTdM2njTuyfrOfH9smjQkbVMoFJn7uno1O/O+7zwzuzszO7/3+T1rMUruLuMAtLkL2VT9BSPDzkU8xskrKioqf178/f05/fTTT3QYKioqx5mDNrwej4ecnBymT5+uZtKq/OU41A43MzNTtcNV+UvRr18/JEnC4/Gwe/duZsyYoZ7HVVR+JRs3buz4W80WV/k70uun3wUFBVxyySUdr+fPn8+VV15JZWUl4eHhv0lwKsdGizOPjRXnAjAg9BnCTTNOcES/DWWtX1FrWwPAwJDHMWnVmYJHok9wILdPG8fszH4s3bKHuQNTaRTc7Kmswep04WcwYJB0xAsh7NhUDMDyFYmcf3YKSIlcmHx5x1g6UYMkiLgVuYuFsEeRccseRIdInwr458l7SQvpFK4MJj0PfXJzx+tdjcU8mPUJGf4xPJh5NoIg8F35VkqtdcxPmIBJo+fZvO9YULyWUcHJPDPkEn6ozOLJ3V8zLWIgt6Z2in1LDuxgVXUuALX2Fu7NmEeIobtbgNGgxeSjo9XqJCy4d24CTS029DpNN8HreOGU3dy97UsqrE08MWQe0aae6+/+0TFqwmhxteKjiTymfm6Xm0fm/4/SvRXc++519MnovXh6NF7/x8e876lF0Uk0fb6Cd248u1f9HC43Zz/9Aa12JxdOHMJtc8Zz53uL2FVSyTdbcvn2ns7roNvtYdeeAyQlhOJr0ncbq7KhlT3lNUjRAoIB/DTehxNV9oL2//O7tHc13Y3H9jGiYTb6gOe7rGtrtvH0DW+T1142QBRFBAQ0jVrufvZb4iIDefimk5EEDSIaZNzoREOP+9jSbOP6S1/H5fQw//IJXHDZeC6YN4J9hdXMO6lrZkGrux6NoMcgHb78wejIt7G5DmDSdrdy9zXpOWnK4Ses9ERa0C2E+IzCoksh7x8f8uiipSRkRPPSuocJD7UQHnp42/ND0Rt1PPZ1pw3+fUTRanMw7d5XsTndXH3SSK4+aVSvxjJp9TQ4bVj0PkwJy0AjicyZPoC8/ZWMHta3x3PEtoZvWF71OgBX9H2ZYH3ntaqiqok3F6wlMyWKOTO8GfqO+ovRykW4FYkNrUlkjr2cl/Z68CtqYc2Cz3A63cyc0QqAxb8VIc6OYFDYRQg7LQqTR2/HZutLWWszMe2W8eAViPWGTlF8b2MIHxSO7Hg9Km4XI+8swOnUYjQ6KV3jR8Jkr53+kLhSiCsF4NN8X0qCTFhnaDlY/bt/wAH6+Nbg0Xiw2rWsr42jf0gxIgqZUaWdYrNy0P+5U30O1NsZ6F9OncnEI4NuYXXtWgCcTon8liDGhBZS1erNvhcE2N4QTaPL2DFKx2g/s3RWFO8/R7meUtFbmz7VEkGT08b9O74BYEZ4Gv7SYsaF7Orx/ZYVuGf7FmSlgtPjBnFz+pQe26mo/N4IivffieaPEMNvwVtvvXWiQ1BRUfkNMBgMJCUlsWfPHlpbWykuLiYhIeFEh6WictxQFIXNmzd3vB4+fPgJjEZF5fijnsdVVI4v1dXVFBYWAhAYGEhSUtIJjkhF5fen18K4zWbD17ezZqYkSej1eqxW628SmMqxoyieQ/7uvW3tnwVFkSloeotWVz4CenSShSDj4W/43bKVzZVXYfdUMTTsJcy6vr9jtH88UsNDSZ3ttbl+7vPv+S47jwiLmR9v9grf/gEmLr5yIlnbi5k8axqGkK712b8o2snTu35idtw4pkYlMSTQW4u82t7ExetfwBXq5oJzRzAh8gvSjavBuhrZNANRE41TdiMioBG9GYPflW+j2l7DT5XVfOnXj4KWGj478CMAWkHissQp5DR5xZjcpjIAFpZtodFl5fOS9dyScnJHFl9MswWNFdw+sKFuL+8XruSW1O5ZshZfIx8/dSl1TW0kxR3d7ntLdgk3PfYZZpOeD/9zCYEWn14f6xaXnTu2fo6sKDwxZB4WXc+ztXMaD7C4PAeAb8uyuLrfhF5v4/egqdHKutV5DB3RlwN7yqkoqmHquaPRaDsvHYIgMDbqA1qc+fjre1+LHqBkzwE2fL8DgJ8+3XBchXFzgAndriIccRaG9o06pr4HLZVl2XseDQ8ws6ukkoiArhbZT7+2jBXrNxLqH8Vd50+ktqKRsXMGd8xcjgm2cM30kSxas4NgxcV110wCYG70nWQ3raC/f2dJgQNl9dC6mgALWO2bcbscmLSdYvumpVms/WYbigBn3XMq8y4Yi1YrsWTNborK6igqq6OwrI6k+FAu6/sCbe4GYn36A1Br28zWqtvw12cwPPw5BEHocBQRRO/fV80f3+04FLXuYEHJfehEI1f0fRmztudseUnQ4auL73Gd0+lGFAU0ms5sYbfLjSiJh53hLQpawnzGefs7vBbazaLC5r2lDE2K/lVuKArgkb1vsNvTu+ukIAh8PuUSshsq2LqxnGFvP8tFU4dy89xxfPb61YftV2vz7p9bFqmyughufztldxll+XfjaDXwn5eSGT8qCX8/H/CUAKARffiocj6rKrci1mvQlOvpE27EWdLCxv9EMvOKRBLDJ7JG2oFVacAoaRGFcvSCizC/QgYGKtjbbwcUGSqzownPKEcQFQ7U+vP9x+PQmFzIgQo6t8DI9EKMehfV1RYWXdIXrWQmYdIWELzHR1FA8Uj4ocV5qgad6MHlFgjXyKT5V3bsb6tioBkL2xujGB5Q1nnMFRAEBVFRkBE6MrtlBUZEFIEg0Oj8Ao3gwqOIyJJCWlA1AL46R8c4E0P3eeuJA0srUqi2+yHTmel9UKhTZLDuDMQimBjSN4yyykaiw/2J8w1CJ0o4PB6WVOzmjn77u7xfDg+8VTSWUSH5lFkDqHZYgFZe3bea+YkjCNL7oqKioqKiovLnJCMjgz179gCwa9cuVVBR+UuRn59PXV0dAPHx8YSFhZ3giFRUjj/p6ekd5/GcnBz1PK6i8is4NFt8+PDhf1nXYRWVI9F7v1Tg9ddf7yKOu91u3n77bYKDO62Wb7zxxuMXncox4adPY1j4u7jlZkJ8Jp3ocI47dfbN5DU8A0Ba4D3E+p2FKBz+I9zs3EODw2vpWmX94W8vjB+K3K78uV0eFEXpuABG+Bup0AjoxO4XxDfzNlJpa+GT/Gzu6j+zY/mP2VnUO71ZjF951lBZZeWhOAFRE4MgBZPbVMY1m17FV2vg3VE3Eqj35fTISC63LEQryJy93UO+LYAIfy1O2UUfs/dH3F1pp/F56QamhHvFvfPjx1HvaGF6xIAu1rY5C3IwvVJJy1PBKBEaBgTEd4n7gK0Bh8dFgm8ogf4mAv29ma9O2Y1WkA578c8rqkKWFZpa7FTUNB2TML66ah+rqrz1j1ZW7WVOTM81m1MtEQwPiqfC1sTUiNRu61tddv6xYyEADw+cg6+25wzgn2NzO7lty2c0OK08NexMIoy9y7D9OY8+8CXbNhcSGelP1bKtoEBbk5V5N8zs0k4j+hBgyOxxDLvTW3s+1t9CSkwoRmOn00BcahQT5g2nNK+CKeceX2v7i/4xj0Gr0/CPDyIh3utqUmFt5tnslWQGRnJ+Ys81qvVaDR/efC67y6qY2t87Y/Lx82cxf/xgUqI6J1QoikLYsJf57NSd1LeauGnyOmxWiRueOp+TL5kIeAXVGbGxLPzgUyqAZf6bufj2k4gwJhNhTO6y3eee+J6m2iGMv97M17Y++Bo/5vXRF3aszxydTER8iNcK/JzRhIT5AzBjbBprthYQFxlIQrRXuA7Wx3bJTj7Quhin3EC1bTU2TzW+5ghefPsKCgqrGTsu5bDHsNpRhIKMQ26j2VWDWRuE0+6iYFcJiQPjukyQ6InC/GpuvuJNdDoNL757JcEhvnyx/XlWL12D9bsEnl30T4y+R/5M3/nGVXzz2XqeydnNFc99xr0XZ+ATmU263yTifQcesW9PmI16Prj9PPYdqGXaoN7PiA0ymJgQkcgT21ehAFurVvJh8fcMDZxDstmbdS57yhHEUARBy2OfrOCDPfvwGTgAu1vDuKDO9Ep363/JSFhDWhyscfSjwW5nX2UdieZZGPgeje+N5DZWASCaIDrAj5dvPp0rJj2Os9lDpW8M1749hWKtgw+L1mGXXQwLvIS8hluBZkyaDIxSEImW00j0OxUhWaTVVc5H2z9ic5YFu9yKvlFHbB64q+385NOfQUPy2fJDCo0FTu5963IyYm5hZ9nXaGQDq95tZP2GavZfrUMnOBGBCGMzY8L24/Z4i5FvqYulpC2QQB8TfU11XWzJhfb0blkBRTgoZCsUNAdj8vEgoFBqW4tGUBDx4BJEBDxIgkKjy0iw3oogyN665+21z6eH72Fd9UkU22txVOpRZAGhVYvo68RVaUCxS/ij4ZPPt7Bu7X4+efYyIowWbk+bziO7FoEANrnr51cjQpXDgkXnIsRYQZUjgL3NYQhAoO7wjgkqKip/bgYPHszy5csJCAhg0KBBR3wotG3btt8xMhUVleNJcnIyOp0Op9NJbm4uJ510EppjKB+kovJHZtOmTR1/q9niKn9VkpOT0Wg0uN1ucnNzmTVrVpdyXSoqKr3DarWSlZUFgE6nY+DAgSc2IBWVE0SvfwnExsby2muvdVkWHh7Oe++91/FaEARVGD/BBBp7V7/592D10mxqq5qYfc4ItEcRUHqDSRuLRvDFo9ix6NOOKIoD+OsziTSdjM1dQZSp5zq7fzfanE4W5+zl0lFDKPxyN2079/O6+B0D5g0gKTCQp279EFlWcLs83PXc/C59zwzK5OWm9VyaPLLL8s+uXox+moeQeH9sybC6OYb3Wv7DlclzEAQtWY3F2GUXdoeLwrZqAvW+9DU247R7MwEHW5rYbw3kmj6nMCkyiXCjPwB9zeHcnnpqxwPKEcFJjAi+qds+TTh9OKu+2MSQb8O5472r8Dd2Tt4paavhvLXP4lY8PJx5LgMC4mlwWim3NvJ/WxaQ6BvORxOuQCt2v5meO2UAdQ1thASZSevbWS7C45FxO93ojTo21BTgI+noHxjdpe/w4AQSzaEoisLI4MPPYjVIWt4ae3GP6xqcrXxbmsXSA7sBmBKewuyY/ocd61C215fyU9VeAJaU55BeG8auHSWcdtYwAgJ7n/Wo1XqPi1anQavX4nS4MP1sgkBNcyuPfLaCyAAzt506AelnWcDPL1rLeyu3IXgU+uxTeOuDq/EP8IpMkkbi7reuwe5x8c7+9YQVfYdeeYtQn/EMDn38qDMWGxxtbKorYkxI326TBiRJZNDE9C7LXt2zjs+KdvJZ0U6mRCYR7tOzpX5CWCAJYYEAlO2rZOfqXMafNhyDrvOcI+MmPrAcSYAQcxthsXaK9pjQ6rTkNlbwcdEWTonpT3pCBH1SI6koqWPYpO6THw4S3zeULzYFs31/GC0WFwO0zi7rgyMDeGvbo9369Y0N5sOnLu54vaBoA/vrF3F2TCKJwecjCCLxlrNpdu4lQN8fo+T9LBcbm7m2fiEJK9byxdRL0Utdz6eKp5r+wlKCAoNo0M4j0uitH/6PM55m56o9TDxzJHe90dVV4ufsyS7DZnViszop2FdJoaOevYYlhM2B/KIiDhRU07f/kUthWILMjD51CE/u8jorlOo+xdFYxv6WTdzU76Mj9j0cUWFaAoNNaDXH/iP6rrMmsWDlDvqO/YLitjoanRUkm0fhan0Rd8t/ELSZ6IO+Zum2vUhtEvrySK6YNJTx4Z0Ts0TdYDy2z9lfH0y1LPDYNz+xaXsxem0/Fj30OIG+vvxvdCnfluxmoDaKsfF9CDT78I+nzmfDsmzOuGoyAGfEDiO3qZxkv3AGBQynvCWCVncZJiGdR171QxDqePuWNsICzPhqo7h82K0EOLN4JGsFoFASDiGRvpQ8JpIfNoDnXr2GPjdEYPY38fXu/7JP+AGPHbatS6DV6ossgN2hRZQV4n0a0Wq8GeUHak/l2aFn8k35dqaEp7Ozei1Q0uW4yYoIgogsgygoSAKkBTgYFvoEbZ56ilu+5oC1kmZFjyQqaNuF8GBdG18WZ9A/oJwkS13ngAKU2msBkAwytt3+IIO2zgePWwYJDghWfACLudOxw6l48JG02GQX7xSNYYj/AYYFlBJoaEAAEkx6dJI33T7Vz0h+i8i1/Saos6dV/jgogvffieaPEMNx4tRTT0Wv91p6zJ0798QGo6Ki8puh1Wrp168fu3btwm63k5+fT79+/U50WCoqv5r6+nr27fNOyrdYLOrnWuUvi06no1+/fuTk5GC1WiksLCQxMfFEh6Wi8qdj27ZtuN1uAAYOHNjxW0hF5e9Gr9XKoqKi3zAMlT8bra4mfqz+kmifvgwKGNdtfUFeJf+61StaCKLA3PN/fTaoURPB6MgPya1/kmrrT/jrBxzxYbUoaBkY+u9fvd2/Eo8vXsmn27PRSRLBFc1o7TIvN+6n7R3vDyn9OdGEf1RK5oiu2fUup5tvLvsW/2YbrvkV8M/OdQEBZloXVDPxgmTOu3gmBa1VDAyIR1EEHFYHJ0UOJre2jLq8OvT7PTAcRP1ENKZrUHBwy5BrOKfFwee3fMnqA4u5762riIgP4R9nPcvO1Xnc8crljDu15+xegH5D+/D+nqd7XLevuQp3e4mBe7d/iUeWsMtuEswmDDoHRfYS6hythBstLNu+g0eXf02mPYTrZs3CEmzmxvkTAVh6YDd7m6s4K2wQd0z5N7XlDcz94AyeafPWuv9swlWk+ntrqpe3fsOe+qd5ctCZJAVc1xGLoijsbXyZNlcJaYG3YtAEczhq7M2cveYprB4noUZ/tIKeocHd6zcfjgGB0QwJiqXRYWNMQF+uufpNFLuH+rpWbru395NE7nnoNLZuKqBfZhSXv6KntqEZy4iucXy5MYcfs721smcOSmFAfESX9bqDM3gVaGmyUV3V3CGMH+Tjoi08t2cFF8RuIMPSxoG2RQxQHkQj9GxBf5Ar1r9HblMl40KTuNxnLK+8t4pp41M5a07PE4SGh8Tx/v6t9DEHEqD3CvxFueUAxKf2bLd+28zHaKxpZsdPu7n3Xe/76ZEdNDiyCAu4iwrb61gMo5n6zHTCW/SMmTKAM1e+Qm5TJauq9rFixv/xv+9v6+LM0BNX3TiNk+YMwuNvZUNDKVMiejcJ4lBkRebj/A95P/UbRDd4bHo0Pmfhp0tmbNR7XdquqSzEKXvIa6rmh6w9JAeEkhTfmRHvtn6I4lhEJPDNT2P41+53eeziWVQWe8XIyqKao8YzcVoG+/ZUYDBq6ZseydzHFjL5DB16vZsRmZPok9k76/w+4UG8duMZ1Da3oQ0xs7mhjGif9KN37AGbp4WX91+OQ25jTtTtpFuOzV1lXHoC49ITWFndwvraT0j38/aXnd7ZtoprD+Dm3rOn8OX6bC6cPIQR/bqK/xqf83BLU3jymx+wGFuIs1jYBLjcHpweb2b54OAYNmws5f5FywjxM/H9w5cxekZ/Rs/o/FzE+4bw8MAzeCL7Dd7a+xqVJSY2bpvBjIzhVDZ4awx+vHonu4or2LqvHI0k4nR70KQ1M3v0FiIMTTQ1mKjtm8YA+0T6D+mLIAiU7K9i/boNBI8ByQDDny9k+f5MbgkZQoX0BoLsoWjRQFqiPJRZNeyxlfFu4UruSp+LJIhEGv7Lj2XnoOCd3OFyCyxcPoroyFo8TScxZnwtDs+HuJVmPArsrf8vdrkakwSSoKfR4/aWDVfA0yzgRINe6+mShV7a5o+7VcRj1+Asb5+sI4BL8Yri4J3Y8+RdpzCwX+d3++3967F6vPb8TS4fVtQkMi/havS8jUtu5OVRc2hxTaXJVc5lSXN5dIj6A1FF5a/OAw88wKWXXsqzzz7LAw88cKLDUVFR+Q3JyMhg165dAGRnZ6sCospfgkNriw8dOvSw5apUVP4KpKenk5PjnTSfk5OjCuMqKseILMtdrhsjRow4gdGoqJxYVO+ovxDNjlz2NfyXYJ/xxPmd/5tua0X1F6yp/R6ARN8MzNqALuvNFgM6vQanw01I+C+zcT6IoijU2taiEc1UWVdQY1tFjW0Vkb4nY9b1zgq32rqK7dW3EWAYxLCwlxCEv+ePBX175r7T4+HAhECChDDaFFfHeocOLvlgPiePGtSlnyAIiGJnTeLaykYevuotjCY9D799Jet+yiOxXzh7VxUxdGIqIgK3nvwEe7YU8n/PX4TvGisbFuzgTstuAl4fgdXt5H9jribCx48QoCprHxuXeoWlTxesYeQpg9iy3Huzu+67bT0K4263ld2r/4OgTSFz7Nkdyz0emX27isk1N/Dw7u/woEEQwOWR8Van9VrmAuhFgYWPLmHauaP5z66lVCcprHBUsnfSP9HqNby5/XHsAQL37HgfSVT4Kn8z1n52zEUeCnPLoV3vcivezElZlsmvfw+Hp4aCprcINV3CxwXbGRgYRT+Lnb0NLwHgo4kiJfD6w75PDc5WrB6vqHRF8mjOi+8++eRImDR63h17qfd4rs2iur8B0SETERNwxH4Op5uiklr6JoSikUR8THrGTUqlsLqeorpGAL5bn8Oofp3i+JiUON7+cQuhFl8Sw7vXoL521ij6hQeza1UBMcMDWLI2l43ZxZx/+oiOz1SCbxACsLE+jZHBQUSbJ6MRexbFXU43C576Dq1Bi7O/d9KDU3bz3mcb2LO/kn2F1Zx5ypAeRehZMalsC7sVo0aHRhTJ3ZzPLTMfB+C/S+4mZWifbn0MPl7rd4OpUyDbVn0nldYVBBmGMTpyEZevXsBPFcsYERLHWGEgAwJiyG2qpH9ApyB3tIxTQRDwCS9mQ8UVBIpmaipeZcGabZw8MYO+sYefRHEooiAyPiwNhW8BhapGG/lLNmMOMDFoYtf67xclDeOAtQlti8gjjy9GEkTef/Ii4tvt2EX9GGh7FbcSwidrm7A6bSzcuJsHF9zImq+3MuWco092MvrouPHOkwGoa27DbtPyzXvjuHb2CK64bmyv9ukgw5K9Irqi9GNkyOmYpCN/lg+H3dOKQ24DoMFZ8YvGAJgQeiHjQ+bjlmVeXLEBpXU8Y81WQmLmEClomTooialHsGo36MN470rvddrl9pAeFUZsiD/hh9Sxr2u2AtBkteP2yGjbJ5nsKqukpK6RGRnJfFO2HUHZhFFTRUIfWLGmHx4Zpg9OprHVxpvLOn/wON3e74spupVon0YAAoNaCZixiTl9bu34jG5Ylk1rrcjBT50ggMXShCW8hSabDYBLLhsIhnN4LPsrPEoLX5dtYYJvBmPjk/G4Iqje9zhFNa9jsTSxZW8/8opiyM5N4pkrxrKzbRe1tkgqbBaGhCTgkDszwWXsmEQRBQGnLBEa0sLV4auRUGiW9YRJTWhFCDLb2F2TgMelUNamxUdvByAhrIopg3ZQUh3M5OQJjEgIRyPqKW2r55ZNnxKg88Eo6Qg1+LK5rhgAhxKA1bkDWXGyp/55xkS+BYBHcSMr7qO606ioqPz5eeedd3j88ccxm81Hb6yiovKnpW/fvhiNRmw2G3l5eTidTnQ63dE7qqj8QXE6nWzf7i0fqNFoGDx48AmOSEXltyUxMbGjLMaePXuYPXu2aqeuonIM7Nmzh+bmZsBbniAwMPAER6SicuJQn/b9hShofIVa22pqbWuI9j0d6TDC0vEg0ui1h/bXBmOQutfeDAn3541v/4+2FjvxSWG/alsVbYvZUXM7AP2DHkYUDJg0Mfhooo/Ss5PKtmV4FCu1trU45Xr0kveRv0e2Udb6NWZdMoGGv/6PiDumjcPpdvPJtmyCfIxYXW5wdW3z5pbtnDliQBdLbI1W4tmvb2HfrlIGj0vmp6+3szerFIB7r36L4jobKApSVSPJaRHc89LF7NlZiqLXsX5xFrHJXvtmYZA/G2q8YsSy8jwuTBoGQNKAOIZOTqe4vom3y4t56+VizrljJi1bSjnzplk97su+DXeTlLIQt1ugKCeN+PRMFEXhwXOf5wdjMc2nH7TJltDvshO0so2Z540lanws40P7sLB8C+vvX8cXPyxj64ocpvxrKO82bSWgyCsOuRxurK12tucVopG8gno9zSjn+TAxdR99NfsJ/m8jM+fEkTZjD4oSyn1nvkATbmY9GEJK7EU8mfUjHxVsAxkGbvXnquticCpVBBuPXPcr2S+S+zPOpMrexOkxI4/Y9khkFVfw7bZcAGS9yIy53gkPiqKwZk8Reo2G4UlewdHaYuemRz5lR3U1I1Nief7OMzvGiQ8JINaqpcpqZd+3e9kaG0dQhD/xqVHEh7tY9uCpmHTR1Dva8FG0XURgrSQxc2gKM4em8Nm32/jkdW+WfWZqFAPTvdseH5bM4qk3YdLoCNAfuZbvyi828cF/vgXg5o8uxzpQy6Twfmx0FpGXX8n0CWlHFKHNuk7L9eb61oNzJWhuaOtYbmtz0NpkJSQygGeW30fe1kIGT+rMULZ7arr8X29vF1odXiHzvv4ncXnyWMIMx/aAvaRhKwoenHIjT735AXv2+bMlu4R3n7iw5/Zt9by6dxUjQ/owO9qbSXxLxtWs2h7Jhz8tZ1NBHYGfv4am1cXzqx4gaWB8R99Ik4XnR89j0cocNlCArCi42oVTAEk3DENYFh5ZYFzGYvLKa5gzIo2EmFAS0nuX6X0ogWYjS+7cjEbJpkWbwdaicgbHRfbaotpt/RDZuQ2N7834HsO5/+cE6CI4Lfoe6hxlDAuae9T2ityI7NqFqBuBIHR9cCoIAity83lh+XoAPl4ZTbImj9d/OraYtBqJuaMyui2/6dSxxIb4M7BPJEadFoCallbOe3UBHlmhvKGJmrXFFAyKJN2vFskWw/C+Qzhv4iCC/UxkF1dywZMfIUvg9gWzTo++ykFqW+XP9gOefv0+7rz4Zcryq/lp4TbMJ3tvDxUFGpwmgnXjmBV1MqtrSrF5WkgLHU6wIQp7pJv79nwEAtz67ifcM3oOmysO8O2mXFCGYayWmTU1nTxykRWF1TmFxAxbiCLZiPFLoY9fMMUtw6i1bwDAR7Cjaz/fKkpnfAB+ir3jb7O2jSun/QACrMlOZUTqHsT22uWSCGH+TbSQT269m8zgW/i2dBe7m7wTIUSg1t5CkjmUq5LHMSMyjR01Mylr/ZZI0wwAGhxFfFVyLZKg4/S4V/HVdropqKicUBQ6rlsnlGOI4aWXXuKll17qcB9LT0/n/vvvZ9as7vd3V111Fa+++irPPPMMN998c8dyh8PBbbfdxkcffYTNZmPKlCm8+OKLREd3Xg8aGhq48cYbWbhwIQBz5szh+eefx9/f/+i7o/wRDqqKispvjSRJpKWlsXXrVlwuF3l5eWRmZp7osFRUfjFZWVk4HN4SdRkZGfj4+Bylh4rKnxutVktKSgpZWVkdZTGSk5NPdFgqKn8aNm7c2PH38OFHfjatovJXRxXG/0KEmiZTbV1OkHEsomA4eodfwdDAiST6ZmLS+KIVe55lHRJu+dXZ4l46H1b5GdKYEbcREI+p5meC5UJs7nICDEM6RHGAfY0vU9D0BgISU2JXopP8j0O8f1x0Gg3/PGUaF4wYRLifL/ur61iwdRdLc/ehlySa7A5K6hoZ9/D/ePvqc0kO6zxWTpuDBU8u5LGLy7jk/nkEhfrhYzZQtLcSgtrfZwH2bi/i8/8tA70eAfAJNHPhXXMYMb0//vH+XL/xC5rsNqZGdt686o06HvnkJrIKK7jwqQUADJqWwYy75h12XySdN2PUaRfR+ZjwKDJnfPY8+06vw7jDO2NULyrc0sfNjm/2krM1kNFXJzCxr/fCf1PKybSaCmkZk0tEnzRumngK17uno5slsiRwNSFRgcSlRPHGPz9HF2LDmanFFaJlqmk3oy4oAUqIfKU/l89airPBieRzJbvWluByBrFBnMDsTy8mzLgaANEBZeV2TI3PMXlADJJw+MwEj2M94OSkqAlHfT+z6yuQRJFU/+6TT+xON5f971Mcbg/JEcFcNX0kwX4mFMXFqt37ueGNxQC8e8PZmFvd3DL9cQ7Misc20sUK4x721FWSEtQ+oUEQmBgVw9LvduIfZ+LeM/6LpJF4fst55LhvQECk1HkrWytXckqYwpx+TyKI/t1i6pcYhkYjYjToiI7omvEbbfK+lhUXtbbNWPQp6KXOmYuNtc0UZpcRkxyBRiuh0Ur0T0ogMs4rWM2clM7MST3ba8uKgkv2dKujPXx6f+545TIEQWDYVK8waW21c/mkx2iobeGu5+czYfYgRs4a2KXfkNAnKG9bTITPFABeGH0G35flMj2qX8fxCtCY2FlSSXpUGLpe1LL2yDJ3veRgSP807EUK5TuMYOKw2eIfbdjJf/YuxmGx8VXJTiaHp+Cj8X6uqtvi2ZAf720oes+VWr22x3FmjEtDp9Ng8TV0sVL37ocGjQT/vvTko8Z/NBS5Eh9xLQCrd/2Ph3+cxCOnT+f0IUe3RFc8tbia7m0PSofO0r3W+rGQ4tc1W93mdKGRxI6M7ENx1J6O4ilEMp6Fzr97aY6+oUHoNRrcLjfaJhfRw46fgOrnY+CiqV3LAoiCiCSIePBQX97ImqfWAeD/0J2cccMMOMTsIyMunPduPYd3Nmzj29y9NHkchOfUIcRr4GcmHHvXGDjvf/eTOjiBwj0VSMUBXDVrIs8VZVHn8GV2uC9znvmIgFAXI4dvYV/zVnbtOAn/hnAEjQ4lwYky3MqPW/YQl+I9b4RYTNx85himje5H5IpAdhYe4IJJg1ne8gYAgXoPyw78i9K2nfiKIAgyktB5vf/5Jf7Q14oCCAogMDotl8M5Ruo1XgcE+ZD7CBlo8zjZ11KNW5H5oGAj40ImEGmagSQNorStnjZXDk65DWij1rFPFcZVVH4F0dHRPP744x1Wl++88w6nnnoq27dvJz298xrw1VdfsXHjRiIjI7uNcfPNN/PNN9+wYMECgoKCuPXWW5k9ezZbt27tyBI677zzKCsrY/Fi7/3NlVdeyfz58/nmm296Feex/K5QUVH585KRkcHWrVsBr526Koyr/FlRFIVNmzZ1vFbtcFX+LqSnp5OV5XWczM7OVoVxFZVeUlFRQUlJCQAhISH06dPdNVNF5e9Er4XxsrKyLrPyVf54RPrOIcJ0MoLw+9jI+Ou62yb/FkSYZqERTWhEM366X1YHzKxLYkTEm92W60SvoCsJRprsu8hteJIQ43hSg25FVtyUt36NXgoh1Gf8r9qHPxrJoV6xbXBsFINjo/j33BlUtbRy8n0v0hakox43c19+j4XXXkhiSBA15fVcN/Fh3C5vRunyj9dTm38AgKlnj2TL1mIGzcnk46p8xDo7/YYmsGNzEWWFNTha7cgemdShfaitaMBx+VY0Lg/bnthO5KUTu8TVPyGC564+FavdxfTB3W9u3W4PAgKSRiRp2AMUZw9Ab+pDZEIfqm3N7NU1ACKCS+FScTBjh1dRZ32WKffCRTc9Rf/MrrPhbnumFtm2HcQKFOUmTBqvXfZJl43DJbcAcPLFEym8rZwxpkHUj9RR0FwIgOjxZcDI/hh9t7aPZueOVy5n/aIdnHmjN+vw2rSxDLJE89UXOwmaZGJYRjzSEb6fHucWnPXnAaALeBPJcPj6xxuqi7jgp/cRgM+nXkr/wK4PkiVJwM/HQE1zGxMz+jJtQBKKpwp77ckMCWgjKeQ09tWEIAgC+3eW4HS4EG3NEO69LCytyiElKJwmpxVfrYH/u3cOZ14wmm1LdvLKsh3IHhmbpwpQUPBwoHUX/01ejiQouFqeQWd5qFvMmSlRfPPO9Syt3MPMVa8wJzaD+wfPoNVlx6TRIwgC2bVPUNzyMUZNJJOjv0cURWRZ5obxD1FTVs9p103n8UV38eZrK1n+4x7m9zmyYGVzuzh12euUtjXw6tizGRfet2OdIAhMPrNrRn5zQxsNtd73vjC3ggmzu5YVAPDRRlFXOZWchhZmD5eJNFm4vF/Xca5+50s2FZYxMzOZp8/xCss/LdzGgueXMffS8cw8d1SX9ooCDqeWRStHEFDeyh1njqHf5HTionq2NXpzzRbsGgXBAil+YRgOEf1PG52Bj15HiMWE/pw2TH4+h62hLooCU0Z5z6s2p4vnfliHUavl6okj+O6nbPQ6DbPGHzkLvzcIYgSSz6XYbZtZkOV9ANlss/eus2hB0PRDce9F1HV94FNa38j+qjrGJSegkY5cIkN25SG7cpCMJyMI3u/69uIDXPLmZ1iMBr66YT4Bpq5OK4rS5P1fbuxxzMTQIFbedQVut4f68xqI7xfRu33qBblNB7ht24f08Q3l6SHnoxUlgnx9eOGKDMpaCpgWOpQ98T/RVNuCKIm4nG60uq63dbnZB1j7dS4+fXW4W1y4Av3ZtcGCX7SdpCFlALhsIg1bDSgOJ06H10LEKev44lkwjI0jKlhmxw/V1LTYCEyoQhQUREGhTilmZ7kDP3QosU4o15IaH8HUkbEUtH2N2BjNxOFJ6LQaLp8xHJvDxnt5V2PX1eOvGUqVfSNVdjALTgRBQUJBEg4e9+7C+KEZ5DsKIokJaibA0obTLWHQyiDI7S0F8PgyJOJ2Yn1PASDSaDm4pkMiT/UL4/4dCxnovw+LsAOANwomsa81gJdHnUmKZTYaQU+MSZ1FrfLHQVDa54T8AeLoLaecckqX1//617946aWX2LBhQ4cwXl5ezvXXX8+SJUs4+eSuk7Gampp44403eO+995g6dSoA77//PjExMfzwww/MmDGD3NxcFi9ezIYNGzqEgddee41Ro0aRl5fXqzrCycnJR73W1dfX93q/VVRU/pjExcVhNptpaWlh//792Gw2jMbfzmlPReW3oqioiJoar4NZbGws4eHhJzgiFZXfh759+2IwGLDb7eTl5eFyudBqe04EUFFR6eTn2eLqxGCVvzu9FsYzMjJ4/vnnmT9//m8Zj8qv5PcSxX9PBEHAokuntPUr9tY/S7jvDOL9zjsuYydYLsGiz8BHG0Nu/ZO0uvJpdeWTFHA15a3fkFP3CADjor7sdT3zPyOCIBDuZ6bPhgb2DPfDFWJEBu5fuIwHZk/B7FTwuL2iQ0JaFONPG8o7//oaH7OBc2+eRev9n5HVUI09UAeBOvRJQSTEBVK6s5DVi3aybfA/eOjNKwiNsCB7vOO4nG6WLcpi07r9nHfxWBL6egXO8Rl9cDndrP1uO4mZsYTFBrE/q4Rah5PH//E1GEQGnZ3OxVOHI4RPpMnpwuJwEajz5cqkcfy0bzfXnHEK00cNoca6ljoriIKexJQeMlOVVgA8nhb2V1aTFBGOrLhYXX46ba5C+gc/wojpcxmR5bWpPuWnx6hxRCMTxzXJZ3DnSwNQ3HOQXTuRDKcw7lQfxp06hL0HasgprSQ9Jpwx0QmMuTGhl+9Ep7Dndiks+Gg1fv4+zJ47GEEQ2L6rhE+/3crJU/tjjXQDCgjwxIvf0byxkfvvPY2hI70ZWVpJ4pNbz2f9xr1MHpkKgOzaA3IdkgCPnxNBK6czID6ClLAgSvZWUB5g5wulCI0oMC0ync+KN/FozkLSLVG8M/oq4hJCiL5iMv4hZkKjgkiLT0DT0IIgaEj0H4fVuhiz1IyoiT/sHvqa9HxVuotGp40P8rcQ5qvllf0rmB6RyeODzsYle4XIaKEcR1UyGt8bEY3X0drktSlvrm9l8aJdbMs/wMaqanyj/ThtxsDDbu+AtYlA7VZOSd7PjloD5fbhpPvHkOkf12P78JggbnvqPIr3VTLvyok9timubuCaF75AAdrsTs6f1L0MQ0WTV1w/0NDcseyDZxZTll/Nu09+300Y10gi7992LllFFUwekNhhnX04rp44gv98sQJxWSvxPg7ESSJ1jhZWVu9mbEgKJw1L8TY8hsnT32fl8c7abQDIrW4+WeCtTx0S4Muw/j0fr94iCAI6yz/QWeDuU0sob2hmzqDUXvbVog/+DhQrgthpT291upj3wge0OpxcM2kEN0w9fN1zRW7DUTsXsKO489D63Q3AtpIDON0ealraKK5r6CaM6wMXIDvXIBnmHHZsP6PXoSUw48hlAI6VJRVZVNgaqbA1UtxWS6I5jCZnFeua/4MGDz80fsQZX4Ty7skWXr3vE8oLqrjhyQsAKGz5kQprFoViNrMuqGXlR0NwWL1xCg43u39KQmdwE5deiUYvo/NT0Mi+RMQFkb2pAHt8APvK6mEB9IkNYn9ZHdoIgfztUZgtVlyKSNmeUHTNINbqEQp0CAgMfzCeb0v/S/SgHAQlm6V50UxMG4VFG8Gbb32Fe2I5ALsb9xLX/la2KQa0chuS2N0+/XAM7HMAb744LNoylNNGb+gQ1T2KAlIrZc2rqWrqz9PLf6DQrwaEru7PGlFDuN7J3MidHctsHgUFKLdaOSfh9l/3BqqoqHTD4/Hw6aef0tbWxqhR3uugLMvMnz+f22+/vUsG+UEOWh5Pnz69Y1lkZCQZGRmsW7eOGTNmsH79eiwWS5dsuZEjR2KxWFi3bl2vhPGHHnoIi+V4OF2pqKj8kREEgfT0dDZs2IAsy+Tm5qp1mVX+lKh2uCp/VyRJIiUlhR07duB0Otm/fz+pqb17tqCi8neltbWV7OxsAAwGA/379z/BEamonHh6LYw/+uijXHfddXz11Ve8+uqrBAX9PtnCKioA6yrOx+b2PlCvd2wj1nwWovDrKwEIgkBQe73nGN/TabTvIMQ4Do1oQtduBS2gQRL+HrWa/vvRLaxauJUn7QW0OV1sK6tg3qsfkhkZxpQXzmCQYGbi6cOQNBIjpvXHP8SPVV9tYdOyXTgDdIRfkUlCeBCL/72IrUuzQRAQNBqsrQ7WfL+Tqx84jYsfOZn88uUkjgjnthu+RpYVrFYn/3rqnI443nr4S75+czGBkTqmnDqdt75aS8P4KMREAVmCwi27+W7nXtweDx7ZK3VIosDqR67h8uSxGCSvqBjiM4YJ0d8hCUYMmu6ZxTrL/WyvCOXhr5ooql/AN3dfQqi/TJvLmxW+o/Qnbvm+FUEjEBZuZmT0ADZYc9jdUs8NWz9mWOAWnLKby6Knk5WbzbQBSbQ5nJz79IcowKtXz2Nkcmyvj7+kG4wu6BNQXHz/nZ63X1sEQELfUDL6x/DMqz9QWFrH7r0VfPnmNUyNjWVT/T6ywyuQ+/ry1ffbO4RxgK+eWsSnzy3hu/RoXlx1P6J+DBrTVShKK4lhlyCIvoDXyv6Kf57J/Vu/x5rvrQFv1hrYVl8EeDNXHR43Ro0OSRKZNM/74PmAdT9fVX4JwIUJo/DXnIfH8SOCZuAR9/PKlNE0OG3Mic1gTa1XlFpfsw+AzOB7CTQMJMz+LMiteGyfozXfyJOL7mbXmj1MOXcMu3cf4MsdeciiwHtLtjB8SAJRwT0/zO5jDuKchFwkoQWb/C1P59WgFSQWT/5Hh0PAz5lyute+ura1ja82bGdCcgKxgf4d6w1aDRpJwuXx4OfTc9mKFy6Yww85+5k9MKVj2ZyLx/H+04uZe2nPNvkxIf7EhPj3uO7nzBuawcYnfmTXrlYOhHgVwbt3fEBWYzFfmsN5b/RNvRrnUNIiQ9FrNOg0EvpGV4dK2VjRCL9SGD+UkX17/504iCBIIHSt2a4oCq72iTYOt/soA4ggaNqV0c5rxxlDMyipayTUbKJ/dPds721r3UjSaAaN+/3veeZED2ZzbQF9zKEk+IYAoBUNaEUjOhrwKFaa3a34xiXQXGFm15q9ADg8LSw/8AAICkHtp4OTr1vN6gVD8AtqpU9COVEjqnFYNeRvi+LAMj9q262LFy3aiQYQbW5kH681f0FJHSJgLldwGUUKNg+hrdaG5YCMweTEL76Z2pIATpmYiTtsNZ7q3ehxI4hQJL7CuwWvYNFG4RpTBQo47RJtbm1HVriMRL1sIkxoBqG7ZbpHAelnywXBK4oDxIVWdzt2igJRvhM5fcX72C3dPxs+ko57+s9iSfkyJNH7OV9Zncig4Imc5RfK6XHdnSJUVFS609zc3OW1Xq9Hr+9+bd21axejRo3Cbrfj6+vLl19+SVpaGgD//ve/0Wg03HjjjT1uo7KyEp1OR0BA1xIsYWFhVFZWdrQJDe1+nxcaGtrR5micc845PY6hoqLy1yMzM5MNGzYA3vOTKoyr/NlobGxk717vvb/ZbCYlJeUoPVRU/lpkZGSwY8cOwGunrgrjKipHZuvWrXg8XhfYwYMHo9MdvsSnisrfhV4ri9deey2zZs3isssuIz09nVdffZU5cw6fQaWicjQURaa8dSECGgIMQ7C5yqm2/Yivri86MZAmRzYtzv20uPZjd9e09xKIMM06LqL4zwnxGcPk2OUdryN8Z2LURqEVLfhoe7Yh/qsR1TeMc285ich9hfxn2Sr219TjUWS2l1WQJVRy6z9u6rBaMfcpptldyqDJYwgK98c3wIc2xcz2TaUYQ72Ca3xaCEkTUvi2tZbsBLC73LSE/4cB0xrYVZBLdOSplJTWk7N6D7Y2B0aT92GqR7Ez/9Pt+EU4Kf7ah7a+/gDIehEJ8OAVxQ6K4gAeWeHW779inbQHf9HEVaFTOH/4QEzaOBwOF7KoIIre2Aur61m4aTfTBiaxv3EG+bUrEFBwe2Q8Hl8+XjqeuIhqduyMoqihBpcBshqqIRd0Mvi0lyjeXJ8PwI0572PNNvPt1lzumzelIyux1e445vdA0g0DIDq2EEEQ0Os1NNrsPP7aUpKSwiksrWPM8EQEQaDW6c2uFgLcIAqMmdr1x0DZ/ioAKopqUBQFUdTQItzIpr2ljE7T4Pez+R7n9BnMjrpyBgRGEeVjYYYnhVp3I3MGDsWo6XrTpCgKj+a8Q5TJe2PV7CzE3/oyADtzHyMt7UMMup6/p2PD+zA23FvLZmRjNB8UrmNWpHe2ok6ykGA5D48uELf1HTSmSwDo2z+Wvv29guqIMUlcXTuetxdvpsDZwmmPvMN3D11KiMW327YEQSAl4BwKmt7DI4wB3PhqDWhFCUVRqK9rJTDIt0cLods/X8z6ghLeWb+NH265rGN5WICZz++7kLrmNgb26V4LFSApLJiksK71wU+5aBynXDSux/a/hFv+cy5LPt7I6Blea3Kj5H2PDNIvu8FNjQxl7b1Xs6xyB+tzd+OzrxKpVSEy0Hz0zicAk17HgmvOIfdANbMyj5wNKAhG9MHforjzEPWdJQosRgMPzZ3aY5/NP+7m/oteBeCJT28gc0TfHtv9VvTxDeWDsdd2WeajsXB539docBRR0Pw+Gnyxl7QCrYxut/0vz6un5YAGc6yro5/sEZh1zRpEUcHR6HWW0fu40TnslG/rAwnez781JQihthXFoEFptoG/0WuZ7DWnICMqjDCjhb5jgnjj0/VMvXItvgE29K0p+AeWsq5mNxbRSpDG6/CgAM0eI22uYqKMXheFKsFCkrEOtxv0Wg8GwYmfZEekU/w+mDne4DFQ4zCR7FPX7fi4ZYFWt57BicOBAjwKlFj9URSRKvsZLNvTgl3oecLE6RGtVDZfQIxxFG8UjMGitbG1IZbXxgxkVIhaZ0vlD0z79/GE0x5DTExMl8UPPPAADz74YLfm/fr1Y8eOHTQ2NvL5559z0UUXsXLlSmw2G88++yzbtm07Zis/RVG69Omp/8/bHA7VRlBF5e9FREQEgYGB1NfXU1RUREtLC2bzH/N+V0WlJzZv3ozSfsM8dOhQJOmv5xyponIkEhIS8PHxwWq1snfvXpxOpyr0qagcBo/Hw5YtWwDv755hw4ad4IhUVP4YHJO6mJCQwIoVK3jhhReYN28eqampaDRdh9i2bdtxDVDlj8HGlXt47p9fM3pKGtfdc8rRO/SCSutysmrv63X7eL8LSPK/Fq3kd1y23xv89Zm/27b+SExISiAmwMKF73yKKAg0Wu2cnNGv48Fhm6uEzVXXAAr9Qm7hg+wnsDldjLn1fwD4ZkbwxOLLqQr+Pxye7/n++1n8UKiwJr8Ic5D3ZtUcqGXUoBjKt+TjAKyt9g5hPCBOj1+EE4CRZ/jzeqkZFIWoQD+ev+xU3lu1nQvGDyS3vIaHvvoBh92DKMMOazGyWaFebuWRpSuorGvh0592IhVbCQ0wEzIglJtnj+XRz39kV0kl323bw6L7LsVsNBBqMVHR2sJH27LoG3w6i3/cjbi3DX2MRFx0EPub6tEhIbeBfbM/Bl+B0BSFahpRIm1orAJUmRmaGM2zl87B4XIzJTOx27HtLYOGJvDBlzeg02m45l+fUFhWR2SohR8+vhm93psRf3/maXxavJGg1kAGXBrHpIyuwt21j59LXEokQ6dmIIpem/ZrXviCvPIaRqfG8eJ1p3dpH2f25+tplyMIAo21Lfzn3HfxuGWab4mHnyVyOWQ32xrc1DsjSfaLINE8mdKacRjFTby5Mow5ckG3OvE1FY0EhpiRNJ0/3DP9Y3h80Nnd9l8yzkQyzjzs8Zl/6nAUX4mnv1yFy+3B5jx8xnBK4A2kBN6ArMikBhYT4xOMTtTwyvM/8NlHGxg7IYUHHjujo/3q73bwwTOLaZvurdNmNnTPfosN8Se2l9ndPeFwubG6XAT4/PKahhFxwVx8R2ct1kcHns/W+nwGBfTWur87zZ42Hsv9AoDJTwzgTOMI0of9cYTCVpedwtY60v0jEAWRfuEh9AsP6VVfURMHmt5nvh/6gOngpJo/AmZtEGZtELG+QwAYsLqNAwXVJA1q3zdFYtkFCej9PUSMaWHctUl89qaBubf+6BXGSzKxWvdh8nNQuigQTaMdkwyt/h48pzeBoCAs9EFo8n7uFQCPgjmtiYApW8ivDWJpTl+mnr8Nk78NAIfvHqq8p2wCNdYOgVsA/DU2zIodqb0ocaDYgoyEpHdiFL0Z/z/PEj/42qnosDl9KG6GuPC6LsL5tvpovigfym3JQ4n324isuNjbOpM11fXoc+3Y9IXQw1dBKNYRn7ABp1yPRfqJ+wZ+hK9Wj1ljIMoU0L2DiorKYSktLcXPr/O+vKdscQCdTkdioveeaOjQoWzevJlnn32W1NRUqquriY3tdBLxeDzceuut/Pe//6WoqIjw8HCcTicNDQ1dssarq6sZPdpbQiM8PJyqqqpu262pqSEsLOyo+3FQXFBRUfl7IAgCGRkZrFq1CoCcnBxGjhx5gqNSUekdLper47mrJEkMGTLkBEekovL7I4oiqampbN26Fbfbzd69e8nIyDjRYamo/CHJycmhtdVbSjQlJQV/f/8TG5CKyh+EY067LS4u5vPPPycwMJBTTz21mzCucvyQFSc7qm7C5q5gYNh/MWnje923zVWMTvRHKx2fWnmLPttMXXUz33y0gStunYlOf+T6t71BLx7uAbSE93G6V+gS0GDW9vvdRfFD8ch2Kq3LsejT8T2G9+HPzOayD7hq2gesyUvjgkH3My4xvmOdRvRBFPTIih295LUYNuq0PDx/Butyi7hy5kjq3OtxORsRRYgNrqG8Ppi+IUGM6fsRZQ3LiImZjqevL0YfPQmpkQSFeT+rToebdx/bQL8t6SSMhkJdf8alC6zcXcDc4ekkRgTz0NnTAPhgSxZtkgd8QNOqYDPZO2I0mES+3bgbm9sNkVpasVOwr5RXl20iPjSAXSWVJIQG8PnaXXy2ZhdXnTSSWxcuwu52M6lfH86NTmbhxi1EemSunz2AgVNTGHfvSwiAXK9D5zBwTdJIHtr/CQKgS7QSvaUNoJtAfShut4fS4jpi44ORJK9Y3ea2s62+kEEBCfhqO625Q0K9n/fMpEgKy+rITIrsEMUB+gfE0D+ga7bWoYREB3Lxfad1WeZpf/gr/+wh8LsFK3lx32LGh6TxxOD5SBoRSSPhccvojd1n3hokLf/sfy6bavdzYZ8JSKIGyfIc5zy1AFEQuDc+vEv7D55bwvvPLCF9WAJPfnLDYWPuDbubShEROXfCQDYu2UXx5mKKNxURe/JAZFnB6fFg0Ha/NomCyMBDRONdO7y28dlZJQC4ZDffH9jO518upWZvDT41zbz62RUM7MFi+9fQandw0gvvUNPaxv/OncPkfscnE9mk0TM+NO1XjWHR+hCi96PG0czEjEwGRRxDkfJDcNidfPTsUnx8DZxxzeSOiRnHSs7mAr59dw3TzxrBwLHJnL3yNYra6rgkcTS3pU8/+gA9xPXJ/5bjF2hizsXjjpglOHh8P/798XVIGukPMTlAUWTqHLn4aWPQHXItNAeY6Dek83PdJz2axz+7g/WLd5Awt4ncpgKsdj0Ln51ExphS0NRTuaof5qA2bnvgNkS7kf31zTz6/ULQe88Lnkwb7nAPmiwjUpkWj6iQNKaI0NAmQkKa0Ie3EhFc/bP4vCK6Q9ZglNxdBG4RBY8CImDSuAAXh0MBZBlqnD7UOoz8sHQgddYALp2xhKTIqo7tuJ1aQOH7is+40OgtfzHS3Urz/kSyy6sQRR1ynANR8iCJMqeEZ5HmV8VPVVPZv38cUbGLqTwwgntPjf/V742Kyt8VPz+/LsJ4b1EUBYfDwfz585k6tatrx4wZM5g/fz6XXOJ1jBkyZAharZZly5Zx1llnAVBRUUF2djZPPPEEAKNGjaKpqYlNmzZ11FnduHEjTU1NHeL5kZBl+Zj3QUVF5c9NZmZmhzCenZ2tCuMqfxp27dqF3e597pGeno7JZDrBEamonBjS09PZunUr4BX+VGFcRaU7iqKwcePGjtcjRow4gdGoqPyxOCZV+7XXXuPWW29l6tSpZGdnExLSuywtlV9GkyOHGttKACpbF9E34Jpe9ato/Y6smtvRihbGRS8+LuL43AtGc6CkjtFT0o6LKA4QaBzKgOB/k1V7DwoezNpkQoxjKWh+EwABPQoONIKZsdEfH5dt/lL2NDxNcfOHaARfpsStQhJ0uGUrGvGvW3s8OOB7HHIrswZmMSwuuss6vRTMhOhvcHhqu2TVnzw8lZOHp1LXZmXOM3lMzhyAQedia4E3S+jz7dncNnUcSaHnezv4wfk3zegytk6vYeq8Yaz8XsuPhCLrCzrOVJv3l3LV9M6HFoEmb7atv4+B80Zm8JprRce6caMiaNyoUN9iA0GgX0AgBc2NTOufxKzB/bhwwhCanQ6ufPVz5DaZV79fj1Gnwe52E+hj5LpbplGZW87W5Tn8+6b3+GzXo4xIjGXDvhJOH5HBFdOGExngx4Kc9eTpS8EBW86u5MrPX+bl065CEOCFvGXsb63izrTZRPp4J4I8fPenrF+9lykzM7nzQa9ofef299lSn8/ggAReHH5lt/firiumcem8kYT2wtJ6R0MhIiL9A3rOjH3putPYsKeE8Rldhb4Ndd4aZZvqvLW+zf4mXvz+NipKahk8rmeb6qnh/Zka3r/jdUyIP4sfvhytJHVk2O5Yu5cDhTXs3loEwL5dZb22Nu2JbfUFXLv5NQBeGXoVhZ9loSiw5NNNjJiRwRmvfER+bR3Pn30Kk1OOLDjfdMdJLPx8C5Ome39AfVS0lhf3LUY4A6LyTZw+dzzjk3559vXhqG5po7rFO4liV1nVcRPGjwdGjY5Px91Ki8tOiOGXT0Ra/vkWPv7fDwAk9Y9h0GE+Q0fj+Xs+oTivkuyN+by98QGq7N56thXWpl803rJPNvHhs0sA6JseTcbwIwve/Ucl/aLt/BZkN7zJrvrX8JFCmRP/5RFLivQf24/oYRq+KL4Ykx/0mZ1GyfexJI/yfs+ThpQgiFCi+ZyZqfeSAjz98FfYgvUoWoGg1Dr6hNRQGWCm0BmKAhRrzIR56imzBqDQ0/fX6/HcKutwKBJuBII13od2VrcGk9Y72U1ut2UXhM7s8IPzdBRAVgRaZC0WrZMwfRUJc5fw1fZhJEV6s0EPti+SgzDqXOS3BVPZEomn1cGKDTVoMRHi58PwtGhW+WzDrjgJ0LYxIsg7ESapTzYfLJwEnI6fj4F7T/3Vb42Kyu+HAsIfIbn5GGK45557mDVrFjExMbS0tLBgwQJ++uknFi9eTFBQEEFBQV3aa7VawsPD6dfPe92wWCxcdtll3HrrrQQFBREYGMhtt91GZmZmh6iemprKzJkzueKKK3jllVcAuPLKK5k9e3bHOCoqKiqHEhwcTHh4OJWVlZSXl1NfX09gYOCJDktF5YgoisKmTZs6Xh+cDKai8nckLi4OX19fWltb2bdvH3a7HYPBcPSOKip/I8rKyjhw4ADgddk61KlLReXvTq+F8ZkzZ7Jp0yZeeOEFLrzwwt8yJpV2LPp0go0TsLsPEO47q9f92lzezCmX3IRLbjouwvjAEX159eubf/U4PyfcNJXsuofwKFZkXDQ4dnWsU/DWZxbF4yPE/xoE2rMdBREBgd11T1DU/C5x5nNJD773xAZ3nPhkSxb3f+Otse7v08b9Z5UDEGuZ0CX7VpYV/vndCnZXVONr0DEszsrV44d3rfMIKEgs2jG0yzZeX7uFMwdnEhfof8RY/u8/5zJyZibXfLmky1mqzd41y/D6iaMY3TeWhKBA9tkqeWVd55PanDV5SP+rYfTVo5g3azjTBiR1EWSTI4MZ+uiL2HQyOklg+rAU/rN6DQCiICCKAsPHJrNteQ590qLQG7S8cvXp2JxufA6ZHPLM+It47L3vWJ20HQTI8ikmJ6sUU6KBtwq8WQgJviHcnOK1BS8qqPH+n1+N3eOiqLWaNpdXPGpz91yTXBAEwoKOLlJuqcvn+i2vA/Dy8KsYGBDfrU2IxZdTRnTPKr6x30l8ULiKyeGdEx2iEkKISuj9BKj/W/AdS7L3cvfJExmZEUFZRQ1PnPcmiqJw2uUTCY8JYuTU9G6iuKIo7K2uI8rfD5NOy4ffbaH4QD1Xnz2OQEvXySc2j7PjbwduLrhtJl9UbCRyajTVLW3sra4FYH1ByVGF8aR+Edx6SGkIc3u2vk7S8MriOwjS/za1BvuEBPKPkyZRWNfAhaMG/Sbb+DUYJN0vrlN+kD5pkWi0Elq9hshj+Az9nMHj+lGcV8mg8f2QBJE3Rl/I+poC5sUN/kXjxSaHI4oCeqOOsOg/lm12gyOfOnsu8eapaETvZ1FRFNZVPUB522qCDN7vrd3TgKy4jyiMA/hognA69Wi1Dmqa/HDatdRX+BEQ3ozTrkXv4yLSv3NiQGpCBHkLKxAGyEyctQ9BgDjfRsyNDrIaYyhzBjJNyCY5qBKARo8Bl6LFILqxyjr0goNArQ2tIAMKblnArYCCSKvNgI/Ga93lxps5flDcExSvWC4DkgCSIKMXZJBBkMCkd6I1dD33iwLMDstCH+FiSUU6H66ZSR95DxfNW4bLrSHO/xwe2V2Iwy4iCHBGpDeTwKMIrN2a2jHO9bOPnkmqoqLy66iqqmL+/PlUVFRgsVjo378/ixcvZtq0ab0e45lnnkGj0XDWWWdhs9mYMmUKb7/9dpeSFx988AE33ngj06d73UTmzJnDCy+8cNz3R0VF5a9DRkYGlZXe+5rs7GzGjx9/giNSUTkyJSUlHaVDoqKiiIqKOsERqaicOERRJC0tjU2bNuHxeMjLy2PAgAEnOiwVlT8UP59M9UuTlFRU/or0Whj3eDxkZWURHR199MYqxwVR0DEk/KVj7hdvuQQQMGn74KP9484EUhQZUdAyMuId1h04hzZXIR7J2q1dov8VJyC6rvQL/D8CDIOw6NIQBS3V1p8AqLatIp17qbL+RH7j68T5nUOU7+wTG+wv5KAoDqCRPCiKjCDASz82sXbPM6DA3LR+5KzaS15QpwC9Lr+EU/qnEOXvR05FNdH+FgJNPnx25XnMf+sTmuw/E3t7Ucfxq005rCwpxGjSYXV5swxFAR48eyplBdUoikJM3zBEUaBuTRHPP/k/Bt40DA7RuZpcNkJanfQtcTBtgDfr8+ANwIsPfMHKb7cTeFYsbU4n548dxCWTh5LTUMPOsgpOG5QOwKkXj2PC7IGY/X06rKB9fuaYEOhv4v6rZjPtx+3eONsEomMD8THqSbNEUdhaw7iQzmylfzx6BiuWZjP95AHctOVNdjYWMT4ojWlJA5kaefSa9rLioaB1G6Wbbeic/oyekdmxX27F09HOI3sON0Q3PB6ZDa/uxNMsk35TLLKs0OJwYDEe22zb5bvzURT4fm82/2v+FAUF/2FahE1OovoGEzijEoeShUdJQjpE1Ht19WaeWb6WaH8/XjljDi984J1QEGgxcfXZY7tsY3RwPx4beD6SIDI8KJHyU+oo223lXftqxgnp3DF9PLsrqrlk9LHXWpsbPZx4UyihBstvJoof5PwRA3/T8U80KYPi+XDrP5E0Ej6+v3zW9pX3n8a5N87A1+J1hxgQGMOAwMOXDzga/Ucm8t6mh9DpNfhafl/HD0VRaHYV46uJRBI7Jx6srrifotZl7ROKFOocuQwOvo5GRz5mbSzFrd4Md0nQMyDwGkKMAzqE8yNhkPw5JfJ9/vHB1zRtq8cv0Mo3z09Aq3ejyAImfxs/RW8gss8aYtxzePLFC6mvb+GRJfd2qfkd49NIVmM0p0ZsJ9zY1rHcX7Ij40ASFLSCiwaHD2ht7dd20IkKtS4fnOjY2BLLGOM+/DRO7zQzBQ4mnTtkBYMoo21fLAqgl90U1oQRFVRHUXUYieZqPB6QJKX9WAqYJAdaUWaUfyEG8TTmjLfhZA1ajZsDre8zNSSA98tGMikoj1Cd12lAkTWUHOgs89DUZvsF76SKisqx8MYbbxxT+6Kiom7LDAYDzz//PM8///xh+wUGBvL+++8fa3gqKip/YzIyMvjhB6/DUXZ2NuPGHbnMjorKiUbNFldR6Up6enrH9yInJ0cVxlVUDqG5uZndu3cD4OPjQ2bm0Z85q6j8nei1ML5s2bLfMg6V44hGNJEYcN2JDuOIWF3lrDtwHgCjIt7HXz+QBsdWYs3n4MGOjxSNjAOPYifGfOYJjhYkQUeEqdPyOyP4AUqaPybG7wwA8uqfodWVj7WuhFrbetpcRQwIeRSTtmc76z86tS1+vLRkFv6mNrYV9UUGUOCLnDwIAtwyJqMeh8dDclgwoWZf3li7hSeXrSHE14flt1xGcmgwV40dzhPLVncIID46LdEBPTsYrM8r5v/e/obxafEs2r6v2/r3bjwXsd7BVXP/i6woPPXpDaQNSeDT55dQVVrHpifW8e7qG/gkdxMrKvJIDoyi/xlJnH9b14kKHo/Mt++tRVEUhuR6eO6x8+kXFoIoCjx1xizqnW0E6jrrdPkHH14gbbE7uPvLJSjAg2PPZlPdXk4eOJSVbbuZ5tef98dc0802PLFfBIn9vDWry0vqAFiRv4/1S62c8n/DjvrerK35hFU1H+A2C2w6P4H7X7yKEVO9Qv7I4GSeHnwxkiAwJMibLb16az4Lvt/CGdMHMWmEt170ogPbKGipouHVKnYuzWPuZRN4YfMWWlPMrH3pAxKiQ9hQWMpdMyZw8ejumbllDU28t3EHE5LiGd238zP+8GlTWbxrHzNGxvFYoffm65IHTiHdFoU2pZrPSt8GIEAXTrplQke/4vpGAKpaWvH39yEyxEJVXQsD+nWfAS8IApPCOmtHRRoDEQCtqCFIZ+bSMb/8OycIAoMCf7l1utPp5omHF1Jb08zdD8wlLML/F491rLxfuIp3C3/i0j6TOSd+7NE7/A6Y/Y9PvTuz//EVsANDf7lF/C/FJVv5uvBsbHI1PkIIg0KuxeqqJavxfyiKN1P6oMV4fvNn5Dd/BkCwPpOBQddT1raKjMBLCDb0/EPGJdtYU/k4NfZc7J56RoTcSF+/GRS0fUCfPqsZO70WQQCXE7atTsGvXyNBQS2EtQvduXl1XPhlHr7xW0kdWd2lPriMQLCuhTS/KgQUBBRkBARBQGif6OSRBRRJosmtxyJ60LcL2P4aGyVOX4KMNpo8fvhJ3jgQOrVxreDdfwCnW0Kv8eD0aEiOrMAjC3yaN4x/TPkSUVDaJw8AgoDNraXWqWdtcyL3nz2WeP+T+XybQrP8PWHBjbS6TaT7VjAqsKDjOO3aE4usACikpBZjCBHwKEO7TNRRUflDo3BMNua/GX+EGFRUVFR+JRaLhZiYGEpLS6mpqaG6upqwsLATHZaKSo80NTWRm5sLgMlkIj09/QRHpKJy4omJicHPz4/m5mby8/Ox2WwYjcYTHZaKyh+CzZs3I8syAEOGDEGjUZ97qKgcivqNUDkhNDp24pS9omCV7SdGRryJU25ELwUdpecfg2DjCIKNIzpeR5tPY2/D84QYx1Pe+hUAZS1f0S/wpiOO8/SNb7Pyyy3c8J/zmXrOqN8y5KPy9oWnce2CBUwfuJ3qJgvr8lIRAfmQSfMBej0NDgd+NoXV912JpNMgiV6B5EBTCwD1VhsOtwedRsOlY4Yyu38KDreblfuKGB4fjdSeef1zrnrlC4BuorhRp2H+hMFkxIaxddUeZK+qQUOtd3ujTxnCkg/Xcfo1k0nVhZGdVYQ1ys2OiDpeuOgSAoy+XcaTJJGLbpvFqu92cPYVk0mNCO1Yd/eOT1hasYvz40dza9pJXfrt3lXKv+77nOSUSO579AwkSeSnvQX8sCcfgJnpSdw74AxmrniEFreNrMZi7s8884hZB08OvognNyxh/d56rHYrda1WzAb9YdsDuJT2EgMaEEQFg09Xy+vRIV1raT7//kpKKxsoq2xk0ohkyq31PLTrUwAMLhfGJjd520sQLd5xrHjYUuy10d9QWNKjMP6vRT/xY14BCzZnsf3e6zvqic8ZlMacQWmszS9GLAglMTyAM9JHI4kStQ4tGkGLrCgE6bo6j9w6dSzhfr4MjYsiyGzi46cvweHyYDIe3c57RHASn467DYOkJVj/+wueh5K3+wArl3snBKxYlsO5F475zbe5Zn8xD3zzA57UUuyCg09L1v9hhPHfE5vdhc3uJLAHMV5RFKrsTYQY/JCEns8/vzU1tl045GpEwK7UsKHmoY51B08RwiF/H8TqriItYD5pAfOPOH5xy2oKWztdP7bUvMLa6qcAD9GHlEnXamVGTNmNrAi0ekRkRUEUIDShDouyBJ0ko8OJRWvzitAK1HjCSbNU4lEUfAQ3gnDQ+lxAFgRkIFDjIghr5460IwoKWsFNuE8T/lIresHrZKEAHq+hOuC1OJdlgbeWTsFabSYpvozZEzZS1ByMFOvgx+oUpoTmdhm72BbEV5Xe89MVW19mXHAmO3dbKN9+CpGpFVTF6gjSteKUJXToyN97Ed/+1ILRaMcS0MKkKTuwsoP11RGMDTv7iMdXRUVFRUVF5a9JRkYGpaWlAOzatUsVxlX+sGzZsgWlfVLq0KFDu5QTUVH5uyIIAunp6axfvx5ZlsnNzWXw4F9Wdk1F5a+Ey+Vi61ZvSTlRFBk27OiJWCoqfzdUYVzlhBDmMwl//UAaHTvIq3+SEOMozLrEEx1Wr5AVN1XWFfhqEzDrvIpDH8vF9LFcjEdxYvdU0uYqRiP6sbHiMhIsFxHq461X1uosILf+SQIMg0gwX8bSj9aB4hXIA8L8GDLpt5/1W3OggdK9FezdXsTJl0zoyOocHBfD+LRsxqflAHD7lKtJDRuM3eWmsrmF2AALTo/M5uIyBkZHoDd0FS1vmjyaMLMvA6LD8dXrWPHpRgAmneGtYXLB8IGHjamgth6PDkRXZ93Zg0iiyNXTRyEIAkPGp3DbU+fh8ciMnp5J/u5yPn3da7v9ztNLePvxbxGujYZIBZ8GCT99z5mmZ187lbOumUKzravN+7b6IgC21Bd267N88S5qqpqpqWqmurKJiKgAhsfHEBfojwIMj49BAPSShhY3GCRttzF+TopfFE+PO49X5U30CQkiPvjoNY/Hh5xHkC4KR6mJMz+KJGVQ/BHbzxyXypufb2DmOG99Yn+dDwE6XxqcrUwcOIDGohrOvXEa18QHsTBrNxPTEimsrefHvAIuHzu0xzFTwkL4Ma+AxJDAbkIewMKdudRXwqbKBppnOPlmWRZrtxVw9QVPkJwQiknT1TUgyNeHGyd31vrVaCQ0mt7/0I/2+WNMqEnsF07GgBjqaloYPb7f0TscBz7ekkV5YzO6/TrSB/pzUZ8JR+90nCjMr+aLTzYxflIqw0YeuZ77r0VRFDyyjF124avtaiPe3GrjnJvfoqnVxn/uPI3Rg/p0Wf/iviW8V7iS4UGJPDf0smPa7rKKLNbU5HJRn4n08f3lD0rN2ugevyuHIgh0ydSWBAMTI5/p1k5RFNrcDn74KY9l6/Zw6VlD2Sn9syOBUwAcSlP38ZGR2ucFyCiYJQ+a9m0Fa9sQhDY87dnrHWK9ADE+DVgkO4Z2URy8dudie+rqoTF3jRNssgaTaCNCa0Oi6yQAWVEAGUkAj0fkh50DKCqNQmOHjVlpbM9NQk6yIcU6WNOQyK6GCEZaChkRUQRAlaPzPNLqsfN95WaEUHDH+1AmWpBwUOP048mPz8BVo0NnaOSCi5aj1bpZvmogbllAEhTe2b6XsTOP/N6oqPxhUDPGVVRUVI4r6enpLF68GEVRyMnJYcqUKaqdusofDrfbzbZt2wCvwDFkyLGXDVNR+atyUBgHr526KoyrqHhLxNhs3tJxaWlpmM2/bblIFZU/I6owrnJCqLVvotGxAwAFDw5PHWb+HMJ4QeMb7G18HhEdk2N/RCd1PpyXBB0jIl4HYHnJZByeauye6g5hvLDpHWpsq6ixrSLG9zROvXIsuYVfUpXryyOXvsLM88diNOk5//bZSMcgDPaWj57+jnce/brjdW1FI9c/4bW012kk9GI/ZGUHDqcvfWO974dBqyE+yCvYGkSRcYnxPY5tMRq4ary3ztXGpVk8cY23pqTJYmTE9P5HjOvy97/AYwRZA9qflZnXazWHiDQCU07vFGvFQx5aeBQBRaPlQEgbCBJioAa34qG51c7FT3+Mzebi1evnER/lFVHvW7CUhZt3c8mkIfzfKd7355EBZ/Bd+Q7Oiut0AzjISXMHszurlOTUSMIj/QEI8/NlyU2XdLTZ17KZS/ro8dWMYVJ477KF/YwGbps5vldtATSijgEB07rUUz8Sl54+iktOG4lblimrbyIqwI/Pxt1Gq8tGmNEfLu1se9WkkQD0CwtmZnpyj+MpikLOqiL8CmXmjejX44Oj84YPYG91LaMSYjFKGl5asAaAT7/N5dFbkrq1/6tgNOp45qWLfpOxi4tqueumD7D4+/DU/+Zjaq/bfd7wAeytqmVi38HcPfbYRPEDZfUEBPli7EVmfk888vqX7Iyu4NMvslk7/I7DukEcpM1txym7CdD5YnW6+PeSleg1Gm6bNg6dRqK4tQ6PItPHHNK1X6ud6y5/k/0zDuCO9HBX2mnMjemsqZd/oI5apw1JgbyCakYP6kNeUyVb6oqZHd2f7MYSAHY3lR3T/nkUmQd3fYxHkWl12XlqyJHf28ZmK0tW5zI0M46+scFd1lXZhcMKyNApiB8qjnsUO366+G5tH9ixkM9LtmPI1eFforDJ+RJ6Y5dk6kOQkZC9QnTHMhEB0PxMAKd92c/j8hGcBGo6a4s7Za13XEVCkpyHPR4yApIo4K/YENv36+CYB//Xtn9kRI3MzME7yN4+giYcYPDgDnIj7zfhMIDHrGAlgC+rAihyBROkbWVLbRyCBmRBRBDlzn3RyshlBizRIiNDEllaU4Xbo5ASLaPXuwEwSm7e2TIWyexG3ukLqjCuoqKioqLyt8RkMtGnTx/y8/NpbGykrKyMmJiYEx2WikoXsrOzsVq9D0pUgUNFpSuRkZEEBATQ0NBAYWEhbW1tmEzHp6ybisqfEUVR2LhxY8frESO6P+NWUVFRhfG/JHZ3FZJgQCtZjt64B2TFw9LKT7B52pgVcT4G6fjWZ6mxriWn9pGO11rBQqD+T2Tp0csJ5JGmkylsfodI08kdy0JNkyhvXYhF3x+dFMC4m0uIa92HvVni3Tmj+fLlHwBIHdaHYVN7riX7ayirXk/M8EZKN/l744kO7Fj39c7dLNpp4Yec83C6tfifVU1SqExsoP8xb8cv0LfjOPkF+h65MRDo4+O1Yle6JyHNHZ7Oltxivrj3C+oFDzc8di79U7wPKxJSI3nmi5u484m3yD9dAZcCbu8IrTi5ffPn9G9KoKCxEYDnPlnF07ecxvKs/Xy/bQ8A6/KKuWW2QmuTleHBfRke3HPma9+kcF5676rD7sNTS1bRFvEkkiTT17cZnXh4kVJWPDS5avDXhv0uGQmCIHDRa5+yo7SCayaN4IapozFpjmzZfjjcHpnd+6uQZNi1pxxO6p5VPiA6gi+vvgDw3pBNHdWPddsLmTY65Vftx9+ZTev2UVvTQm1NC3v3VDBoqLcW+qg+sV0mZ/SWb77YynNPLiIs3MKbC65h+d58mtytxEX5Mjw4qVeW4/kjqtAYHXiiXeQcqKZ/dPhh21bbmzh37TPYPE7+N/QKCoqtfLxlFwAjEmKIjPDhrJWvoigK74y9hCFBnbXiiwprKKuowx3uteHe1lDQIYxbnS6u/fJbmhNExofEcOasQbhlDxeueYtWt4PshnLuSDuVT0rWM/mQ2vSHw+F08dbnGzD56Dlv9lAGBSSwpT6fvKZaHtu1iLsyZh72O/vEaz/w06Z9+PkaWPT6tV3aXbn+I5J9ExgXWtghfkPn+U4UJMC7fwd7KQq4PDb0mq4PvlZX7wdAnygxKmkbeqMb2mt/0/7XwVFEZMSDGegHx0VuX33491hRwCNDnWwmXlfTsTzCZzppQbdi0ITy0IsfUW1dTV21HxlD8hk4bH+XffO0j+9wajEaXJTXB9LQZiIlppz6Zl++XDeKq2ct6Rg7xDiSlf+6huySKi7d8gKCScZTrUPJNqNEO1B8ZBS9zHYhFoA+PsE8MnQO5616A0FQEAVvRvyLky+g0Wpn5sAUJFHk4vAaSmsamZDZh39+10ZlSwW5OfG43d5bYKNWvRVWUVFRUVH5O5ORkUF+vrc8VnZ2tiqMq/yhUBSFTZs2dbwePnz4EVqrqPz9EASBtLQ01q5di6Io7N69W7WNVvlbU1xcTFVVFQBRUVFER0cfpYeKyt8T9WngX4w62zq2VF6BJPgwNvpbDJpjt37Nb93NimpvvecwQzSjg49vKlV23cPYPRUdr11KEytKJ6OXghkS9iw+2qgj9n/nP9/x09fbGDAmicvunoPZv2e77N+KPpbLMGkT8NUmdMkW/zmpQbeSEvh/XcSRMJ+JzIjfitAuOgntGZZ6o56bX7iQ/935FrLDSGy/yOMed70tm/SrviId0BXcQFzQTBIHxHas/3L7bpweD06PEb1G4vqPv0EUBD694jzSIkJptNp5ctlqQs0mrp84qqOudI/7PrQPL69+EID4FO++bFyaRXN9K1POGon4s8zSty+axzfb9/CvT1Z0Wa4RBV5fvpm32IylqIz6ybFsevUzvrzzIrK+y+ab99bgF2DCOlSDonODTuiirK/cn891Eyfz8uINuF0eThqZCsBT36zC7ZExaDXcN28Kj1//Lqu+2c5Z103lkjtn/6Lj+97aHYyf6EdYWCPRPqlHbPtxyUMUtG5jWOApTI84vNh+vFAUhT0VXnEru7zqV42l1Ug8eP0s1u8o4sJTj/6jXBAEHr7xlx1TlU4mT89g2+ZC/ANMZBzyvf2lFOZXA1Bd1cyK3Hxu+eo7/IbWIlYpXNZ3ClckTj3qGIMjEljXuBuD24e+IYFHbHvA1kCb21u6YH9LBYOj++Gr16HTSKRFhFLoqG631oZaR2uXvilpUZx+2gh27C0kZIyZy/t2xmZzumhst4dKTArF10ePrMj4avW0uh346Ywk+IZxZ9rcbjEpisLS77NwOtycdOogGmw2nv5yFSsW70Z0Q2qfMJ4bein/3PktnxZvo7BlI+f3GUGsqed99ffzTiLz8zV0X6fzYXVtCkGG6aT4vdK+tPMcOjLkQTbUPIiieLxOyQroxEBK2lYQbRpHi7MUt2LHVxvNbWl6VlcFcGbCFHbX/YgLEFDQCN6ccLcioiDiIwXT6qpBktxdYhHoOgFJaZ+QdLDGuaJAP/8zGRJ0JV+VXI0oWwGvNbtF3w8fbQQAl552Ejc81EptQxs+Zl/6D8tHQuk2uam2NpQow3z0vj+xNcfID9sHU9diRpJkat2+iMiEG0cwMuK/CIJAZlw4ln16/HVlDB9QRJ4Qz5Yt3kk1st6De2QbCFDtbCEzIAoRb610jyKiQcPjlZ9SZW/iP8t1LJp0D8lRISRHeV0IHpj9IE9/sZKdwi7ceBAFuP6U3rl7qKj8ERCU7iVnTlQcKioqKn8VUlNT+fbbb/F4POTk5DBjxoxuv1dVVE4UZWVlVFR4n59FRESoAoeKSg9kZGSwdu1awGunrgrjKn9n1GxxFZXeoQrjfzFanfmAgkdpw+6u/EXCeJghGpPkh1O2E+tz/G2Pw30mU9j8LlohAJfSAIBTrsUp17Kr9oEOK/KeKN5bwYLnlwFQWVKHwajj6gdPP+4xHglR0BBhmt6rtj1lFgqHZGKmBNxKgH4Qfro0dphu55LvdhNmmIkxsAYIYk/9fznQ+h3pQXcTZpr8q+Je/sk6TO2O3X3SI+kT3pmRqSgKp8b3pbi2kYqWFhxuD4jgURQ+2bqLB06ezCdbs/hsWzYA45MSGBgTccTtHRTEAfbtLOaB817wbktWmH5eVyHCV69ngOiLaW891qSADl9ft+x98uqRFbQB3gkQMrD8++189sx3NJ2vQ2xpxviNG+J8wQQ4gHZdyrNXR9CpJjY/fSMej9xRt/rU4em8snQjl0waysCESB5buxeA7avzugjjsqzw2P2fk5NVxl0PnUb/QZ3H7OfcNH0MX23zY3bEAMaGDDrisam0eTMSKmz7D9vG7ZHRSMfngYwgCLwwfw4rcgu4YNTAXz3e1FEpTB2lZn//ngQFm3nsmfOO23jzLxuP0UdHWkY0xgAzoCCI3u+btV3APhpPDj+f4rYaYnyC0YhHLv0wwD+Om/qdTKOzjVOih2KQdKy/82oEBDSSSLjiy2ODT8Mle5gW0XViiSSJXHtzz+fcIF8fXjl/Lrsrarhg+AAAREHkkwlXktdUxbDg+MPGtH1LIU/+6xsAfM0GXi/JZmvJATTRIuFVGqIjAhAFkdnR/fmhYg9plggijYefDPV/l0xm8shkkhNCu5373xl7CTmNBxgcGMv3JUtocRd3Wb+2+n5ARIMZN96JAUbRnw3Vj2HSvEWbuxIAreCHS2lmYlgmQ4Iupck2jCLrj4DQkak9OeLfxJnHAbC+8iv2Nj/utWk/ZHuHiuMyXsP1ZPNJgEKAoQ8Z/mdRbc+h2VUEKISLSdRW2diSF03SLG+/uMhAvn75Kg5UN1EjfcfuBh06wYVe9Ar0kqKglyKYP/IFVlQ+icuWx/SRWv77oddFJdxSR32bGV+jnWLrLj4qOA8EBb10Cc1uG2OCD2Ax2BkxfB+3zvkHN295mxhTMOfGnMRHhVs5r89QNtXt49Kk4XxUuBFFciAJTqrs7Z9jj5PCtmrSLJ0PDyVR5PYzJnH7GZMO+z6qqKioqKio/L3Q6/UkJyeTm5tLW1sbhYWF9O3bs4uYisrvzc+zxX8PxzkVlT8bYWFhBAUFUVdXR3FxMS0tLWrJAZW/JY2NjeTl5QHg6+tLWlraCY5IReWPiyqM/8WINp+JS25CLwVj0R+5rvPh8NMGcG/ay8jI6MRfZrd8JFKD7iA54CYEQWJP/bMUNb/Vsc7urqXaupog4whEtN1u+j99cXmX17WVjcc9vt8TSdQT6TsLt2yl2ZkLQJV9MbUVK5kSs4qCpjcAhaLmD3+1MO6pj+azK9MxmAVGvdLV5vuT5xbz1sNfYpsdC3HttXg83kK3CzZncdaQTIbGRaGTJAJNxo6a473FaDIgSiKyR8b3MBn+4XHBxOa10ryrjsZzUrG6DslyFCAzMIhrz5qGn4+ep+a+hG2SBmd/7ynMsNWNvtiNI12DgMJs/0zaWmDuGQMJNnv3R3NIzfarpo3gqmmds+Zu/+8FrPhyC6de0rXWd11tCyt/2A3A8kVZRxTGLxk7hEvGDunV8ZgXcze5zWsYHDCrx/UPfb2cTzZlcfP0MVwx4fhYpY1OjGN04uHjV/l7ERBo4orrpnS8/vLK+RRZq3DobMyMHNirMURBJMG3d5OvBEHg3PixXZZpJanL+jkxA3o11s8Zn5TA+KSELsuC9L6MDj1yGYeAQF8kSUSWZYJDzOgPeM8nKQlhvPPgGZjaa68PDY5nzaw7uvVffGA7P1RmcXGfSWT4x6LRSAzN7Pk7ZtYaGBnSB4CT496kwZFPk72A7fUv45Ab21vJTI78Dw6liay6N2htF8Pdir1jHJfSDIBHdgEwOfphVpY9Rr51EYqgo3/ABR2iOMCo8LnU2ldQ7/I+UDt4RRXxxaHYoN2AXUTDqLCb0Iqd52c9CUQbJuKilrzNfiQNXESd9CjVrWHIQgulLV/hlq0MCPkHencKpc3eCRWKAqJgRFI8BOvi8dXG0dc8hSrbbpIt08j95y0AfFVyHVU2774peGhxHwCgxv46kMTu5kjMGgex4hQ+zd9Ao8tKY2MJd6b5k6D35Z6s9zvy00XtwagPSWNV4MoNr+JU3CSZw/lgzI09vjcqKioqKioqKhkZGeTmen+PZ2dnq8K4yh+ClpYWdu/2Po/w8fEhI+PopaFUVP6OCIJAeno6q1atArxZ4yNHjjzBUamo/P5s2rQJpT1rYujQoUjSkZNYVFT+zqjC+F8MSTSQGHD9rx5H0/mU+TdBahfc3Z7mLsvb3PvZUnUNAhJmXRKjIz/C2uzi+w/W4ZQbsYd9SOosE03lPlTutpC1bj92qwODz/EX8H9LXHILObWPIAlG0oLuRiP6oJdCcHi89saSYEAUNfS1XElF2/fEWy74xduqs21id93jDLpwEpEJtxOdGEZAiF+XNnnbigDwWV9FY1Q8aMQOT10/vZ4IPzMBJiOb7r4Wjyxz5xeLqW5p4+kzTyI64Oi17KMTw3hlzQO0NdtIGdKn23qn28NtS36g5LIk+loCeHTGeH7Kzuedn7YiCgKzwiK5/a6ZBIZZqK9uojnRhAsJodmF2KagLZHR1cs4AK0iYvH3ISHcF8XsOmJc+1u2UNC6leGj5zJ04vxu64NDzJwybyi7s0o5+fTeid69IdaUQazp8D9ql2TvRQEW79p73IRxFZUjkRoRSiqhJzqM35WEvqG8/cm1uN0y0TGBPJsSxvqCEkYkxHSI4kfisZwvcMhurG4HLw6/kvyaOlbsKWB2/xQiLF1np7e57Zg0XisLrWgi1NifUGN/Ev1P5Y29p6EXKwEBX100WyqepcG5D4BgwyksLLcxKnAFQrtVOkCjs7Dj7wnRdzOBuw8b5ynxz/F10RXUOrMRgVBdJlNjnmFB4TxcchuxprEMCrqwiyi+tbKIqz/9HGtdIG9dfBVi8jPIAgSHNrGx+uIu468oncvAkIcRkFDwIAjgke2IokKNfRU2dzkZAaeR7j+3y2S3eNMYqmzZ1FeZqa/wo++AcgQBDFI1ktCHYmsQxdYg8DSBtI1E33AGBsThaJb5unILgvYwXs4dvvDgVLwTrPa1VNLoaMNfbzrscVJRUVFRUVH5+5KUlIROp8PpdJKbm8vJJ5+MRqM+LlM5sWzZsgVZ9v4GGDx4sPqZVFE5AhkZGaowrvK3xul0sn37dgAkSWLo0KEnOCIVlT826l2VyjFRtK+KsqIaRk1KRdL8+llHRm3PtbQVPDQ79+Bw1/DeU+tZ+PZqxl67l8HnlHS0yVsWxtJHMnnipve5/7XLfnUsPcahKOzfWQKCQmVJHaIoEhEXTJ+MmF81bkXrEg60fQdAqM8EwkyTSAm4mX2NLxFsHEOi/xWIgpZ+gTfQL/CGzn5tS3F5mogxn44gdD/+Fa2LqbL+SF//KzDrEgEoan6fFtdeWlx7mTHnyo5JCYdSV+G1tNfVOejzcRG1UyPxBBpIiQnnuflzCTB5a+catBo2FZXxwx6vFfj32XlcOa53wm1M0uGt1y9+51O2lXrrZm2zVrKttJxb54znimnD0UoSRp2WyoYWbn37W3xNOupGeWv86n+0E7S5AdEG4w5EMih9GP/KWcT7RZ12Y99Ovp4Ec3C3bXoUN5+VPoJHcdPsquOM2Hu6tREEgRtuP6lX+3c8uX/OFL7cmsOl49WbGBWV35LwCP+Ov80GPdPTel8+ZEJYOssqdjIhLB2Aq97/irLGZlbuK+T9S8/qaPfE7q/4onQjZ8eN4ZaU2V3GqHe28mZRP6KMoQwMGEVx6w/UO/YAIKJjW4OO/W01jA7yPhAza6JpcZcRYkw/pv0cHHwpP1b+k3DjQKZFPoogCMyLe4dmVzkRxoFdSnzUOVq4Ket1pGQPUoEve6tqmTfkdvY2+CEgUtzyaZexFZxsr7mzyzKhvQCx7NaypeoOYsynkmA5u0ubgUHnsbIqkPcbNhDYJJIolAMgYWB62CAWVWbRvgCAGaEDuCh5AjeuXYADEZ3HxWAhkXkDh+KUPSSbI7B5HFy56bVu+x+gNeGnMx7TMVNRUVFRUVH5+6DVaklNTWXnzp04HA72799PSopaOkrlxOHxeNi6dSvgfS6h1kxWUTkyISEhhIaGUl1dTVlZGY2Njfj7+5/osFRUfjd27tyJ3e515cvMzMRkUhMDVFSOhCqMq/Sa5kYrN5zzP1xODxffOI1zrpjYrc22dfuprmxk2pxBvRLOE/2vxKAJZ1ft/YAHABEDoT4TsOjTMWojCYn02nbX7Pdm4MkeECXwC/e2t1t7Vw/3l/DdWyt54Y4PDyZPAyBpRN7a8i9Co4N+8biBxqFoRX8kQY9F780cjjLPIco857B9Gu1ZbK/+PwAEQUOM+bQu6xXFw46au1Bw45JbGRb+PwCifU+jwb6TMNNkGqtsvHjXm4THh3DZA6cjil4xRGfozI58c8UDrKqp4P5vf2BrdRXbSg8wLTWxY31mZBjxgf6UNTbj8sj8HFlWvPVsj6H21YGmlo6/9ZLIhH7erHI/o6F93xTOfPp9GtvsKIAxQIPN7cYRbuDAKRFkmgO4//IzKRdauowrOGDD0jwS5nUXxkUkQvRxVNrziTAmdlt/IpmZmczMzOQTHYaKisoR+Gf/c7g/48yO+urBvibKGpsJ8e3642N9TV7H/z8XxgN1vsyMHMK2+kJmRU0AZWPHOhknqeYCNtTHUu08jRkRkaT4n4nD04xRc2zXnxjfUVyYuKjLMl9tGL7a7lb4HkVGVrzn9pF9o5k3KB2jRsuAkAdQFIUg4xCsrgPU2XZQY1/V4/YEAXDGIupKaHJm01SXTbBxKGZdV1vSNdXttdZjDKT4zWFf82IMkpnLk4awqb6AOmcrkXIgIwKTmZcwkNK2zWQEh7CnrZm5MVkE6MuYHH5el2z3S/pMZGHZFqKMgYQaLFybPJ0on0C1HqOKioqKiorKEcnIyGDnzp2A105dFcZVTiQ5OTm0tbUBkJqaip+f31F6qKiopKenU13tdeLMyclhzJgxJzgiFZXfB0VR2LSpM0ls+HDVfVRF5WiowvhfGFlxU9z0DgoKCZZLeswwPp6UFtZwz1XeeuF2m5O5548+ah9BEIgxn0qk7ywqWn5AVmzE+M3tEuu8qybRf1QiC55fxltnBJDQ30zy+BYmjL6WiBe2Ej2kDru7GoMmFEVR+Oflb5C1aTfXvRrBgIETCDJ2XgwURcHe5sDoa+jVPtW2Z1Irh5YtlRVk+TAWrj1QZ9vEjpq7CDQMZWDIvxEEAV9tPFNjVwFCrx/WayQ/BDQouNFL3YVeEAk0DKHOvpFgY2f97DDTJMJMkwB4798LWfud11Zl/Jwh5O0oIj+rpGM/AS4bdh9jLxlDTKQFnUZiSGzXrH6jTovT48Ety3yxPYfrJo6koLae51asIyUsmFdWbCI5PIT3rzyrSw3hI/GPkyZx91dLSQ0P4Z2Lz+y2XlHA3S7Ci8BJSUl8kZvbUU12V0sDjQ1t7M8qRC9qcMhuzBsFTBtBurjnbQqCwMUJT9Lirsdf17s6ySoqKn8/3G4PX36yCYNRx+y5g7ucsw+K4gBvXHg6ORXVDIwO79L/7ox5fF22idNjulu5CYLA/Zmd2eVWt5ntdS8h4wQEMgNn8U1C1wlTGrF3169D+XFZDju2FnHOhaOJaJ9sdjhCDRZeGXEVpW11TI8Y0GUfBUEgytfropHo7yGn4QfKWpbi8ixHJwYhCnrsnnI0ggm9j4Y2r5M5OikIgxTSbVv39J/FBwUbmRMzgESzjT3NC2nz1FBr38iiyffglj0d219YciMVtp3EmkZye3oiBa07aHaV0uw8QJChc3LTNcnTuSZ5+jEfIxWVPwVK+78TzR8hBhUVFZXjTEJCAj4+PlitVvLy8nA6neh0Ry+vo6LyW6AKHCoqx05GRgY//vgjoArjKn8vCgoKqK2tBSA2NpaIiMO7tqqoqHhRhfG/MNXWFexteAoAH20s4aZf96DYz9+H5xdcR2lhDaMnp3ZbbzBq0Wgl3C4Pvn7HZlkqCTqi/Xq2rBYEgeQBsfzjtUtZ8nE6z96xgF3LDcQ93YY49AXKnA7cdRUMDnsKa4udDcuyGXFpPvbwpWysfI8pMSvQa4JRFIV75j3DjtV7uOieuWxZkUNbk42L75vLiOn9u2zz+ds/YN1327nm0bO5/MEz8PX3QRQFJI1IdGI44bE9CdM9U9a6EIenmoq270kLvAO9Jrh9v0Qq2pawp/4ZYszzSPS/4ojj+GrjmRD9DW7Fip+uX4/HaXj4a7jlVrRSz7OJh0xO5/MXl2E06Xni2jcpz6/qWGcJ8sXt9tDWZGPzx5tZWvDsYUX7K8cN49XVm7lirNfOa/6bn1DXZmNxzj5EN+wqq6S6uZWoXtQfB5iSksimuw6ftS2KAu/deDYXPv8JLTYHCzfl4mexEtOvmuLSUMKM0dw291maG9o47bIhTLx6JJZYHZWjG5g8M/Ow40qiVhXFVVRUjsiKpdm8+sJyAKJiAhk8NKHHdia9juHx0d2WDw9KZHhQ71wpfDQhnJv4IwdVJ1H49bdpNquTxx/6CllWcDhc3PXA3KP2yfSPI9M/7ohtmlwOLly7mbOis0m3yDjlGuLMZ1Lc8ilupRVJ8d4HWHSpjI58G43Y/b5gUGAsgwJjAXDLDuJMY2hz1xKgi2dz7RukWE7CLHp/0Nk9Te3/NzM96jwEoQGLLopAfd//Z+++4+uq6z+Ov+7Mzd6zSdO0TdKs7iYtUloKlD0VRBRBURyAIigqLnAAPwUBQREVGSIgGwRZZUPpbtomadKdNG323rnj/P64cGlId5OeJH0/H4/76L33jPs+geQm9/P9fr6DzisiIiJyqGw2G7m5uaxatQqPx0N5eTlTp0498IEiQ2zXrl3s2uVfZigxMZHx48ebnEhkdIiJiSE5OZmamhpqampobm4mJibG7Fgiw2758k+7DxYVFe1nTxH5hArjY1ioYwIWHB/f3/8H3AdrQmYiEzL3XkiMT4rib89/n9bmTnKmDf0v7haLhdkLp5CYFoPX4+O9F4uZNj6EkPi+wPWFRgTztR+fRY3nKWA7NkswVot/lLfX42Xdh5swDHj76RVUVuwG4KYv38tjpbcTneAvJvf3unn5wXcBePuZFfzqX1cdUe70iC/S3r+RmKDZOG2x+AwPrX3rCHdMZnvbw/R4qtnS8tcDFsYBQhz7X9vcYrHusygOkDtnEs9su4tzxl1FS337xwf5v7aGAV1tPUQkRdD0lUxm3/Zn/v7l85k5ftyg81w8ZxoXz5kWeGyzfro+7YLsDPLHJZISdeitvrbUN3H36x8yd9J4vjxv+oBtk5PiKJqcxpINW7AAJyxaT1RMFzOndJAVdjqPPbEJWiCqN4j5iZmQCFNnDM3/9yJy7EoZF+0fGGWzkpB4cIN99qelu4f73l3OpPgYvjh78Iet1iHu7hLkcpAxKYGtm+vIK9j3e8iKHdX844OVnD89l9PzBw+++iyv4cNr+BgX7O844rBGkBl1Jf2+VkId40kJOZWa7jdJCz97r0Xxz7Jbgzgt9RYAHtlyHj3eFjY0P0NW5GI+l/B9Tht3Kzs632di+ImE2mM5OeWXB/kVEBk7LIb/ZraRkEFEZDjk5+ezatUqwN9OXYVxMcNnZ4trSSCRg5eXl0dNTQ3g/zl+wgknmJxIZHg1NTWxefNmACIjI7UUjMhBUmF8DAt3ZrFwvL+FjNN2dEbIpYyPJWX84a+9fSBxSVE89OEv+fDV9fz2yn9SvGw63/n9CWSd+4XAPhdddTKGcRKtfcW47MmBQrHdYef6ey5nxevrOfHCIu64+iE6WroIjQgmKPjTFmlOl4NLrj+Tpf9by3lXnnTEmaOCCpg/7pnA441Nt7Oj/VFC7KlkRn2Phsbfsuo/cVQ6n+Nbvzp/P2caGjabjUUXFvHOsyu55IdnsegLRcSlRHPp1B8DkHbcRNb3dQPw7uYdey2Mf9aZBVN4cOlqAEKCnVx10rzDynb/Oyt4c+NW3ty4lXNn5BDmCqK1q4dNuxtx2m3ccdlZPLNsA79++k16uoOIiunCa3Pxq9IXibsxipvc5zNvsT68EJGhkz9tPP96+mrsDhsxsWFHfL6Hlq7hkWX+JS3mZownPTZqwPbOjl5CQoOwWvf+AdiDS1dz55IP+UrRdG449cB/5FutFv78wBV0dPQQFR26z/1+/9p7lOyuo3hnzUEVxmODwvj3/CvY3ubF6nuZiZFfJdiRyOzEOwL7RLoO7w+yCEcKPd4W3EYXpa3PkR99AVHO8UyN+eJhnU9ERETkYIwfP56IiAja29vZunUr3d3dhISEmB1LjiFdXV2UlpYC4HK5KCjYdwc8ERksLy+PJUuWAP526iqMy1i352CqOXPmYN1j8pqI7JsK42Pc0SqIH215cyaSnpVEX6+bWbMWDRpBa7FYiHbNGHTcSRfN5aSL/Ou8Prnpj2xZV0X8uGhCwgeu2frVn57LV3967rBk7/M2ffxvCylhp/L0N1fQWNNKQ3bFsLze3lx/z9e4/p6vDXju9v/+iHUfVHDc2TOwv/MBL20o5z+r13PZ3BnEhA7+MKDf4+H/Xn+ffo+Hi2dP5fGV6+h1e3i5pIKbzz6JMFfQAXOsbNrGru4Wzhw3HYfVxoLsDF5ZX0GqPZgta6tY0dnMva9+hPHxIu8WPl3W8oMlU8lI66NnXBjYW/BYDBacMxOrRb8AiMjQSkg68pnin8gfl4gFiA8PJTZs4M/WF55Zxb13vEr+9DTOv/YEkqPCyUwYuHTH88Vl9Hu9PFdcdlCFcQCb3brfojjAaXmZlO6u49TczIO/luhx5EffDNx80Mfszft1m2nt7+bM1AKsFitnpd3Jlo43WV5/P7GuSYQ7Uo7o/CIiIiIHw2KxkJeXx0cffYTP56OsrIzZs2ebHUuOIatXr8br9QIwc+ZMHA6HyYlERpeoqChSU1Oprq6mvr6ehoYG4uPjzY4lMix6e3spLi4GwG63M3PmTHMDiYwiKozLqBQVG8Zfl/xk0PPdnb0se72EgrmTiE+J3u85LBYLmdOHp9W21+in211JmGMSls8UavNibyTSmUNs8FwsFhvX3XEJbzy1nLMuPX5YshyslIkJpExMwDAMXli3ESzQ2tPLcbffz5JrvkZqTBQt3T0svOPv9Hu9RLqCaO3t819TSgLuj/94c2Chrb1rQGHc4/NiAA7rpy2Cd3Y18e3l/8QAOj29fCXjc5w1bQob/7WaN59cyY1PbmHnaQOLIb4ID0asB8tuJ94+G1t2hGDs9BI3MYaHL71ERXERGbG2VNTysx8+TkJiJG/+39eJiQjF5Rj4a1jxqu0ALG+q5ZV/P4/DZmXJtVeQGPHpTPXrTj6ev72/Yq9t2I/EN46fw+XzZmG3Hd2foxtba/j2sn8D4DF8nD9+BnZrEFMiz2BK5BlHNYvIqKA25iIiw6qgoICPPvoI8LfhVWFcjhav1xto5W+xWJgzZ47JiURGp7y8PKqrqwH/z/ETTzzR5EQiw6O4uJj+/n4Apk6dSnDwgZexExE/FcaPIT6jn6aej4gIyiPIFnfgA0ahu294gvdeKiZ+XDSPfPQr03K8XbWYfl8jSSGnMTPx9gHbnLZoJkZ9nYbuD6lovpvceV9mxvGXmpR0sOuefHnQcyff8yDPfPMSLvrbY3g/fu6TojgWg38tX4v341ndbgzO+deDZMwK5fPpM1mYlM2F79yP2+flsRO+waRw/0jNIJsDh9VGv89LmP3TGfspqbFYAFthKOH5Bm0t/USk2EhojmFL0k6wgxHqxVLin/1o8Vpo3eJlQtjY/H9aREa2rq4+HrjvLSIig7n06ydg20dh+aMPNtHc1EVzUxftdZ2kxA6ehf61b51IkMtBZ7qDp7dvwusz8Ph8A/ZZkJXBgqyMYbmW4SqKN/R28Pj2lcyLn8icuAkDtrlsDmwWC17DIMx+4E4jIiIiIsMpKSmJ2NhYmpqaqKyspL29nYiICLNjyTGgvLycjo4OALKzs4mKijI3kMgolZeXx2uvvQb426kvXLhwUKdRkdHO5/MNaKNeVFRkYhqR0UeF8WPIxqZbqe74Dy5bEiekvXlIvxRs2VZPRLiLhPgR/gfhx9d0oCszDAN3nwen6+DaUpU23sLurpfIjf0Z48LO3O++fd5m+n2NALT0rqbbvZuO/s3EBs/GbvUXcz2+blbVfRcDL33eRqbG/+agcgy1rbVN/G9tBWfOnMLERH/b/Z0trZ9+AZ0+cFvAsPD5vz0GLi+WmD4ssR6M3S4wwDK+h+2eDuh1YQkysER46HH42NjWwR9LlxBsOGnp969Z/kLFemanpfFO7SYumzSPJ+dfQ0NfB4bPwjlv/pnPJUzihu+fSv7CTL5S+Sg+2iEW2oFpE1Jw9iZT1l4DPQOLN4vyJx29L5qIyB5ef3kd/312NQAzZk1g2swJe91v8RlTWV9cRXJKFJlZyXvdZ/yEOH7yq/Pw+nzMLZ1EalQk46JG+PvuQfi/kld5ZVcpD21ZyvIzfzqge0hGeBzPLvwOnZ4+psekmZhSRERExD9TNz8/n3fffRfwF1XmzZtncio5FuxZ4CgsLDQxicjoFh4eTnp6OpWVlTQ1NVFXV0dSUpLZsUSG1ObNm2lpaQFg4sSJJCQkmJxIZHRRYfwY4vX5i5Neowd/H8aDK4y/8345N93yIk6nnUf/8U0S4sOHL+QR+v7/fZF5i/PJK9x3odTr9XH9+XexeUM1P/7TpZxw9uC1yPdkGAZVHf/BwEt1x7O4bPFsaPwV8cHzyYu7Ebevg253FRHOXCwWC05rNLGuubT2rSM2uJB3qhcDEOWcyXHjHgHAanESbE+m21NNqGN4Zv7tT3efG7fHy3UPvcS2+mbeKd3KA5efxz9v+y8hYR4ALPF9WFN7MXqt+MrDINKDbWI3hvHx+IO4Pow+m/++w8Ca3oPl43EGRpcNu2HDs9PGL995m8TpMdR1dPLoshL+ddxS+n1e6nvauXfuJYwPjeOHq55ma2cDWzsb+M6UBeRNncD4xhh2dDWRHZHI5vZ6FiVnc27aNHZ0NkGXDZ/XR05aIv0eD067fpSJiDly8sfhdNoJCXWSlr7vzhWJyVH84Z6vHNQ5bVYrZxVMGaqIpksPjQUgJSQK214G5U2O0B9wIgfFYGS0Uh8JGUREhlFBQUGgMF5SUqLCuAy72tpaqqqqAIiPj2fChAnmBhIZ5fLy8qisrAT8A5xUGJexRoOpRI6MqknHkJzYnxHtmkG0a05g3es+TwNOW+ygdbD31NDYCUB/v4eu7j5g5BbGQ8JcLDx31n736WjtpqLY/wfHmvcrBhXGG2tb+cdvXyQ9K4mLrzkFi8VCdsy17O78HxOjrqCq40m6PTup7HiMydHfYenuL9Lj2U1m1HfJjP4uFouFouR/ALC67vuB87b2r+H1yuOwexOofO5ijj/tHpIzrYQ6Jg7xV2H/Gtu7OO/3j9DZ20d+mv8Xw/GxUbz40Pu88eQK6k5KwlLow5LsX6PEEuTjsnnTWdNVSRmVWCxg9Fjw7Q7C5rFjBHuwuAyMDjvYDQjzYtQ76WtxghsIhoTmOBp2eEmJjyA8MoSqrs2MC3+Fp6q28fm0n/L58TMobq7iuPjJhNtdWCwWnj3x2zT1dZESEoXH58X+8QzD7Mgk2KMDsYriImKmKbnjePqV67DZrDid+nm0N1dPOZHFKbmkhcZg3c/vGyIiIiIjQWxsLMnJydTU1LB7926ampqIjY01O5aMYcuXLw/cLywsVNtnkSOUm5vLK6+8gmEYlJSUsGjRIn1fyZhRX1/Ptm3bAIiOjiYrK8vkRCKjjz7BPYY4bBGkRVwceLyp+S62t/2NuOD5zEq6f5/HnXfWDGxWC/HxEWTsZzbcaBEVG8a3bzqf0pXbuei7Jw3a/sI/3+PdF9cA0N3Zy0XfPYmJUV9jYuTXALBip62vlPjgz2G3BNPn8bdN7/bsHnSu7OhrsWCnuXcF/b4WPL52PJZ2Vq99gfef38w/3//FMF7p3u1saqWtuxeAU6Zl8tMLFpKVEs+GD7dgtVtJ6XOzM8nAY4EYZwg3Tz+Hh18rYUNlC/ETYgj2OfGudNMSb9Bt8cLGCGx2g9SwCOxWO9u3NAda2vPxDPKCycnc9PmTGR8XhcNh43+776ekrYxNHcto7NvJvIRJLFl83YCcQTYHKSFRAIGiuIjISBQc7DQ7wohmsVj8g5pERERERon8/HxqamoA/6zxBQsWmJxIxqru7m5KSkoACAoKYurUqSYnEhn9QkNDycjIYNu2bbS2trJ7927GjRtndiyRIaHBVCJHTtN2jmGtvWs+/nftfvdzOGxccO4s5h+XeUSv5zN81PRU0u/rO6LzHMiuzpfY0vo3vL6efe5z7tcXcON9l5MyIX7QthnHZ2NzWLFYLDz917f4603PDdgeG1zIwrRXyIv7OTari8Kkv5EZdTVTYq4bdK4wZwYzE+9gRsIdRAfNIswxifZtE6laFUvqRHNax06fkMJ1Z83nsoWzuHBeAXlpSThsNmaekM0FL5/P9i96sdmt5EWmMM03ierKHtp7e8GwkNAby+tf+zbP3vENPHsMq5mdmkZtRxfbm1s+LYpbIMTpID4shItmFzBlXAIhQU4cVhvz4s4gPiidvIgTiAvSmrIiIiIiB2IxRs5NRGSsy8vLC9wvKSnBMPTDT4bHmjVr8Hj8S9rNmDEDp1ODbkWGwp4/x0tLS01MIjJ0enp6WL9+PQBOp5Pp06ebG0hklNKM8WNYduyPKWn4GSGO8Xh9fdisQcP6eq/WPMY7DS+Q7BrPtVm3D8topo7+zaxr+Angn9k9Merre93P4/bwxJ2vYLVZ+eL3T8Nm/3RG8swTsnm65DauPPFWGna34HF7qCiuZNLUeFbVXEdDXTXxnT9h7gnHAxATPJuY4Nn7zRUbXMi8YP96H94kL4XP1jI+05zZcxaLha8tGpy3z+vmr1vf99/3edjwYQeGu4slVPGPL5/PtqZmTp4ymatWPMLS+i14IkJxtAdzy7mnMC01mVP/9OCgc3a73XS73fz8xTe4aNZUPj/D/0tpgmsCV07+8/BeqIiIiIiIiMhhiIyMJD09ncrKShobG6mrq9MatTLkfD4fK1euDDyeM2eOiWlExpacnBxefvllfD4fpaWlnHLKKZpZK6PenoOppk+fjsvlMjmRyOikGePHsB7PLjrdm6jvXkJd9+vD/noNff5W40399RgMz2hrpy0amyUUgBDH+H3u98F/1/Do7//LI7e+wLLX1g/a7gp2cu8rP+TyH5/Je/8t5tpz7qS0/DWa+z/AFr2D55+/k+a6tsPKaLPbmJg7DrtjeNqD11Q2Ur+r5ZCP6/N56PW5AQjtC8Fw+388xIWGUJCaxFfnziQi1MmHDZsxLAa26H48Xi/HTUxnd1s70SHBA09ogN1qJTrExbrqWn713yW0du97Fr+IiIiI7Icxgm4iIseA/Pz8wP0NGzaYmETGqoqKCtrb2wHIzMwkJibG5EQiY0dwcDCTJk0CoL29nZ07d5qcSOTI+Hw+VqxYEXhcWFhoYhqR0U2F8WNYhHMKdks4NksI4Y4cfIZnWF/v3HFfZ1HC+VyRcSNWy/D8rxdki2Nh2issSP0fSaEn73O/9CkpOILsOF0OxmftfdR3RHQo4zI+bXfu6MvGaJtM0/ZQ6ten4gr9dIa9YRisfb+CXdsbhu5iDkPJim1cccLv+Pr831BZUXNQx6xeV8kf//oGzTVd/DB3MRYs9Dn7wO7DCjz/nUuJDPaPPgtzuLgu5zQSjGg8NS5cDjvH334/lz/8DM0fF71njU/h6/Nm8aszF7Hqp1dx4cwCADw+H1c/8d9huW4RERERERGRoZSbm4vV6v/sorS0VO3UZcipwCEyvNROXcaS8vLyAYOpYmNjTU4kMnqplfoxLMQxnoXj38NnuFldewXt/eVMT7iThNBFw/J6Uc44Tku+ZFjOvacgWwxBtv2Pss3ITeWx0j9gsVgIiwzZ536fO30qv/rHNwgKcZI7I4sc4zm2le3i7P9EERL2aauSFx96n7/+6lmwwKS8VP7viasIjQje53mHS2NNC4Zh4PUYNNW1Mz4rif+tqaDP7eG8wjys1sEtg37xfy/Q2dXHjp1NFF2RgYGBx+IFlxe6bPR7Bg6Y+OrEz/HlCfP4ZvOzLN02cLRlYngYt513Gh19fUyOj2FnSxun52Xxtw/8rcHCXcPbrl9ERERERERkKISEhDBx4kS2bNlCW1sbO3fuZPz4fXemEzkUdXV17NixA4DY2NjAzFYRGTrZ2dnYbDa8Xi9lZWWceuqpgQFPIqPN8uXLA/eLiopMTCIy+qkwfoyzWYNwe9po6/e3BWvoee+IC+Orl26mtrqZxefPwuEYOf+LedwerDZr4Beg8KjQAx5jsViYu9jfPs0wvGxvexhjnIeIyK8BsHHNDh7/0+sEuRz+AwzYWlJN2ertzDkx96CzdbZ18+rjy8iZNYG8ORMP8co+Nf+sGbS3dBPkcjBjfhYrtuzkJ/9+BYDgIAenz8gedEz25CRWr6skNyuZ88fP4LVdpaxursKa2ouv3M5Zf3mEh7/6eVZU7iI/JYGijPG4vT483k9HyzttNs4qmMI3jp/NPe98xIvrNzI5PpYtDU3YrVbiw0Lx+nxcd9LnDvvaRERERI5lFsN/M9tIyCAicrTk5+ezZcsWwN9OXYVxGSp7zhafM2eO1j4WGQYul4vJkydTUVFBZ2cnVVVVTJgwwexYIoespqaGqqoqAOLi4pg48fDrByKiwrh8zGVLwmv0kRZ+8RGdZ/fOJn727YfAgJ7ufr5w+fzDOs/yJaU8+eclnPGV4zjp83OOKBNAybLN3PiFu4gfF8M9S35GSLjrwAd9Rn3P+5S3/BGAEHsqKWFn8PfbX2J98Q5cfT6u/OV5LHlqBQmpMRTMnXxI537w/17if48uxe608eS6WwgOPbyZ1TablXP2+JpHhQZjtVrw+Qziwvc+M/72X32BhqYOEuMjsFgsJARHAGB1+fBZoLvfzR+WfMCKHdUAnJWfzUslFZycPRGX3U6vx4PTbuXZ4lJ2NLXg9fkAqGvvAPwt1Bs6uwB4a9M2MhPjDuvaRERERERERI6mKVOmYLfb8Xg8lJWVcfrpp2u2oRyxnp6ewLr1TqeT6dOnmxtIZAzLz8+noqICgJKSEhXGZVT67NIbGkwlcmRUGBfqu9+k11sLQFXH49g6XUyO+i4OW+QhnyvI5cDptNPf5yHiIGZk78tDv3+JHeU1VG+vH5LC+Np3N9Lf62bX1jp2b69n8tRDH+Udak/DihMDH6GOCTR3dvN+io/epHEc7w7jpM/Pwev1MXXuZFzBzkM6d2yi/2sdHhWC3WE75Gz7kp0Sz4s/vgyP18ekpE/XHen29PHLdc/hM3zcPO0CkhI+/W99fd4pJLjCmRMzgXft1XT3u4kNDQ4Uxj/aVgUYNFjfY850N8uK08DwX2+Q3c6vzlrEc8VlLMzK4KnVG3h+XRlOu5306CjOyMsasmsTERERERERGU5BQUFkZWVRVlZGd3c327ZtY/LkQxsIL/JZa9euxe12AzBt2jSCgrTsnMhwycrKCgxw2rhxI2eccYYGOMmo0tXVFRhM5XK5mDZtmsmJREY/FcaFhJATqe54GrCwq+MpABzWSCZHf/eQzxUbH8HfXriWlsYOpkxNO+xMiy8q4qHfv8ypF88dtO1/j35ITWUTF19zykGv433m5Quo3lpH8oR4JuanHlamMOckFo1/EwMfQbZYtrU20+vzAjDz3Gncf/NzvPXsKuwOG39+7QbGT0486HNffM0pzDg+i5SMeBzOof22TI+PHvTc+/WbWFJbCsCJdRs5O3VGYFtycCQ35J/q35bib71uGAbdfW52NLdw0awC3tz2AbGT3wIgOy6DMydcyM7mNuZNHE+4K4gffNwyfUZaCj8/YxFOmw27Tb90ioiIiBw24+Ob2UZCBhGRoyg/P5+ysjLAP9tQhXE5Ej6fj5UrVwYeFxYWmphGZOxzOp0DBjht376dSZMmmR1L5KCtWrUKr9dfg5gxYwZO56FNyBORwUytVN13331MnTqViIgIIiIimDdvHq+88kpgu2EY3HTTTaSkpBAcHMzChQspLS0dcI6+vj6uueYa4uLiCA0N5ZxzzqG6uvpoX8qo5rInkRd3ExHOHBzWKMBKZFDeYZ8vaVw0OdPGH1FLj/O/sZAXNv2Br//k7AHPV1bUcM+NT/H0/W/xwoPvHfT5YhIj+enfvsnlN553RKMCnbZogmz+mdcTE2P4/aVncM3px/Hl+TOIife3IPe4vfzmmw8c0nmtVis5szKIjAk77GwAT3y4jsKf3MMfXnh3v/vNiEknLSSGccHRzIn1r0nyXOVazn/7Pv5XvWHQ/haLhZvPOZmHL7+QMwum8Jszv0CwLQIrNi4sOImcpAQW52YS7ho8yjnE6VBRXEREREREREalzMzMwIze8vJyPB6PyYlkNNu8eTOtra0ATJo0ibg4LTcnMtzy8j79nLukpMTEJCKHxuv1smrVKsD/+bwGU4kMDVOrVampqdx2222sWrWKVatWsWjRIs4999xA8fv3v/89f/zjH7n33ntZuXIlSUlJnHLKKXR0dATOce211/Lcc8/xxBNP8MEHH9DZ2clZZ50VGEUjB2d9/Q3s6nwGhzWaE8e/T3zIArMj7VVMYgSRMaFYLBYm5R36zO8dG3dx2cyf8qNzb6evp/+I85w+I5srTykiJMjB5T85i5xZEwCw221cc8bth1S8HwrPryilp9/DM8v2/0tegiuC/574A15edB1Jwf426neXv8Wm9jruLX8nsJ/PZ/DH1z7g2sdeoqG9M/B8qD2Ka7L+ybXZj5IeOnVYrkVERERERETEbHa7nZycHMA/OWPz5s0mJ5LR7LPrxIrI8MvMzAzMsi0vL1fdQEaNsrIyOjv9n8lnZ2cTFRVlbiCRMcLUwvjZZ5/NGWecQVZWFllZWfzud78jLCyMZcuWYRgGd911Fz/72c+44IILyM/P5+GHH6a7u5vHHnsMgLa2Nh544AHuuOMOTj75ZGbMmMGjjz7Khg0bWLJkiZmXNioYhpeW3jX0e1uJ+HiGeJSrAKfN33q7rreapr46MyPi9fp4779rKV+7A4DwqFAe/PCXPLryZopOPvRZ7R++tJa6qiY2fLiJ7WUH11mgo38LO9r+Tb+3bb/72WxWbn38u9zy7+/gCnGypaSaf97630POeDhWrN3Or37/ImfkZDItPZkbzj30gQ1fzigkwuHiSxmfruleXlPPP95byeulm/nPyoEzyR1WF8H28CPOLiIiIiIHwRhBNxGRY0x+fn7gvmYbyuFqbGxk27ZtAERHR5OZmWlyIpFjg8PhIDvbv1xkb28vW7duNTmRyMFZvnx54H5RUZGJSUTGlhGzxrjX6+Wpp56iq6uLefPmsX37dmpra1m8eHFgn6CgIBYsWMDSpUv51re+xerVq3G73QP2SUlJIT8/n6VLl3LqqaeacSmjRkXzH6hsfwSXPYX5414hM/p7BNv9s7C3dpZy/9absGLl2uzbSXKl4fF48Xp9BAU5jlrGlx5+n7/e9BxWq4V/fvALElNjCA4NIjh0cMvuTxiGwZN/epXK8t18/ZcXEJf86Rrbiy4sYtVbJSSmxTJ56vgDvr5hGCyruQy3r43m3jXMTLxjv/sHuZzMmJ9NY20rO7fWs/iLw/uGtapqJ9e8+2/6W30Ef2hnW2UDj/75igMe1+nu5d/bVpAdmcjCJP8vht/Mms83s+YP2C89LpqJ8THUtLZz3OQDf71ERERERERExpqMjAxCQ0Pp6uqioqKCvr6+QHt1kYO152zxOXPmHNEShCJyaPLy8tiwwT/pp7S0lKysLJMTiexfdXU1u3btAiAxMZH09HSTE4mMHaYXxjds2MC8efPo7e0lLCyM5557jtzcXJYuXQr4v+n3lJiYSGVlJQC1tbU4nU6io6MH7VNbW7vP1+zr66Ovry/wuL29faguZ9So7niGyvZHAOj3NoPFIMTxaeGz3d0MgA8fXZ52Wlu7ueKqB+ns7OOu33+JnOzko5LT5rABYLFasB7kOtW7ttbz4G+eA/xri3/jpi8EtiVPiOfOV35ySBns1nDcvjYctoiDPuaUC4s45cLhH8X115J36Inpghhwp4Ywb/bEgzru/k3v888tH2IB3j71euJde5/5HRrk5L/f/yo+w8B2BGuzi4iIiIiIiIxWVquV3NxcVq5cidfrpby8nGnTppkdS0aRvr4+1q1bB/hnr86YMcPkRCLHlkmTJuFyuejt7aW8vBy3243DcfQmf4kcqs/OFtdgKpGhY3phPDs7m+LiYlpbW3nmmWe47LLLePfddwPbP/sNbxjGAX8IHGifW2+9lZtvvvnIgo9ibX0b2NH2UODxzMT7sFqcA/aZFnUcfb5enFYXE0NzWV9STVNzFwAlZdVHrTB+xpePI2FcDPEpUcQnRx3UMfHjoknLTGL39gamz59yRK9vsVj4XMrjtPWVERt8aGs/+Xw+nvzLm3S0dnPpdafhCjmy0eSGYVDX1kliZFjg/++LcmayumQzLsPJ07/9NuM+M0ikobeDXq+btNAYutx9hNidWCwW0kL9+0U6QwixOQe91p4sFgs2vfGKiIiImMpi+G9mGwkZRETMkJ+fz8qVKwF/O3UVxuVQFBcX09/fD8DUqVNxuVwmJxI5ttjtdqZMmRL4XtyyZQs5OTlmxxLZq/b2dsrKygAICQmhoKDA5EQiY4vphXGn08nkyZMBmD17NitXruTuu+/mxz/+MeCfFZ6c/GkRtr6+PjCLPCkpif7+flpaWgbMGq+vr+e4447b52v+9Kc/5brrrgs8bm9vJy0tbUivayQyDIOGnnfY0PBTPL52nNYYsmKuIzZ48Mxmq8XG3NhTAo8L8lK59EvzaGnp4rRTjt4PYqvVSuGi3EM6JijYyf0f3oS7z0NQ8P6LvnsyDIPNrX+m272TnJgfEWSPA8BpiyY+5HOHlKF05TbeeWENLz3yAQDJ42M566vHH/TxPp9Bd38/Ya5Pi+k/fvQVXllbwYXzCvjlhScDsDgjjxPTf4XNYsFqGTiju7qrhXPe+jP9Pg/HR2XzfmsFMyLH8+jCr3PRhNnMiEkj3hVOi3sbXd5gElwTDukaRURERERERI4VaWlpREZG0tbWxtatW+nq6iI0NNTsWDIKGIYxoI16YeGhTbwQkaGRl5dHcXEx4G+nrsK4jFSrVq3C5/MBMGvWLOx208t4ImPKiOuNbBgGfX19ZGRkkJSUxBtvvBHY1t/fz7vvvhsoes+aNQuHwzFgn5qaGkpKSvZbGA8KCiIiImLAbSxr6ytjbd33WVN3FWvrrsLj87eOTwg9mXHhFxzUOaxWC1d8dT4//P5phIeN/FGtVqs1UBTvbOvmraeW01zXtt9jOvor2NL6V3Z3vUxlxxOH/dqdbd38+Iv38tIjH+Bw2rE7bEzKT2VV0w7+V70Br+F/U+t09/LI1qWsatxBVVcTF753Lycv+T1b2uv42p+fZN6Nf+HJpesC5y3esfvjf2sGvJ7DagsUxXs8/Xz7o0e58J37KWvbTZ/PgwG8v3uL/9jWqsDrZ0YkUte7joe3/4h/bP0ejX07D/uaRURERGSYGSPoJiJyDLJYLOTn5wP+z64+mcklciBbtmyhudm/ZGFGRgYJCQkmJxI5NmVkZBAcHAzApk2bAl0cREYSj8fD6tWrAX+NY/bs2SYnEhl7TB1qcuONN3L66aeTlpZGR0cHTzzxBO+88w6vvvoqFouFa6+9lltuuYXMzEwyMzO55ZZbCAkJ4ZJLLgEgMjKSK664guuvv57Y2FhiYmL44Q9/SEFBASeffLKZlzZilDT8nF2dzw56Pj/uNlLCzjxqOdy+fnZ2byE1ZBJO65G1FD9Ut135D1a9WUL6lBTu/+Cmfe4X4kgjxJ5Or7eWWNfhrw9ud9oJCXPR0drNxVefQu/iEH5Z/wrlH/rXve9w9/DFjELuLX+Lf29fjgUwMLDZ/J8y3lv+Fmt3+PddvnknFx3nb89225dP58WVZZw4ewJ/KX+HhUlZ7O5uI8hmZ35iJgDv1X9At+8tdvfEsbMrj99OP5dWdzcvv7eFsp5qFqfmYttjZnm/rwcAAx9uX99hX7OIiIiIiIjIWJefn8+HH34I+Nupz5kzx+REMhpotrjIyGCz2cjNzWX16tW43W42bdoUGPAkMlJs2LCB7u5uAHJzc8f8pE4RM5haGK+rq+PSSy+lpqaGyMhIpk6dyquvvsopp/hbeN9www309PTw3e9+l5aWFoqKinj99dcJDw8PnOPOO+/Ebrdz0UUX0dPTw0knncRDDz2EzWYz67JGjMaepQOK4iH2dKbE/hSHNZIo19FdC+vflXdS1r6KyWEFXDnpl0f1tTE+ntZygNktdmsoC1L/i4EXq8VxWC/V3+fhn7f+lxnHZ5F0wXgax/l4YPOb+PZ48SCb/9yxQWEDYvl6LeA0eKOmnPPPmY17p535c9NY+Nod5EUm86eii5k5cRxXfPgwyxq388jWZXR4egF45PivMSs2nYqOf5Ed1UBqaC+LU3JJC40B4KsT59Hc2U18RNiAvPmRC7FabLhsYSQHTz6saxYRERERERE5FiQmJhIXF0djYyNVVVW0tbURGRlpdiwZwZqamtiyxd/FLzIykqysLJMTiRzb8vLyArNxS0tLVRiXEeWzS28UFR3+5D0R2TdTC+MPPPDAfrdbLBZuuukmbrrppn3u43K5uOeee7jnnnuGON3YMj78Uno8u1hffwOJoScf9cJ4u7vl43+bh+01Olq7+NmFd9PT2ctvn/w+iWmxAPzk799kxesbmDY/+4DnsFisWA5zhYE+r5uX3lnBiw+/jxEEtafuwLfZICMsjrqedr6ROZ+C6FSK4jIAuCLzeGbHTqCirZb/e/NN3LvtWKZ1g8VgYeZkTl6Qw2/Xv0xDbwfv9Hawu7uVtNAYxoVGQ+N2Yl2hdHT6C+PbN9Zx8y8eY/oPHARNgs/Fzw0UxQFsVuugovgn15sXueCwrldEREREjqKR0sZ8JGQQETHJJ+3U33nnHcA/a/xzn/ucuaFkRFu5cmXg/pw5c7BaR9yqliLHlPT0dMLCwujs7GTz5s309fURFHR0u5uK7EtVVRW1tf5OsikpKYwbN87kRCJjk6mFcRleccHHMTvpAcBKaePP6fHsAmBX57NMif0pdmvoUcvylfQfUNy6lIKoucP2GiUfbWbT2h0ArHxjA2d9fSEAYZEhLLpw76Orejw1NPeuJjHkxP1+PXr7Pdz/xjIiQ1x8dcEsrFbLoH2++sEDlPXVEHVFBPHPuYlzhlHv7uDz42fy1UnH8dq6TTS090Ec1DW087u7/kd8bBg/ueZ0Cs+ZxIaqWnInx+O2eMiNSgHgwvRZFDdVMy0mldSQaAB+OfVMvpA+k8zwBDa21RJks/P2P9bR2+Nm2a3juPfJ68hMGboRyBuKK2lq6OSEk3L3et0iIiIiIiIix4qCggIVxuWg9Pf3U1xcDIDdbmfGjBnmBhIRrFYrOTk5rFy5Eq/XS3l5OdOmHd0JZCL7snz58sD9oqIiLBZ9Fi8yHFQYH+Nig+cBEGRLDBTGHdZYbJbgfR7j8XViYOCwhu9zn0MVE5TIosTzh+x8ezN9/hSKFk+lp6uXz50186COWVZzGT2e3SSFnsrMhDv2ud8j763mH2/6R/lmpcRxXPaEQftUdjUB0DrdwpSTpvCvooup6W5jUng8yzfv5EeP/A+AYKed2k1NFJfsBODc06YzNTeViYmxg875j1fXULa+m+MXRAbeCO1WG1OjUwGYGTsegMiLgthV1URWbgqZqdlD9qa5s7KR67/zMBjQ1dXLmefNGpLzioiIiIiIiIxGMTExpKSksHv3bmpra2lsbCQuLs7sWDICrVu3jr6+PsA/oCIkJMTkRCICkJ+fH+jmUFpaqsK4jAitra2Ul5cDEBYWRl5ensmJRMYuFcbHCMPwsrr2qO6DWgABAABJREFUSlr71jM94S7iQgaOWJ6V9Dc6+ssItqfhtMVisey9dVNX/3aW7v48YDA35UnCnZlHIf3QCA5zcfNjVx/WsRb2Xkgu3VnHq2sreHrZhsBzP/33q1xQmM/3zvwc/121kXte+ZC48FAyY9LZmVhDU38n65t2ccODr7B2x26So8LJTP606B0ZEsykwsm88EoxcbFhZE5M2Geuj7ZWAvDh5kquXXz8PvdLHR/LrX/6yqFe9gHZ7TZsViterw+nUz8uRERERMxiMfw3s42EDCIiZsvPz2f37t2Af9b4woULzQ0kI85n14ktLCw0MY2I7CktLY2IiAja29vZunUrPT09BAfvexKZyNGwcuVKDMP/x9bs2bOx2WwmJxIZu1TpGiP6vA009X4EQF3364MK43ZrCNGu2Xs9trN/C829q0gOPYNO9xZ8Ru/Hz28eVYXxwzE3+ZGPW6kvHLRte30z1zzwAg3tXdj2aCHe3NnDP95ayfsbd7CzqZXufje1rZ2wE7548nT+U72CHp/BezVboMdGR08fm2oa+cs3ziMhKozslHgAnnrg2/vN9nrN/Zx+7v/oqZ3LhVmLhvS6D1byuGj+8vA3aWnuYsacDFMyiIiIiIiIiIwk+fn5vP7664C/ML5gwQK1O5UBtm/fTmNjIwDjx48nKSnJ5EQi8gmLxUJubi7Lli3D5/OxceNGZs48uO6jIsOhv7+fNWvWAGCz2Zg1S11bRYbT3qcNy6gTZEtkYuS3iHEVkR5x8DOHDcPH8pqvsLHp12xs+h3xIScyKeoqJkZ9h8TQk4cx8cgQbE9iXNiZg9YXX1pRyTm3PUxDexcA83MycAZGafmn61TUNNDd7wYgOsxFeKKNE7IzCA6zYs3oxVXURUZiNKEuB3MmpzI3e3ygKH4wStreBQzS02uZlpY8FJd7WDImJzKzcKL+yBcREREREREBwsPDmTBhAgBNTU3U1taaG0hGHM0WFxnZ8vPzA/dLS0tNTCIC69evp7fXP1kxPz+fsLAwkxOJjG2aMT5GWCwWMmO+f0jH+Ix+Vtd8B6/PX/y1W0OxWuxMjr5qOCIeVaveKmXrhirO+vpCQsMPvRXO+xu3B+6fOyeXm794Cp09/dz1xnu8Yl1Fr8+NsTYUnweyU+M5dVEGf6p4kx9XPMmivExerV1PXFgYL9xw2WEXlE9L/jbFLa8zN+7zh3zsiqWbeeWFtZxz4RxmzNZMbxEREZFRz/j4ZraRkEFEZATIz89nx44dAGzYsIHkZPMGtMvI0tLSQkVFBQARERFMmTLF5EQi8lkpKSlERUXR2trK9u3b6erqIjQ09MAHigyxzy69UVRUZGIakWODZowfw9r7y2nu+wgDL0mhZzAl9idmRxoSrQ3t/PLiP/Hgb57jsdtfPqxzXL5wFnHhocRHhPK9Mz6HzWolMtTF4s9Noos+vFYfaSc4sRR1UDFuG8/vXAtAp6eP7+ecwt2zv8yjn/vWoKJ42a46vvXQczy+bN0BM+RGnsAlE37LxLAZh5z/7tte5sN3y7n39lcO+VgRERERERER2b+cnBysVv/HaqWlpYF1QUVWrlwZuK91YkVGJovFQl5eHuAvTJaVlZmcSI5V27Zto6GhAfAvvaGBdiLDT4XxMcQwvLT2FuP2dRzU/hHOHJJCTyPCmcfk6KuxWpzDnPDocIUEERblH+GXkBqz1306+7ezqeVeOvq37HV7YlQ4b998JW/ddCUJkZ+2LpkTO4FLJ84jIyyOyq6mwISZeFc4AKF2J/GucBYkTiE2aHDLk7++s5z3N+/gty+9RZ/bcwRXuX9z52cBMO/jf0VERERkdLMYI+cmIiIQEhLCpEmTAGhvb6eqqsrkRDISuN1u1q71T56w2Wxat1hkBFM7dRkJNFtc5OhTK/UxZFPzHexof4gQezrHp/7vgC28rRYH0xL+eJTSHT2u0CD+/tHNNOxqYVJB2l73KW64gfb+jdR0vsqCtJcO6rzbOhqo6mrm+rzFzI2fyLUrniDOFcY3Mxdw+rg83qjZyPSYNOzWfY8EPil3Mm+Xb+OErAyc9gOPGPZ6fADY7Ic2huWaH53BN685BZfLcUjHiYiIiIiIiMjByc/PZ/PmzYC/nXp6errJicRsn10nVq2ZRUauxMREYmNjaWpqorKyko6ODsLDw82OJceQ5uZmNm3aBGjpDZGjSYXxMaTXUwtAn7cB8AFH3qrJMAyeeWE1zc2drFi9g55eN7ffchHJiZFHfO7hFBkbTmTsvn+RCbGn0t6/kRBH6qBthmHQ2NFFXHgoFosFr+HjxZ3F/GbdS7gNL9fmnMwVmfNZfuaN2C22wACE88f7W557fT563R5CgwbPwD93Ri5nT8vBSz+9vi6CbYNnlX+irqaVq7/2D7xeH3964ApSx8ce0tdARXERERERERGR4TNlyhTsdjsej4eysjJOP/10tc0+hn12ndjCwkIT04jIgXzSTv29994D/LPG586da3IqOZYsX748cH/OnDmBJVpEZHjpO20MmRL3MzKjr2V28j+xWIbmD7Hi9VXce/9bPPbUCrZsq2fX7hZWrNw2JOc20/SE33NcyuPMTPzToG3XP/wyi276O394wf9L0ePbl/PL4hdwG14APIZ/FrfDah80K9/t9fL5e/9N4W/+zCvrK/b62r2+Dv686QruLL+E7Z3F+8y4aWMNba3ddHb0srGk+nAuU0RERETGCmME3UREBACn00l2djYAPT09bNs2+j8vkcNXWVlJfX09AKmpqaSkpJicSEQORO3UxSx9fX0UFxcDYLfbmTVrlrmBRI4hKoyPIUG2WCZGXUlU0NQhO2dSYiSuIAcWC0zNT2XWjHROOH70r1tttTiwWCZhZfCs6rXbdwGwelv1x/v6v01sFis/zT+dr08+HoCtO+ppbO4ccGxbTy+b6hoxDFi+bedeX7vNXU+XtxUDHzU9m/eZsehzmZzzhTmcef4sjj8x59AvUkRERERERESG1Z5FlZKSEhOTiNk0W1xk9ImPjychIQGA6upq2traTE4kx4ri4mL6+/sBmDp1KsHBwSYnEjl2qJX6GLej7WE2t9zF+PBLyI790SEfn5wUxZP/+jZut5fYmH23/R5t7ih9jYe2LuXs1GncMvOCAdv+7ytn8PgHxaTGRtLU0c3FE+bg9fkItjn4fPosLBYLS97byK/veIlgl4PH7/8mMVH+NaPiwkL55TmLWLezhm8u2PsfQUmuSZyceAVt7gZmxpyxz4zOIDtX//D0obtoERERERERERlSkydPxuVy0dvbS3l5OW63G4dDS5sda9ra2igvLwcgLCyM3NxckxOJyMHKy8sLdHsoLS3luOOOMzmRjHWfXXqjqKjIxDQixx7NGB/jdnU8j8/oY1fns4d9jojw4BFfFHf7PNy18TXu3Pga/V7PAff/qGErAMsaBrc5K8xMY0NVLQ+9s5pfPPE6Wzsa+EPpa9y8/r8sqdkIQH1jOwA9vW46O/sGHH9x0TRu/cJpjIuO2OtrWywWiuLOZ3HylbhsoYd0nSIiIiJyjDK7fbpaqYuI7JXdbmfKlCkA9Pf3s2nTJpMTiRlWrlyJYfjfJGfNmqW15kVGkby8vMB9df6Qo2Hz5s00NzcDkJGREehaICJHhwrjY1xWzLVEBc0kO+YnZkcBYH3rR/xz261s6ywb0vO+XVfOQ9s+4OFtH/BW3d7P3e3eRXnznTT3ruHnU8/mjHEF/HbG+XvdNzw4CICI4CA8hg/j408A+30e3D4vu7KamPSNaH7xkzMZnxozpNciIiIiIiIiIqNHQUFB4L6KKscet9vNmjVrALBarcyePdvkRCJyKGJjY0lOTgagpqYmULAUGS7Lly8P3NdscZGjT63Ux7j4kAXEhyzY53avrweb9eitX/FM9f30eLvo9LTxvazbDvl4r+FjU3stE8LiCLY5A89nRyQTag/CMAyyI5L3emxp029o6PmAqvb/sHjCMqbHpAW2dff1U7yjhhkZKQQ7HTx01UVsqKplzuRUghx2Hjjuctr7ezgxKZsnKlfw78qPwApnjpsWOEdbfz1PVN2E0xrMxek3E2wb2bPsRUREREREROTITZgwgdDQULq6uti8eTO9vb24XC6zY8lRUlJSQk9PD+CfeRoWps+DREabvLw8ampqAH879fnz55ucSMaqhoYGtm3zd7GNjo4mMzPT5EQixx7NGD+GlTbezJLKWWxqvuuovWZ+pH8EVEHk4Y2EuqPsFb70wX1c/uHfWblkAw27/CP40kNjefPkH/PmKT8mIyx+r8eGOiZ+/G/6oG3XPPAi37r/Wa576CUAIkNdHJ8zgSCHf+xIYVwGJ6fkct+md7ltwytYsRBsczI16tPi+ubOlTT2VbG7p4Kd3aWHdX0iIiIiIntjGUE3EREZyGq1Blrxer3ewFrTMvZ9dp3YwsJCE9OIyOHas516aak+15Xhs+ds8cLCQqxWlehEjjZ91x3DGrrf+vjft4/oPEsbX+PezTeyuWP9Afe9MO073Dr1cU5M3HsL8wOp6vIXwre3NvCLi+/huwt/Q3+fGwCXzTFgFvln5cT8kOPHPcvc5EcGbWvp8o/sbf343z0ZhsELVcX8Z/sKdne1ABY8HgvJW8cT5gsJ7Dcl/DjSQvKYFDabCSFTD+v6RERERERERGT0UTv1Y9POnTupra0FICUlhXHjxpmcSEQOR1RUFKmpqQDU1dXR0NBgciIZi3p6eli/3l9DcTqdTJ8+3dxAIscotVI/huXF/ZrqjmdIj/hK4DmPr4tVtVfQ721iVuLfCHVmHPA8L+1+GI/h5o3ap8gMP3BB2GY5/P/tfl5wDs9WraL+6UqWsZv+Xjc+r++gjrVYrEQ4s/a67U9fP4c3N2xh8bTBrUuWN27n58XPAfCLqWdh6bfz3DubKO9s5o3SLVz2uZkAhDmi+WrG/x3mlYmIiIiI7Ifx8c1sIyGDiMgING7cOKKiomhtbWXbtm10dXURGhpqdiwZZp+dLW6xqLeKyGiVl5dHdXU14J81vnDhQnMDyZizZs0a3G7/JL9p06Zp2RURk6gwfgzb2/rjbX0baOvzj1qq73mbjIMojBfGnMSqlneYHbNwOGIOkBQcyXezT6L32j7eTsska8YEXCFBR3ze1NhILls4a6/bYoNCsVms+AwfE8PjOTN5GjVlblrCejg5d9IRv7aIiIiIiIiIjG4Wi4X8/Hw++OADDMOgtLRUbbXHuI6ODjZu3AhASEjIgFbMIjL65Obm8tprrwH+wviCBQs02EWGjM/nY+XKlYHHRUWHt9SsiBw5FcZlgKigGSSFnkaft4nk0DMHbW9s6uDxp1aQnzuOE0+YAsB5qVdwXuoVRzWnKzSI0786f8jP6/MZLNmwmbjwUGZO9Le/yoxI5KVF38NjeJkQFgfAP6/4wpC/toiIiIiIiIiMXp8UxsHfTl2F8bFt1apV+Hz+LoazZs3CbtfHrCKjWUREBOnp6VRWVtLY2Eh9fT2JiYlmx5IxoqKigra2NgAmT55MbGysyYlEjl36jU0GsFmDmJbwx0HPG4ZBSeNPqWp6i+Itc3n2xVRmzUgnIjw4sI/P8FDd8TQOayTJYacfzdhD5rkVJdz05BIswPM/voyJiTEApIZGmxtMRERERI5pFsN/M9tIyCAiMlIlJiYSHx9PQ0MDO3fupLW1laioKLNjyTDweDysXr0aAKvVyuzZs01OJCJDIS8vj8rKSsA/wEmFcRkqy5cvD9zXbHERc1nNDiCjg9foYnfni9iDOsmfu4VxydGEBDsH7LO78wU2Nv2a9Q3X09q7zpScH9Rv5ow37+ausjcCz/V4amjt27DPY7yGjycrV/D8ztU4bP5vCYvFgt2qbw8REREREREROXj5+fmB+yUlJSYmkeFUVlZGV1cXADk5OURERJicSESGQk5OTqB9emlpKYahUaFy5GprawMDLuLi4pg0ScuziphJlT85KHZrGBmRVxLuzOHc43/GA/d9DbvdBvhnkxuGQZAtHgALDhy2SFNyPr59BTu7mnlgywe4fR76PI28W302S3d/ieqOF/Z6zJKaUm4p+S83rX+enrhO/nLlefznuksYHx91dMOLiIiIiIiIyKhWUFAQuK/C+Ni1YsWKwH21zBcZO8LCwpgwYQIALS0t1NTUmBtIxoQ9Z4sXFhZq7XoRk6kwLgctK+Zajhv3DBOTPkeQ09+Fv7mxg8tPu50vnXgr/Q25HDfuBY5PfZlQxwQMw6C08WaW7rqA9r6yo5LxixPmkBIcxWWT5uGw2vEY3fiMPgD6vE17PSbBFYEF/5vRbze8zCvda5kyLuGo5BUREREROSjGCLqJiMg+RUdHM27cOADq6upoaGgwOZEMterqanbt2gVAUlISaWlpJicSkaGkzh8ylLq6utiwwd/NNigoiGnTppmcSERUGJcjUrGhmrrdrbQ2dbFuxTbCnZmEOFIB6PXsprrjP3T0l1Pd8dQBz9XvbaOq/Um63FWHneeExCxeO+UH/DDvNABCHeOZk3gfubE/Y0LkV/Z6TJY9gTtiP0+cIwKw8NbWTfzyP6/j8foOO4eIiIiIiIiIHJtUVBnbPjtbXDP/RMaWnJwcrB8vsal26nKkVq9ejdfrBWDmzJk4nc4DHCEiw02FcTkis46bzCnnzeSEUws44dSCAdtc9mQSQk7BZUsiOezsA55rQ+MvKWn6NctqLh/SjPEhxzMh4kvYLIPfdAzD4Htn/5E/XPQgC4tTmGHLoKvYznPLS9lYXT+kOURERERERERk7MvLywsUS0tKSlRUGUM6OzspLS0FIDg4eMAgCBEZG4KDg5k4cSIA7e3tVFdXm5xIRiuv18uqVasAsFgszJkzx+REIgIqjMsRcgY5uP43n+fG2y8mLCJ4wDaLxcqMxLtZMP4tol0zD3gumyV4wL/74nF72LW1bkj+sDQMg5aGdgCs293cOP0M4uzhTE1PYnJy7BGfX0RERERkyJjdQl11HRGRgxIeHh5Yo7a5uZndu3ebG0iGzOrVq/H5/B0GZ86cicPhMDmRiAyHvLy8wH11/pDDVVZWRkdHBwDZ2dlER0ebnEhEQIVxGUEK4m5iVuK9zEt5ZL/7/fyiP3FF0S+4/+dPDtrW7a7m3Z1n8sGui1i/oph/3/4SrR8XvvfGarVy6+NXcfkNZ3LFTeey2VfDX687l39//0sEO/XHjYiIiIiIiIgcOrVTH3s+O/Nv9uzZJicSkeEyZcoUbDYb4C9ufjIgRuRQ7Ln0RlFRkYlJRGRPKozLiGGzukgMWUiQbf8ztbeV+tvXbN2wc9C2hp4P6PJU0t5fxt/+cBv/uu1F7v/F4AL6nrKnjeeLV5/CL9f9jxvXPssl7/+NTnfv4V+IiIiIiMgQsxgj5yYiIgf22TVqVVQZ/TZu3EhnZyfgn/kXFRVlbiARGTYul4vJkycD/iUUqqqqTE4ko82uXbsCbfgTExNJT083OZGIfEKFcRk2Hl8njT1L8fr2XmQ2DAOPr/uQz3vDQ98g+A/ZdP0gflABOyn0ZGJchSQEL6R3t//NJnF8HG09vVx83+Occ/cj7G4dPIO8pqWdpeWVAPi8YP14LTARERERERERkUMVHBxMZmYmAB0dHSqqjAF7zvwrLCw0MYmIHA1qpy5HYvny5YH7hYWFWFRvEBkxVBiXYbOq9husrv0G6xtu2Pv2uqt4vbKQ7W3+1uleXy+tfevxGZ79nrch3cuW2Hbe79jG27UVA7YF2eKYm/xPZiXew0/vv5o7Xr6Br/7kHFbv2MX66lq21DfxXsX2QeeMCQthfFcSlITyo3FnEWIPOsyrFhEREREREREZ2E59w4YNJiaRI1VTU8POnf7OhQkJCYE15EVk7MrOzsZutwP+jhHq/CEHq6Ojg9LSUsA/UK6goMDkRCKyJxXGZdi4vW0f/9syaJthGDT2fAT425+Dv5C+fPfFlDb+Yr/nnRmTTkpwJEnBEcyO3XsLkv/c/SpXLfwN9/zwUQCKJqZxQtYEZk0Yx0m5kwft39XXz/M/uoylP/g+l8yeefAXKSIiIiJyNBgj6CYiIgclKysLh8MB+IsqXq/X5ERyuPacLT5nzhzN/BM5BjidTrKysgDo7u5m+/bBk61E9mbVqlWBgRSzZs0K/C4gIiOD3ewAMnbNTPorDd3vkhR62qBtFouFafG3UNf9JpMivwFAj2cXAN3u6v2eNzE4gtdOuW6/+2z/eB3y6i11eNxeQoOc/PWy8/e6710vf8ADb67k5ILJ3Pm1sw94XSIiIiIiIiIiB+J0OsnOzqakpISenh62bt0aKLLI6NHV1RWY8e9yuZg6darJiUTkaMnLy6OsrAzwt1OfNGmSyYlkpPN4PKxatQrw10DmzJljciIR+SwVxmXIvfN+Obf98RXmFU7ilz+5FIvFQrd7F92eamJdn66nkRJ2OilhpweOm5l4H/XdS0gJO++IM3zjps8TmxTFjAVTcAbtf0TWyi3+Vlirtu2/IC8iIiIiIiIicijy8/MDa9OWlJSoMD4KrVmzJjDbf/r06TidTpMTicjRkpmZidPppL+/n/Lycs466yxsNpvZsWQEKykpobu7G4Dc3FwiIiJMTiQin6VW6jLk3nq3nN5eN2+/V05fn4c+TzPvV5/Litor2NH+r8B+nf2bKWv8NVta/sy6+usw8DI5+mpCHKmH9Ho7O56jtOkW+rxNvFHzd+7ddAXtkdu58jcXMufkA6/f8bPPL+Kc2Tnc9uXTD7iviIiIiIgZLMbIuYmIyMGbPHkyLpcLgPLyctxut8mJ5FD4fL7AzD+AwsJCE9OIyNHmcDjIzs4GoLe3l61bt5qcSEYywzBYvnx54HFRUZGJaURkXzRjXIbcxV8opKW1i+OKJuMMsrB012VANxYsuH3tgf1KG2+mtW9N4HFTVy0FsX8jPiLsoF+rx1PDho/XJDcMCyuaPwRgTfMrTAqbdVDnyE1N5HeXDG73LiIiIiIiIiJyJGw2G7m5uaxZswa3201FRQX5+flmx5KDVF5eTnu7/7OsrKwsoqOjTU4kIkdbXl5eYDmF0tJSdf6QfaqqqqK2thaAlJQUUlMPbQKgiBwdmjEuQy53Sgr33P5lvnRhEV5fF13ubQBEB01nUuQ3A/tFBvlnc3d1+EdOP7Pcyd+WfY1luy474Drjn3Bao3DZkgGIcU2jKPZ8oh3J+Nqm8uzqUny+A09p6erq45c/fIKfX/cYHe09h3StIiIiIiIiIiL7s2ch/JO26jI6rFixInBfs8VFjk2TJk0iKCgI8A+W8Xg8JieSkWrP94yioqLAkrIiMrJoxrgMK4ctkvy4W2jpXcWkqG9jswYFtmXH3MCyt7N58NFy+lMhfGIH5xQ9R1s/7Op4hsyY7wPw0aqt3Hr3K8ydPZGffu90+nzd7Ohax4TQqTgsLnz23xMfAilhM0gJg8ieU7ns4aeArbgcds6Ymr3fjCuXbmHZB5v8r/X+JhafOW3Yvh4iIiIiIofF+PhmtpGQQURklElPTycsLIzOzk62bNlCb29voL26jFx1dXVUVlYCEBcXx8SJE01OJCJmsNvt5OTkUFxcTH9/P5s3byYnJ8fsWDLCtLW1sXHjRgBCQ0PJzc01OZGI7IsK4zLsxoWfy7jwcwc9b7FYOPukk9lZZSchMYLgCU7sVGC11pEQelJgv1ffKqW1vYdX3yrl2m+ezDN1v6WqewNxzjSa+nfT0BvEO7VZPDk/mcyIJCKDXVgtFnyGQUxo8AHzTZuZTnpGPF6vj5lzMob02kVERERERETk2Ga1WsnLy2P58uV4vV42btzIjBkzzI4lB7DnzL85c+Zo5p/IMSwvL4/i4mLA305dhXH5rBUrVmAY/lHEs2fPxm5X6U1kpNJ3p5gqNjqMX1x3Fq296+joLycl7FFs1oGjps88K4OW4HXkxx1HSIgTj9EHQLe3DQMvca5uXDYvNot/ZYCspDheuvYy+j1espLiDpghOjaMvz/+naG/OBERERGRIWIx/DezjYQMIiKjUUFBAcuXLwf87dRVGB/Zenp6WL9+PQBOp5Np09RdUORYlpGRQXBwMD09PWzatIn+/n6cTqfZsWSEcLvdrFmzBvAPhps9e7bJiURkf1QYF9P1e1tZUXMpBh56PLvJivnBgO0r7XeRuKiOuAgHDT3BLIo7mSbPYuKD0ljW9BxeXzz/nHc2E8MTAsdMiIs+2pchIiIiIiIiIrJXKSkpREdH09LSwvbt2+ns7CQsLMzsWLIPa9asCawjPH369MD6wiJybLLZbOTk5LBmzRrcbjebNm0iPz/f7FgyQqxfv57e3l4A8vPz9f4uMsJZzQ4gY49hGPz3sY945O7X8Pl8A7bt6FrPazX309S3K/Cc1eLAavH/geGwRny6b+c6ljU+i8/wn8Piq2Fl7ZWUNt1AmiuMKGMiLz6VzgsvhRNDBIfC7fXS1dt/uJcoIiIiIiIiInLQLBZLoIhiGAalpaUmJ5J98fl8rFq1KvC4sLDQxDQiMlLsWQjXz3D5hGEYgY4wAEVFRSamEZGDoRnjMuSWv72RP9/6EgDNdW1ce8tFgW1PV/2WPl83jX1VfHnC7wCwW0P5XOoLdLuriHH5/9jo9rTzWOUvMPAxPepUxofmkeAMZnXdmwBYLDZ+9+snWO1oBeCl4o1csWDOQeXr6u3ngtv/RV1rB/decR7H50wYoisXERERERkmxsc3s42EDCIio1RBQQHvv/8+4G+nrg/PR6ZNmzbR2toKwOTJk4mNjTU3kIiMCOnp6YSGhtLV1cXmzZvp6+tTNwlh+/btNDQ0AJCWlkZKSorJiUTkQDRjXIac02kDw/+JmbvHvx64z/DyeOWfcPv8zye7Jg84JtieQmzwXCwfrxNutzpx2UIBiAtKoyBqEYkh85ib/Ahzkx4iLngesR4rzrpuHJ0eFmRnHHS+2tYOdje34/UZrNm+68AHiIiIiIiIiIgcofj4eBITEwGorq6mpaXF5ESyNytWrAjc12xxEfmE1WolNzcXAK/XS3l5ucmJZCTQbHGR0UczxmVI9fW5qenq44vfWoi3tYuvXH8GAA19NaxtfR8wKIw+jRMTL9/veZxWF9+afB+t/XWkBGcFno9xzQzcv+a3FzPzpbXkzJ5ISlLcQWecmBjDD846nrc3bCUjIeaQrk9ERERERERE5HDl5+dTV1cH+GeNz58/3+REsqeGhga2b98OQExMDJMnTz7AESJyLMnPz2flypWAv536tGnTTE4kZmpubmbTpk0AREREMGXKFJMTicjB0IxxGVIPPvohf7jrVR57YwMXX3cGrhB/O5m4oGTyI4uIdSYzN+4MLBbLgOP63Z5B5wq1RzEuJBuP0c+j267gP1s+R1nLI4Ht97y7nOtKVvDa7p2HlNFisWC32SiurOHGx15lW13zYVypiIiIiMhRZIygm4iIHLY916gtKSkxMYnszZ6zxefMmTPo8ysRObalpaURHh4OwNatW+np6TE5kZjps+8ZNpvNxDQicrBUGJch5XI5AHA6bNhsn/7xYLPY+GLa90kN+jLbOgYWwX/7zEsc/4db+cVfnt/rORv7duL0FRNua2NH612B559fU4bb6+WFNWX7zLN21XbKS3fR5enjd+tf5p7yN/EaPuLCQwAIctgJDXIe5tWKiIiIiIiIiBy8qKgoUlNTAaivr6e+vt7kRPKJ3t5e1q1bB4DD4WD69OnmBhKREcdisZCXlweAz+dj48aNJicSs/T19bF27VoA7HY7M2fOPMARIjJSqJW6HBGvz4fN+un4iksvnkdOdjLj02IJdg0sOP9r20fcvfFNAP530vdJC43B7fPyjGMFxjQfJd3vUtIaRV7kggEjchNdGYQ5p4N3ObHBxwWe/8mZC3hq5QauOGHOXrN9+G45N//4SQDOvvs4nqjzj+CaHTuBM2ZOYUJCNNGhwSRGhQ3J10JERERERERE5EDy8/Oprq4GYMOGDZx00kkmJxKA4uJi3G43ANOmTcPlcpmcSERGovz8fJYtWwb426mrIHpsKi4upr+/H4CCggJCQkJMTiQiB0szxuWw/f75d5nxo7u577VlA54vLdvFf55eQVdX34Dn44L8bWaCbQ5C7P6iud1iJdUVTaKrg9m5m3lh1+1s7lgx4DirxcYZ4x9gcfoKChPvCTx/9vQcHvnmRSzIzthrPq/HF7g/2RlPkNVOtDOESeHxAOSmJpIcHXGYVy8iIiIicvRYjJFzExGRI5OXlxeYEFBaWoph6Ier2QzDCKwbDFBYWGhiGhEZyVJSUoiKigJg+/btdHV1mRtIjjrDMAa0US8qKjIxjYgcKs0Yl8P2anEFhuH/9zunzgVgfWk1jzz+EQBpqTF8/txZgf3PGz+DzIgEYoPCiA3yz9K2WCw8fdLVlLSu5dXaXwPwxvMbCV4wibT0OEpXbuPWqx4mc2oaP7//61isB7+20/xFOdz8+y8SHOpk+owMFhbkgAG9fd6h+hKIiIiIiIiIiBySsLAwMjIy2LZtGy0tLezatSvQXl3MsWXLFpqbmwGYOHEi8fHxJicSkZHqk3bqH374IYZhsHHjRmbPnm12LDmK9nzPmDBhAomJiSYnEpFDoRnjcth+dsEijstO54ZzFwSeG58aQ3RUCE6njbwpKYOOyYsaR1JwZOBxccvrPL3zJuJdIXxz0r1svquQF/5Sxe2/eRGAd15YQ1NtG8teL6FhV8sh5bNYLMw7IZvps/wzyoOsDr5+79Oc8Mu/8vgHxYdxxSIiIiIiJjFG0E1ERI5Yfn5+4H5JSYmJSQQYMPNPs8VF5ED0M/zYtnz58sB9zRYXGX00Y1wO20lTJ3PS1MkDnouNCePJR76D1+vD5XIc8Byv1tyH13DjM3xcmnErqVHJpJ67hLR4f9v10y+ZR8XaSrKmjycxLSZwnM/nwzDAZjv4sR19Hg9l1fUArN2+my8dP/2gjxURERERERERGSo5OTm8/PLLeL1eSktLWbx4MVar5q+YoampiS1btgAQFRVFZmamyYlEZKRLTEwkNjaWpqYmKisr6ejoIDw83OxYchQ0NDSwdetWwP+ekZWVZXIiETlU+o1bhpzDYTuoojhAXuQCrNjIjZwPwJd+VMv8izeQftI/+Kjh32TkpPCnl6/n6t9dyNZNtXzwTjkNu1u5tPAmLp7+M3ZuqTvoXMFOB7d95XTOL8zj6tOOO6xrExERERERERE5Ui6XK1CA7ezspLKy0uREx649Z4vPmTNHAxRE5IA+aaf+ibKyMhPTyNH02Q4jes8QGX30XSvDoqRsFw8++gFNzZ373e+M5KtID53K0sanqenZQkjQOADcPitv1/+blv4aAOrr2rjm6w/w6588yb8feJfm+nY623ooWbHtkHKdPiObX1+8mPHxUYd1XSIiIiIiZrAYxoi5iYjI0NizFe+GDRtMTHLs6uvro7i4GAC73c6MGTPMDSQio8aehfHS0lITk8jR0tPTw7p16wBwOBx6zxAZpVQYlyHn9fr44c+e5OF/L+VP9y2hrraVCz5/J+d9/k5272oesO/S5R+wvWst7e563ix7kQkRX2Nc1M1s7E0n2plGuCMWgKaWTgyL/5i0yYmc9dXjOeXCQk44W28+IiIiIiIiIjL6ZGVl4XQ6Adi4cSMej8fkRMeedevW0d/fD8DUqVMJDg42OZGIjBYJCQkkJCQAsHPnTtra2kxOJMNt7dq1uN1uAKZPn47L5TI5kYgcDq0xLkPOarWQGB9B5c4mUpKiePbpFTR+/Mfdvx5byvXXn0px64c4OsK55fP/YfJNsYQk97JrUwyWWRbyoy9kUsRi7NhxWIP47ZNLeHLZOqbM7+HrC85m8eIirNa5Jl+liIiIiIiIiMjhczgcZGdns2HDBnp7e9m6dSvZ2dlmxzpmGIYxqCWuiMihyMvLo76+HvDPGj/uOC3fOVb5fD69Z4iMESqMy5CzWCzcd/el7KxuJnNSIjsrG3lmyXq8QGxSJD954ndY80qxYsUVG82mP8SRnJfGlb8/DYAe9y6W7r4Aw/ASH3wC02YsISwpkZy0XdiMlVgsrx1SHp/h44bVT1Paupvfz/oCBdGp9PS7cdpt2LQGiIiIiIiMBsbHN7ONhAwiImNIQUFBoI16SUmJCuNH0bZt22hqagIgPT2dxMREkxOJyGiTl5fH22+/DagwPtZVVFQEugJMnjyZuLg4kxOJyOFSYVyGRUiwk+zMJADSM+J547nrMQw47eK7iZrZwYQ8MLCQ+9cTOMc3lcLj87BY/L3St7X9E4+vA4C67jdw2r1kjdsNgNdSzdaW+5gc892DzrKru5XXdvvXeXlhZzEtNW6+988XGB8XxZPXfQWXU98GIiIiIiIiInL0TZw4keDgYHp6eqioqKC/vz/QXl2Gl2b+iciRio2NJSkpidraWnbv3k1zczMxMTFmx5JhsHz58sD9oqIiE5OIyJHSdFk5KiwWC1arhUXzs6lfkUR43WLe2TWBF5sq2JHaHSiKA+zqfBUfYLdGkxXzIyKd07FbPy1eb227F6+v96Bfe1xIFOemTWdyeAIXjJ/Jii078foMtte3UN/WOZSXKSIiIiIiIiJy0Gw2G7m5uQC43W4qKipMTnRsaGlpYdOmTQBEREQwZcoUkxOJyGiVn58fuF9aWmpiEhkutbW1VFZWAv7BEJMmTTI5kYgcCU2VlcNS19qJzWYhLjz0kI77yTWnc8NVp1HZ0sRrK/5BkNVNfnQqvV43z1Y+RYztWaKCptDRX87kqO+RHvlFJkR+leaeFVS2P0pzz3ISQk/GZnUB0N/v4fWX15E6PobpszL2+ppWi5Xfzjg/8Dj2hAiaOrrITI4jLS7y8L8IIiIiIiJHicXw38w2EjKIiIw1+fn5rF69GvC3Uy8oKDA50di352zx2bNnY9VSeyJymPLy8liyZAngL4zPnz/f5EQy1PacLV5YWDhgkp+IjD4qjMshW19Zw6X3/Ae71cpT13+FiYmH1h6mdH0VN1z9L5KigvjTg98iJSqav21+m6auR4iKrKa5F36z7ix8Oyt4/vMtJKdEExNcSEzwp22tKsp2sW71Drq6+nj8oQ+wWCz867nvkZB04EJ3YlQYt3759AHPdXv6cVitOKz6lhARERERERGRoyc9PZ3w8HA6OjrYsmULPT09BAcHmx1rzOrv76e4uBjwz9ifNWuWuYFEZFSLiopi3Lhx7Nq1i7q6OhobG7X+9BjS1dXFhg0bAAgKCmL69OnmBhKRI6bhkHLIqhpb8fkM+j1edje3D9re3dNP9e6WfR5fUbobr8dHe2MPrbWdvLxkAyvfr2RdWyq9Xgdl1Sn0OOz0TXTz1LNLBx3v8Xj50Xcf4R9/fpM1K7YB4HTacQYdXlF7XfNO5r96G6e8/kea+tRaXURERERGIGME3UREZEhZLBby8vIA8Pl8lJWVmZxobFu/fj29vf4l+goKCggJCTE5kYiMdnu2Uy8pKTExiQy1NWvW4PV6AZgxYwZOp9PkRCJypFQYl0N22vRsrjtrPj85fyHHZacP2Nbf7+Hybz3AV674Oy+8tHavx59+7gzO/cIcvvadRbTFreOlXXdT+c5Oxm88lae+fQ6v/Hwqtl0WQpbbeNfTzFl3PUx1c1vgeKvVSmS0/4+Wgunj+eNfL+e660/lbzc+QenyLYd8Petbqun3eWnq72J7Z+MhHy8iIiIiIiIiciT2bJ+uosrwMQxjQBv1wsLC/ewtInJwcnNzA/dLS0sxDI0mHQu8Xi8rV64MPNZ7hsjYoL7RcsjsNitfWzR7r9t6et00NHYAsL1q70Xm0DAXV/3wdLo8rdxV8RVSZ4Phs3Bi+vnYv5XOs39/my/ELcKxIJZvP/ICAO9UbOMr82YAYLVa+PNDV1K1vYGcglRsNiuXfe0+6nY2sbm4kr9/9OtBr9nd5+a9sm1Mz0ghKSp8wLbzx8+gsquJ2KBQZsaMP+yvi4iIiIiIiIjI4UhOTiYmJobm5mZ27NhBR0cH4eHhBz5QDsmOHTtoaGgAIC0tjeTkZJMTichYEBERwfjx46mqqqKxsZH6+noSExPNjiVHaOPGjXR0+Gsd2dnZREdHm5xIRIaCCuNySJp6ltPSu5rxEV/CaRv8RhAZEcyvf34+Gyt2c9EFc/Z7LpctjPigdBr6Krni9AuZEpRBaGQw/fOcNHr6OCNpHCdOmUh7Ty+L8zIHHBsRGUz+9E+L2NNPmMJr//6QGQty9vpav3n6TV5avZGkqHBe/8UVWCyWwLYwh4ufTz3rUL4MIiIiIiJHlcXw38w2EjKIiIxFFouF/Px83nvvPcA/43Du3Lkmpxp7NFtcRIZLXl4eVVVVgL/zhwrjo9/y5csD94uKikxMIiJDSYVxOWheXw+ra6/EwE2vp4b8+N/sdb/5x2Uy/7jMvW7bk81i5xuT/kS/r4fn7n6XX9zyAyZdks2Hp7YCEGJ38udLzz2obNfe9VW+/ssLiIzd+2hqn8834F8Ar+Hj7o1LaOrr4oa8U4l0ak0pERERERERETFHQUFBoDBeUlKiwvgQa21tpaKiAoDw8HBycvY+uUJE5HDk5uby6quvYhgGpaWlLFq0aMDkLBlddu3aRXV1NQAJCQlMmDDB3EAiMmS0xrgcNIvFQZAtDoBgx7ghOafVYsNlC6P4vXIAdnxUid3i/98y3BvEn65/lH/934sDCtp7z2bZZ1Ec4JcXnswtl5zKI9/7YuAXkjVNVTy45UNe3FnM8zuLh+R6REREREREREQOR1xcHElJSYD/A/nm5maTE40tq1atCqz7O2vWLGw2m8mJRGQsCQsLCxRPW1paqKmpMTeQHJHPzhbXIAeRsUMzxuWgWS12jkt9nh73TsKdBx5V6/MZrN9YTWpyNHExYfvd91u/vYin//w688+eRfrCCfT53Kx5eC3/e9g/UnrGghzy5x54FvonvB4vj93+Mu5+D1+54WxCXU7Onp07YJ/J4fEkuiJod/cwOzb9oM8tIiIiInLUGR/fzDYSMoiIjGH5+fnU1tYC/lnjJ5xwgsmJxga3282aNWsAsNlszJo1y+REIjIW5eXlsX37dsD/MzwlJcXkRHI4Ojo6KC0tBSA4OJiCggKTE4nIUFJhXA6JwxqOIyj3wDsCt//5NV5asoHwMBfP/PPbuIIc+9x3Yn4aN9x3xYDnegon4QiyExYZQurkpEPKuXJJCf++/SUAxmcnc/IX5w3aJzoolNdO+QE+w4fDqm8FERERERERETFXfn4+S5YsAfxFlfnz52uW2hAoKSmhp6cH8BeuwsL2P4FDRORw5OTk8L///Q+fz0dZWRmnnHKKfoaPQqtWrQp0sJ05cyYOx77rGiIy+qiVugyL0o27eOm19QB0dffhdnsP6fjmzm5+9MZ7dH5jGr9d8hOi4vbdJn1vxmcnExzmwulyMDE/bZ/72SxWFcVFREREREREZESIjIwkLc3/OUZDQwP19fUmJxr9DMMY0BK3sLDQxDQiMpaFhIQwceJEANra2gJrVMvo4fF4WL16NeBfvnXOnDkmJxKRoabCuAwLm9WKxQsWj8G3vnIC4WGuQzp+Q2UtVY2tNHZ0s3rHrkN+/ZSMBB4v/QNPbLyDiXmph3y8iIiIiMhIYjFGzk1ERIbXni1bN2zYYGKSsaGqqoq6ujoAxo0bx7hx40xOJCJjWV5eXuB+SUmJiUnkcJSWltLV1QX4OwBERkaanEhEhpoK4zIspmQn85c/fpm7bvkiX/r8oY/EnZs1nsWzJxG6sJO/dr5CVVfTIZ/DFRqEz2Hho02V9Lk9h3y8iIiIiIiIiMjRlpubG2i9W1paimFoVNKRWLFiReC+ZouLyHCbMmUKNpsNgLKyskBLbhn5PtthpKioyMQ0IjJcVBiXYZOXM44Z09L3us0wDFYV72Dn7pa9bg9y2Dlz0WR6bf00u7tY1bT9sDJ8875nuPKvz/Lzx187rONFRERERERERI6m0NDQQCve1tZWteI9Au3t7WzcuBHwf11zc3NNTiQiY53L5WLy5MkAdHZ2UlVVZXIiOVg7d+6kpqYGgOTk5MDSJiIytqgwLqZ47n9rue5XT/G17z1Ic2vXXvc5Lj6Tc1JnsDg5n5OT8/a6z4G0dPUA/jXLRURERERGLWME3UREZNjl5+cH7qsV7+FbtWpVYMb9rFmzsNvtJicSkWOB2qmPTp+dLf5J9xYRGVtUGBdT9PS6AfB4fXg8e28n47I5+PW0C/j9zC8S4Qg+rNf565UX8MNzTuDWL59+2FlFRERERERERI6mnJycQCve0tJSteI9DB6Ph9WrVwNgtVqZPXu2yYlE5FiRnZ0dGIizceNG/QwfBdra2gZ0GNlzcIOIjC0aJimm+OK5s4mJDiU1OYqEuPBhe50JCdFMSJg1bOcXERERETlaLJqtLSJyzAgKCiIrK4uNGzfS1dXF9u3bmTRpktmxRpXS0lK6u/0dBHNycggPH77Pn0RE9uR0OsnKyqKsrIzu7m79DB8FVq5cGegwMnv2bHUYERnDNGNcTGG32zh9UT4FOan73c8wDCq7mnD7vIO2eb0+lr1RQvW2+sPO8VHDVp6pXL3X84uIiIiIyOG77777mDp1KhEREURERDBv3jxeeeUVANxuNz/+8Y8pKCggNDSUlJQUvvrVr7J79+4B5+jr6+Oaa64hLi6O0NBQzjnnnEFr7ba0tHDppZcSGRlJZGQkl156Ka2trUfrMkVEho3aqR8+wzBYsWJF4HFhYaGJaUTkWLTnjOPS0lITk8iBuN1u1qxZA6jDiMixQIVxGdHuLn+dc9+5iyuXPTho25N/WcLNV/yDq0+/na72nkM+d2VnE9/66BFuWvciT2xfceADRERERETkoKWmpnLbbbexatUqVq1axaJFizj33HMDM/jWrFnDL37xC9asWcOzzz7Lpk2bOOeccwac49prr+W5557jiSee4IMPPqCzs5OzzjoLr/fTga2XXHIJxcXFvPrqq7z66qsUFxdz6aWXHu3LFREZcpmZmTidTsDfitfj8ZicaPTYtWtXYLBVUlISaWlpJicSkWPNZ3+G7/n7q4ws69evp6fHX1/Iz88nLCzM5EQiMpzUD0JM4fF14/a1EmxP2e9+5e01AGzqqB20zd3v/4PQ6/Xud50Wn8/AYgGLxTLgeZfNgcNqo9/nJdJ5eGuYi4iIiIgcFYbhv5ntEDKcffbZAx7/7ne/47777mPZsmVcccUVvPHGGwO233PPPRQWFlJVVcX48eNpa2vjgQce4F//+hcnn3wyAI8++ihpaWksWbKEU089lY0bN/Lqq6+ybNkyioqKAPj73//OvHnzqKioIDs7+wgvWETEPA6Hg5ycHNatW0dfXx9btmxhypQpZscaFT47W/yznwmJiAw3h8NBdnY2GzZsoLe3l61bt5KVlWV2LPkMwzBYvnx54LE6jIiMfSqMy1Hn9fXwQfVZ9HlryY+7hXHh5+1z35/mn81/diznxKScQdu+dM1iUjMSSM9OIjwqdK/Hb69v5tI//Ycgh53Hr/0SCZGfjvZKDI7g+ROvpqmvk2nRGjksIiIiInKw2tvbBzwOCgoiKChon/t7vV6eeuopurq6mDdv3l73aWtrw2KxEBUVBcDq1atxu90sXrw4sE9KSgr5+fksXbqUU089lY8++ojIyMhAURxg7ty5REZGsnTpUhXGRWTUy8/PZ926dYC/nboK4wfW2dkZaFscHBw8oCW9iMjRlJeXx4YNGwB/O3UVxkeeHTt20NDQAPg7Xo0bN87kRCIy3FQYl6PO7eugz+ufAd7RX7HffdNDY7kh74y9bnM47Sy6YP/rfazeuou27l4ASnfWDSiMA6SFxpAWGnOw0UVEREREBAa1pP3Vr37FTTfdNGi/DRs2MG/ePHp7ewkLC+O5554jNzd30H69vb385Cc/4ZJLLiEiIgKA2tpanE4n0dHRA/ZNTEyktrY2sE9CQsKg8yUkJAT2EREZzTIyMggJCaG7u5uKigr6+/sDrXll71atWhXoLDhr1iwcDofJiUTkWDVp0iSCgoLo6+ujvLwcj8eD3a6SzEiy52zxPQfbisjYpZ/CctS57AlMjf8D7f1lZER+Y8jOW1vfxrMvr6VoZgazpqUDcOr0LFZvq8blsHNcdvqA/f9c/hbv1Fbw44LTmR07YchyiIiIiIgMNYvhv5ntkww7d+4MFLCBfc4Wz87Opri4mNbWVp555hkuu+wy3n333QHFcbfbzcUXX4zP5+Mvf/nLATMYhjGgJe7e2uN+dh8RkdHKZrORm5vLqlWr8Hg8lJeXM3XqVLNjjVher5fVq1cD/veH2bP3P6FCRGQ42e12cnJyKC4upr+/n82bN5OTM7gzqpijubmZigr/xL3w8HD9txE5RljNDiDHpuSwM8mO+RFOW/SBd96L1u5e/rV0DeU1DYHn7nngbZ54fiU//s0zeL3+kcHhwUHc+uXT+dVFpxDk+HQcSI+nn79uepfy9lr+vW3ZkV2MiIiIiMgxJiIiYsBtX4Vxp9PJ5MmTmT17NrfeeivTpk3j7rvvDmx3u91cdNFFbN++nTfeeGNAsT0pKYn+/n5aWloGnLO+vp7ExMTAPnV1dYNet6GhIbCPiMhot2cr8JKSEhOTjHxlZWV0dnYCMGXKFCIjI01OJCLHury8vMD9T5Z5kJFh5cqVgftz5szBZrOZmEZEjhYVxmVU+t1/3+LWl9/lsn88iffj9liT0uMAGJ8ag9W6/9khwXYnF4yfSYwzlHPTZgx7XhERERER8c/k7uvrAz4tim/evJklS5YQGxs7YN9P2t++8cYbgedqamooKSnhuOOOA2DevHm0tbWxYsWKwD7Lly+nra0tsI+IyGg3fvz4wMChrVu30t3dbXKikWvP94PCwkITk4iI+GVkZBAcHAzApk2b6O/vNzmRAPT19bF27VrAP7N/1qxZJicSkaNFrdRlVIoO9f8yEeFyYf24ReLXvvQ5Tj4hl8SEiINqm3jz9HOHNaOIiIiIyJAxPr6Z7RAy3HjjjZx++umkpaXR0dHBE088wTvvvMOrr76Kx+PhC1/4AmvWrOGll17C6/UG1gSPiYnB6XQSGRnJFVdcwfXXX09sbCwxMTH88Ic/pKCggJNPPhmAnJwcTjvtNL75zW9y//33A3DllVdy1llnkZ2dPeSXLyJiBovFQn5+PkuXLsXn81FWVqYW4Xuxe/duqqurAUhISCA9Pf0AR4iIDD+bzUZOTg5r1qzB7XazefPmAbPIxRzr1q0LDNgtKCggJCTE5EQicrSoMC6j0o9OP4ETcyYxJSk+UAS3WCyMT40xOZmIiIiIiADU1dVx6aWXUlNTQ2RkJFOnTuXVV1/llFNOYceOHbz44osATJ8+fcBxb7/9NgsXLgTgzjvvxG63c9FFF9HT08NJJ53EQw89NKDN4b///W++973vsXjxYgDOOecc7r333qNyjSIiR8snhXHwt1NXYXywz84WP5hJEyIiR0N+fj5r1qwB/D/DVRg3l2EYA94zioqKTEwjIkebCuMyKjlsNqakxfL3zW+TGZ7I+ePV6kRERERExi6Lz38z26FkeOCBB/a5bcKECRjGgaefu1wu7rnnHu6555597hMTE8Ojjz568MFEREahpKQkYmNjaWpqorKykvb29kB7dYGurq7A+usul4upU6eanEhE5FPp6emEhobS1dXF5s2b6evrIygoyOxYx6wtW7bQ1NQE+P8uSUxMNDmRiBxNWmNcRq1Htn3IYzs+4uYNz7Oru4WVb5fxwj/fpb/XbXY0EREREREREZEh80k79U+UlpaamGbkWb16NV6vF4AZM2bgcDhMTiQi8imr1Upubi4AXq+XiooKkxMd25YvXx64r9niIsceFcZl1MqJTMECJLgi6Kvt4ZeX/42/3vQcz/3jncA+TY0dNNS3m5ZRRERERERERGQoFBQUBO5/Mjta/EWmVatWBR7PmTPHxDQiInunwU0jQ2NjI1u3bgUgKiqKrKwskxOJyNFmamH81ltvZc6cOYSHh5OQkMB55503aLSUYRjcdNNNpKSkEBwczMKFCwe9cfT19XHNNdcQFxdHaGgo55xzDtXV1UfzUsQEi5PzeeOkG3hx4bXERITjCnYCEJPobyW2Y1s9l553N5eedzflpbsGHFvV2cQNq5/iyR0rj3puEREREZFDZoygm4iImCI2Npbk5GQAdu/eHWgDe6wrLy+no6MDgOzsbKKjo01OJCIyWFpaGuHh4YC/lXdPT4/JiY5Ne84WnzNnDlar5o6KHGtM/a5/9913ueqqq1i2bBlvvPEGHo+HxYsX09XVFdjn97//PX/84x+59957WblyJUlJSZxyyimBX3gBrr32Wp577jmeeOIJPvjgAzo7OznrrLMCLZRk7LL77HT29BMVF87f37mRP710Padc6G9/Ul/bhsfjw+czqNnVMuC4+ze/xyu7SvjN+pdo69cvISIiIiIiIiIy8u0541Czxv1WrFgRuF9YWGhiEhGRfbNYLOTl5QHg8/koLy83OdGxp7e3l3Xr1gHgcDiYOXOmyYlExAymFsZfffVVLr/8cvLy8pg2bRoPPvggVVVVrF69GvDPFr/rrrv42c9+xgUXXEB+fj4PP/ww3d3dPPbYYwC0tbXxwAMPcMcdd3DyySczY8YMHn30UTZs2MCSJUvMvDwZZjsaWzjx//7Bov/7Bxuqa4lLiiJzalpg++y5k7nq+tO48nuncMKi3AHHzo2biAULBVHjCHMEHe3oIiIiIiIiIiKH7LOFccM4tlt51NbWUlVVBUBcXBwZGRkmJxIR2bdPCuOgdupmWLt2LW63G4Bp06bhcrlMTiQiZhhRfSLa2toAiImJAWD79u3U1tayePHiwD5BQUEsWLCApUuXArB69WrcbveAfVJSUsjPzw/sI2NTVVMrfR4PFls/a5pep7W/dsB2q9XCuRcW8oVL5mGzD/xf/ey0aSw740Yenf8NbJYR9W0gIiIiIjKIxRg5NxERMU9ERATp6emAf53Uuro6kxOZ67OzxS0Wi4lpRET2b9y4cURFRQGwbdu2AZ1zZXj5fL4B7xlFRUUmphERM42YiqBhGFx33XUcf/zxgdGvtbX+QmdiYuKAfRMTEwPbamtrcTqdg9YP2nOfz+rr66O9vX3ATY4er+Hlo8ZXKW55/4jOc3zmBG44/QS+cnYD1fYneXj7DYd0fIjdiVVFcREREREREREZRfacNb5hwwYTk5iru7s7cP1BQUFMmzbN5EQiIvu3Zzt1wzDYuHGjyYmOHZs2baK1tRWASZMmERcXZ24gETHNiKkKXn311axfv57HH3980LbPjvY0DOOAI0D3t8+tt95KZGRk4JaWlrbX/WR4rG15lxd2/4Mndt7NnRU/oN3dcuCD9sJqtXD58bPISkwAwGaxD9hetmo7Lz70Pr3dfUecWURERERERERkJMjNzcVq9X+kV1paesy2U1+7di0ejweA6dOn43Q6TU4kInJgaqdujuXLlwfua7a4yLHNfuBdht8111zDiy++yHvvvUdqamrg+aSkJMA/Kzw5OTnwfH19fWAWeVJSEv39/bS0tAyYNV5fX89xxx2319f76U9/ynXXXRd43N7eruL4MPIZXla3vMuWjvVEOmKp6t4U2FbXt5Oy9hXMjT31sM9/esrVZIXPJTUkJ/BcR2s3N1x0D16Pj/pdzXzjZ+ce0TWIiIiIiJjKMPw3s42EDCIix7iQkBAmTpzIli1baGtrY+fOnYwfP97sWEeVz+dj5cqVgceFhYUmphEROXhJSUnExMTQ3NzMjh076OjoIDw83OxYY1pdXR07duwAIDY2lsmTJ5sbSERMZeqMccMwuPrqq3n22Wd56623yMjIGLA9IyODpKQk3njjjcBz/f39vPvuu4Gi96xZs3A4HAP2qampoaSkZJ+F8aCgICIiIgbcZPisbH6TZ6r/wrq2D3iv8QV2dPtbxARZQ0h2pZMTPhsAt9uD1+s75PM7rS5yIo8n3BEbeM7htOEKCQIgIip0CK5CRERERERERGRkONbbqW/atIm2tjYAMjMziYmJMTmRiMjBsVgsA36Gl5WVmZjm2LDnbPHCwsIDdiMWkbHN1BnjV111FY899hgvvPAC4eHhgTXBIyMjCQ4OxmKxcO2113LLLbeQmZlJZmYmt9xyCyEhIVxyySWBfa+44gquv/56YmNjiYmJ4Yc//CEFBQWcfPLJZl6efCzIGjzouRBbOF+dcAMTQv2zvLeW7+aHl/2d4NAg/vzk1UTHhbGjq5yK9mKKYk8hyhk76Bz74woJ4q9LfszuHY3kF04ckusQERERETGLxfDfzDYSMoiICEyZMgW73Y7H46GsrIzTTz890F79WLBixYrAfc0WF5HRJi8vj/feew/wt1NXa+/h093dHRhAFhQUxLRp00xOJCJmM7Uwft999wGwcOHCAc8/+OCDXH755QDccMMN9PT08N3vfpeWlhaKiop4/fXXB7QXufPOO7Hb7Vx00UX09PRw0kkn8dBDD2Gz2Y7Wpch+TIs6nhd3P0C3t5OEoDQmhuWyMP58opxxgX1K11TS091PT3c/2zfXEhk7kX9s+x39vl5qe3dyWcaPDvl145KiCI0LYUPrLnKjUnBY9f+DiIiIiIiIiIx+QUFBZGVlUVZWRnd3N9u2bTtmWsPW19ezfft2AGJiYpg0aZLJiUREDk1CQgLx8fE0NDSwc+dO2traiIyMNDvWmLR69Wo8Hg8A06dPJygoyOREImI2UwvjxkGsT2exWLjpppu46aab9rmPy+Xinnvu4Z577hnCdDJULBYL35r0Gyo61jA96gQiHNGD9jnp7BlsKa8hPCKYaXMysGAhxplAbW8V8UHJeznrwfnWsn+xtrmKs1OnccvMC47kMkRERERERERERoz8/PxAC96SkpJjpjD+2dniaokrIqNRXl4e77zzDuCfNb6vZWHl8Hm9XlauXBl4rA4jIgImF8bl2JHoSiPRlbbP7aHhLq779cDC9dWTf0djfw1JrvTDft2anlYAdn/8r4iIiIjIqGR8fDPbSMggIiKAf23toKAg+vr6KC8vx+PxYLeP7Y/6enp6WL9+PQBOp5Pp06ebG0hE5DDl5+erMD7MysvL6ejoACArK4uYmBiTE4nISHDsLD4ko47T5iIlOAOrZd//mxqGwe82vMgX3r2HDa3VAHh8bryGvz3Kn4u+wnezT+R3M84HwOfz0VzXNvzhRURERERERESGkd1uJycnB4C+vj42b95scqLhV1xcjNvtBmDatGlqiSsio1ZsbCxJSUkA7N69m+bmZpMTjT3Lly8P3Nc67iLyCRXGZcR5p7aCO0pfo7G344D7NvR18FTVSrZ01vPY1o9o6K3kzopLuLviq7S7G8iKSOQ72QsZF+Jv337T1/7Ol+f8iof+76XhvgwRERERERERkWGVn58fuF9SUmJikuHn8/nUEldExpS8vLzA/dLSUhOTjD27d+9m586dAMTHx5ORkWFyIhEZKVQYlxGly9PHtSsf56GtS/lT+ZsH3D8+KJwZoRkYfVZef2cn5S0b6Pf10ONtp7Z326D9y1bvAKB05eBtIiIiIiIjlcUYOTcRERk5MjIyCA0NBaCiooK+vj6TEw2fLVu20NLSAsDEiROJi4szOZGIyJHZc3CTCuND67OzxS0Wi4lpRGQkUWFcRpQgqz0wuzsrIvGA+1ssFubbpuJeHUVPs4VYZjAz+gyKYs9jUujMQfv/9C+XcerFc/nub74w5NlFRERERERERI4mq9VKbm4uAF6vl/LycpMTDZ8VK1YE7mu2uIiMBVFRUYwbNw6Auro6GhsbTU40NnR2dga6qAQHBzN16lSTE4nISGI3O4CMfR6vj7KNu8iYEE94mGu/+9qtNp5e8B0a+zpJcEbQ0+8m2OlgV/d2KjrWMjvmRCIc0QOOuWTudLw+H8lREeQmjyOX7+7z/LNOmMKsE6YMyXWJiIiIiIiIiJitoKAg0GK8pKSEadOmmZxo6DU2NrJ161bAX0jKzMw0OZGIyNDIy8tj165dgP9n+MKFC80NNAasWrUKn88HwMyZM3E4HCYnEpGRRDPGZdj9+f43+d6PHueqHzyKYRy492Kw3Ym9385JN/+dE37xVyp2N/C3bTfzau3jPFv9t0H7uxx2vrmgkLOmqeAtIiIiImOUYYycm4iIjCipqalERkYCsHXrVrq6ukxONPT2nC0+Z84crFZ9pCkiY8Nn1xk/mM/PZd88Hg+rVq0C/N1m58yZY3IiERlp9FukDLvGpk4AmlsO/g+zzTVNtHX30uv2sKGqhnCbf5Z4pCN2WDKKiIiIiIiIiIxGFoslsE6tYRiUlZWZnGho9fX1sW7dOgAcDgczZswwOZGIyNCJiIhg/PjxgL87Rn19vcmJRrfS0tLAALGcnJzAwDERkU+oMC7D7gdXL+bKry3gztsuxmKxHNQxx2Wnc/niLC44y8OOqH/Q4q5hXHA6M6KP3+9xfV43b9dupLG3Yyiii4iIiIiMCBZj5NxERGTk+aQwDgTWVR0riouL6e/vB/xt44ODg01OJCIytPacNT7WfoYfTYZhsHz58sDjoqIiE9OIyEilwrgMu5joUC65qIjMyYkHfYzdZsWa8SZ9cctp7N+NFw81vTt4tPIPNPfve9TcbaUv8cM1/+LaVb+hw90ceL67o5f1H1bg7vfs81jDMHjruVW88dRytawRERERERERkVEjMTGRuLg4AKqqqmhrazM50dAwDCOwfjpAYWGhiWlERIZHbm5uYEKZ2qkfvurqampqagBISkoiLS3N5EQiMhKpMC4jlt3qGPRcp6eNxyrvoKmvloa+3YO293jczImrJCe6jEd3/DTw/I/Pv4Mbzr2DO7//8D5fb8175fzh+4/yx+sfZ+lrG4bmIkREREREREREhtme7dRh7Mw43Lp1K01NTQBMmDCBxMSDn3QhIjJahIWFMWHCBABaWloCxV05NJ+dLX6w3WtF5NiiwrgMq6eeW8UXvvIXXvxf8SEdt+rDzaz/w8DWWE78j6t7tnLnph9wR8X3WN70+oB9biw4m5yIJAB8hjfwfEt9OwDNdfseMR0ZE+Z/s7RAVGzYIeUVERERERlWxgi6iYjIiFRQUBC4P1YK4ytWrAjc12xxERnL9mynXlpaamKS0amtrY2ysjIAQkNDBwwWExHZkwrjMqyeeHoFjU2d/OeZlQfeeQ//ffwjulyftkwvjDyVXxU8SKTDPzLYY7gBeKf+eaq7twT2i3AE/z979x0eVZk9cPx7pyaTTHpIBQIhjRB6kV4FEey94tpXV9e17m+La9lVV13L6tp7711UpAmK9JoEQkIo6b1Ops/9/TEwEBNIgIQJcD7PMw8zd+5975kAmZl73nNerk+5n7nxf+TypId82//18R+55t5zufN/vzvoOQdk9ealxX/mhR//TOao/ocVrxBCCCGEEEIIIYQ/RUREEB8fD0B5eTnV1dV+jujo1NbWkp+fD0BoaChpaWl+jkgIIbpPRkYGGo03XSPt1A/f2rVrfT+zESNGoNPp/ByREKKnksS46FZXXjqWhLgwLr/4lMM67vQLR2MOM6GqoKrQyxSPVtGxu2Ewa6t6s7W2LwB1zkp+rPgIj+rm1cIHuS/7SopbChkSfiqhhl44XC6sDid90+K54NbTiIoLP+R5E5Nj6Jsa22a7fBARQgghhBBCCCFET3citVM/cG3xkSNH+hJGQghxIjKZTPTv7y3WamhooLi42M8RHT+cTifr1q0DQKPRMHLkSD9HJIToyeQTpehWZ80ZxruvXc/sU7M63vkAYyal88jf7iFQG4JRG0yqeSgAqSF9qbYFE2nIIDNkNAoKA0NG0eSsJ795EzZPC1safgWgoqGZKf9+mfEPvUBuaeUhznZon367nunnPcFjzy3oeGchhBBCCCG6gaL2nJsQQoie67eJ8eN1or/D4WDDhg0A6HQ6hg8f7ueIhBCi+0k79SOzZcsWrFYr4P0Zms1mP0ckhOjJpJ+E6LHCDdH8PfMlALSK95/qnzJmcV6fkcSbwtFrtLhVN1pFi6qqjI+czY7m1aSaM2lxNfFtyfsYQsqoLw9nc1EZA+N7HVEci5ZtxeX28OPSXO66aWaXvT4hhBBCCCGEEEKIrmQ2m0lKSmLXrl3U1NRQXl5OXFycv8M6bJs2bcJutwPeZL/JZPJzREII0f3S09P55ptvcLvd5OTkMHPmTOmW0QFVVVm1apXv8ZgxY/wYjRDieCC/VcUxUVdvITu35LBnKmsVnS8pDqAoCn2Do9BrtHuf1/q2e9R6LK4Svit9mh/LP2C7awGnTNrKJWPTOGNoxhHHfu1lExmW1Zs/3TADAJfLzdbsYuw25xGPKYQQQgghhBBCCNEdDqwa37Jlix8jOTKqqrZqoy5JDiHEySIgIIABAwYA0NzczJ49e/wcUc+3a9cuKiu93WITExNJSEjwc0RCiJ5OEuOi29kdLq668TX+cMe7vPvhysM6tsXVzBfFr7K86tsOk+pBujAAArVmIoze2dBmfRh/Pn0GQUZDp8/56XM/Mif297zw1w8AGD64D0//82JmT/d+sXz8wa/447Wv8dfb3zus1yKEEEIIIcQR86g95yaEEKJHy8jI8FUY5uTkHHft1Hfu3ElVVRUAffr0ITY21s8RCSHEsSPt1A+PVIsLIQ6XtFIX3c7ldGOxeNtf1dZZOtx/zfI8nnnwK8ZNH8iAq6ysqPkegAHBg4gL7HvQ46bFXEWKeTTRxr4Eas2kBGcRaohCr+l8Uhxg8SercLvcLPxwJVfccxbvPf0DvRIjOPOqiSiKQnlZHQDlpfWHNa4QQgghhBBCCCFEdzOZTCQnJ5Ofn09jYyN79uyhb9+DX0/paVavXu27P3r0aD9GIoQQx15qaio6nQ6Xy0Vubi6zZ8+WduoHUVdXR15eHuBdSiQj48i7xgohTh6SGBfdLijIyBMPX8y27WXMmTW4w/2//Wg1lWX1fPHOCv5z3bkoaAjWhRJmiDrkcRpFS9+gLN/j2EMk0Q/ld387h4+e/o5Zl03gqzeX89nLSwHIGpNM/4EJ3POPc1j43WYmTEk/ovGFEEIIIYQ4bOrem7/1hBiEEEJ0KCsri/z8fMDbTv14SYzX19ezfft2wJvkSE+Xay9CiJOL0WgkNTWV3NxcWlpa2LlzJ8nJyf4Oq0c6cCLVyJEj0Wq1foxGCHG8kMS4OCYGD0pk8KBEKiobmb9gMxPGpRIXE9ruvmdccgp7CqsYP2MgmREj+EfIq+g1hk5Xfjs9DhQUdBr9EcU6clomI6d5W9as+2krGo2COTyI6PgwAOISwrni2slHNLYQQgghhBBCCCFEd0tLS2tTcXg8JAzWrFnja/0uSQ4hxMkqMzOT3NxcwNtOXRLjbTkcDjZs2ACAVqtlxIgRfo5ICHG8kMS4OKbu/ecX5OWX8/2P2bz63O/a3WfEuBRe+/Z232OTLrjT45fb9vBcwV/QKTr0xeezdU8L9501g/69Io4o3hGTM3hv/YMYAw0EBB5eS3YhhBBCCCGEEEIIfzAYDKSlpZGTk4PVaqWwsJCUlBR/h3VITqeT9evXA5LkEEKc3FJSUtDr9TidTrZu3cqcOXNkotBvbNq0Cbvdu3xrVlYWQUFBfo5ICHG8kMUpxDEVEhKw98/AQ+63pX4lLxbcR27jusMav6glH4fHRou7mQX5q1i7s4T3V21qtc/iik/5T94f2dbJsUMjgiUpLoQQQggh/EoBFLUH3Pz9gxBCCNFpgwYN8t3Pzs72YySds2XLFmw2G+CtlpQkhxDiZKXX60lLSwPAZrNRWFjo54h6FlVVWbVqle/xmDFj/BiNEOJ4I4lxcUw98LezufqhcKKvXMzGuuUH3e+r0tfZYcnhm9I3D2v8/saRDAmezoTIM+lnyiI0MICZmftnRKuqysKKD6myl7Cs6usjeg311U20NNmO6FghhBBCCCGEEEKIY2HAgAEEBHgLFLZt24bT6fRzRAenqmqrtWJHjx7tx2iEEML/jrfJTcfSjh07qKmpAaBv377Exsb6OSIhxPFEEuPimAoMMLBdu5RGVy0/V39z0P2GhU1Cg4bh4ZM6PXZDi42zH3mPh561Yag+hdeuvpBf//57RvVP9O2jKAoTo8/ArAtnbOSsVserqkphcy4VtqKDnmPTz3lcknkXlw++h5qy+k7HJoQQQgghhBBCCHEs6XQ60tPTAe9arNu3b/dzRAe3Z88eKioqAEhISCAhIcHPEQkhhH8lJydjNBoB7+Qml8vl54h6DqkWF0IcDUmMi2Nq2S/b2TG/F/aaAHrrMmly1rW737TwC+jz3eXsec+M2+Xu1Nh1zVbqLd5K7oKymoPuNzvuCv468GWywsa22r6p/hdeKryXp7ffQY29vN1jd+YUo2p1tLjg4xcWdSouIYQQQgghjpqq9pybEEKI40ZWVpbvfk+uODywWlySHEII0XZyU0FBgZ8j6hmqq6t9P4vQ0FBfy3khhOgsSYyLY6q0rI6yn+Ko3hTOr01f8XT+XbjV1rPdVFXls5++YOHqJXz02jLW/pLfqbGTeoXzr0tmcd2M0Vw5Zfhhx2b3WAHw4MGlOlHbueh32uUT0Br0KIrCrrz2k+dCCCGEEEIIIYQQPUFSUpJvre78/HzfGt49SUNDA1u3bgUgODiYgQMH+jkiIYToGQ5sp56Tk+PHSHqO3y67odFIiksIcXh0/g5AnFzOOWM4VpuTqt5LqKUMu7sFj+pBq+zfJ6dxNRvjPmbAP6D44RSSUmI6Pf6Zo478y9OoiGkYNEbM+nCWVX3J+rplnBl/NWOjTvPtExBk5I4nL+Pn+Zu46OYZR3wuIYQQQgghhBBCiO6m0WjIzMxk9erVuN1utm3bxtChQ/0dVitr1671FSeMGDECrVbr54iEEKJn6NevH4GBgVitVvLy8nA4HBgMBn+H5Tc2m42NGzcCoNfrGTZsmH8DEkIcl2Q6jTimtDot3/+YzQ9P6tj5RV82vdiP97778aD7/+vFecTEhx+T2DSKlmHhkxgQnMWm+l9Q8bC5YUWb/aadM5J7X76GtKF9AXA6XKxckE1lSftt4YUQQgghhDhaitpzbkIIIY4vPbmdusvlYv369YA3iT9ixAg/RySEED2HVqslIyMDAKfTSX5+5zqrnqg2bNiA0+kEYPDgwQQGBvo5IiHE8UgqxsUx5XK6qapuxOPRUr0hkmH3bGKrKY/VNUZGR3orsLXomRVzMf2DB9Iv+OjWCNlWVkWT1U7feBc19mLSQsaiUTqeeXx2wnVsrP+Z6THnH3QfVVVZ8MFKfvlhM2sWbyUkPIh31z6ATi8zm4UQQgghhBBCCNEzJCQkEBYWRn19PYWFhVgsFl97dX/Lzs6mpaUFgIEDB2I2m/0ckRBC9CyZmZm+CUQ5OTlkZmb6OSL/8Hg8rdqojxkzxo/RCCGOZ1IxfhL57pM13HPta2Sv2+W3GAIC9Jxzpnf2r9boQRvoBqDOWQXA9qZNvL7rYX6o+ACru+WozrWjsobzn32X6956j1cKbuOz4kdYUf1Jp44dGTGNa/vfS7+gg7dmf+Pf3/LUPR+yZrF3HSyn04XH034JTaWtkee2LWFj7Z7DfyFCCCGEEEKoPegmhBDiuKIoim+dWlVVe8w6taqqtlkrVgghRGtJSUm+yUz5+fnY7XY/R+Qf+fn51NfXA5CcnEx0dLR/AxJCHLckMX4S+d/D37BpdSFvP7fIr3F8890mABwNBvhlIrNiLmVK9NkAaA74J/nSDy/w7guLj/g8Dpcbj9p9V+4qS2rRBHpQDCqnXz6OJ7/4EwZj+00YHtnyHc9vX8r1v76NW/V0W0xCCCGEEEIIIYQQv7UvMQ49p516cXExZWVlAMTFxZGYmOjniIQQoufRaDQMHOgt3nK5XOTl5fk5Iv9YtWqV775MpBJCHA1JjJ9ERowbgKJRyBjax69xZGXu/6Izb9oFTI05F6PWux5I/+BMAjQmAFoanbz7/GI8niNLJGfE9+KVq8/l4XPP4pr+T3Fu4p8ZF3Xw1uiH68y/DiXr/TKGvl/FvPtn0Dc19qD7JgZ510mPCwxBg9JlMQghhBBCCCGEEEJ0JCYmxlddV1RU5Ku686ffVosrilwvEUKI9hzYPr2ndP04lioqKti5cycAERERpKSk+DkiIcTxTBLjJ5GS3TWoHpUVi3L9Gse5Zw4HQAH0v1mPW6NoSAsZBkDIkBbO/t0paDRH/s903IC+zB6cRowpiYzQCZ1aX7yzVmX/CjoVj9HBssLVh9z3towZfDjpBt6fdD3N9S38+MEKasrquywWIYQQQghxYlNUtcfchBBCHJ+ysrJ89/1dNd7U1ERurvf6lMlkalXRLoQQorU+ffpgNpsBKCgowGq1+jmiY0smUgkhupIkxk8i/dO8Fc390+P8Gse4MQN4+tFLeOG/V5KSHEOJtZCPi/7H9qaNAEQaegEQEhjKsNEDcDpdfoz24EJKkildH0J+QxT3bv+FH39cd9B9NYqGgWHxmHRGHr72Jf7zhzf4ywVPHbtghRBCCCGEEEIIcVLrSe3U165d6+sQOHz4cHS69pemE0IIAYqi+KrGPR4P27Zt83NEx05LSwubN28GwGAwMHToUP8GJIQ47kli/CRyzyMX8vKXf+Suf3VdO/EjsWjpVr78dgM6nfef35clr7Cubgkf7HkKgCm9zmZgyEiqVuq59w9v8ty/vj7keFab47DOX1zbwFcbcrHYD++43xo/fRiauiHsaIzG41H5z+3v0lRv6fA4jc5bta7Vyn8/IYQQQgghhBBCHBvh4eEkJCQA3ra0VVVVfonD7Xazbp23uEBRFEaNGuWXOIQQ4nhysrZTX79+PS6Xt3Bu2LBhGI1GP0ckhDjeyXTMk4hWq6F3v+hjft7mRiuF28sZOKQPikbhoce/xe32YGlx8O8Hzqdf0ED2tGwnKSgDgNzGteQ2riVwFIQM1dHUePDWMP9+6jvmL9jCvEvHcfXlEzqMRVVVLnnhA2qaWzh7WBEPXTDriF/Xv258g/LsIvpMC6Flm4VoUwjGwI7fmP/v5WtZuyiHIRPSjvjcQgghhBDiJOPZe/O3nhCDEEKIIzZo0CBKSkoAb9X41KlTj3kMOTk5WCzewoKMjAxCQkKOeQxCCHG8SUhIICwsjPr6egoLC7FYLAQFBfk7rG7l8XhYs2aN7/Ho0aP9GI0Q4kQhJauiW6mqym2Xv8jdV7/K8//+Fq1Ww7AhfQAYNTwJgNlxl3Nn2n8ZF3k6btVFb1MKgdogAgjinNNmc+u9Zx90/BWrduz9s6DTMe1bgkSjObq1SAJMRhQPZFh68fpb9/Dioj9jMLY/12RD3TLe3vUoxS07CAoxMfmcUYRFyxc/IYQQQgghhBBCHDuZmZm+tVmzs7NRVfWYx/DbtWKFEEJ0TFEUBg4cCHivuW/dutXPEXW/rVu30tjYCEBqaioRERF+jkgIcSKQinHR7eprmwGoq/H++dg/L8BqdWAyGbHbnazbsJufQ56m1lVGZsgYpkafRz99FnvYyu6s+Wz3BDKSKe2Offdtp/HDwmzOP3tkp2JRFIUPfn8Jm/aUMSW9f5vn91iy2dG8lhERcwjRH7q6/h+vXsuWXwvIGjuAIHMAAAs/Wc2mFflccutM4pO8x3tUDx8X/Q8PbhweO9f0/3unYhVCCCGEEEIIIYToSmazmaSkJHbu3EltbS2lpaW+9urHQklJia9iPSYmhj59+hyzcwshxPFu0KBBrFixAvB23xg5snPXxI9Xq1at8t0fM2aMHyMRQpxIJDEuupWiKDz66jWsW1HAqWcO820zmbwtx//zzAIWLMphzEPlKFrIaVxFdoP3DU8Fmt0NfFT0P6rspcyOu7TN+OPHDGD8mAGHFVN8WAjxYW2rtVXVw/u7/4FLtVNjL+H8Pn895DhB5gBOmTnI97il2cYTd7yPqqq43R7ufvoKADSKhvSQ4eQ2riEj5MT+sCKEEEIIIbqHoqoofqjqay8OIYQQx7dBgwaxc+dOwFs1fiwT47+tFt9XvS6EEKJjsbGxREREUFtby65du2hqasJsNvs7rG5RWlpKUVERANHR0fTr18/PEQkhThTSSl10u/5pcVzwu4mERQa3ec5qdQLgatb7tinK3tsB+/1a/UN3hwkoRBjiAIg09j7sowNMBgZkJQKQNWYADY4WCpoqADjTfBMXWR5gTPiRr2kuhBBCCCGEEEIIcbQyMjLQaLyXBHNycvB4PMfkvBaLhZycHAACAwPJyso6JucVQogThaIoZGZm+h7n5ub6MZruJROphBDdRSrGhV/dddsshg5OZNHmJvQTt6Kq+9cAP7AWZUzkjG6PRVEUrur/H+od5UQZD7+Vl0aj4ckv/4S12YYmSMucJU9Q52jhr5ln8PXF86kqree8G6Zy7V/P8h1jcTVSbttDUlAGWkXblS9HCCGEEEIIIYQQoo3AwEBSUlLIy8ujqamJPXv2kJSU1O3nXbduHW63G4Bhw4ah1+s7OEIIIcRvDRo0iOXLlwPeyU0nYovx5uZmsrOzAQgICGDIkCF+jkgIcSKRinHhVyHmQDLS4sn9xsza+4eRlH8ZGUGjSW04Fb4azmn2W3ko6z3mxF9xTOLZuKuK1xbvoriu4YiO12o1BIeasLgc1DtaACiy1NJU773fsHeddfCuPf7f/Lt4ufA+vi97h61rC7n11Id497Fvjv6FCCGEEEKIE4vag25CCCGOe4MG7V8absuWLd1+Prfbzdq1awFvYcKoUaO6/ZxCCHEi6tWrF9HR0QAUFRXR0HBk17F7srVr1/omUg0fPlwmUgkhupQkxoXfpabEcsbsIQzPSOW8ydOZl3w37tV92PyRhedvX4bqPnZtUn7/1he8+fN6Hvxy8VGNEx1g5qmRl3FT6jSuT53Cox/dwnV/P4vr7z3bt4+KB6vbAkBefgGP3voW2zfs4u1/f4W12XZU5xdCCCGEEEIIIYQ4mNTUVF+iYevWrb4ERHfZtm0bTU1NAKSlpREWFtat5xNCiBPZge3U9y1RcaKQiVRCiO4miXHhd3VVjZxz2hAe/ecF9IoOAcBh27v2uNOFegyrUlJiIgFIi4s+6rEmx6RzfcpUgvUBpAzuzbnXTcUcFuR7XqvouCH5ASabLmTxjQ2UF9ejDzZxyulDcbmOzfpeQgghhBDiOKGqPecmhBDiuGcwGEhLSwPAarWyY8eObj3fqlWrfPdHjx7drecSQogT3YFdP060xHhOTg4Wi7eYLD09XSZSCSG6nCTGhV9VVzRyzRlPcdP5z/Lj1xtQVRWPx8Ps80bxx/vO5sl3b8Rg0B2zeN687kK+/dM8bp81wbet0VnFF8WPsbL6sy4/X0Jgf6YmnE1UeBSKAnN+N5lVS7dz7eR/0dzQ0uXnE0IIIYQQQgghhIDWiZV9a7l2h7KyMoqKigCIjo4+JuuZCyHEiSwyMpLY2FgASktLqaur83NEXUNV1VYTqU7E9dOFEP4niXFxTDgcLtb/WkDTb5K9zU1WHHYXzhAj/3ruRx55Yj7/feBLbrrgWRZ+tYG+yb3aHc/j8aB2Q7WKQaelX3QEirK/ffvK6s/JafiJRRWvUe+oAKCyuIb5by6jvqrxqM8ZEGjgpSV/4f0N/yQoOACAxjoLjXUtOOwuVi7Ipqb8xFsrRgghhBBCCCGEEP4zYMAAAgK81yG2bduG0+nslvOsXr3ad3/06NGtrrkIIYQ4Mge2U+/OyU3HUnFxMaWlpQDExsbSp08fP0ckhDgRSWJcHBPPPPgVf7nhDW6f93Kr7UkDYrj3qUuJ6BMBwOq1O8nb7J1FnLN+N99/trbNWPm5JZw3/l9ce+ZTNDdauz32pOAhaNASbexLsM4b518veJr/3vEOD1//cgdHt9bisnPT6reYt+JlqmxNvu0Go47QiGDOvX4ql/xxJvc8cwXxSVG8eP9n3H/tK9w69z94PNJeXQghhBDiZKWoPecmhBDixKDVahk4cCAATqeTvLy8Lj9HS0sLW7ZsAcBoNDJ48OAuP4cQQpyMTsR1xn9bLS4TqYQQ3eHY9agWJ7V9leJN9W3bg4+bNpCQ2FA+/XIdp80YhMbu4u+/fxOA+prmNvuv/7UAq8VOicXO7h2VZA7r262xp5rHcGfGR+gUPYrinUtiDDQAEBBoPKyx1tTsZEVVPgCLy3O5KKl1O5ggcwBX3nG677Hd6p2t7XS0XWt9Xe1SFld+woSouYyNOu2w4hBCCCGEEEIIIYQYNGgQ69evB7wVhwe2V+8K69evx+12AzBs2DAMBkOXji+EECer8PBwEhISKCkpoaKigurqaqKiovwd1hFrbGwkNzcXAJPJ1OXvR0IIsY8kxsUxcdt957B0/iaGjxvQ7vP9ekcyvF8vokMC6Z8Wx0Mv/o7iXVWcdt7INvvOOnsEBbmlRMaEkD64d3eHDoBe0zoB/tAnt5G9Mp9hkzIOa5xhEX0ZHNabFpedSTFpHe7/+wfOI2tMMpmj+qHVtm7wsKTqM2oc5Syq/OSgifG8pg3kNW5gQvRcIgztt6UXQgghhBBCCCHEyalv374EBwfT3NxMQUEBNpvN1179aHk8HtasWeN7PGrUqC4ZVwghhFdmZiYlJSWAt2p88uTJfo7oyK1Zs8a3dOqIESPQ6SR1JYToHvLbRRwTYRFBnH35uIM+/9Lj8/n+83W4YswYQwJ4/F8Xcua4se2PFRnMX/9zSXeF2ikhEcGMO33Y4R+nD+St8dd3ev8gcwCzLj6l1TZVVXn5wS8oU0yEnhXK5Oiz2j3Wrbp5a9e/casuGpw1XJF012HHK4QQQggheghVpU0LIX/FIYQQ4oSh0WjIzMxk1apVuN1utm7dyrBhh3+9oz15eXk0NjYCkJKSQkRERJeMK4QQwiszM5MFCxYA3q4fkyZNOi7bjzudTtatWwd435dkIpUQojvJGuOiRwgKDkDVaXDrNLS0OFi1ptDfIR0xVVWxOpxHNYbH46FkRwVul7vNc9Vl9Xz+yk/kvmwj7L2ZTIw+o90xirZXEmAJByAhsP9RxSOEEEIIIYQQQogTU1ZWlu9+dnZ2l427evVq3/3Ro0d32bhCCCG8QkJC6NOnDwDV1dVUVlb6OaIjs2XLFqxWK+BN9pvNZj9HJIQ4kUliXPiF2+Vmy9qdNDd63/Cuvm0W//rvFcyZmcWYUf2IijSzObv4mMWjqiqLftrKL6sKjnqsOz+cz4j7nuWVn9a0+3yLy87Fy59j6o+PsK2hrNVzNocLp8vNM3e+yzVj/s79Vz7X5vjI2FBGT88kNDKYKWcNb/ccLo+buy98hl8vNRD87jSm9jr3qF+XEEIIIYQQQgghTjzx8fGEh3sn1u/cuZPm5uajHrOiooJdu3YBEBkZSXJy8lGPKYQQoq3MzEzf/ZycHD9GcmRUVZWJVEKIY0paqQu/eOHR+Xz9/koSk6J4+avb0Om1jJqQyqgJqXy3YAv/fvI7FOD1F64mqW9Ul523qdnGPf/4BKvVwSP3nU9MrxAAlizP44F/fw3As49dSt8+kbz53gr6JEZw1pzDayFWrf+OWbNqWVlk5Fratn3Z3ljBtkZvQnx5ZR7poXEA5BRVcNWzHxFkNJCaWw1AYTuTAzQaDfe/ft1Bz3/fxq/4bM964qcZUD5tIUSJZEd2MTqDjqS0uMN6LUIIIYQQomdQPN6bv/WEGIQQQnQtRVEYNGgQy5cvR1VVcnJyGDNmzFGNeWCSY9SoUcdla18hhDgeDBw4kO+//973+3vq1KnH1e/c3bt3U1FRAUBCQgKJiYl+jkgIcaKTxLjwi9qqJgDqay1tnmto8laRKxoFrbZrmxpszikmZ2spAL+u2cHZe5PewUFG7zkVCAw08PEXa/nkS++6JkMH96Fv78iDjllR2cjd936MKdDAfffNJDV9l/e4uLp29x8UlsC5vUdQbmvgzN77K7437SrD5nRhc7qYc+dsShdvZ8q5hz9DbkFpDioqIWfEcvdZF4ECt8z5DyjwzDd3MCCr92GPKYQQQgghhBBCiBNXVlYWy5cvB7zt1I8mMW61WtmyZQsABoOBoUOHdkWIQggh2hEcHExSUhI7d+6ktraWsrIy4uPj/R1Wp61atcp3/2gnZQkhRGdIYlwAYGtx8PWHq0gaEMOoiandfr5b/nYm6YN7M3xscqsZbKVl9bz8+jIArvvdJHonRnTpeYdl9Wb0iH5YrQ4mjk3xbR89oh8vPHkFBoOO5H7RVFQ2oCgQER5EZETwIcdcsXoHu/bUAJC/rZH0uHHsaclhYvzp7e6v02i5d/DZAOxsruKb4o3MiMvkzFEZ7KioIdQUwNxpQ9HOaL9Nekf+PmQuX+7ZyDUpExgZ1Y+f52/yPqGCpcl2RGMKIYQQQgg/U1Xvzd96QgxCCCG6XHR0NDExMVRUVFBcXExdXZ2vvfrh2rBhA06nE4ChQ4diNBq7MlQhhBC/kZmZyc6dOwFvO/XjJTFeV1dHXl4e4E3wDxw40M8RCSFOBpIYFwB88OpPfPDyTyiKwtsL7iIqJqRbzxcWGcwFv5vYZnuL1YHb7e3PGGxq+8VpxaoCvvx2I+eeOZwxI/sf9nlNJiOPPXhBu89lHNBmfPwpKXzx3h8IDNBjNOoPOeakcSksXrYVU4CB4YP7Ygr8S6disbudXP7Li1hcdnIaSrgncw5/P39651/MQcxOyGJ2Qpbv8fjZg7nnmSvQG3QMGZdyiCOFEEIIIYQQQghxsho0aJCvnW12djYTJ+6/bqOqKna3B7eq4lFBo4BWUTBqNa0KHjweD2vWrPE9lrVihRCi+2VkZPDtt9/62qnPmDHjuGinvmbNGtS9E29HjRqFVqv1c0RCiJOBJMYFAL3iwgAwBRsJNBn8FseA/r24989n8NV3myjYVcVX321k+uQMgvYmyZ96fiEVlY0Ul9Xx7hEkxjtr05pCHv/rpwwa0Ze7H7rgkB8kIiOCeebRSw/7HAoKGrzj6pSubRnf6jyKwpSzRnTb+EIIIYQQQgghhDj+DRo0iEWLFgGQk7edfkNGUm93Umt1Um9z4mqna4hOUQgL0BMRqCfMqKehrIj6+noAkpOTiYw8+NJ0QgghuobJZCI5OZmCggIaGhooKSnp8Wt1OxwO1q9fD4BWq2XECLl+LYQ4NiQxLgAYPTGVh1+6iqSUWILMAV02bl29hS++3sDgQb0ZMaxvm+e35BSzu6iGmdMzMei9/xwLdlaxYfMeNmzeA8DWbWXc86fZAEyZkMaHn61hyvi0LouxPQu/2kBVeQNLvt3MdXfMJiLKfFTjNTRa0WgUzMEB/N+6j1lStZVrkidxa/qphOpNTI1N76LIO6/Z0cAX+W/SN7I/E2PnHvPzCyGEEEKIw6DuvflbT4hBCCFEtwgNDaVvxiDcodGE9UlmdVk9Cof+1e9SVaqtDmqsDu9blSeIxDFTqCnIZdQoqRYXQohjJTMzk4KCAsDb9aOnJ8Y3bdqE3W4HICsri6CgID9HJIQ4WUhiXLB1UxF3zHsJnU7L/z6+mfDIQ6+pfTj+9sDn5GwtRafT8PXHtxIYYKChsYUb//g2DY1WLFYHANU1zVx12XgA4mND93/rUiAgcH8r85uuncr1V01Cp+vetipzLxxDQW4pWSP7HfXPIy+/nJvueAetVsMVt05ivmUzigLPbV+ECtyRMRu95tj/V3z2iyepT88mu3IZaWFDiTLG41FVNGjYnL2HpD5RhIXJBxIhhBBCCCGEEOJEV9pkI7e6iZAh41A9HhSNt7NdZ+dD+S7jaDSE9R1AeL9Uigw6zM024oO7rgBDCCFE+9LT0/nmm29wu93k5uYya9asHttOXVVVVq9e7Xs8ZswYP0YjhDjZSGJcULKnGo9HxeFwUVFaT+9+0V0y7q7d1eRsLfU9vuqG17jnT7P5bsEWysob9n+5UiAoaP964nNPG4LT5WbX7mqGZPUmbUAsi3/ayrgxAwgI0Hd7UhwgLSuR5z+9pUvG2rmnGqfHTcsAO0uKc+htbKZGG4A9QI/qx9Kfhi0a1BRwN2hBNXH6oqeptbcwfns/1i0tQefy8PnbfyA0QpLjQgghhBBCCCHEicju9rCpooHiJptv276k+JHad3yjw8XKkjoSzQEMiQnFqO2+ZeSEEOJkFxAQQHJyMtu3b6epqYk9e/bQt2/bDq49wY4dO6iurgagb9++xMbG+jkiIcTJRBLjghHjU0gZGE+wOZAho/t12bg5W4t9910uDxWVjXz7w2ai97Yl39eOa9bUTM7/zRrY58wdDnhnj51/+XPU1FoYkpVIwY4qYmNC+O9jl7ZKpvdk0ydl8GndGtYEFqKLWszY4Bq0ahBnJT5BibWeqbEZnR7r3g8W8MOm7fztvOmcMbLzx7Xnlmtu4uuPFjN26hCKW5ooaakHYJu9HACXAmV7qiUxLoQQQgjRAyiqitLO2q7+iEMIIcSJobTJxvryepye7v3dXtJko9JiZ3hsGPFduHyfEEKI1gYNGsT27dsBbzv1npoYP7BafPRoWXZDCHFsSWJcsPDLDeTneiu7t20qImvk0SfH6+tbeOzpBfs3ON0EmwM4a85Q0lPjGNC/F/2SoojtFdphgnvf97NNW7yJ9h07q8jfUcHQwX2OOs5jQa/XMnpIP9ZsL0TBOzs6QK8nPTSOjLAE337fL8zm/U9Xccn5Yzht+qA247g9Hr5Yk4Oqwjfrth51Yjw+KYob7r7QO7bq4arkcVTamrg8czTPFXxPelIv0oYcHz9jIYQQQgghhBBCdI6qquTVWsitbjo25wMcHpWVpXVkRplJjQjqse19hRDieJaamopOp8PlcpGbm8vs2bPRHGUXkK5WU1NDfn4+AKGhoaSnp/s5IiHEyUYS44LSPTW++xG9QrpkzKKS2tYbdBqabU7+/eR3PHTfecyYOrBT4zQ0WJk6MZUvvtmIZ2+GPDrKzKCBCR0c2bNcPWAS6aHxJAaGYPMUEB+YiqK0/lDy2js/U1HZyOvv/NJuYlyr0XDnmZP5cdN2rpvRtTPptIqGOzJn+R4//8r1XTq+EEIIIYQQQggh/E9VVXKqm9hea/HL+XOqm3B6PGRGmSU5LoQQXcxoNJKSksLWrVtpaWlh165d9O/f399htbJq1Srf/VGjRvW4xL0Q4sQniXFBVMz+ZPirT37PvU9edtRjDhqYgF6vwen0eDfs/bJTUlrPvOtfpW/vSDIz4klPi6O+oYU5swYTGREMQHlFA6vW7CA7t4Qfl2z1jWkKNDAkqzd/vWvOMVlnvCtpFQ0Te6XufdR6zZSckgrW7y5lzulD+PSztW3ayh/oysnDuXLy8E6ds7Swkoevf5mY3pHc8+K16A2d++9e0LyF93Y/QW9TCvOS7kGjHF8/ayGEEEKIE5Kqem/+1hNiEEIIccTyai1+S4rvs73Wgl6jIS0y2K9xCCHEiSgzM5OtW73X1LOzs3tUYtxms7Fp0yYAdDodw4d37jq3EEJ0JUmMC9Kzevvur1i0lb/c8Br/fP6qo5qtpSgKP351J2df/F/qG2xtnt9dVMPuohrmL9gCQHZOCbv2VON0uKlraGmzf3xsGNf9bhJTJx0frVXcqocbV71BTn0Jj4+4hHHRA3zPeTwevv9sHXq9lkmnZ3HFSx9hc7o4f+Qgvvrgli6LYcmnq8nfuJv8jbs596bdDByV3KnjttSvoMXdRF7TehqdtYQZorssJiGEEEIIIYQQQvhHaZPtmLVP70hOdRNmg07WHBdCiC6WmpqKXq/H6XSydetW5syZg1bbMwqfNm7ciMPhAGDIkCEEBgb6OSIhxMlIEuOC+259u9Xj9b8Wct8t73DPvy8kKPjovqB88cGtfPPdBpb9ks8pI5N49uWleDxt99uUXYTd7mp3DK1W4bXnryIgwHBUsRxLVbYm1tTsBGBxeW6rxPjPC3P57wNfAhAaGYQ5wIjN6SIsqGs/CEw4cziLP1lJr8RIBmQdeq1wt8vNi3/7iPqqRi7410TKTXvoY0olVB/VpTEJIYQQQogjpALtfI4+5qRgXAghjkt2t4f15fX+DqOV9eX1RJp6YdRKG10hhOgqer2etLQ0srOzsdlsFBYWkpKS4u+w8Hg8rF692vd4zJgxfoxGCHEyk8T4Sc5mdexvd36A1cu3c+slz/PKV7cd9ZpPc2cPY+7sYQBMmzKIhx7/ltKyOoxGPXNPG4zHo/LMi4sPevxj/7zwuEqKA8QEhHDdgMlsrivi0qRTWj0XGW0GBTSKQlR0CJ/dcjkFFTWM7Ne166b3TYvn1VX/7NS+2SsL+OqVJQCkDe/H72/+l++5L19fxvfv/8qVd57O2JlZXRqjEEIIIbpOfWMLQYFG9PpDVwOoqsovq3cQEWZiYFr8MYpOCCGEEP60qaIBp6dnzW5yelQ2VzQwKj7c36EIIcQJJTMzk+zsbABycnJ6RGI8Pz+furo6APr37090tHQpFUL4hyTGT2IOh4sbzvnvQZ8vL6nD6XBhMOq77JxhYSYe/ecFrbY5nW527KyisrqJtet3ARAebiIuNozr5k1k2JC+XXb+Y0VRFG5Om9Huc5nD+vLKl7eh1WmIS4wAIDLYdCzDa6P/oETikqJprG1m2OSMVs+9+ei3WC123v/vAkmMCyGEED1MU7ONV95ZzqacYgp3VxMXE8pb/7sao+HgH/PnL8zm3898j6LAO89dQ++EiGMYsRBCCCGOtdImG8VNbZe58zcVKGqykdBsI/4oOxYKIYTYb8CAARiNRux2O9u2bcPlcqHT+TcVtGrVKt99qRYXQviTJMZPYlaLncqyesDbrtztVumdFEXRrmoA3C4PH766jCtumt6tcej1Wu7+02wAdu2ppqi4lgljU466Ur2nsbqbWV75HuGGOEb2ndup11dubaDOYWGAOQZQKSlu4K8PfEavaDOP3Hcexi6atGAOC+K1Nf9EVdU2a8ufdfUk5r+zgjlXjAfAo7rZULecEH0EyUFZrCssJqlXONEhwV0SixBCCNFTNDXb+H5xDoMzE0lLjvF3OK28/9lqPp+/kf59I1mxptC3vayigYU/bWXOqQefzLbvI4iCsv9BBzbnFvPB52uYNTWTyeNSjyp2cWQUVUVR/V/p1xNiEEII0XmqqvaYdcUPJreqibgg4wl3HUgIIfxFp9ORnp7Opk2bsNvtFBQUkJ6e7rd4Kisr2bnTu+xoeHh4j6hgF0KcvCQxfhILDQ/iz/++iCf/8Rk2q9O7UaNw3rzxfP72CjweFcdB1v3uLkl9okjqc2Kua72m5ivW1H4FQFLQYKIDDl0JX2Vr4qylT2H3uDBp9SiKhvPqRlFcWkdxaR3bCyrIykzssvgURWn3S+i8u+Yw7645vseran7ky9JXAIivvIqX5+cTFhTAwnuvw6g/9K8Ua7ONnFUFZI4ZQKDMBhdCCNHDPfPKYr5fnANAVkYCT//rIhwONwuXbSUzPZ7kJP+0fnO7Pbz41jI8HpXyygY0ioLngGTlf55bQKg5gLc+XsncUwdz5mlDWh0/e/ogwkJNRIQF0fuA1qXfLcpm4U+5XHnROIb85jPGs68sYVtBOZtyiiUxLoQQQhxHam1OGh3H9trO4Wp0uKizOYkIPL6W0RNCiJ4sMzOTTZs2Ad526v5MjB9YLT569GiZCCWE8CtJjJ/kNBplf1IcKCqsoqiwisGj+jHjzGFMOU1aZ3eV+MAUFDSYdKGY9ZEd7m9x2bB7vF9eW9zev6PwTBMZqXHE9AohPTWuW+M9mACtt+27ompYsWgboKXF7sTt2b9WvcvjZnllPgPMvegdtL896/1XPMfG5dsYNjmDhz/907EOXQghhDgsoSGBvvtbtpZQWd3Eu5+u4usfNmMKNPD1O3845HreNrsTrUaDTuftxtIVX/6/X5zNxuxiPAesEXratExuvnYqn32znlff/YW0ATG8+eGv5O2oYE9JbZvEuKIojBuV3GbsJ57/EbvDhd3p5tmHL2n13IRTBrCtoJyJYwYAsH7zHl5+ezkzJmdw3tzhR/26hBBCCNE9CussKHjblvdUCrCjziKJcSGE6EL9+/cnMDAQq9VKXl4eTqcTvb7rlkztLKvVyubNmwEwGAwMGzbsmMcghBAHksT4SS45vf3kqsftYeZZcpGzKw0wj+K2tLfRawLQa4wd7p8UHM0/h5zH3zZ9CkCQ1ogn0MMLT11BTWUjf772VYLMgfzl0YsIMB27L49DwyYSZojirqlP07ingMzT0vjL/RdgMu6P4aXty3h++1JMWgNLZt2JSWekpKWOFVMacMSaadrefMziFUIIIY7UDfMmk5wUzXeLshmUkUBcTCiBAd73O1VVcbrd6PVa7A4Xep03Qb5q/U5ios3YHS5u+fP7BATo0Wo0qKrK849dRkJc+KFOeUjFpXU89NR3AMT1CsVitTN2ZDI3zJuEOSiAeReNY+7MwYSGmPj2x80Uvf4TZ80a0sGoYHe4yNlWyqRxKSxato2p49Pa7HPlhWO56OxRvrXL3/xwBTl5peQVlHPunGEy4/9YUIGe0Ma8B4QghBCic+wuD8VNtla/uu+94jxy1vzKlLMv5JZHnqKyuIjfz/Cu9Xr/m58waMy4dsd65s+3sfSLj8gcNZYH3v60S+NUgeImG4NdHow6TYf7CyGE6JhWqyUjI4P169fjdDrZvn07mZmZxzyOdevW4XJ5i7+GDh2K0djxdXEhhOhOkhg/ycX3ieT3f57D608vYPSkNE49czgle2qYOHOQv0M7IZl0oQd9rri2gVeXrWV8Sl9mZHqrseYmDqXBaeXDXSvZ01LLM3kLmZMwlFULc8nZsAeAzet2Mnpi2wvY3UVRFPoFDSS9XyZrC7M5d3gGg/u2nmDh2Fvp7lY9vtauH+5aQ10/oF8wV95+kW/f7aXVGPVagt0KTruL2L4nZit9IYQQxx+dVsNp0wZx2rT9n4tmT8/koy/XYrU5eeqFH/l5VQHNFgexvUI4b+5w/vfaUnQ6DfMuGofD6cbhdPuOvfMfn/Dei9cecRK5oclKQIAem83JjVdNZuqEtu//keHBAJx12lDOOm1op8a979Gv+GX1DoZl9WbxZ3eg0bQf376kOMBp0waxLb+cmVMGSlJcCCGEOIauuuoq3nzzTSZPnszSpUsPuW9Vi73NfKbEAak4HHZi+xx6ebdjTQWqrHYSzYEd7iuEEKJzMjMzWb9+PeBtp36sE+Mej4c1a9b4Ho8ePfqYnl8IIdojiXHBWZeO5axLx/oej/JjLMeTXc1V7GiqZFJMOnrNwduogreq7Puy5ym15jEn/o/EBvZvs88TP/zM91u288naLay77w8YdN7/npf1G0uDvYWXCpZiaNHRVGFjzOR05n+8BlOwkcyhR/ZlduOqHTz/yLeMnZbBVbecetjHP/jBLTQ3tGAOCwKgzLqL78rfJSV4MDelzSbZ3IvUkBiC9d61xCfHpPHhzjX0N0cxpH8/AFbk7eaGFz9DoyjEzd8N1RYe/vRPDJuUcUSvSQghhOgudruTR/77PTV1zRj0WhxON98vzvU9X17ZyLKV+QB4PCqTxqZQU9tMYKCBJT9vo7yykbLKBhxOd6sEc2epqsrd93+CzeZdXsXThZXDtfUt3j/rLAdNiv/W7OmDmD1dJlIKIYQQPVm93dmmjfr1/3jYX+EckgLU25ySGBdCiC6UlJREUFAQFouF/Px87Hb7Ma3Y3rZtG42NjQCkpKQQGdnx8qJCCNHdJDEuxBFodtq45Ofnsbqd3JAyld+nTjvk/g3OStbXzQdgQ913zA68uc0+g3vH8v2W7aTFRqPX7k+0r63ZyWuFy0ABV4OHJcvzuP6KSbz4+a3tnqumtpmwUBNa7aHbj3353kp276hk945KLr1+Cgbj4a0xoyiKLykOsLTqC7Y3bWB70wZGRUzjjN6tW7eOiOzLqjl/bbWtttl7Id6jqtgVD0YVyndVw6TDCkUIIYTodhuzi1m0fBsAV186nl17alj887ZW+xTsrGLW1IGcPmMw/fpEcfvvvRPP5s4czLsfr2TU8H7tJsVVVaXUWk9MQAi6g0y2q6ppwmDQA3YAdu6uhold89ruv/sMFi/fxqSxqV0zoOgeqtpDWqn3gBiEEOIklZSUxO7duwH46aeffF1blixZwqhRo7jsssvYtGkTlZWVuFwuouMTGHv6WZx/423oDd7lYH7bSv1ILPjwHT578b801FSTOXosNz7wKFFxCQAs/fITvnvnNSqKdtPS3ESAKYgBWUO55I93kzLYu66s2+3m/af+zS/ffUVdZQV6o5GY3n2YddZ5PP/QfQDY7XYeeugh3nvvPfbs2UNoaChz587l0UcfJSpKOs0JIURnaDQaMjIyWLt2LS6Xi7y8PAYPHnzMzr9q1Srf/TFjxhyz8wohxKFIYlyII6Cyv1LLo3o63D9UH02aeSyl1u0MCp3S7j5XTRjB6YPTCA8KbNWS9J71H+Hae46IlmBmzDx4NfXbH/7KK28uZ8igRP776KWHjOm0c0ewPaeYsVMzDjsp3p7MkNFkN6ykf1AmRo2pU8ecPiwdh9ONyaiH4VU01VmYcfHYjg8UQgghjrGBaXEM6BdNU7Od6ZMyePntZb7nIiOCqKm1YLU6+GFJLpERwQzL6u17vnd8OH/+42wAGpusPP6/BQQGGrj996diNOh4Nm8hrxQsY0REEq+Nu6bNufMKyrnxrncBldOnDyI01MTF53Rdj5/YXqFcet6RX6RQVVXaqQshhBDHwLBhw7BYLFRXV2M2mxk4cCAAISEhWK1WvvzyS2JiYkhNTaW6upriXTv55LmncNhszLv73i6JYUfOJvK3bKBXQm9cTgcbli/h3zdfzaOffo+iKORvWs+e7duIiosnMjaOksIdbPrlJ7ZvXMcz3/9MeHQvvn/3dT5/+Vk0Wi29B6Rht1kpyt/Oz4sWoKr/QFEUzj33XObPn49WqyUzM5Ndu3bx+uuvs2rVKtauXUtgoFSWCyFEZwwaNIi1a9cC3nbqxyoxXlZWxp493qVAo6Ki6N+/bQdVIYTwB0mMC3EEzPoA3p1wIwVNFUyPHdjh/oqi4fw+f+1wv14hwbz760Z+2lbIbTPHMzAhhkRTODWOZgAeu/xC+kdGH/T4LTklAOTmleHxqIdshzpmcjrvTk7vMKbOGhw2jkGhp6BRvJXqeY3reXfPE/QxpXB1v7+hUdpWwGk0CueesrcN67CjXyf9418389qitVw9fSQXjD12sx+FEEL4n6qq3LnuA1ZVF/LPYecxJabr3uMAzMEBvPb0Vb7HF501iuLSekYN68uN8yZTuLuKW/7vA5otdiLCgrDbndz9wKeUVzby8N/OoX9f7/v34uXbWLpiOwBTxqUydlQy2fXe9++tDaXtnvvz+Rtwu72T5CaOTWH86AFd+tqOxsdfreO515dyxszBJPeL5tOv1zPvorFMl2VRup4Hb59Zf+t4TqgQQohu8vnnn/vWGB8+fHirNcYdDgc5OTm+ZLnN5WbWeRex7KtP+WX+l12WGHfY7fzni4X0SUljwQdv8+J991CYu4WNPy9l2MSpnH751Vx5198wBnonzJft3skfZo3Hamlm3U8LmXH+pZTt3gnApDPO81WtWy0WSgrzsbs9rPrlZ+bP93bdW7x4MZMmTaKsrIzk5GRyc3N57733uOaatpMJhRBCtNWnTx/MZjNNTU0UFBRgtVqPyeSi31aLy2RqIURPcehey0KIgxpgjuG0+MHoNUc2v8TubuGVHbfy5LbLqbAVAmBzunjo6yX8nL+bF5euBuDqAZN9xzhV9yHHvPm6qcyZNZj7/3JWp9cIPZDL5aZwV5Xv4vvh2pcUB9jSsAqHx0ZB8xaaXY3t7r9tXSE7thQd0bna8/LC1RTXNvDywtVdNqYQQojjwy+V21lYnkuTy8YPJVsAaHLa2Fi7B3cnurscrsz0eF57eh6/v2oKiqKQnNSLt569mv89cgkXnDmCgp1VbNhSRFlFAz/tTYQDjBjSl/BQE/GxoWSkxgHwf4PmclHfMTw1qm23l11FNcxfmA3A6GFJjB2Z3OWv5Wgs/CkXt9vDgp9yefWdn9lVVMMr7/6MxyPttoUQQohjSavV8s4775CamorRaCRQr2PZV58CUFdZ0WXn6ZuWQZ8U78T2CXPP9m3fvX0rAC3NTTxy8++YN2Yg52ck8IdZ43377ItjxJRTURSFpV98xLUTh3HvlefzyQtPERwahkdVWb16/3f6yZMnoygK8fHxWK1WAFauXNllr0cIIU50iqL4Jk15PB62bdvWwRFHr7m5mexs7/fYgICAY9q+XQghOiIV40L4SaV9ly8hXtC0lpiA/hh1WqZk9Gd53i6mD/RWg03qlcrTIy9Do2gYHXXoljN9e0dy9x9P6/DcbreHbTklJPWPJig4wLf9z/d9ypr1u5h9ahZ//tPsgx6/bkU+rz75A9PmDOX8qya0u8/E6LnUOSpICsogRB/e5vn1S3P5y/lPgQLP/PhXUob27TDujlw9bRSvLlrN1dO6rr2sEEKInim/sZxHc75jRGQSN6ZO5fGtPwCgV7Rc3n8cqqpyyfLnKWqp5Yr+47hz4MHf17pKVGQwUZHBAKQNiGH6xHTKKxuYNTXTt0/vhAi+fPtmXG4Pr7yznGaLndjoEErWNbI+vYh+c3vR1GTlvc9Wszm3mHPmDCcizERdQwvnzR1+RBPfutP1V07i7Y9XMnv6IKpqmnnj/V8oKavnH49+xYN/Psvf4QkhhBAnjUceeYSHH34YgL59+xIdE0Ph7iJqK8rweLpukqByiPYlVouFB6+9FEtjAwZjAP0yBqHV68nftB4Aj9s72X/YxCk89tkPrPj+G3Zvy2Xn1mxyVq9g6ecfcU7edlR1/wS79takjY2N7bLXI4QQJ4NBgwb5KrhzcnIYNmxYt55v3bp1uPf9zh82DIPB0K3nE0KIwyGJcSH8JCEwjaFhs2h0VpEVNg3wzuD73xVn0Wi1sXFPGS0OJyaDnsld3A725WcX8tn7K0noHcFrH93sa2Wze08NALt2Vx/y+I9eXUZhXjm7CxZw3rzx7bbCiQnozXXJ9x10jJZmm/eOCpaWZpweO3qN8che0F4Xjx/CxeOHHNUYQggheq4iSy2b64qYFpfBW4UrWF1TyOqaQi7oO4px0QPY2VzFGYlDyQxLwK16qLF7lyKpsDaiqioulwe9vu3SHl1t155qvvxhE+fOHU5WRkK7+2zYvIf3Pm3d4WRLbglrNu6mpLQOq80JwAtv/ATAvXfOZeyonlUtDt4K+BFD9k9u++yb9VTXNrNhyx6amm0Y9FqMRr0fIzxxKKqKovq/Er8nxCCEECczk8nbotxisbTavq+KOjU1lby8PJrsDqbMOp3airIuPf/u7VvZk59Hn5Q0fpn/lW9739QMSnfuwNLYAMBN//oPE+eew/aN6/i/i89oNcauvFxCI6K47E9/BqC6rIQbpo6ivrqKJx57FFxO375z587ltNNOIzg4mICAANauXcvQoUO79DUJIcSJLiEhgdDQUBoaGigsLKSlpcX3ftLV3G63b01zRVEYPXp0t5xHCCGOlCTGhfCTRmc1WkXH8IjZhOijWj1389tfsW5XCRNTk3jxqnO6/NzVld7W5nU1zXg8KlqtN7H94N/OZsnyPE6fmXXI4087byQ78yuYNnfIEa8PM37OMP7yyvU4gyx8Gfoon+W6uXnAw8QE9D6i8YQQQpzYXB43l/38Ag1OK+fXjuLUuEx+LMthWEQfwg0m7s48nRtTpmLWezuh7Gyqpn9wFFpFy50Zp3HbfW+TX7KLIUmDuO6Kib41v7vDQ0/NZ1tBBV9+t5EzZg3mvDnD6ZMYiaqquD0qOq2Gfn2jCA81YbHaGZgaz6acIlQVgk0GjEa9LzG+z669k9d6ugOXYznj8mcJMQfy1v9+R1hI91x0EUIIIU426eneifNr164lKyuLoKAglixZwuDBg/nmm2/Yvn07/fr1w+F00tjc0uXn1xsM3HPBbHol9qG0sACAfhmZDJ0wBUtjAwEmE7aWFp772x189tKzNNa2nXi/4ruv+ezF/xIZG0dIeCTVZSUAGAMDMRgMGAKMJCcns2PHDv7+97/z1FNPodFoqK+vx+l0Mm/ePDIyMggODm73ZjabffcDAwNlXVshxElPURQyMzNZsWIFqqqSm5vLyJEju+VcOTk5NDd7J6mnp6cTFhbWLecRQogjJYlxIfxkaeVb5DT8xIa677kz46NW1dKNVvveP23dcu6bbz+N5NRYho/qh1a7f13w9NQ40veud3ooU08fwtTTj64yW1EUJp09kpyG1Vh3e2e6F7fs6HRi3KN6UFDkC64QQpwkPKoHD3srVZUdFFpW8I8h/ah37KbcVkikIZ6Pi/5Bi7uROXF3c8nP7+DwuAAoqCvFNOsrRoc42bSjkv97uooPn7ihy2Jzudz8+9kf2Ji9hwH9Y8grrPRud3v4fP5GPp+/kWkT08krKKem1sKTD15IZlo8n75+I26PitGgw2Kxsym3mCGZiVitTjblFHP/418DEBURxPlnDu+yeLuL2+0hPi6UphYbqckxrN24m/qGFsorGiUxLoQQQnSRq6++mmXLlrFw4ULf+q1ut5u//OUvFBcX89VXX9HY2MhVV11FsdXDR88/1aXnT84cwoS55/Dpi0+j1enJGnUKNz7wGIqiEBwaxh1PvcSbjz5AxZ7d6PV6/u/5N7nngtNbjTFw5BgKc6eyO89bfR5gCiLrlAmcf+OtmKp2Y7FYuPjii/n555/ZsmULdXV1GI1GoqOjGTBgAL169cJms2Gz2aiuPnTHO41Gc9AE+m9ver10uRFCnLgGDRrEihUrAG/yursS46tX7++MJtXiQoieSFFV6YXX2NjoayUSEhLi73DESWJV9RcsrHiFUH0MNw54Hp3Gu9bKj9n5/PfHFaTGRXH37MnEhAb7OdLu5VZdLCh/H5fq4rTYSzvVTr3CVsQLO/6GUWPiDymPEKwLPQaRCiGE8Ke/bfyUr4s3MjA0nhFRK2hxN/ieSzGPYkzkGbyz614AhodfyF835AEQbgjio4m/47mC60GBnY0RtOSM4uPrburUee1OF0/98At6nYZbTh2HXtu2FfvL7yzn7Y9Xdvq1hIUG8p/7LiClf8wh9yuvbCC/sJLxowf0uLXF21Ows5Krb3sTgAvOHIHqgV5RZi46e6TfJ7Idz5/398U+PfMudNqjW3amK7jcdhblPHZc/iyFEOJks2xPDdVWh7/D6LSoQAOT+kTi8XiwWCw0Nzf7bk1NTTQ3N2OxWHz3m5ubcTqdHQ/cSUajsVXFeVBQUKvq8303k8nk9882QghxuFRV5dlnn6W2thZFUbj99tsJDu7a687FxcW8+uqrAMTExHDDDTfI70shRI8jFeNC+MnwiNksq3yXBmcFy6veZ2rMPAD+t2glO6pqqbG0nPBJcQCtomN23BWHdcyO5mysbgtWt4VS605SzUMByG+sYGNtEacnZhGk8/+FYyGEEIdHVT0oireTSbPTRp2jhd5BEQBsbywHoMFhZWj4dFbVfEWEIY5qewlp5jH0NmWQHjIWq6uRSb1m89DQLIpaagjVm3ix4GvY+11cUQN54PyzOx3TD1u289Yv6wEY0juO6ZkDAG919Iq1O+gdH8HG7KJ2j81IiSUlOYavv99EYnw4WQMTmL8wm/oGK/MXZfPHDhLjsb1Cie11fEz+amyy8t5nq+kVacbt8XDqpIGkp8T6OywhhBDipBYRqKfG6uB4qIhR8MYL3ipvs9mM2Wzu8Di73d4qgd7erampqc2a7Acby263U1Nz6CVsNBoNQUFBnWrlLlXoQoieYl879eXLl/vaqXd1RfeqVat898eMGSNJcSFEjySJcSH8REXFg3cdTpdn/wzui8YM5ukFv3DpKUfXqrw9VpuDfz05nxabg7//aQ7hYUFdMq6lxU5Li4PoqI6/tHaF3q4hhNWmER/di/5BmQA4PS6u+PkVLC4HuQ2l/GPImcckFiGEEF0jp2E5XxQ/Sb+gIZyV8GfOXPo0NfZm7h9yDmf3Hs6/hp7HF0XrOT1hCJlhCcyIvQoAj+pGo3iruC/s83++8eYkRlJubWDWosfRa1yc0ScYneLkwWF/pNGhUtxSR6IpvFUMeWVV9AoJJjwo0LdtYEIMJoMejUYhd2MJG34q5PorJvL+52t499NVGPRarr1sIlu2lhARHsTksSn8sCSHjNR47r55FnExodw0bwpGo/djt9XmJL+wktOmZnbzT/TY+mFpLguXbQXgyQculKS4EEII0QOEGfXHRVIcQAXCAg4/iWw0GjEajURGRh5yP4/HQ0tLS6vq84PdHI5DV9l7PB6amppoamrqVHydaeMeFBQkCSQhRLcbNGgQy5cvByA7O7tLE+ONjY3k5uYCYDKZyMrK6rKxhRCiK0liXAg/MWgCuKr/45RbCxgYOsm3/ZJThnBJNyTFAdZv3sOylfkA/PTrds6ePeyox6xvaOHy61+hucnGw/edx9jRyb7nnA4XK3/Mpl9GPIn9ex31uQAsFjuP/mU+eblGwiPdXPmt94uzgkKARo8FByatoUvOJYQQoms1OKoI0oX6lg850LbGlbhVFwXN66hz1lNjbwagsMm7XndKSCx3ZZ7e5rh9SfH2hBlMJASGU+8sZ6D5Es5JnMmiijzuXv8CBo2Wr6beRqhqIntbCXktdTzy7U+EmQJYcPc1BBm9MQ6IiWTZX29gx64qbrrrXQCCg4x89OVawLuO+GnTM/luSTY7d1ezLb+C7z+4rVUcJtP+13v/XSfmxK2hmYkY9Fq0Og3RkSd+xxu/UFXvzd96QgxCCCE6JdpkRIHjIjmuANGB3df57cC1xmNjDz2Bz+FwtNvG/bc3i8VCRytUdrYKXVEUXxW62Wxudf+3SXSDQa55CCGOTK9evYiOjqaqqoqioiIaGhoIDe2aLmVr167F4/EWgY0YMQKdTlJPQoieSX47CXGMbWv8hV3NmxkbdR4xAf2ICegHgMPlotnmICLY1G3nzspIYEC/XlhtDsYM798lY9bUWmhqsgGwY2dVq8T4u09+z4f/W0iAycD76x8kwNT+l9ymJhvb8ssYktUbg37/ryW3x0OdxUqUeX9l+23XvcbuwioAIqP2X3jXabR8OPlG8hrLGRu9PwYhhBA9w9qa+cwve4EIQzy/T3kWrdL6Y+j4qPOxupqBBHY01fHY8IvY3ljOlf3HH/E5VafKjYZT2BjzH3Ka8khtDKLG7q0Gd3jcWFx27rvva7bml2PKCAENNLTY+PujX3L+acPp1SeM15atZdrAZMb0TSQ6Mpi6xmbMKSUERDfSXBHEuXOGExZiIiQ4AICgoJPzQmVYqAmH0w1ON18t2Mwfrp7q75CEEEKIk55RpyHRHEBxk61HJ8cVINEcgFGn8XcoABgMBiIiIoiIiDjkfgdWoXfUyr2jKnRVVX37l5eXdxhfZ9q4m0wmNJqe8TMVQvQcmZmZLF26FIDc3FzGjh171GO6XC7WrVsHeCcijRw58qjHFEKI7iKJcSG6WJPTRrPLRlxgWJvnnB4bnxX9GxUPdo+FsxLvBMDqcHLmU29RWt/I4xefzuzBad0SW4g5kNeemtfp/SsrGnjq4W/oFRvKLXeejradL6nJ/aK589ZZlFc0cO4ZrSvQPZ69X707KHC69Z73KNxVzanTBvK3O+f6tl/z3CesKyzhj3PGc+10b2ufmipvq7LMwb156KnLWo0TExhCTGBIp1+fEEKIo1NrLyW/aS0DQydg1h/6wmGZrRCAOkcZTo8NrbZ1VXFsYD9KW8bw7s5fgXe5Z+Dp/CF9RqdjaXE4abE7Wk2meuKFhSzbvJaxt7sA2FBcSMH2RH6fPp2MqDgGmGPIL63GPdJGePJuBmtHs2FJA2tzd7FzVwXR4+P4JX8P323eyiM3hXL1A1o8nhDWNX7I6D8AKAyOTsLjUbnwijGcXj2YySNTOh3zicQcHEB0pJmqmiZSu6hLjPgNqRgXQghxBPqHB1G0dzJ7T6UCyeFds9TbsXRgFXpHHA4HFoulwzbuzc3NHVahOxwOamtrqa2tPeR+B1ahH+pmNpulCl2Ik8iBifHs7OwuSYxv2bKFlpYWAAYOHEhIiFyfFUL0XJIYF6IL1TtaOHPpUzQ6rTwx4hKmxQ5s9bxOMRBt7EOlfRfxgam+7XUtVkrqGwHYUlzRbYnxw7Xgm42sXbkDgFlzh5IxKLHd/c44rf3W75ffPpv+mQn0z4gnMOjgLdEa935Jb2zc/2Xd41HZvNs7S3p9YQlM927/9zNXsHZlATPnDiXQ1P4XN0uTlQXv/kLaiH4MHCXV40II0V3e3X0fdY5y8ppWc2W/fx5y3ym9LsWgCaCPaSAB2vYvHha37L+490tVPha3nauSJ6DXHPoja32LjblPvEF9i5X/XXkWk9O9XVE8HhVrTSA7Ph7BH/4wiuuf3orL3chMWwo3XuZ9r00YFE30lNWEhLbgcpSQ1BJNY1EI6efkU7U7HPIHM3VSKb/WLAEgTB/jPakCoLKteQX525J46odfCA0MYMqY1HYiPPEFGPW8+/w1NDbZ6BVl9nc4QgghhNgrIkBPiEFHo8Pl71AOKsSgI/wI1hc/nhgMBgwGA+Hh4YfcT1XVNlXo+5Lpv02s2+32Dsfat29H9Hp9q4rzoKCgdtu4BwUFSRW6EMe5qKgoYmNjKS8vp7S0lLq6ug5/Nx2KqqqsWrXK93jMmDFdEaYQQnQbvybGly1bxmOPPca6desoKyvj888/5+yzz/Y9r6oq999/Py+99BJ1dXWMGTOG//3vf2RmZvr2sdvt3Hnnnbz//vtYrVamT5/Oc889R2Ji+wk8IbpTrb2ZRqcVgB1NlW0S44qi4erkp2hxNWDWR/q2x4eF8MA5M9hWVsU1k3pOq5kx41P58uM19IoNJSn58Ku/DEYdU84c3uF+Tz58EavX7mT6lAzfNo1G4fF5c1iavYOrpu7/maSkx5GSHnfI8d781xd89coSdAYdH29/gsC97W1/S1VVFEXp5KsRQoiTQ7OrDpfHQZghpsN9AzTeBHfgQRLdB/JYAhihvZCo0IPPHP971lmE6X/E5nHyQ2k2P1flE2U0MzE4jUef/YHoyGD+dMMMdLrW64pXNjZTZ/G+/24trfIlxu/4/amMGZ5EVkYisVEhDOhTwXZ3CeHxOu5c9wEZoXE8dvOZPLPjawB0Bg8JoysIjLShaCA6qY7zdiegifsJAA0ahofPZHHl2wRpw4gJ6Mv46HP5bLt3cluLw4HT7SaQE/vC7sEEGPUEGE/O1y6EEEL0VIqiMDDazMqSOn+HclADo83y3XyvfVXeQUFBxMQc+vO40+k8aOt2i8XSatu+dX8PNVZdXR11dR3/OzlUFfqByXSDwSB/r0L0UJmZmb5lG3JycpgwYcIRj7V7924qKioASEhIkLyMEKLH82ti3GKxMGTIEH73u99x3nnntXn+0Ucf5YknnuCNN94gNTWVf/7zn5x66qnk5eVhNnsrUW677Ta+/vprPvjgAyIjI7njjjuYO3cu69atQ6vVthlTiO7U39yLB4acS5Glhkv7jWW3ZQuVtl0MDT8VvcabnNUqulZJ8X3OH5V1rMPtUEp6HB9/f2e3nsNhcxJs0HP+2W0nBEwblMy0QYdf8W0K8a4fazIHoNW3/3vgf//5jq8/Xcs1N0/ngsvGHfY5hBCiq7hcblxuT49IKNY5ynk+/2bcqosrkv5JUvCh35uu6PcgxS159A3KbPf5fUtqVJTVc/0lL+B0uHjs+SvJGta33f2jA8w8MPRciiy1LC3fhsPjQgG+X5zDynWF2M0KhQYLd5w5iQExUb7j+keFc356BlUWC1t+LOC6L7eh02roFRXCL6sL+NPvT2XOrMHo0lvQNNpYYF9HU5mNH8tyiBq6A71xb8cSFayVIRQu6ItnSjGO0jjuOmMSP3k2UGzbypz43zMiYiYjI2Zh1JrQKt73mJtnOIkPCyEzoRchge1PxhLiqHnY26nAzw59XV0IIUQPFB8cQKI5gJIettb4vrXF4w8ymV0cml6vJzw8vFNV6FartVX1+cFuNlvHbfctFgsWi8WXCDtUfJ1p4y5V6EIce5mZmSxatAg4+sT46tWrffdHjx591LEJIUR382tifPbs2cyePbvd51RV5amnnuKvf/0r5557LgBvvvkmMTExvPfee9xwww00NDTw6quv8vbbbzNjhncNynfeeYfevXuzcOFCZs2adcxeixD7nJnoXWfb4qrn3V1/RcVDs6uOqTFX+jmynsdmdXD9tIepKqnjnmeuYMpZI456TLfLzbLP1wAw56rJGA6SaFr8/RY8HpUlP2RLYlwI4TdNzTauuvUN6hta+M/9FzB0UG+/xtPorMalOgGodZSRxKET4wHaIAaY2+8MUlHVyA13vYPHo/LHKydjt3nHLdpdc9DE+D69gyIYHdWf5ZXbeSz3O14ffh0ffrmanQkulhXuRp2/nBd+d45v//c/Xc3Sjza3GSc3rwyA19/7hVkzBtEnKJJtjWUkmiIoaKqgnzmaZlcpAB43rHxiJLZ674XZze94u75c/9O7eNwRXD77ekbcOBMAk651q/CqRgt2l4teoR1Xzu/jVl3kNa4jNqAvEcbYTh8nhBBCCHEkhsSEUmmx4/D0nNS4XqMwOCbU32Gc8BRFwWQyYTKZ6NXr0N0AXS5Xu23c22vl3pVV6CaTqVOt3I1Go1ShC9EFwsPDSUhIoKSkhPLycqqrq4mK8k4+V1UVu9uDW1XxqKBRQKsoGLWaNv//6uvr2bZtGwDBwcGtOv0KIURP1WPXGN+5cyfl5eXMnDnTt81oNDJ58mRWrFjBDTfcwLp163A6na32iY+PZ9CgQaxYsUIS48chS7ONL95ZQb+UWMZNH9jxAT1Qg6OFYH0AOsWAQROA3dNCkE6+6LWnqc5C1d52bvmbi7okMe60u6go8q5RW1168C9fN985m++/3sBFV4w/6nMeaEtdMVpFYWBYQpeOK4ToWUrK6nj5nZ/JykjgvLn7E8O5DT+z25LN+OjzCdHvr2j2eFQ+X5eDUa9jzpA035fJkrJ6qmqaANiyteSoEuM7dlVhszsJ623h+7IX6R88jKkxlx3WGH1MmcyJvwmb28KQsKnt7lNaXMvXH63mlElpDBnZ76Bj5eSVUltnAcCpgZvvPI3mJhszTh/cqVh6myIAiDKaSenXi6/fvoWrX/mEVTuKGNU/kY1b9pCbV8aZs4di2NsdRKtVQIWQkEACAw0kxIaxZsMuqqqb2LSliIeGnc+85PGkmmNRFNApWr4tfQEARQG3Y3+XEb1Oi9Ppxu1WAYUfipdQsuYNtIEqZybczJDw/T+fP7z1JYVVtfyYnc/7N13Sqde3sPwDllV9RoDGxJ8HvopeY+zUcUIIIYQQR8Ko1TA8NoyVh/iefKwNjw3DqJVK4Z5Ep9MRFhZGWFjYIfc7sAr9ULempqZOVaG3tLTQ0tJCZWVlh/F1VIG+L7EunUSFOLTMzExKSkrQGoys37GbeNVArdVJvc2JS207iUqnKIQF6IkI1BNm1BNtMrJ69WrUvfuOHDlS/t8JIY4LPTYxvm+Ni9+upxMTE8Pu3bt9+xgMhjYtg2JiYnzHt8dut2O3232PGxsbuypscZQ+fm0ZH7zsXcfz7R/vIjo2zL8BdZLT4+Kb4k3sslTxZuEvpIfE8Z8Rp3JqzHWEG+PobWo9W+6lpav5ZE02d5w2gVlZqX6JudLWyB1rPyDBFM6/hp2HVjn2X0aj48O5/T+XsCO7hDOvnoTH4znq9lkBQUbuf/dm1v26jZm/298GaE9xDbl5ZUwZn0ZAgJ5ps7KYNuvo29dbXHaanDZiA0NZU72Ta1e+BsBb469jSHifox5fCNEzvfvpahb/vI3FP29j2oQ0wsOCsLtb+LToMVRUHB47ZyX+0bf/D9nbufezHwGIMps4Jdn7+yFtQAzXXDaBispGzpw15LBi8HhU3lmxgRaHkyl9+3LDHW+jqnD5AxbKtdspsW7nlKizOrX+N8CuPdXccd/HRIQH8fSDF6PVtN9x43//ns/aXwv47ov1PP7x9Wg1GvpFR7TZb9yoZObMyMLt8TBpbCo6jYaC7eWUFtcREBHAc4tWkpnYi4vGtP+678yczcz4QZh0Rkpa6kgMiuCVq8+j0WpDh4YzL3kGt9vD1tJsIqavZdLD5QQpUVzf51HCzGE89/JifliUjU6nISI8iOR+0VTtrsUM2IOaMOu9nx8jjPEAGDQm4qIjKClq5g/XTGPFBytYY2kCg47ozCoGXZwPgBv4ruwVbOui+eGDlZx19WQig00UVtUSGWzq1M8awKO6vOOp7h7V0rQ95ZUNvPHBCrIGJjJnRs9b+uVkoagqSjsXqPwRhxBCiONTvDmAgVFmcqub/B0KmVFm4s3SQv14dbhV6L+tNj/Yze12dzhWfX099fX1Hca4rwq9o0S6VKGLk5GqqiQMSCOx0UlYn2SaNRryay2H/G7qUlWqrQ5qrA6808ehQTERGNkLR30NI0YcfcGTEEIcCz02Mb7Pbz+YqKra4YeVjvZ5+OGHuf/++7skPnH0PB4Pn7zxM81NNmLiwgAICTNhOo7WmHqz8BeezVvoe1xk2c2bO+9AxcNpcTfRJ2hQq/1fWLIKm9PFGz+v90ti/KuiDdy7+TNUFTbXFzEjdiAz4o++1U1Ts40PPl9Dv75RzJiUcch9iwoqWPPTVozhwcQlx3D1uAcIiQhm9LSBTDhjGB89+yMT5w7jzKsmtjm2xerg+8XZZKTGkZES1+b55In9uMv9DS9s3MzzhnmMCEvixj+9g8ViJ3dbKbffPLPNMYdjdXUhtQ4LY6MGcPbSp6l1WHhs+EUEaPcnkWxup+++R/Wg8cPEAyHEkSluyWNL/RKGhc8kNrC/b7uqqrg8HvRaLaOGJTF/0RZS+vXCbA4EQK8xEmlMoNpeTHxgSqsx9yVMNYpCuCnQt11RFOZdOBaAvMZVvLT1v6SYR3J24p86jHNV4R7+/a13Mpl7vJN9uarwliE0hOXTL2gwAZqgTr1mVVX5Zc0OqmqaqappZnthRZvqdbfbQ15OCYl9I1n7awGh6RGc9dTbaBSFm1IGc/7pI4g+oBVmgFHPPbec5nt8y+9eJS+nBADTtDjylWY+XQtT0pOJaacFuVbREKDVc/Hy50CFt8ZfT1Z4ImFBgdgdLkwRDlLnbUaNtFO7d+1lC9Xc8fi9zMy6jI+/Wucb692XrmPFgmwe/7/XGfL8HvTNHmYYbmJC2izGRMwhITCFAG0Q2X/5lcSAU+gTMJDPXlrk7RkH6INcrWKL0Mfw33s+pLaykdJdVTw3/042F5UxtE98p37eADNiLyU2MIn4wP4YurBafM/OKjQaDb3iQqmpaiI2PuyoL/S99dFK5i/KZv6ibMaPTiYspPMTAIQQQgjRs6RFBOHyeNhea/FbDKkRQaRGdO5zqjj+6XQ6QkNDCQ09dDdFVVWx2WzttnL/bWLdarV2eN7OVqFrtdo21eYHPj7wJtWw4kRQ2mQjt7qJRoeLsD7JKHuLlDo7/VU94E9zYj9C+iSDrYVGdHR+cTEhhPCfHpsYj431rrVYXl5OXNz+xFdlZaWvijw2NhaHw0FdXV2rqvHKykrGjTv4msH/93//x+233+573NjYSO/e/l3T82S2afVOXntqAQC3/P1MXvryj4RHBhN0HCXGg3XeWHWKhj5BkZyVmEKJbetB979+8mg+WbuFK8cPO1Yh+uxqruLezZ8B3raxqgqvFyzvksT4B5+v4e1PVgKQmRZP3EHWCtuRU8wf5z6BwxwIJiNGgxaPR6W+uokFH61i6/pdFO2oJHfdLuZeOb5NFfnLby/n02/Xo9dr+frtP2AKNLR6vtzaQK3D+yU/p6GEkeFJ6Pa2Z9Prju5LTH5jBdetfB2AW9NP9Z1ne1M5N6dO54kRl6BVFMZEJQNw17oPWVSew9+yzuLcPjJzUojjwWdFj1PvrGC3JZcbU/4LgMPl4uLnPqCwspZnrjiDqePTGDeyP3q9Ds3e5KlG0XJD8tO0uBsx6yNbjTm6f2++vO0K9FotfaP2f2b59tO1vP7cIs6+eAzGWSuxupvYXL8E1/Lh7M6r5brbZhIS1v5Fw4TwUAL0OpwuN+Oz+jP873FYWhxMPyUdRTmn3WN+y+NRuebVT9i4p4y/nz6FzNQ44mPDyExrm+B9/dmFfPz2CmITwrjrgXN4/K2FEKnBo6p88P4v5Cwu4Nm3r6e5yUpQcECbZGxZca3vfk12FQwKoHdEGOFBB3+/r7A14tmb8a+07e/wY7M5MfWpJTDS3mp/VYWE84vZvXGLb0OQQUdtdROP3P8lAUmB6MO8ayG++/FnfFy3mah5awgymrG67Ng83t/pdZsTKTHEAzq0RhfGUBuWKj2mSCeKBkrtOxj0j34suxlGT8tE4/L4ugB0ll5jYFj4lMM6piM5m/bwp+vfQAHie0dQsqeW3/1+Kpf8ru0ks8MxJDORb3/cTFKfKIIP8fclhBBCiJ5PURQyo8zoNRpy/FA5nhllJi1SUieiLUVRCAwMJDAwkOjo6EPu63a7D9q63WKxtHrcURW62+2moaGBhoaGDmMMDAzssI17cHAwAQFtvw8J4W92t4dNFQ0UN+1f3kA5ys6dvuMDTKwsqSPRHMCQmFBZJkMI0aP12MR4v379iI2N5ccff2TYMG/y0OFw8NNPP/Hvf/8bgBEjRqDX6/nxxx+58MILASgrKyM7O5tHH330oGMbjUaMRlnHsadI6BuJKdiI3eakf2ocffofugVTT3RR39H0DYrg1jXvUNhcxZPbqgg3pHBm/ACGhrWtTr5x2hhunDbmmMepqirflWxutU1RILeppEvGT+rjTQSFh5oIOURLtG/e+hm32+N7bAoOIHNWFht/yQdVZcrZI/jw2R+ZfObwdlurm/eOHRigR9vOB630kDjuGjibMms9F/YdjU6n5cWnryS/oIJTRvdvs//h0Gu0aBQFj6oSHxjGP4eey46mKq7sPx5FUZgeN9C3r1v1sLAsBw8qj+fMp9LWyI2p7a/Z++uyPD5+51fOvGAUU049+kkKHXF5nLS4G1qtgSyE8IoLTKbeWUF84ADftorGZvLKqgD4JX83E9P6YTS2bTWu1egxayLbbAcYENP2/9vXn6yhqcHKFx+s4snLzqLeWUnthhBefnwxAD8vyeUfj11C/9RYXnjiOxL6RHLx7yah1WroExnGonuuxenxEG0Ogr6H/1pLq+tZXVgMwJtfr8S2uIToiano9W0nEVVVehPTdTUWFnyxHnehhTCrjsT4cOpqGwhKNvL+a8t447nFjJuSzj8evxiAguxi3nvqOy68aDQFu6rZsn43NZXN9F5h5e3PrsOgO/jH0cm90rg36yw8qJwSnYzd7cSo1WNpsVOdE0H00CpCkxtR8LZxU/be6ZOlx/qDgj1cizVQz87KWlRVxW3T4GjUepPbv4YTPqyQcI2dRqcdt7pvFAgfXMyErGK2f5FEn3FlBMe2rUhx9i7l9V+e57Yz/sMXryzl0U9uJX140uH/Jezl8NhZVfMdvYy9SQvxTqRyezx4VBV9JytT6motoHpn7pcVe9cPLcg7+PJCnWGzO6msbuLuP8xi1rRBvolmazfuYvWGXZw3dzgx0SFHdQ7RSaoKPaGNeU+IQQghxFFRFIW0yGDMBh3ry+txetRuXdpFAfQaheGxYdI+XXQJrVbb6Sp0u93eqvr8YLeWlpYOz2u1WrFarVRVVXUYX0dt3PfddIf4PiREVyltsvl+33enkiYblRa7/L4XQvRofn3nbW5upqCgwPd4586dbNy4kYiICPr06cNtt93GQw89REpKCikpKTz00EOYTCYuvfRSAEJDQ7nmmmu44447iIyMJCIigjvvvJOsrCxmzJjhr5clDlOvuDDe+fFu3C435tCe25qz0rabAG0wigr1jmqa3dWsrP6UWkcp5/S+mzFRQ0kMimRns/fDcZ3DxJu7Snlz1/1snPOg3+L2qB52NlfT2xTBiup8XixYCkCgRkeL29saVgWeyl3AbQOPrsX4qZMHkpkeT6g5kCDT/sknG2v3oNNoGBSWiKqq1FZ4kyuaBguK08Wfn7yUYWMHsDuvjPee/oGo2FC+zH+cr9es4arFL3HWgBGcc0C19bwLxzIkM5G+CZEYDW1/jSmKwuX9x1Fta+Kyn1/A5fHw6rirmTT+6NvWJwVH8eHEm6h3tDAqst8hZwBrFQ1/zTqDZ/MWUeew8Pz2xVydPBGDtm3MLz+zkOLdNZQV1x51YnxT3R4MGh0Zoe239PWobl7a8Ueq7cXMjruBUZFzWj3v8jhpcFYRYYjrETOcra4mDJqAg653LE5eFbZdlFl3kBk6Af0hWlG73B4e+e93lJTX87fbTichLvyg+wKc3/tu6hwVhBtifdsSw0P548zxbCut5Mrxw7vsNVx27WTefeUnzjh/FL1NGYyouon/e/ht3/MtzQ4e/ssn2G1OrFYHAMmpcZwyKQ2AsKDAdsf9LVVVqalqIjLa3Or/9YZlBYTk27CHa2nKK0MPbFq7q90xfn/HafQbEMMPry9l8/cbCU6K4dzJI7jy+slkb9xD1rC+3Pun97zjri70HXf3+U9jbbbz6/dbuOLuOSytbgZAcXh45r4vuPfJS3E4XZhMbf8OFUXhvL4j2VZfxqT5D6FVNbw//vcY3DrcNh3Zr2Zi7ttITP9q6laaMCXa0Ye6mV9agSPe203EipubnvuMKFUlZFILhhBvxUjKH3ZS8lUMzhYNjlo9qgKBwXoIadl7bkg9exca1dMmLrcNdjwZRuXNtTTUeF9P3obdR5UYX175OYsrPwLgrvQXeeqbTXy8egsaReGO2RO5alLHXUfGTU7njr+fSUlRLR+88TMAWcOOYMbEAT7+ah0vv7PcO1ZGIn0SI3C53Nzzz89wOt1UVDVy/91nHtU5hBBCCOEf8eYAIk292lQQdrV9FYQGqSAUx5iiKAQEBBAQEEBU1KELA9xud5tq8333f9vK3eVydThWZ6vQAwIC2rRyb6+Ne2BgYI+4RiOOL6qqkldrIfcYdQhRAYdHZWVpHZlRZlIjguTfrRCix/FrYnzt2rVMnbq/enJfe/N58+bxxhtvcPfdd2O1Wrnpppuoq6tjzJgxLFiwALPZ7DvmySefRKfTceGFF2K1Wpk+fTpvvPGGrPlynDEF9ewK/tyGX/ik6GG0e9/HVXVvVZrv+eX0Dx7OexNuZOz3bZPgLU47Jr1/XuN/cr/n3V2/MiS8N7dnnLa3Fk7h+THzmLfiVd9+35VsOurEOEB8TJjv/qrqHTyR+wPbGssAeGf8DUTUG1m9OBcVUAMM4PLQUOVNlL//3wUs+3oDy7/ZSFCIiQdyP8ORpmPL5hI83zXw2UtLuOz22Zx+2ThGDO74Qv/62t3sttQA3nXBz+o9HFVVWVyQS3VBA2dOHkmgaX8bdpvbiUf1YNId+u8qNSS23e05qwpY/eMWTp83iZje3orR8/uOIsIYxAObv2JaTHq7SXGAU+cM4e2XljLzjKEdvq5D+bliO/dveQ6XquG50Xe2mxx3euzU2EsBKLUWtHpOVVVeL7ybMtsOJkZfxNSYy44qnqOV2/AznxQ9Srghlt8PeBadxtDxQeKk4PDYeG3HXThVO5W2XcyMu6bd/UrqGijcVc2CpbkAvPDFCpLSenHxuCEEBbT/70lRNEQY436zTeH6qaO79kUAaZkJ1FY28sb/FjFq/ADycorb7BMUEkB93f41IO02J26XG+1hLA3x2L2fs2j+JmafM4Lb/rY/iWlpshK2x4Fn5/7kr83qwNJkI+g3s7tDw4OYeloW7973CYrTRYTLwe9vn4Wl2cYHb/zMq88uYuKEFHblFOOqa+bDZxfgdnmwNnvbnXv0Wl57aSmavWusuz0qK5dv58orn8c0ezO9Up3cOPj/6GNKpclZh0lrRqvx/s5csGUzLo0HFx4+WbKSey44k8njU1n6Sx5Nu0No2mkGlwdPXB0Dz84nVq1k64a+FG7rjaoquEJ0lE8OpdqsI9peSpjRTnBvG/2vK0Kjh4AEJ2tuHoTaomX63XE0pn+PouyvQN9HVb0P7ZVGBp4yin+s+hVl3kCmq2HMuPDo/n2EGrwX6gI0JoyaQL7e4F2SxaOqPDZ/GTOzBhAffuiKGI1GYdYZQ9lZUMFHb/2Cx6PSt/+h21B2JCEuDIAgk5GQkAB+XVtIdW0TCbFh7CqqoV8f6TxyzHhUUHpAtXY3V5kIIYQ4toxaDaPjw0k8YM1Zhc6vNduefceHGHQMjDYTfxwtlSdOXlqtlpCQEEJCDt0N6cAq9EPdmpqaOlWFbrPZsNlsVFdXH3I/jUZzyMrzA5PpUoUuwPtvNae6ie21lo537gY51U04PR4yo8ySHBdC9Ch+fZecMmUK6iFa8SmKwn333cd999130H0CAgJ45plneOaZZ7ohQiG8GpxVHGxec7SxL6MizwAgUGvg2ZGX84e177TaZ+qPj7Dq9H90c5RtLa3Yys9V2wHY2VzFkPA+fDLpFjSKQpm19azVIRGHtzZqZxyYFAdweFz0SogleVAC+YVVqGHBqEBMP2/7/GETU1n29XoyRiRhb7ETuN6JY4CWccH9+fTFxdRVNfH5S0s4/bJxnTr/hF4pnBqXicvjYWpsBgBfFK3nvrwvwAVr7s8nWmNi9MRUMqYmccGyZ7G5Xbw1/rqDVlsfyt8u+i/WZhs7c4p54P1bfNunxQ5kWuzAgx63x5LLtIsTueSqv3V4jnpHBWtrvyfVPIo+QW3HLLFtZGKst1Kz3FrY7uswak2c3/tudluyGRd97m+eVamyFwFQYdvZYTzdrahlGwB1jnIsrgZCDUeX4PmtTXWLqXGUMj7qXIzantuxQrSloKBRtKCCVmm/m8DmonIue/4DFAVGZsZSV2Xhy4LtqAXbaWixcfvcQ6+77PGovPvzBpqtdq6ZPuqQLb+P1IevL6eh3nux5P47PqC0qBaDUYvDvn8dvMb6Fi6YN54FX26gob6Fh/7vY049Yyh33td2HfENqwv55rO1hI2IYeLIFIb28/4OyNm0x/vnxj2+fdet3MHr//O2bEdRWrVHNgS0fa3vvvITb7+4FEKD0VTV0zs1Fpfbw1VXPE9Vkw19s5PyrcU4a7wz0d945BvfsR6DDlt6LKgq+kYnGocbjQZUI9SoNfQZWosHeHLVg+i1gWjCanE2aplc9QdqPeWs7vUTZn0grmotla4vuePrxSwdEkLwCG/rcMvqEIJWBZI4qwzv/COVrNG7UDQKBTm9fa/RVRrEr9mpTEjNR+v0YAx3si/zrU9w4SlV+eGfOwk9LZWMS7ejaNj7BV5FVcE7fUCDsbeTypBlbP/a2z2gelhfgsydq95vzzM//MJnawu5fNr1XDTyFAK0QZw/ehDv/LLRt891r37ON3fM69QFhX4DYnjlw5twutz0Sz66JWqmTUgnpV8vzOYAauss3PPgpwDccs1UxgzvT++EQ3dgEEIIIcTxId4cQFywkTqbkx11FoqbbKjQ6ST5vv0UIDEkgOSwIMID9JIMESecw61Cb2lp6bCNe1NTU4dV6B6Ph8bGRhobGzuMcV8VekeJdKlCP7Hl1Vr8lhTfZ3utBb1GQ1pksF/jEEKIA8n0MSE64PI42dG01vcFbx9VBaPGxPUD/tdq/0RTRJsx7KqLvMYy0kLi2jx3KNub1lDQtI5TIs8iwhhHeUMTDpebV39aQ7gpkJtnjEX/m4rB7PpiXsn/iX7BUbxe6G2jOjy8L7eknwpAstl7gdykNaBDg2vvZX6jtuvbVM9OGMz2xnLGRQ/gkn6nMCIyCYBn59/Fz0u28vBD7xE3uRqLqRhIJGVOMlMyZjK792AywxL4u0cl0GBkwvQhfHPbz3z+ylIuvnWmt+p7+TYcLjezpmSi0bT/Id6kM/L4iIt9jz0elSbX3vZwWti1u5Ls3AZ++n4zf55/GY1O73M59SUkmyPQK8ZDfkFocTXyRfGTGDQBnJV4Gwn9e1GweQ/xGe2vLwxQ0LSOopatjI48gyBdKHmNK/lwz0MoKNw44BmiA/rQ4GihwtZIpbWRTfVFXNrvFMINQQDML32BguZ1rKr5lhUVY5kSk8Zdmaf7xs8KSyRvb3ektNCYg8aRETqOjNC2EwwURcPFff9OftNaRv+mxbo/jIs6F6fHTlxgcpcnxWvsJXxZ8hQAWkXL5F6XdOn44ug0NlkxGvXtLpcAoNcYuX7AU1TadjPA3H6L6bL6Rjyqd8Hlq+ZNYGS/BGb+81UaWmzEhZnbPeZAqwuKePTLnwCICTNz7phBR/6CDiI6Zn8FcGV5PS0WO6YgQ6vEeFODlf6psVhbHL5ti77diMetctcD57T6PfXkg19SoLPS5CzhlVUb+PHv19IrNJi7HziXBV9tYPY5+39WLtf+c3i0cPmDcyjfUMr555yCXt/25758obfqXhtoZO7Vkzjvxhlszy+n0u4EgxYl0ENieCg7a1q3aHMH6nHvS84qCm6PG53HQdp9uzDG28l7ux9OixZ9kBtjpBXwruetD3Hz2rKvGDBjD70DnPQNhcYIIwFGO1BHfG0sgyO862f/OiYJ+/pAdpdEE9an2dfVJTi0BY3Gg8ezd3qbW6FlUwSblqdxyq1b2PfO7nF7GPZ/ueBRqMkLo3xtDD//fRwao4vx9670rV+uUcGDB1CwWHQoigdV1bA4d3/r+MNldTh5YfFqAJ74cisf/ZJP5th1OEJcGAOy6JtcQnzvGlavTuWjgrWc3X9op96zE/se/L3ocPVO8H62sVqd6HQaXC4PkRHB9Els+5lHCCGEEMcvRVGICDQQEWhgsMtDldVOvc1JrdVJvc2Jq53iFp2iEBagJyJQT1iAnuhAI0adtEwXArxV6GazuVX30/aoqorD4WiTLG+vjbvF0nGi83Cq0A9s3R4UFNSm+nzfTa+X5e2OJ6V7u4D0BDnVTZgNOllzXAjRY0hiXIgO/Fr9KbtbNvLb3KsHDf2DR7bZP8kczT+HnMeL+Usoaqn1bT9Yd4Rau4UPdq1keGQSp0Ql+7ZX2fbw0e6H8OCmvLmMDSuHs2RrIVqNBpfHm8x+f+UmLh03FLPRyI7Kala4cqkLqQNgaSUYNTrsHhcX9B3NsIjWrcdjAkMJNQRS47CgALdlHH0b9d+6KnkCV/Yfh83dzHdlL/FdqZmZcdegVXRMmJrB+VF6ipQSfrT9h+HqB/xt42fkNJSwqGorP8y4k1Mv2N+Wdu6VE5h75QQA1m7cxf3/8VYiBgbomTLOu9au3eqgcGspKVm90elbTxh48D/fsOjnbdxy3VTuSJqFdY+dyNlG3ij6hqG/t6DTbeOGlClYXHbiTGU8kvsgycHDuCzp/javq9ZeilEbxLbGXyloXgdAVvMU/vPt3Xy640kK+IAPd++kyl7E0PAZTIg+3xufu4X3dz+IigeLq4G5CTdj93gTQCoqTtVBi8vBWUv/S93evxcV77+Rvw/2tj6OMvamoHkddreJ4pZa3tn5K39In0Gg1tsSOiNkLJf0vReDJoD4wJQj+nvrHzyE/sFDjujYjrg9Hm+l70EmM/yWWR/B3ISbuyUWky6UQG0IVncjvYxHtwavqqrkNZbTKyCECGNQF0V48lq1fif3PPgpYaEm3n72aswHtF5saLFRVtdIWnw04YbYVuuA/9apmSn89cyp6DQaJqYloSgKX90zj4r6ZtITOp5okRAZQqBBh8Plpn+vI08Ablm7k5ce/47x0wdy8XVTWj13/hVjyd64G71ey/Q5Q3jrhSUMG9Wf1b9sp7a6mf6psYSGBTJ6fArBIQHU7l2f2+OBRfM3ceOdpxESaiJn4x4a6y1YGq0ood73G4/Lw/8e+ZaaojqiY0MZPT6VLRt2s+bXfN57+Sc0WoXIqGBqqpqoTzXx+A+/EGY0ck9q259pZU0jO4qr0AKZQ/sw8opT+K5gJ7OHppIQE0JVVRN3/Ok0ZswZynnpd2O3OtHqNRhDAqlObF1RPP20LFYtXUVgb2+L9YAxNvYsiKfvacWoWg06vRu3S4PbpaXUEk6cpZLwAKd3X50Tl0eD3a7D2aSDvX8tIW4bUfdsJNpk9Z1HVSEppYLEfhVYrXqcdgPrf05Hq/Uw+vItvuS5qqpoNaDRABqV6Mw6ItPqUT15tNQY0Sr7l0/xJcc9KvEJtQwZsYONa1NottnJySkmMzOx1Wv1eFTu+2why7btZHi/eEb1T+T0IemEmrz/pneX1/D08/NbHRPWO49AcyOBwMChO+jTrxpFgVNnbeKfWz3ssFXyl6y2E5esVgdvPL+EYHMAl149EW03rOEZFxPK289eTUOTjYGphzfZT3QBVW3V2cGvcQghhDjhGXUaEs2BJO7tiqOqKna3B4+q4lZBq4BGUTBqNVJxKsRRUhQFo9GI0WgkMvLQE1w9Hk+rtdAPVYXudDo7HKupqYmmpo4TqEajsVNt3E0mk/xO8DO728P68np/h9HK+vJ6Ik29MHbD91QhhDhckhgXogO9ApKA1uuK77sceG7vO9s9Zm7iUPQaLfds+Mi37dGc+dw/5Fx6B7VOrjyT9yOfF61Dt0PD8pl/JVBn4Ovi+ayve8F3vp3N2VjCStHqUnG5dGgjnSj9LLRUGnhpyWrfWLrhDb6q9iHhfXh42AU0Oa3tVqrb3E7qHd72vTqNlkhj97S00SgaNtcvIadhGQDpIafQb2/StU90X4qq12LWR6CgMMDci5yGEl9VO4CqelhR/TkOj42J0Rei0+gJCQlEoyh4VJWw0P3tr/92xQtkr9rBlLNHcM8zVx4whsqSX/LweFSW/1rAU6dfhCfTjVt1YZ6az6rGz1lY8Ro3pTxHlDGR93d714kvbN6ER3V72zXvta1hJR8VPQROHRcl3EuIPhqDJoDepgyMOgMVum3ggh3NG3CpDpZVvu9LjOs0BkL0UTQ4K4k0xpPdsJJvSz9gQPA4RkfOJD5wADX2Zt/fS6DWQIvbQd/g/V+KTo29iqHh08lrbGFt9XdMiUnzJcXB+2Uqxdx2wsaRWr15F3c+8wVR6HnriWsIPorZndtLq5n37IcEGQ18cPulRJn9m0AO1AZzS+qL2N0tR12N/vHuNfwr+2tC9YF8N/0O6sssREQFExgoa6IDeFQ3XxQ/SbltJ+ck3k5cYPIh99+6vQyPR6W2zkJldZMvMW53ujj70TepbmphgrkX184czYhxB58AotEoXDp2aKttEcEmIoK9vzeqqhvZvG4Xo8YMICSsbSv93pFh/Pj363C63Yf97/WXlfl8vzCH888ewedv/UJ+bin5uaWcO28ChgOq4L/7fD1rfskH4NzLxlJWVMvuHZX86e9nMvPMYWg0+780XnPrqTx27+e+x4FBRkJCTdx3+/v8+tM2X2eToGbQt3jQ2jystHqrvPO3lrFiiXdpAnNIAB6PisejUlPlvQCyb9ni5ob9ieV9mqx2Lvjve9SeEkLE1hZ2b97Ftc9/gqrT8O38dfzx4nEsXZrHlx+v46l/f8fQa8cxa2w6E8el8+Q/P+Odqj2gQGiZg9gRVTjO2MzYgelUrcqgOrqKwpwEgjdCfEEaw87PJDBGT25OHT/k5KO3eljxXRZxfauJia2l0mQkLaYMY4CTIX1Kcbo1aLQq6QnlaBR8ld0c8KdOB2azE0+wk0Gjt9Mrtol9P1anQ+HXnwYyYkwBIaE232u22gwEBdsxx9n4LUUB7d63BYNx/4WmC1/8kGnuCJ5+5iqW5+0kJtRMXYuVT9dkA/DD5nx+2JLP0q2F3JQykJde+Yqfo1VcOkOrljSBvfZXgITFNvDba0oHy0ku/HYzn3+wCoBBQ3ozbHT/9nc8Sglx4SRITlwIIYQ46SiKQsBvOtYJIY49jUbTqSp0wFeF3lErd4vFcsjlTgHsdjt2u52amppD7qcoSodt3Pcl06UKvXtsqmjA6elZk1mdHpXNFQ2MipeluIQQ/ieJcSE6kBZyCmnmceQ1rQDAo4KKwoyYq1CUg89ymxk3iI21u3l/t/ci9fq63XxWtJY/ps/khe2L+Wj3am5Nn0nvva3XewWEYHU7eSTnG3IafmJwBOxbzVRvsJPUvwIc4cxIuJRv7CvJtfx/e3cdHsW59nH8O+vZuBAjDsHdHYq1tAXqTqm763l7eirn1E/d3dtD3VsKNVqKu7uGeIjb2rx/LARSgpYWSn+f66Ils8/MPLMZNpu9n/u+K7Gk1hHYFML2T9T9a0KxJNXz3LFn0K9Zy+AKzZCoJud33+Iv8G8L8cc6/tg+LxmhnXBa3IRYw0hwZTZsH5owjjYRfYl1NscwLNzZ+QTObdGf9NAdPZrWVi3g+4I3AIhyxNM1egStshJ44+nz8fsDZKbF8en7s6iprqcgJ5ihn7+xcakowzC48YqR/Dh1Beed0Q9voJ4X11zHVk8e6ytTyAgziHTEEW6L2Tavc7AbDlpF9GoUFAdYuXE5WAC7j//M+pIlJHNL++Nw2yIAGN38ahaUfkecsznzSyfTJXpEw75Ww8ZlLZ+kwltMnDOVl9bdRbmvhCUVZZyZfisAsc4wnup5DssrchnTvAtV/npahO1YKGAYFuJd6cS7YODQtr/3W7NXT34xldJwk1Kznnnz1zNo0IGfc+66HKrqPFTVeVi5pYi4NgcWGPf7/Mz8eSWpmc1Izfx9AW2nxU21b8cvCxMe/4b5Py3jkv+cRouOqfi8Pm498VHWL83hzreupPOA1k0eJ6+2DIAKbx0ffzyTtx7+icTkKP55xxicbgcZbfa/Z/2BWLghjxqPh76tDjwD3hfwsrDse2IcSQ2LWH6vUk8+S7YtjllY9sNeA+MnH9+N8spamidGkZW+4/Wg3uejtDoYuJ27chOLF2/ihebn0z5991nju5NXUM7ZF75IbYhJyDtWPn3+SiLcjRd+VPsq+bjgKRwWJ6eGXoXD4tzn4z/0xLeUldeQm1/G+WN7snT+RvoNbdcoKA4Qum2xic1mxTTB4w32lausqGsUFAd4/uGJjb72eXwsmLWO6VNW4Hda8UY6MTx+HGX1OEt39KeLiHSTmhnHqmVb8Hr9JKXGULk0FwDDApgQubIGV7GXGNNOZUUt4RE7+mWXVdeytSr4vB9zbm+m3Pw5RpdQTJuFnGX5/PvLdyE8uLCgMt3Bl4Wb+GFiHo/5TL76fgFmnxgGnDCf0LA6LFjwmAFqUhaz9L/tscRlEGEG+Oe1x1NrgMNmZUSf9tAH7mYUXr+f4655mqrCEPI3ZNNxwFqC7c+DP/eCL9EGFsPcvoWAaTYEyHde1GYAzhhvQ1B80+Y45v3ShkDAwndfRdO6w0ZatsplzcrmbFofT5+By4iObVymsNEiOROSU4po23EDyxdnQIjB9PxCHvpyCm/9Oh+A+O0LKnYKbk9dtZFl7/xE+XVR4AcWWKHOCi4/Rosq1tQ3I9JTS5jDQ6Tb23BOT8BCu4hEbmzfdIWXVu2SsDusuFx2UjP23OtQRERERESOfA6Hg5iYGGJi9lwBLRAIUFNTs0+l3D0ezx6PZZrmPmehOxyORhnnO5d13/mP2+3e5fdjaVpuZR05lbsu8D7UTGBzZR3Nq+pIDlNJdRE5tBQYF9mL4spq3v0mlKTMGHw1zXluzH37VAbaMAxu7XA8l2QfxfVz3mVjTQlDE4JBxbfXT6PKV897G2by7oDLGBjfimR3NJ9vns9nOfOBcOyWeNpH5Td8sO83TUItiVTU1rFobjnWTAuBIgc7f9puq3Jwa+uj6R+/5xLai0o3bztP0Na6KorqKol1uple/CkWw0qf2DGNAv91/mrKvYXEOzMalUQyTXOvJZISQzK5pe27gNForGFYaO5u1fC11bDQMrxxX+xYZzJ2iwt/wIvDaIbfDGA1LKSnxOIN1DNz7mKefewbbKE+OrZLpyi3jNLiKvz+QKMysscN78hxwztSX+vh/lufhfFbAKgP1PL55vb8OOI2FpTm89SKyRyT3JFzsm5t2PehpV/x3obgQobjU05g8gtzqciFZUd7MYGphas4K7MPAC3Du9EyvBv3Lv6CSXmt6RDROLDotLppZk0DoH/ccZR5i+kWPbjR8zIwoRUDE3Y8L6Zp8s0PSzCAo49q/6eWpDq2bzsWfjGFGIuTnj32HMxsylZPASX1+bQI68hx3dswd3UOS6av5a3bv6DNc+cR22zvK5whWI54+7+7CS9P4a1nf8DpsnP93cfx+sqpDOrdiQv6Dt3v+d00dwLf5S9jfFZ/Lk4eyOv3BLNxP3xmErc+fyEFm0pYOmMNANO/WbDbwPhF2YMJt7toFZ7ItG++IaZLKQUL4Zqj78cCPPX9P2nZKW2/59cUb6Aev+nDZW28sGBZTgHnPDkBgCcuGMPQDvv//QKYUfIZPxS8iYHBNa1ePii93aMdibSL6E9+3Xo6RR3V5BifP0BuWQWpMZGEh7m49uJhu4yJCHHx7EUn8uYHvzKjMpfacCuXvfwJv/zn8v2eU1FxJV7DpCrVRpVh8MJ3M7l5zOBGY5aUT2dl5TwAukYNol1kz30+fv8+Lfnq20X079OSASPaM2BE+ybHDR3ViYSkKCKj3aSkx/HAs+PJy9nKiNFddhmb2DyKyoodGd3NEiOwOYKLdwJOKxgGptOGYanfvq6KsAgX739/C4ZhUFJUSV2dh5wNJfz7pv8REeXmtgdOpUOXdC4+8xk2rymmFh8XnPQkT75+MXEJEdjtNlLjorj3zKNZm1/CiNRUfjah2eRcfKlROCoC4HaCaRJINPBFeaGlD2++m6f/+T6J7QvpfMI6XOHbM6uDE/MWhxFwmFBQhy1g8vlXC5i/oQCAyrIaTjo5+FxbDYNjjyujKGUhFYVu1q5Mpnnmrn3yti9v2f7qGACMQHC7hWBg2W/C9IJ0sqO24vFbWV0f19B73O+3smxhFssW7MiynjGlPcNHz8ZqNbf9LDawWHYspDEMsDtM2nXawPJFwcUo7gIfExetahhTWFm9Y4I7vXSXHp2IhTqwAjYTDBNLZg1EmpR7QiiqCyPMEVzsVeOzsnhrCoW1YXw86ARcu+kv3rpdcz749iasVgtOlzIvjkyHSSl1Doc5iIiIiMjBYrFYGoLQe/PbXug7B9K3l3jf/ve9ZaF7PB62bt3K1q1b9zjOMIyG/ud7K+XucPx9K/eZpnnY9BXfnWVFlSSFOlVuX0QOKQXGRfZi0pLVrNgYYMXGrgDM6bSFXlkpe9lrh2hnKK/3v7jRtitbDeeDTbO4qOWgYOnriGC2Y9eYdNxWB2F2F/d1vpR3NgaDPYYBBiY1jqU8+6Mf0+fAtzX4Rm/nt5iJ0RGc2XfvGZ6BbW9Moxw1hNvryamOYmV5LtGuwobs7BhHMq0jgj2+/QEvz6++igpfCcMTz6df3Il4AnW8uvYWyr2FnJ1xNynuXQOGtb5K5pVOItXdlrTQdvv8nO0s2pHI9a1f49310zhr6kd0iprJm/0voT5QzTOrr6DaVUbvR23Yw334ptXBd1BSWI7f62+yv+qyOeuZPmEdyf5oWoyNxmc0Z1xmZ8LtYbyy5gMWl+WwrHwLJ8Z3I3TbCsYvcxbiMwM8tnwiy5K38NhNj+P1+PmxdAU/5C/jouzGwTRfwM/7G2aBAc8t/4HhSe3x1vtYPGMNrTqnER4dDGi2j+xF+8herFi0mRtufpE+Q9pw2gWDqPF5eHz5tzitdq5pM5xZczZw/xPfABARHkK/ngcW8KysquP5N6YQFenmgjP771P/2bOGduOE/h1w2e17XBDy89LveOf5H4ipz+bfz4zDAMqry3gi50Y8gTpGJY5jcPxYjk9MY8mMGWwA5k1bzYix3Zo83paNxYRFhBAZHcotb33NpIWruOWUnqS1LKPWFlydbAZM/vPp+xSPdjK/5EcGVrQnOyKhyePtzrytGwH4fs1Suuem0ntkJxb8soKBY4LzSs6K59Srj2bNok2MvmDIbo8TanNyQctBrKyYQV2P72nXA+JmjebzW3IwgeptwUzTNPly7nKcdhsjO7dqdIzFc9Zz383v0apDCnc+cVaTq6GrfWU8t/oq6vzVjMu8h/TQHcHW3K0VDX9fuCH3gAPjIdbgL8I2w4HNEgyubdlaTl5pJd2zmjf65cXj8fH2y1OYvzYPe6iD6y8bQWoTZbEshpVT0m7dZfvOrnjjU35dvZFz+nXh/0Y3HTwH6Nc6nbgznJx53zv4gRAOrJxjx3bNufjsATwxezYeAqTFRe0ypmVYZ6LszXBYnKSHNr0oYnduufYYrr1sGE7n3gOU7bvsWDTRtVfWbktgP/zSBdx8yWusWhbM9s7dXEpS82iefvtSZs5cw2vvTsNpwqufXUdMXDib1hWRmZ3Q8D3bvhCleWosn029HavNgt8McNYvL7HkjCKiP4aQZQYVZbWcN/YJ4hMjGdYvi2Gn9WZk2xY4urXB7wsQPTaNnJwSXDnBILdps1DR10rtsGDPcIsBNPfSfFkc3rGrcIX7CPgsFNZHUOc3CLfXs8KWQPkNAWJfBlehQau2ScHAuGlSVFAOwE+fzOGRa9+k02PB1e5hkfW4P4zGu3QwR1+WxczqnyixbsLl8mNiAQIYmFi2LSgzDTAwmF2UQojVx8aqaPymlWWl2yoM+IPPS1hEDfW1drweO517rCYts5D5M7PZsjGeL9/rT9i6WqKLa/F2Ncg6egsWW4DIqGrAxG4PkLs5DgwDd66HkBIfSXFRFFU2zjQHgiVnDANsAYj3ER5wUVlXD84ARkI9RPuDMc9qgxVr0nD09OFy+lhelEBJaSTHpXQkO2rPNczdofte1UDkz/Dcc8/x3HPPsWHDBgDat2/PHXfcwahRo4Dgz8W7776bF198kdLSUnr37s0zzzxD+/Y7fr7V19dz00038b///Y/a2lqGDRvGs88+S0rKjvfjpaWlXHPNNXz++ecAjBkzhqeeeoqoqKg/7VpFRERE/g72Jwu9trZ2n0q519fX7/FYpmk2jN2X+e1LKffQ0NAjLgt9a52XCo9v7wMPoQqPj9I6LzFqPSgih5AC4yJ7Mah1JravpuALBLAaBikxEXyzdCEtky1kRbbBatn/rKwzM/tw5rYM4521iUxiysjbsBgGVsNCsqsVefXBzDMLkJlRQGJCCZMndyfO1YwIZwRD27Xg8cnBMu9Zzfb8pnS7LjFpXN6qL/n1z2MxwG3z8MqaX7i32xAsWDGBpWUVZIcHsBgWfKaXKl8ZAKX1eQAU1+dQWL8BgDWVc0lxt2ZZ+a/MKP6MPnFjaRfZn+8K3mB+6SSshp1b2r6L3eJkS80q3LYIoh07Sh8vKcvhh/zlnJTanZTQXa/BZQ1lUWkRAMvKc/GZASq9W6neNid7ePBNn63vSo5+siuD487GsZtsuVZd0mnTI52aDaWcm3o1KVk7AqmjU7qypGwLocusnPTv/3LbPScxeER7bm1/HA8t/Zoybw3f5i7m351PxB3q5LjQzoxIbk1hzlauG/cocYlR3PLUuZQWluOa46Gup4O1tUXMKlnPL/dM4/uPZpOWncALP9zWcM68gnKef3oyyxdsYtmCTYw5sw/fFi3mvY3B3vHdY9KJj4xsKN27c0/1/fX194v5YtKi4Hnnb+SqW0YTkxC51/3czj2/WV1ftZCfzCdpfiksva+aVYuH8tBFz1NaVUL7DzxggCcQDGz16J9Nt74tCQQC9B7cpsnjffvxHB6761McThtvfHsTkxauwh8wmed/k0W5JSQMTOXW5PPIaJnA/a+8QzFlOPwWYpxNl2av83qZWfQjieHNaB3elRefmMzXn87jkmtHcH//U3lxxg+sfyWXe/M+4olXLuDud3d80G4YBhfeeXKTx91QvYJv89+lQ2Qf+scdC4DDsqP89IqOVZz04ljaOZIaMs0nLVzNbe9+C8CrV7jp2XLHuX76ZjGlJVXM+GUlmzYUkZG1a5B/qyePGn8wAJ5bu7pRYDwpOqLh72mxUZimiUlgl3YAe9Mt+miaOdOIsMcSaouitKqWEx58kzqvj3+ePJQz+nemvLaOG9/9ipKiSsq/2owvJriI5JOv53PNRXvP3A+YwdcWCFYDqKytZ3luIQBLtxTudd+WWQmc26szy3IKuO2yUft1fdsZhsG5Z/Rj7JhuFJRX0Spp19LTsc4E/tH2uQM6PrBPQfH94Qpx8N8Xz+fn75by8+QldOiSTmyzCGKbRZDdNpkzz+kPgHVb78eWbXYfRLXZg2MqPHUsKdsCFsg6IYUB3dNZv7aQOb+upjC/nP89MZHv3ptOubeElu3TGfCvY1l8dCXgIOJTO7ZCB5Y6H750b6Ne2H5/gIU+L7EfhZN4ZgXDM04kwteNf+d/ySpbJV4zADbocEIWF/UchCPTiYFBbVU954zrT2VpNdO+WYDP62fxXRbOfHM4bWK60/XH3qxctoUr//UqRee7sBgt6eLOJSG2AgNz56RsTBPKPQ6qfU7yaqK2bQQ8EMhxYRY6yGiRS89+q6irtfP1J73JbrsFw4DM7Dy2bIjHX2UhbGkt9lAXIcvCmLc5HL/bghkwqUt07KjXHjAJKfLhj7Ixe32wIkm4y0H3zOZMWb4eE3D6DOrtYIvzE4jxU4EfQsDSqgazaNtbcg+Yi8Kpd5nMLQ1moZu5DswNbr5csoGCFe/z+mWn/c47SeTPk5KSwgMPPEDLli0BeOONNxg7dizz58+nffv2PPTQQzz66KO8/vrrtGrVinvuuYcRI0awcuXKhr6Z1113HV988QUTJkwgNjaWG2+8keOPP565c+ditQZfy8466yxycnKYODHYcuKSSy5h3LhxfPHFF4fmwkVERET+5iwWC6GhoYSGhpKQsOckBq/X22QZ96Z6oQcCgT0ea3+y0N1u9z6Vcnc4HH+JDOd1pdUYHN71nQxgbWm1AuMickgpMC6yFykxkcy680oWbsqlY/NE7p1/MSHhJczLhWbF6VyS/cxBPZ/dEvyAzzRN2kT2Y2POGhyOQEPAwe32MXrMTDDtDA99gD6Zraioq2f2+i1cObwvXr8fm8Wyxzdsdf5qhiTE8P5mK+AnYBrU+j0kh7TkhJSHuGDaK3wYmIJpRnJyek+cVjdnpt/B5prl9Io9HoAkVxa9Y8dQ6smjW0yw3+nk/Nco9xYyOX8r7SL7N/TsDrVGYDVsLC6bwic5j2A17Fzd6gUi7MFA1NWz3marp5qFpZt4pe+FTc75+rZHE+MMZUB8NnaLlWauNPrHncyvxR8BEAiAxQL+Nuvp2qYVphlgXukk6vzVdIseSYgt+OFqaLiLbo+Wsb56EctCviCFixrOMTqlC93NNM6782lMYNrPKxk8oj3HpXQmNTSGR5dN5KjEtji3lbEtrs/hpbU34PN6CbnKYM3HkaxaMJhWndNIXxvKyp5eLBhEO9xUltUAUF2xo89PTU09F1zxGjW1HkJi3Azp3QKny07H6BTcVgd2i5XWkUkkJUbx5tMXAJCeErtvN1ITOrZNwWG34q2uZ9rHc4l2OLj6/l0DLNUVtTx0zVuYpsktT44jbDfB+J+LPmNR2TS6RQ9o2Na6XQpul5WCTSUApP06kh5nZNI1ahAAYREh3PfCeY2Os6W0nAte/giH1codZw3h0S3fUdceWOpj3bJcbj95GJMXrSY1ait5/hLctnCOOjZYGeHuOy5kS34RLVKSiW4iMO7zB7jkowdIbrcQiuGa7P/y1cdzqa31MPGz+Tw6+nxmV2ezrrIAq41GfZX35rv891lfvYwN1ctpZx+MxbCQGdGZC7Me4aIZr5Nbs5WiZpu4ZOBxDftEbu9hbQ/gcDZemXzcaT2Zt2gj66prufLWCbz5woXExjQuY5YS0oahCeOo8pXRLbpxn+H2qQk8ccEYSqtqOKZ7Jo+svIYKXykXZd1Bmrtxdvpv1fmrWVI+k6yw9sQ4EhpVeKj3+ajf1ve6bFuf6V9WrGf6mk0AxMbZsXpM7KEOBvRq2eTxff4AX05cSES4iwn2Wcwu3sD93U7m6OT2jH/6fRZsyOWswV0IGHB6705NHsM0TS6f8TazitdzX7eTuPay4Xu8pn1R56/G7XAy7dVfmFxRywX/OomQP6nXVSAQwDCM/f7l2hXiYOTorowc3XWXx7YHxPfG6/Gx6NeV0KqU7yvfZXx2OvnVmVzTZhhpYbGUFFXwzktTWP7rStZvzMPRso52/yrD9JVR5e0OgM3iJ+uoIjybQyj4IYaQ2TYqW/iCq7iqIezrUOp9Abwb0lhxYRGuYWVML/0M04Tu8fEsityC6bKwdVkxF1a+Tn029M1M49F+Z3JJ3zsoyS9n8Ek9SUyLpX3vFrwx4lds9sW8+Gsma1cV4A/4g8+jaWHuzFYM6reYqKjaHf3EDVi+KJUOnTdzVPIapqxuQZndTYzVzRVlvZhkK2atr5AIR9W259VLcvMSlszLJDWzkFVLUrGV++ljiSInoobOvVuwOKKWKm8FFk+AK1I6cMzoLvw0aQkTXptKwGYQcFg47ZZhPPHzDADCQ1w8c94JVNd72FSwlZLaWp79cTpZbcOZXb+avJpyTAtQD+Y6N2aZDypsgAXqTcwyG4T6Mbfu+MBg9oYtfLNwBaM6N72wSI5w5mFSSn0/5jB69OhGX997770899xzzJgxg3bt2vH444/zz3/+k5NOOgkIBs4TEhJ49913ufTSSykvL+eVV17hrbfeYvjw4Ov+22+/TWpqKt999x1HH300y5cvZ+LEicyYMYPevXsD8NJLL9G3b19WrlxJ69b7V/FDRERERP5cdrud6OhooqN3rUC3M9M0d+mFvruy7vuShV5dXU11dTUFBQV7nd++lHE/lFno9b4AOZV1DUHxy4b2oig3h9OuvIHTr77pkMxp+xyGnHAaVz/wOBAM2udU1tHJF8BpO7Iy9kXkr0OBcZF94LLb6N0ijQpPEe6IkobtRfUb6XLnI6RExfHeFWcSupfM2j3J2VpOXlklPTKDpYrLvQX8WPg6u2uNYxp+Xl1xP/+bNZzvFxVxWu9ObCwu48xn/ke3jOa8etEpDaWvV1bMosq3lS7Rw7EaNt5YfxsFdetpHd6HzND+ZIc6GZoY7H8eYo2kPhAM/E4tXM3J6cE+ry3Cu9IifEcgxjAsHJ10UaM5dY0ewdSi9+kaPQKAwfFn0DK8G7GO5lgMKzW+YHlcv+llafmv1Por6Bt3IumhcWz1VJMRGodpmng9fhzOxi9P6WGx3NFpbKNtg+LPYGP1UnJr1lFZEUK0O4SRKWcDsKJiBl/lPgvAlMIJXNPqRcLswTfY+XXrAMitXYtpmvzfB9+yYGMu147sj73M19AHNrF5VMO5Ns8tI++lasqG1cO2CtUFdevxBoI9YkOSIfOCCqZXFXPFI99x6eWj6dwyjvBQN+lhsVz/yFlM+Wwu3XfKkq6qqsezLeB40nkDuOS8YPC4ZXgCU0b+X7B/rSX4PBStLsRT7yWtecw+BdL8/gBFW0pJSN0xvl2rJD57/QquOua/5PsCZHdKbbTP1vpcphV/TN2yKGZ9vxSAmd8tZdjJjfsqL91SwEs/zcDV4W0wTDYX1bHi+WwMq4WWnlAy2jbn4rtPIWdNAWeedgJRMXvuIz59zSZytgbvjYcWTyQ3vRaaW8heEaBN5zS6h7s4pW9HPIFjWV+9nAx38Dn8MmcR/zfvI+Jd4XyRfk2Tx67xeMgtqScZwDR4cdWvVN9go/kPEZxz2iDemjKPF2fNx9o1jKcuPoWU9H1beLCldh3ra5YBkGHtwqnnPg/Ai0+cS1ZGNv3ievHRprmMSGrcV7pPqzTuuHgw96z+nGuWvs2n8Vc2BPSzWidxzFm9+GDuh3gqHBQUVuwSGDcMgwHNTt31Oms92G3WhvLpm2pWUewJVndYU7l4t4HxDz+by/yFG0k/dSXrvHOJsEVzS/ZzzJy0mPTWyaS0TKAmp4zYbzfijXMQ3zG4wKNPyzTaJAV7jz96zbHEhYcSGrajhPP0VRt5/9dFtLe5ceXVENIqkSdf/JGAw6TsguAxfspfybCEtizeFJxnYWkVj523I4BSsLmEsqJKWnfLAKDaV8+vRcF+7z/kr+CY5h2avCZfwI/N0jhAfPv8T/gubxn/6jSa41KCgfeFZVOZsOkJwn3N+PlJL/gN0lsnc/weSuZv74/2e1eKL562in+d8STJmfE8NvEfOHdaKV3hLWVGybe0DOtIVljTfcmbUliXwydbXiAlpCXHJp3bMMeS/DJe+88npLdO4pSrj8YwDJ77vwl8/cbPtHmsDlfnGqCQB7vfiNUIvt7ExIXT5rws3u68kPbX9uL05Bh+DLyLYYWZz/5EzCZoe6qHqO6F0Blq59jw59pw32elLtYOlmD2N0BRmJMQYNXc9ZipMWCzsHZVIa6oYLWK/LJafNv+2c3euJEbHn+KIosDmkUzP28aMWfUs3mhD9NqwRsw2bixiIDLyqkD+7JybSEzPUVUF8GyOZn0H7Gs0XNiL97xfYr60Yk1P4xv3r4el9POacAPC1dz43s1xGdWEB1bRe8BK5h8Xw9Wxadirw0Qt6SGrZHg8ZtM+3U1Rv9Y2LZ2ZsjI9mS2TMDhtDN72hqWVVYQABb/uIZkXFT5vTxwQvBnYajTQdu0YJWUZwsn8XnZCgYltCLpwWo22Mvwel2U9bRA8bagOEAAzGVN9/fLKa1ocrvIn62iovG96HQ6cTp3X87f7/fzwQcfUF1dTd++fVm/fj35+fmMHDmy0TEGDx7MtGnTuPTSS5k7dy5er7fRmOTkZDp06MC0adM4+uijmT59OpGRkQ1BcYA+ffoQGRnJtGnTFBgXEREROUJs7zW+r1no1dXVey3jXlVVtdcsdK/XS2lpKaWlpXud4556oe8cTD/YWehFNfWHdab4zkygqLaelPB9T04RETmYFBgX2Q9lnsYlfquq7GD4WFe0lf98/j3/d/xRRIbsX7bhO9MW8O3ilSzOKcDj83P7mKGc2bczYbZYmjkzKKzbSH29FZvNT0lJGOERtThdwUy51LStwPu0rGtJnmMlsyniqJFOiouiqKo/noiQEArqNvDepnsACJh+esYe11CC3GfW0ytuML12qiBcULvjQ84ox/6V7R4UfzqD4k9v+NowLKS4dwSCe8Qei83iwGY4+GzL4wD4A35e6DOelRWbSHVHcOtpT7Nk9lrSr+mDI97Nv8YOIy48lDp/Ffl1G0h1t8Fq2PhyyzMsLPuBIfFnkVO7gvAoD11i+tExKtjvO9weC9sKCPnMeq5/731eOOsSLBaDU9P+j+Xlv9Ij5lgKKqr4Yv5yAG6a8DU2i4VhA7Pwl3o47oTuDXP/5vvF1NZ5+WLSQq69ZBgAbcL70D/uZArqNpBbu4Y+mWO5/aWFlFTV8M70BZzd//wdz2VsGGMv2NGLPG9jMVeN+i8hVoNTbhjFmWf1a/RcOqw7Xp6XzFzLv7YFXu94+SL6Ht1xr9+Lf1/4MrO+X8ro8wZyxX9OadgeGubihe/+QUVpNXFJUY32+b7gTZZXTMNIspDWpgcBr0GX/q2YMXsdX0xcyMmju9GtSzqPfvMLM9ZuprM7gaTUIhYtCqXUFkNofgCjfRSGYXDylSPZV8PbZ/PDsrU4bTbapkWwYmUu3WPSeW7qOYTs1C/XYXHReqfFGSvLtwVU6yqp8Nbitu26iiQixMV1/c9h9pa5DO/UlivmfgYGDLigFb06Z7P65/kNY9/4aAbXnj+MVdbvmFf6C6tKk6n3N+OJnmfsko2+uWY1fjO4qCG2ojNebzAgtylnK1kZzfhXp7Hc1nE0VmPX1a8VtmoCmGz1VJNbW9bo2El9i2nZYn3wuOl7/sVsu4VLc7j+X+9htjUZclIrLms7hKVr/LR1DsPmqqFnTPB+/fX7ZaxdkcuJ4/oTHhFCZWUdT73wPQBGrzKCqwes/N8rb7DgwVmEBhy8u+S/uEKdWJoFKL/GxWO2mQz39iUuPJSPrjlnt3P6zwffs7mknB8rPSR+spZ+4wYC4AhYuSRlEMs8eVyYPQC7zcoDZ4/ilxUbuGjYjgUYJXllXNz3Djx1Xm557kKGntqbMLuLm9ofzYyitVzYcgB1dV4++3oBGWmx9O4R7Mn9xtppPLL0W0anduHericCwUD555sXYBJcTLE9ML6uahkmJhW2QmIymlOd66d190wqymv5163/Y0tKJdeNG8WA9OCigq0F5Vx3zAN46jw88uUtNG+xf/3sdzb7+yXU1XhYtzSHvA1FZLRt3vDYV7mvs7D8V34u+oy72r/Z0Of9t9ZWLWFD9Qr6xB5NqC2c6SUTWV+9nPXVy7EYFjZu2Mycf1YSGRLN0tmrcSQE6DOqC6nZiVSVBftfl37hpn3PcDpG9mkIipumyeUz32RG8Rr8AYM5/s3cGXc8Ex7+Cl+1SfGXtbgxqIk0iewKvnIr3S+vpzZhLe5V7Zn5fgRVtZ7gsWwmNQNqcQ6N44LUoTz+3+8xbRYwDfymCSZYvAGiP7RQ294kZJGF/CovuJzgcpL5j0ps4QEqWq/HXN4Gi2Hh4VenULy1ivioUArLqqlpaQObgTW+viGJNWDCwvdaUbUwBn++C9NvUL4uGIivrKzDarPwxDe/srG4FK/XTs6GeKJjq6ipcVCZ4iJubh0Wn4klACOO68yH70zHNCF0YQXjzulGj+xU2rYPtkFonhrDXY+ewakXvgAWg8XzNhAId2EHNqwppnubYP/4/C0l3PbMm2zoVgVOqPF5uP4/Z/DFG7+Qv6mY6uiFJB1TQfHilvy6JAl28wFJbFgIp/dquqqC/A0ETA6LwoiB4BxSUxsvsLvzzju56667dhm+ePFi+vbtS11dHWFhYXzyySe0a9eOadOCrYB++6FmQkICGzduBCA/Px+Hw7FL9lBCQgL5+fkNY+Lj43c5b3x8fMMYEREREfl7sdvtREVFERUVtcdxpmk29EL/bSn33wbW6+rq9ngsYJ+z0G022z6VcQ8NDW1oH7QnZfXew76M+nYGUFbnVWBcRA4ZBcZF9oPHrGn0dVi4l5NP/oXS0nC+/s7HrLWb+eEflzQaU1BexX8++56UmEjO6deVyrp6/vXRJHx+k2fGj+H+L39sVJGyYtubLJvFzsUtnmRh6Q98lff4tketfPrJIGJjyxg4eBFORwAMaNasguTUYNA+Ns5LbFwVVWwhgpY4LW6shg2/6SPUFgXAORn/YU3lHDpGDdnlGifmLW74+7lZ/X/X8/VbVsNG95hjqPZV4vHbcVi9rKyopVdsGV/n3YY3UMfG6gRqY6L4uSgPiqBDSiIXD+nFq+tupbh+M92ij+b45leysOwH/KaXVZWzaeZMp7h+MxmhOwLGKe7WXNricZ6Z/TLzVnlYv7aG8to6okNDyAjtQEZoMNvUdJqc3KMDP69cT1FlNb5AgDMvH0LPrJRGcx9/ej9eeWcqI4fsKDFttdgZlji+0bgrhy/mjalzuWRIrz0+FxtW5FFTGfxep4SH4HTs/uXYvtNju+ud/lurFwXLXK9asGmXxxwu+y5BcYBUd1uWV0wjKaQlt0/6Z8PK1UtveZei4ko25ZTw1gsXMbhNFjPXbia6YgTLf9pKUVkFHeIiKK2s4OxzB+xy3L2Jcrt4dvwJDV+fntmTCLtrrytnL2g5ABNoHZFIYsjue6Uf36UNx3dpQyAQoI9jAevMEsakBEuxnzmgC9EhLu598EtmrVnP/6JmUDrwfUxM/EY587fWMrVwDaNTOzc6ZteoQRTUbcZpCeGodkdTNz4OE5MBfbMpLali04ZiOnRJg51+d1mybAsYcFrLnhTXV5HoiqBdZDIAm9YV8ugdH5N6jBc6gQUrdmvjQL8v4MVregixNg7Sz5q3Ho/DR3nvGj7cMpd1JVuZ82MpFsNg4s0XEW6PJH/LVv5z/bsA1Nd6ufimUYSGOunSMZXFy7YwOOQsEtNreXDxDBanbMB+TRQhj1RhYpKcGc/R94/kraLZlFFHbk0ZEZF7/uVlcPss3v55PhHFwdJlvXtkcvY1x+AOsZOUGNVo7DFdW3NM18bZfLXV9XjqvACUFu1YrDO+RT/GtwguInnt7am8/u40DOD9Ny8nPi6c7/OWYQKTc5c1BMZtFis3tj+a73KXcVH2wIZjHRV/Ij7TS5o7m64/H0XAH8DldvLjpCXMjNxEdSeTKxe+y89JtxDpcLNy7noKNwcrhiz6ddXvCowff/5gNq3MI611Eultkhs9FucMfh1lj9ttf/h6fy2vrr8Hv+mj3FvCSSmX0iGyDwvKphLnSGRK0WcQCt7OISx7ZyuZd1QTOcjDNNuHnM5VXP3wObTvk03ngW3I+M35a/0eZhSvwQRinW7OyepHmOkif0Lj+67oF4OUkIHc8fRFPLL+KvBDbOd67moxlmde+oHayjrKU2oob+2jAHht6UJMmxXTAhaPiaOoDkzo3DmV+jovq6fkY2Bwyvn9+fKjOVgsFso2hRHXvoL88Ajq2pm4lpr4/cGFYUUFFeCw4PB6qY+yUBLloqQuFKsRYEZBBoHcKEKcULwoZtuT5qNtywRyqir4ac16Xv95LgDNXC5yNsYRHVtB7qY4TIuV2mYOnHUwpHMWo8Z2Y8GMNaxZtJmaojL6xMUzZFDjTP4fv1mMs7COgN2C4Qngs/vp0C2NIf13VGp46JvPmNO3FAImA8vSuXvEqcS5wqksq2bil3Nxj6jCMMDZcjMs2X1v+JKqWh78agr3nnr0bsc0ZdGyHAA6tUvZy0iRfbd582YiIiIavt5dtnjr1q1ZsGABZWVlfPTRR4wfP54pU6Y0PP7bn/emae71PcBvxzQ1fl+OIyIiIiJ/b9t7jbvd7iYXW+7M5/PtNft8+5/tv7vu6VhlZWWUlZXtdY7be6HvqZR7cbXZZFDc5/Xy2v13MeWzDzAsFgYcdwLn3XonVpsNr6eej55/kl+++pTi3C24w8PpMWQ4426+nYjoYGm3tUsW8dbD97B57Sqqysqw2qyktGjFcedexOAxJzecp3BLDs//6yaWzZlJXFJzxt30z91ejwlsrfXu9bpFRP4oCoyL7IcWYT2Is6dR7N0RbLRYIDa2kqOPns2ihS3x+v3Yd1rJ9+Hsxfy4PFi6+61f52MYO1ozzlqXw8gO2fywbB3nD+xGcnQkY7vtCLwahoUEe0cwLWAEGNGqJ48PuQaLxcAX8LCs/FfemPslCxfEUlYWyuDuXqr8RUQ7kohzBj/8jnLEc0X2s9T5q0kKCZZZjnelEe9Ka/Iaj0pow+TcJaSGxpIeeuD9rPfENO1M3tIWq8XDsc2bU+4twhMI9i4+5uoOrP80lJmRUF5fT6csJ+uqFlLlLQOgyhcsW3RM0sUsLpvCkPizSAtthy/gwWFtHKxLCMlkfJsbKFk/lZNHNSc6dNdgnmEY/PvkEfj8Ad6buZBQp4Memc13GdezSwY9u2Ts9dpO7dWRU3vtPaO759B2nH7VCLweH4OO37VX8M5ad03n8S9uwOf1075n1l6PDXDb8+cz5bN5HHvOvi9u6BM3lg5Rg3BbIxp9kDygT0s++XI+A/pkA3DugG6c2qsjLruNgGni8wdw2g/ej5NIx76tGI12hnJT+30PDk16byY5tyzEbbeS+mswkG6xGIzs1prPM+eyam0Bfbq1oDz2WBaUTcViZtIpOoH+8bv2zXZaQxjb/CJ+/mwOVz3wH46/YAhjLx7K2g2F3HTZG1RvreWsCwZy4gWdsFpsrFlezrW3TgDgyQfP5NaOoxod7/HbPmDFsjxWLDK597ObSUtKIcax4xeyOn8Nj626ngpvKe0jerG0fDY9rMdxcodzGdgnmzc/nIalwiAQYZLiiGUOwcC4ZVvG+tsPfg5+P1itpGTGNVz74w+cgd8fIM+zntzaQqxGMKiRnpXEI5NPJXTb6t1Lug+ldlmAvHlFfP7QVJJvPo6IqN1XlLj1hCFcPao//loPpYUVpLXafaCvKSktE/jPhKsp2FTC0ecEF1vk5mzlobs+JTklhhtvH0NcXLBEv9vtIMQZXDByXdsRvLz6l4as8O12DqhvF+VoxqmpV+5y7u69skiaG8kaygix2hvKsncf2p6RZ/WnvraegWO777Lf/ohPieWut3c9N8DwhNNoH9mbWEdCw/fvt2wWO2G2SMq9JUQ7giXtW4R14M72r1Pnr+axVTdQ4SnFlh/FaVcfRf7QSZT7isn3BqsRhEeHMvbioU0e221z8o8OxzOtaDVXtx5OdkSwBHiPoe2Y80PjUuWV+R5C3aGcmXYd88t+oX/ssZQsh7xZwZ+RtVV2jC7B15L8BVVYYxxgGFirvNiqfWCaJDaP4qa7gosYNq7M49pjH8LAoLZZNAXvZDD3Mg9erJw0pBPl8XVMr1uP3WWjvSOR3OpiKkZVYjFMvKV2fvG1wKy3wDoHNLPjaRYgzFeEYYbjWGNnYWER4559H7vVQoTLSW2dh5KtlQw8aQXNEiponl6MP2BQvSIWi8Xg+NN78vKTk1mzuhBCnKTEuunUtyVV5TW4w10NveNGHN+F99/4lapti50cW+sZ3a8dsdE7SqFnt0nlu9INYELeK+uJGxe8fx+5/h3yR4Ux1BasEFHlc2I1DNokxbI0t7jJ79H+tpiev3gT197+HgBP3ncGXdqn7jLGNE0+eOY7nKFOxpw3UMFE2ScRERGNAuO743A4aNky+LO0R48ezJ49myeeeIJbb70VCGZ8JyXt+DlRWFjYkEWemJiIx+OhtLS0UdZ4YWEh/fr1axjTVEZOUVHRXktsioiIiIjsK5vNts9Z6HV1dY2yz3f3p7a2dq/nrampoaamhsLCwt2OaXfyeVjtu1ZS/PLNl3A4Q3C4XGwtyOPrt14hLbsNI047m4euvoh5U77HYrWS2rI1RVs288PH77Fq0Xwe+vAbnK4QCnM2sXTWNGITk0nNbkXRlhzWLlnIk7dcTVhEJN2HDMc0TR6+5iLWLl2ExWLBarPyxC1XEfDvvhJiWb1XC1lF5JBRYFxkPxiGwaWtgn2ra32VTCv+kA3VC8itWUdUVA1duq7i9Gf/R2yYm8fPOp5Qp4MuaY0DQqYJbZKaEel2cVSbLE7s3n6PbwRuevtHVhX3pXc7B7eeeAUWi8G01RvZUlrBCd0HMWf2Kqqra1i2NIP7h4+jZXzsLseKdiTu8zUuKt1Mjd/Dyoo81lYVkR1x8D9QDLO7eLLX+SzYuokzMnoTYQ/h6KSLqfFVMKDdKdhHOTFNk0rvVp5afTH+Ch8Dm52K0xJKp+ijAOgecwzdY45pOOZvg+LbtYiP5ZnxY5t8bGc2q4Wz++05QL2z/MJyps1ey6C+rYiLaboP7B7PZ7dy3q3H73FMfa2Hb96dhi3EydyFm+jVL5t97TjcoVcLOvRqsd/zCrNF77LtuitGcPmFQ3A6d2SrhziCf7caBlZL08G7w01dTTB72e8L4PMEy6CXlddw9wOfE+l28cnrlxMZ4QZaMbr5+Xs4EmwtrGDd0i3879Gv2Lw6n7ce+JzswW257Oa3wWFCvJNFZQtYueJZbIadYd4bG/b1eHddNcmj5xsAAEWZSURBVGz1+SAQAJ+PdgldCHE1zrq7Z9H7+KzBbOVlpXMxrX5+2fQtA2PH0CY7kf/efiqb80roPzSbpNBIjknaQEJkOElR4ZimSZGlmkB5KeGhoRxzUo+G4xqGgc+o4/m1t+M3fZyQfixnZ55On2YtiLDv+DcV5XBzsr8TNz3+MhuArOwkTjlvz9UB3E47OO2ER4Xucdzu9BzeeIHJd18vYtmiHJYtymHsaT05/uhOtGqRQFxsGOHhwRYW3WLTeTY2/YDOt11ElJuP/nEtc0o2khYaQ6gt+L1wuOzc8OT4vez9+xmGQXJIxh7HWA0b12Y/QqmnkOSQzEaPuayh3NLmGXwBL87/Bb+Hm6o7MK9sCr1ihu/THM7I6M0ZGb0bbbvg/8ZQmFPCplXB4NOZ147k6DODQans8M5khwerKqwqWoy57WeQtcwg4u0wCOzmZ5xhkN0pFZ8/gM1qYfmCjVRkRNP28rWEJeew7JUWeCdE4LTCDyVrqO/ioWaAB/z1LHq7gMwrYgnUbKsosNEGpe7g4rPgoTHS66jNsAN1eL12jKrg216vP8AH157GU49/yZSIIuLiK7ZPh/5DVrNsZRx5G0wefnoS/VoGM+qTmkdx5W2jefG/X/PThOl07d+K+ycEFzfExIbx0Q+3cvddH/HDrDUYBJhRX0z5xDms+Gk9o0/pwWX9h1P2aik/vjKTUaN2VC5odWuAFu2XUldnw+n0kbMqgTCXg1cvOY27PprM/I155FdUNf7+9G26lHp5WQ1Olx3XbyqL+Hb6MMLva/qDiTf/+xUTnpoMgDvUyYjTejc5Tg4xMxD8c6j9zjmYpkl9fT2ZmZkkJiYyefJkunYNvgfzeDxMmTKFBx98EIDu3btjt9uZPHkyp512GgB5eXksWbKEhx56CIC+fftSXl7OrFmz6NUrWLFn5syZlJeXNwTPRURERET+LIZhEBISQkhICM2aNdvjWJ/PR3V19S5l3Jsq5b67LHSr09VkUBwgKi6ehz+ZhN3h4MoR/dhamM/iGb+QnJHFvCnB9np3vf4B7Xv2obSwgCtG9iVnzSp++fIThp9yFm269eSln+cTFRe8Dk99HdePGUb+xvVM/fozug8ZzuIZU1m7dBEAF91xH0efcS6Lpv/C3eef3uScAHwBk3p/AJdt72XiRUQONgXGRQ5QiC2c5u5WbKhegNUS/CDeathYkVcEwDEPvcLPt19G/1YZDMhOZ9qaTbRrHs+Yru04s09nLJY9l3/czuP3U1PjorQwCZvFzsbiUi559WNMoMbjpXt6cyYuWU18eGiTQfF9lV9bzptrf2VjdQlWw0J6aCzJ7qgDOta+6B3Xgt5xOwK3vWNHN3rcMAwC+AmYwTd9LmsYfeNO3OU4pmnyzw8nMWvtZu499Wh6twhmwtV4vLz80yzemDqPMV3bcueJ+xYQ2le3/PsjNmwu4cepK3nq/jMP6rG3++iFH3nrka/xx4RBiJNpP69i2KhOOPZQdv2PsnNQ/K9q9PiBhEeFkpASQ1J6MGv652mrmLcwmN26aMkWBvbL3utxAoEA1xz3MCX55XTp15KowkrGXnwU5RXbVvkaBlgNKlylxGHiNT2ktXLx4N3BElM9u2U0HKu4rgq3zcEND5/Fh09PovvQdoS4GwfFA2aALzavJy0ikRbhLtoVZbOofCrF38RhdAuO6dMziz7sqCYwsPWOYOmba6fx9dBCogen80L7cbu8RlgMK3bDgd/0EWGPYFhChyavO71lPPHJUVSU1tCxR0aTY/ZHvd/LnQs/pcpXx787n0SMc88B9P5D2jDpiwUkpUST2SIBwzBonb3vi372h8Ww0Csuc+8D95Npmvh8Aez23/+Ln9sWhtvW9KIcq2HDat3xOpEW2oq00FZNjt0XNVV1XD/mEep3KnXWvlcLElJidhk7eGR77r/jEwBsVV7s9T5MbwBMMG0WTLuFE0d3JTk1ll8Wb+DR135kwZo87rxlNOGZ0XS4cTXhKcEe6LE9yqn4evs5TEx/w1+xOAwWVG0m2J0MzCQ/lIJhAqaJO8eHYRrUZYDpMaiLsBGJlVtPHkqIYSU9NprxFw2ndvU/G7XzDuCj9SW/kHdbf3LXFfH1ojwA8raU8Y8r3wLAcDtZOH01S2atbbQAqai+HtNuoSzTzntzF2P3QrOfK1m6IY+Wp7Shf8/O/OOCUxv+DRZVVmN0XY/TGsyu//ar3iTFNuPJK0cR5nLy8NnHc+qT7zQKjDttVtol77pgbfa0Ndxx/btERLl56f0rG7U76Nklg//eeQoG0L1z0wtHPNsWCwEYFq3Yl4PntttuY9SoUaSmplJZWcmECRP46aefmDhxIoZhcN1113HfffeRnZ1NdnY29913H263m7POOguAyMhILrzwQm688UZiY2OJiYnhpptuomPHjgwfHnxv17ZtW4455hguvvhiXnjhBQAuueQSjj/+eFq3br3buYmIiIiIHGo2m43IyEgiI3ffIhAaZ6H/9k9l/e7LkvccOpLQ8GCVp/iUVLYW5lNWXMzqxfMbxtwx7qRd9lu9cB7DTzkLw2LhjQfvZvGMXynfWkxgp+B8aWFw4fzm1SsbtvUZeRwAnfoOJCwymqry0t3OLbC/5dBERA4SBcZFfoefCt6ixJODBSsmftZvjCMlpYi+fZdSUhLBG0v9nNpmHC9csOsbjH31zLlj+Xnleoa0CQa9XHY7dpsVj89PZIiTB08fxbkDutEqsdnvKj/z+PJv+SZ3R3/xTdUlnDzlKd4beAWRjqZLJgcCZjAr7w8qexPliGd85v2UevLpEDWoyTGl1bV8Ni9Y3vfTuUsbAuPnvfgBS7cE36B9PGfpQQ+Mu0OCKzHd7qZXZB4MsYnBN65O08RjMejWM+ugBNT+rqw2K8NO7tloW58eWaSnxuBw2OnUYd9675oBk7rqYPZ5XHI09793dXC7aXL1eYP59PN5lNd7GNthOJboduSW1BFtZNGsZYCn/u99Zn44m8v/fQrTStdyzax3iXaE8vnQq7n64bObPJ/FsHBzh2P4dstSzskYTreuacycMohmt0bS7Df9upuyvjqYaV5h8xCftetKZYfFxXWtHqGoPpcWYbtvAxAe6eb1r28g4DexHYT7cHbJer7JDa4o/jZ3MWdm9tnj+BatEnn7i+v2+zyrKwp4ZuV39GuWzWkZvQ5kqgeF3xfguotfZc3KfG6/7xT6D2lzyOZyIHZ+nbdaLcQmNP1Lu8VioVl8GEUFlRimieExadjTFyA9I44rbz4WwzD46KclAGzMCd6jKRkuwl3BoHh9hZ38WYnBMivb0sCdi+xE+EK4dfwosu6LY9yEV6hoVQc2EywGpisAdRYwwJlbRqDKiaXaiTfKDX6DM8d0o7ByKt9+voWP3m7JWRf3JyKyvsnrcFXUYNYYbA8X220WvF5/w1zMgMltZz7L+4vvw7VtMcuJx3YjN7+cxKQwlpYVE+1ykTc4QPNBS/Ek/8Jbq+JZYbfRNmQkR6cfy5r8EirLQomKrSYkzEtsHw8bvRs4ffpzdIlI4c3Bl1D4m2zxep+fc+55k//dMb7R92T18lwCAZOyrdUUF1Y0CowD9O62+4UeH73wAzlrChl1dl9SWyQw/JRebC2r5s33p9O6RSKjhjW9WEZkXxQUFDBu3Djy8vKIjIykU6dOTJw4kREjRgBwyy23UFtbyxVXXEFpaSm9e/dm0qRJhIeHNxzjsccew2azcdppp1FbW8uwYcN4/fXXse7Uuuidd97hmmuuYeTIkQCMGTOGp59++s+9WBERERGRP8iestArPT4mry9qcr/tQXFgxwJ602zUoyu7c7dd9ouKC7b3e+KWq1g07RcMw6B5i2xCQsPIWbOK2uqqhiD5zuHtxh8R7znw7VdcXEQOEQXGRX6HbjGjmFL4Dj1jjqdD5FAGvfM+Y8dOw+Hwk5RUyhYm8l1eHWNTbzrgc8RHhHFKzx3BqoTIMC4f1punJ89g1trNDG6TxZqCEhIiwnE7DjyrNzsikW9yF2M3rPjNAD4zQF5tOWuriugWs2uG2aaSMs5+bgIB0+SF80+kQ0rTmZsenx+71dJk8Nw0TT6as4TymjrG9e+GY6fyOf5AgJ9XrictNoHO8Tv6rv+0fB3PfDedU3p14PTenYkODeHsvl2YsXYzp/feUV42v6wSgDCng2tG7nuf7X313ztPYcmKLXTpsGuv1oNl5Ol9yGzbnJj4CCJiw7Dbreq9c5DFN4vgzRcu2q99rDYrD398LUtmreOoE3b0mjYMg1NP7MWpJ+4Ivp769DKWbSlletZXnGCP55evFgDQ/5jOLE/OxwS2eqopqqvcY2/1c7L6ck5W34av+x7Vdp/ne3WbocQ4QukWm9ZQFvy3ohzNiHLsubwXBIOeB6tyfseoFFqExVPtq6dfs71n6h+oF1f/xI8FK/ipYAXHp3TBbfvjFrPsSVlZNSuX5gIwe/qawyYwPufH5VSV1zBoTNeGntm/5Q5z8dQ3N7NhRR4Ol42K0hrSWu0+W7+itAajiZXfLVsncvnNoxpex2655mjemjCdE47rysTvl5DRPIaS92OwZVVhWdebCCOElu0i6NE1lc+sCyl0VnBH9xMZmNKKgsIKnDPshM+1UjW2FkszD2aoj8CsKDAMSvvEBZPJDQO2LWhf5fuMmOar6XIxFK/YwpurZ2Ca4YRFNO7pVjovGmoMdn619foC4PVh+PzExIRSuqWesMgQrDYrH741jQ/enkZ1ZR0tWifSyhrHzeMHsaigkCcmT6F5evADirSsAoq9Ab7Z+g6FOUkUV1azdGUm3futpKgggjzT0/DcLKjIAaBDSgI/rVjfaH6La0v59JeFnDioS8O2Maf1oqK8hsTkaDJbxu/2e/NbW9YX8fI9nwHQ/9jOnHhxsF3J2x/O5OOvghkEPbqk0yw2fLfHkD/Rbz7AOqTz2EevvPLKHh83DIO77rqLu+66a7djXC4XTz31FE899dRux8TExPD222/v87xERERERI4UB1L0q2XHHe0kT7rkKnoNC7ar9Pt8LJr+C80zWwKwasE8AIafejaX/fshKstKuX70UGqrdyziTsveUaVpxqRvGHn6OSye8StV5WV7nINVH3GKyCGiwLjI79Ardiyp7va8tf4fLCr7Hre7FW53HbAjyW1rfd5BP+/MNZvxBwJ8uXAFBRVVzFi7mcxm0Xx5w3kHfMwLWgzk6KQOrKrI5+a5EwizuTgxrTudo5sO/M7dsIWt1cFgwrjn3+enf17C5/OW8cqUOVw8pBdn9+vC+zMX8e/PvmdImyyePnfXPt/zN+Zy58ffARAe4uS0XjsC229OncfD3/yCw2bl+1svIiYsmLX+3PczWJZbyCPfTOX03p0xDIPbxhy1y7FfuOBEfly+jhO7tycp6uB/oB8e5qJvj/3v4b0/DMOgVee0P/QccmAy2iST0SZ57wPN7f8z6dK/FRExobjDXLTslEqriAyqfR7SQmNoGbHvgaz9FesM45q2w/6w4x+oSIebj4dc/YefZ1BCK77PX0qPmExCrAenJUC1rx6rYcG1H8eLjQvn4muGs3xxDqeec3j0vF21cBP/Ovd5INgiYOhJPXc7NqVFAqERIYzvfRdej4/qilrGXjC4ybHW3fx2e8OdJ5CaHsv7T31LdLMIpm8uZvaCjcxfvJnkozYQ491KbXUUqV3Lsfecw3Xx9xBCDNZIg0cnB/tff1e8jIJ5lTz10g9kZcSRE1ZHpa8OA7B4gNoAAbcFvAGspoHfZWCvCOB3GFjCtwDBn83N2m6lGeDz7ZjrTa3fIMwehb9NgGOf/s8u87eHuvB6/ZR4Alx7/+n0O6YjH7w1jTee/7FhzPIlW1i+ZAtej4/x1w5nSU4Bq5cUEB1fRJwtFU/oStavTiY+uow6r4+i/GgmftUTS6dKDMdOwUYTXnvmO+49dyTL84u56JWPGs1ldXl5o6/Dwl1cdsMxu8zZU+9jyndLadEqkazsXUuwb15b0PD30Igdi3PabmtT0Cw2jDB30wtqRERERERE5NCzHkASTYfe/egyYAgLpv7Eg1deQHJmCyxWK8W5OdTV1HD3Gx8Sn5JKeuu2rJw/h+8/fJfl82ZRWliwS9JOxz4DyGzXgfXLlvDS3f/gq7depnDzJmx2Oz7v7su8W5T8IyKHiALjIr/T5pqleM06vL46TjxxOoFAcPv2n+0O6+6zQA/UFcP7EjBNRnVqzZRtmWRVdR58/gA264GlcxqGQUpoDO+sn44PkwpfHadl9MZqNH28hIgdvW09fj+1Hi+v/zKXospq3pg6l7P7deHH5eswTfh5xfom5xYfEYbTZsPj85EWE8VXC1bw+Le/cnqfTpjbspECAbNRz5mTe3VgwzeljbLDm9I2OZ62yX9csFFkXzx//olMX72RAa0ziXK7mLDgXmBHWeqb2h99KKfXSP6mEjasyKXHUe0OSql0vz/AlM/mEt0sgq4Df1+PV6/Hh+0AKyaMTunKMckdsRkHp+LC0rItnDftJVxWOx8MuorEkD33AdvZ/gTE/f4Ad970HqtX5PGv+0+hQ5ddF8mUFVdSX+dtstf3vnCGOLBYDAIBk5BQ197n5Avg9wd/yHnqdv/L7WOvXMhlZz7faNu5lw7hg0e+4tev5uPzBlO4u18ebHER0zGftKOCQeuQs2sxreAxa7nx4RfZuiKGmIpqWpwYSmk6zH9rMwVmsCLI4rqt1LotsDIUcuuJWAAVKQYETKLnboXoaLAGcHi9OLqVsnZFc7r1XY0RMHDZQ6mt9uItcmNLKyXUGoXbFlxEZbVZcDpt1Nf7Gl1DUnIUmzaWgNXg+Rd+osOAVsyfvSObO7F5JPl5FZgmVJTXEh0aQkVNHUvXJgPJ/PukYTw2cRqlNbWEpRYysHUG2APYOlRjOhpn4Fpy4X9vTOO9t6fz3NuXclafTrw7YxGYJoZhcOGQHnv8Xi1ZuInH7vmC8rIaKsprsVgNzrlwEGddMAjLTukEXfq3os/IjtRU1jL+5uMato8Y3I4lK7bwydcLuOvhL3jwXyfv8XzbFW+tIjrSTW5+OdfdMQGn3cYzD5xFdFToPu0vIiIiIiIi+8dptWAzDHz7WV3q1mde5eMXnmLqV59RmLMJlzuM5lnZdB14FGmtgp/jXHX/47xw562sXjQPT20t5//f3fz48XssnT294TiGYXDLk6/w7L9uZPmcWXjq6rjinod557EHKMrNafLcNouB8wA/wxYR+b0M0zwc6vEdWhUVFURGRlJeXk5ERMTedxDZSa2/ii9zHmNV1cxG27dnjF+Q+RhJ7j+uTPCkxau4/t2vAHjw9FEc3+X3lefNqSnlkWXf0CYiiUuyh+w2kLS1qoYTHn+Lsppabho1iHMHduPD2Yt59ec5XDy4Fyf2aM+yLQU8+/0MhrZrwUk9mu5RWlxZTb3PR/PoSE596h2W5RYS6nTw678uY9Li1WQ2i6Zd812z3OTA+Hx+bDb1Kf8rqKv34nTY/pTy+fW1Hs7ucQfVFbWcfuVwzvvH6N99zIn/m84Tt0wA4NlJt5LZdh8y7Jvw4ydzePj6d2jfM5MH3rtqt+W+91UgEGDjynyaZzbD4dr/DPIPNs7mnsWfA/B87/H0bdbyd81nd3JztnLeScH+uGNP7cmVN49q9HjB5hIuHXY/njof9/3vCrr0b3VA51m/PJfa6nra9dh9D+qdLZ+7nrwNxQwa022vCyg2ritk3ap8hhzdkWnfLOSe819oPMBqIWKkScsb8httLpwfS12Zi00/pELAAJ+fkPkbqe2ZFdytqo4+g9rwS3kuW52BhsoM7vWV1GZuqxASMLHWBhhgxFDXYzqpPQqpqXIy+5EujDtpAOed0R8wsBgWqn0VhFjDsOy0EGz+7HX844q3Gr6OjHLzxufX8s5LU/jgrWkA3P7AqSSnxvDRO9MZNKwdnbpncPLw/+L3Bxh1Qjeuv+14htz7IkWV1Tsubqd/zj0ymxNIqmUha4PXVQ2ODQEosBAx3YoRCA5unhZDQV55w4KCsy8cyPhLd62UsrMThz5IddWu/dO7dE3jnAsGcP9lr5HSIoF737kCh7PpdbJX3PoOS1bkEhHu4su3917d4e0PZ/DiW79gtVoaFlAAnHliTy4/b8he9/+j/ZXf72+f+/Dml2GzHPoMfl+gnu+2PP+XfC5FRERERI5EP28qobjWc6insc/iQhwMSos91NMQkb8pZYyL/E4h1jBGJF3CqtU7AuMprnYc3/wa3LZIQmx/bF/OFgmxOGxW/IEACZFhe99hL1Lc0TzW46wmH/MHAvznsx/YsrWcu08ewXf/uBCvP0CoM9iz95SeHRv1Q2/XPKHJEuo7iwvfkUV23sDuDRnjdquV435nkF8ae/T5yXz6zQIuOLM/551xeJRylqZ9/u1CHnl2El07pfHYv0/7w4Pjpmk2BN08v8mSPVAhocHgjdVqwXkAAejtZv+4jIA/wOIZa6mtqm9U7vlAPHfHR3z5xlTa9sjk0U+u2+/9j2vemY3VxYTZnPSKy2r02IJfV/HdB7M47twBtO2Wsc/HnFq4ijJPDYMjWpOzOp9WXdJJah7NmFN6smpFLsee1H2XfUoKKqivDWZtb1lXuNvA+PzZ63n435/RpUcGN90xdpd7aX8XLLTtnknb7k0H0X/+fC4fPD0JV4iD8beNpUPvlqRnxTP7h6V89/6MXXcwwRVRtctmfyBA7rREfDEBPK282FdZOe6UnqwxYXlBEVVDvSyLy8HzRTkhFgu1zUMxLAauLdWYYSF4IqwEHAZ+t5Wk0DBq0sOBQux2Py88eD7ZmYmNnodQ266Bva49s5g46w62bNpKfFIkDkfwLfP4y4ditVkwDIO+g1tjs1m55e4TG/a75/EzWbpwM/2GteXSm94mLcRFubUOjz/478uCEayCYgSvf/O6Ssx0wGPhxX7nszJ3KW9+OhniohqC6Fs2bW04vmFA2w4pe/4mAYlJkaxdXbjL9gXzN1F+3xeUFVdRVlxF7vpCMtok4/MHsFqMRs/LjZeP4OOv5jN0wL79LF60LJj1v3NQHOCo/vpZLiIiIiIi8keKCbFTUuvhr5ABaRCcr4jIoaKMcf7aGSRy+Nhan8vmmqUkhbQk3rVvmXcHS35ZBRe98jHri0v519ihnNGn8x9ynsWb8znj2f8BcE6/Lvzf6D1nrMnhZez4Zygtq6FFejNee/K8Qz0d2YPb7/+Un2esxmIxmPT+dTjsf/w6tvXLc1mzeDODRnfFGeI4KMdcMmst4VGhpLdKPOBjbFyVzxsPfUmXAa0Yc96g3z2nf5zxNAt/XU1EdCjvLbrvdx9vZ+N63UlxXhkZbZJ4bvI/9mmfZWVbOHNqsOx41jd26j4v4YQLB3PpXSftcT/TNJn4v+lUllZzwkVH7Tbr98E7P+H7bxYD8MGkm4iMcu/HFe27VQs2cu0xD+7YYBjc+97VrF28iVfv+yIY0fX5guVUALZl/kcNrCHr9vJdjuf1w8T1HcAOmBBV54a3LdS381LbP5gJ7V8ShrHFAHfw2iNya3GsrKB4SEJD2Za28XHcf9FRvLTiDQbED2B0i6b7ojec1+vnmYe/oby0hmv/7ziiog+sBPj7n8/h6VeCvccvuHwwz86YRXW9N5jdboA9xo8/owqjzI59czgtEmJ574qz8Nb7+O6j2QRsFp58ZBIAzRIiKC6qJCYujEdfOI+k5tF7PX95aRWn9r8X3E6wWBgyrC0/TV4GBow5vhObluSQ3iqRy/9zMr/MXMPd//2Ctq2SePLeM7AeYDm7jTklPPnyD8yevwGAmCg3N1w6gkH9DqyawcH2V36/r4xxERERERHZk5yKWmbllR3qaeyzXslRpIQf/PajIiL7QhnjIgdJjDOZGOeBlQr+vd6ZvoD1xaUATFmx7ncFxpfk5DNz7WZO7N6eMJeT+7/4kdKaWu48YTgZcVEN46asWE+PzBQGtMogxKFVfn8FN10+ki8nL+K0sXvuTSuH3vln9sdiMejTPetPCYpDMHP4QMud706HXi1+9zHSWyVyx8sXHYTZBF374Bl88+40+h7d6aAdc7tO/bL54aPZdO6/7+0zQmwOLEYwi7imsAYLULildK/7GYbBqLP2Xvlh9Mk9WLsyn669sg5aUHzT6jwuHfif4DwsBqktEygt3DW4/c/Tn8IZYg8GxYOT3hEY3yZ8axpmYDHGb2KxNgvBoDiAAWUhNUS6Q3EXOKmp94DfgCorpssgsQ4KnFCRFEJEYe2OcwEby8p5dOUP/FpSx/SKX/caGF8yfyNffzIPgI5d0zjpzD57fT42V69iXdUSesaOxG0LVm4Z2DubryYvJiLcxfdLVwWD4tuuBcAXV4vFFYDEer495zriQoIBeIfLzrFn98M0Ter9sGVTCedddhSh4S4sv8no3ll9rYeX7/2Muup6zr3leJbPWYe1sgazsgaby0H3LilsmruOjSvzadshhavuPBHTNJnw6Wy++HYRPn+Axcu3UFFZe8D9wNNTYnnkrlPxbcsYt6lf3MFnmrv8Gzpk8xARERERkcNGM7dze2Gyw54BNAs59At+ReTvSxnj/LUzSESq6z0cdf+LVNd7MQx469LT6Jre/ICO5Q8E6Pvv56iu9zCqUytO7tmBi175GIBbjxvMuP5d6XP3s1TV7+hZM7pLWx44/ZiDci2yg88fYP7iTWSmxREX8/tL5Iv80Tz1PvI3FZPaMuFP6Yt+ODJNk/Kt1UTF7t+/2bWVhVT76nFtMpk7ZQVHn9GHmPjf935kTsl6nl7xPcc078gZGb33aQ5fb1nIMcmdyI5I2OXxyopa7rv9YzBNFn46A9MbaOIo2+z8/d+Wud0gENzv/NtPoGXXVEI71fHz2q/ZYJ2HgYWAGXx8U0Uky8rS8RH82j7Pj1EahzvSRUlNXaNe3QNTmjN1c7CM96nOBLIHZbOirJSPZy8FwJpdDcn1GDU2Xu5xIT2ydl+KvKK8lmsvfIXK8lr++/x4MlvEN3rc6/Ex5fN5pLZIICzZxsvr/4nHXQGAw3BxZ8d3G8YWbC5hxuQl/HPxbExX437slkgvrtYe+sa15MmBZ+z+udyLhXM3YJomJRuLefi6txu2GxYwd/oW2ezWhnYJQ07ozq1PncvGnBLGXfkqAClJUYw5pgtnnNDzgOdyuPsrv99vyBhPvvTwyRjPfeEv+VyKiIiIiBypZueWklNZd1gHxw0gJdxFz+S9V0ITEfmjKGNc5C+utLq2IROtW1oyH81ewhtT53HXiSOIcrsajV2VX8zbv85nZMdsBrTK2OVYFsMgJjSE6noP8RFhtE1OIC02ivKaOvq2TMMwDG46dhD/+fR7LBYDrz+Ax39w+hFLYy+//QvvfjyL6Eg3H716GTabde87iRxCt572FCvmbeDkS4/iottPONTTOSQMw9jvoDhAi/BtwddoaNU57aDM5cVVPzG/dCOLyjZzenqvvS5WuGXe+6ypLOD7/OV8OuSaXR5/berPfJ+yEvdMCxERoXhLKps+0PbzbFt3GQgLwQwPxaioxlJd2zAsLima4hbz+GjDxzhtbnpH3Ug7I5Ppk5fwZswCCixVhNrs9IpIYebMddRXxWDaoba2Lph4vu04DouFe84/jnWFW3HZbXRKSwJgQ3EJH89ZAqaBf7UbChxQbeOeTd/z6U3jd/s8RESG8NqHVzX5WCBgcvUZz7J+VT626jq6PFEBGRUNj3sCdcybuoJuA9rwy1cLuO+y13C67RjHJu7ywUS6PZ4vTzxvt/PYF4vmbeDmy98E4MbbjgPAdDkIhIZg1NRh1NbjiwslEGInNj2O/j2y2LqqgDOvGQlAfFw4zROjyC+q4JqLh9Gne9bvmo/8CUwOj2ztw2AKIiIiIiLSWFZ0KJsr6w71NPbIBFocYMsyEZGDRYFxkb+4lJhIRnbIZtKS1czdmMvcjbkAZCfEMbprW9Jio4BgJuNN//uKtYVb+XbJKmbeeeUuxzIMg/euOos1BSV0SUvCarHw9Y3nNTwGcGqvjpzSswM5peXMXpfDiA77XjJY9l1VdbCHbk2dB3/A1Iu1HPY2rc4HYMOKvEM8EwE4NqUzC0s3M6p5x33K4E8PjWVNZQHpobFNPv6RZR717UysiRZeee42rj/6fkryKnYd+JugnRkRBjYrZkQoVNVw7m2jiUuIpvvoFnxXMBOA2kAtdy78Gr/PSuK9ZSS1bcbxDw1kcEJrusSk0f7Tx4IH2x5z3/bXsd3acucpw3HYbCzLKWR94VZ+WbGBd+bOpa59MZa+AQLzIqDOChXBuuzZiXH79Pxt5/cHmDZxEYmpsWzaWMK6nDJwuwiYASzR9eycN+8tN/jn2c/xxJc3Nvx7qK/xcm2r9iyw1JCQEMWEmYsAuG3MUfs1j4bn0zR566Up5G8po9+QHb27myVHExblptxmB7sN0+rGJIAnLbgKf1NNHQUzV/HthOuwWIJPZIjLwaP/Po1rb5/AYy98x1P3nUl8XPgBzUtEREREREQOrRiXnQiHjQrP4ZvEFOGwEe1SS04RObQUaxE5AhzfpQ2Tlqwm1GknMsRFVb2HZ7+fwfM/zOTVi04m1Olgzvoc1hZuBaBNYrPdHisyxEX3jB2l2JsKqBiGQWpMFKkxUQf9WiTo8vMGk5UeR/s2zXE69FIth7+7Xr2YGZOXcNy4AYd6KgKckNqNE1K77fP4B7udxprKAlqG71pGHWBgYiu+yFnAOb370yw+krfnPwDA/F+W8a8zn8HvazqF1KioxowIxais5ur/nsWx5w5kXdUS/rvyEgyClTAshkmko46tZihlp4fQbqGbq1oNY8XSLfxv6QKwsCMaDhCAoe1bcMXIvtw24VtKq2uZuWYzAC67jfqoaiwWP4YFjHAfZl3wPOlxkfzr5GENc8urLePZlT/QKTqVU9ObLiH++Ws/8+Ldn2C1Wrj99YuJ6VlMVNdK0mKaUx1ZDYAVOw6fm2X/dIIRLFt+4kVD8Hv9NM+KZ9jJwWN7fD4ymkWTHBVBv+z0ff3WNLJ2VT5vv/wzAEkp0Tz4zDgwTbr2ymLg8V346uN5BMIteKPsBJLjG5WyT2sew29/pC9evoX8wuACh6+/W0xFVR3HDe9Ai4zGJeRFRERERETk8GYYBu2ahTNjS+mhnsputWsW/rdtvycihw/1GOev3XNQZLtNJWVEuJxEhYbww7K1XP3W5wDEhIawtboWl91GnTe4YvCza8fRcj+z5kRE5O+txleP29Z0f2NPvZfPX/6R6so6lsxeQ97aIkryy4FgXLbXyI7c/PR5hIaHML34K77MfQUAK1aqfAY/57XEE7Bxga0XF/UbyoQ3p/HORzMo7BkaDIxDo/LNZ/btBCZMmL6o0TxO6NGORTl5uFt7Ka6o5qzm/RjUOov4iDAiftNe5D+LPufDTbMB+GHErcQ6dy2D/9lrP/P8HR8S1bueMfe2ZUn9zw2POYxw6gM1jEy8hiEJA1k0fTUhoS6yO6Xu0/NZV+/l7oe/oLKqjrtuGkPcPpThr66q54pxL1JcVMH9T55Dp247AuxFeWVcPu5ZiqxgbluB77QY1AdMurRP4b93nbrLQqvqmnoeeHIiACvX5pNfWEHLjGa8+sR5+3QNfyV/5ff7DT3GEy/BZnEc6ungC3j4Lv/Fv+RzKSIiIiJypJuVW8qWw6zXuHqLi8jhRGmIIkeI7SXTAYa0yeLuk4bj9we4/8ufAKj3+QGwWSxkxTddKldERGR3dhcUB3A47Zxy5chG28q3VlFf4yE6PgL7TgHZ7jHDqfKVE2qLpEf0MApqK8mt/JCzMnszJi2Y5V5SVEldOhgxXswyGzbDgg8TzOAv1BOmLyI7MRbDgBC7nTqvlytG9uOy4b33+Xp6xGbw0aY5tAhvRoQ9pMkxx5zTi1UdPqLMWcSS+qKG7aZp4eucROr8dn7K/ZlpowbSqe/+tRZZuDSHX2etBeDHaSs5dXT3ve4TGubk1Q+vxO8P4PhNkLtZUhR1ieGY23rKxUaHct9tJ2ICLTOb4bDv+rY/1O3kP/8YC8A/7/80GBjPUra4iIiIiIjIX1XnhEgKq+vxBA6f0LjdYtApIfJQT0NEBFBgXOSIZLEYnNKzIwBZ8bHMXp9DXFgIn85bzqVH9WroLyoiIvJHiYwJg5hdtzssTkYkntXwdWqYiwmDL280ZtSl3fnfvHlYjXr8K0LxFe0alF+dX8LPd1xKZIgLE7BZLbuM2ZNRzTsxML4VITYHVmPXfet8tfxn+dmw06k3VUWxpTqSck8I3kDwbXToHhYM7EmHNsm0b51MZVUd/Xu12Of9rFYL1t9c60dfzWPpilx6dsng+19WANCuVRJtWyU1jCkuqcJutxIZ0fQigH/fMoYteWWkaAW/iIiIiIjIX5bTaqFbYhQzcg+fkurdEqNw7ufv7CIifxQFxkWOcD2zUuiZlQLAab07H+LZiIiI7J07wom5bQ2XYQm2yv6tcQO6EhPm/l3nCbPvKK9ummajXmdfbHmx0Vh/wMrCkubsaHYe9Ea/iw7o3KFuJ889dHaTj9XUeggETMJC9x50Ly2r5okXvwcaLw7o2zMYbK+squO1CdP48Iu5AJw+tgeXjh+8y0ICq9VCWkoTKxnk8BEIAIFDPYtt8xARERERkcNVcriLdnHhLCuuPNRToX1cOMnhrr0PFBH5k2iZjoiIiIgcVlqGJ/Bq3ws5MawPZr4DAxr+AIzq3Jpbxww5KOfyenxcN+pBTsy8jvlTljdszwrr2Gjc+soofhsUPy65E8mhUQdlHtttySvlxPOeZez4Z1i9rmCv48PDQ2iVlYDFYhARHswGt1gMfvp1JaVl1Tz2wncNQXGA9z6bw8dfzjuocxYREREREZHDS+uYUFrFhB7SObQ6DOYgIvJbyhgXERERkcNO99gMsnomULDOi2kGSIwMZ/yg7iRHR+Bsol/2gSrKLWXlvA0AzJy8mK6D2247/1CS3FlgBiisq+Hcje/tsm+ryMSDNo/tNuZspbbOC8CaDUVkZyXscbzNauHFR8bh8frwev189d1inn3tJ2bN38DEH5dSXlGzyz5ut+Ogz1tEREREREQOH4Zh0D4uHLvFwtJDkDnePi6c1rFhf/p5RUT2RoFxERERETksRYeG8NwFJ/yh50hKj+PM60exZvFmxlx0VKPHkkMygv93Q5zza4rrqwDICI2lb3xLTs/oddDn06tbJhec2R+P18fQAW0AqPf4WLYylzbZiYS4dg1qWywGLqcdl9POccM78uXkRZSW1dCrawYr1+zIOn/p0XHU1Hjo0iH1oM9b/gSm2XRfgUMxDxEREREROewZhkHr2DDCHTbm5ZfhDZj8ke/mDcBuMeiWGKXy6SJy2DJMU59sVFRUEBkZSXl5OREREYd6OiIiIiJymPEGfHyTs5jWEYm0jkr6U899272fMHXWGrp2SOWJe8/Yp32290xfu6GIF96cQo8uGZw2psc+7Vu8tYroSDdW65HTdemv/H5/+9yHN7sQm+XQZ/v7Ah6+K3rlL/lcioiIiIj8XdX7AywsKCensu4PO0dquIvOCZE4jqDfJUXkyKOMcRERERGRvbBbbIxJ63pIzl1SWt3o//vCMIL90FtkNOOhO07Z63iv14/NZuHND2bwyjtT6dIhlSf3MQgvfxJljIuIiIiIyAFyWi30So4mpbKOZcWVVHh8GPC7Msi37x/hsNGuWTjJYcoSF5HDnwLjIiIiIiJ/osXzN/Lx/2Yy4rjO9Bvceq/j77p5ND9MXcGgvq3+kPlM/GEJDzw1ka4d07BYggH1Jcu3UFFZS0R4yB9yThEREREREfnzJYe7SApzUlrnZW1pNTmVdZiwz0Hy7eMMICXCRYuoUKJd9obF2SIihzsFxkVERERE/mDVVXVM+moh7Tum8tyj37JmZT5LFm4irlk4b7zwE30Ht+b4k7o3uW9SQiRnn9z7D5vb9DnrCARM5i3cyIuPjGPZylyqazzc98Q3PHD7SX/YeUVEREREROTPZxgGMSEOYkIcdPIFKKqtp6zOy9ZaL2V1XnxNVImyGQZRLjsxIXaiXHaahThx2lQyXUT+ehQYFxERERE5SNatLmDzhmIGHNUW604fErz01Hd8/ck8nC47J5/VhzUr8+k7sDVvvTyF2dPXMGfGGuLiwzEMSE2PIzklZrfnKKuo4c33Z5CVHsfxIzr97jmPP70vPn+AXl0yaN0ykdiYMKprtmKxGGwtq+af932Kw27lnv87gXCVxjt0Aia/r9DhQRI4DOYgIiIiIiIHhdNmISU8hJRt1cJM06TeHyBgmvhNsBpgMQycVouywkXkiKDAuIiIiIjIfpj05QKeeOArBg9vzy13ndCwvbyshqvPexmv1895lx3FWRcMbHgsIjL4IYPb7eCciwZx5nkDcLrs3HDJa0CwbfMdN0wAwOGwMeGbGwgL3xGErq6px+m0Y7NamPDJbD78Yi4A3TqlkZwQ9buuJyu9Gff+347reOKe01mwJIc+3TP5cepKlq7MBWDuoo0M6bf30u8iIiIiIiLy12QYBi6b9VBPQ0TkD6NaFyIiIiIi++HHSUvwevz8MHExgZ2yZ42G/4BhabySfvylR/HgM+N4/p1LsdmsOF12vvlsPksWbN7l+B6Pj7ycrQ1f/zRtJced/RTnXfMaHq+P1i0TMYBmsWFERbgP+vXFRocxbGAbQt1O+vTIonWLBDq2bU73TukH/VwiIiIiIiIiIiJ/FmWMi4iIiIjsh3MuHITX42fQsHZYdgqAR0S5eeaNi8nZtJW+A1s12sdqtdC1Z2bD1z6fnyfu/xKA0DAn5146hE3rivjqk3kAWKw71q8uXJJDIGCyKWcrZeW1HNW/NR1euYynX/2Ry25+m3/dcBzZWQl7nHMgYOL3B7Db92/lf1xMGC89eu5+7SN/DNMMYJqBQz2Nw2IOIiIiIiIiIiIHQoFxEREREZH90L5zGg8/P77JxzJaxJPRIn6vx7BaLXTtlcXcGWsZfmwnTjitFwG/Sau2yUTFhtKiVWLD2DNP6kV1TT0mJivX5hMfF05tnZcff10JwDc/LN1jYLy2xsOV41+iMK+c+548i07dMvbvgkVERERERERERI4AKqUuIiIiIrLNonkbuemyN/jy47l/6HkMw+D6247HZrPw2fuz+eaz+VhtFkad0I2+Axv38Y6PC6d3t0y+/XEZ/7zvUxYvz6F5UhRHDWhNavNojj6q/R7PlZuzlZyNJXg8PubNWv9HXpaIiIiIiIiIiMhhSxnjIiIiIiLbvPXSFBbN28iyRZs5/qTuf+i5/P4Afn+wR3l9nXePY8PDXABYDAN3iBOr1cLdN4/Zp/NkZSdwzkWDyNlUwuhTevy+ScuhY5qwU0/7QzoPEREREREREZG/IAXGRURERES2OeroDixbtJmhx3T8w8+V1DyaR18cT35eOUNG7Dnru1e3TF56ZBxOh42MtLj9Oo9hGJx7yZDfMVMREREREREREZG/PgXGRURERES2OfaEbhx7Qrc/7XztO6fRvvO+jW3dMnHvg+TIZZrAYZCtrYxxEREREREREfmLUo9xERERERERERERERERERE5oikwLiIiIiIiIiIiIiIiIiIiRzSVUhcRERERETncBQJgBA71LMA8DOYgIiIiIiIiInIAlDEuIiIiIiIiIiIiIiIiIiJHNAXGRURERERERERERERERETkiKZS6iIiIiIiIoc70wTMQz2LbfMQEREREREREfnrUca4iIiIiIiIiIiIiIiIiIgc0RQYFxERERERERERERERERGRI5pKqYuIiIiIiBzmzEAA0wgc6mlgmod+DiIiIiIiIiIiB0IZ4yIiIiIiIiIiIiIiIiIickRTxriIiIiIiMjhzjQB81DPYts8RERERERERET+epQxLiIiIiIiIiIiIiIiIiIiRzQFxkVERERERERERERERERE5IimUuoiIiIiIiKHu4AJxmFQxlyl1EVERERERETkL0oZ4yIiIiIiIiIiIiIiIiIickRTYFxERERERERERERERERERI5oKqUuIiIiIiJyuDNNIHCoZ6FS6iIiIiIiIiLyl6WMcREREREREREREREREREROaIpMC4iIiIiIiIiIiIiIiIiIkc0lVIXERERERE5zJkBE9M49GXMTZVSFxEREREREZG/KGWMi4iIiIiIiIiIiIiIiIjIEU0Z4yIiIiIiIoc7MwAEDvUsts1DREREREREROSvRxnjIiIiIiIiIiIiIiIiIiJyRFNgXEREREREREREREREREREjmgqpS4iIiIiInKYMwMmpmEe6mlgmod+DiIiIiIiIiIiB0IZ4yIiIiIiIiIiIiIiIiIickRTYFxERERERERERERERERERI5oKqUuIiIiIiJyuDMDQOBQz2LbPERERERERERE/nqUMS4iIiIiIiIiIiIiIiIiIkc0ZYwDpmkCUFFRcYhnIiIiIiIiB9v29/nb3/f/FfnwwmEwfR/eQz0FEREREREREZEDosA4UFlZCUBqauohnomIiIiIiPxRKisriYyMPNTT2C8Oh4PExESm5n99qKfSIDExEYfDcainISIiIiIiIiKyXwzzr5w2cZAEAgFyc3MJDw/HMIxDPR35E1VUVJCamsrmzZuJiIg41NORw4zuD9kd3RuyO7o3ZE90fxw6pmlSWVlJcnIyFstfr5tUXV0dHo/nUE+jgcPhwOVyHeppiIiIiIiIiIjsF2WMAxaLhZSUlEM9DTmEIiIi9AG17JbuD9kd3RuyO7o3ZE90fxwaf7VM8Z25XC4FokVEREREREREfqe/XrqEiIiIiIiIiIiIiIiIiIjIflBgXEREREREREREREREREREjmgKjMvfmtPp5M4778TpdB7qqchhSPeH7I7uDdkd3RuyJ7o/REREREREREREDh3DNE3zUE9CRERERERERERERERERETkj6KMcREREREREREREREREREROaIpMC4iIiIiIiIiIiIiIiIiIkc0BcZFREREREREREREREREROSIpsC4HHHuv/9+evbsSXh4OPHx8ZxwwgmsXLmy0RjTNLnrrrtITk4mJCSEIUOGsHTp0kZj6uvrufrqq4mLiyM0NJQxY8aQk5PzZ16KHGTPPfccnTp1IiIigoiICPr27cs333zT8LjuC9nu/vvvxzAMrrvuuoZtuj/+vu666y4Mw2j0JzExseFx3Rt/b1u2bOGcc84hNjYWt9tNly5dmDt3bsPjuj9EREREREREREQODwqMyxFnypQpXHnllcyYMYPJkyfj8/kYOXIk1dXVDWMeeughHn30UZ5++mlmz55NYmIiI0aMoLKysmHMddddxyeffMKECROYOnUqVVVVHH/88fj9/kNxWXIQpKSk8MADDzBnzhzmzJnD0KFDGTt2bEOAQveFAMyePZsXX3yRTp06Ndqu++PvrX379uTl5TX8Wbx4ccNjujf+vkpLS+nfvz92u51vvvmGZcuW8cgjjxAVFdUwRveHiIiIiIiIiIjIYcIUOcIVFhaagDllyhTTNE0zEAiYiYmJ5gMPPNAwpq6uzoyMjDSff/550zRNs6yszLTb7eaECRMaxmzZssW0WCzmxIkT/9wLkD9UdHS0+fLLL+u+ENM0TbOystLMzs42J0+ebA4ePNi89tprTdPU68bf3Z133ml27ty5ycd0b/y93XrrreaAAQN2+7juDxERERERERERkcOHMsbliFdeXg5ATEwMAOvXryc/P5+RI0c2jHE6nQwePJhp06YBMHfuXLxeb6MxycnJdOjQoWGM/LX5/X4mTJhAdXU1ffv21X0hAFx55ZUcd9xxDB8+vNF23R+yevVqkpOTyczM5IwzzmDdunWA7o2/u88//5wePXpw6qmnEh8fT9euXXnppZcaHtf9ISIiIiIiIiIicvhQYFyOaKZpcsMNNzBgwAA6dOgAQH5+PgAJCQmNxiYkJDQ8lp+fj8PhIDo6erdj5K9p8eLFhIWF4XQ6ueyyy/jkk09o166d7gthwoQJzJs3j/vvv3+Xx3R//L317t2bN998k2+//ZaXXnqJ/Px8+vXrR0lJie6Nv7l169bx3HPPkZ2dzbfffstll13GNddcw5tvvgnotUNERERERERERORwYjvUExD5I1111VUsWrSIqVOn7vKYYRiNvjZNc5dtv7UvY+Tw1rp1axYsWEBZWRkfffQR48ePZ8qUKQ2P6774e9q8eTPXXnstkyZNwuVy7Xac7o+/p1GjRjX8vWPHjvTt25cWLVrwxhtv0KdPH0D3xt9VIBCgR48e3HfffQB07dqVpUuX8txzz3Huuec2jNP9ISIiIiIiIiIicugpY1yOWFdffTWff/45P/74IykpKQ3bExMTAXbJwiosLGzI6EpMTMTj8VBaWrrbMfLX5HA4aNmyJT169OD++++nc+fOPPHEE7ov/ubmzp1LYWEh3bt3x2azYbPZmDJlCk8++SQ2m63h+6v7QwBCQ0Pp2LEjq1ev1mvH31xSUhLt2rVrtK1t27Zs2rQJ0HsOERERERERERGRw4kC43LEMU2Tq666io8//pgffviBzMzMRo9nZmaSmJjI5MmTG7Z5PB6mTJlCv379AOjevTt2u73RmLy8PJYsWdIwRo4MpmlSX1+v++JvbtiwYSxevJgFCxY0/OnRowdnn302CxYsICsrS/eHNKivr2f58uUkJSXpteNvrn///qxcubLRtlWrVpGeng7oPYeIiIiIiIiIiMjhRKXU5Yhz5ZVX8u677/LZZ58RHh7ekKUVGRlJSEgIhmFw3XXXcd9995GdnU12djb33Xcfbrebs846q2HshRdeyI033khsbCwxMTHcdNNNdOzYkeHDhx/Ky5Pf4bbbbmPUqFGkpqZSWVnJhAkT+Omnn5g4caLui7+58PBwOnTo0GhbaGgosbGxDdt1f/x93XTTTYwePZq0tDQKCwu55557qKioYPz48Xrt+Ju7/vrr6devH/fddx+nnXYas2bN4sUXX+TFF18E0P0hIiIiIiIiIiJyGFFgXI44zz33HABDhgxptP21117jvPPOA+CWW26htraWK664gtLSUnr37s2kSZMIDw9vGP/YY49hs9k47bTTqK2tZdiwYbz++utYrdY/61LkICsoKGDcuHHk5eURGRlJp06dmDhxIiNGjAB0X8ie6f74+8rJyeHMM8+kuLiYZs2a0adPH2bMmNGQFax74++rZ8+efPLJJ/zf//0f//73v8nMzOTxxx/n7LPPbhij+0NEREREREREROTwYJimaR7qSYiIiIiIiIiIiIiIiIiIiPxR1GNcRERERERERERERERERESOaAqMi4iIiIiIiIiIiIiIiIjIEU2BcREREREREREREREREREROaIpMC4iIiIiIiIiIiIiIiIiIkc0BcZFREREREREREREREREROSIpsC4iIiIiIiIiIiIiIiIiIgc0RQYFxERERERERERERERERGRI5oC4yIiIiIiIiIiIiIiIiIickRTYFxERAT46aefMAyDsrKyPY7LyMjg8ccf/1PmJCIiIiIiIiIiIiIiB4cC4yIi8qfy+/3069ePk08+udH28vJyUlNTuf3223e775AhQzAMA8MwcDqdtGrVivvuuw+/3/+759WvXz/y8vKIjIwE4PXXXycqKmqXcbNnz+aSSy753ecTEREREREREREREZE/jwLjIiLyp7JarbzxxhtMnDiRd955p2H71VdfTUxMDHfcccce97/44ovJy8tj5cqVXHPNNdx+++08/PDDv3teDoeDxMREDMPY47hmzZrhdrt/9/lEREREREREREREROTPo8C4iIj86bKzs7n//vu5+uqryc3N5bPPPmPChAm88cYbOByOPe7rdrtJTEwkIyODq666imHDhvHpp58CUFpayrnnnkt0dDRut5tRo0axevXqhn03btzI6NGjiY6OJjQ0lPbt2/P1118DjUup//TTT5x//vmUl5c3ZKjfddddwK6l1Ddt2sTYsWMJCwsjIiKC0047jYKCgobH77rrLrp06cJbb71FRkYGkZGRnHHGGVRWVh6cJ1NERERERERERERERPZKgXERETkkrr76ajp37sy5557LJZdcwh133EGXLl32+zghISF4vV4AzjvvPObMmcPnn3/O9OnTMU2TY489tuHxK6+8kvr6en7++WcWL17Mgw8+SFhY2C7H7NevH48//jgRERHk5eWRl5fHTTfdtMs40zQ54YQT2Lp1K1OmTGHy5MmsXbuW008/vdG4tWvX8umnn/Lll1/y5ZdfMmXKFB544IH9vlYRERERERERERERETkwtkM9ARER+XsyDIPnnnuOtm3b0rFjR/7xj3/s1/6BQIBJkybx7bffct1117F69Wo+//xzfv31V/r16wfAO++8Q2pqKp9++imnnnoqmzZt4uSTT6Zjx44AZGVlNXlsh8NBZGQkhmGQmJi42zl89913LFq0iPXr15OamgrAW2+9Rfv27Zk9ezY9e/ZsmOvrr79OeHg4AOPGjeP777/n3nvv3a9rFhERERERERERERGRA6OMcREROWReffVV3G4369evJycnZ5/2efbZZwkLC8PlcjFmzBjOOecc7rzzTpYvX47NZqN3794NY2NjY2ndujXLly8H4JprruGee+6hf//+3HnnnSxatOh3zX/58uWkpqY2BMUB2rVrR1RUVMM5IVh+fXtQHCApKYnCwsLfdW4REREREREREREREdl3CoyLiMghMX36dB577DE+++wz+vbty4UXXohpmnvd7+yzz2bBggWsXbuW2tpaXnnlFdxu9273NU0TwzAAuOiii1i3bh3jxo1j8eLF9OjRg6eeeuqAr2HnY+9pu91ub/S4YRgEAoEDPq+IiIiIiIiIiIiIiOwfBcZFRORPV1tby/jx47n00ksZPnw4L7/8MrNnz+aFF17Y676RkZG0bNmS1NRUrFZrw/Z27drh8/mYOXNmw7aSkhJWrVpF27ZtG7alpqZy2WWX8fHHH3PjjTfy0ksvNXkeh8OB3+/f41zatWvHpk2b2Lx5c8O2ZcuWUV5e3uicIiIiIiIiIiIiIiJyaCkwLiIif7p//OMfBAIBHnzwQQDS0tJ45JFHuPnmm9mwYcMBHTM7O5uxY8dy8cUXM3XqVBYuXMg555xD8+bNGTt2LADXXXcd3377LevXr2fevHn88MMPuw1gZ2RkUFVVxffff09xcTE1NTW7jBk+fDidOnXi7LPPZt68ecyaNYtzzz2XwYMH06NHjwO6DhEREREREREREREROfgUGBcRkT/VlClTeOaZZ3j99dcJDQ1t2H7xxRfTr1+/fS6p3pTXXnuN7t27c/zxx9O3b19M0+Trr79uKGXu9/u58soradu2LccccwytW7fm2WefbfJY/fr147LLLuP000+nWbNmPPTQQ7uMMQyDTz/9lOjoaAYNGsTw4cPJysrivffeO6D5i4iIiIiIiIiIiIjIH8MwDzT6ICIiIiIiIiIiIiIiIiIi8hegjHERERERERERERERERERETmiKTAuIiIiIiIiIiIiIiIiIiJHNAXGRURERERERERERERERETkiKbAuIiIiIiIiIiIiIiIiIiIHNEUGBcRERERERERERERERERkSOaAuMiIiIiIiIiIiIiIiIiInJEU2BcRERERERERERERERERESOaAqMi4iIiIiIiIiIiIiIiIjIEU2BcREREREREREREREREREROaIpMC4iIiIiIiIiIiIiIiIiIkc0BcZFREREREREREREREREROSIpsC4iIiIiIiIiIiIiIiIiIgc0f4fd8DcX0C6QHAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_pose_estimation(nodes, edges, name_to_data, node_to_name, pes_timestamps)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "jadhav_notebook_env", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/001471/stream_nwbfile.py b/001471/stream_nwbfile.py new file mode 100644 index 0000000..02bff64 --- /dev/null +++ b/001471/stream_nwbfile.py @@ -0,0 +1,35 @@ +from pynwb import NWBHDF5IO +import remfile +import h5py +from dandi.dandiapi import DandiAPIClient + +def stream_nwbfile(DANDISET_ID, file_path): + '''Stream NWB file from DANDI archive. + + Parameters + ---------- + DANDISET_ID : str + Dandiset ID + file_path : str + Path to NWB file in DANDI archive + + Returns + ------- + nwbfile : NWBFile + NWB file + io : NWBHDF5IO + NWB IO object (for closing) + + Notes + ----- + The io object must be closed after use. + ''' + with DandiAPIClient() as client: + client.dandi_authenticate() + asset = client.get_dandiset(DANDISET_ID, 'draft').get_asset_by_path(file_path) + s3_url = asset.get_content_url(follow_redirects=1, strip_query=False) + file_system = remfile.File(s3_url) + file = h5py.File(file_system, mode="r") + io = NWBHDF5IO(file=file, load_namespaces=True) + nwbfile = io.read() + return nwbfile, io \ No newline at end of file