Skip to content

Test coverage for semanticAnalyzer.js (30.83% → 100%) #50

@anabelle

Description

@anabelle

Overview

The semanticAnalyzer.js performs semantic analysis on posts including sentiment, relevance, and content quality assessment. With 30.83% coverage, much of the semantic analysis pipeline is untested.

Current Coverage

  • Statements: 30.83%
  • Branches: 75.00%
  • Functions: 20.00%
  • Lines: 30.83%
  • Target: 100% coverage

Uncovered Areas

Major untested sections:

  • Sentiment analysis
  • Relevance scoring
  • Content quality assessment
  • Semantic similarity calculations
  • LLM-based analysis
  • Cache management
  • Batch analysis
  • Analysis fallbacks

Key Functionality to Test

1. Sentiment Analysis

  • Detecting positive sentiment
  • Detecting negative sentiment
  • Detecting neutral sentiment
  • Mixed sentiment handling
  • Sentiment scoring ranges

2. Relevance Scoring

  • Content relevance to topics
  • User relevance to content
  • Context-based relevance
  • Relevance thresholds

3. Quality Assessment

  • Post quality metrics
  • Content depth analysis
  • Spam detection
  • Bot detection
  • Quality normalization

4. LLM Integration

  • LLM-based analysis when enabled
  • Fallback to rule-based analysis
  • Prompt construction
  • Response parsing
  • Error handling

Testing Strategy

describe('SemanticAnalyzer', () => {
  describe('Initialization', () => {
    test('initializes with LLM enabled');
    test('initializes with LLM disabled');
    test('configures cache settings');
  });

  describe('Sentiment Analysis', () => {
    test('detects positive sentiment');
    test('detects negative sentiment');
    test('detects neutral sentiment');
    test('handles mixed sentiment');
    test('scores within valid range');
  });

  describe('Relevance Scoring', () => {
    test('scores topic relevance');
    test('scores user relevance');
    test('considers context');
    test('respects thresholds');
  });

  describe('Quality Assessment', () => {
    test('assesses post quality');
    test('detects spam');
    test('detects bot content');
    test('normalizes quality scores');
  });

  describe('LLM Integration', () => {
    test('uses LLM when enabled');
    test('falls back to rules when disabled');
    test('constructs valid prompts');
    test('parses LLM responses');
    test('handles LLM errors');
  });

  describe('Cache Management', () => {
    test('caches analysis results');
    test('retrieves from cache');
    test('respects cache TTL');
    test('handles cache misses');
  });
});

Test Fixtures Needed

  • Sample posts with various sentiments
  • High/low quality content examples
  • Spam and bot content samples
  • Mock LLM responses
  • Cache scenarios

Acceptance Criteria

  • Sentiment analysis fully tested
  • Relevance scoring verified
  • Quality assessment covered
  • LLM integration tested (enabled/disabled)
  • Cache management verified
  • Error handling covered
  • Overall coverage 100%

Related

Priority

🟡 MEDIUM - Important for content quality filtering and discovery.

Metadata

Metadata

Assignees

Labels

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions