-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchatapp.py
84 lines (79 loc) · 2.99 KB
/
chatapp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
from keras.models import load_model
import json
import random
import os
#below is needed for windows local run add dotenv to requirement.txt if running locally.
#from dotenv import load_dotenv
#load_dotenv()
DEEP_LINKING = os.environ.get('DEEP_LINKING')
model = load_model('chatbot_model.h5')
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
noAnswerEN = ["I'm sorry I don't understand.",
"Could you phrase that differently for me?",
"Not sure I understand."]
noAnswerFR = ["Je suis d\u00e9sol\u00e9, je n'ai pas compris.",
"Pourriez-vous formuler cela autrement pour moi?",
"Je ne suis pas certain de comprendre."]
def clean_up_sentence(sentence):
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print("found in bag: %s" % w)
return(np.array(bag))
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.33
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
print(ints)
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if( i['tag'] == tag):
result = random.choice(i['responses'])
break
return result
def chatbot_response(lang,text):
ints = predict_class(text.lower(), model)
if not ints:
res = ""
else:
res = getResponse(ints, intents)
if res == "":
if lang == "en":
res = random.choice(noAnswerEN)
else:
res = random.choice(noAnswerFR)
else:
res = res.replace('workbc-test', DEEP_LINKING)
print(res)
return res