From 0170718fa889e557ed4adae708cb3bf7c7c1138a Mon Sep 17 00:00:00 2001 From: Arjun <72355507+AnonumusArjun@users.noreply.github.com> Date: Fri, 16 Oct 2020 10:32:24 +0530 Subject: [PATCH] Iris data with Naive byes & explain with iris example --- _SKlearn/NaiveBayes.py | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/_SKlearn/NaiveBayes.py b/_SKlearn/NaiveBayes.py index af709e0..238a707 100644 --- a/_SKlearn/NaiveBayes.py +++ b/_SKlearn/NaiveBayes.py @@ -16,3 +16,26 @@ class SKMultinomialNB(nb.MultinomialNB, ClassifierBase, metaclass=SKCompatibleMe class SKGaussianNB(nb.GaussianNB, ClassifierBase, metaclass=SKCompatibleMeta): pass + +from sklearn.datasets import load_iris +iris = load_iris() + +# store the feature matrix (X) and response vector (y) +X = iris.data +y = iris.target + +# splitting X and y into training and testing sets +from sklearn.model_selection import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=1) + +# training the model on training set +from sklearn.naive_bayes import GaussianNB +gnb = GaussianNB() +gnb.fit(X_train, y_train) + +# making predictions on the testing set +y_pred = gnb.predict(X_test) + +# comparing actual response values (y_test) with predicted response values (y_pred) +from sklearn import metrics +print("Gaussian Naive Bayes model accuracy(in %):", metrics.accuracy_score(y_test, y_pred)*100)