-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Labels
Description
Overview
The semanticAnalyzer.js performs semantic analysis on posts including sentiment, relevance, and content quality assessment. With 30.83% coverage, much of the semantic analysis pipeline is untested.
Current Coverage
- Statements: 30.83%
- Branches: 75.00%
- Functions: 20.00%
- Lines: 30.83%
- Target: 100% coverage
Uncovered Areas
Major untested sections:
- Sentiment analysis
- Relevance scoring
- Content quality assessment
- Semantic similarity calculations
- LLM-based analysis
- Cache management
- Batch analysis
- Analysis fallbacks
Key Functionality to Test
1. Sentiment Analysis
- Detecting positive sentiment
- Detecting negative sentiment
- Detecting neutral sentiment
- Mixed sentiment handling
- Sentiment scoring ranges
2. Relevance Scoring
- Content relevance to topics
- User relevance to content
- Context-based relevance
- Relevance thresholds
3. Quality Assessment
- Post quality metrics
- Content depth analysis
- Spam detection
- Bot detection
- Quality normalization
4. LLM Integration
- LLM-based analysis when enabled
- Fallback to rule-based analysis
- Prompt construction
- Response parsing
- Error handling
Testing Strategy
describe('SemanticAnalyzer', () => {
describe('Initialization', () => {
test('initializes with LLM enabled');
test('initializes with LLM disabled');
test('configures cache settings');
});
describe('Sentiment Analysis', () => {
test('detects positive sentiment');
test('detects negative sentiment');
test('detects neutral sentiment');
test('handles mixed sentiment');
test('scores within valid range');
});
describe('Relevance Scoring', () => {
test('scores topic relevance');
test('scores user relevance');
test('considers context');
test('respects thresholds');
});
describe('Quality Assessment', () => {
test('assesses post quality');
test('detects spam');
test('detects bot content');
test('normalizes quality scores');
});
describe('LLM Integration', () => {
test('uses LLM when enabled');
test('falls back to rules when disabled');
test('constructs valid prompts');
test('parses LLM responses');
test('handles LLM errors');
});
describe('Cache Management', () => {
test('caches analysis results');
test('retrieves from cache');
test('respects cache TTL');
test('handles cache misses');
});
});Test Fixtures Needed
- Sample posts with various sentiments
- High/low quality content examples
- Spam and bot content samples
- Mock LLM responses
- Cache scenarios
Acceptance Criteria
- Sentiment analysis fully tested
- Relevance scoring verified
- Quality assessment covered
- LLM integration tested (enabled/disabled)
- Cache management verified
- Error handling covered
- Overall coverage 100%
Related
- Parent: Increase plugin-nostr test coverage to 100% #39 - Increase plugin-nostr test coverage to 100%
- Related:
lib/contextAccumulator.js- Uses sentiment data - Related:
lib/discovery.js- Uses quality scores
Priority
🟡 MEDIUM - Important for content quality filtering and discovery.
Copilot