diff --git a/api.py b/api.py index 4990cae..a4d32ad 100644 --- a/api.py +++ b/api.py @@ -57,7 +57,7 @@ def parse_arguments(): parser.add_argument("--max_num_worker", type=int, default=0, help="maximum number of workers for dataloader") parser.add_argument( - "--model", type=str, default="gpt3-xl", help="model used for decoding. Note that 'gpt3' are the smallest models." + "--model", type=str, default="gpt-3.5-turbo-16k", help="model used for decoding. Note that 'gpt-3.5-turbo' are the smallest models." ) parser.add_argument( "--method", type=str, default="auto_cot", choices=["zero_shot", "zero_shot_cot", "few_shot", "few_shot_cot", "auto_cot"], help="method" diff --git a/requirements.txt b/requirements.txt index 2b14069..9e5258a 100755 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -sklearn +scikit-learn matplotlib sentence-transformers jupyter diff --git a/utils.py b/utils.py index a1b978d..0c7ae26 100644 --- a/utils.py +++ b/utils.py @@ -58,47 +58,22 @@ def decoder_for_gpt3(args, input, max_length): # https://beta.openai.com/account/api-keys # openai.api_key = "[Your OpenAI API Key]" - # Specify engine ... - # Instruct GPT3 - if args.model == "gpt3": - engine = "text-ada-001" - elif args.model == "gpt3-medium": - engine = "text-babbage-001" - elif args.model == "gpt3-large": - engine = "text-curie-001" - elif args.model == "gpt3-xl": - engine = "text-davinci-002" - elif args.model == "text-davinci-001": - engine = "text-davinci-001" - elif args.model == "code-davinci-002": - engine = "code-davinci-002" - else: - raise ValueError("model is not properly defined ...") - if ("few_shot" in args.method or "auto" in args.method) and engine == "code-davinci-002": - response = openai.Completion.create( - engine=engine, - prompt=input, - max_tokens=max_length, - temperature=args.temperature, - top_p=1, - frequency_penalty=0, - presence_penalty=0, - stop=["\n"] - ) - else: - response = openai.Completion.create( - engine=engine, - prompt=input, - max_tokens=max_length, - temperature=args.temperature, - top_p=1, - frequency_penalty=0, - presence_penalty=0, - stop=None - ) + response = openai.chat.completions.create( + model=args.model, + messages=[{ + "role": "user", + "content": input + }], + max_tokens=max_length, + temperature=args.temperature, + top_p=1, + frequency_penalty=0, + presence_penalty=0, + stop=None + ) - return response["choices"][0]["text"] + return response.choices[0].message.content class Decoder(): def __init__(self):