@@ -35,23 +35,33 @@ To install VariantVisualization.jl:
35
35
36
36
``` julia
37
37
julia
38
- ]
39
- add VariantVisualization
38
+ ]add VarianatVisualization
40
39
exit ()
41
40
```
41
+ ### Step 3: Run ` viva `
42
42
43
+ #### Mac and Linux
43
44
44
- ### Step 3: Install the VIVA command line script
45
+ On Mac and Linux, open another terminal window, navigate to your project folder and run:
45
46
46
- Download the VIVA tool script and save it to a working directory for your analysis. Save your VCF file in the working directory.
47
+ ``` shell
48
+ viva -f filename.vcf -s < format> -o output/directory/
49
+ ```
50
+
51
+ #### Windows
47
52
48
- Copy and paste the following block of code into the command line or PowerShell:
53
+ !!! Warning
54
+ Viva will not work with Win32.
55
+
56
+ On windows, after installing VariantVisualization, open a new PowerShell and run:
57
+ ``` shell
58
+ viva -f filename.vcf -s < format> -o output/directory/
59
+ ```
49
60
50
- > mkdir new_folder/
61
+ You'll then be prompted to select an application to open the script. Select the Julia executable, that is normally located
62
+ at ` C:\Users\<username>\AppData\Local\Julia-<version>\bin\ ` .
51
63
52
- > cd new_folder/
53
64
54
- > curl -L https://raw.githubusercontent.com/compbiocore/VariantVisualization.jl/master/viva > viva
55
65
56
66
### Optional Step: Install VIVA Jupyter Notebook
57
67
@@ -66,20 +76,19 @@ Then, follow the in-notebook instructions to generate your plots.
66
76
67
77
To stay up to date with cutting edge development features install VariantVisualization.jl from the Master branch.
68
78
69
- from the Julia REPL (useful if using the PowerShell and don't have git installed) :
79
+ From the Julia REPL:
70
80
71
- ``` julia
72
- ]
73
- add VariantVisualization# master
81
+ ``` shell
82
+ julia
83
+ ] add VariantVisualization#master
74
84
```
75
85
76
86
### For Developers
77
87
78
- To add VariantVisualization in develop mode:
79
-
80
- ``` julia
81
- ]
82
- dev VariantVisualization
88
+ Install VariantVisualization in development mode:
89
+ ``` shell
90
+ julia
91
+ ]dev VariantVisualization
83
92
```
84
93
85
94
VIVA Jupyter notebook and the VIVA the command line tool are built with functions contained in our VariantVisualization.jl package.
@@ -118,32 +127,31 @@ mkdir project_x
118
127
cd project_x
119
128
```
120
129
121
- Make sure to add your project VCF files to that folder. That directory will be mapped to ` /notebook/data ` inside of the container.
130
+ Make sure to add your project VCF files to that folder.
122
131
123
- When entering the filename of the VCF file and files to support filtering options, you should include ` /data/... ` in the path to your files.
124
132
125
133
##### Run the VIVA Command Line Tool from a Docker image:
126
134
127
135
* Note* : Remember, you must use the flag ` --save_remotely ` when running VIVA by using Docker.
128
136
129
137
- On Mac or Linux:
130
138
``` shell
131
- docker run -it --rm -v " $PWD " :/data compbiocore/viva-cli:v0.3.9 /script/ viva --save_remotely -f file.vcg -s pdf -o /data [...args]
139
+ docker run -it --rm -v " $PWD " :/data compbiocore/viva-cli viva --save_remotely -f file.vcf -s pdf -o output
132
140
```
133
141
134
142
- Example run:
135
143
``` shell
136
- docker run -it --rm -v " $PWD " :/data compbiocore/viva-cli:v0.3.9 /script/ viva --save_remotely -f file.vcf -s pdf -o /data [...args]
144
+ docker run -it --rm -v " $PWD " :/data compbiocore/viva-cli viva --save_remotely -f file.vcf -s pdf -o output
137
145
```
138
146
139
147
- On Windows:
140
148
``` shell
141
- docker run -it --rm -v " ${pwd} " :/data compbiocore/viva-cli:v0.3.9 /script/ viva --save_remotely -f file.vcf -s pdf -o /data [...args]
149
+ docker run -it --rm -v " ${pwd} " :/data compbiocore/viva-cli viva --save_remotely -f file.vcf -s pdf -o output
142
150
```
143
151
144
152
- Example run:
145
153
``` shell
146
- docker run -it --rm -v " ${pwd} " :/data compbiocore/viva-cli:v0.3.9 /script/ viva --save_remotely -f file.vcf -s pdf -o /data [...args]
154
+ docker run -it --rm -v " ${pwd} " :/data compbiocore/viva-cli viva --save_remotely -f file.vcf -s pdf -o output
147
155
```
148
156
149
157
##### Run the VIVA Jupyter Notebook from a Docker image:
@@ -157,7 +165,7 @@ docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "$PWD":/home/jovyan/no
157
165
158
166
Go to the following url in your internet browser. You'll receive a token to enter into the url.
159
167
160
- Go to ` http://0 .0.0.0 :8888/?token=<enter token here> `
168
+ Go to ` http://127 .0.0.1 :8888/?token=<enter token here> `
161
169
162
170
- On Windows:
163
171
``` shell
@@ -166,24 +174,9 @@ docker run --rm -p 8888:8888 -e JUPYTER_ENABLE_LAB=yes -v "${pwd}":/home/jovyan/
166
174
167
175
Go to the following url in your internet browser. You'll receive a token to enter into the url.
168
176
169
- Go to ` http://0 .0.0.0 :8888/?token=<enter token here> `
177
+ Go to ` http://127 .0.0.1 :8888/?token=<enter token here> `
170
178
171
179
[ Click here] ( https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html ) for more information about Jupyter Docker Images.
172
180
173
- #### Using Docker Compose
174
-
175
- To run the images with Docker Compose, install Docker following the steps above and then install [ Docker Compose[ (https://docs.docker.com/compose/ ). Then copy the [ docker-compose.yml] ( https://github.com/compbiocore/viva-docker/blob/master/docker-compose.yml ) file to a local directory. From that same directory, run the command as it appears below.
176
-
177
- * Note* : Your current directory will mount to ` /notebook/data ` in the notebook image and to ` /data ` in the CLI image.
178
-
179
- - Notebook
180
- ``` shell
181
- docker-compose up viva-notebook
182
- ```
183
-
184
- - Command Line Tool
185
- ``` shell
186
- docker-compose run viva -f file.vcf --save_remotely arg3 arg4 ...
187
- ```
188
181
189
182
-----
0 commit comments