-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1_train_order2taskplan_model.py
150 lines (129 loc) · 6.05 KB
/
1_train_order2taskplan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import importlib
import sys
importlib.reload(sys)
#sys.setdefaultencoding('utf8')
import argparse
import torch
import torchtext.vocab as vocab
from tools import NLPTools
from torch.utils.data import DataLoader
from order2taskplan.model import order2taskplanModel
import time
from shutil import copyfile
import logging
import pathlib
from tools.plot import savePlot
print('PyTorch Version: ',torch.__version__)
parser = argparse.ArgumentParser(description='order2taskplan-pytorch')
parser.add_argument('--resume','-r',default=False,
help='use checkpoint model parameters as initial parameters (default: False)',
action="store_true")
parser.add_argument('--pretrained','-p',
help='use checkpoint model parameters and do not train anymore (default: False)',
action="store_true")
parser.add_argument('--epochs', default=200, type=int, metavar='E',
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=1, type=int, metavar='SE',
help='manual epoch number (useful on restarts)')
parser.add_argument('--batch_size', default=32, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--learning_rate', default=0.0002, type=float,
help='learning rate')
parser.add_argument('--fix_embed', default=True, type=bool,
help='fix pre-trained embedding')
parser.add_argument('--embedding_dim', default=300, type=int,
help='embedding dim')
parser.add_argument('--hidden_size', default=100, type=int,
help='RNN hidden size')
parser.add_argument('--num_layers', default=3, type=int,
help='number of RNN layers')
parser.add_argument('--dropout_rnn', default=0.2, type=float,
help='dropout rate of RNN')
parser.add_argument('--dropout_rnn_output', default=0.2, type=float,
help='dropout rate of RNN output')
parser.add_argument('--dropout_emb', default=0.2, type=float,
help='dropout rate of embedding layer')
parser.add_argument('--latent_vector_size', default=0, type=float,
help='latent vector size')
parser.add_argument('--packing', default=False, type=bool,
help='packing padded rnn sequence')
parser.add_argument('--teacher_forcing_ratio', default=0.5, type=float,
help='teacher forcing ratio in decoding process')
parser.add_argument('--log_file', default='result/1_result.log',
help='log_file name to be saved')
parser.add_argument('--plot_file', default='result/1_scores.pdf',
help='plot_file name to be saved')
parser.add_argument('--model_file', default='checkpoint/1_checkpoint.pt',
help='model_file to be saved')
args = parser.parse_args()
# setup logger
log = logging.getLogger(__name__)
log.setLevel(logging.DEBUG)
fh = logging.FileHandler(args.log_file)
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(logging.INFO)
formatter = logging.Formatter(fmt='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
log.addHandler(fh)
log.addHandler(ch)
USE_CUDA = torch.cuda.is_available()
print('USE_CUDA:',USE_CUDA)
# Load pretrained embedding (GloVe)
glove= vocab.GloVe(name='6B', dim=300)
print('Loaded', len(glove.itos), 'words')
pairs = {}
langs, _ = NLPTools.prepare_data('data/order-environment-taskplan-whole.txt', embedding=glove)
_, pairs['train'] = NLPTools.prepare_data('data/order-environment-taskplan-train.txt', embedding=glove)
_, pairs['test'] = NLPTools.prepare_data('data/order-environment-taskplan-test.txt', embedding=glove)
# Print an example pair
dataset={}
pairs_maxlen={}
loader={}
for state in ['train', 'test']:
dataset[state], pairs_maxlen[state] = NLPTools.pad_pairs(langs=langs, pairs=pairs[state])
dataset[state] = NLPTools.order2taskplan_Dataset(data = dataset[state])
loader['train'] = DataLoader(dataset['train'], batch_size=args.batch_size, shuffle=True)
loader['test'] = DataLoader(dataset['test'], batch_size=1, shuffle=False)
max_seqlen=[]
for i,j in zip(pairs_maxlen['train'],pairs_maxlen['test']):
max_seqlen.append(max(i,j))
if args.resume:
log.info('[loading previous model...]')
checkpoint = torch.load('checkpoint/best_model/1_best_model.pt')
args = checkpoint['config']
state_dict = checkpoint['state_dict']
epoch_0 = checkpoint['epoch'] + 1
model = order2taskplanModel(args=args, loader=loader,
langs=langs, max_seqlen=max_seqlen, embedding=glove, state_dict=state_dict)
model.cuda()
else:
epoch_0 =1
model = order2taskplanModel(args=args, loader=loader,
langs=langs, max_seqlen=max_seqlen, embedding=glove, state_dict=None)
model.cuda()
try:
best_val_score = 0.0
ppl_trains = []
ppl_tests = []
exact_matches = []
f1_scores = []
for epoch in range(epoch_0,epoch_0 + args.epochs):
start_time = time.time()
ppl_train = model.train()
ppl_test,exact_match, f1_score = model.evaluate()
elapsed_time = time.time() - start_time
ppl_trains.append(ppl_train), ppl_tests.append(ppl_test)
exact_matches.append(exact_match), f1_scores.append(f1_score)
log.info('|Epoch {:3d}| train ppl {:5.2f} | valid ppl {:5.2f}, F1 {:3.2f}, EM {:3.2f}| elapsed: {:3.0f} |'.format(
epoch, ppl_train, ppl_test, f1_score, exact_match, elapsed_time))
model.save(args.model_file,epoch)
if f1_score > best_val_score:
best_val_score = f1_score
copyfile(
args.model_file,'checkpoint/best_model/1_best_model.pt')
log.info('[new best model saved.]')
savePlot(args,ppl_trains,ppl_tests,exact_matches,f1_scores)
except KeyboardInterrupt:
print('Exiting from training early')