-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path240.search-a-2-d-matrix-ii.js
77 lines (75 loc) · 1.85 KB
/
240.search-a-2-d-matrix-ii.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*
* @lc app=leetcode id=240 lang=javascript
*
* [240] Search a 2D Matrix II
*
* https://leetcode.com/problems/search-a-2d-matrix-ii/description/
*
* algorithms
* Medium (42.73%)
* Likes: 3003
* Dislikes: 75
* Total Accepted: 310.4K
* Total Submissions: 723.4K
* Testcase Example: '[[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]]\n5'
*
* Write an efficient algorithm that searches for a value in an m x n matrix.
* This matrix has the following properties:
*
*
* Integers in each row are sorted in ascending from left to right.
* Integers in each column are sorted in ascending from top to bottom.
*
*
* Example:
*
* Consider the following matrix:
*
*
* [
* [1, 4, 7, 11, 15],
* [2, 5, 8, 12, 19],
* [3, 6, 9, 16, 22],
* [10, 13, 14, 17, 24],
* [18, 21, 23, 26, 30]
* ]
*
*
* Given target = 5, return true.
*
* Given target = 20, return false.
*
*/
// @lc code=start
/**
* @param {number[][]} matrix
* @param {number} target
* @return {boolean}
*/
var searchMatrix = function (matrix, target) {
//not typical binary search, but mentality is the same, use 1 big element to do the compare which can represent lot of elements
let row = 0;
if (matrix.length == 0) {
console.log("matrix length is zero");
return false;
}
let col = matrix[0].length - 1;
//iterating all rows,
while (col >= 0 && row <= matrix.length - 1) {
//3. found the element
if (target == matrix[row][col]) {
console.log("found the element");
return true;
//2. col from last to first in order to find the element in that row
} else if (target < matrix[row][col]) {
console.log("adjusting the col");
col--;
//1. go to the specific row
} else {
console.log("adding the row");
row++;
}
}
return false;
};
// @lc code=end